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Statistics

O sancta simplicitas!
Jan Hus (1370-1415)

This chapter deals with a special type of experiment in performance the-

ory, since experiments are necessary to test the relevance of a theoretical ap-
proach to real performance. How can we know that such an approach is ex-
plaining what we are experiencing in performance? The question is quite hard,
because it is difficult in music to distinguish the creative subjective aspect from
the scientific objective one. There are essentially two types of experiments with
an expressive performance theory:

Construct synthetic performances and test their quality by psychometrical
methods, as done by the KTH school, for example. This is the psychological
approach. It is important, but it does not tell us how to construct perfor-
mance tools except by trial and error. It just takes the subjectivity of the
listeners as a variable and ponders it against the output of a performance
machine.

Take human performances and investigate their fitting quality with ratio-
nales of the theory, e.g. with analytical, gestural, or emotional rationales.
This one also refers to the aesthetic human individual dimension, but it real-
izes it in the realm of performers—if possible even distinguished performers,
such as Horowitz, Brendel, or Pollini. The comparison is not with synthetic
performances but with rationales of performance. This is completely logi-
cal, since the performance’s expressivity refers to those rationales. There-
fore, these experiments should reveal correlations between performance and
some rationale(s), and—in the limit—provide us with suggestions about the
functional relation supporting such correlations.

In this chapter, we focus on the second method. This research was done

in collaboration with statistician Jan Beran. The musical material we con-
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sidered was Schumann’s Trdumerei op.15/7, Webern’s Variationen fir Klavier
op.27/11, the canon cancricans from Bach’s Musikalisches Opfer BWV 1079,
and Schumann’s Kuriose Geschichte op.15/2. We have calculated metrical,
motivic, and hormonic weights for all of these compositions.

The main task was then to transform this data into a format that was
adequate for statistical processing. Since we were focusing on agogics, which
had been measured by Bruno Repp for 28 famous performances, our analytical
weights were all “boiled down” to functions of onset only. Therefore, we have
taken the average values at a given onset for melodic and harmonic weights.

We should add here that Repp’s measurements can not be done with much
more precision and also regarding parameters other than time. The software
Melodyne [105] editor (figure 23.1) is capable of transforming audio data to note
data and, after an unavoidable amount of editing, into MIDI data. Therefore,
the performance research is open to a huge repertory of historical recordings.

audio file

czerny with intonation.aif

Melodyne editor

| MIDI file

Fig. 23.1. The software Melodyne editor can transform polyphonic audio data into
MIDI data and thereby opens research to performance analysis of historical record-
ings.

23.1 Hierarchical Decomposition of Weights

The statistically relevant decomposition of weights runs as follows: We start
from a weight function w(F) being defined for all onsets E, so it is a splined
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weight function, not just the discrete weight. The weight is not decomposed
according to a Fourier procedure, because there is no reason to suppose that
periodic weights should play any particular role in this context. Instead, we
have chosen a hierarchical averaging procedure. Intuitively, this means that we
start with a broad averaging of the weight, then deduct this from the weight
and make a slightly less broad averaging, etc., thereby getting more and more
local information represented on the finer averaging levels.

More precisely, we take a triangular support function

K(s) =1—|s| for s € [-1,+1]

= 0 else.

Given a sequence (t;);=1,..n of times and a non-negative real number b, we next
define the Naradaya-Watson kernel function by

L K(5Y)
olbt) = s REmy

We then suppose given a time series of dimension k

(xs(ti))s=1,.k 0 =1,...0.

The averaging formula then is this:
Kyz(t) =Y Kyt ti)as(ts).
i=1

For b = 0, we have Koxs(t) = z4(t).

The averaging process now works when we suppose that a decreasing
sequence of bandwidths by > by > ...b,, = 0 is given. We first average
according to b;. This gives the new smoothed functions

1,5 = Ky, 2s.

