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Preface

This book covers the results of the 11th and 12th Teraflop Workshop and continued
a series initiated by NEC and the HLRS in 2004. As part of the Teraflop Workbench,
it has become a meeting platform for scientists, application developers, international
experts and hardware designers to discuss the current state and future directions of
supercomputing with the aim of achieving the highest sustained application perfor-
mance.

The Teraflop Workbench Project is a collaboration between the High Perfor-
mance Computing Center Stuttgart (HLRS) and NEC Deutschland GmbH (NEC
HPCE) to support users to achieve their research goals using High Performance
Computing. The first stage of the Teraflop Workbench project (2004–2008) con-
centrated on user’s applications and their optimization for the 72-node NEC SX-8
installation at HLRS. During this stage, numerous individual codes, developed and
maintained by researchers or commercial organizations, have been analyzed and op-
timized. Several of the codes have shown the ability to outreach the TFlop/s thresh-
old of sustained performance. This created the possibility for new science and a
deeper understanding of the underlying physics.

The second stage of the Teraflop Workbench project (2008–2012) focuses on
current and future trends of hardware and software developments. We observe a
strong tendency to heterogeneous environments at the hardware level. At the same
time, applications become increasingly heterogeneous by including multi-physics
or multi-scale effects. The goal of the current studies of the Teraflop Workbench is
to gain inside into the developments of both components. The overall target is to
help scientists to run their application in the most efficient and most convenient way
on the hardware best suited for their purposes.

The papers in this book draw a bow from leading edge operating system devel-
opment to the needs and results of real life applications in various scientific areas.
They put the different views of hardware specialists, supercomputing centers, and
users on a common topic up to discussions, namely to enable and facilitate leading
edge scientific research.

The work in the Teraflop Workbench project gives us insight into the applications
and requirements for current and future HPC systems. We observe the emergence
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of multi-scale and multi-physics applications, the increase in interdisciplinary tasks
and the growing tendency to use today’s stand-alone application codes as modules
in prospective, more complex coupled simulations. At the same time, we notice the
current lack of support for those applications. Our goal is to offer an environment
that allows users to concentrate on their area of expertise without spending too much
time on computer science itself.

We would like to thank all the contributors of this book and the Teraflop Work-
bench project. We thank especially Prof. Hiroaki Kobayashi for the close collabora-
tion over the past years and are looking forward to intensify our cooperation in the
future.

Stuttgart, May 2010 Katharina Benkert
Michael M. Resch
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Light-Weight Kernel with Portals

Erich Focht, Jaka Močnik, Fredrik Unger, Andreas Jeutter, Marko Novak

Abstract With continuously growing numbers of nodes and CPU cores cluster
scalability is becoming a more and more significant problem in high performance
computing and several approaches are taken to improve it. On the hardware level,
operating system level and in the communication model new approaches have been
developed. Specialization of cluster nodes, introduction of light-weight kernels and
new communication abstraction are all steps to increase the efficiency of compute
clusters. Extending the light-weight kernel (LWK), Kitten, with RDMA capable In-
finiband network interface support and developing Portals on top of that interface
brings improvements to the current compute model. Furthermore, in preparation for
running parallel jobs on the light-weight kernel a new Open MPI component was
added as an alternative to the currently available OOB/TCP component. This com-
ponent eliminates the need to have a TCP/IP software stack available on the compute
nodes. It is based on the Sandia Portals 3.3 network abstraction and message passing
interface.

1 Introduction

Clusters are growing larger with respect to the number of nodes and cores. Looking
at the challenges of scaling applications to large clusters, different levels of prob-
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lems arise. At the hardware level, in order to solve resource problems, cluster nodes
become specialized for different tasks (e.g. Fig. 1). A natural step is to offload tasks
like I/O, access and management from compute nodes to make them as efficient
as possible. A service node does for example not need an as powerful a CPU as a
compute node, but might need additional PCI devices to connect to storage devices.

Fig. 1 Specialization of cluster nodes

At the operating system level new approaches are also needed. The use of a
full desktop or general-purpose server operating system like a full Linux distribu-
tion installation is not the optimal choice for a server whose task is to just run an
HPC application with maximum performance. One approach to this is to switch
the compute node kernel to a light-weight variant, where the kernel just provides
mechanisms to virtualize hardware resources and enforce them, but the policies of
enforcement are implemented in user space, as done for example for Catamount [1]
or in microkernels [2]. The advantages are various: a simple and small kernel code
base is easy to debug and maintain. Moving out complex code to user space (into a
single process control thread or various user space services), like scheduling policy
code, process management code in general or filesystem implementations (provided
as library code), allows for quick modifications and adaptation of the code without
touching and modifying the kernel. This has the potential to speed up innovation
while keeping a solid and stable basis. The most important advantage is the cus-
tomization of the system software to the node’s task, and the focus clearly is in
reducing the OS noise in order to increase the scalability of massively parallel HPC
applications.

In last year’s report on the progress of the SX-Linux project [6] we described the
efforts done to port the Kitten LWK [3] to the SX vector architecture. In the mean
time we moved our LWK related efforts towards the x86 64 architecture and aim at
providing components that help improving the scalability of clusters built with off
the shelve motherboards, CPUs and Infiniband interconnect.
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At the communication level simplification of the layers and a replacement of the
socket model is needed. Support of the Infiniband communication hardware with
abstractions that match its RDMA capabilities is important. In this respect Portals
from Sandia National Labs provides a suitable model and an optimal replacement
of TCP/IP for system software communication needs.

For MPI support the initial target implementation was OpenMPI, and enablement
of InfiniBand for all the communication layers. One step in the development was
to remove OpenMPI’s dependence on the Berkeley sockets for the internal out-of-
band (OOB) communication and replace it by use of Portals. The application level
also needs I/O support and as the new model implies specialized I/O nodes an I/O
forwarding layer is needed. The latter is the subject of another paper [4].

Section 2 presents the Kitten light-weight kernel, and describes the effort re-
quired to port linux-based OFED Infiniband support to the Kitten kernel. Prelim-
inary benchmarks of the ported Infiniband communication support are given. An
introduction to the Portals communication API is provided in Sect. 3, and the opti-
mizations of the core library and implementation of a high-performance Infiniband
Portals driver (NAL) are presented, followed by benchmarks of Portals communica-
tion over Infiniband. Section 4 describes an adaptation of the Open MPI library that
allows to run MPI without the need for TCP/IP-based out-of-band communication.
The paper concludes with a short summary of current status and the directions for
future work.

2 Kitten

A typical cluster node of today runs a full Linux kernel, normally from vendors
like Redhat or SUSE. This kernel is normally configured to be able to work with a
large variety of hardware and provides a lot of system services support. While these
system services might be important in some case, they are far more commonly a
problem for an HPC application as they take valuable CPU cycles from the ap-
plication and creates an imbalance between nodes at synchronization points of the
application.

A light-weight kernel provides the minimal functionality needed for a compute
application to run: hardware recognition, physical and virtual memory management,
task management, interrupts and system calls. The design choice behind the light-
weight kernel reduces OS overhead in favor of the application. Some functionality
like file system support or special scheduling policies can be implemented outside
the kernel in user space threads or libraries. Remaining compatible with the Linux
kernel is also important in order to be able to run ISV applications and limiting the
work to port an application to the light-weight kernel.

The light-weight kernel Kitten was created at Sandia National Labs and is devel-
oped as an open source project [5]. It uses simple task scheduling and a deterministic
memory mapping (virtual to physical). It has a limited number of Linux ABI system
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calls and some light-weight kernel specific system calls. The development target is
to keep the light-weight kernel as simple and powerful as possible.

2.1 OFED

The OpenFabrics Alliance (OFA) develops the OpenFabrics Enterprise Distribution
(OFED) which is an open-source software stack providing support for new RDMA
network interfaces, like Infiniband. The Kitten light-weight kernel networking ini-
tially relied on the light-weight IP stack (LWiP) and an older port of OFED 1.3. This
is not enough to provide HPC applications access to the newest Infiniband network
interfaces. OFED 1.4.1 was initially added to the kitten source tree, and eventually
also 1.4.2 and 1.5.1. To provide support for the OFED stack in Kitten, the kernel
had to be extended in several ways.

Fig. 2 OFED development in Kitten

The first steps that had to be taken once the OFED stack and drivers were added
was to add the kernel support needed by the drivers to be able to communicate with
the card, and the outside world. A small Linux API emulation layer provided this
infrastructure to enumerate the PCI bus. Driver registration code and DMA sup-
port were added. The kernel driver is divided into several parts. Core that provides
the overall Infiniband support, mlx4 and mthca provide drivers for two Mellanox
cards: Mellanox ConnectX, and Mellanox Infinihost, respectively. Other drivers
from Linux source tree can be ported with a minimum of effort. After the driver
core components were enabled together with the specific card driver the card could
communicate with the Infiniband fabric.

The next step was to provide the userspace libraries with the view of the card
they are expecting from Linux by adding the relevant device files and sysfs entries.
A simple sysfs for registration and a simple devfs for initial setup of the drivers
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were added. System calls poll and mmap were added to provide the user libraries
the means of communication with the card that is used in Linux. Thanks to these
small additions an Infiniband application, statically compiled under Linux can run
without any modification on a Kitten cluster node, as all the interfaces to the kernel
are provided to userspace in the same way as on a fully-fledged Linux kernel.

2.2 Benchmarks

Figures 3 and 4 show the latency and bandwidth of different Infiniband operations
(send, RDMA read and RDMA write) as a function of user payload size on Kitten
and Linux. Linux performance is slightly better, which is attributed to the overhead
and suboptimal implementation of Linux API wrappers around core Kitten kernel
functionality.

Fig. 3 IB Latency [μs]

Note that the bandwidth measurements fail to reach the expected values due to
the benchmark implementation. Bandwidth achieved by Portals (see Fig. 6) is thus
higher in spite of the additional overhead.

3 Portals

In order to substitute for socket-based IP communication, which the light-weight
kernel does not support, a suitable network abstraction to be used for system soft-
ware and optionally for parallel communication as well had to be provided.
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Fig. 4 IB Bandwidth [MB/s]

In selecting such an abstraction, the following criteria were considered:

• fully asynchronous design,
• straightforward mapping to native APIs of current communication hardware,
• simple API for the developer,
• existing support in common HPC software,
• open-sourced codebase to leverage in our work.

3.1 Portals: A Brief Introduction

Portals [7] API provides an abstraction of RDMA communication. Designed by
Sandia National Laboratories, Portals are commonly used on Cray machines, and
a number of HPC software components supports Portals as the communication ab-
straction (OpenMPI [12], PVFS [11] via BMI, GASnet [10], etc.).

Portals API is based on simple get and put operations on registered memory re-
gions of communicating processes: get fetches data from a remote process’ memory
into local memory while put transfers local memory contents into a remote process’
memory. Every Portals operation (in addition to local memory area to use as source
or destination) uniquely references a remote memory area on the network involved
in the operation with:

• a global process ID (consisting of remote node ID, NID, and node-local process
ID, PID),

• the portal index (every process can use multiple portals, and associate different
memory regions with each),



Light-Weight Kernel with Portals 9

• 64 bit sequence of match bits used to identify the memory region within a single
portal.

Portals provide an event-driven model for the user application, which invokes an
operation and then waits for events that denote progress and finally (un)successful
termination of an operation.

A typical sequence of operations involved in a Portals data exchange between
two (an initiator and a target) processes thus consists of:

• both processes initializing the network interface used for communication,
• target process opening the portal, registering one or more memory regions, at-

taching them to the portal match list, and associating each memory region with a
sequence of match bits which are later used by remote processes to identify the
memory region to operate on,

• initiator node invoking an operation on a remote memory area identified by match
bits value consistent with the one used by the target process,

• initiator node polling for event that will denote that the transfer into remote mem-
ory area has finished successfully,

• target node polling for events that denote that the transfer into its local memory
area has finished successfully.

While Portals 4.0 specification [8] has been available for quite a while now, the
only freely available implementation is the reference implementation of Portals 3.3
specification [9], which was used as the base for our work.

3.2 Optimizing Portals for LWK

The reference Portals implementation consisted of three separate components:

• the API, providing user interface to the Portals functionality,
• the library, implementing the Portals communication semantics,
• the NAL (Network Abstraction Layer), performing the actual communication

over an arbitrary type of interconnect.

Any of these components can run in a separate address space (user space, kernel
space, and, in case of smart NICs, such as the Cray Seastar interconnect, even NIC
address space) and the reference implementation used message passing paradigm
for communication between API and library components.

As the implementation presented in this paper is aiming at an all-user-space
Portals in accordance with the principle of keeping the kernel small and simple,
the message passing approach to communication between API and library was re-
moved in order to minimize overhead, and all kernel-related parts of the code were
removed.
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3.3 A High-Performance Infiniband NAL

The only NAL implemented in the original sources used TCP/IP communication.
Therefore, a new NAL for Infiniband interconnects, common in modern HPC sys-
tems (207 systems in the Top 500 list, 41.4%, as of June 2010), was implemented.

Infiniband LID (Local ID) is used as Portals NID, and OS process ID is used as
Portals PID. A (LID, PID) pair uniquely identifies a process in the cluster. Infiniband
Reliable Connected (RC) Queue Pairs (QP) are used for communication between
process. One RC QP is used for each remote process being communicated with.

Connections between processes are established using Infiniband Connection
Management (IB CM) protocol. Each process establishes a listening CM ID on
startup (the node-local process ID is used as the CM ID). A connecting process can
use LID and remote PID to address a remote process via CM protocol and exchange
connection parameters. During a successful CM handshake, QPs for the connection
are created by each of the two processes involved, and QPs are connected. Such a
connection is established at the first communication attempt between a pair of nodes
and is preserved and reused for all further communication between the said peers
until explicitly closed.

At the time of connection establishment, send and receive buffers are allocated
and receive buffers posted. The send and receive buffer pools are dynamically in-
creased during lifetime of the connection if the communication pattern requires an
increase. With a default set-up, each connection requires approximately 0.5 MB of
communication buffer memory—the exact amount may be tuned at process start by
setting appropriate environment variables that determine individual buffer sizes and
their initial numbers. Total memory consumption is dominated by buffers and in-
creases linearly with number of established connections. This memory also proves
the main bottleneck for scaling the number of communicating processes: communi-
cating with 8192 processes (all-to-all communication in a 1024-node cluster with 8
cores per node) would require 8× 8191× 0.5 MB = 32 GB of buffer memory per
node.

After establishing the connection, Infiniband send, RDMA read and RDMA write
operations are used to transfer Portals messages, consisting of Portals header and
user payload.

The NAL packs fixed-size Portals header which amounts to 80 bytes in the orig-
inal implementation to a variable sized header, with an average size of 24 bytes. 32
bits of header that is common for all operations is transported as an immediate value
in the Infiniband header, while the rest is transported as Infiniband packet payload.

The header is always transported with the Infiniband send operation into a pre-
posted receive buffer of the target process.

In case of small messages, the user payload is also transferred with the send op-
eration and copied into the user buffers on the target node (i.e. eager transfer). In
case of large messages, the header is followed by information required for Infini-
band RDMA transfers (remote address and remote key) instead, allowing the target
node to perform a RDMA operation directly into the user buffer, avoiding memory
copying at the price of an additional Infiniband operation (i.e. rendezvous transfer).
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3.4 Benchmarks

Figures 5 and 6 present latency and bandwidth of Portals with the Infiniband NAL
between two Kitten nodes as a function of user payload size. Linux performance is
also presented for comparison.

Fig. 5 Portals Latency [μs]

Fig. 6 Portals Bandwidth [MB/s]

The Portals latency results are very close to the native Infiniband latency values.
For small messages Kitten shows slightly larger latency values than Linux, a fact
attributed to the overhead of the unoptimized Linux compatibility layer that was
needed for adding Infiniband drivers support (see Fig. 3 as well). However, messages
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above 512 bytes required fragmentation with the buffer sizes used in benchmark set-
up (i.e. a single portals payload is sent with multiple Infiniband send operations):
there, Kitten clearly outperforms Linux due to more CPU time being available for
the user-space task. All the latency results shown here use eager transfer.

The Portals bandwidth results are obtained using rendezvous transfer mode. In
case of large messages (256 K and up) Kitten and Linux reach the same bandwidth.
With lower bandwidth, Kitten performed significantly worse. The reason for this is
being investigated, but is unclear at the moment. As Infiniband RDMA read opera-
tion used in this kind of transfer performs equally well on Linux and Kitten (refer
to Fig. 4), the cause must be in the Portals user-space code.

4 MPI

All parallel applications, regardless of the MPI flavor used, have massive communi-
cation requirements. The Open Runtime Environment (ORTE) as part of Open MPI
comprises infrastructure programs and libraries to start and run parallel applications
on many nodes simultaneously. The most important components involved in run-
ning an Open MPI application are mpirun, the compute node daemon orted and the
MPI library.

The communication interface to be used for the application’s MPI messages,
can be selected on the command line, whereas the ORTE internal infrastructure
communication is solely based on TCP/IP.

4.1 ORTE Job Preparation and Startup

Preparing a parallel application for running on many nodes includes starting the job
by invoking mpirun. This is either done by the user within an interactive session or
through a batch system, like PBS/TORQUE. Mpirun expects the hostnames of the
compute nodes (CN) dedicated to the job. Usually they are passed to mpirun on the
command line or within a host file.

Mpirun starts the job by spawning ssh processes that connect to ssh daemons
(sshd) on the specified nodes. Once the ssh path is established, sshd forks a new
process and executes the ORTE daemon (orted). Mpirun waits until orted becomes
active. The ORTE daemon activates its Remote Messaging Layer (RML) compo-
nent, which checks for available OOB (Out Of Band) components. All programs
and tools participating in the RML communication must be set up to use the same
OOB component. Currently, only the OOB/TCP component can be selected since it
is the only one available. This component uses Berkeley sockets on TCP/IP to send
and receive messages.

When mpirun starts the daemon on the compute nodes it takes its own hostname
and the port where the local OOB/TCP socket is listening and puts them on the dae-
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Fig. 7 ORTE OOB/TCP: common startup scenario

mon’s command line. The daemon loads the local OOB/TCP component, opens and
initializes it and passes the hostname/port parameters to it. The component uses this
information and initiates a TCP connection to mpirun. Mpirun and the daemons uti-
lize this message path to exchange job information like job size (retrieved from the
MPI application with a call to MPI Comm size()), node rank (MPI Comm rank())
and the name of the MPI application.

In the next step the daemon starts the specified MPI application and puts its
own hostname and the port where it is listening for inbound connections into the
environment of the MPI application. The MPI application typically contains a call
to MPI Init() at the very beginning of the program. This call leads to the activation of
the underlying ORTE infrastructure. Equivalent to the daemon, the MPI application
loads the OOB component and initializes it. The OOB/TCP component reads the
environment, initiates a connection to the daemon and sends a message that it is
ready. The daemon forwards this message to mpirun. Mpirun registers the successful
launch of the application and sends job information to the application (Fig. 7).

In the further process, the daemon relays information between the MPI applica-
tion and mpirun and also forwards output that the application writes to standard out
through OOB/TCP. Mpirun keeps a dictionary of all involved nodes and processes,
their rank and status. The MPI application can request those data and use them to
exchange messages directly with other processes without having to use the RML
component anymore.
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4.2 Job Start on the Light-Weight Kernel

A light-weight kernel differs from a general purpose operating system, in that it is
dedicated and optimized to be used for running parallel applications. In our special
case, the computer hardware uses Infiniband NICs that utilize RDMA procedures
for high–performance data exchange. To reflect this hardware feature on the operat-
ing system and application level a suitable software suite is needed. Sandia Portals
provides such procedures, which allow direct memory access via put and get com-
mands. As stated previously the ORTE OOB relies solely on TCP/IP, thus a new
OOB/Portals component, equivalent to the OOB/TCP component, had to be devel-
oped. In the scenario described above, the SSH software suit, which is used to launch
the daemon on the compute nodes and that also relies on TCP/IP, must be replaced.
This new software is described as Resource Manager (RM) on the compute nodes
and Resource Controller (RCtl) on the head node (HNP, CN#0) where mpirun is
running.

Fig. 8 OOB/Portals on the LWK: start via RM

In the light-weight kernel (LWK) scenario, all compute nodes boot, activate and
run RM. When compared to a conventional SysV startup sequence this amounts to
replacing the init process with the resource manager process.

On the initial node (CN#0) mpirun forks a new process and runs the resource
controller. All resource managers are connected in a tree-like structure. Once all
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compute nodes are booted and active, the resource controller sends the orte daemon
executable via network to all directly connected resource managers. Upon receiv-
ing the executable each resource manager stores it in a temporary file system, pre-
pares a command line and forks a new process to run the executable. The daemon
retrieves the command line parameters and activates the new OOB/Portals compo-
nent, which uses the contact information and establishes a connection to mpirun via
Portals (Fig. 8).

From this point on, the scenario behaves like previously described. The compute
nodes receive job information, launch the MPI application and forward standard
output stream via OOB/Portals.

4.3 Architecture of OOB/Portals

An application independent remote procedure call layer (RPC) has been put on top
of Portals to hide the handling of memory descriptors, match entries and other Por-
tals API internals.

The RPC layer features a trivial API that allows asynchronous sends and receives.
To receive data, a register function is set up, which installs a receive buffer and a
callback handler. This allows receives to run in the background and trigger callback
functions when data is ready to be processed. Sends are also asynchronously exe-
cuted in the background. After a successful send, the buffer is freed automatically.

RPC uses two different methods to send data to a peer. A size threshold deter-
mines which method is to be used. Messages below the threshold are sent directly
via a Portals put command. Messages above the threshold are sent by first sending
a notification message to the peer and the peer in turn fetches the message from
the sender via the Portals get function. This schema allows messages of arbitrary
size to be sent, while maintaining a fair compromise between memory footprint and
performance.

5 Conclusion and Future Work

The paper describes the effort done on the way to developing a more scalable sys-
tem environment for clusters that have become commodity in HPC: built on x86 64
architecture with Infiniband interconnect. While proprietary hardware (e.g. from
CRAY or IBM) already has support for some type of light-weight operating sys-
tem, this is usually developed as closed source and unavailable for off-the-shelve
built systems. Our developments aim at improving this situation and expanding the
toolset available for improving scalability on high end HPC systems.

The first development described was focused on adding support for Infiniband
devices to the Kitten light-weight kernel. This effort will continue with the integra-
tion of further hardware and optimization of the LWK linux compatibility infras-
tructure.
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For the user-level system software we worked on a network abstraction and wrote
an Infiniband network abstraction layer for the Portals networking stack. It enables
writing cluster system software without TCP/IP and sockets, that are intentionally
missing in the Kitten LWK. As a next step we plan to improve the scalability of
the Infiniband NAL with regard to memory consumption: a hybrid UD-RC ap-
proach [13] as used in MVAPICH is a good candidate.

The first steps towards user applications were taken by adapting Open MPI to
the missing TCP/IP stack on the Kitten LWK and developing a first working im-
plementation of OOB/Portals. Future goals include fully integrating the component
into the Open MPI project as well as improving the application startup scalability
and adding support for starting MPI applications inside the Kitten LWK.
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Towards an Architecture for Management
of Very Large Computing Systems

Jochen Buchholz, Eugen Volk

Abstract Managing very large computing systems with up to 100.000 nodes has
become a very complex issue. Existing tools reach their limits especially for High
Performance Computing (HPC) resources because they are slightly different from
other compute resources. First we will introduce the specific HPC obstacles and
what we suppose to be challenges for future resources to support the system man-
agement. After that we propose the framework designed in scope of the TIMaCS
Project (http://www.timacs.de). Assuming that we once have a corresponding so-
lution implemented we will show how this solution can change administration far
beyond the current situation. This is separated into a more technical part describing
how the administration can be simplified or where we can add new capabilities in
resources provisioning and a business part where we outline the need for business
policy based management and scheduling, and show a possible approach investigat-
ing these relationships. In the end we will show what might be possible far beyond
the scope of the project.

1 Introduction

HPC has evolved in the last years from an appearance on the fringes where it was
used only for some specific simulations like weather forecast to a heavily used tools
which are fully integrated in the development process of many goods and even used
for just in time applications in the medical area. Although the involvement of HPC
is often not obvious for the consumer or user, lots of products could not be built
or services not offered without HPC, at least at a significant lower level. For exam-
ple flow simulations for new products—from cars to turbine simulations for hydro
power plant—increase product efficiency and reduce their resource (i.e. fuel) con-
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sumption. Instead or traditional physical experiments over a long time with lots of
different examples they are simply simulated with an even broader variety of starting
parameters.

1.1 Specific Challenges in HPC

HPC providers are currently challenged by several general changes at the same time
which are not covered by existing administration frameworks. They can be divided
into three areas, the technical part including all actions to run a resource, the usage
of these resources and functional requirements.

The technical part contains everything from hardware setup over software instal-
lation processes to all necessary actions needed to run the resource itself. The main
changes within are hardware developments towards many core systems and het-
erogeneous clusters which will soon replace most homogeneous cluster. This will
include number and type of processing units (scalar, vector, graphic), memory size,
network interconnect and so on. This will increase the complexity somehow but the
main problem is scalability. To keep simple usage models the administration tools
need to cope with these changes in addition with the increasing number of nodes
within each HPC resource.

The second part is even more in flux since more and more user groups—from
science, industry, health etc.—have various and higher requirements on HPC re-
source usage: they want to use HPC resources to advance their work by speed up,
obtaining a more detailed view, shortening response time etc. Higher and various
requirements of users’ and user groups on HPC resources are accompanied by an
increasing number of used software products, resulting in higher complexity to ful-
fill all needs. Here the main focus will be the increased complexity which has to be
managed to provide a platform for all user groups.

In addition there are also new functional requirements like external data storage
for extremely large data sets or urgent computing for medical purposes which are not
covered by traditional HPC resources. They also increase complexity but the main
challenge is in many cases that existing procedures and systems can’t handle these
requirements. So traditional HPC provisioning uses scheduling to reach a very high
resource utilization or job-throughput. But for urgent computing you need either
idle resources or you have to stop already running jobs. So you will raise some con-
flicts in doing this, since the owner of the stopped job needs to submit it again with
additional waiting time. Last but not least the usage of HPC resources is changing
to be much more dynamic. In addition to changing users’ requirements on HPC re-
sources, the spectrum of jobs and their complexity is changing as well: users change
their providers more often, new applications have to be supported after a short lead-
in time, the mixture of submitted jobs changes very often; this should be reflected
as well.

In order to provide HPC resources with sufficient quality under the given envi-
ronmental conditions and business constrains, it is obvious that the system adminis-



Towards an Architecture for Management of Very Large Computing Systems 19

tration has to be technically supported to be able to meet the challenges. For this the
current system status and deviations must be detected and visualized. For systems
with a low number of nodes it is possible to use simple status lists to detect errors
manually but for future systems with 100.000 of nodes or cores with independent
operating systems this detection needs to be automatized as well otherwise addi-
tional staff members are required. If it is possible to integrate management capabil-
ities for higher complexity in technical solutions, then the administration group will
have more time to optimize the systems, foresee new challenges and be prepared
even for spontaneous user requirements. Without additional technical support, ad-
ministrators will soon—and many are already at this state—spend most of their time
only in error handling and adjusting the system. This will lead to the awful situation
where they are not able to react on changing user requirements, new usage models,
etc. and will result in a decreasing attractiveness for users over time. In general the
difficulty is to do much more work with identical human resources. As you can see
in the left picture of Fig. 1 the red triangle stands for a default situation where you
have a stable relation between the work represented by number of users, nodes and
functional requirements represented by the area withing the triangle and the human
resources. Without increasing your personnel the size of the triangle is static and in
any case you enlarge in one of the dimensions you need do shorten another one. The
green triangle represents a massive decrease in supported functional requirements
for an increasing number of users an nodes.

So it is obvious that we either have to increase human resources or enable the
employees to do more work in the same time. This is what we want to achieve as
shown in this paper and done in the TIMaCS Project. The result can be visualized
as in the right picture where the size of the triangle has increased and therefore the
resource can be enlarge to all three dimensions at the same time. As if that had
not been enough with several increasing factors like number of nodes, complexity
of applications, number of users etc. the visualization of the current system status
will be difficult since there is too much information for simple lists which are used
currently. It seems possible to use lists for some hundred rows but there are already
systems in production where the limitation to deviations instead of status informa-
tion will reach few thousand entries. So it is necessary to somehow aggregate these

Fig. 1 Human resources and the system’s complexity
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information by grouping similar deviations or trying to find dependencies and high-
light only the independent deviations. The administrator then can drill down on re-
quest to find all the dependencies but he is somehow guided through the information
overload.

2 Challenges

Between HPC resources and other computing systems we can find some differences
regarding hardware (cpu power and network interconnection) as well as in the pro-
posed usage. Since HPC resources are mainly used for (massively) parallel appli-
cation for simulation the network interconnect is the main difference. For parallel
application a very high bandwidth respectively very low guaranteed latency is im-
portant to improve the overall efficiency. Other differences like huge memory, small
disc or disc less systems have only small effects in comparison to the parallelism.
The usage differs from other compute resources in the way that blocks of nodes are
used for each user request instead of portions of an node i.e. for a service request
where lots of requests from different users are handled by one node at the same time.
HPC resources often are used in the node exclusive paradigm, where only one user
has access to a node at any time. So the effort for content switching in the operating
system can be reduced and the user has full control over the efficiency of his appli-
cation and don’t have to cover side effects from other users. Node sharing could in
this way result in the same jitter (see below) problems as any interaction which is
done in a non-synchronized way on nodes used by the job.

For gaining information about the current system status, most monitoring and
management systems can’t be used without modifications for HPC or without losing
performance. We don’t differ between monitoring and management tools or systems
since they are both needed for future systems and therefore had to be combined, but
we differ between monitoring and management capabilities instead.

Monitoring includes anything to gain information about the system including
aggregation, harmonization of sensor data from different sources and threshold con-
trol. It can be seen as the information flow from the bottom level up to the adminis-
trator.

Management implies acting on a certain event which can be sent by a moni-
toring system, by an administrator, or might be time-triggered. The management
facility forces services and nodes to be configured according to predefined settings
or change these settings depending on the given events. Existing solutions focus
mainly on one of the both capabilities and include only rudimentary capabilities on
the other side. But since we have to combine both they have to cover HPC specific
requirements which we have identified in the following sub-sections.
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2.1 Jitter

Current tools for system administration are developed to perform in heterogeneous
environments where nodes are not used in a synchronous way. In this scenario for
scalability especially monitoring tools try to create sequences for fetching informa-
tion from sensors so that the events are evenly distributed over time. With this the
server running the administration framework has a nearly constant load. In HPC
environments the parallelism of applications leads to some undesired side effects.
Most application used on HPC resources work a period of time in parallel with using
only a portion of data on each node then exchanging some data between the nodes
and starting over again. Since any external interaction with a node causes at least
a very short delay of the calculation done on this node, the following message ex-
change leads to delay as well. This results in cascaded delay, as the next calculation
step will start later and so on, hence the whole job will be slowed down. This effect
will increase with the number of nodes participated in job calculation and number
of sensor-data fetched per time period. A detailed explanation is given in Fig. 2.

In scenario A for any type of service provider with serial jobs you can see that
the efficiency drops by the time spent for monitoring. In the second scenario B with
slightly parallel simulations the job is delayed by the monitoring time multiplied
with the number of used nodes for each monitoring interval. Scenario C stands for
a massively parallel application with much higher idle time. The exact idle time
depends on the rate between simulation, communication and monitoring. Normally
simulation time varies a bit for each node since i.e. the used area are not equal or the
calculations are more or less complex. So if the monitoring node interferes with a
node finishing simulation too early, the monitoring is done instead if the node is idle.
Since optimization on application level tries to create simulation block with similar
complexity the synchronization will be delayed in the majority of occurrences.

For management actions this negative effect might be insignificant since these
actions are done very seldom and in case of errors the running simulations might

Fig. 2 Example jitter scenarios
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have been crashed already so that there are only few negative implications. In case
of monitoring actions it is much more difficult since the monitoring is done contin-
uously and on all nodes. Since gathering sensor information is done sequentially, it
will be like scenario C where the performance loss is no longer negligible. From the
application point of view it is seen as jitter on operation system level. This effect is
increasing with the number of nodes. Furthermore, it depends on the circumstances
how intense monitoring requests are within the monitoring time period, which oc-
curs every five minutes up to one hour. Shorter and longer intervals between two
measurements are mainly used for specific sensors i.e. used to meter current data-
throughput on file systems, single points of failure or slowly changing sensors like
error counters on hardware level or checking configuration settings. Depending on
the time spent for monitoring in comparison to simulation and communication, the
idle time can be the major part.

The jitter problem increases linear with the number of observed entities, which
are currently nodes or services. In future, these entities might be cores, with oper-
ating system running on each one; the negative effect will be based on the number
of cores then. This will be a major issue to be covered by future administration
frameworks for HPC. A possible approach to solve this issue might be i.e. delaying
all monitoring interactions until the simulation has been finished, or synchroniz-
ing monitoring at least for a subset of nodes involved in a job. In either cases the
monitoring must be aware of the scheduling.

2.2 Scalability

Another issue for a proposed framework is more general for HPC—the scalability.
Existing mainstream tools are mainly designed, tested and used in environments
with up to a few thousand nodes, which is in comparison to current HPC resources
with up to several 100,000 nodes [2] at the top end, and can be reached only if you
minimize the number of sensors per node. But can they also withstand the challenge
with the intense monitoring on the current and future largest resources with many
core systems and even with the possibility to run microkernels on each core [3]
Probably monitoring tools need to be somehow adjusted to manage this scaling
issue since execution time is not the main problem for monitoring or management
actions, but the mass of information which has to be available at one single point
because of dependencies between node change with the node-to-job assignment. So
the framework has to be able to detect parallel errors caused by one single job. The
execution of the action itself can be initiated on several independent machines but
the results have to be collected.

One central storage, physical or only logical, allow to analyze the whole system
in other ways, enabling identification of trends in usage or error probability, seek-
ing for bottlenecks, searching similar occurrences over time or application type etc.
If the information is not linked to each other you cannot find error chains between
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these parts. Future monitoring tools should be able to fetch data from different par-
titions if needed should be able at least to show all errors in one view.

2.3 Data Correlation

One trend is towards setting up HPC resources based on mainstream hardware in-
stead of specific HPC hardware. Due to the fact that mainstream hardware has less
redundancies or hot-swap capabilities, except discs and power system, is the system
more failure-prone. For the whole resources the error rates are increasing along with
the increasing number of nodes. For administration you normally need to know the
current situation and deviations from the reference values to adjust a single anomaly
or correct an error. As a result of the highly increasing number of potential error
sources we have to find out when multiple errors depend on each other or at least
show possible similarities. This seems to be clear if you have i.e. thousand nodes
with the same error and you restart these nodes over and over again because you
don’t know that they depend on a currently unavailable network file system. In case
you can detect these dependencies or somehow describe them the administration
framework can hide all dependent errors and therefore focus on the origin of an er-
ror. It is not possible to avoid all errors but especially in multi error cases it could
be very helpful to filter out such errors, which are in deed only subsequent errors.
For this reason, it is also necessary that all information pieces are accessible from
one location. With this in mind, it is also possible to create any sort of combined
information like aggregation or abstraction of sensor data.

2.4 Error Handling

Current monitoring tools [4] like Nagios [5], Big Brother [6], Zenoss [7] and others
are designed to monitor arbitrary systems states and work well within this area.
But they offer only very limited management capabilities like reacting on errors or
creating abstract sensor information other than simple min/max values for a group
of data. Normally they are only able to execute a single script without any control on
it. And the script itself can’t access the information except accessing e.g. the same
database directly.

Capabilities of current management tools are also limited; they are able to force
a system to reach certain reference state. For setup and system changes this might
be sufficient, but it is not sufficient for running a systems since you have to detect
discrepancies even outside of your reference settings, i.e. by observing logs, con-
nection tests and other information sources.

