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Abstract. Recent work on constrained graph layout has involved pro-
jection of simple two-variable linear equality and inequality constraints
in the context of majorization or gradient-projection based optimiza-
tion. While useful classes of containment, alignment and rectangular
non-overlap constraints could be built using this framework, a severe lim-
itation was that the layout used an axis-separation approach such that
all constraints had to be axis aligned. In this paper we use techniques
from Procrustes Analysis to extend the gradient-projection approach to
useful types of non-linear constraints. The constraints require subgraphs
to be locally fixed into various geometries—such as circular cycles or
local layout obtained by a combinatorial algorithm (e.g. orthogonal or
layered-directed)—but then allow these sub-graph geometries to be in-
tegrated into a larger layout through translation, rotation and scaling.

1 Introduction

Our past work has explored methods for incorporating various types of con-
straints over node positions and edge routing into force-directed layout. A key
component in achieving stable incremental constraint satisfaction in the context
of such layout has been gradient-projection techniques. Optimization of a goal
function subject to constraints using gradient projection involves finding a gra-
dient related descent vector which is then projected against the constraints to
obtain a descent vector that is feasible with respect to those constraints. Pro-
jection, as described in Section 3, involves solving a constrained least-squares
problem.

Recent work has focused on interactive applications of such constraint-based
layout. For example, a diagram authoring tool [11] and on-line exploration of
large graphs [8]. To achieve interactive responsiveness in such applications the
projection step needs to be efficient and for certain classes of constraints we have
been able to find methods of projection that compare favourably in running time
to the basic unconstrained layout. In [6] we gave a simple active-set algorithm
for projection subject to orthogonal ordering constraints; i.e. a partial ordering
of nodes in either the horizontal or vertical axes of the drawing. In [7] we gave an
algorithm for more general separation constraints : linear equality or inequality
constraints over pairs of either x- or y-position variables.
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Fig. 1. A metabolic pathway network with two cycles arranged in two ways using differ-
ent (user defined) constraints. In both cases Procrustes projection (see Section 4) is used
to keep the cycles circular and groups are created around the two cyclic components.
Constraints prevent members of these groups from overlapping with other parts of the
graph. In the lower-left drawing the non-overlap constraint is based on the convex-hulls
of the groups, projected apart as described in Section 3.2. The upper-right drawing is
arranged with rectangular group boundaries using separation constraints (see Section
3.1). Various horizontal and vertical alignment constraints (using equality separation
constraints) have been added interactively by the user to customize the layouts.

Most recently, following position-based dynamics approaches used success-
fully in computer game animation, we showed that a simple class of nonlinear
constraint could also be projected in a cyclical Gauss-Seidel scheme [5]. The con-
straints were simple equalities or inequalities over Euclidean distance between
pairs of nodes. Although simple, we were able to compose these constraints
into more complex rigid structures. In particular we demonstrated wheel-like
constructions to draw directed-graph cycles in a reorientable, but fixed radius
circle. Such circular constraints are useful for achieving the kind of drawing con-
ventions commonly seen, for example, in biology textbooks, for drawing cycles
in metabolic pathways.

Although projecting cycles in this way was successful it led us to an investiga-
tion to see whether a closed-form solution to the projection of such circular con-
straints was possible. Also, we wanted circular constraints with variable as well
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as fixed radii. In this paper we show that the technique of Procrustes analysis—
more commonly used by statisticians to fit experimental observations to a model—
efficiently solves this exact problem and further more, can be used to obtain a
projection of any rigid shape with minimal translation, rotation and scaling.

2 Related Work

A survey of graph-drawing literature—particularly regarding circular layout
style—reveals a number of scenarios where the Procrustes projection described
in this paper could provide a concrete improvement to either the quality of the
drawings or the stability of the layout method.

Six and Tollis [19] give a multi-stage force-directed approach for layout of cir-
cular subgraphs in a non-circular arrangement of the larger graph. At first the
subgraphs are replaced with single nodes and this abridged graph is arranged us-
ing a typical force-directed technique. Then a circular ordering of the subgraphs
is found to minimize internal edge-crossings. The radius of each circle is fixed
based on the number of nodes and an orientation is found by what sounds like
a brute-force search. Finally, another relaxation step is applied using an ad-hoc
local search method over node angles.

