

Lecture Notes in Artificial Intelligence 5924
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Matthew E. Taylor Karl Tuyls (Eds.)

Adaptive and
Learning Agents

Second Workshop, ALA 2009
Held as Part of the AAMAS 2009 Conference
in Budapest, Hungary, May 12, 2009
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Matthew E. Taylor
The University of Southern California
Los Angeles, CA, USA
E-mail: taylorm@usc.edu

Karl Tuyls
Maastricht University
Maastricht, The Netherlands
E-mail: k.tuyls@maastrichtuniversity.nl

Library of Congress Control Number: 2010921153

CR Subject Classification (1998): I.2.6, D.2, K.2, K.8, I.6.8

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-11813-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11813-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12990634 06/3180 5 4 3 2 1 0

Preface

This book presents selected and revised papers of the Second Workshop on Adap-
tive and Learning Agents 2009 (ALA-09), held at the AAMAS 2009 conference
in Budapest, Hungary, May 12.

The goal of ALA is to provide an interdisciplinary forum for scientists from a
variety of fields such as computer science, biology, game theory and economics.
This year’s edition of ALA was the second after the merger of the former work-
shops ALAMAS and ALAg. In 2008 this joint workshop was organized for the
first time under the flag of both events. ALAMAS was a yearly returning Euro-
pean workshop on adaptive and learning agents and multi-agent systems (held
eight times). ALAg was the international workshop on adaptive and learning
agents, which was usually held at AAMAS. To increase the strength, visibility
and quality of the workshop it was decided to merge both workshops under the
flag of ALA and to set up a Steering Committee as an organizational backbone.

This book contains six papers presented during the workshop, which were
carefully selected after an additional review round in the summer of 2009. We
therefore wish to explicitly thank the members of the Program Committee for
the quality and sincerity of their efforts and service. Furthermore we would
like to thank all the members of the senior Steering Committee for making
this workshop possible and supporting it with sound advice. We also thank the
AAMAS conference for providing us a platform for holding this event. Finally
we also wish to thank all authors who responded to our call-for-papers with
interesting contributions.

Contributions in this book cover a variety of themes: single and multi-agent
reinforcement learning, the evolution and emergence of cooperation in agent sys-
tems, sensor networks and coordination in multi-resource job scheduling. The
book starts of with an overview paper on generalization and abstraction tech-
niques in reinforcement learning. This article is meant to provide a road map for
newcomers in the field and give an elementary introduction to the most com-
monly used techniques. Next, in “The Effects of Evolved Sociability in a Com-
mons Dilemma,” Howley et al. study the evolution of cooperation in n-player
dilemma games. They introduce an evolutionary model capable of modeling so-
ciability within the agent strategy genome and show the influence of tagging
on agents interactions, leading to cooperation in a population of agents. Kaiser
and Tuyls introduce a perspective on time-dependant replicator dynamics and
apply it to an example game, in “Replicator Dynamics for Multi-agent Learning:
An Orthogonal Approach.” In “Decentralized Learning in Wireless Sensor Net-
works” Mihaylov et al. introduce a new reinforcement learning algorithm that
is able to prolong the autonomous lifetime of a sensor network in a distributed
fashion. Noda introduces an innovative principled method in “Recursive Adap-
tation of Stepsize Parameter for Non-Stationary Environments” to appropriately

VI Preface

adapt the step size parameter of reinforcement learning algorithms in response to
changes in the environment. In “Multiagent Reinforcement Learning Model for
the Emergence of Common Property and Transhumance in sub-Saharan Africa,”
Pinter et al. examine the emergence of common property and transhumance in
sub-Saharan Africa and show why Hardin’s tragedy of the commons is not ap-
plicable. They do this by simulating specific real-world scenarios with adaptive
learning agents. In “Learning to Locate Trading Partners in Agent Networks”
Porter et al. investigate the effects of exploration in a rewiring strategy for lo-
cating good trading partners within agent-organized networks in production and
exchange economies. Finally Tumer and Lawson propose a multiagent coordi-
nation approach to multi-resource job scheduling across heterogeneous servers
in “Coordinating Learning Agents for Multiple Resource Job Scheduling” and
illustrate the feasibility of the approach in a number of settings varying in
complexity.

November 2009 Matthew E. Taylor
Karl Tuyls

Organization

ALA 2009 Senior Steering Committee

Franziska Klügl University of Orebro, Sweden
Daniel Kudenko University of York, UK
Ann Nowé Vrije Universiteit Brussels, Belgium
Lynne E. Parker University of Tennessee, USA
Sandip Sen University of Tulsa, USA
Peter Stone University of Texas at Austin, USA
Kagen Tumer Oregon State University, USA
Karl Tuyls Eindhoven University of Technology,

The Netherlands

ALA 2009 Program Committee

Eduardo Alonso City University, UK
Bikramjit Banerjee The University of Southern Mississippi, USA
Ana L.C. Bazzan UFRGS, Porto Alegre, Brazil
Marek Grzes University of York, UK
Zahia Ghuessoum University of Paris 6, France
Franziska Klügl University of Orebro, Sweden
Daniel Kudenko University of York, UK
Ann Nowé Vrije Universiteit Brussels, Belgium
Liviu Panait Google Inc Santa Monica, USA
Lynne Parker University of Tennessee, USA
Jeffrey Rosenschein The Hebrew University of Jerusalem, Israel
Michael Rovatsos Centre for Intelligent Systems and their

Applications, UK
Sandip Sen University of Tulsa, USA
Kagan Tumer Oregon State University, USA
Katja Verbreek KaHo Sint-Lieven, Belgium

Table of Contents

Abstraction and Generalization in Reinforcement Learning: A Summary
and Framework . 1

Marc Ponsen, Matthew E. Taylor, and Karl Tuyls

The Effects of Evolved Sociability in a Commons Dilemma 33
Enda Howley and Jim Duggan

Replicator Dynamics for Multi-agent Learning: An Orthogonal
Approach . 49

Michael Kaisers and Karl Tuyls

Decentralized Learning in Wireless Sensor Networks 60
Mihail Mihaylov, Karl Tuyls, and Ann Nowé

Recursive Adaptation of Stepsize Parameter for Non-stationary
Environments . 74

Itsuki Noda

Multiagent Reinforcement Learning Model for the Emergence of
Common Property and Transhumance in Sub-Saharan Africa 91

Balázs Pintér, Ákos Bontovics, and András Lőrincz

Learning to Locate Trading Partners in Agent Networks 107
John Porter, Kuheli Chakraborty, and Sandip Sen

Coordinating Learning Agents for Multiple Resource Job Scheduling . . . 123
Kagan Tumer and John Lawson

Author Index . 141

Abstraction and Generalization in Reinforcement
Learning: A Summary and Framework

Marc Ponsen1, Matthew E. Taylor2, and Karl Tuyls1

1 Universiteit Maastricht, Maastricht, The Netherlands
{m.ponsen,k.tuyls}@maastrichtuniversity.nl

2 The University of Southern California, Los Angeles, CA
taylorm@usc.edu

Abstract. In this paper we survey the basics of reinforcement learning, gener-
alization and abstraction. We start with an introduction to the fundamentals of
reinforcement learning and motivate the necessity for generalization and abstrac-
tion. Next we summarize the most important techniques available to achieve both
generalization and abstraction in reinforcement learning. We discuss basic func-
tion approximation techniques and delve into hierarchical, relational and transfer
learning. All concepts and techniques are illustrated with examples.

1 Introduction

In this chapter we provide an introduction to the concepts of generalization and abstrac-
tion in reinforcement learning (RL). Abstraction is a technique to reduce the complexity
of a problem by filtering out irrelevant properties while preserving all the important ones
necessary to still be able solve a given problem. Generalization is a technique to apply
knowledge previously acquired to unseen circumstances or extend that knowledge be-
yond the scope of the original problem. Humans show great capability in abstracting
and generalizing knowledge in everyday life. RL needs abstraction and generalization
as well to deal successfully with contemporary technological challenges, given the huge
state and action spaces that characterize real world problems. Recently, abstraction and
generalization have received significant attention in the machine learning research com-
munity, resulting in a variety of techniques.

We start by introducing the preliminaries of RL itself in Section 2. We will discuss
Markov decision processes, policy and value iteration and model-free solution tech-
niques. In Section 3 we define both abstraction and generalization, capturing common
features of both found in different definitions in literature, and then describe different
operators in a concrete domain, the video-game Wargus. Section 5 gives a concise in-
troduction to function approximation, one of the most commonly used types of methods
in RL for generalization and abstraction. Sections 6-8 go into greater detail discussing
three classes of techniques used for abstraction and generalization in RL: hierarchi-
cal, relational, and transfer learning. In addition to outlining the ideas behind each of
these classes of techniques, we present results to assist the reader in understanding how
these ideas may be applied in practice, and provide multiple references for additional
exposition. Finally, Section 9 concludes.

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 1–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Ponsen, M.E. Taylor, and K. Tuyls

The goals of this survey are to provide an introduction to, and framework for, dis-
cussing abstraction and generalization in RL domains. The article does not provide dis-
cussions at an advanced level but merely tries to combine the basics into one coherent
structure, such that newcomers to the field easily understand the elementary concepts
of abstraction and generalization in RL and have pointers available to more elaborate
and detailed expositions in the literature.

2 Reinforcement Learning

This section introduces basic reinforcement learning concepts and notation.

2.1 Markov Decision Processes

Most RL research is framed as using a Markov decision processes (MDP) [29]. MDPs
are sequential decision making problems for fully observable worlds. They are de-
fined by a tuple (s0, t, S, A, T, R). Starting in an initial state s0 (or set of states) at
each discrete time-step t = 0, 1, 2, . . . an adaptive agent observes an environment
state st contained in a set of states S = {s1, s2, . . . , sn}, and executes an action
a from a finite set of admissible actions A = {a1, a2, . . . , am}. The agent receives
an immediate reward R : S → R, that assigns a value or reward for being in that
state, and moves to a new state s′, depending on a probabilistic transition function
T : S × A × S → [0, 1]. The probability of reaching state s′ after executing ac-
tion a in state s is denoted as T (s, a, s′). For all actions a, and all states s and s′,
0 ≤ T (s, a, s′) ≤ 1 and

∑
s′∈S T (s, a, s′) = 1. An MDP respects the Markov prop-

erty: the future dynamics, transitions and rewards fully depend on the current state:
T (st+1|st, at, st−1, at−1, . . .) = T (st+1|st, at) and R(st+1|st, st−1, . . .) = R(st+1).
The transition function T and reward function R together are often referred to as the
model of the environment. The learning task in an MDP is to find a policy π : S → A
for selecting actions with maximal expected (discounted) reward. The quality of a pol-
icy is indicated by a value function V π. The value V π(s) specifies the total amount of
reward which an agent may expect to accumulate over the future, starting from state s
and then following the policy π. Informally, the value function indicates the long-term
desirability of states or state-action pairs after taking into account the states that may
follow, and the rewards available in those states. In a discounted infinite horizon MDP,
the expected cumulative reward (i.e., the value function) is denoted as:

V π(s) = E

[∞∑
t=0

γtR(St)|s0 = s

]
(1)

A discount factor γ ∈ [0, 1〉 may be introduced to ensure that the rewards returned are
bounded (finite) values. The variable γ determines the relevance of future rewards in
the update. Setting γ to 0 results in a myopic update (i.e., only the immediate reward is
optimized), whereas values closer to 1 will increase the contribution of future rewards
in the update.

Abstraction and Generalization in Reinforcement Learning 3

The value for a given policy π, expressed by Equation 1, can iteratively be computed
by the Bellman Equation [3]. One typically starts with an arbitrarily chosen value func-
tion, and at each iteration for each state s ∈ S, the value function is updated based on
the immediate reward and the current estimate of V π:

V π
t+1(s) = R(s) + γ

∑
s′∈S

T (s, π(s), s′)V π
n (s′) (2)

The process of updating state value functions based on current estimates of successor
state values is referred to as bootstrapping. The depth of successor states considered
in the update can be varied, i.e., one can perform a shallow bootstrap where one only
looks at immediate successor states or a deep bootstrap where successors of successors
are also considered. The value functions of successor states are used to update the value
function of the current state. This is called a backup operation. Different algorithms use
different backup strategies, e.g., sample backups (sample a single successor state) or
full backups (sample all successor states).

The solution to an MDP is the optimal policy, i.e., the policy that receives the max-
imum reward. The optimal policy π∗(s) is defined such that V π∗

(s) ≥ V π(s) for all
s ∈ S and all policies π. The optimal value function, often abbreviated as V ∗following
Bellman optimality criterion:

V ∗(s) = R(s) + γ max
α∈A

[∑
s′∈S

T (s, a, s′)V ∗(s′)

]
(3)

Solving Equation 3 can be done in an iterative manner, similar to the computation of
the value function for a given policy such as expressed in Equation 2. The Bellman
optimality criterion is turned into an update rule:

V π
t+1(s) = R(s) + γ max

α∈A

[∑
s′∈S

T (s, a, s′)V π
n (s′)

]
(4)

The optimal action can then be selected as follows:

π∗(s) = arg max
a

⎡
⎣R(s) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

⎤
⎦ (5)

Besides learning state-values, one can also define state-action value functions, also
called action-value functions, or Q-functions. Q-functions map state-action pairs to val-
ues, Q : S × A → R. They reflect the long term desirability of performing action a
in state s, and then performing policy π thereafter. Learning Q-functions is particularly
useful when T is unknown. The Q-function is defined as follows:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′) (6)

The optimal policy π∗ selects the action which maximizes the optimal action value
function Q∗(s, a) for each state s ∈ S:

π∗(s) = argmax
a

Q∗(s, a) (7)

4 M. Ponsen, M.E. Taylor, and K. Tuyls

Algorithm 1. Policy Iteration

REQUIRE initialize V (s) and π(s) arbitrarily;1

POLICY EVALUATION;2

repeat3

Δ = 0;4

foreach s ∈ S do5

v = V (s);6

V (s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)V (s′);7

Δ = max(Δ, |v − V (s)|);8

end9

until Δ < σ ;10

POLICY IMPROVEMENT;11

policy-stable = true;12

foreach s ∈ S do13

b = π(s);14

π(s) = arg maxa

[
R(s, a) + γ

∑
s′∈S T (s, a, s′)V (s′)

]
;15

if b �= π(s) then policy-stable = false16

end17

if policy-stable then stop else go to POLICY EVALUATION18

2.2 Solution Techniques

When an environment’s model (i.e., transition function T and reward function R) is
known, the optimal policy can be computed using a dynamic programming approach,
such as in policy iteration and value iteration. Policy iteration [18] consists of two steps,
a policy evaluation and policy improvement step. It starts with an arbitrary policy and
value functions. It then updates the value functions under the given policy (the evalu-
ation step), and uses the new value functions to improve its policy (the improvement
step). Each policy is guaranteed to be a strict improvement over the previous one. The
algorithm requires an infinite number of iterations to converge, but in practice the algo-
rithm can be stopped when value functions only change by a small amount. A complete
description is given in Algorithm 1.

The drawback of policy iteration is that it requires a complete evaluation of the cur-
rent policy before improvements are made. Another possibility is to make improve-
ments after a single sweep (a single backup of a state). This particular case is called
value iteration [3]. Value iteration (or greedy iteration) starts with an arbitrary action-
value function and for each state it iterates over all actions (unlike policy iteration which
only evaluates the action as indicated by the policy) and updates the action-value func-
tion. The value iteration backup is identical to the policy evaluation backup except that
it requires the maximum to be taken over all actions. Similar to policy iteration, the al-
gorithm can be stopped when the change in policy is within a certain bound. Algorithm
2 gives a complete description of value iteration.

There exist several model-based learning methods, such as Dyna-Q [38,51] and R-
Max [6], but we will not go into much detail here because we are most interested in
domains where the model is assumed to be both unknown and too complex to easily
learn. When the model of the environment is unknown, as it usually is, we can use RL

Abstraction and Generalization in Reinforcement Learning 5

Algorithm 2. Value Iteration

REQUIRE initialize V (s) arbitrarily;1

repeat2

Δ = 0;3

foreach s ∈ S do4

v = V (s);5

foreach a ∈ A(s) do6

Q(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)V (s′)7

end8

V (s) = maxa Q(s, a);9

Δ = max(Δ, |v − V (s)|);10

end11

until Δ < σ ;12

as a viable alternative. RL does not depend on a model but rather collects samples from
the environment to estimate the environment’s model. Therefore, the crucial distinc-
tion between model-free and model-based methods is that the first samples future states
whereas the second does a full sweep of successor states. Through exploration the re-
inforcement learner gathers data (i.e., rewards and future states) and uses this to learn
a policy. An important issue that occurs is the exploration and exploitation dilemma,
i.e., when to cease exploration and to start exploiting acquired knowledge. Various ex-
ploration and exploitation strategies exist, such as ε-greedy and Boltzmann exploration.
For a thorough overview, we refer interested readers elsewhere [52,39]. Temporal dif-
ference learning methods such as Q-learning [50] and SARSA [33] are model-free so-
lution methods. The algorithms are described in detail in [39]. The update rule for one
of the most popular algorithms, one-step Q-learning is:

Q(a, s) → (1 − α)Q(a, s) + α

[
R(s, a) + γ max

a′
Q(a′, s′)

]
(8)

where α is the step-size parameter, and γ the discount-rate. This algorithm is proven to
converge to an optimal policy in the limit (under reasonable conditions). Unfortunately,
for many complex, real-world problems, solving the MDP is impractical and complexity
must be reduced in order to keep learning tractable.

In the following sections we will discuss several ways to reduce the search space, so
that learning with RL is still possible in more challenging domains (i.e., domains with
large or infinite state spaces).

3 Abstraction and Generalization

In order to make RL feasible in complex domains, abstraction or generalization opera-
tors are often applied to make the problem tractable. We describe these operators in the
current section and then give concrete examples in the following section.

Abstraction and generalization are important concepts in artificial intelligence (AI).
Some claim that the ability to abstract and generalize is the essence of human intelli-
gence [7] and that finding good representations is the primary challenge in designing

6 M. Ponsen, M.E. Taylor, and K. Tuyls

intelligent systems. However, systems that learn and discover useful representations
automatically are scarce. Instead, this problem is often tackled by the human designer.

A consistent definition of abstraction in the AI literature is not available: typically
the definitions are tailored to specific subfields of AI, e.g, planning and problem solving
[17], theorem proving [16], knowledge representation (e.g., spatial and temporal rea-
soning), machine learning, and computer vision [53]. The general principle underlying
all these definitions is that an abstraction operation maps a representation of a problem
onto a new representation so as to simplify reasoning while preserving useful proper-
ties. One only considers what is relevant and ignores many less important details for
solving a particular task. Readers interested in a survey of state abstraction techniques
in MDPs, as well an initial attempt to unify them, are referred elsewhere [24].

In problem solving and theorem proving, abstraction may be associated with a trans-
formation of the problem representation that allows a theorem to be proved (or a prob-
lem to be solved) more easily with reduced computational complexity. This form of
abstraction first abstracts a goal, proves or solves the abstracted goal, and then uses the
structure of this abstracted proof to help construct the proof of the original goal. This
method relies on the assumption that the structure of the abstracted proof is similar to
the structure of the original goal. Another form of abstraction, as used in knowledge
representation, machine learning, and computer vision, focuses more on the conceptu-
alization of a domain, i.e., finding appropriate concepts or features of a domain. In this
paper we will adopt the following definition for abstraction:

Definition 1 (Abstraction). An abstraction operation changes the representation of an
object by hiding or removing less critical details while preserving desirable properties.
By definition, this implies loss of information.

This definition is rather general and covers several different abstraction operations. In
this paper we will adopt Zucker’s taxonomy [53] to further categorize the different
abstraction types. These abstraction operations are defined and explained with the help
of a concrete example in the next section.

For generalization we employ the following definition:

Definition 2 (Generalization). A generalization operation defines similarities between
objects. This operation does not affect the object’s representation. By definition, this
implies no loss of information.

For example, we may hypothesize that all rectangles are similar in some way. A strict
definition of generalization states that all rectangles are a subset of its generalized hy-
pothesis (e.g., all rectangles have 4 sides), but typically in machine learning, hypothesis
are approximated and allow errors. For example, when stating that all rectangles have
equal length sides, it is possible that some rectangles are outside of the hypothesis
space (namely, all non square rectangles). Therefore, a weaker definition of generaliza-
tion states that we have good evidence that all rectangles behave in a similar way. The
generalization power measures the quality of the hypothesis on future examples.

We will next describe abstraction and generalization opportunities for RL in a con-
crete example, namely for learning a policy for a virtual agent in the computer game of
Wargus.

Abstraction and Generalization in Reinforcement Learning 7

4 An Illustrative Example

One example application that can benefit from reinforcement learning is computer
games. Figure 1 is a screen shot of the computer game Wargus. In this figure we see an
agent that is surrounded by bushes and buildings. This agent’s responsibility (a peasant
in the game) is a typical resource gathering task: it must travel to the goldmine (situated
in the top right corner) and gather gold. We will tackle this learning task within the RL
framework. The action space will contain the actions for moving in all directions. We
assume that the transition function is unknown due to the complex and dynamic nature
of the game environment. We define the agent’s reward signal to be as follows: a small
negative reward for each step and a positive (or zero) reward when completing the task.
The difficult part is finding an appropriate state representation for this task. The state
complexity in our world can be expressed by mn, where n represents the number of
grid cells and m the number of objects in the world. The state complexity is thus expo-
nential in the dimension of the world and polynomial in the number of objects. A naive
state representation (see Figure 2) for our example application would be to consider the
smallest particle of this world (in this case a pixel in this 2-dimensional computer game
world with dimension 500 × 500) to be a single grid cell, and then assuming that each
grid cell can be part of any of five different objects (which is already a simplification).
For example, in Figure 2 the first row indicates that the first pixel is part of a forest
object. When using this representation, learning a policy that directs the agent to the
goldmine would be infeasible, due to the large state space, requiring the value function
to contain 250005 distinct values. For any complex computer game, when modeling the
world described as above, none of the standard RL approaches will converge to a decent
policy in a reasonable amount of time. Rather than devising new update rules for RL,

Fig. 1. A complex learning task

10000

00010

...............

01000

00100

sandrockforeststructureagent

w

Fig. 2. A naive state representation, where
rows represent the observations of states (in
this case, a pixel) and the columns represent
the features used to describe the world

8 M. Ponsen, M.E. Taylor, and K. Tuyls

a more promising approach is to find more compact task representations (i.e., make the
problem space simpler) and generalize over similar states. In other words, we need to
apply appropriate abstractions and generalizations. We will next describe five different
abstraction operations as defined by Zucker [53] that can scale down the problem com-
plexity. We will apply these five techniques consecutively to our challenging problem
to reduce complexity.

4.1 Domain Reduction

Domain Reduction is an abstraction operation that reduces part of the domain (i.e.,
content or instances) by grouping content together. Content refers to the observations
of states (i.e., the row vectors in our world matrix). Before we evaluated each single
pixel, so that our world matrix contained 25000 state observations (one for each grid
cell in our world). The matrix in Figure 2 is a reformulation of the image in Figure 1:
it applies a different notation for the same object without losing any information. We
can reduce the content, i.e., reduce the number of state observations by making sets of
grid cells indistinguishable. In our example we can choose to group neighboring pixels
together to form a larger prototype grid cell. As a result, the world is divided in larger
grid cells, as illustrated in Figure 3. An observation in our world matrix now covers
several pixels, and therefore attribute values are real-valued percentages (averages over
the covered pixels) rather than booleans (see Figure 4). The number of pixels grouped
together to form a grid cell can be increased, but a coarser view of the world necessitates
information loss. The tradeoff between information loss and the quality of the learned
policy can be tuned, depending on task requirements.

4.2 Domain Hiding

Domain hiding is an abstraction operation that hides part of the domain, focusing on
relevant content or objects in the domain. This is one of the most common form of
abstraction. As mentioned before, content refers to the state observations (row vectors

Fig. 3. Domain reduction

1.9.000

00010

...............

4.03.3.0

03.7.00

sandrockforeststructureagent

w

Fig. 4. State representation of world after
domain reduction

Abstraction and Generalization in Reinforcement Learning 9

in our matrix). Rather than reducing the number of state observations (by grouping
them), domain hiding simply ignores less relevant state observations. For example, in
our task we want the agent to learn a policy that directs it to the gold mine. Therefore,
we are not necessarily interested in some parts of the world, and we hide these state
observations. We take the world that was the result of domain reduction as our input
and apply domain hiding. The result is shown in Figure 5. In our matrix representation,
a domain hiding operation can be performed by deleting observations, whereas domain
reduction averages observations together.

Fig. 5. Domain hiding

1.9.000

00010

...............

4.03.3.0

03.7.00

sandrockforeststructureagent

w

Fig. 6. State representation of world after
domain hiding

4.3 Co-domain Hiding

Co-domain hiding is an abstraction operation that hides part of the co-domain (i.e.,
description) of an object by selectively paying attention to subsets of useful features in a
given task. With the co-domain, we refer to the features of our world. In the state matrix,
this is represented by the column vectors. Co-domain hiding ignores columns that are
not relevant for the task. For example, in Figure 7, the sand feature is removed from the
description since it is believed this feature does not contribute to an improvement for
the agent’s policy. Notice that the sand in Figure 7 and the sand column in Figure 8’s
matrix have been removed.

4.4 Co-domain Reduction

Co-domain reduction is an abstraction operation that reduces part of the co-domain (i.e.,
description) by making sets of attribute values indistinguishable. This implies reducing
the range of values an attribute may take. In Figure 8 we see attribute values ranging
from 0 to 1. We can apply abstractions by reducing the range of attribute values.

This can be achieved by applying some threshold function (injective mapping). For
example, if a certain cell is covered with an object by more than 50 percent, in our new
world representation this cell is now covered completely with this object, whereas ob-
jects that cover less than 50 percent are abstracted away from the matrix representation

10 M. Ponsen, M.E. Taylor, and K. Tuyls

Fig. 7. Co-domain hiding

1.9.000

00010

...............

4.03.3.0

03.7.00

sandrockforeststructureagent

w

Fig. 8. State representation of world after
co-domain hiding

Fig. 9. Co-domain reduction

01000

00010

...............

00000

00100

sandrockforeststructureagent

w

Fig. 10. State representation of world after
co-domain reduction

(see Figure 10). Effectively, we transform real numbers (i.e., percentages of objects in
a grid cell) to boolean values, just as we saw in Figure 2, but now the boolean values do
not correspond to pixels, but to composite grid cells.

4.5 Domain Aggregation

Domain Aggregation is an abstraction operation that aggregates (combines) parts of
the domain (i.e., content). Content (or objects) are grouped together and form a new
object with its own unique properties and parameters. In our example, we can choose
to group objects together that obstruct the agent such as forests, structures or rocks. We
group these objects together to form a complete new object, namely an obstacle (see
Figure 11).

Abstraction and Generalization in Reinforcement Learning 11

Fig. 11. Domain Aggregation

10

00

......

01

10

obstacleagent

w

Fig. 12. State representation of world after
domain aggregation

4.6 Generalization

A generalization operation is different from an abstraction operation in that it does not
change an object’s representation and, therefore, does not lose any information. Instead
it claims generalities between objects, leaving the original objects untouched. In our
example we can make a generalized hypothesis that forests and rocks are equivalent
in that they obstruct the agent from moving there. This is illustrated in Figure 13: our
generalized hypothesis claims that the light-grey parts of the world are equivalent (i.e.,
trees and rocks combined), and similarly for the dark-grey parts of the world (i.e., grass
and sand combined). The effect is (roughly) similar to the effect of an aggregation
operation in Figure 11. However, it is possible that at some point our generalization
that forests and rock are equivalent proves to be faulty. Say, the agent has learned to
chop trees down so it can move through forest locations. In the case of generalization,

Fig. 13. Generalization Fig. 14. Difference between abstraction and
generalization: with an abstraction opera-
tion, information is lost

12 M. Ponsen, M.E. Taylor, and K. Tuyls

we can simply remove or reformulate our hypothesis and return to the original world,
whereas with abstraction the original information is lost and we can not turn back to the
original world. In our example (see Figure 14), it is unclear whether an obstacle used
to be part of a forest or rock. We threw away that information during our abstraction
process. Therefore, we claim that generalization is more flexible and less conclusive
than abstraction.

5 Function Approximation

The previous section introduced many different generalization and abstraction opera-
tors. In this section, we discuss a commonly used approach, where information gathered
by an agent is used to tune a mathematical function that represents the agent’s gathered
knowledge.

In tasks with small and discrete state spaces, the functions V , Q, and π can be repre-
sented in a table, such as discussed in the previous section. However, as the state space
grows using a table becomes impractical (or impossible if the state space is continu-
ous). In such situations, some sort of function approximator is necessary, which allow
the agent to use data to estimate previously unobserved (s, a) pairs.

How to best choose which function approximator to use, or how to set its parameters,
is currently an open question. Although some work in RL [11,24,25] has taken a more
systematic approaches to state abstractions (also called structural abstractions), the
majority of current research relies on humans to help bias a learning agent by carefully
selecting a function approximator with parameters appropriate for a given task. In the
remainder of this section we discuss three popular function approximators: Cerebellar
Model Arithmetic Computers (CMACs), neural networks, and instance-based approxi-
mation.

The first two methods, CMACs and neural networks, may be considered both ap-
proximation and generalization operators. Rather than saving the data gathered in the
world, the agent tunes its function approximator and discards data, losing some infor-
mation (abstraction), but it is then able to calculate the value of the function for val-
ues that have not been experienced (generalization). Many methods for instance-based
approximation also discard data, but some do not; while all instance-based function
approximators are generalizers, not all are abstractors.

Cerebellar Model Arithmetic Computers. CMACs [1] take arbitrary groups of con-
tinuous state variables and lay infinite, axis-parallel tilings over them (see Figure 15(a)).
This allows discretization of continuous state space into tiles while maintaining the ca-
pability to generalize via multiple overlapping tilings. Increasing the tile widths allows
better generalization; increasing the number of tilings allows more accurate representa-
tions of smaller details. The number of tiles and the width of the tilings are generally
handcoded: this sets the center, ci, of each tile and dictates which state values will ac-
tivate which tiles. The function approximation is trained by changing how much each
tile contributes to the output of the function approximator. Thus, the output from the
CMAC is the computed sum:

f(x) =
∑

i

wifi(x) (9)

Abstraction and Generalization in Reinforcement Learning 13

Dimension #1

D
im

en
si

on
 #

2

Tiling #1

Tiling #2

2D CMAC with 2 Tilings

(a) CMAC

1

2

3

1

3

2

13
20

3

2

1

Input
Layer Layer

Hidden Output
Layer

(b) Neural Network

Fig. 15. CMAC’s value, shown in (a), is computed by summing the weights, wi, from multiple
activated tiles (outlined above with thicker lines). State variables are used to determine which tile
is activated in each of the different tilings. The diagram in (b) shows an artificial feedforward
13-20-3 network, suggesting how Q-values for three actions can be calculated from 13 state
variables.

but only tiles which are activated by the current state features contribute to the sum:

fi(x) =
{

1, if tile i is activated
0, otherwise

Weights in a CMAC are typically initialized to zero and are changed over time via
learning.

Artificial Neural Networks. The neural network function approximator similarly al-
lows a learner to approximate the action-value function, given a set of continuous, real
valued, state variables. Although neural networks have been shown to be difficult to
train in certain situations on relatively simple RL problems [5,30], they have had no-
table successes on some RL tasks [9,46]. Each input to the neural network is set to the
value of a state variable and each output corresponds to an action. Activations of the
output nodes correspond to Q-values (see Figure 15(b) for a diagram).

When used to approximate an action-value function, neural networks often use non-
recurrent feedforward networks. Each node in the input layer is given the value of a dif-
ferent state variable and each output node corresponds is the the calculated Q-value for
a different action. The number of inputs and outputs are thus determined by the task’s
specification, but the number of hidden nodes is specified by the agent’s designer. Note
that by accepting multiple inputs the neural network can determine its output by con-
sidering multiple state variables in conjunction (as opposed to a CMAC consisting of a
separate 1-dimensional tiling for each state variable). Nodes often have either sigmoid
or linear transfer functions. Weights for connections in the network are typically initial-
ized to random values near zero. The networks are often trained using backpropagation,
where the error signal to modify weights is generated by the learning algorithm, as with
the other function approximators.

14 M. Ponsen, M.E. Taylor, and K. Tuyls

Instance-based approximation. CMACs and neural networks aim to represent a com-
plex function with a relatively small set of parameters that can be changed over time. In
contrast, instance-based approximation stores instances experienced by the agent (i.e.,
〈s, a, r, s′〉) to predict the underlying structure of the environment. Specifically, this ap-
proximation method can be used by model-learning methods (c.f., [19,20]), which learn
to approximate T and R by observing the agent’s experience when interacting with an
environment.

Consider the case where an agent is acting in a discrete environment with a small
state space. The agent could record every instance that it experienced in a table. If the
transition function were deterministic, as soon as the agent observed every possible
(s, a) pair, it could calculate the optimal policy. If the transition function were instead
stochastic, the agent would need to take multiple samples for every (s, a) pair. Given a
sufficient number of samples, as determined by the variance in the resulting r and s′,
the agent could again directly calculate the optimal policy via dynamic programming.

When used to approximate T and R for tasks with continuous state spaces, using in-
stances for function approximation becomes significantly more difficult. In a stochastic
task the agent is unlikely to ever visit the same state twice, with the possible exception
of a start state, and thus approximation is critical. Furthermore, since one can never
gather “enough” samples for every (s, a) pair, such methods generally need to deter-
mine which instances are necessary to store so that the memory requirements are not
unbounded. Creating efficient instance-based function approximators, and their associ-
ated learning algorithms, are topics of ongoing research in RL.

Now that the basic concepts of abstraction, and generalization have been introduced
in the context of RL, the next section describes our own contribution in the field of
abstraction and generalization in RL through action abstraction via hierarchical RL
techniques. Later sections will then discuss work on generalization using relational re-
inforcement learning and transfer learning.

6 Hierarchical Reinforcement Learning

There exist many extensions to standard RL that make use of the abstraction and gener-
alization operators mentioned in Section 4. One such method is hierarchical reinforce-
ment learning (HRL), which essentially aggregates actions. HRL is an intuitive and
promising approach to scale up RL to more complex problems. In HRL, a complex task
is decomposed into a set of simpler subtasks that can be solved independently. Each
subtask in the hierarchy is modeled as a single MDP and allows appropriate state, ac-
tion and reward abstractions to augment learning compared to a flat representation of
the problem. Additionally, learning in a hierarchical setting can facilitate generaliza-
tion: knowledge learned in a subtask can be transferred to other subtasks. HRL relies
on the theory of Semi-Markov decision processes (SMDPs) [40]. SMDPs differ from
MDPs in that actions in SMDPs can last multiple time steps. Therefore, in SMDPs ac-
tions can either be primitive actions (taking exactly 1 time-step) or temporally extended
actions. While the idea of applying HRL in complex domains such as computer games
is appealing, with the exception of [2], there are few studies that examining this issue.

Abstraction and Generalization in Reinforcement Learning 15

We adopted a HRL method similar to Hierarchical Semi-Markov Q-learning (HSMQ)
described in [12]. HSMQ learns policies simultaneously for all non-primitive subtasks
in the hierarchy, i.e., Q(p, s, a) values are learned to denote the expected total reward of
performing task p starting in state s, executing action a, and then following the optimal
policy thereafter. Subtasks in HSMQ include termination predicates. These partition the
state space S into a set of active states and terminal states. Subtasks can only be invoked
in states in which they are active, and subtasks terminate when the state transitions from
an active to a terminal state. We added to the HSMQ algorithm described in [12] a
pseudo-reward function [12] for each subtask. The pseudo-rewards tell how desirable
each of the terminal states are for this subtask. Algorithm 3 outlines our HSMQ-inspired
algorithm. Q-values for primitive subtasks are updated with the one-step Q-learning
update rule, while the Q-values for non-primitive subtasks are updated based on the
reward R(s, a), collected during execution of the subtask and a pseudo reward R̂.

