


Lecture Notes in Artificial Intelligence 5949
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Jacky Baltes Michail G. Lagoudakis
Tadashi Naruse Saeed Shiry Ghidary (Eds.)

RoboCup 2009:
Robot Soccer
World Cup XIII

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jacky Baltes
University of Manitoba, Department of Computer Science
Winnipeg, Manitoba R3T 2N2, Canada
E-mail: jacky@cs.umanitoba.ca

Michail G. Lagoudakis
Technical University of Crete, Intelligent Systems Laboratory
Department of Electronic and Computer Engineering
73100 Chania, Greece
E-mail: lagoudakis@intelligence.tuc.gr

Tadashi Naruse
Aichi Prefectural University, School of Information Science and Technology
Nagakute-cho, Aichi 480-1198, Japan
E-mail: naruse@ist.aichi-pu.ac.jp

Saeed Shiry Ghidary
Amirkabir University of Technolgoy
Computer Engineering and Information Technology Department
Hafez Avenue, Tehran 15914, Iran
E-mail: shiry@ce.aut.ac.ir

The photo for the cover illustration was taken by David Kriesel;
copyright by University of Bonn.

Library of Congress Control Number: 2010920867

CR Subject Classification (1998): I.2, C.2.4, D.2.7, H.5, I.5.4, J.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-11875-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11875-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12842797 06/3180 5 4 3 2 1 0



Preface

We are really pleased to present the proceedings of the RoboCup International
Symposium 2009. The 13th RoboCup Symposium was held in conjunction with
the RoboCup 2009 competition in Graz, Austria from June 29 to July 5, 2009.

The symposium highlights the many research contributions and achievements
of the RoboCup community. Contributions from all leagues (RoboCupSoccer,
RoboCupRescue, RoboCup@Home, and RoboCupJunior) are included in the
symposium. The papers published in these proceedings are not limited to practi-
cal issues, but also include fundamental research, system evaluation, and robotics
education topics.

There were 112 submissions from 25 countries. All papers were carefully re-
viewed by an international Program Committee of 96 members, who were as-
sisted by 25 additional reviewers. Each paper was reviewed by three Program
Committee members and all reviews were carefully considered and discussed by
the Symposium Co-chairs, who made the final decisions. The review process was
extremely selective and many good papers could not be accepted for the final pro-
gram. Out of the 112 submissions, 22 papers were selected for oral presentations,
whereas 17 papers were selected for poster presentations. Two of these papers
were recognized for their outstanding quality. Specifically, Mohsen Malmir and
Saeed Shiry received the best paper award for their paper titled “Object Recog-
nition with Statistically Independent Features: A Model Inspired by the Primate
Visual Cortex”and Shivaram Kalyanakrishnan and Peter Stone received the best
student paper award for their paper titled “Learning Complementary Mutliagent
Behaviors: A Case Study”.

In addition to the paper and poster presentations, which cover the state of
the art in a broad range of topics central to the Robocup community, we were
delighted to welcome a number of distinguished invited speakers (Auke Ijspeert
of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, Ulises Cortés of
the Technical University of Catalonia, Spain, Silvia Coradeschi of Orebro Uni-
versity, Sweden, and Robin Murphy of the Texas A&M University, USA). These
talks were complemented by a number of additional talks by leading robotics
researchers and representatives of all RoboCup leagues.

We would like to take this opportunity to thank the Program Committee
members and the external reviewers for their hard work and, of course, all the
authors for their contributions! Furthermore, we would like to thank the au-
thors of the Easychair system, which was used to manage the submission and
publication process, for their excellent work.

November 2009 Jacky Baltes
Michail G. Lagoudakis

Tadashi Naruse
Saeed Shiry
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Heikow Bülow, Andreas Birk, and Shams Feyzabadi

Real-Time Hand Gesture Recognition for Human Robot Interaction . . . . 46
Mauricio Correa, Javier Ruiz-del-Solar, Rodrigo Verschae,
Jong Lee-Ferng, and Nelson Castillo

Combining Key Frame Based Motion Design with Controlled Movement
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Coordinated Action
in a Heterogeneous Rescue Team

Fares Alnajar, Hanne Nijhuis, and Arnoud Visser

Intelligent Systems Laboratory Amsterdam, Universiteit van Amsterdam,
Science Park 107, NL 1098 XG Amsterdam, The Netherlands

f.alnajar@student.uva.nl, h.nijhuis@student.uva.nl, a.visser@uva.nl

Abstract. In this paper we describe a new approach to make use of
a heterogeneous robot team for the RoboCup Rescue League Virtual
Robot competition. We will demonstrate coordinated action between a
flying and a ground robot. The flying robot is used for fast exploration
and allows the operator to find the places where victims are present in
the environment. Due to the fast aggregation of the location error in the
flying robot no precise location of the victim is known. It is the task of
the ground robot to autonomously go the point of interest and to get
an accurate location of the victim, which can be used by human rescue
workers to save the victim. The benefit of this approach is demonstrated
in a small number of experiments. By integrating the abilities of the two
robots the team’s performance is improved.

1 Introduction

Since long it has been indicated that a heterogeneous robot team should have
operational benefits [1]. For Urban Search and Rescue operations, the benefits
seem even more promising [2]. Many teams [3,4] have indicated the possibil-
ity of heterogeneous team consisting of an aerial and ground robot, but actual
demonstrations are sparse [5]. Here, the benefit of coordinated action between a
teleoperated robot and a semi-autonomous ground-robot is demonstrated.

1.1 Relevance

In situations where a disaster like an earthquake has occurred, searching for
survivors in the area could be dangerous due to (partly) collapsed buildings that
are unstable. It could also be difficult for humans to search in such a collapsed
building if the available room is too small to crawl through. In such situations
robots could be deployed to search the area and hopefully supply some useful
information on the location and status of possible survivors. These robots could
be operated by humans (by remote control), but if they are able to explore
(semi) autonomously one could deploy a whole team of robots simultaneously
to cover a bigger area. To investigate the possibilities of multiple robots in these
situations, the Virtual Robot competition of the RoboCup Rescue League was
introduced [6].

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 F. Alnajar, H. Nijhuis, and A. Visser

Because deploying actual robots in actual disaster-situations is a very com-
plex task, the virtual robots competition is done in a simulated world. Simulation
should not replace experiments with real robots, but a simulated world makes
complex experiments reproducible and controllable. This provides the opportu-
nity for rapid development by focusing on only a relevant aspect. Researchers
can use this simulated world as rapid development environment, and can explore
the design space for behaviors and co-operation between multiple robots before
they are validated on real platforms.

1.2 USARSim

Since 2006 there have been annual world competitions in a simulation environ-
ment called USARSim. It’s based on the Unreal Tournament 2 engine [7] and
provides the ability to have robots operate in a 3D world with the laws of physics
(like gravity) already implemented.

For our research the CompWorldDay1 map1 is used as 3D map. This map
supplies a large outdoor- as well as indoor-environment (an overview of the
outdoor area we operate in can be seen in Figure 1(c)). Many obstacles like cars,
buildings and construction are present, but the sky is fairly empty. This will
give the aerial robot the opportunity to fly around without excessive need for
‘obstacle avoidance’.

Robots are recreated in the virtual world, based on real machines that are
used in the RoboCup Rescue League. For this research the AirRobot� and the
Pioneer 2-AT (P2AT) were used, as are depicted in figure 1(a) and 1(b).

1.3 Performance Metrics

To be able to compare the performance of the participating teams some metrics
were defined. The initial 2006 metrics were specified with the following formula:

S =
VID × 10 + VST × 10 + VLO × 10 + t × M + E × 50 − C × 5 + B

(1 + H)2

Where VID is the number of victims identified, VST is the number of victims for
which a status was reported, VLO is the number of properly localized victims,
B is an optional amount of bonus points rewarded by a referee for additional
information on victims, t is a scaling factor for the accuracy of the map, M is the
points assigned by a referee for the quality of the map, E is the points assigned
by a referee for the exploration efforts, C the collisions between a robot and a
victim and H the number of operators.

Over the years these metrics have changed [8] into the latest 2009 metrics:

S =
E ∗ 50 + M ∗ 50 + V ∗ 50

(H)2

1 Available for download on: http://downloads.sourceforge.net/usarsim/

http://downloads.sourcefor ge.net/usarsim/
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(a) The AirRobot (b) The P2AT ground
robot

(c) Outdoor area of CompWorldDay1, as soon through
the camera of the AirRobot. Victim locations are in-
dicated by red circles.

Fig. 1. Images from the USARSim environment

where V is an aggregate number indicating the effectiveness of victim detection
and H ≥ 1 is guaranteed. Part of V is the accuracy of the localization of the
victim; if the victim is reported more than 2.5 meters from its actual location it
is counted as false alarm with a corresponding penalty.

Although the AirRobot can be used to detect victims, initial tests indicated
that the accuracy of localization of the AirRobot drops fast after a few turns.
Although not impossible, building a map on visual clues alone is quite challenging
[9]. Due to the limitations of the AirRobot, the performance of heterogeneous
team will be based on the map of the ground-robot alone.

1.4 Related Work

Experiments with a heterogeneous team in rescue applications have been tried
before. The 2nd place of the 2008 Virtual Robot competition was actually
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rewarded to a heterogeneous team consisting of one aerial and one ground robot
[5]. Note that both robots were manually operated. Our approach incorporates
semi-autonomous behavior as explained in section 3.1. Semi-autonomy by fol-
lowing an online planned path is demonstrated by many teams in the competi-
tion (e.g. [4,3,10,11]). To coordinate the actions of multiple robots by dropping
RFID tags is inspired by the approach introduced by the Freiburg team [12].
The Freiburg robots avoided places where RFID tags were dropped, to optimize
the exploration efforts E. Our ground robot actively searches for RFID tags, to
optimize the victim detection V . In both approaches the location of the RFID
tags is used to ensure that all robots use the same global locations.

1.5 Outline

In the following section we will explain the approach we took on showing im-
provements by using a heterogeneous team. Next we will cover the methods we
used to implement this approach in section 3. We will discuss the experiments
and their results in section 4 to round of with a discussion and a conclusion.

2 Approaches

We discuss several approaches to make the heterogeneous team operate (semi)
autonomously. For the moment our approach is tested on outdoor situations
only.

2.1 Exploration

The main advantages of the AirRobot are its speed and its ability to move at such
height that obstacles are relatively sparse (you can fly over the obstacles instead
of driving around them). This would make the AirRobot ideal for exploring
a large area quickly. Furthermore the ability to explore from a high position
provides a higher probability of having an unobstructed view on victims.

Unfortunately the pay-load of the robot is very limited, so in real-life situations
we can not supply the robot with heavy gear. This limits not only the amount and
type of sensors the robot could carry, but also the computational power available
on board. For this research the payload is limited to a camera, a victim-sensor,
a RFID dispenser and an inertia navigation system.

2.2 Victim Localization

Since the main goal of the Rescue League is to find victims in a disaster-area
we want to use the AirRobot to search for them, because this can be done
much faster from the sky than by a slow ground robot. The AirRobot uses its
inertia navigation system (acceleration sensor) and therefore rapidly accumulates
an error on the estimation of its location. The threshold on accurate victim
localization is so sharp that GPS is also no option. This means that a victim
report of the AirRobot could not be trusted, and should be verified by a ground
robot.
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2.3 Sharing Knowledge

Each member of the team (the ground robot and the aerial one) makes an
estimation of its position. Both robots have an inertial navigation system, which
gives a relative position estimate. This relative position estimate is used by
the ground robot as initial estimate for a SLAM routine [13], which returns an
absolute location estimate by comparison of the current range measurements
against previous measurements aggregated on a map.

To unify the location estimation of the two robots, the estimations of a specific
point by the two robots are computed and used to find out the shift the aerial
robot makes with respect to the ground one.

There are two ways to achieve this ‘unification’. In the first one, the ground
robot computes this shift and sends the ‘correction’ to the aerial robot for the
next estimations. But this method requires a consistent connection with the
aerial robot which is not always available in the disaster situations, and requires
the two robots to be close to each other. The second way is by storing the shift
‘correction’ at the ground robot as list for every victim/RFID tag it has reached.
The ground robot uses this list to correct the position it is currently heading.
When the aerial robot comes back again into communication range the ground
robot transmit the whole list to allow the aerial to correct its traveled path as a
sort of post-processing, as described in section 3.2.

2.4 Cooperation

The two robots of our team have clearly different roles. The aerial robot is
used for exploring the environment and searching for victims. This robot is tele-
operated. The aerial robot sends the approximated locations of the victims to
the ground one, which is also equipped with a victim sensor. So as the ground
robot gets close to the victim, it can detect its exact position, and make an
accurate victim report. The positions sent by the aerial robot are imprecise,
and only used guide the ground robot to the neighborhood of the victim. The
ground robot makes further investigation for the victim in that neighborhood
(the victim sensor has a range of 6 meters). There is no guarantee that the
absolute position error of the AirRobot is less than 6 meters, but because the
ground robot maintains a gradual ‘correction’ of the aerial robot localization,
this strategy is only sensitive for the accumulation of the error between two
victim locations.

3 Methods Used

In this section we explain the details of the semi-autonomous following-behavior
of the ground robot to navigate the environment. Also we discuss how the two
robots calculate the correction vector for the localization estimate of the aerial
robot.
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3.1 Following

The follow-behavior (as used by the ground robot) is a collection of ‘motions’
and the rules to switch from one motion to another. The switch between two mo-
tions depends on observations of certain events in the local environment around
the robot (e.g. presence of obstacles, victims, and/or other teammates). A switch
should indicate when a motion is not longer adequate for this situation. This be-
havior is built on the motions used for the fully autonomous exploration [14].
The motion contains the reactive schemes that directly couple sensor measure-
ments to steering commands which navigate the environment. In each moment
only one motion is active, and the robot behavior switches from one motion to
another, depending on the robots situation. Here we give a description of these
motions.

Following: This is the default motion of the follow-behavior, in which the
robot waits for the position of the next target (the victim positions). When
it receives a target-position, it plans online a path from its current position
to the target, based on the occupancy grid map build so far. The path-
planning in this experiment is based on a breath-first algorithm, but also an
A*-algorithm is available. After the robot drove a certain distance (4 meters)
it re-plans the path again on the new occupancy grid map, to incorporate
information about the environment previously not visible.

Avoid Teammate: This motion is called when there is potential risk of colli-
sion between two robots (when the AirRobot is still on the ground and the
distance between them is less than 1 meter). There are four states the robot
can have while trying to avoid a teammate:
– The teammate is facing the robot from the front side: in this case the

robot should turn right or left to get out of the way.
– The teammate facing the robot from the back side: the same as the

previous state.
– The teammate is in front of the robot but not facing it: the robot waits

till the teammate move a way
– The teammate is behind the robot but not facing it: the robot keeps its

normal behavior (return the control to the ‘following’ motion).
Avoid Victim: This motion is used when the robot gets closer to the victim less

than 1 meter. After detecting the closest part of the victim, the motion keeps
the robot away of the victim. When the robot is far (more than 2 meters),
the control is returned to the following motion.

As we can see the flowing of control from one motion and another depends on
the situation of the robot, this is depicted in figure 2.

3.2 Updating Location Estimation Shift

Essential in our approach is calculation the difference in location estimation
between the team members. Our method is by based on dropping RFID tags,
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Fig. 2. Diagram of the follow-behavior

equivalent with the method used by [12], but now to find target points back.
An RFID tag is small and cheap radio wave responder, which is often used for
tracking and identification of logistic goods. These tags can be used as ’smart
dust’; at some points the AirRobot stores its current location estimate in a RFID
tag and drops this tag. When the ground robot comes close enough to this RFID
tag, it can read the content the tag, and its current absolute location estimate
and the read position as read from the tag (which was the location previously
estimated by the aerial robot). Based on this comparison the new shift vector is
calculated.

4 Experiments and Results

We tested our heterogeneous team on outdoor environment. We used the ”P2AT”-
model for the ground robot. The ground robot visits the places reported by the
aerial robot and detect the victim locations accurately. At end of the test run,
there were even some victims that the ground robot didn’t have time to visit and
detect their exact position.

To map illustrated in Fig. 3 is the result of a short flight of 8 minutes. Full
competition runs can last 20 to 40 minutes. In this experiment three tags are
dropped by the AirRobot, two near a victim, and one as intermediate point.
Victims are reported as small red crosses. As can be seen, for each victim two
crosses are given: the location as estimate by the AirRobot and the position
as estimated by the P2AT. The difference is between the estimates is nearly
3 meters, above the threshold of the competition. Only by the ground-robot
the victims are reported at the right location. As supplementary material also a
video is available2, from the view of the ground-robot. In the video can be seen
that the ground-robot is constantly reading RFID tags. Most of them are the
2 http://www.science.uva.nl/∼arnoud/publications/Alnajar CoordinatedAction.wmv

http://www.science.uva.nl/~arnoud/publications/Alnajar_CoordinatedAction.wmv
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Fig. 3. Map generated by the ground robot in the outdoor area of CompWorldDay1

RFID tags with only an ID always present in the 2006 competition world3. Only
near the male and female victim RFID tags are dropped by the AirRobot.

5 Discussion

Our team works well in the outdoor environment, but care must be taken when
testing the team in indoor environments. The exploration of the aerial robot be-
comes very restricted due to the small free space and the many obstacles around
the robot. As long as the AirRobot has no obstacle sensors, it has to remain
in the area already explored by the ground robots. When the ground robots
are equipped with sophisticated range scanner, this is not a severe restriction,
3 Used at that time to estimate the accuracy of the maps, currently replaced by

georeferenced maps.
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because this range scanner can have a range of 80 meters. The remaining danger
are obstacles which are not straight (as most buildings), but have a larger volume
at the flight height of the AirRobot than at the scan-height of the ground-robots
(as most trees). These obstacles can only be avoided with obstacle sensors on
board of the robot. Due to the limited payload of the AirRobot such obsta-
cle sensors have to be carefully chosen. A possible solution could be obstacle
detection based on visual clues.

Another topic of future work is to achieving the relative position estimation
update via visual tracking. Currently the relative position between the two robots
is quickly lost, something that is partly corrected when a RFID tag is found. If
the ground-robot could visually track the AirRobot, a high frequency update of
this correction could be made (when an accurate height position is available).
Using a bright color for the AirRobot (e.g. orange) can make the tracking easier.

Another possibility is extending the team size further. Many questions could
be studied: How to divide the work of the ground robots (going to the victims)?
What’s the difficulty in adding more than one flying robot? What is the optimal
ratio between the ground robots and the aerial ones? How can teams of aerial
and ground robots automatically be formed?

6 Conclusion

In this paper a new coordinate action between an AirRobot and a ground robot
is described. The two robots coordinate their behavior partly by communicating
target points and partly through the environment by dropping and finding RFID
tags. Each robot has its own role. The AirRobot is used for fast and course
exploration, while the ground robot automatically inspects the regions of interest
and needs no further attention of the operator. Together the heterogeneous team
demonstrates an attractive way to perform a rescue mission.
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Abstract. This paper presents a concept evaluation for a passive ball
handling device for autonomous robots that enables the robot to ”feel”
the ball. A combination of a capacitive and a pressure sensor delivers
accurate information of the ball position and movement within the ball
handling device- even without touching it. Inspired by the human reflex
the sensor values are evaluated to implement a low-level based control
loop. This should enable the robot to make minor movement corrections
to the overall path calculated by the high-level control system.

1 Introduction

Playing soccer is not a trivial task. A soccer player has to be fast with good
stamina, should be a team-player and should be able to play the ball precisely in
the desired direction. This is true for human beings as well as mobile autonomous
soccer robots.

Robots do not have any problems with their stamina, but handling the ball
is a very difficult task for them, since they do not have a vision and coordi-
nation system as humans. For example, an omni-directional vision system of
autonomous soccer robots usually has a limited resolution with respect to the
localization of the ball in the vicinity of the robot, e.g., an accuracy of about
five centimeter. Therefore, a separated ball handling device is important.

Currently, teams in the RoboCup Middle-Size League use two different kinds
of ball handling systems: passive and active ones. Active ball handling devices
use some kind of actuators to prevent the robot from losing the ball [1]. Passive
devices do not use any actuators. Both may use sensors to detect the ball.

We propose a ball handling device that is inspired by humans. We re-build the
human reflex system for autonomous robots with high-speed sensors and a micro
controller. Instead of manipulating the ball movement we are able to detect and
react on the moving ball within milliseconds. Based on the path commanded
by the high-level software the micro controller is allowed to adapt the motion
� Authors are listed in alphabetical order.

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 11–22, 2010.
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command within limits to prevent the robot from losing control over the ball.
The objective of the paper is to evaluate different sensors to be used in the ball
handling device.

The paper is structured as follows: Section 2 describes the basic idea of our
reflex inspired ball handling device. Following the concept one can find the test
setup and the results in Sect. 3. Related work is summarized in Sect. 4.

2 Concept

A typical control cycle of a Middle-Size League robot starts with data acquisition
using a directed or omni-directional camera system and perhaps some other
sensor input transformation. High level software components perform multiple
tasks such as self-localization, AI planning, path planning, obstacle avoidance
and generate commands for the motion control of the robot hardware. As many
high level tasks are involved in this process and huge amounts of data have to
be processed, this control loop has a limited reaction time and typically achieves
rates of 20 to 50 frames per second.

Inspired by humans we propose a concept of reflexes for mobile autonomous
robots. Based on the information obtained by tactile sensors, a underlying loop
- a reflex - is introduced. This loop makes minor corrections to the commanded
path of the high level system in order to keep the ball within the handling device
of the robot. As the complexity of the reflex -loop is much lower than for level
control, the reaction time can be significantly reduced.

As an example, if a human soccer player sees a chance to get a ball he or she
starts running towards it. This decision includes commands to our muscles to
move the legs. In addition, a human has reflexes . When the soccer player steps
onto a small stone, reflexes prevent him from falling. reflexes are fast movements
not triggered by our brain but some kind of pre-trained actions to be able to
react fast on unpredicted situations.

We propose such a high-speed control loop for a ball handling device similar to
reflexes for autonomous mobile robots. Figure 1 shows both the high-level cog-
nitive decision loop and the low-level reflex loop. Realizing this device requires
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Fig. 1. High-level and low-level control loop
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(a) (b) (c) (d)

Fig. 2. Low-level control loop: Within Fig. 2(a) the robot is on the path of the high-
level controller. Figure 2(b) shows a ball trying to drift off which is detected with our
sensors mounted on the ball handling device. During Fig. 2(c) the low-level control loop
tries to absorb the ball’s drift with minor movement corrections. Finally at Fig. 2(d)
the robot is back on the path of the high-level controller.

accurate and high-speed sensors that emulate the human capabilities of sens-
ing its environment, and low-level computer power for reacting on unexpected
changes in the environment. Implementing this ball handling device allows the
robot to calculate minor movement corrections in order to avoid losing the ball.

The following subsections point out two essential components for the proposed
low-level reflex -loop. The rest of the paper focuses on the evaluation of the
most appropriate sensor technologies for the implementation of this kind of ball
handling device.

2.1 Sensor System

Comparing the proposed device with human capabilities requires the sensor sys-
tem to accurately detect the ball position within the ball handling device and
nearby the robot. While catching the ball with the device it is also interesting to
determine the force a ball applies to the robot. This information in combination
with the exact contact point allows the robot to predict the bouncing direction
and speed of the ball in an adequate way.

A high sampling rate is the basis for the proposed reflex system. In the
RoboCup Middle-Size League robots are moving with up to five meters per
second, the ball is kicked with up to eight meters per second. When sampling
the RoboCup environment with 100Hz the ball may have moved about 13 cen-
timeters between two sensor readings.

2.2 Measurement Evaluation

The heart of the reflex based ball handling device is the micro controller reading
all sensor data and adapting the motion command of the robot. The high-level
software provides information if the robot is currently in dribbling mode and the
motion command - consisting of two directional velocity values and a rotational
velocity value. If the robot is not in dribbling mode, the motion command is
directly passed to the motion controller. The motion controller is responsible for
transforming those three velocity values to three actual motor speeds.

Within dribbling mode the reflex mechanism adapts the motion command
provided by the high-level software to prevent the robot from losing the ball
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but without completely overwriting the overall moving direction. Basically, we
propose to only adapt the robots relative position to the ball to ensure a contact
point between the ball an the center of the ball handling device as can be seen
in Figure 2(d).

3 Experiment Setup and Results

To find the best combination of sensors we experimented with four different
sensor types: two contact sensors and two non-contact sensors. The following
subsections describe the test setup and the result for each of those sensors in
detail.

To compare our results we developed a test setup that allows us to measure
all values at the same time. Figure 3(a) shows the ball handling device and
the location of all evaluated sensors. We distinguish between a static test case
and a dynamic test case. Within the static test case we repositioned the ball
on a predefined path through the ball handling device. The dynamic test case
emulates a real playing situation. The ball is rolled down a ramp to ensure a
predefined velocity when it hits the ball handling device (see Figure 4).

A micro controller periodically reads the measurements of the used sensors.
The result is sent via controller area network (CAN) protocol to a computer
that logs and evaluates the data. Figure 5 shows a general block diagram of the
measurement setup.

(a) Top view of our ball handling de-
vice, which shows the mounting posi-
tion of three sensors.

(b) Location of the ”center point” and
an illustration of the predefined path we
use for the static experiments.

Fig. 3. Test setup

Fig. 4. Setup for dynamic experiments: The ball is placed at 2 different start positions.
The first position results in a ball velocity of 0,22 m/s when hitting the ball handling
device. Start position 2 results in a ball velocity of 0,31 m/s. The camera is used to
determine the velocity.
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Fig. 5. Block diagram of our measurement setup: The micro controller triggers all
sensor readings and sends the pre-processed values (filtering, amplifying, averaging) via
CAN to all interested clients. For the test setup the client is a logging and evaluating
unit on a computer.

3.1 Micro Switch

Humans can precisely detect which parts of their hands have contact with an
object. To rebuild this for the robot, multiple micro switches could be used.
Therefore, multiple micro switches are mounted on the ball handling device,
which allow the robot to detect where the ball hits the device. We use two
different arrangement on each side, one with a 6x1 grid, one with a 3x2 grid
adopted to the contact line between a ball and the ball handling device.

All evaluated commercial micro switches are not able to detect when the ball
hits the ball handling device due to the low force a ball applies onto it. Our
experiments show a gliding friction of about 1 N and a rolling friction of about
1
10 N . Therefore, this sensor is not applicable for the reflex based ball handling
device.

3.2 Pressure Sensor

Similar to micro switches the pressure sensor is a representative of a contact
sensor. It consists of a pressure pad filled with air and a silicon piezo resistive
absolute pressure sensor SCCP30ASMTP [2] from Honeywell. Applying force
onto the pressure pad compresses the air inside which can be detected by the
connected sensor. In contrast to micro switches the signal is analog and propor-
tional to the applied force.

Sommer [3] uses pressure sensors to detect collisions of the robot with objects
and other robots. In our case we mount two pressure pads on the ball handling
device. One on the left and one on the right side of the ball handling device,
which enables us to determine on which side the ball touches the robots (see
Figure 3(a)). Due to little dribbling energy of the ball the signal has to be
pre-processed by an amplifier circuit. The amplifier consists of three stages.
After the first amplifying phase, the signal is filtered and once more amplified.
Corresponding to the amplitude of the analog signal the velocity of the ball
hitting the ball handling device can be determined up to 0.25 m/s, above the
amplifier circuit is designed to deliver maximum scale. Due to the characteristic
of the amplifier circuit we get a signal even if the ball hits the pressure pads very
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Fig. 6. Left picture, sensor signal from the pressure pad dynamic case: The analog
signal range is in-between 0 and 5 V. The ball hits the right short before the left
pad, the noise is negligible. Due to this measurement values the ball’s position can
be distinguished clearly between left and right. Right picture, sensor signal from the
pressure pad bouncing: To simulate dribbling we bounced the ball with a cam lever.
At the beginning both pressure sensors triggers at the same time which means that the
ball’s position is in the center of the ball handling device. Between 900 ms and 1150 ms
it is clearly detectable that the balls position drifts from the center point to the right
ear while the applied cam lever force decreases.

smoothly. The micro controller samples this signal with 1 kHz. This information
can be used to detect if the ball is bouncing.

3.3 Diffuse Sensor

Diffuse sensors belong to the non-contact sensor category. We use the OHDK
10P5101 sensor [4] from Baumer Electronics Ltd, which is a diffuse sensors with
background suppression and a binary output signal. Either an object is within
the pre-defined trigger distance or not. The OHDK 10P5101 can be configured
to trigger at distances between three and 130 mm with an accuracy of 0.2 mm.
The sensor readings are provided at 40 Hz. It is not necessary to pre-process the
signal of this sensor.

Combining multiple diffuse sensors with different distance configurations al-
lows the robot to locate the ball position. Figure 3(a) shows the setup of all six
diffuse sensors used in our test setup.

To emulate a similar behavior as the capacitance sensor (see Sect. 3.4) provides
we adjust the trigger distances of all six sensors to three different threshold values
(0.5 cm, 1.5 cm and 5.5 cm) on each side of the ball handling device. Due to the
fact that those sensors use laser class two diodes as their light source we needed
to adjust the height of the sensor mounting to different positions for each side
to prevent interferences. Figure 7 visualizes the resulting sensitivity of the test
setup.

3.4 Capacitance

Capacitive sensors are capable to determine measurands that, in some way, af-
fect the coupling capacitance between two or more sensing electrodes [5]. The
simplicity of the sensor elements is unparalleled: They essentially consist of two
or more conductive areas. Despite this simplicity, capacitive sensing technology
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Fig. 7. Left picture, sensitivity graph of diffuse sensors: With this setup a clear decision
can be made if the ball is within the center of the ball handling device or not. The outer
sensors realizes a far field detection, the mid and inner sensors a near field. This results
within an increasing sensitivity into the direction of the center. Due to the shape of
the ball handling device the resulting sensitivity area is asymmetric. Right picture,
position on a predefined path (see Figure 3(b)): It shows an increasing number of
active diffuse sensors if the ball moves into the center of the ball handling device. Due
to the asymmetric ball handling device the curve decreases much more on the right
side. This enables us to track the balls movement. The decision between left and right
can be made with the knowledge which sensor triggers first.

is very versatile due to a plurality of modes of operation and applicable materials
(either conductive or dielectric). With the availability of small and fairly low cost
monolithic sensor interfaces (e.g., Cypress CY8C21x34 family, Analog Devices
capacitance to digital converters), the acceptance of capacitive technology has
constantly increased during the last years.

The circuit used for the reflex based ball handling device is CapIC , a ver-
satile interface IC for capacitive sensing, which was developed at the Institute
of Electrical Measurement Signal Processing at Graz University of Technology
and Infineon Austria. CapIC is particularly suitable for dynamic observations in
various environments due to a high measurement rate and high configurability.
The electrodes can be directly exposed to the environment and do not require
shielding from external electromagnetic interference. The sensor front-end uses
a fully differential approach for an enhancement of the sensitivity as well as the
robustness with respect to disturbers and for reduced electromagnetic emissions.

Figure 8 depicts a system model of the sensor interface CapIC . It is based
on a carrier frequency principle and uses an array of transmitter electrodes with
selectable phase and a differential pair of receiver electrodes. Excitation signals
(the carrier) are applied to one (or more) electrodes, the displacement currents
injected to a pair of differential receivers are converted to a differential volt-
age signal by means of shunt impedances, which also form a filter tuned to
the carrier frequency. Alternatively, the circuit can also operate in single ended
mode, i.e., with only one non-differential receiver. The voltage signal is buffered
and amplified in an HF amplifier stage. Besides amplification, this amplifier
is also important to decouple the demodulator from the shunt impedance, as
charge injection from the demodulator would lead to undesired resonance ef-
fects in the shunt impedances. The HF amplifier is implemented as a linearized
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Fig. 8. System model of CapIC [5]: An excitation signal (the carrier) is applied to one
(or more) transmitter electrodes, the receivers are connected to passive filters forming
a shunt impedance for a current to voltage conversion [6]. The voltage signal is buffered
and amplified and subsequently multiplied with the carrier for the I channel and with
a 90◦ phase shifted carrier and low-pass filtered. The sensor array uses Time Division
Multiple Access (TDMA): After one acquisition, other electrode(s) are excited such
that all desired capacitances and conductances between the transmitter electrodes and
the receiver electrode are obtained after a full sequence of excitation patterns.

differential amplifier stage. The buffered and amplified signal is mixed with the
carrier for the I channel and with a 90◦ phase shifted carrier for the Q channel.
After the signals are low-pass filtered, offset values due to offset capacitance and
offset conductance can be compensated (digitally controllable). Consequently,
the gain setting of the Programmable Gain Amplifier (PGA) can be adjusted to
make use of the full conversion range of a 12 bit successive approximation AD
converter.

In our test setup we used two pairs of electrodes. One is mounted on the
right ear, the other on the left ear of the ball handling device (see figure 3(a)).
Both are connected to the same CapIC circuit which itself is connected to an
AT90CAN128 processor board which can be found in [7]. The connection be-
tween those two components is established via serial peripheral interface (SPI).
Based on our CapIC configuration and after averaging we obtain readings at
160 Hz.

The capacitive measurement can be used to determine the ball’s position be-
tween the left and right side of the ball handling device, however compared with
the diffuse sensors it is not possible to ascertain a precise position of the ball
based on the current measurement value from one differential pair of electrodes
alone. Therefore, a history based signal processing is necessary. Due to the fact
that every object (conductive or dielectric) can influence the measured capac-
itive value the CapIC system can detect a wide variety of objects. Within the
RoboCup environment the possible objects are limited to balls, humans and
robots which reduces complexity for classification. The ball shows the smallest
effect, which causes a short sensing range up to 4 cm. The dead center of the
sensing elements can cause wrong measurements. To avoid this, the electrode
pairs are mounted 1 cm behind the surface of the ball handling device.
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Fig. 9. Sensing area of two electrodes connected to CapIC : The flat area in the back
represents the ball handling device. According to the differential measurement the
signal within this sensitivity plot shows a valley on the right and a peak on the left
side (robots view). The smooth change in the middle is caused by a longtime offset
drift from CapIC . Those resulting potential areas are used to localize the ball within
the ball handling device.
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Fig. 10. Left picture, static case: The Ball is repositioned along a predefined path
trough the ball handling device. The plotted values represent an averaging the error
bars the maximum and minimum before averaging. Combined with the sensitivity plot
the first peak indicates that the ball enters the ball handling device on the left side.
Second the lines decline which means that the ball goes through the middle and leaves
the ball handling device to the right side when the bottom is reached. The starting
signal level is the same as the end level which means that the ball is completely out
of the sensing area. Right picture, dynamic case: Sensor signal while the ball is rolling
down a ramp - to ensure a predefined velocity - straight forward into the ball handling
device. It is obvious that the ball hits the right side, bounces on the left and comes to
a still stand nearby the right ear of the ball handling device, which can be detect with
a higher signal level at the end of the plot compared to the beginning.

3.5 Comparision of Evaluated Sensors

Table 1 summarizes all important attributes of the evaluated sensors and the test
results. All required values are adjusted to the visions performance. In our test
setup the resolution within the x-y plane can not be determined for contacting
sensors because it is not possible to determine the position of the action point
on the pressure pad if the ball hits the ball handling device. Within the rough
RoboCup environment it is necessary to protect all sensible components. The
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(a) (b)

Fig. 11. Robot is moving on the pitch, trying to dribble the ball: (a): The robots
operator can see the robot and the ball. The ball first touches the right side at mark 1,
which can be seen within a decreasing CapIC value and a short peak from the pressure
sensor. The ball starts to bounce on the right hand side of the ball handling device,
until mark 2. At mark 3 the ball bounces to the left hand side, which can be seen
when the CapIC value increases. Finally the ball is rebound to the right hand side (at
mark 4) and leaves the ball handling device. There is a good correspondence between
the CapIC measurement an the pressure measurement which can be seen every time
the ball touches the ball handling device. (b): Control loop evaluation with a robot
operator who neither sees the robot nor the ball. The operator’s view is limited to
the measurement values displayed on the evaluating computer when making minor
movement corrections. An upward trend of the measurement curve indicates the ball is
moving to the left side of the ball handling device which requires a movement correction
to the left side. A reaction to the right side is required in case of a downward trend.
A video analysis shows a good correlation between the measurement curve and the
necessary movement corrections to dribble the ball successfully.

Table 1. Comparison of evaluated sensors: The micro switch can not be chosen, see
Section 3.1, therefor the pressure sensor is used as contact sensing element. The CapIC
sensor satisfy all defined requirements for our ball handling device. In comparison the
diffuse sensor has several disadvantages, mainly a low sampling rate, which disqualifies
this sensors to be used as the non-contact sensing element.

sampling rate resolution x-y plane exposed mountable costs
sensor required realized required realized required realized calculated

Hz Hz cm cm e

micro switch > 40 1 k < 5 X1 ✔ ✔ 12· e 0.2
pressure > 40 70 < 5 X ✔ ✔ 2· e 25
diffuse > 40 40 < 5 0.02 ✔ X 6· e 163
CapIC > 40 160 < 5 1 ✔ ✔ 1· e 100

CapIC electrodes and the pressure pads can be mounted on the surface of the
robot their electronics can be distributed to protected areas. The diffuse sensors’
electronic can not be separated from its sensing elements.

1 Not determined.
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4 Related Work

Typical applications of capacitive sensors are position sensing, material property
monitoring such as moisture content or oil quality, proximity switching, occu-
pancy detection, fill level detection etc. Furthermore, capacitive sensing is very
common in biomedical and chemical applications. A comprehensive presentation
on capacitive sensing can be found in [8].

The CapIC circuit has been used in a variety of applications and research
projects. In [9] a rapid prototyping environment based on CapIC is described.
This prototyping environment allows easy configuration of the IC and quick
implementation of stand-alone demonstrators. In [6] the circuit has been used
for a seat occupancy sensor, with a focuses on the reduction of electromagnetic
radiation at higher frequencies. Moisture measurements using the circuit are
discussed in [10]. The application of the circuitry for personal safety for chain
saw users is presented in [11]. A more detailed description of the architecture of
CapIC and its application to chemical sensing can be found in [5].

Pressure sensors are used in a wide variety of applications such as measure-
ment of fluid/gas flow, liquid level, altitude, chemical process control, and for
meteorological observations. Most pressure sensors evaluate a mechanical defor-
mation due to a force associated with the pressure. Examples are strain gauges,
piezoelectric and capacitive pressure sensors. However, there are other effects
that are also used for pressure sensors, e.g., such as thermal conductivity, ion-
ization and viscosity [12].

Optical sensors are widely used for proximity detection, e.g., in industry for
object and material detection, in packaging machines, in robotics, and in labo-
ratory automation. Multiple light sources or detectors are often used to suppress
the influence of background light and inclination.

5 Conclusion and Outlook

We proposed a reflex based ball handling device that is mainly inspired by hu-
mans.

The fact that the high level ball detection with the omni-directional camera
only reaches 20 Hz to 40 Hz, which is too slow for successful dribbling, lead us to
a new approach with non-contact and contact sensors. We focused on decreasing
reaction time which can be implemented with a low-level control loop. Within
this paper we showed an evaluation of four different types of sensors.

However, to get a reliable localization of the ball we decided to use a com-
bination of one contact and one non-contact sensor type. Two pressure sensors
to detect which side the ball is hitting within the ball handling device and the
CapIC to realize a ’far field’ sensing area for localizing the ball. The introduced
sensors facilitate a sampling rate at minimum 160 Hz which is 8 times faster
than our current vision based implementation. The CapIC sensor is able to lo-
calize the ball within 1 cm accuracy, which is enough for improved dribbling. All
required sensing elements can be mounted at mechanical exposed positions - so
the application in RoboCup is possible. Various experiments as described within
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Figure 11(b) show a realizable concept of the reflex loop to be implemented on
a micro controller which will be part of future work.

We will concentrate on those experiments and different implementations of
the reflex loop and its usability during a RoboCup soccer tournament. Another
research focus is on the usability of the capacitance sensor for near-by object
detection and classification. Similar to a human who feels when a person comes
close to him or her - even without physical contact.
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Abstract. Nowadays one can witness the increase of the world population car-
rying some kind of physical disability, affecting locomotion. With the objective 
of responding to numerous mobility problems, various intelligent wheelchair  
related projects have been created in the last years. The development of an In-
telligent Wheelchair requires a lot of testing due to the complexity of the algo-
rithms used and the obligation of achieving a failproof final product. This paper 
describes the some need for an Intelligent-Wheelchair specific simulator as well 
as the requirements of such a simulator. The simulator implementation, based 
on “Ciber-Mouse” simulator, is also described with emphasis on analyzing the 
limitations concerning intelligent wheelchair simulation using this adapted 
simulator. The changes applied on the existing software and the difficulties of 
robotic simulation development are described in detail. Experimental results are 
also presented showing that not only the simulator reveals flexible simulation 
capabilities but, also, enabled to validate the algorithms implemented in the 
physical intelligent wheelchair controlling agent. 

Keywords: Simulation, Robotics, Intelligent Wheelchair. 

1   Introduction 

Although not obvious, conventional electric wheelchairs have limitations that difficult 
and may even prevent its normal usage for some people, depending on their disability 
[1] [2]. Afflictions that affect arm and hand coordination or even vision are sure to 
benefit from intelligent wheelchairs, which will give some independence back to 
these patients. 

This scenery enables the need for Intelligent Wheelchairs (IWs). An IW will, 
through computational capabilities, sensors, communications and motor control, 
automatically (and in an intelligent fashion) provide services for its user [3] [4]. A 
few examples are: Multiple user interfaces for control and ordering (voice, facial 
recognition, joysticks, keyboard, etc.), aided driving (in case of miscalculation of the 
patient’s manual drive, the IW will disable human control: e.g.: if a collision is immi-
nent) or even opening a door, as well as many other domotics applications, can be 
dealt within the IW’s communication capabilities. 
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After applying the hardware add-ons – such as sensors – an IW’s capabilities and 
reliability lie on its control software. The control algorithms must be thoroughly 
tested. The control software should undertake Multi IW scenario tests with dynamic 
obstacles, in order to ensure reliability on the developed algorithms. Creating a real 
life hospital-like situation is not conceivable therefore this is the point where a simu-
lator will be required. It can model not only any kind of map but it can even provide 
the IW with all sensor information as a real situation would. 

In a generic definition [5], simulation is the imitation of a real system, in function 
of the time. It is used to describe and analyze the behavior of a system and can draw 
conclusions from “what-if” scenarios. Among the advantages of simulation, we can 
refer the possibility of testing every aspect of a proposal for modification or addition 
without endangering real resources; time compression, in order to obtain all the con-
sequences of a modification in a shorter lapse of time; Finding errors and problems on 
a system becomes simpler. Finding the cause of a certain occurrence is facilitated for 
it is possible to isolate the simulation to the occurrence and analyze it in detail; Lower 
costs: typically the cost of a simulation compared to a real test is around 1%; Re-
quirement identification: it is possible to identify the needs in terms of hardware. For 
example: one can, through simulation, find what will the necessary resolution be for a 
certain sensor. 

Having justified the need for a simulator, the challenge is to find what needs to be 
simulated and how. An IW-specific robotic simulator must be able to realistically 
mimic the physics of every aspect of the wheelchair’s environment and its own  
characteristics namely its form, dimensions, motor dynamics, sensors and communi-
cations. Moreover, the simulation must take care of all interaction between the  
wheelchair and the world: detect collisions, return sensor values and calculate IWs’ 
positions. 

Additionally, being visualization one of the main objectives of an IW simulation, it 
is important to have a simulation viewer that can show the main information: IWs’ 
sizes, locations and sensors’ values as well as the environment: map with its walls and 
doors. 

2   Related Work 

Two projects stood out during literature review of intelligent wheelchair simulation: 
the Bremen Autonomous Wheelchair [6] (BAW) and the Vehicle Autonome pour 
Handicapés Moteurs [7] (VAHM).  

Combined, both BAW and VAHM were motivated by reasons shared with Intell-
wheels Simulator project: the need to test hardware platform and its performance, 
without submitting patients to dangerous situations. Despite this, there are conceptual 
differences in architecture and on the objectives. While these projects intend only to 
aid the development of a single isolated wheelchair, Intelwheels is multi-agent based, 
in the sense that a dynamic, more complex environment with multiple intelligent and 
collaborative objects is intended. Furthermore, BAW simulation segregates com-
pletely real and virtual worlds, leaving no room for augmented reality model (which 
is a critical conceptual design of Intellwheels). 
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3   Intellwheels Simulator 

The original “Ciber-Mouse” Simulator[7][8] is a software developed for a robotic 
competition, held at University of Aveiro and it was the base of this project. The ob-
jective of the participants is to create a robotic agent that would control their “mouse” 
(a virtual robot) through a maze to find a beacon (the objective). 

This software already had various characteristics very usefull for IW simulation 
such as virtual differential robots (two wheels) and numerous sensors (e.g. compass 
and proximity sensors). It also contained a 2D simulation viewer, which was specific 
for the competition[9]. 

Being based on “Ciber-Mouse” the new simulator has a similar conceptual archi-
tecture, consisting of a central simulation server, to which every agent (robotic or 
viewing agents) must connect to (Figure 1). 
 

 

Fig. 1. Intellwheels Simulator Architecture 

The most relevant work was made on the Robot Modeling and on the Collision De-
tection modules which will be detailed further ahead. Evident in the image is the con-
nection of agents for controlling virtual wheelchairs and agents that control real 
wheelchairs. This possibility of interaction between the real and virtual worlds creates 
a mixed reality (MR) environment[10]. The definition of MR lies in a mid-stage point 
between a purely real world and a virtual one. 

It is this MR support that stretches this simulator’s capabilities beyond single algo-
rithm testing, as it is now possible to see a real IW react to a more dynamic scenario 
(with moving obstacles, complex maps and other intelligent agents). It all depends on 
which and how many agents connect, for the simulator itself will not limit their size 
or movement. 
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The simulator expects a real wheelchair agent to provide real world data concern-
ing its position, as illustrated in Figure 2. 

 

Fig. 2. Mixed Reality information exchange 

The agent must, through encoders calculate the real wheelchair’s position and then 
send it to the simulation server. The simulator will then place virtual sensors onto that 
position and return their perception to the agent. With all the sensor information, the 
robotic agent will then calculate the motor power inputs which are to be sent only to 
the real wheelchair. 

Having defined the conceptual architecture of the simulator, the starting point for 
the adaption of the DCOSS version of  “Ciber-Mouse”  software was the conversion 
from circular to rectangular body robots. Moreover, the parameters that define the 
size and the center of movement are now configurable, which allows the modeling of 
different types of robots (not only wheelchairs). 
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Fig. 3. Circular to rectangle shape modifications 
 Fig. 4. Robot-Robot collision check 

The main usage of the robot’s body is in the collision detection verification. A ro-
bot’s shape has to be defined in mathematical equations that will enable the detection 
of intersection with other objects. In this simulator there will only be modeled 2 types 
of objects: walls and robots. Therefore collision checking will only have to be per-
formed with these two types. 
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Originally, for Robot-Robot collision checking, the “Ciber-Mouse” simulator 
checked whether the distance that separates the robots’ centers (thought X and Y 
coordinates) was smaller than two times a robot’s radius (all robots were circular with 
the same radius). This simple algorithm is not applicable for different radius robots 
neither for rectangle shaped robots. The wheelchairs’ size and position on the map 
were now modeled using four parameters: Center of movement point, the wheel-
chair’s orientation angle, the width and height. Through this information all the ro-
bots’ corners coordinates can be calculated. Using this information the new collision 
detection algorithm is as follows: 

1. Using pairs of corners as line segment defining points, it is calculated an 
equation for one line segment for each robot. 

2. The intersection point of the two lines is calculated. If lines are parallel no 
point is calculated for there is no intersection. 

3. Both X and Y coordinates are checked to find whether they are located 
within each robot line segment. If so, then there is a collision between the 
two robots. 

4. This process is repeated until the 4 lines of each robot are checked with the 
lines of every other robot. 

In Figure 4 the lines cross at a point that only belongs to one of the wheelchairs, 
therefore no collision is detected. 

An additional modification was made on the dynamic characteristics of the motors’ 
acceleration curves. Since the original software was designed to ensure all robots 
were equal, every robot connected had to had the same dynamic characteristic. In this 
IW simulation environment it is expected that different robots connect. Equation (1), 
show below, was applied to allow the curve definition. 

 outputn = (1- AccelerationCurve)*inputn + AccelerationCurve *outputn-1 (1)

where outputn is the new motor power output, AccelerationCurve is a value between 
0.00 and 1.00, defining the slope of the acceleration curve, and outputn-1 is the power 
value from the previous period. 

Similarly to size and center of movement characteristics, a new robot registration 
parameter was implemented to allow each robot to define their curve. This value will 
affect the robot speed calculation consequently affecting the robot’s next position 
calculation by the simulator. 

The proximity sensor positioning was the next functionality to be adapted. Origi-
nally, the infra red sensor could only be positioned in the perimeter of a circle, with a 
fixed cone of sight and a fixed direction, radial to the robot. To be true to the rectan-
gular form, the sensor definition was now made by X and Y coordinates, relatively to 
the robot center, and both the cone of sight and the direction were redefined. All these 
parameters are now configurable by the agent, at the time of registration with the 
simulator. Moreover, the sheer modification of a configurable cone enables the agent 
to register different proximity sensors. A wider cone (around 50-70 degrees) would 
resemble a sonar proximity sensor whereas as thinner cone (1-10 degrees) would be 
more similar to an infrared proximity sensor. 
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Fig. 5. Sensor definitions 

An important objective of this IW simulation was to provide augmented reality 
scenery. In such an environment, a real IW (connected to the simulator) would be able 
to interact with virtual objects. Virtual wheelchairs would be able to detect its pres-
ence and virtual sensors could be attached to the real chair and provide it with addi-
tional information of the world around it. A very simple example of an application for 
this functionality is the correction of real sensors’ errors. A Sonar proximity sensor is 
likely to have difficulty in distinguishing a table despite being in its normal range of 
sight. Depending on the shape of the legs, the height of the table and even on its color, 
acknowledging the presence of an object may fail. If the simulator has the table object 
drawn on the world, virtual sensors will report information about its location for they 
are not bound to the physical restrains as real sensors. The identification of a real 
chair is now made through a new XML tag, defined at the robot registration. A 
“Type” tag (later stored onto each robot’s information within the simulator) will indi-
cate whether the chair is real or simulated. Finaly, in terms of algorithms inside, the 
main change for mixed reality support is in the section of the code where the simula-
tor calculates and commits the next robot position. Unlike a simulated IW, the real 
chair’s position is not calculated by the simulator (through the left and right power 
orders given by the agent). Instead, the real IW will provide its current position and 
orientation, ideally once every simulation cycle, as previously illustrated on Figure 2. 

4   Simulation Visual Representation 

Visualization is the foundation for human understanding, as we process graphic in-
formation in a preconscious, involuntary fashion, similar to breathing[11]. In spite of 
its importance it is critical to ensure quality in a few elements, when developing simu-
lation graphics. 

Keeping this in mind, a visualization application was developed – Intellwheels 
Viewer. On a conceptual sense, it consists of five modules: 

• Main Form – Responsible for the aggregation of all the information, allowing 
it to be transferred between the other modules. It also handles the initial  
interaction with the user, including configuration parameters of the other 
modules; 
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• Communications – This module implements the IP and UDP protocols, for 
physical connection with the simulator, and XML message parsing, for simu-
lation data extraction; 

• Robot – This module will store information concerning each robot: size, cen-
ter of movement, position, orientation and collision status; 

• 2D Visualization – This module will, through the map and robots’ informa-
tion, draw a two dimensional representation of the simulation; 

• 3D Visualization – To represent a three dimensional environment, this mod-
ule uses OpenGL technology [12] realistically displays the simulation. It has 
various camera options, from free camera movement to a 1st person fixed 
point, similarly to how a real driver of a wheelchair would see the world 
around. 

Every simulator step, new world state data, including robot information, is sent to the 
viewers and is at that time that the graphical representation is updated. Figure 6 shows 
a simulation with three wheelchair agents, a table agent and a and door agent, on free 
camera viewing. 

 
Fig. 6. 3D viewing, on free camera mode 

5   Simulation Tests 

To validate the performance of the simulator and confirm its importance for intelli-
gent wheelchair development, a series of tests was performed. These tests were based 
on driving analysis from real, virtual and augmented reality runs, which were com-
pared against each other. The floor of the building were (Deleted for blind review) is  
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Fig. 7. Intellwheels modeled map of  floor with test obstacles, in 2D mode of new viewer 

set was modeled into Intelwheels XML map format, to allow a direct comparison 
between real and virtual tests. Figure 7 shows the simulated scenario (drawn from the 
CAD file) of the floor where the testes were performed. 

An experiment was performed to verify the obstacle avoidance algorithm on the 
controlling software as well as the augmented reality environment as well (Figure 8). 
Obstacles (A and B block illustrated in Figure 7) were placed both on the real and on 
the virtual environments, in the exact same space, with the same dimensions. The 
wheelchair should drive 15 meters in the X coordinate while avoiding the obstacles. 

 

   

   

a b c d 

Fig. 8. Augmented Reality test 

Using virtual sensors, the real wheelchair (in augmented reality mode) was able to 
autonomously avoid an obstacle placed in the virtual world. The simulator placed the 
wheelchair in its true position and the controlling agent correctly used the virtual 
sensors for motor power orders. 

In this same experiment set-up, additional tests were taking, with both real and vir-
tual wheelchairs and using manual and autonomous control. The results of the tests 
are illustrated in Table 1. 
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Table 1. Obstacle avoidance test results 

Operation mode Performance Collision Count 
Real/Manual  0 

Virtual/Manual  0 
Real/Autonomous  1 

Virtual/Autonomous  0 
Augmented/Autonomous  0 

 
Performance of these tests was based on whether the wheelchair reached the final 

point, if it collided and on position logs of the controlling software. The results 
showed that simulation-aided algorithm testing performed better than purely real tests. 
The main reason for this was the errors in odometer-based positioning (which accu-
mulates error) and sonar noise which sets the chairs’ controlling software into erratic 
decisions. It is also noticeable that the behavior of the wheelchair is almost equal in 
virtual and augmented reality modes.  

Despite problems with real sensors, this simulation’s value was proved with the 
success of the virtual environment tests. The control algorithm is correctly imple-
mented, which is a conclusion that, without simulated testing, could not have been 
reached. 

In order to test the flexibility of the simulator and of the new viewer and to verify 
the correct implementation of a developed door agent a new experiment was pre-
pared: ordering a chair to move straight forward, through the virtual door. The door 
agent itself was configured with height=0.1m, width=1.0m and COM=0.99. Two 
proximity sensors were defined at each side of the door, to detect approaching objects, 
as illustrated in Figure 9. 

 

Fig. 9. Representation of the modeled door 

Using a robotic agent, a virtual wheelchair was connected to the simulator and the 
test of door automatic opening was executed. Figure 10 is a series of print screens of 
the Intellwheels 3D viewer, during this automatic door test. The IW agent ordered the 
chair to move forward, regardless of what its own proximity sensors detect. On the 
other hand, the door agent was programmed to open if an object was detected and 
close only when the sensors stop detecting. 
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A b c d 

Fig. 10. Automatic opening of the door 

Having the capability of agent to agent communication, through very simple and 
effective XML messaging, IWs could autonomously “tell” each other to follow. Fig-
ure 11 shows an example where one chair is leading the way. The other IWs receive 
the first chair’s communication of last point and follow the orders. 

 

 

 

 

Fig. 11. Intelligent wheelchair communication 

The following XML message is exchanged between the chairs: 
 

<Actions ….. 
<Say><![CDATA[msg]]></Say> </Actions> 

 

At a later stage of system developing, we have assembled a simple Mixed Reality 
Rehabilitation Lab. Using this setup, the virtual and augmented reality tests and simu-
lations could be performed with increased realism, as shown in Figure 12. 

   

Fig. 12. Mixed Reality Rehabilitation Laboratory 
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With such a setup it is now possible to supervise and monitor real and augmented 
reality tests and also provide a realistic simulation, without subjecting people or the 
wheelchairs’ themselves to stress. 

6   Conclusions and Future Work 

The final product of this work was a simulation engine and a 2D/3D viewer that is 
able to test and validate control algorithms for intelligent wheelchairs. What was 
achieved during experimental testing demonstrated not only that the developed appli-
cation is capable of simulating maps and wheelchairs but also showed its flexible 
characteristics. In fact, this simulator is capable of modeling a very wide variety of 
robots, due to implemented functionalities for configuring the size, center of move-
ment, top speed and acceleration curve of each robotic agent that connects to it.  

In this sense, the developed application’s capabilities stretch beyond its original in-
tent as a test board for intelligent wheelchairs. Car and pedestrian simulation can be 
performed, including their physical interaction (collisions). Direct communication 
between agents is available and, with further developments in agent conception, it 
could be used for emotional interaction (movement conditioned by attraction or repul-
sion). Having a distributed architecture, Intellwheels Simulator expects the agents to 
be external applications that connect through UDP. Because of this attribute, it is able 
to involve in a single simulation a vast number of intelligent agents, adding the possi-
bility of testing algorithm results in a dynamic, complex environment. 

This topic links with the idea of future work, which could be done on development 
of new robotic agents. The simulator software itself is ready and capable of receiving 
any kind of control for the virtual motors, therefore the challenge is now to create the 
various controlling agents themselves. 

Concerning the simulator, an interesting addition would be to include other sensors. 
A good example are encoders, widely used in robot speed and position calculations. 

As for the visualization application, the main modification would be to add a “drag 
and drop” capability. Introducing, in real time, objects and obstacles onto the simula-
tion environment, while seeing where they will be placed is intuitive and allows a 
more interactive simulation. 

Final words to an overview of the contribution of this work on how artificial intel-
ligence and robotic systems can truly aid life of people. Although still a prototype, the 
Intellwheels project can effectively reduce the limitations and one’s dependence on 
others when faced with physical disabilities. 
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Creating Photo Maps
with an Aerial Vehicle in USARsim
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Abstract. Photo maps, i.e., 2D grids that provide a large scale bird’s
eye view of the environment, are of interest for many application sce-
narios but especially for safety and security missions. We present a very
efficient and robust algorithm for this task, which only uses registration
between consecutive images, i.e., it does not require any localization.
The algorithm is benchmarked in USARsim, where the video stream of
a down-looking camera of an aerial vehicle, namely a blimb, is used to
generate a large scale photo map.

1 Introduction

Unmanned Aerial Vehicles (UAV) are promising tools for a fast first situation as-
sessment in Safety, Security, and Rescue Robotics (SSRR). They are ideal eyes in
the sky that cooperate with Unmanned Ground Vehicles (UGV), which provide
the advantages of e.g. higher payloads and of options for mobile manipulation.
Figure 1 shows a typical application scenario where a Jacobs land robot and an
UAV cooperating at European Land Robotics Trials (ELROB) 2007 in Monte
Ceneri, Switzerland. This scenario, in which the Jacobs team won the 1st place,
required that the UAV detects hazard spots like seats of fire, which the land
robot has to reach [1]. The online generation of a detailed aerial photo map by
the UAV is of obvious interest in according SSRR missions.

Precise localization of UAVs is very challenging for several reasons. First of
all, they typically only have a limited payload for sensors. Second, commonly
found solutions like GPS receivers in combination with compasses only provide
coarse pose information, which is not sufficient to fuse a sequence of images into
a usable photo map. An alternative approach is to completely omit the problem
of localization through additional sensors, and to only use the information in
two sequentially acquired images to determine the robots movement between
the two frames.

There is hence related work in the computer vision community. Optical flow
techniques [2,3,4,5,6,7] are also targeted at motion estimation, but they are best
suited for only estimating robot states for control, especially for aerial vehicles
[8]. The classic optical flow techniques namely suffer from too large errors when
the state is integrated for proper localization. An other line of research is related
� Formerly International University Bremen.
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Fig. 1. A Jacobs land robot and an aerial robot cooperating in one of the scenarios at
the European Land Robot Trials 2007 (ELROB) in Monte Ceneri, Switzerland. The
aerial robot has to find and locate hazard spots like seats of fire, which the land robot
then has to reach.

to computer vision work on structure from motion [9,10,11,12]. The methods
are characterized by various application constraints, especially on the camera
motions, as they were developed for specialized 3D model acquisitions. Here, an
unconstrained integration of sequential 2D images is investigated.

So, the task here is that regions of overlap between two consecutively ac-
quired images have to be found and suitably matched. This process of finding
a template in an image is also known as registration [13,14,15,16,17,18,19]. But
the task at hand is more difficult than mere registration as the region of over-
lap is unknown and it usually has undergone non-trivial transformations due
to the robot’s movements. This is comparable to image stitching [20], which is
for example used to generate panoramic views from several overlapping pho-
tographs. We used this idea of employing stitching methods already before for
merging 2D occupancy grid maps generated by multiple robots [21]. The scale
invariant feature transform (SIFT) introduced by Lowe [20,22] is at present
the most popular basis for image stitching. SIFT delivers point-wise correspon-
dences between distinctive, non-repetitive loc al features in the two images.
The number of detected features is significantly smaller than the number of
pixels in the image. Other methods for identifying features include local im-
age descriptors like intensity patterns [23,24] and the Kanade-Lucas-Tomasi
Feature Tracker (KLT) [25]. Based on the Fourier Mellin transform for im-
age representation and processing [26], we have developed an improved ver-
sion that outperforms SIFT and KLT with respect to processing time and
robustness as shown in experiments with real world images including aerial
data.

This algorithm is applied here to generating photo maps and benchmarked in
the Unified System for Automation and Robotics Simulation (USARsim) [27].
USARsim has the significant advantage that it provides a high fidelity phys-
ical simulation, i.e., realistic test data, while ground truth information of the
robot is given [28,29,30,31]. This facilitates experimental validations, especially
as supplements to field work where ground truth is not known.
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The rest of this paper is structured as follows. A Fourier Mellin based approach
to image registration is presented. It can be used to generate photo maps in a
fast and robust way. In section 3, the approach is tested through experiments
with a aerial vehicle in USARsim. Due to the availability of ground truth data,
a quantitative assessment of strengths and weaknesses is possible. Section 4
concludes the paper.

2 Photo Mapping with Improved Fourier Mellin
Registration

First, some basic terms and concepts are introduced on which our algorithm for
photo mapping is based. The classical Matched Filter (MF) of two 2D signals
r ∗ (−x,−y) and s(x, y) is defined by:

q(x, y) =
∫ ∫ ∞

−∞
s(a, b)r ∗ (a − x, b − y)dadb (1)

This function has a maximum at (x0,y0) that determines the parameters of a
translation. One limitation of the MF is that the output of the filter primarily
depends on the energy of the image rather that on its spatial structures. Fur-
thermore, depending on the image structures the resulting correlation peak can
be relatively broad. This problem can be solved by using a Phase-Only Matched
Filter (POMF). This correlation approach makes use of the fact that two shifted
signals having the same spectrum magnitude are carrying the shift information
within its phase (equ.2). Furthermore the POMF calculation is much faster than
the MF because if a signal frame of size 2N is used, the advantages of the Fast
Fourier Transform (FFT) can be exploited.

The principle of phase matching is now extended to additionally determine
affine parameters like rotation, scaling and afterward translation.

f(t − a) ◦ − • F (ω)eiωa (2)

When both signals are periodically shifted the resulting inverse Fourier transfor-
mation of the phase difference of both spectra is actually an ideal Dirac pulse.
This Dirac pulse indicates the underlying shift of both signals which have to
registered.

d(t − a) ◦ − • 1eiωa (3)

The resulting shifted Dirac pulse deteriorates with changing signal content of
both signals. As long as the inverse transformation yields a clear detectable
maximum this method can used for matching two signals. This relation of the
two signals phases is used for calculating the Fourier Mellin Invariant Descriptor
(FMI). The next step for calculating the desired rotation parameter exploits the
fact that the 2D spectrum 5 rotates exactly the same way as the signal in the
time domain itself (equ.4):

s(x, y) = r[(x cos(α) + y sin(α)), (−x sin(α) + y cos(α))] (4)
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| S(u, v) |=| R[(u cos(α) + v sin(α)), (−u sin(α) + v cos(α))] | (5)

where α is the corresponding rotation angle.
For turning this rotation into a signal shift the magnitude of the signals spec-

trum is simply re-sampled into polar coordinates. For turning a signal scaling
into a signal shift several steps are necessary. The following Fourier theorem

f(
t

a
) ◦ − • aF (aω) (6)

shows the relations between a signal scaling and its spectrum. This relation can
be utilized in combination with another transform called Mellin transform which
is generally used for calculations of moments:

V M (f) =
∫ ∞

0
v(z)zi2πf−1dz (7)

Having two functions v1(z) and v2(z) = v1(az) differing only by a dilation the
resulting Mellin transform with substitution az = τ is:

V M
2 (f) =

∫ ∞

0
v1(az)zi2πf−1dz

=
∫ ∞

0
v1(τ)(

τ

a
)i2πf−1dτ

= a−i2πfV M
1 (f) (8)

The factor a−i2πf = e−i2πfln(a) is complex which means that with the following
substitutions

z = e−t, ln(z) = −t, dz = −e−tdt,

z → 0 −→ t → ∞, z → ∞ −→ t → −∞ (9)

the Mellin transform can be calculated by the Fourier transform with logarith-
mically deformed time axis:

V M (f) =
∫ −∞

∞
v(e−t)e−t(i2πf−1)(−e−t)dt

=
∫ ∞

−∞
v(e−t)e−i2πftdt (10)

Now the scaling of a function/signal using a logarithmically deformed axis can
be transfered into a shift of its spectrum. Finally, the spectrum’s magnitude
is logarithmically re-sampled on its radial axis and concurrently the spectrum
is arranged in polar coordinates exploiting the rotational properties of a 2D
Fourier transform as described before. Scaling and rotation of an image frame
are then transformed into a 2D signal shift where the 2D signal is actually the
corresponding spectrum magnitude of the image frame.
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Here, a sketch of the overall algorithm. The POMF is calculated as follows:

1. calculate the spectra of two corresponding image frames
2. calculate the phase difference of both spectra
3. apply an inverse Fourier transform of this phase difference

The following steps are taken for a full determination of the rotation, scaling
and translation parameters:

1. calculate the spectra of two corresponding image frames
2. calculate the magnitude of the complex spectral data
3. resample the spectra to polar coordinates
4. resample the radial axes of the spectra logarithmically
5. calculate a POMF on the resampled magnitude spectra
6. determine the corresponding rotation/scaling parameters from the Dirac

pulse
7. re-size and re-rotate the corresponding image frame to its reference counter-

part
8. calculate a POMF between the reference and re-rotated/scaled replica image
9. determine the corresponding x,y translation parameters from the Dirac pulse

The steps are used in the Fourier Mellin based photo mapping in a straight-
forward way. A first reference image I0 is acquired or provided to define the
reference frame F and the initial robot pose p0. Then, a sequence of images Ik

is acquired. Image I1 is processed with the above calculations to determine the
transformations T M

0 between I0 and I1 and hence the motion of the robot. The
robot pose is updated to p1 and I1 is transformed by according operations T F

0 to
an image I ′1 in reference frame F . The transformed image I ′1 is then added to the
photo map. From then on, the image I ′n, i.e., the representation of the previous
image in the photo map, is used to determine the motion-transformations T M

n

in the subsequent image In+1, which is used to update the pose pn+1 and the
new part I ′n+1 for the photo map.

3 Experiments and Results

Figures 2 and 3 show results of using the algorithm with real world UAV data
for photo mapping. No localization information for the UAV is given, not even
GPS data, only the raw video data is used. This real world data is well suited
for a comparison with alternative approaches like SIFT, but only on the basis
of a comparison of the performance between two consecutive images, i.e., sin-
gle registration steps. In doing so, it can be shown that SIFT performs poorly
on scenes with few distinct features and that it is in addition computationally
expensive.

The real world data is much less suited for assessing the quality of the photo
mapping approach in a quantitative way as ground truth information is not avail-
able. The significant advantage of the following experiments within USARsim is
that this restriction does not hold there. The presented results were processed by
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Fig. 2. An image map generated with iFMI in real-time from about 300 images acquired
with an UAV. The scene involves several challenges, especially large featureless areas.

a MATLAB implementation. A first C/C++ implementation were tested with 4
different frame sizes: (192x192) = 150msec, (256x256) = 230 msec, (320x320) =
260 msec and (480x480) = 430 msec on a standard PC with a 1.7 GHz CPU. The
processing times already include data acquisition and overview display using the
INTEL OpenCV library.

As one can see in figure 7, the approach works also well in USARsim to gen-
erate interesting overviews of a scenario - like a disaster scene - from the video
stream of an aerial vehicle. The visual quality of the photo map is fully sufficient
for mission planning and other qualitative tasks. The next question is how the
approach performs in quantitative terms. Figures 4, 5, and 6 show a direct com-
parison of the estimated versus the ground truth positions. The x-axis shows time
in terms of steps for 180 consecutively acquired images. The y-axis shows abso-
lute coordinates in meter, respectively pixels for global x- and y-coordinates. The
scaling shown in figure 6 shows the estimated, respectively ground truth scaling
effects of the elevation of the aerial vehicle above ground; the higher the vehicle
flies above ground the smaller the images its camera delivers. As mentioned, the
generated photo map has a sufficient quality for performing high level tasks with
it. But the quantitative analysis with USARsim allows to study the effects of the
cumulative errors in the localization. Concretely, it can be shown that there is a
severe drift in the real versus the estimated position, i.e., that the approach has
its limits in the current form for localization. This is of interest for further work
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Fig. 3. About 600 areal images from an UAV are combined by iFMI in real-time into
an image map
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(a) FM transform (b) ground truth

Fig. 4. Comparison of the estimated and the real translations along the x-axis

(a) FM transform (b) ground truth

Fig. 5. Comparison of the estimated and the real translations along the y-axis

(a) FM transform (b) ground truth

Fig. 6. Comparison of the estimated and the real scaling, i.e., the effects of the elevation
of the blimp above ground
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Fig. 7. Photo map M1 generated from a sequence of 180 images in USARsim from a
blimp without known poses
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along this line of research, especially for incorporating this new visual odometry
approach into a Simultaneous Localization and Mapping (SLAM) framework.

4 Conclusion

A Fourier Mellin Transform based approach to photo mapping was presented. It
is benchmarked with experiments with videos from a blimp in USARsim. This
has the advantage over field experiments that the data is physically realistic
while ground truth is known for a detailed analysis. The experiments show that
the approach is robust and fast. But the ground truth comparisons in USARsim
also reveal limits of the approach, especially with respect to robot localization.
While the photo maps are usable and provide an interesting overview of for
example an incident scenario, the ground truth analysis shows that there is a
clear drift in the localization estimation.
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Abstract. In this article a hand gesture recognition system that allows interact-
ing with a service robot, in dynamic environments and in real-time, is proposed. 
The system detects hands and static gestures using cascade of boosted classifi-
ers, and recognize dynamic gestures by computing temporal statistics of the 
hand’s positions and velocities, and classifying these features using a Bayes 
classifier. The main novelty of the proposed approach is the use of context in-
formation to adapt continuously the skin model used in the detection of hand 
candidates, to restrict the image’s regions that need to be analyzed, and to cut 
down the number of scales that need to be considered in the hand-searching and 
gesture-recognition processes. The system performance is validated in real 
video sequences. In average the system recognized static gestures in 70% of the 
cases, dynamic gestures in 75% of them, and it runs at a variable speed of 5-
10 frames per second. 

Keywords: dynamic hand gesture recognition, static hand gesture recognition, 
context, human robot interaction, RoboCup @Home.  

1   Introduction 

Hand gestures are extensively employed in human non-verbal communication. They 
allow to express orders (e.g. “stop”), mood state (e.g. “victory” gesture), or to trans-
mit some basic cardinal information (e.g. “two”). In addition, in some special situa-
tions they can be the only way of communicating, as in the cases of deaf people (sign 
language) and police’s traffic coordination in the absence of traffic lights. 

Thus, it seems convenient that human-robot interfaces incorporate hand gesture 
recognition capabilities. For instance, we would like to have the possibility of trans-
mitting simple orders to personal robots using hand gestures. The recognition of hand 
gestures requires both hand’s detection and gesture’s recognition. Both tasks are very 
challenging, mainly due to the variability of the possible hand gestures (signs), and 
because hands are complex, deformable objects (a hand has more than 25 degrees of 
freedom, considering fingers, wrist and elbow joints) that are very difficult to detect 
in dynamic environments with cluttered backgrounds and variable illumination. 

Several hand detection and hand gesture recognition systems have been proposed. 
Early systems usually require markers or colored gloves to make the recognition eas-
ier. Second generation methods use low-level features as color (skin detection) [4][5], 
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shape [8] or depth information [2] for detecting the hands. However, those systems 
are not robust enough for dealing with dynamic conditions; they usually require uni-
form background, uniform illumination, a single person in the camera view [2], and/or 
a single, large and centered hand in the camera view [5]. Boosted classifiers allow the 
robust and fast detection of hands [3][6][7]. In addition, the same kind of classifiers 
can be employed for detecting static gestures [7]; dynamic gestures are normally 
analyzed using Hidden Markov Models [4][23]. 3D hand model-based approaches 
allow the accurate modeling of hand movement and shapes, but they are time-
consuming and computationally expensive [6][7]. 

In this context, we are proposing a robust and real-time hand gesture recognition 
system to be used in the interaction with personal robots. We are especially interested 
in dynamic environments such as the ones defined in the RoboCup @Home league 
[20] (our team participates in this league [21]), with the following characteristics: 
variable illumination, cluttered backgrounds, (near) real-time operation, large vari-
ability of hands’ pose and scale, and limited number of gestures (they are used for 
giving the robot some basic information). It is important to mention that in the new 
RoboCup @Home league’ rules gesture recognition is emphasized: An aim of the 
competition is to foster natural interaction with the robot using speech and gesture 
commands (2009’s Rules book, pp. 7, available in [20]). For instance, in the new 
“Follow me” test, gesture recognition is required to complete adequately the test 
(2009’s Rules book, pp. 23: When the robot arrives at […] it is stopped by a HRI 
command (speech, gesture recognition or any other ’natural’ interaction), and using 
HRI the robot should either move backwards, move forward, turn left or turn right 
[…]. Then the robot is commanded using HRI to follow the walker.). 

The proposed system is able to recognize static and dynamic gestures, and their 
most innovative features include: 

- The use of context information to achieve, at the same time, robustness and real-
time operation, even when using a low-end processing unit (standard notebook), as in 
the case of humanoid robots. The use of context allows to adapt continuously the skin 
model used in the detection of hand candidates, to restrict the image’s regions that 
need to be analyzed, and to cut down the number of scales that need to be considered 
in the hand-searching and gesture recognition processes. 

- The employment of boosted classifiers for the detection of faces and hands, as 
well as the recognition of static gestures. The main novelty is in the use of innovative 
training techniques - active learning and bootstrap -, which allow obtaining a much 
better performance than similar boosting-based systems, in terms of detection rate, 
number of false positives and processing time.  

- The use of temporal statistics about the hand’s positions and velocities and a 
Bayes classifier to recognize dynamic gestures. This approach is different from the 
traditional ones, based on Hidden Markov Models, which are not able to achieve real-
time operation. 

This article is focused on the description of the whole system, and the use of con-
text to assist the gesture recognition processes. In sections 2 the rationale behind the 
use of context information in the proposed gesture recognition system is described. In 
section 3 the whole gesture recognition system and its modules are described. Results 
of the application of this system in real video sequences are presented and analyzed in 
section 4. Finally, some conclusions of this work are given in section 5. 
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2   Context Integration in HRI: Improving Speed and Robustness 

Visual perception in complex and dynamical scenes with cluttered backgrounds is a 
very difficult task, which humans can solve satisfactorily. However, computer and 
robot vision systems perform very badly in this kind of environments. One of the 
reasons of this large difference in performance is the use of context or contextual 
information by humans. Several studies in human perception have shown that the 
human visual system makes extensive use of the strong relationships between objects 
and their environment for facilitating the object detection and perception ([13]-[17], 
just to name a few). Context can play a useful role in visual perception in at least 
three forms [18]: (i) Reducing perceptual aliasing: 3D objects are projected onto a 2D 
sensor, and therefore in many cases there is an ambiguity in the object identity. In-
formation about the object surround can be used for reducing or eliminating this am-
biguity; (ii) Increasing perceptual abilities in hard conditions: Context can facilitate 
the perception when the local intrinsic information about the object structure, as for 
example the image resolution, is not sufficient; (iii) Speeding up perceptions: Contex-
tual information can speed up the object discrimination by cutting down the number 
of object categories, scales and poses that need to be considered. 

The recognition of static and dynamic gestures in dynamic environments is a diffi-
cult task that usually requires the use of image processing algorithms to improve the 
quality of the images under analysis and to extract the required features (color, 
movement and even texture information), and statistical classifiers to detect the hands 
and to classify the gestures. In HRI applications there exists a tradeoff between carry-
ing out a detailed analysis of the images, using an image’s resolution that allows rec-
ognizing gestures at a given distance of a few meters, which usually can take more 
than one second per image, and the requirement of real-time operation to allow a 
proper interaction with humans. Context can be used to deal with this situation, and to 
achieve, at the same time, robustness and real-time operation, even when using a low-
end processing unit (standard notebook), as in the case of humanoid robots. 

In this work, the main sources of context to be used are human faces appearing in 
the image, and the existence of a physical world with defined laws of movement. 
Main assumptions are: 

- We are dealing with an HRI application in which a human is communicating with 
a robot using hand gestures. Therefore a frontal human face will be observed in some 
or even several frames of the video sequence.  

- Frontal face detectors are much more robust than hand detectors, mainly due to 
the fact that a hand is a deformable object with more than 25 degrees, whose pose 
changes largely depending on the observer’s viewpoint. In the literature it can be 
observed that frontal face detectors achieve a much higher detection rates than hand 
detectors, and they are much faster. 

- The robot and the human have upright positions, and their bodies (hands, heads, 
main-body, etc.) move according with the physical rules (gravity, etc.). This allows (i) 
to make some basic assumptions about the relative position and scale of the objects, 
as well as about their orientation, and (ii) to track the position of detected objects (e.g. 
a face), and to actively determine their position in the next frames. 
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- Normally the human user is not wearing gloves and the hand-gesture is a part of a 
sequence, in which the hand is moved. Therefore, candidate hand regions can be de-
tected using skin and motion information. 

In the proposed gesture recognition system a face detector is incorporated, and the 
information about the detected face is used to: (i) adapt continuously the skin model 
using the pixels contained in a sub-region of the face’s area, (ii) determine the image’s 
region that need to be analyzed for detecting skin and movement, as well as new faces, 
(iii) cut down the number of scales that need to be considered in the hand-searching 
process, (iv) normalize the input to the dynamic gesture recognition module, so that it 
is translation’s and scale’s invariant. In addition, (v) hand-searching process is re-
stricted to regions where a minimal amount of skin and movement is detected, and (vi) 
after detecting a hand for the first time, it is tracked until track is lost. Then, hand de-
tection is restarted. In the next section all these processes are explained. 

3   Proposed Hand Gesture Recognition System 

The system consists of five main modules Face Detection and Tracking (FDT), Skin 
Segmentation and Motion Analysis (SMA), Hand Detection and Tracking (HDT), 
Static Gesture Recognition, and Dynamic Gesture Recognition (see figure 1). 

The FDT module is in charge of detecting and tracking faces. These functionalities 
are implemented using boosted statistical classifiers [11], and the meanshift algorithm 
[1], respectively. The information about the detected face (DF) is used as context in 
the SMA and HDT modules. Internally the CF1 (Context Filter 1) module determines 
the image area that needs to be analyzed in the current frame for face detection, using 
the information about the detected faces in the past frame.  

The SMA module determines candidate hand regions to be analyzed by the HDT 
module. The Skin Segmentation module uses a skin model that is adapted using in-
formation about the face-area’s pixels (skin pixels) in order to achieve some illumina-
tion invariance. The module is implemented using the skindiff algorithm [9]. The 
Motion Analysis module is based on the well-known background subtraction tech-
nique. CF2 (Context Filter 2) uses information about the detected face and the human-
body dimensions to determine the image area (HRM: Hand Region Mask) where a 
hand can be present in the image. Only this area is analyzed by the Skin Segmentation 
and Motion Analysis modules. 

The HDT module is in charge of detecting and tracking hands. These functional-
ities are implemented using boosted statistical classifiers and the meanshift algorithm, 
respectively. CF3 (Context Filter 3) determines the image area where a hand can be 
detected in the image, using the following information sources: (i) skin mask (SM) 
which corresponds to a skin probability mask, (ii) motion mask (MM) that contains 
the motion pixels, and (iii) information about the hands detected in the last frame 
(DH: Detected Hand). 

The Static Gesture Recognition module is in charge of recognizing static gestures. 
The module is implemented using statistical classifiers: a boosted classifier for each 
gesture class, and a multi-class classifier (J48 pruned tree, Weka’s [19] version of C4.5) 
for taking the final decision. The Dynamic Gesture Recognition module recognizes 
dynamic gestures. The module computes temporal statistics about the hand’s positions 
and velocities. These features feed a Bayes classifier that recognizes the gesture. 
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Fig. 1. Proposed hand gesture recognition system. CFi: Context Filter i. I: Image. DF: Detected 
Face. HRM: Hand Region Mask. SH: Skin Histogram. SM: Skin Mask: BM: Background 
Model. MM: Motion Mask. DH: Detected Hand. DG: Dynamic Gesture. SG: Static Gesture. t: 
Frame index. See main text for a detailed explanation. 

3.1   Face Detection and Tracking 

The FDT module is in charge of detecting and tracking faces. These functionalities are 
implemented using boosted statistical classifiers [11] and the meanshift algorithm [1], 
respectively. The face detector corresponds to a nested cascade of boosted classifiers, 
which is composed by several integrated (nested) layers, each one containing a boosted 
classifier. The cascade works as a single classifier that integrates the classifiers of 
every layer. Weak classifiers are linearly combined, obtaining a strong classifier.  

The meanshift algorithm is used to predict the face position in the next frame. The 
seed of the tracking process is the detected face. We use RGB color histograms as 
feature vectors (model) for meanshift, with each channel quantized to 16 levels (4 
bits) and the feature vector weighted using an Epanechnikov kernel [1]. The predic-
tion given by meanshift is internally used by the CF1 (Context Filter 1) module to 
determine the image area that needs to be analyzed in the current frame: 

   
xv = max 0, x f − w f( ); yv = max 0, y f − h f( ); wv = min 3 ⋅ w f ,Iwidth( );hv = min 3 ⋅ h f ,Iheight( ),     (1) 

with x f / y f the x/y coordinates of the detected face (bounding box) upper-left corner, 
w f /h f  the face’s width/height, Iwidth / Iheight  the image’s width/height, and 

xv , y v ,wv ,hv  the coordinates, width and height of the image’s area to be analyzed. 
If a face is not detected in a frame, the prediction given by meanshift is used in-

stead. The tracking module is reset after a fixed number of frames (about 200) in 
order to deal with cases such as faces incorrectly tracked or detected, or new persons 
entering the detection area. 

3.2   Skin Segmentation and Motion Analysis 

The SMA module determines candidate hand regions to be analyzed in the HDT 
module. Skin Segmentation is implemented using the skindiff algorithm [9]. Skindiff is 
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a fast skin detection algorithm that uses neighborhood information (local spatial con-
text). It has two main processing stages, pixel-wise classification and spatial diffu-
sion. The pixel-wise classification uses a skin probability model Gt , and the spatial 
diffusion takes into account neighborhood information when classifying a pixel. The 
skin probability model is continuously adapted using information of the face-area’s 
pixels (skin pixels). The adaptation is done by taking skin pixels of the face area, and 
updating a non-parametric skin model implemented using histograms: 

Gt = Gt−1α + ˆ G face(t ) (1−α),         (2) 

where ˆ G face(t )  is estimated using the currently detected face, and Go is the initial 

model, which can be initialized from a previously stored model (in our case the MoG 
model proposed in [22]). 

The Motion Analysis module is based on the well-known background subtraction 
technique. CF2 (Context Filter 2) uses information about the detected face, the fact 
that in our system gestures should be made using the right hand, and the human-body 
dimensions to determine the image area (HRM: Hand Region Mask) where a hand can 
be present in the image: 

xw = max 0, x f − 3 ⋅ w f( ); yw = max 0, y f − h f( );
ww = min 4.5 ⋅ w f ,Iwidth( ); hw = min 4 ⋅ h f ,Iheight( ),

    (3) 

with xw , y w ,ww ,hw  the coordinates, width and height of the image’s area to be ana-
lyzed. Note that just this area is analyzed by Skin Segmentation and Motion Analysis 
modules. 

3.3   Hand Detection and Tracking 

In order to detect hands within the image area defined by the HRM a cascade of 
boosted classifiers is used. Although this kind of classifiers allows obtaining very 
robust object detectors in the case of face or car objects, we could not build a reliable 
generic hand detector easily. This mainly because: (i) hands are complex, highly de-
formable objects, (ii) hand possible poses (gestures) have a large variability, and (iii) 
our target is a fully dynamic environment with cluttered background. Therefore we 
decided to switch the problem to be solved, and to define that the first time that a 
hand should be detected, a specific gesture must be made, the fist gesture. The fist is 
detected using a boosted classifier, similar to the one used for face detection, but built 
specifically for that gesture. The hand detector also takes as input the skin mask and 
the motion mask, and only analyzes regions where at least 5% of the pixels corre-
spond to skin and movement. The integral image representation is employed to 
speedup this calculation (regions of different sizes can be evaluated very fast) [12]. 

The hand-tracking module is built using the meanshift algorithm [1]. The seeds of 
the tracking process are the detected hands (fist gesture). We use RG color and rota-
tion invariant LBP histograms as feature vectors (model) for meanshift, with each 
channel quantized to 16 levels (4 bits). The feature vector is weighted using an Epan-
echnikov kernel [1]. Rotation invariant LBP features encode local gradient informa-
tion, and they are needed because if only color is used, some times meanshift tracks 
the arm instead of the hand. 
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As already mentioned, once the tracking module is correctly following a hand, 
there is no need to continue applying the hand detector, i.e. the fist gesture detector, 
over the skin blobs. That means that the hand detector module is not longer used until 
the hand gets out of the input image, or until the meanshift algorithm loses track of the 
hand, case where the hand detector starts working again. At the end of this stage, one 
or several regions of interest (ROI) are obtained, each one indicating the location of a 
hand in the image. This module is explained in detail in [10].  

3.4   Recognition of Static Gestures 

In order to determine which gesture is being expressed, a set of single gesture detec-
tors are applied in parallel over the ROIs delivered as output of the HDT module (DH: 
Detected Hand). Each single gesture detector is implemented using a cascade of 
boosted classifiers. The learning framework employed for building and training these 
classifiers is described in [11]. Currently we have implemented detectors for the fol-
lowing gestures: fist, palm, pointing, and five (see figure 2). 

Due to noise or gesture ambiguity, it could happen than more than one gesture de-
tector will give positive results in a ROI (more than one gesture is detected). For dis-
criminating among these gestures, a multi-gesture classifier is applied. The used 
multi-class classifier is a J48 pruned tree (Weka’s [19] version of C4.5), built using 
the following four attributes that each single gesture detector delivers: 
- conf: sum of the cascade confidence’s values of windows where the gesture was 

detected (a gesture is detected at different scales and positions), 
- numWindows: number of windows where the gesture was detected, 
- meanConf: mean confidence value given by conf/numWindows, and 
- normConf: normalized mean confidence value given by meanConf/maxConf, 

with maxConf the maximum possible confidence that a window could get. 
This module is explained in detail in [10]. 
 

    
Fist Palm Pointing Five 

Fig. 2. Hand gestures detected by the system 

3.5   Recognition of Dynamic Gestures 

The Dynamic Gesture Recognition Module (DGRM) stores and analyzes sequences 
of detected hands (DH) online. The number of stored detections is fixed, so older 
detections that would exceed the predefined capacity are discarded as new detections 
arrive. Stored detections are discarded altogether when an inactivity condition is de-
tected (still hand, hand out of camera range). Every time a new detection arrives, 
subsequences of the stored sequence that end with this new detection are analyzed. 
This analysis consists of computing a feature vector that comprises geometric and 
kinematical characteristics of the subsequence. Each subsequence's feature vector is 



 Real-Time Hand Gesture Recognition for Human Robot Interaction 53 

fed to a Naïve Bayes classifier, which calculates a score for each possible dynamic 
gesture. This score represents the likelihood of the gesture in the given subsequence. 
In other words, every time a new detection (DH) arrives, a set of scores associated to 
each gesture is obtained (each score corresponding to a given subsequence). For each 
gesture, the highest of these scores is taken to be the best likelihood of that gesture 
having occurred, given the last frame. Finally, for each frame and each gesture, only 
this highest score is kept.  

The highest scores alone could be used to determine the recognized gesture at the 
moment. However, in order to add robustness, the score should be consistently high 
during a interval of frames. So, for each gesture, the moving average of the last k  
highest scores is kept. In any given moment, the gesture with the best moving-average 
(bma) score is declared as the recognized gesture of that moment. Since not any frame 
is a real-end of a gesture, gesture segmentation becomes a problem. Thresholding the 
bma is a possible approach for gesture spotting. The thresholds can be learned from 
the training set. In addition, the current bma can be decremented in each round as a 
penalty for the subsequence from which it was extracted becoming older. 

Each detected hand is represented as a vector (x, y,vx ,vy , t) , where (x, y)  is the 

hand’s position, (vx ,vy )  the hand’s velocity, and t the frame’s timestamp. In order to 

achieve translation and scale invariance, coordinates (x, y)  are measured with respect 
to the face, and normalized by the size of the face. Using this vector, statistics (fea-
tures) that characterize the sequences are evaluated. Some of the features are: mean 
hand’s position in the x and y axis, mean hand’s speed in the x and y axis, components 
of the covariance matrix of vector (x, y,vx ,vy ), area and perimeter of the convex hull 

of the (x, y)  positions, average radius and angle with respect to a coordinate system 
placed on the mean (x, y)  point, the percentage of points that fall on each cell of a 
3x3 grid that exactly covers the positions of all detected hands, among others. Note 
that most of these features can be quickly evaluated using the same features evaluated 
in the previous frame (e.g. moving average). 

4   Results 

The whole gesture recognition system was evaluated in real video sequences obtained 
in office environments with dynamic conditions of illumination and background. In 
all these sequences the service robot interact with the human user at a variable dis-
tance of one to two meters (see example in figure 3). The size of the video frames is 
320x240 pixels, and the robot main computer where the gesture recognition system 
runs is a standard notebook (Tablet HP 2710p, Windows Tablet SO, 1.2 GHz, 2 GB in 
RAM). Under these conditions, once the system detects the user’s face, it is able to 
run at a variable speed of 5-10 frames per second, which is enough to allow an ade-
quate interaction between the robot and the human user. The system’s speed is vari-
able because it depends on the convergence time of meanshift and the face and hands 
statistical classifiers. It should be noted that when the different context filters are 
deactivated and the complete image is analyzed, the system’s speed is lower than 1 
frame per second. This indicates that the use of context is essential to achieve the 
application requirements. 
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Fig. 3. Interacting with the robot in an unstructured environment 

Recognition of Static Gestures. In order to evaluate this module, a database of 5 
real-video sequences consisting of 8,150 frames, obtained in office environments, 
with variable illumination and cluttered backgrounds was built. In each sequence a 
single human was always interaction with our robot (altogether 4 different persons 
performing the 4 considered gestures). In figure 4 are shown the ROC curves of the 
single, static gesture detectors. Table 1 shows a confusion matrix of the multi-gesture 
recognition module, which consists of the four single, static gesture detectors and the 
multi-gesture classifier, evaluated on the same video sequences. The first thing that 
should be mention is that the hand detection system together with the tracking system 
did not produce any false negative out of the 8,150 analyzed frames, i.e. the hands 
were detected in all cases. From table 1 it can be observed that the gesture detection 
and recognition modules worked best on the five gesture, followed by the pointing, 
fist and palm gestures, in that order. The main problem is the confusion of the fist and 
pointing gestures, which is mainly due to the similarly of the gestures. In average the 
system correctly recognized the gestures in 70% of the cases. If the pointing and the 
fist gestures are considered as one gesture, the recognition rate goes up to 86%. 

Recognition of Dynamic Gestures. We evaluate the proposed gesture recognition 
framework in the 10 Palm Graffiti Digits database [23], where users perform gestures 
corresponding to the 10 digits (see example in figure 5). In the experiments the users 
and signers can wear short sleeved shirts, the background may be arbitrary (e.g, an 
office environment) and even contain other moving objects, and hand-over-face oc-
clusions are allowed. We use the easy test set, which contains 30 short sleeve se-
quences, three from each of 10 users (altogether 300 sequences). 

The system was able to detect and track hands in 266 of the 300 sequences (89%). 
In these 266 sequences, the dynamic gestures (i.e. digits) were correctly recognized in 
84% of the cases. This corresponds to a 75% recognition rate (225 from 300 cases). It 
can be seen that this recognition rate is very similar to the one obtained in state of the 
art systems (e.g. [23], based on Hidden Markov Models), which are not able to oper-
ate in real-time or near real-time. 

Table 2 shows a confusion matrix of the dynamic gesture recognition. It can be ob-
served that the recognition rate of 6 digits is very high (“0”-“4”, “8” and “9”). Two 
digits are recognized in most of the cases (“6” and “7”), and just the “5” digit has 
recognition problems. The “5” is confused, most of the time with the “3”. 
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ROC curves of Gesture Detectors

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700
False Positives

T
ru

e
 P

o
s

it
iv

e
 R

a
te

 [
%

]

Pointing Five

Palm Fist

 

Fig. 4. ROC curves of the single, static gesture detectors 

   

   

Fig. 5. Example of tracked hands in the 10 Palm Graffiti Digits database [23] 

 

Table 1. Confusion matrix of the final static, multi-gesture recognition module (rows: real 
gesture, columns: predicted gesture). RR: Recognition Rate. 

 Fist Palm Pointing Five Unknown RR (%) 
Fist 1,533 2 870 9 15 63.1 
Palm 39 1,196 10 659 15 62.3 
Pointing 436 36 1,503 27 86 72.0 
Five 103 32 6 1,446 127 84.3 

5   Conclusions 

In this article a hand gesture recognition system that allows interacting with a service 
robot, in dynamic environments and in real-time, was described. The system detect 
hands and static gestures using cascade of boosted classifiers, and recognize dynamic 
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gestures by computing temporal statistics of the hand’s positions and velocities, and 
classifying these features using a Bayes classifier. The main novelty of the proposed 
approach is the use of context information to adapt continuously the skin model used 
in the detection of hand candidates, to restrict the image’s regions that need to be 
analyzed, and to cut down the number of scales that need to be considered in the 
hand-searching and gesture-recognition processes. 

The system performance is validated in real video sequences. The size of the video 
frames is 320x240 pixels, and the robot computer where the gesture recognition sys-
tem runs is a standard notebook (Tablet HP 2710p, Windows Tablet SO, 1.2 GHz, 2 
GB in RAM). Under these conditions, once the system detects the user’s face, it is 
able to run at a variable speed of 5-10 frames per second. In average the system rec-
ognized static gestures in 70% of the cases, and dynamic gestures in 75% of them. 

 

Table 2. Confusion matrix of the dynamic gesture recognition module (rows: real gesture, 
columns: predicted gesture). TP: True Positives. FP: False Positives. RR: Recognition Rate. 

 0 1 2 3 4 5 6 7 8 9 TP FP 
RR 
(%) 

0 20 0 0 0 0 0 0 0 1 0 20 1 95 

1 0 30 0 0 0 0 0 0 0 0 30 0 100 

2 0 0 22 0 0 0 0 0 0 0 22 0 100 

3 0 0 0 26 0 0 0 0 0 0 26 0 100 

4 0 0 0 0 30 0 0 0 0 0 30 0 100 

5 0 0 0 22 0 3 2 0 0 0 3 24 11 

6 4 0 0 0 0 0 23 0 0 0 23 4 85 

7 0 9 0 0 0 0 0 18 0 1 18 10 64 

8 0 0 0 0 0 0 0 0 28 0 28 0 100 

9 0 0 0 2 0 0 0 0 0 25 25 2 93 
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Abstract. This article presents a novel approach for motion pattern
generation for humanoid robots combining the intuitive specification via
key frames and the robustness of a ZMP stability controller. Especially
the execution of motions interacting with the robot’s environment tends
to result in very different stability behavior depending on the exact mo-
ment, position and force of interaction, thus providing problems for the
classical replay of prerecorded motions. The proposed method is applied
to several test cases including the design of kicking motions for humanoid
soccer robots and evaluated in real world experiments which clearly show
the benefit of the approach.

1 Introduction

As the field of robotics shifts to more complex tasks such as search and rescue or
military operations, but also service and entertainment activities, robots them-
selves are becoming more autonomous and mobile. To fulfill tasks in the later
two areas of application, robots must be capable of navigating in and interacting
with environments made for humans, and of communicating with people in their
natural ways. Those environments are particularly challenging for the movement
of conventional wheeled autonomous robots. Normal stairs or small objects lying
on the floor become insurmountable barriers. For these reasons the design of such
robots tends to mimic human appearance in respect to body design, capability
of gestures and facial expressions [1].

As a consequence humanoid robots are one of the major topics of robotics
research and are believed to have high potential in future applications. Despite
this, present humanoid robots have a substantial lack in mobility. The humanoid
shaped form of a two-legged robot results in a relatively high center of mass
(CoM) of the body while standing upright. As a result the stance of a humanoid
robot is quite unstable, making it likely to tip over. Even basic tasks as walking
on even ground without external disturbance are not a trivial challenge. There-
fore stability is one of the central problems in this area at the moment, with
research focusing mainly on the task of walking. The execution of interactions
with the robot’s environment represents an even more difficult task because of
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the necessary coordination of sensor input and actuator control for targeting and
for keeping a stable posture.

This task is easier for a wheeled robot since because of its low CoM position
it is less likely to fall over while executing movements designed to handle an
object. Maintaining stability during the execution of similar tasks is not trivial
for a humanoid robot. The unstable nature of its design makes it vulnerable to
disturbances during motions such as lifting an object of unknown weight. The
classic approach to motion design typically exploits the fact that most actions
needed of a robot can be considered as sequences of motion primitives adding up
to perform a certain interaction with its environment or being executed period-
ically in case of walking. Consequently the design consists of rigidly specifying
these motion primitives or key frames and corresponding transition times. This
results in a fixed motion sequence thereby making it impossible to adjust the
movement online during execution.

While the specification of key frame motion provides an intuitive way of deal-
ing with complex motions and adjusting them for specific looks or purposes,
stability aspects are typically neglected but for the point that the resulting mo-
tion is stable on the reference robot used for the design. Differences between
several robots of the same model or variances in interaction characteristics are
normally handled by redesigning the motion for each case or trying to find a best
fit that covers most cases. Therefore this static motion design approach appears
to be ineligible for humanoid robots approaching the suggested tasks. Hence the
proposed system extends the idea of key frame based motion design by controlled
movement execution according to predefined stability criteria. This allows for a
simplified specification process while differences between robots and deviations
due to other reasons are compensated by the stability control.

The next section gives an overview of research on postural stability and related
work. Then the proposed motion design and the control system applied to the
executed motion are explained. Following this the system is evaluated using
the experimental setup of a kicking motion. This application of the presented
algorithm clearly shows the benefit of the control system.

2 Motion Generation and Stability

According to [2,3,4], the existing approaches to control the motions of walking
robots can be divided into the following two categories:

Offline generation. A motion is designed before the execution resulting in the
specification of a motion trajectory. The planned trajectory is executed once
or periodically resulting in the desired motion.

