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Preface

The 17th International Symposium on Graph Drawing (GD 2009) was held in
Chicago, USA, September 22–25, 2009, and was attended by 91 participants
from 19 countries.

In response to the call for papers, the Program Committee received 79 sub-
missions. Each submission was reviewed by at least three Program Committee
members. Following substantial discussions, the committee accepted 31 long pa-
pers and 4 short papers. All authors received detailed reviewers’ comments. In
a separate submission process, 10 posters were accepted. These were described
during the conference, and displayed at the conference site. Each poster was also
granted a two-page description in the conference proceedings.

Two invited speakers, János Pach from EPFL Lausanne and Rény Institute,
and Martin Wattenberg from IBM Research, gave absorbing talks during the
conference. Prof. Pach looked at the class of string graphs, and tantalized us
to consider why their properties are so mathematically beautiful. Dr. Watten-
berg showed how sometimes twisting the standard rules of graph drawing can
illuminate unexpected information contained in graphs.

Keeping with tradition, the symposium hosted the 15th Annual Graph Draw-
ing Contest, including a Graph Drawing Challenge for conference attendees. The
contest elicited robust participation from the community with 27 submissions.
These proceedings end with a detailed report of the contest.

As always, the success of a conference such as this relies on the help of
many people. Our thanks to the Program Committee and all of the external
referees who worked so hard to sift for the best among the submitted papers.
The Organizing Committee provided us with admirable facilities, a fine banquet,
and took care of so many other details that it was hard to believe there were only
three members: Jennifer McClelland, Michael J. Pelsmajer and Marcus Schaefer.
Also, many thanks to the Chicago-based student volunteers who helped in many
ways during the conference. And, of course, special thanks to everyone who
submitted a paper or poster, giving us a wealth of raw material from which to
build the program.

Despite the uncertain economic times, corporate and institutional sponsors
were very generous in their support of GD 2009. AT&T, Tom Sawyer Software
and DePaul University served as Gold Sponsors, while IBM ILOG, Illinois Insti-
tute of Technology, and the College of Computing and Digital Media at DePaul
University were Silver Sponsors.

The 18th International Symposium on Graph Drawing (GD 2010) will be
held September 21–24, 2010 in Konstanz, Germany, chaired by Ulrik Brandes.

November 2009 David Eppstein
Emden R. Gansner
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Martin Nöllenburg

Layout with Circular and Other Non-linear Constraints Using
Procrustes Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Tim Dwyer and George Robertson



XII Table of Contents

Posters

GMap: Drawing Graphs as Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov

Using High Dimensions to Compare Drawings of Graphs . . . . . . . . . . . . . . 408
Stina Bridgeman

On ρ-Constrained Upward Topological Book Embeddings . . . . . . . . . . . . . 411
Tamara Mchedlidze and Antonios Symvonis

4-Labelings and Grid Embeddings of Plane Quadrangulations . . . . . . . . . 413
Lali Barrière and Clemens Huemer

IBM ILOG Graph Layout for Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Jerome Joubert, Stephane Lizeray, Romain Raugi, and Georg Sander

Layout Techniques Coupled with Web2.0-Based Business Process
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Philip Effinger and Gero Decker

Proving or Disproving Planar Straight-Line Embeddability onto Given
Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Michael Kaufmann and Stephan Kottler

Visualization of Complex BPEL Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Benjamin Albrecht, Philip Effinger, Markus Held,
Michael Kaufmann, and Stephan Kottler

DAGmaps and Dominance Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Vassilis Tsiaras and Ioannis G. Tollis

Scaffold Hunter – Interactive Exploration of Chemical Space . . . . . . . . . . . 426
Karsten Klein, Nils Kriege, Petra Mutzel, Herbert Waldmann, and
Stefan Wetzel

Graph Drawing Contest

Graph Drawing Contest Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Christian A. Duncan, Carsten Gutwenger, Lev Nachmanson, and
Georg Sander

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435



Why Are String Graphs So Beautiful?
(Extended Abstract)

János Pach

Chair of Combinatorial Geometry
École Polytechnique Fédérale de Lausanne

janos.pach@epfl.ch

Abstract. String graphs are intersection graphs of continuous simple
arcs (”strings”) in the plane. They may have a complicated structure,
they have no good characterization, the recognition of string graphs is
an NP-complete problem. Yet these graphs show remarkably beautiful
properties from the point of view of extremal graph theory. What is
the explanation for this phenomenon? We do not really know, so we
offer three answers. (1) Being a string graph is a hereditary property.
(2) String graphs are nicely separable into smaller pieces. (3) As in any
geometric picture, one can discover several natural partial orders on a
collection of strings.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Art of Cheating When Drawing a Graph
(Extended Abstract)

Martin Wattenberg

Visual Communication Lab
IBM Research

mwatten@us.ibm.com

Abstract. The prime directive of graph drawing is to depict a network
faithfully and accurately. But sometimes it’s better to cheat. I will discuss
a series of examples - both my own work and that of others - that involve
discarding information, distorting the data, encouraging visual clutter,
or even adding random noise. The benefits of breaking the rules can
range from the scientific to the artistic.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Drawing Hamiltonian Cycles with No Large
Angles

Adrian Dumitrescu1,�, János Pach2,��, and Géza Tóth3,���

1 Department of Computer Science, University of Wisconsin-Milwaukee, USA
ad@cs.uwm.edu

2 Ecole Polytechnique Fédérale de Lausanne and City College, New York
pach@cims.nyu.edu

3 Alfred Rényi Institute of Mathematics, Budapest, Hungary
geza@renyi.hu

Abstract. Let n ≥ 4 be even. It is shown that every set S of n points
in the plane can be connected by a (possibly self-intersecting) spanning
tour (Hamiltonian cycle) consisting of n straight line edges such that the
angle between any two consecutive edges is at most 2π/3. For n = 4
and 6, this statement is tight. It is also shown that every even-element
point set S can be partitioned into at most two subsets, S1 and S2, each
admitting a spanning tour with no angle larger than π/2. Fekete and
Woeginger conjectured that for sufficiently large even n, every n-element
set admits such a spanning tour. We confirm this conjecture for point
sets in convex position. A much stronger result holds for large point sets
randomly and uniformly selected from an open region bounded by finitely
many rectifiable curves: for any ε > 0, these sets almost surely admit a
spanning tour with no angle larger than ε.

1 Introduction

Consider a set of n ≥ 2 points. A spanning tour is a directed Hamiltonian cycle,
drawn with straight line edges; if n = 2 the tour consists of the two edges, with
opposite orientations, connecting the two points. When three points, p1, p2, and
p3, are traversed in this order, their rotation angle ∠p1p2p3 is the angle in [0, π]
determined by segments p1p2 and p2p3. If p3 is on the left (resp. right) side of
the oriented line −−→p1p2 then we say that the tour, or path makes a left (resp. right)
turn at p2. If a tour (or path) makes only right turns, we call it pseudo-convex.

� Supported in part by NSF CAREER grant CCF-0444188, and by the Discrete
and Convex Geometry project, in the framework of the European Community’s
”Structuring the European Research Area” program. Part of the research by this
author was done at the Alfred Rényi Institute of Mathematics in Budapest, and
at the Ecole Polytechnique Fédérale de Lausanne.

�� Research partially supported by NSF grant CCF-08-30272, grants from OTKA,
SNF, and PSC-CUNY.

��� Supported by OTKA.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 3–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) acute (b) obtuse (c) obtuse and pseudo-convex (d) acute and pseudo-convex

If all of its rotation angles are at most π/2, we call it an acute tour (or path). If
all rotation angles are at least π/2, the tour (or path) is obtuse; see Figure 1.

Given a set A of angles, the angle-restricted tour (ART) problem is to decide
whether a set S of n points in the plane allows a (possibly self-intersecting)
spanning tour such that all the n angles between consecutive segments belong
to the set A; see [10].

Fekete and Woeginger [10] proved that every finite set of at least five points
admits a pseudo-convex tour and a non-intersecting pseudo-convex spanning
path. They also noticed that every n-element point set S admits an acute span-
ning path. To see this, start at any point p1 ∈ S. Assuming that the initial
portion p1 . . . pi of such a path has already been defined and i < n, let pi+1 be
an element of S \ {p1, . . . , pi} farthest away from pi. It is easy to check that the
resulting path p1 . . . pn is acute. It is also clear that such a path cannot be always
completed to an acute tour. Indeed, if all points are on a line and n is odd, then
along any (spanning) tour, one of the rotation angles must be equal to π.

The question arises: Does every even-element point set admit a tour with
small rotation angles? More precisely, given an n-element point set S in the
plane, where n is even, let α = α(S) ≥ 0 denote the smallest angle such that S
admits a (spanning) tour with the property that all of its rotation angles belong
to [0, α]. Finally, let α(n) be the maximum of α(S) over all n-element point
sets in the plane. Trivially, α(2) = 0. The 4-element point set formed by the 3
vertices and the center of an equilateral triangle shows that α(4) ≥ 2π/3. The
6-point configuration depicted in Fig. 2 (left) shows that α(6) ≥ 2π/3.

In this note we show that α(n) ≤ 2π/3, for all even n ≥ 4.

Theorem 1. Let n ≥ 4 be even. Every set of n points in the plane admits a
spanning tour such that all of its rotation angles are at most 2π/3. This bound
is tight for n = 4, 6. Such a tour can be computed in O(n4/3 log1+ε n) time, for
every ε > 0.

It remains open whether the bound 2π/3 can be replaced by π/2, for every even
n ≥ 8, as was conjectured in [10]. In other words, every n-element set may admit
an acute tour, whenever n ≥ 8 is even. The point set depicted in Fig. 2 (right)
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a

b c

Fig. 2. Left: Δabc is an isosceles triangle with ∠bac = 2π/3. Point a and the 3 points
below it are placed on the altitude of the triangle, and very closely inter-spaced. Every
tour on these 6 points has a rotation angle of at least 2π/3−ε. Right: n−1 equidistant
points very closely inter-spaced on a small arc of a circle, and one point at the center.
Every tour on these n points has a rotation angle of at least π/2 − ε.

demonstrates that this statement, if true, cannot be improved. That is, we have
α(n) ≥ π/2, for all even n ≥ 8.

We confirm three weaker versions of this statement. In Section 4, we show
that if we enforce acute rotation angles, two tours instead of one will certainly
suffice.

Theorem 2. Let n ≥ 8 be even.
(i) Every set of n points in the plane can be partitioned into two even parts,

each of which admits an acute spanning tour. Given the n points, the two tours
can be computed in O(n) time.

(ii) Every set of n points in the plane can be partitioned into two parts of
sizes 2�n

4 � and 2�n
4 	, each of which admits an acute spanning tour. Given the n

points, the two tours can be computed in O(n4/3 log1+ε n) time, for every ε > 0.

In Section 5, we prove the existence of an acute tour in the special case when
the points are in convex position.

Theorem 3. Every even set S of n points in the plane in convex position, with
n ≥ 12, admits an acute spanning tour. Given the n points, such a tour can be
computed in O(n) time.

A much stronger statement holds for random point sets, uniformly selected from
a not necessarily connected region.

Theorem 4. Let B be an open region in the plane bounded by finitely many
rectifiable Jordan curves and let S be a set of n points, randomly and uniformly
selected from B. Then, for any ε > 0, the point set S almost surely admits a
spanning tour with no rotation angle larger than ε, as n tends to infinity.

The last result easily generalizes to higher dimensions.

Related problems and results. Various angle conditions imposed on geometric
graphs (that is, graphs with straight-line edges) drawn on a fixed vertex set have
been studied in [2,3,4,5]. For instance, sharpening an earlier bound of Bárány,
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Pór, and Valtr [5], Kynćl [11] proved that any point set admits a (possibly self-
intersecting) Hamiltonian path, in which each rotation angle is at least π/6. This
result conjectured by Fekete and Woeginger [10] cannot be improved.

Aichholzer et al. [2] studied similar questions for planar geometric graphs.
Among other results, they showed that any point set in general position in the
plane admits a non-intersecting Hamiltonian (spanning) path with the property
that each rotation angle is at most 3π/4. They also conjectured that this value
can be replaced by π/2. Arkin et al. introduced the notion of reflexivity of a
point set, as the minimum number of reflex vertices in a polygonalization (i.e.,
simple polygon) of the set [4]. They gave estimates for the maximum reflexivity
of an n-element point set. Recently, Ackerman et al. have made further progress
on this problem [1].