The gap between both worlds is still not closed. Monitoring and management
tools offer capabilities to detect changes and to do changes. Combining both means
to enable the system to handle errors. Since this is done by humans, except for sim-
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ple service or node restarts which can be done automatically, the increasing number
of nodes and services will be an obstacle. But if the system can detect errors and re-
act on them in a predefined manner, the system could reduce the human interactions
to not yet known problems and the administrator itself has more time to solve the
complex issues. For example in case of a crashed file server the clients don’t need
to remount their file systems and wait until the file server is ready again. If a error
handling framework is flexible enough you can use this mechanism also to reduce
the escalated events (in this case to single event of the crashed file server) and it is
easier to find the reason very soon. Later we will describe a solution which allows
fully automated error handling which offers the possibility to reduce the downtime
of systems nearly to the monitoring interval of the corresponding sensors. You can
also configure the system to solve only simple errors with a minimum error sensi-
tivity and hold back other actions until an administrator is present who can react
immediately on upcoming side effects.

2.5 Scheduler Awareness

The above described requirements have in common that they can be satisfied easier
if the administration framework is aware of scheduling. If the monitoring is able to
execute a number of tests simultaneously and the current node-to-job assignment
is known, it is possible to reduce the jitter effect by synchronously executing these
tests on the nodes of one job. For error handling it might also be very helpful to
know the assignments to check if an error is caused by a user. Obviously it would
be possible to configure the scheduler no longer to use specific named nodes for
queues. Instead you might configure only the number of nodes of a certain type
so that the system can force this even in case of node failures. So it seems that a
connection to the scheduler would beneficial but not required.

2.6 Tool Integration

Since most providers already use some monitoring and management tools which
they have adjusted to work in their specific environment, it is very hard to convince
them to change to new tools. There are doubts, whether the new tools will fulfill all
needs and will be able to setup the whole system at one time-effort, what prevents
easy migration. Additionally, people interacting with the system prefer to work with
the existing tools—this human factor should not be underestimated. It seems to
be appropriate to design the new framework to allow easy integration of existing
monitoring and management tools. This would have another beneficial effect—you
don’t have to solve their immanent problems again.
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3 TIMaCS—The Project

The project TIMaCS (Tools for Intelligent System Management of Very Large
Computing Systems) is initiated to solve the above mentioned issues especially
for HLRS, since we will reach the point where we can’t handle new resources (in
quantity and quality) with the currently existing tools. TIMaCS deals with the chal-
lenges in the administrative domain upcoming due to the increasing complexity of
computing systems especially of computing resources with performance of several
petaflops.

The project aims at reducing the complexity of the manual administration of
computing systems by realizing a framework for intelligent Management of even
very large computing systems based on technologies for virtualization, knowledge-
based analysis and validation of collected information, definition of metrics and
policies. This framework should be able to automatically start predefined actions
additionally to the notification of an administrator. Beyond that the data analysis
based on previous monitoring data, regression tests and intense regular check aims
at preventive actions prior to failures. The framework to be realized will include
open interfaces to be easily bind to relevant existing systems like accounting or user
management systems. We seek for developing a framework ready for production
and their validation at the High Performance Computing Center Stuttgart (HLRS),
The Center for Information Services and High Performance Computing (ZIH) and
the Computing Center at the Philipps-Universität Marburg. NEC with the European
High Performance Computing Technology Center and science + computing are the
other partners within TIMaCS project. The project funded by the German Federal
Ministry of Education and Research started in January 2009 and will end in Decem-
ber 2011.

3.1 Idea and Objectives

The main focus of the project is design and development of large scaling framework
for monitoring and management of HPC resources. The other objectives, indepen-
dent of their importance, are subordinated, since the increasing system size is even
difficult to handle if you want to run the systems as usual and the next resources will
be larger. The goals of the TIMaCS project are in particular:

• Concept and Implementation of a robust and highly scalable monitoring solu-
tion for very large computing systems based on existing tools and supplementary
implementations ready for production.

• Design and Implementation of a system for partitioning and dynamic user as-
signment of very large computing systems based on concepts for virtualization.
Easy setup or removal of single compute nodes out of a heterogeneous or hybrid
system will be included.
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• On top of that a management framework will be developed, which supports
different atomization and escalation strategies based on policies, including
notification of an administrator, semi-automatic to fully-automatic counterac-
tions, prognoses, anomaly detection and their validation under production condi-
tions.

• Development of tools for error detection and automatic error handling, as well as
concepts and realization of preventive actions to check preventively the status of
the infrastructure i.e. between jobs and supporting regular maintenance.

• Sustainability by defining standard conform interfaces and an integrated frame-
work targeting at the combination of not yet synchronized developments of tools
for monitoring and management, in cluster virtualization, policy based manage-
ment and knowledge based data analysis.

3.2 Issues—Addressed and Not Addressed

Based on these objectives we designed a framework which allows to cover a broad
variety of administrational task in providing HPC resources. The proposed frame-
work will offer:

• Scalable monitoring and management solution for extremely large number of
nodes even beyond 100.000 nodes.

• Error handling capabilities by executing predefined course of actions whenever
an error is detected, either by threshold violation or by thrown error message.

• Plug in concept to integrate existing monitoring tools.
• Creation of combined sensor information like aggregated values for groups (i.e.

services of a specific kind fail on one percent of all nodes) with a list of groups
attached or abstract sensors like all sensors on a node related to a specific issue
(i.e. network) work fine. Therefore it is easier to provide an overview over a huge
system without showing to many information in detail.

We don’t want to create a framework that solves all problems but we mainly look
for a practicable solution ready to work in production environments. Therefore we
have to narrow our framework and will not support directly:

• Topology detection since there are tools available and the gathered data only
has to be adjusted. This could be probably done by simply creating some SQL
statements.

• Package dependencies because operating systems bring one with them which
normally can be access by scripts to read information and execute commands.

• Rule sets for error handling. Since any system has its own characteristics it would
be at least very hard to set up some rules which work on every HPC resource.
Therefore we will not deliver any rule set except for some testing scenarios.



Towards an Architecture for Management of Very Large Computing Systems 27

3.3 Architecture

The description of the TIMaCS Architecture provided in this section is based on the
description provided by the authors in an earlier paper [8]. The approach as used in
TIMaCS architecture follows IBM’s autonomic computing architecture, where self-
managing capabilities in computer systems perform tasks that administrators chose
to delegate to the technology according to predefined policies and rules. Policies are
any type of formal behavioral guide prescribing the system behavior [9]. Policies
can be expressed by a set of objective statements prescribing the system behavior
on high level, or by a set of (event, condition, action) rules defining actions to ex-
ecute in case of error-event occurrences and thus prescribing the system behavior
on a low level. Policies determine the type of decisions and actions that autonomic
capabilities perform. In contrast to IBM autonomic computing reference architec-
ture, whose main purpose is to support IT professionals of server infrastructures for
office environments, is the purpose of TIMaCS framework to support administrators
of HPC infrastructures.

TIMaCS framework is designed as a policy based monitoring and management
framework with an open architecture and hierarchical structure. The hierarchy is
formed by manageability layers acting on different levels of information abstraction.
This is achieved by generating state information for groups of different granularity:
resources/node, node-group, cluster, organization. These granularities form abstrac-
tion layers. A possible realization of the hierarchies can be achieved in a tree-like
structure, as shown in the Fig. 3.

Each manageability layer consists of dedicated nodes, with monitoring and man-
agement capabilities implemented as blocks, called MM-Node. The Monitoring
block collects information from the nodes of the underlying layer, aggregates in-
formation and concludes abstraction by pre-analyzing information, creating group
states of certain granularity and triggering events, indicating possible errors. In the
next step, the management block (of the same MM-Node) analyzes triggered events
and determines which of them needs to be investigated. Decisions are made in ac-
cordance with the predefined policies and rules, which are stored in a knowledge
base filled up by system administrators when configuring framework and contains
policies and rules as well as information about the infrastructure. Decisions result in
actions or commands, which are submitted to and executed on managed resources
(computing nodes) or other components influencing managed resources (e.g. sched-
uler can remove failure nodes from the batch queue). All nodes are connected by
message based communication infrastructure with fault tolerance capabilities and
mechanisms ensuring delivery of messages, e.g. following AMQP [10] standard.

The bottom layer, called resource/node layer, contains resources or computing
nodes with integrated sensors, which provide monitoring information about re-
sources or services running on them. Additionally, each managed resource has in-
tegrated “delegates” interfaces, which allow to execute commands on managed re-
sources. Furthermore, there exists “delegates” which are not directly integrated in
resources (e.g. Scheduler), but have indirect possibility to influence those resources
(e.g. by removing error nodes from the batch queue).
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The next layer, called node-group layer, collects monitoring data from several
computing nodes in push or pull manner, depending on desired configuration. In
order to allow integration of various existing monitoring tools (like Ganglia [11] or
Nagios [5]) or other external data-sources, we use a plug-in-based concept, which
allows the design of customized plug-ins, capable to collect information from any
data-source. The collected data is then pre-processed, in order to generate events,
which provide abstraction from the monitoring-data. The generated event is passed
to the management block, where it is analyzed in order to determine whether the
event requires further actions. The analysis of the event comprises furthermore op-
erations aiming at reducing the amount of relevant events, e.g. by providing the
origin reason of error event. This can be done by analyzing dependencies between
events, based on predefined event relationship models or dependencies between sen-
sors, services and hardware. After the event has been classified as error-event, it will
be handed over to the policy based decision module, which makes decision on how
to react on occurred error. After the decision on how to counteract an error event has
been made, it is transformed into commands, which are sent to the “delegates” of
managed resources (in the resource layer) or to other delegate which can influence
affected resources (e.g. remove affected node from the batch queue). Each decision
is reported to the upper layer, in order to provide possibility for the upper layer to
intervene on taken decision, as it has also information about other parts of the clus-
ter. The report contains description of detected error event and actions executed to
handle this event. The upper layer is now able to intervene on received report by

Fig. 3 TIMaCS architecture
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updating the rules handling the error on the lower layer, or by executing actions
affecting the managed resource. The abstraction level achieved on the group-node
layer reflects the operational state of nodes or group of nodes.

The next layer, cluster layer, analyzes reports or events mediated or generated
by the group-node layer and takes decision to handle escalated reports or events,
e.g. dependent on severity or amount of reports received within certain time period.
The analysis and evaluation of events/reports received from the group-node layer,
and decision making, corresponds in principle to the description provided in node-
group layer. But, in contrast to group layer, the cluster layer evaluates operational
state of underlying node-groups, relating them to each other and to services and
information sources needed for the operation of the whole cluster. The actions taken
on this level could comprise, in addition to intervene actions, removal of affected
nodes from the resource-manager, restart of jobs, rescheduling, etc.. The abstract
level provided on this layer reflects the operational state of the cluster.

The top layer, organization layer, receives reports/events from several clusters of
the cluster layer and takes decision on escalated events/reports. The analysis and
evaluation of events/reports received, and decisions made, corresponds in princi-
ple to the description provided in cluster layer. But, in contrast to cluster-layer, the
organization layer evaluates operational state of underlying clusters, relating them
with other information sources, like accounting or SLA-management, and services,
needed for the operation of the whole computing centre. Escalated reports/events
demands that an administrator starts a deeper analysis. On top of the framework
an Admin-Node is settled, which allows administrators to configure the framework,
the infrastructure monitoring, to maintain the knowledge base and executing other
administrative actions.

From the system monitoring point of view, the proposed framework reduces the
overwhelming information flow of monitoring-data by handling and filtering it on
different level of abstractions. At the same time, it increases the information value
delivered to system administrator, comprising only necessary and important infor-
mation. The plug-in based monitoring concept allows integration of various existing
monitoring tools like Ganglia, Nagios, ZenossCore and other information sources.
The collection of monitoring information can be done in push or pull manner, de-
pending on the desired configuration of the framework. The advantage of the pull
model is that collecting of monitoring information from the nodes of the underlying
layer can be triggered at certain time-point explicitly. This eases control over the
jitter problem by determining the time-point of information collection, e.g. between
two jobs and not during the intensive activity on compute nodes.

From the system management point of view, the decision making and handling of
errors is done automatically according to predefined rules and policies. This reduces
system recovery time after errors and offers maximum degree of deterministic sys-
tem behavior ensuring that administrators are able to retrace the system’s decisions.
At the same time, deterministic decision making increases administrator’s confi-
dence into the framework and helps to establish autonomic management systems
in HPC. The capability of each layer to make decisions autonomously and imme-
diately, on occurred events, increases dynamism of the system. In case of network
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interruptions between two layers, the lower layer is still capable to make decisions
and handle occurred events independent of the upper layer. At the same time, esca-
lated reports sent to upper layers, provide the possibility to intervene on decisions
made by lower layers, without necessity to handle each report. This is achieved by
smart escalation strategies.

4 Administrational Benefits

Assuming that the above described solution is ready to use, this chapter provides
benefits on administration of such system and outlines influence on management of
HPC resources, including simplification of system configuration.

4.1 Security Constraints

The first part handles about scenarios where security constraints are needed. Espe-
cially in case of commercial use this might be relevant to avoid interferences on
access between different user groups. Normally access right on files are already in
place but other users may still try to access nodes used by other users and decrease
the available cpu-time for the permitted user. By preventing this i.e. on switch level,
the nodes don’t have to handle these attacks. Examples for security scenarios are as
following:

• Access to license servers.
• Grant exclusive access to a storage system to a specific user group.
• Restrict access to node to all members of the same company.

They have in common, that the access restrictions may be enforced outside of the
node hosting the service, so that the side effects can be minimized and possible secu-
rity bugs in the nodes are even not reachable for attackers. Additionally these infras-
tructure changes can normally be changed without interrupting operation. Changes
on the nodes itself often cause a service restart with a short downtime. So the critical
systems’ configuration has not to been changed and therefore errors in this config-
uration occur very seldom. The security constraints may also be enforced on the
corresponding system but on infrastructure level a second barrier can be created and
brute force attacks are minimized.

4.2 Mission-Critical Constraints

More important than security constraints may be mission critical issues. Especially
in urgent computing scenarios it is necessary that the processes are not disturbed in
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any way. This can be done by:

• Encapsulating desired nodes and servers so that they appear as a separate clus-
ter with exclusive access. This might be helpful to convince people to use even
resources together with other users.

• Guarantee a certain bandwidth to an external server by restricting bandwidth for
all other users on the network level.

4.3 Performance Tuning

The HPC provider itself may use the management capabilities to optimize his sys-
tems depending on currently submitted jobs, with different requirements on quality
and quantity on resource usage, and users. Distributing the anticipated server work-
load over several servers equally, can be done by changing the server names respon-
sible for each node. So the storage frontend which is accessed by each node, may
be changed depending on the users job history or storage usage.

4.4 Dynamic Changes

Current situation in HPC provisioning is that resources are configured very static
and changes need a long time to be done. With a powerful management framework
this could be replaced by dynamic configurations:

• Adapt the scheduling system according to the current submission behavior. So it
might be possible to increase queue size before weekends or reduce the number
of resources assigned for short or interactive jobs on weekends. As a result, the
number of idle nodes will decrease.

• If for performance issues some services are only available for a part of the nodes
in case of permanent errors, these assignments have to be changed so that all
nodes have access again. This is very important if there is a fully automated error
handling in place since then you need to do changes on large systems.

4.5 Hardware Management

Even the hardware management will be easier since network hardware may only be
labeled with the predefined types and the management system then knows the proper
reference state which will then be enforced. So changes due to hardware failures as
well as extensions to clusters may be integrated very fast.



32 J. Buchholz, E. Volk

Most of the above mentioned examples share a common idea, building virtual
resources for some time which will act as they were independent.

5 Business-Benefits with Business-Policy Based Management

Policy based management approaches had been developed in order to achieve more
dynamic behavior of the managed system. The hierarchical policy based manage-
ment approach presented previously, allows, by definition of policies and rules on
different levels of abstraction, adaptation of the managed system to different situa-
tions (i.e. errors) and dynamically changing environment—where the IT infrastruc-
ture is continuously changed and updated. In addition to different situations and dy-
namic IT infrastructures there are on top of the policy hierarchy different business
objectives and business policies, which define the business course of the provider
and influence policies on subsidiary levels. In this chapter we outline the need for
business policies and show a possible approach investigating relationship between
business policies and scheduling policies.

5.1 Need for Business-Policy Based Job-Scheduling in HPC

Business policies are any type of formal or informal behavioral guide prescrib-
ing behavior of/in a company that business wants to have. The behavior of high
performance computing (HPC) provider can be assessed according to schedul-
ing of jobs, with various requirements on HPC resources and Quality of Services
(QoS), submitted by different users. Scheduling behavior is typically defined in a
way that it implicitly adheres to business policies of HPC provider, while taking
users’ job requirements, available resources, existing SLAs, long term contracts and
other factors into account. The range of existing schedulers used for job schedul-
ing in HPC varies from time based scheduler like Cron [12] to advanced sched-
ulers like Moab [13], which supports large array of scheduling policies with dy-
namic priorities, extensive reservations, and fair share [14]. However, schedulers
have a big amount of parameters and different scheduling policies which need
to be selected and adjusted in order to meet business policies in different situa-
tions.

The problem which occurs when configuring schedulers is that business poli-
cies exist in most cases implicitly. Administrators are not really aware of existing
business policies and therefore configure schedulers intuitively and possibly subjec-
tively. This makes it hard for business people to assess whether the actual schedul-
ing behavior corresponds to current business policies, as it requires understanding
of scheduling configuration parameters.

Additionally, there might be a fast switch required between different business
policies, dependent on the occurred situation. For instance, in profit oriented organi-
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zations, managers try to achieve maximum return on investment which often means
that they only deliver various qualities of services to various users and groups [14] to
increase system utilization. In contrast, nonprofit organizations, like national com-
puting centres, have their focus on delivering various qualities of services to various
(or certain) users and group even if this will cause a decreasing utilization. Some
of the national computing centres have joint collaboration with scientific and indus-
trial partners through common joint cooperation company. That means scheduling
behavior in clusters of such computing centres needs to be flexible enough to be
adapted to various business needs even at the same time.

5.2 Approach

As outlined, there is a need for rapid changes of the scheduling behavior in order
to adapt it to changing business requirements (from “high system utilization” to
“customer satisfaction”) and new situations. An approach to handle such kinds of
problems, induced by changing business objectives and altering situations, might
follow IBM’s autonomic computing reference architecture [9]. Autonomic com-
puting is thereby defined “as a computing environment with the ability to man-
age itself and dynamically adapt to change in accordance with business policies
and objectives” [9]. Following this approach, there must be business policies de-
fined, capable to express business requirements influencing scheduling behavior on
high level. In contrast to IBM autonomic computing reference architecture is the
purpose of the proposed approach to support HPC providers on business level in
job-scheduling.

The investigation on the relationship between business policies and scheduling
policies can be achieved by developing a model, capable to map HPC business poli-
cies together with SLAs, long term contracts, available resources and other elements
influencing scheduling behavior, to selection and adjustment of scheduling policies
and configuration parameters, used to configure scheduler and thus to provide the
scheduling behavior in accordance with the business policy. Thereby an intermedi-
ate step is necessary, which requires development of HPC business policy specifica-
tion, capable to capture and describe behavior of HPC centre on high level.

The approach follows a bottom-up process: The first step thereby is to analyze ex-
isting scheduling policies, in order to identify most common key factors (with their
interrelation and possible hierarchy), like priority of users/jobs, fairness, response-
time, utilization-strategy, available resources, SLAs/contracts, and other factors in-
fluencing scheduling behavior. The next step consists in the analysis of existing
business policies and their relationship to identified key factors in different situa-
tions. The outcome of the second step will be a model, which explains relation-
ships between current business policies, the key factors and scheduling policies.
The third step consists of the identification of HPC business policy schema, derived
from the model in second step, capable to express HPC business policies. Finally,
in order to evaluate results achieved in previously steps, the last step consists of
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reference implementation, enabling mapping of reference business policies together
with other key factors to scheduling policy configuration for advanced schedulers
like Moab [13] or Maui [14].

6 Conclusion and Future Outlook

We have shown that for future HPC resources it is necessary to develop a new gener-
ation of monitoring and management framework, since existing tools are not capa-
ble to cover all HPC relevant aspects, because of scalability problem and other HPC
related issues. Especially the difficulty in avoiding additional jitter effects is increas-
ing with the size of resources. The proposed framework within the TIMaCS project
is capable of fulfilling most of the requirements we have identified for productional
use.

Assuming the framework is developed as described, we have foreseen how this
can change HPC administration from the more technical view, to help administra-
tors to manage larger and more complex systems. From the business point of view,
ability to express business policies on high level allows flexibly and fast adaptation
of the system to different situation, where new type of services can be offered to
customers. Beyond that, the presented work offers more possibilities in area which
are only on the fringe today. If it is possible to monitor nearly everything within a
resource and react on any deviations, this system could even be used for user initi-
ated management. So they can monitor performance within their jobs and optimize
the code or allocate resource accordingly, to increase i.e. calculated details. Or they
can catch errors within the jobs and create error handling strategies reducing i.e.
jitter problem.

We think that the management of very large resources will be changed dramat-
ically in the next years, since current procedures are to static to satisfy future re-
quirements. This might even result in a paradigm change for resource management.
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Empirical Optimization of Collective
Communications with ADCL

Katharina Benkert, Edgar Gabriel

Abstract The Abstract Data and Communication Library (ADCL) allows for auto-
tuning of communication operations for parallel applications. This paper presents
a new set of interfaces introduced in ADCL in order to support most MPI col-
lective communication operations, and thus enable the optimization of one of the
most widely used features of the MPI specification. The paper discusses semantic
as well as implementation aspects, and evaluates the new interfaces using the NPB
FT benchmark on a large selection of platforms and MPI libraries.

1 Introduction and Motivation

Automatic performance tuning is an area of research defined by one of the fun-
damental questions in computing: how to provide with reasonable effort efficient
code on a wide variety of computer architectures steadily increasing in complexity
and diversity. Or, in other words, how to obtain for a kernel (computational kernel,
communication pattern) platform-independently an equal or superior performance
compared to hand-tuned code.

Collective operations are frequently used. Rabenseifner showed in a long-
term study in [9] that apart from point-to-point communications a significant
amount of communication time is spent in the collectives MPI Alltoall and
MPI Allreduce. Terry Jones presented in a more recent study [8] that the time
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spent in collectives is predominantly divided among barrier, allreduce, broadcast,
gather and alltoall and that the alltoall performance is vital to some codes.

Since the performance of collective operations has a great influence on the scal-
ability, many researchers tried to improve the efficiency of collectives under certain
assumptions on the type of network and the message length. However, no single al-
gorithm can lead to optimal performance in all possible scenarios. Even if the MPI
implementation combines several algorithms using a heuristic switching technique
depending on the message length, the best time to solution is not guaranteed. Letting
a common HPC user try to figure out optimization possibilities and system sensitiv-
ity, by having him implement several communication possibilities and run extensive
benchmarks with different problem sizes, number of processes and MPI libraries on
different machines, is no solution either.

An answer to this dilemma are empirical optimization libraries. They possess
in general three distinct components: a large number of different code-lets for the
kernel that is being optimized, timing routines to measure the execution time of the
code-lets empirically, i.e. by actually running the code-lets, and selection algorithms
to determine the fastest code-let based on the obtained empirical data.

The Abstract Data and Communication Library (ADCL) is an auto-tuning li-
brary which acts as an add-on to the MPI implementation. It intends to take away
complexity from the user and at the same time exploits optimization possibilities.
In [6] the benefits of using ADCL for a specific communication pattern—the n-
dimensional Cartesian neighborhood communication which is commonly used in
applications with stencil computations—were demonstrated.

In this paper we describe enhancements to the ADCL API in order to extend
ADCL’s functionality beyond Cartesian neighborhood communication, most no-
tably to support MPI collective operations. The main challenge lies in the fact that
up to now data description and information about the communication operation are
intertwined. The main contribution of this paper therefore is to develop and detail a
new set of interfaces supporting more generic communication operations. We imple-
ment an ADCL version of the NAS FT benchmark using the new interfaces for the
all-to-all communication pattern and present the results for various problem sizes,
number of processors and MPI libraries on several HPC systems.

2 The Abstract Data and Communication Library (ADCL)

The Abstract Data and Communication Library (ADCL) [5] is an empirical auto-
tuning library targeting mostly MPI communications, although its functionality
could be used to optimize any user-provided set of code-lets. It aims to provide the
highest possible performance for application level communication patterns within a
given execution environment. At present, the library has a predefined set of 20 code-
lets for the n-dimensional Cartesian neighborhood communication and incorporates
a run-time selection and decision logic in order to choose the code-let leading to the
highest performance.
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ADCL has its own API since its goal is to tune any code fragment. In case of
complicated communication patterns with more than one MPI communication, it
becomes difficult to impossible to use the performance interface of MPI or to im-
plement a compiler-based automatic code substitution. After an MPI program is
started, the performance of a MPI data exchange is regarded a function of (the size
of) the data, the communication pattern and the process topology. For each of this
parameters exists a corresponding ADCL object:

• ADCL Vector describes the data to be communicated. The object contains the
dimensions and extents of the data array, its basic data type, the number of com-
ponents per grid point nc, the number of layers of halo cells hwidth and a pointer
to the data array.

• ADCL Function is a code-let that implements a certain numerical kernel or
communication pattern.

• ADCL Fnctset is a set of ADCL functions providing the same functionality.
ADCL includes a pre-defined function set ADCL FNCTSET NEIGHBORHOOD
for the n-dimensional Cartesian neighborhood communication.

• ADCL Topology provides a description of the process topology and neighbor-
hood relations within the application.

• ADCL Request combines a vector object, a function set and a topology object.
An ADCL Request represents a persistent communication object, which simi-
larly to its MPI counterpart for sequential persistent requests can be ‘started’, in
this case using ADCL Request start.

The following code sample gives a simple example for an ADCL code, using a
2D neighborhood communication on a 2D process topology.

int ndim = 2; /* number of dimensions */
double **vector; /* data array with halos to be communicated */
int vec_dims = [7,5]; /* extents of the data array */
int nc = 1; /* entries per grid point */
int hwidth = 1; /* number of layers of halo cells */

ADCL_Vector vec;
ADCL_Topology topo;
ADCL_Request request;

/* Allocate a 2D vector with ADCL */
ADCL_Vector_allocate (ndims, vec_dims, nc, ADCL_VECTOR_HALO, hwidth,

MPI_DOUBLE, vector, &vec);

/* Generate a 2-D process topology */
MPI_Cart_create (MPI_COMM_WORLD, 2, cart_dims, periods, 0, &cart_comm);
ADCL_Topology_create (cart_comm, &topo );

/* Combine description of data structure, predefined function set and
process topology */

ADCL_Request_create (vec, topo, ADCL_FNCTSET_NEIGHBORHOOD, &request );
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/* Main application loop */
for (i=0; i<NIT; i++ ) {

...
/* Initiate neighborhood communication */
ADCL_Request_start (request );
...

}

ADCL_Request_free ( &request );
ADCL_Topology_free ( &topo );
ADCL_Vector_free ( &vec );

ADCL Request start replaces the calls to MPI. They execute the commu-
nication and control the empirical optimization. During the first iterations of the
application, the fastest code-let from the neighborhood function set is determined:
execution times of alternative code-lets are measured multiple times one after an-
other. After all code-lets have been tested the required number of times, the mea-
surements are analyzed mainly locally with a statistical method as explained in [2].
Then, depending on the evaluation method used, the method judged fastest is chosen
and used during the remainder of the simulation.

3 Semantics of the New ADCL Interfaces

The ADCL vector object as presented in Sect. 2 serves two purposes: first, it allows
to identify the buffer associated with a communication operation; second, it allows
to perform an automatic data mapping of which portion of the data array is supposed
to be transferred to which process. As an example for the latter the interface to
allocate an ADCL vector,

int ADCL_Vector_allocate ( int ndims, int *dims, int nc, int comtype,
int hwidth, MPI_Datatype dat, void *data, ADCL_Vector *vec )

contains the parameter hwidth which specifies the number of layers of halo cells
that have to be transferred to the neighboring processes. Combined with the topol-
ogy object described previously, the library automatically determines which ele-
ments have to be transferred to which process.

3.1 The Vector-Map Object

Although this functionality is highly convenient, the main restriction of this API
was its limiting the functionality to Cartesian neighborhood communication, the
original driving force of the library. To support further communication patterns,
we developed therefore a set of new API interfaces, which allow to separate the
description of the communication buffer and the mapping of which elements of the
buffer have to be transferred to which process.
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The new set of interfaces developed within this project tries to accommodate
multiple goals:

1. allow for the definition of user defined functions as well as predefined operations
2. separate data management from the actual communication operations
3. allow for a light-weight description of data mappings and the automatic associa-

tion with remote processes.

Collective Data Communication Topology vmap type
information information information for svec (& rvec)

MPI Bcast buffer, datatype count root, comm all
MPI Gather sbuf, stype, scount, root, comm all & all or

rbuf, rtype rcount inplace & all
MPI Gatherv sbuf, stype, scount, root,comm all & list or

rbuf, rtype rcounts, displs inplace & list
MPI Scatter sbuf, stype, scount, root, comm all & all or

rbuf, rtype rcount inplace & all
MPI Scatterv sbuf, stype, scounts, displs, root, comm list & all or

rbuf, rtype rcount inplace & list
MPI Allgather sbuf, stype, scount, comm all & all or

rbuf, rtype rcount, inplace & all
MPI Allgatherv sbuf, stype, scount, comm all & list or

rbuf, rtype rcounts, displs inplace & list
MPI Alltoall sbuf, stype, scount, comm all & all or

rbuf, rtype rcount inplace & all
MPI Alltoallv sbuf, stype, scounts, sdispls, comm list & list or

rbuf, rtype rcounts, rdispls inplace & list
MPI Alltoallw sbuf, stypes, scounts, sdispls, comm list & list or

rbuf, rtypes rcounts, rdispls inplace & list
MPI Reduce sbuf, count, op root, comm reduce (2x) or

rbuf, datatype inplace & reduce
MPI Allreduce sbuf, count, op comm reduce (2x) or

rbuf, datatype inplace & reduce
MPI Reduce sbuf, rcount, op comm reduce (2x) or
Scatter block rbuf, datatype inplace & reduce
MPI Reduce sbuf, rcounts, op comm redscatter (2x) or
scatter rbuf, datatype inplace & redscatter
MPI Scan sbuf, count, op comm reduce (2x) or

rbuf, datatype inplace & reduce
MPI Exscan sbuf, count, op comm reduce (2x) or

rbuf, datatype inplace & reduce

Table 1 Overview of collectives. Interface parameters are divided into data, communication and
topology-related information (s—send, r—recv)

The new interface therefore distinguishes between five different objects: the vec-
tor object, the vector-map object, the topology object, the function-set and the re-
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quest. In the following, we would like to focus our attention to the vector, vector-
map and the request object.

The main purpose of the ‘new’ vector object is to define a data array that will be
used later for communication. The interface allows to register or allocate a multi-
dimensional memory region, using the number of dimensions of the data array, ex-
tent of each array, number of elements of each data point in the array, and the basic
MPI datatype. The vector does not specify which elements of the data array will be
used in communication operations.

The vector-map object (or short ‘vmap’) allows to define which elements of
the vector object have to be transferred to which process. This functionality does
not have a counterpart in MPI, since it combines functionality often provided
by the vector versions of the MPI collective operations such as MPI Gatherv,
MPI Scatterv and derived MPI data types. Although the vmap object does not
have the flexibility of the most generic MPI derived data type constructors such as
MPI Type create struct, it provides a much simpler and user-friendlier in-
terface compared to the latter one, and covers many if not most common situations.
Specifically, based on the vector and the vmap object, the ADCL library is able to
construct the required derived MPI data types automatically for the end-user.

3.2 Extension of the ADCL Interfaces

In order to support a large variety of communication patterns, we analyze in the
following the information required for the MPI collective operations, the Cartesian
neighborhood communication and user defined function sets.

For the collectives defined in the MPI standard and shown in Table 1 we notice
that the parameters can be separated into three groups: information concerning the
data (buffer, data type) which is stored in the ADCL vector object, information
concerning the process topology (communicator, root) stored in the ADCL topology
object and finally information related to the communication pattern (element counts,
reduction operation, array of element counts or displacements) which becomes part
of the new vmap object. If one treats send and receive information separately, one
obtains four different types of vmaps for the collectives. Together with an inplace
type and the halo type for Cartesian neighborhood communication, this results in
six different types of vmap objects. The constant ADCL VMAP NULL can be used
for user-defined function sets that do not necessarily need a vmap object. Table 2
summarizes the different vector-map object types and the required information for
each of them.

Due to the broad range of parameters required for various operations, different
interfaces for different operations have been defined. The parameter comtype was
originally used in the interfaces to allocate or register a vector and describes the
type of vmap. It now becomes part of the interface to allocate the vmap object
as vmap comtype allocate. The new interfaces for vmap, vector and request
creation for the example code from Sect. 2 are now
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Vmap comptype Parameters
inplace –
halo hwidth
all count
reduce count, op
list counts, displs
redscatter� counts, op

Table 2 Types of ADCL vmap objects (�—not implemented as only needed for
MPI Reduce scatter)

ADCL_Vmap_halo_allocate ( int hwidth, ADCL_Vmap *vmap );
ADCL_Vector_allocate ( int ndims, int *dims, int nc, MPI_Datatype dat,

void *data, ADCL_Vector *vec )
...
ADCL_Request_create ( ADCL_Vector vec, ADCL_Vmap vmap,

ADCL_Topology topo, ADCL_FNCTSET_NEIGHBORHOOD,
ADCL_Request *request);

Special attention has to be attributed to the data types which naturally belong
to the vector object. However, also the request object has data types since in case
of the neighborhood communication, the vector object contains the basic data type
whereas for the request derived types are constructed which depend on the topology
information (size), data information (dimensions and extent of the data array, nc)
and communication information (hwidth). This means that for collectives the data
types from the vector object have to be copied to the request object. New variables
are introduced in the request object which specify the number of MPI data types
to be sent or received. For the copy operations of the data types and the initializa-
tion of the new variables, the functions ADCL basic init and ADCL basic free are
implemented.

3.3 The New Function Sets

For supporting MPI collective operations within ADCL, we encapsulate the native
MPI collective provided by the MPI library as one code-let. Additionally, we imple-
ment a variety of algorithms which perform the collective communication based on
pairwise communications. Inside the MPI library, the collective function is likewise
performed by one algorithm as a sequence of pairwise communications, but it is up
to the MPI library which algorithm it uses and in case of vendor MPI libraries not
known to the user.

New predefined function sets for allreduce, allgatherv and all-to-all have been
added. ADCL provides 5 code-lets for the allreduce operation. One is the encapsu-
lated native MPI Allreduce, the 4 others are based on send-receive operations:
linear (reduce to root and broadcast with own implementations), non-overlapping
(reduce and broadcast with MPI implementation), recursive doubling algorithm as
used in MPICH2 [7] for small and intermediate size messages. and ring.
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For allgatherv, there is the native MPI implementation, linear (gatherv to root and
broadcast), recursive-doubling as used in MPICH2 [7], Bruck (a variation of the
All-to-all algorithm described in [3]), neighbor exchange (adapted from allgather
algorithm described by Chen et.al. in [4]) and ring.

The all-to-all function set consists of eight code-lets, here numbered for reference
in Sect. 4: the native MPI all-to-all (C0), linear sync (C1), pairwise (C2),
pairwise excl (C3), linear (C4) and Bruck’s Algorithm [3] with a minor modification
as used in MPICH2 [7], which restricts the number of messages. In our case we use
block sizes of 2, 4 and 8 (C4–C7).

No special effort has been invested to tune the different code-lets as of today.
In a long-term, we plan to add the flexibility for supporting various data transfer
primitives (blocking, non-blocking, one-sided) and various methods to handle non-
contiguous data, similarly to the Cartesian neighborhood communication.

