
Action Knowledge Acquisition with Opmaker2

T.L. McCluskey, S.N. Cresswell, N.E. Richardson, and M.M. West

School of Computing and Engineering,
The University of Huddersfield, Huddersfield HD1 3DH, U.K.

{T.L.McCluskey,S.N.Cresswell,
N.E.Richardson,M.M.West}@hud.ac.uk

Abstract. AI planning engines require detailed specifications of dynamic knowl-
edge of the domain in which they are to operate, before they can function. Further,
they require domain-specific heuristics before they can function efficiently. The
problem of formulating domain models containing dynamic knowledge regard-
ing actions is a barrier to the widespread uptake of AI planning, because of the
difficulty in acquiring and maintaining them. Here we postulate a method which
inputs a partial domain model (one without knowledge of domain actions) and
training solution sequences to planning tasks, and outputs the full domain model,
including heuristics that can be used to make plan generation more efficient.

To do this we extend GIPO’s Opmaker system [1] so that it can induce rep-
resentations of actions from training sequences without intermediate state infor-
mation and without requiring large numbers of examples. This method shows the
potential for considerably reducing the burden of knowledge engineering, in that
it would be possible to embed the method into an autonomous program (agent)
which is required to do planning. We illustrate the algorithm as part of an overall
method to acquire a planning domain model, and detail results that show the effi-
cacy of the induced model.

Keywords: Planning and Scheduling; Machine Learning.

1 Introduction

Applications of AI planning technology require persistent resources comprising of
teams of highly skilled engineers to formulate and maintain a planner’s knowledge
base. The amount of effort needed to encode error free, accurate action specifications
and planning heuristics, and to maintain them, is significant. Actions are real world op-
erations that change the state of object(s) in the world in some way. These actions are
invariably encoded in planning knowledge bases as generalised representations called
operator schema. Additionally, heuristics are often hand coded in the form of methods
which encapsulate the preferred solutions of a generalised subtask. Our work is aimed
at automating the formulation of such operators and methods by employing a trainer
to create training tasks and example solution sequences of these tasks. The solutions
are fed to a knowledge acquisition tool, Opmaker2, as a sequence of action instances,
where each action instance is identified by name plus the object instances that are af-
fected by, or are necessarily present at, action execution. The sequences are produced
by a trainer - a domain expert who may not be familiar with the languages and notations

J. Filipe, A. Fred, and B. Sharp (Eds.): ICAART 2009, CCIS 67, pp. 137–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

138 T.L. McCluskey et al.

used by planners. Opmaker2 constructs operator schema and planning heuristics from
training sessions which are composed of a handful of such action sequences. In other
words, it outputs detailed specifications of operator schema from single action traces
automatically, without requiring intermediate state information for each training exam-
ple. The induced actions are detailed enough for use in planning engines and compare
well with hand crafted operators.

This paper describes Opmaker2, an extension of the earlier Opmaker system [2], in
that the latter is an interactive learning tool, whereas the former can be run in batch
mode without the need for user assistance. Opmaker was implemented within the
GIPO system [1], an experimental tools environment for use in the acquisition of AI
planning knowledge, containing a wide range of engineering and validation tools. GIPO
was based on the planning language of OCL [3]. To motivate the rest of the paper, we
will describe in a little more depth the problem that we are aiming to solve, in terms of
a learning, or more specifically a knowledge acquisition problem. Automated planning
systems can be logically described as having three components.

(a) The domain model (sometimes referred to as a domain description) is the specifica-
tion of the objects, structure, states, goals and dynamics of the domain of planning.
The language family used for the communication of domain models is PDDL [4],
although in this paper we use a higher level language called OCL[5] for domain
modelling. Component (a) is further split into:
(i) knowledge of objects, object sorts, domain constraints, and possible states of
objects - collectively called static knowledge.
(ii) knowledge of action and change - knowledge of dynamics. This knowledge
is in both PDDL and OCL represented as a set of parameterised operator schema
representing generic actions in the domain of interest.

(b) The planning engine is the software that reasons with the knowledge in (a) to solve
planning goals. The development of fast planning engines which can deal with
expressive variants of PDDL (e.g. modelling domains containing durative actions
and metric resources) has been a primary goal of the AI Planning community.

