

Lecture Notes in Computer Science 5977
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marc Frappier Uwe Glässer
Sarfraz Khurshid Régine Laleau
Steve Reeves (Eds.)

Abstract
State Machines,
Alloy, B and Z

Second International Conference, ABZ 2010
Orford, QC, Canada, February 22-25, 2010
Proceedings

13

Volume Editors

Marc Frappier
Université de Sherbrooke, Dept. d’informatique
Sherbrooke, Québec, J1K 2R1, Canada
E-mail: Marc.Frappier@USherbrooke.ca

Uwe Glässer
Simon Fraser University, School of Computing Science
Burnaby, BC, V5A 1S6, Canada
E-mail: glaesser@cs.sfu.ca

Sarfraz Khurshid
University of Texas at Austin, Dept. of Electrical and Comp. Engineering
1 University Station C5000, Austin, TX 78712-0240, USA
E-mail: khurshid@ece.utexas.edu

Régine Laleau
Université Paris-Est Créteil
IUT Sénart/Fontainebleau, Dept. informatique
Route forestière Hurtault, 77300 Fontainebleau, France
E-mail: laleau@univ-paris12.fr

Steve Reeves
The University of Waikato, Dept. of Computer Science
Hamilton 3240, New Zealand
E-mail: stever@cs.waikato.ac.nz

Library of Congress Control Number: 2010920043

CR Subject Classification (1998): F.4, G.2, I.2.3, D.3.2, F.3, I.2.4, F.4.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11810-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11810-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12990580 06/3180 5 4 3 2 1 0

Preface

ABZ 2010 was held in the beautiful natural setting of Orford in the Eastern
Townships of Québec, during February 22—25, 2010, midway through the Cana-
dian winter and the 21st Winter Olympics, bringing participants from all over
the world to brave this rigorous climate.

ABZ covers recent advances in four equally rigorous methods for software and
hardware development: Abstract State Machines (ASM), Alloy, B and Z. They
share a common conceptual framework, centered around the notions of state and
operation, and promote mathematical precision in the modeling, verification, and
construction of highly dependable systems.

These methods have continuously matured over the past decade, reaching a
stage where they have been successfully integrated into industrial practice in
various areas like trains, automobiles, aerospace, smart cards, virtual machines,
and business processes. Their development is influenced by both research and
practice, which mutually nurture each other.

ABZ has both a long and a short history. With the aim of stimulating cross-
fertilization between these four methods, it has merged their individual confer-
ence and workshop series which started in 1986 for Z, 1994 for ASM, 1996 for B,
and 2006 for Alloy. The first ABZ conference was held in London in 2008; ABZ
2010 is the second edition. The conference remains organized as four separate
Program Committees.

The first day of the conference was devoted to tutorials on Alloy and BART
(B automatic refinement tool) and to a workshop on tool building in formal
methods (WTBFM 2010). The main program of the conference started with a
one-day plenary session, with two invited speakers and four special presentations,
one for each method. The invited speakers were Daniel Jackson from MIT and
Sofiène Tahar from Concordia University. The special presentations were selected
among the contributions submitted to the conference for their cross-fertilization
potential and their research quality. The next two days of the main program
were divided into two parallel tracks, merging presentations of long and short
papers to stimulate interactions between all participants. Long papers cover a
broad spectrum of research, from foundational to applied work. A total of 60
long papers from 15 countries were submitted, of which 26 were accepted. Short
papers, included here as one-page abstracts, address work in progress, industrial
experience reports, and tool descriptions. An extended version of these abstracts
is available on the conference website at http://abzconference.org.

Holding such an event requires a lot of effort from several people. We wish to
express them our deepest gratitude for making ABZ 2010 a success to: members
of the Program Committees and reviewers, for their rigorous evaluations and
discussions, Springer, for their support in publishing these proceedings, Uni-
versité de Sherbrooke and Université Paris-Est Créteil, for their financial and

VI Preface

organizational support, Orford Arts Centre, for their logistical support. Special
thanks to Jérémy Milhau for designing and managing the conference website,
Lynn Lebrun, for managing conference registrations, and Chantal Proulx, for
on-site support. The conference was managed with Easychair, which rightfully
bears its name.

More information on ABZ can be found at http://abzconference.org.

February 2010 Marc Frappier
Uwe Glässer

Sarfraz Khurshid
Régine Laleau
Steve Reeves

Conference Organization

Program Chairs

Marc Frappier (General Chair) University of Sherbrooke, Canada
Uwe Glässer (ASM Chair) Simon Fraser University, Canada
Sarfraz Khurshid (Alloy Chair) University of Texas at Austin, USA
Régine Laleau (B Chair) University of Paris-Est, France
Steve Reeves (Z Chair) University of Waikato, New Zealand

ASM Program Committee

Egon Börger University of Pisa, Italy
Andreas Friesen SAP Research, Germany
Uwe Glässer (Chair) Simon Fraser University, Canada
Susanne Graf Verimag, France
Elvinia Riccobene University of Milan, Italy
Klaus-Dieter Schewe Massey Univesity, New Zealand
Anatol Slissenko University of Paris-Est, France
Jan Van den Bussche University of Hasselt, Belgium
Margus Veanes Microsoft Research, USA
Charles Wallace Michigan Technological University, USA

Alloy Program Committee

Juergen Dingel Queen’s University, Canada
Andriy Dunets Universität Augsburg, Germany
Kathi Fisler Worcester Polytechnic Institute, USA
Daniel Jackson Massachusetts Institute of Technology, USA
Jeremy Jacob University of York, UK
Sarfraz Khurshid (Chair) University of Texas at Austin, USA
Viktor Kuncak EPFL, Switzerland
Daniel LeBerre Universite d’Artois, France
Darko Marinov University of Illinois, USA
Jose Oliveira University of Minho, Portugal
Burkhardt Renz FH Gießen-Friedberg, Germany
Kevin Sullivan University of Virginia, USA
Mana Taghdiri Universität Karlsruhe, Germany
Pamela Zave AT&T Laboratories, USA

B Program Committee

Yamine Ait Ameur LISI/ENSMA-UP, France
Richard Banach University of Manchester, UK

VIII Organization

Juan Bicarregui STFC Rutherford Appleton Laboratory, UK
Michael Butler University of Southampton, UK
Daniel Dollé Siemens Transportation Systems, France
Steve Dunne University of Teesside, UK
Neil Evans AWE plc Aldermaston, UK
Mamoun Filali Amine University of Toulouse, France
Frédéric Gervais University of Paris-Est, France
Jacques Julliand University of Besançon, France
Régine Laleau (Chair) University of Paris-Est, France
Thierry Lecomte Clearsy, France
Michael Leuschel University of Düsseldorf, Germany
Dominique Méry University of Nancy, France
Anamaria Martins Moreira UFRN, Natal, Brazil
Annabelle McIver Macquarie University, Australia
Marie-Laure Potet VERIMAG, France
Ken Robinson University of New South Wales, Australia
Emil Sekerinski McMaster University, Canada
Helen Treharne University of Surrey, UK
Laurent Voisin Systerel, France
Marina Waldèn Åbo Akademi University, Finland

Z Program Committee

Rob Arthan Lemma 1 Ltd., UK
Eerke Boiten University of Kent, UK
Jonathan Bowen Museophile Ltd / King’s College London, UK
Ana Calvacanti University of York, UK
John Derrick University of Sheffield, UK
Anthony Hall independent consultant, UK
Ian Hayes University of Queensland, Australia
Rob Hierons Brunel University, UK
Jonathan Jacky University of Washington, USA
Steve Reeves (Chair) University of Waikato, New Zealand
Thomas Santen European Microsoft Innovation Ctr, Germany

Local Organization

Michel Embe Jiague University of Sherbrooke, Canada /
University of Paris-Est, France

Benôıt Fraikin University of Sherbrooke, Canada
Marc Frappier University of Sherbrooke, Canada
Frédéric Gervais University of Paris-Est, France
Pierre Konopacki University of Sherbrooke, Canada /

University of Paris-Est, France
Régine Laleau University of Paris-Est, France

Organization IX

Sylvie Lavoie University of Sherbrooke, Canada
Lynn Le Brun University of Sherbrooke, Canada
Jérémy Milhau University of Sherbrooke, Canada /

University of Paris-Est, France
Chantal Proulx University of Sherbrooke, Canada
Richard St-Denis University of Sherbrooke, Canada

External Reviewers

Benaissa Benaissa
Jens Bendisposto
Jean-Paul Bodeveix
Eerke Boiten
Pontus Boström
Alexandre Cortier
Alcino Cunha
David Déharbe
Cristian Dittamo
Roozbeh Farahbod
Elie Fares
Angelo Gargantini
Milos Gligoric
Gudmund Grov
Stefan Hallerstede
Piper Jackson
Rajesh Karmani
Olga Kouchnarenko
Jens Lemcke
Issam Maamria
Pierre-Alain Masson
Jérémy Milhau

Akleksandar Milicevic
Hassan Mountassir
Wolfgang Mueller
Florian Nafz
Marcel Oliveira
Marta Olszewska (Plaska)
Edgar Pek
Tirdad Rahmani
Joris Rehm
Patrizia Scandurra
Gerhard Schellhorn
James Sharp
Neeraj Singh
Ove Soerensen
Jennifer Sorge
Kurt Stenzel
Bill Stoddart
Bogdan Tofan
Edward Turner
Qing Wang
Kuat Yessenov
Frank Zeyda

Table of Contents

Invited Talks

A Structure for Dependability Arguments (Abstract) 1
Daniel Jackson and Eunsuk Kang

Formal Probabilistic Analysis: A Higher-Order Logic Based
Approach . 2

Osman Hasan and Sofiène Tahar

ASM Papers

Synchronous Message Passing and Semaphores: An Equivalence
Proof . 20

Iain Craig and Egon Börger

AsmL-Based Concurrency Semantic Variations for Timed Use Case
Maps . 34

Jameleddine Hassine

Bârun: A Scripting Language for CoreASM . 47
Michael Altenhofen and Roozbeh Farahbod

AsmetaSMV: A Way to Link High-Level ASM Models to Low-Level
NuSMV Specifications . 61

Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene

An Executable Semantics of the SystemC UML Profile 75
Elvinia Riccobene and Patrizia Scandurra

Alloy Papers

Specifying Self-configurable Component-Based Systems with FracToy . . . 91
Alban Tiberghien, Philippe Merle, and Lionel Seinturier

Trace Specifications in Alloy . 105
Jeremy L. Jacob

An Imperative Extension to Alloy . 118
Joseph P. Near and Daniel Jackson

Towards Formalizing Network Architectural Descriptions 132
Joud Khoury, Chaouki T. Abdallah, and Gregory L. Heileman

XII Table of Contents

Lightweight Modeling of Java Virtual Machine Security Constraints 146
Mark C. Reynolds

Alloy+HotCore: A Fast Approximation to Unsat Core 160
Nicolás D’Ippolito, Marcelo F. Frias, Juan P. Galeotti,
Esteban Lanzarotti, and Sergio Mera

B Papers

Supporting Reuse in Event B Development: Modularisation
Approach . 174

Alexei Iliasov, Elena Troubitsyna, Linas Laibinis,
Alexander Romanovsky, Kimmo Varpaaniemi,
Dubravka Ilic, and Timo Latvala

Reasoned Modelling Critics: Turning Failed Proofs into Modelling
Guidance . 189

Andrew Ireland, Gudmund Grov, and Michael Butler

Applying the B Method for the Rigorous Development of Smart Card
Applications . 203

Bruno Gomes, David Déharbe, Anamaria Moreira, and Katia Moraes

Automatic Verification for a Class of Proof Obligations with
SMT-Solvers . 217

David Déharbe

A Refinement-Based Correctness Proof of Symmetry Reduced Model
Checking . 231

Edd Turner, Michael Butler, and Michael Leuschel

Development of a Synchronous Subset of AADL . 245
Mamoun Filali-Amine and Julia Lawall

Matelas: A Predicate Calculus Common Formal Definition for Social
Networking . 259

Nestor Catano and Camilo Rueda

Structured Event-B Models and Proofs . 273
Stefan Hallerstede

Refinement-Animation for Event-B — Towards a Method of
Validation . 287

Stefan Hallerstede, Michael Leuschel, and Daniel Plagge

Reactivising Classical B . 302
Steve Dunne and Frank Zeyda

Table of Contents XIII

Event-B Decomposition for Parallel Programs . 319
Thai Son Hoang and Jean-Raymond Abrial

Z Papers

Communication Systems in ClawZ . 334
Michael Vernon, Frank Zeyda, and Ana Cavalcanti

Formalising and Validating RBAC-to-XACML Translation Using
Lightweight Formal Methods . 349

Mark Slaymaker, David Power, and Andrew Simpson

Towards Formally Templated Relational Database Representations
in Z . 363

Nicolas Wu and Andrew Simpson

Translating Z to Alloy . 377
Petra Malik, Lindsay Groves, and Clare Lenihan

ABZ Short Papers (Abstracts)

B-ASM: Specification of ASM à la B . 391
David Michel, Frédéric Gervais, and Pierre Valarcher

A Case for Using Data-Flow Analysis to Optimize Incremental
Scope-Bounded Checking . 392

Danhua Shao, Divya Gopinath, Sarfraz Khurshid, and
Dewayne E. Perry

On the Modelling and Analysis of Amazon Web Services Access
Policies . 394

David Power, Mark Slaymaker, and Andrew Simpson

Architecture as an Independent Variable for Aspect-Oriented
Application Descriptions . 395

Hamid Bagheri and Kevin Sullivan

ParAlloy: Towards a Framework for Efficient Parallel Analysis of Alloy
Models . 396

Nicolás Rosner, Juan P. Galeotti, Carlos G. Lopez Pombo, and
Marcelo F. Frias

Introducing Specification-Based Data Structure Repair Using Alloy 398
Razieh Nokhbeh Zaeem and Sarfraz Khurshid

Secrecy UML Method for Model Transformations . 400
Waël Hassan, Nadera Slimani, Kamel Adi, and Luigi Logrippo

XIV Table of Contents

Improving Traceability between KAOS Requirements Models and B
Specifications . 401

Abderrahman Matoussi and Dorian Petit

Code Synthesis for Timed Automata: A Comparison Using
Case Study . 403

Anaheed Ayoub, Ayman Wahba, Ashraf Salem, and
Mohamed Sheirah

Towards Validation of Requirements Models . 404
Atif Mashkoor and Abderrahman Matoussi

A Proof Based Approach for Formal Verification of Transactional
BPEL Web Services . 405

Idir Aı̈t Sadoune and Yamine Aı̈t Ameur

On an Extensible Rule-Based Prover for Event-B . 407
Issam Maamria, Michael Butler, Andrew Edmunds, and
Abdolbaghi Rezazadeh

B Model Abstraction Combining Syntactic and Semantic Methods 408
Jacques Julliand, Nicolas Stouls, Pierre-Christope Bué, and
Pierre-Alain Masson

A Basis for Feature-Oriented Modelling in Event-B 409
Jennifer Sorge, Michael Poppleton, and Michael Butler

Using Event-B to Verify the Kmelia Components and Their
Assemblies . 410

Pascal André, Gilles Ardourel, Christian Attiogbé, and
Arnaud Lanoix

Starting B Specifications from Use Cases . 411
Thiago C. de Sousa and Aryldo G. Russo Jr

Integrating SMT-Solvers in Z and B Tools . 412
Alessandro Cavalcante Gurgel, Valério Gutemberg de Medeiros Jr.,
Marcel Vinicius Medeiros Oliveira, and David Boris Paul Déharbe

Formal Analysis in Model Management: Exploiting the Power of
CZT . 414

James R. Williams, Fiona A.C. Polack, and Richard F. Paige

Author Index . 415

A Structure for Dependability Arguments

Daniel Jackson and Eunsuk Kang

Massachusetts Institute of Technology
{dnj,eskang}@csail.mit.edu

Abstract. How should a software system be verified? Much research
is currently focused on attempts to show that code modules meet their
specifications. This is important, but bugs in code are not the weakest
link in the chain. The larger problems are identifying and articulating
critical properties, and ensuring that the components of a system - not
only software modules, but also hardware peripherals, physical environ-
ments, and human operators - together establish them. Another common
assumption is that verification must take system design and implemen-
tation as given. I’ll explain the rationale for, and elements of, a new
approach to verification, in which design is driven by verification goals,
and verification arguments are structured in a way that exposes the re-
lationship between critical properties and the components that ensure
them.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Formal Probabilistic Analysis: A Higher-Order
Logic Based Approach

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. Traditionally, simulation is used to perform probabilistic
analysis. However, it provides less accurate results and cannot handle
large-scale problems due to the enormous CPU time requirements. Re-
cently, a significant amount of formalization has been done in higher-
order logic that allows us to conduct precise probabilistic analysis using
theorem proving and thus overcome the limitations of the simulation.
Some major contributions include the formalization of both discrete and
continuous random variables and the verification of some of their cor-
responding probabilistic and statistical properties. This paper describes
the infrastructures behind these capabilities and their utilization to con-
duct the probabilistic analysis of real-world systems.

1 Introduction

“In short, we can only pretend to achieve a relative faultless construc-
tion, not an absolute one, which is clearly impossible. A problem solution
for which is still in its infancy is finding the right methodology to per-
form an environmental model that is a “good” approximation of the real
environment. It is clear that a probabilistic approach would certainly be
very useful for doing this.”

J. Abrial, Faultless Systems: Yes We Can!, IEEE Computer Magazine,
42(9):30-36, 2009.

Probabilistic analysis is a tool of fundamental importance for the analysis of
hardware and software systems. These systems usually exhibit some random or
unpredictable elements. Examples include, failures due to environmental condi-
tions or aging phenomena in hardware components and the execution of certain
actions based on a probabilistic choice in randomized algorithms. Moreover, these
systems act upon and within complex environments that themselves have cer-
tain elements of unpredictability, such as noise effects in hardware components
and the unpredictable traffic pattern in the case of telecommunication protocols.
Due to these random components, establishing the correctness of a system un-
der all circumstances usually becomes impractically expensive. The engineering

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 2–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 3

approach to analyze a system with these kind of unpredictable elements is to
use probabilistic analysis. The main idea is to mathematically model the unpre-
dictable elements of the given system and its environment by appropriate random
variables. The probabilistic properties of these random variables are then used
to judge system’s behaviors regarding parameters of interest, such as downtime,
availability, number of failures, capacity, and cost. Thus, instead of guarantee-
ing that the system meets some given specification under all circumstances, the
probability that the system meets this specification is reported.

Simulation is the most commonly used computer based probabilistic analysis
technique. Most simulation softwares provide a programming environment for
defining functions that approximate random variables for probability distribu-
tions. The random elements in a given system are modeled by these functions
and the system is analyzed using computer simulation techniques, such as the
Monte Carlo Method [31], where the main idea is to approximately answer a
query on a probability distribution by analyzing a large number of samples. Sta-
tistical quantities, such as average and variance, may then be calculated, based
on the data collected during the sampling process, using their mathematical
relations in a computer. Due to the inherent nature of simulation, the proba-
bilistic analysis results attained by this technique can never be termed as 100%
accurate. The accuracy of the hardware and software system analysis results has
become imperative these days because of the extensive usage of these systems in
safety-critical areas, such as, medicine and transportation. Therefore, simulation
cannot be relied upon for the analysis of such systems.

In order to overcome the above mentioned limitations, we propose to use
higher-order-logic theorem proving for probabilistic analysis. Higher-order logic
[11] is a system of deduction with a precise semantics and is expressive enough to
be used for the specification of almost all classical mathematics theories. Due to
its high expressive nature, higher-order-logic can be utilized to precisely model
the behavior of any system, while expressing its random or unpredictable ele-
ments in terms of formalized random variables, and any kind of system property,
including the probabilistic and statistical ones, as long as they can be expressed
in a closed mathematical form. Interactive theorem proving [16] is the field of
computer science and mathematical logic concerned with precise computer based
formal proof tools that require some sort of human assistance. Due to its inter-
active nature, interactive theorem proving can be utilized to reason about the
correctness of probabilistic or statistical properties of systems, which are usually
undecidable.

In this paper, we present a higher-order-logic theorem proving based frame-
work that can be utilized to conduct formal probabilistic analysis of systems.
We provide a brief overview of higher-order-logic formalizations that facilitate
the formal modeling of random systems [18,19,26] and formal reasoning about
their probabilistic and statistical properties [17,20,21]. We show how these ca-
pabilities fit into the overall formal probabilistic analysis framework and also
point out some of the missing links that need further investigations. For illus-
tration purposes, we discuss the formal probabilistic analysis of some real-world

4 O. Hasan and S. Tahar

systems from the areas of telecommunications, nanoelectronics and computa-
tional algorithms.

The rest of the paper is organized as follows: Section 2 describes the proposed
probabilistic analysis framework and how the already formalized mathematical
concepts of probability theory fit into it. The case studies are presented in Section
3. Section 4 summarizes the state-of-the-art in the formal probabilistic analysis
domain and compares these approaches with higher-order-logic theorem proving
based analysis. Finally, Section 5 concludes the paper.

2 Formal Probabilistic Analysis Framework

A hypothetical model of a higher-order-logic theorem proving based probabilistic
analysis framework is given in Fig. 1, with some of its most fundamental com-
ponents depicted with shaded boxes. The starting point of probabilistic analysis
is a system description and some intended system properties and the goal is to
check if the given system satisfies these given properties. Due to the differences
in the underlying mathematical foundations of discrete and continuous random
variables [42], we have divided system properties into two categories, i.e., system
properties related to discrete random variables and system properties related to
continuous random variables.

Fig. 1. Higher-order Logic based Probabilistic Analysis Framework

The first step in the proposed approach is to construct a model of the given
system in higher-order-logic. For this purpose, the foremost requirement is the
availability of infrastructures that allow us to formalize all kinds of discrete and
continuous random variables as higher-order-logic functions, which in turn can
be used to represent the random components of the given system in its higher-
order-logic model. The second step is to utilize the formal model of the system

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 5

to express system properties as higher-order-logic theorems. The prerequisite
for this step is the ability to express probabilistic and statistical properties re-
lated to both discrete and continuous random variables in higher-order-logic.
All probabilistic properties of discrete and continuous random variables can be
expressed in terms of their Probability Mass Function (PMF) and Cumulative
Distribution Function (CDF), respectively. Similarly, most of the commonly used
statistical properties can be expressed in terms of the expectation and variance
characteristics of the corresponding random variable. Thus, we require the for-
malization of mathematical definitions of PMF, CDF, expectation and variance
for both discrete and continuous random variables in order to be able to express
the given system’s reliability characteristics as higher-order-logic theorems. The
third and the final step for conducting probabilistic analysis in a theorem prover
is to formally verify the higher-order-logic theorems developed in the previous
step using a theorem prover. For this verification, it would be quite handy to
have access to a library of some pre-verified theorems corresponding to some
commonly used properties regarding probability distribution functions, expecta-
tion and variance. Since, we can build upon such a library of theorems and thus
speed up the verification process. The formalization details regarding the above
mentioned steps are briefly described now.

2.1 Discrete Random Variables and the PMF

A random variable is called discrete if its range, i.e., the set of values that it can
attain, is finite or at most countably infinite [42]. Discrete random variables can
be completely characterized by their PMFs that return the probability that a
random variable X is equal to some value x, i.e., Pr(X = x). Discrete random
variables are quite frequently used to model randomness in probabilistic analysis.
For example, the Bernoulli random variable is widely used to model the fault
occurrence in a component and the Binomial random variable may be used to
represent the number of faulty components in a lot.

Discrete random variables can be formalized in higher-order-logic as deter-
ministic functions with access to an infinite Boolean sequence B∞; an infinite
source of random bits with data type (natural → bool) [26]. These determin-
istic functions make random choices based on the result of popping bits in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the functions terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
functions. Thus, a random variable that takes a parameter of type α and ranges
over values of type β can be represented by the function

F : α→ B∞ → (β ×B∞)

For example, a Bernoulli(1
2) random variable that returns 1 or 0 with prob-

ability 1
2 can be modeled as

� bit = λs. (if shd s then 1 else 0, stl s)

6 O. Hasan and S. Tahar

where the variable s represents the infinite Boolean sequence and the functions
shd and stl are the sequence equivalents of the list operations ’head’ and ’tail’.
A function of the form λx.t represents a lambda abstraction function that maps
x to t(x). The function bit accepts the infinite Boolean sequence and returns a
pair with the first element equal to either 0 or 1 and the second element equal
to the unused portion of the infinite Boolean sequence.

The higher-order-logic formalization of probability theory [26] also consists of
a probability function P from sets of infinite Boolean sequences to real numbers
between 0 and 1. The domain of P is the set E of events of the probability. Both
P and E are defined using the Carathéodory’s Extension theorem, which ensures
that E is a σ-algebra: closed under complements and countable unions. The for-
malized P and E can be used to formally verify all basic axioms of probability.
Similarly, they can also be used to prove probabilistic properties for random vari-
ables. For example, we can formally verify the following probabilistic property
for the function bit, defined above,

� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all elements x that satisfy the condition C.

The above mentioned infrastructure can be utilized to formalize most of the
commonly used discrete random variables and verify their corresponding PMF
relations [26]. For example, the formalization and verification of Bernoulli and
Uniform random variables can be found in [26] and of Binomial and Geometric
random variables can be found in [21].

2.2 Continuous Random Variables and the CDF

A random variable is called continuous if it ranges over a continuous set of
numbers that contains all real numbers between two limits [42]. Continuous
random variables can be completely characterized by their CDFs that return the
probability that a random variable X is exactly less than or equal to some value
x, i.e., Pr(X ≤ x). Examples of continuous random variables include measuring
the arrival time T of a data packet at a web server (ST = {t|0 ≤ t < ∞}) and
measuring the voltage V across a resistor (SV = {v| −∞ < v < ∞}).

The sampling algorithms for continuous random variables are non-terminating
and hence require a different formalization approach than discrete random vari-
ables, for which the sampling algorithms are either guaranteed to terminate
or satisfy probabilistic termination, meaning that the probability that the al-
gorithm terminates is 1. One approach to address this issue is to utilize the
concept of the nonuniform random number generation [9], which is the process
of obtaining arbitrary continuous random numbers using a Standard Uniform
random number generator. The main advantage of this approach is that we only
need to formalize the Standard Uniform random variable from scratch and use
it to model other continuous random variables by formalizing the corresponding
nonuniform random number generation method.

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 7

Based on the above approach, a methodology for the formalization of all con-
tinuous random variables for which the inverse of the CDF can be represented
in a closed mathematical form is presented in [18]. The first step in this method-
ology is the formalization of the Standard Uniform random variable, which can
be done by using the formalization approach for discrete random variables and
the formalization of the mathematical concept of limit of a real sequence [15]:

lim
n→∞(λn.

n−1∑
k=0

(
1
2
)k+1Xk) (1)

where Xk denotes the outcome of the kth random bit; True or False represented
as 1 or 0, respectively. The formalization details are outlined in [19].

The second step in the methodology for the formalization of continuous prob-
ability distributions is the formalization of the CDF and the verification of its
classical properties. This is followed by the formal specification of the mathe-
matical concept of the inverse function of a CDF. This definition along with the
formalization of the Standard Uniform random variable and the CDF properties,
can be used to formally verify the correctness of the Inverse Transform Method
(ITM) [9]. The ITM is a well known nonuniform random generation technique for
generating nonuniform random variables for continuous probability distributions
for which the inverse of the CDF can be represented in a closed mathematical
form. Formally, it can be verified for a random variable X with CDF F using
the Standard Uniform random variable U as follows [18].

Pr(F−1(U) ≤ x) = F (x) (2)

The formalized Standard Uniform random variable can now be used to for-
mally specify any continuous random variable for which the inverse of the CDF
can be expressed in a closed mathematical form as X = F−1(U). Whereas, the
formally verified ITM, given in Equation (2), can be used to prove the CDF for
such a formally specified random variable. This approach has been successfully
utilized to formalize and verify Exponential, Uniform, Rayleigh and Triangular
random variables [18].

2.3 Statistical Properties for Discrete Random Variables

In probabilistic analysis, statistical characteristics play a major role in decision
making as they tend to summarize the probability distribution characteristics
of a random variable in a single number. Due to their widespread interest, the
computation of statistical characteristics has now become one of the core com-
ponents of every contemporary probabilistic analysis framework.

The expectation for a function of a discrete random variable, which attains
values in the positive integers only, is defined as follows [30]

Ex fn[f(X)] =
∞∑

n=0

f(n)Pr(X = n) (3)

8 O. Hasan and S. Tahar

where X is the discrete random variable and f represents a function of X .
The above definition only holds if the associated summation is convergent, i.e.,∑∞

n=0 f(n)Pr(X = n) < ∞. The expression of expectation, given in Equation
(3), has been formalized in [20] as a higher-order-logic function using the proba-
bility function P. The expected value of a discrete random variable that attains
values in positive integers can now be defined as a special case of Equation (3)

Ex[X] = Ex fn[(λn.n)(X)] (4)

when f is an identity function. In order to verify the correctness of the above def-
initions of expectation, they are utilized in [20,21] to formally verify the following
classical expectation properties.

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (5)

Ex[a + bR] = a + bEx[R] (6)

Pr(X ≥ a) ≤ Ex[X]
a

(7)

These properties not only verify the correctness of the above definitions but also
play a vital role in verifying the expectation characteristics of discrete random
components of probabilistic systems, as will be seen in Section 3 of this paper.

Variance of a random variable X describes the difference between X and its
expected value and thus is a measure of its dispersion.

V ar[X] = Ex[(X − Ex[X])2] (8)

The above definition of variance has been formalized in higher-order-logic in [20]
by utilizing the formal definitions of expectation, given in Equations (3) and (4).
This definition is then formally verified to be correct by proving the following
classical variance properties for it [20,21].

V ar[R] = Ex[R2]− (Ex[R])2 (9)

V ar[
n∑

i=1

Ri] =
n∑

i=1

V ar[Ri] (10)

Pr(|X − Ex[X]| ≥ a) ≤ V ar[X]
a2 (11)

These results allow us to reason about expectation, variance and tail distri-
bution properties of any formalized discrete random variable that attains values
in positive integers, e.g., the formal verification for Bernoulli, Uniform, Binomial
and Geometric random variables is presented in [21].

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 9

2.4 Statistical Properties for Continuous Random Variables

The most commonly used definition of expectation, for a continuous random
variable X , is the probability density-weighted integral over the real line [34].

E[X] =
∫ +∞

−∞
xf(x)dx (12)

The function f in the above equation represents the Probability Density Function
(PDF) of X and the integral is the well-known Reimann integral. The above
definition is limited to continuous random variables that have a well-defined
PDF. A more general, but not so commonly used, definition of expectation for a
random variable X , defined on a probability space (Ω, Σ, P) [10], is as follows.

E[X] =
∫

Ω

XdP (13)

This definition utilizes the Lebesgue integral and is general enough to cater
for both discrete and continuous random variables. The reason behind its lim-
ited usage in the probabilistic analysis domain is the complexity of solving the
Lebesgue integral, which takes its foundations from the measure theory that
most engineers and computer scientists are not familiar with.

The obvious advantage of using Equation (12) for formalizing expectation of
a continuous random variable is the user familiarity with Reimann integral that
usually facilitates the reasoning process regarding the expectation properties in
the theorem proving based probabilistic analysis approach. On the other hand,
it requires extended real numbers, � = � ∪ {−∞, +∞}, whereas all the foun-
dational work regarding theorem proving based probabilistic analysis, outlined
above, has been built upon the standard real numbers �, formalized by Har-
rison [15]. The expectation definition given in Equation (13) does not involve
extended real numbers, as it accommodates infinite limits without any ad-hoc
devices due to the inherent nature of the Lebesgue integral. It also offers a more
general solution. The limitation, however, is the compromise on the interactive
reasoning effort, as it is not a straightforward task for a user to build on this
definition to formally verify the expectation of a random variable.

We have formalized the expectation of a continuous random variable as in
Equation (13) by building on top of a higher-order-logic formalization of Lebesgue
integration theory [6]. Starting from this definition, two simplified expressions for
the expectation are verified that allow us to reason about expectation of a contin-
uous random variable in terms of simple arithmetic operations [17]. The first ex-
pression is for the case when the given continuous random variable X is bounded
in the positive interval [a, b].

E[X]= lim
n→∞

[
2n−1∑
i=0

(a +
i

2n
(b − a))P

{
a +

i

2n
(b − a) ≤ X < a +

i + 1
2n

(b − a)
}]
(14)

10 O. Hasan and S. Tahar

The second expression is for an unbounded positive random variable [10].

E[X] = lim
n→∞

[
n2n−1∑

i=0

i

2n
P

{
i

2n
≤ X <

i + 1
2n

}
+ nP (X ≥ n)

]
(15)

Both of the above expressions do not involve any concepts from Lebesgue in-
tegration theory and are based on the well-known arithmetic operations like
summation, limit of a real sequence, etc. Thus, users can simply utilize them,
instead of Equation (13), to reason about the expectation properties of their
random variables and gain the benefits of the original Lebesgue based defini-
tion. The formal verification details for these expressions are given in [17]. These
expressions are further utilized to verify the expected values of Uniform, Trian-
gular and Exponential random variables [17]. The above mentioned definition
and simplified expressions will also facilitate the formalization of variance and
the verification of its corresponding properties.

3 Applications

We now illustrate the usage of the above mentioned formalization, for conducting
probabilistic analysis of some real-world systems.

3.1 Probabilistic Analysis of the Coupon Collector’s Problem

The Coupon Collector’s problem [34] refers to the problem of probabilistically
evaluating the number of trials required to acquire all unique, say n, coupons
from a collection of multiple copies of these coupons that are independently and
uniformly distributed. The problem is similar to the example when each box of
cereal contains one of n different coupons and once you obtain one of every type of
coupon, you win a prize. The Coupon Collector’s problem is a commercially used
computational problem and is commonly used for the identification of routers
that are encountered in packet communication between two hosts [34].

Based on the probabilistic analysis framework, presented in Section 2, partic-
ularly the capabilities to formally specify discrete random variables and formally
reason about the statistical properties of systems, a formal probabilistic analy-
sis of the Coupon Collector’s problem is presented in [21]. The first goal is to
verify that the expected value of acquiring all n coupons is nH(n), where H(n)
is the harmonic number (

∑n
i=1 1/i). Based on this expectation value, the next

step is to reason about the tail distribution properties of the Coupon Collector’s
problem using the formally verified Markov’s and Chebyshev’s inequalities.

The first step in the proposed approach is to model the behavior of the given
system as a higher-order-logic function, while representing its random compo-
nent using the formalized random variables. The Coupon Collector’s problem
can be formalized by modeling the total number of trials required to obtain all n
unique coupons, say T , as a sum of the number of trials required to obtain each
distinct coupon, i.e., T =

∑n
i=1 Ti, where Ti represents the number of trials to

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 11

obtain the ith coupon, while i− 1 distinct coupons have already been acquired.
The advantage of breaking the random variable T into the sum of n random
variables T1, T2 · · · , Tn is that each Ti can be modeled by the Geometric random
variable function. It is important to note here that the probability of success
for these Geometric random variables would be different from one another and
would be equal to the probability of finding a new coupon while conducting uni-
form selection trials on the available n coupons. Thus, the success probability
depends on the number of already acquired coupons and can be modeled using
the higher-order-logic function for the discrete Uniform random variable. Using
this approach the Coupon Collector’s problem has been modeled in [21] as a
higher-order-logic function, coupon collector, that accepts a positive integer
greater than 0, n + 1, which represents the total number of distinct coupons
that are required to be collected. The function returns the number of trials for
acquiring these n + 1 distinct coupons. Now, using this function along with the
formal definitions of expectation and variance and their formally verified corre-
sponding properties, given in Section 2.3, the following statistical characteristics
can be verified [21].

� ∀ n. expec (coupon collector (n + 1)) = (n + 1) (
∑n+1

i=0
1

i+1
)

� ∀ n a. 0 < a ⇒ P {s | (fst(coupon collector (n + 1) s)) ≥ a}
≤ ((n+1)

a
(
∑n+1

i=0
1

(i+1)))

� ∀ n a. 0 < a ⇒ P {s | abs((fst(coupon collector (n + 1) s)) -
expec (coupon collector (n + 1))) ≥ a}

≤ ((n+1)2

a2
(
∑n+1

i=0
1

(i+1)2))

where expec and abs represent the higher-order-logic functions for expectation
and absolute functions, respectively.

The first theorem gives the expectation of the Coupon Collector’s problem,
while the next two correspond to the tail distribution bounds of the Coupon
Collector’s problem using Markov and Chebyshev’s inequalities, respectively.
The above results exactly match the results of the analysis based on paper-and-
pencil proof techniques [34] and are thus 100 % precise, which is a novelty that
cannot be achieved, to the best of our knowledge, by any existing computer
based probabilistic analysis tool. The results were obtained by building on top
of the formally verified linearity of expectation and variance properties and the
Markov and Chebyshev’s inequalities and thus the proof script corresponding to
the formalization and verification of the Coupon Collector’s problem translated
to approximately 1000 lines of code and the analysis took around 100 man-hours.

3.2 Performance Analysis of the Stop-and-Wait Protocol

The Stop-and-Wait protocol [29] utilizes the principles of error detection and
retransmission to ensure reliable communication between computers. The main
idea is that the transmitter keeps on transmitting a data packet unless and until
it receives a valid acknowledgement (ACK) of its reception from the receiver.

12 O. Hasan and S. Tahar

The message delay of a communication protocol is the most widely used perfor-
mance metric. In the case of the Stop-and-Wait protocol, the message delay is
an unpredictable quantity since it depends on the random behavior of channel
noise and thus probabilistic techniques are utilized for its assessment.

The Stop-and-Wait protocol is a classical example of a real-time system and
thus involves a subtle interaction of a number of distributed processes. The be-
havior of these processes over time may be specified by higher-order-logic predi-
cates on positive integers [5] that represent the ticks of a clock counting physical
time in any appropriate units, e.g., nanoseconds. The granularity of the clock’s
tick is believed to be chosen in such a way that it is sufficiently fine to detect
properties of interest. Using this approach, the Stop-and-Wait protocol can be
formalized in higher-order logic as a logical conjunction of six processes (Data
Transmission, Data Channel, Data Reception, ACK Transmission, ACK Chan-
nel, ACK Reception) and some initial conditions [22]. The random component
in the Stop-and-Wait protocol is channel noise, which can be expressed using
the formal Bernoulli random variable function.

The next step is to utilize the formal model of the Stop-and-Wait protocol to
formally verify the average message delay relation of the Stop-and-Wait protocol,
for the case when the processing time of a message is equal to 1, as the following
theorem [22].

� ∀ source sink rem s i r ws sn ackty maxP abort dataS dataR
ackS ackR d tprop dtout dtf dta tf ack msg ta tout rec flag
bseqt bseq p.
STOP WAIT NOISY source sink rem s i r ws sn ackty maxP abort
dataS dataR ackS ackR d tprop dtout dtf dta tf
ack msg ta tout rec flag bseqt bseq ∧
LIVE ASSUMPTION abort ∧ 0 ≤ p ∧ p < 1 ∧ ¬NULL source ∧
tprop + 1 + ta + tprop + 1 ≤ tout ⇒
(expec (DELAY STOP WAIT NOISY rem source bseqt) =
((tf + tout)p/(1-p) + (tf + tprop + 1 + ta + tprop + 1)))

The antecedent of the above theorem contains the formal definition of the Stop-
and-Wait protocol under noisy channel conditions (STOP WAIT NOISY), liveness
constraints and the fact that the probability of channel error p is bounded in
the real interval [0, 1). The function DELAY STOP WAIT NOISY formally represents
the delay of the Stop-and-Wait protocol and thus the left-hand-side of the con-
clusion of the above theorem represents the average delay of the Stop-and-Wait
protocol. On the right-hand-side of the conclusion of the above theorem, the
variables tf , ta, tprop and tout denote the time delays associated with data
transmission, ACK transmission, message propagation, message processing and
time-out delays, respectively. More details on the variables used above and the
proof sketch of this theorem can be found in [22].

It is important to note here that the relation for the average delay of a Stop-
and-Wait protocol is not new. In fact its existence dates back to the early days of
introduction of the Stop-and-Wait protocol. However, it has always been verified

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 13

using theoretical paper-and-pencil proof techniques, e.g. [29]. Whereas, the anal-
ysis described above is based on mechanical verification using a theorem prover,
which is a superior approach to both paper-and-pencil proofs and simulation
based analysis techniques. To the best of our knowledge, it is the first time that
a statistical property for a real-time system has been been formally verified.

3.3 Reliability Analysis of Reconfigurable Memory Arrays

Reconfigurable memory arrays with spare rows and columns are quite frequently
used as reliable data storage components in present age System-on-Chips. The
spare memory rows and columns can be utilized to automatically replace rows
or columns that are found to contain a cell fault, such as stuck-at or coupling
fault [33]. One of the biggest design challenges is to estimate, prior to the actual
fabrication process, the right number of these spare rows and spare columns for
meeting the reliability specifications. Since the fault occurrence in a memory cell
is an unpredictable event, probabilistic techniques are utilized to estimate the
number of spare rows and columns [39].

The analysis for this example is done by formally expressing a fault model
for reconfigurable memory arrays in higher-order logic [23]. The formalization
utilizes the precise Binomial random variable function to express the random
components in the model. This model is then utilized to express and verify
statistical properties, such as expectation and variance of the number of faults
in terms of memory array and spare rows and columns sizes, as higher-order logic
theorems. Finally, this formal statistical information is built upon to formally
verify repairability and irrepairability conditions for a square memory array with
stuck-at and coupling faults that are independent and identically distributed. For
example, the repairability condition for a square nxn memory array, with axn
spare rows and bxn spare columns, has been verified as the following higher-
order-logic theorem.

� ∀ a b w. (0 ≤ a) ∧ (a ≤ 1) ∧ (0 ≤ b) ∧ (b ≤ 1) ∧
(c1 + c2 = a + b) ∧ (1 < n) ∧ (∀ n.(0 < w(n)) ∧

(w(n) < (min c1
√
n c2

√
n))) ∧ (lim (λn. 1

w(n)) = 0) ⇒
(lim (λn.P{s |(fst(num of faults n c1 c2 w s))≤(a+b)n})=1))

where lim M represents the higher-order logic formalization of the limit of a real
sequence M (i.e., lim M = lim

n→∞M(n)) [15]. The first four assumptions in the
above theorem ensure that the fractions a and b are bounded by the interval
[0, 1] as the number of spares can never exceed the number of original rows.
The relationship between a and b with two arbitrary real numbers c1 and c2 is
given in the fifth assumption. The precondition 1 < n has been used in order
to ensure that the given memory array has more than one cell. The next two
assumptions are about the real sequence w and basically provides its upper and
lower bounds. These bounds have been used in order to prevent the stuck-at
and coupling fault occurrence probabilities ps and pc from falling outside their
allowed interval [0, 1] [23]. The last assumption (lim(λn. 1

w(n)) = 0) has been

14 O. Hasan and S. Tahar

added to formally represent the intrinsic characteristic of real sequence w that
it tends to infinity as its natural argument becomes very very large. The theorem
proves that under these assumptions a very large square memory array is almost
always repairable (with probability 1) since the probability that the number of
faults is less than the number of spare rows and columns is 1.

The above theorem leads to the accurate estimation of the number of spare
rows and columns required for reliable operation against stuck-at and coupling
faults of any reconfigurable memory array without any CPU time constraints.
The distinguishing feature of this analysis is its generic nature as our theorems
are verified for all sizes of memories nxn with any number of spare rows (axn)
or columns (bxn).

This case study clearly demonstrate the effectiveness of theorem proving based
probabilistic analysis. Due to the formal nature of the models, the high expres-
siveness of higher-order logic, and the inherent soundness of theorem proving,
we have been able to verify generic properties of interest that are valid for any
given memory array with 100% precision; a novelty which is not available in sim-
ulation. Similarly, we have been able to formally analyze properties that cannot
be handled by model checking. The proposed approach is also superior to the
paper-and-pencil proof methods [39] in a way as the chances of making human
errors, missing critical assumptions and proving wrongful statements are almost
nil since all proof steps are applied within the sound core of a higher-order-logic
theorem prover. These additional benefits come at the cost of the time and ef-
fort spent, while formalizing the memory array and formally reasoning about its
properties. But, the fact that we were building on top of already verified prob-
ability theory foundations, described in Section 2, helped significantly in this
regard as the memory analysis only consumed approximately 250 man-hours
and 3500 lines of proof code.

3.4 Round-Off Error Analysis in Floating-Point Representation

Algorithms involving floating-point numbers are extensively used these days in
almost all digital equipment ranging from computer and digital processing to
telecommunication systems. Due to their complexity and wide spread usage in
safety critical domains, formal methods are generally preferred over traditional
testing to ensure correctness of floating-point algorithms. A classical work in this
regard is Harrison’s error analysis of floating-point arithmetic in higher-order
logic [14]. Harrison presents a formalization of floating point numbers, verifica-
tion of upper bounds on the error in representing a real number in floating-point
and the error in floating-point arithmetic operations. Even though this analysis
is very useful in identifying the worst case conditions, it doest not reflect upon
typical or average errors. In fact, the assumed worst case conditions rarely occur
in practice. So the error analysis, based under these worst-case conditions can
improperly suggest that the performance of the algorithm is poor.

In paper-and-pencil analyses, probabilistic techniques are thus utilized in the
error analysis of floating-point algorithms [41]. The main idea behind this prob-
abilistic approach is to model the error in a single floating-point number by an

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 15

appropriate random variable and utilize this information to judge the expected
value of error while representing a real number in floating-point system. This
expected value of error can then be used to find the expected value of error in
different floating-point arithmetic operations.

The above mentioned probabilistic analysis involves reasoning about the ex-
pectation value of a continuous random variable, since the error between a real
number and its corresponding floating-point representation is continuous in na-
ture. Thus, our proposed infrastructure can be directly utilized to conduct such
analysis, something that to the best of our knowledge was not possible before.

We built upon Harrison’s error bounds for floating-point representations of
big (|x| ∈ [2k, 2k+1), small (|x| ∈ [1

2k+1 , 1
2k] : k < 126), and tiny (|x| ∈ [0, 1

2126])
real numbers [14]. The error is defined as the difference between the real value
of the floating-point representation and the actual value of the corresponding
real number (error(x) = float(x)− x), with round-to-nearest rounding mode.
Based on this definition, upper bounds on the absolute value of error are verified
to be equal to 2k

224 , 1
2k+1224 and 1

2150 , for the three cases above, respectively.
Assuming any value of error to be equally likely [41], we constructed formal

probabilistic models for representing the above mentioned rounding errors us-
ing Uniform random variables defined in the intervals [0, 2k

224], [0, 1
2k+1224] and

[0, 1
2150], respectively. The formally verified expectation of the Uniform random

variable [17] was then used to verify the expectation values of these floating-point
errors using a theorem prover.

� ∀ k x.
(
expec(uniform rv 0 2k

224) = 2k−1

224

) ∧(
expec(uniform rv 0 1

2k+1224) = 1
2k+1225

) ∧(
expec(uniform rv 0 1

2150) = 1
2151

)
This theorem plays a vital role in the statistical error analysis of floating-point
arithmetic. Based on these averages of error in a single floating-point number,
the average errors in floating point operations, like addition and multiplication,
that involve multiple floating-point numbers, can be evaluated. Similarly, this
information can be utilized in conducting the statistical error analysis of digital
signal processing (DSP) systems by building on top of the DSP verification
framework in higher-order logic [1], which does not include any probabilistic
considerations.

The verification of the above result was automatic as the verified theorem
is a direct consequence of the expectation property of the continuous Uniform
random variable, which is available in the proposed framework. This fact clearly
demonstrates the usefulness of the proposed infrastructure that calls for formal-
izing and verifying the fundamental concepts of probability theory in order to
facilitate the formal probabilistic analysis of real-world systems.

4 Related Work

Due to the vast application domain of probability in safety-critical applications,
many researchers around the world are trying to improve the quality of computer

16 O. Hasan and S. Tahar

based probabilistic analysis. The ultimate goal is to come up with a formal prob-
abilistic analysis framework that includes robust and accurate analysis methods,
has the ability to perform analysis for large-scale problems and is easy to use.
In this section, we provide a brief account of the state-of-the-art in this field.

Probabilistic model checking [3,37] is one of the commonly used formal prob-
abilistic analysis technique. It involves the construction of a precise state-based
mathematical model of the given probabilistic system, which is then subjected to
exhaustive analysis to formally verify if it satisfies a set of formally represented
probabilistic properties. Numerous probabilistic model checking algorithms and
methodologies have been proposed in the open literature, e.g., [8,35], and based
on these algorithms, a number of tools have been developed, e.g., PRISM [36,28],
E �MC2 [24], Rapture [27] and VESTA [38]. Besides the accuracy of the results,
the most promising feature of probabilistic model checking is the ability to per-
form the analysis automatically. On the other hand, it is limited to systems
that can only be expressed as probabilistic finite state machines. Another major
limitation of the probabilistic model checking approach is state space explosion
[4]. The state space of a probabilistic system can be very large, or sometimes
even infinite. Thus, at the outset, it is impossible to explore the entire state
space with limited resources of time and memory. Similarly, we cannot reason
about mathematical expressions in probabilistic model checking. This is a big
limitation as far as reasoning about PMF, CDF or expectation or variance of a
random behavior is concerned, which are basically functions of the range of a
random variable. Thus, the probabilistic model checking approach, even though
is capable of providing exact solutions, is quite limited in terms of handling a
variety of probabilistic analysis problems. Whereas higher-order-logic theorem
proving is capable of overcoming all the above mentioned problems but at a
significant cost of user interaction.

Besides higher-order-logic theorem proving and model checking, another for-
mal approach that is capable of providing exact solutions to probabilistic proper-
ties is proof based languages that have been extended with probabilistic choice.
The main idea behind this approach is to use refinement or utilize the expecta-
tions (or probabilistic invariants) to reason about probabilistic properties. Many
formalisms have been extended with probabilistic choice, e.g., B (pB) [25], Hoare
logic (pL) [7], Z [40] and Event-B [13]. Besides their precision, another major
benefit of these approaches is their automatic or semi-automatic nature. Out
of these formalisms, Probabilistic B (pB) is one of the more commonly used
mainly because of its ability to obtain algebraic relationships between the dif-
ferent parameters of the model and of the design requirements. On the other
hand, even though some efforts have been reported, e.g. [2], it is not mature
enough to model and reason about random components of the system that in-
volve all different kinds of continuous probability distributions. Similarly, all of
the above mentioned formalisms cannot be used to reason about generic mathe-
matical expressions for probabilistic or statistical properties, such as PMF, CDF,
expectation or variance, due to their limited expressiveness, which is not an is-
sue with the proposed higher-order-logic theorem proving based approach. For

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 17

example, the Chaums Dining Cryptographers (DC) problem, a well-known se-
curity problem, has been recently analyzed formally using the pB approach and
the mean and variance of utterances have been computed for only a finite num-
ber of DC nets and specific set of fixed values for coin fairness [32]. By contrast,
higher-order-logic theorem proving can be utilized to prove generic mathemat-
ical expressions, for the mean and variance characteristics of interest, that are
quantified over n cryptographers and all values of coin fairness.

5 Conclusions

This paper provides a brief overview of the existing capabilities of higher-order-
logic theorem proving based probabilistic analysis approach. The main idea be-
hind this emerging trend is to use random variables formalized in higher-order
logic to model systems, which contain some sort of randomness, and to verify the
corresponding probabilistic and statistical properties in a theorem prover. Be-
cause of the formal nature of the models, the analysis is 100% accurate and due
to the high expressive nature of higher-order logic a wider range of systems can
be analyzed. Thus, the theorem proving based probabilistic analysis approach
can prove to be very useful for the performance and reliability optimization of
safety critical and highly sensitive engineering and scientific applications.

The proposed approach has been illustrated by providing the formal proba-
bilistic analysis of four real-world systems. The analysis results exactly matched
the results obtained by paper-and-pencil proof techniques and are thus 100 %
precise. The successful handling of these diverse problems by the proposed ap-
proach clearly demonstrates its feasibility for real-world probabilistic analysis
issues. In all these applications, we have been able to formally reason about real
valued expressions of probabilistic or statistical properties of systems, something
that cannot be achieved by probabilistic model checking or probabilistic language
based approaches.

All higher-order-logic formalizations, presented in this paper, have been done
using the HOL theorem prover [12]. The main reason being that the foundational
measure and probability theories were formalized in HOL first [26] and then the
rest of the infrastructure kept building upon that. Though, it is important to
note that the presented methodologies and framework are not specific to the
HOL theorem prover and can be adapted to any other higher-order-logic theorem
prover, such as Isabelle, Coq or PVS, as well.

The theorem proving based probabilistic analysis framework can no way be
considered to be mature enough to be able to handle all kind of problems. There
are many open research issues that need to resolved in order to achieve this goal.
To name a few, first of all the capability to reason about multiple continuous
random variables is not available. Secondly, some of the most commonly used
random variables, like the Normal random variable, have not been formalized so
far. Thirdly, no formalization related to stochastic processes and Markov chains
is available, which are widely used concepts in probabilistic analysis.

18 O. Hasan and S. Tahar

References

1. Akbarpour, B., Tahar, S.: An Approach for the Formal Verification of DSP Designs
using Theorem Proving. IEEE Transactions on CAD of Integrated Circuits and
Systems 25(8), 1141–1457 (2006)

2. Andrews, Z.: Towards a Stochastic Event B for Designing Dependable Systems.
In: Proc. Workshop on Quantitative Formal Methods: Theory and Applications,
Eindhoven, The Netherlands (November 2009)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(4), 524–541 (2003)

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Cardell-Oliver, R.: The Formal Verification of Hard Real-time Systems. PhD The-

sis, University of Cambridge, UK (1992)
6. Coble, A.: Anonymity, Information, and Machine-Assisted Proof. Ph.D Thesis,

University of Cambridge, UK (2009)
7. Corin, R.J., Den Hartog, J.I.: A Probabilistic Hoare-style Logic for Game-based

Cryptographic Proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)

8. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD Thesis, Stanford
University, Stanford, USA (1997)

9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg
(1986)

10. Galambos, J.: Advanced Probability Theory. Marcel Dekker Inc., New York (1995)
11. Gordon, M.J.C.: Mechanizing Programming Logics in Higher-Order Logic. In: Cur-

rent Trends in Hardware Verification and Automated Theorem Proving, pp. 387–
439. Springer, Heidelberg (1989)

12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

13. Hallerstede, S., Hoang, T.S.: Qualitative Probabilistic Modelling in Event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007)

14. Harrison, J.: Floating Point Verification in HOL Light: The Exponential Function.
Technical Report 428, Computing Laboratory, University of Cambridge, UK (1997)

15. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
16. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press, Cambridge (2009)
17. Hasan, O., Abbasi, N., Akbarpour, B., Tahar, S., Akbarpour, R.: Formal reason-

ing about expectation properties for continuous random variables. In: Cavalcanti,
A., Dams, D.R. (eds.) FM 2009: Formal Methods. LNCS, vol. 5850, pp. 435–450.
Springer, Heidelberg (2009)

18. Hasan, O., Tahar, S.: Formalization of the Continuous Probability Distributions.
In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007)

19. Hasan, O., Tahar, S.: Formalization of the Standard Uniform Random Variable.
Theoretical Computer Science 382(1), 71–83 (2007)

20. Hasan, O., Tahar, S.: Using Theorem Proving to Verify Expectation and Variance
for Discrete Random Variables. Journal of Automated Reasoning 41(3-4), 295–323
(2008)

Formal Probabilistic Analysis: A Higher-Order Logic Based Approach 19

21. Hasan, O., Tahar, S.: Formal Verification of Tail Distribution Bounds in the HOL
Theorem Prover. Mathematical Methods in the Applied Sciences 32(4), 480–504
(2009)

22. Hasan, O., Tahar, S.: Performance Analysis and Functional Verification of the Stop-
and-Wait Protocol in HOL. Journal of Automated Reasoning 42(1), 1–33 (2009)

23. Hasan, O., Tahar, S., Abbasi, N.: Formal Reliability Analysis using Theorem Prov-
ing. IEEE Transactions on Computers (2009), doi:10.1109/TC.2009.165

24. Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: A Markov Chain Model
Checker. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 347–362. Springer, Heidelberg (2000)

25. Hoang, T.S.: The Development of a Probabilistic B Method and a Supporting
Toolkit. PhD Thesis, The University of New South Wales, UK (2005)

26. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, UK (2002)

27. Jeannet, B., Argenio, P.D., Larsen, K.: Rapture: A Tool for Verifying Markov
Decision Processes. In: Tools Day, 13th Int. Conf. Concurrency Theory, Brno, Czech
Republic (2002)

28. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Prob-
abilistic Model Checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

29. Leon-Garcia, A., Widjaja, I.: Communication Networks: Fundamental Concepts
and Key Architectures. McGraw-Hill, New York (2004)

30. Levine, A.: Theory of Probability. Addison-Wesley series in Behavioral Science,
Quantitative Methods (1971)

31. MacKay, D.J.C.: Introduction to Monte Carlo Methods. In: Learning in Graphical
Models, NATO Science Series, pp. 175–204. Kluwer Academic Press, Dordrecht
(1998)

32. McIver, A., Meinicke, L., Morgan, C.: Security, Probability and Nearly Fair Coins in
the Cryptographers’ Café. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009: Formal
Methods. LNCS, vol. 5850, pp. 41–71. Springer, Heidelberg (2009)

33. Miczo, A.: Digital Logic Testing and Simulation. Wiley Interscience, Hoboken (2003)
34. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University

Press, Cambridge (2005)
35. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic System.

PhD Thesis, University of Birmingham, UK (2001)
36. PRISM (2008), http://www.cs.bham.ac.uk/~dxp/prism
37. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques

for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society (2004)

38. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-Checker and
Analyzer for Probabilistic Systems. In: Proc. IEEE International Conference on
the Quantitative Evaluation of Systems, pp. 251–252 (2005)

39. Shi, W., Fuchs, W.K.: Probabilistic Analysis and Algorithms for Reconfiguration
of Memory Arrays. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 11(9), 1153–1160 (1992)

40. White, N.: Probabilistic Specification and Refinement. Masters Thesis, Oxford Uni-
versity, UK (1996)

41. Widrow, B.: Statistical Analysis of Amplitude-quantized Sampled Data Systems.
AIEE Transactions on Applications and Industry 81, 555–568 (1961)

42. Yates, R.D., Goodman, D.J.: Probability and Stochastic Processes: A Friendly
Introduction for Electrical and Computer Engineers. Wiley, Chichester (2005)

http://www.cs.bham.ac.uk/~dxp/prism

Synchronous Message Passing and Semaphores:
An Equivalence Proof

Iain Craig1 and Egon Börger2

1 Visiting Researcher, Department of Computer Science, University of York
(Correspondence address: Flat 4, 34 Sherbourne Road, Birmingham, UK)

idcraig@talktalk.net
2 Dip. di Informatica, Università di Pisa, Italy

boerger@di.unipi.it

On sabbatical leave at CS Department, ETH Zürich

Abstract. A natural encoding of synchronous message exchange with
direct wait-control is proved to be equivalent in a distributed environ-
ment to a refinement which uses semaphores to implement wait control.
The proof uses a most general scheduler, which is left as abstract and as-
sumed to satisfy a few realistic, explicitly stated assumptions. We hope to
provide a scheme that can be implemented by current theorem provers.

1 Introduction

This paper is part of an endeavor a) to rigorously model kernels of small but
real-life operating systems (OS) at a high level of abstraction, b) to verify math-
ematically the major OS properties of interest in the models and c) to refine the
models in a provably correct way by a series of steps to implementation code.
So that the refinement steps reflect the major design decisions, which lead from
the abstract models to executable code, and to make their correctness mathe-
matically controllable, we use algorithmic (also called operational) models. Thus
we deviate from the axiomatic (purely declarative) point of view underlying the
Z-based formal models of operating system kernels in the two recent books [5,6],
which are, however, our starting point. We are careful to ensure that our models,
technically speaking, Abstract State Machines [4], whose semantic foundation
justifies our considering them an accurate version of pseudo-code, are under-
standable by programmers without further training in formal methods, so that
they can be effectively used in practice by designers and teachers for a rigorous
analysis of OS system functionalities.

In a first paper [3] we presented the method, focussing on modeling the be-
havior of the clock process, more specifically the clock interrupt service routine,
which interacts with a priority-based scheduler of device, system and user pro-
cesses. The paper uses an abstract form of synchronous message passing. In this
paper we show that a natural high-level specification of synchronous message
exchange which uses a direct wait control mechanism has a provably correct
refinement (in fact is equivalent to it) which uses semaphores to implement the
wait control.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 20–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Synchronous Message Passing and Semaphores: An Equivalence Proof 21

The equivalence of a direct implementation of synchronous message passing
and of one using semaphores is often cited in the literature (e.g., [7]). The purpose
of this paper is to illustrate how one can turn this equivalence claim, in a way
which supports the intuitive operational understanding of the involved concepts,
into a precise mathematical statement and prove it, with reasonable generality,
that is, in terms of a faithful abstract model and its refinement.

A natural direct implementation of the synchronous message-passing mech-
anism uses a queue of processes, whose running mode is controlled by explicit
intervention of the scheduler (Sect. 3)1. An alternative implementation uses a
semaphore structure, which allows one to separate the issues related to process
control (handing the permission to processes to run in a critical section) from
the message transfer functionality (Sect. 5). In a specification which already in-
cludes semaphores as a component, using semaphores in the refinement of an
implementation that uses direct process control makes sense because it reduces
the complexity of individual code modules as well as the related verification
tasks. Proceeding this way is an example of the use of standard components for
stepwise refinement in a sense similar to the library types often provided with
object-oriented programming languages.

We collect, in Sect. 2, the minimal assumptions that must be guaranteed for
the underlying scheduling mechanism. We exhibit these assumptions to clarify
the sense in which our model and its verification apply to any OS scheduling
policy encountered in real life. In Sect. 4, we specify the underlying semaphore
concept. The definitions in these two sections are re-elaborations of those given
in [3] to which we refer for their motivation. The equivalence proof as presented
in Sect. 6 applies only to the uniprocessor case.

2 Scheduling

Both semaphores and synchronous message passing require a scheduler and its
associated operations. In this section, we briefly provide this background, for-
mulating the minimal assumptions needed for the equivalence proof.

In the uniprocessor case, an operating system comes with a notion of a unique
currently-executing process, which we denote by currp. It is an element of a
dynamic set Process of processes, or it is the idleProcess . The currprocess can
be thought of as the only one with status(currp) = run (read: instruction pointer
ip pointing into its code). The scheduler selects it from a queue, readyq, of
processes whose status is ready to execute, possibly respecting some predefined
priorities (e.g. selecting device processes before system processes and those before
user processes, see [3]). We make no specific assumptions as to how readyqueue
is ordered, so that any fair scheduling policy (as specified by the assumptions
stated below) is covered by our equivalence proof.

Only two scheduler operations are required, the exact nature of which can
remain abstract. One operation, defined by SuspendCurr below, suspends a
1 One reviewer suggested to use instead the “await” blocking rule constructor defined

in [1] for concurrent ASMs. We want to keep the construction here as elementary as
possible to easen the implementation of the equivalence theorem by theorem provers.

22 I. Craig and E. Börger

sender process, currp, when it has sent a message to a dest ination process. The
other operation, defined by MakeReady(src) below, makes the sender (also
called source) process, src, ready again when the message has been communi-
cated to (read: received by) the receiver process, dest .

The main effect of SuspendCurr is to update currp to the next process,
which is selected by the scheduler from the readyq. We denote the selected ele-
ment by head(readyq) to convey the idea that the selection is made based upon
the order of the queue; the function head is defined by the scheduler and need
not be further specified here. In addition, the selected process is deleted from
the readyq and assigned the status run. Also, the current state of the previous
current process must be saved and the state of the new current process must be
restored. Since these state update operations are orthogonal to the mere schedul-
ing part of SuspendCurr, we denote them here by two abstract machines that
are not further specified: SaveState and RestoreState. Their execution is
considered to be atomic, which amounts to using a locking mechanism whose
specifics we can ignore here without loss of generality.2 This leads to the fol-
lowing definition, where we use an abstract machine Dequeue to denote the
deletion of an element that has been chosen from readyq.3

SuspendCurr =
let h = head(readyq)4 in

UpdateState(currp, h)
currp := h
status(h) := run
Dequeue(h, readyq)

where
UpdateState(p, p′) =

SaveState(p)
RestoreState(p′)

The effect of MakeReady(p) is to Enqueue(p, readyq) and to update its
status to ready. As a result of executing MakeReady(p), process p becomes a
candidate for the scheduler’s next choice for updating currp. Here, we do not
specify the order of readyq, so Enqueue is left as an abstract machine, which is
assumed to respect the intended readyq order when inserting an element.

MakeReady(p) =
Enqueue(p, readyq)
status(p) := ready

2 The locking effect is captured here by the atomicity of ASM steps, see [3].
3 We remind the reader that due to the simultaneous parallel execution of all updates

in an ASM rule, currp on the right hand side of := denotes the prev ious value and
currp on the left hand side of := the newly assigned value.

4 In the special case of an empty readyq , the well known idleProcess is chosen to
become the new currp. This case is of no importance here, so that, without loss of
generality, we omit it in this rule to streamline the exposition.

Synchronous Message Passing and Semaphores: An Equivalence Proof 23

3 Directly Controlled Synchronous Message Passing

Inboth this section and section Sect. 5,we assume an abstract set,Msg, ofmessages
as given. We analyze synchronous message passing between processes as triples of
three steps, each described using abstract machine components as follows:

StartSending out a message m from a source src to a dest ination
• by recording m, say in a location outbox (src), for the transfer

and Wait for the synchronization with dest ;
StartSynchronizing with a source process src and Wait for the synchro-
nization with dest to become effective;
Upon synchronization bw src and dest :
• DeliverMsg to the dest ination process, say by transfer of the value of

outbox (src) into a location inbox (dest)
• TerminateSynchronization.

For both the direct implementation and the one using semaphores, we define
a version for each of the named components. Note that StartSend&Wait and
StartSync&Wait can be executed in any order, depending on whether the
sender or the receiver initiates the message passing.

3.1 The MsgPassCtl Machine (Ground Model)

A natural way directly to control synchronous message passing in a distributed
environment consists of making sender and receiver wait for each other until each
one has ‘seen’ the other. To describe the waiting phase, one can use an exten-
sion of the scheduler’s status control. To do this, on the sender side, execution
of StartSend&WaitCtl(m, src, dest) will RecordForTransfer(m, src) the
message m, suspend the sender src (read: the currently executing process), switch
its status to sndr and Enqueue(src) in a collection, wtsndr(dest), of senders
waiting for their message to be received by the dest ination process. The operation
StartSync&WaitCtl of dest consists of, first, testing whether there is a message
waiting to be received. If wtsndr(dest) is empty, dest switches to receiver status
rcvr and suspends itself, whereafter only a sender move can MakeReady(dest)
again. If wtsndr(dest) is found not to be empty (any more), both parties are syn-
chronized. This triggers the receiver’s second move PassMsgCtl to DeliverMsg

in the receiver side and to terminate the synchronization (i.e. MakeReady the
sender and delete it from wtsndr(dest)).

The preceding protocol description is formalized by the following definitions.
We deliberately leave the Enqueue and Dequeue operations abstract; their
instantiation depends on the scheduling policy5.
5 Note, however, that for our equivalence proof in Sect. 6, the unipro-

cessor assumption is used. It guarantees that at each moment in
MsgPassCtl , at most one Enqueue(src, wtsndr(dest)) move is made (as
part of a StartSend&WaitCtl(m, src, dest) move) and, in MsgPassSema ,
at most one corresponding WaitSema(insema(dest)) move (as part
of a StartSend&WaitSema(m, src, dest) move—see the definition of
SendSema(m, src, dest), below).

24 I. Craig and E. Börger

SendCtl (m, src, dest) = StartSend&WaitCtl (m, src, dest) where
StartSend&WaitCtl (m, src, dest) =

RecordForTransfer(m, src)
status(src) := sndr
Enqueue(src,wtsndr(dest))
if status(dest) = rcvr then MakeReady(dest)
SuspendCurr

RecordForTransfer(m, src) = (outbox (src) := m)6

For the definition of the submachine PassMsgCtl of ReceiveCtl , it remains
to decide whether the protocol should simultaneously permit multiple senders
to StartSend&WaitCtl a message to the same dest ination process and in the
positive—the more general—case, whether, and possibly how, such sender pro-
cesses should be ordered in wtsndr(dest). This decision influences the prop-
erty that can be proved in the equivalence theorem. Since the usual model of
semaphores is that they work with queues, we assume in the following that
wtsndr(dest) is a (possibly priority) queue.

ReceiveCtl splits into a step StartSync&WaitCtl followed by PassMsgCtl .
To formalize this sequentiality in the context of simultaneous parallel execution
of ASM rules, we use the interruptable version of sequential execution introduced
for ASMs in [3]7. It is borrowed from the traditional FSM-control mechanism
and denoted step8. Since wtsndr(dest) is treated as a queue, we again use a
‘head’ function, denoted hd , to select (possibly in a priority-based manner) the
next element to be Dequeued from wtsndr(dest).

ReceiveCtl(dest) =
StartSync&WaitCtl(dest) step PassMsgCtl (dest)

where
StartSync&WaitCtl(p) =

if wtsndr(p) = ∅ then
6 Since StartSend&WaitCtl suspends the sender, there is no buffering of messages

at the sender side; i.e. outbox is only an internal location for recording a message a
sender wants to send in a synchronized fashion, it is not a message box.

7 One reviewer observed that given the mutually exclusive guards of
StartSync&WaitCtl and PassMsgCtl , we could have avoided here (but not
in the analogous situation of SendSema in Sect. 5) to use the step notation, which
forces the receiver to each time perform two steps (the first of which may result
in only changing the implicit control state). However, eliminating step here would
slightly complicate the comparative analysis of sender and receiver moves in the
two protocols in Sect. 6, where we exploit the simple correspondence of message
exchange triples.

8 M1 step M2 consists of two rules:

if ctl state = 1 then
M1

ctl state := 2

and the same with interchanging 1 and 2.

Synchronous Message Passing and Semaphores: An Equivalence Proof 25

status(p) := rcvr
SuspendCurr

PassMsgCtl(p) =
if wtsndr(p) �= ∅ then

let src = hd(wtsndr(p)) in
DeliverMsg(src, p)
TerminateSync(scr , p)

DeliverMsg(q, p) = (inbox (p) := outbox (q))
TerminateSync(s , p) =

Dequeue(s ,wtsndr(p))
MakeReady(s)

MsgPassCtl denotes an asynchronous (also called distributed) ASM where
sender agents are equipped with the StartSend&WaitCtl program and receiver
agents with the ReceiveCtl program.

3.2 Properties of MsgPassCtl Runs

In this section, we justify the definition of MsgPassCtl by proving that it speci-
fies a correct synchronous message passing scheme, which, under minimal sched-
uler assumptions, is also a fair one. First of all we have to clarify what correctness
and fairness mean in this context.

Due to the distributed context and depending on the scheduler, it may happen
that multiple senders send a message to the same destination process before the
latter has had a chance to synchronize with any of the former. This produces an
asymmetry between sender and receiver moves: it is decided at the receiver’s side
which one of the waiting senders is considered next for synchronization. Therefore
the waiting phase a sender src enters to send a message is terminated only by
the synchronization with the dest ination process (see the SndrWait property in
Theorem 1), whereas the receiver dest may enter and terminate various waiting
phases (namely for receiving messages from other senders) before entering its
waiting phase for src (if at all), which can be terminated only by synchronization
with src (see the RcvrWait condition in Theorem 1).

To support the reader’s general intuitions, we speak in this section of sender
(source) or receiver (destination) process to refer to an agent with program
StartSend&WaitCtl or ReceiveCtl , respectively. Saying that a process p is
scheduled, is a shorthand for p = currp. In the following theorem, we first for-
mulate the (intuitive requirements for the) correctness property in general terms
and then make them precise and prove the resulting statement for MsgPassCtl .

Theorem 1. (Correctness Property for Message Passing) The following prop-
erties hold in every run of MsgPassCtl .

SndrWait: Whenever a source process src is scheduled for sending a message,
m, to a receiver process dest, it will record the message for transfer and then
wait (without making any further move) until it is synchronized with dest;
it will wait forever if it cannot be synchronized with dest. In MsgPassCtl ,

26 I. Craig and E. Börger

src is said to be synchronized with dest when the receiver process dest has
performed a StartSync&Wait move and is scheduled, ready to receive a
message sent from src (i.e. src = hd(wtsndr(p))).

RcvrWait: Whenever a process, dest, is scheduled for receiving a message, it
will wait (i.e. not perform any further move) until it is synchronized with a
sender process src.

Delivery: Whenever the sender src of a message and its receiver dest are syn-
chronized, the message is delivered at the receiver process, one at a time and
at most once, and the synchronization of the two processes terminates.

To turn the wording of this theorem into a precise statement for MsgPassCtl so
that it can be proved, we use the notion of runs of an asynchronous (multi-agent)
ASM. Such a run is defined as a partially ordered set of moves (execution of ASM
steps by agents) which a) satisfies an axiomatic coherence condition, b) yields
a linear order when restricted to the moves of any single agent (sequentiality
condition), c) for each single move of any agent has only finitely many predecessor
moves (so-called finite history condition). The coherence condition guarantees
that for each finite run segment, all linearizations yield runs with the same final
state (see [4] for a detailed definition).

The axiomatic description of the notion of a run of asynchronous (multi-agent)
ASMs fits well with the purpose of this paper. Without providing any information
on how to construct a class of admissible runs (read: to implement a scheduler),
it characterizes the minimal ordering conditions needed so that, when of a run
the ordering of some moves of some agents could matter for the outcome, this
ordering appears explicitly in the ordering conditions (read: the partial order).
Therefore the properties of runs of an arbitrary MsgPassCtl that we formulate
and prove in this section, hold in full generality for every implementation or
refinement of MsgPassCtl by a scheduling policy that extends the partial order
(e.g. to a linear order).

Proof. For the rest of this section, whenever we speak of a run we refer to an
arbitrarily given, fixed run of MsgPassCtl with respective sender and receiver
agents. The proof of Theorem 1 is by induction on the number of times a process
is scheduled for sending or receiving a message in MsgPassCtl runs.

The first two claims of property SndrWait follow from the execution of the first
three updates and the SuspendCurr submachine of StartSend&WaitCtl .
The waiting phase of a sender is characterized here by the following two prop-
erties of the sender: it must

be in sndr status—which prevents it from being scheduled because, in order
to be scheduled, a process must be in ready status and in (usually at the
head of) the scheduler’s readyqueue;
be an element of wtsndr of some destination process.

The third claim follows because, by the definition of MsgPassCtl , only a
PassMsgCtl move can MakeReady(src); for this to happen, the dest ination
process involved, upon being scheduled,9 must have determined src as its next
9 Obviously, if dest is never scheduled, src can never synchronize with it.

Synchronous Message Passing and Semaphores: An Equivalence Proof 27

waiting sender to synchronize with. Before PassMsgCtl (dest) checks this ’readi-
ness to receive from src’ condition (namely by the guard src=hd(wtsndr(dest))),
by definition of ReceiveCtl(dest), the dest process must already have been
scheduled to execute its StartSync&WaitCtl(dest) move once (possibly a skip
move, which does not cause the status to change to rcvr status).

For the proof of the RcvrWait property, let us assume that a process, dest ,
is scheduled to receive a message from some sender process and has executed
its StartSync&WaitCtl (dest) step. Case 1: there is no waiting sender. Then
dest switches to status rcvr. At this point, by definition of MsgPassCtl , only
a StartSend&WaitCtl move can MakeReady(dest), after which dest can
again be scheduled by the scheduler. Case 2: wtsndr(dest) �= ∅. Then dest is
still scheduled (unless, for some reason, the scheduler deschedules it, possibly
rescheduling it again later). In both cases, whenever dest is scheduled, it is
ready to receive a message from the sender process, src, it finds at the head of
its queue of waiting senders (src = hd(wtsndr(dest))). Therefore dest and src
are synchronized so that now, and only now, the DeliverMsg can take place,
as part of the PassMsgCtl(dest) move, for the message sent by src.

The Delivery property holds for the following reason. When two processes,
src and dest , are synchronized, by definition of PassMsgCtl(dest), exactly one
execution of DeliverMsg(src, dest) is triggered, together with the machine
TerminateSync(scr , dest) which terminates the sender’s waiting phase. Note
that dest , by being scheduled, has just terminated its waiting phase. Note that
the one-at-a-time property holds only for the uniprocessor case. �

Remark on Fairness. Although in the presence of timeouts fairness plays a
minor role, fairness issues for MsgPassCtl can be incorporated into Theorem 1.

An often-studied fairness property is related to overtaking. For example, to
guarantee that messages are delivered (if at all) in the order in which their
senders present themselves to the receiver (read: enter its wtsndr collection), it
suffices to declare wtsndr(p) as a queue where the function hd in PassMsg is
the head function. In addition, one has to clarify the order in which senders
simultaneously presenting to the same dest ination process are enqueued into
wtsndr(dest).

Any fairness property of the underlying scheduler results in a corresponding
fairness property of MsgPassCtl . For example, if the scheduler repeatedly sched-
ules every (active) process, every message sent can be proved eventually to be
delivered to the receiver.

4 Semaphores

We borrow the ASM specification of semaphores from [3]. For the equivalence
proof in Sect. 6 binary semaphores, often called mutual exclusion or mutex
semaphores, suffice. They permit at most one process at any time in their critical
section, thus bind their counter to one of two values (e.g. 0,1) at any time.

A (counting) semaphore, s , has two locations, a counter and a queue of pro-
cesses waiting to enter the critical section guarded by s , written semacount(s),

28 I. Craig and E. Börger

resp. semaq(s) or just semacount resp. semaq if s is clear from the context. The
semaphore counter is usually initialized to a value allowed(s) > 0, the number
of processes simultaneously permitted by s in its associated critical section; the
semaphore queue is assumed to be initialized to an empty queue.

Semaphores have two characteristic operations: WaitSema, which is exe-
cuted when trying to access the critical section, and SignalSema, which is exe-
cuted when leaving the critical section. WaitSema subtracts 1 from semacount ;
SignalSema adds 1 to it. As long as semacount remains non-negative, noth-
ing else is done when WaitSema is scheduled, so that currprocess can enter
the critical section. If semacount is negative, at least allowed processes are cur-
rently in the critical section. Therefore, in this case, the WaitSema move will
SuspendCurr, add currp to the semaphore queue semaq and put it into status
semawait(s). Only a later SignalSema move can bring the suspended process
back to ready status (see below). This leads to the following definition, where
we use abstract Enqueue and Dequeue operations. For the sake of generality
we use a caller parameter, which we will use below only for caller = currp.10

WaitSema(s , caller) =
let newcount = semacount(s)− 1 in

semacount(s) := newcount
if newcount < 0 then

Enqueue(caller , semaq(s))
status(caller) := semawait(s)
SuspendCurr

WaitSema(s) = WaitSema(s , currp)

The Signal operation, which is assumed to be performed each time a process
leaves the critical section, adds one to semacount . If the new value of semacount
is not yet positive, semaq still contains some process that is waiting to enter the
critical section. Then the process which first entered semaq is removed from the
queue and made ready, so that (when scheduled) it can enter the critical section.

SignalSema(s) =
let newcount = semacount(s) + 1 in

semacount(s) := newcount
if newcount ≤ 0 then

let h = head(semaqueue(s)) in
Dequeue(h, semaqueue(s))
MakeReady(h)

Sema(s) is the ASM with rules WaitSema(s , currp), SignalSema(s).

Theorem 2. (Semaphore Correctness Theorem) For every semaphore, s, and
every properly initialized Sema(s) run the following properties hold:
10 The operations performed by Wait and Signal must be atomic, as guaranteed by

an ASM step. In the literature, auxiliary Lock and UnLock operations guarantee
the atomicity.

Synchronous Message Passing and Semaphores: An Equivalence Proof 29

Exclusion: There are never more than allowed(s) processes within the critical
section guarded by s.

Fairness: If every process that enters the critical section eventually leaves it
with a SignalSema(s) move and if the head function is fair (i.e. eventually
selects every element that enters semaqueue(s)) and if the scheduler is fair,
then every process that makes a WaitSema(s) move in an attempt to enter
the critical section will eventually enter it.

Proof. The exclusion property initially holds because the semaphore queue is
initialized to empty. Since the initial counter value satisfies semacount(s) =
allowed(s) and in each WaitSema(s), resp. SignalSema(s) move, the counter
is decremented, resp. incremented, after successive allowed(s) WaitSema(s)
moves that are not yet followed by a SignalSema(s) move, every further move
WaitSema(s) before the next SignalSema(s) move has newcount as a nega-
tive number. Thus it triggers an Enqueue(currp, semaq(s)) operation, blocking
currp from entering the critical section until enough SignalSema(s) moves turn
the content of semacount(s) into a non negative value.

To prove the fairness property, assume that in a given state a process makes a
WaitSema(s) move. If in this move, newcount is not negative, then the process is
not Enqueued into the semaphore queue and thus can directly enter the critical
section. Otherwise, the process is Enqueued into semaq(s) where, by the first
two fairness assumptions, it will eventually become the value of head(semaq(s))
and thus be made ready. Then the scheduler, which is assumed to be fair, will
eventually schedule it, so that the process, from the point where it was suspended
by its WaitSema(s) move, does enter the critical section. �

5 Semaphore-Based Synchronous Messages

In this section, we define a specification MsgPassSema of synchronous message
passing using semaphores, which can be viewed as a refinement of MsgPassCtl .
We start from scratch, thinking about what is needed for a most general solution
of the problem, i.e. a semaphore-based solution with minimal assumptions. We
then define the meaning of correctness of MsgPassSema and provide a direct
proof for the correctness theorem. The equivalence theorem in Sect. 6 together
with the correctness Theorem 1 for MsgPassCtl provide an alternative correct-
ness proof for MsgPassSema .

5.1 The MsgPassSema Machine

The idea is to refine entering a sender’s waiting period, which has to take
place as part of a StartSend&WaitSema(m, src, dest) move, to a WaitSema

move for a binary semaphore insema(dest), which for handshaking is signalled
by the receiver process dest . Thus the receiver controls the permission, given
at any time to at most one process src, to write to its inbox (dest). To let
the receiver get ready again after its handshaking move, but only after the

30 I. Craig and E. Börger

DeliverMsg(src, dest) move has been made, its inbox (dest)-write-permission
move SignalSema(insema(dest)) is coupled to a WaitSema move for another
binary semaphore outsema(dest), which in turn is signalled by the sender process
when DeliverMsg(src, dest) is performed.

In the following and for the equivalence theorem in Sect. 6, both semaphores
insema(dest) and outsema(dest) are assumed to be initialized with 0.

This leads to the following definition of an asynchronous MsgPassSema by
sender, resp. receiver, agents with rules SendSema , resp. ReceiveSema , where
SendSema is sequentially composed out of a StartSend&WaitSema and
PassMsgSema submachine.

SendSema(m, src, dest) =
StartSend&WaitSema(m, src, dest) step PassMsgSema(src, dest)

where
StartSend&WaitSema(m, src, dest) =

RecordForTransfer(m, src)11

WaitSema(insema(dest))
PassMsgSema(src, dest) =

DeliverMsg(src, dest)12

SignalSema(outsema(dest))

ReceiveSema(dest) = StartSync&WaitSema(dest)
where

StartSync&WaitSema(d) =
SignalSema(insema(d))
Wait(outsema(d))

Note that a SendSema(m, src, dest) move is executed when currp = src and
a ReceiveSema(dest) move when currp = dest .

5.2 Correctness Proof for MsgPassSema

Theorem 3. (Correctness Property for Message Passing in MsgPassSema) The
message passing correctness properties SndrWait, RcvrWait and Delivery hold
in every run of MsgPassSema .

Proof. To turn the theorem into a precise statement, it remains to define when
exactly two processes src and dest are synchronized in MsgPassSema runs. We
define this to be true in any one of the two following situations, depending
on whether the sender or the receiver starts the attempt to synchronize for a
message exchange:

SenderStarts: src has made a StartSend&WaitSema(m, src, dest) move that
Enqueueed it into the insema(dest)-queue); thereafter dest has made a
(first) ReceiveSema(dest) move that Dequeued src from the insema(dest)-
queue and src is again scheduled.

11
RecordForTransfer is defined as for StartSend&WaitCtl .

12
DeliverMsg is defined as for ReceiveCtl .

Synchronous Message Passing and Semaphores: An Equivalence Proof 31

ReceiverStarts: dest has made a ReceiveSema(dest) move which is followed by
a (first) StartSend&WaitSema(m, src, dest) move that does not Enqueue

src into the insema(dest)-queue.

SenderStarts implies that, from its StartSend&WaitSema(m, src, dest) move
until reaching the synchronization point, src stayed in the insema(dest)-queue
without making any further move. ReceiverStarts implies that between the two
moves ReceiveSema(dest) and StartSend&WaitSema(m, src, dest), dest has
made no move; it will be Dequeued from the outsema(dest)-queue by the sub-
sequent src-move PassMsgSema(src, dest). Note that in the ReceiverStarts case,
after the indicated StartSend&WaitSema(m, src, dest) move src remains sched-
uled (or will be rescheduled after an interrupt).

From the definition of synchronization and of MsgPassSema , the correct-
ness properties SndrWait , RcvrWait and Delivery follow by an induction on
MsgPassSema runs. �

Remark. The above algorithm for exchanging messages using semaphores was
implemented as a collection of threads in C by the first author. Experiments
with this implementation demonstrated that it behaves in a fashion equivalent
to synchronous message passing. In the next section we mathematically define
and prove this equivalence for the above two specifications.

6 Equivalence Proof

In this section, we formulate what it means (and prove) that MsgPassSema and
MsgPassCtl are equivalent. We base the analysis upon the notion of correct
(and complete) ASM refinement defined in [2] and show that MsgPassSema is
a correct refinement of MsgPassCtl , and vice versa (completeness). As a by-
product, this implies, by Theorem 1, an alternative proof for the correctness of
MsgPassSema . The two machines have different operations; also the ways the
operations are structured slightly differ from each other. Therefore, we have to
investigate in what sense one can speak of pairs of corresponding and possibly
equivalent runs in the two machines.

In MsgPassCtl or MsgPassSema runs, each successful message exchange is
characterized by a message exchange triple of moves

(StartSend&Wait(m, src, dest) | StartSync&Wait(dest)) ;
PassMsg(dest)

where by m | m ′, we indicate that the two moves m,m ′ can occur in any order
in the run in question (remember: both a sender and a receiver can initiate an
attempt to synchronize with a partner for message exchange), and by m;m ′ the
sequential order of m preceding m ′ in the run (note: a synchronized PassMsg

move can come only after the two corresponding moves StartSync&Wait and
StartSend&Wait). The message exchange triple components are furthermore
characterized by the following requirements:

32 I. Craig and E. Börger

The StartSync&WaitCtl (dest) move is the last StartSync&WaitCtl

move of the receiver agent dest that precedes the PassMsgCtl(dest) move
executed when src and dest are synchronized.
By the SignalSema(insema(dest)) move of StartSync&WaitSema(dest)
src is made ready to be scheduled to PassMsgSema(src, dest).

We call message exchange triple moves in the two runs corresponding to each
other if they have the same name and concern the same parameters among
(m, src, dest). Similarly we speak about correspondence of message exchange
triples. Pairs of corresponding MsgPassCtl and MsgPassSema runs are those
runs which are started in equivalent corresponding initial states and perform
corresponding message exchange triple moves in the same order. Since single
moves correspond to each other, the segments of computation of interest to be
compared in corresponding runs consist only of the given single moves. The
locations of interest to be compared are inbox (dest) and outbox (dest), the ones
updated by RecordForTransfer resp. DeliverMsg moves in the two states
of interest, the same in both machines. The equivalence is here simply the identity
of the values of these locations in the corresponding states of interest.

By the ASM refinement framework defined in [2], these definitions turn the
following sentence into a mathematically precise statement.

Theorem 4. MsgPassSema is a correct refinement of MsgPassCtl .

Proof. One has to show that given corresponding MsgPassSema , MsgPassCtl

runs, for each message exchange triple move in the MsgPassSema run, one can
find a corresponding message exchange triple move in the MsgPassCtl run such
that the locations of interest in the corresponding states of interest are equiva-
lent. This follows by an induction on runs and the number of message exchange
triple moves. The basis of the induction is guaranteed by the stipulation that the
two runs are started in equivalent corresponding states. The induction step fol-
lows from the one-to-one relation between (occurences of) corresponding message
exchange triple moves described above, using the definitions of the respective ma-
chine moves and the fact that the two crucial operations RecordForTransfer

and DeliverMsg, which update the locations of interest, are by definition the
same in both machines. �

Symmetrically, one can prove the following theorem. The two theorems together
constitute the equivalence theorem (also called bisimulation).

Theorem 5. MsgPassCtl is a correct refinement of MsgPassSema .

7 Concluding Remarks and Future Work

Possible extensions of interest concern stronger machines, as in the example
below. Similar examples include the consideration of timeouts, etc. A central
question is whether, and how, the equivalence-proof scheme can be extended

Synchronous Message Passing and Semaphores: An Equivalence Proof 33

to work in the multiprocessor case. We also suggest investigating whether the
models and proofs in this paper can be implemented by current theorem provers.

Assume we want to use MsgPassCtl for the case that ReceiveCtl is restricted
to receive from a set of expectedsndrs, which is assumed to be defined when
ReceiveCtl is called. The first issue to decide is whether the receiver waits
until a message from an expected sender shows up (blocking case) or whether in
absence of such a message the receiver may receive other messages.

In the non-blocking case the issue is simply a question of priority. Therefore
it suffices to refine the function hd used in PassMsg to choose the first ele-
ment from wtsndr(p) ∩ expectedsndr(p) if this set is not empty, and the first
element from wtsndr(p) otherwise. This extension includes the case that the set
expectedsndr itself may contain elements of different priorities.

In the blocking case, it suffices to strengthen the ReceiveCtl rule by replacing
wtsndr(p) with wtsndr(p) ∩ expectedsndr(p) in the guards of the two subrules.
The notion of src being synchronized with dest in Theorem 1 has to be refined
by restricting scr to elements in expectedsndr(dest). This refinement represents
a conservative (i.e. purely incremental) extension of the abstract model.

Acknowledgement. We thank Gerhard Schellhorn for a discussion of an earlier
version of the proof, which led to its simplification.

References

1. Altenhofen, M., Börger, E.: Concurrent abstract state machines and +CAL pro-
grams. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp.
1–17. Springer, Heidelberg (2009)

2. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–257
(2003)

3. Börger, E., Craig, I.: Modeling an operating system kernel. In: Diekert, V., Weicker,
K., Weicker, N. (eds.) Informatik als Dialog zwischen Theorie und Anwendung, pp.
199–216. Vieweg+Teubner, Wiesbaden (2009)

4. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

5. Craig, I.: Formal Models of Operating System Kernels. Springer, Heidelberg (2007)
6. Craig, I.: Formal Refinement for Operating System Kernels. Springer, Heidelberg

(2007)
7. Tanenbaum, A.S.: Modern Operating Systems: Design and Implementation.

Prentice-Hall, Englewood Cliffs (1987)

AsmL-Based Concurrency Semantic Variations for
Timed Use Case Maps

Jameleddine Hassine

Cisco Systems, 3000 Innovation Drive, Kanata, Ontario, K2K 3J9, Canada
jhassine@cisco.com

Abstract. Scenario-driven requirement specifications are widely used to capture
and represent high-level requirements. Timed Use Case Maps (TUCM) is a high-
level scenario based modeling technique that can be used to capture and integrate
behavioral and time-related aspects at a high level of abstraction. The Timed Use
Case Maps language assumes durational semantics which introduces semantic
variation points when dealing with concurrent flows. In this paper, we introduce
three AsmL-based operational semantics, making the semantic variation points
of TUCM concurrent behavior explicit. The proposed semantics are illustrated
using an example.

1 Introduction

The Use Case Maps language (UCM), part of the ITU-T standard User Requirements
Notation (URN) Z.151 [1], is a high-level visual scenario-based modeling technique
that can be used to capture and integrate functional requirements in terms of causal
scenarios representing behavioral aspects at a high level of abstraction. However, non-
functional aspects are often overlooked during the initial system design and treated as
non-related behavioral issues and described therefore in separate models.

Recognizing the need to incorporate non-functional aspects, and in particular time-
related aspects, into requirement languages in order to correctly model and analyze
time dependent applications at early stages of system development process, Use Case
Maps language has been extended with the notion of time to create the Timed Use Case
Maps language (TUCM) [2]. Timed Use Case Maps offers the opportunity to perform
quantitative analysis [3,4] during the requirement stage, helping detect errors early and
reducing the cost of later redesign activities.

The Timed Use Case Maps language [2] assumes durational semantics which intro-
duces semantic variation points when dealing with concurrent flows. These semantic
variation points provide intentional degrees of freedom for the interpretation of timed
UCM concurrent models, allowing for variabilities that one can customize for a given
application domain. The ability to identify and implement these variablities without
modifying the original specification, represents the major motivation for this paper.
This paper serves different purposes:

– It addresses the problem of making the semantic variation points of TUCM con-
current behavior explicit. This would allow for the specialization of concurrency of
TUCM for a particular situation or domain.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 34–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 35

– It provides three AsmL-based [5] variations for timed UCM concurrent models:
• Interleaving semantics.
• True Concurrency semantics.
• Run to completion semantics.

– It extends the ongoing research towards the construction of a formal framework
for the Use Case Maps language [1] to describe, simulate and analyze real-time
systems [2,6,3,4].

The remainder of this paper is organized as follows. The next section describes and
discusses some related work. In an attempt to make this paper self-contained, we pro-
vide in Section 3 a brief overview of the UCM time extensions introduced in Hassine
et al. [2]. Section 4 represents the core of our paper, where we present three AsmL-based
simulation engines for timed UCM models. An illustrative example, showing the appli-
cability of the proposed TUCM operational semantics along with their corresponding
execution traces, is presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work

In the early days of the Use Case Maps language, UCM models were developed and
maintained using UCMNav (UCM Navigator) tool [7]. In addition to its reusability,
extensibility and scalability issues, UCMNav suffers from a rigid scenario traversal
mechanism without semantic variation points and without tolerance for errors. Some
of these limitations have been addressed by the early versions of jUCMNav [8], its
Eclipse-based successor. Later, Kealey and Amyot [9] have proposed and implemented
an enhanced scenario traversal mechanism into jUCMNav. Furthermore, the authors [9]
have identified a set of semantic variation points for jUCMNav. However, neither time
nor concurrency concepts were addressed. In this work, we focus mainly on semantic
variation points related to time and concurrency in the Timed Use Case Maps language.

The Use Case Maps language [1] has been extended with the time constraints [2].
Three formalization approaches 1 for the Timed Use Case Maps language have been
proposed:

1. Hassine et al. [2] have proposed a Clocked Transition System (CTS) based seman-
tics for timed use case maps models. The authors have defined two sets of transition
rules (i.e. two step semantics) aiming to cover both interleaving and true concur-
rency models. However, no executable model has been provided.

2. Based on a dense time model, Hassine et al. [3] have defined a timed automa-
ton [11] template for each timed UCM construct. A timed UCM specification can
be modeled as a network of concurrent timed automata with interleaving semantics.
The resulting Timed Automata (TA) models can be validated and verified using the
UPPAAL model checker [12].

3. Recently and in a closely related work, Hassine [4] has extended the Timed Use
Case Maps language with resource constraints, allowing for schedulability analysis.
The proposed scheduler implements a priority driven non-preemptive scheduling
with interleaving semantics.

1 For a detailed description of timed UCM formalization, the reader is invited to con-
sult [2,3,10,4].

36 J. Hassine

On the Abstract State Machines front, Börger et al. [13] have used multi-agent ASMs
[14] [15] to model the concurrent sub-states and the internal activities of UML state
machines. The authors [13] have claimed that their approach solves many semantic
variation points, such as event deferring, completion mechanism and concurrent internal
activities. More recently, Ouimet and Lundqvist [16] have extended ASMs by including
facilities for compact and legible specification of non-functional behavior, namely time
and resource consumption. The concurrency semantics of the proposed Timed ASM
(TASM) [16] is synchronous with respect to durative steps.

In what follows, we provide a brief overview of the Timed Use Case Maps language,
initially introduced in [2].

3 The Timed Use Case Maps Language

Timed UCMs visually model and integrate a number of operational scenarios (in a map-
like diagram) cutting through a system’s component architecture. In this research, in
order to focus on the concurrency aspect in timed Use Case Maps models, a simplified
set of the time criteria introduced in [2] is considered.

3.1 Selected Time Criteria

The following summarizes the selected time-related criteria:

– A global and centralized clock (i.e. MasterClock (MClock)) for measuring and in-
creasing time globally over the system is used.

– A discrete time model is adopted. The smallest time unit (i.e. clock tick) used to
track system evolution over time is named δ. It defines the granularity of the master
clock. For the sake of simplicity, δ=1 is used.

– Durational semantic model: Time is mainly consumed by responsibilities. Each
responsibility is associated with a duration (i.e. Dur). Timed UCM control con-
structs such as OR-Forks (branching construct involving condition evaluation),
AND-Forks (used to split a single flow into two or more concurrent flows), OR-
Joins (capture the merging of two or more independent scenario paths) and AND-
Joins (capture the synchronization of two or more concurrent scenario paths) may
take some time to complete. In [2], a best and a worst case execution times of a
responsibility are considered.

– Delay: A responsibility may be enabled after a specified delay (i.e. Delay). A such
delay is introduced in order to describe, for instance, situations of queueing de-
lay or when the resources needed to execute a responsibility are not immediately
available. In [2], both a lower (i.e. minDL) and upper bound (i.e. maxDL) may be
imposed on the enabling of a responsibility.

– Both relative and absolute time models are considered. Relative time is used to
define the duration of responsibilities and their incured delay. Absolute time is used
to track the value of the master clock (i.e. MClock). It can be used in start points to
record the scenario starting time and to define responsibilities’ deadlines.

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 37

– Urgency: A responsibility is considered as urgent when enabled immediately after
the execution of its predecessor (i.e. Delay = 0). Alternatively, it is considered as
delayable. All UCM control constructs (i.e. OR-Fork, OR-Join, AND-Fork, etc.)
are considered as urgent once enabled. Transitions are processed as soon as they
are enabled allowing for a maximal progress.

3.2 Syntax of Timed Use Case Maps

The Use Case Maps language provides the stub concept allowing for hierarchical de-
composition of complex maps. UCM path details can be hidden in separate sub-diagrams
called plug-ins, contained in stubs (diamonds) on a path. Since stubs are simple contain-
ers of plugins, no special treatment is considered with respect to time and concurrency.
A timed UCM specification is defined as follows:

Definition 1 (Timed Use Case Maps). A timed UCM is denoted by a 8-tuple (D, H, λ,
C, GVar, Bc, S, Bs) where:

– D is the UCM domain defining all timed UCM constructs.
– H is the set of edges connecting timed UCM constructs to each other.
– λ represents the transition relation defined as: λ=D×H×D.
– C is the set of defined components.
– GVar is the set of specification’s global variables.
– Bc is a component binding relation defined as Bc =D×C. Bc specifies which ele-

ment of D is associated with which component of C.
– S is a plug-in binding relation defined as S = Stub×Plugin×Cond, where Stub is

the set of TUCM stubs, Plugin is the set of plugin maps and Cond is the set of
conditions governing the plugin selection.

– Bs is a stub binding relation and is defined as Bs =Stub×{IN/OUT}×{SP/EP}.
Bs specifies how the start and end points of a plugin map would be connected to
the path segments going into or out of the stub.

3.3 A Basic Timed UCM Example

Figure 1 illustrates a basic timed UCM with delayable and durative responsibilities (e.g.
R1 has a delay of 1 and a duration of 2). The start point S1 is triggered at MClock =
0. UCM control constructs OR-Fork OF and AND-fork AF are urgent. OF takes one

Fig. 1. UCM basic Example

38 J. Hassine

time unit to complete while AF is instantaneous. End points E1 and E2 are urgent and
instantaneous since they are not associated with any type of processing. Responsibilities
R4 and R3 can be executed concurrently since they are bound to different components
(i.e. C1 and C2).

4 AsmL Implementation of the Timed UCM Concurrency Models

4.1 Timed UCM Simulation Engine

All variations of the proposed timed UCM simulation engine (described in sections
4.2, 4.3 and 4.4) use the class AGENT to specify the abstract set of agents ag. An
agent moves through its associated timed UCM map, by executing the timed UCM
construct(s) at the its current active edge(s), i.e. edge where the agent’s control lies.
Every agent can mainly be characterized by:

– A static function, id: AGENT→ String, used to identify system agents.
– A dynamic function, mode: AGENT → {running, inactive}, used to track an

agent’s mode. An agent may be running in normal mode or inactive once the agent
has finished its computation.

Typically, a running agent has to look at the delay associated with the target timed
UCM construct(s) of its active edge(s) to determine which construct should be executed
next. Once a running agent finishes its execution thread (no more active edges), or
encounters a blocking situation (for instance when no conditions evaluate to true at an
OR-Fork), it changes its mode to become inactive (me.mode=inactive).

AsmL Common Data Structures. The data structures, initially introduced in [6], are
extended to cover time aspects. Figure 2 describes an excerpt of the AsmL implemen-
tation of the data structures common to the three proposed operational semantics. The

structure UCMConstruct
//StartPoint

case SP_Construct
in_hy aas HyperEdge
out_hy aas HyperEdge
label aas String
preCondition aas BooleanExp
Delay aas Integer
location aas Component

//Responsibility
case R_Construct

in_hy aas HyperEdge
out_hy aas HyperEdge
label aas String
Delay aas Integer
Duration aas Integer
location aas Component

//OR -Fork
case OF_Construct

in_hy aas HyperEdge
Selec aas Set oof

OR_Selection
label aas String
Duration aas Integer
location aas Component

//AND-Fork
case AF_Construct

in_hy aas HyperEdge
out_hy aas Set oof HyperEdge
label aas String
Duration aas Integer
location aas Component

//Stub
case Stub_Construct

entry_hy aas Set oof
HyperEdge

exit_hy aas Set oof HyperEdge
Selec_plugin aas Set oof

Stub_Selection
Binding_Relation aas Set oof

Stub_Binding
label aas String

// List of hyperedges
enum HyperEdge

e1

e2

h0 // null
// List of components
enum Component

C1
Unbound // undefined

// UCM transition relation
structure UCMElement
source aas UCMConstruct

hyper aas HyperEdge
target aas UCMConstruct

// Selection conditions of

OR-Forks
structure OR_Selection
out_hy aas HyperEdge

out_cond aas BooleanExp
// Stub binding relation
structure Stub_Binding

plugin aas Maps
stub_hy aas HyperEdge
start_End aas UCMConstruct

// Plugin Selection
structure Stub_Selection
stub_plugin aas Maps

stub_cond aas BooleanExp
// UCM Map
structure Maps

label aas String
ele aas Set oof UCMElement
ep aas Set oof EP_Construct

Fig. 2. Excerpt of the AsmL implementation of the timed UCM data structures

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 39

structure UCMConstruct incorporates many case statements as a way of organizing
different variants of UCM constructs. The structure UCMElement implements the tran-
sition relation λ (see Section 3.2). The structure OR Selection specifies the boolean
conditions associated with the outgoing branches of OR-Forks. The data structures
Stub Selection and Stub Binding implement respectively the stub selection policies and
the stub binding relation. The enumerated sets Hyperedges and Component denote re-
spectively the set of edges and the set of used components. The structure MAPs rep-
resented the timed UCM rootmap (i.e. main timed UCM map). It is composed of an
identifier (i.e. label), a transition relation (i.e. ele) and a set of end points (i.e. ep).

AsmL Supportive Functions. At each execution step, an agent needs to know about
the set of active edges, the existence of target constructs and their associated delays.
Figure 3 illustrates some global functions used to support the execution of timed UCM
specifications. For example, the function GetDelayTargetConstruct is used to capture
the delay associated with the next timed UCM construct to be executed.

// GetInHyperEdge returns the set of incoming edges of a timed UCM construct

GetInHyperEdge (i aas UCMConstruct) aas Set of HyperEdge

match i

R_Construct (a,b,c,d,e,f): rreturn {a}

AF_Construct (a,b,c,d,e): rreturn {a}

AJ_Construct (a,b,c,d,e): rreturn a

. . .

// Get the delay of the target timed UCM construct

GetDelayTargetConstruct (h as HyperEdge , M as Maps) as Integer

choose k iin M.ele wwhere k.hyper = h

return ComputeMinimumDelay (k.target)

ifnone

WriteLine(“\n GetDelayTargetConstruct FAILED”)

return 0

// Compute minimum delay

ComputeMinimumDelay (i as UCMConstruct) as Integer

match i

SP_Construct (a,b,c,d,e,f): rreturn e

R_Construct (a,b,c,d,e,f): rreturn d

AF_Construct (a,b,c,d,e): rreturn 0

...

Fig. 3. Excerpt of the AsmL implementation of the supportive functions

Since the focus is on time and concurrency variations, we only illustrate the AsmL
rules of responsibilities (durative and involving delay) and AND-Forks (used to split a
single flow into many concurrent flows). For more details on the AsmL rules of other
timed UCM constructs, the reader is invited to consult [10] and [4].

4.2 Interleaving Semantics

In presence of UCM components, concurrent paths bounded to the same component
are sharing also the same component resources (for instance same CPU and memory).
Therefore, these concurrent paths must behave in interleaving semantics.

In interleaving TUCM models, responsibilites represent atomic actions, not to be
decomposable, and their execution is not interruptible. Figure 4 illustrates an excerpt of
the AsmL implementation of the interleaving semantics.

40 J. Hassine

sssstructuretructuretructuretructure activ

edge asasasas HyperEdge // Active edge

level asasasas Maps // Corresponding MAP (rootMap or plugin)

delay asasasas Integer // Delay of the target Construct

// Set of activ initially empty

varvarvarvar act asasasas Set ofofofof activ = {}

classclassclassclass Agent

const const const const id as String

var mode as Mode

Program()

WriteLine("Start Executing : " + memememe.id)
step step step step

untiluntiluntiluntil ((act = {}) orororor (memememe.mode = inactive))

dodododo

let del = [t1.delay | t1 in act]

let minimumDL = (min x | x in del)

choose z in act where z .delay= minimumDL

choosechoosechoosechoose s2 inininin z.level.ele wherewherewherewhere HyperExists(z.edge, GetInHyperEdge (s2.source))

matchmatchmatchmatch (s2.source)

// Rule of Responsibilit y

R_Construct (a,b,c,d,e,f): stepstepstepstep

MClock := MClock + d

stepstepstepstep

ExecuteResponsibility ((s2.source) as R_Construct)

stepstepstepstep

MClock := MClock + e

addaddaddadd activ(b, z.level, GetDelayTargetConstruct (b, z.level)) totototo act

stepstepstepstep

choosechoosechoosechoose r inininin act wherewherewherewhere r.edge = a

removeremoveremoveremove r fromfromfromfrom act

// Rule of AND-Fork

AF_Construct (a,b,c,d,e): stepstepstepstep

WriteLine("\n Executing AND-Fork: " + c)

forallforallforallforall i inininin b

addaddaddadd activ(i, z.level, GetDelayTargetConstruct (i, z.level)) totototo act

stepstepstepstep

choosechoosechoosechoose r inininin act wherewherewherewhere r.edge = a

removeremoveremoveremove r fromfromfromfrom act

MClock := MClock + d

Main()

var todo = StartPoints

step

addaddaddadd activ(in1, RootMap, 0) totototo act

stepstepstepstep whilewhilewhilewhile todo.Count > 0

choosechoosechoosechoose a inininin todo

todo(a) := falsefalsefalsefalse

letletletlet ag = newnewnewnew Agent("Root Map:"+ a.label, running)
ag.Program ()

Fig. 4. Excerpt of the AsmL implementation of the interleaving semantics

In addition to the global data structures presented in Section 4.1, a new structure
named activ is created to track the different delays associated with the ready-to-execute
timed UCM constructs. At each step, the timed UCM construct, with the minimum de-
lay, is selected for execution. Hence, the execution of parallel responsibilities is reduced
to a deterministic interleaving in case of a single minimum delay or to a nondetermin-
istic interleaving in case of many responsibilities sharing the same minimum delay.

The interleaving solution is based on a single agent model, where only one single
construct can be executing at a time. Once the responsibility with the minimum delay is
selected for execution, the master clock is increased by its associated delay (i.e. MClock
:= MClock + d). Then, the master clock is increased by the value of the actual execution
time (i.e. MClock := MClock + e). In [16], timed ASM steps have the same duration
allowing for a linear time progression, while in our model the time is controlled by a
global clock which is incremented in a non-linear way. Upon execution completion, the
current activ element is removed from the set act and the next activ element (corre-
sponding to the outgoing edge) is added. The execution of an AND-Fork is reduced to
the addition of a new structure act for each outgoing edge.

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 41

4.3 True Concurrency Semantics

Truly concurrent models allow for the concurrent execution of not causally related ac-
tions. AsmL language doesn’t have yet runtime support for true concurrency or sim-
ulation of true concurrency [17]. To address this limitation, we have designed a true
concurrency solution based on a single agent handling multiple executions of timed
UCM constructs at any given time. Instead of having the system executes a full timed
UCM construct (as in interleaving semantics), the system makes progress on every sin-
gle clock tick.

Figure 5 illustrates an excerpt of the AsmL implementation of the true concurrency
solution. The activ data structure, presented in Figure 4, is slightly modified to include
responsibility’s remaining execution time (i.e. executionTime). At each step, the master
clock MClock is incremented by 1, all active delays greater than 0 are decremented by 1,
and constructs reaching a delay equal to zero are selected for execution. Although, this

structure activ

edge aas HyperEdge // Active edge

level aas Maps // Corresponding MAP (rootMap or plugin)

delay aas Integer // Delay of the target Construct

executionTime aas Integer // Remaining execution time of the target Construct

label aas String // label of the target Construct

// Set of activ initially empty

var act aas Set oof activ = {}

class Agent

const id aas String

var mode aas Mode

Program()

step

until ((act = {}) oor (mme.mode = inactive))

do

let h = {t1.edge | t1 in act }

forall actEdge iin act

MClock := MClock + 1

if (actEdge.delay > 0)

let dlay = actEdge.delay as Integer - 1

add activ(actEdge.edge, actEdge.level, dlay, actEdge.executionTime , actEdge.label) tto act

remove actEdge ffrom act

else

choose s2 iin actEdge.level.ele wwhere HyperExists (actEdge.edge, GetInHyperEdge (s2.source))

match (s2.source)

// Rule of Responsibilit y

R_Construct (a,b,c,d,e,f): sstep

if (actEdge.executionTime > 0)

ExecuteResponsibility ((s2.source) as R_Construct)

let remainingTime = actEdge.executionTime as Integer – 1

add activ(actEdge.edge, actEdge.level, actEdge.delay,

remainingTime , actEdge.label) tto act

remove actEdge ffrom act

else

remove actEdge from act

add activ(b, actEdge.level, GetDelayTargetConstruct (b,

actEdge.level), GetExecutionTargetConstruct (b, actEdge.level), GetLabelTargetConstruct (b,

actEdge.level)) tto act

// Rule of AND-Fork

AF_Construct (a,b,c,d,e): sstep

forall i iin b

add activ(i, actEdge.level, GetDelayTargetConstruct (i,

actEdge.level), GetExecutionTargetConstruct (i, actEdge.level),

GetLabelTargetConstruct (i,actEdge.level)) tto act

step

choose r iin act wwhere r.edge = a

remove r ffrom act

// Rule of Start Point

// ...

Fig. 5. Excerpt of the AsmL implementation of the true concurrency solution

42 J. Hassine

approach fulfills the need of having a true concurrent simulation engine for timed UCM
models, it does not scale well. Indeed, simulation times would increase exponentially
with responsibilities having large delays and long execution periods.

4.4 Multi-Agent Solution: Run to Completion

Both the interleaving and true concurrency operational semantics, implement a single
agent that controls the whole system execution. Another alternative would be to use
multi-agents ASM [14]. In addition to id and mode, an agent can be characterized by
the following attributes:

– active: AGENT→HyperEdge, represents the identifier of the active edge leading to
the next timed UCM construct to be executed.

– level: AGENT→MAPS, provides the UCM map that the agent is currently travers-
ing.

– current Stub: AGENT→Stub Construct, provides the stub that the agent is cur-
rently traversing.

Figure 6 presents an excerpt of the AsmL implementation of the multi-agent solu-
tion. When the control is on an edge entering an AND-Fork, the currently running agent

class Agent

const id as String

var active aas HyperEdge

var mode aas Mode

var level aas Maps

var current_Stub aas Stub_Construct

Program()

step

until me.mode = inactive

do

choose s2 iin level.ele wwhere HyperExists (active, GetInHyperEdge (s2.source))

match (s2.source)

// Rule of Responsibil ity

R_Construct (a,b,c,d,e,f): sstep

MClock := MClock + d

step

ExecuteResponsibility ((s2.source) aas R_Construct)

step

MClock := MClock + e

me.active := b

// Rule for AND -Fork Construct

AF_Construct (a,b,c,d,e): sstep

forall i iin b

add activ(i, GetDelayTargetConstruct (i, mme.level)) tto act

step

until (act = {})

do

let del = [t1.delay | t1 in act]

let minimumDL = (min x | x in del)

choose z in act where z .delay= minimumDL

let ag = nnew Agent("Agent-"+z.edge, z.edge , running,

me.level, me.current_Stub)

ag.Program()

remove z ffrom act

me.mode := inactive

// Rule for Start Point Construct

//...

Fig. 6. Excerpt of the AsmL implementation of the multi-agent solution

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 43

creates the necessary new subagents and sets their mode to running, then sets its mode
to inactive. Each new AsmL subagent inherits the program for executing timed UCMs,
and its control starts at the associated outgoing edge of the AND-Fork. The order of ac-
tivation of subagents depends on the delay associated with the subsequent timed UCM
construct (i.e. the subagent with the minimal delay is activated first). Each agent runs to
completion (i.e. till it reached an end point or an AND-Join) before the next agent starts
executing.

Implementing an interleaving or a true concurrency semantics using multi-agent
ASMs, would require the design of a scheduler that coordinates the execution of partic-
ipating agents. This alternative is not considered in this research.

5 Illustrative Example

Although simple, the following example (Figure 7) illustrates the applicability of the
proposed three timed UCM simulation engines. The AsmL Implementation is executed
within Spec Explorer [18], an advanced model-based specification and conformance
testing tool.

// Start POint S1
var S1 aas SP_Construct = SP_Construct (in1 , e1 , "S1",
BooleanVar(pre_cond_start), 0 , Unbound)
// AND-Fork AF1
var AF1 aas AF_Construct = AF_Construct(e1 ,{e2,e5}, "AF1", 0, Unbound)
// Responsibilities R1, R2 and R3
var R1 aas R_Construct = R_Construct(e2 , e3, "R1", 2, 2 , C1)
var R2 aas R_Construct = R_Construct(e3 , e4, "R2", 5, 1 , C1)
var R3 aas R_Construct = R_Construct(e5 , e6, "R3", 3, 2 , C2)
// End points E1 and E2
var E1 aas EP_Construct = EP_Construct(e4 , h0 , "E1", ttrue, C1)
var E2 aas EP_Construct = EP_Construct(e6 , h0 , "E2", ttrue, C2)
// Timed UCM Specification
var RootMap aas Maps = Maps("RootMap", {UCMElement(S1, e1 , AF1),
UCMElement(AF1, e2 , R1), UCMElement(R1 , e3 , R2), UCMElement(R2, e4 ,
E1), UCMElement(AF1, e5 , R3), UCMElement(R3, e6 , E2), UCMElement(E1 ,
h0 , E1), UCMElement(E2 , h0 , E2)}, {E1,E2})

e1
e6e5

e4e3e2

Fig. 7. Illustrative timed UCM example and its corresponding AsmL implementation

Figure 8 shows the timed trace generated using the interleaving simulation engine.
Each step corresponds to the execution of a construct. Responsibility R1 is executed
first, followed by R3 then R2 and the system completes its execution at MClock=15.

Figure 9 shows the timed trace generated using the true concurrency simulation
engine. Each step corresponds to one clock tick. At MClock=5, responsibilities R1
and R3 are concurrently executed, leading to the system completing its execution at
MClock=14 (one time unit earlier than the interleaving trace). It is worth noting that the
number of execution steps in the true concurrency trace is the double of those of the in-
terleaving trace (14 steps using true concurrency versus 7 steps using the interleaving).