2 Balanced Partitions

It is well known (see, e.g. [8], Section 6.6) that every region (every continu-
ous probability measure) in the plane can be cut into four parts of equal area
(measure) by two orthogonal lines. This statement immediately implies:

Lemma 1. Given a set S of n ≥ 8 points in the plane (n even), one can always
find two orthogonal lines �1, �2 and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 with
|S1| = |S3| = �n

4 �, |S2| = |S4| = �n
4 	 such that S1 and S3 belong to two opposite

closed quadrants determined by �1 and �2, and S2 and S4 belong to the other two
opposite quadrants.

Proof. By a standard compactness argument, it is sufficient to prove this state-
ment for point sets S in general position, in the sense that no 3 points of S are
on a line, no 3 determine a right angle, and no two segments spanned by 4 points
are orthogonal to each other. Choose a very small ε > 0 and replace each point
p ∈ S by a disk of radius ε around p. Applying the above mentioned result from
[8] to the union of these n disks, we obtain two orthogonal lines that meet the
requirements of the lemma. ��

Lemma 2. Given a set S of n points in the plane (n even), there exist three
concurrent lines such that the angle between any two of them is π/3, and there
is a partition S = S1 ∪ . . . ∪ S6 with |S1| = |S4|, |S2| = |S5|, and |S3| = |S6|,
such that Si is contained in the i-th closed angular region (wedge) determined
by the lines, in counterclockwise order.

Proof. Just like before, by compactness, it is sufficient to prove the statement
for point sets in general position. This time, it is convenient to assume that no
3 points of S determine an angle which is an integer multiple of π/3, and there
are no 2 pairs of points such that the angle between their connecting lines is an
integer multiple of π/3.

Choose again a very small ε > 0 and replace each point p ∈ S by a disk Dp

of radius ε centered at p. Approximate very closely the union of these disks by
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a continuous measure μ which is strictly positive on every Jordan region in the
plane and for which μ(R2) = n and |μ(Dp)− 1| < ε for every p ∈ S.

We say that a line � is a bisecting line with respect to the continuous measure
μ if the measures of both half-planes bounded by � are equal to n/2. Clearly,
there is a unique bisecting line parallel to every direction, and this line changes
continuously as the direction varies. Choose three bisecting lines �1, �2, �3 such
that the angle between any two of them is π/3. By changing the direction of �1,
we can achieve that these lines pass through the same point. Indeed, as we turn
�1 by π/3, the crossing point of the other two lines moves from one side of �1 to
the other. Therefore, there is an intermediate position in which the three lines
pass through the same point.

An easy case analysis shows that if ε was sufficiently small, then either no
�i intersects any disk Dp or there is one �i that intersects two Dp’s and the
others do not intersect any. In the former case, the lines satisfy the conditions
in the lemma, in the latter one, they can be slightly perturbed so as to meet the
requirements. ��
Given a set S of n points in general position in the plane (i.e., no three points
are collinear), a line passing through two elements of S is called a halving line
if there are �(n− 2)/2� points on one of its sides and �(n− 2)/2	 points on the
other [12]. The number of halving lines of an n-element point set in the plane is
bounded from above by O(n4/3), as was established by Dey [9]. It is also known
that the set of halving lines can be computed in O(n4/3 log1+ε n) time [6], for
every ε > 0.
Remark. Starting with an arbitrary halving line � and following the rota-
tion scheme described in [12], one can enumerate all halving lines for S. Using
this approach, one obtains algorithmic proofs of Lemmas 1 and 2 that run in
O(n4/3 log1+ε n) time, for every ε > 0.

3 Making a Tour with Rotation Angles at Most 2π/3

In this section, we prove Theorem 1. As we mentioned in the Introduction, for
small even values of n, namely for n = 4 and n = 6, we need to allow rotation
angles as large as 2π/3. Here we show that this value suffices for all even n.

Let �1, �2, �3 be three concurrent lines satisfying the conditions of Lemma 2.
They divide the plane into six wedges.

Let X, Y, Z, X ′, Y ′, Z ′ denote the six wedges in counterclockwise order, labeled
as in Fig. 3. Note that the angle between the x-axis and any edge pi−1pi of a
tour with pi−1 ∈ X and pi ∈ X ′, say, belongs to the interval [0, π/3]. A piece
pi−1pipi+1 of a tour is of the form XX ′X , say, if pi−1, pi+1 ∈ X and pi ∈ X ′.

Observation 1. Consider a piece of a tour, which is of the form XQX, where
Q = Y ′, X ′, or Z. Then the rotation angle at the middle point of this piece, which
belongs to Q, is at most 2π/3. The same holds for any other piece consisting of
two edges, which starts and ends in the same wedge, and whose middle point
belongs to one of the three opposite wedges.
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Y

�1

�3
�2

Z X

Z ′

Y ′

X ′

Fig. 3. Three concurrent bisecting lines of S: �1, �2, �3, at angles 0, π/3, and 2π/3

Observation 2. Consider a piece of a tour, which is of the form XX ′Y or
XX ′Z ′. Then the rotation angle at the middle point of this piece, which belongs
to X ′, is at most 2π/3. The same holds for any other piece of the form X ′XZ,
X ′XY ′, Y Y ′X, Y Y ′Z, Y ′Y X ′, Y ′Y Z ′, ZZ ′Y , ZZ ′X ′, Z ′ZX, Z ′ZY ′.

Proof of Theorem 1. We distinguish two cases:

Case 1. There are at most two nonempty double wedges. If all points are con-
tained in a unique double wedge, say XX ′ then, by Observation 1, they can be
connected by an acute tour of the form (XX ′)∗. The tours starts in X , ends in
X ′, and alternates between the wedges X and X ′ until all points in X ∪X ′ are
exhausted. Assume now that there are exactly two nonempty double wedges,
XX ′ and Y Y ′, say, and refer to Fig. 4. Consider a spanning tour of the form
(XX ′)∗(Y Y ′)∗, where (XX ′)∗ and (Y Y ′)∗ are point sequences that alternate
between the corresponding opposite wedges until all points in those wedges are

Y ′

X

Y

X ′

Fig. 4. Case 1: points in two double wedges. A tour of the form XX ′XX ′XX ′Y Y ′Y Y ′

is shown; its starting vertex in X is drawn as an empty circle.
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Y

Y ′

X

Z ′

Z

X ′

y

z

z′

y′

x′

x

Y

Y ′

XZ

X ′ Z ′

y

z′

y′

z

x

x′

Fig. 5. Case 2: points in three double wedges. Left: a tour of the form
X ′XY ′Y Y ′Y y′xzz′x′y is shown; its starting vertex in X ′ is drawn as an empty circle.
Right: a tour of the form Y ′Y Y ′Y y′xzZ′Zz′x′y is shown; its starting vertex in Y ′ is
drawn as an empty circle.

exhausted. By Observations 1 and 2, at each vertex of this tour the rotation
angle is at most 2π/3.
Case 2. There are exactly three nonempty double wedges; refer to Fig. 5.

Arbitrarily pick one point from each wedge: x ∈ X , y ∈ Y , z ∈ Z, x′ ∈ X ′,
y′ ∈ Y ′, z′ ∈ Z ′. Consider the two triangles Δxzy′ and Δyx′z′. The sum of the
interior angles of the two triangles is obviously 2π. By averaging, there is one
pair of points lying in opposite wedges, say x and x′, whose angles sum up to
at most 2π/3. Thus, each of these angles is at most 2π/3: ∠zxy′ ≤ 2π/3, and
∠yx′z′ ≤ 2π/3.

If |X ∩ S| = |X ′ ∩ S| ≥ 2, consider a spanning tour of the form
(X ′X)+(Y ′Y )+y′xz(Z ′Z)+z′x′y. Here (X ′X)+ denotes a nonempty alternating
path between the wedges X ′ and X , that starts in X ′, ends in X , and involves all
points except x and x′. The notations (Y ′Y )+ and (Z ′Z)+ are used analogously.
An example is depicted in Fig. 5 (left). By Observations 1 and 2, and by our
choice of x, y, z, x′, y′, z′, all rotation angles along this tour are at most 2π/3, as
required.

If |X ∩ S| = |X ′ ∩ S| = 1, consider a spanning tour (Y ′Y )+y′xz(Z ′Z)+z′x′y;
see Fig. 5 (right). The arguments justifying that all rotation angles are at most
2π/3 are the same as before.

The proof of Theorem 1 is now complete.

4 Covering by Two Acute Tours

Proof of Theorem 2. (i) Take a horizontal line � and a partition of our point
set S = S+ ∪S− into two subsets, each of size n/2, such that S+ and S− are in
the closed half-planes above and below �, respectively. If some points of S lie on
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Fig. 6. Even set covered by two tours with 6 and 2 points, respectively; a = 3, and
b = 1 (A double-edge counts as a tour.)

�, we can include them in either of these sets so as to satisfy the condition. Next,
take a vertical line �′ which gives rise to another equipartition of S. Assume for
simplicity that � and �′ coincide with the x and y coordinate axes. See Fig. 6,
for an illustration.

Thus, we obtain a partition S = S1 ∪ S2 ∪ S3 ∪ S4 such that all points of
Si belong to the i-th closed quadrant determined by the axes (enumerated in
the counterclockwise order), |S1| = |S3| = a, and |S2| = |S4| = b for some
integers a and b with a+ b = n/2. Connect now all elements of S1∪S3 by a tour
of length 2a alternating between S1 and S3. Similarly, connect the elements of
S2∪S4 by an alternating tour of length 2b. Obviously, both tours are acute. The
above procedure can be performed in linear time, using any linear time selection
algorithm [7].

(ii) Find two orthogonal lines and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satis-
fying the conditions of Lemma 1. Using the notation of the proof of part (i),
now we have a = �n

4 � and b = �n
4 	. As above, we obtain two acute tours, of

lengths 2�n
4 � and 2�n

4 	, respectively. This completes the the proof of part (ii) of
Theorem 1. ��
By keeping only the larger tour, Theorem 2 immediately implies

Corollary 1. For any even n, every n-element point set in the plane admits an
acute even tour covering at least half of its elements.

5 Acute Tours for Points in Convex Position

Throughout this section, let S denote a set of n ≥ 8 points in the plane, in convex
position and let S = S1 ∪S2 ∪S3 ∪S4 be a partition satisfying the conditions in
Lemma 1. A 3-edge path (on 4 points) is called a hook if the rotation angles at
its two intermediate vertices are acute.

Lemma 3. Let P = {p1, p2, p3, p4} be the vertex set of a convex quadrilateral,
with pi ∈ Si, i = 1, 2, 3, 4. Then at least one of the following two conditions is
satisfied.
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(i) p1p3p4p2 and p3p1p2p4 are hooks, or
(ii) p1p3p2p4 and p3p1p4p2 are hooks.

Proof. At least one of the two angles defined by the diagonals p1p3 and p2p4
is larger or equal to π/2. Let x denote the crossing point of these diagonals.
If ∠p1xp2 ≥ π/2, then the two 3-edge paths p1p3p4p2 and p3p1p2p4 are hooks,
while if ∠p2xp3 ≥ π/2, then p1p3p2p4 and p3p1p4p2 are hooks. ��
We say that a convex quadrilateral P , as in Lemma 3, is of type 1 if ∠p1xp2 ≥
π/2, and of type 2, otherwise (i.e., if ∠p2xp3 > π/2).

Lemma 4. Let P = {p1, p2, p3, p4}, Q = {q1, q2, q3, q4}, and R = {r1, r2, r3, r4}
be three vertex-disjoint convex quadrilaterals with pi, qi, ri ∈ Si, for i = 1, 2, 3, 4.
Then there exist two hooks induced by two of these quadrilaterals such that the
two endpoints of the first one and the two endpoints of the second one lie in
different parts of the partition S1 ∪ S2 ∪ S3 ∪ S4. Two such hooks are called
opposite. (See Fig. 7 (left).)

q4

q1

p1

q3

s

q2

p4

p2

p3r4

r1

q1

r3 p4

q4

p1

q2

p2

p3

r2

q3

S1S2

S4S3

S1S2

S3 S4

Fig. 7. Left: p1p3p4p2 and r3r1r2r4 are two opposite hooks. Right: an acute tour of S
of the form (S1S3)+p1p3p4p2(S4S2)+q4q2q1q3, starting at s ∈ S1.