We then proceed by induction. Suppose we have constructed smoothed func-
tions x1,5,%2,5,...7 — 1. Then we define the jth smoothed function by

1=j—1
Tjs = ij (-Ts - Z xl,s)~

=1

In figure 23.2, we show the smoothing curves for a succession of band-
widths 8 >4 >2>1>0.5> 0.1 >0 and Trdumeres.

For our hierarchical smoothing process, we now start with the triangular
support function

b(s) =1 —|s|/b for s € [—b, 4]

= 0 else.
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Trauemerei: Kx for b=01051248 Traeumersi: Kx for b=01,05,1,24 8 Traumerei: Kx for b=0 1051248
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Fig. 23.2. Hierarchical smoothing curves for Trdumerei—metric, harmonic, and
melodic, from left to right—and bandwidths 8 >4 >2>1> 0.5 > 0.1 > 0.

and define the smoothed function for function f by

bo f(E) = /é(t—E) - f(@). (23.1)

It averages f around E with weighted center E' and bandwidth b. If this function
is a weight, this means that the weight’s analysis within the entire bandwidth
neighborhood of a given onset is included instead of spiking the analysis to the
singular onset. In the following process, this kernel smoothing process has been
applied to a hierarchy of bandwidths, starting with b = 4 (= eight measures),
then b = 2, then b = 1. The averaging process is taken to define successive
remainder functions as follows:

fi=dof, fa=20(f-f1), fa=1o(f—fi—fa), fa=f—fi—fa—f3 (23.2)
This means that the decomposition
T =21+ 2o+ T3+ 24 (23.3)

for a smooth weight x defines a “spectrum” of that weight with respect to
successively refined neighborhoods of its ambit.

Musically speaking, as already observed, this kernel smoothing process is
completely natural. In fact, the kernel function alters the original time function
f(E) by a weighted integration of f-values in the kernel neighborhood of a given
time E. This means that we now include the information about f from the
neighboring times to make an analytical judgment. This latter is a well-known
and common consideration in musical performance: The interpreter looks up
a full neighborhood of a time point to derive what has to be played in that
point. Moreover, the repeated application of the kernel smoothing process
with increasingly narrowed neighborhoods is understood as a succession of a
refinement in local analysis: First, the interpreter makes a coarse analysis over
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eight measures (b = 4), then he/she looks for the remainder f — f; and goes
on with refined actions, if necessary.

This procedure is applied to the metric, melodic, and maximal and mean
harmonic weights Tetric, Tmelodics Thmaz, Thmean and to their first and second
derivatives dgx,d%z. This gives the following list of a total of 48 spectral
analytical functions:

Tmetric,1 Tmetric,2 Tmetric,3 Tmetric,4
dExmetric,l dExmetricJ dE-Tmetric,S dExmetricA

2 2 2 2
dE‘rmetm'c,l dExmetricQ dExmetm'c,S dExmetricA

Tmelodic,1 Tmelodic,2 Tmelodic,3 Tmelodic,4

dE'xmeladic,l dExmelodic,Z dE'xmelodic,S dExmelodicA

2 2 2 2
dExmelodic,l dExmelodic,Q dExmelodic,?) dExmelodicA
Thmax,1 Lhmax,2 Thmax,3 Thmax,4

dE'tharc,l dEtham,Q dEthax,S dEthamA

2 2 2 2
dEtha:E,l dEtham,Q dE‘rhma:v,B dEthaxA

Thmean,1 L hmean,2 Thmean,3 L hmean,4
dE'rhmean,l dEthean,Q dE‘rhmean,?) dEtheanA

2 2 2 2
dEmhmean,l dEthean,Q dEthean,B dEtheanA

For which musical reasons are these derivatives added to the analytical
input data? The first derivatives measure the local change rate of analytical
weights. Musically speaking, this is an expression of transitions from impor-
tant to less important analytical weights (or vice versa), i.e., a transition from
analytically meaningful points to less meaningful ones (or vice versa). This
is crucial information to the interpreter: It means that he/she should change
expressive shaping to communicate the ongoing structural drama. In the same
vein, information about second derivatives is musically relevant because it lets
the interpreter know that the ongoing structural drama is being inflected. Ev-
idently, one could add higher derivatives, but we argue that an interpreter
is already highly skilled if he/she can take care of all these functions and also
observe different analytical aspects, from metrics to harmonics, simultaneously.