44 J. Hassine

Set of active edges={in1}
Set of delays=[0]; Minimum Delay=0
Start Point:S1 triggered in Component:Unbound at Mclock = 0

Set of active edges={e1}
Set of delays=[0]; Minimum Delay=0
Executing AND-Fork: AF1 in component: Unbound at MClock=0

Set of active edges={e5, e2}
Set of delays=[3, 2]; Minimum Delay=2
Start Executing Responsibility: R1 in component: C1 at MClock=2

Set of active edges={e5, e3}
Set of delays=[3, 5]; Minimum Delay=3
Start Executing Responsibility: R3 in component: C2 at MClock=7

Set of active edges={e6, e3}
Set of delays=[5, 0]; Minimum Delay=0
End Point: E2 part of root map reached in Component:C2 at Mclock=9

Set of active edges={e3}
Set of delays=[5]; Minimum Delay=5
Start Executing Responsibility: R2 in component: C1 at MClock=14

Set of active edges={e4}
Set of delays=[0]; Minimum Delay=0
End Point: E1 part of root map reached in Component:C1 at Mclock=15

Fig. 8. Timed trace corresponding to the interleaving semantics solution

MClock=0
Active: (edge:in1,delay:0,remaining
exec:0)
Start Point:S1 in Component:Unbound at
MClock=0

MClock=1
Active: (edge:e1,delay:0,remaining exec:0)
Executing AND-Fork: AF1 in component:
Unbound at MClock=1

MClock=2
Active: (edge:e5,delay:3,remaining exec:2)
Active: (edge:e2,delay:2,remaining exec:2)

MClock=3
Active: (edge:e2,delay:1,remaining exec:2)
Active: (edge:e5,delay:2,remaining exec:2)

MClock=4
Active: (edge:e5,delay:1,remaining exec:2)
Active: (edge:e2,delay:0,remaining exec:2)
Executing Responsibility: R1 in component:
C1 at MClock=4

MClock=5
Active: (edge:e2,delay:0,remaining exec:1)
Executing Responsibility: R1 in component:
C1 at MClock=5
Active: (edge:e5,delay:0,remaining exec:2)
Executing Responsibility: R3 in component:
C2 at MClock=5

MClock=6
Active: (edge:e5,delay:0,remaining exec:1)
Executing Responsibility: R3 in component:
C2 at MClock=6

Active: (edge:e2,delay:0,remaining exec:0)

MClock=7
Active: (edge:e5,delay:0,remaining exec:0)

Active: (edge:e3,delay:5,remaining exec:1)

MClock=8
Active: (edge:e3,delay:4,remaining exec:1)
Active: (edge:e6,delay:0,remaining exec:0)
End Point: E2 part of root map reached in
Component:C2

MClock=9
Active: (edge:e3,delay:3,remaining exec:1)

MClock=10
Active: (edge:e3,delay:2,remaining exec:1)

MClock=11
Active: (edge:e3,delay:1,remaining exec:1)

MClock=12
Active: (edge:e3,delay:0,remaining exec:1)
Executing Responsibility: R2 in component:
C1 at MClock=12

MClock=13
Active: (edge:e3,delay:0,remaining exec:0)

MClock=14
Active: (edge:e4,delay:0,remaining exec:0)
End Point: E1 part of root map reached in

Component:C1

Fig. 9. Timed trace corresponding to the true concurrency solution

AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps 45

Start Executing: MainS1

MClock=0
MainS1.active:in1
MainS1:Start Point:S1 at Mclock=0

MClock=0
MainS1.active:e1
MainS1:Rule of AND-Fork:AF1 at Mclock=0
Adding:(e2,2)
Adding:(e5,3)
Start Executing: Agent-e2

MClock=0
Agent-e2.active:e2
Start Executing Responsibility: R1 in component: C1 at MClock=2

MClock=4
Agent-e2.active:e3
Start Executing Responsibility: R2 in component: C1 at MClock=9

MClock=10
Agent-e2.active:e4
Agent-e2: End point:E1 at Mclock=10
Agent-e2:Execution Terminated successfully
Start Executing: Agent-e5

MClock=10
Agent-e5.active:e5
Start Executing Responsibility: R3 in component: C2 at MClock=13

MClock=15
Agent-e5.active:e6
Agent-e5: End point:E2 at Mclock=15

Agent-e5:Execution Terminated successfully

Fig. 10. Timed trace corresponding to the multi-agent solution

Figure 10 shows the timed trace generated using the multi-agent simulation engine.
The execution of the AND-Fork generates two subagents Agent-e2 and Agent-e5. Agent-
e2 is run to completion and it is executed before Agent-e5 since responsibility R1 delay
is less than R3 delay. Responsibility R1 is executed first, followed by R2 then R3 and
the system completes its execution at MClock=15.

6 Conclusions

In this paper, we have proposed three AsmL-based operational semantics, making the
semantic variation points of TUCM concurrent behavior explicit. Depending on the ap-
plication domain, the user may choose between interleaving, true concurrency and run
to completion semantics. We have shown that such variabilities can be identified and
implemented without modifying the original specification. The generated timed traces
capture various aspects of a system run (e.g. executed constructs, time of execution,
components, etc.) allowing for analysis and validation. Furthermore, such timed traces
would provide the designer, at an early stage, with better understanding of timing prop-
erties of the system and how concurrency may impact overall execution.

The proposed AsmL rules can be easily modified to accommodate language evolu-
tion. Indeed, the modification of the semantics of a timed UCM construct or the addition
of a new construct result in the modification or the addition of a new AsmL rule that
describes the semantics of the new construct.

46 J. Hassine

As part of the future work, it would be interesting to establish meaningful case stud-
ies that allow us to evaluate the proposed concurrency models on real world examples.
Furthermore, we would like to further extend the presented operational semantics to
include additional aspects such as priority and preemption.

References

1. ITU-T: Draft recommendation Z.151, User Requirements Notation (URN) (2008)
2. Hassine, J., Rilling, J., Dssouli, R.: Timed Use Case Maps. In: Gotzhein, R., Reed, R. (eds.)

SAM 2006. LNCS, vol. 4320, pp. 99–114. Springer, Heidelberg (2006)
3. Hassine, J., Rilling, J., Dssouli, R.: Formal Verification of Use Case Maps with Real Time

Extensions. In: Gaudin, E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 225–
241. Springer, Heidelberg (2007)

4. Hassine, J.: Early Schedulability Analysis with Timed Use Case Maps. In: Reed, R., Bilgic,
A., Gotzhein, R. (eds.) SDL 2009, September 22-24. LNCS, vol. 5719, pp. 98–114. Springer,
Heidelberg (2009)

5. AsmL: Microsoft Research: The Abstract State Machine Language (2006),
http://research.microsoft.com/foundations/AsmL/

6. Hassine, J., Rilling, J., Dssouli, R.: Abstract Operational Semantics for Use Case Maps. In:
Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 366–380. Springer, Heidelberg (2005)

7. Miga, A.: Application of Use Case Maps to system design with tool support. Master’s thesis,
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada (1998)

8. jUCMNav: jUCMNav Project (tool, documentation, and meta-model) (2006),
http://jucmnav.softwareengineering.ca/twiki/bin/view/
ProjetSEG/WebHome (Last accessed, October 2007)

9. Kealey, J., Amyot, D.: Enhanced Use Case Map Traversal Semantics. In: Gaudin, E., Najm,
E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 133–149. Springer, Heidelberg (2007)

10. Hassine, J.: Formal Semantics and Verification of Use Case Maps. PhD thesis, Concordia
University, Montreal, Quebec, Canada (2008)

11. Alur, R., Dill, D.L.: A theory of Timed Automata. Theor. Comput. Sci. 126(2), 183–235
(1994)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on Soft-
ware Tools for Technology Transfer 1(1-2), 134–152 (1997)

13. Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using ASMs.
Information and Software Technology 46(5), 287–292 (2004)

14. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

15. Glässer, U., Gurevich, Y., Veanes, M.: Abstract communication model for distributed sys-
tems. IEEE Transactions on Software Engineering 30(7), 458–472 (2004)

16. Ouimet, M., Lundqvist, K.: The Timed Abstract State Machine Language: Abstract State Ma-
chines for Real-Time System Engineering. Journal of Universal Computer Science 14(12),
2007–2033 (2008)

17. Veanes, M.: Modeling software: From theory to practice. In: Agrawal, M., Seth, A.K. (eds.)
FSTTCS 2002. LNCS, vol. 2556, pp. 37–46. Springer, Heidelberg (2002)

18. SpecExplorer: Microsoft Research: Spec Explorer tool (2006),
http://research.microsoft.com/specexplorer/

http://research.microsoft.com/foundations/AsmL/
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome
http://research.microsoft.com/specexplorer/

Bârun: A Scripting Language for CoreASM

Michael Altenhofen and Roozbeh Farahbod

SAP Research, Karlsruhe, Germany
michael.altenhofen@sap.com, sap@roozbeh.ca

Abstract. Scenarios have been used in various stages of the software
development process, in particular in requirement elicitation and soft-
ware validation and testing. In this paper, we present our recent work on
the specification, design and implementation of a CoreASM plugin, called
Bârun, that offers a powerful scripting language on top of the CoreASM
extensible modeling framework and tool environment for high-level de-
sign and analysis of distributed systems. We illustrate the application of
Bârun and demonstrate its features using an industrial case study.

1 Introduction

The CoreASM framework [1,2] provides a lean language and a tool environment
for writing executable high-level system specifications as Abstract State Machines
(ASMs) [3]. These specifications can serve as the basis for experimental valida-
tion through simulation and testing in the early phases of the overall system de-
sign. As a special subset, reactive systems expose their desired behavior through
interactions with an external environment. In other words, non-deterministic
choices made by the external environment steer the observable state transitions
made by the machine. As indicated by the word external, the steps performed by
the environment should not be part of the specification itself, but should rather
be captured by separate artifacts, often called scenarios [4].

Depending on their ultimate purpose, scenarios may have to take different
views of the system. If we’re solely interested in validating the system—checking
whether the specification meets the user requirements, it will be sufficient to treat
the system as a black box neglecting any internal state transitions and focusing
on the externally visible state changes. For this type of scenarios, we actually
want notational support for (repeatedly) checking system properties (in the form
of assertions) during a scenario run. On the other hand, scenarios may also be
used to perform more rigid (unit) tests and thus may require a more thorough
gray box view and more subtle control of the internal state of the system. Here,
our experiences have shown that scenario designers would benefit from having
a local state in the scenario in order to have a fine-grained control over the flow
of interactions between the system and the environment. Without such local
states, scenario descriptions can become fairly clumsy and hard to read. On the
other hand, having a local state helps keeping a clear distinction between state
information that is needed to specify the functionality of the system and state
information that is used to drive a specific scenario.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 47–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 M. Altenhofen and R. Farahbod

When writing down a scenario, one can easily think of different concrete tex-
tual and maybe even graphical notations. Based on our observations above, we
opted for minimally extending the language of CoreASM, yet allowing a scenario
designer to employ the full power of all the other available language features. In
that sense, a scenario can be seen as a small “specification script” for a separate
machine acting as the environment which drives the execution of the machine
that needs to be validated or tested. This view actually fits very naturally into the
overall design philosophy of the CoreASM framework where the core functional-
ity of the execution environment can be easily extended by providing additional
loadable plugins. Following that architectural style, we have designed and im-
plemented a plugin, called Bârun, that offers a powerful scripting language on
top of the standard execution engine.

The rest of this paper is structured as follows: We start with describing the
requirements and design decisions in Section 2 and provide the specification of
the Bârun plugin and details on how the plugin extends the CoreASM framework
in Section 3. We continue with a case study in Section 4 that exemplifies the
main features of the scripting extension. Section 5 offers a short overview on
related work followed by our conclusions and plans for future work in Section 6.

2 Requirements and Design Decisions

The need for better simulation support results from experiences that one of
the authors made while trying to reverse engineer an executable specification
for an application (developed within SAP) that deals with consistent object
management in a dynamic and distributed environment [5]. It turned out that
the overall complexity and dynamism made validation very difficult. Actually,
most of the time was spent into considering corner and error cases, probably a
typical phenomenon in distributed systems that employ coordination protocols of
some kind. What complicated matters even further was the fact that the system
tries hard to deal with two orthogonal features in parallel : Object management
is continuously supported even in the event of a dynamic restructuring of the
distributed system (landscape). It soon became clear that we need to be able to
test and validate independent system properties in isolation, e.g., checking the
robustness of the failover protocol with respect to changes in the landscape while
disabling the orthogonal object management part. As we will see in Section 4,
some of the validation scenarios actually require very fine-grained control over
the execution of the underlying system in order to explore the state space into
a certain direction.

In summary, we would like a simulation scripting tool for CoreASM that would
allow us to:

1. write scenario scripts that could be used to guide the execution of CoreASM
specifications;

2. define assertions that would be checked after each successful step of the
simulated machine;

Bârun: A Scripting Language for CoreASM 49

3. write scenario scripts in form of ASM rules that can potentially modify
the state of the simulated machine between the computation steps of the
simulated machine;

4. use the same set of rule constructs that are available in the CoreASM speci-
fication for which the scenario is written.

Based on the requirements listed above, we designed a language for Bârun
scenarios that would support the declaration of the following four scenario com-
ponents: 1) local functions, i.e., locations that are local to the scenario, 2) option
statements, borrowing the grammar rule offered by the Options plugin [1], 3)
assertions, and 4) ASM macro rules. The following EBNF grammar captures the
structure of scenarios. A scenario starts with the keyword ‘Scenario’ and a sce-
nario identifier followed by a collection of declarations, including one statement
to declare the main rule of the scenario.

Scenario ::= ‘Scenario’ ID

ScenarioDeclaration* MainRule ScenarioDeclaration*

ScenarioDeclaration ::=

LocalFunction | Option | Assertion | RuleDeclaration

MainRule ::= ‘main’ ID

LocalFunction ::= ‘local’ ID

Option ::= ‘option’ ID Term

Assertions are defined by an identifier, the assertion term and an optional
output term to be printed when the assertion fails.

Assertion ::= ‘assert’ ID ‘as’ Term (‘onfailure’ ‘print’ Term)?

In order to support definition of ASM macro rules in the scenario, Bârun
borrows RuleDeclaration grammar rule from the CoreASM kernel.

3 Extending CoreASM

Bârun could be implemented either as an external tool that utilizes the Core-
ASM engine to run specifications according to the scenario, or as a plugin that
directly extends the engine and “injects” scenarios into the normal execution of
specifications. Considering the pros and cons of each approach, we opted for a
plugin implementation based on the following arguments:

– In order to offer a rich scripting language, we want the Bârun language to offer
the same ASM rule constructs that are available in CoreASM specifications.
Since CoreASM plugins have access to the internal components of the engine,
Bârun implemented as a plugin can easily extend the dynamic grammar of
CoreASM specifications and utilize different parts of the CoreASM language
that is provided by the engine.

– Implementing Bârun as an external tool would require replication of an en-
gine driver that controls the execution process of the engine. While there are
such drivers already available for CoreASM (such as Carma and the CoreASM
Eclipse Plugin [1]), implementing Bârun as a plugin integrates the simulation
scripting features into the currently available user interfaces of CoreASM.

50 M. Altenhofen and R. Farahbod

– As a plugin, Bârun can extend the CoreASM language to allow declaration of
a set of reasonable or pre-defined scenarios into the specification itself. These
scenarios can be shipped with the specification as test cases or demo scripts.

3.1 Extending the Control Flow of the Engine

In order to load a scenario, check assertions and apply the scenario related
changes to the state of the simulated machine, Bârun extends the Control State
ASM of the CoreASM engine at four extension points: 1) after the engine parses
the specification and before it initializes the state, 2) before the engine starts a
computation step, 3) after the engine selects the subset of agents for the next
computation step, and 4) when the engine completes a successful step [1].

Before the CoreASM engine starts the execution of a specification, Bârun has to
utilize the specification-specific parser of the engine to load the active scenario.
This has to be done after the engine has created its parser and loaded the
specification. Thus, Bârun extends the control state ASM of the engine at the
point where the specification is loaded and the engine is ready to prepare the
initial state of the simulated machine; this is when the control state of the engine
switches to Initializing State.

The idea here is to interleave the normal execution of CoreASM specifications
with execution of the main rule of the scenario. Bârun introduces a new Core-
ASM agent with the main rule of the scenario as its program and modifies the
control flow of the engine so that on every other step the engine will choose
only the Bârun agent for execution. This is implemented by temporarily setting
bârunAgent as the only available agent in the state during the phase in which
CoreASM engine is choosing the next set of agents to be executed. To keep a con-
sistent view of the state, once bârunAgent is chosen, the agents set is set back to
the actual agents set so that the value of Agents is kept consistent during both
“normal” and scenario executions. In order to provide this interleaving behavior,
Bârun maintains a flag called bârunTurn, initially set to false, that indicates if
it is time to switch agents set to {bârunAgent}.

After every successful update, Bârun evaluates the assertions and notifies the
user (or terminates the run, depending on the configuration of Bârun) if any
assertion fails. The behavior of Bârun during the aforementioned control state
transitions is specified by the FireOnModeTransitionBârun rule defined on page 51.

Before CoreASM engine initializes the state, the ASM rules LoadScenarioDec-
larations and LoadActiveScenario (above) respectively load the scenario declara-
tions of the specification together with the main (active) scenario that will be
executed by the Bârun plugin. In the following subsections, we discuss the other
three extension points in more detail.

Evaluating the Main Rule: The Bârun plugin extends the CoreASM engine
such that it runs the Bârun agent (and only the Bârun agent) every other step
of the run. Just before the CoreASM engine starts a step, if it is time for the Bârun

Bârun: A Scripting Language for CoreASM 51

Bârun Plugin

FireOnModeTransitionBârun(sourceMode, targetMode) ≡
case targetMode of

initializingState :
bârunTurn := true
seq LoadScenarioDeclarations
next LoadActiveScenario

startingStep :
if bârunTurn ∧ isScenarioActive then SwitchToBârunAgent

initiatingExecution :
if bârunTurn ∧ isScenarioActive then SwitchToSpecAgents
bârunTurn := ¬bârunTurn

stepSucceeded :
if bârunTurn then

CheckAssertions
CheckScenarioProgram

endcase
where

isScenarioActive ≡ scenarioMainRule �= undef ∧ ¬isScenarioTerminated

agent to be executed, Bârun makes a cache copy of the agents set (the Agents
universe), then replaces the agents set with {bârunAgent}. If it is the first step
of the scenario (isScenarioProgramInitialized = false), it also sets the program
of bârunAgent to the main rule of the scenario.

Bârun Plugin

SwitchToBârunAgent ≡
let agents = stateUniverse(state, “Agents”) in

specAgentsSet := enumerate(agents)
forall a ∈ enumerate(agents) do

memberue(agents, a) := false
memberue(agents, bârunAgent) := true
if ¬isScenarioProgramInitialized then

SetValue((“program”, 〈bârunAgent〉), scenarioMainRule)
isScenarioProgramInitialized := true

Once bârunAgent is chosen for execution, Bârun sets the value of Agents
universe back to its original value.

Checking Assertions: The Bârun plugin checks assertions after every success-
ful step of the original specification; i.e., when the engine mode is changing to
Step Succeeded and bârunTurn is true (indicating that the next step is Bârun’s
turn).

52 M. Altenhofen and R. Farahbod

Bârun Plugin

CheckAssertions ≡
if |assertions| > 0 then

forall a ∈ assertions do
let exp = CopyTree(assertionBody(a), false) in

seq
Evaluate(exp)

next
if value(exp) �= truee then

PrintAssertionFailed(a)
if assertionPrintExpr(a) �= undef then

EvaluateAndPrintAssertionPrintExpr(a)
if isTerminalAssertion(a) then

ShutdownOnAssertionFailure(a)

Bârun scenarios may define a list of terminal assertions, failure of which should
terminate the simulation. The set can be defined in form of a comma separated
list of assertion identifiers as the value of Baarun.terminateOn engine property.
In order to make Bârun terminate on any assertion failure, the value of this
property should be set to ALL.

The predicate isTerminalAssertion(a) is defined as follows,

isTerminalAssertion(a) ≡
terminalAssertions = {“ALL”} ∨ assertionId(a) ∈ terminalAssertions

where terminalAssertions is the set of assertion identifiers listed as the value of
Baarun.terminateOn property.

Terminating the Bârun Agent: Scenarios may create an environment for the
simulated machine, guide the execution to some point and then let the machine
run without further interference. In such cases, the scenario writer may want to
explicitly stop the execution of bârunAgent by setting its program to undef. After
every successful step, the Bârun plugin monitors the program of bârunAgent,
and if it is set to undef, the plugin sets a flag (isScenarioTerminated) that would
prevent Bârun from further switching the agents set to {bârunAgent}.

Bârun Plugin

CheckScenarioProgram ≡
if isScenarioProgramInitialized ∧ ¬isScenarioTerminated then

if getValue((“program”, 〈bârunAgent〉)) = undefe then
isScenarioTerminated := true

3.2 Extending the Parser

The Bârun plugin extends the CoreASM language by adding the following dec-
laration syntax to define scenarios (mapping of scenario identifiers to scenario
script files) and an optional active scenario for the specification:

Bârun: A Scripting Language for CoreASM 53

Header ::= ScenarioDeclarations | Header

ScenarioDeclarations ::=

ScenarioDeclaration | ActiveScenarioDeclaration

ScenarioDeclaration ::= ’scenario’ ID ANYTOKEN

ActiveScenarioDeclaration ::= ’active’ ’scenario’ ID

where Header is the grammar rule for header declarations of CoreASM.
For example, the following lines can be added to a specification to define a set

of scenarios for the specification and to mark one of them as the default active
scenario that will be taken into account in every run of the specification:

scenario communicationError "commerror.csc"

scenario invalidInput "invalidinput.csc"

scenario newPurchaseRequest "newpurchase.csc"

active scenario invalidInput

The active scenario can also be defined by setting the value of engine property
Baarun.scenario. This can be done either explicitly in the specification by using
the Options plugin, for example

option Baarun.scenario "invalidinput.csc"

or by setting the value of this property through the engine driver. For instance,
using Carma, one can set the values of engine properties with the “-D” option:

carma -D Baarun.scenario=invalidinput.csc myspec.coreasm

3.3 Extending Rule Declarations

In order to facilitate writing structured scenario scripts, Bârun supports the
declaration of new macro rules in simulation scenarios. Since we are using the
CoreASM engine interpreter to evaluate the main rule of the scenario in the
state of the simulated machine, these scenario-specific rule declarations has to
be added to the state of the simulated machine as well. Thus, Bârun implements
the Vocabulary Extender interface of CoreASM plugin architecture to extend the
set of macro rule declarations in the initial state of the simulated machine by
the rule declarations specified in the active scenario.

4 Case Study

We now provide a more detailed example scenario that demonstrates the different
features of Bârun. For this, we re-examine the application introduced in Section
2, i.e., a distributed system that deals with consistent object management in a
dynamic environment. For the purpose of the following example scenario it is
sufficient to know that “dynamic environment” refers to the fact that the system
operates as a set of cooperating nodes that form a cluster and nodes may join
or leave that cluster either intentionally or unintentionally (upon node failure).

54 M. Altenhofen and R. Farahbod

Consistent object management requires that all nodes eventually agree on the
cluster topology (size and order), which should be ensured by a message-based
cluster membership and failover protocol. This protocol is based on the following
assumptions:

– There is a dedicated master node that acts as the “source of truth” regarding
the current cluster topology. Nodes that join the cluster contact the master
to receive information about the current cluster topology and then start
a restructuring protocol with all existing cluster members to establish an
updated consistent view among all cluster members.

– Nodes that intentionally leave the cluster perform a similar restructuring
operation informing the remaining cluster members about their departure.

– A system-wide global master lock indicates whether there is an active master
node. Any node that starts up tries to become the master (by trying to
acquire the lock) and if that fails, will contact the current master to join the
cluster.

– At any point in time, there is at most one restructuring going on, i.e., joins
and intentional leaves are serialized.

– Cluster nodes will be notified about node failures. Upon such notification,
the active master node performs a restructuring to repair the cluster view.

– If the master node has failed, the remaining nodes compete for becoming the
new master. Only the one that wins will perform a restructuring. All other
nodes simply contact the new master to be informed about the new cluster
topology.

We have turned this protocol into a multi-agent CoreASM specification consist-
ing of 10 modules. For each cluster node, we have 5 agents running, performing
different tasks in the overall protocol. Each agent is modeled as a control state
ASM where the overall number of different control states is 79. The following
table provides some details on the complexity of those modules:

Module Lines Rules Functions

Control State Handling 63 5 9
Control ASM States 50 0 1
Cluster Environment (Notification) 328 19 31
Lock Management 141 7 19
Message Passing 362 12 56
Cluster Master 161 12 10
Protocol Messages 138 0 25
Control Flow 88 10 5
Object Requests 128 10 3
Cluster Membership and
Object Management

1796 114 159

Total 3255 189 318

Bârun: A Scripting Language for CoreASM 55

As all these pieces are specified as modules, we use an additional minimal
“driver” specification for execution runs.

1 CoreASM ClusterEnvironment
2

3 // used modules omitted for brevity
4

5 include ClusterProtocol.coreasm
6

7 function nodeList : -> SET
8

9 init Init
10

11 rule Init = {
12 nodeList := {"N1", "N2", "N3"}
13 // delay startup , so that scenario runs have a chance to
14 // change the list of nodes that should be started
15 program (self) := @Startup
16 }
17

18 rule Startup = {
19 StartCluster(nodeList)
20 program (self) := undef
21 }

As with any other distributed coordination protocol, it soon became clear that we
need to simulate protocol runs for exceptional cases, especially situations where
nodes leave the cluster unintentionally. When we started our work, we thought
we would need to spend most of our efforts into simulating message transmission
errors. But it soon turned out that the system takes a fairly defensive approach
for dealing with such errors: most of the time, a message transmission failure
will lead to a node restart. Thus, we decided to focus on exploring the alterna-
tive paths with regard to cluster topology changes and failover handling. While
investigating that, we realized that the original failover protocol was based upon
an faulty assumption, namely that notifications in the case of failure would be
sent immediately after the node failure. But one can easily think of scenarios
where this is not true: Just assume that the notification is delayed while a new
node is starting up. Then, that node will become the master of a new cluster that
would just consist of that one node. If the delayed notification is then passed
on to the remaining nodes from the old cluster, they will try to become master,
will all fail, and thus do nothing, assuming that the (unknown) winner will per-
form the outstanding restructuring. Since the new master is not aware of the old
cluster, no repair will happen and we will end up with two independent clusters
operating in parallel.

Here is the complete scenario script that will expose this problem after exe-
cuting 896 steps:

1 Scenario ClusterSplit
2

3 local scenarioPhase initially 0
4 local clusterIsStable initially false
5 local killedMaster
6 local suspendedAgents initially {}
7

8 main ClusterController
9

10 rule ClusterController = {
11 if (scenarioPhase = 0) then {

56 M. Altenhofen and R. Farahbod

12 nodeList := {"N1", "N2"}
13 scenarioPhase := 1
14 }
15 if (scenarioPhase = 1) then {
16 if (AllNodesRunning()) then {
17 SuspendElemLossHandlers()
18 scenarioPhase := 2
19 clusterIsStable := true
20 }
21 }
22 if (scenarioPhase = 2) then {
23 KillMaster()
24 scenarioPhase := 3
25 clusterIsStable := false
26 }
27 if (scenarioPhase = 3) then {
28 if (NodeIsDown(killedMaster)) then {
29 StartNewMaster("NM")
30 scenarioPhase := 4
31 }
32 }
33 if (scenarioPhase = 4) then {
34 if (MasterNode() != undef and HasJoinedCluster("NM")) then {
35 ResumeElemLossHandlers()
36 scenarioPhase := 5
37 }
38 }
39 if (scenarioPhase = 5) then {
40 if (AllNodesRunning()) then {
41 clusterIsStable := true
42 scenarioPhase := 6
43 }
44 }
45 }
46

47 assert Indices_In_Sync as clusterIsStable implies IndicesInSync()
48

49 // additional rules
50 rule SuspendElemLossHandlers = {
51 forall node in RunningNodes() with node != MasterNode() do {
52 suspend ElemLossHandlerAgent(node)
53 add ElemLossHandlerAgent(node) to suspendedAgents
54 }
55 }
56

57 rule ResumeElemLossHandlers = {
58 forall agent in suspendedAgents do resume agent
59 }
60

61 rule KillMaster = {
62 killedMaster := MasterNode()
63 remove NodeID(MasterNode()) from nodeList
64 SignalNodeShutdown(MasterNode(), true)
65 }
66

67 rule StartNewMaster(newMasterID) = {
68 AddNode (newMasterID)
69 add newMasterID to nodeList
70 }

The scenario script is modeled as a control state ASM guarded by the local
variable scenarioPhase. The correctness of the object management depends on
distributed information that needs to be in sync across all members of a cluster,
but only if the cluster is considered to be in a stable state, i.e., all nodes are
and there is no restructuring going on. This property is stored in the boolean

Bârun: A Scripting Language for CoreASM 57

variable clusterIsStable, which in turn is used to guard the assertion in line 49.
Note that we have only two scenario phases where the cluster is considered stable;
once the original set of nodes has completed startup (line 16) and once the new
(single-node) cluster has finished rearrangement (line 34). In line 17, the scenario
actively suspends all notification handler agents to delay node failure handling,
which is needed to trigger the bug in the failover protocol. Before we can start
the node, that is supposed to become the new master, we need to wait until
the old master node has completely stopped operation. To check this, we keep
a reference to the old master node in the local variable killedMaster. Once the
new master is up (line 34), we resume the suspended notification handler agents
again (line 35). Which agents have been suspended is stored in another local
variable suspendedAgents. When the second cluster arrangement has finished,
we set clusterIsStable to true (line 41), activating the assertion again, which now
fails.

Looking at the initial phase and the additional rules in the scenario script, we
see that there is a direct coupling with the driver specification from above via
the shared location nodeList. Actually, this location is also used to define some
of the predicates that guard the execution of the scenario which we have added
to the driver specification to allow other scenarios to reuse these predicates:

1 derived AllNodesRunning =
2 |{n | n in ClusterNode with
3 NodeID (n) memberof nodeList and IsClusterMember(n)}| = | nodeList |
4

5 derived MasterNode = Node(MasterQueueAgent())
6

7 derived IsClusterMember(node) =
8 Regular (node) and answPhase(node) = undef
9

10 derived HasJoinedCluster(nodeID) =
11 |{n | n in ClusterNode with
12 NodeID(n) = nodeID and IsClusterMember(n)}| = 1

5 Related Work

Scenarios have been used at various stages of the software development pro-
cess, such as requirements elicitation and validation [6], evaluation and analysis
of software architectures [7,8], and software validation and testing [9]. When
combined with executable specifications or abstract prototypes, scenarios are
specially beneficial for design validation at the early stages of the software de-
velopment process [6].

The authors in [10] offer a nice overview of the role of scenarios in the soft-
ware development process. In this work, we focused on the application of sce-
narios for validation and testing of ASM models. Among the various ASM tools
currently available (see [1, Ch. 3]), only two provide support for utilizing sce-
narios in design and modeling of software systems. Spec# in combination with
SpecExplorer [11,12] is extended in [13] to support scenario-oriented modeling,
extending earlier work on the use of the AsmL test tool for generating finite
state machines from use-case models [14]. The authors have also developed an
engine, utilizing SpecExplorer, to perform conformance checking for scenarios.

58 M. Altenhofen and R. Farahbod

The AValLa scenario scripting language together with the Asmeta V validator
developed for the Asmeta toolset offer scenario-based validation of ASM mod-
els [10]. AValLa offers a minimal scripting language, with the ability to execute
ASM rules written in the AsmetaL language, to define scenarios for any given
ASM specifications written in AsmetaL [15]. AValLa scripts have a sequential
semantics (unlike ASM specifications) that facilitate algorithmic description of
scenarios. The scenarios are executed by the Asmeta V validator, a tool differ-
ent from the AsmetaS simulator for executing AsmetaL specifications, and they
explicitly drive the execution of their corresponding ASM specifications with
statements such as ‘Step’ and ‘StepUntil’. In addition to executing the scenar-
ios, Asmeta V validator also reports rule coverage by printing the list of rules
that have been called and evaluated during the execution. This is quite useful to
check if the set of scenarios cover all the transition rules of the original model.

Our approach here is similar to the work of Carioni et al. [10] as we defined a
minimal language to write scenario scripts that will be executed against CoreASM
specifications. However, the two approaches differ in two main aspects. First,
a Bârun scenario is in fact a specification of the environment of the original
system, so it is very much like a CoreASM specification (e.g., no implicit notion
of sequentiality). Second, the CoreASM engine is extended by the Bârun plugin
to run scenarios along with their corresponding CoreASM specification in an
interleaving fashion. There is no separate tool required to run the scenarios and
as a result it is not the scenarios that drive the specification.

Third, AValLa has no means to capture and aggregate local state, which we
found crucial for supporting scenarios like the one described in Section 4. There,
we needed a way to steer the execution run in a very fine-grained manner in
order to delay certain operations (handling node failure notifications). If all that
information were available from the environment of the scenario, a rough sketch
of an AValLa based scenario (in CoreASM) could look like this:

1 set nodeList = {"N1", "N2"} // the nodes that will be started up
2 step until AllNodesRunning()
3 check IndicesInSync()
4 exec {
5 KillMaster()
6 SuspendElemLossHandlers()
7 remove NodeID(MasterNode()) from nodeList
8 }
9 step until NodeIsDown(killedMaster)

10 exec {
11 StartNewMaster("NM")
12 }
13 step until MasterNode() != undef and HasJoinedCluster("NM")
14 exec {
15 ResumeElemLossHandlers()
16 }
17 step until AllNodesRunning()
18 check IndicesInSync()

It looks compellingly short compared to the Bârun script, mainly because the
sequential execution of the control state is already defined by the semantics of
the language constructs and does not need to be explicitly modeled. But without
local state in the scenario, that information would need to become part of the
specification in order to be accessible in the scenario. While this seems tolerable

Bârun: A Scripting Language for CoreASM 59

for nodeList, killedMaster and suspendedAgents would introduce rather “artifical”
locations into the specification and would essentially blur the distinction between
specification and scenario just for the sake to make the scenario work.

6 Conclusion and Future Work

Scenarios play an important role in software development, in particular in re-
quirement elicitation and software validation and testing. In combination with
executable specifications, executable scenario descriptions support validation of
abstract models at the early stages of the design, hence reducing the cost of
design failures. In this paper we have introduced Bârun, a plugin for CoreASM
allowing specification and execution of scenarios for CoreASM models. The plugin
extends the control flow of the CoreASM engine to enable execution of scenarios
along with the execution of the original model.

We have successfully applied Bârun in an industrial use case. We were able
to detect and reproduce design errors in a failover protocol of a distributed ap-
plication by capturing the implemented algorithms in an executable CoreASM
specification and validate this specification through dedicated scenario runs writ-
ten as Bârun scripts.

The Bârun plugin utilizes the CoreASM language such that all the rule con-
structs and expression forms that are available in the original specification are
also available in their corresponding scenarios. As such, with respect to the dy-
namic aspects of scenarios descriptions, the Bârun language can grow with the
CoreASM language as new plugins are developed. This led to a minimal first
solution, however, we envision various improvements to the Bârun plugin as part
of future work.

As of today, sequential scenario execution has to be modeled explicitly, but
this could be alleviated by providing scenario designers with a higher-level syntax
(in a similar fashion as the AValLa language). These high-level scripts could
then be automatically translated into their basic language equivalents without
the need to extend the core language.

As mentioned in Section 3, Bârun scenarios are executed along with CoreASM
specifications in an interleaving fashion. The plugin can be extended to offer sce-
nario writers more control over this behavior, for example, to allocate more steps
to the Bârun agent before resuming the execution of the CoreASM model. A pos-
sibly better approach would be to use model composition to combine scenarios
with CoreASM models, following a similar approach suggested in [11].

Bârun can also be extended to offer different execution modes with respect
to type-checking (such as black-box or white-box), hence potentially restricting
access to the internal state of the original machine to help with error checking.
Currently, the Modularity plugin cannot be used inside Bârun scenarios. Extend-
ing the plugin with modularity features would allow scenarios (e.g., those written
for a certain specification) to share certain definitions. We have also considered
adding support for various simulation reports (such as rule coverage), however we
believe such features to be orthogonal and can be added in form of an additional
plugin for CoreASM.

60 M. Altenhofen and R. Farahbod

We plan to make future versions of the Bârun plugin publicly available.

Acknowledgements. We would like to thank the anonymous reviewers for their
constructive feedback and suggestions for improvement on this paper.

References

1. Farahbod, R.: CoreASM: An Extensible Modeling Framework & Tool Environment
for High-level Design and Analysis of Distributed Systems. PhD thesis, Simon
Fraser University, Burnaby, Canada (May 2009)

2. Farahbod, R., et al.: The CoreASM Project (2009), http://www.coreasm.org
3. Börger, E.: Abstract state machines: a unifying view of models of computation and

of system design frameworks. Ann. Pure Appl. Logic 133(1-3), 149–171 (2005)
4. Carroll, J.M.: Five reasons for scenario-based design. In: HICSS ’99: Proceedings

of the Thirty-Second Annual Hawaii International Conference on System Sciences,
Washington, DC, USA, vol. 3, p. 3051. IEEE Computer Society, Los Alamitos
(1999)

5. Altenhofen, M., Brucker, A.: Practical issues with formal software specifications:
Lessons learned from an industrial case study (submitted for publication, 2009)

6. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenarios in system develop-
ment: Current practice. IEEE Software 15(2) (1998)

7. Babar, M.A., Gorton, I.: Comparison of scenario-based software architecture evalu-
ation methods. In: 11th Asia-Pacific Software Engineering Conference, pp. 600–607
(2004)

8. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-based analysis of software
architecture. IEEE Software 13(6), 47–55 (1996)

9. Ryser, J., Glinz, M.: A practical approach to validating and testing software sys-
tems using scenarios. In: QWE 1999, 3rd International Software Quality Week
Europe (1999)

10. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008)

11. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

12. Microsoft FSE Group: Spec Explorer (2008),
http://research.microsoft.com/specexplorer (Last visited, July 2008)

13. Grieskamp, W., Tillmann, N., Veanes, M.: Instrumenting scenarios in a model-
driven development environment. Information and Software Technology 46(15),
1027–1036 (2004)

14. Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N., Veanes, M.: Validating use-
cases with the AsmL test tool. In: Proceedings of Third International Conference
On Quality Software (QSIC 2003). IEEE, Los Alamitos (2003)

15. Formal Methods laboratory of University of Milan: Asmeta (2006),
http://asmeta.sourceforge.net/ (Last visited, June 2008)

http://www.coreasm.org
http://research.microsoft.com/specexplorer
http://asmeta.sourceforge.net/

AsmetaSMV: A Way to Link High-Level ASM
Models to Low-Level NuSMV Specifications�

Paolo Arcaini1,��, Angelo Gargantini2, and Elvinia Riccobene1

1 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy
parcaini@gmail.com, elvinia.riccobene@dti.unimi.it

2 Dip. di Ing. Gestionale e dell’Informazione, Università di Bergamo, Italy
angelo.gargantini@unibg.it

Abstract. This paper presents AsmetaSMV, a model checker for Ab-
stract State Machines (ASMs). It has been developed with the aim of
enriching the ASMETA (ASM mETAmodeling) toolset – a set of tools
for ASMs – with the capabilities of the model checker NuSMV to verify
properties of ASM models written in the AsmetaL language. We describe
the general architecture of AsmetaSMV and the process of automatically
mapping ASM models into NuSMV programs. As a proof of concepts,
we report the results of using AsmetaSMV to verify temporal properties
of various case studies of different characteristics and complexity.

Keywords: Abstract State Machines, Model Checking, NuSMV, AS-
META.

1 Introduction

To tackle the growing complexity of developing modern software systems that
usually have embedded and distributed nature, and more and more involve safety
critical aspects, formal methods have been affirmed as an efficient approach to
ensure the quality and correctness of the design. Formal methods provide several
advantages when involved in software system engineering. They allow producing
unambiguous specifications about the features and behavior of a system; they
allow catching and fixing design errors and inconsistencies early in the design
process; they allow applying formal analyses methods (validation and verifica-
tion) that assure correctness w.r.t. the system requirements and guarantee the
required system properties.

The Abstract State Machines (ASMs) [7] are nowadays acknowledged as a for-
mal method successfully employed as systems engineering method that guides
the development of complex systems seamlessly from requirements capture to
their implementation. To be used in an efficient manner during the system de-
velopment process, ASMs should be endowed with tools supporting the major
� This work is supported in part by the PRIN project D-ASAP (Dependable Adaptable

Software Architecture for Pervasive computing).
�� The author was partially supported by the STMicroelectronics project on Model-

driven methodologies and techniques for the design and analyses of embedded systems.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 61–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 P. Arcaini, A. Gargantini, and E. Riccobene

software life cycle activities: editing, simulation, testing, verification, model ex-
changing, etc. It is also mandatory that these tools have to be strongly integrated
in order to permit reusing information about models.

The goal of the ASMETA (ASM mETAmodeling) project [3] was to engineer
a standard metamodel-based modeling language for the ASMs, and to build a
general framework suitable for developing new ASM tools and integrate exist-
ing ones. Up to now, the ASMETA tool-set [14,3,12] allows creation, storage,
interchange, Java representation, simulation, testing, scenario-based validation
of ASM models.

In this work, we present a new component, AsmetaSMV, that enriches the
ASMETA framework with the capabilities of the model checker NuSMV [2] to
verify properties of ASM models.

As discussed in Sect. 5, it is relatively clear that a higher level specification
formalism as that provided in terms of ASMs enables a more convenient model-
ing than that provided by the language of a model checker as NuSMV. On the
other hand, it is undoubted that a lower-level formalism will lead to more effi-
cient model checking. However, we believe that a developing environment where
several tools can be used for different purposes on the base of the same speci-
fication model can be much more convenient than having different tools, even
if more efficient, working on input models with their own different languages.
On the base of our experience on some case studies (as the Mondex or the
Flash Protocol, see Sect. 5), having a model checker integrated with a powerful
simulator provides great advantages for model analyses, especially in order to
perform model and property validation. Indeed, verification of properties should
be applied when a designer has enough confidence that the specification and
the properties themselves capture all the informal requirements. By simulation
(interactive or scenario driven [8]), it is possible to ensure that the specification
really reflects the intended system behavior. Otherwise there is the risk that
proving properties becomes useless, for example in case of property vacuously
true [16]. Moreover, a simulator can help to reproduce counter examples provided
by a model checker, which are sometimes hermetic to understand.

The paper is organized as follows. Sect. 2 presents related results. In Sect. 3,
we briefly introduce the ASMETA framework and the NuSMV model checker.
Sect. 4 describes the general architecture of AsmetaSMV and the process of
automatically mapping ASM models into NuSMV programs. In Sect. 5, we report
the results of using AsmetaSMV to verify temporal properties of various case
studies of different characteristics and complexity. Sect. 6 concludes the paper.

2 Related Work

There are several attempts to translate ASM specifications to the languages
of different model checkers. For explicit state model checkers as Spin, we can
cite [11] and [10]. In [11], the authors show how to obtain Promela programs
from simple ASMs in order to use Spin for test generation. The approach was
significantly improved in [10] where the authors reported their experience in
using Spin for verifying properties of CoreAsm specifications.

AsmetaSMV: A Way to Link High-Level ASM Models 63

Regarding NuSMV, which is a symbolic model checker, a preliminary work
was done by Spielmann [19]. It represents ASMs by means of a logic for com-
putational graphs that can be combined with a Computation Tree Logic (CTL)
property and together they can be checked for validity. This approach severely
limits the ASMs that can be model checked. That work was overtaken by the
research of Winter and Del Castillo, which is very similar to ours. In [20], the
author discusses the use of the model checker SMV (Symbolic Model Verifier)
in combination with the specification method of ASMs. A scheme is introduced
for transforming ASM models into the language of SMV from ASM workbench
specifications. These schema are very similar to the scheme we present later
in this paper. The approach was later improved in [9] and applied to a com-
plex case study in [21]. A comparison with their work is presented in Sect. 5.
Our approach is very similar to theirs, although the starting notation is differ-
ent. Moreover, their tools (both the ASM workbench and the translator) are no
longer maintained and we were unable to use them.

Other approaches to model checking ASMs include works which perform a
quasi-native model checking without the need of a translation to a different
notation. For example, [15] presents a model checking algorithm for AsmL spec-
ifications. The advantages is that the input language is very rich and expressive,
but the price is that the model checking is very inefficient and unable to deal
with complex specifications, and it is not able to perform all the optimizations
available for a well established technique as that of Spin or NuSMV. A mixed
approach is taken by [5], which presents a way for model checking ASMs with-
out the need of translating ASM specifications into the modeling language of an
existing model checker. Indeed, they combine the model checker [mc]square with
the CoreASM simulator which is used to build the state space.

3 Background

3.1 ASMETA Toolset

The ASMETA (ASM mETAmodeling) toolset [14,3,13] is a set of tools for the
ASMs developed by exploiting the Model-driven development (MDD) approach.

We started by defining a metamodel, the Abstract State Machine Metamodel
(AsmM), as abstract syntax description of a language for ASMs. From the
AsmM, by exploiting the MDD approach and its facilities (derivative artifacts,
APIs, transformation libraries, etc.), we obtained in a generative manner (i.e.
semi-automatically) several artifacts (an interchange format, APIs, etc.) for the
creation, storage, interchange, access and manipulation of ASM models [12].
The AsmM and the combination of these language artifacts have led to an in-
stantiation of the Eclipse Modeling Framework (EMF) for the ASM application
domain. The resulting ASMETA framework provides a global infrastructure for
the interoperability of ASM tools (new and existing ones) [13].

64 P. Arcaini, A. Gargantini, and E. Riccobene

Fig. 1. The ASMETA tool set

The ASMETA tool set (see Fig. 1) includes (among other things) a textual
concrete syntax, AsmetaL, to write ASM models (conforming to the AsmM) in
a textual and human-comprehensible form; a text-to-model compiler, Asmet-
aLc, to parse AsmetaL models and check for their consistency w.r.t. the AsmM
OCL constraints; a simulator, AsmetaS, to execute ASM models; the Avalla lan-
guage for scenario-based validation of ASM models, with its supporting tool, the
AsmetaV validator; the ATGT tool that is an ASM-based test case generator
based upon the SPIN model checker; a graphical front-end called ASMEE (ASM
Eclipse Environment) which acts as integrated development environment (IDE)
and it is an Eclipse plug-in.

All the above artifacts/tools are classified in: generated, based, and integrated.
Generated artifacts/tools are derivatives obtained (semi-)automatically by ap-
plying appropriate Ecore (i.e. the EMF metalanguage) projections to the tech-
nical spaces Javaware, XMLware, and grammarware. Based artifacts/tools are
those developed exploiting the ASMETA environment and related derivatives;
an example of such a tool is the simulator AsmetaS. Integrated artifacts/tools
are external and existing tools that are connected to the ASMETA environment.

3.2 NuSMV

The NuSMV model checker [2], derived from the CMU SMV [17], allows for the
representation of synchronous and asynchronous finite state systems, and for
the analysis of specifications expressed in Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL), using Binary Decision Diagrams (BDD)-based
and SAT-based model checking techniques. Heuristics are available for achieving
efficiency and partially controlling the state explosion.

NuSMV is a transactional system in which the states are determined by the
values of variables; transactions between the states are determined by the up-
dates of the variables. A NuSMV model is made of three principal sections:

– VAR that contains variables declaration. A variable type can be boolean,
Integer defined over intervals or sets, enumeration of symbolic constants.

– ASSIGN that contains the initialization (by the instruction init) and the
update mechanism (by the instruction next) of variables. A variable can be
not initialized and in this case, at the beginning NuSMV creates as many
states as the number of values of the variable type; in each state the variable

AsmetaSMV: A Way to Link High-Level ASM Models 65

Fig. 2. Architecture of AsmetaSMV

assumes a different value. The next value can be determined in a straight
way, or in a conditional way through the case expression.

– SPEC (resp. LTLSPEC) that contains the CTL (resp. LTL) properties to be
verified.

In NuSMV it is possible to model non deterministic behaviours by (a) do not
assigning any value to a variable that, in this case, can assume any value; (b)
assigning to a variable a value randomly chosen from a set. It is also possible to
specify invariant conditions by the command INVAR.

4 AsmetaSMV

AsmetaSMV has been developed as based tool of the ASMETA toolset, since
it exploits some derivatives of the ASMETA environment. In particular, As-
metaSMV does not define its own input language, neither introduces a parser
for a textual syntax. It reuses the parser defined for AsmetaL and reads the
models as Java objects as defined by the ASMETA Java API. The aim of As-
metaSMV is that of enriching the ASMETA toolset with the capabilities of the
model checker NuSMV. No knowledge of the NuSMV syntax is required to the
user in order to use AsmetaSMV. To perform model checking over ASM models
written in AsmetaL, a user must know, besides the AsmetaL language, only the
syntax of the temporal operators.

Fig. 2 shows the general architecture of the tool. AsmetaSMV takes in input
ASM models written in AsmetaL and checks if the input model is adequate to
be mapped into NuSMV. Limitations are due to the model checker restriction
over finite domains and data types. If this test fails, an exception is risen; other-
wise, signature and transitions rules are translated as described in Sect. 4.1 and
4.2. The user can define temporal properties directly into the AsmetaL code as
described in Sec. 4.3. We assume that the user provides the models in AsmetaL,
but any other concrete syntax (like Asmeta XMI) could be used instead.

66 P. Arcaini, A. Gargantini, and E. Riccobene

asm arity1_2
import ./StandardLibrary

signature:
domain SubDom subsetof Integer
enum domain EnumDom = {AA | BB}
dynamic controlled foo1: Boolean -> EnumDom
dynamic controlled foo2: Prod(SubDom ,

EnumDom) -> SubDom
definitions:

domain SubDom = {1..2}

MODULE main
VAR

foo1_FALSE: {AA,BB};
foo1_TRUE: {AA,BB};
foo2_1_AA: 1..2;
foo2_1_BB: 1..2;
foo2_2_AA: 1..2;
foo2_2_BB: 1..2;

Fig. 3. AsmetaL model and NuSMV translation

4.1 Mapping of States

Domains. AsmetaL domains are mapped into their corresponding types in
NuSMV. The only supported domains are: Boolean, Enum domains and Con-
crete domains whose type domains are Integer or Natural. Boolean and Enum
domains are straightforwardly mapped into boolean and symbolic enum types
of NuSMV. Concrete domains of Integer and Natural, instead, become integer
enums in NuSMV, on the base of the concrete domain definitions.

Functions. For each AsmetaL dynamic nullary function (i.e. variable) a NuSMV
variable is created. ASM n-ary functions must be decomposed into function lo-
cations; each location is mapped into a NuSMV variable. So, the cardinality of
the domain of a function determines the number of the corresponding variables
in NuSMV. The codomain of a function, instead, determines the type of the vari-
able. Therefore, given an n-ary function func with domain Prod(D1, . . . , Dn), in
NuSMV we introduce

∏n
i=1 |Di| variables with names func elDom1 . . . elDomn,

where elDom1 ∈ D1, . . . , elDomn ∈ Dn.
Fig. 3 reports an example of two functions foo1 of arity 1 and foo2 of arity

2 and the result of the translation in NuSMV.

Controlled functions. They are updated by transitions rules. The initialization
and the update of a dynamic location are mapped in the ASSIGN section through
the init and next instructions. In Fig. 4, see the function foo as an example of
a controlled function.

Monitored functions. Since their value is set by the environment, when mapped
to NuSMV, monitored variables are declared but they are neither initialized nor
updated. When NuSMV meets a monitored variable, it creates a state for each
value of the variable. Values of monitored locations are set at the beginning of
the transaction, that is before the execution of the transition rules; this means
that transition rules deal with the monitored location values of the current state
and not of the previous one. Therefore, when a monitored variable is used in

AsmetaSMV: A Way to Link High-Level ASM Models 67

asm contrMon
import ./StandardLibrary
import ./CTLLibrary
signature:

dynamic monitored mon: Boolean
dynamic controlled foo: Boolean

definitions:
//axiom for simulation
axiom over foo: foo = mon
//property to translate into NuSMV
axiom over ctl: ag(foo = mon)

main rule r_Main = foo := mon
default init s0:

function foo = mon

MODULE main
VAR

foo: boolean ;
mon: boolean ;

ASSIGN
init(foo) := mon;
next(foo) := next(mon);

SPEC AG(foo = mon);

Fig. 4. Controlled and monitored functions

the ASSIGN section (this means that, in AsmetaL, the corresponding monitored
location occurs on the right side of a transition rule), its correct value is obtained
through the next expression.

This is shown by an example reported in Fig. 4 where the axiom checks that
the controlled function foo is always equal to the monitored function mon. The
correct NuSMV translation reports a CTL property, equivalent to the axiom,
which checks that the NuSMV model keeps the same behaviour of the AsmetaL
model.

Static and derived functions. Their value is set in the definitions section of
the AsmetaL model and never changes during the execution of the machine.
AsmetaSMV does not distinguish between static and derived functions, that, in
NuSMV, are expressed through the DEFINE statement, as shown in Fig. 5. To
obtain a correct NuSMV code, static and derived functions must be fully specified
(i.e. specified in all the states of the machine), otherwise, NuSMV signals that
the conditions of these function definitions are not exhaustive.

asm staticDerived
import ./StandardLibrary
signature:

domain MyDomain subsetof Integer
dynamic monitored mon1: Boolean
dynamic monitored mon2: Boolean
static stat: MyDomain
derived der: Boolean

definitions:
domain MyDomain = {1..4}
function stat = 2
function der = mon1 and mon2

MODULE main
VAR

mon1: boolean ;
mon2: boolean ;

DEFINE
stat:= 2;
der:= (mon1 & mon2);

Fig. 5. Static/derived functions

68 P. Arcaini, A. Gargantini, and E. Riccobene

4.2 Mapping of Transition Rules

ASMs and NuSMV differ in the way they compute the next state of a transition,
and such difference is reflected in their syntaxes as well.

In ASM, at each state, every enabled rule is evaluated and the update set
is built by collecting all the locations and next values to which locations must
be updated. The same location can be assigned to different values in several
points of the specifications and the typical syntax of a single guarded update is
if cond then var′ := val.

In NuSMV, at each step, for every variable, the next value is computed by
considering all its possible guarded assignments. The form of a guarded update
is var′ := case cond1 then val1 case cond2 then val2... which lists all the
possible next values for the location.

In order to translate from AsmetaL to NuSMV, our translation algorithm
visits the ASM specification. It starts from the main rule and by executing a
depth visit of all the rules it encounters, it builds a conditional update map,
which maps every location to its update value together with its guard. A global
stack Conds (initialized to true) is used to store the conditions of all the outer
rules visited. For each rule constructor, a suitable visit procedure is defined.

Update rule: The update rule syntax is l := t, where l is a location and t a term.
The visit algorithm builds c as the conjunction of all the conditions on the

Conds stack and adds to the conditional update map the element l → (c, t)

Conditional Rule: The conditional rule syntax is:

if cond then Rthen else Relse endif

where cond is a boolean condition and Rthen and Relse are transition rules. If
cond is true Rthen is executed, otherwise Relse is executed.

The visit algorithm works as follows:

– cond is put on stack Conds and rule Rthen is visited; in such a way all the
updates contained in Rthen are executed only if cond is true;

– cond is removed from stack Conds.
– If else branch is not null:

• condition ¬cond is put on stack Conds and rule Relse is visited; in such a
way all the updates contained in Relse are executed only if cond is false;

• ¬cond is removed from stack Conds.

For example, the conditional update map of AsmetaL code shown in Fig. 6 is
the following:

Location Condition Value

foo mon ∧ ¬ mon2 AA
mon ∧ mon2 BB

foo1 true AA

AsmetaSMV: A Way to Link High-Level ASM Models 69

asm condRule
import ./ StandardLibrary

signature:
enum domain EnumDom = {AA| BB| CC}
dynamic monitored mon: Boolean
dynamic monitored mon2: Boolean
dynamic controlled foo: EnumDom
dynamic controlled foo1: EnumDom

definitions:
main rule r_Main =

par
foo1 := AA
if(mon) then

if(mon2) then
foo := BB

else
foo := AA

endif
endif

endpar

MODULE main
VAR

foo: {AA, BB, CC};
foo1: {AA , BB, CC};
mon: boolean ;
mon2: boolean ;

ASSIGN
next(foo) :=

case
next(mon) & !(next(mon2)): AA;
next(mon) & next(mon2): BB;
TRUE: foo;

esac;
next(foo1) := AA;

Fig. 6. Conditional Rule mapping

Choose rule: The choose rule syntax is:

choose v1 in D1, . . . , vn in Dn with Gv1,...,vn do
Rv1,...,vn

[ifnone Rifnone]

where v1, . . . , vn are logical variables and D1, . . . , Dn their domains. Gv1,...,vn is
a boolean condition over v1, . . . , vn. Rv1,...,vn is a rule that contains occurrences
of v1, . . . , vn. Optional branch ifnone contains the rule Rifnone that must be
executed if there are not values for variables v1, . . . , vn that satisfy Gv1,...,vn .

In NuSMV the logical variables become variables whose value is determined
through an INVAR specification that reproduces the nondeterministic behavior
of the choose rule. For each values tuple dj1

1 , . . . , djn
n with dj1

1 ∈ D1, . . . , d
jn
n ∈

Dn, the algorithm adds to the stack the condition G
d

j1
1 , ..., djn

n
and visits rule

R
d

j1
1 , ..., djn

n

1.

Other rules: In addition to the update, conditional and choose rules, the other
rules that are supported by AsmetaSMV are: macrocall rule, block rule, case
rule, let rule and forall rule. They are not reported here. Details can be found
in [4].

4.3 Property Specification

AsmetaSMV allows the user to declare CTL/LTL properties directly in the ax-
iom section of an AsmetaL model.
1 G

d
j1
1 , ..., d

jn
n

and R
d

j1
1 , ..., d

jn
n

are the condition and the rule where the variables

v1, . . . , vn have been replaced with the current values dj1
1 , . . . , djn

n .

70 P. Arcaini, A. Gargantini, and E. Riccobene

In AsmetaL, the syntax of an axiom is:

axiom over id1, . . . , idn : axid1,...,idn

where id1, . . . , idn are names of domains, functions or rules; axid1,...,idn is a
boolean expression containing occurrences of id1, . . . , idn.

In NuSMV, CTL [resp. LTL] properties are declared through the keyword
SPEC [resp. LTLSPEC]:

SPEC pCTL [resp. LTLSPEC pLTL]

where pCTL [resp. pLTL] is a CTL [resp. LTL] formula.
The syntax of a CTL/LTL property in AsmetaL is:

axiom over [ctl | ltl] : p

where the over section specifies if p is a CTL or a LTL formula.
In order to write CTL/LTL formulas in AsmetaL, we have created the libraries

CTLlibrary.asm and LTLlibrary.asm where, for each CTL/LTL operator, an
equivalent function is declared. The following table shows, as example, all the
CTL functions.

NuSMV CTL operator AsmetaL CTL function
EG p static eg: Boolean → Boolean
EX p static ex: Boolean → Boolean
EF p static ef: Boolean → Boolean
AG p static ag: Boolean → Boolean
AX p static ax: Boolean → Boolean
AF p static af: Boolean → Boolean
E[p U q] static e: Prod(Boolean, Boolean) → Boolean
A[p U q] static a: Prod(Boolean, Boolean) → Boolean

AsmetaL code in Fig. 7 contains three CTL properties and their translation
into NuSMV.

4.4 Property Verification

AsmetaSMV allows model checking an AsmetaL specification by translating it
to the NuSMV language and directly run the NuSMV tool on this translation
to verify the properties. The output produced by NuSMV is pretty-printed,
replacing the NuSMV variables with the corresponding AsmetaL locations: it is
our desire, in fact, to hide as much as possible the NuSMV syntax to the user.

The output produced by model checking the AsmetaL model shown in Fig.7
is reported below. The first two properties are proved true: location foo(AA),
in fact, changes its value at each step. The third property, instead, is proved
false as shown by the counterexample: a state exists where locations foo(AA)

AsmetaSMV: A Way to Link High-Level ASM Models 71

asm ctlExample
import ./ StandardLibrary
import ./ CTLlibrary

signature:
enum domain EnumDom = {AA | BB}
controlled foo: EnumDom -> Boolean
monitored mon: Boolean

definitions:
//true
axiom over ctl: ag(foo(AA) iff

ax(not(foo(AA))))
//true
axiom over ctl: ag(not(foo(AA)) iff

ax(foo(AA)))
//false. Gives counterexample.
axiom over ctl: not(ef(foo(AA) !=

foo(BB)))

main rule r_Main =
par

foo(AA) := not(foo(AA))
if(mon) then

foo(BB) := not(foo(BB))
endif

endpar

default init s0:
function foo($x in EnumDom) = true

MODULE main
VAR

foo_AA: boolean ;
foo_BB: boolean ;
mon: boolean ;

ASSIGN
init(foo_AA) := TRUE;
init(foo_BB) := TRUE;
next(foo_AA) := !(foo_AA);
next(foo_BB) :=

case
next(mon): !(foo_BB);
TRUE: foo_BB;

esac;
SPEC AG(foo_AA <-> AX (!(foo_AA)));
SPEC AG(!(foo_AA) <-> AX(foo_AA));
SPEC !(EF(foo_AA != foo_BB));

Fig. 7. CTL property translation

and foo(BB) are different (State: 1.2). Note that the pretty printer substitutes
foo AA with foo(AA).
> AsmetaSMV ctlExample.asm

Checking the AsmetaL spec: OK

Translating to ctlExample.smv: OK

Executing NuSMV -dynamic -coi ctlExample.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (foo(AA) <-> AX !foo(AA)) is true

-- specification AG (!foo(AA) <-> AX foo(AA)) is true

-- specification !(EF foo(AA) != foo(BB)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo(AA) = 1

foo(BB) = 1

mon = 0

-> Input: 1.2 <-

-> State: 1.2 <-

foo(AA) = 0

72 P. Arcaini, A. Gargantini, and E. Riccobene

5 Case Studies

AsmetaSMV has been tested on five case studies; the complete description of
our tests can be found in [4] and are available at [3]. The first two case studies
we have analyzed are two problems described in [6]:

1. A system made of two traffic lights placed at the beginning and at the end of
an alternated one-way street; both traffic lights are controlled by a computer.

2. An irrigation system composed by a small sluice, with a rising and a falling
gate, and a computer that controls the sluice gate.

For both problems we have written ground and refined model; in each model we
have declared safety and liveness properties to test the correctness of the model.

Another case study we have analyzed is the Mondex protocol ([1]). The Mon-
dex protocol implements electronic cash transfer between two purses; the transfer
of money is implemented through the sending of messages over a lossy medium
that can be, for example, a device with two slots or an Internet connection. We
have written the AsmetaL model for one of the refinement steps described in
[18]; a liveness property has helped us to discover that the model can enter in a
deadlock state. Two different solutions are proposed in [4].

We have also analyzed the taxi booking problem: in a city some clients can
request one or more taxis to a central that must satisfy all the requests. The
taxis must bring the clients where they want to go. For this problem we had
previously developed a NuSMV model (let’s call it originalNuSMV); now we
have developed an AsmetaL model containing the same properties that we wrote
in the originalNuSMV. We have been able to compare the originalNuSMV code
with the code obtained from the translation of the AsmetaL model (let us call it
mappedNuSMV). We have seen that, for the same problem, it is easier to write an
AsmetaL code rather than a NuSMV one: the ASMs in fact, thanks to a wide set
of transition rules, are much more expressive than NuSMV. The verification of
the properties in originalNuSMV and in mappedNuSMV gave the same results.
Obviously this cannot be considered as a demonstration of the correctness of the
mapping, but shows that, for a problem, there are different equivalent models.
Generally, the code obtained from a mapping is more computational onerous
than a code written directly in NuSMV; the mapping, in fact, introduces some
elements that can be avoided in the direct encoding.

Finally, we have applied our tool to the flash cache coherence protocol, which
integrates support for cache coherent shared memory for a large number of inter-
connected processing nodes. Starting from the specifications published by Winter
[21] and by Farahbod at alt. [10], we have written the AsmetaL specification for
the protocol together with its safety properties. This model is available in the
ASMETA repository. By means of the ASMETA simulator and the validator we
were able to correct some defects in our specifications even before trying to prove
the properties. A problem of vacuity detection also has been arisen. At the end,
we were able to prove the three properties in less than 1 second for both the
protocol versions with 2 nodes and 1 and 2 lines. A detailed comparison with
[21] and [10] is however difficult since we were unable to run neither Asm2SMV

AsmetaSMV: A Way to Link High-Level ASM Models 73

which is no longer maintained, nor the Coreasm to Spin plug-in which is not
published yet. With respect to [21], our running times are much lower, but we
ran the experiments on a faster machine. In terms of the BDD size of the re-
sulting NuSMV model, we found that the specification with 1 line has similar
size while our specification with 2 lines had a much smaller BDD size. Our ex-
periments were much faster than that in [10], too, but only for one property we
can actually compare our results with theirs, since they used the model checker
Spin mainly to find faults in the original specification but we were unable to
reproduce the same faults.

6 Conclusions

This work is part of our ongoing effort in developing a set of tools around ASMs
for model validation and verification. We here describe how the ASMETA toolset
has been enriched with model checking facilities to verify temporal properties
of ASM models encoded in the AsmetaL language. By means of case studies of
different complexity, we provide evidence of the importance of having simula-
tion and model checking capabilities integrated within a unique environment.
Indeed, the combined use of both tools can facilitate the verification process,
since it may be sometimes useful to discover which system behavior is hidden
behind a property to verify in order to better formulate it and easily prove it.
As future plan, we intend to improve AsmetaSMV to handle turbo ASMs. More-
over, we plan to extend AsmetaSMV in order to allow the translation of counter
examples produced by NuSMV to Avalla [8], the language we use to perform sce-
nario driven validation of ASMs. The counter examples would constitute a set of
wrong scenarios representing incorrect behaviors of the system, and they could
be replayed later to check that corrected models do not exhibit those incorrect
behaviors.

Acknowledgments. R. Farahbod sent us the CoreAsm specification of the flash
coherence protocol, while K. Winter helped us in trying to make Asm2SMV [21]
work on our computers.

References

1. Mastercard international inc.: Mondex, http://www.mondex.com/
2. The NuSMV website, http://nusmv.itc.it/
3. The ASMETA website (2006), http://asmeta.sourceforge.net/
4. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a model checker for As-

metaL models. tutorial. TR 120, DTI Dept., Univ. of Milan (2009)
5. Beckers, J., Klünder, D., Kowalewski, S., Schlich, B.: Direct support for model

checking abstract state machines by utilizing simulation. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 112–124. Springer,
Heidelberg (2008)

6. Börger, E.: The Abstract State Machines Method for High-Level System Design
and Analysis. Technical report, BCS Facs Seminar Series Book (2007)

http://www.mondex.com/
http://nusmv.itc.it/
http://asmeta.sourceforge.net/

74 P. Arcaini, A. Gargantini, and E. Riccobene

7. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

8. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008)

9. Castillo, G.D., Winter, K.: Model checking support for the ASM high-level lan-
guage. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
331–346. Springer, Heidelberg (2000)

10. Farahbod, R., Glässer, U., Ma, G.: Model checking coreasm specifications. In:
Prinz, A. (ed.) Proceedings of the ASM 2007, The 14th International ASM Work-
shop (2007)

11. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

12. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

13. Gargantini, A., Riccobene, E., Scandurra, P.: Model-driven language engineering:
The ASMETA case study. In: International Conference on Software Engineering
Advances, ICSEA, pp. 373–378 (2008)

14. Gargantini, A., Riccobene, E., Scandurra, P.: Ten reasons to metamodel ASMs.
In: Jean-Raymond, Glässer, U. (eds.) Rigorous Methods for Software Construction
and Analysis. LNCS, vol. 5115, pp. 33–49. Springer, Heidelberg (2009)

15. Kardos, M.: An approach to model checking asml specifications. In: Abstract State
Machines, pp. 289–304 (2005)

16. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 4(2), 224–233
(2003)

17. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell
(1993)

18. Schellhorn, G., Banach, R.: A concept-driven construction of the mondex protocol
using three refinements. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 57–70. Springer, Heidelberg (2008)

19. Spielmann, M.: Automatic verification of abstract state machines. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 431–442. Springer, Heidel-
berg (1999)

20. Winter, K.: Model Checking for Abstract State Machines. Journal of Universal
Computer Science (J.UCS) 3(5), 689–701 (1997)

21. Winter, K.: Towards a methodology for model checking ASM: Lessons learned
from the FLASH case study. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele,
L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 341–360. Springer, Heidelberg (2000)

An Executable Semantics of the SystemC UML Profile�

Elvinia Riccobene1 and Patrizia Scandurra2

1 DTI Dept., Università degli Studi di Milano, Italy
elvinia.riccobene@unimi.it

2 DIIMM Dept., Università degli Studi di Bergamo, Italy
patrizia.scandurra@unibg.it

Abstract. The SystemC UML profile is a modeling language designed to lift
features and abstractions of the SystemC/C++ class library to the UML level with
the aim of improving the current industrial System-on-Chip design methodology.
Its graphical syntax and static semantics were defined following the “profile”
extension mechanism of the UML metamodel, while its behavioral semantics was
given in natural language. This paper provides a precise and executable semantics
of the SystemC Process State Machines that are an extension of the UML state
machines and are part of the SystemC UML profile to model the reactive behavior
of the SystemC processes. To this purpose, we used the meta-hooking approach of
the ASM-based semantic framework, which allows the definition of the dynamic
semantics of metamodel-based languages and of UML profiles.

1 Introduction

The SystemC UML profile [28,24] is a modeling language developed to improve the
conventional industrial Systems-on-Chip (SoC) design methodology with a model-
driven approach [25,26,27]. It is a consistent set of modeling constructs designed to
lift both structural and behavioral features (including events and time features) of Sys-
temC [32] to the UML [33] level. It was defined by exploiting the UML profile mecha-
nism that requires the specification of UML extension elements (stereotypes and tagged
values) and of new constraints as Object Constraint Language (OCL) [22] rules.

The profile, while provides a complete description of the modeling syntax and static
semantics, suffers from the lack of a precise behavioral semantics that is given in
natural language. Indeed, in the OMG framework used to define the profile, as well
as in other metamodeling environments (like Eclipse/Ecore, GME/MetaGME, AM-
MA/KM3, XMF-Mosaic/Xcore, etc.), the way to define the language abstract syntax
in terms of a metamodel and its static semantics as OCL rules is well established, while
no standard and rigorous support is given to provide the dynamic semantics that is usu-
ally expressed in natural language. This lack has negative consequences, as often re-
marked in the past since the first UML version. Moreover, defining a precise semantics
of UML extensions is widely felt, especially now that UML is turning into a “family of
languages” (see the OMG standardization activities of UML profiles in [33]).

� This work is supported in part by the PRIN project D-ASAP (Dependable Adaptable Software
Architecture for Pervasive computing).

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 75–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

76 E. Riccobene and P. Scandurra

The definition of a means for specifying rigorously the semantics of UML profiles,
as well as of metamodel-based languages, is therefore an open and crucial issue in the
model-driven context.

In [11], a formal semantic framework based on the ASM (Abstract State Machine)
formal method [2] is presented, which allows us to express a precise and executable
semantics of metamodel-based languages using different techniques. We here adapt
one of the techniques in [11], the meta-hooking, for UML profiles, and we show its
application to the SystemC UML profile. This implies to provide a rigorous semantics
of the SystemC Process (SCP) state machines formalism of the SystemC UML profile
used to model the reactive behavior of SystemC processes.

This paper is organized as follows. Some background on the SystemC UML profile
is given in Sect. 2. Sect. 3 presents the meta-hooking technique of the ASM-based
semantic framework. Sect. 4 shows the application of the meta-hooking technique to
the OMG metamodeling framework for the semantics specification of the SCP state
machines. Some related work is presented in Sect. 5, while Sect. 6 concludes the paper.

2 The SystemC UML Profile

SystemC [32] is an open standard in the EDA (Electronic Design Automation) industry.
Built as C++ library, SystemC is a language providing abstractions for the description
and simulation of SoCs. Typically, the design of a system is specified as a hierarchical
structure of modules and channels. A module is a container class able to encapsulate
structure and functionality of hardware/software blocks, while a channel (primitive or
hierarchical) serves as a container to encapsulate the communication functionality of
blocks. Each module may contain attributes as simple data members, ports (proxy ob-
jects) for communication with the surrounding environment and processes for executing
module’s functionality and expressing concurrency in the system. Fig.1 shows a module
example, count_stim, containing a thread process stimgen, two input ports dout
and clock, and two output ports load and din, in the SystemC UML profile.

We here skip the details concerning the structural modeling constructs, as the focus
is on the behavioral aspects of the profile. Some basic concepts underlying the SCP
state machines are reported below as defined in the SystemC UML profile [28]. This
formalism is to be considered a conservative extension of the UML method state ma-
chine1 defined through the UML extension mechanism of “profiles” (i.e., stereotypes,
tags, and constraints)[33].

SystemC Process State Machines: Processes are the basic unit of execution within
SystemC and provide the mechanism for simulating concurrent behavior. Three kinds
of processes are available: sc_method, sc_thread and sc_cthread. Each kind
of process has a slight different behavior, but in general (i) a process is declared within
the scope of a class (a module or a hierarchical channel) as a stereotyped operation
with no return type and no arguments (see, for example, Fig.1); (ii) all processes run

1 A UML “method” state machine specifies the algorithm or procedure for a behavioral feature
(such as a class’s operation).

An Executable Semantics of the SystemC UML Profile 77

concurrently; (iii) the process code is not hierarchical, i.e. no process can directly in-
voke another process (processes can cause other processes to execute only by notifying
events); and (iv) a process is activated depending on its static sensitivity that is an ini-
tial list (possibly empty) of events that can dynamically change at run-time realizing
the so called dynamic sensitivity mechanism. Finally, (v) all processes are usually acti-
vated at the beginning of the simulation, but a process can be explicitly not initialized
– by means of a dont_initialize statement –, so it does not execute immediately
when the simulation starts, but after a first occurrence of any of the events in its static
sensitivity.

Fig. 1. The count_stim module

In this paper, we focus on the sc_thread process type. Fig.2 (A) shows the UML
schema of a SC thread state machine. This diagram corresponds to a SystemC thread
that: (i) has both a static (the list e1s, . . . , eNs) and a dynamic sensitivity (the state
WAITING FOR e* with the stereotype wait), (ii) runs continuously (by an infinite
while loop), and (iii) is not initialized (the state with thedont_initialize stereo-
type follows the top initial state). Activities a1 and a2 stand for structured blocks of
sequential (or not) code without wait statements. The wait-state denotes a generic
wait(e*) statement where the event e* matches one of the cases described in Fig.3.
The pattern in Fig.2 (A) can be more complex in case of wait statements within the
scope of nested control structures. In this case, as part of the SystemC UML profile, the
control structures while, if-else, etc., need to be explicitly represented in terms of
special stereotyped junction or choice pseudostates.

Fig.2 (B) shows the state machine for the stimgen thread of the module shown in
Fig.1. It is an instantiation of the pattern in Fig.2 (A). After initializing the load and
din ports, the stimgen thread runs continuously: at each clock cycle (by the wait for
the positive clock edge event of the static sensitivity list) it checks the received value
from the dout port and may restart the counter in case it reaches the _maxcount
attribute’s value. Actions are specified using SystemC/C++ as action language.

The stereotype sc_thread labels both the operation indicating the thread process
in the class of the container module (see, e.g., Fig.1) and the state machine defined for
the process (see Fig. 2 (B)). The tag sensitive (see Fig.1) is used to declare the
static sensitivity list of the thread (if any) using the form � e1s � .. � eNs, where

78 E. Riccobene and P. Scandurra

(A) (B)

Fig. 2. A thread state machine pattern (A) and a (concrete) thread state machine (B)

e1s, .., eNs are event types. The boolean tagged value dont_initialize, whose
default value is false, represents the SystemC dont_initialize statement. The
dont_initialize stereotype is also applied to a simple state (see Fig.2) and is used
to capture at state machine level the behavioral semantics of the dont_initialize
statement. A dont_initialize state has only one outgoing transition with possibly
no explicit triggers; it is assumed that the static sensitivity list of the process are the
implicit trigger event list of this transition.

The dynamic sensitivity of a thread is captured at behavioral level in the state ma-
chine associated to the thread by the use of the stereotypes static_wait and wait.
These stereotypes are applied to simple states. They model the SystemC wait() and
wait(e*) statements for resuming a waiting process depending on its static and dy-
namic sensitivity, respectively. A static_wait state has only one outgoing transi-
tion, the static resuming transition, with no explicit triggers since it is assumed that
the events of the static sensitivity list of the process are the implicit triggers of this
transition. The parameter e* of a wait(e*) statement is the trigger of the outgoing
transitions, the dynamic resuming transitions, of a wait state (see Fig.3).

3 ASM-Based Semantic Framework

The semantic framework presented in [11] is based on the ASM formal method and
allows to link the abstract syntax (metamodel) of a language with its executable

An Executable Semantics of the SystemC UML Profile 79

Fig. 3. Dynamic Sensitivity of a Thread

behavioral semantics expressed in terms of ASM transition rules. In the sequel, we
recall from [11] some basic concepts.

A language metamodel A has a well-defined semantics if a semantic domain S is
identified and a semantic mapping MS : A → S is provided [13] to give meaning to
syntactic concepts of A in terms of the semantic domain elements. In the ASM-based
semantic framework, the mapping MS is defined in terms of the ASM metamodel,
AsmM, and its semantic domain SAsmM

2. The semantics of a “terminal model”3 [15]
conforming to A is therefore expressed in terms of an ASM model.

By assuming the semantic domain SAsmM as the semantic domain S, the semantic
mapping MS : A→ SAsmM is defined as

MS = MSAsmM
◦M

where MSAsmM : AsmM → SAsmM is the semantic mapping of the ASM metamodel
and associates a theory conforming to the SAsmM logic with a model conforming to
AsmM, and the function M : A → AsmM associates an ASM to a terminal model m
conforming to A. Therefore, the problem of giving the metamodel semantics is reduced
to define the function M between metamodels. The complexity of this approach de-
pends on the complexity of building the function M .

2 SAsmM is the first-order logic extended with the logic for function updates and for transition
rule constructors formally defined in [2].

3 A terminal model is a representation, that conforms to a reference metamodel, of a real world
system (or portions of it).

80 E. Riccobene and P. Scandurra

Different ways of defining M were presented in [11], classified in translational and
weaving, depending on the abstraction level of the metamodelling stack [15]. Going
up through the metamodeling levels, these techniques allow increasing automation in
defining model transformations, increasing reuse and decreasing dependency of the fi-
nal ASM with respect to the terminal model. Among them, we here commit with the
translational meta-hooking approach that works at meta-metamodel level, and allows us
to exploit the definition of the function γ : MOF −→ AsmM (see below for details)
defined in [11] and suitable for all languages whose metamodel is defined in terms of
MOF. Here γ is adapted to handle also UML profiles, as the SystemC UML Profile.

Meta-hooking for MOF-based metamodels: This technique aims at automatically
deriving (most of the part of) the signature of the resulting ASM from the source meta-
model A and MOF. This resulting algebra is then endowed with ASM transition rules
to capture the behavioral aspects of the underlying language. Finally, by navigating a
specific terminal model m, the initial state is determined.

Formally, the function M : A −→ AsmM for a MOF-based metamodel A (such as
UML or a UML profile) is defined as

M(m) = ι(ω(m))(τA(γ(ω(m))), m)

for all m conforming to A, where:

– γ : MOF −→ AsmM provides signature (domain and function definitions) of the
final machine M(m) from the metamodel ω(m) to which m conforms to,
– τA: AsmM−→ AsmM provides the ASM transition rules capturing the behavioral
aspects of A,
– ι : MOF −→ (AsmM × A −→ AsmM) is an HOT (High Order Transformation)4

and establishes, for a metamodel A, the transformation ι(A) that computes the initial
state of the final machine M(m) by extracting initial values for data structures of the
machine from the source modeling elements in m.

Mappings γ and ι are universal, i.e. once defined for the MOF, they are applicable
to all metamodels conforming to MOF, and therefore to the SystemC UML Profile.

4 Meta-hooking for the SystemC Process State Machines

We here exploit the meta-hooking technique of the ASM-based semantic framework
to provide the operational semantics of the SCP state machines. To this purpose, as
domain A of the function M , we do not need to consider the whole SystemC UML
metamodel, but only its portion related to the abstract syntax for modeling state ma-
chines. Figures 4 and 5 shows a simplified5 portion of the UML metamodel (related
to the state machines) together with the stereotypes definitions (only some elements)
capturing specific features of the SCP state machines.

4 An HOT is a transformation taking as input or producing as output another transformation.
5 The effect of some OCL constraints of the SystemC UML profile is graphically emphasized

by circles. They show that multiplicities have been restricted from many to exactly 1.

An Executable Semantics of the SystemC UML Profile 81

The semantics specification of the SCP state machines is captured by an ASM model
obtained in three steps: (1) the γ mapping (see the MOFtoAsmM transformation rules
provided in [11], Table 1) is applied to the portion of the UML metamodel related to
the state machine formalism and to its extension through stereotypes to obtain the ASM
signature; (2) the operational semantics of the SCP state machines is then defined by
ASM transition rules as form of pseudo-code operating on the abstract data derived
from step 1; finally, (3) the initial state of the ASM model for a terminal model (later
referred SC-UML) conforming to the SystemC UML profile is provided by an HOT ι
similar to the one defined in [11], Table 2.

Note that to fulfill step 1, the γ mapping provided in [11] is further extended here
to handle the stereotypes of the UML profile mechanism. To this purpose, a stereotype
is treated similarly to a class, and therefore mapped into a domain that is subset of the
domain corresponding to the (extended) base class. Tag definitions of stereotypes are
attributes of the stereotype class, and therefore they are mapped to ASM functions hav-
ing as domain the ASM domain corresponding to the stereotype, and as codomain the
ASM domain corresponding to the attribute type. Generalization relationships between
stereotypes are mapped as for generalization relationships between classes.

The ASM model described here is an adaptation of the ASM model presented in [1]
where an ASM semantics of the UML 1.x state machines is described. Although there
are common parts, the model provided here takes into account the UML2 version and

Fig. 4. SCP state machines metamodel (Part 1)

82 E. Riccobene and P. Scandurra

Fig. 5. SCP state machines metamodel (Part 2): some stereotypes

the restrictions and the specific behavioral features of the SystemC UML profile. Due
to the lack of space, only a subset of the entire set of ASM transition rules is reported.
The reader can find more details in the preliminary work [10] and in the implementa-
tion available at [16] using the ASMETA/AsmetaL language6. Moreover, the reader is
assumed to be familiar with the semantics of the UML state machines.

4.1 ASM Signature

From the class diagram in Fig. 4 and the stereotypes in Fig. 5, a SCP state machine
is a sequential state machine made up of just one Region, which in turn consists of
(control) states and transitions belonging to the classes Vertex and Transition.

By applying γ to the SCP state machines metamodel, classes are mapped into ASM
domains, generalization relationships are mapped into subset domain relations, and
class attributes and associations are mapped into ASM functions suitable defined on
the domains corresponding to the related classes. For example, the State class (see
Fig. 4) is mapped in a subdomain of Vertex. Predicates isSimple, isComposite, and
isSubmachine are defined on the domain State to distinguish among UML simple
states, (sequential) composite states, and submachine states. In particular, simple states
are of the form state(name, container, incoming, outgoing, entry, exit, doActivity) where
the parameter name is the name of the state, container denotes the region containing
the state, incoming/outgoing specify the transitions entering/departing from the state,
entry/exit denote actions that are performed as soon as the state is entered/exited, doAc-
tivity denotes the internal behavior (if any) that must be executed as long as the state
is active. All these parameters induced from the associations of the State class (or
from the super classes Vertex and NamedElement) are encoded in terms of ASM
functions according to the γ mapping rules in [11].

Stereotypes are mapped into domains, and their corresponding tags are mapped into
functions, as well. OCL constraints of the SystemC UML profile, not reported here,
state some restrictions on the stereotypes. This implies some constraints on the resulting

6 The ASMETA toolset http://asmeta.sf.net/

An Executable Semantics of the SystemC UML Profile 83

ASM model. For example, the wait stereotype is mapped into a simple state that has
no entry, exit, and doActivity behavior7. The outgoing transitions of a wait state are
dynamic resuming transitions of form trans(container, source, target, trigger) where
container denotes the region that contains the transition, source/target provide the
source/target vertices of the transition, trigger is the label denoting the events (a time
event or a signal event or an OR-list of signal events) which may enable the transition to
fire. In case of an AND-transition – i.e. the dynamic resuming transition is stereotyped
with and and labeled with a list of signal events –, the transition has AND-semantics:
it may fire when all the events in the list have been notified, not necessarily all in the
same delta-cycle8 or at the same time. To manage the history of the event occurrences
of an AND-transition (see Transition Selection rule in Sect. 4.2), the controlled func-
tion andHist(t,trans) is therefore introduced in the ASM signature and returns the list
of events of an AND-transition t which have already been notified. Moreover, we dis-
tinguish wait-states using the predicate isWait on State, and AND-transitions using the
predicate isAnd on Transition.

Control flow: Further signature elements not directly induced from the metamodel are
added to represent the nesting structure of a state machine and its control flow. Suitable
functions to encode and navigate nested states, like the functions Up/DownChain(s1, s2)
denoting ascending/descending sequences of nested states between states s1 and s2, are
defined similarly to the ones used for the same scope in the original ASM model in [1].
These functions can be formulated by composition of ASM functions derived from the
metamodel.

In the sequel, elements of the domain Sc_thread are referred to as threads. A
thread t moves through a SCP state machine diagram, baseStateMachine(t), executing
what is required for its currently active state. As effect of calling an operation op (that
is not a SC process), during its lifetime a thread can temporarily moves from its base
state machine to the state machine method(op) associated to the invoked operation9,
and then come back after completing the execution of the operation behavior. The state
machine currently executed by t is given by

currStateMachine : Sc_thread→ StateMachine

initially set to baseStateMachine(t), while the calling state machine is provided by

callMachine : Sc_thread× StateMachine→ StateMachine

7 Some other OCL constraints state that concurrent (or orthogonal) composite states (i.e. com-
posite states with more than one region) and other pseudostates (like deepHistory, shallowHis-
tory, entryPoint, join, fork, and exitPoint) of the UML2 are not allowed in the SystemC UML
profile. Moreover, internal transitions and deferred events are also not allowed.

8 A delta cycle is a very small step of time within the simulation, which does not increase the
user-visible time.

9 The mechanism for determining the method (behavior) to invoke as effect of an operation
call is unspecified in the UML. In the SystemC UML profile [28], state machines designed
similarly to the SCP state machines are associated to operations as behaviors to invoke when
the operations are called. We assume, therefore, that threads temporarily execute such a kind
of state machine diagram.

84 E. Riccobene and P. Scandurra

In the current state machine of a thread, a state becomes active when it is entered as
result of some fired transition, and becomes inactive when it is exited. All the composite
states that either directly or transitively contain the active state are also active. The
current configuration of active states w.r.t. the running state machine is given by

currState : Sc_thread× StateMachine→P(Vertex)

The function deepest : Sc_thread× StateMachine−→ Vertex yields the last (innermost)
active state reached by a thread running its current state machine.

Event handling: In the UML, the semantics of event occurrence processing is based
on the run-to-completion assumption [33]. Since the event delivering and dispatching
mechanisms are open in the UML, here they are explicitly modeled according to the
discrete – absolute and integer-valued – time model of SystemC [32].

First, time is represented by an increasing monotonic function T . The domain
EventOccurr represents the observable event occurrences (or event notifications)
resulting from the execution of the processes. A function type : EventOccurr−→ Event
returns the event type of a particular event occurrence. Event occurrences are collected
in the global set pendingEvents and they are ordered by their time component time(e)
with respect to the current simulation time Tc.

Second, each thread t is endowed with a queue, eventQueue(t), of event occurrences.
One event is processed at a time by each thread. In the context of a thread execution, an
event is dispatched when it is taken from the head of the event queue. At this point, the
event is considered consumed and referred to as the current event.

Third, as delivering (or resuming) mechanism, it is assumed that the threads’event
queues are also updated by a scheduler modeled as a separate agent. This special agent
has the responsibility to place the events, upon their occurrence, into the queues of
the processes that are sensitive to them. Threads’ event queues are therefore shared
functions. The behavior of the scheduler agent is not formalized here (though we are
recalling here the ASM functions adopted for the interaction with the scheduler). For
an in depth description, we refer the reader to [20], where an ASM formalization of
the SystemC 2.0 scheduler is given, and to its implementation in AsmetaL available at
[16]. According to the scheduler formalization in [20], a shared function status(t) rang-
ing over the enumeration {READY, EXECUTING, SUSPENDED} is used to manage a
thread life cycle. A thread is selected for execution by the scheduler, one after the other,
from the set of ready processes. The set of all processes sensitive to an event type e is
given by the function processes(e) : Event −→ Sc_thread. Upon an event occurrence,
the scheduler examines the process list of the event type to determine the processes
(threads) to which deliver the event occurrence and turn them ready in case they were
waiting for that event. An event occurrence can be explicitly required to be immediate
in the current delta cycle, or for future time cycles.

In the SystemC UML profile, events can essentially be signal events (the Signal-
Event class in the UML metamodel) or time events (the TimeEvent class). Signal
events represent the receipt of asynchronous sc_event signals (as stereotyped), and are
generated as a result of some notify actions (stereotyped SendSignalAction) exe-
cuted by other processes (other threads or methods processes) either within the context
module (or a hierarchical channel) or in the surrounding environment. Time events are

An Executable Semantics of the SystemC UML Profile 85

timeouts caused by the expiration of a time deadline always relative to the time of entry
of the thread into a wait-state. Completion events (which originate from UML rather
than SystemC) are directly handled by threads.

Finally, a function dispatched(t) yields for a thread t the head element of the thread’s
event queue to indicate the dequeued event to be processed10. At any moment, for a
thread t the only transition trans that is eligible to fire when an event e occurs is the
one departing from the deepest active state of t, with an associated guard (if any) eval-
uating to true (eval(g,trans) = true),and with e triggering trans. This is expressed by
the following function:

enabled(e, t) =
{

trans if triggering(trans,e, t)
undef otherwise

where triggering(trans, e, t) is a derived predicate defined as follows:

triggering(trans, e, t) ≡ source(trans) = deepest(t, currStateMachine(t)) &
eval(guard(trans), trans) &

∨
i pi(trans, e, t)

Each pi(trans,e,t) formalizes a different case of the semantics of dynamic resuming
transitions (ranging, see Fig. 3, over timeout, events, and AND/OR lists of events),
static resuming transitions, and completion transitions. In case trans, for example,
is an AND-dynamic resuming transition, pi(trans,e,t) holds if and only if e is in
trigger(trans) and all the other events in trigger(trans) have already been notified
to t

isAnd(trans) & (∃ e′ ∈ trigger(t) : event(e′) = type(e)) &
(∀ e′′ ∈ trigger(trans), event(e′′) �= type(e) : event(e′′) ∈ andHist(t,trans))

4.2 ASM Transition System

This section describes the ASM semantics of the run to completion step of the SystemC
thread state machines. The behavior of a thread consists of the two rules Transition-
Selection and GenerateCompletionEvent for simultaneously (i) selecting the machine
transition to be executed next, and (ii) generate completion events. The next paragraph
defines the exact meaning of “executing a state machine” by a parameterized macro rule
stateMachineExecution.

In the TransitionSelection rule, a check is done in parallel to the machine execution
for treating dynamic resuming transitions with an AND-semantics (the OR-semantics
is the default): an AND-transition may fire when all the labeling triggers have been
effectively triggered – not necessarily all in the same delta-cycle or at the same time –,
and in this case the history of the occurrences of its AND-list of events is reset to empty.
If a dispatched event does not trigger any transition in the current state of a thread, it is
lost unless (the else branch) it must be collected in the history of an AND-transition.

rule TransitionSelection(t) =
if status(t) = EXECUTING
then let e =dispatched(t), trans =enabled(e,t), s =deepest(t,currStateMachine(t))

10 It should be noted that at this point the ASM model differs from the one in [1] since the
mechanism here for selecting the event to consume is deterministic.

86 E. Riccobene and P. Scandurra

in if trans �= undef
then par

stateMachineExecution(t,trans)
if isAnd(trans) then andHist(t,trans) := []

else if isAndWait(s,e) then andHist(t,trans) := add(e,andHist(t,trans))

where isAndWait(s, e)≡ isWait(s) & (∃ trans ∈ outgoing(s) | isAnd(trans) & e ∈ trigger(trans))

Completion events are generated by a thread when an active state satisfies the com-
pletion condition [33]. This is formalized similarly as in the ASM model in [1] by a
rule GenerateCompletionEvent parameterized with t, with the only difference that the
completion event generated is added to the head of the thread event queue.

The rule macros: This paragraph reports only a very small subset of the rule macros
used in the top level rules. The subrule stateMachineExecution is described first. It
formalizes the run-to-completion semantics which consists into sequentially executing:
(a) the exit actions of the source state and of any enclosing state up to, but not including,
the least common ancestor LCA (i.e. the innermost composite state that encloses both
the source and the target state), innermost first (see macro exitState); (b) the action on
the transition; (c) the entry actions of any enclosing state up to, but not including, the
least common ancestor, outermost first (see macro enterState); finally, (d) the “nature”
of the target state is checked and the corresponding operations are performed.

macro rule stateMachineExecution(t,trans) =
seq

exitState(source(trans),ToS,t)
execute(effect(trans),t)
enterState(FromS,target(trans),t)
case target(trans)

isSimple: enterSimpleState(target(trans),t)
isComposite, isSubmachine : enterCompositeState(target(trans),t)
isWait: enterWaitState(target(trans),t)
isStatic_wait, isDont_initialize: enterStaticWaitState(target(trans),t)
isFinal, isIf, isEndif, isEndswitch: enterNextState(target(trans),t)
isSwitch: enterSwitchState(target(trans))
isWhile, isDowhile, isFor: enterLoopState(target(trans),t)
isReturn: enterReturnState(target(trans),t)
isBreak: enterBreakState(target(trans),t)
isContinue: enterContinueState(target(trans),t)
isExit: enterExitState(target(trans),t)

endcase

where ToS is the direct sub-state of the LCA in the nested state chain from source(trans)
to LCA; while, FromS is the direct sub-state of the LCA in the nested state chain from
LCA to target(trans).

Macros exitState and enterState are formalized similarly as in [1]. The exits from
nested states should be performed in an order that respects the hierarchical structure
of the machine. Starting from the deepest state up to, but excluding, the source/target
least common ancestor state, innermost first, a thread sequentially (i) executes the exit

An Executable Semantics of the SystemC UML Profile 87

actions (if any)11, and (ii) removes those states from the thread’s current state and, when
states are exited, their enclosed final state (if any).

macro rule exitState(s,v,t) =
loop through S ∈ UpChain(s,v)
seq

if ¬ isPseudoState(S) then execute(exit(S),t)
currState(t, currStateMachine(t)) := remove(S,currState(t, currStateMachine(t)))

Similarly, for entering nested states, any state enclosing the target one up to, but
excluding, the least common ancestor will be entered in sequence, outermost first. En-
tering a state means that (a) the state is activated, i.e. inserted in currState(t, currState-
Machine(t)), (b) its entry action (if any) is performed, and (c) the state internal activity
(if any) is started.

macro rule enterState(s,v,t) =
loop through S ∈ DownChain(s,v)
seq

enterNextState(S,t)
if ¬ isPseudoState(S)
then seq

execute(entry(S),t)
execute(doActivity(S),t)

where enterNextState(s,t) ≡ currState(t, currStateMachine(t)) := insert(s,currState(t,
currStateMachine(t))).

Macros for entering vertices depending on their specific nature are completely de-
fined in [10]. We here report only that for entering a wait-state. When the target state
of the triggered transition is a wait state, the thread is suspended as follows. The thread
inserts itself in the process list of all events e appearing as triggers in the outgoing tran-
sitions of the wait-state, and changes its status to suspended. The thread will be turned
ready by the scheduler when an event that the thread is waiting for will be notified. In
case of timeout, i.e. an outgoing transition with a time event, the thread creates an event
occurrence with time timeout+Tc and adds it to the set of pending events.

macro rule enterWaitState(s,t) =
if ∃ e′ ∈ trigger(outgoing(s)) : isTimeEvent(e′)
then extend EventOccurr with e

time(e) := Tc+ eval(when(event(e′)))
type(e) := event(e′)
pendingEvents := add(pendingEvents,e)

forall e ∈ trigger(outgoing(s)) do processes(event(e)) := add(processes(event(e)),t)
status(t) := SUSPENDED

where when(e) for a time event e is an expression specifying a relative instant in time.

4.3 ASM Initial State

The initial state is the result of the mapping ι(SC-UML), defined by the HOT ι applied
to a terminal SystemC-UML model. It provides the initial values of domains and of
11 Note there is no reason to stop the internal ongoing activities (if any) before exit, since the

only outgoing transitions from a non stereotyped state are completion transitions.

88 E. Riccobene and P. Scandurra

(dynamic) controlled functions of the ASM signature necessary to execute each process
state machine (like the stimgen thread machine shown in Fig. 2) appearing in the
terminal model. For the lack of space, the result of this final step is not reported here.

5 Related Work

There are different ways currently used to specify the semantics of metamodel-based
languages, and therefore of UML profiles. They mainly fall into the following categories.

(I) Using natural languages to describe language semantics informally.
(II) Using the OCL [22] and its extensions, see [4,8,7] to name a few, to specify static

semantics through invariants and behavior through pre/post-conditions on operations;
however, being side-effect free, the OCL does not allow the change of a model state,
though it allows describing it.

(III) Weaving behavior. Recent works like Kermeta [19], xOCL (eXecutable OCL)
[34], approaches in [29,31], to name a few, propose ways of providing executability
natively into metamodeling frameworks. A minimal set of executable actions is usually
defined to describe (create/delete object, slot update, conditional operators, loops, local
variables declarations, call expressions, etc.) behavioral semantics of metamodels by
attaching behavior to classes operations Some approaches use imperative or objected-
oriented (sub)languages, other use abstract pseudo-code. Furthermore, [9] provides an
executable subset of standard UML (the Foundational UML Subset) to define the se-
mantics of modeling languages such as the standard UML or extensions.

Although, these action languages aim to be pragmatic, extensible and modifiable,
some of them suffer from the same shortcomings of traditional programming languages;
indeed, a behavioral description written in one of such action languages has the same
complexity of one (a program) written in a conventional programming language. More-
over, not all action semantics proposals are powerful enough to specify the model of
computation (MoC) underlying the language being modeled and to provide such a spec-
ification with a clear formal semantics. As shown in [11,23], when we illustrate a similar
technique, the weaving technique, of our ASM-based framework, the ASMs formalism
itself can be also intended as an action language but with a concise and powerful set of
action schema provided by different ASM rule constructors.

(IV) Translational semantics, consisting in defining a mapping from the language
metamodel to the abstract syntax of another language that is supposed to be formally
defined. In [3], metamodels are anchored to formal models of computation built upon
AsmL, a language to encode ASM models. In [6], the semantics of the AMMA/ATL
transformation language is specified in XASM, an open source ASM dialect. Similar
approaches based on this translational technique are UML-B [30] using the Event-
B formal method, those adopting Object-Z like [17,5], etc. Some previous works us-
ing ASMs to provide an executable and rigorous semantics of UML graphical sub-
languages (statecharts, activity diagrams, etc.) [21,1,14,8] fall in this category. These
approaches can be intended as exemplifications of other translational techniques of the
ASM semantic framework, as better described in [11]. The technique used here is also
translational, but it is more general as it works at the “meta” level leading more automa-
tion, and therefore less user effort, and more reusable mappings and specifications.

An Executable Semantics of the SystemC UML Profile 89

(V) Semantic domain modelling, where a metamodel for the “semantic domain” –
i.e. to express also concepts of the run-time execution environment – is defined, and
then OCL rules are used to map elements of the language metamodel into elements
of the semantic domain metamodel. This approach was used for the CMOF Abstract
Semantics [18] and for the OCL [22]. We postponed as future step the evaluation of
the effectiveness of the joint-use of this technique with the ASM formal method, as it
requires a certain effort in modeling, at metamodel level, also the semantic domain.

6 Conclusions

This paper presents an executable formal semantics for the SCP state machines of the
SystemC UML profile by exploiting the meta-hooking approach of the ASM-based
semantic framework in [11]. Executability allows semantics prototyping to examine
particular behavioral features of the profile and to check if the provided extensions
of the UML metamodel are conservative, i.e. if their semantics does not contradict the
UML semantics, and fix explicitly the semantics variation points intentionally left in the
UML as leeway for the definition of domain-specific UML profiles. The comparison in
[10] between the ASM model for the UML state machines in [1] and the ASM model
for the SCPs described here shows that SCPs are effectively a conservative extension.

Formal ASM models obtained from graphical SystemC-UML models can potentially
drive practical SoC model analysis like simulation, architecture evaluation and design
exploration [12].

References

1. Börger, E., Cavarra, A., Riccobene, E.: Modeling the Dynamics of UML State Machines. In:
Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp.
223–241. Springer, Heidelberg (2000)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

3. Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastructure for domain-
specific modeling languages. In: ACM Conf. on Embedded Software, pp. 35–43 (2005)

4. Combemale, B., et al.: Towards a Formal Verification of Process Models’s properties - Sim-
plePDL and TOCL case study. In: 9th Int. Conf. on Enterprise Information Systems (2007)

5. Mostafa, A.M., et al.: Toward a Formalization of UML2.0 Metamodel using Z Specifica-
tions. In: ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, vol. 1, pp. 694–701 (2007)

6. Di Ruscio, D., et al.: Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs. Tech. Rep. 06.02, LINA (2006)

7. Flake, S., Müller, W.: A UML Profile for Real-Time Constraints with the OCL. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 179–195. Springer,
Heidelberg (2002)

8. Flake, S., Müller, W.: An ASM Definition of the Dynamic OCL 2.0 Semantics. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 226–240.
Springer, Heidelberg (2004)

9. OMG. Semantics of a Foundational Subset for Executable UML Models, ptc/2008-11-03
10. Gargantini, A., Riccobene, E., Scandurra, P.: A precise and executable semantics of the Sys-

temC UML profile by the meta-hooking approach. DTI T.R. 110, Univ. of Milan (2008)

90 E. Riccobene and P. Scandurra

11. Gargantini, A., Riccobene, E., Scandurra, P.: A semantic framework for metamodel-based
languages. J. of Automated Software Engineering 16(3-4) (2009)

12. Gargantini, A., Riccobene, E., Scandurra, P.: Model-driven design and ASM-based validation
of embedded systems. In: Behavioral Modeling for Embedded Systems and Technologies:
Applications for Design and Implementation, July 2009, pp. 24–54 (2009)

13. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics"? IEEE
Computer 37(10), 64–72 (2004)

14. Jürjens, J.: A UML statecharts semantics with message-passing. In: Proc. of the 2002 ACM
symposium on Applied computing, pp. 1009–1013. ACM Press, New York (2002)

15. Kurtev, I., et al.: Model-based DSL frameworks. In: 21st ACM SIGPLAN conf. on Object-
oriented programming systems, languages, and applications, pp. 602–616 (2006)

16. https://asmeta.svn.sf.net/svnroot/asmeta/asm_examples/
17. Miao, H., Liu, L., Li, L.: Formalizing UML Models with Object-Z. In: George, C.W., Miao,

H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 523–534. Springer, Heidelberg (2002)
18. OMG. Meta Object Facility (MOF) 2.0, formal/2006-01-01 (2006)
19. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-Oriented Meta-

Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–
278. Springer, Heidelberg (2005)

20. Müller, W., Ruf, J., Rosenstiel, W.: An ASM based SystemC simulation semantics. System
C: Methodologies and Applications, 97–126 (2003)

21. Ober, I.: More meaningful UML Models. In: TOOLS - 37 Pacific 2000. IEEE, Los Alamitos
(2000)

22. OMG. Object Constraint Language (OCL), 2.0 formal/2006-05-01 (2006)
23. Riccobene, E., Scandurra, P.: Weaving executability into UML class models at PIM level. In:

Proc. of European Workshop on Behaviour Modelling in Model Driven Architecture (BM-
MDA 2009), Enschede, The Netherlands, June 23, vol. 379, pp. 10–27. ACM, New York
(2009)

24. Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A.: An Enhanced SystemC UML Profile
for Modeling at Transaction-Level. In: Villar, E. (ed.) Embedded Systems Specification and
Design Languages (2008)

25. Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A.: A SoC Design Methodology Based on
a UML 2.0 Profile for SystemC. In: Proc. of Design Automation and Test in Europe, pp.
704–709. IEEE Computer Society, Los Alamitos (2005)

26. Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A.: A model-driven design environment for
embedded systems. In: Proc. of the 43rd Design Automation Conference, pp. 915–918. ACM
Press, New York (2006)

27. Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A.: A Model-driven co-design flow for
Embedded Systems. In: Advances in Design and Specification Languages for Embedded
Systems, Best of FDL 2006 (2007)

28. Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A., Lavazza, L., Mantellini, L.: SystemC/C-
based model-driven design for embedded systems. ACM TECS 8(4) (2009)

29. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable specifications
of operational semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA.
LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007)

30. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1), 92–122 (2006)

31. Soden, M., Eichler, H.: Towards a model execution framework for Eclipse. In: Proc. of the
1st Workshop on Behavior Modeling in Model-Driven Architecture. ACM, New York (2009)

32. SystemC Language Reference Manual. IEEE Std 1666 (2006)
33. OMG. The Unified Modeling Language (UML), v2.2. (2009), http://www.uml.org
34. The Xactium XMF Mosaic (2007), http://www.xactium.com/

https://asmeta.svn.sf.net/svnroot/asmeta/asm_examples/
http://www.uml.org
http://www.xactium.com/

Specifying Self-configurable Component-Based
Systems with FracToy

Alban Tiberghien, Philippe Merle, and Lionel Seinturier

INRIA Lille - Nord Europe
University of Lille 1 - LIFL CNRS UMR 8022

Villeneuve d’Ascq, France
firstname.lastname@inria.fr

Abstract. One of the key research challenges in autonomic computing
is to define rigorous mathematical models for specifying, analyzing, and
verifying high-level self-* policies. This paper presents the FracToy for-
mal methodology to specify self-configurable component-based systems,
and particularly both their component-based architectural description
and their self-configuration policies. This rigorous methodology is based
on the first-order relational logic, and is implemented with the Alloy
formal specification language. The paper presents the different steps
of the FracToy methodology and illustrates them on a self-configurable
component-based example.

Keywords: Alloy, Autonomic Computing, Component-based Systems,
Formal Specification Self-Configuration.

1 Introduction

Autonomic computing gathers systems that can manage themselves given high-
level objectives from administrators [12]. The idea is to design software which
can provide efficient and continuous services to users without any human inter-
vention. Self-configurability is a key property of any autonomous system, and
means the capability of such a system to configure itself according to high-level
policies automatically. For instance, software components [16] and connectors
can be added or removed to/from a running software system according to evo-
lutions of runtime conditions. These dynamic modifications of running software
architectures can be described by high-level self-configuration policies. Here, one
of the key research challenges is to define rigorous mathematical models for spec-
ifying, analyzing, and verifying such autonomous systems. Such a model must
allow to detect errors and inconsistencies of high-level policies early at design
time instead of during execution of targeted autonomous systems.

To tackle this problem, this paper presents the FracToy formal methodol-
ogy to specify, analyse, and verify self-configurable component-based systems.
This rigorous methodology is based on the first-order relational logic, and is
implemented with the Alloy formal specification language [10]. This method-
ology is iterative and divided into two main steps. The first step consists in

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 91–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 A. Tiberghien, P. Merle, and L. Seinturier

specifying the component model used to build applications. This step is itself
divided into three sub-steps. This first sub-step consists in defining the formal
syntax of the component model, both its core concepts and the relations be-
tween these concepts. Secondly, this component model is constrained in order to
define its static semantics, i.e., the set of constraints that any application must
satisfy. Thirdly, it is necessary to specify the dynamic semantics of the com-
ponent model, i.e., the set of operations allowing to update the architecture of
running applications. Here, this dynamic semantics must be defined in a way al-
lowing self-configurability of applications. Then, the second step of the FracToy
methodology is to specify self-configurable component-based applications. Their
components are defined by extending the core concepts of the component model
and their self-configuration policies are defined as first-order logic constraints.
Furthermore, the FracToy methodology allows to highlight and verify properties
like the consistency of both the static semantics and self-configuration policies,
and the commutativity of dynamic operations.

This paper is organized as follows. Section 2 presents the FracToy method-
ology and its different steps. Section 3 illustrates the methodology on a self-
configurable component-based “Room” example. Section 4 discusses related
works. Finally, Section 5 concludes and draws perspectives of FracToy.

2 The FracToy Framework

FracToy is a framework that introduces a methodology, based on Alloy [9], for
the formal description of self-configurable component-based systems.

2.1 Alloy in a Nutshell

The Alloy formal specification language fits with the fist-order relational logic [10].
The manipulated concepts are sets (Alloy signatures) that can be brought to-
gether using relations (Alloy signature fields). Alloy models are described with
these two concepts and are constrained using facts or predicates. A fact is an ex-
pression that the whole model must always satisfy. A predicate is a parametrizable
constraint which is applied only when invoked. As facts, predicates can be applied
on the whole systems but also just on a specific signature. Furthermore, the lan-
guage provides a model analyser. The Alloy Analyser can be used as a model finder
(invoked with the Alloy run command) that instantiate all the models that satisfy
the Alloy specification. It can also be used as a counter-example finder (invoked
with the Alloy check command) in order to counter-example models that don’t
satisfy assertion (defined with the Alloy asset keyword). The combined use of the
model finder and of counter-example finder allows fast iterative debugging, during
the design process.

2.2 The FracToy Methodology

The FracToy methodology proposes a use of Alloy for specifying, verifying and
analysing self-configurable component-based systems. This rigorous and iterative
methodology is divided into the two following steps and illustrated by Figure 1:

Specifying Self-configurable Component-Based Systems with FracToy 93

1. Specification of the component model composed of three sub-steps.
(a) The formal syntax: This step consists in defining each core concept

of the component model and the relations between these concepts. Each
concept is an Alloy abstract signature. Alloy signature fields define how
and what concepts can be bound to a given concept. At this step, the
model is not constrained but basic restrictions are nervertheless specified
using the one, lone and set keywords in order to define the cardinality
of the relations.

(b) The formal static semantics: The static semantics of the component
model is the set of constraints restricting the model. These constraints
can be facts establishing what is possible to model with the component
model. They can also be predicates in order to define finer-grain con-
straints that just concern certain concepts.
Consistency checking: Once the static semantics is specified, it is
possible to run a consistency test in order to verify that the constrained
component model is instantiable. If tests don’t pass, a correction/refine-
ment loop can be performed on this step or on the previous step.

(c) The formal dynamic semantics: Operations that dynamically up-
date the running system must be specified in a way to preserve the
self-configurable nature of the architecture. It is important to clearly
identify the different states that the systems can reach. By fixing the
pre-conditions and post-conditions, these operations define what is pre-
served during the changes of state of the system.
Properties checking: These checks ensure that the dynamic of the
system is well specified. For example, they ensure that add/remove op-
erations are commutative. Indeed, all operations of the system have its
inverse operations and the couple of operations must be commutative
in order to have the certainty that it is possible to roll back in a stable
state after applying an operation on the system.

2. Specification of the self-configurable system: Each component of the
self-configurable architecture is a signature extending a concept of the com-
ponent model. In the context of component-based architecture specification,
the declaration part of the signature is dedicated to the declaration of ser-
vices, references and/or sub-components. The Alloy one, lone and set key-
words are used to specify the cardinality of these relations. The constraint
part of the signature is dedicated to the definition of the assembly. In this
part, constraints are used to map the previously declared fields to the con-
cepts of the component model. Additional constraints can be added in order
to limit the use of components in the case of the component model is not
enough restrictive.

Self-configuration policies definition: Self-configuration policies are di-
rectly defined in the constraint part of the component signature. Indeed, in
our approach, self-configuration is managed by components themselves.

94 A. Tiberghien, P. Merle, and L. Seinturier

Consistency/Properties checking: Here, it is possible to check the consis-
tency on the full specified architecture and to verify that the self-configuration
policies are efficiently applied and conform to the requirement.

Fig. 1. The FracToy methodology

3 FracToy in Action

Following the methodology presented in Section 2, this section provides the spec-
ification of a self-configurable component-based system, the “Room” use case,
presented in Section 3.1. First, the component model is specified in Section 3.2
and, then, the “Room” self-configurable architecture is specified in Section 3.3.
Verification and analysis are performed in Section 3.4.

3.1 The “Room” Scenario

The scenario describes the case where a mobile user enters a room and wants to
keep in touch with news and services provided by the room. The user’s mobile
device can receive news from the room and once s/he has obtained the expected
information, s/he can visualise them on a screen or print them, according to the
features available on her/his mobile device.

More precisely, there is a news provider that broadcasts news in the room.
The room provides two kinds of output devices: screen and printer. The room
is aware of the presence of all mobile devices. When a new mobile device (e.g.
PDA, smartphones, etc.) enters the room, it is automatically connected to the
news provider and to the screen and/or the printer devices according to the type
of output devices it supports. For example, a PDA can print and display whereas
a smartphone can only print because of power and energy restrictions. Finally,
several mobile devices can be in the same room at the same time.

Specifying Self-configurable Component-Based Systems with FracToy 95

A component-based architecture description: The Room scenario can be
reified as a self-configurable component-based systems. The room and all devices
are components. Each component has a variable number of input and output
ports (communication points) respectively called services and references. The
NewsProvider component has no service and its number of references (of type
News) is not statically defined and can evolve according to the number of Mo-
bileDevice components contained in the Room component. Each MobileDevice
component has one News-typed service and the number of references and their
types (either DisplayableNews or PrintableNews) are specific to each type of mo-
bileDevice. According to the informal definition, the PDA component has a ref-
erence of type DisplayableNews and a reference of type PrintableNews whereas
the Smartphone component has only a reference of type PrintableNews. Self-
configuration is performed when a MobileDevice component is added to the
Room component. In this case, all bindings are automatically established be-
tween the MobileDevice components and other components.

3.2 Specification of the Component Model

Informal specification: Our use case is not based on an existing component
model, the presented component model remains consistent with the Szyperski
component definition given in [16] in the way that “a component is a unit of
composition with contractually specified interfaces and context dependencies
only”. The elementary entity of our model is Component. As this component
model is hierarchical, a component can be either Composite, i.e. a component
that can contain sub-components, or Primitive, i.e. a component implemented in
a programming language. Port represents typed communication access points to
a component. A port is either a Service (providing functionality) or a Reference
(requiring functionality). Finally, it is possible to bind a reference to a service
in order to explain communication channels between components. As our work
takes place in a context of dynamic environments, this component model has to
deal with this concern. That is why it is important to notice that when we use
the term “component” or “port” it must be understood “a state of a component”
or “a state of a port”. Indeed an instance of a component models a certain state
of the component. Each state is identified by an Id. Components have a cid
and ports have a pid. If two different component instances have the same id,
that means that we are semantically dealing with the same component but in
different states.

Figure 2 represents the diagram of the key-concepts of the component model
and their relations.

The formal syntax: We first declare the signature named Component (line 3).
The fields services (line 5) and references (line 6) allow to respectively put in
relation a component to its set of Services and References. Each component
has a field cid (line 4) which represents the identity of the component (line 1).
Two signatures specialize (“extends” in Alloy) the concept of component. The
Primitive signature (line 8) just allows to directly manipulate this concept and to

96 A. Tiberghien, P. Merle, and L. Seinturier

Fig. 2. Diagram of the component model generated by the Alloy Analyser

have a type for this kind of component. It is the same principle for the Composite
signature (line 11) whereas it is possible, with this set, to associate (line 12) a
component to other components (semantically its sub-components).

1 sig Id {}
2

3 abstract sig Component {
4 cid : one Id,
5 services : set Service ,
6 references : set Reference
7 }

8 abstract sig Primitive extends Component{}
9

10

11 abstract sig Composite extends Component{
12 subComponents : set Component
13 }

In this component model, the Port signature (line 16) is a typed (line 18)
communication access point of a component. In the same way as component,
ports have an identity pid (line 17). Service (line 20) and Reference signatures
(line 22) correspond to the functionality that a component provides and requires,
respectively. The boundTo field (line 23) allows to bind a reference to a service.
A reference can be bound to zero or one service and as a consequence a reference
can exist even if it is not bound (specified with the Alloy lone keyword).

14 abstract sig Type {}
15

16 abstract sig Port {
17 pid : one Id,
18 type : one Type
19 }

20 sig Service extends Port {}
21

22 sig Reference extends Port {
23 boundTo : lone Service
24 }

The formal static semantics: In addition of the formal syntax, the static
semantics of the component model is defined as a set of constraints in order
to avoid certain use cases. The fact AllPortsAffectedToOneComponent (line 25)
forces that all ports of a system are owned by one and only one component i.e.
can be shared by two distinct component instances only if they have the same
identity. The fact AllBindingsInTheSameComposite (line 32) ensures that all
references of a sub-component are bound to a service of a sub-component of the
same composite. The fact NoBindingBetweenUncompatibleTypes (line 39) just

Specifying Self-configurable Component-Based Systems with FracToy 97

forbids that a binding is established if the types of the reference and the service
are not the same. The fact CompositeNotContainItself (line 42) avoids that a
composite contains itself in its sub-components. The bind predicate (line 45)
declares a binding between a reference and a service. This statement chooses a
reference in the set of references and binds it to the service (line 46).

25 fact AllPortsAffectedToOneComponent {
26 all p : Port {
27 all c, c’ : Component {
28 (p in c .(services+references) and p in c ’.(services+references)) implies c.cid = c’.cid
29 }
30 }
31 }
32 fact AllBindingsInTheSameComposite{
33 all c : Composite {
34 all ref : c.subComponents.references {
35 ref .boundTo in c.subComponents.services
36 }
37 }
38 }
39 fact NoBindingBetweenUncompatibleTypes {
40 all r : Reference, s : Service | r .type != s.type implies r.boundTo != s
41 }
42 fact CompositeNotContainItself {
43 all c : Composite | c not in c.subComponents
44 }
45 pred Composite.bind[references : set Reference, service : one Service] {
46 one ref : references {
47 ref .boundTo = service
48 }
49 }

A test of consistency can be performed on the formal specification of this
component model. This test consists in asking to the analyser to instanciate a
model in an arbitrary (but coherent) scope. Here, ComponentModelConsistency
test can be run, i.e, the analyser is able to instanciate a model that satisfy all
the defined constraints. In other words, this core of concepts is consistent and
can be a sure basis for more complicated architectures.

