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Abstract. Inthis paper, we explore a new convention for drawing graphs,
the (Manhattan-) geodesic drawing convention. It requires that edges are
drawn as interior-disjoint monotone chains of axis-parallel line segments,
that is, as geodesics with respect to the Manhattan metric. First, we show
that geodesic embeddability on the grid is equivalent to 1-bend embed-
dability on the grid. For the latter question an efficient algorithm has been
proposed. Second, we consider geodesic point-set embeddability where the
task is to decide whether a given graph can be embedded on a given point
set. We show that this problem is N”P-hard. In contrast, we efficiently solve
geodesic polygonization—the special case where the graph is a cycle. Third,
we consider geodesic point-set embeddability where the vertex—point cor-
respondence is given. We show that on the grid, this problem is AN“P-hard
even for perfect matchings, but without the grid restriction, we solve the
matching problem efficiently.

1 Introduction

In this paper we consider a new convention for drawing graphs. One of the most
popular conventions is the orthogonal drawing convention, which requires edges
to be drawn as interior-disjoint rectilinear chains, that is, chains of axis-parallel
line segments. Restricting the number of edge directions potentially yields very
clear drawings. We go a step further and insist that, additionally, edges are drawn
as monotone chains. Such chains are called Manhattan paths. The idea behind
monotonicity is that following the course of a monotone curve is potentially easier
than following the course of a curve that is allowed to make detours. Manhattan
paths are geodesics with respect to the Manhattan metric. Therefore we name
our new convention the (Manhattan-) geodesic drawing convention.

In the Euclidean plane, geodesics are straight-line segments, and the clas-
sic result of Konig, Fary, and Stein says that the class of graphs that have a
straight-line drawing is exactly the class of planar graphs. Since there are effi-
cient (linear-time) planarity-testing algorithms, we can decide efficiently whether
a given graph has a Fuclidean-geodesic drawing. We consider the same prob-
lem, which we call (MANHATTAN-) GEODESIC EMBEDDABILITY, with respect
to the Manhattan distance. As an example take K4, the complete graph on four
vertices, which has a geodesic drawing in the Euclidean plane but not in the
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Manhattan plane. To avoid problems of drawing resolution, both questions are
also interesting on the grid. The Fuclidean case has been solved, for example,
by Schnyder [I4] who can draw any planar n-vertex graph on a grid of size
(n —2) x (n — 2), which is asymptotically optimal in the worst case.

Fized point set. Next, we consider the setting where we are given not just a
graph, but also a set of points (in the plane or on the grid) to which the ver-
tices of the graph must be brought into correspondence. We call this problem
GEODESIC POINT-SET EMBEDDABILITY. Kaufmann and Wiese [7] considered
point-set embeddability (PSE) with respect to the polyline drawing convention.
They showed that it is A"P-hard to decide whether a graph can be embedded on
a point set with at most one bend per edge and that two bends suffice for any
planar graph and any point set. Cabello [I] showed that it is A"P-hard to decide
whether a planar graph has a straight-line embedding on a given point set.

A special case of both the straight-line and the orthogonal drawing convention
has also been considered. Rappaport [I2] showed that it is NP-hard to decide
whether a set P of n points has an orthogonal polygonization, that is, whether the
n-cycle can be realized on P using horizontal or vertical edges only. O’Rourke [9]
proved that if one forbids 180°-degree angles in the vertices, then there exists
at most one simple rectilinear polygon with vertex set P. He also showed how
to reconstruct the polygon from P in O(nlogn) time. We refer to Demaine’s
survey [2] about problems related to polygonization.

PSE with the same drawing convention but with respect to a different graph
class—perfect matchings—was considered by Rendl and Woeginger [I3]. They
showed that given a set of n points in the plane, one can decide in O(nlogn) op-
timal time whether each point can be connected to exactly one other point with
an axis-parallel line segment. They also showed that the problem becomes hard if
one insists that the segments do not cross. Hurtado [5] gave a simple O(nlogn)-
time algorithm for the same problem under the geodesic drawing convention.
The idea is to alternatingly go up and down the occupied grid columns.

