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Analytical Weights

Weight and measure save a man’s toil.

Analytical weights did not come up from empty space. In fact, our idea
was taken from Hugo Riemann’s definition of metrical weights: Meter relates
to weights. So it was decided to generate an output in the form of numerical
weights for any analytical engine. Here is the precise definition of a weight:

Definition 1 An analytical weight is a continuous function

w : PARA→ R

defined on a space PARA of parameters such as RE, RH , REHL, etc., with
non-negative real values.

Such weights are calcu-

Fig. 16.1. An analytical weight on the space
REH .

lated upon music analyses and
correspond to associated se-
mantics. For example, a met-
rical weight w : RE → R
might associate metrically im-
portant onsets with higher weights.
We observe that weights are
also defined where no notes
are present. This is not a
restriction, since any discrete
functions defined only on notes,
say, can be extended in a con-
tinuous way to the entire space. There are also deeper reasons for this setup.
Since performance fields are defined on entire frames (see section 10.1), their
shaping must be defined for any argument of those frames, also where there
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are no notes. Therefore, it is wise to use weights that are defined all over
the place. There is also a more computer-driven argument for such an exten-
sion. If we are to apply a shaping to a given note, it might be that for certain
computer-generated imprecisions, the position of the note cannot be identified
with the position of a discrete weight, when applied to that note. Therefore, it
is prudent to extend the discrete weight continuously to the neighborhood of
each note point.

We have implemented the construction of continuous weight functions
from discrete weights by use of cubic splines. Cubic splines are uniquely de-
termined cubic polynomial functions P (x) = a3X

3 + a2X
2 + a1X

1 + a0, which
connect two values f0, f1 at two arguments x0, x1, respectively, with the given
slopes s′0, s

′
1. This means that P (x0) = f0, P (x1) = f1, P

′(x0) = s0, P (x1) =
s1. This construction can be extended by recursive procedures to functions on
higher-dimensional spaces [84, section 32.3.2.1]. Our slopes are always set to
zero, so that the local variation of the continuous extension is minimal, if the
argument is slightly different from the required data.

In the following section, we present a bunch of analytical tools, which were
implemented in the Rubato software to give prototypical examples of analytical
procedures following the above weight philosophy. Although none of these was
thought to be a particularly creative contribution to musical analysis, it turned
out that they all quite ironically entailed successful scholarly careers of those
specialists1 who delved into these analytical topics without deeper connections
to performance theory as such.

16.1 Metrical Weights

The metrical analysis that we developed in this context can be understood
from its central concept: the local meter (figure 16.2). This is akin to the
one proposed by Jackendoff and Lerdahl [53], but differs in essential points:
A local meter is a finite sequence M = (E0, E1, . . . El) of regularly distributed
symbolic onsets Ei with constant interval d = Ei−Ei−1, i = 1, . . . l, the number
l = l(M) is called the local meter’s length. Local meters are however always
built from onsets that appear as attributes of objects, such as notes, pauses, etc.
in a score. Onsets that are not related to concrete objects are not admitted,
in contrast to the approach in [53], and also in accordance with Riemann’s
understanding of metrical structure being supported by existing events.

A maximal local meter in a score is a local meter, which cannot be em-
bedded in a properly larger local meter. Figure 16.2 gives an example of a
maximal and of a non-maximal local meter. In the metrical analysis of a piece,
we then project all notes to their onsets and look at the covering of those onsets
by maximal local meters. Figure 16.3 shows a simple music piece X and its
covering Max(X) = {a, b, c, d, e} by five maximal local meters.

The notes are not all in the same position with respect to this covering.
Some are contained in many maximal local meters, others in just one of them.

1 This is Chantal Buteau for melodic analysis and Anja Volk-Fleischer for rhythmical
analysis. And to a lesser degree Thomas Noll for harmonic analysis.
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Fig. 16.2. Local meters: to the left a maximal one, in the middle a counterexample,
to the right a non-maximal local meter. The metrical analysis is akin to the one
proposed by Jackendoff and Lerdahl [53], from where we have taken the present score
excerpt, the beginning of Mozart’s Jupiter Symphony.

Some are contained in longer local meters, some in shorter. There are two
views on this situation: a topological and a numerical. The topological one
views notes of the composition X as being more or less dominant over others
as a function of the maximal local meters which contain them. This is formally
represented by the so-called nerve N (X) of the covering Max(X). Figure 16.4
shows the situation.