ComponentModelConsistency : run {} for 20

The formal dynamic semantics: The last part of the specification of the
component model is its dynamic semantics. In the context of our example, the
dynamic semantics of the addition and the removal of a component in a compos-
ite has been formally specified. The two predicates addComponent (line 50) and
removeComponent (line 57) are semantically commutative and are built follow-
ing the same logic. In order to modelize the dynamicity of an addition (removal
resp.), a predicate formalizes the change of state due to the operation execution.
The two first parameters of these predicates, c1 and sc1, symbolize the state of
the system before the operation execution, and the two last parameters c2 and
sc2, symbolize the state of the system after the operation execution. A semantics
for these actions is to formalize that the resulting state of a component addition
(removal resp.) is the start state plus (minus resp.) the component to add (re-
move resp.) and there is nothing more nothing less element in the architecture.
This semantics is too strong in our case of self-configurable component-based

98 A. Tiberghien, P. Merle, and L. Seinturier

system. Indeed, according to our Room example, when a MobileDevice compo-
nent is added in the Room composite, the self-configuration policies are applied
and as a consequence bindings are created between components and, thus, there
is more that the new MobileDevice component in the Room composite. That
is why it is important to notice that these operations don’t ensure the strict
equality of the system state (modulo the addition/removal of the component)
but are based on the notion of state equivalence. Indeed both operations ensure
the preservation of at least all that were present in the initial state of the system
but it is not forbidden that the final state contains more elements.

Based on this logic, the addComponent predicate constrains the component
sc1 not to be in the sub-components of the composite c1 (line 51). The final
composite c2 is constrained to be equivalent to the initial composite c1 (line 52)
and the final component sc2 to be equivalent to the initial added component
sc2 (line 53). Finally, the component sc2 must be in the sub-components of
the composite c2 (line 54). It is exactly the opposite for the removeComponent
predicate.

50 pred addComponent[c1 : Composite, sc1 : Component, c2 : Composite, sc2 : Component] {
51 sc1 not in c1.subComponents
52 compositeEquiv[c1, c2]
53 componentEquiv[sc1, sc2]
54 sc2 in c2.subComponents
55 }
56

57 pred removeComponent[c1 : Composite, sc1 : Component, c2 : Composite, sc2 : Component] {
58 sc1 in c1.subComponents
59 compositeEquiv[c2, c1]
60 componentEquiv[sc2, sc1]
61 sc2 not in c2.subComponents
62 }

The relation of equivalence used for the formalization of the addition and the
removal of a component in a composite is specified through the three following
predicates. Two components are equivalent (line 63) if they have the same iden-
tity (line 64) and if their services and references are equivalent (lines 65 and 66).
Two port sets are equivalent (line 68) if all ports of the first set (line 69) have
an equivalent port in the second set (line 70). Two ports are equivalent is they
have the same identity (line 71) and the same type (line 72). Finally, two com-
posites are equivalent (line 76) if they are equivalent components (line 77) and
if all sub-components of the first composite have its equivalent in the second
composite (lines 78-80). This formalization allows to support self-configuration
policies as shown in Section 3.3.
63 pred componentEquiv(c1 : Component, c2 : Component) {
64 c1.cid = c2.cid
65 portEquiv[c1.references, c2. references]
66 portEquiv[c1.services , c2. services]
67 }
68 pred portEquiv(portSet1 : set Port, portSet2 : set Port) {
69 all p1 : portSet1 {
70 one p2 : portSet2 {
71 p1.pid = p2.pid
72 p1.type = p2.type
73 }
74 }
75 }

Specifying Self-configurable Component-Based Systems with FracToy 99

76 pred compositeEquiv(c1 : Composite , c2 : Composite){
77 componentEquiv[c1, c2]
78 all sc1 : c1.subComponents {
79 one sc2 : c2.subComponents {
80 componentEquiv[sc1,sc2]
81 }
82 }
83 }

An important property can be checked thanks to the Alloy analyser on the dy-
namic addition and removal of a component in a composite. Semantically the
addComponent and removeComponent are two commutable operations. The Ad-
dRemoveCommutable assertion checks that adding a component in a composite
then removing it keep the system in the same state. In other words, this assertion
tests that the two predicates are commutable.

assert AddRemoveCommutable {
all c1, c2 : Composite, sc1, sc2 : Component {

addComponent[c1, sc1, c2, sc2] implies removeComponent[c2, sc2, c1, sc1]
}
}
check AddRemoveCommutable for 10 expect 0

3.3 Specification of the Self-configurable Room System

In a general way, the “Room” example is specified by extending the component
model. Three singleton types,i.e. , News, DisplayableNews, and PrintableNews,
are first defined. They respectively correspond to the type of each service and
reference port (singletons are obtained thanks to the Alloy one keyword).

84 one sig News, DisplayableNews, PrintableNews extends Type {}

Specification of the primitive components: NewsProviders is a primitive
component (line 85). It provides no service (line 88) but requires a set of refer-
ences named r (line 86). All these references are of type News (line 89) and it
can not require other references than r (line 90).

85 sig NewsProvider extends Primitive {
86 r : set Reference
87 } {
88 no services
89 r .type = News
90 references = r
91 }

Printer and Screen are two other primitive components (lines 92 and 100
resp.). Both require no reference (lines 95 and 103 resp.) but they provide a
service named s (lines 93 and 101 resp.). This service is of type PrintableNews
for the Printer primitive (line 96) and of type DisplayableNews for the Screen
one (line 96). They can not provide other services than s (lines 97 and 105 resp.).

MobileDevice is an abstract primitive component (line 99) for modeling any
mobile device.

100 A. Tiberghien, P. Merle, and L. Seinturier

92 sig Printer extends Primitive {
93 s : one Service
94 } {
95 no references
96 s .type = PrintableNews
97 services = s
98 }
99 abstract sig MobileDevice extends Primitive {}

100 sig Screen extends Primitive {
101 s : one Service
102 } {
103 no references
104 s .type = DisplayableNews
105 services = s
106 }

Specification of the Room composite: After having defined the different
primitive components of the architecture, the Room composite can be specified
(line 107). As this composite is autonomous, it doesn’t declare neither services
(line 113) nor references (line 114). It contains at least three primitives declare as
a relation between the Room and the primitive sets (lines 108-110). Here the re-
lation name represents the name of the sub-component. The Alloy one keyword
means that there can be only one NewsProvider, one Printer, and one Screen.
The mobileDevices field declares a pool of MobileDevice. Indeed, as the Room
composite is open to different incoming/outcoming mobile devices, we have mod-
elised this by the use of a set of MobileDevice (line 111). The constrain in line 111
specifies that these components are effectively declared as sub-component of the
composite and that it can not have other kind of components in a Room.

In our methodology, the self-configuration policies are expressed as a con-
traint. These policies are declared in the signature of the composite that man-
ages the self-configuration. Thus, the self-configuration policy of this use case
specifies that, for all mobile devices contained in a room (line 118), all services
of this mobile device (line 119) and of type News is bound from one reference of
the NewProvider component (line 120). Regarding the mobile device references,
there are two cases. If the reference is of type DisplayableNews, this reference is
bound to the service provided by the Screen component (line 123). If the refer-
ence is of type PrintableableNews, this reference is bound to the service provided
by the Printer component (line 124).

107 sig Room extends Composite {
108 newsProvider : one NewsProvider,
109 printer : one Printer,
110 screen : one Screen,
111 mobileDevices : set MobileDevice
112 } {
113 no services
114 no references
115 subComponents = newsProvider + printer + screen + mobileDevices
116

117 //SELF−CONFIGURATION POLICY
118 all md : mobileDevices {
119 all serv : md.@services {
120 serv.type = News implies bind[newsProvider.r, serv]
121 }
122 all ref : md.@references {
123 ref .type = DisplayableNews implies bind[ref, screen.s]
124 else ref .type = PrintableNews implies bind[ref, printer.s]
125 }
126 }
127 }

Specifying Self-configurable Component-Based Systems with FracToy 101

The specification of specific mobile devices: PDA and SmartPhone are
both MobileDevice components. Both provide only one service s of type News
(lines 129, 133, 136 and lines 140, 143, 146). The difference is done by the
reference that these mobile devices require. Both require one reference of type
PrintableNews (lines 130, 134 and lines 141, 144) but, in addition, the PDA
requires one reference of type DisplayableNews (lines 131, 135).

128 sig PDA extends MobileDevice {
129 s : one Service,
130 r1 : one Reference,
131 r2 : one Reference
132 } {
133 s .type = News
134 r1.type = PrintableNews
135 r2.type = DisplayableNews
136 services = s
137 references = r1 + r2

138 }
139 sig SmartPhone extends MobileDevice {
140 s : one Service,
141 r : one Reference
142 } {
143 s .type = News
144 r .type = PrintableNews
145 services = s
146 references = r
147 }

The whole self-configuration specification is completed and a more realistic
test of consistency can be performed. The SelfConfigurableArchitectureConsis-
tency tries to instantiate a model conform to the “Room” use case when a PDA
is present in the room.
SelfConfigurableArchitectureConsistency: run {

one myRoom : Room, pda : PDA | pda in myRoom.mobileDevices
}
for exactly 1 Composite, exactly 4 Primitive, exactly 6 Port, exactly 3 Type, exactly 11 Id

3.4 Analysis of the Room Architecture

Static properties checking: The AllReferencesAreBound assertion (line 1)
specifies that a mobile device contained in a room (line 3) implies that all its
references are bound to a service provided either by a printer or a screen (line 4).
This assertion is verified on all the instantiable model in a large scope (line 7).
The analyser doesn’t find any counter-example and that is why it assures that
when a mobile device is added to the room all the expected bindings are well
established. This assertion shows that the self-configuration policy specification
produces the expected result.

1 assert AllReferencesAreBound {
2 all room : Room, md : MobileDevice {
3 room.component[md]
4 implies all ref : md.references | ref .boundToin room.(printer+screen).services
5 }
6 }
7 check AllReferencesAreBound for 10 expect 0

Dynamic properties checking: A more interesting use of the Alloy Analyser
is to find non-explicit dynamic properties. The following assertion specifies that
a MobileDevice primitive dynamically added in a Room composite implies that
this primitive is also in the mobileDevices set of the Room composite. The anal-
yser doesn’t find any counter-example and it proves that an explicit constraint
on the component model implies an implicit constraint on the self-configurable
architecture. Indeed the addComponent predicate formalizes the adding of a com-
ponent in a composite by preserving the state of the composite. The following

102 A. Tiberghien, P. Merle, and L. Seinturier

satisfied assertion proves that if this predicate is applied on a Room composite
and a MobileDevice primitive it implicitly implies that the MobileDevice prim-
itive is also contained in the mobileDevices set of the Room composite. Even if
this fact result from the conjunction of all constraints of the whole system, we
want to highlight the fact that this constraint has never been expressed and that
is a consequence of other constraints.

assert AddComponentImpliesMobileDeviceInRoom {
all room1, room2 : Room, md1, md2 : MobileDevice {

addComponent[room1, md1, room2, md2]
implies md2 in room2.mobileDevices
}
}
check AddComponentImpliesMobileDeviceInRoom for 10 expect 0

4 Related Work

In [3], Bradbury et al. highlight that formal methods are used to provide for-
mal specification languages for designing dynamic software architectures. Works
presented in [1], [5] and [6] are also based on logic-based formalisms but they
aim at providing formal specification languages where our work provides rig-
orous and formal methodology to specify, verify and analyse self-configurable
component-based systems on top of the use of a formal specification language.

In the domain of CBSE, Architectural Description Language (ADL) have been
proposed in order to describe the configuration and the assembling of component-
based systems [14]. Generally, the semantics of the underlying component model
and of the description language are not clear and are hard-coded in their compil-
er/interpreter. Nevertheless, two works aim to describe dynamic architectures.
The Plastik framework [8] provides a unique formalism (extending Acme/Ar-
mani ADL) to specify dynamic architecture (implemented with the OpenCOM
component model [4]). Armani (now full part of Acme) allows to set invariants on
architectures and some additional statements allows to imperatively describe the
architectural reconfigurations Wright [2] is an ADL based on formal method, i.e.,
the Communicating Sequential Processes (CSP) process algebra and allows to
formalize the dynamic behaviour of architectural connections. FracToy approach
explicitly focuses on the description of component-based systems and allows to
describe and reason on the architectural evolution of the system. The use of
Alloy provides an unified, declarative, and constraint-based way of description.

Among Alloy community, Alloy has been already used in CBSE. In [7], Darwin
ADL has been formalized with Alloy. This work presents a formalization of the
Darwin component model and specifies an architecture built on to top of this
model. In this work, constraints are only to express static invariants on the
architecture. In [13], a way to formally express and verify properties of Acme
architectural styles. Acme styles are mapped to Alloy in order to use the Alloy
Analyser to check consistency and properties on these styles. In this work, the
dynamic nature of software is not considered. Other works focus on the way to
modelize existing component models using Alloy. It is the case for COM in [11]

Specifying Self-configurable Component-Based Systems with FracToy 103

and Fractal in [15]. These works aim to formally specify component models
that are originally specified in natural language. Thereby, they can highlight
properties on the model that are ambiguous in the textual specification. The
FracToy approach is not dedicated to a specific component model and allows,
in addition, to specify, verify, and analyse both the component model and the
self-configurable architecture built on top of these component model.

5 Conclusion and Future Work

In this paper, we have presented FracToy, a rigorous and formal methodology for
specifying, verifying and analysing self-configurable component-based systems.
This methodology is divided into two main steps: specify the component model
and specify the self-configurable architecture.

The FracToy methodology was applied to design the Room self-configurable
component-based system, both the underlying component model and the self-
configurable component-based system. This example has shown how to efficiently
use the Alloy analyser in order to exhibit static/dynamic and not necessary ex-
plicit properties on the architecture. The Alloy formal specification language
proves that it fits to the specification of such systems. Indeed the underlying
theory of Alloy, i.e., the set theory, is closed to the component-based program-
ming and its analyser allows fast analysis, debugging, and visualizing. Moreover,
this approach provides a unique paradigm for specifying, verifying and analysing
systems. In addition, the first-order relational logic approach allows to design
self-configurable systems in a declarative and constraint-based way without con-
sidering syntactic and technical concerns. Thus, specifications describe what the
system should be, not how the system should do it. The system is described ac-
cording to the different states that it can reach instead of describing the sequence
of operations to execute to reach a certain state.

Nevertheless, the FracToy approach is limited by a built-in limitation of Alloy.
Indeed, as other model finder, all Alloy model instantiations has to be performed
in a defined scope. As a consequence, highlighted properties are fully true only in
this scope. In addition, by writing the Room use case in Alloy, we have identified
some recurring syntactic patterns and that specification auto-generation can be
expected. That is why, on the short term, we plan to add syntactic sugar on top
of the FracToy description to fill this gap.

References

1. Aguirre, N., Maibaum, T.: A Temporal Logic Approach to the Specification of
Reconfigurable Component-Based Systems. In: ASE 2002: Proceedings of the 17th
IEEE International Conference on Automated Software Engineering, Washington,
DC, USA, p. 271. IEEE Computer Society, Los Alamitos (2002)

2. Allen, R.J.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University (May 1997)

104 A. Tiberghien, P. Merle, and L. Seinturier

3. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-
Management in Dynamic Software Architecture Specifications. In: WOSS 2004:
Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems, pp.
28–33. ACM, New York (2004)

4. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J.,
Sivaharan, T.: A Generic Component Model for Building Systems Software. ACM
Transactions on Computer Systems 26, 1–42 (2008)

5. de Paula, V.C.C.: ZCL: A Formal Framework for Specifying Dynamic Software
Architectures. PhD thesis, Federal University of Pernambuco (1999)

6. Endler, M., Wei, J.: Programming generic dynamic reconfigurations for distributed
applications. In: Proceedings of the International Workshop on Configurable Dis-
tributed Systems, pp. 68–79. IEE (1992)

7. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: WOSS 2002: Proceedings of the first workshop on Self-
healing systems, pp. 33–38. ACM, New York (2002)

8. Gomes, A.T.A., Batista, T.V., Joolia, A., Coulson, G.: Architecting Dynamic Re-
configuration in Dependable Systems. In: de Lemos, R., Gacek, C., Romanovsky,
A. (eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 237–261.
Springer, Heidelberg (2007)

9. Jackson, D.: Alloy: a Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology 11(2), 256–290 (2002)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

11. Jackson, D., Sullivan, K.: COM Revisited: Tool-Assisted Modelling of an Archi-
tectural Framework. In: SIGSOFT 2000/FSE-8: Proceedings of the 8th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pp. 149–
158 (2000)

12. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36,
41–50 (2003)

13. Kim, J.S., Garlan, D.: Analyzing Architectural Styles with Alloy. In: ROSATEA
2006: Proceedings of the ISSTA 2006 Workshop on Role of Software Architecture
for Testing and Analysis, pp. 70–80. ACM, New York (2006)

14. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering 26, 70–93 (1997)

15. Merle, P., Stefani, J.-B.: A formal specification of the Fractal component model in
Alloy. Technical Report RR-6721, INRIA (November 2008)

16. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Num-
ber 0-201-74572-0 (2002)

Trace Specifications in Alloy

Jeremy L. Jacob

University of York
Jeremy.Jacob@cs.york.ac.uk

Abstract. Safety properties of a system may be specified by constrain-
ing the sequences of interactions of the system with its environment. This
paper shows how to encode specifications in such a style using Alloy.

1 Introduction

Alloy1 is a light-weight modelling formalism whose underlying mathematics is
the relational calculus; its tool is a model checker which can both refute invalid
claims and find examples that satisfy consistent first-order predicates. Jackson
shows how to use Alloy to model systems in a state-based style that follows Z
(and, in some respects, VDM), but where operations are not ‘first-class’[2]. He
also sketches how operations can be made first class.

The purpose of this paper is to explain a modelling style that omits state
to leave nothing but the events. Essentially, it allows specifications in the style
of Hoare, as predicates describing the allowed sequences of events (or traces)
of a system[3]. Traces allow a complete description of the safety properties of
a system; they do not allow us to discuss non-determinism and termination
properties (the failures model is needed for those) or liveness properties. Safety
properties are described pointwise: a system satisfies a specification if every one
of its traces satisfies the property, and so refinement is modelled by implication.
(Certain properties, such as confidentiality, are only describable in terms of the
entire set of traces of the system[4]; such properties are outside the scope of this
paper.)

A sequence of all the events in a system’s history is (if we ignore clock time)
the most detailed information about the state of a non-terminated system to
which we have access. A trace may contain more information than we need to
construct the current state (or states, in the presence of non-determinism), but
it certainly contains enough. Thus the trace of events so far is a universal form
for specification states.

Traces can be pragmatically useful, too. I have found errors in a state-based
specification by considering a trace-based version, because no history is ever
thrown away in a trace model. The example involved an operation that adds
1 See http://alloy.mit.edu/.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 105–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://alloy.mit.edu/

106 J.L. Jacob

pairs to a relation (let us say, a ticket and a time of issue); the specification was
supposed to have the property that at most one ticket should be added at any
given time. The original description of the ‘delete-ticket’ operation removed all
information from the database associated with the ticket. However, this deleted
too much information, and a later ticket could be recorded as issued at the same
time as a ticket that had been deleted. Consideration of the trace-based spec-
ification made this error obvious, because all the information about previously
entered tickets was in the trace.

The major disadvantage of the style is that interesting traces are relatively
long. In one example below, at least 9 events are necessary to get all possibilities
for one cycle of a protocol communicating over a one-place buffer (and a second
cycle may have started but not finished). Checks of interesting properties are
expensive to analyse. One aim of this paper is to encourage tool developers and
maintainers to improve the analysis of ordered signatures.

The encoding of traces presented here is different to that given by Bolton[1];
her encoding is useful for stating and proving higher level properties of the
refinement ordering. The encoding in this paper is oriented towards specification.

2 Encoding

The encoding strategy is to use a signature of Events, and to encode individual
events as sub-signatures of Event. Elements of the sub-signatures represent oc-
currences of the event. The Alloy ordering module is used to arrange the event
occurrences in the analysis scope into a trace. (The ordering module defines a
total order over a signature, together with some utility functions and relations
such as first, next and last.) The Alloy analyzer can then find all traces, of some
fixed length2, that satisfy a given property.

In order to generate ‘real’ examples we ensure that the properties are prefix-
closed, that is if they apply to a trace then they also apply to every initial sub-
trace. In symbols, in the context of sig Event{} and open util/ordering[Event],
the predicate pred p[t : set Event]{...} is prefix-closed if and only if:

all e : Event | let pfx=prevs[e] | p[pfx+e] implies p[pfx]

As prefix-closure is a second-order predicate it cannot be programmed (using
the encoding of this paper) in Alloy, and consequently we have to program it
explicitly. Trace specifications need not be prefix-closed in practice, as a correct
system’s evolution guarantees prefix-closure; we need the property to restrict the
model checker to ‘real’ instances.

The encoding is best explained by examples. The first (Sect. 3) uses Hoare’s
examples of vending machines, while the second (Sect. 4), contains the more
complex example of the triple-redundancy protocol.

2 Because of the way that the ordering utility is encoded the set of Events must be
non-empty.

Trace Specifications in Alloy 107

2 module vending_machines
3

4 open util/ordering[Event]
5 fun fst:Event{ordering/first}
6 fun nxt:Event−>Event{ordering/next}
7 fun upto[e:Event]:set Event{prevs[e]+e}
8

9 abstract sig Event{}
10

11 sig Coin extends Event{}
12

13 pred no_vendor_loss[product : set (Event−Coin)]{
14 all e:Event | let pfx=upto[e] | #(product&pfx)<=#(Coin&pfx)
15 }
16

17 pred max_customer_loss[product : set (Event−Coin), max_loss : Int]{
18 all e:Event | let pfx=upto[e] | #(Coin&pfx)−max_loss<=#(product&pfx)
19 }

Listing 1. Simple trace specification: start of module

3 Example: Vending Machines

3.1 Module Heading

Listing 1 shows the start of the module. It declares a signature to represent
events in the system (Line 9), ensures that they are totally ordered in a way
displayable by the visualiser (Lines 4–6), and defines a function to calculate
prefixes (Line 7).

Modelling starts on Line 11, where a signature defines the events that repre-
sent payment (Coin); atoms of this signature represent instances of the event.
Two utility predicates capture properties a designer may wish to assert of all
behaviours of a vending machine system, with respect to Coin. The first is
that the vendor never makes a loss (no_vendor_loss, Lines 13–15): the num-
ber of products delivered never exceeds the number of coins paid. The second
(max_customer_loss, Lines 17–19) states that the customer may make a loss
when buying products, but no larger than some value max_loss. Note that both
of these predicates are written to be prefix-closed.

3.2 Very Simple Vending Machines

The next part of the module (Listing 2) is inspired by the ‘chocolate vending
machine’ specification of Hoare[3, §1.10].

We add a signature to model delivery of a chocolate bar (Choc, Line 21), and
a predicate to model a machine that satisfies the vendor of chocolate bars, but
may only satisfy the customer up to some possible maximum loss (choc_vm,

108 J.L. Jacob

21 sig Choc extends Event{}
22

23 pred choc_vm[max_loss : Int]{
24 no_vendor_loss[Choc] and max_customer_loss[Choc, max_loss]
25 }
26

27 choc_vm0: run{choc_vm[0]} for 8 but 0 Drink_Event expect 0
28 choc_vm1: run{choc_vm[1]} for 8 but 0 Drink_Event expect 1
29 choc_vm2: run{choc_vm[2]} for 8 but 0 Drink_Event expect 1
30 choc_vm2a: run{choc_vm[2] and #Choc<#Coin} for 8 but 0 Drink_Event expect 1
31 vm1_is_vm2: check{
32 choc_vm[1] implies choc_vm[2]
33 } for 6 but 0 Drink_Event expect 0
34

35 pred alternate_coin_choc{
36 fst in Coin
37 nxt in Coin−>Choc + Choc−>Coin
38 }
39

40 choc_alt_is_vm1: check{
41 alternate_coin_choc iff choc_vm[1]
42 } for 6 but 0 Drink_Event expect 0

Listing 2. Simple trace specification (cont.): simple vending machines. The signature
Drink_Event is defined later; here it is effectively ignored.

Lines 23–25). This predicate, when instantiated, defines a class of acceptable
behaviours for a vending machine.

Five commands are given in Lines 27–33. The first three generate example
traces for chocolate vending machines in which the customer may make zero,
one or two coins loss, and in the fourth case we restrict attention to examples of
choc_vm[2] in which the vendor makes a profit over-all, but not necessarily in
any prefix. (The scopes generate sequences of six events; it also forbids atoms of
the signature Drink_Event, a signature which is introduced in Section 3.3.) The
first command, choc_vm0, finds no instance because the ordering utility insists
that there be at least one element in the ordering; it would be nicer if ordering
allowed the empty ordering over an empty sequence as there is exactly one
consistent trace that satisfies no loss to either party: the empty trace. The fifth
command, vm1_is_vm2, is a refinement check: that every observable behaviour
of choc_vm[1] is a possible observable behaviour of choc_vm[2].

Lines 35–38 define a property, alternate_coin_choc, that says payments and
deliveries strictly alternate, that the first event must be a payment, and that
there are no other types of event. The command in Lines 40–42 checks that
(within the scope) payment followed by strict alternation of delivery and pay-
ment is an identical restriction on behaviour to that of no vendor loss combined
with a maximum loss to the customer of one coin. Thus, in this style, with one
command we can compare the entire behaviour of two systems.

Trace Specifications in Alloy 109

Fig. 1. Three traces of length 4. Two are from choc_vm[2]: a non-overlapping pair of
transactions is illustrated on the left, while one transaction followed by the start of two
other transactions is illustrated in the middle. On the right is a counterexample to the
proposition that drink_random_b allows only behaviours allowed by drink_random_a.

The vending machines described so far are very simple. Example traces are
given in Figure 1. In the next section we describe vending machines with more
complex behaviours.

3.3 More Complex Vending Machines

In this subsection we describe a family of vending machines that can deliver
products from two classes, and also allow the user to switch between products.
This example is also derived from Hoare[3, §1.1.4]. The code can be found in
Listing 3.

The two products are drinks of orange and lemon, declared on Line 44; these
signatures represent values and so are not extensions of Event. The events are:
selecting which beverage the machine will deliver next (Select), and delivering it
(Drink). These events are declared in Lines 45–46; note that they have a value
field to record which beverage is involved. A different modelling strategy for the
events is to use four separate signatures, but that is less convenient.

The property, default, in Lines 48–51 defines what it means for a selection event
to affect later deliveries, and also describes what happens before a selection is
made. If the user has made a selection, then the product selected is that delivered,
otherwise any product from the set of defaults is delivered.

On Lines 53–57 a behaviour, drink_orange_1, is defined in which the vendor
makes no loss on drinks, the customer may make a loss of one coin and the
customer may select between orange and lemon, with the default being orange.

The behaviour drink_orange_1 allows a customer to insert a coin and then
the flexibility to make any number of selections before taking a drink. We may

110 J.L. Jacob

44 enum Beverage{Orange, Lemon}
45 abstract sig Drink_Event extends Event{drink : Beverage }
46 sig Select, Drink extends Drink_Event{}
47

48 pred default[d : set Beverage]{
49 all e : Drink | let s=max[Select&prevs[e]] |
50 e.drink in (some s implies s.drink else d)
51 }
52

53 pred drink_orange_1{
54 no_vendor_loss[Drink]
55 max_customer_loss[Drink, 1]
56 default[Orange]
57 }
58

59 pred no_choice_within_transactions{
60 all e : Select | let pfx=prevs[e] | #(Coin&pfx)=#(Drink&pfx)
61 }
62

63 pred drink_orange_2{
64 no_vendor_loss[Drink]
65 max_customer_loss[Drink, 2]
66 default[Orange]
67 no_choice_within_transactions
68 }
69

70 pred drink_random_a{
71 no_vendor_loss[Drink]
72 max_customer_loss[Drink, 1]
73 default[Orange] or default[Lemon]
74 }
75

76 pred drink_random_b{
77 no_vendor_loss[Drink]
78 max_customer_loss[Drink, 1]
79 default[Orange+Lemon]
80 }
81

82 rand_a_refines_rand_b: check {
83 drink_random_a implies drink_random_b
84 } for 6 but 0 Choc expect 0
85

86 rand_b_refines_rand_a: check{
87 drink_random_b implies drink_random_a
88 } for 4 but 0 Choc expect 1

Listing 3. Simple trace specification (cont.): less simple vending machines

Trace Specifications in Alloy 111

wish to restrict selection to between transactions. This property is captured
by the predicate no_choice_within_transactions (Lines 59–61); a transaction is
complete when every insertion of a coin has a matching delivery of a drink:
this predicate restricts choice events to exactly these situations. The behaviour
described on Lines 63–68 is an example system that has this property.

The two systems on Lines 70–80 illustrate two different types of choice. In
the first system, drink_random_a, the system decides on start-up whether the
default is orange or lemon; however in drink_random_b a choice is made at each
delivery before the first selection event. The check on Lines 82–84 tests whether
the first system refines the second (it does). The check on Lines 86–88 shows
that the converse does not hold; a counter example is given in Figure 1.

4 Example: Triple-Redundancy Protocol

A more complex class of examples are those composed of concurrent subsys-
tems. Among the simplest of these are the simple protocols: we describe one in
which the transmitter repeats each input bit three times over the network, and
the receiver reads bits in groups of three from the network, passing on the ma-
jority value. The network is represented by a one-place buffer, and a one-place
corrupting buffer. Also, we describe an unbounded buffer and check that the
sender-network-receiver system refines a buffer, for a network implemented as a
one-place buffer and as a corrupting buffer.

4.1 Model

Module heading: Listing 4 contains the header.
As for the vending machines, we declare a carrier signature Event, but this

time every event refers to some value (either T or F). Observable classes of events
are communications on the five synchronisation channels In, Out, Mid, MidI and
MidO. In and Out are used for communications between the environment and
the protocol; the other three channels will be used to join together components
of the protocols.

Useful functions calculate the initial sub-sequence of some subclass of events
upto, but excluding any event; the prefix, which is similar but includes the event;
and the ordering relation restricted to a class of events (subseq). (Note that these
are a different set of utilities to those defined in Listing 1.) The fourth function
(show_match) is a utility to persuade the visualiser to show how inputs and
outputs in different sub-systems match; it is not a part of the modelling.

Buffers: Listing 5 contains the specification of two buffers.
A buffer (buffer) has the property that if an nth output exists, then the nth

input is earlier and has the same value. Note that this places no constraints on
the capacity of the buffer.

A one-place buffer (unary_buffer) is a buffer that strictly alternates inputs
and outputs (compare with alternate_coin_choc above, Listing 2). Its definition
includes the constraint that the capacity is a single datum.

112 J.L. Jacob

1 module trp
2

3 open util/ordering[Event]
4 fun nxt:Event−>Event{{a:Event, b:next[a]}}
5

6 fun upto[xs:set Event, x:Event]:set xs{prevs[x]&xs}
7 fun prefix[xs:set Event, x:Event]:set xs{upto[xs,x]+x&xs}
8 fun subseq[xs:set Event]:xs−>xs{{disj a,b:xs | lt[a,b] and no nexts[a]&upto[xs,b]}}
9 pred show_match[disj ins, outs : set Event]{

10 some c : ins−>outs | c={i : ins, o : outs | #(upto[ins, i])=#(upto[outs, o])}
11 }
12

13 abstract sig Event{value : Value}
14

15 enum Value{T, F}
16

17 sig In, Out, Mid, MidI, MidO extends Event{}

Listing 4. The triple-redundancy protocol: start of module

18

19 pred buffer[disj ins, outs : set Event]{
20 all e : outs |
21 one {i : ins&prevs[e] | #(upto[ins,i])=#(upto[outs,e]) and i.value=e.value}
22 }
23

24 buffer: run{
25 buffer[In,Out] and show_match[In, Out]
26 } for 16 but 0 Mid, 0 MidI, 0 MidO, 3 int expect 1
27

28 pred unary_buffer[disj ins, outs : set Event]{
29 buffer[ins, outs]
30 subseq[ins+outs] in ins−>outs + outs−>ins
31 }
32

33 unary_buffer: run {
34 unary_buffer[In, Out] and show_match[In, Out]
35 } for 16 but 0 Mid, 0 MidI, 0 MidO, 3 int expect 1
36

37 unary_buffer_is_buffer: check {
38 unary_buffer[In, Out] implies buffer[In, Out]
39 } for 11 but 0 MidI, 0 MidO, 3 int expect 0

Listing 5. The triple-redundancy protocol: buffers

The first two commands show how the utility show_match can be used to
make the visualisation more helpful. The third allows us to have some confidence
that a one-place buffer is a buffer (although this is a consequence of the way
unary_buffer is defined).

Trace Specifications in Alloy 113

Transmitter: Listing 6 contains the specification of the transmitter.
An output of some value is allowed only if that value has been input in the

previous three interactions (prev3), and no other input has occurred in that
triple.

An input is allowed either at the start of the protocol or when there has not
been an input for three events.

40 pred transmitter[disj ins, outs : set Event]{
41 let next=subseq[ins+outs] |
42 all e : ins+outs |
43 let prev3=next.e+next.(next.e)+next.(next.(next.e)) {
44 e in outs implies (one prev3&ins and (prev3&ins).value=e.value)
45 e in ins implies (no prev3 or prev3 in outs)
46 }
47 }
48

49 transmitter: run {
50 transmitter[In, Mid]
51 } for 16 Event, 0 Out, 0 MidI, 0 MidO, 3 int expect 1

Listing 6. The triple-redundancy protocol: transmitter

Receiver: Listing 7 contains the specification of the receiver.

52 pred receiver[disj ins, outs : set Event]{
53 let next = subseq[ins+outs] |
54 all e : ins+outs |
55 let prev3=next.e+next.(next.e)+next.(next.(next.e)), pvi=#prev3&ins {
56 e in outs implies {
57 pvi = 3
58 e.value = (#(prev3&value.T)>1 => T else F)
59 }
60 e in ins implies pvi < 3
61 }
62 }
63

64 receiver: run {receiver[Mid, Out]} for 16 Event, 0 In, 0 MidI, 0 MidO, 3 int expect 1

Listing 7. The triple-redundancy protocol: receiver

An output is allowed if it follows exactly three inputs, and its value is the
majority value of those inputs.

An input is allowed if there are fewer than three immediately preceding inputs.

4.2 The Transmitter/Receiver Pair Is a Protocol

A transmitter/receiver pair is defined to be a protocol exactly when the pipeline
that is the transmitter feeding the receiver refines a buffer. This is easily checked
(in some finite scope): see Listing 8.

114 J.L. Jacob

66 trp_traces: run{
67 transmitter[In, Mid]
68 receiver[Mid,Out]
69 show_match[In, Out]
70 } for 16 but 0 MidI, 0 MidO, 3 int expect 1
71

72 trp_correct: check{
73 transmitter[In, Mid] and receiver[Mid,Out] implies buffer[In, Out]
74 } for 8 but 0 MidI, 0 MidO, 3 int expect 0

Listing 8. The triple-redundancy protocol: correctness of protocol

The first command generates examples of the system (using the show_match
utility to enhance the output of the visualiser). Note how communication be-
tween the two sub-systems arises from synchronisation on the events in the class
Mid. The second command checks the correctness of the pair as a protocol.

4.3 The Triple-Redundancy Protocol Connected via a Good
Network

In Listing 9 we see commands to generate examples of two systems that differ
in their networks. The first is a one-place buffer and the second an unbounded
buffer. Again, notice the use of show_match to enhance visualisations.

Commands to check the correctness of these systems are easily written, but
they are not presented here.

75 trp_1_traces: run{
76 transmitter[In, MidI]
77 unary_buffer[MidI, MidO]
78 receiver[MidO, Out]
79 show_match[In, Out]
80 show_match[MidI, MidO]
81 } for 16 Event, 0 Mid, 3 int expect 1
82

83 trp_oo_traces: run{
84 transmitter[In, MidI]
85 buffer[MidI, MidO]
86 receiver[MidO, Out]
87 show_match[In, Out]
88 show_match[MidI, MidO]
89 } for 16 but 0 Mid, 3 int expect 1

Listing 9. The triple-redundancy protocol: good networks

Trace Specifications in Alloy 115

4.4 The Triple-Redundancy Protocol Connected via a Bad Network

Last of all we construct a network that corrupts, but not too often, and see if
the protocol mitigates the corruption. A corrupting network is defined and used
in Listing 10.

The sub-system corrupter describes a buffer, except that an output may deliver
a corrupt value whenever neither of the previous two outputs are corrupt.

Predicate show_corruption is another utility predicate, in this case to visualise
corruptions.

The command trp_corrupter_traces lets us investigate examples of the be-
haviour of the triple-redundancy protocol in the presence of (mild) corruption.
The final check gives confidence that the triple-redundancy protocol is useful,

90 pred corrupter[disj ins,outs : set Event]{
91 all e : outs | let pos=#(upto[outs, e]) {
92 some i : ins&prevs[e] | #(upto[ins, i])=pos
93 ((val[outs, pos−1]!=val[ins, pos−1] or val[outs, pos−2]!=val[ins, pos−2])
94 implies
95 val[outs, pos]=val[ins, pos])
96 }
97 subseq[ins+outs] in ins−>outs + outs−>ins
98 }
99

100 pred show_corruption[disj ins, outs : set Event]{
101 some b : ins−>outs |
102 b={i : ins, o : outs | #(upto[ins, i])=#(upto[outs, o]) and i.value!=o.value}
103 }
104

105 corrupter: run {
106 corrupter[In, Out]
107 show_match[In,Out]
108 show_corruption[In, Out]
109 } for 16 but 0 Mid, 0 MidI, 0 MidO, 3 int expect 1
110

111 trp_corrupter_traces: run{
112 transmitter[In, MidI]
113 corrupter[MidI, MidO]
114 receiver[MidO, Out]
115 show_match[In, Out]
116 show_match[MidI, MidO]
117 show_corruption[MidI, MidO]
118 } for 16 but 0 Mid, 3 int expect 1
119

120 trp_useful: check{
121 transmitter[In, MidI] and corrupter[MidI, MidO] and receiver[MidO, Out]
122 implies
123 buffer[In, Out]
124 } for 9 but 0 Mid, 3 int expect 0

Listing 10. The triple-redundancy protocol: a bad network

116 J.L. Jacob

Fig. 2. A trace of the triple-redundancy protocol over a corrupting network (using
‘Magic layout’). The trace starts at ‘In1’ and follows the $nxt arrows to end at ‘In2’.
Note that the third bit of the first cycle is corrupted by the network (indicated by the
‘$show_corruption_b’ arrow), but that the eventual output, Out is correct; no other
bits in the first cycle nor any in the second are corrupted.

as well as correct, by showing that the whole system corrects for a degree of
corruption in the network.

Figure 2 shows a trace obtained from running the protocol with a corrupting
network.

5 Conclusions

Properties of traces —with traces encoded as a total ordering of the events in
scope— are a good way to think about safety properties of a variety of systems.
This style is flexible, allows simple statements of refinement and shows examples
in a useful way through the Alloy analyzer.

The full gamut of safety properties can be encoded using failures. These al-
low maximal degrees of non-determinism to be specified, and to rule out un-
wanted deadlocks. A failure is a pair of a trace and a set (see, for example,
Hoare for details[3] and Bolton’s encoding[1]). It is not clear whether the gains

Trace Specifications in Alloy 117

of such an encoding are worth the effort for specification, as the loading on
the model checker would mean only very small examples could be checked.
Other model checkers (such as FDR2 from Formal Systems (Europe) Ltd.,
http://www.fsel.com/) are optimised for such checking (although their lan-
guage is that of processes rather than individual observations).

Acknowledgements. Thanks to the anonymous referees, to Michael Banks and to
members of the 3rd year Formal Specification of Systems class for commenting
on previous versions of this paper.

References

1. Bolton, C.: Using Alloy to Automatically Verify the Soundness of the Simulation
Rules for Reasoning about State-Based and Event-Based Models (2002),
http://alloy.mit.edu/community/files/simulationDiscussion.ps

2. Jackson, D.: Software Abstractions: Logic, language and analysis. MIT Press, Cam-
bridge (2006)

3. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science.
Prentice Hall, Hemel Hempstead (1985)

4. Jacob, J.L.: Basic theorems about security. Journal of Computer Security 1, 385–411
(1992)

http://www.fsel.com/
http://alloy.mit.edu/community/files/simulationDiscussion.ps

An Imperative Extension to Alloy

Joseph P. Near and Daniel Jackson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

{jnear,dnj}@csail.mit.edu

Abstract. We extend the Alloy language with the standard imperative
constructs; we show the mix of declarative and imperative constructs
to be useful in modeling dynamic systems. We present a translation
from our extended language to the existing first-order logic of the Alloy
Analyzer, allowing for efficient analysis of models.

1 Introduction

We present an extension to the Alloy language [1] for the specification of dynamic
systems. The typical approach to modeling dynamic systems, and the one taken
by Z [2], VDM [3], and DynAlloy [4,5], is to model state changes using pre-
and post-conditions on each transition. Both the existing idioms for modeling
dynamic systems in Alloy and our approach support this technique; we add the
standard imperative constructs: assignment, sequential composition, guards, and
loops. We give these operators the expected, operational, semantics.

Moreover, our language extension allows for the separation of the static and
dynamic elements of a model. Our extension allows dynamic operations to be
added to a static model: it makes updates to mutable state explicit and sepa-
rates imperative operations from static properties. This separation of concerns
is important to the design of a system, and is not well-supported by the Alloy
idioms currently in use.

The use of imperative operators in specifications simplifies the process of im-
plementation. Using our language extension, modelers have the option of refining
a specification (in the style of Morgan [6]) until the modeler can easily trans-
late it into an imperative implementation. Each refinement step is automatically
checked by the Alloy Analyzer to ensure that no errors have been made.

These advantages come at no loss of expressive power. We place no restrictions
on the existing language, and allow actions to be defined declaratively, using
pre- and post-conditions; our framework and composition operators also apply
to these declarative actions.

The contributions of this paper are:

– an extension to the Alloy language consisting of the standard imperative
operators (Section 3);

– a set of examples showing how the extension may be used to model dynamic
systems concisely (Section 4);

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 118–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Imperative Extension to Alloy 119

– a translation from the action language of the extension to the first-order
logic supported by the Alloy Analyzer, allowing for the efficient analysis of
models written using the extension (Section 5).

2 Alloy and Dynamic Systems

Alloy [1] is a modeling language based on first-order relational logic with tran-
sitive closure. It is designed to be simple but expressive, and to be amenable to
automatic analysis. As such, few features are provided beyond first-order logic
and transitive closure, making the semantics of the language easily expressible,
understandable, and extendable.

The Alloy Analyzer supports fully automatic analysis of Alloy models. While
this analysis is bounded and thus not capable of producing proofs, it does al-
low for incremental, agile development of models; and the small-scope hypothe-
sis [7]—which claims that most inconsistent models have counterexamples within
small bounds—means that modelers may have high confidence in the results.
This sacrifice of completeness in favor of automation is in line with the lightweight
formal methods philosophy [8].

Alloy’s universe is made up of uninterpreted atoms; signatures define the sets
into which these atoms are partitioned. For example [1], the following signatures
define sets of names and addresses:

sig Name {}
sig Addr {}

Similarly, this signature defines an address book with a field “addr” mapping
names to addresses:

sig Book { addr: Name →lone Addr }
Operations that modify the state of an address book may be defined as predicates
over pre- and post-states:

pred add [b, b’: Book, n: Name, a: Addr] {
b’.addr = b.addr + n→a }

We can use Alloy’s “check” command to check that that the “add” operation
correctly updates the address book.

check {
all b,b’: Book, n: Name, a: Addr |

add[b, b ’, n, a] ⇒ n.b’.addr = a }
The pre- and post-state idiom is well-known, both in the context of declarative

specification and in functional programming. It is the basis of the idioms for
modeling dynamic systems in Alloy and of the monadic theory of state used
in functional languages such as Haskell. While this technique often produces
concise, readable models, it is not adept at expressing certain types of imperative
control flow. The following excerpt, for example, is taken from a previously
published Alloy model of a flash filesystem [9], and uses a common trace-based
idiom:

120 J.P. Near and D. Jackson

some stateSeq: StateSeq |
stateSeqConds[stateSeq, numBlocksToProgram + 1] &&
all trscSeq idx : stateSeq.butlast .inds |

programBlock[stateSeq, trscSeq idx, cfsys , inode, startBlockIdx]

The specification for the flash memory requires blocks to be written in sequence.
In the traditional approach, this would be expressed using multiple operations,
one for each write; a sequence of such operations would then be shown to refine
an abstract write that occurs in a single step. This approach can be tedious
and unnatural, however, as it becomes necessary to encode the control flow ex-
plicitly in the state, using preconditions to constrain the ordering. Consequently,
many modelers prefer to describe such a behavior using a single operation whose
execution involves multiple steps. This notion has no standard formulation in
Alloy; here, the modeler has introduced a special signature, “StateSeq”, to model
a sequence of states, which happens to be used only inside this operation.

The Haskell community, having encountered precisely the same situation, in-
troduced special syntax for expressing sequential operations. One way to view
this paper is as an attempt to provide the same facilities to Alloy modelers.
Using our language extension, the excerpt above can be written as follows:

Cnt.idx := 0 ;
loop {

programBlock[Cnt.idx, cfsys, inode, startBlockIdx];
Cnt.idx := Cnt.idx + 1

} && after Cnt.idx = numBlocksToProgram

An operational language extension, with operational semantics, can thus make
some models easier to write. The basic operations—state update, conditionals,
loops, and so on—can be proved correct. All models written in the extension use
the same mechanism for expressing dynamic operations, making models easier
to read. Imperative operators can make sequential operations more concise. And
models written using a standard operational mechanism can be optimized for
efficient analysis.

3 Language Extension

A small extension to the Alloy language, summarized in this section, supports
the modeling of dynamic systems.

3.1 Dynamic Fields

Immutable fields are declared in the traditional way:

sig Addr {}
sig Name {}

Mutable fields, whose values may vary with time, are defined using the “dynamic”
keyword:

one sig Book { addr: dynamic (Name →lone Addr) }

An Imperative Extension to Alloy 121

3.2 Named Actions

Named actions can be defined at the top level, and can be invoked from within
other actions. Adding an entry to the address book, for example, can be written
as a named action that adds the appropriate tuple:

action add[n:Name, a:Addr] {
Book.addr := Book.addr + (n →a) }

The deletion operation, on the other hand, removes all tuples containing a given
name from the book:

action del[n:Name] {
Book.addr := Book.addr − (n →Addr) }

3.3 Action Language

Our action language includes operators for imperative programming: field
update, sequential composition, and loops. Pre- and post-conditions employ
boolean-valued formulas (written ϕ) with the existing syntax and semantics of
Alloy.

Act ::= o1.f1, ..., on.fn:= e1, ..., en (field updates)
| Act ; Act (sequential composition)
| loop { Act } (loop)
| action[a1, ..., an] (action invocation)
| before ϕ | after ϕ (pre- and post-conditions)
| some v : τ | Act (existential quantification)
| Act ⇒ Act | Act ∧Act | Act ∨Act

A field update action changes the state of exactly those mutable fields men-
tioned, simultaneously. The action

b.addr := b.addr + (n→a)

for example, adds the mapping n→a to the address book b, while
a.addr, b.addr := b.addr, a.addr

swaps the entries of address books “a” and “b”.
Sequential composition composes two actions, executing one before the other:
add[n,a]; del [n,a]

performs the “add” operation and then the “del” operation.
A loop executes its body repeatedly, nondeterministically choosing when to

terminate. The standard conditional loop may be obtained through the use of a
post-condition; the action

loop { dec[Cnt.idx] } && after Cnt.idx = 0

for example, runs the “dec” action until “Cnt.idx” reaches zero. Because they are
nondeterministic, execution of these loops generally requires backtracking.

We view actions as relations between initial and final states. This view of
actions allows for the lifting of the standard logical connectives and existential

122 J.P. Near and D. Jackson

quantification into our action language, and for the mixing of declarative con-
straints with actions. The “before” and “after” actions, for example, introduce
declarative pre- and post-conditions; these act as filters on other actions when
combined using the logical connectives. The action

add[n,a] ⇒ after n.Book.addr = a

for example, has executions that either end with the correct mappings in the
address book or are not executions of “add.”

3.4 Temporal Quantifiers

Actions have as free variables their beginning and ending states. Temporal quan-
tifiers bind these variables: “sometimes,” existentially; and “always,” univer-
sally.

ϕ ::= < Alloy Formula >
| sometimes | Act

| always | Act

Given our view of actions as relations, a “sometimes” formula holds if and
only if the action in its body relates some initial and final states; an “always”
formula holds if and only if it relates all states. To visualize the result of adding
the mapping n→a to the address book, for example, one executes the Alloy
command:

run { sometimes | add[n,a] }
One can also check that “add” adds the mapping in all cases:

check { always | add[n,a] ⇒ after n→a in Book.addr }

4 Examples

4.1 River Crossing

River crossing problems are a classic form of logic puzzle involving a number
of items that must be transported across a river. Some items cannot be left
alone with others: in our problem, the fox cannot be left with the chicken, or
the chicken with the grain. A correct solution moves all items to the far side of
the river without violating these constraints. We begin by defining an abstract
signature for objects, each of which eats a set of other objects and has a dynamic
location. The objects of the puzzle are then defined as singleton subsets of the
set of objects. Similarly, an abstract signature defines the set of locations, and
two singleton sets partition it into the near and far sides of the river.

abstract sig Object { eats : set Object,
location : dynamic Location }

one sig Farmer, Fox, Chicken, Grain extends Object {}
abstract sig Location {}
one sig Near, Far extends Location {}

An Imperative Extension to Alloy 123

We define the “eats” relation to reflect the puzzle by constraining it to contain
exactly the two appropriate tuples.

fact eating { eats = (Fox →Chicken) + (Chicken →Grain) }
The “cross” action picks an object o for the farmer to carry across the river, a
new location fl for the farmer, and a (possibly new) location ol for o, and moves
the farmer and the object.

action cross { −− pick an object & two locations
some o: Object − Farmer, fl: Location − Farmer.location, ol: Location |
(Farmer.location := fl , o. location := ol) && −− move the object and farmer;

after (all o: Object | −− all objects end up with
o. location = Farmer.location || −− the farmer, or not with

(all o ’: (Object − o) | −− objects they eat
o ’. location = o.location ⇒ o !in o’.eats)) }

To obtain a solution, we find an execution that begins with all objects on the
near side, calls “cross” repeatedly, and ends with all objects on the far side.

pred solvePuzzle {
sometimes | −− find some execution in which:

before (all o: Object | o. location = Near) && −− objects start on near side,
loop {

cross [] −− cross runs repeatedly, and
} && after (all o: Object | o. location = Far) } −− objects end on far side.

The “cross” action relies on the ability to mix declarative and imperative con-
structs: it chooses an object and a destination nondeterministically and then
formulates the requirement that no object be eaten as a postcondition. In obtain-
ing a solution, we have applied another imperative construct—loop—illustrating
our ability to declaratively construct abstract actions and then compose them
imperatively.

4.2 Filesystem

As an example of the addition of dynamic operations to a static model, we
present a simple filesystem. We begin with signatures for filenames and paths.
File paths are represented by linked lists of directories terminated by filenames.

sig Name {}
abstract sig Path {}
sig NonEmptyPath extends Path { first: Name, rest: Path }
sig EmptyPath extends Path {}

Next, we define the filesystem: an inode is either a directory node or a file node;
a directory node maps names of files and directories to other inodes, and a file
node contains some mutable data. The root node is a directory.

abstract sig INode {}
sig DirNode extends INode { files: Name →INode }
one sig RootNode extends DirNode {}

124 J.P. Near and D. Jackson

sig FileNode extends INode { data: dynamic Data }
sig Data {}

We now define operations over this static filesystem, beginning with navigation.
We use a global MVar to hold the destination path, the current inode, and the
data to be written to or read from the destination. One navigation step involves
moving one step down the list representing the destination path and following
the appropriate pointer to the corresponding inode.

one sig MVar { path: dynamic Path,
current: dynamic INode, mdata: dynamic Data }

action navigate { −− follow the path one step and then
MVar.path := MVar.path.rest; −− update ‘‘current’’ to point to the
MVar.current := (MVar.path.first).(MVar.current.files)}−− corresponding inode

Reading from a file involves calling “navigate” until the destination inode has
been reached and then reading its data into “MVar.” Writing, similarly, involves
navigation followed by a write.

action read {
loop {

navigate [] −− call navigate repeatedly
} && after MVar.current in FileNode; −− until we have reached the file inode
MVar.mdata := MVar.current.data } −− then read its data into MVar

action write {
loop {

navigate [] −− call navigate repeatedly
} && after MVar.current in FileNode; −− until we have reached the file inode
let file = MVar.current | −− take the data from MVar

file .data := MVar.mdata } −− and write it to the file inode

We would like a write to the filesystem followed by a read to yield the written
data. We can verify this property by writing arbitrary data to an arbitrary file,
reading it back, and checking that the result is the original data. We use a global
“Temp” to hold the original data.

one sig Temp { tdata: dynamic Data }

assert readMatchesPriorWrite {
always | −− if we begin at the root node,

before (MVar.current = RootNode && −− and no file contains
no f: FileNode | f .data = MVar.mdata) && −− MVar.mdata

write []; −− and we write MVar.mdata,
Temp.tdata := MVar.mdata; −− store the original data,
read [] ⇒ −− and read back the data

after Temp.tdata = MVar.mdata } −− then they’re the same

This model illustrates the ability to build up multi-step actions using loops and
sequential composition, and to verify properties of those actions.

An Imperative Extension to Alloy 125

4.3 Insertion Sort

Following Morgan [6], we present insertion sort as a refinement from a declarative
specification to a deterministic, imperative implementation. We begin by defining
mutable sequences of naturals and a declarative sortedness predicate.

sig Sequence { elts : dynamic seq Natural }
pred sorted[elts : seq Natural] { −− each element is less than the next

all i : elts .inds − elts . lastIdx | let i ’ = i + 1 | i . elts <= i’. elts }
Using this predicate, we can define a declarative sorting operation.

action declarativeSort [s : Sequence] {
some s’: Sequence |

before (sorted[s ’. elts] && s.elts = s’. elts) &&
s . elts := s ’. elts }

To bring this model closer to executable code, we define insertion sort as a
series of swaps of elements of a sequence. We begin with a global counter and a
declarative predicate to find the index of a sequence’s smallest element, leaving
the imperative definition of this predicate for later.

one sig Cnt { cur: dynamic Int }
pred minIdx [s: seq Natural, c, i : Int] { −− i is the index greater than c whose

i >= c && no i’: s.inds | i ’ >= c && i’.s < i.s } −− value in s is smallest

Next, we define the insertion step, in which the first element in the sequence is
swapped, using relational override (++), with the smallest one.

action insertionStep [s : Sequence] {
some i: s. elts . inds | −− nondeterministically pick an index

(before minIdx[s.elts, Cnt.cur, i]) && −− whose element is smallest
Cnt.cur := Cnt.cur + 1, −− and swap it with the first element
s . elts := s. elts ++((Cnt.cur)→i.(s.elts)) ++(i→Cnt.cur.(s.elts)) }

The sorting action simply sets the counter to zero and runs the insertion step to
the end of the sequence.

action insertionSort [s : Sequence] {
Cnt.cur := 0;
loop {

insertionStep [s]
} && after Cnt.cur = s.elts.lastIdx }

Next, we show that the sort is correct by verifying that an arbitrary sequence is
sorted when the sort completes.

assert sortWorks {
all s : Sequence |

always | insertionSort [s] ⇒ after sorted[s. elts] }
We now return to the problem of finding the minimum unsorted element in the
sequence. We begin with a bit of global state to hold the current index in the
search and the value and index of the minimal element found so far.

126 J.P. Near and D. Jackson

one sig Temp {idx: dynamic Int, min: dynamic Natural, minIdx: dynamic Int}

Next, we define an action to iterate over the subsequence s, checking each element
against the minimal one found so far.

action findMin[s: Sequence] {
Temp.idx := Temp.idx + 1; −− increment the current index
−− if the current value is less than the previous minimum, remember it
(before Temp.idx.(s.elts) < Temp.min ⇒

(Temp.min := Temp.idx.(s.elts), Temp.minIdx := Temp.idx)) &&
(before Temp.idx.(s.elts) >= Temp.min ⇒ skip) } −− else nothing

Finally, we redefine insertionStep to use our new action.

action insertionStep [s : Sequence] { −− start at the current index,
Temp.idx := Cnt.cur, Temp.min := Cnt.cur.(s.elts), Temp.minIdx := Cnt.cur;
loop { −− run findMin over the suffix of the sequence,

findMin[s]
} && after Temp.idx = s.elts.lastIdx;
(Cnt.cur := Cnt.cur + 1, −− and swap minimum element with the current one
s . elts := s. elts ++((Temp.minIdx)→Cnt.cur.(s.elts))

++(Cnt.cur→Temp.minIdx.(s.elts))) }

Since our change was only incremental, we can show that the new sort refines
the old one by verifying that repeating findMin yields the same element as our
declarative minIdx.

assert findMinWorks {
all s : Sequence | −− for all sequences ...

always |
(before (Temp.idx = Cnt.cur &&

Temp.min = Cnt.cur.(s.elts) &&
Temp.minIdx = Cnt.cur) &&

loop { −− running findMin over the suffix of the sequence ...
findMin[s]

} && after Temp.idx = s.elts.lastIdx) ⇒ −− finds the same element
after minIdx[s. elts , Cnt.cur, Temp.minIdx] } −− as minIdx

Thus we can use the automated analysis our language extension affords us to
support the stepwise refinement of a specification to executable, imperative code:
our final version of insertionSort could easily be translated into an imperative
programming language. Moreover, we have kept the analysis of our refinements
tractable by performing it in a modular fashion, refining declarative specifica-
tions one at a time and analyzing the implementation of each separately.

5 Translation to Alloy

We now present the translation (Figure 1) of our action language and associated
operators into the first-order logic supported by the Alloy Analyzer.

An Imperative Extension to Alloy 127

[[o.f := e]](t, t′) =̂ o.f.t′ = e[.]t ∧
∀f ′ : (fields − f) | o.f ′.t = o.f ′.t′ ∧
∀o′ : (sigs − o), f ′ : fields | o′.f ′.t = o′.f ′.t′ ∧
t′ = t.next ∧ t′.pc = fresh pc

[[c1 ; c2]](t, t′) =̂ ∃t1 : T ime | [[c1]](t, t1) ∧
[[c2]](t1, t′)

[[loop {c}]](t, t′) =̂
∃ begin, end : t.∗next − t′.ˆnext |

[[c]](t, begin) ∧ [[c]](end, t′) ∧
∀ mid, mid′ : t.∗next − end.ˆnext |

[[c]](mid, mid′) ⇒ ∃ mid′′ : mid′.ˆnext |
[[c]](mid′, mid′′)

[[act[a1, ..., an]]](t, t′) =̂ act[a1, ..., an, t, t′]
[[before ϕ]](t, t′) =̂ ϕ[.]t

[[after ϕ]](t, t′) =̂ ϕ[.]t′

[[some v : τ | c]]C =̂ ∃v : τ | [[c]]C
[[c1 ∧ c2]]C =̂ [[c1]]C ∧ [[c2]]C
[[c1 ∨ c2]]C =̂ [[c1]]C ∨ [[c2]]C

[[c1 ⇒ c2]]C =̂ [[c1]]C ⇒ [[c2]]C

[[action name[a1, ..., an] { Act }]] =̂
pred name[a1, ..., an, t, t’] { [[Act]](t, t′) }

[[sometimes | Act]] =̂ ∃t, t′ : T ime|[[Act]](t, t′)
[[always | Act]] =̂ ∀t, t′ : T ime|[[Act]](t, t′)

Fig. 1. Rules for Translating the Action Language to Alloy

one sig Book {
addr: dynamic (Name→lone Addr)}

one sig Book {
addr: Name→lone Addr→Time}

action add[n:Name, a:Addr] {
Book.addr := Book.addr + (n→a)}

pred add[n:Name, a:Addr, t, t’:Time] {
t ’ = t.next && t’.pc = pc0 &&
all o:Book−Book | o.addr.t = o.addr.t’ &&
Book.addr.t’ = Book.addr.t’ + (n→a) }

assert addAdds {
all n: Name, a: Addr |

always | add[n,a] ⇒
after n.Book.addr = a}

assert addAdds {
all n: Name, a: Addr |

all t , t ’: Time |
add[n, a, t , t ’] ⇒

n.Book.addr.t’ = a}

Fig. 2. Address Book Example (Left) and its Translation (Right)

128 J.P. Near and D. Jackson

5.1 Dynamic Idiom

Our translation uses two idioms that are common in the Alloy community for
modelling dynamic systems. The first involves the addition of a “Time” column
to each relation that represents local mutable state; the second involves the
creation of a global execution trace using a total ordering on “Time” atoms.

Our translation adds a “Time” column to each dynamic field, and actions
become predicates representing transitions from one time step to the next. We
do not, however, enforce a global total ordering on time steps; instead, time steps
are only partially ordered, allowing many traces to exist simultaneously.

In avoiding the single global trace, we gain the ability to compare executions,
to run executions from within executions, and to run concurrent executions. The
global trace does have performance and visualization benefits, however; fortu-
nately, it is not difficult to infer that a particular analysis requires only a single
trace, and then to enforce a total ordering on time steps. Our implementation
performs this optimization, improving the performance and visualizability of
many analyses considerably.

5.2 Translation

To translate our action language into a declarative specification following the
trace-based idiom, we add a “Time” column to dynamic fields and thread a pair
of variables through the action execution to represent the starting and ending
time steps of that execution. We define a partial ordering on times using a field
named “next:”

sig Time { next: lone Time }
We write the translation of action c into first-order logic in a translation

context as [[c]](t, t′) (or [[c]]C when the parts of C are not needed separately) where
the context contains start and end time steps t and t′. We also assume a global
set sigs representing signatures with dynamic fields, and a global set of dynamic
relations fields. We write e[.]t to denote the replacement of every reference to
a dynamic relation f ∈ fields in e by the relational join f.t; this operation
represents the evaluation of e at time t. We give the complete translation in
Figure 1, and an example translation in Figure 2.

Assignment simulates the process of updating an implicit store. The first
generated conjunct updates the field o.f with the value of e at time t. The
second and third represent the frame condition that the transition updates only
f at o: the second ensures that the other fields of o do not change, while the
third ensures the same for objects other than o. The fourth conjunct specifies
that an update takes exactly one time step, and the fifth constrains the final
time step’s program counter.

Sequential composition is accomplished by existentially quantifying the time
step connecting its two actions; loops are defined in terms of sequential compo-
sition. Action invocation passes the current time interval to the called action.

Named action definitions are translated into Alloy predicates with two extra
arguments: the action’s starting and ending times. The action representing the

An Imperative Extension to Alloy 129

body is translated in the context of those times. A definition of an action is
translated to a standard Alloy predicate, with the before and after times made
explicit.
The translation of a “sometimes” formula existentially quantifies the beginning
and ending states related by the result of translating the action in the body of
the formula, while an “always” formula universally quantifies these states.

5.3 Semantic Implications

Our translation gives the language’s imperative constructs the same relational
semantics given by Nelson [10] to Dijkstra’s original language of guarded
commands [11]; these semantics also correspond to the standard operational
semantics [12]. In addition, the relational semantics implies the existence of a
corresponding semantics in terms of the weakest liberal precondition (namely,
the wlp-semantics of Dijkstra’s guarded commands, also given by Nelson [10]).
Our translation does not, however, correspond to a semantics in terms of weakest
preconditions. The use of wp-semantics allows termination to be expressed; our
language can only express partial correctness properties.

The property that an abstract action of only one step is refined by another ac-
tion is directly expressible. The same property for actions of more than one step,
however, is not expressible due to the known problem of unbounded universal
quantifiers in Alloy [13].

6 Related Work

Our approach to modeling dynamic systems is similar to Carroll Morgan’s [14],
the primary difference being that Morgan defines a programming language and
then adds specification statements, while we begin with a specification language
and extend it with commands. Like Morgan’s language, however, our command
language supports the practice of refinement-based program development [6].
Our language is also similar to Butler Lampson’s system specification language
Spec [15], which also provides both declarative and imperative constructs. The B
Method [16] also provides the same imperative constructs that we present here,
and gives them the same semantics. Abstract State Machines [17] represent an-
other operational specification technique, but ASMs lack the declarative features
of Alloy. None of these approaches currently support the Alloy Analyzer’s style
of analysis.

Other traditional methods (such as Z [2] and VDM [3]) for specifying dynamic
systems and analyzing those specifications center around the definitions of single-
step operations, and do not offer a command language. Z does provide sequential
composition, but no looping construct.

DynAlloy [4,5] has a very similar motivation to our work. It likewise extends
Alloy, and offers operational constructs, but based on dynamic logic rather than
relational commands. Unlike our extension, however, DynAlloy extends the se-
mantics of Alloy, and translations are not intended to be human-readable.

130 J.P. Near and D. Jackson

Alchemy [18] also defines state transitions declaratively, but has the goal of
compiling Alloy specifications into imperative implementations. Since it uses an
idiom-based approach to state transitions, this work has prompted an explo-
ration [19] of the properties that a declarative specification must have in order
to correctly define a transition system. The specifications generated by our trans-
lation satisfy the necessary conditions by construction.

Some similar executable languages also exist: Crocopat [20] and RelView [21]
both allow the definition and execution of relational programs. While these tools
can execute commands over very large relations, they cannot perform the kind
of exhaustive analysis that the Alloy Analyzer supports.

7 Conclusions and Future Work

We have extended the Alloy language with imperative operators. Our examples
are indicative of our experience using the extension: dynamic models can be
built statically and the dynamic elements added after verification of the static
model. Moreover, the addition of sequential composition and looping constructs
make models of dynamic systems more concise and easier to read.

We have also experimented with refinement-oriented development from spec-
ifications to implementations. The similarity of our language extension to the
programming language used by Morgan [6], in addition to our ability to perform
automated analysis on each refinement step, makes this strategy very attractive.

Finally, the move towards a mix of imperative and declarative constructs
blurs the line between models and implementations. We have presented exam-
ple models that can be translated easily into imperative implementations; given
the simplicity of this translation, we plan to explore the possibility of automat-
ing it. Nondeterministic execution strategies like Prolog’s backtracking search
combined with a clever translation of Alloy’s relational logic may allow for the
execution of a large fragment of our extended Alloy language, making possible
the a more direct execution that may perform well enough to be a practical
implementation.

Acknowledgements

We are grateful to Jonathan Edwards, Eunsuk Kang, and Derek Rayside for
their lively discussions and helpful comments. This research was funded in part
by the National Science Foundation under grants 0541183 (Deep and Scalable
Analysis of Software), and 0707612 (CRI: CRD – Development of Alloy Tools,
Technology and Materials).

References

1. Jackson, D.: Software Abstractions: logic, language, and analysis. The MIT Press,
Cambridge (2006)

2. Spivey, J.: The Z notation: a reference manual (1992)

An Imperative Extension to Alloy 131

3. Jones, C.: Systematic software development using VDM. Prentice Hall, New York
(1990)

4. Frias, M., Galeotti, J., Pombo, C., Aguirre, N.: DynAlloy: upgrading alloy with
actions. In: Proceedings of 27th International Conference on Software Engineering,
2005. ICSE 2005, pp. 442–450 (2005)

5. Frias, M., Pombo, C., Galeotti, J., Aguirre, N.: Efficient Analysis of DynAlloy
Specifications (2007)

6. Morgan, C.: Programming from specifications (1990)
7. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the small scope

hypothesis. In: Popl 2002: Proceedings of The 29th ACM Symposium on The Prin-
ciples of Programming Languages (2002)

8. Jackson, D., Wing, J.: Lightweight formal methods. In: Saiedian, H. (ed.)
Roundtable contribution to: An invitation to formal methods, vol. 29, pp. 16–30.
IEEE Computer, Los Alamitos (1996)

9. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 294–308. Springer, Heidelberg (2008)

10. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 11(4), 517–561 (1989)

11. Dijkstra, E.: A discipline of programming. Prentice Hall PTR, Upper Saddle River
(1997)

12. Pierce, B.: Types and programming languages. The MIT Press, Cambridge (2002)
13. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. ACM SIG-

SOFT Software Engineering Notes 30(5), 216 (2005)
14. Morgan, C.: The specification statement. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS) 10(3), 403–419 (1988)
15. Lampson, B.: 6.826 class notes (2009), http://web.mit.edu/6.826/www/notes/
16. Abrial, J.: The B-book: assigning programs to meanings. Cambridge Univ. Pr.,

Cambridge (1996)
17. Börger, E., Stärk, R.: Abstract state machines: a method for high-level system

design and analysis. Springer, Heidelberg (2003)
18. Krishnamurthi, S., Fisler, K., Dougherty, D., Yoo, D.: Alchemy: transmuting base

alloy specifications into implementations. In: Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineering, pp. 158–
169. ACM, New York (2008)

19. Giannakopoulos, T., Dougherty, D., Fisler, K., Krishnamurthi, S.: Towards an Op-
erational Semantics for Alloy. In: Proceedings of the 16th International Symposium
on Formal Methods (2009) (to appear)

20. Beyer, D.: Relational programming with CrocoPat. In: Proceedings of the 28th
International Conference on Software engineering, pp. 807–810. ACM, New York
(2006)

21. Behnke, R., Berghammer, R., Meyer, E., Schneider, P.: RELVIEW-A system for
calculating with relations and relational programming. In: Astesiano, E. (ed.) FASE
1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)

http://web.mit.edu/6.826/www/notes/

Towards Formalizing Network Architectural
Descriptions�

Joud Khoury, Chaouki T. Abdallah, and Gregory L. Heileman

ECE Department, MSC01 1100,
1 University of New Mexico, Albuquerque NM 87131
{jkhoury,chaouki,heileman}@ece.unm.edu

Abstract. Despite the rich literature on network architecture and communication
system design, the current practice of describing architectures remains informal
and idiosyncratic. Such practice has evolved based on idiomatic terminology and
hence, it is failing to provide a formal framework for representing and for reason-
ing about network architectures. This state of affairs has led to the overloading of
architectural terms, and to the emergence of a large body of network architecture
proposals with no clear indication of their cross similarities, their compatibility
points, their unique properties, and their architectural performance and sound-
ness. Formalizing network architectural descriptions is therefore a timely con-
tribution, and this paper presents a first step in that direction. The paper builds
upon architectural style modeling concepts from the software engineering field,
and applies them to the network architecture space. Our approach is presented
through a case study detailing a formal model for a common class of network
architectures. The model uses a simple declarative language based on relations
and first-order logic.

1 Introduction

Despite the rich literature on network architecture and communication system design,
the current practice of describing architectures remains informal and idiosyncratic. This
was caused by the evolution of a semantically rich terminology that has been adopted
by network architects over time. The terminology, despite being informal, reveals a lot
of architectural information and has so far enabled efficient communication between
architects. This scenario is very similar to the evolution of software architecture model-
ing in the context of software engineering [18]. This state of affairs has however, led to
the overloading of architectural terms, and to the emergence of a large body of network
architecture proposals with no clear understanding of their cross similarities, compati-
bility points, their unique properties, and architectural performance and soundness.

Several models for communication systems have been recently proposed, some of
which are focused on particular communication aspects such as binding [21] or rout-
ing [11]. Others [13] are more general, and concern themselves with multiple com-
munication aspects such as forwarding, naming, addressing. It is important to notice

� The work presented in this paper is partially funded by the National Science Foundation NSF
under the Future Internet Design (FIND) Grant CNS-0626380.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 132–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards Formalizing Network Architectural Descriptions 133

however, that the formal modeling and representation of network architectures is fun-
damentally different from that of communication systems. In fact, while the communi-
cation structure is necessary for defining and representing a network architecture, it is
not sufficient. In addition to the communication structure, information and computation
structures are building blocks that need to be properly understood within modern net-
work architectures. Communication systems tend to share the same set of elements and
are generally concerned with switching properties of networks and their communication
and control primitives. On the other hand, network architectural descriptions are con-
cerned with high-level architectural abstractions, their interactions, their structural and
behavioral properties, and the constraints and invariants that define each architecture.

Towards formalizing network architectural descriptions, we utilize concepts relevant
to architectural style modeling. Architecture style (or pattern) is a term commonly used
in the software engineering field [18]. An architectural style is a family of network
architectures that share a common representation vocabulary. Hence, while architec-
tural instances specializing a particular style may vary in their particulars, their overall
structure remains the same and obey the general style constraints. There are significant
advantages associated with architectural style design. Those include a better overall sys-
tem understandability by defining a precise common design vocabulary, the availability
of design re-use among all instances of a class, architectural interoperability, and spe-
cialized analysis of a class of architectures by constraining the design space [15]. This
paper presents a design methodology for formally describing and reasoning about net-
work architectures and architectural styles. Our work is influenced by the work in [15].
The methodology is demonstrated by detailing a formal model for the FARA [8] family
of network architectures. Our work provides a framework for network architects to for-
mally group various architectures into a set of styles based on their common structural
and behavioral characteristics, enabling researchers to better represent, analyze, reason
about, and infer their important properties.

The rest of the paper is organized as follows: Section 2 presents the necessary back-
ground related to architectural styles and to the language Alloy. Alloy is a simple declar-
ative language based on relations and first-order predicate logic and is the language that
we shall use throughout the discussion for formal modeling and verification. Section 3
details our approach through a case study of the FARA [8] class of network architec-
tures. We then present related work in section 4 before concluding in section 5.

2 Background

2.1 Architectural Styles: What and Why?

Software architectures are usually viewed as a set of interconnected elements that define
the structure of a system. The elements are mainly components (computational and stor-
age elements) and connectors (interactions among the components) 1. An architectural
style represents a family of architectures that share a common structural organization.
Despite the different representations of a style [3,5,6,18], it is typically composed of

1 For example, in a client-server architecture description, one might model the client and server
elements as components and an RPC communication protocol between them as a connector.

134 J. Khoury, C.T. Abdallah, and G.L. Heileman

component/connector types, and a collection of constraints on how the types are com-
bined. Associated with a style are a design vocabulary, an underlying computational
model, and invariants [18].

Styles may be treated as stand-alone structures and may be related through inher-
itance, or composition. Inheritance, an extremely attractive property for describing
architectural styles is the ability of a sub-style to extend one or more super-styles inher-
iting their structural properties, vocabulary, and constraints/invariants. Composition is
another form relating multiple styles. The composed style is an aggregation of the vo-
cabulary, structure, and constraints of the its constituent styles. Generally, the composed
style introduces a new structure to relate the constituent styles together.

The advantages of modeling architectural styles are several (check [15]). First, given
the abstraction level of an architectural style, it is generally hard to verify properties
pertaining to the style or even to implement the style itself. A compact model then al-
lows the verification of a style’s structural and behavioral properties over constrained
instance sets without having to actually implement the style. This is an important step
when applied prior to the actual instantiation of a complete architecture from the style.
In other words, a formal model helps the transition from abstract style design to ac-
tual instantiations. Additionally, claims of compatible network architectures, whether
those pertaining to general architectures, or to scoped architectures (such as naming,
addressing, or routing) may then be logically verified. Finally, a formal model helps to
classify the literature into related styles and architectures, and to succinctly illuminate
the relations between them, whatever forms those may end up taking.

Modeling the structural properties of software architectural styles has generally been
associated with the component/connector abstractions, and has utilized architectural
description languages (ADLs) [3,5,15,6] for formal description. We believe that tradi-
tional component/connector abstractions associated with style modeling do not provide
sufficient abstractions for network architects to work with 2. Therefore, we simply bor-
row the notion of “architectural style” without constraining ourselves to the component,
connector, port, and role abstractions. Additionally, we choose to use the Alloy model-
ing language [12] rather than ADLs based on Alloy’s simplicity, its expressive power
and ability to describe structural and behavioral aspects of an architectural style, and
its ability to model desired specification properties that fit our needs (invariants, inheri-
tance, and composition). Despite Alloy’s scalability concerns, we have found it useful to
formally describe network architectures/styles because of the presumably small scope
of abstractions involved in describing network architectural styles.

2.2 Alloy

Architectural design revolves around exploring the right abstractions, which are simple
ideas expressed in some primitive form. Designing those abstractions requires a formal
specification language that is intuitive, expressive, and at the same time avoids the intri-
cacies of coding. Alloy [12] is one such language that we use to write our formalization
of the FARA style [8] (to be detailed shortly). Alloy is a declarative language based on

2 The component/connector abstractions might be sufficient when modeling communication
systems, as may be deduced from the axiomatic model in [13].

Towards Formalizing Network Architectural Descriptions 135

relations and first-order predicate logic. A brief overview of Alloy’s logic, language,
and analysis follows. A complete reference is located elsewhere [12].

The Logic - At the core of Alloy is a relational logic that combines relational algebra
with first-order predicate logic. Structures are composed of atoms and relations. Atoms
represent typed, immutable structures that are uninterpreted and can be related through
relations. A relation is a set of tuples each being an atom and can have arbitrary arity.
Relations are combined with operators to form expressions. Some of the most common
operators in Alloy are tabulated in Table 1.

Table 1. Operators in Alloy

Set operators Relational operators Logical operators
+ for union → for product ! for negation
− for difference . for join && for conjunction
& for intersection ˜ for transpose || for disjunction
in for subset ˆ for transitive closure ⇒ for implication
= for equality * for reflexive-transitive closure , for alternative

⇔ for bi-implication

Constraints are formed of expressions and logical operators. Quantified constraints
take the form Q x : e|F , where F is a constraint over x, e is an expression bounding
x, and Q is a quantifier that can take values all (universal), some (existential), no (no
values), and lone (at most one value). For example, no x : e|F is true when no x in e
satisfies F . When Let is used as in Let a = b|F , every occurrence of a in F is replaced
by b. Declarations in Alloy take the form relation-name : expression, where expression
is the bounding expression for the declared relation. For example, r : Am→ nB, where
m and n are multiplicities, is a declaration saying that relation r is constrained to map
each element of set A to n elements of set B, and each element of set B to m elements
of set A.

The Language - In addition to the logic, Alloy provides some language constructs to
help organize a model. A model in Alloy may consist of signatures (sig), facts (fact),
functions (fun), predicates (pred), and assertions (assert).

Signature: A signature, declared with sig, introduces a basic type along with a collection
of fields, their types and restrictions over their values. A signature can extend another
signature inheriting its fields and constraints. An abstract signature has no elements
except those belonging to its extensions. For example, if we write:

abstract sig A { abstract sig B {}
f: set B sig A1 extends A {}

}{--constraints go here} sig A2 extends A {}

one sig C{} --‘one’ means sig constrained to one element

we have declared three elements A, A1, and A2. Since A1 and A2 extend A, it follows
that A in A1 + A2. Additionally, because A is abstract, it follows that A = A1 + A2 and
A1 and A2 are disjoint sets that partition A. A declares a field f of type set B. This is

136 J. Khoury, C.T. Abdallah, and G.L. Heileman

saying that for each element A, A. f is a set of type B, i.e., the relation f is mapping
from elements in A to sets of elements in B.

Facts, Predicates, Functions, and Assertions: A fact is simply a constraint that is as-
sumed always to hold, and hence needs not be explicitly invoked. Facts usually de-
scribe global model constraints. The facts and the signature constraints thus constitute
a complete set of structural constraints over the model. A function, declared with fun,
is a named reusable expression that can be invoked within the model. A function takes
zero or more arguments and returns either a true/false or a relational value. A predicate,
declared with pred, is a named reusable constraint that can be invoked. A predicate
takes zero or more arguments. An assertion, declared with assert, is a named constraint
that is intended to follow from the model’s facts. Assertions take no arguments and are
usually checked by the Alloy Analyzer as discussed next.

The Analysis - The Alloy Analyzer (AA) [1] is an automated tool for analyzing models
written in Alloy. Two kinds of analysis are enabled by AA, based on commands. The
first is simulation (using run command) whereby the validity of a predicate or function
is verified by showing a snapshot of the system for which the predicate is valid. The
second analysis technique is checking (using check command), whereby an assertion
is tested and AA tries to find a counterexample. This requires a finite scope, bounding
the number of atom instances within the universe, within which AA looks for solutions.
Given the undecidability of predicate logic, a finite scope is necessary to bound the
space within which AA searches. Finding an instance to a predicate or a counterexample
to an assertion guarantees the consistency of the constraint. However, failure to find
such instance simply makes it inconsistent within the scope. The intuition is that subtle
design bugs are likely to be detected even in small scopes.

3 Case Study

To motivate the usefulness of formal architectural modeling, and the expressiveness of
the Alloy language, we represent the FARA[8] family of network architectures (or the
FARA architectural style) using a formal model. Briefly, FARA [8] is an abstract net-
work model in which the current Internet architecture is generalized and remodeled to
enable clean separation of endpoint names from network addresses. Modeling FARA
is an illustrative exercise in architectural abstraction, whereby a basis set of structural
and behavioral components, assumptions, and constraints (invariants) that pertain to a
desired class of architectures are extracted at the first stage of design to describe the
general architectural model. Instantiations of the general model may then specialize it,
obeying the general design assumptions and invariants. The authors of FARA had to im-
plement a prototype of a FARA instantiation, M-FARA [8], in order to validate FARA’s
usefulness, and self-consistency. One of the goals of this section is to show how a for-
mal model can be expressive and efficient in validating architectural design decisions,
hoping to replace “validation through implementation” by “validation through formal
modeling”. Aside from providing a conceptual framework for reasoning about a class
of architectures, a formal model of an architectural style transcends into a formal frame-
work over which essential architectural design decisions can be modeled and verified.

Towards Formalizing Network Architectural Descriptions 137

Listing 1 Listing 2
abstract sig AID{}

abstract sig Entity{
associations:Entity->Time,
state:associations->one AID,
}{
no (this & associations.univ)
all t:Time, aid:AID |

lone (state.aid).t
#state = #associations
}
abstract sig RIString {}

abstract sig FD{}
abstract sig Packet{
dstFD: FD,
replyFD: FD

}
abstract sig DPkt extends Packet{
srcAID: AID,
dstAID: AID

}
abstract sig SPkt extends Packet{
ri: RIString

}

3.1 FARA Model

We hereby lay out a formal description of FARA’s basic structural and behavioral com-
ponents (static and dynamic properties) along with the constraints attached to the com-
ponents and to the overall architectural style. The description accounts for dynamic
behavior by explicitly including logical time steps to model evolution over time 3.

Structural aspects: A formal definition of the entity and the association is given in
Listing 1. An Entity is an abstract element that can have multiple concurrent associa-
tions. An association is a relation between two entities over time. Each entity maintains
local immutable state per association, the association ID (AID). A particular associ-
ation has exactly one AID, and AIDs are reusable over time. Several constraints are
attached to the entity definition: the first constraint eliminates associations that connect
an entity to itself. The second constraint is one of FARA’s key assumptions, and it states
that no two associations of an entity can have the same AID at any given time. The third
structural consistency constraint forces each association to have state. An entity does
not define a universal name since FARA does not require a global namespace 4.

Listing 2 defines the Forwarding Directive (FD) and the packet abstractions. The FD
encapsulates enough topological information to allow the substrate to deliver a packet
to its intended destination. A generic packet, Packet, says nothing about the identity of
the entities, and must indicate a destination forwarding directive (dstFD) that will be
used by the communication substrate (to be defined shortly) to deliver the packet to a
destination entity. A packet might also include a reply FD (replyFD) which the des-
tination entity utilizes on the reverse path. FARA distinguishes between a packet that
belongs to an association, a DPkt, and a setup packet, SPkt, that bootstraps an associ-
ation. DPkt must specify the association state at both ends of an association, srcAID
and dstAID, allowing the destination entity to correctly demultiplex the packet to its

3 Note however that analyzing the static properties of the architecture, simply requires dealing
with a snapshot of the system at some timestep t, i.e., constraining the analysis scope of the
Time signature to 1 instance.

4 Our approach to modeling an association as part of the entity’s signature versus modeling it as
a separate semantic element renders the dynamic constraints simpler and clearer.

138 J. Khoury, C.T. Abdallah, and G.L. Heileman

association. SPkt includes a rendezvous information string, ri of type RIString, and
does not include association state since the association is being bootstrapped.

Listing 3 defines the communication substrate component, CommSubstrate, repre-
senting a single global medium (the underlying operating systems and network) that is
able to deliver packets on behalf of associations. The substrate assumes a basic connec-
tionless delivery, delivery, without making any assumptions about the delivery function
itself. A particular FARA instance, as we shall see later, provides the respective ad-
dressing, routing and forwarding mechanisms required for successful packet delivery.
Supplied with an FD, the substrate delivers a packet all the way to its destination en-
tity. The point-to-point assumption in FARA is modeled as part of the CommSubstrate
constraints specifying that an FD can lead to a single entity at any time. So far, the
model defines entities and associations independently of the mechanisms employed by
the substrate for packet delivery. This acknowledges FARA’s “red line” logical separa-
tion, whereby entities and associations operate above the line while the communication
substrate operates below the line. Additionally, as a key assumption of FARA, no global
address space is defined, in order to support a multitude of forwarding mechanisms.

Global style constraints, or simply invariants, are specified in Listing 4. The first
consistency invariant constrains the association to be symmetric. Hence, entity A has
an association with entity B if and only if the latter has an association with entity A.
The second constraint eliminates dangling association states.

Having formally described the style, we may now proceed to validate some of its
properties, specified as predicates and checked through the AA. For example, to check
whether an entity might have overlapping state for distinct associations at some time,
we define and run the predicate in Listing 5. AA does not find any instance of overlap-
ping state within the simulated scope (7 Entity, Packet, FD, etc.; 15 AID; and 20 Time
instances). This guarantees the correctness of the above claim only within the specified
finite scope, and not in general. However, if inconsistent models can indeed be found,
it is likely to find those within the specified scope.

Functional aspects: This section shows how functional aspects are formally specified
at a high level of abstraction, leaving the details for architectural instances to specify.

The first function specified in FARA deals with the creation of associations. To model
the system’s dynamic behavior as a response to establishing and tearing down associ-
ations, we use Alloy traces to capture state transitions over time. Initially, at time t0,
there are no associations. As presented in Listing 6, we consider two events that may
change the system’s state, the establishment or the tearing down of an association. The
time instants t1 and t2 describe the state of the system before and after an operation is
performed, respectively.

Listing 3 Listing 4
abstract one sig CommSubstrate{
delivery: FD-> Entity -> Time

}{
all t:Time | delivery.t in

FD -> one Entity
}

fact Invariants{
all t:Time | associations.t

= ˜(associations.t)
Time.(Entity.(Entity.state))

= AID
}

Towards Formalizing Network Architectural Descriptions 139

Listing 5
pred showOverlapState {
all t:Time |
some disj e1,e2,e3:Entity |let
w12=getAssociation[e1,e2,t],
w13=getAssociation[e1,e3,t]

|e1.w12=e1.w13 and some w12
}
run showOverlapState for 7

but 15 AID, 20 Time

--Returns entity AIDs on both
--sides of the association
fun getAssociation
[fst,snd:Entity,t:Time]
:Entity->AID

{
fst -> t.(snd.(fst.state))+
snd -> t.(fst.(snd.state))

}

Listing 6
pred init[t:Time]{
no associations.t

}
pred establishAssociation
[t1,t2:Time,fst,snd: Entity]{
--Preconditions
---association does not exist
let aset = {fst->snd+snd->fst}
|no (aset & associations.t1)

--Postconditions
--no association change
let aset={fst->snd+snd->fst}|
{
noAssociationStateChange[t1,t2]
associations.t2 =

associations.t1 + aset
}
}

pred teardownAssociation
[t1,t2:Time,fst,snd: Entity]{
--association exists
let aset={fst->snd+snd->fst}|
some (aset & associations.t1)
--remove it

let aset={fst->snd+snd->fst}|
associations.t2 =

associations.t1 - aset
}
--associations @t1 valid @t2
pred noAssociationStateChange
[t1,t2: Time] {
all e1,e2:Entity |
getAssociation[e1,e2,t1]
in getAssociation[e1,e2,t2]
}

Given the possible state transitions of the system, we can form those into an execu-
tion trace by modeling the latter as a fact (Listing 7). Assertions may then be checked
against the trace. An invalid assertion will demonstrate a trace showing how the as-
sertion was violated. The Alloy analyzer may be used to show some execution trace
of the system. For example, running the showSomeState assertion using AA, we ob-
tain a counterexample showing a sample trace which, when projected over time, clearly
demonstrates the state change resulting from creating or tearing down associations.

M-FARA: an Instantiation: M-FARA [8] is an instantiation of FARA that speci-
fies its own addressing, forwarding, and FD management mechanisms. M-FARA is not
a complete architecture, but it is specific enough to explore two points in the FARA
design space: 1) location/identity separation, and 2) mobility. This section models M-
FARA, particularly its addressing and forwarding mechanisms, using Alloy to demon-
strate style specialization. First, a new module for M-FARA is created importing the
FARA module just defined. Several new addressing and topological abstractions are
introduced by the M-FARA module, as shown in Listing 8. M-FARA assumes multi-
ple addressing realms, Domains, each having a space of unique addresses. A subFD

140 J. Khoury, C.T. Abdallah, and G.L. Heileman

Listing 7
fact Traces {
init [TO/first[]]
all t:Time-TO/last[] |
let t’ = TO/next[t] |
some disj e1,e2:Entity|
establishAssociation[t,t’,e1,e2]
or teardownAssociation[t,t’,e1,e2]

}

assert showSomeState{
no e:Entity |
#e.associations >=1

}
check showSomeState for

4 but 7 AID, 7 Time,
0 RIString, 0 Packet

represents a set of addresses that determine a local path within a domain. A domain
has a static address space, space, and a dynamic forwarding mechanism, forwarding.
The latter delivers a packet that is destined to some subFD to the entity that is bound
to the respective subFD. Moreover, the topology assumed in M-FARA consists of a

Listing 8
sig subFD{}
abstract sig Domain {
space: set subFD,
forwarding:space->Entity->Time
}{
--point2point forwarding
all t:Time | forwarding.t in

subFD -> lone Entity
}
--*No global address space*--
one sig MF_CommSubstrate
extends CommSubstrate{

domains: set Domain,
}

one sig Core extends Domain {}

sig PrivDomain extends Domain{
upspace: some subFD,
downspace: set subFD

}{
upspace in space
downspace in space
no (upspace & downspace)
-- up forwarding is implicit
no ((forwarding.Time).Entity)

& upspace
}

two-level domain hierarchy with a single distinguished central “Core” domain to which
the private domains, PrivDomains, connect (Listing 8). The extended communication
substrate, MF CommSubstrate, may thus be viewed as the set of all domains including
the core. Part of a private domain’s space, upspace, is used to reach the “core” domain.
Similarly, part of the “core” domain’s space, downspace, is used by the core to reach
the private domains. In this model, it is implicitly assumed that the forwarding function
of every domain delivers subFDs belonging to upspace to the core. On the other hand,
forwarding from the core down to the domain is explicitly specified in the domain’s
forwarding function (hence subFDs belonging to downspace originate at the “core”).

Listing 9 defines the complete end-to-end FD in M-FARA, MF FD. It consists of a
tuple (FDup,FDdown) which the substrate can use to forward a packet from the source
up to the “core” (up), and then from the “core” down to the destination entity (down).
Regarding the entity abstraction, MF Entity, M-FARA extends the entity definition
with the local subFD to which the entity is bound, fddown and on which it is reachable.

Towards Formalizing Network Architectural Descriptions 141

Listing 9
sig MF_FD extends FD {
up: lone subFD,
down: one subFD

}

sig MF_Entity extends Entity{
--canonical route
fddown: subFD -> Time,

}

M-FARA does not specify whether an entity may be multi-homed (simultaneously
bound to multiple domains) or not and our model does not restrict that either.

Some general structural constraints apply to the model and are expressed in Listing
10. No dangling subFDs or domains are allowed. Additionally, a subFD can belong to a
single domain’s address space. Finally, the forwarding operation is local to the domain,
i.e., an entry in the domain’s forwarding table means that the entity is bound to the
domain. Modeling mobility in M-FARA is another interesting exercise, which we do
not address in this paper. This task requires extending the FARA dynamical behavior,
which so far includes establishing and tearing down associations, with a new mobility
operation.

Abstract style properties: We have so far modeled an architectural style, FARA, and
a particular instantiation of the style, M-FARA. The FARA style advertises a global
theme of separating the entity from the communication substrate, and a set of style
goals and properties. Despite the fact that the style leaves much of the functional details
unspecified such as addressing/forwarding mechanisms, it is still essential for the style
architect to model super-properties. A super-property is a property of the style that is
expressed in terms of abstract unspecified functionality. In other words, the architect
needs to confirm that any instantiation of the style that specifies the missing function-
ality will respect the super-properties are respected. In object-oriented programming,
such design methodology is known as polymorphism. This section demonstrates a pro-
cess for modeling style super-properties and checking those against the instantiation,
by referring back to the FARA style and the M-FARA instantiation models.

As a first step, the style model includes the super-properties as facts, predicates,
or assertions expressed in terms of unspecified functionality. The snippet in Listing
11 augments the previous FARA model with two new invariants (super-properties),
expressed in Alloy as facts. The first fact is a “below the line” property. It states that
delivery, which we have previously defined as part of the CommSubstrate in FARA,
must be supported by the substrate’s addressing and forwarding mechanisms. In other

Listing 10
fact Invariants{
--no dangling subFDs
Domain.space = subFD
--no Dangling Domains
MF_CommSubstrate.domains

= Domain
--space is private
all sf: subFD | lone space.sf

--Forwarding local to domain
all t:Time, d:Domain |
let fwd = d.forwarding.t
| all sfd:subFD,e:MF_Entity

| {sfd ->e in fwd
=> sfd->t in e.fddown}

}

142 J. Khoury, C.T. Abdallah, and G.L. Heileman

Listing 11 Listing 12
--Step1: super-property 1
fact {
all t:Time | let

delv=CommSubstrate.delivery.t
| all fd:FD, e:Entity
|{fd->e in delv =>
this/isDeliverable[fd,e,t]}

}
--super-property 2
fact {
all t:Time, e:Entity |
let ea = e.associations.t
|some fd:FD |
this/ise2eDeliverable[e,ea,fd,t]
}
--*To be specified by Instance
pred isDeliverable
[fd:FD, e:Entity, t:Time]{}
pred ise2eDeliverable
[src,dst:Entity,dstfd:FD,t:Time]
{}

--Step 2
--Replicate facts from FARA
...
--*overriden function
pred isDeliverable
[dst:FD,e:Entity,t:Time]{
let d_sfd=dst.down,
d_dom = (getDomain[d_sfd])
|d_sfd in d_dom.downspace

and (d_sfd->e in
d_dom.forwarding.t) }

--*overriden function
pred ise2eDeliverable
[src,dst:Entity,dfd:FD,t:Time]
{ some dfd.up and

dfd.up in
(getEntAttachments[src,t].univ)

.upspace
this/isDeliverable[dfd,dst,t]
}

words, if the substrate is able to deliver a message to an entity based on some destination
FD, then the substrate’s forwarding mechanism must be able to deliver to that entity,
hence satisfying isDeliverable. Again, note that isDeliverable is left unspecified by the
style (in step 1), and is to be implemented by an instantiating architecture based on the
forwarding mechanisms employed. The second fact is an end-to-end property (“above
the line”) stating that an association exists and is valid only if packets are able to flow
over the association from source to destination. In other words, there must exist some
FD that satisfies ise2eDeliverable.

As a second step, the style instantiation extends the style model implementing the
unspecified functionality. Super-properties are then enforced and checked against the
instantiation to verify that the desired style goals are satisfied by all instantiations. To
illustrate this step, the M-FARA model is augmented with the Alloy snippet in Listing
12, overriding the abstract functionality, isDeliverable and ise2eDeliverable 5.In M-
FARA, isDeliverable or deliverability implies that: 1) some packet may be forwarded
from the “core” down to destination’s domain, i.e., the FDdown part of the destination
FD should belong to the downspace of the entity’s current domain, and 2) the domain’s
forwarding function delivers to the entity given FDdown. End-to-end deliverability, in
turn, requires two valid paths: one from the source entity’s domain up to the core, and
another from the “core” down to the destination entity.

In the same fashion that facts about the style were replicated in the instantiation
above, assertions and predicates may also be replicated. It is straightforward to add

5 In Alloy, the super-properties have to be replicated to the M-FARA model since Alloy does
not directly support inheritance of a style or “module”.

Towards Formalizing Network Architectural Descriptions 143

assertions that verify the facts introduced above. For example, assertions dealing with
mobility may easily be implemented.

Composition: Having already demonstrated inheritance and polymorphism in style
modeling, we proceed to define and briefly overview (due to lack of space) compo-
sition as a means for composing separately defined modules or styles and checking
for their compatibility. Let Si|ni=1, n > 1 be two or more styles, and let Pi, i = 1..n, be
the global consistency constraints defined by Si. The new composed style is denoted
by S = C(S1, ..,Sn) and contains the merged constraint set

⋃n
i=1 Pi. Sis are compatible

styles i f f the new consistency constraint P = &&n
i=1Pi is satisfied by S.

As an example, assume that a global-hierarchical addressing style, GHAR, is defined
in which address spaces or domains are composed hierarchically (for example through
customer-provider or peering relationships) with a distinguished core. The FARA style
may then be composed with GHAR into a new style, say FARA-GH. An entity in
FARA-GH extends the FARA entity and defines a global address field that is inherently
hierarchical. Interestingly, the new FARA-GH architecture resembles the NIRA [20]
routing architecture with the added conceptual clarity and design space partitioning.

4 Related Work

There are two broad areas of related work: network architecture and communication
system modeling, and software system modeling.

The Internet architecture has been thoroughly studied over the past decade. The de-
sign principles of the DARPA Internet are clearly outlined in Clark’s seminal paper [7]
and other architectural design papers [9,10]. A methodology for designing and assess-
ing evolvable network architectures based on invariants (or fixed points) is proposed
in [4] which calls for considering invariants at an early design phase. Our formaliza-
tion model inherently accounts for invariants as a part of the complete architectural
description, and hence provides the architect with a clearer formal framework to work
with invariants. As to communication system modeling, Karsten et al. [13] have pro-
posed a general axiomatic basis to consistently model communication primitives such
as forwarding, naming, and addressing for better expressing architectural invariants and
formally proving properties about node reachability within any communication sys-
tem. Our work is concerned with modeling general architectural descriptions rather
than switching properties of networks. In [21], the author utilizes the Alloy modeling
language to formally model identifier binding schemes which enables informed archi-
tectural design decisions for better supporting networking services.

In terms of modeling of software architectures, a lot of work has focused on for-
mally describing those using Architecture Description Languages (ADL) [3,5,15,6].
Some of the common ADLs are the Acme ADL with the underlying first-order logic
[15], extended WRIGHT [5], process ADL with the underlying process algebra [6], and
π-ADL with the underlying π-calculus [17]. The Acme model in [15] utilizes Alloy and
is a very relevant work to ours. Style inheritance and composition as well as verifica-
tion of structural properties and compatibility checking are concepts demonstrated by
the authors; however, their current model falls short of capturing the behavioral aspects

144 J. Khoury, C.T. Abdallah, and G.L. Heileman

of the architectural style. Alternatively, the model in [6] explicitly involves topology
specification (i.e. component/connector instances and their interconnections) as part of
the architectural style description, which we believe is not an efficient approach con-
sidering the level of abstraction at hand. Finally, Alloy has been utilized within several
modeling case studies that as described on the Alloy website [1]. We mention some of
those that pertain to networking and that were useful for this work. Khurshid [14] used
Alloy for modeling and correcting the architecture of the Intentional Naming System
(INS). Jackson [1] has used it to model the Chord peer-to-peer lookup protocol. Some
recent work by Narain [16] utilizes Alloy’s model finding techniques to find network
configurations that satisfy a set of input requirements expressed with predicate logic.

5 Discussion, Future Work, and Conclusion

As previously stated, we have refrained from using the component/connector/inter-
face abstractions for modeling network architectural styles. By surveying the network
architecture literature, we have noticed that architects have different approaches to
modeling abstractions. It is our belief that constraining them to component/connec-
tor/interface abstractions limits the expressiveness of the model and hence the innova-
tion. It is additionally hard to anticipate whether and what modeling abstractions for
networks will emerge in the future. The language we have utilized, Alloy, is generic
and flexible enough to allow the architect to represent whatever abstractions she finds
suitable. Despite the scalability concerns associated with constrained instances in Al-
loy, which does not represent a major limitation to us considering the high level of
abstraction being modeled (and hence the presumable small instance sets required),
the problem is currently being addressed in the literature (such as in [19]).

While this work has presented a first step towards formalizing network architectures
and architectural styles, several research challenges remain to be solved and we address
those as part of our current and future research. First, there needs to be a consensus
regarding the most imminent styles that span the network architecture design space.
Modern and future network architectures, as has been recently acknowledged [2], are
being equipped with more intelligence, generally introducing information and computa-
tion structures that are manifested through increased in-network processing and storage.
Extracting a complete, and disjoint set of network architectural styles may potentially
frame the architectural problem and provide a formal framework for classifying, relat-
ing, and reasoning about architectures. Towards this end, we believe that a taxonomy of
network architectures is a timely and essential contribution and represents a significant
part of our current work.

To conclude, this paper has presented a methodology towards formally describing
and modeling network architectures and architectural styles. Style inheritance, poly-
morphism, and composition were demonstrated on the FARA class of network archi-
tectures using the Alloy modeling language. Our work helps network architects and
researchers, whereby architects are able to formally represent and group various ar-
chitectural patterns into styles, while researchers are provided with a means to better
understand, analyze, and reason about network architectures.

Towards Formalizing Network Architectural Descriptions 145

References

1. The alloy analyzer, http://alloy.mit.edu/
2. NSF Nets FIND initiative, http://www.nets-find.net/
3. Abowd, G.D., Allen, R., Garlan, D.: Formalizing style to understand descriptions of software

architecture. ACM Trans. Softw. Eng. Methodol. 4(4), 319–364 (1995)
4. Ahlgren, B., Brunner, M., Eggert, L., Hancock, R., Schmid, S.: Invariants: a new design

methodology for network architectures. In: FDNA 2004: ACM Workshop on Future Direc-
tions in Network Architecture, pp. 65–70. ACM Press, New York (2004)

5. Allen, R., Garlan, D.: A case study in architectural modelling: The aegis system. In: IWSSD
’96: Proceedings of the 8th International Workshop on Software Specification and Design,
Washington, DC, USA, p. 6. IEEE Computer Society, Los Alamitos (1996)

6. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Trans. Softw. Eng. Methodol. 11(4), 386–426 (2002)

7. Clark, D.: The design philosophy of the darpa internet protocols. In: Proceedings of SIG-
COMM 1988, pp. 106–114. ACM Press, New York (1988)

8. Clark, D., Braden, R., Falk, A., Pingali, V.: Fara: reorganizing the addressing architecture. In:
FDNA 2003: ACM Workshop on Future Directions in Network Architecture, pp. 313–321.
ACM Press, New York (2003)

9. Clark, D.D., Sollins, K., Wroclawski, J., Faber, T.: Addressing reality: an architectural re-
sponse to real-world demands on the evolving internet. In: FDNA 2003: ACM Workshop on
Future Directions in Network Architecture, pp. 247–257. ACM Press, New York (2003)

10. Clark, D.D., Wroclawski, J., Sollins, K.R., Braden, R.: Tussle in cyberspace: defining tomor-
row’s internet. IEEE/ACM Trans. Netw. 13(3), 462–475 (2005)

11. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: Proceedings of SIGCOMM 2005, pp. 1–12.
ACM Press, New York (2005)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge (2006)

13. Karsten, M., Keshav, S., Prasad, S., Beg, M.: An axiomatic basis for communication. In:
Proceedings of SIGCOMM 2007, pp. 217–228. ACM Press, New York (2007)

14. Khurshid, S., Jackson, D.: Exploring the design of an intentional naming scheme with an
automatic constraint analyzer. In: ASE, pp. 13–22 (2000)

15. Kim, J.S., Garlan, D.: Analyzing architectural styles with alloy. In: ROSATEA 2006: Pro-
ceedings of the ISSTA 2006 workshop on Role of software architecture for testing and anal-
ysis, pp. 70–80. ACM Press, New York (2006)

16. Narain, S.: Network configuration management via model finding. In: LISA 2005: Proceed-
ings of the 19th conference on Large Installation System Administration Conference, Berke-
ley, CA, USA, p. 15. USENIX Association (2005)

17. Oquendo, F.: A model-driven formal method for architecture-centric software engineering.
SIGSOFT Softw. Eng. Notes 31(3), 1–13 (2006)

18. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline. Pren-
tice Hall, Englewood Cliffs (1996)

19. Torlak, E., Jackson, D.: Kodkod: A relational model finder, pp. 632–647 (2007)
20. Yang, X.: Nira: a new internet routing architecture. In: FDNA 2003: ACM Workshop on

Future Directions in Network Architecture, pp. 301–312. ACM Press, New York (2003)
21. Zave, P.: Compositional binding in network domains. In: Misra, J., Nipkow, T., Sekerinski,

E. (eds.) FM 2006. LNCS, vol. 4085, pp. 332–347. Springer, Heidelberg (2006)

http://alloy.mit.edu/
http://www.nets-find.net/

Lightweight Modeling of Java Virtual Machine
Security Constraints

Mark C. Reynolds

Boston University
Department of Computer Science

markreyn@cs.bu.edu

Abstract. The Java programming language has been widely described
as secure by design. Nevertheless, a number of serious security vulnerabil-
ities have been discovered in Java, particularly in the component known
as the Bytecode Verifier. This paper describes a method for representing
Java security constraints using the Alloy modeling language. It further
describes a system for performing a security analysis on any block of
Java bytecodes by converting the bytes into relation initializers in Alloy.
Any counterexamples found by the Alloy analyzer correspond directly
to insecure code. Analysis of a real world malicious applet is given to
demonstrate the efficacy of the approach. This type of analysis repre-
sents a significant departure from standard malware detection methods
based on signatures or anomaly detection.

Keywords: Alloy, JVM, lightweight modeling, Java security.

1 Introduction

This paper will describe an analysis tool for verifying security constraints within
Java bytecodes. This investigation was motivated by the continued appearance
of malicious Java code that violates the security constraints imposed by the
Java compiler, the Java Bytecode Verifier and the Java runtime. The analysis
approach is based on the lightweight modeling language Alloy [1], [2]. This pa-
per will describe the security verification approach taken by the Java Virtual
Machine (JVM), and briefly enumerate some of the ways that it has been cir-
cumvented. A review of the top level goals of this work will then be presented,
followed by a description of the design of the analysis tool and its implemen-
tation. Results will then be presented in detail using a real world example of
malicious code: the BlackBox applet. Finally, a path toward future work will be
described. The analysis tool has, in fact, proven to be a powerful approach to ana-
lyzing JVM security constraints. The approach of applying lightweight modeling
as a means to check JVM security constraints appears to be a novel approach.

1.1 Background

The Java programming language has been touted as “secure by design” since its
inception. However, attacks against Java security have been promulgated from

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 146–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Lightweight Modeling of Java Virtual Machine Security Constraints 147

the earliest days of Java. Felten discovered several weaknesses in the Java secu-
rity model almost immediately, and his work on Java [3] contains an extensive
list of early exploits. The development of Java malware has continued unabated
up to the present. The Common Vulnerabilities and Exposures project [4] lists
numerous Java bugs that can lead to privilege escalation, sensitive data exfiltra-
tion, denial of service and other malicious outcomes. Of particular note is the
BlackBox malicious Java applet [5], [6]. This applet exploits a number of Java
security weaknesses, and was widely deployed, infecting thousands of machines.
The BlackBox applet not only breaks out of the supposedly inescapable sandbox
that the Java applet runtime imposes, it also manages to escalate its privilege
to the highest possible level. The BlackBox applet can be easily customized to
download any program to the infected machine and then run it. This applet
is thus not only an exploit in itself; it is also a delivery vehicle for an arbitrary
malicious payload. The BlackBox applet will be analyzed using the methodology
presented in this paper.

In order to understand how these security failures come about, it is first
necessary to briefly review the Java security model. Java security is enforced in
three ways. The Java compiler has a large number of rules that it enforces in order
to ensure that the syntax and semantics of the Java language are satisfied, but
also to prohibit certain actions that are known to be associated with malicious
code. For example, the Java compiler will refuse to compile any program that
contains a method that makes use of an uninitialized variable. The output of the
Java compiler is a binary file known as a classfile. In order for a Java application
or applet to use the methods provided by a class, it must load the classfile that
contains that class into the Java execution environment. Loading is accomplished
by a Java classloader. Whenever a class is loaded the Java Bytecode Verifier is
invoked. The Bytecode Verifier checks that the contents of the classfile conform to
the classfile format and also verifies a large number of security constraints before
it will allow the classloader to succeed. Finally, the Java runtime performs array
bounds checking, runtime type conversion checking and a number of other tests.

Almost all Java exploits to date have used weaknesses in the Bytecode Verifier.
The Bytecode Verifier’s rules are described in great detail in the JVM specifica-
tion [7]. The Bytecode Verifier uses a constraint based approach in performing
its analysis. For example, it checks that all local variables are written before
being read, that each instruction receives precisely the set of operands that it is
expecting, that the stack has the same depth at each program point regardless
of execution path used to reach that program point, and many other constraints.

Our approach uses Alloy to perform constraint analysis on Java bytecodes. It
attempts to emulate the constraint checking that is ostensibly being performed
by the Bytecode Verifier. In Alloy it is very easy to express constraints in terms
of formulas involving relations, and therefore it has proven to be a rich environ-
ment for checking Java security constraints. Previous efforts have been made to
apply formal methods to Java bytecodes [8], [9], [10], but these efforts have used
a more heavyweight model checking approach that attempts to prove soundness,

148 M.C. Reynolds

as opposed to Alloy’s lightweight constraint based approach that converts as-
sertions into Boolean formulas and then searches for satisfaction assignments or
the existence of counterexamples.

1.2 Goals

This work described in this paper has three goals: (1) to provide an extensible
framework for modeling security constraints imposed by the JVM’s Bytecode
Verifier; (2) to provide a concrete model for meaningful, high value security con-
straints, and (3) to demonstrate that the analysis tool does check them correctly.

It would be straightforward to use Alloy to create a model for a specific
block of Java bytecode. While this might serve as the demonstration of the
applicability of Alloy to security analysis of the JVM, this would have little value
in analyzing compliance with the JVM security constraints as a whole. Therefore,
it is desirable to have an extensible model. In this context “extensible” means
that the model must have the ability to be applied to any block of JVM code
and to perform analysis on that code against a specified set of constraints. In
the Design section it will be shown how this goal was realized.

Several of the security constraints imposed by the JVM have already been
mentioned. In general, most constraints are independent of one another, although
there are some functional overlaps, as will be demonstrated below. In order to
prove the soundness of the basic concept, it was deemed prudent to select a
realistic subset of the total set of JVM security constraints and begin with a
simple model that would encompass that reduced subset of constraints. With the
extensibility goal in mind, a general framework for code analysis was created such
that adding additional constraints would involve only incremental modifications,
and not a complete restructuring of the model code. The current implementation
concretely models a small, but critical, set of security constraints. The work to
date strongly suggests that the current implementation can be readily adapted
to additional constraints.

2 Design

Alloy is a lightweight modeling language that uses first order logic. Alloy is
capable of analyzing assertions for satisfiability and also for the existence of
counterexamples. A key observation is that the security constraints imposed by
the JVM can be modeled as invariants, and thus can be analyzed by the Alloy
Analyzer. Alloy is not a proof system, so the failure to find a counterexample
to a constraint is not a proof that that constraint is always satisfied, only that
the constraint is satisfied within the search space specified. If a counterexam-
ple is found, however, that does indicate that the invariant has been violated,
and the Alloy Analyzer conveniently provides a graphical representation of that
counterexample.

The initial design problem was to find an “implementation” of the Alloy model
that would capture the invariants of interest abstractly, independent of any ac-
tual JVM code, but would then permit the model to be run against any concrete

Lightweight Modeling of Java Virtual Machine Security Constraints 149

realization of such JVM code. Initial experimentation with Alloy suggested two
possible approaches: automatically generate Alloy functions, facts or predicates
based on the JVM code to be analyzed, or automatically generate Alloy state-
ments that initialize relations based on the JVM code to be analyzed. In order to
realize a classical code/data separation, it was decided to use the latter approach.
Thus, the Alloy model would be realized as a template containing a fixed set
of relations, functions, facts, predicates and assertions. This model would then
be supplemented by relation initializers that would be derived from particular
JVM code. In this approach, the template portion of the Alloy model would
be completely independent of any choice of Java bytecodes, while the initializ-
ers would depend only weakly on the detailed implementation of the template.
Specifically, the initializers being generated would only depend on the set of rela-
tions being initialized, and not on any specific way in which the constraints were
realized in the model template. This decoupling between the “data” portion of
the model and the “code” portion of the model is the means by which the stated
extensibility goal has been achieved.

Further requirements analysis revealed that these two top level components,
the model template and the initializers, could be further refined into four
subcomponents: (1) the relation definitions; (2) the relation initializers; (3) the
execution engine; and (4) the constraint assertions. The relation definitions, exe-
cution engine and constraint assertions are all part of the Alloy model template.
The relation definitions are Alloy definitions of the top level signatures, which
contain relations, as well as the definitions of the relations themselves. These re-
lation definitions capture the static properties of individual JVM instructions, as
well as capturing the JVM state as the execution engine executes. All other com-
ponents of the Alloy model are logically dependent on the relation definitions.

The relation initializers are the initial values of the Alloy relations. They are
generated from specific JVM code, and vary from one invocation of the model to
the next. An initial design decision was made to capture JVM code at the method
level. This, of course, is a trade off between performance and granularity. It is
certainly possible to model multiple methods within a single model. However,
the time that Alloy takes to analyze a particular model is strongly dependent on
the number of (program execution) states, which, in turn is strongly dependent
on the size of the relation initializers. As will be seen below, the actual Alloy
model template is quite suited to analyzing code blocks within a method, and
could be extended to handle multiple methods. Relation initializers need to be
generated from specific Java methods. Therefore, there needs to be an automatic
way of converting the Java bytecodes in a method into these relation initializers.
To this end, a Java classfile parser was created to perform this conversion. The
parser takes a Java classfile as input and produces an Alloy model fragment
as output. When the model fragment is combined with the Alloy template, a
complete Alloy model is produced, as is shown in Figure 1.

The relation definitions and their initializers form a static representation of
a set of properties of the Java method being analyzed. In order to observe dy-
namic behavior, this static representation needed to be extended with model

150 M.C. Reynolds

Fig. 1. Constructing a complete Alloy model using the classfile parser

actions that would mimic the execution of the JVM itself, at least to the extent
that the JVM’s Bytecode Verifier synthetically executes method code in order
to perform its constraint checking. Thus, an execution engine was needed. This
execution engine would represent the flow of execution through the medium of
stateful relations. Alloy’s “ordering” utility is used for representing this state.
Execution could not be unbounded, of course, since Alloy only performs analysis
over a finite set of states. It would have been possible to simply let Alloy “fall
off the end” of execution, which is to say to allow the analyzer to perform an
exhaustive analysis of all possible states in the state space. For both performance
and structural reasons this was deemed to be an unacceptable solution. There-
fore, the execution engine was designed such that certain JVM instructions are
designated as terminal instructions. (Any type of return instruction would be
terminal, for example.) The execution engine was then implemented to recognize
this condition and act on it in such a way as to create no further unique states.
Of course, this models the actual execution of the JVM itself. Certain instruc-
tions within a method are, in fact, terminal, in that they cause the method to
be exited. One obvious question is the manner in which iterative constructs are
handled by the execution engine. Would it provide better model fidelity to have
the execution engine attempt to exactly mimic runtime execution, or would this
lead to unacceptable performance penalties? In fact, the execution engine does
not attempt to perform any branch prediction analysis in the model. The pre-
cise way in which this was handled, and its implications, will be explained in the
Implementation section below.

Finally, the model must provide for a way in which each JVM security con-
straint is actually checked by Alloy. Formulating the security constraints as Alloy
assertions proved to be straightforward once the model had been constructed to
accurately reflect the static and dynamic properties of the method code.

Lightweight Modeling of Java Virtual Machine Security Constraints 151

3 Implementation

The implementation of the JVM security constraints analyzer will be described
in three subsections. In the first subsection, the three components of the model
template, namely the relation definitions, the execution engine, and the security
constraint assertions, will be described. In the second subsection, the implemen-
tation of the Class2Alloy classfile parser which is used to generate the relation
initializers will be discussed. In the third subsection a concrete example will be
dissected, including a description of the parser invocation and subsequent model
analysis. The example in question is a reduced form of the BlackBox applet.