Online generation. A motion is generated by a feedback control mechanism
from a given motion objective in real time.

Offline motion generation has been applied since the beginning of robotics re-
search. Teach-in techniques for industrial manipulators allow to design complex
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motions by manually moving the robot on a path leading to the desired motion
during playback execution. The intuitive simplicity of this approach motivates
the method of designing motions using key frames [5]. Different sets of joint
positions are specified leading to key motion positions. The transition between
these frames leads to motion fragments. Combined these motion primitives form
the desired motions needed for application. Due to the high number of joints
motions of humanoid robots are very difficult to design. Therefore the key frame
procedure is particularly interesting for application in this field of robotics for its
simple design of complex motions. As a downside the motion is executed without
the possibility of online adaptation. So it is not possible to supervise and control
the stability of movement execution rendering this approach unsuitable for tasks
during which forces acting on the robot can change unpredictably.

Hence the concept class of online motion generation combines approaches
capable of changing the planned motion during the execution which requires
a method to generate a new trajectory movement. Normally a mathematical
function and a model description of the robot is used to come up with a way to
calculate the desired movement [2,3,4]. While finding a model or mathematical
description of the desired movement is more complex than defining a key frame
motion it offers the possibility to integrate feedback in the motion calculation
and thereby adapt the motion to external influences. This advantage enables
this kind of motion generation to use sensor feedback to supervise and control
the stability of motions when unpredictable external forces act on the robot.
Therefore a criteria to measure the stability of the robot is needed.

A robot’s posture is called balanced and a gait is called statically stable, if
the projection of the robot’s center of mass to the ground lies within the convex
hull of the foot support area (the support polygon). This kind of movement
however covers only low speeds and momentums. Movements utilizing high joint
torques and accelerations typically consist of phases in which the projection of
the center of mass leaves the support polygon, but in which the dynamics and
the momentum of the body are used to keep the gait stable. Those movements
are called dynamically stable.

The concept of the zero moment point (ZMP) is useful for understanding
dynamic stability and also for monitoring and controlling a walking robot [6,7].
The ZMP is the point on the ground where the tipping moment acting on the
robot, due to gravity and inertia forces, equals zero. In the case of a quasi static
motion this ZMP equals the ground projected CoM. Vukobratovic’s classical
ZMP notation [8] is only defined inside the support polygon. This coincides with
the equivalence of this ZMP definition to the center of pressure (CoP) [9], which
naturally is not defined outside the boundaries of the robot’s foot. If the ZMP
is at the support polygon’s edge, any additional moment would cause the robot
to rotate around that edge, i.e. to tip over. Nevertheless, applying the criteria of
zero tipping moment results in a point outside the support polygon in this case.
Such a point has been proposed as the foot rotation indicator (FRI) point [10]
or the fictitious ZMP (FZMP) [8].
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3 Motion Generation

In this paper a motion design concept is proposed which combines both methods
discussed in section 2. Therefore a feedback controller is described in section 3.1,
capable of controlling the CoM of a robot in a way satisfying the conditions of a
quasi static motion. Section 3.2 describes the used key frame based feed forward
control method, while section 3.3 describes the combination of both methods.

3.1 Quasi Static Feedback Controller

Motions such as manipulating objects normally require the robot to remain
in position while moving only parts of its body resulting in rather slow joint
movements. Hence a controller based on the assumption of a quasi static ap-
proximation is sufficient to control the motion.

At first the one dimensional problem of a center of mass R intended to reach
the target position R′ is considered. Without loss of generality R′ ≥ R(0) is de-
fined hereafter. To satisfy the condition of a quasi static motion, the acceleration
must be bounded all the time.

|R̈(t)| ≤ ac

To generate the desired trajectory of the controlled motion the acceleration is
set to its maximum value in the beginning and inverted once the target will be
reached by maximal deceleration.

R̈(t) =
{

ac if t ∈ [0, t1]
−ac if t ∈ [t1, t1 + t2]

.

To achieve this the remaining distance to the target must be covered during the
time t2,

−1
2
act

2
2 + Ṙ(t1)t2 = R′ − R(t1) (1)

and the velocity must be reduced to zero

−act2 + Ṙ(t1) = 0. (2)

Elimination of t2 out of equation 1 and 2 results in

1
2

Ṙ(t1)2

ac
= R′ − R(t1).

When this condition is met the acceleration is inverted. Therefore the accelera-
tion is given by equation 3.

R̈(t) =

{
ac if 1

2
Ṙ(t)2

ac
< R′ − R(t) ∨ Ṙ(t) < 0

−ac else
(3)

The deviation between the measured and the desired CoM position and its cur-
rent velocity is used as the system output and the acceleration of the CoM,
calculated by equation 3, as the system input. The CoM position is computed
by double integration as demonstrated in figure 1.
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Fig. 1. Resulting position-, velocity- and acceleration curves for a quasi static con-
trolled motion with R(0) = 0, R′ = 1 and ac = 1

To generalize the controller in two dimensions the control of the CoM motion
is first considered to be independent and identical for both dimensions. The
overall acceleration is hence bounded by the constant value

√
a2

c + a2
c =

√
2ac.

With the target distances Rx and Ry being unequal in general the resulting
movements tend to align along the axes as demonstrated in figure 2(a).

To solve this problem the coordinate system is transformed in every control
step in such a way that one of its axes aligns to the current motion direction
Ṙ(t) and all calculations are done is the accompanying reference system of the
CoM. As in the one dimensional case the acceleration in the orthogonal direction
is used to reach the target position and the orthogonal acceleration turns the
movement direction towards the target. The result can be seen in figure 2(b).

3.2 Key Frame Based Feed Forward Control

Similar to the approach used in [5] a key frame based motion is modeled as a list
of positions. The motion is executed by interpolating between these positions
within given times. In difference to [5] the proposed algorithm uses a notation
in which a key frame is not defined directly by a set of joint angles but by
defining the positions of the robot’s body and feet in form of coordinates in
the euclidean space. The according joint angles are computed by methods of
inverse kinematics. The position of the feet are either given relative to the robot
coordinate system or the position of one feet is given relative the other one. This
definition not only results in a more intuitive movement specification, but also
is more flexible in allowing degrees of freedom in the movement to be controlled
during execution to match a desired criterium.

3.3 Combining Feed Forward and Feedback Control

As discussed in section 2 classic key frame based motions are unsuitable to be
controlled to meat a stability criterion during execution due to the fact that
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Fig. 2. Discrete two dimensional quasi static controlled motion with R(0) = (0, 0),
R′ = (3, 1) and ac = 1

the movement of all joints is completely defined. Therefore in a novel approach
both discussed methods are combined. The key frame based motion specification
method discussed in 3.3 allows for a flexible motion definition without defining
all degrees of freedom. While using this key frame approach to control the mo-
tion of the limbs, the orientation of the body in space, and the height of the
CoM over the ground, the feedback controller presented in section 3.1 generates
a motion trajectory for the horizontal components of the robot’s CoM position
ensuring the stability of the motion. As the desired stationary motions tend to
require static stability keeping the ground projected CoM inside the robot’s sup-
port polygon is sufficient to ensure this. Therefore a stable CoM trajectory is
calculated in advance to match the specified motion. The fusion of the move-
ments is then done by adding the resulting CoM position to each key frame.
During motion execution the feedback controller ensures that the CoM follows
the desired path by controlling the undefined degrees of freedom. The interpo-
lation time associated to a key frame may not be equal to the time needed by
the feed forward controller to reach the desired position in any case. Hence the
transition from one key frame to the next can be delayed until the current CoM
position is sufficiently close to the desired one and the current speed of the CoM
is low enough.
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(a) BHB-2 Bender (b) schematic sensor view

Fig. 3. Robotic platform used for experiments

4 Evaluation

To evaluate the concepts presented in this paper, experiments were conducted
using a robot model of the type DHB-2 Bender (illustrated in figure 3(a)) which
was designed and build by the Dortmund University of Technology and partic-
ipated at the German Open and the RoboCup in the year 2007. In its current
configuration it is 49 cm tall with a weight of 2.93 kg and a relatively high CoM
of 31 cm. For more details see [11].

To measure the ZMP during the experiments the robot is equipped with
sensors in the feet. Similar to the proposal of [8] four one axis force sensors of
the type FSR-149 (International Electronics Engeneering) are integrated into
the corners of each foot as illustrated in figure 3(b). As stated in [8] the measured
ZMP and thereby according to section 2, in the quasi static case, the projection
of the CoM to the ground can be calculated by weighted summation of the sensor
values.

To calculate joint angle values from the foot and body positions, a concept of
inverse kinematics using the Newton method was applied [12]. To calculate the
position of the CoM a simplified model consisting of three punctual masses, one
for the body and one for each leg, is used.

4.1 Application to Kicking

To proof the concept of the controller described in section 3 a quasi static motion
to stand on one leg and kick a ball is described in the following. This motion
is chosen because kicking a ball is an easily repeatable motion which stresses
the stability aspect in two ways: First, balancing on one leg might in itself be
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a difficult task depending on the rigidity of the leg design and the strength of
the servo motors. In addition to that the exact moment, position and force of
interaction with the ball is not known in advance which might cause additional
instability if not countered correctly during runtime.

In the beginning of the motion the controller is used to bring the measured
CoM position over the support foot. The other foot is lifted off the ground
while the controller keeps the CoM over the support foot. During the actual
kicking move the lifted foot is moved forward rapidly without altering the CoM
position1. As this part of the movement only lasts for a very short time (about
100 ms) the relatively slow quasi static controller is not fast enough to adjust the
movements of the robot during this phase. After the kick the feedback controller
is used again to keep the CoM over the support foot leveling out the impact
of the kick. For slower movements a CoM adjustment would also be possible
during the motion execution. Since slower statical movements tent to be stable
by themselves a demonstration is omitted at this point. The CoM is shifted back
to its original position after the kick foot is moved to the ground. The direction
of the kick can be controlled by turning the kicking foot around the vertical
axis before performing the actual kick move while the range of the kick can be
adjusted by modifying the speed of the foot motion.

Tests have shown that due to its too flexible leg structure the robot tends
to bend into the direction of the lifted foot during the phases where it stands
on one foot. This effect can be minimized, although not completely avoided, by
tilting the robot’s body into the direction of the standing foot before lifting the
leg, as thereby the angle at the hip joint is less acute. The remaining instability
is compensated by the controller.

4.2 Experiments

Figure 4 shows the motion of the robot’s CoM during the tested kick movements.
The diagrams show the y-component of the position of the center of mass relative
to the center of the right foot. The dotted lines illustrate the position as it is set
by the controller and the bold line shows the position as it is measured by the
foot sensors.

In figure 4(a) the movement is done under the assumption that the input
CoM position is the actual CoM position therefore without utilizing the actual
feedback control. As can be seen the CoM is moved over the right foot at first.
After about 5 s the robot starts to lift the left foot. As the robot is no longer
supported by the left foot the right leg bends and the CoM moves to the left.
Accordingly the figure shows a deviation of the measured CoM position to the
left. The deviation is strong enough to make the robot topple over the left side
of its foot and finally fall over.

1 This compensation of the CoM for the moving mass of the kicking leg is already
inherent to the key frame specification if the CoM position is specified instead of the
robot’s coordinate system origin.
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Fig. 4. Kicking motions using the quasi static controller without feedback
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Figure 4(b) demonstrates the results of the movement utilizing the feedback
control. As can be seen the controller reacts to the deviation of the CoM position
by moving the CoM to the right side. So the robot is able to perform the actual
kick move after about 10 s, lower the foot again and move the CoM back. Even
if the disturbing movement itself is to fast to be controlled, see 4.1, the result-
ing disturbance can be leveled out with the help of the quasi-static controller
resulting in a stable motion.

In figure 4(c) the movement resulting from the previous controlled kick is
exactly repeated without the use of the feedback control. But this time an ad-
ditional counterweight of 370 g is attached at the left side of the robot. The
deviation of the CoM position leads again to the fall of the robot. In figure 4(d)
it can be seen that the robot compensates this imbalance caused by the coun-
terweight using the sensor feedback by shifting the whole motion to the right.

The benefit of the proposed integration of sensor feedback becomes clearly
visible. Without explicit knowledge of the deviation the robot is able to adjust
to unforeseen forces acting during the execution The used sensor information
allows an adaptation of the defines key frame motion stabilizing the otherwise
unstable motion.

5 Conclusion

This paper presents a way of combining the classical method of motion design by
key frames with control algorithms for postural stability. Proof of the soundness
is presented in the application to kicking motions for robot soccer. A great
improvement to the robustness could be shown which even enabled the robot to
perform its kick successfully with additional weights attached to it.

While uncontrolled replaying of predefined motions is still common for kicking
in RoboCup leagues involving legged robots, this approach represents a far more
robust and general alternative. Neither do motions need to be adapted for sepa-
rate distinct robots nor do they need redesign in case of hardware wear of small
decalibration of joint motors. The profit of this is obvious in the presented case
and can also be of benefit in other applications involving environment interaction.

Further improvements can be achieved by introducing a model more complex
than the simple quasi-static control of the robot’s center of mass. Besides this,
the next subject of interest is the integration of such motions directly into the
robot’s normal walking. This is a challenge both for motion generation and for
perception accuracy that would enable faster, more fluid and natural motions
and therefore faster robot soccer games.
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Abstract. This article presents the application of a novel observer-
based control system to achieve reactive motion generation for dynamic
biped walking. The proposed approach combines a feedback controller
with an online generated feet pattern to assure a stable gait. Experiments
in a simulated environment as well as on real robots clearly demonstrate
the robustness of the control system. The presented algorithms enable
the robot not only to walk dynamically stable but also to cope with
major internal disturbances like flaws of the robots internal model and
external disturbances like uneven or unstable ground or collisions with
objects or other robots.

1 Introduction

Humanoid robots are believed to have a high potential for future applications
due to the suitability for operation in environments made for humans and due
to higher acceptance by people [1], both of which are needed for service and
entertainment activities. Despite this, present humanoid robots have a substan-
tial lack of mobility. Even basic tasks such as walking on even ground without
an external disturbance are not a trivial challenge. The humanoid shaped form
of a two-legged robot results in a high center of mass (CoM) of its body while
standing upright. As a result the stance of a humanoid robot is quite unstable,
making it likely to tip over. Therefore research on stable biped walking is one
of the central problems in this area at the moment. Gait planning for humanoid
robots is fundamentally different from the path planning for simple robotic arms.
The robots center of mass is in motion all the time while the feet periodically
interact with the ground in an unilateral way, meaning that there are only repul-
sive but no attractive forces between the feet and ground. The movement of the
center of mass cannot be controlled directly, but is governed by its momentum
and the eventual contact forces arising from ground interaction. These have to
be carefully planned in order not to suffer from postural instability.

This paper proposes a control system to achieve reactive motion generation
for dynamic biped walking. After giving a brief overview of research on sta-
bility aspects of legged robots, the walking pattern generation and control is
described. A thorough evaluation is given showing the capability of the system
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to generate stable biped walking even under difficult circumstances. The robust-
ness is presented in experiments testing different problem settings as walking
with inaccuracies and systematic errors in the model, external disturbances and
on uneven or unstable ground.

2 Stability

A robot’s posture is called balanced and its gait is called statically stable, if the
projection of the robot’s center of mass on the ground lies within the convex hull
of the foot support area (the support polygon). This kind of gait however results
in relatively low walking speeds. Similarly natural human gaits are normally not
statically stable. Instead they typically consist of phases in which the projection
of the center of mass leaves the support polygon, but in which the dynamics and
the momentum of the body are used to keep the gait stable. Those gaits are
called dynamically stable.

The concept of the zero moment point (ZMP) is useful for understanding
dynamic stability and also for monitoring and controlling a walking robot [2].
The ZMP is the point on the ground where the tipping moment acting on the
robot, due to gravity and inertia forces, equals zero. The tipping moment is
defined as the component of the moment that is tangential to the supporting
surface, i.e. the ground. The moment’s component perpendicular to the ground
may also cause the robot to rotate, but only in a way to change the robot’s
direction without affecting its stability, and is therefore ignored. For a stable
posture, the ZMP has to be inside the support polygon. In the case when it
leaves the polygon, the vertical reaction force necessary to keep the robot from
tipping over cannot be exerted by the ground any longer, thus causing it to
become instable and fall.

In fact, following Vukobratovic’s classical notation [3], the ZMP is only defined
inside the support polygon. This coincides with the equivalence of this ZMP
definition to the center of pressure (CoP), which naturally is not defined outside
the boundaries of the robot’s foot. If the ZMP is at the support polygon’s edge,
any additional moment would cause the robot to rotate around that edge, i.e. to
tip over. Nevertheless, applying the criteria of zero tipping moment results in a
point outside the support polygon in this case. Such a point has been proposed as
the foot rotation indicator (FRI) point [4] or the fictitious ZMP (FZMP) [3]. In
this so-called fictitious case the distance to the support polygon is an indicator
for the magnitude of the unbalanced moment that causes the instability and
therefore is a useful measure for controlling the gait.

There are different approaches to generating dynamically stable walking mo-
tions for biped robots. One method is the periodical replaying of trajectories for
the joint motions recorded in advance, which are then modified during the walk
according to sensor measurements [5]. This strategy explicitly divides the prob-
lem into subproblems of planning and control. Another method is the realtime
generation of trajectories based on the present state of the kinematic system and
a given goal of the motion, where planning and control are managed in a unified
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system. Implementations of this approach differ in the kinematic models being
used and the way the sensor feedback is handled. One group requires precise
knowledge of the robot’s dynamics, mass distribution and inertias of each link
to generate motion patterns, mainly relying on the accuracy of the model for
motion pattern generation [6,7,8]. A second group uses limited knowledge about
a simplified model (total center of mass, total angular momentum, etc.) and
relies on feedback control to achieve a stable motion [9,10,11]. The model used
for this is often called the inverted pendulum model.

3 Motion Generation

This section describes the generation of walking patterns based on a simple
inverted pendulum model using a sophisticated preview controller to generate
motions resulting in a desired future ZMP movement and to be able to compen-
sate small disturbances or unforeseen forces. The motion generation process can
be seen as stages in a pipeline process, which will be described in section 3.1.

3.1 Generating the Walking Patterns

The general problem of walking can be seen as an appropriate placement of the
feet and a movement of the rest of the body, both of these must satisfy the
condition to keep the overall resulting motion stable. The generation of such
motion patterns can be divided into separate tasks with one depending on the
results of another, therefore forming a pipeline (see figure 1).

The goal of the desired walk is a certain translational and rotational speed
of the robot which might change over time, either smoothly i.e. when the robot
is slowing down while approaching an object or rapidly i.e. when the robot’s
high-level objective changes. The translational and rotational speed vector is
taken as the input of the motion generation pipeline. This speed vector is the
desired speed of the robot, which does not translate to its CoM speed directly
for obvious stability reasons, but merely to its desired average. Thus a path is
specified that the robot intends to follow. The feet of the robot have to be placed
along this path to ensure the correct overall motion of the robot. Alternatively,
in scenarios with uneven ground the feet placement at safe positions must be
prioritized, resulting in an irregular gait dictating different changes of speed.

Pattern
Generator

(vx,v y, )F ootsteps
ZMP

Generation

desired
ZMP

ZMP/IP
Controller

Footpositions
CoM
Position

+

-

measured ZMP

Fig. 1. Pipeline visualization of the walking pattern generation process
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Once the step patterns are set, these define a region for possible ZMP trajec-
tories to result in stable gaits, namely the support polygon at every given time. A
gait can be divided into two phases, a double support phase where both feet are
on the ground and a single support phase where only one foot has contact with
the ground. During each single support phase the ZMP should be positioned at
the center of the ground foot. Consequently in the double support phase the
ZMP has to be shifted from one foot to the other. While these restrictions are
sufficient to specify the stability of a gait, there is some freedom left in the
specification of the exact ZMP trajectory.

The next stage of the process is the generation of a CoM trajectory in which
kinematics result in the desired ZMP trajectory. As can be seen later in fig-
ures 2(c) and 4 it is not sufficient to shift the CoM at the same time as the ZMP.
Instead the CoM has to start moving before the ZMP does. This is realized using
a preview control described in more detail in the following section. Its output is
a CoM trajectory as shown in figure 1.

All trajectories and positions calculated so far are given in a global world
coordinate frame. From the step pattern the feet positions are known, and so is
the position of the center of mass at a given time. If the robot’s CoM relative to
its coordinate frame is known (or assumed to be constant in a simple model), the
difference between these directly provides the foot positions in a robot centered
coordinate frame. Those can subsequently be transformed into leg joint angles
using inverse kinematics.

3.2 Modeling Motion Dynamics

The main problem in the process described in section 3.1 is computing the move-
ment of the robot’s body to achieve a given ZMP trajectory. For this a simplified
model of the robot’s dynamics is used, representing the body by its center of
mass only. In the single support phase of the walk only one foot has contact with
the ground and considering only this contact point and the center of mass, the
resulting motion can be described as an inverted pendulum. Its height can be
changed by contracting or extending the leg, therefore allowing further control
over the CoM trajectory. Restricting the inverted pendulum so that the CoM
only moves along an arbitrary defined plane results in simple linear dynamics
called the 3D Linear Inverted Pendulum Mode (3D-LIPM) [9]. This plane is
given by its normal vector (kx, ky,−1) and its intersection with the z-axis zh.

For walking on an overall flat terrain the constraint plane is horizontal (kx =
ky = 0) even if the ground itself is uneven. The global coordinate frame depicts
the ground as the x-y-plane and the vertical direction as z. Let m be the mass
of the pendulum, g the gravity acceleration and τx and τy the torques around
the x- and y-axes, then the pendulum’s dynamics are given by

ÿ =
g

zh
y − 1

mzh
τx (1)

ẍ =
g

zh
x +

1
mzh

τy. (2)
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Note that even in the case of a sloped constraint plane the same dynamics can
be obtained by applying certain further constraints that are not covered here [9].
According to this model the position (px, py) of the ZMP on the floor can be
easily calculated using

px = − τy

mg
(3)

py =
τx

mg
. (4)

Substituting equations 3 and 4 into 1 and 2 yields the following ZMP equations.

px = x − zh

g
ẍ (5)

py = y − zh

g
ÿ (6)

It can be seen that for a constant height zh of the constraint plane the ZMP
position depends on the position and acceleration of the center of mass on this
plane and the x- and y-components can be addressed separately.

It should be noted for clarification that the ZMP notion of the 3D-LIPM [9]
does not take the limitation of the ZMP to an area inside the support polygon
into account. Using equations 5 and 6 for planning and controlling stable walking
may result in a fictitious ZMP lying outside the support polygon. As mentioned
in section 2, this is an indication of an unbalanced moment which causes insta-
bility. Since the mathematical notation of the 3D-LIPM used in the following
chapters does not involve any distinction based on the support polygon, the
general term ZMP will be used hereafter.

3.3 Controlling the Motion

Movement of the robot’s body to achieve a given ZMP trajectory is thus re-
duced to planning the CoM trajectory for each direction, resulting in two sys-
tems of lesser complexity whose state at any given time is naturally represented
by (x, ẋ, ẍ). The ZMP position p is both the target of the control algorithm
and the measurable output of the system. Equations 5 and 6 suggest that the
state vector (x, ẋ, p) is an equivalent system representation. Choosing this one
incorporates the control target into the system state and significantly simplifies
further derivations of the controller.

As mentioned previously, the ZMP can not be achieved correctly given its
current target value alone, but the CoM needs to start moving prior to the ZMP.
Hence the incorporation of some future course of the ZMP is necessary. Such data
is available since part of the path to follow is already planned, as described in
section 3.1. The following design of a preview controller is described in detail
in [12]. It is based on the control algorithms of [13]. [14] already applied some of
these to the field of biped walking but used different sensor feedback strategies.

A more natural way of using sensors is presented here. Applying elements com-
mon in control theory it is possible to directly incorporate measurements into
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the system using an observer model as described later in this section. The con-
trol algorithm derived here provides the basis for computing a CoM movement
resulting in the desired reference ZMP. Assuming the absence of disturbances
this system would be sufficient for stable walking.

The system’s dynamics can be represented by

d

dt

⎡⎣x
ẋ
p

⎤⎦ =

⎡⎣ 0 1 0
g
zh

0 − g
zh

0 0 0

⎤⎦⎡⎣x
ẋ
p

⎤⎦+

⎡⎣0
0
1

⎤⎦ v (7)

where v = ṗ is the system input to change the ZMP p according to the planned
target ZMP trajectory pref . Discretizing equation 7 with time steps Δt yields

x(k + 1) = A0x(k) + bv(k) (8)
p(k) = cx(k) (9)

where x(k) is the discrete state vector [x ẋ p ]T at time kΔt. Note that A0
describes the system’s behavior according to the simplified model. This may not
necessarily be identical to the real state transition of the actual robot.

The idea of previewable demand, i.e. the ZMP trajectory due to the planned
step pattern, leads to a preview controller [13]. The 3D-LIPM model used to
obtain the system dynamics however is only a very simplified approximation of
the robot and disturbances and also the state vector itself can not be measured
directly in most cases. Therefore it becomes necessary to estimate those from
the system input and the measured sensor data in order for the system to work
properly under realistic conditions, which leads to the introduction of an ob-
server.The details of the derivation of the control system equations can be found
in [12]. The resulting observer for the system is given by equation 10.

x̂(k + 1) = A0x̂(k) − L [psensor(k) − cx̂(k)] + bu(k). (10)

The observer-based controller designed as in equation 11 consists of integral
action on the tracking error, proportional state feedback and preview action
based on the future demand.

u(k) = −GI

k∑
i=0

[
cx̂(i) − pref (i)

]− Gxx̂(k) −
N∑

j=1

Gd(j)pref (k + j) (11)

The gains GI , Gx and Gd are chosen to optimize the performance index J from

J =
∞∑

j=1

{
Qe

[
p(j) − pref (j)

]2
+ ΔxT (k)QxΔx(k) + Rv2(j)

}
(12)

where Δx is the incremental state vector Δx(k) = x(k)−x(k−1). The physical
interpretation of J is to achieve regulation without an excessive rate of change
in the control signal. Both the tracking error and excessive changes in state



Applying Dynamic Walking Control for Biped Robots 75

1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time [s]

y 
[m

]

(a) N = 10

1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time [s]
y 

[m
]

(b) N = 30

1.5 2 2.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time [s]

y 
[m

]

ref ZMP
CoM
calc ZMP

(c) N = 50

Fig. 2. Reference ZMP, calculated ZMP and CoM for different numbers N of the
previewable values

and control are penalized with weights Qe, Qx and R, respectively, so that a
controller optimizing J achieves a smooth regulation of the controlled system.

The effect of the availability of previewable demand is visualized in figure 2.
This issue is directly related to equations 11 and 12 where the infinite horizon

spanned by J is approximated by a finite preview window of size N . In case
of walking, preview windows of the size of a step cycle yield near optimal ap-
proximations without adding additional motion delay to that which is already
inherent in the motion generation due to step pattern planning.

The resulting control algorithm is visualized in figure 3. An intuitive illustra-
tion of this observer-based controller’s performance is given in figure 4, where a
constant error is added to the ZMP measurement for a period of 1.5 s. This
error could be interpreted as an unexpected inclination of the ground or a

Preview Action

Gi b A0 c

L

c

Gx

(1,0,0)T

-

+

--

-

-

-

+

+
pref

Controller

CoM Position psensor

Real Robot

Observer

Fig. 3. Configuration of the control system
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Fig. 4. Performance of the controller under the influence of a constant external distur-
bance resulting in an error in the measured ZMP

constant force pushing the robot to one side. The control system incorporates this
difference and compensates by smoothly adjusting the CoM trajectory, which
consequently swings more to the opposite direction.

4 Evaluation

To demonstrate the benefit of the proposed control system several experiments
are evaluated. The scenarios are designed to represent the most common reasons
of instability during gait execution, namely external disturbances and deviation
from the internal model. External disturbances occur often in the form of dis-
continuities or irregularities of the ground or external forces caused by collisions.
Even with a perfect internal model of the robot, which is nearly impossible to
obtain, divergences between real robot occur due to mechanical wearout or per-
manent external influences. Thus the control algorithm should be capable to
level such systematical differences of its model. A video file of the experiments
can be found on the homepage of the Robotics Research Institute1.

The experiments are conducted utilizing the humanoid robot Nao by Alde-
baran Robotics. Nao has 21 degrees of freedom, a height of 57 cm, weights 4.5kg
and is equipped with a wide range of extero- and proprioceptive sensors including
an accelerometer in its chest. The sensor input and motion output is controlled
by a framework running at 50Hz resulting in discrete time steps Δt of 20ms for
the walking control algorithm. The ZMP is measured using the accelerometer.

The first test underlines the need of real world experiments by comparing the
differences between walking in simulation and with a real robot. The proposed
algorithm is used to generate walking pattern based on the calculated ZMP
trajectory. Tests with the help of the general robotics simulator SimRobot [15]
using a multi-body model of the robot show that the gait is perfectly stable in
1 http://www.it.irf.uni-dortmund.de/IT/Robotics/Resource/Application-of-

Dynamic-Walking-Control.avi
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simulation even without sensor feedback. In comparison this gait is executed on
the real robot without further adaptations. Figure 5 demonstrates the results of
walking straight ahead at speed vx = 50 mm

s with a step duration of tstep = 2.5 s.
As can be seen without sensor control the difference between the reference and
the measured ZMP increases over time and the robot starts swinging at second
four resulting in a fall around second six. The results of performing the same
experiment with feedback control demonstrate the advantage of the proposed
closed-loop system. As can be seen in figure 5 the control algorithm is able to
adjust the movement according to the flaw of the model and thereby leveling the
differences between the ZMPs resulting in a stabilization of the walk. As shown
in figure 6 the robot keeps stable even during omnidirectional walking pattern
containing substantial changes in speed and directions.

Another design target of the closed-loop system is the capability to level out
unforeseen external forces. Hence as an experiment the robot is pushed during
a walk at speed vx = 50 mm

s and a step duration of tstep = 1 s to simulate the
collision with another moving object. Figure 7 illustrates the resulting controller
reaction. The collision occurred around second four as can be clearly noticed

0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

x [m]

y 
[m

]

CoM

Fig. 6. CoM trajectory during omnidirectional walking



78 S. Czarnetzki, S. Kerner, and O. Urbann

1 2 3 4 5 6 7 8
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

y 
[m

]

measured ZMP
CoM
reference ZMP

Fig. 7. Plot of the ZMP and CoM during the push test

(a) Photo of setup. (b) Physical model.

Fig. 8. Setup of the uneven floor test

by the abrupt change in the measured ZMP caused by the sudden change of
acceleration. The resulting shift of the measured ZMP can be observed in the
following second but is compensated by the controller with an adaptation of the
desired CoM trajectory stabilizing the walk.

Walking on uneven ground or slopes leads to disturbances often resulting in
a fall of the robot. Hence the last experiment, shown in figure 8(b) and 8(a), is
designed to simulate these scenarios. Without adaptation the robot is walking
up a slope with a gradient angle of 6◦. The end of the ramp is not fixed to
the block resulting in a rocking movement when walking on top of the edge.
Therefore the experiment tests both the capability to level out the continu-
ous error of the slope and to overcome the floor disturbance caused by the
rocker.

Figure 9(a) illustrates the measured body orientation. Between second four-
teen and fifteen the backward tilt of the robot is disturbed by the tilt of the
ramp but becomes stable again in an upright position afterwards. Figure 9(b)
shows the ZMP in forwards direction corresponding to this experiment. It can be
seen that the robot slips due to the sloped ground shortly after second thirteen
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Fig. 9. Results of the uneven floor test

and swings massively when the rocking starts, but reaches a regular walk again
towards the end.

The results of the experiments clearly demonstrate the benefit of the proposed
sensor feedback control. Without further adaptation to the used hardware or
experimental setup the robot is able to adjust its movement to model deviations
and external disturbances with the help of sensor feedback in most cases that
would clearly result in a fall otherwise.

5 Conclusion

This paper presents a novel approach to biped walking based on the online
generation of foot trajectories. Special focus is given to the online calculation
and control of the CoM movement to achieve the desired ZMP trajectory.

The proposed control system’s performance is verified using the humanoid
robot Nao of Aldebaran Robotics. The approach generates dynamically sta-
ble walking patterns and performs well even under the influence of signifi-
cant external disturbances. Three experimental setups are chosen as test cases.
Each clearly shows the benefit of the observer-based controller for biped
walking.

Further improvements can be achieved by introducing a model more complex
than the 3D-LIPM. Besides this, the next subject of interest is the integration
of different motion patterns other than walking into the control system. These
may include planned object contact with maximized impulse, e.g. shooting a
ball. A challenge both for motion generation and for perception accuracy is to
enable faster and more fluid motions by integrating shooting movements into
the normal step patterns.
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15. Laue, T., Spiess, K., Röfer, T.: SimRobot - A General Physical Robot Simulator
and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Taka-
hashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer,
Heidelberg (2006), http://www.springer.de/

http://www.springer.de/


Modeling Human Decision Making Using
Extended Behavior Networks

Klaus Dorer
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Abstract. In their famous work on prospect theory Kahneman and
Tversky have presented a couple of examples where human decision mak-
ing deviates from rational decision making as defined by decision theory.
This paper describes the use of extended behavior networks to model
human decision making in the sense of prospect theory. We show that
the experimental findings of non-rational decision making described by
Kahneman and Tversky can be reproduced using a slight variation of
extended behavior networks.

1 Introduction

Looking forward to the goal of RoboCup to win against the human world cham-
pion team of soccer in 2050 one could state the question whether the decision
making of the robots should be human like or rational with respect to decision
theory. No matter what the answer to this question is, there should be no doubt
that the robots should be able to model their opponents to understand and pre-
dict their decision making. Since the opponent team will be humans we therefore
have to be able to model human decision making.

In their famous work on prospect theory Kahneman and Tversky [1979] have
shown that human decision making does violate the tenets of decision theory. In
a series of experiments they have shown a couple of deviations to the predictions
of decision theory among those are that humans overestimate low probabilities
and underestimate high probabilities and that subjective utility can differ from
objective utility. Daniel Kahneman was awarded the Nobel prize in economic
sciences in response to this work.

Behavior Networks [Maes, 1989] were introduced as a means to combine re-
active and deliberative decision making using a mechanism of activation spread-
ing to determine the best behavior. With Extended Behavior Networks (EBNs)
[Dorer, 1999a] the mechanism of activation spreading was changed so that acti-
vation is a measure of expected utility of a behavior. In this paper we show that
the mechanism of activation spreading in EBNs only needs slight modifications
to reproduce human decision making reported by prospect theory.

Section 2 presents a number of experiments described by Kahneman and Tver-
sky for their work on prospect theory. Section 3 introduces EBNs and the mech-
anism of activation spreading. Section 4 describes how EBNs can be used to

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 81–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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model human decision making and reports on experimental results achieved ap-
plying EBNs to the same experiments conducted by Kahneman and Tversky
with humans. Section 5 concludes the paper indicating possible future work.

2 Prospect Theory

Decision theory is based on the principle of maximum expected utility. If an
agent is faced with a decision between actions (prospects) of uncertain outcome
it should choose the prospect that has the highest expected utility. More formal:
the expected utility of a prospect P (u1, p1; . . . un, pn) is calculated as

euP =
∑

i=1...n

pi × ui (1)

where pi is the probability of outcome ui and
∑

pi = 1. Choosing the prospect
with highest expected utility will maximize the agent’s utility in the long term
and is therefore considered as rational.

On the other side experiments with humans show that human decision making
deviates from the above. Kahneman and Tversky [1979], for example, describe
a series of experiments that led to the formulation of prospect theory, a theory
of human decision making under risk. In this section we describe a selection of
their experiments that are used in section 4 to be repeated by extended behavior
networks.

2.1 Weighting Function

In their first experiment students had the choice between winning 2500 Israeli
pounds1 with a probability of 0.33, winning 2400 with probability 0.66 and
nothing with probability 0.01 (A) compared to winning 2400 for sure (B). The
expected utility of decision theory for A and B are euA = 0.33 × 2500 + 0.66 ×
2400+0.01× 0 = 2409 and euB = 1.0× 2400 = 2400. So a rational agent should
prefer A over B. However, in the experiment 82% (significant*) of the students
chose B, the certain outcome.

The second experiment repeats the first but eliminates a chance of winning
2400 with probability 0.66 from both prospects. Table 2 shows the results of the
experiments. Now with both prospects being uncertain the majority of students
prefer C over D. 62% of the students took combination B and C.

This and more experiments showed that humans overestimate low proba-
bilities (except the impossible outcome) and underestimate high probabilities
(except the certain outcome). Prospect theory therefore introduces a non-linear
weighting function mapping probabilities to decision weights. Figure 1 shows a
qualitative sketch of the weighting function [Kahnemann and Tversky, 1979].

1 The average monthly income of a family was 3000 Israeli pounds at that time.
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Table 1. Problem 1: One uncertain one certain prospect

Name Prospect Expected Utility Human choices

A (2500,0.33; 2400,0.66; 0,0.01) 2409 18

B (2400, 1.0) 2400 82*

Table 2. Problem 2: Two uncertain prospects

Name Prospect Expected Utility Human choices

C (2500,0.33; 0,0.67) 825 83*

D (2400, 0.34; 0,0.66) 816 17

Fig. 1. A hypothetical weighting function as proposed by Kahneman and Tversky

2.2 Value Function

In another experiment Tversky and Kahneman [1981] have shown that students
preferred a certain win of 240$ (A) compared to a 25% chance of winning 1000$
(B) despite the fact that expected utility of (A) is less. In the same experiment
a 75% chance for a loss of 1000$ (D) was prefered over a certain loss of 750$ (C)
despite the fact that both have the same expected utility (see table 3). 73% of the
students chose the combination of (A) and (C), 3% chose the combination (B)
and (D). In another experiment students had the choice between a 25% chance of
winning 240$ and a 75% chance of loosing 760$ (E) or a 25% chance of winning
250$ and a 75% chance of loosing 750$ (F). Not surprisingly all students choose
option (F) (see table 4).

This experiment is particularly interesting since the combination (A) and (C)
chosen by most students in the first experiment is equivalent with respect to
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Table 3. Problem 3: decision under gains and losses

Name Prospect Expected Utility Human choices

A (240,1.0) 240 84

B (1000, 0.25; 0,0.75) 250 16

C (-750, 1.0) -750 13

D (-1000,0.75; 0,0.25) -750 87

Table 4. Problem 4: intransitive decision with respect to problem 3

Name Prospect Expected Utility Human choices

E (240,0.25; -760,0.75) -510 0

F (250,0.25; -750,0.75) -500 100

decision theory to option (E) of the second experiment while the combination
(B) and (D) is equivalent to option (F). So decision making of the majority was
intransitive.

Prospect theory suggests that gains and losses are not linearly mapped to the
subjective value of human decision makers. The value function is rather “gen-
erally concave for gains and commonly convex for losses and steeper for losses
than for gains” [Kahnemann and Tversky, 1979]. A qualitative value function
with this properties is displayed in figure 2.

Fig. 2. A hypothetical value function as proposed by Kahneman and Tversky
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3 Extended Behavior Networks

Behavior Networks [Maes, 1989] use a mechanism of activation spreading to
decide between a couple of executable behaviors combining reactive and de-
liberative decision making. Extended Behavior Networks (EBNs) [Dorer, 2004;
Dorer, 1999a] changed the mechanism of activation spreading so that activa-
tion is a measure of expected utility of a behavior according to decision theory.
They have been successfully used, for example, as decision mechanism for the
magmaFreiburg team scoring 2nd in RoboCup 1999 simulation league competi-
tion [Dorer, 1999b]. In this section we give a short overview of the relevant ac-
tivation spreading mechanism in EBNs before we describe how this mechanism
needs to be changed to model human decision making according to prospect
theory.

3.1 Network Definition

Extended behavior networks consist of goals, resource nodes and so called com-
petence modules that are linked into a network.

Definition 1. A goal consists of a tuple (GCon, ι, RCon) with

– GCon the goal condition (conjunction of propositions, i.e. possibly negated
atoms), the situation in which the goal is satisfied,

– ι ∈ [0..1] the (static) importance of the goal,
– RCon the relevance condition (conjunction and disjunction of propositions),

i.e. the situation-dependent (dynamic) importance of the goal.

Definition 2. A resource node is a tuple (res, g, θRes) with

– res ∈ R the resource represented by the node,
– g ∈ IR+ the amount of bound resource units, i.e. units that are bound by a

currently executing competence module and
– θRes ∈ ]0..θ] the resource specific activation threshold (where θ is the global

activation threshold of the network).

Definition 3. A competence module k consists of a tuple (Pre, b, Post, Res,
a) with

– Pre the precondition and e = τP (Pre, s) the executability of the compe-
tence module in situation s where τP (Pre, s) is the (fuzzy) truth value of the
precondition in situation s;

– b the behavior that is performed once the module is selected for execution;
– Post a set of tuples (Eff, ex), where Eff is an expected effect (a proposition)

and ex = P (Eff |Pre) is the probability of Eff getting true after execution
of behavior b,

– a the activation ∈ IR, representing a notion of the expected utility of the
behavior (see below).



86 K. Dorer

– Res is a set of resources res ∈ Rused by behavior b. τU (k, res, s) is the situation-
dependent amount of resource units expected to be used by behavior b.

Definition 4. An extended behavior network EBN consists of a tuple (G,M,U ,
Π), where G is a set of goals, M a set of competence modules, U a set of resource
nodes and Π is a set of parameters that control activation spreading (see below)

– γ ∈ [0..1[ controls the influence of activation of modules,
– δ ∈ [0..1[ controls the influence of inhibition of modules,
– β ∈ [0..1[ the inertia of activation across activation cycles,
– θ ∈ [0..â] the activation threshold that a module has to exceed to be selected

for execution, with â the upper bound for a module’s activation,
– Δθ ∈]0..θ] the threshold decay.

3.2 Activation Spreading

The decision of which behavior to adopt should be based on the the expected
utility of executing such behavior. In EBNs, the expected utility of a behavior
is approximated by a mechanism called activation spreading. The competence
modules are connected to the goals and other competence modules of the net-
work. Across those links activation is spread from the goals to the competence
modules and among competence modules.

A competence module receives activation directly from a goal if the module
has an effect that is equal to a proposition of the goal condition of that goal.

at ′
kgi

= γ · u(ιgi , r
t
gi

) · νγ(pj) · exj , (2)

u(ιgi , r
t
gi

) is the utility function mapping importance ιgi and relevance rt
gi

to a
utility value. In section 4 we will show how this utility function has to be changed
to reproduce human decision making described in section 2.2. νγ determines how
activation is distributed to multiple propositions of the goal condition. exj is
the probability of the corresponding effect to come true. In section 4 we will
introduce a weighting function for this probability corresponding to section 2.1.
The amount of activation depends on the probability of an effect to come true
and the utility of the proposition in the goal condition as described in equation 1.

A competence module is inhibited by a goal if it has an effect proposition that
is equal to a proposition of the goal condition and one of the two propositions is
negated. Inhibition represents negative expected utility and is used to avoid the
execution of behaviors that would lead to undesired effects.

at ′′
kgi

= −δ · u(ιgi , r
t
gi

) · νδ(pj) · exj , (3)

A competence module x is linked to another competence module y if x has an
effect that is equal to a proposition of the precondition of y. y is called a successor
module of x. Module x gets activation from the successor the amount of which
depends on the utility of the precondition and the probability of the effect to
come true. The utility of propositions that are not part of a goal condition is
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not available directly. It can be determined indirectly using the activation of the
containing module and the truth value of the proposition. In this way, unsatisfied
preconditions get implicit sub-goals of the network. Their utility directly depends
on the utility of the competence module itself.

Finally a competence module x is linked to another competence module y if
it has an effect that is equal to a proposition of the precondition of y and one
of the two propositions is negated. y is called a conflictor of x, because it has
an effect that destroys an already satisfied precondition of x. Again, a conflictor
link from x to y is inhibiting (negative activation) to avoid undesired effects.

The activation of a module k at time t is then the sum of all incoming acti-
vation and the previous activation of the module decayed by β (defined in the
set of parameters Π):

at
k = βat−1

k +
∑

i

at
kgi

, (4)

where at
kgi

is the maximal activation module k receives at time t from goal gi

to which the module is linked directly or indirectly across incoming successor
and conflictor links of other competence modules. For more details on activation
spreading see [Dorer, 1999a].

Behavior selection is done locally in each competence module in a cycle con-
taining the following steps. The details of behavior selection are not relevant in
this context.

1. Calculate the activation a of the module.
2. Calculate the executability e of the module.
3. Calculate the execution-value h(a, e) as the product of both.
4. Choose those competence modules for execution that have an execution-

value above that of each resource node linked to. For each resource there
have to be enough units available.

5. Reduce θ of each resource node not used Δθ and go to 1.

4 EBNs and Prospect Theory

In this section we show how the calculation of activation in EBNs has to be
changed to correspond to findings reported in section 2. Experiments with both
versions of EBNs reproduce the discrepancy between decision theoretic and hu-
man decision making reported in that section.

4.1 Theory

As described in section 2, prospect theory introduces non-linear value and
weighting functions to explain results of experiments on human decision making.

The very same can be done for EBNs. The already existing value function
u (see equation 2, 3) needs to be changed according to prospect theory. The
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utility function was chosen to correspond to the measure of risk taking defined
by Arrow and Pratt [Eisenführ and Weber, 1999]:

r(x) =
u′′(x)
u′(x)

(5)

Using US-American tax data, Friend and Blume [1975] showed that investors
exhibited decreasing absolute and constant relative risk taking behavior x · r(x).
A utility function

u(x) =
{

x2ρ : x ≥ 0
−x2ρ : x < 0 (6)

corresponds to this observation if x is a normed value and ρ ∈]0..1] is used as
risk parameter. Using ρ = 1

2 the utility function is linear and corresponds to
decision theory exhibiting risk neutral behavior. ρ < 1

2 corresponds to a risk-
aversive behavior in case of gains (x ≥ 0) and risk-taking behavior in case of
losses (x < 0) as was observed in section 2. For ρ > 1

2 it is vice versa.
A weighting function was not envisaged in original EBNs, but can easily be

introduced. In equations 2 and 3 the probability exj is replaced with π(exj)
where the weighting function π(x) is defined as follows:

π(x) =

⎧⎨⎩
0 : x = 0
1 : x = 1

ex−1 − 1
4 : 0 < x < 1

(7)

This weighting function shows the properties described in section 2.1. For the
impossible (x = 0) and certain (x = 1) outcome weighting function and proba-
bility match (π(x) = x). Low probabilities are overestimated (π(x) > x) while
high probabilities are underestimated (π(x) < x).

The simplicity with which EBNs can be adjusted to model human decision
making and prospect theory is also underlined by the amount of code changes
necessary for implementation. Changing the existing value function required
adding 4 lines of code. Adding the weighting function required changes in 4 lines
of code (the calculation of activation for each type of connection) and adding
another 6 lines of code.

4.2 Experiments

The changes above have been applied to the problems described in section 2.
In the following figures, the upper level nodes of the networks are the goals
with corresponding value. The lower level nodes are the competence modules
representing the alternatives to choose from. The set of connections from a com-
petence module represent the prospects with corresponding probabilities. The
parameters for all the networks were chosen in order to have activation values
matching expected utility of decision theory. As values we used γ = 1.0, δ = 1.02

2 A value of 1.0 for γ and δ is outside the definition area that guarantees convergence
of activation. In our case this is no problem since no activation spreading between
competence modules is done
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Fig. 3. Decision Theoretic EBN for problem 1 (left) and problem 2 (right) of section 2

Fig. 4. EBN for problem 1 (left) and problem 2 (right) of section 2

Fig. 5. EBN for problem 3 and problem 4 using decision theoretic activation spreading
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Fig. 6. EBN for problem 3 and 4 using activation spreading based on prospect theory

and β = 0.0. In the prospect theoretic cases we used as risk parameter
ρ = 0.4.

Figure 3 shows the results of running an original EBN with decision theoretic
activation calculation on problem 1 and problem 2. The activation of the modules
correspond to the expected utility of decision theory. The network prefers a over
b and c over d accordingly.

Figure 4 shows the results of running an EBN with new value and weighting
function on the same problems. Now the network prefers b over a and c over d
as the majority of students did.

In the same way, decision theoretic EBNs and EBNs according to prospect
theory have been applied to problems 3 and 4. Figure 5 shows the results of
an EBN with decision theoretic activation calculation. Again the activation of
the modules correspond to the expected utility of decision theory. The network
prefers b over a, is indifferent with respect to c and d and prefers f over e.

Figure 6 shows the results of an EBN according to prospect theory on the
same problems. Here the network prefers a over b and d over c as the majority
of students did. Also it prefers f over e showing the same intransitive decision
taken by a significant amount of students.

5 Discussion and Future Work

In this paper we showed that EBNs can be used to reproduce human decision
making deviating from rational decision making with respect to decision theory.
However, the experiments of Kahneman and Tversky required only relatively
small EBNs and no activation spreading between competence modules. Future
work should investigate if the results can be used for bigger EBNs using acti-
vation spreading. The RoboCup domain is particularly interesting since EBNs
have already been successfully applied to it.

The next steps should then be:

1. Play a number of soccer games against agents of an opponent team using
EBNs based on prospect theory for decision making. This is already possible
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and first results indicate that such a team shows different behavior. Investi-
gate if and how the first team of agents can improve their performance by
modeling their opponents using EBNs based on prospect theory compared
to a team of agents using EBNs for opponent modeling based on decision
theory.

2. Replace the opponent team by a real soccer team and see if it shows improved
performance when switching between EBNs using decision theory or prospect
theory. If step 1 is successful then the results of this paper indicate that also
this step should be.
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Simulation League, pp. 79–83. Linköping University Electronic Press, Stockholm
(1999)

[Dorer, 2004] Dorer, K.: Extended behavior networks for behavior selection in dynamic
and continuous domains. In: Visser, U., Burkhard, H.-D., Doherty, P., Lakemeyer,
G. (eds.) Proceedings of the ECAI workshop Agents in dynamic domains, ECAI,
Valenzia (2004)
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Abstract. Motion synthesis for humanoid robot behaviours is made
difficult by the combination of task space, joint space and kinodynamic
constraints that define realisability. Solving these problems by general
purpose methods such as sampling based motion planning has involved
significant computational complexity, and has also required specialised
heuristics to handle constraints. In this paper we propose an approach
to incorporate specifications and constraints as a bias in the exploration
process of such planning algorithms. We present a general approach to
solving this problem wherein a subspace, of the configuration space and
consisting of poses involved in a specific task, is identified in the form of
a nonlinear manifold, which is in turn used to focus the exploration of a
sampling based motion planning algorithm. This allows us to solve the
motion planning problem so that we synthesize previously unseen paths
for novel goals in a way that is strongly biased by known good or feasible
paths, e.g., from human demonstration. We demonstrate this result with
a simulated humanoid robot performing a number of bipedal tasks.

1 Introduction

One of the most significant recent trends in robotics is the push towards ro-
bust autonomy with complex robots such as humanoids. In principle, humanoid
robots and other related architectures are highly versatile and capable of per-
forming an unprecedented variety of tasks in applications ranging from service
at home to rescue in rugged terrains. However, due to the inherent complexity
of these systems, robotics researchers have struggled to realise this promise of
robust and flexible operation in a multitude of environments. From the point
of view of motion synthesis, i.e., the generation of feasible trajectories for all
the joints of a robot given a family of task level goals such as, say, foot place-
ment points, one of the big difficulties has been that of reconciling the need for
efficient exploration of all possible ways to perform a family of tasks with the
need for understanding of the intrinsic constraints that define realisability of the

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 92–103, 2010.
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Fig. 1. Left: Schematic representation of a low-dimensional manifold as used in our
algorithm. Combining an RRT planner with manifold learning focuses random sam-
pling to a task relevant subspace. An RRT is grown by searching this manifold M, a
nonlinear subspace of the configuration space. A, B and C: Taking a step with the
humanoid is a process of following a path connecting configuration A (green) with con-
figuration B (blue). The point C (red) represents a configuration that is not reached in
any realisation of the task. Furthermore task specific geodesic distances can be com-
puted, e.g. distance (dotted line) between x and x′ and samples (white) lying close
to the manifold can be projected onto it (black). The geodesic distance is used to
calculate nearest neighbours and step sizes while projection guides sampling onto the
task-relevant subspace.

task. Machine learning methods are efficient in capturing intrinsic task-specific
constrains within restricted domains, i.e., focussing on properly interpolating
between observed examples, while sampling-based motion planning methods are
more focussed towards large-scale exploration of the global structure of config-
uration spaces. In the absence of specialised knowledge of task constraints, this
can involve significant computational complexity.

In fact there are a number of tasks, e.g., locomotion in RoboCup domain where
it is possible to get some human demonstration data but it is hard to explicitly
characterize the implicit constraints that define the task. With this in mind,
in this paper, we present an approach to motion synthesis that brings together
two related but distinct algorithmic threads: sampling-based motion planning
and manifold learning. We begin with a small set of example trajectories that
are representative of the intrinsic constraints that define a task, e.g., bipedal
walking. These trajectories are really just samples drawn from a set of possible
trajectories that define a sub-manifold in the configuration space of the robot -
indirectly defined by task space, joint space and kinodynamic constraints. We use
a manifold learning algorithm to approximate this sub-manifold. In particular,
our construction enables us to specify projections onto the manifold and also
to compute geodesics. Then, as the robot is presented with different goals that
appear in the course of its operation, we use a sampling based motion planning
algorithm – Rapidly-exploring Random Trees (RRT) [1] – to synthesise novel
trajectories that are restricted to lie on this sub-manifold.

A primary benefit of focussing exploration in this way is that it enables us
to bring into the planning process constraints that are only known in terms of
observed data from known good behaviours (i.e., not explicitly modelled). This
makes our approach a data–driven one, wherein the constraint is inferred from
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observed data and used in the planning process in the form of a sub–manifold
onto which exploration is restricted. The learned sub-manifold provides a basis
for higher level deliberation in a layered architecture. So, in addition to com-
putational savings arising from focussed search, the learned model serves as an
abstraction that succinctly encodes the variety of ways in which the underlying
task may be performed - enabling different motion synthesis strategies.

The main contribution of this paper is the manifold-RRT algorithm, a novel
extension to the RRT, which incorporates the focussed sampling idea mentioned
above through a data-driven manifold learning algorithm. This enables us to
synthesise high quality trajectories for bipedal robotic tasks such that the ex-
ploration is focussed to the neighbourhood of demonstrated behaviours. We first
provide an overview of the motion planning and manifold learning algorithms as
they relate to this work. Then, we describe the mRRT algorithm which combines
the benefits of these two approaches. We demonstrate the applicability of this
idea through experimental results with a simulated version of the KHR-2HV
humanoid robot. Finally, we conclude with a brief discussion of how this specific
result may be applied in more general settings involving humanoid and other
robot behaviours.

2 Related Work

In the context of biological behaviours, it has been argued [2] and observed
[2,3] that the curse of dimensionality is best overcome by utilising synergies and
coordination strategies that enforce a restriction of the synthesised motions to
low-dimensional spaces. Robotics [4,5,6] and graphics [7] researchers have utilised
this fact to devise efficient motion synthesis strategies. Our interest is in incor-
porating this feature directly into sampling based motion planning. Some recent
work [8,9,10] comes close to this issue by considering how task space constraints,
e.g., end-effector constraints, can be used to structure search in configuration
space with local Jacobian mappings. In other related work, e.g. references [11,12],
the goal is to edit a statically stable trajectory, discovered by a sampling based
motion planner, in a post-processing step to make the resulting trajectory dy-
namically realisable. However, the low-dimensional structure of the task is not
directly leveraged in on-line planning. Computer animation researchers have ar-
rived at closely related insights in developing structures such as motion-motif
graphs [13] which try to abstract families of related trajectories into symbolic
nodes so that on-line search is made efficient. However, in that work, the issue
of task constraints is not given as much importance as in robotics and the focus
is really on efficiently compressing a motion capture database.

3 Background

3.1 Rapidly Exploring Random Trees

Sampling-based motion planning algorithms are based on the idea of approxi-
mating the free portion of the configuration space by a suitable random structure
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that enables efficient computation and fast exploration. The RRT [14] is a re-
markably simple yet effective algorithm for planning a path between two points
in configuration space.

In the algorithm, one adopts a simple set characterisation of the configuration
space, which is the union of the free space, Qfree and the obstacle space Qobs.
Sampled configurations, q, are drawn from Qfull, Qfull = Qfree ∪ Qobs. Qfull

can be the configuration space or the phase space for the system, or even just
any composition of state variables within q ∈ RD, D being the dimensionality
of the problem space.

We root a tree, T , at the given starting point, qinit and grow it by iterating the
following process. Pick a random point qrand ∈ Qfull and calculate its distance
from each point already in T . Select the closest point, qnear , from T and grow the
tree toward qrand by a step size Δx. Then evaluate if the resulting configuration
qnew = qnear + Δxqrand

belongs to Qfree or Qobs. If the former is true qnew is
added to T , else the sample is discarded. The procedure is repeated until the goal
configuration qgoal is reached, within some tolerance or number of iterations. The
shortest path is then computed on T using a tree search algorithm. Algorithm
2 includes these core RRT (cRRT1) steps and is augmented with the LSML
procedure, to be described.

RRTs quickly branch into unexplored regions of the space and when such
regions become small the algorithm begins to fill in gaps with increasing reso-
lution. This ensures that the planner is probabilistically complete, thus it will
find a path if one exists as the number of samples grows to infinity. However,
when considering complex problems involving humanoids, many finer points need
consideration, including convergence to the goal, stability and realisability con-
strains, space coverage and resolution. For example, as a rule of thumb, in spaces
with D ≥ 8 convergence is typically slow. It has been shown that including a
bias favouring the goal greatly increases the convergence speed as it steers the
exploration [1].

In general, success of RRTs depends on the metric that is defined over the
space to be explored. Traditionally a metric of the form:

d(q, q′) =
n∑

i=1

wi ‖qi − q′i‖ ,

is used where the weights wi denote the importance of each Degree of Freedom
(DoF). These weights are often empirically chosen based on trial and error but
as the dimensionality grows, and in nonlinear systems, this becomes difficult
from intuition alone, so, there is a need for other ways to arrive such metrics.
We argue that learning such a metric in a data-driven fashion is a desirable and
scalable approach.

The second, related, issue that determines success of RRT-based planning is
coverage. Random sampling in high dimensions can be excessively wasteful when
the underlying task has special structure. The key issue is that sampling a high

1 We term cRRT the classic RRT algorithm as described in [1].
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Algorithm 1. Learn Manifold
1: Lsml(tr data, d)
2: Input: kinematic task-relevant data tr data, dimensionality of manifold d
3: Output: manifold M
4: NN ← NN GRAPH(tr data)
5: θ ← OPTIMISE PARAMETERS(tr data,NN) {Model Parameters}
6: M ← MINIMISE MODEL ERROR(θ) {Fit the manifold}
7: Return M

dimensional space densely enough is computationally infeasible. Knowing that
many interesting robotic behaviours are restricted to low-dimensional subspaces
[15,16,2,4,17], due to a variety of reasons including stability and energy con-
straints, joint limits and self-collision constraints, it is desirable to leverage this
to achieve better coverage where it matters.

3.2 Manifold Learning

The machine learning literature includes many examples of dimensionality re-
duction methods used to abstract and/or make problem spaces manageable
[18,19,16]. One of the big benefits of these methods is that they are data-driven
and can be used in a scalable way in novel domains.

In the usual formulation, manifold learning is about finding an embedding or
‘unrolling’ of a nonlinear manifold onto a lower dimensional space while preserv-
ing metric properties such as inter-point distances. Popular examples include
MDS [20], LLE [21] and ISOMAP [22]. However, much of this work has been
focused on summarisation, visualisation or analysis that explains some aspect
of the observed data. Instead, we are more interested in methods that provide
a direct representation of a nonlinear subspace in a way that enables standard
geometric operations needed in motion planning. Such methods should work
with demonstrated motions and provide good interpolation and extrapolation
on the learnt manifold. For this, we choose a recently developed method – Lo-
cally Smooth Manifold Learning [23,24]. LSML explicitly focuses on generalising
to unseen portions of the manifold, which is crucial for use with an exploration
algorithm. The learnt manifold can be used to compute geodesic distances, to
find projections of points on the manifold and to generate novel sample points.
A detailed description of LSML, from [23], follows.

LSML. Given that our D-dimensional data lies on a locally smooth d-
dimensional manifold, where d < D, there exists a continuous bijective map-
ping M that converts low dimensional points, y ∈ Rd, to points, x ∈ RD, in the
original high dimensional space. The goal is to learn a warping function W that
can take a point on the manifold and compute its neighbouring points on the
manifold, capturing the modes of variation of the data. Thus we can approxi-
mate W by M locally by defining W (x, ε) = M(y + ε) where y = M−1(x) and
ε ∈ Rd. The first order approximation of the above is W (x, ε) ≈ x+H(x)ε where
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each column H.k of H(x) is the partial derivative of M with respect to yk, i.e.
H.k(x) = ∂/∂ykM(y), valid given ε is small enough.

The objective then is to learn the unknown parameterised function Hθ :
RD → RD×d, parameterised by a variable θ (e.g. parameters of an RBF-linear
model). For that we first calculate the set of nearest neighbours N i, for each
point xi of the training data. This way, if xj is a neighbour of xi, then there
exists an unknown εij such that W (xi, εij) = xj , or to a good approximation
Hθ(x̄ij)εij ≈ Δi

.j , where Δi
.j can be regarded as the centred estimate of the

directional derivative at x̄ij .
To solve for Hθ we define the error:

err(θ) = min{εij}
∑

i,j∈Ni

∥∥Hθ(x̄ij)εij − Δi
.j

∥∥2
2
,

and minimise for θ with the addition of a regularisation term:

λ
∑∥∥εij

∥∥2
2 + λ

∑∥∥∥Hθ(x̄ij) −Hθ(x̄ij′ )
∥∥∥2

F
,

where x̄ij and x̄ij′ are two neighboring locations, εij and λ are regularisation
terms that enforce the smoothness of the mapping. To solve this, a radial basis
function(RBF)-based linear parametrisation is used, along with an alternating
minimisation procedure (with random restarts to avoid local minima). Pseu-
docode for the method is available in Algorithm 1.

Projection. The projection of a point x on a learnt manifold M cannot be
computed in closed form. Instead a gradient descent approach is utilised in find-
ing a new point x′ on M that minimises the distance ‖x − x′‖2

2. Since Hθ is
defined over the whole RD we calculate the orthonormalised tangent space at
x′, H ′ ≡ orth(Hθ(x′)), and H ′H ′T the corresponding projection matrix. We fol-
low the gradient to the local minima on the manifold, using the update rule for
x′: x′ ← x′ + αH ′H ′T (x − x′), with α being the step size. To find the closest
projection we initially set x′ to be the nearest point in the training data.

Geodesic distance. To compute the geodesic distance between two points, x
and x′, on a manifold we use an active contour model, also known as a snake
[25]. A snake defines a discretised path between x and x′ and its length is being
minimised by gradient descent. The error reflecting the length of the path is given
by: errlen(χ) =

∑m
i=2

∥∥χi − χi−1
∥∥2

2, where the χ’s are the linearly interpolated
-manifold respecting- points between the fixed start and end points. The update
rule for each χi is very similar to the update rule used for projection.

4 The Manifold-RRT Algorithm

Our algorithm is a variant of the conventional RRT, augmented with the mani-
fold learning operation (Algorithm 1). This hybrid procedure is described in Al-
gorithm 2. We use the learnt manifold, M , to compute distances between points
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Algorithm 2. Manifold Path Planning
1: mRrt(qinit, qgoal, M)
2: Input: start point qinit, goal point qgoal, learnt manifold M
3: Output: path in configuration space p
4: T .add(qinit) {Initialize tree T}
5: for i = 0 to k do
6: qrand ← RANDOM POINT
7: qproj ← PROJECT(qrand, M)
8: qnear ← GEODESIC D(qproj, T , M)
9: qnew ← STEP(qnear , qproj , dx) {Construct Snake}

10: valid ← EVALUATE(qnew)
11: if valid == true then
12: T .add(qnew)
13: dist ← GEODESIC D(qnew , qgoal, M)
14: if dist ≤ tolerance then
15: break
16: end if
17: end if
18: end for
19: p ← SHORTEST PATH(T .first,T .last)
20: Return p

in configuration space. The metric is the geodesic distance directly learnt from
the training data. We utilise the geodesic distance to evaluate nearest neighbour
relations and find qnear . This is used to decide which node of the tree will be
subsequently grown. Moreover we use the learnt manifold to project uniform
random samples in configuration space, qrand, onto the manifold - focusing the
planner to explore a task-relevant subspace.

Growing the tree T involves this projection, qproj , of the random sample and
the computation of a snake (Section 3.2) from the nearest neighbour on the
graph to the new point, qnew . The interpolated points on the manifold that
compose the snake are then examined and the geodesic distance, dist, from the
starting point is computed. When the geodesic distance reaches the desired step
size dx we set the via-point as the end of the step and evaluate the resulting
path in simulation.

Next, the geodesic distance from the new vertex to the goal-point is computed.
If the distance is lower than a tolerance threshold, the exploration stops. A
shortest path from the start-point to the last vertex added is computed using a
standard tree search algorithm. The resulting path, p, is the motion plan.

5 Experimental Setup

We present experiments with a simulated humanoid robot, KHR-2HV (Figure
2). This involves no explicit analytic model of the humanoid robot dynamics.
Instead, we treat the simulated robot as an incrementally evaluable black-box.
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Fig. 2. The KHR-2HV Humanoid robot and the corresponding 17 degrees of freedom

So, although we present the results from simulation, the procedure can be iden-
tically applied to a physical robot as well. In particular, even though we search
a region in configuration space, the intrinsic dynamics of the nonlinear high di-
mensional system are taken into consideration implicitly (of course, subject to
the restriction of what is expressible in the configuration space).

Our simulation is in Webots [26], a commercial physically realistic modelling
and simulation ODE-based environment. In Webots we use an accurate model
of the Kondo KHR-2HV humanoid robot, where motion is performed using P-
controllers that closely simulate the characteristics of the real robot servos. A
controller has been implemented in C that handles the communication between
Webots and Matlab and exposes the full functionality of the robot model. Both
cRRT and mRRT algorithms are implemented in Matlab and communicate di-
rectly with the simulator for the evaluation of configurations. LSML is imple-
mented in Matlab, using Piotr Dollar’s LSML code 2.

5.1 Task

We have experimented with a number of bipedal tasks. However, we include
nothing in our experiment that is specific to these particular tasks, thus the
same procedure is applicable to other bipedal tasks as well. We compare the
classical RRT and mRRT on the same tasks of forward and backward stepping
and kicking. For the purposes of planning, we consider all the leg and hip DoFs
of the humanoid, resulting in a 10-dimensional configuration space.

We begin with a single example – a hand-crafted trajectory, from stance to
double support for stepping and to midair reach for kicking. We sample the
training data in simulation from the KHR-2HV humanoid and we use a 5 mil-
lisecond sampling rate that is equal to the physical simulation time step. The
resulting motions are 116, 98 and 96 points long for step, kick and backstep
2 Available at: http://vision.ucsd.edu/∼pdollar/
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accordingly. The start and end points are chosen equally as the initial and goal
points of both compared algorithms. In order to add variability to the learning
step of mRRT we further use 2 perturbed instances of the previous motions.
These trajectories are generated by random normal sampling in the vicinity of
the training data and subsequent stability evaluation in simulation. Furthermore
the sequential nature of the training data ensures that the learnt sub–space is a
single manifold and that is not disconnected.

5.2 Evaluation of Samples

In both cases, new samples are evaluated in simulation. It is worth noting that
we do not have an explicit model of the robot’s kinematics or dynamics. So,
samples are evaluated in a dynamic fashion that ensures their suitability. Both
in cRRT and mRRT, the nearest neighbour of every new sample is computed
on each iteration of the exploration cycle. The humanoid’s servos are set at
the appropriate positions and its global position and rotation is set accordingly.
The robot is then commanded to perform the motion that reaches the new
configuration point according to the servos’ P-controllers. We utilise feedback
from the gyroscope and the accelerometers to evaluate the stability and stance.
Furthermore we employ two foot force sensors to distinguish between single and
double support configurations.

5.3 Other Parameters

We have used the average geodesic distance between data points in the training
set to set the step length in both algorithms. Such a choice is well suited to
the task at hand and was made for comparability in evaluation. Note that this
choice greatly favours cRRT as the metric used is now ‘informed ’ in a systematic
manner, in contrast to the often ad-hoc RRT setting. We have set a bias of
0.1 towards the goal point in order to boost convergence. The default LSML
parameterisation has been used with no effort at special optimisation as errors
have been adequately small. The actual time for learning a manifold depends on
the amount of training data and for our experiments required less than a minute
in all cases.

6 Results

We compare the performance of cRRT and mRRT with a number of different
metrics. Each trial has been repeated 10 times for both algorithms and all re-
ported results are averaged over the number of trials. Examples of a resulting
paths discovered by mRRT are depicted in Figure 3.

The evaluation metrics are quite intuitive. In particular, we note the following.
Average path length corresponds to the number of points that are traversed
from the initial configuration in order to reach the goal configuration. Number
of samples denote the total explorative samples needed until the goal is reached.
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Fig. 3. Paths discovered by mRRT for left step forward (top row), left step backward
(middle row) and left leg kick (bottom row)

Table 1. Results averaged over 10 trials for step forward, kick and step backward

Task step kick backstep

cRRT mRRT cRRT mRRT cRRT mRRT

Average path length 40.9 38 52.5 49.4 47.2 37.5
Average number of samples 268.63 199.2 291 249.3 293.4 189.8

Average tree size 127.7 127 140.3 137.7 120.7 108.4
Average number of invalid samples 140.6 74.4 150.7 111.6 172.7 81.4

Smoothness {nRMSE} 0.0051 0.0049 0.0055 0.0041 0.0046 0.0043

Tree size is the number of vertices that the resulting tree consists of. Invalid
samples are evaluated points that do not satisfy dynamic stability or collision
constraints. Smoothness is defined as the average normalised Root Mean Square
Error (nRMSE) with respect to a fitted cubic polynomial at each joint motion
for each resulting plan path.

Our experimental results show that mRRT, in all trials, discovers a solution
with much fewer invalid samples. These are the random configurations that fail
in the evaluation step. On average mRRT explores only half as many ‘bad’
samples as cRRT (57.6%). This translates to an average decrease of 25.2% in
overall planning steps for the specific tasks. More importantly, as tasks become
more complex in terms of dynamical constraints, this ensures that exploration
is accordingly useful.

On average, mRRT discovers shorter paths than cRRT and requires much
fewer samples. For all tasks, the average size of trees is approximately equal
and both algorithms find smooth paths. The results are summarised in Table
1. In general, we expect that the above mentioned differences would be more
pronounced as the tasks are more spatio-temporally extended and dynamical
realisability constraints become more severe.
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7 Conclusion

We have demonstrated an approach to sampling based motion planning that
utilizes demonstrated examples to glean information regarding task-specific con-
straints. This data could come from motion capture or perhaps even just a few
hand crafted partial solutions. Our approach is to augment a sampling-based
motion planning algorithm with a manifold learning procedure to provide task-
specific metrics and a way to synthesize motion as geodesics. We have shown
that this yields a marked improvement in exploration efficiency with respect to
a standard RRT based planner, due to the fact that the learnt metric focusses
exploration better than other forms of random sampling in a larger space. In
addition, and very importantly, we note that this procedure yields an efficient
encoding of the many different ways to perform a particular task (e.g., quan-
titatively different kicking trajectories), which is crucial for the construction of
multi-level motion synthesis strategies.

We have shown examples of bipedal tasks in simulation and our current work
involves porting the algorithm to a physical robot platform. Also, in future work,
we would like to augment the space with velocity and acceleration information
which will be required to encode many challenging dynamic behaviours including
jumping and running. Finally, our long term goal is to use this procedure as a way
to seed the learning of a layered architecture for control, planning and reasoning.
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Abstract. Presented in this paper is a complete system for robust au-
tonomous navigation in cluttered and dynamic environments. It consists
of computationally efficient approaches to the problems of simultane-
ous localization and mapping, path planning, and motion control, all
based on a memory-efficient environment representation. These compo-
nents have been implemented and integrated with additional components
for human-robot interaction and object manipulation on a mobile ma-
nipulation platform for service robot applications. The resulting system
performed very successfully in the 2008 RoboCup@Home competition.

1 Introduction

Autonomous service robots that assist in housekeeping, serve as butlers, guide
visitors through exhibitions in museums and trade fairs, or provide care to el-
derly and disabled people could substantially ease everyday life for many people
and present an enormous economic potential [7,17,19]. Robots for all these appli-
cations face, however, the challenging task of operating in real-world indoor and
domestic environments, such as those addressed by the RoboCup@Home league.
Domestic environments tend to be cluttered, dynamic, and are populated by
humans and domestic animals. In order to adequately react to sudden dynamic
changes and avoid collisions, these robots need to be able to constantly acquire
and process in real-time information about their environment. Furthermore, in
order to act in a goal-directed manner, plan actions and navigate effectively, a
robot needs an internal representation of its environment. Nature and complex-
ity of these representations highly depend on the robot’s task and application
space.

For a more concrete example, consider a domestic service robot that is given
the task to serve a cold drink from the refrigerator to a guest in the living room.
Aside of the activities like interacting with the host and the guest, grasping ob-
jects like a can of soft drink, or other manipulation tasks, the robot needs to solve
several problems related to navigation: If the environment is initially unknown,
the robot must i) explore the environment and ii) build a map. Both during this
exploration and map building phase and during everyday operation later on, the
robot needs to iii) localize itself and iv) localize task-relevant objects (such as the

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 104–115, 2010.
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refrigerator) within its environment representation. As self-localization requires
a map of the environment, while mapping requires the ability to self-localize,
these two problems need to be considered jointly as simultaneous localization
and mapping (SLAM). SLAM has not only been a substantial research focus in
the robotics community over the last decades but is also regarded as a major
precondition of truly autonomous robots [20]. For actually moving to certain
locations in the environment, the robot needs to iv) plan obstacle-free paths and
v) follow planned paths. Due to the fact that it operates in a dynamic environ-
ment, the robot must also constantly acquire information about the environment
during navigation, and use it to vi) update the map and vii) avoid collisions.

All of the above problems have been well researched in robotics, at least in
isolation. For each of these problems a large variety of sophisticated algorithms
have been proposed. They coexist legitimately, since they are designed or es-
pecially appropriate for a specific purpose. However, despite the huge body of
literature available, the problem of robust and computationally efficient naviga-
tion in domestic environments cannot be considered solved yet. The first issue
is robustness. Especially in RoboCup@Home, there is only a short preparation
time and only five to ten minutes to solve a complex task. Hence, algorithms
need to be robust and the overall system has to act reliably. Advancing robust-
ness, however, often comes with increasing complexity that affects the real-time
applicability of the algorithm and the overall system which is the second issue.
Scalability is another issue since the computational complexity of many sophis-
ticated approaches e.g. in SLAM either directly results in prohibitive memory
and runtime requirements if applied to realistically-sized or large real-world en-
vironments, or at least cannot be used online in a reasonable fast cycle time. The
forth issue is integration. The aforementioned problems are strongly interwoven
as, for example, the choice of the environment representation affects the choice of
localization and path-planning algorithms. Identified best-in-class solutions may
have different underlying assumptions hindering integration or necessitating pos-
sibly complex transformations from one representation into another. Efficiency
problems may occur especially if such transformations cannot be done once and
offline, but need to be done constantly or in regular intervals due to environ-
mental dynamics. Furthermore, if published implementations are available at
all, they are often not modular and easily re-usable as they depend on a specific
architecture, development framework or inter-module communication.

Instead of proposing yet another toolkit for navigational purposes, the goal
of our work is to design and implement a (complete) set of algorithms for au-
tonomously performing SLAM, planning paths, and controlling the motion of
a mobile service robot, i.e. an approach addressing the aforementioned prob-
lems ii) to vi) which is robust, efficient and scalable. Exploration and collision
avoidance are not addressed in the context of this paper. The algorithms are
implemented in a modular and reusable way. Dependencies on external libraries
are kept at a minimum. Primary design goals are robustness, simplicity and
real-time applicability of the algorithms and the overall system.
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The remainder of this paper is organized as follows: Section 2 provides a brief
overview on the robot platform used for implementation and in the
RoboCup@Home competitions. Section 3 introduces sparse point maps as a
space efficient environment representation together with the proposed SLAM
algorithm. Path-planning based on this representation and the used motion con-
trollers are presented in Section 4 and Section 5, respectively. Finally, Section 6
contains some concluding remarks and an outlook on future work.

2 Base System

For evaluating the performance and robustness of the algorithms presented in
this paper, the mobile service robot Johnny Jackanapes was used (see Figure
1), which is based on a modular mobile robot platform called VolksBot [21].
VolksBot has been designed specifically for rapid prototyping and robot appli-
cations in education, research and industry. The customized variant used has an
integrated manipulator, a Neuronics Katana 6M180 robot arm equipped with
six motors providing five degrees of freedom w.r.t. the gripper’s position and
orientation in its reachable workspace. It is mounted in a way to provide good
reachability and maneuverability. The overall platform size is (51×51×120)cm
(W×L×H) and its weight is 60 kg. The drive unit used for locomotion uses a
differential drive with two actively driven wheels, powered by two 150W motors,
and two caster wheels to enhance rotating and stability under load. The robot’s
maximum velocity is 2m/s.

For perceiving environmental structures, a SICK S300 2D laser scanner is
used. The size of the apex angle limiting the scan plane is 270◦, with an angu-
lar resolution of 0.5◦. For accessing other sensors and robot platforms as well

(a) (b) (c)

Fig. 1. (a) Robot platform ”Johnny Jackanapes”. (b) Simulation in Microsoft Robotics
Studio. (c) Simulation using Player/Stage (top) and view on the remote inspec-
tion/debug application (bottom).
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(a) (b)

Fig. 2. (a) Single laser scan taken from the data set used in [23]. (b) Map constructed
from all laser scans in the same data set. The couch table did not intersect the scan
plane and is neither perceived nor modeled in the map.

as simulation environments, wrappers and interfaces have been implemented
to interact with Microsoft Robotics Studio, Player/Stage and CARMEN (the
Carnagie Mellon Navigation Toolkit). However, the drawback of 2D laser range
finders for the purposes of collision avoidance and mapping is that objects not
intersecting the 2D scan plane cannot be perceived by the robot. See e.g. the
couch table that does not cause reflections in the 2D laser scan in Figure 2(a)
and is thus not modeled in the point map in Figure 2(b). While in some indoor
robot applications this drawback can be neglected, it plays an important role in
a human’s everyday environment, where typically many objects do not intersect
the measurement plane, but still pose a threat to the robot. Examples include
open drawers or small objects lying on the ground. In such environments, 3D
information becomes crucial. Although we currently do not use a 3D sensor on
the robot platform, like e.g. a 3D laser scanner or a time-of-flight camera, the
proposed SLAM algorithm is already applicable to both 2D and 3D information.

3 Simultaneous Localization and Mapping

Performing SLAM to build maps and localizing in preliminary built maps are
major preconditions for the autonomous operation of mobile robots in changing
or preliminary unknown environments. Approaches addressing mapping and lo-
calization differ, amongst others, in formulating the problem, the means to cope
with the addressed problem and in representing the environment. Occupancy
grids [14] are a popular metric map representation for navigation which can
be built from various kinds of simple range sensors like sonars and laser range
finders. These sensors deliver information that there is some kind of obstacle
in a certain distance. Occupancy grids provide a discretized representation of
this kind of occupancy information. Furthermore, they distinguish unoccupied
and not yet visited areas compared to feature-based representations that only
store certain features perceived in the environment or geometric primitives mod-
eling environmental structures. However, occupancy grid maps typically require
a large amount of memory and can be computationally expensive to handle.
On the other hand, feature-based approaches require robust feature extraction
mechanisms which may be computationally expensive.
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When addressing SLAM in terms of range image registration, raw measure-
ments (i.e. point clouds) acquired with a laser scanner can directly be used to
model environmental structures and to localize a mobile robot by using a match-
ing algorithm. Hence, there is no need for applying additional feature extraction
mechanisms. The problem of registering point clouds can be formulated as fol-
lows. Given two point clouds M , called model set, and D, called data set, find a
transformation T that minimizes the alignment error between the two sets and
correctly maps D onto M . The essential problems derived from this formulation
are a) how to define the error function and b) how to minimize this error.

3.1 The ICP Algorithm

A widely used solution to the registration problem is the Iterative Closest Point
(ICP) algorithm by Besl and McKay [1], which determines T in an iterative
way. In each iteration step, the ICP algorithm determines pairs of corresponding
points from D and M using a nearest-neighbor search. These correspondences
are used to quantify and minimize the alignment error:

E(R, t) =
|M|∑
i=1

|D|∑
j=1

wi,j‖mi − (Rdj + t) ‖2, wi,j =

{
1, mi corresponds to dj

0, otherwise.
(1)

T =
(
RICP tICP

0 0 0 1

)
with (RICP , tICP ) = argmin

R,t
E(R, t) (2)

Finding the nearest neighbors and determining the correspondences is the com-
putationally most expensive step in the ICP algorithm (O(|D| |M |) for a brute-
force implementation), since for every point dj ∈ D the closest point mi ∈ M
needs to be determined. Here, we use an approximate kd-tree search [15], which
reduces the complexity of the algorithm to O(|D| log |M |).

To estimate the rigid transformation T, consisting of a rotation R and a
translation t, that minimizes Eq. (1) there are closed form solutions in both
the two- and three-dimensional case (see [13] for a comparison). Extensions to
the ICP algorithm for e.g. dealing with partial overlap of D and M or false
correspondences as well as weighting and rejecting correspondence pairs can be
found in [18]. The primary extension used here is to reject pairs for which the
point-to-point distance exceeds a certain threshold. This threshold exponentially
decays during the registration process. While initially permitting larger distances
between corresponding points guarantees fast convergence of E(R, t), smaller
distances in later iteration steps allow fine-tuning the registration result.

3.2 Incremental Registration Using the ICP Algorithm

For registering multiple range scans and constructing a consistent map that
models environmental surfaces, an incremental registration procedure is used.
The first laser scan D0 is used as the initial environment model M0. Thus,
the local coordinate frame of D0 forms the coordinate frame for the overall
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map. All subsequent scans Di, i > 0 are matched against Mi−1. The resulting
transformation Ti is used to correct the position of all points contained in Di,
yielding the transformed point set Ďi = {ďi,j |ďi,j = Rdi,j + t}. As an initial
estimate T̂i for Ti in this incremental registration we use the transformation
from the last registration, i.e. T̂i = Ti−1. This speeds up the convergence in
the ICP algorithm and drastically reduces the probability of converging to a
local minimum possibly resulting in an incorrect registration result. If odometry
information is available, the estimate T̂i is further corrected taking into account
the estimated pose shift between the acquisition of Di−1 and Di. Furthermore,
we only register a new range scan Di if the robot traversed more than e.g. 50 cm
or turned more than e.g. 25◦ – a practice being quite common in recent SLAM
algorithms.

To account for possibly new information in Di, the transformed points are
than added to Mi−1. That is, after matching range image Di, the model set
Mi−1 computed so far is updated in step i to:

Mi = Mi−1 ∪ {ďi,j | ďi,j ∈ Ďi}. (3)

Thus, a model MN , constructed by incrementally registering N range images,
contains all points measured in the environment, i.e.

MN =
⋃

i=[0,N ]

{ďi,j | ďi,j ∈ Ďi}. (4)

3.3 Sparse Point Maps

The main problem of the incremental registration approach is its scalability with
respect to the size of the environment and the number of range images taken. To
fully cover a large environment, a lot of range images might be needed. When
registering and adding all acquired range images, the model set M can get quite
large, e.g. several million points for 3D scans taken in a large outdoor environ-
ment [16,22]. However, when acquiring range images in parts of the environment
which are already mapped, lots of points would be added to M without provid-
ing new information about the environment. This is exploited by the following
improvement to our SLAM approach, which makes the point clouds sparse.

The key idea of sparse point maps is to avoid duplicate storage of points, and
thereby minimize the amount of memory used by the map, by conducting an
additional correspondence search. That is, to neglect points that correspond to
the same point in the real physical environment as a point already stored in the
map. Correspondence is, thereby, defined just like in the ICP algorithm, i.e. a
point ďi,j ∈ Ďi is not added to Mi−1, if the point-to-point distance to its closest
point mi−1,k ∈ Mi−1 is smaller than a minimum allowable distance εD.

Mi = Mi−1 ∪ {ďi,j | ďi,j ∈ Di, �mi−1,k ∈ Mi−1 : ‖ďi,j − mi−1,k‖ < εD} (5)

The threshold εD spans regions in the model in which the number of points is
limited to 1, thereby providing an upper bound on the point density in a sparse
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point map M . Choosing a value of εD according to the accuracy of the range
sensor used will exactly neglect duplicate storage of one and the same point
assuming correct alignment of range images. Choosing, however, a larger value
allows to reduce the number of points stored in the map. Although some details
of the environment might not get modeled, a map constructed in this manner still
provides a coarse-grained model of the environment as can be seen in Figure 2(b).
In the actual implementation, the additional correspondence search is carried out
on the kd-tree built for the ICP algorithm using εD as the distance threshold in
the pair rejection step. However, here the rejected pairs are used to determine
the points in Ďi that need to be added to Mi−1.

3.4 Examples and Results

The proposed incremental registration approach is so computationally efficient
that it can be applied continuously during robot operation, thereby quickly re-
flecting changes in the environment. The runtime of the algorithm for register-
ing a 2D laser scan lies in the range of milliseconds and increases only slightly
(log |M |) for growing map sizes. Figure 3 illustrates that the maps and trajecto-
ries resulting from the application of the proposed SLAM procedure are not in-
ferior compared to those resulting from other state-of-the-art SLAM algorithms,
like e.g. Rao-Blackwellized Particle Filters [6].

Having larger loops in the robot’s trajectory, however, would require post-
processing such as global relaxation using e.g. Lu-Milios-like approaches [2] or
graph-based optimization [5]. Still, for the kind of environments addressed here,
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Fig. 3. Example on applying the proposed SLAM procedure on typical robot data sets
(here two data sets from Cyrill Stachniss and Giorgio Grisetti). The resulting maps
(a: 3092 out of 1 123 560 points, b: 2364 out of 1 975 680 points, εD = 15 cm) and
trajectories are shown in the upper plot. Maps provided with the data sets are shown
at the bottom.
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Fig. 4. Example of applying the proposed SLAM procedure on 3D data sets (here a
data set from Oliver Wulf). Shown are a topview (b) with εD = 2m and detail views
(a+c) of a model with εD = 20 cm. Map sizes are 10 060 points (εD = 2 m) and 550 979
points (Dmin = 20 cm) out of approx. 107 points.

e.g. apartments, the proposed stand-alone single-hypothesis approach seems suf-
ficient. Furthermore, the approach can be integrated into a particle filter frame-
work for multihypotheses SLAM.

An example of matching 3D laser scans to construct a 3D model of the en-
vironment and to localize the robot with all six degrees of freedom in space is
shown in Figure 4.

4 Path Planning

Grid maps already have an internal structure that can be used directly for path-
planning purposes. The sparse point maps used here, however, lack this ability.
Instead, path-planning is addressed as a graph-search problem in the Voronoi
diagram of the map points. Planning on the Voronoi diagram may not result
in the shortest path, but when traveling along a path planned, the robot will
always maintain a maximum distance to the obstacles represented in the map.

The Voronoi diagram is constructed using Fortune’s Sweep-Line Algorithm [3].
The runtime complexity of this algorithm is O(n log n) with space complexity
O(n) for n points. A typical result of applying this algorithm to sparse point maps
is shown in Figure 5. However, as shown in Figure 5(b), the Voronoi diagram
constructed contains edges that lie outside of the modeled environment. Other
edges cannot be traversed by the robot as the distance to the nearest obstacles
is too short. Therefore, we prune the Voronoi diagram, first by removing all
edges lying outside of or intersecting the convex hull for the map points, and
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Fig. 5. Voronoi diagram construction and pruning based on a sparse point map ac-
quired during the RoboCup GermanOpen in Hannover

second by removing all edges whose distance to neighboring points is smaller
than half of the robot’s width plus some safety distance (e.g. 5 cm). The latter
pruning step can directly be integrated into Fortune’s algorithm not affecting
its complexity. The convex hull is computed by Graham’s Scan Algorithm [4],
which has a runtime complexity of O(n log n) for n map points. The results of
both pruning steps are shown in Figure 5(c) and Figure 5(d).

Path planning is performed on the resulting graphs using A� search [8]. The
Euclidean distance to the target position (xgoal) is used as an admissible heuristic
in the cost function. Therefore, A� is optimal and guaranteed to find the shortest
path, if a solution exists. The overall cost function for a path from the start
position through a node n to the goal is thereby defined as:

f(n) = g(n) + h(n) =

(
n∑

i=1

‖xi − xi−1‖
)

+ ‖xgoal − xn‖ (6)

where x0 = xstart and the sequence < x0,x1, . . . ,xn > represents the shortest
path between xstart and xn. As A� can only plan paths between nodes in the
graph, representatives for the true start and goal poses need to be found. The
algorithm simply chooses the closest nodes in the graph and in cases where mul-
tiple nodes have similar distances to the true poses, we prefer the nodes in the
direction of the other true pose. A result from applying this path-planning pro-
cedure is shown in Figure 6(a). Also shown in the map is a part of a topological
layer on top of the map, storing a vector of learned and predefined objects with
positions, orientations, shapes and names used to communicate with a human
user.

5 Motion Control

To actually follow a planned path and reach a target location and orientation, we
subsequently apply two non-linear motion controllers which have been especially
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Fig. 6. (a) Path planning and following in a map of the RoboCup@Home arena at the
GermanOpen 2008. Shown are the path graph (thin red lines), the planned path (thicker
black lines) and the trajectory of the robot (dotted blue lines). (b) Local coordinate
frames (thin black axes) in the path-tracking controller for an example path (thicker
red lines).

designed for motion control of non-holonomic vehicles. The first motion controller
by Indiveri and Corradini [11] is for tracking linear paths and is applied until
the robot reaches the immediate vicinity of the target location. Then a second
controller is used, which controls both linear velocity v and angular velocity
ω of the robot, to reach the target pose while traversing a smooth trajectory
[10]. The latter motion controller has previously been successfully used in an
affordance-based robot control architecture in the EU FP6 project MACS [12].

For the application of the path following controller, planned paths are repre-
sented as a chain of local coordinate frames, as shown in Figure 6(b). Transform-
ing the robot’s pose into the local coordinate frame of the currently traversed
graph edge allows for directly applying Indiveri’s steering control law

ω = −hvy
sin θ

θ
− γθ : h, γ > 0 (7)

where the controller gains h and γ are calculated depending on the current
situation, i.e. whether the robot is regaining or maintaining the currently tracked
path segment. Furthermore, transforming the latest laser scan into the local
frame allows for checking whether the current segment is obstacle-free and can be
traversed. If the segment is block, the corresponding edge is marked as being not
traversable and the path is re-planned. In addition, the robot performs reactive
collision avoidance [9]. The x-axes X̂i of the local frames are formed by the
path segments, whereas y, θ form the error signal of the controller (position and
orientation deviation). The linear velocity v can be freely chosen and adapted.
For details on both motion controllers it is referred to [10] and [11].
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6 Concluding Remarks

We presented a complete system for autonomous navigation, including algo-
rithms for SLAM, path planning and motion control. Using the ICP algorithm
in an incremental registration procedure and sparse point maps, simulated and
real robots were able to construct memory-efficient environment representations
online. Path-planning on the resulting point maps has been done using A� and
fast algorithms for computing Voronoi diagrams and convex hulls for obtain-
ing a pruned path graph. Using non-linear motion controllers for non-holonomic
systems, simulated and real robots were able to robustly follow planned paths
and reach target poses while localizing in and updating the sparse point map.
All algorithms are highly efficient and run within the main control loop of the
mobile robot platform (50-100Hz).

Future work will focus on the development of efficient exploration and inspec-
tion strategies based on and consistent with the proposed algorithms. Extensions
to this system for 3D collision avoidance and filtering out dynamics from raw
range data can be found in [9]. The proposed algorithms as well as further de-
tails will be made publicly available through the RoboCup@Home Wiki1. Videos
showing the proposed system in action and the performace of the presented
SLAM algorithm are available at http://www.b-it-bots.de/media.
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Abstract. Service robots operating in domestic indoor environments
must be endowed with a safe collision avoidance and navigation method
that is reactive enough to avoid contacts with the furniture of the apart-
ment and humans that suddenly appear in front of the robot. Moreover,
the method should be local, i.e. should not need a predefined map of
the environment. In this paper we describe a navigation and collision
avoidance method which is all of that: safe, fast, and local. Based on a
geometric grid representation which is derived from the laser range finder
of our domestic robot, a path to the next target point is found by em-
ploying A*. The obstacles which are used in the local map of the robot
are extended depending on the speed the robot travels at. We compute
a triangular area in front of the robot which is guaranteed to be free
of obstacles. This triangle serves as the space of feasible solutions when
searching for the next drive commands. With this triangle, we are able
to decouple the path search from the search for drive commands, which
tremendously decreases the complexity. We used the proposed method
for several years in RoboCup@Home where it was a key factor to our
success in the competitions.

1 Introduction

One of the most important and most basic tasks for a mobile robot in domestic
domains is safe navigation with reliable collision avoidance. In this paper we
present our navigation and collision avoidance algorithm which we successfully
deployed over many years in the domestic robot domain. The navigation scheme
presented here was one of the key features for our success in the domestic robot
competition RoboCup@Home. Our method relies on a distance measurement
sensor from which a local map of the surrounding is constructed. In our case,
we make use of a laser range finder. In this local map, which is in fact a grid
representation, we search for a path to a target point. We employ A* for this.

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 116–127, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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The such calculated path serves as an initial solution to the navigation task.
For computing the path the robot’s kinematic constraints have not been taken
into account. This was decoupled in order to decrease the size of the search space.
We integrate it in a second step where we construct the so-called collision-free
triangle, where the path as it is calculated by A* serves as the leg of this trian-
gle. In particular, the current setting of the robot’s parameters like speed and
orientation are taken into account. By this, we explicitly take care of the robot’s
kinematic constraints. In the sequel, we prove that this triangle is obstacle-free
and can be traversed safely.

The success of our method is founded on two ideas. (1) The first one is to
represent the size of the surrounding obstacles depending on the speed of the
robot, i.e. the faster the robot drives the larger the obstacles will become, since
the robot needs more time to break in front of them. This way we can represent
the robot as a mass point. (2) The second idea lies in decoupling the search for
a path from its realization. In particular, we propose to construct a collision-free
triangle which the robot can traverse safely.

In the past, many different approaches for this fundamental problem have
been proposed. So why does this paper go beyond proposing yet another collision
avoidance approach? The answer is three-fold:

1. We believe that extending the size of the obstacles depending on the speed
of the robot is innovative and worth to be mentioned; with this the robot
drives only as fast as possible not to collide with any obstacles. In narrow
passages it reduces iteratively its speed until it can safely travel through,
while in broad areas it will try to reach its maximal speed.

2. With the collision-free triangle we have an area in the motion area of the
robot which is guaranteed to be collision-free.

3. Finally, we deployed this approach for many years in robotics competitions
and it was a key to succeed in the domestic robot competition
RoboCup@Home for the past three years.

The rest of this paper is organized as follows: In the next section we will present
some of the huge body of related articles. In Sect. 3 we introduce our robot
platform. In Sect. 4 we present how obstacles as perceived by the sensors of the
robot are integrated into its local map, and how a path is calculated. We prove
that the collision-free triangle is in fact without obstacles, and show how this
triangle bounds the kinematic parameters of the robot. Sect. 5 discusses some
implementation details and experimental results. We conclude with Sect. 6

2 Related Work

Approaches to mobile robot navigation can be categorized along several criteria.
Some approaches make use of randomized planning techniques, e.g. [1,2], other
approaches use reactive schemes, for instance [3,4,5], and/or make use of a nav-
igation function to follow a path like [6] or plan directly in the velocity space
like [7,8,9,10]. Yet other approaches employ a search, some in physical space,
some in configuration space.
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In their early approach, Borenstein and Koren [7] proposed to use vector
field histograms. The target point exerts an attractive force to the robot while
obstacles impose repulsive forces. The trajectory of the robot is then formed by
the sum of both these forces. They propose a special wall-following mode to avoid
getting stuck in local minima which could otherwise cause oscillating behavior.
The method was tested with robots equipped with sonar sensors driving with
an average speed of 0.58 m/s.

In [3], Fox et al. proposed the dynamic window approach. It is directly derived
from the motion equations. In the velocity space circular collision-free trajecto-
ries are searched. To handle the state space they define a dynamic window around
the robot to only consider those velocities that the robot can reach in the next
time interval. Finally, a trajectory is found by maximizing over the minimal
target heading, maximal clearance around the robot, and maximal speed. The
method was tested on an RWI B21 robot with a maximum speed of 0.95 m/s.
A similar approach except for the dynamic window was proposed in [11].

Seraji and Howard describe a behavior-based navigation scheme in [12]. They
distinguish between different terrain types such as roughness, slope, and dis-
continuity. A fuzzy controller selects between traverse-terrain, avoid-obstacles,
and seek-goal behaviors. While their method aims at outdoor navigation, it is
an example for a local reactive navigation scheme. Another reactive approach is
presented in [13]. The difference to our work is that we use an optimal path as
an initial solution to avoid nearby obstacles.

Besides range sensors, imaging sensors are commonly used to navigate a mo-
bile robot. In [14] an approach to build an occupancy map from a stereo camera
on an RWI B14 robot is presented. The map is used to navigate through previ-
ously unknown environments. We want to note that our method is different in
the sense that we here present a reactive local method while the focus of [14]
is on vision-based exploration. A large number other papers deals with naviga-
tion approaches using several sensors. Among those, the fusion of imaging and
proximity sensors (cameras and LRFs) is popular, see for example [15,16,17].

Koenig and Likhachev [18] present a search heuristic called Lifelong Planning
A*. They propose an incremental search heuristic where only the relevant parts
of a path are recalculated. While Lifelong Planning A* is an interesting extension
to the basic A* we use in this paper, we here focus on the obstacle representation
and the decoupling of path and velocity planning to decrease the dimensionality
of the search problem.

The most related research to our approach is the method proposed by Stach-
niss and Burgard [10]. They use a laser range finder as sensor and employ A*

to find a shortest trajectory to a given target. The state space used here is a
five-dimensional pose-velocity space consisting of the pose x, y, θ and the trans-
lational and rotational velocities υ, ω. At first, a trajectory to the target is calcu-
lated using A* in the 〈x, y〉-space. This trajectory serves as the starting point for
the search in the pose-velocity space. With a value iteration approach a 70 cm
broad channel around the calculated trajectory is calculated which restricts the
state space for the five dimensional search. Stachniss and Burgard tested their
approach on a Pioneer I and an RWI B21 both having a maximum speed below
1 m/s. By restricting the search for velocities to the collision-free triangle which
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(a) Robot (b) Sensor data

Fig. 1. The robot “Caesar” and its sensor data. The four blind regions are due to the
rods supporting the platforms above the laser range finder.

is known to be obstacle-free, we are able to avoid the search in the five dimen-
sional pose-velocity space which leads to a much more reactive navigation and
collision avoidance scheme. A similar method applied to holonomic small-size
league robots in the robotic soccer domain can be found in [19].