4 Performance Evaluation

To compare the code-lets of ADCL with the native MPI Alltoall, we use the MPI
FFT Benchmark of the NAS Parallel Benchmarks 3.0 [1] from NASA Ames Re-
search Center. The CFD related “paper and pencil” benchmarks consist of a set of
5 computational kernels (EP, MG, CG, FT, and IS) and 3 pseudo applications (LU,
SP and BT) and serve to evaluate supercomputers. Each of the kernels addresses
a different type of numerical computation. The FT benchmark computes the solu-
tion of a 3-dimensional partial differential equation with Fast Fourier Transforms
(FFTs). FFTs are often used in spectral methods and for large Eddy turbulence
simulations and require all-to-all communications for matrix transpose operations.
Consequently, the FT benchmark creates substantial communication and evaluates
network performance.

4.1 Integration of ADCL

The ADCL implementation is based on a 1-dimensional data distribution. In the
main program, after the call to the benchmark’s setup() routine, ADCL Init is called
and the ADCL data structures are build: a vmap object for the all-to-all communica-
tion, vector objects for u1 and u2 are registered and a request object is allocated. A
switch is set to false to avoid counting the first call to fft(). It is set to true right be-
fore the main loop of the FT benchmark which consists of an evolution step and the
computation of the FFT. During its execution in the subroutine transpose2 global
the call to MPI Alltoall is replaced by an ADCL Request start. After the call to
print timers() the ADCL objects are deregistered or deallocated and ADCL Finalize
is called. The header file ADCL.inc is included in the main program as well as in
the subroutine.
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program ft
include ’ADCL.inc’
c FT: further includes and declarations
call MPI_Init(ierr)
call ADCL_Init(ierr)

c FT: timing and setup

c set up ADCL data structures
call adcl_topology_create ( MPI_COMM_WORLD, adcl_topo, ierr )
call adcl_vmap_alltoall_allocate( ntdivnp/np, ntdivnp/np,
> adcl_vmap, ierr )
call adcl_vector_register ( 1, ntdivnp, 0, dc_type, u2,
> adcl_svec, ierr ) ! send vector
call adcl_vector_register ( 1, ntdivnp, 0, dc_type, u1,
> adcl_rvec, ierr ) ! receive vector
call adcl_request_create_generic ( adcl_svec, adcl_vmap,
> adcl_rvec, adcl_vmap, adcl_topo, ADCL_FNCTSET_ALLTOALL,
> adcl_request, ierr )

c disable adcl while problem is ran once for benchmarking reasons
use_adcl = .false.

c run problem
use_adcl = .true.

c main loop
do iter = 1, niter

call evolve(...)
call fft(...) ! calls transpose_xy_z which calls transpose2_global

end do

c FT: verification and output

c free ADCL objects
call adcl_request_free ( adcl_request, ierr )
call adcl_topology_free ( adcl_topo, ierr )
call adcl_vector_deregister( adcl_svec, ierr )
call adcl_vector_deregister( adcl_rvec, ierr )
call adcl_vmap_free (adcl_vmap, ierr )

call ADCL_Finalize(ierr)
call MPI_Finalize(ierr)
end program FT

subroutine transpose2_global(xin, xout)
include ’ADCL.inc’

c FT: further includes, declarations and timing
call adcl_request_start ( adcl_request, ierr ) ! replaces

c FT: call mpi_alltoall(xin, ntdivnp/np, dc_type,
c FT: > xout, ntdivnp/np, dc_type,
c FT: > commslice1, ierr)
c FT: timing
end
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4.2 Setup

The test systems used are a Nehalem cluster with InfiniBand interconnect, a Cray
XT5m and a NEC-SX8 installation at HLRS, the SGI Altix at LRZ Munich and
the BlueGene/P system at the Supercomputing System Jülich. For each system, we
executed the FFT benchmark for various classes K with different numbers of pro-
cesses n, abbreviated as nK in the figures below, and eventually with multiple MPI
implementations. The dimensions of the domain as well as the message sizes for
the different test cases are shown in Table 3. Runs were executed in the virtual node
mode, i.e. every core ran an MPI process.

Class nx ny nz Total message #procs Message size
size[GB] per process [KB]

A 256 256 128 0.1 8 2097

B 512 256 256 0.5
8 8388

32 524

C 512 512 512 2.1

32 2097
128 131
256 32
512 8

Table 3 Message sizes for the FFT benchmark

Within a single batch job, we execute three set of runs. Each set consists of 9 runs,
one for each of the 8 code-lets presented in Sect. 3.3 for the all-to-all operation and
one without ADCL, with 200 FFT iterations.

4.3 Results

We follow a two-step procedure to analyze the results. At first, we compare the ex-
ecution time of the winner code-let to that of the encapsulated native MPI Alltoall.
Secondly, we take into account the overhead caused by ADCL and compare the ex-
ecution time of the ADCL winner code-let to the benchmark results without ADCL.

In the following, the subscript w refers to the winner code-let, n to the encapsu-
lated native MPI Alltoall and o to the original implementation without ADCL. We
compute the mean t̄k = 1

N ∑N=3
i=1 tk,i, k ∈ {w,n,o} from the execution times tk,i of the

three runs. The degree of dispersion about the mean is expressed by the uncertainty
uk = sk√

N
where

sk =

√
1

N −1

N

∑
i=1

(tk,i − t̄k)2

is the sample standard deviation.
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For k ∈ {n,o}, the possible gains in percent are given by

gk(t̄k, t̄w) =
t̄k − t̄w

t̄k
·100

with uncertainty

utotk =

√(
∂gk

∂ tk
·uk

)2

+
(

∂gk

∂ tw
·uw

)2

=

√(
tw
t2
k

·uk

)2

+
(

uw

tx

)2

·100 .

When comparing the winner code-let to the encapsulated native MPI Alltoall, in
22 out of 42 test cases, i.e. more than 50%, the encapsulated all-to-all was not the
best implementation as shown in Table 4. Among them were 6 cases in which ADCL
performed a lot better. It is important to note that 7 out of 8 code-lets provided by
ADCL performed best in at least one test case.

Test case Winner code-let Gain[%] utotn

nehalem impi 8A C7 0.67 0.19
nehalem impi 8B C7 2.03 0.51
nehalem impi 128C C2 0.05 1.07
nehalem impi 512C C3 35.85 0.87
nehalem ompi 8A C4 1.83 1.23
nehalem ompi 8B C1 0.34 0.50
nehalem ompi 32B C3 1.74 0.96
nehalem ompi 32C C3 0.46 1.88
nehalem ompi 128C C2 1.52 0.89
nehalem ompi 512C C3 34.31 2.21
sgi altixmpi 256C C2 20.27 2.76
sgi impi 8A C7 3.56 0.25
sgi impi 8B C4 22.44 8.54
sgi impi 32B C4 4.92 0.29
sgi impi 128C C4 11.32 1.47
sgi impi 256C C1 4.16 5.13
sgi ompi 8B C4 2.16 0.86
sgi ompi 32B C3 56.23 23.91
cray 8A C7 0.70 0.15
cray 8B C7 1.14 0.34
cray 128C C3 0.38 0.71
cray 256C C3 6.82 6.62
sx8 8A C7 0.74 0.07
sx8 8B C4 0.32 0.07
sx8 32B C4 1.35 0.50
jugene vn 8A C5 1.84 0.01
jugene vn 32B C1 2.14 0.00

Table 4 Overview of testcases with other winning code-lets than the encapsulated native MPI
implementation C0
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Secondly, we take into account the overhead caused by ADCL and compare the
execution time of the ADCL winner code-let to the results of the original benchmark
without ADCL. The possible gains and losses using ADCL are depicted in Fig. 1.
Except for the test cases sgi altixmpi 8B, sgi altixmpi 32B and jugene vn 512C,
ADCL performs as good or better than the original version without ADCL.

Fig. 1 Performance gains and losses in percent when comparing the winner code-let of ADCL to
the original benchmark version without ADCL. The error bars show the uncertainty utoto

5 Summary and Outlook

In this paper we described the goals, semantics and realization of a set of new
interfaces to extend the auto-tuning library ADCL. With the recently introduced
vector-map object, data management and communication information are separated
to allow for new communication patterns or user-defined functions. The approach
has been validated by analyzing the requirements of collective operations and user-
defined functions and implementing predefined function sets for allreduce, allgath-
erv and alltoall.

Although the initial implementation for the predefined function sets does not
support various data transfer primitives or methods to handle non-contiguous data,
the results obtained for the NAS FT benchmark with its all-to-all communication
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pattern showed that in all but 3 cases an equal or superior performance could be
achieved when using ADCL.
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I/O Forwarding on NEC SX-9

Erich Focht, Thomas Großmann, Danny Sternkopf

Abstract I/O Forwarding can give the NEC SX-9 access to non-natively supported
filesystems like Lustre. The implementation of the first IOFWD release has been
finished. The IOFWD framework is running on the SX-9 as a client and on x86-64
based machines as a server. Users can benefit in several ways like running coupled
applications spanning over scalar and vector machines and simplify their workflows
by avoiding the hassle of copying data between various filesystems. The develop-
ment was done as part of the SX-Linux project in collaboration of HLRS and NEC
EHPCTC Stuttgart. This paper reports the implemented IOFWD design and the us-
age of IOFWD on the SX-9.

1 IOFWD Implementation

The core idea behind I/O forwarding is simple and natural: a highly sophisticated
computer specialized to do floating point operations at highest possible rate, like
the SX-9 vector supercomputer, should spend every cycle for what it does best:
computation. It should not need to care about files, I/O, filesystems, block devices.
A general purpose scalar CPU like an x86 64 running the Linux operating system is
much better suited to do I/O on behalf of a SX-9 user program. Therefore I/O calls
issued by a program running on the SX-9 are intercepted, transformed into RPCs
that are sent to a designated I/O server. On the server side the RPCs run local I/O
operations, gather the results and send them back to the SX-9. This is accomplished
by the IOFWD infrastructure.
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Physically IOFWD uses a 10 Gigabit Ethernet network to invoke the I/O opera-
tions and transfer arguments and data buffers from a SX-9 node to an I/O forwarding
server running Linux on x86 64 architecture. We have implemented an user-space
approach half-integrated into a C library and additionally libraries that redirect sys-
tem calls to a daemon running on I/O forwarding servers.

1.1 Design of IOFWD

The design of IOFWD is based on a client-server architecture. The compute pro-
cesses are running on the SX-9 and the IOFWD server daemon, also called iofwd-
srv, is running on the I/O forwarding servers. I/O operations from the SX compute
process will be forwarded to the iofwdsrv which does the actual I/O on a local or
parallel filesystem.

Fig. 1 IOFWD design: SX is a client, PC is a server

The iofwdsrv daemon runs on a Linux host and can access cluster/parallel filesys-
tems through standard Linux filesystem client software. The I/O forwarding server
acts as a gateway for I/O between networks. It uses 10 GE to communicate with the
SX and it uses Infiniband to access the Lustre filesystem.

Each compute process on the SX spawns one iofwdsrv on the I/O forwarding
server to establish a dedicated connection. This is sketched in Fig. 1. This approach
is very flexible and allows using the same server for I/O of a parallel job e.g. when
accessing a local filesystem on the server, but also allows distributing the I/O load
easily to multiple servers when using a parallel filesystem like Lustre.
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1.2 IOFWD Components

IOFWD is layered into several components. On the client side these are:

• A system call interception layer that replaces the I/O related calls with RPCs,
serializes the call arguments and deserializes the call results.

• Libiofwd, a simple RPC library used for transferring commands, arguments and
results.

• A network abstraction used by Libiofwd for transferring RPCs “on the wire”.

The stack is slightly different on the server side where the layer corresponding to
the syscall interceptor consists of RPC handlers that deserialize the I/O RPC calls’
arguments, execute the I/O commands, serialize the results and return them to the
client through the Libiofwd layer.

1.2.1 Network Stack

Currently two different network abstractions can be chosen for IOFWD: GAS-
Net [2] and BMI [3]. Both offer methods to exchange large buffers, that ease pro-
gramming of I/O RPCs and are user-space implementations. GASNet supports asyn-
chronous communication and allows the registration of callbacks that are invoked
when a buffer has been received. BMI doesn’t offer callbacks and this feature had
to be added. Both network abstractions offer support for several interconnects like
Infiniband, Myrinet, MPI, TCP/IP and Portals. This allows some experimentation
with communication networks on Linux-to-Linux I/O forwarding. On the SX-9 we
were limited to TCP and UDP over 10 Gigabit Ethernet, the only network that can
be used to connect an SX-9 node to Linux PCs.

The SX-9 uses a big-endian CPU, while Linux on x86 64 only works with little
endian data. Therefore the GASNet UDP conduit (network driver) has been ex-
tended to support on-the-fly endianness conversion for the handshake protocol and
header data, while treating transferred buffers opaquely. BMI supports connections
between peers of different endianness as well.

1.2.2 Libiofwd

Libiofwd is a RPC library designed and developed within the project. It’s API is
independent from the underlying network abstraction and the most important calls
are:

• iofwd put cmd() initiates a RPC call, i.e. transfers a small command buffer to the
peer node and returns immediately.

• iofwd wait() waits for the completion of an RPC call and/or drive network com-
munication.
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• iofwd get data() transfers the contents of a remote buffer to local memory syn-
chronously.

• iofwd put data() transfers a local buffer’s content to a remote node’s memory
synchronously.

The Libiofwd layer is endianness aware, it needs to “know” the endianness of the
communication peers and convert commands and arguments appropriately.

1.2.3 Serializer + Deserializer

The Serializer and Deserializer libraries are based on the ZOID daemon from the
ZeptoOS project [4] and were adapted for IOFWD. They are used to pack and un-
pack parameters and results of I/O operations to the format in which they are sent
over the network with the help of Libiofwd RPCs to perform the remote I/O opera-
tion. The commands have been modified to deal with peers of different endianness.

1.2.4 Syscall Interception

Under Linux the relevant I/O library calls of an application could be replaced dy-
namically by preloading the syscall interception layer of IOFWD. The SX-9 does
not support dynamic linking because it is a real memory system, like all vector
machines. Instead of dynamic linking we have used the SX GNU linker ported
within this project and its feature to wrap certain functions by renaming the original
function name (e.g. write() to wrap write()). This way the libc and a part of the
Fortran runtime libraries for the SX-9 have been relinked and I/O related functions
were replaced by IOFWD wrapper functions. The IOFWD wrapper functions decide
whether I/O operations will be executed locally, on the SX-9, or will be forwarded
to the I/O forwarding server. The selection basis for local versus remote I/O is pri-
marily based on the file path and is configurable, e.g. paths starting with /fwd are
handled remotely.

1.3 Implementation Status

IOFWD has been implemented successfully on top of two network abstractions:
GASNet and BMI. The source code is available on the HLRS gforge site [1] and
the IOFWD framework is installed on the SX-9 front-end machines as well as on
the I/O forwarding servers accessible by all users at HLRS. IOFWD can forward
around 60 I/O related library functions. It is easy to use and it supports C/C++ and
Fortran applications with and without MPI.
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1.4 Performance Results

The NEC SX-9 machines and the I/O forwarding servers communicate over a 10
Gigabit Ethernet network which is dedicatedly used for IOFWD.

As a starting point we compare the bare network stack performance between a
SX-9 machine and an I/O forwarding server over 10 GE. GASNet uses UDP and
reaches a bandwidth of 35 MB/s for send and 37 MB/s for receive with 4 MB
I/O size on a SX-9 machine. BMI uses TCP and reaches 480 MB/s for send and
150 MB/s for receive with 4 MB I/O size on a SX-9 machine. The low GASNet
bandwidth on the SX-9 is explained by the fact that the SX-9 operating system can’t
make use of the offload engine of the 10 GE card when communicating over the
UDP transport protocol. In addition, the relatively slow scalar CPU of the SX-9 and
high cost of context switches (interrupts, syscalls) due to the huge context that needs
to be stored away (like vector registers) contribute their part to the very poor UDP
performance.

BMI shows decent performance as it is able to use the 10 GE card’s offload
engine with the TCP protocol and therefore it is the preferred network stack for
IOFWD on the SX-9.

More interesting from application point of view is the comparison of the perfor-
mance of IOFWD with BMI to a Lustre filesystem with native Lustre performance
on the I/O forwarding server and with Global Filesystem (NEC GFS) performance
on the SX-9. The later filesystem is a SAN based parallel filesystem.

A Lustre client on the Linux I/O forwarding server at HLRS shows 500 MB/s
write and 550 MB/s read performance. With IOFWD we achieve 280 MB/s write
(as shown in Fig. 2) and 140 MB/s read (as shown in Fig. 3) performance into the
same Lustre filesystem from a SX-9. Lustre is not natively supported by SuperUX,
therefore IOFWD provides the most transparent way of accessing such a filesystem.
The read performance is very close to the BMI maximum send transfer rate while
the write performance suggests that there might be still room for optimization. The
GFS performance has been measured just for comparison, on the HLRS setup a
bandwidth of 500 MB/s and more for read/write is what an user can expect. However
IOFWD cannot compete against GFS in terms of performance because it uses a
different I/O network. It’s main benefit is providing access to new filesystems for
the SX-9 that are not supported natively by the SuperUX operating system.

2 IOFWD Usage

This section is an introduction of the usage of IOFWD, explains how an application
can be modified to use it and shows some use cases and examples.
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Fig. 2 IOFWD write performance on SX-9 to Lustre

Fig. 3 IOFWD read performance on SX-9 to Lustre

2.1 System Overview at HLRS

The components involved in the IOFWD experiments at HLRS are sketched in
Fig. 4:

• NEC SX-9: vector computing system for running simulations that are well vec-
torized,

• NEC TX-7: ia64 pre-processing and front-end nodes with large memory, used
for accessing the SX-9 machine and pre-/postprocessing.

• Linux cluster used for post-processing and simulation runs of poorly vectorized
applications,
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• NEC GFS storage, holds the SAN based parallel filesystem mounted on the SX-9
and TX-7 nodes, connected to them through the fibre-channel fabric,

• Lustre storage, the primary filesystem of the Linux cluster, accessible from the
TX-7 nodes through an NFS exporter,

• I/O forwarding servers that mount the Lustre filesystem and can run the iofwdsrv
daemon.

Fig. 4 System overview including IOFWD

2.2 Application Workflow Example

Figure 5 shows the normal data flow in an application from the user, pre-processing
the input data on the TX-7, doing the simulation run on the SX-9 and finally running
a post-processing step on the Linux cluster.

1. User submits data for preprocessing to the TX-7.
2. Data is being preprocessed, the output is written into the Lustre filesystem.
3. The pre-processed data represents the input data for the SX-9 simulation run, is

copied from Lustre file system to the SX-9’s GFS.
4. Pre-processed data from the GSF filesystem is used by the SX-9, the output of

the simulation run is copied back to the GFS storage.
5. The simulation output is copied from the GFS storage to the Linux filesystem.
6. Simulation output is post-processed on the Linux cluster, the results stored back

to the Lustre filesystem.

The copying steps (3 and 5) can spend a considerable amount of time and usually
need to be done as part of the corresponding batch job, i.e. the simulation job or
the post-processing job. This implies that the nodes reserved for the batch job are
idle during the copying time. The longer the data files are, the longer the copying,
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Fig. 5 Workflow of Application without IOFWD

thus the bigger the waste of energy and compute cycles. With I/O forwarding these
copying steps can be avoided.

2.3 Application Integration, Compilation, Building and Running

Currently an application needs to initialize the IOFWD stack by explicitly calling
a function, thus a small modification of the application’s source code is required.
Some place after the main program start and before doing I/O one should add the
line:

call init_fwdadapt()

for Fortran programs, correspondingly

__init_fwdadapt(&argc, &argv)

for C/C++. In future we plan to do this initialization step at the first call of a for-
warded I/O function, thus hiding it from the user and removing the need for an
explicit initialization.

In MPI programs the initialization step has to be executed before the MPI Init()
call.

As mentioned in Sect. 1.2.4 the decision whether access to a file will be local
(through the SuperUX operating system) or remote (through IOFWD) is influenced
by the absolute path. The default path prefix for forwarded access is /fwd, this path
prefix is currently compiled into the IOFWD server, but could be made configurable
in future. It means that an access on the SX-9 to the file /fwd/lustre/test
would be done remotely on the IOFWD server to the file /lustre/test. File
paths used in applications need to be changed accordingly if access to remote files
is desired.
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The final step is using the IOFWD compile wrapper to compile and link the
application that will use I/O forwarding. This hides the complexity of selecting I/O
forwarding libraries. For C programs the compile wrapper call on the frontend node
is:

IOFWD_CC=sxcc iofwd_sxc++ test.c -o test

while for Fortran one has to use:

IOFWD_F90=sxf90 iofwd_sxf90 test.f -o test

For MPI programs the compiler wrapper calls are:

IOFWD_F90=sxmpif90 iofwd_sxf90 test.f -o test

Applications using I/O forwarding are started like any other application. The
system environment should set the environment variable $IOFWD SERVER to the
I/O forwarding server name or IP address. To improve scalability this variable can
point to multiple servers, as explained in Sect. 1.1.

Unified Parallel C (UPC) is supported via the GASNet branch of IOFWD but
isn’t very well tested at the moment. For UPC applications it is possible to input the
number of IOFWD servers via the environment variable IO SERVER COUNT. The
addresses of the IOFWD servers and the compute nodes are given in a colon sepa-
rated list in an environment variable called SSH SERVERS. This list must first con-
tain the addresses of the compute nodes, followed by the addresses of the IOFWD
servers. The IOFWD clients are automatically assigned in round robin manner to
the IOFWD servers during the initialization of IOFWD. The initialization routine
for IOFWD is the same as for C. A simple wrapper exists to compile an UPC appli-
cation for IOFWD.

2.4 First Real Application Experiences

IOFWD was tested with two real applications namely CPMD [6] and KOP3D [7].
In CPMD a short simulation sequence is followed by the writing of a restart file

via BMI IOFWD. The restart file can be used for analysis/post-processing or for
restarting the simulation from the point it represents. The example we ran writes a
restart file of 7.5 GB. The elapsed run time on SX-9 with writing to the fast local
GFS storage was 825 s that included 20 s of I/O time. When using I/O forward-
ing over BMI the elapsed time grew only minimally to 837 s, out of which 30 s
were spent for I/O. The increase in I/O time was expected and is explainable by the
slower performance of the remote writing compared to the local fast GFS access.
The minimal increase in I/O time (10 s) is still a very good result as it makes the
transfer of the data to the post-processing system unnecessary, a transfer that would
take an order of magnitude of 20–30 s, during which typically all nodes reserved for
post-processing would be idle.

The KOP3D application is a coupled simulation that embeds a structured grid
into an unstructured grid (or vice-versa) and can run the different simulations on
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different machines. In our case the structured part is well vectorizing and running
on the SX-9 vector system while the unstructured part runs on the Linux cluster. I/O
forwarding can be used to simplify the workflow of such a complex application by
keeping and creating all files on one single filesystem. In our example KOP3D used
a startup file of about 60 MB that it loaded through IOFWD on the SX-9 side. The
performance impact of IOFWD was not noticeable, and KOP3D proved to be a hard
testcase for IOFWD that helped revealing and fixing a few bugs.

3 Conclusion

We have designed and implemented an I/O forwarding framework that allows pro-
grams on the SX-9 to use filesystems and storage that are neither supported by the
operating system nor directly connected to the machine. The main benefit of the
I/O forwarding approach is the offloading of the I/O activity to nodes that are bet-
ter suited for that, thus optimizing the use of cycles and power on the SX-9 vector
machine, which is highly specialized for computational tasks. The offloading of I/O
to Linux nodes allows users to optimize their workflows and administrators to con-
solidate the various different filesystems available in their datacenters. For SX-9
installations it enables the use of less expensive storage which leads to the reduction
of the demand for the expensive fibre-channel SAN based parallel filesystem.

As an outlook, the project will continue to optimize the I/O forwarding approach
and work towards simplifying the use of IOFWD and extending its scope to other
machines than SX-9. I/O forwarding is a concept that can be applied to any setup
where compute nodes are highly specialized, for example in very large Linux clus-
ters deploying simplified operating systems on the compute nodes. The concept can
be applied as well to applications running on coprocessors.

Furthermore we plan to develop I/O analysis tools that help moving applica-
tions to IOFWD and analyse the library and system calls invoked. An extension of
the concept allowing for on-the-fly file content manipulation and a more generic
toolchain for applications coupling is envisioned, too.

The IOFWD framework for SX-9 can be downloaded at [1].
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High-Speed Data Transmission Technology
for the NEC SX-9

Hiroshi Yamaguchi, Hiroshi Takahara

Abstract The SX Series has an advanced architecture of large-scale shared mem-
ory, high-speed data transfer between the CPU and the memory, and an ultra high
speed network interconnecting nodes. One of its key technologies in achieving high
system efficiency is the fast data transmission between LSIs making up the system,
which highly relies on the LSI and circuit technologies, as well as their inspection
technologies. NEC has developed sophisticated technologies for CMOS, high-speed
interface for efficient data transfer, high speed and low skew clock distribution, and
noise reduction. This paper outlines key technologies that enable high performance
of the SX-9 supercomputer on real scientific applications from the view point of
fundamental technologies.

1 Introduction

The SX Series is the parallel vector supercomputer that has continuously been en-
hanced by NEC toward the SX-9, which features the world fastest CPU core of
102.4 GFLOPS, the large-scale shared memory up to 1 TBytes, and the intercon-
nects with a data transfer rate of 128 GBytes/sec. It makes up one node system of a
1.6 TFLOPS peak performance, which can be configured up to 512 nodes with the
maximum vector performance of 839 TFLOPS [1, 2]. In addition, the improved LSI
technology and high-density packaging technology have reduced both power con-
sumption and required installation space to approximately a quarter of that required
for conventional supercomputers.
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In order to implement even more impressive performance with the SX-9, NEC
has advanced the LSI and circuit technologies. Since an increase in the inter-LSI
signal transmission speed is critical for improving the system performance, NEC
has also developed a new multichannel serial interface for the high-speed inter-LSI
data transfer on the SX-9. Moreover, both the power consumption and the amount
of interface circuitry have been reduced in order to enable the mounting of multiple
channels on an LSI [3].

The improvement of the processing capability of a high-speed system requires
an increase in the speed both of the intra-LSI and the inter-LSI signal transmissions.
The countermeasures for the power noise that hinders increases in signal speed are
also an important factor. In order to transmit signals stably at high speeds, the SX-9
uses wiring boards made of low-loss materials with low signal attenuation during
transmission and some of its circuits incorporate an equalization function to improve
the transmission signal waveforms. The SX-9 reduces power noise by optimizing
the number of decoupling capacitors with regard to the increase in power noise that
occurs as a result of the increased frequency of changes in supply current due to the
use of higher-speed transistors.

Fig. 1 External view of the SX-9 CPU chip

Table 1 Specifications of the SX-9 CPU chip

Item Specification
Process technology 65 nm
Number of transistors 350 million
Supply voltage 1.0 V
Number of pins (signal pins) 8,960 (1,791)
Wiring layer configuration 11 copper layers
I/O interface CML
Packaging Bare chip configuration
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2 LSI Technology

The external view and the specifications of the CPU chip of the SX-9 are shown in
Fig. 1 and on Table 1, respectively. The common specifications of the LSIs used with
the SX-9 include the 65 nm CMOS process, 11-layer copper wiring, improvements
in routing delays by adopting inter-layer dielectric films, etc., implementation of
large-capacity on-chip capacitors by developing the MIM (Metal-Insulator-Metal)
process, and implementation of a high-performance low-voltage supply by reduc-
ing the thickness of the gate oxide film. Low transfer latency is also achieved by
developing a new multichannel serial interface.

2.1 Serial Interface

The SerDes (Serialization/De-serialization) technology with a transmission rate of
10 Gbps has been developed. Here an electric transmission technology is employed
for connecting multiple channels between LSIs. As the signal is attenuated to about
one-tenth of its original intensity due to the waveform distortion produced by the
frequency characteristics of the PWB (Printed Wiring Board) and the cables in the
transmission paths, a pre-emphasis (EMP) circuit in the transmitter (TX) and an
equalizer circuit in the receiver (RX) are incorporated. In addition, a sampling os-
cilloscope (iSCOPE) function is incorporated into RX in order to enable the eye
diagram sampling of the receivable voltage and timing, while RX is mounted in the
system.

The input voltage is compared to the reference voltage by using the iSCOPE
function. Based on the comparison of the voltage with those just before and after
the current one, the computed EMP control outputs are then sent to the diagnostic
processor. These signals are used, when the system is initialized in order to create
the EMP control signal reflecting the effects of the data before and after the pre-
emphasis of TX and the iSCOPE functions reference control signal, which are then
sent to the SerDes circuit. The eye can be maximized by repeating this adjustment.
TX and RX occupy a small area of 0.31 m2 per channel, and about 400 TX/RX
channels are accommodated per LSI.

2.2 Clocks

The distributed clocks can roughly be divided into the clocks for logical circuitry
and those for interface circuitry. The logical circuit clocks are distributed with the
2-step method. The clocks distributed over a wide area are wired using the clock-
dedicated thick film wiring layer with low resistance in order to reduce the waveform
skew due to low resistance, and are distributed with equal delays based on consider-
ations for the inductance component of the wiring as well as for its RC component.
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The clocks distributed in a narrow area are distributed with equal delays and the
clock skew is reduced by optimizing the driving power of the clock drivers. In ad-
dition, to reduce the power consumption, a clock gate circuit that multiplies part of
the clock as required is adopted.

The interface clocks use the CML (Current Mode Logic) circuitry. The CML cir-
cuitry uses differential signals and drives at a constant current, so that it can increase
the clock frequencies and greatly reduce clock jitter due to power noise compared
to the CMOS inverter circuit.

In order to generate high-speed clocks, the SX-9 adopts the APLL (Analog
Phase-Locked Loop) circuit that multiplies the clock input from outside the LSI.
The APLL incorporates LC tank type VCO (Voltage-Controlled Oscillators) com-
posed of inductors and variable capacitances that are fabricated on the LSI and gen-
erates a clock obtained by aligning the phases of the external and internal clocks of
the LSI. For countermeasures against power noise, a power regulator is built in to
reduce jitter by generating the LSI-dedicated independent power supply inside the
LSI.

3 High-Speed Circuit Technology

Improvement of the processing capabilities of a high-speed system necessitates an
increase in the inter-LSI signal transmission speed, as well as in the intra-LSI signal
transmission speed. The countermeasures against power noise that hinders increases
in the signal transmission speed are also important. There are five key technologies
for high-speed data transmission as indicated below.

1. Waveform shaping
Measures against signal attenuation/waveform distortion

2. On-chip observation
Observation of incoming waveform, power-supply noise, temperature, and signal
deterioration within LSI

3. Elimination of skew
Skew-free signal propagation by clock regeneration

4. Low-power design
Reduction of serialized paths
Optimum selection and design of circuits

5. Noise suppression
Noise reduction with differential transmission
Design with isolated power supply

In this section, items 1, 2, and 5 above are described.
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Fig. 2 Connection configuration between LSIs of the SX-9

3.1 Transmission Technology

The inter-LSI signal transmission attenuates the high-frequency component of a sig-
nal due to the skin effect and the dielectric loss. This makes correct signal reception
impossible, when the wiring length is large.

As shown in Fig. 2, the structure of the inter-LSI connections of the SX-9 tends
to increase the attenuation because of the connections between the multiple wiring
boards. A pre-emphasis function has been added to ensure correct signal reception in
such a transmission path structure. The pre-emphasis function has been enhanced for
the SX-9 by increasing the number of amplitude adjustment steps and by introducing
an algorithm for the automatic setting of the optimum step value according to the
results of the monitoring of received waveform.

In addition, the wiring boards are made of low-loss materials with low signal
attenuation and low-loss cables for the connection between the wiring boards that
have been developed to reduce the overall attenuation via the transmission path.

In determining the structure of a transmission channel, the simulation was made
for the transmission path along with the evaluation of the LSIs for use in testing.
With the transmission path simulation, a system for modeling the three-dimensional
structure of the wiring board was introduced based on the electromagnetic field
analysis in order to improve accuracy especially for high frequencies. The electro-
magnetic field simulator utilized here allows us to conduct evaluations for various
conditions of the wiring board, such as wiring length, via hole, and pad shape. In
this way, it is made possible to implement a transmission path structure capable
of offering an eye aperture of the reception waveform that satisfies the design tar-
get.

The simulated receiving waveform for transmission path was compared with the
waveform observed for the transmission via the actual transmission channel, which
verifies the high accuracy and effectiveness of such simulations (Fig. 3). The inter-
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LSI transmission with the path structure as shown in Fig. 2 has been implemented
based on the investigations as outlined above.

Fig. 3 Simulated and measured waveforms

Figure 4 illustrates waveform shaping based on the pre-emphasis technology.
While the eye pattern can not be obtained without wave shaping, optimal eye pat-
terns can be obtained by exploiting the pre-emphasis. This is an essential technology
used for high-speed transmissions at a Gbps level.

Figure 5 shows on-chip waveform observation. Here eye patterns can be seen
with the sampling oscilloscope. Any expensive tester is not required because of the
LSI circuit-mountable apparatus, enabling the observation of real waveforms.

The actual input waveform within the LSI is not visible, because there is decay
in the LSI. It can only be observed by using the on-chip sampling oscilloscope
(iSCOPE).
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Fig. 4 Waveform shaping with the pre-emphasis

Fig. 5 On-chip waveform observation for the data transmission at 10 Gbps

3.2 Power Noise Countermeasures

In order to achieve ultra-high-speed transmission, it is necessary to adequately re-
duce power noise, decrease the jitter superimposed on the transmitted waveform,
and ensure the margin of the circuit operation. With the SX-9, quantitative investi-
gations were conducted for the propagation of the power noise generated in the core
logic circuit to the ultra-high-speed I/O by carrying out an entire configuration anal-
ysis from the wiring board to the LSIs. As a result, the value of on-chip capacitance
mounted in the LSIs can be determined so that the propagation does not affect the
SerDes circuits.

While a sufficient capacitance value can not be assured for the SX-9 with the ca-
pacitance created using the gate, the MIM capacitance can be placed on the highest
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layer of the LSI so that the MIM capacitance is uniformly distributed all over the
chip surface for the efficient and effective noise reduction.

The actual effects of the noise reduction are examined by using the circuits im-
plemented within the LSI for observing noise and jitter and by applying the specified
amount of jitter using a clock modulator, thus enabling the reservation of a margin
in the inspection.

On the basis of the electro-magnetic simulation, it is possible to determine as
to where the capacitors need to be placed (Fig. 6). The temporal change of the
current for the entire chip is calculated as a current waveform on the basis of the
timing data of signals moving through flip-flop circuits and gates. Then, the physical
structures of LSI and PWB can be modeled by using the CAD data for the LSI and
the board.

Fig. 6 Evaluation of the MIM capacitance

As indicated at the upper right, the capacitor needs to be placed close to the noise
source for reducing the power supply noise. On the other hand, in many cases it is
difficult to place such a capacitor at an ideal place, since there is a logic circuit
with the ordinary gate capacitor. The MIM technology allows such capacitors to be
placed appropriately within the LSI. As a result, the supply noise can successfully
be reduced by 25noise over a wide range of frequency bands. The upper left depicts
the MIM with the uppermost metal layer zoomed. The MIM is formed between the
uppermost layer and the layer underneath it.

The measurement of power supply noise is made by using an on-die detector
placed within the LSI, as indicated in Fig. 7. The upper left represents the schematic
view and its operation is at the bottom left. After applying a noise, a judgment is
made as to whether the power supply noise level is greater than VREF (reference
voltage) or not by utilizing the comparator.
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Fig. 7 Measurement of power supply noise

Actually, the waveform can be obtained for each VREF, as shown at the up-
per right. By superimposing these results in a pattern as represented at the cen-
ter, it turned out that such a pattern agrees with the measurement below. In such a
way, the model can be verified through the combination of simulation and measure-
ment.