3.1 Model Template

The model template employs two top level signatures, an Instruction signature
and a State signature. The Instruction signature is made abstract in order that
each of the individual instructions that make up a method can be defined as
concrete, atomic extensions of this abstract signature. Intuitively, this is reason-
able because the properties (relations) of instructions vary from instruction to
instruction, but are still static for any particular instruction. For example, the
length of a given instruction in bytes is fixed for all time once the instruction
is specified, but obviously varies between instructions. The State signature is
derived from Alloy’s ordering utility, which predefines certain relations such as
first, next and last. The State signature is dynamic, and the values of its relations
are updated by the execution engine as it executes during analysis. The Alloy
definition of these two signatures is shown below.

abstract sig Instruction {

map: Int, // offset of this instruction in bytes

term: lone Int, // is this a terminal instruction?

r: set Int, // local variables read by this instruction

w: set Int, // local variables written by this instruction

ubt: lone Int, // unconditional branch targets

cbt: lone Int, // conditional branch targets

smod: Int, // bytes pushed/popped onto the stack

len: Int } // byte length of this instruction

sig State {

prog: Instruction,

readers: set Int,

writers: set Int,

depth: Int }

An Alloy model is defined by its relations, so a careful description of each of
the relations shown above will serve to illuminate the rest of the implementa-
tion. In the Instruction signature the map relation defines the byte offset of the
instruction from the beginning of the method (or other block of code) being an-
alyzed; it is an integer. The term relation is a set of integers that is either empty,
or contains a single value. If the set is nonempty and contains the value 1, then

152 M.C. Reynolds

the instruction is a terminal instruction: it causes the execution engine to cease
creating new states. The r and w relations model the sets of local variables read
or written by the instruction, respectively. It is quite possible for an instruction
to access more than one local variable, so these relations must be modeled as sets
of integers. (The JVM itself also describes local variables in terms of integers.)
The ubt relation names a possible unconditional branch target for the instruc-
tion. Most instructions do not have such a target, so the value of this relation is
usually the empty set. An instruction can have at most one such target. If such a
target exists, it is specified as a byte offset from the beginning of the method or
code block, which is identical to the manner in which it is encoded in a classfile.
The cbt relation names a possible conditional branch target. Conditional branch
targets occur with conditional instructions. An unconditional branch target rep-
resents a transfer of control that must be executed, while a conditional branch
target represents one that might be executed. Note that in the JVM it is possible
for a conditional branch instruction to have multiple targets, but for simplicity
this is not currently modeled. The smod relation models the number of bytes
that the instruction modifies on the method stack. This can be a positive integer
(item(s) are pushed onto the stack), a negative integer (item(s) are popped off
the stack) or zero. Finally, the len relation models the length of the instruc-
tion in bytes. Note that len and map contain redundant information, in that it
should always be the case that next.map = current.map + current.len. This
redundancy was introduced deliberately as an additional way of validating the
internal consistency of the model, as will be described shortly. The output of the
translator acting on a simple method is shown below.

one sig startup, iload_1_1, bipush_2, if_icmpge_3, iload_1_4,

iconst_5_5, imul_6, istore_2_7, goto_8, iload_1_9,

istore_2_10, iload_2_11, ireturn_12 extends Instruction {}

fact maps { map = startup->(-1) + iload_1_1->0 + bipush_2->1 +

if_icmpge_3->3 + iload_1_4->6 + iconst_5_5->7 + imul_6->8 +

istore_2_7->9 + goto_8->10 + iload_1_9->13 +

istore_2_10->14 + iload_2_11->15 + ireturn_12->16 }

fact lens { len = startup->1 + iload_1_1->1 + bipush_2->2 +

if_icmpge_3->3 + iload_1_4->1 + iconst_5_5->1 + imul_6->1 +

istore_2_7->1 + goto_8->3 + iload_1_9->1 + istore_2_10->1 +

iload_2_11->1 + ireturn_12->1 }

fact rs { r = iload_1_1->1 + iload_1_4->1 + iload_1_9->1 +

iload_2_11->2 }

fact ws { w = startup->0 + startup->1 + istore_2_7->2 +

istore_2_10->2 }

fact ubts { ubt = goto_8->15 }

fact cbts { cbt = if_icmpge_3->13 }

Lightweight Modeling of Java Virtual Machine Security Constraints 153

fact terms { term = ireturn_12->1 }

fact smods { smod = startup->0 + iload_1_1->1 + bipush_2->1 +

if_icmpge_3->(-2) + iload_1_4->1 + iconst_5_5->1 +

imul_6->(-1) + istore_2_7->(-1) + goto_8->0 + iload_1_9->1 +

istore_2_10->(-1) + iload_2_11->1 + ireturn_12->(-1) }

The State signature represents the dynamic execution state. Its prog relation
models the current instruction being executed; its readers and writers relations
model the current set of local variables that have been read or written up to the
current program point, respectively, and its depth relation models the depth of
the stack at the current program point. As the execution engine processes the
instruction initializers, it effectively creates new State atoms representing the
execution state after the effects of the current instruction have been applied.

The execution engine contains the Alloy code associated with State initial-
ization, State sequencing, and execution termination. State initialization code is
fixed within the model template. The State initialization code creates an initial
state s0, sets the readers and writers relations of s0 to be empty, sets the depth
relation of s0 to be 0, and sets the prog relation of s0 to be the special startup
instruction. Note that here is no actual JVM instruction named startup. How-
ever, when the JVM invokes a method it performs certain very specific startup
actions (the method prologue) before the first instruction of that method is exe-
cuted. The pseudo-instruction startup captures these actions. Specifically, when
the JVM enters a method it will set the value of the local variable 0 to be Java’s
this object. If the method has arguments, these arguments are placed in local
variables starting at index 1. Thus, the startup instruction will always have a
nonempty value for its w relation; its r relation will be empty and the depth
relation will be 0. The initializer for the startup instruction must be generated
by the classfile parser. By convention, the startup instruction is located at a map
value of −1, and has length 1.

State transitions and also execution termination are handled by an Alloy fact
known as stateTransition:

fact stateTransition {
all s: State - ord/last |

let s’ = ord/next[s] |
(some t: s.prog.term | t = 1) =>

sameState[s, s’] else
nextState[s, s’] }

The model of execution is that the nextState predicate is executed for each
nonterminal state. The nextState predicate is shown below. This predicate is re-
sponsible for updating the execution state relations (readers, writers and depth)
and advancing the instruction state. This predicate calls the nextInstruction
predicate, which updates the value of the current instruction for s’. It updates
the reader and writer relations for the new state s’ by calling predicates that
take the unions of the corresponding r and w sets from the current instruction

154 M.C. Reynolds

s.prog with the values of readers and writers from the current state s, respec-
tively. Finally, it updates the depth relation for s’ by adding the smod value of
the current instruction to the depth in the current state s.

pred nextState[s, s’: State] {
nextInstruction[s.prog, s’.prog]
nextReader[s.prog, s.readers, s’.readers]
nextWriter[s.prog, s.writers, s’.writers]
(s’.depth = add[s.depth, s.prog.smod]) }

The nextInstruction predicate calculates the next instruction for the state
s’ as follows. If the current instruction has an unconditional branch target, as
indicated by the fact that the current instruction’s ubt relation is not empty, then
the unconditional branch is taken. The next instruction is the one whose map
value (byte offset) matches the value of the ubt for the current instruction. This
raises the interesting possibility that the JVM bytecodes might be sufficiently
damaged that the ubt relation pointed to a map value that was not represented
by any instruction, e.g. that the ubt pointed to the middle of an instruction, or
outside the method entirely. This internal consistency constraint is checked by
the Terminates predicate described below.

If there was no unconditional branch target, but there was a conditional
branch target, then Alloy can choose to take that branch, or it can instead
simply go to the next instruction by adding the current value of the map re-
lation to the length of the current instruction. It will also perform this latter
action in case there are no branches of either type. Note that the current model
of exception handling treats an exception as a possible conditional branch for
the entire range of instructions protected by a particular handler; the conditional
branch target is the beginning of the handler code.

pred nextInstruction[from, to: Instruction] {
some from.ubt =>

(to.map = from.ubt) else
((to.map = add[from.map, from.len]) ||
some bt: from.cbt { to.map = bt }) }

The Alloy model template captures some of the JVM security constraints
checked by the Bytecode Verifier. The security constraints being checked are
the local variable constraint, the stack depth invariance constraint, the stack
guard constraint, the branch consistency constraint and the instruction length
constraint. The local variable constraint states that no local variable can be read
until it has first been written. The purpose of this constraint is to avoid accessing
uninitialized local variables. The Java compiler enforces this constraint at the
source code level for any variable (not just those that end up being stored in
JVM local variables), and the Bytecode Verifier checks it at the classfile level.
The stack depth invariance constraint states that the depth of the stack will
always be the same at any program point, no matter how that program point
was reached. The stack depth invariance constraint is one of the constraints that

Lightweight Modeling of Java Virtual Machine Security Constraints 155

is violated by the BlackBox applet, and will be discussed further below. The stack
guard constraint is actually an amalgam of several closely related constraints.
It states that the depth of the stack never becomes negative, and also that it
should be zero on method entry and on any branch that leads to method exit,
which is at any terminal instruction for the method. This latter constraint is a
critical constraint for the JVM architecture. Unlike the architectures of many
real machines, the JVM does not use the stack to pass parameters or return
values; local variables are always used for both. Thus, the state of the stack
(empty) should be the same on exit as on entry for every method. Each of
the constraints corresponds to a single Alloy assertion. The branch consistency
constraint and the instruction length constraint are different forms of the same
consistency check, namely that neither normal flow of execution nor execution
of any branch can put the JVM into a state in which it is not at an instruction
boundary. Finally, there is also a special predicate that performs consistency
checks on the model. The assertions and the predicate are:

assert LocalVar { all s: State | s.readers in s.writers }

assert StackDepth {
all s, s’: State | (s.prog.map = s’.prog.map) =>

(s.depth = s’.depth) }

assert StackGTE { all s: State | gte[s.depth, 0] }

pred Terminates {
some finalState: State | finalState.prog.term = 1 }

Note that each of the constraints is expressible in a single Alloy statement.
The local variable constraint, LocalVar, asserts that for all states, the set of
integers in the readers relation must be a subset of the set of integers in the
writers relation. Since a state has a one-to-one correspondence with a program
point (except for the special state that has startup as its instruction) this exactly
expresses the local variable constraint. The stack depth invariance constraint,
StackDepth, asserts that for any pair of states s and s’ that have the same
program point (s.prog.map = s’.prog.map) the depth of the stack must be the
same (s.depth = s’.depth). The stack guard constraint, StackGTE, asserts that
for all states the corresponding stack depth must be greater than or equal to zero.
These constraints are positive constraints: if Alloy finds a counterexample this
demonstrates that the constraint has been violated. A violation of the constraint
then indicates that the corresponding JVM code does not conform to the classfile
standard, and contains buggy or potentially malicious bytecode. It is worthwhile
to observe, however, that the existence of nonconforming bytecode does not
necessarily imply that the resulting code is exploitable.

The Terminates predicate bears closer examination, since it relates to the han-
dling of looping constructs and also internal consistency checking. This predicate
asserts that there is some state with an instruction that is terminal. In effect,

156 M.C. Reynolds

this predicate asserts that execution terminates for some set of branch choices.
When faced with a conditional branch choice, Alloy will choose a possibility.
Thus, if there is any path to a terminal instruction, it will be reached by some
set of choices by Alloy (provided the search space is large enough). What con-
ditions could cause this predicate to fail? One case would be the case of an
unconditional branch whose target is an earlier program point corresponding to
an unambiguous infinite loop. Another situation that would cause this predicate
to fail is if the map and len relations are not internally consistent. Examina-
tion of the nextInstruction predicate shows that if there are no branches the
instruction in the next state is calculated from the instruction in the current
state by adding the length of the current instruction (the len relation) to the
byte offset of the current instruction (the map relation). Alloy must then find a
matching instruction whose offset (map relation) is equal to this sum. If no such
instruction exists, then the nextInstruction predicate will return false and the
Terminates predicate will never be satisfied. The Terminates predicate therefore
also provides a test of the internal consistency of the map and len relations, and
thus also indirectly checks the constraint that asserts that the JVM can never
reach a program point that is not at an instruction boundary.

3.2 Class2Alloy Classfile Parser

The model template is not a complete Alloy model in that it does not encode any
property information of an actual JVM method. That encoding is handled by
the relation initializers, which must initialize all the instruction relations based
on the bytecodes of a specified method. The initialization must also handle the
creation of concrete signatures that extend the abstract Instruction signature.
These concrete instruction signatures are based on exactly those instructions
that are in the specified method.

A classfile parser, known as Class2Alloy, was written to generate these Alloy
relation initializers given a Java classfile and also a method name. Class2Alloy
was implemented in Java using the Byte Code Engineering Library, BCEL [11].
BCEL is an extremely powerful classfile analysis library that provides ready
access to the instruction stream in Java classes. BCEL makes it straightforward
to extract the requisite properties for each instruction under consideration.

Class2Alloy is implemented in two Java files, Class2Alloy.java and AlloyS-
tring.java. Class2Alloy.java contains the main analysis routines, while AlloyS-
tring.java is a utility class that handles the specific Alloy syntax needed to
generate syntactically correct relation initializers. The operation of the parser is
as follows. The main method receives three arguments: the name of a classfile,
which must be in the classpath, the name of a method, and the name of an output
file. The main method creates a Class2Alloy instance; the Class2Alloy construc-
tor creates a set of empty AlloyStrings, one for each relation to be initialized,
along with an empty AlloyString that will hold the instruction signature informa-
tion. BCEL is then used to load the classfile, enumerate its methods, and search
for the named method in the array of methods; on success a BCEL Method object

Lightweight Modeling of Java Virtual Machine Security Constraints 157

is obtained. Class2Alloy then parses this Method object to obtain a list of in-
structions contained within the method. For each instruction, it then queries that
instruction for those properties that need to be initialized in the Alloy model,
namely its byte offset from the beginning of the method, its byte length, the
sets of local variables that it reads or writes, the set of possible conditional or
unconditional branches that it can take, and also the number of bytes that it
adds or removes from the stack. Once the instruction analysis is complete, each
AlloyString prints itself to the output file. The AlloyString class handles the
details of generating syntactically correct Alloy output for each of the relation
initializers, as well as generating the appropriate extension signatures for each
instruction in the method being analyzed.

Once this output file is combined with the model template, a complete model
specialized for the method under analysis is obtained. The Alloy analyzer is
then run on that model, and each of the constraint assertions, as well as the
Terminates consistency predicate, is invoked to determine the presence of coun-
terexamples or a failure to converge to a terminal state.

3.3 Analysis of the BlackBox Applet

The BlackBox applet is a malicious applet that breaks out of the applet exe-
cution sandbox, elevates its privilege level to the maximum possible value, and
then downloads (and optionally executes) a completely arbitrary payload. The
BlackBox applet uses a variety of exploitation techniques in order to achieve its
goals. A complete description of the workings of this applet is beyond the scope
of this paper; instead a reduced version will be described. It is very important
to note that both the reduced version and the complete version of BlackBox are
detected by the technique described herein.

The Java Virtual Machine loads classes using a series of helper classes known
as classloaders. The classloader class responsible for loading classes across the
network is the URLClassLoader class. URLClassLoader not only verifies classfile
syntax, it works closely with the SecurityManager class to check for permitted
or forbidden operations. As one might readily imagine, most of the methods and
members of URLClassLoader are either protected or private. If it were possible
to define a class (call it myUCL) that had the same methods and members
as URLClassLoader, but which permitted all operations and did not consult the
SecurityManager, one could then load and instantiate an arbitrary network class.
This type of exploit is known as a type confusion exploit: an object of one class
(URLClassLoader) is replaced by an object of another class (myUCL) without
triggering a type coercion exception.

One way to cause type confusion to occur is to violate the stack depth in-
variance constraint. Suppose that an object of type myUCL is placed on the
stack, followed by an object of type URLClassLoader. Suppose further than in
the normal flow of execution the URLClassLoader object will be popped off the
stack and loaded into a local variable of that type. If the flow of control can be
modified such that the stack depth invariance constraint is violated, and such
that the URLClassLoader object is popped off the stack while leaving the JVM

158 M.C. Reynolds

state unmodified, then a subsequent stack operation will pop the myUCL object
off the stack and treat it as if it were an object of type URLClassLoader. One
approach for doing this was through the use of malicious exception handling
code. When an exception is thrown in Java, an exception object is placed on
the stack so that the exception handler code may access it. After the handler
completes, the state of the stack is supposed to be restored to the state it had
just before the exception was thrown. If it can be arranged that the malicious
exception code actually modifies the stack such that two objects are popped
when the handler exits, the stack depth invariance constraint will be violated.
The net effect in the actual BlackBox applet is that an object of type myUCL
is substituted for an actual URLClassLoader object; this object is then used to
load malicious code over the network and execute it. (As stated above, the actual
process is significantly more complicated.)

More than a hundred benign applets were subjected to analysis using the Alloy
analyzer; no stack depth invariance constraint violations were found. However,
when the bytecodes from the full or reduced version of BlackBox were analyzed, a
violation of the stack guard invariance constraint was detected. The approximate
time to run the Alloy analyzer and find this counterexample was three minutes.
Detailed security analysis with a Java disassembler (such as [12]) then revealed
that a type confusion attack was being launched by this applet. Note that the
applet itself could not have been compiled directly from Java; the malicious
portions, in particular those portions handling the type confusion attack, had to
have been constructed using a Java assembler, such as Jasmin [13].

3.4 Future Work

There are several areas in which the JVM security analysis approach described
in this paper can be extended and improved. The most obvious, and certainly
the most important, is to add constraint checking for additional constraints.
The opcode argument constraint, which states that each JVM instruction is
invoked with the correct number of type conforming arguments, is of particular
importance. In addition, extending the current consistency checking of the map
and len properties is also a worthwhile step, since the current model does not
distinguish the two possible cases in which the Terminates predicate fails to
converge, namely infinite loops versus an inconsistent set of map and len relation
values. The latter should be checked explicitly.

The current model does not completely handle exceptions. In particular, only
a single exception block per method is currently modeled, while actual bytecode
can employ multiple (nested) exception blocks. Adding full exception handling
to the model has high priority. This is an ongoing area of research.

4 Conclusion

This paper has demonstrated that Alloy is an extremely powerful tool for per-
forming security constraint analysis on Java bytecodes. Even at this stage of

Lightweight Modeling of Java Virtual Machine Security Constraints 159

development, meaningful results have been obtained. Extensions to this work
are ongoing, with the goal of increasing the scope of constraint checking and fur-
ther refining and improving the analysis process. Extensions to other languages
are also in work.

Acknowledgments. The author wishes to extend special thanks to Assaf
Kfoury of the Computer Science Department of Boston University for suggest-
ing this line of inquiry, for his valuable input, and for his continued support and
encouragement.

References

1. Alloy website, http://alloy.mit.edu
2. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,

Cambridge (2006)
3. McGraw, G., Felten, E.: Securing Java: Getting Down to Business with Mobile

Code, 2nd edn. Wiley, New York (1999)
4. Common Vulnerabilities and Exposures, http://cve.mitre.org
5. BlackBox Security Advisory,

http://www.ca.com/us/securityadvisor/virusinfo/virus.aspx?ID=36725

6. Java and Java Virtual Machine security vulnerabilities and their exploitation
techniques,
http://www.blackhat.com/presentations/bh-asia-02/

LSD/bh-asia-02-lsd.pdf

7. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification Second Edition.
Addison Wesley, Boston (2003)

8. Xu, H.: Java Security Model and Bytecode Verification,
http://www.cis.umassd.edu/~hxu/Papers/UIC/JavaSecurity.PDF

9. Posegga, J., Vogt, H.: Java bytecode verification using model checking,
http://eprints.kfupm.edu.sa/47269

10. Leroy, X.: Java Bytecode Verification: An Overview. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 265–285. Springer, Heidelberg
(2001)

11. Jakarta BCEL, http://jakarta.apache.org/bcel
12. DJ disassembler, http://members.fortunecity.com/neshkov/dj.html
13. Jasmin assembler, http://jasmin.sourceforge.net

http://alloy.mit.edu
http://cve.mitre.org
http://www.ca.com/us/securityadvisor/virusinfo/virus.aspx?ID=36725
http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd.pdf
http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd.pdf
http://www.cis.umassd.edu/~hxu/Papers/UIC/JavaSecurity.PDF
http://eprints.kfupm.edu.sa/47269
http://jakarta.apache.org/bcel
http://members.fortunecity.com/neshkov/dj.html
http://jasmin.sourceforge.net

Alloy+HotCore: A Fast Approximation
to Unsat Core

Nicolás D’Ippolito, Marcelo F. Frias, Juan P. Galeotti, Esteban Lanzarotti,
and Sergio Mera

Departamento de Computación, UBA, Argentina,
{ndippolito,mfrias,jgaleotti,elanzarotti,smera}@dc.uba.ar

Abstract. Identifying a minimal unsatisfiable core in an Alloy model
proved to be a very useful feature in many scenarios. We extend this
concept to hot core, an approximation to unsat core that enables the
user to obtain valuable feedback when the Alloy’s sat-solving process is
abruptly interrupted. We present some use cases that exemplify this new
feature and explain the applied heuristics. The NP-completeness nature
of the verification problem makes hot core specially appealing, since it
is quite frequent for users of the Alloy Analyzer to stop the analysis
when some time threshold is exceeded. We provide experimental results
showing very promising outcomes supporting our proposal.

1 Introduction

Alloy [1] is a relational modeling language. Its simplicity, object-oriented flavor
and automated analysis support have made this formal language appealing to a
growing audience. The Alloy Analyzer wisely transforms Alloy models in which
domains are bounded to a fixed scope, into a propositional formula that is later
fed to a selected SAT-solver (such as MiniSat [2] or SAT4J). Then, given an
assertion to be verified in the model, the Alloy Analyzer attempts to produce a
counterexample violating the assertion. If no such counterexample is found, it
concludes that the analyzed property holds in the model within the given scopes.

A useful feature of Alloy Analyzer is the unsat core highlighting [3]. This
feature allows an user to see a (possibly minimal) subset of the model constraints
from which the assertion follows. As mentioned in [3], this information helps to
mitigate a variety of modeling problems, such as overconstraining the model,
using a weak assertion, or setting an analysis scope that is too small.

As the problem of knowing if a given propositional formula is satisfiable is
NP-complete [4], it is quite frequent to exceed the time the user is willing to
spend in analysis even for small scopes. That is why the Alloy Analyzer supports
interrupting the SAT-solving process. The drawback is that when the user aborts
the current analysis, he or she obtains no feedback on the verification process.
This occurs even when the search space is almost covered.

Due to the analysis interruption, no conclusive answer is given by the SAT-
solver on the satisfiablity of the propositional formula. Nevertheless, the SAT-
solver has spent a (possibly large) amount of time analyzing the input formula,

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 160–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Alloy+HotCore: A Fast Approximation to Unsat Core 161

and has gained valuable knowledge about it. Our main contribution consists on
using this knowledge to identify a collection of “problematic” or “hard” clauses,
and present them to the user as a potentially unsatisfiable set of constraints. We
call this set the hot core of the analysis. Intuitively, a problematic set of clauses
is a set that adds significant computational cost to the SAT-solving process.
Since the worst case scenario for a SAT-solver is to work with an unsatisfiable
formula, a computationally hard set of clauses seems a reasonable symptom of
unsatisfiability.

HotCore, our proposed extension to Alloy, profiles the SAT-solver execution
in order to gather the required information as the solving process takes place.
When the user interrupts the analysis, HotCore identifies a set of the most
problematic clauses, applies the inverse translation (from propositional formulas
to Alloy model) to this set, and shows the highlighted constraints to the user.
Since Alloy users are used to the unsat core highlighting, HotCore uses this
presentation style.

To the best of our knowledge, the idea of profiling an interrupted SAT-solving
process in order to provide feedback to the user does not seem to be explored. We
could only find some weakly related work in the direction of visualizing a DPLL
run [5], and in the line of incomplete solving methods, like GSAT, Walksat and
some applications [6,7,8,9].

The structure of this article is as follows. In Section 2 we present a methodolog-
ical approach to HotCore through several user scenarios. In Section 3 we provide
a brief theoretical background to SAT-solving, and we give a detailed explana-
tion of the heuristics we used to identify a hot core. In Section 4 we provide
a representative collection of chosen Alloy problems, showing a very promising
behavior of HotCore. As we will see, on average HotCore covers above 90% of
the unsat core within one fifth of the total solving time. Finally, in Section 5 we
draw some final conclusions and suggest future lines of work.

2 Motivation

In this section we will present some of the benefits of identifying a hot core, and
show how HotCore helps to solve some limitations of the current distribution of
the Alloy Analyzer. In order to make it more amenable to the reader, we will do
it through a running example. We will assume that the reader is familiar with
Alloy’s syntax and semantics. Refer to [1] for a more detailed description of Alloy.
We present below signature definitions for doubly linked list-like structures.

one sig null {
}
sig Object {

owner: one Object + null
}
sig Node extends Object {

next: one Node+null,
previous: one Node+null

}

sig List extends Object {
head: one Node+null,
last: one Node+null

}

162 N. D’Ippolito et al.

Signatures and fields are interpreted as sets of atoms and relations between
atoms, respectively. Singleton signature null represents the null value. Signature
Object includes all possible objects. A field owner marks the atom’s owner (or
null if no owner exists). Atoms in signature Node form a subset of the atoms
in signature Object, and have two extra fields (next and previous) which are
intended for storing the next and the previous nodes respectively (or the null
value in case no next/previous node exists). Similarly, atoms in signature List
have two extra fields (head and last). These fields are references to the first node
and last node respectively. The following facts constrain atoms and relations.

fact head_is_null_iff_last_is_null {
all list: List | list.head=null <=> list.last=null

}
fact head_last_nullity {

all list: List | {
list.head!=null implies list.head.previous=null
list.last!=null implies list.last.next=null }

}
fact next_prev_symm {

all node: Node | {
node.next!=null implies node.next.previous=node
node.previous!=null implies node.previous.next=node }

}

fact no_node_sharing {
no l1, l2: List |
some n: Node | {

n in l1.head.*next
n in l2.head.*next }

}

These facts state that: 1) head points to null if and only if last points to null,
2) the first node (respectively the last node) previous field (respectively next
field) points to null, 3) symmetry between next and previous fields is preserved,
and 4) no Node atom is shared between two lists. We will refer to these axioms
as list structure facts.

Next, the model is completed with facts to characterize ownership relations
among node and list objects. These facts were inspired by the Spec# program-
ming methodology [10].

fact owner_of_head {
all list: List | list.head!=null implies list.head.owner=list

}
fact owner_of_last {

all list: List | list.last!=null implies list.last.owner=list
}
fact owner_of_next {
all list: List | all node: list.head.*next - null |
node.next!=null implies node.next.owner=node.owner

}
fact owner_of_prev {

all list: List | all node: list.last.*previous - null |
node.previous!=null implies node.previous.owner=node.owner

}

We will refer to these newly added axioms as ownership facts. Now, let us
consider the scenario where an Alloy user writes an assertion to verify that
every node has its container as owner:

assert container_is_owner {
all list: List | all n: list.head.*next - null | n.owner = list }

Running the analyzer with the command check container is owner for 3,
it yields as result that the assertion has no counterexamples within that scope.

Alloy+HotCore: A Fast Approximation to Unsat Core 163

As it was previously mentioned, some SAT-solvers provide the feature of unsat
core extraction. Exploiting this facility, the Analyzer manages to highlight the
following subset of the Alloy model.

sig List extends Object {
head: one Node+null,
...

}
sig Node extends Object {

next: one Node+null,
...

}

assert container_is_owner {
all list: List | all n: list.head.*next - null | n.owner = list

}

fact next_prev_symm {
all node: Node | {
node.next!=null implies node.next.prev=node
node.prev!=null implies node.prev.next=node }

}
fact no_node_sharing {

no l1,l2: List | some n: Node | {
n in l1.head.*next
n in l2.head.*next }

}

These constraints are marked as a (possibly minimal) cause of unsatisfiability.
As no ownership fact was highlighted, the user could conclude that they were
not needed to prove the validity of the assertion within the scope. Increasing the
analysis scope up to 10 yields the same result. Although the scope has grown,
the unsat core remains the same.

From the user point of view, ownership rules must play an important part in
constraining the owner field. Therefore, he or she may find it hard to believe
that the validity of the property does not depend on those axioms.

A further inspection of the highlighted constraints exposes a subtle error in
the fact no node sharing. As we can see, the fact states that no two lists share
the same node. This is stronger than no two distinct lists share the same node.

An overconstrained model represents one of the most common modeling mis-
takes using Alloy. In the absence of a counterexample, the unsat core highlighting
helps the user to validate that the assertion does not follow trivially from the
model. A revised definition of fact no node sharing is given below:

fact no_node_sharing {
no disj l1,l2: List | some n: Node | {

n in l1.head.*next
n in l2.head.*next }

}

Once again, the user checks the assertion container is owner, but in this
case considering the revised model. The Analyzer finds no counterexample within
the scope of 3. But, in this case, the Analyzer highlights several ownership facts
as part of the unsat core constrains. This means that ownership facts were used
during the analysis to prove the assertion is valid. From the user’s point of view,
this is closer to the expected behavior of the Analyzer.

As we have seen, an Alloy user could profit enormously from inspecting a
given unsat core. We now present a collection of use cases that exhibits some
practical applications for HotCore.

Scenario 1: unsat core approximation: Let us consider the following sce-
nario. In order to gain more confidence about the assertion validity, the user
starts analyzing the faulty model using a scope of 10 instead of a scope of 3.

164 N. D’Ippolito et al.

The analysis carried out by the Alloy Analyzer relies on solving a SAT prob-
lem. A larger scope leads to a formula with more variables to be solved. Since the
analysis time grows (in the worst case) exponentially on the number of variables,
analysis may take much longer.

As analysis takes a lot more to conclude the assertion validity, it is not rare
that the Alloy user may interrupt the analysis once a certain time bound is
reached. This bound may range from seconds to hours. Assume that he or she de-
cides to abort the analysis after 5 minutes. Since the Alloy Analyzer failed to ex-
haust the search space and to produce a counterexample within this time bound,
HotCore highlights some constraints as the hot core of the analysis. Among those
highlighted constraints is the overconstrained fact no node sharing.

As the user interprets this hot core as an approximation to a potential unsat
core, he or she inspects more deeply the constraints. During this task, the user
detects the flaw in fact no node sharing, and fixes the constraint. Notice that it
was not necessary neither to decrease the analysis scope nor wait until an unsat
core was identified.

Scenario 2: constraint optimization: Another possible use of HotCore con-
sists on optimizing a given formula. It is well known that equivalent Alloy for-
mulas may produce different but equivalent CNF formulas. Given two equivalent
CNF formulas, the SAT-solving time may vary enormously depending on factors
such as clause ordering, number of variables and average length of clauses, just
to name a few of them.

In large and complex Alloy models, it is not always a feasible task to re-write
every constraint in a more compact, friendly to the Alloy Analyzer, equivalent
constraint. But, knowing those constraints that played a key role during analysis,
an experienced Alloy user may re-write those constraints in order to reduce the
analysis time.

Going back to our revised model, the Alloy Analyzer still exceeds the 5 minutes
bound to prove the validity of the assertion container is owner in a scope of 10.
Once again, the user may interrupt the analysis once the time bound is exceeded.
As the model was weakened, more constraints are identified as members of the
hot core. Not only several ownership facts, but also the fact next prev symm is
marked.

An experienced user may replace fact next prev symm with a relational for-
mula with no quantifiers, defining next:>Node=∼(previous:>Node). It is easy
to see that both facts are equivalent. Rewriting this fact leads to a CNF formula
with less variables and clauses. Upon this model re-writing, the Alloy Analyzer
is now able to end the validity analysis in less than 5 minutes. Observe that this
use of HotCore can be always applied, independently of the assertion validity.

Scenario 3: gaining more confidence in larger scopes: Although the small
scope hypothesis [11] argues that a high portion of counterexamples can be found
by analyzing an assertion within small scopes, the usual practice shows that
most Alloy users tend to try larger scopes as long as the time resources are not

Alloy+HotCore: A Fast Approximation to Unsat Core 165

exhausted. From the user’s perspective, a larger scope means a better confidence
in the validity of an assertion.

As it was mentioned before, the analysis time grows as the scope increases.
In fact, analysis time may scale from seconds to hours with a slight increase of
scope. Because of this, although the Alloy Analyzer may have proved that an
assertion is valid within a given scope, it may be infeasible to prove the same
assertion for a larger scope. Notice that for smaller scopes the Alloy Analyzer
will return an unsat core, while for the larger scope, our extension will identify a
hot core. If a larger-scope hot core matches a smaller-scope unsat core, an Alloy
user can conclude that most of the analysis time was spent dealing with a set of
constraints which happen to be unsatisfiable within the smaller scope. This may
be used as evidence that the assertion follows from the same premises within
the larger scope. Of course this cannot be considered a proof of validity of the
assertion for the larger scope. This is just a heuristic to gain more confidence
when the Analyzer fails to return a conclusive result within the time bound.

As an example, let us consider the case where the user starts the analysis
of the assertion container is owner in a scope of 20 instead of 10. If the user
interrupts the analysis after 10 minutes, he or she can confirm that the 20-scope
hot core matches the 10-scope unsat core. Under the previous premises, the user
has more confidence on the assertion validity. Observe that, without having the
HotCore extension, the user has no elements to produce a hypothesis on the
assertion validity when the analysis is interrupted.

3 Finding Minimal Sets of Hot Clauses

In this section we describe the theory behind the procedure we use to compute
the hot core. Let’s recall first the general schema used by the Alloy Analyzer
to verify an assertion. Given a fixed bound in the size of the models to explore
(which is also known as the scope of the analysis), the Alloy Analyzer verifies
whether a given assertion follows from a specification by translating the problem
to a set of propositional clauses S. Then the tool runs a SAT-solving process over
that set: if the SAT-solver determines that S is unsatisfiable, that means that
the property follows from the specification within the specified scope. Otherwise,
a satisfiable assignment for S is found, and a counterexample for the assertion
is constructed using that assignment. Finally, in the case S is unsatisfiable, a
minimal unsatisfiable core U ⊆ S is computed, and then U is mapped back to the
associated constraints. The unsat core is then presented to the user highlighting
the appropriate Alloy formulas.

We first give a global description of the process to compute the hot core. The
rest of the section will be devoted to explain it in detail. The general idea follows
the same steps used to extract the unsat core. The SAT-solving process starts
with an initial clause database C given by S, and during the execution this
set of clauses is augmented with new clauses, all of them being consequences
of S. Since the user may interrupt the process at any time, we monitor the
SAT-solving clause database keeping track of the clauses that are “hard” or

166 N. D’Ippolito et al.

“problematic” to solve. We will give a more precise definition of this condition
later. When the SAT-solving process is interrupted, we take a set H ⊆ C of
the most problematic clauses and we find a minimal subset H ′ ⊆ S such that
all the clauses in H are consequences of H ′. The set H ′ represents a minimal
subset of S which is potentially unsatisfiable. We then proceed as it is done
with the unsatisfiable core U , applying the inverse translation over H ′, (from
propositional formulas to Alloy) to identify the hot core.

To determine which are the problematic clauses we take advantage of the
heuristics already implemented in the SAT-solver. As we said before, we used
Minisat to implement the hot core extraction, but this feature can be extended
to any DPLL based SAT-solver that provides a way to measure the “hardness”
of a clause. The efficiency of a SAT-solving search procedure depends on having
well-tuned techniques to identify problematic clauses, so we base our procedure
on those techniques. As several of the available SAT-solvers based on DPLL
do, Minisat uses a heuristic to measure how actively a clause participates in
the search process, in order to determine the next variable assignment. The idea
behind that metric is that a clause with a high activity is a sign of unsatisfiability,
and Minisat makes use of that knowledge to guide the backtracking process that
searches for a satisfiable assignment. In this way, the aims of the SAT-solving
optimizations and the identification of a probable unsatisfiable set of clauses
coincide. We take advantage of this scenario to use already developed clause
identification techniques that showed to enjoy a good empirical behavior.

3.1 Overview of the SAT-Solving Process

We will concentrate here on SAT-solvers based on the DPLL algorithm [12]. The
key characteristics of the algorithm are: backtracking by conflict analysis, clause
recording (which is also known as learning) and boolean constraint propagation
(BCP) (see [13,14]). We start by giving some definitions.

Definition 1. A conjunctive normal form (CNF) formula ϕ on n variables
x1, . . . , xn is the conjunction of m clauses ω1, . . . , ωn, each of which is the dis-
junction of one or more literals. A literal is the occurrence of a variable or its
negation.

Most solvers operate with clauses in CNF. Observe that a formula ϕ can be
though of as an n-variable boolean function f(x1, . . . , xn), where each clause of
ϕ is an implicate of f .

Definition 2. Given an n-variable propositional formula ϕ, the satisfiability
problem (SAT) consists in finding an assignment to the associated boolean func-
tion f(x1, . . . , xn) that makes the function equal to 1, or otherwise proving that
the function is the constant function 0.

Given a n-variable propositional formula, the backtracking search algorithm for
SAT is implemented by a search process that explores the space of 2n possible
binary assignments to the variables. The exploration does not always traverse

Alloy+HotCore: A Fast Approximation to Unsat Core 167

the whole state space, but, as shown in [4], this may happen in a worst-case
scenario.

The SAT-solving process works by extending a partial assignment of the for-
mula variables. A variable whose binary value has already been determined is
considered to be assigned ; otherwise it is unassigned. An assignment for a for-
mula ϕ is a set of assigned variables and their corresponding binary values. An
assignment is complete when all the variables are assigned. A clause is said to
be unit if the number of its unassigned literals is one.

We now give a general overview of the DPLL algorithm. For further details,
see [12]. Starting from an empty truth assignment, the algorithm explores the
assignment space and organizes the search for a satisfying assignment through a
decision tree. In this way, each node of the tree represents the explicit assignment
to an unassigned variable. The process iterates through the following steps:

1. Search. The current assignment is extended by deciding a binary value
for an unassigned variable. This step involves deciding which unassigned
variable to pick, and which value to assign. The search process terminates
successfully if all the clauses become satisfied. It terminates unsuccessfully
if some clauses are unsatisfied and all possible assignments have been tried.

2. Propagation. The current assignment is extended by analyzing the logical
consequences of the assignments made so far. This step is known as Boolean
Constraint Propagation (BCP), and it is based on unit clauses analysis.
This analysis may extend the current assignment, and may also lead to the
identification of unsatisfiable clauses, implying that the current assignment
is not a satisfying assignment. This is known as a conflict, which is handled
by the following step.

3. Learning. Given an assignment that produced a conflict, an analysis is
made to determine a set of variable assignments that implied the conflict.
From this set of variables a clause prohibiting that particular assignment is
built and added to the clause database. Observe that this learnt clause is a
consequence of the original set of clauses. This new clause should be thought
of as a “witness” of the reason for the conflict, and it avoids regenerating
the conflicting assignment that led to the current conflict.

4. Conflict analysis. This stage undoes the current assignment, if it is conflict-
ing, so that another assignment can be tried. A conflict analysis is performed
here, that identifies the point in the decision tree where precisely one of the
literals of the learnt clause becomes unassigned. This is usually referred to
as backjumping or non-chronological backtracking [13].

3.2 Activity Heuristics in the Search Process

The search procedure of a modern SAT-solver is usually a complex algorithm.
Heuristics are needed to pick the next unassigned variable and to decide a value
for it. Decision strategies (that range from randomly selecting variables to more
sophisticated heuristics like JW-OS and JE-TS [15]) have a relevant impact over
the SAT-solver’s performance (see [15]).

168 N. D’Ippolito et al.

Minisat uses a variation of the so called Variable State Independent Decaying
Sum (VSIDS) heuristic (which was originally introduced in the Chaff solver [14],
and it is also used in BerkMin [16] with some differences in the updating process).
Using VSIDS, a value is associated with each literal. When a clause is added to
the database, the value associated with each literal in the clause is incremented.
Periodically, all the counters are divided by a constant. The selection process in
the search stage picks the variable with the highest associated value.

Minisat uses a variation of this technique, but applied to clauses. When a
learnt clause is used in the analysis process of a conflict, its activity is incre-
mented. Inactive clauses are periodically removed. This strategy can be viewed
as attempting to satisfy the clauses involved in a conflict, but particularly at-
tempting to satisfy the most recent clauses involved in a conflict. In fact, the
decision heuristic of Minisat involves decaying the activity of clauses more often
than the standard VSIDS heuristic. Benchmarks have shown that this schema
responds faster to changes and avoid branching on out-dated variables [2].

Using this heuristic, the clauses with the highest activity values represent the
clauses most actively involved in recent conflicts. Since a set of unsatisfiable
clauses generates many conflicts, and therefore many conflict clauses, the high
activity of a clause can be seen as a potential sign of unsatisfiability. The strategy
we use to identify the hot core is to keep a set H (of fixed size) with clauses with
the highest activity. HotCore updates this set every time the search process is
triggered. When the user interrupts the SAT-solving process, HotCore uses the
last updated set of clauses to calculate a hot core. This strategy can be thought
of as an attempt to identify the set of clauses with the best chances to belong
to an unsat core given the current state of the solving process. In Section 4 we
discuss the empirical results obtained when choosing an appropriate size for H .

3.3 Extracting the Core

Once we have identified a set H of potentially unsatisfiable clauses, we want
to associate H with its corresponding Alloy constraints. This will allow us to
present to the user a highlighted part of the Alloy constraints representing the
hot core, in the same way it is done for the unsat core. To implement the unsat
core, the Alloy Analyzer applies an inverse translation that maps propositional
clauses to Alloy formulas, and then it highlights them. We would like to reuse
this feature and feed this translation with H , but the problem is that this inverse
translation needs original clauses, that is, clauses that were in the output of the
forward translation (from Alloy formulas to propositional clauses). The set H
we have identified does not necessarily fulfill this requirement, since there may
be clauses which are consequences of the original clause database. Therefore, we
should be able to identify a set H ′ of clauses such that a) H ′ implies H and b)
all the clauses in H ′ originally belong to the initial clause database.

To build H ′, we implemented an extension of the algorithm proposed by
Zhang and Malik in [17]. Let us briefly describe the original algorithm. Given
an unsatisfiable set of Boolean formulas, the algorithm extracts a subset of this

Alloy+HotCore: A Fast Approximation to Unsat Core 169

set that is still unsatisfiable, using the unsatisfiability proof found by the SAT-
solver. A SAT-solving process applied to an unsatisfiable set of clauses can be
regarded as a resolution process that generates the empty clause. This can also
be described with a resolution graph. Each node of the graph represents a clause,
the root nodes are the clauses in the original set, and the internal nodes represent
the learned clauses generated during the solving process. The edges in the graph
represent resolution steps. An edge from a node a to a node b represents that a
is a resolve source of the node b. This clearly defines a directed acyclic graph,
where there is a node e that represents the empty clause. Observe that all the
root nodes that are not in the transitive fan-in cone that has e as a vertex are
not needed to construct that particular proof, and therefore can be ruled out.
The root nodes in the cone represent a minimal subset of the original clauses
that are needed for that particular proof.

The identified set is not a minimal subset in the general sense, but its size
could be much smaller than the original set of clauses. The main advantage of
this algorithm is that it scales well on very large instances [17]. This is one of
the algorithms used by the Alloy Analyzer (among others, see [3,18]).

In our case, we do not have an unsatisfiability proof, but a set of clauses
H that could lead to the empty clause. Looking at the resolution graph, every
clause ci ∈ H defines a cone Ci, taking the transitive fan-in cone that has ci as
a vertex. Observe that the set of root clauses in Ci contains the original clauses
needed to deduce ci for that particular proof. Therefore we can define the set H ′

as the set of root nodes in
⋃

i Ci. HotCore implements this idea in a relatively
straightforward way, using a simple graph traversal algorithm.

4 Experimental Results

We are interested in measuring the quality of the unsat core approximation
performed by HotCore. To achieve that, HotCore has been evaluated on ten un-
satisfiable problems from the Alloy Analyzer distribution. The chosen problems
come from a variety of domains and exhibit a wide range of behaviors (they
are fully described in [1]). Each of them was ran on Alloy+HotCore for satisfi-
ability in several scopes. The Alloy Analyzer offers three different algorithms to
perform the unsat core extraction. All the comparisons were done with respect
to the algorithm proposed by Zhang and Malik in [17]. We report the obtained
results using scopes whose solving time is below a 10 minutes time bound. All
experiments were performed on an Intel Core 2 duo 2.4GHz, with 2GB RAM.
HotCore implementation was built on top of the Alloy Analyzer release 4.1.9.
HotCore can be downloaded from http://www.dc.uba.ar/hotcore.

In order to measure the quality of the unsat core approximation, we have
defined two different metrics: Hit and Error . Hit intends to represent how well
the hot core approximates the unsat core, and Error tries to capture the error
in that approximation. We provide a formal definition below.

Definition 3. Given an unsat core U and a hot core H we define Hit = #(H ∩
U)/#(U) ∗ 100 and Error = #(H − U)/#(H) ∗ 100.

http://www.dc.uba.ar/hotcore

170 N. D’Ippolito et al.

We are interested in using these metrics in terms of both propositional clauses
and Alloy specification language. Therefore, we will add in Hit and Error the
subscript p when we measure clauses at the level of propositional formulas, and
the subscript a when we measure characters at the level of Alloy specification.

As we mentioned, HotCore shows the hot core to the user by highlighting a
set of constraints, following the unsat core presentation schema. Consequently,
evaluating HotCore at the Alloy model level seems a rather obvious choice,
since the highlighted constraints conform the user expected feedback. On the
other hand, due to the nature of the Alloy Analyzer’s translation, each Alloy
constraint may result in several distinct propositional clauses. Additionally, some
propositional clauses may not even have an Alloy model counterpart (such as
the symmetry breaking predicates [19]). Therefore, measuring a hot core at the
proposition formula level should lead to finer-grained results.

Problem Size Scope Unsat Hot Hita Errora Hitp Errorp
Hot

Unsat
lists - reflexive 21 10 153 16 50 0 75 3 10%
lists - symmetric 21 8 8 1 44 0 82 8 13%
hotel2 65 15 5 1 100 0 78 4 20%
hotel4 61 17 166 48 100 0 81 2 29%
lights 20 200 8 4 100 0 96 1 50%
addressBook1h 21 30 117 74 100 0 93 93 63%
ringElection2 27 14 5 4 100 0 98 0 80%
sets2 11 36 444 256 100 0 88 1 58%
mediaAssets 61 30 31 19 91 1 90 1 61%
p306-hotel 40 18 43 31 100 0 91 3 72%
Average 45.6%

Fig. 1. Results shown with a stopping criterion of 75% Hitp

In Figure 1 we show the results we have obtained running HotCore on the
above-mentioned problems. The first four columns show the problem description
in terms of: name of the problem, model size (in lines of code), scope of analysis
and time required to compute the unsat core (in seconds). The fifth column
records the instant in which the analysis was interrupted (also in seconds), that
is to say, the instant when the hot core was identified. The stopping criterion was
set to achieve at least 75% Hitp. Observe that since the set of most active clauses
is updated at every search iteration, we do not have a finer grained control over
the coverage. This means that the verification was stopped in the first search
iteration where the coverage was beyond that threshold. The remaining columns
show Hit and Error for the identified hot core using the two defined metrics and
the rate between the times needed to compute the hot core and the unsat core.

We now discuss the results. Observe that in general we reach 75% Hitp quite
fast: on average, HotCore needed less than one half (specifically 45.6%) of the
total solving time. Furthermore, these results were accomplished with a very low
Errorp. Let’s look now at Hita and Errora. We expect a high correlation between
the coverage at the propositional and the Alloy level, and this is confirmed by
the results. The example addressBook1h has a particular behavior: there is a
significant difference between the two metrics, with 93 Errorp and 0 Errora.

Alloy+HotCore: A Fast Approximation to Unsat Core 171

This is a case where the set of identified propositional clauses outside the unsat
core has no Alloy model counterpart. We believe that this may be a case where
those clauses were introduced for symmetry breaking (or similar) purposes.

Let’s turn now to the end-user perspective and let’s analyze what happens in
terms of the Alloy specification language. We want to show the HotCore results
on the same ten problems but setting the stop criterion looking at the Alloy
level coverage instead of at the propositional level. As we did for Hitp, we set
the threshold to 75% Hita. These results are shown in Figure 2. Observe that the
time needed to reach 75% Hita was, in general, even less than the case when we
used Hitp as the metric to stop the solving process. On average, HotCore needed
20.6% of the total solving time. The improvement can be explained in terms of
the exponential blow-up in the mapping from Alloy constraints to propositional
clauses, together with a permissive behavior in Alloy’s highlighting scheme.

Problem Size Scope Unsat Hot Hita Errora Hitp Errorp
Hot

Unsat
lists - reflexive 21 10 153 52 100 0 91 3 34%
lists - symmetric 21 8 8 5 97 0 96 7 63%
hotel2 65 15 5 1 97 0 28 12 20%
hotel4 61 17 166 7 99 0 44 3 4%
lights 20 200 8 3 100 0 37 2 38%
addressBook1h 21 30 117 23 91 0 4 95 20%
ringElection2 27 14 5 1 94 0 8 14 20%
sets2 11 36 444 1 100 0 3 14 0.23%
mediaAssets 61 30 31 2 88 0 7 0 6%
p306-hotel 40 18 43 1 98 0 19 17 2%
Average 20.6%

Fig. 2. Results shown with a stopping criterion of 75% Hita

Figure 3 (left) and Figure 3 (right) respectively show how Hita and Errora

evolve during time for a subset of the studied examples. The X-axis represents
time percentage (in a logarithmic scale) while the Y-axis shows the corresponding
metric. Let’s take a look at Figure 3 (left). On one hand, the hot core convergence
grows exponentially fast. On the other hand, the convergence curve has very few
oscillations, showing a quasi-monotone behavior. Let’s analyze now Figure 3
(right). Observe that after 10% of the total time has flown, the error is below
15% for all the cases.

To sum up, the implemented heuristic has shown to behave successfully in
many cases. In order to validate the unsat core approximation, we would also
like to find some examples that show the weakness of our method. We could
not find this behavior among the known available Alloy examples, so we de-
signed some ad hoc cases specifically headed to make the heuristic fail. We com-
bined two independent Alloy models: one hard satisfiable model together with
one unsatisfiable. We expected to verify that when the SAT-solver is working
with the satisfiable part of the specification, the most active clauses will not be
related to the real unsat core. We used two satisfiable Alloy models presented
in [20] that showed to be computationally hard to solve. We combined them with
RingElection, known to be unsatisfiable. Our expectations were confirmed, and
HotCore showed on both examples a Hit near 0% and a Error near 100% for

172 N. D’Ippolito et al.

Fig. 3. Hita and Errora evolution

almost every search iteration (for both metrics). The hot core coincides with
the unsat just in the last search iteration, when around 70% of the total solving
time already went by. Nevertheless, the difficulty in finding these examples can
be regarded as a good sign of the general behavior of the used heuristic.

To close this section we want to mention some technical details about the
implementation. We ran the above mentioned examples varying the size of the
set of most active clauses. We have seen that the results do not differ signifi-
cantly when more than 100 clauses are used. The approximation begins to be
less accurate when we use a set with less than 20 clauses. Hence, after several
experiments we have chosen 100 to be the default size. This can be seen as a sign
that MiniSat’s activity heuristic is efficiently tuned, and therefore a relatively
small set clauses is enough to be representative. Furthermore, the heuristic we
used has almost no computational overhead. The main reason for this is that we
build HotCore on top of the existing MiniSat’s activity heuristic.

5 Conclusions and Further Work

In this article we presented HotCore, an extension of the Alloy Analyzer capable
of approximating the unsat core of a given set of Alloy constraints. We motivated
the use of this tool through several use cases, and we showed that the heuristic
we proposed to identify the hot core has a very good empirical behavior. HotCore
proved to have a nice convergence speed and a low miss rate. Since it is quite
frequent to exceed the waiting time bounds during an Alloy analysis, an end-user
could obtain a significant profit from using this extension.

Much work rest to be done. On one hand, using a fixed size set of highly active
clauses seems a relatively naive approach, and therefore we want to test more
refined heuristics. For example, we want to consider the set of clauses that shows
a recent activity beyond a given threshold (or a given percentile). On the other
hand, the core extraction algorithm we used is quite efficient, but not very accu-
rate in some cases. We would like to evaluate other core extraction algorithms in
the context of HotCore, like the proposed in [19]. We want to investigate other
techniques to analyze the information profiled during the solving process. We
are also interested in applying the same concept to the Alloy’s counterexample

Alloy+HotCore: A Fast Approximation to Unsat Core 173

generation and visualization. Our idea is to analyze the SAT-solver state when
the solving process is interrupted in order to build a potential counterexample.
For example, the current partial assignment may be a good lead for this purpose.

References

1. Jackson, D.: Software abstractions: logic, language, and analysis. MIT Press, Cam-
bridge (2006)

2. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Torlak, E., Chang, F., Jackson, D.: Finding minimal unsatisfiable cores of declar-
ative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 326–341. Springer, Heidelberg (2008)

4. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC 1971, pp.
151–158. ACM, New York (1971)

5. Sinz, C.: Visualizing sat instances and runs of the dpll algorithm. Journal of Au-
tomated Reasoning 39(2), 219–243 (2007)

6. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Procs. of the 10th Conf. on Artificial Intelligence, pp. 440–446 (1992)

7. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1993)

8. Mazure, B., Säıs, L., Grégoire, É.: A powerful heuristic to locate inconsistent kernels
in knowledge-based systems. In: IPMU 1996, pp. 1265–1269 (1996)

9. Grégoire, E., Mazure, B., Piette, C.: Boosting a complete technique to find mss and
mus thanks to a local search oracle. In: Proceedings of IJCAI, pp. 2300–2305 (2007)

10. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

11. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the small scope
hypothesis (2002), http://sdg.csail.mit.edu/pubs/2002/SSH.pdf

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

13. Silva, J.P.M., Sakallah, K.A.: GRASP – A new search algorithm for satisfiability.
In: 1996 IEEE/ACM international conference on Computer-aided design, pp. 220–
227. IEEE Computer Society, Washington (1997)

14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

15. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiabil-
ity algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI),
vol. 1695, pp. 62–74. Springer, Heidelberg (1999)

16. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. Discrete Ap-
plied Mathematics 155(12), 1549–1561 (2007)

17. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable boolean
formulas. In: Proceedings of SAT, vol. 3 (2003)

18. Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by
finding small unsatisfiable subformulae. ENDM 9, 162–173 (2001)

19. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

20. Galeotti, J.: Distributed sat-based analysis of object oriented code. In: Proceed-
ings of Symposium on Automatic Program Verification (APV 2009), Rio Cuarto,
Argentina, ETH Zurich (February 2009)

http://sdg.csail.mit.edu/pubs/2002/SSH.pdf

Supporting Reuse in Event B Development:
Modularisation Approach

Alexei Iliasov1, Elena Troubitsyna2, Linas Laibinis2, Alexander Romanovsky1,
Kimmo Varpaaniemi3, Dubravka Ilic3, and Timo Latvala3

1 Newcastle University, UK
{alexei.iliasov,alexander.romanovsky}@ncl.ac.uk

2 Åbo Akademi University, Finland
{linas.laibinis,elena.troubitsyna}@abo.fi

3 Space Systems Finland
{Dubravka.Ilic,Timo.Latvala,Kimmo.Varpaaniemi}@ssf.fi

Abstract. Recently, Space Systems Finland has undertaken formal Event B de-
velopment of a part of the on-board software for the BepiColombo space mission.
As a result, lack of modularisation mechanisms in Event B has been identified as
a serious obstacle to scalability. One of the main benefits of modularisation is
that it allows us to decompose system models into components that can be inde-
pendently developed. It also helps to manage complexity of models that in the
industrial setting are usually very large and difficult to comprehend. On the other
hand, modularisation enables reuse of formally developed components in the for-
mal product line development. In this paper we propose a conservative extension
of Event B formalism to support modularisation. We demonstrate how our ap-
proach can support reuse in the formal development in the space domain.

1 Introduction

In the Deploy project [11], Space Systems Finland (SSF) has performed a pilot Event
B development [13] of a part of on-board software for the BepiColombo space mis-
sion [8]. The developed system is responsible for controlling the instruments producing
valuable scientific data critical for the success of the mission. The undertaken devel-
opment aimed at identifying the strengths and weaknesses of the Event B method and
its supporting tool – the RODIN platform [18]. The experience demonstrated that the
refinement approach provides a suitable design technique. It allows us to structure com-
plex requirements and promotes disciplined development via abstraction and proofs.
However, it has also became obvious that the lack of modularisation makes Event B
unscalable for formal development of industrial systems. In this paper we propose a
conservative extension of Event B language that supports a simple modularisation idea.

The idea of modules is very well known and is supported by most of the formal
frameworks. In its simplified form, a module interface can be defined via pre- and post-
conditions of the provided operations. However, in our case introducing preconditioned
operations in Event B was unacceptable due to two main reasons. Firstly, precondi-
tioned operations are not supported by the RODIN platform and building a new tool
of similar strength would require significant investments. Secondly, introduction of a

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 174–188, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Supporting Reuse in Event B Development: Modularisation Approach 175

preconditioned operation would seriously complicate the proof obligations required to
verify correctness and hence would lower the degree of automation in the develop-
ment. Therefore, our approach (a conservative extension of Event B) is strictly driven
by the pragmatic needs and oriented towards automation. We believe however that, by
enabling modular development in Event B, we not only improve scalability of formal
modelling but also potentially increase its productivity and reuse.

In this paper we briefly describe the on-board software as well as modelling expe-
rience gained by SSF. Then we present our proposal for introducing modularisation in
Event B and demonstrate how the system can be redeveloped in a modular fashion.

2 Challenges and Experiences in Formal Development of Onboard
Software

Spacecraft-embedded software – onboard software – is responsible for managing vari-
ous spacecraft operations. For instance, the controlling software is critical to the mere
survivability of a mission, while scientific software is responsible for correct and ef-
fective handling of high volume of data generated by scientific experiments. There-
fore, failure of onboard software can have major repercussions. Yet, onboard software
must withstand extreme conditions of the space environment and operate by using very
limited resources provided by hardware. It is clear that these factors make the design,
implementation and verification of onboard software very challenging.

Space Systems Finland (SSF) is one of software providers for the European Space
Agency mission BepiColombo [8]. The main goal of the mission is exploration of the
planet Mercury. The mission comprises various scientific studies, e.g., analysis of its
internal structure and surface, geological evolution etc. To achieve the defined scientific
goals, one of the mission orbiters will carry remote sensing and radioscience instrumen-
tation. SSF is responsible for developing software for an important part of the orbiter –
the data processing unit. The company has undertaken formal development [13] of it in
the Event B framework with the support of the RODIN platform [18].

The data processing unit (DPU) is used to control two scientific instruments: Solar
Intensity X-ray and particle Spectrometer (SIXS) that records the radiation from the
Sun, and Mercury Imaging X-ray Spectrometer (MIXS) that records fluorescent X-
rays from the planet surface. The system consists of three main software components:
the Core Software (CSW), the SIXS instrument application software, and the MIXS
instrument application software.

In general, the behaviour of the system consists of receiving telecommands (TC)
from the BepiColombo platform and producing corresponding telemetry data (TM).
CSW is responsible for validation of syntactical and semantical integrity of each re-
ceived TC. In particular, it checks that each TC adheres to the Telemetry and Telecom-
mand Packet Utilization standard [17]. If validation fails then the corresponding TM is
generated. Otherwise, a TC is placed in the pool of TCs waiting for execution.

We have constructed a formal system model in the RODIN platform. The resultant
specification has 20 variables, 61 events and 38 invariants. Additionally, the static data
structures (15 sets, 88 constants) are defined by formulating 207 axioms and 20 theo-
rems. The model text (apart from definition of the data structures) exceeds 40 pages.

176 A. Iliasov et al.

The modelling effort highlighted some of the shortcomings of Event B method when
building large-scale models:

– It is not clear how to reuse the conducted development in the similar projects;
– Lack of modularisation support hinders independent development of several sub-

systems – it is not obvious how spread the effort in a team of developers;
– Without decomposition(modularisation), a specification of even a relatively simple

realistic system becomes very large and difficult to comprehend.

There is a clear need for modularisation mechanisms in formal Event B development.
Next we discuss our proposal for such a mechanism.

3 Event B

In this section we introduce our formal framework – The B Method [2]. It is an approach
for the industrial development of highly dependable software. The method has been
successfully used in the development of several complex real-life applications. Recently
the B method has been extended by the Event B framework [3, 15], which enables
modelling of event-based (reactive) systems. In fact, this extension has incorporated the
action system formalism [5, 6] into the B Method.

The B Method development starts from creating a formal system specification. The
basic idea underlying stepwise development in B is to design the system implementation
gradually, by a number of correctness preserving steps called refinements.

A simple Event B specification has the following general form:

MACHINE AM
SEES Context
VARIABLES v
INVARIANT Inv
EVENTS
INITIALISATION = . . .
E1 = . . .
. . .
EN = . . .

END

Such a specification encapsulates a local state (program variables) and provides opera-
tions on the state. The operations (called events) can be defined as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), g is a state predicate, and S is
a B statement (assignment) describing how the program state is affected by the event.
In case when vl is empty, the event syntax becomes WHEN g THEN S END. Both
ordinary and non-deterministic assignments can be used to specify state change. The
non-deterministic assignments are of the form v : | Post(v,v′), where Post is the post-
condition relating the variable values before and after the assignment.

The events describe system reactions when the given WHEN or WHERE conditions
are satisfied. The INVARIANT clause contains the properties of the system (expressed

Supporting Reuse in Event B Development: Modularisation Approach 177

as predicates on the program state) that should be preserved during system execution.
The data types and constants needed for specification of the system are defined in a
separate component called Context.

4 Introduction to Modules in Event B

Our primary goal is to conservatively extend the Event-B language with a possibility
of (atomic) operation calls. Such an extension would naturally lead to the notion of
modules – components containing groups of callable operations. Moreover, modules
can have their own (external and internal) state and the invariant expressing properties
on this state. The important characteristic of modules is that they can be developed
separately and then composed with the main system during its formal development.
Since we are interested in incorporating modules into Event B modelling, it should be
also possible to statically check the correctness of such a composition.

Let us start with an “ideal” (somewhat extreme) example of a general Event B oper-
ation that we would like to be able to express in our formal language.

op =
WHEN Guard(v1 ,...,vN)

THEN

v1 : | ... op1 call(parameters1) ...

...

vN : | ... opN call(parametersN) ...

opN+1 call(parametersN+1)

...

opN+K call(parametersN+K)

END

Here opi call(...) are either function or procedure calls from available modules. A pro-
cedure call can be considered as special case of a function call (returning the void
value). Thus from now on we will focus only on modelling function calls in Event-B.

Once an enabled event is chosen for execution, all its actions are executed atomically
and in parallel. However, the standard semantics of a function call, realised in most
programming languages, prescribes the well-defined order of execution steps:

1. Actual parameter expressions are evaluated and passed to a module operation;
2. The operation is executed on the given parameters and the module state. The oper-

ation result is returned to the calling operation;
3. The actions of the calling operation are executed, substituting the function calls

with the returned results.

Moreover, the atomicity of an event operation with function calls should be preserved
– no other event operation of the main system can intervene in between. Our challenge
in this paper is to implement this standard functionality within the Event B semantics.

We split our task into two separate issues. First, we show how we can introduce
modules and function calls using model decomposition. Next, we assume availability

178 A. Iliasov et al.

of pre-defined modules and demonstrate correctness of our specification containing
module operation calls. The latter is a special case of verifying model composition.

4.1 Introducing Modules via Model Decomposition

In this paper we use the J.-R. Abrial’s approach on Event-B decomposition [4]. The
approach allows to split an Event B specification into several components (sub-models)
that can be developed separately. It also formally guarantees that the final re-composed
system will be a refinement of the original one.

The decomposition is based on partitioning the model operations among the new
components. The model variables are distributed as well, either as internal variables
belonging to some particular components, or as shared variables that can be accessed
by several components. To make the components self-contained, each of them is com-
plemented by special external events, abstractly modelling how the shared variables
may be modified by other components. The approach also restricts data refinement of
the shared variables to make the decomposed system consistent.

Let us start with a simple generic example of an Event B operation. We would like to
refine it so that it delegates (part of) its functionality to an external operation and then
uses the returned result. In other words, the operation refinement should be of the form:

op =
WHEN

Guard(v)

THEN

v : | Post(v,v’)

END

�

calling op =
WHEN

Guard’(v,ext)

THEN

v := Out Expr(v,Module op(In Expr(v,ext)))

END

where Post is the postcondition of the original event, In Expr(v,ext) is the actual pa-
rameter expression, Out Expr(...) is a state expression incorporating the result of the
operation call, and ext is the externally visible part of the module state.

We interpret the refined operation as a syntactic sugaring hiding the actual defini-
tion in terms of the current Event B language. The idea is to model a function call
by three events, simulating the three-step execution described above. Moreover, these
three events should be introduced in such a way that we could decompose the system by
distributing the system state and operations between the calling and called components.

The execution of a called module operation is abstractly modelled by Module op
presented below. Note that, in addition to calculating the result res, an operation call
can also update the module state ext. The execution of a module operation is wrapped
by two events of the calling component: call preparation, which passes parameters to
the module, and call finalisation, which incorporates the returned results.

The variables i flag and o flag (of the type 0..1) are used to enforce the fixed or-
der of execution between the main component and a module: first call preparation,
then Module op, and finally call finalisation. In addition, to guarantee atomicity of an

Supporting Reuse in Event B Development: Modularisation Approach 179

Module op =
WHEN

i flag �= o flag

THEN

ext,res : | M Post(pars,ext,ext’,res’)

o flag := 1-o flag

END

call preparation =
WHEN

Guard’(v,ext)

i flag = o flag

pars = NIL

THEN

pars := In Expr(v,ext)

i flag := 1-i flag

END

call finalisation =
WHEN

i flag = o flag

pars �= NIL

THEN

v := Out Expr(v,res)

pars := NIL

END

operation call, all the other operations of the calling component should be blocked un-
til call finalisation finishes. It can be achieved by correspondingly strengthening their
guards. Essentially, the above solution is a special case of the alternating bit protocol.

This refinement step also achieves partitioning the state and operations between com-
ponents. The variables res, o flag can be put into the future module component, while
pars, i flag,v belong to the main specification. Following the Abrial’s approach, we can
decompose the system by moving Module op into a separate module.

To prove operation refinement, we need to show the connection between the abstract
guard Guard and the strengthened guard Guard′, as well as the postcondition Post in the
main specification and the postcondition M Post of the module operation. Specifically,
the following two theorems should be proved as additional proof obligations:

Guard′(v,ext)∧M Inv(ext) ⇒ Guard(v)

M Post(In Expr(v,ext),ext,ext′, res)∧M Inv(ext) ⇒ Post(v,Out Expr(v, res))

where M Inv is the module invariant on its external state.

4.2 System Development via Model Composition

In the previous section we showed how we can delegate a part of functionality of the
main specification to a module by means of model decomposition. In practice, however,
we are more interested in the opposite – composing our systems by using a collection
of pre-defined modules.

180 A. Iliasov et al.

In our examples above, execution of a module operation was specified as a single
event. In general, a module implementation could contain many callable operations,
each of them consisting of a group of events. Demonstrating the correctness of a oper-
ation call would then become a non-trivial task.

Since Event B is a refinement-based formalism, the problem can be solved by ap-
plying the classical rules of program correctness, in particular, the correctness rules for
operation calls [10, 12]. Basically, following these rules, it is sufficient to show the re-
lationships between the pre- / postcondition of a operation call and the corresponding
pre- / postcondition of a module operation. Specifically, we need to prove that

Guard ∧ M Inv ⇒ M Guard

M Post ∧ M Inv ⇒ Post

where Guard, Post and M Guard, M Post specify respectively the calling and module
operations.

The pre- and postconditions of a module operation then become a part of the ex-
ternally visible module description, alongside with the external module variables and
invariant. Such an external description is called a module interface. An exact structure
of a module interface will be presented in the next section.

Let us recall the example from the previous section. However, this time the mod-
ule interface describing the module external state, invariant, and operation guards and
postconditions is available. Then it can be shown that the operation calling op is just a
syntactic sugaring for the following (provided that the above conditions on the guards
and postconditions are proved):

calling op =
ANY

ext’, res

WHERE

Guard’(v,ext)

M Post(In Expr(v,ext),ext,ext’,result)

THEN

v := Out Expr(res)

ext := ext’

END

The required sequence of parameter passing, external operation execution, and return-
ing of its results is now implicitly modelled by new local variables and their initilisation
in the operation guard.

The described approach essentially represents the substitution principle used in rea-
soning about operation calls and their correctness. However, the examples considered so
far are still pretty simple. In the next section we will discuss the structure and semantics
of modules and their interfaces in a general case.

Supporting Reuse in Event B Development: Modularisation Approach 181

5 Extending Event B with Modules

Our main objectives are to facilitate model reuse and enable concurrent development of
formal models. The interface concept plays a central role in achieving this. The intro-
duction of an operation call can be validated by considering only an interface descrip-
tion of a called operation. Symmetrically, an implementation of an operation does not
have to be aware of a possible context of an operation call since the validation is done
againts the requirements stated in the interface. In other words, a module interface al-
lows a module user to invoke module operations and observe module external variables
without having to inspect module implementation details.

In our approach, a module interface consists of external module variables (w), con-
stants (c), and sets (s), the external module invariant, and a collection of module opera-
tions, characterised by their guards and postconditions.

MODULE INTERFACE MI =
SEES Interface Context

VARIABLES w

INVARIANT M Inv(c, s, w)

OPERATIONS

res ← op1(par) =

GUARD M Guard1(c, s, par, w)

POSTCONDITION M Post1(c, s, par, w, w’, res’)

. . .

END

A module interface does not have an initialisation (it is provided by a module imple-
mentation) and there are no events. However, an interface still must satisfy certain con-
sistency conditions typical for Event B specifications – operation feasibility and preser-
vation of the module invariant:

M Inv(c,s,w)∧M Guard(c,s,p,w)⇒∃res′,w′ ·M Post(c,s,p,w,w′, res′) (1)

M Inv(c,s,w)∧M Guard(c,s,p,w)∧M Post(c,s,p,w,w′, res′)⇒M Inv(c,s,w′) (2)

Applicability of a module operation is typically specified by providing its precondition.
In our case, using guards instead of preconditions theoretically allows the operation
condition to be strengthened during refinement, which can lead to the operation becom-
ing no longer applicable. We avoid this problem by requiring that each interface specifi-
cation (essentially representing a single event) is separately refined by a group of events.
The Event-B condition on deadlock freeness prohibits introducing new deadlocks into
the system, thus effectively disallowing strengthening the disjunction of guards of such
event group. More about module implementation is explained in the next section.

A module development always starts with the design of an interface. Once an inter-
face is formulated and declared final it cannot be altered in any manner. This ensures
that an operation call context is recomposable with an operation implementation, pro-
vided by the last refinement step of a module body.

182 A. Iliasov et al.

5.1 Module Body

A module interface formally defines a collection of module operations. Obviously, it
should be complemented by the corresponding module body that provides a suitable
implementation for each operation. Since an Event-B specification has a flat structure,
there is a problem of relating an operation interface to a set of events implementing the
operation. To show correctness of a module implementation, we need a clear separation
between the events implementing different module operations.

The solution we are putting forward is based on an introduction of a simple specifi-
cation structuring mechanism. The events associated with a particular operation are put
together forming an event group. Several event groups make up a body of a module im-
plementation, one group for each operation interface. The defining property of an event
group is the following: once a control is passed to a group, the group runs till termi-
nation without interference from other groups. This allow us to formulate correctness
conditions by considering only an operation and its associated event group.

Events groups simply partition events of a machine. A module body defining a col-
lection of groups has the following structure:

MODULE M =
VARIABLES w

INVARIANT M Inv

GROUP group name 1

(events)

GROUP group name 2

(events) . . .

END

The name of a group must match the name of an operation interface definition. Each
operation interface is associated with one group and vice versa. The termination of an
event group corresponds to the one of an operation call. Events of a group also obey
the usual Event-B consistency and refinement conditions with an additional constraint
requiring that a refined event inherits a group membership from its abstract counterpart.

The pre- and postconditions of an operation interface define high-level requirements
to the behaviour of an event group. At least one event of an event group must be enabled
in the state described by the operation guard.

M Guard⇒ G1∨G2∨·· ·∨Gn (3)

Each of the events returning control back from an event group must satisfy the operation
postcondition and provide suitable return values.

Postev(w,w′, res′)∧¬(G1(w′)∨·· ·∨Gn(w′))⇒M Post(c,s,par,w,w′, res′) (4)

where Postev is the event postcondition. A divergent event group cannot be a proper
implementation of an operation. Therefore, In the first model realising a given interface
(that is, an abstract module implementation) all the event groups must be terminating.
The further refinement steps have to demonstrate the non-divergence of new events, as
it is done in a conventional Event-B development.

Supporting Reuse in Event B Development: Modularisation Approach 183

5.2 Operation Invocation

The syntactic shorthand for an operation invocation is a function call. The interpretation
behind such a shorthand is based on the interface attributes of an operation: its guard
and postcondition. We have already discussed a simple case with just one invocation.
However, our approach scales well to several invocations possibly containing complex
interlinks such as using the result of one operation call as a parameter for another.

The semantics of an operation call is given by the computation of an equivalent
statement that would be free from the call. Let us consider the following general case
of an event which action relies on an operation call:

E = WHEN G(v, w) THEN v : | Post(v, w, v’, op(a)) END

Here the predicate Post is the before-after predicate of the event E . It relates the current
model state v to the next state v′ and also, indirectly, via the operation call, the current
external module state w to the next state w′. The result of the operation call op(a) is
used in Post to constrain v′. The following rewrite rule replaces the operation call with
an equivalent characterisation based on the module interface pre- and postconditions:

E = ANY res, w’ WHERE M Inv(w) ∧ M Guard(par,w) ∧ M Post(par, w, w’, res))[a/par]

THEN
v : | Post’(v, w, v’,res)

w := w’

END

where M Inv(w) is the module invariant and M Pre and M Post are the guard and post-
condition of the operation op. The new postcondition Post′ is computed by replacing
all the occurrences of op invocations with the local variable res, constrained in the event
guard to possible return values of op.

Since there can be more than one such invocation, the rule has to be applied itera-
tively. The important point is the order in which invocations are eliminated. In a general
case, there is a causal link between calls because each subsequent call may observe side
effects of all the preceding calls. Another form of a causal link is passing the result of
an operation call as a parameter to another call. Once this ordering of calls is defined,
we apply the above rule iteratively. The result is the following syntactic translation. For
some event depending on a sequence of operation calls op1(a1), . . . ,opn(an)

E = WHEN G(v, w) THEN v : | Post(v, w, op1(a1), . . . , opn(an), v’) END

the corresponding (free of operation calls) translation is computed as follows:

E =
ANY res1, w′1 WHERE G(v, w)∧ call(1)[a1 / par1][osub(0)]

ANY res2, w′2 WHERE call(2)[a2, w′1/ par2, w2][osub(1)]

. . .

ANY resn, w′n WHERE call(n)[an, w′n−1/ parn, wn][osub(n-1)]

184 A. Iliasov et al.

THEN

w := w′n
v : | Post(v, par, op1(a1), . . . ,opn(an), v’)[osub(n)]

END

where [osub(k)] is the subsitution [res1, . . . , resk/op1(a1), . . .opk(an)], and call(k) stands
for M Inv(w)∧M Prek(wk,park)∧M Postk(park,wk,w′k, resk). Here Prek and Postk
are the pre- and post-conditions of the operation opk. A nested ANY construct is a syn-
tactic sugaring that may be reduced to a single ANY. More details on this may be found
in the Rodin deliverable on the Event-B language [15].

The expansion of operation calls into a plain Event-B notation reduces the problem
of operation call verification to conventional set of proof obligations generated for an
Event-B event. However, we are not proposing to do such conversion in practice –
this would undermine all the benefits provided by a syntactical representation of an
operation call. Instead, we rely on the expanded form to derive the proof obligations
neccessary to demonstrate event correctness. From practical view, a tool implementing
the operation call mechanism would do the operation call expansion as an intermediate
step prior to the generation of proof obligations.

6 Modularisation of the DPU Unit

This section presents an application of our modularization approach in Event B to model
one of the important DPU subsystems, responsible for TC validation.

The arrived telecommands should be validated (i.e., checked for syntactic and se-
mantic correctness of their fields) before they are forwarded to be executed. The core
software is responsible for syntactic (”early”) checking, while the telecommand target
software (which can be either the core software or application software) does more
thorough (”late”) semantical checking.

In the Event B specification, the validation stage of telecommand processing corre-
sponds to a group of events, covering different cases depending on the telecommand
type, the software component (process) it is targeted to, the current core software mode
etc. As a result of validation, the status of the processed telecommand is changed to
either Accepted or Rejected. Furthermore, the additional set variable Exclusive Rej is
updated in the case when the core software rejects the telecommand. The information
from Exclusive Rej is needed by the core software later – in the reporting phase.

One example of such validation events is given below. Reject Private TC Early is
an abstract event specifying the case when the received TC belongs to private (i.e.,
mission-specific) TC type and the core software is not in the operational mode (i.e., is
on standby or in the safe mode). As a result, the core software rejects the telecommand
and marks it as ”exclusively rejected”.

Many implementation details describing the validation process (especially the ac-
ceptance of TCs) are still missing and could be added in the later refinement steps.
However, we would like to move the whole group of validation cases into a separate
module (called Validation) and develop this module further independently. The case

Supporting Reuse in Event B Development: Modularisation Approach 185

Reject Private TC Early =
ANY tc handler WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

TCpool(tc handler) ∈ VALID TCS

Type of TC(TCpool(tc handler)) ∈ PRIVATE TC TYPES

CSW mode �= Operational

THEN

TC status(tc handler) := TC Rejected

Exclusive Rej := Exclusive Rej ∪ {tc handler}
END

analysis and application of concrete validation actions would happen then within the
Validation module. Therefore, we can specify the validation phase within a single op-
eration event containing a call to the operation Validate described in this module.

Validate op =
ANY tc handler WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

THEN

TC status(tc handler) := Validate(tc handler,CSW mode)

END

The parameters for calling the Validate operation are the TC being processed as well
the current core software mode. The returned result is the new status of the processed
TC. Please note the absence of the variable Exclusive Rej in the calling operation. The
reason for that is that we turn Exclusive Rej into an external variable of the new module.
The ”external” status would allow other components to read the current value of this
variable. The variable will be updated internally, when needed to record ”exclusive”
rejection. The additional module operation Remove Exclusive would allow the calling
component to remove tc handler from Exclusive Rej after it served its purpose (i.e., in
the reporting phase).

The following excerpt of the Validation module interface contains declaration of
the external module variable Exclusive Rej as well as the interfaces for the operations
Validate and Exclusive Remove.

MODULE INTERFACE Validation =
VARIABLES Exclusive Rej

INVARIANT

Exclusive Rej ⊆ TC ADDRESSES

186 A. Iliasov et al.

OPERATIONS

res1← Validate(tc handler,CSW mode) =

GUARD

tc handler∈dom(TCpool)

CSW mode ∈ MODES

TC status(tc handler)=TC Unchecked

POSTCONDITION

res1 ∈ {TC Accepted,TC Rejected}
tc handler∈Exclusive Rej’⇒ res1=TC Rejected

TC pool(tc handler)/∈VALID TCS⇒ tc handler∈Exclusive Rej’

Type of TC(TC pool(tc handler))∈ PRIVATE TC TYPES ∧
CSW mode�=Operational ⇒ tc handler∈Exclusive Rej’

res2← Exclusive Remove(tc handler) =

GUARD

tc handler ∈ Exclusive Rej

TC status(tc handler) = TC Rejected

POSTCONDITION

(res2 = TRUE)⇒ (Exclusive Rej’ = Exclusive Rej\{tc handler})

(res2 = FALSE)⇒ (Exclusive Rej’ = Exclusive Rej)

7 Conclusions

There are three major approaches to decomposition and modularisation. One is to iden-
tify a general theory that, once formally defined, would contribute to the main develop-
ment. For instance, a model realising a stack-based interpreter could be simplified by
considering the stack concept in isolation, creating a general theory of stacks and then
reusing it in the main development. Such an approach was investigated in, e.g., [9].

Another form of decomposition is based on splitting a system into a number of parts
and then proceeding with independent development of each part. At some point, the
model parts are recomposed to construct the overall final model. This decomposition
style often relies on the monotonicity of program refinement, although further con-
straints must be satisfied to ensure the validity of a recomposed model [1, 15, 7].

Finally, decomposition may be realised by hierarchical model structuring, where part
of a an overall system functionality is encapsulated in a self-contained modelling unit
embedded into another unit. Such an approach is conceptually close to a procedure
(function) call in programming languages. It helps to structure detailed models in a way
a system would be realised in software. This is the approach we have taken in this work.

In particular, we have proposed a pragmatic approach to supporting modularisation
in Event B. This work was motivated by the formal development conducted by Space
Systems Finland [13]. The analysis of the development has shown that the lack of modu-
larisation makes the approach unscalable. Yet the top-down development paradigm and

Supporting Reuse in Event B Development: Modularisation Approach 187

automated verification offer an attractive design platform. Our conservative extension
of Event B alleviates scalability problem while preserving all the benefits.

The proposed approach to modularisation can be seen as a special case of the ”shared
variables” type of decomposition by J.-R.Abrial [15]. Abrial aims at enabling decom-
position for distributed systems. In our case, the systems under construction are sequen-
tial, even though their functionality is distributed among several modules. Our goal was
to enable parallel development of several subsystems as well as reuse formally devel-
oped modules. Other proposals include the ”shared events” style decomposition for
distributed systems [7] as well as supporting event fusion in Event B [14]. However, all
these works offer more general and hence more difficult to implement alternatives for
modularisation.

Currently we are working on implementing our approach as a plug-in to the RODIN
platform. A prototype version of this plug-in is already available [16].

Acknowledgments

This work is supported by IST FP7 DEPLOY Project.

References

[1] Abadi, M., Lamport, L.: Composing Specifications. ACM Transactions on Programming
Languages and Systems 15(1), 73–132 (1993)

[2] Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
[3] Abrial, J.-R.: Extending B without Changing it. In: Proceedings of 1st Conference on the

B Method, Nantes, France, November 1996, pp. 169–191. Springer, Heidelberg (1996)
[4] Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of discrete

models: Application to event-b. Fundam. Inf. 77(1-2), 1–28 (2007)
[5] Back, R.: Refinement calculus, Part II: Parallel and reactive programs. In: de Bakker, J.W.,

de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer,
Heidelberg (1990)

[6] Back, R., Sere, K.: Superposition refinement of reactive systems. Formal Aspects of Com-
puting 8(3), 1–23 (1996)

[7] Butler, M.: Decomposition Structures for Event-B. In: Integrated Formal Methods (2009)
[8] Factsheet: BepiColombo. ESA Media Center, Space Science (15.01.2008),

http://www.esa.int/esaSC/SEMNEM3MDAF_0_spk.html
[9] Fitzgerald, J.: Modularity in Model-oriented Formal Specifications and its Interaction with

Formal Reasoning. University of Manchester, Ph.D. Thesis (1991)
[10] Gries, D., Levin, G.: Assignment and Procedure Call Proof Rules. ACM Transactions on

Programming Language Systems 2, 564–579 (1981)
[11] Industrial deployment of system engineering methods providing high dependability and

productivity (DEPLOY). IST FP7 project, http://www.deploy-project.eu/
[12] Martin, A.J.: A General Proof Rule for Procedures in Predicate Transformer Semantics.

Acta Informatica 20, 301–313 (1983)
[13] OBSW formal development in Event B,

http://deploy-eprints.ecs.soton.ac.uk/view/type/rodin=5Farchive.html
[14] Poppleton, M.: Decomposition Structures for Event-B. In: Proc. of ABZ 2008: Int. Confer-

ence on ASM, B and Z, London September 16-18 (2008)

http://www.esa.int/esaSC/SEMNEM3MDAF_0_spk.html
http://www.deploy-project.eu/
http://deploy-eprints.ecs.soton.ac.uk/view/type/rodin=5Farchive.html

188 A. Iliasov et al.

[15] Rigorous Open Development Environment for Complex Systems (RODIN). Deliverable
D7, Event B Language, http://rodin.cs.ncl.ac.uk/

[16] RODIN modularisation plug-in. Documentation,
http://wiki.event-b.org/index.php/Modularisation_Plug-in

[17] Space Engineering: Ground Systems and Operations Telemetry and Telecommand Packet
Utilization, ECSS-E-70-41A. ECSS Secretariat (30.01.2003), http://www.ecss.nl/

[18] The RODIN platform, http://rodin-b-sharp.sourceforge.net/

http://rodin.cs.ncl.ac.uk/
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://www.ecss.nl/
http://rodin-b-sharp.sourceforge.net/

Reasoned Modelling Critics:
Turning Failed Proofs into Modelling Guidance

Andrew Ireland1, Gudmund Grov2, and Michael Butler3

1 School of Mathematical & Computer Sciences, Heriot-Watt University,
Edinburgh, EH14 4AS, UK

A.Ireland@hw.ac.uk
2 School of Informatics, University of Edinburgh, Informatics Forum,

Edinburgh, EH8 9AB, UK
ggrov@inf.ed.ac.uk

3 School of Electronics & Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

mjb@ecs.soton.ac.uk

Abstract. The activities of formal modelling and reasoning are closely
related. But while the rigour of building formal models brings significant
benefits, formal reasoning remains a major barrier to the wider accep-
tance of formalism within design. Here we propose reasoned modelling
critics – a technique which aims to abstract away from the complexities
of low-level proof obligations, and provide high-level modelling guidance
to designers when proofs fail. Inspired by proof planning critics, the tech-
nique combines proof-failure analysis with modelling heuristics. Here, we
present the details of our proposal and outline future plans.

1 Introduction

The use of mathematical techniques for system-level modelling and analysis
brings significant benefits, as well as challenges. While the rigour of mathe-
matical argument can offer early feedback on design decisions, a key challenge
centres on how feedback derived from the analysis of complex proof obligations
(POs) can be used to improve design decisions. Such feedback currently requires
user intervention, drawing upon skilled knowledge of the subtle interplay that
exists between modelling and reasoning. For example, consider a simple cruise
control system with the safety requirement that the brakes (brake) cannot be on
while the cruise control (cc) is enabled. This can be formalised as the following
invariant:

cc = on⇒ brake = off

When the driver applies the brakes, i.e. brake := on it must be shown that the
safety requirement (invariant) is preserved, creating a PO of the form:

brake = off, cc = on � on = off

Note that this PO is false. An (unsafe) solution to this failure would be to restrict
the application of the brakes via a guard, i.e. only allow the brakes to be applied

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 189–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

190 A. Ireland, G. Grov, and M. Butler

when the cruise control is disabled (cc = off). Clearly, the desirable solution
requires the introduction of an auto disable mechanism, i.e. the cruise control
is disabled if the brakes are applied (cc := off; brake := on). While the two
alternatives do not represent a significant burden to a designer, in general many
solutions may arise from proof-failure analysis. In order to make good use of a
designer’s time, modelling heuristics are needed in order to rank the alternatives.

This need for both proof and modelling heuristics is central to our proposal.
We aim to identify common modelling and reasoning patterns, and use these to
abstract away from complex POs. This will enable us to automatically provide
designers with high-level decision support oriented towards modelling choices.
In turn this will increase the productivity of designers as well as the accessibility
of formal modelling tools. We plan to implement our proposal through what we
call reasoned modelling critics.

A key inspiration for our proposal is proof planning, a technique for automat-
ing the search for proofs through the use of high-level proof outlines, known
as proof plans [6]. Central to proof planning is its proof-failure analysis and
proof patching capabilities [10]. Our proposal aims to build directly upon these
features. Specifically by combining the proof-failure analysis capabilities with
modelling heuristics we aim to automatically generate modelling guidance. Our
longer term aim is to combine the proof plan representation with a complemen-
tary notion of modelling patterns, which we call reasoned modelling methods.
This, combined with reasoned modelling critics, are the building blocks of our
notion of reasoned modelling: the study of the interplay between reasoning and
modelling.

While our vision is generic, our starting point is Event-B, which we motivate
and introduce together with proof planning in §2. §3 outlines the reasoned mod-
elling critics mechanism and shows its application through examples. We discuss
related and future work in §4 and conclude in §5.

2 Background

Event-B and the Rodin toolset: Event-B provides a formal framework for
modelling discrete complex systems [1], and is mechanized through the Rodin
toolset [2]. Event-B promotes an incremental style of formal modelling, where
each step of a development is underpinned by formal reasoning. As a result, there
is strong interplay between modelling and reasoning and this is partly supported
by the Rodin toolset. This interplay requires skilled user interaction, i.e. typi-
cally a user will analyse failed proofs, and translate the analysis by hand into
corrective actions at the level of modelling. This is exemplified in e.g. [1,8]. Typ-
ical corrective actions include strengthening invariants and guards or modifying
actions. Our aim is to provide high-level decision support, by automating the
generation, filtering and ranking of modelling suggestions. Event-B models and
POs are closely aligned [1], whilst Rodin [2] is an extensible framework. Event-B
and the Rodin toolset thus represent a unique opportunity for us to investigate
reasoned modelling.

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 191

We will use the term models for both Event-B contexts (the static part) and
machines (the dynamic part). We will only use the basic features of Event-B
and use standard notation:

EVENT 〈name〉 =̂ BEGIN 〈general substitution〉 END
EVENT 〈name〉 =̂ WHEN 〈guard〉 THEN 〈general substitution〉 END

where the event is only executed when the guard holds. Moreover, we use the
term action for the generalised substitution, while INITIALISATION is a special
event without guards defining the initial state.

Proof planning and proof critics mechanism: Proof planning builds upon
the tactic-based tradition of theorem proving, where primitive proof steps are
packaged-up into programs known as tactics. Starting with a set of general pur-
pose tactics, plan formation techniques are used to construct a customised tactic
for a given conjecture. The search for a customised tactic is constrained by a set
of methods, collectively known as a proof plan. Using preconditions, each method
specifies the applicability of a general purpose tactic. Having explicit precondi-
tions provides insights when proof planning fails. The proof critics mechanism
[10] enables “interesting” failures at the level of precondition evaluation to be
represented. For a given method a number of critics will typically exist. Each
critic represents an alternative generic proof patch, e.g. conjecture generalisa-
tion. The analysis of a specific failure, and subsequent proof planning, provides
guidance in the selection and instantiation of a generic proof patch. In Fig 1 we
present a method and critic. These are deliberately simple – their role is to illus-
trate the basic critics mechanism. Proof patching has been applied successfully
to the problems of inductive conjecture generalisation and lemma discovery [5],
as well as loop invariant discovery [11]. Proof critics have also been developed
for abductive reasoning, i.e. the speculation of hypotheses in order to explain
a consequence, and applied to the problem of patching faulty conjectures [12].
The proof critics mechanism provides the starting point for reasoned modelling
critics. Moreover, in terms of exploiting existing critics, we see the work on
abduction playing an important role in our reasoned modelling critics.

3 From Proof Critics to Reasoned Modelling Critics

As described above, our reasoned modelling critics will extend the existing proof
critics mechanism. This extension will involve two key components:

1. Firstly, in order to combine proof and modelling, our new critics need access
to models as well as POs. In addition, critics will now have the option of
providing modelling guidance, as well as proof patches.

2. Secondly, both methods and critics are associated with preconditions. We
need to extend the meta-language of critics to allow us to represent precon-
ditions which specify modelling heuristics.

192 A. Ireland, G. Grov, and M. Butler

method (rewrite)
INPUT: Δ � G
PRECONDITIONS:

1. exp at(G, Pos, L)
2. rewrite rule(C ⇒ L :⇒ R)
3. provable(Δ � C)

EFFECTS:
replace at(Pos, R, G, NewG)

OUTPUT:
[Δ � NewG]

critic (casesplit)
INPUT: POs
PRECONDITIONS:

1. ∃ failed po ∈ {〈rewrite, , PO〉 ∈ POs|
failed proof(PO)}.
failed po = 〈 , P re, 〉

2. 〈 exp at(, ,),
rewrite rule(C ⇒ :⇒),
fail 〉 ∈ Pre

PATCH:
insert casesplit(C, PO)

The meta-predicates used above are defined in Fig 3. Note that Δ denotes a list of
hypotheses, while G and NewG denote single goal formula. Note also the use of Prolog
meta-variables, in particular the use of “ ” for anonymous variables. The scope of
meta-variables extends across all slots of the method and critic schemas.

Methods: A method takes as input a PO. The applicability of a method is de-
termined by evaluating its associated preconditions. In the case of our example
method, i.e. rewrite, there are three preconditions, i.e. i) there exists an expres-
sion L at position Pos within the goal G, ii) there exists a rewrite rule such that
L matches the left-hand side of the rule, and iii) any condition C attached to
the rule is provable within the proof context. If the preconditions of a method
succeed, then the output POs (potentially empty) are computed via the effects
slot. In the case of rewrite, the effects slot applies the selected rule, i.e. the
expression at position Pos within the goal G is replaced by R (rule right-hand
side) giving rise to new goal NewG from which the output PO is constructed.

Critics: During proof planning, both the success and failure (fail) of a method’s
preconditions are recorded. In particular, when a method fails a set of partial
instantiations of the preconditions are associated with the PO. In the casesplit
critic above, this set is denoted by Pre. The critics mechanism uses Pre to search
for patchable exceptions to the method. If the pattern represented by a given
critic’s preconditions matches with a recorded failure pattern then the associated
patch is applied. This is illustrated above where the casesplit critic associates
the failure (fail) of precondition 3 of the rewrite method with a casesplit patch.
In general, a critic may require multiple failures in order to trigger a patch. In
this way, critics can apply both local and global proof-failure analysis.

Fig. 1. An example proof method and critic

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 193

critic (name)
INPUTS:

PO SET POs
MODEL SET Ms

PRECONDITIONS:
precondition 1
...
precondition N

OUTPUTS:
PATCH proof patch (optional)
GUIDE modelling guidance (optional)

The above schema represents our proposed refinement to the proof critic schema:

– The INPUT slot has been extended to include models, as well as proof obliga-
tions. Note that the schema allows for a critic to access multiple models. As a
consequence, critics can be developed that consider the internal consistency of
individual models as well as refinements and decompositions.

– The declarative PRECONDITIONS determine the applicability of the critic.
Preconditions have access to proof obligations as well as models.

– The OUTPUT slot has been extended to include modelling guidance (GUIDE),
as well as proof patches (PATCH). While proof patches are automatically applied,
it is envisaged that modelling guidance will be communicated to the designer so
as to inform their decision making.

As with the original proof critics mechanism, the output slot becomes instantiated
as a side-effect of the instantiation of the input and precondition slots.

Fig. 2. Reasoned modelling critic schema

To support access to models and modelling guidance, an extended critic schema
will be required. Our proposed extension is described in Fig 2. In order to illus-
trate the new schema and the kind of meta-language extensions we propose for
reasoned modelling, we develop below some critics and show their application to
simple control system problems.

3.1 Guidance for Invariant Proof Failures via Local Analysis

Typically, a proof failure arising from an inconsistency in a model may be over-
come in a number of ways. For example, consider an invariant which takes the
form of an implication, i.e. X ⇒ Y . If a corresponding invariant proof fails, then
the failure may be overcome by revising the model so that either,

1. X is false, or
2. Y is true.

At the level of modelling these effects can be achieved by changing the guards
or actions associated with the invariant proof, or the invariant itself. Here we

194 A. Ireland, G. Grov, and M. Butler

disjoint sub(S1, S2) b= dom(S1) ∩ dom(S2) = ∅

failed proof(P) b= “P is a PO which is provably false or
has failed to be proven”

provable(P) b= “P is a PO that is provable”
max(A) b= ε x. (x ∈ A ∧ ∀y ∈ A. y ≤ x)
exp at(X, Y, Z) b= “Z is the subexpression at position Y within

expression X”
rewrite rule(X ⇒ Y :⇒ Z) b= “A conditional rewrite rule”
pri var(V, M) b= “Priority of variable V within model M”
priority(S, M) b= max({pri var(v, M) | v ∈ dom(S) })
replace at(W, X, Y, Z) b= “Z is obtained by replacing the subexpression

at position W within Y by X”
sub2act({V
→ D}) b= V := D
sub2act({V1
→ D1, · · · , Vn
→ Dn}) b= sub2act({V1
→ D1}) || · · · || sub2act({Vn
→ Dn})
sub2grd({V
→ D}) b= V = D
sub2grd({V1
→ D1, · · · , Vn
→ Dn}) b= sub2grd({V1
→ D1}) ∧ · · · ∧ sub2grd({Vn
→ Dn})
guards(E) b= “Conjunction of guards of event E”
sat(P) b= “The predicate P is satisfiable”
generalisable(H) b= ∃r, e1, e2, g1, g2. 〈e1, g1〉 ∈ H ∧ 〈e2, g2〉 ∈ H

∧ e1 �= e2 ∧ r ⇒ g1 ∧ r ⇒ g2 ∧ sat(r)
generalise(H) b= “The weakest r such that sat(r) and for the

most 〈e, g〉 ∈ H, r ⇒ p (for at least 2 events)”
add guard(G, E, M) b= “Adds guard G to event E of model M”
add action(A, E, M) b= “Adds action A to event E of model M”
add invariant(I, M) b= “Adds invariant I to model M”
insert casesplit(C, P) b= “Progress the proof of P by a casesplit on X”

Note that S denotes a substitution, while H denotes a set of event-guard pairs.

Fig. 3. Meta-terms for reasoned modelling critics

focus on local changes to an event, i.e. changes to guards and actions, and delay
the discussion of global analysis and invariant changes until §3.3. In general,
proof-failure analysis will generate a large number of proof patches. But not all
proof patches will make sense in terms of modelling. To address this problem we
wish to exploit modelling knowledge in order to rank the proof patches that are
offered as guidance. To achieve this we envisage designers providing meta-data
in addition to their models. The preconditions of our new critics can then exploit
modelling heuristics as well as proof-failure heuristics.

To illustrate this idea, we develop two critics below. Each critic targets a
different pattern of invariant proof failure, as outlined above. In addition, the
critics exploit a notion of variable priority – which is based upon the observation
that not all variables within a model may carry equal importance. Crucially, such
“meta-data” must be supplied by the designer. For example, being able to brake
is clearly more important than driving with the cruise control enabled. This
notion of priority can be expressed as a heuristic, and used to rank or even filter
modelling suggestions. Informally, where proof-failure analysis suggests that the

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 195

critic (priority action speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.

failed po = 〈M, E, /INV, (Δ, X ⇒ Y � σ(X ⇒ Y))〉
2. ∃τ ∈ sub. disjoint sub(τ, σ) ∧ provable(Δ � (τ ∪ σ)X ⇒ false)
3. priority(τ, M) < priority(σ, M)

OUTPUTS:
GUIDE add action(sub2act(τ), E, M)

Note that sub denotes the set of all substitutions, and elements of PO SET are
quadruples, i.e. model identifier, event identifier, PO label/type, and PO. Note also
that the scope of the quantification extends across the critic slots.

Fig. 4. A reasoned modelling critic based on a priority heuristic to modify an action

value of a variable should be changed within the context of a given event, we
adopt the following heuristics:

H1: If the priority of the candidate variable is lower than the priorities of all
the variables updated by the event, then it is strongly suggestive that the
change should be achieved via a new action.

H2: If the priority of the candidate variable is higher than the priorities of all
the variables updated by the event, then it is strongly suggestive that the
change should be achieved via a new guard.

Where priorities are the same, no ranking of the alternatives will be provided.
We represent heuristics H1 and H2 as critics in Fig 4 and Fig 5 respectively.
The meta-logical terms that appear within the preconditions of these critics
are defined in Fig 3. Note that meta-logical predicates, such as priority, require
input from designers, as mentioned above. Both critics are applicable where an
invariant proof has failed, and specifically where the invariant takes the form of
an implication. We focus on solutions that involve the addition of either guards
or actions, where guards are restricted to equalities. Later we discuss how these
basic critics could be generalised.

The critic representing H1 (Fig 4) has three preconditions. The first precondi-
tion holds if there exists a PO of the required form that has failed to be proved,
i.e. an invariant PO of the form X ⇒ Y , which is associated with the event E
where substitution σ represents the actions corresponding to E. The second pre-
condition holds if there exists a substitution (τ) which falsifies the antecedent,
where τ and σ are disjoint. The third precondition expresses a modelling con-
straint, i.e. the variable(s) introduced by the new substitution have lower priority
than the variable(s) updated by the existing actions. If the preconditions hold,
then the guidance provided takes the form of a guard – constructed from τ .

196 A. Ireland, G. Grov, and M. Butler

critic (priority guard speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃failed po ∈ {〈 , , , PO〉 ∈ POs | failed proof(PO)}.

failed po = 〈M, E, /INV, (Δ, X ⇒ Y � σ(X ⇒ Y))〉
2. ∃τ ∈ sub. disjoint sub(τ, σ) ∧ provable(Δ � (τ ∪ σ)Y)
3. priority(σ, M) < priority(τ, M)

OUTPUTS:
GUIDE add guard(sub2grd(τ),E, M)

Fig. 5. A reasoned modelling critic based on a priority heuristic to modify a guard

The critic representing H2 (Fig 5) again has three preconditions, but illus-
trates a slightly different failure analysis pattern. That is, instead of making the
antecedent false, the analysis tries to make the consequent true. Note that the
third precondition ensures that the variable(s) introduced by the new substitu-
tion are of a higher priority than the variable(s) updated by the existing actions.
Here the guidance provided takes the form of an action – constructed from τ .

3.2 The Cruise Control System in Event-B

To illustrate the application of critics introduced above, we will first formalise
in Event-B the cruise-control system that was outlined in §1. Recall that the
status of the brakes is represented by a variable brake, while the status of the
cruise control is represented by the variable cc. Both variables are of type Val =
{on, off}, where on �= off. The variable brake is on if the user currently presses
the brake (pressbrake), and off otherwise. While the variable cc is on if the
cruise control is enabled (enable cc), and off otherwise. The system invariant is
represented as follows:

inv1 : cc = on⇒ brake = off

and initially both variables are off :

INITIALISATION =̂ BEGIN brake := off || cc := off END

We assume that the following priority relationship between the variables has
been specified by the designer:

pri var(cc, cruise-control) < pri var(brake, cruise-control)

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 197

critic (priority guard speculation)
INPUT

PO SET pos
MODEL SET { cruise-control }

PRECONDITIONS:
1. 〈cruise-control, enable cc, inv1/INV, po〉 ∈ pos ∧

po =
(
cc = on ⇒ brake = off � {cc
→ on}(cc = on ⇒ brake = off)

) ∧
failed po

(
(cc = on ⇒ brake = off � brake = off

)
2. disjoint sub({brake
→ off}, {cc
→ on}) ∧

provable
(
cc = on ⇒ brake = off � {brake
→ off, cc
→ on}(brake = off)

)
3. priority({cc
→ on}, cruise-control) < priority({brake
→ off}, cruise-control)

OUTPUTS:
GUIDE add guard(brake = off, enable cc, cruise-control)

Fig. 6. An instantiation of the ‘priority guard speculation’ critic

Failure and modelling suggestion 1: The model contains events that control
the brakes and cruise control. The consistency proofs of invariant inv1 over these
events fails in two cases. Firstly, the event to enable the cruise control is defined
as follows:

EVENT enable cc =̂ BEGIN cc := on END

This gives rise to the following proof obligation:

cc = on⇒ brake = off � {cc �→ on}(cc = on⇒ brake = off)

which can be reduced to the unprovable goal:

cc = on⇒ brake = off � brake = off.

However, the preconditions of the ‘priority guard speculation’ critic given in Fig 5
hold, and an instantiation of this critic for this example is shown in Fig 6 (after
some simplification and unfolding). This instantiation suggests the addition of a
new guard of the form brake = off. If the suggestion is accepted by the designer,
then the updated event takes the form:

EVENT enable cc =̂ WHEN brake = off THEN cc := on END

Failure and modelling suggestion 2: The second failure with respect to inv1
occurs when a driver presses the brakes, as defined by the event:

EVENT pressbrake =̂ BEGIN brake := on END

This creates the following proof obligation:

cc = on⇒ brake = off � {brake �→ on}(cc = on⇒ brake = off)

198 A. Ireland, G. Grov, and M. Butler

critic (priority action speculation)
INPUT

PO SET pos
MODEL SET { cruise-control }

PRECONDITIONS:
1. 〈cruise-control, pressbrake, inv1/INV, po〉 ∈ pos ∧

po =
“
cc = on ⇒ brake = off � {brake
→ on}(cc = on ⇒ brake = off)

”
∧

failed po((cc = on, brake = off � false)
2. disjoint sub({cc
→ off}, {brake
→ on}) ∧

provable
“
cc = on ⇒ brake = off � {brake
→ on, cc
→ off}((cc = on) ⇒ false)

”
3. priority({cc
→ off, cruise-control) < priority({brake
→ on}, cruise-control)

OUTPUTS:
GUIDE add action(cc := off, pressbrake, cruise-control)

Fig. 7. An instantiation of the ‘priority action speculation’ critic

which, when simplified, becomes false:

cc = on, brake = off � false.

In this case the ‘priority action speculation’ critic given in Fig 4 triggers, and
Fig 7 shows the corresponding instantiation. As a result, the following updated
pressbrake event is suggested to the designer:

EVENT pressbrake =̂ BEGIN brake := on || cc := off END

Generalisations of the critics: An alternative definition of the invariant is

inv2 : brake = on⇒ cc = off

which is the contrapositive of inv1. To keep our presentation as simple as possible,
our critics will not trigger on POs arising from inv2. However, this limitation
could be overcome by generalising the failure analysis, i.e. allowing the critics to
consider the alternatives of falsifying an antecedent and validating a consequent.
This could be achieved by changing precondition 2 as follows:

provable
(
Δ � (τ ∪ σ)X ⇒ false

) ∨ provable
(
Δ � (τ ∪ σ)Y

)
Another limitation is that currently we only consider the addition of guards
that take the form of equalities. The ‘priority guard speculation’ critic could
be extended to capture a more general notion of a guard. However, this would
require a new notion of priority, which is currently not defined for arbitrary terms
(only variables and substitutions). Finally, global consistency issues have been
ignored. When an action is modified, the validity of other invariants may change,
or a deadlock may arise. The critics should be updated with such consistency
checks. Depending on how global analysis is dealt with – as discussed below –
the ‘priority action speculation’ critic of Fig 4 may have to also include such a
consistency predicate.

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 199

3.3 From Local to Global Modelling Suggestions

As mentioned earlier, we envisage that our critics will support global analy-
sis, as well as the local analysis illustrated via the cruise control example. For
instance, when attempting to prove the internal coherence of a machine, local
analysis may suggest the need to add guards across multiple events. Taking a
more global perspective, these local suggestions may reveal a more general mod-
elling suggestion. For instance, if a formula can be found that is logically weaker
than all the suggested guards, then the formula could be suggested as a new
invariant.

A concrete example of this kind of global analysis is found in Abrial’s ‘Cars on
a Bridge’ example [1]1. In this example a single-laned bridge between an island
and the mainland is modelled. Since it is single-laned, cars can only travel in a
given direction at a given time – and this is controlled by two traffic-lights: ml tl
is the traffic light on the mainland; and il tl is the traffic light on the island. The
lights can have two colours – green and red – and it is assumed that green �= red.
Our discussion will focus on two events: IL out, where cars enter the bridge from
the island; and ML out, where cars enter the bridge from the mainland. Without
giving all the details2, two different invariant proofs fail for these events. The
corresponding POs have the following form:

. . . , il tl = green � σ1(ml tl = green⇒ . . .) where ml tl /∈ dom(σ1) (1)
. . . ,ml tl = green � σ2(il tl = green⇒ . . .) where il tl /∈ dom(σ2) (2)

A local analysis of each of these failures suggests making the antecedent false,
by finding a substitution τ such that:

disjoint sub(τ, σ{1,2}) ∧ provable(Δ � (τ ∪ σ{1,2})X ⇒ false)

In (1), τ will be instantiated to {ml tl �→ red} while in (2), τ will be instantiated
to {il tl �→ red}. However, there is a common solution to these failures. Firstly,
we assume that the substitutions are turned into guards (by sub2grd). Now, if
an event is constrained by the guards G1, · · · , Gn, then adding an additional
guard Gn+1 to patch a failure is equivalent to adding the weaker guard G1 ∧
· · · ∧ Gn ⇒ Gn+1 (via modus ponens). Thus the suggested additional guards
can be “weakened” in this way with the existing guards of the events. For this
particular example, we ignore all guards except those shown in (1,2) – the other
guards are irrelevant for this failure. For example, from (1) the guard ml tl = red
is derived and “weakened” to give il tl = green ⇒ ml tl = red. We then try to
find a common solution for (1,2), i.e. an r such that:

r ⇒ il tl = green⇒ ml tl = red
r ⇒ ml tl = green⇒ il tl = red.

1 The example is modified slightly with respect to types.
2 These details can be found in [1] and http://www.event-b.org.

http://www.event-b.org

200 A. Ireland, G. Grov, and M. Butler

Moreover, we require that r is satisfiable, i.e. the trivial solution r = false is not
considered. The only valid such generalisation r (modulo equivalences) is:

il tl = red ∨ml tl = red

which is suggested as an invariant. This represents a key safety requirement –
at all times at least one traffic-light is red.

critic (multiple failure invariant speculation)
INPUTS:

PO SET POs
MODEL SET {M}

PRECONDITIONS:
1. ∃h ⊆ hs. h={〈E,G〉 | ∃po ∈ pos. 〈 , E, /INV, po〉∈POs ∧ failed proof(po)

∧ po = (Δ, X ⇒ Y � σ(X ⇒ Y))
∧ ∃τ ∈ sub. disjoint sub(τ, σ) ∧ provable(Δ � (τ ∪ σ)X ⇒ false)
∧ G = guards(E) ⇒ sub2grd(τ) }

2. generalisable(h) ∧ ∃i ∈ forms. i = generalise(h)
OUTPUTS:

GUIDE add invariant(i, M)

Note that hs denotes the set of all event-guard pairs, while pos and forms denote
the sets of all proof obligations (sequents) and formulae respectively.

Precondition 1 holds if a local analysis suggests that proof failures can be
overcome by the introduction of additional guards.

Precondition 2 holds if the suggested guards can be generalised to give an
invariant.

Fig. 8. A global reasoned modelling critic suggesting an invariant from multiple failures

With regards to realizing such global reasoning, we are considering two distinct
alternatives via our proposed critic schema:
1. Combine both local and global analysis of the available POs within a single

critic, as illustrated in Fig 8.
2. Firstly use critics to perform local analysis of the available POs, recording

any modelling suggestions. Secondly, use separate critics to perform a global
analysis, exploiting the results of the local analysis.

From a scientific point of view, the approaches are not very different – and should
be seen more as an implementation issue. Experimentation will be required in
order to determine the most practical approach.

4 Related and Future Work

Our notion of reasoned modelling represents a new paradigm for exploring the
interplay between reasoning and modelling. As evident from the above discus-
sion, our general ideas on reasoned modelling are strongly influenced by the proof

Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance 201

planning paradigm [6], while the particular work discussed here follows from the
notion of proof critics [10]. Currently, Event-B users have to manually analyse
failed proof attempts and patch their models, e.g. [1,8]. This form of user inter-
action represents a significant barrier to the accessibility of the Event-B toolset.

Previously, the application of design patterns [9] has been suggested for Event-
B [3]. The ability to reuse design patterns, and their associated proofs, has ob-
vious benefits over the conventional notion of design patterns. Our work with
failure-analysis is more closely aligned with anti-patterns [4], i.e. common pat-
terns of bad design, coupled with solutions. Bad design, however, does not neces-
sarily mean incorrect design – i.e. the POs may still be provable. For this reason
the failure-driven nature of the critics presented here differ from the conven-
tional notion of an anti-pattern. Another related area is ontology repair plans
[7] – proof failure is explored using proof planning techniques to repair ontologies
– i.e. proof planning is used to describe evolving models.

In terms of future work, our short-term aim is to prototype and further develop
the proposal presented here – in particular, investigate modelling heuristics in
addition to variable priorities. This will involve developing a plug-in for the Rodin
toolset. The core of this plug-in will most likely be implemented in Prolog or
Ocaml, both of which are well suited to the development of automated reasoning
techniques. In terms of proof, we will initially rely on the existing Rodin theorem
provers. However, in the longer term we aim to incorporate a proof planner. This
will enable us to also develop critics that analyse successful proofs and provide
guidance along the lines of conventional anti-patterns.

5 Conclusion

We have motivated the need to abstract away from the complexities of proof
obligations and proof-failure analysis. To address this need, we have proposed a
technique of proof management that attempts to turn proof-failure analysis into
modelling guidance via reasoned modelling critics. In doing so we aim to increase
the productivity of designers as well as the accessibility of formal modelling.
Our technique builds upon proof planning and, in particular, proof critics. The
proposal differs from previous work in that it provides a uniform framework in
which proof-failure heuristics can be combined with modelling heuristics. It is
this combined approach that will enable us to abstract away from the complexity
of proof obligations. While our initial critics have focused on variable priorities,
our framework will be extensible, allowing designers to record meta-data relating
to other kinds of modelling decisions. A prototype in the form of a Rodin plug-
in is currently under development, this will enable us to empirically test and
further develop our technique.

Acknowledgements. This research is supported byEPSRCgrants EP/F037058
and EP/E005713. Butler’s involvement is part of the EU research project
ICT 214158 DEPLOY (www.deploy-project.eu). Our thanks go to Alan Bundy,

www.deploy-project.eu

202 A. Ireland, G. Grov, and M. Butler

who motivated the use of variable priorities. Thanks also go to Jean-Raymond
Abrial, Cliff Jones, Ewen Maclean and Maria Teresa Llano Rodriguez for their
feedback and encouragement with this work. Finally we thank the three anony-
mous ABZ 2010 reviewers for their constructive feedback.

References

1. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2009) (To be published)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool
Environment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 588–605. Springer, Heidelberg (2006)

3. Abrial, J.-R., Hoang, T.S.: Using Design Patterns in Formal Methods: An Event-B
Approach. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 1–2. Springer, Heidelberg (2008)

4. Brown, W., Malveau, R., McCormick, H.W.S., Mowbray, T.: AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Chich-
ester (1998)

5. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, Cambridge (2005)

6. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, R.,
Overbeek, R. (eds.) CADE 2009, pp. 111–120. Springer, Heidelberg (1988)

7. Bundy, A., Chan, M.: Towards ontology evolution in physics. In: Hodges, W., de
Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS (LNAI),
vol. 5110, pp. 98–110. Springer, Heidelberg (2008)

8. Butler, M., Yadav, D.: An Incremental Development of the Mondex System in
Event-B. Formal Aspects of Computing 20(1), 61–77 (2008)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

10. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 178–189. Springer, Heidel-
berg (1992)

11. Ireland, A., Stark, J.: Proof Planning for Strategy Development. Annals of Math-
ematics and Artificial Intelligence 29(1-4), 65–97 (2001)

12. Monroy, R., Bundy, A., Ireland, A.: Proof Plans for the Correction of False Con-
jectures. In: Pfenning, F. (ed.) LPAR 1994. LNCS (LNAI), vol. 822, Springer,
Heidelberg (1994)

Applying the B Method for the Rigorous
Development of Smart Card Applications�

Bruno Gomes1, David Déharbe1, Anamaria Moreira1, and Katia Moraes2

1 Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
{bruno,david,anamaria}@consiste.dimap.ufrn.br

2 Petróleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ, Brazil
katikaka@yahoo.com.br

Abstract. Smart Card applications usually require reliability and se-
curity to avoid incorrect operation or access violation in transactions
and corruption or undue access to stored information. A way of reaching
these requirements is improving the quality of the development process
of these applications. BSmart is a method and a corresponding tool de-
signed to support the formal development of the complete Java Card
smart card application, following the B formal method.

1 Introduction

Smart card applications are present in our everyday life in a wide range of
sectors such as banking and finance, communication, Internet, public transport,
health care, etc. These applications are stored in a resource constrained device
and usually manage confidential information, such as bank account data, the
medical history of a patient or user authentication data.

Java Card [1] is a version of the Java platform with a restricted API and
Virtual Machine optimized for smart cards and other memory and processor
constrained devices. The Java Card developer can benefit from most of the Java
features, such as portability, type-safe language, object oriented development,
and the available tools.

To prevent undesirable behavior and to avoid security violations, it is helpful
to improve the quality of the smart card development process with the adoption
of rigorous software engineering process, methods and tools, to ensure that the
final product is in conformance with the specified requirements.

The BSmart project aims to contribute with a method and its corresponding
tool support which support the formal development of Java Card application
services through a development process that starts from a platform independent
B Specification of these services (i.e., a specification where Java Card character-
istics are not specified). The application installed on card, which contains the

� This work was partially supported by the National Institute of Science and Tech-
nology for Software Engineering (INES) www.ines.org.br, funded by CNPq grant
573964/2008-4 and by CNPq grant 553597/2008-6. The author Bruno Gomes is sup-
ported by a doctoral degree scholarship from CNPq.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 203–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

204 B. Gomes et al.

implementation of the services accessed by the client, is developed following a
customized B refinement/implementation process of the initial specification. For
the client (host application) we provide the generation of an API to commu-
nicate with the applet that takes care of all the work related with Java Card
protocol aspects and transparent Java/Java Card data coding/encoding.

Previous work [2] [3] introduced the basic structure of the BSmart method.
Its tool support has been also presented as a short paper in [4]. Here we describe
the work current stage, including the API generation for the host side and the
developed library machines that may be used in the process of specification,
verification and code generation of these applications. With respect to these
previous works, the current paper contributes with a more complete support
and formalization.