Fized correspondence. We further restrict the placement of the vertices by mak-
ing the bijection between vertices and points part of the input. We call the
resulting problem LABELED GEODESIC PSE. A special case of this problem
(where the graph is a perfect matching) has applications in VLSI layout. Insist-
ing on geodesic connections makes sure that signals reach their destinations as
fast as possible. For example, a popular, but more restrictive wiring technique in
VLSI layout, single-bend wiring, uses special geodesic connections. Raghavan et
al. [IT] have shown that one can decide our perfect matching problem efficiently
when insisting on at most one bend per edge.

For the same problem with given vertex—point correspondence but under the
polyline drawing convention, Pach and Wagner [10] showed that it is possible to
embed any planar graph on any set of points, but they also showed that some
edges may require 2(n) bends. Goaoc et al. [4] showed that it is A"P-hard to
decide whether a given graph can be 1-bend embedded on a given set of points
with given vertex—point correspondence.
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Table 1. Overview over results in geodesic embeddability; hard is short for A"P-hard

GEODESIC GEODESIC POINT-SET EMBEDDABILITY
EMBEDDABILITY unrestricted labeled (on grid) labeled (off grid)
planar graph P [Thm.[I] hard [Thm.[] hard [Thm.[H] open
matching trivial P Bl hard [Thm.[] P [Thm.
polygonization trivial P [Thm.[B] open open

Our Contribution. Drawing graphs with (Manhattan) geodesics opens up a large
new field of research; we have done the following first steps.

— We show that GEODESIC EMBEDDABILITY on the grid is equivalent to de-
ciding whether the given graph has a rectilinear one-bend drawing on the
grid, see Section 2l Liu et al. []] proposed an algorithm to decide the latter
question efficiently. It is easy to see that a rectilinear one-bend drawing of
an n-vertex graph fits on the n x n grid.

— We then prove that GEoDESIC PSE is ANP-hard on (and off) the grid, re-
ducing (in two steps) from HAMILTONIAN CYCLE, see Section[3l In contrast,
we give a complete and easy-to-check characterization of all yes-instances of
GEODESIC POLYGONIZATION, which is the special case of GEODESIC PSE
where the input graph is restricted to a cycle.

— We show that LABELED GEODESIC MATCHING on the grid is NP-hard by re-
duction from 3-PARTITION, see Sectiondl This implies hardness of LABELED
GEODESIC PSE on the grid. Our proof vitally exploits the space limitation of
the grid. On the other hand, we show that LABELED GEODESIC MATCHING
becomes easy if we loosen or drop this limitation.

We give a list of results and open questions in geodesic embeddability in Table [Tl
In the remainder of the paper, by a grid geodesic (or, even shorter, a geodesic) we
mean a Manhattan-geodesic connecting two grid points on the grid. A geodesic
grid embedding (or geodesic embedding for short) of a graph G is a drawing of G
such that the vertices of G are mapped to grid points and the edges of G are
mapped to interior-disjoint grid geodesics.

2 Geodesic Embeddability

In this section we ask whether a given planar graph has a geodesic embedding
on the grid, that is, we allow the vertices to be mapped to arbitrary grid points.
Clearly, this question makes only sense for graphs of maximum degree 4, but
K4, for instance, does not have a geodesic embedding on the grid.

In the following, we show that a graph has a geodesic embedding on the grid
if and only if it has an orthogonal embedding on the grid with at most one bend
per edge. Liu et al. [§] characterized planar graphs which are orthogonally 1-
bend embeddable and proposed an efficient decision algorithm for this problem.
Hence, we have the somewhat surprising result that we can efficiently recognize
graphs that admit a geodesic embedding on the grid.
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Theorem 1. Let G = (V, E) be a planar graph. Then G has a geodesic embed-
ding on the grid if and only if G is 1-bend embeddable on the grid.