Proof. By the pigeonhole principle, two out of the three quadrilaterals, say P
and Q, must have the same type. By Lemma 3, one can find a hook in each of
them such that their endpoints are all in different parts of the partition, i.e., two
opposite hooks. ��
Proof of Theorem 3. Consider a partition S = S1∪S2 ∪S3 ∪S4 satisfying the
conditions in Lemma 1. Since |S| ≥ 12, we have |Si| ≥ 3. Pick 3 points from each
Si, and using these points construct three vertex-disjoint convex quadrilaterals,
P , Q, and R. By Lemma 4, two of these quadrilaterals, P and Q, say, determine
opposite vertex-disjoint hooks. Suppose without loss of generality that P and Q
are of type 1, and these two hooks are p1p3p4p2 and q4q2q1q3, where pi, qi ∈ Si,
i = 1, 2, 3, 4. See Fig. 7(right).
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Let (SiSj)+ denote a polygonal path starting in Si, ending in Sj, alternating
between Si and Sj, and exhausting all points of Si ∪ Sj , except for pi, pj , qi, qj .
The following tour is acute: (S1S3)+p1p3p4p2(S4S2)+q4q2q1q3, and this com-
pletes the proof. ��

6 Random Point Sets

We first verify Theorem 4 for centrally symmetric convex bodies, and then in its
full generality.

Lemma 5. Let B be a centrally symmetric convex body in the plane and let S
be a set of n points, randomly and uniformly selected from B. Then, for any
ε > 0, S almost surely admits a spanning tour with no rotation angle larger than
ε, as n tends to infinity.

Proof. Let ε be fixed, and let o denote the center of B. Assume without loss
of generality that area(B) = 1. Any chord through o divides the area of B into
two equal parts. Therefore, there is a positive constant δ = δ(B, ε), depending
only on B and ε, such that for every wedge W with angle at most π − ε

2 and
apex at o, we have that area(W ∩B) ≤ 1/2− δ. Let m = �n/2	.

Let p1, p2, . . . pn be n random points, independently and uniformly selected
from B, listed in their circular order of visibility from o. The indices are taken
modulo n, so that pn+1 = p1. Note that almost surely all points pi are distinct
and different from o.

If n is odd, consider the spanning tour C = p1pm+1p2pm+2 . . . pmp1. For every
i, almost surely we have

π − ε

2
≤ ∠piopm+i−1 ≤ π +

ε

2
,

and
π − ε

2
≤ ∠piopm+i ≤ π +

ε

2
.

Therefore, we almost surely have ∠pm+i−1pipm+i ≤ ε, for every i, and the tour
C meets the requirements.

If n is even, we choose two odd numbers n1, n2 with n1 + n2 = n such that
0 ≤ n1 − n2 ≤ 2. That is, n1 is m or m + 1 while n2 is m or m− 1. Connect the
points pi by two disjoint cycles, C1 and C2, of length n1 and n2, with property
that (1) in the cyclic order around o, the points p1, p2, . . . belong alternately to
C1 and C2, as much as possible; and (2) every edge of C1 and C2 connects two
points, pi and pj , with |j − i−m| ≤ 3 (mod n). We distinguish two cases.
Case 1. n1 = n2 = m. Let

C1 = p1p2+mp3p4+mp5 . . . pn−1pm,

C2 = p2p3+mp4p5+mp6 . . . pnp1+m.
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Switching between these two cycles at two points, we can combine them into a
single spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pn−1pmp2p3+mp4p5+mp6 . . . pnp1+m.

It remains true that |j − i −m| ≤ 3 (mod n) for every edge pipj of C, so that
almost surely all rotation angles of C will be smaller than ε.
Case 2. n1 = m + 1, n2 = m− 1. Let

C1 = p1p2+mp3p4+mp5 . . . pnpm+1,

C2 = p2p3+mp4p5+mp6 . . . pn−1pm.

We can combine them into a single spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pnpm+1p2p3+mp4p5+mp6 . . . pn−1pm.

It remains true that |j − i −m| ≤ 3 (mod n) for every edge pipj of C, so that
almost surely all rotation angles of C will be smaller than ε. ��
To prove Theorem 4 in its full generality, we need the following technical lemma.
Its proof is very similar to that of Lemma 5. The minor modifications are left to
the reader.

Lemma 6. Let B be a centrally symmetric convex set in the plane with nonempty
interior. Let o denote the center of B, let ε > 0 be fixed, let s and t be two points
of B, and let S′ be a set of at most εn/4 points not belonging to B.

Then, for any set S of n points randomly and uniformly selected from B, the
set S ∪ S′ almost surely admits a spanning path satisfying the following condi-
tions, as n →∞:

(i) all of its turning angles are at most ε;
(ii) its first two points are p1 and p2 such that ∠op1p2 ≤ ε/3, ∠sop1 ≤ ε/3;
(iii) its last two points are q2 and q1 such that ∠oq1q2 ≤ ε/3, ∠toq1 ≤ ε/3.

Proof of Theorem 4. Assume without loss of generality that area(B) = 1.
Consider a square lattice of minimum distance δ, for some δ > 0 to be specified
later. Let A = A(δ) denote the total area of all cells (lattice squares of side length
δ) completely contained in B, and let A′ = A′(δ) denote the total area of all
those cells that intersect B, but are not completely contained in it. Obviously,
A + A′ ≥ 1. Since the boundary of B is the union of finitely many rectifiable
curves, we have

lim
δ→0

A = 1, lim sup
δ→0

A′

δ
< ∞.

Therefore, we can choose δ > 0 so that A′ ≤ ε/6.
Let X1, X2, . . . , Xm denote the cells completely contained in B, in some ar-

bitrary order, and let oi denote the center of Xi. For any 1 ≤ i ≤ m, let si be a
point on the line oioi−1 such that oi belongs to the segment sioi−1. Analogously,
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let ti be a point on the line oioi+1 such that oi belongs to the segment tioi+1.
Here the indices are taken modulo m.

Let S be a set of n points in B, selected independently, randomly, and uni-
formly. Let Si = S∩Xi, for 1 ≤ i ≤ m, and let S′ = S \∪m

i=1Si. Divide S′ into m
almost equal parts, S′

1, S
′
2, . . . , S

′
m with ||S′

i| − |S′
j || ≤ 1, for any i, j = 1, . . . , m.

For each 1 ≤ i ≤ m, apply Lemma 6 with Si, S′
i, si, and ti, to obtain a

spanning path Pi. The spanning tour P1P2 . . . Pm obtained by the concatenation
of these paths now meets the requirements. ��
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Abstract. In this paper we study non-planar drawings of graphs, and study trade-
offs between the crossing resolution (i.e., the minimum angle formed by two
crossing segments), the curve complexity (i.e., maximum number of bends per
edge), the total number of bends, and the area.

1 Introduction

Planarity is one of the most desirable properties when drawing a graph because planar
drawings are more readable and more aesthetically pleasant than non-planar ones. Un-
fortunately, very few graphs are planar in practice and edge crossings are unavoidable
in the vast majority of the application scenarios where relational data are visualized and
analyzed by means of graph drawing techniques.

While a large body of literature has been published about the problem of reducing the
number of crossings in a non-planar drawing of a graph, by the well-known crossing-
lemma this number is quadratic with the number of the edges for dense graphs. This, to-
gether with cognitive experiments showing the negative impact of edge crossings on the
human understanding of a graph drawing, apparently leads to the conclusion that com-
puting readable node-link visualizations of dense graphs is a hopeless challenge [6,7,8].

However, new cognitive experiments on large drawings of graphs refine the conclu-
sions in [6,7,8] by showing that actually the human’s understanding of the relations
between the nodes of a network is not bothered by those edge crossings that form large
angles [3,4,5]. These experiments suggest a new and fascinating research scenario in
which the problem of maximizing the crossing resolution of a drawing (i.e. the smallest
angle formed by two crossing edges) becomes as important for the non-planar graphs
as the problem of avoiding edge crossings is for the planar graphs.

With this motivation, we study the trade-offs between crossing resolution, curve
complexity, total number of bends, and area of non-planar drawings of graphs. The
area is measured as the number of grid points contained in or on a bounding box of the
drawing, i.e., the smallest axis-aligned box enclosing the drawing. The curve complex-
ity is the maximum number of bends along each edge of the drawing.

We recall that the special case where the crossing resolution of a drawing is π
2 has

been studied in [1], where these types of drawings are called Right Angle Crossing
drawings (RAC drawings, for short). The main theme of [1] is to study the trade-off

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 15–20, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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between the edge density and the curve complexity in a RAC drawing. In this paper
we extend the study of [1] in two ways: we take into account the area requirement and
we relax the crossing resolution constraints to angles smaller than π

2 . Our main results
can be listed as follows.

– We study the trade-off between area requirement and curve complexity of RAC
drawings. We establish an Ω(n2) lower bound on the area requirement of RAC
drawings and show an O(n + m)-time algorithm whose input is a graph G with
n vertices and m edges and whose output is a RAC drawing of G having curve
complexity 4, total number of bends O(m), and area O(n3). We observe that the
previously known algorithm requires area O(n4) and curve complexity 3 [1].

– We relax the constraint on the crossing resolution and introduce the Large Angle
Crossing drawings (LAC drawings, for short). In a LAC drawing the edge cross-
ings are allowed to form angles at least π

2 − ε for any given 0 < ε < π
2 . For

any choice of the constant ε, we show an infinite family of graphs such that any
LAC drawing of an n-vertex graph in the family requires curve complexity 1, total
number of bends Ω(n2), and Ω(n2) area.

– We describe an O(n+m)-time algorithm whose input is a graph G with n vertices
and m edges and a constant 0 < ε < π

2 and whose output is a LAC drawing of G
having crossing resolution π

2 −ε, curve complexity 1, total number of bends O(m),
and area O(n2), which are worst-case optimal.

The rest of this paper is organized as follows. Preliminary definitions are given in
Section 2. Results about RAC drawings and LAC drawings are presented in Section 3
and 4, respectively. Section 5 lists some open problems. Some proofs are sketched or
omitted for reasons of space.

2 Preliminaries

Let G be a graph. A polyline drawing Γ of G is a geometric representation of G such
that each vertex u of G is mapped to a distinct point pu of the plane, each edge (u, v) of
G is drawn as a polyline with end-points pu and pv, and two edges can intersect either
at shared endvertices or at a finite number of interior points. Each intersection between
two or more edges that happens at an interior point is called a crossing. Since each
edge is drawn as a polyline, each crossing is an intersection of two or more straight-line
segments. The intersection angle between two crossing straight-line segments is the
smallest angle defined by these segments. The crossing resolution of a polyline drawing
is the minimum intersection angle between any two segments. Each point shared by two
consecutive segments of a polyline representing an edge is called a bend. The curve
complexity of a polyline drawing is the maximum number of bends along an edge.
A straight-line drawing is a polyline drawing with curve complexity zero. A polyline
drawing is a grid drawing if the points representing vertices and bends have integer
coordinates. The bounding box of a polyline grid drawing Γ of a graph G is the smallest
axis-aligned rectangle containing Γ . If the sides of the bounding box of Γ parallel to
the x- and y-axis have lengths W − 1 and H − 1, respectively, we say that Γ has width
W , height H and area W · H . A polyline grid drawing with crossing resolution π

2 is
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called a RAC drawing. A polyline grid drawing with crossing resolution 0 < α < π
2

is called a LACα drawing. We will write LAC-drawing when we are not interested in
the value of α.

3 Optimal Crossing Resolution: RAC Drawings

The following results, consequence of the results in [1], establish lower and upper
bounds on the curve complexity, on the total number of bends and on the area of RAC
drawings of graphs.

Theorem 1. There exists an infinite family of graphs such that any RAC drawing of
an n-vertex graph in the family has curve complexity at least 3, total number of bends
Ω(n2) and area Ω(n2).

Lemma 1. Every graph with n vertices and m edges admits a RAC drawing with
curve complexity 3, total number of bends O(m) and area O(n4).

We prove now that the upper bound on the area of a RAC drawing can be reduced to
O(n3) at the expense of the curve complexity that increases to 4.

Lemma 2. The complete graph Kn admits a RAC drawing with curve complexity 4,
total number of bends O(n2), and area O(n3).