4 Summary

The outline of the LSI, circuit, and inspection technologies for the SX-9 has been
given. As indicated in this paper, the high-speed signal transmission is key to the
high performance of the SX-9 supercomputer. NEC continues to enhance such tech-
nologies for future advanced systems.
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Part III
Grid and Cloud Computing



The Vector Computing Cloud:
Toward a Vector Meta-Computing Environment

Ryusuke Egawa, Manabu Higashida, Yoshitomo Murata, Hiroaki Kobayashi

Abstract Aiming at realizing a high performance computing (HPC) cloud with
vector supercomputers, this paper presents the world’s first prototype of wide-area
vector meta computing infrastructure named a vector computing cloud by virtual-
izing remote vector computing resources as an HPC service over the Internet. The
prototype system consists of two remote NEC SX-9 nodes connected through a long
fat-pipe network (LFN), and each node is located at Tohoku University and Osaka
University with a distance of 800 km. The vector computing cloud also provides
a single sign on environment and jobs are automatically assigned to appropriate
sites. Wide-area co-operation of distributed vector supercomputers is realized by
adopting the NAREGI Grid Middleware, and a virtual machine for NEC SX vector
supercomputer series, job scheduling algorithms, and an MPI operating environ-
ment are newly developed to enhance the job and resource management capabilities
of the NAREGI Grid Middleware. In addition, to achieve fairness and efficient job
scheduling on the vector computing cloud, this paper presents a history-based job
scheduling mechanism for a queue system. Based on the estimation, the job schedul-
ing mechanism automatically allocates the job to an appropriate site, which can exe-
cute the job earlier. The operation tests and experiment results indicate that the pro-
totype system realizes single sign on for multiple vector resources and has enough
potential for transparently operating jobs between the two SX-9 systems. This paper
also evaluates and discusses the performance of the proposed job scheduling mech-
anism and MPI operation between both SX-9 systems using the High Performance
Linpack (HPL) benchmark.
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1 Introduction

The current high performance computing (HPC) applications require ever-increasing
computational power. To execute such an HPC application on existing computing
resources, one way can conceive to make co-operation among distributed supercom-
puters by GRID technologies. However, a grid environment still forces HPC users
to consider available computing resources to running huge and massively parallel
HPC applications. In the conventional distributed HPC systems, users should select
an appropriate site to execute their codes and submit HPC jobs directly by them-
selves [1].

Recently, the cloud computing attracts a great deal of interest as a new generation
IT infrastructure. Although there are many definitions of the cloud computing [2, 3],
the cloud computing is the internet-based computing in the broad sense. In the cloud
computing, the resources, infrastructures and software are provided as a cloud ser-
vice through the internet. Here, these cloud services are virtualized, and the cloud
users need not attend to the actual resources and infrastructures. So, an HPC service
provided by the cloud computing, which is called a HPC cloud, is seen as a high
possibility to execute massive parallel applications [4, 5]. In the HPC cloud, users
would not have to care where their jobs should be operated since the supercomput-
ers are virtualized as a huge single system and jobs are automatically assigned to
appropriate sites.

Vector supercomputer systems distributed over the world have been operated
with high utilization ratio due to its high-sustained performance. Especially, the
vector supercomputer demonstrates its high potential in large scale scientific com-
puting such as fluid dynamics, structural dynamics, climate simulations, and so
on [6, 7]. However, more convenient and powerful vector computing environments
are needed in order to boost advanced scientific researches. Under this situation, a
vector meta-computing infrastructure is expected to realize efficient usage of com-
puting resources and to run more massively parallel simulations across multiple vec-
tor supercomputing systems. In addition, from user’s viewpoints, the infrastructure
should keep the easiness to use computing resources as recent cloud systems [8, 9].

Aiming at realizing an HPC cloud with vector supercomputers, this paper presents
the world’s first prototype of wide-area vector meta computing infrastructure named
a vector computing cloud by virtualizing remote vector computing resources as an
HPC service over the internet. The prototype system consists of two remote NEC
SX-9 nodes connected through a long fat-pipe network (LFN), and each node is lo-
cated at Tohoku University and Osaka University with a 800 km distance. The vector
computing cloud also provides a single sign on environment and submitted jobs to
the vector computing cloud are automatically assigned to appropriate sites. Wide-
area co-operation of distributed vector supercomputers is realized by the NAREGI
Grid Middleware, and a virtual machine for NEC SX vector supercomputer series, a
job scheduling mechanism, and an MPI operating environment are newly developed
to enhance the job and resource management capabilities of the NAREGI Grid Mid-
dleware. The organization of this paper is as follows: Sect. 2 provides background
and the basic concept of the vector computing cloud. Section 3 describes the pro-
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totype system of the vector computing cloud newly developed GridVM for SX and
a job scheduling mechanism for the vector computing cloud. In Sect. 4, the perfor-
mance and potential of the prototype system are discussed. Section 5 concludes this
work.

2 Basic Concept of the Vector Computing Clouds

Though there are strong demands for the HPC cloud to execute huge scale massive
parallel applications from an HPC community, there are few challenges to blend
HPC and clouds [8]. That is why, it is simply would not be a profitable business due
the niche market and technical obstacles to treat complex workflows of HPC appli-
cations. However, from the viewpoint from academia, the HPC cloud infrastructure
that can process HPC applications is needed to boost scientific and engineering in-
novations. This paper focuses on the high-sustained performance of vector super-
computers and tries to develop the HPC cloud with vector supercomputers named
the vector computing cloud.

To satisfy the HPC users requirement, the vector computing cloud should have
characteristics as follows;

1. “single-sign-on” and “ease-to-use” environments via internet
2. smart job scheduling which can effectively use distributed computing resources,

though they are operated by different job execution policies
3. capability of handling large-scale applications that requires high computing

power which surpasses potential of each supercomputing system that constructs
the vector computing cloud.

The distributed vector computing resources are co-operated by grid technolo-
gies with newly added portal interfaces. Thus, the vector computing cloud real-
izes a single sign on for multiple vector computing systems by virtualizing vector
computing resources. In conventional methods, users should select an appropriate
site to execute their codes by themselves as shown in Fig. 1. On the other hand,
in the vector computing cloud shown in Fig. 2, users do not have to care where
their jobs should be operated since the vector supercomputers are virtualized as a
huge single system and jobs are automatically assigned to appropriate sites. To real-
ize efficient scheduling among vector supercomputers, an enhanced job scheduling
mechanism is introduced in this work. In addition, the vector computing cloud is ex-
pected to not only improve system dependability by making multiple systems work
in a complement style, but also realize a large-scale simulation that cannot execute
on individual vector supercomputers that compose the vector computing cloud. To
operate such a job, the vector computing cloud provides a GridMPI execution envi-
ronment [10].
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Fig. 1 Distributed vector computer systems

Fig. 2 The vector computing cloud

3 Prototyping of the Vector Computing Cloud

The vector computing cloud is designed based on the NAREGI Grid Middle-
ware [11], which enables large-scale mete-computing by gathering the geographi-
cally distributed computing resources. Since the NEC SX series have not been fully
adapted to NAREGI Grid Middleware, a new component called GridVM for SX is
developed. Not only for the adaption, GridVM for SX also enhances the capabilities
of the NAREGI Grid Middleware in terms of job and resource managements.

As the first step in establishing the vector computing cloud, the prototype sys-
tem is implemented as shown in Fig. 3. The prototype consists of two nodes of
SX9 vector supercomputers. Each node is located at Tohoku University and Os-
aka University. Both nodes have 16 CPUs with 1 TB memory and are connected
through a science information network (SINET3). SINET3 is an information com-
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Fig. 3 System configuration of prototype system

munication network, which connects universities and academic research institutions
in Japan [12].

The vector computing cloud consists of multiple sites with vector supercomput-
ers, each of which has several components of NARGI Grid Middleware: Portal, User
and Virtual Organization Membership Service (UMS/VOMS), Information Service
(IS), Super Scheduler (SS), and GridVM for SX. Portal provides a web interface
of the virtualized system, and UMS/VOMS authenticates the users and servers. IS
manages the resource information of each site with gathering the utilization sta-
tus. IS also communicates with IS’s in other sites to share utilization statuses. SS
searches computing resources for user requests, and allocates jobs based on the in-
formation from IS. Reservation Cache Service (RCS) performs as a global scheduler
among each site. RCS aggregates and controls the requests from SS’s to find out an
appropriate site to execute a job. GridVM for SX is a virtual machine for SX vector
supercomputers, which performs synchronization control of vector computing re-
sources in the site, and provides mete-computing environments based on with high
affinity with a local job scheduler. GridVM for SX keeps high compatibility with
the local job scheduler NQS II [13] on the SX-9, which enables the efficient use of
vector computing resources even in the vector computing cloud. Moreover, it per-
mits the co-existence of conventional jobs and cloud jobs that running on the vector
computing cloud.

3.1 Virtualizing Vector Supercomputers: GRID VM for SX

The GridVM of NAREGI Grid Middleware virtualizes the computing resources
by interfacing with the local scheduler, which actually manages the computing re-
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sources, and supplies the computing resources to the grid environment. More de-
tailed information of NAREGI Grid Middleware are well described in [14]. So far,
GridVM have not adapted to Super/UX for SX vector supercomputers, we newly de-
velop GridVM for SX with three additional features. First, GridVM for SX improves
an information gathering function based on Ganglia [15] by employing direct com-
munication between GRID VM for SX and IS. Second, considering practical usage
of NAREGI on supercomputer systems, co-existence of reserved job by NAREGI
and local job of supercomputers is permitted. To realize the co-existence, a job as-
signment map of a submitted job to a local scheduler NQSII is synchronized with a
reservation map of SS. Third, allowing the execution of MPI/SX which is a dedicate
MPI for NEC SX series.

3.2 Job Scheduling on the Vector Computing Cloud

In the vector computing cloud, each supercomputer has their own job execution
policy. Then, the execution of a job submitted to the vector computing cloud also
complies with the policy of allocated site. The difference in the policies makes job
scheduling on the vector computing cloud complicated. In the prototype system,
SX-9 nodes at Osaka University employ a reservation system for job executions, and
the execution time of jobs is limited. This reservation-based operation guarantees
the time when a job execution starts (job-start time). Thus, the job-start time can
easily be obtained by checking a reservation map of the system. On the other hand,
SX-9 nodes at Tohoku University employ a queuing system for job execution in a
FIFO manner and the system does not limit the execution time of jobs. The queuing-
based operation allows running large scale jobs with no time limitation and provides
the high-utilization of computing resources without reserving and allocating excess
resources for small-size jobs. However, this queuing-based system cannot guarantee
job-start time, because the execution time of jobs in a queue is undetermined.

From the viewpoints of users, the vector computing cloud should execute a job as
soon as possible from the time when user submitted a job. However, if a scheduler
in the vector computing cloud that consists of computing resources with different
job operating policies could not understand job-start times of both job execution
systems, the scheduler can not allocate a submitted job to a computation resource,
which can execute the job earlier. Therefore, to achieve such a job scheduling on the
vector computing cloud, estimating the job-start time in the queuing-based system
plays important role.

To overcome the job scheduling problem mentioned above, this paper proposes
a job scheduling mechanism which estimates the job-start time in a queuing-based
system and allocates a job to an appropriate site in the vector cloud computing envi-
ronment. Figure 4 shows the overview of the proposed job scheduling mechanism.
The job scheduler consists of original NAREGI modules; SS and Reservation Map,
and newly added SS’s sub-module named resource select module. The resource se-
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Fig. 4 Overview of job scheduler

lect module is invoked by SS, and estimates a job-start time from the history of
job-execution on vector supercomputers.

3.2.1 Job-Execution Time Estimation for a Queuing-Based System

To estimate the job-start time for a queuing-based system, we focus on the high
software reusability in HPC. For example, a parameter sweep experiment, which is
one of the famous HPC jobs, executes one program with many different parameters.
Then, it is easy to estimate the execution time of the program by using the previous
execution result.

We use a job-execution time of a job in a queue for a job scheduling in the vector
computing cloud. The job-execution time indicates a required period to process the
job. If we can obtain the job-execution time, we can also estimate job-start time
by summing up job-execution time in the queuing-based system. By comparing the
job-start time in a queuing-based system and that in a reservation-based system,
the scheduler can assign the job to an appropriate site, which can execute the job
early.

The scheduler records and archives job execution information to estimate the job-
start time of the following jobs. When a job execution is completed, Grid VM sends
the job execution information to IS. IS stores the information in a database, and
provides an database access interface to SS. Then, SS can obtain the job-execution
time based on the job name, job type, and the user account information. The resource
select module obtains the job-execution time in a queue by using the job information
accumulated in the database of IS.

Figure 5 shows the process of estimating the job-execution time. The process to
obtain the job-execution time in a queue by the scheduler is described as follow.
First, the resource select module accesses Grid VM, and obtains a list of queued
jobs. Note that these jobs are not executed, and the job-execution time has not been
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Fig. 5 Process of estimation

decided yet. Next, the resource select module retrieves the execution time of all jobs
in the queue from IS. In this process, the resource select module uses the command
name as the search key, and retrieves the execution time of the corresponding job
which has the same command name. If the resource select module cannot obtain
the job-execution time from the database of IS, the resource select module uses the
average job execution time accumulated in IS. Finally, by adding all job-execution
time in the queue, the resource select module estimates the job-start time for all jobs
in the queuing-based system.

3.2.2 Job Allocation Mechanism on the Vector Computing Cloud

The job submitted by the user is allocated to a computation resource by SS. This
subsection describes the processes of job allocation on the vector computing cloud.

First, SS obtains a list of computation resources, which satisfy the requirement
of the job such as the number of processors, memory capacities and so on. Next, to
select an appropriate resource from the list of computation resources, SS calls the
resource select module.

Figure 6 shows a situation for selecting an appropriate one from the queuing-
based site and the reservation-based site to allocate a new job. The resource se-
lect module obtains the job-start time of a queue in the queuing-based site and the
reservation-based site. The job-start time of the reservation-based site can be ob-
tained from the reservation map. Then, the resource select module compares the
job-start time of the queuing-based site with that of reservation-based site, and al-
locates the new job to the computing resources which can execute the job earlier.
In Fig. 6, the resource select module allocates the new job to the reservation-based
site because the reservation-based site becomes ready to execute the new job earlier
than the queuing-based site.
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Fig. 6 Job allocation to a reservation-based site and a queuing-based site

3.3 MPI Environment for Vector Computing Cloud

As mentioned in Sect. 3.2, the vector computing cloud allows to operate MPI/SX
as a local MPI and GridMPI as local and global MPI. Figure 7 shows an MPI ex-
ecution environment of the vector computing cloud. In each site, the two vector
supercomputer SX-9 are connected through a high speed cross bar switch named
IXS and an 1 Gb Ethernet(GbE), and the both MPIs are executable. The MPI/SX
is optimized for IXS to achieve superior performance in SX series. Furthermore, to
achieve higher performance even in the GridMPI, a wrapping interface to MPI/SX
is implemented. In addition, GridMPI requires an IMPI server to control MPI com-
munications between the supercomputing nodes [10, 16].

Fig. 7 MPI operation environment

4 Feasibility Study and Early Performance Evaluations

To confirm the potential of the vector computing cloud, this chapter presents early
performance evaluation and operation tests of the prototype system. First, the per-
formance of proposed job scheduling mechanism is evaluated by simulation and
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operation tests. Then, HPL benchmark is used to clarify the potential of the vector
computing cloud.

4.1 Performance Evaluation of the Job Scheduling Mechanism

4.1.1 Simulation Analysis

To evaluate the performance of the proposed job scheduling mechanism, the vec-
tor computing cloud environment composed of two queuing-based sites is modeled
and simulated. This analysis is carried out by using ten kinds of jobs, and the job-
execution times of all jobs are generated in the gamma distribution with the aver-
ages (μ) and the standard deviation (σ ) shown in Table 1. The ten kinds of jobs
are generated with zipf’s law [17]. By using the zipf’s law, many small-jobs and
few large-jobs are generated in the simulation. The zipf’s law can be applied to
many natural and social phenomena, and this evaluation assumes the zipf’s law as
a real HPC user’s workload. In the initial phase of the simulation, thirty jobs are
sequentially submitted to the vector computing cloud. Then, thirty jobs always exist
in the vector computing cloud while simulation is executed. To evaluate this sit-
uation, whenever one job execution has been finished, a new job is generated and
submitted. The proposed job scheduling mechanism and the round-robin scheduling
mechanism used in the NAREGI Grid Middleware are evaluated. These simulations
are carried out until 1,000,000 simulation seconds, and the period from the submis-
sion time to the start time of a job(waiting-time), and the number of jobs which is
completed are measured. The evaluated results are obtained by taking the average
of twenty simulations.

Table 2 summarizes the simulation results. From this result, the proposed job
scheduling mechanism improves the number of executed jobs and reduces the av-
erage and maximum waiting-time. The standard deviation of waiting-time shows
that the waiting-time of jobs scheduled by the proposal concentrates on the average,
but the waiting-time of jobs scheduled by round-robin is distributed over the wide
region.

Figure 8 shows the histograms of the waiting-time. The horizontal axis indi-
cates the waiting-time of jobs, and the vertical axis is the number of jobs that are
within the waiting-time. Figure 8 shows that some jobs scheduled by the round-
robin scheduler have been executed as soon as it is submitted. Because of the sim-
ulation condition that thirty jobs are always allocated to two sites, a case of the

Table 1 Simulation parameters

Parameter name Value
average execution time of each job (μ) [sec] 100, 200, 400, 800, 1600, 3200, 6400, 12800,

25600, 51200

standard deviation of each job (σ ) 11
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Fig. 8 Histogram of waiting-time (1,000 second intervals)

Table 2 Summary of simulation results

Proposal Round-robin
number of executed jobs 3,914 3,458
average of waiting-time [sec] 7,131 8,085
maximum of waiting-time [sec] 81,464 94,113
standard deviation of waiting-time 6,477 10,368

waiting-time being zero indicates the situation that all jobs are allocated to the one
site, and no job is allocated to the another site. The round-robin scheduling makes
the load-imbalance among two sites, and only a part of the entire computing power
in the vector computing cloud is utilized. This load-imbalance by the round-robin
scheduling causes the low number of executed jobs in Table 2.

On the other hand, the proposed job scheduling mechanism can provide the fair
waiting-time for all jobs and eliminate the load-imbalance among two sites. Then,
the proposed job scheduling mechanism improves the utilization efficiency of the
computing resources in the vector computing cloud.

4.2 System Tests

To confirm the effectiveness of proposed job scheduling algorithms and the usability
of the vector computing cloud, experiments are carried out. In the vector computing
cloud, users are logged in to geometrically distributed vector computing resources
from a server as shown in Fig. 9. Then operating commands are put on a job sub-
mission page of the portal site as shown in Fig. 10. In this page, users can also
confirm the resource availability of the vector computing cloud by a signal icon.
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Fig. 9 Portal site page: login

Fig. 10 Portal site page: submit

The resource availability is obtained by IS server, and a waiting time for users jobs
are displayed with respect to each job queue. From the user’s point of view, both
systems of Tohoku University and Osaka University are completely virtualized as a
single system, and user do not have to care where users job should submit or will be
executed. In addition, users can also confirm more detailed system load information
from the portal page as shown in Fig. 11.

In this operation test, jobs with different job-execution time are successively sub-
mitted to the prototype system in keeping with the “submission order” in Table 3.
The sequence of jobs consists of three kinds of applications, and their execution
times are set to 30 (small), 40 (middle) and 200 (large) seconds, respectively. All
submitted jobs are satisfactorily allocated and executed. The job allocation results
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Table 3 List of submitted jobs

Submission order Job ID Job size
1 CID 432 small
2 CID 433 middle
3 CID 434 large
4 CID 435 middle
5 CID 436 small
6 CID 437 small
7 CID 438 small
8 CID 439 middle

Fig. 11 Portal site page: system load

are confirmed by a portal site as shown in Fig. 12. In this screenshot, the first row
indicates allocated jobs to Tohoku University’s site and the second row indicates
those of Osaka University’s site. The horizontal axis is the time sequence. In this re-
sult, after job CID 434 which has the longest execution time is allocated to Tohoku
University, the job-start time of Tohoku University becomes much longer than that
to Osaka University. As a result, the jobs CID 435–CID 438 are sequentially allo-
cated to Osaka University to make quick response to users and reduce the imbalance
of job-start time between both sites. From the results, the job scheduler can well es-
timate the execution time of each job, and select the appropriate site to execute the
job as early as possible in the vector computing cloud that consists of computing
resources with different job operating policies.
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Fig. 12 Portal site page: result of job scheduling

4.3 Performance of HPL

The High Performance Linpack (HPL) benchmark is used to evaluate the potential
of the prototype system [18]. HPL is a software package that solves a (random)
dense linear system in double precision arithmetic on distributed-memory comput-
ers. It can thus be regarded as a portable as well as freely available implementa-
tion of the High Performance Linpack benchmark. For this evaluation, two nodes
of SX-9 with 16 CPUs and the HPL benchmark with standard “increase 2-ring”
topology on panel broadcasting with a 32 parallel MPI program are used. We have
evaluated five cases with combinations of network connections and MPI implemen-
tations as shown in Table 4. In Cases 1 and 2, SX-9 nodes at Osaka university are
connected by IXS at 128 GB/s (bi-directional). Case 1 uses MPI/SX and Case 2
uses GridMPI. On the other hand, in Cases 3 and 4, SX-9 nodes at Osaka university
are connected through 1 GbE with GridMPI. Case 3 uses jumbo flame TCP/IP com-
munication (9000 bytes/flame), and Case 4 employs normal flame TCP/IP commu-
nication (1500 bytes/flame). Case 5 is running HPL on the vector computing cloud
with GridMPI as shown in Fig. 7. SX-9s at Tohoku University and Osaka University
are connected through SINET3, and the round trip time (RTT) between two SX-9
systems at Touhoku University and Osaka University is 24 ms.

The experimental results are shown in Fig. 13. In this experiment, the problem
size N is varied from 9,000 to 144,000. As shown in the results, as the problem
size becomes large, the performance increases. The reason is that the communica-
tion overheads are hidden by computations as the problem size increases. Case 1
indicates the ideal case to operate the benchmark and realize the highest computa-
tion efficiency. On the other hand, due to the protocol transformation from GridMPI
to MPI/SX, the performance of Case 2 is decreased compared to the Case 1. The
performances of Case 4 are lower than that of Case 2. The results emphasize the
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Table 4 Experimental setup

Name Node #0 located at Node #1 located at Node interconnect MPI implementation
case1 Osaka University Osaka University IXS MPI/SX
case2 Osaka University Osaka University IXS GridMPI
case3 Osaka University Osaka University GbE with Jumbo flame GridMPI, IMPI
case4 Osaka University Osaka University GbE with Normal flame GridMPI, IMPI
case5 Osaka University Tohoku University SINET 3(GbE RTT=24 ms) GridMPI, IMPI

Fig. 13 HPL performance

effect of network performance, because the difference between Cases 2 and 4 is
just network connection between each SX-9. Although the performance of Case5 is
scaled as N increases, it shows the lowest performance in the all cases. Let focus
on Cases 4 and 5, the difference between these cases is only network interface as
Cases 2 and 4. From these facts, we can re-confirm the importance of the network
performance of each node. To put it the other way around, there is room to improve
the performance of the vector computing cloud as useful HPC cloud infrastructure
by improving the network performance. For example, the results of Case 3 indicate
the effectiveness of the jumbo flame TCP/IP communication. In addition, we can
also improve the network performance by employing a 10 GbE or TCP/IP offload-
ing Engines. From these results we can confirm that the vector computing cloud
has enough potential to achieve higher performance than that of Cases 3 and 4 by
introducing network performance enhancement technologies. These challenges and
their performance evaluations are remained as our future work.
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5 Conclusions

This paper has presented the world’s first prototype of wide-area vector meta-
computing infrastructure named the vector computing cloud. The prototype system,
which is designed based on the NAREGI Grid middleware has successfully real-
ized a single sign on environment by virtualizing geographically distributed vector
supercomputers as an HPC service over the Internet. To enhance the job and re-
source management capabilities of the NAREGI Grid Middleware, GridVM for SX
and job scheduler have been introduced and developed. The proposed job schedul-
ing mechanism obtains the job-start time in a queuing-based system from the his-
tory of the job-execution times, and automatically allocates a job to an appropri-
ate site, which can execute the job earlier. The experiment results indicate that the
proposed job scheduling mechanism has enough potential for transparently operat-
ing jobs between the two SX-9 systems with coexistence of conventional jobs and
cloud jobs. Furthermore, though the RTT between remote computers was 24 ms,
the HPL benchmark results have shown an enough potential for the future vector
meta-computing infrastructures.

In our future work, we will increase a number of nodes by involving other com-
puter centers to the vector computing cloud. We will also try to improve the network
performance by introducing 10 GbE and ToE and an intelligent network technology
to bring up our system as useful HPC cloud infrastructure. In addition, improving
the capabilities of the job scheduler and the efficiency of GridMPI is needed to re-
alize effective usage of the vector computing cloud.
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Full-Scale 3D Vibration Simulator of an Entire
Nuclear Power Plant on Simple Orchestration
Application Framework

Guehee Kim, Kohei Nakajima, Takayuki Tatekawa, Naoya Teshima,
Yoshio Suzuki, Hiroshi Takemiya

Abstract So far, we have developed grid-enabled application for “Full-Scale 3D Vi-
bration Simulator for an Entire Nuclear Power Plant” which is simulation platform
to analyze seismic response of a whole digitalized nuclear power plant. In the 3D
Vibration Simulator, components of a nuclear power plant are treated in hierarchical
manner in which large components are grouped at primary level and small compo-
nents such as pipes are grouped at secondary level and boundary condition data
from the large components simulation are used as input data of small components
simulation. In this work, to make the whole simulation more efficient than the pre-
vious sequential scenario in which after large components simulation is completed,
small components simulation starts, we introduce pipelined data-transfer scenario
in which boundary condition data are transferred each time step while all compo-
nents simulation are run in parallel. In realization of the 3D Vibration Simulator in
the introduced scenario, we confronted two challenges: first, clearance of job’s idle
time to be wasted for only waiting data which takes from a few ten minutes to a few
hours per each time step and second, immediate resubmission of abnormal ended
jobs for a long time simulation under the introduced scenario. To address these
challenges, we proposed two solutions: as first solution, we set policy by which jobs
of small components are submitted after all necessary data per each time step arrive
and executed only that time step, which process is repeated whenever next time step
input data arrive and as second solution, we make an abnormal ended job automat-
ically resubmitted. Since there were no pre-existing grid technologies to provide
sufficient functionalities to enable these solutions to be possible from the previous
grid-enabled application, we developed Simple Orchestration Application Frame-
work (SOAF) and upgraded the previous grid-enabled application by implement-
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ing the SOAF. Using the upgraded grid-enable application, we performed seismic
analysis of High Temperature Engineering Test Reactor at O-arai R&D center of
Japan Atomic Energy Agency and confirmed that the simulation were performed in
pipelined data-transfer scenario effectively using computing resources without idle
time for about a week simulation period resubmitting abnormally ended jobs. In this
paper, the details of all of this work will be described.

1 Introduction

In Japan of earthquake-prone country, earthquake resistance design and dynamic
analysis of nuclear power plants (NPPs) are very important issues. Japan has over
50 NPPs and over 10 reactors among them are aging as more than 30 years old.
Further, the Great Hanshin Earthquake which devastated the city of Kobe in 1995
and Chūetsu offshore earthquake in 2007 have heightened people’s concern about
the safety of NPPs. Thus, keeping of safe operation of NPPs becomes all the more
important task, which contributes to stable atomic energy supply making people feel
reliable.

Center for Computational Science and e-Systems of Japan Atomic Energy Agency
(CCSE/JAEA) has performed R&Ds to satisfy the above needs and developed “Full-
Scale 3D Vibration Simulator for an Entire Nuclear Power Plant”. Full-Scale 3D Vi-
bration Simulator is full-fledged simulation platform for seismic response analysis
for a whole NPP as shown in Fig. 1 [1]. Since the 3D Vibration Simulator treats a
whole digitalized NPP as an assembly structure composed of its digitalized parts,
it is to elucidate physical behaviors boundary between NPP parts in detail, which
is impossible to research with present mass-spring model. Clarifying seismic per-
formance of a whole NPP structure, we aim to help soundness evaluation of the
existing NPPs and support desirable earthquake resistance design of new NPPs and
upgrading of the design concept.

Generally, full-fledged simulation of an NPP using 3D Vibration Simulator needs
high computing power and memory capacity that a present single supercomputer
can not sufficiently afford. In future, it is expected that tera- or peta-scale com-
puting resources should be needed in all respects of memory, computing perfor-
mance, and storage. For this reason, R&Ds of parallel and distributed computing
technologies which enable to couple various supercomputers geographically dis-
persed is very important issue for the realization of the full-fledged simulation. In
this R&Ds, use of grid computing technology [2, 3] is inevitable and in this context,
we have developed grid-enabled application of the 3D Vibration Simulator using
AEGIS (Atomic Energy Grid InfraStructure) Client APIs (Application Program In-
terfaces) [4, 5].

AEGIS developed and established by CCSE/JAEA provides supercomputing re-
sources of various universities, computational science facilities, institutes, and so on
in Japan [4–9]. In AEGIS, main targeted simulations are large-scale simulations in
atomic energy field, for example, burning plasma [15] and prediction of quake-proof
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Fig. 1 “Full-Scale 3D Vibration Simulator for an Entire Nuclear Power Plant” is full-fledged sim-
ulation platform for seismic response analysis for a whole digitalized nuclear power plant

capability of NPPs as well as 3D Vibration Simulator. So far, we have supported sim-
ple and easy development of grid-enabled applications for these simulations by pro-
viding AEGIS Client APIs. Installing the application on user’s terminal, users can
perform simulations feeling like as they use desktops with supercomputing power
without consciousness of complexity of grid service layers.

In 3D Vibration Simulator, an NPP model is deployed on computing resources by
component unit which is composed of a number of parts. In previous grid-enabled
application (hereafter, GDS (Grid-enabled Desktop Supercomputing) application)
[4, 5], all of large components such as reactor vessel are first simulated, after that,
using output data from the large components simulation, small components, for ex-
ample, interconnecting pipes were simulated. In this work, we introduce pipelined
data-transfer scenario to make the whole simulation more efficient, by which all
components are simultaneously simulated transferring data per each time step from
large components to small components. However, we confronted two problems: first
problem is waste of computing resources due to existence of idle time to wait ar-
rival of necessary input data from the large components which took even a few
hours sometime per each step and second problem is needs of immediate resubmis-
sion of abnormal ended jobs for realization long time simulation under pipelined
data-transfer scenario. Since pre-existing grid technologies did not provide suffi-
cient functionalities to simply adapt these solutions in the grid-enabled application,
we developed Simple Application Orchestration Framework (SOAF) [15] and im-
plementing the SOAF in the previous grid-enabled application of 3D Vibration Sim-
ulator. Using the upgraded grid-enable application we performed seismic response
analysis of High Temperature Engineering Test Reactor (HTTR) at O-arai R&D
center of JAEA and confirmed that the proposed solutions in this work were very
effective so that long time simulation of about 160 hours by well functioned auto-
matic resubmission of abnormal ended jobs was realized without wasteful use of
computing resources in pipelined data-transfer scenario. In Sect. 2, we explain 3D
Vibration Simulator and discuss the above two problems and their solutions in de-
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tail. In Sect. 3, we describe SOAF functionality and its implementation. In Sect. 4,
details of seismic response simulation of HTTR will be explained. In Sect. 5, we
summarize our work.

2 Full-Scale 3D Vibration Simulator for an Entire Nuclear
Power Plant

2.1 GDS Application of Full-Scale 3D Vibration Simulator

Distinguished point of 3D Vibration Simulator is that a whole digitalized NPP is
divided by component units, where each component is an assembly structure with a
number of NPP parts prepared in mesh model of finite elements method as shown
in Fig. 2. Components are individually analyzed by 3D Vibration Simulator solver,
FIESTA (FInite Elements STructural Analysis) [1] and mutual vibration effects be-
tween parts are reflected by data exchange at parts boundaries per each simulation
time step. 3D structural analysis by FIESTA elucidates detailed mechanism of phys-
ical phenomena occurred at parts boundaries, which is very important to guarantee
soundness of NPPs but impossible by de-facto mass-spring modeling methodol-
ogy.

Fig. 2 In 3D Vibration Simulator, an NPP is considered of assembly structure composed of parts
in finite element method model

An entire NPP is composed of parts from 100 thousands to 10 millions so that
generally, it is impossible to perform full-scale simulation on a single supercom-
puter. In future, as analysis precision will become more and more accurate, prepared
model data will be terabyte-scale size and we will need tera- or peta-scale resources
for computing performance, memory, storage, and so on. In this respect, use of grid
resources is desirable solution, and by deploying components on various grid com-
puting resources we can realize 3D Vibration Simulator methodology of “from parts
to the whole”.
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CCSE/JAEA has more advanced grid technologies acquired from R&D of ITBL
(IT-Based Laboratory) Project [10–13] and established grid infrastructure, AEGIS
for atomic energy research field. So far, we have provided AEGIS Client APIs which
support AEGIS users to develop their own GDS application in a simple and easy
way. We aim that GDS applications provide simulation environment which makes
users feel like as they have their own desktop supercomputers. As shown in Fig. 3,
using the Client APIs, we developed GDS application of 3D VPVS and have per-
formed seismic analysis of an NPP which was reported in the 9th Teraflops Work-
shop in 2008.

Fig. 3 CCSE/JAEA has developed GDS applications for 3D Vibration Simulator which connected
with computing resources on AEGIS infrastructure

2.2 Needs of Pipelined Data-Transfer Scenario

Large-mass components of NPPs, for example, reactor pressure vessel and cooling
systems are interconnected by small-mass components such as pipeline systems.
In previous theoretical study [14], it was shown that physical effects from small
components to these large components could be neglected compared to that the vice
versa. Based on this result, we introduced hierarchical manner as shown in Fig. 4
by which we grouped large components at primary level and small components
at secondary level and used boundary condition data obtained from simulation at
primary level as input data to simulate secondary level.

In this work, we introduce pipelined data-transfer scenario in which boundary
condition data are transmitted per each time step from the primary level to the sec-
ondary level. Pipelined data-transfer makes the whole simulation more efficient than
the previous sequential data-transfer scenario as shown in Fig. 5. In sequential data-
transfer, boundary condition data are accumulated during simulations at primary
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Fig. 4 In 3D Vibration Simulator, considering one-direction physical effect, all components are
grouped into primary level of large components and secondary level of small components

level and after the simulation completes, used as input data with the start of simula-
tions at secondary level.

Fig. 5 Pipelined data-transfer makes a whole simulation more efficient than sequential data-
transfer

In adopting the pipelined data-transfer scenario to the 3D Vibration Simula-
tor, we confronted two challenges: first challenge is effective use of computing
resources and second challenge is realization of long time simulation adopting
pipelined data-transfer scenario through a whole simulation. In 3D VPVS, batch
queue jobs at secondary level in idle state wait arrivals of all boundary condition
data from primary level and the waiting time takes from a few 10 minutes to a few
hours per each time step. Problem is that the existence of the idle time is an obsta-
cle which prohibits a whole effective use of computing resources which are shared
by many researchers. On the other hand, to get physically useful analysis results,
simulation needs a few weeks which exceed very far time limit assigned to batch
queue jobs. Problem is that when even one of jobs at primary level is killed by a
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batch system, for example, for the reason of time limit exceed, the whole simu-
lation can’t step further. When even one of jobs at secondary level is abnormally
ended, depending on the resubmit timing, it is difficult to realize pipelined data-
transfer.

To address these challenges, we thought solutions as follows. As solution for the
first challenge, we introduce “one time step execution” policy by which each job
at secondary level is submitted after all of its one time step input data arrive and
executed only that time step, which is repeated whenever new time step input data
arrive. In this policy, since jobs don’t have to wait data in idle state, first problem
is cleared. As solution for the second challenge, monitoring each job status and
immediately resubmit a job which abnormally is ended including the case that the
jobs is killed by time limit exceed. By this immediate resubmit, simulation can be
executed under pipelined data-transfer for long time simulation.