Becker and Rojas [2] discuss a technique for drawing the cycles in metabolic
pathways as circles. They do not give many algorithmic details but the brief
description of their two-stage force-directed approach suggests that it is similar
in spirit to Six and Tollis.

Baur and Brandes [1] investigate techniques for circular ordering of nodes in
subgraphs to minimize crossings between both edges internal to the subgraph,
and edges linking the subgraph to other circular subgraphs in so called “Mi-
cro/Macro” graphs, i.e. graphs with one level of semantic grouping. They do not
consider the problem of orienting the circular “micro” graphs in the context of
the larger “macro” graph layout and in many of their examples it is clear that
a little rotation of the circles would significantly reduce edge length.

Friedrich and Eades [14] give a complicated (and unproven) algebraic expres-
sion for finding an affine transformation of a graph to transition between different
layouts such that squared displacement of the transformed graph from the target
graph is minimized. This is exactly a Procrustes problem although Friedrich and
Eades also allow shear transformations. Shearing is forbidden by the orthogonal
Procrustes model described in Section 4 since shearing does not preserve the
“shape” of the model and can collapse the dimensionality: e.g. transform a 2-d
shape to a line [4, pg. 430]. In addition the Procrustes formulation that follows is
easier to describe, implement and debug and does not suffer from potential sin-
gularities that may be a problem in the formulation in [14] (Friedrich and Eades
do not explain how to handle zero value denominators in their expression).

3 Constraint Projection

A key ingredient to the constraint-based layout described in this paper is the
idea of solving a projection problem. Projecting the variables x = (x1, . . . , xn)
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with starting or desired positions d = (d1, . . . , dn) against a set of constraints
that define a feasible region S means finding the point x in S closest to d.

argmin
x∈S

n∑

i=1

(xi − di)2 (1)

While we have in the past considered different ways to project against certain
classes of constraints using specially developed solver techniques, this is the first
paper where we have combined different projection methods for different classes
of constraints in a single unifying framework. Before introducing the new type
of Procrustes constraint projection in Section 4, we briefly review the two other
types of constraint projection that will be used in combination.

3.1 Separation Constraint Projection

A separation constraint is an equality or inequality between a pair of (exclusively)
horizontal or vertical node positions. For example, ux + g ≤ vx requires that
nodes u and v be separated horizontally by at least g. In [7] and also [11] we give
gradient projection techniques for layout using only such horizontal and vertical
separation constraints. They are useful for many drawing conventions involving
constraints that are aligned with the page or screen axes such as rectangular
node and cluster non-overlap constraints, constraints requiring the end node of
a directed edge be strictly above the start node, or for persistent horizontal or
vertical alignments.

Efficient scan-line techniques for generating horizontal or vertical non-overlap
constraints have been developed, see [9]. We also have fast techniques for finding
the projection of all separation constraints in a given axis, see [7].

Although separation constraints are useful there are many drawing conven-
tions requiring non-linear constraints, or linear constraints that are not axis
aligned. In [10] and [12] we experimented with augmentation of the goal func-
tion to simulate other types of constraint. Simply adding terms to the goal
function, however, does not provide the strict “rigidity” of real constraints. In-
creasing the weighting of such terms to reduce “stretchiness” usually overwhelms
the underlying layout goal function or can lead to instability.

3.2 Euclidean Distance Projection

A Euclidean distance constraint of the form |pq| ≥ d requires a minimum
distance d between the positions of two nodes p and q. If such a constraint
is violated the projection, i.e. feasible positions p′ and q′ that minimize the
squared displacement from p and q, are trivially computed as p′ = p− wq

wp+wq
r,

q′ = q+ wp

wp+wq
r where r = |pq|−1(d− |pq|)pq. The “weights” wp and wq for p

and q are by default 1. However, for a constraint involving a cluster of n nodes
it is useful to take the weight as n.