3 Service Robot Platform

Our hardware platform has a size of 40 cm × 40 cm × 160 cm. It is driven by
a differential drive, the motors have a total power of 2.4 kW and are originally
developed for electric wheel chairs. With those motors the robot reaches a top
speed of 3 m/s and a maximal rotational velocity of 1000◦/s at a total weight
of approximately 90 kg. On-board we have two Pentium III PCs at 933 MHz
running Linux. Only one of these PCs is used for the navigation and collision
avoidance approach presented in this paper. A 360◦ laser range finder (LRF)
with a resolution of 1 degree provides new distance readings for each direction
at a frequency of 10 Hz. Fig. 1(a) shows our robot.

We assume accelerated motion with our approach. Thus, the connection be-
tween pose, velocity and acceleration is given by x(t) = 1

2 � ẍ(t) � t2 + ẋ(t) � t+x0,
ẋ(t) = ẍ(t) � t+v0, and ẍ(t) = const . As usual, ẍ(t) refers to acceleration, ẋ(t) to
the velocity, and x(t) to the displacement at any given time t. In the algorithm
we present in the next section, we assume that at each time instance the robot
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is accelerated only in the first time instance and from there on is driving with
constant velocity till the next acceleration command is settled. We need this re-
lation because, for efficiency reasons, we decouple the search in the pose-velocity
space into a pose space and a velocity space in the following.

4 The Navigation Algorithm

The task of the navigation algorithm is to steer the robot on a collision-free path
from its current location to a given target point. The algorithm we present does
not rely on a global map as many other algorithms do but on a local map of its
environment. The dimension of the local map corresponds to the area covered by
the current reading from the LRF. It is updated every time new laser-readings
are received. Although, in our implementation, we integrate new sensor readings
into the previous local map if possible, we here assume that the local map is
set up from scratch every cycle. In juxtaposition to approaches which rely on a
global map a local map has the advantage that it allows to easily account for
dynamic obstacles. Moreover, using a local map makes the successful execution
of a planned path independent from the localization of the robot. In the following
we will give a rough overview of our navigation algorithm and discuss the key
aspects in greater detail thereafter.

Input: Δx, Δy the target point in relative coordinates
while not reached target do

d1, . . . , dn ← getLaserReadings() ;
vcur

t , vcur
r ← getCurrentVelocities() ;

map ← extendObstacles(d1, . . . , dn, vcur
t , vcur

r ) ;
path ← findInitialPath(map) ;
if path.isEmpty() then

sendMotorCommands(0, 0); break;
end
vt, vr ← findVelocities(path, map) ;
if no vt, vr then

sendMotorCommands(0, 0);
break;

end
sendMotorCommands(vt, vr) ;
Δx, Δy ← updateTarget(vt, vr) ;

end
sendMotorCommands(0, 0) ;

Algorithm 1. The navigation algorithm in pseudo-code.

If the robot is in close proximity to the given target, i.e., the target is reached,
it stops. Otherwise the current distance readings from the LRF and the current
translational and rotational velocities are obtained. This data is then used to
build a (local) map. For this we employ a technique we refer to as dynamic
obstacle extension (cf. Sect 4.1) which yields a (local) grid-based map of the
robot’s environment. The cells of the grid map may either be occupied or free.
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With this representation of the surrounding of the robot we search for an
initial path to the target, first. In a second step, we search for an approximation
of the initial path which takes into account the kinematic constraints of the robot.
In both steps we employ the A* search algorithm. Splitting up the path-planning
problem into two independent search problems reduces the original problem of
dimensionality four to two search problems over two-dimensional search spaces.
Namely, finding a path in the xy-plane and appropriate velocities vt, vr. This
is only possible since the search for an appropriate approximation of the initial
path is restricted to a certain area which is guaranteed to be free of obstacles.
We refer to this area as the collision-free triangle. More details on this are given
in Sect. 4.2.

4.1 Dynamic Obstacle Extension

A technique often referred to as obstacle growing [20] extends the obstacles by the
dimensions of the robot. This alleviates the problem of collision detection in the
path-planning problem since the robot can now be treated as a mass point. We
leapfrog on this idea and additionally extend the obstacles in dependence on their
respective imminence of collision which takes into account the current speed of
the robot as well as the position of the obstacle relative to the current trajectory
of the robot. The intuition behind this is to mark potentially dangerous areas
as occupied in the local map and thereby force the search to not consider paths
leading through those areas.

The most threatening obstacle for the next step is the obstacle lying on the
trajectory defined by the current and the projected position of the robot in the
next step. We assume to recompute a new path every iteration and, consequently,
it is not necessary to project further into the future then the next step. The
next-step trajectory is computed from the current translational velocity vr, the
current rotational velocity vr and the time between two iterations Δt:

vx =
x(t + 1) − x(t)

Δt
vy =

y(t + 1) − y(t)
Δt

α = tan
vy

vx

For each detected obstacle we place an ellipse centered at the reflection point
of the laser beam in the local map and align the axes such that the semi-major
axis is parallel to the laser beam. The radius for the semi-major axis r1 and the
radius for the semi-minor axis r2 are computed as:

r1 = l + lsec + | cos(θ − α)| � d � n

r2 = l + lsec

where l is the radial extension of the robot1, lsec is an additional security dis-
tance, θ is the angle of the laser beam that hits the obstacle and d is the euclidean
distance between the current position and the position projected for the next
step

d =
√

(vx � Δt)2 + (vy � Δt)2

1 The formula could be further detailed to account for a rectangular shape of the
robot, but this is omitted here for clarity reasons.
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x

y

θ1 = 20◦ θ2 = 0◦

θ3 = −20◦

θ4 = −40◦

α = 45◦

d1

d2

d3 1 m/s
2 m/s
3 m/s

Fig. 2. In this illustrating example a wall is located in front of the robot. The extension
of the obstacles is shown for the obstacles detected at 20�, 0�, -20�, and -40�. The
translational velocities are 1 m/s, 2 m/s, and 3 m/s; the rotational velocity remains
fixed at 1 rad/s. For illustrating purposes we chose Δt = 0.25 s and n = 1.

Then, the obstacles are extended in such a way that the robot will stay out of
the “dangerous area” for the next n steps.

By means of extending the obstacles in such a way we capture the current
obstacle configuration as well as the current configuration of the robot (in terms
of translational and rotational velocity) in the local map. Fig. 2 illustrates the
extension of the obstacles for different configurations of the robot: the rotational
velocity remains fixed whereas the translational velocity is altered between 1 m/s
and 3 m/s.

4.2 The Collision-Free Triangle

As we pointed out in the introduction, within the search for an initial path we
ignore the kinematic constraints of the robots as well as its current configuration
in terms of velocity and orientation. With this, we are in good company with
several other search-based methods like [10]. However, for successfully realizing
a path on a real robot, the kinematic constraints need to be taken into account,
of course. In our algorithm, we do so by performing an A* search on the possible
accelerations in translation and rotation making use of the standard motion
equations for accelerated motion. The kinematic constraints of the robot are
only one part of the velocity planning problem of the robot. The other part
is to take the robot’s current state into account, i.e. its current translational
and rotational velocities. In the following, we therefor present the collision-free
triangle. We prove that, by construction, each grid cell inside this triangle is free
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inside the triangle
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y
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(c) Triangle for opposite ro-
tational velocity

Fig. 3. Construction of the Collision-free Triangle

of obstacles. Poses inside this triangle are thus safe and therefore it can be used
to restrict the search for the optimal trajectory the robot should follow.

Definition 1 (Collision-Free Triangle). The robot is located in the origin of
a Cartesian coordinate system, such that R = (0, 0) is the position of the robot
facing the positive x-axis. Let Ck = (xk, 0) be a grid cell in front of the first
obstacle along the x axis. In case there is no obstacle along the x axis, the last
cell within the perception range of the robot is taken.

Let p = 〈(0, 0), (x1, y1), . . . , (xg−1, yg−1), (xg , yg)〉 be the path to the target
point G. The path is given as a sequence of grid cells. For each path point Pi =
(xi, yi), 1 ≤ i ≤ g we ray-trace to the point Ci = (xi, 0). A path point (xi, yi) is
called safe iff the ray Pi Ci does not hit any obstacle, otherwise it is unsafe. The
collision-free triangle is now given by the points R, Pw, and Cw with w being the
index of the last safe path point.

Fig. 3 depicts the construction of the collision-free triangle as described in the
definition. Note that the x axis always points into the direction of the robot’s
orientation as the map is given by a Cartesian coordinate system with the robot
in its origin. Hence, the point C denotes the last free cell before the robot would
collide with an obstacle if, from now on, it would drive only with translational
velocities. Now, for each path point it is checked if the orthogonal projection of
a path point onto the segment |RC| will hit an obstacle. The robot’s position R,
the last safe path point Pw and the point Cw, the projection point of Pw onto
|RC|, yields the corner points of the triangle.

Fig. 3(c) illustrates the situation in which the robot is turning away from
the path. In that case, we span an additional triangle by projecting the robot’s
position according to its current velocity for the next step (cf. point D). We
put a straight line from the robot’s position through D until we hit an obstacle
(cf. point Di). Then we ray-trace analogous to the original triangle to ensure the
additional triangle is also obstacle-free.

Theorem 1. Each cell inside the triangle is obstacle-free.

Proof. Suppose, Pi is the next path point to be considered in the construction of
the collision-free triangle as described in the definition. Hence, the triangle given
by �R, Pi−1, Ci−1 is collision-free. Now we ray-trace from Pi orthogonal to the
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segment given by |RC|. If the ray hits an obstacle, the collision-free triangle is
given by �R, Pi−1, Ci−1, otherwise we conclude that the �R, Pi, Ci is collision-
free. �
Pw is the next point for the robot to reach (safely). Pw closes in on G and the
robot will thus eventually reach the target point.

4.3 Computing the Drive Commands

Lastly, a suitable sequence of velocities to reach the intermediate target point
Pw needs to be determined. Again we employ A* search to find such a sequence.
We restrict the search space by only considering velocity sequences which steer
the robot to locations within the collision-free triangle—as soon as the robot
leaves the collision-free triangle the search is aborted.

The initial state in the search space is 〈0, 0, 0, vt, vr〉, i.e., the robot is located
at the origin of the coordinate system, its orientation is 0�, and the current
translational and rotational velocities are vt and vr, respectively. Possible suc-
cessor states in each step are 〈x′, y′, θ′, v′t, v

′
r〉 where v′t = vt + ct � amax

t � Δt with
ct ∈ {−1,− 2

3 , . . . , 1} and amax
t being the maximal translational acceleration.

Analogously for v′r. (x′, y′, θ′) is the projected pose at time t + Δt when sending
the drive commands 〈v′t, v′r〉 to the motor controller and the robot is located
at 〈x, y, θ〉 at time t. The change in position and orientation is computed ac-
cording to the standard equations for differentially driven robots The heuristic
value for each state is computed as the straight-line distance to the intermediate
target; the costs are uniform. A goal state is reached if the distance between the
projected position and the intermediate goal is smaller than a certain threshold.

The velocities returned by the function “findVelocities(�)” in Alg. 1 are the
first translational and rotational velocities in the sequence of velocities that was
determined by the search.

5 Implementation and Evaluation

Occupancy Grid. Although the LRF has a far longer range we limited the local
map to a size of 6 × 6 m2 for practical reasons. The local map is subdivided
into grid-cells with a size of 5× 5 cm2. Consequently, the complete local map is
made up of 14400 cells. Recomputing the ellipses that result from extending the
obstacles and their respective rasterizations with every update is quite costly.
Therefore, we pre-computed a library of rasterized ellipses of various sizes and
at various angles. For a given obstacle we look-up the ellipse matching the cur-
rent velocities of the robot and the angle at which the obstacle is detected and
integrate it into the local map.

Searching for the Path. In order to avoid that the changed perception of the
environment which is due to the movement of the robot leads to an oscillating
behavior we accumulate the sensor readings for a short duration, i.e., we do not
only consider the current distance readings but also a number of readings from
the past. Each obstacle in this accumulated sensor reading is then extended
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(a) (b) (c) (d) (e)

Fig. 4. Example traces

in the same way described in Sect. 4.1. Further, for reasons of efficiency, we
try to avoid re-computing a path and proceed with the remainder of the path
computed previously, instead. Of course, this is only possible if the “old” path
is still a valid path. This means we have to check whether the robot strayed too
far from the projected path and whether the collision-free triangle computed for
the “old” path is still free of any obstacles. Thus, we still maintain a high degree
of reactivity. The implementation of the A* search algorithm calculates a path
of a length up to 300 grid cells (i.e. a path length of 15 m) in less than 10 ms
on the Pentium-III 933 machine on the robot. Given that the frequency of the
laser range finder is 10 Hz and the navigation module runs at 20 Hz (not to lose
any update from the laser range finder) there are about 40 ms left for the other
steps of the algorithm.

Evaluation. The method proposed in this paper was extensively tested during
several RoboCup tournaments as well as with indoor demonstrations where the
robot had to safely navigate through crowds of people. Fig. 4 shows the path
visualization of a run of a robot in our department hallway. The red dot rep-
resents the robot, the green line represents the planned path, the black objects
are the walls of the hallway. The robot should navigate from the hallway into a
room. Note that the path is calculated in such a way that the shortest possible
connection between robot and target is chosen. The second picture in the series
shows the robot a few moments later. The calculation of the drive commands
and the realization of these commands on the robot have the effect that the
robot slightly deviates from the path. We remark that the position of the robot
is still inside the collision-free triangle (which is not shown in the figure). In the
fourth picture the robot entered the room.

(a) B21 with DWA
(vmax = 0.45 cm/s)

(b) B21 with A*

(vmax = 0.45 cm/s)
(c) B21 with A*

(vmax = 0.95cm/s)
(d) Caesar with A*

(vmax = 3 m/s)

Fig. 5. Comparison of the DWA with our method
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We also tested our navigation algorithm on our B21 robot Carl as shown
in Fig. 5. From the performance point of view we encountered no problems
with the algorithm. We could observe that Carl reached higher velocities than
with the Dynamic Window (DW) approach [3] which is part of the original
control software of Carl. The DW approach has inherently problems with narrow
doorways as well as with relatively sharp turns.

6 Conclusion

In this paper we presented a navigation and collision avoidance method for
service robots operating in domestic indoor environments. Particularly in these
environments, a domestic robot must navigate carefully and be able to drive
around obstacles that suddenly cross its path as it is interacting with humans.
The core of our method is a grid representation which is generated from the
sensory input of a laser range finder. Depending on the speed of the robot and
several other security parameters, the detected obstacles are extended in the grid
representation. This is done to speed up the collision detection when searching
for a path to the target. For finding a path, we employ A* on the grid. Next, we
construct a so-called collision-free triangle from the obstacle configuration, the
current parameters of the robot (its actual speed) and the desired path. For each
grid cell inside this triangle we can guarantee that it is collision-free. In a second
step, we use this triangle to calculate the drive parameter for the next time step.
Again, we employ A* for this task, this time we search for accelerations which
keep the robot inside the triangle. The collision-free triangle relates the search
for a path with the search for drive commands and allows to decouple both.
Positions inside the triangle are safe and therefore feasible. This decreases the
complexity of the search problem tremendously. This method allows for fast and
adaptive navigation and was deployed for RoboCup@Home competitions over
several years without ever colliding with the furniture or humans. For example,
we were able to solve the Lost&Found task in 25 seconds while driving through
a large part of the apartment looking for an object.
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Abstract. In this article a method is proposed for ball tracking using
100 Hz computer vision in a semi-automated foosball table. In this ap-
plication the behavior of the ball is highly dynamic with speeds up to 10
m/s and frequent bounces occur against the sides of the table and the
puppets. Moreover, in the overhead camera view of the field the ball is
often fully or partially occluded and there are other objects present that
resemble the ball. The table is semi-automated to enable single user game
play. This article shows that it is possible to perform fast and robust ball
tracking by combining efficient image processing algorithms with a priori
knowledge of the stationary environment and position information of the
automated rods.

Keywords: computer vision, automated foosball table, visual servo-
ing, ball segmentation, object tracking, perspective projection, Kalman
observer, real-time systems.

1 Introduction

Tracking a ball in a highly dynamic and non predictive environment by use of
computer vision becomes difficult when the ball is occluded or surrounded by
similar looking objects. An example can be found in the Robocup environment,
where autonomous robots have to track a ball and grab it [1]. Another example
can be found in the Hawkeye computer vision system [2], where cameras are
positioned alongside a tennis court to track the ball. In this article the considered
environment is the soccer field used in a foosball table, and the object to be
tracked is a white ball of approximately 3.5 cm in diameter. The occluding
objects are the puppets and the rods on which these puppets are mounted. In
the captured images the ball can cross a white field line, or it can resemble one
of the white dots on the field. On one side of the table the rods are electro-
mechanically controlled. These puppets need to intercept and return the ball,
and therefore ball tracking must be fast and accurate. Other project groups
that have been working on the development of an automated foosball table

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 128–139, 2010.
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used various techniques to track the ball. The Danish University of Technology
has used different colors for the ball and the environment [3]. In this setup,
color segmentation [4] can be used to segment the ball from its environment.
The University of Victoria developed a laser grid to acquire the coordinates
of the ball on the field [5]. They positioned the laser grid such that the lasers
would go underneath the puppets and therefore only the ball could cross it. An
automated foosball table that eventually became commercially available comes
from the University of Freiburg and is named KiRo [6]. This table was developed
to a commercial version named StarKick [7]. This group mounted a camera
underneath their table and replaced the standard field with transparant glass so
that the camera could see the ball from below.

Although all of these automated tables worked and some were able to defeat
professional players, the methods they used to track the ball were not flawless.
Color segmentation only works on a table where the ball has a different color
than its environment. With a laser grid that is mounted beneath the feet of the
puppets, the ball can be found by determining where the grid has been broken.
However, performance lacks because in a real game the ball bounces such that
robust tracking becomes cumbersome. These bounces also make ball tracking
difficult in the KiRo and StarKick projects.

In this article a different approach is used to track the ball. A priori knowledge
of the environment and perspective projection algorithms are used to segment
the ball from its environment. An observer is used to obtain estimates for the
position and the velocity. As the table is meant for professional foosball play,
after any alterations it should still comply to the official USTSA regulations
defined in [8]. There are two more restrictions made on the setup.

– the used camera is mounted above the table,
– the camera can only capture monochrome images,

In this article first the hardware will be explained briefly. In the second part the
segmentation of the ball will be explained, and the observer that was used. In
the last part the results are discussed, which will focus on the robustness of the
image processing algorithms and their real-time performance. Finally, a small
summary and a prospect on the overall performance on the table will be given
in section 5.

2 The Hardware

To have a platform that complies with the USTSA regulations a professional foos-
ball table is acquired. A steel frame is placed on top of the table, on which a cam-
era [9] is mounted. One side of the table is equipped with electro-mechanically
controlled rods. This way the puppets can be moved towards a certain position,
and they can also lift their legs or perform a kicking movement. A schematic
overview of the whole setup is depicted in Fig. 1.
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Fig. 1. Schematic overview of the table

The EtherCAT module [12] that is used for the data acquisition allows to con-
trol the rods at 1 kHz. The desktop PC that processes the images and interfaces
with the EtherCAT module is an Intel Dual Core 2GHz processor, running a
Linux low latency kernel. A complete overview of the connections between the
hardware components and their corresponding dataflow is depicted in Fig. 2.

Fig. 2. The different components and their dataflow

3 Ball Segmentation

To obtain the coordinates of the ball, the ball has to be segmented from its
environment. Possible methods to segment the ball from its environment are the
Circular Hough Transform [10] or more advanced methods such as gradient based
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circle detection algorithms [11]. There are three reasons why these methods are
not applicable in this setup.

– creating a 3D parameter space requires a lot of storage and is therefore not
preferable in real-time applications,

– in an occluded situation the ball often does not resemble a circle,
– there are other objects present that resemble the ball such as the white dots

and the heads of the puppets,
– the presence of nonconstant light intensities make:

• the radius criterion used in the CHT difficult to define
• the intensity gradients differ throughout the field

Therefore in this article a different method is chosen to segment the ball. The
coordinate frame that is used throughout this article is depicted in Fig. 3.

x xwzw

yw

Human
Goal

Computer
Goal

Fig. 3. The field and the coordinate system

3.1 Defining the Region of Interest

The first step in the segmentation algorithm is to crop the captured images to a
region of interest, or ROI, in order to remove redundant image data. The largest

30 pixels
40 pixels

100 pixels

Occluding torsoMinimal ROI

xw

yw

Ball heading

Ball lost

Ball undetectable

Ball found

ROI

60 pixels

Fig. 4. Worst case loss of ball
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object that can occlude the ball is the upper torso of a puppet. This upper torso
is 30x20 pixels. When the ball of 20 pixels in diameter rolls underneath, it can
become completely occluded. The position of the ROI is programmed to remain
static when the ball is lost. When the ball is partially occluded the camera needs
approximately 1/4th of the diameter of the ball to detect it. Worst case scenario
could be, that the ball rolls underneath a puppet while the ROI stays at the
position where it lost the ball. This is schematically depicted in Fig. 4.

” A length of 40 pixels allows the ROI to find the ball when it reappears.
Because there can be made no distinction between ball movement in the positive
xw and in the negative xw direction, the minimum size for the ROI in the xw

direction (as defined in Fig. 3) should be 80 pixels. The minimum size for the
ROI in the yw direction should be 20 pixels as it is the diameter of the ball, but
in this direction also the rods have an influence in occluding the ball. Therefore
some margins need to be taken into account. A good estimate for the size of the
ROI is 100x60 pixels. An example of such an ROI is given in Fig. 5.

Fig. 5. Region of interest 100x60 pixels

3.2 Determining the Minimum Required Frame Rate

With the minimum size for the ROI determined, also the minimum frame rate
at which the image processing algorithms have to run can be calculated. Tests
have shown that the maximum ball speed Vmax can reach up to 10 m/s. It can
be assumed that the ball experiences this maximum velocity only in the xw

direction. Because the ROI was chosen such that the ball cannot be occluded
twice at its maximum velocity, the radius of the ball rball has to be added to
half the length of the ROI in xw to determine the maximum distance over which
the ball is allowed to travel. The minimum frame rate FPSmin can then be
calculated as

FPSmin =
VmaxPres

rball + 1
2ROIxw

, (1)
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where Pres is the pixel resolution of 584 pixels/m. Therefore the minimum frame
rate is determined to be 97.3 Hz. In the following steps a frame rate of 100 Hz
will be assumed.

3.3 Undistorting the Image

To find the correct coordinates of the ball on the field, the images that come
from the camera have to be undistorted. To solve for this distortion, a camera
calibration is carried out using the Camera Calibration Toolbox for Matlab [13].
The resulting distortion coefficients are then used to restore the images as shown
in Fig. 6.

(a) Original image (b) Restored image

Fig. 6. The original and the restored image. Straight reference lines in white.

3.4 Removing Static Objects by Creating a Mask

In the foosball table there are objects present that do not move over time. These
static objects include the field lines, the field dots and the rods that hold the
puppets (but not the puppets themselves). These objects look similar to the ball
in shape or intensity value, and should therefore be disregarded when searching
for the ball. This can be done be creating a static mask. This mask can then be
subtracted from the captured image.

The center of the field is somewhat brighter than the rest of the field. This
is due to the fact that the field is not uniformly illuminated. This illumination
difference also has to be included in the mask. The mask that contains all the
static objects and the illumination differences is depicted in Fig. 7.

3.5 Masking the Yellow Puppets

As can be seen in Fig. 6 the puppets on the field have two different colors. The
bright puppets have to be masked, because the intensity values of these puppets
are close to those of the ball. Therefore the bright puppets are chosen to be the
electro-mechanically controlled puppets, so that during a game their position
and orientation will be available for processing. With this information the 3D
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Fig. 7. The mask that removes the static objects

position and orientation of the puppet can be calculated and through a perspec-
tive projection a 2D mask of each of these puppets can be determined. For this
a 3D scan of the contour of a puppet is created by using a Magnetic Resonance
Imaging, or MRI, scanner. To perform this perspective projection the pixel co-
ordinates Dp

i in the 3D scan have to be transformed to 3D pixel coordinates in
the camera frame Dc

i . The formula that describes this transformation is given
below.

Dc
i = Rr

s(O
s
p + Dp

i ) + Oc
r (2)

A corresponding graphical interpretation is given in Fig. 8.
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i to camera coordinates Dc
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The vector Oc
r describes the translation from camera frame to rod frame and

consists of [xc
r yc

r zc
r] where zc

r is the variable translation of the rod that can be
controlled by the computer. The rotation matrix Rr

s holds the other computer
controlled variable α.

Rr
s =

⎡⎣ cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

⎤⎦ .

After the pixel transformation the pixels can be placed into the image plane [bI
x

, bI
y] as depicted in Fig. 9
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Fig. 9. 3D camera pixel coordinates to pixels in the image plane

according to

bI
x =

f
Ps

zc
i

yc
i

(3)

bI
y =

f
Ps

xc
i

yc
i

(4)

where f is the focal length parameter of 6 mm and Ps is the camera pixel size
and is 9.9 μm.

A result of the perspective projection is given in Fig. 10. This way the mask is
thus fully constructed from the known geometry of the puppet and the measured
position and orientation.

(a) Original image. (b) 2D projected mask.

Fig. 10. The original image of the puppet and the 2D projected mask
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3.6 Thresholding the Dark Puppets

The dark puppets are removed by simply thresholding all that is left over in the
image.

3.7 What Is Left over

What is left over in the captured image now can only be the ball itself. The ball
will show its full shape, or when occluded by any of the above objects, a part
of it. An example of how the ball looks like when the masking and thresholding
has been done, is shown in Fig. 11.

(a) Original image. (b) The left over.

Fig. 11. The original image and what is left over after masking and thresholding

Finding the center of the ball is done by take the average of the minimum
and maximum pixel coordinates xw

min and xw
max for the xw direction, and the

minimum and maximum pixel coordinates yw
min and yw

max for the yw direction.
Therefore the center of the ball [xw

c , yw
c ] becomes

xw
c = xw

min+xw
max

2 (5)

yw
c = yw

min+yw
max

2 (6)

In case the ball is occluded this formula will not give the exact center of the
ball. This will be solved for by using a Kalman observer as explained in the next
section.

4 Controlling the Rods

To predict the movement of the ball and to calculate the point of interception,
the velocity of the ball is determined. For this a linear Kalman observer [14] is
implemented.
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4.1 The Kalman Observer

To let the Kalman observer converge as fast as possible to an accurate state
estimate, the estimates for the process noise covariance Q̃ and measurement noise
covariance R̃ have to be accurate. Estimating the measurement noise covariance
R̃ can be done by looking at the error between a static ball position and the
corresponding measurements. In case the ball is almost fully occluded, the actual
measurement of the bal will be completely on the outer edge of the ball. Therefore
the maximum value that the measurement noise covariance R̃ can have is the
radius of the ball squared. This value has to be given in pixels and is determined
to be

R̃ =
[
rb

2

rb
2

]
(7)

where rb is the radius of the ball and is approximately 10 pixels. The estimate
for the process noise Q̃ is more difficult to determine. The easiest way is to
perform an off-line analysis of the logged measurements. The distance between
the human controlled attacker and the electro-mechanically controlled keeper is
30 cm, and the maximum velocity of the ball can be 10 m/s. Therefore tuning
of the process noise covariance should lead to a maximum convergence time of
0.03 s. In this period the error between the measurement and the actual position
estimate should converge to less then the width of the puppet’s feet, which is 3
cm. Because the ball bounces and the acceleration was not estimated it can be
assumed that Q̃ depends on a deviation of the acceleration of the ball. Movement
of the ball in xw and yw is decoupled, and therefore Q̃ will only have values on its
diagonal.

Fig. 12. Measurement data and the Kalman filtered estimate in xw and yw direction
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When the position data is evaluated a good estimate for Q̃ becomes

Q̃k =

⎡⎢⎢⎣
1
2 ãδt2 0 0 0

0 ãδt 0 0
0 0 1

2 ãδt2 0
0 0 0 ãδt

⎤⎥⎥⎦ (8)

where ã is about 20.000 pixels/s2. With this value the outcome for the Kalman
filtered estimate in xw and yw (as defined in Fig. 3) is given in Fig. 12. When a
bounce occurs in the xw direction at t=7.26 s it can be seen that the error in the
yw direction converges to less than 3 cm in 0.03 s, which is accurate enough for
the mechanically controlled keeper to intercept the ball. An animated illustration
where the points of interception are determined can be found at [15].

5 Summary and Prospect

In this article a method was proposed for ball tracking using 100 Hz computer
vision in a semi-automated foosball table. A region of interest was defined to
reduce the dataflow. Undistortion and static masking were used to remove the
static objects. Perspective projection and dynamic masking were applied to mask
the bright puppets that resemble the ball in intensity values. Finally an observer
was implemented to direct the rods smoothly to their point of interception with
the ball. This observer was fast and accurate enough for the keeper to prevent
a goal from an opponent that shoots from its most forward attacker at the
maximum assumed velocity of 10 m/s. Currently the table is being tested and
the results are promising. At this point the image processing algorithm has a
100% found-ratio of the ball. This means that nobody was able to play the ball
in such a way that it went out of the region of interest as defined in 3.1. Even
a professional player with tactical skills was not able to mislead the algorithm.
A video is made available at [16] which indicates the region of interest and the
mask of the electro-mechanically controlled puppets. More videos will be made
available during the testing phase. When the table has successfully undergone
this phase, it can also serve as a test bed for high level strategic control schemes
and learning algorithms. The results from these tests can then be used in other
research areas such as the Robocup robot soccer domain.

Acknowledgements. The author wants to thank G.J.Strijkers for his assis-
tance in creating the 3D scan of the puppets that was used in section 3.5.
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Abstract. In this article, we provide an overview of three humanoid
soccer platforms currently in use at RoboCup: 3D simulation, the hu-
manoid Standard Platform League (SPL), and the Webots-based sim-
ulator released with the SPL. Although these platforms trace different
historical roots, today they share the same robot model, the Aldebaran
Nao. Consequently, they face a similar set of challenges, primary among
which is the need to develop reliable and robust bipedal locomotion. In
this paper, we compare and contrast these platforms, drawing on the
experiences of our team, UT Austin Villa, in developing agents for each
of them. We identify specific roles for these three platforms in advancing
the overarching goals of RoboCup.

1 Introduction

The long-term goal of RoboCup is to field a team of humanoid soccer players
that can compete with the best human teams on a regulation soccer field by the
year 2050 [11]. This goal is still very far away, in part because we do not yet have
“human-level” humanoid robots. Since the start of RoboCup in 1997, however,
steady progress has been made on all aspects of the challenge, which has been
achieved by planning, prioritizing efforts, and by imagining the technology of a
few years ahead. We attribute the ability of RoboCup to maintain its momentum
in advancing the frontiers of technology to two main characteristics:

1. Its competitive structure, which fosters enthusiasm in diverse groups from all
over the world, and at the same time, encourages collaboration. As Behnke [1]
notes, competitions promote the evaluation of complete systems, providing
a standardized testbed on which comparisons are fair. This is supplemented
by community-based development, brought about by the sharing of ideas,
solutions, and organizational responsibilities.

2. The division of effort into well-defined leagues and challenge problems, each
with self-contained, specific focus areas that are challenging by themselves.
Currently at RoboCup there are five main leagues: Simulation League, Small
Size League, Middle Size League, Standard Platform League, and Humanoid
League. Within each of these, there are multiple sub-leagues.

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 140–152, 2010.
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The focus of this paper is in the context of the second characteristic: the leagues
that constitute RoboCup. Ideally, these various leagues, while addressing sep-
arate challenges, should also be carefully connected so as to address comple-
mentary and synergistic research challenges. Based on the extensive firsthand
experiences gathered by our team, UT Austin Villa, we have the opportunity to
closely examine three platforms (two sub-leagues and one supplement) that are
very new, are spawned from different threads of history, and yet have much in
common. These are the 3D simulation sub-league within the Simulation league
(Sim-3D), the humanoid-based Standard Platform League (SPL), and its accom-
panying Webots-based simulator (SPL-Sim).

These three platforms trace different origins with different research foci, but
they are now converging in the need to tackle bipedal humanoid locomotion.
Incidentally, these three platforms share the same robot model, the Aldebaran
Nao.1 At this point, it seems that in any platform that has bipedal locomotion,
the dominant challenge is that of stable, fast movement: the team that is able
to walk the fastest and kick the most accurately is favored to win, with minimal
need for sophisticated higher-level reasoning. However, the goal is to reach the
point where locomotion can be taken as mainly a skill to be fine-tuned within
the larger context of individual and team decision-making in strategic situations.

An important ongoing effort within the RoboCup community over the past
few years has been the inclusion of “road-map” discussions at the symposia,
which are the culmination of discussions within the individual leagues. However,
there are only a limited (though significant) number of participants bringing
experiences from multiple leagues to these discussions. This paper offers a fo-
cused road-map proposal pertaining to three closely related platforms within
RoboCup Sim-3D, SPL and SPL-Sim are all 1-3 years old, with much potential
yet to be realized. We compare and contrast the current state of progress in
these three platforms and identify specific roles for them in advancing the over-
arching goals of RoboCup. We present these recommendations from the point
of view of keeping the platforms complementary, each with its important role to
fill. We recognize that individual communities may have perspectives that are
not entirely consistent with our proposals. Yet, we believe that some level of
inter-league planning is necessary for the future.

This paper is organized as follows. In Section 2 we survey the current state of
the three platforms, following which, in Section 3 we describe our experiences in
developing agents for each platform. Section 4 lays down some of the long-term
challenges facing humanoid robotics, and Section 5 earmarks specific roles to
each platform in moving forward. We summarize the paper in Section 6.

2 Overview of Platforms: Past and Present

In this section, we present the history and the current challenges facing each
platform. Figure 1 shows snapshots of the Nao robot from the three platforms.

1 See: http://www.aldebaran-robotics.com/eng/

http://www.aldebaran-robotics.com/eng/
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Fig. 1. Pictures of the Nao robot in the various leagues. From left to right: Sim-3D,
SPL, and SPL-Sim.

2.1 Sim-3D

Sim-3D has evolved from the 2D Simulation sub-league, one of the earliest com-
petitions in RoboCup [3], having been in existence since 1997. The 2D Simula-
tion sub-league simulates a 2D world, with cylindrical robots that have access
to abstract actions such as Turn, Kick, Dash, and Catch. It has models of noisy,
asynchronous sensation and actuation, real-time decision making, restricted vi-
sion and hearing, and player stamina. In short, it incorporates an extensive range
of realistic considerations in simulation. Stable “11 versus 11” simulations can
be run on current desktop hardware, with agents able to communicate with the
simulation server through a network interface following a well-defined protocol.
While the first few years of the 2D simulation sub-league witnessed an empha-
sis on developing agent skills (such as reliable passing and ball interception),
its focus soon progressed to high-level strategy. Not only do player formations
and communication play an important role in games today, teams even employ
strategic reasoning for determining whether to play offensively or defensively
depending on the goal difference and time left in the game.

Despite all the realism modeled in the 2D simulator, there exists one significant
omission: the third dimension. To address this issue, the 3D Simulation sub-
league (Sim-3D) was introduced into RoboCup in 2004. The migration to a 3D
world called for physical simulation engines to replace the simple physics models
of the 2D simulation. With the intent of staying ahead of the hardware leagues
and to encourage high-level reasoning, Sim-3D adopted agents in the form of
spheres, with access to abstract commands for kicking, turning and dashing.
However, it soon became apparent that while interesting in itself, this version
of Sim-3D was lacking direct relevance to the long-term goal of playing soccer
with humanoid robots. Indeed in their 2007 paper, Mayer et al. [13] argued
that the simulation league should embrace humanoid robots as early as possible.
To this end, in 2007, Sim-3D transitioned to a more realistic and challenging
humanoid model: the Soccerbot, based on the Fujitsu HOAP-2 robot2. This
step marked a defining moment in the history of the Simulation League: for
2 See: http://jp.fujitsu.com/group/automation/en/services/humanoid-robot/

hoap2/

http://jp.fujitsu.com/group/automation/en/services/humanoid-robot/hoap2/
http://jp.fujitsu.com/group/automation/en/services/humanoid-robot/hoap2/
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the first time, robots had to be programmed through the low-level interface of
controlling motor torques. While this has caused inevitable backtracking in terms
of the performance levels of games, its long-term benefits will be significant.

In the initial days of development, the Soccerbot-based simulation encoun-
tered a string of systems-related problems, such as unstable physics simulation
and performance issues. To correct this, the Soccerbot model was constantly
changed, and by the 2007 RoboCup competitions, it was 5 meters tall! However,
subsequent contributions from the community towards developing the server
have increased its reliability, as has the change of the robot model from Soccer-
bot to the Aldebaran Nao for the 2008 competitions. In the 2008 competitions,
complete, noise-free world information was provided to the agents. In addition,
there was no actuator noise. As a result, there has been a quick development
of locomotion skills. Both in 2007 and in 2008, skills (in particular, walking
speed) have been a major factor determining team performance. It must be
noted, however, that some passing behavior began to emerge during RoboCup
2008.

The 3D simulator is under active development. Earlier the platform used the
SPADES timer [21], and it still uses the SPARK simulation engine [17]: both of
these were developed by the RoboCup community. The simulation server code is
fully open source. Apart from the annual RoboCup competitions, Sim-3D is now
also popular at the regional open competitions in Iran, Germany, and China.

2.2 SPL

The Standard Platform League is unique in that all the teams use the same
standardized hardware, making it essentially a software competition. SPL allows
teams to work with an affordable humanoid robot platform without having to
invest as much time or money as the other humanoid leagues [2]. The current
SPL sub-league (using humanoids) emerged from the Sony Aibo “Four-legged”
league. Areas of research in SPL include vision [9,22], localization [6,7], and
motion and skill development [12]. Since the robots are fully autonomous and
all processing is performed on-board, CPU cycles need to be used efficiently.

In 2006, Sony stopped manufacturing the quadrupedal Aibo robot; conse-
quently, the SPL switched to the Aldebaran Nao for 2008. The Nao is a two-
legged humanoid robot, on which balance, walking and other soccer skills are
more difficult to implement than on the Aibo. Teams competing in the SPL
served as beta testers for the Nao; the original robots were very fragile and mo-
tors would frequently overheat or break. The robot also was unable to see its own
feet with its camera without bending over, which made teams spend significant
amounts of time searching for and lining up to the ball.

The Nao has 25 degrees of freedom, compared to the 20 on the Aibo. The
Nao robot, a biped, stands 57cm tall, while the Aibo, a quadruped, measures
28cm tall. The V3 version of the Nao has two color cameras in its head, each
with a much higher resolution than the Aibo. The Nao has a 500 MHz AMD
Geode processor and 256 MB of RAM, which is more sophisticated than what
the Aibo uses (a 576 MHz RISC CPU and 64 MB of RAM).
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The first competition with the Nao robot was held at RoboCup 2008 in
Suzhou, China. Since the robots broke frequently, many teams arrived at the
competition with very little code tested on actual robots. In Suzhou, robots
were fixed as they broke, giving some teams their first opportunity to test code
on the robots. It was a struggle for teams to even “close the loop” on robot
behaviors, i.e., reliably score a goal on an empty field. There were only 14 goals
scored in total in the 29 games during RoboCup 2008 (including one own goal),
even though most teams had very minimal defense strategies. In stark contrast,
the Aibo competition the same year witnessed a total of 151 goals scored in 28
competitive games.

2.3 SPL-Sim

Two companies released Nao models in their respective simulators after the
SPL humanoid sub-league was introduced. These were Microsoft Robotics Stu-
dio3 and Cyberbotics Webots [15]. Both simulators are more sophisticated than
Sim-3D, using commercial physics software and providing useful tools for pro-
gramming the agent, such as for visualization and debugging. The simulators
aid code development for the physical robots in the SPL, proving especially use-
ful in making initial progress in developing skills, as the robot itself is quite
fragile.

For code development on the Nao, UT Austin Villa employed the Webots
simulator, which we denote SPL-Sim. The simulator was helpful in developing
code for SPL, especially since the robots were unavailable or unusable for long
durations. While the physics were not very realistic, and therefore the learned
motions were not directly transferable to the robot, the simulator was useful in
testing vision, localization and behaviors. The simulator was also useful for learn-
ing parameters for motions, which made good starting points for motions on the
physical robot. Although there is no official competition at RoboCup using We-
bots, there was an Internet-based competition called “ROBOTSTADIUM”4, as
well as an informal competition at RoboCup 2008. About eight teams played
4 versus 4 soccer games, exhibiting superior skills compared to those from
the SPL games. Versions of Webots with the Nao model were made available
free to the teams. UT Austin Villa did not take part in this Webots-based
competition.

3 Experiences in Agent Development

The agent architectures that UT Austin Villa developed were similar across the
three platforms. At the low level, we have PID control for the joints, as well as
inverse kinematics for arms and legs. The main thrust of our effort was in devel-
oping skills, such as walk, kick, turn, and get-up. These in turn were tied together

3 See: http://msdn.microsoft.com/en-us/robotics/
4 See: http://www.robotstadium.org/

http://msdn.microsoft.com/en-us/robotics/
http://www.robotstadium.org/
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1 2 43

Fig. 2. States from our SPL(-Sim) walk engine. In the state 1, the robot shifts its
weight to its left leg and lifts its right leg. In state 2, it re-balances its weight and
brings the right leg forward and down. In states 3 and 4, the robot repeats this motion
with the legs reversed.

by fairly simple high-level behavior. Here we summarize the salient aspects of
our agent behavior, which is described in detail in our technical reports [5,10].

For SPL, we developed a walk that comprises four key-frame states, inspired
by Yin et al. [24]. Each state is represented by the spatial coordinates of the feet
relative to the hips. Joint angles are calculated from these spatial coordinates
using inverse kinematics. The motion between states is interpolated and the
transition to the next state begins either at a specific time or after getting
close to the current target state. The specific coordinates of the key-frames
are determined through a set of 10 walk parameters, such as step height and
length. When turning, the “HipYawPitch” angle is set to turn the robot’s legs.
In addition, the robot’s shoulder joints are moved to help balance the robot
during walking. We used the Downhill Simplex algorithm [19] to learn the best
walk parameters through trials in the Webots simulator (SPL-Sim).

While the walk we developed worked well in simulation, it did not work con-
sistently on the physical robots, likely because of lag and jitter introduced by
the interface we used to send commands to the robot. Our Sim-3D agent too em-
ployed a similar state-based approach for developing skills, although with vastly
different parameter settings. Specifically, Sim-3D used higher gains for motor
torques in order to realize fast, dynamically stable motions.

We summarize the different walking speeds and kick distances that we achieved
on the different platforms in Table 1.5 The results on the different platforms are
not directly comparable, as they were obtained on different surfaces, with different
parameters, different physics, different code, etc. We used our own code for all the
Sim-3D skills and for the kicks in SPL(-Sim). We used the walk engine provided by
Aldebaran with parameters that we tuned for the walking experiments in SPL(-
Sim). For comparison, the robot walked at 28.56±1.31 mm/sec in SPL-Sim using

5 The authors acknowledge Hugo Picado from the FC Portugal robot soccer team for
suggesting this set of relevant statistics.
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Table 1. Performance statistics for skills of the Nao robot on different platforms

Skill Sim-3D SPL SPL-Sim
Forward walking: 144.27 ± 1.22 82.40 ± 1.54 91.62 ± 2.77
linear velocity (mm/sec)
Side walking: 62.80 ± 2.00 18.13 ± 2.66 24.48 ± 2.23
linear velocity (mm/sec)
Turning: 19.96 ± 3.15 27.20 ± 0.54 18.83 ± 0.21
angular velocity (deg/sec)
Kicking: distance reached 3122.68 ± 14.47 1200.00 ± 312.64 5122.12 ± 756.78
by ball after kick (mm)
Get-up: time to rise after 10.21 ± 0.94 10.56 ± 0.27 NA
falling forwards (sec)
Get-up: time to rise after 23.14 ± 0.81 11.30 ± 0.37 NA
falling backwards (sec)

our walk engine. The results in SPL and SPL-Sim were taken over 5 trials each,
and the ones from Sim-3D over 10 trials.6

There is a significant difference between the results from SPL-Sim and SPL,
as we switch from simulation to reality. For example, although the same kick was
used on the real robot and in SPL-Sim, the ball traveled an average of about
four times as far in the simulator because it has less friction than the real carpet.
The main difference between the Sim-3D and SPL-Sim is in the magnitude of
the gains. Interestingly, the real robot turns much faster than either simulated
robot. The turn is implemented by moving the HipYawPitch joint to turn the legs
relative to each other. This is more effective on the real robot than in simulation
because the extra friction arrests sliding of the feet. We note that the reported
statistics are not representative of all soccer teams; for example, some Sim-3D
teams obtained very fast walks through optimization. Yet, these results showcase
some key differences in the platforms and the behaviors developed on them.

The key element in our architecture for SPL(-Sim) was to enforce that the
environment interface, the agent’s memory and its logic were kept distinct (Fig-
ure 3). In this case, logic encompasses the vision, localization, behavior and
motion modules. The main advantages of our architecture are:

Consistency. The core system remains identical irrespective of whether the
code is run on the robot, in the simulator or inside our debug tool. As a
result, we can test and debug code in any of the three environments without
fear of code discrepancies. The robot, simulator and tools each have their
own interface class which is responsible for populating memory.

Flexibility. We can “plug & play” modules into our system by allowing each
module to maintain its own local memory and communicate to other mod-
ules using the common memory area. For example, a Kalman Filter local-
ization module would read the output of the vision module from common

6 Videos of several skills are available from our team website: http://www.cs.utexas.
edu/~AustinVilla/

http://www.cs.utexas.edu/~{}AustinVilla/
http://www.cs.utexas.edu/~{}AustinVilla/
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Fig. 3. Agent architecture for SPL(-Sim)

memory, work in its own local memory and then write object locations back
to common memory.

Debug-ability. At every time step only the contents of current memory are
required to make logic decisions. We can therefore save a “snapshot” of the
current memory to a log file and then examine the log subsequently in our
debug tool. The debug tool not only has the ability to read and display logs,
it can also take logs and process them through the logic modules. As a result
we can modify code and watch the full impact of the change in our debug
tool before testing it on the robot or in the simulator.

4 Shared Challenges

Sim-3D, SPL, and SPL-Sim are all just coming out of their nascency. In this
section, we discuss some of the challenges facing humanoid robotics, which should
be treated as long-term issues on all these platforms.

The key concern at this stage for all three platforms is also the most ba-
sic: reliable, robust bipedal locomotion. Locomotion is a prerequisite for a large
number of activities performed by a humanoid robot, and its role is particu-
larly important in soccer. The RoboCup community has successfully addressed
the challenge of quadrupedal locomotion [12], but bipedal locomotion requires
solutions of a more complex nature and scale. Bipedal locomotion offers great
flexibility in developing a wide range of stepping patterns, including climbing
stairs and lateral motion. Yet, this flexibility comes at the price of constantly
having to balance. While balance is almost like a second nature to human be-
ings, the state-of-the-art with humanoid robotics is yet to provide satisfactory
solutions to this problem [23].

Pratt’s thesis [18] provides useful insights into the nature of bipedal loco-
motion. Whereas human beings rely extensively on the natural dynamics of
walking (uncontrolled “falling” for some part of the gait, followed by a swift
catching step), most algorithms for walking today control every part of the walk
cycle. This places a severe limit on the robustness of the developed walking
gait: even slight variations in the cycle can potentially cause fall. Another fall-
out is the energy efficiency of walking. Fully controlled walks spend roughly an
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order of magnitude more energy for walking than human beings with compa-
rable masses [20]. Thus, developing robust, energy efficient walks is of utmost
importance for any humanoid platform in RoboCup. Approaches such as passive
dynamic walking [14] are likely to play a key role in realizing “natural” patterns
of bipedal locomotion, and need to be considered in the future.

Another challenge facing humanoid robotics is the need to develop human-like
models. Currently, the body components of the Nao robot in Sim-3D are imple-
mented as cuboidal elements: this hinders the development of natural gaits as
the feet are flat. Simulating complex mesh geometries can be time inefficient; at
the same time, they might be necessary for developing robust locomotion skills.
Another related possibility is to explore the use of more human-like actuators
to augment the motors available at the joints. For example, Hosada et al. [8]
have demonstrated that pneumatic artificial muscles can lead to gaits that re-
quire minimal correction. Likewise, it is relevant to note that the Nao (and most
humanoid robots) do not have a flexible spine. Flexible spines such as the ones
being developed by Mizuuchi et al. [16] allow the robot to have more natural
movement and enable it to absorb shocks much better. Indeed a major problem
in developing walks for SPL is ensuring that the robot’s feet touch the ground
softly and do not create oscillations in the robot’s movement.

In the following section, we argue that in coming to terms with the multiple
challenges ahead, the three platforms considered in this paper should concentrate
on separate issues, in order that their combination will be most effective in
advancing towards the goals of RoboCup.

5 Roles for Platforms in Future

As Mayer et al. [13] observe, it will become important to start integrating the
various leagues in RoboCup; in the year 2050, one “league” will stand to sum-
marize the progress made over the years. At this stage, humanoid robotics still
faces a broad range of problems, chief among which is reliable bipedal locomo-
tion. Yet, there is the need to look ahead and preempt problems that are bound
to arise in future. In this section, we identify specific roles for Sim-3D, SPL, and
SPL-Sim such that they divide their attention in doing so. Encouraging diver-
sity in the platforms is important at this juncture because it will alert us to a
wider range of issues, which would remain occluded if our focus remains narrow.
However, we note that the desire for diversity needs to be balanced with serving
the interests of the members of the individual leagues.

There is the need to study problems in hardware because simulation is invari-
ably subject to unrealistic modeling assumptions, and of course, the ultimate
goal of RoboCup needs to be realized in hardware. However, hardware has the
disadvantage of being brittle, expensive, and tedious to work with. Thus, it be-
comes efficient to bypass it and make progress in simulation environments. For
example, simulation is far more convenient as a platform for learning and opti-
mization of skills and behaviors. Ultimately, simulation needs to become as close
to reality as possible. As long as simplifying assumptions have to be made by
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simulators, we argue that Sim-3D and SPL-Sim should maintain separate foci:
Sim-3D should stay ahead of current possibilities of hardware, and SPL-Sim
should become as close to reality as possible. We also believe that each platform
should continue to get gradually more difficult as earlier challenges are met.

5.1 Sim-3D

We believe that as with the 2D simulation sub-league that spawned it, Sim-3D
should stay ahead of the hardware by a few years and realize what is currently
possible only in simulation, such as sophisticated coordination strategies among
the players and complex soccer skills such as heading, kicks in the air, and the
interception of balls in a 3D trajectory. These aspects do not manifest in today’s
hardware platforms, but it would be inadvisable to wait for the hardware to
catch up before devoting research to these issues, which are integral to soccer.
Such research might guide the evolution of the hardware itself.

Among the current simulation platforms, Sim-3D has developed the best
robotic skills to date, which are evolving at a steady rate. Also Sim-3D has
the support of a very active development community. Thus, we propose that
Sim-3D consciously make the effort to tackle increasingly complex skills and be-
havior that humanoid robots will ultimately possess. In so doing, we need to
exercise intelligence in choosing parts of reality to approximate and parts to
model exactly. For example, we do not need to develop perfectly realistic mod-
els of the cameras of today, for it is very likely that in future, robots will be
equipped with superior vision systems. However, it would be unwise to persist
with very high joint torque limits because these are unrealistic, and will remain
so until the year 2050.

5.2 SPL

Unlike Sim-3D, it is not possible to look very deep into the future of SPL, because
SPL is inherently restricted by the limits of hardware. At this point, the main
focus of the SPL is on important low-level tasks such as vision, localization,
and bipedal control. The SPL humanoid sub-league is more challenging than the
SPL four-legged (Aibo) sub-league owing to the difficulties involved in developing
robust motions on two legs. For the short term, it will be quite an achievement
to be able to reproduce the proficiency level of the Aibo robots on the Nao
robots. This would entail developing algorithms to for walking stably, robustly,
and fast; kicking optimally; ball interception, etc. It might not be worthwhile
to plan beyond such a level of proficiency for the Nao robots because they may
undergo fundamental changes to the hardware in a few years’ time.

5.3 SPL-Sim

Simulators are essential in modern scientific research, as it is time-consuming,
expensive, and tedious to conduct several types of useful experiments in the real
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world. Ultimately, it will be beneficial to have simulators that are as close to
reality as possible, for they can function as a more convenient substitute. We
propose that at least one thread of research within RoboCup pursue the goal
of developing accurate simulators. The simulator being developed need not be
specific to the SPL; any hardware league can profit from the use of a realistic
physical simulator. But it is especially important to have simulators of humanoid
robots, which are going to be principal in the future development of RoboCup.

We believe that SPL-Sim should adopt the aim of becoming more realistic,
partly because it possesses superior systems performance at this stage, which
make it the more promising alternative for modeling complex mesh geometries
(including feet), simulating realistic collisions (which are common in soccer),
and modeling surface properties. Currently Webots already has a reliable and
accurate physics engine, developed based on the Open Dynamics Engine (ODE).7

Gaps between simulation and reality need to be closed; likely, they will get
more pronounced when there are more collisions and robots move faster. Re-
cently, Hebbel and Laue [4] have proposed an interesting idea for doing so: by
optimizing simulator parameters based on a fitness function that is evaluated in
reality. They demonstrate significant results on the Aibo platform. It would be
ideal if efforts such as theirs are complemented by code development dedicated
to realizing more realistic simulations for RoboCup. It will also be good for the
community to develop open source packages. We could start from the current
3D simulator, SPARK, and evolve distinct threads for Sim-3D and SPL-Sim.

6 Summary

UT Austin Villa’s participation in Sim-3D and SPL, as well as our use of the SPL-
Sim to develop our code gives us a unique perspective on these platforms. There
are many similar challenges on these platforms: developing a good code base that
is easily debug-able and extendable, developing good robust bipedal motions,
and creating good soccer skills. There are differences as well; for instance, SPL(-
Sim) has to cope with vision and localization issues, while Sim-3D currently does
not.

For RoboCup to continue its progress towards the goal of fielding a human-
level team in 2050, we believe that it is important to continue with different
leagues that focus on separate aspects of the problem. SPL should continue
to deal with problems related to using a real two-legged robot, such as vision,
localization, and bipedal motion. We believe that there should be a push to-
wards more realistic simulators to allow more development in simulation instead
of on fragile and expensive robots. Finally, the Sim-3D should continue to fo-
cus on problems a few years ahead of the hardware leagues, such as coordina-
tion, teamwork, intelligence, and developing skills on advanced robot models.
All the platforms should continue to gradually increase in difficulty as teams
progress.

7 See: http://www.ode.org/

http://www.ode.org/
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Abstract. As machine learning is applied to increasingly complex tasks,
it is likely that the diverse challenges encountered can only be addressed
by combining the strengths of different learning algorithms. We exam-
ine this aspect of learning through a case study grounded in the robot
soccer context. The task we consider is Keepaway, a popular benchmark
for multiagent reinforcement learning from the simulation soccer domain.
Whereas previous successful results in Keepaway have limited learning to
an isolated, infrequent decision that amounts to a turn-taking behavior
(passing), we expand the agents’ learning capability to include a much
more ubiquitous action (moving without the ball, or getting open), such
that at any given time, multiple agents are executing learned behav-
iors simultaneously. We introduce a policy search method for learning
“GetOpen” to complement the temporal difference learning approach
employed for learning “Pass”. Empirical results indicate that the learned
GetOpen policy matches the best hand-coded policy for this task, and
outperforms the best policy found when Pass is learned. We demon-
strate that Pass and GetOpen can be learned simultaneously to realize
tightly-coupled soccer team behavior.

1 Introduction

Learning to play soccer can be framed elegantly as a multiagent reinforcement
learning (RL) problem. However, the state-of-the-art in multiagent RL is yet to
cope with the demands of such a complex problem. In the context of multiagent
RL, a number of models have been proposed to exploit task-specific regulari-
ties such as coordination of actions [5], state abstraction [4], and information
sharing [12]. While such measures all pave the way towards learning increasingly
complex behavior, they still assume that the task being considered is simple
enough to be learned using a single learning algorithm. Yet complex tasks such
as soccer comprise multiple overlapping behaviors, whose diverse demands can
only be met by combining the strengths of qualitatively different learning ap-
proaches. Identifying this as a crucial direction for future research, we present
a detailed case study of one such task that is grounded in the RoboCup 2D
simulation soccer platform [2].

The task we consider is Keepaway [14], which has become a popular test-bed
for multiagent RL [8,9]. Keepaway is a realistic, continuous, high-dimensional,

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 153–165, 2010.
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stochastic task, and is significantly more complex than synthetic, discrete tasks
such as Predator-Prey [1] that have been used in the past for studying agent co-
operation [7] and games such as Tic-Tac-Toe for studying agent competition [12].
However, all the learning in Keepaway to date has addressed just one aspect of
the task, in which the learned decision is made on a turn-taking basis among
teammates. These studies have all focused on the “Pass” behavior of the player
with possession of the ball in deciding whether (and to which teammate) to pass.
They assume that its teammates, when moving to positions on the field likely
to induce successful passes, execute fixed, hand-coded “GetOpen” strategies.

In contrast, we formulate GetOpen as a multiagent learning problem, thereby
extending learning in Keepaway from Pass to Pass+GetOpen. Consequently,
Keepaway becomes an instance of a learning problem composed of highly in-
terdependent behaviors executing simultaneously. Each player executes multiple
behaviors (Pass and GetOpen) that affect the outcome of its teammates’ be-
haviors, and in the long run, also interact with one another. Such a scenario
poses a significant challenge for designing a credit assignment scheme that both
reflects the intended objectives in the underlying task and guides learning in a
natural, incremental manner.

We present a novel solution for learning GetOpen using policy search, which
contrasts with the temporal difference learning method used for Pass. Results
show that the learned GetOpen policy matches the best performing hand-coded
policy for this task. Further experiments illustrate that learning these comple-
mentary behaviors results in a tight coupling between them, and indeed that
Pass and GetOpen can be learned simultaneously. These results demonstrate
the effectiveness of applying separate learning algorithms to distinct components
of a significantly complex task. As a direct consequence of our formulation of
GetOpen for learning, numerous opportunities arise for conducting research in
the Keepaway test-bed.

This paper is organized as follows. In Section 2, we review the standard Pass
task and formalize GetOpen similarly. In Section 3, we describe algorithms
for learning Pass and GetOpen, both individually and together. Experimental
results are discussed in Section 4, which is followed by a presentation of related
and future work in Section 5. Our conclusions are summarized in Section 6.

2 Keepaway PASS and GETOPEN

The RoboCup 2D simulation soccer domain [2] models several difficulties that
agents must cope with in the real world. Soccer is necessarily a multiagent enter-
prise, in which agents have both teammates and opponents. In the simulation,
they are only provided partial and noisy perceptions, and have imperfect actua-
tors. Their sensing and acting routines are not synchronized, and in the interest
of keeping real time, do not admit extensive deliberation. The atomic actions
available to an agent are Turn, Turn-Neck, Dash, Kick, and Catch; skills such as
passing to a teammate or going to a point must be composed of a string of these
low-level actions executed sequentially. For all these reasons, simulated RoboCup
soccer becomes a challenging domain for machine learning.



Learning Complementary Multiagent Behaviors: A Case Study 155

Keeper

Ball

Taker

Boundary

Center

(a)

K1 K2

K3

T2

T1C

(b)

P

20
m

20m

3.5m

3.
5m

(c)

P=K1’
K3

K2=K3’

T1=T1’K1=K2’

T2=T2’
C

(d)

Fig. 1. (a) A snapshot of Keepaway. (b) Corresponding Pass state variables. (c) Target
points for GetOpen, among them P. (d) Corresponding GetOpen state variables.
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Keepaway [14] is a subtask of soccer in which a team of 3 keepers aims to
keep possession of the ball1 away from the opposing team of 2 takers. The game
is played within a square region of side 20m.2 Each episode begins with some
keeper having the ball, and ends when some taker claims possession or the ball
overshoots the region of play. It is the objective of the keepers to maximize
the expected length of the episode, referred to as the episodic hold time. The
keepers must cooperate with each other in order to realize this objective; they
compete with the team of takers that seeks to minimize the hold time. Figure 1(a)
shows a snapshot of a Keepaway episode in progress.

Intercept ball

to ball
Teammate is closest

GETOPENI am closest
to ball

I do not have
possession

I have
possession

PASS

Fig. 2. Policy followed by each
keeper

In order to make the task amenable to learning,
it becomes necessary to constrain the scope of de-
cision making by the keepers. Figure 2 outlines the
policy followed by each keeper in the scheme em-
ployed by Stone et al. [14]. The keeper closest to
the ball intercepts the ball until it has possession.
Once it has possession, it must execute the Pass
behavior (not to be confused with a pass action),
by way of which it may retain ball possession or
pass to a teammate. Keepers other than the one
closest to the ball move to a position conducive
for receiving a pass by executing GetOpen behavior.

Pass and GetOpen, by offering a choice of high-level actions based on the
keeper’s state, are candidates for the application of learning. Most prior work
assumes GetOpen, and indeed the behavior followed by the takers, to follow
fixed, hand-coded strategies. In other words, the teammates and opponents of the
keeper with the ball do not adapt to the specific characteristics of that keeper, as
they do in real soccer. As a step in the direction of furthering team adaptation,
we extend the frontier of learning in Keepaway to include GetOpen. Thus, we
treat Keepaway as a composite of two distinct behaviors to be learned: Pass and

1 A player is deemed to have possession of the ball if it is close enough to be kicked.
2 Keepaway can be generalized to varying numbers of keepers and takers, as well as

field sizes [14].
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GetOpen. As in previous work [14], we restrict the takers to the fixed policy of
moving towards the ball. In recent work, Iscen and Erogul [8] explore learning
taker behavior, which complements the work in our paper (see Section 5).

2.1 Keepaway PASS

Here we revisit the problem of Pass defined by Stone et al. [14]. The keepers
and takers assume roles that are indexed based on their distances to the ball: Ki

is the ith closest keeper to the ball, and Tj the jth closest taker. From Figure 2,
we see that the keeper executing Pass must be K1.

The three high-level actions available to K1 are HoldBall, which is composed
of a series of kicks close to itself, but away from any approaching takers; and
PassBall-i, i ∈ 2, 3, a direct pass to Ki. Each player processes its low-level per-
ceptual information to construct a world model, which constitutes a continuous
state space. This space is represented through a vector of 13 state variables,
comprising distances and angles among the players and the center C of the field.
These are marked in Figure 1(b), and enumerated in Table 1.

Algorithm 1. Pass:Hand-coded
input Pass state variables (13)
output Action ∈ {HoldBall, PassBall-2, PassBall-3}

if dist(K1, T1) > C1 then
Return HoldBall.

for i ∈ 2, 3 do
valAngi ← minj∈1,2 ang(Ki, K1, Tj).
valDisti ← minj∈1,2 dist(Ki, Tj).
vali ← C2 · valAngi + valDisti .

if maxi∈2,3 vali > C3 then
passIndex ← argmaxi∈2,3 vali.
Return PassBall-passIndex.

else
Return HoldBall.

{C1 = 5.0, C2 = 0.25, C3 = 22.5; distances are taken
to be in meters and angles in degrees.}

A policy for Pass maps a
13-dimensional vector represent-
ing the state variables to one
of the high-level actions: Hold-
Ball, PassBall-2, and PassBall-
3. An example of such a
policy is Pass:Hand-coded (Al-
gorithm 1), which implements a
well-tuned manually programmed
strategy [14]. Under this policy,
K1 executes HoldBall until the
takers get within a certain range,
after which distances and angles
involving its teammates and opponents are used to decide whether (and to
which teammate) to pass. Yet another policy for Pass is Pass:Random, un-
der which K1 chooses one of the three available actions with equal likelihood.
Pass:Learned denotes a learned Pass policy, which is described in Section 3.

2.2 Keepaway GETOPEN

Whereas learning the Pass behavior has been studied extensively in the litera-
ture [9,10], to the best of our knowledge, all previous work has used the hand-
coded GetOpen policy originally defined by Stone et al. [14], which we refer
to here as GetOpen:Hand-coded. Thus, while previous work on this task has
considered multiple agents learning, they have never been executing their learned
behaviors concurrently (only one player executes Pass at any given time). This
paper introduces a learned GetOpen behavior, thereby expanding the scope of
multiagent learning in Keepaway significantly. Below we describe our formulation
of GetOpen.
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In principle, there are infinitely many positions that K2 and K3 can occupy
on the square playing field, However, they only get a small amount of time to
pick a target. Since nearby points are likely to be of similar value, an effective
strategy is to evaluate only a small, finite set of points spread out across the field
and choose the most promising. Figure 1(c) shows a uniform grid of 25 points
overlaid on the field, with a 15% margin on the sides. GetOpen is implemented
by evaluating each grid point P , and moving to the one with the highest value.
Indeed, we define the GetOpen learning problem to be learning an evaluation
function that assigns a value to every target point P , given the configuration of
the players.

As with Pass, it becomes necessary to define a set of state variables for learn-
ing GetOpen. In Figure 1(d), K3 is shown seeking to evaluate the point P at
some time t. The distances and angles marked correspond to the GetOpen state
variables used for the purpose, which we identify based on informal experimen-
tation. None of the state variables involve K3, as K3 is examining a situation at
time t′ in the future when it would itself be at P . At time t′, K3 expects to have
possession of the ball, and re-orders the other players based on their distances
to it. Thus K3 becomes K ′

1, and in the state from Figure 1(d), K1 becomes
K ′

2, T1 becomes T ′
1, and so on. Conceptually, the evaluation of the target point

P should consider both the likelihood of receiving a pass at P, and the value
of being at P with the ball afterwards. This leads to two logical groups within
the state variables. One group contains 2 variables that influence the success of
a pass from K1 to K ′

1, the latter being at P . These are the distance between
K1 and K ′

1, and the minimum angle between K1, K ′
1 and any taker. The other

group of state variables bear direct correspondences with those used for learning
Pass, but computed under the re-ordering at t′. Of the 13 state variables used
for Pass, we leave out the 5 distances between the players and the center of the
field, as they do not seem to benefit the learning of GetOpen. This results in
a total of 10 state variables for GetOpen, which are listed in Table 1.

Table 1. Pass, GetOpen state variables

Pass GetOpen
dist(K1, K2) dist(K′

1, K′
2)

dist(K1, K3) dist(K′
1, K′

3)
dist(K1, T1) dist(K′

1, T ′
1)

dist(K2, T2) dist(K′
2, T ′

2)
minj∈1,2 dist(K2, Tj) minj∈1,2 dist(K′

2, T ′
j)

minj∈1,2 ang(K2, K1, Tj) minj∈1,2 ang(K′
2, K′

1, T ′
j)

minj∈1,2 dist(K3, Tj) minj∈1,2 dist(K′
3, T ′

j)
minj∈1,2 ang(K3, K1, Tj) minj∈1,2 ang(K′

3, K′
1, T ′

j)

dist(K1, C) dist(K1, K′
1)

dist(K2, C) minj∈1,2 ang(K′
1, K1, Tj)

dist(K3, C)
dist(T1, C)
dist(T2, C)

In defining the state variables
for GetOpen, it is implicitly as-
sumed that players other than
K ′

1 do not change their positions
between t and t′. This clearly
imperfect assumption does not
have too adverse an impact since
GetOpen is executed every cy-
cle, always with the current posi-
tions of all players. Revising the
target point every cycle, however,
has an interesting effect on a ran-
dom GetOpen policy. In order to
get from point A to point B, a
player must first turn towards B, which takes 1-2 cycles. When a random target
point is chosen each cycle, K ′

1 constantly keeps turning, achieving little or no net
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displacement. To redress this effect, our implementation of GetOpen:Random
only allows K ′

1 to revise its target point when it reaches its current target. Such
a measure is not necessary when the targets remain reasonably stable, as they do
for GetOpen:Learned, the learned policy, and GetOpen:Hand-coded [14],
which we describe below.

Algorithm 2. GetOpen:Hand-coded
input Evaluation point P , World State
output Value at P

teamCongestion ← ∑
i∈1,2,3,i�=myIndex

1
dist(Ki,P ) .

oppCongestion ← ∑
j∈1,2

1
dist(Tj,P ) .

congestion ← teamCongestion + oppCongestion.
value ← −congestion.
safety ← minj∈1,2 ang(P, predictedBallPos, Tj).
if safety < C1 then

value ← −∞.
Return value.
{C1 = 18.4; angles are taken to be in degrees.}

Under GetOpen:Hand-
coded (Algorithm 2), the value
of a point P is inversely re-
lated to its congestion, a mea-
sure of its distances to the
keepers and takers. Assuming
that K1 will pass the ball from
predictedBallPos, P is deemed
an inadmissible target (given a
value of −∞) if any taker comes
within a threshold angle of the
line joining predictedBallPos
and P . Thus, GetOpen:Hand-coded is a sophisticated policy using complex
entities such as congestion and the ball’s predicted position, which are not cap-
tured by the set of state variables we define for learning GetOpen. In Sec-
tion 4, we compare GetOpen:Hand-coded with GetOpen:Learned to verify
if simple distances and angles indeed suffice for describing competent GetOpen
behavior.

2.3 Keepaway PASS+GETOPEN

Pass and GetOpen are separate behaviors of the keepers, which together may
be viewed as “distinct populations with coupled fitness landscapes” [12]. At any
instant, there are two keepers executing GetOpen; their teammate, if it has in-
tercepted the ball, executes Pass. Specifically, each keeper executes GetOpen
when it assumes the role of K2 or K3, and executes Pass when it has possession
of the ball, as K1. The extended sequence of actions that results as a combination
each keeper’s Pass and GetOpen policies determines the team’s performance.
Indeed, the episodic hold time is precisely the temporal length of that sequence.
Pass has been the subject of many previous studies, in which it is modeled as
a (semi) Markov Decision Problem (MDP) and solved through temporal differ-
ence learning (TD learning) [9,10,14]. In Pass, each action (HoldBall, PassBall-1,
PassBall-2) is taken by exactly one keeper; hence only the keeper that takes an
action needs to get rewarded for it. Indeed, if this reward is the time elapsed
until the keeper takes its next action (or the episode ends), the episodic hold
time gets maximized if each keeper maximizes its own long-term reward.

Unfortunately, GetOpen does not admit a similar credit assignment scheme,
because at any instant, two keepers (K2 and K3) take GetOpen actions to move
to target points. If K1 executes the HoldBall action, none of them will reeceive a
pass; if K1 passes to K2 (K3), it is not clear how K3 (K2) should be rewarded. In
principle, the sequence of joint actions taken by K2 and K3 up to the successful
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pass must be rewarded. Yet, such a joint action is taken every cycle (in contrast
with Pass actions, which last 4-5 cycles on average), and the large number of
atomic GetOpen actions (25, compared to 3 for Pass) leads to a very large joint
action space. In short, GetOpen induces a far more complex MDP than Pass.
An additional obstacle to be surmounted while learning Pass and GetOpen
together is non-stationarity introduced by each into the other’s environment. All
these reasons, combined with the inherent complexity of RoboCup 2D simulation
soccer, make Pass+GetOpen a demanding problem for machine learning.

3 Learning Framework

Each of the 3 keepers must learn one Pass and one Get-Open policy; an array
of choices exists in deciding whether the keepers learn separate policies or learn
them in common. Thus, the total number of policies learned may range from 2
(1 Pass, 1 GetOpen) to 6 (3 Pass, 3 GetOpen). Different configurations have
different advantages in terms of the size of the overall search space, constraints
for communication, the ability to learn specialized behaviors, etc. It falls beyond
the scope of this paper to systematically comb the space of solutions for learning
Pass and GetOpen. As an exploratory study, our emphasis in this work is
rather on verifying the feasibility of learning these behaviors, guided by intuition,
trial and error. In the learning scheme we adopt, each keeper learns a unique
Pass policy, while all of them share a common GetOpen policy. We proceed to
describe these. As in Section 2, we furnish pseudo-code and parameter settings
to ensure that our presentation is complete and our experiments reproducible.

3.1 Learning PASS

We apply the same algorithm and parameter values employed by Stone et al.
for learning Pass [14], under which each keeper uses Sarsa to make TD learning
updates. Owing to space restrictions, we do not repeat the specifications of this
method here, which is described in detail in Section 4 of their paper [14].

3.2 Learning GETOPEN

The solution to be learned under GetOpen is an evaluation function over its
10 state variables, by applying which the keepers maximize the hold time of
the episode. Whereas TD learning is a natural choice for learning Pass, the
difficulties outlined in Section 2.3 to solve GetOpen as a sequential decision
making problem make direct policy search a more promising alternative. Thus,
we represent the evaluation function as a parameterized function and search for
parameter values that lead to the highest episodic hold time.

Our learned GetOpen policy is implicitly represented through a neural net-
work that computes a value for a target location given the 10-dimensional input
state. The player executing GetOpen compares the values at different target
points on the field, and moves to the point with the highest value. Note that
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unlike with Pass, these values do not have the same semantics as action values
computed through TD learning; rather, they merely serve as action preferences,
whose relative order determines which action is chosen. We achieve the best re-
sults using a 10-5-5-1 network, with a total of 91 parameters (including biases
at each hidden node). The parameters are initialized to random values drawn
uniformly from [−0.5, 0.5]; each hidden node implements the sigmoid function
f(x) = 1.7159 · tanh(2

3x), suggested by Haykin [6].
A variety of policy search methods are applicable for optimizing the 91-

dimensional policy. We verify informally that methods such as hill climbing,
genetic algorithms, and policy gradient methods all achieve qualitatively sim-
ilar results. The experiments reported in this paper are conducted using the
cross-entropy method [3], which evaluates a population of candidate solutions
drawn from a distribution, and progressively refines the distribution based on a
selection the fittest candidates. We use a population size of 20 drawn initially
from N(0, 1)91, picking the fittest 5 after each evaluation of the population. Each
keeper follows a fixed, stationary Pass policy across all evaluations in a gener-
ation; within each evaluation, all keepers share the same GetOpen policy (the
one being evaluated). The fitness function used is the average hold time over 125
episodes, which negates the high stochasticity of Keepaway.

3.3 Learning PASS+GETOPEN

Algorithm 3. Learning Pass+GetOpen
output Policies πPass and πGetOpen

πPass ← Pass:Random.
πGetOpen ← GetOpen:Random.
repeat

πGetOpen ← learnGetOpen(πPass , πGetOpen).
πPass ← learnPass(πPass , πGetOpen).

until convergence
Return πPass, πGetOpen.

Algorithm 3 outlines our
method for learning Pass+
GetOpen. Learning is boot-
strapped by optimizing a
GetOpen policy for a ran-
dom Pass policy. The best
GetOpen policy found after
two iterations (a total of 2 ×
20× 125 = 5000 episodes) is fixed, and followed while learning Pass using Sarsa
for the next 5000 episodes. The Pass policy is now frozen, and GetOpen is
once again improved. Thus, inside the outermost loop, either Pass or GetOpen
is fixed and stationary, while the other is improved, starting from its current
value. Note that πPass and πGetOpen are still executed concurrently during each
Keepaway episode as part of learnPass() and learnGetOpen().

Whereas Algorithm 3 describes a general learning routine for each keeper
to follow, in our specific implementation, the keepers execute it in phase, and
indeed share the same πGetOpen. Also, we obtain slightly better performance
in learning Pass+GetOpen by spending more episodes on learning GetOpen
than on learning Pass, which we report in the next section.

4 Results and Discussion

In this section, we report the results of a systematic study pairing three Pass
policies (Pass:Random, Pass:Hand-coded, and Pass:Learned) with three
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Key: x axis: Training episodes / 1000 y axis: Hold time / s

Fig. 3. Learning curves corresponding to conjunctions of various Pass and GetOpen
policies. Each curve represents an average over at least 20 independent trials. Each
reported point corresponds to an evaluation (non-learning) for 500 episodes; points are
reported every 2500 episodes. Note that each of the nine experiments appears once in
the left column, where experiments are grouped by common Pass policies, and once in
the right column, where they are grouped by GetOpen.

GetOpen policies (GetOpen:Random, GetOpen:Hand-coded, and Get-
Open:Learned). For the sake of notational convenience, we use abbreviations:
thus, Pass:Random is denoted P:R, GetOpen:Learned is denoted GO:L,
and their conjunction P:R-GO:L. Nine configurations arise in total. Figure 4
shows the performance of each Pass policy when paired with different GetOpen
policies, and vice versa.3 Policies in which both Pass and GetOpen are either
random or hand-coded are static, while the others show learning.

Figure 3(c) shows the performance of P:L. P:L-GO:HC corresponds to the
experiment conducted by Stone et al. [14], and we see similar results. After
30,000 episodes of training, the hold time achieved is about 14.9 seconds, which
falls well short of the 16.7 seconds registered by the static P:HC-GO:HC pol-
icy (Figure 3(b)). Although P:L-GO:HC is trained in these experiments with
a constant learning rate of α = 0.125, we posit that annealing α will improve
its performance by avoiding the gradual dip in hold time we observe between
episodes 12,500 and 30,000. In the absence of any guarantees about conver-
gence to optimality, we consider the well-tuned P:HC-GO:HC to serve as a
near-optimal benchmark for the learning methods. Interestingly, under the ran-
dom GetOpen policy GO:R (Figure 3(d)), P:HC is overtaken by P:L at
30,000 episodes (p < 0.0001). This highlights the ability of learning methods
to adapt to different settings, for which hand-coded approaches demand manual
attention.

3 Videos of policies are posted on the following web page:
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway-getopen/.

http://www.cs.utexas.edu/~AustinVilla/sim/keepaway-getopen/
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Figure 3(f) confirms the viability of our policy search method for learning
GetOpen, and its robustness in adapting to different Pass policies. Practical
considerations force us to terminate experiments after 30,000 episodes of learn-
ing, which corresponds roughly to one day of real training time. After 30,000
episodes, P:HC-GO:L achieves a hold time of 16.9 seconds, which indeed ex-
ceeds the hold time of P:HC-GO:HC (Figure 3(b)); yet despite running 20
independent trials of each, this result is not statistically significant. Thus, we
only conclude that when coupled with P:HC, learning GetOpen, a novel con-
tribution of this work, matches the hand-coded Getopen policy that has been
used in all previous studies on the Keepaway task. This result also highlights that
well-crafted state variables such as congestion and predictedBallPos, which are
used by P:HC-GO:HC, are not necessary for describing good GetOpen behav-
ior. Interestingly, the hold time of P:HC-GO:L is significantly higher than that
of P:L-GO:HC (p < 0.001). In other words, our GetOpen learning approach
outperforms the previously studied Pass learning when each is paired with a
hand-coded counterpart, underscoring the relevance of learning GetOpen.

An important result we observe from Figures 3(c) and 3(f) is that not only
can Pass and GetOpen be learned when paired with static policies, they can
indeed be learned in tandem. In our implementation of Algorithm 3, we achieve
the best results by first learning GetOpen using policy search for 5000 episodes,
followed by 5000 episodes of learning Pass using Sarsa. Subsequently, we con-
duct 6 generations of learning GetOpen (episodes 10,000 to 25,000), followed by
another 5000 episodes of Sarsa, as depicted along the x axis in Figure 3(f). The
hold time of P-L:GO-L (13.0 seconds after 30,000 episodes) is significantly lower
than P:L-GO:HC, P:HC-GO:L, and P:HC-GO:HC (p < 0.001), reflecting the
additional challenges encountered while learning Pass and GetOpen simulta-
neously. Indeed, we notice several negative results with other variant methods
for learning Pass+GetOpen. In one approach, we represent both Pass and
GetOpen as parameterized policies and evolve their weights concurrently to
maximize hold time. In another approach, GetOpen uses the value function
being learned by Pass as the evaluation function for target points. In both these
cases, the performance never rises significantly above random.

We conduct a further experiment in order to ascertain the degree of special-
ization achieved by learned Pass and GetOpen policies, i.e., whether it is ben-
eficial to learn Pass specifically for a given GetOpen policy (and vice versa). In
Table 2, we summarize the performances of learned Pass and GetOpen poli-
cies trained and tested with different counterparts. Each column corresponds
to a test pairing. We notice that the best performing Pass policy for a given
GetOpen policy is one that was trained with the same GetOpen policy (and
vice versa); the maximal sample mean in each column coincides with the di-
agonal. It must be noted, however, that despite conducting at least 20 trials
of each experiment, some comparisons are not statistically significant. A possi-
ble reason for this is the high variance caused by the stochasticity of the do-
main. Yet, it is predominantly the case that learned behaviors adapt to work
best with the counterpart behavior with which they are playing. Thus, although



Learning Complementary Multiagent Behaviors: A Case Study 163

Table 2. In the table on the left, Pass learned while trained with different GetOpen
policies is tested against different GetOpen policies. Each entry shows the mean hold
time and one standard error of at least 20 independent runs, conducted for 500 episodes.
Each column corresponds to a test GetOpen policy. The largest entry in each column
is in boldface; entries in the same column are marked with “-” if not significantly lower
(p < 0.05). The cell GO:L-GO:L shows two entries: when the learned Pass policy is
tested against the same (“s”) learned GetOpen policy as used in training, and when
tested against a different (“d”) learned GetOpen policy. The table on the right is
constructed similarly for GetOpen, and uses the same experiments as Pass for the
cell P:L-P:L.

Pass:Learned

Train Test
GO:R GO:HC GO:L

GO:R 6.37±.05 11.73±.25 10.54±.26
GO:HC 6.34±.06− 15.27±.26 12.25±.32

GO:L 5.96±.07 13.39±.35 13.08±.26 (s)
12.32±.32 (d)−

GetOpen:Learned

Train Test
P:R P:HC P:L

P:R 5.89±.05 10.40±.39 11.15±.43
P:HC 5.48±.04 16.89±.39 12.99±.43−

P:L 5.57±.06 11.78±.56 13.08±.26 (s)
12.32±.32 (d)−

different learning algorithms are applied to Pass and GetOpen, the behaviors
are tightly-coupled in the composite solution learned.

5 Related and Future Work

Multiple learning methods are used in the layered learning architecture devel-
oped by Stone [13] for simulated soccer. These include neural networks for learn-
ing to intercept the ball, decision trees for evaluating passes, and TPOT-RL, a
TD learning method for high-level strategy learning. This work shares our mo-
tivation that different sub-problems in a complex multiagent learning problem
can benefit from specialized solutions. Yet a key difference is that in Stone’s ar-
chitecture, skills learned using supervised learning are employed in higher-level
sequential decision making, to which RL is applied; in our work, the two learning
problems we consider are themselves both sequential decision making problems.

The policy search approach we use for GetOpen is similar to one used by
Haynes et al. [7] for evolving cooperative behavior among four predators that
must collude to catch a prey. The predators share a common policy, represented
as a LISP S-expression, in contrast with the neural representation we engage
for computing a real-valued evaluation function. The Predator-Prey domain [1],
which is discrete and non-stochastic, is much simpler compared to Keepaway.

By decomposing Keepaway into Pass and Getopen, our work enriches the
multiagent nature of the problem and spawns numerous avenues for future work.
For example, a new promising dimension is agent communication. Consider K1
“yelling” to K2 where it is about to pass, as is common in real soccer. K1’s
Pass and K2’s GetOpen behaviors could conceivably exploit such information
to further team performance.

The Brainstormers team [11] has applied RL for learning attacking team be-
havior. In their work, the actions available to the player with the ball are several
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variants of passing and dribbling. Its teammates can move in different direc-
tions or head to a home position. Assuming the availability of an environmental
model, TD learning is used to estimate a value function over the possible states.
The team attack is shown to increase its goal-scoring percentage. Iscen and
Erogul [8] consider applying TD learning to the behavior of the takers. The ac-
tions available to the takers are ball interception and player marking. Whereas
Pass+GetOpen models cooperation, extending Keepaway to include taker be-
havior would also incorporate competition.

6 Conclusion

Through a concrete case study, we advance the case for applying different learn-
ing algorithms to qualitatively distinct behaviors present in a complex multia-
gent system. In particular, we introduce Keepaway GetOpen as a multiagent
learning problem that complements Keepaway Pass, the well-studied reinforce-
ment learning test-bed problem from the robot soccer domain. We provide a
policy search method for learning GetOpen, which compares on par with a
well-tuned hand-coded GetOpen policy, and which can also be learned simul-
taneously with Pass to realize tightly-coupled behaviors. Learning GetOpen
with a hand-coded Pass policy outperforms the earlier result in which Pass
is learned and GetOpen is hand-coded. Our algorithm for learning both Pass
and GetOpen in an interleaved manner confirms the feasibility of learning them
together, but also shows significant scope for improvement. This work widens
the scope for conducting research on the Keepaway test-bed. It puts together
distinct techniques that apply to sequential decision making, which is a crucial
element in scaling to more complex multiagent learning problems.
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Abstract. Rollover has been normally regarded as an undesirable way of legged 
robot locomotion. In spite of this, we are looking for the improved robot 
movement by combining the rollover with regular gaits. By considering gaits on 
the macro level, we identify the conditions when adding rollover may result in a 
faster movement of a legged robot.  Our method is generic because the number 
of legs does not matter; we are taking into account only the features and con-
straints shared by all legged robots. As the outcome of this study, we propose a 
mathematical model for estimating the efficiency of using rollover as additional 
gait.  This model is illustrated by evaluating the speed gain achieved in 4-
legged Sony Aibo ERS-7 robot if it is equipped with a rollover skill. While hav-
ing in our implementation the same linear speed as walking, rollover in some 
situations eliminates the need to make turns, thus saving time for the robot to 
change its pose.  

1   Introduction 

Legged robots are designed to walk using different gaits, i.e. particular manners of 
moving on their feet.  We want to relax this constraint by allowing the robot actively 
touching the floor with any part of its body, neck, head, and legs while moving by 
rolling over.  The main hypothesis of this study is that, by combining the rollover with 
regular gaits, in some conditions a robot can move faster.  We determine these condi-
tions and propose a mathematical model for planning robot movements as a combina-
tion of walking and rollovers. We also use this model for evaluating speed gains using 
the 4-legged Sony Aibo robot as an example. Still our method is generic because the 
number of legs does not matter; we are taking into account only the features and con-
straints shared by all legged robots.  

The term ‘rollover of an artificial object’ normally implies something negative; 
rollovers in most cases should be avoided.  In particular, motor vehicle developers are 
doing their best to prevent rollovers.  Same attitude appears to exist in the legged 
robot developer community; by design, rolling over in legged robots is regarded an 
unsuitable way to move [1, 2].  However, for the appropriately shaped robots roll-
overs may be deemed suitable. For example, in [3], this ‘gait’ was studied for the 
purpose of locomotion of a cylinder-shaped robot. One more recent study of rollover 
has been conducted for humanoid robots [4].  In this case, this mode of locomotion 
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was used for the sole purpose of rising of the robot after it falls down. Still in general 
for the legged robots rollover as a gait has not been systematically studied as yet.  

Unlike the works [1-4] that concentrate on the micro level design of the robot lo-
comotion, in this paper we are taking a higher-level view of different gaits; hence ‘A 
Systems Analysis’ in the title.  Our main objective is to create a mathematical model 
that allows estimating the time needed to change the robot pose as the function of the 
ordered set of applied gaits. The sequence of gaits and their parameters are the con-
trolled variables.  Then we solve the discrete optimization problem by minimizing 
time with and without rollover and measure the time gain.  

Although this study was started with 4-legged robots in mind, we make assump-
tions neither about the number of legs nor do we look into the details of leg motions. 
Rather, we consider the robot gaits on the macro level; they are dashing, pulling, 
sidestepping, turning, and optionally rolling over.  To make our approach applicable 
to legged robots, we impose some constraints on the way how these gaits can be com-
bined; we believe that these constraints are specific to most, if not all, legged robots. 
We view the robot motion planning task as deciding on what sequence of available 
macro level gaits to apply for making the desired change to the robot pose. For the 
purpose of planning, we are using generalized approximations of the gaits, each such 
sub model containing very few parameters that are easy to estimate in given robot.  

The objective of this study is to show that using the rollover in a legged robot may 
result in moving faster.  In doing so, we identify the main factors and their parameters 
affecting the time required robot to change its initial state to the desired final one. 
Then we derive equations that allow calculating this time and determine the best se-
quence of gaits and parameters thereof that result in the minimal time. Reducing the 
travelling time is especially critical in robotic soccer.  

Since 1998, the RoboCup legged league was exclusively using Sony 4-legged  
robots; however, these robots have been recently phased out by the manufacturer. 
Because new types of legged robot may likely be developed for the RoboCup compe-
titions in the future, we believe that it makes sense to investigate the locomotion ca-
pabilities of a generic legged robot with rolling over as one of possible gaits. We 
anticipate that the results of this study will be taken into account by the developers of 
the new generation RoboCup legged robots.  

Section 2 describes the problem addressed in this study and explains the main as-
sumptions. In Section 3 we analyze the minimal-time optimization problem for the 
robot movement without rollovers.  In Section 4 we introduce the rollover as a gait 
and provide the algorithm for optimizing robot movement with this optional gait. 
Section 5 describes the experimental results and Section 6 concludes this study.  

2   The Optimized Robot Motion Problem: Main Assumptions  

For the purpose of this study, we limit our consideration to 2D space.  In doing so, we 
represent the state of the robot (pose) just by three parameters (x, y, δ); x, y being the 
coordinates of its center on the plane and δ the facing direction.  We also assume that 
the robot has a set of gaits {G0, G1,…, Gn}, each having a set of parameters. To  
reduce the dimension of the planning problem, we are using very limited set of pa-
rameters for each gait.   
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Fig. 1. Robot must change its initial state A(xi, yi, δi) 
to B(xf, yf, δf) in the minimal time  

Fig. 2. The ‘regular’ gaits of a legged 
robot on the macro level  

 

Consider the following optimization problem (Fig.1).  Robot located in the initial 
state A(xi, yi, δi) wants to get in the final state B(xf, yf, δf) in the minimal time.  Thus 
the robot must select the sequence of gaits and values of their parameters that mini-
mize time to move.  

Note that we consider planning ahead the desired robot orientation δ in the final 
point; in the robotic soccer the success of ball interception highly depends on this 
parameter.   

To make this problem tractable, we make several simplifying assumptions.  
1. There are no obstacles on the robot path.  
2. We do not consider short-range moves, say, shorter than 1-2 robot length; rather, 

we are interested in optimizing longer-range movements when rollover may result in 
some gains. This allows neglecting the robot movement dynamics by assuming that 
starting/stopping are instant.  (This is in particular reasonable for rather slow robots 
like Sony Aibos.)  

3. Walking is split in four atomic macro level gaits: dashing, pulling, sidestepping, 
and turning while staying in the same place (Fig.2). These gaits can be applied one at 
a time; at any given instance, robot can either dash, or pull, or side-step, or turn, or 
roll.  

4. Switching from one gait to another can be made instantly at any time (except the 
rollover in which each revolution must be fully completed before changing to 
different gait).   

5. As time is the only criterion, each of these four gaits is fine tuned to achieve the 
maximal speed.  

 

Assumptions 3-5 need more explanation. Generally, even with this very limited set of 
gaits, there is a continuum of walking options (from dashing/pulling/sidestepping 
straight to dashing-turning on a curve to just turning while staying on the same place). 
However, in legged mechanical systems, be they animals or robots, the movement 
along a non-straight trajectory can be achieved by interweaving of the four basic 
macro gaits shown in Fig.2. Because we assume that gaits could be applied in small 
discrete time intervals, the order of the three translation gates (dashing, pulling, and 
sidestepping) does not matter; Fig.3 illustrates this point. With dynamics neglected, 
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the time to translate the robot thus does not depend on the trajectory if turns are not 
executed.  This is similar to the well known city block distance [5]; the straight path in 
Fig.3 is as fasts as the other two. We believe that this assumption is true to most 
legged mechanical systems. If that was not the case, legged animals could be able to 
achieve higher speed while running in the diagonal directions; yet this does not 
happen.  So in our model, this assumption implicitly sets the constraints inherent to 
legged robots.  

We believe that further simplification of this model by merging the three 
translation gaits in just one is unreasonable because most legged robots are 
asymmetrical. Thus we assume that dashing, pulling, and sidestepping can be 
executed with different maximal speeds.  This is one more macro level feature of 
legged robots that is reflected in the proposed model.  

 

  

Fig. 3. Three alternative paths for translating the 
robot. All are taking same time to travel.   

Fig. 4. Alternative paths: (top) turn-dash-
turn and (bottom) dashes interweaved 
with turns  

 

With turns included, applying same gaits with different timing may result in the 
trajectories having different end points. In Fig.4, the two trajectories have same end 
points and robot direction in it. However, for the bottom trajectory this is achieved by 
special selection of the time intervals when the robot is making turns. Finding the 
optimal sequence of gaits thus becomes a non-trivial problem, especially if dynamics 
is a factor.  To simplify the analysis, we are making one more assumption: turns, if 
any, are only made in the start and end points like in the top trajectory in Fig. 4. With 
neglected dynamics, time necessary to move the robot in the required end pose by 
first making a turn followed by a translation followed by a second turn thus cannot be 
improved by applying turns and translations differently.  

Rollovers provide extra choice to the robot how to move.  With rollovers, there  
is an additional constraint: the robot must be always making integer number of  
revolutions.  

 

The above assumptions imply that:   
1. Robot has five alternative actions associated with macro level gaits:  

• Gt= “turn in place by angle α”,  
• Gd= “dash distance d”,  
• Gp= “pull distance d”,  
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• Gs= “sidestep distance d”, and  
• Gr= “make N rollovers”.  

 where α, d, and N are robot decision parameters.  
2. Robot can execute any one of these actions at any time except the rollover 

which, once started, must be completed.  
3. As the maximal force is always assumed, force is not a gait parameter.  
4. Because legged robots are typically asymmetrical, each translation gait has its 

own speed.  
5. The set of the robot actions and their timing is limited to an optional turn in 

the start point A, translation to the end point B and a second optional turn in 
this point.  

6. Translation may be any combination of gates {Gd, Gp, Gs, Gr}; using Gr being 
the factor whose impact on the time required for reaching the end point we in-
vestigate. 

 

With these assumptions in mind, in what follows, we derive equations for computing 
the robot trajectories on a plane and the traveling times with and without rollovers. 
Then we solve the optimization problem and compare the results for these two  
options.  

3   Robot Motion without Rollover  

3.1   Robot 2D Kinematics  

First we assume the robot that is incapable of rolling over.  Even with the limited set 
of possible gaits the robot has infinite number of options. Indeed, it can make any 
combination of turns, dashes or pulls and/or sidesteps to make its way to the final 
pose. Finding a rigorous method for minimizing the time could be subject of a stand-
alone study; here we are using heuristic approach.  

As it was explained in Section 2, if robot is limited to making turns in points A and 
B only, this would not affect the time given the assumptions we have made.  This 
substantially simplifies the problem by leaving finite set of just seven options which 
all can be explicitly evaluated before making a choice (Fig.5).  The first three are 
either turn-dash-turn, or turn-pull-turn, or turn-sidestep-turn. It is also possible for 
the robot to move with only one turn combined with two translations. There are total 
four choices of such trajectories; two shown on the right-hand pane in Fig.5.  In each, 
sidestepping is always applied as the second translation.  

Because we are interested in minimizing time, of the six parameters of the robot 
motion optimization problem, (xi, yi, δi, xf, yf, δf), only three are independent. In par-
ticular, for the turn-dash-turn combination (Fig.6), these three independent parame-
ters could be:  

22 )()( fifi yyxxntdisplaceme −+−=
, 

(1)

iangle δβ −=1 , (2)

βδ −= fangle2 , (3)
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where β is the orientation angle of the displacement vector, which is determined by 
the two points, (xi, yi) and (xf, yf) (Fig. 1).   

For the turn-pull-turn movement, the two angles are: 

iangle δπβ −+= )(1 , (4)

)(2 πβδ +−= fangle , (5)

For turn-sidestep-turn, these angles can be calculated as: 

iangle δπβ −+= )2/(1 , (6)

)2/(2 πβδ +−= fangle , (7)

It is assumed that the turning angles returned by (2)-(7) are normalized to the range 
[-π,-π). Note that these angles differ for different robot translation modes.  

 

 

 

 

Fig. 5. Five of the total of seven robot movement 
without rollovers 

Fig. 6. Movement parameters 

 

For the two motions shown on the right-hand pane in Fig5, there is just one turning 
angle: 

ifangle δδ −=1  (8)

and two displacements for the first and second translation:  
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There are also two similar motions with the robot turning in the direction opposite to 
the orientation required in the final pose.  
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3.2   Minimal-Time Optimal Robot Motion Planning without the Rollover 

Thus we have just a set of seven options to evaluate and to choose one having mini-
mal time for the legged robot to move from A to B.  Because of the inborn asymme-
try, this time with different gaits may substantially differ.  Normally, dash is designed 
as the fastest of the three translation gaits.  Also, depending on translation gait chosen, 
the total amount of time spent on turns also differs. In the example in Fig.5, the sum 
of two turns is minimal if the robot chooses to sidestep.  If sidestepping is not too 
slow indeed, in this example it could be best choice in this particular case.  So we can 
expect that, in general, of the seven options that robot has to choose from, some may 
require noticeably shorter time than others.  

With robot dynamics neglected, we assume that the angular speed of the robot is  
ω and its translation speeds for dashing, pulling, and sidestepping are vd, vp, vs,  
respectively.  

So the time needed to change the robot state from (xi, yi, δi) to (xf, yf, δf) using the 
translation gait Gk is,  

timek = ( |angle1k| + |angle2k| ) / ω  +  displacement / vk, (11)

where k is one of the identifiers d, p, s. of the translation gaits.  
Calculating time with just one turn and two translation gaits can be done in the 

similar way:  

timejk = |angle1| / ω  +  displacement1jk / vk  +  displacement2 jk / vs, (12)

where j indicates whether the turn was made in A or B and k is the identifier of the 
translation gait applied first (either d or p); the rest parameters are given by (8)-(10).  

Thus  to find the set of actions for changing its state from A(xi, yi, δi) to B(xf, yf, δf) 
in minimal time without rollover, the robot should determine the time for each of the 
seven options.  Then the movement mode delivering the minimal time is selected.  

4   Robot Motion with Rollover  

4.1   Robot Rollover Kinematics  

The rollover kinematics is determined by three parameters, the first being the number 
of full revolutions N.  In what follows, we identify the rest two.   

For the purpose of modeling rolls, a legged robot is regarded a truncated cone.  For 
example, because the Sony Aibo robot has a head, its effective diameter at shoulders 
is greater that that at the hips.  For this reason, in the general case, the rolling path is 
an arc whose radius is R.  

Let chord1 be the linear displacement of the robot center, and θ is the angle by 
which the robot direction changes per full revolution (Fig.7).  

Thus we have   

2
sin21

θ
Rchord ⋅= . (13)

In what follows, we do not call this parameter ‘displacement’ because the latter des-
ignates the distance between points A and B. (In the particular case when the robot 
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could be approximated by a cylinder, R is infinite and θ is zero; chord1 is just the 
circumference of the cylinder.)   

For any number N of revolutions, the chord connecting the initial and final points 
is:  

2
sin2

θN
Rchord N ⋅= . (14)

It is important to make sure that the following constraint is satisfied:   

θ
π≤N . (15)

Indeed, if N = π/θ, robot rolls exactly half circumference whose radius is R.  Further 
increments of N would result in that the robot would be approaching back to the initial 
point A.  