This paper is organized as follows. The Section 2 introduces the Java Card
system and its applications. An overview of the process is presented in Section 3.
The host API generation and the development of the card application are dis-
cussed respectively in Sections 4 and 5. The tool support and the developed
libraries are subject of the Section 6. Finally, in Section 7 we present some final
considerations and related work.

2 Java Card

Java Card [1] is a restricted and optimized version of the Java platform to allow
memory and processor constrained devices, such as smart cards, to store and
run small applications. A developer can benefit of many Java features, such
as portability, type-safe language, object oriented development, and available
tools. This infrastructure allows a rapid application build, test and installation
cycle, reducing the time and the cost of software production. However, in face
of hardware limitation, Java Card presents some restrictions on resources and
API. For example, dynamic class loading, threads, Strings, the types float and
double, and multi-dimensional arrays are not present in the current versions of
Java Card. The integer type (int) and garbage collection are optional.

The main component of the Java Card platform (Fig. 1) is its runtime envi-
ronment (JCRE), composed of a Java Card Virtual Machine (JCVM), a small
API, and, usually, system and industry-specific classes [1]. The JCRE acts as
a small operating system, being responsible for the control of the application
lifetime, security and resource management.

In this work we are interested in the Java Card software development, pre-
sented in Section 2.2. However, before going into the software details, it is helpful
to understand some aspects of the smart card system in Section 2.1.

2.1 Smart Card System

A smart card application is distributed between on-card and off-card compo-
nents. The server application on the card side (called applet) provides the appli-
cation services and is installed in the smart card EEPROM memory. The off-card

Applying the B Method for the Rigorous Development of S.C. Applications 205

Fig. 1. Java Card platform components. Adapted from: [5].

client (called host application) resides in a computer or electronic terminal. A
hardware device, named Card Acceptance Device (CAD), provides power to the
card chip and the physical means that the applications uses to communicate [5].
The communication can be processed by electrical contact, when working with
contact cards, or by radio frequency for contactless cards.

Fig. 2. Command and response APDUs. Source: [5].

The information exchange between the host and card applications is made
through a half-duplexed low level communication unit, named Application Proto-
col Data Unit (APDU). The ISO 7816-4 standard specifies two kinds of APDU’s,
which are the command and the response APDU (Fig. 2). Both specify data
packets. A command APDU is sent by the host, requiring some applet service
and a response APDU is sent by the applet, responding to the host request with
the result of the service processing. Examining Figure 2, one can note that the
APDU packets are a low-level structure, requiring information coding (instruc-
tion code, data, etc.) when requesting a service and information decoding (data,
status), after the service execution.

2.2 Developing Java Card Applications

The complete development process of a Java Card application involves essentially
the (i) development of the card side applet and some auxiliary classes when
needed, (ii) test and simulation of the developed application, (iii) conversion of
the generated bytecode into an appropriate format to be installed on a smart
card, and (iv) development of the client side host application. The activities (i)
and (iv) are the focus of our work. In the following we give more information on
the host application and on the Java Card applet.

206 B. Gomes et al.

Java Card host application: Java Card allows the inter-operability of the devel-
oped applet among different smart cards with compatible Java Card specifica-
tions. However, complete compatibility can only be obtained when the whole
smart card environment, including cards, readers, protocols, and host applica-
tions are in accordance to common standards. To achieve this goal, some initia-
tives taken by a consortia of smart card companies emerged, such as PC/SC [6]
and Global Platform [7]. These standards define complete APIs to initialise ter-
minals and cards and to manage the communication through APDU encoding,
taking in consideration not only on-card security, but global system security as-
pects. Other recent API, part of Java 6, is the Smart Card I/O. It is simpler than
the others, but is compatible with PC/SC readers and is suitable to most appli-
cation needs, offering the basic structure for applet communication. A portable
host application must then use one of these standards in its implementation.

Java Card applets: A Java Card applet is a class that inherits the javac-
ard.framewok.Applet class of the Java Card API and is implemented upon the
Java Card subset of Java. During the applet conversion for card installation, a
verification phase is performed to check conformance of the classes with Java
Card restrictions.

The current usual Java Card specification (2.2.x) allows two kinds of applets.
The older, and most commonly used, kind of applet manipulates directly the
APDU packages while the newer one abstracts from the lower level protocol
using Remote Method Invocation (RMI). In this paper we will call the lower
level applet APDU applet and the higher level one, RMI applet. RMI introduces
a layer of abstraction above the APDU protocol, and, due to this fact, it is
usually less efficient than APDU applets.

3 Formal Java Card Development with the B Method

Smart card applications usually require the management of confidential informa-
tion, such as monetary values and data for secure authentication. Thus, a major
part of smart card development is devoted to the implementation of an API
containing the services provided by the card whilst protecting these data. Being
a restricted domain of usually small applications with the need for safety and
correctness, smart card applications represent a suitable domain to the adoption
of formal development methods.

In this work we present a method to develop a Java Card application following
the B method [8], from specification to refinement and code generation. By using
B in the whole development process we aim to guarantee the preservation of the
specified functional properties from the abstract specification modules until their
implementation in Java Card.

Starting from a high-level formal specification of the API, the development
(Fig. 3) follows two lines, one for the card side application and the other related
to the host application:

Applying the B Method for the Rigorous Development of S.C. Applications 207

host-side: The full automatic generation of an API that encapsulates the com-
munication between the host and card applications, hiding this communica-
tion, as well as most of the details of the standards cited on section 2.2, from
the developer, who can focus on the functional aspects of the application.

card-side: The development is based on refinement of the initial B specifica-
tion. It progressively adds Java Card related aspects and a more concrete
representation of the application towards its implementation. At the end of
this chain of refinements, we are able to generate the implementation of the
application.

Fig. 3. A view of the BSmart method development and its artifacts

Figure 3 gives a general idea of the artifacts that appear in the development
process. Most of the development can be performed using the support of tools
(Section 6), but, as usual in B, the developer can add refinement levels to manage
complexity or to reduce proof effort.

The Host API component encapsulates communication standards and proto-
cols, so that the application is able to use the card services through the API
method calls. In the next sections we detail the aspects related to the generation
of the host side API and the development of the card-side application.

4 Generation of the Host Application API

As explained in Section 2.2, for the development of the host application there
are some standards which define APIs to supply all the necessary resources to
establish the communication with the card. In this work we propose to generate
a set of classes (Fig. 4) to transparently communicate with the card application,
using one of that APIs, freeing the user of the tedious and error-prone task of
manipulating the lower-level details of the Java Card system. This encapsulation
includes the management of the connection with a card application and the
coding and decoding of the data sent to and received from the applet. The user

208 B. Gomes et al.

keeps the responsibility for the functional aspects of the application only, leading
to an increased productivity.

The code of the API components for the host-side is generated from the
original specification in a fully automatable process, since, in addition to the
desired communication standard API to be used, we only need to know the
expected services of the applet and the necessary data to process them. As the
B method imposes that the signature of each operation does not change in the
refinement process, we can obtain it directly from the operations of the high-level
machine.

Fig. 4. API structure

As shown by the diagram of Figure 4, two main classes are generated for
the host developer, named Communication and Proxy, with implementations
that may vary depending on the kind of Java Card Applet (APDU or RMI)
and communication standard. The Communication class is seen by the host
application and contains high-level Java methods to call each applet service
and to control the life-time of the applet. For APDU applets, the service calls
are dispatched to the Proxy class, which is responsible for coding the received
data into a packet in the command APDU format (Fig. 2) and send it to the
applet. This class also decodes the returned response, sending it back to the
Communication class. The Proxy class is not necessary for the generation of the
RMI host application API since it allows the communication to be taken at a
higher level than the APDU level.

The classes Conversions and Functions contain useful methods to help in
the conversion tasks of data between the card and host applications. These are
predefined library classes that can be reused in different developments.

Until now, we have implemented the generation for the APIs OpenCard frame-
work, Smart Card I/O and RMI Client. The last is a simple API, part of the
Java Card specification, for the communication with RMI applets.

Applying the B Method for the Rigorous Development of S.C. Applications 209

4.1 Rules for Host API Code Generation

This section briefly describes the rules for the generation of the API classes,
namely the rules associated with data emission and reception in the communi-
cation process. The set of translation rules is too large to be fully described here;
they define a translation that follows the syntactical structure of the B specifica-
tion. Most of them are straightforward, and the only complication occurs in the
case of APDU applets due to the encoding and decoding of data when passed
to the communication medium between the card and the host components.

In all cases, each specified operation is mapped into a method of the generated
class. In the case of RMI applets, where the data encoding/decoding is taken
care by the Java Card RMI library, the general rule for the translation of a B
operation is:

generation from(B operation) =
let

jres = java return type of (B operation)
name = java name of (B operation)
jparams = java param list of (B operation)
jthrows = (exception throwing declarations: depends on API)
init try = “try {”
end try = “} catch (Exception e) { e.printStackTrace(); }”

in
“public” jres name “(”jparams“)” jthrows “{”

init try
javarmi app method call of (B operation)
end try

“}”

The above rules rely on auxiliary functions, such as java return type of,
java param list of and java name of that, given a B operation, respectively
yield the return type, the list of parameters and the name of the corresponding
Java method. The function javarmi app method call of uses these predefined
functions to make the operation calling statement.

For the APDU version, the Proxy class is responsible for the encoding of
data for the APDU buffer and the corresponding decoding. These rules are more
complex than that for RMI as the arguments and the result of any method call
need to be encoded as bytes and stored in an APDU packet. The APDU format
has three fields to store data (see Fig. 2): p1 (1 byte), p2 (1 byte) and data
(arbitrary size). We have thus defined and implemented a conversion algorithm
that computes the number of bytes needed to encode the method arguments, and
generates the Java code to convert such arguments to bytes and store them in the
APDU packet. The code thus generated is optimized to reduce communications
as it first fills the p1 and p2 fields, and uses the data field only when the encoding
of the arguments is larger than two bytes.

210 B. Gomes et al.

5 Development of the Card-Side Application

As we introduced in Section 3, the formal development of the card applet starts
from a high-level B specification of the application. This specification does not
need to observe Java Card aspects. To illustrate some concepts of this branch
of the development, let us introduce a simple abstract specification of a counter
(Fig. 5) with an operation to increment the counter. This specification uses a
Java compatible int type (JINT), provided in the JInt library machine (Fig. 10),
which also defines arithmetic operations restricted to the range of the type, such
as sum jint to compute the sum of its two integer arguments and gt jint, which
returns true when its first argument is greater than the second one.

MACHINE JCounter
SEES JInt
VARIABLES value
INVARIANT value ∈ JINT
INITIALISATION

value := 0
OPERATIONS

increment (vv) =
PRE

vv ∈ JINT ∧
gt jint(vv, 0) = true ∧
sum jint (value, vv) ∈ JINT

THEN
value := sum jint (value, vv)

END

END

MACHINE JCCounter
SEES JCInt, JInt, (...), InterfaceContext
VARIABLES jc value
INVARIANT jc value ∈ JCINT
INITIALISATION

jc value := jcint of jint (0)
OPERATIONS

jc increment (vv) =
PRE

vv ∈ JCINT ∧
gt jcint(vv, jcint of jint(0))=true ∧
sum jcint (jc value, vv) ∈ JCINT

THEN
jc value := sum jcint (jc value, vv)

END
END

Fig. 5. JCounter machine and its Java Card version JCCounter

Here we introduce a common situation that can occur in a typical develop-
ment: the abstract specification uses types that are not compatible with Java
Card types. The JCounter abstraction uses the int type, which is not built-in
Java Card, and the B method does not allow interface and type changing in the
refinement process. Thus, to follow the card-side development, we need to deal
with this type incompatibility by introducing a refinement pattern.

To achieve the goal of type/interface adaptation without going out the strict
rules of B refinement we use library machines that model each type and interme-
diate machines containing conversion functions and properties relating them. We
will present here the general notion and excerpts of the corresponding modules
to illustrate the solution for our example in which we model the int type through
a pair of shorts. The detailed approach is described in [9]. The important point
in favor of this solution is that the development rigorously obeys B refinement
restrictions.

Applying the B Method for the Rigorous Development of S.C. Applications 211

MACHINE InterfaceContext
SEES JInt , JCInt
CONSTANTS jint of jcint, jcint of jint
PROPERTIES

jint of jcint ∈ JCINT �� JINT ∧
jcint of jint ∈ JINT �� JCINT

ASSERTIONS
jint of jcint −1 = jcint of jint ∧
dom (jint of jcint) = JCINT ∧
dom (jcint of jint) = JINT

END

Fig. 6. The InterfaceContext machine

The right side of Figure 5 presents a counter machine providing the same
services as JCounter but with interface and typing restrictions compatible with
Java Card. The JCINT is a definition of the Java integer type represented as a
pair of shorts, included in the JCInt library machine (not detailed here). The
JCCounter machine is also the initial model of a B development to provide an
implementation of the card-side component.

The conversion function linking these two abstract (JINT) and concrete
(JCINT) integer representations are put in InterfaceContext. This machine also
contains some corollaries in the assertions clause. These additional properties
are useful to simplify interactive proofs of the development. Since JCCounter is
a machine, not a refinement, we want to be able to prove that the type adapta-
tion succeeds as a refinement relation. We can do this by refining the abstract
JCounter, relating the abstract and concrete types in its invariant using the
functions defined in InterfaceContext, as we can see in Figure 7. So, in case of
successful verification, we are able to continue our card development using the
concrete JCCounter. Although the process of typing adaptation is automatable
(possibly with some user assistance), the tool support for the method does not
include it yet.

To allow the smart card implementation of the API, an additional refinement
is applied to make it closer to Java Card code. We achieve this making it full-
function, i.e., weakening the preconditions of the operations so that they only
define typing of the parameters. The remaining restrictive conditions are han-
dled in its body through conditional substitutions, whose non-validity leads to
the throwing of an exception. This is performed by modeling simple Java Card
exception classes in an Exception library machine. A dedicated context machine
contains the identifier code of each exception and any other constants or Java
Card related information that the refinement needs. The full function refinement
of JCounter and its context machine can be shown in Figure 8. The restrictive
precondition stating that the value of the increment must be greater than zero
was moved to its body, this way allowing the generation of this verification con-
dition in the translated Java Card code.

212 B. Gomes et al.

REFINEMENT JCounter ref
REFINES JCounter
SEES JInt, JCInt, InterfaceContext
INCLUDES JCCounter
INVARIANT value = jint of jcint (jc value)
OPERATIONS

increment (vv) =
PRE

vv ∈ JINT ∧
sum jint(jint of jcint (jc value), vv) ∈ JINT

THEN
jc increment (jcint of jint (vv))

END
END

Fig. 7. A refinement of JCounter to verify the type adaption correctness

MACHINE JCCounterContext
SETS EXCEPTIONS = {non positive value}
END

REFINEMENT JCCounterFF ref
REFINES JCCounter
INCLUDES

ISOException.Exception(EXCEPTIONS)
SEES JCCounterContext, (...)
VARIABLES jc value
INVARIANT jc value ∈ JCINT
INITIALISATION

jc value := jcint of jint (0)
OPERATIONS

jc increment (vv) =
PRE

vv ∈ JCINT ∧
sum jcint (jc value, vv) ∈ JCINT

THEN
IF ¬(gt jcint(vv, jcint of jint(0))=

true)
THEN

ISOException.throwIt(
non positive value)

END;
jc value :=sum jcint (jc value,vv)

END
END

Fig. 8. The full function version of JCCounter and its context machine

The translation of the B0 implementations to Java Card code is the last stage
in the card-side development. The main development implementation, contain-
ing the services offered to the host, generates the applet class. As usual, other
modules may have to be generated, such as the context machine. In Section 6.1
we can see part of the counter implementation, emphasizing the use of the APDU
library machine for data sending and receiving.

6 Tool Support

The BSmart tool [4] is an Eclipse plugin connecting several software components,
each responsible for implementing a different step of the BSmart method. Es-
sential software for the B formal method is also included, such as a type checker,

Applying the B Method for the Rigorous Development of S.C. Applications 213

and connection with external tools, such as Atelier B, for proof obligation gen-
eration and verification. Also, as explained in the next Subsection, we supply
jointly with the tool a library of B modules modeling essential classes of the
Java Card API, types and useful data structures.

The main components that provide support for the method are the BSmart
Modules Generator and the B to Java Card code translator. The former is re-
sponsible to generate the B refinements required by the method and the latter
translates all the B implementation modules into Java Card programming code
and also generates the API classes for the host side client. The translator has
been developed based on the Java translator of JBtools [10]. We modified this
open-source B method tool to allow the translation for Java Card.

6.1 A Library of Reusable B Components

We have developed B machines to model Java/Java Card primitive types and
some classes of the Java Card API. We plan to supply these verified B models
to all classes of the Java Card API and to other useful tasks for Java Card
applications, such as manipulation of time, date, currency, etc.

The specification of the Java Card API specification was realized using as basis
the official documentation of the classes, as well as JML-based and OCL-based
specifications [11,12]. In our approach, the specification serves for the purpose of:
(i) providing verified B models of the API (ii) using these verified modules in the
refinement of the card-side application, allowing us to verify the correctness of its
use in relation to adequate data and the necessary dependencies, for example,
when an operation requires the calling of a previous one and (iii) facilitating
the generation of the Java Card code, since an operation of an API model is
translated to its corresponding method call in Java Card.

As an example, we can see in Figure 9 some excerpts of the APDU class
model in B, one of the most important of the Java Card API. Through it one
can access the APDU buffer for exchanging data with the host application.
The details of this process is treated internally with the Java Card Runtime
Environment (JCRE) and it is not our propose to model it. As we said before,
we are interested in the practical use of the operations to allow verification and
code generation. On the right side of the figure, we show a practical example of
the use of APDU machine in the implementation of the counter development.
The APDU machine is imported and the operations are called as we do in a Java
Card applet method to receive data and to send it after processing.

In the case of the types library we have developed machines to deal with the
types short, int, boolean and a module to represent the type int for Java Card
as a pair of shorts. As we can see for the type int in Figure 10, each machine has
constants for type definition and useful functions to operate within the bounds
of the type.

The development of the library is still in progress but we expect that when
concluded the developed modules can be reused by B specifiers and Java Card
developers with the advantage of being fully verified using the B method. We

214 B. Gomes et al.

MACHINE APDU (...)
CONCRETE VARIABLES (...)

state, buffer
INVARIANT

state ∈ TBYTE ∧
state ∈ ST INITIAL . .

ST FULL OUTGOING ∧
buffer ∈ (0 .. 132) → TBYTE (...)

OPERATIONS
res ← setIncomingAndReceive =
PRE

state = ST INITIAL
THEN

CHOICE
state := ST PARTIAL INCOMING

OR
state := ST FULL INCOMING
END ||
ANY value
WHERE

value ∈ TSHORT ∧ value ≥ 0 ∧
value ≤ buffer(OFFSET LC) ∧
buffer(OFFSET LC) +
BUFFER HEADER LENGTH

≤ BUFFER LENGTH
THEN res :=value

END
END (...)

IMPLEMENTATION
JCCounter imp

REFINES
JCCounterFF ref

SEES
JCCounterContext,
TShort (...)

IMPORTS
ISOException.Exception(

EXCEPTIONS),
apdu.APDU(...)

OPERATIONS
jc increment (vv) =
VAR buffer, (...), value lc, le, res
IN

buffer ← apdu.getBuffer; (...)
value lc ←
apdu.setIncomingAndReceive;

(... data processing ...)

le ← apdu.setOutgoing;
apdu.setOutgoingLength(1);
buffer(0) := res;
apdu.sendBytes(0, 1)

END (...)

Fig. 9. Part of APDU machine (left) and its use in an implementation (right)

MACHINE JInt
SEES TBoolean
CONCRETE CONSTANTS

MAXJINT, MINJINT, JINT,
sum jint, subt jint, ... , equal jint, gt jint

PROPERTIES
MINJINT ∈ Z ∧ MINJINT = - 2147483648 ∧
MAXJINT ∈ Z ∧ MAXJINT = 2147483647 ∧
JINT = MINJINT . . MAXJINT ∧
sum jint ∈ JINT × JINT
→ JINT ∧
sum jint = λ (a1 , a2) . (a1 ∈ JINT ∧ a2 ∈ JINT ∧

(a1 + a2) ∈ JINT | a1 + a2) (...)
END

Fig. 10. Part of JInt library machine: type definition and sum operation

Applying the B Method for the Rigorous Development of S.C. Applications 215

therefore contribute for the correctness of the generated application as a whole,
since not only the core application, but all its necessary support classes are
subject to formal development and verification.

7 Conclusions

The starting point of this work was to identify the general structure of Java
Card applications, and to develop B specifications of some typical Java Card
applications, e.g. ticketing, electronic wallet, etc. These case studies evolved to
the BSmart method and the first version of its tool support.

Current B development tools include code generation for imperative languages
such as C and ADA. The development of optimized C code for smart cards has
been subject of study of the B with Optimized Memory (BOM) project [13] [14],
proposing optimizations such as method inlining. Optimization is an open issue
in our work, but we plan, for instance, to reduce the number of local variables
introduced in an operation and to minimize class instantiation. Regarding the
translation for Java, a recent initiative is the integration of a translator in the
Rodin platform [15]. A first Java Card synthesis approach has been proposed
in [16]. It was implemented in the JBtools platform [10] and provides a code
generator for Java optimized for Java Card compatibility. However, there is no
specific generation for the Java Card applet and no API support is provided for
the host application. The code generation for Java Card is also restricted to the
short integer type.

Our goal is to provide a complete Java Card service generation method, con-
sisting of the card-side application development, as well as an API for host
applications to transparently access the card services. Thus the user does not
need to deal with type adaptation/conversion and the Java Card lower-level pro-
tocols. The method, jointly with the provided B library of Java Card classes,
types and useful data structures, form the basis of an environment to effectively
and efficiently develop fully-verified Java Card software.

As future work, we want to verify the result of the translation to Java and
Java Card. An approach is the inclusion of JML annotations in the generated
code to allow runtime checking, as in the work of [17]. We also plan to apply ad-
vanced language transformation techniques, such as TXL [18] or ASF+SDF [19]
to generate part of the B refinements and the Java Card application final code
to replace our ad hoc low level implementation of the transformation rules.

Finally, to better validate the proposal and its tool support, we have to de-
velop a more complex case study. A good candidate is the Mondex electronic
purse, a case study that is part of the Verified Software Initiative. In the Mondex
system some amount of monetary value is transferred from a source to a target
smart card purse in a non-atomic protocol. Each purse must be implemented in
isolation, without sharing properties through a global control. The Mondex sys-
tem has been formally specified in Event-B in Butler and Yadav [20] work and in
other work using several formalisms. We started to adapt this system specifica-
tion to a programming specification, extracting the card and host specifications,
modeling them according to the BSmart method.

216 B. Gomes et al.

References

1. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison Wesley, Reading (2000)

2. Gomes, B., Moreira, A.M., Déharbe, D.: Developing Java Card applications with
B. In: Brazilian Symposium on Formal Methods (SBMF), pp. 63–77 (2005)

3. Deharbe, D., Gomes, B.G., Moreira, A.M.: Automation of Java Card component
development using the B method. In: ICECCS, pp. 259–268. IEEE Comp. Soc.,
Los Alamitos (2006)

4. Déharbe, D., Gomes, B.G., Moreira, A.M.: Bsmart: A Tool for the Development
of Java Card Applications with the B Method. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 351–352. Springer, Heidelberg
(2008)

5. Ortiz, E.C.: An Introduction to Java Card Technology,
http://java.sun.com/javacard/reference/techart/javacard1 (2003)

6. PC/SC Workgroup: PC/SC Workgroup Web site (2009),
http://www.pcscworkgroup.com

7. Global Platform: Global Platform Web site (2009),
http://www.globalplatform.org

8. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge U. Press,
Cambridge (1996)

9. Déharbe, D., Gomes, B.G., Moreira, A.M.: Refining Interfaces: The Case of the B
Method. Technical report, Fed. Univ. of Rio Grande do Norte (2009) (to appear)

10. Voisinet, J.C.: JBtools: an experimental platform for the formal B method. In:
Principles and Practice of Programming, Maynooth, NUI, pp. 137–139 (2002)

11. Meijer, H., Poll, E.: Towards a Full Formal Specification of the Java Card API. In:
Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 165–178. Springer,
Heidelberg (2001)

12. Larsson, D.: OCL Specifications for the Java Card API. Master’s thesis, School of
Computer Science and Engineering, Göteborg University (2003)

13. Requet, A., Bossu, G.: Embedded formally proved code in a smart card: Converting
B to C. In: ICFEM 2000, York, UK, p. 15. IEEE Computer Society, Los Alamitos
(2000)

14. Bert, D., et al.: Adaptable translator of B specifications to embedded C programs.
In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp.
94–113. Springer, Heidelberg (2003)

15. Edmunds, A., Butler, M.: Code Generation for Event-B with Intermediate Speci-
fication. In: Rodin User and Developers Workshop (2009),
http://wiki.event-b.org/index.php/Rodin_Workshop_2009

16. Tatibouet, B., Requet, A., Voisinet, J., Hammad, A.: Java Card Code Generation
from B Specifications. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 306–318. Springer, Heidelberg (2003)

17. Costa, U., Moreira, A., Musicante, M., Neto, P.: Specification and Runtime Veri-
fication of Java Card Programs. In: Brazilian Symp. on Formal Methods (2008)

18. Cordy, J.: The TXL Programming Language (2009),
http://www.meta-environment.org

19. Meta-Environment.org: The ASF+SDF Meta-Environment (2009),
http://www.txl.ca/index.html

20. Butler, M., Yadav, D.: An Incremental Development of the Mondex System in
Event-B. Formal Aspects of Computing 20(1), 61–77 (2007)

http://java.sun.com/javacard/reference/techart/javacard1
http://www.pcscworkgroup.com
http://www.globalplatform.org
http://wiki.event-b.org/index.php/Rodin_Workshop_2009
http://www.meta-environment.org
http://www.txl.ca/index.html

Automatic Verification for a Class of Proof
Obligations with SMT-Solvers

David Déharbe

UFRN / DIMAp / ForAll
Universidade Federal do Rio Grande do Norte

Departamento de Informática e Matemática Aplicada
Formal Methods and Languages Research Laboratory

Natal, RN, Brazil

Abstract. Software development in B and Event-B generates proof obli-
gations that have to be discharged using theorem provers. The cost of
such developments therefore depends directly on the degree of automa-
tion and efficiency of theorem proving techniques for the logics in which
these lemmas are expressed. This paper presents and formalizes an ap-
proach to transform a class of proof obligations generated in the Rodin
platform in a language that can be addressed by state-of-the-art SMT
solvers. The work presented in the paper handles proof obligations with
Booleans, integer arithmetics and basic sets.

1 Introduction

Formal software development using frameworks such as B, Event-B and Z pro-
duces large quantities of proof obligations (POs), typically expressed in a first-
order language including arithmetic and set-theoretic constructs. In the case of
B and Event-B, platforms such as Atelier-B [1] and Rodin [2] include theorem
provers able to discharge automatically a significant portion of these POs. The
remaining POs need the intervention of the users to be addressed. For each such
PO, three outcomes are possible. First, when there is an error in the model, the
PO is not valid. The user must inspect the PO to understand the cause of the
error, correct the model and verify it again. Second, the PO may be valid, but
cannot be automatically proved because the proof system lacks some axioms,
as the specification logic is incomplete. In that case, it is possible to patch the
prover with additional rules so that it finds a proof for the verification con-
dition. Care must be taken not to make the system unsound. Third, the PO
may be true, but cannot be proved automatically within the space and time
bounds set by the user, due to computational complexity of the verification sys-
tem. In that case, the user has the possibility to interact with the verification
sub-system and help the theorem prover find the proof. Such interactions are a
time-consuming activity and have a direct impact on the cost of software devel-
opment. Progress in automatic theorem proving techniques for formal software
development framework is therefore key to increase the application and dissem-
ination of formal methods. This may be achieved with (1) more cost-effective

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 217–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

218 D. Déharbe

algorithms, (2) better integration with the development framework (providing
counter-examples and dependencies between proofs and specification elements),
(3) native support for more expressive logics.

The Satisfiability Modulo Theory (SMT) approach to theorem proving is suc-
cessful to address many software-related problems. SMT-solvers are tools that
implement this approach. They combine a boolean satisfiability engine to handle
the propositional structure of the PO, optimized decision procedures for indi-
vidual theories, such as arrays and arithmetics, a framework to combine these
decision procedures [3], and other optimizations, such as theory propagation [4].
Some solvers are also able to build a proof of their result, which is often as useful
as the result for the users. The international SMT-LIB initiative provides a com-
mon input format [5] language and a repository of benchmarks for SMT-solvers.

Recently, the formal methods community has shown interest in applying SMT-
solvers in the verification of POs, which seem to be good candidates to achieve
progress in at least two of the above mentioned directions. Indeed, the inclusion
in the SMT-LIB, the standard input format for SMT-solvers, of a theory for
state-based specification languages has recently been proposed [6]. This propo-
sition considers many specification constructs such as sets, sequences and maps
that are not yet fully handled by SMT-solving techniques.

The goal of the work presented in this paper is to present an approach to
apply existing SMT-solvers to POs, restricted to a subset of the specification
constructs of B and Event-B: booleans, linear integer arithmetics and basic sets,
plus operators mapping sets to numbers such as cardinality. This experiment
is based on a translation of the POs generated in the Rodin platform to the
SMT-LIB language and, if successful, lays the basis for the implementation of
a verification plug-in based on SMT-solvers for this platform. The scope and
languages involved in this translation are presented in Section 2. The general
principles of this translation are described in Section 3 and the detailed presen-
tation of its formalization in Section 4. This translation was applied to a set of
benchmarks supplied by an industrial partner and the result of their verification
with an existing SMT-solver are presented in Section 5. The conclusions of this
work are presented in Section 6.

2 The Source and Target Languages

2.1 Proof Obligations in Rodin

The Rodin platform [2] stores POs as XML files. The abstract syntax of the
format is described hereafter. A PO file is structured in four sections:

L := T + E H∗ G
(theories) (typing environment) (hypothesis) (goal)

The theories are pre-defined names corresponding to different fragments of the
specification logic. This work only considers theories that correspond to booleans,

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 219

integers and simple sets (i.e. no set of sets is allowed), but it could be straight-
forwardly extended to include real numbers. Another possible extension would
be basic binary relations (i.e. binary relations over basic sets).

Since this work only considers booleans, integers and simple sets, the following
grammar defines the typing environment:

E := (typing environment)
V ∗ variables

S := (sort)
C carrier
| P(C) set

V := (variable)
name name
S sort

C := (carrier set)
Z integers
| name user-defined

Sorts BOOL and Z are pre-defined. In B, new sorts (also called basic types)
are carrier sets and may be introduced either as deferred sets (only their name
is given, and they are assumed to be non-empty) or as enumeration (and the
only values in the sorts are those that are enumerated, and they are pairwise
distinct).

Finally, the hypothesis and the goal are first-order formulas. The language
for formulas is specified by the following grammar, where non-terminals φ and
τ stand respectively for formulas and terms. POs are well-typed and no type
checking or type inference is needed.

φ := ¬φ | φ ⇒ φ | φ ⇔ φ | φ ∧ · · · ∧ φ | φ ∨ · · · ∨ φ | ∃x • φ | ∀x • φ |
τ = τ | τ �= τ | τ < τ | τ > τ | τ ≤ τ | τ ≥ τ | τ ⊆ τ | τ ⊂ τ | τ ∈ τ

The considered terms have sort BOOL and Z as well as carrier sets or their
powerset. Sets may be ranges of integers, or defined in extension or intentionally.

τ := name | TRUE | FALSE | num | bool(φ) |
− τ | τ − τ | τ div τ | τ mod τ | τ + · · ·+ τ | τ × · · · × τ |
τ..τ | {τ, · · · , τ} | {x | φ} | τ ∪ · · · ∪ τ | τ ∩ · · · ∩ τ | τ \ τ

Finally there are mixed operators that are neither basic set operators nor
integer arithmetic operators; they are:

φ := finite(τ)
τ := min(τ) |max(τ) | card(τ)

2.2 The SMT-LIB Format

The SMT-LIB format [5] is the result of an international effort to establish a
common input language for SMT-solvers. In addition, this initiative also col-
lects and classifies proof obligations expressed in this format, thus establishing
a benchmark library for SMT-solvers. Both the format and the benchmarks are

220 D. Déharbe

used as a reference to establish quantitative measures of SMT-solvers and their
evolution. The SMT-LIB format is thus the de facto standard input language
for SMT-solvers. Although there is an on-going discussion to extend the format,
this paper considers version 1.2, which is the most recent official version.

A SMT benchmark is a sequence of declarations of different entities: logic,
sorts, functions, predicates, assumptions, and goal. The logic is a pre-established
name, to which are associated sort, function and predicate declarations, possi-
bly some syntactical restrictions, as well as a semantics. For instance, the logic
QF IDL corresponds to quantifier-free formulas with integer arithmetic terms
where the constraints bound numerically subtractions between integer-sorted
terms. Related to our work is the recent proposal [6] to include a logic for POs
from the Vienna Development Method [7] in the SMT-LIB. This theory includes
finite sets, lists and maps; it is currently not supported by existing SMT-solvers.

In general, a SMT benchmark also contains declarations for additional sorts,
functions (including constants) and predicates (including atomic propositions).
A sort is defined by its name. A function declaration is composed of the function
symbol, and the list with the sorts of the parameters followed by the sort of the
result. A predicate declaration is composed of the predicate symbol and the list
of the sorts of its arguments. The semantics of such symbols may be defined
axiomatically with first-order formulas as assumptions.

Finally, the assumptions and the goal are first-order multi-sorted logic formu-
las expressed using both the symbols of the declared logic and the additional
symbols declared in the benchmark. In the general case, formulas may contain
arbitrary combinations of quantifiers; the language also contains if-then-else con-
structs for both terms and formulas.

3 Rationale of the Translation

On the one-hand, SMT-solvers integrate and combine reasoning engines for a
number of logics, such as arrays, bit-vectors, abstract data types, and different
fragments of integer and real-number arithmetics. On the other hand, Rodin
POs may contain arbitrary integer arithmetic expressions, arbitrary combina-
tions of set constructs, including derived entities such as relations, functions and
sequences, as well as operators mapping sets to integers and vice-versa.

The logic of Event-B and B contains terms of sort Boolean which is reflected
in Rodin POs. The translation maps such terms to formulas, as this approach
should take better advantage of the efficient handling of complex Boolean struc-
tures in SMT-solvers.

Considering arithmetics, the SMT-LIB benchmarks are divided into several
divisions according to the class of constraints: difference logic, linear arithmetics,
non-linear arithmetics. The benchmarks are further divided whether the formulas
are quantified or quantifier-free and whether the numeric sort is integers or real
numbers. This information is available to SMT-solvers in a benchmark attribute;
they may use it to select the most efficient procedure for the given benchmark.
The translation systematically sets this attribute to quantified linear integer
arithmetic as it reflects the addressed class of POs.

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 221

Currently, no SMT solver provides direct support for set theory. A possible
approach is to map set constructs to symbols of a theory that can be handled in
one of the existing SMT-solvers. It is possible to map sets to arrays of booleans
indexed by the elements of the domain of the set (see e.g. in [8,6]). Another
solution is to represent sets by their characteristic predicate, i.e. a boolean-valued
function f taking as argument a value of the corresponding carrier set. This
is the approach used to discharge set-theoretic arguments in a proof assistant
embedding a SMT-solver [9] as well as in the Predicate Prover, available in Rodin
and Atelier-B. The former solution has the advantage of being more general, as
it allows nesting sets. The latter solution can only deal with basic sets (no set
of sets) but provides a direct mapping to first-order logic with uninterpreted
functions and predicates, for which efficient reasoning engines are available: this
paper investigates this approach.

Sets and set operators are thus translated to predicates and boolean connec-
tors as usual: false for the empty set, disjunction for union, implication for set
inclusion, predicate application for set membership, etc. To implement this ap-
proach, we employ extensions to the SMT-LIB library implemented in the veriT
SMT-solver [10], namely macro definitions and lambda expressions. veriT pro-
cesses such constructs, applying macro expansion and beta-reduction, producing
formulas conforming to the SMT-LIB format that may be directly processed in
veriT or by any SMT-solver equipped with the right decision procedures.

For instance, union is a macro used in the translation of set union (Section 4):

union ≡ (lambda (p (′s Bool))(q (′s Bool))(lambda (?x ′s) (or (p ?x) (q ?x))))

Here, union is declared as a macro with two arguments p and q. Both arguments
are sorted as (′s Bool), i.e as a unary predicate, where ′s is a sort variable. The
macro union expands to the lambda expression given in the right hand side of
the expression: it denotes a unary predicate with formal parameter ?x of sort
′s, defined as disjunction of the appliction of p and q to ?x. veriT implements a
type inference mechanism to handle macros with sort variables similar to that
for “let polymorphism” [11]. The remaining macros are:

empty set: empty ≡ (lambda (?x ′s) false)
intersection: inter ≡ (lambda (p (′s Bool))(q (′s Bool))

(lambda (?x ′s) (and (p ?x) (q ?x))))
difference: setminus ≡ (lambda (p (′s Bool))(q (′s Bool))

(lambda (?x ′s) (and (p ?x) (not (q ?x)))))
membership: in ≡ (lambda (x ′s) (p (′s Bool))(p x))

inclusion: subseteq ≡ (lambda (p (′s Bool))(q (′s Bool))
(lambda (?x ′s) (implies (p ?x) (q ?x))))

strict inclusion: subset ≡ (lambda (p (′s Bool))(q (′s Bool))
(and (subseteq p q) (not (= p q))))

range: range ≡ (lambda (lo Int)(hi Int)
(lambda (?x Int) (and (<= lo ?x)(<= ?x hi))))

A last observation is in order. The result of the application of macro expan-
sion may result in formulas where equality is applied at the predicate level. For

222 D. Déharbe

instance, assume that S is a set over some sort s, the formula S ∪ ∅ = S, valid
in set theory, expands to:

(lambda (?x s) (or (pS ?x) false)) = (lambda (?x s) (pS ?x)),

where pS is the unary predicate symbol characterizing set S. The original equal-
ity between sets results in an equality between formulas. In first-order logic,
this equality is expressed with universal quantification and equivalence. This
can be performed by rewriting, and corresponds to the application of the set
extensionality axiom:

(= p q) � (forall (?x t) (iff (p ?x) (q ?x)) if �t p : (t Bool) and �t q : (t Bool),

where �t e : s is the typing judgement that s is the sort of expression e. Applying
this rule followed by beta reduction to the example yields the first-order logic
tautology: (forall (?x s) (iff (or (p ?x) false)(p ?x))).

4 Formalizing the Translation

This section presents the formalization of the translation of Rodin lemmas to
SMT-LIB format extended with macros and lambda expressions. The translation
is as a tree traversal, recursing over the syntactic structure of the lemma. This
traversal is specified as a set of rules that follow the style of structural operational
semantics.

4.1 Preliminary Definitions and Notations

The rules propagate an evaluation context Γ that gathers incrementally the
contents of the different sections that compose the SMT-LIB format. They are:
sorts, a set of SMT-LIB identifiers; preds (predicate symbols) and funs (function
symbols), both maps SMT-LIB identifiers to a list of sorts; assumptions, a set of
formulas in SMT-LIB syntax; formula, the goal, a formula in SMT-LIB syntax. In
addition, the context maintains a mapping nm from Rodin symbols to SMT-LIB
identifiers. Γ I denotes the initial context and is such that:

Γ I = {nm = {Z �→ Int,BOOL �→ Bool,
TRUE �→ true,FALSE �→ false
∧ �→ and,∨ �→ or,⇒ �→ implies,⇔ �→ iff,
∃ �→ exists, ∀ �→ forall,
= �→ =, < �→ <,≤ �→ <=, > �→ >,≥ �→ >=,
⊂ �→ subset,⊆ �→ subseteq,∈ �→ in
+ �→ +,× �→ ∗,div �→ /,mod �→ %,− �→ −
∪ �→ union,∩ �→ inter,
\ �→ setminus, ∅ �→ empty}

sorts = {Int, Bool},
funs = {}, preds = {}, assumptions = {}, formula = {} }

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 223

In the following, Γ .sec denotes the content of Section sec of Γ ; when sec is
a map, Γ [sec ⊕ s] denotes update of sec with the map s, otherwise it denotes
inclusion of s to the set sec; Γ [sec " s] sec denotes removal of s from sec. We
assume the existence of a function btype that, given an expression e in a Rodin
expression, returns the basic type e. Also fresh denotes a predicate that tests if
each element of a given set of SMT-LIB identifiers is fresh with respect to the
current context.

4.2 Translation Rule for a PO

Rule 1 specifies how the evaluation of a PO L composed of the sections T E H∗G
results in a context Γ . The operators [[]]L, [[]]E , [[]]H , [[]]G are responsible for trans-
lating a full PO, the typing environment, the hypothesis and the goal respec-
tively. The resulting context Γ represents the components of SMT-LIB format
for the Rodin PO L.

1
L = T E H∗G [[E; Γ I]]E = Γ 0 [[H∗; Γ 0]]H = Γ 1 [[G; Γ 1]]G = Γ

[[L]]L = Γ

4.3 Translation Rules for the Typing Environment

Rules 3 and 2 specify that the typing environment lemma is translated by a
sequential traversal, applying the translation operator [[]]V to each variable dec-
laration:

2
[[V ∗; Γ]]E = Γ 0 [[V ; Γ 0]]V = Γ 1

[[V ∗V ; Γ]]E = Γ 1
3

[[; Γ]]E = Γ

The declarations of a Rodin lemma, grouped in the typing environment, are
pairs n, t, where n is the name of the declared entity, and t is its basic type.
When n and t are identical, then a new basic type is introduced in B, which
is mapped to a new sort in SMT-LIB (Rule 4). When n and t differ, t may
be a basic type, and then n is a value of type t, and a corresponding constant
function n is added in the SMT-LIB (Rule 5). Another possibility is that the
type be the powerset of some basic type t, then n is a set, and a corresponding
unary predicate n is added in the SMT-LIB (Rule 6).

4
n = t Γ ′ = Γ [nm⊕ {t �→ t} | sorts⊕ {t}]

[[n t; Γ]]V = Γ ′
(basic type)

5

n �= t Γ .nm(t) = t t ∈ Γ .sort
Γ ′ = Γ [nm⊕ {n �→ n} | funs⊕ {n �→ (t)}]

[[n t; Γ]]V = Γ ′
(set element)

6

n �= t Γ (t) = t t ∈ Γ .sort
Γ ′ = Γ [nm⊕ {n �→ n} | preds⊕ {n �→ (t)]

[[n P(t); Γ]]V = Γ ′
(set)

224 D. Déharbe

4.4 Translation Rules for Hypothesis and Goal

Rules 7 and 8 specify that the hypothesis section is translated by a sequential
traversal, applying the translation operator [[]]φ to each hypothesis, and yielding
a formula f and a context Γ . The former is added to the latter as a result of the
translation.

7
[[; Γ]]H = Γ

8
[[φ∗; Γ]]H = Γ 0 [[φ; Γ 0]]φ = f; Γ 1

[[φ∗φ; Γ]]H = Γ 1[assumptions⊕ {f}]
The goal section of the lemma is also translated using operator [[]]φ, and the

resulting formula is set as the goal formula in the context:

9
[[G; Γ]]φ = g; Γ 1

[[G; Γ]]G = Γ 1[formula⊕ {g}]

4.5 Translation Rules for Formulas

The translation operator [[]]φ recurses over the structure of the formulas, up
to the level of atoms. There are two classes of atoms: boolean constants, and
applications of relational operators. The definition of the latter uses the term
translation operator [[]]τ (defined in Section 4.6) to process the arguments. Their
translation is specified by rules 10 and 11:

10

o ∈ {=, <, >,≤,≥,⊂,⊆,∈}
[[τ1; Γ]]τ = t1; Γ 1 [[τ2; Γ 1]]τ = t2; Γ 2 o = Γ .nm(o)

[[τ1 o τ2; Γ]]φ = (o t1 t2); Γ 2

11
Γ .nm(name) = name
[[name; Γ]]φ = name; Γ

The rules for non-atomic formulas (12–14) are straightforward recursive appli-
cations to their arguments, propagating the context accordingly, and combining
the results in the SMT-LIB syntax.

12
[[φ; Γ]]φ = f; Γ ′

[[¬φ; Γ]]φ = (not f); Γ ′

13
o ∈ {∧,∨} o = Γ .nm(o) [[φ1; Γ]]φ = f1; Γ 1 · · · [[φn; Γ n−1]]φ = fn; Γn

[[φ1o · · · o φn; Γ]]φ = (o f1 f2 · · · fn); Γ n

14
o ∈ {⇒,⇔} o = Γ .nm(o) [[φ1; Γ]]φ = f1; Γ 1 [[φ2; Γ 1]]φ = f2; Γ 2

[[φ1o φ2; Γ]]φ = (o f1 f2); Γ 2

Rule 15 handles quantified formulas. As SMT-LIB requires that quantified
variables be sorted, the basic type of the quantified variable x is identified and
the corresponding sort s is obtained from the context. A temporary association
is associated to the context that is used to translate the matrix of the quantified
formula.

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 225

15

Q ∈ {∃, ∀} Q = Γ .nm(Q)
Γ .nm(btype(x)) = s [[φ; Γ [nm⊕ {x �→ ?x}]]]φ = f; Γ 1

[[Qx • φ; Γ]]φ = (Q(?x s) f); Γ 2 = Γ 1[nm" x]

4.6 Translation Rules for Terms

The operator [[]]τ recurses over the structure of terms found in Rodin lemmas, and
builds terms according to the SMT-LIB syntax. The base cases of the recursion
are identifiers (Rule 16) and numeric literals (Rule 17). Boolean conversion is
also dealt with (Rule 18).

16
id = Γ .nm(id)
[[id ; Γ]]τ = id; Γ

17
[[num; Γ]]τ = num; Γ

18
[[φ; Γ]]φ = f; Γ 1

[[bool(φ); Γ]]τ = f; Γ 1

Rules 19–21 specify the translation of arithmetic terms:

19
o ∈ {+,×} o = Γ .nm(o) [[τ1, Γ]]τ = t1; Γ 1 · · · [[τn, Γ n−1]]τ = tn; Γ n

[[τ1 o . . . o τn; Γ]]τ = (o t1 · · · tn); Γ n

20
o ∈ {div,mod,−} o = Γ .nm(o) [[τ1, Γ]]τ = t1; Γ 1 [[τ1, Γ 2]]τ = t2; Γ 2

[[τ1 o τ2; Γ]]τ = (o t1 t2); Γ 2

21
[[τ, Γ]]τ = t; Γ 1

[[−τ ; Γ]]τ = (˜ t); Γ 1

The following rules specify the translation of set terms. The first group of
rules deal with the base cases, i.e. the empty set (Rule 22), and sets defined in
intention (Rule 23) and in extension (Rule 24).

22
[[∅, Γ]] = empty, Γ

23
Γ .nm(btype(x)) = s [[φ, Γ]]τ = f; Γ 1

[[{x | φ}; Γ]]τ = (lambda (?x s) f); Γ 1

24
Γ .nm(btype(τ1)) = s [[τ1, Γ]]τ = t1; Γ 1 · · · [[τn, Γn−1]]τ = tn; Γ n

[[{τ1, · · · , τn}; Γ]]τ = (lambda (?x s)(or (= ?x t1) · · · (= ?x tn))); Γn

The remaining classes of set expressions are translated according to Rules 25–
27. Note that the translation of intersection and union needs to transform the
variadic set connectives of Rodin to binary macros.

25
o ∈ {∪,∩} o = Γ .nm(o) [[τ1, Γ]]τ = t1, Γ 1 [[τ2, Γ 1]]τ = t2, Γ 2

[[τ1 o τ2, Γ]] = (o t1 t2), Γ 2

26
o ∈ {∪,∩} o = Γ .nm(o) [[τ1, Γ]]τ = t1, Γ 1 [[τ2 o · · · o τn, Γ 1]]τ = t, Γ 2

[[τ1 o τ2 o · · · o τn, Γ]] = (o t1 t), Γ 2

27
o ∈ {\, ..} o = Γ .nm(o) [[τ1, Γ]]τ = t1, Γ 1 [[τ2, Γ 1]]τ = t2, Γ 2

[[τ1 o τ2, Γ]] = (o t1 t2), Γ 2

226 D. Déharbe

4.7 Mixed Operators

Finally, translation of mixed-sort operators require additional definitions. The
following operators are considered for translation: min and max that yield re-
spectively the smallest and highest value of a non-empty set of integers, the set
predicate operator finite and the cardinality operator card.

In order to define the translation of the first two operators, the following two
macros are introduced:

ismin ≡ (lambda (m Int) (t (Int Bool))
(and(in m t)(forall (?x Int) (implies (in ?x t)(<= m ?x)))))

ismax ≡ (lambda (m Int) (t (Int Bool))
(and(in m t)(forall (?x Int) (implies (in ?x t)(<=?x m)))))

Thus, (ismin m t) expands to a formula stating that m is equal to the smallest
value in the set t. The translation of the operators min and max is specified
by Rules 28 and 29. Each application of these rules add a fresh integer constant
and an assumption to the context.

28

[[τ, Γ]]τ = t; Γ 1 fresh({m})
Γ 2 = Γ 1[funs⊕ {m �→ Int} | assumptions⊕ {(ismin m t)}]

[[min(τ), Γ]]τ = m; Γ 2

29

[[τ, Γ]]τ = t; Γ 1 fresh({m})
Γ 2 = Γ 1[funs⊕ {m �→ Int} | assumptions⊕ {(ismax m t)}]

[[max(τ), Γ]]τ = m; Γ 2

The operator finite is a predicate that is true of finite sets. The following
macro relates a proposition p, a unary predicate t, a labelling function f and a
constant k. Informally, p is an atomic proposition stating that the argument set
is finite, k is an upper bound on the cardinality of the set, and f maps injectively
elements of the set with a positive integer smaller than k.

finite ≡ (lambda (p Bool) (t (′s Bool)) (f (′s Int)) (k Int))
(iff p (and (forall (?x s)(implies (in ?x t)(in (f ?x)(range 1 k))))

(forall (?x s)(?y s)(implies (and (in ?x t)
(in ?y t)
(not (equal ?x ?y)))

(not (equal (f ?x)(f ?y)))))))

Rule 30 specifies the translation of the predicate application finite(τ): the
context is enriched with an atomic proposition p, a constant k and a function f,
of domain s, the sort for the basic type of the elements of τ . The context is also
augmented with an assumption obtained by an expansion of macro finite.

30

[[τ, Γ]]τ = t; Γ 1 btype(τ) = P(s) Γ .nm(s) = s fresh({p, k, f})
Γ 2 = Γ 1[preds⊕ {p �→ ()} | funs⊕ {k �→ Int, f �→ (s Int)} |

assumptions⊕ (finite p t f k)]
[[finite(τ), Γ]]φ = p; Γ 2

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 227

The operator card is a function from sets to integers. The following macro
relates a unary predicate t, a labelling function f and a constant k. Informally, t
is the characteristic function of a set, k is the cardinality of the set, and f maps
bijectively elements of the set with the range [1; k].

card ≡ (lambda (t (′s Bool)) (f (′s Int)) (k Int))
(forall (?x s)(implies (in ?x t)(in (f ?x)(range 1 k))))
(forall (?x s)(?y s)(implies (and (in ?x t) (in ?y t))

(iff(equal ?x ?y) (equal (f ?x)(f ?y))))))

Rule 31 specifies the translation of the application of operator card to a set
τ ; the context is enriched with a constant k and a function f, and an assumption
that relates both new symbols to set τ using the macro card.

31

[[τ, Γ]]τ = t; Γ 1 btype(τ) = P(s) Γ .nm(s) = s fresh({p, k, f})
Γ 2 = Γ 1[funs⊕ {k �→ Int, f �→ (s Int)} |

assumptions⊕ (card t f k)]
[[card(τ), Γ]]φ = k; Γ 2

5 Experimental Results

An initial set of benchmarks was made available by an industrial partner. From
this initial set were extracted the proof obligations that use only the constructs
listed in Section 2.1: booleans, integers, and basic sets. Since the prover is a
satisfiability modulo theory (SMT) solver, to check the validity of a lemma, the
negation of the lemma is given to the solver. If this negation is found unsatisfi-
able, then the original formula is valid.

The selected benchmarks were translated manually following the rules pre-
sented in Section 4. The resulting files were then processed with the SMT-solver
veriT [10], that integrates the necessary pre-processing steps to handle the con-
structs introduced in these translation rules.

In the general case, an execution of veriT may yield four results. First, the
execution may not halt within the resource bounds allocated (be it space or
time). The second possible outcome is “unsat”, i.e. unsatisfiability is detected;
for some logics, veriT is then able to produce a trace of the reasoning steps that
were applied to detect this unsatisfiability: this trace can be checked by a third-
party tool and used as a certificate of the result. The last two possible results
happen when veriT is not able to show the input formula is unsatisfiable. The
input formula is then inspected and, if it belongs to a logic for which the solver
is recorded to be complete, the result is “sat”; otherwise it is “unknown”. In the
case of the formulas addressed in this experiment, veriT is not complete and may
only return the verdicts “unsat”, “unknown” or timeout.

Table 1 summarizes the results. The first column identifies each lemma. The
second column indicates what is the expected result. The third and fourth
columns contain the result obtained with two versions of the SMT-solver veriT.
The version labeled veriT 1 in the table, is the version that participated at SMT-
COMP’2009, the yearly contest for SMT-solvers. For four lemmas, it is unable

228 D. Déharbe

Table 1. Experimental results: verifying RODIN lemmas with veriT

Name of RODIN lemma logic veriT 1 veriT 2 time

BepiColombo-thm15.smt unsat unsat unsat 0.049s
BepiColombo-thm2.smt unsat unsat unsat 0.010s
BoschSwitch-4.smt unsat unsat unsat 0.030s
SSF pilot-3.smt unsat unknown unsat 0.031s
SSF pilot-5.smt unsat unsat unsat 0.011s
SimpleLyra-7.smt sat unknown unknown 0.012s
ch4 other file-1.smt unsat unsat unsat 0.011s
ch7 conc-13.smt unsat unsat unsat 0.011s
ch7 conc-21.smt unsat unsat unsat 0.012s
ch7 conc-26.smt unsat unknown unsat 0.033s
ch7 conc-28.smt unsat unknown unsat 0.032s
ch910 ring-2.smt unsat unsat unsat 0.010s
ch912 mobile-1.smt unsat unsat unsat 0.031s
ch915 bin-2.smt unsat unknown unsat 0.032s
ch915 maxi-7.smt unsat unsat unsat 0.016s
ch915 mini-5.smt unsat unsat unsat 0.015s
ch915 sort other-3.smt unsat unsat unsat 0.013s
gen hotel new-14.smt unsat unsat unsat 0.035s
ssf-1.smt unsat unsat unsat 0.016s
ssf-3.smt unsat unsat unsat 0.016s
ssf-4.smt unsat unsat unsat 0.014s
ssf-7.smt unsat unsat unsat 0.013s

to prove that it is unsatisfiable. The reason was that all the corresponding for-
mulas contained quantifiers, and the original instantiation heuristics of veriT
failed to find the good instances. This motivated the extension of the quantifier
instantation module of veriT to improve these results.

In the initial experiments, the quantifier instantiation in veriT was handled in
two modules: an external theorem prover (namely, the E prover) to reason on
purely equational first-order logic using the superposition calculus, and a compo-
nent implementing custom quantifier instantation heuristics based on equalities
and atom polarities in the quantified formulas. The latter module was then ex-
tended to implement a new heuristic that instantiates quantified variables using
information from congruence closure, an internal module responsible for reason-
ing about equalities. Congruence closure maintains equivalence classes between
the terms that are present in the solver; each such equivalence class has a repre-
sentative term. In this heuristic, a quantified variable is instantiated with all the
representative terms that have the same sort as the the variable. After includ-
ing the new heuristics, no performance regression was observed compared to the
results that were obtained with the initial version.

This new version, labeled veriT 2 in the table, includes the heuristics that
uses the representative terms computed by congruence closure. With this new
version, all unsatisfiable lemmas were successfully discharged. As expected, veriT
reports an “unknown” verdict on the only lemma that cannot be proved.

Automatic Verification for a Class of Proof Obligations with SMT-Solvers 229

Note that the verification time is negligible: the total time to prove all lemmas
is less than one second. Even though the benchmarks are indeed small formulas
with few hypothesis, these results are promising. Even in the case of the proof
obligation that cannot be proved unsatisfiable, the result is returned very quickly.

6 Conclusions

This paper addresses the verification of proof obligations generated in formal
systems and software developments using SMT-solvers. A fragment of the XML-
based format for proof obligations in the RODIN platform was chosen: essentially
it combines basic sets, fragments of integer arithmetics and booleans. The scope
therefore compares to that of existing tools such as the Predicate Prover.

The use of pre-processing constructs simplifies the specification and imple-
mentation of the translation from set theory to predicate logic: e.g. macros
are associated to the main operators of set theory. A set of rules specifies the
translation of proof obligations to the SMT-LIB format extended with macro-
definitions and lambda expressions. A second stage of translation, applying clas-
sic pre-processing techniques such as macro-expansion, produces fully compliant
SMT-LIB files that can be handled with existing SMT-solvers.

A set of benchmark proof obligations, supplied by an industrial partner, was
used to assess the usefulness of the approach. The translation system was applied
to the proof obligations and the resulting SMT-LIB files were verified with an
existing SMT-solver. The initial version of the solver was already fast but, in
some cases, was unable to produce the expected result. After extending the
solver with a new (and simple) quantifier instantiation heuristics, all valid proof
obligations were proved almost instantaneously. This experiment validate the
approach: existing SMT-solvers may be employed to discharge automatically
and quickly a number of proof obligations in formal software developments such
as Event-B.

Future Work. The translation presented in this paper will thus be used as the
specification for the implementation of a verification plug-in for the Rodin plat-
form targeting SMT-solvers. The translation will then be extended to handle
a larger number of specification constructs, namely basic binary relations and
arithmetics for real numbers.

Further, the capabilities of SMT-solvers can be used to improve the workflow
in the development platform. First, one can define classes of proof obligations
where the solver is complete and where more accurate results can be reported,
using theoretical results such as those reported in [12]. In those cases where the
solver is complete, counter-models can be reported to the user, when a proof
obligation cannot be verified. Also, SMT-solvers may identify the subset of hy-
pothesis that was actually useful to verify a proof obligation. This information
can be used by the environment platform to reduce the number of generated
proof obligations when the user modifies a definition. Finally, other translations
can be defined to consider other classes of proof obligations. For instance, as

230 D. Déharbe

suggested in [8,6], sets can be mapped to arrays of booleans, for which efficient
SMT-solving techniques are available.

Acknowledgements. The author thanks Laurent Voisin for providing examples
and Carine Pascal for sharing information on plug-in development for Rodin.
The initial implementation of macro expansion, beta reduction and lifting of
equalities to formulas in veriT is due to Pascal Fontaine. He also proposed to use
them as a means to handle basic set connectors.

Thisworkwas partially supportedby theNational Institute ofScience andTech-
nology for Software Engineering (INES)1, funded by CNPq grant 573964/2008-4.

References

1. ClearSy: Atelier B User Manual Version 4.0. Clearsy System Engineering (2009),
http://www.atelierb.eu

2. Coleman, J., Jones, C., Oliver, I., Romanovsky, A.: E.Troubitsyna: RODIN (rig-
orous open development environment for complex systems). In: Fifth European
Dependable Computing Conference: EDCC-5 supplementary volume, pp. 23–26
(2005)

3. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

4. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

5. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2 (August 2006)
6. Kröning, D., Rümmer, P., Weissenbacher, G.: A proposal for a theory of finite

sets, lists, and maps for the SMT-LIB standard. In: Informal proceedings, 7th
International Workshop on Satisfiability Modulo Theories at CADE 22 (2009)

7. Bruun, H., Damm, F., Dawes, J., Hansen, B., Larsen, P., Parkin, G., Plat, N.,
Toetenel, H.: A formal definition of VDM-SL. Technical Report Technical Report
1998/9, University of Leicester (1998)

8. Couchot, J.F., Déharbe, D., Giorgetti, A., Ranise, S.: Scalable automated prov-
ing and debugging of set-based specifications. Journal of the Brazilian Computer
Society 9(2), 17–36 (2003)

9. Hurlin, C., Chaieb, A., Fontaine, P., Merz, S., Weber, T.: Practical proof recon-
struction for first-order logic and set-theoretical constructions. In: Dixon, L., Jo-
hansson, M. (eds.) The Isabelle Workshop 2007, Bremen, July 16 (2007)

10. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: verit: An open,
trustable and efficient smt-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

11. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
12. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.

In: Ghilardi, S. (ed.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278. Springer, Hei-
delberg (2009)

1 www.ines.org.br

http://www.atelierb.eu

A Refinement-Based Correctness Proof of
Symmetry Reduced Model Checking

Edd Turner1, Michael Butler2, and Michael Leuschel3

1 Department of Computing, University of Surrey
2 Electronics and Computer Science, University of Southampton
3 Institut für Informatik, Heinrich-Heine Universität Düsseldorf

Abstract. Symmetry reduction is a model checking technique that can
help alleviate the problem of state space explosion, by preventing redun-
dant state space exploration. In previous work, we have developed three
effective approaches to symmetry reduction for B that have been imple-
mented into the ProB model checker, and we have proved the sound-
ness of our state symmetries. However, it is also important to show our
techniques are sound with respect to standard model checking, at the al-
gorithmic level. In this paper, we present a retrospective B development
that addresses this issue through a series of B refinements. This work
also demonstrates the valuable insights into a system that can be gained
through formal modelling.

Keywords: B, refinement, model-checking, symmetry reduction.

1 Introduction

The B language is an established formal modelling notation whose salient fea-
ture is its support for the incremental refinement of abstract specifications into
concrete implementations. A B specification (machine) comprises a collection of
variables and operations that may manipulate these variables, together with an
invariant on the variables.

Formal verification in B typically requires the use of semi-automatic theorem
provers (e.g., B4Free [1], Atelier-B [2], the B-Toolkit [3] and Rodin [4]) to prove
that the operations of a machine preserve the invariant, and that each refinement
is valid. Model checking is a valuable, alternative approach that can perform
these tasks automatically, as with the ProB model checker [5].

Previously, we have focused on addressing the state space explosion challenge
that faces model checking [6,7,8]. This is where a linear increase in the size of a
specification leads to a combinatorial increase in the number of states that the
model checker must explore. The impact is that checking large specifications be-
comes intractable. Our work relied on the identification of symmetric states that
satisfy the same predicates [6, Theorem 1], and the implementation of an aug-
mented model checking algorithm in ProB that checks only one state from each
symmetry class. Experimental results were encouraging and have been shown to
reduce the time of model checking by up to three orders of magnitude, e.g., [8].

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 231–244, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

232 E. Turner, M. Butler, and M. Leuschel

Moreover, these techniques have been integrated into the final version of the tool.
Complementary to this work, it is also important to guarantee the soundness
of our approaches, with respect to standard model checking. That is, if stan-
dard model checking exhausts its search space without finding an error, called a
counterexample, then it must be guaranteed that symmetry reduced checking ex-
hausts its constrained search space without finding a counterexample. In [6], we
sketched a proof that shows this. In this paper, we go a step further and present
a complete B development that shows the soundness of our methods through
B refinement. In doing so, we provide details of the model checking algorithms
used in terms of their key variables, and we make clear the system properties
that contribute to the soundness result.

The B development we present was specified and proved interactively using
B4Free’s graphical interface, Click’n Prove [9]. Alternatively, we could have used
the next generation of B, Event-B [10] and the Rodin tool [4]. However, we
did not find our choice inhibited development. Instead, as is common to formal
modelling in general, the most time-consuming aspect was the iterative process
of finding a suitable abstraction of the system that captures the information we
required, in addition to discovering invariants important for refinement.

We proceed by presenting the abstract specification for model checking in
Section 2 and an immediate refinement in Section 3. Section 4 provides a re-
finement machine whose behaviour closely models standard model checking in
ProB. Next, the refinement in Section 5.1 adheres to our style of symmetry
reduction implemented in [6], and Section 5.2 gives a refinement that matches
our symmetry reduction strategy used in [7,8]. Finally, we provide a discussion
of our work in Section 6. For clarity of presentation, each machine is broken into
several parts, which are individually explained. Each machine specifies the same
set of operations, as required by B refinement, although they are only included
in the commentary when necessary.

2 An Abstract Specification for Model Checking

The abstract specification, mc0, introduces the sets and constants that are re-
quired to capture the overall behaviour of a model checking procedure, as used by
ProB. These are used to specify two mutually exclusive events that determine
when model checking can terminate. We begin by introducing the sets, constants
and properties used by this machine. The B encoding is given in Figure 1.

The mc0 machine uses two sets, S and ANSWER. Deferred set, S denotes all
possible states of the system being model checked (i.e., the cartesian product of
types of the machine variables). Given that bounds are placed on system types
during model checking in ProB, |S| is finite. The enumerated set, ANSWER de-
notes the two, mutually exclusive, choices of message that are output once model
checking terminates; either Pass (the reachable search space has been exhausted
without finding a state that violates the invariant, i.e., a counterexample), or
Fail (a reachable counterexample has been found).

There are four important constants used for the abstract specification (see also
Figure 3). Defining the behaviour of the system is tr, the transition relation over

A Refinement-Based Correctness Proof 233

MACHINE mc0
SETS

S ; ANSWER = {Pass,Fail}
CONSTANTS

i, /* special initial state */
tr, /* transition relation */
inv, /* states satisfying invariant */
reach /* reachable states */

PROPERTIES
tr ∈ S ↔ S ∧
inv ∈ P(S) ∧
i ∈ inv ∧
i /∈ ran(tr) ∧

/* the reachable states */
reach ∈ P(S) ∧
i ∈ reach ∧
/* reach is a fix-point */
tr [reach] ⊆ reach ∧

/* reach is the smallest fix-point of
the reachable states */
∀(r).(r ∈ P(S) ∧

i ∈ r ∧
tr [r] ⊆ r ⇒

reach ⊆ r)

Fig. 1. The Sets, Constants and Properties of the Abstract Machine, mc0

states in S. The set of correctness conditions checked by the algorithm is defined
implicitly through inv ; the subset of S satisfying the correctness conditions. Such
an approach is sufficient for the standard model checking of B systems in ProB,
since checking involves only the evaluation of the invariant for the variables
values1. A special state, i, is used to indicate the case where the variables used
by the specification have not yet been initialised. Successors of i represent the
initialisation of a machine, tr [{i}]. It follows that i is always the root state of
the search space. The set of states encountered during model checking, denoted
reach, is defined by a fix-point on tr, where tr [reach] ⊆ reach, i.e., the successor
of a reachable state is also reachable. Further, we specify reach as the least
fix-point of tr.

ok ← pass =̂
WHEN reach ⊆ inv
THEN ok := Pass
END;

ok ← fail =̂
WHEN reach � inv
THEN ok := Fail
END

Fig. 2. The Operations of the Abstract Machine, mc0

The operations of mc0 are given in Figure 2. These include pass and fail, which
are mutually exclusive events that specify the conditions under which model
checking terminates. The pass operation is enabled if all reachable states satisfy
the correctness conditions used during checking (reach ⊆ inv). In which case,
the Pass message is specified as a return parameter. Conversely, fail is enabled if
the set of reachable states do not satisfy the correctness conditions, and the Fail
message is output by the algorithm. In contrast to an implementation of a model
checking algorithm, this abstract specification either immediately passes or fails.
However, this is sufficient since its single goal is to capture the key properties of

1
ProB also supports the bounded verification of LTL formulae [11].

234 E. Turner, M. Butler, and M. Leuschel

reach

inv
i

S2
S3

S4

S5
tr

trtr

trtr
tr

tr err

rac
i

S2
S3

S4

S5
tr

trtr

trtr
tr

tr

tr

Fig. 3. Illustrating the constants of mc0 and variables of mc1

the procedure. Details used by an implementation, such as variable information,
are given in refinements of mc0.

3 Refinement Level 1

Let us now present mc1, the first level of refinement for mc0 (i.e., mc0 � mc1).
This refinement introduces two key variables and two events that will be required
in an implementation of a model checking algorithm. Their use is generalised so
that later refinements can specify their precise roles during both standard and
symmetry reduced model checking. We found that this modularised the proof
effort required for these algorithms. Note that this generalisation was devised
after developing and attempting to prove the separate models for the two algo-
rithms (presented in Sections 4 and 5), when we realised that this refinement was
a common abstraction that facilitates proof. Figure 4 presents the new variables,
invariant and initialisation clauses of mc1 (see also Figure 3).

Variable rac is introduced to store all states reached by model checking so
far, which satisfy the correctness conditions. Conversely, err stores those states
reached by model checking that violate the correctness conditions.

Regarding the operations, mc1 introduces two events used during the traver-
sal of the state space. The operation, add inv, models the checking of states
that satisfy the correctness conditions (and in later refinement machines also
determines states yet to be checked). Conversely, add err, models the checking
of counterexamples. We separate the events for state space traversal since we
find this style convenient for proof. The operations of mc1 are given in Figure 5.

REFINEMENT mc1
REFINES mc0
VARIABLES

rac, /* reached and checked */
err /* reached errors */

INVARIANT
rac ⊆ reach ∧

rac ⊆ inv ∧
i ∈ rac ∧
err ⊆ reach \ inv

INITIALISATION
rac := {i} ||
err := ∅

Fig. 4. The Variables, Invariant and Initialisation of mc1

A Refinement-Based Correctness Proof 235

add inv =̂ /* new event */
ANY ss WHERE

ss ⊆ reach \ rac ∧
ss ⊆ inv ∧
ss �= ∅

THEN
rac := rac ∪ ss

END;

ok ← pass =̂
WHEN

reach ⊆ rac
THEN

ok := Pass
END;

add err =̂ /* new event */
ANY ss WHERE

ss ⊆ reach \ rac ∧
ss �= ∅ ∧
ss ∩ inv=∅

THEN
err := err ∪ ss

END;

ok ← fail =̂
WHEN

err �= ∅

THEN
ok := Fail

END

Fig. 5. The Operations of mc1

Observe that the add inv event selects a non-empty subset from the reach-
able states, which are yet to be reached, and which also satisfy the correctness
conditions. This subset is added to rac, ensuring they will not be encountered
again. Similarly, the add err event selects a non-empty subset from the reachable
states, yet to be reached, but which contain no elements satisfying the correct-
ness conditions, i.e., are invariant violations. These violations are added to err
for a permanent record.

We refine the pass operation by specifying its guard as reach ⊆ rac. That
is, pass should become enabled when the reachable search space has been fully
covered by add inv. To show the validity of a refined event, we must prove that
the guard of the abstract operation (G) can be derived from the new guard
(G ′) together with the machine invariant (Inv), i.e., Inv ∧G ′ ⇒ G [12]. This is
straightforward, since rac ⊆ inv ∧ reach ⊆ rac ⇒ reach ⊆ inv . We also change
the guard of the fail operation to simply, err �= ∅, which is intuitive because its
satisfaction indicates an error has been encountered by the add err operation.
Proving that this refinement is valid is also simple since, err ⊆ reach \ inv ∧
err �= ∅ ⇒ reach �⊆ inv .

Given that we are model checking a finite state system, it is desirable to prove
the termination of the state space exploration algorithm specified in mc1, which
occurs when pass or fail enables. This can be shown by providing the variant,
| reach \ (rac ∪ err) |, which represents the number of remaining states yet to
be explored. Then, we note that successive applications of add inv and add err
decreases the value of the variant progressively, until at some point no new states
can be added to rac or err, and therefore, add inv or add err can no longer be
enabled. This ensures that pass or fail will eventually engage. In the case where
errors exist, fail enables. If add inv and add err block, then all reachable states
have been checked, without error, and pass enables. Thus, we have shown the
algorithm specified in mc1 terminates. The addition of variants to a system is

236 E. Turner, M. Butler, and M. Leuschel

not supported in classical B and its B provers2. However, we have provided a
variant here to help illustrate the validity of mc1.

4 Refinement for Standard Model Checking

The B machines mc0 and mc1 given in the previous sections are specified at a
high level: certain details are not included that would be required for an imple-
mentation of the algorithm. This section addresses this issue through a single
refinement of mc1 that specifies more closely the standard model checking algo-
rithm, and as a consequence, highlights several key properties. Figure 6 shows
the variables, invariant and initialisation clauses of this machine.

REFINEMENT mc2
REFINES mc1
VARIABLES

unex, /* reached not fully explored */
rac, /* reached and checked */
err /* reached errors */

INVARIANT
unex ⊆ rac ∧
tr [rac \ unex] ⊆ rac ∪ err

INITIALISATION
unex := {i} ||
rac := {i} ||err := ∅

Fig. 6. The Variables, Invariant and Initialisation of mc2

As can be seen, mc2 introduces a single variable, unex. The purpose of this
variable is to store all states reached by model checking so far, which satisfy the
correctness conditions, but whose successors are yet to be determined. Moreover,
it is defined as a subset of rac, since each state it stores will be reached via the
transition relation from the root state i, and subsequently checked.

In addition, note that a new invariant condition is added: tr [rac \unex] ⊆ rac
∪ err . This constitutes the basis of proving when model checking can terminate,
given that no violations exist. To clarify its use, we first present the behaviour
of the operations in this machine, given in Figure 7.

We introduce the remove operation to remove a state from unex whenever
all of its successors have been reached, and therefore are elements of rac. The
repeated application of remove will cause unex to diminish in size, indicating
that fewer transitions remain to be explored. This can be expressed formally as
a simple variant, | unex |, whose size decreases upon the action of remove.

The add inv event of mc1 is refined to select a single state from unex (a
state whose transitions have not yet all been traversed), and computes a single
successor of it (s2) that satisfies the correctness conditions. The successor is
added to both unex and rac. In the case where the successor is an invariant
violation, it is added to only err in the add err operation. Addition to either
unex or rac would, otherwise, break the invariant, unex ⊆ rac ∧ rac ⊆ inv .

2 Event-B and its associated provers provide support for variants.

A Refinement-Based Correctness Proof 237

add inv =̂
ANY s1,s2 WHERE

s1 ∈ unex ∧
s2 ∈ inv ∧
s1
→ s2 ∈ tr ∧
s2 /∈ rac ∧
err = ∅

THEN
unex := unex ∪ {s2} ||
rac := rac ∪ {s2}

END;

add err =̂
ANY s1,s2 WHERE

s1 ∈ unex ∧
s2 /∈ inv ∧
s1
→ s2 ∈ tr ∧
err = ∅

THEN
err := err ∪ {s2}

END;

remove =̂ /* new event */
ANY s1 WHERE

s1 ∈ unex ∧
/* all s1’s successors checked */
tr[{s1}] ⊆ rac ∧
err = ∅

THEN
unex := unex \ {s1}

END;
ok ← pass =̂

WHEN
unex = ∅ ∧
err = ∅

THEN
ok := Pass

END;
ok ← fail =̂

WHEN err �= ∅

THEN
ok := Fail

END

Fig. 7. The Operations of mc2

A number of assertions are also specified in mc2, to verify the preservation
of responsiveness of the specified model checking algorithm3. We do not show
them because they simply consist of a disjunction of the guards of each op-
eration. Their proof with B4Free guarantees that there is always at least one
enabled operation, e.g., model checking has not yet finished, so one can perform
either add inv, add err or remove, or conversely, state space exploration has
terminated and either pass or fail is enabled.

Given the responsiveness of this machine, in addition to the previous vari-
ants specified for the add inv, add err and remove operations, which show that
eventually these operations are all blocked, we can deduce that either pass or fail
will eventually be enabled. This relies on pass and fail being valid refinements of
their abstract specification. This is trivial for the fail operation, since it remains
unchanged from mc1. The goal for the pass operation is to show that Inv ∧ unex
= ∅ ∧ err = ∅ ⇒ reach ⊆ rac. By choosing the appropriate invariant, we have:

tr [rac \ unex] ⊆ rac ∪ err
= tr [rac] ⊆ rac Given unex = ∅ and err = ∅

That is, rac is a fix-point of tr . Since reach is the least fix-point, we can conclude
that reach ⊆ rac.
3 An assertion in B is an expression over the sets, constants, properties, variables

or invariant clauses of a B machine. They enable one to form corollaries in B. By
proving an assertion, it is made available for use inside other proof activities.

238 E. Turner, M. Butler, and M. Leuschel

The overall chain of refinement developed for standard model checking consists
of: mc0 � mc1 � mc2. That is, mc2 is a valid refinement of mc0. Therefore, the
model checking algorithm specified in mc2 is sound with respect to the abstract
specification of model checking. In the next section, we introduce the notion of
symmetry reduction into our specifications.

5 Refinements for Symmetry Reduced Model Checking

This section presents two refinement machines that specify symmetry reduced
model checking through the refinement of mc1 (Section 3), namely rmc1 and
rmc2. These refinements follow closely the specification of mc2, except they
introduce the concept of symmetry between states of a system.

5.1 Level 1

The primary purpose of the first refinement machine for symmetry reduced
model checking is to provide the first step towards integrating symmetry re-
duction into the B specification of standard model checking, whilst linking the
variables used by the standard and reduced approaches. Through this machine,
we also show that our original work in symmetry reduction [6] is sound with re-
spect to the abstract specification of model checking. In this particular strategy,
called permutation flooding, each unexplored state encountered is first checked
against the invariant. Then, all states symmetric to it (which we have proved
satisfy the same predicates) are computed and are added to the state space:
these states are marked as explored so that model checking need not explicitly
check them. The concept of state symmetries is specified using constants and
properties, and is given in Figure 8.

The symmetries of a system are defined over the transition relation in terms
of sets of special permutations (called automorphisms), denoted aut. We also
specify two key properties of automorphisms, as given in [13, Chapter 14]:

– an inverse of an automorphism is itself an automorphism, and
– automorphisms preserve the transition relation (a result also shown in [6]).

In the context of this specification, we define that the special state i (repre-
senting the uninitialised machine) is symmetric only to itself. In addition, we
specify a consequence of a result in [6, Corollary 1], which proves that symmet-
ric states satisfy the same predicates. That is, a state satisfies the invariant, iff
states symmetric to it also satisfy the invariant.

A valid automorphism p for the example from Figure 3 is shown in Figure 9
(dashed lines represent the transition relation), where S2 and S4 are permuted
for each other and all other states are kept unchanged. In terms of a B machine, a
state comprises the values of its variables. Intuitively, two states, such as S2 and
S4, are symmetric if the values of one state can be transformed into those of the
other. In addition, a sequence of state transitions (i.e., operations) possible from
one state will also be possible from the other; this is also depicted in Figure 9.

A Refinement-Based Correctness Proof 239

REFINEMENT rmc1
REFINES mc1
CONSTANTS

aut, /* automorphisms on tr */
rep /* representative function */

PROPERTIES
aut ∈ P(S �→ S) ∧
id(S) ∈ aut ∧
∀(p).(p ∈ aut ⇒ p−1 ∈ aut) ∧
∀(p).(p ∈ aut ⇒ i
→ i ∈ p) ∧

/* automorphisms preserve invar. */
∀(p,s1,s2).(p ∈ aut ∧

s1
→ s2 ∈ p ⇒
(s1 ∈ inv) ⇔ (s2 ∈ inv)) ∧

rep ∈ S → S ∧

/* P1: automorphisms preserve tr */
∀(p,s1,s2).(p ∈ aut ∧ s1 ∈ S ∧

s2 ∈ S ⇒
(s1
→ s2 ∈ tr) ⇔
(p(s1)
→ p(s2) ∈ tr)) ∧

/* symmetries have same rep. */
∀(p,s1,s2).(p ∈ aut ∧

s1
→ s2 ∈ p ⇒
rep(s1) = rep(s2)) ∧

/* s and rep(s) implies auto. */
∀(s1,s2).(s1
→ s2 ∈ rep ⇒

∃(p).(p ∈ aut ∧ s1
→ s2 ∈ p)) ∧

/* representatives are fix-points */
∀(s).(s ∈ ran(rep) ⇒ rep(s) = s)

Fig. 8. The Constants and Properties of the Machine, rmc1

inv
i

S2
S3

S4

S5

p

p

p

p

p

Fig. 9. An automorphism for Figure 3

The constant, rep, is introduced to model an algorithm that computes a unique
representative for some given state, and is defined over the set of states S . We
have implemented this function in ProB, which determines a representative
state from the set of states symmetric to it [6].

It follows that checking one state during the reduced search, corresponds
to checking all symmetric states in the standard search. The rep function in
this refinement is constrained accordingly (the first 3 properties involving rep).
Further, we specify representatives as fix-points. Assertions for rmc1 are given
in Figure 10, whose proof simplifies later proof activities required to guarantee
its consistency and show that it is a valid refinement of mc1.

There are five assertions defined for this machine, of which the first four are
relatively simple and follow from the properties of aut and rep. The last as-
sertion requires proof that for any reachable state its representative state is
also reachable. To show this it is instructive to present a fix-point proof over
automorphisms, upon which rep is based. Using the property of automorphisms

240 E. Turner, M. Butler, and M. Leuschel

ASSERTIONS
/* representatives preserve invar. */
∀(s1,s2).(s1 ∈ S ∧

s2 ∈ S ∧
s1
→ s2 ∈ rep ⇒

((s1 ∈ inv) ⇔ (s2 ∈ inv))) ∧

rep(i) = i ∧
rep−1[{i}] = {i} ∧

∀(s1,s2).(s1
→ s2 ∈ tr ⇒
∃(ss2).(rep(s1)
→ ss2 ∈ tr ∧

rep(s2) = rep(ss2))) ∧

/* s is reachable iff
rep(s) is reachable */
∀(s).(s ∈ S ⇒

((s ∈ reach) ⇔ (rep(s) ∈ reach)))

Fig. 10. The Assertions of rmc1

marked P1 in Figure 8, we begin by proving for any automorphism p, that
p[reach] is a fix-point of tr :

tr [p[reach]] ⊆ p[reach] (A)
⇔ ∀ y · y ∈ tr [p[reach]] ⇒ y ∈ p[reach] inclusion is universal
⇔ (∃ x · x ∈ p[reach] ∧ x �→ y∈ tr) quantify on p

⇒ y ∈ p[reach]
⇔ (∃ x · p−1(x) ∈ reach ∧ x �→ y ∈ tr) p is injective

⇒ p−1(y) ∈ reach
⇔ (∃ x · p−1(x) ∈ reach ∧ p−1(x) �→ p−1(y) ∈ tr) property P1

⇒ p−1(y) ∈ reach
⇔ true

Equation (A) implies p[reach] is a fix-point of tr . Thus, for an automorphism q:

reach ⊆ q[reach] (B)

By monotonicity, from (B) we get:

q−1[reach] ⊆ q−1[q[reach]]
⇔ q−1[reach] ⊆ reach q is injective (C)

Instantiate q with p in (B) to get:

reach ⊆ p[reach] (D)

Instantiate q with p−1 in (C) to get:

(p−1)−1[reach] ⊆ reach
⇔ p[reach] ⊆ reach p is injective (E)

Finally, from (D) and (E) we obtain the result p[reach] = reach. That is, all
automorphisms preserve the reachable states.

A Refinement-Based Correctness Proof 241

VARIABLES
/* vars for standard checking */
rac,unex,err,
/* vars for reduced approach */
rrac,runex,rerr

INVARIANT
unex ⊆ rac ∧
rrac ⊆ ran(rep) ∧
rrac ⊆ rac ∧
runex ⊆ rrac ∧

rerr ⊆ err ∧
rep−1[rrac] = rac ∧
rep−1[runex] = unex ∧
rep−1[rerr] = err ∧
tr [rac \ unex] ⊆ rac ∪ err

INITIALISATION
rac := {i} || rrac := {i} ||
unex := {i}|| runex := {i}||
err := ∅ || rerr := ∅

Fig. 11. The Variables, Invariant and Initialisation of rmc1

Six variables are used by this machine, and are shown in Figure 11. Intuitively,
they can be split into three pairs, where each pair consists of a variable used
in the B specification of standard model checking (rac, unex or err), and a
corresponding variable introduced to specify reduced checking (rrac, runex or
rerr). The key premise is to link each pair with some set of constraints, so that
properties that apply to standard checking also apply to the reduced approach.

As with the standard approach to checking, the set of states reached during
checking whose successors have not yet all been explored (unex), is a subset of the
states encountered by model checking (rac); unex ⊆ rac. To link rac and rrac,
we specify that rrac ⊆ rac and rep−1[rrac] = rac; the states symmetric to those
of rrac are members of rac. We specify corresponding constraints for variables
unex , runex , err , and rerr . In addition, tr [rac \ unex] ⊆ rac ∪ err is specified to
simplify the detection of model checking termination when no counterexamples
are found (i.e., when unex = ∅ and err = ∅, see mc2 in Section 4). This will
be proved correct in the next refinement using only rrac, runex , and rerr . The
operations of rmc1 are given in Figure 12.

Notice that this machine behaves in a similar way to mc2, which also refines
mc1. The difference regarding the add inv or add err events, is that for each
newly encountered state s we add its representative to runex (if s satisfies the
invariant) or rerr (if s violates the invariant); while adding all symmetric states,
rep−1[{s}] to unex or err . The remove operation follows this pattern, and re-
moves a state from runex whenever the representatives of all of its successors
have been encountered; while all symmetric states are then removed from unex.

Justification of the correctness of this refinement is similar to the standard
case, presented in Section 4. This involved proving the enabledness preservation
of operations, the validity of the refinement and that eventually pass or fail
becomes enabled.

Soundness Result 1: The important observation of this refinement machine
is that the style of state space traversal provided by the operations add inv,
add err and remove, reflects the algorithm we used in our initial work on symme-
try reduction in ProB, i.e., permutation flooding. For example, rep−1[{rep(s2)}]
in the add inv operation in Figure 12 represents all symmetric states of s2, which
are used to flood the variables, unex and rac. We obtain the assurance that

242 E. Turner, M. Butler, and M. Leuschel

add inv =̂
ANY s1,s2 WHERE

s1 ∈ runex ∧
s2 ∈ inv ∧
s1
→ s2 ∈ tr ∧
rep(s2) /∈ rrac ∧
rerr = ∅

THEN
runex := runex ∪ {rep(s2)} ||
unex := unex ∪ rep−1[{rep(s2)}] ||
rrac := rrac ∪ {rep(s2)} ||
rac := rac ∪ rep−1[{rep(s2)}]

END;
add err =̂
ANY s1,s2 WHERE

s1 ∈ runex ∧
s2 /∈ inv ∧
s1
→ s2 ∈ tr ∧
rep(s2) /∈ rrac ∧
rerr = ∅

THEN
rerr := rerr ∪ {rep(s2)} ||
err := err ∪ rep−1[{rep(s2)}]

END;

remove =̂
ANY s1 WHERE

s1 ∈ runex ∧
/* all s1’s successors checked */
rep[tr [{s1}]] ⊆ rrac ∧
rerr = ∅

THEN
runex := runex \ {s1} ||
unex := unex \ rep−1[{s1}]

END;

ok ← pass =̂
WHEN

rerr = ∅ ∧
runex = ∅

THEN
ok := Pass

END;
ok ← fail =̂

WHEN
rerr �= ∅

THEN
ok := Fail

END

Fig. 12. The Operations of rmc1

permutation flooding is sound with respect to the abstract specification of stan-
dard model checking, since mc0 � mc1 � rmc1.

5.2 Level 2

In the final refinement for symmetry reduction, we retain only three variables,
rrac, runex and rerr , from the relatively detailed rmc1, upon which we specify
a minimal set of constraints, as shown in Figure 13.

REFINEMENT rmc2

REFINES rmc1

VARIABLES
rrac, runex, rerr

INVARIANT
i ∈ rrac ∧
rrac ⊆ ran(rep) ∧
rrac ⊆ rac ∧
runex ⊆ rrac ∧
rerr ⊆ err

INITIALISATION
rrac := {i} ||
runex := {i} ||
rerr := ∅

Fig. 13. The Variables, Invariant and Initialisation of rmc2

Observe that the specification of the variables remains the same as that given
in rmc1, while all details of rac, unex , and err have been removed. The same
applies for the operations of this machine: add inv, add err and remove are
identical to those in rmc1, except that there are no assignments to rac, unex ,
and err . For this reason, we do not show the operations of this refinement.

A Refinement-Based Correctness Proof 243

We note that the style of state space traversal specified contrasts with that
of rmc1 and instead reflects more closely a classical symmetry reduction algo-
rithm, which we used in [7,8]. Therefore, upon encountering an unexplored state
(e.g., s1 in add inv), we compute and store only the unique representatives of
its successors that have not yet been checked (rep(s2)); the model checking al-
gorithm will never store two symmetric states, and it has less of a demand for
memory. The disadvantage of implementing such a rep function is that it can be
computationally expensive4. We also note that the proof of correctness for rmc1
is echoed by this machine.

Soundness Result 2: The chain of refinement for our classical approach to
symmetry reduced model checking consists of: mc0 � mc1 � rmc1 � rmc2.
Therefore, by the transitivity of refinement, our augmented algorithm is sound
with respect to the abstract specification of model checking.

6 Concluding

We have presented a B development that shows through refinement the sound-
ness of our previous methods for symmetry reduction in ProB, with respect to
standard model checking. That is, if standard model checking exhausts its search
space without finding a counterexample then symmetry reduced checking must
also exhaust its quotient search space without finding a counterexample.

An abstract specification for model checking, mc0, is given in Section 2, which
is refined by mc1 in Section 3. From here, two separate two chains of refine-
ment specify details of algorithms that implement the standard and reduced
approaches. The refinement branch for the reduced approach includes rmc1,
which reflects the style of model checking we adopted in [6], and rmc2, that re-
flects the style we used in [7] and [8]. Given that both chains refine the abstract
specification, we obtain our desired soundness result.

The system was specified using B and the Click’n Prove tool, although it would
have been possible to use Event-B. Indeed, our use of guarded B operations is
characteristic of events in Event-B. In addition, we could have utilised the tool
support of Event-B when guaranteeing the model checking algorithms eventually
terminate having found a counterexample (fail) or without finding a counterex-
ample (pass), after exploring the reachable state space. This task involved using
variants to ensure the add inv, add err and remove operations eventually relin-
quish control (giving pass and fail an opportunity to be enabled), and proving
the preservation of operation enabledness for the system. Despite this, we did
not find using B impeded the development process. We recognise though, that
if our development had become more complex (e.g., requiring decomposition), it
would have been beneficial to use Event-B and its tools.

The B development presented captures properties of model checking that are
sufficient to show the overall soundness of our approaches to symmetry reduction.
4 This rep function is based upon algorithms for determining isomorphic graphs, for

which there is currently no known polynomial time algorithm.

244 E. Turner, M. Butler, and M. Leuschel

In these specifications, we have removed the details of the algorithms that select
a unique representative from a class of symmetric states; as modelled by the
rep function. Proving that our implementations correctly compute representa-
tives currently remains as future work and would require developing additional
formal models. We do not believe this would be difficult for our permutation
flooding approach, since the implementation relies on a simple, but effective,
permutation function. However, we do think this would be challenging for our
two other implementations, which use complex algorithms for determining graph
isomorphism, and were inspired by the work of McKay [14]. Additional future
work is to extend our B development by adding labels to tr so that properties can
be proved over paths of the system. This would provide a basis for proving the
soundness of refinement via model checking. Finally, it would also be valuable
to prove that symmetry reduced model checking preserves LTL properties.

References

1. Clearsy: B4Free tool (2009), http://www.b4free.com
2. Steria, Aix-en-Provence, France: Atelier B, User and Reference Manuals (2009),

http://www.atelierb.eu/index-en.php
3. B-Core (UK) Limited: B-Toolkit manuals (2002),

http://www.b-core.com/btoolkit.html
4. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool

Environment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 588–605. Springer, Heidelberg (2006)

5. Leuschel, M., Butler, M.J.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

6. Leuschel, M., Butler, M.J., Spermann, C., Turner, E.: Symmetry Reduction for B
by Permutation Flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 79–93. Springer, Heidelberg (2006)

7. Turner, E., Leuschel, M., Spermann, C., Butler, M.J.: Symmetry Reduced Model
Checking for B. In: TASE, pp. 25–34. IEEE Computer Society, Los Alamitos (2007)

8. Spermann, C., Leuschel, M.: ProB gets Nauty: Effective Symmetry Reduction for
B and Z Models. In: TASE, pp. 15–22. IEEE Computer Society, Los Alamitos
(2008)

9. Abrial, J.R., Cansell, D.: Click’n Prove: Interactive Proofs within Set Theory. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1–24. Springer,
Heidelberg (2003)

10. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language, RODIN, D7 (2005)
11. Leuschel, M., Plagge, D.: Seven at one stroke: LTL model checking for high-level

specifications in B, Z, CSP, and more. In: Ameur, Y.A., Boniol, F., Wiels, V.
(eds.) ISoLA. RNTI-SM-1 of Revue des Nouvelles Technologies de l’Information,
Cépaduès-Éditions, pp. 73–84 (2007)

12. Abrial, J.R.: The B Book: Assigning programs to meanings. Cambridge University
Press, New York (1996)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

14. McKay, B.D.: Practical Graph Isomorphism. Congressus Numerantium 30, 45–87
(1981)

http://www.b4free.com
http://www.atelierb.eu/index-en.php
http://www.b-core.com/btoolkit.html

Development of a Synchronous Subset of AADL�

Mamoun Filali-Amine1 and Julia Lawall2

1 IRIT-CNRS, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
2 DIKU, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark

Abstract. We study the definition and the mapping of an AADL subset: the so
called synchronous subset. We show that the data port protocol used for delayed
and immediate connections between periodic threads can be interpreted in a syn-
chronous way. In this paper, we formalize this interpretation and study the devel-
opment of its mapping such that the original synchronous semantics is preserved.
For that purpose, we use refinements through the Event B method.

1 Introduction

Model-based design has emerged as one of the most important design paradigms in
recent years. High level models allow the developer to concentrate on the function-
ality to be offered rather than implementation details. The Architecture Analysis and
Design Language (AADL) [11] is by now considered as a mature alternative for mod-
eling embedded and real time systems. AADL has been standardized by the SAE [19],
and features of AADL have influenced the MARTE OMG standard [10]. As a succes-
sor of the MetaH language [16] developed by Honeywell Labs and used in numerous
experiments in avionics, flight control, and robotic applications, AADL capitalizes on
more than 10 years of experience. AADL also builds on the experience acquired during
the development of Architecture Description Languages (ADLs) such as ACME and
Wright [3].

In this paper, we study the AADL data port protocol, which defines the semantics
of delayed and immediate connections between periodic threads. This is a fundamental
protocol that lies at the heart of any embedded AADL-based platform. We show that
the data port protocol can be interpreted in a synchronous way [6]. Nevertheless, this
interpretation does not provide a satisfactory basis for implementation in embedded sys-
tems, as the stack depth entailed by recursive calls is only bounded by the least common
multiple of the periods of all of the threads, which can be very large. We thus present
the development of a mapping of the synchronous semantics of the AADL data port
protocol into an iterative implementation, such that the original synchronous semantics
is preserved. For this purpose, we use refinements through the Event B method [2].

After a brief overview of AADL and Event B in Sections 2 and 3, we motivate the
proposed development in Section 4. Section 5 presents the successive refinements of the
development. Section 6 outlines the validation of the development. Before concluding,
we review some related work in Section 7.

� This work was partly supported by the French AESE project Topcased and by the region Midi-
Pyrénées.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 245–258, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

246 M. Filali-Amine and J. Lawall

2 AADL

AADL includes all the standard concepts of any ADL, e.g., components, connectors to
describe the interface of components, and connections to link components. AADL dis-
tinguishes between three kinds of components: software components (process, thread,
thread group, subprogram, and data), hardware components (processor, bus, memory,
device), and system components.

2.1 AADL Threads

In AADL, threads are the only components that have an execution semantics. AADL
supports the classic types of thread dispatch protocols: a thread can be declared to be
periodic, aperiodic, sporadic or background. All of the standard properties (worst case
execution time (WCET), deadline, etc.) used to describe a real-time system exist in
AADL. In the following, we consider periodic threads only. A periodic thread is dis-
patched within every period.1 When a thread completes its execution, it goes to the
“awaiting_dispatch” state until its next period. The thread’s actual execution time is
bounded by its WCET and must end by its deadline.

2.2 AADL Data Port Protocol

AADL defines three types of ports: data, event and event data ports. Data ports al-
low communication via a single word (a register). Event and event data ports represent
buffered communications. In this paper, we consider only data ports.

A data port connection can be declared as delayed or immediate. If the connection
is delayed, data is available at the deadline of the sending thread. If the connection is
immediate the receiving thread must wait for the sending thread to complete to start its
execution. Figure 1 illustrates the instants where execution and these communications
take place. One key aspect of the AADL data port protocol is that communications
between a thread and its environment occur at well defined instants:

– In general, a message is copied at the dispatch (data event in Fig. 1); in the case of
an immediate connection, a message is copied at the start of execution (immediate
data in Fig. 1).

– A message is actually sent at the completion, in the case of an immediate connec-
tion, or at the deadline, in the case of a delayed connection.

data

execution

immediate
data immediate

data

dispatch complete deadline

delayed data
event

start of

Fig. 1. Communication through data ports in AADL

1 We consider here AADL V1 which does not take into account the phase of a periodic thead.

Development of a Synchronous Subset of AADL 247

3 A Brief Overview of Event B

Event B stems from the B method [1]. One of the goals of Event B is to reason about
so called reactive systems [15]. Like B, Event B is based on set theory together with
first-order logic. It proposes refinements as the main software development concept.
However, instead of B operations, Event B proposes events, which are simpler.

3.1 Basic Principles

The basic structuring concepts of Event B are the context and the machine. A context
contains sets, constants and their properties (axioms and theorems). A machine contains
a system specification. A system specification sees contexts and defines a static and a
dynamic part. The static part defines a state space through variables. These variables
are “typed” and more generally specified by invariants. The dynamic part defines a be-
havior through an initialization event and a set of events. Each event can be considered
as a non deterministic guarded command [9]. The guard is specified by a conjunction
of predicates and the command is specified as a set of substitutions.

3.2 Notation

For the most part, Event B uses standard set notation. Some notation that is specific to
Event B is as follows:

– pair construction: Pairs are constructed using the maplet operator �→. A pair is
thus denoted (a �→ b) instead of (a,b).

– restriction to the domain: F � R = {x �→ y | (x �→ y) ∈ R∧ x ∈ F}
– overwrite: Q�−R = ((dom(Q)\dom(R))� Q)∪R

4 Motivation of the Development

In this section, we motivate our development by presenting the specification view of the
data port protocol and some features of the operational view. The specification view is
intended to be used when reasoning over the protocol. The operational view is intended
to be used for an actual implementation. For instance, the operational view takes into
account the times where:

– the computations take place: at the period;
– the outputs are made avaliable: at the completion or at the deadline.

The goal of the development is to establish that the operational view refines the
specification view.

First, we illustrate the two views through a toy AADL architecture, shown in Fig-
ure 2. In this architecture, we have three periodic threads: t1, t2 and t3. The period
and deadline of t1 are both 10. That of t2 are 10 and 5, respectively. That of t3 are 15
and 5, respectively. Thread t1 has two output ports o1,o2 and two input ports i4 and
i5. Thread t2 has one output port o5 and two input ports i1 and i3. Thread t3 has two
output ports o3 and o4 and one input port i2. In each case, output port oi is connected
to input port ii, via either a delayed (d) or an immediate (i) connection. We further-
more adopt the convention that inside a thread, input and output ports are linked through
implicit immediate connections (an output can be linked to any subset of inputs).

248 M. Filali-Amine and J. Lawall

t1:
period: 10
deadline: 10

t2:
period: 10
deadline: 5

t3:
period: 15
deadline: 5

i4

i5 o1

o2

i1
o5

i3

i2
o3

o4

d

d

i i

d

Fig. 2. A toy AADL architecture

4.1 The Specification View

In the specification view, computations are assumed to occur at precise time instants.
In this study, we assume that computations occur at the beginning of their period, and
do not take time. Still, their results are available only at the deadline. This ensures
conformity with an effective implementation in which computations do take time but
respect the deadlines. Computations can depend on each other in:

– either a delayed way: at time t, the computation for port p depends on the compu-
tation that occured for port p’ at its most recent deadline.

– Or in an immediate way: at time t, the computation for port p depends on the
computation that occured for port p’ at the same time t, if any. The result of this
computation is then buffered in p for use in subsequent computations until a new
result is available from p’.

These two causality relations are given through the following relations:

Pred_D ∈ P(Port×Port) // delayed port predecessor relation
Pred_I ∈ P(Port×Port) // immediate port predecessor relation

The Pred_D and Pred_I port predecessor relations for the example shown in Figure 2
are the following:

Delayed port predecessor relation
{(i1 �→ o1),(i4 �→ o4),(i5 �→ o5)}

Immediate port predecessor relation
{(i2 �→ o2),(i3 �→ o3)}

Remark. The “hidden” immediate relations between each input port and each output
port of a thread are not shown.

The constants C_D (resp. C_I) are used to define the computation tasks for each
delayed (resp. immediate port). A computation task is parameterized by

– the identity of the port at the end of a connection,
– the values of the ports at the beginning of a connection, at preceding times for

delayed ports or at the current time for immediate ports.

As delayed connections only appear between threads, C_D only transfers values from
a single output port to a single input port. C_I does the same for connections between
threads, and carries out the thread’s computation for the “hidden” connections within

Development of a Synchronous Subset of AADL 249

threads. Then, the recursive Compute function is defined for delayed and immediate
ports as follows:2

Compute(t)(p)
delayed(p)

∧ t%period(p) = 0
C_D(p)({q �→ Compute(Deadline(t �→ q))(q) | q �→ p ∈ Pred_D})

immediate(p)
∧ t%period(p) = 0
∧ ∀q ∈ Pred_I−1(p).

t%period(q) = 0

C_I(p)({q �→ Compute(t)(q) | q �→ p ∈ Pred_I})

else Compute(t−1)(p)

where t is not equal to 0.

Remark: In the preceding table, we have adopted the usual mathematical notation {exp |
boolean_exp} for set comprehensions. In event B, the quantified variables would be
made explicit and the order of the terms changed as follows: {vars.boolean_exp | exp}.

The expression Compute(t)(p) deserves some explanation. For a delayed port it is
computed over the predecessor ports q (according to the Pred_D relation) at their re-
spective deadlines: Compute(Deadline(t �→ q))(q). For an immediate port, it is com-
puted over the predecessor ports q (according to the Pred_I relation) at the current
time t: i.e., Compute(t)(q). In general, the value of a port p is computed at its pe-
riod: period(p); for an immediate port, it is actually computed if its period aligns with
those of its predecessors; otherwise it remains unchanged.

Discussion. This initial specification is functional. It follows that, assuming the ter-
mination of the Compute function, the specification can be considered as executable.
However, we remark that such code cannot be considered as executable in the context
of an embedded system. In particular, the memory resources needed for executing such
a code are not a priori bounded, i.e., the code does not have the constant space property.
Indeed, the depth of the required stack to handle recursive calls depends on the least
common multiple of the periods of the various threads. Then, from a technical point of
view, the goal of the refinements that will be introduced in Sections 5.3 and 5.4 can be
seen as the implementation of this recursivity through bounded memory independently
of parameter values.

4.2 The Operational View

The operational view introduces a scheduler that manages the data port architecture.
The information needed by this scheduler is given by the RealTime context. Idle and
Deadline are the basic structures used by such a scheduler.

Idle ∈N→P(Port) : for a time t, the list of idle ports.
Deadline∈ Port×N→N : for a delayed port p and a time t, the (time) value of the

most recent deadline

We illustrate these static structures by instantiating them according to the architecture
shown in Figure 2.

2 % denotes the infix modulo function.

250 M. Filali-Amine and J. Lawall

Data structures of the architecture example

– Idle returns the list of idle ports at time t.

Idle 1−9 Port
Idle 10 {i2,o3,o4}
Idle 11−14 Port
Idle 15 {i1, i3, i4, i5,o1,o2,o5}
Idle 16−19 Port
Idle 20 {i2,o3,o4}
Idle 21−29 Port

– Deadline is a function which gives for a delayed port p and a time t, the (time)
value of the most recent deadline.

Deadline(o1,0−9) 0
Deadline(o1,10−19) 9
Deadline(o1,20−29) 19

Deadline(o4,0−4) 0
Deadline(o4,5−19) 4
Deadline(o4,20−29) 19

Deadline(o5,0−4) 0
Deadline(o5,5−14) 4
Deadline(o5,15−24) 14
Deadline(o5,25−29) 24

Algorithm of the scheduler. B does not offer mechanisms for real-time programming,
such as dedicated primitives for awaiting clock interrupts. In the proposed Event B
machines, guards model the real-time clock triggers. Once an event is triggered, all
the enabled events at that time are executed until none of them is still enabled. Then,
the processor idles until the next clock tick. In this paper, we consider that the time
between two clock ticks is sufficient to handle all the enabled events. In that way, we
do not lose any clock tick and all the events take place in zero time according to the
synchronous abstraction. The main loop consists of time-triggered iterations. For our
toy example, iterations are triggered at 0,10,15,20,30, etc., which correspond to the
periods of the threads of our example. Each iteration first handles the ports that should
run at that time and then prepares the next iteration. Handling ports is done through
the ComputeDelayed and ComputeImmediate events. Preparing the next iteration is
done through the Tick event. In the last refinement, these events are exclusive and
deterministic.

Synthesis. The operational view of the considered AADL subset is a mix between a
time-triggered machine and a data-flow machine. Ports are updated according to their
period. Immediate connections enforce a send-receive synchronization.

5 Abstracting and Refining the AADL Data Port Protocol

In this section, we formalize the fact that if we restrict AADL to connections with
the data port protocol, we have a synchronous computation model. For that purpose,
we first exhibit a model of the protocol from which we derive another model, based on

Development of a Synchronous Subset of AADL 251

histories, close to the description given in the previous section. A third model is derived
for considering implementation related issues with respect to the boundedness of the
used memory and the time for evaluating new port values. To summarize, we consider
the following refinement-based development, where � is B notation for “refined by”:

MACHINE Spec � I_Spec � P_Spec � M_Spec � Scheduler
CONTEXT Ports I_Ports M_Ports S_Compute

– Spec is the initial specification representing the abstraction of the AADL protocol.
– I_Spec is the refinement where Idle ports are introduced.
– P_Spec is the refinement where a Partition of ports is introduced. Immediate ports

are computed.
– M_Spec is the refinement where port buffering through a memory is introduced.

Delayed ports are computed.
– Scheduler is the final refinement where port updates are scheduled according to a

total order.

5.1 The Specification

This is the initial specification for the AADL data port protocol as the time parame-
terized function Compute. The variable ports records the value of this function at each
point in time through the Initialisation and Tick events. This recording is done
atomically so that no value returned by Compute is lost: between two events, Compute
stutters.

The static description. We have three variables:

– t is the current time,
– ports maps ports to their current value,
– b is a previous time, such that ports has not changed since b until t (excluded).
inv5 states that we have not missed any value in the interval b..t−1: the range of
the Compute function over this interval is a singleton.

MACHINE Spec
SEES Ports

VARIABLES t ports b

INVARIANTS
inv1 : t ∈ N∧0 < t
inv2 : ports ∈ Port→Val
inv4 : b ∈ N∧b < t
inv3 : ports = Compute(b)
inv5 : Compute[b .. t−1] = {Compute(b)}

252 M. Filali-Amine and J. Lawall

The dynamic description. The basic idea is that, in order to preserve our basic invariant
inv5 , the time t is advanced to a new value t ′ such that ports remain constant from t to
t ′ −1.

Initialisation
begin

act1 : t : | t′ ∈N∧0 < t′ ∧Compute[0 ..(t′ −1)] = {Compute(0)}
act2 : ports := Compute(0)
act3 : b := 0

end

Event Tick =̂
begin

act1 : t : | t′ ∈N∧ t < t′ ∧Compute[t .. (t′ −1)] = {Compute(t)}
act2 : ports := Compute(t)
act3 : b := t

end

5.2 Introducing Idle Ports and Atomicity Breaking through Silent Steps

In this refinement, we introduce Idle ports: a port is Idle at time t if it has the same
value as at time t− 1 (see the definition of the Compute function in Section 4.1). In-
tuitively, a port is idle when the thread to which it belongs is not active, i.e., after the
deadline. Moreover, non idle ports are now not updated atomically: we introduce a silent
Step event for updating them incrementally through the variable compute.

Basic sets. We introduce the constant time parameterized function Idle:

CONTEXT I_Ports
EXTENDS Ports
CONSTANTS Idle

AXIOMS
axm1 : Idle ∈N→P(Port)
axm3 : ∀t·(t∈N⇒(∀p·p∈Port⇒(p∈ Idle(t+1)⇒Compute(t+1)(p) = Compute(t)(p))))

END

The static description. We introduce the variable compute to incrementally record port
updates: recorded ports define the domain of the compute function (array). The invariant
inv2 states the correctness of this recording; any recorded slice is equal to the range of
the Compute function over the same slice. The invariant inv4 states that idle ports are
implicitly recorded.

VARIABLES t ports compute b

INVARIANTS
inv1 : compute ∈ Port �→Val
inv2 : ∀d·(d ⊆ dom(compute)⇒d � compute = d �Compute(t))
inv4 : Idle(t)⊆ dom(compute)

Development of a Synchronous Subset of AADL 253

The dynamic description.

Initialisation
begin

act3 : t,compute : | t′ ∈N∧0 < t′
∧ (t′ �= 1⇒ Idle[1 .. (t′ −1)] = {Port})
∧ compute′ = Idle(t′)�Compute(0)

act1 : ports := Compute(0)
act4 : b := 0

end

A silent step can occur if there exists some port not yet recorded:

Event Step =̂
any p
where

grd1 : p ∈ Port
grd2 : p /∈ dom(compute)

then
act1 : compute(p) := Compute(t)(p)

end

A tick can occur if all the ports have been recorded:

Event Tick =̂ refines Tick
when grd1 : dom(compute) = Port
then

act1 : t,compute : | t′ ∈N∧ t < t′
∧ (t′ �= t +1⇒ Idle[(t +1) .. (t′ −1)] = {Port})
∧ compute′ = Idle(t′)� compute

act2 : ports := compute
act3 : b := t

end

5.3 Partitioning the Ports

In this refinement, we partition ports into delayed and immediate ports. We also intro-
duce the computation pattern for immediate ports. At time t, the computation function
for an immediate port takes into account the values of other ports at the same time t. It
follows that the value of such predecessor ports should have been computed before and
more generally that the predecessor relation should be acyclic.

Basic sets.

CONTEXT P_Ports
EXTENDS I_Ports
CONSTANTS Delayed Immediate
AXIOMS

axm1 : Delayed ⊆ Port
axm2 : Immediate⊆ Port
axm3 : partition(Port,Delayed, Immediate)

END

254 M. Filali-Amine and J. Lawall

The static description.

VARIABLES t ports compute b

The dynamic description.

Event ComputeImmediate =̂ refines Step
any p
where

grd1 : p ∈ Immediate
grd2 : p /∈ dom(compute)
grd3 : Pred_I−1[{p}]⊆ dom(compute)

then
act1 : compute(p) := C_I(p)(Pred_I−1[{p}]� compute)

end

5.4 Introducing Port Buffering

In this refinement, we make precise the computation pattern for delayed ports. At time t,
the computation function for a delayed port takes into account the values of other ports
at their last deadline. In order to give access to such past values, we use a buffering
mechanism. The boundedness of such a buffering is ensured thanks to the properties of
the Deadline function (see properties (1) of Section 6.2).

Event ComputeDelayed =̂ refines ComputeDelayed
any p where

grd1 : p ∈Delayed
grd2 : p /∈ dom(compute)

then
act1 : compute(p) := C_D(p)(Pred_D−1[{p}]�mem)

end

5.5 Port Update Scheduling

This is our last refinement step. As already discussed in Section 4, the events of this
refinement are deterministic and the choice between them is exclusive. Although, un-
like classic B, an implementation refinement is not supported by Event B, we believe
that this refinement is significant with respect to a true implementation of an AADL
data port scheduler. In fact, the only data structure that remains as non implementable
with respect to classic B, is the compute partial function. The implementation of partial
functions can be considered now as part of the folklore and could be done by automatic
refinements as proposed by [18].

6 Development Validation

In this section, we relate some facts about the proposed development. The first one
concerns the development proofs and the second one concerns a technical aspect about
the resources needed to handle recursive calls.

Development of a Synchronous Subset of AADL 255

6.1 Proof Obligations

Most of the development has been done with the Rodin platform. There remain, how-
ever, some proofs that cannot be done with Rodin mainly related to the last refinement.
This refinement relies on lists (B sequences) which are not yet supported by Rodin. It
was thus easier for us to translate (manually) the development to Isabelle [17] and carry
out all of the proofs within its proof environment. In fact, thanks to the locale mecha-
nism of Isabelle it is easy to simulate Event B context extensions and machine refine-
ments. However, since Isabelle is a general purpose theorem prover and not a method
dedicated prover like Rodin, proof obligations related to invariant preservation, refine-
ment and event feasibility had to be generated by hand. Fortunately, Isabelle decision
procedures are very powerful and most of the proofs were straightforward.

6.2 Recursive Function Patterns

In this section, we present the basic ideas underlying the proposed implementation of
recursive calls with bounded memory. In our representation of the AADL data port
protocol, we have essentially two patterns:

– well-founded recursion: This pattern was used for the computation of immediate
ports (see Section 4.1). Let us recall that the values of these ports depend on other
immediate port values.

Compute(t)(p) = C_I(p)({q �→ Compute(t)(q) | q �→ p ∈ Pred_I})
Such a computation is possible because we assume that that Pred_I is an acyclic
relation. Thus, the computation proceeds according to a total order compatible with
that acyclic relation. It follows that when an element is processed, all the lower el-
ements have been processed already. Thus, the computation uses a finite number of
finite resources: the number of port buffers. We note that each element is processed
once. Such a property is not provided by a basic implementation of recursivity.
Memoization could have been used; but, since all the elements are, a priori, known
and have to be processed, the proposed order-based evaluation strategy is more
efficient since it avoids testing if an element has already been processed.

– past recursion: This pattern was used for the computation of delayed ports:

Compute(t)(p)=C_D(p)({q �→Compute(Deadline(t �→ q))(q) | q �→ p∈Pred_D})
where Deadline has the following properties:

Deadline(0) = 0∧Deadline(t + 1) �= Deadline(t)⇒Deadline(t + 1) = t (1)

In fact, thanks to these properties of the Deadline function, such a pattern can be
implemented through the following primitive recursive pattern:

f (0) = c∧ f (n + 1) = g(f (n),n + 1)

Actually, for such a pattern, the value of f (n) can be computed with one register
and one counter: initializing the register with c and the counter with 0, we compute

256 M. Filali-Amine and J. Lawall

the successive values of f (i) until the counter values reaches n. Correctness is en-
sured by the invariant counter≤ n∧ register = f (counter) and termination by the
variant n− counter.

The underlying idea of the preceding proposed implementation (Section 5.4)
can be summarized as follows: in order to compute f (Deadline(t)) without recur-
sion, we define an auxiliary primitive recursive function a such that:

a(0) = Deadline(0)∧a(n+1) = if Deadline(n+1) = Deadline(n) then a(n) else f (n)

We show by induction on n that ∀n. a(n) = f (Deadline(n)). Then, since a is prim-
itive recursive, f (Deadline(n)) can be computed in an iterative way with finite
memory resources. It follows that the computation of fi(n) which requires the
knowledge of fk∈I (Deadline(n)) also requires finite memory resources since the
set I is a priori known.

Remarks.

– We have given here one underlying idea of the proposed implementation. It can
be reused as a pattern for implementing a recursive function with an unknown re-
cursion depth with bounded memory resources. In a similar way, the other idea
concerns the implementation of well-founded recursion.

– The proposed implementation (Section 5.4), does not recompute the result of itera-
tions from one call to another.

7 Related Work

It is becoming acknowledged that one way to make things abstract is to consider them
at a level where we have a coarse grain of atomicity. Implementation details are then
introduced progressively while maintaining the properties of the coarse grain events.
For instance, along these ideas, bus protocols have been developed starting from a syn-
chronous view [12]. In these protocols, the concern is to ensure the correct behavior
of the devices with respect the bus lines while establishing basic properties like mutual
exclusion between the connected devices. We have been concerned by another safety
property: the preservation of a precedence relation given by a functional specification.

With respect to the specific domain we have been concerned with: computation
scheduling, we can cite the work of Stoddard et al. [20] about interrupt scheduling.
We note that they are especially concerned by interrupt handling and not by communi-
cation aspects. Their work is also concerned by making proofs for an unknown number
of tasks. Scheduling aspects have also been dealt with in [13]. Here, the main concern
was to provide a constructive specification of the problem such that certified code could
be extracted by the Coq system [5].

The work of [14] has also a semantic concern with respect to AADL. Its aim is
to provide a synchronous execution platform for AADL. A Lustre [8] translation se-
mantics of the basic mechanisms is proposed. Thanks to this approach, a model of the
whole system is obtained. This model is executable and its properties can be expressed
by means of synchronous observers; also, it can be validated or simulated thanks to the

Development of a Synchronous Subset of AADL 257

specification of the environment and the automatic generation of input sequences. As
we have said, this is a translation semantics approach, whereas our work is concerned
by the validation of an operational semantics with respect to a denotational semantics.