Proof. The “if”-direction is trivially true, so we immediately turn to the “only
if”-direction. Suppose that G has a geodesic embedding £ on the grid. We turn €
into an orthogonal representation as introduced by Tamassia [I5]. Such a repre-
sentation consists of lists, one for each face of the given embedding. The list for
a face f has, for each edge e incident to f, an entry describing (a) the shape of e
in terms of left (—90°) and right (+90°) turns, and (b) the angle that the edge
makes with its successor in the cyclic order of the edges around f.

Since & is geodesic, the angles along each edge sum up to a value in {—90°,0°,
+90°}. From the representation of £ we compute a new representation where
we replace the shape entry of each edge by the corresponding sum. The result
is a valid representation since for each face the sum of the inner angles remains
the same and for each vertex the sum of the angles between consecutive incident
edges also remains the same. Since the new representation is valid, Tamassia’s
flow network [I5] yields the corresponding (1-bend) embedding of G. |

3 Geodesic Point-Set Embeddability

In this section, we ask whether a given planar graph can be embedded on a given
set of grid points. We assume that we are not given a bijection between vertices
and points.

First, we show that this problem, GEODESIC PSE, is N'P-hard by reduction
from the problem HAMILTONIAN CYCLE CoMPLETION (HCC), which is NP-
hard [6]. Our proof also works in the case where the (Manhattan-) geodesics are
not restricted to the grid. HCC is defined as follows. Given a non-Hamiltonian
cubic graph G, decide whether G has two vertices v and v such that G+ wuwv (i) is
planar, (i) has a Hamiltonian cycle H, and (iii) has an embedding such that u
and v are adjacent to at most two faces on the same side of H.

Theorem 2. GEODESIC PSE is N'P-hard, even for subdivisions of cubic graphs.

Proof. Our proof is by reduction from HCC. Given an instance G = (V, F) of
HCC, note that n = |V is even and let £ = 7 + 1. Given three non-negative
integers ko, k1, ko, let Py = {(—=4,0) | j = 0,...,ko — 1}, PL = {(4,ng) | § =
1,.. .,kl}, P, = {(], —’n,j) ‘ j = 1, .. .,k‘g}, and P(k‘o,kl,kz) =P UP UPQ, see
Fig. Tal Note that the points in P(ko, k1, k2) are placed such that between any
two consecutive non-empty rows of the integer grid there are n — 1 empty rows.
We now construct a graph G’ = (V/, E’) by splitting every edge of G by a vertex
of degree 2. This yields |V'| = |V|+ |E| = 2n — 1 + k. In the following, we show
that G’ can be embedded on P(2n — 1, k1, ko) for some k1, ke with ky + ko = k
if and only if G is a yes-instance of HCC.

Assume G is a yes-instance of HCC. Then there is a pair {u,v} of vertices
such that G + uv contains a Hamiltonian cycle and « and v are incident to two
faces on either side of this cycle. Without loss of generality, we can assume that
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Fig. 1. Reduction of HCC to GEODESIC PSE

uv is incident to the outer face. An example of a plane graph G’ is depicted
in Fig. [[B the splitting nodes are marked with circles, the original nodes of G
with black disks. Maintaining the combinatorial embedding, we can embed the
Hamiltonian path connecting v and v including its splitting nodes on a set of
2n — 1 points on a horizontal line as in Fig. [[dl We embed the faces inside the
cycle above the path and the faces outside the cycle below. Since each vertex
of G’ has degree at most 3, each vertex has at most one edge going up or down—
except v and v, which both have exactly one edge going up and one going down.
Set k1 and ko to the numbers of edges inside and outside the cycle, respectively.
Then we can map the splitting vertices of the remaining edges to the point
sets P; and P, and route the edges as follows, see Fig. [[d Each splitting node v
that is mapped to a point in P} U P» has two neighbors, a left neighbor v~ and
a right neighbor v™ (according to their a-coordinates). We route the edge vv~
with one bend and the edge vv+ with two bends. Note that the empty rows leave
enough space for all horizontal edge segments.