In [5] Euclidean distance constraints (including equality constraints) were the
only type of constraint and the above calculation was the only type of projection
used. Complex constraints like rigid circles were built with a wheel-like frame of
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Euclidean distance equality constraints. The Procrustes projection technique de-
scribed in Section 4 makes this usage redundant. However, this type of Euclidean
distance projection is still useful in the framework described in Section 5, for pre-
venting overlapbetween the convexhulls of node/cluster boundaries.That is, given
two overlapping convex hulls we can minimally project them apart by chosing the
displacement vector r (above) from the minimum penetration depth vector, com-
puted from the Minkowski Difference of the two hulls, see Figure 2. The time to
compute this vector is proportional to the sum of vertices in the two hulls. We use a
binary space partition tree to quickly identify potentially overlapping hulls (rather
than computing Minkowski Differences for all pairs). Figure 1 shows a graph with
non-overlapping cluster boundaries projected apart using this technique.

Fig. 2. To prevent overlap between convex hull cluster boundaries and nodes or other
cluster boundaries we project apart overlapping boundaries using the minimum pene-
tration depth vector

4 Procrustes Projection

Procrustes analysis is a technique for fitting an observed data configuration to an
expected model using only linear transformations. Borg and Groenen [4] give a
comprehensive overview and introduction to Procrustes methods, although the
techniques have been known to statisticians since the 1950s. For a statistical
technique, it is rather colourfully named after the character in Greek mythology
of the same name. Procrustes was a keeper of an inn who “fit” his victims to an
iron bed using drastic means.

The problem that we consider in this paper is projecting a set of n 2-d points
X onto a target constrained configuration Y with a shape that is rigid but which
can be scaled by a factor s, translated by a vector t or rotated by an orthogonal
matrix T such that the sum of squared distances from the transformed Y to the
original X is minimized. That is, we want to find s, t and T that minimize:

n∑

i=1

(Xi − (sYiT + t))2 (2)

subject to T ′T = I, i.e. only orthogonal rotation.
The optimal translation vector t is optained by differentiating (2) with respect

to t and setting the derivative equal to 0 (see [4]):

t =
1
n

n∑

i=1

(Xi − sYiT ) (3)
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The optimal scale s is obtained similarly by substituting (3) for t in (2), differ-
entiating with respect to s and setting this derivative to 0 giving:

s =
trX ′Y T

tr Y ′Y
(4)

where tr is the matrix trace of the 2 × 2 result of the inner products. Note
that this assumes that Y is centered on the origin (or has been centered by
subtracting the barycenter of Y from all of its elements).

Substituting (3) and (4) into (2) we see that the optimal rotation T is invariant
to scale or translation. Conveniently, it can be shown (see Appendix) that T =
QP ′, where P and Q are found from the singular value decomposition X ′Y =
PΦQ′, is exactly the optimal rotation. The singular value decomposition of the
2 × 2 matrix X ′Y can be obtained in closed form using the quadratic formula
to find roots of the characteristic polynomial.

To summarize, the following procedure takes a matrix X of n points (i.e. node
positions), a matrix Y of n points with the target configuration (centered on the
origin), and returns the projection of X on the optimally transformed Y :

procedure ProjectXonY(X, Y )
C ← X ′Y
(P, Φ, Q′)← SingularValueDecomposition(C)
T ← QP ′

s← (trCT )/(tr Y ′Y )
t← 1

n

∑n
i=1(Xi − sYiT )

return sT ′Y ′ + 1′t

Procedure ProjectXonY runs in O(n) time since the most expensive operation
is computing the inner-product of n × 2 matrices.

(a) Unconstrained (b) With circle constraints (c) Convergence

Fig. 3. Circular constraints applied using cyclical Gauss-Seidel Procrustes projection
can even be interlocking. Provided a feasible solution exists, and the starting layout
is reasonably untangled (e.g. the unconstrained layout on the left) cyclical projection
rapidly converges (see Section 5.1).
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4.1 Choosing the Target Configuration

The target configuration matrix Y can be any shape centered at the origin. For
example, to require that n nodes be equally spaced in a given order around
a circle we simply chose Y as the vector of n points (y1, . . . , yn) where yi =
(cos iθ, sin iθ) taking θ = 2π

n . Figures 1, 3 and 6 show the results of using such
circular constraints—in combination with other constraints—in the constrained
layout scheme described in Section 5.