(c) A set of planning heuristics. The general problem of AI Planning is well known
to be intractable, and a set of heuristics for each domain is required to make the
application of (b) to (a) tractable. Whereas the form and content of (a) and (b) are
well understood, what form heuristics take is more contentious. Putting domain
heuristics with the planning engine may limit its application (they anticipate the
domain). Encoding heuristics into the domain model when constructing it is equally
contentious - as the authors of PDDL claim it is for “physics and nothing else”[4].

The knowledge acquisition problem that this paper addresses is:

Given knowledge of (a)(i), can we design a simple process to enable a system
to automatically acquire knowledge of type (a)(ii) and (c)?

The reason for setting up this knowledge acquisition problem is that hand crafting
knowledge of dynamics (in particular operator schema), and planner and domain spe-
cific heuristics, is much harder than acquiring knowledge of type (a)(i). The difficulty
in acquiring knowledge of actions is invariably pointed out in reports of AI planning
applications (for example, in reports of Space applications [6]).

Action Knowledge Acquisition with Opmaker2 139

The general method that we are proposing is for a system to acquire knowledge
from examples of solved tasks, represented as sequences of actions, given to it by a
benevolent trainer. Operator schema (type (a)(ii) knowledge) are induced from each
example action, whereas heuristics (type (c) knowledge) are induced from the whole
sequence of actions the trainer uses to solve a task. The heuristics are in the form of
HTN-type methods.

The rest of the paper is structured as follows: in section 2 we outline the Opmaker2
system, starting with its inputs and outputs, and then detail the operation of its state-
deriving component. We use a tyre-change domain to illustrate the algorithm which
contains the knowledge acquisition process. Section 3 contains our experimental results,
and Section 4 a brief survey of related work.

2 The Opmaker2 System

In this section we describe the Opmaker2 system, and explain how it can form a solu-
tion to the knowledge acquisition problem introduced in the last section. We will use as
a running example throughout the rest of the paper a domain which represents chang-
ing the tyre of a car wheel. This domain is an extended version of the simpler ‘tyre
world’[7]. It involves knowledge about such objects as tyre, wheel, nuts, wheel-trim,
jack, wrench, and such actions as undo-nuts, put-on-wheel etc. In Opmaker2, compo-
nents of type (a)(i) knowledge are referred to collectively as the partial domain model
PDM. For our running example, the partial domain of the tyre-change domain is pro-
vided in the appendix, in the native code of OCL. There are two inputs to Opmaker2:
the PDM and a set of hand crafted solution sequences to planning tasks. A PDM
consists of:

object identifiers and sort names: denoted Objs and Sorts respectively; there are a
number of sorts, each containing a set of objects where each object belongs to one
set (called a sort). An example of an object is hub1 belonging to the hub sort. The
behaviour of each object in a sort is assumed to be the same as all others in the sort.

predicate definitions: denoted Prds, where each object of each sort may be related to
objects of other sorts, and have property - value relationships with sets of basic val-
ues (boolean or scalar). Examples are on ground(hub), jacked up(hub, jack),
relating to whether an object of sort hub is on the ground or jacked up.

object state expressions: denoted Exps; these define all the possible values of an ob-
ject’s state. An object’s state is defined by its relationship with other objects and/or
the value of its properties. Sorts are engineered so that the object state space is
defined by a small number of expressions. For example, the tyre-change PDM
specifies that any object H of sort hub can occupy a state satisfying exactly one of
the following object expressions:

[on_ground(H),fastened(H)],
[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J),unfastened(H)],
[unfastened(H),jacked_up(H,J)]

140 T.L. McCluskey et al.

(as a convention we choose upper case variables as parameters - here J represents
any object of sort jack).

domain invariants: denoted Invs; these are used to define domain constraints and are
written in terms of the predicates given above. Informally, a set of invariants is
adequate if it disqualifies states which are inconsistent. For example: “Only a single
wheel can be on a hub”.

∀H :hub . ∀W1:wheel . ∀W2:wheel .

⎡
⎣
⎛
⎝

wheel on(W1, H)
∧

wheel on(W2, H)

⎞
⎠ ⇒ (W1 = W2)

⎤
⎦

The second input is a set of solution sequences and the tasks that they solve. These are
supplied by a trainer (a domain expert). For the purposes of training in Opmaker2, we
define a task in terms of:

– an initial state comprising the initial states of objects in the domain,
– a set of desired goal states for a set of objects.