For the purpose of analysis, we have found it more convenient not using R as a pa-
rameter of the robot kinematics. Instead, we introduce θ as the second and chord1 as 
the third independent parameters; both can be easily measured experimentally.  By 
solving (13) and (14), we eliminate R.  So the final formula for the straight distance 
covered by N rollovers is:   

2
sin

2
sin

1 θ

θN

chordchord N ⋅=  (16) 

 
 

 

Fig. 7. Robot direction changes by 
θ after each revolution  

Fig. 8. Alternative rollover paths leading close to the 
final point B  

4.2   Minimal-Time Optimal Robot Motion Planning: The General Case  

Rollover adds two degrees of freedom in the planning task. They are the number of 
revolutions N and the direction γ from the initial point to the end point of the rollover 
(Fig. 8).  

These action parameters are not all uniquely determined by the initial and final 
states of the robot.  We simplify the problem by assuming that the rollover trajectory 
is always selected by setting γ =0; i.e. the end point C of the last rollover must be on 
line AB.  However, this is just a near-optimal solution; by carefully choosing γ, in 
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some cases it is indeed possible to reach the final pose faster.  However, this gain in 
speed, if any, would be negligibly small.   

This simplification means that of the continuum of potential trajectories we will be 
selecting one of just two possible pairs with the end points C1 and C2 shown in Fig.9.  
They require N or (N+1) revolutions, respectively.  After the robot reaches any of 
these end points, it faces the task to reach the final state B from C1 or C2 in minimal 
time. To accomplish this, robot applies the optimization method without rollovers 
described in section 3.2.  

In Fig.9 all four paths have different time to reach the final point. The paths differ 
in the initial and final turning angles; also different is the number of revolutions and 
the residual paths after rolling.  

In the nutshell, to calculate time to move from A to B in the general case, robot 
first determines the required time for the following options: 

• without rollovers (seven options),  
• two options with N rollovers and seven options to move from C1 to B, and   
• two options with N+1 rollovers and seven options to move from C2 to B. 

Then of the total of 7·3+2+2=25, the option having the minimal time is selected.  
The time to reach the end point C1 (C2) with N rollovers along k-th trajectory is: 

timeRk =  |angle1k| / ω  +  N·revtime, (17)

where angle1k is the first turn angle and revtime is time to execute one full revolution.  
The number of revolutions N is determined from the inequality  

chordN ≤ displacement ≤ chordN+1,  (18)

where chordN is given by (14).  
 

 

Fig. 9. The two pairs of alternative paths with rollovers. Note different turning angles before 
and after rolling.   

 

For each trajectory in Fig.9, the turning angle angle1k can be found as follows:  

2/))1(()(11 θπβδ ⋅++−−= Nangle i
, (19)

2/)()(12 θπβδ ⋅+−−= Nangle i
, (20)
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2/)3()(13 θπβδ ⋅−−−= Nangle i
, (21)

2/))1(3()(14 θπβδ ⋅+−−−= Nangle i
. (22)

Upon arrival in point C1 (C2), the robot coordinates and body direction are   

βcos⋅+= NiC chordxx , (23)

βsin⋅+= NiC chordyy , (24)

θδδ ⋅±+= Nangle kiC 1 , (25)

where in (25) the minus sign applies to trajectories 1, 2 and the plus sign to  
trajectories 3, 4.  

Then using the new robot initial state C(xC, yC, δC) we can find the time needed to 
cover the remaining path to B(xf, yf, δf), by applying the algorithm described in  
Section 3.2.   

This provides the full description of the algorithm for calculating time to change 
the robot pose A(xi, yi, δi) to pose B(xf, yf, δf) for any given set of gaits that satisfy our 
assumptions.  

5   Experiments and Performance  

The authors came to the idea to use rollovers in late 2005 soon after the first experi-
ence with Sony ERS-7 robots equipped with the well-known Tekkotsu software pack-
age [6]. The walking gaits that come with this software appeared to be too slow. On 
the other hand, the rounded body of the robot and its ability to place its head in rather 
low position rendered themselves for rolling possibly faster than walking.  So the 
authors implemented the rollover in ERS-7 and conducted a set of experiments to 
measure its parameters (Fig.10).  After completing this study, the authors discovered 
that the rollover indeed had been earlier implemented as part of a student project an 
undergraduate course in robotics at Carnegie-Mellon.  However, in that case was used 
different robot ERS-210.  Presumably because of its boxy shape rolling appeared to 
be clumsy and noticeably slower than our ERS-7.   

 

   

Fig. 10. A Sony Aibo ERS-7 robot making a rollover 
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The rollover ‘gait’ in our experiments was designed using only common sense and 
thus cannot be regarded fully optimized.  Yet we have gained same translation speed 
(31.0 cm/s in our rollover vs. 30.9 cm/s in Tekkotsu dashing).  Table 1 provides the 
experimental values of the main parameters of the ERS-7 robot gaits as they were 
found in Tekkotsu; the rollover parameters are also included.    

Table 1.  Sony Aibo ERS-7 robot parameter estimates  

Gait Parameter Mean value Standard deviation 

Straight line  
dashing  

speed, cm/s 30.9 4.5 

Side stepping  speed, cm/s  20.4 1.65 

Pulling  speed, cm/s  14.0 1.42 

Turning  angular speed, degrees/s  205  19.1  

Rollover:  Chord, cm  
Revolution time, s  
Angle increment, degrees  
Calculated translation speed, cm/s  

36.6 
1.18 
22.5  
31.0  

1.3 
0.06 
1.8  
N/A 

 
Using the averages of these parameters, we have implemented a software model to 

estimate the robot motion performance with and without rollovers.  Based on expres-
sions (1)-(25), this model calculates the anticipated time for the robot to change its 
pose A to pose B.  Table 2 presents the summary of the calculation results.  

The calculations have been made for 100 values of alpha1 in the range (-π, π), 
combined with 100 values of displacement in the range (30, 180) cm, and 100 values 
alpha2 in the range (0, π), thus making the total of 106 points uniformly distributed in 
the 3D parameter space.  Distances greater than 180 cm were not considered because 
from (15) we get the maximal number of revolutions N=8; thus from (14) 
chord8=187.6 cm, which is the maximal reach by rolling over for this robot.  

The central column (highlighted in boldface) shows the results for the robot pa-
rameters taken from Table 1.  It demonstrates that in 42.6 per cent of cases the option 
to rollover would reduce time by 0.285 seconds on the average. In a soccer game this 
time gain means that the robot intercepting the ball would be likely outplaying a non-
rolling opponent if all the rest conditions are same.  Yet this is a somewhat pessimis-
tic estimate; if for the same values of the model the displacement range is limited to 
(30, 120) cm, the rollover gives noticeably better average time advantage 0.316 sec-
onds in 56.7 per cent of cases. This is because the contribution of the curvature to the 
rollover path on shorter distances is less significant.  

The two left-hand columns give the idea how the advantage gained with optional 
rollovers decays with the reduced linear speed of rollovers.  At 80 per cent of the 
dashing speed the gain is achieved just 9.0 per cent time; at 60 per cent the contribu-
tion of rollover completely diminishes.   
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Table 2.  Rollover vs. non-rollover motion comparison   

(Rollover linear speed)/(dashing speed) 
Performance indicator 

0.60 0.80 1.00 1.20 1.40 

Average time without rollovers, s 4.24 4.24 4.24 4.24 4.24 

Average time with rollovers, s 4.24 4.22 4.12 3.84 3.50 

Per cent of times when rollover is faster 0.001 9.02 42.6 74.2 93.2 

Average gain when rollover is faster, s  0.001 0.18 0.285 0.540 0.791 

Relative gain when rollover is faster, per cent 0.01 4.27 6.71 12.7 18.6 

 
We believe that in Aibos rolling over is more energy efficient than walking and can 

be further improved.  This is supported by the experimental observation of that the 
robot dashing speed tended to decrease with distance; hence the relatively high stan-
dard deviation of the dashing speed in Table 1. We attribute this to chemical proc-
esses in the battery under high load. After some rest, robot could be able to dash with 
the original speed again for a short time. With rollover, however, we did not observe 
this negative effect of the battery drain.   

Because no attempts have been made to optimize the rollover motion sequence, it 
would be nice to know what might happen if one had managed to improve the coordi-
nated action of the 15 joints of the robot’s neck and legs that are making it rolling 
over. The two right-hand columns in Table 2 show these projections. If we improve 
the rollover linear speed by 20 per cent, robot would be faster by 0.54 seconds in 74.2 
per cent cases. With 40 per cent speed increase, rolling over would be advantageous 
93.2 per cent of the time.  

6   Conclusion   

The rollover ‘gait’ adds more flexibility in the legged robot movement. Even when 
the rollover has about same linear speed as dashing, if introduced in a robot, this extra 
gait allows in some situations saving time on turns that are thus becoming unneces-
sary due to the possibility to move in the lateral direction.  Because the proposed 
model is taking into account only high-level features of robot motion, we believe that 
it is applicable to almost any legged robots.  By plugging into our model different 
parameter values, a robot designer may determine if adding the rollover capability 
would or would not give any advantage in speed.   

Evaluating the potential gains for Sony Aibo robot from rolling over was just an il-
lustration of the proposed method.  Our study demonstrates that this gain is tangible; 
this gives the reason for attempting to implement the rollover it in the legged soccer 
robots.  

Yet we are looking forward to the new developments in the legged RoboCup 
league; thus we hope that this study would be helpful for making high-level design 
decisions in the development of new robots.    
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Abstract. The ability by the simulated soccer player to make rational decisions 
about moving without ball is a critical factor of success.  In this study the focus 
is placed on the defensive situation, when the ball is controlled by the opponent 
team in 2D simulated soccer. Methods for finding good defensive positions by 
the robotic soccer players have been investigated by some RoboCup scholars. 
Although soccer teams using these methods have proved to be reasonably good, 
the collaboration issue in defense has been overlooked. In this paper, we dem-
onstrate that collaboration in defense yields better results. In doing so, we treat 
optimal defensive positioning as a multi-criteria assignment problem and pro-
pose a systematic approach for solving it. Besides achieving better perform-
ance, this makes it possible to gracefully balance the costs and rewards involved 
in defensive positioning. 

1   Introduction 

In real-life soccer game and in simulated soccer likewise players must follow some 
plan. This plan implements the team strategy and requires collaborative effort in order 
to attain common goals. In doing so, the only thing that soccer players who are not 
directly controlling the ball can do is moving to some position. With the total of 22 
players, an average player is spending less than 10 percent of the total time on inter-
cepting or handling the ball; the rest accounts to moving somewhere without the ball 
while not trying to intercept it.  This implies the crucial importance of addressing 
rational positioning without the ball. Thus any improvement in the player behavior 
would presumably have great impact on the whole game.  

In our early study on optimized soccer player positioning in offensive situations, 
i.e. when the ball is controlled by own team, we proposed a method for determining 
best positions [1]. Because that required taking into account several optimality crite-
ria, we were using the Pareto optimality principle. Now we concentrate on defensive 
situations, when the ball is possessed by the opponents. As in the defense players are 
pursuing different objectives, we expect that the approach to choosing best positions 
by players should be also different. Still we will be using the Pareto optimality princi-
ple as a universal tool for balancing risks and rewards in multi-criteria optimization. 
Player collaboration is one more special issue that left unaddressed in our previous 
work. Now we want to propose a mathematical model of optimal player collaboration 
in defense and show the potential gains.  
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The objective of this paper is to provide a complete solution to the rational posi-
tioning problem for simulated soccer (if taken together with our previous study on 
offensive positioning).  

In particular, we want to improve defensive positioning and to measure improve-
ment. Our method boils down to the adjustment of the default position calculated 
using very general information about the situation on the field such as ball state and 
the defender’s home position. The adjustment of this default position is based on two 
ideas. First, we propose that this adjustment should be made with some predicted 
situation on the field in the player’s ‘mind’. For this purpose, we extend the concept 
of the prediction time horizon from our earlier work [1]. Second, given the time hori-
zon, we want to optimize the individual player movements with respect to the global 
criteria that reflect the team success rather than individual performance of the soccer 
player. In doing so, we propose a set of optimality criteria and develop an algorithm 
for finding near-optimal solution. We also measure the performance gain from the 
proposed methods.  

2   Defensive Player Positioning in the Simulated Soccer  

Real-life soccer provides some clues for the simulated version. The major objective of 
soccer player positioning in defense is repelling the attack by the opponent team and 
creating conditions for launching own attack. However, this requires coordinated 
effort because individual players acting by themselves are unable to accomplish this 
goal. Normally the fastest to the ball soccer player in the defending team is trying to 
approach the opponent player who controls the ball, thus forcing him prematurely 
trying to score the goal or pass the ball to some teammate. Therefore, the objective of 
the rest players on the defending side is either to block the way of the ball to own goal 
or to prevent the opponent players from receiving a pass, or create difficulties for 
further handling the ball if such pass had occurred. To accomplish this, each available 
defending player moves to a suitable position on the soccer field near each threatening 
opponent player. In the professional soccer literature, this is referred to as “marking” 
and “covering” [2, 3]. Coordination is necessary to guarantee that each potentially 
dangerous opponent is taken care of and none of the opponents is tended by two or 
more players because of the limited team size.  

We want to implement this rational human player behavior in the RoboCup simu-
lated soccer.  

The RoboCup scholars have developed a few methods for player positioning. A 
good overview can be found in [4]; we have provided some extra details in our previ-
ous paper [1]. We deliberately excluded machine learning approach to soccer player 
positioning investigated by some scholars (e.g. [5, 6]). Some of these methods do not 
treat positioning as a standalone player skill, which makes theoretical comparisons 
difficult. More difficulties arise while trying to elicit meaningful decision making 
rules and especially address the convergence issue of learned rules to optimal decision 
making algorithms based on explicitly formulated principles. 

One of major requirements of positioning is that player behavior must be persistent 
over several simulation cycles; player is not supposed changing its mind in each cy-
cle, anyway. This implies that the true intelligent soccer player should keep some 
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aspired position in mind that it persistently should be moving to. This position 
changes substantially if only the situation in the game also changes substantially.  

We believe that using a two-layer control structure makes it easier to explain how 
this desired position should be calculated.  

On the higher level, some default position is determined based on rather general 
considerations such as the player role in the team formation, ball state vector, and 
game situation (attack, scoring the goal, defense). Methods for determining this de-
fault position by different authors somewhat differ, but their common feature is that 
they do not take into account the detail situation on the field such as the state vectors 
of players. These are some indications that in some RoboCup teams these details are 
taken into account somehow by adjusting the default position with respect to the sur-
rounding players; yet no systematic approach has been published. One exception is 
[4], where a mathematical model for player positioning based on the Voronoi dia-
grams was proposed. The shortcoming of this approach, however, is that the relation-
ship between soccer tactics and the proposed method is not apparent and therefore it 
is difficult to implement. Moreover, the authors in [4] concentrated on offensive posi-
tioning of players.  

Here is a typical example how the high-level positioning problem both in attach 
and defense could be approached. This is a generalization of the ideas originally pro-
posed in two RoboCup team descriptions [7, 8]; both teams had won top places in the 
world competitions.  

Let the team formation prescribe a specific fixed home position on the field for 
each player. This position is reflecting the players' role (e.g. right-wing attacker, cen-
tral defender, and so on). At any time, the default player position is determined by the 
three factors: (1) home position, (2) the current location of the ball, and (3) which side 
is currently controlling the ball.  

Assuming that both goals are lying on x-coordinate axis, the method for calculating 
the default position (xi, yi) of i-th player is given by the formulas:  

xi = w*xhomei + (1-w)*xball + xxi,  

yi = w*xhomei + (1-w)*yball,  
(1)

where w is some weight (0<w<1), (xhomei, yhomei) the fixed home position of the 
player; (xball, yball) is the current ball position; and xxi is the fixed individual adjust-
ment of x-coordinate whose sign and value is different for the offensive and defensive 
situations.  

So the default position is changing over time with the ball and maintains relative 
locations of the players in the formation thus implementing the team strategy. This 
resembles what the human soccer players are doing, especially if the ball is rather far 
away; they just move towards the default position. Persistence of player positioning is 
accomplished by the weight w that translates the ball movement with a reduced im-
pact on the default positions; these changes are continuous over time, anyway. Abrupt 
changes of the default position occur only when the situation changes from attack to 
defense.  

The decision about whether the current situation is attacking or defensive is made 
when the ball is rolling freely. Each player determines when and where the ball will 
be likely intercepted by some player. If this player is a teammate, we have an  
offensive situation; we addressed this case in [1] earlier. If the ball is going to be 
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intercepted by an opponent player, the situation is defensive; this is exactly the case 
we are discussing here.  

Thus on the higher level of control, only the location of the ball and the home posi-
tion are taken into account; teammates and opponents are ignored.  

On the lower level of control, however, other players are the main factor to con-
sider. In the defensive situation, the individual soccer player is constantly fine tuning 
his position in the vicinity of the default position. In doing so, the player is taking into 
account the local situation trying to determine the best position that would most likely 
lead to preventing the nearby opponent player from receiving the ball passed to him 
by the teammate or shoot at the goal. Because reaching this optimal position takes 
some time, persistent actions by the defender are required over several simulation 
cycles. Obviously, we are interested in making sure that the aspired position is opti-
mal not now, but at the future time when it would have been reached and the defender 
reaches the ball.  

From the very brief RoboCup team descriptions it follows that different scholars 
have approached this issue in different way; yet a systematic approach has not been 
developed or at least published yet.  

Two critical issues are related to player positioning in defense: (1) choosing the 
time horizon for predicting the situation on the field and (2) player collaboration.  
 

Choosing the time horizon T for predicting the situation. Obviously the set of all 
possible future positions for each player is infinite; we want to find the way to limit-
ing the size of this set to some tractable finite subset. In doing so, we refer to the set 
of all positions currently reachable by player in time T as the feasible set. This set is 
approximately a circle whose radius is the distance that given player can cover in time 
T. As the player changes his own position, this feasible set is moving accordingly. 
Making decision by the player about where to go is in fact choosing the best position 
in this set.  

Choosing the right time horizon T is worthy of closer consideration. This time cer-
tainly cannot be too large, as we do not know how exactly the opponent team is going 
to act even in the near future, to say nothing about true unpredictable random factors 
present in the game that are making long-term predictions useless. On the other hand, 
too short T makes little sense, as only positions that are very close to current location 
of the defender would be deemed to be feasible; this may result in the lack of persis-
tence of player behavior. Thus we need to use the greatest possible value of T that still 
maintains reasonable accuracy of prediction.   

In our previous paper [1], we have proposed to set the time horizon T equal to the 
time Tb remaining until the freely moving ball will be intercepted by some player; in 
defense, this is a member of the opponent team. It is based on the assumption that 
while the ball is rolling, the situation on the soccer field could be predicted with rea-
sonably high precision based on the logic of the soccer game. Indeed it is reasonable to 
assume that the two fastest players to the ball from both teams would be trying to in-
tercept it. The rest players would tend to move to their default positions determined by 
their role in the team formation and the location of the ball interception point. The 
experience with real-life soccer proves that unless players do so, their team would be at 
disadvantage. Thus we have rather solid grounds for predicting the situation while the 
ball is rolling freely. Note that in an average soccer game the ball is rolling about 90-95 
per cent of all the time; so we indeed can make such predictions most of the time.   



 Pareto-Optimal Collaborative Defensive Player Positioning in Simulated Soccer 183 

 

Further analysis has shown that in many cases this time horizon can be extended by 
some time TT whose precise meaning will be explained later. This TT is slightly less 
that the time needed for the opponent player to further pass the ball to his teammate 
after the interception. (Indeed, the defender wants to prevent this pass from happening 
or if it happens to intercept the ball.) So in general, the actual time horizon is 
T=Tb+ TT, i.e. greater than we proposed in [1]. Thus on the second layer of control in a 
defensive situation the default positions should be adjusted to better fend off the at-
tack by the future time t=Now+Tb+ TT.  

Without such adjustment, default positions create conditions for successfully dis-
rupting the opponent’s attack only incidentally. Individual adjusting can make this 
happen more frequently, thus contributing to the success of the team. We want to 
implement these behaviors in the simulated soccer game.  
 

Player collaboration. Player positioning in defense substantially differs from posi-
tioning in attack by the critical importance of player collaboration. To further explain 
this feature, consider an example. Figure 1 shows the situation when the red team is 
about to score the yellow team’s goal.  

 

 

Fig. 1. The red team is attacking. The ball is rolling up the field and could be reached by red 
#11. Yellow defenders are individually marking closest opponents; thus red #10 is left  
unattended.   

Arrows in the magenta color show the intentions by the yellow team defenders to 
place themselves to fend off the attack. The ball is rolling up the field and is about to 
be reached by red #11. The fastest to the ball yellow #4 is also going to intercept it. 
The yellow defenders #2, #3, and #5 are trying to mark the attackers. They are mak-
ing these decisions individually without taking into account the decisions made by 
their teammates, i.e. without collaboration. Thus each defender chooses to mark the 
nearest opponent. Yellow midfielders #6 and #7 are moving towards their default 
positions waiting for the outcome of the opponent’s attack.  

What happens next is shown in Figure 2. Red player #10 is left unattended and is 
going to receive a pass from red #11 before yellow #4 interferes. Once red #10 re-
ceives the pass, it would be able to score the goal or pass the ball to red #9 whose 
scoring chances would be even better. Thus the red team accomplishes its goal almost 
for certain.   
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Fig. 2. After about 1 second, red #11 passes the ball to the unattended red #10 before yellow 
#4 interferes. The red team is likely to score the goal.   

The attack by the red team could be more likely fended off if the defenders had 
collaborated instead of making individual decisions about marking the opponents. 
Thus each defender must take into account the decision alternatives for the whole 
team (or at least for a group of closely located teammates) and find a solution that 
would balance some global optimality criteria. This collaboration is shown in 
Figure 3. Note that yellow player is going to mark red #10 even though this is not 
the closest opponent. Yellow midfielder #6 joins the defenders by going to mark 
red #9 thus contributing to the team effort. The critical condition is that each 
defending player must know what its teammates are going to do. This requires 
collaboration.  

We want simulated soccer players to exhibit this intelligent collaborative behavior 
in the defensive situations. So far we have not found any suggestions in the RoboCup 
community publications that propose a systematic solution to this problem. In what 
follows, we develop such solution.  

 

 

Fig. 3. Defending players have made a collaborative decision that prevents from leaving red 
#10 unattended. The attack by the red team would likely be fended off.   
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3   The Proposed Positioning Method in a Nutshell  

To contain the complexity of the collaborative defensive positioning problem, we 
split it into two sub problems: (1) making a collaborative decision for a group of de-
fenders and (2) making the decision about the point to move to by an individual  
soccer player.  

The collaborative decision making concerns optimization of the assignment of n 
defenders to cover m attackers. This problem could be formulated, as follows: 

Let ijα  be a decision variable whose value is 1 if i-th defender is assigned to mark 

j-th opponent (1≤i≤n; 1≤j≤m) and 0 if otherwise: 

{0,1}∈ijα . (2)

Thus there are total of n*m such unknown variables. Also let uij be the ‘utility’ result-
ing from the assignment i→j.  

By varying the set }{ ijα , we want to gain the maximal total utility of the collabo-

rative action by n defenders:  
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In doing so, besides (2), the following constraints must be observed:  
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Constraints (4) and (5) mean that each defender must be assigned to mark no more 
than one opponent and each opponent must be marked by no more than one defender.  

This problem is referred to as the Linear Assignment Problem; its precise solution 
is delivered by so-called Hungarian algorithm, whose complexity is O((max(m,n))4). 
[9].   

In the context of our study, however, it is difficult to measure the defender assign-
ment utility with just one criterion. Actually, we have to be balancing rewards and 
risks; this implies several criteria functions that yet to be specified.  

In what follows, we resolve by deriving the criteria functions from soccer tactics 
and offering an algorithm that would provide an optimal solution of the multi-criteria 
assignment problem that is based on the Pareto optimality principle.   

Decision making by the individual soccer player is based on the assignment to 
take care of the specific attacking opponent. The defending player must find the  
optimal point to move to by balancing the risks and rewards incurred with such 
movement. The end point must be reachable within the time horizon T, i.e. before the  
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situation becomes hardly predictable or it is just too late. In what follows, we propose 
a simple method for finding the optimal point with respect to the limited time balance.  

4   Identifying the Feasible Options  

While the ball is rolling freely, the defending player can determine the time Tb until 
the ball will be intercepted and predict the situation rather precisely. In Figure 4 this is 
the time left until the ball reaches point A. This example shows the two main con-
straints for the yellow defender #3. The yellow circle is the reachable area in time 
T=Tb + TT, where the meaning of TT is explained below. The magenta circle is the 
responsibility area where this player must be staying to maintain the team formation. 
The center of this area is given by (1). The intersection of these two circles makes the 
set of feasible positions.  

 

Fig. 4. Feasible alternative positions for the yellow player #3 (shaded area). The ball is rolling 
freely towards red #8 who is going to intercept it in A.  

Early studies [3, 7, 10] have shown that, for any given predicted locations of the 
ball interception point and the opponent player without the ball, it is possible to de-
termine the best location for the defender to mark or cover this opponent. However, 
the limitation factor of the available time Tb+ TT in these studies has been neglected. It 
turns out that, depending on time balance, we have indeed two different cases shown 
in Figures 5 and 6, respectively.  

One of the new ideas that we claim in this paper is the precise definition of the 
soccer terms “marking’ and “covering” as presented below. The existing professional 
soccer literature [2, 3] does not even attempt to precisely define these concepts leav-
ing its interpretation up to the reader. As usual, the need in such definitions arises 
when it comes to mathematical modeling.  

Case 1: Marking. If the defender #3 can reach the best marking position before 
the ball could be sent to the opponent #9 being tended by this defender, the recom-
mended marking point C is lying on the line between the anticipated ball interception 
point A and the predicted location B of the attacker at time Tb (Figure 5).  In this case, 
TT is the time necessary for the ball to reach C after it had been passed by red #8 to 

red #9. Thus the defender himself must reach C in time Tb+ TT.; the shaded feasible 
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area also must be also determined for this extended time horizon. Distance BC must 
be large enough for the yellow player #3 avoiding the interference by red #9 after 
intercepting the ball.  

Case 2: Covering. If the best marking point is beyond the reach of the player in 
time Tb+ TT, the recommended defensive position must be lying on the line segment 
BG connecting the predicted position of the opponent and the center of own goal 
(Figure 6). Instead of marking the opponent we get what is called ‘covering’ [3]. In 
this case, TT is the time necessary for the ball to reach B after it was passed by red #8 
to red #9.  

 

  

Fig. 5. Yellow defender #3 decides to move 
from D to C to block the red opponent #9 from 
receiving pass made by red #8  

Fig. 6. The time balance would not permit 
yellow #3 to reach the position from that it 
could block red #9. Point C allows covering 
the direction to own goal and likely repos-
sessing the ball from red #9 if it receives a 
pass.   

 

While planning collaborative defensive positioning, the recommended point Cij is 
calculated for each pair of i-th defender and j-th opponent. Distance BC must be small 
enough for the yellow defender #3 to prevent the red attacker #9 from freely handling 
the ball. The latter requirement cannot be satisfied if the opponent time advantage is 
too large. If this is the case for ik-th defender and js-th opponent, pair (ik, js) is elimi-
nated from the set of feasible assignments {i→j}.  

5   Criteria for Collaborative Decision Making and  
the Optimization Algorithm  

The utility of assigning n defenders on m attackers is difficult to express it terms of 
single criterion because there are several conflicting factors. We consider just two: 
gain and cost.  Gain could be measured in terms of the threat prevented by taking care 
of an opponent player. Cost is the required time to implement this action; on the intui-
tive level, this time is directly related to risk. We want to maximize total gain and 
minimize total cost (risk) simultaneously.  

We measure the threat imposed by j-th attacking player by using a heuristic crite-
rion that takes into account three factors:  



188 V. Kyrylov and E. Hou 

 

(1) the angular size ),( jj yxβ of own goal from the predicted opponent’s location 

),( jj yx ;  

(2) distance from the opponent’s location to own goal ),( jjgoal yxd ; and 

(3) distance between the ball and the opponent’s location ),( jjball yxd .   

We mean that the threat increases with the first factor and decreases with the other 
two. Distance to the goal contributes to threat more than distance to the ball. Thus we 
get:  
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Cost is measured by the time Tij necessary for i-th defender to reach the recommended 
point Cij; if this point is infeasible, this time is set to infinity.  

So we want to maximize the total prevented threat:  
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and to simultaneously minimize the total time expenditure:  
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Balancing these two optimality criteria requires following the Pareto optimality prin-
ciple. Unfortunately, it looks like an algorithm to precisely solve this problem has not 
been developed as yet; all methods that we have found in the literature so far are deal-
ing with special cases only [11, 12, 13]. Thus, assuming so-called preemptive priori-
ties of our criteria, we can use one of these methods [12]. By following this approach, 
we assume that threat is preemptive over time. So we select the opponents one at a 
time in the descending order of the anticipated prevented threat. For each unassigned 
opponent, we find the defender having the minimal time Tij to mark or cover it. The 
process ends when all available opponents or all defenders are allocated. Thus it is 
unlikely that the defeat shown in Figure 2 would have ever happened.  

The critical assumption in the method described above is that each defender has 
same world model. If this is indeed the case, each collaborating player would be get-
ting same solution to the multi-criteria assignment problem. However, if the knowl-
edge of the situation is imperfect, the decisions made by different defenders would 
not necessarily match, thus disrupting the collaboration. This is exactly the case with 
2D RoboCup simulated soccer. In our experiments we have found that the differences 
in the decisions made by different players are frequently incompatible; thus no col-
laboration is possible. This difficulty can be overcome by leaving decision making up 
to one player whose world model is the best. Implementing this decision is all what is 
left up to the rest players. In the defensive situations the player with the best world 
model is normally the goalie. This player assumes the role of the coordinator and 
broadcasts the decisions to teammates via the simulated aural communication chan-
nel. So once i-th defender received from the coordinator the assignment i→j, this 
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defender starts moving straight towards the recommended position Cij. The obvious 
cost that we have to pay for this collaboration is the one-cycle delay in decision  
making.  

6   Experimental Results and Conclusion 

We have conducted experiments with the purpose to estimate the sole contribution of 
the proposed method for the lower-level optimized player positioning compared with 
only strategic, higher-level positioning.  

Measuring the player performance using existing RoboCup teams is difficult be-
cause new features always require careful fine tuning with the existing ones. For this 
reason, we decided to compare two very basic simulated soccer teams. The only dif-
ference was that the experimental team had player positioning on two levels and the 
control team just on one level. Players in both teams had rather good direct ball pass-
ing and goal scoring skills and no dribbling or holding the ball at all. Thus any player, 
once gaining the control of the ball, was forced to immediately pass it to some team-
mate. In this setting, the ball was rolling freely more than 95 per cent of the time, thus 
providing ideal conditions for evaluating the proposed method.  

To further isolate the effects of imperfect sensors, we decided to use Tao of Soccer, 
the simplified soccer simulator with complete information about the world; it is avail-
able as the open source project [14]. Using the RoboCup simulator would require 
prohibitively long running time to sort out the effects of improved player positioning 
among many ambiguous factors.  

The higher-level player positioning was implemented as presented in expression 
(1), which is similar to used in UvA Trilearn [7]; this method proved to be reasonably 
good indeed.  

Because players in the control team were moving to the reference positions without 
any fine tuning, the interception of opponent ball passing by defenders was occurring 
as a matter of chance.  In the experimental team, rather, players were adjusting their 
location about the default positions as described in this paper. As the result, they were 
purposefully attempting to mark the opponents or cover own goal.  

Like in our previous paper [1], the sole purpose of this experiment was to demon-
strate that using smart defensive positioning is in principle better that using just de-
fault positions calculated as (1). Precise measurements of performance, however, are 
only possible with full set of advanced features implemented in the artificial players.   

The team performance was measured by the score difference. Figure 7 shows the 
histogram based on 100 games each 10 minutes long.  

The experimental team has the average score greater by 1.63; however, this differ-
ence has too low statistical significance, as with only 100 games, the distribution 
appears to have too long tails. A little more cautious claim about the score difference, 
however, is significant.  Indeed, at 95% confidence level, the experimental team with 
advanced defensive positioning scores on average at least 1.3 extra goals per game. 
This difference is indeed worthy of trying to achieve!  
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Fig. 7. A histogram of the score difference in 100 games  

 
3 defenders, 4 attackers 2 defenders, 3 attackers 

 

Fig. 8. Two custom-designed scenarios with defenders outnumbered by attackers 

Because the defensive situations in which our improvements are showing up hap-
pen rather infrequently, we also created two scenarios in that proper marking and 
covering opponents is very critical for the defending team. Figure 8 shows two situa-
tions where defenders are outnumbered by attackers who are about to score the goal.  
In these experiments, no goalie was at the goal line for the defending team; the ball 
was randomly placed in front of an attacker, with randomly positioned attackers. The 
situation, whose duration was 200 cycles (10 seconds), was repeated 500 times. In the 
end of each repetition the statistics on the goal scored was gathered. 

The results for the control and experimental team are shown in Table 1.  

Table 1. Experimental results with special scenarios 

Defending team Average goals scored Standard deviation 

3 defenders, 4 attackers 

Control 0.400 0.015 

Experimental 0.304 0.015 

2 defenders, 3 attackers 

Control 0.568 0.016 

Experimental 0.280 0.014 
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These results indicate that there is a statistically significant (at more than 99% con-
fidence) improvement in the team performance. Indeed, the modifications made to the 
experimental team reduced the probability of scoring the goal by the attackers 1.3-2.0 
times. Best results are achieved when the numerical superiority of attackers is greater.  

This proves the viability of the proposed method for defensive positioning in simu-
lated soccer.   
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Abstract. How to make vision system work robustly under dynamic light con-
ditions is still a challenging research focus in robot vision community. In this 
paper, a novel camera parameters auto-adjusting method based on image en-
tropy is proposed. Firstly image entropy is defined and its relationship with 
camera parameters is verified by experiments. Then how to optimize the camera 
parameters based on image entropy is proposed to make robot vision adaptive 
to the different light conditions. The algorithm is tested using the omnidirec-
tional vision system in indoor RoboCup Middle Size League environment and 
outdoor RoboCup-like environment, and the results show that our method is ef-
fective and color constancy to some extent can be achieved. 

1   Introduction 

How to make vision system work robustly under dynamic light conditions is still a 
challenging research focus in computer vision/robot vision community [1]. There are 
mainly three approaches to achieve this goal. The first one is to process and transform 
the images to achieve some kind of constancy, such as color constancy by Retinex 
algorithm [2]. The second one is to analyze and understand the images robustly, such 
as designing adaptive or robust object recognition algorithms [3, 4]. These two ap-
proaches have attracted lots of researchers’ interest, and lots of progresses have been 
achieved. The third one is always ignored by researchers, which is to output the im-
ages to describe the real scene as consistently as possible in different light conditions 
by auto-adjusting the camera parameters (in this paper, camera parameters are the 
image acquisition parameters, not the intrinsic or extrinsic parameters in camera cali-
bration). In the digital still cameras and consumer video cameras, many parameters 
adjusting mechanisms have been developed to achieve good imaging results, such as 
auto exposure by changing the iris or the shutter time [5], auto white balance [6], and 
auto focus [7]. In some special multiple slope response cameras, the response curve 
can be adjusted to adapt the dynamic response range to different light conditions by 
automatic exposure control [8]. But these methods are always on the camera hardware 
level, and we can not do these things or make modification on most cameras used in 
robot vision system except some special hardware-support cameras. 

The RoboCup Middle Size League (MSL) competition is a standard real-world test 
bed for robot vision and other related research subjects. It is still a color-coded envi-
ronment, though some great changes have taken place in the latest competition rules, 
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such as replacing the blue/yellow goals with white goal nets, no color flag post any 
more. The final goal of RoboCup is that robot soccer team defeats human champion, 
so robots will have to be able to play competition in highly dynamic light conditions 
even in outdoor environment. So designing robust vision system to recognize color-
coded objects is a research focus in RoboCup community. Besides adaptive color 
segmentation methods [3], color online learning algorithms [9, 10], and object recog-
nition methods independent on color information [11, 12], several researchers also 
have tried to apply the third approach to help achieving the robustness of vision  
sensors. Paper [13] defined the camera parameters adjustment as an optimization 
problem, and used the genetic meta-heuristic algorithm to solve it by minimizing the 
distance between the color values of some image areas and the theoretic values in 
color space. The theoretic color values were used as referenced values, so the effect 
from illumination could be eliminated, but the special image areas needed to be se-
lected manually by users in the method. Paper [14] used a set of PID controllers to 
modify the camera parameters like gain, iris, and two white balance channels accord-
ing to the changes of a white reference color always visible in the omnidirectional 
vision system. Paper [15] adjusted the shutter time by designing a PI controller to 
modify the reference green field color to be the desired color values. 

In this paper, we try to use the third approach to achieve the robustness and 
adaptability of camera’s output under different light conditions. We also want to pro-
vide an objective method for vision/camera setup by this research, for the cameras are 
usually set manually according to user’s subjective experiences when coming to a 
totally new working environment. We define the image entropy as the optimizing goal 
of camera parameters adjustment, and propose a novel camera parameters auto-
adjusting technique based on image entropy. We use our omnidirectional vision sys-
tems [16] and the RoboCup MSL environment as the test bed for our algorithm. 

In the following part, we will firstly present the definition of image entropy and 
verify that the image entropy is valid to represent the image quality for image proc-
essing and to indicate that whether the camera parameters are properly set by experi-
ments in section 2, and then propose how to auto-adjust the camera parameters based 
on image entropy to adapt to the different illumination in section 3. The experiment 
results in indoor and outdoor environment and the discussions will be presented in 
section 4 and section 5 respectively. The conclusion will be given in section 6 finally. 

2   Image Entropy and Its Relationship with Camera Parameters 

The setting of camera parameters affects the quality of outputting images greatly. 
Taking the cameras of our omnidirectional vision system as the example, only expo-
sure time and gain can be adjusted (auto white balance has been realized in the cam-
era, so we don’t consider white balance). Several images captured under different 
parameters are shown in figure 1. The quality of images in figure 1(a) and (c) are 
much worse than that in figure 1(b), because they are less-exposed and over-exposed 
respectively, and the image in figure 1(b) is well exposed. The two images in figure 
1(a) and (c) can’t represent the environments well, and we can say that the informa-
tion content in these two images is less than that in figure 1(b). So both less-exposure 
and over-exposure will cause the loss of image information [17]. 
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According to Shannon’s information theory, the information content can be meas-
ured by entropy, and entropy increases with the information content. So we use image 
entropy to measure the image quality, and we also assume that the entropy of output-
ting images can indicate that whether the camera parameters are properly set. In the 
following part of this section, we will firstly present the definition of the image en-
tropy, and then verify this assumption by analyzing the distribution of image entropy 
with different camera parameters. 

 

         
(a)                                         (b)                                          (c) 

Fig. 1. The images captured by our omnidirectional vision system with different exposure time. 
The gain is always 18. (a) The exposure time is 5ms. (b) The exposure time is 18ms. (c) The 
exposure time is 40ms. 

2.1   The Definition of Image Entropy 

We use Shannon’s entropy to define the image entropy. So the image entropy can be 
expressed as follows: 
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Where 256L =  is the discrete level of RGB color channels, and , ,Ri Gi Bip p p are the 

probability of color , ,Ri Gi Bi existing in the image, and they can be replaced with 
frequency approximately and then calculated according to the histogram distribution 
of RGB color channels. 
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−

=
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degree of average distribution of color values. 

2.2   Image Entropy’s Relationship with Camera Parameters 

We capture a series of panoramic images by using our omnidirectional vision system 
with different exposure time and gain in indoor environment and outdoor environ-
ment, and then calculate the image entropy according to equation (1) to see how im-
age entropy varies with camera parameters. The indoor environment is a standard 
RoboCup MSL field with dimension of 18m*12m, but the illumination is not only 
determined by the artificial lights, but also influenced greatly by natural light through 
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lots of windows. The outdoor environment includes two blue patches and several 
components of the indoor environment such as a piece of green carpet, two orange 
balls and black obstacles. All the experiments of this paper are performed in these two 
environments. Furthermore, because the illumination in two environments is totally 
different and the dynamic response range of our cameras is limited, so we use two 
omnidirectional vision systems (two robots) with different iris setting (the iris can be 
adjusted only manually) in the two environments. 

In the experiment of indoor environment, the range of exposure time is from 5ms 
to 40ms and the range of gain is from 5 to 22. The experiment time of this section is 
evening, so the illumination is not affected by natural light. In the experiment of out-
door environment, the range of exposure time is from 1ms to 22ms and the range of 
gain is from 1 to 22. The weather is cloudy, and the experiment time is midday. The 
minimal adjusting step of the two parameters is 1ms and 1 respectively. We captured 
one image with each group of parameters. The image entropies changing with differ-
ent camera parameters are shown in figure 2 and figure 3 in the two experiments. 
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                                       (a)                                                          (b) 

Fig. 2. The image entropies changing with different exposure time and gain in indoor environ-
ment. (a) and (b) are the same result viewed from two different view angles. 
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(a)                                                           (b) 

Fig. 3. The image entropies changing with different exposure time and gain in outdoor envi-
ronment. (a) and (b) are the same result viewed from two different view angles. 

From figure 2 and 3, we can find that the manner in which the image entropy var-
ies with camera parameters is the same in the two experiments, and there is ridge 
curve (the blue curve in figure 2 and 3). Along the ridge curve, the image entropies 
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are almost the same in each experiment, and there is not obvious maximal value. So 
which image entropy along the ridge curve indicates the best image, or whether all the 
images related to the image entropy along the ridge curve are good? 

For the images are used to processed and analyzed to realize object recognition, 
self-localization or other robot vision task, we test the quality of images by using the 
same color calibration result learned from one image [18] corresponding to a certain 
entropy on the ridge curve to segment the images corresponding to all the entropies 
along the ridge curve and detect the white line points using the algorithm proposed in 
paper [4]. The typical images along the ridge curve and the processing results in the 
two experiments are demonstrated in figure 4 and figure 5. 

As shown in the two figures, the images can be well segmented by the same color 
calibration result in each experiment, and object recognition can be realized success-
fully for soccer robots. The same processing results are achieved in all the other im-
ages related to the image entropy along the ridge curve. So all these images are good 
for robot vision, and there is some kind of color constancy in these images, though 
they are captured under different camera parameters. It also means that all the setting 
of exposure times and gains corresponding to the image entropy along the ridge curve 
are acceptable for robot vision. So the assumption is verified that the image entropy 
can indicate that whether the camera parameters are properly set. 

3   Camera Parameters Auto-adjusting Based on Image Entropy 

According to the experiments and analysis in last section, image entropy can indicate 
the image quality for robot vision and that whether the camera parameters are prop-
erly set, so camera parameters adjustment can be defined as an optimization problem, 
and image entropy can be used as optimizing goal. But as is shown in figure 2 and 3, 
the image entropies along the blue ridge curve are almost the same, and it is not easy 
to search the global optimal solution. Furthermore, camera parameters themselves 
will affect the performance of vision systems. For example, the real-time ability will 
decrease as exposure time increases, and the image noise will increase as gain in-
creases. So exposure time and gain themselves have to be taken into account in this 
optimization problem. But it is difficult to measure the degree of these parameters’ 
effect, so it is almost impossible to add some indicative or constraint function to im-
age entropy directly for the optimization problem. 

Considering that the images related to the image entropies along the ridge curve 
are all good for robot vision, we turn the two-dimension optimization problem to be 
one-dimension one by defining some searching path. For RoboCup MSL competition 
is a highly dynamic and color-coded environment, the exposure time and gain should 
not be too high for soccer robots. So we define the searching path as exposure 
time=gain (just equal in number value, fo`r the unit of exposure time is ms, and there 
is no unit for gain) to search the maximal image entropy in this path, and the camera 
parameters corresponding to the maximal image entropy are best for robot vision in 
current environment and current light condition. The searching path is shown as the 
black curve in figure 2 and 3 respectively in indoor environment and outdoor envi-
ronment. The distributions of image entropy along the path in the two environments 
are demonstrated in figure 6.  
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Fig. 4. The typical images along the ridge curve and the processing results in indoor experi-
ment. (top) are the typical images. (bottom) are the processing results, and the red points are the 
detected white line points. The camera parameters are as follows: (left) exposure time: 34ms, 
gain: 13. (middle) exposure time: 18ms, gain: 18. (right) exposure time: 14ms, gain: 21. 

       
 

       

Fig. 5. The typical images along the ridge curve and the processing results in outdoor experi-
ment. In this experiment, there are not white lines to detect. (top) are the typical images. (bot-
tom) are the processing results. The camera parameters are as follows: (left) exposure time: 
17ms, gain: 5. (middle) exposure time: 9ms, gain: 9. (right) exposure time: 2ms, gain: 18. 
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                                      (a)                                                            (b) 

Fig. 6. The distribution of image entropy along the defined searching path. (a) The distribution 
in indoor environment. (b) The distribution in outdoor environment. 

From figure 6, a very good property of image entropy can be found that the image 
entropy will increase monotonously to the peak and then decrease monotonously 
along the defined searching path. So the global maximal image entropy can be found 
easily by searching along the defined path, and the best camera parameters are also 
determined at the same time. In figure 6(a), the best exposure time and gain for the 
omnidirectional vision system are 18ms and 18 respectively; in figure 6(b), the best 
exposure time and gain are 9ms and 9 respectively. 

According to the special character of omnidirectional vision, the robot itself will be 
imaged in the central area of the panoramic images. So in the real application, robot 
can judge that whether it comes into a totally new environment or the illumination 
changes in the current environment by calculating the mean brightness value on the 
central part of panoramic image. If the increase of the mean value is higher than a 
threshold, the robot will consider that the illumination becomes stronger, and the 
optimization of camera parameters will be run towards the direction that exposure 
time and gain reduce and along the searching path. Similarly, if the decrease of the 
mean value is higher than the threshold, the optimization will be run towards the di-
rection that exposure time and gain raise and along the searching path. In our experi-
ment, we set the threshold as 20. In the optimizing process, a new group of parame-
ters will be set into the camera, and then a new image will be captured and the image 
entropy can be calculated according to equation (1). The new entropy will be com-
pared with the last one to check whether the maximal entropy has reached. This itera-
tion will go on and on until the maximal entropy is reached. About how to choose 
new parameters, the technique of varying optimizing step could be used to accelerate 
the optimization process. When the current entropy is not far from ( )Max Entropy , the 

optimizing step could be 1, which means that the change of exposure time is 1ms and 
the change of gain is 1. When the current entropy is far from ( )Max Entropy , the op-

timizing step could be 2 or 3. 
The searching path can be changed according to different requirement about the vi-

sion system in different application. In some cases, the signal noise ratio of image is 
required to be high and the real-time performance is not necessary, so the searching 
path could be exposure time=α *gain (also just equal in number value), and 1α > . In 
some other application, the camera is required to output image as soon as possible and 
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the image noise is not restricted too much, so the searching path could be exposure 
time=α *gain (also equal in number value), and 1α < . 

4   The Experimental Results under Different Light Conditions 

In this section, we test our novel camera parameters auto-adjusting algorithm pro-
posed in last section under different light conditions in indoor environment and out-
door environment respectively. We verify that whether the camera parameters are 
properly set successfully by processing the images using the same color calibration 
result learned in the experiments of section 2. We also evaluate the robot’s self-
localization based on omnidirectional vision after the camera parameters are opti-
mized in different illumination. 

4.1   The Experiment in Indoor Environment 

In this experiment, the weather is cloudy, and the experiment time is midday, so the 
illumination is influenced by artificial and natural light. We also turn off some lamps 
gradually to change the illumination. We use the color calibration result in the indoor 
experiment of section 2 to process the images for soccer robots. The outputting image 
and the processing result are shown in figure 7 when camera is set with the best pa-
rameters in section 2. The image is over-exposed, and processing result is terrible. 
After the parameters have been optimized by our method, the outputting image and 
the processing result are demonstrated in figure 8(a) and (b). The distribution of im-
age entropy along the searching path is shown in figure 8(c). The optimal exposure 
time is 14ms and gain is 14, so the image is well-exposed, and the processing result is 
also good. When the illumination changes gradually, the similar results are achieved. 

4.2   The Experiment in Outdoor Environment 

In this experiment, the weather is sunny, and the experiment time is from midday to 
dusk, so the illumination is from bright to dark decided by natural light. We also use 
the same color calibration result in the outdoor experiment of section 2 to process the 
images for soccer robots. The outputting image and the processing result are shown in 
figure 9 when camera is set with the best parameters in section 2. The image is also 
over-exposed, and processing result is unacceptable for robot vision. After the pa-
rameters have been optimized, the outputting image and the processing result are 
demonstrated in figure 10(a) and (b). The distribution of image entropy along the 
searching path is shown in figure 10(c). The optimal exposure time is 3ms and gain is 
3, so the image is well-exposed, and the processing result is also good. When the 
experiment is run in different time from midday to dusk, all images can be well-
exposed and well processed after the camera parameters have been optimized. 

4.3   Comparison of Robot’s Localization under Different Illumination 

In this experiment, we compare the robot’s self-localization results based on omnidi-
rectional vision with optimized camera parameters in indoor RoboCup MSL standard  
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                                              (a)                                              (b) 

Fig. 7. (a) The outputting image when the camera parameters have not been optimized in in-
door environment. The best parameters in section 2 are used. (b) The processing result. 
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(a)                                            (b)                                              (c) 

Fig. 8. (a) The outputting image after camera parameters have been optimized. (b) The process-
ing result. (c) The distribution of image entropy along the searching path. 

       
                                             (a)                                              (b) 

Fig. 9. (a) The outputting image when the camera parameters have not been optimized in out-
door environment. The best parameters in section 2 are used. (b) The processing result. 

environment under very different illumination. The first light condition is the same as 
that in the indoor experiment of section 2. The second one is that the illumination is  
affected by strong sun’s rays in a sunny day, and the optimal exposure time and gain 
are 12ms and 12 respectively. The robot’s self-localization results by the method 
proposed in [19] under these two light conditions are demonstrated in figure 11. In 
this experiment, the robot is pushed by human to follow some straight traces on the  
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(a)                                        (b)                                              (c) 

Fig. 10. (a) The outputting image after camera parameters have been optimized. (b) The proc-
essing result. (c) The distribution of image entropy along the searching path. 
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(a)                                                              (b) 

Fig. 11. (a) The robot’s localization result when the illumination is not affected by natural light. 
(b) The robot’s localization result when the illumination is affected greatly by strong sun’s rays. 

Table 1.  The statistic of robot’s self-localization error under different illumination. In this 
table, x , y ,θ are the self-localization coordinate related to the location x, y and orientation. 

Under the first light condition Under the second light condition  
mean error standard dev maximal error mean error standard dev maximal error 

x (cm) 5.907 7.334 30.724 6.416 12.431 95.396 

y (cm) 5.967 7.117 35.595 5.544 7.381 33.063 

θ (rad) 0.044 0.052 0.286 0.067 0.093 0.580 

 
field shown as black lines in figure 11. The statistic of localization errors is shown in 
Table 1. The robot can achieve good localization results with the same color calibra-
tion result even under very different light conditions, though sometimes the effect 
from sun’s rays is so strong that the maximal localization error under the second light 
condition is much larger. This experiment also verifies that our camera parameters 
adjusting method is effective. 
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5   Discussion 

According to the analysis and the experimental results in above sections, our method 
can make the camera’s output adaptive to different light conditions, so the images can 
describe the real world as consistently as possible. Our method also provides an ob-
jective camera setup technique when robots come into a totally new environment, so 
users don’t need to adjust camera parameters manually according to experience. 

Although only exposure time and gain are adjusted in our experiments, our method 
can be extended to adjust more parameters (if supported by hardware). Besides omni-
directional vision, our method can also be applied in other vision systems, but maybe 
some special object should be recognized and then used as reference image area to 
judge whether the illumination changes for camera parameters auto-adjustment. 

About the real-time performance of our method, for the light condition will not 
change too suddenly in real application, it only takes several cycles to finish the opti-
mizing process. And it takes about 40ms to set the parameters into our camera for one 
time. So camera parameters adjustment can be finished in maximal several hundred 
ms, and there is not problem for our method in real-time requirement. 

However, there are still some deficiencies in our algorithm. For example, our 
method can not deal with the situation that the illumination is highly not uniform. 
Because image entropy is a global appearance feature for image, it may be not the 
best optimizing goal in this situation. As shown in figure 12, though the camera pa-
rameters have been optimized as 21ms and 21, but the image processing result is still 
unacceptable for robot vision. Maybe object recognition or tracking technique should 
be integrated in our method, and camera parameters can be optimized according to 
local image features near the object area on the images. 
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(a)                                       (b)                                             (c) 

Fig. 12. (a) The outputting image with optimal parameters when illumination is highly not 
uniform. (b) The processing result. (c) The distribution of image entropy along searching path. 

6   Conclusion 

In this paper, a novel camera parameters auto-adjusting method is proposed to make 
the output of robot vision adaptive to different light conditions. Firstly we present the 
definition of image entropy, and use image entropy as optimizing goal for the  
optimization problem of camera parameters after verifying that image entropy can 
indicate whether the camera parameters are properly set by experiments. Then how to 
optimize the camera parameters based on image entropy is proposed to adapt to  
different illumination. The experiments in indoor RoboCup MSL standard field and 
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outdoor RoboCup-like environment show that our algorithm is effective and the color 
constancy to some extent in the output of vision systems can be achieved. 
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Abstract. Human can perform object recognition with high accuracy under a 
variety of object rotations and translations. The structure and function of the 
visual cortex has inspired many models for invariant object recognition. In this 
paper, we propose a hierarchical model for object recognition based on the two 
well-known properties of the visual cortex neurons: invariant responses to 
stimulus transformations and redundancy reduction. We used the trace learning 
rule to provide the neurons in the model with invariant responses to object 
transformations. In hierarchical neural networks, neighboring neurons are tuned 
to similar features because their receptive fields in the image overlap. This simi-
larity results in a form of redundancy in neuronal responses. We used a variant 
of divisive normalization mechanism to increase the efficiency of responses of 
neurons in the model. Results of experiments demonstrate the high recognition 
rates of the proposed model. 

Keywords: Invariant Object Recognition, Visual Cortex, Redundancy Reduc-
tion, Trace Learning Rule. 

1   Introduction 

One of the major challenges for computer vision is to recognize objects from different 
view-points and distances. The need for automatic object recognition in a wide range 
of applications including robotics has lead to an increase in the amount of research on 
the development of computer based object recognition systems. Several methods have 
been proposed that can recognize objects with high accuracy. However these methods 
have gained limited popularity because their demands do not match the real world 
applications. One line of research that has attracted much attention in the computer 
vision is to implement a model based on the studies of object recognition in the pri-
mate vision system. Human can recognize objects under different transformations 
with accuracies that exceed almost all of the object recognition systems currently in 
use. 

In the primate brain, optic nerves enter the primary visual cortex in the occipital 
lobe. Data about the image we see goes through several areas in the visual cortex  
and its neuronal representation changes from neuronal responses corresponding to 
small edges to signals that inform the presence of specific objects in the image. Dif-
ferent areas in the primate visual cortex and their function have inspired many object 
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recognition systems. Perhaps the most influential work in the study of visual cortex is 
the classic paper of Hubel and Wiesel in which they explained the function of visual 
cortex as a hierarchy of feature detector neurons [1]. So far, a large amount of infor-
mation has been collected about the selectivity and connectivity of these neurons. A 
prominent hypothesis is that the object recognition pathway has a hierarchical struc-
ture along which the neurons extract features with increasing complexities [2]. In this 
hierarchy, neurons in a cascade of areas extract features with different complexities 
ranging from simple contrast changes to faces and hands [1], [3]. Several authors have 
explained the work of these neurons in the statistical framework of efficient coding 
[4], [5]. 

In this paper, we propose a hierarchical model for object recognition which is in-
spired directly from the structure of primate visual cortex. We aim to develop a net-
work in which neuronal responses have high information content and are invariant to 
object transformations. Neurons in the visual cortex exhibit responses that are invari-
ant to object transformation [6], [7]. It is proposed that visual neurons learn their 
invariant selectivity from sequences of images that contain the transformation of an 
object. We implement the trace learning rule in the model to provide invariant selec-
tivity to 3D object rotations. Moreover, we used horizontal connections which 
weights are learned to increase the efficiency of neuronal responses [4], [5], [8]. Re-
sults of object recognition on custom images and a standard dataset demonstrate the 
ability of this model to perform robust object recognition under a variety of object 
transformations. 

2   Literature Review 

One of the simplest methods for object recognition is to use correlation based tem-
plate matching [9]. However, models that use this technique are very sensitive to 
object transformations and therefore are ineffective for most of the applications. To 
overcome this limit, component based methods have been proposed that extract object 
components for recognition [10], [11], [12]. In these models, a trade-off between the 
selectivity and invariance is unavoidable. For example, histogram based models are 
very robust to object transformations but cannot differentiate between similar objects 
from the same category [13]. Methods that use grayscale patches of objects are very 
selective but cannot recognize transformed views of the same object [10], [12]. 

Starting with Neocognitron [14], several models have been proposed for invariant 
object recognition based on the features of visual cortex and were successfully ap-
plied to specific objects like faces and cars [10], [12]. These models are mainly based 
on the idea of Perrett and Oram, who proposed that transformation invariance can be 
achieved by pooling over units that are tuned to different views of the same feature 
[15]. Convolutional neural networks are a subclass of hierarchical models that per-
form face and generic object recognition with high accuracy [16], [17]. 

The models mentioned above cannot be mapped into areas of the visual cortex and 
therefore are not biologically plausible. There are other models which have been di-
rectly inspired from different areas of the visual cortex and have predicted different 
properties of neurons in these areas. A series of models of VisNet have been proposed 
that perform object recognition under translation, transformation and lighting  
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variations [18], [19], [20]. Lissom is a set of hierarchically connected areas in which 
long range inhibitory and excitatory connections provide selectivity similar to the 
neurons of different areas of the visual cortex [21]. Serre and Poggio introduced a 
hierarchical architecture based on the HMax model that performs object recognition 
in cluttered environments with high accuracy [22]. The main characteristic of their 
model was the alternating layers of simple and complex cells that provide recognition 
and invariance respectively. 

In this paper, we propose a model for object recognition by combining two differ-
ent approaches to the study of the visual cortex. We use the trace learning rule that is 
based on the behavior of the visual cortex neurons to provide invariant selectivity. 
Moreover, to optimize the responses of neurons in each layer, a redundancy reduction 
mechanism based on the statistical properties of natural images is used. We show that 
a model based on these mechanisms can achieve high recognition rates for different 
objects. In the next section, we describe the properties of the proposed model. 

3   Model Description 

The proposed model includes a set of areas analogous to the visual areas V1, V2 and 
V4 which are connected in a hierarchical organization (Fig. 1). Neurons in each layer 
receive bottom-up input from the previous layer and horizontal input from the same 
layer. Units in the first layer receive bottom-up input from small regions in the input 
image. Bottom-up input to each model neuron is excitatory and determines its primary 
form of selectivity, while horizontal input is inhibitory and facilitates the extraction of 
optimal features in images. 

It was shown that Gabor filters provide an appropriate model of V1 neuronal selec-
tivities [23]. Therefore, we used Gabor filters with different orientations to model the 
V1 neurons: 
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Where x and y are the position of filter in the image, γ is the aspect ratio, θ is the 
orientation, σ is the effective width and λ is the wavelength of the filter. We used a set 
of filters with 6 different orientations and a single spatial frequency (Fig.  2). 

Bottom-up activity for V2 and V4 neurons is calculated as a weighted sum of re-
sponses of neurons in their receptive field: 

∑
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here, yi
bup is the bottom-up activity of neuron i and RFi is its receptive field in the 

previous layer, xj is a neuron in RFi and wij
bup is the weight of bottom-up connection 

between neuron i and neuron j. Table 1 displays the parameters of the proposed 
model. 



 Object Recognition with Statistically Independent Features 207 

 

Fig. 1. The proposed model. Neurons in the first layer are modeled by Gabor filters with differ-
ent orientations from 0° to 150° with 30° steps. Units in each layer receive two sets of input 
through bottom-up and horizontal connections. Horizontal and bottom-up connections are 
displayed for different neurons for better visualization.  

 

Fig. 2. The set of Gabor filters with 6 different orientations used to model V1 neurons 

Table 1.  The Model Parameters 

Layer Dimensions Bottom-up RF Horizontal Connections 
V1 128× 128 7 × 7 21× 21 
V2 104× 104 21× 21 21× 21 
V4 80× 80 41× 41 21× 21 

3.1   Bottom-Up Connections and the Trace Learning Rule  

The receptive field size of neurons along the ventral visual pathway gradually in-
creases and their preferred stimuli become more complex [2]. According to electro-
physiological experiments, neurons in V2 and V4 exhibit invariant selectivity to 
transformations of their preferred stimuli [6], [7]. It has been suggested that complete 
invariant selectivity in IT neurons can be developed based on partial invariant re-
sponses of V2 and V4 neurons [24]. A neural mechanism has been proposed to 
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achieve invariant response to the preferred stimuli transformations [25]. This mecha-
nism is based on the fact that neurons retain their high activity level for hundreds of 
milliseconds. Fig. 3 explains this mechanism. The idea is that the persistent activity 
level of a neuron results in established connections between that neuron and the neu-
rons representing transformed version of its preferred stimulus (see legend of Fig. 3). 

 

Fig. 3. The idea of continuous transformation. (a) Neuron shown in dark gray is activated by a 
set of inputs from gray neurons and the connections between them are established. (b) As the 
stimulus transforms, the set of active neurons in the lower layer changes. The dark gray neuron 
still preserves its high activity level. (c) The connection between the dark gray neuron and the 
neuron that represents the transformed version of its preferred stimulus is established because 
both neurons are active. 

Földiák proposed the Trace learning rule to describe the mechanism in which in-
variant selectivity of neurons are developed from continuous spatial and temporal 
transformations of the objects [26]. The rule extends the simple Hebbian learning to 
contain a trace of the previous responses of neuron in its weight update: 
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where t
jy is the trace value for neuron j in the iteration t, wij is the weight of connec-

tion between neuron i and neuron j, xi
t is the input i in iteration t, and λ is the learning 

rate. The term 1−− t
ij

t
jwyλ is added to avoid unlimited increases in the weights of con-

nections. Trace value for a neuron is calculated using (4): 

( ) t
j

t
j

t
j yyy ηη −+= − 11  (4)

here 0 < η < 1 is the trace constant and yj
t is the bottom-up activity of neuron j in the 

iteration t. 
The trace learning rule is applied to develop invariant selectivity of neurons to their 

bottom-up input. The bottom-up activity of each neuron is calculated as a weighted  
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Fig. 4. An example object from coil100 dataset. Images in this dataset are taken from objects 
rotated with 5° steps. 

sum of activities of neurons in its receptive field. We used a subset of images from the 
coil100 dataset [35] to train the connectivity between different layers of the model. 
Coil100 dataset contains images of objects from different view-points and therefore is 
an appropriate training set for model neurons (Fig. 4). 

3.2   Extracting Statistically Independent Features with Redundancy Reduction 

For a feature-based object recognition system, efficiency of the features extracted 
from images is very important. A model that simply tries to learn invariant responses 
cannot achieve high recognition rates for different objects. Features with high infor-
mation content should be used that can discriminate between objects. The redundancy 
reduction becomes an important issue when dealing with different objects from dif-
ferent categories. In the proposed model, we used a redundancy reduction mechanism 
that is based on the statistical properties of natural images. This mechanism is used in 
different layers to provide a set of globally optimal features for object recognition. 

Primary studies on redundancy in natural images revealed that linear filters like 
Gabor or Wavelet filters are optimal features considering first order statistics [27], 
[28]. However dependencies in natural images are nonlinear and hidden in their first 
order statistics. For example, it was observed that there exists a special form of de-
pendency between responses of filters, i.e. their variances are dependent on the re-
sponses of other filters [29], [30]. Wainwright and Simoncelli proposed that Gaussian 
scale mixtures model can provide an explanation for variance dependency [31]. 
Schwartz and Simoncelli used divisive normalization to produce the independent 
responses over a set of patches selected from natural images [32]. We extended this 
model to a hierarchical architecture and developed neurons with similar properties to 
neurons in the higher order visual area V2 [33], [34]. This model is used in the pro-
posed hierarchy to extract the most efficient features from natural images. 

Neurons in each layer of the proposed model are connected to a set of neighboring 
neurons with horizontal connections. The weights of these connections are learned to 
predict the variance of responses of their corresponding neuron: 
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where Lx and Ly are the responses of neurons x and y respectively and wxy is the 
weight of horizontal connection between them, Cx is the neighboring region around 
the neuron x and σx

2 is the part of variance of neuron x that is independent of other 
neurons. Response of each neuron is then divided to its variance to remove the vari-
ance dependency. This mechanism is repeated in different layers of the model to pro-
duce neuronal responses that are globally independent: 
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the result of (6) is the independent response Rx of filter x. 
The weights of horizontal connections for each neuron are learned in a training 

procedure after the bottom-up connections to that neuron has been established. The 
goal is to predict the variance of responses of each neuron using responses of its 
neighboring neurons. An unbiased estimate for variance of responses of a neuron is: 
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An iterative form for the above equations is: 
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We used gradient descent to minimize the MSE between variance estimates of (5) 
and (8). The update rules for horizontal connections are as follows: 
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4   Experimental Results 

We performed a set of experiments to evaluate the performance of the proposed 
model for object recognition under transformations and with different backgrounds. 
We used the coil100 dataset which contains images of different objects under differ-
ent viewpoints to measure the generalization of the proposed model. The results are 
shown in Table. 2. It can be seen that the proposed model is superior to other models 
reported in [21]. 

Table 2.  Recognition rates of the proposed model on coil100 dataset compared to Lissom2 and 
SNoW methods [21] 

Number of views 
used for training 

SNoW one against all LISSOM2 Our Model 

4 0.760 0.798 0.889 
8 0.819 0.816 0.917 
18 0.913 0.845 0.934 

 
Images in the coil100 dataset do not challenge the ability of the proposed model to 

recognize objects in different lighting conditions and backgrounds. Therefore, we 
generated a set of images from 6 objects in different distances, viewpoints and back-
grounds to examine the model (Fig. 5). Samples images for an object are shown in 
Fig. 6. For each object, we used two third of images for training and one third for test. 
In the first experiment, images for training were selected from all backgrounds. Re-
sults are shown in the second column of table. 3. In the second experiment, we used 
images of two backgrounds for training and the third background was only used for 
test. Results are shown in the third column of table. 3. It can be seen that the perform-
ance of the model is on average above 95%. 

 

Fig. 5. Six objects used to generate a set of images with different view-points, backgrounds and 
distances 
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Fig. 6. Samples of object 2 images from different view-points, distances and backgrounds 

Table 3.  Recognition rates of the model for the six objects of Fig. 5 

Object Train and test with different 
backgrounds 

Train with two backgrounds and test 
with the third one 

Object1(Pig) 0.957 0.956 
Object2(Shampoo) 0.916 0.975 
Object3(Coffee) 0.975 0.963 
Object4(Ball) 0.971 0.970 
Object5 (Blue) 0.971 0.943 
Object6(Apple) 0.923 0.920 

5   Conclusion 

In this paper, we proposed a hierarchical model for object recognition based on the 
well known properties of neurons in the primate visual cortex. Two key characteris-
tics of the proposed model are the invariance of neuronal responses to object trans-
formations and the extraction of efficient features from images that enhance the object 
recognition accuracy. We used the trace rule to develop neurons with invariant re-
sponses to object transformation. In order to increase the accuracy of recognition, we 
used a model of redundancy reduction previously used to develop neurons with selec-
tivities similar to neurons in the visual cortex. We examined the performance of the 
model with a set of images of objects from different view-points and backgrounds. On 
average, the recognition rate was higher than 95% on custom images. 

Previous studies on redundancy reduction tried to develop neuronal selectivities 
similar to that of the primary visual cortex. In a recent study, redundancy reduction 
was extended to simulate the selectivity of extrastriate neuronal selectivities [34]. In 
this paper, we proposed a hierarchical architecture for object recognition with features 
similar to the selectivities of neurons in V2 and V4. Neurons in these areas exhibit 
some degrees of response invariance to stimuli transformations. Previous studies 
reported a high recognition rate with features inspired by the visual cortex. In this 
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paper, we provided a more biologically plausible model for object recognition with 
neurons similar to the visual cortex neurons. 
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Abstract. This article presents a new approach to mobile robot vision
based on genetic algorithms. The major contribution of this proposal is
the real-time adaptation of genetic algorithms, which are generally used
offline. In order to achieve this goal, the execution time must be as short
as possible. The scope of this system is the Standard Platform category
of the RoboCup1 soccer competition. The system developed detects and
estimates distance and orientation to key elements on a football field,
such as the ball and goals. Different experiments have been carried out
within an official RoboCup environment.

1 Introduction

For mobile robotics, image processing has become one of the most important
elements. Intelligent robots need to retrieve information from the environment
in order to interact with it. Vision cameras are one of a robot’s key devices.
The images taken by the robot’s camera need to be processed in real time with
limited processing resources. The systems developed need to cope with noisy and
low quality images, and in order to process the maximum number of images by
second, the algorithms must be as efficient as possible.

In the RoboCup[1] environment different solutions have been proposed over
the last years. These proposals use the information obtained with colour filtering
processes[2]. Scan-lines[3] and edge-based[4] solutions have been one of the most
widely-used for the RoboCup competition.

The approach presented here carries out object recognition by using real-time
genetic algorithms[5](GAs). The number of iterations and individuals for the GA
must be reduced as much as possible in order to improve efficiency (some authors
propose the use of cellular GAs[6] instead of reducing the number of individuals
and iterations). This is necessary because the system has to be applied in
real time. In order to prevent system performance from being affected by this
reduction, the individuals will be initialized using all the available information.
This initial information can be obtained from previous populations and from the
colour filtering process applied to the last image taken by the robot’s camera.
After an image showing an object o, the next image has a high probability of
1 http://www.robocup.org/

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 215–227, 2010.
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showing the same object. The information obtained from previous populations
allows us to take advantage of the high similarity between consecutives images
taken by the camera.

Our hypothesis is that the similarity between captured images, and the
information obtained with the filtering process, can be used to develop a real-
time vision system based on genetic algorithms. Different tests in real scenarios
using the biped robot Nao have been carried out to evaluate our proposal. These
tests show the object (ball and goals) recognition process on the official RoboCup
football field.

The article is organized as follows: problem restrictions are outlined in Section
2. We describe the full vision system in Section 3, and in Section 4 we explain
the experiments performed and the results obtained. Finally, the conclusions and
areas for future work are given in Section 5.

2 Problem Restrictions

The vision system has to be valid for use in the Standard Platform category.
Robot Nao2 is the official platform for this category, and its camera takes 30 (320
x 240 pixels) frames per second. The camera’s native colour space is YUV[7].

In order to reduce the amount of information to work with, the captured
images are filtered. This processing removes the pixels that do not pass a colour
filter. The key colours in the RoboCup environment are yellow and blue for the
goals, green for the carpet, orange for the ball and white for the field lines.
Football player equipment is red and dark blue. The filtering is carried out by
defining a top and bottom limit for the Y, U and V colour components. A pixel
will successfully pass a filter only if all its components are between these limits.
Fig. 1 shows a filtering example for blue.

Fig. 1. Colour filtering for the blue goal

Object recognition has to be carried out during a football match. The
environment includes objects that are partially hidden behind others, so the
frames taken in a football match will not always show the complete object we
want to recognize. Scan-line-based methods present a lot of problems in these
situations, whereas our system works properly, as will be shown in the results
section.
2 http://www.aldebaran-robotics.com/eng/Nao.php
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3 Vision System

Genetic algorithms use individuals that represent potential solutions to problems.
For our vision system, individuals have to represent the detection of the object o
placed at distance d with the orientation or. This information (object o at distance
d with orientation or) is contrasted with the one extracted from the last frame
captured by the robot’s camera. The fitness will be high for individuals with
information that is plausible with respect to the last image. On the other hand,
the fitness will be low if the object o does not appear in the image.

3.1 General Processing Scheme

The processing starts with the arrival of new images at the robot’s camera. A
new image will evolve a new population for each object to be recognized. In this
work, three distinct objects are considered, the blue goal, the yellow goal and
the orange ball, so three different populations will be kept. After taking a new
image, the colour filtering allows the robot to know the objects likely to appear
in the image. The populations of the non-plausible objects will not be evolved.
Fig.2 shows the general processing scheme.

Capture a new image and filter it with colour filters
for each object to recognize

if we have obtained enough pixels
Evolve a new population
Apply local search over the best individual
Return the estimated distance to the object

end if
end for

Fig. 2. General system processing scheme

In order to avoid local optimums, the population will be restarted after a
given number of iterations failing to improve the best individual. An iteration
will increase the value of a counter if the best fitness of the iteration is not
greater than the best global fitness. The counter value will be set to zero if the
iteration obtains the best fitness. The population will be restarted if the counter
reaches a limit value.

3.2 Genetic Representation

In addition to the distance between the camera and the object to be recognized,
we also need to estimate the orientation between both elements. This information
is not only needed for self-location tasks[8], but also for the application of the
fitness function. The shape of an object in an image will depend on the distance
and the orientation between object and camera.

Fig.3 presents graphically the three parameters to be estimated: d is the
distance between camera and object, α is the difference of orientation in the
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Fig. 3. Image taken with specific distance and orientation between object and camera

x-axis and β in the y-axis. With the same distance d and different α or β values,
captured images will show the same ball but located at a different position within
the image. The image will not show the ball with big α or β variations. A third
component for the orientation difference in the z-axis is not needed, because
using horizon detection techniques[9], the image can be processed to show all
the objects parallel to the floor.

Each individual stores the following information (genes):

– Distance to the robot: d
– Orientation difference in the x-axis: α
– Orientation difference in the y-axis: β

All the genes are represented by a numerical value, limited by the maximum
distance detection for d, and by the field of view for α and β. An additional gene
is needed to perform goal detection. This gene (θ) represents the goal orientation
when the frame is taken. Two frames taken with the same < d, α, β > parameters
will be different if the goal orientation varies, as can be observed in Fig.4.

3.3 Obtaining the β Parameter

We can avoid modelling β if we know the angle between the camera and the
floor in the y-axis, γ. Thus β can be calculated using γ, the distance d, and the

Fig. 4. Images taken varying the θ parameter
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orientation in the x-axis α. With this approach, the areas of the search space
that represent unreal solutions will not be explored. Using γ and the camera’s
field of view, we can obtain the minimum and maximum distances at which we
can detect elements. For instance, if γ is close to 90 degrees, the robot will be
able to recognize distant objects, but not a nearby ball.

The main problem of calculating β instead of modelling it is that our algorithm
will heavily depend on γ estimation and its performance will decrease if γ is not
correctly estimated. For legged robots, the movement of the robot causes an
enormous variation in the camera angle, which makes it difficult to obtain a
precise value for γ. For wheeled robots, the movement will not affect the camera
angle as much as for legged ones and γ can be accurately calculated.

3.4 Fitness Function

The fitness function returns numeric values, according to the goodness of the
projection obtained with the parameters < d, α, β > of each individual. To
evaluate an individual, its genes are translated into a projection of the object
that the individual represents. The projection needs a start position < x, y >,
obtained from α and β. The size of the object depends on d.

An object projection is evaluated by comparing between it with the
information obtained from the filtering process. A pixel < x, y > of the projection
will be valid only if the pixel < x, y > of the image captured by the robot’s
camera successfully passes the colour filter. This evaluation is illustrated in Fig.
5, where the left image shows the original image after an orange filter. The right
one shows the result of evaluating 12 different individuals, where red pixels are
invalid (they have not passed the colour filter) and green pixels are valid.

After this processing we obtain the number of valid and invalid pixels for each
individual. Using the percentage of pixels that pass the filter as a fitness function
has a serious drawback: individuals representing distant objects obtain better
fitness values. Those individuals correspond to smaller projections resulting in a
higher probability of having a bigger percentage of valid pixels (few right pixels
mean high percentage).

Due to this problem, and using the information obtained with the filtering,
we define the fitness function as the minimum value of:

Fig. 5. Filtered image (left) and evaluation of 12 individuals to detect the ball (right)
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– % of pixels of the projection that have passed the colour filter.
– %of pixels thatpassed the colourfilter andbelong to thevalidprojectionpixels.

In order to illustrate the behaviour of the function, let’s study individuals A and
B in Fig. 5. Individual B has a higher percentage of pixels that passed the filter
(70 versus 45). On the other hand, only 5% of the pixels that passed the orange
filter belong to individual B. For A, this percentage rises to 35%. The fitness
value will be 0.35 for individual A and 0.05 for B.

3.5 Population Initialization

The population is usually randomly initialized for GAs. Our approach uses addi-
tional information to initialize the first individuals. Firstly, we could use individ-
uals from populations of previous captures. In addition to this, the information
extracted from the filtering process could also be used. Such information is the
number of pixels of each colour, and the x and y component of the centroid of the
distribution of pixels obtained with the colour filter. According to this informa-
tion, an individual can be initialized in 3 different ways:

– Randomly.
– Using the information from the filtering process.
– Cloning an individual from a previous population.

The first two ways of generating a new individual can always be used. The third
one can only be used when a valid population is available. Such population must
have been evolved to recognize the same object o that we want to recognize.
The number of frames between the current one and the last one that evolved
a population to recognize o has to be small. If the frame number difference is
large, the individuals of the population will not be valid for cloning, because
these individuals were evolved to solve a situation different from the current
one. A draw is carried out to select the way in which an individual is initialized.
All the ways have a probability that depends on the number of frames from the
last frame that recognized the object we are studying. We need two parameters
to obtain these probabilities:

– MW : Max probability of cloning an individual from a previous population.
– MNF : Max number of frames possible between the present frame and the

last one that recognized the object we are studying.

The sum of the three parameters is normalized to be 1.0. The probability of
initializing individuals by cloning them from other populations (CloneProb)
will decrease if the number of frames without updating the population (NFWU)
increases. The other two probabilities are calculated using CloneProb.

CloneProb : MW − MW ∗ (NFWU/MNF )
InitialInfoProb : (1 − (CloneProb)) ∗ 0.66
RandomlyProb : (1 − (CloneProb)) ∗ 0.34

If we increase the number of individuals that are randomly initialized, the
variety of the initial population will be greater. Using the initial information,



Using Genetic Algorithms for Real-Time Object Detection 221

Fig. 6. Object partially captured

the algorithm’s elitism will increase (with the problem of local optimums). With
individuals cloned from other populations, the algorithm will converge faster
with small variations between frames. The balance between elitism and generality
can be obtained through a correct combination of these three ways. We selected
0.66 and 0.34 as values to obtain a heterogeneous initial population, based on
preliminary empirical tests.

3.6 Partial Object Occlusion

Vision systems must cope with hard environments. For instance, the objects to
recognize can be partially hidden behind other robots, or the images captured
by the robot’s camera may show only parts of the desired object, due to the
camera’s orientation. Our proposal performs the individual’s evaluation using
the entire object’s projection and not partial characteristics. This is the reason
that our system works properly with occlusions.

4 Experiments and Results

The experiments were carried out on a RoboCup Standard Platform football
field, with the official goals, a 6 x 4 metre carpet and a ball. We used a Nao robot,
taking 2 images per second. The format of the images is YUV and their size is
320 x 240 pixels. While the experiments were being carried out, the absolute
difference between the real and estimated distance to the object we wanted to
detect was stored per frame. The estimated distance was the value of the d gene of
the individual with the best fitness. Lighting conditions were stable throughout
the experiments, and the colour filters were optimal.

The execution time for each image was variable. We decided to use two frames
per second because the maximum execution time was never greater than 450
milliseconds.

After the filtering process (≈ 80 msec), the execution time was never greater
than 370 milliseconds (183 for the goal and 187 for the ball).

4.1 Genetic Algorithm Parameters

The experiments were carried out with the following parameters:

– Individual number: 12 and Iteration number: 24
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– Mutation probability: 5% and Crossover type: point
– Replacement: generational algorithm
– Restart after 25% iterations without improving the global optimum
– MW : 0.5 and MNF : 10

The algorithm uses a limited number of individuals and iterations. The mutation
probability and the crossover type are standard, and the entire population is
replaced with the offspring at the end of the iteration. Due to this, the quality of
the population can decrease while the search progresses. Evolution is performed
without taking into account robot’s odometry.

After evolving the population, a simple local search process (Hill Climbing)
is applied to the best individual. This processing will allow us to improve the
best fitness. The local search is applied by evaluating positive and negative
variations for the genes of the individual. The algorithms that combine concepts
and strategies from different metaheuristics are called memetic algorithms [10].

4.2 Experiment 1 - Hypothesis Validation

The objective of the first experiment was to prove that the system is able to work
in the given time-frame, recognizing the environment elements and estimating
the distance to them. We used the standard parameters described above and we
executed the same tour over the football field 6 times. 30 frames were taken per
tour (15 seconds). The frames captured the yellow goal placed between 360 and
300 cm, and the orange ball placed at distances between 260 and 200 cm.

The experiment consisted of 180 different frames (6 x 30). We stored the
absolute difference between real and estimated distance (denoted DBRED) and
the fitness of the best individual of the population by frame. These fitness values
were used to generate different data sets. Each one of these data sets had only the
detections carried out with individuals whose fitness values were greater than
certain thresholds. Table 1 shows, taking the ball and yellow goal separately,
and with four different threshold values (0, 0.25, 0.5 and 0.75), the average of
the DBRED. It also gives the percentage of frames that obtained an individual
with a fitness value greater than the threshold.

Table 1. Average DBRED and % of frames with a fitness value over certain thresholds

Fitness > 0.0 > 0.25 > 0.5 > 0.75 > 0.0 > 0.25 > 0.5 > 0.75
Average (cm) Ball 42.62 40.57 31.77 22.75 Yellow 40.03 37.88 33.1 32.69
Frames (%) 68.89 68.33 57.78 8.89 Goal 99.44 93.33 44.44 8.89

It can be seen that the fitness function properly represents the goodness of the
individuals. This is because using individuals with higher fitness values reduced
the average of the differences between real and estimated distances. Table 2
shows the percentage of frames that obtained a difference between estimated
and real distance lower than certain thresholds.
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Table 2. Percentage of frames that obtained a DBRED lower than certain thresholds

Percentage of frames under Percentage of frames under
100 cm 75 cm 50 cm 30 cm 100 cm 75 cm 50 cm 30 cm

Ball 63.63 56.11 44.44 35.55 Yellow Goal 92.77 87.78 72.22 51.67

The results obtained show a high degree of robustness, especially for the
yellow goal. In an environment with a maximum distance of 721 cm, a high
(37.37% and 51.67%) percentage of frames obtained differences for the distance
estimation under 30 centimetres.

Ball recognition (with our genetic algorithm) was more complicated than goal
recognition, because only individuals which are very close to the solution (perfect
detection) obtain fitness values different from zero. Due to the small size of
the ball in the frames captured, only the projections of individuals close to
the solution have pixels in common with the image obtained after the colour
filtering process. The convergence of a GA with this kind of individuals will not
be constant. 83.83% of correct ball recognitions (fitness> 0) were carried out
with fitness values greater than 0.5. For the goal, this percentage descends to
44.69%.

4.3 Experiment 2 - β Study

The main objective of the second experiment was to test whether the β parameter
can be calculated using the other parameters. The performance of the algorithm
obtaining β instead of modelling it was studied. The robot made the same tour
as in experiment 1.

For this experiment, the individuals did not use the β gene, but the parameter
is needed for the fitness function and has to be calculated. This was done using
the parameters d (distance to the object), α (orientation difference in the x-axis)
and γ (orientation difference between the robot’s camera and the floor in the
y-axis). γ is obtained using the robot’s sensors. The experiment consisted of 180
frames again and a summary of the results obtained is shown in table 3.

Table 3. Average DBRED and % of frames with a fitness value over certain thresholds

Fitness > 0.0 > 0.25 > 0.5 > 0.75 > 0.0 > 0.25 > 0.5 > 0.75
Average (cm) Ball 18.70 18.05 16.89 27.7 Yellow 33.66 32.81 34.31 27.5
Frames (%) 69.44 68.33 57.78 5.55 Goal 100.0 95.00 40.56 1.11

The first conclusion drawn from the results is that the number of correct
detections (frames that obtained fitness values greater than 0) has increased.
However, the percentage of frames with a fitness value greater than 0.5 and 0.75
decreased. This is because modelling β instead of obtaining it from the other
parameters lets the algorithm to reach situations that are not right according to
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the model, but which are valid due to noise or the difference between the real
and estimated γ value.

The average difference between the real and estimated distance(DBRED)
decreased considerably. With lower gene numbers and the same iterations, GAs
converge faster to better solutions. In order to establish a complete comparison
between modelling β and calculating it with other parameters, table 4 provides
the percentage of frames that obtained a DBRED lower than certain thresholds.

Table 4. Percentage of frames that obtained a DBRED lower than certain thresholds

Percentage of frames under Percentage of frames under
100cm 75cm 50cm 30cm 100cm 75cm 50cm 30cm

Ball 68.89 68.89 65.56 54.44 Yellow Goal 96.67 93.33 76.67 48.89

If we compare table 4 and 2, we can see that the robustness of the algorithm
has improved. The faster convergence of the algorithm with fewer genes makes
it possible to obtain a higher percentage of frames with a small DBRED to the
object.

The main conclusion drawn from the data is that the number of genes should
always be as small as possible. If one of the parameters that are modelled can
be obtained from other parameters, this parameter should be removed. In order
to use fewer genes, we have to use all the possible information retrieved from
the environment, the platform and the elements to recognize. This information
allows us to include our knowledge about the problem in the algorithm, and
with such information the algorithm will only reach individuals representing
real situations (according to the robot and the environment).

4.4 Experiment 3 - MW Study

The third experiment shows how MW affects the vision system. This parameter
defines the maximun probability of cloning an individual for initialization from
previous populations. MW defines the weight of previous frames for the process.
If the value of this parameter increases a higher number of individuals from the
initial population will represent solutions reached for previous frames.

The robot captured 20 different images from a static position. While the
frames were being captured, the robot’s camera orientation was quickly varied.
All the frames show the blue goal placed at 250 cm and the orange ball situated at
150 cm. Most of the frames only partially show these elements due to the camera
movements (only the orientation changed). We used the standard parameters
for the genetic algorithm, and β was modelled as a gene. The variations in MW
defined the different configurations. The experiment was repeated 9 times with
each different configuration to obtain a final set of 180 frames (20 * 9). 4 different
configurations were tested, with MW values of 0, 25, 50 and 75%. Table 5 shows
the results obtained for the experiment.
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Table 5. Average DBRED and % of frames with a fitness value over certain thresholds

MW Fit>0 Fit>0.25 Fit>0.5 Fit>0.75
0.00 47.37 47.37 36.93 31.75

Ball 0.25 43.10 41.43 34.26 34.27
0.50 41.37 41.26 33.63 33.67
0.75 43.48 42.08 32.72 33.49
0.00 58.02 49.48 27.15 12.78

Blue 0.25 53.64 42.63 26.71 19.72
Goal 0.50 51.22 43.54 21.76 14.16

0.75 44.16 37.60 24.45 15.39

Fit>0 Fit>0.25 Fit>0.5 Fit>0.75
93.59 93.59 78.84 35.26
91.66 91.02 80.12 44.87
89.74 89.10 75.64 29.49
89.10 87.18 75.00 32.69
100.0 82.68 47.49 12.85
98.32 83.80 56.42 13.97
98.88 87.71 55.87 13.97
98.88 89.94 64.25 12.85

Average DBRED Percentage of frames

We can observe how the changes applied to MW do not produce big variations
in the difference between the real and estimated distance. Table 5 shows how the
percentage of frames that obtained better fitness values increases with greater
MW values. For the blue goal, this happens for all the MW values. For the ball,
the optimum point for the MW value is 0.25. The performance of the algorithm
gets worse if MW is greater than 0.25.

Table 6. Percentage of frames that obtained a DBRED below certain thresholds

Percentage of frames under
MW 100cm 75cm 50cm 30cm
0.00 82.69 72.44 62.18 33.33

Ball 0.25 85.90 79.49 71.79 31.41
0.50 85.90 75.00 67.31 35.30
0.75 80.77 73.72 64.10 32.69

Percentage of frames under
MW 100cm 75cm 50cm 30cm
0.00 77.09 68.71 55.31 32.96

Blue 0.25 81.00 73.74 62.57 34.08
Goal 0.50 81.56 75.41 61.45 43.01

0.75 87.15 78.77 72.07 48.60

Finally, table 6 presents the percentage of frames that obtained differences
between the real and estimated distance below certain thresholds.

The robustness of the algorithm noticeably improved when the value of MW
increased. For the ball, the best results were obtained again for a MW value
of 0.25. The behaviour of the algorithm varies for the different objects to be
detected when MW increases.

The ball is always captured as a small round orange object and very few
frames show the ball partially hidden behind other objects. Because of this,
the filtering process gives us useful information for the initialization of the new
individuals. The < x, y > position of the ball inside a frame will be close to the
centroid < x, y > obtained for the orange pixels after the filtering process. If we
excessively increase the number of individuals cloned from previous iterations,
the number of individuals initialized with the filtering information will be lower
than the number needed for optimal convergence.

In spite of these drawbacks, a small percentage of individuals from previous
iterations improves the system’s convergence, because the algorithm will have a
more diverse initial population. The offspring obtained by crossing individuals
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initialized in different ways will be able to obtain better fitness values. The
individuals from previous iterations will be very useful if the initial information
(obtained via the filtering process) was noisy.

The situation is completely different for goal detection. The shape of the
goals in the frame depends on the position and orientation between camera
and goal. The size of a goal’s projection is bigger than that obtained for the
ball, as can be observed in Fig.6. Individuals that are far from the solution can
obtain fitness values greater than zero, due to the useful information stored in
their genes. The risk of falling into local optimums is much greater for goal
detection and the filtering information is less useful. Initializing individuals
in different ways will help the algorithm to escape from local optimums. The
solution represented by individuals from previous iterations will usually be closer
to the global optimum than the one represented by the individuals initialized
with the filtering information, especially for minor changes between frames.

5 Conclusions and Future Work

According to the results obtained from the first experiment, our system is a
robust alternative to traditional systems for object recognition. It uses the
principles of genetic algorithms with a short execution time, which allows the
system to be used in the RoboCup environment. The system works properly in
the presence of occlusions, without the necessity of a case-based approach.

The β parameter should always be obtained from the other parameters. This
parameter can be correctly obtained if the robot’s angles are measured without
error. The number of genes for the individuals should be as small as possible.

Based on the results obtained in the third experiment, the similarity between
consecutive frames can be used to improve the performance of our system.

The system was originally developed for goals and ball recognition, but in
view of the results obtained and the available alternatives, the main application
for the system should be that of goal detection. This is because goal recognition
is much more difficult than ball detection, which can be done by using other
techniques.

For future work, we aim to integrate the system developed with a localization
method, such as Montecarlo[11] or Kalman Filters[12]. The selected localization
method should use the estimated distances and orientations to the goals and
the fitness of the best individual, and in order to integrate the visual and the
odometry information in an optimal way[13], the fitness of the best individual
could be used to represent the goodness of the visual information.

Adding some restrictions to the initialization of the new individuals by taking
into account the robot’s estimated pose could also be considered.
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Abstract. This paper describes a method for a real-time calculation of
a dominant region diagram (simply, a dominant region). The dominant
region is proposed to analyze the features of group behaviors. It draws
spheres of influence and is used to analyze a teamwork in the team sports
such as soccer and handball. In RoboCup Soccer, particularly in small
size league(SSL), the dominant region takes an important role to ana-
lyze the current situation in the game, and it is useful for evaluating
the suitability of the current strategy. Another advantage of its real-time
calculation is that it makes possible to predict a success or failure of
passing. To let it work in a real environment, a real-time calculation of
the dominant region is necessary. However, it takes 10 to 40 seconds to
calculate the dominant region of the SSL’s field by using the algorithm
proposed in [3]. Therefore, this paper proposes a real-time calculation
algorithm of the dominant region. The proposing algorithm compute an
approximate dominant region. The basic idea is (1) to make a reachable
polygonal region for each time t1, t2, ..., tn, and (2) to synthesize it incre-
mentally. Experimental result shows that this algorithm achieves about
1/1000 times shorter in computation time and 90% or more approximate
accuracy compared with the algorithm proposed in [3]. Moreover, this
technique can predict the success or failure of passing in 95% accuracy.

1 Introduction

In RoboCup Soccer, the cooperative plays such as passing and shooting are
the important basic skills. Particularly in RoboCup Small Size League (SSL),
high level cooperative plays are developed so far. Since the strategies based on
them are growing year after year [1], it is important to analyze the actions of
opponent team in real time and then to change team’s strategy dynamically in
order to overcome the opponent. For such analysis, the voronoi diagram [2] and
the dominant region diagram [3] are useful. They are used to analyze the sphere of
influence. The voronoi diagram divides the region based on the distance between
robots, while the dominant region diagram divides the region based on the arrival
time of robots. It is considered that the dominant region diagram shows an
adequate sphere of influence under the dynamically changing environment such
as a soccer game.

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 228–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Approximate Computation of the Dominant Region Diagram 229

In the SSL, the dominant region diagram has been used for arranging team-
mate robots to perform the cooperative play such as passing and shooting [4][5].
However, the existing algorithm takes much time to compute the dominant re-
gion diagram, the use of the algorithm is restricted to the case that the com-
putation time can keep, i.e. a typical case is a restart of play. If the dominant
region diagram can be computed in real time, we can apply it any time.

In this paper, we propose an algorithm that computes the dominant region
diagram in real time. In the SSL, it is required to compute the dominant region
diagram within 5 msec. So, we put this time to be our present goal. Proposed
algorithm is an approximate computation of the dominant region diagram so that
we discuss the computation time and the approximation accuracy through the
experiment. It is shown that proposed algorithm achieves 1/1000 times shorter
in computing time compared with the algorithm proposed in literature [3] and
over 90% accuracy. Moreover, 5 msec computation time can be possible under
the parallel computers. We also show that the dominant region diagram is useful
for the prediction of success for passing.

2 Dominant Region Diagram

Our main purpose is to discuss a real-time computation of the dominant region
diagram. At first, we briefly describe it and compare it with the voronoi diagram
in this section.

2.1 Computation of Dominant Region

A dominant region of an agent1 is defined as ”a region where the agent can reach
faster than any other agents”. A dominant region diagram, simply a dominant
region, shows the dominant region of every agent [3]. The dominant region di-
agram is one of the generalized voronoi diagrams. Though the dominant region
diagram is an n dimensional diagram in general, we discuss a two dimensional
diagram here because we consider a soccer field.

The dominant region is calculated as follows. Assume that an agent i is at
the point Pi(= (P i

x, P i
y)) and is moving at a velocity vi(= (vi

x, vi
y)). Assume

also that the agent can move to any direction and its maximum acceleration is
ai

θ(= (ai
θx, ai

θy)) for a θ-direction. The position that the agent will be after t

seconds is given by2, (
xi

θ

yi
θ

)
=
( 1

2ai
θxt2 + vi

xt + P i
x

1
2ai

θyt
2 + vi

yt + P i
y

)
. (1)

For given t, the set of above points makes a closed curve with respect to θ.
Conversely, for given point x = (x, y), we can compute the time which each
1 We call a considering object (such as a player) an agent.
2 These equation do not consider the maximum velocity of the agent. If the maximum

velocity must be considered, the equations should be replaced to the non-accelerated
motion equations after reaching the maximum velocity.
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(a)Voronoi diagram (b)Dominant region diagram

Fig. 1. Voronoi diagram vs. dominant region diagram

agent takes3. Therefore, for each point x in a region (or a soccer field), we can
get the dominant region by computing the following equation,

Ix = argmin
i

{ti(x)}, (2)

where, Ix is an agent’s number which comes at first to the point x.
Preliminary experiment using the algorithm proposed in [3] shows that the

computation time takes 10 to 40 seconds when the soccer field is digitized by
610×420 grid points.

2.2 Comparisons between Voronoi Diagram and Dominant Region
Diagram

The voronoi diagram divides the region based on the distance between agents
while the dominant region divides the region based on the arrival time of agents.
The voronoi diagram is used to analyze the spheres of influence and is shown that
it is useful in RoboCup Soccer Simulation [6]. However, we think that arrival
time should be considered when analyzing the sphere of influence in RoboCup
Soccer, since the robots are moving in various speeds. Figure 1 shows an example
of the voronoi and dominant region diagram of a scene in the game. In the figure
above, small circles are agents and the straight line originated from each agent
is a current velocity vector of the agent. Note that the shape of the border lines
of the regions are quite different between two diagrams. The dominant region
becomes a powerful tool when deciding strategy/tactics under the consideration
of the motion model of the robots.

3 Approximated Dominant Region

To achieve a real-time computation of the dominant region, where the real time
means a few milliseconds here, we propose an approximated dominant region. It
3 If more than one arrival time are obtained at point x for the agent i, the minimal

arrival time is taken.
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(a)Acceleration vectors (b)Reachable polygonal region

Fig. 2. Acceleration vectors and reachable polygonal region

can be obtained as a union of reachable polygonal regions. A reachable polygonal
region is a polygon which is uniquely calculated when the motion model and
time are given.

3.1 Motion Model of Robots

In this paper, we define a motion model as a set of maximum acceleration vectors
of a robot. Figure 2(a) shows an example of a motion model. Each maximum
acceleration vector shows that the robot can move to that direction with the
given maximum acceleration. This is an example of an omni-directional robot.
Eight vectors are given. The number of vectors depends on the accuracy of
obtaining the dominant region.

3.2 Computation of Reachable Polygonal Region

The reachable polygonal region is a region that is included in the polygon made
by connecting the points, where each point is given as a point that an agent
arrives at after t seconds when it moves toward the given direction of maxi-
mum acceleration vector in maximum acceleration. Eq. (1) is used to compute
the point. Figure 2(b) shows an example of reachable polygonal region (shaded
area) after 1 second passed when the acceleration vectors of figure 2(a) is given.
We assume the reachable polygonal region is convex4. The reachable polygonal
region is calculated by the following algorithm.

[Reachable polygonal region]
Step 1 Give a motion model of each agent (figure 2(a)).
Step 2 Give time t. Calculate each arrival point (xi

θ, y
i
θ) according to the equa-

tion (1) using the corresponding maximum acceleration vector in Step1.
Step 3 Connect points calculated in Step2 (figure 2(b)).

3.3 Calculation of Approximated Dominant Region

The approximated dominant region is obtained from the reachable polygonal re-
gions for every agent. When some of reachable polygonal regions are overlapped,
4 If it is concave, we consider a convex hull of it.
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(a)Overlapped reachable polygonal
regions

(b)Divided reachable polygonal
regions

Fig. 3. Division of two overlapped Reachable polygonal regions

we have to decide which agent, the point belongs to the overlapped region. Figure
3(a) shows two overlapped reachable polygonal regions (A1, A2) of two agents.
In this case, it is natural to divide overlapped region into two by the line con-
necting the points of intersection of two polygons. Figure 3(b) shows a result for
the reachable polygonal regions. However, since the number of points of inter-
section between two polygons (with n vertices) varies from 0 to 2n, we have to
clarify the method of division for each case. Moreover, we need to consider the
method of division when many reachable polygonal regions are overlapped. We
describe these methods in the following algorithm. We call this an algorithm of
the approximated dominant region.

