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Shaping Operators

Those who are good at making shape don’t usually fight.

Performance operators are those instances of our theory that shape a
performance transformation. We have defined the relevant structures, namely
performance cells, in chapter 10. A performance cell essentially includes the
performance transformation ℘, the symbolic kernel K, and the sounding output
data (the initial data are not central in this issue, so we neglect them here).
Performace operators will also have to act on one of the three components of
a performance cell: the symbolic kernel, the field defining the transformation
℘, or the physical sound output. According to one of these cases, we have
called the operator symbolic, field, or physical (figure 15.10). Any performance
operator will have to define such a performance cell.

This can be done in two ways: Either a completely new performance cell
must be constructed or a given one is taken and then used to generate a new
one. The first (uninteresting) case is known as primavista performance: One
takes the score data and produces a primary performance with no artistically
elaborate shaping. One could add the primavista operator as described in
section 16.4, and that is all. That operator takes the weights and interprets
them in a straightforward way. For example, it transforms the tempo weight
function wT as shown in figure 16.9 into a tempo curve without any change to
the weight’s shape. For example, if the default tempo is 100 [♩/min], then the
primavista tempo is T (E) = 100wT (E). This produces a neutral first rendition.

As already pointed out in section 15.3, the second case is much more
difficult and important since shaping operators must be applied in very different
situations of performance with complicated conditions.

Before delving into delicate questions of this type, let us get off the ground
with some easy operators. A very useful and easy symbolic operator is the split
operator. It is used to split the given composition into parts that have to be
treated separately, such as right and left hand for a piano composition, or pe-
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riods in order to shape such time slices independently. The operator takes
certain parameters and creates cubes by defining intervals in those parame-
ters. Then the composition (the symbolic kernel) is split into two portions:
one being within the cube, and the complement. If we repeat this procedure,
we may create quite sophisticated boxing configurations allowing for detailed
processing. For example, it may be necessary to deal with a small motif or an
ornament separately in its shaping. A trill, for example, might require a very
special agogical treatment. It can also happen that we just need to redefine
some symbolic objects for the sake of better symbolic representation. This
might happen with regard to some time signatures or pitch shifting conditions,
etc. This can be done with the symbolic operator. It allows for affine maps in
any set of parameters. We omit the details here.

A second, relatively easy type of operator is the physical operator. It
allows a weight to act upon any selection of parameters of the output of the
given performance. This does not influence the transformation, nor does it
change the symbolic kernel. It just takes the given output and then alters that
data. For example, we may let a weight act upon loudness or duration or pitch,
whichever.

We now want to give an instructive example of a tempo operator. Let
us first deal with a straightforward idea to construct a tempo operator. We
suppose that we are given a tempo field T (E) in the performance cell that we
want to modify by the tempo operator. The modification should be made using
a weight function w(E). The straightforward approach is to let this weight
act as-is upon the tempo and to generate a new ‘weighted’ tempo Tw(E) =
w(E)T (E). This works supposing that the weight takes only positive values on
the given time frame. Let us suppose this now. But how should we deal with
the extension of this formula to articulation? If we are given a parallel field
at the outset, we have ∂T (E,D) = (T (E), 2T (E +D)− T (E)). So we get the
weighted parallel field

∂Tw(E,D) = (Tw(E), 2Tw(E +D)− Tw(E)).

While this formula might work for a parallel field, if we apply it to a non-
parallel field, it destroys the duration component of the given field and replaces
it with the parallel component. This is precisely the delicate situation we
alluded to above when saying that this is the straightforward approach: The
given performance field might have a tempo component, but the articulation
component (duration) is not a function of the tempo. Can such destructive
action be avoided?