Sketch of Proof: Refer to Fig. 1 for an illustration of the technique with n = 6. Arbi-
trarily number the vertices of Kn from 0 to n − 1. Vertex i with 0 ≤ i ≤ n − 1 is
placed at point pi = (in − 3, 2n). For each pair of vertices i and j, with i < j, the
four bends of edge (i, j) will be placed at the following points (in this order): ai,j =
(in−2, (j−i)−1+2(n−1)), bi,j = (in, (j−i)−1), ci,j = (jn−(j−i), 2(j−i)−1),
and di,j = (jn− (j − i)− 2, 2(j − i)− 1 + 2(n− 1)).

Clearly the drawing has curve complexity 4 and total number of bends 4n(n−1)
2 .

Also, it is easy to see that the crossing resolution is π
2 . We now prove that the area is

O(n3). The point with smallest x-coordinate is p0 = (−3, 2n), while the point with
largest x-coordinate is cn−2,n−1 = (n2 − n − 1, 1) and therefore the width of the
drawing is n2 − n − 1 + 3 + 1 = n2 − n + 3 = O(n2). The points with smallest y-
coordinates are the points bi,i+1 = (in, 0), while the point with largest y-coordinate is
d0,n−1 = (n2−2n−1, 4n−5), and therefore the height of the drawing is 4n−5+1 =
4n− 4 = O(n) which gives an O(n3) area. ��
The following theorem summarizes the results about the upper bounds

Theorem 2. Every graph with n vertices and m edges admits both a RAC drawing
with curve complexity 3, total number of bends O(m), and area O(n4) and a RAC
drawing with curve complexity 4, total number of bends O(m) and area O(n3). Both
drawings can be computed in O(n + m) time.

In the next section we show that a drawing that is worst-case optimal in terms of curve
complexity, total number of bends, and area can be computed if one allows a crossing
resolution arbitrarily close to the optimal one.
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Fig. 1. A RAC drawing of K6 with curve complexity 4

4 Nearly Optimal Crossing Resolution: LAC Drawings

We start by proving lower bounds on the curve complexity, on the total number of
bends, and on the area of LACπ

2 −ε drawings for every 0 ≤ ε ≤ π
2 . The next three

lemmas are the technical foundation of our lower bound. The proof of the first one is
omitted for reasons of space.

Lemma 3. In a straight-line drawing of Kn on a convex set of n > 3 points there exists
an intersection angle≤ 2π

n .

Lemma 4. For all ε > 0 there exists a constant N such that for all n ≥ N , any straight
line drawing of Kn has an intersection angle < ε.

Proof. Let ε > 0. Let k > 2π/ε. From the Erdös-Szekeres lemma [2] there exists an
N such that any set of n ≥ N non-degenerate points (i.e. no three points collinear)
contains a set of k convex points. Consider a straight-line drawing of Kn with n ≥ N .
If there are three collinear points in this drawing, there are two edges intersecting at an
infinite number of points, i.e., the drawing is not a polyline drawing according to our
definition. If there are no three collinear points, then there is a subset of k convex points.
From Lemma 3 the drawing of Kn contains an intersection angle ≤ 2π

k < ε. ��

Lemma 5. For all ε > 0 there exist constants N and cN such that for all n > N , any
subdrawing obtained removing at most n(n−1)/cN edges from a straight-line drawing
of Kn has an intersection angle ≤ ε.

Proof. Let ε > 0. From Lemma 4 we know that there is a constant N such that any
straight-line drawing of KN has an intersection angle less than ε. Let cN = 2N(N−1)
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and let n > N . Consider a straight-line drawing of Kn. Any edge of Kn is in
(

n−2
N−2

)
different subgraphs of Kn isomorph to KN . So by removing≤ n(n−1)/cN edges from
the drawing we remove at most n(n−1)

cN

(
n−2
N−2

)
copies of KN . Therefore, there are at least(

n
N

)
− n(n−1)

cN

(
n−2
N−2

)
copies of KN present in the drawing. Since

(
n
N

)
− n(n−1)

cN

(
n−2
N−2

)
=(

n
N

)
− n(n−1)(n−2)!

2N(N−1)(N−2)!(n−N)! =
(

n
N

)
− n!

2N !(n−N)! = 1
2

(
n
N

)
> 1, there is an intersection

angle less than ε. ��

Theorem 3. For every 0 < ε < π
2 there exists a constant N such that for every n > N

there exists a graph G with n vertices such that every LACπ
2 −ε drawing of G has curve

complexity at least 1, total number of bends Ω(n2) and area Ω(n2).

Proof. From Lemma 5 we know that for any value of π
2 − ε there are constants N and

cN such that for any straight-line drawing of Kn with n > N , even if we remove at
most n(n − 1)/cN of the edges of Kn there is an intersection angle less than π

2 − ε.
Thus, a drawing with intersection angles at least π

2 − ε has at least n(n − 1)/cN bent
edges. Since bends have to be placed on grid points, the result follows. ��

We prove now that the lower bounds of Theorem 3 are worst-case optimal.

Lemma 6. For every 0 < ε < π
2 and for all n > 3 there exists a LACπ

2 −ε drawing of
Kn with curve complexity 1, total number of bends O(n2), and area O(n2(cot ε

2 )2).

Sketch of Proof: Let c be an integer such that the angle between a line of slope c+1 and
a line of slope 1

(c+1) is larger than π
2−ε. Arbitrarily number the vertices of Kn from 0 to

n−1. Refer to Fig. 2 for an example with n = 6 and c = 1. Vertex i with 0 ≤ i ≤ n−1
is placed at point pi = (ic, (n− i− 1)c). For each pair of vertices i and j, with i < j,
the bend of edge (i, j) will be placed at point ai,j = (jc+1, (n− i− 1)c+1). Clearly,

the curve complexity is 1 and the total number of bends is n(n−1)
2 . It is easy to see that

�
p0

�
p1

�

p2

�

p3

�

p4

�
p5

�

a0,1
�

a0,2
�

a0,3
�

a0,4
�

a0,5

�

a1,2
�

a1,3
�

a1,4
�

a1,5

�

a2,3
�

a2,4
�

a2,5

�

a3,4
�

a3,5

�

a4,5

Fig. 2. A LACα-drawing of K6 with curve complexity 1 (α > 63◦)
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the crossing resolution is larger than π
2 − ε and that the area is O(c2n2). With simple

geometric arguments it can be proved that c = O(cot ε
2 ). ��

The following theorem summarizes the results of this section.

Theorem 4. For every 0 < ε < π
2 , every graph with n vertices admits a LACπ

2 −ε

drawing which is worst-case optimal in terms of curve complexity, total number of
bends, and area. Namely, the curve complexity is 1, the total number of bends is Θ(m),
and the area is Θ(n2). Furthermore, the drawing can be computed in O(n + m) time.

5 Open Problems

We conclude by listing some open problems that arise from the results of this work.
One natural problem is that of closing the gap between the upper and the lower bound
on the area of RAC drawings stated by Theorem 1 and Theorem 2.

The lower bounds on the area of RAC and LAC drawings are a consequence of the
fact that Kn contains O(n2) edges. It would be interesting to study whether a o(n2)
area and good crossing resolution can be obtained for graphs with O(n) edges.

A question related to the previous one is the following: Is it possible to obtain
straight-line drawings of planar graphs with o(n2) area if we allow right or large angle
crossings? It is worth mentioning that, if no requirement about the crossing resolution
exists, then every planar graph admits a non-planar drawing in O(n) area [9].
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Abstract. Right Angle Crossing (RAC) drawings are polyline drawings where
each crossing forms four right angles. RAC drawings have been introduced be-
cause cognitive experiments provided evidence that increasing the number of
crossings does not decrease the readability of the drawing if the edges cross at
right angles. We investigate to what extent RAC drawings can help in overcoming
the limitations of widely adopted planar graph drawing conventions, providing
both positive and negative results. First, we prove that there exist acyclic planar
digraphs not admitting any straight-line upward RAC drawing and that the corre-
sponding decision problem is NP-hard. Also, we show digraphs whose straight-
line upward RAC drawings require exponential area. Second, we study if RAC
drawings allow us to draw bounded-degree graphs with lower curve complexity
than the one required by more constrained drawing conventions. We prove that
every graph with vertex-degree at most 6 (at most 3) admits a RAC drawing with
curve complexity 2 (resp. 1) and with quadratic area. Third, we consider a natural
non-planar generalization of planar embedded graphs. Here we give bounds for
curve complexity and area different from the ones known for planar embeddings.

1 Introduction

In Graph Drawing, it is commonly accepted that crossings and bends can make the
layout difficult to read and experimental results show that the human performance in
path tracing tasks is negatively correlated to the number of edge crossings and to the
number of bends along the edges [16,17,19]. However, further cognitive experiments in
graph visualization show that increasing the number of crossings does not decrease the
readability of the drawing if the edges cross at right angles [10,11]. These results pro-
vide evidence for the effectiveness of orthogonal drawings (in which edges are chains
of horizontal and vertical segments) with few bends [4,12] and motivate the study of a

� This work started during the Bertinoro Workshop on Graph Drawing 2009. We acknowledge
Giuseppe Liotta for suggesting the study of upward RAC drawings.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 21–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



22 P. Angelini et al.

new class of drawings, called Right Angle Crossing drawings (RAC drawings) [7]. A
RAC drawing of a graph G is a polyline drawing D of G such that any two crossing
segments in D are orthogonal. If D has curve complexity 0, D is a straight-line RAC
drawing, where the curve complexity of D is the maximum number of bends along an
edge of D.

This paper continues the study of RAC drawings initiated in [7] and investigates
RAC drawings with low curve complexity for both directed and undirected graphs. For
directed graphs (digraphs), a widely studied drawing standard is the upward drawing
convention, where edges are monotone in the vertical direction. A digraph has an up-
ward planar drawing if and only if it has a straight-line upward planar drawing [5].
However, not all planar digraphs have an upward planar drawing and straight-line up-
ward planar drawings require exponential area for some families of digraphs [6].

We investigate straight-line upward RAC drawings, i.e. straight-line upward draw-
ings with right angle crossings. In particular, it is natural to ask if all planar digraphs
admit an upward RAC drawing and if all digraphs with an upward RAC drawing admit
one with polynomial area. Both these questions have a negative answer (Sect. 3): (i) we
prove that there exist acyclic planar digraphs that do not admit any straight-line upward
RAC drawing, and that the problem of deciding whether an acyclic planar digraph ad-
mits such a drawing is NP-hard; (ii) we show that there exist upward planar digraphs
whose straight-line upward RAC drawings require exponential area.

Concerning undirected graphs, it is known [7] that any n-vertex straight-line RAC
drawing has at most 4n − 10 edges, for every n ≥ 4, and this bound is tight. Further,
every graph admits a RAC drawing with at most three bends per edge, and this curve
complexity is required in infinitely many cases. Indeed, RAC drawings with curve com-
plexity 1 and 2 have O(n4/3) and O(n7/4) edges, respectively. Hence, we investigate
families of graphs that can be drawn with curve complexity 1 or 2, proving the fol-
lowing results (Sect. 4): (i) every degree-6 graph admits a RAC drawing with curve
complexity 2; (ii) every degree-3 graph admits a RAC drawing with curve complexity
1. Both types of drawings can be computed in linear time and require quadratic area.
Observe that degree-4 graphs admit orthogonal drawings with curve complexity 2 [14],
and that two bends on an edge are sometimes necessary even for degree-3 graphs.

In a fixed embedding setting, the input graph G is given with a (non-planar) embed-
ding, i.e., a circular ordering of the edges incident to each vertex and an ordering of the
crossings along each edge. A RAC drawing algorithm cannot change the embedding of
G. For such a setting it has been proved in [7] that any n-vertex graph admits a RAC
drawing with O(kn2) bends per edge, where k is the maximum number of crossings
between any two edges. Also, there exist graphs whose RAC drawings require Ω(n2)
bends along some edges. In Sect. 5 we study the fixed embedding setting, namely: (i)
we study non-planar graphs obtained by augmenting a plane triangulation with edges
inside pairs of adjacent faces; we call these graphs kite-triangulations and prove that
one bend per edge is always sufficient and sometimes necessary for a RAC drawing
of a kite-triangulation; (ii) we study the area requirement of straight-line RAC draw-
ings of kite-triangulations and prove that cubic area is sometimes necessary. Recall that
every embedded planar graph admits a planar drawing with quadratic area [18].

Sect. 6 concludes the paper with some open problems.
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2 Preliminaries

We assume familiarity with graph drawing and planarity [4,12]. In the following, unless
otherwise specified, all considered graphs are simple.