[Approximated dominant region]
Step 1 For given time t, make a reachable polygonal region of each agent. (Fig-

ure 2(b)).
Step 2 For two reachable polygonal regions, if they are overlapped, divide the

overlapped region in the following way. Generally, a number of points of in-
tersection between two polygons with n vertices varies from 0 to 2n. If a
vertex of one polygon is on the other polygon, move the vertex infinitesi-
mally to the direction where the number of points of intersection does not
increase. (There is no side effect with respect to this movement.) Therefore,
the number of points of intersection is even. We show the way to divide in
case of 0, 2 and 2k intersections.
1. No points of intersection: There are two cases.

(a) Disjoint: As two reachable polygonal regions are disjoint, there is no
need to divide.

(b) Properly included: One includes the other. Figure 4(a) shows an
example(A1 ⊃ A2). In this case, A1 − A2 is a dominant region of
agent 1 (Fig. 4(b)) and A2 is a dominant region in agent 2 (Fig.
4(c))5.

2. 2 points of intersection: The overlapped regions of A1 and A2 is divided
into two region by the line connecting the points of intersection between
two polygons to create dominant regions A′

1 and A′
2 (Figure 3).

5 This is not correct definition, but we adopt this to perform the real time computation.
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(a)Overlapped reachable
polygonal regions(A1

and A2)

(b)A1’s divided
region(gray area)

(c)A2’s divided
region(black area)

Fig. 4. Division of overlapped reachable polygonal regions(one-contains - other case)

(a)Overlapped reachable
polygonal regions

(b)Symmetric difference (c)Divided reachable
polygonal regions

Fig. 5. Division of overlapped reachable polygonal regions(4 intersecting case)

3. 2k points of intersection: Let A1 and A2 be two reachable polygonal re-
gions and I be a set of points of intersection between the polygons of A1
and A2. Then, compute A1−A2 and A2−A1. Figure 5(a) shows an exam-
ple. In this example, there are 4 points of intersection. Figure 5(b) shows
a difference between two regions, where A1−A2(= {A11, A12}) is shaded
in grey and A2−A1(= {A21, A22}) is shaded in black. Make convex hulls
of subregions. Figure 5(c) shows the result (A

′
11, A

′
12, A

′
21, A

′
22). Thus, we

have partial dominant regions (A′
1 = A

′
11 ∪ A

′
12 and A′

2 = A
′
21 ∪ A

′
22) of

the agent 1 and 2. A white area in the overlapped region in figure 5(c)
doesn’t belong to either of two partial dominant regions.

Step 3 If n reachable polygonal regions (A1, A2, · · · , An) are overlapped, we
process as follows. First, for A1 and A2, we take partial dominant regions
A′

1 and A′
2 by using the procedure in step 2. Replace A1 and A2 with A′

1 and
A′

2. Then, for A1 and A3, and A2 and A3, do the same computation. Repeat
this until An is computed. As a result, we get new reachable polygonal
regions (A1, A2, · · · , An) where any two Ais are disjoint. These are the partial
dominant regions of agents at given time t. Figure 6 shows three examples
of partial dominant regions of 10 agents at time t= 0.5, 0.7 and 0.9 seconds.

Step 4 Synthesize the partial dominant regions incrementally. For given times
t1, t2, · · · , tn (t1 < t2 · · · < tn), compute the partial dominant regions. Let
them be B1, B2, · · ·Bn. Then, compute B1+(B2−B1)+· · ·+(Bn−

∑n−1
i=1 Bi).
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(a)t = 0.5[sec] (b)t = 0.7[sec] (c)t = 0.9[sec]

Fig. 6. Synthesis of reachable polygonal regions

(a)Approximated dominant region
diagram

(b)Precise dominant region diagram

Fig. 7. Approximated dominant region diagram vs. dominant region diagram

This makes an approximated dominant region diagram. Figure 7(a) shows
an example constructed from the examples shown in figure 6, but using 10
partial dominant regions computed by every 0.1 seconds.

3.4 Feature of Proposed Algorithm

The proposed algorithm computes the approximated dominant region and it
makes the great reduction of the computation time. However, there are some
small regions that are not in the approximated dominant region, but in some of
the dominant regions of agents. We allowed to remain such small regions because
we strongly pursue the real-time computation. We evaluate the negative effect
of such small regions through the evaluation experiments.

4 Experimental Evaluation for Algorithm of
Approximated Dominant Region

In this section, we apply our algorithm to the SSL and evaluate how well it
works.
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Table 1. Computation time and accuracy of proposed algorithm

acc. vectors arrival-time steps computation time[msec] accuracy[%]
8 10 17.5 91.8
8 20 33.8 92.9
16 10 31.4 95.3
64 200 2.4 × 103 99.9

2048 400 5.0 × 105 100

Table 2. Computation time on various computers (parameters: max acc. vectors: 8,
arrival-time steps: 10)

CPU proposed method(A) existing method(B) rate(B/A)
1 3.16GHz 17.5[msec] 13.3[sec] 760
2 3.2GHz 19.3[msec] 24.2[sec] 1254
3 2.2GHz 38.2[msec] 40.5[sec] 1060
4 2.2GHz 38.3[msec] 40.4[sec] 1055

4.1 Experiment

In the SSL, since the ball moves very fast, the standard processing cycle is 60
processings per second. One processing includes an image processing, a decision
making, action planning, command sending and so on. Therefore, the allowed
time for the computation of the dominant region is at most 5 milli-seconds6.
Our purpose is to make the computation of the approximated dominant region
within 5 msec.

4.2 Experimental Result

We digitize the SSL’s field into 610 × 420 grid points (1 grid represents the area
of about 1 cm2) and, for 10 agents (5 teammates and 5 opponents), compute the
approximated dominant region that can arrive within 1 second. The reason why
we set arrival time to 1 sec is that almost all of the whole field can be covered
by the dominant region as shown in Fig. 7. We measure the computation time
and the accuracy of the approximated dominant region. We define the accuracy
by the following equation,

Accuracy[%] =
Total grid points that Idx and Iax coincide

All grid points
∗ 100 (3)

where, Id
x and Ia

x are given by Eq. (2) for the precise dominant region and the
approximated dominant region, respectively.
6 This time constraint is sufficient when our algorithm will be applied for the other

leagues in RoboCup soccer and human soccer.
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Fig. 8. Computation time and accuracy

We used the computer with Xeon X5460 as CPU, 8GB main memory and
FreeBSD operating system for this experiment. We measured the computation
time by running the program in a single thread.

The computation time and the accuracy of the approximated dominant re-
gion depend on the number of maximum acceleration vectors and the number
of partial dominant regions (i.e. the number of time-divisions). We measured
the computation time and the accuracy for the various values by using two pa-
rameters above. Figure 8 shows the results of the measure. Table 1 shows the
computation time and the accuracy for some typical values of the parameters.
The resulting approximated dominant region of the first row of the Table 1 is
shown in Figure 7(a).

In comparison with Fig. 7(b), it is considered that Fig. 7(a) is a good approx-
imation of the dominant region diagram. The accuracy is ranging from 91.8%
to 100% from Table 1. These numbers show that our algorithm gives a good
approximated dominant region.

Table 2 shows the computation time of the approximated dominant region di-
agram measured on the various computers. (The parameters on this experiment
are fixed as the number of maximum acceleration vectors takes 8 and the num-
ber of time-divisions takes 10.) From the table, it is shown that the computation
time can be reduced about 1/1000 times shorter compared with the algorithm
shown in [3] and the accuracy keeps a little more over 90%. In addition, it is
shown that, from Fig. 8(a), the computation time increases in proportion to the
number of maximum acceleration vectors and the number of time-divisions, and
from Fig. 8(b), the accuracy goes up rapidly to be 90% according to the increase
of the number of maximum acceleration vectors and/or time-divisions, and then
still slightly increases.

4.3 Discussion

From Table 1, the approximated dominant region with parameters of 8 maxi-
mum acceleration vectors and 10 time-divisions achieves the accuracy of 92%.
However, its computation time takes 17.5 msec. It is a little bit far from our
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Table 3. Computation time necessary to make and to synthesize reachable polygonal
regions

acc. vectors 8 16 24 32
average computation time [msec] 1.71 3.10 4.37 5.46

standard deviation[msec] 0.016 0.017 0.014 0.014

goal, which is computation time to be 5 msec. To achieve this goal, we discuss a
parallel computation here. Another issue whether the accuracy of 92% is enough
in our purpose will be discussed in the next section.

In our algorithm, we create an approximated dominant region by synthesiz-
ing the partial dominant regions incrementally. Each partial dominant region
can calculate independently and its computation time is almost equal for all
the partial regions. The latter is supported by the fact that the computation
time doubles when the partial dominant regions double. (See Fig. 8(a).) And
also Table 3 shows an average time to compute a partial dominant region. For
synthesis of 10 partial dominant regions, it takes 0.5msec on average. Therefore,
it is expected in parallel computation that the computation time will be about
1.71 + 0.5 + α msec when 10 partial dominant regions are synthesized, where α
is an overhead of the parallel computation and is considered as a constant. In
the multi-core parallel computer, the α is small enough. We consider that it is
possible to make the computation time within 5 msec, which is our goal.

5 Prediction of Success for Passing

One application of the dominant region is the prediction of success for passing.
In this section, we introduce a dominant region of a ball. The approximated
dominant region takes a significant role to predict the success for passing. If
we can predict the success of passing accurately in real time, we can choose a
defense or an offense strategy appropriately.

5.1 Approximated Dominant Region of Ball

We consider a dominant region of a ball. The motion of the kicked ball on the
SSL’s field can be considered as a uniform decelerated motion, since the ball
receives the force by the friction of the field only, and the friction is constant
over the field. In addition, the ball moves on a straight line unless it meets with
an object. Thus, the dominant region of a ball is defined as a line segment that
the ball does not meet with any agents. By using the following way, it is possible
to find an agent who can get the ball first: 1) compute a partial dominant region
for time ti and draw the position of ball at time ti on it. 2) If the ball is in
the dominant region of an agent, then the agent can get the ball. if not, repeat
computation for next time ti+1 until the ball is in the dominant region of an
agent. By this way, we can predict the agent who gets the ball first, and also we
can find a dominant region of a ball.
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(a)An example of soccer game (at
present)

(b) A synthesized partial dominant
region until t = 0.45[sec]

(c) A synthesized partial dominant
region until t = 0.5[sec]

(d)Approximated dominant region
diagram with ball (t = 1sec)

Fig. 9. Example of approximated dominant region diagram with ball

Figure 9 shows an example. Fig. 9 (a) is a current situation of the game.
The ball is at the lower part of the left side from the center line. The lines in
front of the agents and the ball show the velocity of them. Figs. 9 (b) and (c)
are the synthesized partial dominant region until t = 0.45sec and t = 0.5sec,
respectively. In Fig. 9 (b), there is no agent who can get the ball, but in Fig. 9
(c), the agent No. 4 can get the ball, since the ball is in the dominant region of
the agent 4. Fig. 9 (d) shows the approximated dominant region until t = 1sec
and the ball’s dominant region. To make this diagram, it takes 0.5 msec more
time than the computation time of the diagram without the ball.

5.2 Discussion

In this experiment, we use the approximated dominant region with parameters of
8 maximum acceleration vectors and 20 time-divisions for 1 second interval7. We
used the logged data of the third-place match in 2007 RoboCup competition to
analyze the prediction of success for passing. By using the proposed algorithm,
we predict the robot who gets the ball first. 60 passings are predicted correctly
out of 63 total passings in the game (95% accuracy), i.e. the predicted agent and
the agent that gets the ball in the game coincide.
7 It is possible to obtain the approximated dominant region within 5 msec under the

parallel computation environment even if these parameter values are used.
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In the results, 3 passings are failed to predict correct agents. The detailed
analysis shows that the cause of mis-prediction is not due to the accuracy of the
approximated dominant region but due to the strategy of the team. That is, the
mis-predicted agent acts to achieve an other goal like moving the goal area to
defend the goal by the team’s strategy instead of getting the ball. Therefore, we
think the approximated dominant region is very useful to judge the prediction
of success for passing as well as to evaluate the team’s strategy.

6 Conclusion

In this paper, we discussed the real-time computation of the dominant region.
We proposed an approximated dominant region algorithm which can calculate
an approximated dominant region in real time with accuracy over 90 % under
the parallel computation environment.

Moreover, we proposed an approximated dominant region including a ball’s
dominant region. Experimental results show that it predicts the agent who will
get the ball correctly over the accuracy of 95%. This also shows that the approx-
imated dominant region is useful for the analysis of the team’s strategy.

In this paper, we also discussed the application of the algorithm to the
RoboCup, but it is possible to apply the algorithm to the other objects by
establishing the moving model of the agents correctly. In this case, it is neces-
sary to choose appropriate values of parameters, because the calculation cost
depends on the required accuracy of approximation.

The future problems are to reduce the computation time further with keeping
the approximation accuracy, and to exploit new applicable fields of the algorithm,
not just for sports games.
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Abstract. The high-level decision making process of an autonomous
robot can be seen as an hierarchically organised entity, where strategical
decisions are made on the topmost layer, while the bottom layer serves
as driver for the hardware. In between is a layer with monitoring and
reporting functionality. In this paper we propose a behaviour engine for
this middle layer which, based on formalism of hybrid state machines
(HSMs), bridges the gap between high-level strategic decision making
and low-level actuator control. The behaviour engine has to execute and
monitor behaviours and reports status information back to the higher
level. To be able to call the behaviours or skills hierarchically, we extend
the model of HSMs with dependencies and sub-skills. These Skill-HSMs
are implemented in the lightweight but expressive Lua scripting language
which is well-suited to implement the behaviour engine on our target
platform, the humanoid robot Nao.

1 Introduction

Typically, the control software of an autonomous robot is hierarchically organised
with software modules that communicate directly to the hardware on the lowest
level, some more elaborated entities for, say, localisation or the object detection
on a middle layer, and an action selection mechanism on top. On each of these
levels the time constraints are different, meaning that modules on lower levels
have shorter decision cycles and need to be more reactive than those on the higher
levels. The reason is that usually, the level of abstraction increases with each layer
of the software. (See e.g. [1,2] for textbooks on “classical” 3-tier architectures).
The same holds for the high-level action selection. From that viewpoint basic or
primitive actions are selected in coordination with the teammates and the team
strategy; these are broken down to actuator commands on the lowest level over
several levels of software abstraction. The term basic or primitive action hides
the fact that these actions are usually on a high level of abstraction. Examples
for those basic actions are dribble or attack-over-the-left-wing. Many different
approaches exist for how these primitive actions will be selected. These range

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 240–251, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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from full AI planning to simply reactively couple sensor values to these actions
or behaviours. Between the high-level action selection and the driver modules for
the servo motors of the robot, a middle layer is required to formulate complex
actions and report success or failure to the high-level control.

In this paper, we address this middle-layer and show a possibility how the
gap between high-level control and the rest of the robot system can be bridged.
Independent from the high-level scheme, the middle control layer for behaviours,
which we call behaviour engine, needs to be expressive enough to hide details
from the high-level control while having all the information needed to order
and monitor the execution of basic actions in the low-level execution layer. This
behaviour engine must thus provide control structures for monitoring the exe-
cution and facilities to hierarchically call sub-tasks etc. Moreover, it needs to
be lightweight enough not to waste resources which should either be spent for
the high-level decision making or for tasks like localisation. Hence we need a
computationally inexpensive framework which allows for the needed kind of ex-
pressiveness. As our target platform is the standard platform Nao which has
limited computational resources, the lightweight of the behaviour engine is even
more important. We propose a behaviour engine which matches these criteria.
The building block for our behaviour engine is a skill. We formalise our skills
as extended Hybrid State Machines (HSMs) [3] which allow for using state ma-
chines hierarchically. Our implementation of these Skill-HSMs is based on the
scripting language Lua [4], which is a lightweight interpreter language that was
successfully used before for numerous applications ranging from hazardous gas
detection systems for the NASA space shuttle to specifying opponent behaviour
in computer games. We show that the combination of Lua and HSMs provide a
powerful system for the specification, execution and monitoring of skills. How-
ever, by choosing a general purpose language like Lua, we do not preclude the
possibility to later extend the behaviour engine. It is therefore also possible to
use other skill specifications in parallel to our hybrid state machines.

The paper is organised as follows. In Sect. 2 we present the software framework
Fawkes which we use for our Nao robot. In particular, we show the different
control modules and how the communication between the different sub-systems
takes place. One important issue is that the original motion patterns from NaoQi
can be easily integrated, if desired. In Sect. 3 we define skills in terms of extended
HSMs, called Skill Hybrid State Machines (SHSMs), to yield a hierarchy of skills,
and distinguish between actions, behaviours, and motion patterns. Section 4
addresses the implementation of SHSMs in Lua. In Section 5 we show an example
state machine for the stand-up motion. We conclude with Section 6.

2 Fawkes and the Nao

In this section we briefly introduce the ideas behind and key components of the
Fawkes software framework and describe our target platform, the Nao. We then
go over to describing our instantiation of Fawkes on the Nao platform.
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2.1 The Humanoid Robot Nao

The Nao [5] is the new biped platform for the Standard Platform League
by the French company Aldebaran. The league is the successor of the Sony
Aibo league. The 58 cm tall robot has 21 degrees of freedom, and is equipped
with two CMOS cameras providing 30 frames per second in VGA resolution, it
has some force sensitive resistors, a gyroscope and an accelerometer as well as
sonar sensors. The CPU is an AMD Geode running at 500 MHz accompanied by
256MB of RAM. To communicate with the platform, Wi-Fi (IEEE 802.11b/g)
and Ethernet are available. It comes with a closed source software framework
called NaoQi which is the only way to access the robots actuators and sensory.
It also provides basic components for image acquisition, walking, and actuator
pattern execution.

2.2 Fawkes in a Nutshell

The Fawkes robot software framework [6] provides the infrastructure to run
a number of plug-ins which fulfil specific tasks. Each plug-in consist of one or
more threads. The application runs a main loop which is subdivided into cer-
tain stages. Threads can be executed either concurrently or synchronised with a
central main loop to operate in one of the stages. All threads registered for the
same stage are woken up and run concurrently. Unlike other frameworks such as
Player or Carmen we pursue a more integrated approach where plugins employ
threads running in a single process exchanging data via shared memory instead
of message passing. Currently, we use the software in the RoboCup@Home
League for domestic service robots as well as in the Middle Size League and
Standard Platform League for soccer robots. The framework will soon be
released as Open Source Software.

Blackboard. All data extracted and produced by the system and marked for
sharing is stored in a central blackboard. It contains specified groups of values
which are accessed with a unified interface. An example is an object position
interface, which provides access to position information of an object, like the
position of the robot itself or the ball on the field. These interfaces can be
read by any other plug-in to get access to this information. Commands are
sent to the writer via messages. Message passing eliminates a possible writer
conflict. Opposed to IPC (see http://www.cs.cmu.edu/˜{}ipc/) as used
by Carmen data is provided via shared memory, while messaging is used only
for commands.

Component-based Design. Fawkes follows a component-based approach for
defining different functional blocks. A component is defined as a binary unit
of deployment that implements one or more well-defined interfaces to provide
access to an inter-related set of functionality configurable without access to the
source code [7,8]. With the blackboard as a communication infrastructure, sys-
tem components can be defined by a set of input and output interfaces. This

http://www.cs.cmu.edu/~{}ipc/
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Fig. 1. Component configuration for Fawkes on the Nao robot

allows for easily replacing a component as long as the replacement component
requires and provides the same sets of interfaces.

2.3 Running Fawkes on the Nao

Figure 1 shows the component configuration that has been implemented for
the Nao robot platform. On the left-hand side one can find the naohw/naosim
component. The naohw and naosim plug-ins both provide access to the un-
derlying robot hardware, on the real robot and in a simulation environment.
The fvbase plug-in provides access to the camera and distributes the acquired
image via a shared memory segment. The naoball and naolocalize plug-ins use
this image to extract information about the robot and ball position. This data
together with other acquired information is processed in the worldmodel compo-
nent. This component merges different sources of information (local extraction
components and information received from other robots via Wi-Fi) to provide a
unified world model to all higher level components. The naomotion component
deals with robot locomotion and odometry calculation. It also includes a naviga-
tion component for path planning. The unified world model is used by the skill
execution run-time (skiller) and the luaagent component which we are going to
describe in more detail below.

NaoQi Integration. Given the current closed nature of the Nao robot platform
it is essential to integrate Fawkes with NaoQi to gain access to the hardware. Be-
yond plain hardware access it is desirable to provide access to other NaoQi func-
tionality. An integration module exists for this purpose that integrates Fawkes
with NaoQi. For instance the actuator sub-component of naomotion can be pro-
vided via the integration of Aldebaran’s NaoQi motion engine.

3 The Behaviour Engine and Skill Hybrid State Machines

In this section we define the behaviour engine. As stated in the introduction, the
whole behaviour system can be seen as a layered system, just like a hierarchically
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structured system for the overall control of a robot. In Sect. 3.1 we therefore
distinguish between low-level control, behaviours, and the agent as different levels
of the behaviour system, before we define our behaviour engine in Sect. 3.2.

3.1 Low-Level Control, Behaviours and Agents

To model a robot’s behaviour multiple different levels of control can be distin-
guished. On the lowest level we have tight control loops which have to run under
real-time or close-to-real-time constraints, for instance, for generating joint pat-
terns to make the robot walk. On the highest level we have an agent which takes
decisions on the overall game-play or on the team strategy, possibly communi-
cating and coordinating actions with other robots.

Especially when more elaborated approaches for designing an agent like
planning or learning are used, it is beneficial to not only have the very low-
level actions like “walk-a-step”, but also more elaborate reactive behaviours
like “search-the-ball” or “tackle-over-the-right-wing”. This reduces the compu-
tational burden for the agent tremendously. Additionally it is easier to develop
and debug small behaviour components. In the following we will clarify what we
understand with skills and show the different levels of behaviours as three tiers.

Definition 1 (Behaviour levels)

Level 0: Low-level Control Loops On this level modules run real-time or close-
to-real-time control loops for tasks like motion pattern generation or path-
planning and driving.

Level 1: Skills Skills are used as reactive basic behaviours that can be used by the
agent as primitive actions.

Level 2: Agent An agent is the top-most decision-making component of the robot
that makes the global decisions about what the robot is doing and the strategic
direction.

At each level, behaviours can only be called by other behaviours which are from
the same or a higher level.

According to this understanding of a tiered behaviour system, the Fawkes soft-
ware framework was designed. Figure 2 shows the organisation of the Fawkes
software stack. On the lowest level modules for sensor acquisition, data extrac-
tion, and other low-level control programs are located. On the top, the agent is
making the overall decision on the behaviour. In between lies a reactive layer
which provides basic actions to the agent. For this it uses information of the
low-level modules to make local decisions for a specific behaviour, e.g. when
approaching a ball the walking direction might need to be adjusted for ball
movements. From that it creates commands for the low-level actuator driving
components like locomotion.

3.2 Behaviour Engine

Against the background of a deliberative approach, one has specific expectations
what the behaviour engine has to provide, which nevertheless can be applied for
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Fig. 2. The Fawkes Software Stack

reactive decision making. On the higher level strategic planning, we need primi-
tive actions that we can model and use for plan generation. For efficiency reasons
these primitive actions – skills – are written following a reactive paradigm. The
skills are small reactive execution entities which have a well-defined purpose,
like “go-to-position (x, y)” or “intercept-ball”. When a skill is called it will try
to fulfil its purpose, or report a failure if that is not possible, e.g. the ball is
no longer visible while intercepting it. A skill cannot deliberately switch to an-
other skill. This decision is the task of the higher level agent program. However,
it can call another skill as part of itself, for instance the intercept skill has to
call the goto skill for the movement towards the ball. But the intercept would
not decide to change the behaviour to search-ball when the ball is not visible.
While changing the active skill could make sense for a field player, a defender
might better go back to the defending position. Therefore the decision to switch
skills should be made by the agent controlling the overall behaviour. Skills can
thus be seen as execution entities which make only local decisions, not global
game-play decisions. These skills need a particular programming and run-time
environment – the behaviour engine. According to Definition 1 the behaviour en-
gine is located at level 1 in our behaviour hierarchy. From the initial proposition
that skills are reactive execution entities which accomplish simple task, i.e. the
primitive actions from a higher level perspective, state machines are an obvious
choice for modelling the behaviour. As we need continuous transitions between
states, we selected hybrid state machines (HSMs) as the model of our choice.
A HSM is a finite state machine which allows for state transitions following
differential equations (flow conditions) on the one side, and logical expressions
(jump conditions), on the other side. Jump conditions are represented by the
inequalities, while the flow conditions are stated by the differential equations
(see e.g. [3]).

UML state charts combined with hybrid automata have been used by Stolzen-
burg et al. [9,10] to model higher level reactive behaviours. The focus of their
work, however, was on level 2 of our behaviour hierarchy, where they coordinated
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the multi-agent behaviour with HSMs. Here, we concentrate on a formal model
for hierarchical skills on level 1.

We want to use HSMs to model skills as reactive execution entities. More
complex skills often use simpler skills. Therefore we want to provide an efficient
way for re-using a skill, which avoids the construction of a state machine that
includes both, the complex skill behaviour and all of the internal details of the
included simple skill. To achieve this we extend the HSMs [3]. The behavior en-
gine should be applicable to multiple platforms and domains. We expect that the
available skills will depend on the combination of a particular platform and do-
main. Therefore we give the following definitions. The domain describes the area
of operation and determines the tasks to be executed. The platform describes
the used robot system.

Definition 2 (Skill Space). The combination of a platform P and a domain
D with regard to skills is called skill space (P ,D) for platform P and domain D.

Definition 3 (Set of Skills). The set K(P,D) is called the set of skills for the
skill space (P ,D). It denotes the set of available skills for a particular skill space.

Definition 4 (Skill Hybrid State Machine (SHSM))

S = (G, X, D, A, jump,flow , exec,K(P,D)) (1)

Final and failure state. The graph G = (Q, E) has only two valid exit states
Qexit = {qfinal, qfailure}.

Control graph. A finite directed multi-graph G = (Q, T ), where Q = QU ∪ Qexit
are the states (vertices) with QU being the user defined states and T are the
transitions (edges).

Dependencies. For hierarchical definition of a skill existing skills can be re-used.
These used skills are called dependencies of skill S. Skills that are used in
the current skill are called direct dependencies, skills that are used in direct
dependencies or their dependencies are called indirect dependencies. A skill
may not depend directly or indirectly on itself. For this we define a set D ⊆
K(P,D) \ S of dependencies. Let DS ⊆ D be the set of skills that the skill
S directly depends on. Then the function δ : K(P,D) → ℘(K(P,D) \ S) with
δ(S) = DS∪{δ(d) | d ∈ DS} gives a set of all direct and indirect dependencies
of S and S /∈ δ(S). This can be represented as a dependency graph.

Execution Function. A skill is executed with the exec function. It assigns values
to some variables x ∈ X and runs the state machine by evaluation of the
jump conditions of the current state, possibly leading to a state change. It
is defined as exec(x1, . . . , xn) → {final, running, failure} with xi ∈ X. The
return value depends on the current state after the evaluation.

Actions. For the execution of lower-level behaviors and other SHSMs we de-
fine a set A of actions. An action a ∈ A′ is a function a(x1, . . . , xn) →
{running, final, failure} with xi ∈ X that executes a lower-level system be-
havior (on a lower behavior level). The set K = {execd | d ∈ D} is the set of
execution functions of dependency skills (on the same behavior level). The
set of actions is then defined as A = A′ ∪ K.
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Action Execution. For each state q ∈ Q we define a set Eq ⊆ A of actions. Each
action is executed when the state is evaluated. The set Eq may be empty.

Before we illustrate the definition of skill hybrid state machines in Sect. 5 with an
example skill from the humanoid robot Nao in detail, we address the implemen-
tation of SHSMs in Lua in the next section. For now, it is sufficient to note that
skills are special hybrid state machines that can hierarchically be called by other
skills. We hence model actions and sub-skills as a way to interact with the actu-
ators of the robot and to easily call other skills. To avoid specification overhead
sub-skills are defined as functions. Rather then integrating another skill’s state
machine when it is called into the current caller’s state machine it is sufficient to
call the encapsulating k-function and define appropriate jump conditions based
on the outcome. Dependencies are defined as a way to avoid cyclic call graphs
when a skill calls another skill.

4 Implementing Skill Hybrid State Machines in Lua

4.1 Lua

Lua [4] is a scripting language designed to be fast, lightweight, and embed-
dable into other applications. These features make it particularly interesting for
the Nao platform. The whole binary package takes less then 200KB of storage.
When loaded, it takes only a very small amount of RAM. This is particularly
important on the constrained Nao platform and the reason Lua was chosen over
other scripting languages, that are usually more than an order of magnitude
larger [11]. In an independent comparison Lua has turned out to be one of the
fastest interpreted programming languages [11,12]. Besides that Lua is an ele-
gant, easy-to-learn language [13] that should allow newcomers to start developing
behaviours quickly. Another advantage of Lua is that it can interact easily with
C/C++. As most robot software is written in C/C++, there exists an easy way
to make Lua available for a particular control software.

Other approaches like XABSL [14] mandate a domain specific language de-
signed for instance for the specification of state machines. This solves to some
extent the same problems, easy integration, low memory foot print and easy
development. But it also imposes restrictions in terms of the expressiveness of
the language. By using a general purpose language one can easily experiment
with different approaches for behaviour formulations. Using parsing expression
grammars implemented in Lua (LPEG [15]), XABSL files could even be read
and executed within the Lua behaviour engine.

Lua is popular in many applications. Especially in the computer game sector
Lua has found a niche where it is the dominant scripting language. It has been
used to develop game AI and extension modules for games. And even in RoboCup
applications, Lua showed its strength as programming language before [16,17].

Integration of Lua into Fawkes. As Fawkes uses a plug-in strategy for in-
tegrating software modules, it was particularly easy to develop a Lua plug-in
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for Fawkes making use of the C/C++ interface. As on the level of the be-
haviour engine required information from the low-level control system are stored
in the blackboard, access to the blackboard from Lua needed to be guaranteed.
Wrappers for accessing C++ code from Lua can be generated automatically via
tolua++ (cf. http://www.codenix.com/tolua/ for the reference manual). Since
interfaces are generated from XML descriptions input for automated wrapper
generation by means of tolua++ can easily be created. With this, data can be
read from and written to the blackboard, and messages can be created and sent
from Lua. With this access to all the robot’s information about the current world
situation is accessible and commands to any component in the framework can
be sent.

The agent calls skills by forming a Lua string which calls the skills as functions.
The Lua integration plug-in will create a sandbox and execute the Lua string
in that sandbox. The sandbox is an environment with a limited set of functions
to be able to apply policies on the executed string. This could be preventing
access to system functions that could damage the robot or only providing certain
behaviours.

4.2 Implementing Skill Hybrid State Machines

We chose SHSMs to model the robot’s different behaviours. Each skill is designed
as an HSM. The core of the implementation is the Skill-HSM to which states
are added. Each state has a number of transitions, each with a target state and
a jump condition. If the jump condition holds the transition is executed and
the target state becomes the active state. The HSM has a start state which is
the first active state. When a skill is finished or stopped by the agent, the state
machine is reset to the start state.

The state machine is executed interleaved. That means that in an iteration
of the main loop all transitions of the active state are checked. If a jump condi-
tion holds the appropriate transition is executed. In this case transitions of the
successor state are immediately checked and possibly further transitions are ex-
ecuted. A maximum number of transitions is executed after which the execution
is stopped for this iteration. If either a state is reached where no jump condition
fires or the maximum number of transitions is reached, the execution is stopped
and continued only in the next iteration, usually with fresh sensor data and thus
with possibly different decisions of the jump conditions.

4.3 Tools for Developing Behaviours

An often underestimated aspect is the need for tool support when developing
behaviours. Lua has the great advantage that it comes with automatic memory
management and debugging utilities. Hence, we can focus on the development of
skills in the behaviour engine. Instead of going along the lines of programming the
behaviours graphically (as RoboCupers usually are experienced programmers),
skills need to be coded. Nevertheless, we support the debugging process with
visual tools, displaying the state transitions and execution traces on-line.
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Fig. 3. SkillGUI: a GUI to execute, visualise and debug skills

The behaviour is visualised as a graph with states as nodes and transitions
as edges. The developed implementation in Lua allows to create the HSM graph
at run-time. From the formulation of the behaviour as HSM in Lua the graph
can be directly generated. The Graphviz [18] library is used to generate the
graphical representation and display to the user. In Figure 3 the visualisation
of the state machine of a stand-up behaviour is shown. The dotted node marks
the currently active node, the dashed lines are states and transitions which have
been passed in the current run of the state machine. The numbers give the order
of the transition sequence, the trace. By this trace one can follow what happened
in the state machine even if the transitions happen very fast.

5 The Stand-Up State Machine in Lua

To illustrate the definition of SHSM, we show an example state machine of a
stand-up behaviour of the Nao. In Listing 1.1 an excerpt from the code of the
stand-up skill is given. The complete skill is visualised in Figure 3. The code
shows the state machine for standing up from lying on the back. Of particular
interest are line 2, where the dependencies are defined, and the following lines,
which define the required blackboard interfaces. Lines 8-10 instantiate the states,
line 10 specifically adds a sub-skill state which will execute and monitor the
getup skill (which makes the robot stand from a sitting position). In Lines 12-13
a transition is added which is executed when the robot is standing or sitting on
its feet. Line 15 adds a transition that is executed if the robot is lying on its back.
Lines 17-20 show the code to order an execution in the low-level base system via
the blackboard. Parts like the execution of stand-up from lying on the front and
waiting for the action to finish have been omitted for space reasons.

In our experiments, besides verifying the correctness of the state machine
and its monitoring, we analysed the run-time of the system. As we stated in the
introduction, a behaviour engine must be lightweight, not wasting any resources.
On average, the state machine takes 1 ms till the next command is executed,
3 ms with the debugging graph visualised.
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Listing 1.1. Standup Skill HSM in Lua (excerpt)
1 fsm = SkillHSM:new{name=name, start="STANDUP"}
2 depends_skills = {"servo", "getup"}
3 depends_interfaces = {
4 {v = "naomotion", type = "HumanoidMotionInterface"},
5 {v = "naohw", type = "NaoHardwareInterface"}
6 }
7
8 fsm:new_jump_state("STANDUP")
9 fsm:new_jump_state("FROM_BACK")

10 fsm:new_jump_state("GETUP", getup, FINAL, FAILED)
11
12 STANDUP:add_transition(GETUP,
13 "naohw:accel_x() >= -35 and naohw:accel_x() <= 35")
14
15 STANDUP:add_transition(FROM_BACK, "naohw:accel_x() < -35")
16
17 function FROM_BACK:init()
18 naomotion:msgq_enqueue_copy(
19 naomotion.StandupMessage:new(naomotion.STANDUP_BACK))
20 end

Other skills that have been implemented include walking to a certain global
or relative position, controlling servos (e.g. to move the head while walking),
searching for the ball, tracking the ball with the head or intercepting the ball.

In addition to the behaviour engine we have used extended HSMs and Lua
to implement a simple agent program to control the overall game-play (luaagent
component in Figure 1). In this configuration the basic actions for the HSM
are the skills provided by the behaviour engine (skiller component). By keeping
these two layers separate and not writing the agent as a top-level skill the agent
could easily be replaced, for instance by a more powerful planning component.

6 Conclusion

In this paper we proposed a behaviour engine for the humanoid standard plat-
form Nao. For this purpose, we introduced a three tier architecture for the be-
haviour system. The behaviour engine we propose here is located in the middle
layer and interfaces between the high-level decision component and the execu-
tion of behaviour patterns. This means that the behaviour engine particularly
has the task to monitor the execution of behaviours, and report success or failure
to the high-level decision maker. Central for our behaviour engine is the skill,
which is a piece of code which monitors the low-level execution and reports to
the high-level agent. As a formal model for skills we decided for hybrid state ma-
chines. We extended these state machines to allow for skill hierarchies. A skill
is therefore formalised by a skill hybrid state machine. The implementation of
the behaviour engine was done in the lightweight scripting language Lua, which
can be easily integrated into a robot control architecture. We use this behaviour
engine successfully on the new standard biped platform Nao. In particular it is
important to note that the motion patterns via NaoQi can be integrated easily.
This makes our approach interesting as an extension of the Nao software archi-
tecture. For future work, we want to use the inherent features like events and
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multi-graphs, which come with HSMs and could be used to model multi-agent
behaviour, for example for cooperative team play on the agent level as well.
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Abstract. Often Particle Filters are used to solve the SLAM (Simul-
taneous Localization and Mapping) problem in robotics: The particles
represent the possible poses of the robot, and their weight is determined
by checking if the sensor readings are consistent with the so far acquired
map. Mostly a single map is maintained during the exploration, and only
with Rao-Blackwellized Particle Filters each particle carries its own map.

In this contribution, we propose a Hyper Particle Filter (HPF) – a
Particle Filter of Particle Filters – for solving the SLAM problem in
unstructured environments. Each particle of the HPF contains a standard
Particle Filter (with a map and a set particles, that model the belief of the
robot pose in this particular map). To measure the weight of a particle in
the HPF, we developed two map quality measures that can be calculated
automatically and do not rely on a ground truth map: The first map
quality measure determines the contrast of the occupancy map. If the
map has a high contrast, it is likely that the pose of the robot was always
determined correctly before the map was updated, which finally leads to
an overall consistent map. The second map quality measure determines
the distribution of the orientation of wall pixels calculated by the Sobel
operator. Using the model of a rectangular overall structure, slight but
systematic errors in the map can be detected. Using the two measures,
broken maps can automatically be detected. The corresponding particle
is then more likely to be replaced by a particle with a better map within
the HPF.

We implemented the approach on our robot “Robbie 12”, which will
be used in the RoboCup Rescue league in 2009. We tested the HPF
using the log files from last years RoboCup Rescue autonomy final, and
with new data of a larger building. The quality of the generated maps
outperformed our last years (league’s best) maps. With the data acquired
in the larger structure, Robbie was able to close loops in the map. Due to
a highly efficient implementation, the algorithm still runs online during
the autonomous exploration.

1 Introduction

Many different algorithms have been proposed in the last few years to solve the
SLAM (Simultaneous Localization and Mapping) problem ( [2, 3,4, 6,8]). These
solutions nowadays run in real time (for 2D maps) and produce very accurate
maps, which can be used by robots for path planning and navigation. To handle
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the uncertainties that result from noisy sensor data, probabilistic approaches
became very popular within the last couple of years (see [9] for a survey). Within
the probabilistic approaches, Particle Filters [10] have some favorable properties:
They can handle the so called “kidnapped robot problem”, where the pose of
the robot is unknown in the beginning. Also, multiple hypothesis of the robot
pose can be tracked, and non-Gaussian distributions can be modeled.

However, the original implementation of Particle Filters suffered from the fact
that only a single map (often as an occupancy grid) was maintained, and the
particles only represented different assumed poses of the robot. So if the map
“broke”, the complete map building failed. Rao-Blackwellized Particle Filters [1]
can maintain a single map for each particle. So if a map breaks, the corresponding
particle is finally removed. Hähnel et al. combined Rao-Blackwellized Particle
Filtering and scan matching in the FastSLAM algorithm [5]. Here each Particle
Filter contains a map as a list of features that are stored within an Extended
Kalman Filter.

In this work, we propose a Hyper Particle Filter (HPF) – a Particle Filter of
Particle Filters – for solving the SLAM problem in unstructured environments.
Each particle of the HPF contains a standard SLAM Particle Filter: The particle
contains a map and a set of particles that model the belief of the robot pose in
this particular map. The Particle Filter requires a measurement step. To measure
the weight of a particle in the HPF, we developed two map quality measures: The
first map quality measure mq1 determines the contrast of the occupancy map.
This is motivated by the fact that if the map has a high contrast, it is likely that
the pose of the robot was determined correctly before the map was updated.
This finally leads to an overall correct map. The second map quality measure
mq2 determines the distribution of the orientation of wall pixels calculated by
the Sobel operator. In contrast to mq1, the measure mq2 can only be used if
the overall structure of the mapped area is known to be rectangular. Using this
measure, slight but systematic errors in the map can be detected. Both quality
measures can be calculated automatically and do not rely on a ground truth
map. Using mq1 and mq2, broken maps can automatically be identified. The
corresponding particle is then more likely to be replaced by a particle with a
better map within the HPF.

The paper is organized as follows: Section 2 reviews the use of Particle Filters
for robotic mapping and localization, section 3 introduces the concept of the
Hyper Particle Filter. Section 4 describes experiments with the HPF. Section
5 concludes the paper, and section 6 closes the paper with the topics that are
addressed in the future.

2 Particle Filters

The idea of Particle Filters is adopted from the field of computer vision, where
the principle is known as the Condensation Algorithm [7]. The idea is to repre-
sent the distribution function of the robot pose as a set of particles: The more
likely a particular pose is, the more particles represent this area. Whenever new
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sensor data is available, the following steps are executed (adapted to the field of
robotics):

1. Resampling: A new generation of particles is created from the current set
of particles. The higher the weight of a particle is, the more likely it is drawn
and its pose is represented in the next generation.

2. Drift: The particles are moved according to the control update or the odom-
etry readings of the robot. Additionally, a scan matcher is used to improve
the estimated transformation.

3. Diffuse: The particles are moved according to the noise of the motion model.
4. Measure: Using the current sensor data (e. g. readings from the laser range

finder) a weight is assigned to each particle (which represents the consistency
of the pose and sensor data with the so far acquired map).

For our robot “Robbie X”, we used a Particle Filter with about 1,000 particles
that represent possible poses (x, y, Θ)T in 2D. Note that the map itself is not
part of the state vector.

In our approach, the Particle Filter is used for the localization only: The
acquired map is stored independently in an occupancy grid [3]. In the context of
RoboCup Rescue, the grid has a size of 800×800 cells, which represents a map
of an area of 40×40 meters with a grid cell size of 50×50 millimeters. The grid is
stored in two planes: One plane counts how often a cell was “touched” by a laser
beam. This value is increased either if the laser beam reported the cell as free or
if the cell was reported as occupied. A second plane stores the information how
often a cell was seen as occupied. By dividing the values of these two planes, the
occupancy probability for a cell ci is estimated by the following ratio:

pocc(ci) =
countocc(ci)
countseen(ci)

(1)

To extend the map, the best pose that the Particle Filter determines is used to
update the map: The current laser range scan is added to the global occupancy
map at the estimated robot pose by constructing a local map and “stamping” it
into the global map, incrementing the counts for seen and occupied cells. Special
attention is paid to cells that are touched by the laser beams more than once
during a single scan (these are cells that are close to the robot): If such a cell
is seen as occupied, than other beams of this scan can not overwrite this cell as
free any more.

So far only a single map was maintained, and in case of a defect in the map,
there was now way to recover.

3 Hyper Particle Filter (HPF)

To overcome the problem of broken maps, we use multiple (about 30) SLAM
Particle Filters concurrently. Due to the probabilistic behavior of each filter in
the diffusion step, different (but similar) maps are generated in each SLAM filter.
Additionally, each filter can reject a new measurement with a 20% chance. This
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way, some of the filters are not influenced by totally broken scans, that might
be the result of scans taken while the robot was turning or tilting on top of a
ramp. This happens frequently at the rough environment that is simulated in
the RoboCup Rescue arena. Even though we use a gimballed laser range finder,
which is actively balanced using two servo motors and the data of an dual-axis
accelerometer, we get distorted scans. This frequently happens when the robot
drives over the top of the ramps.

The 30 SLAM Particle Filters are organized within another Particle Filter,
the so called Hyper Particle Filter. This is depicted in Fig. 1. The particular
steps of this Particle Filter are implemented as follows:

1. Resampling: During the resampling step, SLAM Particle Filters that carry
a map with a weight below 99% of the weight of the map of the best SLAM
Particle Filter are replaced by the best one (including map and robot poses).

2. Drift: During the drift step each SLAM Particle Filter is updated with the
current laser scan.

3. Diffuse: (No diffusion.)
4. Measure: For the measurement step, the map quality of each SLAM Particle

Filter is analyzed using the map quality measures mq1 and mq2 that are
described below.

3.1 Map Quality Measure mq1

The ability to generate high quality maps is strongly related to the ability to
locate the robot when the range measurement was taken: If the localization was
correct (and the noise of the sensor is reasonably low), then the resulting map
shows consistent assumptions for walls and other features. With incorrect pose
estimations, the assumptions for obstacles are not consistent, which results in
blurry regions in the occupancy grid. These situations are illustrated in Fig. 2:
Two scans are take from the same position, with a different orientation (see Fig.
2(a) and 2(b)). If the rotation between the two scans is estimated correctly, then
the two scans can be registered perfectly (see Fig. 2(c)). If there is an error in
the estimation, then the scans are merged incorrectly in an occupancy grid (see
Fig. 2(d)): The occupancy probability for parts of the map cells drops, because
the location that corresponds to these cells have been seen once as free and once
as occupied. It is likely that this inncorrect registration is the starting point for
a broken map.

The value of mq1 measures the contrast of the map Mocc by checking for
the absence of uncertain cells for all areas that have been scanned by the range
sensor so far (these cells are in the set seen(Mocc)):

mq1(Mocc) =
1

|seen(Mocc)|
∑

c∈seen(Mocc)

contrast(Mocc(c)) (2)

with

contrast(Mocc(c)) =
(

Mocc(c) − 0, 5
0, 5

)2

(3)
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Fig. 1. The principle of the Hyper Particle Filter: The particles of the Hyper Particle
Filter are standard SLAM Particle Filters (with a map and particles that represent
robot poses). For the measurement step, the quality of each map is evaluated.

(a) First scan of the
robot

(b) Second scan
of the robot

(c) Correct registra-
tion

(d) Incorrect regis-
tration

Fig. 2. Correct (c) and incorrect (d) registration of the two scans (a) and (b). The
incorrect registration lowers the occupancy probability of some of the grid cells. This
is an indicator for the incorrect pose estimation.
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(a) Map generated with 50 particles:
mq1 = 87.39%

(b) Map generated with 1000 particles:
mq1 = 92.55%

Fig. 3. Maps generated with different numbers of particles – and the corresponding
map quality measure mq1. The lower quality of map (a) compared to (b) is visually
hard to detect, but sensed by the mq1.

where Mocc is the occupancy grid representation of the map and Mocc(c) the
occupancy value of a particular cell c of the grid. This way, a pixel which is clearly
free (“white”) or clearly occupied (“black”) is counted with full contrast (= 1.0);
a pixel which was scanned the same number of times free and occupied (“gray”)
is counted with no contrast (= 0.0). Fig. 3 gives an example for the measure
mq1 for two different maps. For the first map (Fig. 3(a)), only 50 particles were
used; for the second map (Fig. 3(b)) 1000 particles. As expected, the value of
mq1 is higher for the map with more particles.

3.2 Map Quality Measure mq2

The mq2 measures the consistancy of wall directions within a map. Unlike mq1,
this measure is not model free: It can be used only if the building has a rectan-
gular structure. The map becomes inconsistent if a systematic error causes the
walls of the map to bend to a certain direction, or if the map is broken and the
walls suddenly point to a random direction. An example of such a broken map
is given in Fig. 4.

The directions of edges in an image can be calculated in various ways; one of
the most common methods is the Sobel edge detector. Let Mocc be the occu-
pancy grid of a building structure, and Sx and Sy Sobel operators for the x and
y direction, then the horizontal and vertical derivative approximations Gx and
Gy can be calculated as follows:

Gx = Sx ∗ Mocc =

⎡⎣1 0 −1
2 0 −2
1 0 −1

⎤⎦ ∗ Mocc (4)
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Fig. 4. Broken map: A part of the building (next to the round label) is turned and
moved. Map of the autonomy final during RoboCup Rescue 2007, Atlanta, USA.

and

Gy = Sy ∗ Mocc =

⎡⎣ 1 2 1
0 0 0
−1 −2 −1

⎤⎦ ∗ Mocc (5)

where ∗ denotes the convolution operation. Using Gx and Gy, we can calculate
the strength of the edge and gradient’s direction:

G(Mocc) =
√

Gx
2 + Gy

2 (6)

Θ(Mocc) = atan2 (Gy,Gx) (7)

Using the edge directions, we calculate the measure mq2 for the consistancy of
the wall direction using the following algorithm:

1. Calculate for a map Mocc the edge image Θ(Mocc).
2. Create the histogram hist(Θ(Mocc)) over the angles (bin size: 3◦).
3. Smooth the histogram using a mean filter of size 5.
4. For the four largest peaks pi, i ∈ [1..4] in the histogram:

Calculate μi, σi and |pi| (number of angles that belong to this peak). Use
all angles within ± 30◦ around the peak.

5. Calculate mq2: mq2 =
∑ 4

i=1 |pi|σi∑ 4
i=1 |pi|

The value of mq2 is small for significant peaks, and large for non-significant
peaks. Fig. 5 gives examples for two different maps: Based on the same logfiles,
the parameter that determines the distance between sampling points in the laser
scan is modified. With a small distance between the sampling points (100 mm)
a highly accurate map is produced (with the original, rectangular structure of
the building). If the distance between the sampling points is increased (e. g. to
1,000 mm), the map gets inconsistent over time; resulting in skewed (and blurry)
walls. Therefore, the orientation of the walls is not consistent any more, which
is clearly visible in the histogram of the wall angles: The histogram is more flat,
and therefore mq2 – which adds up the variance of the four most significant
peaks – is larger.
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(a) Consistent map
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(b) Angle histogram, mq2 = 10.03

(c) Mostly consistent map
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(d) Angle histogram, mq2 = 12.20

Fig. 5. Map and angle histogram to determine mq2 (particle count = 5000, cell size
50 × 50 mm). In (a) ten times more distance measurements from each laser scan were
used compared to (c). (data set: rescueServer 2008.07.20 13-49-13.log)

4 Experiments

4.1 Map Quality Measures

To check how the map quality measures behave under controlled settings, we
run the following experiment: Using the identical log file (from the RoboCup
Rescue final in China, 2008), we produced hundreds of maps but used different
parameters in the map building process. For example, we iterated the number
of particles that are used for the robot localization; for each particular number
we performed three complete mapping runs. From experience, we know that the
more particles are used to represent the posterior of the robot pose, the more
accurate the generated maps are. Typically, we used about 2,000 particles for
our mapping. For the experiments, we iterated the particle count from 50 to
2,000. Fig. 6(a) shows the correlation between the number of particles and mq1.
Two conclusions can be drawn from the graph: 1. The gain in quality is large up
to about 1,000 particles. 2. If the experiment is repeated, the resulting quality
can vary significantly (e. g. see the three different values at particle count 1,400).
So building maps concurrently definitively makes sense! Fig. 6(b) shows the
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Fig. 6. Map quality measure mq1 and mq2 versus number of particles
(data set: rescueServer 2008.07.20 13-49-13.log)
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Particle Filters; without (middle) and with (top line) resampling (replacement of maps
with low quality).

correlation between the number of particles and mq2. Here also up to a number
of about 300 particles, the increased particle count yields a gain in quality. Then
again – and here more significantly than with mq1 – the resulting quality varies
a lot, even with the same number of particles. This means: Even if you choose
the same parameters, the outcome of the probabilistic algorithm can be very
different. But now, using mq1 and mq2, we can detect the resulting quality.

4.2 Hyper Particle Filter

We tested the HPF using the log files from last years RoboCup Rescue autonomy
final. Using mq1, the HPF always picks the best map out of these 30 generated
maps after each mapping step. This way, the probability of a highly accurate map
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(a) (b) (c)

Fig. 8. Successful loop closing using a Hyper Particle Filter (HPF) with 30 particles.
(a) Situation right before the loop closing. (b) The robot scans areas that it has visited
before; first errors in the map are visible. (c) The HPF closes the loop by switching to
a consistent map.
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Fig. 9. Map quality measure mq1 versus the mapping steps while the loop closing
happens between steps 170 and 180: The quality of the map of particle 8 drops, but
the map of particle 23 can cope with the loop closing.

was dramatically increased. Fig. 7 shows how the map quality increases with the
number of particles, for one (bottom line) and for 30 concurrent Particle Filters
(middle), and also the influence of the resampling (top line). Within the resampling
step, SLAM particle filters with low quality maps are replaced by better particles,
so that the average map quality for all particle counts can be improved further.

4.3 Loop Closing

Using mq1 the problem of loop closing can be solved. The loop closing happens
when the robot drives around a block and returns to a spot that it has visited
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before using a different way. Accumulated errors often cause the map to break
in these areas due to the chain error. For the experiments, we recorded data in a
building in which a RoboCup Rescue arena is placed. We collected the odometry
and laser range data while driving the robot around this arena. Immediately after
the loop closing, the map was broken for a moment; this situation is illustrated in
Fig. 8(b). Using mq1, the broken map was detected. Then, the algorithm switch
to another map (with a higher mq1 value). This map is shown in Fig. 8(c). Note
that in this map the walls fit exactly. The weights of the involved particles (only
3 out of the 30) is shown in Fig. 4.2. The quality of all maps drop after the loop
is closed, but some particles can cope the situation better than others. So the
HPF switches to a particle with a clearer and more consistent map.

The performance of the loop closing depends on the number of particles in the
HPF: The more particles (and maps) are maintained concurrently in the HPF,
the more likely a loop can be closed successfully.

5 Conclusion

In this work, we presented the concept of a Hyper Particle Filter for robust
online mapping: A Particle Filter that is composed of a number of conventional
SLAM Particle Filters. Two new map quality measures for the evaluation can be
used for the measurement function of the Hyper Particle Filter: mq1 determines
the contrast of the map, while mq2 calculates the distribution of the orientation
of wall pixels calculated by the Sobel operator. While mq1 is model free, mq2
relies on a orthogonal building structure assumption. Using these measures, we
can detect broken maps and replace them by maps that are consistent.

We showed that the overall map quality is increased compared to the standard
“single” SLAM Particle Filter by just using multiple Particle Filters concur-
rently. Using a simple resampling strategy, the overall quality could once again
be increased. Because loop closings also influences the map quality, loop closing
situations can implicitly be detected and a another map (that is consistent –
even after the loop closing) is chosen automatically. We will use the new filter
during RoboCup 2009 on our robot “Robbie 12” in the RoboCup Rescue league.
In the test with last years log files, the quality of the maps generated by the HPF
outperformed our last years (league’s best) maps. With the data acquired in the
larger structure, Robbie was able to close loops in the map. Due to a highly
efficient implementation, the algorithm still runs online during the autonomous
exploration.

6 Future Work

So far the diffusion step of the Hyper Particle Filter is not implemented. We plan
to modify parameters of the SLAM Particle Filters in this step: For example, the
scan matcher that reduces the error of the odometry might be switched on or
off. This way, the scan matcher is turned on automatically when it increases the
accuracy of the mapping, but is switched off (and therefore saves computation



Stable Mapping Using a Hyper Particle Filter 263

time) when it is not needed. So the software can adapt itself depending on the
current environment.
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Abstract. Sensors that measure range information not only in a sin-
gle plane are becoming more and more important for mobile robots,
especially for applications in unstructured environments like response
missions where 3D perception and 3D mapping is of interest. Three such
sensors are characterized here, namely a Hokuyo URG-04LX laser scan-
ner actuated with a servo in a pitching motion, a Videre STOC stereo
camera and a Swissranger SR-3000. The three devices serve as prototyp-
ical examples of the according technologies, i.e., 3D laser scanners, stereo
vision and time-of-flight cameras.

1 Introduction

Sensors providing 3D range data are getting more and more important for mobile
robotics in general and for Safety, Security and Rescue Robotics (SSRR) in
particular. 3D data allows response robots for example to estimates the size of
gaps, to construct realistic maps of unstructured disaster environments, or to
detect human victims from shape. Concrete examples of research with relevance
for SSRR where 3D sensors are used include 3D mapping [1][2][3][4][5], semantic
environment classification [6] or the detection of drivable terrain [7].

The main purposes of this paper are twofold. First, updated information con-
cerning the state of the art of according sensors compared to previous discussions
in the literature are provided. Second, the focus is on devices that can be directly
used on mobile robots, especially in the context of Safety, Security and Rescue
Robotics.

The rest of this paper is structured as follows. In section 2, 3, and 4 a concrete
3D laser scanner, stereo camera, respectively time-of-flight camera are introduced
and their general properties are discussed. A direct comparison is presented in
section 5. Section 6 concludes the paper.

2 3D Laser Range Finder

Laser Range Finders (LRF) in their standard form are the predominant sensor
for mapping on mobile robots. But as the interest on 3D mapping increases, the
� Formerly International University Bremen.
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limitations of the standard systems that only scan a horizontal plane become
more and more apparent. There are meanwhile quite some 3D laser scanners
available off the shelf. A very recent but coarse overview is given in [8]. A detailed
discussion of an example sensor can be found in [9]. These systems are designed
for geometric applications and hence not really suited for mobile robots, mainly
due to their weight and power consumption.

It is hence very popular within the 3D mapping community to take a standard
2D laser scanner and to actuate it to get data from an additional dimension. One
option is to mount two scanners perpendicular to each other and to exploit the
movement of the robot itself [10]. But most commonly, the sensor is directly driven
with some servo-mechanismto also get significant amounts of 3D data on a station-
ary or slow moving robot. In doing so, different motions of the scanner with respect
to the robot’s frame are possible. Examples are rolling [11], pitching [12] or yawing
movements [13]. The prototypical system presented here uses a pitching motion.

This system is based on a Hokuyo URG-04LX [14]. It has a 240 degrees
field of view, which is scanned in 683 steps, i.e., the angular resolution is 0.36
degree. It can cover 0.2 to 4m with a resolution of ±10mm. It is based on a near
infrared laser-diode with λ = 785nm. The URG-04LX is interfaced via USB to
the mobile robot. For the servo that moves the sensor, a small board based on
a PIC18f2410 micro-controller is used, which is interfaced via RS232. There are
of course other 2D laser scanners that could be used as basis for a 3D sensor.
Example characterizations of other 2D laser scanners are [15] for the Hokuyo
PBS03 and [16] for the popular Sick LMS 200.

The main advantage of the Hokuyo URG-04LX is its compactness (l:50mm,
w:50mm, h:70mm), small weight (160 g) and low power consumption (2.5 W).
These advantages are traded in with the relative short range of 4 m. Our system
uses a standard servo for a pitching motion of the scanner (figure 1(a)). The
main difference of this system compared to other 3D scanners, for which larger
scanners like the Sick LMS 200 are very popular as sensor basis, is its compact-
ness in size, weight and power combined atthe cost of a shorter range. But the
characteristic aspects that serve as basis for the evaluation and comparison to
other 3D laser range finders are very generic.

Like laser scanners in general, the URG-04LX has a relatively slow update
rate of 100 msec/scan. The overall time for a 3D scan depends on the range and

(a) 3D LRF (b) stereo (c) TOF camera

Fig. 1. The three different 3D sensors that are analyzed here
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the resolution of the actuation of the sensor. The low cost servo in our system
allows precise steps with a minimum angular resolution of 3 deg. It hence takes
about 3 seconds for the 30 scans that cover a pitching motion of 90 deg, i.e.,
683 × 90 data points. This relative slow rate for a total 3D scan is typical. The
system described in [12] for example takes 3.4 seconds to produce a scan with
256 × 181 data points.

3 Stereo Vision

Stereo vision is a well known technique for 3D measurements in general [17] as
well as for mobile robots in particular [18,19]. A common criticism for stereo
vision, especially when compared to laser range finders, are its high computa-
tional requirements. This true if the generation of the disparity image is done in
software. But alternatives exist like the stereo-on-chip (STOC) camera (figure
1(b)) from Videre Design [20], which has an embedded processor.

The device connects to a PC a using IEEE 1394 (Firewire) interface and
consumes 2.4 Watts. It produces a 3D point cloud at a resolution of 640×480 at
30 frames per second. The cameras are CMOS imagers, rigidly mounted on an
anodized aluminum chassis; the base-line is 9 cm. They have a global shutter, i.e.,
all pixels are exposed simultaneously. The left and right pixels are interleaved
in the video stream. The device needs to be calibrated and this information is
then stored on it. Both monochrome and color images can be obtained. The
device board runs a version of the SRI Small Vision System (SVS) [21] stereo
algorithm, which is based on area correlation.

Fig. 2. The left camera image, and the corresponding disparity image of a flat white
surface with almost no visual features

Fig. 3. The left camera image, and the corresponding disparity image of a flat surface
with visual features
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Fig. 4. The mean and the standard deviation of distance measured with a Videre
STOC using the points lying within the central 150 × 150 sq. mm. The results are
based on averaging 20 measurements at each distance.

Figures 2 and 3, illustrate the main disadvantage of stereo systems, namely
their dependency on sufficiently distinctive regions for matching. As the disparity
image in figure 2 shows, a flat featureless board is not detected by the device.
Only the boundary of the board is detected. This should be compared to the
disparity image in figure 3 where the board has some text on it. This time the
interior of the board is captured quite well.

The dependence on environment conditions is also illustrated by an exper-
iment to estimate the discrepancy from the ground truth for the points lying
within the central 150×150 sq. mm. This experiment was performed on a freshly
calibrated device. The results are shown in figure 4. The ranges of objects too
close to the cameras, namely at a distance less than the focal length, are incor-
rect. As the distance of the object increases, the range error steadily increases
as one can expect. Nevertheless, note the irregular behavior in the standard
deviation, which can be related to environment conditions.

4 Time of Flight Cameras

The Swissranger SR-3000 (figure 1(c)) is a time-of-flight camera, i.e., a tech-
nology that is much less established than laser scanners or stereo cameras.
The device is produced and marketed by the “Centre Suisse d’Electronique
et de Microtechnique” (CSEM). An earlier version of this sensor, namely the
SwissRanger-2, is characterized in some detail in [22]. The technological princi-
ples on which this sensor is based are described in [23]. Roughly speaking, this
type of sensor uses an array of cells similar to an imager of a camera to mea-
sure the phase-shift of emitted modulated infrared light. By this, a time-of-flight
based distance measurement can be done simultaneously in each cell of the array.

The sensor connects to a Computer via USB. It is delivered with an API and
example applications for Windows, Linux and Mac OS X. The sensor generates
color encoded distance images as well as intensity images. The first correspond
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Fig. 5. At the left, the underlying scene shot with a normal camera; next to it the
effects of the Amplitude Threshold (AT) on range images with a SR-3000

to the measured phase-shift, the second to the amplitude of the signal. The
measured distances are encoded by hue, range from red (near) to violet (far).
Black pixel indicate that no useful information was measured, mostly because
too little modulated light was received. The underlying technology of the SR-
3000 is relatively young and far less established than laser range finders or stereo
cameras. Though promising, there are still many drawbacks.

The first fundamental problem is the wrap-around error. As phase-shift is
measured, c = c+k ·2π for arbitrary k. This means if the phase of 2π corresponds
to for example 8 m then two points in a distance of 0.2 m and 8.2 m lead to the
same measurement.

In theory, there is the option to use the so-called Amplitude Threshold pa-
rameter to remedy this problem. When used with this parameter, the camera
only returns distance values for pixels with a certain minimal brightness. Note
that the range for the unused pixels is set to zero. This parameter is potentially
also useful for eliminating other kinds of errors as discussed later on. Roughly
speaking, a higher amplitude threshold leads to less data points but the data
points are of higher quality.

The main problem is to find a suited amplitude threshold (AT) for the current
conditions in a particular environment. This is illustrated in figure 5. First of all,
there is some random noise on some objects. This most prominently occurs on
dark objects and around the edges of objects. Second, the amplitude depends on
distance and it hence can remedy wrap-around errors. But the amplitude also
depends on the reflectance properties of the objects. If the AT is chosen too low,
correct data points are discarded.

An other important parameter is the integration time, which is also called
exposure time. It is the time used for acquiring each frame. The perceivable
brightness of the illumination unit increases with the integration time. The inte-
gration time of course determines the frame rate and also the power consumption
as it influences the brightness of the illumination LEDs. The quality of the images
can increase with the exposure time, but also the minimal distance increases. An
autoillumination feature for the device can be used to automatically determine
integration time and illumination intensity. The user can supply a certain range
for the integration time and the best value within the boundaries is chosen. This
setting yields good results, so it should be used unless there are reasons not to
do so, e.g., the urgent need to save energy or to achieve a certain frame rate.
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Fig. 6. Though the SR-3000 already has an extremely limited field of view, artifacts
from the focused modulated light sources are apparent. When using a short exposure
time and AT=0, there are is a significant amount of noise in the corners of the range
image (left). When increasing the AT to 500, any information from these regions is
completely discarded and a almost perfect circular shape caused by the narrow cone
of the modulated illumination can be seen (right).

There are two possible ways around the errors caused by wrap-around of
the phase-shift. The simpler one as mentioned before is to apply an amplitude
threshold. This works quite often, as the amount of light reflected by an obstacle
is proportional to its distance to the source of light. But when dealing with
obstacles with different reflective properties, this fails. The second possibility is
to use two modulation frequencies in an alternating way. As each modulation
frequency entails a specific non-ambiguity range, the pixels of alternating frames
wrap around at different distances. Thus, the errors in one frame can be evened
out by comparing it to another frame taken at a different modulation frequency.

While frames retrieved by this method still contain some errors and are also
not totally dense, this method is in general advisable. The down side is that the
frame rate is reduced, especially as two frames have to be dropped immediately
after the change of the modulation frequency.

An other significant drawback of the sensor is its extremely small field of view.
Even with its already very limited standard view of 47o ×39o, artifacts from the
LEDs as quite focused illumination sources are apparent. The main portion of
the modulated light emitted by the LEDs is centered in the middle of the sensor.
So when using a relatively low exposure time, the corners of the picture do not
get enough light for decent measurements. An example is given in figure 6(a).
Please note that the color scale for this image is extremely short; the distance
between red and violet is 40 cm. This is done for illustration purposes. When the
only the brightest pixels are used, i.e., AT is accordingly adjusted, the circular
shape of the lighting becomes visible (figure 6(b)).

Bright light. The SR-3000 is very sensitive to ambient light conditions. Especially
sunlight requires some manual tuning of AT (see figure 7).

A further problem is that objects close to the camera can make objects near
them on the picture appear closer to the camera than they are; especially if the
far objects are dark and the material of the near object is bright, i.e., highly
reflective. An other form of irregular distortion appears when an object is close
to the camera. Then, a faint ghost image of it will often appear on the opposite
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(a) Photograph of a scene
with some sunlight.

(b) Random noise due to
bright light, AT=0

(c) Corrected image with
AT=300

Fig. 7. The SR-3000 is very sensitive to ambient light conditions. When confronted
with a scene including a bit of sunlight (left), a significant amount of noise occurs with
AT=0 (center). Only when tuning AT, here to 300, the problem is solved (right).

(a) Distance picture of a
static rod.

(b) The rod moving down
fast (about 10 m/s). The
large blue and green bars
are movement errors.

(c) The same rod moving
up slowly (about 0.25 m/s).
The errors become smaller
but are still present.

Fig. 8. Errors caused by a moving object (AT=500)

of the frame. Yet an other source for distortions are moving objects (figure 8).
When sampling them, there are always distortions at their edges, even with low
exposure times. Many of these problems are also mentioned in the manual of the
sensor [24].

Last but not least, the SR-3000 behaves much like a regular camera and it
is hence can be mislead by reflections. When a reflected surface appears in its
view, the SR-3000 will not measure the distance to where the reflection occurs,
but the perceived distance to the objects visible on the reflective surface. The
measured distance is then the distance from the camera to the reflective sur-
face plus the distance from the surface to the object. An example is shown in
figure 9.

As a rough quantitative comparison between the SwissRanger to the stereo
camera, the same measurements concerning accuracy were performed: the dis-
crepancy from the ground truth for the points lying within the central 150×150
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(a) Photograph of a scene
with reflections due to a
glossy floor.

(b) Distance information
with AT 500

Fig. 9. Reflections, here on a floor, cause the measurement of false distances
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Fig. 10. The mean and the standard deviation of distance measured with a Swis-
sRanger SR-3000 using the points lying within the central 150 × 150 sq. mm. The
results are based on averaging 20 measurements at each distance.

sq. mm was determined. The results are shown in figure 10. As can be seen, the
measurements are quite accurate, especially for longer distances.

5 Comparison of the Results

The three sensors are quite similar in several aspects. First of all, all three can be
relatively easily incorporated on a mobile robot as they have similar low demands
in terms of space, payload and power (table 1). They also deliver roughly the
same amount of data points (table 2). Note that the stereo system uses an
embedded hardware to do the matching of regions to produce the disparity
image. Hence all three sensors directly deliver 3D data points via their interface.
No additional computation is needed for the raw data, which is of interest here.
Obviously, the representations differ, but any robotics application will require
some coordinate transformation of this raw data anyway. The systems are also
quite similar in terms of cost, which is a few thousand Euros each.

The main differences are the update frequency and the quality of the data. The
stereo and the time-of-flight camera beat the 3D laser scanner by far in terms of
sampling frequency. The 3D laser scanner in contrast delivers much higher qual-
ity data. This does unfortunately not only hold with respect to Gaussian noise,
which could be easily compensated by averaging, which would be supported by
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Table 1. General physical properties

size weight power
3D URG40-LX l:50mm, w:50mm, h:70mm 425 g 2.5 W
STOC l:132mm, w:39mm, h:44mm 261 g 2.4 W
SR-3000 l:42.3, w:50, h:67mm 162 g 12 W1

Table 2. Data acquisition

number of sampling field range
data points rate of view

3D URG40-LX 683×90 0.3 Hz 240o × 90o 0.2 - 4 m
STOC 640×480 30 Hz 70o × 52o 0.75 - 3 m
SR-3000 176×144 ≤ 50 Hz2 47o × 39o 0.6 - 8 m3

the higher sampling rates of the two camera sensors. But in addition to high
Gaussian noise, the stereo and the time-of-flight camera suffer from fundamen-
tal drawbacks that can not just be remedied by higher update frequencies. The
differences in terms of quality of the data of the three sensors can not easily
be presented in detailed quantitative terms as they strongly depend on environ-
mental conditions. An according exhaustive discussion would by far exceed the
limits of this paper. Hence a qualitative analysis, which should be at least as
useful, is given here.

Stereo requires the matching of identifiable regions. Featureless objects are
simply not detected, no matter how often or from which position they are viewed.
Hence, a significant amount of regions is not coped with. This holds especially for
plain walls, which can be found in many corridors, offices or other “structured”
environments. At least, stereo does not provide any completely false depth infor-
mation. If no match can be performed, this is indicated accordingly. The error of
depth estimates significantly increases with range. But near objects, if detected,
are well measured. Stereo hence can serve as a fast 3D sensor on a mobile robot.

The basic idea of a time-of-flight camera as a solid state, 3D range finder is
at first glance very promising. But the technology is still in its infancy. To get
useful data out of the SR-3000, some parameters have to be tuned by hand.
Some problems are of a fundamental nature due to the underlying technology,
e.g., the wrap-around error or wrong measurements due to reflections. Others,
like the strong sensitivity to ambient light conditions or the extremely narrow
field of view, may be remedied by software or future hardware generations. This
sensor can nicely supplement a stereo vision system as their strengths are com-
plementary. A time-of-flight camera performs best on homogeneous flat surfaces,

1 The exact power consumption depends on the integration time.
2 The exact sampling frequency depends on the integration time.
3 The range depends on the frequency setting for the modulation. Here the values for

20 MHz are given for which the best results were achieved.
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where stereo tends to work badly. The accuracy of data points, which are not
corrupted by structural errors is very high as indicated in figure 10. Neverthe-
less, a usage of just this sensor for 3D data acquisition on a mobile robot in an
arbitrary environment is at least non-trivial.

Laser scanners are a very mature, well established technology. The currently
available off the shelf 3D scanners are mainly targeted for geometric applications.
They are hence not really suited for mobile robots, mainly due to their weight
and power consumption. Also, the cost is typically much higher than for the
sensors presented here. But a 3D sensor can be easily constructed from any of
the popular 2D sensors supplemented with an actuator. The main disadvantage
in general, no matter whether off the shelf or based on an own design, is that the
acquisition of a single scan takes several seconds. This is a time period where the
motion of the robot usually can not be ignored anymore, i.e., either the robot
stops for taking a full scan or the motion is compensated for in the acquisition
process. The quality of the data points is much higher than compared to stereo
and time of flight cameras. This holds with respect to two aspects. First, the
mean and standard deviation of measurements compared to ground truth is
much smaller. Second, the amount of completely false or non-classified points
is very small. This is mainly due to the fact that laser scanners sample single
points, which in turn causes their main disadvantage, namely the relatively long
time it takes to generate a single scan.

6 Conclusion

The acquisition of 3D data is increasingly important for mobile robots, especially
for systems operating in unstructured environments like response robots . Three
different technologies are characterized here based on three prototypical devices,
namely a 3D laser scanner, a stereo camera and a time-of-flight camera. The
results and their discussion provides general guidelines for system developers as
well as potential end users.

Laser scanners are the most mature and reliable technology. Off the shelf 3D
scanners are mainly targeted for geometric applications and not really suited
for mobile robots. Turning a common 2D device into a 3D scanner is relatively
easy. Here, an example based on a Hokuyo URG04-LX and a servo for a pitching
motion was presented. Such systems can deliver very high quality data, but at
the cost of relatively slow update rates. Stereo cameras in contrast have very
high sampling frequencies, especially when using embedded hardware like the
Videre STOC presented here. In addition to the typically higher error at larger
distances, stereo systems suffer from the drawback that they require regions that
can be matched. Featureless objects, especially plain walls, are not detected.
Last but not least, the CSEM Swissranger SR-3000 as a time-of-flight camera
combines in theory all the advantages of a laser scanner and a stereo camera.
But in reality, the technology is still in its infancy. The update rate is high, but
the quality of the data is poor. The device requires a high amount of parameter
tuning. Ideally, all three sensors are simply used together for 3D data acquisition
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if space, payload, power and budget constraints permit. To quite some extent,
they supplement each other.
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Abstract. In the Standard Platform League (SPL) there are substan-
tial sensor limitations due to the rapid motion of the camera, the limited
field of view of the camera, and the limited number of unique landmarks.
These limitations place high demands on the performance and robust-
ness of localization algorithms. Most of the localization algorithms imple-
mented in RoboCup fall broadly into the class of particle based filters or
Kalman type filters including Extended and Unscented variants. Particle
Filters are explicitly multi-modal and therefore deal readily with ambigu-
ous sensor data. In this paper, we discuss multiple-model Kalman filters
that also are explicitly multi-modal. Motivated by the RoboCup SPL,
we show how they can be used despite the highly multi-modal nature
of sensed data and give a brief comparison with a particle filter based
approach to localization.

1 Introduction

Localization has been studied by many researchers for several years now. Most
of the algorithms implemented in RoboCup fall broadly into the class of particle
based filters (see for example [5]) or Kalman type filters (see for example [6])
including Extended and Unscented ([4]) variants. In some divisions of RoboCup,
algorithms are very well established, given the rich sensor data provided by laser
scanners, omni-directional cameras etc. (see for example [3]). However, in the
standard platform league (formerly the four legged league) there are substantial
sensor limitations particularly with the rapid motion of the camera, and the need
for active perception. In addition, the league has deliberately removed beacons
as unique landmarks, leaving the colored goals as the only unique landmarks on
the field.

Due to the non-uniqueness of most land marks in the SPL, it is important that
any localization algorithm be able to handle this ambiguous data. In particular,
it is clear that in many cases, the relevant probability density functions will be
multi-modal. Whilst it is generally accepted that particle filters can handle this
situation, it seems less well known in the RoboCup domain that Kalman type
filters can be easily adapted to handle multi-modal distributions. In other re-
search areas, however, multiple model (also called Gaussian Mixture or Gaussian
Sum) filters have been used for many decades (see for example [1]).

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 276–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Multiple Model Kalman Filters 277

In this paper, we first give a review of multiple-model Kalman filters, with
particular emphasis on features and approximations relevant to real time im-
plementation within the RoboCup framework. We then present examples and
results of the mutliple model Kalman filter.

2 Multiple Model Kalman Filters

2.1 Problem Formulation

In many robotics applications, localization algorithms are concerned with the
problem of estimating the ‘state’ of the robot, from uncertain data. For exam-
ple, in the Standard Platform League, we might typically be concerned with
estimating the location (in 2D cartesian coordinates) and orientation of the
robot given data derived from vision of objects on the field such as goal posts
and field markings. In this case, the state we wish to estimate is written as the
3 dimensional vector

x(t) =

⎡⎣xr(t)
yr(t)
θ(t)

⎤⎦ (1)

where (xr, yr) denote the robot’s cartesian coordinates and θ is the robot’s orien-
tation. Often, a probabilistic or statistical representation of uncertainty is used,
though more recently some ‘constraint’ based localization techniques have also
been applied (see for example [2]).

In the probabilistic setting, adopting a Bayesian estimation framework, there
are two components to the state estimation problem:

– Time Update. Firstly, given the pdf of x(t− 1) conditioned on data up to
time (t − 1), p(x(t − 1)) and also given odometry information at time t, we
wish to make an estimate of the conditional density function of x(t), given
data up to time t, p(x−(t)).

– Measurement Update. Secondly, given the conditional pdf, p(x−(t))and
also given measurement data at time t, we wish to find p(x(t)).

In the standard Kalman filter approach, we use a multivariate (n-dimensional)
Gaussian to represent the conditional pdfs of x(t), for example

p(x(t)) =
1

(2π)n/2|P (t)|1/2 e−
1
2 (x(t)−x̂(t))T P−1(t)(x(t)−x̂(t)) (2)

where x̂(t) denotes the expected value of the state at time t, and P (t) represents
the state covariance matrix also at time t. In the standard Kalman filter, or the
extended or unscented versions there are simple expressions that allow computa-
tion of the time update equations (that relate (x̂−(t), P−(t)) to (x̂(t−1), P (t−1))
and measurement update equations that relate (x̂(t), P (t)) to (x̂−(t), P−(t))).

The Kalman filter has an extensive history and has proven very useful in a
wide range of applications, and also enjoys relatively simple computations. At



278 M.J. Quinlan and R.H. Middleton

each time, given a scalar measurement variable, the computational complexity
of the time update and measurement update equations is typically O(n2) where
n is the dimension of the state variable. Unfortunately, it provides a very poor
representation of multi-modal distributions, since despite the generality available
in (2), this distribution is always unimodal. Fortunately, this difficulty can be
overcome by the use of Gaussian mixtures.

2.2 Gaussian Mixture Background

Gaussian mixtures represent the state pdf as a sum of a number of individual
multivariate Gaussians, or multiple models. Each of the N models, for i = 1..N ,
is described by 3 parameters (where for simplicity we drop the explicit depen-
dence on time):

– αi ∈ [0, 1], the probability that model i is correct, that is, the ‘weight’
associated with model i,

– x̂i ∈ Rn, the state estimate for model i,
– Pi = PT

i > 0 ∈ Rn×n, the covariance for model i.

For each model, the multivariate normal probability distribution function
(pdf) is given by:

pi(x) = αi
1

(2π)n/2|Pi|1/2 e(−
1
2 (x−x̂i)T P−1

i (x−x̂i)). (3)

The overall mixture pdf is therefore:

p(x) =
N∑

i=1

pi(x). (4)

Note that all variables, αi, x̂i, Pi and N can change with time in the algorithms
to be discussed below.

Some of the key features of this representation are that under certain as-
sumptions, any pdf can be approximated to an arbitrary degree of accuracy by a
Gaussian mixture of sufficient degree (see for example the discussion in [1, §II]).
We first consider the simple case of updates for unambiguous measurements.

2.3 Model Update with Unambiguous Measurements

We first perform an EKF (or UKF as appropriate) update of each of the N
models, for all unambiguous objects from vision (e.g. ball, known goal posts,
field markings that can be uniquely identified from other visual cues). This EKF
(or UKF) measurement update is identical to the regular (that is single model)
update, except that we need to include update equations for the model weight.
For each model, and for each measurement update, an approximate heuristic for
updating the weights is:

αi := αi

(
R

R + (y − ŷ)2

)
(5)
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where R is the variance of the measurement considered. Note the update pro-
posed in (5) is simple and has the right general form, that is, zero innovation
keeps the α value high, whilst large innovation shrinks the value. However, as-
suming statistically independent normally distributed measurement errors, and
allowing for vectors of m measurements1 the weights should be updated accord-
ing to:

αi := αi

(
1√

(2π)m|Ση|
e−

1
2 ηT (Ση)−1η

)
(6)

where η = y − ŷ is the innovations associated with the measurement, and Ση

is the variance of the innovations. Note that the innovations variance can be
computed as the sum of the measurement variance R and the variance R̂ of the
prediction, ŷ, that is, Ση = R + R̂.

One of the problems with the weight update given in (6) is its lack of robust-
ness to outliers. For example, a single, slightly bad measurement where |η| = 4ση

would multiply αi by almost four orders of magnitude less then if η ≈ 0. To cor-
rect this, if we assume a probability of εo that our observation is an outlier (that
is a false positive from vision), then a more appropriate weight update is:

αi := αi

(
(1 − εo)

1√
(2π)m|Ση|

e−
1
2 ηT (Ση)−1η + εo

)
. (7)

Having processed all the unambiguous measurements, we now turn to the prob-
lem of processing ambiguous measurements, which gives rise to the problem of
model splitting.

2.4 Model Splitting - Ambiguous Measurements

When considering an ambiguous measurement update, with M alternate possi-
bilities, an initial distribution with N elements (or models) can be performed by
splitting each of the N initial models into M models (to a total of M ×N models)
and doing a standard measurement update for each possible combination of model
component with each possible measurement component. Note that it is also possi-
ble that splitting could be the results of ambiguous time updates (for example, if
we are uncertain whether the ball has just been kicked). In this case, similar consid-
erations to those below will apply during the time update portion of the extended
Kalman filter. For now, we look just at the measurement update equations.

Suppose that we start with N models, and a measurement that is ambigu-
ous, and can therefore be interpreted as M different field objects, such as M
different corner points. For simplicity we consider the case where each of these is
equiprobable, though there is no difficulty in generalizing the algorithms below
to cases where each of the measurement ambiguities has different, but known,
probabilities.
1 For example, it may make sense to consider the range and bearing of a single object

as a single, two dimensional vector measurement.
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The processing of an ambiguous measurement is performed by executing the
following actions:

for each active model i
for j =1 to number of ambiguous choices

create a new copy (child) of model i;
update this new model with measurement type j;
if (update is an outlier) merge2 new model with model i;

end;
renormalize the weights for all children of model i;

end;
Note that the distribution of weights at the end of the inner loop respects the rel-
ative weights after the measurement updates, but renormalizes the total weight.
Clearly, whilst the individual actions within this procedure are relatively com-
putationally cheap, it can give rise to an exponential growth in the number of
active models, which is clearly impractical. One of the most important problems
therefore in many multiple model Kalman filters is how to control the number of
models. Although pruning (that is deleting) models with very small weights may
be helpful, this is not a complete solution and it is important to have procedures
for merging models.

2.5 Model Merge Equations

We first consider the simpler of the problems associated with merging models,
namely, given a group (often a pair) of models, how do we merge (or join) these
into a single resulting model that approximates the original pdf. There are many
possible algorithms that may be used for merging models, see for example [8].
The discussions here follow closely these algorithms or simplified forms of them.
For simplicity, we describe merging a pair of models, however, the algorithms
below generalize trivially to merging more than two models at once.

Firstly, it is clear that when merging, to preserve the total weight probability
of one of the models being correct, we should have [8, (2.24)]:

αm = α1 + α2 (8)

where αm is the weight of the merged model and α1, α2 are the weights of the
two models to be merged.

Also, we can derive the merged mean as follows3:

x̂m =
1

αm
(α1x̂1 + α2x̂2) (9)

2 The model merge procedure will be discussed in Section 2.5. This logic frequently
causes early model merges and thereby reduces the expansion in the number of active
models.

3 Note that when merging, extra care is need to merge the orientation components of
the estimates. For example, merging an orientation of 179◦ with −179◦ should not
give 0◦.
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Note however that this merging algorithm can cause ‘drift’, wherein, merging
of a high weight, though slightly uncertain model, and low probability model
with different mean, causes a small shift in the parameter estimates. If this
situation persists (for example when repeatedly observing the same ambiguous
object without any other observations), then the parameter estimates can drift
significantly. To avoid this problem prior to computing the merged covariance,
we follow (9) by the logic:

if α1 > 10 ∗ α2 then x̂m := x̂1

if α2 > 10 ∗ α1 then x̂m := x̂2

If we wish to preserve the overall covariance of the pdf corresponding to the
original pair of pdfs, then the merged covariance matrix is given by:

Pm =
α1

αm

(
P1 + (x̂1 − x̂m)(x̂1 − x̂m)T

)
+

α2

αm

(
P2 + (x̂2 − x̂m)(x̂2 − x̂m)T

)
(10)

Note that it is not obvious that these equations give the ‘optimal’ merge. In
particular, some of the main contribution of the thesis [8], is to pose the merge
problem as an optimization of the difference between the resultant pdf and the
original mixture pdf. In this case, a recursive algorithm for computing the opti-
mal merge can be generated. For reasons of simplicity and numerical efficiency,
we propose the simpler equations (8),(9),(10). Note however, that (for example)
merging a low weight high variance pdf with a high weight low variance pdf
by this procedure tends to under-estimate the probability of the ‘tail’ of the
distribution, whilst giving better accuracy in the pdf of the main mode of the
distribution.

2.6 Model Merge Decisions

Model merge decisions are complex and there seem to be a number of possible
algorithms for this. The authors of [8] formulate the problem of deciding which
models to merge in an optimization framework. This optimization starts with a
high order mixture model and seeks to find a lower order mixture model that
best fits the original mixture model in the sense of the mean square deviation
of the probability density functions. The only inputs needed are the original
model, and the number of elements (models) in the final mixture. However, the
computations for this kind of procedure seem prohibitive in the RoboCup SPL
environment.

We therefore propose a computationally simpler procedure, based on a sim-
plified form of the optimization approach. Our approach is based on computing
pairwise merge metrics, that is, a measure of how much ‘information’ will be lost
if this pair of models is merged. One metric proposed for example in [8, pp2.66]
computes the distance metric, dij , for a pair of models indexed by (i, j) as

dij =
(

αiαj

αi + αj

)
(x̂i − x̂j)T P−1

ij (x̂i − x̂j) (11)
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where PE is the covariance that would result if the models were to be joined,

Pij =
(

αi

αi + αj

)
Pi +

(
αj

αi + αj

)
Pj +

(
2αiαj

αi + αj

) (
(x̂i − x̂j)(x̂i − x̂j)T

)
(12)

To simplify calculations, and avoid the matrix inverse that may be problematic
in higher order systems (for example combined robot, ball and ball velocity
estimation where n = 7), we propose a simpler approximate metric

Dij = (αiαj) (x̂i − x̂j)T (αiΔi + αjΔj)
−1 (x̂i − x̂j) (13)

where Δi denotes the matrix formed by the diagonal component of Pi.
Given a mechanism, such as (13), for computing a metric on the closeness

of two models, we could repeatedly search for the closest two models to merge.
Note however, that to implement this, we must first compute all N(N − 1)/2
possible distance metrics, find the smallest, merge these, then recompute merge
metrics (or at least the N − 2 metrics associated with the new merged model)
and repeat. Alternatively, it may be simpler to merge based on a threshold using
an algorithm such as that following:

for each active model i
for each active model j

if (mergeMetric(i,j) < threshold) then
model i := mergeTwoModels(i,j);

end;
end;
If this threshold based merge does not achieve sufficient reduction in the number
of models, it can be repeated with larger thresholds.

2.7 Algorithm Implementation

To avoid the overhead of dynamic memory allocation and deletion, (as well as the
potential to inadvertently create memory leaks), we implement a fixed size array
of size MAX_MODELS of models. Each of these models is a normal KF model (that
is, includes the states estimates and the state covariance) and in addition includes
parameters for the weight alpha and a Boolean, active, denoting whether or
not the model is in use.

The execution has main steps as follows:

1. Time Update For each of the active models, a call is made to the regular
KF time update on this model, that is, it incorporates locomotion data and
updates the filter covariances.

2. Measurement Update for all Unambiguous Objects For each of the
active models, a regular measurement update is performed as suggested in
Section 2.3.

3. For each Ambiguous Object, split models. Ambiguous objects are:
(i) Unknown Intersections; (ii) Unknown Lines; and (iii) Ambiguous Goal
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Posts. For each of these situations, each active model is split according to the
various possibilities for the unknown object. This splitting uses algorithms
as discussed in Section 2.5. After this process, the model weights, αi, are
normalized so that they sum to 1.

4. Merge Models. Since splitting models can leave us with a large number of
possible models, after each ambiguous object update, we merge models to
try to eliminate redundant models.

5. Generate Localization Data for Behavior Following the model merge,
the αi values are again normalized and the best model is selected to represent
the most likely robot position, together with variances of the estimates. Note
however, that we have a special segment of code, so that if there is a valid 2nd
best model, the variance of the estimates reported to behavior is increased to
account for any deviation between the state estimates for the best and 2nd
best models. For example, with respect to orientation, instead of reporting
just the variance σ2

θi1
of the best model i1, the overall heading variance σ2

θ

is computed as
σ2

θ = σ2
θi1

+ αi2 (θi1 − θi2)
2 (14)

where i2 denotes the index of the second most likely model.

3 Example and Results

In this section we run through an example of a Multiple Model Extended Kalman
Filter (MM-EKF), as described in Section 2. One of the most demanding local-
ization situations in RoboCup SPL is goal keeper localization since positioning
needs to be very accurate, and in most cases, the only visible unique land marks
are distant goals. In our test case we have a robot standing inside the yellow
goal mouth looking directly up the field (in our coordinate system, the loca-
tion is x=-290, y=0.0, θ=0.0). The robot then pans its head from side-to-side.
In this example, the robot saw 46 unique observations (either the blue goal or
identifiable blue goal posts) and 278 ambiguous observations (unidentifiable blue
goal posts, intersections and lines). This gives an indication of the amount of
information being ignored when not using ambiguous objects.

3.1 Comparison with a Single Model EKF

Firstly, lets present the accuracy results when comparing a MM-EKF to a Single
Model EKF (S-EKF). As expected the MM-EKF easily out performs the S-EKF
(see Figure 1). Note: the error at the start is due to the robot not intially
knowing its location, once settled both versions converge to a stable location. In
this case, the MM-EKF converged to a location 11.61cm from the true location
with an average orientation error of −1.6◦. While the S-EKF converged to a
location 29.12cm from the real location and with an average orientation error of
−9.30◦.
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(a) (b)

Fig. 1. Accuracy comparison between Multiple Model EKF and Single Model EKF.
(a) Presents the location from the filters in each of x, y and orientation (θ). (b) Total
distance error from actual location.

(a) Before Observations (b) After Observations

Fig. 2. Example of ambiguous observations converging to the correct location. (a) 3
almost equal probability models (α=0.411,0.306,0.283). (b) After the observation of 3
lines and one intersection we are now left with a high certainty model (α=0.824) and
two lower likelihood models (α=0.099,0.077).

3.2 Splitting and Merging

We will present two examples of splitting and merging. Firstly, an example of
a merge split/merge cycle where three roughly equal models can converge to a
more likely model after observering only ambiguous information. This example
describes the update taking place at Frame 33 from Figure 1. Originally the
MM-EKF is maintaining three models (as shown in Figure 2 (a)) with α values
of 0.411,0.306 and 0.283 respectively. The opacity of the robot represents the α
value of that model, with a more solid robot representing a higher α.

The first observation considered is the intersection that is 93cm away at an
angle of 60◦, in the ideal case this observation should be matched with the top
left corner of the penalty box. Unfortunately the three models have just enough
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(a) Split Intersection 1 (b) Split Intersection 2 (c) Split Line 2

(d) Merge Intersection 1(e) Merge Intersection 2 (f) Merge Lines 2 & 3

Fig. 3. (a)-(f) present the sequence of splits and merges that take place due to the
observations

(a) Split when models are uncertain

(b) Merge after uncertain split

Fig. 4. Example of the worst case splitting/merging that can occur when seeing an
ambiguous object. In this case the robot was unsure of its own location and observed an
intersection. Unable to outlier many of the alternatives forced it perform a complicated
merge.

uncertainty that they keep the 3 corners to the left of the robot, that is the top
and bottom corners of the penalty box and the corner on the left hand side of
the field. This spilt can be seen in Figure 3 (a), with the corresponding merge (d)
reducing the total down to two models. Next the MM-EKF considers the second
(false) intersection. Again the same three corners are considered valid options
and the proceeding split/merge trees are shown in (b) and (e) respectively (Note:
Model 6 is still alive at the end of the merge but was not graphed due to nothing
combining with it).

The next observation considered is the line to the far left. This should be the
left sideline but its has been reported with an incorrect vision distance. Because
of this error all the alternatives we rejected as outliers, hence no splits or merges
we undertaken. The next considered observation is the left edge of the penalty
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(a) (b)

Fig. 5. Comparison of the MM-EKF (a) and a Particle Filter (b). The shaded area
represents the uncertainty (two standard deviations).

box, in this case three of the four models (1,4 & 6) outliered on all but the correct
line, while model 0 was sufficiently uncertain that it also considered the sideline
as an alternative (shown in (c)). For space reasons we have forsaken showing
the splits on the front edge of the penalty box, but rather have shown the final
merge tree of the combined splits for the last two observed lines (f).

Secondly, we show the worst case scenario, that is when the robot has very
little idea where it is (i.e. a high variance in location) and it observes an am-
biguous object (Figure 4). In this case the MM-EKF is maintaining 3 possible
models and then the robot observes an unknown intersection. The models fail to
outlier on most of the possible alternatives and the merging step runs through
a complicated procedure as shown in Figure 4 (b). The end results show very
little improvement in accuracy as no alternative is favored. Luckily this scenario
only occurs when the robot is kidnapped (or at startup) and doesn’t see many
unique objects before seeing an ambiguous object.

3.3 Comparison with a Particle Filter

Here we briefly compare the the MM-EKF to a Particle Filter (PF). The PF
used in this comparison has been run at both the 2007 and 2008 RoboCup
competitions and has been tuned for game performance. While the both filters
provide similar accuracy, the MM-EKF can do so with a high certainty. This
is due to the PF using a small number of particles (100) to simultaneous track
position and handle noise/outliers/kidnapping. While the MM-EKF can perform
optimal updates based on the observations for each model, while relying on more
sophisticated approaches to outliers and kidnapping. It should also be noted that
even when running so few particles the MM-EKF is substantially faster in terms
of execution time, averaging less then 35% of time required to process a vision
frame.

4 Conclusions

In this paper, we have discussed the background and implementation of mul-
tiple model Kalman filter based localization, with particular emphasis on the
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RoboCup Soccer Standard Platform League. The MM-EKF is able to directly
handle the ambiguous information, and therefore resultant multi-modal distri-
butions common in the SPL. It shows performance that is substantially better
than standard EKF implementations, and at least in a preliminary test, out-
performs a particle filter applied to the same problem. The main complexity
with the MM-EKF is the merge decisions required to keep the number of active
models limited to a fairly low number. We have given some simple algorithms
designed to achieve this with low average, and moderate peak CPU demands.
Further work on a more detailed comparison with a wider variety of particle
filters is required to give a more accurate picture of the relative merits of the
different approaches.
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Abstract. The major task of police force agents in rescue simulation environ-
ment is to connect the isolated parts of the city. To achieve this goal, the best 
blocked roads should be chosen to clear. This selection is based on some issues 
such as number of burning buildings and victims existing in the mentioned 
parts. A linear combination of these factors is essential to determine a priority 
for each road. In this paper we propose an integrated Genetic Algorithm (GA) 
and Fuzzy Logic approach to optimize the combination statement. The parame-
ters are learned via GA for some training maps. Then, because of differences 
between test and train maps, the agent should decide which parameters to 
choose according to the new map. The agents' decision is based on similarity 
measures between characteristics of maps using Fuzzy Logic. After utilizing 
this method, the simulation score increased between 2% and 7% in 20 test 
maps.  

Keywords: Rescue Simulation, Police Force Agent, Decision Making, Genetic 
Algorithm, Fuzzy Logic.  

1   Introduction 

In rescue simulation environment, a simulated earthquake happens and the city goes 
in an emergency state. Some buildings start to burn, some others collapse, some civil-
ians get damaged and blocked in collapsed buildings and some city roads close by 
debris caused by disaster. These blocked roads divide the city roads graph into iso-
lated city parts. The major task of police force agents [1] is to connect the isolated 
parts of the city that causes the easier transportation of other types of agents (Fire 
brigades and Ambulances) to rescue the city and its civilians. To achieve this goal, the 
best blocked roads should be chosen to clear. This selection is based on some issues 
such as number of refuges, stuck agents, burning buildings and victim civilians exist-
ing in the mentioned parts.  

Therefore, the police force agents should decide which two city parts are more im-
portant to get connected first. A linear combination of these factors is essential to 
determine a weight (priority) for each road.  
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In section 2, we will explain major strategy of police force agents to build a linear 
combination of decision factors which were mentioned above. Section 3 is about 
description of the GA approach which has been used to learn the optimum parameters 
of police force agents' decision making in some fixed training maps. Section 4 ex-
plains the method of combination of the trained parameters to achieve an efficient 
solution for unknown city maps using Fuzzy Logic. We utilize fuzzy logic to deter-
mine the measure of similarity between new maps and learnt maps based on some 
characteristics of them such as state of fires, blockades, victim civilians and etc. Fi-
nally in section 5, some experimental results are reported to show the effect of pro-
posed method on agents work efficiency.  

2   Police Force Agents Main Strategy to Choose a Target Road 

Police force agents should connect all city parts together as soon as possible and in a 
manner that leads to a higher final score which determines the performance of agents 
work. To achieve this goal the agents have to assign a weight to each boundary road 
(means any road that disconnects a city part from another) and start to open them 
based on these weights or priorities.  

The police agents consider some conditions which determine the worth of cleaning 
each boundary road. The final weight of that road equals to the sum of these condi-
tions values. The value of a condition is calculated based on its premise parameters. 
Each condition value should get a weight in summation step of calculating final 
weight of a boundary road. These weights determine the importance of each condition 
comparing to the other conditions.  

In order to better understand, assume that we have a boundary road l which sepa-
rates two city parts cp1 and cp2. Considering this situation, we have conditions de-
scribed in Table1.  

Table 1. Conditions to assign a weight to a boundary road 

Condition If part #1 If part#2 If part#3 Then part 
Cond. 1 #(cp1.BB)>0 #(cp1.RF)=0 #(cp2.RF)>0 #(cp1.BB)* W1 
Cond. 2 #(cp1.BB)>0 #(cp1.FB)=0 #(cp2.FB)>0 #(cp1.BB)* W2 
Cond. 3 #(cp1.DV)>0 #(cp1.AT)=0 #(cp2.AT)>0 #(cp1.DV)* W3 
Cond. 4 #(cp1.DV)>0 #(cp1.RF)=0 #(cp2.RF)>0 #(cp1.DV)* W4 
Cond. 5 #(cp1.BA)>0 #(cp1.AT)=0 #(cp2.AT)>0 #(cp1.BA)* W5 
Cond. 6 #(cp1.BF)>0 #(cp1.AT)=0 #(cp2.AT)>0 #(cp1.BF)* W6 
Cond. 7 #(cp1.BP)>0 #(cp1.AT)=0 #(cp2.AT)>0 #(cp1.BP)* W7 

 

BB: Burning Buildings  RF: Refuges  DV: Dying Victims  
AT: Ambulance Teams  FB: Fire Brigades  PF: Police Forces 
BA: Buried* AT   BF: Buried FB  BP: Buried PF 
* A buried agent is a victim agent that needs ambulance team help. 