3 Development of Simple Orchestration Application Framework

The previous GDS application lacked functionalities to realize the pipelined data-
transfer scenario adapting two solutions proposed in Sect. 2.2 because the appli-
cation was designed for the sequential data-transfer scenario. The application per-
mitted only sequential control of data-transfer and job execution so that data could
be transferred only after a job was completely terminated and there was no way to
transfer the data during job’s running. Besides, although the application regularly
checked each job’s status obtained from the AEGIS Client APIs, that was only for
user’s monitoring and when a job’s abnormal end was informed, users needed re-
submit the abnormal ended job themselves. To immediately resubmit a job, users
must always keep their eyes on the monitoring messages.

To realize pipelined data-transfer scenario with these the solutions of “one time
step execution” policy and job’s immediate resubmit, we developed SOAF. In de-
signing SOAF, we intended it to be general-purpose to also enable various other type
scenarios necessary for other scientific simulations which couple multiple codes in-
stalled on distributed computing resources. For example, multi-physics or multi-
scale simulations are composed of various scientific codes and each code is used
with dedicated purpose for a specific physical phenomena or space-time scale. Cou-
pling these codes involves data transfer between jobs in pipelined scenario, condi-
tional branch scenario or even the mixed type of all these scenarios. It means that
many scientific simulations with sophisticated coupling scenarios can be realized
by controlling each scenario’s data flow. Focusing on this point, we designed and
developed SOAF and also considered that its implementation should be simple and
use of its functionalities should be easy.
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3.1 Functionalities

SOAF enables various computational simulations composed of multiple codes to
be executed in distributed or parallel in simple and easy way. SOAF focuses only
data flow between jobs and, according to the flow, controls job-submit timing and
data-transfer, which is done by collaboration between “controller” and “sentinels” of
SOAF composites. Controller is a C language program installed on user terminal and
sentinels are simple Perl scripts of send sentinel, recv sentinel, and void sentinel on
computing resources. Three sentinels consist of one set and the set must be located
in the same directory with simulation codes. Users edit job attributes and data flow
(hereafter, file flow) in configuration text file. Job attributes for a job are job name,
computer name, code path, job directory, and so on. Unit of file flow is prepared per
each file and has information of a filename, job name outputting it, list of job name
receiving it, and so on.

With the process start of the controller, it submits jobs and simultaneously,
sentinels enter to their monitoring processes. Each send sentinel keeps watching
whether its target file’s flag file exists or not. Here, a flag file is an empty file gener-
ated by a simulation code after the target file is closed. When the flag file exists, the
send sentinel outputs a signal file and terminates its process (but, new process starts
immediately for next step target file). After confirming the process termination of
the send sentinel, the controller transfers first, the target file and next, the signal file.
After confirming arrival of the signal file, recv sentinel generates a flag file with the
same file name as the target file’s flag file. In SOAF, as one of job attributes, users
can define job type depending on a submit condition. In the case that a job needs
output data from another job as a submit condition, the job is defined as type 0. In
the case that a job needs to be submitted from the controller’s start, the job is de-
fined as type 1. Therefore, the controller submits type 0 after target file transferred
is completed. Once the type 0 job starts to run, it confirms its target file’s flag file
and then, reads data of the target file. Here, we must notice that simulation source
codes need to be added with a few code lines to enable output and confirmation of
flag files. This is, however, trivial and very simple work compared to that needed
when implementing other existing grid technologies [15]. Also, by the use of flag
files and signal files, data output and data transfer are completely guaranteed. On the
other hand, to immediately resubmit each abnormal ended job, the controller keep
watch each job status and, when a job abnormally ends, automatically resubmits the
job.

3.2 Implementation

We implemented SOAF in the previous GDS application of 3D Vibration Simulator.
AEGIS Client APIs are located between controller and AEGIS middleware on com-
puting resources as shown in Fig. 6. Job attributes in configuration file are passed to
the Script Generator API, a middle level AEGIS Client API generating grid-enabled
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scripts of each job. Whenever the controller demands job submits, the Script Gen-
erator API hands over the job’s scripts to AEGIS middleware via low level AEGIS
Client APIs. When a job is killed by a batch system for time limit exceed, AEGIS
Client APIs report returned value of job status, SCR STATUS ABNORMAL END
and accepting this report, controller resubmits the job.

Fig. 6 View of system adapting SOAF in GDS application of 3D Vibration Simulator: file transfer
between two jobs and resubmit of jobs are done by collaboration between controller and sentinels
of SOAF composites via AEGIS Client APIs

As shown in Fig. 7, to adopt “one time step execution” policy in Sect. 2.2, we
defined jobs at primary level as type 1 and jobs at secondary level as type 0. Jobs
at primary level are submitted from the start of simulation and generate files having
boundary condition data necessary as input data of jobs at secondary level. When-
ever these files are generated, they are transferred to the job directories at secondary
level and after that, jobs at secondary level are submitted. To enable jobs to advance
further simulation time step through resubmission, we recoded simulation code so
that restart files of jobs at primary level are generated at fixed interval time steps and
those of jobs at secondary level are generated each time step.

4 Full-Scale Simulation of High Temperature Test Engineering
Reactor

Using the upgraded GDS application by implementation of SOAF, we performed
full-scale seismic response analysis of High Temperature Engineering Test Reactor
(HTTR) at O-arai R&D center of JAEA in pipelined data-transfer scenario. HTTR,
bird’s-eye view of which is shown in Fig. 8(left), is research facility for develop-
ment of high temperature gas-cooled reactor technology and nuclear heat utiliza-
tion technology. Digitalized model of HTTR as shown in Fig. 8(right) is composed
of six components: RPV (Reactor Pressure Vessel), PWAC (Pressurized Water Air
Cooler), and AWAC (Auxiliary Water Air Cooler) at primary level and three inter-
connecting pipe systems at secondary level. Total degree of freedom is about 150
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Fig. 7 “One time step execution” policy in Sect. 2.2 is realized by defining jobs at secondary level
as type 0 and job submission timing is controlled by controller

million and total data size is about 26 GB. Table 1 shows number of mesh nodes
and model data size of each component. We used 20 seconds data of El Centro
earthquake in 1940 to perform full-scale seismic response analysis of HTTR which
demanded 1 terabytes memory.

Fig. 8 Bird’s-eye view of HTTR building (left side) and its digitalized model composed of six
components (right side)

We used a massive parallel supercomputer, Altix3700Bx2 and a PC cluster ma-
chine, Altix350 on AEGIS Tokai site of JAEA as shown in Fig. 9. Total number
of CPUs was 1024 using six batch queue job classes as shown in Fig. 10. Consid-
ering that it is not desirable to use of plural number of data files as input files for
simulation efficiency, we prepared a TSS (Time Sharing System) program between
primary level and secondary level to unify the plural files from the primary level
into one file.
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Table 1 Details of six digitalized components of HTTR

Level Components Number of mesh nodes Mesh data size (GB)

Primary
RPV 26,047,774 16.2
PWAC 13,810,729 5.9
AWAC 3,364,149 1.4

Secondary
PIPE1 622,090 0.2
PIPE2 1,830,427 0.8
PIPE3 3,396,149 1.7

Total 49,071,318 26.2

Fig. 9 Deployment view of six components of HTTR on computing resources in JAEA Tokai site
of AEGIS

We confirmed effectiveness of the proposed solutions in Sect. 2.2 through this
full-scale simulation of HTTR. During the whole simulation time, all of data files
were transferred to their target directories in pipelined scenario. Since there were
jobs of type 0 by the TSS program, pipelined data-transfer was done through two
stages: from primary level to TSS level and from the TSS level to secondary level.
By “one time step execution” policy, we could simulate without wasteful use of
computing resources because there were no idle states. Immediate resubmissions of
abnormally ended jobs due to time limit exceed were done one time for RPV, three
times for PWAC, and 9 times for AWAC, where limit time of RPV job class was
12 hours and others were 3 hours for total simulation period of about 160 hours.
In this simulation, there was no time limit exceed in the case of jobs at secondary
level.
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Fig. 10 File transfer view per each time step from three job classes at primary level to three job
classes at secondary level via TSS programs which unifying plural files to one file

Fig. 11 Schematic view of jobs flow chart according to pipelined data-transfer scenario between
six job classes and two TSS programs

5 Summaries

In Japan, earthquake resistance design and dynamic analysis of NPPs are very im-
portant issues. To address these issues, CCSE/JAEA has performed R&Ds of “Full-
Scale 3D Vibration Simulator for an Entire Nuclear Power Plant” which is seismic
response analysis system for a whole digitalized NPP. Generally, full-fledged simu-
lation of an NPP needs massive computing power, very huge storage, memory, and
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so on which a single supercomputer could not sustain sufficiently. To tackle this sit-
uation, we have developed grid-enable application of 3D Vibration Simulator using
AEGIS Client APIs of grid infrastructure AEGIS developed by JAEA and an NPP
model is deployed on computing resources of AEGIS by NPP component unit. In
NPP model of 3D Vibration Simulator, large components such as a reactor pres-
sure vessel are interconnected by small components such as pipes and 3D Vibration
Simulator treats physical effects between them as one-direction effects from large
components to small components. In this work, to reflect the one-direction physical
effect, we introduced pipelined data-transfer scenario in which boundary condition
data were transferred from the large components to small components per each time
step, which made simulation more efficient than the previous sequential scenario in
which after completion of all simulation of large components, simulation of small
components began. In adopting the pipelined data-transfer scenario, we confronted
two challenges: effective use of computing resources and realization of long time
simulation. To address these challenges, we proposed solutions: 1) “one time step
execution” policy in which jobs for small components started after all necessary
input data arrived and executed only one step and 2) immediate resubmission of
abnormal ended job. Since the previous grid-enabled application lacked functionali-
ties to adapt these solutions we developed Simple Orchestration Application Frame-
work (SOAF). SOAF had functionality of file transfer and job submission depend-
ing on the only files flow between jobs and functionality of automatic resubmission
of abnormally ended job. We implemented SOAF in the previous grid-enabled ap-
plication, from which we performed full-scale seismic response analysis for High
Temperature Engineering Test Reactor at O-arai R&D center of JAEA using six job
classes of two supercomputers. Through this simulation which took almost a week,
we confirmed the effectiveness of the pipelined data-transfer adapting the proposed
solutions was executed without waste of computing resources and abnormal ended
job were automatically resubmitted.

Acknowledgements We acknowledge O-arai R&D center of JAEA for useful discussion and data
provision.
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Development of Simple Orchestration
Application Framework and Its Application
to Burning Plasma Simulation

Takayuki Tatekawa, Kohei Nakajima, Guehee Kim, Naoya Teshima,
Yoshio Suzuki, Hiroshi Takemiya

Abstract We have developed the Simple Orchestration Application Framework
(SOAF) to cooperatively control simulation codes on remote computers from a
client PC. SOAF enables researchers to cooperatively execute various codes on grid
infrastructure by only describing a configuration file including the information of
execution codes and file flows among them. SOAF does not need substantial mod-
ification of the simulation codes. We have applied SOAF to the “Burning Plasma
Integrated Code” which consists of various plasma simulation codes to solve the
current diffusion, stability of plasma, current drive, and so on. In order to predict and
interpret the behavior of fusion burning plasma, it is necessary to integrate simula-
tion codes for complex plasma phenomena with wide temporal and spatial ranges.
Since those codes exist on distributed heterogeneous computers installed in differ-
ent sites such as universities and institutes, a grid computing technology is needed
to cooperatively execute those codes. However, traditional grid technologies are dif-
ficult for non-computer scientists to use. By using SOAF, we successfully execute
four plasma simulation codes included in the “Burning Plasma Integrated Code”
according to the scenario described in the configuration file.

1 Introduction

In order to predict and interpret the behavior of fusion burning plasma, it is neces-
sary to simulate complex plasma phenomena with wide temporal and spatial ranges.
So far, various plasma simulation codes such as transport codes, MHD codes, par-
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ticle codes, CD/Heating codes, and so on, have been developed in universities and
institutes to simulate such complex phenomena. And, their integration has also been
tried to cooperatively execute those codes for integrated prediction and interpreta-
tion of the plasma behavior. There has been a problem how to integrate the simula-
tion code on distributed computers cooperatively.

A grid computing technology has been used to realize their cooperative execu-
tion. For example, a workflow tool such as Kepler [1], TME [2], and so on en-
ables re-searchers to build and execute scientific scenario from a client PC. Re-
searchers can promote the execution of simulation codes and can visualize analysis
processes using a graphical user interface (GUI). Here, researchers can construct
the executable model of cooperation by simple procedures such as drag and drop.
A remote procedure call (RPC) enables researchers to cooperatively manage various
simulation codes by developing an application with its functions. GridRPC [3] is the
expansion of RPC for a grid computing environment. An extended message pass-
ing interface (MPI) suitable to a grid environment (Grid-enabled MPI) enables to
have a communication between heterogeneous distributed computers. Various types
of grid-enabled MPI, STAMPI [4], MPICH-G [5], PACX MPI [6], and so on, have
been developed. Researchers can have a cooperative execution by modifying their
own simulation codes.

Although researchers can cooperatively execute various plasma simulation codes
by using those technologies, those technologies have advantages and disadvantages.
The cooperative execution of simulation codes are roughly divided into three types;
type 1 is the sequential type in which the codes are executed sequentially, type 2
is the pipeline type in which simulation codes are executed concurrently by send-
ing and receiving input/output data during their running, type 3 is the conditional
branch type in which simulation codes are started and data is transferred depending
on various conditions. In type 3, the choice and start of codes are judged during the
execution of scientific scenario. Namely, some codes are started if a specified condi-
tion is satisfied at a conditional branch. Therefore, the schedule to execute all codes
cannot be decided beforehand. A workflow tool is useful for type 1, but is not forte
for type 2 and 3 since it does not always have a function for a detailed control such
as conditional branch. On the other hand, RPC and Grid-enabled MPI are suitable
for type 2 and 3. However, researchers have to make exertions to develop/extend a
grid-enabled application and/or to modify their simulation codes.

The integration of plasma simulation codes, e.g. the “Burning Plasma Integrated
Code”, is classified in type 3, since their simulation codes have to be cooperatively
executed depending on various conditions such as plasma stability, timing of heat-
ing, and so on. Therefore, it is desirable to construct the grid computing technology
which enables researchers in nuclear field to control the type 3 execution without
their exertions.

As a new framework to control various types of cooperative execution easily, we
propose the Simple Orchestration Application Framework (SOAF) [7]. SOAF coop-
eratively controls simulation codes on remote computers from a client PC by only
describing a configuration file which includes the information of execution codes
and file flows among them. In addition, SOAF is designed to reduce modification of
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simulation codes and researchers’ exertions for orchestration. SOAF has been devel-
oped by using client application program interfaces (APIs) implemented on Atomic
Energy Grid Infrastructure (AEGIS) [8]. We have applied SOAF to the “Burning
Plasma Integrated Code” which consists of various plasma simulation codes to solve
the current diffusion, stability of plasma, current drive, and so on.

We describe SOAF in detail and its application to the “Burning Plasma Integrated
Code” in Sects. 2 and 3, respectively. In Sect. 4, we report the environment and result
of our experiment. Finally in Sect. 5, we summarize our R&D results and describe
a future work.

2 Simple Orchestration Application Framework (SOAF)

2.1 Overview of SOAF

We propose a new framework which makes simulation codes cooperate without
difficulty. Here we describe a framework concept that allows simulation codes to
inter-operate. Here we mention a concept of our proposition.

Fig. 1 Cooperative execution of simulation codes on distributed computers

We suppose that many simulation codes exist on distributed computers installed
in different sites such as universities and institutes. This situation is shown in Fig. 1.
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Each code can analyze one phenomenon in detail. When each phenomenon is not
independent and affects each other, a realistic problem can be elucidated by cooper-
atively executing those simulation codes. To realize this, the orchestration including
code executions and file transfers on a grid infrastructure is required. We have to
consider file flow or flow of execution codes for orchestration. Here, we consider
the followings are critical issue to design the SOAF:

1. How are various types of cooperative execution controlled easily?
2. How is each simulation executed cooperatively with its minimal modification?

We focused on a file flow among execution codes to design the SOAF. Firstly, it
is better to send/receive information by transferring files in order to have commu-
nications among simulation codes without modifying those codes. Secondly, it is
easier to define a file flow than a flow of execution codes in order to build a scien-
tific scenario depending on conditional branch. A flow of execution codes cannot be
described sequentially in case that a scientific scenario includes conditional branch.
The start of codes needs to be managed by any way. We adopted the way to manage
the start of codes by a file flow. It is useful to identify a file flow, since a code is
usually started after it receives a file from another code, except a firstly started code.
SOAF manages the start of codes and the transfer of files under a file flow which is
described in a configuration file. SOAF consists of a client application, programs to
support the file transfers, and a configuration file. Programs (we call this program
“sentinel”) are started by the client application (we call this “controller”) and are
executed on distributed computers. By those ideas, researchers in nuclear field can
execute cooperatively various plasma simulation codes by only generating a config-
uration file.

The codes started by a conditional branch require input files. By directing our
attention to the file flow among the codes, we can control the cooperative execution
of the conditional branch type, because these files are generated by other codes.

2.2 Controller

We developed the controller using client APIs implemented on AEGIS. Center
for computational science and e-systems (CCSE) of JAEA has developed AEGIS,
which is grid middleware for atomic energy research. The schematic diagram of
AEGIS is shown in Fig. 2. We have developed client APIs as a function of AEGIS
to develop grid-enabled application on a client PC. Client APIs consist of low, mid-
dle, and high level APIs, which are classified due to their functions. To develop
controller, we used the authentication API, file transfer API, job submission API
and job information request API in low level APIs, and Job-script generator API in
middle level APIs.

Low level APIs supply connection between client PC and supercomputers on
AEGIS, job operation to supercomputers, resource handling on both clients PC and
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supercomputers, and so on. When users access AEGIS, users need an authentica-
tion process by using IC card or USB e-token (PKCS#11). Job-script generator API
generates the script corresponding to heterogeneous computers by reading job at-
tributes such as name of computer, job class, number of CPUs, path of program,
work directory, and so on.

The client APIs are supplied as libraries which have an interface of C language,
and are available for Linux and Windows.

Fig. 2 Schematic diagram of AEGIS

2.3 Sentinel

The sentinel detects the output files and operates the file transfer between simulation
codes. It works before and after job submission.

The sentinel consists of three scripts: send, recv and void. These scripts are
described by Perl script language. The send script detects “flag files” of output files,
generates “sent files”. The recv script detects “sent files” and generates “flag files”.
The void script is used to execute simulation codes without files.

We show the procedure of file transfer using the sentinel. Here, we describe an
example that two codes (“code A” and “code B”) are cooperatively executed on
distributed computers (see Fig. 3). The execution of “code B” requires output files
from “code A”. The procedure is as follows:
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1. “Code A” generates output files and their “flag files”.
2. The send sentinel beside “code A” detects the “flag files” and deletes them. Then

send sentinel generates “sent files” of the output files. Finally send sentinel fin-
ishes (Before next file transfer, send sentinel is resubmitted again.).

3. By the detection of send sentinel beside “code A” end, the controller transfers
the output files from work directory of “code A” to that of “code B”.

4. The controller transfers “sent files” from work directory of “code A” to that of
“code B”.

5. The recv sentinel beside “code B” detects “sent files” and deletes them. Then
the recv sentinel generates “flag files” of transferred files. Finally recv sentinel
finishes (Before next file transfer, recv sentinel is resubmitted again.).

6. By the detection of recv sentinel beside “code B” end, the controller starts
“Code B”. “Code B” detects “flag files”, deletes them and read the output files.

Fig. 3 The procedure of file transfer

A little modification of simulation codes is needed to use SOAF. When “code A”
generates output files, “code A” must generate their “flag files”. “Code B” must
detect the “flag files” and delete them.

2.4 Configuration File

The configuration file in this case is described in Fig. 4. The configuration file con-
sists of information of codes (PROGRAM) and file flow (FLOW). The “name” in
PROGRAM is the name of the execution job. The “path” in PROGRAM means the
path of execution code. The “type” in FLOW represents kinds of job. The “type 1”
corresponds to the firstly started job. The job with “type 0” is started after it receives
a file from another job. The “File1” is output files from code A. By the controller,
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these files are transferred from work directory of code A to that of code B. After files
are transferred, the controller starts code B. The “File2” is output file from code B.
After execution of code B, this file is transferred from work directory of code B to
that of code A. Code A receives this file.

Fig. 4 An example of the configuration file

Because the controller is developed by using multithreaded process and each
thread corresponds to each sentinel, the controller detects the end of file output
and file transfer immediately. The execution time overhead of the sentinel is almost
negligible.

3 Development of Simple Orchestration Application Framework

The previous GDS application lacked functionalities to realize the pipelined data-
transfer scenario adapting two solutions proposed in Sect. 2.2 because the appli-
cation was designed for the sequential data-transfer scenario. The application per-
mitted only sequential control of data-transfer and job execution so that data could
be transferred only after a job was completely terminated and there was no way to
transfer the data during job’s running. Besides, although the application regularly
checked each job’s status obtained from the AEGIS Client APIs, that was only for
user’s monitoring and when a job’s abnormal end was informed, users needed re-
submit the abnormal ended job themselves. To immediately resubmit a job, users
must always keep their eyes on the monitoring messages.
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To realize pipelined data-transfer scenario with these the solutions of “one time
step execution” policy and job’s immediate resubmit, we developed SOAF. In de-
signing SOAF, we intended it to be general-purpose to also enable various other type
scenarios necessary for other scientific simulations which couple multiple codes in-
stalled on distributed computing resources. For example, multi-physics or multi-
scale simulations are composed of various scientific codes and each code is used
with dedicated purpose for a specific physical phenomena or space-time scale. Cou-
pling these codes involves data transfer between jobs in pipelined scenario, condi-
tional branch scenario or even the mixed type of all these scenarios. It means that
many scientific simulations with sophisticated coupling scenarios can be realized
by controlling each scenario’s data flow. Focusing on this point, we designed and
developed SOAF and also considered that its implementation should be simple and
use of its functionalities should be easy.

3.1 Burning Plasma Simulation

The “Burning Plasma Integrated Code” has been researched and developed mainly
by Naka Fusion Institute of Japan Atomic Energy Agency (JAEA) to integratedly
predict and interpret the plasma behavior. It consists of various plasma simulation
codes to solve the current diffusion, stability of plasma, current drive and so on.
A quite realistic simulation is expected by integrating those codes.

It is indispensable to understand the controllability of plasma toward the contin-
uous operation of tokamak reactor especially for ITER [9]. To control the burning
plasma and achieve high performance such as high confinement, high beta, high
bootstrap, high radiation at the edge region, suppression of impurity, it has an im-
portant role to simulate behavior of burning plasma in tokamak reactor.

For simulation of burning plasma in tokamak reactor, it is not realistic to handle
whole physical processes by one simulation code. One of the reasons is that burning
plasma has very wide temporal and spatial ranges in the steady state (Fig. 5).

For example, a period of high frequency wave such as electron-cyclotron cur-
rent drive is less than 10–8 seconds. On the other hand, current diffusion occurs in
several seconds. Furthermore, the burning plasma has complex physics such as tur-
bulence, transport, MHD, current diffusion, wave-particle interaction, plasma-wall
interaction, atomic and molecular physics, and so on. Each physical process with
different temporal and spatial scales is modeled and calculated by separated simula-
tion codes. The respective simulation codes can be integrated for the burning plasma
analysis. The integrated simulation system covers both microscopic and macro-
scopic physical processes and simulates long-time behavior considering short-time
behavior.

Various plasma simulation codes for physical processes have been developed in
universities and institutes. Since those codes are executed in each university and in-
stitute, we need a grid computing technology to cooperatively execute those codes.
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Fig. 5 Temporal and spatial scales on physical processes of plasma

Therefore, we have applied SOAF to manage those codes in the “Burning Plasma In-
tegrated Code” on our grid infrastructure AEGIS. In the current application, we use
four plasma simulation codes; tokamak prediction and interpretation code system
(TOPICS) [10], two-dimensional magnetic stability analysis code (MARG2D) [11],
electron-cyclotron current drive code (ECCD) [12], and lower-hybrid current drive
code (LHCD).

TOPICS solves the 1D transport and current diffusion equations and the Grad-
Shafranov equation of the MHD equilibrium on the 2D plane. The transport code
solves the current diffusion equation, including EC and LH current profiles. TOP-
ICS investigates specific characteristics of burning plasma such as behavior of edge
localized modes (ELMs) [13] and neoclassical tearing modes (NTM) stability.

MARG2D is 2-D Newcomb equation solver which solves an eigenvalue problem
associated with the two-dimensional Newcomb equation in axisymmetric toroidal
plasma such as tokamak by using a finite element method. Using this code, we
can analyze stability of ideal external MHD modes from low to high toroidal mode
numbers. Furthermore we obtain eigenfunctions numerically which show the singu-
lar behavior. Using MARG2D, the MHD property of JT-60SA, the complemented
device of ITER, is investigated [14].

ECCD and LHCD codes simulate control and stabilization of the burning plasma
and thus are executed for control of burning plasma simulated by TOPICS.

MARG2D, ECCD, and LHCD are started depending on the requirement arising
from TOPICS during the burning plasma simulation. When the instability modes are
found the plasma is found to be close to the unstable region by MARG2D, TOPICS
requests to start ECCD or LHCD for stabilization of the burning plasma. Therefore
the “Burning Plasma Integrated Code” belongs to the conditional branch type.
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Table 1 Codes and computers

Codes Computers

TOPICS Altix350
MARG2D Altix3700Bx2
LHCD Altix350
ECCD PC Cluster

Table 2 The situation of the simulations

Simulation time t (sec) Action

0 TOPICS start
1 MARG2D execute
2 LHCD execute
4 ECCD execute
5 TOPICS finish

4 Experiment

In this section, we mention our experiment about the application of SOAF to those
four codes in “Burning Plasma Integrated Code”.

The client PC where the controller is executed is Ubuntu Linux 8.04 located in
CCSE/JAEA (Tokyo/Japan). The C compiler is gcc-4.2.4 (multithread enabled). We
used USB e-token (PKCS#11) for authentication to AEGIS.

The numerical simulations are submitted to three computers located in Tokai Re-
search and Development Center of JAEA (Ibaraki/Japan); Altix3700Bx2, Al-tix350,
and PC cluster. In this experiment, we fix the computers in which simulation codes
are executed as shown in Table 1. In this experiment, TOPICS, LHCD, and ECCD
are executed on TSS mode (serial execution). MARG2D is submitted to job queuing
system (class of 32CPUs and 3 hours). When we start the controller, not only TOP-
ICS but also each sentinel script beside simulation code is executed. All sentinel
scripts are executed on TSS mode.

Those simulation codes are executed by the following procedure. At first, TOP-
ICS is started. In this experiment, the simulation time (not CPU time) is set to 5 sec-
onds (t = 5). During the running of TOPICS, TOPICS requests to start MARG2D,
LHCD, and ECCD. In this experiment, the start of codes is scheduled as shown
in Table 2. TOPICS generates output files for MARG2D at simulation time t = 1.
Then these output files are transferred to work directory of MARG2D. After the file
transfer, MARG2D is started. LHCD and ECCD are started at simulation time t = 2
and 4, respectively. In the configuration file of controller, TOPICS corresponds to
“type 1” code. MARG2D, LHCD, and ECCD correspond to “type 0” codes.
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The diagram of the simulations is shown in Fig. 6. During simulation by
MARG2D, LHCD, and ECCD, TOPICS suspends. Then TOPICS reflects the anal-
ysis results by other codes and restarts.

Fig. 6 The diagram of the simulations. The solid line and dashed line mean code execution and
file transfer, respectively

The file flow is shown in Fig. 7. The files are transferred between TOPICS and
other 3 codes. MARG2D, LHCD, and ECCD receive the input files from TOPICS
and return results of analysis.

Fig. 7 The file flow between simulation codes. The number beside arrow means the number of file

TOPICS generates three files with flag files just after the starting: two files for
MARG2D and one file for ECCD. These files are transferred by the controller which
detects the end send script beside TOPICS immediately. After transfer, send script
beside TOPICS restarts.

At t = 1, TOPICS generates a file and its “flag file” for MARG2D. During anal-
ysis of MARG2D, TOPICS suspends. The send script beside TOPICS detects “flag
file” from TOPICS and deletes it. Then the send script generates “sent file” and
ends. The controller detects the end of send script beside TOPICS and transfers
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Table 3 The situation of the simulations

Wall-clock time (min) Action

0
SOAF start
TOPICS start

4 MARG2D start
5 MARG2D finish
25 LHCD start
26 LHCD finish
33 ECCD start
36 ECCD finish

0
TOPICS finish
SOAF finish

one output file and a “sent file” to work directory of MARG2D. The recv script
beside MARG2D detects “sent files” from TOPICS and ends. Then the controller
detects the end of the recv script and submits a job of MARG2D. After execution
of MARG2D, the send script detects “flag files” of 3 output files and deletes them.
Then the send script generates “sent file” and ends. The controller detects the end
of send script beside MARG2D and transfers output files and “sent files” to work
directory of TOPICS. The recv script beside TOPICS detects these “sent files” and
generates “flag files”. Then the recv script ends. Finally TOPICS detects “flag files”
and restarts.

We prepare the configuration file for four simulation codes to execute the con-
troller. We have confirmed that the controller executes those simulation codes as
scheduled at Table 2. SOAF successfully controls the cooperative execution of four
simulation codes and file transfers between those codes.

The performance of our experiment is shown in Table 3. The whole execution
time is about 40 minutes without job queuing time of MARG2D. Because the size
of transferred files is less than 1 Mbytes, each file transfer is completed less than
1 minute. In this experiment, the controller generates 18 threads for the sentinels:
1 for TOPICS execution (void script), 14 for I/O on TOPICS, 3 for each simula-
tion codes (MARG2D, ECCD, LHCD). The overhead of the controller is about 2
minutes and does not almost influence to the total execution time. Because the most
of this execution time is used for the authentication to AEGIS, the overhead is not
considered to increase substantially even if a cooperative simulation becomes com-
plicated.

The timing of start for ECCD and LHCD is scheduled by the conditional branch
implemented in TOPICS. Because the start of ECCD and LHCD is decided by only
the existence of output files from TOPICS, SOAF is applicable for any conditional
branch.

By using SOAF, we can execute cooperatively various simulation codes on re-
mote computers from a client PC without difficulty. We can achieve the orchestra-
tion of simulations with minimal modification. The length of “Burning Plasma Inte-
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grated Code” is about 300,000 lines. The modification for cooperative execution is
only about 200 lines. If we apply GridRPC or Grid-enabled MPI, the modification
would become several thousand lines. We have verified that all of our issues are
solved.

5 Summaries

We have developed the Simple Orchestration Application Framework (SOAF) to
cooperatively control simulation codes on remote computers from a client PC on
our grid infrastructure AEGIS. Researchers can easily execute cooperative simula-
tion codes by using a configuration file in which a file flow is described. Another
advantage of SOAF is that researchers can cooperatively control simulations with-
out substantial modification of simulation codes. And, the indication of cooperation
can be easily changed by only rewriting a configuration file.

We confirm the usefulness of SOAF by applying it to the “Burning Plasma Inte-
grated Code”. In the current experiment, we use four simulation codes on distributed
computers. SOAF can control cooperative executions of these four simulation codes
and file transfers between them.

We have solved two issues described in Sect. 2. Although we show an example
for the conditional branch type, researcher can integrate various kinds of simulation
codes by just describing the data dependency among these codes. Therefore, the
first issue is solved. In order to notify the timing of file transfer to SOAF, only a few
SOAF library calls are inserted in the applications. The second issue is solved.

From our experiment, we verified further merit of SOAF. For cooperative exe-
cution of simulation codes, the configuration file for the controller is required. The
length of the configuration file is much less than that of the simulation codes. The
overhead for SOAF is much less than that for simulations.

For consideration of the realistic situation, we need longer-time simulation. In
the current experiment, the simulation time of tokamak plasma is only 5 seconds.
For example, the burn duration in ITER project is designed as more than 1000 sec-
onds [9]. When burning plasma in such a situation is simulated, we would require
several weeks or several months. To achieve this, we need to consider the continuity
of execution. The longer-time simulation may suffer from various unexpected stop
which is caused by execution time excess, queuing timeout, outage of computers and
so on. To avoid the stop of the simulation, we will apply the fault-tolerant mecha-
nism of SOAF to the “Burning Plasma Integrated Code”. When this mechanism is
applied, a long-time simulation can be executed automatically.
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Acoustics and Structural Mechanic



On Sound Generated by a Globally Unstable
Round Jet

G. Geiser, H. Foysi, W. Schröder, M. Meinke

Abstract Direct numerical (DNS) and large-eddy simulations (LES) of a strongly
heated globally unstable round jet are juxtaposed with respect to aerodynamical
mean characteristics and the sound being generated. The sound field is computed
by a hybrid approach using the acoustic perturbation equations (APE). All used
codes have been adopted to massive-parallel supercomputers. This way results can
be obtained in a reasonable time frame. When compared to the DNS results, the
LES is capable to capture the major characteristics of the emitted sound field in the
forward direction. The sideline and backward direction that are dominated by small
scale noise reveal larger discrepancies that are due to the inherent restrictions of
large eddy simulations.

1 Introduction

The noise of heated jets has been investigated intensively in the past. However,
there still are many open questions which require further research. For example, the
mechanism which produces the change in spectral shape at large aft angles is still
unknown. Additionally, the precise effect of the jet density on the radiated noise
needs further investigations. Recently, Viswanathan [40] undertook a systematic
experimental study of heated jets and generated a database for low jet velocities
(Uj/a∞ ≤ 0.6). He could confirm the existence of an extra sound source of dipole
type at high temperatures to be due to Reynolds number effects. However, measure-
ments at such small velocities are difficult, since the noise amplitude generated by
valves, ducts, rigs, etc. may have larger magnitudes than the jet itself.

Alternatively, numerical simulations can be performed. Unfortunately, direct nu-
merical simulations (DNS) at Reynolds numbers which are high enough (> 400000)
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to avoid low Reynolds number effects are unrealistic in the near future. DNS or
large-eddy simulations (LES) of turbulent flows have shown promising results in
predicting the noise of high Reynolds number jets [42, 4, 5, 2, 3, 6, 22, 19, 25]. For
many applications, a direct calculation of the far-field is still computationally too
expensive. Therefore, hybrid methods are being used, separating flow and sound
calculation [18, 13, 19, 25]. The quality of the calculated noise certainly depends
on the acoustic model, grids, and numerical method being used. Furthermore, the
effect of the unresolved scales in LES calculations on the emitted sound spectrum
needs to be quantified.

The present paper investigates the sound generated by a strongly heated globally
unstable round jet using both DNS and LES for flow simulation. The acoustic field
is determined in a second step by solving the acoustic perturbation equations [13].

The paper is organized as follows. First, a description of the numerical methods
and the parallelization of the acoustic solver is given. Then, characteristics of the
round jet DNS and LES and the acoustic fields obtained by the hybrid calculations
are being presented before a short summary finalizes the paper.

2 Numerical Setup

2.1 Round Jet Flow Simulation

The Navier-Stokes equations for compressible flow are solved in cylindrical (x,Φ ,r)
coordinates, together with a transport equation for a passive scalar field ξ . The
centerline singularity at r = 0 is treated by applying the method of Mohseni &
Colonius [32]. For time integration a low-dispersion-low-dissipation fourth-order
Runge-Kutta scheme of Hu et al. [21] in its low storage form is used. The spatial
differentiation utilizes optimized explicit DRP-SBP (dispersion-relation-preserving
summation by parts) finite-difference operators of sixth order [23]. For the LES sim-
ulations, the compressible form of the dynamic Smagorinsky model [30] is applied.
For numerical stability the simulations require the timestep Δ t to be such that the
CFL number is restricted by CFL < 1.4. Time accuracy of the solution restricts the
CFL number even further to CFL ≤ 1.1 [33]. This numerical scheme yields numer-
ical errors which are small compared to the subgrid-scale terms of the governing
equations when the filter size is chosen twice the grid size [11], as it is done here.
Table 1 summarizes the different simulation parameters.