Yes, it can, and that works as follows. Restate the D component of the
parallel field by

2T (E +D) = ∂T (E,D)D + T (E)

and then get the formula for the weighted parallel field:

∂Tw(E,D)D = w(E +D)(∂T (E,D)D + T (E))− w(E)T (E)

= w(E +D)∂T (E,D)D + (w(E +D)− w(E))T (E).
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So the total two-dimensional articulation field is as follows:

∂Tw(E,D) =

(
w(E) 0

w(E +D)− w(E) w(E +D)

)
∂T (E,D)

Call

Qw(E,D) =

(
w(E) 0

w(E +D)− w(E) w(E +D)

)
this matrix. Then we can define this field equation

Tsw(E,D) = Qw(E,D)Ts(E,D)

for an arbitrary articulation field. The definition is independent of Ts(E,D)
being parallel or not. This is what can be taken as a generic definition of the
tempo operator! Whenever we have an articulation field Ts on RED, the tempo
operator is just the one defined by the matrix Qw deduced from the weight w
with the above formula. Of course, this specializes to the weighted parallel field
if the original articulation field is parallel. But it works in complete generality.

This example shows where lie the difficulties and subtleties in the con-
struction of clever performance operators: They act in maximal generality
upon given performances, but specialize to what is expected for classical spe-
cial cases. This has a deeper meaning than just a technical flexibility. The
entire operator theme is about what it means to conceive expressive perfor-
mance. This concept is about how we insert rhetorical architecture into the
performance’s unfolding. What is it that we want to influence by a given weight,
and what is the essence of such an influence? For example, the tempo opera-
tor: Do we really understand this operator if we just apply it to the parallel
situation? The above construction shows that we can interpret the tempo pro-
cessing by a weight as being a deformation of any given articulation hierarchy
Ts(E,D)→ T (E).

Behind this concern for flexible operators is also the deep question about
the variety of operators as such. How many operators do we have? Are they
all essentially different or are there some generic operators that specialize to
more specific forms? Is there even a unique master operator, which can be
specialized to any specific type?

Why is this musically speaking relevant? Because we would like to know
about the unifying principles of expressive performance, at least in the analyt-
ical domain.

17.1 Are Lie Type Operators Universal?

There is a type of shaping operator that is both a well-known construction
in mathematics as it is a quite general approach in the musical context. It
uses a classical operator in differential geometry: the Lie operator. The Lie
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operator is defined for a given vector field X on a performance frame, say.
It takes a differentiable function f on that frame and creates a new function
LX(f), the Lie derivative of f . This operator LX : F → F on the algebra F
of functions on the given frame acts as a derivation: It is R-linear and we have
LX(fg) = fLX(g)+gLX(f). The relevance of this construction lies in the fact
that the map X 7→ LX is an isomorphism of the vector space of vector fields
onto the vector space of derivations. A vector field is essentially the same as a
derivation, which transforms functions into functions. Therefore:

Performance fields are essentially derivations on weights. Which means
that performance fields are naturally associated with weights.

This is a strong argument for both, the performance field formalism and
the usage of weights for the shaping of performance. Let us define a general
operator using a weight and acting upon a given performance field. Take a
performance field Ts on the source space RX. of a performance hierarchy. Let
Z, S be two subspaces of the hierarchy, Λ a weight on Z, and Dir : S → S
an affine endomorphism. Let iS : S → RX. be the embedding map of S, and
pS : RX. → S the projection onto S. Then we have this new performance field:

TsΛ,Dir = Ts− LTsZ (Λ)iS ◦Dir ◦ pS

with TsZ being the Z-component of Ts. This shaping operator type is called a
Lie operator. So the operator acts trivially if the gradient of Λ is orthogonal to
the given field TsZ , i.e. the integral curves of the performance field move along
constant weight hypersurfaces. Which is completely natural: When moving
along an integral curve, the weight does not change, so it should not affect the
given performance.

The point of this Lie type operator is that it cover quite a number of
operators. Namely all those that create one of the following three deformations
of hierarchies:

• The articulation hierarchy ∂T → T deforms to Zw → Tw for a given weight
w by the above matricial operator Qw.

• The parallel articulation hierarchy ∂T → T deforms to a general hierarchy
Z → T .

• The hierarchy
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deforms to the hierarchy Z → T .
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