 
Each condition consists of three “if parts” combined with AND operator and one 

“then part” affected by a coefficient Wi which is the weight of the condition in sum-
mation step. For example, the first condition says that "if the number of burning 
buildings in cp1 is more than zero AND the number of refuges in that city part is 
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equal to zero AND the number of refuges in cp2 is more than zero", then the condi-
tion 1 has a value equal to number of burning buildings multiplied by W1. The coeffi-
cient Wi is the weight of i-th condition in calculating the total weight of l.  

The importance of connecting two city parts, one with burning buildings and other 
with refuges, referring to the first condition, is determined by the fact that fire bri-
gades need to go to the refuges to fill their water tanks in order to extinguish burning 
buildings. 

Consequently, decision making of police force agents depends on Wi. To achieve good 
weights for conditions we have used a GA approach which will explain in section 3. 

3   Genetic Algorithm Approach to Determine Weights 

In section 2, we described the police force agents' general strategy to choose target 
roads. To optimize the performance, they should assign good values to conditions 
weights. To achieve this goal, we utilize GA approach [3-5] that will be described in 
this section. 

3.1   Chromosome Structure  

In our method, chromosomes have a simple structure which is an array of values as-
signed to weights of conditions. An example of chromosomes structure has been 
shown in Fig1.  

 

    

Fig. 1. An example of the chromosome structure 

The size of each chromosome is equal to n which represents the number of condi-
tions mentioned in section 2.  

Initial population may be generated through a random or user specified process. It 
plays an important role in search direction. A well selected initial population increases 
the search procedure convergence speed and results in faster trend to optimum solu-
tion. In the proposed method, to generate initial population, values assigned to chro-
mosomes are the same as values used before by experiment. Only one element or two 
of each individual chromosome take a random value.  

After constructing initial population, the fitness values for all individuals should be 
calculated. The number of individuals in the population is constant in all generations. 
Some individuals that have most fitness values are gone forward to next generation. If 
the crossover rate is called Pc and number of individuals is called Ps, number of indi-
viduals that are passed to next generation is equal to Ps- Ps*Pc. Therefore, the num-
ber of new generated individuals in each generation is Ps*Pc. These processes are 
performed while the terminating condition is not satisfied. Other parts of the proposed 
genetic algorithm will be described in sections 3.2, 3.3 and 3.4. 

30 40 60 200 150 250 100 
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3.2   Fitness Function 

In the presented method, the total score of simulation is used as fitness value. This 
score is calculated based on work efficiency of all agents. All factors of simulation 
including city map, initial fires, victim civilians and decision making algorithm of 
other agent types (fire brigades and ambulances) should be fixed in GA training itera-
tions. The only exception is police forces work which differs in the various training 
iterations. This difference is because of the changes occurred in the weights in the 
decision making section. So, any change in the total score is because of the change in 
work of police force team.  

3.3   Selection Algorithm 

The selection of the individuals is based on the fitness value of the solutions. The 
probability of selection of an individual is directly or inversely proportional to its 
fitness value. The roulette wheel selection [6] is used in our proposed GA. The main 
idea of this method is to select individuals stochastically from one generation to create 
the next generation. In this process, the more appropriate individuals have more 
chance to survive and go forward to the next generation. However, the weaker indi-
viduals will also have a little probability to select.  

In selection process, Ps*Pc individuals are selected to create the same number in-
dividuals from them using crossover and mutation operators. 

3.4   Crossover and Mutation Operators 

Since individual chromosomes based on a simple structure, complex cross over opera-
tors are not necessary. In the proposed method, two point crossovers are used. There-
fore, Ps*Pc individuals are selected using our selection process where Pc is crossover 
rate. As Ps*Pc new individual is needed after doing crossover, two parents are se-
lected and two new child are produced from them. Points in each parent are selected 
randomly and segments between these two points are substituted by parents to pro-
duce new individual children.  

We produce a random number for each element of individual chromosomes. If it is 
lower than Pm, mutation will be done for that element. Note that Pm is mutation con-
stant. Three elements of each individual chromosome can be chosen for mutation at 
most. Terminating criteria is the number of generations which is determined.  

4   Decision Combination Using Fuzzy Logic 

In rescue simulation environment, each map has some initial states such as start points 
of fire spread, victim civilians' positions, blocked roads and etc that affect the decision 
making strategy of police force agents. Therefore, it is not applicable to learn condi-
tions weights in a certain map and use them in any other map. On the other hand, we 
cannot learn the weights for all possible maps because the number of maps is infinite. 

To overcome this problem, we designed some training maps with specific charac-
teristics. We have used some characteristics that are more important in classifying the 
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maps including number of burning buildings, number of victim civilians, number of 
blocked roads and number of buried agents. 

Each of these maps has different values of above characteristics. In fact, training 
maps are representatives of all maps. Applying GA approach mentioned in section 3 to 
all training maps gives us an array of optimum weights for each map. It is required to 
have a method to combine these arrays and have a solution for each new map. In this 
section, we will propose a method of decision combination using fuzzy logic [7-9]. 

To achieve this goal, each characteristic of map will create a fuzzy set that consists 
of three membership functions: Low, Medium and High. Fig. 2 demonstrates the 
membership functions of maps characteristics. 

 

    
       (a)          (b) 

    
       (c)          (d) 

Fig. 2. "(a) Victim Civilians number (b) Burning Buildings number (c) Blocked Roads number 
(d) Buried Agents number" Membership Functions 

4.1   Fuzzy If-Then Rules 

Using defined fuzzy sets, fuzzy if-then rules will be created. Each rule has four "if 
parts" combined with AND operator pointing to map characteristics mentioned above 
and one "then part" that relates the given map to one of training maps. These rules are 
in Mamdani's proposed form [10]. For example, one of the rules is: 

 

IF "number of victims" is High AND "number of burning buildings" is Low AND 
"number of blocked roads" is Low AND "number of buried agents" is Medium THEN 
map IS training map #1. 

 

Therefore, to cover all possible conditions, we should create 34 = 81 rules. So, we 
should design 81 training maps that each one has characteristics as same as those 
which are described in the center of fuzzy membership functions of corresponding 
rule. Having these rules, the training part is completed and we just need a fuzzy infer-
ence method that can estimate suitable weights for any new given map. This fuzzy 
inference method is explained in section 4.1. 



 Integrated Genetic Algorithmic and Fuzzy Logic Approach for Decision Making 293 

 

4.2   Fuzzy Inference Method 

Given a new map, values of map characteristics will be checked against all fuzzy If-
Then rules. Each "if part" of a rule has a membership function. So, the membership 
value of the given map will be calculated for each of them. As a result, for a given 
map there will be four membership values. A rule "trigger value" (means rule weight 
in fuzzy inference) will be equal to minimum membership value of "if parts" of that 
rule.   

In defuzzification step, to achieve final weights for the given map, we should com-
bine "then part" of all rules considering their trigger values. "Weighted Average" 
method is used in our proposed method for defuzzification step.  

For example, assume that we have just two fuzzy rules. After checking the rules for 
a given map, the first rule has gotten a trigger value w1 and refers to training map #1 
in its "then part", and the second rule has gotten a trigger value w2 and refers to train-
ing map #2 in its "then part". So, the final weights will be calculated based on equa-
tion (1). 

21

2211

ww

weightswweightsw
weightsfinal

+
×+×=  (1)

weights1, weights2 and final weights are the weights arrays of training map #1, train-
ing map #2 and the given map respectively.  

5   Experimental Results 

In order to evaluate the presented algorithm, we implemented it on 
"SBCe_Saviour2008" source code which was one of the eight top teams in China2008 
competitions. In this section, to demonstrate the performance of the method, we com-
pared the results of our method with the results gained before its implementation. 81 
maps with different characteristics were designed for training section. The mentioned 
GA-based method was applied to each map. Using try and error, GA generations 
consist of 10 chromosomes and the learning process continued for 100 generations for 
each training map. Crossover and Mutation probabilities were set to 0.8 and 0.2 re-
spectively. Change in value of elements, which had been mutated, was equal to ±20 in 
first generation and reduced in a way that it reached zero in 10 last generations. Fig. 3 
demonstrates changes in maximum gained scores in each generation during GA train-
ing step. All the training maps were based on Foligno city which is one of the stan-
dard maps in rescue simulation league of RoboCup competitions [2]. 

Maximum total score is increased about 7% as it is shown. In other 80 training 
maps this increase was between 5% and 8%. After completion of GA training step for 
all maps, 81 fuzzy if-then rules were created and each one was assigned to a training 
map in its "then part".  

20 test maps were chosen from Robocup2009 China rescue simulation competition 
maps. The comparison of total scores gained using proposed method and the results 
gained before the training is shown in Table2. 
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Fig. 3. Maximum gained scores in training generations 

Table 2. The comparison of results gained before and after training 

Map Name Old score New score Map Name Old score New score 
Map #01 65.356 67.64 Map #11 90.012 92.103 
Map #02 63.165 67.265 Map #12 93.464 95.689 
Map #03 76.798 78.013 Map #13 88.645 90.465 
Map #04 85.679 88.625 Map #14 87.465 91.465 
Map #05 72.946 75.346 Map #15 85.856 87.695 
Map #06 59.689 62.345 Map #16 75.964 78.654 
Map #07 75.899 78.463 Map #17 72.331 74.649 
Map #08 77.689 79.341 Map #18 70.002 73.566 
Map #09 74.334 76.555 Map #19 90.645 92.256 
Map #10 82.645 85.756 Map #20 81.135 84.698 

6   Conclusion 

In this paper we proposed a GA-based approach to achieve suitable weights for deci-
sion making conditions of police force agents in rescue simulation environment. This 
method is applied to some training maps and the result weights will be combined to 
achieve suitable weights for any new given map using fuzzy inference method. The 
simulation results showed that the method which was presented has positive effect on 
decision making of police force agents and increases the total score of whole team.  
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Abstract. With the rising concern about the needs of people with physical dis-
abilities and with the aging of the population there is a major concern of creat-
ing electronic devices that may improve the life of the physically handicapped 
and elderly person. One of these new solutions passes through the adaptation of 
electric wheelchairs in order to give them environmental perception, more intel-
ligent capabilities and more adequate Human – Machine Interaction. This paper 
focuses in the development of a user-friendly multimodal interface, which is in-
tegrated in the Intellwheels project. This simple multimodal human-robot inter-
face developed allows the connection of several input modules, enabling the 
wheelchair control through flexible input sequences of distinct types of inputs 
(voice, facial expressions, head movements, keyboard and, joystick). The sys-
tem created is capable of storing user defined associations, of input’s sequences 
and corresponding output commands. The tests performed have proved the sys-
tem efficiency and the capabilities of this multimodal interface. 

Keywords: Multimodal Interface, Intelligent Wheelchair, Intelligent Robotics. 

1   Introduction 

Physical injuries occur frequently caused by accidents affecting the mobile capabili-
ties of individuals, among other damages. Physical injuries could also be caused by 
medical conditions, like brain palsy, multiple sclerosis, diseases respiratory and circu-
latory diseases, genetic diseases or chemical and drugs exposition. Usually, the physi-
cal deficiency result on a limited control of some muscles of the arms, legs or face. 
It’s very difficult to generalize physical deficiencies and each person has different 
symptoms and uses different strategies to deal with it. An example is the cerebral 
palsy, which concern with injuries on some brain areas responsible for the movement 
control, resulting on a difficulty that could be slight or cause total incapacity of mov-
ing the arms, legs or even talk. Two persons with brain palsy are different on each 
one’s deficiency and degree of muscle control. Cerebral palsy as no cure but the ef-
fects could change with the age. 
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Nowadays, society is more and more concerned with enabling handicapped per-
sons to have an as independent life as possible. Wheelchairs are important locomotion 
devices for handicapped and senior people. With the increase in the number of senior 
citizens and the increment of people bearing physical deficiencies in the social activi-
ties, there is a growing demand for safer and more comfortable Wheelchairs and the 
new Intelligent Wheelchair (IW) concept was introduced. Like many other robotic 
systems, the main capabilities of an intelligent wheelchair should be: Autonomous 
navigation with safety, flexibility and capability of avoiding obstacles; intelligent 
interface with the user; communication with other devices (like automatic doors and 
other wheelchairs). However, most of the Intelligent Wheelchairs developed by dis-
tinct research laboratories, [6][10], have hardware and software architectures too 
specific for the wheelchair model used/project developed and are typically very diffi-
cult to configure in order for the user to start using them. 

The Intellwheels prototype includes most of the typical IW capabilities, like facial 
expression recognition based command, voice command, sensor base command, ad-
vanced sensorial capabilities, the use of computer vision as an aid for navigation, 
obstacle avoidance, intelligent planning of high-level actions and communication with 
other devices. However the project is based on two main innovative ideas that will 
tackle the abovementioned IW problems. Firstly the Intellwheels project is based on a 
generic IW framework that enables easy development of new intelligent wheelchairs 
and IW control algorithms. The framework is flexible enough to enable easy trans-
formation of commercial wheelchairs into intelligent wheelchairs with minor hard-
ware changes and to enable the introduction of new modules and algorithms in the 
intelligent wheelchair. It includes a complete IW simulation module enabling to con-
duct virtual reality and mixed reality experiments. 

The second innovation is concerned with the Intelligent Wheelchair command 
methodology that is based on a flexible multimodal interface. The wheelchair is 
commanded at a very high-level using a high-level command language based on sim-
ple commands such as “go to bedroom”, “wander”, “follow wall”. The commands are 
triggered by user selected input sequences using the multimodal interface. An input 
sequence may be something like “blink left eye” and then “say: go” or any given 
sequence of inputs coming from distinct input devices. The wheelchair enables the 
user to even use the same type of input sequences to select its preferred inputs/action 
association. In order to enable the user to start using the wheelchair, a simple patient 
classification module based on machine learning techniques is now under develop-
ment. It will be capable of identifying the user basic capabilities and enable him to 
start using the wheelchair flexible multimodal interface in a straightforward manner.  

This work focuses in the development of a user-friendly multimodal interface, 
which is integrated in the Intellwheels project. This paper presents the first prototype 
of the multimodal human-robot interface developed that allows the connection of 
several input modules, enabling the wheelchair control through flexible input se-
quences of distinct types of inputs (voice, facial expressions, head movements, key-
board and, joystick). The system created is capable of storing user defined associa-
tions, of input’s sequences and corresponding output commands. This interface can 
provide an interaction between the wheelchair environment and the input method, so 
that at any instance the input information can be analyzed and checked if it’s reliable, 
to assure the user safety. 
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The rest of this paper is organized as follows. Section 2 describes the concept of mul-
timodal interface and indicates some of its desired characteristics. Section 3 describes 
the Intellwheels project and its main features and characterics. Section 4 describes the 
developed work reagrding the IW multimodal interface and section 5 describes the 
experiments performed and the results achieved. Section 6 presents the paper main 
conclusions and some pointers to future work. 

2   Multimodal Interfaces 

Generically an interface is an element that establishes a frontier between two entities. 
When an interface is used to assist in the Human-Computer Interaction it is called a 
user interface, being able to be graphical or command line based. 

Most of the traditional graphical user interfaces are based in the WIMP (Window, 
Icon, Menu, and Pointing device) paradigm, which uses the mouse and keyboard as 
physical input devices to interact with the interface, for example to access information 
or accomplish any needed task. 

An evolution to this paradigm and a way to create a more natural interaction with 
the user is the establishment of a multimodal interaction. This interaction contem-
plates a broader range of input devices such as video, voice, pen, etc, and so these 
interfaces are called Multimodal Interfaces. 

A Multimodal Interface [1] “processes two or more user input modes – such as 
speech, pen, touch, manual gestures, gaze, and head and body movements – in a coor-
dinated manner with multimedia system output. They are a new class of interfaces 
that aim to recognize naturally occurring forms of human language or behavior, and 
that incorporate one or more recognition-based technologies (e.g., speech, pen, vi-
sion)”. This type of interface can be used in several fields such as, for example, navi-
gational devices – [2] and [3] – and health care solutions – [4] and [5]. 

Considering the purpose of this work the main aspects to consider should be the 
adaptability to users, usability and safety. These factors are determinative in a Multi-
modal Interface design, where subjective characteristics, like user satisfaction and 
cognitive learning, and user interaction depend on them. The adaptability to users is 
necessary so that the interface can be usable and understandable by any person,  
independently from his informatics knowledge and cognition. With the multimodal 
interaction between inputs comes a wider range of output control options and a com-
plementarily between inputs.  

The output control is achieved by the combination of several inputs, only being 
limited by the total number of inputs. As the interaction between the inputs can differ 
depending on the environment, this multimodality achieves a complementarily that 
when any input become less recognizable, it can be compensated by another, but this 
must be done being in mind the interface accessibility. 

Finally, having in account the project enclosure, the multimodality must enable the 
access to any user, despite his deficiency. This shows the Multimodal Interface acces-
sibility importance, so that if a user as any deficiency that suppress the use of one 
input, there is another that compensates this handicap [4]. 

Since this is a Multimodal Interface, it is necessary that this project allows a trans-
parent and intuitive control of the Wheelchair and also a flawless input interaction. 
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This is achieved by the understanding of the user and inputs interaction. The inputs 
interaction is one of the key points of a multimodal interface, since it will be this 
interaction that will produce the desired output to the user. It is necessary the exis-
tence of a support for integrating any kind of inputs like: video, speech, handwriting, 
gestures, etc, but also this support must contemplate a robust processing of the inputs 
to fully recognize the user intentions. 

The user interaction is another key point of a multimodal interface, if not the most 
important, so that the user can have and pleasant experience with the interface. It is 
necessary to consistently verify the disposition of every component of the interface so 
that the visual information and content can be easily accessed. Also it is needed to 
assure an intuitive interaction with the system, regarding the information about the 
available actions and how the user can interact with them. 

Other factor is the interface output, which is divided in two parts: the processes 
concerned with the interpretation of the user inputs and processes regarding the cor-
rect visualization of the information given to the user about the system state. 

3   Intellwheels Project 

This Multimodal Interface is included in the Intellwheels Project, which main objec-
tive is to provide an intelligent wheelchair development framework to aid any person 
with special mobility needs. 

This project encloses the prototype of an intelligent wheelchair, since its hardware 
structure to all software needed to provide a flawless control and experience to the 
user, being the hardware architecture shown in figure 1. 

This architecture was created with the objective of being flexible and generic, so 
that it does not imply considerable modifications in the wheelchair structure [6]. 

 

 

 

Fig. 1. Hardware architec-
ture [6] 

Fig. 2. Software architecture[6] 
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To enable a multimodal control of the wheelchair it is necessary to provide several 
inputs to user. It is also essential that these devices can map a broad kind of input 
methods, so that given any type of movement needs the user always has a way to 
control the wheelchair. With that in mind the following input devices were imple-
mented: USB Joystick; Microphone; Head movements; Keyboard; Mouse; Video 
camera. With this it is possible to control the wheelchair using several types of inputs, 
from head movements to facial expressions [7] [8] [9]. Apart from the user inputs, the 
wheelchair also uses sensoring devices like: encoders, for the odometry calculation, 
and sonars, for obstacle detection. Several hardware interface modules are included to 
deal with the encoders and sensors. 

One final, and important hardware device, is the laptop HP Pavillion tx1270EP, 
which is used to run all the developed software. In figure 2 is possible to see the 
global multi-agent software architecture defined for the Intelwheels project. 

Focusing in the multimodal interface, it interacts with the Control Interface through 
a TCP socket connection, where the Control Interface will inform the Multimodal 
Interface of the available actions and state of any pending planning. 

The user interacts with the Multimodal Interface which provides the connection, 
also through a TCP socket, of several independent input modules. The input modules 
are used for the user interaction and, therefore, create input sequences to execute the 
control actions assign by the Control Interface. 

4   IntellWheels Multimodal Interface 

The Multimodal Interface shows, in a graphical way, information about the actions, 
and input modules, such as kind, name or type of action or input, respectively. It also 
shows the defined input sequences, for the actions execution. 

The joystick module works as a driver to establish a connection between an USB 
joystick and the Multimodal Interface. This module was adapted from [6], and it gets 
the information of the available buttons and analog sticks. 

To enable the voice interaction it was necessary to implement a simple speech rec-
ognition module. The presented solution takes advantage of the IBM Via Voice [11] 
capabilities using the navigation macros, which allows the user interaction with any 
software through, previously recorded voice commands. However, the use of Via 
Voice has a disadvantage since it needs the voice module window to be active so that 
the voice commands macros can be perceived. 

To assure the integration of the already developed inputs, the head movement 
module was adapted to communicate with the multimodal interface. This module 
takes advantage from one accelerometer installed in a cap, where it reads its values 
and transforms in a position type value, for pointer control, or in a percentage speed 
value to control the wheelchair. 

4.1   Multimodal Interface Architecture 

Since the wheelchair control platform and the multimodal interface are distinct 
agents, it was necessary to enable the multimodal interface agent to interact with the 
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already developed control agent [6]. With that intention, data structure and informa-
tion processing methods were created for the components interaction. 

The system architecture, illustrated in figure 3, is a zoom in on the main architec-
ture shown in figure 2. In this figure is possible to see the exchanged information 
between all the involved agents. The control interface acts as a communications 
server to the multimodal interface, as well as the multimodal interface acts as a com-
munications server to the input modules. 

Since the communications are totally established by the used Delphi components, 
as soon as the multimodal interface connects to the control agent, the control sends 
the information about the available high-level actions. For the input modules, as soon 
as one of them connects to the interface, firstly it sends its id and, number of module 
commands. Secondly, upon the receiving of a request from the interface, the input 
module sends the description of all the commands. 

The interface information processing is divided in two logical parts: the server side 
and the client side processing. This division is derived from the need of the Multimo-
dal Interface to act as a client to the control connection, but as a server to the inputs’ 
connection. 

For these models two data structures were created. One for storing the control ac-
tions information and other for storing the input modules commands information. 

The inputs’ structure is composed of six fields: 
• Number: the internal number of the command; 
• Name: the name of the command; 
• Kind: this defines the name of the input module; 
• State: for a button, this represents if its pressed – “True” – or if it was re-

leased – “False”; 
• Value 1 and value 2: these fields are used for transmitting the analog values 

of a command, for example the analog stick of the joystick. 
For a digital command, like for example a button, the value fields will return a “n/a” 
string, being the same analogously applicable to an analog command, it returns the 
state field with a “n/a” string. 

 

Fig. 3. Multimodal Interface architecture 
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The actions’ structure is also composed of six fields: 
• Name: the name of the action; 
• Kind: the kind of action, for example movement; 
• State: the availability for executing a action, returns “True” for a available 

action, or “False” if not available; 
• Value: informs the interface about the execution of an action, returns “ON” if 

the action is under execution, or “OFF” when it stops its execution; 
• Data: this field acts as an information about the level type of the action, be-

ing its options in table 1. 

Table 1. Action structure: Data field 

Data Type name Sent Parameters 
0 Stop action 0 
1 Manual action 2 
2 Mid-Level action 1 
3 High-Level action 0 

 
The information is passed through one of the following messages: 

• From the control interface:  
     <cmd id= name=”” kind=”” state=”” value=”” data=””\> 
     <cmd_state id=”” state=””\> 

• To the control interface 
 High level or Stop: <action id=””\>; 
 Mid level: <action id=”” value=””\>; 
 Manual mode: <manual value1=”” value2=””\>; 

• From the input modules 
 Registration at the multimodal interface 

     <input_info id=”” mods=””\> 
     <input id=””> 
     <module num=”” name=”” kind=””\> 
     … 
     <module num=”” name=”” kind=””\> 
     <input\> 

 Input event generated by user interaction 
     <input_action num=”” state=””\> 
     <input_action num=”” value1=”” value2=””\> 

4.2   Input Sequences 

The input sequences represent how the user interacts with the interface or being more 
precise how the user controls the wheelchair. These sequences are created through the 
combination of two or more input actions. 

Independently from the input module kind, or if the command is digital or analog, 
the associated event has two common identifiers: the module id, and the command 
number. 

To standardize the inputs events representation was defined that if the command is 
digital, then its state is “True” – T – when the button is pressed, or “False” – F - when 
the button is released. 
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Fig. 4. Division for fixed speed values 

For an analog command the state field is not used, but the input module will return 
the values of the analog axis. These are converted to a percentual value and are used 
to directly control the wheelchair, if the manual mode was activated, or are “proc-
essed” and define a fixed speed value. 

This fixed speed value is achieved by logically “dividing” the cursor area in one of 
the analog axis of the joystick. Due to the short length of the stick it is only possible 
to divide in four areas without losing precision, being the division shown in figure 4. 
The variation assumes increments of 25% per zone, from A to D. 

To simplify the sequence creation method, it was imposed a maximum number of 
six input command actions (fragments) to generate a sequence. Also, a minimum 
number of one input was imposed. Each fragment has the following format: 

#<input_module_id>.<command_number><state> 

The state field can be composed by one of three possibilities: “T” or “F”, in case of a 
button, or “%” in case of one of the four pre established values (A, B, C or D). 

The sequence entrance is limited by the already referred maximum number of 
fragments, or at any instance by the detection of an existent or nonexistent sequence. 
That is, for each fragment received the developed algorithm updates the input se-
quence under construction and, searches in the sequence list for the same occurrence. 
The search returns one of three available options: 

• The occurrence is unique, and therefore the composed sequence can be im-
mediately analysed; 

• There are more occurrences of the same sequence fragment and thus it must 
be further processed; 

• The occurrence does not exist in the list, meaning that the user is entering a 
not valid sequence and therefore the process is stopped; 

If the search indicates the current sequence is not unique, the algorithm waits for a 
given predefined time for more input event actions in order to complete this sequence 
to a unique sequence. With this it is possible to evaluate if the user is still entering the 
sequence or, if during a pre established time interval none input action is received, if 
the sequence is already completed. 

The use of this process turned the sequence input method more reactive to the user 
by providing an almost instant response to unique or wrong sequences, allowing a 
more effective control. 
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4.3   Interface Components 

The interface components are all the interface visible components, since the simple 
buttons to images, menus and textual information. In order for the Multimodal Inter-
face to be very simple it only contains the following components:  

• List of available actions; 
• Summary of the inputs connected; 
• Input modules and control connections status; 
• Input sequence graphical information; 
• Sequence’s list; 
• Sequence’s analysis result; 
• Wheels speed information; 
• Menus for programming the interface options and adding more sequences. 

 

 

Fig. 5. Intelligent wheelchair multimodal interface design 

All these components show the available information in a textual way, except the 
input sequence and wheels speed that show the information in a graphical way. Figure 
5 displays the multimodal interface design. 

5   Results 

In order to evaluate the Multimodal Interface integration in the Intellwheels project 
several experiments were made using the Intellwheels simulator [12], with the objec-
tive of controlling the wheelchair in manual mode using distinct inputs. 
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Fig. 6. Wheelchair movement in a room with obstacles, with joystick control and with head 
movement control 

These experiments were made in a simulated room with several obstacles, where 
the wheelchair starts from a middle position and tries to go around the room perime-
ter, deviating from the objects, finishing in the start position. When using voice com-
mands it was also tested the voice recognition software by introducing background 
noise during the tests. For the control with voice commands five commands (front, 
back, left, right and, stop) were defined to control the wheelchair. With these results 
of figure 6-a it is possible to see the wheelchair movement through the room, being 
the input method able to drive the wheelchair in the predetermined course without any 
problem. 

 

  

Fig. 7. Wheelchair movement in a room with obstacles, with voice control, without background 
noise and with background noise 

Analysing the experiments of figures 7-a and 7-b it is possible to see that the im-
plemented voice input method, for directly control the wheelchair, is a preferably 
input for open areas without obstacles. This is due to the delay in the response of the 
speech recognition software, which in emergency situations can become dangerous. 

Another aspect to be considered analyzing these experiments is the sensibility of 
the speech recognition software to the background noise. During the experiments the 
microphone was approximately at 30 cm from the user, and the background noise 
source was a radio playing music with low volume. In these conditions it was neces-
sary to repeat the voice commands several times, which has increased the experiment 
time and also made the control more difficult. Finally, figure 9 shows tests with a real 
wheelchair.  

The results show that it is possible to drive the wheelchair just using head move-
ments with good performance. However, these tests were made without any source of 
distraction. In other experiments it was confirmed that controlling the wheelchair  
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Fig. 8. Real wheelchair movement in a corridor with obstacles using joystick and voice control 
and using head and voice control 

 

using only the head movement module, with a high sensibility, and with several 
sources of distraction is a very complex task. 

Again, this movement method is preferred for open environments without obsta-
cles. However the method is completely capable of manoeuvring the wheelchair in a 
crowded room, performing precise movement tasks, as long as the user has enough 
experience with this method. 

Although the set of experiments performed was still very simple and separate sim-
ple experiments were performed for each input module, it is possible to take some 
interesting conclusions from the results. The inputs perform well and individually 
enable to control the wheelchair. However with distraction sources it is very complex 
to control the wheelchair with a single input and thus the use of high-level commands 
and input sequences to trigger them, seems to be an appropriate approach. 

6   Conclusions and Future Work 

The developed multimodal interface showed to be very flexible enabling the user to 
define distinct types of command sequences and associate them to the available high-
level outputs. 

To verify the system efficiency and the wheelchair control through the developed 
multimodal interface several experiments were conducted, where the wheelchair was 
controlled with the available inputs (joystick, voice, head movements and several 
inputs) in different kinds of environments (noise in the background, obstacles,  
etc.). The results achieved enabled to confirm the multimodal interface capabilities, 
except for the voice module, which proved not to be precise when there is noise in the 
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background. However, the main capabilities of high-level commanding through input 
sequences of the multimodal interface need further experiments to be evaluated.  

Some future directions for this project development are obvious and concern  
performing a set of experiments with the complete multimodal interface and the devel-
opment of the yet missing input modules. One missing feature is a robust facial expres-
sions recognizing module, needed to create a more multimodal experience to the user. 

With the intention of making the Multimodal Interface more user friendly, a text to 
speech output and some kind of virtual user assistant could be implemented. These 
elements would function as an user integration process with the interface. 
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Abstract. The main goal of this article is to report and analyze the applicability 
of a general-purpose social robot, developed in the context of the RoboCup 
@Home league, in three different naturalistic environments: (i) home, (ii) 
school classroom, and (iii) public space settings. The evaluation of the robot’s 
performance relies on its degree of social acceptance, and its abilities to express 
emotions and to interact with humans using human-like codes. The reported  
experiments show that the robot has a large acceptance from expert and non-
expert human users, and that it is able to successfully interact with humans  
using human-like interaction mechanisms, such as speech and visual cues (par-
ticularly face information). It is remarkable that the robot can even teach  
children in a real classroom. 

Keywords: Human-Robot Interaction, Social Robots.  

1   Introduction 

Social robots are becoming of increasing interest in the robotics community. A social 
robot is a subclass of a mobile service robot designed to interact with humans and to 
behave as a partner, providing entertainment, companion and communication inter-
faces. It is expected that the morphology and dimensions of social robots allow them 
to adequately operate in human environments. It is projected that social robots will 
play a fundamental role in the next years as companions for elderly people and as 
entertainment machines.  

Among other abilities, social robots should be able to: (1) move in human envi-
ronments, (2) interact with humans using human-like communication mechanisms 
(speech, face and hand gestures), (3) manipulate objects, (4) determine the identity of 
the human user (e.g. “owner 1”, “unknown user”, “Peter”) and its mood (e.g. happy, 
sad, excited) to personalize its services, (5) store and reproduce digital multimedia 
material (images, videos, music, digitized books), and (6) connect humans with data 
or telephone networks. In addition, (7) they should be empathic (humans should like 
them), (8) their usage should be natural without requiring any technical or computa-
tional knowledge, and (9) they should be robust enough to operate in natural  
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environments. Social robots with these abilities can assist humans in different envi-
ronments such as public spaces, hospitals, home settings, and museums. Furthermore, 
social robots can be used for educational purposes. 

Social robots should have acceptance by every kind of human user, including non-
expert ones as elderly and children. We postulate that in order to have acceptance, it is 
far more important to be empathic and to produce sympathy in humans than to have 
an elaborated and elegant design. Moreover, to produce effective interaction with 
humans, and even enable humans to behave as if they were communicating with 
peers, it has been suggested that the robot body should be “based on a human’s” [5] or 
being human-like [3]. We propose that it is important to have a somehow anthropo-
morphic body, but that to have a body that exactly look likes a human body is not 
required. Many researchers have also mentioned the importance that when interacting 
with humans, the robot tracks or gazes the face of the speaker [7][8][6][4]. We also 
believe that these attention mechanisms are important for the human user. In particu-
lar, the detection of the user’s face allows the robot to keep track of it, and the recog-
nition of the identity of the user’s face allow the robot to identify the user, to person-
alize its services and to make the user feel important (e.g. “Sorry Peter, can you repeat 
this?”). In addition, it is also relevant that the interaction with the robot has to be 
natural, intuitive and based primarily on speech and visual cues (still some humans do 
not like to use standard computers, complex remote controls o even cell phones). 

The question is how to achieve all these requirements. We believe that they can be 
achieved if the robot has a simple and anthropomorphic body design, it is able to 
express emotions, and it has human-like interaction capabilities, such as speech, face 
and hand gestures interaction. We also believe that it is important that the cost of a 
social robot be low, if our final goal is to introduce social robots in natural human 
environments, where they will be used by normal persons with limited budgets. Tak-
ing all this into consideration we have developed a general-purpose social robot that 
incorporates these characteristics.  

The main goal of this article is to report and analyze the applicability of the devel-
oped robot in three different naturalistic environments: (i) home, (ii) school classroom 
and (iii) public space settings. The evaluation of the robot’s performance relies in the 
robot’s social acceptance, the ability of the robot to express emotions, and the ability 
of the robot to communicate with humans using human-like gestures. The article is 
structured as follows. In section 2, the hardware and software components of the so-
cial robot are briefly outlined. We emphasize the description of the functionalities that 
allow the robot to provide human-like communication capabilities and to be emphatic. 
Section 3 describes the robot applicability in three different naturalistic environments. 
Finally, in sections 4 and 5, discussion and some conclusions of this work are given. 

2   Bender: A General-Purpose Social Robot 

The main idea behind the design of Bender, our social robot, was to have an open, 
flexible, and low-cost platform that provides human-like communications capabilities, 
as well as empathy. Bender has an anthropomorphic upper body (head, arms, chest), 
and a differential-drive platform provides mobility. The electronic and mechanical 
hardware components of the robot are described in [12]. A detailed description of the 
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robot as well as pictures and videos can be found in its personal website: 
http://bender.li2.uchile.cl/. Among Bender’s most innovative hardware components to 
be to mention is the robot head, which incorporates the ability of expressing emotions 
(see figure 1). 

The main components of the robot’s software architecture are shown in figure 2. 
The Speech Analysis & Synthesis module provides a speech-based interface to the 
robot. Speech Recognition is based on the use of several grammars suitable for differ-
ent situations instead of continuous speech recognition. Speech Synthesis uses Festi-
val’s Text to Speech tool, dynamically changing certain parameters between words in 
order to obtain a more human-like speech. This module is implemented using a con-
trol interface with a CSLU toolkit (http://cslu.cse.ogi.edu/toolkit/) custom application. 
Similarly, the Vision module provides a visual-based interface to the robot. This mod-
ule is implemented using algorithms developed by our group. The High-Level Robot 
Control is in charge of providing an interface between the Strategy module and the 
low-level modules. The first task of the Low-Level Control module is to generate 
control orders to the robot’s head, arm and mobile platform. The Emotions Generator 
module is in charge of generating the specific orders corresponding to each emotion. 
Emotions are called in response to specific situations within the finite-state machine 
that implements high-level behaviors. Finally, the Strategy module is in charge of 
selecting the high-level behaviors to be executed, taking into account sensorial, 
speech, visual and Internet information. Of special interest for this article are the ca-
pabilities for face and hand analysis included in the Vision module. The Face and 
Hand Analysis module incorporates the following functionalities: face detection (us-
ing boosted classifiers) [16][18], face recognition (histogram of LBP features) [1], 
people tracking (using face information and Kalman Filters) [14], gender classifica-
tion using facial information [17], age classification using facial information, hand 
detection using skin information and recognition of static hand gestures [2].  

Bender’s most important functionalities are listed in table 1. All these functional-
ities have been already successfully tested as single modules. Table 2 shows quantita-
tive evaluations of the human-robot interaction functionalities, measured in standard 
databases. As it can be observed in these databases, the obtained results are among the 
best-reported ones. This is an important issue, because we would like that our social 
robot has the best tools and algorithms when interacting with people. For instance, we 
do not want that the robot to have problems by detecting people when immersed in an 
environment with variable lighting conditions.  

 

 
Surprised 

 
Angry 

 
Sad 

 
Happy 

Fig. 1. Facial expressions of Bender 
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Fig. 2. Software architecture. In the bottom the hardware components: platform, head, and arm. 
In an upper level, low-level control processes running in dedicated hardware. All high level 
processes run in a tablet PC. 

Table 1. Bender’s main functionalities 

Ability How is achieved 
Mobility A differential-drive platform provides this ability.  
Speech recognition and synthesis CSLU toolkit (http://cslu.cse.ogi.edu/toolkit/). 
Face detection and recognition Face and hand analysis module. 
Gender and age determination using 
facial information 

Face and hand analysis module. 

Hand gesture recognition Face and hand analysis module. 
General purpose object recognition SIFT-based object recognition module  
Emotions expression  Anthropomorphic 7 DOF mechatronics head. 
Object manipulation A 3 DOF arm with 3, 2 DOF fingers. 
Information visualization The robot’s chest incorporates a 12 inch display 
Standard computer inputs (keyboard 
and mouse)  

The chest’s display is touch screen. In addition, a 
virtual keyboard is employed in some applications. 

Internet access 802.11b connectivity. 

3   Applicability in Naturalistic Environments 

3.1   Real Home Setting 

One of the main goals behind the development of our social robot is to use it as  
an assistant and companion for humans in home settings. The idea is that the robot 
will be able to freely interact with non-expert users in those environments. Naturally, 
we know that we need to follow a large process until achieving this goal. In 2006 we 
decided that a very appropriate way to achieve this was to regularly participate in  
the RoboCup@Home. RoboCup@Home focuses on real-world applications and  
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human-machine interaction with autonomous robots in home settings. Tests are re-
lated with manipulation of typical objects that can be found in a home-like environ-
ment, with navigation and localization inside a home scenario, and with interaction 
with humans. Our social robot participated in 2007 and 2008 in the RoboCup@Home 
world competition, and in both years it got the RoboCup @Home Innovation Award 
as the most innovative robot in competition. The Technical Committee members of 
the league decide this award. The most appreciated robot’s abilities were its empathy, 
ability to express emotions, and human-like communications capabilities. 

 

Table 2. Evaluation of some selected Bender’s functionalities in standard databases 

 Database Results Comments 
Face Detection (1)  
- Single face BioID DR=95.1%, FP=1 Best reported results 
- Single face FERET DR=98.7%, FP=0 NoRep 
- Multiple faces CMU-MIT DR=89.9%, FP=25 4th best reported results 
- Multiple faces UCHFACE DR=96.5%, FP=3 NoRep 
Face Tracking (2)    
- Multiple faces PETS-ICVS 

2003 
DR=70.7%, FP=88 
(set A) 
DR=70.2%, FP=750 
(set A) 

Best reported results. 

Eyes Detection (1)  
- Single Face BioID DR=97.8%, MEP=3.02 Best reported results 
- Single Face FERET DR=99.7%, MEP =3.69 NoRep 
- Multiple faces UCHFACE DR=95.2%, MEP =3.69 NoRep 
Gender  
Classification (1) 

 

- Single Face BioID CR: 81.5% NoRep 
- Single Face FERET CR: 85.9% NoRep 
- Multiple faces UCHFACE CR: 80.1% NoRep 
Face Recognition  
- Standard test (3) FERET fafb Top-1 RR=97% Among the best reported 

results 
- Variable  
Illumination (4) 

YaleB 7 individuals per class, 
Top-1 RR=100% 
2 individuals per class, 
Top-1 RR=96.4% 

Best reported results 

- Variable  
Illumination (4) 

PIE 2 individuals per class, 
Top-1 RR=99.9 

Best reported results 

Hand Gesture 
Recognition (5)  

 

- Variable  
illumination 

Own Database, 
real-word vid-
eos, 4 static 
gestures 

RR=70.4% NoRep 

(1) Reported in [18]; (2) Reported in [14]; (3) Reported in [1]; (4) Reported in [13]; (5) 
Reported in [2]. DR: Detection Rate; FP: Number of False Positives; RR= Recognition Rate; 
CR= Classification Rate; MEP; Mean Error in Pixels; NoRep: No other reports in the same 
dataset. 
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3.2   Classroom Setting 

Robotics is a highly motivating activity for children. It allows them to approach tech-
nology both amusingly and intuitively, while discovering the underlying science prin-
ciples. Indeed, robotics has emerged as a useful tool in education since, unlike many 
others, it provides the place where fields or ideas of science and technology intersect 
and overlap [11]. With the objective of using social robots as a tool for fostering the 
interest of children in science and technology, we tested our social robot as lecturer 
for school children in a classroom setting. The robot gave talks to schoolchildren of 
10-13 years old. Altogether 228 schoolchildren participated in this activity, and at 
each time one complete course assisted to the talk in a multimedia classroom (more 
than 10 talks were given by the robot). The duration of each talk was 55 minutes, and 
it was divided in two parts. In the first part the robot presented itself, and talked about 
its experiences as a social robot. In the second part the robot explained some basic 
concepts about renewable energies, and about the responsible use of energy. After the 
talk students could interact freely with the robot. The talk was given using the multi-
media capabilities of the robot; speech and multimedia presentation, which was pro-
jected by the robot (see pictures in figure 3). 

After the robot’s lecture the children, without any previous advice, answered a poll 
regarding their personal appreciation of the robot and some specific contents men-
tioned by the robot. In the robot evaluation part, the children were asked to give an 
overall evaluation of the robot. On a linear scale of grades going from 1 to 7, the robot 
was given an average score of 6.4, which is about 90%. In the second part children 
evaluated the robot’s presentation: 59.6% rated it as excellent, 28.1% as good, 11.4% 
as regular, 0.9% as bad, and 0% as very bad. The third question was, “Do you think 
that it is a good idea for robots to teach some specific topics to schoolchildren in the 
future?” 92% of the children answered yes. In the technical content evaluation part, 
the first three questions were related to energy sources (classification of different 
energy sources as renewable or non- renewable, availability of renewable sources, and 
indirect pollution produced by renewable sources). The fourth question asked about 
the differences between rechargeable and non-rechargeable batteries, and the fifth 
question asked about the benefits of the efficient use of energy. The percentage of 
correctness of the children’s answers to each of the five technical content questions is 
shown in Table 3. The overall percentage of correct answers was 55.4%. 

In summary, we can observe that children had a very good evaluation of the robot 
(6.4 over 7), and that 87.7% of them evaluated the presentation as excellent or good. 
They also have a very favorable opinion about the use of robots as lecturers in a  
 

Table 3. Percentage of correctness of the children answers to the 5 technical questions 

Technical Questions Correctness 
TQ1 75.9% 
TQ2 33.7% 
TQ3 31.6% 
TQ4 75.0% 
TQ5 60.6% 

Overall 55.4% 
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classroom environment (92%). Moreover, the children were able to learn some basic 
technical concepts (the overall percentage of correct answers was 55.4%), although 
they just heard them once from a robot. The main goal of this technical content part of 
the evaluation was just to see if the children could learn some basic content from the 
robot, and not to measure how well they learned it. Therefore, control experiments 
with human instructors were not carried out. This will be part of the future work. 
Finally, it is important to stress that the robot was able to give its talk and to interact 
with the children without any human assistance. 
 

 
 

 
 

  

Fig. 3. Bender giving talks to schoolchildren 

3.3   Public Space Setting 

We tested the applicability of our social robot in a public space setting. The main idea of 
the experiment was to let humans interact freely with the robot, using only speech and 
visual cues (face, hand gestures, facial expressions, etc.). The robot did not moved by 
itself during the whole experience, in order to avoid any collision risks with the stu-
dents, therefore it needed to catch the people’s attention just using speech synthesis, 
visual cues and other strategies such as complaining about being alone, bored, or calling 
far-away detected people. The robot was placed in a few different public spaces inside 
our university campus (mainly building’s halls), and the students passing through these 
public spaces could interact with the robot, if they wanted (see pictures in figure 4). 
When the robot detected a student in its neighborhood, it asked the student to approach 
and have a little conversation with him. The robot presented itself, then it asked some 
basic information to the student, and afterwards it asked the student to evaluate its capa-
bilities to express emotions. Finally, after the evaluation, the robot thanked the student 
and the interaction finished. To evaluate the ability of the robot to express emotions, the 
robot randomly expressed an emotion, and it asked the student to identify the emotion. 
The student gave its answer using the touch screen (choosing one of the alternatives). 



 Analyzing the Human-Robot Interaction Abilities of a General-Purpose Social Robot 315 

 

This process was repeated four times, to allow the student to evaluate different emo-
tions. We decided that the human users gave their answer using the touch screen, to be 
sure that the speech recognition mistakes would not affect the experiment. This was the 
only time that the interaction between the robot and the human was not based on speech 
or visual cues. In all moments, no external human assistance was given to the robot’s 
users. After the human–robot interaction finished, and the humans leaved the robot’s 
surround, they were asked to evaluate its experience using a poll. 

In all experiments the robot was left alone in a hall, and the laboratory team ob-
served the situation several meters away. Our first observation was that from the total 
of students that passed near the robot, about 37% modified their behavior and ap-
proached the robot. 31% of them interacted with the robot, the rest just observed it. 
The total number of students that interacted with the robot was 83. The age range was 
18 to 25 years old, and the gender distribution was 70% males and 30% females. Out 
of the 83 students, 74.7% finalized the interaction, and 26.3% leaved before finishing. 
The main reasons for leaving prematurely were: (i) the students were not able to in-
teract with the robot properly (speech recognition problems, see discussion section), 
(ii) they did not have enough time to make the emotions’ evaluation, or (iii) they were 
not interested in making the evaluation. The mean interaction time of the humans that 
finalized the interaction, including the emotions’ evaluation, was 124 seconds. 

In table 4 is displayed the recognition rate of the different expressions. It can be 
observed that the overall recognition rate was 70.6%, and that all expressions, but 
“happy” have a recognition rate larger than 75%. In table 5 and 6 the results of the 
robot’s evaluation poll, made by the users after interacting with the robot are pre-
sented. It should be remembered that only the 74.7% of the users that finished the 
interaction with the robot, answered the poll. As it can be observed in tables 5 and 6, 
83.9% of the users evaluate the robot’s appearance as excellent or good, 88.5% evalu-
ate the robot’s ability to express emotions as excellent or good, and 80.7% evaluate 
the robot’s ability to interact with humans as excellent or good. In addition, 90% of 
them think that it is easy to interact with the robot, 84% believe that the robot is suit-
able to be a receptionist, museum guide or butler, and 67% think that the robot can be 
used with educational purposes with children. It should be mentioned that the whole 
experiment was carried out inside an engineering campus, and that therefore the par-
ticipants in the test were engineering students, who with a high probability enjoy 
technology and robots. On the other hand, we believe that as expert users in technol-
ogy, they can be more critical about robots than standard users. Nevertheless, we 
think that the obtained results show than in general terms the social robot under 
evaluation has a large acceptance in humans, and that its abilities to interact with 
humans using speech and visual cues, as well as its ability to express emotions, are 
suitable for free human-robot interaction situations in naturalistic environments. 

 

Table 4. Recognition rate of robot’s facial-expressions 

Expression Correctness 
Happy 51.0% 
Angry 76.5% 

Sad 78.4% 
Surprised 76.5% 
Overall 70.6% 
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Table 5. Human’s evaluation of the robot’s appearance and interaction abilities 

 Excellent Good Regular Bad Very Bad 
Robot appearance 30.7% 53.2% 14.5% 1.6% 0% 
Ability to express emotions 31.1% 57.4% 8.2% 3.3% 0% 
Ability to interact with humans 17.8% 62.9% 17.7% 1.6% 0% 

Table 6. Human’s evaluation of the robot’s applicability and simplicity of use 

 Yes No 
Do you think that it is easy to interact with the robot? 90% 10% 
Do you think that the robot is suitable to be a receptionist, museum guide 
or butler? 

84% 16% 

Do you think that the robot can be useful in tasks related with children 
interaction? 

67% 33% 

 

 
 

 

  

Fig. 4. Bender interaction with students in a public space inside the university 

4   Discussion 

Evaluation Methodology. There exist different approaches to evaluate the perform-
ance of social robots when interacting with humans. Although, isolated algorithms’ 
performance should be measured (e.g. recognition rate of a face recognition algo-
rithm), it is also necessary to analyze how robots affect humans. Some researchers 
have proposed to employ quantitative measures of the human attention (attitude [10], 
eye gaze [9], etc.) or body movement interaction between the human and the robot 
[5]. We do believe that acceptance and empathy are two of the most important factors 
to be measured in a human-robot interaction context, and that these factors can be 
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measured using poll-based methods that express the user’s opinion. The described 
social robot has been evaluated by about 300 people with different backgrounds (228 
schoolchildren, 62 engineering students, and 5 international researchers in the Ro-
boCup @Home competitions), which validates the obtained results. 
 

Evaluation of robot capabilities. As it can be observed in table 2, the visual-based 
human-robot interaction functionalities of the robot, measured in standard databases 
are among the best-reported ones. We believe that this is very important, because the 
robot should have robust tools and algorithms to deal with dynamic conditions in the 
environment. In addition, the robot has received two innovation awards from the 
service-robot scientific community, which indicates that the robot theoretically is able 
to adequately interact with people. 
 

Robot Evaluation when interacting with people. In our experiments with children 
in a real classroom setting, we observed that children gave a very good evaluation to 
the robot, and that 87.7% of them evaluated its presentation as excellent or good. 
They have also a very favorable opinion about the use of robots as lecturers in a class-
room environment. We can conclude that the robot achieved the acceptance of the 
children (10-13 years old), who for the first time had the opportunity to interact with a 
robot. The robot was able to give its talk and to interact with the children without any 
human assistance. We conclude that the robot is robust enough to interact with non-
expert users in the task of giving talks to groups of humans. In addition, the children 
were able to learn some basic technical concepts from the robot (55.4% correct an-
swers to 5 technical questions). It should be stressed that the robot presentation was a 
standard lecture, without any repetition of contents. Besides, it should be observed 
that the robot, unlike a human teacher, can not detect distracted children in order to 
call for their attention, and also can not achieve the same level of expressivity neither 
in the speech or the gestures, leaving it only with his empathy and other mechanisms 
such as simulating breathing or moving the mouth while talking to catch the listener’s 
attention. These results encourage us to further explore in the relevance of an appeal-
ing human robot interaction interface. Naturally, it seems necessary to carry out a 
comparative study of the performance of robot-teachers against human-teachers, and 
to analyze the dependence of the results on the specific topics that are to be taught 
(technical topics, foreign language, history, etc.). 

In our experiments in public space settings we tested the ability of the social robot 
to freely interact with people. The experiments were conducted in different building’s 
halls inside our engineering college. 37% of the students passing near the robot ap-
proached it; 31% of them interacted directly with the robot. In all cases the robot 
actively tried to attract the students, by talking to them. It was interesting to note that 
26.3% of the students that interacted with the robot leaved before finishing the inter-
action. One of the main reasons for leaving was that the students were not able to 
interact properly with the robot, due to speech recognition problems. Our speech 
recognition module has limited capabilities, it is not able to recognize unstructured 
natural language, and the recognition is perturbed by the environmental noise. This is 
one of the main technical limitations of our robot, and in general of other service 
robots. Nevertheless, 74.7% of the students finished the emotion’s evaluation that the 
robot proposed them, with a mean interaction time of 124 seconds. 
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Before carrying out these experiments we had the qualitative impression that, the 
emotions that our robot could generate were adequate, and that a human could under-
stand them. The quantitative evaluation obtained in the experiments showed us that 
this perception was correct, and the humans can recognize correctly the robot’s ex-
pression in 70.6% of the cases. This overall result can be improved if we design a new 
“happy” expression, which was recognized in only 51% of the cases. Although the 
mechanics of the robot head imposes some limits to the expressions that can be gen-
erated by the robot (limitation in the number of degrees of freedom in the face), we 
believe the current expressions are rich enough to produce empathy in the users. We 
have seen these in all reported experiments, and also in non-reported interactions 
between the robot and external visitors in our laboratory.  

The acceptance of the robot by the engineering students, as in the case of the chil-
dren, was high (83.9% evaluated the robot’s appearance as excellent or good, 88.5% 
evaluated the robot’s ability to express emotions as excellent or good, 80.7% evaluate 
the robot’s ability to interact with humans as excellent or good). In addition, 90% of 
the students think that it is easy to interact with the robot, and 84% and 67% of the 
students think that the robot can be used as an assistant or with educational purposes, 
respectively. We believe that this favorable evaluation is due to the fact that: (i) the 
robot has an anthropomorphic body, (ii) it can interact using human-like interaction 
mechanisms (speech, face information, hand gestures), (iii) it can express emotions, 
and (iv) when interacting with a human user it tracks his/her face. 

5   Conclusions 

The main goal of this article was to report and analyze the applicability of a low-cost 
social robot in three different naturalistic environments: (i) home setting, (ii) school 
classroom, and (iii) public spaces. The evaluation of the robot’s performance relied in 
the robot social acceptance, and its abilities to express emotions and interact with 
humans using human-like codes. The experiments show that the robot has a large 
acceptance from different groups of human users, and that the robot is able to interact 
successfully with humans using human-like interaction mechanisms, such as speech 
and visual cues (specially face information). It is remarkable that children learnt 
something from the robot despite its limitations.  

From the technical point of view, the visual-based human-robot interaction func-
tionalities of the robot, measured in standard databases are among the best-reported 
ones, and the robot has received two innovation awards from the scientific commu-
nity, which indicates that the robot is able to adequately interact with people. How-
ever, one of the main technical limitations is the speech recognition module, which 
should be improved. 

As future work we would like to further analyze the teaching abilities of our robot. 
In general terms, we believe that more complex methodologies should be used to 
measure how much the children learn with the robot, and how is this learning com-
pared with the case when children learn with a human teacher.  
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Abstract. TheRoboCupMiddle-SizeLeaguerobotic soccer competitions
pose a real cooperation problem for teams of mobile autonomous robots. In
the current state-of-practice cooperation is essential to overcome the op-
ponent team and thus a wireless communication protocol and associated
middleware are now fundamental components in the multi-robots system
architecture. Nevertheless, the wireless communication has relatively low
reliability and limited bandwidth. Since it is shared by both teams, it is a
fundamental resource that must be used parsimoniously. Curiously, to the
best of our knowledge, no previous study on the effective use of the wire-
less medium in actual game situations was done. In this paper we show how
current teams use the wireless medium and we propose a set of best prac-
tices towards a more efficient utilization. Then, we present a communica-
tion protocol and middleware that follow such best practices and have been
successfully used by one particular MSL team in the past four years.

1 Introduction

The RoboCup Middle-Size League (MSL) [1] has been an effective testpad for co-
operative robotics. In fact, beyond all the issues associated with the construction
of actual robots for operation in harsh conditions, each team now needs to develop
coordinated behaviors to effectively overcome the opponent team. This coopera-
tion is becoming more sophisticated involving the communication of team mates
positions, fusion of the ball position, dynamic role assignment, formations and ball
passes, among others. The cooperative behaviors are developed on top of an ade-
quate middleware that allows the team members to exchange information. In turn,
such middleware relies on a wireless communication protocol.

Despite its importance, however, the wireless communication is known to be
less reliable than its wired counterpart with significantly higher bit-error rates, to
have limited and variable bandwidth and to be open to the access by other stations
not involved in the team, among other undesired phenomena [2]. Nevertheless, the
wireless channel must be shared by both teams involved in a game, thus becoming

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 320–331, 2010.
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a critical shared resource. Curiously, the MSL rules have had not constrains re-
garding the use of wireless communication. To the best of our knowledge, despite
the recurrent problems with wireless communication, no study was ever done to
analyze the actual use of the wireless channel in game situations.

Recently, the concern with the wireless communication has increased and the
MSL rules are now already including some restrictions on the use of the wireless
channel by the participating teams. As a contribution to such effort, in this
paper we present an analysis of the actual use of the wireless channel by several
MSL teams during the RoboCup 2008 event. We show that there is substantial
difference between teams, with some making a parsimonious use of the channel
while others use substantial slices of the available bandwidth, few transmiting
in a sparse periodic fashion and others sending bursts of data with very short
intervals. The patterns of transmission depend on the middleware layer that
manages the exchange of information. From the analysis of the communication,
we can also infer the kind of middleware being used.

This paper discusses issues related with the wireless communication in the
MSL, shows the trend in the MSL rules with respect to the communications,
and proposes a few best practices that can improve the general behavior of
the wireless channel. Finally, the paper includes a brief description of a specific
middleware and communication protocol that follow such best practices and
which have been successfully used in MSL competitions in the last four years.

2 Wireless Communication within the MSL

For several years that the MSL rules already stipulate that the wireless technol-
ogy to be used is IEEE802.11a/b. The more popular IEEE802.11g technology
is not allowed simply because it uses the same band as IEEE802.11b but with
fewer, despite larger, frequency channels, which increases the difficulty in channel
planning and assignment per competition area to minimize cross-interference [3].
Generally, one channel is assigned to one competition field and both teams play-
ing therein must share it. An attempt is always made to assign non-interfering
channels to neighboring fields. Moreover, the communication must be infras-
tructured, i.e., using access points. Direct ad-hoc communication is not allowed.
Other constraints have been included and this year a limitation on the band-
width allowed to each team was introduced for the first time. Briefly, the MSL
rules, concerning the wireless communication currently stipulate:

– IEEE802.11a/b technology
– Infrastructured mode (through Access Point)
– Single a + single b channels per game (each shared by both teams)
– IPv4 addressing within pre-defined networks
– Only unicasts/multicasts (broacasts are forbidden)
– Up to 2.2Mbps bandwidth utilization per team

The bandwidth limitation was calculated considering the lower bandwidth
technology IEEE802.11b (11Mbit/s), which is still used by some teams due to
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national regulations. This is applied to both types of network, either ’b’ and ’a’
for fairness reasons.

2.1 Logs from the MSL at RoboCup 2008

In order to gather information on how current teams actually use the wireless
channel, we monitored the communications during several games of the last edi-
tion of RoboCup, in Suzhou. We used one PC with a wireless adaptor configured
in monitor mode, which disables filtering and allows receiving all IEEE802.11
packets that arrive at its antenna. The monitoring software was the Wireshark
network protocol analyzer and we monitored 6 teams, during periods of approx-
imately 1 minute, randomly taken during the third round-robin games. In all
these games all communications took place in IEEE802.11a but the effective bit-
rates achieve during the competitions varied widely between 6 Mbit/s and 54
Mbit/s with an approximate average of 36 Mbit/s.

Figure 1 shows a set of histograms concerning the distribution of the inter
packet intervals related to each team considering the transmissions of all its
members as they are effectively transmitted in the wireless medium. We can
clearly identify three classes, one of teams 1 and 2 that do some level of traffic
spread in the time domain, exhibiting inter-packet intervals that extend up to
approximately 80ms. In the former case, the team uses multicast packets to share
information in a producer-consumer fashion. On the other hand, team 2 uses
unicasts, with the robots sending exchanging between them in pairs. Then, teams
3 and 4 show a clear dual mode operation with many packets sent in sequence but
others sent with longer well defined intervals. Looking in more detail to their logs,
we can see that all robots of team 3 transmit periodically and synchronized, with
all robots transmiting in sequence and then waiting for a period of approximately
75ms. Curiosly, this team used IP broadcast frames, which are now banned
by the current rules, to exchange information in a producer-consumer fashion.
On the other hand, team 4 uses a middleware probably based on a centralized
blackboard that resides in one particular station to which all robots send their
sensing data periodically, approximate every 150ms, but often faster. Then, such
station carries out some computation, probably sensor fusion, and delivers the
result back to the nodes in unicast packets sent in sequence, thus generating a
peak of packets sent within a very short interval. Finally, teams 5 and 6 send
their traffic in an almost continuous fashion, with very short intervals, leading
to numbers of packets that are an order of magnitude higher and to much higher
bandwidth utilization levels.

Figure 2 shows the histograms of the packet sizes used by each team in Bytes.
Clearly two situations arise, one of teams 1 through 4 that use mainly fixed size
packets, in some cases with 2 different sizes, team 1 with average size packets
and teams 2, 3 and 4 with relatively small packets, only, and then teams 5
and 6 that use a wide variability of packet lengths with significant use of large
(1.5kB) packets. These teams were the only ones sending bursts of information,
too. We detected bursts of up to six 1.5kB packets in the case of team 5 and
up to twelve 1.5kB packets in the case of team 6. In the IEEE802.11a channel
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Fig. 1. Histograms of inter-packet intervals for each team (s)

used, these bursts, could cause interference of up to 10ms, approximately, but if
an IEEE802.11b channel was used instead, these bursts could imply near 50ms
delays.

Table 1 shows a summary of the main traffic statistics of the monitored teams,
covering inter-packet interval in miliseconds, packet size in bytes, burst size in
number of consecutive 1.5kB packets, total number of bytes transmitted in the
monitoring interval and respective approximate utilization in IEEE802.11a/b
channels. The traffic classes that were identified in the analysis of the histograms
are naturally reflected in this table but the information on the approximate band-
width utilization of the IEEE802.11a/b channels reveals the huge variations in
channel utilization. It is curious to see that team 5 was already using approxi-
mately 25% of the IEEE802.11a channel, which corresponds to about 125% the
width of an IEEE802.11b channel. The figures for team 6 are slightly better but
still revealling a substantial channel overuse. The other teams use singnificantly
lower bandwidths, near 2 orders of magnitude less, which allows them to play
without problems among each other using any of the two kinds of channels. Ac-
cording to the current rules, teams 5 and 6 will have to readjust their use of
the channel to meet the new 2.2Mbit/s limit. One curious detail is the fact that
team 6 was using 11 different computers, substantially more that the maximum
of 6 robots plus one remote station.

Figure 3 shows the impact that different opponets can have on the timeliness
of the transmissions of a robot. In this particular case we used robot1 of team
2 (any other robots yielded similar results) in two games, one against team 1
that makes a relatively light use of the channel with good separations between
packets and, on the other hand, against team 6 that is one of the heavy users
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Table 1. Traffic statistics of 6 MSL teams

Team 1 Team 2 Team 3 Team 4 Team 5 Team 6

Inter Packet avr 17.74 15.20 20.03 21.72 1.74 1.90
(ms) std 17.63 14.65 33.23 48.16 3.62 4.44

Packet Size avr 412.87 139.68 160.51 187.67 787.40 497.81
(Bytes) std 73.66 8.03 5.59 93.77 549.09 598.36

Burst Size
(# 1.5kB pk)

– – – – 6 12

Total kBytes 1158 460 480 517 26154 13072
% of max 4.43 1.75 1.84 1.98 100.00 49.98

Bandwidth 802.11a 1.1% 0.4% 0.5% 0.6% 25% 13%
utilization 802.11b 5.5% 2.0% 2.5% 3.0% 125% 65%

of the channel. The figures clearly illustrate the impact of playing against a
heavy channel user team. When playing against team 1, the traffic pattern shows
a significant regularity, indicating neglectable interference. However, the same
robot playing against team 6 shows a significant change in the traffic pattern
with a loss of the previous regularity and wide spread (strong jitter) of the
inter-packet intervals, with a strong peak close to zero, meaning that many
packets are strongly delayed and accumulated at the network interface, being
then transmitted in a burst.
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Fig. 3. Inter-packet intervals for one robot of team 2 against teams 1 and 6

Finally, it is important to refer that in these games the traffic external to the
competition, including beacon frames from the AP, packets from other teams
that were not playing, unknown packets, etc., was always neglectable, repre-
senting less than 1% of the channel bandwidth. Another observation, during a
different game than those monitored, was the use of raw (non-IP) packets by
another team, which is also in violation with the current rules.

2.2 Problems and Solutions

In MSL, and probably in other RoboCup competitions as well, the wireless com-
munication has always been a source of concerns, given the frequent occurrence
of problems. These were of diverse kinds and we could, in a simplified approach,
classify them in four categories: infrastructure configuration, team communica-
tions configuration, lack of policing and channel overuse by teams.

– Infrastructure configuration. This category includes the cases in which
the planning of the APs placement and channel assignment was non-optimal,
frequently caused by constraints of the physical space in which the compe-
titions must be layed out. Since it may be impossible to completely avoid
this situaiton, we may have to live with a certain level of background in-
terference, corresponding to an effective lower available channel bandwidth.
Another problem we experienced, was the interference with pre-installed
WLANs for general Internet access, which should have been switched off.
This is a relevant issue that local organizers sometimes overlook.

– Team communications configuration. This has been one of the most
common sources of problems due to frequent poor knowledge of the wireless
communications technology. In fact, it is still common to find teams that
bring their own APs and connect them freely in the team work area, often
close to competion fields. Other times, the teams use erroneous configura-
tions without being aware (e.g. ad-hoc mode), or send bursts of short packets
overloading the network interfaces of the opponent team and causing some
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device drivers to crash, disabling communications and preventing a team
from playing. Without an accurate analysis of the situation, the wrong team
can be disqualified due to inability to play.

– Lack of policing. Despite being generally permissive, the MSL rules have
dictated certain constraints for some time. Unfortunately, there was always
a lack of policing to verify their effective application and enforcing them.
In some years, the local organization has hired a specialized company to
monitor and control the use of the wireless channels. However, even in such
cases it was difficult to mitigate all undesired situations, given their diversity,
the number of wireless-enabled computers in the area, and the lack of rules
compliance verifications for the teams. We believe that the current rules
improved substantially in this aspect by including a network monitor in
the games communication architecture and requesting teams to carry out
an a priori communications check as a mandatory step for admission to
the competitions. Moreover, the network monitor will also allow detecting
situations that often occur in which teams in the work area keep their wireless
interfaces open and transmitting, causing interference, as well as situations
reported in the previous section of teams that use more computers than
allowed, that use logical broadcasts and non-IP traffic. Nevertheless, it is
still important that the organization is prepared to seek for spurious sources
of interference, in case of need. This might require the use of a specific
wireless channel monitoring device that provides information on the channel
status, not only at the network protocol level (transmitted valid packets) but
also at the physical level (bit-error rate, spurious packet fragments, medium
spectral analysis, ...).

– Channel overuse by teams. Even without spurious interference, when
the channel utilization approaches high values the channel performance de-
teriorates in terms of packet transmission delays and packet losses due to
increased collisions and channel saturation. These delays and losses have
a direct negative impact on the quality of the cooperating behaviors given
their real-time character, mainly when they involve feedback control over the
wireless channel. As it became clear in the previous section, in 2008 some
teams were using, alone, more bandwidth than the ’b’ technology can pro-
vide! This will hopefully be avoided in 2009 given the bandwidth limitation
imposed by the new rules. Nevertheless, beyond the channel permanent sat-
uration, transient saturation must also be considered and prevented, such as
caused by bursts transmitted by the same station, e.g., file transfers. These
can also cause a transient increase in packet delays and losses suffered by
the opposing team that can harm the performance of its cooperative appli-
cations. To prevent these situations the teams must adhere to some kind of
control of the consecutive amount of data that each of their robots transmits
in an agreed interval of time. On the other hand, detecting such situations
requires monitoring the traffic with increased temporal resolution.

As it was clear with the previous discussion, most of the problems that existed in
the past can be solved or strongly attenuated with adequate restrictions on the
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use of the wireless channel and an effective policing of the channel utilization.
Nevertheless, it is interesting to quickly analyze certains misconceptions that
hindered the deployment of such solutions:

– No need for restricting teams transmissions. Ideally, if the channel
bandwidth was infinite and there was no mutual interference between the
competiting teams, restricting the teams transmissions would make no sense.
However, that is not the case and finite bandwidth and mutual interference
are facts that need to be considered. Then, while some teams do a par-
simonious use of the channel, others exist that use substantial amount of
bandwidth, often in a bursty way, with negative impact on the timeliness of
the transmissions of the opposing team, as shown in the previous section,
and consequently on the performance of its cooperative behaviors. Thus,
some form of restriction that considers both bandwidth and bursts must be
enforced.

– Larger bandwidth solves the problem.Unfortunately, just increasing the
available bandwidth alone, as when moving from IEEE802.11b (11Mbit/s) to
IEEE802.11a (54Mbit/s), is not a self-sustained solution and tends to generate
wasteful patterns in bandwidth utilization. Such kind of simplistic solutions
is always transitory and end up coming back to the same problem but with a
larger magnitude. This trend was verified with two of the teams shown in the
previous section.

– Use a technology with QoS support. In order to provide better support
to time-sensitive traffic with respect to non-time-sensitive one in WLANs,
a new standard was recently proposed, namely IEEE802.11e. Similarly to
the original protocol, it includes two channel access policies, one that is dis-
tributed (EDCA) and another one that is controlled (HCCA). The former
is the one that is starting to be accessible commercially while the latter
has not received significant adherence by equipment manufacturers so far.
Unfortunately, the latter is also the one that could bring more advantages
to the RoboCup environment since it allows creating isolated channels with
negotiated bandwidth, thus without mutual interference. The former just
creates prioritized traffic classes, which does not help since, within a game,
one team cannot be prioritized with respect to the other and rules would
still be needed to guarantee fairness when sharing the same priority class.
Moreover, there would be no guarantee that other external sources of in-
terference would not transmit at the same or higher priority level, thus not
avoiding the interference problem. Since it is not clear whether equipment
supporting HCCA will ever be available due to market reasons, and its ex-
pected higher cost, it seems unnecessary to change the current technology
and worth working on enforcing appropriate bandwidth sharing policies and
mechanisms.

– No need for technical verifications. Ideally, teams should verify and en-
force compliance of their equipment with the rules. However, in some cases,
particularly with the wireless communication technology due to its idiosyn-
crasies, the teams often lack the knowledge to adequately enforce the needed
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configurations. Without technical verifications before the actual competi-
tions, those problems will be discovered in the game, only, and will be hard
to diagnose correctly.

2.3 Further Improvements

We believe that the recent change in the MSL rules, in what concerns communi-
cations, positively addressed most of the issues discussed above and constitutes
a clear step toward a reliable and efficient use of the wireless medium. Namely,
the architecture with predefined IP addresses and with a network monitor, the
enforcement of technical verifications specifically concerning the wireless commu-
nication as a pre-requisite to admission to the competitions and the bandwidth
limitation per team will provide the needed tools to reduce the problems that
have been hindering the league. However, we also believe that a further restric-
tion is still needed to definitely increase the robustness of the communications,
namely to bound the burstiness of the teams transmissions. This will enforce
an adequate permeability of the traffic patterns allowing the adequate interleav-
ing of packets from different sources resulting in lower transmission latencies.
This effect is well known in the real-time communications community and can
be enforced with techniques that limit the amount of traffic sent within a pre-
defined time interval, such as the leaky bucket [4], or simply using a periodic
transmission pattern with relatively small amounts of information [5].

Moreover, the bandwidth limitation of 2.2Mbit/s is hard to apply by the teams
because of two reasons. On one hand, it is hard to convert actual transmitted bytes
to bandwidth due to the idiosyncrasies of the wireless communication (dynamic
bit-rate). On the other hand, bandwidth is a compound metric that represents an
average amount of information sent per unit of time. If no interval of time is spec-
ified, it is still possible for a team to block the channel with a long burst and then
compensate with some time of silence and still meet the average bandwidth stip-
ulated in the rules. This has a significantly different impact than using the same
bandwidth frequently transmitting short amounts of information. Thus, we be-
lieve the rules should not provide a limitation in bandwidth but in number of bytes
per given interval of time, which is a metric that teams can easily workwith. In par-
ticular, we believe that a limitation similar to 1.5kB per 20ms interval are reason-
able values to work with for three reasons. Firstly, they correspond approximately
to the current target of 20% channel utilization in the MSL rules for normal game
situations with an IEEE802.11b channel. Secondly, they are very easy to enforce
by any team, since a periodic process of 20ms is easily achieved with general pur-
pose operating systems (i.e., no special real-time support is needed) and the 1.5kB
data fits in a single packet, without need for fragmentation. Thirdly, the period of
20ms is normally adequate to the dynamics of the cooperative behaviors. Never-
theless, it is still possible to send 750B every 10ms or even 375B every 5ms if faster
reactivity is needed, without violating the same constraint. Note, equally, that, as
demonstrated in this paper with the logs that were carried out, such restriction
can be easily policed with a common PC-based/Wireshark network monitor, or
the specific monitor that the new MSL rules now refer to.
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Finally, the middleware used also has a significant impact. For example, using
multicasts in a producer-consumer style allows a faster dissemination of the
information, with better synchronization, for four or more stations, on average.
A preliminary study of the effect of using multicast/broadcast packets versus
unicast ones in a multi-robot scenario is shown in [6]. Direct pair-wise exchange
of information, in a peer-to-peer fashion, tends to generate much more traffic for
disseminating the same information. Similarly, the use of a central blackboard
used in a client-server fashion requires about twice the transmissions than a
corresponding producer-consumer model.

As a summary of best practices, we suggest:

– For the teams:
• using a middleware that minimizes transmissions, e.g., with multicasts,
• using a periodic transmission pattern that is permeable to the traffic

from the opponent team,
• using low bandwidth cooperation approaches that can work well with

the exchange of reasonably small amounts of data,
• verifying the wireless communications compliance with the rules before

the actual competitions,
• not connecting APs that are not under the control of the organization,
• not transmitting wireless traffic during competitions while in the neigh-

borhood of the fields.
– For the organization:

• carry out the adequate planning of APs and channels,
• making sure that any pre-installed WLAN for general Internet access in

the compound is switched off,
• enforcing technical verifications of the wireless communications,
• deploying the communications architecture in the 2009 MSL rules,
• particularly carrying out the traffic policing using the network monitor,
• having a specific network analyzer at hand, capable of providing infor-

mation on the status on the physical channel.

3 RTDB Middleware and Reconfigurable TDMA
Protocol

An example of a pair middleware / communication protocol that we consider
that fulfills the best-practices referred above for the teams side, is the Real-Time
DataBase (RTDB) middleware, originally developed in 2004 [7], and the reconfig-
urable adaptive-TDMA protocol described in [8]. The RTDB middleware targets
providing an efficient and timely support for the fusion of the distributed per-
ception and the development of coordinated behaviors by providing a seamless
access to the complete team state using a distributed database that is partially
replicated in all team members. This database contains images of both local and
remote state variables that are accessed locally with fast non-blocking operations.
The images of the remote data are updated autonomously in the background by
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Fig. 4. Each agent transmits periodically its subset of state data that might be required
by other agents

the wireless communication protocol, with each team member disseminating its
shared state variables using one multicast packet periodically, at a refresh rate
that is adapted to the data dynamics (Fig. 4).

The protocol works on top of IEEE802.11 with an innovative layer that
enforces a TDMA-like synchronization among the team members. This syn-
chronization aims at avoiding collisions within the team and it is based on the
reception instants of the packets from the other team members, without using
clock synchronization. The adaptive nature of the protocol arises from its ability
to rotate the phase of the TDMA round to avoid periodic interference patterns.
The TDMA round period is the only parameter set off-line and it is called team
update period (Ttup), setting the responsiveness and the temporal resolution of
the global communication. It is, thus, an application requirement. Ttup is divided
equally by the number of currently active team members generating the TDMA
slot structure. This structure is reconfigured dynamically everytime a node leaves
(e.g., crashes) or joins the team. The stations transmit at the begining of their
slots, thus maximizing the interval between their transmissions and increasing
the resilience of the protocol. This middleware plus communication protocol are
fully distributed and need minimal configuration facilitating its deployment.

4 Conclusions

Cooperative robotics is an exciting field that has received growing attention in
recent years. RoboCup robotic soccer competitions, including the MiddleSize
League (MSL), are examples of initiatives that have been fostering the research
in that domain. However, the actual cooperation relies on effective wireless com-
munication and middleware layer, but achieving the desired effective use of the
wireless channel is not trivial and requires imposing rules to its fair sharing, en-
forcing them and requesting cooperation from the teams to comply with them.
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In this paper we showed a first analysis of the wireless channel usage within
MSL during actual games. We showed that there is a substantial variability in
the way teams communicate and that, in several cases, the use practices are not
compliant with the current rules, making it evident the need for traffic policing.
We then deduced a set of recommendations that we believe help achieving the
desired effective use of the wireless channel. Then the paper briefly presented
one specific middleware and communication protocol that comply with the sug-
gested recommendations and have been successfully used in MSL competitions
in the last four years.
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Abstract. We introduce a multi-robot/sensor cooperative object detection and
tracking method based on a decentralized Bayesian approach which uses particle
filters to avoid simplifying assumptions about the object motion and the sensors’
observation models. Our method is composed of a local filter and a team fil-
ter. The local filter receives a reduced dimension representation of its teammates’
sample belief about the object location, i.e., the parameters of a Gaussian Mixture
Model (GMM) approximating the other sensors’ particles, and mixes the parti-
cles representing its own belief about the object location with particles sampling
the received GMM. All particles are weighted by the local observation model
and the best ones are re-sampled for the next local iteration. The team filter re-
ceives GMM representations of the object in the world frame, from the sensor
teammates, and fuses them all performing Covariance Intersection among GMM
components. The local estimate is used when the sensor sees the object, to im-
prove its estimate from the teammates’ estimates. The team estimate is used when
the sensor does not see the object alone. To prevent the fusion of incorrect esti-
mates, the disagreement between estimates is measured by a divergence measure
for GMMs. Results of the method application to real RoboCup MSL robots are
presented.

1 Introduction

A team of robots cooperatively tracking an object becomes a team of sensors, each
making observations to build a perception of reality that can be improved by the oth-
ers. Multisensor fusion addresses the problem of combining all the information from
multiple sensors in order to yield a consistent and coherent description of the observed
environment. The problem itself comes from the fact that the sensors information is
always uncertain, usually partial, occasionally incorrect and often geographically or
geometrically incomparable with other sensor views [1].

A sensor model describes the uncertainty associated with each sensor observation
and location allowing to extract relevant information. The models are often nonlinear
resulting in non-Gaussian posterior distributions. However, a parametric (e.g. Gaussian)
approximation of sensors information is usually a better choice given the low compu-
tational power and low communications bandwidth it requires. This is achieved at the
cost of a limited representation of the sensors belief. On the other hand, non parametric
discrete approximations, such as Particle Filters, are able to capture arbitrarily complex
uncertainty, but are intractable when it comes to communicating the state distribution
due to the necessity of transmitting a large sample-based representation.

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 332–343, 2010.
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Each sensor is part of a network node which has local computational power and
is able to communicate with nearby nodes. In RoboCup, recent rules to forbid com-
munications with exterior computers push the research towards decentralized sensor
network topologies or centralized based topologies with a dynamic leader node [2].
Several teams have taken the decentralized way for a fully multi-agent approach [3]
[4] [5] [6]. However, the implementations described rely mostly on parametric sensor
models. We propose a decentralized approach based on a probabilistic framework from
non-parametric sensors, where communication constraints must be taken into account.

This paper introduces a cooperative perception model based on particle filters and a
framework for representing and measuring disagreement of sensor information based
on Gaussian Mixture Models. Our soccer robots (RoboCup Middle Size League (MSL)
ISocRob team) are equipped with an omnidirectional camera with limited resolution
that hardly provides a global view of the field. Our main motivation is to take real
advantage of this team of mobile sensors scattered across the field, in order to provide a
broader view while locating and tracking the ball. We are further motivated in benefiting
from a multisensor system upon the challenges constantly imposed by RoboCup MSL
such as the global localization in a symmetric environment or the tracking of the (yet to
come) arbitrary color ball.

The paper is organized as follows. In Section 2 we review related work. Section
3 describes the implementation of a shape-based 3D tracker for the ball using a sin-
gle camera. Section 4 presents a compact sensor information representation based on
Gaussian Mixture Models (GMMs) and introduces a decentralized Bayesian approach
to multisensor fusion that takes advantage of distributed particle filters and GMM mod-
eling. In Section 5 we present experimental results to validate the presented methods.
Section 6 outlines our conclusions.

2 Related Work

Most of the previous work focus on merging the ball localization estimates provided
by several sensors to one consistent estimate among the team of robots. Lau et al. [7]
calculate the mean and standard deviation of all ball estimates for discarding outliers
and then assumes the ball information of the teammate closest to it. Ferrein et al. [8]
describe a weighted mean of the estimates according to the distance from the robot to
the ball and a time factor denoting how long ago the robot has seen the ball for the last
time. On a more probabilistic approach, Stroupe et al. [9] represent ball estimates as a
two-dimensional gaussian in canonical form, allowing to merge them by multiplication,
and use a Kalman filter to predict the ball position. Pinheiro and Lima [10] implemented
a multi-Bayesian team of robots as a direct application of the sensor fusion method in-
troduced by Durrant-Whyte [1]. This approach detects sensors disagreement based on
the Mahalanobis distance and achieve a team consensus faster. Other approaches also
accounted for merging weighted gridcells from ball occupancy maps [11], Monte Carlo
(ball) localization [12] or a combination of Kalman filter with Markov localization [13].
However, although mentioned in some approaches, none of these take into considera-
tion the robots own localization uncertainty, frequently assuming a highly accurate self-
localization method. This is problematic because fusion usually takes place in the global
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reference frame for the team, therefore local estimates must be transformed to global
estimates before fusion, and the sensor localization uncertainty plays a major role in
this. Pahliani and Lima [14] proposed a new cooperative localization algorithm that re-
duces the uncertainty of both self-localization and object localization. This method tries
to overcome the performance of two popular algorithms for fusing sensor observations:
Linear Opinion Pool and Logarithmic Opinion Pool. The implementation although, is
based on multi-robot Markov Localization and assumes one can distinguish and locate
different team-mates, which is a complex task given the current RoboCup environment.

On other domains, Rosencrantz et al. [15] introduced a scalable Bayesian technique
for decentralized state estimation with distributed particle filters using a selective com-
munication procedure over the particle set. On the other hand, instead of selecting which
particles to communicate, Upcroft et al. [16] demonstrated the validity of approximat-
ing a particle set using Gaussian mixture models or Parzen representations in Decentral-
ized Data Fusion (DDF) systems. However, at every given network node, all sensors are
treated as equals, i.e., there is one data association proccess that is impartial to whether
the current node is actually tracking the target or not. This means that we are implic-
itly assuming that the result of the fusion process is more relevant than the local sensor
observations. Therefore, we present an approach where each node builds its perception
from other sensor nodes observations, and yet relys on a fusion estimation proccess for
critical situations, i.e., when the the target is out of the sensor range.

3 Ball Detection and Tracking

Our ball tracking observation model is based on Taiana et al. [17]. A 3D model of the
ball is used to calculate it’s 2D contour projected on the image. The expected ball con-
tour on the image is computed from its 3D shape projection on the 2D image plane.
The ball has rotational symmetry which reduces the problem dimension for there is
no need to consider the object orientation. Given a 3-dimensional position, the projec-
tion model tell us how the ball contour is going to look like in the image. However,
to track it, one needs to estimate the ball’s location with respect to the robot. For that
we use a particle filter to represent the ball’s state space regarding position and ve-
locity xt = [x, y, z, ẋ, ẏ, ż]T . We start by assuming a simple Markov process for the
underlying dynamics of the ball specified by a transition probability, from here and
henceforth denoted as motion-model, p(xt|xt−1), and that for every time step t > 1 a
new observation zt about the state xt is made. Given the observation history at time t
by Zt = [z1, ..., zt] our goal is to estimate the posterior distribution p(xt|Zt) for each
time step. This can be done recursively over Prediction and Update steps:

Prediction : p(xt|Zt−1) =
∫

p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (1)

Update : p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1) (2)

where p(xt−1|Zt−1) is the previous estimate and p(zt|xt) is the observation model.
At a given moment in time t, the particle filter represents the probability distribution
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of the state as a set of N weighted samples {x(i)
t , w

(i)
t } N

i=1 , such that the posterior is
approximated by an empirical estimate:

p(xt|Zt) ≈
N∑

i=1

w
(i)
t δ(xt − x(i)

t ) (3)

where δ(.) is the Dirac delta function. The estimation of the best state is computed
through a discrete Monte Carlo approximation of the expectation:

x̂t
.=

1
N

N∑
i=1

w
(i)
t x(i)

t (4)

Prediction computes an approximation of p(xt|Zt−1) by moving each particle accord-
ing to the ball motion model. We assume a constant velocity model where the motion
equations correspond to a uniform acceleration during one time step:

xt =
[
I (Δt)I
0 I

]
xt−1 +

[
(Δt2

2 )I
(Δt)I

]
at (5)

where I is the 3× 3 identity matrix, Δt in general represents the sampling time, and at

is a 3×1 white zero mean random vector corresponding to an acceleration disturbance.
In the Update step, the particle’s weights are updated according to the computed

likelihood p(zt|x(i)
t ) for each hypothesis, from the observation model. We follow Ta-

iana’s [17] approach to compute the likelihood as a function of similarities between
color histograms. We compute two YUV histograms for the inner and outer boundaries
of the ball 2D projection contour and apply the Bhattacharyya [18] similarity metric.
In order to track arbitrary color balls, we do not define a reference color model for the
inner boundary and rely strictly on its mismatch to the outer boundary, that is the object
to background dissimilarity. This is well suited given the RoboCup scenario, where the
background is mostly the field color and the ball color, no matter what, will always
have to contrast with it. The motion model described in Eq. (5) remains valid as long
as we express the state of the ball in terms of the world reference frame W which, as
opposed to the robot reference frame R, is inertial. As so, the robot pose must be taken
into account in the observation model in order to project a 3D point M onto the im-
age plane. This means that, at every time step, the coordinates expressed in the world
reference frame W M = [W X,W Y,W Z, 1] must be transformed to the robot reference
frame RM = [RX,R Y,R Z, 1] by means of a transformation matrix, which comprises
a rotation matrix RRW and a translation vector RtW :

RTW =
[

RRW
RtW

0 1

]
(6)

The particles that have a higher weight are replicated in the Resampling step, and the
rest of the particle set is discarded. To prevent the loss of diversity in the particle popu-
lation, we use a low variance resampling technique.

We initialize our tracker by uniformly spreading a fixed number of ball hypothesis
on the ground, in a 5 meter radius circle surrounding the robot. This enable us to reduce
the search state space, as we assume the ball is on the floor, and constrains the detection
according to the camera resolution.
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4 Cooperative Perception in Mobile Sensor Networks

4.1 Information Representation

In order to communicate the ball location and the sensor uncertatinty to other team-
mates one cannot transmite the entire particle set that approximates the posterior in Eq.
(3). The conversion of our sample-based non-parametric representation to a continuous
distribution requires the use of methods such as kernel density estimation, but in order
to achieve efficient communication a parametrization of the probability density function
is, in fact, mandatory. A mixture model provides this type of representation and can also
be viewed as a type of kernel method [19]. If the kernel function of the mixture model
is Gaussian, the distribution is expressed as a Gaussian Mixture Model (GMM) of the
form:

P (x) =
N∑

k=1

wkG(x|μk, Σk) (7)

where x are the observations of the random variable X, wk are positive weights such
that

∑N
i=k wk = 1, G is a Gaussian probability density (Gaussian mixture component)

with mean μk and covariance Σk, and N is the total number of mixture components.
For the GMM to be of practical importance both for data fusion and communications,
the density estimation technique, which will lead to the parametrization of the mixture
model, must be computationally fast and accurate.

The Expectation Maximization (EM) algorithm is an efficient iterative method to
the general approach of the maximum likelihood parameter estimation in the presence
of missing data. Our main intuition while using EM is to alternate between estimating
which sample from our sample-based representation belongs to which mixture com-
ponent (missing data) and estimating the unknown parameters Θk = (wk, θk), where
θk = (μk, Σk), for each of those components. Each iteration of the EM consists of an
expectation (E-step) and a maximization step (M-step). In the E-step we compute the
expected likelihood for the complete data Γ (also known as Q-function) as the condi-
tional distribution of the missing data Y , given the current settings of parameters Θ and
the observed incomplete data X. So, using Bayes’s rule, for each mixture component k:

p(yi = k|xi, θk) =
p(yi = k, xi|θk)

p(xi|θk)
=

p(xi|yi = k, θk)p(yi = k|θk)∑N
k=1 p(xi|yi = k, θk)p(yi = k|θk)

(8)

where N is the total number of mixture components and p(xi|yi = k, θk) is, in our
case, the multivariate Gaussian probability density function. One should also note that
the probability of an observation being part of the kth component p(yi = k|θk) is
actually its relative weight wk in the mixture model. In the M-step we re-estimate the
mixtures parameters Θ by maximizing the Q-function (see [19],[20] for the in-depth
derivation). From here we can compute a new approximation Θ′ for each component k:

μ′
k =

∑M
i=1 xip(yi = k|xi, θk)∑M
i=1 p(xi|yi = k, θk)

, Σ′
k =

∑M
i=1 p(xi|yi = k, θk)(xi − μ′

k)(xi − μ′
k)T∑M

i=1 p(xi|yi = k, θk)
(9)
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where M is the number of total observations. The relative weight of each Gaussian
mixture is given by:

w′
k =

1
M

M∑
i=1

p(yi = k|xi, θk). (10)

4.2 Cooperative Sensor Model

The decentralized sensor fusion typical approach is to build one single estimate of the
target, regardless of whether it’s being tracked by the local sensor or not, and always
assume that in the worst case we filter out our individual local estimate and use the other
robot fused estimate. We propose a different approach that consists of not taking other
sensors beliefs for granted, and instead use them as if they were observations gathered
by the local sensor (virtual observations).

From the previously described particle filter based perception framework in Section
3, we present herein a cooperative perception model that copes both with a local sensor-
distributed estimate of the object and a fused team estimate, deals with the correlation
between common information and can be used to improve self-localization. The model,
based on sequential Bayesian filtering representation, is illustrated in Fig. 1.

In the Local Filter, observations are made and used to compute the likelihood of the
sensor model, which is then multiplied by the prior belief in the Update step. Both the
local prior (before observation), predicted from the local posterior (after Update) over
the previous state, and the team prior, predicted from the received posterior distributions
of the teammates, are concurrently computed at each robot. This way, the other robots
information will only influence the prior belief and the posterior will be determined

Fig. 1. Decentralized Mobile Cooperative Sensor Model (adapted from [16])



338 J. Santos and P. Lima

according to the local sensor measurement model. In the update step, we sample from
the prior distribution, denoted in particle filters as the proposal distribution bel(xt), and
our goal is that the weighted particle set approximates the posterior, denoted as the
target density bel(xt). Upon resampling, the particles are distributed according to the
posterior:

bel(x[m]
t ) = ηp(zt|x[m]

t )bel(xt) (11)

where p(zt|x[m]
t ) is the probability of measurement zt under the mth particle x[m]

t . The
target density is then transformed in a compact GMM representation and passed on to
the other robots. When it is received, new samples will be drawn from it contributing for
the proposal distribution. The ability to sample is not given for arbitrary distributions,
however, since our distributions can actually be decomposed in a sum of Gaussians, we
can draw a random vector X = (x1, x2, ..., xn)T from each bivariate component k with
mean μk and covariance matrix Σk from:

x[n]
k = Akv[n] + μk (12)

where v are n independent samples drawn from N(0, I2) and Ak is the Cholesky de-
composition of Σk, such that Σk = AAT . For each new particle x[n] we then calculate
the importance factor w as described in the ball tracking Update step, Section 3. As
such, samples generated from received GMMs that do not follow the local observation
model will have a low likelihood and will be discarded on resampling.

In the Team Filter we receive GMM representations of the ball’s posterior in the world
frame. Regarding information fusion, the Covariance Intersection (CI) filter yields con-
sistent estimates to the problem of combining different Gaussian random vectors with
unknown correlation between them. This can be extended to a GMM Covariance Inter-
section algorithm as in [16], by performing CI between each of the mixture components.
The fusion between the ith component of a GMM and the jth component of another
GMM will result in a Gaussian mixture with N × N components, such that:

Σ−1
ij = γΣ−1

i + (1 − γ)Σ−1
j (13)

μij = Σij(γΣ−1
i μi + (1 − γ)Σ−1

j μj) (14)

wij =
1
N

(γwi + (1 − γ)wj) (15)

where 0 ≤ γ ≤ 1 is a weighting parameter to minimize the determinant of the result.
This parallel team estimate is to be used only in critical conditions when the target is
out of the sensor field of view.

When associating data in distributed systems, an incorrect association decision leads
to an incorrect fusion estimate, therefore ones needs to have the ability to measure agree-
ment among disparate sensors before fusing their observations. A distance measure
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between Gaussian distributions can be defined as Kullback-Leiber distance [21], Bhat-
tacharyya distance [18] and others. However there’s no analytical solution of computing
these measures to evaluate the distance between Gaussian mixture models. Therefore,
we take Beigi et al. [22] approach to measure distances between collections of distribu-
tions in speech recognition, and define our measure of divergence between GMMs as:

D(G1, G2) =

∑N
i=1 W 1

i +
∑N

j=1 W 2
j∑N

i=1 ci +
∑N

j=1 cj

≤ ξ (16)

and assume there is agreement if D(G1, G2) ≤ ξ, where ξ is a positive threshold.
Consider the matrix of distances between N × N mixture componentes:

T =

⎡⎢⎢⎣
d11 d12 ... d1N

d21 d22 ... d2N

... ... ... ...
dN1 dN2 ... dNN

⎤⎥⎥⎦ (17)

W 1
i is the minima of the elements in the row times the row number ci. Likewise, W 2

j

is the minima of the elements in the column times the column number cj . We can
compute dij from the above metrics for Gaussian distributions. We choose to apply the
Bhattacharyya distance for multivariate Gaussian distributions.

4.3 Improving Self-localization

Our current self-localization method is a combination of Monte Carlo Localization with
gyrodometry and line points extraction. However, one of the issues that affects MCL
performance is the difficulty to recover from failures. One typical recover approach
consists in gradually augmenting the proposal distribution by systematically adding
more and more particles until better observation likelihoods can be obtained. Two major
drawbacks can put this approach at risk. One is the large amount of computational
power required to draw and test samples from an augmented proposal distribution that
can comprise the entire state space. The other drawback is the inability to deal with
local maxima that are present in symmetric environments, such as the RoboCup field.

Instead, one can now see the problem as feature-based map localization with known
correspondence, that is p(rt|f i

t , c
i
t, m), where rt is the robot pose and ft denotes a

given feature that has a correspondence ct in a list of landmarks m. Let’s consider the
ball as a landmark m1. If some other robots are localized and tracking the ball, the
coordinates m1,x and m1,y of our landmark in the world frame of the map are given
by the Team Filter estimate. If the lost robot is tracking the ball relative to its local
coordinate frame (Local Filter), it can make new guesses of its own whereabouts for
it now knows it may be on a circle around the landmark. These new guesses represent
new poses that incorporate the sensor measurement p(f i

t |ci
t, rt, m) . We can assume the

robot is completely lost and therefore the prior p(rt|ci
t, m) is uniform. This assumption

leads to:

p(rt|f i
t , c

i
t, m) = ηp(f i

t |ci
t, rt, m)p(rt|ci

t, m)

= ηp(f i
t |ci

t, rt, m)
(18)
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(a) (b)

Fig. 2. Parametrization of the Ball Tracking particle set using Expectation Maximization. Particle
set in green, and the respective Gaussian mixture components in black. (b) Density function.

from where we concluded that sampling from p(rt|f i
t , c

i
t, m) can, in this particular case,

be achieved from p(f i
t |ci

t, rt, m). As so, we only add a limited amount of new sample
poses that derive from a common target observation to the MCL proposal distribution.

5 Experimental Results

All experiments were made online, on a Intel Centrino 1.6 GHz processor, in real game
situations. To achieve maximum processor performance, the implementation was done
in C++ with extensive use of Intel Performance Primitives (IPP) for optimized vector
and matrices operations and Intel Math Kernel Library (MKL) for statistics procedures.

5.1 Generating Compact Information Representations

In this experiment we tested the particle set approximation with EM. The purpose was
to test the algorithm efficency and determine a good number of Gaussian components
that would suit an aceptable EM convergence time. We ran our EM implementation
with a different number of mixture components for the same scenario and registered the
average run time of the algorithm in Table 1. As so, we choose to use GMMs with 4
components for it is enough to capture a good approximation of the particle set (Fig. 2)
in an aceptable time. All the processing was made online with 1200 particles.

5.2 Fusing Data

In this experiment three robots are able to localize the ball, while a fourth robot (the
goalkeeper) cannot (see Fig. 3). The robots tracking the ball compute their GMM

Table 1. Average execution time while computing GMMs with our EM implementation for 12000
particles, concurrently with other modules used to play soccer

Number of mixture components 1 2 4 10
Time taken [seconds] 0.0246 0.0690 0.1131 0.1924
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Fig. 3. GMM Data Fusion with Disagreement. (a) Top field camera view. (b) Robot4 tracks the
ball and broadcasts its GMM, but is not well localized. (c-f) Robots 2 and 3 track the ball, com-
pute their GMMs and broadcast them. (g-h) The goalkeeper (robot1) tests received GMMs for
disagreement and computes GMM CI only for those that are in agreement.
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Table 2. Distance measurements between the GMMs received by robot1

D(G2,G3) 9.6880
D(G3,G4) 200.5146
D(G2,G4) 162.7252

approximation and broadcast it to others. As the goalkeeper receives the teammates
GMM estimates, it first tests it to see if there’s agreement, and if there is, it proceeds to
compute a team estimate by fusing the GMMs with CI.

Although its able to track the ball, robot4 is not able to localize itself correctly on
the field (Fig. 3a). As such, it broadcasts GMM approximation of its erroneous ball
localization belief, since it is corrupted by its self localization belief (Fig. 3b).

We show the results of the fusion estimate made by robot1 (Fig. 3g, 3h), which is
not able to see the ball at all. The decision on which GMMs to fuse is based on the
disagreement measurement Eq.(16) with ξ = 30. The computed distances between
each of the received GMMs are shown is Table 2.

6 Conclusions

We presented a cooperative sensor fusion model based on a particle filter perception
framework, for mobile robots operating in dynamic environments. We aim at taking
advantage of a team of sensors to detect the ball on the field at all time.

For that we implemented a 3D shaped-based ball tracker that comprises a realistic
dynamic motion model. The system is based on particle filters and also comprises an
observation model that allow us to compute the likelihood of a ball hypothesis, given the
ball shape model, the projection model for the omnidirectional camera and an acquired
image. To acquaint for the robot motion in the tracker we take the robots pose into
consideration in the observation model.

We presented a framework for representing and measuring disagreement of sensor
information based on Gaussian Mixture Models. This representation allows to capture
arbitrary complex uncertainty from nonlinear observation models, yet it’s parametriza-
tion is simple and takes no overhead in communications. We implemented the Expecta-
tion Maximization algorithm for GMM parameter estimation to approximate the sample
based ball posterior distribution.

The implemented cooperative perception model takes advantage of the GMM rep-
resentation in two distinct forms. One is to improve the local ball particle filter in a
distributed fashion way by injecting new particles drawn directly from the received
GMMs. The other is to compute a ball team estimate directly from the received GMMs
target distribution with Covariance Intersection if there’s GMM agreemeant, when the
the ball cannot be detected by the local sensor.
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Abstract. Controlling a biped robot with a high degree of freedom to achieve 
stable and straight movement patterns is a complex problem. With growing 
computational power of computer hardware, high resolution real time  
simulation of such robot models has become more and more applicable. This 
paper presents a novel approach to generate bipedal gait for humanoid locomo-
tion. This approach is based on modified Truncated Fourier Series (TFS) for 
generating angular trajectories. It is also the first time that Particle Swarm Op-
timization (PSO) is used to find the best angular trajectory and optimize TFS. 
This method has been implemented on Simulated NAO robot in Robocup 3D 
soccer simulation environment (rcssserver3d). To overcome inherent noise of 
the simulator we applied a Resampling algorithm which could lead the robust-
ness in nondeterministic environments. Experimental results show that PSO  
optimizes TFS faster and better than GA to generate straighter and faster huma-
noid locomotion. 