Algorithm 3. Modified version of the HSMQ algorithm: The update rule for non-
primitive subtasks (line 13) differs from the original implementation

Function HSMQ(state s,subtask p) returns float;1

Let Totalreward = 0;2

while (p is not terminated) do3

Choose action a = Π(s);4

if a is primitive then5

Execute a, observe one-step reward R(s, a) and result state s′;6

else if a is non-primitive subtask then7

R(s, a) := HSMQ(s, a) , which invokes subtask a and returns the total reward8

received while a executed
Totalreward = Totalreward + R(s, a);9

if a is primitive then10

Q(p, a, s)→ (1− α)Q(p, a, s) + α

[
R(s, a) + γ max

a′
Q(p, a′, s′)

]
;

11

else if a is non-primitive subtask then12

Q(p, a, s)→ (1− α)Q(p, a, s) + α
[
R(s, a) + R̂

]
;13

end14

return Totalreward;15

6.1 Reactive Navigation Task

We applied our HSMQ algorithm to the game of Wargus. Inspired by the resource gath-
ering task, we created a world wherein a peasant has to learn to navigate to some loca-
tion on the map while avoiding enemy contact (in the game of Wargus, peasants have
no means for defending themselves against enemy soldiers). More precisely, our sim-
plified game consists of a fully observable world that is 32× 32 grid cells and includes
two units: a peasant (the adaptive agent) and an enemy soldier. The adaptive agent has
to move to a certain goal location. Once the agent reaches its goal, a new goal is set at
random. The enemy soldier randomly patrols the map and will shoot at the peasant if it
is in firing range. The scenario continues for a fixed time period or until the peasant is
destroyed by the enemy soldier.

16 M. Ponsen, M.E. Taylor, and K. Tuyls

Relevant properties for our task are the locations of the peasant, soldier, and goal.
All three objects can be positioned in any of the 1024 locations. A propositional for-
mat of the state space describes each state as a feature vector with attributes for each
possible property of the environment, which amounts to 230 different states. As such,
a tabular representation of the value functions is too large to be feasible. Additionally,
such encoding prevents any opportunity for generalization for the learning algorithm,
e.g., when a policy is learned to move to a specific grid cell, the policy can not be reused
to move to another. A deictic state representation identifies objects relative to the agent.
This reduces state space complexity and facilitates generalization. This is a first step
towards a fully relational representation, such as the one covered in Section 7. We will
discuss the state features used for this task in Section 6.2.

The proposed task is complex for several reasons. First, the state space without any
abstractions is enormous. Second, the game state is also modified by an enemy unit.
(The enemy executes a random move on each timestep unless the peasant is in sight,
in which case it moves toward the peasant.) Furthermore, each new task instance is
generated randomly (i.e., random goal and enemy patrol behavior), so that the peasant
has to learn a policy that generalizes over unseen task instances.

6.2 Solving the Reactive Navigation Task

We compare two different ways to solve the reactive navigation task, namely us-
ing flat RL and HRL. For a flat representation of our task, the deictic state rep-
resentation can be defined as the Cartesian-product of the following four features:
Distance(enemy,s), Distance(goal,s), DirectionTo(enemy,s), and
DirectionTo (goal,s). The function Distance returns a number between 1
and 8 or a string indicating that the object is more than 8 steps away in state s, while
DirectionTo returns the relative direction to a given object in state s. Using 8 possi-
ble values for the DirectionTo function, namely the eight compass directions, and 9
possible values for the Distance function, the total state space is drastically reduced
from 230 to only 5184 states. The size of the action space is 8, containing actions for
moving in each of the eight compass directions. The scalar reward signal R(s, a) in the
flat representation should reflect the relative success of achieving the two concurrent
sub-goals (i.e., moving towards the goal while avoiding the enemy). The environment
returns a +10 reward whenever the agent is located on a goal location. In contrast, a
reward of −10 is returned when the agent is being fired at by the enemy unit, which oc-
curs when the agent is in firing range of the enemy (i.e., within 5 steps). Each primitive
action always yields a reward of −1. An immediate concern is that both sub-goals are
often in competition. We can certainly consider situations where different actions are
optimal for the two sub-goals, although the agent can only take one action at a time. An
apparent solution to handle these two concurrent sub-goals is applying a hierarchical
representation, which we discuss next.

In the hierarchical representation, the original task is decomposed into two
simpler subtasks that solve a single sub-goal independently (see Figure 17). The
to goal subtask is responsible for navigation to goal locations. Its state space in-
cludes the Distance(goal,s) and DirectionTo(goal,s) features. The from
enemy subtask is responsible for evading the enemy unit. Its state space includes

Abstraction and Generalization in Reinforcement Learning 17

Worker Unit

(Adaptive Agent)

Enemy Unit

Goal

Position

Distance(Enemy)

DirectionTo(Enemy)

Distance(Goal)

DirectionTo(Goal)

Fig. 16. This figure shows a screenshot of the reactive navigation task in the Wargus game. In this
example, the peasant is situated at the bottom. Its task is to move to a goal position (the dark spot
right to the center) and avoid the enemy soldier (situated in the upper left corner) that is randomly
patrolling the map.

Fig. 17. Hierarchical decomposition of the reactive navigation task

18 M. Ponsen, M.E. Taylor, and K. Tuyls

the Distance(enemy,s) and DirectionTo(enemy,s) features. The action
spaces for both subtasks include the primitive actions for moving in all compass di-
rections. The two subtasks are hierarchically combined in a higher-level navigate
task. The state space of this task is represented by the InRange(goal,s) and
InRange(enemy,s) features, and its action space consists of the two subtasks that
can be invoked as if they were primitive actions. InRange is a function that returns
true if the distance to an object is 8 or less in state s, and false otherwise. Because
these new features can be defined in terms of existing features, we are not introducing
any additional domain knowledge compared to the flat representation. The to goal and
from enemy subtasks terminate at each state change on the root level, e.g., when the
enemy (or goal) transitions from in range to out of range and vice versa. We choose
to set the pseudo-rewards for both subtasks to +100 whenever the agent completes a
subtask and 0 otherwise. The navigate task never terminates, but the primitive subtasks
always terminate after execution. The state spaces for the two subtasks are of size 72,
and four for navigate. Therefore, the state space complexity in the hierarchical repre-
sentation is approximately 35 times less than with the flat representation. Additionally,
in the hierarchical setting we are able to split the reward signal, one for each subtask,
so they do not interfere. The to goal subtask rewards solely moving to the goal (i.e.,
only process the +10 reward when reaching a goal location). Similarly, the from enemy
subtask only rewards evading the enemy. Based on these two reward signals and the
pseudo-rewards, the root navigate task is responsible for choosing the most appropriate
subtask. For example, suppose that the peasant at a certain time decided to move to the
goal and it took the agent 7 steps to reach it. The reward collected while the to goal
subtask was active is −7 (reward of −1 for all primitive actions) and +10 (for reach-
ing the goal location) resulting in a +3 total reward. Additionally, a pseudo-reward of
+100 is received because to goal successfully terminated, resulting in a total reward
of +103 that is propagated to the navigate subtask, that is used to update its Q-values.
The Q-values for the to goal subtask are updated based on the immediate reward and
estimated value of the successor state (see equation 8).

6.3 Experimental Results

We evaluated the performance of flat RL and HRL in the reactive navigation task. The
step-size and discount-rate parameters were set to 0.2 and 0.7, respectively. These val-
ues were determined during initial experiments. We chose to use more exploration for
the to goal and from enemy subtasks compared to navigate, since more Q-values must
be learned. Therefore, we used Boltzmann action selection with a relatively high (but
decaying) temperature for the to goal and from enemy subtasks and ε-greedy action
selection at the top level, with ε set to 0.1 [39].

A “trial” (when Q-values are adapted) lasted for 30 episodes. An episode terminated
when the adaptive agent was destroyed or until a fixed time limit was reached. During
training, random instances of the task were generated, i.e., random initial starting loca-
tions for the units, random goals and random enemy patrol behavior. After each trial,
we empirically tested the current policy on a test set consisting of five fixed task in-
stances that were used throughout the entire experiment. These included fixed starting
locations for all objects, fixed goals and fixed enemy patrol behavior. We measured the

Abstraction and Generalization in Reinforcement Learning 19

Fig. 18. This figure shows the average performance of Q-learning over 5 experiments in the reac-
tive navigation task for both flat and HRL. The x-axis denotes the number of training trials and
the y-axis denotes the average number of goals achieved by the agent for the tasks in the test set.

performance of the policy by counting the number of goals achieved by the adaptive
agent (i.e., the number of times the agent successfully reached the goal location before
it was destroyed or time ran out) by evaluating the greedy policy. We ended the exper-
iment after 1500 training episodes (50 trials). The experiment was repeated five times
and the averaged results are shown in Figure 18.

From this figure we can conclude that while both methods improve with experience,
learning with the HRL representation outperforms learning with a flat representation.
By using (more human-provided) abstractions, HRL represented the policy more com-
pactly than the flat representation, resulting in faster learning. Furthermore, HRL is
more suited to handling concurrent and competing subtasks due to the split reward sig-
nal. We expect that even after considerable learning with flat RL, HRL will still achieve
a higher overall performance. This experiment shows that when goals have clearly con-
flicting rewards and the overall task can be logically divided into subtasks, HRL could
be successfully applied.

7 Relational Reinforcement Learning

Relational reinforcement learning [14] (RRL) combines the RL setting with relational
learning or inductive logic programming [26] (ILP) in order to represent states, ac-
tions, and policies using the structures and relations that identify them. These structural
representations allow generalization over specific goals, states, and actions. Because
relational reinforcement learning algorithms try to solve problems at an abstract level,
the solutions will often carry to different instantiations of that abstract problem. For
example, resulting policies learned by an RRL system often generalize over domains
with varying number of existing objects.

20 M. Ponsen, M.E. Taylor, and K. Tuyls

A typical example is the blocks world. A number of blocks with different properties
(size, color, etc.) are placed on each other or on the floor. It is assumed that an infinite
number of blocks can be put on the floor and that all blocks are neatly stacked onto
each other, e.g., a block can only be on one other block. The possible actions consist
of moving one clear block (e.g., a block with no other block on top of it) onto another
clear block, or onto the floor. It is impossible to represent such world states with a
propositional representation without an exponential increase of the number of states.
Consider as an example the right-most state in Figure 19. In First-Order Logic (FOL),
this state can be represented, presuming this state is called s, by the conjunction

{on(s, c, f loor) ∧ clear(s, c) ∧ on(s, d, f loor) ∧ on(s, b, d) ∧ on(s, a, b) ∧
clear(s, a) ∧ on(s, e, f loor) ∧ clear(s, e)}.

s is reached by executing the move action (indicated by the arrow), noted as
move(r,s,a,b), in the previous state (on the left in Figure 19).

ed
a b
c e

a

d
b

c

Fig. 19. The blocks world

One of the most important benefits of the relational learning approach is that one can
generalize over states, actions, objects, but one is not forced to do so (one can abstract
away selectively only these things that are less important). For instance, suppose that all
blocks have a size property. One could then say that “there exists a small block which is
on a large block” (∃B1, B2 : block(B1, small,), block(B2, large,), on(B1, B2)).
Objects B1 and B2 are free variables, and can be instantiated by any block in the
environment. RRL can generalize over blocks and learn policies for a variable number
of objects without necessarily suffering from the “curse of dimensionality” (where the
size of the value function increases exponentially with the dimension of the state space).

Although it is a relatively new representation, several approaches to RRL have been
proposed during the last few years. One of the first methods developed within RRL was
relational Q-learning [14], described in Algorithm 4. Relational Q-learning behaves
similarly to standard Q-learning, but is adapted to the RRL representation. In relational
reinforcement learning, the representation contains structural or relational information
about the environment. Relational Q-learning employs a relational regression algorithm
to generalize over the policy space. Learning examples, stored as a tuple (a, s, Q(s, a)),
are processed by an incremental relational regression algorithm to produce a relational
value-function or policy as a result. So far, a number of different relational regression
learners have been developed.1

1 A thorough discussion and comparison can be found in [13].

Abstraction and Generalization in Reinforcement Learning 21

Algorithm 4. The Relational Reinforcement Learning Algorithm

REQUIRE initialize Q(s, a) and s0 arbitrarily;1

e← 0;2

repeat {for each episode}3

Examples← ∅;4

i← 0;5

repeat {for each step ∈ episode}6

take a for s using policy π(s) and observe r and s′;7

Q(a, s)→ (1− α)Q(a, s) + α

[
r + γ max

a′ Q(a′, s′)
]

;
8

Examples← Examples∪{a, s, Q(s, a)};9

i← i + 1;10

until si is terminal ;11

Update Q̂e using Examples and a relational regression algorithm to produce Q̂e+1;12

e← e + 1;13

until done ;14

In [28], we demonstrated how relational reinforcement learning and multi-agent sys-
tems techniques could be combined to plan well in tasks that are complex, multi-state,
and dynamic. We used a relational representation of the state space in multi-agent rein-
forcement learning, as this has many benefits over the propositional one. For instance, it
handled large state spaces, used a rich relational language, modeled other agents with-
out a computational explosion (generalizing over agents’ policies), and generalized over
newly derived knowledge. We investigated the positive effects of relational reinforce-
ment learning applied to the problem of agent communication in multi-agent systems.
More precisely, we investigated the learning performance of RRL given some commu-
nication constraints. Our results confirm that RRL can be used to adequately deal with
large state spaces by generalizing over states, actions and even agent policies.

8 Transfer Learning

This section of the chapter chapter focuses on transfer learning (TL) and its relationship
to generalization and abstraction. The interested reader is referred elsewhere [44] for a
more complete treatment of transfer in RL.

8.1 Transfer Learning Background

All transfer learning algorithms for reinforcement learning agents use one or more
source tasks to better learn in a target task, relative to learning without the benefit
of the source task(s). Transfer techniques assume varying degrees of autonomy and
make many different assumptions. For instance, one way TL algorithms differ is in how
they allow source and target tasks to differ. Consider the pairs of MDPs represented in
Figure 20. The source and target tasks could differ in any portion of the MDP: the
transition function, T , the reward function, R, what states exist, what actions the agent
can perform, and/or how the agent represents the world (the state is represented here in

22 M. Ponsen, M.E. Taylor, and K. Tuyls

x
x

xn

2

1

x3

...

Agent

Environment
T, R

rs a

Agent

Environment

r’
T’, R’

x
x

xm

2

1

x3

...

s’ a’

TargetSource

Fig. 20. Simple transfer schematic

terms of state variables 〈x1, x2, . . . , xn〉 in the source task MDP and 〈x1, x2, . . . , xm〉
in the target task MDP).

The use of transfer in humans has been studied for many years in the psycholog-
ical literature [34,47]. More related is sequential transfer between machine learning
tasks (c.f., [48]), which allows the learning of higher performing classifiers with less
data. For instance, one could imagine using a large training corpus from a newspaper
to help learn a classifier such that when the classifier is presented with training ex-
amples from a magazine, it can learn with fewer examples than if the newspaper data
had not been used. Another common approach is that of learning to perform multiple
tasks simultaneously (c.f., [8]). The motivation in this case is that a classifier capable of
performing multiple tasks in a single domain will be forced to capture more structure
of the domain, performing better than if any one classifier was trained and tested in
isolation.

8.2 Transfer as Generalization

Generalization may be thought of as the heart of machine learning: given a set of data,
how should one perform on novel data? Such questions are prevalent in RL as well. For
instance, in a continuous action space, an agent is unlikely to visit a single state more
than once and it must therefore constantly generalize its previous data to predict how to
act.

Transfer learning may be thought of as a different type of generalization, where the
agent must generalize knowledge across tasks. This section examines two strategies
common to transfer methods. The first strategy is to learn some low-level information
in the source task and then use this information to better bias learning in the target task.
The second strategy is to learn something that is true for the general domain, regardless
of the particular task in question.

Example Domain: Keepaway. One popular domain for demonstrating TL in RL tasks
is that of Keepaway [37], a sub-task of the full 11 vs. 11 simulated soccer, which uses the
RoboCup Soccer Server [27] to simulate sensor and actuator noise of physical robots.

Abstraction and Generalization in Reinforcement Learning 23

Ball

K1
K2

T1

K3

T2

Center of field

Fig. 21. 3 vs. 2 Keepaway uses multiple distances and angles to represent state, enumerated in
Table 1

Typically, n teammates (the keepers) attempt to keep control of the ball within a small
field area, while n − 1 teammates (the takers) attempt to capture the ball or kick it
out of bounds. The keepers typically learn while the takers follow a fixed policy. Only
the keeper with the ball may select actions intelligently: all keepers without the ball
always executes a getopen action, where they attempt to move to an area of the field
to receive a pass.

Keepers learn to extend the average length of an episode over time by selecting be-
tween executing the hold ball action (attempting to maintain possession), or they may
pass to a teammate. In 3 vs. 2 Keepaway, there are three keepers and two takers, and
thus the keeper with the ball has 3 macro2 actions (hold, pass to closest teammate, and
pass to second closest teammate). The keeper with the ball represents its state with 13
(rotational invariant) state variables, shown in Figure 21. This is also a deictic represen-
tation, similar to the one discussed in Section 6.1, because players are labeled relative to
their distance to the ball, rather than labeled by jersey number (or another fixed scheme).

The 4 vs. 3 Keepaway task, which adds an additional keeper and taker, is more dif-
ficult to learn. First, there are more actions (the keeper with the ball selects from 4
actions) and keepers have a more complex state representation (due to the extra players,
the world is described by 19 state variables). Second, because there are more players
on the field, passes must be more frequent. Each pass has a chance of being missed by
the intended receiver, and thus each pass brings additional risk that the ball will be lost,
ending the episode.

2 Note that because the actions may last more than one timestep, Keepaway is technically an
SMDP, rather than an MDP, but such distinction is not critical for the purposes of this chapter.

24 M. Ponsen, M.E. Taylor, and K. Tuyls

Given these two tasks, there are (at least) two possible goals for transfer. First, one
may assume that a set of keepers have trained on the source task. Considering this
source task training a sunk cost, the goal is to learn better/faster on the target task by
using the source task information, compared to learning the target task while ignoring
knowledge from the source task. A second, more difficult, goal is to explicitly account
for source task training time. In other words, the second goal of transfer is to learn
the source task, transfer some knowledge, and then target task better/faster than if the
agents had directly trained only on the target task.

Transferring Low-Level Information: Ignoring novel structure. When considering
transfer from 3 vs. 2 to 4 vs. 3, one approach would be to learn a Q-value function
in the source task and then copy it over into the target task, ignoring the novel state
variables and actions. This is similar to the idea of domain hiding, discussed earlier in
Section 4.2. For instance, the hold action in 4 vs. 3 can be considered the same as the
hold action in 3 vs. 2. Likewise, the 4 vs. 3 actions pass to closest teammate and
pass to second closest teammate may be considered the same as the 3 vs. 2 actions
pass to closest teammate and pass to second closest teammate. The “novel” 4 vs. 3
action, pass to third closest teammate, is ignored. Table 1 shows the state variables
from the 3 vs. 2 and 4 vs. 3 tasks, where the novel state variables in the 4 vs. 3 task are
in bold.

This is precisely the approach used in Q-value Reuse [45]. Results (reproduced in
Table 2) show that the Q-values saved after training in the 3 vs. 2 task can be success-
fully used directly in the 4 vs. 3 task by ignoring the novel state variables and actions.
Specifically, the source task action-value function is used as an initial bias in the target
task, which is then refined over time with SARSA learning (e.g., Q-values for the novel
4 vs. 3 action are learned, and existing Q-values are refined). Column 2 of the table
shows that the source task knowledge can be successfully reused, and column 3 shows
that the total training can be successfully reduced via transfer.

Lazaric et al. [23] also focuses on transferring very low-level information by using
source task instances in a target task. After learning one or more source tasks, some
experience is gathered in the target task, which may have a different state space or
transition function, but the state variables and actions must remain unchanged. Saved
instances (that is, observed 〈s, a, r, s′〉 tuples) are compared to recorded instances in
the target task. Source task instances that are very similar, as judged by their distance
and alignment with target task data, are transferred. A batch learning algorithm (Fit-
ted Q-iteration [15], which uses instance-based function approximation, then uses both
source instances and target instances to achieve a higher total reward (relative to learn-
ing without transfer).

Region transfer, introduced in the same chapter [23], calculates the similarity be-
tween the target task and different source tasks per sample, rather than per task. Thus,
if source tasks have different regions of the state space which are more similar to the
target, only those most similar regions can be transferred. In this way, different regions
of the target task may reuse data from different source tasks, and regions of the target
task that are completely novel will use no source task data. Although this work did
not use Keepaway, one possible example would be to have source tasks with different
coefficients of friction: in the target task, grass conditions in different sections of the

Abstraction and Generalization in Reinforcement Learning 25

Table 1. This table lists the 13 state variables for 3 vs. 2 Keepaway and the 19 state variables for
4 vs. 3 Keepaway. The distance between a and b is denoted as dist(a, b); the angle made by a,
b, and c, where b is the vertex, is denoted by ang(a, b, c); and values not present in 3 vs. 2 are
in bold. Relevant points are the center of the field C, keepers K1-K4, and takers T1-T3, where
players are ordered by increasing distance from the ball.

Description 3 vs. 2 and 4 vs. 3 State Variables
3 vs. 2 state variable 4 vs. 3 state variable

dist(K1, C) dist(K1, C)
dist(K1, K2) dist(K1, K2)
dist(K1, K3) dist(K1, K3)

dist(K1,K4)
dist(K1, T1) dist(K1, T1)
dist(K1, T2) dist(K1, T2)

dist(K1,T3)
dist(K2, C) dist(K2, C)
dist(K3, C) dist(K3, C)

dist(K4,C)
dist(T1, C) dist(T1, C)
dist(T2, C) dist(T2, C)

dist(T3,C)
Min(dist(K2, T1), dist(K2, T2)) Min(dist(K2, T1), dist(K2, T2), dist(K2,T3))
Min(dist(K3, T1), dist(K3, T2)) Min(dist(K3, T1), dist(K3, T2), dist(K3,T3))

Min(dist(K4, T1), dist(K4,T2), dist(K4,T3))
Min(ang(K2, K1, T1), ang(K2, K1, T2)) Min(ang(K2, K1, T1), ang(K2, K1, T2),

ang(K2,K1,T3)
Min(ang(K3, K1, T1), ang(K3, K1, T2)) Min(ang(K3, K1, T1), ang(K3, K1, T2),

ang(K3,K1,T3))
Min(ang(K4,K1,T1), ang(K4,K1,T2),
ang(K4,K1,T3))

field would dictate which source tasks(s) are most similar and where data should be
transferred from.

Transferring Low-Level Information: Mapping novel structure. Inter-task map-
pings [45] allow a TL algorithm to explicitly state the relationship between different
state variables and actions in the two tasks. For instance, the novel 4 vs. 3 action, pass
to third closest teammate, may be mapped to the 3 vs. 2 action pass to second closest
teammate. When such an inter-task mapping is provided (and is correct), transfer may
be even more effective than if the novelty is ignored. Such an approach generalizes the
source task knowledge to the target task. By generalizing over different target task state
variablesandactions, theTLmethodcan initializeall target taskQ-values tovalues learned
in the source task, biasing learning and resulting in significantly faster learning. The Value
Function Transfermethod in Table2uses inter-task mappings (columnsfourand five), and
outperforms Q-value Reuse, which had ignored novel state variables and actions.

While inter-task mappings are a convenient way to fully specify relationships
between MDPs, it is possible that not enough information is known to design a full

26 M. Ponsen, M.E. Taylor, and K. Tuyls

Table 2. Results in columns two and three (reproduced from [45]) show learning 3 vs. 2 for
different numbers of episodes and then using the learned 3 vs. 2 CMAC directly while learning
4 vs. 3. Minimum learning times for reaching a preset 4 vs. 3 performance threshold are bold.
All times reported are “simulator hours,” the number of playing hours simulated, as opposed
to wall-clock time. The top row of results shows the time required to learn in the 4 vs. 3 task
without transfer. As source task training time increases, the required target task training time
decreases. The total training time is minimized with a moderate amount of source task training.
The results of using Value Function Transfer (with inter-task mappings) are shown in columns
four and five. Q-value Reuse provides a statistically significant benefit relative to no transfer, and
Value Function Transfer yields an even higher improvement.

Transfer Results between 3 vs. 2 and 4 vs. 3 Keepaway
Q-value Reuse Value Function Transfer

of 3 vs. 2 Avg. 4 vs. 3 Avg. Total Avg. 4 vs. 3 Avg. Total
Episodes Time (sim. hours) Time (sim. hours) Time (sim. hours) Time (sim. hours)

0 30.84 30.84 30.84 30.84
10 28.18 28.21 24.99 25.02
50 28.0 28.13 19.51 19.63

100 26.8 27.06 17.71 17.96
250 24.02 24.69 16.98 17.65
500 22.94 24.39 17.74 19.18

1,000 22.21 24.05 16.95 19.70
3,000 17.82 27.39 9.12 18.79

mapping. For instance, an agent may know that a pair of state variables describe “dis-
tance to teammate” and “distance from teammate to marker,” but the agent is not told
which teammate the state variables describe. Homomorphisms [31] are a different ab-
straction that can define transformations between MDPs based on transition and reward
dynamics, similar in spirit to inter-task mappings, and have been used successfully for
transfer [35]. However, discovering homomorphisms is NP-hard [32]. Work by Soni
and Singh [35] supply an agent with a series of possible state transformations (i.e.,
potential homomorphisms) and an inter-task mapping for all actions. One transforma-
tion, X , exists for every possible mapping between target task state variables to source
task state variables. The agent learns in the source task as normal. Then the agent must
learn the correct transformation: in each target task state s, the agent must choose to
randomly explore the target task actions, or choose to take the action suggested by the
learned source task policy using one of the existing transformations, X . Q-learning al-
lows the agent to select the best state variable mapping, defined as the one which allows
the player to accrue the most reward, as well as learn the action-values for the target
task. Later work by Sorg and Singh [36], extend this idea to that of learning “soft”
homomorphisms. Rather than a strict surjection, these mappings assign probabilities
that a state in a source task is the same as a state in the target task. This added flexibility
allows the authors to provide bounds on their algorithm’s performance, as well as show
that such mappings are indeed learnable.

The MASTER algorithm [42] transfers instances similar to Lazaric [23], except that
novel state variables and actions may be explicitly accounted for by using inter-task

Abstraction and Generalization in Reinforcement Learning 27

mappings. MASTER uses an exhaustive search to generate all possible inter-task map-
pings, and then selects the one that best describes the relationship between the source
and target task, learning the best inter-task mapping. Then, data from the source task
is mapped to the target task, and learning can continue to refine the source task data.
Although this method currently does not scale to Keepaway (due to its reliance on
model-learning methods [19] for continuous state variables), but is similar in spirit to
the above two methods.

Transferring High-Level Information. This section discusses four methods which
transfer higher-level information than the previously discussed transfer methods. One
example is an option, where a set of actions are composed into a single high-level
macro-action that the agent may choose to execute. Thus far, researchers have not quan-
tified “high-level” and “low-level” information well, nor have they made convincing
arguments to support the claim that high-level information is likely to generalize to dif-
ferent tasks within a similar domain. However, this claim makes intuitive sense and is
an interesting open question.

Section 7 introduced Relational RL (RRL). Recall that the propositional representa-
tion allows state to be discussed in terms of objects and their properties. Actions in the
RRL framework typically have pre- and post-conditions over objects. When the state
changes such that there are more or fewer objects, learned Q-values for actions may
be very similar, as the object on which the action acts has not changed. One example
of such transfer is by Croonenbourghs et al. [10], where they first learn a source task
policy with RRL. This source task policy then generates state-action pairs, which are
in turn used to build a relational decision tree. This tree predicts which action would
be executed by the policy in a given state. As a final step, the trees produce relational
options. These options are directly used in the target task with the assumption that the
tasks are similar enough that no translation of the relational options is necessary.

Konidaris and Barto [22] also consider transferring options, but do so in a different
framework. Instead of an RRL approach, they divide problems into agent-space and
problem-space representations [21]. Agent-space defines an agent’s capabilities that
remains fixed across all problems (e.g., it represents a robot’s physical sensors and ac-
tuators); agent-space may be considered a type of domain hiding. The problem-space
may change between tasks (e.g., there may be different room configurations in a navi-
gation task). By assuming “pre-specified salient events,” such as when a light turns on
or an agent unlocks a door, agents may learn options to achieve these events. Options
succeed in improving learning in a single task by making it easier for agents to reach
such salient events (which are assumed to be relevant for the task being performed). Ad-
ditionally, the agent may train on a series of tasks, learning options in both agent- and
problem-space, and reusing them in subsequent tasks. The authors suggest that agent-
space options will likely be more portable than problem-space options, and it is likely
that problem-space options will only be useful when the source and target tasks are very
similar.

Torrey et al. [49] also consider transferring option-like knowledge. Their method
involves learning a strategy, represented as a finite-state machine, which can be ap-
plied to a target task with different state variables and actions. Strategies are learned in
the source task and then remapped to the target task with inter-task mappings. These

28 M. Ponsen, M.E. Taylor, and K. Tuyls

transferred strategies are then demonstrated to the target task learner. Instead of ex-
ploring randomly, the agent is forced to execute any applicable strategy for the first
100 episodes, learning to estimate the value of executing different strategies. After this
demonstration phase, agents may then select from all of the MDP’s actions. Experi-
ments show that learning first on 2-on-1 BreakAway (similar to 2 vs. 1 Keepaway, but
where the “keepers” are trying to score a goal on the “takers”), improves learning in
both 3-on-2 Breakaway and 4-on-3 BreakAway.

8.3 Abstraction in Transfer

The majority of the TL methods in the above section focused on the first goal of transfer:
showing that source task knowledge can improve target task learning, when the source
task is treated as a sunk cost. (An exception is Taylor et al. [45], where they demonstrate
that learning a pair or sequence of tasks can be faster than directly learning the target
task.) In this section, we discuss abstraction in the context of transfer. Specifically, if
the source task is an abstract version of the target task, it may be substantially faster
to learn than the target task, but still provide the target task learner with a significant
advantage.

Taylor and Stone [43] introduced the notion of inter-domain transfer in the context of
Rule Transfer (similar in spirit to Torrey et al.’s method [49]). The chapter showed two
instances where transfer between very different domains was successful. In both cases,
the source tasks are discrete and fully observable, and one is deterministic. The target
task was 3 vs. 2 Keepaway, which has continuous state variables, is partially observable,
and is stochastic (due to sensor and actuator noise).

One of the source tasks is shown in Figure 22. In this task, the player begins at one
end of the 25 × 25 board and the opponent begins at the opposite end of the board. The
goal of the player is to reach the opposite end of the board without being touched by
the opponent (either condition will end the episode). The player’s state is represented
by three state variables and it has three actions available. The player may move North
(forward) or perform a knight’s jump: North + East + East, or North + West + West.
Although this task is very different from Keepaway, there are some important similar-
ities. For instance, when the distance between the keeper with the ball and the closest
taker is small, the player is likely to lose the ball (and thus end the episode). In Knight’s
Joust, when the distance between the player and the opponent is small, the episode is
also likely to end.

Most significant with respect to transfer is the fact that an agent sees an average
of only 600 distinct states over a 50,000 episode learning trial of Knight’s Joust. This
makes learning a good source task policy relatively easy: learning in the Knight’s Joust
abstraction takes on the order of a minute, whereas learning in 3 vs. 2 Keepaway takes
hours of wall clock time. Using an abstract source task that allows very fast learning
makes the task of reducing the total training time must easier: if the goal is to learn 3
vs. 2 Keepaway, it makes sense to spend a minute or two learning an abstract source
task because it can save hours of learning in the target task (relative to directly learning
3 vs. 2 Keepaway).

While this result is encouraging, it can be regarded as a proof of concept: both source
tasks used by Taylor and Stone [43] were carefully designed to be useful for transfer

Abstraction and Generalization in Reinforcement Learning 29

E

N

W

S

Start

Goal

dist(P,O)

ang(West) ang (East)

Player

Opponent

Fig. 22. Knight’s Joust: The player attempts to reach the goal end of a a 25× 25 grid-world while
the opponent attempts to touch the player

into the Keepaway task. The idea of constructing sequences of tasks which are fast to
learn is very appealing [4,41], but there are currently no concrete guidelines. This is
due, in part, to the absence of a general method for deciding when transfer from a given
source task will help learn a target task.

For instance, consider an agent that first learns the game of “Giveaway,” where the
goal is to loose the ball as fast as possible. If the agent then transfers this knowledge
to Keepaway, it will perform worse than if it had ignored its previous knowledge [45].
While this may appear “obvious” to a human, such differences may be opaque to an
agent and its learning algorithm. In the above example, the source task and target task
differ only in reward function: the transition model, state variables, actions, etc. are all
identical. Similarly, if an agent learns a specific path out of a maze in a source task and
then uses this policy to navigate a target task maze, a malicious designer of the target
task may make the source task policy perform arbitrarily poorly. Protecting against such
negative transfer is an important open question.

9 Conclusions

In this survey we investigated generalization and abstraction in Reinforcement Learn-
ing. We provided the fundamentals of RL, introduced definitions of generalization and
abstraction, and elaborated on the most common techniques to achieve both. These
techniques include function approximation, hierarchical reinforcement learning, rela-
tional reinforcement learning and transfer learning. With novel and existing examples
from the literature, we illustrated these techniques and provided many references to the
literature. Our hope is that this chapter has provided a solid introduction and structure

30 M. Ponsen, M.E. Taylor, and K. Tuyls

to the concepts of abstraction and generalization in RL, encouraging additional work in
this exciting field.

Acknowledgements

The authors would like to thank Scott Alfeld and Jason Tsai for useful comments and
suggestions. Marc Ponsen is sponsored by the Interactive Collaborative Information
Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant nr:
BSIK03024.

References

1. Albus, J.S.: Brains, Behavior, and Robotics. Byte Books, Peterborough (1981)
2. Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete

Event Dynamic Systems: Theory and Application 13(4), 341–379 (2003)
3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
4. Bengio, Y., Collobert, J.L.R., Weston, J.: Curriculum learning. In: Proceedings of the

Twenty-Sixth International Conference on Machine Learning (June 2009)
5. Boyan, J.A., Moore, A.W.: Generalization in reinforcement learning: Safely approximating

the value function. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural
Information Processing Systems, vol. 7, pp. 369–376. MIT Press, Cambridge (1995)

6. Brafman, R.I., Tennenholtz, M.: R-max - a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research 3, 213–231 (2003)

7. Brooks, R.A.: Intelligence without representation. Artificial Intelligence (47), 139–159
(1991)

8. Caruana, R.: Multitask learning. Machine Learning 28, 41–75 (1997)
9. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning. In:

Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 8, pp. 1017–1023. MIT Press, Cambridge (1996)

10. Croonenborghs, T., Driessens, K., Bruynooghe, M.: Learning relational options for inductive
transfer in relational reinforcement learning. In: Blockeel, H., Ramon, J., Shavlik, J., Tade-
palli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 88–97. Springer, Heidelberg (2008)

11. Dean, T., Givan, R.: Model minimization in Markov decision processes. In: Proceedings of
the Thirteenth National Conference on Artificial Intelligence, pp. 106–111 (1997)

12. Dietterich, T.: An overview of MAXQ hierarchical reinforcement learning. In: Choueiry,
B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 26–44. Springer, Heidel-
berg (2000)

13. Driessens, K.: Relational Reinforcement Learning. PhD thesis, DEPTCW (2004),
http://www.cs.kuleuven.be/publicaties/doctoraten/cw/
CW2004 05.abs.html

14. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learn-
ing 43, 7–52 (2001)

15. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research 6, 503–556 (2005)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 57(2-3), 323–389
(1992)

17. Holte, R.C., Chouiery, B.Y.: Abstraction and reformulation in ai. Philosophical transactions
of the Royal Society of London 358(1435:1), 197–204 (2003)

http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2004_05.abs.html
http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2004_05.abs.html

Abstraction and Generalization in Reinforcement Learning 31

18. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)
19. Jong, N.K., Stone, P.: Model-based exploration in continuous state spaces. In: The Seventh

Symposium on Abstraction, Reformulation, and Approximation (July 2007)
20. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time. In: Proc.