A solution sequence solves such a task and is written in terms of verbs (action names)
and affected objects. The trainer is expected to include references to all objects that are
needed for each action to be carried out, indicating whether or not the objects change as
a result of the action. Typical tasks in the domain should be chosen that often form the
basis of solutions to larger tasks. For example, in the sequence below a changed wheel
is secured on the hub and the vehicle is made ready for use.

do_up unchanged - wrench0, jack0, wheel1;
changing - hub1, nuts1

jack_down unchanged - null
changing - hub1, jack0

tighten unchanged - wrench0, hub1;
changing - nuts1

apply_trim unchanged - hub1;
changing - trim1,wheel1

Objects preceded by unchanged remain unaffected by the action, but have to be present
in the state during execution of the action. In the first element of the sequence, wrench0,
jack0 and wheel1 all have to be in a certain state specified by initial state of the task
(wrench0 is available, jack0 is jacking up the hub, and wheel1 is trimless to allow the
nuts to be screwed). The changing objects must change state (hub1 becomes fastened
and nuts1 are done up).

The output of Opmaker2 is a full domain model, consisting of:

operator schema: they make up the knowledge of type (a)(ii), and represent actions or
events that change objects’ states. They are specified by a name, a list of parameters,
and a set of object transitions. Transitions may be null (in which case they act
as prevail conditions), necessary or conditional. The template of a schema is as
follows:

Action Knowledge Acquisition with Opmaker2 141

head: name(list of parameters)
body: ≥ 0 prevail conditions;

≥ 1 necessary transitions;
≥ 0 conditional transitions

Prevails are represented by object state expressions, whereas necessary and condi-
tional transitions are written in the form LHS ⇒ RHS, where LHS, RHS are
object state expressions.

methods: each training sequence results in a parameterised method, similar in form to
hierarchical (HTN) methods found in AI Planning. A method comprises of a name,
prevail conditions, and a sequence whose members can comprise both operator
schema and (other) methods. Methods can be used as a heuristic in planning engines
as they encapsulate preferred ways to solve planning problems.

2.1 The Opmaker2 Algorithm

The main innovation of Opmaker2 is that it computes its own intermediate states using
a combination of heuristics and inference from the PDM and the training tasks and
solutions. This gives a fully automated solution to the knowledge acquisition problem
described above - there is no need for user advice. In contrast, its predecessor Opmaker
is a mixed initiative knowledge acquisition tool which requires the same inputs as above
(a PDM and a set of solution sequences to tasks) and, additionally, it requires user ad-
vice. As Opmaker creates an operator schema from each action in a training solution
sequence, it asks the user to input, if needed, the target state that each object would
occupy after execution of the action. In order to build up transitions that form an oper-
ator schema, the LHS is taken as the current state of the object (object transitions are
tracked as each action is processed). The RHS is taken from the user input, which in-
dicates, where there is a choice, the state an object is left in (this becomes that object’s
current state). Having the start and end states for each object involved in the action,
Opmaker proceeds with a generalisation phase where object instances are replaced
with sort parameters, which then form the parameter variables X1, . . . , Xn of the re-
sulting operator schema. In supplying the solution sequences, the trainer specifies what
objects take part in what actions. As actions are executed, objects go through state tran-
sitions and occupy intermediate states en route to reaching their goal states. The space
of states that an object may occupy are defined by the state expressions of the PDM.
To be able to automatically acquire operator schema, Opmaker was able to resolve
exactly what are the intermediate states of each object affected in the training sequence
by asking for user advice.

In contrast, Opmaker2 uses a procedure called DetermineStates, which performs this
function by tracking the changing states of each object referred to within a training ex-
ample. It takes advantage of the static, object-state information and invariants within
the domain model. The output from DetermineStates is, for each point in the training
sequence, a map which associates each object with a unique state value. Uniqueness is
not guaranteed, however, and depends on the information in the PDM, hence some-
times this map may return a set of states rather than a unique one (we return to this
problem below). Once the map determining intermediate states has been generated, the

142 T.L. McCluskey et al.

techniques of the original Opmaker algorithm are used to generalise object references
and create parameterised operator schema.