A Right Angle Crossing drawing (RAC drawing) of a graph G is a polyline drawing
D of G such that any two crossing segments in D are orthogonal. The curve complexity
of D is the maximum number of bends along an edge of D. If a RAC drawing D has
curve complexity 0, D is a straight-line RAC drawing. A fan in a drawing D is a pair of
edge segments incident to the same vertex. Two segments s1 and s2 crossing the same
segment in D are parallel. This leads (Fig. 1) to the following properties (see also [7]).

Property 1. In a straight-line RAC drawing no edge can cross a fan.

Property 2. In a straight-line RAC drawing there cannot be a triangle � and two edges
(a, b), (a, c) such that a lies outside � and b, c lie inside �.

In an upward drawing all the edges are curves monotonically increasing in the upward
direction. An upward planar drawing of a digraph G is an upward drawing of G without
edge crossings. If G admits an upward planar drawing, G is an upward planar digraph.
An upward RAC drawing of a digraph is a RAC drawing that is also upward.

3 Upward RAC Drawings

We now study straight-line upward RAC drawings (in this section, RAC drawings for
short). We introduce an upward planar digraph H , shown in Fig. 2(a), that serves as a
gadget for proving the main results of this section. The following lemmata show that
two copies of H cannot cross each other in any RAC drawing. Let E1, E2, and E3 be the
embeddings of H shown in Fig. 2(a), 2(b), and 2(c), respectively.

Lemma 1. In any RAC drawing of H , its embedding is one of E1, E2, or E3, up to a
reversal of the adjacency lists of all the vertices.

Let G be a digraph containing two copies H ′ and H ′′ of H , with vertex sets
{u′, v′, w′, z′} and {u′′, v′′, w′′, z′′}, respectively, so that one vertex in {u′, v′} pos-
sibly coincides with one in {u′′, v′′}, while no other vertex is shared by the two graphs.
A vertex of H ′′ that is coincident with a vertex of a 3-cycle of H ′ is considered both as
internal and as external to the triangle representing the 3-cycle.

(a)

zu b c

v

a

(b)

Fig. 1. Illustrations for (a) Property 1 and for (b) Property 2
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Fig. 2. (a) E1; (b) E2; (c) E3. (d) A planar digraph K. (e) The planar digraph K′ obtained by
replacing each edge of K with a copy of H .

Lemma 2. Let D be a RAC drawing of G. For any 3-cycle (a′, b′, c′) of H ′, which is
represented in D by a triangle �′, either all the vertices of H ′′ are inside �′ or they
are all outside it.

Lemma 3. In any RAC drawing D of G, no edge of H ′ crosses an edge of H ′′.

Proof. Let D∗ be D restricted to the edges of H ′ and H ′′. We show that in D∗ there is
no crossing among the edges of H ′ and the edges of H ′′.

If the embedding of H ′ in D∗ is E1, one of the four triangular faces of H ′, say
(u′, z′, v′), is a triangle �′ enclosing w′ (see Fig. 2(a)). By Lemma 2, either all the
vertices of H ′′ lie outside �′ or they all lie inside it. In the former case, if there is a
crossing between an edge of H ′ and an edge of H ′′, then such an edge of H ′′ cuts a fan
composed of two edges of H ′, violating Property 1. In the latter case, the vertices of
H ′′ lie in the faces of H ′ internal to �′. By Lemma 2, all the vertices of H ′′ lie in one
of the internal faces of H ′. Hence, in both cases, no edge of H ′ crosses an edge of H ′′.

If the embedding of H ′ in D∗ is E2, cycle (u′, z′, v′, w′) of H ′ is a convex quadrilat-
eral with edges (u′, v′) and (z′, w′) crossing inside it, since y(u′) < y(z′) < y(w′) <
y(v′) and since (u′, v′) is a straight-line segment. Thus, connected regions R1, . . . , R5
are created (see Fig. 2(b)). We prove that all the vertices of H ′′ are inside a region
Ri. For every pair of regions Ri and Rj , with j �= i, a 3-cycle (a′, b′, c′) of H ′,
with a′, b′, c′ ∈ {u′, z′, v′, w′}, exists containing Ri in its interior and Rj in its ex-
terior, or vice versa. Suppose that vertices a′′ and b′′ exist such that: (i) a′′, b′′ ∈
{u′′, z′′, v′′, w′′}; (ii) a′′ is inside Ri and b′′ is inside Rj , with i �= j; and (iii) a′′

is outside Rj and b′′ is outside Ri (notice that Ri and Rj can possibly share a vertex).
Then a′′ is inside the triangle representing (a′, b′, c′) and b′′ is outside such a triangle,
or vice versa. However, by Lemma 2, D∗ is not a RAC drawing. If all the vertices of
H ′′ are in the same region Ri, with 1 ≤ i ≤ 4, no edge of H ′ crosses an edge of H ′′. If
all the vertices of H ′′ are in R5, suppose that a crossing between an edge of H ′ and an
edge of H ′′ exists. Then, such an edge of H ′′ cuts a fan composed of two edges of H ′.

If the embedding of H ′ in D∗ is E3, connected regions R1, . . . , R5 are created by
the edges of H ′ (see Fig. 2(c)). With the same argument as above, it can be proved that
no edge of H ′ crosses an edge of H ′′. �
We get the following:
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Fig. 3. (a) A planar acyclic digraph G that is not upward planar. (b) The planar acyclic digraph
G′ obtained by replacing each edge of G with a copy of H . (c) An 8-vertex planar digraph that
does not admit any RAC drawing.

Lemma 4. Consider a planar acyclic digraph K . Replace each edge (a, b) of K with
a copy of H (see Figs. 2(d) and 2(e)), by identifying vertices a and b with vertices u
and v of H , respectively. Let K ′ be the resulting planar digraph. Digraph K is upward
planar if and only if K ′ is straight-line upward RAC drawable.

Proof. First, suppose that K has an upward planar drawing. Then, by the results in [5],
K admits a straight-line upward planar drawing D. Consider the drawing D′ obtained
by drawing each copy of H that replaces an edge (a, b) in such a way that: (i) the
drawing of H is upward planar; (ii) the drawing of edge (u, v) of H in D′ coincides
with the drawing of (a, b) in D; and (iii) the drawing of the rest of H is arbitrarily close
to (u, v). Since D is a straight-line upward planar drawing, D′ is a straight-line upward
planar drawing. Hence, D′ is a RAC drawing of K ′.

Second, suppose that K ′ has a RAC drawing D′. By construction, every edge of K ′

belongs to a copy of H , and, by Lemma 3, no two edges belonging to distinct copies
of H cross in D′. Hence, since K is a subgraph of K ′ such that, for each copy of H
belonging to K ′, only one edge, namely (u, v), belongs to K , the drawing D obtained
as D′ restricted to the edges of K is a straight-line upward planar drawing of K . �
We are ready to prove the first theorem of this section.

Theorem 1. There exist acyclic planar digraphs that do not admit any straight-line
upward RAC drawing.

Proof. Consider any planar acyclic digraph G (as the one of Fig. 3(a)) that is not upward
planar. By Lemma 4, the planar acyclic digraph G′ obtained by replacing each edge of
G with a copy of H is not RAC drawable (see Fig. 3(b)). �
Note that there exist planar digraphs, as the one in Fig. 3(c), that do not admit any RAC
drawing, that are not constructed using gadget H , and whose size is smaller than the
one of the digraph in Fig. 3(b). However, proving that they are not RAC drawable could
result in a complex case-analysis.

Motivated by the fact that there exist acyclic planar digraphs that do not admit any
RAC drawing, we study the time complexity of the corresponding decision problem.
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We show that the problem of testing whether a digraph admits a straight-line upward
RAC drawing (UPWARD RAC DRAWABILITY TESTING) is NP-hard, by means of a
reduction from the problem of testing whether a digraph admits a straight-line upward
planar drawing (UPWARD PLANARITY TESTING), which is NP-complete [9].

Theorem 2. UPWARD RAC DRAWABILITY TESTING is NP-hard.

Proof. We reduce UPWARD PLANARITY TESTING to UPWARD RAC DRAWABILITY

TESTING. Let G be an instance of UPWARD PLANARITY TESTING (see Fig. 2(d)).
Replace each edge of G with a copy of H (see Fig. 2(e)). Let G′ be the resulting planar
digraph. By Lemma 4, G is upward planar if and only if G′ admits a RAC drawing. �
As a final contribution of this section we show that there exists a class of planar acyclic
digraphs that require exponential area in any RAC drawing.

Consider the class of digraphs Gn [6] which requires Ω(2n) area in any straight-
line upward planar drawing, under any resolution rule. Let G′

n be the class of digraphs
obtained by replacing each edge (a, b) of Gn with a copy of H , so that vertices a and b
are identified with vertices u and v of H , respectively.

Theorem 3. Let G′ be a digraph belonging to G′
n. Then, any straight-line upward RAC

drawing of G′ requires Ω(bn) area, under any resolution rule, for some constant b > 1.

Proof. Suppose, for a contradiction, that, for every constant b > 1, G′ admits a RAC
drawing D′ with o(bn) area, under some resolution rule. Consider the digraph G ∈ Gn

corresponding to G′. By construction, G is a subgraph of G′ containing only edge (u, v)
for each copy of H in G′. By Lemma 3, no two edges belonging to distinct copies of
H cross. Hence, the drawing D of G obtained as D′ restricted to the edges of G is a
straight-line upward planar drawing with o(bn) area, a contradiction. �

4 RAC-Drawings of Bounded-Degree Graphs

In this section, we present an algorithm for constructing RAC drawings of graphs with
degree at most 6. The algorithm is based on the decomposition of a regular multigraph
into cycle covers. A cycle cover of a directed graph is a spanning subgraph consisting
of vertex-disjoint directed cycles. The decomposition into cycle covers follows from a
classical result [15] stating that “a regular multigraph G of degree 2k has k edge-disjoint
factors”, where a factor is a spanning subgraph consisting of vertex-disjoint cycles (see
also [2, pp.227]). A constructive proof of the following theorem was given in [8].

Theorem 4 (Eades,Symvonis,Whitesides [8]). Let G = (V, E) be an undirected graph
of maximum degree Δ and let d = �Δ/2	. Then, there exists a directed multi-graph
G′ = (V, E′) such that: (i) each vertex of G′ has indegree d and outdegree d; (ii) G
is a subgraph of the underlying undirected graph of G′; and (iii) the edges of G′ can
be partitioned into d edge-disjoint cycle covers. Furthermore, for an n-vertex graph G,
the directed graph G′ and its d cycle covers can be computed in O(Δ2n) time.

Let u be a vertex placed at a grid point. We say that an edge e exiting u uses the Y -port
of u (resp. the −Y -port of u) if it exits u along the +Y direction (resp. along the −Y
direction). In a similar way, we define the X-port and the −X-port.
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Theorem 5. Every n-vertex graph with degree at most 6 admits a RAC drawing with
curve complexity 2 in O(n2) area. Such a drawing can be computed in O(n) time.

Proof. Let G = (V, E) be a graph of maximum degree 6. Let G′ = (V, E′) be the
directed multigraph obtained from G as in Theorem 4, and let C1, C2, and C3 be the
edge-disjoint cycle covers of G′. We show how to obtain a RAC drawing of G′. Then,
a RAC drawing of G can be obtained by removing from the drawing all the edges in
E′ \ E and by ignoring the direction of the edges.

The algorithm places the vertices of V on the main diagonal of an n× n grid, in an
order determined by one of the cycle covers, say C1. Most of the edges of C1 are drawn
as straight lines along the diagonal while the edges of C2 and C3 are drawn as 3-segment
lines above and below the diagonal, respectively. Finally, the remaining “closing” edges
of C1 (i.e., the edges that cannot be drawn as straight lines on the diagonal) are drawn
without creating any overlap with other edges.

We first describe how to place the vertices of the graph along the main diagonal.
Arbitrarily name the cycles c1, c2, . . . , ck of C1. Consider a cycle ci, 1 ≤ i ≤ k. If there
exists a vertex u ∈ ci and an edge (u, z) ∈ C2 or C3 such that z belongs to a cycle cj

of C1 with j > i (note that there could be several of such vertices and edges), then let u
be the topmost vertex of ci and let the vertex following u in ci be the bottommost vertex
of ci. Otherwise, if there exists a vertex v ∈ ci and an edge (v, w) ∈ C2 or C3 such
that w belongs to a cycle cj of C1 with j < i, then let v be the bottommost vertex of ci

and let the vertex preceding v in ci be the topmost vertex of ci. If no such vertices exist,
all the edges of C2 and C3 originating from vertices of ci are also directed to vertices
of ci. In this case, let an arbitrary vertex w of ci be the bottommost vertex of ci and let
the vertex preceding w in ci be the topmost vertex of ci. Then, for i = 1, . . . , k, place
the vertices of ci in the order they appear as traversing the cycle, with the bottommost
vertex placed at the bottommost free grid point.