15th International Conf. on Machine Learning, pp. 260–268. Morgan Kaufmann, San Fran-
cisco (1998)

21. Konidaris, G., Barto, A.: Autonomous shaping: Knowledge transfer in reinforcement learn-
ing. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 489–496
(2006)

22. Konidaris, G., Barto, A.G.: Building portable options: Skill transfer in reinforcement learn-
ing. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp.
895–900 (2007)

23. Lazaric, A., Restelli, M., Bonarini, A.: Transfer of samples in batch reinforcement learning.
In: Proceedings of the 25th Annual ICML, pp. 544–551 (2008)

24. Li, L., Walsh, T.J., Littman, M.L.: Towards a unified theory of state abstraction for MDPs.
In: Proceedings of the Ninth International Symposium on Artificial Intelligence and Mathe-
matics, pp. 531–539 (2006)

25. Mahadevan, S., Maggioni, M.: Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. Journal of Machine Learning Re-
search 8, 2169–2231 (2007)

26. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of
Logic Programming 19(20), 629–679 (1994)

27. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer server: A tool for research on multiagent
systems. Applied Artificial Intelligence 12, 233–250 (1998)

28. Ponsen, M., Croonenborghs, T., Ramon, J., Tuyls, K., Driessens, K., van den Herik, J.,
Postma, E.: Learning with whom to communicate using relational reinforcement learning.
In: International Conference on Autonomous Agents and Multi Agent Systems, AAMAS
(2009)

29. Puterman, M.: Markov decision processes: Discrete stochastic dynamic programming. John
Wiley and Sons, New York (1994)

30. Pyeatt, L.D., Howe, A.E.: Decision tree function approximation in reinforcement learning.
In: Proceedings of the Third International Symposium on Adaptive Systems: Evolutionary
Computation & Probabilistic Graphical Models, pp. 70–77 (2001)

31. Ravindran, B., Barto, A.: Model minimization in hierarchical reinforcement learning. In: Pro-
ceedings of the Fifth Symposium on Abstraction, Reformulation and Approximation (2002)

32. Ravindran, B., Barto, A.: An algebraic approach to abstraction in reinforcement learning. In:
Twelfth Yale Workshop on Adaptive and Learning Systems, pp. 109–114 (2003)

33. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Technical
report, Cambridge University Engineering Department (1994)

34. Skinner, B.F.: Science and Human Behavior. Colliler-Macmillian (1953)
35. Soni, V., Singh, S.: Using homomorphisms to transfer options across continuous reinforce-

ment learning domains. In: Proceedings of the Twenty First National Conference on Artificial
Intelligence (July 2006)

36. Sorg, J., Singh, S.: Transfer via soft homomorphisms. In: Proceedings of the Eighth Interna-
tional Conference on Autonomous Agents and Multiagent Systems, May 2009, pp. 741–748
(2009)

37. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: From machine learning
testbed to benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup
2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg (2006)

38. Sutton, R.: Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bulletin 2, 160–163 (1991)

32 M. Ponsen, M.E. Taylor, and K. Tuyls

39. Sutton, R., Barto, A.: Reinforcement Learning: an introduction. MIT Press, Cambridge
(1998)

40. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: a framework for temporal
abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)

41. Taylor, M.E.: Assisting transfer-enabled machine learning algorithms: Leveraging human
knowledge for curriculum design. In: The AAAI 2009 Spring Symposium on Agents that
Learn from Human Teachers (March 2009)

42. Taylor, M.E., Jong, N.K., Stone, P.: Transferring instances for model-based reinforcement
learning. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II.
LNCS (LNAI), vol. 5212, pp. 488–505. Springer, Heidelberg (2008)

43. Taylor, M.E., Stone, P.: Cross-domain transfer for reinforcement learning. In: Proceedings of
the Twenty-Fourth International Conference on Machine Learning (June 2007)

44. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research 10(1), 1633–1685 (2009)

45. Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for temporal dif-
ference learning. Journal of Machine Learning Research 8(1), 2125–2167 (2007)

46. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation 6(2), 215–219 (1994)

47. Thorndike, E., Woodworth, R.: The influence of improvement in one mental function upon
the efficiency of other functions. Psychological Review 8, 247–261 (1901)

48. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Advances in Neural
Information Processing Systems, vol. 8, pp. 640–646 (1996)

49. Torrey, L., Shavlik, J.W., Walker, T., Maclin, R.: Relational macros for transfer in reinforce-
ment learning. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS
(LNAI), vol. 4894, pp. 254–268. Springer, Heidelberg (2008)

50. Watkins, C.: Learning with Delayed Rewards. PhD thesis, Cambridge University (1989)
51. Weiss, G.: A multiagent variant of dyna-q. In: Proceedings of the 4th International Confer-

ence on Multi-Agent Systems (ICMAS 2000), pp. 461–462 (2000)
52. Wiering, M.: Explorations in Efficient Reinforcement Learning. PhD thesis, Universiteit van

Amsterdam (1999)
53. Zucker, J.D.: A grounded theory of abstraction in artificial intelligence. Philosophical trans-

actions of the Royal Society of London 358(1435:1), 293–309 (2003)

The Effects of Evolved Sociability
in a Commons Dilemma

Enda Howley and Jim Duggan

System Dynamics Research Group,
Department of Information Technology,

National University of Ireland, Galway, Ireland
{enda.howley,jim.duggan}@nuigalway.ie

Abstract. This paper explores the evolution of strategies in an n-player
dilemma game. These n-player dilemmas provide a formal representation
of many real world social dilemmas. Those social dilemmas include lit-
tering, voting and sharing common resources such as sharing computer
processing time. This paper explores the evolution of altruism using an
n-player dilemma and our results show the importance of sociability in
these games. We propose a novel tag-mediated mechanism to allow for
n-player interactions. This paper provides an examination of the inter-
action dynamics that occur in these n-player games when sociability is
an evolved trait. Our results show how the agent population changes
and evolves rapidly in response to the strategies of their peers in the
population.

Keywords: Evolution, Learning, Cooperation, Agent Interactions,
Tragedy of the Commons, Tag-Mediated Interaction Models.

1 Introduction

When a common resource is being shared among a number of individuals, each
individual benefits most by using as much of the resource as possible. While this
is the individually rational choice, it results in collective irrationality and a non
Pareto-optimal result for all participants. These n-player dilemmas are common
throughout many real world scenarios. For example, the computing community
is particularly concerned with how finite resources can be used most efficiently
where conflicting and potentially selfish demands are placed on those resources.
Those resources may range from access to processor time or bandwidth.

One example commonly used throughout existing research is the Tragedy of
the Commons [7]. This outlines a scenario whereby villagers are allowed to graze
their cows on the village green. This common resource will be over grazed and
lost to everyone if the villagers allow all their cows to graze, yet if everyone limits
their use of the village green, it will continue to be useful to all villagers. Another
example is the Diners Dilemma where a group of people in a restaurant agree
to equally split their bill. Each has the choice to exploit the situation and order
the most expensive items on the menu. If all members of the group apply this
strategy, then all participants will end up paying more [4].

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 33–48, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

34 E. Howley and J. Duggan

These games are all classified as n-player dilemmas, as they involve multi-
ple participants interacting as a group. N-player dilemmas have been shown to
result in widespread defection unless agent interactions are structured. This is
most commonly achieved through using spatial constraints which limit agent
interactions through specified neighbourhoods on a spatial grid. Limiting group
size has been shown to benefit cooperation in these n-player dilemmas [22].

In this paper we will examine an n-player dilemma, and study the evolution
of strategies when individuals can bias their interactions through a tag mediated
environment. Furthermore, we will show how certain strategies evolve with re-
spect to their sociability towards their peers. The simulations presented in this
paper use the n-player Prisoner’s Dilemma (NPD). The purpose of this paper is
to examine the impact sociability on cooperation throughout the agent popula-
tion in the NPD. The research presented in this paper will deal with a number
of specific research questions:

1. Can a tag-mediated interaction model be used to determine group interac-
tions in a game such as the NPD?

2. If agents have an evolvable trait which determines their sociability, then
will this trait prove significant to the emergence of cooperation in the agent
society?

The following section of his paper will provide an introduction to the NPD and
a number of well known agent interaction models. In the experimental setup
section we will discuss our simulator design and our experimental parameters.
Our results section will provide a series of game theoretic simulations. Finally
we will outline our conclusions and future work.

2 Background Research

A number of researchers have used social dilemmas in a number of contexts
including trust [17][3], social capital [19] and solidarity [20]. Social dilemmas are
particularly useful as analytic tools through which large groups of agents can be
studied. These individuals can have significant interdependencies and interact
through complex social structures. These agent interactions have been identified
as being very significant to the study of social dilemmas [10][1]. The importance
of these interaction choices motivates our interest in agent sociability and the
evolution of cooperation in an n-player dilemma.

A number of investigations into social dilemmas have attempted to study
ways of evolving cooperation. For example, Suzuki extended traditional studies
by allowing individuals become charging agents in the tragedy of the commons
[18]. In other work Yamashita et al, have examined the effects of group dynamics
in the NPD [21]. Individuals come together to form groups and then participate
in NPD games with each other. Yamashita studied a number of group forma-
tion mechanisms, which included unilateral choice and mutual choice. Unilateral
stated that once an agent wanted to join a group then ie is admitted into the
group. In mutual choice the agent must be accepted in by a majority of the

The Effects of Evolved Sociability in a Commons Dilemma 35

existing group members. This mutual choice mechanism was then augmented to
include group splitting which allowed dissenting individuals in the group to split
away on their own when a group applicant divided the voting group members.
The agreeing agents proceeded to accept the new individual into their group,
while the opposing agents would leave to form a new group of their own [21].

The work outlined in this paper differs through attempting to examine group
dynamics through a tag-mediated interaction model. Existing research has not
examined the NPD with respect to tags and their known ability to effectively
bias agent interactions and engender cooperation in two player games such as
the Prisoner’s Dilemma. By proposing a tag mediated interaction model for n-
player games, we hope to bridge the gap between the research already conducted
involving tags in two player games [16][12], and the need for more research
involving group structures in many n-player games [1][21].

2.1 The N-Player Prisoner’s Dilemma

The n-player Prisoner’s Dilemma is also commonly known as the Tragedy of the
Commons [7] and the payoff structure of this game is shown in Figure 1.

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1

U
ti
lit

y
 p

e
r

in
d
iv

id
u
a
l

Proportion of Cooperations

Tragedy of the Commons

Benefit to Cooperator
Benefit to Defector

Fig. 1. The N-Player Prisoner’s Dilemma

The x-axis represents the fraction of cooperators in the group of n players
in a particular game. The vertical axis represents the payoff for an individual
participating in a game. There is a linear relationship between the fraction of co-
operators and the utility received by a game participant. Importantly, the payoff
received for a defection is higher than for a cooperation. The utility for defection
dominates the payoff for cooperation in all cases. Therefore, an individual that
defects will always receive a higher payoff than if they had chosen to cooperate.
The result of this payoff structure should result in an advantage to defectors in
the agent population. Despite this, a cooperator in a group of cooperators will
do much better than a defector in a group of defectors.

36 E. Howley and J. Duggan

This game is considered a valid dilemma due to the fact that individual ra-
tionality favours defection despite this resulting in state which is less beneficial
to all participants. In our case where all individuals defect they all receive 0.5.
This state is a non-pareto, sub-optimal, and collectively irrational outcome for
the agent population. For all values of x this can be expressed as follows:

Ud(x) > Uc(x) (1)

x represents the fraction of cooperators while Ud and Uc are utility functions
based on the fraction of cooperators in the group.

2.2 Agent Interaction Models

A number of alternative agent interaction models have been proposed and exam-
ined, such as spatial constraints [14][13] and tag mediated interactions [16]. The
importance of group size has been demonstrated in the NIPD [22] and also in the
PD using tags [9]. Yao and Darwin demonstrated the effects of limiting group
size, which was shown to benefit cooperation. Increasingly complex aspects of
agent interactions have been examined by a number of authors, these include
the effects of community structure on the evolution of cooperation [15][2]. These
have shown that neighbourhood structures benefit cooperation.

In this paper we are most concerned with tag-mediated interactions. Tags are
visual markings or social cues which can help bias social interactions [8]. They are
a commonly used agent interaction model and can be considered akin to football
supporters identifying each other through wearing their preferred team colours.
Similarly individuals can identify each other in conversations through a common
language, dialect, or regional accent. Tag-mediated interaction models are often
considered as more abstract interaction models, and thereby useful to represent
agent interactions more abstractly without the specific characteristics of a spe-
cific topology or implementation. The research presented by Riolo demonstrated
how tags can lead to the emergence of cooperation in the Prisoner’s Dilemma
[16]. Riolo investigated both a fixed and an evolved tag bias. More recently tags
have been successfully applied to multi-agent problems [5][6]. Tags have been
shown to promote mimicking and thereby have major limitations where com-
plimentary actions are required by agents. Cooperation that can be achieved
through identical actions is quite easily achieved using tags, yet behaviours that
require divergent actions are problematic [12][11].

In this paper we will augment existing research to show the effects of using tags
to determine group interactions in the NPD. The following section will provide a
detailed specification of our simulator and the overall design of our experiments.

3 Experimental Setup

In this section we will outline our agent structure, our agent interaction model
and our evolutionary algorithm. The following diagram shows the sequence of
events as they happen in our simulations from generation G to generation G+1.

The Effects of Evolved Sociability in a Commons Dilemma 37

Fig. 2. Simulation Sequence

In the first generation the initial agent population is initialised. In each genera-
tion the agent population interacts through the agent interaction model, where
through game interactions individuals can achieve fitness scores. These fitness
scores are then used to evolve the population using a genetic algorithm for the
subsequent generation.

3.1 Agent Genome

In our model each agent is represented through an agent genome. This genome
holds a number of genes which represents how that particular agent behaves.

Genome = GC , GT , GS , (2)

The GC gene represents the probability of an agent cooperating in a particular
move. The GT gene represents the agent tag. This is represented in the range
[0. . . 1] and is used to determine which games each agent participates. Finally,
the GS gene represents the sociability of each agent. This gene is also a number
in the range [0. . . 1] which acts as a degree of sociability for that individual agent.
Initially these agent genes are generated using a uniform distribution for the first
generation. Over subsequent generations new agent genomes are generated using
our genetic algorithm. Each of these genes are evolved attributes and are fixed
for that individual’s lifetime, therefore changes in the population only occur
through new offspring which have evolved genetic traits.

38 E. Howley and J. Duggan

3.2 Agent Interactions

In our simulations each agent interacts through a tag mediated interaction
model. We adopt a similar tag implementation as that outlined by Riolo [16]. In
our model each agent has a GT gene which is used as their tag value. Each agent
A is given the opportunity to make game offers to all other agents in the popu-
lation. The intention is that this agent A will host a game and the probability
other agents will participate is determined using the following formulation.

dA,B = 1 − |AGT − CGT | (3)

This equation is based on the absolute value between the tag values of two agents
A and B. This value is used to generate two roulette wheels Rab and Rba for
A and B. These two roulette wheels will then be used to determine agent A’s
attitude to B and agent B’s attitude to A. An agent B will only participate in
the game when both roulette wheels have indicated acceptance. The distribution
of these roulette wheels are also influenced by each agents sociability gene. This
gene acts like a scalar value which is used to reflect that some agents are more
sociable than others and will therefore be more willing to play with their peers.
This is shown in the following equation, where Rab represents the roulette wheel
probability representing agent A’s attitude towards B.

Rab = dA,B × AGS (4)

The following pseudocode shows how agents are allowed to determine their game
interactions through their tag values and their evolved sociability genes. These
values are used to calculate the probabilities used in two roulette wheels which
determine the final interaction decision.

WHILE(Agent_A < POPULATION_SIZE)

Game_Participant_Set.Add(Agent_A)

WHILE(Agent_B < POPULATION_SIZE)

Decision_A = Decision_Roulettewheel(Agent_A, Agent_B)

Decision_B = Decision_Roulettewheel(Agent_B, Agent_A)

IF(Decision_A == TRUE && Decision_B == TRUE)

Game_Participant_Set.Add(Agent_B)

ENDWHILE

ENDWHILE

The Effects of Evolved Sociability in a Commons Dilemma 39

As the pseudocode outlines each agent in the population is given the oppor-
tunity to host a game. By default the offering agent A is a participant in the
game. It makes game offers to all other agents B in the population. Two roulette
wheels are then used to determine whether each agent B is added to the game.
Equation 4 is used to determine the two roulette wheels Rab and Rba. Both
roulette wheels are necessary in order to include the sociability of each agent
towards their peers. Once completed the final set of participant agents then play
the NPD game together.

3.3 Genetic Algorithm

In our simulator we have implemented a simple genetic algorithm. In each gener-
ation individuals participate in a variable number of games. Therefore, fitness is
determined by summing all their payoffs received and getting an average payoff
per game. In each generation, the top 5% of agents are copied directly into the
following generation. The other 95% of the agent population in generation G+1
are generated through evolving new strategies based on agent fitness in G. Indi-
viduals are selected through roulette wheel selection based on their fitness from
generation G. Parent pairs are selected based on their fitness and then these
are used to generate a single new agent offspring for generation G + 1. Each
genome contains only three genes GC , GT , GS ,. We apply crossover by selecting
two random genes from the fittest parent, and the remaining gene from the other
parent. A 3% chance of mutation on each of these strategy genes is also applied,
and once this occurs a gaussian distribution is used to determine the degree of
change.

4 Experimental Results

In this section we will present a series of simulations showing the results of our
experiments. Our results depict data from a single run over 10000 Generations.
The aim of this single run is to show the inherent links between certain agent
gene values and the overall cooperation throughout the agent population. Later
in this section we will also present simulations involving subset of individuals
in the population, based on their location in the tag space. All our simulations
were conducted using an agent population of 100 agents.

4.1 Benchmark Simulation

In this section we briefly examine a base case simulation which ignores the so-
ciability gene. The agents bias their interactions based only on their tag values.
Using the formula in Equation 3, the agent population will actually fail to evolve
cooperation. The following graph shows the results of a simulation run involving
just this equation and no sociability gene.

The simulation shown in Figure 3 shows the case where the sociability gene is
not used and the tag distribution is used solely. Due to the size of the population

40 E. Howley and J. Duggan

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
oo

pe
ra

tio
n

G
en

e

 Generations

Average Cooperation Gene

Cooperation Gene

Fig. 3. Average Cooperation Gene - No Sociability Gene (1 Run)

(100) and the probability distribution of the tag space represented by Equation
3, defection is widespread. This is due to the large numbers of individuals par-
ticipating in games and the inability of the tags to partition the population for
these specific settings. A smaller population would help increase the chance of
cooperation emerging, or alternatively altering the probability distribution pre-
sented in Equation 3. Through multiplying the probability of two individuals
interacting by a value such as 0.25, it is possible to evolve total cooperation
quite simply through this tag interaction model. This would have the effect of
changing the probability distribution, and help partition the population using
this fixed parameter. This paper explores the effects of avoiding such parame-
ter setting, and the effects of evolved sociability in a game such as the n-player
Prisoner’s Dilemma.

4.2 Experiment 1

The simulation in Figure 3 shows the base case where all individuals using just
their tags and Equation 3, to bias their interactions and the subsequent levels
of cooperation that are evolved.

Figure 4 shows the emergence of cooperation throughout the agent popula-
tion, when the sociability gene is used to determine game participation. This
graph depicts the average GC gene throughout the agent population in each
generation. The results shows the emergence of cooperation as individuals in the
population participate in various NPD games. The data reflects the emergence
of cooperation which is quickly invaded and undermined by less cooperative
individuals. This pattern continues throughout the simulations as cooperation
emerges and is then undermined.

The data shown in Figure 5 shows the corresponding levels of sociability that
are evolved throughout the agent population. This data indicates the overall
dominance of strategies that limit their interactions. This strategy parameter

The Effects of Evolved Sociability in a Commons Dilemma 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
oo

pe
ra

tio
n

G
en

e

 Generations

Average Cooperation Gene

Cooperation Gene

Fig. 4. Average Cooperation Gene (1 Run)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

So
ci

ab
ili

ty
 G

en
e

 Generations

Average Sociability Gene

Sociability Gene

Fig. 5. Average Sociability Gene(1 Run)

has a direct effect on the number of game interactions each individual partici-
pates in. Similarly, this strategy trait also impacts on the number of individuals
participating in each NPD game. The trends observed in Figure 4, can also be no-
ticed in this data, where heightened instability reflects the pressure on the agents
to void exploitation through being less sociable. Lower levels of cooperation oc-
cur through individuals are heavily exploited for their cooperative behaviour,
and as a result those who are less sociable have an advantage. This results in the
dominance of less sociable strategies which can maintain cooperative interactions
without being exploited.

The results in Figure 6, depict the average number of games each agent par-
ticipates in throughout successive generations. These results show the numbers
of games entered into, which resulted in the simulations shown in Figures 4, 5.

42 E. Howley and J. Duggan

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

 N
um

be
r

of
 G

am
es

 Generations

Average Game Participation

Average Game Participation

Fig. 6. Average Number of Games (1 Run)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

 A
ve

ra
ge

 F
itn

es
s

 Generations

 Average Fitness

 Average Fitness

Fig. 7. Average Fitness (1 Run)

We note the features shown in Figures 4, 5, and 6 correlate strongly and show
the strong links between sociability, game participation and cooperation.

In Figure 7 we show the levels of fitness recorded throughout the agent popula-
tion. This data shows the high levels of fitness achieved through the evolved socia-
bility and cooperative traits of the population. This fitness indicates the benefit to
the entire agent population of high levels of cooperation between the participat-
ing players. This fitness is only undermined when individuals in the population
become more sociable, and are then exposed to exploitation. The data shown in
Figures 4, 5, 6, and 7 are typical results and were confirmed over multiple runs of
our simulations. The following data shown in Figure 8 shows data averaged over
25 experimental runs.

The Effects of Evolved Sociability in a Commons Dilemma 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
ve

ra
ge

 G
en

e
V

al
ue

s

 Generations

Average Gene Values

Sociability Gene
Cooperation Gene

Fig. 8. Average Strategy Genes (25 Runs)

 0

 5

 10

 15

 20

 0 500 1000 1500 2000

N
um

be
r

of
 M

ov
es

 Generations

Total Number of Cooperations and Defections

No of Cooperations
No of Defections

Fig. 9. Number of Cooperations and Defections (1 Run)

Figure 8 shows the emergence of strategies with higher levels of cooperation
and lower levels of sociability throughout successive simulations. The following
two graphs examine in greater detail the actions of the agent population in the
initial 2000 generations of this sample run.

Figure 9. shows the numbers of cooperations and defections that occurred on
average per agent in each generation of the population. These show the effects
of increased and decreased sociability in the population and also the subsequent
relationship between levels of cooperation, defection and the numbers of moves.
As expected from the results shown earlier in Figures 4 and 8 the levels of co-
operation are generally greater than the levels of defection. Furthermore, the
numbers of moves reflect the levels of sociability and game participation iden-
tified in Figures 5 and 6, over the first 2000 generations. The following figure

44 E. Howley and J. Duggan

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000

Pa
yo

ff

Generations

Average Move Payoff

Average Cooperation Payoff
Average Defection Payoff

Fig. 10. Average Move Payoff (1 Run)

shows the average levels of payoff achieved by these cooperators and defectors
in this simulation.

The data shown in Figure 10 shows the levels of payoff receives on average for
the cooperators and defectors depicted previously in Figure 9. The payoff rela-
tionship between cooperation and defection in this game is quite clear from this
data. The inverse relationship between cooperation and defection is shown, and
the high payoffs achieved for cooperation are dramatic. These high payoff levels
would not be possible without cooperators avoiding exploitation from defectors
through limiting their interactions.

4.3 Experiment 2

In the following set of graphs we examine a portion of the agent population.
We examine the evolution of agent cooperation and sociability within a small
segment of the agent population. The data presented shows only individuals
who have tag values between 0.1 and 0.15. This represents a sample of 5% of
the potential tag space. The individuals located in this segment of the tag space
may interact with many other individuals outside this tag range, depending on
their respective sociability gene.

Figure 11 shows the average sociability among the individuals in the tag space
between 0.1 and 0.15. This indicates the preference for peer interactions among
this subset of the population. We observe that this sociability gene spikes to
quite high levels at certain points, but in general remains at quite low levels.
Interestingly, as with the previous data, the sociability of these individuals can-
not be sustained at a heightened level for any significant period of time. This is
due to the effects of mutation in the population, and drift where individuals are
moving in the tag space and influencing the what peers are exploited or not.

The Effects of Evolved Sociability in a Commons Dilemma 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

So
ci

ab
ili

ty
 G

en
e

 Generations

Average Sociability Gene

Sociability Gene

Fig. 11. Reduced Sample - Average Sociability Gene (1 Run)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

 P
ar

tic
ip

an
ts

 Generations

Average Game Participants

 Average Game Participants

Fig. 12. Reduced Sample - Number of Agents (1 Run)

The data observed in Figure 11 is clarified through the results shown in
Figure 12. Here we observe the numbers of individuals in this tag space. The
number of individuals in this tag space increases to higher levels at certain points
due to the convergence of the population to a particular tag value for a period of
time. These higher levels are not sustained for long periods of time. We note that
heightened levels of sociability in Figure 11 are mainly achieved when there are
a small number of individuals in the tag space. Furthermore, when high numbers
of individuals were identified, sociability levels were low. These results confirm
our belief that once individuals begin to participate in a larger number of in-
teractions, they expose themselves to exploitation and therefore achieve lower
fitness. This cycle occurs repeatedly throughout the population with individuals
benefitting from being less sociable as they are exploited for being sociable.

46 E. Howley and J. Duggan

5 Conclusions

This paper has examined the NPD game with respect to group participation.
For the first time this game has been investigated using a tag-mediated interac-
tion model. Our results demonstrate that despite there being a clear incentive to
defect, cooperation can still emerge. This stems from the ability of individuals
in our agent population to determine their degree of sociability towards their
peers. This reinforces much of the existing literature involving the traditional
Prisoner’s Dilemma [9] and also the NIPD [22]. Our model reinforces these ob-
servations through an alternative approach. In our case we have not explicitly
predefined the sociability of our agent population. We have allowed the agent
population to evolve with respect to their cooperative and sociability genes. The
results have demonstrated the significance of sociability in games such as the
NPD. Furthermore, we have also demonstrated the advantage to cooperative in-
dividuals who act less sociably towards their peers. Limiting game participation
provides a very effective defence against exploiters. Earlier in our introduction
we posed two specific research questions.

1. Our results show that tags can successfully bias interactions in the the NPD.
We believe this is the first time a tag model has been applied to the NPD.
Our results show the resulting levels of cooperation that emerge.

2. The significance of the sociability gene in our simulations is clear from the
strong link between cooperation and sociability in our simulations.

This paper has presented an evolutionary model capable of modeling sociability
within the agent strategy genome. We have also shown how tags can be used to
determine n-player games. Our results have shown that occurrences of sociability
are rapidly suppressed through exploitation and a subsequent return to less
sociability. Finally, our results have shown through an evolutionary model that
there is a strong benefit to agent strategies who are cooperative and less sociable
through limiting their exposure to exploitation.

6 Summary and Future Work

This paper has shown that tags can be successfully adapted to bias agent interac-
tions in a n-player game such as the NPD. Furthermore, we have demonstrated
how an agent population can engender and maintain cooperation through an
evolvable sociability trait. In future work we hope to examine how cooperation
can be engendered while also increasing game participation.

Acknowledgments

The authors would like to gratefully acknowledge the continued support of Sci-
ence Foundation Ireland (SFI) in this research.

The Effects of Evolved Sociability in a Commons Dilemma 47

References

1. Benard, S.W.: Adaptation and network structure in social dilemmas. Paper pre-
sented at the annual meeting of the American Sociological Association, Atlanta
Hilton Hotel, Atlanta, GA (2003)

2. Chiong, R., Dhakal, S., Jankovic, L.: Effects of neighbourhood structure on evo-
lution of cooperation in n-player iterated prisoner’s dilemma. In: Yin, H., Tino,
P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp.
950–959. Springer, Heidelberg (2007)

3. Coleman, J.: Foundations of Social Theory. Belknap Press (August 1998)
4. Glance, N.S., Huberman, B.A.: The dynamics of social dilemmas. Scientific Amer-

ican 270(3), 76–81 (1994)
5. Hales, D., Edmonds, B.: Evolving social rationality for mas using “tags”. In: AA-

MAS 2003: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, pp. 497–503. ACM, New York (2003)

6. Hales, D., Edmonds, B.: Applying a socially inspired technique (tags) to improve
cooperation in p2p networks. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A 35(3), 385–395 (2005)

7. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)
8. Holland, J.: The effects of labels (tags) on social interactions. Working Paper Santa

Fe Institute 93-10-064 (1993)
9. Howley, E., O’Riordan, C.: The emergence of cooperation among agents using

simple fixed bias tagging. In: Proceedings of the 2005 Congress on Evolutionary
Computation (IEEE CEC 2005), vol. 2, pp. 1011–1016. IEEE Press, Los Alamitos
(2005)

10. Macy, M., Flache, A.: Learning dynamics in social dilemmas. P Natl. Acad. Sci.
USA 99(3), 7229–7236 (2002)

11. Matlock, M., Sen, S.: Effective tag mechanisms for evolving coordination. In: AA-
MAS 2007: Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, pp. 1–8. ACM, New York (2007)

12. McDonald, A., Sen, S.: The success and failure of tag-mediated evolution of co-
operation. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005.
LNCS (LNAI), vol. 3898, pp. 155–164. Springer, Heidelberg (2006)

13. Nowak, M., May, R.: The spatial dilemmas of evolution. Int. Journal of Bifurcation
and Chaos 3, 35–78 (1993)

14. Oliphant, M.: Evolving cooperation in the non-iterated prisoner’s dilemma: the
importance of spatial organisation. In: Proceedings of Artificial Life IV (1994)

15. O’Riordan, C., Sorensen, H.: Stable cooperation in the n-player prisoner’s dilemma:
The importance of community structure. In: Tuyls, K., Nowe, A., Guessoum, Z.,
Kudenko, D. (eds.) ALAMAS 2005, ALAMAS 2006, and ALAMAS 2007. LNCS
(LNAI), vol. 4865, pp. 157–168. Springer, Heidelberg (2008)

16. Riolo, R.: The effects and evolution of tag-mediated selection of partners in popu-
lations playing the iterated prisoner’s dilemma. In: ICGA, pp. 378–385 (1997)

17. Sato, Y.: Trust, assurance, and inequality: A rational choice model of mutual trust
1. The Journal of Mathematical Sociology 26(1), 1–16 (2002)

18. Suzuki, K.: Effects of conflict between emergent charging agents in social dilemma.
In: Kurumatani, K., Chen, S.-H., Ohuchi, A. (eds.) MAMUS 2003. LNCS (LNAI),
vol. 3012, pp. 120–136. Springer, Heidelberg (2004)

19. Torsvik, G.: Social Capital and Economic Development: A Plea for the Mechanisms.
Rationality and Society 12(4), 451–476 (2000)

48 E. Howley and J. Duggan

20. Yamagishi, T., Cook, K.S.: Generalized exchange and social dilemmas. Social Psy-
chology Quarterly 56(4), 235–248 (1993)

21. Yamashita, T., Axtell, R.L., Kurumatani, K., Ohuchi, A.: Investigation of mutual
choice metanorm in group dynamics for solving social dilemmas. In: Kurumatani,
K., Chen, S.-H., Ohuchi, A. (eds.) MAMUS 2003. LNCS (LNAI), vol. 3012, pp.
137–153. Springer, Heidelberg (2004)

22. Yao, X., Darwen, P.J.: An experimental study of n-person iterated prisoner’s
dilemma games. Informatica 18, 435–450 (1994)

Replicator Dynamics for Multi-agent Learning:
An Orthogonal Approach

Michael Kaisers and Karl Tuyls

Maastricht University, P.O. Box 616, 6200 MD Maastricht

Abstract. Today’s society is largely connected and many real life appli-
cations lend themselves to be modeled as multi-agent systems. Although
such systems as well as their models are desirable, e.g., for reasons of
stability or parallelism, they are highly complex and therefore difficult
to understand or predict. Multi-agent learning has been acknowledged to
be indispensable to control or find solutions for such systems. Recently,
evolutionary game theory has been linked to multi-agent reinforcement
learning. However, gaining insight into the dynamics of games, especially
if time dependent, remains a challenging problem. This article introduces
a new perspective on the reinforcement learning process described by the
replicator dynamics, providing a tool to design time dependent parame-
ters of the game or the learning process. This perspective is orthogonal
to the common view of policy trajectories driven by the replicator dy-
namics. Rather than letting the time dimension collapse, the set of initial
policies is considered to be a particle cloud that approximates a distri-
bution and we look at the evolution of this distribution over time. First,
the methodology is described, then it is applied to an example game and
viable extensions are discussed.

Keywords: Reinforcement learning, Evolutionary game theory.

1 Introduction

The world of today is full of networks and connected systems, varying from stock
exchanges and swarm robots to political networks [2, 7, 9, 11]. As a consequence,
the assumption that a system runs in actual isolation of any other actor does
not withstand reality. Hence, many domains need to be modeled as multi-agent
systems in order to account for their inherent complexity. However, the models
yield a complexity that makes them hard to understand, predict or control.
As this is realized, multi-agent learning gains popularity to find solutions to or
control these systems [10, 12].

Learning in multi-agent environments is significantly more complex than
single-agent learning as the dynamics to learn change by the learning processes
of other agents. This makes predicting learning behavior of learning algorithms
in multi-agent environments difficult. They are not only situated in a non-
stationary environment but also need to deal with incomplete information and
communication limits. In non-stationary environments the Markov property does

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 49–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

50 M. Kaisers and K. Tuyls

not hold, which makes all proofs of convergence to optimal policies from single-
agent learning that are based on that assumption inapplicable. This reduces the
theoretical framework available for multi-agent learning. More recently, evolu-
tionary game theory with less strong assumptions than classical game theory
could be linked to reinforcement learning and provides useful insights into the
learning dynamics [1, 4, 15].

The learning dynamics are commonly visualized by showing the directional
field plot of the replicator dynamics or showing policy trajectories with the
time dimension collapsed into a surface. Both views work well for dynamics
that do not change over time but provide little guidance when the game or the
learning algorithm uses a parameter that is time dependent. In particular, the
directional field plot can only capture the dynamics at one point in time. Hence,
several independent plots are needed for changing dynamics and a gap remains in
the transition between them. The trajectory view becomes unclear when circles
occur or the dynamics change, in which case lines may intersect and clutter the
plot. Furthermore, reducing the time dimension into a flat surface hinders the
interpretation of time dependent artifacts. In addition, the higher the resolution
(the more trajectories are plotted), the more crowded the plot and the harder it
becomes to interpret. As a result, parameter tuning is a cumbersome task that
often results in ad hoc trial and error approaches.

In order to tackle these problems, this article will answer the question how to
extract more information from dynamical systems, especially for time dependent
dynamics, with the goal of facilitating the systematical design of time dependent
parameters. This is achieved by taking on a new perspective that is orthogonal
to the common view of policy trajectories.

The remainder of this article is structured as follows: Section 2 introduces
relevant concepts from game theory and reinforcement learning, and Section 3
proposes a new perspective on the process driven by the replicator dynamics.
Section 4 demonstrates the new methodology on an example game and Section 5
concludes the paper with a discussion of viable extensions.

2 Background

2.1 Game Theory

Classical game theory is the mathematical study of strategic conflicts of rational
agents. The central concept is the game, which comprises a set of players I =
{1, 2, . . . , n} and a set of available pure strategies Si = {1, 2, . . . , ki} for each
player i, for n and ki some finite integer. For a more general introduction we
refer the interested reader to [4, 16].

The players of normal form games are assumed to choose their pure strategies
simultaneously and independently and receive a payoff that is dependent on the
joint strategy profile s ∈ S1 × . . . × Sn. The payoff for two-player normal form
games can be described by two matrices A and B, where for any joint strategy
(i, j), Aij denotes the payoff to player one and Bij describes the payoff to player
two.

Replicator Dynamics for Multi-agent Learning 51

As we are only considering repeated stateless games, the policy of each player
can be described by a probability distribution over the available actions at each
point in time t. The two-player game in this example will use the notation x and
y for the policy vectors of the first and second player respectively.

2.2 Reinforcement Learning

Reinforcement Learning (RL) has originally been studied in the context of single-
agent environments. An agent receives a numeric reward signal, which it seeks to
maximize. The environment provides this signal as a feedback on the sequence of
actions that has been executed by the agent. Learners relate the reward signal
to previously executed actions to learn a policy that maximizes the expected
future reward [13].

The environment is defined by the normal form game and the reinforcement
learner updates the policy. A very simple policy iterator is the Cross Learning
algorithm, a specific type of learning automata [1]. When action i is selected and
reward r(t) ∈ [0, 1] is received at time t, then policy x is updated according to
the following equation:

xi(t + 1) ← (1 − r(t))xi(t) + r(t)
xj(t + 1) ← (1 − r(t))xj(t), for all j �= i

The policy change induced by this learner has been shown to converge under
infinitesimal time steps to the replicator dynamics [1]. For the sake of clarity,
this model is used for the further study in this article. However, it is worth
mentioning that other learning algorithms can be described by similar differential
equations, e.g., Q-learning with a Boltzmann exploration scheme has been shown
to converge to an extension of the replicator dynamics [15]. The evolutionary
description of reinforcement learning is detailed in the following subsections using
the example of Cross learning.

2.3 Evolutionary Game Theory

Evolutionary game theory takes a rather descriptive perspective, replacing
hyper-rationality from classical game theory by the concept of natural selec-
tion from biology [8]. The two central concepts of evolutionary game theory are
the replicator dynamics and evolutionary stable strategies. The replicator dy-
namics presented in the next subsection describe the evolutionary change in the
population. They are a set of differential equations that are derived from bio-
logical operators such as selection, mutation and cross-over. The evolutionary
stable strategy describes the resulting asymptotic behavior of this population.
However, their examination is beyond the scope of this article. For a detailed
discussion, we refer the interested reader to [5, 6].