The target configuration can equally easily be the result of a complete layout
algorithm applied to the subgraph. Figure 6(c) demonstrates this by taking the
target configuration Y as the result of a layered layout algorithm applied to
subgraphs with tree structure.

5 Combining Constraints in an Incremental Layout Step

The procedure FeasibleLayoutStep summarizes the operations in a single itera-
tion of layout for a graph G = (V, E), with nodes initially positioned horizontally
and vertically at Vx and Vy respectively, a set C of Procrustes or any other con-
straints that we know how to project and horizontal and vertical separation
constraints Ch and Cv respectively. The last parameter α controls the size of the
unconstrained descent step, see below.
procedure FeasibleLayoutStep(V, E, C, Ch, Cv, α)

D← ComputeDescentDirection(V, E, α)
d← D − (Vx, Vy)
D̄← ProjectDesiredPositions(C, D)
C′

h ← Ch ∪ GenerateHorizontalNonOverlapConstraints(Vx, Vy)
x← Project(C′

h, D̄x)
C′

v ← Cv ∪GenerateVerticalNonOverlapConstraints(x, Vy)
y ← Project(C′

v, D̄y)
return (x, y), |d|

This procedure returns new positions (x, y) which improve the layout (de-
pending on the quality of the result of ComputeDescentDirection), which are
strictly feasible with respect to the separation constraints Ch, Cv and generated
non-overlap constraints, and which are close to feasible with respect to the other
constraints C. We discuss exactly what we mean by close to feasible in Section
5.1. We also return the size of the unconstrained gradient-descent step d. This is
useful in heuristics for determining appropriate step-size α. We have had success
using the adaptive trust-region step-size selection method proposed by Hu [15].
Though more costly, optimum step-size selection or Armijo Rules [3] could also
be used to guarantee strict improvement as in [8].

The procedure ComputeDescentDirection returns updated positions for the
nodes V after taking a gradient-related step, with size controlled by α to reduce
a layout cost function. This could equally well be an unconstrained iteration of
the p-stress minimization method described in [8] or an iteration of any “force”-
based approach. In our experiments we use a Fast-Multipole method following
Lauther [17] so that ComputeDescentDirection completes in O(|V | log |V |+ |E|)
time.
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Fig. 4. A mesh graph with 576 nodes and eight circle constraints, used in timing and
convergence tests

Fig. 5. Total node displacement (the units are roughly screen pixels) versus iteration of
constraint projection for the graph in Figure 4 using either Procrustes circle constraints
or a wheel of Euclidean distance constraints
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(a) Unconstrained (b) Mixing a circular constraint with axis-
aligned separation constraints to prevent
overlap between nodes and to require di-
rected edges to point downwards.

(c) In addition to the Procrustes circle constraint for the nodes involved in the
cycle, this example shows the three subtrees constrained to layered configura-
tions obtained with a Sugiyama algorithm, i.e. the local layout is used as the
target configuration for Procrustes projection, which determines the optimal
scale and rotation. Note, the subtrees could just as easily be DAGs or undi-
rected subgraphs arranged with another algorithm, e.g. orthogonal layout.

Fig. 6. The citrate cycle metabolic pathway, arranged using various constraints
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5.1 Gauss-Seidel Gradient Projection

For solving systems of linear equations, an iterative method of updating one vari-
able at a time to satisfy one or more of the equations is commonly attributed to
Gauss-Seidel. Jakobsen [16] and more recently Müller et al. [18] describe tech-
niques using iterative constraint projection for rigid skeletal animation and cloth
simulation in computer games, as “Gauss-Seidel” approaches. Although we know
of no formal proof for the convergence of such methods our experiments with
simple two-node constraints (see [5]) indicate that they work well in practical
layout applications. In this paper we explore, for the first time, application of
this approach to combining projection of different classes of constraints using
different solver techniques. That is, whereas in [5] we considered only Euclidean
distance constraints between pairs of nodes, in this paper we combine these
with Procrustes projection and separation constraint projection giving us faster
convergence, more stable interactive layout, and more flexible constraints.