Fig. 4(a) shows a regular directed multigraph G′ of indegree and outdegree 3 and its
cycle covers (C1: thin, C2: thick, C3: dashed). C1 consists of cycles c1 : (5, 1, 2, 3, 4, 5)
and c2 : (6, 7, 8, 9, 6). We set 4 as the topmost vertex of c1 since edge (4, 6) of C2 has
vertex 6 of c2 as its destination. Similarly, we set 6 as the bottommost vertex of c2 since
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Fig. 4. (a) A regular directed multigraph G′ with indegree and outdegree equal to 3 and its cycle
covers. (b) A RAC drawing of G′ with two bends per edge. Vertex 4 is the topmost vertex of c1

and vertex 6 is the bottommost vertex of c2.
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edge (6, 5) of C2 has vertex 5 of c1 as its destination. Fig. 4(b) shows the RAC drawing
of G′ of curve complexity 2 produced by the algorithm described in this proof.

Having placed the vertices on the grid, we turn our attention to draw the edges of G′.
No edge overlaps are allowed and each edge is drawn either as a 1-segment edge along
the diagonal, or as a 2/3-segment polyline above or below the diagonal. We draw the
edges so that all the crossing line segments are parallel to the axes and, consequently,
all the crossings are at right angles. In our drawings, every line segment s that is not
parallel to the axes is incident to a vertex vs of the graph; further, the other end-point
of s is confined to a dedicated area within a unit-side rectangle centered at vs (see
Fig. 5(a)).

We first describe how to draw the edges of cycle cover C2 above the diagonal. Con-
sider an edge (u, v) of C2 and let u and v be placed at grid points (ux, uy) and (vx, vy),
respectively. If u is placed below v (i.e., uy < vy), then edge (u, v) is drawn as a
3-segment line exiting vertex u from the Y -port and being defined by bend-points
(ux, vy − 3

8 + ε2) and (vx − 3
8 + ε1, vy − 3

8 + ε2), 0 < ε1 < ε2 < 1
4 . Note that

the second bend-point is located within the lightly-shaded region (above the diagonal)
of the south-west quadrant of the square centered at vertex v (see Fig. 5(a)). If u is
placed above v (i.e., uy > vy), then edge (u, v) is drawn as a 3-segment line exiting
vertex u from the −X-port and being defined by bend-points (vx + 1

8 + ε1, uy) and
(vx + 1

8 + ε1, vy + 1
8 + ε2), 0 < ε1 < ε2 < 1

4 . Note that, in this case, the second bend-
point is located within the lightly-shaded region (above the diagonal) of the north-east
quadrant of the square centered at v (see Fig. 5(a)). It is easy to observe that the only
line segments that belong to edges of C2 and that cross other line segments are parallel
to the axes, hence they cross at right angles. In a symmetric fashion, the edges of C3
are drawn below the diagonal. Fig. 4(b) shows the routing of cycle covers C2 and C3
for graph G′ of Fig. 4(a).

Consider now the edges of C1. All such edges, except those closing the cycles of C1,
are drawn as straight-line segments along the diagonal. As all the edges of C2 (resp. C3)
are drawn above (resp. below) the diagonal, these edges are not involved in any edge
crossing. To complete the drawing of G′, we describe how to draw the edges connecting
the topmost vertex to the bottommost vertex of each cycle of C1. Consider an arbitrary
cycle ci of C1 and let (u, v) be its closing edge. We consider 3 cases:

Case 1: u was selected to be the topmost vertex of ci due to the existence of an edge
(u, z) of C2 or C3 with vertex z being placed higher on the diagonal than u. This
implies that after drawing the edges of C2 and C3, vertex u has not used either its
−X-port or its −Y -port, or both. Assume that the −X-port is free (the case where the
−Y -port is free is treated symmetrically). Edge (u, v) is drawn above the diagonal as
a 3-segment line exiting vertex u from the −X-port and being defined by bend-points
(vx + ε1, uy) and (vx + ε1, vy + 3

8 + ε2), 0 < ε1, ε2 < 1
8 . Note that, in this case, the

second bend-point is located within the dark-shaded region (above the diagonal) of the
north-east quadrant of the square centered at vertex v (see Fig. 5(a)).

Case 2: v was selected to be the bottommost vertex of ci due to the existence of an
edge (v, w) of C2 or C3 with vertex w being placed lower on the diagonal than v. This
implies that after drawing the edges of C2 and C3, vertex v has not used either its X-
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Fig. 5. (a) The area around a vertex. Each specific subarea hosts a single bend-point of an edge
belonging to a specific cycle cover. (b) Two alternatives for the drawing of a closing edge of a
cycle that has only edges originating and destined for its own vertices.

port or its Y -port, or both. The drawing of the closing edge is done in a way similar to
the above case.

Case 3: None of the above cases applies. In this case, all the edges of C2 and C3
originating from vertices of cycle ci are also directed to vertices of ci and the topmost
vertex u and the bottommost vertex v of ci were selected arbitrarily. Then, both the
−X-port and the −Y -port of u and both the X-port and the Y -port of v are already
used. Also, the drawing of the edges of C2 and C3 connecting vertices of ci takes place
entirely within the square having points (vx, vy) and (ux, uy) as its opposite corners
(the shaded square in Fig. 5(b)). Hence, the closing edge can be easily drawn as a 2-
segment line connecting u and v just outside the boundary of the square, either above
or below the diagonal (see Fig. 5(b)).

Given the three cycle covers, it is easy to see that the placement of the vertices
along the diagonal and the routing of all the edges can be completed in linear time. By
Theorem 4, the three cycle covers can be also computed in linear time, resulting in a
linear time algorithm. Also, the produced RAC drawing requires O(n2) area. �
With similar techniques we can prove the following:

Theorem 6. Every n-vertex graph with degree at most 3 admits a RAC drawing with
curve complexity 1 in O(n2) area. Such a drawing can be computed in O(n) time.

5 RAC Drawings of Kite-Triangulations

In this section we study the impact of admitting orthogonal crossings on the drawability
of the non-planar graphs obtained by adding edges to maximal planar graphs, in a fixed
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embedding scenario. We show that such graphs always admit RAC drawings with curve
complexity 1 and that such a curve complexity is sometimes required.

Let G′ be a triangulation and let (u, z, w) and (v, z, w) be two adjacent faces of G′

sharing edge (z, w). We say that [u, v] is a pair of opposite vertices with respect to
(z, w). Let E+ = {[ui, vi]|i = 1, 2, · · · , k} be a set of pairs of opposite vertices of G′,
where [ui, vi] is a pair of opposite vertices with respect to (zi, wi) and edge (ui, vi) does
not belong to G′. Suppose that (zp, wp) and (zq, wq) do not share a face of G′, for any
1 ≤ p, q ≤ k and p �= q. Let G be the embedded non-planar graph obtained by adding
an edge (ui, vi) to G′, for each pair [ui, vi] in E+, so that edge (ui, vi) crosses edge
(zi, wi) and does not cross any other edge of G. We say that G is a kite-triangulation
and that G′ is its underlying triangulation.

Theorem 7. Every kite-triangulation admits a RAC drawing with curve complexity 1.

Proof sketch. Consider any kite-triangulation G and its underlying triangulation G′.
Remove from G′ all the edges (zi, wi), for i = 1, . . . , k, obtaining a new planar graph
G′′ whose faces contain at most four vertices. Construct any straight-line planar drawing
Γ ′′ of G′′. Construct a RAC drawing Γ of G inserting in Γ ′′, for each i = 1, . . . , k,
edges (ui, vi) and (zi, wi). Two cases are possible, either face (ui, wi, vi, zi) is strictly
convex in Γ ′′ (Fig. 6(a)) or it is not (Fig. 6(b)). ��
Theorem 8. There exist kite-triangulations that do not admit straight-line RAC draw-
ings.

Proof. Consider the graph H in Fig. 6(c). Triangle (u, a, z) and vertices v, x, y create
the forbidden structure of Property 2. Hence, every kite-triangulation G containing H
as a subgraph requires one bend in any RAC drawing. �
Planar graphs are a proper subset of straight-line RAC drawable graphs. However,
while straight-line planar drawings can always be realized on a grid of quadratic size
(see, e.g., [3,18]), straight-line RAC drawings may require larger area, as shown in the
following.

Theorem 9. There exists an n-vertex kite-triangulation that requires Ω(n3) area in
any straight-line grid RAC drawing.
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Fig. 6. (a) Drawing (ui, vi) and (zi, wi) inside (ui, wi, vi, zi), if (ui, wi, vi, zi) is strictly con-
vex. (b) Drawing (ui, vi) and (zi, wi) inside (ui, wi, vi, zi), if (ui, wi, vi, zi) is not strictly con-
vex. (c) An embedded graph that is a subgraph of infinitely many kite-triangulations with curve
complexity 1 in any RAC drawing.
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Fig. 7. (a) A kite triangulation G requiring Ω(n3) area in any straight-line grid RAC drawing. (b)
A straight-line RAC drawing of G.

Proof. Consider a triangulation G′ defined as follows (see Fig. 7(a)). Let C =
(u1, u2, . . . , un−4, un−3) be a simple cycle, for some odd integer n. Insert a vertex
un−2 inside C and connect it to ui, with i = 1, 2, . . . , n− 3. Insert two vertices un−1
and un outside C. Connect un−1 to ui, with i = 1, 2, . . . , n − 6 and to un−3; connect
un to un−6, un−5, un−4, un−3, and un−1. Let G be the kite-triangulation obtained
from G′ by adding edges (ui, ui+2), for i = 1, 3, 5, . . . , n − 6, and edge (u1, un−4),
so that (ui, ui+2) crosses edge (ui+1, un−2) of G′, and so that (u1, un−4) crosses edge
(un−3, un−2) of G′.

In the following we prove that, in any straight-line RAC drawing of G, cycle C′ =
(u1, u3, . . . , un−6, un−4, u1) is a strictly-convex polygon. This claim, together with the
observation that G admits a straight-line RAC drawing (see Fig. 7(b)), clearly implies
the lemma, since any strictly-convex polygon needs cubic area if its vertices have to be
placed on a grid (see, e.g., [1]).

Suppose, for a contradiction, that there exists a straight-line RAC drawing Γ of G
with an angle ̂uiui+2ui+4 ≥ 180◦ inside C′. Then, any two segments orthogonally
crossing uiui+2 and ui+2ui+4, respectively, meet at a point outside C′, possibly at in-
finity, while they should meet at un−2, which is inside C′. Thus, either un−2ui+1 is not
orthogonal to uiui+2 or un−2ui+3 is not orthogonal to ui+2ui+4, hence contradicting
the assumption that Γ is a RAC drawing. �

6 Conclusions and Open Problems

When a graph G does not admit any planar drawing in some desired drawing conven-
tion, requiring that all the crossings form right angles can be considered as an alternative
solution for the readability of a drawing of G. In this direction, this paper has shown
negative results for digraphs that must be drawn upward with straight-line edges, and
positive results for classes of non-planar undirected graphs that must be drawn with
curve complexity 1 or 2. We list some open research directions that are related to the
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results of this paper: (i) It is known that a digraph is upward planar iff it is a subgraph
of a planar st-digraph. Is it possible to characterize digraphs admitting straight-line up-
ward RAC drawings? (ii) There exist outerplanar digraphs that are not upward planar
and that admit upward straight-line RAC drawings [13]. Does every acyclic outerplanar
digraph admit a straight-line upward RAC drawing? (iii) What are the exact bounds
for the curve complexity of RAC drawings of bounded degree graphs?
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Drawing 3-Polytopes with Good Vertex
Resolution
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Abstract. We study the problem how to obtain a small drawing of
a 3-polytope with Euclidean distance between any two points at least
1. The problem can be reduced to a one-dimensional problem, since it
is sufficient to guarantee distinct integer x-coordinates. We develop an
algorithm that yields an embedding with the desired property such that
the polytope is contained in a 2(n − 2) × 1 × 1 box. The constructed
embedding can be scaled to a grid embedding whose x-coordinates are
contained in [0, 2(n − 2)]. Furthermore, the point set of the embedding
has a small spread, which differs from the best possible spread only by
a multiplicative constant.