Conversely, assume G’ has a geodesic embedding on P(2n — 1, k1, ko) with
ki + ko = k. Then, the k vertices that are mapped to points in P, U P, are
incident to at most 2k = n + 2 edges. This is due to the fact that each such
edge has its lexicographically larger endpoint in either P; or P,, and we claim
that no point in P, U P, can be adjacent to more than two lexicographically
smaller points. To see the claim, note that for any point v € P; the set of
lexicographically smaller points is contained in the third quadrant with respect
to v. Clearly, at most two geodesics can go from v to points in any fixed quadrant.
For points in P», the argument is symmetric. Thus our claim holds.

Since G is cubic, G’ has 3n edges. This leaves 3n — (n + 2) = 2n — 2 edges
incident to points in Py only. Since |Py| = 2n — 1, Py induces a path 7 that
alternates between vertices of degree 3 (original nodes) and degree 2 (splitting
nodes). There are two possibilities: either both endpoints—call them s and t—
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have degree 2 or both have degree 3. In the former case, m would contain n — 1
degree-3 vertices, and s and ¢ would be adjacent to the only remaining degree-3
vertex (not in Py). This would mean that G is Hamiltonian—contradiction.
Thus we may assume that s and ¢ have degree 3. In this case, m witnesses
a Hamiltonian path connecting s and ¢ in G. This Hamiltonian path can be
completed to a Hamiltonian cycle by an edge through the outer face of G. Since
both v and v are incident to one edge pointing up and one edge pointing down
from the path, they are incident to two faces on either side of the cycle in this
embedding. This shows that G is indeed a yes-instance of HCC. O

Now we turn to the case in which the instance consists of a simple cycle. We show
that this problem, which we name GEODESIC POLYGONIZATION, can be solved
efficiently. We start with a simple characterization of the yes-instances. To this
end, we partition the grid points into two groups as follows. Let B be an axis-
aligned rectangle. We say that a grid point p in B is even if its rectilinear distance
to the lower left corner of B is even. Otherwise, we say that p is odd. We call a
set of points degenerate if the set is contained in an axis-parallel line. It is clear
that a degenerate point set does not have a polygonization. We now characterize
all point sets that do have a polygonization. The proof, which is omitted here
due to space limitations, is constructive, see our technical report [6]. It yields an
efficient algorithm that computes a geodesic polygonization for any set of grid
points with the given properties.

Theorem 3. Let P be a non-degenerate set of points on the grid, let B(P) be
the bounding box of P, and let h and w be the number of rows and columns
spanned by B(P), respectively. Then P has a geodesic polygonization if and only
if either (i) h or w is even or (i) P does not contain all even points w.r.t. B(P).

4 Labeled Geodesic Point-Set Embeddability

In Section B we showed that GEODESIC PSE is NP-hard. In this section, we
study the variant where the vertex—point correspondence is given. First, we settle
the complexity of the problem on the grid.

Theorem 4. LABELED GEODESIC PSE on the grid is N'P-hard, even if the
giwven graph is a perfect matching.

Proof. We reduce 3-PARTITION to LABELED GEODESIC MATCHING (LGM),
which is a special case of LABELED GEODESIC PSE. An instance of 3-PARTITION

consists of a multiset A = {a1, ..., asn, } of 3m positive integers, each in the range
(B/4,B/2), where B = (Y_A)/m, and the question is whether there exists a
partition of A into m subsets Aj, ..., A,, of A, each of cardinality three, such

that the sum of the numbers in each subset is B. Since 3-PARTITION is strongly
NP-hard [3], we may assume that B is bounded by a polynomial in m.

Based on an instance A of 3-PARTITION, we now construct an instance M of
LGM consisting of pairs of grid points such that M is a yes-instance of LGM



Manhattan-Geodesic Embedding of Planar Graphs 213

Fig. 2. Example of the reduction from 3-PARTITION to LGM using A; = {a1,as,ar},
Az = {az2,as,as}, and As = {a4,as, a9} (not to scale)

if and only if A is a yes-instance of 3-PARTITION. Figure 2l shows an example
instance M. The instance M consists of three types of point pairs.