A Description of the DetermineStates Procedure. To illustrate the workings of the
Procedure, we will use the example tyre domain solution sequence to form the initial
stage of an example walk-though. Let us consider A(1) − A(4) = do_up, jack_down,
tighten, apply_trim as given above. The algorithm is as follows:

Procedure DetermineStates
In:

PDM,
I, F are maps of objects to their Initial, Final state, resp.
T = A(1)..A(N): training sequence of N actions

Out:
maps Ci, i = 1, . . . , N + 1, mapping from object names

to object states such that action A(i) of T
represents a transition from Ci to Ci+1

Define A.c to be the set of A.obj’s changing objects
1. C1 := I ; CN+1 := F ;
2. for each i ∈ 1, . . . , N
3. for each object O �∈ A(i).c
4. Ci+1(O) := Ci(O);
5. end for
6. for each object O ∈ A(i).c
7. if O �∈ A(i + 1).c ∪ . . . ∪ A(N).c then
8. Ci+1(O) := F (O)
9. else
10. choose Ci+1(O) := any legal state using PDM
11. with parameters bound to objects in A(i) or Ci(O)
12. test the choice using the following constraints
13. – Ci+1(O) �= Ci(O)
14. – the transition Ci(O) ⇒ Ci+1(O)
15. must be consistent with transitions at
16. previous occurrences of A(i).name
17. end if
18. end for
19. test that the conjunction of Ci+1(O) for all O
20. is consistent with PDM’s invariants
21. end for

In Line 1 the first and last components of the map C are initialised to be the same as
the initial and final state respectively. The algorithm then iterates for all actions in the
sequence. When i = 1, Lines 3-5 define C2 as the same as C1 when applied to non-
changing objects in the domain. Lines 6-18 attempt to determine the rest of map C2

where it is applied to objects that change as a result of the execution of A(1). Line 6
identifies the changing objects (hub1 and nuts1) - let us consider hub1. Lines 7-8 look
ahead to see if hub1 will not change again in a subsequent action and find that it does in
the second action in the sequence. If we had chosen an example where the object does
not change again after the first action then Line 8 would set the object’s state to be the

Action Knowledge Acquisition with Opmaker2 143

final state. Considering Line 10, using the partial domain model there are four potential
values for C2(hub1):

a. [on_ground(hub1),fastened(hub1)]
b. [free(hub1),jacked_up(hub1,jack0),unfastened(hub1)]
c. [jacked_up(hub1,jack0),fastened(hub1)]
d. [unfastened(hub1), jacked_up(hub1,jack0)]

Lines 12-16 of the algorithm determine which of these states is appropriate. The con-
straint in Line 12 makes sure the new object state is different from the last. hub1’s
current state is [unfastened(hub1), jacked_up(hub1,jack0)], so this elimi-
nates d. Lines 13-14 checks that an object state has no unreferenced parameters (if part
of the state description references an object not taking part in the transition, then that
state would be inappropriate). This does not eliminate any of the choices in the exam-
ple. Lines 15-16 check that the union of all the chosen states (in this case incorporating
choices for hub1 and nuts1) are consistent. Using these constraints, the states a. and
b. are eliminated, leaving c. to be chosen as the value of C2(hub1).

To complete the Opmaker process, once the state space map C has been determined,
operator instances are constructed by creating prevail components for each unchanging
object, and creating necessary transitions for each object that is changed by an action.
These instances are generalised to schema on the basis that each object in a sort behaves
the same, and can be replaced by a sort parameter. The systems stores the definition of
the operator schema and checks them against any previous definition. Finally, a method
is generated by combining the induced operator schema, using the original Opmaker
code.

Non-deterministic choices in the selection of an object’s state expression, and the
binding of the variables in the object state expression (Lines 10-11) mean that some-
times the new state cannot be uniquely determined. However, we have found that this
depends on the strength of the invariants that are supplied with the PDM.

3 Experiments and Results

Opmaker2 has been implemented in Sicstus Prolog incorporating the algorithm de-
tailed above. We use the same experimental approach that was used to test the original
Opmaker system, which was to:

1. Compose training tasks and solution sequences from a range of domains that have
already been captured within a hand-crafted model. The set of training tasks should
contain at least one instance of each action in the domain, and each task is selected
on the basis of whether it is likely to form building blocks for the solution of more
complex tasks. The (initial) partial domain model input into Opmaker2 is the hand
crafted domain without its operator schema.