Keywords: Bipedal Locomotion; Particle Swarm Optimization; Truncated  
Fourier series. 

1   Introduction 

In recent years, bipedal locomotion, especially "bipedal walking" has been one of the 
interesting research topics in multi disciplinary topic. Bipedal walking as a very com-
plex motion, involves most of humanoid joints including its sensors and actuators. 
Many researchers have focused on this topic and a lot of approaches have been pre-
sented. But so far no method exists that can walk a robot as stable as human's do. 
There are two major approaches in bipedal walking researches; model-based and 
model free approaches. In model-based approach the designer first derives model of 
the robot and then builds a controller for the model. Two well known methods in this 
approach are "Zero Moment Point"[1] (ZMP) and "Inverted Pendulum"[2]. 

In model-free approach, which is also called "Dynamics Based", it is common to 
make use of the sensory information and associate it with motions. No physical model 
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is used in this method that eases the implementation of the skills. There are three 
important studies done in this field; Passive Dynamic Walking (PDW) [3], Central 
Pattern Generator (CPG) [4] and Ballistic Walking [5]. In PDW approach, the robot 
does not have any actuators model and walks just by utilizing the gravity force. The 
Ballistic walking is originated from the simple human walking model based on the 
observation of human walking in which the muscles of the swing leg are activated 
only at the beginning and the end of the swing phase. In CPG approach, special neural 
circuits take the role of rhythmic walking controller using the non-linear equations to 
model the neural activities. Researchers usually focus on complex mathematical mod-
els like Hopf [6] or Matsuoka [7] to model these neural activities and generate rhyth-
mic walk patterns (Gaits).  

In 2006, Truncated Fourier Series (TFS) formulation is used for gait generation in 
bipedal locomotion [8]. TFS together with a ZMP stability indicator are used to prove 
that TFS can generate suitable angular trajectories for controlling bipedal locomotion. 
It does not require inverse kinematics and stable gaits with different step lengths and 
stride frequencies can be readily generated by changing the value of only one parame-
ter in the TFS. 

Taking the advantages of TFS as a model-free approach, we implemented a TFS in 
a simulated humanoid robot to generate gait trajectories in three dimensions. In this 
novel approach, the Particle Swarm Optimization (PSO) technique with constraint 
handling on angles and time is used to find optimum parameters of TFS and train the 
robot to achieve fast bipedal walking for the first time.  

To overcome inherent noise of the simulator, Resampling algorithm is implied 
which could lead to robustness in nondeterministic environments. The Genetic Algo-
rithm (GA) is also implemented in the same manner. Learning results of GA and PSO 
are compared with each other which indicate PSO as a better learning method for this 
complex problem in non-deterministic environment. 

2   Simulator and Biped Model 

In this paper, a new approach for walking behavior in a simulated humanoid robot is 
discussed. However simulation is not always efficient, due to difficulty of the model-
ing collision between feet and the ground, we still believe that numerical simulation is 
sufficient to explore and test bipedal locomotion methods. 

The simulation is performed by Rcssserver3d simulator which is a generic three-
dimensional simulator based on Spark and Open Dynamics Engine (ODE). Spark is 
capable of carrying out scientific distributed multi agent calculations as well as vari-
ous physical simulations ranging from articulated bodies to complex robot environ-
ments [9]. The robot in this study is a simulated model of NAO that is a real humano-
id Robot with two arms, two legs and a head. This robot weighs 4.5kg, stands 57cm 
high and has 22 degrees of freedom (DOF). There are six DOFs in each leg; two in 
the hip, two in the ankle and one at the knee. An additional DOF that exists at each 
leg's hip for yaw causes the legs to rotate outward and inward.   

As an appropriate test-bed, in our soccer simulation team MRL we have imple-
mented and tested our new bipedal locomotion approach on simulated NAO robot 
how the generated software based on this simulator is developed by MRL team from 
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scratch. According to our studies, we found 6 DOFs (three for each leg) more effec-
tive than other DOFs to make the robot capable of fast walking. The DOFs of hip, 
knee and ankle which move on the same plane of forward-backward are the major 
ones. Although other DOFs are effective in walking behavior, but in fact, their role 
smoothes the robots walking motion. So here, it’s preferred to ignore them to decrease 
learning search space. Like in [10], Foot was kept parallel to the ground by using 
ankle joint in order to avoid collision. Therefore ankle trajectory can be calculated by 
hip and, knee trajectories and its DOF parameters are eliminated.  

3   TFS gait Generator 

Bipedal walking as a complex motion, involves most of humanoid robot’s joints.  
Researchers attempt to imitate the human walking style as well as its speed.  There-
fore analyzing human walk pattern has been used for acquiring beneficial information 
about this motion.  Human walk has been investigated from many angles; walking 
trajectory is one of them. The walking trajectory is divided into several types. Posi-
tional trajectory and angular trajectory are two of them. In angular trajectory, the 
angle of each joint is plotted at a certain time slice. Therefore the angular trajectory is 
obtained by angular variation of each joint. Biped angular trajectory of two joints; hip 
and knee captured from human walking are shown in Fig 1.a [11].  

 

Fig. 1. a Human walking angular trajectory [11] 

The angle of each joint in one period of walking signal from 0t  to 6t  is 

represented in fig 1.b [11] by capturing the main features of fig 1.a and gives a gener-

al form to make it applicable to robots. In time range [ ]0 2,t t and [ ]5 6,t t
 
the left leg 

is support leg and the right one is swing leg but in range of time [ ]2 5,t t the left and 
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Fig. 1. b gaits elaborated from human gaits features [11] 

right legs play the role of support and swing legs respectively. In another word, in two 

times of 2t and 5t the roles of two legs are switched with each other. At time 3t
where two hip trajectories intersect, two thighs cross each other. 

3.1   Angular Trajectory Generation 

Regarding the fact that all joint trajectories of human walking are periodic and similar 
to sine or cosine signals [12], the generation of these angular signals can be done by 
Fourier series.  

3.2   Basic Fourier Series 

The original definition of Fourier series is described by following formula:  

2 cos 汜 sin  (1) 

The first term ( ) of equation 1 represents the DC bias  of the signal and the L 

represents half of the largest period that exists in the signal. By  then the fre-

quency form of Fourier series is achieved as follows: 

2  (2) 

Where  is frequency of periodic signal, any complicated signal can be produced by 
this formula when  is considered infinite. But when the value of  is limited to a defi-
nite number, precision of generating signal is reduced and this type of Fourier series is  
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called partial sum of the Fourier series. According to fig. 1.a, Human Walking angular 
trajectories are too complicated to be produced by a definite Fourier series band li-
mited to the second harmonic. Therefore a modified definite Fourier series as a Trun-
cated Fourier series (TFS) is used in this study. 

3.3   Trajectory Generation by Using TFS 

According to Fig. 1.b., the signals are divided in two parts; upper portion and lower 
portion. Whereby each portion can be assumed as an odd function, the cosine part of 
TFS is eliminated. So the TFS is reduced to equation 3 to generate each portion of 
trajectory. 

sin  (3) 

Where  is fundamental frequency of signal and  is signal offset. Separate produc-
tion for each portion, caused to generate complex signals with different upper and 
lower portions. The number of parameters for generating these complex signals is also 
less than the parameters used in Fourier series. As shown in Fig. 1.b., each signal has 
an offset. Ch and Ck are hip trajectory and knee trajectory offsets respectively. From t0 
to t2 the left leg is considered as supporting leg and the variation of its knee angle is so 
minute that can be assumed fixed. This duration of walking is named lock phase. In 
addition, the amount of shift phase of the two leg trajectories signal is half of the 
period of each signal. The trajectories for both legs are identical in shape but are 
shifted half of the walking period in time. Therefore by figuring out walking angular 
trajectory of one leg the other leg trajectory is obtained. Using (3) and considering 
curves of Fig. 1.b., the TFS for generating each portion of hip and knee trajectories 
are formulated as follow (4): 
 . sin , 2

 0 . sin ,  

. sin ,  

(4) 

In these equations, the plus (+) sign represents the upper portion of walking trajectory 
and the minus (-) shows the lower portion. Ai, Bi and Ci are constant coefficients for 
generating signals. The h and k index stands for hip and knee respectively. Ch and Ck 
are signal offsets and Tk 

is assumed as period of knee trajectory. Considering the fact 
that all joints in walking motion have equal movement frequency [12], the equation 

 can be concluded. Parameter 3t shows the end time of hip trajectory in 



 Evolution of Biped Walking Using Truncated Fourier Series 349 

 

upper portion and starts its down portion, 6t  shows the end time in down portion. 

These parameters are not significant since they can be obtained when the hip trajecto-

ry intersects the Ch line. But parameter 2t  represents the end time of knee lock phase 

and must be considered to produce knee trajectory. Therefore Truncated Fourier se-
ries parameters to produce trajectories are; Ch, Ck, Ai, Bi, Ci, t2, and Wk. In this essay 
there are some constraints to be dealt with as shown in the following equation: 
 0  , 2 0 2

 

0 

(5) 

Finally an optimization algorithm is needed to optimize a 7_dimension Problem for 
finding the best gait generator. 

4   PSO Algorithm 

The PSO algorithm consists of three steps; generating primitive particle’s positions 
and velocities, velocity update and position update [13]. These parts will be described 
in sections 4.1, 4.2 and 4.3 respectively. 

4.1   Initializing Particles' Positions and Velocities  

Equations (6) and (7) are used to initialize particles which tΔ are the constant time 
increment. Using upper and lower bounds on the design variables values, Xmin and 

Xmax, the positions, i
kX  and velocities, i

kV  of the initial swarm of particles can be first 

generated randomly. The swarm size will be denoted by N. The positions and veloci-
ties are given in a vector format where the superscript and subscript denote the  ith 
particle at time k.  

 (6)

∆  (7)

4.2   Updating Velocities  

The fitness function value of a particle is used to determine the particle which has the 
best global value in the current swarm ( ), and to determine the best position of each 
particle over time ( ).  

The three values that affect the new search direction, namely, current motion, par-
ticle own memory, and swarm influence, are incorporated via a summation approach 
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as shown in Equation below with three weight factors, namely, inertia factor, w , self 
confidence factor,C1 , and swarm confidence factor,C2 ,respectively. 

(8)

The inertia weight w controls how much of the previous velocity should be retained 
from the previous step. A larger inertia weight facilitates a global search, while a 
smaller inertia weight facilitates a local search [14]. A balance can be achieved be-
tween global and local exploration to speed up search results using a dynamically 
adjustable inertia weight formulation. There have been different strategies for deter-
mining the value dynamic inertia weight. Introducing a nonlinear decreasing inertia 
weight as a dynamic inertia weight into the original PSO significantly improves its 
performance through the parameter study of inertia weight [14]. This nonlinear distri-
bution of inertia weight is expressed as follow: 

捦 (9)

Where winit is the initial inertia weight value selected in the range [0, 1] and U is a 
constant value in the range [1.0001, 1.005], and k is the iteration number. 

4.3   Updating the Position  

Position update is the final step of each iteration and it is done by using the current 
particle position and its own updated velocity vector shown in the Equation below. X ∆ (10)

In summary, the PSO technique will be: 
Let initialization iterative number k = 0, initialization population size.(6),(7) Calcu-

late each particle’s fitness value of initialization population, and let first generation Pi 
be initialization particles, and choose the particle with the best fitness value of all 
particles as the P1

g.  
 

Repeat 
For each particle  
           Calculate inertia Weight according to equation (9). 
           Update the velocities according to equation (8). 
           Update the positions according to equation (10). 
           Evaluate its fitness value according to the objective function.  

           Update  and  if necessary. 

End for 
 

Until a sufficient good criterion is met, either good fitness or a maximum number of 
iterations (As in genetic algorithm). 

{
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5   Implementation 

Bipedal walking is known as a complicated motion since many factors affect Walking 
style and stability such as robot's Kinematics and dynamics, and collision between 
feet and the ground. In such a complex motion, relation between Gait trajectory and 
walking characteristic is nonlinear. In this approach the best parameters to generate 
angular trajectories for bipedal locomotion must be found. This kind of optimization 
problem is usually difficult; therefore particle swarm optimization (PSO) seems to be 
appropriate solution.  

In PSO, the parameters of the problems are coded into a finite length of string as a 
particle. According to section 2, TFS has 7 parameters to generate all joints angular 
trajectories; there is a 7-dimension search space for the PSO to find the optimum 
solution. 

Fitness function has a critical rule in PSO that is used to judge whether a solution 
represented by a particle is good or bad. Angular trajectory produced by each particle 
is used for walking by simulated robot. To use angular trajectory for walking, all 
individual robot's joints attempt to drive towards their target angles using proportional 
derivative (PD) controllers. To equip the robot with a fast walking skill a fitness func-
tion based on robot's straight movement with limited action time is considered. First 
the robot is initialized in x=y=0 (0, 0) to walk for 15 seconds then fitness function is 
calculated whenever robot falls or time duration for walking is over. Fitness function 
formulation is expressed as follow; The Current Time in the formula determines time 
passed since robot has started walking:  

If ((Current Time >= time duration for walking) or (ro-
bot is fallen)) 

Fitness := 10*x ;  

End if 

Due to the fact that there is noise in simulated robot's actuators and sensors, training 
walking task in this approach can be viewed as an optimization problem in a noisy 
and nondeterministic environment. Resampling is one of the techniques to improve 
the performance of evolutionary algorithms (EAs) in noisy environment [15]. In Re-
sampling, the individual set of parameters (particle) , the fitness  is measured 
m times and averaged yielding fitness. According to (11) the strength of noise  is 
reduced by the factor√ . 1 ,    √  (11)

In this study, for comparing GA and PSO performance as an optimizer, we imple-
mented them by the same mentioned model, fitness function and Resampling factor of 
m as 3. 
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5.1   PSO and GA Implementation  

Since particles may not be satisfied in constraints during updating position procedure 
constraint handling is a vital step in PSO algorithm. There are many constraints on 
parameters in this study (i.e time parameters in TFS must be positive). Therefore 
Pareto [16] with multi-objective modeling is used for handling constraints.  

In Pareto, a solution, x(2), is dominated by solution, x(1), if x(1) is not worse than 
x(2) in all objectives, and for at least one of the objectives, x(1) is strictly better than 
x(2). Without loss of generality, these conditions can be expressed as follows for the 
case where all of the objective functions are going to be minimized: 

 

  and 

       for some m. 
 

Each constraint is assumed as an object in which parameters must be satisfied .So 
according to Pareto method, a particle can be considered to find Pi , Pk

g when it satis-
fies objects and constraints. So calculating fitness for particles that cannot satisfy 
constraint is not necessary.   

 Salman et.al [17] used the values of 0.9, 2 and 2 for w, C1 and C2 respectively. But 
it is possible that much combination of values lead to much slower convergence or 
even non-convergence. The tuning of the PSO algorithm values is an issue that war-
rants proper investigation but is outside the scope of this work. We considered various 
values for each parameter of the algorithm and tried all possible combinations. Finally 
we chose the best combination of the parameters regarding the dynamic inertia weight 

and test results that C1 and C2 are assumed as 1, 1.5, winit as 0.8, U as 1.0002 and 
as 1, respectively. We have also implied a swarm consisted of 100 particles (N = 100) 
and maximum iteration of 10. 

In GA implementation, the crossover rate and mutation rate are set to 0.8 and 0.06 
respectively and roulette wheel is assumed as selection method. Population for each 
generation is 100, termination condition is to have a generation counter greater than 
10 and Resampling m factor is 3. In another world 3000 trials are needed to find ap-
propriate TFS parameters. 

6   Results 

4 hours after starting GA on a Pentium IV 3 GHz Core 2 Duo machine with 2 GB of 
physical memory, 3000 trials were performed. The robot could walk 6.7m in 15s with 
average body speed of 0.45m/s and the period of 0.41s for each step.  Fig. 3 shows the 
average and best fitness values during these 10 generations.  

Running the PSO on the same system with the same parameters of iteration and 
population, more satisfactory results are achieved. Implying constraint handling, some 
of the particles that did not satisfy constraint were not tested. So through PSO after 
1782 training tests instead of 3000 by GA, the robot could walk 8.7 m in 15 s with 
average body speed of 5.8 m/s, that’s significantly better than GA result. This out-
come also proves that PSO has bypassed a local minimum that GA was caught in and 
it can optimize faster. Fig. 4 illustrates PSO algorithm convergence results. 

( )( ) ( )( )1 2 1, 2, ...,fm x fm x for m M≤ ∀ =

( )( ) ( )( )1 2fm x f m xp

tΔ
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Fig. 2. GA Convergence 

 

Fig. 3. PSO Convergence 

7   Conclusion 

In this study for the first time TFS with PSO is implemented in a simulated robot that 
can walk fast and stable. The technique has some advantages. First, it can be  
implemented on many humanoid robots as simulated NAO robot to walk based on its 
walking performance without considering any mathematical modeling. Second, the 
modified PSO converges sooner than GA to find the best TFS parameters. Since each 
individual or particle needs a long time to be tested, the higher speed of PSO  
convergence becomes more significant. On the other hand by using PSO the robot  
has achieved a faster walk that means PSO performs better than GA in such  
problems. Resampling technique is also used to overcome uncertainty and noise of the 
environment. 
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Abstract. Reinforcement learning applications to real robots in multi-
agent dynamic environments are limited because of huge exploration
space and enormously long learning time. One of the typical examples is
a case of RoboCup competitions since other agents and their behavior
easily cause state and action space explosion.

This paper presents a method that utilizes state value functions of
macro actions to explore appropriate behavior efficiently in a multi-agent
environment by which the learning agent can acquire cooperative behav-
ior with its teammates and competitive ones against its opponents.

The key ideas are as follows. First, the agent learns a few macro
actions and the state value functions based on reinforcement learning
beforehand. Second, an appropriate initial controller for learning coop-
erative behavior is generated based on the state value functions. The
initial controller utilizes the state values of the macro actions so that
the learner tends to select a good macro action and not select useless
ones. By combination of the ideas and a two-layer hierarchical system,
the proposed method shows better performance during the learning than
conventional methods.

This paper shows a case study of 4 (defense team) on 5 (offense team)
game task, and the learning agent (a passer of the offense team) suc-
cessfully acquired the teamwork plays (pass and shoot) within shorter
learning time.

1 Introduction

There have been studies on cooperative/competitive behavior acquisition in a
multiagent environment by using reinforcement learning methods, especially in
the RoboCup domain. In such a dynamic multi-agent environment, the state and
action spaces for the learning can be easily exploded since not only objects but
also other agents should be involved in the state and action spaces, and there-
fore the sensor and actuator level descriptions may cause information explosion
that disables the learning methods to be applied within practical learning time.
Kalyanakrishnan et al. [4] showed that the learning can be accelerated by sharing
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the learned information in the 5 on 4 game task. However, they need still long
learning time since they directly use the sensory information as state variables
to decide the situation. Noma et al. [6] achieved the cooperative behavior acqui-
sition in the same 5 on 4 game domain within much shorter time by introducing
the macro actions and abstracted state variables based on the macro actions and
reducing the size of the state-action space. However, the learning time is still too
long to realize real robot learning.

Noma et al. [6] presented a method of hierarchical modular learning in a
multiagent environment in order to reduce the exploration space, that is, the
state space. Learning modules at the lower layer acquire basic skills for soccer
play, for example, dribbling and shooting, passing, and receiving behavior, based
on reinforcement learning. The module of the top layer takes the state values of
the action modules of the lower layer as state variables to construct the state
space for learning the cooperative/competitive behavior. The key idea of their
work is to utilize the state values of action modules as abstracted state variables
instead of using sensory information directly in order to reduce the size of state
space. However, the state value can be utilized in more efficient way to reduce
the time learning behavior for more complicated cooperative task.

On the other hand, there are case studies in which evaluation of the player
situation is designed by hand and the players behave cooperatively based on the
evaluation. Isik et al. [3] proposed a multi-robot control system by sharing util-
ity of certain behavior among the players. Mcmillen et al.[5] shows cooperative
behavior with AIBOs by sharing the information of the ball on the field among
the teammates. Fujii et al. [2] proposed to share the utility for role assignment.
Those methods are useful for realizing cooperative behavior among a number of
robots, however, there is no room to improve their performance through trial
and error as machine learning, especially reinforcement learning, does.

This paper presents more advanced method to learn cooperative behavior in
multi-robot environment efficiently. An appropriate initial controller for learning
cooperative behavior is generated based on the state value functions of the action
modules at the lower layer. The initial controller utilizes the state values of the
macro actions so that the learner tends to select a good macro action and not
select useless ones. By combination of the ideas and a two-layer hierarchical sys-
tem, the proposed method shows better learning performance than conventional
methods. This paper shows a case study of 4 (defense team) on 5 (offense team)
game task, and the learning agent (a passer of the offense team) successfully
acquired the teamwork plays (pass and shoot) within shorter learning time.

2 Task and Assumptions

The game consists of the offence team (five players and one of them can be the
passer) and the defence team (four players attempt to intercept the ball). The
offence player nearest to the ball becomes a passer who passes the ball to one
of its teammates (receivers) or shoot the ball to the goal if possible while the
opposing team tries to intercept it (see Fig. 1).
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Fig. 1. A passer and the defence for-
mation

Fig. 2. Viewer of simulator

Only the passer learns its behavior while the receivers and the defence team
members take the fixed control policies. The receiver becomes the passer after
receiving the ball and the passer becomes the receiver after passing the ball.
After one episode, the learned information is circulated among team members
through communication channel but no communication during one episode. The
action and estimation modules are given a priori.

The offence (defence) team color is magenta (cyan), and the goal color is blue
(yellow) in the following figures. The game restarts again if the offense team
successfully scores a goal, kicks the ball outside of the field, or the defense team
intercepts the ball from the opponent.

2.1 Offence Team

The passer who is the nearest to the ball learns the team player behavior by
passing the ball to one of four receivers or dribbling and shooting the ball to the
goal by itself. After its passing, the passer shows a pass-and-go behavior that is
a motion to the goal during the fixed period of time automatically. The receivers
face to the ball and move to the positions so that they can form a rectangle by
taking the distance to the nearest teammates (the passer or other receivers) (see
Fig. 1). The initial positions of the team members are randomly arranged inside
their territory.

2.2 Defence Team

The defence team member who is nearest to the passer attempts to intercept
the ball, and each of other members attempts to “block” the nearest receiver.
“Block” means to move to the position near the offence team member and be-
tween the offence and its own goal (see Fig. 1). The offence team member at-
tempts to catch the ball if it is approaching. In order to avoid the disadvantage
of the offence team, the defence team members are not allowed inside the penalty
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area during the fixed period of time. The initial positions of the team members
are randomly arranged inside their territory but outside the center circle.

2.3 Robots and the Environment

Robots participating in RoboCup Middle Size League are supposed in this paper.
Fig. 2 shows the viewer of the simulator for our robots and the environment. The
robot has an omni-directional camera system. A simple color image processing
is applied to detect the ball, the interceptor, and the receivers on the image in
real-time. The left of Fig. 2 shows a situation the robot can encounter while the
right images show the simulated ones of the normal and omni vision systems.
The mobile platform is an omni-directional vehicle (any translation and rotation
on the plane.)

We suppose that the omni directional vision system provides the robot with
3-D construction of the scene. This assumption is needed for the estimation
of the state value of the teammates since it is needed to estimate the sensory
information observed by other robots.

3 Multi Module Learning System with Other’s State
Value Estimation Modules

In this section, we briefly review the work of Noma et al. [6]. Fig.3 shows a basic
architecture of the two-layered multi-module reinforcement learning system. The
bottom layer (left side of this figure) consists of two kinds of modules: action
modules and estimation ones that infer the state value of the teammates. The top
layer (right side of the figure) consists of a single gate module that learns which
action module should be selected according to the current state that consists of
state values sent from the modules at the bottom layer. The selected module
then sends action commands based on its policy.

Fig. 3. A multi-module learning system
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An action module of the lower layer has a reinforcement learning module
which estimates state values for the action. An agent can discriminate a set
S of distinct world states. The world is modeled as a Markov process, making
stochastic transitions based on its current state and the action taken by the
agent based on a policy π. The agent receives reward rt at each step t. State
value V π, the discounted sum of the reward received over time under execution
of policy π, will be calculated as follows:

V π =
∞∑

t=0

γtrt . (1)

In case that the agent receives a positive reward if it reaches a specified goal and
zero else, then, the state value increases if the agent follows a good policy π. The
agent updates its policy through the interaction with the environment in order
to receive higher positive rewards in future. For further details, please refer to
the textbook of Sutton and Barto[7] or a survey of robot learning[1]. Here, we
suppose that the state values in each action module have been already acquired
before the learning of the gate module.

As shown in Figure 3, the gate module receives state values of lower mod-
ules, that is, the action modules and the other’s state value estimation ones, and
constructs a state space with them. The state space of the gate module is con-
structed as direct product of the variables of the state values. In order to adopt
a discrete state transition model described above, the state space is quantized
appropriately. The action set of the gate module is constructed with all action
modules of the lower layer as macro actions. For further details, please refer to
[6]. Here, three kinds of action modules are prepared as follows.

– Dribble and Shoot
– Pass to a teammate
– Receive and Shoot

There are 4 “Pass to a teammate” and “Receive and Shoot” modules because
there are 4 teammates (receivers) besides the passer. “Pass to teammate 1”
module returns the state value when the passer tries to pass the teammate 1.
“Receive and Shoot 1” module returns estimated state value of “dribble and
shoot” behavior of the teammate 1 if the ball is pass to the teammate 1. Details
of those modules are described later.

4 Evaluation of Team Situation

The objective of the team playing soccer is scoring a goal. It is hard to evaluate
the situation of the team to score the goal only from positions of teammates,
opponents, and a ball. On the other hand, one player situation, how close the
player score a goal, can be evaluated based on the state value of the “dribble
and shoot” behavior. This behavior can be learned beforehand. If the player can
score the goal, then, it means that the team situation is good. Even if the player
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with the ball cannot score a goal directly because it is far from the opponent
goal or the opponent players are close to it, it can pass the ball to one of the
teammates that is close to scoring a goal. If the receiver finds that scoring a goal
after it receives the ball, then, it is going to find another teammate that is near
to scoring a goal. This idea can be applied recursively. The evaluation of team
situation from the view point of player possessing a ball can be approximated
as follows:

Eteam
i = max{ V dribble&shoot

i ,

max
j

[V pass
ij + βV receive&shoot

j ],

max
jk

[V pass
ij + +βV pass

jk + +β2V receive&shoot
k )],

· · ·} (2)

where V dribble&shoot
i , V pass

ij , and V receive&shoot
i indicate state values of player

i’s behavior “dribble and shoot”, “pass” to player j, and “receive and shoot”,
respectively.

5 Initial Controller Design Based on Team Situation
Evaluation

An appropriate initial controller for learning cooperative behavior is generated
based on the team situation evaluation. The initial controller utilizes the state
values of the macro actions so that the learner tends to select a good macro
action and not select useless ones. Based on the approximated team situation
evaluation, the initial controller selects one of the macro actions ma as below:

ma =

⎧⎪⎪⎨⎪⎪⎩
madribble&shoot if Eteam

i = V dribble&shoot
i

mapass
j if Eteam

i = V pass
ij + βV receive&shoot

j

mapass
j if Eteam

i = V pass
ij + βV pass

jk + β2V receive&shoot
k

· · ·
(3)

It is not possible to calculate all possible options within a limited time. Therefore,
the set of the options is limited as only the case of just “dribble&shoot” macro
action and a combination of “pass” and “dribble&shoot” ones, in this paper. A
concrete pseud algorithm is given at Algorithm 1.

6 Structure of the State and Action Spaces

6.1 Gate Module

The passer is only one learner, and the state and action spaces for the lower
modules and the gate one are constructed as follows. The action modules are
four passing ones for four individual receivers, and one dribble-shoot module.
The other’s state value estimation modules are the ones to estimate the degree
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Algorithm 1. Initial Controller for Passer
1: MaxEvaluation = V alueDribble&Shoot

2: MaxRobotID = 0
3: N = Number of Receiver
4: for j = 1 in N do
5: Evaluation(j) = V aluePass(j) + βV alueReceive&Shoot(j)

6: if Evaluation(j) ≥ MaxEvaluation then
7: MaxEvaluation = Evaluation(j)
8: MaxRobotID = j
9: end if

10: end for
11: if MaxRobotID = 0 then
12: return DribbleShoot
13: else if MaxRobotID = 1 then
14: return Pass(1)
15: else if MaxRobotID = 2 then
16: return Pass(2)

17:
...

18: else if MaxRobotID = N then
19: return Pass(N)
20: end if

of achievement of ball receiving for four individual receivers, that is how easily
the receiver can receive the ball from the passer. These modules are given in
advance before the learning of the gate module.

The action spaces of the lower modules adopt the macro actions that the
designer specifies in advance to reduce the size of the exploration space without
searching at the physical motor level.

The state space S for the gate module consists of the following state values
from the lower modules:

– one state value of dribble-shoot action module,
– four state values of passing action modules corresponding to four receivers,

and
– four state values of receiver’s state value estimation modules corresponding

to four receivers.

The reward 1 is given only when the ball is shot into the goal and reward 0 else.
When the ball is out of the field or the pre-specified time period elapsed, the
game is called “draw” and one episode is over.

6.2 “Dribble&Shoot” Module

In order to reduce learning time for macro actions, one macro action is decom-
posed into 2 simple behavior. For example, the “Dribble&Shoot” macro action
consists of “single Dribble&Shoot” module and “success estimation” module.
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(a) State variables for
Dribble&Shoot module

(b) State value function of
Dribble&Shoot module

Fig. 4. State variables (a) and learned state value function (b) for the dribble and
shoot module

The “single Dribble&Shoot” module learns the state value function of the “drib-
ble and shoot” behavior under the environment where a single player shoot a ball
without any teammate or opponent. The “success estimation” module estimates
success rate of the “single Dribble&Shoot” behavior in case of existence of an
opponent. The “Dribble&Shoot” macro action module combines the two basic
modules and estimates state value of the behavior accordingly.

The state space of the “single Dribble&Shoot” module S is defined as follows:

– the angle between the opponent goal and the ball
– the distance to the opponent goal, and
– the distance to the ball

Each of these state values is quantized into 31. A CMAC system is adapted with
8 tilings for the approximation of state value.

The state space of the “success estimation” module consists of only the angle
between the goal and the opponent. The module learns the state value while
the player taking the behavior of the “single Dribble&Shoot” module. Negative
reward −1 is given when the opponent takes the ball and zero else. Finally, the
“Dribble&Shoot” module estimates state value of the behavior by adding the
estimated values of two simple modules.

6.3 ”Pass” Module

The state space of the passing module consists of the angle between the receiver
and the opponent. The state variable is quantized into 31 levels. A CMAC system
is adapted again with 8 tilings for the approximation of state value. The state
value map is shown in Fig. 5(c) that indicates the smaller the angle between the
receiver and the opponent player is, the lower the state value is.

6.4 ”Receive&Shoot” Module

The passer infers each receiver’s state that indicates how easily the receiver can
shoot the passed ball to the goal by reconstructing its TV camera view of the
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(a) State variables for suc-
cess estimation module

(b) State value function of
“success estimation” mod-
ule

(c) State variables for pass
module

Fig. 5. State variables and learned state value function of “success estimation” and
“pass” modules

Fig. 6. Curves of success rate

scene from the passer’s omnidirectional view. Since we suppose that the passer
has already learned the shooting behavior, the passer can estimate the receiver’s
state value by assigning its own experienced state of the shooting behavior. The
“Dribble&Shoot” macro action module is reused for estimation of state value of
the “Receive&Shoot” module. This means, the passer estimates the state value
of “Dribble&Shoot” behavior on an assumption that the passer successfully pass
the ball to the receiver and the receiver controls the ball.

7 Experimental Results

The success rates of case studies with/without the initial controller based on
the state value functions of macro action are shown in Fig. 6 where the action
selection is 80% greedy and 20% random to cope with new situations. The success
rate is moving average during the last 100 trials. The condition of case study
without the initial controller is same with the one of Noma et al. [6]. The figure
shows the initial controller shows much better performance from the early stage
of the learning than the system without the initial controller.
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Fig. 7. A sequence of acquired behaviors
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An example of acquired behavior is shown in Fig. 7 where a sequence of twelve
top views indicates a successful pass and shoot scene.

8 Conclusion

We have utilized the state value functions of macro actions to build a good initial
controller for cooperative behavior acquisition instead of learning the behavior
from scratch. As a result, we have much improved the performance during the
learning compared to the result of the previous method [6].

The initial controller seems to be too good, therefore, the performance of
the cooperative behavior during the learning shows little improvement. Further
investigation is undergoing for performance improvement of cooperative behavior
based on the reinforcement learning.

Real robot experiments are planned in near future because the proposed
method reduces actual learning time and it is practical to apply to real robots.
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Abstract. This paper is focused on the sensor and information fusion techniques
used by a robotic soccer team. Due to the fact that the sensor information is af-
fected by noise, and taking into account the multi-agent environment, these tech-
niques can significantly improve the accuracy of the robot world model. One of
the most important elements of the world model is the robot self-localisation.
Here, the team localisation algorithm is presented focusing on the integration of
visual and compass information. To improve the ball position and velocity relia-
bility, two different techniques have been developed. A study of the visual sensor
noise is presented and, according to this analysis, the resulting noise variation de-
pending on the distance is used to define a Kalman filter for ball position. More-
over, linear regression is used for velocity estimation purposes, both for the ball
and the robot. This implementation of linear regression has an adaptive buffer size
so that, on hard deviations from the path (detected using the Kalman filter), the
regression converges more quickly. A team cooperation method based on sharing
of the ball position is presented. Besides the ball, obstacle detection and iden-
tification is also an important challenge for cooperation purposes. Detecting the
obstacles is ceasing to be enough and identifying which obstacles are team mates
and opponents is becoming a need. An approach for this identification is pre-
sented, considering the visual information, the known characteristics of the team
robots and shared localisation among team members. The same idea of distance
dependent noise, studied before, is used to improve this identification. Some of
the described work, already implemented before RoboCup2008, improved the
team performance, allowing it to achieve the 1st place in the Portuguese robotics
open Robótica2008 and in the RoboCup2008 world championship.

1 Introduction

Robotic soccer is nowadays a popular research domain in the area of multi robot sys-
tems. RoboCup1 is an international joint project to promote artificial intelligence,
robotics and related fields that includes several leagues, each one with a different ap-
proach, some only at software level, others at hardware, with single or multiple agents,
cooperative or competitive [1].

In the context of RoboCup, the Middle Size League (MSL) is one of the most chal-
lenging. In this league, each team is composed of up to 6 robots with maximum size

1 http://www.robocup.org/
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Fig. 1. Picture of the team robots

of 50x50cm base, 80cm height and a maximum weight of 40Kg, playing in a field of
18x12m. The rules of the game are similar to the official FIFA rules, with required
changes to adapt for the playing robots [2]. Each robot is autonomous and has its own
sensorial means. They can communicate among them, and with an external computer
acting as a coach, through a wireless network. This coach computer cannot have any
sensor, it only knows what is reported by the playing robots. The agents should be able
to evaluate the state of the world and make decisions suitable to fulfil the cooperative
team objective.

CAMBADA, Cooperative Autonomous Mobile roBots with Advanced Distributed
Architecture, is the Middle Size League Robotic Soccer team from Aveiro University.
The project started in 2003, coordinated by the IEETA2 ATRI3 group and involves peo-
ple working on several areas for building the mechanical structure of the robot, its hard-
ware architecture and controllers and the software development in areas such as image
analysis and processing, sensor and information fusion, reasoning and control.

To be able to accomplish the objective of playing soccer, it is important that the agent
is able to build a good representation of its environment. In the CAMBADA team, this
process is called integration. It is a step executed after image analysis and is responsible
to take raw information from the vision and other robot sensors and make a sensor and
information fusion of all the sources, estimating reliable information of the elements on
the field (e.g.: self-localisation, ball position and velocity, obstacles).

For that task it may use the values stored in the previous representation, the current
sensor measures (eventually after pre-processing) that has just arrived, the current actu-
ator commands and also information that is available from other robots sensors or world
state. This is essentially an information fusion problem. The most common methods to
tackle information fusion are based on probabilistic approaches, including Bayes rule,
Kalman filter and Monte Carlo methods [3].

All the information available from the sensors in the current cycle is kept in specific
data structures (Fig. 2), for posterior fusion and integration, based on both the current
information and the previous state of the world.

2 Instituto de Engenharia Electrónica e Telemática de Aveiro - Aveiro’s Institute of Electronic
and Telematic Engineering.

3 Actividade Transversal em Robótica Inteligente - Transverse Activity on Intelligent Robotics.



368 J. Silva et al.

Fig. 2. Integrator functionality diagram

This paper focuses on the description of some sensor and information techniques
used in the CAMBADA team. Section 2 describes the fusion of sensorial data for self-
localisation. The several aspects of ball integration are described in Section 3. Section 4
presents solutions for identification of visually detected obstacles. Finally, Section 5
presents the conclusion and team achievements.

2 Localisation

Self-localisation of the agent is an important issue for a soccer team, as strategic moves
and positioning must be defined by positions on the field. In the MSL, the environment
is completely known, as every agent knows exactly the layout of the game field. Given
the known mapping, the agent has then to locate itself on it.

The CAMBADA team localisation algorithm is based on the detected field lines,
with fusion information from the odometry sensors and an electronic compass. It is
based on the approach described in [4], with some adaptations. It can be seen as an error
minimisation task, with a derived measure of reliability of the calculated position so that
a stochastic sensor fusion process can be applied to increase the estimate accuracy [4].

From the centre of the image (the centre of the robot), radial sensors are created
around the robot, each one represented by a line with a given angle. These are called
scanlines. The image processing, in each cycle, returns a list of positions relative to the
robot where the scanlines intercept the field line markings [5]. The idea is to analyse
the detected line points, estimating a position, and through an error function describe
the fitness of the estimate. This is done by reducing the error of the matching between
the detected lines and the known field lines (Fig. 3). The error function must be defined
considering the substantial amount of noise that affect the detected line points which
would distort the representation estimate [4].

Although the odometry measurement quality is much affected with time, within the
reduced cycle times achieved in the application, consecutive readings produce accept-
able results and thus, having the visual estimation, it is fused with the odometry values
to refine the estimate. This fusion is done based on a Kalman filter for the robot po-
sition estimated by odometry and the robot position estimated by visual information.
This approach allows the agent to estimate its position even if no visual information
is available. However, it is not reliable to use only odometry values to estimate the
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a) b)

Fig. 3. Captures of an image acquired by the robot camera and processed by the vision algo-
rithms. Left a): the image acquired by the camera; Right b): the same image after processing
with magenta dots over the detected field lines.

position for more than a very few cycles, as slidings and frictions on the wheels pro-
duce large errors on the estimations in short time.

The visually estimated orientation can be ambiguous, i.e. each point on the soccer
field has a symmetric position, relatively to the field centre, and the robot detects exactly
the same field lines. To disambiguate, an electronic compass is used. The orientation
estimated by the robot is compared to the orientation given by the compass and if the
error between them is larger than a predefined threshold, actions are taken. If the error
is really large, the robot assumes a mirror position. If it is larger than the acceptance
threshold, a counter is incremented. This counter forces relocation if it reaches a given
threshold. Fig. 4 shows situations where the threshold was reached and relocalisation
was forced after some cycles.

3 Ball Integration

Within RoboCup several teams have used Kalman filters for the ball position estima-
tion [6,7,8,9]. In [9] and [8] several information fusion methods are compared for the
integration of the ball position using several observers. In [9] the authors conclude that
the Kalman reset filter shows the best performance.

The information of the ball state (position and velocity) is, perhaps, the most im-
portant, as it is the main object of the game and is the base over which most decisions
are taken. Thus, its integration has to be as reliable as possible. To accomplish this,
a Kalman filter implementation was created to filter the estimated ball position given
by the visual information, and a linear regression was applied over filtered positions to
estimate its velocity.

3.1 Ball Position

It is assumed that the ball velocity is constant between cycles. Although that is not
true, due to the short time variations between cycles, around 40 milliseconds, and given
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Fig. 4. Illustration of two situations where relocalisation was forced. Left a): the camera was
covered while the robot moved. The estimated orientation error degrades progressively and after
getting higher than the threshold, the cycle count starts and forces relocation; Right b): the robot
tilted. The estimated orientation error is immediately affected by more than threshold and the
cycle count starts and forces relocation.

the noisy environment and measurement errors, it is a rather acceptable model for the
ball movement. Thus, no friction is considered to affect the ball, and the model doesn’t
include any kind of control over the ball. Therefore, given the Kalman filter formulation
(described in [10]), the assumed state transition model is given by

Xk =
[
1 ΔT
0 1

]
Xk−1

where Xk is the state vector containing the position and velocity of the ball. Technically,
there are two vectors of this kind, one for each cartesian dimension (x,y). This velocity
is only internally estimated by the filter, as the robot sensors can only take measure-
ments on the ball position. After defining the state transition model based on the ball
movement assumptions described above and the observation model, the description of
the measurements and process noises are important issues to attend. The measurements
noise can be statistically estimated by taking measurements of a static ball position at
known distances (Fig. 5).

The standard deviation of those measurements is used to calculate the variance and
thus define the measurements noise parameter. In practice, the measurements of the
static ball were taken while the robot was rotating over itself, to simulate movement and
the trepidation it causes, so that the measurements were as close to real game conditions
as possible. Some of the results are illustrated in Fig. 5.

A relation between the distance of the ball to the robot and the measurements stan-
dard deviation is modeled by the 2nd degree polynomial best fitting the data set in a
least-squares sense (Fig. 6). A 1st degree polynomial does not fit the data properly, and
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Fig. 5. Noisy position of a static ball taken from a rotating robot

Fig. 6. Representation of the standard deviation value for variable distance to the robot. Data set
points as blue dots. 1st degree polynomial as dashed line, 2nd degree polynomial as solid line.

assumes negative values for positive distance, which is not acceptable. Given the few
known points, a 3rd degree polynomial would perfectly fit all 4 of them. However, these
known points are also estimated and thus cannot be taken as exact. For that reason, a
curve that would exactly fit them is not desirable.

As for the process noise, this is not trivial to estimate, since there is no way to take
independent measurements of the process to estimate its standard deviation. The process
noise is represented by a matrix containing the covariances correspondent to the state
variable vector.

Empirically, one could verify that forcing a near null process noise causes the filter
to practically ignore the read measures, leading the filter to emphasise the model pre-
diction. This makes it too smooth and therefore inappropriate. On the other hand, if it
is too high, the read measures are taken into too much account and the filter returns the
measures themselves.

To face this situation, one had to find a compromise between stability and reaction.
Given the nature of the two components of the filter state, position and speed, one may
consider that their errors do not correlate.

Because we assume a uniform movement model that we know is not the true nature
of the system, we know that the speed calculation of the model is not very accurate. A
process noise covariance matrix was empirically estimated, based on several tests, so
that a good smoothness/reactivity relationship was kept.
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Fig. 7. Plot of a ball movement situation

In practice, this approach proved to improve the estimation of the ball position. Fig. 7
represents a capture of a ball movement, where the black dots are the ball positions
estimated by the robot visual sensors and thus are unfiltered. Red stars represent the
position estimations after applying the Kalman filter. The ball was thrown against the
robot and deviated accordingly and the robot position is represented by the black star
in its centre and its respective radius. It is easily perceptible that the unfiltered positions
are affected by much noise and the path of the ball after the collision is deviated from
the real path. The filtered positions however, seem to give a much better approximation
to the real path taken by the ball.

Using the filter a-priori estimation, a system to detect great differences between the
expected and read positions was implemented, allowing to detect hard deviations on the
ball path.

3.2 Ball Velocity

The calculation of the ball velocity is a feature becoming more and more important
over the time. It allows that better decisions can be implemented based on the ball
speed value and direction. Assuming the same ball movement model described before,
constant ball velocity between cycles and no friction considered, one could theoretically
calculate the ball velocity by simple instantaneous velocity of the ball with the first
order derivative of each component ΔD

ΔT , being ΔD the displacement on consecutive
measures and ΔT the time interval between consecutive measures. However, given the
noisy environment it is also predictable that this approach would be greatly affected by
that noise and thus its results would not be satisfactory (as it is easily visible in Fig.
8.a).

To keep a calculation of the object velocity consistent with its displacement, an im-
plementation of a linear regression algorithm was chosen. This approach based on linear
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a) b)

Fig. 8. Velocity representation using: Left, a): consecutive measures displacement; Right, b):
linear regression over Kalman filtered positions

regression [11] is similar to the velocity estimation described in [6]. By keeping a buffer
of the last m measures of the object position and sampling instant (in this case buffers of
9 samples were used), one can calculate a regression line to fit the positions of the ob-
ject. Since the object position is composed by two coordinates (x,y), we actually have
two linear regression calculations, one for each dimension, although it is made in a
transparent way, so the description in this section is presented generally, as if only one
dimension was considered.

When applied over the positions estimated by the Kalman filter, the linear regression
velocity estimations are much more accurate than the instant velocities calculated by
ΔD
ΔT , as visible in Fig. 8.b.

In order to try to make the regression converge more quickly on deviations of the
ball path, a reset feature was implemented, which allows deletion of the older values,
keeping only the n most recent ones, allowing a control of the used buffer size. This
reset results from the interaction with the Kalman filter described above, which triggers
the velocity reset when it detects a hard deviation on the ball path.

Although in this case the Kalman filter internal functioning estimates a velocity, the
obtained values were tested to confirm if the linear regression of the ball positions was
still needed. Tests showed that the velocity estimated by the Kalman filter has a slower
response than the linear regression estimation when deviations occur. Given this, the
linear regression was used to estimate the velocity because quickness of convergence
was preferred over the slightly smoother approximation of the Kalman filter in the steady
state. That is because in the game environment, the ball is very dynamic, it constantly
changes its direction and thus a convergence in less than half the cycles is much preferred.

3.3 Team Ball Position Sharing

Due to the highly important role that the ball has in a soccer game, when a robot can-
not detect it by its own visual sensors (omni or frontal camera), it may still know the
position of the ball, through sharing of that knowledge by the other team mates.
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Fig. 9. Ball integration activity diagram

The ball data structure include a field with the number of cycles it was not visible
by the robot, meaning that the ball position given by the vision sensors can be the “last
seen” position. When the ball is not visible for more than a given number of cycles, the
robot assumes that it cannot detect the ball on its own. When that is the case, it uses the
information of the ball communicated by the other running team mates to know where
the ball is. This can be done through a function to get the statistics on a set of positions,
mean and standard deviation, to get the mean value of the position of the ball seen by
the team mates and assume it as its own.

Another approach is to simply use the ball position of the team mate that is closer to
the ball, being the one that theoretically have more confidence in the detection. What-
ever the case, the robot assumes that ball position as its own. When detecting the ball
on its own, there is also the need to validate that information. Currently the seen ball
is only considered if it is within a given margin inside the field of play as there would
be no point in trying to play with a ball outside the field. Also, a maximum detection
distance is considered, because of the large image distortion at long distances. Fig. 9
illustrates the general ball integration activity diagram.

4 Obstacle Detection and Sharing

An increasing necessity felt by the team, to improve its performance, is the need for a
better obstacle detection and sharing of obstacle information among team mates. This
need is important to ensure a global idea of the field occupancy, since the team for-
mation usually keeps the robots spread across the field. With a good cover of field
obstacles, passlines and dribbling corridors can be estimated more easily allowing im-
provements on team strategy and coordination. According to RoboCup rules, the robots
are mainly black. Since in game robots play autonomously, every obstacles in the field
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a) b)

c) d)

Fig. 10. Identification of single obstacles. Top Left a): When a CAMBADA robot is on, the de-
tected obstacles estimated centres are compared with the known position and tested if they are
within the robot radius; the left obstacle is within the CAMBADA radius, the right one is not;
Top Right b): A screenshot of the CAMBADA base station, with 3 robots localised; Bottom Left
c): an image acquired from the middle robot, with robots 1 and 3 visible and other 2 single obsta-
cles (opponents); Bottom Right d): the same image processed where all the single obstacles are
detected. 1 and 3 are the correctly detected CAMBADA robots, while the other 2 are marked as
opponents.

are the robots themselves (occasionally the referee, which is recommended to have
black/dark pants). The vision algorithm take advantage of this fact and detects the ob-
stacles by evaluating blobs of black colour inside the field of play [12]. Through the
mapping of image positions to real metric positions, obstacles are identified by their
centre and left and right limits. The integration is then responsible for the identification
of the obstacles.

In a first step, and since the maximum size of the robots is known, visual obstacles
are separated by size. An obstacle can be a candidate to be a robot if it has acceptable
dimensions, always considering an error margin, depending on the distance to it. With
the known team mates positions (shared via wireless), a matching is tried by testing the
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Fig. 11. Detection of multiple obstacles. The CAMBADA robot is matched as part of the detected
obstacle, resulting in a division of the obstacle in 2 (team mate and opponent).

obstacle estimated centre with the team mate position, considering the robot radius plus
an error margin as matching area (Fig. 10.a)).

In a second step, the remaining large obstacles are also compared with the team
mates not previously identified. These large obstacles are usually due to the robots
being together, forming a unique black blob. In this case, the idea is somewhat opposed
to singular obstacles, since in this case, the team mate position is to be tested with the
obstacle area. A positive identification of a team mate within the detected obstacle area
results in the division of the obstacle in 2 parts, a team mate obstacle and an opponent
obstacle (Fig. 11).

The obstacles identified as team mates and opponents can afterwards be treated dif-
ferently for team cooperation purposes.

5 Conclusion

The work already accomplished concerning sensor and information fusion, especially
ball information treatment, helped to maintain a more reliable description of the state
of the world.

The techniques chosen for information and sensor fusion proved to be effective in
accomplishing their objectives. The Kalman filter allows to filter the noise on the ball
position and provides an important prediction feature which allows fast detection of
deviations of the ball path. The linear regression used to estimate the velocity is also ef-
fective, and combined with the deviation detection based on the Kalman filter prediction
error, provides a faster way to recalculate the velocity in the new trajectory.

The increasing reliability of the ball position and velocity lead to a better ball trajec-
tory evaluation. This allowed the development of a more effective goalie action, as well
as other behaviours, such as ball interception behaviours and pass reception.

The obtained preliminary results regarding obstacle identification, provide tools for
an improvement of the overall team coordination and strategic play.
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The accomplished work improved the team performance, allowing it to distinctively
achieve the 1st place in the Portuguese robotics open Robótica2008 and the 1st place in
the RoboCup2008.
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Omnidirectional Walking Using ZMP and
Preview Control for the NAO Humanoid Robot

Johannes Strom, George Slavov, and Eric Chown

Bowdoin College

Abstract. Fast-paced dynamic environments like robot soccer require
highly responsive and dynamic locomotion. We present an implementa-
tion of an omnidirectional ZMP-based walk engine for the Nao robot.
Using a simple inverted pendulum model, a preview controller generates
dynamically balanced center of mass trajectories. To enable path plan-
ning, we introduce a system of global and egocentric coordinate frames
to define step placement. These coordinate frames allow translation of
the CoM trajectory, given by the preview controller, into leg actions.
Walk direction can be changed quickly to suit a dynamic environment
by adjusting the future step pattern.

1 Introduction

Robust locomotion is crucial to effective soccer play. Successful soccer players
must be able to move to the ball quickly, change direction smoothly, and with-
stand physical interference from opponents. While concepts like omnidirectional
walking, Zero Moment Point (ZMP) and constructs like preview control have
been explored extensively in the biped walking literature [1,5,4], these discus-
sions often gloss over the realities of implementation. Particularly, these results
are often based on simulated experiments, or do not provide the detailed work-
ings of the walk engine. In addition, a system for omnidirectional walking using
ZMP and preview control has yet to be presented. This article presents a suc-
cessful implementation of an omnidirectional walk engine on the Nao robot used
in the Standard Platform league.

Iy x

Fig. 1. A sample omnidirectional footstep pattern generated from a constant motion
vector (x, y, θ) that in this case, has both a forward and rotational component

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 378–389, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Omnidirectional Walking Using ZMP and Preview Control 379

1.1 Overview

Omnidirectional walking is crucial in soccer, since a soccer player is constantly
changing her objective in a quickly changing environment. Other methods, such
as the capability to walk in preset directions which ships with the Nao robot, are
not adequate for playing soccer because they do not allow fine-grained control
over the direction of motion. The preset trajectories can walk straight, to the
side, or turn but cannot combine the three.

Our walk is omnidirectional because we have the capability to place footsteps
in any position and orientation: given a desired direction of motion, each suc-
cessive step is placed along this direction (Figure 1). Given a pattern of steps,
a preview controller can use the ZMP balance criterion (discussed in sections
3 and 4) to generate a motion of the center of mass which maintains dynamic
balance during the execution of the footsteps [5]. Finally, using the locations of
the footsteps and the center of mass trajectory, the motions of the legs can be
calculated using inverse kinematics.

ZMP-based approaches to walking that consider the full dynamics of the robot
traditionally rely on pre-calculated trajectories and are thus ill-suited for dy-
namic environments such as robot soccer. Alternatively, dynamically balanced
walking patterns can be created at runtime using a simplified model and a pre-
view controller. The preview controller generates valid Center of Mass (CoM)
trajectories by examining future foot steps, so motion velocity cannot be changed
instantaneously. A certain degree of previewing is absolutely necessary for walk-
ing, since it is impossible to change walking vectors instantaneously without
falling over. The duration of the preview controller’s look ahead determines ex-
plicitly which future steps can be safely replaced or updated when the motion
vector changes. This allows a quick response to changes in the environment
without compromising the robustness of the walk.

What follows is a discussion of each of the components of the walk engine,
starting with an overview of step placement, followed by a description of the
implementation of a preview controller using the ZMP balance metric, finishing
with a discussion of our inverse kinematics system. A schematic overview of the
system is shown in Figure 2.

2 Omnidirectional Step Placement

The implementation of an omnidirectional walking system is non-trivial. Trans-
lating a series of steps to joint angles requires many layers of abstraction in order
to build a well designed system. The central parts of this abstraction are the four
homogeneous coordinate frames which we define to allow each part of the system
to be expressed in the simplest possible terms (See Table 1, Figure 3 and the
following sections for details). The coordinate frames allow step planning, step
execution and leg control to be expressed in their natural frame of reference.
This ensures that the system stays manageable because each component only
acts on a limited amount of information anchored to its appropriate coordinate
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Fig. 2. An overview of the motion architecture. A switchboard manages many modules
seeking to provide motion functionality. The walk provider provides the robot with
walking capability, while the scripted provider enables execution of scripted motions.
The four main components of the walk provider correspond with the four coordinate
frames discussed in section 2.

frame. Since each coordinate frame corresponds directly to one of the compo-
nents of the implementation (see Figure 2), we list the corresponding part of
the architecture in brackets in the section headings for the relevant coordinate
frame below.

To translate between each coordinate frame, we maintain some transformation
matrices which can be applied to move motion trajectories from one coordinate
frame to the next (See Appendix A for details). Although matrix multiplication
can incur a heavy computational load, they reduce human error and improve
maintainability by reducing the complexity of the system. In addition, the ma-
trices are small (3x3), and many are updated only once every walking step – only
one matrix must be updated each time step. One alternative to our approach
would be to specify the entire walking motion of each leg as a locus relative
to the body’s CoM. This removes the need for many matrix translations, but
the process of integrating the controller is no longer well defined. Additionally,
under such a model, omnidirectional walking is very complex. The small over-
head potentially incurred by the coordinate transformations is worth avoiding
the complexity needed to design the system another way.

2.1 Steps in the S Frame [StepGenerator]

During the walking process, irrelevant steps are discarded and new steps must
be planned in the future (as required by the preview controller). Each successive
step is generated from the currently desired walk vector in the S frame as shown
in Figure 4. The S frame is always offset by HO towards the CoM from the F
frame (See Table 1). Defining steps in this manner allows step planning without
needing to consider any history of steps. After each step, the S frame moves to
the inside of the next support step, so it is easy to chain multiple steps together.
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Fig. 3. The various coordinate frames are shown in single support mode while the right
leg is supporting and the left leg is swinging from its source to its destination. The
support foot is always anchored at F. The previous F coordinate frame is F’, and the
next one will be F* once the swinging leg arrives at its destination and becomes the
next supporting foot. The I coordinate frame is located at the initial starting position
of the robot, and does not depend on the footsteps shown above.

Table 1. The four coordinate frames necessary for specifying step placement and leg
movements of the robot. HO is the 50 mm horizontal offset between the CoM and the
hip joint. Some of the frames move with the robot and must be updated at various
intervals.

Coordinate Frame Anchor Updated

C (Center of Mass) CoM Every motion time step
F (Foot) Support Foot When switching from single to double support
S (Step) F ±HO When switching from single to double support
I (Initial) World Never

2.2 CoM Trajectories in the I Frame [Controller]

Using the steps defined in the S frame, the preview controller can calculate the
optimal CoM posture which will keep the robot balanced. Since the controller
operates in the I coordinate frame, we maintain a transformation matrix from
the current S frame to the I frame that gets updated each time a new future
step is created.1 A more detailed discussion of the controller is in section 4.1.

1 The controller runs in a static coordinate frame because if the coordinate frame of
the controller were to move with the robot (like the F frame, for example), each of
the previewed ZMP values would need to get translated as well, which is expensive.
Instead the cost is only that of updating a matrix once per step. The only danger
is overflowing the float type, but this will only happen after 500m of walking in a
single direction, which is not possible on a soccer field.
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Fig. 4. An additional step being added using a motion vector (x̂, ŷ, θ̂)

2.3 Leg Trajectories in the F Frame [WalkingLeg]

Trajectories for each leg can be expressed simply in the F frame. Since the F
coordinate frame is anchored to the support foot, it provides a consistent frame
of reference to define the motion of both legs regardless of how many steps have
already been taken. In the F frame the support foot’s position always remains at
the origin by definition. For the other (swinging) leg, the motion is interpolated
between the swinging source and the swinging destination (See Figure 3.) We
use a cycloid function to generate a smooth stepping motion which has zero
velocity when the foot begins to lift and when it arrives at the destination
(inspired by the walk Aldebaran Robotics ships with the robots [7]). In order to
eventually specify the motion of the legs in the C frame, we maintain a second
transformation matrix from I to F, which is updated at the beginning of each
new walking cycle.

2.4 Leg Trajectories in the C Frame [Inverse Kinematics]

Once the leg trajectories are known in the F coordinate frame, they are translated
into the C coordinate frame with another transformation matrix. Since the CoM
is always moving, this matrix is recalculated each time step from the I to F
transformation matrix and the current position and rotation of the CoM in
the F frame. The position is easily obtainable from the controller - the current
rotation is stored as the robot rotates the support foot relative to the CoM.
Targets for the legs can be translated from the C frame into joints using inverse
kinematics and the body height zh (see sections 3 and 4.3).

2.5 Turning

Planning the turning motion on the Nao robot is more complex than on a stan-
dard humanoid because each hip does not have 3 linearly independent actuators
[7]. Each hip has a pitch (Y-axis) and roll (X-axis) actuator, but both hips share
in common a transverse yaw-pitch (ZY-axis) actuator. Without this extra joint,
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turning is impossible, since the legs are unable to rotate around the Z axis with
respect to the body.

To achieve turning, we manually control the hip-yaw actuator to rotate the
swinging leg open with respect to the support foot during one step, and then
close it again on the next step. By alternating these types of steps, we can induce
a good turning motion during a sequence of steps (see Figure 4). Using inverse
kinematics, we are able to compensate for the Y-axis hip rotation introduced by
employing the yaw-pitch actuator (see Section 4.3).

3 Modeling the Dynamics of the Robot

Given a series of steps, our goal is to specify a trajectory for the CoM which will
allow the robot to remain upright and balanced. A good criterion for determining
whether a robot will fall is the Zero Moment Point, which is widely used in biped
walking [10,5,4]. To simplify the calculation of the ZMP, we follow [5] to simplify
the dynamics of the robot by modeling it as an inverted pendulum with the entire
mass of the robot concentrated at the CoM.

3.1 The Zero Moment Point

The Zero Moment Point (ZMP), is the point on the support polygon of the
robot where the moments acting on the robot are balanced by an opposing
moment from the ground [10]. When this point exists (i.e. it is inside the support
polygon), then the robot will not rotate about the edges of the foot and will
remain upright. Given a pattern of steps, we are thus interested in defining the
motion of the robot such that the ZMP always remains near the center of the
robot’s supporting foot during single support. In double support, when both feet
are in contact with the ground, our aim is to quickly pass the ZMP to the other
foot.

3.2 Cart Table/Inverted Pendulum Model

Calculating the ZMP of the robot using its full dynamics is computationally
intensive and not suitable for online computation. Instead, we simplify the model
of the robot as an inverted pendulum [5].

This model allows the ZMP in one dimension to be calculated easily from the
position and acceleration of the center of mass of the robot:

p = x − zh

g
ẍ (1)

Where x is the position of the CoM, ẍ is its acceleration, zh is the constant
height of the CoM from the ground, and g is 9.81, the magnitude of gravity.

This simplification has obvious drawbacks, since it does not account for the
complete dynamics of the robot. However, these simplifications can be dealt with
in the controller by incorporating sensor feedback, as in [4] – see Section 5.
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4 Controlling the Dynamics of the Robot

In the previous section, we discussed how to model the robot in order to use the
ZMP as a balance metric. Though this model allows us to discover if a certain
movement will maintain the robot’s dynamic balance, it will not allow us to
calculate motions which are inherently balanced. In fact, what we need is an
inverse to the ZMP equation above, which is not symbolically obtainable [5]. To
calculate the inverse numerically, we can use a preview controller which is able
to generate motions which result in a specified ZMP trajectory.

4.1 Preview Control

Kajita proposes to solve the inverse by casting the problem as a servo control
problem using preview control [5]. A preview controller acts on a ZMP reference
function pref (k), which defines the location of the desired ZMP at time kΔt,
where Δt is the duration of a motion time step. pref (k) is determined by ensuring
the ZMP remains over the support foot during a series of steps (see section 4.2).
The state of the robot is modeled in one dimension using its position, velocity
and ZMP as [x, ẋ, p]t. The controller works to converge p, from the state vector,
with pref given by the reference function. Given proper preview values, two
controllers can work in parallel to generate the states needed to follow the 2-
dimensional reference ZMP necessary for walking. This is effectively an inverse
to the ZMP equation, (1). One controller in the lateral direction is shown in
Figure 5.

The preview control state update is given by

x(k + 1) =Ax(k) + bu(k) (2)
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five steps
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Where the optimal system control is given as:

u(k) =
N∑

j=1

Gd(j)pref (k + j) (3)

Where N is the number of previewed time steps. A is the state matrix, Gd(j)
is the preview gain function, and b is a constant vector. The optimal values for
these are defined in [5,4,6,9]. The process for numerically obtaining them relies
on an off-line numerical computing environment such as Matlab or Scilab. We
believe the following additional references would be useful in this pursuit [9,2].

4.2 Computing ZMP Reference from Steps

A crucial part of the preview controller is previewing the reference ZMP in the
future. In order to generate the reference ZMP, we turn each desired step into a
sequence of reference ZMP values. As mentioned in section 3.1, when the robot is
in single support, we desire the ZMP to rest in the center of the foot - when the
robot is in double support, we want to quickly pass the ZMP to the next foot,
before beginning to lift the new swinging leg. Though [4] uses a Bézier curve
to have a smooth reference ZMP passing between support feet during double
support, we have found that a simple linear interpolation from one foot to the
next is sufficient, since the controller naturally smoothes the state transitions.
The preview values are initially expressed in the S frame since they are generated
from steps, but are then translated into the I frame for use in the controller. To
facilitate this, we maintain another transformation matrix which is updated each
time a future step is generated.

4.3 Kinematics

The final component of controlling the robot is translating leg trajectories from
the C frame into joint angles which can be sent to the actuators. This process is
called inverse kinematics, but is often used implicitly in the literature with little
or no explanation. The method we use is iterative. That is, an initial solution is
improved by perturbing the joint angles until the error between the goal (x, y, z)
of the end-effector and its current position, which is calculated through forward
kinematics, is minimized. The initial solution is the current joint angles of the
robot. This is convenient because the net change between subsequent goals of
the end-effector during walking is very small.

Let J be the joint space and R3 be the 3D space. Then we can define for-
ward kinematics as a function f : J → R3 which takes a set of joint angles
θ = (a1, a2, . . . , a6) to the position of the end-effector in space (x, y, z). This
function would normally be defined using a set of linear transformations defined
by the modified Denavit Hartenberg convention [8]. We used Mathematica to
symbolically perform the matrix algebra for forward kinematics for a generic set
of joint angles. Evaluating the resultant expression at a θ is significantly faster
than performing the matrix algebra that would otherwise be necessary.
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In order to minimize the number of iterations in the algorithm, we follow
the path of largest decrease in the error. First we define a vector e = t − s
where t is the target and s is the current position of the end-effector. e is
then the desired direction in R3. What we need is the desired direction in J . A
Jacobian matrix, denoted by M , helps us accomplish this change of variables.
Each partial derivative in M is evaluated at the current iteration’s θ. x, y and
z are the components of the output of f and can be viewed as functions of θ as
well. These partial derivatives were computed symbolically using Mathematica.
Only their evaluation is performed online. We then have an expression ready for
the calculation of Δθ which is the desired amount of perturbation in each joint
value.

Δθ = (M tM + λ2I)−1J te (4)

λ is a dampening factor which increases the number of iterations required for
the algorithm to converge but increases numeric stability. Δθ is clipped because
it only provides a direction, not a magnitude. Thus, the final part of the al-
gorithm is deciding how long it should follow this direction in this iteration.
Our implementation of this algorithm uses λ = 0.4 and maxΔθ = 0.5 radians.
These were chosen through trial and error be selecting for quick convergence.
The latter is used as a maximum for each component of Δθ. We can perform
tens of thousands of calls to inverse kinematics in a second, so it does not present
a significant efficiency bottleneck. For balanced walking, we also impose a sec-
ond condition that the foot remain parallel to the ground. We accomplish this
by splitting the leg chain into two end-effectors: the ankle and the heel, each
with its separate goal. The algorithm achieves high levels of both accuracy and
precision. A more detailed presentation of this approach is presented here [3].

As discussed in Section 2.5 dealing with the peculiar kinematics of the Nao
robot is necessary to achieve turning motion. Since the addition of the yaw-pitch
actuator as a variable to the inverse kinematics algorithm greatly increases the
number of possible joint combinations for any given (x, y, z) end effector target,
we hold the yaw-pitch joint constant during the iterations. This allows explicitly
setting that actuator as required by the turning algorithm, but also results in
more regular movements of the legs, since the algorithm keeps the thigh and
shin generally aligned to the ground.

4.4 From Theory to Practice

A crucial part of our implementation was bridging the gap from theory to prac-
tice. Imperfections such as asymmetry in the robot’s joints can cause us to fall.
To compensate for this we introduced some adjustments in addition to the core
parameters of the walking engine. The most important adjustment we made was
inspired by the walk Aldebaran ships with the robots. The actuators struggle
to give enough power to the hip joints in order to lift the swinging leg from
the ground. To compensate for this, we gradually add a sinusoidal offset to each
individual hip-roll (hip lateral swing) joint during the swinging phase. Since
the offset is distinct for each hip, this provides considerable help in offsetting
asymmetries in the robots, which may have slightly stronger left or right legs.
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In addition, extreme values of this adjustment can be used to lift the feet
from the ground. By lifting from the hips, the robot does not build up downward
momentum with its feet as it steps down, and thus experiences a much smoother
gait.

Another offset we introduced helped balance the robot by moving the reference
ZMP laterally away from the inside of the foot, inducing a greater hip swing.
This helps to compensate for the simplicity of the inverted pendulum model.

The final breakthrough we had was to dramatically reduce the duration of
the steps, as well as to reduce the portion of the step spent in double support.
By doing this, the robot was able to balance better and move faster because the
magnitude of the hip swing was reduced.

5 Results

Using our system of coordinate frames coupled with preview control, we are
currently able to achieve maximum forward walking speeds of 10.5 cm/s, which is
comparable to the maximum walk speed of the Aldebaran walk engine. However,
at such speeds, the robot is not very stable. In practice, we prefer a gait which
has a maximum speed of 7 cm/s, with a step frequency of 1Hz, which is much
less prone to falling, even during large changes in the motion vector.

We have also been able to extend the preview controller with an observer as
described in [4]. However, estimating the sensor ZMP from the accelerometers
while minimizing the lag time is non-trivial. In practice, using an observer in-
formed by lagging, noisy sensor values adds instability to the walk even while
visibly controlling larger disturbances. This trade-off makes the closed loop con-
troller perform mostly on par with the open loop one. Further refinement of
sensor based state estimation is being actively researched.

Videos of our implementation can be found on our team’s blog2.
The code implementation of our system, written in C++ using Boost, is pub-

licly accessible under the LGPL using using git3. However, as of this writing,
no stable release candidate has yet been designated.

6 Conclusion

Since humanoid robots are best suited to coexist with humans, there is an in-
creasing emphasis on humanoid robots. In RoboCup, this reflects the desire to
compete on even terms with humans. A critical part of that competition will rely
on developing motion engines which are at least as quick and agile as humans
are. Among the necessary advances are developing motion systems capable of
executing omnidirectional motion in real time. This paper provides an imple-
mentation of omnidirectional walking which will serve to help those who are
arriving in this field for the first time. Furthermore, it attempts to fill in some
2 http://robocup.bowdoin.edu/blog
3 http://github.com/northern-bites/nao-man.git

http://robocup.bowdoin.edu/blog
http://github.com/northern-bites/nao-man.git


388 J. Strom, G. Slavov, and E. Chown

of the gaps which have been left open by other papers in the field (particularly
in the implementation, and testing on real robots). The elegant nature of the
preview control comes with some draw backs due to its computational simplicity,
however, they can theoretically be overcome using the observer.
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A Translating between Coordinate Frames

The four key coordinate frames used to generate walking motions are discussed
in section 2. The matrices to do the transformations are given below

Tif (n) = Fn × Fn−1 × · · · × F2 × F1

Fi =

⎡⎣0 0 0
0 0 ±HO

0 0 1

⎤⎦ ⎡⎣cos(−θ) − sin(−θ) 0
sin(−θ) cos(−θ) 0

0 0 1

⎤⎦ ⎡⎣0 0 −sx

0 0 −sy

0 0 1

⎤⎦
⎡⎣xf (nΔS + t)
xf (nΔS + t)

1

⎤⎦ = Tif (n)

⎡⎣xi(nΔS + t)
yi(nΔS + t)

1

⎤⎦
Tfc(nΔS + t) =

⎡⎣cos (φ(nΔS + t)) − sin (φ(nΔS + t)) 0
sin (φ(nΔS + t)) cos (φ(nΔS + t)) 0

0 0 1

⎤⎦⎡⎣0 0 −xf (nΔS + t)
0 0 −yf(nΔS + t)
0 0 1

⎤⎦
⎡⎣destxc

destyc

1

⎤⎦ = Tfc

⎡⎣destxf

destyf

1

⎤⎦
(A-1)

Where Tif (n) is the transformation matrix between coordinate frames I and F
after n steps. HO is the horizontal offset between the CoM and the hip joint,
and Fi is the matrix to translate from the F(i-1) coordinate frame to the next
F(i) coordinate frame given the ith step (sx, sy, θ). (xi(nΔS + t), yi(nΔS + t))
is the position of the CoM in the I coordinate frame at time t after the nth step
was started (ΔS is the duration of a step). φ(nΔS + t) is the rotation of the
center of mass at time t between the C frame and the F frame. Tfc is the trans-
formation matrix between the F and C coordinate frames, and destxc, destyc is
the destination of a heel in the c coordinate frame.
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Abstract. Benchmarking robotic technologies is of utmost importance for ac-
tual deployment of robotic applications in industrial and every-day environments,
therefore many efforts have recently focused on this problem. Among the many
different ways of benchmarking robotic systems, scientific competitions are rec-
ognized as one of the most effective ways of rapid development of scientific
progress in a field. The ROBOCUP@HOME league targets the development and
deployment of autonomous service and assistive robot technology, being essen-
tial for future personal domestic applications, and offers an important approach
to benchmarking domestic and service robots.

In this paper we present the new methodology for benchmarking DSR adopted
in RoboCup@Home, that includes the definition of multiple benchmarks (tests)
and of performance metrics based on the relationships between key abilities re-
quired to the robots and the tests. We also discuss the results of our benchmarking
approach over the past years and provide an outlook on short- and mid-term goals
of @HOME and of DSR in general.

1 Introduction

Creating a personal Domestic Service Robot (DSR) is a very complex task that requires
cooperation between many scientific disciplines. DSRs have to operate in realistic and
unconstrained environments which include humans. They must acquire on-line knowl-
edge about both the animate and inanimate world and need to be very robust to unpre-
dictable and changing environments and safe in the interactions with humans and the
environment. This requires the integration of many abilities and technologies including:
HRI, reasoning, planning, behavior control, object recognition, object manipulation or
tracking of objects. Regarding artificial intelligence, the systems should contain adap-
tive but robust behaviors and planning methods, social intelligence, and on-line learning
capabilities.

The recent increase in availability, accessibility, and compatibility of essential robot
hardware and software components allows research groups not only to address a small

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 390–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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subset of the mentioned above challenges in DSR, but also to address the problem as a
whole, without having to sacrifice a focus in a specific research topic.

This progress is also confirmed by the presence of some rather specialized service
robotic applications on the market. Such applications include floor cleaning (e.g. Roomba
and Scooba), lawn mowing (e.g. Robomow), and surveillance (e.g. Robowatch). Still,
these applications are missing some essential properties of a multi-purpose autonomous
and intelligent domestic service robot. Prominent examples of domestic and personal
assistant robot research projects are ReadyBot1 and PR22, while Wakamaru3 and Pa-
PeRo4 focus more on social interaction studies. Many of these projects address rele-
vant aspects of DSR. Still, what appears to be missing is a joint continuous international
and multi-disciplinary research and development effort which also includes the aspect
of application-oriented benchmarking of systems in DSR.

The ROBOCUP@HOME league [1] targets development and deployment of
autonomous service and assistive robot technology being essential for future personal
domestic applications. It is part of the international RoboCup initiative and it is the
largest annual service and home robotic competition world-wide. ROBOCUP@HOME

aims to be a combination of inter-disciplinary community building, scientific exchange,
and competition, that iteratively defines benchmarks and performance metrics on which
service robots can be evaluated and compared in a realistic domestic environment.

Since the real world is not standardized, measuring the performance of non stan-
dardized robots acting in it is a difficult task. The experimental paradigm to evaluate
complex robotic systems has to use consequent scientific analysis to improve on it-
self. Measuring the performance of the robots requires continuous reconsideration of
the methodologies used, since both the robots (their capabilities) and their operation
environment (and the robot’s tasks) will definitively change over time. In our case, the
tools are specific benchmarks testing certain robot abilities and the measurement of the
robots’ performance in the tests. We firmly believe that creating and applying this ex-
perimental paradigm can greatly improve and accelerate the development in DSR as
it already is the case in other robotic areas like Rescue Robotics or the Robot Soccer
leagues.

This paper presents a new methodology for benchmarking DSR. The proposed ap-
proach defines multiple benchmarks (tests) related to DSR and performance metrics
based on the relationships between key abilities required to the robots and the tests. We
also discuss the results of the ROBOCUP@HOME benchmarking in the past years and
provide an outlook on short- and mid-term goals of @HOME and of DSR in general.

2 Benchmarking Domestic Service Robotics

Benchmarking has been recognized as a fundamental activity to advance robotic tech-
nology [2,3] and many activities are in progress, such as the EURON Benchmarking

1 ReadyBot ( http://www.readybot.com/)
2 PR2 (http://www.willowgarage.com/)
3 Wakamaru (http://www.mhi.co.jp/kobe/wakamaru/english/)
4 PaPeRo (http://www.nec.co.jp/robot/english/robotcenter e.html)



392 T. Wisspeintner et al.

Initiative5, the international workshops on Benchmarks in Robotics Research and on
Performance Evaluation and Benchmarking for Intelligent Robots and Systems, held
since 20066, the Rawseeds project7, which aims at creating standard benchmarks spe-
cially for localization and mapping, the RoSta project8, which focuses on standardiza-
tion and reference architectures, etc.

Benchmarking can be distinguished in two classes: system benchmarking, where the
robotic system is evaluated as a whole, and component benchmarking, where single
functionality is evaluated. Component benchmarking is very important to compare dif-
ferent solutions to a specific problem and to identify the best algorithms and approaches.
However, it is not sufficient to assess the general performance of a robot with respect
to a class of applications. Indeed, the best solution for a specific problem may be un-
feasible or inconvenient when integrated with other components that compose a robotic
application.

On the contrary, system benchmarking offers an effective way to measure the per-
formance of an entire robotic system in the accomplishment of complex tasks, as such
tasks require the interplay of various sub-systems or approaches. Thus, standard refer-
ence environment, reference tasks and related performance metrics are to be defined.
However, when defining standard benchmarks two common problems arise: Firstly, the
difficulty of defining a benchmark that is commonly accepted by the community (this is
due to different view points of different research groups about a problem) and secondly,
the risk of causing specialized solutions for a certain benchmark or problem that can not
be applied in real world applications. To avoid these problems, scientific competitions
have proven to be a very adequate method, because benchmarks are usually discussed
and then accepted by all the participants. Especially annual competitions provide a con-
stant feedback on a yearly basis about the increase in performance and allow for setting
up medium-term projects.

Among the many robotic competitions, AAAI Mobile Robot Competitions was one
of the first, being established in 1992 [4]. It has provided significant scientific and tech-
nological contributions but its focus and benchmarks change domain every year.

RoboCup (founded in 1997) [5] has currently the largest number of participants (e.g.,
440 teams with over 2600 participants from 35 countries in 2006). The RoboCup soc-
cer competitions offer evaluation through competition in the robotic soccer domain and
have contributed to significant scientific achievements in the last ten years. However,
the special focus on soccer tends to steer the solutions towards specialized robotic ar-
chitectures.

Robot rescue games started in 2000 within the AAAI Mobile Robot Competition [7]
and then since 2001 within the RoboCup Rescue initiative [8]. There is a large focus
on benchmarking robots in an abstract and standardized environment. Common metrics
for HRI have been defined [9] and effective evaluation of HRI techniques have been
carried out [10,11], but the type of HRI via an operator station is different to the more
direct kind of interaction desired in DSR.

5 http://www.euron.org/activities/benchmarks/index
6 All these workshops are summarized in http://www.robot.uji.es/EURON/en/index.htm.
7 http://www.rawseeds.org/
8 http://www.robot-standards.eu/
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The DARPA Grand Challenge9 is probably the most recognized competition in terms
of public and media attention, and the one that is most directly application oriented.
However, there is little relation to DSR, the benchmarking setting is very difficult to
reproduce (participation and organization were very costly), and the continuation of
this competition is uncertain.

Finally, educational contests, such as EUROBOT10 or RoboCup Junior11, are orga-
nized with the main goal of presenting robotics to young students and thus they deal
with simpler tasks and robotic platforms.

Competitions that have a more direct relation to DSR mainly focus on a single task.
The AHRC Vacuum Contest12 and the 2002 IROS Cleaning Contest13 [12] are focused
only on floor cleaning, while ROBOEXOTICA14 focusses on robots preparing and serv-
ing cocktails. The ICRA HRI Challenge15 has a broader scope, namely the effectiveness
of HRI, but lacks evaluation criteria for the performance.

Following the successful lines of RoboCup competitions and the experiences offered
by other competitions related to DSR, the ROBOCUP@HOME annual competition has
been set up as a system benchmarking activity for domestic service robotics.

3 The @HOME Initiative

ROBOCUP@HOME is a combination of scientific exchange and competition that pro-
vides standard benchmarks (called ”Tests”) and performance metrics on which per-
sonal domestic service robots can be evaluated and compared in a realistic domestic
environment. This section briefly summarize the main concepts behind the @HOME

competitions, that are useful for the following analysis. Details on the rules and on the
organization can be found in the ROBOCUP@HOME web site16. In particular, in this
section we will discuss the key features that we identified to be relevant for DSR and
the @HOME competitions, and the score system of @HOME.

3.1 Key Features

An initial set of robot key features (abilities and properties) was derived from an analy-
sis of the state of the art in DSR and from experiences and observations of other robotic
competitions. These features help to design the benchmarks and the score system for the
competition. Furthermore, these features allow for a later analysis of the teams’ perfor-
mances and help to develop and later enhance the competition in a structured way. As
the competition with its benchmarks is expected to evolve over time, also the key fea-
tures and their weights in the competition are expected to be adapted. The key features
are divided in two groups: functional abilities and system properties.

9 http://www.darpa.mil/grandchallenge/index.asp
10 http://www.eurobot.org/
11 http://rcj.sci.brooklyn.cuny.edu/
12 http://www.botlanta.org/
13 http://robotika.cz/competitions/cleaning2002/en
14 http://www.roboexotica.org/en/mainentry.htm
15 http://lasa.epfl.ch/icra08/hric.php
16 http://www.robocupathome.org/
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Functional abilities. Functional abilities include specific functionalities that must be
implemented on the robot in order to perform decently in the tests. Each test requires a
certain subset of these abilities as they are also directly represented in the score system.
Teams must thus decide which of these abilities to implement and up to which degree
of performance, depending on their background and the kind of tests they intend to
participate in. Functional abilities currently are:

– Navigation, the task of path-planning and safely navigating to a specific target po-
sition in the environment, avoiding (dynamic) obstacles

– Mapping, the task of autonomously building a representation of a partially known
or unknown environment on-line

– Person Recognition, the task of detecting and recognizing a person
– Person Tracking, the task of tracking the position of a person over time
– Object Recognition, the task detecting and recognizing (known or unknown) ob-

jects in the environment
– Object Manipulation, the task of grasping or moving an object
– Speech Recognition, the task of recognizing and interpreting spoken user com-

mands (speaker dependent and speaker independent)
– Gesture Recognition, the task of recognizing and interpreting human gestures

System properties. System properties include demands on the entire robotic system
that we consider of general importance for any domestic service robot. They can be
described as “Soft Skills” which need to be implemented for an effective system in-
tegration and a successful participation in the @HOME competition. System abilities
currently are:

– Ease of Use - Laymen should be able to operate the system intuitively and within
little amount of time

– Fast Calibration and Setup - Simple and efficient setup and calibration procedures
for the system

– Natural and multi-modal interaction - Using natural modes of communication and
interaction like, e.g. using natural language, gestures or intuitive input devices like
touch screens.

– Appeal and Ergonomics - General appearance, quality of movement, speech, artic-
ulation or HRI

– Adaptivity / General Intelligence - Dealing with uncertainty, problem solving, on-
line learning, planning, reasoning

– Robustness - System stability and fault tolerance
– General Applicability - Solving a multitude of different realistic tasks

The system properties can not be benchmarked as directly as the functional abilities,
because it is not possible to relate actual portions of the score to them. However, they are
considered as integral and implicit part of the competition and the tests, because teams
are required to provide their robot with these properties. We thus believe that ROBO-
CUP@HOME tests allow to measure improvements in the system properties through
improvements in the functional abilities.
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3.2 Implementation

The competition is organized in a multi-stage system where teams perform from 5 to
10 tests. The tests are oriented along realistic and useful tasks for a domestic service
robot. Each test evaluates certain key features, as shown in the next section.

Two types of tests exist: pre-defined tests, which are specified in terms of the task to
solve and the scoring; open tests, in which teams can either freely choose what to show
(the Open Challenge and the Finals) or a topic is given according to which teams can do
a demonstration (Demo Challenge). The following pre-defined tests were implemented
in the 2008 competitions:

– Fast Follow: A person guides the robot through the scenario using voice and gesture
commands.

– Lost&Found: Find certain objects in the scenario.
– Fetch&Carry: Find and bring and object to the user.
– Who’s Who: Find,remember and distinguish unknown persons.
– Partybot: Find persons, receive orders and serve a drink.
– Supermarket: An unknown user has make the robot to retrieve certain objects from

a shelf.
– Walk&Talk: Teach in locations in an unknown environment by showing the robot

around.
– Cleaning up: Detect and arrange unknown objects on the floor.

The scoring in the pre-defined tests is oriented along the key features mentioned earlier,
while the scoring in the open tests is based on an evaluation by a jury and on a list of
criteria along which the jury should evaluate.

Scoring for the pre-defined tests uses a partial score system, in which a team receives
a part of the total score for showing a part of the task’s specification. Each of the partial
scores is connected to one or more of the functional abilities and/or system properties.
This does not only allow for assessing the fulfillment of these features individually, but
it is also an incentive for teams to participate in a test even if they know that they cannot
solve it completely.

4 Evaluation of Results and Discussion

One important objective for an annual scientific competition is to provide a common
benchmark to many teams that allows for measuring the advances of performance over
time and to develop relevant scientific solutions and results. In this section we describe
and discuss the results obtained by the ROBOCUP@HOME teams both in terms of per-
formance in the tests and in terms of scientific achievements.

4.1 Representation of Key Features in the Benchmarks

The score system of ROBOCUP@HOME allows for directly relating the desired abilities
of the robots with scores that are gained during the competition and adapting future
benchmarks accordingly.

Table 1 relates the functional abilities defined in Section 3.1 with the pre-defined
tests described above. It quantifies the maximum score distribution per test with re-
spect to the contained functional abilities. For ease of notation, we use abbreviations
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Table 1. Distribution of test scores related to functional abilities

Test Nav Map PRec PTrk ORec OMan SRec GRec Total

FF 550 0 0 450 0 0 0 0 1000
FC 375 0 0 0 150 400 75 0 1000
WW 350 0 550 0 0 0 100 0 1000
LF 550 0 0 0 450 0 0 0 1000

PB 1000 0 700 0 0 300 0 0 2000
SM 0 0 0 0 400 1000 200 400 2000
WT 918 416 0 250 0 0 416 0 2000
CL 1000 0 0 0 550 450 0 0 2000

Tot 4743 416 1250 700 1550 2150 791 400 16000

as follows. For the tests we have Fast Follow (FF), Fetch & Carry (FC), Who is Who
(WW), Lost & Found (LF), PartyBot (PB), Supermarket (SM), Walk & Talk (WT),
and Cleaning Up (CL). The abilities are Navigation (Nav), Mapping (Map), Person
Recognition (PRec), Person Tracking (PTrk), Object Recognition (ORec), Object Ma-
nipulation (OMan), Speech Recognition (SRec), and Gesture Recognition (GRec).

Since the competition involves mobile robots, navigation is currently the most dom-
inant ability represented in the score. Object manipulation and recognition also play an
important role since service robots are useful if they can effectively manipulate objects
in the environment. Person recognition, tracking, and speech/gesture recognition are
needed to implement effective human-robot interaction behaviors. As gesture recogni-
tion was introduced as a new (and optional) ability in 2008, its weight in the total score
still is comparably low. Finally, mapping plays a more limited role: such an ability is
used in the Walk & Talk test, where the environment is completely remodeled during
the test, so the robot enters in an unknown environment, while for other tests only minor
modifications of the environment are done right before the tests and thus pre-computed
maps (either built off-line by the robot or manually drawn) can be used.

It is important to observe that these values have been chosen after discussion among
the members of the Technical Committee, taking into account the feedback from the
teams. Consequently, the values implicitly contains a compromise between pushing
towards new capabilities and rewarding more difficult functionalities (Technical Com-
mittee) and measuring current performance of the robots (feedback from teams). It is
even more important to notice that our benchmarking approach is not to look for an
optimal set of values, but to make them evolve over time in order to gradually improve
the performance of DSR.

This table is important in order to define the weight of each ability in a test and in
order to distribute the abilities among the tests. Furthermore, one can actually measure
and analyze the performance of the teams and the difficulty of the tests after a compe-
tition, allowing for an iterative and constant development of the benchmarks.

Similar relations between system properties and the tests exist. However, this relation
can not be quantified in scores as easily, as the system properties are of more implicit
meaning for the tests.
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System properties are instead represented in the general rules, in overall require-
ments, and special properties in certain tests. By using laymen to operate the robots in
the Supermarket test, the Who is Who test, and the PartyBot test, Ease of Use (EUse)
is fostered. The restrictions on setup time and procedures demands for Fast Calibration
and Setup (FCal). Natural Interaction (NInt) and Multi-modal input is currently re-
warded in the Supermarket test and by the common use of speech and gestures. Appeal
and Ergonomics (App) are part of the evaluation criteria in the Introduce test, the Open
Challenge, and the Finals. Adaptivity (Adap) is especially requested in the Cleaning Up
test. The limited amount of specifications in the tests and the environment and the fact
that persons who interact with the robot are chosen randomly in many tests demands
for Robustness (Rob). Finally, a team can only reach the Finals if their robot performs
well in many tests with different tasks to solve. This stimulates the claim for General
Applicability (GAppl).

4.2 Analysis of Team Performance

In the following, we analyze the performance of the teams in these abilities during
ROBOCUP@HOME 2008 competition.

Table 2 presents the scores actually gained by the teams during the competition and
the percentage with respect to the total score available, related to each of the desired
abilities. The third column shows the best result obtained by some team, while the
fourth one is the average of the results of the five finalist teams. This table allows for
many considerations, such as: 1) which abilities have been mostly successfully imple-
mented by the teams; 2) how difficult are the tests with respect to such abilities; 3)
which tests and abilities need to be changed in order to guide future development into
desired directions.

From the table it is evident that teams obtained good results in navigation, speech
recognition, mapping, and person tracking. Notice that the reason for a low percentage
score in navigation is not related to inabilities of the teams, but to the fact that part
of the navigation score was available only after some other task was achieved. Speech
recognition worked quite well, especially considering that the competition environment
is much more challenging than a typical service or domestic application due to a large

Table 2. Available points for the desired abilities

Ability Available points Achieved score [max] Achieved score [avg]
Navigation 4743 (40%) 1892 (40 %) 1178 (25%)

Object Manipulation 2150 (18%) 75 (3%) 15 (1%)
Object Recognition 1550 (13%) 450 (29%) 125 (8%)
Person Recognition 1250 (10%) 400 (32%) 190 (15%)
Speech recognition 791 (7%) 692 (87%) 293 (37%)

Person Tracking 700 (6%) 700 (100%) 570 (81%)
Mapping 416 (3%) 416 (100%) 183 (44%)

Gesture recognition 400 (3%) 0 (0%) 0 (0%)
Total 12000 (100%) 4909 (41%) 2554 (21%)
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amount of people and a lot of background noise. The good achievements in mapping and
person tracking may instead be explained by a limited difficulty of the corresponding
tasks in the tests.

On the other hand, in some abilities, teams were not very successful. Object manip-
ulation is a hard task, specially when an object is not known in advance and calibration
time is limited or null. Because of the large proportion of score available, many teams
have attempted manipulation but only a few were successful. A similar analysis holds
for object and person recognition, that reported slightly better results with the same
difficulties arising from operating under natural environment conditions (i.e., lighting)
with small or null calibration time. Finally, gesture recognition has not been imple-
mented by teams, probably for the small amount of points available.

An evaluation of system properties is more complicated since they are difficult to
quantify precisely. Our current approach is to test for system properties through general
requirements and by enforcing the combination of functional abilities.

An analysis of these results is very helpful for the future development of the @HOME

competition. It gives direct, quantitative feedback on the performance of the teams with
respect to the key abilities and tasks. This allows us to identify abilities and respective
tests which need to be modified, to adjust the weights of certain abilities with respect to
the total score. Possible modifications involve:

– Increasing the difficulty if the average performance is already very high
– Merging of abilities into high-level skills, more realistic tasks
– Keeping or even decreasing difficulty if the observed performance is not satisfying
– Introducing new abilities and tests

As the integration of abilities will play an increasingly important role for future gen-
eral purpose home robots, this aspect should be especially considered in the future
competition.

In addition to the analysis of the last competition we have conducted an analysis of
presence and performance of teams over the years. Since 2006, a total of 25 teams (12
from Asia, 8 from Europe, 4 from America, 1 from Australia), have participated to the
three editions of the annual ROBOCUP@HOME world championship. The percentage
of @HOME teams in the RoboCup increased from 2.7% in 2006 to 3.7% in 2008. For
RoboCup 2009 we expect 23 teams from 14 countries.

Moreover, it is interesting to notice that some teams adapted their robots designed
and built for other RoboCup Leagues to compete in @HOME and that one team in 2006
and 2007 used the same robot in both the soccer Four-Legged and @HOME leagues and
one team in 2008 used the same robot in both the Rescue and @HOME leagues.

Another important parameter to assess the results of an annual competition is the
increase of performance of the teams over the years. Obviously, it is difficult to de-
termine such measure in a quantitative way: the constant evolution of the competition
with its iterative modification of the rules and of the partial scores do not allow a direct
comparison.

However, it is possible to define some metrics of general increase of performance.
In Table 3, the first row holds the percentage of unsuccessful tests, i.e., tests where no
score was achieved at all, dropping from 83% in 2006 to 41% in 2008. The second
row shows the increase in the total number of tests per competition. The third row
holds the average number of tests that teams participated in successfully (i.e., with a
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Table 3. Measures indicating general increase of performance

Measure 2006 2007 2008
Percentage of 0-score performance 83% 64% 41%

Total amount of tests 66 76 86
Avg. number of succ. tests p. team 1.0 2.5 4.9

non-zero score). The enormous increase from 1.0 tests in 2006 to 4.9 in 2008 is a strong
indication for an average increase in robot abilities and in overall system integration.

4.3 Scientific Achievements

Besides numerical analysis about performance in the tests, relevant scientific achieve-
ments have been obtained by teams participating in the competition. Regarding the evo-
lution of robot hardware and software architectures, we found special focus on Human-
Robot-Interaction (e.g. [13]), on personal assistive robots (e.g. [14]) and on high level
programming for domestic service robots (e.g. [15]). Regarding specific functionali-
ties, speech recognition evolved from artificial and unnatural interaction with headset
and portable laptop (2006-2007) to speaker independent speech recognition with effec-
tive noise cancellation using on-board microphones (2008) [16]17. Face recognition has
been made robust in presence of spectators standing at the border of the scenario [17,18]
and tuned for real-time use [19]. Object recognition under natural and dynamic light
condition has improved significantly: Techniques using different feature extractors and
matching procedures have been tested (e.g. [20]), reaching a level in which the robot
can reliably memorize an object shown by a user (by holding it in front of the robot) and
then recognize it among several others (2008). Gesture detection and recognition has
also been studied in order to communicate with the robot, using an effective approach
based on active learning [21]. Finally, object manipulation has evolved from gathering
a newspaper from the floor (2006), to grasping cups from a table (2007), and grasping
different objects on various heights (2008).

5 Conclusion and Outlook

This paper presented the ROBOCUP@HOME initiative as a community effort to itera-
tively develop and benchmark domestic service robots through scientific competitions,
by evaluating robot performance in a realistic, complex and dynamic environment.
Starting with the first competition in 2006, the overall development of the initiative with
respect to the increase of performance, the growing community, knowledge exchange
and public awareness is very promising. @HOME has become the largest international
competition for domestic service robots with currently 5 national competitions in China,
Japan, Germany, Iran and Mexico besides the annual world championships.

The future development of the @HOME competition is highly iterative, as it involves
constant feedback from the community, adjustments on the focus of desired abilities

17 Best Student Paper Award at RoboCup International Symposium 2008.
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and changes of the rules. Tests, functional abilities and desired system properties will
evolve over the years and will be combined to form more realistic high-level tasks. At
the moment a focus lies on physical and sensory capabilities, such as manipulation,
human recognition and navigation. In the future, more focus will be put on Artificial
Intelligence, high-level autonomy and mental capabilities in the context of HRI. This
includes situation awareness, online learning, understanding and modeling of the sur-
rounding world, recognizing human emotions and having appropriate responses. More-
over, as one of the main issues for domestic robots is their safety, we will consider in
the future also evaluation methods for robot safe operation in domestic environments.

Still, concrete goals are necessary as they help to identify and to approach specific
problems in the large real-world problem space in a structured way.

Rule changes in 2009 will involve an increased focus on HRI, e.g combined use
of speech and gestures, robot operation by laymen or following previously unknown
persons. Application scenarios will become more realistic, e.g. the demo challenge will
involve robots serving drinks and food at a real party setting involving many people
unfamiliar with the robots.

Mid-term goals include the search, identification, design and use of a common robot
software architecture or framework to better exchange and reuse of software compo-
nents already developed in the community and beyond. The same holds true for hard-
ware, where companies or groups with relevant hardware components like sensors, ac-
tuators, or even standard robot platforms will be identified and asked to join and to
support the community. Gradually testing the robots in the real world like e.g. going
shopping in a real supermarket or taking the public transport is another mid-term goal.

The future @HOME scenario will contain more ambient intelligence, which the
robots can interact with. The use of the Internet as a general knowledge base, commu-
nication with household devices, TVs, or external video cameras are some examples.
Moreover, usability, safety and appearance of the robots will be of higher importance if
one wants to increase their public acceptance.
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Abstract. The main aim of this project is to develop middleware so
that the Second Life online virtual space (virtual world) can be used to
simulate and control the movements of a Sony AIBO robot (real world)
in a wireless environment. This paper details the design of an immersive
teleoperation system, and the rationale behind the design. The prototype
proves that the concept of teleoperation with greater sense of immersion
is achievable and can lead to future work in application domains such as
smart home and immersive remote operating machinery in the industry
such as mining.

1 Introduction

The Internet, as a communication backbone of modern society is further ex-
ploited, in the past decade, in the scenarios of teleoperation1, to ensure the
safety of personnel in high-risk industries such as mining, aerospace and de-
fence. Broadly speaking, teleoperation means controlling and operating a device
remotely by an operator from afar.

Benali et al. [1] identified that teleoperation over the Internet faces major chal-
lenges due to the fact that there is no guaranteed upper bound to the potential
large time delay and the consequent data loss. Therefore, in the past, researchers
are mainly focusing on addressing the network delay issues. Benali et al. [1] pro-
posed a system with a network analyser. It measures the packet round-trip time
for evaluating the quality of service, and employs a control mode manager to
make decisions on whether to continue a given task or not. Xue et al. [2] attempts
to guarantee a stable data stream by using a handshaking protocol between the
server and the client. Both Xue et al. and Benali et al. concluded that the time
delay can be managed and resolved through either human intervention [1] or
using a fuzzy controller triggered only by a sensor event [2].

Therefore, this project takes the manual control approach to counter the ef-
fect of the network delay. This allows us to centrate on the idea of providing
� Corresponding Author.
1 Telelabs Project: http://telerobot.mech.uwa.edu.au/information.html

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 402–413, 2010.
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a higher level immersion for what we termed as immersive teleoperation. It is
widely agreed that, comparing to the traditional human computer interface with
buttons and drop-down menus, being able to operate machinery in an immer-
sive 3D virtual environment will enhance job satisfaction, which is especially
attractive to trainees.