The first type represents the numbers in A. We define 3m sets Si,..., S3m
of grid points, all lying on the diagonal ¢ : y = —z, in this order from left to
right. For 1 <4 < 3m, the points in S; occupy a; consecutive grid points, and
two consecutive sets are separated by a large gap of L = Bm + m — 1 grid
points. The gap between the last point of Ss3,, and the origin is also L. The
points in the sets T3y, ..., 71 lie on the line ¢/ : y = —x + L, in this order from
left to right. Again, points within a set are consecutive grid points, and between
consecutive sets there are large gaps of L grid points. The matching is as follows.
For 1 < i < 3m and for 1 < j < q;, the j-th point in S; (counting from the
left) matches the j-th point in 7; (counting from the right). The a; point pairs
in S; U T; represent the number a;.

The second type of point pairs forms a sort of “dot mask”, the heart of
our construction. These pairs lie on the z-axis. The geodesics between them
are obviously line segments and pairwise disjoint. The leftmost segment goes
from —N to 0, where N = 3mL+mB+2(m —1). The following m — 1 segments
have unit length and leave gaps of width B. The rightmost segment goes from L
to L+ N.

The third type of point pairs gives rise to geodesics that resemble “fences”
ensuring that all geodesics that represent a number from A go through the
same gap in the mask. There are m — 1 such pairs. Their upper endpoints are
consecutive grid points on the diagonal ¢. They lie above the points in S, leaving
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a gap of m — 1 grid points. The corresponding lower endpoints lie one unit above
the, say, right endpoints of the unit-length segments on the x-axis. The matching
is as follows: from left to right and for 1 < j < m — 1, the j-th upper endpoint
matches the j-th lower endpoint.

It is easy to see that any geodesic embedding of M induces a partition of A:
due to the fences, all edges corresponding to the same element of A must be
routed through the same gap of the dot mask, each of the m gaps has width B,
and each of the mB edges must go through some gap.

Conversely, given a partition, we construct a geodesic embedding of the match-
ing. We start by drawing the dot mask whose layout only depends on the num-
bers B and m. Then, we analyze the first subset of the partition, Ay, and con-
nect the points S' = a;e4, Sj to the corresponding points in T! = aen; s
starting with the leftmost point in S' and the rightmost point in 7. For each
connection, we use the bottommost geodesic that goes above all geodesics we
have drawn so far. Next, we draw the first (that is, leftmost) fence. Also in this
case, we use the bottommost geodesic that goes above all geodesics we have
drawn so far. We repeat these two steps, connecting the points corresponding to
a subset of the partition and drawing a fence. Since we left enough horizontal
and vertical space, this process does not get stuck. The fences direct the next B
connections into the gaps, which have exactly the right width.

Since we assumed that B is polynomial in m, the numbers L and N, which
determine the grid size needed by M, are also polynomial in m. Given an embed-
ding, the partition can be constructed from it efficiently, and vice versa. Thus
our reduction is polynomial. a

Next, we show that LGM becomes easy if we loosen or drop the space limitation
of the grid. We call an instance of LGM—a set M of n pairs of grid points
(we call such pairs also edges)—sparse if the minimum distance between any
two occupied columns and between any two occupied rows is at least n + 1. In
the remainder of this section, we give an efficient algorithm that solves sparse
instances of LGM. Clearly, the algorithm can also be used for an instance that
does not “live” on the grid, by underlaying the instance with a fine enough grid.

We say that an edge e € M is downward if its lexicographically larger end-
point e lies below its lexicographically smaller endpoint e, otherwise e is
upward. Clearly, M does not have a geodesic embedding if the bounding box of
an edge crosses (that is, splits into two connected components) the bounding
box of another edge. This can be tested easily, so from now on we assume that M
is non-crossing, that is, no two bounding boxes of edges in M cross.

Let g and ¢’ be any two geodesics. We say that g is below ¢’ if there is a
vertical line that intersects g below ¢’. We say that an edge e € M is strictly
below an edge e’ € M if, for any geodesic embedding v of the two edges, v(e) is
below ~(e’).