2. Use Opmaker2 to induce operator schema and methods from the training tasks
and solution sequences, and the partial domain model.

144 T.L. McCluskey et al.

3. Use a planning engine to check that the automatically acquired operator schema
can solve the same set of problems that the hand-crafted set has been applied to.

4. Use a planning engine to compare performance of the old hand-crafted action
schema versus the induced schema and methods. In this case HyHTN [8], a HTN
planner which can take advantage of the induced methods, was used. For a com-
parison with a planner which uses only operator schema (without methods), we use
Hoffmann’s FF planner [9]. 1

Success is judged using the following kinds of criteria:

1. Uniqueness: is a set of unique operator schema acquired from the training tasks
and the partial domain model that originated from the hand crafted domain model?
Or, more subtly, can Opmaker2 induce unique schema without having to encode
many invariants into the domain models?

2. Validity: Can a set of operator schema output from Opmaker2 be used by a planner
to solve the same tasks that the original training sequences were aimed at?

3. Efficiency: Is it more efficient, in terms of planning time, to solve tasks using
Opmaker2 defined operator schema and methods, rather than the original hand-
crafted operators?

We detail the results for the extended tyre domain below, and describe other domains on
which we have experimented. More details can be found in a recent doctoral thesis [10].

Results in the Extended Tyre Domain. The handcrafted version of the extended tyre
domain has 26 objects in 9 sorts, with 22 operators. We engaged a researcher (who was
not the author of Opmaker2 software) to create 7 sequences of tasks of between 2 and
5 actions in length, encapsulating useful subtasks such as taking a wheel off a hub, or
bringing tools out of the car’s boot. When input to Opmaker2 with the initial partial
domain model, procedure DetermineStates did not have enough information to discover
unique sequences of states for all objects in the training sequences. However, adding
extra ‘common sense’ invariants to the partial domain model (shown in the appendix)
was sufficient to allow DetermineStates to generate a unique set of state sequences,
leading to a set of 22 operator schema generated [10]. An example follows:

operator(putaway_jack(Container1,Jack2),
[(container,Container1,[open(Container1)])],
[(jack,Jack2,[have_jack(Jack2)]
=>[jack_in(Jack2,Container1)])],
[]

).

On inspection, these were identical in structure to the original hand crafted version.
This was confirmed by running the full domain model with a planner and ensuring that
all tasks were correctly solved. In addition to operators, the 7 sequences of training tasks

1 We use the GIPO tool to translate the generated OCL domain models into PDDL (the strips
version with typing, equality, conditional effects) so that they can be input to generally avail-
able planners.

Action Knowledge Acquisition with Opmaker2 145

input lead to 7 methods being output. For example, one of the 7 generated methods
encapsulating solution heuristics is as follows:

method(ex_putaway_tools(Boot,Jack0,Wrench0),
% Dynamic constraints
[],
% Necessary transitions
[(container,Boot,[open(Boot)]=>[closed(Boot)]),
(jack,Jack0,[have_jack(Jack0)]=>[jack_in(Jack0,Boot)]),
(wrench,Wrench0,[have_wrench(Wrench0)]
=>[wrench_in(Wrench0,Boot)])],
% Temporal constraints
[before(1,2),before(2,3)],
% Static constraints
[],
% Decomposition
[putaway_wrench(Boot,Wrench0),
putaway_jack(Boot,Jack0),
close_container(Boot)
]).

Generating plans up to 10-12 operations in length was possible with standard planning
engines, but tasks demanding solutions of greater length were not possible with the
planning engines at our disposal. However, when the induced operator schema and the
methods were used together with HyHTN, plan times were significantly shorter. For
example, a complex planning problem for this extended domain is paraphrased as: “A
car has two flat tyres: one is intact and can be fixed by use of the pump, whilst the other
is punctured and requires a full tyre change”. No solution was found to this problem
after 36 hours using FF or HyHTN without the induced methods. However, using the
induced domain schema and methods a correct solution of length 24 was found by Hy-
HTN after only 11 seconds. It is not surprising that HTN-type domain models are so
efficient: this is supported by fielded planning applications. What is significant here is
that both the operator schema and the HTN-type methods used in the domain model
were generated by Opmaker2.