The initial momentum flux m j has been fixed for all simulations and was chosen
similarly as in Wang et al. [41]. This reasoning is based on observations of Ricou
& Spalding [34] who showed that the entrainment rate of a jet strongly depends on
m j. Ruffin et al. [35] demonstrated additionally, that the Taylor and Kolmogorov
length scales are determined by the initial momentum flux which was also con-
firmed by other experiments and simulations [1, 12, 41]. Non-reflecting boundary
conditions [29] were applied, together with a combination of grid stretching and
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Table 1 Parameters of the heated round jet simulations. The Reynolds number is given by
Re = Ujρ jD/μ j . δθ0/D denotes the initial momentum thickness normalized by the jet diameter
D. The density ratio of the jet is defined by s = ρ j/ρco. The domain lengths Li were normalized by
r j . The number of grid points in the respective coordinate directions are represented by ni

Case Re D/δθ0 s Lx LΦ Lr nx nΦ nr

DNS014 7000 54 0.14 50 2π 14 1024 256 320
LES014 7000 27 0.14 60 2π 16 256 64 112

spatial filtering close to the boundaries to damp any disturbances reflected from the
boundaries. A constant grid spacing was chosen within the range 0 < r/r j < 1.5 and
0 < x/r j < 12, where r j denotes the initial jet radius. A subsequent relative stretch-
ing of 1% was used extending in the r-direction up to r/r j = 10 and r/r j = 12
in the radial and up to x/r j = 40 and x/r j = 50 in the streamwise direction for
case DNS014 and LES014, respectively. In the remaining part of the domain the
stretching ratio was increased to 6%. For the LES grid, the number of grid points
within 0 ≤ r/r j ≤ 1 was 11. The LES was run using 32 processors on the JUMP
supercomputer of the Jülich Supercomputing Centre. The computation including
statistics required a CPU time of approximately 24 h. The DNS simulations were
run on 4096 processors on a Blue-Gene/P system at the same location. Hybrid
shared-/distributed-memory parallelization was applied to enhance the parallel per-
formance. The round jet simulations were initialized using velocity profiles of the
form [2]

U =Uco +
1
2
(Uj −Uco)

(
1−tanh

[(
r
r j

− r j

r

)
1

4δθ0

])
,

and temperature fields using the Crocco-Busemann relation [9]. The passive scalar
field was prescribed initially using a tanh function [17]. The initial normalized mo-
mentum thickness in the above profiles was prescribed according to Table 1. To
trigger the transition to turbulence precursor simulations of an annular temporally
evolving mixing layer with smaller initial momentum thickness were performed.
The square root of the turbulent kinetic energy, non-dimensionalized using the mean

values at the jet inlet, was monitored until its value
√

(U ′)2
1 +(U ′)2

2 +(U ′)2
3 was of

the order of 0.05 and the mean velocity profiles agreed closely with the prescribed
inlet mean jet profile. The resulting fluctuations were convected into the fluid do-
main using the characteristic inflow boundary conditions. Additionally, solenoidal
broadband velocity fluctuations [36] and stochastic vortex ring perturbations [5]
were superimposed on the annular mixing layer to break the periodicity of the in-
flow data. Although the domain sizes and number of grid points are similar to those
chosen by Bodony et al. [2], the grid resolution of the LES case was checked by
performing also higher resolved simulations (nx × nθ × nr = 384× 80× 120) [16].
These simulations showed negligible differences regarding the mean flow statis-
tics presented in this paper. The DNS simulation has a grid spacing approximately 6
times the Kolmogorov scale η , which was sufficient for the calculation of the acous-
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tic far field [24]. Simulations at higher Reynolds number and different density ratios
are conducted presently, having a grid spacing of 2.5η to 4η .

The statistical quantities were obtained by averaging in the homogeneous direc-
tions and over a time period T , corresponding to a Strouhal number D/(TUj) =
9 ·10−4, after statistical steadiness was reached.

Field dumps were obtained from the DNS and LES at a sampling frequency of
StD = 16 and StD = 20, respectively. From these dumps the acoustic sources were
computed in a separate preprocessing step.

2.2 Aeroacoustic Computation

The aeroacoustic computations are being performed by solving the acoustic pertur-
bation equations (APE) [13]. This set of equations was derived from the viscous
conservation laws by applying source filtering based on an eigendecomposition in
Fourier/Laplace space. Only transportation effects related to acoustical eigenmodes
contribute to the operator on the left-hand side, while the remaining terms form the
corresponding acoustical sources on the right-hand side. The APE offer stable linear
acoustical propagation in arbitrary mean flows while taking into account convection
and refraction effects. They have been successfully applied to several aeroacoustics
problems including trailing edge noise [14], high-lift airfoil noise [26], combustion
noise [8, 7], and jet noise [25, 19].

Since compressible fluids are considered, the APE are used in their APE-4 for-
mulation

∂ pa

∂ t
+ c2∇ ·

(
ρua +u

pa

c2

)
= c2qc (1)

∂ua

∂ t
+∇(u ·ua)+∇

(
pa

ρ

)
= qm, (2)

where a denotes acoustical perturbations that are the unknowns of the present system
of equations and qc and qm are the source terms given by

qc = −∇ ·
(
ρ ′u′)′ + ρ

cp

Ds′

Dt
(3)
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(
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2
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+
(

∇ · τ
ρ

)′
. (4)

(. . .) indicates Reynolds averaged mean and (. . .)′ = (. . .)− (. . .) perturbation
quantities. Due to the high Reynolds number viscous sound sources can be neglected
for the cases investigated.

The APE are discretized by an alternating 5–6 stage low-dispersion low-dissi-
pation Runge-Kutta (LDDRK) scheme [21] while the space derivatives are deter-
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mined explicitly using a 7-point 4th-order dispersion-relation preserving (DRP)
scheme [37]. On the boundaries non-reflecting radiation boundary conditions [37]
are imposed. Non-physical high frequency waves are suppressed by artificial selec-
tive damping [38].

Fig. 1 Acoustic domain equipped with virtual microphones given as blue spheres. Green lines
indicate the edges of the sub-domains. The slices show an instantaneous snapshot of the acoustic
perturbation pressure pa

The acoustic domains have a streamwise, radial, and azimuthal extension of x ≈
−22.5D . . .32.5D, r ≈ 0D . . .27.5D, and Φ = 0 . . .2π , respectively. The maximum
grid spacing in streamwise and radial direction is 0.2 and 0.26 for the DNS and LES
case, respectively. The domains are equipped with virtual microphones measuring
pa, c.f. Fig. 1. These microphones are arranged on circles with ΔΘ = 2◦. A sphere
with radius r = 25D is formed by 18 circles resulting in ΔΦ = 10◦. The sphere
is centered at (x,y,z) = (5D,0D,0D) which approximately corresponds to the end
of the jet’s potential core. During postprocessing the overall sound pressure level
(OASPL) and power spectral density (PSD) estimates on the spheres are averaged
onto a half circle, since the sound generation is assumed to be statistically isotropic
in the azimuthal direction. Power spectral density (PSD) estimates are computed
using Welch’s method with overlapping Blackman-Harris windows.

The acoustic computations were performed by using 2048–4096 cores of the
massively parallel IBM BlueGene/P supercomputer JUGENE at the Jülich Super-
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computing Centre. Wallclock time was approximately 40 h for the DNS and 4 h for
the LES case, respectively.

2.3 Parallelization of the Acoustic Solver

The acoustic field is computed with the structured multi-block solver PIANO that
uses curvilinear meshes for spacial discretization. PIANO is developed by the Ger-
man Aerospace Center (DLR) in cooperation with the Institute of Aerodynamics.
The code was adopted for computations on massive-parallel supercomputers by us-
ing non-blocking communication via the Message Passing Interface (MPI) [31].
The exchange of three ghostlayers is required for each subdomain. Communication
bandwidth has been enhanced by collocating data to single messages when possible.

The multi-block structured domain is partitioned into the required amount of
structured sub-domains by a weighted tree based cutting technique. Each block is
cut preferentially orthogonal to its largest dimension to minimize the growth of
internal surfaces, while the smaller dimensions are cut with a lower priority. The
positions of the specific cuts are determined with respect to balanced sizes of the
resulting blocks. No additional points are introduced by the partitioning, i.e. ad-
jacent blocks have no common data on the generated cuts. The load is balanced
with respect to the total number of grid points. Each core determines its required
send and receive operations by exchanging requests with all cores in a preprocess-
ing step. Domain partitioning, load balancing, and communication preparation is
performed as needed by the acoustic solver and allows computations independent
of the requested number of cores, only limited by the smallest size allowed for the
sub-domains and the memory available to each core.

Figure 2(a) plots the parallel speedup of the PIANO code on a massive-parallel
system. The speedup has been normalized to 128 cores, since this is the smallest

(a) (b)

Fig. 2 (a) Parallel speedup of the acoustic solver PIANO on IBM BlueGene/P using a 2563 grid
with periodic boundary conditions. The speedup value is normalized to 128 cores. (b) Parallel
efficiency of the acoustic solver PIANO on IBM BlueGene/P using a N × 163 and N × 323 grid
with periodic boundary conditions. N denotes the number of cores being used
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amount of cores that is allocatable on the used machine. For lower amounts of cores
some cores are idle that probably causes higher speedup results. Slight variations
from linear scaling can be observed for 256 cores that is due to the impossibility
to equally partition the domain. At 512 cores a equal partitioning can be found that
results in a linear speedup. At higher numbers of cores inter-rack communication is
required that is subject to higher latency and lower bandwidth. This probably causes
the reduced speedup, though retaining linearity again. Current revisions of the MPI
standard lack methods to optimally map the topology of the computational domain
to the topology of the supercomputer. These methods will be part of future MPI
revisions and will probably increase the performance for general multi-rack com-
putations. Furthermore the volume-to-surface ratio for the sub-domains becomes
really small for large numbers of cores, which causes a high percentage of work
related to communication.

Figure 2(b) depicts the parallel efficiency of the PIANO code for a N ×163 and
N ×323 grid, respectively, where N denotes the number of cores used. The parallel
code is in general slower when compared to the serial one. This is caused by the
need for MPI function calls and additional copy operations to and from the commu-
nication buffers, while the serial code directly puts data to its final memory location.
The parallel efficiency only slightly decreases with a raising number of cores, except
for the largest number of cores tested that requires heavy inter-rack communication.
The 323 case performs better which is caused by its better volume-to-surface ratio,
resulting in a relatively lower portion of communication in the overall workload.
However, this case turned out to be more comparable with the jet noise computations
presented in this work. Therefore a reasonable parallel performance was achieved.
Further improvements in parallel performance could be achieved by asynchronous
numerical operations to be performed while communications takes place and the
usage of shared-memory parallelization where possible.

I/O performance turned out to be the bottleneck of the present hybrid CFD/CAA
approach on massively parallel supercomputers. For the acoustic sources, data in
the order of Terabytes has to be read throughout the entire simulation and results of
the in general large acoustic domain have to be written for analysis and visualiza-
tion purposes. Furthermore the data should not be subject to domain partitioning. In
this case the file layout would depend upon the number of cores used for the com-
putation and the computational domain is scattered into many tiny sub-domains,
which complicates pre- and post-processing. To ease handling of data and guaran-
tee its reusability in the future, usage of a standardized data format is highly rec-
ommended. The most matured format at present time is HDF5 [39], since it offers a
flexible structure supporting large datasets. Furthermore parallel I/O and partial data
access via hyperslabs is supported. PIANO utilizes HDF5’s collective parallel and
partial file access to keep data in its original layout inside the files, while being inde-
pendent of the number of cores involved in the computation. HDF5 showed usable
performance, but, however, it does not scale well to a large number of cores. Fur-
thermore HDF5 lacks support of asynchronous I/O. Of course this could be achieved
by creating distinct I/O threads, though there is no reliable threading support for
Fortran, that is still probably the most widely used programming language in com-
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putational fluid dynamics. The parallel access to unstructured data in HDF5 is also
not yet sufficient. Improvement of these drawbacks would be highly advantageous
for future massive-parallel computational fluid dynamics (CFD) and computational
aeroacoustics (CAA) applications.

3 Results

3.1 Jet Characteristics

The decay of the centerline velocity Uc of variable density jets has been investigated
by many researchers. To evaluate the quality of the present simulations, the findings
were compared to data by Wang et al. [41] and the experiments by Amielh et al. [1].
Details for the round jet cases may be found in Foysi et al. [16]. As an example,
the centerline velocity decay of the round jet LES case, along with data of Wang
et al. [41] and the similarity law proposed by Chen & Rodi [10]

Uc/Uj = 6.3(ρ j/ρco)1/2(2r j/x), (5)

is shown in Fig. 3(a). Although Wang et al. [41] calculated confined jets using
fully developed pipe flow as inlet condition, the agreement is very good. As a
further check, the normalized radial distribution of the streamwise velocity fluc-
tuations at various streamwise locations versus the radial distance are depicted in
Fig. 3(b), for the same simulation. They show fair agreement and a collapse of the
data is observed, when normalized using the centerline velocity and the jet half-
width.

(a) (b)

Fig. 3 (a) Centerline velocity decay for case LES014, compared to data of Wang et al. [41] (CH4)
and the scaling law of Chen & Rodi [10]. (b) Normalized radial distribution of the streamwise
velocity fluctuations at various streamwise locations versus the radial distance, compared to data
of Wang et al. [41]
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(a) (b)

Fig. 4 (a) Frequency power spectrum of the streamwise velocity at various streamwise positions
(curves shifted for better visibility). (b) Roshko number f D2/ν of the global instability mode,
compared with the universal scaling of Hallberg & Strykowski [20] (L/D denotes the length of the
different extension tubes used in the experiments)

In the LES and DNS cases at a density ratio of s = 0.14, high amplitude oscil-
lations were observed, especially for the streamwise velocity and density, leading
to strong gradients which made the simulation unstable. Adding artificial diffusiv-
ity [15] stabilized the calculation. This strong oscillating mode together with the
strong vortex pairing events as well as the occurrence of side jet phenomena points
toward the existence of a global instability in this simulation. Evidence for this is
shown in Fig. 4(a), where the power spectrum of the streamwise velocity at various
streamwise locations is plotted. The power spectrum clearly shows the fundamental
frequency and its sub-harmonics at various streamwise positions (shifted for better
visibility). The peak is visible until a sudden transition to turbulence has occurred
around x/D = 7. The Strouhal number of this oscillating mode StD = f D/Uj was
calculated and compared to various experimental datasets, depicted in Fig. 4(b).
The data has been scaled following the proposal of Hallberg & Strykowski [20],
who showed that the global oscillations depend on the density ratio s, D/δθ0, and
the Reynolds number, as long as compressibility and buoyancy effects are unim-
portant. Going further than Kyle & Sreenivasan [27], Hallberg & Strykowski [20]
non-dimensionalized the frequency by the viscous time scale D2/ν , thus retain-
ing the Reynolds number in the frequency dependence. Therefore, they were able
to collapse all data onto a straight line, when plotting the Roshko number f D2/ν
over Re

√
D/δθ0(1 +

√
s). Excellent agreement is found and the data almost col-

lapses onto a single line. This strong oscillation and intense potential core collapse
indicates a profound influence of the global instability on the radiated sound spec-
trum, since it is well known that there is a close link between turbulence in the core
region and the sound generation [28]. Figure 5 illustrates the strong collapse, by
showing contours of the passive scalar field ξ , which indicates this sudden break-
down.
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Fig. 5 Visualization of the contours of the passive scalar field ξ in simulation DNS014

3.2 Acoustic Results

The LES contains a burst phenomenon that is probably caused by a so-called side
jet. These random events can occur for jets at that low density ratios s. This burst
turned out to dominate the sound being propagated to the far-field. To evaluate the
jet’s regular behavior two different time-frames were chosen according to Fig. 6,
where most of the burst phenomenon is excluded in the LES A case.

Fig. 6 Acoustic perturbation pressure measured by the virtual microphone located at r = 25D, Θ =
40◦, Φ = 0◦. Time-frames used for evaluation of OASPL and PSD for the present LES simulation
are indicated

The overall sound pressure level (OASPL) of the present jet flows is given in
Fig. 7(a). Parts of the burst phenomenon are still included in the LES A time-frame,
which results in higher values of the sound pressure level. The peak radiation is
at the sideline to slightly forward direction, while at very low angles cancellation
effects can be observed resulting in a significant drop of the acoustic power.

The power spectral density (PSD) estimates for the forward, sideline and back-
ward direction are given in Figs. 7(b)–(d). The spectra for the forward angle in
Fig. 7(b) almost collapse over a broadband frequency range. Sound emitted at these
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(a) (b)

(c) (d)

Fig. 7 (a) Overall sound pressure level (OASPL) and (b)–(d) power spectral density (PSD) esti-
mate at azimuthal angles Θ = 40◦,90◦,120◦ for the present DNS and LES cases. A and B denote
different time-frames for the LES according to Fig. 6

angles is dominated by the large structures in the jet’s shear layers, that are well
reproduced by carefully performed LES. The LES B case containing the burst phe-
nomenon has large low-frequency contents that do not reproduce the mean statisti-
cal acoustic behavior of the flow. However, when the shortened time-frame is used
for evaluation (LES A) the emitted acoustical power drops back at low-frequencies,
while the decay at higher frequencies is hardly affected. The peak is somewhat un-
derpredicted when compared to that of the DNS, but the amplitude is probably not
well captured by the short time evaluation. Furthermore the peak is shifted to some-
what higher frequencies due to the thicker shear layers prescribed for the LES, since
thinner layers would not be resolvable. Also the transition to turbulence is different
from that of the DNS.

In the sideline and backward direction in Figs. 7(c) and (d), respectively, the jet
radiates at lower Strouhal numbers when compared to the forward direction. The
lower frequencies for the LES A case are similar to those of the DNS and alike peak
locations can be identified. However, the LES fails to predict the sound pressure
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levels by approximately 10 dB for higher Strouhal numbers, but the slope of the
spectra is still comparable to DNS. This emphasizes the inability of LES to capture
small structures that dominate acoustic emission in those directions. Maybe more
refined subgrid scale (SGS) models could help to improve the situation.

4 Conclusion

Direct numerical and large-eddy simulations of a heavy heated low Mach-number
round jet have been successfully conducted. In a second step the sound generation
of the jet has been predicted using a hybrid approach solving the acoustic perturba-
tion equations. With this approach aeroacoustic predictions of jet noise are possible
in a practicable time frame. Although the computation of acoustic sources from
direct numerical simulations is still restricted to low Reynolds number limits. Nev-
ertheless DNS are indispensable for the improvement and validation of large-eddy
simulations. The LES presented in this paper was capable to capture the main char-
acteristics of the heated jet and the sound field it emits, but research still needs
to focus on improvement of subgrid-scale models with respect to aeroacoustics to
enhance results for the sideline and backward direction, where the emitted sound
power is underpredicted for high Strouhal numbers.

Massively-parallel supercomputers turned out to be very useful for aerodynam-
ical and aeroacoustical research. The used codes had a adequate performance, but
performance tuning is still a difficult task. Mechanisms to map the topology of gen-
eral computational domains to the topology of the supercomputer are required. Par-
allel I/O with scalable performance is one of the major challenges for the future,
but improvements are necessary since large amounts of data have to be processed in
such an aeroacoustic application.
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26. König, D., Koh, S.R., Meinke, M., Schröder, W.: Two-step simulation of slat noise. Computers
and Fluids 39(3), 512–524 (2010)

27. Kyle, D., Sreenivasan, K.: The instability and breakdown of a round jet variable-density jet. J.
Fluid Mech. 249, 619–664 (1993)

28. Lighthill, M.: On sound generated aeroacoustically: Ii. turbulence as a source of sound. Proc.
R. Soc. London Ser. A 222, 1–32 (1954)

29. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct
and large-eddy simulation of compressible viscous flows. Journal of Computational Physics
227(10), 5105–5143 (2008)

30. Martin, M., Piomelli, U., Candler, G.: Subgrid-scale models for compressible large-eddy sim-
ulations. Theoret. Comp. Fluid Dyn. 13, 361–376 (2000)

31. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 2.2.
High Performance Computing Center Stuttgart (HLRS) (2009)

http://dx.doi.org/10.1063/1.3005823
http://link.aip.org/link/?PHF/20/101503/1


136 G. Geiser et al.

32. Mohseni, K., Colonius, T.: Numerical treatment of polar coordinate singularities. J. Comp.
Phys. 157, 787–795 (2000)

33. Popescu, M., Shyy, W., Garbey, M.: Finite volume treatment of dispersion-relation-preserving
and optimized prefactored compact schemes for wave propagation. Journal of Computational
Physics 210(2), 705–729 (2005). DOI 10.1016/j.jcp.2005.05.011

34. Ricou, F., Spalding, D.: Measurements of entrainment by axisymmetrical turbulent jets. J.
Fluid Mech. 11, 21 (1961)

35. Ruffin, E., Schiestel, R., Anselmet, F., Amielh, M., Fulachier, L.: Investigation of characteris-
tic scales in variable density turbulent jets using a second-order model. Physics of Fluids 6(8),
2785–2799 (1994). DOI 10.1063/1.868167. URL http://link.aip.org/link/?PHF/6/2785/1

36. Stanley, S., Sarkar, S.: Influence of Nozzle Conditions and Discrete Forcing on Turbulent
Planar Jets. AIAA 38, 1615–1623 (2000)

37. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for com-
putational acoustics. J. Comput. Phys. 107, 262–281 (1993)

38. Tam, C.K.W., Webb, J.C., Dong, Z.: A study of the short wave components in computational
acoustics. Journal of Computational Acoustics 1, 1–30 (1993)

39. The HDF5 Group: Hdf5 reference manual release 1.8.3. Tech. rep. (2009). URL http://www.
hdfgroup.org/HDF5/

40. Viswanathan, K.: Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82 (2004)
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Numerical Simulation of Sibilant [s] Using
the Real Geometry of a Human Vocal Tract

Kazunori Nozaki

Abstract Speech is the one of the oral function due to fluid dynamics. The sibilant
[s], one of dental fricative voice, is assumed to be generated from turbulence around
the frontal teeth. Large Eddy Simulation with taking the real morphological vocal
tract into account was demonstrated. The mean flow of the sibilant [s] separates
from the tip of the upper anterior teeth and induces half plane jet along the lower
anterior teeth. ΔP on surface of the anterior teeth is assumed to be somehow linked
to the location of the high value Powell sound source.

1 Introduction

In speech science, there are interdisciplinary approaches to understand the physical
mechanisms of sound production. There are two significant acoustic properties of
the human voice, resonance and sound source. Human voices are articulated in the
airway that has unique characteristics in the resonance given from the human vocal
tract that consists of vocal cords, a larynx, pharynges, a nasal cavity, an oral cavity,
teeth and lips (Fig. 1). The articulation physically perform the change of the ge-
ometry configuration of the airway in accordance with phonemes in syllables. The
specific resonance and harmonics are generated by the specific geometry configu-
ration in the human vocal tract. The vocal cords, an oral cavity, teeth and lips can
generate sound. The place or region where generates sound is called “sound source”.
The sound source gives the energy to the human vocal tract. Fant (1970) proposed
the source-filter theory that enables to deal with resonance and sound source sepa-
rately [1]. The acoustical analyses has been applied to examine the speech disorders.
The signal processing has been mostly applied to detect the each phoneme and also
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quantify the change of the voice. This article focus on the turbulence sound which
is the one of the consonant articulated in the oral cavity.

1.1 Signal Processing for Consonants

The quantification of the turbulence sound has been performed several purposes
[2–6]. An ensemble averaging discrete Fourier transform, spectral moments or frac-
tal dimensions analyses are thereby mostly utilized [2–5]. Those methods can con-
sider the unsteady signal which assumed to be generated from turbulence [6]. The
characteristics of sound source, however, are not clear, for example, source loca-
tions, strength and the characteristics frequency.

1.2 Sound Induced Flow

There is the flow induces sound, for example, jet, explosion, duct, turbine, compres-
sor, propeller sound, aeolian, edge, pipe, cavity tone, sonic boom, etc. The basic
model and mechanism of the sound production has been studied since Lighthill
(1952) propose Lighthill stress tensor with the wave equation in the right hand that
is elicited by the compressible Navier Stokes equation without any abbreviation
[7–11]. The mathematical model seems to enable scientists and dentists to predict
the speech sound after some alterations of geometries in vocal tracts. The mathe-
matical model still requires some approximations to apply to solve sound generated
by the flow in complicated geometries.

1.3 Sibiant [s] in Dental Treatments

There are growing expectations of researching and developing fundamental treat-
ment methods of speech disorders, which are directly linked to Quality Of Life
(QOL). In particular, the dental fricative called sibilant [s], has different characteris-
tics of its sound production mechanism with the one of vowels. The sound source of
the sibilant [s] is downstream obstacle in the oral cavity, where turbulence is thought
to be dominant, although the vowel’s sound source is the vibration of vocal cords by
airflow pressure [12, 13]. That is to say, frontal teeth are thought to be the obstacles
against the laminar or turbulence flow so far. Modification of the features of oral
cavity is often occurred on changing spatial positioning of jaws on the purpose of
maxillary orthodontic therapies [14], prosthetic treatments [15] and inserting sports
mouth guards [16]. These treatments may affect not only the characteristics of the
resonance, but also the location and magnitude of sound sources of the sibilant [s].
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1.4 Computational Analyses for Sibilant [s]

The sibilant [s] can be analyzed by considering turbulence and vortex sound, both
of which are studied in terms of numerical analyses such as computational fluid
dynamics (CFD) and computational aero acoustics (CAA) [17–19]. Both CFD and
CAA require a computational mesh that is built by a projection of the morphological
shape of the oral cavity. The anterior teeth shape in particular has a prominent effect
on the sound generation of the sibilant /s/, and the shapes of these teeth thus need to
be taken as precisely as possible to perform CFD and CAA.

1.5 Complicated Morphology of Vocal Tracts

It is necessary to obtain geometries of both soft tissues, such as lips chests, a tongue,
etc, and hard tissues, teeth simultaneously. The method of taking those geometries
has been taking cross-sectional images of the oral cavity during utterance of the
sibilant [s]. As this method is restricted by the total acquisition time during the
utterance of it, it is not appropriate choice to use a normal Computed Tomography
(CT). The normal CT, moreover, can not take the narrow (1-mm) space between
upper and lower teeth is formed during the sibilant [s] is pronounced [20]. So that,
three dimensional geometry of the narrow space needs to be measured by some
specific way. It is also difficult to generate the computational mesh of the oral cavity,
especially, the narrow space. The obstacle sound source, the sibilant [s], is explained
that the impact of turbulence on the obstacle’s surface generates sound [21–24]. It is
natural to think that the distribution of the source would be changed, if the shape of
teeth surface was altered, because the sound source is distributed around the surface
of teeth. It is, moreover, well known that the sound generated from the interaction
between the surface and the vortexes is louder than the one from the interaction
among vortexes themselves in the flow field.

1.6 LES and Aeroacoustics

Compressible Navier-Stokes equations using Direct Navier-Stokes (DNS) method
certainly can predict broadband noise, however, it is clear that impractical num-
ber of mesh and extremely fine mesh are necessary. More practical and promis-
ing approach for aeroacoustics is to apply separation methods. The separation
method has been used because of the great disparity of levels and length scales.
With this method, the near-field flow field is computed to get velocity fluctuations
that are used to compute the sound sources for a separate computation of the far-
field pressure fluctuations [25]. CFD methods have faced many difficulties to deal
with the vortex unready change. As acoustical problems are highly time dependent,
Reynolds-averaged (time-averaged) Navier-Stokes (RANS) equations are not ade-
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quate for the time series analysis. Large Eddy Simulation (LES) method is, contrary,
suitable to deal with these problems. LES method uses Sub-Grid Scale (SGS) model
to consider vortexes affects for smaller grids than originals. As the LES uses time-
independent and space averaged model, it is suitable to analyze time depending
vortexes. However, the accuracy of the LES depends on the type of mesh, such as
hexahedron, tetrahedrite, prism, etc. Especially, for the zones in turbulence bound-
ary layer, the mesh size in a normal direction on the boundary surface needs to be
as small as possible. The quality of boundary mesh affects the result of the LES, be-
cause the sibilant [s] is thought to be generated from frication on the wall. Lighthill
(1952) showed the far field sound propagation could be computed. His theory was
derived by transformation of compressible Navier-Stokes equation to the wave equa-
tion in the left term and sound sources term in the right [7]. The aim of this study
is to explore the sound production mechanisms of the sibilant [s] in case of the real
geometry of a human oral cavity by performing CFD and CAA.

2 Materials and Methods

In order to acquire the three dimensional geometry of the narrow space around the
anterior teeth within the duration of utterance as long as possible, Cone Beam type
of CT scanner is adequate. The oral cavity shape of the sibilant [s], therefore, was

Fig. 1 The orthogonal slice image of the human upper airway: the sibilant is articulated the region
of the oral cavity including teeth and lips
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obtained by using Cone Beam CT (CBCT) scanner (Hitach medico Corp.) that can
take 512 slices by 512× 512 pixels within 18 seconds. Those slices’ images form
a volume by the volume rendering. The size of each volume is 0.1 mm although
the normal medical use CT only take the volume by 0.3 mm. The oral cavity only
could be extracted with two threshold CT values. Marching Cubes method could
construct surfaces of the oral cavity by using RealIntage (KGT Corp.). The sur-
face was converted from Stereolithography Interface Format (STL) format to Non-
Uniform Rational B-Spline (NURBS) format. Computational mesh was constructed
with a multi block of hexahedral elements by using Gridgen (Pointwise Corp.). The
mesh was 2.64 million mesh (2.64 M) at first. It is important to examine the mesh
size effects that is required to determine the mesh size is enough small to calculate
vortexes. Each element, so that, was divided into n elements equally by using our
custom program, where n means integer, such as 1,2,3 . . . ,n.

It was considered that LES consumes a large amount of computational resources.
LES is the one of the modeling method for turbulence. FrontFlow Blue (C. Kato,
et al.) was chosen to perform LES because the source code is freely opened and
not only prepared for parallel computation by Message Passing Interface (MPI), but
also customized for vector super computers. FFB was performed in SX8-R (NEC
Corp.). FFB has both 2nd order accuracy of time and scale. In our study, the dynamic
smagorinsky model (DSM) was used as Sub-Grid Scale (SGS), because DSM can
calculate the SGS stress even on the wall by using the smagorinsky model param-
eter obtained by the average velocity of Grid Scale (GS). An explicit method was
performed for time-marching. The time delta was 1.0×10−6. In Flow condition was
set 6.5 m/s at Ymax and Out Flow conditions were set at Ymin, Zmax, Zmin, Xmax
and Xmin (Fig. 2). The Reynolds number was set to 6708 this time.

Fig. 2 Boundary condition of the sibilant [s] LES simulation: Uniform velocity of 6.4 m/s (Inlet),
Traction free (Outlet) and No slip (Wall)
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3 Result

The mesh modeling procedure was shown in Fig. 3. It was found to be possible to get
the whole of the vocal tract within the persistent utterance time. It was not possible
to acquire the volume of the vocal tract at the single CT value (Hounsfield value) of
air because CBCT’s strength of X-ray is weaker than the conventional one, though
better for the risk of X-ray exposures. Two different CT values were decided to be
considered as the air. NURBS surface was created by using the STL data obtained
by the vocal tract volume data. Surface meshes were firstly created and then the
volume mesh was constructed. This mesh consisted of 2.64 million elements. The
elements of 2.64 million mesh (2.64 M) were divided to be 8 times and 27 times
larger mesh size.

Fig. 3 The procedure to obtain the NURBS surface to construct the hexahedral mesh: Image pic-
ture of CBCT, the mid-sagittal image, the segmented volume and the NURBS surface of the sub-
ject’s vocal tract

The result of LES analyses by FrontFlow/Blue was shown in Fig. 4. The averaged
velocity magnitude of 4,000 time steps in 4 ms in both cases of the coarse and fine
meshes in Fig. 5 (up). In both cases, the mean flow separates from the tip of the
upper anterior teeth and induces half plane jet along the lower anterior teeth. The
root mean square (rms) values in the case the fine mesh has different characteristics
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Fig. 4 Three levels of the human vocal tract’s mesh: Coarse mesh (2.64 M), Fine mesh (21.17 M),
Very fine mesh (72.15 M)

on the jet from the coarse mesh. The level of the rms values in the fine mesh are
much higher than the coarse mesh. As the rms values is linked to the turbulence
energy in LES analyses, the fine mesh could calculate the ρuv and νSGS, where ρ is
air density, uv is Reynolds stress and νSGS is dynamic coefficient of viscosity with
SGS filtered. The very fine mesh (71.15 M) result in Fig. 6 backed up the accuracy
if the LES SGS filtered result.

The sound source that is called Powell sound source, ρ∇ ·(ω×u). was visualized
in Fig. 7. The contour on the anterior teeth indicates �P which means the magnitude
of pressure change on the surface. Lighthill (1963) and Howe (1998) mentioned
that �P should not be zero on the surface in vorticity production. The anterior
teeth regarded as sound source requires nonzero �P area on its surface. The iso-
surface shows the location of high value Powell sound sources. The contour of the
iso-surfaces represents the magnitude of vorticity. It was cleared that diffusion of
vortexes is relatively stronger than vorticity, because the value of vorticity is not
significantly high on the surface of the Powell sound sources. �P on surface of the
anterior teeth is assumed to be somehow linked to the location of the high value
Powell sound source.

4 Discussion

The complicated vocal tract has been targeted for the numerical simulation of the
sibilant [s] in this article. The reliability and the other approaches should be dis-
cussed to have any conclusion. Sound propagation, reflection and resonance in the
cavity has not considered in this article. The integrated simulation is required to take
acoustics into account. The key point to achieve the integrated simulation is hereby
the total amount of storage size and also high speed network connecting the storage
farm to computational farm.
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Fig. 5 The result of the averaged (up) and the root mean square (low) values of flow velocity
magnitude of the human vocal tract in case of the coarse mesh (2.64 M) and the fine mesh (21.17 M)

4.1 Validity of Real Morphological Geometry

The numerical simulation with taking the real morphological vocal tract into ac-
count was demonstrated in this article. This should be considered as one of possible
approaches to study the sound production of the sibilant [s]. This numerical simula-
tion of the sibilant [s], however, produce the useful indication supported by the real
geometry taken from the human vocal tract. The results such as the averaged flow,
rms and the location of sound sources, at least, showed the difference phenomena
from the result by using some simplified model of the sibilant [s] [19]. The sim-
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Fig. 6 The result of the averaged flow velocity magnitude of the human vocal tract in the very fine
mesh (71.15 M)

plified model has many positive reason to be taken as a first approach to study the
sibilant [s]. It is, for example, easy to understand the relationships and interactions
between flow and geometries, moreover, to compare the previous reports that some-
times suggest many important criteria. It is nevertheless necessary to explain how
or why the simplified geometry represent the human vocal tract. The only solution
of this question is to perform both of geometries complementary in the future.

On the other hand, the accuracy of representing the real morphological features in
this article is not perfect currently, because it requires tremendously efforts to built
the multi-block hexahedral mesh of the complicated vocal tract including teeth. The
tolerance of the hexahedral mesh is not best to apply the complicated geometry
normally, however, the ability of keeping the accuracy near walls is one of the best.
The hexahedral mesh was therefore chosen in this article.

4.2 Aeroacoustic Analyses

The theory of aeroacoustics has been established since 1960s–1970s by Lighthill
(1952), Powell (1964), Howe (1998), etc. Howe, et al. (2005) introduce the math-
ematical solution of the acoustics of the sibilant [s] for the first time [26]. They
explained the sound production mechanism by using compact green function in
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Fig. 7 Powell sound source in the fine mesh (21.17 M): The Fluid force on the surface may gener-
ate sound waves subsequently to Powell sound source wave

two dimensional simplified constriction between teeth. Shadle (1985, 1990) showed
the experimental setup to produce the sibilant [s] sound which has been utilized as
“benchmark” setup [22, 24]. Their significant important studies should support the
dental treatments to predict or answer the problem of the production of the sibi-
lant [s]. The simplified geometry is, however, not best choice to answer the request
because the shape of the teeth or the vocal cavity is not well linked to the real mor-
phology. Thus, the complicated setup, such as this article’s, is needed, at least for
the prostheses, etc., although the high performance computing (HPC) is necessary.
In order to produce the predictive sibilant [s] sound, we need to perform the sepa-
rated solution of aeroacoustical simulation that has two phase, one is CFD (LES) and
next is CAA. The lighthill tensor is required by LES in time course, and then used in
Helmholtz equation solver. The essential boundary condition should be impedance
wall and non-reflective condition.