The overall aim of this project is to use a popular and accessible 3D virtual
online environment - Second Life as a medium to teleoperate the Sony AIBO
(short for Artificial Intelligence roBOt), more specifically the Sony AIBO ERS-7
robot. Second Life (SL), created by Linden Lab, is a 3D online virtual environ-
ment that attempts to model the surface of an Earth-like world in a reasonably
life-like way [3]. Users create models or avatars, which are essentially the “peo-
ple” of the virtual world. The Sony AIBO is an artificial intelligence robotic pet
dog designed and manufactured by Sony. The AIBO is an autonomous agent
able to gain information about the environment and make decisions without hu-
man intervention [4]. The AIBO also has a built-in wireless adapter receiving
and transmitting data wirelessly [5]. The joints as well as the vision, acoustic
and motion sensors can be accessed directly via the OPEN-R platform provided
by Sony [6] through programming in C++. This allows the AIBO to be pro-
grammed to perform specific behaviours. The design objective of this project is
that users can control the movements of the AIBO in a physical environment
through moving an avatar in Second Life.

This paper reports the design and development of such a system with techni-
cal details on how to intercept Second Life packets and how the different modules
in the system communicate. We hope as a preliminary system, this paper can
offer some insights and starting points for similar projects focusing on remote
machinery operations via immersive virtual environment. Section 2 provides a
general overview of existing architectures adopted by the state of the art tele-
operation systems. In Section 3, we propose the design and development of the
system with detailed discussions on the roles of each module and how they are
implemented and communicate with each other. Section 4 presents experiments
results. The paper concludes with an outlook to future work in Section 5.

2 Related Work

2.1 General System Architecture

The system architectures widely adopted are variations on the Internet-based
client-server structure [2,7,8]. The control architectures typically comprise of a
central main controller sitting on the server that talks to embedded controllers
within the robot. For example, the architecture by Bensoussan et al. [9] uses two
controllers; a central controller on the server computer and a real-time controller
which sits on the robot (in the context of their paper, the robot is a vehicle).
The central controller manages the sensors, camera, ultra-sound, radio commu-
nication; the real-time controller in the robot, on the other hand, controls of
locomotion of the vehicle. Benali et al. [1] and Xue et al. [2] designed the con-
trollers as classical fuzzy controllers using fuzzy logic. Hohl et al. [10] take this
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one step further by introducing the notion of cross-compilation of the controller
so that the robot can run independently of the host computer once the main
controller is compiled.

To enable teleoperation by human operators, a common practice is to use a
graphical user interface (GUI) that sits on the client computer as an desktop or a
Web application. This GUI is usually coded as a Java applet with VRML (Virtual
Reality Modelling Language). VRML is a language that can be used to visualise
and build virtual worlds which include 3D objects, light sources, animations,
and user representation via avatars [7]. This allows for manual control of both
the simulated and the real robots. The idea is that the real robot will mimic
whatever that is shown on the screen by having the GUI communicating with
the controllers on the server and the robot. This mode of manual control is what
we adopted for this project. However, it can be easily extended to various levels
of control, including, semi-automatic, fully automatic [2], and a hybrid of all
three [1]. It is also noted that it is possible to use multiple hosts simulating and
controlling the robot concurrently [8].

2.2 Second Life Networking Architecture

Second Life implements a client-server architecture. Separate servers are em-
ployed to handle different tasks, including Login Server, Data Server, Map Server
and etc. Among these, the servers of interest to us are the simulators.

The world of Second Life is made up of many simulators. Simulators are
basically servers that simulate a 256x256 metre region each. When the avatar in
Second Life moves through the Second Life world, it moves from one simulator
to another [11]. The simulator keeps track of where everything is and sends the
location of objects in Second Life to the client (a.k.a. viewer). The simulator
is in charge of running the physics engine in the Second Life world and it does
collision detection as well.

The viewer, on the other hand, does not handle any collision detection. It
sends velocities and simple physics information to the simulator, keeping track
of avatar movements. When collisions occur, updates are sent from the simulator
to the viewer, which is then updated accordingly on the viewer [11].

All these communication amongst the simulators as well as the communication
between the simulators and viewers are done via UDP through circuits. A circuit
is basically a two-way UDP connection between two nodes.

Packets transmitted on Second Life between the client and the server have
a consistent layout. A packet is divided into three parts: the header, body and
the appended acks. The header contains information regarding the packet itself
[12]. The body of a Second Life packet contains the message number, which is a
numeric encoding of the message types, followed by the actual message data [12].
For example, the message storing information about the movement of the avatar
is an AgentUpdate message. Finally, the packet might have acknowledgements
appended. Acknowledgments from previous reliable messages “piggyback” and
fill up as much of the packet as it can fit [12].
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3 System Design and Development

3.1 System Overview

As show in Figure 1, our design fol-

Fig. 1. System Overview

lows the widely adopted client-server
architecture discussed in Section 2.
The GUI is, in this case, the Second
Life client installed on a client com-
puter. The only difference is that the
central main controller (the VRInter-
face in Figure 1) resides in the client
computer, rather than a separate
server machine. This is because the
Linden Lab’s Second Life simulator
servers are dedicated and close source,
unlike the systems discussed in the
literature, which have servers located
close the robot to minimise extra net-
work delay. The embedded real-time controller we choose to use is the URBI
platform, which is loaded to the programmable memory stick on AIBO. De-
tailed discussions of each module are available in the following subsections.

3.2 Virtual Real Interface - VRInterface

The core module of our system that enables intercepting Second Life packets
and sending commends to the robot is the VRInterface. It consists of two sub-
modules, the MovementProxy and the Controller.

Movement Proxy is an application we developed based on a third party
software library: the SLProxy of the libsecondlife libraries. It sits in between
the Second Life client and the Second Life servers, analysing the packets that
are being transmitted along the stream.

SLProxy is a library that allows applications to act as a proxy between the
Second Life client and the servers. SLProxy tracks the circuits, modifying the
sequence numbers and acknowledgments when changes are made to the packet
stream from a third-party application that makes use of the SLProxy library [13].
Therefore, applications using the SLProxy library can read, inspect and modify
any packet that is transmitted and received between the Second Life client and
the servers. It can also remove packets or inject new packets into the packet
stream [13].

The Movement Proxy shown in Figure 1 only reads the packets but theoreti-
cally, based on the capabilities of the SLProxy library, it can also be used to inject
packets back into the Second Life client. Injecting packets can be used to realise
scenarios such that the Second Life avatar moves to resemble the autonomous
movement of the AIBO in the real environment.

Movement in Second Life is handled by both the client and the servers. The
client sends packets which contains information of the movements of the avatar
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to the servers up to 20 times per second [14]. The packet that we are interested in
is the AgentUpdate message 2. The AgentUpdate message contains information
from the camera in the Second Life viewer which is sent to the simulator [15]
at a rate of up to 20 times per second. The ControlFlags variable inside the
AgentUpdatemessage contains information about the movements of an avatar in
Second Life. Each movement is given a constant integer which is used to shift 0x1
by the given constant. As an example, for a movement in the forward (positive)
direction,

const U32 CONTROL_AT_POS_INDEX = 0;

const U32 AGENT_CONTROL_AT_POS = 0x1 << CONTROL_AT_POS_INDEX;

The ControlFlags variable will contain 0001, which is the decimal 1.
However, a “nudge” is sent by the client first, followed by the normal key

press shown in the example above. This “nudge” is to impart velocity when brief
keypresses are made by the client [14]. For a “nudge” in the forward direction,

const U32 CONTROL_NUDGE_AT_POS_INDEX = 19;

const U32 AGENT_CONTROL_NUDGE_AT_POS = 0x1 << CONTROL_NUDGE_AT_POS_INDEX;

The ControlFlags variable will contain 1000 0000 0000 0000 0000, which is
the decimal 524288.

If the forward key continues to be held down after the “nudge”, Second Life
will store a combination of the forward movement with a “fast” movement (the
avatar is walking faster) into the ControlFlags variable.

const U32 CONTROL_AT_POS_INDEX = 0;

const U32 CONTROL_FAST_AT_INDEX = 10;

const U32 AGENT_CONTROL_AT_POS = 0x1 << CONTROL_AT_POS_INDEX;

const U32 AGENT_CONTROL_FAST_AT = 0x1 << CONTROL_FAST_AT_INDEX;

The ControlFlags variable will now contain a combination of the forward move-
ment and the “fast” movement 0100 0000 0001, which is the decimal 1025.

What this allows for is that a combination of keyboard presses stored and
transmitted within one packet. If, for example, the avatar makes a diagonal
movement (forward and left), the two movements can be combined, which means
less packets are required to be transmitted, thus reducing any unnecessary delays
from repeatedly sending a packet to move one step forward, followed by a packet
to turn left, and then yet another packet to move one step forward, yet another
to turn left, and so on.

When a packet containing the movement information is sent to the corre-
sponding server, the server computes the current position and transmits the
position back to the client. As mentioned in Section 2.2, the client does not
perform collision detection and it is the job of the simulator or server to do
that task. The position of the avatar seen on the viewer is therefore velocity
and acceleration interpolated [14]. This means that if there is a long delay in
the network, the avatar in the Second Life viewer may appear to unrealistically
walk through an obstacle such as a wall. The position of the avatar is then again
2 For a template of the AgentUpdate message please see [15].
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unrealistically “corrected” at the time when the viewer eventually receives the
packets containing correct position calculated by the server, after long network
delays. One will see that the avatar is pushed back (after walking through a
wall) to reflect that there is an obstacle in front of it.

The Controller’s job is to analyse the packets from the Movement Proxy and
translate the movements of the avatar in Second Life stored in the ControlFlags
variable into commands that is understood by the AIBO robot.

To translate the movements of the avatar in the ControlFlags variable into
commands understood by the AIBO robot, a lookup table is used to map the
ControlFlags variable into URBI commands for the AIBO robot. URBI (Uni-
versal Real-Time Behavior Interface) is a software platform by Gostai supporting
development of robotics and AI applications [16]. It is chosen in preference to
other platforms such as Tekkotsu because it is a universal platform that works
with not only the Sony AIBO robots, but also a variety of other robots, inde-
pendent of operating systems and programming languages [17].

We implement this lookup table as a hash map data structure, in which the
keys would be the possible values (unsigned 32-bit integers) that the
ControlFlags variable might hold, while the values of the hash map would
be the URBI commands the robot understands.

Table 1. Hash Map

Key Value
1025 walk.go(1)
1026 walk.go(-1)
256 walk.turn(30)
512 walk.turn(-30)

Commands sent to the AIBO robot will be re-
peated and continuous if the three latest packets
received in a row contain the same ControlFlags
variable. If a new movement is made, the
ControlFlags variable of the new packet will not
be the same as the ControlFlags variable of the
last two packets, forming the stopping rule for the
robot. A stop command is then sent to the robot

followed by commands for the new movement.
In order to send commands to the AIBO through URBI, a new socket con-

nection is established at start-up between the Controller and the AIBO robot
on port 54000, which is the port for URBI commands on the robot. TCP is used
as the protocol for the connection between the Controller and the AIBO robot
due to its more reliable nature as compared to UDP.

3.3 Creating a Dog-Like Avatar in Second Life

The default avatar in Second Life is a basic human avatar. In order to create
a closer representation of the AIBO robot in the Second Life virtual environ-
ment, a dog-like avatar is created. Objects in Second Life are created from basic
primitive objects such as a cube, cylinder, prism, pyramid etc. These objects
can be transformed by stretching, shrinking and then put together to form a
larger object. Using the primitive objects provided in Second Life, objects such
as arms, legs, chest, head and so on can be created and then attached onto the
avatar to form a dog-like avatar, thereby creating a closer representation of the
AIBO robot in Second Life.
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3.4 Communications between the Modules

Figure 2 illustrates the sequence of events and interactions that occur between
the different services when the Movement Proxy is started up and connections
are established with the Second Life server and the Sony AIBO robot.

Fig. 2. Sequence of Events at Startup

The sequence of events and interactions between the services during runtime
is quite similar to those during execution with slight differences being that the
services in the system perform different actions.

4 Experiments and Results

4.1 Experiment Environment and Settings

The experimental environment was kept stable by ensuring the following param-
eter stayed as constant as possible throughout the experiments:

The speed of the Internet and networks cannot remain constant and fluctuates
based on the amount of traffic on the network. Long network delay can result
in lag and potential loss of packets. Therefore, in cases when the Internet speed
drops to a level deemed unsuitable, the experiments are abandoned until speeds
are improved and deemed suitable again.

Table 2. Experimental Environment

Robot: Sony AIBO ERS-7
Robot Platform: URBI
Workstation: Intel Core 2 Duo 2.20Ghz processor

2GB of memory
NVIDIA GeForce 8400M GS video card

Workstation Platform: Windows XP Professional
Second Life Version: Release 1.19.0(5)
Wireless Network Protocol: 802.11b
Internet Speed: > 1.5Mbps
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4.2 Setting Up The Movement Proxy

To allow the Movement Proxy to capture and analyse data being transmitted
between the client and the server, the client is set to connect to the server
through the Movement Proxy, which is on the same workstation as the Second
Life client through port 8080. An extra flag is added to the Second Life client
to connect to the Second Life server through the Movement Proxy. This can be
done by appending an loginuri when running a Second Life client:

C:\Program Files\SecondLife\SecondLife.exe -loginuri http://localhost:8080

This ensures that before running the Second Life client executable, the Move-
ment Proxy is loaded up first. When the Movement Proxy is loaded up, it estab-
lishes a connection to the Second Life server. At the same time the Controller,
which is compiled and executed together with Movement Proxy as part of the
same executable file, opens a connection to the AIBO robot through URBI on
port 54000. When everything is loaded up and the connections are established
successfully, the AIBO robot will make a sound and the Movement Proxy will
display that it has been loaded up successfully as shown in Figure 3.

Fig. 3. Movement Proxy

4.3 Movement Testing and Observations

To test the success of the system in terms of achieving the main objective of being
able to teleoperate the AIBO robot in the real world and mirror the movements
of its virtual representation in Second Life, basic movements were performed on
an avatar in Second Life and results were observed on the AIBO robot. These
basic movements performed are: Moving Forwards (Figure 4) and Backwards
(Figure 5) in a straight line; Turning 90◦ to the Left (Figure 6) and to the Right
(Figure 7).

The corresponding figures of each of the four basic movements mentioned
above show frame-by-frame shots of the AIBO robot performing the movements
with the Second Life avatar moving in the Second Life client visible in the back-
ground.

As part of the experiments to test the forward and backward movements,
markers were placed on Second Life that were 10.0 Second Life units apart in
a straight line (Y-axis). Markers were also placed some distance apart to form
a rectangular region in the real world. The purpose of placing the markers in
Second Life and the real world was to measure the closeness in the represen-
tation of the movements of the AIBO in the real world with that in the Sec-
ond Life virtual environment. The coordinates of the markers in Second Life
were:
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Marker 1 X: 140.0 Y: 90.0 Z: 27.157
Marker 2 X: 140.0 Y: 100.0 Z: 27.157

The Z coordinate represents the distance of the marker from sea level in Second
Life. Both the X and Z coordinates were unchanged while the difference between
the Y coordinates between markers 1 and 2 was 10.0. A distance of 10.0 units
in Second Life reflects a distance of approximately 0.6m in the real world.

As one can observe from Figure 4, while the avatar is moving closer to the
identified marker in Second Life, the AIBO robot is also moving closer. In Fig-
ure 5, while the avatar is moving away from the identified marker in Second
Life, the AIBO robot is also moving away from the markers. Based on the ob-
servations, the straight line movements (moving forwards and backwards) of the
AIBO robot mimicked that of the avatar in Second Life very closely. This also
includes faster and slower walking movements in a straight line.

In Figure 6 and Figure 7, using the identified stable object in Second Life,
we can say that turning movements performed by the AIBO robot did mimic
the turning movements made on the avatar in Second Life. However, it was not
mimicked as close as we would have liked them to be. This might be due to the
lack of detailed and fine calibrations of the turning angles in Second Life and
in the real world. The representation of the AIBO robot as a 2-legged avatar
and the fact that the AIBO is a 4-legged robot had some negative impact on
accurately calibrating and representing the movements of the avatar in Second
Life for the AIBO robot. If the bounding box of the avatar is proportional to
the size of the robot in the real world, a much closer representation of the AIBO
robot in Second Life can be achieved.

More complex movements such as the movement of individual joints and move-
ment of the head were not performed due to the limitation of Second Life in
creating more sophisticated avatar. This is further discussed in Section 5.

As stated in Section 4.1, the Internet speed was monitored to ensure that it is
fast enough (> 1.5Mbps) so that the delays would not have a great impact on the
experiments. However, given the dynamic nature of wireless networks and the
Internet, occasional delays on the network imply that the latency cannot always
stay constant. The experiments were aborted if the Internet speed is deemed to

(a). Frame 1 (b). Frame 2 (c). Frame 3 (d). Frame 4

Fig. 4. Forward Movement - Walking Forward in a Straight Line
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(a). Frame 1 (b). Frame 2 (c). Frame 3 (d). Frame 4

Fig. 5. Backward Movement - Walking Backward in a Straight Line

(a). Frame 1 (b). Frame 2 (c). Frame 3 (d). Frame 4

Fig. 6. Left Turn Movement - Turning 90◦ to the Left

(a). Frame 1 (b). Frame 2 (c). Frame 3 (d). Frame 4

Fig. 7. Right Turn Movement - Turning 90◦ to the Right

be unacceptable to ensure that the Internet speed does not greatly affect the
outcome of the experiments.

We measured that the average time delay from the time the avatar moves
in Second Life and when the AIBO robot responds and starts moving is in a
range of 500 milliseconds to 3 seconds. This range was obtained by sending
ICMP packets (“pinging”) to the Second Life server and the AIBO robot from
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the client workstation, in which the Second Life client as well as the Movement
Proxy and Controller resides. The round trip time in which the packets were sent
out by the client and when the response is received is averaged and recorded.
This procedure was repeated 20 times during different times of the day to take
into account the variation of network traffic during the course of a day.

The impact of delays on the system can be minimised by the use of a buffer
that temporarily stores a set number of packets at a given time and then filtering
the packets out to ensure that re-sent packets that were delayed do not interfere
with the current packet stream that is being received, processed and sent to the
Controller by the client.

5 Conclusions and Future Work

This project is a software engineering exercise to connect the real world (the
Sony AIBO robot) with the virtual world (the Second Life virtual environment)
in which movements made by the avatar in Second Life were to be mirrored in
the real world through the Sony AIBO robot.

Based on the experiments and the results obtained, the main objective of the
project has been met. The delay as noted above is within an acceptable range of
500 milliseconds to 3 seconds. This range could be made smaller and improved
in the future. There are other 3D virtual environment servers (open source)
available which can be installed locally or within an intranet to significantly
reduce the delay. A buffer can also be implemented to ensure that delays are
taken into consideration.

The prototype system demonstrates that immersively teleoperating robots
through the Second Life virtual environment is feasible. Immersion for the oper-
ator is the key attractor of this type of 3D virtual environment. For example, a
mining site could be replicated within Second Life and machines could be tele-
operated through the Second Life environment. There is also growing trend in
Second Life where houses are built to replicate the real houses of individuals.
Through immersive teleoperation, users can control robots in their homes to
carry out various tasks remotely.

In future work, we are planning to import an 3D model of AIBO into a 3D
environment for a precise representation such that individual joints of the robot
could also be controlled. This will extend the basic movements reported here to
complex ones require the coordination of body parts such as sitting and dancing.
We are also interested in feeding packets into Second Life so that the robot’s
autonomous movements in real life are mirrored on Second Life. The preliminary
testing has been carried out successfully by injecting short chat messages through
the proxy which is then shown in Second Life.
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Abstract. Disaster & rescue simulations handle complex social issues,
the macro level modeling of which is difficult. Agent-based social simula-
tion provides a platform to simulate such social issues. It is ideal that the
simulations cover various evacuation patterns and the results are used to
make effective plans against disasters. This requires that the behaviors
of a numbers of heterogeneous agents are simulated at urban size areas
in hostile environments. Representing all buildings of the area by 3D
model requires a large amount of computer resources and computing the
behaviors of a number of agents takes a lot of computation time. These
make it difficult to simulate rescue behaviors at disasters in real scale.

We propose a hybrid agent simulation system that switches systems
that is suitable for situations during simulations. A hybrid system of two
simulations with different time and space resolution makes it possible to
simulate urban size human behaviors and indoor movements with less
computational resources than doing by one system. This paper presents
protocols that connect two systems that are used in RoboCup Rescue
Simulation League, Rescue Agent Simulation and USARSim. The proto-
type system provides a simulation of people’s evacuation from going to
fire-escape doors to moving to shelters.

1 Introduction

The Great Hanshin-Awaji earthquake of 1995 led researchers to apply their tech-
nologies for decreasing damages from disasters. Subsequent disasters including
the 9/11 on the World Trade Center of 2001, 2004 Indian Ocean earthquake, and
2008 Sichuan earthquake China have driven to start disaster & rescue related
projects around the world. Several systems that support decision of rescue op-
erations or prompt planning for disaster mitigation have been presented. Their
functions are to ensure prompt planning for disaster mitigation, risk manage-
ment, and support of IT infrastructures at disasters [1][4].

In RoboCup, the rescue agent competition league has started since 2001 using
RoboCup Rescue Simulation (RCRS). RCRS was designed to simulate the rescue
operations and disasters simultaneously at the Hanshin-Awaji earthquake disas-
ter. In competitions, rescue agents contest their performances at various disasters

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 414–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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situations on various cities. At 2005, virtual robot competition has started [5].
USARSim is a high fidelity simulator based on the Unreal Tournament game en-
gine and has provided environments to develop models of new robotic platforms,
sensors and test environments and to develop control algorithms that are seam-
lessly migrated to systems in fields [6]. Commander training systems or other
simulation systems have been presented using the RoboCup system [7][3][8].

The last disasters have made the purposes of disaster & rescue simulations
more clear. It includes the simulations are used as emergency management sys-
tem of local governments and the disaster & rescue simulations need more func-
tions to that end. For example, when disasters occur, an urban size simulation
is used to deploy rescue agents at the first stage of rescue operations. After the
agents arrive at sites, simulations of inside devastated houses are useful to search
victims.

It requires a huge amount of computation power and resources to simulate the
behavior of agents at wide area with fine resolutions. We propose a hybrid agent
simulation system of RCRS and USARSim. USARSim simulates people’s evacua-
tion from going to fire-escape doors with fine resolution and RCRS simulates the
behaviors of moving to shelters. Section 2 describes rescue scenarios using multi
agent simulation systems (MAS). A framework of hybrid system that executes
evacuation systems is described in section 3. Protocols to connect two MAS and to
support communication among agents at different MASs are described in section
4. Section 5 shows the simulation results of our prototype system. The summary
of our proposal and discussions are described in Section 6.

2 Rescue Scenarios Simulated by MAS

Disaster & rescue simulations handle complex social issues, the macro level mod-
eling of which is difficult. MAS is good to simulate such issues and it is ideal
that disaster & rescue simulations can simulate various evacuation patterns and
rich human interactions to make effective plans against disasters. It requires fol-
lowings, (1) simulation of behavior of a numbers of heterogeneous agents, (2) at
building inside and urban size areas, (3) under hostile environments caused by
disasters, (4) with interactions of others including rescue operations.

Table 1 shows one of rescue scenarios when people evacuate from buildings.
The scenario consists of three stages.

A. the initial stage of disasters: People in buildings try to evacuate from houses.
Rescue teams rush to devastated houses.

B. rescue operations at devastated houses: The rescuers execute their actions to
save lives, fight fire and do related actions. They use robots to search and
rescue victims from the houses.

C. evacuation to shelters: People who get out of the houses evacuate to shelters.
Rescue headquarters allocate shelters and announce rescue teams.

The rescue scenario contains indoor and outdoor environments. Indoor or open
space people behavior are simulated by free space model and the traffic of outside
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Table 1. Rescue scenario where agents go in and out of buildings

simulation scenario outside inside
stage behaviors of agents RCRS USARSim
A. When disasters occur, A, B x, y, z

1 people evacuate from buildings, X ⇐ x
2 call for help from inside house to rescue teams. A ← y
3 People inside buildings help and communicate each other. y, z
4 Rescuers rush to the sites according to their headquarters. A, B

B. 1 The rescuers arrive at devastated houses.
2a Some rescue teams start fire-fighting. A
2b Others start searching by robots, B → r
3b confirm conditions of rescue operations in the houses, B ← y, z
4b execute search-and-rescue operations. B ⇒ y, z
5 They enter the houses. B ⇒ b
6 They communicate each other in houses, (B ↔ b), y, z
7 or colleagues outside. A ↔ b

C. 8 All move to outside and evacuate to refuges. B, Y, Z ⇐ b, y, z
Capital letter and low case letter represent agents in RCRS and USARSim, respectively.
⇐,⇒ show agents’ transfer to the other system,
←, → represents communication among agents.

movements are simulated on a road network. Representing all buildings in three
dimensional (3D) models and computing the behaviors of a number of agents
require a large amount of computer resources and take a lot of computation
time.

Our hybrid system can simulate (1) behaviors of indoor environments by
USARSim, (2) the evacuation behaviors after exiting the buildings or going to
refuges by RCRS. Figure 1 shows our idea of combining RCRS and USARSim.
The two systems are agent based systems (ABS) with different resolutions of
space and time. RCRS handled two dimensional (2D) urban size simulations of
disaster & rescue operations and USARSim handles rescue robot motions at 3D
buildings. Table 2 shows properties of RCRS and USARSim.

3 A Hybrid System to Execute Evacuation Scenarios

3.1 Requirements for a Hybrid Agent System

Followings are the RCRS commands of rescue agents to move into a building or
to do rescue operations in it.

AK MOVE: An agent submits it to enter into a building.
AK EXTINGUSH: A firefighter submits it to extinguish fires.
AK RESCUE: An ambulance team submits it to rescue a buried humanoid.
AK LOAD: An ambulance team submits it to load an injured humanoid.

These commands are executed in one cycle of RCRS, and they don’t reflect the
facts that rescue operations change according to inside disaster situations. It
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Fig. 1. Image of simulation systems that cover from wide rage disasters and local
devastated houses. (The left shows the snapshots of RCRS simulation (a), a video
picture of a building (b), and USARSim simulation of the building (c). The right
shows an image of hybrid system. RCRS simulates 2D world, USARSim simulates 3D
world, respectively.)

Table 2. Comparison of two rescue simulations

items RCRS USARSim
purposes planning of disaster prevention, providing platforms

verification of rescue plans to develop rescue robot
agent type civilian, rescuer humans rescue robot
agent number O(100) O(10)
area size O(km2) O(house size)
disaster simulations fire, collapse building –
simulation time 72 hours real time
map model 2D network∗ 3D model
*: Dwelling environments vary from country to country. For example, our town has 135,000
and 120,000 inhabitants at daytime and night respectively, 70,000 households, and is
21.6km2. The 2D road network has 6,000 nodes and 4,000 edges.

is difficult to simulate the rescue operations inside houses at the resolution of
RCRS. We employ USARSim in order to simulate the indoor rescue operations
in more detailed way than RCRS. USARSim also simulates the inside evacuation
behaviors of agents.

USARSim is a real-time simulator and RCRS was originally designed to sim-
ulate situations of 72 hours after earthquakes occur within a specified time.
Followings are required to reflect the simulation results of USARSim and RCRS
each other.

– synchronization between simulation systems with different Scales:
The progress of simulation is paced by wallclock time [2]. The simulation
step is mapped to wallclock time by the following formula.

T s
present = T s

start + Scale × (T w
present − T w

start) (1)
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where T s, T w are simulation time and wallclock time, respectively. Scale is
a factor that shows how fast or slow the simulation advances the wallclock
time, for example, Scale = 2 indicates that the simulator runs twice as fast
as wallclock time.

– communications among agents that are in different ABSs:
Rescue agents communicate each other to cooperate with properly. When
some rescue teams enter to devastated buildings, they report the inside sit-
uations to their commanders outside or receive orders from them. Commu-
nications among agents are supported whether the agents are in RCRS or in
USARSim.

– management of agents when they move to a different ABS:
The kernel and USARSim server manage the status of which agents are
connected to themselves. When the agents enter to or exit from a building,
they switch connection from RCSR to USARSim or vice verse, respectively.
The servers change the data of the connected agents.

– reflection of a disaster to other ABSs:
RCRS simulates disasters such as aftershocks or fire, and rescue actions such
as firefighting. These change the situations of houses where USARSim pro-
vides to its agents. Reflecting these changes to USARSim makes USARSim
environments dynamic ones.

3.2 Protocols Systems for Hybrid System

New protocols are designed to connect RCRS and USARSim and to enable agents
to switch servers. Agents consist of parts that connect RCRS and USARSim
servers. They use following protocols in addition to the original ones. Table 3
shows the protocols newly added.

AK/KA. Prefix A stands for agent and K for kernel of RCRS. For example,
when an agent is in front of building of RCRS, the agent can switch con-
nection from RCRS to USARSim by AK USASIM ENTER. And they enter the
corresponding 3D building of USARSim.

KU/UK. PrefixU stands forUSARSimController. USARSimController spawns
USARSim Client. The clients are connected to a USARSim server that sup-
ports the 3D environments. Commands with this prefix have a role to bridge
two systems. The kernel submit KU connect 1 command with the building ID
to USARSim Controller that sets up USARSim for the building.

AU/UA. AU TELL and UA HEAR commands serve communications among clients
in the environments created by one USARSim Server. AU commands are
submitted and received at every USARSim time step.

Figure 2 shows architecture of agents and the hybrid system.

– USARSim is connected to RCRS as one of simulators. When agents move
from RCRS to USARSim, they submit AK commands and the kernel passes it

1 KU commands are implemented in the operand part of the RCRS commands.
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Table 3. Added Protocols to bridge RCRS and USARSim

Commands specification
Switch systems from RCRS to USARSim, vice versa

AK USARSIM ENTER A → K An agent submits it to enter a building (to switch a
server to USARSim) at its entrance node.

AK USARSIM EXIT A → K An agent submits it to get out of the building (to switch
a server to RCRS) near its exits.

KA USARSIM ENTER OK

KA USARSIM ENTER ERROR

K → A The kernel notify whether USARSim connection suc-
ceeds or not.

KA USARSIM EXIT OK

KA USARSIM EXIT ERROR

K → A The kernel notify whether USARSim disconnection suc-
ceeds or not.

UK ENTER OK

UK ENTER ERROR

U → K USARSim Controller returns IP address and port num-
ber that USARSim Client uses when connection suc-
ceeds, errors why it fails,

UK EXIT OK

UK EXIT ERROR

U → K USARSim Controller returns OK when that the agent
could disconnect to USARSim, ERROR and the reason
that the agent cannot disconnect to USARSim.

Control the corresponding USARSim object

AU FORWARD, AU BACKWARD A → UC The agent moves the object forward/backward.
AU LEFT,AU RIGHT A → UC The agent turns the object left/right.
AU STOP A → UC The agent stops the object in USARSim.
AU MOVE A → UC The agent moves the object to specified position in US-

ARSim.
Communication between agents

AK TELL

KA HEAR

A → K
K → A

They are basically the same as RCRS. They also sup-
port communications to USARSim or within via Com-
munication Center.

AU TELL A → UC The agent sends messages to other agents via Commu-
nication Center.

UA HEAR UC → A Communication Center sends received messages to all
agents that are in USARSim.

UK HEAR UC → A Communication Center sends a list of received messages
at the step of the kernel.

A, K, U, and UC represent agent, kernel, USARSim Controller, and USARSim Client,
respectively. UC→ A shows command flow from USARSim Client to agents.

to USARSim Controller. After USARSim Controller receives it, the connec-
tion between the kernel and USARSim Controller and the communication
are the same way as other sub simulators.

– USARSim Servers supply 3D simulation environments of buildings to the
agents. The buildings in RCRS and USARSim are linked with the same ID
number. USARSim Servers are set for every building and USARSim Con-
troller supervises these servers.

– While agents connect to USARSim, the agents control the corresponding
objects (avatar) in USARSim with AU commands. The commands express
their wills how the avatars behave in the USARSim world. The behavior of
avatars is simulated by a physical engine of USARSim.
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Fig. 2. System architecture of hybrid system connected by protocols. The left human
figure shows that agent consists of parts to connect RCRS and USARSim.

4 Management of Changing ABS and Communication
among Agents in Different ABSs

4.1 Protocols Systems for Changing ABS

Figure 3 shows a timing chart when an agent enters into a building and a se-
quence of protocols associated with it. The columns below Agents, kernel US-
ARSim Controller show time steps. Time a, c, e, f correspond to RCRS time
points and b, d correspond to USARSim time points.

a : When an agent arrives at an entrance node of a building, it submits
AK USARSIM ENTER to enter the building. Receiving the command from the
kernel, USARSim controller
1. when this is the first entry to the building, spawn USARSim server that

maintains the corresponding 3D USARSim world according to entries of
its configuration file,

2. place a corresponding avatar in the USARSim world.
c : The agent switches connection from RCRS to USARSim, when it receives

AK USARSIM ENTER OK commands with a port number to communicate with
USARSim Client.

d : The agent submits AU commands. The commands control its avatar to move
or rescue in the building of USARSim.

e : When the agent get out of the building, it submits AK USARSIM EXIT near
the entrance of the building.
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Fig. 3. Time chart for agent management change(The left shows the movements of
agent. The middle is time sequence, and the slots show the time steps of RCRS and
USARSim. The right one is the sequence of commands. Commands in parenthesis are
ones that are embodied in operands of other protocols.)

f : Receiving AK USARSIM EXIT, USARSim deletes the avatar and returns
AK USARSIM EXIT OK. Receiving the AK USARSIM EXIT OK, the agent returns
to RCRS world and it position is the entrance node of the building.

4.2 Protocols for Communication to Agent in ABSs

Changing the connecting server requires to support communications between
agents that are in different servers. The scope of commutation expands from
within one ABS to between different ABSs. The rescue simulation scenario of
Table 1 contains three patterns of communications.

1. communication within RCRS: A.4 is the same pattern of communication as
the original RCRS. Communications of C.8 are between agents in RCRS.
However, Y and Z are USARSim agents initially at USARSim.

2. communication within USARSim: Conversely, A.3 is communication between
agents, y and z, that are USARSim agents initially. B.6 is communication to
b that is a RCRS agent initially.
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Fig. 4. Time chart for agent communication between two ABSs, RCRS and USARSim.
The ratio of Scales is 8 in this figure.

3. communication between RCRS and USARSim: A.2 is communication between
one agent in RCRS and the other in USARSim. They are initially in RCRS
and USARSim, respectively. In a case of B.7, the agent, b, is initially in
RCRS. The agent A communicates with B without knowing whether the
agent B is in RCRS or in USARSim.

Protocols support the communications among agents that are different systems.
The left of Figure 4 shows a sequence of protocols communication within one
system. The upper diagram corresponds to communication within RCRS (pat-
tern 1), and the lower diagram is within USARSim (pattern 2). The right of
Figure 4 shows a sequence of protocols that agents in RCRS and USARSim
communicate. Agents in USARSim tell at USARSim time step, and agents in
RCRS hear at RCRS time step.

5 Evacuation Simulation from Indoor to Outdoor
Shelters

A subset of the rescue scenario in Table 1 is simulated. Figure 5 are snapshots of
simulations by our prototype system. The simulation conditions are followings:

situation: Fires occur at a university campus. Students in school buildings
evacuate to an outdoor refuge.

map: The road network and buildings of the university campus are presented
by 2D RCRS map. Two of the school buildings are linked to USARSim and
represented by its 3D models.

agent: Six and four student agents2 are at the two buildings respectively, and to-
tal 150 agents evacuate to one refuge by following the instructions of teacher
agents. There are ten teacher agents instruct the students evacuation routes.

Two PCs are used in our experiment system. One PC is Core2 Duo of 2.2GHz
with 2GB Memory and the other one is Pentium 4 of 3GHz with 1GB Memory.
2 Student and teacher agents are the civilian and police agents of RCRS.
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Fig. 5. Execution of evacuation scenario (Two buildings are linked to USARSim, cylin-
der figure avatars are student agents.)

RCRS and one USARSim server are run at the first PC and the other USARSim
server is run on the second PC. The two USARSim servers take charge of the
buildings that are linked to RCRS. The ratio of Scales, USARSim to RCRS, is
set to 60 (one simulation time of RCRS corresponds to one minute).

The upper three figures are snapshots of USARSim. The left one is an exterior
view of one school building and right two figures display the behavior of students
inside the buildings. The student avatars in USARSim are represented by a
cylinder figure robots. The figures of left bottom and right bottom show the
results of simulations which the teachers instructed different routes.

The results show that all ten students inside get out of the building and
evacuate to the refuge. They show different patterns according to the teachers’
instructions. These indicate communications among agents work well.

6 Discussion and Summary

It is ideal that disaster & rescue simulations handle rescue behaviors at disasters
in real scale. This requires simulations of a huge number of agents that behave
at wide areas with fine resolutions. The requirements lead a huge of computer
resources and powers.

We propose an idea of switching systems during simulations to choose one
that is suitable for situations. A hybrid system of two different simulations with
different time and space resolution makes it possible to simulate urban size
human behaviors and indoor movements by reasonable computational resources.
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This paper presents protocols that connect two systems that are used in
RoboCup Rescue Simulation League, Rescue Agent Simulation and USARSim.
The prototype system can simulate people’s evacuation from going to inside
fire-escape doors to moving to outside shelters. The result shows an possibility
that the hybrid system make the simulations feasible ones that takes a lot of
computer recourses.
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Abstract. The current RoboCup Small Size League rules allow every
team to set up their own global vision system as a primary sensor. This
option, which is used by all participating teams, bears several organiza-
tional limitations and thus impairs the league’s progress. Additionally,
most teams have converged on very similar solutions, and have produced
only few significant research results to this global vision problem over
the last years. Hence the responsible committees decided to migrate to a
shared vision system (including also sharing the vision hardware) for all
teams by 2010. This system – named SSL-Vision – is currently developed
by volunteers from participating teams. In this paper, we describe the
current state of SSL-Vision, i. e. its software architecture as well as the
approaches used for image processing and camera calibration, together
with the intended process for its introduction and its use beyond the
scope of the Small Size League.

1 Introduction

Given the current rules of the RoboCup Small Size League (SSL) [1], every team
is allowed to mount cameras above or next to the field. There has also been
an option of using local instead of global vision, but this turned out to be not
competitive. For adequately covering the current field, most teams prefer to use
two cameras, one above each half. This configuration bears one major problem
(implicating a set of sub-problems): The need for long setup times before as well
as during the competition. Having five teams playing on a field, ten cameras
need to be mounted and calibrated. During these preparations, a field cannot
be used for any matches or other preparations. Due to this situation, teams are
always bound to their field (during one phase of the tournament) and unable to
play any testing matches against teams from other fields. Hence the Small Size
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League needs as many fields as it has round robin groups. Flexible schedules as
in the Humanoid or the Standard Platform League – which have more teams
but need less fields – are currently impossible.

In the future, these problems might become even worse since the current
camera equipment already reached its limits. Having a larger field – which is a
probable change for 2010, given the common field with the Humanoid and the
Standard Platform League –, every team will be forced to set up four cameras
above the field. This would significantly increase preparation times during a
competition and decrease time and flexibility for scheduling matches.

To overcome this situation, the SSL committees decided to migrate to a shared
vision system, i. e. to a single set of cameras per field which are connected to
an image processing server which broadcasts the vision output to the partic-
ipating teams. The software for this server needs to be flexible, i. e. scalable
for future changes and open to new approaches, as well as competitive, i. e.
performant and precise, to not constrain the current performance of the top
teams. This system, named SSL-Vision, is now developed by a group of volun-
teers from the SSL. This paper describes the current state and the future of this
project.

The paper is organized as follows: Section 2 describes the overall architecture
of the system. The current approaches for image processing and camera calibra-
tion are presented in Section 3. The paper concludes with a description of the
system’s introduction and the resulting implications in Section 4.

2 Framework

SSL-Vision is intended to be used by all Small Size League teams, with a variety
of camera configurations and processing hardware. As such, configurability and
robustness are key design goals for its framework architecture. Additionally, the
project’s collaborative openness and its emphasis on research all need to be
reflected in its framework architecture through an extendable, manageable, and
scalable design.

One major design goal for the framework is to support concurrent im-
age processing of multiple cameras in a single seamless application. Further-
more, the application should integrate all necessary vision functionality, such
as configuration, visualization, and actual processing. To achieve better scala-
bility on modern multi-core and hyper-threaded architectures, the application
uses a multi-threaded approach. The application’s main thread is responsible
for the Graphical User Interface (GUI), including all visualizations, and con-
figuration dialogs. Additionally, each individual camera’s vision processing is
implemented in a separate thread, thus allowing truly parallel multi-camera
capture and processing. The application is implemented in C++ and makes
heavy use of the Qt toolkit [2], to allow for efficient, platform-independent
development.

Fig. 1 shows an overview of the framework architecture. The entire system’s
desired processing flow is encoded in a multi-camera stack which fully defines how
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Fig. 1. The extendible, multi-threaded processing architecture of SSL-Vision

many cameras are used for capturing, and what particular processing should be
performed. The system has been designed so that developers can create different
stacks for different robotics application scenarios. By default, the system will
load a particular multi-camera stack, labeled the “RoboCup Small Size Dual
Camera Stack” which we will elaborate on in the following section. However, the
key point is that the SSL-Vision framework provides support for choosing any
arbitrarily complex, user-defined stack at start-up, and as such becomes very
extendible and even attractive for applications that go beyond robot soccer.

Internally, a multi-camera stack consists of several threads, each representing
the processing flow of a corresponding capture device. Each thread’s capturing
and processing flow is modeled as a single-camera stack, consisting of multiple
plugins which are executed in order. The first plugin in any single-camera stack
implements the image capturing task. All capture plugins implement the same
C++ capture interface, thus allowing true interchangeability and extendibility
of capture methods. The framework furthermore supports unique, independent
configuration of each single-camera stack, therefore enabling capture in hetero-
geneous multi-camera setups. Currently, the system features a capture plugin
supporting IEEE 1394 / DCAM cameras, including higher bandwidth Firewire
800 / 1394B ones. Configuration and visualization of all standard DCAM pa-
rameters (such as white balance, exposure, or shutter speed) is provided through
the GUI at run-time, thus eliminating the need for third-party DCAM parame-
ter configuration tools. The system furthermore features another capture plugin
supporting capturing from still image and video files, allowing development on
machines which do not have actual capture hardware. Additional capture plugins
for Gigabit Ethernet (GigE) Vision as well as Video4Linux are under construc-
tion as well.
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2.1 The Capture Loop

A capture plugin produces an output image at some resolution, in some color-
space. For further processing, this image data is stored in a ring-buffer which
is internally organized as a cyclical linked-list where each item represents a bin,
as is depicted in Fig. 1. On each capture iteration, the single-camera stack is
assigned a bin where it will store the captured image and any additional data
resulting from processing this image. As the stack is being executed, each of its
plugins is sequentially called, and each of them is able to have full read and write
access to the data available in the current bin. Each bin contains a data map,
which is a hash-map that is able to store arbitrary data under a meaningful
label. This data map allows a plugin to “publish” its processing results, thus
making them available to be read by any of the succeeding plugins in the stack.

The purpose of the ring-buffer is to allow the application’s visualization thread
to access the finished processing results while the capture thread is allowed to
already move on to the next bin, in order to work on the latest video frame.
This architecture has the great advantage of not artificially delaying any im-
age processing for the purpose of visualization. Furthermore, this ring-buffered,
multi-threaded approach makes it possible to prioritize the execution schedule
of the capture threads over the GUI thread, thus minimizing the impact of visu-
alization on processing latency. Of course it is also possible to completely disable
all visualizations in the GUI for maximum processing performance.

In some processing scenarios it is necessary to synchronize the processing
results of multiple camera threads after all the single-stack plugins have finished
executing. This is done through optional multi-camera plugins. A typical example
would be a plugin which performs the data fusion of all the threads’ object
detection results and then sends the fused data out to a network.

2.2 Parameter Configuration

Configurability and ease of use are both important goals of the SSL-Vision frame-
work. To achieve this, all configuration parameters of the system are represented
in a unified way through a variable management system called VarTypes [3]. The
VarTypes system allows the organization of parameters of arbitrarily complex
types while providing thread-safe read/write access, hierarchical organization,
real-time introspection/editing, and XML-based data storage.

Fig. 1 shows the hierarchical nature of the system’s configuration. Each plu-
gin in the SSL-Vision framework is able to carry its own set of configuration
parameters. Each single-camera stack unifies these local configurations and may
additionally contain some stack-wide configuration parameters. Finally, the
multi-camera stack unifies all single-camera stack configurations and further-
more contains all global configuration settings. This entire configuration tree
can then be seamlessly stored as XML. More importantly, it is displayed as a
data-tree during runtime and allows real-time editing of the data. Fig. 2 shows
a snapshot of the data-tree’s visualization.
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Fig. 2. Screenshot of SSL-Vision, showing the parameter configuration tree (left), live-
visualizations of the two cameras (center), and views of their respective color thresh-
olding YUV LUTs (right)

3 RoboCup SSL Image Processing Stack

The system’s default multi-camera stack implements a processing flow for solving
the vision task encountered in the RoboCup Small Size League. In the Small Size
League, teams typically choose a dual-camera overhead vision setup. The robots
on the playing field are uniquely identifiable and locatable based on colored
markers. Each robot carries a team-identifying marker in the center as well as a
unique arrangement of additional colored markers in order to provide the robot’s
unique ID and orientation. In the past, each team was able to determine their
own arrangement and selection of these additional markers. However, with the
introduction of the SSL-Vision system, it is planned to unify the marker layout
among all teams for simplification purposes.

The processing stack for this Small Size League domain follows a typical
multi-stage approach as it has been proven successful by several teams in the
past. The particular single-camera stack consists of the following plugins which
we explain in detail in the forthcoming sections: image capture, color thresh-
olding, runlength encoding, region extraction and sorting, conversion from pixel
coordinates to real-world coordinates, pattern detection and filtering, and deliv-
ery of detection results via network.

3.1 CMVision-Based Color Segmentation

The color segmentation plugins of this stack, namely color thresholding,
runlength-encoding, region extraction and region sorting, have all been im-
plemented by porting the core algorithms of the existing CMVision library to
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the new SSL-Vision plugin architecture [4]. To perform the color thresholding,
CMVision assumes the existence of a lookup table (LUT) which maps from the
input image’s 3D color space (by default YUV), to a unique color label which is
able to represent any of the marker colors, the ball color, as well as any other de-
sired colors. The color thresholding algorithm then sequentially iterates through
all the pixels of the image and uses this LUT to convert each pixel from its
original color space to its corresponding color label. To ease the calibration of
this LUT, the SSL-Vision system features a fully integrated GUI which is able to
not only visualize the 3D LUT through various views, but which also allows to
directly pick calibration measurements and histograms from the incoming video
stream. Fig. 2 shows two example renderings of this LUT. After thresholding
the image, the next plugin performs a line-by-line runlength encoding on the
thresholded image which is used to speed up the region extraction process. The
region extraction plugin then uses CMVision’s tree-based union find algorithm to
traverse the runlength-encoded version of the image and efficiently merge neigh-
boring runs of similar colors. The plugin then computes the bounding boxes and
centroids of all merged regions and finally sorts them by color and size.

3.2 Camera Calibration

In order to deduce information about the objects on the field from the measure-
ments of the cameras, a calibration defining the relationship between the field
geometry and the image plane is needed. Depending on the applied calibration
technique, current teams use a variety of different calibration patterns, leading
to an additional logistic effort while attending tournaments. Furthermore, many
such calibration procedures require the patterns to cover the field partially or as
a whole, making the field unusable for other teams during the setup.

For the calibration procedure of SSL-Vision, no additional accessories are re-
quired. Instead, the procedure uses solely the image of the field and the dimen-
sions defined in the league’s rules. Because SSL-Vision uses two independent vision
stacks, we calibrate both cameras independently using the correspondinghalf field.
To model the projection into the image plane, a pin-hole camera model including
radial distortion is used. The corresponding measurement function h projects a
three-dimensional point M from the field into a two-dimensional point m in the
image plane. The model parameters for this function are, intuitively, the orienta-
tion q and the position t, transforming points from coordinate system of the field
into the coordinate system of the camera, and the intrinsic parameters f , (u0, v0)
and κ indicating the focal-length, image center and radial distortion, respectively.

In a typical Small Size League camera setup, estimating such a set of cali-
bration parameters by using only the field dimensions is actually ill-posed, due
to the parallelism of the image plane and the field plane (which is the reason
for the frequent use of calibration patterns). The estimator cannot distinguish
whether the depth is caused by the camera’s distance from the field (encoded
in tz) or the focal length (encoded in f). To circumvent this problem, a man-
ual measurement of the camera’s distance from the field is performed and the
parameter is excluded from the estimation algorithm.
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a) b)

Fig. 3. Camera calibration: a) Result of calibration. The points selected by the user
are depicted by labeled boxes, the field lines and their parallels are projected from the
field to the image plane. b) Detected edges for the second calibration step.

The actual calibration procedure consists of two steps:

1. The user selects the four corner points of the half-field in the camera image.
Based on the fact that the setup is constrained by the rules, rough but
adequate initial parameters can be determined in advance. Based on these
initial parameters, a least squares optimization is performed to determine a
set of parameters corresponding to the marked field points [5] (cf. Fig. 3a).
Thus, we want to minimize the squared difference of the image points mi

that were marked by the user in the image plane and corresponding field
point Mi, projected into the image plane using the measurement function
mentioned above:

4∑
i=1

|mi − h(Mi, q, t, f, uo, vo, κ)|2 (1)

Since this is a nonlinear least squares problem, the Levenberg-Marquardt
algorithm [6] is used to find the optimal set of parameters.

2. After this first estimate, the parameters are refined by integrating segments
of field lines into the estimation. Since the field lines contrast with the rest
of the field, an edge-detector is applied to find the lines using their predicted
position computed from the estimate and the field dimensions as a search
window (cf. Fig. 3b). A reasonable number of edges on the lines is then used
to extend the least squares estimation. For this, we introduce a new to be
estimated parameter α for each measurement and minimize the deviation of
the measured point on the field line and the projection of the point (α p1 +
(1 − α) p2 between the two points p1, p2 constraining the line segment. The
term to be minimized now reads

4∑
i=1

|mi − h(Mi, p)|2 +
n∑

i=1

|mi − h(αi Li,1 + (1 − αi) Li,2, p)|2 (2)

where Li,1 and Li,2 constrain the line segment and αi describes the actual po-
sition of measurement i on this line. Please note, that multiple measurements



432 S. Zickler et al.

may lie on the same line. For better readability, the camera parameters were
combined into p.

After this calibration procedure, the inverted measurement function h−1 can be
used to transform pixel coordinates to real-world coordinates.

3.3 Pattern Detection

After all regions have been extracted from the input image and all their real-
world coordinates have been computed, the processing flow continues with the
execution of the pattern recognition plugin. The purpose of this plugin is to
extract the identities, locations, and orientations of all the robots, as well as the
location of the ball. The internal pattern detection algorithm was adopted from
the CMDragons vision system and is described in detail in a previous paper [7].

Although this pattern detection algorithm can be configured to detect pat-
terns with arbitrary arrangements of 2D colored markers, the Small Size com-
mittees are intending to mandate a standard league-wide pattern layout with
the transition to SSL-Vision, for simplification purposes.

3.4 System Integration and Performance

After the pattern detection plugin has finished executing, its results are deliv-
ered to participating teams via UDP Multicast. Data packets are encoded using
Google Protocol Buffers [8], and contain positions, orientations, and confidences
of all detected objects, as well as additional meta-data, such as a timestamp and
frame-number. Furthermore, SSL-Vision is able to send geometry data (such
as camera pose) to clients, if required. To simplify these data delivery tasks,
SSL-Vision provides a minimalistic C++ sample client which teams can use to
automatically receive and deserialize all the extracted positions and orientations
of the robots and the ball. Currently, SSL-Vision does not perform any “sensor
fusion”, and instead will deliver the results from both cameras independently,
leaving the fusion task to the individual teams. Similarly, SSL-Vision does not
perform any motion tracking or smoothing. This is due to the fact that robot
tracking typically assumes knowledge about the actual motion commands sent
to the robots, and is therefore best left to the teams.

Table 1 shows a break-down of processing times required for a single frame of
a progressive YUV422 video stream of 780×580 pixel resolution. These numbers
represent rounded averages over 12 consecutive frames taken in a randomly con-
figured RoboCup environment, and were obtained on an Athlon 64 X2 4800+
processor.

3.5 GPU-Accelerated Color Thresholding

The traditional sequential execution of CMVision’s color thresholding process
is – despite its fast implementation through a LUT – a very computationally
intensive process. The performance values in Table 1 clearly show that color
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Table 1. Single frame processing times
for the plugins of the default RoboCup
stack

Plugin Time

Image capture 1.1 ms
Color thresholding (CPU) 3.6 ms
Runlength encoding 0.7 ms
Region extraction and sorting 0.2 ms
Coordinate conversion < 0.1 ms
Pattern detection < 0.1 ms
Other processing overhead 0.4 ms
Total frame processing < 6.2 ms

Table 2. Single frame processing times
for the näıve GPU-accelerated color
thresholding

Component Time

Copy data to texture memory 3.0 ms
Color thresholding (GPU) 32 μs
Copy data from frame buffer 11.0 ms
Total thresholding time < 15 ms

thresholding currently constitutes the latency bottleneck of the processing stack
by a significant margin. One of the best ways to overcome this latency problem
is by exploiting the fact that color thresholding is a massively parallelizable
problem because all pixels can be processed independently. However, even with
the reasonable price and performance in current Personal Computers, only 2 or
4 physical CPU cores are available for parallel computing which in our case are
already occupied by each camera’s capture threads, the visualization process, and
other OS tasks. Nevertheless, modern commodity video cards which feature a
programmable Graphic Processing Unit (GPU) have become widely available in
recent years. Because GPUs are inherently designed to perform massively parallel
computations, they represent a promising approach for hardware-accelerated
image processing. In this section we will provide initial evaluation results of a
GPU-accelerated color thresholding algorithm which may be included in a future
release of SSL-Vision.

To implement the GPU-accelerated thresholding algorithm, we selected the
OpenGL Shading Language (GLSL), due to its wide support of modern graphics
hardware and operating systems. GLSL allows the programming of the graph-
ics hardware’s vertex processor and fragment processor through the use of small
programs known as vertex shaders and fragment shaders, respectively [9]. Vertex
shaders are able to perform operations on a per-vertex basis, such as transfor-
mations, normalizations, and texture coordinate generation. Fragment shaders
(also commonly referred to as pixel shaders), on the other hand, are able to
perform per-pixel operations, such as texture interpolations and modifications.

Because we are interested in performing color thresholding on a 2D image,
we implement our algorithm via a fragment shader. Fig. 4 shows an overview
of this GPU-accelerated color thresholding approach. First, before any kind of
video processing can happen, we need to define a thresholding LUT. This LUT is
similar to the traditional CMVision version in that it will map a 3D color input
(for example in RGB or YUV) to a singular, discrete color label. The difference
is however, that this LUT now resides in video memory and is internally rep-
resented as a 3D texture which can be easily accessed by the fragment shader.
As modern video hardware normally provides 128MB video memory or more,
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System Memory

Video Memory

Frame Buffer

Input Image Result

3.0 ms 11.0 ms

2D Texture 3D Texture (LUT)

Fragment Shader
( 32 μs)

Fig. 4. Block diagram of color thresholding using GLSL

it is easily possible to encode a full resolution LUT (256x256x256, resulting in
approximately 17MB). In order to perform the actual color thresholding pro-
cessing, any incoming video frame first needs to be copied to the video hardware
to be represented as a 2D texture that the shader will be able to operate on. The
fragment shader’s operation then is to simply replace a given pixel’s 3D color
value with its corresponding color label from the 3D LUT texture. We apply
this shader by rendering the entire 2D input image to the frame buffer. After
the render process, we now need to transfer the labeled image from the frame
buffer back to system memory for further processing by any other traditional
plugins.

Table 2 shows the average time used by each step of the color thresholding
process using an NVIDIA Geforce 7800 GTX video card under Linux, on the
same CPU that was used for the measurements in Table 1. The input video
data again had a size of 780×580 pixels. The values clearly indicate that the
actual thresholding step is about 100 times faster than on the normal CPU.
Interestingly, however, this approach has introduced two new bottlenecks in the
upload and download times between system memory and video memory which,
in total, makes this approach more than four times slower than the traditional
color thresholding routine.

A potential approach for improving this performance would be to convert most
or all other image-processing related plugins, which follow color thresholding,
to the GPU. This way, there would be no requirement to transfer an entire
image back from video memory to system memory. Instead, a major portion
of the image processing stack would be computed on the GPU, and only the
resulting data structures, such as final centroid locations, could be transfered
back to system memory. For this process to work however, the color segmentation
algorithms would need to be majorly revised, and as such this approach should
be considered future work.

4 Further Steps and Implications

Beyond a proper technical realization, as described in the previous sections, the
introduction of a shared vision system for the Small Size League bears several
organizational issues as well as implications for future research, even for other
RoboCup leagues.
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4.1 Schedule of Introduction

The first release of SSL-Vision has been published in spring 2009. Since then,
all teams are free to test the application in their labs, to review the code, and
to submit improvements. At the upcoming regional competitions as well as at
RoboCup 2009, the usage of the system is voluntary, i. e. teams can run it on
their own computers or decide to share the vision system with others. However,
everybody is free to keep using their own system. After this transition phase,
which has been established to provide a rehearsal under real competition con-
ditions, the usage of SSL-Vision will become obligatory, in time for RoboCup
2010.

4.2 Implications for Research

By introducing a shared vision system for all teams, one degree of individuality
for solving the global task “Playing Soccer with Small Size Robots” becomes re-
moved. However, during the last years, most experienced teams have converged
towards very similar sensing solutions, and have produced only few significant
research results regarding computer vision. De facto, having a performant vision
system does not provide any major advantage, but should rather be considered a
minimum requirement as sophisticated tactics and precise control are dominant
factors in the SSL. On the other hand, new teams often experience problems
having an insufficient vision application which strongly decreases their entire
system’s performance. Thus, SSL-Vision will directly benefit all newcomers, al-
lowing them to base their tactics on a robust global vision sensor.

Furthermore, the transition to a shared vision system does not imply a stagna-
tion in vision-related research. In fact, due to its open and modular architecture
(cf. Sect. 2), SSL-Vision allows researchers to develop and “plug in” novel im-
age processing approaches without needing to struggle with technical details
(e.g. camera interface control or synchronization). Therefore, new approaches
can be fairly and directly compared with existing ones, thus ensuring a con-
tinuing, community-driven evolution of SSL-Vision’s processing capabilities and
performance.

Whereas the system’s impact for the Small Size League is obvious, it might
also become directly useful for teams in other RoboCup leagues. Many re-
searchers in local vision robot leagues require precise reference data – so-called
ground truth – to evaluate their results during development, e. g. of localization
algorithms or for gait optimization. One example for tracking humanoid soccer
robots with an SSL vision system is shown in [10]. Due to the standardized field
size, SSL-Vision becomes an off-the-shelf solution for the Humanoid as well as
the Standard Platform League.

Finally, it needs to be strongly emphasized that SSL-Vision’s architecture is
not at all limited to only solving the task of robot soccer vision. Instead, the
system should really be recognized as a framework which is flexible and versatile
enough to be employed for almost any imaginable real-time image processing
task. While, by default, the system provides the stacks and plugins aimed at the



436 S. Zickler et al.

RoboCup domain, we are also eagerly anticipating the use and extension of this
system for applications which go beyond robot soccer.

5 Conclusion

In this paper, we introduced the shared vision system for the RoboCup Small Size
League, called SSL-Vision. We presented the system’s open software architecture,
described the current approaches for image processing and camera calibration,
and touched upon possible future improvements, such as GPU-acceleration. Fi-
nally, we discussed SSL-Vision’s scheduled introduction and its impact on re-
search within the RoboCup community. We strongly believe that the system
will positively affect the Small Size League by reducing organizational problems
and by allowing teams to re-focus their research efforts towards elaborate multi-
agent systems and control issues. Because SSL-Vision is a community project,
everybody is invited to participate. Therefore, SSL-Vision’s entire codebase is
released as open-source [11].
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Abstract. Groups of individuals often use formations as a means of providing
orderly movement while distributing members in a manner that is advantageous
to the group’s activities. A particular formation may offer a defensive advan-
tage over moving individually, for example, exposing only some of the agents
to the proximity of enemies, or might increase group abilities by allowing in-
dividuals to limit perceptual focus to one small part of the environment. For-
mations are used throughout the natural world and in many organized human
groups, and are equally valuable to multi-robot systems. Most formation con-
trol in multi-robot systems is extremely limited compared to the formations we
see in nature: formations are precisely defined, and mechanisms for forming and
maintaining formations often require unique labels for individuals and broadcast
communication. In this paper, we explore a method for creating heuristic forma-
tions - where agents create an overall formation, but forgiveness exists for small
variations in form - using only local rules for creating formations and allowing
only local communication. Our approach defines relative positions in terms of
a probability given the position of one’s nearest neighbor, and improves on prior
work by assuming that all agents do not begin knowing the unique labels of others
in the group. The approach also assumes heterogeneity in sensing, in that agents
may not be able to perceive the unique labels of others, and thus may require
assistance from those who can. This assumptions make formations robust to the
failure of individual agents, and allow previously unknown agents to join an ex-
isting formation. An evaluation of this approach is illustrated using Player/Stage,
a commonly accepted simulation package for multi-robot systems, for controlled
experimentation.

1 Introduction

The ability to move into and maintain formations is an important property in many
groups. The potential advantages formations bring are many and diverse, and can be
see in human organizations and in the natural world. In a military unit, for example,
a formation can be used as a defensive structure, exposing only a limited number of
agents on the periphery to potential enemies (e.g. a square vs. a straight line). In hu-
mans this is seen in military situations as well as many sports, but the same advantage
can be seen in the much less geometric formation of a school of fish. Formations may
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be used to decrease the amount of work individuals must expend (e.g. aerodynamic in-
creases achieved through the formation of a bird flock [1]) or make better use of limited
sensory abilities by allowing individuals to focus only on a given area depending on
their position in the formation [2]. They may also allow assumptions for increased abil-
ity to navigate and decreased decision-making time (e.g. a flight pattern for a group of
jets allows one member to predict the likely positions and motion of others, decreasing
the number of factors that must be considered when making a change in movement).

While these are most obviously seen in humans in military situations, they are seen
throughout the natural world simply because other creatures that form groups expe-
rience significantly more vulnerable situations than do modern humans in their daily
lives. For the same reason, formations are very useful for groups of robots: like non-
human creatures, they are restricted in their decision-making and perceptual abilities
compared to humans, and lack the common-sense knowledge to function in highly com-
plex domains. Moreover, many of the applications that we consider robots amenable to
- military environments and search-and-rescue settings, for example - present the same
dangers that have led human military units to adopt the use of formations.

There are a number of important active areas of research on formations in multi-
robot systems: forming various formations based on global or local interactions between
robots; changing from one formation to another (again, based on global or local interac-
tions and motivations), and maintaining formations in the face of hazards to navigation,
for example. Most of this work is performed using ideal geometric patterns that are
similar to those used in military applications (diamonds, squares, etc.). Comparatively
little work takes advantage of the fact that formations in nature are rarely perfectly ge-
ometric: while schools of fish for example do form ellipses and other approximations
to geometric shapes, for example, these are based on flexible local rules that result in a
loose aggregate rather than a perfect geometric formation [3]. Similarly, while a flock
of birds may form a V-shape, local rules do not necessarily dictate a precise angle,
nor whether one side is symmetric with the other. From the standpoint of creating a
formation, those in nature are more flexible and less constrained than that with which
we are familiar with militarily. Thus, expecting a formation of robots to achieve some-
thing close a stated formation but not rigidly precise should similarly allow the benefits
of formation-based movement while making the effort and infrastructure required to
achieve and maintain formation reasonable.

In this paper, we describe a method for achieving formations in multi-robot systems
where formations are formed heuristically, rather than to a precise, pre-defined pattern.
This is done by assigning relative positions in the formation a probability, given the
position of a nearest neighbor, rather than demanding an exact placement for particular
individuals. The technique we employ to achieve formations requires only a simple
set of local rules governing the angle and position between any agent and its nearest
neighbor, and unlike other approaches, does not require all agents to know a unique
identifier for all others in the group, nor to have the ability to broadcast to all members
of the group. In our approach, agents begin knowing nothing about the identities of
other agents, and some agents will have the ability to perceive the identities of others.
Direct inter-agent communication is the only form of communication required to apply
this technique to create heuristic formations in a group of robots.
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We begin by reviewing related work on formation control in multi-robot systems, and
then describe our approach in relation to this work. We then describe an implementa-
tion using Player/Stage [4], a well-accepted simulation system for multiple robots, and
examine the performance of our approach, comparing the use of limited identification
and communication with a baseline group that is given the ability to identify all individ-
uals uniquely. Current work involves a study of the performance of this approach using
Citizen Micro-robots in a mixed reality environment, and this and other future work is
then discussed.

2 Related Work

In previous work, Yamaguchi [5] describes a method of formation control requiring
only local information. Agents establish a link with one or two neighbors. Each agent
then updates a formation vector based on the positions of its neighbors This method is
successfully demonstrated in simulation and with real robots. One notable limitation of
this method is the fact that it works by maintaining relative distances only. Our work
makes use of both distance and angle, allowing for a larger range of potential formations.

Balch and Arkin [2] describe a behavior-based system, in which groups of robots
of known size and configuration can move together in formation. Their method re-
lies on knowing the number of other agents and their positions. Our approach calcu-
lates the heading and speed of each individual agent as the weighted vector sum of
several independent behaviors, as Balch and Arkin’s approach does (this is common
among behaviour-based agents). The work presented here extends that of Balch and
Arkin by not requiring that each agent have a known spot in the formation. Balch and
Arkin’s work was also important in categorizing formation control approaches by the
means with which an agent calculates its appropriate position: Unit-Center Referenced,
where the center of the formation is determined and positions are taken relative to this;
Leader-Referenced, where positions are taken relative to a unique leader, and Neighbor-
referenced, where positions are taken relative to one other predetermined robot. Like
many other approaches, our work on formation control is neighbor-referenced, in order
to rely more on local information and avoid the bottleneck and failure-recovery prob-
lems associated with a unique leader.

Fredslund and Mataric [6] propose a method of formation control similar to that
presented here. They assign each agent a unique ID. Each agent passes its ID to a
function which determines its desired neighbor and the relative position at which this
neighbor should be kept. While this allows for some types of formations that our method
cannot currently accomplish, it relies on the ability to locate a unique individual in the
group. It also does not have a mechanism for failure recovery. Our proposed method
has neither of these limitations.

Howard et al. [7] perform simple formation control with heterogeneous agents. Fol-
lower agents have sensors to track and follow Leader agents. In their approach, sensing
differences are strongly tied to specific roles. In our work, all agents share the same
role of “formation participant”. Agents can perform in this role with different levels
of success, however, depending on their sensing capabilities, and thus agents are still
heterogeneous.
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Hattenberger et al. [8] describe a method of dynamically adapting a formation to
changing environmental conditions. The primary limitation of their technique is the de-
pendence on a lead agent to calculate the relative positions of all other agents. Although
it ensures that the intended formation is achieved, it creates a bottleneck that does not
exist in our decentralized approach.

Other researchers [9,10] discuss methods of using only local sensor information
combined with simple rules to create formations. We expand on these techniques by
allowing the rules to change as our knowledge of the environment grows. This allows
us to create formations where different agents obey different formation conditions. The
conditions that they obey can also vary dynamically. This is an advantage that neither
of these systems offer.

3 Heuristic Formation Control with Limited Knowledge of Others

As mentioned previously, our approach is neighbor-referenced. This means that each
agent takes a position in the formation based on that of a particular neighbor, as opposed
to via a secondary frame of reference, which in turn allows rules for positioning to be
defined locally. This also allows a team of agents to remain in formation when as little
as one other agent is within sensor range.

In our approach to formation control, a formation is defined as a set of one or more
formation conditions. A formation condition describes a particular relationship between
two neighboring agents in an overall formation, in terms of distance and angle. A set of
formation conditions must describe all types of relationships between two neighbors to
describe the structure of a formation. Since the correct position to occupy may not be
the same condition that is being used by a neighbor, there will be relationships between
formation conditions as well. For example, a V formation consists of three different
formation conditions: one describing the angular relationship on one side of the V, the
other the inverse forming the other side of the V, and the third the centermost position
where the agent is following no one. Agents joining the formation attempt to query
their nearest neighbor (which may or may not be possible, depending on whether they
know that neighbor’s ID) for advice on a space to occupy in the formation. The neigh-
bor responds with a set of probabilities indicating which formation condition(s) best
describe the relationship the querying agent should physically assume if it joins the the
formation following the agent being queried. Representationally, a formation condition
thus consists of two components: a vector specifying the desired relative angle and dis-
tance to the nearest neighbor, and a list of probabilities (one per formation condition)
describing the probability that the respective condition correctly defines how an agent
should position itself. In turn, the formation condition adopted then defines the answers
that new agent will give to queries from future agents joining the formation.

For example, in a V formation, each agent requires the information shown in Fig. 1.
Each row represents one formation condition, and the vector information used will de-
pend on the desired size and spread of the formation, and the size of the robots. The
probabilities in each formation condition represent the information that will be im-
parted to a querying agent, advising it as to which formation condition it should likely
follow, given the formation condition the encountered neighbor is following. For exam-
ple, if the encountered neighbor is on the left side of a V formation, the encountering
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Condition Name Angle (degrees) Distance (metres) P1 P2 P3
1 Right 30 2 1 0 0
2 Left -30 2 0 1 0
3 Center – – 0.5 0.5 0
4 Null – – 0 0 1

Fig. 1. Formation conditions for a V formation

agent must be also, without exception: the probability of following the same formation
condition is one, and the others, zero. In a V formation, the only condition that offers an
alternative is that of following the central position, since an agent following this could
take either side. While this formation is simple, other formations (e.g. a diamond) of-
fer more choice points, since the diamond will branch back in at a given position as
well. In addition, there is the possibility of an implicit extra (null) formation condition
in any formation, that is followed when no information is available as to the condition
that should be followed. In a V formation, this can be defined with probabilities 0, 0,
and 1 respectively, allowing a new formation to be formed with that agent occupying
the center. Thus, each formation can be given a logical starting point. If at any time, an
agent has no visible neighbors, it will revert to this state.

For the current implementation, we consider only fixed values for probabilities and
vector components, as opposed to those where these values can be defined as a function
of those values in a neighbor. This means that each agent potentially involved in a
formation must share the same table of formation conditions.

Unlike some other approaches, ours does not assume that each agent will always
be able to uniquely identify and address all others in communication. An agent that
cannot uniquely identify others is limited in its ability to participate in the formation,
as it cannot direct communications without an ID. Even if it could, it would not be able
to precisely determine the physical origin of the response. All messages in the system,
however, contain the identity of the sender, so it is possible to reply to others who initiate
communication. We make use of this fact by using the capability message. Whenever
an agent that can determine identifiers encounters a new neighbor, it sends a capability
message, asking for the other agent’s sensing capabilities. The original sender then uses
this knowledge of capabilities to transmit useful information to that agent: in this case,
a listing of all other agents that should be visible, and their IDs and positions relative to
the receiving agent. The receiving agent can then use this information to its ability to
communicate and participate in the formation.

When a new agent enters the vicinity of the formation, it first locates its nearest
neighbor. It then attempts to communicate with this neighbor. It can only do so if it
knows the ID of that agent, since all communication is directed. If communication is
successful, that agent will respond with a description of the likely alternatives for the
new agent in the formation, and the agent can select one of these. If an agent cannot
communicate with its nearest neighbor, it selects a random formation condition, which
may cause a local aberration in the overall formation, but still allows others to build an
overall approximation of the intended formation. No prior knowledge of other agents
beyond the common knowledge of formations is required, and an agent need not know
anything ahead of time about the size of the formation or the other agents involved.



442 M. de Denus, J. Anderson, and J. Baltes

Because an agent can find a neighbor at any given time, new agents can similarly be
added in an ad hoc manner. Similarly, failure recovery can easily be handled within the
agents themselves. When an agent fails to the point where it stops all movement, one
of two things will happen: the following agent will collide (or detect a collision with)
the agent it was following, or the following agent will stop as well, and no movement
on its part will occur. Provided these two conditions are covered in an implementation,
failure recovery is assured. An agent must view the lack of movement as not contribut-
ing toward its goals, and the stationary former neighbor as an obstacle. This will then
allow the agent to begin moving and looking for a new point to join the formation. The
ability to deal with failure in this manner means that no member of a formation is ever
essential. If any one member fails, it can either be replaced, as described above, or the
formation will adapt to its absence. If the center position in a V fails, for example, we
will ultimately have two diagonal lines, and the front of each of those will no longer
be following any agent, violating their formation conditions. They will both revert to
the null formation condition, causing them to recognize themselves as the new center
positions. They will then act independently, and will likely merge at some point.

4 Implementation

While the previous section described the overall operation of our approach to formation
control, any implementation of this approach requires consideration of agent abilities and
the architecture through which agents are designed. This section briefly overviews the de-
cisions we made for the implementation used to examine the performance of the approach
(though other forms of implementation are certainly possible). Because Player/Stage was
chosen as a platform for evaluating our approach, largely for reasons of control, we em-
ployed agents that were easily constructed using available components in Player/Stage
[4]. These are simulated Pioneer 2DX robots, using laser scanners with fiducial tracking.

Given that the core ability to form good formations is the ability to communicate
directly with others, we want to examine the ability to form adequate formations using
groups of agents with the ability to sense the IDs of other agents (i.e. ultimately have
the ability to query them) and those that cannot. To achieve this in Player/Stage, we
employ on a subset of the population a laser scanner that can read a fiducial marker
attached to an agent. These form the agents that can query an ID and communicate. All
agents also have sensors that can determine the distance and angle to another agent or
obstacle, independent of determining identity.

In order to simulate movement towards a goal, the agents are given the ability to
self-localize. This information is used to simplify movement towards a goal position. In
a real-world setup, this could be replaced by some sort of goal marker, or a distributed
path planning system. For the purposes of this research, we will simply assume that
some way of agreeing on a goal position exists. This localization information is used
only to simplify the selection of a common goal position.

4.1 Agent Behaviors

The agents used in our implementation are behaviour-based, which involve a set of
interacting weighted behaviours that ultimately determine the control values for the
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agent. This is also similar to the agents employed in [2]. Our agents employ three
behaviors:

Keep Formation
Go to Goal
Avoid Obstacles

The Keep Formation behavior is the heart of the approach. It computes the agent’s
desired relative position (in terms of a distance and angle vector) to a neighbor and
compares it to the current relative position of that neighbor. The difference between
these two vectors is the output of the behaviour. This generates a vector which always
points towards the location in space at which the agent satisfies its chosen formation
condition. The magnitude of this vector, and thus the weight it occupies in the agent’s
decision for movement, depends on the degree to which the agent is out of formation.

The Go to Goal behavior is extremely simple. It simply results in a vector, pointing
towards the desired final destination of the formation. The magnitude of this vector is
constant, reflecting a constant desire to move toward a goal (which is ultimately affected
by the blending of the other two behaviours).

The Avoid Obstacles behaviour calculates a vector intended to direct the agent away
from nearby obstacles, with a magnitude relative to the inverse square of the current
distance to that obstacle. The only obstacles considered by this calculation are those
that are visible, and within a minimum distance. This is similar to the technique used by
[2] for obstacle avoidance, and common in many behaviour-based agents. The primary
difference between this work and [2] is that we do not consider other agents separately
from environmental obstacles. This is what causes a failed agent to be viewed as an
obstacle and avoided (thus allowing an agent to separate itself from a dead neighbor
and later re-join a formation).

One positive aspect of a behaviour-based approach is the ease of extending the ca-
pabilities of the agent. For example, if we were to adapt this technique to a team of
searching robots, we may want to add a behaviour that would attract agents to any
visible targets.

Similar to the techniques described in [2], the above behaviors each generate a vector,
indicating the direction that this single behavior would cause us to go. These vectors are
then scaled according to pre-defined parameters. For the purposes of this work, we used
a scale factor of 2 for the Go To Goal behavior, 1 for the Keep Formation behavior and 3
for the Avoid Obstacles behaviour. These values were determined by trial and error, and
are not necessarily optimal. The vector sum of these behaviors is then used to calculate
the heading and speed of the agent.

Communication is handled outside of the behaviour-based architecture. In order to
more accurately simulate real robots, direct inter-agent communication will be used.
Both types of communication will have a limited range. Yoshida et al. [11] demon-
strated the feasibility of using local communication in a formation control domain. They
also referenced several results, suggesting that beyond approximately 10 agents, global
communication would no longer be feasible.

Because Player/Stage is a simulated environment, it would be easy to have communi-
cation go across an unrealistic range. To ensure greater correspondence with the physical
world, all messages are passed through a communication server. This server tracks the
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absolute positions of agents and uses these to filter messages, only delivering those to
agents in range. It will also allow us to experiment in future with greater communica-
tion faults and difficulties. This server also serves as a convenient place to do tracking of
statistics, as it has access to the absolute positions and formation conditions of all agents.

Five types of messages are implemented: Formation Request, State, Capability,
Neighbor, and Heartbeat messages. All messages contain the ID of the sender, to al-
low for replies even if the recipient cannot identify the sender through perception.

The Formation Request message is sent when an agent encounters a new neighbor,
and is intended to elicit the formation condition probabilities from that agent, as de-
scribed in Section 3. If the ID of the neighbor is unknown, this message can not be sent.
In response, the neighbor sends a State Message, containing the formation condition
probabilities described in Section 3.

Upon encountering an agent whose sensing capabilities are unknown, an agent will
send a Capability message. An agent receiving such a message responds with a descrip-
tion of its sensing capabilities.

If an agent is capable of sensing unique identifiers, it can share this information by
sending out Neighbor messages. These messages are directed at a target agent, which
lacks the ability to sense unique identifiers. A neighbor message contains the polar
coordinates of a sensed agent, relative to the target agent.

A Heartbeat message is sent from an agent to its neighbor(s) at regular intervals.
This is done to help agents to track if they have unsatisfied formation conditions. A
lack of a heartbeat for an established period of time indicates that a neighbor is no
longer present.

4.2 Evaluation

The approach as described above was implemented using the Player/Stage [4] sim-
ulation package. Agents were modeled as Pioneer 2DX robots as described above.
Player/Stage’s fakelocalize package was used to give absolute coordinates of the agents
for tracking purposes. We ran a series of trials to examine the performance of the ap-
proach in general, and to examine the effect of local communication and the number of
agents that could perceive the IDs of others. For a basis of comparison, we considered
two measurements of error, Error measurements were taken by a human observer, at the
first point in time when every agent in the system, was at the correct relative position
and angle to satisfy any formation condition. We define a local error to be an agent
following a formation condition that has zero probability, given the actual condition of
its neighbor. We define a global error to be a measure of difference from the ideal for-
mation of n agents. This can be determined by finding and counting the largest group
of agents that are in positions consistent with the ideal formation, and subtracting this
number from the total size of the formation.

Initial test runs showed that if the goal-seeking behavior was not strong enough,
agents could deadlock, by each following one another. Increasing the weight of the
goal-seeking behavior corrects this, by moving one agent out of the field of view of the
other. A better solution for a future implementation would be some sort of negotiation
when an agent chooses a neighbor. This could be skipped in a case where the ID of the
neighbor is unknown.
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Fig. 2. An example of a mostly correct V formation achieved by our system

It was also noticed, as one might expect, that when the desired formation distance
was close to the obstacle avoidance distance, formation members would drift out of
formation. This often led to changes in the nearest neighbor over time.

Our first trial consisted of a line formation with five members. Varying the number of
agents able to sense IDs had no noticeable impact on the time needed to establish the line
formation. Times ranged between 58 and 64 seconds, with no discernable pattern. This
makes sense, as the only piece of information communicated by agents is their current
formation condition, and there is only one condition in this formation. It also goes without
saying that there were no errors, as the line formation has only a single condition.

Next, we examined ten agents in a V formation. This formation is more interesting,
as it has three formation conditions. each condition describing the arms of the V is valid
if the neighbor shares that condition (as per Fig. 1). In the ideal V formation, there is
a single agent in the central position that is a neighbor to two agents. Qualitatively,
agents who can sense IDs do generate more straight line formations, where the group is
reduced to one half of the V. This is likely due to the fact that agents are more likely to
communicate with agents other than the one in front. The results suggest that the num-
ber of local errors increases as the number of agents who can sense IDs decreases. This
makes sense, as agents who cannor sense IDs have limited communication abilities.
The results also suggest that there is a critical number of agents who cannot sense IDs,
beyond which the number of relative errors is roughly constant. The results of these
trials are displayed in Tables 1 and 2.

We should also note that the formations established with no ID sensing were more
prone to sudden change, since agents can’t uniquely identify one-another without the
help of an observer. This inability to identify one-another makes them more-likely to re-
calculate their desired position in the formation. These re-calculations tend to result in
formations where members shift around. The ability to uniquely identify others reduces
this occurrence in the other two sets of trials.
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Table 1. Number of global errors in the formation with ten agents

Number of agents who can sense Ids Trial 1 Trial 2 Trial 3 Trial 4
10 1 4 4 4
5 4 4 2 2
0 3 4 4 3

Table 2. Number of local errors in the formation with ten agents

Number of agents who can sense Ids Trial 1 Trial 2 Trial 3 Trial 4
10 0 0 0 0
5 2 0 1 2
0 2 1 1 2

5 Discussion

We are currently working on an evaluation of this approach using a larger team of
physical robots. In order to support a large team in a small area, we are using twenty
Citizen Micro-robots (Fig. 3, left), each approximately an inch in size. These operate in
a mixed reality environment: the robots form their own physical reality, along with any
other objects that are introduced, and a virtual reality is provided by running the robots
on a large horizontally-mounted monitor (Fig. 3, right), allowing a global vision system
to perceive both physical and virtual elements, and precisely track the movements of
robots. In prior work [12], we have shown that this approach allows better control and
repeatability of experiments while allowing large numbers of small robots to operate in
a physical environment. Here, this approach will allow us to substitute human judge-
ment with computer-vision based tracking to examine the accuracy of the formations
and their adaptivity over time, as well as generate random obstacles and automatically
track collisions between these and robots moving in formation. The micro-robots con-
tain no laser scanners and currently have no local vision. Limited local vision, differing
between types of agents, can be provided by restricting the viewpoint of the agents in
our global vision system.

One limitation of our current approach is that we consider only formation conditions
where the neighbor’s position is a fixed value. An interesting extension would be to allow
the neighbor’s position to be based on a function instead. For example, we could vary
the desired angle as distance between agents changes, and create curved formations.

Some positions in a formation are more important than others: in particular, there
are situations where agents may be required to share a common neighbor. One potential
mechanism to deal with this is the use of mandatory formation conditions. In a manda-
tory formation condition, specific neighbors are tagged as mandatory, and if there no
neighbor(s) satisfy the condition, an agent will send a message to all neighbors it can
identify, requesting that these conditions be filled. Upon receiving this message, an
agent can decide to fill the request, or pass it along to its neighbors. An agent will only
choose to fill the request if it cannot be passed along further.
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Fig. 3. Left, Citizen Micro-robots; Right, a Mixed Reality application

Another possible addition would be to make an agent’s state depend not only on
the state of its nearest neighbor, but also an any known agents already following it.
This would potentially resolve some of the issues associated with branching formations.
For example, if the leading agent in a V formation has a left follower, but no right
follower, it should be considered to be in a different state than if it has a left follower, but
no right follower. This extension, combined with the mandatory conditions described
above could help to overcome some of the difficulties that this system has in reducing
the number of global errors.

In this paper, we have described an approach to heuristic formation control in groups
of agents with different types of sensors, and have described an implementation using
ten agents. Since the approach does not rely on each agent knowing the identity of all
others, the approach is robust to agent failure and adapts to adding new agents as well.
Though our current evaluation has not examined scalability, we argue that this approach
should scale very well, because there are no communications bottlenecks, and the per-
agent processing is not strongly related to the total number of agents in the system. In
fact, we expect that results with very large numbers of agents will yield better results, as
a larger number of agents increases the likelihood that all of the different conditions of
the formation will be met. The adaptability and scalability should make this approach
one that is useful for large numbers of agents, and environments such as search-and-
rescue, where failure and agent replacement is not only possible, but expected.
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N. Ergin Özkucur and H. Levent Akın

Boğaziçi University, Department of Computer Engineering,
Artificial Intelligence Laboratory, 34342 Istanbul, Turkey

{nezih.ozkucur,akin}@boun.edu.tr

Abstract. Multi-robot map merging is an essential task for cooperative
robot navigation. In the realistic case, the robots do not know the ini-
tial positions of the others and this adds extra challenges to the problem.
Some approaches search transformation parameters using the local maps
and some approaches assume the robots will observe each other and use
robot to robot observations. This work extends a previous work which
is based on EKF-SLAM to the Fast-SLAM algorithm. The robots can
observe each other and non-unique landmarks using visual sensors and
merge maps by propagating uncertainty. Another contribution is the cal-
ibration of noise parameters with supervised data using the Evolutionary
Strategies method. The developed algorithms are tested in both simu-
lated and real robot experiments and the improvements and applicability
of the developed methods are shown with the results.

1 Introduction

One of the problems in robot navigation is the simultaneous localization and
mapping problem (SLAM). The problem addresses a robot generating a map of
an unknown environment and localizing itself in this map. The RoboCup @Home
and Rescue [1] leagues already require exploration and map building for the high
level planning tasks. On the other hand, localization in the soccer leagues like
Standard Platform and Middle Size gets harder due to decreasing number of
unique landmarks, so the problem moves towards the SLAM problem. Since the
environment is unknown, landmark observations do not include identity informa-
tion. This ambiguity adds an extra challenge and is called the data association
problem. In multi-robot systems, the cooperative map building task introduces
additional challenges. The robots should transform and merge their own maps
and resolve ambiguities. The problem attracts researchers because the solution
provides more autonomy to robots and allows them to operate in more realistic
application domains.

The single-robot SLAM problem is a more or less solved problem. In the EKF-
SLAM algorithm [2,3], the landmark positions and the robot pose (position and
orientation) form an augmented state where the belief state is represented as a
Gaussian distribution and is updated using Extended Kalman Filter (EKF) [2].
Another well-known solution method called Fast-SLAM [4,5] uses the fact that

J. Baltes et al. (Eds.): RoboCup 2009, LNAI 5949, pp. 449–460, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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given the robot pose, the landmark positions are independent. The belief state
in this case is a set of particles where each particle is a robot pose and the asso-
ciated map hypothesis. In both algorithms, the uncertainty in the odometry and
the observations is assumed to have a Gaussian distribution [6]. The performance
of the methods highly depends on the parameters of the actual noise distribu-
tions, which are generally unknown. In [7], the problem is solved with the least
square approach and in [8], the optimal parameters are found with Expectation
Maximization. In this paper we propose employing Evolutionary Strategies to
search for the optimal parameter set, using the robot’s ground truth position
information.

In multi-robot systems, current solution methods can be categorized with re-
spect to their assumptions. The most simplistic assumption is that the robots
know their initial positions. In this case, the single-robot solutions can easily
be extended for the cooperative case [9]. In more realistic cases, the robots do
not know or observe the positions of others. In [10,11,12,13], the transformation
parameters are searched with different heuristics using only the local maps of
the robots. In [14,15], the idea is about localizing the robots within the maps of
the other robots and finding the transformation hypothesis. In another assump-
tion category, the robots can observe each other and are expected to meet at
some point. In this case, the problem reduces to finding suitable transformation
parameters using the robot to robot observations. In [9], the robots record their
observation history and provide it to the other robots when they meet, so that
the other robots can use the history to build the map of unexplored areas using
Fast-SLAM algorithm. In [16], similar to the previous method, the transforma-
tion parameters are found with robot to robot observations, and instead of using
observation history, current map estimations are merged.

This work is an extension of the map merging algorithm based on EKF-SLAM
in [16] to the Fast-SLAM algorithm. The map merging is performed when robots
meet using the robot to robot observations. However, uncertainty propagation
in Fast-SLAM differs from the EKF-SLAM case because each particle has its
own map estimation instead of single map estimation. In [9], this problem is
addressed differently by recording the observation history. In this paper, we
exploit the Markovian assumption of state representation and merge the most
recent map estimations.

The rest of this paper is organized as follows. In Section 2, our methodology
and assumptions are detailed. In Section 3, the experiment setups in both sim-
ulation and real world are explained and results are discussed. Finally Section 4
summarizes and concludes our work and points out some possible future work.

2 Proposed Approach

2.1 Map-Merging

For the simplicity of illustration of the methods, in the multi-robot case, we
assume that there are two robots, exploring some part of the environment and
eventually meet at some point where they can observe each other. When they
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meet, they inform each other and share knowledge to merge the map of the
other robot with their own-map. In the map-merging case, we only focus on the
instant where a robot receives the estimation of the other robot and since our
method is distributed, we will consider the situation from the point of view of
only one robot.

The message from the other robot includes:

– Mother : the map estimation of the other robot. Each entity mother ,i contains
the position pother ,i and a 2x2 covariance matrix Σother ,i of the ith landmark.

– pother : the pose of the other robot. Note that pother is the other robots pose
and pother ,i is the position of the ith landmark of other robot.

– zother ,self = {lother,self , θother ,self } is the observation of the other robot to
self robot.

In the map estimation Mother , the correlation between the landmarks are omitted
except the 2x2 covariances of landmark positions. Extracting this information
from the EKF-SLAM is trivial, however in the Fast-SLAM, we take the weighted
mean of the map estimation of particles with the importance weight.

When the robot receives the message from the other robot, it first calculates
the transformation matrix between the coordinate frames:

T =

⎡⎣ cos(trθ) − sin(trθ) trx

sin(trθ) cos(trθ) try

0 0 1

⎤⎦ (1)

which has the translation parameters {trx, try} and the rotation parameter trθ.
Figure 1 illustrates the geometric configuration of coordinate frames and param-
eters in the information sharing step. Calculating the transformation parameters
is an analytic geometry problem so it is skipped for simplicity. With the transfor-
mation matrix, each entity in the incoming map is transformed with the following
equations:
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Fig. 1. The configuration and parameters when robots observe each other
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Fig. 2. Diagram of multi-robot map merging algorithm with the Fast-SLAM method

⎡⎣pother ,x,i′
pother ,y,i′

1

⎤⎦ = T

⎡⎣pother ,x,i

pother ,y,i

1

⎤⎦ (2)

Σother ,i′ = T T Σother ,iT (3)

After transforming, the incoming map is merged into the map of each particle.
Figure 2 gives the summary of the transformation and the merging operation
in the Fast-SLAM algorithm. If N is the number of particles and M is the
number of landmarks, the complexity of the merging step is O(NM2) with a
naive implementation.

Nearest neighbor method is used to find duplicate landmarks when merging
the map of the other robot with a single particle’s map. If a landmark is a new
landmark, it simply is added to the map. If the landmark is also known by itself,
the other robot’s estimation is considered as an evidence and the resulting state
is calculated as:

Σmerged = Σself − Σself [Σself + Σother ′]−1 Σself (4)

pmerged = pself + Σself [Σself + Σother ′]−1 (pother ′ − pself ) (5)

The merging of two Gaussians is displayed in Figure 3. Note that the uncertainty
decreases in the resulting Gaussian.

2.2 Parameter Calibration of the Kalman Filter

The parameters of the Kalman Filter are the initial uncertainty, odometry read-
ing noise and the observation noise. In the SLAM application, the state vector
size is 3 + 2L where three for robot pose {px, py, pθ} and two for each landmark
mi = {pi

x, pi
y} in the map M with size L. The initial uncertainty has a covari-

ance matrix P with size (3 + 2L) × (3 + 2L). An observation is represented as
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(a) Two Gaussian (b) Merged Gaussian

Fig. 3. Merging two Gaussian

the distance and orientation zi = {li, θi} and therefore the observation noise
covariance matrix Q has size 2×2. The odometry reading is the displacement of
the robot in two dimensions and the change in the orientation u = {Δx, Δy, Δθ}
so the process noise covariance matrix R has size 3 × 3. These three covariance
matrices form a very large parameter set, however we can reduce the number of
parameters using some basic assumptions. The noise in all dimensions are as-
sumed to be independent, so the correlation values become all zero. In addition,
the noise on the x and y axes are assumed to be same. Finally, when we add the
process noise or the landmark location, the parameter set becomes:

Q =
(

ω1 0
0 ω2

)
, R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω3 0 0 0 0 ...
0 ω3 0 0 0 ...
0 0 ω4 0 0 ...
0 0 0 ω5 0 ...
0 0 0 0 ω5 ...
. . . . . .
. . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, P =

⎛⎜⎜⎜⎜⎜⎜⎝
ω6 0 0 0 ...
0 ω6 0 0 ...
0 0 ω7 0 ...
0 0 0 ω8 ...
. . . . .
. . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

where the vector ω = {ω1, ω2, ..., ω8} forms our actual parameter set to be es-
timated using Evolutionary Strategies [17]. A chromosome represents a possible
combination of these values. An episode is executed with the parameter set of
an individual to calculate the fitness value, which is the mean distance between
the robot pose estimation and the actual (ground truth) pose. If the error grows
very large, the episode is terminated to avoid unnecessary continuation and a
small fitness value is returned with respect to the episode. As new generations
are formed, they result with smaller errors on the robot position estimation.
Note that only the ground truth position information of the robot is used as the
supervised data.

In the Fast-SLAM method, the particles are sampled with a Gaussian distri-
bution using the odometry readings. The importance weight calculations with
the observations are also made with Gaussian likelihood function. For these rea-
sons, the parameter set we estimated can be explicitly used for the Fast-SLAM
algorithm. The only extra parameter is the number of particles which affects
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(a) Hand Tuned (b) Calibrated

Fig. 4. Path comparison of the hand tuned and calibrated parameters in a single
episode

the quality of the posterior distribution. In our method to select the number of
particles, we perform successive experiments with increasing number of particles
until performance convergences.

3 Experiments and Results

We used the Festo Robotino robot [18] as the hardware platform. It has omni-
directional locomotion ability and a webcam which provides RGB images with
dimensions 320x240 and 50 degrees field of view. We also equipped the robot
with a URG laser range finder device [19] to generate occupancy grid map and to
avoid obstacles. The laser range finder has 5 meters range and 270 degrees field
of view, however physical placement of the device allows 140 degrees of field
of view. We implemented the software with the Player/Stage framework [20],
which includes a 2D simulator and provides the ability to test our algorithms on
both simulation environment and real-world by only changing the configurations.
In the simulation environment, ground truth positions are directly accessed. In
the real world, we used an overhead camera system [21] to measure the global
position of the robots.

3.1 Parameter Calibration Results

The first experiment is designed to compare the hand-tuned and the calibrated
parameters in the simulation environment. The simulator provides perfect knowl-
edge, however we inject Gausian noise to both observations and the odometry.
The search for the optimal set is initiated from the hand tuned parameters. Fig-
ure 4 shows the result of the path and map estimations of both parameter sets.
The straight line is the exact path, the dots are the estimated path, the cross
marks are the exact location of the landmarks and the ellipses are the landmark
estimations. For the simulation scenarios, the robots followed a predefined path.
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(a) Path estimation error (b) Map estimation error

Fig. 5. Performance comparison of the hand tuned and calibrated parameters in a
single episode

(a) EKF-SLAM (b) Fast-SLAM

Fig. 6. Path and map estimation results in the simulated map-merging experiment

In Figure 5, the errors in landmark and path estimations are given. The path er-
ror plots show that the calibrated parameters bounded the odometric error more
accurately. The map estimation error is the mean error of known landmark estima-
tions. Another interesting result is that the accuracy of the map increases even if
we discard the orientation and landmark errors in the fitness function. This shows
that an accurate map estimation requires an accurate path estimation.

3.2 Simulated Experiment Results

In the first experiment of map merging, we demonstrated the applied methods
for both the EKF-SLAM approach and the Fast-SLAM approach in the simula-
tion environment. In Figure 6, the path and map estimations are given for one
robot. The squared region in the path is the meeting point where map-merging
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(a) Pose Errors (b) Map Errors

Fig. 7. Pose and map errors for EKF-SLAM and Fast-SLAM methods in the simulated
map-merging experiment

occurred. The overlined landmarks also exists in the incoming message, so they
are merged, and underlined landmarks are added from the incoming message.
Note that the added landmarks have the same biased error. This is the effect of
the errors in position estimation and the robot observations in the map-merging
step. In Figure 7, the path and map estimation errors are given. The biased error
can be observed in the map estimation error. The error increases considerably
when the landmarks with biased error are added to the map.

3.3 Real World Experiment Results

We also performed real world experiments for the map-merging algorithm using
Fast-SLAM algorithm. In Figure 8, the experiment setup for the real-world is

Fig. 8. Experiment setup of the real-world map-merging experiment
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Fig. 9. Marker observation process. From left to right: raw image, color segmented
image, and formed blobs.

(a) State of robot 1 be-
fore merging

(b) State of robot 1 after
merging

(c) State of robot 2 be-
fore merging

(d) State of robot 2 af-
ter merging

Fig. 10. Map-merging result in the real world with Fast-SLAM method

given. The robots can observe colored landmarks around the world and start
facing opposite directions. They are also marked with colored paper in order to
enable robot to robot observations.
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Landmark Detection. We used two-colored markers as landmarks. The im-
ages taken from the camera are in RGB format. To recognize the regions in the
markers, we segmented the color space into four colors using the Generalized
Regression Neural Network (GRNN) [22]. After segmenting the pixels, mark-
ers are observed as regions of interested colors. The snapshots of these steps
are given in Figure 9. The robot has monocular camera and to calculate the
distance of the marker, we exploit the known size of the markers. We simply
calibrated a non-linear function of region size which gives the distance of the
marker.

The robots detect obstacles with the laser range finder in the direction of
movement. The detected obstacles are represented as a line formed by laser
readings. The robots always turn right as parallel to the obstacle line when they
encounter an obstacle. Since they start facing opposite directions, they explore
separate portions of the area and meet in the middle. In Figure 10, the states
of both robots are given before and after the merging steps. As stated before,
we also generate occupancy grid-world, which is visualized with intensity of the
grids. The other robot can be observed on the occupancy map of the both robots.
Before merging, the robots are not aware of all the landmarks, but after merging,
they know all of the landmarks.

4 Conclusions

In this paper, we have two notable contributions to the literature. First, we
calibrated the noise parameters of EKF-SLAM algorithm using Evolutionary
Strategies. The other contribution is that we adapted the map merging method
for EKF-SLAM method from the literature to the Fast-SLAM method. The main
difficulty in this adaptation is the representation of multiple maps in the Fast-
SLAM method. To overcome this, we extracted a single map estimation from the
Fast-SLAM belief state along with the uncertainty information and merged this
map with each particle’s map. This method also allows execution of different
SLAM algorithms on different robots. The exchanged map estimation between
robots has a common format, so the estimator of the incoming map estimation
is not important for the merger algorithms.

We tested the methods on simulation using data with artificially introduced
noise for evaluation and training. The algorithms are also implemented and
tested on autonomous robots in indoor environment. We showed that the multi-
robot map-merging method can also be applied to the Fast-SLAM algorithm
without loss of uncertainty knowledge.

The major obstacle between this work and a real life scalable multi-robot
SLAM application is the assumption of unique markers in the robots. With non-
unique robot markers, correspondence problem for robot observations makes the
problem ore complicated and should be addressed.
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Kerner, Sören 58, 69
Klagges, Daniel 58
Kraetzschmar, Gerhard K. 104
Kyrylov, Vadim 166, 179

Lakemeyer, Gerhard 116, 240
Lau, Nuno 366
Laue, Tim 425
Lee-Ferng, Jong 46
Lima, Pedro 332
Liu, Wei 402
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