The precedence graph mpr is a directed graph whose vertex set is M and
whose edges represent the strictly-below relationship. The precedence graph can
be computed efficiently by a simple line sweep. It is clear that M does not have
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Fig. 3. (a) Critical region R'(e, f) with ¢ € M'(e, f), (b) a matching M, (c) the
precedence graph 7y and the extended precedence graph I1ns of M

a geodesic embedding if mp; contains a cycle. Now we construct a supergraph
of 7y whose acyclicity is equivalent to the realizability of M.

For any point a = (24,%.) € R?, let Q1(a) = {(z,y) € R? | 2, < z,yq <
y} be the first quadrant w.r.t. a and define the other three quadrants w.r.t. a
accordingly, in counterclockwise order. Let e be a downward edge and let f be
any other edge in M. For such a pair (e, f), we define the upper critical region
of e and f as Rl(e, f) = (Q1(f7)UQ1(fT)) N B(e) (see Fig. Bal) and the lower
critical region of e and f as R'(e, f) = (Q3(f~) U Q3(f)) N B(e). The critical
regions for upward edges are defined by replacing Q1 by @2 and Q3 by Q4. Let
MT(e, f) and M(e, f) be the sets of edges in M with at least one endpoint
in R'(e, f) and R!(e, f), respectively.

Let G = (M, E) be a directed graph with vertex set M. We say that an
edge (e, f) of G produces the edge (e,g) if g € M (e, f) and the edge (g, f) if
g € MY(f,e). Now the extended precedence graph ITy; is the closure of my; with
respect to production.

Lemma 2. If I, contains a cycle, M does not admit a geodesic embedding.

Proof. We claim that an edge (e, f) in Il means that if M has some geodesic
embedding ~y, then «(e) is below (f). Clearly, the claim holds for every edge
in 7y. Now suppose edge (e, g) has been produced by the edge (e, f) and M
has a geodesic embedding . Then we know that g € M (e, f). Assume that e
is downward. By definition, at least one of the endpoints of g—call it ¢—Ilies
in Q1(p) N B(e), where p is one of the endpoints of f. (In particular, p lies in
B(e), otherwise Q1(p) N B(e) would be empty.) Due to the existence of edge
(e, f), v(e) is below v(f) and thus below p. Since e is downward, v(e) must also
be below ¢ and hence below ~y(g). The case that e is upward and the case that
(e, f) has produced an edge (g, f) can be argued symmetrically. Now induction
yields the claim. O

By Lemma 2] for M to have a geodesic embedding, it is necessary that ITy; is
acyclic. We now show that this condition is also sufficient, by giving an algorithm
that computes an embedding if IT,; is acyclic.

The algorithm sweeps a vertical line from left to right over the plane. Events
occur only at the vertices of M. During the sweep, we partition the edges in M
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into three groups. Completed edges have both endpoints to the left of the sweep-
line. We have already embedded these edges as geodesics. Partial edges have one
endpoint on either side of the sweep-line. A partial edge is embedded as a partial
geodesic ending at the sweep-line. Finally, untouched edges have both endpoints
to the right of the sweep-line. We have not started embedding these edges yet.

Let ¢ and ¢’ be two consecutive occupied grid columns, with ¢ to the left of ¢’
Assume that we have already computed a partial geodesic embedding up to c.
Let uy,...,us be the set of upward partial edges which do not end at ¢, sorted
from bottom to top (including the edges starting at ¢). We process the edges in
this order. Assuming that we have already embedded w1, ..., u;_1, we proceed
depending on whether u; ends at ¢’ or not.

If u; ends at ¢/, we embed u; as the bottommost geodesic just above all edges
U1, . ..,Uuj—1, that is, there is no geodesic for u; containing a point strictly below
this geodesic. Hence, u; has a vertical segment only on the last unoccupied
column to the left of ¢/. By induction, u; has vertical segments only on the last
1 unoccupied columns.

If u; does not end at ¢/, let U; denote the set of edges preceding w; in ITy;.
Then wu; must necessarily be embedded above all edges in U;. We embed u; as
the bottommost geodesic above all edes w1, ...,u;—1 and above all endpoints of
edges in U; which are on ¢’. If there is no such restriction, we embed u; as a
straight-line segment.