Experiments with other Domains. We experimented with an OCL encoding of a
Blocks Domain, with 7 blocks stacked on a table. 6 action names were devised and one
long training sequence that solved the following task was created: given a set of seven
blocks stacked bottom to top block1 to block7, use a gripper to move one block at a
time until the blocks are in two stacks. The order of the blocks in these stacks (bottom to
top) is block6, block2, block4 form first stack; block5, block1, block7, block3
form the other stack. A 22 solution sequence was composed and fed into Opmaker in 6
separate batches, to enable methods and operator schema to be induced. With the orig-
inal partial domain model enhanced with 4 invariants, 6 operator schema were output
by Opmaker2. These operators were identical in structure to the hand-coded ones for
this domain, and can be used operationally by planning engines. Table 1 shows that the
overall task can be tackled in chunks (Tasks 1 - 6), as well as in one sequence (task 7).
Each of the 7 tasks resulted in unique and accurate operator schema.

146 T.L. McCluskey et al.

Table 1. Operator Testing in Blocks World Full Problem

Task No. Actions Operator Schema
1 4 2
2 2 2
3 2 2
4 4 4
5 2 2
6 2 2
7 22 6

The Hiking Domain was used to illustrate the original Opmaker, and models ‘lazy’
hikers (recreational walkers) who use two cars to carry their equipment around a long
(several day) circular route. Automated planning is used to work out the logistics of
where to leave their cars, put up their tent, transport their luggage etc. For Opmaker2 to
produce an accurate, unique set of operator schema, the partial domain model required
one extra invariant to strengthen it sufficiently. This compares well with the original use
of the domain [2] which required a fairly laborious interactive session before outputting
operator schema.

4 Related Work

Many machine learning systems are driven by the input of both positive and negative
examples. Whilst it was thought to be advantageous to use both kinds of example, many
systems like Opmaker2, use only positive examples. In particular Vere’s [11] Maximal
Unifying Generalisation (1987), and Wang’s [12] OBSERVER system learn from just
positive examples, whilst Grant’s [13] POI system learns from positive examples and
uses a default rule to provide negative information which boosts the positive training
instances. Opmaker2 is similar: it uses positive examples in the solution sequence and
it makes deductions from the partial domain model.

Learning expressive theories from examples is a central goal in the Inductive Logic
Programming community. In his thesis [14], Benson describes an ILP method for learn-
ing more expressive operator schema than Opmaker2, using multiple examples. How-
ever, the focus of Opmaker2 is to learn from (ideally) one example sequence, and to
learn heuristics as well as operator structure.

Perhaps closest to our work is ARMS [15], a system in which operators are learned
without the need for user intervention. Further work by these authors [16] involves
learning recursive HTN structures. The authors focus on matching sub-sequences to
tasks assuming no knowledge of observed states achieved by low-level actions. The
output consists of pairs of action sequences and the high-level tasks achieved by them.
As with our system they begin with solution sequences of defined tasks, and compare
learned methods to hand-crafted ones to judge success. Whilst ARMS does not re-
quire a partial domain model, it requires many training sets (about 40 training sets
is quoted). Once learned they were fine tuned by domain experts by hand. By contrast

Action Knowledge Acquisition with Opmaker2 147

our system does not require multiple examples, as we focus on an expert transfer-
ring heuristic knowledge encapsulated in a handful of well chosen examples solution
sequences.

5 Conclusions

In this paper we have set up a knowledge acquisition problem which is very relevant
to tackling the central problem of using AI planning engines - the acquisition of for-
mulations of actions (in the form of operator schema), and acquisition of heuristics (in
the form of HTN-type methods). Our work and the results reported here depend on a
structured view of partial domain knowledge about objects being available. Whereas
in propositional, classical planning (epitomised by the PDDL language [4]), states are
fairly arbitrary sets of propositions, we assume that the space of states is restricted
in that objects are pre-conceived to occupy a fixed set of plausible states. Within this
framework, we have described a method for inducing operator schema that advances
the state of the art in that it requires no intermediate state information, or large numbers
of training examples, to induce a valid operator set. Further, our results give some evi-
dence that the methods induced with the operator schema lead to more efficient domain
models.