4.3 Requirements for High Performance Computing

The computation scheme of LES request the flat topology among CPUs to the com-
putation environments. The incompressible Navier Stokes requires to solve Poisson
equation to obtain the value of pressure in LES. Most of computation time of LES
is consumed by Poisson solver. Poisson equation is normally solved numerically by
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solving simultaneous equations. The machines that is faster to solve the simultane-
ous equations is therefor used.

The another aspect of HPC is how to accelerate the integrated simulation such as
CFD and CAA. The total performance of the computational environment is signifi-
cant in this case because the file transfer time, usability of large scale storages and
computational power balance effect the total computation time.

5 Conclusion

The numerical simulation with taking the real morphological vocal tract into account
was demonstrated. The mean flow of the sibilant [s] separates from the tip of the
upper anterior teeth and induces half plane jet along the lower anterior teeth. �P on
surface of the anterior teeth is assumed to be somehow linked to the location of the
high value Powell sound source.
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Identification of Anisotropic Elastic Material
Properties by Direct Mechanical Simulations:
Estimation of Process Chain Resource
Requirements

Ralf Schneider

Abstract In this work the effort necessary, to derive a linear elastic, inhomoge-
neous, anisotropic material model for cancellous bone from micro computer to-
mographic data via direct mechanical simulations, is analyzed. First a short intro-
duction to the background of biomechanical simulations of bone-implant-systems
is given along with some theoretical background about the direct mechanics ap-
proach. The implementations of the single parts of the simulation process chain are
presented and analyzed with respect to their resource requirements in terms of CPU
time and amount of I/O-data per core and second. As the result of this work the data
from the analysis of the single implementations are collected and from test cases,
the data were derived from, they are extrapolated to an application of the technique
to a complete human femur.

1 Introduction

The global aim of the biomechanical research done at HLRS is the support of di-
agnostic decisions with respect to type and positioning of implants, used for certain
pathologies. In addition the healing process as well as the possibility of mechani-
cal complications should be predicted. The pathologies currently analyzed at HLRS
are abdominal aortic aneurysms and the postoperative behavior of intramedullary
implants as they are used for the fixation of fractured bones.

For static Finite-Element simulations of bone implant-systems three prerequisites
are essential. (1) The bone geometry, (2) the forces acting on the bone structures
which includes body—as well as muscle forces and (3) a detailed modelling of the
inhomogeneous, anisotropic material distribution of the bony structures.
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Since clinical imaging data, as recorded by Computer Tomography (CT) or Mag-
net Resonance Imaging (MRI), are the only data which are available from living
bones all three prerequisites have o be fulfilled by the detailed analysis of these data.

To separate the micro structures of cancellous bone, which have a diameter of
≈ 0.1 mm an isotropic resolution of ≈ 0.02 mm would be necessary. Since this
resolution is approximately 20 times higher than the one which can be achieved with
clinical dual source CT scanners an additional modelling step has to be introduced
to enable mechanical simulations on the resolution level of clinical CTs.

The chosen approach to this additional modelling step is, to scan cancellous bone
specimens with a technical micro CT scanner which is able to separate the trabecular
micro structures and with a clinical CT scanners. Then simulate virtually cut cubes,
so called representative volume elements (RVEs), with the directly modelled micro
structures under compression and shear loads and derive the material constants of
the RVEs on the resolution level of clinical CTs with the standard mechanics ap-
proach (see Sect. 2.1). Afterwards a matching of the clinical CT density field and
the field of the calculated material constants can be done with multivariate analysis
methods, such as cluster analysis for example, to find a transfer function which en-
ables the calculation of anisotropic, elastic material constants directly from clinical
CT data. The development cycle for the chosen approach is shown in Fig. 1.

Fig. 1 Development cycle of chosen approach

2 Material and Methods

In this section the subject matter to this study, a process chain for the derivation of an
anisotropic, linear-elastic material model for cancellous bone based on clinical CT-
data is described. For the better understanding of the theoretical background a short
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introduction to the direct mechanics approach is given, followed by the description
of the single chain links, coupled together in the complete process chain.

2.1 Theoretical Background—Standard Mechanics Approach

With the standard mechanics approach a procedure is described which is often used
as the starting point to the application of homogenization theory [1]. Aim of the
approach is the determination of averaged elastic properties of micro structured ma-
terials on the continuum level. One perquisite which is essential to this approach is,
that the material properties of the micro structures in the analyzed RVE are known.
In this study the material of the bone micro structures is considered to be homoge-
neous with isotropic behavior according to [2].

To calculate the averaged macroscopic stress and strain acting over a RVE from
the local microscopic strains and stresses in the micro structures the integral aver-
ages are used.

ε i j =
1

|VRV E |

∫
VRV E

εi j dVRV E (1)

σ i j =
1

|VRV E |

∫
VRV E

σi j dVRV E (2)

With: ε i j and σ i j the mean strain and stress tensors over the RVE, εi j and σi j the
local strain and stress tensors and VRV E the volume of the RVE.

To connect the averaged macroscopic strain, applied to the RVE, with the result-
ing averaged macroscopic stress one defines

σ i j = Ci jklε kl (3)

with Ci jkl the so called effective stiffness of the RVE which is a tensor of rank four.
Furthermore, to connect the local microscopic strains with the averaged macro-

scopic strain, the local structure tensor Mi jkl , which is also a tensor of rank four, is
defined by

εi j = Mi jkl ε kl (4)

The development of the correlation between the elastic properties of the microscopic
structures to the averaged elastic properties of the RVE is started from the general-
ized Hooke’s law on the microscopic level

σi j = Ci jkl ε kl (5)

Integrating both sides of Eq. 5 over the RVE yields

1
|VRV E |

∫
VRV E

σi j dVRV E =
1

|VRV E |

∫
VRV E

Ci jkl ε kl dVRV E (6)
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Substituting the left hand side with Eq. 2 and ε kl with Eq. 4 we get

σ i j =
1

|VRV E |

∫
VRVE

Ci jmn Mmn
kl dVRV E ε kl (7)

Comparing Eq. 7 to Eq. 3 one recognizes the relation

Ci jkl =
1

|VRV E |

∫
VRV E

Ci jmn Mmn
kl dVRV E (8)

from which the effective stiffness of the RVE Ci jkl can be calculated, if the local
elastic properties and the function of the local structure tensor of the microscopic
structure are known.

If the microscopic structure of the bone material is modelled directly, the function
of the local structure tensor can be calculated via Eq. 4 from the local strain field in
the microscopic structure which can be obtained by Finite-Element simulations.

For the analysis done in this study a human femoral head, removed during the
insertion of a total hip endoprosthesis, was scanned with a micro CT at the DLR
Stuttgart—Intitut für Bauweisen und Konstruktionsforschung with a isotropic voxel
size of 0.018 mm edge length. From this scan accurate models of the bone micro
structure, like the one shown in Fig. 2, are obtained.

Fig. 2 Tabecular structures of cancellous bone modelled from micro CT

If the technique described above is executed over a complete human bone, a
transfer function can be found which connects clinical CT data to the field of the
effective stiffness tensors of a certain RVE size.
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So (8) becomes
Ci jkl = C(x) (9)

with x = [x y z] the macroscopic coordinates which describe the RVE centres at the
considered RVE size.

2.2 Process Chain Description

In Fig. 3 an overview of the general approach with all necessary steps is given. The
process chain which is analyzed for resource requirements in this study is shown
on the left. It starts with the geometry setup and ends with the minimization of the
shear-coupling coefficients so it can basically subdivided into four separate chain
links which are described in the following.

Fig. 3 Process chain description: General approach

Geometry Setup

For the geometry setup two algorithms are implemented. The first one is a voxel
based technique which simply transforms voxels from the micro-CT data to FEs ac-
cording to a greyscale threshold. To avoid unconnected regions in the model after the
meshing a check has to be performed which analyzes the meshed regions for con-
nection to the RVE boundaries. The advantages of this algorithm are its robustness
and speed. Its disadvantage is that the surfaces of the trabecular micro structures are
“bricked”.

The second implementation for the geometry setup starts with an advancing
fronts algorithm based on [3]. The algorithm is modified in a way that it can directly
triangulate isosurfaces in a scalar field such as a micro-CT data field. Its advantage
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is the generation of a perfectly smooth surface mesh with triangles of high enough
quality to generate a tetrahedral volume mesh, suitable for FE simulations, directly
from the surface mesh. The disadvantage of the algorithm is an approximately 10
times higher CPU time an a less robustness compared to the voxel mesher.

The decision which algorithm to use for the geometry setup isn’t final yet since
the analysis whether it is necessary to use the more accurate Advancing Fronts or
the fast and resource preserving voxel mesher is not finalized. In Sect. 3 the values
for the voxel based mesher are given since its resource measurements are more ac-
curate at the moment.

Static Simulations

To determine the field of the local structure tensor for a RVE six load case simula-
tions have to be done. Since the aim is to determine linear-elastic material data for
the solution of the load cases only one linear step is necessary per load case. The
average model size is estimated to 300.000 degrees of freedom (DOF).

For the solution of the FE problems, the commercial FE-solver ABAQUS1 is
used. For the model setup it allows to define the boundary conditions and solver
parameters independently from the geometry which results in 1 Geometry input
file with ≈ 18 MB and 6 Load-case description files with ≈ 25 kB each. All static
simulations for one RVE produce 18 relevant Result files with an approximate size
of 720 MB within a total wall clock time between ≈ 250 sec and ≈ 280 sec.

Calculations of the Effective Stiffness

Due to the usage of the FE-solver ABAQUS, the calculation of the effective stiffness
of a RVE consists of two major steps. First the strain fields of the six load case
simulations have to be extracted from the binary ABAQUS result files. After that the
local structure tensor and the volume of each element can be calculated. Together
with the isotropic material behavior of the micro structures the field of the local
structure tensor can then be integrated according to Eq. 8 to the effective stiffness
of the RVE.

The extraction of the strain fields from the result files is referred to as a separate
step because this part of the effective stiffness calculation takes about 270 sec wall
clock time and mainly depends on the used FE-solver while the actual calculation
of the local structure tensors and the integration of the effective stiffness take only
4 sec of wall clock time. In addition the results of the data transformation introduce
24 new files to the process which cover ≈ 360 MB of storage size.

Transformation of the Effective Stiffness

After the last step the effective stiffness tensors of the RVEs are represented in the
global coordinate system where they are dense in general. If one wants to deter-
mine material symmetries, the representation coordinate system has to be rotated in

1 ABAQUS is a trademark of SIMULIA, Rising Sun Mills, 166 Valley Street, Providence, RI
02909-2499
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order to find the direction where the normal to shear and shear to shear coupling
coefficients are of minimum value.

This step is added to the process chain because in the literature cancellous bone
is said to be orthotropic [4, 5] but studies done with the presented process chain
on a primed cancellous bone sample showed that the degree of material symmetry
depends strongly on the chosen RVE size [6]. Due to this findings, one wants to
determine in the analysis of a complete femur how strong the degree of material
symmetry varies throughout the complete bone.

The currently used algorithm is implemented in Co-array Fortran as a general
tensor rotation with a full coverage of the 3 dimensional [α,ϑ ,φ ] parameter space
with the target function

MS (α,ϑ ,φ) =

[
3

∑
i=1

6

∑
j=4

E2
i j

]
+E2

45 +E2
46 +E2

56 (10)

where Ei j are the components of C expressed in terms of the well known 6× 6
matrix formulation.

Although the implemented technique has the advantage that the global minimum
of the target function can always be found, it was shown during this study, that
it is not feasible to apply the algorithm to the number of RVEs resulting for ex-
ample from the analysis of a complete human femur. The problem is the walltime
which is 150 sec for the current implementation running on 128 Cores of the Cray
XT5m installed at HLRS. Since it is assumed that the algorithm can be accelerated
by implementing a special version of a rank four tensor rotation as well as using
an optimization strategy rather than a complete parameter space coverage it is not
considered in the results section.

3 Results

In this section first the measurements done on the single process chain parts for a
single RVE are presented along with an estimation of the number of RVEs resulting
from the analysis of all regions of interest in a human femur. After that the accu-
mulation of File number, I/O size and Single Core Walltime of the process for the
analysis of the estimated number of RVEs is presented followed by resource esti-
mations for the systems currently installed at HLRS.

3.1 Single Sub-Domain

From Table 1 it can be seen, that all process parts together generate approxi-
mately 2.75 GB of File I/O during 562 sec runtime. This results in an I/O rate
of 4.94 MB/sec which has to handled by one core since all process parts are scalar
implementations.
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Since the data transformation part after the FE simulations generates redundant
data, in Sect. 3.3 only the output I/O size of the Geometry discretization, the result
transformation and the calculation of C is considered in the calculation of the needed
storage size.

Table 1 File number, I/O size and walltime per process part

Process part Input I/O Output I/O Walltime [sec]
Files Size [MB] Files Size [MB]

Geometry discretisation 1 0.95 7 18.15 4.1
FE-Simulations 7 18.15 6 940.0 264.0
Result Transformation 6 940.0 24 430.0 290.0
Calculation of C 24 430.0 1 0.3 ·10−3 4

Sum 38 1389.1 38 1388.15 562.1

3.2 Domain Count

The epiphyseal volume of an average human femur, as shown in Fig. 4, is
≈ 321110 mm3. The number of resulting RVEs form this volume for the RVE edge
lengths 1.2 mm and 1.6 mm is shown in Table 2.

The two given RVE sizes were chosen according to the resolution of currently
available clinical CT scanners which reach a minimum isotropic voxel size of ap-
proximately 0.4 mm. Since the application of the presented process chain generates
an anisotropic elastic material model, 21 material constants have to be determined
for each RVE. So the chosen RVE edge lengths of 1.2 mm and 1.6 mm will give 27
or 64 correlation parameters respectively to map the 21 unknowns to.

Table 2 Domain count in dependence of RVE edge length

1.2 mm 1.6 mm

RVE volume mm3 1.728 4.096
Epiphyseal Volume mm3 321110 321110

RVE Number 185828 78396

3.3 Accumulation over Process

In Table 3 the accumulation of the resource requirements over the complete process
chain for one RVE, for the number of RVEs resulting from a RVE edge length of
1.2 mm and for the number of RVEs resulting from a RVE edge length of 1.6 mm
are shown.
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Fig. 4 Regions of interest in a human femur

Table 3 File number, I/O size and walltime—accumulated over process—per core

Domain No. 1 185828 78396

File No. 32 5946496 2508672
I/O [TB] 0.0027 492 208
Storage [TB] 0.0005 93 39
Walltime [s] 562 104435336 44058552
Walltime [h] 0.16 20910 12238

From Table 3 it can be seen, that the process will generate more than an usual
load to a file system in terms of file number and storage space. The extrapolation
shows on the one hand, that it is necessary to generate a directory tree system to
avoid performance penalties due to long file system query times which will come
up when a large number of files reside within one directory.

On the other hand it has to be carefully looked at the Storage size of the complete
process which exceeds in the case of 1.2 mm RVE edge length the size of a scratch
file system which is installed on current medium sized PC-clusters e.g. the HLRS
NEC-Nehalem Cluster.

To analyze the resulting walltime and effects when the process chain is executed
for many RVEs in parallel the accumulated values from Table 3 are shown in Table 4
for the cases when one of the two HLRS PC-clusters or the Cray XT5m installed at
HLRS are completely used to determine anisotropic, elastic material data for RVEs
in parallel.

It can be seen form Table 4 that the I/O rate of one core per second neither
depends on the number of RVEs nor on the number of cores, since the application
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Table 4 I/O and walltime—accumulated over process—parallel execution

System XT5m BW-Grid Nehalem
Cores 896 3984 5600

Domain No. 185828 78396 185828 78396 185828 78396
Walltime [h] 32.38 13.66 7.28 3.07 5.18 2.19

I/O / Core [MB/s] 4.94 4.94 4.94
I/O [MB/s] 4428 19687 27673

of the process chain is a trivial parallel task and with a value of 4.94 MB/s the I/O
rate isn’t a problem even if it is accumulated for one of the nowadays used quad
core nodes.

If we now take a look at the last row of Table 4 the real problem of the proposed
implementation can be seen. I/O rates between 4428 MB/s and 27673 MB/s are
way beyond the I/O rates for example a Lustre file system connected via 4x DDR
InfiniBand, like the one installed at the HLRS NEC-Nehalem cluster, can make
available.

To overcome this problem two solutions can be proposed. One would be to reduce
the average I/O load to a reasonable value of e.g. 1500 MB/s which can be made
available by nowadays file systems. This can be achieved by reducing the number
of used CPU cores to ≈ 300. The other way would be to replace the file system
access by an I/O forwarding library like IOFWD2 and in that way connect the single
process parts without having to write to disk at all.

4 Summary & Conclusions

A simulation process chain was presented, which enables the calculation of elastic
material constants from micro-CT data. The resource requirements of the four basic
parts of the process chain, geometry setup, static simulations, calculations of the ef-
fective stiffness and transformation of the effective stiffness were analyzed in terms
of CPU time and I/O bandwidth requirements.

The accumulation of the single process parts over the complete process chain and
an actual region of interest, like the epiphyseal regions of a human femur, showed
that, from the view of walltime requirements, it should be possible to determine
the field of anisotropic elastic constants of the region of interest in a human femur
within one day.

To reduce the walltime as well as the I/O load the replacement of the commercial
FE-Package ABAQUS by a FE-Package with accessible source code is currently
under development to make the FE result transformation obsolete. For a further
reduction of the file system I/O load the possibilities of the I/O forwarding library
IOFWD are currently analyzed.

2 https://gforge.hlrs.de/projects/sxlinux/

https://gforge.hlrs.de/projects/sxlinux/
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Downscaling Climate Simulations for Use
in Hydrological Modeling of Medium-Sized
River Catchments

P. Berg, H.-J. Panitz, G. Schädler, H. Feldmann, Ch. Kottmeier

Abstract To assess a possible future change in flood and drought risks for medium
and small-scale river catchments, one needs to have data of a higher spatial and tem-
poral resolution than what is provided by the global climate models. The COSMO-
CLM regional climate model has to this purpose been used to downscale a set of
global climate simulations to a 7 km horizontal resolution. In order to assess some
of the uncertainties involved in near future scenario simulations, several different
global simulations are downscaled to produce an ensemble of high resolution data.
This will then be used as input to hydrological catchment models to assess future
changes in flood risk for three catchments in Germany, within the CEDIM-project
“Flood hazard in a changing climate” (Hochwassergefahr durch Klimawandel).

1 Introduction

A set of high resolution climate simulations are carried out on the HLRS facilities
in Stuttgart. The main research question to answer is whether there is an elevated
risk for floods in medium and small-scale river catchments in Germany. The simu-
lations are performed as a part of the CEDIM-project “Flood hazard in a changing
climate” (Hochwassergefahr durch Klimawandel), with a focus on the near future
(2021–2050). Three representative catchments have been chosen and a set of hydro-
logical simulations, using different models, will be performed for each of them. The
catchments are: Ruhr in the west, Mulde in the east and Ammer in the south. Such
small catchments require high quality input data, which must have both spatial and
temporal characteristics close to observations.
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The COSMO/CLM (CCLM) [1] is used to downscale general circulation model
(GCM) simulations. Several GCM simulations are being downscaled in order to as-
sess some of the uncertainties involved in future climate change. One large source
of uncertainty is the natural variability, which is comparable to the climate change
signal for the next few decades. This uncertainty is addressed by performing down-
scaling simulations of initial condition perturbed GCM simulations. Here, three dif-
ferent realizations of the ECHAM5-OM GCM [2–7], each initialized in a slightly
different natural mode, are used. Another uncertainty arises due to the GCM physics,
e.g. details of how cloud processes are simulated. To address this we will perform
additional simulations with other GCMs.

In this article, the CCLM model and the downscaling procedure are described
in Sect. 2, the performance on the HLRS system is reviewed in Sect. 3, and some
results from the validation simulations are presented in Sect. 4. We end with a short
discussion in Sect. 5.

2 The CCLM Model

As described in [8] and [9], dynamical downscaling is used to transfer large scale
information to the regional scale. Basically, this method is a nesting of the regional
climate model (RCM) into large-scale global circulation model (GCM) projections
or reanalyzes. This means that the model is initialized once with a state derived
from the large scale information and that this information is updated at the lateral
boundaries of the regional model domain at regular time intervals.

To validate the model, we perform downscaling simulations with the ERA40
reanalysis data [10]. This data set comes from a global simulation where also obser-
vations are assimilated, and it is therefore close to the observations while also filling
in the gaps between the observations. The product covers the period 1957–2002 and
is a good representation of climate for that period. The downscaling performed with
the CCLM can therefore be directly compared to observational records.

For the CEDIM project, the CCLM model version 4.8 is used and the forcing
GCM is ECHAM5, which itself, in the control simulations (1971–2000), is forced
by anthropogenic emissions [2–4]. The future scenario (2021–2050) uses the A1B
SRES [11] scenario [5–7]. Three simulations with different initial conditions are
performed for each of the control and future scenario periods.

The horizontal grid sizes of the global data sets are larger than 100 km (about
125 km for ERA40 and 150 km for ECHAM5). To avoid a too large step in the
grid sizes, a double nesting technique is used for the dynamical downscaling. In a
first step the large scale data are used to drive a CCLM simulation with a horizontal
grid size of 0.44 deg (about 50 km at our latitudes). The chosen model domain
for this first nest (Nest 1) is shown in Fig. 1 (left). In the West-East direction the
domain consists of 118 grid-points, in the South-North direction of 110 grid-points.
In the second step the results of this 50 km simulation are used to drive the CCLM
simulations with a grid spacing of 0.0625 deg (about 7 km). The corresponding
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Fig. 1 Illustration of model domain of the Nest 1 (left) with a horizontal resolution of 50 km,
and Nest 2 for the CEDIM-simulations (right) with a 7 km resolution. The river catchments of the
CEDIM-project are also outlined in the right figure

model domain of this second nest (Nest 2), with 180*200 grid points, is illustrated
in Fig. 1 (right).

3 Performance on the HLRS Systems

In a previous project, a total of 16 CCLM simulations have been carried out within
the research program “Herausforderung Klimawandel” with focus on the state of
Baden-Württemberg ([12, 13]). The simulations within this project are similar to
those for the present project. Even though an older version of the CCLM model
was used, the difference in performance is negligible. The overall computational
needs were rather large with a required wall-clock time of about 198 days and a
total CPU-time of about 20 years.

Within the CEDIM project, eight additional simulations have already been per-
formed at the High Performance Computing Center Stuttgart (HLRS) facilities, and
another six simulations are currently running or are in the pipeline for the next few
months. Due to a larger domain size of Nest 2 the computational needs are even
larger than for the Baden-Württemberg project. Performance details for the simu-
lations are summarized in Table 1 for each platform. The bulk of the simulations
have been carried out using the NEC SX8 high performance computer, and some
are carried out on the SX9 and on the BWGRID cluster.

As can be seen in Table 1, the Nest 2 simulations are more computationally
demanding. This is due to a shorter numerical time-step and a larger grid-domain,
which has a larger contribution for the newer simulations with a domain almost a
factor of two larger than the previous ones. There is a strong increase in performance
for the SX9 compared to the SX8, but the BWGRID cluster is also performing well
although requiring several times more CPUs.

In order to optimize the numerical code of CCLM a cooperation between HLRS
and IMK has been initiated, which is very much appreciated.
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Table 1 Wall-clock times needed for CCLM simulations on NEC SX8, NEC SX9 and the BW-
GRID cluster at HLRS as well as performance indicators and numbers of CPUs used. The wall-
clock times do not include waiting times in the queue and system maintenance times. Nest 1 is the
118*112 grid 50 km simulation, Nest 2 is the 180*200 grid 7 km simulation

Platform Nest Wall-clock Average vector Average vector Average CPUs
No time (d) length ratio (%) MFLOPS used

SX8 1 9 112 86 1400 16
SX8 2 28 159 98 3600 16
SX9 1 2.3 117 97 3680 24
SX9 2 8 127 97 3275 32
BWGRID 1 9 – – – 80
BWGRID 2 42 – – – 168

4 Results

The recent simulations for the CEDIM project show an improved performance, es-
pecially when it comes to precipitation. Figure 2 presents some first results of the
comparison of the ERA40 reanalysis driven simulations (CE40 7k) at a 7 km res-
olution for the three river catchments. The fairly large uncertainties in the obser-
vational data makes it challenging to validate the RCM simulations. Here we have
used three different sources of observations; E-OBS [14] which is originally at a
25 km grid, REGNIE [15] at a 1 km grid, and a 7 km gridded version of a homog-
enized PIK/DWD station data set [16], which we refer to as “PIK”. All three data
sets are interpolated to the CCLM 7 km grid for easier comparison. Besides the
resolution, the data sets differ due to two main reasons: (i) the number of station ob-
servations underlying the data set; REGNIE and PIK have high densities of stations
while E-OBS has an order of magnitude less, (ii) undercatch correction; REGNIE
is corrected for the problems the precipitation gauges have in catching all precipi-
tation for windy and snowy conditions [17], while the other two data sets are based
on uncorrected measurements.

The uncertainty in the observed value from these data sets is evident from Fig. 2.
E-OBS shows generally lower monthly precipitation by 10–30% compared to the

Fig. 2 Mean monthly precipitation sum for 30 years simulation with the CCLM model (black),
compared to different observational data sets as explained in the text, for the Ammer (left), Mulde
(middle) and Ruhr (right) river catchments
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other data sets. PIK and REGNIE are relatively close with REGNIE having slightly
higher values, possibly due to the undercatch correction. The seasonal cycle of pre-
cipitation in the catchments can be classified into “summer type” for the Ammer
and the Mulde, while the Ruhr has more of a “low-mountain type” precipitation
characteristic [18].

For the semi-alpine Ammer catchment, Fig. 2 (left) shows that the 7 km sim-
ulation is under-estimating the precipitation in summer, while over-estimating in
winter. A large part of this is due to the performance over steep terrain in the moun-
tains, which is a general problem for most RCMs even at this high resolution. The
performance is better for the Mulde, but for the Ruhr there is a general underesti-
mation of precipitation throughout the year. Note also how the performance for the
7 km simulation is improving on the seasonal cycle as simulated by the model at a
50 km resolution (interpolated to the 7 km grid in the same way as the observations).
The improvement is especially large for the summer-time precipitation, where the
convection is better reproduced by the high resolution simulation.

The spatial patterns produced by the model are in fairly good agreement with the
REGNIE and PIK observations, see Fig. 3. The E-OBS data set once again differs

Fig. 3 Mean annual precipitation sum for 30 years simulation with the CCLM model driven by
ERA40 (top), compared to different observational data sets as explained in the text, for the Ammer
(left), Mulde (middle) and Ruhr (right) river catchments
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from the others by both strongly under-estimating the precipitation amount and by
not agreeing on the spatial patterns, which is probably due to the much lower density
of stations for this data set.

Fig. 4 Probability density function of precipitation intensities of the Ammer catchment for 30
years simulation with the CCLM model driven by ERA40 in comparison to the three observational
data sets. Dry days (< 1 mm day−1) are here included in the PDF at the first position

Figure 4 shows the PDF of precipitation intensity for the Ammer catchment. The
REGNIE data set has a slightly more intense distribution than the PIK, which is
probably due to the undercatch correction for this data set. The E-OBS data set is
over-estimating the lower intensities, and under-estimating the higher intensities.
However, the number of dry days is close to that of the other data sets. The CCLM
simulation driven by the ERA40 forcing data is very close to the REGNIE and PIK
data sets, with only a slight under-estimation for the more extreme intensities. Also
the number of dry days is well simulated.

5 Discussion

Simulations of hydrological processes in small river catchments with complex ter-
rain require high spatial detail of the forcing data. The simulations presented above
are performing well in the spatial structures, and also fairly well in the absolute
amounts. Furthermore, it has been shown that the distributions of precipitation in-
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tensities compare well with high resolution observations, something which is very
important when assessing extreme events such as floods.

The ensemble aspect of climate modeling is central to assessing probabilities
for future changes, in e.g. precipitation. It is important to include several GCM-
simulations in any regional assessment of future climate, and the more models used
the better the sampling of the uncertainty range, assuming that the models cluster
around the “truth”. One additional member to the IMK CCLM ensemble will be
simulations based on the results of the third GCM generation of the Canadian Center
for Climate Modeling and Analysis (CGCM3, [19, 20]) which are presently being
prepared.

More information about the CEDIM-project can be found on the web page
www.cedim.de.
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DNS of Rising Bubbles Using VOF and Balanced
Force Surface Tension

Hendrik Weking, Jan Schlottke, Markus Boger, Philipp Rauschenberger,
Bernhard Weigand, Claus-Dieter Munz

Abstract The rise behavior of small bubbles in a quiescent environment has been
investigated by direct numerical simulation (DNS) using the Volume of Fluid (VOF)
method and surface tension modeling based on the balanced force approach. The
origin of spurious currents using standard (CSF, CSS) models is shown in detail,
emphasis is put on the spatial discretization and the calculation of local curvatures.
The effect of the new surface tension model on the resulting rise behavior for differ-
ent bubble diameters is presented.

1 Introduction

Bubbly flows play an important role in many industrial applications such as fermen-
tation reactors floating or loop reactors. The improvement of the efficiency of these
reactors requires a deeper understanding of the rise behavior of gaseous bubbles.
Therefore this issue has been the topic of many experimental and numerical stud-
ies, e.g. [12, 18, 9]. A wide range of contributions to the subject of the motion of
bubbles, drops and particles is contained in the book of Clift, Grace and Weber [2].
Koebe [10] employed the ITLR inhouse code FS3D to investigate the rise of bub-
bles. The FS3D code is also used in this investigation to simulate rising air bubbles
in quiescent water. The treatment of fluid interfaces is a crucial factor for the di-
rect numerical simulation (DNS) of two-phase flow. As the interface represents a
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discontinuity separating the two fluids, jump conditions have to be applied. Using
the so called one-fluid formulation, one is able to work with a single set of equa-
tions for the whole flow domain. The coupling of the fluids at the interface is taken
into account by the use of variable material properties. Moreover, the Navier-Stokes
equations contain an additional volume force term for the surface tension, which
is directly linked to the interface location via a delta function concentrated on the
surface. From a physical point of view the surface force is balanced by the pressure
jump across the interface. As the volume force is only different from zero at the in-
terface, no additional jump conditions with regard to momentum conservation have
to be applied.

In general, surface tension is numerically approximated by a volume force using
a continuum model. Applying the widespread continuum surface force (CSF, [1]) or
continuum surface stress (CSS, [11]) model, many DNS codes suffer from unphys-
ical parasitic currents in the vicinity of the surface.

In particular, the occurrence of spurious currents prevents the investigation of
small bubbles with diameters de < 2 mm. For these cases the numerically induced,
parasitic accelerations increase the magnitude of the physical, gravity driven accel-
erations and thus no benefit can be extracted from such simulations.

In order to overcome this issue, many efforts have been taken by various re-
searchers. For two dimensional computations Meier et al. [13] proposed a method
to determine curvature more accurately using an estimator function, tuned with a
least-squares-fit against precomputed reference data. An approximation of the sur-
face tension based on spline interpolants was presented by Ginzburg and Wittum
[5]. For 3D calculations, Renardy and Renardy [16] developed the PROST algo-
rithm (parabolic reconstruction of surface tension) and Jafari et al. [8] presented
the PCIL method (pressure calculation based on the interface location) where the
pressure forces at the interfacial cell faces are calculated according to the pressure
imposed by each fluid on the portion of the cell face that is occupied by that fluid.
This list is far from being complete as there are many other approaches aiming at
the reduction of parasitic currents.

The method used for the calculations presented in this paper is based on the
balanced force approach by François et al. [4]. Starting from the original CSF model
of Brackbill et al. [1] only minor changes are needed, mainly linked to curvature
calculation which we choose to be evaluated according to Popinet [15].

The outline of the paper is as follows. We firstly introduce the governing equa-
tions for the DNS of two-phase flows, as they are used in the framework of the FS3D
code. The following section is dedicated to the calculation of surface tension. In this
context the origin of parasitic currents is discussed. This includes on the one hand
the correct discretization of the surface tension terms in order to have a so called
balanced-force algorithm. On the other hand, the issue of curvature estimation has
also to be taken into account and for that we are using a height function method. The
results section comprises various calculations on the rise behavior of small bubbles,
comparing the results of the two standard models (CSF, CSS) and the new surface
tension model (CSF-BHF).



DNS of Rising Bubbles Using VOF and Balanced Force Surface Tension 173

2 Governing Equations

2.1 Continuity and Navier-Stokes Equations

The incompressible two phase flow is described by the continuity equation and the
Navier-Stokes equations. Using the one-fluid formulation, the continuity equation
and the momentum equations have the following form

∇ ·u = 0, (1)

∂ (ρu)
∂ t

+∇ · (ρu)⊗u = −∇p+ρk+∇ ·μ [(∇u+(∇u)T )]+ fγ δS. (2)

Here u represents the velocity, ρ denotes the density, p is the pressure, t is the time,
μ is the dynamic viscosity, ρk takes into account body forces, the term fγ is a body
force that represents the influence of surface tension in the vicinity of the interface
and δS is a delta function concentrated on the surface.

These equations resemble the conservation equations for one phase flows with
the exception of the appearance of the volume force fγ on the right-hand side of the
momentum equations in Eq. 2. This approach is called the one-fluid formulation and
it allows the use of a single set of equations in the whole flow domain. In the absence
of mass transfer, there is no need of establishing any additional jump conditions
at the fluid interface as they are implicitly taken into account by this formulation.
The coupling of the two fluids is provided by variable material properties ρ and
μ . They are chosen according to the fluid occupying a grid cell. At the interface
the volume force fγ comes into play for taking into account the effects of surface
tension.

2.2 Interface Tracking by the VOF Method

The interface tracking is based on the volume of fluid (VOF) method developed
by Hirt et al. [7]. For the representation of the phases, an additional variable f is
introduced

f =

⎧⎪⎨
⎪⎩

0 in the gaseous phase,

0 < f < 1 in cells containing a part of the interface,

1 in the liquid phase,

(3)

which represents the volume fraction of the liquid phase. A two dimensional exam-
ple is given in Fig. 1. According to the one-fluid formulation, the above mentioned
change in material properties is based on the volume fraction variable f
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Fig. 1 Fluid representation by the volume fraction f variable

ρ(x, t) = ρg +(ρl −ρg) · f (x, t), (4)

μ(x, t) = μg +(μl −μg) · f (x, t), (5)

where the indices l and g denote the liquid and the gaseous phase, respectively.
The movement of the interface is tracked via the transport of the volume fraction

f by
∂ f
∂ t

+∇ · ( f u) = 0. (6)

While advecting the volume fraction f , one is interested in keeping the interface
sharply resolved. Therefore at every time step the interface is reconstructed based
on a PLIC (piecewise linear interface calculation) algorithm (see e.g. [17]). This
geometrical reconstruction is used to determine the liquid and gaseous fluxes across
the cell faces and it prevents the interface from being smeared across several grid
cells during the advection.