We then proceed similarly with the downward edges. Let dy,...,d; be the
set of partial downward edges that do not end at ¢, sorted from top to bottom,
that is, sorted inversely to the upward edges. Let D; denote the set of edges
succeeding d; in I1y;. We embed each edge d; as the topmost geodesic below the
geodesics d1,...,d;—1 and below all endpoints of edges in D;. As before, d; has
vertical segments only on the last ¢ columns left of ¢/. A sample output of the
algorithm is illustrated in Fig.

Since there are at most n edges by the definitions of the top- and bottommost
geodesics, we need at most n unoccupied columns between ¢ and ¢’. Since M is
sparse, there are at least n unoccupied rows between two occupied rows on ¢,
so we can embed the given edges between two occupied points on .

Theorem 5. Let M be a sparse non-crossing matching with n edges on the grid.
Then M has a geodesic embedding if and only if Il is acyclic. In O(n?) time,
we can compute a geodesic embedding of M or prove that no such embedding
er1sts.

Proof. The “only if” part has been proved in Lemma [ so we immediately
turn to the “if” part. We first compute I1);. If IT); contains a cycle, we reject.
Otherwise, we use the above embedding algorithm to compute an embedding
of M.

Concerning running time, it is clear that w3, can be computed by a simple
plane sweep in O(n?) time. For computing ITy;, we need O(n?) iterations, one for
each edge. An iteration takes linear time since all endpoints in the correspond-
ing two critical regions can be reported in linear total time. The embedding
algorithm runs in O(n?) time.
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To show that v is plane and geodesic, we maintain the following invariants
during the execution of the algorithm.

1. All completed and partial edges are (partially) embedded as geodesics.

2. For every partial downward edge the partial embedding is not upward; vice
versa for partial upward edges.

3. If the left endpoint of some downward edge e is above the left endpoint of
an edge ¢ and the (partial) geodesic for e is below ¢’ in the embedding,
then ITj; contains a path from e to €. A symmetric statement holds for
upward edges.

4. The partial embedding respects all constraints corresponding to edges in I1;.

5. No two (partial) geodesics intersect.

It is easy to see that invariants [[H4l are maintained by the algorithm. Invari-
ant [T yields that v is geodesic. It remains to show that v is plane (invariant [).

Suppose that the algorithm introduces a crossing when going from grid col-
umn ¢ to grid column ¢’ and there is no crossing to the left of ¢. By definition of
the top- and bottommost geodesic there is no intersection between two upward
or two downward edges, respectively. That is, the algorithm can only introduce
intersections between an upward and a downward edge. Let d; be a downward
edge and let u; be an upward edge such that d; and u; intersect. Then d; must be
above u; on ¢, otherwise there would be no crossing between the two edges. We
now make a case distinction depending on whether or not there is an edge e € M
with left endpoint e~ on ¢’ such that d; must be embedded below e and u; must
be embedded above e, that is, (d;,e) and (e, u;) are in IIjy.

First assume that there is no such edge e. Let V}, be the points of Vi, that lie
to the left of or on ¢’. Let p; be the lowest point of V}; such that d; lies below p;.
Similarly, let po be the highest point of V},; such that u; lies above py. Clearly,
p2 is below p; and by assumption there are at least n unoccupied rows between
p1 and p. By definition of the top- and bottommost geodesic for d; and u; the
two edges do not cross, see Fig. @l

Now assume that there is an edge e with (d;, e) and (e, u;) in ITps. If the left
endpoints d;” and u; are in the same column, there is an edge (uj,d;) in mar,
which induces a cycle in I1;;, contradicting the assumption that I1,; is acyclic.
Otherwise, the endpoints d; and u;r are in different columns.
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Assume that d;” is to the left of u; . Since d; is above u;, its right endpoint df
cannot be in the critical region R'(uj, e) since this would imply that d; must be
below u;, which violates invariant [ at ¢. Hence, d;r must be to the right of u;'.

In this case, however, u;r is in R1(d;,e), that is, d; must be below u;, which
again violates invariant @ at ¢ (see Fig.[H). The case that d; is to the right of u;

is similar. O
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