Opmaker2 is an improvement on Opmaker in that it eliminates the need for the
user or trainer to give the system intermediate state information. After Opmaker2 au-
tomatically infers this intermediate state information, it proceeds in the same fashion
as Opmaker and induces the same operator schema. Our experimental results show,
however, that partial domain models may have to be strengthened with extra invariants
before a unique set of operator schema can be synthesised. Hence, we could summarise
our work as arguing for the creation of planning domain models by the crafting of a
strong partial domain model, and a set of training tasks, rather than crafting operator
schema and planning heuristics manually.

There are several directions for future work:

1. Can our work be extended to capturing domains with durative or probabilistic ac-
tions, or other, more expressive formulations for action? What extra details would
be required as input to the operator induction process?

2. Can the Opmaker2 system be extended to deal with model maintenance (for in-
stance by incremental learning), so that old operator schema can be refined in the
presence of new example solution sequences?

3. What resilience does our approach offer in the face of errors in training tasks or in
the partial domain model?

Finally, we believe that this line of research is essential if intelligent agents are to have
general planning capabilities. If this is to be the case, it seems unlikely that intelligent
agents will always rely on human experts to encode and maintain their knowledge. It
seems reasonable that they would need the capability to acquire knowledge of actions
themselves, perhaps by observing the actions of other agents, and using pre-existing
static domain knowledge, to induce operator schema and domain heuristics.

148 T.L. McCluskey et al.

References

1. Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning Domain Definition Using GIPO.
Journal of Knowledge Engineering 1 (2007)

2. McCluskey, T.L., Richardson, N.E., Simpson, R.M.: An Interactive Method for Inducing Op-
erator Descriptions. In: The Sixth International Conference on Artificial Intelligence Plan-
ning Systems (2002)

3. McCluskey, T.L., Porteous, J.M.: Engineering and Compiling Planning Domain Models
to Promote Validity and Efficiency. Technical Report RR9606, School of Computing and
Maths, University of Huddersfield (1996)

4. AIPS-98 Planning Competition Committee: PDDL - The Planning Domain Definition Lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control (1998)

5. Liu, D., McCluskey, T.L.: The OCL Language Manual, Version 1.2. Technical report, De-
partment of Computing and Mathematical Sciences, University of Huddersfield (2000)

6. Chien, S.A. (ed.): 1st NASA Workshop on Planning and Scheduling in Space Applications.
NASA, Oxnard, CA (1997)

7. Russell, S.J.: Execution architectures and compilation. In: Proc. IJCAI (1989)
8. McCluskey, T.L., Liu, D., Simpson, R.M.: GIPO II: HTN Planning in a Tool-supported

Knowledge Engineering Environment. In: Proceedings of the Thirteenth International Con-
ference on Automated Planning and Scheduling (2003)

9. Hoffmann, J.: A Heuristic for Domain Independent Planning and its Use in an Enforced Hill-
climbing Algorithm. In: Proceedings of the 14th Workshop on Planning and Configuration -
New Results in Planning, Scheduling and Design (2000)

10. Richardson, N.E.: An Operator Induction Tool Supporting Knowledge Engineering in Plan-
ning. PhD thesis, School of Computing and Engineering, University of Huddersfield, UK
(2008)

11. Vere, S.: In Pattern Directed Inference Systems. Academic Press, New York (1978)
12. Wang, X.: Learning Planning Operators by Observation and Practice. PhD thesis, Computer

Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsberg, PA 15213
(1996)

13. Grant, T.J.: Inductive Learning of Knowledge-Based Planning Operators. PhD thesis, de Ri-
jksuniversiteit Limburg te Maastricht, Netherlands (1996)

14. Benson, S.S.: Learning Action Models for Reactive Autonomous Agents. PhD thesis, Dept.
of Computer Science, Stanford University (1996)

15. Wu, K., Yang, Q., Jiang, Y.: Arms: Action-relation modelling system for learning acquisition
models. In: Proceedings of the First International Competition on Knowledge Engineering
for AI Planning, Monterey, California, USA (2005)

16. Yang, Q., Pan, R., Pan, S.J.: Learning recursive htn-method structures for planning. In: Pro-
ceedings of the ICAPS 2007 Workshop on Artificial Intelligence Planning and Learning (2007)

APPENDIX

% Sorts
sorts(primitive_sorts,[container,nuts,hub,
pump,wheel, wrench,jack,wheel_trim,tyre]).