2.3.1 Replicator Dynamics
The replicator dynamics from evolutionary game theory formally define the
population change over time. A population comprises a set of individuals, where

52 M. Kaisers and K. Tuyls

the species that an individual can belong to represent the pure strategies. The
utility function can be interpreted as the Darwinian fitness of each species. The
distribution of the individuals on the different strategies can be described by a
probability vector that is equivalent to a policy. Hence, there is a second view on
the evolutionary process: the population may also represent competing strategies
within the mind of one agent, who learns which one to apply. The evolutionary
pressure by natural selection can be modeled by the replicator equations. They
assume this population evolve such that successful strategies with higher payoffs
grow while less successful ones decay. These dynamics are formally connected
to reinforcement learning [1, 14, 15]. Assume a two-player normal form game
with payoff matrices A and B for player one and two respectively, and let the
policies of player one and two be represented by the probability vectors x =
(x1, . . . , xk) and y = (y1, . . . , yk), where xi and yi indicate the probability to play
action i. The two-player replicator dynamics that relate to the learning process
of Cross Learning, a simple learning automaton, are given by the following set
of differential equations, where ei is the ith unit vector:

ẋi = xi

[
eiAyT − xAyT

]
ẏi = yi

[
xBeT

i − xByT
] (1)

The change in the fraction playing action i is proportional to the difference
between the expected payoffs eiAy and xBei of action i against the mixing
opponent, and the expected payoff xAy and xBy of the mixed strategy x against
the mixed strategy y. Hence, above average actions strive while below average
actions decay. The replicator dynamics maintain the probability distribution,
thus

∑
i ẋi = 0. For the sake of clarity, the examples used in this article are

constrained to two actions, which implies ẋ1 = −ẋ2 and ẏ1 = −ẏ2.

2.3.2 Policy Trajectories
The replicator dynamics describe how the policy changes over time, dependent
on the game and the policy itself. Starting with a set of policies, we can follow
this change over a period of time. The path that is taken is referred to as the
policy trajectory. In a game with k actions for each player, the policy trajectory
of p players can be specified with (k−1)p+1 dimensions. In the case of two-player
two-action games, the unit square yields the policy space, as we can specify x1 as
a full characterization of x = (x1, 1− x1), and y1 similarly. One more dimension
is optionally needed for an exploded view showing the time dimension.

3 Method

This section shows the learning process in a new perspective which is orthogonal
to viewing policy trajectories in the classical way. Figure 1 shows 20 trajectories
in an expanded view of policy space against time. Instead of looking at it from
the top down, we suggest cutting slices at different points in time and looking
at the distribution of trajectory points where they intersect these slices, which
are orthogonal to the top-down view.

Replicator Dynamics for Multi-agent Learning 53

0 0.5 1
0

0.5

1

x
1

y
1

0
1

0

1

1

2

3

4

x
1

y
1

t

0 0.5 1
0

0.5

1

x
1

y
1

Fig. 1. An expanded view of 20 policy trajectories (middle), the common perspective
collapsing the time dimension (left), showing the trajectories as a flat image, and the
proposed orthogonal perspective (right), looking at the second slice that intersects the
trajectories at the indicated points

The idea behind considering distributions rather than single trajectories is
to obtain a more holistic view of the learning process. In the end, learning is
a homeomorphic time dependent transformation of the policy space. As such,
we can look at its influence on the whole space, e.g., by looking at the spacing
between the trajectories, rather than only looking at individual policy trajecto-
ries. In order to do so, a set of particles is drawn from an initial distribution,
in the examples given a uniform distribution, and subjected to a velocity field
defined by the replicator dynamics. As time evolves, the distribution is trans-
formed and the density of the particles changes. This allows to make statements
of the following kind: assuming any policy was initially equally likely and these
policies evolve according to the replicator dynamics, then after time t has passed,
p percent of the policies have converged to attractor a with at most distance ε.

After some time, the simulation can be stopped and labels can be applied
according to the eventual distribution. A certain percentage of particles can be
considered converged to some attractors, assuming they are in the neighborhood
of a stable point and that point is attracting in that neighborhood. Other parti-
cles can be labeled as not converged. Finally, these labels can be applied to earlier
slices including the initial slice, revealing the basins of attraction. Although these
basins can also be read from the directional field plot of the replicator dynamics,
this approach is more general as it can be applied to dynamics that are controlled
by a time dependent parameter.

In addition, this allows judging the convergence of a fraction of the policy
space that is bound by a surface by considering the velocity field only on that
surface. Due to the fact that the dynamics describe a continuous process and
the transformation by the replicator dynamics is a homeomorphism, everything
that is added or substracted from the trapped percentage has to go through
the surface. This is related to the divergence theorem from physics [3]. It allows
focussing attention on the surface that may be just a small subspace of the

54 M. Kaisers and K. Tuyls

whole policy space, e.g., a hypersphere with radius ε around an attractor. In
many cases, the velocity field in this small neighborhood can be guaranteed to
be rather static although the dynamics of other areas of the policy space may
change quite substantially.

It is common to assume every policy initially equally likely, i.e., applying an
initially uniform distribution. However, this approach allows to use an arbitrary
initial distribution which can be used to model specific knowledge about the ini-
tial learning behavior. Furthermore, the policy distribution can also be generated
from Q-value distributions, in case a Q-learning algorithm should be modeled.
Using a similar evolution as the replicator dynamics in the Q-value space, the
distribution can be evolved which allows comparing Boltzmann exploration to
other exploration schemes that do not have a bijective action selection function1

and can therefore not be solely described by dynamics in the policy space.

4 Experiments

This section demonstrates the proposed methodology on an example game that
is controlled by a parameter that may change its value at one point in time. The
game describes the following situation:

There are two new standards that enable communication via dif-
ferent protocols. The consumers and suppliers can be described
by probability vectors that show which standard is supported
by which fractions. One protocol is 20% more energy efficient,
hence the government wants to support that standard. Usually,
the profit of the consumers and suppliers are directly propor-
tional to the fraction of the opposite type that supports their
standard. However, the government decides to subsidize early
adopters of the better protocol.

Such subsidies are expensive and the government only wants to
spend as much as necessary. They have no market research in-
formation and consider any distribution of supporters on both
sides equally likely. Furthermore, they know that the support-
ers are rational and their fractions will change according to the
replicator dynamics. The question is, how long is the subsidy
necessary to guarantee that the better standard is adopted in
95% of the possible initial policies.

This is a variation of the pure coordination game. A subsidy parameter s ∈
{0, 11} is added, which can be used to make one action dominant. As a result,
coordination on the Pareto optimal equilibrium is facilitated. Figure 2 displays
the payoff bi-matrix numerically.
1 Strictly speaking, Boltzmann action selection is also not a bijection, as it leaves

one degree of freedom when computing Q-values from policies. However, each policy
change relates to a Q-value change and vice versa, which is not the case in other
exploration schemes such as epsilon-greedy.

Replicator Dynamics for Multi-agent Learning 55

S1 S2
S1 10, 10 0, s
S2 s, 0 12, 12

S1 S2
S1 10, 10 0, 0
S2 0, 0 12, 12

S1 S2
S1 10, 10 0, 11
S2 11, 0 12, 12

Fig. 2. The payoff bi-matrix for the subsidy game (left) and its realizations for s = 0
(middle) and s = 11 (right). Player one chooses a row, player two chooses a column.
The first number of the selected action combination represents the payoff to player one
and the second number the payoff to player two.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

Fig. 3. The dynamics of the game without subsidy (left) and with subsidy (right)

The dynamics of the game can be visualized by showing the directional field
plot of the replicator dynamics as shown in Figure 3. It can be observed that
a large fraction of the policy space would converge to the suboptimal standard
in the unsubsidized game, while all policies would converge to the optimum in
the subsidized game. However, it is difficult to derive the correct time to switch
between the two games.

The second classical way to look at the dynamics are policy trajectories. These
will follow the directional change and are depicted in Figure 4. Similar to the
replicator dynamics, this view neatly explains the dynamics of the individual
parts of the game, but does not allow to infer the right time to switch from the
one to the other.

Another possible approach is the visualization of trajectories with transitions
from one game to the other at different points in time. Figure 5 shows the
trajectories of the subsidy game when transition from s = 11 to s = 0 takes
place at t = {0.1, 0.3, 0.5}. Although it can be observed that fewer trajectories
converge suboptimal the later the switch occurs, this approach requires to guess
the right time of transition. Furthermore, the view is cluttered by intersecting
lines and readability does not allow to increase the number of trajectories.

In order to obtain insight into the time dependent artifacts of these dynamics,
the new perspective will be applied. Answering the question when to switch
requires 2 steps:

56 M. Kaisers and K. Tuyls

0 0.5 1
0

0.5

1

x
1

y
1

0 0.5 1
0

0.5

1

x
1

y
1

Fig. 4. Trajectories with a length of 4 units of continuous time in the game without
subsidy (left) and with subsidy (right)

– Determine the part of the policy space for which trajectories converge opti-
mally in the unsubsidized game.

– Determine the time when the subsidized dynamics have driven 95% of the
initial policies into the previously derived subspace.

Step one is shown in Figure 6. Particles are drawn from a uniform initial dis-
tribution and evolved according to the replicator dynamics. After t = 1.2 the
particles are considered converged and receive a label (a dot for the optimum
and an x for the suboptimal attractor). Subsequently, the label is applied to all
slices before plotting. From the labels on the initial slice, the basin boundary is
deduced using a linear best fit, which is marked by the dashed line.

In step 2, shown in Figure 7, the boundary that has been inferred from step
one is used to monitor the percentage of the initial policy space that would
converge to the optimum if the game was switched at that time instance. The
simulation advances until the subsidized dynamics have pushed 95% of the initial
policies into the basin of attraction of the global optimum in the unsubsidized

0 0.5 1
0

0.5

1

x
1

y
1

0 0.5 1
0

0.5

1

x
1

y
1

0 0.5 1
0

0.5

1

x
1

y
1

Fig. 5. The trajectory plot for the subsidy game with transition from the subsidized
to the unsubsidized game at t = {0.1, 0.3, 0.5} (left to right)

Replicator Dynamics for Multi-agent Learning 57

game. Then, the game is switched and the simulation shows convergence to the
according attractors. Repeating the experiment n = 1000 times, we find that
the time to bring 95% to the basin is 0.495 ± 0.0357 (indicating one standard
deviation). A histogram of the distribution is given in Figure 8.

This section has demonstrated the advantages of the proposed perspective.
It has been shown that the new methodology allows the systematic study and
design of time dependent parameters in order to achieve desired effects, in the
example a specific convergence behavior. The next section concludes the arti-
cle with a discussion of contributions and viable extensions to the introduced
approach.

5 Discussion and Conclusions

The contributions of this article can be summarized as follows: a new perspec-
tive on dynamical systems driven by time dependent replicator dynamics has
been proposed, allowing to extracting the information encoded in the spacing
between the particles. An illustrative example of a two-agent two-action game
has been discussed, and the method has been shown to naturally reveal time
dependent properties of the system. This facilitates designing parameters with
a systematic approach rather than setting them ad hoc. While a rather simple
example game was studied for the sake of clarity, the approach is general in the
number of actions and can be applied to arbitrary initial distributions. In addi-
tion, it naturally generalizes to any number of agents when the reward matrix
is considered to be a reward function on two strategy variables.

The parameter design methodology can be transferred to other parameters
that change the replicator dynamics, most prominently the temperature function
for Q-learning with a Boltzmann exploration scheme. Choosing an appropriate
temperature function has long been a heuristic search and can now be tackled
systematically to achieve a desired convergence distribution.

0 0.5 1
0

0.5

1

x
1

y
1

t=0

0 0.5 1
x

1

t=0.4

0 0.5 1
x

1

t=0.8

0 0.5 1
x

1

t=1.2

Fig. 6. This figure shows the evolution of particles drawn from a uniform initial distri-
bution, revealing the basins of attraction of the unsubsidized game. Labels are applied
according to the last slice and the dashed line is inferred from the labels to be the
boundary between the basins of attraction.

58 M. Kaisers and K. Tuyls

0 0.5 1
0

0.5

1

x
1

y
1

t=0

0 0.5 1
x

1

t=0.165

0 0.5 1
x

1

t=0.33

0 0.5 1
x

1

t=0.495

0 0.5 1
0

0.5

1

x
1

y
1

t=0

0 0.5 1
x

1

t=0.4

0 0.5 1
x

1

t=0.8

0 0.5 1
x

1

t=1.2

Fig. 7. The top row shows the evolution under the subsidized game until 95% of the
policy space are in the basin for the global optimum of the unsubsidized game. The
lower row shows the further evolution in the unsubsidized game.

Furthermore, the ideas presented in this paper have the strong potential to
be further developed. The current approach can be seen as a particle simula-
tion, where the replicator dynamics determine the velocity field that describes
the movement of each particle, and the particle density describes a probability
distribution. The authors have taken preliminary steps to make the transition
to describe this probability density function as a continuous function, deriving
the density change directly from the replicator dynamics. This will remove the
stochasticity introduced by approximating the probability density by quantized

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

t

pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

Fig. 8. Histogram of times at which the velocity field of the subsidized game has
driven 95% of the particles into the basin of attraction of the global optimum in the
unsubsidized game. The sample size is n = 1000, with a mean of 0.495 and a standard
deviation of 0.0357.

Replicator Dynamics for Multi-agent Learning 59

particles. Another viable extension considers a distribution of Q-values and the
distribution’s evolution, deriving the according policy distributions from it. This
enables the comparison of exploration schemes such as Boltzmann and epsilon-
greedy exploration. Finally, this model is extendable to multiple states and con-
tinuous strategy spaces, which will compliment the theoretical framework for
multi-agent learning.

Acknowledgements

This research was partially sponsored by a TopTalent2008 grant of the Nether-
lands Organisation for Scientific Research (NWO).

References

[1] Börgers, T., Sarin, R.: Learning through reinforcement and replicator dynamics.
Journal of Economic Theory 77(1) (November 1997)

[2] Bueno de Mesquita, B.: Game theory, political economy, and the evolving study
of war and peace. American Political Science Review 100(4), 637–642 (2006)

[3] Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics
including Feynman’s Tips on Physics: The Definitive and Extended Edition. Ad-
dison Wesley, Reading (2005)

[4] Gintis, C.M.: Game Theory Evolving. University Press, Princeton (2000)
[5] Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems,

and an Introduction to Chaos. Academic Press, London (2002)
[6] Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cam-

bridge University Press, Cambridge (2002)
[7] Hon-Snir, S., Monderer, D., Sela, A.: A learning approach to auctions. Journal of

Economic Theory 82, 65–88 (1998)
[8] Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University

Press, Cambridge (1982)
[9] Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-

organized robot colonies. Transactions on Evolutionary Computation 13(4), 695–
711 (2009)

[10] Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

[11] Phelps, S., Marcinkiewicz, M., Parsons, S.: A novel method for automatic strategy
acquisition in n-player non-zero-sum games. In: AAMAS 2006: Proceedings of the
fifth international joint conference on Autonomous agents and multiagent systems,
Hakodate, Japan, pp. 705–712. ACM, New York (2006)

[12] Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what
is the question? Artificial Intelligence 171(7), 365–377 (2007)

[13] Sutton, R., Barto, A.: Reinforcement Learning: An introduction. MIT Press, Cam-
bridge (1998)

[14] Tuyls, K., Parsons, S.: What evolutionary game theory tells us about multiagent
learning. Artificial Intelligence 171(7), 406–416 (2007)

[15] Tuyls, K., ’t Hoen, P.J., Vanschoenwinkel, B.: An evolutionary dynamical analysis
of multi-agent learning in iterated games. Autonomous Agents and Multi-Agent
Systems 12, 115–153 (2005)

[16] Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1996)

Decentralized Learning in
Wireless Sensor Networks

Mihail Mihaylov1, Karl Tuyls2, and Ann Nowé1

1 Vrije Universiteit Brussel, Brussels, Belgium
{mike,ann}@como.vub.ac.be

2 Maastricht University, Maastricht, The Netherlands
ktuyls@gmail.com

Abstract. In this work we present a reinforcement learning algorithm
that aims to increase the autonomous lifetime of a Wireless Sensor Net-
work (WSN) and decrease its latency in a decentralized manner. WSNs
are collections of sensor nodes that gather environmental data, where the
main challenges are the limited power supply of nodes and the need for
decentralized control. To overcome these challenges, we make each sen-
sor node adopt an algorithm to optimize the efficiency of a small group
of surrounding nodes, so that in the end the performance of the whole
system is improved. We compare our approach to conventional ad-hoc
networks of different sizes and show that nodes in WSNs are able to de-
velop an energy saving behaviour on their own and significantly reduce
network latency, when using our reinforcement learning algorithm.

1 Introduction

An increasingly popular approach for environmental and habitat monitoring is
the use of Wireless Sensor Networks (WSNs) [Car04, Rog06, Yic08]. The nodes
in such a, WSN are limited in power, processing and communication capabili-
ties, which requires that they optimize their activities, in order to extend the
autonomous lifetime of the network and minimize latency. A complicating factor
is communication, because some nodes can fall outside the transmission range
of the base station, or can belong to different stakeholders, serving various pur-
poses, thus rendering the common centralized approach inapplicable for large
networks.

This article extends the work done in [Mih08] to a random network topology,
reduces the communication overhead and significantly improves the results. In
this work we use a reinforcement learning algorithm to optimize the energy
efficiency of a WSN and reduce its latency in a decentralized manner. We achieve
that by making nodes (hereby regarded as agents) develop energy-saving schemes
by themselves without a central mediator. In many cases such a central authority
is undesirable or simply impossible to implement [Rog06]. The idea behind our
approach is that agents learn, by themselves, to reduce the negative effect of
their actions on other agents in the system, based on a certain reward function.
We investigate the performance of our algorithm in two networks of different

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 60–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decentralized Learning in Wireless Sensor Networks 61

sizes. We show that when agents learn to optimize their behaviour, they can
increase the energy efficiency of the system and significantly decrease its latency
with minimal communication overhead.

The outline of this chapter is as follows: Section 2 presents the background of
our approach by describing the basics of a wireless sensor network and the MAC
communication protocol. Section 3 describes the idea behind our algorithm and
its application to the energy efficiency optimization of nodes. In Section 4 we
explain the experiments and discuss our findings. Lastly, Section 5 presents our
conclusions from this research and suggests some areas for improvement in the
future.

2 Background

In this section we describe the basics of a Wireless Sensor Network and the
MAC communication protocol. Subsection 2.1 elaborates on WSNs and Subsec-
tions 2.2 and 2.3 explain the working of the MAC protocol and the way nodes
communicate. Lastly, Subsection 2.4 presents some related work in this field.

2.1 Wireless Sensor Networks

A Wireless Sensor Network is a collection of densely deployed autonomous
devices, called sensor nodes, that gather environmental data with the help of
sensors. The untethered nodes use radio communication to transmit sensor mea-
surements to a terminal node, called the sink. The sink is the access point of the
observer, who is able to process the distributed measurements and obtain useful
information about the monitored environment. Sensor nodes communicate over
a wireless medium, by using a multi-hop communication protocol that allows
data packets to be forwarded by neighbouring nodes to the sink. This concept is
illustrated in Figure 1. The environmental or habitat monitoring is usually done
over a long period of time, taking into account the latency requirements of the
observer.

The WSN can vary in size and topology, according to the purpose it serves.
The sensor network is assumed to be homogeneous where nodes share a common
communication medium (e.g. air, water, etc.). We further assume that the com-
munication range is equal in size and strength for all nodes. They have a single

Fig. 1. Wireless Sensor Network

62 M. Mihaylov, K. Tuyls, and A. Nowé

omnidirectional antenna that can only broadcast a message, delivering it to all
nodes in range. In our network, sensor nodes can neither vary their transmission
power, nor are they able to estimate their distance from the transmitting node
by measuring the signal strength – such features are not generally available in
sensor nodes and therefore are not considered here. The motivation to use such
simple devices is to reduce the overall cost of nodes and to keep our solution
applicable to the most general sensor network.

In this work we show that the selfish and computationally bounded agents can
optimize their own performance, in a decentralized manner, in order to reduce
both their own energy consumption and the latency of the network. We assume
that communication between the agents is limited and that central control is not
possible. We further require that the communication protocol considers not only
energy efficiency, but also scalability and fault tolerance, so that our approach is
able to adapt to a dynamic topology, where nodes may move, fail or new nodes
may be added to the system. The communication protocol, therefore, constitutes
an important part of the WSN design.

2.2 The MAC Protocol

The Medium Access Control (MAC) protocol is a data communication protocol,
concerned with sharing the wireless transmission medium among the network
nodes. Typical MAC protocols, used by ad-hoc networks, cannot be applied to
WSNs, due to a number of differences between the two types of networks. Some
differences include the large number and density of sensor nodes in a WSN,
compared to the nodes in ad-hoc networks; the frequently changing topology of
sensor nodes and their power constraints, etc.

We use a simple asynchronous MAC protocol that divides the time into small
discrete units, called frames. Each node independently determines its sleep du-
ration (or schedule), i.e. the amount of time in a frame that the node’s antenna
will be turned off. During that time the agent is not able to communicate with
other nodes and therefore saves energy. Nevertheless, the agent continues its
sensing and processing tasks. Our protocol allows nodes to synchronize their
schedules prior to communication and thus avoid collisions and overhearing –
typical sources of energy waste.

Since communication is the most energy expensive action [Dam03], it is clear
that in order to save more energy, a node should sleep more. However, when sleep-
ing, the node is not able to send or receive any messages, therefore it increases the
latency of the network, i.e., the time it takes for messages to reach the sink. On
the other hand, a node does not need to listen to the channel when no messages
are being sent, since it loses energy in vain. As a result, nodes should learn on their
own the number of time slots they should spend sleeping within a frame. For ex-
ample, nodes far away from the sink may learn to sleep more, since they will have
fewer messages to forward, while nodes close to the sink should learn to listen
more, because the workload near the sink is usually heavier. Learning to optimize
nodes’ own schedules will ensure good energy efficiency of the network, while min-
imizing the latency. The MAC protocol should therefore support the exchange of

Decentralized Learning in Wireless Sensor Networks 63

additional information, necessary for the algorithm for optimization. It is clear
that the amount of this information within message packets should be kept as lit-
tle as possible, in order to minimize the energy waste by control packet overhead.
A brief description of the communication protocol is presented next.

2.3 Communication and Routing

When the WSN is deployed, nodes first need to determine their hop distance
to the sink, i.e. the minimum number of nodes that will have to forward their
packets. This is achieved by broadcasting SYNchronization (SYN) packets in
the following way: the sink broadcasts a SYN packet, containing a counter,
initially set to 0; all receivers set their hop equal to the counter, increment it
and broadcast the new SYN packet further on, with a small random delay to
avoid collisions. For example, a node right next to the sink will receive a SYN
packet with hop=0 and will broadcast a new one with hop=1.

When a node has a message to send1, it broadcasts a Request To Send (RTS)
packet to all nodes within range, which we call neighbours (or neighbouring
nodes). All neighbours at an equal or higher hop simply go to sleep, since they
do not need to forward the sender’s message. All lower-hop neighbours wait
a small random amount of time before replying with a Clear To Send (CTS)
packet. Once one node broadcasts a CTS packet, all its neighbours go to sleep,
except the sender of the RTS, who in turn broadcasts the actual data. In other
words, all immediate neighbours of the two communication partners are sleeping
during the broadcast of the data, in order to avoid collisions and overhearing.
Once the receiver obtains the data packet, it replies with an ACKnowledgment
(ACK) and thus the communication is over.

2.4 Related Work

A good literature survey on various aspects of Wireless Sensor Networks is pre-
sented in [Yic08]. The authors of [Ai04] present a method that adapts the duty
cycle scheme of nodes to the traffic pattern of the network in order to minimize
latency and maximize throughput. They, however, use a synchronous protocol
(AC-MAC). In [Bar05] a new MAC protocol is presented (μ-MAC) with high
sleep ratios while keeping latency and reliability at acceptable levels. This proto-
col, however, uses synchronous schedules, relies on relatively static environment
and requires prior knowledge of the traffic pattern. An asynchronous protocol
(X-MAC) is presented in [Bue06] that optimizes the energy efficiency of nodes,
but not the latency of the network. A decentralized coordination protocol is pre-
sented in [Far08], that maximizes the social welfare within a group of interacting
agents through local message passing. This approach, however, comes at a higher
communication cost. A somewhat different application of decentralized learning
is presented in [Jai09], where the authors use distributed constraint optimization
techniques to make mobile wireless sensors maximize the sum of signal strengths
on all network links over time.
1 We assume that all messages are forwarded toward the sink.

64 M. Mihaylov, K. Tuyls, and A. Nowé

3 Learning Algorithm

Besides on its hardware, the energy consumption of a node is also dependent
on its position in the WSN. Nodes, closer to the sink have to forward more
messages and therefore need to listen more, while those far away from the sink
could spend more time sleeping. For this reason, the behaviour of agents cannot
be the same for all (e.g. all listen and sleep the same amount of time in a frame).
Each node needs to learn what behaviour is energy efficient in the network. To
achieve that, we make nodes adopt an algorithm for optimization in order to
improve the performance of the whole system.

Each agent in the WSN uses a reinforcement learning (RL) algorithm to learn
an optimal schedule (i.e. sleep duration in a frame) that will maximize the energy
efficiency and minimize the latency of the system in a decentralized manner.
The main challenge in such a decentralized approach is to define a suitable
reward function for the individual agents that will lead to an effective emergent
behaviour as a group. Another challenge is that agents in a WSN can obtain
only local information from surrounding nodes, due to their small transmission
range. To tackle these challenges, we proceed with the definition of the basic
components of the reinforcement learning algorithm.

3.1 Actions

The actions of each agent are restricted to selecting a sleep duration for a frame.
The action space consists of a discrete number of sleep durations at equal incre-
ments within one frame length. Defining the size of the increment constitutes a
tradeoff, since a rather large value will result in only few actions for the agent
to choose. On the other hand, a small increment will result in a large action set,
which makes it difficult for the algorithm to converge [Len08]. Agents choose
their actions according to a probability distribution and use that action for a
certain number of frames, which we call a frame window. The reason for using an
action for more than one frame is that the agent will thus have enough time to
experience the effect of that action on the system. The size of the frame window
and the discretization increment will be discussed in Section 4.1.

3.2 Rewards

Before proceeding with the formulation of the reward signal, we first need to
define what Energy Efficiency (EE) of a single agent is.

Energy Efficiency. We consider an agent to be energy efficient when it mini-
mizes most of the major sources of energy waste in WSN communication – idle
listening, overhearing and unsuccessful transmissions, while quickly forwarding
any packets in its queue to ensure low network latency. Formally, the energy
efficiency for agent i in frame f is:

EEi,f = α(1 − ILi,f) + β(1 − OHi,f)+
+γ(1 − UTi,f) + δ(1 − DQi,f) + εBLi

Decentralized Learning in Wireless Sensor Networks 65

where:

– ILi,f is the duration of idle listening of agent i within frame f ;
– OHi,f is the duration of overhearing of agent i within frame f ;
– UTi,f is the amount of unsuccessful transmissions of agent i within frame f ;
– DQi,f is the sum of the durations that each packet spent in the queue of

agent i within frame f ;
– BLi is the remaining battery life of agent i;
– the constants α, β, γ, δ and ε weight the different terms accordingly.

All values are in the unit interval.
It is easy to show that if agents try to increase simply their own energy

efficiency, they will prefer to sleep until they obtain a measurement (thus min-
imizing energy waste) and then wake up only to broadcast it (to ensure low
latency). That will not lead to high global efficiency, due to the high number of
collisions and unsuccessful transmissions that nodes will experience. Therefore,
individual agents should also consider other agents in the system when optimiz-
ing their own behaviour. A similar approach was undertaken by Wolpert and
Tumer in [Wol08], where they apply their Collective Intelligence framework to
align the selfish agents’ goals with the system goal.

Effect Set. Our hypothesis is that if each agent “cares about others” that
will improve the performance of the whole system. To achieve that, we intro-
duce the concept of an Effect Set (ES) of a node, which is the subset of that
node’s neighbourhood, with which it communicates within a frame window. In
other words, the ES of agent i is the set Ni of nodes, whose messages agent
i (over)hears within a frame window. Thus, the energy efficiency of agent i is
directly dependent on the actions of all agents in Ni and vice versa.

Effect Set Energy Efficiency. As a result of the influence of agents on each
other’s performance, we form our hypothesis: if each agent seeks to increase not
only its own efficiency, but also the efficiency of its ES, this will lead to higher
energy efficiency of the whole system. For this reason, we set the reward signal
of each agent to be equal to its mean Effect Set Energy Efficiency (ESEE) over
a frame window of size |F |. We define the ESEE of agent i in the frame window
F as

ESEEi,F =
1
|F | ·

F∑
f

EEi,f +
∑

j EEj,f

|Ni| + 1
∀j ∈ Ni

where EEi,f is the energy efficiency of agent i in frame f and |Ni| is the number
of agents in the effect set of agent i. In other words, the reward signal that each
agent receives at the end of each frame window is the mean energy efficiency of its
effect set and of itself, averaged over the size of the frame window. Thus, agents
will try to increase the value of their ESEE by optimizing their own behaviour.

Challenge. One challenge in our reward signal is that nodes cannot compute
their ESEE directly, because to do so, they would have to obtain the efficiency

66 M. Mihaylov, K. Tuyls, and A. Nowé

of each agent in Ni. To achieve that, nodes simply include the value of their own
EE in the three control packets – RTS, CTS and ACK, so that neighbouring
agents can (over)hear these values and compute their ESEE. This is the only
information that nodes need to exchange for our algorithm to work. Although
including additional information in control packets is expensive, we will show
that the network performs still better than one without learning. We will now
show how each agent can learn to optimize its ESEE.

3.3 Update Rule

At the end of each frame window, agents compute the average ESEE from the
past frames and use this value to learn the best sleep duration that will maxi-
mize efficiency and minimize latency. Agents use the update rules of a classical
learning automaton to update their action probabilities. More specifically, after
executing action x in every frame of F , its probability pi(x) is updated in the
following way

pi(x) ← pi(x) + λ · ESEEi,F · (1.0 − pi(x))
where λ is a user-defined learning rate. The probability pi(y) for all other actions
y �= x in the action set of agent i then becomes

pi(y) ← pi(y) − λ · ESEEi,F · pi(y) ∀y �= x

At the beginning of each frame, agents select their actions according to the
updated probabilities and execute them in that frame window. As a result, the
learning process is done on-line – the algorithm adapts to the topology of the
network and the traffic pattern, which typically cannot be known in advance in
order to train nodes off-line.

3.4 Discussion

Although a comparison with other existing learning approaches would provide
good insights into coping with decentralized learning, a comparative study is not
the topic of this paper. Rather, our aim is to show whether an efficient decentral-
ized learning can be achieved by selfish and computationally bounded agents. The
motivation behind the selection of our learning approach is twofold. Firstly, learn-
ing automata has very appealing theoretical guarantees for convergence [Tha04]
and has been successfully applied in different multi-agent settings [Ver04, Tuy06,
Vra08]. In other words, the latter property of learning automata suggests that the
policy of our learning agents, as a team, will converge to an equilibrium. Secondly,
this policy iteration technique uses an implicit exploration strategy that is “built-
in” the algorithm itself, i.e. it does not require an additional aspect that needs to
be tuned.

4 Results

4.1 Experimental Setup

We applied our algorithm on two networks of random topology and different sizes
– one small network with 10 nodes and a large one with 50 nodes. The density of

Decentralized Learning in Wireless Sensor Networks 67

both networks was the same, i.e. on average each node had 4 neighbours, because
we found out empirically that it influences the speed of learning. In this work we
focus on how well learning scales in terms of the number of nodes, rather than in
terms of the density. The reason for the slower learning in more dense networks
is the higher degree of interdependence of the actions of neighbouring agents.
In other words, agents in dense networks have to consider more neighbours in
optimizing the performance of their ESEE and thus converge to an optimal action
slower than agents in less dense networks. An in-depth study of the optimal
density of sensor networks is presented in [Ess08].

We considered networks of random topology, rather than organized in a grid
structure (as in [Mih08]), so that the WSN can be deployed more freely (e.g.
nodes can be scattered from a moving vehicle). The synchronization phase of
the network was set to 20 seconds – this duration was enough for all nodes to
find their hop distance to the sink in both networks. During this phase, agents
do not learn to optimize their behaviour, since the resulting traffic pattern is
independent of that from the actual data. We set the duration of a frame to 0.5
seconds and the message rate – to 1 sensor measurement in a frame on average.
We chose this high message rate to make the effect of agents’ actions more
apparent and to give agents enough information in order to learn a good policy.
A sufficient frame window size was found to be 4, i.e. agents repeat their selected
action for 4 times, before obtaining a reward signal. The discretization coefficient
(Subsection 3.1) was selected such that it results in 11 different actions (or
sleep durations). The five terms in the computation of the EE (Subsection 3.2)
are from a network perspective interdependent (yet not redundant) and their
weighting coefficients are up to the network designer to set. We carried out an
exhaustive brute-force search to determine a set of values that is most suitable
for our network settings. Thus, the five weighting coefficients were empirically
chosen in the following way: α = 0.2, β = 0.3, γ = 0.1, δ = 0.3 and ε = 0.1.
The same brute-force search was carried out to determine the best learning rate.
Small coefficient results in a relatively slow learning process, while large learning
rates make the network unstable. Thus, the best learning rate λ was found to
be 0.280 for the small network and 0.299 for the large one, where in both cases
the initial action probability was uniform. Finally, the networks were allowed to
run for 500 seconds, i.e. 1000 frames, before the simulation was terminated. This
duration was sufficient to produce valuable results.

4.2 Experiments

As stated above, we evaluated our algorithm on two random topology networks
of the same density, but of different sizes. We compared the performance of each
setting to a network of the same size where agents do not optimize their behaviour,
but rather all sleep the same pre-defined amount of time, as it is usually done in
practice [Mar04]. In each experiment we measured six performance criteria:

1. Average remaining battery at the end of the simulation (i.e. after 1000
frames). This value shows what the battery levels of nodes will be after 500
seconds of runtime with the selected settings.

68 M. Mihaylov, K. Tuyls, and A. Nowé

2. Standard deviation of the average remaining battery – indicates
the difference between the most and the least efficient nodes. Here a small
deviation is desirable, since it signifies a rather equal dissipation of energy
over time.

3. Average latency of the network over all packets delivered to the sink. This
criterion measures the average time a message takes from the moment it was
generated to the time it reaches the sink.

4. Standard deviation of the average latency of the network. Again, a
small deviation is preferable, because it signifies consistent traffic latency.

5. Maximum latency of the network, i.e. the latency of the packet that took
the most time to be delivered to the sink. This value indicates the worst
case scenario for the latency that the user of the WSN can experience for a
packet.

6. Number of received packets by the sink within 500 seconds. This is an in-
verse indication of latency and it shows how many messages actually reached
the sink during the simulation runtime.

The sleep duration of the two non-learning networks was selected such that it
maximizes the above six performance criteria. The same technique was used to
select the best learning rate of the networks with optimization. In other words
we compared the optimal “non-learning” system to the optimal one with learn-
ing. This comparison is displayed in Figure 2. The first column shows the above
six performance criteria, where the last two rows indicate the average sleeping
time of the agents and the standard deviation. The second column indicates the
objective (obj.) of the corresponding performance criterion – whether it should
be maximized (max) or minimized (min). The third and forth column display
the results from our experiments when agents are not learning and when they
are learning, respectively. The column labeled improvement displays the percent-
age increase of the six performance measures when agents adopt our learning
algorithm.2

As it can be seen from Figure 2, in both cases our learning agents sleep on
average less than those in the non-learning network. One would expect that less
sleeping results in lower battery level, due to idle listening and overhearing, and
higher latency, due to collisions. However, our learning algorithm aims to reduce
precisely those sources of energy waste, by making nodes optimize their be-
haviour, based on the actions of neighbouring nodes. Thus, agents learn to avoid
“harming” other agents by adapting to the traffic pattern and therefore learning
the optimal sleep duration in their neighbourhood. In other words, agents learn
to sleep when their neighbours communicate (so as to avoid overhearing); stay
awake enough to forward messages quickly (and thus decrease latency); and yet
sleep enough (to ensure longer network lifetime). Figure 3 shows agents’ actions
(sleep durations) (vertical axis) over time (horizontal axis). Each dot represents
that agent’s selected action at the corresponding time in the simulation. The
graph indicates that in the small network agents learn, as the time progresses,
to sleep less and listen more, so that they reduce the latency of the network,
2 The concept of “improvement” is not applicable to the last two rows.