Fig. 16.4. The nerve of a composition X.
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We have a map Sp : X → N (X) that associates with each note x ∈ X the
set Sp(x) of all maximal local meters containing x, this is called the simplex
of x. We then see that certain notes are metrically dominant in the sense that
they have larger simplexes than other notes. Musically speaking, this means
that these notes participate in more local meters then others, so their metrical
relevance is dominant. We see in our example that note 6 has a tetrahedron
simplex—it is contained in maximal local meters a, c, d, e—whereas note 12 is
only in the simplex that has a single maximal local meter e. So note 6 dominates
note 12: That maximal local meter defines one vertex of the tetrahedron. Note
3 has a simplex built from two maximal local meters b, c, and we draw a line
to visualize their common note 3. Note 2 has a triangle simplex: It is spanned
by three vertexes, a, b and d.

Fig. 16.5. The metrical analysis of Schumann’s Träumerei, op.15/7, by Rubato’s
MetroRubette reveals a left hand weight of 3 +5 against a right hand of 4 beats,
while the combined metric weight is an eight note offbeat metric.

The topological perspective is interesting, but far from what we expect:
namely the weights associated with a given analysis. We would like to call the
nerve the global metric of the piece, while the global rhythmic would be the
following. We look at a given onset x. Then we look at all maximal meters
containing that onset, and then we try to get a weight from that information.
This information consists of two things: the maximal local meters containing
that x, and then for each such object, a numerical value measuring this local
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meter’s significance for that onset. We propose this formula for the metrical
analysis we have implemented:

w(x) =
∑

x∈M,m≤l(M)

l(M)p

where m is a minimal length of maximal local meters to be considered in this
calculation, and where p (metrical profile) is a power that determines the rele-
vance of lengths of local meters. The minimal admitted length m means that
maximal local meters shorter than m are omitted. We only look at maximal
local meters with sufficiently large length. We would call this function w the
global rhythmic of X, the rhythmic being a function of the global metric struc-
ture but having a numerical expression, and this one being a weight function.

While this is a fairly satisfac-

Fig. 16.3. The maximal local meters cov-
ering the piece X.

tory solution of the original prob-
lem, we are still left with some prob-
lems. In fact, in music scores, there
are many different signs that relate
to time: notes, pauses, notes from
different instruments, bar lines, etc.
How can we manage this? The ap-
proach is fairly simple. We take a
number of such types of objects, like
notes, pauses, etc. Let them be the
types t1, t2, . . . tk. Then we have a
weight function wi(x), i = 1, . . . k for
each of them according to the preceding theory. Further, we decide to give
each of these weights a weight, i.e. a number νi ∈ R measuring the strength of
the weight wi. Then we can define a combined weight by the function

w(x) =
∑

i=1,...k

νiwi(x)

Let us look at an example to illustrate the general technique and its usage.
In figure 16.5, the right hand shows a regular 4-beat weight, when we go to
the longest possible minimal length m where there are maximal meters. In
contrast, the left hand shows a 3+5 structure; this means a two-bar regularity,
a marked opposition to the regular right hand. This creates a strong tension in
performance; perhaps this is felt by many pianists performing the Träumeri?!
The weighted sum of both of these weights (with ν1 = ν2 = 0.5) shows a half-
measure offbeat metrical weight. The left hand sound with its 3+5 structure
can be heard from a computer-generated performance in example � 17.

For a more detailed study of metrical weights, we refer to Anja Volk-
Fleischer’s work [33].
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16.2 Melodic Weights

A second analysis that we have implemented was inspired by Rudolf Reti’s work
on thematic processes in music [113]. It turned out that here, much more than
with the metrical/rhythmical analysis, there was no valid theory. The very
concept of a melody or motif is not defined, and no precise theory about the
body of motivic structures within a given composition is available. We do not
discuss this dramatically underdeveloped theory here, but see [9] for a detailed
account. Despite this deplorable state of the art of motivic analysis, we have
initiated an analytical theory of motives in order to be able to implement such
thoughts and to use them in the framework of the Rubato software.

To begin with, we suppose that the score is given as a set of events with
onset and pitch and possibly some other coordinates. So they live in the space
REH.... Then

Definition 2 A motif M in REH... is a finite set M = {n1, n2, . . . nk} ⊂ REH...
of k different notes having all different onsets, i.e. Eni 6= Enj if i 6= j.

With this definition, one may define different paradigms of similarity among
motives, depending upon the information extracted from a motif’s structure.
For example, one may only look at the structure of increasing, equal, or de-
creasing successive notes. We omit the technical details here and refer to [84,
Chapter 22]. Whatever is the similarity paradigm, we may then define precisely
what it means when a motif is similar to, i.e. in a neighborhood of, another
motif with the same cardinality. This is a concept of distance, so we may say
that the distance d(M1,M2) of motif M1 to motif M2 is less than 0.125.