8 Conclusions

In this paper, we have been concerned by the formalization of an existing protocol
offered by the AADL architecture description language. Although the protocol descrip-
tion was precise, we believe that the proposed abstraction through a functional specifi-
cation is interesting since it is compact and allows to reason about the protocol without
going to the intricacies of the implementation. Moreover, although, an implementation
can be obtained directly from such a functional description, our proposed implemen-
tation relies on, a priori known, finite resources, as is mandatory for an embedded
environment. Technically, we have shown that, in some cases, the memory resources
needed to handle recursive calls can be, a priori, bounded even if the recursion depth
depends on the parameters. It would be worth studying how to facilitate the reuse of
such techniques through specification patterns as proposed by [4] and [7].

Concerning future work, we envision to introduce quantitative timing aspects. In
this paper, we have made the assumption that computations take zero time, or more
concretely, that all the required computations take place between two ticks and respect
the real time specification deadlines. More generally, we are interested in providing
patterns for implementing abstract functional synchronous languages [6] or subsets of
AADL [11] on top of concrete asynchronous architectures.

References

1. Abrial, J.-R.: The B-Book: Assigning programs to meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and reachability in Event_B. In: Treharne,
H., King, S., Henson, M.C., Schneider, S.A. (eds.) ZB 2005. LNCS, vol. 3455, pp. 222–241.
Springer, Heidelberg (2005)

3. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology (July 1997)

4. Ball, E., Butler, M.: Event-B patterns for specifying fault-tolerance in multi-agent interaction.
In: Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Methods, Models and
Tools for Fault Tolerance. LNCS, vol. 5454, pp. 104–129. Springer, Heidelberg (2009)

5. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J., Giménez, E., Herbelin, H., Huet,
G., Munoz, C., Murthy, C., Parent, C., Paulin, C., Saïbi, A., Werner, B.: The Coq Proof
Assistant Reference Manual – Version V6.1. Technical Report 0203, INRIA (August 1997),
http://coq.inria.fr

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone, R.: The
synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83 (2003)

7. Blazy, S., Gervais, F., Laleau, R.: Reuse of specification patterns with the B method. In: Bert,
D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 40–57. Springer, Heidelberg
(2003)

http://coq.inria.fr

258 M. Filali-Amine and J. Lawall

8. Caspi, P., Halbwachs, N., Pilaud, P.: Lustre: a declarative language for programming syn-
chronous systems. In: Proceedings of the 14th annual symposium on principles of program-
ming languages, January 1987, pp. 178–188 (1987)

9. Dijkstra, E.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)
10. Faugère, M., Bourbeau, T., de Simone, R., Gérard, S.: MARTE: Also an UML profile for

modeling AADL applications. In: ICECCS, pp. 359–364. IEEE Computer Society, Los
Alamitos (2007)

11. Feiler, P.H., Lewis, B., Vestal, S.: The SAE architecture analysis & design language (AADL)
standard: A basis for model-based architecture-driven embedded systems engineering. In:
RTAS Workshop 2003, May 2003, pp. 1–10 (2003)

12. Franca, R.B., Buss Becker, L., Bodeveix, J.-P., Farines, J.-M., Filali, M.: Towards safe design
of synchronous bus protocols in Event_B. In: Brazilian Symposium on Formal Methods,
Gramado Brazil. LNCS, vol. 5902. Springer, Heidelberg (2009)

13. Izerrouken, N., Pantel, M., Thirioux, X.: Machine checked sequencer for critical embed-
ded code generator. In: Cavalcanti, A. (ed.) ICFEM 2009. LNCS, vol. 5885, pp. 521–540.
Springer, Heidelberg (2009)

14. Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.: Virtual execution of AADL
models via a translation into synchronous programs. In: Proceedings of the 7th ACM & IEEE
international conference on Embedded software EMSOFT 2007, Salzburg, Austria, pp. 134–
143. ASSERT (2007)

15. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems: specification.
Springer, Heidelberg (1991)

16. MetaH (1997), http://www.htc.honeywell.com/metah/
17. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
18. Requet, A.: Bart: A tool for automatic refinement. In: Börger, E., Butler, M., Bowen, J.P.,

Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer, Heidelberg (2008)
19. SAE. Aerospace information report. avionics architecture description language. Technical

Report AS5506, SAE (March 2002)
20. Stoddart, B., Cansell, D., Zeyda, F.: Modelling and proof analysis of interrupt driven schedul-

ing. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 155–170.
Springer, Heidelberg (2006)

http://www.htc.honeywell.com/metah/

Matelas: A Predicate Calculus Common Formal
Definition for Social Networking

Nestor Catano1 and Camilo Rueda2

1 Madeira ITI
Funchal, Portugal
ncatano@uma.pt

2 Pontificia Universidad Javeriana
Cali, Colombia

crueda@cic.puj.edu.co

Abstract. This paper presents Matelas, a B predicate calculus definition
for social networking, modelling social-network content, privacy policies,
social-networks friendship relations, and how these relations effect users’
policies. The work presented in this paper is part of an ongoing work that
aims at using several formal methods tools and techniques to develop a
full-fledged social-network service implementing stipulated policies. Al-
though we employed Atelier B to write Matelas, plans are to port it to
Event B and to use Rodin to implement the social-network application.

1 Introduction

Over the past years we have experienced a huge development in Internet and
communication systems. Internet and technology have changed our lives. They
have changed the way we perceive the world, the way we build social relations,
the way we approach people, the way we are. Today, many people find easier to
share interests with people on the opposite side of the world, people who they
have never personally met, than with the neighbour from the opposite house.
Social-networks services in the form of web-sites, e.g., Facebook, Sapo, MyS-
pace, LinkedIn, Hi5, have revolutionised the way people socialise. They have
become popular tools to allow people to share common interests, and keep-up
with friends, family and business connections. Facebook, currently the dominant
service, reports 250 million active user accounts, roughly half of which include
daily activity [14]. A typical social network user profile features personal infor-
mation (e.g., gender, birthday, family situation), a continuous stream of activity
logged from actions taken on the site (such as messages sent, status updated,
games played) and media content (e.g., personal photos and videos). The privacy
and security of this information is therefore a significant concern [16]. For ex-
ample, users may upload media (such as photographs) they wish to share with
specific friends, but do not wish to be widely distributed to their network as
a whole. However, social network services have conflicting goals. Although re-
specting the privacy of their client base is important, they must also grow and
expand the connections between their users in order to be successful. This is

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 259–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

260 N. Catano and C. Rueda

typically achieved by exposing content to users through links such as friends-of-
friends, in which content relating to individuals known to a user’s friends (but
not the user) is revealed. Examples of this behaviour include gaining access to a
photo album of an unknown user simply because a friend is tagged in one of the
images. Back-doors also exist to facilitate casual connections such as allowing
an unknown user to gain access to profile information simply by replying to a
message he or she has sent.

We argue that mechanisms for users to enforce restricted access to content in
social network applications are urgently needed, and propose the use of formal
method techniques to build a core social network application enforcing these
policies. Formal methods are based on mathematical formalisms whereby social-
networks policies can be expressed in logic unambiguously. Formal methods make
possible the use of mathematically-based machinery to support the precise rea-
soning about the logical description of properties. The work presented in this
paper is part of an ongoing research work [12] in which social networking web-
sites (e.g. Facebook, Twitter, and Hi5) are used as a living testbed in which
formal methods [23] coupled with graph theory and Human Computer Interac-
tion (HCI) techniques are employed to develop more dependable, secure, and
crucially trustworthy social network systems. In this paper, we present Matelas1,
a predicate calculus abstract specification layer definition for social networking,
modelling social-network content, privacy policies, social-network friendship re-
lations, and how these effect the policies with regards to content and other users
in the network. Our work builds on Jean-Raymond Abrial’s “parachute strategy”
of building systems [1] in which a system is first considered from a very abstract
and simple point of view, with broad fundamental observations, and then details
are added to describe more precise behaviour of the system. As future work, we
envision to refine Matelas into a social-network core application that adheres
to stipulated policies and definitions. Hence, from our predicate calculus model
definition of social networks, a code-level model will be attained while applying
successive refinement steps.

In the following, Section 2.1 presents the context of the work presented in
this paper. Section 2.2 gives a brief introduction to the B method for software
development. Section 3 presents Matelas. Section 4 discusses related work on the
use of formal methods for social-networking, and Section 5 presents conclusions
and discusses future work and underlying challenges.

2 Preliminaries

2.1 A Formal Framework for Social Networking

The work presented in this paper is part of an ongoing research work in which
social networking web-sites are used as a living testbed in which formal methods
coupled with graph theory and Human Computer Interaction (HCI) techniques
are employed to develop more dependable, secure, and crucially trustworthy
1 Matelas is the French word for the English word mattress.

Matelas: A Predicate Calculus Common Formal Definition 261

social network systems. This ongoing work builds on the correct definition of
Matelas. We plan to refine Matelas to a social network core application that
adheres to stipulated policies [17,18]. The refined core application will serve as
a common trunk to which social network features will be plugged-in. While this
core is minimal in functionality, it will be considerably extended by incorporating
plug-ins. This will be achieved by developing a framework where the plug-ins,
written in popular programming languages such as Java or C, can demonstrate
their adherence to the policies stipulated by Matelas. This will be achieve by
using Proof Carrying Code (PCC) [20]. PCC is a technique in which a code
consumer (the social network core application) establishes a set of rules (privacy
and security policies) that guarantee that externally produced programs (the
plug-ins) can safely be run by the consumer. In addition to the code to be
executed, the code producer must provide a proof of adherence to the set of
rules defined by the code consumer. This proof is run by the code consumer
once, using a proof validator, to check whether the proof is valid and therefore
the external program is safe to execute. Hence, the problem of extending our
social network core application with plug-ins can be regarded as a producer-
consumer problem in which the code producer (the plug-in) must adhere to
security and privacy policies specified by Matelas, and as a consequence to the
policies of the social network core application.

Furthermore, while a social network application or plug-in may adhere to
stipulated policies, these policies might be insufficient to avoid human error.
While a plug-in may not access users date of birth without explicit authorisation,
it is still possible for users to inadvertently give such authorisation. This may
happen either by accident or, most likely, due to the complexity of the settings
and preferences interface that the user is asked to interact with. Hence, as part of
our whole work on social networking, we will augment our correct social network
core and plug-ins with understandable human interfaces that enable end users
to express their privacy policies and preferences, as well as to review and modify
them.

2.2 The B Method for Software Development

In the refinement calculus strategy for software development, the process of going
from a system specification to its implementation in a machine goes through a
series of stages. Each stage adds more details to the description of a system.
Each stage can thus be seen as a model of the system at a particular level of
abstraction. Models at each level serve different purposes. At higher levels models
are used to state and verify key system properties. At lower levels models are
used to implement the system behaviour. It is crucial that models at each stage
are coherent with the system specification, i.e., that the simulation obeys the
specification properties. A model Mi+1 at stage i + 1 is said to be a refinement
of a model Mi at stage i when the states computed by Mi and Mi+1 at each
given step obey a so-called “gluing invariant” stating properties for the joint
behaviour of both models. A refinement step generates proof obligations that
must be formally verified in order to assert that a model Mi+1 is indeed a

262 N. Catano and C. Rueda

refinement of a model Mi. These are sufficient conditions to guarantee that,
although at different levels of abstraction, both are models of the same system.
Correctness of the whole development process is thus ensured ([3]).

In the B method ([1], [25]) models are so-called machines composed of a static
part defining observations (variables, constants, parameters, etc) of the system
and their invariant properties, and a dynamic part defining operations changing
the state of the system. Each operation must maintain the invariant property.
In B, the language for stating properties, essentially predicate logic plus set
theory, and the language for specifying dynamic behaviour (i.e. programs) are
seamlessly integrated. A significant feature of the B system modelling approach
is the availability of automatic verification tools such as B-Tools [10], or Atelier
B [5], and model-checking simulators such as ProB [22].

A derivative of the B method is Event B [3]. Event B models are devel-
opments of discrete transition systems. They are composed of machines and
contexts. These correspond, roughly, to a B method machine whose static part
(except variables and their invariants) is transferred to a different module (the
context). B method operations are replaced in Event B machines by events. In
B method machines, operations are invoked, either by a user or by another ma-
chine, whereas in Event B, an event can be fired some condition (its guard) holds.
Three basic relations are used to structure a model. A machine sees a context
and can refine another machine. A context can extend another context. Events
have two forms, as shown in Table 1. The “when” form of event executes the
action A1 when the current value of the system variables v satisfies the guard
G1. The “any” form of event executes action A2 when there exists some value
of x satisfying the guard G2. Proof obligations require invariants to hold after
executing the actions.

Table 1. Events

any x
where

G2(x, v)
then

A2(x, v)
end

when
G1(v)

then
A1(v)

end

3 Matelas

Matelas is a B abstract specification for social networking that models social-
network content, social networks friendship relations, and privacy on content.
Privacy issues have generated a bunch of theories, and approaches [26]. Nonethe-
less, as stated by Anita L. Allen in [4], “while a no universally accepted definition
of privacy exists, definitions in which the concept of access plays a central role
have become increasingly commonplace”. Following Allen’s approach, we model

Matelas: A Predicate Calculus Common Formal Definition 263

Fig. 1. System architecture. Dashed boxes are components not yet defined

privacy with the aid of a relation that registers users’ access privileges on social-
network resources, and a content ownership relation.

Matelas distinguishes five rather independent aspects of social networks,
namely, user content and privacy issues, friendship relation in social-networks,
user content and how it is affected by friendship relations, external plug-ins,
and the user interface. At the present stage our model comprises six B (imple-
mented) components: an abstract machine, four refinements and an included
machine. We plan to refine Matelas to a social-networking core system. What
each implemented machine observes of the system is shown in Table 2. The
architecture of the core system is shown in Figure 1, with dashed boxes repre-
senting components not yet defined. The fourth refinement in Table 2 includes
the social friends machine. A first abstract model views the system as composed
of users and “raw content”, representing photos, videos, or text that a person
has in his personal page. Four relations concerning raw contents are modelled
at this level: content, visibility, ownership, and access privileges. The “content”
relation associates a person with all raw contents currently in the person’s page.

264 N. Catano and C. Rueda

Table 2. System architecture

Machine Observations
Abstraction Page content, content visibility, content ownership, access privileges
Refinement 1 Principal content, page fields
Refinement 2 Mandatory content
Refinement 3 User wall, wall visible content, wall access privileges
Social friends Friendship relations
Refinement 4 Relations between friendship, visibility and privileges

Each user owns some of the content in his page. The “visible” relation associates
a person with visible raw content. Visible raw contents are those raw contents a
user is allowed to view at some point. Only those raw contents for which a user
has “view” privilege can be visible. The “content” relation contains the “visi-
ble” relation. The “view” privilege and other types of privileges (e.g., edition of
a particular content) are defined in the access privileges relation act. Elements in
act are triplets (rc, op, pe) stating that person pe has op privilege on raw content
rc. In B language notation a triplet (a, b, c) is written a �→ b �→ c.

The owner owner(rc) of a raw content rc is unique. The following invariant
properties of the abstract model state that, (1) owner(rc) has all privileges over
rc2, (2) each raw content owned by a user is in the user’s page content, (3) a
raw content is visible for a user only when the user has “view” privilege over it,
and (4) all user’s visible raw contents are in the user’s page.

(1) ∀rc.(rc ∈ rawcontent ⇒ (∀op.op ∈ OPS ⇒ (rc
→ op
→ owner(rc)) ∈ act))
(2) owner−1 ⊆ content
(3) ∀(rc, pe).(rc ∈ rawcontent ∧ pe : person ⇒

((pe
→ rc) ∈ visible ⇒ (rc
→ view
→ pe) ∈ act))
(4) visible ⊆ content

The abstract model defines actions (so-called “operations”) for creating, trans-
mitting, making visible, hiding, editing, commenting and removing a raw con-
tent. All these, of course, are defined so as to maintain all the invariant properties.
Code for the operation representing a user removing from his page a raw content
owned by some other user is shown in Table 3. The pre-conditions requires the
user in question not being the owner. Upper case items refer to types. Lower
case, to variables of the system. A user can only remove visible raw contents.
The SELECT clause has two cases. The first one is when the rc to be eliminated
is not the only one present in pe’s page. The second one is the opposite. Since the
web page of each person in the system must have at least one content, pe must
be deleted from the system in this case. In B notation, C � r and r � C denote
restriction of a relation r to a subset C of its domain and its range respectively.
Similarly, C �− r and r �− C denote the restriction of the domain and the range
of r to elements not belonging to C.

2 OPS is the set of privilege types in the system.

Matelas: A Predicate Calculus Common Formal Definition 265

Table 3. Operation for removing a raw content

remove rc (rc , pe) =
PRE

rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧
pe ∈ person ∧
pe
→ rc ∈ visible ∧ pe �= owner(rc)

THEN
SELECT pe ∈ dom(content − {pe
→ rc}) THEN

visible := visible − {pe
→ rc} ‖
content := content − {pe
→ rc} ‖
act := act − {rc
→ view
→ pe} ‖

WHEN pe �∈ dom(content − {pe
→ rc}) THEN
visible := {pe} �− visible ‖
content := {pe} �− content ‖
act := act �− {pe} ‖
person := person − {pe}

END
END

Table 4. Operation for removing an owned raw content

remove owned rc (rc) =
PRE

rc ∈ RAWCONTENT ∧ rc ∈ rawcontent
THEN

visible := visible �− {rc} ‖
content := content �− {rc} ‖
act := ({rc} × OPS) �− act � dom(content �− {rc}) ‖
owner := {rc} �− owner ‖
person := dom(content �− {rc})

END
END;

The operation for a user removing an owned raw content is shown in Table 4.
Notice that in this case the removed content must also be removed from all other
user’s pages (content�−{rc}). This might leave some users with no raw contents
in their pages. The persons remaining in the system must thus be recomputed
(person := dom(content �− {rc})).

The first refinement mainly adds the observation of page fields. Each content
belongs to some field. The notion of field models the fact that users perform
different actions, such as commenting, dealing with some given content. Page
fields are defined as field ∈ (rawcontent− principal)→ principal. The various
raw contents of a given field are thus thought to be related (e.g. as a comment,
or as being part of a photo album) to a unique principal raw content. Remov-
ing a principal raw content entails removing all its “comment” contents in all user

266 N. Catano and C. Rueda

pages. A principal raw content can only be removed by its owner. The following
selected actions from the remove owned rc operation show this behaviour (for the
case rc ∈ principal). Expression field−1[{rc}] gives all secondary raw contents
whose primary is rc. These have to be removed together with rc.

rawcontent := rawcontent− (field−1[{rc}] ∪ {rc}) ‖
content := content �− (field−1[{rc}] ∪ {rc}) ‖
act := ({rc} ×OPS) �− act � dom(content �− {rc})

The second refinement models the fact that each user page must always keep
some predefined minimum information. This is represented as a set of special
predefined contents (referred to as prawcontent) in each page that cannot be
removed. This predefined information must be present in a page before any
other content is added, as stated in the invariant property, prawcontent ⊂
rawcontent ⇒ prawcontent �= ∅. Remove operations are refined to ensure that
all these special raw contents are always kept in a user’s page.

The third refinement models the notion of wall, common in social network sys-
tems. A wall is modelled as a relation associating a user with some raw contents
different from those in her web page: wall ∈ person↔ rawwall ∧ (rawwall ∩
rawcontent = ∅). Each wall owner gives others some particular visibility and
access privileges to his wall. Operations for adding/removing/hiding comments
to/from the wall are included at this level.

Machine Social friends provides definitions for types of friendship relations
in social networks. The machine models acquaintance, social and best friend
relations, with operations to add/remove users to/from each type of friendship
relation of a given user. This machine is parametrised with a set modelling a type
(that of “friends”). Some invariant properties of this machine are shown below,
where id(friend) is the identity relation over friend, and ran(friendship) is
the range of the friendship relation. The third property states that a user is
not a friend of himself. The fourth one states that all friends are involved in
some friendship relation. Other friendship types are defined similarly. Notice
that friendship relations are not defined to be transitive.

friend ⊆ FRIEND
friendship ∈ friend↔ friend
id(friend) ∩ friendship = ∅

friend = dom(friendship) ∪ ran(friendship)
best friends ∈ friend↔ friend
best friends ⊆ friendship

The fourth refinement includes the Social friends machine. It models how ac-
cess privileges relate to friendship relations, namely, best friends, social friends,
and acquaintances. The relation best friends models the highest level of friend-
ship of people in the social network, and acquaintances the lowest. In general, a

Matelas: A Predicate Calculus Common Formal Definition 267

lower friendship level cannot have any access privilege a higher level does not also
have, as stated in the following invariant properties:

∀pe.pe ∈ dom(friendship)⇒
∀bs.bs ∈ best friends[{pe}]⇒

(owner−1[{pe}]×OPS) ∩ act−1[social friends[{pe}]]
⊆

(owner−1[{pe}]×OPS) ∩ act−1[{bs}]
∀pe.pe ∈ dom(friendship)⇒
∀sf.sf ∈ social friends[{pe}]⇒

(owner−1[{pe}]×OPS) ∩ act−1[acquaintances[{pe}]]
⊆

(owner−1[{pe}]×OPS) ∩ act−1[{sf}]

Similar properties are stated for wall access privileges. All these properties only
relate to each user’s raw contents. That is, for any rc of a given user pe (i.e.
owner−1[{pe}]), the privileges of her social friends with respect to rc cannot
include something that any pe’s best friend does not also have. In this fourth
refinement, the remove owned rc operation adds the action

restrict friends(dom(content �− {rc}))
where restrict friends is an operation of the Social friends machine restricting
the friendship relation to the supplied set (see Table 5).

Table 5. Restricting friendship relations to a supplied set

restrict friends(frs) =
PRE frs ⊆ FRIEND
THEN

friendship := frs � friendship � frs ‖
best friends := frs � best friends � frs ‖
social friends := frs � social friends � frs ‖
acquaintances := frs � acquaintances � frs ‖
friend := friend ∩ frs

END

The operations distinguish between commenting a particular raw content in
some user’s page or doing so in the wall. Commenting a wall is done as shown in
table 6. Variable wall records all contents present in each person’s wall. Variable
vinwall ⊆ wall keeps track of visible wall contents for each person, wallowner
the owner of each content in a wall and wallaccess defines, for each wall owner,
the persons allowed to comment her wall. In the operation in table 6, when a
comment is added to the wall of person ow, the added comment is put in the wall
of each person having access to the wall of ow (expression (wallaccess[{ow}]×
{cmt})) and is also defined to be visible in those walls.

268 N. Catano and C. Rueda

Table 6. Operation for commenting in a wall

comment wall (cmt, ow, pe) =
PRE

pe ∈ person ∧ ow ∈ person
∧cmt ∈ RAWCONTENT ∧ cmt �∈ rawcontent

THEN
SELECT ow
→ pe ∈ wallaccess ∧ cmt �∈ rawcanvas
THEN

rawwall := rawwall ∪ {cmt} ‖
rawcanvas := rawcanvas ∪ {cmt} ‖
vinwall := vinwall ∪ (wallaccess[{ow}] × {cmt}) ‖
wall := wall ∪ (wallaccess[{ow}] × {cmt}) ‖
canvas := canvas ∪ (wallaccess[ow] × {cmt}) ‖
wallowner := wallowner ∪ {cmt
→ ow}

END
END

3.1 Publishing Content

A common operation to social-networking web-sites is publishing content to
people in the network. Publishing a social-network content rc to a user pe can
be regarded as a process of transmitting rc from the page of owner(rc) to the
page of pe. The abstract machine code for transmitting a raw content in a social-
network is shown in Table 7. The pre-condition of transmit rc requires that pe
is different than ow, and rc is not already in the page of pe. To transmit raw
content rc, the triplet rc �→ view �→ pe is added to act so as to grant the view
permission on raw content rc to user pe, and raw content rc is made visible to
pe by adding pe �→ rc to visible.

In a complementary direction, user pe can request permission to operate raw-
content rc. The abstract machine code for requesting a particular permission on
a raw content rc is shown in Table 8, where op is the permission being requested.

Table 7. Transmitting page content

transmit rc (rc , ow , pe) =
PRE
rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧ ow ∈ person ∧
pe ∈ person ∧ ow = owner(rc) ∧
ow �= pe ∧ pe
→ rc �∈ content ∧ rc
→ view
→ pe �∈ act

THEN
visible := visible ∪ pe
→ rc ‖
content := content ∪ pe
→ rc ‖
act := act ∪ rc
→ view
→ pe

END

Matelas: A Predicate Calculus Common Formal Definition 269

Operation request permission can either grant pe permission op over raw con-
tent rc, or deny the permission. If the permission is granted, rc �→ op �→ pe is
added to act, rc is added to content(pe), and the result variable res is set to
TRUE so as to communicate the success of the operation. Otherwise, when the
permission is denied, res is set to FALSE. The pre-condition of requesting a
permission requires that pe is different than owner(rc).

Table 8. Requesting Content Permissions

res ←− request permission (rc , pe , op) =
PRE
rc ∈ RAWCONTENT ∧ rc ∈ rawcontent ∧ pe ∈ person ∧
op ∈ OPS ∧ pe �= owner(rc)

THEN
CHOICE

act := act ∪ rc
→ op
→ pe ‖
content := content ∪ pe
→ rc ‖
res := TRUE

OR
res := FALSE

END
END

4 Related Work

P3P, the Platform for Privacy Preferences (http://www.w3.org/P3P/), an effort
of the World Wide Web Consortium (W3C), encompasses a standard XML mark-
up language for expressing privacy policies so as to enable user agent tools (e.g.
Web browsers, electronic wallets, mobile phones, stand-alone applications, or
social network applications) to read them and take appropriate actions. A P3P
Policy is primary a set of boolean answers to multiple-choice questions about
name and contact information, the kind of access that is provided, the kind of
data collected, the way the collected data will be used, and whether the data will
be shared with third parties or not. Though P3P policies are precisely scoped
[13], they are not expressive enough to model general privacy properties on
content. They are not based on mathematical formalisms either, e.g., predicate
calculus, so that it is not possible to reason about the truths derivable from
policies expressed in P3P standard language.

In [7], N. Sadeh et al. develop a theory that relates expressiveness and ef-
ficiency in a domain-independent manner. Authors derive an upper bound on
the expected efficiency of a given mechanism. The expected efficiency depends
on the mechanism’s expressiveness only. Using predicate calculus to write users’
privacy policies on content improves the expressiveness of mechanisms modelling
policies. We plan to build on Sadeh et al.’s work to study how this higher ex-
pressiveness of predicate calculus based privacy policies comes down to a higher

270 N. Catano and C. Rueda

efficiency of the agent mechanisms allowing social-network users to set their
privacy preferences.

In B language the expression of temporal logic constraints is notably missing.
In [15], J. Groslambert proposes a method to verify temporal logical properties
of Event B systems. We will build on Groslambert’s work, and J-R Abrial’s work
in [2], to verify temporal logic properties about Matelas.

In [19], Vijay Saraswat et al. propose a policy language for access control,
and a policy algebra in the timed constraint programming paradigm. Based on
Saraswat’s work, we plan to extend our work on modelling privacy on content
with a relation that registers users’ access privileges on social-network content
with a relation that registers role-based access permissions on content.

5 Conclusion

We presented Matelas, a B model for social networking, describing social-network
content, privacy policies, social-networks friendship relations, and how these ef-
fect the policies with regards to content and other users in the network. We
used Atelier B [5] to write Matelas. We found the B method particularly useful
in two aspects. One is the expressivity of the generalised substitution language
that makes it possible to construct a very simple abstract model of the system,
yet containing all fundamental security and privacy properties. The second is
that proof obligations are easy to interpret as “before-after” predicates of each
operation assignments which makes it easy to discover possible errors and their
correction by just looking at the statement of the proofs. A minor drawback, at
least for this application, is that some useful operations are discovered as the
refinement process leads to more detailed components which requires to change
all previous models to include these operations as empty statements. This in-
convenience could, of course, be circumvented by using Event B. Our decision of
using the Atelier B tool to undertake the development of the social-network core
was based on the authors’ previous experience with the tool. We envision to port
Matelas machines to Event B models and to use Rodin [24] to refine Matelas so
as to produced the social-network core system.

We have a positive impression on the use of Atelier B as tool to develop
relatively complex software systems, yet have some recommendations on how
the tool can be improved. For Matelas’ abstraction, the four refinements and
the social friends machine, the B method software tool Atelier B generates 658
proof obligations. About 60% of them are discharged automatically. Most of the
others (handling up to 90% of all obligations) are discharged in Atelier B by just
doing modus ponens followed by invocation of one of the available provers. Some
proofs, especially those involving equality of assignments in abstract and concrete
machines, are somewhat tricky. We found this might be due to some limitations
of the provers for handling predicates of the form A ∨ B, for A, B complex
expressions with A false and B true, even when B is supplied as a hypothesis
and proved first or, similarly, ¬A is added as hypothesis and proved first.

The work presented in this paper is part of an ongoing work that aims at
developing a full-fledged social network core that implements stipulated privacy

Matelas: A Predicate Calculus Common Formal Definition 271

policies. To the best of our knowledge, this is the first effort on using the B
method to formally develop a social-network web-site. We plan to refine Matelas
to a social-network core, and use Proof Carrying Code [20,21] to build Java plug-
ins that extend its features. The policies for Java plug-ins can be written in JML,
which allows the use of different formal methods tools to check program correct-
ness [9,11]. JML specifications have the advantage over predicate calculus based
models in that they are close to Java, and thus are closer to average programmers.
We envisage to investigate on systematic ways B Machines can be translated into
JML specifications. Work has already been done in the other direction [8], that
is, to transform JML specifications into B machines to check the specifications
for flaws. Alternatively, plug-ins can be written in C language, and formal spec-
ifications using the ACSL (ANSI/ISO C Specification Language) specification
language [6], a JML-like specification language for C programs. Altogether, our
work falls within the scope of the Grand Challenge in “Dependable System Evo-
lution” (http://vsr.sourceforge.net/introduction.htm) set forth by the
U.K, and Tony Hoare’s Grand Challenge in Verified Software. The challenge is
to create a toolset that would guarantee that programs meet given specifications.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition and instantiation of dis-
crete models: Application to Event-B. Fundamentae Informatica 77(1,2), 1–24
(2007)

4. Allen, A.L.: Uneasy Access: Privacy for Women in a Free Society. Rowman and
Littlefield (1988)

5. Atelier b, http://www.atelierb.eu/index_en.html
6. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:

ANSI/ISO C specification language,
http://frama-c.cea.fr/download/-plug-indevelopmentguide.pdf

7. Benisch, M., Sadeh, N., Sandholm, T.: A theory of expressiveness in mechanisms.
In: Proceeding of the 23rd Conference on Artificial Intelligence (July 2008)

8. Bouquet, F., Dadeau, F., Julien, J.: JML2B: Checking JML specifications with B
machines. In: The 7th International B Conference, pp. 285–288 (2007)

9. Breunesse, C., Catano, N., Huisman, M., Jacobs, B.: Formal methods for smart
cards: An experience report. Science of Computer Programming 55(1-3), 53–80
(2005)

10. B Tools, http://www.b-core.com/btool.html
11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,

Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

12. Catano, N., Kostakos, V., Oakley, I.: Poporo: A formal framework for social net-
working. In: 3rd International Workshop on Formal Methods for Interactive Sys-
tems (FMIS), Eindhoven, The Netherlands (November 2009) (to appear)

http://www.atelierb.eu/index_en.html
http://frama-c.cea.fr/download/-plug-indevelopmentguide.pdf
http://www.b-core.com/btool.html

272 N. Catano and C. Rueda

13. Cranor, L., Lessig, L.: Web Privacy with P3p. O’Reilly & Associates, Inc., Se-
bastopol (2002)

14. Facebook’s statistics, http://www.facebook.com/press/info.php?statistics
15. Groslambert, J.: Verification of LTL on B event systems. In: Julliand, J.,

Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Heidelberg
(2006)

16. Gross, R., Acquisti, A.: Information revelation and privacy in online social net-
works. In: Workshop on Privacy in the Electronic Society (WPES), pp. 71–80
(2005)

17. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B.,
Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg
(1986)

18. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1,
271–281 (1972)

19. Jagadeesan, R., Marrero, W., Pitcher, C., Saraswat, V.A.: Timed constraint pro-
gramming: a declarative approach to usage control. In: Proceeding of Principles
and Practice of Declarative Programming (PPDP), pp. 164–175 (2005)

20. Necula, G.C.: Proof-carrying code. In: Symposium on Principles of Programming
Languages (POPL), Paris, January 1997, p. 106119 (1997)

21. Necula, G., Lee, P.: Research on proof-carrying code for untrusted-code security.
In: Proceedings of the 1997 IEEE Symposium on Security and Privacy, p. 204
(1997)

22. ProB, http://users.ecs.soton.ac.uk/mal/systems/prob.html
23. Robinson, A., Voronkov, A.: Handbook of Automated Reasoning. MIT Press, Cam-

bridge (2001)
24. Rodin, http://www.event-b.org/platform.html
25. Schneider, S.: The B-Method: An Introduction. Palgrave (2001)
26. Schoeman, F.D.: Philosophical Dimensions of Privacy: An Anthology. Cambridge

University Press, Cambridge (1984)

http://www.facebook.com/press/info.php?statistics
http://users.ecs.soton.ac.uk/mal/systems/prob.html
http://www.event-b.org/platform.html

Structured Event-B Models and Proofs

Stefan Hallerstede

University of Düsseldorf
Germany

stefan.hallerstede@wanadoo.fr

Abstract. Event-B does not provide specific support for the modelling
of problems that require some structuring, such as, local variables or se-
quential ordering of events. All variables need to be declared globally and
sequential ordering of events can only be achieved by abstract program
counters. This has two unfortunate consequences: such models become
less comprehensible — we have to infer sequential ordering from the use
of program counters; proof obligation generation does not consider order-
ing — generating too many proof obligations (although these are usually
trivially discharged).

In this article we propose a method for specifying structured models
avoiding, in particular, the use of abstract program counters. It uses a no-
tation that mainly serves to drive proof obligation generation. However,
the notation also describes the structure of a model explicitly. A corre-
sponding graphical notation is introduced that visualises the structure
of a model.

1 Introduction

Recently, we have argued that the benefits of the minimalist approach of Event-B
[1] to formal modelling are sometimes balanced by complications that result, in
particular, from more complicated invariants [11]. The reason for this was that it
was necessary to introduce abstract program counters when dealing with mod-
els that require (sequential) ordering of some events. However, we have argued
in an earlier article [9] that, specifically, structuring constructs like sequential
composition or if-statements lead to complications. Thus, the problem we face
is keeping the simplicity resulting from the minimalism while providing some
means to structure Event-B models. The solution we propose is to move more
information about what is to be proved into the models — a solution we have
already chosen before by introducing witnesses to Event-B. We do not introduce
sequential composition or if-statements but a notation that allows us to state
properties to prove about them. The usual approach in program verification
would be to derive proof obligations from a program following its structure. We
do not have a program but work exclusively with the proof obligations.

We need to specify control flow in Event-B models without having to resort to
implementing abstract program counters. In principle proof outlines [16] can ac-
complish this. However, similarly to [14], we want to avoid introducing a concrete
syntax of a programming notation.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 273–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 S. Hallerstede

Proof outlines are a compact representation of correctness proofs using Hoare
triples [12]. A Hoare Logic states what is to be proved about a program S.
For predicates p and q we write {p}S {q} to state that “starting from a state
satisfying p program S leads to a state satisfying q”. Sequential composition of
programs S and T is proved to satisfy {p}S ; T {q} by a rule

{p}S {r} {r}T {q}
{p}S ; T {q}

Proof outlines [16] represent this more succinctly,

{p} S ; {r} T {q}

annotating the program S ; T with all predicates involved in the proof. This
notation is used extensively in [4] to present correctness proofs of programs.

Similarly to proof outlines, temporal verification diagrams [14] specify alter-
nating sequences of assignments and assertions. In addition, they provide hier-
archical structuring based on state charts. Certain “patterns” of diagrams are
identified that are instrumental in proofs of temporal properties of reactive sys-
tems. We combine ideas of [16] and [14] in our proposal for structured Event-B.

Overview. We introduce structured Event-B in Section 2. A small example in
Section 3 describes the relationship between Event-B and structured Event-B. In
Section 4 we develop a simple sequential program to show how the method could
be used in practice. Section 5 points to related and future work and Section 6
contains a conclusion.

2 Event-B with Structure

We introduce a structuring notation for Event-B that maintains the simplicity of
the original Event-B proof obligations. In this article, we identify two concepts
that are missing from Event-B: sequentiality and locality. Event-B is strongest at
proving properties of highly concurrent systems that mostly use global variables.
Our structured notation supports sequentiality and locality while keeping the
ease of use of Event-B. Concurrency can be modelled explicitly in the style of
[16]. Here, we focus on sequentiality as this is at the moment difficult to model
in Event-B.

2.1 Notation

Before introducing the notation in detail, we provide some small examples of
terms of the notation together with a graphical notation that we use for illustra-
tion. (The graphical notation is not an exact representation. It’s main purpose
is to clarify a model. See also [6].) The structure notation is based on assertions
p, q and r, and events e and f . We write p � e � q for “starting from asser-
tion p event e establishes q”, Figure 1a; we write p � e − for “assertion p is an

Structured Event-B Models and Proofs 275

ep q

(a) Step

e

p

(b) Loop

e

f
p

q

r

(c) Choice

p q

(d) Box

Fig. 1. Graphical representation of the structure notation

invariant of event e”, Figure 1b, and p � e � if e is convergent using the same
graphical representation; we write p � (e � q � f � r) for “starting from p event
e establishes q or event f establishes r”, Figure 1c; and we write p � [S] � q for
“starting from p box S establishes q” where S is any term, Figure 1d. In Section 5
we describe briefly a construct for concurrency that we are considering. For the
purpose of this article the notation outlined above is sufficient.

In order to define some operators on structure terms, we need to know about
their possible shapes. The syntax of the (sequential) structure notation (p, q are
predicates, and e is an event that may be decorated with a “ !”, see below) is:

S ::= p � T
T ::= U � S | U � q | U − | e � | T1 � T2
U ::= e | [S]

We define two operators I and F on the syntax of the structure notation
yielding the initial assertion and the final assertions of a term, respectively.
The initial assertion is defined by I(p � T) =̂ p. The final assertion of a term
is the disjunction of the “end points” of the term,

F(p � U � S) =̂ F(S) F(p � U −) =̂ false
F(p � U � q) =̂ q F(p � e �) =̂ false
F(p � (T1 � T2)) =̂ F(p � T1) ∨ F(p � T2)

The definition of the final assertion is consistent with the axiomatic seman-
tics of non-deterministic choice [4]. This will become apparent in the descrip-
tion of assertions below. The intuition behind the definition of F(p � U −) and
F(p � e �) is that the event “returns to p”; and in absence of an exiting choice,
for example, p � (U1 −� U2 � q), it does not have an “end point”.

2.2 Proof Obligations

Proof obligations are defined following the structure notation. In fact, the main
purpose of the structure notation is to drive the generation of proof obligations
in a more evident manner.

Assertions. To state the proof obligations for assertions we consider all suitable
sub-terms of a structure term. For instance, given the following structure term
p(v) � e(v) � q(v) � f(v) � r(v), we consider the sub-terms p(v) � e(v) � q(v)
and q(v) � f(v) � r(v).

276 S. Hallerstede

Let e(v) be an event with guard g(v) and action v :| a(v, v′). For the sub-term
p(v) � e(v) � q(v) we prove

p(v) ∧ g(v) ∧ a(v, v′) ⇒ q(v′) assertion preservation

We also prove action feasibility, p(v) ∧ g(v) ⇒ ∃v′ · a(v, v′), if an event is
not refined further. Loops and choices are treated similarly to steps. Terms
p(v) � e(v) − and p(v) � e(v) � correspond to p(v) � e(v) � p(v) but make
explicit that p(v) is invariant. The term p(v) � (e1(v) � q1(v) � e2(v) � q2(v))
corresponds to two terms p(v) � e1(v) � q1(v) and p(v) � e2(v) � q2(v).

For a box p(v) � [S(v)] � q(v) we have to prove

p(v) ⇒ I(S(v)) box entry
F(S(v)) ⇒ q(v) box exit

Convergence. The term p(v) � e(v) � states that p is an invariant of e(v) and
that e(v) is convergent, that is, it decreases a variant. If a variant t(v) is specified
for e(v) or a refinement of e(v), denoted by e(v) � t(v), we prove convergence
of e(v) in terms of variant boundedness, p(v) ∧ g(v) ⇒ t(v) ≥ 0, and variant
progress, p(v) ∧ g(v) ∧ a(v, v′) ⇒ t(v′) < t(v). In unstructured Event-B events
can be declared to be anticipated in order to delay a convergence proof to some
refinement. In structured Event-B convergence is proved only when a variant is
stated which may happen in a refinement. So the distinction between convergent
and anticipated events disappears.

Refinement. We consider three forms of refinement, structure refinement, event
refinement, and box refinement. A structure refinement replaces an event in a
refined model by a structure. Event refinement relates two events, box refinement
two boxes. Structure refinement is defined in terms of event and box refinement.
An event e(v), occurring in a term p(v) � e(v) � q(v), is structure refined by a
term R(v, w), denoted by e(v) ∼ R(v, w), where the term R(v, w) must contain
at least one event decorated with an exclamation mark. The assertions p(v) and
q(v) are associated with gluing assertions p∗(v, w) and q∗(v, w). We prove

p(v) ∧ p∗(v, w) ⇒ I(R(v, w)) box entry
F(R(v, w)) ⇒ q∗(v, w) box exit

Note that p∗(v, w) needs to be established by the event that refines the event
preceding e(v) in the abstract term. We do not allow strengthening of assertions
in any other case.

Two kinds of events occur in R(v, w), decorated events f(w)! that refine event
e(v) and, undecorated, new events f(w) that refine skip. Let h(w) be the guard
of f(w) and w :| b(w, w′) its action. The predicate m(v, w, v′, w′) denotes wit-
nesses for the abstract variables v′ linking abstract variables to concrete vari-
ables. Witnesses describe for each event separately how the refinement is achieved
[9]. For decorated events f(w)! occurring in a term r(v, w) � f(w)! � s(v, w),
let φ(v, w, w′) = r(v, w) ∧ h(w) ∧ b(w, w′); we prove

Structured Event-B Models and Proofs 277

φ(v, w, w′) ⇒ ∃v′ ·m(v, w, v′, w′) witness feasibility
φ(v, w, w′) ⇒ g(v) guard strengthening
φ(v, w, w′) ∧ m(v, w, v′, w′) ⇒ a(v, v′) action simulation
φ(v, w, w′) ∧ m(v, w, v′, w′) ⇒ s(v′, w′) assertion preservation

For undecorated events f(w) occurring in a term r(v, w) � f(w) � s(v, w) we
prove that they refine skip; we prove assertion preservation φ(v, w, w′)⇒ s(v, w′).

Box refinement maintains the box-entry property once proved. A box [S(v)],
occurring in a term p(v) � [S(v)] � q(v), is refined by a box [R(v, w)] where
S(v) and R(v, w) are identical terms except for assertions contained in R(v, w)
that may be strengthened. Box refinement is established by box entry and box
exit proof obligations with respect to the gluing assertions p∗(v, w) and q∗(v, w).

Enabledness. Enabledness proof obligations in Event-B can be used to ver-
ify deadlock-freeness or precondition weakening [10], for instance. In structured
Event-B the large disjunctions that would appear in Event-B enabledness proof
obligations can be smaller depending on the structure term R(v, w) of a struc-
ture refinement e(v) ∼ R(v, w). For terms r(v, w) � f(w) � s(v, w), r(v, w) �

f(w) −, and r(v, w) � f(w) � contained in R(v, w) we prove r(v, w) ⇒ h(w).
For a choice term r(v, w) � (f1(w) � s1(v, w) � f2(w) � s2(v, w)) we prove
r(v, w) ⇒ h1(w) ∨ h2(w). If r(v, w) is the initial assertion of R(v, w), the
abstract guard g(v) is added to the premise.

3 Event-B With and without Structure

The Event-B method as described in [3] has a certain structure that is not made
formally explicit. However, it is mentioned in the informal description in [3]. Not
taking into account convergence, this would correspond to

true � initialisation � inv � (event1 −� . . . � eventn −)

where inv is the invariant. The correspondence described in this section is not
intended to suggest such a definition. It is serves merely to explain the structured
notation in terms of the unstructured notation.

3.1 Without Structure

We give a very simple example of a structured model and a corresponding un-
structured model. Being very simple, too, proofs are omitted. We model an
abstract program that sets y to 2. In order to represent structure in unstruc-
tured Event-B we have to introduce an abstract program counter apc, say, with
values aini, aend, yielding a model with invariant

apc = aini ⇒ y = 0
apc = aend ⇒ y = 2

278 S. Hallerstede

and events

initialisation
apc := aini
y := 0

convergent inc2
when apc = aini then

apc := aend
y := y + 2

We would show convergence of inc2 to show that the abstract program counter
is modelled correctly (using the variant {apc } ∩ {aini }, for instance).

We refine the abstract model by one that increments a variable x in two steps.
We use two events incx1 and incx2,

initialisation
cpc := aini
x := 0

convergent incx1
when cpc = aini then

cpc := amid
x := x + 1

convergent incx2
when cpc = amid then

cpc := aend
x := x + 1

and a gluing invariant

cpc ∈ {aini, aend } ⇒ x = y
cpc ∈ {aini, amid } ⇒ apc = aini
cpc = amid ⇒ x = y + 1

that relates concrete variables x to abstract variables y depending on the value of
the program counter. It is also necessary to relate the program counters apc and
cpc by cpc ∈ {aini, amid } ⇒ apc = aini. Control flow is modelled explicitly.

3.2 With Structure

Using the structure notation, there is no need to model program counters. As-
sertions aini and aend

@aini y = 0
@aend y = 2

(read: at aini “y = 0”) are stated at those locations where they hold

true � iniy � aini � inc2 � aend

The control flow is modelled by the structure term. It is not represented in the
formal text otherwise. The model contains events iniy and inc2

iniy
y := 0

inc2
y := y + 2

Similarly to the unstructured model, we refine the abstract model by incre-
menting twice. Event inc2 is structure refined by the incx1 and incx2,1

inc2 ∼ aini � incx1 � amid � incx2 ! � aend
1 We could also have used the same event twice. But in this article we want to keep

the convention that each event appears only once. The structure refinement notation
e ∼ R used in this article does not consider the position of e in the abstract term.

Structured Event-B Models and Proofs 279

and the abstract event iniy by the concrete event inix which is stated formally
iniy ∼ true � inix ! � aini.

inix
x := 0

incx1
x := x + 1

incx2
x := x + 1

With the gluing assertions

@aini x = y
@amid x = y + 1
@aend x = y

we have to prove, for instance, that incx1 event refines skip and incx2 event
refines abstract event inc2

x = 0 ∧ x = y ⇒ x + 1 = y + 1
x = y + 1 ⇒ x + 1 = y + 2

These proof obligations correspond closely to the proof rule of the refinement
calculus [15] for sequential composition.

3.3 Remarks

With the structure made explicit we can immediately see the sequencing in the
model whereas in the unstructured model we have to look closely to see it.
This becomes more convincing in larger examples like the one of Section 4, for
example. In addition, the assertions of the structured model are simpler than
the invariants of the unstructured model. In particular, it is not necessary to
specify sequencing information relating only abstract program counters. The
refinement proofs are not more difficult in the structured model although the
formal definition is more complex mostly due to the box proof obligations. Note,
however, that usually we do not have to prove anything at all for boxes. This is
because we reuse assertions already declared, trivially satisfying the implications
of box entry and box exit, for instance, aini and aend in the model above. We
have removed one source of complexity: the choices to code the assertions in the
invariant are no longer available. We believe this makes the method easier to use.
The main drawback of the structured approach is that the refinement notion is
more restrictive, being defined per event and no longer per model.

4 Development of a Sequential Program

We demonstrate the use of structured Event-B by means of a sequential program
development, the extended Euclidian algorithm (Figure 2). The refinement steps
are illustrated using the graphical notation of Figure 1. We believe it to be
very useful for understanding the model more easily. For instance, the collapsed
representation in Figure 3 of the final model of the sequential program shows
nicely the control flow of the program. The example is large enough to illustrate
the use of structured Event-B and small enough to fit fully into this article.

280 S. Hallerstede

when b �= 0 then
upini : f, s, t, q, r := 0, {0 �→ a}, {0 �→ b}, {0 �→ a ÷ b}, {0 �→ a mod b};

while r(f) �= 0 do
up : f, s(f+1), t(f+1), q(f+1), r(f+1) := f+1, t(f), r(f), t(f) ÷ r(f), t(f) mod r(h)

end;
dnini : D,U, V := t(f), 1, 1 − q(f);

while f > 0 do
dn : f, U, V := f−1, V, U − q(f−1) ∗ V

end;
gcd : d, u, v := D,U, V

end

Fig. 2. The extended Euclidian algorithm

up

upini

dn

dnini gcd

Fig. 3. Collapsed graphical representation of the final gcd model

In Section 4.1 we model the program to be developed in models g0 and g1.
We refine model g0 into model g1 applying Bézout’s identity. We introduce the
first loop creating a stack of divisions in the second refinement g2 in Section 4.2,
and the second loop in g3 in Section 4.3. Finally, we data-refine two separate
stack pointers used in the two loops into one in g4 in Section 4.4.

We use the following definitions of divides, denoted by |, of GCD, and of abs:

x|y ⇔ x �= 0 ∧ (∃m · y = x ∗m)
z ∈ GCD[{x �→ y}] ⇔ z|x ∧ z|y ∧ (∀d · d|x ∧ d|y ⇒ d|z)
y = abs(x) ⇔ (x ≥ 0 ⇒ y = x) ∧ (x < 0 ⇒ y = −x)

4.1 GCD by Way of a Linear Equation

The initial model consists of a single event gcd.

g0.gcd
when b �= 0 then

d :∈ GCD[{a �→ b}]

We assume that the variables a, b, and d cannot be data-refined. Similarly to
Event-B, we require that variables that are kept in a refinement are implicitly
linked by an equality (in all assertions). The initial structure term only states
that gcd establishes true starting from true in one step,

true � g0.gcd � true

There is nothing to prove. Figure 4a shows a graphical representation of the
initial model.

Structured Event-B Models and Proofs 281

gcd

(a) Initial gcd model

gcd

(b) Refined gcd model

Fig. 4. The first two models of the development of the algorithm

The first refinement replaces the GCD relation by a linear diophantine equa-
tion with coefficients u and v:

g1.gcd
when b �= 0 then

d, u, v :| d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b

The structure of the refinement is the same as that of the abstraction

g0.gcd ∼ true � g1.gcd ! � true

In the graphical representation we expand the square for event g0.gcd into a
box containing the graphical representation of true � g1.gcd ! � true, see
Figure 4b. The action simulation proof obligation of the two events g0.gcd and
g1.gcd, d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b ⇒ d′ ∈ GCD[{a �→ b}] (Bézout’s
identity), for assertion preservation is easily discharged.

4.2 Creation of a Stack of Divisions

In the second refinement we build up a stack of divisions. Variable h points to
the top of the stack that is described by assertion upinv :

@upinv s ∈ 0 .. h → Z ∧ t ∈ 0 .. h → Z

@upinv q ∈ 0 .. h → Z ∧ r ∈ 0 .. h → Z

@upinv h ≥ 0 ∧ s(0) = a ∧ t(0) = b
@upinv ∀i · i ∈ 0 .. h ⇒ t(i) �= 0 ∧ s(i) = t(i) ∗ q(i) + r(i)
@upinv ∀i · i ∈ 1 .. h ⇒ t(i−1) = s(i) ∧ r(i−1) = t(i)

Two new events are introduced. Event g2.upini initialises the loop that com-
putes the stack and event g2.up models the loop body.

g2.upini
when b �= 0 then

h := 0
s := {0 �→ a}
t := {0 �→ b}
q := {0 �→ a÷ b}
r := {0 �→ a mod b}

g2.up
when r(h) �= 0 then

h := h+1
s(h+1) := t(h)
t(h+1) := r(h)
q(h+1) := t(h)÷ r(h)
r(h+1) := t(h) mod r(h)

282 S. Hallerstede

In the refined event g2.gcd only the guard is strengthened. The action is un-
changed. In fact, the result of the computation is ignored except for the termi-
nation condition r(h) = 0.

g2.gcd
when r(h) = 0 then

d, u, v :| d′ = a ∗ u′ + b ∗ v′ ∧ d′|a ∧ d′|b
The introduction of the loop is expressed by the term

g1.gcd ∼ true � g2.upini � upinv � (g2.up �� g2.gcd ! � true)

Figure 5 shows the graphical representation of the model; the square for event
g1.gcd is replaced by a box representing the refined term. We believe that al-
ready this simple case demonstrates the value of the graphical representation.
The picture is quite easy to comprehend.

up

upini gcd

Fig. 5. Second refinement of the gcd model

Aside. We are not using the graphical representation to specify structure though:
the textual representation is richer and feeding all information into the graphical
representation would complicate it. The purpose of the graphical representation
is to visualise an important aspect of the model. The syntax of structure terms
is designed to resemble the graphical representation.

Assertion preservation is easily proved, for example, for preservation of asser-
tion ∀i · i ∈ 0 .. h ⇒ t(i) �= 0 by events g2.upini and g2.up,

b �= 0 ⇒ ∀i · i ∈ 0 .. 0 ⇒ {0 �→ b}(i) �= 0
upinv ∧ r(h) �= 0 ⇒ ∀i · i ∈ 0 .. h+1 ⇒ t �− {h+1 �→ r(h)}(i) �= 0

Convergence and Enabledness. In the term refining event g1.gcd we have
indicated that event g2.up terminates. The ring of Z is a Euclidian domain with
abs as a Euclidian function: ∀x, y · y �= 0 ⇒ (∃q, r · x = y ∗ q + r ∧ abs(r) <
abs(y)). Hence, the expression abs(r(h)) is a variant for event g2.up, that is,
g2.up � abs(r(h)).

The proof obligations for enabledness (showing weakening of the precondition)
are b �= 0 ⇒ b �= 0 and upinv ⇒ r(h) �= 0 ∨ r(h) = 0. Both are easily discharged.

4.3 Calculation of the Coefficients

In the third refinement we calculate the Bézout coefficients u and v and the gcd
d by means of the variables D, U , and V . This refinement step is structurally

Structured Event-B Models and Proofs 283

very similar to the second one, except that the stack pointer is decreased during
the calculation.

@dninv upinv
@dninv k ∈ 0 .. h ∧ r(h) = 0 ∧ dk|s(k) ∧ dk|t(k)
@dninv dk = s(k) ∗ uk + t(k) ∗ vk

The proof of the structure refinement

g2.gcd ∼ upinv � g3.dnini � dninv � (g3.dn �� g3.gcd ! � true)

makes use of the properties of the stack described by upinv and requires some
arithmetic.

g3.dnini
when r(h) = 0 then

k, D := h, t(h)
U := 1
V := 1− q(h)

g3.dn
when k > 0 then

k := k−1
U := V
V := U − q(k−1) ∗ V

g3.gcd
when k = 0 then

d := D
u := U
v := V

In this step we also refine the gcd event to use the result of the preceding compu-
tation of the coefficients and the gcd. Figure 6 shows the graphical representation
illustrating the control flow of the algorithm consisting of two consecutive loops
preceded by an initialisation each.

up

upini

dn

dnini gcd

Fig. 6. Third refinement of the gcd model

Convergence and Enabledness. Convergence can be verified by means of the
decreasing stack pointer k: g3.dn � k. The enabledness proof obligations are
upinv ∧ r(h) = 0 ⇒ r(h) = 0 and dninv ⇒ k > 0 ∨ k = 0, both proved easily.

4.4 Implementation of the Stack Pointer

We sketch the fourth refinement in order to demonstrate the use of data refine-
ment. In all events of model g3 we textually replace h and k by f . (In refined
event g4.dnini we can remove the resulting assignment f := f .)

g2.upini ∼ true � g4.upini ! � upinv
g2.up ∼ upinv � g4.up ! � upinv
g3.dnini ∼ upinv � g4.dnini ! � dnini
g3.dn ∼ dninv � g4.dn ! � upinv
g3.gcd ∼ dninv � g4.gcd ! � true

284 S. Hallerstede

The assertions upinv and dninv are extended by gluing assertions relating model
g3 to model g4

@upinv f = h
@dninv f = k

Aside. In the algorithm shown in Figure 2 all variables are global. We could as
well have inferred from the structure of the model (Figure 6) local variables f ,
s, t, q, r for the two loops and D, U , V for the second loop.

5 Related and Future Work

The two verification approaches presented in [16] and [14] are lacking a notion
of refinement. In [8] a restricted form of refinement for temporal verification di-
agrams is presented that permits splitting vertices and removing edges. This is
generalised in [7] by considering the transitive closure of edges and matching no-
tion of data-refinement. In our approach, we have incorporated refinement based
on the corresponding notion of Event-B that appears simpler to handle. We also
preserve structure information during refinement which is particularly important
for obtaining the intended algorithmic structure by the end of a development.

Alternative ways of expressing structure of Event-B models that have been
proposed are the CSP-based approach of [13], JSD-based approach of [6] and
UML-B [17]. In [13] events are annotated with events that are to be enabled
next. Corresponding enabledness proof obligations are shown but refinement is
not considered. In [6] JSD-like diagrams are used to illustrate concurrent Event-
B models. The notation can also be used to illustrate refinement of Event-B
models. However, the notation is not exploited for proof obligation generation;
the suggested (still) informal mapping to Event-B introduces abstract program
counters. UML-B [17] focuses more on states as its central concept. UML-B
models are translated into Event-B by introducing abstract program counters to
represent those states. The notion of refinement is centred around state decom-
position and gluing invariants are generated from the emerging nesting structure
of state machines. State machines of UML-B are not exploited for proof obliga-
tion generation.

Abstract State Machines (ASM) [5] also provide to ways to introduce struc-
ture into a model. Control State ASMs use abstract program counters to model
control structures. We could also identify such a class of models in Event-B. But
this would not solve our problem. One of the reasons for introducing a structure
notation in Event-B is that proof obligations involving program counters can get
quite involved. Apart from that invariants of Event-B get cluttered with prop-
erties involving abstract program counters. A second way to structure Abstract
State Machines is to use Turbo ASMs [5]. Turbo ASMs provide programming
constructs to compose ASMs to model computations. Such a reconstruction of
programming constructs would not solve our problem either. We would again
have to deal with sequential composition, if-statements, and so on, when gener-
ating proof obligations.

Structured Event-B Models and Proofs 285

We are investigating modelling concurrency (p1 � e1 � q1 ‖ p2 � e2 � q2)
using structured Event-B. In fact, the proof outlines in [16] were first developed
for proving properties of concurrent programs. We are more interested to look
into possibilities for support by a tool such as the Rodin tool [2]. The proof
obligations for enabledness are difficult to handle. However, this difficulty is also
present in unstructured Event-B models: in structured Event-B it will surface
during proof obligation generation, whereas in unstructured Event-B it will show
up during proof.

We also think about changes concerning the way proof obligations are gener-
ated. In the new scheme of proof obligation generation we would no longer get
a list of all proof obligations that must be discharged. Instead, we would get a
todo-list that tells us what still needs to be proved. We have realised that this
is the way we should proceed with action feasibility and convergence proof obli-
gations. Action feasibility can be proved showing the existence of a post-state
directly or by implementing the action in a refinement. Convergence proofs can
be delayed by using anticipation. This approach would make the Event-B method
more flexible without sacrificing its strong tool support.

We are also investigating verification of temporal properties. The temporal
verification diagrams in [14] are used to prove temporal logic properties of re-
active systems. A similar approach should also work for structured Event-B.
Refinement should provide a way to master more complex temporal properties.
The structured Event-B approach shares with temporal verification diagrams
the strength of only generating first-order proof obligations.

6 Conclusion

We have introduced a structure notation for Event-B together with the neces-
sary proof obligations. We have demonstrated how it can be used practically
in a sequential program development. The structure notation is not a program-
ming notation but a notation that describes a theory about a formal model. For
instance, the formula p � e � q � f � r does not mean: first e is executed
then f ; it describes theorems about e and f . Effectively, we have moved some
concepts of proof into modelling. We think this is very attractive, in particular,
for implementation in a software tool such as Rodin. There would be no need
to configure the proof obligation generator for different applications. Everything
about the proof obligations would be said in the model; fully transparent for the
user of the tool. An additional benefit would be that only proof obligations need
to be generated that are specified in structure terms. Hence, usually, fewer proof
obligations would be generated.

In our opinion, the notation also improves legibility of more complex struc-
tured models. The associated graphical notation helps to grasp quickly the struc-
ture of a model.

Acknowledgement. The original (unstructured) Event-B model of the extended
Euclidian algorithm was developed by Christophe Métayer. Jens Bendisposto pro-
vided useful comments on earlier versions of this article.

286 S. Hallerstede

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2009) (to appear)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006)

3. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inform 77(1-2), 1–28 (2007)

4. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of Sequential and Concurrent
Programs. Springer, Heidelberg (2009)

5. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

6. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

7. Cansell, D., Méry, D., Merz, S.: Diagram refinements for the design of reactive
systems. J. UCS 7(2), 159–174 (2001)

8. de Alfaro, L., Manna, Z., Sipma, H.B., Uribe, T.E.: Visual verification of reac-
tive systems. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 334–350.
Springer, Heidelberg (1997)

9. Hallerstede, S.: Justifications for the Event-B Modelling Notation. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 49–63. Springer, Heidelberg
(2006)

10. Hallerstede, S.: On the Purpose of Event-B Proof Obligations. In: Börger, E., But-
ler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 125–138.
Springer, Heidelberg (2008)

11. Hallerstede, S.: Proving Quicksort Correct in Event-B. In: Refine 2009, 16 pages
(2009)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12, 576–580 (1969)

13. Ifill, W., Schneider, S.A., Treharne, H.: Augmenting B with control annotations. In:
Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 34–48. Springer,
Heidelberg (2006)

14. Manna, Z., Pnueli, A.: Temporal verification diagrams. In: Hagiya, M., Mitchell,
J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 726–765. Springer, Heidelberg (1994)

15. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Englewood
Cliffs (1994)

16. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6(4), 319–340 (1976)

17. Said, M.Y., Butler, M.J., Snook, C.F.: Language and tool support for class and
state machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

Refinement-Animation for Event-B —
Towards a Method of Validation�

Stefan Hallerstede, Michael Leuschel, and Daniel Plagge

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{halstefa,leuschel,plagge}@cs.uni-duesseldorf.de

Abstract. We provide a detailed description of refinement in Event-B,
both as a contribution in itself and as a foundation for the approach to
simultaneous animation of multiple levels of refinement that we propose.
We present an algorithm for simultaneous multi-level animation of re-
finement, and show how it can be used to detect a variety of errors that
occur frequently when using refinement. The algorithm has been imple-
mented in ProB and we applied it to several case studies, showing that
multi-level animation is tractable also on larger models.

Keywords: Refinement, Model Checking, Constraint-Solving, Tools, In-
dustrial Applications.

1 Introduction and Motivation

The Event-B modelling method [1] has been designed to be complemented by a
software tool such as Rodin [2]. The core of the Rodin tool provides automatic
generation of proof obligations that can be analysed to improve understanding
of a model. Often proof obligations give good indications of how to make an
improvement in case of inconsistencies in a model. However, there are also many
occasions where proof obligations do not point directly to a problem or where
a model does not contain inconsistencies but is still “incorrect” (see, e.g., the
Earley parser example discussed in [7]). In these cases animation is a useful tool
to gain further insight into a model. The Rodin plugins ProB [9,11], Brama1

[13], and AnimB [12] provide animation facilities for Event-B.
When dealing with complex models, refinement can be used to introduce

the many details gradually, achieving a reduced complexity at each refinement
level. It can be difficult to analyse a refinement relationship only by means
of associated proof obligations. All three animation plugins mentioned above
provide some means to animate refinements. In this article we investigate their
relative capabilities and how to advance refinement animation in order to turn it
into a tool for refinement validation. This serves as a blueprint for the evolution
of ProB in terms of animation support.
� Part of this research has been EU funded FP7 project 214158: DEPLOY (Indus-

trial deployment of advanced system engineering methods for high productivity and
dependability).

1 Brama requires an older version (0.9.2.x) of Rodin at the time of writing.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 287–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

288 S. Hallerstede, M. Leuschel, and D. Plagge

Before starting the investigation we should be clear on the objectives of an-
imation when used for validation. What is the purpose of animating a model
across multiple levels of refinement? In Event-B several concepts play a rôle in
refinement. Most prominently, these are invariants, guards, actions, and wit-
nesses. If a refinement fails, any combination of those concepts may be involved.
Animation should help to locate the cause of a problem in the model pointing to
specific invariants, guards, and so on, if possible. However, even if a refinement
is formally correct, there can still be problems with the model. This concerns,
in particular, properties that have not been formalised. Animation should make
it easy to experiment with a model, visualising potential problems. We try to
integrate this aspect of animation with the first one as far as possible. Otherwise
consistent tool support for both would be difficult to realise.

In Section 2 we give a concise description of the fundamentals of Event-B
refinement. As far as we are aware there is no single place where all the essential
aspects are described and motivated in such detail. All of this is needed in order
to present the basic refinement-animation algorithm in Section 3. The presen-
tation of the algorithm is interspersed with methodical remarks on validation.
In Section 4 we present some concrete examples on how to use ProB for re-
finement validation and some brief description of case studies to which it has
been applied. Finally, Sections 5 and 6 contain a discussion of related work and
a conclusion.

2 Modelling and Refinement in Event-B

Event-B can be used to model complex intricate systems. To understand the
system and the model of the system we need to reason thoroughly about the
model. Such reasoning is the principal purpose of Event-B. The basic concepts
of Event-B are characterised by means of proof obligations; they are the core
of the Event-B method. However, they are not an exclusive means of reasoning.
Based on an operational interpretation of a model we can also animate it to
gain deeper understanding. In this section we parallel the presentation of Event-
B proof obligations, in particular, refinement, with ideas of animation. This
demonstrates well how animation complements proof. Because there is no single
software tool for animation that provides all that is needed, we use the three
tools ProB, Brama, and AnimB at the same time.

2.1 Contexts

Event-B models are described in terms of the two basic constructs: contexts and
machines. Contexts specify static parts of a model, that is, carrier sets and con-
stants that are constrained by axioms. Usually, these are quite simple formulas.
Contexts are intended to be used to parametrise machines. We mention contexts
here because of the rôle they play in animation. For any particular animation
specific values for all constants have to be found. ProB does this automati-
cally using constraint-solving techniques to find proper values that satisfy all
axioms. The constraint-solving also determines whether the axioms contain a
contradiction.

Refinement-Animation for Event-B — Towards a Method of Validation 289

2.2 Machines

Machines provide behavioural properties of Event-B models. Machines may con-
tain variables, invariants, events, and variants. Variables v define the state of
a machine. They are constrained by invariants I(v). Possible state changes are
described by means of events. Each event is composed of a guard G(t, v) and
an action S(t, v), where t are parameters of the event. The guard states the
necessary condition under which an event may occur, and the action describes
how the state variables evolve when the event occurs. We denote an event E(v)
by one of the following forms:

any t when
G(t, v)

then
S(t, v)

end

or when
G(v)

then
S(v)

end

or begin
S(v)

end

The second form is used if event E(v) does not have parameters, and the third
form if in addition the guard equals true. A dedicated event of the third form is
used for INITIALISATION. In the formal exposition below, we assume without
loss of generality that the most general first form is used.

The action of an event is composed of several assignments of the form: x :=
E(t, v) or x :∈ E(t, v) or x :| Q(t, v, x′), where x are some variables, E(t, v)
expressions, and Q(t, v, x′) a predicate. The second form assigns x to an element
of a set, and the third form assigns to x a value satisfying a predicate. Without
loss of generality, the first two can be formally defined in terms of the third form:
x := E(t, v) =̂ x :| x′ = E(t, v) and x :∈ E(t, v) =̂ x :| x′ ∈ E(t, v). The
effect of an assignment is described by a before-after predicate:

before-after predicate of “x :| Q(t, v, x′)” =̂ Q(t, v, x′)

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred, x, and the state just after the assignment has
occurred, x′. All assignments of an action S(t, v) occur simultaneously which
is expressed by conjoining their before-after predicates, yielding a predicate
A(t, v, x′). Variables y that do not appear on the left-hand side of an assign-
ment of an action are not changed by the action. Formally, this is achieved by
conjoining A(t, v, x′) with y′ = y, yielding the predicate:

S(t, v, v′) =̂ A(t, v, x′) ∧ y′ = y .

Running Example. We use the coffee dispenser model in Fig. 1 for illustration
of refinement-animation. In the abstract machine CoffeeM the dispenser can
fill a mug half or fully; the state of the mug is represented by the variable alvl
(abstract level). As a special service the dispenser can also drink the coffee. In the
first refined machine CoffeeR1 a feature is introduced for inserting an arbitrary
number of coins into the dispenser. A coin is consumed each time a mug is filled.
In the second refined machine CoffeeR2, the number of coins maximally accepted

290 S. Hallerstede, M. Leuschel, and D. Plagge

machine CoffeeM sees CofCtxt
variables alvl
invariants @inv1 alvl ∈ FILL
variant ({full �→ 2, half �→ 1, empty �→ 0})(alvl)
events

event INITIALISATION
begin

@mf alvl := empty
end

event fill mug
any x when

@g0 alvl = empty
@g1 x �= alvl

then
@a1 alvl := x

end
convergent event drink

when @g1 alvl �= empty then
@a1 alvl :∈ {empty, half} \ {alvl}

end
end

machine CoffeeR1 refines CoffeeM sees CofCtxt
variables alvl coins
invariants @ci coins ∈ N

events
event INITIALISATION extends INITIALISATION

begin
@ai coins := 0

end
event fill mug extends fill mug

when @gc coins > 0 then
@delc coins := coins − 1

end
convergent event drink extends drink
end
anticipated event insert coin

begin
@insc coins := coins + 1

end
end

context CofCtxt
constants full empty half level
sets FILL
axioms

@Ffhe partition(FILL, {full }, {half }, {empty })
@lvl level = (0 .. 2 × {empty }) ∪ (3 .. 7 × {half }) ∪ (8 .. 11 × {full })

end

machine CoffeeR2 refines CoffeeR1 sees CofCtxt
variables clvl coins maxc
invariants

@imc maxc ∈ N1

@ifl clvl ∈ 0 .. 11
@lvl alvl = level(clvl)

variant maxc − coins
events

event INITIALISATION
begin

@mc maxc := 4
@cci coins := 0
@fli clvl := 0

end
event fill mug refines fill mug

when
@gc2 coins > 0
@ml clvl ∈ level−1[{empty }]

with
@x x = level(clvl′)

then
@delc2 coins := coins − 1
@ffl clvl :∈ level−1[{full }]

end
convergent event drink refines drink

when
@dgfl clvl /∈ level−1[{empty}]

with
@alvl’ alvl′ = level(clvl′)

then
@dfl clvl :∈ level−1[{empty, half} \ {level(clvl)}]

end
convergent event insert coin extends insert coin

when
@gmc coins < maxc

end
end

Fig. 1. Coffee dispenser model (using syntax of the Event-B text editor “Camille”)

is limited and the amount of coffee contained in a mug is represented numerically
by a the variable clvl (concrete level).

CoffeeM:alvl = empty

CoffeeM:alvl = full

fill_mug(full)

CoffeeM:alvl = half

fill_mug(half)

drink

drink

drink

INITIALISATION

Fig. 2. State space for CoffeeM (with ad-
ditional mugshots)

Animation in ProB. The before-
after predicate can be used to com-
pute the state space of a machine, a
graph where each node represents a
state of the machine and each arc the
execution of an event. Fig. 2 contains
the state space of the CoffeeM ma-
chine from Fig. 1, as computed by the
ProB tool. The triangle represent a
special root node, where the variables
and constants of a machine have not
yet been set. An animator lets the user navigate the state space by choosing the
events to be fired. A model checker will systematically explore the state space,
looking for various errors in the machine.

Refinement-Animation for Event-B — Towards a Method of Validation 291

2.3 Machine Consistency

Invariants are supposed to hold initially and whenever variable values are changed
by an event. Obviously, this does not hold a priori and, thus, needs to be proved.
The corresponding proof obligation for every event is called invariant preserva-
tion, formally, I(v) ∧ G(t, v) ∧ S(t, v, v′) ⇒ I(v′). There is a special form of
this proof obligation, without invariant and guard in the hypothesis, for the
INITIALISATION. By proving action feasibility for an event, I(v) ∧ G(t, v) ⇒
(∃v′ · S(t, v, v′)), as well, we achieve that S(t, v, v′) provides an after state when-
ever G(t, v) holds. This means that the guard indeed represents the enabling
condition of the event.

2.4 Machine Refinement

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related
to the state of the concrete machine by a gluing invariant J(v, w) associated
with the concrete machine N , where v are the variables of the abstract machine
and w the variables of the concrete machine.

Each event E(v) of the abstract machine is refined by one or more concrete
events F (w). Let abstract event E(v) and concrete event F (w) be:

E(v) =̂ any t when G(t, v) then S(t, v) end

F (w) =̂ any u when H(u, w) with W (t, v′, u, v, w, w′) then T (u, w) end

Informally, concrete event F (w) refines abstract event E(v) if, whenever the
gluing invariant J(v, w) is true: (i) the guard of F (w) is stronger than the guard
of E(v), and (ii) for every possible execution of F (w) there is a corresponding
execution of E(v) which simulates F (w) such that the gluing invariant remains
true after execution of both events. In Fig. 1 some events carry the attribute
“extended”. This means that all parameters, guards, and actions are copied
literally from the abstract event.2 Note that the event F (w) contains one more
component W (t, v′, u, v, w, w′) following the keyword with, called the witnesses.
We return to its rôle in Section 2.6 below.

Fig. 3. Coffee dispenser refinement-
animation in Brama

Refinement Animation. To check
whether the guard of a concrete event
is stronger, we also need to animate the
corresponding abstract machine. Fig. 3
shows a graphical visualisation (created
with Brama) of an animation of the cof-
fee dispenser model described earlier.
Green boxes signal enabled events, red
boxes disabled events. As can be seen,

2 In Event-B it is also possible for an event to refine more than one abstract event,
merging these events into one concrete event [3]. Such events cannot be extended.

292 S. Hallerstede, M. Leuschel, and D. Plagge

all the refinement levels are animated concurrently. Brama’s representation also
shows at a glance that whenever a refined event is enabled, then all of its ancestor
events are also enabled.

CoffeeR2 CoffeeR1 CoffeeM
INITIALSATION
fill_mug
drink

insert_coin

INITIALSATION
fill_mug
drink

insert_coin

INITIALSATION
fill_mug
drink

Inv Inv

⟲
↓
↓ →

↓
⟲

↓
⟲

Fig. 4. Improved coffee dispenser
refinement-animation

The view underlying Fig. 3 is opera-
tional. It focuses solely on event execu-
tion. If we wanted to use it for analysing a
formal model, we would need to add infor-
mation. In particular, information about
gluing invariants would be useful (Fig. 4).
Note, that this is not a purely cosmetic
change: the animator must supply all nec-
essary information.

2.5 Common Variables and Common Parameters

As far as animation and model checking are concerned, refinement introduces a
new challenge: we no longer have just a single machine that needs to be animated
as in Fig. 2, but a series of machines, each with its own state.3

In order to check the gluing invariant, we need to access variables from various
machines. This raises a new issue. In Section 2.4 we have simply assumed that all
variables v are refined by new variables w, and all parameters t are refined by new
parameters u. The variables v and parameters t “disappear” in the refinement.
In practice, variables and parameters can be repeated in a refinement. Abstract
machines and concrete machines can have variables in common, and abstract
events and concrete events parameters. By convention, when repeating variables
and parameters abstract and concrete counterparts are assumed to be equal.4

Animation. For refinement animation of machines this means that variables
must be renamed in each machine and gluing invariants generated. If the ani-
mation would operate on variables shared between different machines, it would
not be possible to visualise machines with deviating behaviour. This also affects
the witnesses described in the following section.

Example. In the example from Fig. 1, the machine CoffeeM and CoffeeR1 have
the variable alvl in common. Fig. 5 shows ProB animating the Coffee example.
As can be seen in the newly developed hierarchical “State View”, the variable
alvl occurs twice, once in CoffeeM and once in CoffeeR1. We can also see that
the variable alvl disappears when going to CoffeeR2. In Fig. 6 we show how the
AnimB animator displays a state of multiple refinement-levels; each refinement
level is given its own tab.
3 Earlier versions of ProB avoided this problem by animating each refinement level

separately, at the cost of not being able to check the gluing invariant and of less user
feedback.

4 Once a variable has disappeared in the course of several refinements it cannot reap-
pear. The reason for this is that the equality cannot be established by means of a
machine that does not contain the variable. Furthermore, invariants are accumulated
in Event-B. So it is not possible to reintroduce a variable with a different meaning.

Refinement-Animation for Event-B — Towards a Method of Validation 293

Fig. 5. ProB Operations and State View after the trace insert coin, fill mug, drink

Fig. 6. AnimB View after insert coin,insert coin, fill mug, drink

2.6 Refined Events and Witnesses

The predicate W (t, v′, u, v, w, w′) denotes witnesses. Somewhat simplified, they
link the abstract parameters t and the abstract variables v′ to concrete param-
eters u and variables and w′ (see also Fig. 7). Witnesses describe for each event
separately how the refinement is achieved. Let K(v, w) =̂ I(v) ∧ J(v, w).

Aside. As described in [4], in order to verify that F (w) refines E(v) we have to
prove K(v, w) ∧ H(u, w) ∧ T(u, w, w′) ⇒ ∃t, v′ · G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′).
In a proof of this statement we prefer to instantiate the quantified parameters
and variables t and v′ by expressions that can in some way inferred from the
premises. This idea is generalised to the witnesses used in Event-B. Witnesses
are predicates that provide values to satisfy the conclusion of the statement.

The proof obligations for concrete machines are called guard strengthening:
K(v, w) ∧ H(u, w) ∧ T(u, w, w′) ∧ W (t, v′, u, v, w, w′) ⇒ G(t, v), action simu-
lation: K(v, w) ∧ H(u, w) ∧ T(u, w, w′) ∧ W (t, v′, u, v, w, w′) ⇒ S(t, v, v′), and
invariant preservation: K(v, w) ∧ H(u, w) ∧ T(u, w, w′) ∧ W (t, v′, u, v, w, w′) ⇒
J(v′, w′). We have to prove witness feasibility in order to be able to add the wit-
ness predicate W (t, v′, u, v, w, w′) to the premises in the proof obligations above:
K(v, w) ∧ H(u, w) ∧ T(u, w, w′) ⇒ (∃t, v′ · W (t, v′, u, v, w, w′)).

In general, witnesses would be required for all parameters p of an event but
when a parameter is repeated in a refined event, by convention, it is assumed to
be equal to the corresponding abstract parameter. If a parameter is not repeated

294 S. Hallerstede, M. Leuschel, and D. Plagge

an explicit witness is required. (The Rodin tool creates the default witness “true”
if none is specified in the latter case. This witness does not constrain the rela-
tionship between abstract and concrete parameters and variables. Hence, usually
default witnesses are not sufficient to establish the refinement relationship.) For
variables the rule when witnesses are needed is more complicated: whenever
a variable x that disappears occurs in a non-deterministic assignment in the
abstract event, in the refined event a witness for the post-state variable v′ is
required.

Animation. For animation we have to take care that as a consequence of vari-
able and parameter renaming (resulting from repeated variables), some witnesses
may have to be generated. Combined with the generated gluing invariant (as
described in Section 2.5) they provide an opportunity to locate refinement mis-
matches and provide meaningful feedback to the user.

Example. Event fill mug in CoffeeR2 contains the witness x = level(clvl′) for
the abstract parameter x of fill mug in CoffeeR1. This means intuitively, that
every execution of fill mug in CoffeeR2 corresponds to an execution of fill mug
in CoffeeR1 with parameter x set to level(clvl′). Event fill mug in CoffeeR1
must be enabled for x = level(clvl′) and the gluing invariant alvl = level(clvl)
must hold after executing the abstract and concrete event. Similarly, drink in
CoffeeR2 contains a witness alvl′ = level(clvl′) for the abstract variable alvl.
(Note, that it is just invariant @lvl in Fig. 1 with all variables primed.)

abstract
state

concrete
state clvl = 8, ...fill_mug

clvl := 8

alvl=half, ...

alvl=full, ...
fill_mug
x=full

Witness
x=level(clvl')

glueing
invariant

alvl = level(clvl) alvl = level(clvl)

fill_mug
x=half

...

CoffeeR1

CoffeeR2

Fig. 7. Witnesses and Multi-Level Animation

Animation in ProB. Witnesses
are the key concept that makes re-
finement animation possible. In-
deed, refinement animation and
refinement checking in classical B
require for every concrete state to
keep track of the set of all ab-
stract states for which the gluing
invariant holds. Only if this set
becomes empty, have we found an
error in the refinement. The size
of state space necessary for sim-
ulation grows exponentially. In
Event-B, by contrast, the wit-
nesses pinpoint the states which
have to satisfy the refinement relationship (see Fig. 7).

2.7 New Events and Convergence

In the course of refinement, often new events F (w) are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a specified variant V (w) is bounded from below: K(v, w) ∧

Refinement-Animation for Event-B — Towards a Method of Validation 295

H(u, w) ⇒ V (w) ≥ 0 and is decreased by each new event K(v, w) ∧H(u, w) ∧
T(u, w, w′) ⇒ V (w′) < V (w) where we assume that the variant is an integer
expression. (Instead of an integer expression also a finite set expression can
be used.) We call events that satisfy these two proof obligations convergent.
Anticipated events can be used to prove convergence on a lexicographic order or
just to delay convergence proofs. Anticipated events can be refined by anticipated
or convergent events, but must ultimately be refined by a convergent event.
For an anticipated event the second proof obligation is replaced by K(v, w) ∧
H(u, w) ∧ T(u, w, w′) ⇒ V (w′) ≤ V (w).

Example. Event insert coin in Fig 1 is anticipated in CoffeeR1 and is then
proven convergent in CoffeeR2 by introducing an upper bound on the number
of inserted coins.

2.8 Enabledness of Refined and New Events

We may prove that whenever the abstract machine may continue by means
of event E(v) with guard G(t, v) then the concrete machine may continue by
means of concrete event F (w) or some other events F1(w), . . . , Fk(w), K(v, w) ∧
G(t, v) ⇒ (∃u·H(u, w)) ∨ (∃u1 ·H1(u1, w)) ∨ . . .∨ (∃uk ·Hk(uk, w)). The Rodin
tool does not support enabledness proof obligations at the moment. But ProB

supports analysis of liveness properties and animation can show a deadlock
(where all events except for the initialisation are disabled).

3 Description of the Multi-level Animation Algorithm

In this section we describe the validation and animation algorithm in detail.
We point out in the presentation of the algorithm how it indicates problems
with particular proof obligations. We also show how feedback to the user needs
to be considered. Producing informative output from an animation with good
performance is a challenge. For this reason the algorithm makes heavy use of
ProB’s existing functionality. In particular, ProB provides methods to find
values for variables that satisfy predicates occurring in Event-B models.

Below we limit discussion to animation; but the algorithm is identical for
model checking: the model checker uses the same technique to determine the
state space.

3.1 Preprocessing

The algorithm is applied to a particular refinement machine Mi of a model. In
a pre-processing step, all ancestor machines M0, . . . , Mi−1 of Mi are loaded and
all contexts seen by M0, . . . , Mi are merged by collecting the declared constants
and joining the axioms. All variables and constants are tagged according to the
model or context where they are defined. The invariant is obtained by conjoining
all invariants of M0, . . . , Mi.

296 S. Hallerstede, M. Leuschel, and D. Plagge

We transform each event of Mi to an internal representation. The represen-
tation is outlined on the right hand side of Fig. 8. Usually the list of abstract
events contains just one entry. If an event refines skip or belongs to the most
abstract machine M0, the list of abstract events is empty. If the event refines
several events, it will contain all of those events.

3.2 The Animation Algorithm

The animator executes events depending on the current state of a model. It
maintains a state consisting of all constants of the seen contexts as well as all
variables of the machines M0, . . ., Mi.

Name of Concrete Event
Parameters
Guard Predicate
List of Actions
List of Witness Predicates

Abstract Events

Abstract Events
...

Abstract Events
...

1
2

3

4

Abstracct t

CoffeeR2:drink
no parameters
guard:fill_level≠empty
actions: fill_level ≔ empty
no witnesses

Abstract Events

CoffeeR1:drink
no parameters
guard: mug_level>0
actions: mug_level ≔ 0
no witnesses

Abstract Events
...

CoffeeM:drink
no parameters
guard: mug_level>0
actions: mug_level ≔ 0
no witnesses

No Abstract Events

Fig. 8. Illustration of the algorithm and one particular event
structure

In a first step the
animator tries to find
values for the con-
stants that satisfy all
axioms. Subsequently,
the animator executes
in each step an event
of the most concrete
machine Mi; then it
executes the corre-
sponding abstract
events from the con-
crete event to the
most abstract event.

When all of this
has been done, the animator is ready for the next step.

The algorithm to animate a particular event works as follows (item numbers
correspond to those of Fig. 8, left hand side):5

1. Search for possible values for the parameters by evaluating its guard. If no
values are found, the event is disabled.

2. Execute each action by evaluating the respective before-after predicate. If no
solution is found, report an error. The possible reasons for a failing action
are:
a. The predicate P of an action v :| P is not satisfiable or the set S of an

action v :∈ S is empty. Both cases show violations of the event feasibility
proof obligation.

b. The new value v′ of a variable v was previously determined by a witness
of a refined event (see step 3), but the abstract action cannot assign the
same value to v′. This indicates a violation of the action simulation proof
obligation.

5 With respect to animation INITIALISATION is not treated differently from any
other events (see left of Fig. 8) except that it is enforced to occur once upon start
of an animation.

Refinement-Animation for Event-B — Towards a Method of Validation 297

3. For each witness evaluate its predicate and try to find values for the witnessed
variable. If no value is found for a witness, report an error, because a witness
should have at least one solution (by the witness feasibility proof obligation).

4. a. If the list of abstract events is empty, a complete solution has been found
for this event that leads to a new state. It consists of the values newly
assigned by the actions plus the variables unchanged by the actions.

b. If there are one or more abstract events, choose one nondeterministically
and evaluate its guard like in step 1. If it evaluates to true, continue
recursively with step 2, otherwise try the next event.

If no guard evaluates to true, report an error, because the guard of
the refinement is weaker than that of the abstract event (violation of the
guard strengthening proof obligation).

All four steps can be nondeterministic and we generate all solutions (limited
to a maximum number) with backtracking.

Animation of convergent and anticipated events. If we have successfully
found a possible event leading from one state to another, we can easily check
if the convergence criteria are satisfied. The principle is quite simple: for each
convergent event of an animated model, we check if the variant V is decreased
and non-negative by the predicates V > V ′ and V ≥ 0 resp. V ⊃ V ′ when the
variant is a set. If the event refines another convergent event, we omit the test
because in the lexicographic order constructed by refinement, events that have
been shown to decrease a variant in an abstraction of some concrete machine may
increase the variant of the concrete machine. Similarly, we can check anticipated
events (with V ≥ V ′ and V ≥ 0 resp. V ⊇ V ′), but we cannot omit the test if
an event is a refinement of an anticipated event.

Animating only a part of the refinement chain. Above we presumed that
the user wants to animate a refinement Mi and all its ancestors M0, . . . , Mi−1.
But we also permit the user to limit the animation to the refinements between
Mi and an “upper” refinement Mk with 0 ≤ k ≤ i instead of M0. Then variables
of not animated models and predicates that contain references to those variables
will be removed.

4 Refinement-Validation with ProB

Refinement animation can be used to validate models. We present some specific
problems that can be analysed by animation and discuss a selection of case
studies to which it has been applied to.

4.1 Detection of Specific Problems

Below we show on various modified versions of the coffee model (Fig. 1), how
the new multi-level animation algorithm allows ProB to detect a variety of
refinement errors. Note that in contrast to AnimB and Brama, ProB can be
driven by a model checker so as to systematically detect refinement errors.

298 S. Hallerstede, M. Leuschel, and D. Plagge

Fig. 9. Violation of Guard Strengthening (ProB)

Guard Weakening. If we re-
move the guard @ml from the
event fill mug in CoffeeR2, we
violate the guard strengthen-
ing proof obligation. As can
be seen in Fig. 9, ProB’s
model checker using our new
algorithm detects this problem
straightaway (case 4a of our al-
gorithm), leading us to a state
where fill mug is enabled in
CoffeeR2 but not in the ab-
stract machines.

Witness disables abstract guard. A similar error message appears if we keep
the guards as they are, but inject an error in the witness. E.g, when using
x = empty as witness for fill mug, ProB detects that there is a solution for the
witness, but that the witness does not enable the abstract event.

Witness not feasible. Next, let us use the witness x = level(clvl′)∧x = empty
for event fill mug. Here case (3) of our algorithm detects an error for fill mug
(after executing insert coin), and ProB displays the error message: “No solution
found for witness of the abstract parameter x in event CoffeeR2:fill mug”. The
animator AnimB does not detect this error (but it did detect the previous two
errors).

Fig. 10. Violation of Gluing Invariant (ProB)

Witness violates invariant.
Finally, we try to specify the
witness alvl′ ∈ {empty, half } −
{alvl} for the event drink, which
does not guarantee that the ab-
stract event will satisfy the glu-
ing invariant. As can be seen in
Fig. 10, ProB finds an invariant
violation error (alvl = level(clvl)
is false) directly after the drink
event.

Note that, AnimB detects an
error in the model, but only later when trying to execute the fill mug event
after the erroneous drink event.

In practice, validation by animation complements the proof-based methodol-
ogy of core Event-B. Corresponding methodological benefits of using animation
of Event-B models are discussed in more detail in [8].

4.2 Application to Case Studies

We have successfully applied the new multi-level animation of ProB on a two-
level model of SAP service choreographies [14]. We have also tested the tool on

Refinement-Animation for Event-B — Towards a Method of Validation 299

the CDIS air traffic control case study carried out in the EU project Rodin. Fig-
ure 11 contains a screenshot of the first two levels; we have successfully animated
all 7 levels of the full model concurrently.

Fig. 11. Animating the Rodin CDIS case study

Another case study was a complete development of the quicksort algorithm
in Event-B, consisting of ten machines and two contexts. We have successfully
animated and model checked all the ten levels concurrently. Animation showed
how the algorithm “works” at different abstraction levels. This is valuable for
explaining an otherwise static model of an algorithm.

We have also successfully animated concurrently 14 levels of an elevator model
solution by ETH Zürich. This has uncovered a potential problem in the model,
namely that starting at a certain refinement level, the lift is no longer able to
move (but the doors can be opened and closed and the buttons can be pressed;
so there is no deadlock in the conventional sense).

5 Related Work

As already indicated above, the tools Brama and AnimB are also capable of per-
forming multi-level animation of Event-B models, and have partially inspired this
work. Unfortunately there is little scientific or technical documentation available
for both of these tools. A few notable differences are

- Both Brama and AnimB require to specify explicitly values for constants; i.e.,
we had to “calculate” the cartesian products for the level constant in Fig. 1
by hand.

- ProB can be driven by a model checker to systematically search for errors,
and to validate LTL formulas.

- ProB uses a constraint solving approach to find solutions for predicates, while
AnimB and Brama seem to rely on pure enumeration. As such, ProB can
evaluate much more complicated guards and predicates than AnimB or Brama.

300 S. Hallerstede, M. Leuschel, and D. Plagge

Another animator for Event-B is [5]; but it does not yet seem to support
refinement animation. The same is true for the animator in [6] for classical B.
Another related work is the refinement checking algorithm in [10]. This algorithm
does not have access to Event-B’s witnesses and hence has to keep track of sets
of states in the abstract model (and does not check the gluing invariant as the
traces of the abstract and refined model are computed separately).

6 Conclusion

We have presented a description of refinement in Event-B and have shown how
a suitable animation and validation algorithm can be developed. The key in-
gredient that makes the algorithm tractable are the witnesses of Event-B. We
have implemented the algorithm within ProB, and have shown how a variety of
refinement errors can now be detected effectively. We have applied the technique
to various case studies, and have animated up to 14 levels simultaneously.

In future work, we plan combining the graphical representation of Brama of
Fig. 3 with the validation features of ProB. As we have sketched in Fig. 4, we
also would like to be able to see when an event is disabled in a concrete machine
but enabled in an abstract machine (Brama does not compute this information),
and also to visualize the gluing invariant of each refinement level individually. We
would also like to visualise the errors found by ProB inside the Rodin models,
e.g., so that the offending proof obligations can be marked as “not provable.”

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2009) (to appear)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006)

3. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and Reachability in EventB. In:
Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 222–241. Springer, Heidelberg (2005)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to event-B. Fundam. Inform. 77(1-2), 1–28 (2007)

5. Aı̈t-Sadoune, I., Ameur, Y.A.: Animating event b models by formal data mod-
els. In: Margaria, T., Steffen, B. (eds.) ISoLA. Communications in Computer and
Information Science, vol. 17, pp. 37–55. Springer, Heidelberg (2008)

6. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F., Ut-
ting, M., Vacelet, N.: BZ-testing-tools: A tool-set for test generation from Z and B
using constraint logic programming. In: Proceedings of FATES 2002, August 2002,
pp. 105–120 (2002); Technical Report, INRIA

7. Bendisposto, J., Leuschel, M., Ligot, O., Samia, M.: La validation de modèles
Event-B avec le plug-in ProB pour RODIN. Technique et Science Informa-
tiques 27(8), 1065–1084 (2008)

8. Hallerstede, S., Leuschel, M.: How to explain mistakes. In: Gibbons, J., Oliveira,
J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 105–124. Springer, Heidelberg (2009)

Refinement-Animation for Event-B — Towards a Method of Validation 301

9. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

10. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

11. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

12. Métayer, C.: AnimB Homepage, http://www.animb.org/index.xml
13. Servat, T.: Brama: A new graphic animation tool for B models. In: Julliand, J.,

Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2006)

14. Wieczorek, S., Kozyura, V., Roth, A., Leuschel, M., Bendisposto, J., Plagge, D.,
Schieferdecker, I.: Applying Model Checking to Generate Model-based Integration
Tests from Choreography Models. In: Núñez, M. (ed.) TESTCOM/FATES 2009.
LNCS, vol. 5826, pp. 179–194. Springer, Heidelberg (2009)

http://www.animb.org/index.xml

Reactivising Classical B

Steve Dunne1 and Frank Zeyda2

1 School of Computing
University of Teesside, Middlesbrough, UK

s.e.dunne@tees.ac.uk
2 Department of Computer Science

University of York, York, UK

Abstract. We propose what is essentially a recasting of Circus , the Z-
and-CSP-based concurrent language for refinement, into a B context by
means of a modest extension of classical B which introduces a new struc-
tural component called a reactive-B process. This specifies the channels
via which the process can communicate with its environment, and ac-
tions by which its behaviour is specified. Such actions are expressed in
a new action notation in the same syntactic spirit as B’s Abstract Ma-
chine Notation, but with a similar Unifying Theories of Programming
relational semantics to that of the actions of Circus . Crucially, by in-
cluding ordinary abstract machines these reactive-B processes can also
acquire persistent state, which their actions can manipulate by invoking
the operations of those included machines.

1 Introduction

For almost as long as formal methods have been utilised in software engineering
there has been interest in combining state-based and behavioural formalisms. In
particular during the last decade or more the B Method [1] has been variously
adapted for expressing behavioural aspects of systems, as in Event-B [8], or
combined with an explicit behavioural formalism such as CSP [6,12,13], as in
CSP||B [19,14,15] or csp2B [3]. However, in this paper we draw our inspiration
primarily from a parallel line of work developed over the same period which has
successfully combined the Z formalism [17,20] with CSP to develop the powerful
concurrent language for refinement called Circus [21,22,11].

In Event-B the behaviour of a system is not represented explicitly, but rather
is indirectly encoded in terms of declared behavioural state which the system’s
events have to test to determine their enabledness, and update when they fire to
influence the further behaviour of the system. While such an approach can be
perfectly general in its expressivity it doesn’t greatly engender behavioural trans-
parency, so that Event-B specifications can often be relatively opaque from a be-
havioural perspective. On the other hand CSP||B and csp2B both reconcile state
manipulation with concurrent interaction by identifying each state-updating op-
eration with its own individual corresponding concurrent interaction event, that
event typically either sharing the same name as the operation concerned or at

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 302–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Reactivising Classical B 303

least acquiring a name which is uniquely associated with the operation, so that
the behavioural characteristics of the system can then be explicitly described in
CSP. This certainly yields greater behavioural transparency, but there is a price
to be paid in terms of the relative inflexibility during a system’s development,
in that the system’s concurrent architecture must essentially be determined at
the outset of that development by its abstract specification.

Interestingly, Circus is relatively unusual among state-enriched concurrent
specification languages in having no such one-to-one correspondence between
operations and events. This gives it valuable flexibility as a concurrent develop-
ment formalism, in that new events can be introduced at any refinement stage,
allowing the concurrent architecture of an implementation to emerge during de-
velopment rather than being set at the abstract specification stage [4]. The price
to be paid for this is a significantly more complicated semantic reconciliation of
two quite different sorts of actions –namely, Z-described state-manipulation op-
erations and CSP-described behavioural agents– which is necessary when these
are combined within the body of a higher-level Circus action, since such an op-
eration cannot simply be identified with an event with which it shares its name.
The designers of Circus have met this challenge by interpreting both its opera-
tions and its actions in a uniform way as binary relations in the Unified Theories
of Programming (UTP) [7]. In this way the UTP provides a firm semantic foun-
dation for Circus .

The starting point for the work described in this paper was our speculation
that what Circus has already done for Z by incorporating it in a wider language
with explicit behaviourally expressive features, ought to be equally possible for
B. We therefore sought an effective means by which B might be endowed with
a corresponding set of features, ideally without compromising any of its exist-
ing conceptual integrity and clarity. The result is our syntactically modest but
conceptually significant extension of classical B providing a recasting of Circus
within a B setting, which we call reactive B (or just rB for brevity).

One might reasonably ask why we have chosen classical B rather than Event-B
as the basis for our reactive extension. The reason is that, in the context of our
extended B language, we want each B abstract machine play the passive role of
an encapsulated data type incorporated within a separately-described process,
rather than an active role as a behavioural entity in its own right which com-
municates with its environment via shared events. Specifically, our B abstract
machines need to offer operations with input and output parameters, and with a
contractual interpretation which implies, inter alia, that those operations must
be called within their preconditions if divergence is to be avoided. Currently,
only classical B provides these features.

The rest of the paper is organised as follows. In section 2 we preview our rB by
means of a small illustrative example. In section 3 we informally describe all the
features of our new rB action notation used to specify rB processes. In section 4,
in order further to illustrate the applicability of reactive B, we present two more
reactive specifications which use more of those features. In section 5 we give an
overview of the UTP and its application to reactive programs. In section 6 we

304 S. Dunne and F. Zeyda

show how we apply the UTP to give our rB actions a precise relational semantics.
In section 7 we present a more extensive illustrative example to demonstrate the
versatility of reactive B. In section 8 we conclude by reviewing what we have
done so far, and then looking ahead to chart how we believe further development
of reactive B might proceed.

2 A Reactive-B Preview

Our reactive B extends classical B simply by introducing a new structural com-
ponent called a Process alongside the existing Abstract Machine Specification,
Refinement, and Implementation components of classical B. A process has a set
of named communication channels declared in a CHANNELS clause via which
values of designated type can be communicated with its environment. It also op-
tionally INCLUDES one or more ordinary abstract machines by which it aquires
its persistent state. A process will generally also possess a number of named sub-
sidiary actions, defined via its SUBACTIONS clause, and specified in our rB
action notation. The sole use of these subsidiary actions is in the definition of the
process’s (unnamed) main action, which appears in its MAINACTION clause.

It is important to appreciate that the meaning of a reactive-B process rests
entirely in its pattern of communication with its environment via its declared
channels, and nothing else. In particular, its persistent state acquired via its
included machines is entirely encapsulated within it and serves only to influence
its pattern of channel communications as expressed by its main action and as-
sociated subsidiary actions. A process’s persistent state is never visible to any
part of its external environment. We will illustrate our new Process component
by means of the example in the following subsection.

2.1 The Fibonacci Generator

This example is adapted from that of the same name in [22]. We specify a
process which is required to communicate successive Fibonacci numbers to its
environment via a channel called out. To do so we first specify our Fibonacci
abstract machine whose state records the two most recent Fibonacci numbers
output, and whose sole operation outfibstate generates, records and outputs the
next number in the sequence:

MACHINE Fibonacci
VARIABLES xx , yy
INVARIANT xx ∈ N ∧ yy ∈ N

INITIALISATION xx , yy := 1 , 1
OPERATIONS

next ←− outfibstate =̂ xx , yy , next := yy , xx + yy , xx + yy
END

Reactivising Classical B 305

We now specify our Fibproc process to incorporate the Fibonacci abstract ma-
chine and communicate successive numbers of the Fibonacci sequence as required
on channel out:

PROCESS Fibproc

INCLUDES Fibonacci

CHANNELS out : N

SUBACTIONS

InitFib =̂ out .1 → out .1 → Fibonacci init ;
OutFib =̂ μX . VAR nn IN nn ←− outfibstate ; out .nn → X END

MAINACTION

InitFib ; OutFib

END

Trivial as it is, our Fibonacci example nevertheless usefully illustrates a num-
ber of features of our rB action notation:

1. Channel names appear in roman font, as in channel out of our Fibproc process
above, to distinguish them from variable and operation names, which always
appear in italic font.

2. Every B abstract machine has an intrinsic initialisation operation. The ac-
tions of an rB process which includes an abstract machine M can initialise
the included machine at any time by invoking its intrinsic initialisation oper-
ation as M init . We see, for example, that our Fibonacci machine’s initialisa-
tion is invoked by our Fibproc process’s InitFib subaction by the invocation
Fibonacci init .

3. As well as the persistent state embodied by the state variables xx and yy
which our Fibproc process acquires from its included Fibonacci machine,
individual actions can also declare their own local variables, as in the case
of nn for subaction OutFib of our Fibproc process.

4. Actions can invoke operations of an included machine as well as communicate
values via channels to the environment, again as seen in subaction OutFib
of our Fibproc process.

5. Actions can be sequentially composed, as in the main action of our Fibproc
process, and also in the body of subaction OutFib.

6. Actions can be recursively defined, again as seen in subaction OutFib of our
Fibproc process. Here the μ signals a recursive definition. OutFib invokes
operation outfibstate of the included Fibonacci machine to obtain the next
Fibonacci number which it holds temporarily in local variable nn before
communicating it to the environment via channel out and then repeating
this same pattern of behaviour indefinitely.

It is also convenient to note here that when an rB process INCLUDES an
abstract machine, then B’s usual semi-hiding encapsulation principle applies.
That is to say, the actions of the process may passively refer directly to the
state variables of the included abstract machine, but can modify these only by
invoking the operations of the included machine.

306 S. Dunne and F. Zeyda

3 The rB Action Notation

In the following, A and B denote actions, b denotes a condition on the variables
currently in scope, ch denotes a channel and xx and yy denote (lists of) fresh
variables:

– basic actions: SKIP is the action which terminates immediately without en-
gaging in any channel communication or modifying its process’s encapsulated
state. STOP is the action which deadlocks immediately without engaging in
any channel communication or modifying its process’s encapsulated state.

– prefixed action: ch .exp → A communicates the value of expression exp on
channel ch and then behaves as action A. If ch is a typeless channel then the
expression exp and its associated “ .” are omitted, and the communication
concerned is known as a simple synchronisation event. If the type of ch is
composite, i.e. of a form such as T1 ∗T2, and exp1 and exp2 are expressions
respectively of types T1 and T2, then “ch .(exp1, exp2)” can be alternatively
written as “ch .exp1.exp2 ”. The prefix combinator “→” binds strongest of all
the combinators of our rB action notation.

– external choice: A � B offers the environment any of the initial com-
munications offered by either A or B . If the environment chooses an initial
communication offered uniquely by A the subsequent behaviour of the com-
posite action will be that of A. Similarly, if the environment chooses an initial
communication offered uniquely by B the subsequent behaviour of the com-
posite action will be that of B . However, should the environment choose an
initial communication which is offered by both A and B the subsequent be-
haviour of the composite action will be nondeterministically chosen at that
point to be either that of A or B .

– recursion: μX . action exp(X) , where X is a fresh identifier and
action exp(X) is an action expression parameterised by the action X and
built from our various rB action combinators, denotes the (refinement-)least
fixed point X of action exp(X) . In other words, it denotes the least-
deterministic action X for which X = action exp(X)1. The recursion com-
binator “ . ” binds weakest of all the combinators of our rB action notation;
this means that the body of recursive μ-expression extends as far as possible
to the right.

– operation invocation: The action comprising the operation invocation
yy ←− op(exp) engages in no channel communication but modifies its pro-
cess’s persistent state via the operation op of its process’s included B ma-
chine. Here exp is an expression whose value is passed to the operation as
its input parameter value. The output from the operation is received by yy
which must be a local variable currently in scope. If the operation’s signature

1 The existence of such a least fixed point is guaranteed under Tarski’s theorem [18]
by the monotonicity of all the rB action combinators with respect to refinement.

Reactivising Classical B 307

has no input parameter the expression exp and its enclosing parentheses are
omitted. Similarly, if the operation’s signature has no output the receiving
variable yy and its associated “←−” are omitted. An operation invoked out-
side its precondition will diverge.

– sequential composition: The sequential composition A ; B of actions A
and B behaves like A until this terminates (if indeed it ever does) and there-
after like B . If A never terminates then A ; B simply behaves like A. The
sequential composition operator “ ; ”binds more strongly than the external
choice operator “�”.

– local variable: VAR xx IN A END introduces the fresh local variable(s)
xx whose scope is limited to A and whose type is determined by A .

– guarded action: WHEN b THEN A END behaves as A when condition
b is true and otherwise as STOP. It corresponds to the guarded Circus action
b & A .

– conditional: IF b THEN A ELSE B END behaves as A if b is true and
otherwise as B . It corresponds to the compound Circus action b & A �

¬ b & B .

– short conditional: IF b THEN A END behaves as A if b is true and
otherwise as SKIP. It corresponds to the compound Circus action b & A �

¬ b & SKIP.

– prefix choice: ACCEPT xx WHERE b FROM ch THEN A END intro-
duces the fresh local variable(s) xx and is willing to accept from the environ-
ment via channel ch the communication of any value for xx which satisfies
condition b , after which it behaves as A. Thus the type of xx is determined
by the channel type of ch. The construct corresponds to the Circus prefix
choice action ch?xx : b → A(xx) . The structure of an ACCEPT clause
makes the scope of the local variable(s) xx explicit by restricting this to the
condition b and the action A. The “WHERE b ” subclause is optional. An
ACCEPT clause without a WHERE subclause is equivalent to one with a “
WHERE true” subclause.

4 Two More Reactive-B Specifications

In this section we give two further example rB specifications to illustrate the use
of more of the rB action combinators described in the preceding section. The
first is an obligatory vending machine example for concurrency traditionalists,
while the second specifies the behaviour of a fuel pump.

4.1 The Vending Machine

The Vending abstract machine keeps track of the current level of stock held in
the actual physical machine, and the unspent credit the customer has currently
accumulated by inserting coins:

308 S. Dunne and F. Zeyda

MACHINE Vending

CONSTANTS capacity , itemprice

PROPERTIES capacity ∈ N ∧ itemprice ∈ N1

VARIABLES credit , stock

INVARIANT credit ∈ N ∧ stock ∈ N

INITIALISATION credit , stock := 0 , capacity

OPERATIONS

items , credleft ←− dispense =̂

ANY tt WHERE tt ∈ 1 . . (credit / itemprice)

THEN items , credleft := tt , credit − (tt × itemprice) END ;
reset (cc , ss) =̂ PRE cc ∈ N ∧ ss ∈ N THEN credit , stock := cc , ss END ;
clearcredit =̂ credit := 0 ;
addcredit (nn) =̂ PRE nn ∈ N THEN credit := credit + nn END

END

The Vendingproc process includes the Vending abstract machine, and commu-
nicates with its environment –the actual physical machine– to be apprised of
the customer’s insertions of coins and pressing of the dispense and returnchange
buttons, and to instruct the physical machine how many items to dispense and
how much change to give. We note that its CHANNELS clause declares four
typeless channels as well as two typed ones:

PROCESS Vendingproc

INCLUDES Vending

CHANNELS

giveitems : N ; givechange : N ; insert5p ; insert10p ; dispensebtn ; changebtn

SUBACTIONS

DispenseItm =̂ dispensebtn →
VAR nn , cr IN

nn , cr ←− dispense ;

IF nn : 0..stock THEN giveitems .nn → reset (cr , stock − nn) END

END ;
RtnChange =̂ changebtn →

IF credit > 0 THEN givechange .credit → clearcredit END ;
InsertMoney =̂ insert5p → addcredit (5) � insert10p → addcredit (10)

MAINACTION

Vending init ; μ X . (InsertMoney � DispenseItm � RtnChange) ; X

END

In the Vendingproc process above we note how B’s encapsulation semi-hiding
principle allows subactions DispenseItm and RtnChange to refer passively to
state variables stock and credit respectively of the included Vending abstract
machine.

4.2 The Fuel Pump

This example is adapted from that of the same name in [11]. It models the
activities associated with a fuel-dispensing pump in a garage or filling station.

Reactivising Classical B 309

The Fuelpump abstract machine records the amount of fuel currently held in the
pump’s storage tank.

MACHINE Fuelpump

VARIABLES fuel

INVARIANT fuel ∈ N

INITIALISATION fuel := 5000

OPERATIONS

reload (tt) =̂ PRE tt ∈ N THEN fuel := fuel + tt END ;
supply (tt) =̂ PRE tt ∈ 1 . . fuel THEN fuel := fuel − tt END

END

The Pumpproc process communicates with the physical fuel pump to be ap-
prised of how much fuel is reloaded into the pump’s storage tank in each reload-
ing episode, and how much fuel is dispensed by the pump in each dispensing
episode. Its CHANNELS clause declares five typeless channels as well as two
typed ones:

PROCESS Pumpproc

INCLUDES Fuelpump

CHANNELS init ; liftnozzle ; replacenozzle ; squeezetrigger ; releasetrigger ;

reload : N ; enteramount : N

SUBACTIONS

PumpIdle =̂

liftnozzle → PumpActive �

ACCEPT qq FROM reload THEN reload(qq) END �

init → Fuelpump init ;
PumpActive =̂

replacenozzle → SKIP �

ACCEPT qq WHERE qq ∈ 1..fuel FROM enteramount

THEN squeezetrigger → supply(qq) ; releasetrigger → SKIP END

MAINACTION

Fuelpump init ; μX . PumpIdle ; X

END

We note that our Pumpproc above is our first example of a process whose
actions use our action notation’s prefix-choice construct ACCEPT...END.

5 Unifying Theories of Programming

We follow Circus in adopting Hoare and He’s Unifying Theories of Programming
(UTP) [7] as an appropriate semantic foundation in terms of which our rB ac-
tion constructs can be given formal meanings. We note that this whole section,

310 S. Dunne and F. Zeyda

which is based essentially on chapters 3 and 8 of [7], is merely an exposition for
the convenience of the unacquainted reader of the part of UTP which we will
subsequently use in section 6 to give a UTP semantics to our rB actions. None of
the current section therefore represents any original work of the current authors.

UTP in fact provides a common semantic framework, based on alphabetised
binary relations, which encompasses many different programming paradigms.
The two basic unifying principles of the UTP approach are (1) that refinement
is always modelled by logical implication, and (2) that sequential composition is
always modelled by relational composition.

The UTP approach often supplements the regular state variables of a program
by introducing further auxiliary variables to describe aspects of the observed
behaviour of a program which are of particular interest. Unlike the regular vari-
ables, such auxiliary variables cannot be directly referenced or manipulated by
the program itself. The undashed versions of the regular state variables and these
auxiliary variables together record initial observations of the program before ex-
ecution has occurred, while their dashed counterparts record a corresponding
observation of a stable state reached upon execution. In the case of a simple
sequential program the only subsequent stable state of interest is the program’s
final state, but in the case of others, such as reactive programs, there may be
many observable intermediate states to be recorded too.

Since in UTP a program is always regarded as being executed in sequence
after its immediate predecessor, the current program’s initial (undashed) vari-
ables always have to match the values of its predecessor’s final (dashed) ones. A
program’s undashed variables can therefore be regarded as recording the state
it has inherited from its predecessor.

5.1 Relational Semantics of Sequential Programs

The externally observable behaviour of a simple sequential program on a state
space characterised by a list of program variables v is expressed in UTP by
the relational predicate ok ∧ p ⇒ ok ′ ∧ q over the alphabet of variables
(v , ok , v ′, ok ′), where ok and ok ′ are boolean variables. Here the undashed vari-
ables v represent the regular variables’ initial state while their dashed counter-
parts v ′ represent the same regular variables’ final state, p and q being subsidiary
predicates respectively over v and (v , v ′). But even a correct program can behave
pathologically if wrongly used; the propensity of a sequential program to diverge
by aborting or failing to terminate is reflected by the auxiliary ok variable which
when initially true (ok = true) signifies that this program’s predecessor suc-
cessfully terminated, so allowing it to start, and when finally true (ok ′ = true)
signifies that this program subsequently successfully terminated. An observation
involving ok ′ = false, on the other hand, signifies that the program diverged
rather than terminated successfully, for example by becoming trapped in an in-
finite loop, or by provoking a system error such as a memory address violation
and so having to be aborted.

Reactivising Classical B 311

The program’s relational predicate ok ∧ p ⇒ ok ′ ∧ q is traditionally abbre-
viated in UTP to p � q , which can be interpreted as saying if the program starts
in an initial state satisfying p, it will terminate in a final state satisfying q.

5.2 Relational Semantics of Reactive Programs

Unlike that of a simple sequential program, the observable behaviour of a re-
active program such as a CSP process will typically include many intermediate
interactions with its environment between the start and ultimate end of its ex-
ecution. Indeed, a reactive program may never reach any ultimate end of its
execution. A CSP process has not necessarily diverged merely because it never
terminates. For example, the CSP process μX . a → X engages an endless
succession of ‘a’s but doesn’t diverge. Equally, the primitive CSP process STOP
immediately reaches a stable intermediate state where it refuses any interaction
at all, and being permanently blocked it neither terminates nor diverges. To
model the behaviour of a CSP process we augment ok with the three further
auxiliary variables wait , tr and ref . The roles of these auxiliary variables are as
follows:

– ok is a boolean which in its undashed form indicates whether the current
process’s predecessor diverged (ok = false) or stabilised (ok = true). Cor-
respondingly, in its its dashed form ok ′ it indicates whether the current
process has stabilised (ok ′ = true), or diverged (ok ′ = false). The values
of the remaining dashed variables other than tr ′ are significant only when
ok ′ = true.

– wait is a boolean which in its undashed form indicates, when ok holds,
whether the current process’s predecessor had terminated (wait = false),
so allowing the current process to start, or merely reached an intermediate
state (wait = true), so inhibiting the current process from exhibiting any
behaviour yet. Similarly, in its dashed form wait ′ it indicates, providing
ok ′ holds, whether the process reached a stable intermediate state awaiting
interaction with its environment (wait ′ = true), or has terminated (wait ′ =
false).

– tr in its undashed form records the trace of events which have already
occurred before the start of execution of the current process. On the other
hand in its dashed form tr ′ it records the trace of events which have occurred
before and during its execution up to its subsequent observed state. Therefore
tr and tr ′ are of type Σ∗, i.e. finite sequences of events of the event alphabet
Σ . We note that tr is always a prefix of tr ′, which we write as tr ≤ tr ′, and
that the trace of events actually engaged in by the current process itself is the
trace difference of tr ′ and tr , which we write as tr ′− tr . Our trace variables
tr and tr ′ share the unusual distinction that their values are significant even
when ok and ok ′ don’t hold. This is because they encode history which
cannot be retrospectively altered even by divergence.

– ref in its undashed form records a set of events observed to be refused
by the current process’s predecessor, and as such is only significant if that

312 S. Dunne and F. Zeyda

predecessor is in a stable intermediate state, i.e. one where ok and wait
are both true. More importantly, in its dashed form ref ′ it records a set of
events observed to be refused by the current process in a stable intermediate
state, i.e. one where ok ′ and wait ′ are both true. As sets of events ref
and ref ′ are of type P Σ, where Σ is the process’s alphabet of events. It is
important to appreciate that the value of ref ′ in any particular observation
can be any set of events refused by the process, and does not therefore
necessarily comprise all the events which the process is disposed to refuse in
that particular intermediate state. In particular, the empty set {} is always
a valid refusal set.

5.3 Reactive Healthiness Conditions

A UTP binary relation characterising any CSP process must comply with a
number of healthiness conditions. Among these are the three reactive healthiness
conditions R1, R2 and R3 :

– R1 ensures that a process’s history of interactions with its environment can
never be retrospectively altered but only extended: this means that if A is
any CSP process, then it has to be the case that A = A ∧ tr ≤ tr ′ , where
≤ denotes the prefix ordering on traces.

– R2 ensures that the behaviour of a process is not affected by the history
of interactions of its predecessors. So even if we eliminate that history al-
together by replacing tr by 〈〉 and tr ′ by the trace difference tr ′ − tr this
cannot affect the behaviour of the current process: that is, if A is any CSP
process then it must be the case that A = A[〈〉, tr ′ − tr / tr , tr ′] .