Decentralized Learning in Wireless Sensor Networks 69

performance criteria obj non-learning learning
End battery - mean (%) max 23.283 25.706 10.4% (increased)
End battery - std. dev. (%) min 4.514 2.220 50.8% (decreased)

Latency - mean (sec.) min 11.413 3.937 65.5% (decreased)
Latency - std. dev. (sec.) min 8.455 3.348 60.4% (decreased)
Latency - max (sec.) min 62.359 18.975 69.6% (decreased)

Packets arrived at Sink max 2007 2167 8.0% (increased)

Sleeping time - mean (sec.) n/a 0.120 0.094
Sleeping time - std. dev. (sec.) n/a 0.000 0.136

Small Network (10 nodes)
improvement

n/a
n/a

performance criteria obj non-learning learning
End battery - mean (%) max 22.375 22.789 1.9% (increased)
End battery - std. dev. (%) min 4.362 5.251 20.4% (increased)

Latency - mean (sec.) min 20.552 5.823 71.7% (decreased)
Latency - std. dev. (sec.) min 14.768 5.850 60.4% (decreased)
Latency - max (sec.) min 88.669 50.892 42.6% (decreased)

Packets arrived at Sink max 544 2296 322.1% (increased)

Sleeping time - mean (sec.) n/a 0.220 0.166
Sleeping time - std. dev. (sec.) n/a 0.000 0.176

n/a
n/a

Large Network (50 nodes)
improvement

Fig. 2. Comparison between non-learning and learning in the small and large networks

Fig. 3. Sleep Duration over Time when learning, Small Network (10 nodes)

while increasing its lifetime.3 The figure also shows that in the beginning of the
simulation agents explore their action set and after approximately 200 seconds,
the policy of all agents converges to an optimal action. In other words, after
400 frames, each agent finds the sleep duration that maximizes its ESEE and
then sticks to it. The effect of adapting to the traffic pattern is even more

3 Due to the discrete values in this graph, some values overlap and thus not all of
them can be displayed at the same time.

70 M. Mihaylov, K. Tuyls, and A. Nowé

(a) non-learning (b) learning

Fig. 4. Overhearing duration over Time, Small Network (10 nodes)

(a) non-learning (b) learning

Fig. 5. Effect Set Energy Efficiency over Time, Large Network (50 nodes)

apparent in the large network, where agents are able to decrease the average
latency with over 70%, resulting in three times more packets delivered to the
sink (cf. Figure 2).

Figure 4 compares the overhearing duration of nodes over time in the small
network when all agents sleep the same amount of time (4(a)) and when they
learn their optimal sleep duration (4(b)). Each dot represents that agent’s over-
hearing duration within a frame at the corresponding time in the simulation.
It is evident that when learning, agents reduce this source of energy waste,
resulting in higher end battery level.4 In other words, as the time progresses,
agents learn to sleep when their neighbours are communicating, in order to
reduce the amount of packets they overhear. This is evident from the fewer
dots in Figure 4(b). As a consequence of the convergence to an optimal policy
(explained above), one can see a large reduction in overhearing duration after
approximately 200 seconds of network runtime. However, we did not measure
significant decrease in the overhearing duration of the large network, as it can
be predicted from Figure 2. The end battery level of the large network increased
with only 2%. This was a result of the large number of nodes and consequently

4 The discrete steps in the graph are a result of the fixed control and data packet
lengths that nodes overhear.

Decentralized Learning in Wireless Sensor Networks 71

the time they need to find an optimal action. Nevertheless, our learning agents
had higher overall efficiency, due to the lower amount of unsuccessful transmis-
sion and the shorter stay of packets in the queues of the nodes.

The improved ESEE of agents in the large network can be seen in Figure 5(b),
as compared to their non-learning counterparts (5(a)). Each dot represents that
agent’s ESEE within a frame window at the corresponding time in the simu-
lation. In other words, the graph shows the relative energy efficiency of each
node’s neighbourhood over time. Although the efficiency of the worst perform-
ing nodes is comparable, the average ESEE of the learning agents is higher, than
that of the non-learning nodes. This means that when using our algorithm for
optimization, on average agents are more energy efficient than when they are
not learning. The mean ESEE of both graphs, however, is constantly decreasing,
since the remaining battery level of nodes is included in this reward signal (cf.
Subsection 3.2). In other words, since battery level is inevitably decreasing, so
is the ESEE of both networks.

5 Conclusion

In this article we used a reinforcement learning algorithm to improve the perfor-
mance of Wireless Sensor Networks (WSN) in a decentralized manner, in order
to prolong the autonomous lifetime of the network and reduce its latency. We
were able to show that when agents in a WSN use an algorithm for optimization,
they can learn to reduce the negative effect of their actions on other agents in the
system, without a central mediator. Our results indicate that both in a small and
large network, agents can learn to optimize their behaviour in order to increase
the energy efficiency of the system and significantly decrease its latency with
minimal communication overhead. Our results outperformed a conventional ad-
hoc network, where all agents equally listen and sleep for a pre-defined amount of
time. Thus, based on our experiments we can conclude that it is more beneficial
for the sensor network when nodes learn what actions to take, rather than follow
a pre-defined schedule. In our algorithm each node seeks to improve not only its
own efficiency, but also the efficiency of its neighbourhood, which ensures that
the agents’ goal is aligned with the system goal of higher energy efficiency and
lower latency.

Based on our empirical data, we can also generalize that a crucial point in
achieving global efficiency in decentralized learning is aligning the agents’ goals
with the system goal. Letting each agent selfishly pursue its own objectives may
simply lead to a suboptimal solution. In contrast, we were able to achieve global
efficiency by making each agent consider a small group of surrounding agents.
Thus, the objectives of each agent become identical with the goals of the “team”
and therefore – of the whole system.

We are currently focusing on comparing the performance of our algorithm
to the X-MAC protocol [Bue06], which aims to increase energy efficiency in a
decentralized way without any communication overhead. Additionally, we aim
to extend our approach, presented in this work, to make it suitable for a larger

72 M. Mihaylov, K. Tuyls, and A. Nowé

set of WSN applications, where the network will adapt to the latency require-
ment of the user directly. We are also aiming towards more sophisticated pa-
rameter studies (e.g. genetic algorithms) to ensure a (nearly) optimal parameter
setting.

Future work involves computing the energy requirements of the algorithm
itself and experimenting with different network topologies and reward functions
to obtain a yet bigger improvement in energy efficiency and latency.

References

[Car04] Carle, J., Simplot-Ryl, D.: Energy-Efficient Area Monitoring for Sensor Net-
works. IEEE Computer Society 47, 40–46 (2004)

[Rog06] Rogers, A., Dash, R.K., Jennings, N.R., Reece, S., Roberts, S.: Computa-
tional Mechanism Design for Information Fusion within Sensor Networks.
In: 9th FUSION (2006)

[Mih08] Mihaylov, M., Nowé, A., Tuyls, K.: Collective IntelligentWireless Sensor Net-
works. In: Proc. of the 20th BNAIC, pp. 169–176 (2008)

[Dam03] van Dam, T., Langendoen, K.: An Adaptive Energy-Efficient Mac Protocol
For Wireless Sensor Networks. In: Proceedings of The 1st SenSys, pp. 171–
180 (2003)

[Yic08] Yick, J., Mukherjee, B., Ghosal, D.: Wireless Sensor Network Survey. Com-
puter Networks 52, 2292–2330 (2008)

[Ai04] Ai, J., Kong, J., Turgut, D.: An adaptive coordinated medium access control
for wireless sensor networks. In: Proceedings of 9th ISCC, vol. 2, pp. 214–219
(2004)

[Bar05] Barroso, A., Roedig, U., Sreenan, C.J.: μ-MAC: An Energy-Efficient Medium
Access Control for Wireless Sensor Networks. In: Proceedings of the 2nd
EWSN (2005)

[Bue06] Buettner, M., Yee, G., Anderson, E., Han, R.: X-MAC: A Short Preamble
MAC Protocol For Duty-Cycled Wireless Sensor Networks. University of
Colorado at Boulder (2006)

[Far08] Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordi-
nation of low-power embedded devices using the max-sum algorithm. In:
Proceedings of the 7th AAMAS, pp. 639–646 (2008)

[Jai09] Jain, M., Taylor, M., Yokoo, M., Tambe, M.: DCOPs Meet the Real World:
Exploring Unknown Reward Matrices with Applications to Mobile Sensor
Networks. In: Proceedings of the 21st IJCAI (2009)

[Len08] Leng, J.: Reinforcement learning and convergence analysis with applications
to agent-based systems. University of South Australia (2008)

[Wol08] Wolpert, D.H., Tumer, K.: An Introduction To Collective Intelligence. NASA
Ames Research Center (2008)

[Mar04] Martinez, K., Ong, R., Hart, J.: Glacsweb: a sensor network for hostile en-
vironments. In: The 1st IEEE Secon (2004)

[Ess08] Esseghir, M., Bouabdallah, N.: Node density control for maximizing wireless
sensor network lifetime. Int. J. Netw. Manag. 18, 159–170 (2008)

[Ver04] Verbeeck, K.: Coordinated Exploration in Multi-Agent Reinforcement
Learning. Ph.D Thesis, Computational Modeling Lab, Vrije Universiteit
Brussel (2004)

Decentralized Learning in Wireless Sensor Networks 73

[Vra08] Vrancx, P., Verbeeck, K., Nowe, A.: Decentralized Learning in Markov
Games. IEEE Transactions on Systems, Man and Cybernetics 38, 976–981
(2008)

[Tha04] Thathachar, M.A.L., Sastry, P.S.: Networks of learning automata: Tech-
niques for online stochastic optimization. Kluwer Academic Publishers, Dor-
drecht (2004)

[Tuy06] Tuyls, K., Hoen, P.J., Vanschoenwinkel, B.: An Evolutionary Dynamical
Analysis of Multi-Agent Learning in Iterated Games. JAAMAS 12(1), 115–
153 (2006)

Recursive Adaptation of Stepsize Parameter for
Non-stationary Environments

Itsuki Noda

ITRI, National Institute of Advanced Industrial Science and Technology
i.noda@aist.go.jp

Abstract. In this article, we propose a method to adapt stepsize pa-
rameters used in reinforcement learning for non-stationary environments.
In general reinforcement learning situations, a stepsize parameter is de-
creased to zero during learning, because the environment is generally
supposed to be noisy but stationary, such that the true expected rewards
are fixed. On the other hand, we assume that in the real world, the true
expected reward changes over time and hence, the learning agent must
adapt the change through continuous learning. We derive the higher-
order derivatives of exponential moving average (which is used to es-
timate the expected values of states or actions in major reinforcement
learning methods) using stepsize parameters. We also illustrate a mech-
anism to calculate these derivatives in a recursive manner. Using the
mechanism, we construct a precise and flexible adaptation method for
the stepsize parameter in order to optimize a certain criterion, for exam-
ple, to minimize square errors. The proposed method is validated both
theoretically and experimentally.

1 Introduction

In most of the works on reinforcement learning that are used in agent learning,
it is supposed that the environment for agents is stationary during and after
learning. In other words, while the environment may react to agents’ action and
provide rewards dynamically, the rules of the change and the mechanisms of
rewarding are supposed to be stationary forever. In such a case, it is reasonable
that a stepsize parameter α is monotonically decreased to 0 through learning in
the following temporal difference(TD) learning algorithm in order to estimate
the expected values of the states or actions (Q-value) [1].

Qt+1(statet, actt) = (1 − α)Qt(statet, actt) + α(rt +
γ max

act′
Qt(statet+1, act

′)) (1)

By decreasing α sufficiently, we can reduce the noisy factors included in state
transitions and rewarding errors. After the Q-values seem to be sufficiently near
the true expected values, the agents generally stop learning and behave on the
basis of the fixed Q-value. An important assumption here is that the true ex-
pected values are constant during and after learning [2].

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 74–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Recursive Adaptation of Stepsize Parameter 75

On the other hand, in common real world problems, especially the problems on
open and multiagent systems, the environment may change gradually or rapidly.
For example, market systems such as the stock and foreign exchange market can
be affected by both agents’ behavior and various other fundamental conditions.
Therefore, it is difficult to suppose that the true expected rewards of states or
actions are stationary. Instead, agents in such an environment should continue
learning to adapt to changes in the environments. In this case, since we cannot
decrease the stepsize parameter α monotonically down to 0, we control it such
that it is capable of meeting the changes in the environment.

In order to adapt to such dynamic and non-stationary environments, George
and Powell[3] proposed a method, called optimal stepsize algorithm (OSA), to
control stepsize parameters in order to minimize noise factors on the basis of
the relationships among the stepsize parameter, noise variance, and changes in
learning values. Sato and et. al.[4] also proposed a framework to accumulate
error variance to find out the suitable learning parameters. In both works, the
focus is only on minimizing estimation errors, which the effect of the changes in
the stepsize parameter on the learning processes is ignored.

For this issue, we focus on the effects of the changes in the stepsize parameter
on the learning process, and extend the learning process to estimate the effects.
On the basis of the estimation, we can construct a method to adjust the stepsize
parameter in order to optimize a certain criteria, for example, minimizing an
error.

2 Exponential Moving Average and Stepsize Parameter

2.1 Exponential Moving Average

In reinforcement learning, for example, TD learning, an agent learns to estimate
the expected value of each state or action that is used in decision making ac-
cording to the rewards that the agent receives as results of his/her action in
the unknown environment. Generally, the estimation is done by the following
exponential moving average (EMA) equation.

x̃t+1 = (1 − α)x̃t + αxt, (2)

where xt and x̃t are the actual observed value (for example, received reward rt)
and the corresponding expected value, respectively, that are updated through
discrete time line t. α is a stepsize parameter, which indicates whether the agent
regards recent observed values xt as important, or the agent should take a long-
term average so as to calculate the true expected value (x̃t). Generally, x̃t can
be interpreted to be an approximation of a moving average of xt in the following
time-window:

T =
2
α
− 1. (3)

76 I. Noda

2.2 Best Follow-Up to Random Walk

Suppose that an observation sequence {xt} consists of a true value sequence {st}
and noise sequence {εt} as described in the following equation.

xt = st + εt, (4)

where εt is a random noise with average 0 and standard deviation σε, and is
independent from st. Furthermore, suppose that the true-value sequence {st} is
a random walk sequence as defined by the equation

st+1 = st + vt, (5)

where vt is a random value with average 0 and standard deviation σv.
In this case, we can derive the following lemma and theorem.

Lemma 1
The mean square error E(δ2

t) = E((x̃t − xt)2) of expected value x̃t acquired by
eq. (2) using observation xt that follows eq. (4) is given by the following equation.

E(δ2
t) =

1
2 − α

(2σ2
ε +

1
α

σ2
v). (6)

(See section A for the proof.)

Theorem 1
The stepsize parameter α that minimizes the mean square error E(δ2

t) is given
by the following equation.

α =
−γ2 +

√
γ4 + 4γ2

2
, (7)

where γ = σv

σε
.

(See section B for the proof.)

The theorem says that, if observed values consist of random walk values and
independent random noise, the best stepsize parameter to balance the follow-up
to the random walk and smoothening so as to remove the noise factor can be
determined by eq. (7).

2.3 Recursive Exponential Moving Average and Higher-Order
Partial Derivatives

In order to determine the stepsize parameter using eq. (7), the agent needs to
know the standard deviations of the random walk and noise factor. In general,
however, in real learning applications, these values are not known or change over
time. Therefore, we try to extract the derivatives of the expected value x̃t using
the stepsize parameter α, and construct a method to adapt α according to a
given sequence of observation {xt}.

Recursive Adaptation of Stepsize Parameter 77

First, we introduce the following recursive exponential moving average
(REMA) ξ

〈k〉
t by applying eq. (2) recursively:

ξ
〈0〉
t = xt

ξ
〈1〉
t+1 = x̃t+1 = (1 − α)x̃t + αxt

ξ
〈k〉
t+1 = ξ

〈k〉
t + α(ξ〈k−1〉

t − ξ
〈k〉
t)

= (1 − α)ξ〈k〉t + αξ
〈k−1〉
t

= α

∞∑
τ=0

(1 − α)τ ξ
〈k−1〉
t−τ . (8)

With regard to REMA, we can state the following lemma and theorem.

Lemma 2
The first partial derivative of REMA ξ

〈k〉
t by α is given by the following equation:

∂ξ
〈k〉
t

∂α
=

k

α
(ξ〈k〉t − ξ

〈k+1〉
t). (9)

(See section C for the proof.)

Theorem 2
The k-th partial derivative of EMA x̃t (= ξ

〈1〉
t) is given by the following equation:

∂kx̃t

∂αk
= (−α)−kk!(ξ〈k+1〉

t − ξ
〈k〉
t). (10)

(See section D for the proof.)

2.4 Gradient Descent Adaptation of Stepsize Parameter Using
Higher-Order Derivatives and REMA

Because theorem 2 provides the derivatives of x̃t by α, we can construct algo-
rithms to optimize a certain criterion, for example, mean square errors, by gra-
dient descent/ascent methods. An important aspect of theorem 2 is that it can
provide derivatives of any order. Therefore, we can form more precise gradient
descent/ascent methods. We refer to such methods that use higher-order deriva-
tives given by REMA as recursive adaptation of stepsize parameters (RASP).

Suppose that Δx̃t is the change in x̃t when α changes by Δα. In this case,
Δx̃t can be represented by Taylor expansion and theorem 2 as follows:

Δx̃t =
∞∑

k=1

1
k!

∂kx̃t

∂αk
Δαk

=
∞∑

k=1

(−1)k

(
Δα

α

)k

(ξ〈k+1〉
t − ξ

〈k〉
t). (11)

78 I. Noda

Further, generally, Δξ
〈k〉
t for any k can be estimated by the first Taylor expansion

and lemma 2 as follows:1

Δξ
〈k〉
t = Δα

∂ξ
〈k〉
t

∂α
(12)

 k

(
Δα

α

)
(ξ〈k〉t − ξ

〈k+1〉
t). (13)

These expansions indicate that RASP exhibits the following features.

1. We can approximate the precise changes in the estimation value x̃t even for
a large Δα, using higher-order derivatives calculated by REMA. Therefore,
we can change α rapidly.

2. We can also calculate Δξ
〈k〉
t by a modification of α, using the derivatives of

ξ
〈k〉
t . Therefore, the values of the variables that are affected by the changes

in α are kept precise.

Of course, it is impossible to calculate infinite higher-order derivatives. Instead,
we can set upper limit of k large enough to achieve the required precision. Be-
cause the calculation of REMA itself is very simple, the cost to calculate higher-
order derivatives is small.

The following procedure details the use of RASP to minimize the square er-
ror between the expected value x̃t and the actual observation xt. (We call this
procedure RASP-MSE.)

Initialize: ∀k ∈ {0 . . . kmax − 1} : ξ〈k〉 ← x0
while forever do

Let x be an observation.
for k = kmax − 1 to 1 do

ξ〈k〉 ← (1 − α)ξ〈k〉 + αξ〈k−1〉

end for
ξ〈0〉 ← x
δ ← ξ〈1〉 − x

Calculate ∂ξ〈1〉
∂α by eq. (10).

for k = 1 to kmax − 1 do
Calculate Δξ〈k〉 by eq. (11) and eq. (13).
ξ〈k〉 ← ξ〈k〉 + Δξ〈k〉

end for
calculate a new α according to δ and ∂ξ〈1〉

∂α .
end while

In this procedure, there are several possible ways to decide the value of Δα. As
in a general gradient descent method, in this case, the only restriction is that
Δα < 0 when δ ∂ξ〈1〉

∂α > 0, and Δα > 0 otherwise. In addition, because of the
nature of EMA, we should keep the following points in mind.
1 We can also use a higher-order Taylor expansion to utilize higher-order derivatives

as shown in the appendix.

Recursive Adaptation of Stepsize Parameter 79

– α should be a real number in [0, 1].
– α should not get too close to 0 because eq. (10) has a singular point at α = 0.

Therefore, in the experiments described below, we use the following procedure
to decide Δα.

γ′
old ←

√
α2

1 − α

λ ← −λ̄ · sign(δ
∂ξ〈1〉

∂α
)

γ′
new ← exp(log(γ′

old) + λ)

αnew ← −γ′2
new +

√
γ′4
new + 4γ′2

new

2
Δα ← αnew − α

In this procedure, α is modified according to the uniformed-step changes in the
logarithmic value of γ in eq. (7). Therefore, the changes in α are large when α
is around 0.5, and small when α is close to 0 or 1.

3 Experiments

3.1 Exp.1: Learning Best α for Noise Reduction

In the first experiment, we show that the above procedure to adapt α yields the
best stepsize parameter value for noise reduction that is determined by eq. (7).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Alp
ha

Cycle

changes of alpha

(a)

(b)

(c)

(d)

Fig. 1. Exp.1: Changes in α through the Learning of Observed Value Using the Various
Ratios of Standard Deviations of Random Walk and Noise (γ)

80 I. Noda

Figure 1 shows the results of the adaptation of α through the learning of
observation sequences {xt} with various γ (the ratio of standard deviations of
random walk and noise). In each case of this experiment, we use the following
standard deviations of random walk and noise.

σs σε (γ) (αbest)
(a) 0.01 0.001 10.00 0.990
(b) 0.01 0.020 0.50 0.390
(c) 0.01 0.040 0.25 0.221
(d) 0.01 0.200 0.05 0.048

Each curve in the graph of Figure 1 shows the changes in α through the
learning of expected value x̃t by eq. (2) and adaptation of α by RASP-MSE.
The horizontal axis in the graphs indicates the learning (and adaptation) cycle,
while the vertical axis represents the value of α. Further, the horizontal line in
each graph indicates the best stepsize parameter (αbest) as calculated by eq. (7).
As shown in these graphs, α approaches the best value and is then consistent
through learning. Note that α does not converge to the best value because of
the noise factors added in the observed value. Fortunately, the perturbation is
large only when α is relatively large; in this case, the effect of α changes slowly,
so that the behavior of the learning does not change drastically even α changes
with a large step.

Figure 2 shows the changes in the expected value x̃t as calculated by EMA.
In the figure, (a) and (b) are the cases where the parameter γ is almost equal
to 1.0 and 0.1, respectively. In other words, (a) is the case where the standard
deviation of the true random walk value st exceeds the standard deviation of
noise εt sufficiently, and (b) is the case where the noise factor is larger than
the random walk. Graphs (a-1) and (a-2) show detailed close-ups of the changes
in (a) at the early and mature stages2 of learning, respectively. Similarly, (b-1)
shows the detailed changes taking place at the mature stage of learning in (b)
in detail. In these graphs, (a-1) shows that the expected value x̃t can not follow
the quick changes in the true value st but does smoothen the changes. This is so
as α is still too small at the early stage of learning. On the other hand, in (a-2),
α is adapted to be suitable, and consequently, x̃t can follow st with minimum
delay. In (b) and (b-1), α is kept small enough to reduce the large noise factor
and allow x̃t to yield the best estimate of st.

As shown in these results, RASP-MSE can acquire the suitable stepsize pa-
rameter α for a given sequence.

3.2 Exp.2: The Case of Square-Waved γ

In order to show how RASP-MSE can follow the changes in the environment,
we conducted an experiment in which γ changes along a square wave over time.

Figure 3 shows the result of an experiment to adapt α by RASP-MSE in
the EMA learning of x̃t when γ alternates between 0.5 and 0.0005 every 1000
2 Here, “mature” stage implies a phase when the learning is almost complete and α is

close enough to the optimal value.

Recursive Adaptation of Stepsize Parameter 81

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [gamma=1.000000, best alpha = 0.618034]

current
agent

real

(a) γ = 1.0, αbest = 0.618

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 20 40 60 80 100

x

Cycle

x values [gamma=1.000000, best alpha = 0.618034]

current
agent

real

(a-1) Close-up of an early stage of learning in (a)
alpha has not adapted yet.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 5000 5020 5040 5060 5080 5100

x

Cycle

x values [gamma=1.000000, best alpha = 0.618034]

current
agent

real

(a-2) Close-up of an mature stage of learning in (a)
alpha has already adapted.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [gamma=0.100000, best alpha = 0.095125]

current
agent

real

(b) γ = 0.1, αbest = 0.095

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 5000 5020 5040 5060 5080 5100

x

Cycle

x values [gamma=0.100000, best alpha = 0.095125]

current
agent

real

(b-1) Close-up of a later phase of learning in (b)

Fig. 2. Exp.1: Changes in the Expected Value x̃t

steps. The graph in (a) shows the changes in α through learning (a curve) along
with the ideal changes expected according to γ (a square wave). The top and
the bottom of the square wave are 0.39 and 0.0005, respectively. As shown in
this graph, α tries to follow the changes in γ. Graph (b) shows the changes in
the expected value x̃t, observed value xt, and true value st. During the period
when γ is small (0.0005, where α’s ideal value is 0.0005), x̃t becomes a type of
long-term moving average so as to reduce the large noise factor: On the other
hand, x̃t follows xt tightly during the period when γ is large (0.5, where α’s ideal
value is 0.39). This result shows that RASP-MSE can follow the changes in the
environment and determine a suitable stepsize parameters.

82 I. Noda

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Alph
a

Cycle

changes of alpha [gamma=0.500000, best alpha = 0.390388]

alpha
best_alpha

(a) Changes of α

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [gamma=0.500000, best alpha = 0.390388]

current
agent

real

(b) Changes of xt, x̃t, and st

Fig. 3. Exp.2: Square-waved γ

3.3 Exp.3: Square-Waved True Value

EMA is used in general reinforcement learning, for example, eq. (1), because it
can reduce noise and yield a value that approaches the stationary true value. In
the second experiment, we suppose that the true value is almost stationary but
does change occasionally. In such a case, the learning mechanism needs to detect
the changes in the true value. In the actual experiment, we use a sequence of
true values {st} that follows a square wave over time.

Figure 4 shows the result of an experiment to adapt α by RASP-MSE in the
EMA learning of x̃t when the true value st alternates between 0.0 and 0.5 every
1000 steps. In this experiment the standard deviation of noise εt is 5.0. (a) shows
the changes in α, and (b), in xt, x̃t, and st through learning. (c) shows a result
of the case that we apply OSA [3] to the same problem for the comparison.

(b) indicates that RASP-EMA reduces the large noise factor and at the same
time can follow the changes in the true value. Compared with (c), we found that
following the true value is more precise by RASP-EMA than by OSA. Actually,
the average square error of x̃t from xt in (b) is 1.192, while the error in (c) is
2.496. Corresponding changes in α in (a) shows that α approaches zero almost
all the times but is relatively large at the time when the true value st changes
(t = 1000, 2000, . . .). From the meaning of α in EMA (x̃t follows the previous
observed value xt when α is large, and x̃t becomes a long-term moving average
of xt when α is small), the change in α shown in (a) indicates that RASP-MSE
detects the timing of changes in st and lets an agent regard the recent observation
as plausible: On the other hand, RASP-MSE lets the agent use the long-term
smoothed value when the environment is stationary. In other words, RASP-MSE
can control the features of learning by EMA in accordance with the changes in
the environment.

Recursive Adaptation of Stepsize Parameter 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Alph
a

Cycle

changes of alpha [gamma=0.000000, best alpha = 0.000000]

alpha
best_alpha

(a) Changes of α

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [gamma=0.000000, best alpha = 0.000000]

current
agent

real

(b) Changes of xt, x̃t, and st.

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [Learning = OSA, nu_final = 0.0001]

current
agent

real

(c) The Case using Optimal Stepsize Algorithm

Fig. 4. Exp.3: Learning Square-waved True Value st

Limitations of RASP-MSE with Regard to Square-Waved True Value
Sequences. Exp.3, described in section 3.3, shows the ability of RASP-MSE
to follow a square-waved true value sequence. However, the proposed procedure
is not able to follow all square waves. For example, if the observed value xt

includes noise with standard deviation 30.0 instead of 5.0, the RASP-MSE does
not suitably follow the change in the true value st but regards the change as
noise (figure 5). In the graph, α ∼= 0 during steps 3000–7000 steps. This implies
that x̃t becomes a long-term moving average of the observation, where the term
of the average is longer than the cycles of changes in the true value.

We can derive the theoretical upper-limit of the adaptation to the changes in
the small square-waved true value as follows:

Suppose that the true value st changes according to the following formula:

st =
{−δ : (2n − 1)T≤t<2nT

δ : 2nT≤t<(2n + 1)T ,

where 2T is a cycle of square-waved changes in the true value.
If α is almost zero such that x̃t represents a long-term moving average of xt,

the mean square error E0 of the expectation is as follows:

84 I. Noda

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Alph
a

Cycle

changes of alpha [gamma=0.000000, best alpha = 0.000000]

alpha
best_alpha

(a) Changes of α

-150

-100

-50

 0

 50

 100

 150

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x

Cycle

x values [gamma=0.000000, best alpha = 0.000000]

current
agent

real

(b) Changes of xt, x̃t, and st.

Fig. 5. Exp.3-2: Learning in the Case of Small Square-waved True Value st

E0 = E((xt − E(xt))2)
= δ2 + σ2

ε .

On the other hand, suppose that we can control α optimally, that is, α is raised
to 1 at t = nT , and is decayed to be the value 1/(1 + t− nT) otherwise. In this
case, x̃t becomes an average of xt during each half cycle. Therefore, the mean
square error Eopt is as follows:

Eopt = E((xt − x̃t)2)

=
1
T

[
4δ2 + σ2

ε +
T∑

τ=1

(σ2
ε +

σ2
ε

τ
)

]

=
1
T

[
4δ2 + Tσ2

ε + σ2
ε

T∑
τ=1

1
τ

]

=
1
T

[
4δ2 + Tσ2

ε + σ2
εHT ,

]
,

where HT =
∑T

τ=1
1
τ is a harmonic series.

If E0 < Eopt, we obtain the following inequality:

(T − 4)δ2 < HT σ2
ε . (14)

This is satisfied when T ≤ 4. This implies that it is impossible to follow this
quick changes (T ≤ 4) by the proposed procedure, because the long-term average
(the case of α ∼ 0) provides better estimation than the expectation by EMA
with adaptive α.

Recursive Adaptation of Stepsize Parameter 85

In the case of T > 4, eq. (14) can be written as follows:

δ2

σ2
ε

<
HT

T − 4
. (15)

This inequality shows the limitation of EMA with adaptive stepsize parameters:
When the changes in the true value (δ) is small, the noise (σε) is large, and/or
the interval time (T) is short as shown in eq. (15), then it is impossible to follow
the true value by EMA.

Consider the case of the experiment shown in figure 5, where δ = 5/2, σε =
30.0, and T = 1000. Therefore, the left and right hand sides of eq. (15) are 0.0833
and 0.0867, respectively. This means that the condition of this experiment is
beyond the scope of the EMA shown by eq. (15). This is the reason why RASP-
MSE failed to adapt α in this experiment. As shown by the actual values on
both sides of the inequality, however, the condition is very close to the boundary.
Therefore, RASP-MSE sometimes detects the changes in the true value as shown
in graph (a) of figure 5.

4 Discussion and Summary

In this article, we derived the relations between stepsize parameter α and ex-
pected value x̃t acquired by EMA, and provided a method called RASP that
calculates the higher-order derivatives of x̃t by α. We also proposed a procedure
called RASP-MSE that adjusts α suitably for given observed data both to reduce
noise factors in the observation and to follow the changes in the environment.
Experiments illustrated the functionality and performance of RASP-MSE for
adjusting the stepsize parameters as shown in theorems and lemmas.

The main feature of RASP is that we can obtain derivatives ∂x̃t/∂α. There-
fore, we can apply it to various optimization applications that require EMA. For
example, it can not only be applied to situations where the minimization of es-
timation error is desired, but also to the learning of decision making directly, for
example, back-propagations in neural networks. Thus, it can be said that RASP
has more potential than the other adaptation mechanisms of stepsize parameters
such as OSA [3].

The stochastic gradient adaptive (SGA) stepsize method [5,6] is identical to
RASP-MSE if we use only the first-order derivative. As we can calculate higher-
order derivatives, the adaptation based on RASP can be more quick and precise.
There are many other works on speed-up of reinforcement learning. Ahmadi et.
al. tried to apply domain knowledge to selection of feature set to speed up the
learning [7]. Abstracting feature and state spaces is also a major method to speed
up and scale up the learning [8,9,10]. RASP can be combine to these works to
increase adaptability to the changes of environment.

There still several open issues that include:

– To apply RASP-MSE to TD learning and multiagent learning, which may
not follow the assumption of random walk.

86 I. Noda

– To utilize higher-order derivatives to calculate the best stepsize instead to
change it gradually.

– To investigate the relation to several variable learning ratio technique
[11,12,13], which speed-up and stabilize the learning.

Acknowledgments

This work was supported by JSPS KAKENHI 21500153.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Even-dar, E., Mansour, Y.: Learning rates for q-learning. Journal of Machine Learn-
ing Research 5, 2003 (2003)

3. George, A.P., Powell, W.B.: Adaptive stepsizes for recursive estimation with appli-
cations in approximate dynamic programming. Machine Learning 65(1), 167–198
(2006)

4. Sato, M., Kimura, H., Kobayashi, S.: TD algorithm for the variance of return and
mean-variance reinforcement learning (in Japanese). Transactions of the Japanese
Society for Artificial Intelligence 16(3F), 353–362 (2001)

5. Benveniste, A., Metivier, M., Priouret, P.: Adaptive Algorithms and Stockastic
Approximations. Springer, Heidelberg (1990)

6. Douglas, S.C., Mathews, V.J.: Stochastic gradient adaptive step size algorithms for
adaptive filtering. In: Proc. International Conference on Digital Signal Processing,
pp. 142–147 (1995)

7. Ahmadi, M., Taylor, M.E., Stone, P.: IFSA: Incremental feature-set augmentation
for reinforcement learning tasks. In: The Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (May 2007)

8. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–211
(1999)

9. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

10. Schoknecht, R., Riedmiller, M.: Speeding-up reinforcement learning with multi-step
actions. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 813–818.
Springer, Heidelberg (2002)

11. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Arti-
ficial Intelligence 136, 215–250 (2002)

12. Abdallah, S., Lesser, V.: Learning the task allocation game. In: Proc. of AAMAS
2006, IFAAMAS, May 2006, pp. 850–857 (2006)

13. Marden, J.R., Arslan, G., Shamma, J.S.: Regret based dynamics: Convergence in
weakly acyclic games. In: Proc. of AAMAS 2007, IFAAMAS, May 2007, pp. 194–
201 (2007)

Recursive Adaptation of Stepsize Parameter 87

A Proof of Lemma 1

Suppose that the expected value x̃t calculated by eq. (2). Then x̃t can be acquired
by the following summation formula:

x̃t+1 = (1 − α)x̃t + αxt

= αxt + (1 − α)x̃t

= αxt + (1 − α)(αxt−1 + (1 − α)x̃t−1)
= αxt + α(1 − α)xt−1 + (1 − α)2(αxt−2 + (1 − α)x̃t−2)
= αxt + α(1 − α)xt−1 + α(1 − α)2xt−2 + (1 − α)3(. . .

= α

∞∑
τ=0

(1 − α)τxt−τ (16)

When the true value st is generated by eq. (5), it can be re-written as follows:

st+1 = st + vt =
∞∑

τ=1

vt−τ

st−τ = st −
τ∑

τ ′=1

vt−τ ′ . (17)

From eq. (4), eq. (16) and eq. (17), we can obtain the following equation.

x̃t+1 = α

∞∑
τ=0

(1 − α)τ st − α

∞∑
τ=0

(1 − α)τ
τ∑

τ ′=1

vt−τ ′ + α

∞∑
τ=0

(1 − α)τ εt−τ .

Here, we can rearrange the second term according to τ ′ as follows:

τ \ τ ′ 1 2 3 · · ·
0 (1 − α)0 ()
1 +(1 − α)1 (vt−1)
2 +(1 − α)2 (vt−1 +vt−2)
3 +(1 − α)3 (vt−1 +vt−2 +vt−3)
...

... (
...

...
...

...)

(18)

Therefore,

α

∞∑
τ=0

(1 − α)τ
τ∑

τ ′=1

vt−τ ′ =
∞∑

τ ′=1

(1 − α)τ ′
vt−τ ′

Finally, we get the following equation.

x̃t+1 = st −
∞∑

τ ′=1

(1 − α)τ ′
vt−τ ′ + α

∞∑
τ=0

(1 − α)τ εt−τ .

88 I. Noda

Therefore, the estimation error δt (= x̃t − st) becomes

δt = −
∞∑

τ ′=1

(1 − α)τ ′
vt−1−τ ′εt−1−τ − vt−2.