Fig. 16.6. The weights of motives in the main theme of Bach’s Kunst der Fuge. The
motives are grouped by their cardinality, and the weight to the left is encoded by
brightness.
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With these prerequisites, given a positive real number ε, we may define
the melodic weight of motives (the definition is somewhat simplified here but
gives the idea, see [84, Chapter 22] for a detailed account). Take a motif M
in our composition and look at all motives N in the given composition such
that there is a submotif N∗ ⊂ N , with the same cardinality as M , such that
d(M,N∗) < ε. Call their number the ε-presence prε(M) of M . Similarly,
consider all motives L in the composition that are in the ε-neighborhood of a
submotif of M , and call their number the ε-content ctε(M) of M . Then the
ε-weight wε(M) of M is the product

wε(M) = prε(M)× ctε(M).

So the weight of a motif ‘counts’ all motives that contain some motif similar to
M or being similar to a submotif of M . This accounts for the motif’s relation
to other motives in the composition. See figure 16.6 for an example.

Fig. 16.7. The weights of notes in Schumann’s Träumerei in Rubato’s MeloRubette.
The vertical lines are the barlines.

Given these numbers, we can define the melodic ε-weight of a note x of
our composition to be the number

wε(x) =
∑

M,x∈M
wε(M)

Its music-theoretical meaning is the account of all motives’ weights, where x
is a member. See figure 16.7 for an example, where the gray value of disks
encodes the weight of the notes that are represented by these disks.

16.3 Harmonic Weights

The harmonic analysis that we have implemented is quite involved Riemann
theory. Riemann harmony is designed to attribute to chords three types of
harmonic values: tonic, dominant, or subdominant. Such a value is always re-
lated to the tonality where the given chord is situated. This valuation of chords
generates a syntax of harmonic values, which reflects the harmonic semantics of
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tonal music. Harmony then makes statements about the harmonic meaning of
given sequences of chords. Despite this fundamental role of Riemann harmony,
Rubato’s HarmoRubette for harmony is the rist to make Riemannian function
theory fully explicit. The reason is that Riemann’s harmony has never been
completed because complex chords have never been given harmonic values by
a reliable system of rules, but see [84, Chapter 25] for details. Our idea is
this: We start with the sequence (Ch1, Ch2, . . . Chn) of all chords in a given
piece X. We first calculate the Riemann function values for each chord. This
means that for every Riemannian value riem = T,D, S, t, d, s of major tonic
T , dominant D, subdominant S, and minor tonic t, dominant d, subdominant
s, and every tonic ton = C,C#, D,D#, E, F, F#, G,G#, A,A#, B, we calculate
a fuzzy value valton,riem(Chi) ∈ R of chord Chi. This defines the Riemann
matrix val.,.(Chi) of Chi. The fact that we do this in a fuzzy way means that
we do not oversimplify the situation: It might happen that a chord is ‘more or
less’ dominant in D major; this is the meaning of fuzzy values here.

Fig. 16.8. The Riemann graph of a composition in Rubato’s HarmoRubette. The
sequence of chords is given Riemann values as a function of least transition weights.

Next, preferences allow us to set the transition weights for any pair of suc-
cessive chords and Riemann parameters (ton, riem,Chi), (ton�

, riem
�
, Chi+1),

using also the Riemann matrix values valton,riem(Chi), valton�,riem�(Chi+1).
Harmonically difficult transitions will get larger weights than easier transitions.
With this information, one then looks at all paths of Riemann parameters of
chords

(ton1, riem1, Ch1), (ton2, riem2, Ch2), . . . (tonn, riemn, Chn)
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and calculates the weight of such a path as a function of the pairwise transition
weights. The lightest path is then chosen as being a solution of the Riemann
function attribution for all chords. Figure 16.8 shows an example of a harmonic
path.

The calculation of harmonic weights of single notes is now easy (although
very intense in terms of computer calculation work). We select a note x, living
within a chord Chi0 . Then we calculate the weights for the chord Chi0 − {x}
and look at the ratio of the full path as compared with the weight of the path
with the chord after omitting x. The weight of x increases if the ratio is large,
and so we get weights of single notes. The technical details are described in
[84, section 41.3], we omit them here.

Whereas the rhythmical weight is essentially a function on the onset space
RE , both the melodic and the harmonic weights are functions on REH .

16.4 Primavista Weights

Fig. 16.9. The PrimavistaRubette deals with performance commands given from the
score’s structure. Here, we are giving the primavista agogics defined by the score’s
tempo indications.

The primavista weights are a special case, but one can interpret them
in terms of weights. It deals with performance signs that are written on the
score and need a representation by means of weights. We can do this for all
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primavista signs. Let us show how it is done just for agogics. In the example
shown in figure 16.9, we have a set of tempo indications: several ritardandi
and one fermata. This can be encoded as a weight function that shows a
tempo curve that reflects these signs. The precise shape and quantity of these
commands can be defined on the preferences of the PrimavistaRubette, so it is
up to the user to make precise the meaning of a ritardando or a fermata. But
the resulting curve is understood as a weight function, which, when applied to
tempo shaping, yields the quantitative and qualitative forms of these agogical
signs.
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