– R3 ensures that relational composition correctly models actual sequential
composition of CSP processes. It does this by ensuring that in any relational
composition P ; Q of process relations P and Q the latter makes no con-
tribution to the behaviour of the composition while P is only in a waiting
state. So, when restricted to P ’s intermediate waiting states, Q must act
like the CSP identity and change nothing: this means that if A is any CSP
process we must have that A = IICSP � wait � A 2, where IICSP is the
CSP reactive identity, which is defined by

IICSP =df (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧ wait′ = wait ∧ ref ′ = ref ∧ v ′ = v)

where v represents the regular state variables.

R1, R2 and R3 can also be regarded as healthifiers or functions which when ap-
plied to arbitrary relations over a state characterised by variables wait , tr , ref , v
yield corresponding appropriately healthy ones. Thus we have

R1(A) = A ∧ tr ≤ tr ′

R2(A) = A[〈〉, tr ′ − tr / tr , tr ′]

R3(A) = IICSP � wait � A
2 The conditional construct P � b � Q is an abbreviation for (b ∧ P) ∨ (¬ b ∧ Q) .

Reactivising Classical B 313

Each of these three healthifiers is idempotent, since once a relation is Rn -healthy
it can’t be made any more so. It also turns out that they are commutative, in the
sense that irrespective of in what order they are applied to a relation they will
yield the same R-healthy relation. We therefore define our composite reactive
healthifier R as R1 ◦ R2 ◦ R3 .

A reactive design is simply an ordinary design over a state characterised by
variables wait , tr , ref , v which has been reactively healthified by the application
of our composite reactive heathifier R. Thus it is a relation of the form R(p � q)
where p and q are predicates over variables wait , tr , ref , v and their dashed
counterparts. In the next section we will give each of our rB action constructs a
meaning as such a reactive design.

6 Semantics of rB Actions

All our rB actions can be given formal meaning as reactive designs. The way
we do so essentially follows that of Oliveira et al. in [11] for their corresponding
Circus actions. To illustrate the technique we give the semantic definitions of some
of our rB action constructs in this section. Those of the rest can be inferred from
the corresponding Circus action definitions in [11].

Basic actions

SKIP =df R(true � tr ′ = tr ∧ ¬ wait ′)

STOP =df R(true � tr ′ = tr ∧ wait ′)

Prefixed action

ch .exp → A =df (ch .exp → SKIP) ; A

where

ch .exp → SKIP =df R(true � do(ch .exp) ∧ v ′ = v)

where

do(ch .exp) =df tr ′ = tr ∧ ch .exp ∈ ref ′ � wait ′ � tr ′ = tr � 〈ch .exp〉

Operation invocation: Given the actual operation invocation instance yy ←−
op(exp) within an rB action, let the generalised substitution S be the instanti-
ated body of op whose formal input parameter has been replaced by the expres-
sion exp and whose formal output parameter has been replaced by the variable
yy. Also, let u represent the current state variables, i.e. the persistent variables
of the containing process together with any action local variables currently in
scope. Now let Su be the frame-enlarged variant of S whose write frame has
been extended by u, and let prd(Su) be the before-after predicate of Su and let
trm(S) be the termination predicate of S , all as defined in [5]. Then we interpret
yy ←− op(exp) as a reactive design in this way:

yy ←− op(exp) =df R(trm(S) � prd(Su) ∧ tr ′ = tr ∧ ¬ wait ′)

314 S. Dunne and F. Zeyda

Sequential composition: In accordance with UTP principles, the sequential
composition A ; B of actions A and B is defined simply as the relational compo-
sition of their respective reactive designs.

Local variable:

VAR xx IN A END =df ∃ xx , xx ′ . A

Guarded action:

WHEN b THEN A END =df R(b ⇒ ¬ A
f
t � (b ∧ A

t
t) ∨ (¬ b ∧ tr

′ = tr ∧ wait
′))

where Af
t is an abbreviation for A[true, false, false/ok ,wait , ok ′] and At

t is an
abbreviation for A[true, false, true/ok ,wait , ok ′] .

7 The Maritime Port

Our final example is adapted from the corresponding CSP||B one in [16], so
demonstrating that rB’s applicability is not confined to examples from the Cir-
cus literature alone. It concerns the directing of ships visiting a busy port to
discharge their cargoes and/or take on new cargoes. When a ship arrives it is
first directed to join the end of the queue of ships waiting to dock at a quay.
When the waiting queue is non-empty and there are vacant quays, the ship at
the head of the queue may be directed to leave the queue and dock at one of the
vacant quays. At any time a ship currently occupying a quay may vacate that
quay and depart from the port.

The PortGlobals machine introduces sets and constants for the Port system:

MACHINE PortGlobals
SETS SHIP ; QUAY
CONSTANTS Quays
PROPERTIES Quays ∈ F (QUAY)
END

The Waiting machine models the queue of ships waiting to dock:

MACHINE Waiting
SEES PortGlobals
VARIABLES waitingsq
INVARIANT waitingsq ∈ iseq (SHIP)
INITIALISATION waitingsq := []
OPERATIONS

joinqueue (ss) =̂ PRE ss ∈ SHIP − WaitingShips
THEN waitingsq := waitingsq ← ss END ;

Reactivising Classical B 315

ss ←− leavequeue =̂ PRE WaitingShips �= {}
THEN ss , waitingsq := first (waitingsq) , tail (waitingsq) END

DEFINITIONS
WaitingShips =̂ ran (waitingsq)

END

The Docked machine models the ships currently docked at the quays:

MACHINE Docked

SEES PortGlobals

VARIABLES docked

INVARIANT docked ∈ Quays
� SHIP

INITIALISATION docked := {}
OPERATIONS

qq ←− dock (ss) =̂

PRE ss ∈ SHIP − DockedShips ∧ Vacant �= {} THEN

ANY qu WHERE qu ∈ Vacant THEN qq := qu ‖ docked (qu) := ss END

END ;
leave (ss) =̂ PRE ss ∈ DockedShips THEN docked := docked −� { ss } END

DEFINITIONS

DockedShips =̂ ran (docked) ; Vacant =̂ Quays − dom (docked)

END

The Port machine combines the Waiting and Docked machines:

MACHINE Port

INCLUDES PortGlobals , Waiting , Docked

PROMOTES leave

INVARIANT WaitingShips ∩ DockedShips = {}
OPERATIONS

arrive (ss) =̂ PRE ss ∈ SHIP − ShipsInPort THEN joinqueue (ss) END ;
ss , qq ←− transfer =̂ PRE WaitingShips �= {} ∧ Vacant �= {}

THEN ss ←− leavequeue ‖ qq ←− dock (first (waitingsq)) END
DEFINITIONS

ShipsInPort =̂ WaitingShips ∪ DockedShips

END

Having specified our various abstract machines for the port system we can
now specify our Portproc process which directly includes the top-level Port
machine, and therefore indirectly incorporates the latter’s included machines
too. The Portproc process illustrates some rB action notation features not hith-
erto employed in our earlier examples, notably the guarded action construct
WHEN...THEN...END, the WHERE subclause of the ACCEPT...END con-
struct and the multiple dot notation for communicating tuple values on a channel
of a complex type:

PROCESS Portproc
INCLUDES Port , PortGlobals
CHANNELS arrive : SHIP ; depart : SHIP ; dock : SHIP×QUAY

316 S. Dunne and F. Zeyda

SUBACTIONS
Arrive =̂

ACCEPT sh WHERE sh ∈ SHIP − ShipsInPort FROM arrive
THEN arrive(sh) END ;

Leave =̂
ACCEPT sh WHERE sh ∈ DockedShips FROM depart
THEN leave(sh) END ;

Dock =̂
WHEN WaitingShips �= {} ∧ Vacant �= {} THEN

VAR sh , qu IN sh , qu ←− transfer ; dock .sh.qu → SKIP END

END

MAINACTION
Port init ; μX . (Arrive � Dock � Leave) ; X

END

We see from our Portproc process that the system it specifies has to ensure
that ships arriving at the port must queue in an orderly fashion awaiting a vacant
quay, and depart from the port only after docking at a quay. The system must
also decide at which vacant quay the ship at the head of the queue is to be
directed to dock. Naturally, the system must be able to handle all these events
concurrently since the order in which ships arrive and depart is unpredictable.

8 Conclusion and Future Work

We have presented our extension of classical B called reactive B, and have demon-
strated its expressivity by applying it to several examples from the literature of
combining state and behavioural formalisms. We have explained how the actions
of a reactive-B process can be given a similar UTP relational semantics to that
given to Circus actions.

Of course, there is a great deal still to be addressed. Foremost, perhaps, there is
the important issue of tool support, so vital for the industrial level of robustness
and scalability to which we should aspire for any B-related method. Closely
associated with this is the degree of mechanisation in type- and consistency-
checking to which our reactive B lends itself. Checking our rB processes for
freedom from divergence is straightforward since the only source of divergence
in our relatively limited action notation is the invoking of an operation outside
its precondition, and this is as amenable to static checking in rB as it is in
ordinary classical B. Granted, the presence of recursion in the action definitions
of rB raises an extra challenge, as compared with classical B. Here, however,
we can capitalise on the work of the inventors of CSP||B, who have already
encountered the same challenge and solved it by their control loop invariant
technique described in [19].

Reactivising Classical B 317

Another vital issue is that of mechanised support for refinement. But here we
are confident we can borrow from the work of the Circus developers who have
already amassed an extensive arsenal of refinement rules for their own language,
as described in [9], [10] and [11]. Since we have given our rB actions a similar UTP
relational semantics to that of Circus actions, many of these Circus refinement
rules should be readily adaptable for rB.

Yet another important topic is the obvious one of how rB processes might
themselves be usefully combined to form composite processes. This in its turn
raises a whole range of interesting associated issues such interleaving, parallel
composition and the hiding of those communications which are only relevant
between the processes being combined but not for the wider environment beyond
them. But again all these issues have already been comprehensively addressed
in Circus , which gives us confidence that we can successfully treat them in a
similar way for rB.

Acknowledgements

We are grateful for the comments of the anonymous reviewers of the original
draft of this paper.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.): ZB 2002. LNCS,
vol. 2272. Springer, Heidelberg (2002)

3. Butler, M.J.: csp2B: A practical approach to combining CSP and B. Formal Asp.
Comput. 12(3), 182–198 (2000)

4. Cavalcanti, A., Sampaio, A., Woodcock, J.: A refinement strategy for Circus. Form.
Asp. Comput. 15(2-3), 146–181 (2003)

5. Dunne, S.E.: A theory of generalised substitutions. In: Bert, et al. (eds.) [2], pp.
270–290

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

7. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, En-
glewood Cliffs (1998)

8. Metayer, C., Abrial, J.-R., Voisin, L.: Event-B Language. Technical Report 3.2,
Rodin Project (2005), http://rodin.cs.ncl.ac.uk

9. Oliveira, M.: Formal Derivation of State-rich Reactive Programs using Circus. PhD
thesis, Department of Computer Science, University of York (2005); YCST-2006/02

10. Oliveira, M., Cavalcanti, A., Woodcock, J.C.P.: A denotational semantics for Circus.
Electron. Notes Theor. Comput. Sci. 187, 107–123 (2007)

11. Oliveira, M., Cavalcanti, A., Woodcock, J.C.P.: A UTP semantics for Circus. Form.
Asp. Comput. 21(1-2), 3–32 (2009)

12. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Englewood
Cliffs (1998)

http://rodin.cs.ncl.ac.uk

318 S. Dunne and F. Zeyda

13. Schneider, S.A.: Concurrent and Real-time Systems: The CSP Approach. Wiley,
Chichester (2000)

14. Schneider, S.A., Treharne, H.E.: Communicating B machines. In: Bert, et al. (eds.)
[2], pp. 416–435

15. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines.
Formal Asp. Comput. 17(4), 390–422 (2005)

16. Schneider, S.A., Treharne, H.E., Evans, N.: Chunks: Component verification in
CSP||B. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS,
vol. 3771, pp. 89–108. Springer, Heidelberg (2005)

17. Spivey, J.M.: The Z Notation: a Reference Manual, 2nd edn. Prentice Hall, Engle-
wood Cliffs (1992)

18. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

19. Treharne, H.E., Schneider, S.A.: How to drive a B machine. In: Bowen, J.P., Dunne,
S., Galloway, A., King, S. (eds.) ZB 2000. LNCS, vol. 1878, pp. 188–208. Springer,
Heidelberg (2000)

20. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice
Hall, Englewood Cliffs (1996)

21. Woodcock, J.C.P., Cavalcanti, A.: A concurrent language for refinement. In: But-
terfield, A., Strong, G., Pahl, C. (eds.) Proceedings of the 5th Irish Workshop in
Formal Methods, IWFM 2001, Workshops in Computing, British Computer Society
(2001), http://ewic.bcs.org/conferences/2001/5thformal/papers

22. Woodcock, J.C.P., Cavalcanti, A.: The semantics of Circus. In: Bert, et al. (eds.)
[2], pp. 184–203

http://ewic.bcs.org/conferences/2001/5thformal/papers

Event-B Decomposition for Parallel Programs�

Thai Son Hoang and Jean-Raymond Abrial

Deparment of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich),

CH-8092, Zurich, Switzerland
htson@inf.ethz.ch, jrabrial@neuf.fr

Abstract. We present here a case study developing a parallel program. The ap-
proach that we use combines refinement and decomposition techniques. This
involves in the first step to abstractly specify the aim of the program, then subse-
quently introduce shared information between sub-processes via refinement. Af-
terwards, decomposition is applied to split the resulting model into sub-models
for different processes. These sub-models are later independently developed us-
ing refinement. Our approach aids the understanding of parallel programs and
reduces the complexity in their proofs of correctness.

Keywords: Event-B, parallel programs, decomposition, refinement.

1 Introduction

We consider here programs that use several co-operating parallel processes in order to
compute the intended final result. Proving correctness of such programs is a difficult
task because of the interleaved execution of many sub-statements from different pro-
cesses. These sub-statements may be executed in an unpredictable order. As a result,
techniques such as program testing do not give us sufficient confidence about the cor-
rectness of these programs, since no execution leading to an error might appear during
tests. To achieve correctness, it is therefore necessary to develop these programs and
prove them formally.

There are a number of methods for proving the correctness of parallel programs [11].
Our main contribution is an approach applying the technique of refinement and decom-
position in Event-B [2], which reduce the complexity of the verification process (more
information in Section 5.1). The approach contains four steps as follows.

1. Start with an abstract specification in-one-shot giving the purpose of the program.
2. Refine this abstract specification by introducing details about the shared variables.
3. Decompose the model in the previous step to split the model into several (abstract)

sub-models for processes.
4. Refine each sub-model from the previous step independently.

In the last step, each sub-model can be seen as a new abstract specification and hence
application of steps 2, 3 and 4 can be repeated again. The novelty of our approach is in

� Part of this research was carried out within the European Commission ICT project 214158
DEPLOY (http://www.deploy-project.eu/index.html). We thank Matthias
Schmalz, Christoph Sprenger and David Basin for their comments on drafts of this paper.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 319–333, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.deploy-project.eu/index.html

320 T.S. Hoang and J.-R. Abrial

step 2 where we specify shared information between processes. This information has
two purposes. Firstly, it contains the necessary guarantee condition from each process
to establish the final result. Secondly, it also gives the condition on which each process
can rely on in further development. This decision to have this step early in our develop-
ment takes advantage of our decomposition technique and results in simpler models and
reduces the complexity of proving programs. This is the main advantage of our method
over existing approaches. More information on related work is in Section 5.1.

The rest of the paper is structured as follows. Section 2 gives an overview of the
Event-B method and the concept of (shared variable) decomposition. Section 3 intro-
duces the FindP program and its formal development using our approach is presented in
Section 4. Section 5 compares our approach with some existing methods for developing
parallel programs and draws some conclusions.

2 The Event-B Modelling Method

A development in Event-B [6] is a set of formal models. The models are built from ex-
pressions in a mathematical language, which are stored in a repository. When presenting
our models, we will do so in a pretty-printed form e.g., adding keywords and following
layout conventions to aid parsing. Event-B has a semantics based on transition systems
and simulation between such systems, described in [3]. We will not describe in detail
the Event-B semantics here and instead just illustrate some of the proof obligations that
are important for our development.

Event-B models are organised in terms of the two basic constructs: contexts and
machines. Contexts specify the static part of a model whereas machines specify the dy-
namic part. Contexts may contain carrier sets, constants, axioms, and theorems. Carrier
sets are similar to types [6]. Axioms constrain carrier sets and constants, whereas the-
orems express properties derivable from axioms. In the following, we further describe
machines and machine refinement.

2.1 Machines

Machines specify behavioural properties of Event-B models. Machines may contain
variables, invariants, theorems, events, and variants. Variables v define the state of a
machine. They are constrained by invariants I(v). Possible state changes are described
by events. Each event is composed of a guard G(t, v) (the conjunction of one or more
predicates) and an action S(t, v), where t are the parameters of the event.1 The guard
states the necessary condition under which an event may occur, and the action describes
how the state variables evolve when the event occurs. An event can be represented by
the term “any t where G(t, v) then S(t, v) end”. We use the short form “when G(v)
then S(v) end” when the event does not have any parameters, and we write “begin S(v)
end” when, in addition, the event’s guard equals true. A dedicated event of the last form
is used for initialisation.

1 When referring to variables v and parameters t, we usually allow for multiple variables and
parameters, i.e., they may be “vectors”.

Event-B Decomposition for Parallel Programs 321

The action of an event is composed of one or more assignments of the form

x := E(t, v) (1)

x :∈ E(t, v) (2)

x :| Q(t, v, x′) , (3)

where x is a variable contained in v, E(t, v) is an expression, and Q(t, v, x′) is a pred-
icate. Assignments of the form (1) are deterministic, whereas the other two forms are
nondeterministic. In (2), x (which must be a single variable) is assigned an element of a
set. In (3), Q is a “before-after predicate”, which relates the values x (before the action)
and x′ (afterwards). (3) is the most general form of assignment and nondeterministi-
cally selects an after-state x′ satisfying Q and assigns it to x. Variables other than x are
unchanged by the above assignments. There is also a side condition on the action of
an event: the variables on the left-hand side of the assignments contained in the action
must be disjoint.

Proof obligations serve to verify certain properties of machines. We only describe the
proof obligation for invariant preservation. Formal definitions of all proof obligations
are given in [3]. Invariant preservation states that invariants hold whenever variables
change their values. Obviously, this does not hold a priori for any combination of events
and invariants and therefore must be proved. For each event and each invariant, we must
prove that the invariant is re-established after the event is carried out. More precisely,
under the assumption of the invariants and the event’s guard, we must prove that the
invariant still holds in any possible state after the event’s execution.

Similar proof obligations are associated with a machine’s initialisation event. The
only difference is that there is no assumption that the invariant holds. For brevity, we do
not treat initialisation differently from other events. The required modifications of the
associated proof obligations are straightforward.

2.2 Machine Refinement

Machine refinement provides a means to introduce details about the dynamic properties
of a model [6]. For more details on the theory of refinement, we refer to the Action
System formalism [7], which has inspired the development of Event-B. Here we sketch
some central proof obligations for machine refinement.

A machine CM can refine another machine AM . We call AM the abstract machine
and CM the concrete machine. The state of the abstract machine is related to the state
of the concrete machine by a gluing invariant J(v, w), where v are the variables of the
abstract machine and w are the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete events ec.
Let the abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (4)

ec =̂ any u where H(u, w) then T (u, w) end . (5)

Somewhat simplified, we say that ec refines ea if the guard of ec is stronger than the
guard of ea (guard strengthening), and the gluing invariant J(v, w) establishes a sim-
ulation of ec by ea (simulation). Proving guard strengthening just amounts to proving

322 T.S. Hoang and J.-R. Abrial

an implication. For simulation, we must prove that ec can be “simulated” by ea. More
precisely, under the assumption of the invariants and of the concrete guard H(u, w) we
must show that it is possible to choose a value for the abstract parameter t such that
the abstract guard holds and the gluing invariant J(v, w) is re-established. The possible
values for the abstract parameter are given as witness in ec with the keyword with.

In the course of refinement, new events are often introduced into a model. New events
must be proved to refine the implicit abstract event SKIP, which does nothing. Moreover,
it may be proved that new events do not collectively diverge. In other words, the new
events cannot take control forever and hence one of the old events eventually occurs.
We will not go into details for convergent proof obligation in this paper.

We have used the Rodin Tool [4] for our formal development. This is an industrial-
strength tool for creating and analysing Event-B models. It includes a proof-obligation
generator and support for interactive and semi-automated theorem proving.

2.3 Shared Variable Decomposition

The idea of decomposition is to split a large model into smaller sub-models which can
be handled more comfortably than the whole: one should be able to refine these sub-
models independently [2]. More precisely, if one starts from an initial (large) model,
say M, decomposition allows us to split this model into several sub-models M1 · · ·Mi.
These sub-models can then be refined independently yielding N1 · · ·Ni. The correctness
of the decomposition technique guarantees that the model N, obtained by re-composing
N1 · · ·Ni, is a refinement of the original model M. This process is illustrated in the
following diagram:

Decomposition Refinement Re-composition

M →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1 → N1

· · ·

Mi → Ni

⎫⎪⎪⎪⎬⎪⎪⎪⎭ → N

Generation of sub-models using shared variable decomposition: Given a model M
with events e1(a), e2(a, c), e3(b, c), e4(b),2 we would like to decompose M into two
separate models: M1 dealing with events e1 and e2; and M2 dealing with events e3 and
e4.

By giving the above event partition, we must also perform a variable distribution.
This distribution can be derived directly from the information about the partitioning of
events and the set of variables that they access. In our example, M1 must have variables
a and c, while M2 must have variables b and c. As a result, c becomes a shared variable
between the two models which cannot be data-refined. In contrast, the variables a and
b are private variables of M1 and M2 and can be data-refined by their corresponding
sub-refinements.

Moreover, in each sub-model, we need to have a number of external events to simu-
late how shared variables are handled in the non-decomposed model. These events are

2 Note that the variables appeared in brackets denote those that are accessed by these events,
e.g. appearing in guard or action of the corresponding event.

Event-B Decomposition for Parallel Programs 323

abstract versions of the corresponding internal events and use only the shared variables.
In our example, M1 will have an external event corresponding to e3 (beside the internal
events e1 and e2). Symmetrically, M2 will have an external event corresponding to e2.
Similar to shared variables, external events cannot be further refined.

We also present a practical construction of the external event given its original event.
This is illustrated below for an external event (ext)e2 in sub-model M2. Intuitively, this
event is the projection of the original event, i.e. e2, on the state of the sub-model M2.

e2

any t where
G(t, a, c)

then
a, c :| Q(t, a, c, a′, c′)

end

(ext)e2

any t, a where
G(t, a, c)

then
c :| ∃a′ ·Q(t, a, c, a′, c′)

end

3 Example: FindP Program

Our running example is a standard problem in the literature for parallel programs. The
purpose of the FindP program is to find the first index k of an array ARRAY that
satisfies some property P , if there is one. If this index does not exist, i.e. none of the
array elements satisfy P , the program returns M + 1, where M is the size of the array.

We are interested in the solution using two parallel processes to independently in-
vestigate the array that was given by Rosen [20]. The processes in the original program
works on the sets of even and odd indices separately. We present here a slightly gener-
alised version of it where the two processes work on any two different parts of the array,
denoted as PART 1 and PART 2, which cover the entire domain of the array, and are
not necessarily disjoint.

The main idea of each process is to independently evaluate the value of the array in
ascending order and to publish the first value that it finds. Moreover, from time to time,
a process looks at the value that is published by the other process in order to know if it
needs to continue the search or if it can terminate early.

The pseudo-code for the main program is given below. Here index1, index2 are the
two local indices, and publish1, publish2 are the published results of the processes.
In the end, when both processes terminate, the result taken is the minimum of the two
published results.

index1, index2 := min(PART1),min(PART2);
publish1, publish2 := M + 1, M + 1;
process1 || process2;
result := min({publish1, publish2})

The pseudo-code for each process (presented here process1) is as follows. Each
process needs to continue only if its local index is smaller than both published results
(as indicated by the guard of the loop). If this is the case, the process evaluates the
value of the array at the current index and performs appropriate actions: publishing the
current index or moving to the next index, if possible.

while index1 < min({publish1, publish2}) do
if ARRAY (index1) = TRUE then publish1 := index1
else index1 := the-next-index-in-PART1-or-M+1 end

end

324 T.S. Hoang and J.-R. Abrial

The key interaction between the two processes appears in the guard of the loop. Here
the guard of process1 refers to the published result of process2, which in the mean-
time could be modified. In other words, process1 needs to read the published value of
process2 into some local variable before making the comparison using this local vari-
able. The unfolded version of the process1 is as follows. Our formal development in
later sections is guided towards this version of the processes.

1 : (read) read1 := publish2;
2 : if index1 < min({publish1, read1}) then

if ARRAY (index1) = TRUE then
(found) publish1 := index1; goto 3;

else
(inc) index1 := the-next-index-in-PART1-or-M+1; goto 1;

end
else

(not found) goto 3
end

3 : (end)

Here we make some assumptions on the atomicity. They are similar to the atomicity
assumptions made by Abrial/Cansell [5].

– We have a number of shared variables (e.g. the published values). They are the
variables that are written by one process and read by the other process. They are
the shared variable with respect to the read process.

– We have a number of local variables (e.g. the local indices).
– The events involving only local tests and actions can be performed concurrently.
– There is an elementary atomic action for reading the value of a shared variable into

a local variables, e.g. local variable := shared variable.
– We extend the above atomic action to contain possible local test and local action.

when local test then
local variable := shared variable
local action

end

Different atomicity assumptions will lead to different unfolded versions of our program
here. But this will not effect the applicability of our approach.

4 Formal Development

The machine-checked version of the development can be found on the web3. We first
present our strategy for developing this program as follows.

Initial model specifies the result of the algorithm directly.
First refinement introduces the local indices of processes.
Decomposition step splits the model into sub-models corresponding to different pro-

cesses: main, process1, process2.

We continue with further refinement steps for process1 (process2 should be devel-
oped in symmetrical fashion). Futher development of the main process is straightfor-
ward and is not of our interest here.

3 URL: http://deploy-eprints.ecs.soton.ac.uk/154/

http://deploy-eprints.ecs.soton.ac.uk/154/

Event-B Decomposition for Parallel Programs 325

First sub-refinement introduces the local index of the process.
Second sub-refinement introduces the read value of the process.
Third sub-refinement introduces the address counter for scheduling of events.

4.1 Initial Context and Model

The context defines an array of Booleans representing our abstract view.

constants: ARRAY, M
axioms:

axm0 1 : M ∈ N1
axm0 2 : ARRAY ∈ 1 .. M → BOOL

The initial model contains only one integer variable called result . There is only one
event final (beside the initialisation) to specify the result of the program in-one-shot.
The aim of the program is encoded in the guard as constraints for parameter k .

final
any k where

k ∈ 1 .. M + 1
∀j ·j ∈ 1 .. k − 1⇒ ARRAY (j) = FALSE
k �= M + 1⇒ ARRAY (k) = TRUE

then
result := k

end

4.2 First Refinement

The first refinement introduces the idea of using two processes. Here the context needs
to be extended to include the notion of two different non-empty parts of the array.

constants: PART1, PART2
axioms:

axm1 1 : PART1 ∪ PART2 = 1 .. M
axm1 2 : PART1 �= ∅ ∧ PART2 �= ∅

At this point, the necessary information about the two sub-processes in order to ob-
tain the final result of the program is whether or not they already terminate and the pub-
lished results of the two processes. They are represented by a pair of variables, namely
finish1 and publish1 (respectively finish2 and publish2) for process1 (respectively
process2). Initially finish1 (respectively finish2) is given the value FALSE, i.e. the
process has not yet terminated; and publish1 (respectively publish2) is assigned the
value M + 1, i.e. the process has not yet found a result.

We first look at the refinement of the final event with the new set of variables. This
event is carried out when the two processes have finished and the result taken is just the
minimum of the two published values.

final
refines final
when

finish1 = TRUE ∧ finish2 = TRUE
with

k = min({publish1, publish2}
then

result := min({publish1, publish2})
end

326 T.S. Hoang and J.-R. Abrial

In order to prove the refinement of the final event with respect to its abstract version,
we need to give a witness for the disappearing parameter k of the abstraction. Here the
parameter k is exactly the minimum of the two published values. Given the witness, the
simulation proof obligation becomes trivial since both the abstract and concrete events
assign equivalent expressions to the variable result .

We still need to prove guard strengthening. This requires us to give some invari-
ants for the newly introduced variables. The invariants are symmetric for process1 and
process2, hence we only give the five invariants associated with process1 here.

invariants:
inv1 1 publish1 �= M + 1⇒ finish1 = TRUE
inv1 2 publish1 �= M + 1⇒ publish1 ∈ PART1
inv1 3 publish1 �= M + 1⇒ARRAY (publish1) = TRUE
inv1 4 publish1 �= M + 1⇒ (∀i·i ∈ PART1 ∧ i < publish1⇒ARRAY (i) = FALSE)
inv1 5 finish1 = TRUE ∧ publish1 = M + 1⇒

(∀i·i ∈ PART1 ∧ i < publish2⇒ARRAY (i) = FALSE)

inv1 1 states that if process1 has published some result then it must have terminated.
This also means the process can publish at most once.

inv1 2–inv1 4 states that process1 cannot lie: if it publishes some result then this must
be the smallest index that it can find within PART 1.

inv1 5 states that in the case where process1 terminates without publishing any val-
ues, it has given up because it cannot find any better result than the other process
process2. The two possibilities for process1 to terminate are:

– it has searched all the indices in PART 1 and did not find any result, or
– it looks at the published value of the process2 and knows that it cannot find a

better (smaller) result.
In both situations, the invariant holds trivially.

We now abstractly construct the events to model the effect of the two processes on
the new variables. These events correspond to the two cases in which a process can
terminate. Here, we consider the events corresponding to process1 only.

The first case is when process1 finds a result within PART 1 and terminates. Here
publish1 = M + 1 is a theorem, which is the consequence of the first guard finish1 =
FALSE and invariant inv1 1. The other case is when process1 terminates without
publishing any value.

found 1
any k where

finish1 = FALSE
k ∈ PART1
ARRAY (k) = TRUE
∀i·i ∈ PART1 ∧ i < k⇒ARRAY (i) = FALSE
publish1 = M + 1

then
finish1, publish1 := TRUE, k

end

not found 1
when

finish1 = FALSE
∀i·i ∈ PART1 ∧ i < publish2⇒

ARRAY (i) = FALSE
then

finish1 := TRUE
end

4.3 Decomposition

In the previous refinement step, we introduced the interface of the processes, i.e. the
shared variables and events describing how these variables can be changed, which guar-
antees the correctness of the program. At this point, we want to develop in details each

Event-B Decomposition for Parallel Programs 327

process independently. We apply the technique of decomposition (shared variable) as
described earlier in Section 2.3. There will be three different processes: main (final),
process1 (found1, not found1) and process2 (found2, not found2).

As a result, we have three different sub-models, one for each process. Amongst these
sub-models, the development main is straightforward and is not of our interest here.
We concentrate on the sub-model for process1 (process2 is symmetric).

The sub-model for process1 contains three shared variables: finish1 , publish1 and
publish2 and no private variables. This process does not refer to either result (the global
result) or finish2 (if the other process has finish or not). According to the event distribu-
tion, this model of process1 has two internal events, namely found 1 and not found 1,
which are the exact copy of the original events. The other events become external which
need to be generated as follows. We present the original events on the left and the cor-
responding external events for process1 on the right.

final
when

finish1 = TRUE
finish2 = TRUE

then
result := min({publish1, publish2})

end

(ext)final
any finish2 where

finish1 = TRUE
finish2 = TRUE

then
SKIP

end

found 2
any k where

finish2 = FALSE
k ∈ PART2
ARRAY (k) = TRUE
∀i·i ∈ PART2 ∧ i < k⇒

ARRAY (i) = FALSE
publish2 = M + 1

then
finish2, publish2 := TRUE, k

end

(ext)found 2
any k, finish2 where

finish2 = FALSE
k ∈ PART2
ARRAY (k) = TRUE
∀i·i ∈ PART2 ∧ i < k⇒

ARRAY (i) = FALSE
publish2 = M + 1

then
publish2 := k

end

not found 2
when

finish2 = FALSE
∀i·i ∈ PART1 ∧ i < publish2⇒

ARRAY (i) = FALSE
then

finish2 = TRUE
end

(ext)not found 2
any finish2 where

finish2 = FALSE
∀i·i ∈ PART1 ∧ i < publish2⇒

ARRAY (i) = FALSE
then

SKIP

end

4.4 Further (sub-)refinements

In this section, we present the sketch of the further development of process1. The re-
finement steps are all typical super-position refinement where more details about the
actual process are introduce at each step as mention early in the start of Section 4. We
do not present in detail the proofs of the correctness of the refinement steps here.

Introducing the local index: In the first sub-refinement for process1, we introduce
the index that the process is currently checking. This is represented by the new variable
index1 . The following invariants state that this process investigates only the part of the
array belongs to PART 1 in ascending order and it cannot skip any index.

328 T.S. Hoang and J.-R. Abrial

invariants:
inv2 1 index1 �= M + 1⇒ index1 ∈ PART1
inv2 2 ∀k·k ∈ PART1 ∧ k < index1⇒ARRAY (k) = FALSE

The internal event not found 1 is unchanged. It trivially maintains the new invari-
ants since it only modifies variable finish1 . The same applies to external events, i.e.
(ext)final, (ext)found 2, (ext)not found 2 (which are always unchanged during re-
finement), since they do not refer to variable index1.

We now refine the internal event found 1 to use index1: We also introduce a new
event inc 1 to model the case where the value at the current index is FALSE and hence
process1 moves to the next index.

found 1
refines found 1
when

finish1 = FALSE
index1 �= M + 1
ARRAY (index1) = TRUE

with
k = index1

then
finish1, publish1 := TRUE, index1

end

inc 1
any i where

ARRAY (index1) = FALSE
i �= M + 1⇒ i ∈ PART1
index1 < i
∀j ·j ∈ PART1 ∧ index1 < j⇒ i ≤ j

then
index1 := i

end

For event found 1, the information from the witness k = index1 and the two in-
variants declared above guarantees that this is a correct refinement of the abstract event.
For event inc 1, the parameter i is the smallest index in PART 1 that is greater than
index1, or M + 1 if such an index does not exist. The proof that this event maintains
the invariants is intuitive and can be found in our technical report [12].

Introduce the read value: In this refinement, we introduce the read value of pro-
cess represented by variable read1 . The constraint for this variable is expressed by
invariant inv3 1: its value is either M + 1 or the published value of the other process,
i.e. publish2. A new event read 1 is introduced to model the situation when process1
reads the published value of process2. This event sets the value of read1 to publish2
and hence clearly maintains the invariant inv3 1.

invariants:
inv3 1 read1 �= M + 1⇒ read1 = publish2

read1
begin

read1 := publish2
end

The only change to event inc1 is two extra guards: index1 < read1 and index1 <
publish1. Since this event does not change variables read1 and publish2 , it preserves
the invariant inv3 1 trivially.

The event found 1 is refined by replacing the guard index1 �= M + 1 with the
following two guards: index1 < read1 and index1 < publish1. Since both publish1
is either M + 1 or belongs to PART 1, publish1 is no greater than M + 1. Together
with the guard index1 < publish1, index1 is strictly smaller than M + 1. Hence the
proof obligation for guard strengthening holds trivially.

We refine the remaining internal event not found 1 by replacing the guard ∀i·i ∈
PART 1∧i < publish2⇒ARRAY (i)=FALSE with index1 < read1⇒publish1 �=

Event-B Decomposition for Parallel Programs 329

M + 1. We do not go into detail of the proof why this is a correct guard strengthening,
but refer the readers to our technical report [12].

For the external events, even though they are not refined, we must prove that they
maintain the invariant inv3 1. In this case, we must consider those events that modify
variable publish2 . In our development, this is event (ext)found 2. The important part
for our proof in this event is the theorem in the guard, i.e. publish2 = M + 1, and the
action publish2 := k. According to the action, we have to prove that read1 �= M +1⇒
read1 = k, under the assumption of the invariants and the guards. From the theorem in
guard publish2 = M + 1 and invariant inv3 1, we have read1 = M + 1 (since if it is
not, then we have publish2 = read1 �= M + 1). Hence read1 �= M + 1⇒ read1 = k
holds trivially.

Introduce the address counter: In this last sub-refinement of process1 we introduce
the address counter in order to obtain the unfolded program as described in Section 3.
The resulting internal events (with some refinement for guards) are as follows. These
events conform with the notion of atomicity mentioned earlier.

read1
when

address1 = 1
then

address1, read1 := 2, publish2
end

not found 1
when

address1 = 2
¬(index1 < min({publish1, read1}))

then
address1, finish1 := 3, TRUE

end

found 1
when

address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = TRUE

then
address1 := 3
finish1 := TRUE
publish1 := index1

end

inc 1
any i where

address1 = 2
index1 < min({publish1, read1})
ARRAY (index1) = FALSE
i �= M + 1⇒ i ∈ PART1
index1 < i
∀j ·j ∈ PART1 ∧ index1 < j⇒ i ≤ j

then
address1, index1 := 1, i

end

4.5 Proof Statistics

The proof statistics for the development is in the table below. We only take into account
the number of obligations for sub-refinement models once, since the refinements for
both process process1 and process2 are symmetric. We can use techniques such as
pattern or generic instantiation in order to reuse the sub-development without reproving
again. In the table, 50% of the proof obligations are in the model before decompos-
ing. This indicates that this refinement is the most important and difficult step in our
approach.

Model Number POs Auto.(%) Manual (%)
Initial context 0 0 (N/A) 0 (N/A)
Initial model 3 3 (100%) 0 (0%)
First extended context 0 0 (N/A) 0 (N/A)
First refinement 46 44 (96%) 2 (4%)
First sub-refinement 14 10 (71%) 4 (29%)
Second sub-refinement 6 5 (83%) 1 (17%)
Third sub-refinement 22 16 (73%) 6 (27%)
Total 91 78 (86%) 13 (14%)

330 T.S. Hoang and J.-R. Abrial

5 Related Work and Conclusion

5.1 Related Work

The problem of verifying the FindP program has been tackled using different methods,
notably using Owicki/Gries’ interference-free [19] and Jones’ rely/guarantee approach
[14,15]. Moreover, the FindP program has been used as an illustrated example for the
formalisation of these two approaches in Isabelle/HOL [18].

The work of Owicki/Gries [19] extends Hoare’s deductive system for sequential pro-
grams [13] in order to prove the correctness of parallel programs. Their proofs of cor-
rectness for parallel statements centre around the notion of interference-free which is
defined as follows. Given a proof of Hoare’s triple {P} S {Q} and a statement T with
precondition pre(T), T does not interfere with {P} S {Q} if

InfFree1 {Q ∧ pre(T)} T {Q}, i.e. T maintains the post-condition Q, and
InfFree2 for any sub-statement S′ of S, {pre(S′) ∧ pre(T)} T {pre(S′)}.

Within our approach, the above two conditions are verified during the development
of the model at various refinement levels. At the abstract level before decomposition, S
and T are some events of the models and the post-condition Q are just some invariants.
For example, S are events belonging to process1, T are events belonging to process2,
and Q are the invariants that state the outcome of process1, e.g. inv1 1–inv1 5. We
have to prove that these invariants are maintained by any events T and this corresponds
to condition InfFree1.

Furthermore, during the sub-refinement of a process, sub-statements S′ of S are
introduced. At the same time, new invariants are added and these invariants correspond
to the preconditions pre(S′) in the proof of {P}S {Q} using Hoare’s deductive system.
Hence the condition InfFree2 is verified by proving that events T (now external events)
maintain the new invariants.

This is not too surprising, since in our approach, the role of external events is to keep
track of the information about the possible changes on shared variables by different
processes. During the refinement of a sub-process, we need to take into account the ef-
fect of these external events so that they do not “interfere” with the development of this
sub-process. The main advantage of our approach over the work from Owicki/Gries is
that these external events are at the abstract level rather than concrete statements as de-
fined in the interference-free conditions. This reduces the complexity of the verification
process.

Compared to the Owicki/Gries approach, our method is closer to the rely/guarantee
approach of Jones [14]. The approach extends the notion of Hoare’s triple {P} S {Q}
to encode the rely condition R and guarantee condition G. By definition, a condition
{P, R} S {G, Q} is satisfied by S if: under the assumptions that S starts in state satisfies
the precondition P , and any external transition satisfies the rely condition R; then S
ensures that any internal transition of S satisfies the guarantee condition G, and if S
terminates then the final state satisfies postcondition Q.

Event-B Decomposition for Parallel Programs 331

We focus on an example rule for parallel composition.

PAR-I

R ∨G1⇒R2 (RG1)
R ∨G2⇒R1 (RG2)
G1 ∨G2⇒ G (RG3)
{P, R1}S1{G1, Q1} (RG4)
{P, R2}S2{G2, Q2} (RG5)

{P, R} S1 || S2 {G, Q1 ∧Q2}

The rule is interpreted as follows. Statement S1 || S2 satisfies {P, R} S1 || S2 {G, Q1∧
Q2} if the following conditions are met. Firstly, both “global” rely condition R and
the guarantee condition of one statement ensure the rely condition of the other (RG1
and RG2). Secondly, both guarantee conditions of the two statements ensure the global
guarantee condition G (RG3). Lastly, S1 and S2 independently satisfy their correspond-
ing rely/guarantee condition (RG4 and RG5)

Note that both rely and guarantee conditions are relations over two states. They
are indeed similar to events in Event-B which correspond to a relations over pre-
/post-states. Moreover, the implication between rely/guarantee conditions is the same
as event refinement. Within our approach, a pair of internal/external events encodes
rely/guarantee conditions where the rely condition corresponds to the external event
and the guarantee condition corresponds to the internal event. The generation of exter-
nal events guarantees that they are the abstractions of the corresponding internal events.
In fact, our generation of sub-models as described in Section 2.3 guarantees that the
resulting sub-models satisfy the parallel composition rule. This is the advantage of our
approach over the rely/guarantee method. In fact the external events are the strongest
possible condition that the other process can rely on. In practise, the rely/guarantee
conditions could be more abstract, e.g. requires only that the value of some variables
decrease monotonically [16]. Moreover, rely/guarantee is usually used for composition
rather than decomposition as in [1].

The decomposition technique also appears in many other approaches, with similar
intuition: Breaking a specification into smaller pieces and reasoning about them inde-
pendently. For example, in the work of Abadi/Lamport [1], this is captured by their De-
composition Theorem and a generalised version of it. The most important idea in their
approach is to find some properties E (also called environment) of the other processes
assumed by a process. However, in another study, Lamport claimed that decomposition
might not be that useful [17]. One of the argument is the difficulty in inventing the
environment properties and checking the hypotheses of the decomposition theorem. In
our approach, we derive these properties from the overall purpose of the program using
refinement (step 2 of our approach). This is also the reason why we consider the class
of parallel programs that achieve some intended result.

Stepwise refinement has been considered for developing parallel systems in Action
System in early work of Back/Sere [8,9]. The shared variable decomposition in Event-B
corresponds to their notion of concurrent action system (in contrast to distributed action
system with shared actions). However, the approach presented in [8] based on the notion
of refining atomicity introduces the notion of parallelism quite late in the development
(almost as the last step of the refinement chain). The reason for this delay is that the
decision for implementing the system as concurrent action system or distributed action
system can be made as late as possible. In our example, we have this decision of using

332 T.S. Hoang and J.-R. Abrial

shared variables in advance. Hence we can take the advantage of having the decompo-
sition early to reduce the complexity. We consider the use of shared variables as a part
of the design process of the program rather than an implementation detail.

5.2 Conclusion

We have presented a method for developing parallel programs using refinement and de-
composition techniques. Refinement gives us the possibility to abstractly define the aim
of the programs which helps us to understand the purpose of these programs. Decompo-
sition allows us to reduce the complexity of the development by separately developing
sub-processes while keeping track of minimum information on what other processes
can do. Our approach should be applicable to all programs that use several parallel
processes in order to obtain a certain goal.

Our approach introduces the possible interaction between processes early in the de-
velopment in order to take the advantage of decomposition. This is different from the
approach where one develops processes according to the implementation of the process
with possible cheating (e.g. one process directly looks into the value of the other pro-
cess), and subsequently refines the model until there is no more cheating. This approach
has been proposed in [3] and is used in many other examples. Applying this approach
without using decomposition, the two processes are developed together, and hence the
development also has higher complexity comparing to our approach.

The key aspect of our development using decomposition lies in the model that is
being decomposed, where we have to abstractly specify the effect of the two future
processes on shared variables. We use the overall intended result of the program to help
us to derive the requirement on the future processes. Furthermore, as a result of using
step-wise refinement, we can develop sub-processes using different implementations as
long as they satisfy the abstraction. As an example, we can also “implement” the two
processes (inefficiently) by not checking the published values of the other processes or
having more fine-grained version of atomicity.

For future work, we would like to apply our method to other standard parallel pro-
grams (not necessarily ones with intended final result) known from literature, such as
“bounded buffer”, “partition of set” or “bubble-lattice sort”, which have been studied
using other approaches [10]. Our approach should not only be used for verification a
posteriori but also for finding proofs of correctness for such systems.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Prog. Lang. Syst. (1995)
2. Abrial, J.-R.: Event model decomposition. Technical Report 626, ETH Zurich (May 2009)
3. Abrial, J.-R.: Modeling in Event-B: System and Software Design. CUP (2009) (to appear)
4. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for

Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

5. Abrial, J.-R., Cansell, D.: Formal construction of a non-blocking concurrent queue algorithm
(a case study in atomicity). J. UCS (2005)

Event-B Decomposition for Parallel Programs 333

6. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of discrete mod-
els: Application to Event-B. Fundamentae Informatica (2006)

7. Back, R.-J.: Refinement calculus, part II: Parallel and reactive programs. In: de Bakker, J.W.,
de Roever, W.P., Rozenberg, G. (eds.) REX Workshop, pp. 67–93 (1989)

8. Back, R.-J., Sere, K.: Stepwise refinement of parallel algorithms. Sci. Comp. Prog. (1989)
9. Back, R.-J., Sere, K.: Superposition refinement of parallel algorithms. In: FORTE (1991)

10. Barringer, H.: A Survey of Verification Techniques for Parallel Programs. LNCS, vol. 191.
Springer, Heidelberg (1985)

11. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,
J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge Tracts in Theoretical Computer Science. CUP (2001)

12. Hoang, T.S.: Event-B development of the FindP program. Technical Report 653, ETH Zurich
(November 2009)

13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM (1969)
14. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM

Trans. Program. Lang. Syst. (1983)
15. Jones, C.B.: The role of proof obligations in software design. In: Ehrig, H., Floyd, C., Nivat,

M., Thatcher, J. (eds.) TAPSOFT 1985 and CSE 1985. LNCS, vol. 186. Springer, Heidelberg
(1985)

16. Jones, C.B.: Splitting atoms safely. Theor. Comput. Sci. (2007)
17. Lamport, L.: Composition: A way to make proofs harder. In: de Roever, W.-P., Langmaack,

H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, p. 402. Springer, Heidelberg (1998)
18. Prensa Nieto, L.: Verification of Parallel Programs with the Owicki-Gries and Rely-

Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München (2001)
19. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Inf. (1976)
20. Rosen, B.K.: Correctness of parallel programs: The Church-Rosser approach. Theor. Com-

put. Sci. (1976)

Communication Systems in ClawZ

Michael Vernon1, Frank Zeyda2, and Ana Cavalcanti2

1 QinetiQ, Cody Technology Park, Farnborough, Hampshire, GU14 0LX, U.K.
mrvernon1@qinetiq.com

2 University of York, York, YO10 5DD, U.K.
{zeyda,ana}@cs.york.ac.uk

Abstract. We investigate the use of ClawZ, a suite of tools for the ver-
ification of implementations of control laws, to construct formal models
for control systems in the area of communications and signal-processing
intensive applications. Whereas ClawZ has been successfully applied to
verify control components in avionic systems, special requirements need
to be identified and addressed to extend its use to the aforementioned ap-
plication domain. This gives rise to several extensions, which we explain
and subsequently validate by constructing the Z model of a software-
defined radio communication device. The experience reported provides
insight into general issues surrounding the use and extension of ClawZ.

Keywords: control laws, signal processing, formal models, Z, Simulink.

1 Introduction

Control law diagrams are a graphical notation widely used by engineers to spec-
ify the behaviour of control systems. In industry, the commercial tool Simulink
by MathWorks [11] is a de-facto standard for the design of control diagrams.
Roughly speaking, control diagrams consist of blocks that carry out elementary
functions, and wires that transmit data values between those blocks. Diagrams
communicate with the environment through designated input and output port
blocks. They may also exhibit structure in which the functionality of basic blocks
may itself be described by virtue of lower-level diagrams. Additionally, Simulink
provides a comprehensive library of blocks and supplementary toolboxes to sup-
port the specification of control systems for particular application domains.

Here, a formal approach to verification of implementations of diagrams is
advocated. If we cannot rely on automatic code generators to ensure correctness,
for instance, because code has to be optimised, the ClawZ suite of tools [4,2] can
be used to construct a proof of the correctness of an Ada implementation. ClawZ
is a highly automated set of utilities for use in industrial-scale projects.

Software-defined radios have recently gained popularity [10]; they perform
most of their signal-processing operations in software, for instance, on a personal
computer or DSP. This allows them to support simultaneously many communica-
tion standards, each requiring specific demodulation and decoding techniques, in
a single integrated piece of hardware [8]. Their potential use in the military sector
and other safety-critical areas highlights the need for formal verification [6].

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 334–348, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Communication Systems in ClawZ 335

Although ClawZ provides flexible mechanisms to configure and extend it for
use with a wider class of diagrams, it lacks support for control laws that are
typically found in the design of signal-processing and radio communication de-
vices. These diagrams differ from others in that they require support for complex
number arithmetics. Simulink is oblivious to this distinction due to the effective
polymorphism of block behaviours, but the formal model needs to reflect the
difference. Similarly, ClawZ does not support matrices as signal types.

A second problem is that many blocks commonly found in signal-processing
models, such as filters, modulators, Fourier transformers, and so on, are not part
of the library of translatable blocks in ClawZ. Extending this library requires Z
models to be developed for the blocks according to their function.

Here we report on work that realises the above enhancements, validates them
in the context of a software-defined radio case study, and thereby provides evi-
dence that it is possible to use ClawZ for generating formal models for this class
of diagrams. This widens the applicability of ClawZ, and sheds light into a few
issues of the ClawZ approach to building Z models, which imposes limitations
on automation, namely due to insensitivity to signal types.

In Section 2 we provide further details on ClawZ and identify requirements for
using it for signal-processing control systems. Section 3 discusses our extensions
of ClawZ; Section 4 validates them using our case study. Finally in Section 5 we
draw our conclusions and suggest future work.

2 Preliminaries

After providing an overview of ClawZ in Section 2.1, we discuss the main features
of communication control systems in Section 2.2.

2.1 ClawZ

The ClawZ verification process involves the construction of a Z model for a
Simulink diagram acting as a specification of behaviour to which an implement-
ing Ada code has to adhere. ProofPower-Z [1,3], a theorem prover for Z based
on higher-order logic (HOL), is used for mechanical proof. Correctness is es-
tablished by an embedding of the refinement calculus into ProofPower-Z. It has
been successfully used in industry, with a measured cost reduction of 20% in the
certification of avionics systems. The fact that it can be adapted to other areas,
and that the same high level of automation can be achieved by programming of
proof tactics, makes this approach very attractive.

The ClawZ tools are bespoke and automated, tailored for engineers without
in-depth knowledge of formal specification and proof. The tool that carries out
the translation of diagrams into Z specifications is the Z Producer. To illustrate
its approach, we consider the diagram consisting of a Sum and Product block in
Fig. 1. The main schema in the specification generated for this diagram is also in
Fig. 1. It introduces components for the input and output ports of the diagram,
namely In1?, In2?, In3? and Out1!; port variables are obtained by suffixing

336 M. Vernon, F. Zeyda, and A. Cavalcanti

Out1
1

Sum 1
Product 1

In3
3

In2
2

In1
1

Diagram
In1?, In2?, In3?, Out1! : U;
Product1 : Diagram Product1;
Sum1 : Diagram Sum1

Sum1.In1? = In1? ∧
Sum1.In2? = In2? ∧
Product1.In1? = Sum1.Out1! ∧
Product1.In2? = In3? ∧
Out1! = Product1.Out1!

Fig. 1. Simple Simulink diagram consisting of two blocks

In and Out with the port number. The schema also includes components that
characterise the behaviour of the blocks.

Whereas the Product1 and Sum1 components represent particular instances
of the Product and Sum blocks, Diagram Product1 and Diagram Sum1 are
schema types that encapsulate the behaviours of these blocks. Upon translation
these types are introduced by associating them with suitable block definitions
in the ClawZ block library. The library is contained in a separate ProofPower-Z
theory acting as a carrier to hold those definitions. ProofPower theories are in
essence collections of type definitions, constants, defining axioms and theorems.

The type Diagram Product1, for example, is defined as Product M 2 where
Product M 2 is the block schema specified in the library. Its definition is given
below and follows the same conventions on port names.

Product M 2
In1?, In2?,Out1! : R

Out1! = In1? ∗R In2?

Above, the types of the ports are explicitly given, whereas in Diagram they
are unspecified; U acts as a generic type to be inferred by the typechecker. The
equations in the predicate of Diagram such as Product1.In1? = Sum1.Out1!
encode the wiring of blocks: each connecting wire results in one equality.

Block specifications may be functions yielding schemas too. This allows models
to be parameterised by arguments set for the block inside Simulink. For example,
the initial output of a unit delay block, which delays a signal by one cycle of the
control system, is a parameter of its model in the library: a function from U to
the schema type representing the block.

The Simulink diagrams to be translated by the Z Producer can be arbitrarily
structured. For example, the diagram in Fig. 1 could itself appear as a block
in a higher-level model. In this case Diagram would act in turn as a schema
type for the aggregated component representing that block. ClawZ also includes
additional schemas in the model that specify the behaviour of blocks for reset and
hold cycles, that is when the signal value is either reset to some initial value, or
simply retained. Finally, an additional feature allows certain simple block models
to be constructed on-the-fly rather than imported from the library.

Communication Systems in ClawZ 337

The above only considers a simple example but in essence illustrates how the
generation of Z models is carried out. A crucial aspect is that it is realised auto-
matically, mostly as a syntactic transformation from the Simulink MDL file that
gives the textual description of a diagram to the respective ProofPower-Z theory
source file. This surfaces, for example, in that the types of port components in
the Diagram schema are given as U due to no type information for signals being
available that could otherwise be exploited to specify exact types.

2.2 Signal-Processing Features

The following techniques are particularly relevant for signal-processing models.
Their support in ClawZ is the primary objective of our work. Communication
devices heavily rely on them, but they are also relevant for the many applications
that require digital image and sound processing or data compression.

Filtering: Filtering in essence allows to shape signals by amplifying frequencies
within desired ranges while suppressing others considered as noise or irrelevant.
It is a fundamental operation within many signal-processing algorithms to ex-
tract information from signals and prepare them for further processing. The
theory of digital filters is well-developed; basic classifications are Finite Impulse
Response (FIR) filters and Infinite Impulse Response (IIR) filters. Filters are
usually characterised by their dimension and filter coefficients. Such can either
be specified statically, or, in adaptive filters, adjusted dynamically according to
the minimisation of the error between a desired and actual signal.

Modulation: Modulation is used, for instance, to transfer binary data over ana-
log passband channels, and is geared towards the capabilities and characteristics
of the channel to maximise the amount of information transmitted. Modulation
is usually carried out before information is transmitted through a channel, and
demodulation, its inverse, to retrieve the information upon reception.

Various approaches to modulation exist such as Quadrature Amplitude Mod-
ulation (QAM), Phase-Shift Keying (PSK), Frequency-Shift Keying (FSK), and
others. Modulation gives rise to signals being interpreted in the complex number
plane; an essential aspect for their support is hence complex arithmetics.

Encoders / Decoders: The encoding of signals has the dual purpose of adding
redundancy for error detection and correction, and encrypting signals that carry
sensitive information, for example in military communication devices. It is usu-
ally carried out prior to modulation. An example we considered is the Trellis
encoding of digital signals which is based on convolution codes. Those codes are
frequently used in digital radio applications because of their favourable prop-
erties approaching theoretical limits for the amount of information that they
transport through a lossy channel.

Fourier Transformation: Fourier-transformation is a final operation of inter-
est, playing an important part in analysing and compressing signals, for exam-
ple in image or speech processing applications. Again, the Fourier-transform of

338 M. Vernon, F. Zeyda, and A. Cavalcanti

a real-valued signal is usually a complex function where phase and amplitude
encode amplification and phase-shift of respective frequencies. Again this makes
the support for complex numbers and their operators imperative.

3 Extension of ClawZ

In this section we explain in more detail how we extend ClawZ to support the
signal-processing features that were outlined in the previous section. For this
we first discuss the support for additional data types like complex numbers and
matrices, and then report on additions made to the ClawZ block library.

3.1 Addition of Data Types

The subset of the Simulink notation that can be handled (modelled in Z) us-
ing ClawZ only admits scalars (of type real), and vectors (of type real). In
communication-related control laws we often require to operate on scalars, vec-
tors and matrices of complex numbers. They are used, for example, to encode
the amplitude and phase of signals in the frequency domain as they occur in
Fourier transforms or demodulation of signals. This suggested two fundamental
extensions to the ClawZ tools: one is to deal with complex numbers as such, and
another is to support complex vectors and matrices as data values being passed
between the blocks of a Simulink diagram.

For integrating these extensions it makes sense to distinguish between two
independent concerns: firstly to formalise them in the logic of the underlying
theorem prover, ProofPower-Z, and secondly to extend the Z Producer to handle
the new types in the translation of Simulink diagrams into formal Z models.
There exists no comprehensive embedding of complex numbers in ProofPower-Z
to our knowledge, however, a case study is available on the ProofPower web-pages
that illustrates such an extension in principle; we pursue a similar approach being
described in what follows. The complete set of definitions can be found in Ver-
non’s MMath thesis [14], and the ProofPower-Z theory source is made available
for download at http://www.cs.york.ac.uk/circus/tp/tools.html.

To formalise complex numbers we introduce a new axiomatic constant C as the
set of tuples of real numbers: C =̂ R×R. This set acts as the type used for complex
numbers. The first component represents the real part of the number, and the
second, the imaginary part. ProofPower-Z supports real-number arithmetics by
means of a collection of relations and functions that operate on elements of
R such as +R, ∗R, ≤R, and so on. The subscript highlights what type of value
these functions expect, and a repository of axioms and derived theorems permits
reasoning about formulae involving the operators. Similarly, we introduce a set
of function definitions that operate on elements of C.

Most of the axioms for operators directly correspond to familiar textbook
definitions of those operators. For example, the following Z axiomatic definition
introduces multiplication of complex numbers.

http://www.cs.york.ac.uk/circus/tp/tools.html

Communication Systems in ClawZ 339

∗C : C × C → C

∀ z ,w : C • z ∗C w = (z .1 ∗R w .1 −R z .2 ∗R w .2, z .1 ∗R w .2 +R z .2 ∗R w .1)

The dot operator selects the components of a tuple. For lack of space we will not
further discuss the remaining operators but point to [14] for their definitions.

Vectors of complex numbers are characterised by sequences over C being sim-
ilar to how ClawZ encodes vectors of real numbers in the Z model of diagrams.
Again, a collection of useful operators is defined, for instance, to calculate the
scalar product and the sum of vectors. Complex matrices, on the other hand, we
characterise by sequences of sequences over elements from C; each inner sequence
represents one row of the matrix. It shall be noted that other characterisations
are conceivable too, but at present we have no conclusive evidence to favour one
over another. The following set introduces the matrix type formally in Z.

MC =̂ {m : seq1 (seq1 C) | ∀ i , j : 1..(#m) • #m(i) = #m(j)}
A requirement here is that the inner sequences must all have the same length. We
also exclude the limit case of zero-dimensional matrices by confining ourselves
to non-empty sequences; in practice there is no need for such matrices.

As with vectors, there exists a number of specific operations applicable to ma-
trices. The following definition, for instance, introduces multiplication of complex
matrices. The number of columns of the first matrix #A(1) must be equal to
the number of rows of the second matrix #B to apply the operator.

∗MC : MC × MC �→ MC

dom (∗MC) = {A,B : MC | #A(1) = #B} ∧
(∀A,B : MC | #A(1) = #B •

A ∗MC B = {m : 1..(#A) • m �→ {n : 1..(#B(1)) •
n �→ SumSeqC ({k : 1..(#A(1)) • k �→ A(m)(k) ∗C B(k)(n)})}})

Multiplication is carried out according to the rule Cmn =
∑K

k=1 Amk ∗Bkn where
m ranges over the rows of A, and n over the columns of B . The function SumSeqC

is introduced to calculate the sum of the elements of a complex sequence.
Other operators that have been formalised include matrix addition, transpo-

sition, complex-conjugate, and functions to extract the real and imaginary part
of complex matrices. We also provided operators for scalar multiplication as well
as multiplication of matrices with (complex) vectors of the correct size.

ClawZ Integration: Whereas the formalisation of complex arithmetics and
matrix algebra is not a difficult problem per se, more challenging proves to in-
corporate the new types and operators into the generation of Z models from di-
agrams. As previously mentioned the translation carried out by ClawZ is mostly
a syntactic transformation process in that it does not utilise information about
signal types; type information for signals is neither inferred nor exploited. (To
be accurate, there are situations where signal types are taken into account, that
is, the synthesis of certain kinds of blocks, but this is not the general case.)

340 M. Vernon, F. Zeyda, and A. Cavalcanti

BlockSpecification {

Zname Sum_P2

SelectionParameters {

BlockType Sum

Ports [2, 1]

Inputs "2"

InputTypes "RR"

}

}

BlockSpecification {

Zname Sum_P2C

SelectionParameters {

BlockType Sum

Ports [2, 1]

Inputs "2"

InputTypes "CC"

}

}

Fig. 2. Entries in ClawZ’s library meta-file for the Sum block

A problem in the translation arises due to the fact that Simulink blocks ex-
hibit polymorphic behaviours, meaning the same type of block may process input
signals of different types. For example, the Sum block can be used to add two
scalar inputs, one scalar and one vector, two vectors, or even matrices if their
dimensions agree. In the formal model such blocks must have different specifi-
cations, depending on their types of inputs. The problem is exacerbated in our
work as we moreover have to consider operations on complex types.

To illustrate the above, consider several possible encodings of the Sum1 block
in Fig. 1 as a Z schema. One may assume the inputs In1? and In2? to be real
scalars, giving rise to [In1?, In2?,Out1! : R | Out1! = In1? +R In2?] as its block
schema. We may alternatively consider the inputs to be vectors, matrices, or com-
plex scalars, giving rise to different characterisations. The problem does in fact
surface even when translating ‘conventional’ diagrams, and the solution adopted
by ClawZ is to support means of selectively determining what underlying formal
model to use for particular blocks. Consequently, the user is sometimes required
to analyse the diagram by hand when generating its Z model.

To address this problem in the context of our extensions, we propose an ini-
tial analysis of the Simulink diagrams prior to translation by the Z Producer
in which type information is injected into the model. This can either be done
manually, or automatically by means of a typechecker. A separate file is created
that contains the type information for blocks, and a tool populates them into
the respective Simulink MDL file. Type information is made explicit through ad-
ditional attributes (name/value pairs) in the records that describe information
related to the blocks as they are encoded in the MDL file of the model.

The above process allows us to make the syntactic matching of the Z Producer,
that infers which schemas are used to characterise block functionality, sensitive
to (semantic) type information. To explain, the association of entries in the
Simulink file and Z schemas is determined by the ‘library meta-file’ of ClawZ.
Fig. 2 shows how we extend the default entries in this file to take into account the
injected type attributes. The entries for Zname determine the schema used for
the block, and the InputTypes attributes are additional matching conditions.
Instantiation of a block upon translation only takes place if all attributes in
the SelectionParameters clause are present in the model file. In particular,
the InputTypes attributes have to exist. Although currently we insert them
manually, their generation can potentially be automated by a tool.

Communication Systems in ClawZ 341

In practice, in order to support the new types no low-level modifications to the
Z Producer and its code are necessary. The axiomatisation of complex numbers,
vectors, matrices, common operators, and Simulink block functionality can be
cleanly encapsulated in a collection of designated ProofPower-Z theories. These
theories are then merged with the default theory of ClawZ, containing the tool
itself as well as the standard library of block definitions. The resulting database of
theories is then configured as the default parent when generating the ProofPower-
Z database for the specification of particular Simulink models.

3.2 Support for Communication Blocks

The applications we like to consider contain various types of blocks which are
initially not supported as part of the translatable subsets of ClawZ. To incor-
porate support for these blocks we have extended the ClawZ block library. It
consists of providing specifications for the blocks as Z schemas and library-meta
data to recognise the blocks in Simulink diagrams and thereby generally enable
their translation. For reasons of space we cannot comment on all extensions here
but will discuss the most significant ones. The complete ProofPower-Z theories
are available from http://www.cs.york.ac.uk/circus/tp/tools.html.

Digital Filtering: Digital filters are frequently used in signal-processing and
communications applications. Their effect can be generally described by the
following difference equation.

y(n) =
1
a0

(
M∑
i=0

bi ∗ x (n − i) −
N∑

j=1

aj ∗ y(n − j)

)

Here x (n) refers to the input signal and y(n) to the output signal at time step
n; the aj and bi are the feedback and forward filter coefficients, respectively.
Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters are
both characterised by the above equation with the difference that for FIR filters
N is zero, hence the output only depends on the history of inputs x (n − k)
for k ∈ 0..M , and not recursively on previous outputs. As the name suggests,
the impulse response function for FIR filters is non-zero only for a finite range
whereas for IIR filters it usually extends to infinity.

There are various ways of realising filters by means of primitive elements such
as Gain, UnitDelay and Sum blocks realising multiplication with a factor, delay
of a signal, and summation. The Direct Form I utilises two cascades of delay
blocks as buffers, one for the inputs and one for the output; the Direct Form II,
on the other hand, is more compact using only one such cascade. If the filter is
modelled by a lower-level subsystem, we can indeed use ClawZ as is to generate
the Z model — as long as inputs are assumed to be real values.

The Communications Toolbox for Simulink, on the other hand, provides new
atomic blocks that support signal filtering. For these blocks we have to provide
schema definitions that specify their functionality in order to allow for their
translation into Z models. Based on the actual implementation of the filter it is

http://www.cs.york.ac.uk/circus/tp/tools.html

342 M. Vernon, F. Zeyda, and A. Cavalcanti

IIR1 : [a, b : seq1 C] → [x , y : C; x buff , x buff ′, y buff , y buff ′ : seq C]

∀ pars : [a, b : seq1 C] •
IIR pars = [x , y : C; x buff , x buff ′, y buff , y buff ′ : seq C |

x buff = # pars.b − 1 ∧ # x buff ′ = # x buff ∧
y buff = # pars.a − 1 ∧ # y buff ′ = # y buff ∧
(∃ x sum, y sum : C |

x sum = SumSeqC (MultSeq (pars.b, 〈x〉 � x buff)) ∧
y sum = SumSeqC (

{i : 1..(# pars.a − 1) • i
→ pars.a(i + 1) ∗C y buff (i)}) •
y = (recipC pars.a(1)) ∗C (x sum −C y sum)
x buff ′ = 〈x〉 � {i : 1..(# x buff − 1) • i
→ x buff (i)} ∧
y buff ′ = 〈y〉 � {i : 1..(# y buff − 1) • i
→ y buff (i)})]

Fig. 3. Schema specifying the digital filter block in the Direct Form I

beneficial to use a formal model that is closest to it, we therefore provide a set
of (equivalent) specifications reflecting various filter implementations. However,
for space considerations we only discuss one of them.

Fig. 3 includes the schema that directly translates the difference equation, re-
sembling the realisation of the filter in the Direct Form I. The schema is obtained
by applying IIR1 to a binding of type [a, b : seq1 C], which provides the filter
coefficients. Here, a and b are parameters that are extracted from the attributes
of the block as it is encoded in the MDL file; they are set inside the Simulink tool.
The schema has the components x and y, corresponding to the current input
and output, and additional state components x buff and y buff , including their
primed counterparts, to maintain a history of previous inputs and outputs; the
latter are modelled by sequences. The length of the buffer sequences is one less
the length of the respective coefficient sequences pars .a and pars .b which im-
plicitly determine the dimension of the filter. The two summation terms in the
difference equation are assigned to the local constants x sum and y sum. Both
are used to calculate the output y by multiplication with the reciprocal value
of a0, given by pars .a(1). Observe that MultSeqC realises element-wise multipli-
cation of complex sequences. Finally it is necessary to shift the contents of the
buffers, adding the current input and output as new head elements.

The above schema cannot be directly used by ClawZ since it does not conform
to the naming conventions on input and output ports and parameters. We lift
it into a block schema IRR1 Block by renaming a and b to NumCoeffs and
DenCoeffs , as well as x and y to In1? and Out1! to achieve this conformance.

The schema is configured for translation using the library-meta file entry in-
cluded in Fig. 4. Here, the matching attributes specify Reference as the block
type, hinting that the block is instantiated from a supplementary Simulink tool-
box. It is further classified as a filter by the SourceType attribute, and the
remaining attributes specify the kind of filter used. Since the block has to trans-
mit several parameters, they also need to be identified in the library meta-file
entry; it is done by virtue of the TransmittedParameters clause.

Communication Systems in ClawZ 343

BlockSpecification {
Zname IIR1_Block
SelectionParameters {

BlockType Reference
SourceType "Digital Filter"
TypePopup "IIR (poles & zeros)"
IIRFiltStruct "Direct form I"
CoeffSource "Specify via dialog"

}
TransmittedParameters {

NumCoeffs Vector
DenCoeffs Vector

}
}

Fig. 4. Library meta-file entry for the IIR1 filter block

DFT Block
In1?,Out1! : seq1 C

#Out1! = # In1? ∧ (∀ k : 1..(# In1?) • Out1! (k) =
SumSeqC ({n : 1..(# In1?) • n
→ In1?(n) ∗C

exp (∼C (0.0, 2.0 ∗R π) ∗C z2c ((k − 1) ∗ (n − 1)) /C (z2c # In1?))}))

Fig. 5. Block Schema for the Discrete Fourier Transformation

In addition to the standard filters two instances of adaptive filters have been
included, respectively supporting the Least Mean Square (LMS) and Root Mean
Square (RMS) algorithms for adjusting the filter coefficients. They are not fur-
ther discussed here but explained in more detail in [7]. Notably, the specification
of the RMS filter required complex matrices to record correlations.

Fourier Transformation: Fourier transformations are performed to convert a
signal in time into a corresponding signal in the frequency domain. The discrete
Fourier transform (DFT) of a signal x (n) for n ∈ 0..(N − 1) and its inverse is
defined by the following pair of equations.

y(k) =
N−1∑
n=0

x (n) exp(−2πikn
N

) and x (k) =
1
N

N−1∑
n=0

y(n) exp(
2πikn

N
)

The Fourier transform y(n) will usually be a vector of complex values that de-
termine the amplitude and phase of equidistant frequencies. The DFT is always
an invertible transformation, assuming the signal is repeated periodically.

To support a corresponding block of the Communications Toolbox that per-
forms this operation, we first provide additional definitions for complex expo-
nentiation and the constant π. Exponentiation was defined using the Taylor
expansion ez =

∑∞
n=0

zn

n! , but other approaches may be possible too, for ex-
ample using Euler’s equation in the particular case above. This allowed us to
define the corresponding block schema for the operation as given in Fig. 5. The

344 M. Vernon, F. Zeyda, and A. Cavalcanti

function z2c here is a utility operator that converts an integer into a correspond-
ing complex number, and ∼C is negation of complex numbers.

Modulation: The block we will look at in more detail here is the Quadrature
Amplitude Modulation (QAM). The essence of QAM modulation is that an
integer value in the range 1..n to be encoded is mapped onto a point in the
complex plane given by the signal constellation diagram. For 16-QAM (n = 16)
the latter consists of a regular grid of 16 equidistant points where each point
represents one of the symbols in the permissible range 1 to n. The encoding
simply involves associating each value with a point in the grid, and the decoding
determines the symbol of the point that is closest to a given point represented
by the complex (baseband) signal obtained from the demodulated carrier signal.

In order to characterise this functionality as a block schema we first introduce
a constant RQAM 16 SCD : seq C being a sequence that records for each of the
values in the range 1 to 16 the corresponding point associated in the complex
plane. Encoding is now simply applying the sequence as a function.

For the decoding we have to determine which symbol is closest to the actually
received signal. It is realised by the following block schema.

RQUAM 16 Demod Block
In1? : C; Out1! : Z

Out1! ∈ 1..16 ∧ (∀n : 1..16 •
AbsC (In1? −C RQAM 16 SCD(Out1!)) ≤
AbsC (In1? −C RQAM 16 SCD(n)))

Above AbsC is the absolute value of a complex number being its distance from
the origin. We simply require that the symbol output by Out1! is the one which
has the minimal distance to In1? amongst all points on the grid.

We have encoded several blocks beyond the ones mentioned in this section,
for example the Trellis encoding of a signal for a specific convolution code, and
its decoding using the Viterbi algorithm. This is reported in more detail in [14].

4 Case Study: Software-Defined Radio

Software-defined radios (SDRs) are radio-communication devices in which com-
ponents typically found in those devices like, for example, mixers, filters, am-
plifiers, modulators and demodulators, and so on, are implemented in software
rather than being statically realised in hardware. They are designed to some-
times carry out the work of multiple radio devices in a single piece of hardware
as they have the ability to support different bandwidths, modulation techniques
and communication standards all at once. There are various examples of SDRs
in the home and consumer market, for instance in mobile phone devices, but
notably military applications profit from their versatility with the addition of
encryption and security-related features; this renders the SDR as a potential
safety-critical system whose development profits from the use of ClawZ.

Communication Systems in ClawZ 345

Out3
3

Out2
2

Out1
1

Upsample

8

Rectangular QAM
Modulator
Baseband

Rectangular
QAM

IF upconversion

In1

In2
IF Signal

IF downconverion

In1

In2
I+jQ

Gain 1

-K-

Gain

-K-

FSE Equalizer

Probe

Equalized Signal

Equalizer Taps
Downsample

4

Digital Filter 2

Digital
Filter

Digital Filter 1

Digital
Filter

Digital Filter

Digital
Filter

AWGN
Channel AWGN? ? ?

A/D

In3
3

In2
2

In1
1

Fig. 6. Control law diagram for a Software-defined Radio

The ClawZ extensions we discussed in the previous section have been used
to construct the formal model for the Simulink diagram of a specimen SDR
which can be found as one of the examples published on-line by MathWorks [5].
The corresponding diagram is included in Fig. 6. It models the modulation and
encoding of the source signal, transmission through the ether, and demodulation
and decoding of the received signal. The diagram requires the Communications
and Signal Processing Toolbox for Simulink. It is hierarchically organised as IF
upconversion, IF downconversion and FSE Equalizer are subsystem blocks. (Their
respective diagrams are omitted here.) The model is overall not complex in
structure, but almost all its basic blocks were taken from the external toolboxes.

The model contains various elements which ClawZ initially did not recog-
nise, and whose support we previously discussed. The input signal In1 is first
submitted to a QAM modulator and further passed to a digital filter. These
are elementary blocks of the Simulink Communications Toolbox utilised by the
model. The following Upsample block changes the rate of the signal, and the
output is further submitted to a digital IIR filter. Since the QAM modulation
produces a complex output, both filters operate on complex signals. The conver-
sion of the complex (baseband) signal into a real (passband) signal is achieved by
the IF upconversion subsystem. It modulates the signal onto a carrier frequency
obtained via In2 in order to prepare it for transmission. The transmission of the
signal is simulated by a noisy channel, that is the AWGN Channel block.

Upon reception similar operations are performed to the ones already men-
tioned; we will not explain them in detail here. It shall be noted, however, that
the FSE Equalizer subsystem requires the LMS adaptive filtering block.

Prior to the extension of ClawZ very little of the model could actually have
been translated. Following the extensions, it was possible, with a few model-
specific customisations, to translate the entire diagram, and successfully parse
and typecheck the Z specification within ProofPower. A few blocks had to be
further added like the AWGN block to simulate additive white Gaussian noise,

346 M. Vernon, F. Zeyda, and A. Cavalcanti

or the Upsample and Downsample blocks whose function it is to change the rate
of a signal. This did not pose a problem in practical terms.

To handle the problem of polymorphic blocks we implemented a Java utility
MdlMergeApp which merges the attributes of two Simulink MDL files. Whereas
one file serves as the actually model, the other only contains the residual MDL
attributes for types. Keeping the two separate has the advantage that the model
can be modified without already specified type information being lost.

We finally shall point out that no verification of code of the SDR diagram has
been attempted so far, but the construction of the formal model paves the way
for future work on this, including other kinds of formal analysis.

5 Conclusion and Future Work

In this paper we have reported on several extensions to ClawZ that pave the
way for its use for generating formal models of control laws typically found in
communications and signal-processing devices. It is an application domain that
so far could not take advantage of the ClawZ tool support, and our experience
suggests it being possible to apply ClawZ for such systems too without incurring
fundamental changes to its underlying implementation and architecture.

The extensions entailed the introduction of new data types and additions to
the library of supported blocks. To evaluate the additions, we animated respec-
tive block schemas using the Z animator Jaza [13,12]. This has been done, where
possible, for the formalisation of complex arithmetics, complex vector and matrix
operations, and importantly high-level specifications of blocks. In some cases def-
initions had to be rewritten to be processed by the Jaza tool; for instance, Jaza
generally does not allow axiomatic definitions, hence functions such as IIR1 had
to be rewritten into schemas while setting their parameters to constant values.
Further, inductive definitions had to be suitably unfolded.

Further validation took place in the automatic construction of a formal model
for the non-trivial control law of a software-defined radio. This case study pro-
vided an initial motivation and benchmark for what support may be required for
communications applications, but also highlighted imminent problems in using
ClawZ in this context. A particular advantage of ClawZ is that it reduces the
user interaction in the verification process, and the generation of Z models for
diagrams is an aspect which can be entirely automated. On the other hand, the
polymorphism of blocks puts limitations on automation in the current trans-
lation approach. A solution to this problem is either to alter the translation
strategy by formally embedding polymorphic block behaviours, or, as we did,
introduce additional steps that inject type information.

Future work consists of first developing a more comprehensive coverage of
blocks from the Communications Toolbox of Simulink, and testing our extensions
with a larger collection of diagrams of real-world applications. Although our
current theories already provide support for many of the blocks, there are, for
instance, gaps in supporting the various modulations techniques.

Communication Systems in ClawZ 347

A second major area of follow-up work is to examine the verification of code
within the new settings. ClawZ provides a powerful universal proof tactic (Su-
pertac) to discharge verification conditions arising in the verification of code,
and a process called ‘witnessing’ conducts the proof in an incremental manner
as to increase the success of the automatic proof steps [2,9]. It is likely that the
proof tactic will have to be adjusted to take full advantage of automation.

Finally, a third desirable extension is to implement a tool that automati-
cally injects type information into Simulink models which then, as previously
explained, can be exploited by ClawZ in constructing Z models. For this the
control law at first must be typechecked, and secondly type information has to
be written back into the MDL file. We have developed a Java component library
that parses and processes MDL files, making the latter trivial. The implementation
of a typechecker for control laws is pending work, but is not challenging.

Acknowledgements. We are grateful to QinetiQ for making their ClawZ tool
suite available. Especially, we like to thank Collin O’Halloran and Nick Tudor
for their consultation and involvement. We also would like to thank EPSRC for
funding this work as part of the research grant EP/E025366/1.

References

1. Lemma 1. ProofPower and ProofPowerZ (1984–2009),
http://www.lemma-one.com/ProofPower/index/index.html

2. Adams, M., Clayton, P.: ClawZ: Cost-Effective Formal Verification of Control Sys-
tems. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 465–479.
Springer, Heidelberg (2005)

3. Arthan, R.: On Formal Specification of a Proof Tool. In: Prehn, S., Toetenel,
H. (eds.) VDM 1991. LNCS, vol. 551, pp. 356–370. Springer, Heidelberg (1991),
Technical report, http://www.lemma-one.com/ProofPower/papers

4. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control laws in Z.
In: Third International Conference on Formal Engineering Methods (ICFEM),
September 2000, pp. 169–176. IEEE Computer Society Digital Library (2000)

5. Bletsis, K.: Software Defined Radio (July 2002), Simulink Model,
http://www.mathworks.com/matlabcentral/fileexchange/1987

6. Public Safety Special Interest Group. Software Defined Radio Technology for Public
Safety. Technical report (April 2006),
http://www.ece.vt.edo/swe/chamrad/psi/SDRF-06-A-0001-V0.00.pdf

7. Haykin, S.: Adaptive Filter Theory. Prentice Hall Information and System Sciences
Series. Prentice Hall, Englewood Cliffs (2001)

8. Jondral, F.: Software-Defined Radio — Basics and Evolution to Cognitive Radio.
Journal of Wireless Communications and Networking 2005(4), 275–283 (2005)

9. QinetiQ Ltd., 85 Buckingham Gate, London SW1E 6BP, UK. ClawZ Toolset User
Guide (2007); Draft document for version 2.2.alpha6 of ClawZ

10. Reeds, J.: Software Radio: A Modern Approach to Radio Engineering. Communi-
cations Engineering and Emerging Technologies Series. Prentice Hall, Englewood
Cliffs (2002)

11. Inc. The MathWorks. Simulink R© (1994–2008)

http://www.lemma-one.com/ProofPower/index/index.html
http://www.lemma-one.com/ProofPower/papers
http://www.mathworks.com/matlabcentral/fileexchange/1987
http://www.ece.vt.edo/swe/chamrad/psi/SDRF-06-A-0001-V0.00.pdf

348 M. Vernon, F. Zeyda, and A. Cavalcanti

12. Utting, M.: Data Structures for Z Testing Tools. In: The 4th Workshop on Tools
for Systems Design and Verification (July 2000),
http://www.cs.waikato.ac.nz/~marku/jaza

13. Utting, M.: Jaza User Manual and Tutorial (June 2005),
http://www.cs.waikato.ac.nz/~marku/jaza/userman.pdf

14. Vernon, M.: The Modelling and Verification of Software-Defined Radio Techniques
in Communication Applications. Master’s thesis, University of York, Heslington,
York, YO10 5DD, UK (May 2008)

http://www.cs.waikato.ac.nz/~marku/jaza
http://www.cs.waikato.ac.nz/~marku/jaza/userman.pdf

Formalising and Validating RBAC-to-XACML
Translation Using Lightweight Formal Methods

Mark Slaymaker, David Power, and Andrew Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

mark.slaymaker@comlab.ox.ac.uk, david.power@comlab.ox.ac.uk,
andrew.simpson@comlab.ox.ac.uk

Abstract. The topic of access control has received a new lease of life
in recent years as the need for assurance that the correct access control
policy is in place is seen by many as crucial to providing assurance to
individuals that their data is being treated appropriately. This trend is
likely to continue with the increase in popularity of social networking
sites and shifts to ‘cloud’-like commercial services: in both contexts, a
clear statement of “who can do what” to one’s data is key in engender-
ing trust. While approaches such as role-based access control (RBAC)
provide a degree of abstraction, therefore increasing manageability and
accessibility, policy languages such as the XML-based XACML provide
greater degrees of expressibility—and, as a result, increased complexity.
In this paper we explore how the mutual benefits of both RBAC and
XACML, and Alloy and Z, may be used to best effect. RBAC is used
as an accessible conceptual model; XACML is used as a language of
implementation. Our concern is to facilitate the construction and reuse
of role-based policies, which may subsequently be deployed in terms of
XACML. We wish to provide assurance that these representations and
transformations are, in some sense, correct. To this end, we consider for-
mal models of both RBAC and XACML in terms of Z. We also describe
how we have taken initial steps in utilising the Alloy Analyzer tool to
provide a level of assurance that the two representations are consistent.

1 Introduction

Increasing amounts of data are being collected on all of us with respect to our
different roles: teams are determining how best to utilise this data to turn us
into more profitable consumers, to predict health problems before they manifest
themselves, and to identify individuals likely to compromise national security. As
data collection increases, and more interesting ways to utilise this data emerge,
so do concerns about privacy: the question of who can see what, and under what
conditions, is an important one in such contexts. In recent years, the XML-based
XACML (eXtensible Access Control Markup Language)1 has emerged as the de
facto standard for policy capture and enforcement in service-oriented systems.
1 See http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 349–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

350 M. Slaymaker, D. Power, and A. Simpson

XACML offers a high degree of expressiveness—but a consequence of XACML’s
flexibility is complexity: even simple combinations of policies can run to tens
of pages as a result of XML’s verbosity. In parallel, role-based access control
(RBAC) [4] has emerged as a model of access control that makes authorisation
policies more accessible and manageable: permissions are associated with roles,
and, in turn, roles are associated with users. While RBAC benefits from concep-
tual simplicity, it suffers from a lack of expressiveness (extensions represented
by, for example, [15] and [9] notwithstanding)—meaning that data owners can
be restricted with respect to the types of policies that they may construct.

Our focus is not the capture of role-based policies in XACML—there is, after
all, an RBAC profile for XACML—nor is it the development of formal models
of access control, which has a rich history (see, for example, [14]). Rather, it
is combining the benefits of RBAC and XACML to best effect: by utilising a
simple, conceptual model for accessibility and assurance, prior to mapping to
XACML for deployment. Formal metamodels of RBAC and XACML, given in
terms of Z [12], are used to give confidence as to the transformation process;
formal analysis is undertaken via the Alloy Analyzer [8].

We adopt ‘Spivey-style’ Z [12], which gives rise to the possibility of utilising
the type checker fuzz [13]. We have consciously taken a ‘hybrid’ approach in
our use of Z and Alloy as we are keen to leverage their complementary benefits:
a long-term goal of our work is to allow the construction and analysis of tools
by end-users, and Z, due to its accessibility and the fact that it provides a
natural means of representing relational structures, is an appropriate candidate
for an initial prototype language for policy capture; and as the Alloy Analyzer
has emerged as the pre-eminent means of simulating and checking state-based
descriptions, it is an obvious candidate to provide support for assurance. (While
some may argue that Alloy meets all of these desiderata, our experience is that,
in general, Z is more accessible to ‘the layman’; hence its use in our work.)

Our work is driven by practical concerns: we wish to offer policy writers a
means of capturing expressive access control policies, with some degree of assur-
ance that these policies are, in some sense, ‘correct’. Our middleware framework
sif (for service-oriented interoperability framework) [11] facilitates the sharing
and aggregating of data from disparate data sources. Via XACML, fine-grained
access control is supported. While, currently, these policies are created via primi-
tive policy editors, the ‘vision’ is that data owners will construct abstract policies
via tool support, with validated formal representations being transformed into
executable policies. This paper represents continued work along this path.

2 Formalising RBAC
Role-based access control (RBAC) is concerned with the relationships between
users and roles, and roles and permissions. A generalised RBAC model was
proposed in [3], from which the following important definitions may be taken.
1. For each subject, the active role is the one that the subject is currently using.
2. Each subject may be authorised to perform one or more roles.
3. Each role may be authorised to perform one or more transactions.

Formalising and Validating RBAC-to-XACML Translation 351

There are four components in the ANSI standard for RBAC: core RBAC, role
hierarchies, and dynamic and static separation of duty. We consider only the
first (mandatory) component: core RBAC, which relates permissions, roles and
users: permissions are associated with roles, and roles are assigned to users. (It is
worth noting, however, that in [10], it is shown how a more complex, hierarchical
RBAC representation might be ‘normalised’ to an equivalent representation in
core RBAC.) While other characterisations, extensions and notations for role-
based access control (such as, for example, OrBAC [1]) exist, we choose to build
upon an existing formal model of the ANSI standard: that of [10]. It should also
be noted that issues such as administration of policies are not of concern here.

First, we introduce the basic types User , Role, Action and Resource, and
characterise a permission as an action-resource pair:

[User , Role,Action, Resource]
PRMSBase == Action × Resource

The core RBAC system, captured by the schema Core, consists of the rela-
tions UA and PA, which represent the relationships that hold between users and
roles, and roles and permissions respectively. These relations are restricted to the
members of USERS , ROLES and PRMS , which represent the sets of current
users, roles and permissions, and form part of the Core schema.

Core =̂ [UA : User ↔ Role; PA : Role ↔ PRMSBase;
USERS : P User ; ROLES : PRole; PRMS : P PRMSBase |

UA ∈ USERS ↔ ROLES ∧ PA ∈ ROLES ↔ PRMS]

3 Formalising XACML

XACML is an OASIS standard that defines two XML-based languages: the pol-
icy language is used to describe general access control requirements; the re-
quest/response language allows one to construct a query to determine whether a
particular action should be permitted. The policy language, which is of concern
to us, has standard extension points that allow one to define aspects such as new
functions, data types, and logics to combine such entities.

An XACML policy can have any number of rules. At the heart of most rules
is a condition, which is a Boolean function. If the condition evaluates to true,
then the rule’s effect (either ‘permit’ or ‘deny’) is returned. A rule specifies a
target, which defines: the set of the subjects who can access the resource; and the
resource that the subject can access; the action that the subject can undertake on
the resource; the environmental attributes that are relevant to an authorisation
decision and are independent of a particular subject, resource or action.

The values of the request attributes are compared with those of the policy doc-
ument so that a decision can be made with respect to access permission. When
many different policies exist, a policy set document is defined as a combining set
of many policies.

352 M. Slaymaker, D. Power, and A. Simpson

A policy or policy set may contain multiple rules or policies, each of which
may evaluate to different authorisation decisions. In order for a final decision to
be made, combining algorithms are used, with policy combining algorithms being
used by policy sets and rule combining algorithms being used by policies. Each
algorithm represents a different means of combining multiple decisions into a
single authorisation decision. The authorisation decision in relation to a subject
requesting permission for an action on a resource in an environment can take
one of four values: ‘permit’, ‘deny’, ‘indeterminate’, and ‘not applicable’.

When the policy decision point (PDP) compares the attribute values con-
tained in the request document with those contained in the policy or policy set
document, a response document is generated. The response document includes
an answer containing the authorisation decision. This result, together with an
optional set of obligations, is returned to the policy enforcement point (PEP) by
the PDP. Obligations are sets of operations that must be performed by the PEP
in conjunction with an authorisation decision; an obligation may be associated
with a positive or negative authorisation decision.

We start by introducing our basic types, which represent sets of unique iden-
tifiers for policy sets, policies, rules, targets, and requests. Additionally, we in-
troduce Environment , which contains information pertaining to the operating
environment, and Obligation, which contains those activities that the PEP must
undertake before access is permitted. As these entities have little relevance to
our discourse, it is appropriate to abstract away from their details in our model.

[PolicySetID , PolicyID ,RuleID ,TargetID , RequestID , Environment , Obligation]

There is a special TargetID associated with the empty target:

empty target : TargetID

We use Subject as an abbreviation for User (subjects are XACML’s equivalent
of users).

Subject == User

Next, the free type PolicyRef is introduced, which deals with the fact that a
policy set can reference instances of both policies and and policy sets. To this
end, the constructors take elements of PolicyID and PolicySetID as arguments.

PolicyRef ::= Pol〈〈PolicyID〉〉 | PolSet〈〈PolicySetID〉〉

It is necessary to introduce two free types to handle the evaluation of ele-
ments. First, Effect contains the possible effects that can be returned from the
evaluation of rules, policies and policy sets. Second, EvalRes reflects the evalua-
tion of a condition within the context of a specific request, as well as the possible
outcomes of a match operation between a request and a target. In addition, rules
and policies are associated with particular subsets of Effect .

Formalising and Validating RBAC-to-XACML Translation 353

Effect ::= Permit | Deny | NotApplicable | Indeterminate |
IndeterminateDeny | IndeterminatePermit

EvalRes ::= TRUE | FALSE | INDETERMINATE
EffectRule == Effect \ {Indeterminate}
EffectPolicy == Effect \ {IndeterminateDeny , IndeterminatePermit}

Our final free types introduce the identifiers for the different rule and policy
combining algorithms. Only the basic combining algorithms of the XACML spec-
ification are considered here. It would, however, be perfectly possible to define
any number of other combining strategies to suit a given situation.

RulComAlgID ::= rulPermitOverRide | rulDenyOverRide | rulFirstApplicable
PolComAlgID ::= polPermitOverRide | polDenyOverRide | polFirstApplicable

A request is modelled as consisting of a request identifier, together with sets
made up of elements from the types Subject , Action, Resource, and Environment .
It is worth noting that Action has been modelled as a set even though it is
constrained to be an atomic value: this is done to allow a generic function to be
defined to evaluate all the parts of a request against their corresponding parts in
a Target . The request, then, effectively represents a subject asking to perform
an action on a resource and also captures any relevant environment information.

Request =̂ [request : RequestID ; sub : P1 Subject ;
act : P1 Action; res : P1 Resource; env : P Environment |

#act = 1 ∧ #env ≤ 1]

The Target schema is an abstraction of the Target element of the XACML
specification, which is described as: “a Target is a conjunctive sequence of Sub-
jects, Resources, Actions and Environments.” As the other elements behave in
much the same way, it suffices to discuss only subjects in the following.

A Subjects element is described as a disjunctive sequence of Subject elements,
with a Subject element being a conjunctive sequence of SubjectMatch elements.
In turn, the SubjectMatch element defines a matching function and the element
in the request context that it should be applied to.

We have chosen to model the Subject , Action, Resource and Environment
elements within the Target schema as functions mapping members of the appro-
priate type to elements of EvalRes . Each of the sections of an XACML target—
Subjects, Actions, Resources and Environments—is represented in the model
by a sequence of these functions. For example, the functions in the sequence
sub each represent an XACML Subject element. The function is effectively ab-
stracting away the conjunctive sequence of SubjectMatch elements. It is worth
noting that we have chosen to use sequences to model the various components of
Target as this simplifies the construction of functions that are used to evaluate
the matching of requests to targets in the full model.

Target =̂ [tid : TargetID ;
sub : seq (Subject → EvalRes); act : seq (Action → EvalRes);

res : seq (Resource → EvalRes); env : seq (Environment → EvalRes)]

354 M. Slaymaker, D. Power, and A. Simpson

A rule is composed of: an identifier, which we denote as rid ; a target for which
the rule is applicable; a condition that is evaluated in relation to a given request;
and an effect that is returned if the condition associated with the rule evaluates
to true. The effect can only have the values permit or deny: if the condition
evaluates to false or the target is not matched, then the rule will return an effect
of NotApplicable; if the evaluation were to fail for any reason, then a value of
Indeterminate will be returned.

Rule =̂ [rid : RuleID ; target : TargetID ;
condition : seq (Request → EvalRes); effect : EffectRule |

effect ∈ {Permit , Deny} ∧ #condition ≤ 1]

A policy consists of several aspects, namely: an identifier, pid , to uniquely
identify it; a target for which the policy is applicable; a sequence of RuleIDs ;
and a rule combining algorithm, defining how the effects of the sequence of rules
should be combined. Finally, the Policy schema also contains a (possibly empty)
set of obligations. Note that it is possible (albeit undesirable) for inPol to be
empty as the XACML standard does not preclude this. Further, it is also possible
for the same rule identifier to appear more than once within inPol .

Policy =̂ [pid : PolicyID ; target : TargetID ;
inPol : seq RuleID ; rca : RulComAlgID ; obli : P Obligation]

The PolicySet schema consists of five components. First, psid acts as a unique
identifier for a policy set. Second, target is the target for which the policy set
is applicable. Next, pca identifies the relevant policy combining algorithm, i.e.
it determines how the effects of the sequence of policies and (further) policy
sets associated with a policy set are combined. The sequence of elements of
type PolicyRef —constructed from elements of both PolicyID and PolicySetID—
allows a particular policy set to effectively contain a sequence of both policies
and policy sets. Finally, a policy set may contain an optional set of obligations.

PolicySet =̂ [psid : PolicySetID ; target : TargetID ;
pca : PolComAlgID ; inPolSet : seq PolicyRef ; obli : PObligation]

Again, it is possible, albeit undesirable, for inPolSet to be empty. Note that
inPolSet (and, indeed, inPol in Policy) are defined as sequences, rather than sets,
to deal with those cases (such as the application of the first applicable combining
algorithm) in which the order of rules (or policy references) is important.

Although the repetition of elements of both PolicyID and PolicySetID within
a policy set is permissible, repetition of elements of the latter is problematic. This
is due to the fact that such a situation might result in a recursive referencing of
policy sets. If such a policy were to be implemented, this cycle of references might
lead to an infinitely recursing process. Of course, one of the benefits afforded by
a formal model is that we have the potential to check for the absence of such
cycles, as well as other healthiness conditions that we might wish to enforce.

While a number of optional elements for policies and policy sets exist in the
specification, we have omitted these elements from this description as they add
little of value to the narrative.

Formalising and Validating RBAC-to-XACML Translation 355

We now define XACML as a collection of functions that map identifiers to
instances of policy sets, policies, and so on. The constraints on the functions
serve to ensure that each function maps an identifier to a binding containing the
same identifier. In addition, we define rootPol , which represents the top level
policy set or policy to be evaluated to check for applicability to any particular
request.

XACML
getPolicySet : PolicySetID
� PolicySet ; getPolicy : PolicyID
� Policy
getRule : RuleID
� Rule; getTarget : TargetID
� Target
rootPol : P PolicyRef

(∀ psi : PolicySetID | psi ∈ dom getPolicySet • (getPolicySet psi).psid = psi)
(∀ pi : PolicyID | pi ∈ dom getPolicy • (getPolicy pi).pid = pi)
(∀ ri : RuleID | ri ∈ dom getRule • (getRule ri).rid = ri)
(∀ ti : TargetID | ti ∈ dom getTarget • (getTarget ti).tid = ti)

4 From RBAC to XACML

In this section we define the functions necessary to convert an access control
policy defined in core RBAC into an equivalent policy in XACML.

4.1 Helper Functions

The first helper function we will consider is the compactXACML function, which
takes an arbitrary number of XACML instances and combines them into a sin-
gle XACML instance. The constraints on the functions getPolicySet , getPolicy,
getRule and getTarget ensure that the result of each pair-wise union are con-
tained within the appropriate function definitions. Additionally, the final five
clauses ensure the overall functions contain the result of the union of all of the
contributing functions.

compactXACML : PXACML
→ XACML

∀ s : P XACML |
(∀ x1, x2 : s •

x1.getPolicySet ∪ x2.getPolicySet ∈ PolicySetID
� PolicySet ∧
x1.getPolicy ∪ x2.getPolicy ∈ PolicyID
� Policy ∧
x1.getRule ∪ x2.getRule ∈ RuleID
� Rule ∧
x1.getTarget ∪ x2.getTarget ∈ TargetID
� Target) •

(compactXACML s).getPolicySet =
⋃{x : s • x .getPolicySet} ∧

(compactXACML s).getPolicy =
⋃{x : s • x .getPolicy} ∧

(compactXACML s).getRule =
⋃{x : s • x .getRule} ∧

(compactXACML s).getTarget =
⋃{x : s • x .getTarget} ∧

(compactXACML s).rootPol =
⋃{x : s • x .rootPol}

We assume the existence of functions capable of generating the various iden-
tifiers required: genTid , genTid1, genTid2, genRid , genPid , and genPSid . The

356 M. Slaymaker, D. Power, and A. Simpson

three functions that generate a TargetID (genTid , genTid1 and genTid2) are
constrained to produce disjoint sets of identifiers. (Due to space limitations, the
constraints are omitted.)

genTid : P User × Role × P PRMSBase � TargetID
genTid1 : PRMSBase � TargetID
genTid2 : P(P User × Role × P PRMSBase) � TargetID
genRid : PRMSBase � RuleID
genPid : P User × Role × P PRMSBase � PolicyID
genPSid : P(P User × Role × P PRMSBase) � PolicySetID

The next helper function is a generic function that converts a set to a sequence
containing the same elements as the original set. This function is required for
creating the sequences necessary for certain aspects of the XACML model: in
particular, for creating the sequences that make up inPol and inPolSet .

[X]
sequence : P X → seq X

∀ xs : PX • #sequence(xs) = #xs ∧ ran sequence(xs) = xs

We now define the generic function targetElementEquals , which is used to
define the functions that will be used in Target . The function returns a function
that has the property that it returns FALSE for all input values—other than
for the input x , for which it returns TRUE .

[X]
targetElementEqual : X → X → EvalRes

∀ x , y : X •
x = y ⇒ targetElementEqual x y = TRUE
∧
x �= y ⇒ targetElementEqual x y = FALSE

4.2 Translation

The following four functions define the translation process that converts an ele-
ment of Core, which is the RBAC representation of an access control policy, into
an element of XACML. We initially define the creation of rules, and describe how
these are combined into policies. These policies are then appropriately combined
into an overall XACML representation of the original RBAC policy.

The makeRule function defines how a PRMSBase from an instance of Core is
used to generate a fragment of XACML consisting of only a Rule, together with
an appropriate rule identifier. The action and resource parts of the PRMSBase
are used as the parameters for targetElementEqual to define the match func-
tions for the action and resource parts of the target t .act and t .res respectively.
The other elements of the target, t .sub and t .env , are associated with empty
sequences. The identifiers t .tid and r .rid are generated by genTid1 and genRid

Formalising and Validating RBAC-to-XACML Translation 357

each taking the supplied PRMSBase as the input parameter. The target for the
rule is set to the target defined, the condition is set to an empty sequence as this
evaluates to true, and the effect is set to Permit . Finally, the constraints ensure
the relevant mappings are contained in the lookup functions of the XACML in-
stance being generated. As this is only a small fragment of the overall XACML
policy being generated, there is no need to define a root policy set in x .rootpol .

makeRule : PRMSBase → (XACML × RuleID)

∀ prm : PRMSBase • ∃ x : XACML; t : Target ; r : Rule •
makeRule prm = (x , r .rid) ∧
t .tid = genTid1 prm ∧ t .sub = 〈〉 ∧ t .env = 〈〉 ∧
t .act = 〈targetElementEqual(first prm)〉 ∧
t .res = 〈targetElementEqual(second prm)〉 ∧
r .rid = genRid prm ∧ r .target = t .tid ∧
r .condition = 〈〉 ∧ r .effect = Permit ∧
x .getPolicySet = ∅ ∧ x .getPolicy = ∅ ∧
x .getRule = {r .rid
→ r} ∧ x .getTarget = {t .tid
→ t} ∧ x .rootPol = ∅

The next function, makePolicy, utilises makeRule when building the overall
policy that is constructed from a particular RBAC role. It takes a tuple con-
taining the set of users associated with a role, the role itself and the set of per-
missions associated with the role, and generates pairs consisting of an instance
of XACML along with the element of PolicyID relating to the newly defined
policy. The only parts of the target that are of interest are the target identifier,
t .tid , and the target subject matching functions, t .sub, which is a sequence of
functions that will match any of the users associated with the role. A set of these
functions, one for each user, is created and converted into a sequence to match
the XACML definition. Similarly, r .inPol is generated by creating a set of rules
relating to each of the PRMSBase values and using the sequence function to
convert the set into a sequence. The element of XACML generated is the result
of compactXACML being applied to the set of rules generated and then being
applied to the resulting element of XACML and the policy XACML fragment.

makePolicy : (P User × Role × P PRMSBase) → (XACML × PolicyID)

∀ us : P User ; r : Role; prm : P PRMSBase •
∃ x1, x2 : XACML; t : Target ; p : Policy •

makePolicy(us, r , prm) = (compactXACML{x1, x2}, p.pid) ∧
t .tid = genTid(us, r , prm) ∧
t .act = 〈〉 ∧ t .res = 〈〉 ∧ t .env = 〈〉 ∧
t .sub = sequence {u : us • targetElementEqual u} ∧
p.pid = genPid(us, r , prm) ∧ p.target = t .tid ∧
p.inPol = sequence(ran{perm : prm • makeRule perm}) ∧
p.rca = rulPermitOverRide ∧ p.obli = ∅ ∧
x1 = compactXACML(dom{perm : prm • makeRule perm}) ∧
x2.getPolicySet = ∅ ∧ x2.getPolicy = {p.pid
→ p} ∧
x2.getRule = ∅ ∧ x2.getTarget = {t .tid
→ t} ∧ x2.rootPol = ∅

It is now possible to define the function makeXACML, which takes a set of
roles and generates an equivalent element of XACML. The interesting aspects

358 M. Slaymaker, D. Power, and A. Simpson

are the generation of a policy set from the policies generated; in addition, the
policy set is the compaction of the policies and the policy set defined.

makeXACML : P (PUser × Role × PPRMSBase) → XACML

∀ params : P(PUser × Role × PPRMSBase) •
∃ x1, x2 : XACML; t : Target ; ps : PolicySet •

makeXACML(params) = compactXACML{x1, x2} ∧
t .tid = genTid2 params ∧
t .act = 〈〉 ∧ t .res = 〈〉 ∧ t .sub = 〈〉 ∧ t .env = 〈〉 ∧
ps.psid = genPSid params ∧ ps.target = t .tid ∧
ps.pca = polPermitOverRide ∧ ps.obli = ∅ ∧
ps.inPolSet = sequence({prm : params • Pol(second(makePolicy prm))}) ∧
x1 = compactXACML(dom{prm : params • makePolicy prm}) ∧
x2.getPolicySet = {ps.psid
→ ps} ∧
x2.getPolicy = ∅ ∧ x2.getRule = ∅ ∧
x2.getTarget = {t .tid
→ t} ∧ x2.rootPol = {PolSet ps.psid}

5 Towards an Alloy Model for Formal Analysis

In this section we take the Z models of RBAC and XACML, along with the
translation and helper functions, and produce a corresponding Alloy model. We
have produced a more abstract representation of the Z schemas and functions
for use with the Alloy Analyzer. We have been able to make the Alloy model
of XACML more abstract than the Z model because we are only considering
XACML policies that are the result of translating from an RBAC policy. This has
allowed us to simplify the XACML structure from rules, policies and policy sets
by collapsing it into a simple set of policies. This is possible because the policy
set defined by the translation has a target that matches any request, additionally
we are only considering a single policy set and are utilising the permit override
combining algorithm—so for the purposes of the simplified Alloy model we only
need to consider a single set of policies.

Each policy is modelled as a set of users who have a particular role and the set
of permissions that the same role has. This is equivalent to combining the rules
within a policy into a single rule, which is then mapped into a policy by adding
the subject (user) information of the containing policy. With this compression,
each Alloy policy in the translation represents a single role, containing the details
of the users that are associated with that role and the permissions that role gives
to act on particular resources.

The Alloy model consists of a number of modules. The accesscontrol/types
module defines the signatures and facts that are the main primitives which are
used for defining the core RBAC and XACML models. First we define EvalRes
and then define possible values by extension. The one sig (for ‘signature’) dec-
oration on the definitions of Permit and Deny ensures that any reference to
Permit (respectively Deny) will be the same instance. Next, User, Role, Action
and Resource are defined—with Action and Resource being used to define the
contents of a PRMSBase. A request is then defined as a coupling of an element

Formalising and Validating RBAC-to-XACML Translation 359

of User and an element of PRMSBase, which effectively models a user request-
ing permission to perform an action on a resource. Finally, we add a fact that
ensures each PRMSBase is unique and no two have the same action/resource pair.
module accesscontrol/types
abstract sig EvalRes {}
one sig Permit, Deny extends EvalRes {}
sig User, Role, Action, Resource {}
sig PRMSBase { action : Action, resource : Resource }
sig Request { u : User, p : PRMSBase }
fact uniquePRMSBase { all disj pb1, pb2 : PRMSBase |

pb1.action != pb2.action || pb1.resource != pb2.resource }

The module accesscontrol/rbac is the RBAC model in Alloy, utilising the
definitions of accesscontrol/types. The definition of Core is based on that of
Section 2, where UA is a mapping between Users and Roles, PA is a mapping
between Roles and PRMSBase, and USERS, ROLES and PRMS are subsets of User,
Role and PRMSBase respectively. The relationships are constrained to ensure
that the elements of UA and PA are within USERS, ROLES and PRMS, the set of
roles in UA matches the set of roles in PA (User.UA = PA.PRMSBase), and ROLES
is the set of Roles from PA.PRMSBase. The evalRBAC function takes elements
of Core and Request as input, and returns Permit if the corresponding User
and PRMBase in the request exist in the product of UA and PA in the Core of the
RBAC being used; otherwise it returns Deny.
module accesscontrol/rbac
open accesscontrol/types
sig Core { UA : User -> Role, PA : Role -> PRMSBase,

USERS : set User, ROLES : set Role, PRMS : set PRMSBase }
{ UA in USERS -> ROLES && PA in ROLES -> PRMS
User.UA = PA.PRMSBase && ROLES = PA.PRMSBase }

fun evalRBAC(rbac: Core, req : Request) : EvalRes {
((req.u -> req.p) in ((rbac.UA).(rbac.PA))) => Permit else Deny }

Next, we define a simplified representation of XACML in Alloy. As discussed
at the start of this section, we are only concerned with policies (as opposed to
policy sets) in this model as we can effectively combine the rules into a single
policy. A Policy is simply defined as a set of Users who have a particular Role
and the associated set of permissions. This is abstracted from a set of subjects
that a policy is associated with which contains a number of rules which are
matched by the action resource pair from the PRMSBase. The Role attribute
acts as an identifier for a particular policy to ensure the correct grouping of
Users and PRMSBase are maintained. XACML is then defined as a set of these
policies. The evalXACML function returns Permit if the user and permission of
the request match a user and permission in a policy; otherwise it returns Deny.
module accesscontrol/xacml
open accesscontrol/types
sig Policy { u : set User, r : Role, p : set PRMSBase }
sig XACML { policies : set Policy }
fun evalXACML(x: XACML , req : Request) : EvalRes {

(some pol : x.policies |
((req.u -> req.p) in ((pol.u) -> (pol.p)))) => Permit else Deny }

We now define a number of facts and functions in Alloy that facilitate the
translation of a policy represented as an RBAC Core into an equivalent policy

360 M. Slaymaker, D. Power, and A. Simpson

in XACML. The makePolicy function takes a Core and a Role as input, and
generates a Policy, such that: u is the set of users that have the inputted Role;
p is the set of PRMSbase elements associated with the Role; and role is set to be
the supplied role as an identifier. We can then use this function in makeXACML to
create a set of policies relating to each role in the supplied element of Core. The
created set is then assigned to the policies field of an element of XACML. We
then define a predicate that checks if the result of evaluating a request against
an RBAC policy is the same as the result of applying the same request to the
resulting XACML policy created by converting the RBAC policy. We have also
defined facts that ensure that non-null policies and XACML exist.

module accesscontrol/rbactoxacml
open accesscontrol/rbac
open accesscontrol/xacml
fact PoliciesExist {

all rbac : Core , rol : Role | one pol : Policy |
pol.r = rol && pol.u = rbac.UA.rol && pol.p = rol.(rbac.PA) }

fun makePolicy(rbac : Core , rol : Role) : Policy {
{ pol : Policy | rol in rbac.ROLES && pol.r = rol &&

pol.u = rbac.UA.rol && pol.p = rol.(rbac.PA) } }
fun makeXACML(rbac : Core) : XACML {

{ x : XACML | x.policies = { pol : Policy |
some rol : rbac.ROLES | pol = makePolicy[rbac, rol]}} }

fact XACMLexist {
all rbac : Core | one x : XACML |

x.policies = {pol : Policy | some rol : rbac.ROLES | pol = makePolicy[rbac, rol]} }
pred convert (rbac : Core , req : Request) {

evalRBAC[rbac, req] = evalXACML[makeXACML[rbac], req] }

It is worth considering how Alloy treats functions. Consider the function
makePolicy and the fact PoliciesExist. If this function were defined in Z,
the declaration pol : Policy would indicate that pol ranges over every possible
value of Policy—which is possibly infinite. In Alloy, pol would only range over
the values of Policy contained within the instance being explored—which may
not have a policy meeting the criteria. The fact PoliciesExist is a generator
axiom which ensures that there is a policy within the instance that meets the
criteria.

It is now possible to define an assertion that, for any RBAC policy defined
as a Core, the result from any request will be the same as the result obtained
from applying the request to the resulting translation to an XACML policy.
The assertion uses the convert predicate to check the result from the evalua-
tions match. The result of executing the assertion is shown below—indicating
no counter-example was found.

module accesscontrol/rbactoxacmltest
open accesscontrol/rbactoxacml
assert eq { all rbac : Core, req : Request | convert [rbac, req] }
check eq for 5

Executing "Check eq for 5"
Solver=minisat(jni) Bitwidth=4 MaxSeq=5 SkolemDepth=1 Symmetry=20
12800 vars. 605 primary vars. 32832 clauses. 185ms.
No counterexample found. Assertion may be valid. 26629ms.

Formalising and Validating RBAC-to-XACML Translation 361

6 Discussion

The work described in this paper is driven by a long-term vision: we wish to
balance the flexibility afforded by policy languages such as XACML with the
manageability—provided via abstraction—afforded by the role-based paradigm.
Further, we wish to provide policy writers with a means of establishing that
the policies they write capture their intentions: as legislation increases in this
area, this will become increasingly important. Our goal is assurance, rather than
proof; hence the utilisation of a model checker such as the Alloy Analyzer tool
(as opposed to, say, a theorem prover). In addition, there are many scenarios in
which it is necessary to translate access control policies from one representation
to another in a way that is guaranteed to preserve meaning—thereby giving rise
to a need for formal semantics and a formal transformation process. Examples
include migrating an existing access control policies into a new representation in
a new system, and being able to compare the combined effect of policies written
in different languages in a distributed, heterogeneous environment.

In this paper we have described the work undertaken in translating RBAC
policies into (a formal representation of) XACML. To facilitate this, we have
modelled RBAC and XACML using Z, and developed Z definitions of functions
to perform the translation. In addition to defining the translation functions,
we have also provided an abstract model in Alloy, which we have used to gain
a level of assurance about our translations. Although we have only considered
core RBAC, in [10] consideration is given as to how a hierarchal RBAC policy
might be converted into a core RBAC policy; as such, we are confident that the
techniques described in this paper can be extended in a straightforward fashion
to deal with more complex cases.

Others within the community have considered formal descriptions of XACML
(notably via VDM++ [2]) and used XACML as a target representation for
analysis performed in RW [16]. In [7], the use of Alloy to verify a subset of
the XACML language is described. In [5] the authors describe a tool—called
Margrave—which translates access control policies written in XACML into Bi-
nary Decision Diagrams (BDDs). Finally, in [6]—a position paper—the authors
propose an approach for conformance checking of XACML policies based on ex-
isting toolsets and techniques. Our focus in this paper has not been the formal
representations of access control policies per se, but, rather, the consideration of
how such models might form the basis for transformation.

There is much left to do in terms of marrying formality, expressibility and
usability. One immediate area of future work involves extending the work of this
paper to produce an XACML model capable of dealing with the various com-
bining algorithms, as well as functions for translating hierarchal RBAC policies
without having to flatten them into a core representation. On a more practical
level, we have started the development of tool support for the construction of
abstract representations of policies—which can then be formally analysed prior
to mapping to XACML for deployment. Finally, our mapping from Z to Alloy
is currently undertaken in a manual fashion—which has clear drawbacks; this
process will need to be automated as we move forward with our work.

362 M. Slaymaker, D. Power, and A. Simpson

References

1. Abou El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization Based Access
Control. In: 4th IEEE International Workshop on Policies for Distributed Systems
and Networks (Policy 2003) (June 2003)

2. Bryans, J., Fitzgerald, J.S.: Formal Engineering of XACML Access Control Policies
in VDM++. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 37–56. Springer, Heidelberg (2007),
http://dblp.uni-trier.de/db/conf/icfem/icfem2007.html#BryansF07

3. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference (1992)

4. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-based access control. Artech
House Publishers, Boston (2003)

5. Fisler, K., Krishnamurthi, S., Meyerovich, L., Tshantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of ICSE 2005
(2005)

6. Hu, V.C., Martin, E., Hwang, J., Xie, T.: Conformance checking of access con-
trol policies specified in XACML. In: Proceedings of the 1st IEEE International
Workshop on Security in Software Engineering (IWSSE 2007), Beijing, China, July
2007, pp. 275–280 (2007)

7. Hughes, G., Bultan, T.: Automated verification of XACML policies using a SAT
solver. In: Proceedings of the Workshop on Web Quality, Verification and Valida-
tion, WQVV 2007 (2007)

8. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

9. Kondo, S., Iwaihara, M., Yoshikawa, M., Torato, M.: Extending RBAC for large
enterprises and its quantitative risk evaluation. In: The 8th IFIP conference on
e-Business, e-Services, and e-Society, pp. 99–112 (2008)

10. Power, D.J., Slaymaker, M.A., Simpson, A.C.: On formalising and normalising
role-based access control systems. The Computer Journal 52(3), 303–325 (2009)

11. Simpson, A.C., Power, D.J., Russell, D., Slaymaker, M.A., Kouadri-Mostefaoui,
G., Ma, X., Wilson, G.: A healthcare-driven framework for facilitating the secure
sharing of data across organisational boundaries. Studies in Health Technology and
Informatics 138, 3–12 (2008)

12. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall Inter-
national, Englewood Cliffs (1992)

13. Spivey, J.M.: The Fuzz Manual, 2nd edn. (2000)
14. Stepney, S., Lord, S.P.: Formal specification of an access control system. Software—

Practice and Experience 17(9), 575–593 (1987)
15. Swift, M.M., Brundrett, P., Van Dyke, C., Garg, P., Hopkins, A., Chan, S., Go-

ertzel, M., Jensenworth, G.: Improving the granularity of access control in windows
NT. In: Proceedings of the Sixth ACM symposium on Access control models and
technologies (SACMAT 2001), pp. 87–96 (2001)

16. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
in XACML. In: FMSE 2004: Proceedings of the 2004 ACM workshop on Formal
methods in security engineering, pp. 56–65. ACM Press, New York (2004)

http://dblp.uni-trier.de/db/conf/icfem/icfem2007.html#BryansF07

Towards Formally Templated
Relational Database Representations in Z

Nicolas Wu and Andrew Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
{nicolas.wu,andrew.simpson}@comlab.ox.ac.uk

Abstract. Many authors have drawn parallels between the relational
model of data and the formal description technique Z, yet none of these
contributions have managed to be both close to the relational model
in terms of providing a practical means of database design and fully
formal in terms of providing an appropriate metamodel. We compare
these various formalisms, and suggest how the use of the formal template
approach of Amálio et al might help to overcome some of the issues faced.
We demonstrate the application of this work via a short case study, and
suggest further enhancements to the template language.