Because εt and vt are independent random numbers with means 0 and standard
deviations σ2

ε and σ2
v, respectively, the mean square of the above error E(δ2

t) can
be calculated as follows:

E(δ2
t) =

1
2 − α

(2σ2
ε +

1
α

σ2
v).

B Proof of Theorem 1

The derivative of mean square error E(δ2
t) by α is as follows:

∂E(δ2
t)

∂α
=

1
(2 − α)2

(2σ2
ε +

1
α

σ2
v) +

1
2 − α

(− 1
α2 σ2

v)

=
2(α2σ2

ε + (α − 1)σ2
v)

α2(2 − α)2
.

Suppose that the above derivative is equal to 0. Then, we can obtain a solution
of α in the range (0, 1) as follows:

α =
−σ2

v +
√

σ4
v + 4σ2

ε σ2
v

2σ2
ε

=
−γ2 +

√
γ4 + 4γ2

2
.

C Proof of Lemma 2

First, we show the following lemma.

Lemma 3

ξ
〈k〉
t+1 = α2

∞∑
τ=0

τ(1 − α)τ−1ξ
〈k−2〉
t−τ (19)

Proof
Suppose that

ηt+1 = α2
∞∑

τ=0

τ(1 − α)τ−1ξ
〈k−2〉
t−τ

= α2
[
1(1 − α)0ξ〈k−2〉

t−1 + 2(1 − α)1ξ〈k−2〉
t−2 + 3(1 − α)2ξ〈k−2〉

t−3 + . . .
]
.

Then, we can obtain the following equation:

(1 − α)ηt = α2
[
1(1 − α)1ξ〈k−2〉

t−2 + 2(1 − α)2ξ〈k−2〉
t−3 + 3(1 − α)3ξ〈k−2〉

t−4 + . . .
]
.

Recursive Adaptation of Stepsize Parameter 89

This can be rewritten as follows:

ηt+1 − (1 − α)ηt = α2
[
(1 − α)0ξ〈k−2〉

t−1 + (1 − α)1ξ〈k−2〉
t−2 + (1 − α)2ξ〈k−2〉

t−3 + . . .
]

= α2
∞∑

τ=0

(1 − α)τ ξ
〈k−2〉
t−1−τ

= αξ
〈k−1〉
t .

Finally, we can obtain the recurrence formula:

ηt+1 = (1 − α)ηt + αξ
〈k−1〉
t .

This formula is the same as the definition of ξ
〈k〉
t shown in eq. (8). Therefore, if

η0 = ξ
〈k〉
0 , ηt is identical to ξ

〈k〉
t for all t. Therefore, we can obtain eq. (19).

Using this lemma, we can prove Lemma 2 as follows:
In the case of k = 1, we can obtain the following equation:

∂ξ
〈1〉
t

∂α
=

∂x̃t

∂α
=

∂

∂α

[
α

∞∑
τ=0

(1 − α)τxt−τ−1

]

=
∞∑

τ=0

(1 − α)τxt−τ−1 + α

∞∑
τ=0

(−1)τ(1 − α)τ−1xt−τ−1

=
1
α

ξ
〈1〉
t − 1

α
ξ
〈2〉
t

=
1
α

(ξ〈1〉t − ξ
〈2〉
t).

Therefore, eq. (9) is satisfied when k = 1.
Suppose that eq. (9) is satisfied for any k < k′. Then, we can calculate the

derivative of ξ〈k
′〉 as follows:

∂ξ
〈k′〉
t

∂α
=

∂

∂α

[
α

∞∑
τ=0

(1− α)τξ
〈k′−1〉
t−τ−1

]

=
∞∑

τ=0

(1− α)τξ
〈k′−1〉
t−τ−1 − α

∞∑
τ=0

τ (1− α)τ−1ξ
〈k′−1〉
t−τ−1 + α

∞∑
τ=0

(1− α)τ ∂

∂α
ξ
〈k′−1〉
t−τ−1

=
1
α

ξ
〈k′〉
t − 1

α
ξ
〈k′+1〉
t + α

∞∑
τ=0

(1− α)τ k′ − 1
α

(ξ〈k
′−1〉

t−τ−1 − ξ
〈k′〉
t−τ−1)

=
1
α

ξ
〈k′〉
t − 1

α
ξ
〈k′+1〉
t + (k′ − 1)

∞∑
τ=0

(1− α)τξ
〈k′−1〉
t−τ−1 − (k′ − 1)

∞∑
τ=0

(1− α)τξ
〈k′〉
t−τ−1

=
1
α

ξ
〈k′〉
t − 1

α
ξ
〈k′+1〉
t + (k′ − 1)

1
α

ξ
〈k′〉
t − (k′ − 1)

1
α

ξ
〈k′+1〉
t

=
k′

α
(ξ〈k

′〉
t − ξ

〈k′+1〉
t).

As a result, eq. (9) holds for any k > 0.

90 I. Noda

D Proof of Theorem 2

In the case of k = 1, we can obtain the following equation:

∂x̃t

∂α
=

∂

∂α
ξ
〈1〉
t

=
1
α

(ξ〈1〉t − ξ
〈2〉
t)

= (−α)−1(ξ〈1〉t − ξ
〈2〉
t).

Therefore, eq. (10) is satisfied when k = 1.
Suppose that eq. (10) is satisfied for any k < k′. Then, we can calculate the

k′-th derivative as follows:

∂kx̃t

∂αk
=

∂

∂α

∂k−1x̃t

∂αk−1

=
∂

∂α

[
(−α)−(k−1)(k − 1)!(ξ〈k〉t − ξ

〈k−1〉
t)

]

= −(k − 1)(−1)−(k−1)α−k(k − 1)!(ξ〈k〉t − ξ
〈k−1〉
t)

+(−1)−(k−1)α−(k−1)
[

∂

∂α
ξ
〈k〉
t − ∂

∂α
ξ
〈k−1〉
t

]

The first and second terms inside the brackets in the right hand side of this
equation are k

α (ξ〈k〉t − ξk + 1t) and k−1
α (ξ〈k−1〉

t − ξkt), respectively. Therefore,

∂kx̃t

∂αk
= (−1)−(k−1)α−k(k − 1)! ×

[
−kξ

〈k+1〉
t + (k + (k − 1) − (k − 1))ξ〈k〉t

+((k − 1) − (k − 1))ξ〈k−1〉
t

]

= (−1)−(k−1)α−k(k − 1)!
[
−kξ

〈k+1〉
t + kξ

〈k〉
t

]

= (−1)−kα−kk!(ξ〈k+1〉
t − ξ

〈k〉
t)

= (−α)−kk!(ξ〈k+1〉
t − ξ

〈k〉
t).

As a result, eq. (10) holds for any k > 0.

Multiagent Reinforcement Learning Model for
the Emergence of Common Property and

Transhumance in Sub-Saharan Africa

Balázs Pintér, Ákos Bontovics, and András Lőrincz

Eötvös Loránd University, Pázmány Péter s. 1/C, Budapest, Hungary
{bli,bontovic,andras.lorincz}@elte.hu

Abstract. We consider social phenomena as challenges and measures
for learning in multi-agent scenarios for the following reasons: (i) so-
cial phenomena emerge through complex learning processes of groups of
people, (ii) a model of a phenomenon sheds light onto the strengths and
weaknesses of the learning algorithm in the context of the model envi-
ronment. In this paper we use tabular reinforcement learning to model
the emergence of common property and transhumance in Sub-Saharan
Africa. We find that the Markovian assumption is sufficient for the emer-
gence of property sharing, when (a) the availability of resources fluctuates
(b) the agents try to maximize their resource intake independently and
(c) all agents learn simultaneously.

1 Introduction

The NewTies EU FP6 project1[4] started from two constraints: NewTies de-
fined a series of challenges from social phenomena and wanted to model those
phenomena through emergences. NewTies ended with the following conclusion:
modeling through emergences provides information about the efficiency of indi-
vidual and social learning together with the constraints about the environment.
The reason is that in every model one tries to satisfy Occam’s razor principle:
“entities should not be multiplied unnecessarily” and tries to build a minimal
model, but simplicity of the model may constrain potential emergences.

One particular aspect of NewTies was that individual learning was taken seri-
ously: for each agent, sequential decision making was treated within the frame-
work of reinforcement learning (RL) and the Markov decision process (MDP)
model of RL [18] motivated by psychology and neuroscience [15]. Special con-
straints were (re-)discovered during this endeavor, e.g., (i) agents should build
a model about the mind of the other agent [11] and (ii) factored reinforcement
learning is necessary to counteract combinatorial explosion in complex scenarios
[19,6].

The so called ‘herders challenge’ is relevant, because it shows an example
where neither of the above conditions is necessary to emerge joint social learning.
1 New and Emergent World models Through Individual, Evolutionary, and Social

Learning, http://www.new-ties.eu

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 91–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.new-ties.eu

92 B. Pintér, Á. Bontovics, and A. Lőrincz

The relevant aspect of this learning scenario is that the fluctuation of rainfall,
and, because of that, the spatial and temporal fluctuation of resources is large.

We begin our paper with a brief introduction to the herders challenge, multi-
agent systems, reinforcement learning and the NewTies framework we used
(Sect. 2). Then, in Sect. 3 we describe our agent architecture: how our agents
store information in their memory (in maps), how they perceive the world
(through features), and how they act in this world (with macros). We provide
the details about the model of the environment, the agents, and the interactions
between the agents in Sect. 4. We continue with our results and their discussion
(Sect. 5). Conclusions are drawn in Sect. 6.

2 Preliminaries

2.1 The Herders Challenge

Hardin, in his noted paper about the tragedy of the commons [7] described how,
if left unchecked, herders would keep increasing the size of their stocks grazing
on a common pasture until the pasture is overgrazed to the point that it can no
longer sustain them. If a herder decides to add one more animal to his herd, he
gains all the benefit, but the community as a whole bears the cost. A rational
herdsman will add more and more animals to his stock, because that way he
gets all the benefits and bears only a fraction of the cost.

In the last century the preeminent problem concerning African pastoralists
was thought to be the degradation of rangelands because of excessive livestock
numbers, based on the same argument [2]. The scientific basis for this view has
been the concept of rangeland carrying capacity. This notion is also the basis
of Hardin’s paper: the increase in animal numbers decreases the availability of
forage, a finite resource. In the end, there will be too many animals for the land
to carry, and the land will no longer be able to sustain them. Hardin concludes
that freedom in commons brings ruin to all.

One of the argument’s premises is that the herders operate in a closed system.
The scenario does not take into account any outside influences such as weather.
But weather is the most powerful force in Africa, for example 83 percent of
variation in the areal extent of the Sahara between 1980 and 1989 was explained
by variations in annual rainfall [8]. And it changes everything: the equilibrium
of animals and forage on which Hardin’s argument rests ceases to exist.

Fluctuation is a significant risk that pastoralists have to cope with. According
to [12], the most prominent livelihood strategy of pastoralists is the movement
of their herds in reaction to anticipated seasonal and annual changes in pasture
availability. Transhumance and common property are their means of averaging
out the fluctuations. They can not change the environment, so they always move
to the territories with more favorable weather.

Based on the arguments above, we decided on the following model. We start
with a population of ranchers. Each of them owns a territory independently
of the others. Rainfall is distinct and fluctuates independently in each territory.
Ranchers can initiate the combining of territories; to do so, they only have to tell

Multiagent Reinforcement Learning Model 93

another to ‘share’: to give one another usufruct (i.e. the right to use it) to each
other’s territory. If many of these reciprocal agreements are established, groups
of solitary ranchers will evolve into communities of herders, where everyone is
free to graze on another’s land.

In the next sections we review the three pillars our paper is based on: multi-
agent simulation (MAS), related work, and reinforcement learning (RL). We also
introduce NewTies, the framework our multi-agent model is realized in.

2.2 Multi-agent Simulation

In this section we briefly introduce multi-agent simulation. Good introductions
to multi-agent simulation are [20] and [21].

The basic unit in multi-agent modeling is the agent. An agent is anything
that can perceive its environment through sensors and can act upon it through
actuators. The agents interact with their environment, and each other. They are
autonomous, have a local, limited view of the system and operate in a decen-
tralized way. An agent that always tries to optimize an appropriate performance
measure is called a rational agent.

Multi-agent simulation has several advantages compared to other, more tra-
ditional modeling methods such as dynamical systems. For one, the agent popu-
lation can be heterogeneous. We can create any number of different agents, and
put them into the same model. The simulation usually progresses in discrete time
steps. Another advantage of MAS is that the environment can change as the sim-
ulation advances, and so can the agents. Agents can adapt to the environment
and to each other using learning algorithms.

MAS connects the micro and the macro level through emergences. Other
methods typically only model either the macro level with aggregate data, or
the micro level. In multi-agent models, the agents act on their individual, micro
level, but their behavior can produce phenomena on the macro level. Collective
behavior can emerge that can not be trivially explained on the level of individ-
ual agents. The goal of multi-agent modeling is to gain insight into real world
problems or conduct thought experiments through emergence.

2.3 Related Work

Our model is based on three main strains of research. It is a topographical
model, it is concerned with cooperation among self-interested agents, and we
apply reinforcement learning (RL).

The foundational topographical agent-based model was the model of Schelling
[14]. Schelling studied the interactive dynamics of individual discriminatory
choices. In his model, there are two kinds of agents, say red and blue. They
are situated on a chessboard. There can be at most one agent in square. An
agent moves into the nearest satisfactory square if in its neighbourhood (defined
as the eight surrounding squares) less than half the agents have the same color
(the threshold could be set to other values). Usually, after several time steps the
agents stop moving, and red and blue clusters are formed.

94 B. Pintér, Á. Bontovics, and A. Lőrincz

The seminal Sugarscape model was developed by Axtell and Epstein [3]. Our
model has some resemblance to the Sugarscape world, where agents live in a grid
world, and have to harvest resources (sugar and spice) that grow in this world
in order to survive.

König et al. [10] extend the Sugarscape model with memory for the agents.
Their memory system is very similar to our maps. Agents store supplies in cells
and the positions of other agents in their memories. The authors show that
sustainability may be more easily achieved in a society with subordination and
coordination, then in a society with isolated agents.

Rouchier et al. [13] model the regular relationships of herdsmen and farmers.
Kohler et al. [9] model the settlement dynamics of the Mesa Verde Region,
taking households as agents. Their model of the landscape is very detailed. It
includes an annual model of paleoproductivity, soils, vegetation, elevation, and
water resource type and location.

In cooperation, the fundamental work is that of Axelrod [1]. For a good review
of cooperation between self-interested agents, see [5].

Reinforcement learning has also been used in multi-agent simulations. For a
review on this subject see, e.g., Chapter 7 of [20] and references therein.

2.4 Reinforcement Learning

Reinforcement learning [18] is a framework for training an agent for a given task
based on positive or negative feedback called immediate rewards that the agent
receives in response to its actions. Mathematically, the behavior of the agent is
characterized by a Markov decision process (MDP), which involves the states
the agent can be in, actions the agent can execute depending on the state, a
state transition model, and the rewards the agent receives.

One popular method for solving MDPs is based on value functions, the ex-
pected cumulated rewards that can be collected starting from any given state.
The agent’s behavior, or policy assigns actions to states and can be stochastic.
The exploration – exploitation dilemma can be solved, e.g., by ε-greedy policy.
In this case, greedy policy is used with probability (1 − ε), whereas exploration
takes place with probability ε. A policy is called greedy, if it selects actions that
give the highest possible expected cumulated reward.

SARSA learning. We will use the state-action-reward-state-action (SARSA)
form (see [16] and references therein), a sampled iterative assignment of the
Bellman equation for the state-action value function:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)] (1)

where α is an update rate, rt+1 ∈ R is the immediate reward received upon using
action at ∈ A and arriving to state st+1 ∈ S, and δt = rt+1 + γQ(st+1, at+1) −
Q(st, at) is the difference between the currently approximated value of the state
s and its approximation based on the next state and the immediate reward re-
ceived. This is one version of the so called temporal difference (TD) learning

Multiagent Reinforcement Learning Model 95

methods [18]. SARSA has the advantage that it implicitly learns model param-
eters. Model parameters are naturally sampled as the agent interacts with the
world.

We take the state space as the Cartesian product of m variables or features:
S = S1 × S2 × . . . × Sm. We discretize the full feature space and use tabulated
temporal difference learning.

2.5 The NewTies Framework

NewTies designed an architecture to run multi-agent simulations. An earlier ver-
sion of the NewTies architecture is described in [4]. The architecture has changed
during the project, a concise summary of the current architecture follows. We
detail only the parts used in our experiments.

There is a virtual clock set to 1 at the beginning of the simulation. Time
passes in discrete amounts, and is measured by the clock in ‘time steps’. When
one unit of time elapses the world transfers into a new state, the agents act, and
the current time step is incremented by one.

The agents are located on a flat, 2 dimensional surface (Fig. 1) divided into
same-sized square regions in a grid pattern called locations. Each agent fits into
exactly one location. Locations are referenced with discrete, integer coordinates.
The position of each agent is defined by its coordinates and its facing. It can
face in any of the eight directions. The agents live in a finite enclosed part of this
surface, that can have any shape. Agents can move between adjacent locations.

There can be a number of other objects besides agents on this surface, we
used plants and places.

Plants are food sources the agents can eat. They also fit into exactly one
location. The most important property of a plant is its energy: the amount of
energy it can grant to the agent that eats it. Plants can reproduce in a number
of ways depending on the requirements of the concrete simulation, we detail our
model in Sect. 4.1.

Fig. 1. The NewTies environment. The surface is divided into a grid that contains
various objects. This example contains a few plants and a single agent. The agent is
facing east, its field of view is 90 degrees in that direction. The agent could turn to
face any of the eight neighboring positions and then proceed forward.

96 B. Pintér, Á. Bontovics, and A. Lőrincz

Places are large interconnected areas grouping individual locations. They can
be of any shape and they are invisible to the agents. We modeled the rainfall
patterns with same-sized square-shaped places: the amount of rainfall may differ
on each place.

Agents have several attributes, the most important is energy. It is a real
number that represents the current well-being of the agent. When it reaches
zero the agent dies.

In every time step an agent first perceives its environment, processes the
perceptions, then acts upon them. It receives a number of distinct perceptions,
among them the most important: it sees every object in a 90 degree arc in front
of it, up to a preset distance. It also knows its own energy level, and the messages
sent to it by other agents in the previous time step.

The agent can perform various actions in each time step. We used the follow-
ing: (1) turn left/turn right: change the direction the agent is facing, (2)
move: move forward one location, (3) eat: if there is a plant in the location of
the agent, eat it, and (4) talk: send a message to another agent.

3 The Agent Architecture

The agent architecture has four components. Maps, macros and features help
the fourth component, the controller. Additionally, they are an integral part of
the model: they determine what the agent can remember (maps), see (features)
or do (macros). In the controller we use reinforcement learning.

Maps (Fig. 2) collect and store the observations of the agent over time, thus
serve as a kind of memory. For example, if a plant gets into the field of view of an
agent, and then the agent turns away, it can no longer see the plant. But it takes
note on the map and remembers where the plant was, so the agent can decide
to collect the plant later. Thus, maps help the agent cope with the problem of
partial observability, which severely affects our multi-agent simulation. Agents
can retain observations made before. But much of partial observability that
springs from the nature of multi-agent systems still remains: when many agents
interact, they can not predict the actions of the others. For example when our
agent returns to the area it remembers to be full of plants, it might find it
completely barren because the other agents have eaten all the plants in the
meantime.

High level features map various low level information available to the agent to
nonnegative integers to reduce the complexity of the learning problem. A feature
is a function φ : map×field of view×... � Z

+
0 . The state space is the Cartesian

product of the codomains of these functions. The current state is the Cartesian
product of their images in the actual time step. Features are an integral part of
the model, as they determine what the agent can perceive, and so the controller
can use. Features available to our agents are detailed in Sect. 4.2.

Macros are complex actions consisting of series of the simple actions described
in Sect. 2.5. This way complex functions of the agent are automated. For exam-
ple, the controller can choose between find a plant and eat it and explore, and

Multiagent Reinforcement Learning Model 97

Fig. 2. Maps serve as a kind of memory. In the top row the agent is seen turning
continually left (in the pictures we included only four of the eight directions). The
plants it remembers meanwhile is seen in the second row. It remembers more and more
plants in its map as it is turning, in the end of its turn it will know of all the plants
within the distance it can perceive.

not between simple actions like go forward or turn left. Macros not only reduce
computational complexity, but are an integral part of the model: they determine
what the agents can and can not do.

These series of actions are generated by algorithms. For example there is a
go to a food and eat it macro generator that goes through these steps: (1) look
for a high energy food in one of the agent’s map, (2) plan a route to that food
that goes through shared territories, (3) generate the necessary turn and move
actions to reach the food, and (4) generate an eat action to eat the food.

The agents use RL: maps are included into state descriptions through features,
macros make the action set. The RL parameters are γ = 0.95, α = 0.05 (Eq. 1),
and ε = 0.1.

4 The Model

In this section we detail our theoretical model and its implementation in the
NewTies framework. We distinguish three main parts, each in its own section:
the environment, the agents and the interactions between the agents. For the
environment and the agents we provide the theoretical model first, and then the
realization in NewTies follows. For the interactions, the theoretical model and
the implementation are the same.

4.1 The Environment

Theoretical model. Agents live in a finite, square-shaped enclosed grid world.
They can choose to graze their herds on any location, in that case their (herd’s)

98 B. Pintér, Á. Bontovics, and A. Lőrincz

energy is increased, but the energy stored in the vegetation on that location is
decreased. The energy that can be gained from the vegetation is sufficient that
agents can never reach zero energy, that is, our agents can never die. However,
we do model the need for a continuous supply of food. (For details see Sect. 4.2.)

The area is divided into a grid of same-sized square-shaped regions called
territories. One territory can hold at most as many agents at once as there are
locations in it. Rainfall periodically changes in each territory independently. The
amount of rainfall is a uniform random number chosen from the interval [0.5 −
x, 0.5 + x], where x is the fluctuation. The vegetation of a territory regenerates
at a constant rate that is proportional to the amount of rainfall on the territory.

Every agent has a home territory it can share and some usufructuary terri-
tories, territories it can use. Every territory has an owner. An agent can only
move into its home and usufructuary territories, the other territories are closed
to it. Details can be found in Sect. 4.3.

From now on, when we say usufructuary territories of an agent we also mean
its home territory, as naturally the agent has usufruct over it.

Realization in NewTies. The agents live in a square-shaped area completely
filled with plants: there is a plant on every location. They are the sole source of
food for the agents. The plants do not disappear when an agent eats them, their
energy decreases by a fixed amount instead. In every time step all of the plants
replenish their energy by a little amount. The rate of one plant’s replenishing is
a linear function of the amount of rainfall on the territory the plant is on.

We used the already mentioned Places to model the weather. Territories were
realized as square Places; 5 locations high and 5 locations wide (Fig. 3). The
amount of rainfall was a uniform random number chosen from the interval [0.5−
x, 0.5 + x], where x is the fluctuation. This number is generated separately for
every territory in every 10,000th time step.

4.2 The Agents

Fig. 3. The territories. A scenario with 16 territories. Every territory has a different
amount of rainfall represented with different shades.

Multiagent Reinforcement Learning Model 99

Theoretical model. We think of our agent as a herder who controls a group of
animals. The most important statistics of an agent is its energy that measures
how well the animals are. So the rational aim of every agent is to maximize its
energy. In order to accomplish this, an agent is given a set of high level actions,
or macros. The actions last for variable duration, for example if the agent goes
to a location the duration of the action depends on the distance to the location.
Every time an action is finished the agent has to choose another, but it can
choose to do nothing (wait). The energy of the agents decreases even if they do
nothing, and it decreases faster if they move. Note that the herder and his herd
make one agent. So if the agent ‘eats’ then the herder grazes the animals.

The agents are informed about the outcome of each of their actions: they
know how much energy they gained or lost using an action. They are given
no information about the scenario in advance; they have to start exploring the
possible effects of their actions by trial and error and form policies based on past
experiences.

As mentioned in Sect. 4.1, our agents can not die, nor do they get hungry, as
they always gain much more energy from grazing than they need for survival.
However, we do model the need for a continuous supply of food with the help of
reinforcement learning.

Reinforcement learning can look ahead to find sub-optimal actions that even-
tually lead to high rewards (in fact it remembers the previously experienced and
so far optimal action sequence), but the fluctuation changes on a completely dif-
ferent timescale. So our agent can not keep track of the weather, or foresee that
it will change, it is ‘short-sighted’. It tries to optimize a policy that is short-term
compared to the timescale of weather change. In other words it tries to consume
as much energy as it can in the short term, so it needs a constant supply of food.

The agent was given the following actions:

1. go to a location with high energy vegetation and graze on it
2. propose a sharing agreement to another agent
3. break a sharing agreement
4. explore surroundings
5. wait (do nothing)

Because of the limitations of reinforcement learning we were constrained in the
amount of information we could give to our agent. We tried to give it the mini-
mum information we think a human would require to decide:

1. whether there is anyone to share with
2. whether there is anyone to break the share agreement with
3. the average energy of the vegetation in all the usufructuary territories (ter-

ritories the agent can go into and graze in)
4. the average energy of the vegetation in all the territories whose owner the

agent could establish a share agreement with

Realization in NewTies. The agent tries to accumulate the maximum amount
of energy possible. This is realized by the reward: the reward after each action

100 B. Pintér, Á. Bontovics, and A. Lőrincz

is the difference in the energy of the agent before and after that action, that
is, the energy gained or lost. Reinforcement learning is capable of finding action
sequences where suboptimal actions at a given time instant (e.g., share) may
lead to high rewards later (eat), so we suspected that even though share is an
action that is not beneficial in itself, if the territory opened when it contains
high energy vegetation, the agent will learn that it is a beneficial action.

In Sect. 3, we described the blueprint of our agents. Now we fill in the details,
enumerate the particular features and macros used. These define what the agent
can perceive and how it can act. Maps are not perceived directly by the agents;
an agent has access to the features that can be derived from the map.

We used the following features:

1. ‘share feature’: 0 or 1. It is 1 if and only if the execution of a share macro
would most likely be successful in this time step. That is, if the agent can
see one of its neighbors with whom it has not already shared its territory. A
share action will only be successful if the partner agent has more than 60%
of the maximum resource possible on its shared territories (see below). This
information is not encompassed into this feature, the agent does not know
it.

2. ‘break feature’: 0 or 1. It is 1 if and only if the execution of a break macro
would be successful in this time step. That is, if the agent can see another
agent with whom it has an agreement and who is not on the agent’s home
territory.

3. ‘average shared plants energy’: 0, . . ., 9, the discretized average of the
plants’ energy on the usufructuary territories of the agent.

4. ‘average neighbors’ not shared plants energy’: 0, . . ., 4, the dis-
cretized average of the plants’ energy on the neighboring territories the agent
can not currently enter.

We used the following macros:

1. ‘go to the best food and eat it’: the agent goes to one of the foods
with high energy on its usufructuary territories through its usufructuary
territories and eats it.

2. ‘share home territory’: if the agent can see a neighbor with whom it does
not have a sharing agreement, then it initiates one to share their respective
home territories with each other. They also tell each other which territory
they own. After their first interaction they will know this for the length of
the simulation.

3. ‘break a share agreement’: if the agent can see another agent with whom
it has a sharing agreement, then they break their agreement.

4. ‘explore the surroundings’: the agent turns a few times in a random di-
rection then moves forward through a few time steps

5. ‘wait a time step’: the agent waits (does nothing) for a time step

Multiagent Reinforcement Learning Model 101

4.3 The Agreements between Agents

We mentioned in the introduction that agents start as ranchers. Every rancher
starts on a distinct territory, and they are confined to this territory, their home.
They own it and can never lose it. In addition they can grant usufruct rights
to other agents, if requested. They also gain usufruct rights to the home terri-
tory of the other agent in turn. This process is called sharing (Fig. 4), because
agents share their home territories. Agents can walk and graze their herds on all
their usufructuary territories, so if there are enough of them then there is the
possibility of transhumance.

Agents only initiate sharing with their neighbors: that is, Agent 1 only ini-
tiates sharing with Agent 2 if Agent 2 ’s home territory and one of Agent 1 ’s
usufructuary territories have a common border. Otherwise Agent 1 would not
gain anything because it would not have a route to Agent 2 ’s territory.

The other agent only accepts a share proposal if it has already enough food
for itself: we chose 60% of the maximum amount of food possible, because 50%
(the expected value) is just enough for the agent, so it sets a safety margin.

The procedure of sharing is the following:

1. Agent 1 requests sharing
2. If Agent 2 has more than 60% of the maximum possible plant energy on his

shared territories, it answers with yes. If it has less, the answer is no, because
it would endanger its own survival.

3. From now on they can both move to and eat from the home territory of the
other.

Sharing agreements do not time out, they last forever. But they can be broken. In
fact, it is easier to break an agreement than to establish one, because breaking is
not constrained opposed to sharing. An agent can break an agreement any time,

Fig. 4. The process of sharing territories. There are two agents in the process
of establishing an agreement on the figure (the other agents are not shown). Their
respective home territories are represented by the two houses in different shades of
gray. An agent can enter only its home territory and the territories of the agents with
whom it has a sharing agreement. This is represented with the two shades of gray: the
agent whose home territory is colored dark (light) gray can only enter the dark (light)
home and dark (light) colored areas (usufructuary territories). The home territory of
the other agent can be entered only upon sharing.

102 B. Pintér, Á. Bontovics, and A. Lőrincz

the only constraints are that it must see the other agent it wants to talk to,
and the other agent can not be on the home territory of the agent that breaks
sharing at that time instant.

The procedure of breaking an agreement is the following:

1. Agent 1 initiates the breaking of an agreement
2. Agent 2 accepts it if it is not on Agent 1 ’s home territory.
3. From now on they can not step on the home territory of the other.

Note that as the consequence of breaking agreements, there can be territories
that are shared but temporarily can not be reached by an agent.

5 Results and Discussion

We examined two scenarios. The first scenario consisted of 16 agents, each start-
ing on its own home territory. Their home territories were placed onto a 4 × 4
chessboard (Fig. 3). In the second scenario there were 25 agents and 25 terri-
tories on a 5 × 5 chessboard. The length of the scenario was 50 000 time steps.
This was long enough for the learning algorithm to stabilize, and short enough
to make the time required to run one simulation feasible.

We have run the simulation 10 times for each value of the rainfall fluctua-
tion from 0.00 to 0.50 with increments of 0.01, then computed the average and
standard deviation for each value.2

We got the same results on both of the scenarios. Fig. 5 shows the average
number of usufructuary territories per agent as a function of the fluctuation.
If the fluctuation is low the agents do not share their territories. But as the
fluctuation rises, the agents start to share. The number of usufructuary terri-
tories per agent is increasing, but so is the standard deviation: the system is
unstable. As the fluctuation is above approximately 0.4, the number of usufruc-
tuary territories is constantly high, and the standard deviation is considerably
smaller: the system becomes more stable. The agents gain usufructuary rights
to 6-7 territories at most, out of the whole 16. For the scenario with 25 agents
the usufructuary territories per agent rose a little bit, but not considerably: it
is between 7 and 8. Although now there are 150% more territories, the number
of usufructuary territories does not rise significantly. This may be because there
is an optimal number of usufructuary territories per agent in the limit as the
world grows.

It is also interesting to see the average plant energy: how much energy does the
vegetation store at the end of the simulation, in other words how much energy
do the agents conserve? In both scenarios (Fig. 6) the average plant energy rises
as the fluctuation rises: the agents conserve more and more energy.

There is a surprising phenomenon in our model: the energy collected (Fig. 7)
by our agents drops as the fluctuation rises. We think that there are three causes

2 Other parameters can be found in the supplementary material
http://people.inf.elte.hu/lorincz/ALA_herders_params.pdf

http://people.inf.elte.hu/lorincz/ALA_herders_params.pdf

Multiagent Reinforcement Learning Model 103

Fig. 5. Number of usufructuary territories per agent as a function of the fluctuation.
It can be seen that the agents share with more partners and create larger common
territories as the fluctuation increases (16 agent scenario).

Fig. 6. Average plant energy as the function of the fluctuation. Agents conserve more
and more as the fluctuation rises (25 agent scenario).

for this: first, scenarios with high fluctuations are much more difficult because of
local variations, second, we did not model soil degradation, and third, the way
the agents choose a location to graze on.

If the average fluctuation is 0.0, then agents basically only have to eat, and
do nothing else. If it is 0.5, then there are local difficulties that the agents have
to face. Even though the average plant energy is the same as in the former case,
it happens a lot that the bulk of that energy is not accessible to one agent.
For example, if the agent faces a severe, long lasting drought (e.g. the rainfall
coefficient is below 0.1 in the agent’s home territory) then it could suffer despite

104 B. Pintér, Á. Bontovics, and A. Lőrincz

Fig. 7. Energy collected by the agents as the function of the fluctuation (25 agent
scenario)

the fact that on average there is a lot of food around. Because the weather
changes in every 10,000 steps and the agents optimize only for about 100 steps
with γ = 0.95 (Sect. 4.2), it has to wander more than in the case with small
fluctuation. At the same time, if an agent eats only on its home territory, then
it has more time to eat than an agent that has to move to the territory with
more food.

The second cause is that we did not model soil degradation. If perpetual
grazing would degrade the soil as in real life it does, then agents doing nothing
but eating would eventually gain much less energy than the agents that wander
from territory to territory, and eat only high-energy plants.

The third cause is that when agents graze they always choose one location
they remember to have high energy, and they move to that location. Clearly the
average distance they travel grows as the number of their usufructuary territories
grows. So even if we would create a controller that always chooses the go to a high
energy food and eat it macro, it would occur that the agent who can not leave
its home territory consumes more energy than the agent with several territories,
because the former would travel less between eat actions.

When one agent has many usufructuary territories we talk about common
ownership, because if one agent can use 7-8 territories on average then obviously
one territory is used by 7-8 agents on average because there are the same number
of agents as there are territories.

The agents established common territories, and with the help of these they
managed to overcome the fluctuation. The expected value of rainfall is the same
on all of the territories, the fluctuation only creates local variations. So the more
territories an agent has access to, the closer the amount of rainfall averaged on
its territories is to the expected value, and the less the fluctuation affects the
agent.

Multiagent Reinforcement Learning Model 105

There are two points to be mentioned here. One is risk management or in-
surance. Basically when agents establish sharing agreements, they insure them-
selves: they agree that they share their territories so if rainfall is low on either of
them both can survive. The more sharing agreements an agent has, the better in-
sured it is. They cope with local fluctuation by trying to have enough territories
so that the effect of fluctuation is diminished.

The other point is Adam Smith’s invisible hand [17]: each agent ‘intends only
its own gain and promotes an end that was not part of its intention’, but is good
for the community as a whole. Every agent tries to maximize its own energy,
but in doing so they insure themselves and the other agents, so the whole agent
‘community’ is insured against the fluctuation of the rainfall: if rainfall is low
on a territory, they simply move somewhere else. In other words, the agents are
selfish and despite that achieve an outcome that is good for all of them.

6 Conclusions

We have demonstrated conditions where adaptive agents established common
property even though they maximized their own gains, and did not consider the
effect of their actions on the other agents.

We described why Hardin’s tragedy of the commons is not applicable to the
conditions in Sub-Saharan Africa. Modeling real-world conditions we constructed
a learning scenario where the ‘tragedy’ did not occur, although all of our agents
were autonomous rational agents (they considered only their own benefit), just
like Hardin’s herdsmen. The most important characteristic of this scenario was
the fluctuation of the regeneration rate of resources. The fluctuation was present
in both space and time, and as an agent needed the resource in the short term,
they could only choose to cope with the fluctuation in space. They established
areas where they could freely move and graze, so they could always wander to a
territory with high resources.

Acknowledgments

Thanks are due to Nigel Gilbert for helpful discussions. This research has been
supported by the EC FET ‘NewTies’ Grant FP6-502386. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of other members of the
consortium or the European Commission.