Besides these analytical input functions, we add three types of ‘sight-
reading’ functions. They regard the following three primavista instances: ri-
tardandi, suspensions, and fermatas. We omit these weights and refer to [84,
chapter 44] for details. The entire spectral averaging procedure yields 58 func-
tions of symbolic time E. Their vector, with all functions given a fixed order
of coordinates, is denoted by X (E) € R,
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Next, we look for a connection of this big analytical vector function to
the tempo function found from Repp’s analysis. We introduce this operator for
w € R8:

_Qf = (X7 OJ),

the scalar product of w and the analytical vector X. This means that for every
onset E, we have 2X(E) = (X(E),w). Recapitulating the meaning of the
analytical vector X, we are dealing with a second-order differential operator
that we call a “Beran operator” since it was introduced by Jan Beran in [6].

On this basis, the central question of the following is whether tempo curves
T of the Traumerei as they appear in the context measured by Repp in [111]
may be approximated via 22X by an appropriate choice of the shaping vector w.
The main result of this approach states that there is strong statistical evidence
for the equation

In(T)=0X+C (23.4)

for the given analytical vector X, a suitable shaping vector w, and a constant
C.

This means that the 58 coefficients of the shaping vector w are random
variables and that we prove a significant statistical correlation—in the math-
ematical form described by the Beran operator—between a certain subset of
the analytical vector X and tempo as it is measured for the 28 performances
by Repp.

Observe that the formula in 23.4 uses the

Y‘r logarithm of tempo, a remarkable fact, which fits
R in the general fact that logarithms are important
‘\\‘X{E) ® for cognitive processes, pitch and loudness being

A P the classical cases. Moreover, taking the loga-

\“\ rithm of tempo turns the set of all tempi into a

\ real vector space: In(T1) + In(Th) = In(T17T2),

\ and AIn (T) = In(T?) are reasonable operations
of tempo curves!

Fig. 23.3. The Beran op- This being so, the hypothesis to be verified

erator uses the scalar prod- as a statistical statement is that for each p of those

uct of the shaping vector w  famous 28 artists playing Trdumerei, the measure-

and the analytical vector X' ments of Repp enable a vector w, € R such that
at time E.

In(T,) =2 +C

is well approximated (figure 23.3).

This Beran operator formula is strongly supported by the present data set.
Moreover, it can be shown that a small number of weights is already significant
for the overall effect.
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The main statistical conclusions from the analysis can be summarized as

follows:

There is a clear association between metric, melodic, and harmonic weights
and the tempo.

The exact relationship between the analytic weights and an individual
tempo curve is very complex. However, a large part of the complexity
can be covered by our model.

Commonalities and diversities among tempo curves may be characterized
by a relatively small number of curves. There is in principle no unique way
of attributing features of the tempo to exactly one cause (harmonic, met-
ric, or melodic analysis). Which curves need to be used depends partially
on which of the three analyses (harmonic, metric, melodic) has ‘priority.’
However, there seems to be a small number of canonical curves that are
essentially independent of the priorities and which determine a large part
of the commonality and diversity among tempo curves. Natural clusters
can be defined.

There is a natural way of reducing an individual tempo curve to a series of
simplified tempo curves containing an increasing number of features.

The results here are closely related to Repp’s work [111]. Repp applied

principal component analysis to the 28 tempo curves. One of his main re-
sults is that Cortot and Horowitz appear to represent two extreme types of
performances. Thus, in a heuristic way, Repp suggested classifying the perfor-
mances according to their factor loadings into a Cortot and a Horowitz cluster,
respectively. Repp’s Horowitz and Cortot clusters are confirmed.
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