% Objects
objects(container,[boot]).
objects(nuts,[nuts1,nuts2,nuts3,nuts4]).

Action Knowledge Acquisition with Opmaker2 149

objects(hub,[hub1,hub2,hub3,hub4]).
objects(pump,[pump0]).
objects(wheel,[wheel1,wheel2,

wheel3,wheel4,wheel5]).
objects(wrench,[wrench0]).
objects(jack,[jack0]).
objects(wheel_trim,[trim1,trim2,trim3,trim4]).
objects(tyre,[tyre1,tyre2,tyre3,tyre4,tyre5]).

% Predicates
predicates([closed(container),open(container),
tight(nuts,hub),loose(nuts,hub),have_nuts(nuts),
on_ground(hub),fastened(hub),jacked_up(hub,jack),
free(hub),unfastened(hub),have_pump(pump),
pump_in(pump,container),have_wheel(wheel),
wheel_in(wheel,container),wheel_on(wheel,hub),
have_wrench(wrench),wrench_in(wrench,container),
have_jack(jack),jack_in_use(jack,hub),
jack_in(jack,container),trim_on(wheel_trim,wheel),
trim_off(wheel_trim),fits_on(tyre,wheel),
full(tyre),flat(tyre),punctured(tyre)]).

% Object State Expressions
substate_classes([
container(C,[[closed(C)], [open(C)]]),
nuts(N,[[tight(N,H)],[loose(N,H)],[have_nuts(N)]]),
hub(H, [[on_ground(H),fastened(H)],

[jacked_up(H,J),fastened(H)],
[free(H),jacked_up(H,J),unfastened(H)],
[unfastened(H),jacked_up(H,J)]]),

pump(Pu, [[have_pump(Pu)],[pump_in(Pu,C)]]),
wheel(Wh, [[have_wheel(Wh)],[wheel_in(Wh,C)],[wheel_on(Wh,H)]]),
wrench(Wr,[[have_wrench(Wr)],[wrench_in(Wr,C)]]),
jack(J,[[have_jack(J)],[jack_in_use(J,H)],[jack_in(J,C)]]),
wheel_trim(WT,[[trim_on(WT,Wh)],[trim_off(WT)]]),
tyre(Ty, [[full(Ty)],[flat(Ty)],[punctured(Ty)]])]).

% Invariants
atomic_invariants([fits_on(tyre1,wheel1),

fits_on(tyre2,wheel2), fits_on(tyre3,wheel3),
fits_on(tyre4,wheel4), fits_on(tyre5,wheel5)]).

invariant(all(H:hub,fastened(H)<==>
ex(N:nuts,tight(N,H)\/loose(N,H)))).

invariant(all(H:hub,all(J:jack,jack_in_use(J,H)
<==>jacked_up(H,J)))).

invariant(all(H:hub,˜free(H)<==>ex(W:wheel,wheel_on(W,H)))).
invariant(
all(T:wheel_trim,all(W:wheel,trim_on_wheel(T,W)
<==>trim_on(W,T)))).

%Hub may only have one set of nuts attached

150 T.L. McCluskey et al.

invariant(all(H:hub,all(N1:nuts,all(N2:nuts,
(tight(N1,H)\/loose(N1,H)) /\
(tight(N2,H)\/loose(N2,H))==>(N1=N2))))).

%Hub may only have one wheel attached.
invariant(all(H:hub,all(W1:wheel,all(W2:wheel,
wheel_on(W1,H)/\wheel_on(W2,H)==>(W1=W2))))).

%If nuts are tight then hub must be on the ground.
invariant(all(H:hub, ex(N:nuts,tight(N,H))==>on_ground(H))).
%If a trim is on a wheel, then the wheel is on
% a hub and the nuts are tight.
invariant(
all(W:wheel,ex(T:wheel_trim,trim_on_wheel(T,W))
==>

ex(H:hub,wheel_on(W,H)/\ex(N:nuts,tight(N,H))))).

	Action Knowledge Acquisition with Opmaker2
	Introduction
	The Opmaker2 System
	The Opmaker2 Algorithm

	Experiments and Results
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