References

1. Axelrod, R.: The Evolution of Cooperation Basic Books (1984)
2. Behnke, R., Scoones, I.: Rethinking range ecology: Implications for rangeland man-

agement in Africa. Int. Inst. for Envir. and Development Paper No. 33 (1992)
3. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the

Bottom Up (Complex Adaptive Systems). The MIT Press, Cambridge (1996)

106 B. Pintér, Á. Bontovics, and A. Lőrincz

4. Gilbert, N., den Besten, M., Bontovics, A., Craenen, B.G.W., Divina, F., Eiben,
A.E., Griffioen, R., Hév́ızi, G., Lõrincz, A., Paechter, B., Schuster, S., Schut, M.,
Tzolov, C., Vogt, P., Yang, L.: Emerging artificial societies through learning. J. of
Artificial Societies and Social Simulation 9(2), 9 (2006)

5. Gintis, H.: Modeling cooperation among self-interested agents: a critique. The Jour-
nal of Socio-Economics 33, 695–714 (2004)

6. Gyenes, V., Bontovics, Á., Lőrincz, A.: Factored temporal difference learning in
the New Ties environment. Acta Cybernetica 18, 651–668 (2008)

7. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)
8. Hulme, M., Kelly, M.: Exploring the links between desertification and climate

change. Environment 76, 4–45 (1993)
9. Kohler, T.A., Kresl, J., van West, C., Carr, E., Wilshusen, R.H.: Be there then:

a modeling approach to settlement determinants and spatial efficiency among late
ancestral pueblo populations of the Mesa Verde region, pp. 145–178. U.S. southwest
Oxford University Press (2000)

10. König, A., Möhring, M., Troitzsch, K.G.: Agents, Hierarchies and Sustainability
Agent Based Computational Demography. Physica, 197–210 (2002)

11. Lőrincz, A., Gyenes, V., Kiszlinger, M., Szita, I.: Mind model seems necessary for
the emergence of communication. Neural Inf. Proc. Lett. Rev. 11, 109–121 (2007)

12. Rass, N.: Policies and strategies to adress the vulnerability of pastoralists in Sub-
Saharan Africa. PPLPI Working Paper No. 37, FAO (2006)

13. Rouchier, J., Bousquet, F., Requier-Desjardins, M., Antona, M.: A multi-agent
model for describing transhumance in North Cameroon: Comparison of different
rationality to develop a routine. Journal of Economic Dynamics and Control 25,
527–559 (2001)

14. Schelling, T.C.: Dynamic models of segregation. Journal of Mathematical Sociol-
ogy 1, 143–186 (1971)

15. Schultz, W.: Getting formal with dopamine and reward. Neuron 36, 241–263 (2002)
16. Singh, S., Jaakkola, T., Littman, M., Szepesvári, C.: Convergence results for single-

step on-policy reinforcement-learning algorithms. Machine Learning 38, 287–303
(2000)

17. Smith, A.: The Wealth of Nations. Bantam Classics (March 2003)
18. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,

Cambridge (1998)
19. Szita, I., Lőrincz, A.: Factored value iteration converges. Acta Cybernetica 18,

615–635 (2008)
20. Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artifi-

cial Intelligence. Morgan and Claypool Publishers (2007)
21. Wooldridge, M.: Introduction to MultiAgent Systems. John Wiley & Sons, Chich-

ester (2002)

Learning to Locate Trading Partners
in Agent Networks

John Porter, Kuheli Chakraborty, and Sandip Sen	

Department of Computer Science
University of Tulsa
sandip@utulsa.edu

Abstract. This paper is motivated by some recent, intriguing research
results involving agent-organized networks (AONs). In AONs agents have
a limited number of collaboration partners at any time, represented by
edges in a network of agent nodes, and can rewire edges, i.e., change
partners, to improve performance. The common underlying research is-
sue in these domains is the search for desirable interaction or collabo-
ration partners in a relatively large population. Agents have to learn to
estimate the utility of current trading partners and adapt connections to
improve profitability. A previous study found that random selection of
partners in each time period produced better performance but incurred
larger search costs compared to gradual rewiring of edges in the network
in a production and exchange economy. We propose an exponentially
decaying exploration scheme that produces similar utilities to random
rewiring but with much less rewiring costs. We evaluate the effects of
the number of trading partners on the utilities obtained by the agents.
We hypothesize on the cause for the observed performance differences
and verify that by showing that the observed performance differences
with more realistic model of the economy that incorporate minimum
trade volumes and storage capacities.

Keywords: Agent oriented networks, partner selection, learning.

1 Introduction

Given the significant interest and popularity of peer and social networking appli-
cations, recent work in multiagent systems have increasingly studied distributed
formation and maintenance of social networks [1]. A number of such multia-
gent systems consist of self-interested agents interacting in open environments
where the resources, goals, and requirements of agents change over time. In
such domains, a rational agent can often benefit by forming mutually beneficial
partnerships with other agents with complementary resources and capabilities.
Given the dynamic and open nature of the environments, the local conditions
for agents may change as existing agents may leave the environment and new
� This work is supported in part by a DOD-Army Research Office Grant #W911NF-

05-1-0285.

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 107–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

108 J. Porter, K. Chakraborty, and S. Sen

agents may enter the society. The search for effective collaborators, therefore, is a
life-long process whereby agents continually seek to locate and harness beneficial
relationships. We are interested in studying the dynamics of agent relationships
in such decentralized environments where both parties must agree to enter into
a collaboration. Examples of such domains abound in society and industry, in-
cluding players joining teams or finding other players to partner with, coalitions
of groups forming to pursue common cause, organizations forming supply chains
that transform raw materials to finished products, etc.

As social networks and peer-to-peer (P2P) networks have received widespread
use, various forms of network topologies and their associated properties have
been studied in the literature [2]. In this paper, we focus on relationships be-
tween producer and consumer agents in a distributed environment. Agents in
such an Agent Oriented Network (AON) are connected, at any point in time,
with a limited number of other agents but can change their connections over
time [10]. To obtain utility, agents need to trade with other agents producing
complementary goods. A critical decision problem affecting the viability and
success of agents in such an economy is their ability to identify beneficial trad-
ing partners. The trading partner selection problem poses interesting learning
and adaptation questions including how to estimate the worth of trading part-
ners, how to locate potentially beneficial trading partners, and how to balance
exploration for new partners with reaping benefits from current relationships.

Gaston and desJardins observed that randomly connecting to other agents
produced more profitable trades than using more stable wiring patterns [4].
This is an intriguing and counter-intuitive result, as in real economies we observe
more stable and healthy partnerships between organizations, e.g., organizations
in supply chains [6]. We wanted to explain this intriguing phenomena by a careful
analysis of the experimental results. We also sought to evaluate relative merits
of more inertial rewiring schemes which reduce exploration over time. For a
fair evaluation of these schemes we developed a more realistic economy that
incorporated features like minimum trade volumes and storage capacities. We
observe the effects of the number of trading partners on the profitability of the
trading agents when using different partner selection strategies. Our goal is to
analyze the results from the simulation to both explain the observed phenomena
and design more effective partner selection mechanisms to produce efficient agent
networks.

2 Models

In this section, we first review a basic production and exchange model in an
agent oriented network [4,9,10]. We then present an extension of the model that
captures more realistic constraints.

2.1 Production and Exchange Model

Gaston and desJardins have used a simple production and exchange model to
study strategies in AON exchange economies [4]. An AON is a network of agents

Learning to Locate Trading Partners in Agent Networks 109

in which the agents self-organize and can rewire their own connections to other
agents [9,10].

We present the trading and production model below and as described by
Gaston and desJardins [4]. Every agent starts with some supply of two goods and
a capacity to produce a fixed amount of only one of them. At each iteration agents
choose whether to produce or exchange goods and thereby gain utility. Agents
are greedy and attempt to maximize the utility they gain at each time step.
They are also truthful and always provide correct information when proposing
a trade. We present the trading and production model below and as described
by Gaston and desJardins [4]

Trading Model. In this model there are n agents and two goods g1 and g2.
g1 is only traded in whole units while g2 is infinitely divisible. gi

k is the amount
of good k that agent i currently possesses. The utility of agent i is given by the
product of its stock of the two goods:

U i = gi
1g

i
2.

In each round the agents are chosen in random order and allowed to trade or
produce. First, they have to calculate how much utility they would gain by
trading. Each agent is linked to m other agents with whom it can trade. The
chosen agent checks its marginal rate of substitution (mrs) against the mrs of
each of the agents it is linked with. This value is calculated as follows and
truthfully revealed:

mrsi =
δUi

δgi
1

δUi

δgi
2

=
gi
2

gi
1
.

The agents may be able to gain by trading if their mrs ’s differ. When agent i
considers trading with agent j, the exchange price, pij , is computed as

pij =
gi
2 + gj

2

gi
1 + gj

1

.

Next, a trade is simulated to evaluate corresponding benefits, though no actual
goods are exchanged until agent i chooses one trading partner. A tax τ is applied
to every transaction. If agent i is trading one unit of g1 for every pij units of g2
with agent j and δgi

k is the amount of good k traded by agent i, then

δgi
1 = −δgj

1 = −(1 + τ)

δgi
2 = −δgj

2 = (1 + τ)pij .

Such exchanges between these two agents are repeatedly simulated until the
utility of neither agent increases from further trading. The corresponding utility
gain is recorded. Once such simulated trades have been executed for every agent
connected to agent i, the most profitable partner, i.e., the agent with whom
trading provides maximum utility gain is selected i as the best possible trading
partner in this time step.

110 J. Porter, K. Chakraborty, and S. Sen

Production model. Every agent has a production capacity Δgi uniformly
distributed in the range [1, q] for one of the goods g1 or g2. Thus, if i produces
g1 its change in utility after production is

ΔU i = Δgi
1g

i
2.

Once an agent knows how much utility it can gain by producing, it can choose
whether to produce or trade with its best partner. Once it has made this decision
and carried out the corresponding action, the agent can choose to rewire its
trading connections for the next iteration.

2.2 Enhanced Production and Exchange Model

In many real world examples, agents gain utility through consuming goods or
manufacturing new products from raw materials rather than by just possessing
them. These agents also often have a limited space available for storage which
can be expensive. Motivated by these and other considerations, in this section
we propose some extensions to the model presented in the previous section to
represent and reason with more realistic scenarios.

To model the production of new products using existing or procured raw
materials, we propose a system of clearing. Whenever an agent has both types
of goods, it combines them to manufacture a product for which the goods serve as
raw materials. Thus, no excess goods are stored. Some agents are more efficient
and can manufacture products while consuming lesser amounts of the good that
they do not produce. For manufacturing a product, an agent must use some
multiple, G, units of the good it does not produce for every unit of good that it
can produce. Thus, if agent i is a producer of good 1 its new utility gain function
from manufacturing would be:

ΔU i = ζ min(gi
1,

gi
2

Gi
).

Agent i loses the corresponding amounts of goods 1 and 2 and gains utility,
based on the parameter ζ, by selling the manufactured product.

The agents have limited storage capacity for raw materials, and the maximum
amount of the produced good, e.g., g1, that an agent can store is S̄ times its
production rate. Agents also have a lower bound on the amount of good they
have to have before they can try trading; this limit corresponds to a minimum
trade volume. If, at the beginning of their turn, an agent has less than S times
its production rate then it does not try to trade. An agent may still end up
trading in this situation, but only if another agent initiates a trade with it.

Trading can be an expensive operation and it is counterproductive to perform
a number of small trades. S and S̄ comprise a trading window for an agent. It
cannot trade if its stock of the good it produces is below S . On the other hand, if
the agent cannot find a trading partner before its stock of produced good reaches
S̄, then it will start losing production opportunities as there is no space to store
additional produced good.

Learning to Locate Trading Partners in Agent Networks 111

As a final change to the production and exchange model we allowed continuous
production. Agents could produce every turn and even in turns where they are
trading.

3 Rewiring Strategies

The goal of rational agents within such production and exchange economies
will be to locate most beneficial trading partners. Agents, therefore strategically
rewire connections in an effort to locate more fruitful partnerships. We evaluate
three rewiring strategies random mixture, random selection, and rewiring
with exploration. The first two were used by Gaston and desJardins [4]. Ran-
dom mixture (RM) is the simplest strategy. At each iteration agents randomly
reinitialize every connection.

When using random selection (RS), an agent first decides whether it should
rewire. It keeps an exponential weighted moving average, V, of the utility gained
in each iteration. The utility agent i expects to gain in the next iteration, t, is

V i
t = V i

t−1 + α(ΔU i
t−1 − V i

t−1).

If V i
t < Θ then the agent chooses to rewire. α ∈ [0, 1] is a learning parameter

and Θ a threshold.
If it chooses to rewire, it still must choose which connections to rewire. This

decision is also based on an exponentially weighted moving average of connection
strengths represented by connection weights. If ΔU ij

t−1 is the change in utility
that agent i could have received by trading with agent j on iteration t, agent i
updates its connection weight W ij

t for the connection to agent j as follows:

W ij
t = W ij

t−1 + β(ΔU ij
t−1 − W ij

t−1),

where β ∈ [0, 1] is a learning parameter. The agent rewires every connection for
which W ij

t < Φ, where Φ is a threshold parameter. New connection weights are
initialized to the average of the current connection weights.

We now introduce a third rewiring strategy to reduce search and exploration
over time: when using the rewiring with exploration or, more concisely, ex-
ploration (RE) strategy, each agent has an initial exploration rate x0 ∈ (0, 1],
and this exploration rate is exponentially reduced at a rate η, i.e., xt = ηxt−1.
The rewiring rate is based on this xt as well as V i

t as described above and the
base expected utility, V i

0 . In the RE strategy the probability of an agent rewiring
a connection is given by

pi
t = xt ∗ max(0, (1 − V i

t

V i
0

)).

The base expected utility is initialized as the average expected utilities for other
agents this agent connects to.

As in the RS strategy, agents keep track of the weight for each connection,
W ij

t . However, while the RS strategy can rewire multiple connections in one

112 J. Porter, K. Chakraborty, and S. Sen

time step, an agent using the RE strategy is more cautious and rewires only the
connection with the lowest weight, and only if the corresponding weight satisfies
the condition W ij

t < Φ.

4 Experimental Results

We now discuss our experimental results. We begin with the results from the
Production and Exchange model used in [4] which is followed by results from the
Enhanced Production and Exchange Model. The parameters used in the model
are as follows: n=300, q=30, τ=0.05, and m was varied from 2 to 10 in steps of 2.
The agent’s learning parameters were set at α = β = θ = φ = 0.1 and both the
initial expected utility, V i

0 , and at the beginning of each run, the initial valuation
of every connection, W ij

0 , were set to 1 following Gaston and desJardins[4]. The
exploration strategy began with an exploration rate of x0 = 0.3 and uses a decay
rate of η = 0.996. All results are based on randomly generated initial network
structures.

4.1 Production and Exchange Model Results

Experiments in this section uses the basic Production and Exchange model used
by [4].

Homogeneous Populations. The first set of experiments were run with ho-
mogeneous agent populations where all agents use the same rewiring strategy.

Non-continuous Production. We note that the basic model precludes production
when trading. For this model we present, in Table 1, the utilities obtained, the
number of trades per agent per round and the number of rewirings per agent
per round for both m = 2 and m = 10.

For small number of connections (m = 2), the RM Strategy provided slightly
higher utility than the other two strategies while the RS and RE strategies
generated very similar utilities. If an RM agent was connected to only poor
trading partners in a round then it is more likely to produce than trade. So long as
it trades often enough, this extra production will yield it a greater overall utility.
The RM agents accrued enough goods and could eventually trade sufficiently to
outperform the other wiring strategies. RS and RE agents quickly found trading
partners more often and hence were more likely to trade. This led to too frequent
trading and so an overall lower utility as trades were often not of very high quality
with some partners.

The increased utility obtained by RM agents, however, comes at a consider-
able cost. These agents rewired all their connections every round. This strategy
incurs enormous overhead in situations where finding a new agent and setting
up trade with them is an expensive process. Preparing to trade with another
agent can be costly if trust relations are important or if contractual terms need
to be negotiated. RS and RE agents only rewired those connections which did
not produce enough utility. We observe that the nature of rewiring patterns are

Learning to Locate Trading Partners in Agent Networks 113

Table 1. Experiments with 2 and 10 connections per agent for a population of 300
agents where agents do not produce when trading

Non-continuous Production & Exchange
m=2 m=10

Utility Trades Rewirings Utility Trades Rewirings
Random Mixture 31070414 0.0175 2 31078338 0.019333 10
Random Selection 30566272 0.0185 .005 31044192 0.0145 0.005167
Exploration 30471054 0.0225 0.000333 31040828 0.018833 0.0005

cyclic for both RS and RE agents. Whenever a connection is rewired, its weight
is reset and it takes a few rounds to relearn that a new connection is not useful.
A connection that was at some point useful tends to remain useful enough to
stay above the cutoff threshold for rewiring.

RS rewires every connection below the threshold all at once while RE spreads
the rewirings out. Thus the RE strategy keeps the rewiring cost from spiking.
The sudden spikes in rewiring cost from the RS strategy could be problematic
in some settings, and particularly when real-time performance guarantees are
required. The two strategies are equally effective in finding good trading partners.

When the agents had more connections, e.g., m = 10, RS and RE agents
were able to consistently select good trading partners and the utility advantage
of the RM agent all but vanished. From Table 1 we notice the distinct advantage
of reduced wiring cost of the other strategies over the RM strategies. To better
understand the effect of the number of connections on the utilities returned by
the different wiring strategies we plot those values in Figure 1. We see that with
more partners, RS and RE strategies return higher utilities that reaches close
to that of the RM agents whose performance is not significantly affected by the
value of m.

Continuous Production. We observed that though the RM agents obtained more
utility, they actually traded less often. While this anomaly could have been
explained by the fact that the RM agents made better trades, we did not find
any evidence to corroborate that. An alternative conjecture that surfaced at this
point was whether it was trading more often that was costing the RS and RE
agents. The intuition was that as agents could either trade or produce, but not
both, trading in a given period would preclude an agent from producing in that
period and this could have an adverse effect on cumulative utility. To further
investigate this conjecture we altered the production and exchange model to
allow agents to produce even when it is trading (we call this the continuous
production environment). In this environment, therefore, agents could produce
every turn, even if they had traded.

We present the corresponding results for homogeneous groups of agents with
2 and 10 connections in Table 2. As to be expected, with continuous production
the utilities of all rewiring strategies improve. More importantly, we observe
that for m = 10 the RE and RS strategies now slightly outperform the RM

114 J. Porter, K. Chakraborty, and S. Sen

Fig. 1. The effect of number of connections per agent, m, on the utilities returned
by the three wiring strategies in homogeneous populations of 300 agents when agents
do not produce when trading (RS - random selection, RM - random mixture, RE -
Exploration)

Table 2. Experiments with 2 and 10 connections per agent for a population of 300
agents where agents produce when trading

Continuous Production & Exchange
m=2 m=10

Utility Trades Rewirings Utility Trades Rewirings
Random Mixture 32990700 0.9975 2 32998468 1 10
Random Selection 32985861 0.998167 0.009667 32998614 1 0.153667
Exploration 32986554 0.999 0.0005 32998481 1 0.002333

strategy. This confirms our conjecture that allowing production while trading,
which also corresponds to realistic scenarios, can make more patient rewiring
strategies more competitive. The effects of number of connections on the agent
utilities for the continuous production environments are presented in Figure 2.
We note that the strategies perform almost at the same level starting at as few
as 4 trading partners.

To illustrate the effects of rewiring strategies on the number of rewirings, we
plot, in Figure 3, the number of rewirings over the course of a run by homoge-
neous groups of RS and RE agents. We do not plot the rewirings of RM agents
as each RM agent rewires each connection every round. Note the periodic, spiked
nature of the plot for RS agents and the gradually decreasing rewiring trends
for the RE agents as discussed in the previous section.

Heterogeneous Populations. In the next set of experiments we experimented
with heterogeneous agent populations in the basic production and exchange
model. We included equal proportions of RM , RS, and RE strategies in a pop-
ulation of 300 agents. Figure 4 shows the effect of varying m on agent utilities

Learning to Locate Trading Partners in Agent Networks 115

Fig. 2. The effect of number of connections per agent, m, on the utilities returned by
the three wiring strategies in homogeneous populations of 300 agents when agents do
produce when trading (RS - random selection, RM - random mixture, RE - Exploration)

Fig. 3. The number of rewirings by homogeneous populations of 300 agents using RM
(random mixture) and RE (Explore) wiring strategies when agents do produce when
trading (m = 10)

when each rewiring strategy is used by 100 agents in the environments where
agents do not produce while trading. The first striking result is that the RM
agents noticeably outperform the RS and RE agents. This is true even for higher
values of m. Interestingly, there is a drop in performance of the RS agents when
m increases from 2. By comparing the plots in Figures 1 and 4 we find that the
RM agents in heterogeneous groups actually perform better than when they did
in a homogeneous group for corresponding values of m. The RS and RE agents,
on the other hand, perform worse in heterogeneous groups. This means that the
RM agents actually benefit at the expense of the RS and RE agents. This can
be explained by the fact that after a good trade RS and RE agents may need

116 J. Porter, K. Chakraborty, and S. Sen

Fig. 4. The effect of number of connections per agent, m, on the utilities returned by
the three wiring strategies in a heterogeneous population with each rewiring strategy
used by 100 agents when agents do not produce when trading (RS - random selection,
RM - random mixture, RE - Exploration)

time to trade again with their partners whereas RM agents can randomly locate
partners that are ready to trade.

We further observe, from plots in Figure 5, that the superior performance of
the RM agents in heterogeneous populations is sustained even in the continuous
production environment and for high values of m. This is particularly interesting
as the RM agents lost their performance advantage in homogeneous groups for
the continuous production environment for high values of m (see Figure 2).

4.2 Enhanced Production and Exchange Model

Experiments in this section uses the Enhanced Production and Exchange Model
that we have introduced in section 2.2. For this model we use Minimum Trade
Volume(S)=3 and Storage Capacity(S̄)=4.

Homogeneous Populations. The first set of experiments was run with homo-
geneous agent populations. In a homogeneous population, there is significant and
interesting effect on the performance of RE, RS and RM strategies when vary-
ing other domain characteristics like continuous and non continuous production,
S , S̄, number of links, etc.

Non-Continuous Production. The effect of number of connections on the agent
utilities for the non-continuous production environment (see Figure 6) shows the
advantage of the judicious exploration scheme. In contrast to the basic produc-
tion and exchange model, the order of performance is RE followed by RS followed
by RM. In this model all agents have to accumulate sufficient stock and accrue
minimum trade volume before trading. Hence the agents are making less trades,

Learning to Locate Trading Partners in Agent Networks 117

Fig. 5. The effect of number of connections per agent, m, on the utilities returned by
the three wiring strategies in a heterogeneous population with each rewiring strategy
used by 100 agents when agents do produce when trading (RS - random selection, RM
- random mixture, RE - Exploration)

which lower their overall utility somewhat, but this decline is more pronounced
for RS and particularly RM agents compared to RE agents. RM suffers more
because, in contrast to the basic model, randomly selected agents are less likely
to be available for trading at each time instant (in the basic model there are
no stock constraints on trading and hence all agents can trade at each turn).
Since RE identifies better trading partners and repeatedly uses the same trad-
ing partners unless required to change, RE outperforms RS and RM . Similarly
RS also out performs RM because it identifies some good partners but not to
the extent RE is able to do. When m was increased from 2 to 10 in steps of 2
the performance of each of the RE, RM and RS strategies improve but their
performance difference is maintained throughout.

Continuous Production. For continuous production model where agents are al-
lowed to produce even when they are trading, there are significant increases in the
performance of RE, RS and RM strategies over the non-continuous production
scenario. This is because the agents could produce every turn, even if they had
traded, and hence gain higher utility from these additional stocks. The relative
performance of the three strategies follow trends similar to the non-continuous
production case. With increase in the value of m the difference between RE and
RS increases. On the other hand the difference between RS and RM reduces
and stabilizes for 6 or more connections.

Effect of change in Minimum Trade Volume and Storage Capacity. We next
observe the effect of change in the Storage Capacity, S̄, and Minimum Trade
Volume, S , on the performance of the rewiring strategies.

We hold S̄ constant at 6 and increase the value of S from 2 to 6 in steps of 1.
This variation significantly affects agent utilities (see Figure 8). With increase in

118 J. Porter, K. Chakraborty, and S. Sen

Fig. 6. Effect of m in homogeneous populations using the enhanced production and
exchange model for non-continuous production (RS - random selection, RM - random
mixture, RE - Exploration)

Fig. 7. Effect of m in homogeneous populations using the enhanced production and
exchange model with continuous production (RS - random selection, RM - random
mixture, RE - Exploration)

value of S , the overall performance of agents gradually decreases. When S=2 and
S̄=6, agents can produce until they find good trading partners to trade with.
With increase in value of S , the trading window computed as the difference
between S̄ and S reduces. If an agent cannot find good trading partners within
the trading window, it loses production opportunity as maximum storage limit
is reached. This results in a corresponding drop in total agent utilities.

We performed additional experiments to compare the effects of different S
and S̄ while keeping the trading window, i.e., S−S̄, the same. We used two
configurations: C1 with S= 3 and S̄=5, and C2 with S= 4 and S̄=6. In both
cases the trading window is 2. We found that going from C1 to C2 increases the

Learning to Locate Trading Partners in Agent Networks 119

Fig. 8. Effect of increasing S while holding S̄ constant in homogeneous populations
using the enhanced production and exchange model with continuous production (RS -
random selection, RM - random mixture, RE - Exploration)

performance advantage of RE over RS and that of RS over RM . Also, with
the increase in the number of connections, m, the performance of RE improves
further compared to that of the performance of RS and RM .

Heterogeneous Populations. In the next set of experiments we experimented
with heterogeneous agent populations in the enhanced production and exchange
model. We placed equal proportions of RM , RS, and RE strategies in a popu-
lation of 300 agents.

Fig. 9. Effect of m in heterogeneous populations using the enhanced production and
exchange model for non-continuous production (RS - random selection, RM - random
mixture, RE - Exploration)

120 J. Porter, K. Chakraborty, and S. Sen

Non-Continuous Production. In this configuration, when m = 2, the utilities
produced by the RE, RS and RM strategies are almost equal (see Figure 9).
But with increase in the value of m, e.g., when m = 4, agents have more trad-
ing partners per iteration and are able to locate desirable partners with less
exploration. For sufficiently high m values, therefore, the utilities of RE agents
increase significantly over RS and RM . When we compare the results of the
heterogeneous population for the corresponding number of trading partners in
the homogeneous population results (see Figure 6), we find that the RE strategy
actually benefits at the expense of RM and RS strategy.

Continuous Production. We also performed experiments with continuous pro-
duction for heterogeneous populations. The trends are similar to the case of
non-continuous production. The primary difference is that the agent utilities are
higher as they have more stock to trade with.

5 Related Work

The problem of finding suitable collaborators is an active area of research in
multiagent systems. One solution is to use referrals [3,7,8,11]. In this solution
agents provide both services and referrals to other agents. Agents which provide
high quality service are likely to be recommended by many agents. Agents must,
however, learn the trustworthiness and expertise of other agents in order to gauge
the value of a recommendation.

Another possible solution to this problem is to use a matchmaker. Agents re-
veal information to a trusted third party who arranges the connections. Assum-
ing agents truthfully reveal to the matchmaker, optimal matches can be found,
computing these optimal matches, however, can be expensive. Also, agents us-
ing a centralized matchmaker are vulnerable to a failure in the matchmaker.
Distributed matchmaking [5] reduces the scalability problem and improves fault
tolerance.

Trustworthy referral and matchmaking services can be more efficient and elim-
inate the need for time-consuming individual learning by members of the agent
network. Such services can also be designed for better scale-up. Nonetheless,
distributed learning based mechanisms, as proposed in this paper, can be more
resilient and robust and better handle local preferences and utility functions
without revealing individual preferences to centralized agencies.

6 Discussions

We investigated the effects of introducing exploration into a rewiring strategy for
locating effective trading partners within networks in production and exchange
economies. Though random rewirings in each round can produce more utility,
it incurs significant cost for changing connections. The proposed decaying ex-
ploration rewiring strategy and a more patient random selection strategy incurs
significantly lesser rewiring costs. Additionally, the exploration strategy provides

Learning to Locate Trading Partners in Agent Networks 121

certain benefits over random selection: it smooths out the rewirings over time
and decreases the number of rewirings required. The performance advantage of
the random rewiring strategy diminishes with higher number of connections per
agent and when agents are allowed to produce while trading. Interestingly, how-
ever, the performance advantage is regained by the random rewiring strategy
when all agent types are present in a heterogeneous society.

We believe that the basic production and exchange economy model is over-
simplified and does not adequately represent real-life scenarios. We therefore
evaluate the performance of the three rewiring strategies in an enhanced pro-
duction and trade model that includes constraints on minimum trade volumes
and storage capacities. In contrast to the basic model, the decaying exploration
mechanism outperforms the more random rewiring strategies in this more realis-
tic environments. This performance advantage also suggests the need for inves-
tigating smarter learning mechanisms for identifying preferred trading partners.

The rewiring with exploration strategy is cautious in the sense that in one
iteration it rewires at most one connection, the connection with the lowest weight
if that falls below a threshold. We can experiment with a stochastic decision
mechanism that chooses rewiring candidates with a probability proportional to
their deviation from the average connection weight.

We plan to study further enhancements to capture more realistic domain
constraints. We would like to further study the effects of referrals in these models
as well as bi-directional, mutually-accepted connections in place of the unilateral
connections used here.

References

1. Airiau, S., Sen, S., Dasgupta, P.: Effect of joining decisions on peer clusters. In: AA-
MAS 2006: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pp. 609–615. ACM Press, New York (2006)

2. Amaral, L., Scala, A., Barthelemy, M., Stanley, H.: Classes of small-world networks.
Proceedings of the National Academy of Sciences 97(21), 11149–11152 (2000)

3. Candale, T., Sen, S.: Effect of referrals on convergence to satisficing distributions.
In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M.
(eds.) Proc. 4th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2005), pp. 347–354. ACM, New York (2005)

4. Gaston, M.E., des Jardins, M.: Agent-organized networks for multi-agent produc-
tion and exchange. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 77–82.
AAAI Press / The MIT Press (2005)

5. Iamnitchi, A., Foster, I.: A peer-to-peer approach to resource location in grid en-
vironments. In: Weglarz, J., Nabrzyski, J., Schopf, J., Stroinski, M. (eds.) Grid
Resource Managenment. Kluwer Publishing, Dordrecht (2003)

6. Lederer-Antonucci, Y.L., Greenberg, P.S., zur Muehlen, M., Ralph, G.: Establish-
ing trust in a business-to-business collaboration: Results from an international
simulation. In: Proc. of the IRMA 2003 Conference, pp. 922–924 (2003)

7. Sen, S., Sajja, N.: Robustness of reputation-based trust: Boolean case. In: Pro-
ceedings of the First Intenational Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 288–293. ACM Press, New York (2002)

122 J. Porter, K. Chakraborty, and S. Sen

8. Singh, M.P., Yu, B., Venkatraman, M.: Community-based service location. Com-
mun. ACM 44(4), 49–54 (2001)

9. Wilhite, A.: Bilateral trade and ‘small-world’ networks. Computational Eco-
nomics 18(1), 49–64 (2001)

10. Wilhite, A.: Self-organizing production and exchange. Computational Eco-
nomics 21(1-2), 107–123 (2003)

11. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustwor-
thy service selection. IEEE Transactions on Systems, Man and Cybernetics- Part
A: Systems and humans 35(3) (May 2005)

Coordinating Learning Agents for Multiple
Resource Job Scheduling

Kagan Tumer1 and John Lawson2

1 Oregon State University
Corvallis, OR 97330

kagan.tumer@oregonstate.edu
2 NASA Ames Research Center

Mail Stop 269-4
Moffet Field, CA 94035

lawson@email.arc.nasa.gov

Abstract. Efficient management of large-scale job processing systems
is a challenging problem, particularly in the presence of multi-users and
dynamically changing system conditions. In addition, many real world
systems require the processing of multi-resource jobs where centralized
coordination may be difficult. Most conventional algorithms, such as load
balancing, are designed for centralized, single resource problems. Indeed,
in such a case, load balancing is known to provide optimal solutions. How-
ever, load balancing is not well suited to the more general, distributed,
multi-resource allocation problem across heterogeneous networks that is
frequently encountered in real world applications. Approaches based on
heuristics can be designed to handle multi-resource allocation, but such
approaches do not necessarily attempt to optimize directly a system-
wide objective function. In this paper, we investigate a multiagent co-
ordination approach to distributed, multi-resource job scheduling across
heterogeneous servers. In this approach, agents at servers make local
decisions to optimize an agent specific objective. The agent objectives
though, are derived so that they are aligned with the overall efficiency of
the system. We demonstrate that such a system outperforms (sometimes
dramatically) more crudely constructed multiagent systems as well as a
multi-resource version of load balancing.

1 Introduction

With the ever increasing connectivity between servers, networked or grid com-
puting is becoming a natural alternative to either dedicated homogeneous server
grids or supercomputers for processing large numbers of jobs with varying pri-
orities and resource requirements. However, managing a large, distributed data
and job processing system capable of handling multiple resource requirements
is a challenging problem, in that many difficulties need to be simultaneously
addressed. In the presence of heterogeneous servers (e.g., processor speed, mem-
ory), jobs with multiple resource requirements (e.g., data access, memory) dy-
namic environments (e.g., job arrivals do not follow a static distribution) and the

M.E. Taylor and K. Tuyls (Eds.): ALA 2009, LNAI 5924, pp. 123–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 K. Tumer and J. Lawson

presence of disturbances in the system (e.g., failing servers or links) most algo-
rithms designed for a single resource allocation algorithm either do not apply or
fail to provide good solutions.

Indeed, though the single-resource case has been extensively, studied [36], the
multi-resource job scheduling across a network of heterogeneous servers has re-
ceived much less attention [29].1 In addition, because of the natural distributed
nature of such system, approaches based on centralized control are often inap-
propriate. Such methods, provide rigid, inefficient solutions, and in most cases
have communication and synchronization requirements that offset any of the
benefits of using a grid based system.

Load balancing is a centralized algorithm that has been successfully applied
to single resource scheduling problems. In fact, for single resource optimization
problems, there are theoretical results showing that load balancing does pro-
vide optimal solutions [36]. Generalizing load balancing to the multi-resource
case, though, is far from straightforward. In its simplest form, multi-resource
load balancing aims at ensuring that the level of activity on each server stays
the same, i.e., the load on the system is balanced across all the servers. This
approach to load balancing assumes that the load being distributed across the
servers is a de-facto desirable solution, i.e. that it optimizes some pre-specified
global objective. In the multi-resource case, this assumption is no longer valid,
and one needs to determine which resource (or which combination of resources)
needs to be “balanced”. In fact, different extensions of load balancing to the
multi-resource case leads to the optimization of different functions [29], and thus
there are no guarantees that balancing a particular combination of the resources
will lead to the optimization of the global objective. A further limiting feature
of load balancing is that it requires centralized control, and though heuristics
exist to overcome limitation for the single-resource case, the performance of such
algorithms suffers greatly in the multi-resource case [29].

Multiagent learning methods are ideally suited to handle the challenges pre-
sented by such problems. In particular, agents based on reinforcement learn-
ing [5,7,25,37,40] offer adaptive and flexible solutions that sidestep the potential
mismatch between balancing a “load” across the network and optimizing the
global objective function, and have been successfully applied to data routing
problems [5,21,27,32,38,45]. Indeed, the agent based approach we propose aims
to optimize the global objective without directly aiming to balance the load
across the servers. It is entirely possible that good solutions to a multi-resource
job scheduling across a heterogeneous grid problem reside in states where some
servers are idle while others are operating at full capacity and have full queues.
As long as that system behavior is considered good in terms of the global objec-
tive, no consideration should be made to “split”, or balance the load.

1 Throughout this paper, we refer to servers with different resource configurations as
“heterogeneous” servers. We assume that there are no compatibility issues related
to compilation of the jobs, and that any job can be executed at any server, assuming
the server has the necessary resources. In some articles [29], this type of network is
referred to as a “near-homogeneous” computational grid.

Coordinating Learning Agents for Multiple Resource Job Scheduling 125

Because of its direct aim at optimizing an objective function, agent-based
methods address the limitations of load balancing. As such methods based
on creating a currency [34], bio-inspired swarms [14,49], mechanism design [9]
and coordination [4] have been proposed, as have other innovative methods
[11,18,22,28,19,15]. However, they introduce a new difficulty: how to ensure that
the actions of multiple agents lead to a good global solution. To address this
coordination issue, we need to ensure that the objective function of each agent
is designed in a manner that promotes two properties. First, an action that
improves the agent’s objective function should also improve the global objec-
tive. Second an agent needs to clearly see the impact of its actions on its own
objective function [1,2,3,47]. An agent based solution to grid computing where
the agent objectives are set according to these two criteria offers the best com-
promise between a rigid centralized solution and a distributed solution where
the interaction among the agents can have deleterious side effects on system
behavior.

In this paper, we present an agent-based solution to the multi-resource op-
timization problem in heterogeneous network that outperforms both the multi-
resource version of load balancing (by up to four times), and a “naive” multiagent
system in which all the agents attempt to directly optimize the system objec-
tive. The key contribution of this paper is in providing local objective functions
for the agents (components of a server) in a manner that allows them to adapt
locally, while ensuring that their achieving their local objectives improves global
performance. In Section 2 we present the system model and discuss the system
dynamics of the multi-resource job scheduling across a heterogeneous grid. In
Section 3, we derive the agent based algorithm and present a multi-resource load
balancing algorithm, along with a simple performance bound. In Section 5, we
show simulation results where the multiagent system approach significantly out-
performs multi-resource load balancing. Finally, in Section 6 we discuss these
results and highlight future directions of research.