2.3 Moving Frame of Reference

A moving frame of reference is employed to investigate the bubble motion over a
larger time scale and thus over a longer rising path without a large computational
domain and the resulting computational effort as presented in [19]. This technique
induces a counterflow in the domain which is adapted dynamically over time. There-
fore the motion of the center of mass of the bubble is considered as a damped oscil-
lation of a point mass around its initial position. Depending on the displacement and
the velocity of the center of mass of the gaseous phase a correction body force ρkc

is imposed to the flow field by adding it to the right-hand side of Eq. 2, inducing the
counter flow in the computational domain. This keeps the bubble close to its initial
position, or from the view of a resting observer, moves the whole domain along with
the bubble. This correction force is computed for all three spatial directions in every
timestep by

kc = 2ω
Pg

m∗ + c2ω2Δxg, (7)
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with the momentum of the bubble Pg divided by the bubble virtual mass m∗ =
mg

(
ρ f /ρg

)
and the displacement vector Δxg. The momentum and the displacement

vector refer to the moving frame of reference. To avoid a build up in the displace-
ment the value of c2 is switched from 1 to 0 if the center of mass is approaching the
initial position. The angular frequency governing the hardness of the damping and
thus the magnitude of the oscillation around the initial position is chosen to be

ω = c1

√ρ f

ρg
πωres = c1

√ρ f

ρg
π

√
12σ
d3

e ρ f
, (8)

where ωres is the first resonance mode of the bubble surface. ωres is multiplied by
π to avoid that ω becomes a higher mode of that surface resonance frequency and
thus prevent a build up of surface oscillations which could destroy the free surface.
A value of c1 = 10 was chosen in this study. Note, that this formulation does not fix
the bubble at the start position but allows a displacement.

3 Surface Tension

At an interface separating two immiscible fluids a pressure jump

p2 − p1 ≡ Δ p = σκ, (9)

appears according to the Young-Laplace equation. Here σ is the surface tension
coefficient and κ represents the curvature. Hence, surface tension is directly propor-
tional to the curvature κ . This jump in pressure has to be considered when simulat-
ing two-phase flows. Therefore, different models have been developed in order to
include surface tension at the interface. As it is obvious from Eq. 2, surface tension
is accounted for as a volume force in the momentum equations. The corresponding
force fγ on the right-hand side of the equation is only present at the interface while
it vanishes in grid cells away from the interface.

3.1 The Continuum Surface Force (CSF) Model

The basic idea of the continuum surface force (CSF) model introduced by Brackbill
et al. [1] can be described as follows. Instead of considering the fluid interface as
a sharp discontinuity, one supposes a smooth transition from one fluid to another.
The interface is considered to have a finite thickness of O(h), corresponding to the
smallest length scale h resolvable by the computational mesh. Consequently, surface
tension is also considered to be of continuous nature and it acts everywhere within
the transition region. Brackbill and coworkers propose to calculate fγ by
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fγ = σκ∇ f . (10)

This corresponds to a dispersion of the surface tension across the transition region,
using the gradient of the volume fraction variable f to weight the dispersed volume
force. Implementing this approach in a CFD code, one has to consider the

1. spatial discretization of Eq. 10,
2. estimation of curvature κ ,

in order to prevent parasitic currents. The following sections will provide a discus-
sion on both aspects.

3.2 Balanced-Force Algorithm

Looking at the spatial discretization, the variables are stored on a staggered grid
arrangement according to [6]. On such a MAC (marker-and-cell) grid, the scalar
variables ( f , p) are stored at the cell centers, while the velocities are stored at the
centers of the cell faces. In order to guarantee an accurate, balanced-force discretiza-
tion, according to [4], the surface tension terms (cf. Eq. 10) have to be calculated
at the center of the cell faces. Furthermore, it is of crucial importance that pressure
and surface tension are discretized in the same way.

Moreover, special care has to be taken in order to evaluate the gradient ∇ f .
For the original CSF method, according to [1], the evaluation of the gradient is
performed on a stencil of 18 cells for 3D calculations. For explanation purposes
Fig. 2 illustrates a two dimensional example. Here, the gradients at the cell face
centers of row ( j) are given by the corresponding values in red. Taking the face
at (i + 1/2) as an example, the gradient ∇ fxi+1/2, j

is based on the gradients in the
rows ( j−1),( j),( j + 1) that are calculated on the basis of the cells adjacent to the

face (i + 1/2) respectively, e.g. ∇̃ fxi+1/2, j
=

f(i+1, j)− f(i, j)
Δx for row ( j). Here, ∇̃ desig-

nates the local gradient with respect to the cell face. Afterwards, the gradient at the
position xi+1/2, j is obtained as

∇ fxi+1/2, j
=

1
4

(
∇̃ fxi+1/2, j−1

+2∇̃ fxi+1/2, j
+ ∇̃ fxi+1/2, j+1

)
. (11)

This leads to a total stencil for cell (i, j) that is surrounded by the dashed lines in
Fig. 2. It is obvious that the above discretization implies a coupling of the rows
( j−1),( j),( j +1) for the surface tension calculation via the evaluation of the gra-
dients. Having a closer look at the discretization of the Poisson equation used for
the calculation of p, in x direction for the cell (i, j), one finds

1
Δx

(
p(i+1, j)− p(i, j)

ρ(i+1/2, j)
−

p(i, j) − p(i−1, j)

ρ(i−1/2, j)

)
=

ũ(i+1/2, j)− ũ(i−1/2, j)

Δ t
. (12)
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Fig. 2 Evaluation of ∇ f based on a stencil of 6 cells (red) and on the direct neighbors of the
cell face (blue). The box surrounded by the dashed lines marks the 6 cell stencil for the cell face
(i+1/2, j)

Here it is clearly visible that all pressure values are taken from row ( j). As for the
above mentioned discretization of the surface tension used to evaluate the velocity
ũ, the rows ( j−1),( j + 1) are also included via the gradient evaluation. We found
this coupling to be one of the causes for the parasitic currents using the CSF imple-
mentation in FS3D. Therefore we changed the gradient evaluation to a more local
formulation only taking into account direct neighbors of the cell faces. This leads
for the cell face (i+1/2, j) to

∇ fxi+1/2, j
= ∇̃ fxi+1/2, j

=
f(i+1, j)− f(i, j)

Δx
. (13)

Returning to Fig. 2, the two approaches can be compared directly. According to the
two methods, the gradients are given for the previous method (red) and the local
approach (blue) in row ( j). While the transition from one fluid to the other is spread
over four cell faces with the previous approach, the local approach only uses two
cell faces to disperse the jump in pressure.

In 3D, the gradients for the different spatial directions are evaluated in an analo-
gous way, only taking into account direct neighbors of the respective cell face.

Besides the discretization of the surface tension force (Eq. 10), the correct esti-
mation of surface curvature is very important and shall be discussed in the following
section.

3.3 Curvature Estimation

In the context of the VOF method, difficulties in determining topology informa-
tion like normal vectors and curvature are due to the discrete nature of the volume
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fractions. Contrary to a level-set function, the VOF field is not smooth and thus the
correct curvature as the second derivative is hard to obtain. Direct calculation of cur-
vature from the given volume fractions leads to high frequency (order of the grid)
errors (aliasing error, [3]). This is why most CSF implementations do a smoothing
of the VOF field prior to the calculation of curvature. In addition, this error does not
vanish with grid refinement.

For the method presented here, the curvature is calculated based on a height
function approach, coupled to a local paraboloid fitting if the grid resolution is not
sufficient. The procedure is inspired by the article of Popinet [15]. The height func-
tion approach is a geometrical one. The stencil used to determine the local height is
not fixed (as used by e.g. [4]), but adapts itself to capture the local topology in an
optimal way.

As already mentioned, grid resolution does not always permit the determination
of curvature via the height function approach. This is the case for highly curved
topology, e.g. during breakup, or in case of very coarse grids. Local curvature is then
determined by fitting a paraboloid to known points on the surface. These points can
either originate from local heights or the barycenters of the reconstructed surface
(using PLIC) are used for this purpose. Once the paraboloid, given by

f (ai,x) = a0x2 +a1y2 +a2xy+a3x+a4y+a5, (14)

is fitted (via least squares fit) to these points, the curvature can easily be calculated
as the second derivative,

κ = 2
a0(1+a2

4)+a1(1+a2
3)−a2a3a4

(1+a2
3 +a2

4)3/2
. (15)

4 Numerical Setup

Employing the moving frame of reference it is not necessary to discretize the entire
rising path. The computational domain can be reduced to a small frame around the
bubble, as shown in Fig. 3. On the upper side of the 3D computational domain a uni-
form inflow condition is employed. On all other boundaries, including the outflow,
a continuous (Neumann) condition is used. To oppress undesired back flow a damp-
ing zone is placed in front of the outflow boundary. The gravity pointing towards
the outflow boundary leads to a strong acceleration of the liquid, which ‘falls’ out
of the domain, taking the bubble with it. This can be avoided by replacing gravity
by buoyancy in the momentum equation. In the presented study a variety of bub-
ble diameters were investigated. Therefore the extent of the computational domain
varies depending on the initial bubble diameter. The computational domain has an
overall length of 20 bubble diameters in the direction of the main flow and 10 bubble
diameters between the lateral boundaries. The resolution is chosen to be 512 cells in
main flow direction and 256 cells in the lateral direction, which makes about 33 ·106



DNS of Rising Bubbles Using VOF and Balanced Force Surface Tension 179

Fig. 3 Numerical setup and coordinate system

computational cells in the whole domain. At this resolution the equivalent bubble
diameter is resolved by 25.6 cells.

In all cases the air bubble is initialized as a stationary sphere surrounded by
quiescent water at a distance of 5 bubble diameters away from the inflow and the
lateral boundaries.

5 Results: Rise Behavior of Bubbles

5.1 Reduction of Spurious Currents

The simulation of small bubbles with an equivalent diameter de < 2 mm leads to
unphysical results using CSF and CSS models. In these cases the spurious currents
induced by the high curvature of the interface are no longer negligible. Figure 4
shows the velocity field in a cut plane through the bubble center for de = 1 mm (left)
and de = 2 mm (right) computed by the CSF, CSS and the new CSF-BHF model. For
both bubble diameters the results using the CSF model are strongly influenced by
spurious currents. The velocity field computed using the CSS model is apparently
free from disturbances caused by spurious currents in case of the 2 mm bubble
whereas for the 1 mm case such disturbances appear at the top and the bottom of
the bubble. In contrast, the velocity field obtained using the new model is free from
spurious currents for both bubble diameters.
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Fig. 4 Velocity field using CSF, CSS and CSF-BHF model for de = 1 mm (left) and de = 2 mm
(right)

The corresponding development of the rise velocity is plotted in Fig. 5. For the
1 mm case (left) both, the CSF and CSS model, fail to predict a smooth trend due
to spurious currents in contrast to the CSF-BHF model. Although the mean rise
velocity computed using the CSS model is in the same magnitude as the velocity
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Fig. 5 Comparison of rise velocity using CSF, CSS and CSF-BHF model for de = 1 mm (left) and
de = 2 mm (right)

gained by the CSF-BHF model, strong oscillations occur due to the nondirectional
disturbances of the spurious currents. To demonstrate the influence of the spurious
currents near the free surface the ration of the instantaneous interface area to the
initial area of the spherical bubble A/A0, which is the degree of deformation of the
bubble, is shown in Fig. 6 (left).

Fig. 6 Comparison of interface area using CSF, CSS and new CSF-BHF model for de = 1 mm
(left) and de = 2 mm (right)

Only the new model is capable to reproduce a smooth deformation from the
sphere to an elliptic shape as the bubble rises. In case of a 2 mm bubble (Fig. 5
right) the CSS and the new CSF-BHF model produce comparable results for the in-
stantaneous rise velocity whereas the rise velocity computed using the CSF model
first exceeds the velocity predicted by the other models and decreases to a lower
level after this peak. The same peak is found regarding the instantaneous deforma-
tion in Fig. 6 (right).
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5.2 Terminal Rise Velocity

At the start of the simulation the bubbles are initialized at zero velocity. After a
short phase of acceleration, they reach a maximum rise velocity. In this phase the
rising trajectory of the bubble stays rectilinear. Depending on its equivalent diameter
the motion of the bubble can then turn into a zigzagging or spiraling path. In these
cases, the terminal rise velocity is not the maximum velocity of the rectilinear part
but the mean value of the 3D motion part. In the cases investigating 3D motion only
occurred for de > 3 mm.

Fig. 7 Comparison of terminal rise velocity with experimental data

The results of the terminal rise velocity are plotted over the equivalent diameter
in Fig. 7. The lines in the plot are taken from Clift et al. [2] and represent the terminal
rise velocity for air bubbles in pure water (upper line) and in conterminated water
(lower line). Regarding the terminal rise velocity the results of all surface tension
models fit well with the experimental data measured by Koebe [9] and Schlüter [18]
for de ≥ 3 mm. In the region below 2 mm the new surface tension model underes-
timates the terminal rise velocity, the results are still between the two lines by Clift
et al. [2]. The only exception is the 1 mm case where the velocity calculated is too
high. Note, that the 1 mm case of the CSS model and the 1 mm and 2 mm cases of
the CSF model are affected by spurious currents and are only plotted for the sake of
completeness.

5.3 Bubble Shape

The deformation of a bubble is measured by the ratio of the bubble height to its width
H/W after reaching the terminal velocity. Obviously, this can only be done when
the bubbles develop to a rotational symmetric oblate shape, which is the case for a
rectilinear trajectory. In the cases where a 3D rising path occurs, the bubbles develop
an arbitrary time dependent shape. The deformation of the bubbles computed using
the new model with an equivalent diameter de ≤ 2 mm is presented in Fig. 8 as a
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function of the Weber number

We =
ρldeu2

∞
σ

. (16)

The Weber number is the ratio of the kinetic energy to the causing distortion to the
surface energy available to resist it. The computed terminal rise velocity shown in
Fig. 7 is chosen as the reference velocity u∞. Figure 8 shows that for small equivalent
diameters the simulated deformations match the correlation of Moore [14] for small
distortions

H/W =
1

1+ 9
64We+O(We2)

. (17)

For larger deformations and thus larger Weber numbers the numerical results deviate
from that correlation.

Fig. 8 Bubble deformation H/W for over Weber number computed with CSF-BHF

6 Conclusion

DNS of the rise behavior of small bubbles in a quiescent liquid using the volume
of fluid (VOF) method has been presented. The use of an advanced surface tension
model based on the balanced force approach and on the calculation of local curva-
ture via height functions enables the investigation of bubbles with diameters smaller
than 3 mm where unphysical spurious currents normally dominate the solution when
using standard models (CSF, CSS). The predicted rise velocities and bubble defor-
mation fit the experimental data and the correlations from literature. This approach
demonstrates that DNS calculations can be used as ‘numerical experiments’ in order
to understand detailed complicated two phase flow situations.
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Large-Eddy Simulation of Double-Row
Compound-Angle Film-Cooling:
Computational Aspects

Lars Gräf, Leonhard Kleiser

Abstract Film-cooling is an important technique allowing to increase the thermal
efficiency of gas turbines. By blowing cool air through an array of small holes in
the turbine blades a thin fluid film is set up shielding the blades from the hot gas
arriving from the combustion chamber.

This work presents computational aspects of a Large-Eddy Simulation of a par-
ticular film-cooling configuration known to provide a high level of effectiveness.
The simulation employs the block-structured finite-volume Navier-Stokes code
NSMB for compressible flows including the Approximate Deconvolution Model
for subgrid turbulence modeling, the Synthetic-Eddy Method for turbulent inflow
generation and reflection-reducing outflow boundary conditions. The performance
of principal routines is analyzed first for a sequential simulation of a canonical flat
plate turbulent boundary layer, showing a high efficiency above 35% of the most
time-consuming routines on a NEC SX-8. A strong scaling test of the film-cooling
setup shows reasonable parallel speedup up to 32 processors of an SX-8. For both
cases, with the new architecture SX-9 a lower relative performance is achieved com-
pared to the SX-8.

1 Introduction

Rising the turbine inlet temperature of gas turbines increases the efficiency but is
limited by the turbine blade material properties. Cooling the blades or even protect-
ing them from the hot gases allows for higher inlet temperatures. However, taking
the coolant from the compressor as is usually done reduces the mass-flux available
for combustion, typically by about one fifth, and hence the overall efficiency of the
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gas turbine is reduced. Consequently, the aim is to obtain a high level of cooling at
a low coolant mass-flux.

Amongst other techniques [6], film cooling is used to reduce the effective blade
temperatures. In order to study basic properties of the cooling arrangement, usually
blade curvature and rotational effects are neglected and the flow along a flat plate is
considered. In gas-turbine film cooling [4], coolant air blown from the blade interior
through discrete holes builds up a coolant film shielding the blade surfaces from
the hot oncoming gas, cf. Fig. 1. In a simple case, circular holes are arranged in a
spanwise row, cf. Fig. 1c, and are inclined towards the plate and oriented with the
principal flow, cf. Fig. 1a.

The simple-angle injection of coolant into the hot boundary layer is known to
develop a counter-rotating vortex-pair, termed kidney-vortex. Due to the rotational
direction of the vortices, cf. Fig. 1b, hot air is fed towards the plate and the vortex
pair tends to lift off from the plate [7]. If the hole additionally has a spanwise yaw
angle β = 0, cf. Fig. 1e, f, one single, dominant vortex is known to establish [9].
By combining two subsequent rows of compound-angle holes with opposite span-
wise tilt, Fig. 1d, f, an anti-kidney-vortex can be composed with reversed rotational
direction, Fig. 1e. Experiments [1] show that this combined vortex is beneficial for
the film-cooling effectiveness.

Apparently for the first time, [5] presents a Large-Eddy Simulation (LES) of an
anti-kidney film-cooling flow and focuses on the simulation setup as well as the
validation against theoretical, numerical and experimental data. The present work
reports on computational aspects of the same simulations. Section 2 describes the
simulation methods used. The performance of individual code sections is detailed in
Sect. 3.1 with the aid of case 1, defined in Fig. 2. The overall performance of case
2 and the flow field are described in Sect. 3.2 and 3.3, respectively. Finally, Sect. 4
summarizes the main findings.

Fig. 1 Film-cooling configurations including flow orientations for a turbine blade simplified as a
flat plate. Top: single row, simple angle; bottom: double-row compound-angle injection. Left: side
view; center: downstream view; right: top view. Double arrows: hot gas; Dashed: first of two rows.
Dominant vortices are indicated in b and e
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Fig. 2 Computational domains of the two simulation cases. Solid: wall; dashed: inflow boundary;
dash-dotted: outflow boundary; shaded: sponge region. (Sketches are not drawn to scale)

2 Simulation Methods

2.1 Code and Governing Equations

A detailed description of the simulation setup and parameters is given in [5]. The
structured, multi-block, cell-centered, finite-volume simulation code NSMB [15] is
used for computation. For the code to run in parallel, the computational domain
is decomposed into multiple blocks (the block-grid can be unstructured) and the
data exchange between the blocks is done using MPI. Since the maximum centered
stencil width is five, each surface of those blocks is extended by two layers of ghost
cells, either containing the data of the neighboring block or values set by a boundary
condition.

The simulations solve the three-dimensional Navier-Stokes equations for com-
pressible flows together with an additional passive scalar concentration c. The state
vector W (density ρ , energy E, velocities u, v, w in the three Cartesian directions
x, y, z, respectively) is formulated in conservative variables, so that the following
equations are solved for each cell i, j,k (index directions),

∂Wi, j,k

∂ t
(a)

= Fconv,i, j,k(Wi, j,k)
(b)

+Fvisc,i, j,k(Wi, j,k)
(c)

− χ ×
(
Wi, j,k −W �

i, j,k

)
(d)

−σi, j,k ×
(
Wi, j,k −Wref,i, j,k

)
(e)

,

W =
[
ρ, ρu, ρv, ρw, ρE, ρc

]T
. (1)

The individual terms (a)–(e) are described in the following.
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Fig. 3 Evaluation of surface center values of a staggered grid near block edges. Bold solid: inte-
rior cell; thin solid: ghost-layer cell; dashed: staggered cell; dotted: ghost-edge cell; circle: known
value; square: interpolated value; question-mark: unknown value; number: surface number of stag-
gered cell

2.2 Integration and Flux Evaluation

The time integration of Eq. 1 is done by a low-storage four-step Runge-Kutta
scheme which is of second-order accuracy for non-linear equations [13]. The cen-
tered, fourth-order accurate approximation of the convective fluxes Fconv in skew-
symmetrical form, cf. Eq. 1(b) [3], uses a five-point stencil that is reduced to a
second-order accurate scheme with a three-point stencil at the boundaries.

In order to compute the second-order accurate discretization of the viscous fluxes
Fvisc Eq. 1(c), at the cell centers, the velocity gradients at the cell surfaces are re-
quired. (Three grids each staggered in one spatial direction are used to determine
the gradients at all six surfaces of the cells.) They are evaluated using the velocities
at the surface centers of a staggered grid that are equivalent to the cell centers of the
original grid for two surfaces. The other four surface values are interpolated from the
known values at the four surrounding cell centers of the original grid. Only at block
edges or block corners, one or two values, respectively, are not known to the block
since they reside neither inside the block nor in the ghost layers but in the ghost
edges, cf. Fig. 3. In structured block-grid areas, these unknown ghost edge values
can be copied from the diagonally opposing block for the cost of diagonal commu-
nication. However, this is not done since the communication overhead caused by a
large number of communication events with a small amount of data would reduce
the performance of the whole simulation. In addition, for unstructured zones, e.g.
O-grids, the ghost edge value is ambiguous and therefore is extrapolated. Analo-
gously, for the case of two inflow and outflow boundary conditions touching the
same block edge, the unknown value is extrapolated. At the walls, the ghost edge is
unambiguous and is obtained from the no-slip condition.

2.3 Turbulence Modeling

As stated in Sect. 2.1, LES are performed which require modeling of the small scales
not represented on the grid. For this purpose, the Relaxation-Term model [11] of the
Approximate Deconvolution Method [12] (ADM-RT) with a constant relaxation-
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coefficient χ in Eq. 1 is used. Previously, ADM has been implemented [16], paral-
lelized [17] and now optimized for efficient computation. Referring to Eq. 1(d), the
deconvolved filtered state vector W � is defined by

W � := G3D ∗
N

∑
ν=0

(I −G3D∗)ν

︸ ︷︷ ︸
deconvolution

∗W =
N+1

∑
ν=0

βcoeff,ν ×Gν
3D ∗W . (2)

Commonly, a deconvolution order of N = 5 is used resulting in a six-fold appli-
cation of the three-dimensional filter G3D (identity operator I) [12]. The latter is
implemented by applying the one-dimensional explicit filter G three times, once for
each index direction G3D = Gk ∗Gj ∗Gi. The filter is, e.g. for the first index direction
i, defined as

Gi ∗Wi, j,k :=
νr

∑
l=−νl

αcoeff,i, j,k,l ×Wi+l, j,k . (3)

A five-point stencil νr +νl = 4 is used which is asymmetric for boundary cells (e.g.
i = 0: νl = 1) and symmetric with νr = νl = 2 for all interior cells.

2.4 Boundary Treatment

In the vicinity of the inflow and outflow boundaries, sponges [2] are employed,
Eq. 1(e). They drive the solution towards the desired reference state Wref. Non-
zero σ -values select the regions and states where sponges are active, cf. Fig. 2. For
sponges at the inflow, all but the energy, and for those at the outflow the pressure is
modified.

As boundary conditions, no-slip, adiabatic conditions at walls, Dirichlet condi-
tions prescribing all but the energy at inflow boundaries, and non-reflecting charac-
teristic conditions [14] at outflow boundaries are chosen. The turbulent inflow data
are generated by the Synthetic-Eddy Method (SEM) [8] using an extension to com-
pressible flows [10]. These synthetic turbulence data, namely density and velocities,
are fed in with a Dirichlet-type boundary condition.

2.5 Computational Environment and Measuring Procedure

All computations are carried out on the NEC SX-8 and SX-9 machines at HLRS.
Information on some important system parameters are summarized in Table 1.
To get the runtime and performance information of different code sequences,
the Ftrace routines ftrace_region_begin and ftrace_region_end are
called. Therefore, Ftrace is included during compiling and linking. The compila-
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Table 1 Important system parameters of the NEC SX installations at HLRS

Series # CPUs per Node
Peak performance per CPU Bandwidth [GByte/s]
Pmax [GFLOPS] memory per CPU network per node

SX-8 8 16 64 8
SX-9 16 102.4 256 32

tion of the binaries is done on the front-ends for each architecture separately. The
measurements presented compare results obtained on the two SX-architectures.

3 Performance Results and Flow Field Visualization

3.1 Sequential Performance of Individual Code Components

The simple geometry of case 1, a flat plate turbulent boundary layer (cf. Fig. 2)
allows for a single-block topology. Therefore, parallelization overheads like load
imbalances or communication time do not appear and the performance of the indi-
vidual code components can be analyzed. In order to get statistical information of
the flow, the field is sampled for averaging every time step. Besides simple averag-
ing, a number of cross-correlations are computed too. The data depicted in Fig. 4
is averaged over 100 timesteps. The graph shows the relative 64-bit floating-point
performance P/Pmax (measured in FLOPS) as well as the time (in seconds) per
timestep and cell the routine is working on. Since this block contains around 3.1
million grid cells, the performance rates obtained are rather high. For a computation
with converged flow statistics, the grid should be split into multiple blocks to obtain
a reasonable turn-around time of the simulation. In the following, the update of the
ghost edges as described in Sect. 2.2 is not shown separately nor included in the
boundary conditions since its share is below 1%.

For the SX-8, the relative performance of the routines acting on all cells cf. Eq. 1
is above 35%. This high value stems from the high fraction of vectorizable code
and the long vectors that span through the whole field. Consequently, the boundary
conditions (BC), acting only on planes of cells obtain a lesser performance of around
1%. The timings show that the computation of the sponge zones, cf. Eq. 1(e), and the
statistics (stat) is at least one order of magnitude slower compared to the evaluation
of Navier-Stokes (NS) equations, cf. Eq. 1(a)–(c), and of the turbulence model, cf.
Eq. 1(d). Interestingly, the costs to solve the equations of fluid motion are only a bit
higher than the costs to model the scales not represented on the grid. The boundary
conditions require more than one order of magnitude more time per (boundary)
cell than the evaluation of the Navier-Stokes equations. Fortunately, the number of
cells being acted on is, for case 1, about 28 times lower than the total number of
cells. Still, the total time spent on evaluating boundary conditions is remarkable, cf.
Sect. 3.2.
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Fig. 4 Timing and performance of principal routines. Bars, upper abscissa: timing per cell; sym-
bols, lower abscissa: relative performance P/Pmax; upper, circle: SX-8; lower, rhombus: SX-9

Considering case 1, the newer machine, SX-9, shows a lower level of relative
performance for all routines. Therefore, the nominally offered more than six times
higher performance cannot be used which is also observed comparing the timing.
Nevertheless, there is a benefit in turn-around time for all routines except for the
boundary conditions. Altogether, the computation on the SX-9 is just twice as fast
as on the SX-8.

3.2 Overall Parallel Performance

Case 2 represents a film-cooling flow scenario, cf. Fig. 2. It consists of 90 blocks of
different extent in physical space and index space. Most of the unstructured block
topology, cf. Fig. 5, is given by the geometry. Nevertheless, the region above the
plate additionally is split to optimize the load balancing for the use of 32 processors
(Np = 32). The processors are evenly distributed across the minimum number of
nodes. The simulations of 10 timesteps on an increasing number of processors using
the same grid incorporating around 27 million cells are measured (strong scaling
test).

The relative time share of principal routines averaged over the MPI-processes
(one MPI process per processor) used is shown in Fig. 6. The computational loop is
split into Navier-Stokes, turbulence model, boundary treatment (including boundary
conditions and sponge zones) and communication part. The communication part in-
cludes all ghost-cell updates during repeated filtering (sixfold filtering in three index
directions requires 3×6−1 = 17 ghost cell updates of the velocities between the fil-
ter applications) and time integration as well as the time that processors have to wait
for each other due to load imbalances. For the SX-8, as found in the preceding sec-
tion, solving the equations of fluid motion and turbulence modeling occupies most
of the computing time. Already for the sequential case, a time share of around 5%
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Fig. 5 Unstructured block-grid illustrating outer edges of the blocks

Fig. 6 Relative time share of principal routines. Upper: SX-8; lower: SX-9; empty: Navier-Stokes;
lightly shaded: turbulence model; cross-hatched: boundary treatment (BC & sponge); darkly
shaded: communication

for ghost-cell updates between the 90 blocks is observed. As discussed before, the
low performance of the boundary condition computations plays a minor role. The
evaluation of the Navier-Stokes equations, ADM-RT and the boundary treatment
scales similarly. Increasing the number of processors the time share of communica-
tion increases up to over 40%. In this development, a jump is observed between 32
and 40 processors. This coincides with a kink in the speedup and will be discussed
in the next paragraphs.
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As apparent in Fig. 4, for the SX-9 the relative time share of the boundary treat-
ment increases while the filtering performs relatively better compared to the SX-8.
For all runs, the relative time spent on communication is higher since the data ex-
change does not depend on the processor but on the network and the memory band-
width, that both are not six times faster. The configuration using 40 processors dis-
tributed across three nodes performs worse, in terms of communication, than using
48 processors. This might be caused by the unequal distribution of 13, 13 and 14
used processors on three nodes.

The speedup S is the ratio of the time t the parallel computation (Np > 1) takes
compared to the sequential one (Np = 1),

S(Np) :=
t(Np = 1)

t(Np)
. (4)

Fig. 7 Speedup of case 2. Symbols: measurement; dashed: ideal speedup; circle SX-8; rhombus:
SX-9

Consequently, the ideal speedup would be S = Np. For case 2, Fig. 7 illustrates the
efficiency of the parallel runs based on wall-clock data of 10 timesteps. For the SX-8
a nearly linear speedup with a sub-ideal slope up to 32 processors appears. For the
latter configuration, most MPI-processes contain exactly one of the big blocks above
the plate, cf. Fig. 5, and the others share the remaining blocks that are somehow
evenly distributed among them. Beyond 32 processors, the smaller blocks do not
fill up the remaining processors sufficiently well, so that they have to idle until the
computation of the bigger blocks is finished. The SX-9 shows an almost identical
behavior up to 24 processors. Beyond that limit, the speedup is somewhat lower
compared to the SX-8. For 40 processors, a speedup is hardly detectable. To obtain
a higher speedup beyond 32 processors the grid needs to be split-up into more blocks
improving the load balancing but introducing additional communication overhead.
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3.3 Flow Field Visualization

To get an impression of the mean flow field, Fig. 8 illustrates streamlines. A number
of interesting facts can be educed from this figure. First, the fluid jets ejected through
the upstream and downstream holes do not mix intensely, since only few streamlines
of the upstream hole are present in the region pointed at by the downstream hole
and vice versa. A low level of mixing occurs in the vicinity of the downstream hole.
Second, far downstream the upstream jet covers a narrow spanwise and a high wall-
normal region whereas the downstream jet covers a broader spanwise and a flatter
wall-normal region. The upstream jet faces an undisturbed boundary layer and due
to its compound-angle injection one dominant clockwise vortex establishes. In con-
trast, the downstream jet is ejected next to this strong vortex and pushed towards the
wall by the downwash induced there. Furthermore, the temperature contours show a
significant coverage of the plate by the coolant. The temperature at the centerplane
shows that the region of the first coolant jet detachment is small and that the second
jet does not detach at all. The different cross-stream sections show a downstream
broadening of the film.

Fig. 8 Mean flow field visualized by streamlines. Fluid ejected through the upstream hole (green),
through the downstream hole (yellow) and crossflow (black). Contours: temperature (high amount
of cooling: blue; low: red) at the wall, at cross-stream planes and at center plane (laterally shifted)

4 Conclusions

Computational aspects of boundary-layer and film-cooling simulations with LES
using the code NSMB have been discussed. First, the performance of principal rou-
tines has been analyzed for a sequential simulation of a canonical flat plate turbulent
boundary layer (case 1). Then, a strong scaling test of the film cooling setup (case 2)
has been conducted. Also, the shift of the share of the most important routines for
an increasing number of processors has been documented. The measurements have
been compared for the two architectures NEC SX-8 and SX-9.

Concerning the SX-8, from the boundary-layer simulation using a single-block
grid (case 1) it is concluded that the principal routines solving the equations of fluid
motion and modeling the turbulence have a high relative performance above 35% of
the theoretical peak. The performance of the boundary condition computations is as
low as 1%, however, their share of the total computation is small.

For the SX-8, the parallel film-cooling simulations presented (case 2) show that
the share of the communication increases with the number of processors to more
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than 40% for 48 processors, while the other routines share the remaining compu-
tational time with a constant ratio for different numbers of processors. Up to 32
processors, more than half of the ideal speedup is obtained. Obviously, the loss is
mainly caused by the time spent on communication.

The SX-9, nominally providing a more than six times higher performance, per-
forms only twice as fast as the SX-8 for the considered case. The relatively slow
communication causes its relative share to increase to over 50% already for 32 pro-
cessors. In the end, the unequal increase of computational performance compared
to memory access and network access is not beneficial for tightly coupled parallel
applications performing frequent communication, as for the considered case 2.

Considering the increase in core numbers of today’s supercomputing facilities,
the trend observed from SX-8 to SX-9 is expected to continue. When using the
ADM-RT model with a six-fold filtering of the whole field, spending most of the
time waiting for data to be communicated is inevitable. To avoid this, it could be
considered to reduce the order of deconvolution.
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Large Eddy Simulation of Wind Turbulence
for Appropriate Urban Environment

Tetsuro Tamura

Abstract This study shows the numerical model which has the actual shape of the
urban surface in order to analyze the wind turbulence in a city by large eddy sim-
ulation (LES) technique. Predictive accuracy of LES for the urban heat island, the
hazardous gas dispersion or failure of buildings by wind gust was examined. Also,
the numerical results were provided for realizing appropriate urban environment.

A numerical model of an urban city is devised to study different types of sce-
narios. The actual shape of the urban city is represented using the geographic infor-
mation science (GIS) data. As an environmental problem in the atmospheric flows,
the urban heat island or the hazardous gas dispersion is considered. Meanwhile as
a wind disaster problem, human impact on high wind or failure of buildings and
structures by wind gust is examined for the mitigation against typhoon attack to a
city. LES is capable of providing accurate time-sequential physical quantities and
estimating the peak values of various impacts. Based on a plenty of data for wind
turbulence obtained by LES, the appropriate method for sustaining comfortable ur-
ban environment is discussed. Since this numerical approach generally requires a
large amount of computational time, cost and capability, we have to formulate a re-
quirement for the size of computational domain and resolution, and the time scale
for evaluation of statistics.

For constructing an appropriate LES model of atmospheric turbulent flow, the
technological potential should be examined concerning complex boundary layer
over various underlying surfaces. Nowadays, we can employ a computational model
which directly reproduces actual and complex configurations at surface of city, such
as buildings, structures, vegetation and trees on various kinds of terrain. This study
focuses on the interior of the urban canopy where near-ground flows are very com-
plex and unsteady due to flow separation and vortex shedding induced by building
roughness elements.
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A detailed comparison of LES results with observational data should be carried
out for the model validation. Generally, LES cannot predict the absolute wind speed
on specified date at a specified site, so it provides only a value relative to the refer-
ence wind speed. In order to introduce absolute values in LES, the meso-scale me-
teorological model is utilized. Namely, combining meteorological and LES results
at a reference location, we can generate the approaching turbulent flow with specific
properties over actual urban area. As a meteorological event, this study picks up
high wind during cyclogenesis or typhoon and low wind by local circulation such
as a sea breeze. Wind fields on urban scale are simulated by the meteorological
model, while turbulent flow fields inside the urban canopy are computed by LES
that explicitly incorporates effects of actual building shapes. To realize a very large
computation using fine grid resolution by the combined model approach, details of
the method for different practical applications have been provided.

Required computer resources for practical solutions by this model are examined
in order to clarify the trends in high-performance computing for wind-related prob-
lems in urban areas. The combined analysis shows results consistent with obser-
vational data, and also exhibits details of local gust wind and sudden changes of
canopy winds. This study suggests that the combined method could be a powerful
tool for mitigating a severe wind disaster and a degradation of atmospheric environ-
ment in urban areas.

Fig. 1 Instantaneous temperature fields in urban area
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