1 Introduction

The success of the relational model of data [1] may be attributed to the fact
that it is easy to understand, and that the interaction with its databases through
SQL is intuitive. The practical design of relational databases has traditionally fo-
cused on the use of approaches such as entity-relationship diagrams and, recently,
UML. These methods are semi-formal: despite having a formal syntax, their se-
mantics are loose, allowing for rapid prototyping and pragmatic development—
aspects which have contributed to the success of UML in the wider software en-
gineering context. However, since their semantics are not formalised, the models
they produce can be ambiguous, possibly inconsistent, and cannot be analysed
mechanically. Furthermore, the use of graphical notations means that the focus
is often exclusively on the conceptual relationships between entities; issues per-
taining to constraints, which strengthen those relationships, are often ignored.
Constraints are important because databases represent some structure that has
a certain constraining context (the ‘business rules’), and the database needs to
faithfully represent that structure—yet this aspect is often overlooked in prac-
tice. Thus, the potential value of formal description techniques in the design of
relational databases is clear: they provide a convenient means of expressing and
reasoning about constraints early on in the development process.

We are concerned with the accurate representation of integrity constraints
as pre- and post-conditions in a notation that supports reasoning about those
constraints. Capturing integrity constraints is in itself useful, but doing so in a
formal language that allows the mechanical analysis and manipulation of those

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 363–376, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

364 N. Wu and A. Simpson

conditions has the potential to provide assurance of certain properties of the
database at the design stage, rather than through consistency checks before
transactions commit. The Z notation [2] is a respectable candidate as a means
of working with constraints: Z and the relational model both have their roots
in predicate calculus and set theory, with these similarities having been noted
before [3]. Indeed, several authors have made use of this connection in an educa-
tional context [4,5], by leveraging not only the logical and philosophical common
ground of the two notations, but also the structural similarities that they share.

Other formal languages have been investigated as tools to aid in the design
and development of databases. Notably, Schewe et al [6], Hayes [7], Mammar and
Laleau [8,9], Laleau and Polack [10,11] and Davies et al [12] have all used formal
methods other than Z, typically with a particular focus on deriving database
applications from their specifications. Our interest is in the design methodology
that surrounds the creation of a database specification, and we focus on Z since
it has had a long history of success as a specification language, and there are
several examples of its use for database design [13]. Furthermore, it is arguably
the most widely known of all formal methods, and is relatively accessible for a
formal notation.

Although various methods for modelling relational databases in Z have been
suggested, to the best of the authors’ knowledge, there has been no independent
attempt to compare the various formalisations, or to document the development
of these ideas. This paper considers the three key approaches from the literature,
and suggests how a fully formal model of relational databases, that also reflects
the close ties between Z and the relational model might be achieved. In general,
the success of previous attempts to formalise databases in Z have been limited in
one of two respects: they are either too far from being used as a tool for database
design, or they are not fully formal. In this paper we propose a novel solution
to this problem, based on the Formal Template Language (the FTL) introduced
by Amálio et al [14]. The FTL was developed as a means of describing object
oriented design patterns in Z, and we note that the formalism of object oriented
approaches is similar to the schemas used to describe the relational model. The
application of the FTL in our context is beneficial not only because it allows us
to specify a formal database framework, but also because it raises issues that
motivate extensions to the FTL.

We have two key motivations: first, we endeavour to show that, to a certain
extent, Z can be used as a practical development tool for database design; second,
we wish to motivate further research into ways in which Z can be templated.

2 Analysis of Approaches in Z

Relational Model Schemas
Early work from Sufrin et al [15] (later expanded by Hayes [16]) contained an
example of a schematic description of the relational model. We start, then, with a
description of the relational model that follows their approach before considering
the currently accepted approaches to relational database representations in Z.

Towards Formally Templated Relational Database Representations in Z 365

When using this approach, it is assumed that there are given sets Attributes and
Entities , which contain all the attributes and entities that might exist. From
these given sets, tuples are defined as such:

Tuple[Attributes ,Entities] == Attributes � �→ Entities

This representation of a tuple is simply a function from Attributes without
specific domains to Entities ; we leave the specification of what might be consid-
ered a valid tuple until later.

Relations are nothing more than sets of tuples with common domains:

Relation[Attributes ,Entities] == { relation : P Tuple[Attributes ,Entities] |
(∀ tuple1, tuple2 : relation • dom tuple1 = dom tuple2) }

Using these definitions, operations such as relational union, intersection and
difference are already defined, since we can use the usual set operators on our
sets of tuples. Operations such as join can be defined explicitly. To do so, we
first define an equivalence relation (often termed the compatibility between finite
mappings) that determines if two tuples agree on their common fields:

[Attributes ,Entities]
∼= : Tuple[Attributes ,Entities] ↔ Tuple[Attributes ,Entities]

∀ tuple1, tuple2 : Tuple[Attributes ,Entities] •
tuple1 ∼= tuple2 ⇔ (dom tuple2) � tuple1 = (dom tuple1) � tuple2

Using this relation, the definition of join becomes relatively straightforward:

[Attributes ,Entities]
�� : Relation[Attributes ,Entities] × Relation[Attributes ,Entities]

→ Relation[Attributes ,Entities]
∀ relation1, relation2 : Relation[Attributes ,Entities] •

relation1 �� relation2 = { tuple1 : relation1; tuple2 : relation2 |
tuple1 ∼= tuple2 • tuple1 ∪ tuple2 }

At this point we might note that there is no type checking in our definition,
and that mal-formed relations could well be defined. To resolve this, we need to
define a TypedRelation:

TypedRelation[Attributes ,Entities]
relation : Relation[Attributes ,Entities]; types : Attributes ↔ Entities
∀ tuple : relation • dom tuple = dom types ∧ tuple ⊆ types

In this example, the implementation details of not only the relational model,
but also the implied databases that will use that model, are made explicit and
unambiguous. This is an important feature of this approach: it is fully formal,
and can therefore be checked by tools for consistency and correctness.

366 N. Wu and A. Simpson

Our characterisation of databases in this way could well continue, resulting
in both the specification of a full database management system, and whatever
database instance we might require. The definitions we have introduced so far
have been formal, and completely unambiguous. Using the schemas above, one
could well start designing databases and impose constraints on the relations
and tuples using the Z notation. However, we must admit that the focus of
these schemas is more concerned with the details of the database management
system itself, and could be regarded as rather implementation-focused. In terms
of its use as a means of assisting in database design, it is far from that domain;
furthermore, the details of implementation are too closely tied with the design
of the database itself. We are concerned with using Z as a development platform
for particular database instances, and would favour a style that is closer to
the problem domain. We might also note that in terms of type checking, this
definition is not making full use of Z’s in-built system, and has had to resort to
an explicit check based on sets. Although the intention is clear, the details may
obscure the bigger picture, since we wish to work at a level where we can assume
that the database management system exists—and where we are interested in
designing a particular database with appropriate constraints.

Mapping Schemas and Relations
Edmond [4,17] focuses extensively on the mapping between Z as a specification
language and SQL as an implementation language. This gives us a further mo-
tivation for using Z as a means of describing the constraints that are found in a
database: problems that can be expressed in Z can be easily ported to database
applications that support SQL. We take the well-known BirthdayBook example
[2], where our task is to define a means of storing a set of birthdays. The def-
inition is quite natural, making use of the function birthday for the mapping
between names and dates, and the variable known.

BirthdayBook =̂ [known : P NAME ; birthday : NAME �→ DATE |
known = dom birthday]

We also need to provide a schema that represents the relation that will store
the information. We use a relation called Person to store the details of the
people whose birthdays we are interested in. Here we use schemas as a means of
describing the relation type, since this provides a simple mechanism for mapping
attributes to their values. Using schemas as a means of representing tuple types
allows us to use Z to directly represent attribute domains, such as NAME and
DATE , as given sets. The database holds a set people that represents the tuples
in our relation. In our small example, only one relation is required.

Person =̂ [name : NAME ; birth : DATE]

BirthdayDatabase =̂ [people : P Person |
{person : people • person.name} = # people]

Towards Formally Templated Relational Database Representations in Z 367

The database schema is also used to enforce constraints on the relations con-
tained within, such as the primary key constraint described here that establishes
that name is a primary key.

To link the BirthdayBook description with the BirthdayDatabase, we define
a mapping between the two. The schema Mapping can be used as a coupling
invariant that links the abstract BirthdayBook schema to the more concrete
BirthdayDatabase schema. Operations on BirthdayBook can then be translated
into operations on BirthdayDatabase in the usual way.

Mapping =̂ [BirthdayBook ; BirthdayDatabase |
birthday = {person : people • person.name �→ person.birth}]

Edmond’s contribution considers at great length the issue of Z as a means of
information modelling, and the transition between Z and SQL. The focus of the
work is not on providing a framework for designing databases in Z; rather, the
developer is to acquire general skills for developing databases, and must reimple-
ment key features such as primary key constraints in every instance. The focus
of Edmond’s work is on designing representations in Z and porting them to SQL,
rather than on using Z as a means of specifying SQL constraints more directly.
One might argue that this is not a difficult task; a counter-argument, though,
is that any provision of tools should include basic guidelines for problems that
are often encountered, thus saving time, and enabling thoughts to be directed
towards the real task at hand. Although this work indicates a method for trans-
lating between Z and SQL, it does not provide a design framework, or specific
instruction with regards to database design methodology in terms of artifacts
that are to be included in schema descriptions.

Database Relation Schemas
Possibly the most comprehensive attempt at using Z as a means of developing
databases is found in the work of de Barros (see, for example, [18] and [19]), which
is focused on the provision of a framework, or pattern of development, to enable
software engineers to develop database specifications using Z. Guidelines are
suggested to solve often visited problems, and a clear step by step methodology
for specifying complete database systems with constraints is presented. This work
uses a slightly different approach to modelling the tuples of the database, and is
focused on bringing the Z description of databases even closer to its relational
roots, by allowing constraints to be expressed at various different levels.

Particular emphasis is made on the difference between the relation intention,
and extension, and this is a feature that sets this work apart from that of Ed-
mond, since it allows constraints to be expressed on a more local, per relation,
level, as well as on the global database level. In this context, the relation inten-
tion indicates the attributes and their domains that will constitute the relation’s
type. Since the relation intention is considered to be the type of a relation, it is
written in capitals, as such:

RELATION =̂ [Attribute1 : DOMAIN1; Attribute2 : DOMAIN2; . . .]

368 N. Wu and A. Simpson

Each relation intention describes the range of possible tuples that a tuple might
validly take, whether it exists in the database or not. The relation extension is
its counterpart, and records the tuples that are present in the database:

Relation =̂ [relation : P RELATION | KEY OF relation Attributei ; . . .]

The relation extension also holds various constraints local to the relation; we have
included the predicate KEY OF that may, or may not, appear in a definition.

[A,B]
KEY OF : PA → (A → B) → BOOL
∀ relation : PA; attribute : (A → B) • KEY OF relation attribute ⇔

(∀ t1, t2 : relation • attribute t1 = attribute t2 ⇔ t1 = t2)

Other predicates such as REQUIRED are defined similarly. (Whereas the pre-
vious works had focused on completely determined database values, de Barros
introduced null values into his model within each attribute domain.)

Using Z schemas as relational schemas affords us the convenience of referring
to attributes by name, but this is at the cost of a reduced set of standard
operations on the schemas themselves: the relations based on set functions of
Sufrin et al gave us most of the relational operators for free, and we needed only
to define join. Using Z schema operators in this context has already been explored
in [20], which concludes that higher order extensions to Z would be required to
fully support a “schemas as schemas” representation where general operators
can be defined to support relational schema manipulation using Z schemas as
relational ones. Nevertheless, de Barros demonstrates that any specific required
operator between two relations can be crafted to work appropriately.

The relations that make up the database are combined in a single schema:

Database =̂ [Relation1; Relation2; . . . |
FOR KEY Relationi ForeignKey Relationj PrimaryKey; . . .]

The Database schema is also used as a means of storing global constraints, such
as the attributes that are to be considered as foreign keys. In these definitions, de
Barros makes it clear that special functions such as KEY OF and FOR KEY
are syntactic sugar for generic definitions that allow the reuse of commonly
required predicates. Intuitively, these definitions are straightforward, but a close
inspection of their definitions reveals that they are not as formal as we would
desire—certainly they are insufficient for a fully formal metamodel.

de Barros’ contribution is considerable; he offers a well documented guide
to specifying database systems in Z and his method ought to help database
designers to find ambiguities and deficiencies in the requirements specification.
In particular, the work makes the formal specification of such systems accessible.
Further, the method that he suggests covers many aspects of design, and suggests
a good level of abstraction to deal with problems that require a database.

There are several things to note. First, there is the implicit assumption that
the use of an informal “. . .” in a schema description is unambiguous and mean-
ingful. This is not an unreasonable assumption when the method proposed is

Towards Formally Templated Relational Database Representations in Z 369

followed by a developer, but means that the work cannot be automated without
further formalisation. Second, much of the work that is detailed is repetitive,
such as the required definitions of certain operators (insertions, for example),
for each relation that is constructed. Some repetition is avoided through generic
macros like KEY OF , but these only represent a fraction of the requirements
that are needed in a specification. This repetition is tedious, yet necessary since
the schemas produced are crucial in order for the system to make sense. Clearly,
there is scope for automation here, and one might look to higher order functions
for this purpose, but these are not within the framework that Z offers. Finally,
there is a sleight of hand when discussing attributes as candidate keys, and the
other suggested macro style predicates. Although the intention of this work is
clear, the definitions of certain key functions, such as KEY OF , are not part of
the syntax of Z, since the type BOOL does not exist as a basic construct. This
approach is understandable as it is desirable to capture the repetitive nature
of the predicates they express. Leaving aside this criticism, there are further
technical difficulties. The type of KEY OF takes two generic parameters, yet at
the point of use in the Relation schema, we see that it takes an attribute as an
argument. This attribute would have type DOMAINi , yet the function requires
the attribute to have generic type A → B , so the substitution is not valid. It is
natural for such errors to creep into a complicated specification, and these are
usually caught by a type checker. However, due to the informal nature of some
of the schemas described (in part, necessitated by a lack of second-order theory,
as noted in [20]), no such type checking is possible. These problems all arise due
to informal notation that is used when describing the specification method, and
the lesson to be learnt is clear: the automated checking of our specifications is
necessary, since we cannot rely on our specifications to be correctly defined.

Despite its intention to provide a formal framework of development with spe-
cific instructions, or a prescription for a means of development, there are clear
limitations due to its lack of formal precision when considering some of the
functions that are intended to be reused in different contexts.

In this section we have discussed previous work that has considered Z as a
means of designing databases. For the remainder of this paper, we do not focus
on the design of databases per se, but, rather, we concentrate on how previous
expositions can be further formalised. In each of the above, there is a tension
between the description of the formulation of a solution to the representation
of databases, and an instantiation of that solution. This tension exists because
the role of Z is mixed—it serves as both a meta-language used to describe the
form that database instances should take, and as the language used to describe
a particular instance. This, inevitably, leads to confusion.

3 Formal Templates for Relational Schemas

In this section, we provide an overview of the pertinent features of the FTL; we
also provide an example of a database description using this notation using the
guidelines set out by de Barros.

370 N. Wu and A. Simpson

Although developed for a different context (a means of providing a framework
to express object oriented patterns in Z), the FTL is a promising approach to
generics that enables the formal description of templated schemas, which can be
instantiated to create design specifications for databases.

Formal templates aim to elucidate informal template descriptions such as

Name =̂ [declarations | predicates]
where there is no syntactic separation between what can be considered part
of the specification itself, and what is to be specialised for a specific purpose.
The tokens Name, declarations , and predicates are intended to be placeholders
for other variable names and expressions, yet they appear to be part of the
specification itself. Such a definition might be described more formally by the
following template:

�Name� =̂ [��declaration�� | ��predicate��]

Templates such as this are to be regarded as nothing more than sequences of
characters, where the special symbols � and � are used to denote placehold-
ers for other sequences of characters, and � and � indicate that elements inside
these brackets are to be replaced by multiple occurrences. Elements found in
placeholders are replaced by strings determined by a structure that represents
an environment within which the template should be evaluated.

The structure used to hold the desired mappings is a tree of environments,
where each environment indicates the mappings for placeholders not in lists,
and the branches of a tree hold environments intended to hold mappings for the
placeholders in lists. (For brevity we have simplified the exposition and removed
certain features, such as template choice, that we do not make use of in this
work. For full details see [21].) As such, we find that these representations are
difficult to work with, but for the purposes of this paper, we maintain the original
structure proposed by Amálio.

This kind of replacement is between arbitrary strings, and need not apply
only to Z schemas: the intention is that it could be used for any language. This
means that even if a template is designed with Z replacement in mind, the result
of applying a mapping to this template need not make sense in Z. In order to
apply semantics to the result of these substitutions, we assume the existence
of a predicate that indicates whether or not an expression is a well-formed and
type-correct Z specification. This is used to restrict templates and mappings to
those that, when used in conjunction, produce meaningful specifications.

We have already discussed the success Z has had in the context of teaching
database design and we now focus on improving its formality to a point where
database schemas can automatically be generated from templates. The devel-
opment method suggested by de Barros is the most thorough, and we proceed
by applying the FTL to this description in order to further formalise its ex-
position, and to overcome the shortcomings described in the previous section.
The application of the FTL to this description of a database system is relatively
straightforward, since we need only replace the various elements of the database
description with templated counterparts.

Towards Formally Templated Relational Database Representations in Z 371

The relation intention is nothing more than a schema that holds a list of the
attributes that its corresponding relation should have.

�RELATION�
��attribute� : �ATTRIBUTE��

This template can be instantiated with the following placeholder mapping to
generate the schema for our birthday database example:

tree({RELATION �→ PERSON },
〈tree({attribute �→ name,ATTRIBUTE �→ NAME}, 〈〉),
tree({attribute �→ birthday,ATTRIBUTE �→ DATE}, 〈〉)〉)

PERSON =̂ [name : NAME ; birthday : DATE]

The relation extension can be adapted similarly, and here we have embedded
the primary key constraint directly into the schema:

�Relation�
�relations� : P�RELATION�
(∀ t1, t2 : �relations� • �t1.�key� = t2.�key��∧ ⇔ t1 = t2)

The primary key constraint that we use here is similar to that of de Barros, but
with a modification in the way composite keys are handled: we have added the
parameter ∧ to the template list brackets as a list separator. The list separator
is an optional argument to template list brackets, and specifies a sequence of
characters that is to separate fragments generated by a particular list. (We shall
see an example of its use in an instantiation of a composite key later.) For now,
we instantiate this template with the following mapping, where a single attribute
serves as a key, generating the relation extension Person:

tree({Relation �→ Person, relations �→ people,RELATION �→ PERSON },
〈tree({key �→ name}, 〈〉)〉)

Person =̂
[people : P PERSON | ∀ t1, t2 : people • t1.name = t2.name ⇔ t1 = t2]

The inclusion of a foreign key constraint is also easily demonstrated. To do so,
we instantiate another relation through two more schemas, and place the foreign
key constraint in a separate database schema that represents the overall database
state. First, we define a relation Author that will use the name attribute of the
Person relation as a foreign key.

As with the Person relation, we first instantiate the relation intention:

tree({RELATION �→ AUTHOR},
〈tree({attribute �→ title,ATTRIBUTE �→ TITLE}, 〈〉),
tree({attribute �→ author ,ATTRIBUTE �→ NAME}, 〈〉)〉)

372 N. Wu and A. Simpson

This mapping produces the following schema:

AUTHOR =̂ [title : TITLE ; author : NAME]

Now we provide a mapping to be used with the relation extension template,
which results in the Author schema:

tree({Relation �→ Author , relations �→ authors ,RELATION �→ AUTHOR},
〈tree({key �→ title}, 〈〉), tree({key �→ author}, 〈〉)〉)

Author =̂ [authors : P AUTHOR | ∀ t1, t2 : authors •
t1.title = t2.title ∧ t1.author = t2.author ⇔ t1 = t2]

Here we have made use of the list separator, mentioned previously, to help with
the definition of a composite key parameter, made up of both title and author .

Finally, we define the database template that contains all the relations, as
well as any foreign key constraints that might be present.

Database
��Relation��
�∀ tn : �relationnative� •

(∃1 tf : �relationforeign� • �tn .�keynative� = tf .�keyforeign��∧)�

This definition makes use of two separate template lists. The FTL instantiates
lists using replacements in the order that they are found in the environment
until no appropriate substitutions are available for the list. We use the following
environment to instantiate the database schema and produce Database:

tree({},
〈tree({Relation �→ Person,

relationnative �→ authors , relationforeign �→ people},
〈tree({keynative = author , keyforeign = name}, 〈〉)〉),

tree({Relation �→ Author}, 〈〉)〉)

Database =̂ [Person; Author | ∀ tn : authors •
(∃1 tf : people • tn .author = tf .name)]

We have used the FTL to help provide a clear distinction between the compo-
nents of the specification that are part of the database framework, and those that
are associated with a particular instantiation. To this end, our application of the
FTL has been successful, and in formalising this distinction we have gained the
ability to mechanically produce a range of schemas from templates.

To further our example, we might consider an auxiliary template that supports
the insertion of data into its associated schema.

�Relation�Insert
ΔDatabase; ΞDatabase \ (�relations�)
�relations�? : P�RELATION�
�relations�′ = �relations� ∪�relations�?

Towards Formally Templated Relational Database Representations in Z 373

This can be instantiated with the environments used for Person and Author .
Once instantiated with the Person environment, we have the following schema:

PersonInsert
ΔDatabase; ΞDatabase \ (people); people? : P PERSON
people ′ = people ∪ people?

Encapsulating the general form of the auxiliary schemas with a template in
this way saves us from having to manually define a whole family of schemas
that are related, and relatively routine to derive. Typically, we would expect
there to be many different relations, and a number of auxiliary schemas for
each of those relations, such as schemas to initialise the relation and others to
delete records. Without the FTL we would have to design each of these schemas
manually, and be careful that each specification is correct. By using templates,
this mundane work is avoided since schemas can be mechanically produced from
the appropriate environments.

In addition, Amálio has shown that the use of FTL also brings the possibil-
ity of performing meta-proofs on templates, allowing certain proof obligations
on sets of related schemas to be discharged once for all. This is made possible
by proving a meta-theorem concerning the template that is general enough to
cover any instantiations of that template. This would certainly be of use for dis-
charging obligations of many of the supporting schemas that surround database
specifications, such as state initialisations.

4 Extending the Formal Template Language

The previous section has shown how the application of templates to database
descriptions in Z is beneficial, and we have demonstrated how this formalises
the specification of a framework of schemas. The key observation of this paper
is that although the use of the FTL is useful in this context and holds promising
results, there are a number of shortcomings that need to be addressed in order
to make its application truly practical for our purposes. Some of these issues
have been addressed by a prototype tool developed by the authors that allows
schemas to be named, and to be automatically instantiated from templates and
environments. We outline our solution in this section.

Our examples avoid the explicit naming of certain useful predicates, and have
resorted to writing the predicates for primary and foreign keys in place, rather
than referring to them as template fragments. This can certainly be considered
a regression, since de Barros’s KEY OF function enabled a succinct, param-
eterised predicate to be used where appropriate. Indeed, we have made these
omissions since the original specification of the FTL does not have adequate
machinery to support, amongst other things, naming and referencing templates.
(The FTL allows certain parts of the template to be optional, but this is not the
same as using named template substitutions when they are desired.)

It is tempting to use the name of the schema as the formal template name. For
example, we might have called the templates we defined earlier �RELATION�,

374 N. Wu and A. Simpson

�Relation�, and Database, depending on the schema name that was involved.
However, this approach is not satisfactory since these string fragments are inci-
dental parts of the template definition.

Templates are nothing more than sequences of characters, so we can validly
assign a template fragment as a sequence of characters bound to a Z variable:

KEY OF == (∀ t1, t2 : �relation� • t1.�key� = t2.�key� ⇔ t1 = t2)

By modifying the original template, we can make use of this reference:

�Relation�
�relation� : P�RELATION�
�KEY OF�

Here, the placeholder �KEY OF� does not hold an ordinary variable, but
rather, it can be read as a placeholder for the appropriate template. However,
when we allow this kind of substitution, there are still problems that need to be
addressed. Importing one template into another like this implicitly adds more
placeholders that need to be initialised by the environment mapping. The diffi-
culty lies in the possibility of recursive template inclusion—since some of these
mappings could point to further templates—and how this might be appropri-
ately handled. If left unchecked then some template definitions are impossible to
evaluate, whilst checking for these recursions will require the notion of template
dependency tracking, and this is an issue that we have not yet resolved.

An inconvenience of the FTL is the rather unwieldy nature of its instantiation
environments, where nested tree structures are required to instantiate nested lists
of placeholders. These environments are required to produce a finished database
specification, and so they become an integral part of the design process where
any specific constraints are expressed as the target of a placeholder. The envi-
ronments of the FTL somewhat obscure this important role, and it is desirable
to express environments in a form that more closely captures the salient fea-
tures of schemas. Our approach to facilitating the definition of environments is
to use templates as a means of generating instantiation environments from valid
strings. To this end, our tool can make use of templates to generate specific
parsers that create environments from parsed strings; each basic template con-
struct produces a particular parser, and parser combinator functions are used
to produce an overall parser that represents an entire template. This allows the
user to define templates that accept “minimal schemas” as input, and derive
all the related schemas from the environments produced, in combination with
the relevant auxiliary templates. Of course, not all templates can be used “in
reverse” through this process, but this solution has proved to be effective for
practical use cases.

5 Conclusions

There are two key observations that we have made in this paper. First, we have
noted that although using Z as a framework that enforces constraints in the

Towards Formally Templated Relational Database Representations in Z 375

design of relational databases is considered a viable method, it is not formal in
every aspect. When using Z to make design recommendations, rather than to
design specifications directly, we find that there is no separation between these
two different uses for Z, and that this leads to difficulties. It is to this end that
using formal templates is useful, and we anticipate that to some extent using the
FTL can alleviate this problem. Our second observation is that using the FTL in
our context has raised some interesting avenues for future research. Primarily, we
saw that the original FTL lacks any means of referring to templates by name,
and that template substitution is impossible. Such a feature is important in
making templates more readable and flexible, especially for our purposes, where
design recommendations are the purpose of using Z.

There are other features that are desirable for a notation that can describe
formal frameworks of development in Z. For example, we see that in many of
our definitions, the use of different cases has semantics attached: typically, upper
case, lower case, and camel case names respectively represent types, variables and
schemas. This convention can be maintained in the names of the template substi-
tution parameters, but at present there is no way to enforce the preservation of
this naming convention on the schema level. At present, our tool automatically
augments environments that are created by using its parsers generated from
templates with mappings from all keywords in their various cases, and maps
these to values with their cases modified in similar ways. Despite these short-
comings, using the FTL to formalise database metamodels allows the generation
of database schema representations in Z from instantiation environments. Its use
clarifies ambiguities that appear in previous applications of Z in this area, and
allows us to further focus on the design issues that pertain to a specific database.

Finally, we note that there are similarities between our descriptions of rela-
tions and objects in Z for which the FTL was designed. The resemblance of the
work of de Barros, compared to that of Hall [22], in representing objects, is signif-
icant. In Hall’s work we find almost identical definitions for class intentions and
extensions as we have seen for relations: the main difference is that objects have
a notion of self, and this can easily be understood as a special attribute that is
a primary key candidate. This resemblance in terms of Z specifications is partic-
ularly revealing, since it points to similarities between the relational model and
object class representations. Indeed, this connection has already been addressed
in the well known Object-Relation Mapping, but the fact that the similarity is
so easily demonstrated in Z is testimony to its abstract descriptive power.

References

1. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 13(6), 377–387 (1970)

2. Spivey, J.M.: The Z notation: A Reference Manual. Prentice-Hall, Englewood Cliffs
(1992)

3. van Diepen, M.J., van Hee, K.M.: A Formal Semantics for Z and the Link between
Z and the Relational Algebra. In: Langmaack, H., Hoare, C.A.R., Bjorner, D. (eds.)
VDM 1990. LNCS, vol. 428, pp. 526–551. Springer, Heidelberg (1990)

376 N. Wu and A. Simpson

4. Edmond, D.: Information Modeling: Specification and Implementation. Prentice-
Hall, Englewood Cliffs (1992)

5. Davies, J.W.M., Simpson, A.C., Martin, A.P.: Teaching Formal Methods in Con-
text. In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 185–202.
Springer, Heidelberg (2004)

6. Schewe, K.D., Schmidt, J.W., Wetzel, I.: Specification and refinement in an inte-
grated database application environment. In: Prehn, S., Toetenel, H. (eds.) VDM
1991. LNCS, vol. 551, pp. 496–510. Springer, Heidelberg (1991)

7. Hayes, I.: VDM and Z: A comparative case study. Formal Aspects of Comput-
ing 4(1), 76–99 (1992)

8. Mammar, A., Laleau, R.: Design of an automatic prover dedicated to the refinement
of database applications. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 834–854. Springer, Heidelberg (2003)

9. Mammar, A., Laleau, R.: A formal approach based on UML and B for the specifi-
cation and development of database applications. Automated Software Engineer-
ing 13(4), 497–528 (2006)

10. Laleau, R., Polack, F.: Specification of integrity-preserving operations in infor-
mation systems by using a formal UML-based language. Information & Software
Technology 43(12), 693–704 (2001)

11. Laleau, R., Polack, F.: Using formal metamodels to check consistency of func-
tional views in information systems specification. Information & Software Technol-
ogy 50(7-8), 797–814 (2008)

12. Davies, J.W.M., Welch, J., Cavarra, A.L., Crichton, E.: On the Generation of
Object Databases using Booster. In: Proceedings of the 11th IEEE Conference on
the Engineering of Complex Computer Systems (2006)

13. Gray, D.: The Formal Specification of a Small Bookshop Information System. IEEE
Transactions on Software Engineering 14(2), 263–272 (1988)

14. Amálio, N., Stepney, S., Polack, F.: Formal Proof from UML Models. In: Davies,
J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004)

15. Sufrin, B.A., Morgan, C.C., Sørensen, I.H., Hayes, I.J.: Notes for a Z handbook.
Programming Research Group, Oxford University Computing Laboratory (1984)

16. Hayes, I.J., Jones, C.B., Nicholls, J.E.: Understanding the differences between
VDM and Z. ACM SIGSOFT Software Engineering Notes 19(3), 75–81 (1994)

17. Edmond, D.: Refining Database Systems. In: Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1995. LNCS, vol. 967, pp. 25–44. Springer, Heidelberg (1995)

18. de Barros, R.S.M.: Deriving Relational Database Programs from Formal Specifica-
tions. In: Naftalin, M., Bertrán, M., Denvir, T. (eds.) FME 1994. LNCS, vol. 873,
p. 703. Springer, Heidelberg (1994)

19. de Barros, R.S.M.: On the Formal Specification and Derivation of Relational
Database Applications. PhD thesis, Dept. of Computing Science, University of
Glasgow (1994)

20. Martin, A.P., Simpson, A.C.: Generalising the Z schema calculus: database schemas
and beyond. In: Proceedings of APSEC 2003, pp. 28–37 (2003)

21. Amálio, N., Stepney, S., Polack, F.: A Formal Template Language Enabling
Metaproof. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 252–267. Springer, Heidelberg (2006)

22. Hall, A.: Specifying and Interpreting Class Hierarchies in Z. In: Proceedings of the
1994 Z User Workshop, pp. 120–138 (1994)

Translating Z to Alloy

Petra Malik, Lindsay Groves, and Clare Lenihan

Victoria University, Wellington, New Zealand
Petra.Malik@ecs.vuw.ac.nz,

Lindsay.Groves@ecs.vuw.ac.nz,
Clare.Lenihan@ecs.vuw.ac.nz

Abstract. Few tools are available to help with the difficult task of val-
idating that a Z specification captures its intended meaning. One tool
that has been proven to be useful for validating specifications is the Alloy
Analyzer, an interactive tool for checking and visualising Alloy models.
However, Z specifications need to be translated to Alloy notation to make
use of the Alloy Analyzer. These translations have been performed man-
ually so far, which is a cumbersome and error-prone activity. The aim of
this paper is to explore to what extent this process can be automated.

The paper identifies a subset of Z that can be straightforwardly trans-
lated to Alloy, and the translation for this subset is formalised. More com-
plex constructs, like schemas, are harder to translate. The paper gives
a brief overview of the problems, and discusses alternative translation
approaches.

1 Introduction

The Z notation [18,8] has been widely used for the design and specification of
computing systems, however, one of the barriers to more widespread use of Z
is the lack of tool support. Existing Z tools provide only limited help with the
difficult task of validating that a Z specification captures its intended meaning.
A parser and typechecker [12,19] can be used to ensure that specifications are
correct with regard to syntax and type constraints, but semantic errors cannot
be detected using these tools. Theorem provers [1,13] can be used to investigate
properties of interest, but using a theorem prover is usually tedious and requires
expert knowledge. Animators [16,22,7] allow the evaluation and execution of
certain predicates and expressions in the context of a specification, but the few
Z animators available have not yet reached the level of maturity provided by
similar tools for other notations, like B and Alloy.

This paper considers translating Z to Alloy [9] to give Z users access to the
Alloy Analyzer. The Alloy Analyzer can be used to generate instances of Alloy
specifications as well as to check user-specified properties. This provides imme-
diate visual feedback to the specification designer and is an invaluable help in
checking and validating Alloy specifications. Others have already shown that
the Alloy Analyzer can be successfully used to check certain aspects of Z spec-
ifications. Bolton [3], for example, gives an encoding for some Z data types in

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 377–390, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

378 P. Malik, L. Groves, and C. Lenihan

section birthdaybook
parents standard toolkit

[NAME , DATE]

BBook
known : PNAME
birthday : NAME
→ DATE

known = dom birthday

Init
BBook

known = ∅

Add
ΔBBook
name? : NAME
date? : DATE

name? �∈ known
birthday ′ = birthday ∪

{name?
→ date?}

module birthdaybook

open util/relation

sig NAME, DATE {}

sig BBook {

known: set NAME,

birthday: NAME -> lone DATE

}{

known = dom[birthday]

}

pred Init

[s: BBook]

{

no s.known

}

pred Add

[s,s’: BBook,

name_in: NAME,

date_in: DATE]

{

name_in !in s.known

s’.birthday = s.birthday +

(name_in -> date_in)

}

Fig. 1. Z and Alloy specifications for a simplified version of Spivey’s birthday book [18]

Alloy and then uses the Alloy Analyzer to identify a retrieve relation to verify
refinement between two Z data types. Estler and Wehrheim [6] use the Alloy
Analyzer to check refactorings of Z specifications. Ramananandro [15] uses the
Alloy Analyzer to check the Z specification and refinement proofs for Mondex,
an electronic purse. Kang and Jackson [10] model and analyse a flash file system,
which was originally specified in Z.

All these translations were done by hand, and consider selected examples
only. Figure 1 shows a Z specification, and a typical hand-translation into Alloy.
The similarities between Z and Alloy are seductive, and the translation seems
straightforward. But are these two specifications semantically equivalent? Does
a property that holds for the Z specification also hold true for the corresponding
Alloy, and vice versa? Can the translation be automated, and are there alterna-
tive translation approaches? While some of these questions have been answered
by the aforementioned authors in the context of their example, no systematic
investigation has been carried out so far. The aim of this paper is to generalise
from these examples and consider, in a systematic way, what can be translated
automatically and to what.

Translating Z to Alloy 379

{NAME
→∅,

DATE
→∅,

BBook
→{{known
→ ∅, birthday
→ ∅}},
Init
→{{known
→ ∅, birthday
→ ∅}},
Add
→∅}

Fig. 2. A model for the Z specification of the birthday book

The structure of this paper is as follows. Section 2 shows the relationship be-
tween Z models and Alloy instances, and highlights their subtle but important
differences. Section 3 formally defines a subset of Z and its translation to Alloy.
Section 4 shows how the language can be extended to more complex structures,
and also points out difficulties with the translation, and alternative translation
approaches. Finally, Section 5 discusses the contributions of this paper and out-
lines future work.

2 Z Models and Alloy Instances

The ISO Z Standard [8] defines the meaning of a specification as a set of mod-
els. Models associate global names of the specification with semantic values that
satisfy the constraints of the specification. One possible model for the Z speci-
fication of the birthday book is given in Figure 2. It associates the given types
NAME and DATE with the empty set. BBook and Init are associated with the
set of tuples that give known and birthday values; the empty set in this case.
The state space BBook contains just one element, the state where known and
birthday are both empty. The operation Add is empty since there is no element
in the set NAME that could be added.

A more interesting model is given in Figure 3. In this model, there are ex-
actly two names (N 0 and N 1) and one date (D). The state space represented
by BBook has four elements: the empty birthday book, the birthday book that
maps name N 0 to date D , the birthday book that maps name N 1 to date D ,
and the birthday book that maps both names to date D . Exactly one state sat-
isfies the initialisation condition. The operation Add has four elements. If the
pre-state is empty, either name N 0 or name N 1 can be added. If both names
are already mapped to date D in the pre-state, operation Add is not defined. If
only one of the names is mapped to date D in the pre-state, the other name can
be added.

To the authors’ knowledge, there is no tool support that allows visualisation
or even computation of models for Z specifications. We will see next how the
Alloy Analyzer can be used to compute and visually explore instances. Instances
are bindings from names to values that satisfy the constraints of a given Alloy
specification. To make instance finding feasible, a scope limits the number of
elements in the considered universe and the analysis performed by the Alloy
Analyzer effectively explores every instance within the scope.

380 P. Malik, L. Groves, and C. Lenihan

{NAME
→{N 0,N 1},
DATE
→{D},
BBook
→{{known
→ ∅, birthday
→ ∅},

{known
→ {N 0}, birthday
→ {N 0
→ D}},
{known
→ {N 1}, birthday
→ {N 1
→ D}},
{known
→ {N 0, N 1}, birthday
→ {N 0
→ D ,N 1
→ D}}},

Init
→{{known
→ ∅, birthday
→ ∅}},
Add
→{{known
→ ∅, birthday
→ ∅,name?
→ N 0, date?
→ D ,

known ′
→ {N 0}, birthday ′
→ {N 0
→ D}},
{known
→ ∅, birthday
→ ∅,name?
→ N 1, date?
→ D ,

known ′
→ {N 1}, birthday ′
→ {N 1
→ D}},
{known
→ {N 0}, birthday
→ {N 0
→ D}},name?
→ N 1, date?
→ D ,

known ′
→ {N 0, N 1}, birthday ′
→ {N 0
→ D ,N 1
→ D}},
{known
→ {N 1}, birthday
→ {N 1
→ D}},name?
→ N 0, date?
→ D ,

known ′
→ {N 0, N 1}, birthday ′
→ {N 0
→ D ,N 1
→ D}}}

Fig. 3. Another model for the Z specification of the birthday book

For example, Figure 4 shows visualisations of two of the (many) instances
of the Alloy specification of the birthday book given in Figure 1 obtained by
executing the following command:

run {} for 4 but 2 NAME, 1 DATE

The scope of this command restricts the size of each signature to a maximum of
four elements (the default is three) apart from NAME, which is allowed two, and
DATE, which is only allowed to contain one element. In Figure 4, elements of NAME
are represented by boxes, elements of DATE are surrounded by a hexagon, and
elements of BBook are surrounded by ellipses. The relations known and birthday
are represented by arrows.

Like the Z model in Figure 3, both instances show two names and one date
as well as possible values for known and birthday for the birthday book state

Fig. 4. Two instances of the Alloy version of the birthday book given in Figure 1

Translating Z to Alloy 381

BBook. That is, both instances are representations of the same Z model, or parts
thereof. The left instance, for example, does not include values for Init and Add.
The right instance shows only two elements of the set BBook. Furthermore, these
two states BBook0 and BBook1 represent the same birthday book (with NAME1
being the only known name, mapped to DATE).

That Alloy instances represent parts of a Z model is both a blessing and a
curse. On the one hand, we are usually not interested in seeing all the possible
states of the system (in our example, elements of BBook) in one instance. By
showing parts of a Z model, Alloy instances provide a tractable way of exploring
these usually huge sets. On the other hand, allowing instances that represent only
part of a Z model does not preserve semantics of the original Z specification. For
example, in Z we can prove:

#NAME = 2 ∧ #DATE = 1 ⇒ #BBook = 4

That is, for every Z model of the birthday book specification with exactly two
names and one date, the state schema BBook has exactly four elements, each
with a different set associated to birthday as seen in Figure 3. This is not true
for the Alloy instances as seen in Figure 4, where there are fewer BBook elements
and two different elements represent the same mapping from name to birthday.
The problem is that we chose to represent a Z schema (the set of all bindings
that satisfy the constraints of the schema) as an Alloy signature, which denotes
just some set of atoms that is not constrained to represent all possible values of
the corresponding schema.

It is possible to add a constraint to the Alloy specification to enforce that no
two distinct elements from BBook represent the same birthday book [15]:

pred Canonicalisation {
all disj b1,b2: BBook | b1.birthday != b2.birthday

}

It is also possible to add a constraint to ensure that all possible birthday books
are represented [9, Section 5.3.1]:

pred GeneratorAxiom {
some b: BBook | no b.birthday
all b: BBook, n: NAME-b.known, d: DATE |
some b’: BBook |
b’.birthday = b.birthday + n->d

}
run { GeneratorAxiom and Canonicalisation } for 4

In fact, Canonicalisation and GeneratorAxiom together ensure a one-to-one
correspondence between Z models and Alloy instances. The left instance in Fig-
ure 4 is one of the solutions generated by the above run command while the
right instance is not. However, adding a generator axiom is impractical in most
cases due to the state explosion problem. Jackson [9, Section 5.3.2] argues that
generator axioms are rarely needed in practice and more research is needed to

382 P. Malik, L. Groves, and C. Lenihan

investigate how this shortcoming affects the usability of the Alloy Analyzer for
checking Z specifications.

The next section gives a semantic preserving translation for a small subset of
the Z notation into Alloy so that the models of the Z specification correspond
directly to the instances of the corresponding Alloy specification.

3 A Semantics Preserving Translation for a Subset of Z

The basic building blocks of Alloy specifications are atoms and relations. Atoms
are primitive entities: indivisible, immutable, and uninterpreted, like the ele-
ments of given sets in Z. Each variable in Alloy denotes a relation, a structure
that relates atoms. A Z specification that uses only given types, elements and
subsets of given types, and tuples and relations over given types can be directly
translated to a semantically equivalent Alloy specification. Such a translation
can be seen as a shallow embedding of a subset of Z into Alloy. In a shallow
embedding, the meaning of the Z specification is retained by the translation into
a semantically equivalent representation in Alloy. The translation ensures that
the models of the Z specification are directly represented by the instances for
the corresponding Alloy specification. No generator or canonicalisation axioms
are required.

Figure 5 defines Z paragraphs for which a semantics preserving translation
into Alloy is provided below. We assume that the Z specification to be translated
has been successfully parsed and typechecked. The language is a subset of that
defined by the ISO Z standard’s annotated syntax [8, Clause 10]. It includes
paragraphs that declare given types, elements and subsets of given types, and
tuples and relations over given types. Expressions are annotated with similarly
restricted types. All the predicates of the ISO Z standard’s annotated syntax are
included.

Note that the annotated syntax provided by the ISO Z standard is smaller
than the full Z language. For example, it does not include existential quantifi-
cation. Syntactic transformation rules [8, Clause 12] relate Z phrases of the full
Z language to equivalent phrases within the language defined by the annotated
syntax. Existential quantification, for example, is transformed to a negation of a
universal quantification. This means that, by providing a translation to Alloy for
a subset of the annotated syntax, we get the translation of some constructs that
are not in the annotated syntax like existential quantification for free. Although
this is convenient for the formal treatment of the translation to Alloy, a tool does
not have to follow this approach and could translate existential quantification
directly to the Alloy quantifier some.

Figure 6 gives the definition of a translation function [[]] that accepts a phrase
of our restricted Z annotated syntax, and returns an Alloy phrase. We follow
ISO Z standard notation to represent Z phrases. The main complexity is re-
lated to declarations. Declarations are translated in different ways, depending
on where they are used. Declarations of global variables are defined by the trans-
lation function [[]]G, declarations of local variables are defined by the translation

Translating Z to Alloy 383

Paragraph = ZED , [-tok , NAME ,]-tok , END (* given types *)
| AX , SchText , END (* axiomatic description *)
;

SchText = [-tok , Decl , |-tok , Predicate ,]-tok
;

Decl = [-tok , NAME , : , Expression ,]-tok
| [-tok , NAME , : , P , Expression ,]-tok
| Decl , ∧ , Decl

;

Predicate = Expression , ∈ , Expression (* membership *)
| Expression , ∈ , {-tok , Expression , }-tok (* equality *)
| true (* truth *)
| ¬ , Predicate (* negation *)
| Predicate , ∧ , Predicate (* conjunction *)
| ∀ , Decl , • , Predicate (* universal quantification *)
| ∃1 , Decl , • , Predicate (* unique existential quantification *)
;

Expression = Expr , o
o , Type

;

Expr = NAME (* reference *)
| {-tok , SchText , • , Expression , }-tok (* set comprehension *)
| (-tok , Expression , ,-tok
Expression , { ,-tok , Expression } ,)-tok (* tuple extension *)

;

Type = Type2

| P , Type2

;

Type2 = GIVEN , NAME , { × , GIVEN , NAME }

;

Fig. 5. Z paragraphs that can be straightforwardly translated to Alloy. This grammar
has been adapted from the Z standard [8, Clause 10]; mathematical definitions from
ISO/IEC 13568:2002 (Z standard) are copyright ISO.

function [[]]L. Some of this complexity might be avoided by translating to Kod-
kod [20] rather than Alloy.

The output of the translation function should be thought of as a tree structure,
and parentheses might be needed when printed1. However, before such an Alloy
phrase can be printed, some more processing steps might be needed. Firstly, due
to the fact that global Alloy relations are defined within the signature of its
first component, the translation function might provide multiple definitions for
the same signature. These need to be merged before valid Alloy can be printed.
Secondly, names need to be translated to valid Alloy names, which unlike Z
names are restricted to a subset of the printable ASCII characters.
1 Precedences in Alloy are slightly different from Z. In Z, for example, disjunction

binds tighter than implication and implication binds tighter than equivalence, while
in Alloy implication and equivalence bind tighter than disjunction.

384 P. Malik, L. Groves, and C. Lenihan

[[ZED [i] END]] = sig i {}

[[AX t END]] = [[t]]G

[[[i : e]]]L = i: [[e]]

[[[i : P e]]]L = i: set [[e]]

[[d1 ∧ d2]]L = [[d1]]L , [[d2]]L

[[e1 ∈ e2]] = [[e1]] in [[e2]]

[[e1 ∈ {e2}]] = [[e1]] = [[e2]]

[[true]] = {}

[[¬ p]] = not [[p]]

[[p1 ∧ p2]] = [[p1]] and [[p2]]

[[∀ d • p]] = all [[d]]L | [[p]]

[[∃1 d • p]] = one [[d]]L | [[p]]

[[i]] = i

[[{[d | p] • e oo τ}]] = { j1 : i1, ..., jn : in | some [[d]]L | [[p]] and

[[(j1, ..., jn)]] = [[e]] }

[[(e1, ..., en)]] = [[e1]] -> ... -> [[en]]

[[[i0 : (e o
o P GIVEN i1)]]]G = one sig i0 in i1 {} fact { i0 in [[e]] }

[[[i0 : P (e o
o P GIVEN i1)]]]G = sig i0 in i1 {} fact { i0 in [[e]] }

[[[i0 : (e oo P τ)]]]G = sig i1 { i0: set i2 -> ... -> in }

fact { one i0 and i0 in [[e]] }

[[[i0 : P (e o
o P τ)]]]G = sig i1 { i0: set i2 -> ... -> in }

fact { i0 in [[e]] }

[[d1 ∧ d2]]G = [[d1]]G [[d2]]G

[[[d | p]]]G = [[d]]G fact { [[p]] }

where τ = GIVEN i1 × . . . × GIVEN in

Fig. 6. Transformation rules from Z to Alloy

Next, we demonstrate the utility of our translation by means of an example.
Consider an alternative specification of the state space for a birthday book given
in Figure 7. The Z given types are translated to Alloy signatures:

sig NAME {} sig DATE {} sig BBOOK {}

In both Alloy and Z, the set of names, the set of dates, and the set of bbooks
are guaranteed to be disjoint.

The Z expression BBOOK × NAME gets transformed by the ISO Z stan-
dard’s syntactic transformation rules to {[b : BBOOK] ∧ [n : NAME] • (b,n)},
where b and n are fresh variables. Its type is P(GIVEN BBOOK ×GIVEN NAME).
Strictly speaking, this expression is not part of our language but it is semantically
equivalent to {[[b : BBOOK] ∧ [n : NAME] | true] • (b,n)}, which is part of the

Translating Z to Alloy 385

[NAME ,DATE ,BBOOK]

known : P(BBOOK × NAME)
birthday : P(BBOOK × NAME × DATE)

∀ b : BBOOK •
(∀ n : NAME ; d1, d2 : DATE •

(b,n, d1) ∈ birthday ∧ (b,n, d2) ∈ birthday ⇒ d1 = d2)
∧
{n : NAME | (b,n) ∈ known} =

{n : NAME | ∃ d : DATE • (b,n, d) ∈ birthday}

Fig. 7. Another birthday book specification

language. An additional transformation rule readily allows the above expression.
The declaration of the global variable known is then translated to:

sig BBOOK { known: set NAME }
fact { known in { x: BBOOK, y: NAME | some b: BBOOK, n: NAME |

{} and x->y = b->n }}

In this example, the fact just restates that known is a relation between BBOOK and
NAME and so is unnecessary. Similarly, the declaration of birthday is translated
to (having omitted the unnecessary fact):

sig BBOOK { birthday: set NAME->DATE }

The translation of the predicate part is straightforward. Only equality is handled
somewhat unusually. The ISO Z standard’s transformation and type inference
rules transform e1 = e2 to e1

o
o τ ∈ ({e2

o
o τ} o

o P τ). We want to be able to
compare sets and relations for equality, for which τ is a powerset type, but the
language defined in Figure 5 does not allow expressions of the resulting nested
powerset types. So to support equality, we specifically allow membership of a
singleton set without recording its type. After merging the signatures for BBOOK,
the resulting Alloy is as follows:

sig NAME, DATE {}
sig BBOOK { known: set NAME, birthday: set NAME->DATE }
fact { all b: BBOOK |
(all n: NAME, d1, d2: DATE |
not (b->n->d1 in birthday and b->n->d2 in birthday)
or d1 = d2)

and
{n: NAME | b->n in known} =
{n: NAME | some d: DATE | b->n->d in birthday}}

Note that this is equivalent to the hand-translation of schema BBook to a sig-
nature BBook as shown in Figure 1. The only difference is that the constraints

386 P. Malik, L. Groves, and C. Lenihan

on BBook are more concisely expressed using multiplicity keywords and signa-
ture facts; the constraints on BBOOK given here use Alloy’s fact keyword instead.
Possible instances of this model are given in Figure 4. Each instance represents
a model for the Z specification in Figure 7.

4 Extending the Translation

We can increase the number of constructs that can be transformed into the
language defined in Section 3.

4.1 More Z Constructs

A quantifier with explicit constraints on declarations can be transformed into
one without:

∀ d | p1 • p2 =⇒ ∀ d • p1 ⇒ p2

Such a rule should be applied along with the syntactic transformation rules pro-
vided by the ISO Z standard. The syntactic transformation rules are applied
exhaustively, until no more rules can be applied. That is, the implication intro-
duced by the above rule will be transformed by another rule into a predicate that
uses negation and disjunction only, and the disjunction is further transformed
into a predicate that uses negation and conjunction only.

The ISO Z Standard [8, Chapter 14] provides additional (so called semantic)
transformation rules that define the equivalence of certain sentences of the an-
notated syntax. For example, rule 14.2.5.4 defines application expressions to be
equivalent to a definite description:

e1 e2
o
o τ =⇒ (μ i : carrier τ | (e2, i) ∈ e1 • i)

In Alloy, an atom is represented by the singleton set containing this atom. This
makes it possible to translate a definite description the same way as set compre-
hension:

[[μ [d | p] • e]] = [[{[d | p] • e}]]

The set resulting from a definite description should contain exactly one ele-
ment, and the Alloy Analyzer could be used to check this. Alternatively, well-
definedness of definite descriptions might be assumed when the translation to
Alloy is performed. Other semantic transformation rules of the ISO Z standard
that can be used to increase the constructs handled by our translation to Alloy
are the transformation of free types paragraphs (rule 14.2.3.1) and tuple selec-
tion expressions (rule 14.2.5.1). Furthermore, references to and applications of
toolkit names can be transformed away by expansion or unfolding according to
their definitions.

Translating Z to Alloy 387

4.2 Schemas

Manual translations of Z specifications [6,10,15] translate schemas depending
on what they are used for. State schemas are usually translated to Alloy sig-
natures; operation schemas are usually translated to Alloy predicates. An auto-
matic translation could try to determine whether a schema is a state or operation
schema but is it necessary to make such a distinction? Alloy does not have a
fixed idiom for modelling state and operations. Jackson [9, Section 6.2.4], for
example, gives an event based specification for a hotel locking system that uses
events defined by signatures rather than operations defined by predicates.

A better approach for an automatic translation might be to translate a schema
depending on how it is used throughout the Z specification to be translated.
Alloy predicates allow reuse of constraints, which resemble the use of Z schemas
as predicates. Thus, if a Z schema is used as a predicate, a translation of this
schema to an Alloy predicate makes it possible to translate the use of the schema
as a predicate straightforwardly by using the corresponding Alloy predicate in
the translation. Alloy predicates can also be used when a Z schema is used as
a declaration, as can be seen in the following alternative translation of the Z
schemas given in Figure 1:

pred BBook[known: set NAME, birthday: NAME -> DATE] {
known in NAME and birthday in NAME->DATE
all n: NAME | lone n.birthday
known = dom[birthday]

}

pred Init[known: set NAME, birthday: NAME -> DATE] {
BBook[known, birthday] and no known

}

pred Add[known: set NAME, birthday: NAME -> DATE,
known’: set NAME, birthday’: NAME -> DATE,
name_in: NAME, date_in: DATE] {

BBook[known, birthday] and BBook[known’, birthday’]
...

}

The authors currently favour a combined approach where a Z schema is rep-
resented in Alloy by both a signature and a predicate, and where signatures are
shared if possible. For example, the Alloy predicates BBook and Init above have
the same argument list, so can share the signature S:

sig S { known: set NAME, birthday: NAME -> DATE }

The signature can be used in declarations while the predicate can be used
in constraints, simulating some of the flexibility that Z schemas provide. For
example, the Z predicate Init ⊆ BBook can now be translated by using the
signature S and the Alloy predicates given above to:

388 P. Malik, L. Groves, and C. Lenihan

{s: S | Init[s.known, s.birthday] } in
{s: S | BBook[s.known, s.birthday] }

The operation Add can be written using signature S:

pred Add[s, s’: S, name_in: NAME, date_in: DATE] {
BBook[s.known, s.birthday] and BBook[s’.known, s’.birthday’]
...

}

This is closer to the hand-translation provided in Figure 1 but all occurrences of
known, birthday, known ′, and birthday ′ in the predicate part of the Z schema Add
must now be translated to s.known, s.birthday, s’.known, and s’.birthday
respectively.

The issue of how to handle schema references and the schema calculus in
general can be avoided by performing schema expansion prior to translating a Z
specification to Alloy. More research is required to determine how practical this
approach and other translation approaches mentioned here are.

5 Discussion and Conclusion

This work has been motivated by the desire to make the automatic analysis and
visualisation that is available for Alloy accessible to Z users. Alloy, on the one
hand, is a simple specification notation that is amenable to automatic analysis
by the Alloy Analyzer, which gives immediate feedback by visualising typical
scenarios and attempting to find counter-examples to properties that are believed
to hold. Z, on the other hand, is a very expressive notation but lacks tool support
to make validating specifications as easy and fun as the Alloy Analyzer.

To make use of tools developed for other formal notations, various transla-
tions from Z to other notations have been described. Z has been translated to
SAL [17,5] to take advantage of the verification tools that SAL supports. Plagge
and Leuschel [14] provide users of Z access to the PROB tool [11], an automated
analysis tool-set for the B method. We believe that the visual feedback provided
by the Alloy Analyzer is unique and valuable enough to justify yet another
translation from Z. See also Aydal, Utting, and Woodcock [2] for a comparison
of various modelling tools, including the Alloy Analyzer, ZLive (a Z animator)
and ProZ.

In this paper, we have argued that a translation from Z to Alloy performed
manually as given in Figure 1 is cumbersome and error-prone. We also raised
the question whether such a translation preserves semantics. We have shown in
Section 2 that the Z and corresponding Alloy specification given in Figure 1 are
not semantically equivalent. In Figure 7 we provided an alternative represen-
tation of the birthday book state space in Z, which is semantically equivalent
to the Alloy signature BBook given in Figure 1. These representations are not
equivalent and we have given examples of properties that hold for the original
Z specification in Figure 1 but do not hold for the alternative Z representation
from Figure 7, nor the corresponding Alloy specification.

Translating Z to Alloy 389

The main contribution of this paper is a formalisation of a semantics preserv-
ing translation of a subset of Z to Alloy. This provides the formal basis for our Z
to Alloy translator, a practical tool that we are developing as part of CZT [12].
It can already handle specifications containing simple constructs and schemas
as discussed in this paper. This paper has also considered several translation
approaches for schemas. We are currently investigating how complex Z sets and
relations (sets of sets) can be handled by our tool. Jackson [9, Chapter 3.2.3,
page 41] shows how complex (non flat) relations can be reformulated as flat rela-
tions. This requires the introduction of new sets of atoms to model the constructs
used within other sets or relations. This is similar to our handling of schemas
and poses the same problems. Canonicalisation and generator axioms might be
required to avoid spurious counter-examples for certain types of properties.

In the future, we plan to extend our tool to handle more Z constructs. In
so doing, we plan to examine the relationship between different translation ap-
proaches and the properties that can be checked as well as what influence the
translation has on the intelligibility of the resulting Alloy specification and the
examples and counter-examples produced by the Alloy Analyzer. We also plan to
prove formally the translation described in Section 3 to be semantics preserving.

Acknowledgements

The authors would like to thank Ian Toyn, Hugh Anderson, Mukhlis Matti for
their helpful comments and inspiring discussions.

References

1. Arthan, R.: Proofpower, http://www.lemma-one.com/ProofPower/
2. Aydal, E.G., Utting, M., Woodcock, J.: A comparison of state-based modelling

tools for model validation. In: Proceedings of Objects, Components, Models and
Patterns, 46th International Conference, TOOLS EUROPE 2008, Zurich, Switzer-
land, June 30 - July 4, 2008. LNBIP, vol. 11. Springer, Heidelberg (2008)

3. Bolton, C.: Using the Alloy analyzer to verify data refinement in Z. Electronic
Notes in Theoretical Computer Science 137, 23–44 (2005)

4. Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.): ABZ 2008. LNCS, vol. 5238.
Springer, Heidelberg (2008)

5. Derrick, J., North, S., Simons, T.: Issues in implementing a model checker for Z.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 678–696. Springer,
Heidelberg (2006)

6. Estler, H.-C., Wehrheim, H.: Alloy as a refactoring checker? Electronic Notes in
Theoretical Computer Science 214, 331–357 (2008)

7. Hewitt, M.A., O’Halloran, C.M., Sennett, C.T.: Experiences with PiZA, an ani-
mator for Z. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997. LNCS,
vol. 1212, pp. 37–51. Springer, Heidelberg (1997)

8. ISO/IEC 13568. Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. ISO/IEC (2002); First Edition 2002-07-01

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

http://www.lemma-one.com/ProofPower/

390 P. Malik, L. Groves, and C. Lenihan

10. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.
In: Börger, et al. (eds.) [4], pp. 294–308

11. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

12. Malik, P., Utting, M.: CZT: A framework for Z tools. In: Treharne, et al. (eds.)
[21], pp. 65–84

13. ORA Canada. Z/EVES version 1.5: An overview. In: Hutter, D., Traverso, P. (eds.)
FM-Trends 1998. LNCS, vol. 1641, pp. 367–376. Springer, Heidelberg (1999)

14. Plagge, D., Leuschel, M.: Validating Z specifications using the ProB animator and
model checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007)

15. Ramananandro, T.: Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Aspects of Computing 20(1),
21–39 (2008)

16. Reeve, G., Reeves, S.: Experiences using Z animation tools. Technical Report
01/3/2001, Department of Computer Science, University of Waikato (2001)

17. Smith, G., Wildman, L.: Model checking Z specifications using SAL. In: Treharne,
et al. (eds.) [21]

18. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International
(UK) Ltd., Hertfordshire (1992)

19. Spivey, M.: The fuzz type-checker for Z,
http://spivey.oriel.ox.ac.uk/mike/fuzz/

20. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

21. Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.): ZB 2005. LNCS,
vol. 3455. Springer, Heidelberg (2005)

22. Utting, M., Malik, P.: Unit testing of Z specifications. In: Börger, et al. (eds.) [4],
pp. 309–322

http://spivey.oriel.ox.ac.uk/mike/fuzz/

B-ASM: Specification of ASM à la B

David Michel1,�, Frédéric Gervais2, and Pierre Valarcher2

1 LIX, CNRS, Polytechnique School, 91128 Palaiseau, France
dmichel@lix.polytechnique.fr

2 LACL, Université Paris-Est
IUT Sénart Fontainebleau, Dpt. informatique, 77300 Fontainebleau, France

{frederic.gervais,pierre.valarcher}@univ-paris-est.fr

Summary. We aim at extending the B language in order to build ASM programs
which are correct with respect to B-like logical specifications. On the one hand,
the main strengths of the B formal method are: i) the ability to express logical
statements, and ii) the construction of a correct implementation by refinement.
On the other hand, from our viewpoint, the striking aspects of ASM are the
non-bounded outer loop that can reach the fixed point of a program and the
power to express naturally any kind of (sequential) algorithms.

We introduce a new specification language, called B-ASM, attempting to
bridge the gap between these two languages, by taking advantage of the strengths
of each approach (B-ASM programs are defined in the same way as in ASM pro-
grams, but the language used to define transition functions is enriched with
operations akin to some non-deterministic B substitutions). Our leitmotiv is to
build an ASM which is correct with respect to a B-like specification. In that aim,
we have extended the syntax and the semantics of B to take the non-bounded
iteration into account. Moreover, the reuse of the well-founded theoretical re-
lation of refinement from the B method is then straightforward. Rather than
directly writing a complex ASM program, one can first specify the required log-
ical properties of the program in a B-ASM specification. Then, we are able to
build from the latter a correct ASM program, by proving the proof obligations
(PO) associated to each refinement step. For instance, if we can determine a
variant in the B-ASM specification for the outer loop, then the ASM program
obtained by refinement is guaranteed to terminate.

Contribution. Let M be a B-ASM machine, then we can construct an ASM
which is correct with respect to M .

At the end of the process a new B0 program is obtained following strictly the
syntax of a π program of an ASM , moreover the process has followed the proof
correctness of B method refinement.

The challenge is now, to verify the efficiency of the new method in a real case
study and of course, to develop tools.

� This author has been supported by the ANR-09-JCJC-0098-01 MaGiX project to-
gether with the Digiteo 2009-36 HD grant and région Île-de-France.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 392–393, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Case for Using Data-Flow Analysis to Optimize
Incremental Scope-Bounded Checking

Danhua Shao, Divya Gopinath, Sarfraz Khurshid, and Dewayne E. Perry

The University of Texas at Austin
{dshao,dgopinath,khurshid,perry}@ece.utexas.edu

In software verification, scope-bounded checking of programs has become an
effective technique for finding subtle bugs. Given bounds (that are iteratively relaxed)
on input size and length of execution paths, a program and its correctness
specifications are translated into a formula, which is solved using off-the-shelf solvers
– a solution to the formula is a counterexample to the correctness specification.

The scalability and effectiveness of scope-bounded checking in bug finding
critically depends on the capabilities of the underlying constraint solvers. Traditional
approaches [1, 2] translate the bounded code segment of the program and its
specification into one input formula. For non-trivial programs, the translated formulas
can be quite complex and the solvers can fail to find a counterexample in a desired
amount of time. When a solver times out, typically there is no information about the
likely correctness of the program checked or the coverage of the analysis completed.

To scale scope-bounded checking, our previous work [3] introduced an
incremental approach that uses the program’s control-flow as a basis of splitting the
program and generating several sub-formulas, which represent simpler problem
instances for the underlying solvers. The key insight of our incremental approach is a
“sliding rule” that allows controlling the complexity of the sub-formulas to check
based on the capabilities of the underlying solvers. Our previous work supports
splitting strategies to embody the sliding rule. However, this work uses solely the
program’s control-flow to define the strategies, and is therefore limited to the
syntactical structure of the program and fails to exploit the program semantics.

Recently, we have developed a new approach that utilizes the program’s data-flow,
specifically variable-definitions, to further reduce the solvers’ workload. Specifically,
we split the program using different definitions of the same variable, which leads to a
reduction in the number of variables in the resulting formulas.

Initial experimental results show that the use of data-flow provides a significant
reduction in the number of variables in the encoded formulas over our previous
control-flow-based incremental approach. We believe incremental algorithms hold
much promise and their application with parallel algorithms in synergy is likely to
scale scope-bounded checking to real applications.

Acknowledgment. This material is based upon work funded in part by NSF (Grants
IIS-0438967, CCF-0702680, and CCF-0845628) and AFOSR (FA9550-09-1-0351).

 A Case for Using Data-Flow Analysis 393

References

[1] Dennis, G., Chang, F.S.H., Jackson, D.: Modular verification of code with SAT. In: ISSTA
(2006)

[2] Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA (2000)
[3] Shao, D., Khurshid, S., Perry, D.E.: An incremental approach to scope-bounded checking

using a lightweight formal method. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009: Formal
Methods. LNCS, vol. 5850, pp. 757–772. Springer, Heidelberg (2009)

On the Modelling and Analysis of
Amazon Web Services Access Policies

David Power, Mark Slaymaker, and Andrew Simpson

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

Cloud computing is a conceptual paradigm that is receiving a great deal of
interest from a variety of major commercial organisations. By building systems
which run within cloud computing infrastructures, problems related to scalability
and availability can be reduced. At the time of writing, Amazon Web Services
(AWS) [1] is one of the most widely used infrastructures. AWS consists of a
number of different components, which can be used in combination or alone. One
usage model is to use Elastic Compute Cloud instances to process information
and to use the Simple Queue Service (SQS) to handle requests and responses.

If all of the sub-components of a system use the same security credentials, it
is possible to restrict access using an ‘all-or-nothing’ approach. However, there
are situations where more complex controls are appropriate. For this reason, the
AWS access policy language was introduced, which enables access to be restricted
based on a number of factors, such as the current time, the originating IP address,
the action that is to be performed and the resource that is to be acted upon.

As the complexity of access control policies increases, there is a corresponding
increase in the risk that a mistake might be made when defining these policies.
In this paper we seek to reduce that risk with the appropriate application of
formal methods. We use a hybrid approach of using both the Z specification
language and the Alloy modelling language.

We have built formal models of the access policy language used within the
AWS cloud computing infrastructure [2]. Specifically, we have explored policies
written for SQS. Using the Alloy Analyzer we have been able to explore proper-
ties of specific combinations of policies. We have also been able to use the Alloy
Analyzer to assist in the construction of new policies by using sets of requests
which result in known access control decisions.

Previous work in this area has centred around simple access control systems
such as Role-Based Access Control. Attempts at modelling the significantly more
complex XACML have resulted in partial models. In this paper we present a
complete model of the AWS access policy language, making it possible to analyse
existing real-world systems.

References

1. Amazon.com: Amazon Web Services (2009), http://aws.amazon.com/
2. Power, D.J., Slaymaker, M.A., Simpson, A.C.: On the modelling and analysis of

amazon web services access policies. Technical Report RR-09-15, Oxford University
Computing Laboratory (2009)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://aws.amazon.com/

Architecture as an Independent Variable for
Aspect-Oriented Application Descriptions

Hamid Bagheri and Kevin Sullivan

University of Virginia
151 Engineer’s Way

Charlottesville, VA 22903 USA
{hb2j,sullivan}@virginia.edu

Software architecture researchers have long assumed that architecture indepen-
dent application descriptions can be mapped to architectures in many styles,
that results vary in quality attributes, and that the choice of a style is driven
by consideration of such attributes. In our previous work [1], we demonstrated
the feasibility of formally treating architectural style as an independent variable.
Given an application description and architectural style description in Alloy [3],
we map them to software architecture description that refines the given appli-
cation in conformance with the given style. To represent a map, we extend a
traditional architectural style description (in Alloy) with predicates for mapping
application descriptions in a given style to architectural descriptions in the given
style. These predicates take application descriptions as parameters and define
relationships required to hold between them and computed architectural descrip-
tions. Given an application description, and a map, Alloy computes correspond-
ing architectural descriptions guaranteed to conform to the given architectural
style. This paper extends our earlier work to aspect-oriented structures. In doing
so, we describe an aspect-enabled application description style and a map tak-
ing application descriptions in this style to pipe-and-filter architectures. We use
the Alloy Analyzer to compute architecture descriptions, represented as satisfy-
ing solutions to the constraints of a map given an application description. The
A2A transformer application, developed in our research group, then converts
the Alloy-computed architecture to an architecture description in a traditional
architecture description language (ADL): here, AspectualACME[2].

References

1. Bagheri, H., Song, Y., Sullivan, K.: Architecture as an independent variable. Tech-
nical report CS-2009-11, University of Virginia Department of Computer Science
(November 2009)

2. Garcia, A., Chavez, C., Batista, T., Santanna, C., Kulesza, U., Rashid, A., Lucena,
C.: On the modular representation of architectural aspects. In: Proceedings of the
European Workshop on Software Architecture, Nantes, France. LNCS, pp. 82–97
(2006)

3. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11(2), 256–290 (2002)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 395, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ParAlloy: Towards a Framework for Efficient
Parallel Analysis of Alloy Models

Nicolás Rosner, Juan P. Galeotti,
Carlos G. Lopez Pombo, and Marcelo F. Frias

Department of Computer Science, FCEyN, Universidad de Buenos Aires,
{nrosner,clpombo,jgaleotti,mfrias}@dc.uba.ar

Alloy [Jac02a] is a widely adopted relational modeling language. Its appeal-
ing syntax and the support provided by the Alloy Analyzer [Jac02b] tool make
model analysis accessible to a public of non-specialists. A model and property
are translated to a propositional formula, which is fed to a SAT-solver to search
for counterexamples. The translation strongly depends on user-provided bounds
for data domains called scopes – the larger the scopes, the more confident the
user is about the correctness of the model. Due to the intrinsic complexity of
the SAT-solving step, it is often the case that analyses do not scale well enough
to remain feasible as scopes grow.

ParAlloy exploits the possibility of splitting the SAT formula, thus allowing
for parallel SAT-solving of Alloy models. Three of its important characteristics
are:

1. Its core component is a parallel solver for arbitrary propositional formu-
las –not necessarily in CNF– based on problem decomposition, and making
a novel use of BEDs [AH02] for subproblem representation and manipu-
lation, Minisat [ES03] for subproblem analysis, and MPI [SOHL+98] for
inter-process communication.

2. Its Alloy-specific enhancements further improve (parallel) analyzability by
using knowledge obtained from the models to assist splitting decisions.

3. For valid properties (the UNSAT case), the speedups allowed the analysis
of Alloy properties (such as some assertions in [Zav06]) that exceed the
current capabilities of the Alloy Analyzer. For invalid properties, test case
generation or iterative model refinement (the SAT case), parallel analysis of
search space paths often leads to much higher speedups, since its exhaustion
is unnecessary.

References

[AH02] Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. Information
and computation 179(2), 194–212 (2002)

[ES03] Eén, N., Sörensson, N.: An extensible sat solver. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Hei-
delberg (2004)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 396–397, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ParAlloy: Towards a Framework for Efficient Parallel Analysis of Alloy Models 397

[Jac02a] Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans-
actions on Software Engineering and Methodology 11(2), 256–290 (2002)

[Jac02b] Jackson, D.: A micromodels of software: Lightweight modelling and anal-
ysis with Alloy. Computer Science and Artificial Intelligence Laboratory.
MIT, Cambridge (2002)

[SOHL+98] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI:
The complete reference. MIT Press, Cambridge (1998)

[Zav06] Zave, P.: Compositional binding in network domains. In: Misra, J., Nip-
kow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 332–347.
Springer, Heidelberg (2006)

Introducing Specification-Based Data Structure
Repair Using Alloy

Razieh Nokhbeh Zaeem and Sarfraz Khurshid

University of Texas, Austin TX 78712, USA
{rnokhbehzaeem,khurshid}@ece.utexas.edu

While several different techniques utilize specifications to check correctness of
programs before they are deployed, the use of specifications in deployed software
is more limited, largely taking the form of runtime checking where assertions
form a basis for detecting erroneous program states and terminating erroneous
executions in failures. Recent approaches [1] proposed constraint-based repair
where data structure constraints are used to repair erroneous states. However,
data structure constraints are too weak a form of specification for error recovery
in general. We have developed a specification-based approach for data struc-
ture repair, which allows repairing erroneous executions in deployed software by
repairing erroneous states. The key novelty is our support for rich behavioral
specifications, such as those that relate pre-states with post-states to accurately
specify expected behavior and hence to enable precise repair.

We address the following repair problem: Let φ be a method postcondition
that relates pre- and post-states such that φ(r, t) if and only if pre-state r and
post-state t satisfy the post-condition. Given a valid pre-state u, and an invalid
post-state s (i.e., !φ(u, s)), mutate s into state s′ such that φ(u, s′).

Our approach views a specification as a non-deterministic implementation,
which may permit a high degree of non-determinism. The Alloy tool-set [2] pro-
vides the enabling technology for writing specifications and systematically re-
pairing erroneous states. One initial technique that we developed is to transform
the repair problem into a constraint solving problem and leverage the Alloy tool-
set as a solving machine, ignoring the erroneous state. Although this technique
provides a correct output, it is likely infeasible for larger states. Our key insight
to improve this technique is to use any correct state mutations by an otherwise
erroneous execution to prune the non-determinism in the specification, thereby
transmuting the specification to an implementation that does not incur a pro-
hibitively high performance penalty. Moreover, using the faulty post-state as the
starting point of the repair process avoids unnecessary perturbations during the
repair process. We are working on extensions of this idea to build an effective
and efficient repair framework that supports rich behavioral specifications.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 398–399, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Introducing Specification-Based Data Structure Repair Using Alloy 399

Acknowledgment

This material is based upon work funded in part by the NSF (IIS-0438967,
CCF-0702680, and CCF-0845628), and the AFOSR (FA9550-09-1-0351).

References

1. Elkarablieh, B., Garcia, I., Suen, Y.L., Khurshid, S.: Assertion-based Repair of Com-
plex Data Structures. In: ASE (2007)

2. Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press,
Cambridge (2006)

Secrecy UML Method for Model
Transformations

Waël Hassan1, Nadera Slimani2, Kamel Adi2, and Luigi Logrippo2

1 University of Ottawa, 4051D-800 King Edward, Ottawa, Ontario, K1N-6N5
2 Université du Québec en Outaouais, Gatineau, Québec, Canada

wael@acm.org, {slin02,Kamel.Adi,luigi}@uqo.ca

This paper introduces the subject of secrecy models development by transforma-
tion, with formal validation. In an enterprise, constructing a secrecy model is a
participatory exercise involving policy makers and implementers. Policy makers
iteratively provide business governance requirements, while policy implementers
formulate rules of access in computer-executable terms. The process is error
prone and may lead to undesirable situations thus threatening the security of
the enterprise. At each iteration, a security officer (SO) needs to guarantee busi-
ness continuity by ensuring property preservation; as well, he needs to check
for potential threats due to policy changes. This paper proposes a method that
is meant to address both aspects: the formal analysis of transformation results
and the formal proof that transformations are property preserving. UML is used
for expressing and transforming models [1], and the Alloy analyzer is used to
perform integrity checks [3]. Governance requirements dictate a security policy,
that regulates access to information. This policy is implemented by means of
secrecy models. Hence, the SO defines the mandatory secrecy rules as a part of
enterprise governance model in order to implement security policy. For instance,
a secrecy rule may state: higher-ranking officers have read rights to information
at lower ranks. Automation helps reduce design errors of combined and complex
secrecy models [2]. However, current industry practices do not include precise
methods for constructing and validating enterprise governance models. Our re-
search proposes a formal transformation method to construct secrecy models
by way of applying transformations to a base UML model (BM). For example,
starting from the BM, with only three primitives: Subject/Verb/Object, we can
generate RBAC0 in addition to SecureUML [2] model. By way of examples and
by means of formal analysis we intend to show that, using our method, a SO is
able to build different types of secrecy models and validate them for consistency,
in addition to detecting scenarios resulting from unpreserved properties.

References

1. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell., 70–118 (2005)

2. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models to
access control infrastructures. Softw. Eng. Methodol., 39–91 (2006)

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Improving Traceability between KAOS
Requirements Models and B Specifications

Abderrahman Matoussi1 and Dorian Petit2

1 LACL, University Paris-Est
abderrahman.matoussi@univ-paris12.fr

2 LAMIH, University Lille Nord de France UVHC
dorian.petit@univ-valenciennes.fr

The aim of this paper is to give some feedback about the B specification [1] of
a localization software component which is one of the most critical parts in the
land transportation system. The main difficulties when we develop a localization
component is: (i) to find the correct algorithm that merges positioning data (ii)
to take into account all the properties we have to deal with. At this stage, we
think that a semi formal model such as KAOS [2], a goal-based requirements
engineering method, will be very useful in order to have guidelines on how to
do. For that, we will just focus on the architecture of the B specifications and
how using KAOS help us to build it. Since goals play an important role in
requirements engineering process, rather than establishing traceability from the
KAOS requirements model as a whole, we propose to establish traceability from
individual goals that are part of the KAOS goal model. The main idea is to
specify a correspondence rule between each concept of the goal model and B
elements. Up to now, we consider only functional goals of type Achieve [2]. A
B machine is associated to each goal. This machine contains an operation that
“realizes” the goal; i.e. it describes the ”work” to perform to reach the goal, in
terms of generalized substitutions. The refinement of a goal is represented by a B
refinement machine that refines the machine; the abstract operation is refined by
a concrete one. This operation is built by combining operations of the machines
that correspond to the sub-goals of the more abstract goal and are included in
the B machine via the inclusion relationship. The nature of the combination
depends on the goal refinement pattern (Milestone, AND, OR). The reader can
refer to [3] for more details. The main contribution of our approach is that it
establishes the first brick toward the construction of the bridge between the non-
formal and the formal worlds as narrow and concise as possible. Furthermore, by
discharging the proof obligations generated by the B refinement process, we can
prove some properties of consistency on the goal model. Regarding the different
KAOS goal model concepts, we need now to consider the translation of the
concepts of domain properties and non functional goals.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 401–402, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

402 A. Matoussi and D. Petit

References

1. Abrial, J.R.: The B-Book: Assigning programs to meanings. CUP (1996)
2. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley, Chichester (2009)
3. Matoussi, A., Laleau, R., Petit, D.: Bridging the gap between KAOS requirements

models and B specifications.Technical Report TR-LACL-2009-5, LACL, University
of Paris-Est (2009),
http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2009-5.pdf

http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2009-5.pdf

Code Synthesis for Timed Automata:
A Comparison Using Case Study

Anaheed Ayoub1, Ayman Wahba2, Ashraf Salem1, and Mohamed Sheirah2

1 Mentor Graphics Egypt
2 Ain Shams University

There are two available approaches to automatically generate implementation
code from timed automata model. The first approacch is implemented and at-
tached to TIMES tool [1]. We will call this approach ”TIMES approach”. While
the second approach is based on using B-method [2] and its available code gen-
eration tool [3]. We will call this approach ”B-method approach”. We select
the model of the production cell to be used as a case study for the compari-
son between these two approaches. The same production cell model has been
used against both approaches. The B-method approach generates platform inde-
pendent code [4]. So we select the generated code using TIMES to be platform
independent too for the comparison purpose. For the B-method approach, we
use the deterministic semantic of timed automata which is used for TIMES
code generation as given in [5]. This semantic controls the selection of the next
executed function. The using of this deterministic mechanism is generally not
needed for the code generated by the B-method approach. But we use it as it
is the implemented mechanism for the TIMES approach. So we select to use it
for comparison purpose. By running the implementation code generated using
the B-method approach, it works fine as far as we run and no property violation
could be found. On the other hand the code generated using TIMES approach
runs successfully for the first 10 action transitions and then it progresses the
time infinitely. This means that the system deadlocked, so it violates the first
property of the model. While the first property is to guarantee that the system is
deadlock free. This deadlock is due to the mishandling of the committed and ur-
gent states [6]. The introduced comparison gave a result that the approach based
on the using of B-method generates a verified code (by mean of simulation) and
handles more timed automata features.

References

1. http://www.it.uu.se/research/group/darts/times/papers/manual.pdf
2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press, Cambridge (1996)
3. http://www.tools.clearsy.com/index.php5?title=Tutorial_ComenC
4. Ayoub, A., Wahba, A., Salem, A., Taher, M., Sheirah, M.: Automatic Code Gener-

ation from Verified Timed Automata Model. To be appear in proceeding of IADIS
Applied Computing, Italy (2009)

5. Amnell, T., Fersman, E., Pettersson, P., Sun, H., Yi, W.: Code Synthesis for Timed
Automata. Nordic Journal of Computing 9(4) (2002)

6. http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 403, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.it.uu.se/research/group/darts/times/papers/manual.pdf
http://www.tools.clearsy.com/index.php5?title=Tutorial_ComenC
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

Towards Validation of Requirements Models

Atif Mashkoor1 and Abderrahman Matoussi2

1 LORIA – Nancy Université
{firstname.lastname}@loria.fr

2 LACL – Université Paris-Est
{firstname.lastname}@univ-paris12.fr

Fig. 1. The requirements val-
idation process

The use of formal methods for software development is
escalating over the period of time. The input to this for-
mal specification phase is often the documents obtained
during the requirements analysis activity which are either
textual or semi-formal. Now there is a traceability gap be-
tween analysis and specification phases as verification of
the semi-formal analysis model is difficult because of poor
understandability of lower level of formalism of verifica-
tion tools and validation of the formal specification is dif-
ficult for customers due to their inability to understand for-
mal models. Our objective is to bridge this gap by a grad-
ual introduction of formalism into the requirement model
in order to facilitate its validation. We analyse our require-
ments with KAOS (Knowledge Acquisition in autOmated
Specification) [1] which is a goal-oriented methodology
for requirements modeling, then we translate the KAOS
goal model, following our derived precise semantics [3],
into an Event-B [2] formal specification, and finally we
rigourously animate the obtained specification in order to
validate its conformance to original requirements with the
approach defined in [4]. The whole scenario is summed up
by figure 1. By the validation of a semi-formal requirement
model by rigorous animation of its formal counterpart, we reap benefits at two levels:
customers can be involved into the development right form the start and consequently
the requirement errors can be detected right on the spot. At theoretical level, we have ob-
tained some initial results at analysis, specification and validation levels independently,
however we hope that our proposed combined approach is also feasible collectively.

References

1. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, Chichester (2009)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2009)
3. Matoussi, A.: Expressing KAOS Goal Models with Event-B. In: Doctoral Symposium of 16th

International Symposium on Formal Methods, Eindhoven, The Netherlands (2009)
4. Mashkoor, A., Jacquot, J.P., Souquières, J.: Transformation Heuristics for Formal Require-

ments Validation by Animation. In: 2nd International Workshop on the Certification of Safety-
Critical Software Controlled Systems, York, UK (2009)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Proof Based Approach for Formal Verification
of Transactional BPEL Web Services

Idir Aı̈t Sadoune and Yamine Aı̈t Ameur

LISI/ENSMA-UP
Téléport 2 -1, avenue Clément Ader, BP 40109, 86961, Futuroscope-Poitiers, France

{idir.aitsadoune,yamine}@ensma.fr

The Service-Oriented Architectures (SOA) are increasingly used in various ap-
plication domains. Nowadays various Services operate on the Web and access
various critical resources such as databases. These services are called transac-
tional web services when they perform transactional actions. This kind of Ser-
vices must verify the relevant constraints related to transactional systems. In
our work, we focus on web services described with BPEL [1].

In the BPEL language, a composite Web Service is implemented by a process
that consists of activities such as the messaging activities invoke and reply, used
for interacting with other web services and the structured activities sequence,
flow and scope, acting as containers for their nested activities. BPEL provides
some support for transactions through its fault and compensation handlers un-
doing the effects of completed activities.

In most related work [2,3], validation of the web services composition and
workflow shows how to model transactional behaviors and involves the verifi-
cation of behavioral properties. In our work, we sketch a methodology showing
how Event B models [4,5] obtained by the approach described in [6] can be used
to prove web services transactional properties. Transactional services that access
and manage critical resources are isolated in a scope element with compensation
and fault handlers. When modelling fault and compensation handlers by a set of
events, it becomes possible to model and check the properties related to trans-
actional web services. These properties are encoded in the INVARIANTS clause
in order to guarantee consistency of the manipulated resources.

References

1. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Ver-
sion 2.0. Technical report, OASIS Standard (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. He, Y., Zhao, L., Wu, Z., Li, F.: Formal Modeling of Transaction Behavior in WS-
BPEL. In: International Conference on Computer Science and Software Engineering,
CSSE 2008 (2008)

3. Guidi, C., Lucchi, R., Mazzara, M.: A Formal Framework for Web Services Coordi-
nation. ENTCS 180(2), 55–70 (2007)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 405–406, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

406 I. Aı̈t Sadoune and Y. Aı̈t Ameur

4. Metayer, C., Abrial, J.-R., Voisin, L.: Event-B Language. Project IST-511599.
RODIN (2005)

5. ClearSy: Rodin (2007),
http://www.methode-b.com/php/travaux_r&d_methode_b_projet_RODIN_fr.php

6. Aı̈t-Sadoune, I., Aı̈t-Ameur, Y.: A Proof Based Approach for Modelling and Veryfing
Web Services Compositions. In: 14th IEEE International Conference on Engineering
of Complex Computer Systems ICECCS 2009, Potsdam, Germany, June 2-4, pp. 1–
10 (2009)

http://www.methode-b.com/php/travaux_r&d_methode_b_projet_RODIN_fr.php

On an Extensible Rule-Based Prover for Event-B

Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh

ECS, University of Southampton, Southampton SO17 1BJ, UK
{im06r,mjb,ae2,ra3}@ecs.soton.ac.uk

Abstract. Event-B [1] is a formalism for discrete system modelling. The
Rodin platform [2] provides a toolset to carry out specification, refine-
ment and proof in Event-B. The importance of proofs as part of formal
modelling cannot be emphasised enough, and as such, it is imperative to
provide effective tool support for it. An important aspect of this support
is the extensibility of the prover, and more pressingly, how its soundness
is preserved while allowing extensibility. Rodin has a limited support
for adding rules as this requires (a) a deep understanding of the inter-
nal architecture and (b) knowledge of the Java language. Our approach
attempts to provide support for user-defined proof rules. We initially fo-
cus on supporting rewrite rules to enhance the rewriting capabilities of
Rodin. To achieve this objective, we introduce a theory construct distinct
from contexts and machines. The theory construct provides a platform
for the users to define rewrite rules both conditional and unconditional.
As part of rule definition, users decide whether the rule is to be ap-
plied automatically or interactively. Each defined rule gives rise to proof
obligations that serve to verify its conservativity. In this respect, it is
required that validity and well-definedness are preserved by rules. After
the conservativity of all rules contained in a theory is established, the
theory can then be deployed and available to the proving activity. In or-
der to apply rewrite rules, it is necessary to single out applicable rules to
any given sequent. This is achieved through a pattern matching mecha-
nism which is implemented as an extension to Rodin. Our approach has
two advantages. Firstly, it offers a uniform mechanism to add proof rule
without the need to write Java code. Secondly, it provides a means to
verify added rules using proof obligations. Our work is still in progress,
and research has to be carried out to (a) cover a larger set of rewrite and
inference rules, and (b) provide guidelines to help the theory developer
with deciding whether a given rule should be applied automatically.

References

1. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inf. 77(1-2), 1–28 (2007)

2. Butler, M., Hallerstede, S.: The Rodin Formal Modelling Tool. In: BCS-FACS
Christmas 2007 Meeting - Formal Methods In Industry, London (December 2007)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

B Model Abstraction Combining Syntactic and
Semantic Methods

Jacques Julliand1, Nicolas Stouls2, Pierre-Christope Bué1,
and Pierre-Alain Masson1

1 LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besançon Cedex

{bue, julliand, masson}@lifc.univ-fcomte.fr
2 Université de Lyon, INRIA

INSA-Lyon, CITI, F-69621, Villeurbanne, France
nicolas.stouls@insa-lyon.fr

Abstract. In a model-based testing approach as well as for the verifi-
cation of properties by model-checking, B models provide an interesting
solution. But for industrial applications, the size of their state space often
makes them hard to handle. To reduce the amount of states, an abstrac-
tion function can be used, often combining state variable elimination and
domain abstractions of the remaining variables. This paper illustrates a
computer aided abstraction process that combines syntactic and seman-
tic abstraction functions. The first function syntactically transforms a B
event system M into an abstract one A, and the second one transforms a
B event system into a Symbolic Labelled Transition System (SLTS). The
syntactic transformation suppresses some variables in M. This function
is correct in the sense that A is refined by M. A process that combines
the syntactic and semantic abstractions has been experimented. It sig-
nificantly reduces the time cost of semantic abstraction computation.
This abstraction process allows for verifying safety properties by model-
checking or for generating abstract tests. These tests are generated by a
coverage criteria such as all states or all transitions of an SLTS.

Keywords: Model Abstraction, Syntactic Abstraction, Refinement.

The full version of this short paper is available as a research report:

Reference

[JSBM09] Julliand, J., Stouls, N., Bué, P.-C., Masson, P.-A.: B model abstraction
combining syntactic and semantics methods. Research Report RR2009-04,
LIFC - Laboratoire d’Informatique de l’Université de Franche Comté, 15
pages (November 2009)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 408, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Basis for Feature-Oriented Modelling in
Event-B

Jennifer Sorge, Michael Poppleton, and Michael Butler

Electronics and Computer Science, University of Southampton
{jhs06r,mrp,mjb}@ecs.soton.ac.uk

Feature-oriented modelling is a well-known approach for Software Product Line
(SPL) development. It is a widely used method when developing groups of re-
lated software. With an SPL approach, the development of a software product
is quicker, less expensive and of higher quality than a one-off development since
much effort is re-used. However, this approach is not common in formal methods
development, which is generally high cost and time consuming, yet crucial in the
development of critical systems. With the increase of more complex critical sys-
tems, it becomes more important to apply formal methods to the development
cycle, and we propose a method that allows the application of SPL development
techniques to formal methods. This results in faster and cheaper development of
formal systems.

Our method combines Event-B [1] and feature models [2]. A feature in a
feature model represents a requirement of the product family and is formally
described in Event-B using special feature modelling patterns. A feature repre-
sented in Event-B is referred to as component. We develop composition rules,
which allow components to be composed. Special composition proof obligations
allow the verification of the composition.

The feature model is formed by features which may be associated with Event-
B components. A subset of features from the feature model can be selected to
form a feature model instance, thereby selecting several of these Event-B com-
ponents. These components are composed pair-wise, and composition POs can
be discharged to prove properties and to ensure consistency of the composition.
The final Event-B machine represents the formal specification which is associated
with the feature model instance and is obtained by composing these components.

The motivation of our work is to allow product line development for ciritical
systems. We use traditional product line methods, i.e. feature modelling, and
link it with the formal method Event-B.

Future work is focussed on amending feature diagrams to reflect Event-B
components more precisely. Refinement patterns will also be addressed.

References

1. Abrial, J.-R.: Modeling in Event-B: Systems and Software Engineering. Cambridge
University Press, Cambridge (2009)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer, Heidelberg (2005)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Event-B to Verify the Kmelia Components and
Their Assemblies

Pascal André, Gilles Ardourel, Christian Attiogbé, and Arnaud Lanoix

COLOSS Team
LINA CNRS UMR 6241 - University of Nantes
{firstname.lastname}@univ-nantes.fr

Component-based software engineering is a practical approach to address the issue of
building large software by combining existing and new components. However, build-
ing reliable software systems from components requires to verify the consistency of
components and the correctness of their assemblies.

A Kmelia component is equipped with invariants and with pre/post-conditions de-
fined on services. A Kmelia assembly defines a set of links between required and pro-
vided services of various components, with respect to their pre/post-conditions [1,2].
Among the formal analysis necessary to ensure complete correctness, we consider: (i)
the component invariant consistency vs. pre-/post-conditions of services; (ii) the Kmelia
assembly link contract correctness, that relates services which are linked in the assem-
blies. We use the notion of contract as in the classical works and results such as design-
by-contract or specification matching: on the one hand the pre-condition of a required
service is stronger than the pre-condition of the linked provided service; on the other
hand the post-condition of the provided service is stronger than the post-condition of
the linked required service. This motivates the choice for using Event-B to check the
consistency of Kmelia components and the correctness of their assembly. We show how
to generate the necessary Event-B models from parts of the Kmelia specifications. We
design Event-B patterns to guide the translation and build the necessary proof obliga-
tions. Then, we describe how the proofs of the Event-B models are linked with the
attempted proofs at the Kmelia level: each Kmelia component is proved to be consis-
tent by checking the Event-B invariant preservation on separate models for observable
parts and required/provided services. To check each assembly link, appropriate Event-
B models are built and then Event-B refinement proof obligations are generated and
discharged.

The refinement technique of Event-B is used to manage both the structuring of the
generated Event-B models and also the proofs to be discharged. Yet we have applied
the technique to small and medium size case studies. The results of the current work
constitute one more step for rigorously building components and assemblies using the
Kmelia framework.

References

1. Attiogbé, C., André, P., Ardourel, G.: Checking Component Composability. In: Löwe, W.,
Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer, Heidelberg (2006)

2. André, P., Ardourel, G., Attiogbé, C., Lanoix, A.: Using Assertions to Enhance the Correctness
of Kmelia Components and their Assemblies. In: FACS 2009 (to be published)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 410, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Starting B Specifications from Use Cases

Thiago C. de Sousa1 and Aryldo G. Russo Jr2

1 University of São Paulo
thiago@ime.usp.br

2 AeS Group
agrj@aes.com.br

The B method [1] is gaining visibility in formal methods community due to excel-
lent support for refinement. However, the traceability between the requirements
and the formal model is still an issue of this method. To overcome this issue,
different solutions have been proposed by researchers. In [2], the authors have
presented a traceability between KAOS requirements and B. A mixed solution
using natural language and UML-B has been proposed by [3]. However, these
approaches use non-standard artifacts for requirement specifications, which we
consider a disincentive for convincing designers to adopt formal methods since
they must spend time to learn them. So, we propose an approach for map-
ping requirements to B models from use cases [4], which can be considered as
the de-facto industry standard for requirement specifications. We propose that
use case scenario sentences must be written using a controlled natural language
(CNL) described according our use case transaction definition, which is based on
Ochodek’s transaction model [5]. We consider that a transaction is a sequence
of four steps actions in a scenario, which starts from the actors request (U) and
finishes with the system response (SR). The system validation (SV) and system
expletive (SE) actions must also occur within the starting and ending action.
The actions help to find out the B components. So, from SV actions we extract
the preconditions and from SE actions we derive the operations names and the
postconditions. We are not interested in the automatic translation of use cases
for formal specifications since there are many natural language ambiguity prob-
lems. The intention of our work is to take the use cases as a guideline for starting
B specifications. Our main goal is to create a new and complete development
process (including deliverables artifacts), namely BeVelopment, for B focusing
on agility/usability and we believe that use cases seem to be a good start point.

References

1. Abrial, J.-R.: The B-Book: assigning programs to meaning. C.U.P (1996)
2. Ponsard, C., Dieul, E.: From requirements models to formal specifications in B. In:

ReMo2V CEUR Workshop Proceedings, vol. 241. CEUR-WS.org (2006)
3. Jastram, M., Leuschel, M., Bendisposto, J., Russo Jr., A.: Mapping Requirements

to B models. DEPLOY Deliverable (2009) (unpublished manuscript)
4. Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-oriented software

engineering: A use case driven approach. Addison-Wesley, Reading (1992)
5. Ochodek, M., Nawrocki, J.R.: Automatic Transactions Identification in Use Cases.

In: Meyer, B., Nawrocki, J.R., Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082,
pp. 55–68. Springer, Heidelberg (2008)

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 411, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Integrating SMT-Solvers in Z and B Tools

Alessandro Cavalcante Gurgel1,∗ , Valério Gutemberg de Medeiros Jr.2,
Marcel Vinicius Medeiros Oliveira1, and David Boris Paul Déharbe1

1 Departamento de Informática e Matemática Aplicada, UFRN, Brazil
2 Instituto Federal de Educação, Ciência e Tecnologia, IFRN, Brazil

An important frequent task in both Z and B is the proof of verification condi-
tions (VCs). In Z and B, VCs can be predicates to be discharged as a result of
refinement steps, some proof about initialization properties or domain checking.
Ideally, a tool that supports any Z and B technique should automatically dis-
charge as many VCs as possible. Here, we present ZB2SMT1, a Java package
designed to clearly and directly integrate both Z and B tools to the satisfia-
bility module theory (SMT) solvers such as veriT [1], a first-order logic (FOL)
theorem prover that accepts the SMT syntax [4] as input. By having the SMT
syntax as target we are able to easily integrate with further eleven automatic
theorem provers. ZB2SMT is currently used by Batcave [2], an open source tool
that generates VCs for the B method and CRefine [3], a tool that supports the
Circus refinement calculus. Much of the VCs generated to validate the refinement
law applications, are based on FOL predicates. Hence, CRefine uses the ZB2SMT
package to automatically prove such predicates. The package integrates elements
of Z and B predicates in a common language and transforms these predicates into
SMT syntax. In this process, a SMT file is generated containing the predicate
and some definitions. It is sent to a chosen SMT solver which yields a Boolean
value for the predicate or it can be sent to several SMT solvers in a parallel
approach. In order to improve the performance of the proof system, ZB2SMT
has a module that can call different instances of solvers at different comput-
ers, according to a configuration file. It improves the proof process by allowing
different strategies to be performed in parallel, reducing the verification time.

Acknowledgments. This work was partially supported by INES (www.ines.org.br),
funded by CNPq grant 573964/2008-4 and by CNPq grants 553597/2008-6,
550946/2007-1, and 620132/2008-6.

References

1. Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: An
open, trustable and efficient SMT-solver. In: CADE-22, pp. 151–156 (2009)

2. Marinho, E.S., Medeiros Jr., V.G., Tavares, C., Déharbe, D.: Um ambiente de veri-
ficação automática para o método B. In: SBMF 2007 (2007)

∗
The ANP supports the work of the author through the prh22 project.

1 Freely available at http://www.consiste.dimap.ufrn.br/projetos/zb2smt.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, pp. 412–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Integrating SMT-Solvers in Z and B Tools 413

3. Oliveira, M.V.M., Gurgel, A.C., de Castro, C.G.: CRefine: Support for the Circus
Refinement Calculus. In: 6th IEEE on SEFM, pp. 281–290. IEEE, Los Alamitos
(2008)

4. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2 (2006)

Formal Analysis in Model Management:
Exploiting the Power of CZT

James R. Williams, Fiona A.C. Polack, and Richard F. Paige�

Department of Computer Science, University of York, UK YO10 5DD
{jw,fiona,paige}@cs.york.ac.uk

Software engineering diagrams are hard to verify and formally analyse, often due
to inadequately defined diagram semantics: the semantics often does not enable
formal analysis, or may be underspecified to a degree that does not allow useful
properties to be checked.

The AUtoZ tools (jamesrobertwilliams.co.uk/autoz.php) provide formal-
isation in the style of commercially-acceptable model management [3]. AU-
toZ is an automated framework based on Amálio’s GeFoRME, the generative
framework for rigorous model-driven engineering [1]. GeFoRME is designed to
give semantically-adaptable support to the construction of formal models from
diagrams.

Formal methods tools often produce messages aimed at expert users of the
tool and relate to line numbers of the formal specification; mapping these mes-
sages back to components in UML diagrams is not trivial. To address this, we
are creating an AUtoZ instance that targets the Community Z Tools (CZT)
project (czt.sourceforge.net). The ZML sub-project of CZT [2] supports
XML markup for Z. CZT tools annotate the ZML file, for instance with is-
sues raised by formal analysis. Exploiting the fact that, in model engineering, a
diagrammatic model must conform to a metamodel (that defines abstract syn-
tax and some semantics), and that ZML has a well-defined metamodel, generic
associations can be made at the metamodel level. Therefore we can link elements
in the UML and ZML models. Traceability links are thus a side-effect of the Z
generation.

By combining AUtoZ with CZT’s flexible, open-source formal support mecha-
nisms, a complete tool chain has been designed which can overcome many of the
problems of interfacing formal analysis with traditional diagram-based software
engineering.

References

1. Amálio, N.: Generative frameworks for rigorous model-driven development. PhD
thesis, Computer Science, York, UK (2007)

2. Utting, M., et al.: ZML: XML Support for Standard Z. In: Bert, D., Bowen, J.P.,
King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 437–456. Springer, Heidelberg (2003)

3. Williams, J., Polack, F.: Automated formalisation for verification of diagrammatic
models. In: FACS 2009. ENTCS (2009)

� This research was supported by the EPSRC, through the Large-Scale Complex IT
Systems project, EP/F001096/1.

M. Frappier et al. (Eds.): ABZ 2010, LNCS 5977, p. 414, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

jamesrobertwilliams.co.uk/autoz.php
czt.sourceforge.net

Author Index

Abdallah, Chaouki T. 132
Abrial, Jean-Raymond 319
Adi, Kamel 400
Aı̈t Ameur, Yamine 405
Aı̈t Sadoune, Idir 405
Altenhofen, Michael 47
André, Pascal 410
Arcaini, Paolo 61
Ardourel, Gilles 410
Attiogbé, Christian 410
Ayoub, Anaheed 403

Bagheri, Hamid 395
Börger, Egon 20
Bué, Pierre-Christope 408
Butler, Michael 189, 231, 407, 409

Catano, Nestor 259
Cavalcanti, Ana 334
Craig, Iain 20

Déharbe, David 203, 217
Déharbe, David Boris Paul 412
de Sousa, Thiago C. 411
D’Ippolito, Nicolás 160
Dunne, Steve 302

Edmunds, Andrew 407

Farahbod, Roozbeh 47
Filali-Amine, Mamoun 245
Frias, Marcelo F. 160, 396

Galeotti, Juan P. 160, 396
Gargantini, Angelo 61
Gervais, Frédéric 391
Gomes, Bruno 203
Gopinath, Divya 392
Groves, Lindsay 377
Grov, Gudmund 189
Gurgel, Alessandro Cavalcante 412

Hallerstede, Stefan 273, 287
Hasan, Osman 2
Hassan, Waël 400

Hassine, Jameleddine 34
Heileman, Gregory L. 132
Hoang, Thai Son 319

Iliasov, Alexei 174
Ilic, Dubravka 174
Ireland, Andrew 189

Jackson, Daniel 1, 118
Jacob, Jeremy L. 105
Julliand, Jacques 408

Kang, Eunsuk 1
Khoury, Joud 132
Khurshid, Sarfraz 392, 398

Laibinis, Linas 174
Lanoix, Arnaud 410
Lanzarotti, Esteban 160
Latvala, Timo 174
Lawall, Julia 245
Lenihan, Clare 377
Leuschel, Michael 231, 287
Logrippo, Luigi 400
Lopez Pombo, Carlos G. 396

Maamria, Issam 407
Malik, Petra 377
Mashkoor, Atif 404
Masson, Pierre-Alain 408
Matoussi, Abderrahman 401, 404
Medeiros Jr., Valério Gutemberg de 412
Mera, Sergio 160
Merle, Philippe 91
Michel, David 391
Moraes, Katia 203
Moreira, Anamaria 203

Near, Joseph P. 118
Nokhbeh Zaeem, Razieh 398

Oliveira, Marcel Vinicius Medeiros 412

Paige, Richard F. 414
Perry, Dewayne E. 392
Petit, Dorian 401

416 Author Index

Plagge, Daniel 287
Polack, Fiona A.C. 414
Poppleton, Michael 409
Power, David 349, 394

Reynolds, Mark C. 146
Rezazadeh, Abdolbaghi 407
Riccobene, Elvinia 61, 75
Romanovsky, Alexander 174
Rosner, Nicolás 396
Rueda, Camilo 259
Russo Jr, Aryldo G. 411

Salem, Ashraf 403
Scandurra, Patrizia 75
Seinturier, Lionel 91
Shao, Danhua 392
Sheirah, Mohamed 403
Simpson, Andrew 349, 363, 394
Slaymaker, Mark 349, 394

Slimani, Nadera 400
Sorge, Jennifer 409
Stouls, Nicolas 408
Sullivan, Kevin 395

Tahar, Sofiène 2
Tiberghien, Alban 91
Troubitsyna, Elena 174
Turner, Edd 231

Valarcher, Pierre 391
Varpaaniemi, Kimmo 174
Vernon, Michael 334

Wahba, Ayman 403
Williams, James R. 414
Wu, Nicolas 363

Zeyda, Frank 302, 334

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Structure for Dependability Arguments
	Formal Probabilistic Analysis: A Higher-Order Logic Based Approach
	Introduction
	Formal Probabilistic Analysis Framework
	Discrete Random Variables and the PMF
	Continuous Random Variables and the CDF
	Statistical Properties for Discrete Random Variables
	Statistical Properties for Continuous Random Variables

	Applications
	Probabilistic Analysis of the Coupon Collector's Problem
	Performance Analysis of the Stop-and-Wait Protocol
	Reliability Analysis of Reconfigurable Memory Arrays
	Round-Off Error Analysis in Floating-Point Representation

	Related Work
	Conclusions
	References

	ASM Papers
	Synchronous Message Passing and Semaphores: An Equivalence Proof
	Introduction
	Scheduling
	Directly Controlled Synchronous Message Passing
	The MsgPassCtl Machine (Ground Model)
	Properties of MsgPassCtl Runs

	Semaphores
	Semaphore-Based Synchronous Messages
	The MsgPassSema Machine
	Correctness Proof for MsgPassSema

	Equivalence Proof
	Concluding Remarks and Future Work
	References

	AsmL-Based Concurrency Semantic Variations for Timed Use Case Maps
	Introduction
	Related Work
	The Timed Use Case Maps Language
	Selected Time Criteria
	Syntax of Timed Use Case Maps
	A Basic Timed UCM Example

	AsmL Implementation of the Timed UCM Concurrency Models
	Timed UCM Simulation Engine
	Interleaving Semantics
	True Concurrency Semantics
	Multi-Agent Solution: Run to Completion

	Illustrative Example
	Conclusions
	References

	B\^{a}run: A Scripting Language for CoreASM
	Introduction
	Requirements and Design Decisions
	Extending CoreASM
	3.1 Extending the Control Flow of the Engine
	3.2 Extending the Parser
	3.3 Extending Rule Declarations

	Case Study
	Related Work
	Conclusion and Future Work
	References

	AsmetaSMV: A Way to Link High-Level ASM Models to Low-Level NuSMV Specifications
	Introduction
	Related Work
	Background
	ASMETA Toolset
	NuSMV

	AsmetaSMV
	Mapping of States
	Mapping of Transition Rules
	Property Specification
	Property Verification

	Case Studies
	Conclusions
	References

	An Executable Semantics of the SystemC UML Profile
	Introduction
	The SystemC UML Profile
	ASM-Based Semantic Framework
	Meta-hooking for the SystemC Process State Machines
	ASM Signature
	ASM Transition System
	ASM Initial State

	Related Work
	Conclusions
	References

	Alloy Papers
	Specifying Self-configurable Component-Based Systems with FracToy
	Introduction
	The FracToy Framework
	Alloy in a Nutshell
	The FracToy Methodology

	FracToy in Action
	The ``Room'' Scenario
	Specification of the Component Model
	Specification of the Self-configurable Room System
	Analysis of the Room Architecture

	Related Work
	Conclusion and Future Work
	References

	Trace Specifications in Alloy
	Introduction
	Encoding
	Example: Vending Machines
	Module Heading
	Very Simple Vending Machines
	More Complex Vending Machines

	Example: Triple-Redundancy Protocol
	Model
	The Transmitter/Receiver Pair Is a Protocol
	The Triple-Redundancy Protocol Connected via a Good Network
	The Triple-Redundancy Protocol Connected via a Bad Network

	Conclusions
	References

	An Imperative Extension to Alloy
	Introduction
	Alloy and Dynamic Systems
	Language Extension
	Dynamic Fields
	Named Actions
	Action Language
	Temporal Quantifiers

	Examples
	River Crossing
	Filesystem
	Insertion Sort

	Translation to Alloy
	Dynamic Idiom
	Translation
	Semantic Implications

	Related Work
	Conclusions and Future Work
	References

	Towards Formalizing Network Architectural Descriptions
	Introduction
	Background
	Architectural Styles: What and Why?
	Alloy

	Case Study
	FARA Model

	Related Work
	Discussion, Future Work, and Conclusion
	References

	Lightweight Modeling of Java Virtual Machine Security Constraints
	Introduction
	Background
	Goals

	Design
	Implementation
	Model Template
	Class2Alloy Classfile Parser
	Analysis of the BlackBox Applet
	Future Work

	Conclusion
	References

	Alloy+HotCore: A Fast Approximation to Unsat Core
	Introduction
	Motivation
	Finding Minimal Sets of Hot Clauses
	Overview of the SAT-Solving Process
	Activity Heuristics in the Search Process
	Extracting the Core

	Experimental Results
	Conclusions and Further Work
	References

	B Papers
	Supporting Reuse in Event B Development: Modularisation Approach
	Introduction
	Challenges and Experiences in Formal Development of Onboard Software
	Event B
	Introduction to Modules in Event B
	Introducing Modules via Model Decomposition
	System Development via Model Composition

	Extending Event B with Modules
	Module Body
	Operation Invocation

	Modularisation of the DPU Unit
	Conclusions
	References

	Reasoned Modelling Critics: Turning Failed Proofs into Modelling Guidance
	Introduction
	Background
	From Proof Critics to Reasoned Modelling Critics
	Guidance for Invariant Proof Failures via Local Analysis
	The Cruise Control System in Event-B
	From Local to Global Modelling Suggestions

	Related and Future Work
	Conclusion
	References

	Applying the B Method for the Rigorous Development of Smart Card Applications
	Introduction
	Java Card
	Smart Card System
	Developing Java Card Applications

	Formal Java Card Development with the B Method
	Generation of the Host Application API
	Rules for Host API Code Generation

	Development of the Card-Side Application
	Tool Support
	A Library of Reusable B Components

	Conclusions
	References

	Automatic Verification for a Class of Proof Obligations with SMT-Solvers
	Introduction
	The Source and Target Languages
	Proof Obligations in Rodin
	The SMT-LIB Format

	Rationale of the Translation
	Formalizing the Translation
	Preliminary Definitions and Notations
	Translation Rule for a PO
	Translation Rules for the Typing Environment
	Translation Rules for Hypothesis and Goal
	Translation Rules for Formulas
	Translation Rules for Terms
	Mixed Operators

	Experimental Results
	Conclusions
	References

	A Refinement-Based Correctness Proof of Symmetry Reduced Model Checking
	Introduction
	An Abstract Specification for Model Checking
	Refinement Level 1
	Refinement for Standard Model Checking
	Refinements for Symmetry Reduced Model Checking
	Level 1
	Level 2

	Concluding
	References

	Development of a Synchronous Subset of AADL
	Introduction
	AADL
	AADL Threads
	AADL Data Port Protocol

	A Brief Overview of Event B
	Basic Principles
	Notation

	Motivation of the Development
	The Specification View
	The Operational View

	Abstracting and Refining the AADL Data Port Protocol
	The Specification
	Introducing Idle Ports and Atomicity Breaking through Silent Steps
	Partitioning the Ports
	Introducing Port Buffering
	Port Update Scheduling

	Development Validation
	Proof Obligations
	Recursive Function Patterns

	Related Work
	Conclusions
	References

	Matelas: A Predicate Calculus Common Formal Definition for Social Networking
	Introduction
	Preliminaries
	A Formal Framework for Social Networking
	The B Method for Software Development

	Matelas
	Publishing Content

	Related Work
	Conclusion
	References

	Structured Event-B Models and Proofs
	Introduction
	Event-B with Structure
	Notation
	Proof Obligations

	Event-B With and without Structure
	Without Structure
	With Structure
	Remarks

	Development of a Sequential Program
	GCD by Way of a Linear Equation
	Creation of a Stack of Divisions
	Calculation of the Coefficients
	Implementation of the Stack Pointer

	Related and Future Work
	Conclusion
	References

	Refinement-Animation for Event-B — Towards a Method of Validation
	Introduction and Motivation
	Modelling and Refinement in Event-B
	Contexts
	Machines
	Machine Consistency
	Machine Refinement
	Common Variables and Common Parameters
	Refined Events and Witnesses
	New Events and Convergence
	Enabledness of Refined and New Events

	Description of the Multi-level Animation Algorithm
	Preprocessing
	The Animation Algorithm

	Refinement-Validation with ProB
	Detection of Specific Problems
	Application to Case Studies

	Related Work
	Conclusion
	References

	Reactivising Classical B
	Introduction
	AReactive-BPreview
	The Fibonacci Generator

	The rB Action Notation
	Two More Reactive-B Specifications
	The Vending Machine
	The Fuel Pump

	Unifying Theories of Programming
	Relational Semantics of Sequential Programs
	Relational Semantics of Reactive Programs
	Reactive Healthiness Conditions

	Semantics of rB Actions
	The Maritime Port
	Conclusion and Future Work
	References

	Event-B Decomposition for Parallel Programs
	Introduction
	The Event-B Modelling Method
	Machines
	Machine Refinement
	Shared Variable Decomposition

	Example: FindP Program
	Formal Development
	Initial Context and Model
	First Refinement
	Decomposition
	Further (sub-)refinements
	Proof Statistics

	Related Work and Conclusion
	RelatedWork
	Conclusion

	References

	Z Papers
	Communication Systems in ClawZ
	Introduction
	Preliminaries
	ClawZ
	Signal-Processing Features

	Extension of ClawZ
	Addition of Data Types
	Support for Communication Blocks

	Case Study: Software-Defined Radio
	Conclusion and Future Work
	References

	Formalising and Validating RBAC-to-XACML Translation Using Lightweight Formal Methods
	Introduction
	Formalising RBAC
	Formalising XACML
	From RBAC to XACML
	Helper Functions
	Translation

	Towards an Alloy Model for Formal Analysis
	Discussion
	References

	Towards Formally Templated Relational Database Representations in Z
	Introduction
	Analysis of Approaches in Z
	Formal Templates for Relational Schemas
	Extending the Formal Template Language
	Conclusions
	References

	Translating Z to Alloy
	Introduction
	Z Models and Alloy Instances
	A Semantics Preserving Translation for a Subset of Z
	Extending the Translation
	More Z Constructs
	Schemas

	Discussion and Conclusion
	References

	ABZ Short Papers (Abstracts)
	B-ASM: Specification of ASM $\`{a} la$ B
	A Case for Using Data-Flow Analysis to Optimize Incremental Scope-Bounded Checking
	References

	On the Modelling and Analysis of Amazon Web Services Access Policies
	References

	Architecture as an Independent Variable for Aspect-Oriented Application Descriptions
	References

	ParAlloy: Towards a Framework for Efficient Parallel Analysis of Alloy Models
	References

	Introducing Specification-Based Data Structure Repair Using Alloy
	References

	Secrecy UML Method for Model Transformations
	References

	Improving Traceability between KAOS Requirements Models and B Specifications
	References

	Code Synthesis for Timed Automata: A Comparison Using Case Study
	References

	Towards Validation of Requirements Models
	References

	A Proof Based Approach for Formal Verification of Transactional BPEL Web Services
	References

	On an Extensible Rule-Based Prover for Event-B
	References

	B Model Abstraction Combining Syntactic and Semantic Methods
	Reference

	A Basis for Feature-Oriented Modelling in Event-B
	References

	Using Event-B to Verify the Kmelia Components and Their Assemblies
	References

	Starting B Specifications from Use Cases
	References

	Integrating SMT-Solvers in Z and B Tools
	References

	Formal Analysis in Model Management: Exploiting the Power of CZT
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