1 Introduction

Let G be a 3-connected planar graph with n vertices v1, . . . , vn and edge set
E. Due to Steinitz’ seminal theorem [16] we know that G admits a realization
as 3-polytope, and every edge graph of a 3-polytope is planar and 3-connected.
The question arises how one can obtain a “nice” realization of a 3-polytope
when its graph is given. One particular property which is often desired from an
aesthetically point of view is that the vertices of the embedding should be evenly
distributed. If two vertices lie too close together they are hard to distinguish.
Such an embedding may appear as bad “illustration” for the human eye. Of
course we can always scale a 3-polytope to increase all of its pointwise distances,
but clearly this is not the right solution to create a good drawing. Therefore, we
restrict ourselves to an embedding whose vertices have, pairwise, an Euclidean
distance of at least 1. We say that in this case the embedding/drawing is under
the vertex resolution rule. See [1] for a short discussion on resolution rules. Notice,
that the resolution rule depends on a particular distance measure. Throughout
the paper we use the Euclidean distance, but our results can be easily modified
for the L1 distance.

In 2d, drawings of planar graphs can be realized on an O(n)×O(n) grid [14,5].
Since the grid is small, these grid embeddings give a good vertex resolution for
free. The situation for 3-polytopes is different. The best known algorithm uses
a grid of size O(27.55n) [12]. Thus, the induced resolution might be bad for this
grid embedding.
� Supported by the German Research Foundation (DFG) under grant SCHU 2458/1-1.
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Let us briefly discuss some approaches how to realize G as 3-polytope. Steinitz’
original proof is based on a transformation of G to the graph of the tetrahe-
dron. The transformation consists of a sequence of local modifications which
preserve the realizability of G as 3-polytope. However, the proof does not in-
clude a direct method how to construct the 3-polytope given by G. The Koebe-
Andreev-Thurston Theorem on circle packings gives a more constructive proof
of Steinitz’ Theorem (see for example Schramm [15]). This approach relies on
non-linear methods which makes many geometric features of the constructed
3-polytope intractable. A third approach uses liftings of planar graphs with
equilibrium stresses (known as the Maxwell-Cremona correspondence [18]). This
powerful method is used in a series of embedding algorithms [1,6,8,13,12]. A
completely different approach is due to Das and Goodrich [4]. It uses an incre-
mental technique which only needs O(n) arithmetic operations for embedding G
as 3-polytope, but works only for triangulated planar graphs.

Results. We show how to obtain an embedding of G as 3-polytope inside a
2(n− 2)× 1× 1 box under the vertex resolution rule. It is even possible to make
the box arbitrarily flat such that its volume gets arbitrarily small. But for aes-
thetic reasons we leave the side lengths at least 1. Our algorithm is based on the
Maxwell-Cremona approach and extends the ideas of [12]. In contrast to the con-
struction of [12] we can handle more complicated interior edge weights (stresses).
Our algorithm creates an embedding with two more interesting properties: (1)
it can be scaled to a grid embedding whose x-coordinates are in [0, 2(n − 2)],
and (2) the point set of the embedding has a good ratio between its largest and
shortest pointwise distance. We show that this number differs only by a con-
stant from the best possible ratio. Due to space constraints we omit the proofs
for Theorem 3 and 4. The proofs can be found in the full version of the paper,
which is available on the website of the author. The full version includes also an
example of the algorithm.

Related work. In [1] Chrobak, Goodrich, and Tamassia introduced an algorithm
that embeds a 3-polytope with good vertex resolution. However, their result was
only published as preliminary version, without giving all details. Moreover, their
algorithm is only applicable for polytopes that contain a triangular face. We
will reuse some of their ideas for our algorithm, but especially the complicated
setting where the polytope does not have a triangular face requires completely
new techniques.

2 Preliminaries: Maxwell and Tutte

Since G is 3-connected and planar, the facial structure of G is uniquely deter-
mined [19]. Let us pick an arbitrary face fb, which we call the boundary face.
We assume further that the vertices are ordered such that v1, v2, . . . , vk are the
vertices of fb in cyclic order. An edge (vertex) is called boundary edge (vertex)
if it lies on fb, otherwise interior edge (vertex). In this paper every embedding
is considered as straight-line embedding. A 2d embedding of G is described by
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giving every vertex vi a coordinate pi = (xi, yi)T . We denote the 2d embedding
with G(p) and consider only embeddings that realize fb as convex outer face.

The combination of the Maxwell-Cremona correspondence and barycentric
embeddings provides an elegant technique for embedding 3-polytopes. Let us
first define the common concept of both methods.

Definition 1 (Stress, Equilibrium). An assignment ω : E → R of scalars to
the edges of G (with ω(i, j) =: ωij = ωji) is called a stress. Let G(p) be a 2d
embedding of G. A point pi is in equilibrium, iff∑

j:(i,j)∈E

ωij(pi − pj) = 0. (1)

The embedding of G is in equilibrium, iff all of its points are in equilibrium.

If G(p) is in equilibrium according to ω, then ω is called equilibrium stress for
G(p). From special interest are stresses that are positive on every interior edge
of G. These stresses are called positive stresses.

Suppose we fixed an embedding G(p) in the plane. Let hi : V → R be a height
assignment for the vertices of G. The function h defines a 3d embedding of G
by giving every vertex pi the additional z-coordinate zi = h(pi). If in the 3d
embedding every face of G lies on a plane the height assignment h is called
lifting. The so-called Maxwell-Cremona correspondence describes the following.

Theorem 1 (Maxwell [11], Whiteley). Let G be a 3-connected planar graph
with 2d embedding G(p) and a designated face f̂ . There exists a correspondence
between

A.) equilibrium stresses ω on G(p),
B.) liftings of G(p) in R3, where face f̂ lies in the xy-plane.

If the stress is positive, the lifting refers to a convex 3-polytope.

The complete proof of the Maxwell-Cremona correspondence is due to White-
ley [18] (see also [3]). A more constructive proof with detailed rules how o com-
pute the lifting can be found in Richter-Gebert’s book [13].

To apply the Maxwell-Cremona correspondence we need a 2d embedding of G
with equilibrium stress. Let ω be an arbitrary stress that is zero on the boundary
edges and positive on the interior edges. We obtain from the stress ω its Laplace
matrix L = {lij}, which is defined by its entries as

lij :=

⎧⎨
⎩

−ωij if (i, j) ∈ E and i �= j,∑
j ωij if i = j,

0 otherwise.

An embedding G(p) is described by the vectors x = (x1, . . . , xn)T and y =
(y1, . . . , yn)T . Let B := {1, . . . , k} and I := {k + 1, . . . , n} be the index sets of
the boundary, respectively interior vertices. We subdivide x,y, and L by B and
I and obtain xB ,xI ,yB ,yI , LBB, LII , LBI and LIB. The equilibrium condition
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(1) for the interior vertices can be phrased as LIBxB + LIIxI = 0. The same
holds for the y-coordinates. This implies that we can express the vectors xI and
yI as linear functions in terms of xB and yB , namely by

xI = −L−1
II LIBxB, yI = −L−1

II LIByB . (2)

The matrix LII is singular and hence the vectors xI and yI are properly and
uniquely defined (see [13,7]). The embedding is known as (weighted) barycen-
tric embedding. For every positive stress the coordinates give a strictly convex
straight-line embedding (see for example [7]). A weighted barycentric embedding
has the following nice interpretation: The interior edges of the graph can be con-
sidered as springs with spring constants ωij . The barycentric embedding models
the equilibrium state of the system of springs when the boundary vertices are
anchored at their fixed positions.

3 Extending an Equilibrium Stress to the Boundary

The interior vertices computed by (2) are in equilibrium by construction. How-
ever, the stressed edges of the boundary vertices wont sum up to zero but to

∀i ∈ B
∑

j:(i,j)∈E

ωij(pi − pj) =: Fi. (3)

To apply the Maxwell-Cremona correspondence we have to define the (yet unas-
signed) stresses on the boundary edges such that they cancel the vectors Fi. If
the outer face is a triangle this is always possible by solving a linear system with
three unknowns [8]. But in general this is only possible for special locations of the
boundary face. The problem how to position fb is challenging, because changing
the location of the boundary face will also change the vectors Fi. We use the
approach of Ribó, Rote, and Schulz [12] to express this dependence and obtain
a formalism that helps us to extend the equilibrium stress to the boundary.

Lemma 1 (Substitution Lemma [12]). There are positive weights ω̃ij = ω̃ji,
for i, j ∈ B, independent of location of the boundary face such that

∀i ∈ B Fi =
∑

j∈B:j �=i

ω̃ij(pi − pj). (4)

The weights ω̃ij are the off-diagonal entries of −LBB + LBIL
−1
II LIB, which is

the Schur Complement of LII in L multiplied with −1.

With help of the substitution stresses we can simplify the problem how to locate
the boundary face. A feasible position can be found by solving the non-linear
system consisting of the 2k equations of (4) plus the 2k equations

∀i ∈ B : ωi,suc(i)(pi − psuc(i)) + ωi,pre(i)(pi − ppre(i)) = −Fi, (5)

where suc(i) denotes the successor of vi and pre(i) denotes the predecessor of
vi on fb in cyclic order. Since the equations are dependent the system is under-
constrained. We fix some boundary coordinates to obtain a unique solution.
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4 Constructing and Controlling an x-Equilibrium Stress

Let x1, . . . , xn be given as x-coordinates of G(p). We are interested in a positive
equilibrium stress that will give these x-coordinates in the barycentric embed-
ding. In particular, we are looking for a positive stress ω such that

∀i ∈ I
∑

j:(i,j)∈E

ωij(xi − xj) = 0. (6)

We call a positive stress that fulfills condition (6) a (positive) x-equilibrium
stress. Since we consider in this paper only positive x-equilibrium stresses we
omit the term “positive” in the following. As pointed out in [1], an x-monotone
stress exists when every interior edge lies on some x-monotone path, whose end-
points are boundary vertices. Let us assume that we selected the xi values such
that the latter holds. Furthermore, we pick for every edge e some x-monotone
path Pe.

We follow the approach of [1] to construct an x-monotone stress. The con-
struction is based on assigning a cost c{i,j} > 0 to every interior edge (i, j) of G.
If the costs guarantee

∀i ∈ I
∑

j:(i,j)∈E:xi<xj

c{i,j} =
∑

(i,k)∈E:xi>xk

c{i,k}, (7)

we can define an x-equilibrium stress by

ωij =
c{i,j}

|xi − xj |
. (8)

We start with c{i,j} ≡ 0 and increase the costs successively. Let e = (i, j) be
an edge with c{i,j} = 0. We increase the costs of the edges of Pe by 1. In
(7) both sides of the equation increase by 1 if vi lies on Pe, otherwise nothing
changes. Hence, (7) still holds. We repeat this procedure until every interior edge
is assigned with a positive cost. The total cost for an edge is an integer smaller
than 3n− 3.

We show now how to modify an x-monotone stress to obtain helpful properties
for the substitution stresses induced by ω. Our goal is to get a substitution
stress that is maximal on an edge we picked. More precisely, let vs and vt be
two nonincident vertices on the boundary of G and let α > 1 be a constant that
we fix later. The stress ω should guarantee that for all other pairs of boundary
vertices vi,vj we have ω̃st > αω̃ij , unless ij = st. The idea how to achieve this
is the following: We take an x-monotone path Pst from vs to vt. Then we take a
suitable (large) number K and add K to the costs of every edge which is on Pst.
The stress induced by the increased costs is still an x-equilibrium stress for our
choice of x-coordinates. But if we think of the stresses as spring constants we
have increased the force that pushes vs and vt away from each other. Our hope
is that this will reflect in the substitution stresses and makes ω̃st the dominant
stress.

First, let us bound all substitution stresses form above and then prove a lower
bound for the stress ω̃st.
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Lemma 2. Let L = {lij} be the Laplace matrix derived from a positive stress
ω, and ω̃ the corresponding substitution stress. For any i, j ∈ B we have

ω̃ij < min{lii, ljj}.