Thus, the procedure ProjectDesiredPositions returns new positions for nodes
by—starting from the desired positions D—cyclically projecting each constraint
in C (note that C also conceptually includes any convex-hull non-overlap re-
quirement, although the precise Euclidean projection operations are determined
dynamically as per Section 3.2). Figure 5 shows a comparison of total displace-
ment of nodes for the large example in Figure 4 with circular constraints using
either wheel-like meshes of Euclidean distance constraints (see [5]) projected as
described in Section 3.2 or Procrustes projection using the procedure Projec-
tXonY as in Section 4. Clearly, far fewer iterations are required for Procrustes
projection.

5.2 Separation Constraint Projection

The final steps of ComputeDescentDirection apply axis-aligned separation con-
straints. The GenerateHorizontalNonOverlapConstraints uses the scan-line al-
gorithm described in [9] to generate separation constraints to resolve horizontal
overlap between rectangular node and cluster boundaries horizontally. Note that
it uses the starting configuration Vx, Vy rather than the output of ProjectDesired-
Positions. This is because, if the input is already feasible (i.e. not overlapping)
the relative left-to-right arrangement of nodes should be preserved (unless nodes
have, in the interim, moved vertically so that they can no longer potentially
overlap horizontally). In practice we have found that this makes continuous lay-
out while the user directly manipulates (drags) nodes much smoother and less
surprising.

The next call to Project invokes the separation constraint solver [9] to place
nodes horizontally as close as possible to the desired positions D̄ subject to the
generated and user-defined separation constraints. Next, vertical non-overlap
constraints are generated based on the newly computed feasible horizontal posi-
tions x and the previous vertical positions Vy (again to preserve any applicable
previous vertical ordering). Finally, Project is called again to determine feasible
vertical positions y.
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Applying separation constraints last means that they are always satisfied,
while the Procrustes and Euclidean distance constraints projected cyclically by
ProjectDesiredPositions may be slightly violated. This works well as any vio-
lation of the axis aligned and rectangular non-overlap constraints tends to be
more noticeable than for the other types of constraints. Still, since the whole
FeasibleLayoutStep procedure is applied many times inside a larger layout loop,
all constraints tend to be resolved after a few iterations.

6 Discussion, Conclusion, Further Work

Figures 1 and 6 give practical examples of how the various types of constraints
we have described can be applied in practice. The Procrustes constraints are
very fast compared to the overall layout process: Figure 4 with 576 nodes, 1104
edges and 8 circle constraints took (on a 2.1Ghz PC) 1.86 seconds total layout
time with about 0.01 seconds spent in projection operations due to the conver-
gence criteria described in Section 5.1. Further work should be done to time
much larger, pathological examples to really explore the convergence properties
of cyclical constraint projection. Static layout of all the other smaller examples
in this paper takes a fraction of a second. The real benefit of fast constraint
layout, however, is in supporting incremental layout scenarios. All of the ex-
amples in this paper were produced in an interactive system where users can
directly manipulate nodes and edit the constraints, getting immediate feedback
from “rigid” constraint structures.

In addition to efficiency the Procrustes projection presented in this paper al-
lows for variable radii circles enabling interlocking constraints as in Figure 3. Fur-
thermore, they can be applied to obtain scaling and rigid rotation of any initial
arrangement of nodes such as layout from a different algorithm, see Figure 6(c).
The other contribution of this paper is to show that these and other types of con-
straints can be combined through cyclical projection as described in Section 5.1.

Detecting satisfiability of constraints, and where satisfiable, finding a feasi-
ble starting configuration require much more research. One imperfect strategy
is to detect if error does not significantly decrease inside the cyclical constraint
satisfaction loop. Once unsatisfiable constraints have been detected, communi-
cating this to the user in a way allows them to resolve the unsatisfiability is also
a challenge. In our rudimentary interactive test systems, where constraints are
added incrementally by the user, we have found the most useful strategy has
been a simple undo facility to remove the most recently added constraint. Of
course users unfamiliar with constraint layout would need an intuitive interface
that prevents unsatisfiable constraints from being created at all.

Acknowledgements. Thanks to Lev Nachmanson and Ted Hart for providing
various pieces used in our layout software.
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