2 Multi-resource Optimization

With demand for computing resources increasing as both the number of users
and the complexity of the applications increase, the ability of a system to effi-
ciently schedule and process jobs is becoming increasingly important. As such,
heterogeneous computational grids where jobs can enter the network from any
point and be processed at any point are becoming increasingly popular. Below,
we describe a model for such a computational grid and show how an agent-based
approach can be implemented.

2.1 System Model

The computational grid model we use consists of a network of N servers each
with K resources (r1, ...rk). Each server has a specified capacity for each re-
source assigned to be an integer ranging from [1, M]. Thus, M measures the

126 K. Tumer and J. Lawson

heterogeneity of the resources. For example, the first resource r1 can correspond
to the processing speed of the server. In our configurations, on average, each
server has 2-4 neighbors with which it has a direct connection.

Each job entering the system is also specified by K resource requirements
ranging from [1, M]. For example, the first job resource r1 is an indication of the
number of cycles the job requires to be processed. In this formulation, for each
resource ri, i > 1, the server resource capacity must be equal or greater than
the job’s requirement in order for a job to run on a particular server. Intuitively,
this corresponds to the requirement that a server must have enough memory to
accommodate a given job.

2.2 System Dynamics

In this model, each server has its own wait queue for jobs. For simplicity, we allow
only one job to run on a server at a time; the other jobs remain in the queue until
the processor becomes available. Jobs enter the local queues either externally (to
the system) or are shipped from other servers. Jobs entering externally are sent
to the back of the queue while jobs received from other queues go to the front.
There are two reasons why shipped jobs go to the front: First, it provides a
measure of “fairness” as those jobs already had to wait in the queue of the
server in which they were originally placed. Second it provides efficiency, as it
forces the system to deal with “difficult” jobs (either run them or ship them if
they could not be run). This approach prevents these jobs from being endlessly
shuffled. At each server, the first job in the queue is activated if the processor
is available, and the resource requirements are met. If the processor is available,
but the server does not have the resource capacity to run the job, the server
remains idle until the problem job is sent to another server.

The dynamics of our simulations thus proceed as follows. At each time step
τ , a random number of new jobs are added to the wait queue of each server.
In particular, each server has a probability of receiving a new job at each time.
If a given processor is idle, and the first job in the queue meets the resource
requirements, that job is activated. If not, the server remains idle. In addition,
for each τ , the server makes a decision about the first job in the queue, deciding
whether to keep the job or send it to a neighboring server. These decisions are
made based on the agents’ probability vectors which in turn are set using a basic
learning algorithm (discussed in more detail in Section 3.3).

Thus, there are two main sources of inefficiency in the system. The first are
the bottlenecks created by jobs whose requirements exceed the capacity of their
server. When such a job get to the front of the queue, the server remains idle
until the job is shipped to a neighbor. The second source of inefficiency arises
from mismatches between a processor’s speed and a job’s cycle requirement.

3 Multiagent Architecture

There are many possible ways to map the multi-job scheduling problem onto a
multiagent system, including simply assigning an agent to each server and letting

Coordinating Learning Agents for Multiple Resource Job Scheduling 127

those agents’ actions be determining where to send a particular job. Instead,
in this work, we explore the mapping where there are multiple agents at each
server. This results in a system with more agents with a relatively easier learning
problem, rather than fewer agents with a more difficult learning problem. In fact,
this choice shifts the burden from a pure learning problem where the details of
the agents’ algorithms are the key to the coordination problem to how the agents
interact with one another. In particular, to each agent, we assign a vector p whose
components give the probability of routing a job to its various neighbors. In this
scenario, the agents are given the task of setting their own probability vector.
The design question consists of determining what objective function each agent
should attempt to optimize so that they set the probability vectors that also
optimize the overall job processing efficiency of the full system.

The resource specifications of a job determined which agent at the server is
responsible for the shipping decision. In this work, we focus on the job parti-
tioning where for jobs with K resources, 2K agents can be assigned per server
where agent 1 deals with jobs such that r1 ∈ [1, M/2], ..., rk ∈ [1, M/2], agent 2
deals with jobs r1 ∈ [M/2 + 1, M], r2 ∈ [1, M/2] , · · · , rk ∈ [1, M/2], etc. This
approach can be directly applied in systems with a small number of resources
(e.g., three for processing speed, memory requirement and disk access), and this
is the method we use in this paper. If the number of resources to manage be-
comes large, then resources can be clustered together as appropriate. This can
be achieved either by direct design or by having agents form teams based on the
correlations of those resources.

For the dynamics governing the system evolution, we will distinguish between
two time scales : τ gives the time steps at which the system operates (e.g., jobs
enter the system, move between queues, and are processed) whereas t gives the
time steps at which the agents operate (e.g., observe their objectives, change
their actions). This distinction is important because it is the only way by which
an agent can get a “signal” from the system that reflects the impact of its
decision, i.e, the system has to settle down before an objective can be matched
to an action. Therefore, an agent i changes its probability vector at each time
t. Within a “single agent time step” t though, many jobs enter the system, are
executed, routed etc. each of which occurs at time interval τ (t >> τ).

3.1 State Space and Global Objective

Let us define the state of each agent i at time t as by

zi,t = {(0, w0, I
i,t
0 , ei,t

0), · · · , (j, wj , I
i,t
j , ei,t

j), · · ·} (1)

where j is a job number identifying a job, wj is the weight of the jth job which
gives the importance of that job in the system, Ii,t

j is the “job indicator” function
and is equal to 1 if job j was handled (received, shipped or executed) by agent i
at time step t, and 0 otherwise, and ei,t

j determines whether job j was executed
at agent i at time step t.

Now, the state of the full system, zt at time t, is given by:

zt = {(0, w0, 1, et
0), · · · , (j, wj , 1, et

j), · · ·} (2)

128 K. Tumer and J. Lawson

where et
j determines whether job j was executed at time step t. Note that the job

indicator function It
j is always set at 1 for the full system, since by definition,

if the job is in the system, it must have been handled by at least one agent.
Nevertheless, we keep the notation, both for ensuring consistency between the
state vector of an agent and that of the full system, and because its presence in
the global objective will facilitate the derivation of the agents’ objectives.

Based on this, the global objective at time t is given by:

G(zt) =

∑
j wj .e

t
j∑

j wj
(3)

Intuitively, G gives the weighted ratio of all the jobs that were processed at time
step t to all jobs that entered the system at that time step (recall that “time
step t” is a window of time, not a single time step from the point of view of the
jobs that operate at interval τ << t.)

3.2 Agent Objectives

In this work we investigated three different types of agent objectives. Each was
used exactly in the same manner with the same learning algorithms. Hence, the
only difference in system performance is based on the objective the agents were
trying to optimize.

– The first agent objective was the global objective given in Equation 3. This
objective allowed each agent to directly attempt to optimize the full system
objective directly. By definition, this objective guarantees that if all agents
succeed in optimizing their own objectives, the system objective will also
be optimized. However, because in large systems each agents objective will
depend on the actions of other agents, in practice this objective function
only provides good solutions for very small systems [2,13,44].

– The second agent objective was the difference objective discussed which aims
to isolate the impact of an agent on the system [2,3,43,44,47]. This is achieved
by computing the difference between the system objective and the system
objective that would result if agent i were removed from the system. An
agent can be “removed” from the system by setting Ii,t

j to 0 for all jobs j
for which it was set to 1 at time step t. This results in the state z−i,t, which
is used to obtain the difference objective (Di) for agent i:

Di(zt) = G(zt) − G(z−i,t)

=

∑
j wj .e

t
j∑

j wj
−

∑
j wj .e

t
j.Ī

i,t
j∑

j wj

=

∑
j wj .e

t
j.I

i,t
j∑

j wj
(4)

where Īi,t
j is the complement of Ii,t

j and equals 1 when Ii,t
j equals 0 and 0

when Ii,t
j equals 1. Intuitively, Di represents the weighted fraction of jobs

that were handled by agent i to the jobs that entered the system.

Coordinating Learning Agents for Multiple Resource Job Scheduling 129

– The third agent objective was the “Selfish” objective, where the agents were
only concerned with processing jobs that were assigned to them. The selfish
objective (S) for agent i is given by:

Si(zt) = G(zi,t)

=

∑
j wj .e

t
j .I

i,t
j∑

j wj .I
i,t
j

(5)

Intuitively, S gives the ratio of the jobs processed by the system at time
step t, to the total jobs that passed through that agent, hence the indicator
function in the denominator.

Notice that both D and S are specifically tuned to the performance of a par-
ticular agent, their form is significantly different. D attempts to measure the
impact of agent i on the system, whereas S attempts to measure the efficiency
of agent i directly, without attempting to measures its effect on the full system.
Systems using both D and S are highly sensitive to the actions of the agent, and
D is much more aligned with the system objective than S is. Similarly, though
both G and D are aligned with the system objective (tautologically for G), an
agent using D will have an easier time seeing the impact of their actions on their
objective functions. Note that regardless of which objective function the agents
use, the system performance is always measured by the global objective given in
Eq 3.

3.3 Agent Learning

As discussed above, the agent learning takes place at a higher time scale than
the system operates. For a given time step t, each agent follows a fixed policy
(e.g., the probability vectors (pt) that determine how the jobs will be sent out
are fixed). During that time step t, the system operates at τ intervals (for these
experiments t = 400τ). At the end of time step t, the objective functions values
(V (pt)) are calculated and recorded in the agents’ training sets. In order to be
able to compare the performance individual probability vectors, we clear the
system (i.e. the queues) after each t. During the initial phase, 0 ≤ t ≤ 100,
the probability vectors are set at random. After this “data collection” phase,
t > 100, the agents use a basic learning algorithm to set their probability vectors
as described below.

The learning algorithm first generates R candidate probability vectors (R = 10
here) with a Gaussian distribution about the current probability vector (pt). Ex-
pected objective function values (V̂ (pt)) are estimated by performing a weighted
average over objective function values from the agents’ training set. The objective
values are weighted by both how long ago the value was recorded (data aging)
and the distance between the candidate and the previous probability vector:

V̂ (pt) =

∑
q Vq(pq) e−αt(t−q) e−αp||pt−pq||∑

q e−αt(t−q) e−αp||pt−pq|| . (6)

130 K. Tumer and J. Lawson

Here, t is the current learning period, q is the period which resulted in objective
value Vq, pt is the current probability vector, pq is the vector that resulted in
objective value Vq , and αp and αt are system parameters that tradeoff the impact
of how recent an objective value was (αt) and how close that probability vector
was to the current one (αp). Depending on the agent objective chosen, Vq is
given by G, Di, or Si as discussed in Section 3.2. The new probability vector is
then chosen by sampling a Boltzmann probability distribution over the estimated
values V̂ (pt). This process, summarized in Figure 1, allows for good exploration
of the probability space, while ensuring that the most recent probability vectors
have more relevance in that they are more likely to provide solutions tuned to
the current conditions.

For each agent i:

For 0 ≤ t ≤ 100

1. Generate random a probability vector, pt

2. Use pt for τ steps
3. Compute objective function value, V (pt), resulting from pt

4. Store the pair {pt ; V (pt)} in the agent’s training set
5. Clear queues
6. t ← t + 1

For 100 < t ≤ Tfinal

1. Generate R candidate probability vectors pr
t by perturbing pt−1

2. Compute estimated objective values V̂ (pr
t) using Equation 6

3. Select a new probability vector, pt using a Boltzmann Distribution over
V̂ (pr

t)
4. Use pt for τ steps
5. Compute objective function value, V (pt), resulting from pt

6. Store the pair {pt ; V (pt)} in the agent’s training set
7. Clear queues
8. t ← t + 1

Fig. 1. Agent learning algorithm. Agents take random actions for 100 time steps. After
that each agent perturbs their current probability vector, estimates the objective func-
tions that may result from those new probability vectors and selects one based on the
objective values (probability vectors leading to high objective values are more likely to
be selected).

4 Multi-resource Load Balancing Algorithm

In addition to the agent-based methods introduced in this article, we also inves-
tigated the feasibility of a distributed, deterministic, multi-resource load balanc-
ing algorithm. For each server, we calculated a load for each of the k resources,

Coordinating Learning Agents for Multiple Resource Job Scheduling 131

lk = ΣN
n (sn

k/ck) where sn
k is the need of resource k of job n and ck is the the

capacity of resource k of the server. Thus, the resource load has been normalized
to the resource capacity of the server. We assign a load to a particular server i
as the average of its individual resource loads Li = Avg(lk). We, then, calculate
the system load as the average over the servers Lavg = Avg(Li).

The load balancing algorithm proceeds as follows. At each time step τ , each
server calculates its own load and compares it with the global load Lavg. If the
server’s load is greater than the global, modulo some tolerance, the server looks to
get rid of its highest load job. Each server has access to global information about
the loads on all the other servers. Using this information, the server determines
which of the other servers has the lowest load. It then ships its high load job to
the low load server via the one of its neighbors that lies on the shortest path
between the sending and the receiving servers.

5 Experimental Results

We ran extensive simulations that tested the performance of the algorithms in
a variety of settings. All the results reported here were on networks of N = 50
servers having K = 2 and K = 4 resources. The 50 servers had 4 or 16 agents
respectively, making for 200 to 800 total agents in the system. The servers were
connected into a network having a ring configuration with random connections
added in the spirit of “small world” networks [35,46]. In general, each server had
2-4 neighbors with which it had a direct connection.

We examined the performance for different number of resources K, job arrival
probabilities r and different resource ranges M . We tabulated the performance
for the multiagent approach with learning agents, a load balancing algorithm
generalized for the multi-resource case, and a random shipping algorithm RAND.
In the RAND algorithm, the proportion vectors for shipping/holding the first
job in the queue was set randomly. This is the situation when the agents are in
the training phase of their learning algorithm. For scenarios involving learning
agents, we performed experiments using agent objectives based on global (G),
selfish (S), and the difference (D) objectives.

The experiments can be grouped into three categories:2

– Low Difficulty: There are two resources, each having two types and the jobs
enter the system at a slow pace. All three key parameters have “low” settings:
(K = 2, r = .2, M = 2).

– Medium Difficulty: One of the parameters is set to a “high” setting. For ex-
ample, there are four resources, or there are eight settings for each resource,

2 The case where all three parameters are set to “high” results in an impossible prob-
lem in that the jobs entering the system have a high probability of not running on
most of the machines. Because jobs are coming into the system at a high rate, the
system never has a chance to move those jobs before they “clog” the system, leading
to a situation where jobs are entering the system faster than the system can process
them. This situation leads to poor performance by all the algorithms as the problem
is in essence unsolvable.

132 K. Tumer and J. Lawson

or jobs have a high arrival rate. This covers the following parameter combi-
nations: (K = 4, r = .2, M = 2) ; (K = 2, r = .8, M = 2) ; (K = 2, r = .2,
M = 8) .

– High Difficulty: Two of the parameters are set to “high” values. For example,
there may be both four resources and eight types for each, or four resources
and a high rate of job arrival). This covers the following parameter combi-
nations: (K = 4, r = .2, M = 8) ; (K = 4, r = .8, M = 2) ; (K = 2, r = .8,
M = 8) .

In the following subsections, we present the results of all the algorithms for
the three cases outlined above. The results show the algorithm performance
at the end of the runs (t=400) and are averaged over 50 different randomly
generated network configurations. The best performance in each case is noted in
bold when the differences in the mean (σ√

N
for N runs with standard deviation

σ) are statistically significant.

5.1 Low Difficulty Parameters

Table 1 shows the results (and the standard deviations σ) for the setting where
the system is not overloaded and where there are only two resource types. Load
balancing performs best in this setting. This is an interesting, though expected
result. All the algorithms perform well in this case and there are two reasons
for the success of load balancing. First, this is a situation that is closest to the
single resource allocation problem where load balancing excels. Second, because
the problem is easy, there is no need for the agent based algorithms to explore
alternative solutions. However, because of the nature of such algorithms, they
occasionally try a suboptimal solution to determine whether a better alternative
exists. This “exploration” is a desirable trait. In this case however, because the
“greedy” solution is good, any exploration causes a minor drop in performance.
Figure 2 shows the convergence characteristics of the agent based algorithms,
demonstrating the quick learning capability of agent using S and D objectives.

Table 1. System Processing Efficiency for Easy Setting

K r M Algorithm Global Objective σ

RAND 0.9318 -
G 0.947 0.0052

2 .2 2 S 0.976 0.0039
D 0.979 0.0023
LB 0.997 0.00083

5.2 Medium Difficulty Parameters

Table 2 shows the results (and the standard deviations σ) for moderately difficult
settings. All three cases have one form of difficulty (too high an arrival rate, too

Coordinating Learning Agents for Multiple Resource Job Scheduling 133

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 50 100 150 200 250 300 350 400

G
lo

ba
l O

bj
ec

tiv
e

t

G
S
D

LB

Fig. 2. Simulations results for 50 servers with 4 agents each with parameter values:
(K=2,r=0.2,M=2). Each t represents a “run” of 400 τ time steps with each agent
having a fixed probability vector p during the run. At the end of each run, objectives
are calculated, the queues cleared, and the agents reset/modify their p based on their
learning algorithms. Results are averages over 50 different systems configurations, and
error bars (differences in the mean) are less than .01 in all figures.

many resources or too many types of jobs). In this setting, the agent based
algorithms significantly outperform load balancing. The performance of load
balancing degrades markedly for high K, and especially for high M . In fact, even
setting the probability vectors at random (RAND) outperforms load balancing
for M = 8.

This can be understood by the fact that the agent based approaches make
decisions about only the first job in the queue. But it is this first job that can
create serious bottlenecks in the system; if the first job needs more resources
than the server can provide, the job cannot run and remains in queue, blocking
other jobs from being processed as well. Load balancing, on the other hand,
is attempting only to equalize the load across on the entire queue and does
nothing to deal with such potential bottlenecks. For large M , the potential for
bottlenecks increases markedly. Random probability vectors have the advantage
over load balancing that they operate directly on the location where a bottleneck
can occur. In cases for which there are many resources but low arrival rates (r =
0.2, M = 8) this provides an advantage for the random probability algorithm,
whereas for cases with few resources buy high arrival rates, it does not.

More interestingly, in this setting, both S and D outperform G, showing the
need for providing local and agent specific objectives. This result is explained
by the need of the agents to extract the signal from the noise in order to learn

134 K. Tumer and J. Lawson

Table 2. System Processing Efficiency for Moderate Settings

K r M Algorithm Global Objective σ

RAND 0.644 -
G 0.670 0.012

2 .2 8 S 0.793 0.011
D 0.793 0.012
LB 0.225 0.013
RAND 0.626 -
G 0.629 0.0095

2 .8 2 S 0.654 0.010
D 0.691 0.0088
LB 0.645 0.014
RAND 0.530 -
G 0.549 0.012

4 .2 2 S 0.749 0.011
D 0.687 0.0098
LB 0.474 0.020

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 50 100 150 200 250 300 350 400

G
lo

ba
l O

bj
ec

tiv
e

t

G
S
D

LB

Fig. 3. Simulations results for 50 servers with 4 agents each with parameter values
(r=0.8,M=2). For this medium difficulty problem, agents using D and G as objectives
outperform load balancing.

the right actions. The close dependence of these agent specific objectives to the
actions of the agents allows these algorithms to learn in settings where agents
using G do not. Figure 3 shows the convergence characteristics of the agent based
algorithms, demonstrating that the rapid learning capability of S and D. In this

Coordinating Learning Agents for Multiple Resource Job Scheduling 135

setting, both S and D outperform load balancing shortly after their learners are
turned on.

5.3 High Difficulty Parameters

Table 3 shows the results (and the standard deviations σ) for the difficult prob-
lem settings. All three cases have two forms of difficulty (e.g., high arrival rates
and too many job types). In this setting, not only do agent based algorithms sig-
nificantly outperform load balancing, but the D agent objective function starts
to outperform the other objective functions. These results also show the impor-
tance of setting the agents’ objectives to be functions that are both aligned with
the system objective and impacted by the agents’ actions. The team game (G)
objective has poor learning properties for the individual agents since it includes
information from the full system. The selfish (S) objective is not aligned with
the global objective, and therefore leads to the agent learning the wrong actions.
The difference objective consistently outperforms G and S for the difficult pa-
rameter settings, because it depends more closely on the action of the agents
and is aligned with the global objective.

Table 3. System Processing Efficiency for Difficult Setting

K r M Algorithm Global Objective σ

RAND 0.194 -
G 0.198 0.0077

2 .8 8 S 0.241 0.0093
D 0.249 0.013
LB 0.0974 0.0045
RAND 0.130 -
G 0.137 0.0050

4 .2 8 S 0.178 0.0072
D 0.238 0.014
LB 0.0092 0.0022
RAND 0.176 -
G 0.189 0.0069

4 .8 2 S 0.195 0.0080
D 0.195 0.0073
LB 0.139 0.0099

Note that for K = 2, r = .8, and M = 8, the differences in the mean are
significant since the results are based on 50 runs and in this case σ√

N
= 0.0018,

well below the difference between the performance of S and D. Figure 4 provide
the convergence results for that setting, showing that because they depend on
the actions of the agents more closely S and D outperform G and that because
it is aligned with the system objective, D outperforms S.

136 K. Tumer and J. Lawson

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 50 100 150 200 250 300 350 400

G
lo

ba
l O

bj
ec

tiv
e

t

G
S
D

LB

Fig. 4. Simulations results for 50 servers with 4 agents each with parameter values
(r=0.8,M=8). For this hard problem, load balancing performs very poorly, and agents
using tailored objectives S and D perform significantly better than agents using G.

6 Discussion

In this work we investigated how agent based algorithms can learn to effectively
solve a multi-resource optimization problem involving networks of heterogeneous
servers. Conventional approaches to this problems (e.g., as load balancing) work
well when there is instantaneous, centralized control. For all but very few applica-
tions, this is an unreasonable assumption on the system’s capabilities. Practical,
heuristics based approaches on the other hand provide good solutions for the
resource problems, but often break down in the more general, multi-resource
optimization case.

The agent based solution we propose is based on assigning agents to each
server whose actions are to determine whether a job requiring specific resources
should be processed at that server or shipped to another server, and if so, to
which other server. After a job is shipped, a new agent (residing at the new
server) becomes responsible for that job. These decisions are based on agent
objective functions (i.e., local goals) which are constructed to be aligned with
the global objective and be directly impacted by the actions of an agent.

The results demonstrate that for particularly easy configurations, the agent-
based methods do not outperform (and in fact underperform by a slight margin)
a multi-resource version of load balancing. For moderately difficult problems,
the agent based approaches start to outperform load balancing. In those cases, a
multiagent system in which all the agents attempt to optimize the same global
objective function only provide marginal improvements over conventional load

Coordinating Learning Agents for Multiple Resource Job Scheduling 137

balancing. However, those marginal improvements are obtained without requir-
ing a centralized controller (only requirement is for the global objective to be
broadcast at regular intervals). Finally, for difficult problems, agents using the
difference objective (D) outperform both team games (G), selfish agents (S) and
load balancing (up to four times).

In this study we explored only cases where the number of resources is small
(K=2 and K=4)allowing for an agent to be responsible for each permutation of
resources (split into high-low for each resource). When the number of resources
rises to preclude each agent being responsible for a particular permutation, job
“types” need to be selected. This process can either be done using prior knowl-
edge or by using correlations among the jobs. The key factor in achieving good
results is in having both an appropriate number of agents in the system and in
ensuring each agent has an action space that is appropriate for the task. Ex-
ploring how agents can be grouped or “teamed” at each server to provide good
solutions is an intriguing avenue for future research.

Acknowledgments

The authors would like to thank David Wolpert for helpful discussions.

References

1. Agogino, A.K., Tumer, K.: Handling communication restrictions and team forma-
tion in congestion games. Journal of Autonomous Agents and Multi Agent Sys-
tems 13(1), 97–115 (2006)

2. Agogino, A.K., Tumer, K.: Analyzing and visualizing multiagent rewards in dy-
namic and stochastic environments. Journal of Autonomous Agents and Multi
Agent Systems 17(2), 320–338 (2008)

3. Agogino, A.K., Tumer, K.: Efficient evaluation functions for evolving coordination.
Evolutionary Computation 16(2), 257–288 (2008)

4. Akkiraju, R., Keskinocak, P., Murthy, S., Wu, F.: An agent-based approach for
scheduling multiple machines. Applied Intelligence 14(2), 867–872 (2005)

5. Boyan, J.A., Littman, M.: Packet routing in dynamically changing networks: A
reinforcement learning approach. In: Advances in Neural Information Processing
Systems, vol. 6, pp. 671–678. Morgan Kaufmann, San Francisco (1994)

6. Bredin, J., Maheswaran, R.T., Imer, C., Başar, T., Kotz, D., Rus, D.: Computa-
tional markets to regulate mobile-agent systems. Autonomous Agents and Multi-
Agent Systems 6(3), 235–263 (2003)

7. Bredin, J., Maheswaran, R.T., Imer, C., Basar, T., Kotz, D., Rus, D.: A game-
theoretic formulation of multi-agent resource allocation. In: Proceedings of the
fourth International Conference of Autonomous Agents, pp. 349–356 (2000)

8. Buhler, P., Vidal, J.M.: Towards adaptive workflow enactment using multiagent
systems. Information Technology and Management Journal 6(1), 61–87 (2005)

9. Byde, A.: A comparison between mechanisms for sequential compute resource auc-
tions. In: AAMAS 2006: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pp. 1199–1201. ACM Press, New York
(2006)

138 K. Tumer and J. Lawson

10. Camille, B., Pierrick, P., Chaib-draa, B.: R-FRTDP: a real-time DP algorithm with
tight bounds for a stochastic resource allocation problem. In: Proceedings of the
20th Canadian Conference on Artificial Intelligence, Montreal, Canada (May 2007)

11. Cheriton, D.R., Harty, K.: A market approach to operating system memory alloca-
tion. In: Clearwater, S.E. (ed.) Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific, Singapore (1995)

12. Claus, C., Boutilier, C.: The dynamics of reinforcement learning cooperative mul-
tiagent systems. In: Proceedings of the Fifteenth National Conference on Artificial
Intelligence, Madison, WI, June 1998, pp. 746–752 (1998)

13. Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement
learning. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in
Neural Information Processing Systems, vol. 8, pp. 1017–1023. MIT Press, Cam-
bridge (1996)

14. de Oliveira, D., Ferreira Jr., P.R., Bazzan, A.L.C.: A swarm based approach for
task allocation in dynamic agents organizations. In: AAMAS 2004: Proceedings
of the Third International Joint Conference on Autonomous Agents and Multia-
gent Systems, Washington, DC, USA, pp. 1252–1253. IEEE Computer Society, Los
Alamitos (2004)

15. Dorigo, M., Gambardella, L.M.: Ant colony systems: A cooperative learning ap-
proach to the travelling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

16. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure, 2nd edn. Morgan Kaufmann, San Francisco (2004)

17. Georgousopoulos, C., Rana, O.F.: Choosing a load balancing scheme for agent-
based digital libraries. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Don-
garra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 51–62. Springer, Hei-
delberg (2006)

18. Ghosh, B., Muthukrishnan, S.: Dynamic load balancing in parallel and distributed
networks by random matchings (extended abstract). In: SPAA 1994: Proceedings
of the sixth annual ACM symposium on Parallel algorithms and architectures, pp.
226–235. ACM Press, New York (1994)

19. Globus, A., Crawford, J., Lohn, J., Pryor, A.: Scheduling earth observing satel-
lites with evolutionary algorithms. In: Proc. of International Conference on Space
Mission Challenges for Information Technology, SMC-IT (2003)

20. Greenwald, A., Friedman, E., Shenker, S.: Learning in network contexts: Experi-
mental results from simulations. Journal of Games and Economic Behavior: Special
Issue on Economics and Artificial Intelligence 35(1/2), 80–123 (2001)

21. Heusse, M., Snyers, D., Guerin, S., Kuntz, P.: Adaptive agent-driven routing and
load balancing in communication networks. Advances in Complex Systems 1, 237–
254 (1998)

22. Hsiao, M.-T.T., Lazar, A.A.: Optimal flow control of multi-class queueing networks
with decentralized information. In: IEEE Infocom 1989, pp. 652–661 (1987)

23. Huai, J., Wo, T., Liu, Y.: Resource management and organization in crown grid.
In: InfoScale 2006: Proceedings of the 1st international conference on Scalable
information systems, p. 10. ACM Press, New York (2006)

24. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275, 51–54 (1997)

25. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

Coordinating Learning Agents for Multiple Resource Job Scheduling 139

26. Kotz, D., Nieuwejaar, N.: Dynamic file-access characteristics of a production paral-
lel scientific workload. In: Proceedings of Supercomputing 1994, Washington, DC,
pp. 640–649. IEEE Computer Society Press, Los Alamitos (1994)

27. Kumar, S., Miikkulainen, R.: Dual reinforcement Q-routing: An on-line adaptive
routing algorithm. In: Artificial Neural Networks in Engineering, vol. 7, pp. 231–
238. ASME Press (1997)

28. Kurose, J.F., Simha, R.: A microeconomic approach to optimail resource allocation
in distributed computer systems. IEEE Transactions on Computers 35(5), 705–717
(1989)

29. Leinberger, W., Karypis, G., Kumar, V., Biswas, R.: Load balancing across near-
homogeneous multi-resource servers. In: Proceedings of the ninth heterogeneous
Computing Workshop, Cancun, Mexico, pp. 61–70 (2000)

30. Li, Z., Parashar, M.: An infrastructure for dynamic composition of grid service.
In: Proceedings of the 7th IEEE International Conference on Grid Computing,
Barcelona, Spain, pp. 315–316. IEEE Computer Society Press, Los Alamitos (2006)

31. Lynden, S., Rana, O.F.: Coordinated learning to support resource management in
computational grids. In: 2nd IEEE International Conference on Peer-2-Peer Com-
puting, Linkoping, Sweden. IEEE Computer Society Press, Los Alamitos (2002)

32. Marbach, P., Mihatsch, O., Schulte, M., Tsisiklis, J.: Reinforcement learning for
call admission control and routing in integrated service networks. In: Advances in
Neural Information Processing Systems, vol. 10, pp. 922–928. MIT Press, Cam-
bridge (1998)

33. Di Martino, B., Rana, O.F.: Grid performance and resource management using
mobile agents. In: Getov, V., Gerndt, M., Hoisie, A., Malony, A., Miller, B. (eds.)
Performance Analysis and Grid Computing. Kluwer, Dordrecht (2003)

34. Mishra, D., Rangarajan, B.: Cost sharing in a job scheduling problem using the
shapley value. In: EC 2005: Proceedings of the 6th ACM conference on Electronic
commerce, pp. 232–239. ACM Press, New York (2005)

35. Newman, M.E.J.: Models of the small world (a review). Journal of Statistical
Physics 101, 819–841 (1987)

36. Shirazi, B.A., Hurson, A.R., Kavi, K.M.: Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press, Los Alamitos (1995)

37. Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to
Robotic Soccer. MIT Press, Cambridge (2000)

38. Stone, P.: TPOT-RL applied to network routing. In: Proceedings of the Seventeenth
International Machine Learning Conference, pp. 935–942. Morgan Kauffman, San
Francisco (2000)

39. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning per-
spective. Autonomous Robots 8(3), 345–383 (2000)

40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

41. Tang, H., Tianfield, H.: Self-organizing networks of communications and comput-
ing. International Transactions on Systems Science and Applications 1(4), 421–431
(2006)

42. Tianfield, H., Unland, R.: Towards self-organization in multi-agent systems and
grid computing. Multiagent and Grid Systems 1(2), 89–95 (2005)

43. Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In:
Proceedings of the Sixth International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Honolulu, HI, May 2007, pp. 330–337 (2007)

140 K. Tumer and J. Lawson

44. Tumer, K., Agogino, A., Wolpert, D.: Learning sequences of actions in collectives
of autonomous agents. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, July 2002, pp.
378–385 (2002)

45. Tumer, K., Wolpert, D.H.: Collective intelligence and Braess’ paradox. In: Pro-
ceedings of the Seventeenth National Conference on Artificial Intelligence, Austin,
TX, pp. 104–109 (2000)

46. Watts, D.: Small Worlds. Princeton University Press, Princeton (1999)
47. Wolpert, D.H., Tumer, K.: Optimal payoff functions for members of collectives.

Advances in Complex Systems 4(2/3), 265–279 (2001)
48. Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent co-

operation: Model and experiments. In: Proceedings of the Fifth International Con-
ference on Autonomous Agents, pp. 616–623. ACM Press, New York (2001)

49. Yu, X., Ram, B.: Bio-inspired scheduling for dynamic job shops with flexible
routing and sequence-dependent setups. International Journal of Production Re-
search 44(22), 4793–4813 (2006)

Author Index

Bontovics, Ákos 91

Chakraborty, Kuheli 107

Duggan, Jim 33

Howley, Enda 33

Kaisers, Michael 49

Lawson, John 123
Lőrincz, András 91

Mihaylov, Mihail 60

Noda, Itsuki 74
Nowé, Ann 60

Pintér, Balázs 91
Ponsen, Marc 1
Porter, John 107

Sen, Sandip 107

Taylor, Matthew E. 1
Tumer, Kagan 123
Tuyls, Karl 1, 49, 60

	Title Page
	Preface
	Organization
	Table of Contents
	Abstraction and Generalization in Reinforcement Learning: A Summary and Framework
	Introduction
	Reinforcement Learning
	Markov Decision Processes
	Solution Techniques

	Abstraction and Generalization
	An Illustrative Example
	Domain Reduction
	Domain Hiding
	Co-domain Hiding
	Co-domain Reduction
	Domain Aggregation
	Generalization

	Function Approximation
	Hierarchical Reinforcement Learning
	Reactive Navigation Task
	Solving the Reactive Navigation Task
	Experimental Results

	Relational Reinforcement Learning
	Transfer Learning
	Transfer Learning Background
	Transfer as Generalization
	Abstraction in Transfer

	Conclusions
	References

	The Effects of Evolved Sociability in a Commons Dilemma
	Introduction
	Background Research
	The N-Player Prisoner’s Dilemma
	Agent Interaction Models

	Experimental Setup
	Agent Genome
	Agent Interactions
	Genetic Algorithm

	Experimental Results
	Benchmark Simulation
	Experiment 1
	Experiment 2

	Conclusions
	Summary and Future Work
	References

	Replicator Dynamics for Multi-agent Learning: An Orthogonal Approach
	Introduction
	Background
	Game Theory
	Reinforcement Learning
	Evolutionary Game Theory

	Method
	Experiments
	References

	Decentralized Learning in Wireless Sensor Networks
	Introduction
	Background
	Wireless Sensor Networks
	The MAC Protocol
	Communication and Routing
	Related Work

	Learning Algorithm
	Actions
	Rewards
	Update Rule
	Discussion

	Results
	Experimental Setup
	Experiments

	Conclusion
	References

	Recursive Adaptation of Stepsize Parameter for Non-stationary Environments
	Introduction
	Exponential Moving Average and Stepsize Parameter
	Exponential Moving Average
	Best Follow-Up to Random Walk
	Recursive Exponential Moving Average and Higher-Order Partial Derivatives
	Gradient Descent Adaptation of Stepsize Parameter Using Higher-Order Derivatives and REMA

	Experiments
	Exp.1: Learning Best α for Noise Reduction
	Exp.2: The Case of Square-Waved γ
	Exp.3: Square-Waved True Value

	Discussion and Summary
	References

	Multiagent Reinforcement Learning Model for the Emergence of Common Property and Transhumance in Sub-Saharan Africa
	Introduction
	Preliminaries
	The Herders Challenge
	Multi-agent Simulation
	Related Work
	Reinforcement Learning
	The NewTies Framework

	The Agent Architecture
	The Model
	The Environment
	The Agents
	The Agreements between Agents

	Results and Discussion
	Conclusions
	References

	Learning to Locate Trading Partners in Agent Networks
	Introduction
	Models
	Production and Exchange Model
	Enhanced Production and Exchange Model

	Rewiring Strategies
	Experimental Results
	Production and Exchange Model Results
	Enhanced Production and Exchange Model

	Related Work
	Discussions
	References

	Coordinating Learning Agents for Multiple Resource Job Scheduling
	Introduction
	Multi-resource Optimization
	System Model
	System Dynamics

	Multiagent Architecture
	State Space and Global Objective
	Agent Objectives
	Agent Learning

	Multi-resource Load Balancing Algorithm
	Experimental Results
	Low Difficulty Parameters
	Medium Difficulty Parameters
	High Difficulty Parameters

	Discussion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