Proof. Since uT Lu =
∑

(i,j)∈E ωij(ui − uj)2, which is non-negative for any vec-
tor u, the Laplace matrix is positive semidefinite. Let L̃ = {l̃ij} = LBB −
LBIL

−1
II LIB denote the Schur complement of LII in L. Due to [20, page 175] we

know that LII − L̃ is positive semidefinite. Therefore, all principal submatrices
are positive semidefinite and we have lii ≥ l̃ii. As a consequence of the substi-
tution lemma, we know that

∑
j∈B:i�=j ω̃ij = l̃ii, and hence

∑
j∈B:i�=j ω̃ij ≤ lii.

Since each of the ω̃ij ’s is positive, each summand has to be smaller than lii. By
the same argument we can show that ω̃ij ≤ ljj and the lemma follows.

The next lemma gives us a lower bound for ω̃st and tells us how we have to select
the number K such that ω̃st becomes the dominant stress.

Lemma 3. Let ω be an x-equilibrium stress obtained from the edge costs c{i,j}
for x1, . . . , xn that is increased along an x-montone path from vs to vt, by in-
crementing the edge costs for edges on the path by K. The substitution stresses
and the matrix L are obtained from ω as usual. Then

ω̃st >
K − 3n2(1 + (k − 2)Δx)

xt − xs
,

where k denotes the number of boundary vertices and Δx the largest distance
between two x-coordinates. Let α > 0 be a parameter that will be fixed later. For
K ≥ 3n2(1 + (α + k − 2)Δx) we obtain for any ω̃ij that is not ω̃st

ω̃st > αω̃ij .

Proof. Before bounding ω̃st we show an upper bound for the other substi-
tution stresses. Let ω̃ij be such a stress. By Lemma 2, ω̃ij is less than lrr

(r ∈ {i, j} ∩ {s, t}). Since lrr is a diagonal entry of the Laplace matrix it equals∑
k:(r,k)∈E ωrk, which is a sum of at most n− 1 summands. We can assume that

the path Pst uses no boundary edge. In this case each summand in
∑

k:(r,k)∈E ωrk

is smaller than 3n− 3 and we obtain

∀ij �= st ω̃ij < max
r∈B\{s,t}

{lrr} < 3n2. (9)

Let F x
t be the x-component of Ft. We combine (9) and (4) and obtain as upper

bound for F x
t

ω̃st(xt − xs) + (k − 2)3n2Δx > F x
t .

On the other hand we can express F x
t by (3). The cost of one edge (k, t), with

xk < xt, was increased by K. All other costs are in total less than 3n2. Thus,

F x
t =

∑
k:(k,t)∈E

ωkt(xt − xk) =
∑

k:xk<xt

(k,t)∈E

c{t,k} −
∑

k:xk>xt

(k,t)∈E

c{t,k} > K − 3n2.
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Combining the two bounds for F x
t leads to the bound for ω̃st stated in the lemma.

Setting K ≥ 3n2(1 + (α + k − 2)Δx) yields

ω̃st >
3n2(α + k − 2)Δx − 3n2(k − 2)Δx

xt − xs
=

3n2αΔx

xt − xs
≥ 3n2α > αω̃ij .

As last part of this section we show that we can even enforce a set of substitu-
tion stresses to be dominant. Let vt1 , vt2 be two vertices that are both nonin-
cident to vs and which have the same x-coordinate. We can increment a given
x-equilibrium stress by first increasing the edge costs c{i,j} along an x-monotone
path from vs to vt1 by K and then do the same for an appropriate path from vs

to vt2 .

Lemma 4. Assume the same as in Lemma 3, but this time consider two paths:
from vs to vt1 and from vs to vt2 . Assume further that xt1 = xt2 . For K ≥
3n2(1 + (α + k − 2)Δx) we have for any ω̃ij with {i, j} �⊂ {s, t1, t2}

ω̃st1 > αω̃ij , and ω̃st2 > αω̃ij .

Proof. Lemma 3 relies on the fact that we can bound
∑

j �=s ω̃jt(xt−xj) because
by (9) the ω̃′s in this sum are small. We cannot use this bound for ω̃t1t2(xt1−xt2)
anymore, but this summand cancels anyway, since xt1 = xt2 . Following the steps
of the proof of Lemma 3 with first choosing t = t1 and then choosing t = t2
shows the lemma.

5 The Embedding Algorithm

5.1 The Algorithm Template

In this section we present as main result of this paper

Theorem 2. Let G be a 3-connected planar graph. G admits an embedding as
3-polytope inside a 2(n− 2)× 1× 1 box under the vertex resolution rule.

We prove Theorem 2 by introducing an algorithm that constructs the desired
embedding. The number of vertices on the boundary face plays an important
role. The smaller this number is, the simpler is it to construct an embedding.
For this reason we choose as boundary face fb the smallest face of G. Due to
Euler’s formula this face has at most 5 vertices. Depending on the size of fb we
obtain three versions of the algorithm which all follow the same basic pattern.

Our goal is to construct a planar embedding of G that has a positive stress
and whose x-coordinates are distinct integers. The corresponding lifting of such
an embedding fulfills the vertex resolution rule independently of its y and z-
coordinates. Hence, we can scale in direction of the y and z-axis without violating
the vertex resolution rule. The basic procedure is summarized in Algorithm 5.1.

Steps 1,4, and 5 are mostly independent of the size of fb and will be dis-
cussed first. We start with some strictly convex plane embedding of G – called
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Algorithm 1. Embedding algorithm as template
1: Choose the x-coordinates.
2: Construct an x-equilibrium stress ω.
3: Choose the boundary y-coordinates.
4: Embed G as barycentric embedding with stress ω in the plane.
5: Lift the plane embedding.

pre-embedding. Let x̂1, . . . , x̂n and ŷ1, . . . , ŷn be the coordinates of the pre-
embedding which we compute as barycentric embedding. We assume that in the
pre-embedding all x-coordinates are different. If this is not the case we can per-
turb the stresses of the (pre)-embedding to achieve this. Since the pre-embedding
is strictly convex [17] every edge lies on some x-monotone path. As done in Sec-
tion 4 we fix for every interior edge e such a path Pe. The x-coordinates of the
pre-embedding induce a strict linear order on the vertices of G. We denote with
bi the number of vertices with smaller x-coordinate compared to vi in the pre-
embedding. The x-coordinates of the (final) embedding are defined as xi := bi.
Thus, no two vertices get the same x-coordinate and the largest x-coordinate is
less than n. We observe that the paths Pe remain x-monotone. Therefore, they
can be used to define an appropriate x-equilibrium stress ω. For technical rea-
sons we might choose the same x-coordinate for some of the boundary vertices.
In this case we check the vertex resolution rule for these vertices in the final
embedding by hand. Step 4 and 5 can be realized as straight-forward implemen-
tations of the barycentric embedding and Maxwell’s lifting. Notice that the value
of the (extended) stress on the boundary edges is not needed to compute the
lifting, because we can place an interior face in the xy-plane and then compute
the lifting using only interior edges.

Steps 2 and 3 are the difficult parts of the algorithm. We have to choose
the stress ω and the y-coordinates such that an extension of the stress to the
boundary is possible. Moreover, the y-coordinates should give a convex boundary
face. We continue with the three different cases and discuss step 2 and 3 of the
algorithm template for each of them separately.

5.2 Graphs with Triangular Face

The case where fb is a triangle is the easiest case because we can extend ev-
ery stress to the boundary for every location of the outer face (see Section 3).
This case was already addressed by Chrobak, Goodrich and Tamassia [1]. The
discussion in this section will prove the following statement:

Proposition 1. Let G be a 3-connected planar graph and let G contain a tri-
angular face. G admits an embedding as 3-polytope inside an (n− 1)× 1× 1 box
under the vertex resolution rule.

Let us compute the pre-embedding with the boundary coordinates x1 = 0, x2 =
1, and x3 = 0. We use the x-monotone paths Pe to compute a suitable x-
equilibrium stress ω as discussed in Section 4. Next we compute the barycentric
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embedding with boundary coordinates p1 = (0, 0)T ,p2 = (n− 1, 0)T , and p3 =
(0, 1)T . As result we obtain interior y-coordinates in the interval (0, 1). Any two
vertices have distance at least 1, since their x-coordinates differ by at least 1.
(This is not true for v1 and v3, but their distance is y3 − y1 = 1.)

5.3 Graphs with Quadrilateral Face

Let us assume now that G contains a quadrilateral but no triangular face. In this
case it is not always possible to extend an equilibrium stress ω to the boundary.
The observations of Section 3 help us to overcome this difficulty. We use as
boundary coordinates for the pre-embedding x̂1 = 0, x̂2 = 1, x̂3 = 1, and x̂4 = 0.
The x-coordinates induced by the pre-embedding give x2 = x3 = n − 2. We
redefine the boundary x-coordinates by setting x2 = n − 2 and x3 = 2(n − 2).
Notice that this preserves the x-monotonicity of the paths Pe, but makes it easier
to extend the stress to the boundary as we will see in the following.

Let ω be the x-monotone stress for the obtained x-coordinates. We can ex-
press the influence of the stressed edges of G on the boundary with help of the
substitution stresses ω̃. We modify ω with the technique described in Lemma 3
to assure that ω̃13 > ω̃24. Let us now discuss how to extend the stress ω to the
boundary. To solve the non-linear system given by (4) and (5) we fix some of
the boundary y-coordinates to obtain a unique solution. In particular, we set
y1 = 0, y2 = 0, and y4 = 1. As final coordinate we obtain1

y3 =
ω̃24

2ω̃13 − ω̃24
.

Since ω̃13 > ω̃24, we can deduce that 0 < y3 < 1. Hence, all y-coordinates are
contained in [0, 1]. Furthermore, we know that the only two vertices with the
same x-coordinate, namely v1 and v4, have the distance y4 − y1 = 1. Therefore
the vertex resolution rule holds. If we scale the induced lifting such that the
largest z-coordinate equals 1 we obtain:

Proposition 2. Let G be a 3-connected planar graph and let G contain a quadri-
lateral face. G admits an embedding as 3-polytope inside a 2(n− 2)× 1× 1 box
under the vertex resolution rule.

5.4 The General Case

The most complicated case is the case where we have to use a pentagon as
boundary face. However, the basic pattern how to construct the embedding re-
mains the same. We choose as x-coordinates for the pre-embedding x̂1 = 0, x̂2 =
1, x̂3 = 1, x̂4 = 0, and x̂5 = −ε, for ε > 0 small enough to guarantee that all
interior vertices get a positive x-coordinate in the pre-embedding. We change
the induced x-coordinates on the boundary without changing the monotonicity
of the paths Pe. In particular, we set x1 = 0, x2 = n− 2, x3 = n− 2, x4 = 0, and
1 The solution of the non-linear system was obtained by computer algebra software.
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x5 = −(n − 2). The stress ω is constructed such that the substitution stresses
guarantee

ω̃25 > 3ω̃13, ω̃25 > 3ω̃14, ω̃25 > 3ω̃24, ω̃35 > 3ω̃13, ω̃35 > 3ω̃14, ω̃35 > 3ω̃24. (10)

In other words the substitution stresses ω̃25 and ω̃35 dominate all other substi-
tution stresses on interior edges by a factor 3. Since x3 = x2, we can construct
a stress ω that induces a substitution stress that fulfills (10) by the observations
of Lemma 4.

Appropriate boundary y-coordinates can be obtained by solving the non-
linear system given by (4) and (5). As done in the previous case we fix some
y-coordinates to obtain a unique solution. This time we set y1 = −1, y4 = 1, and
y5 = 0. This yields for the two remaining y-coordinates

y2 = −2− 2
ω̃24ω̃13 − ω̃2

13 − ω̃35ω̃14 − 2ω̃13ω̃35

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
,

y3 = 2 + 2
ω̃24ω̃13 − ω̃2

24 − ω̃14ω̃25 − 2ω̃24ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

We have to check two things: fb has to be convex and y3 − y2 should be large
enough to guarantee the vertex resolution rule. First we show that −2 < y2 and
y3 < 2, which would imply that fb is convex if y3 > y2. The inequalities −2 < y2
and y3 < 2 hold, iff

ω̃24ω̃13 − ω̃2
13 − ω̃35ω̃14 − 2ω̃35ω̃13 < 0 and

ω̃24ω̃13 − ω̃2
24 − ω̃14ω̃25 − 2ω̃25ω̃24 < 0.

Both inequalities are true, because as a consequence of (10) the only positive
summand ω̃24ω̃13 is smaller than ω̃35ω̃13 and smaller than ω̃25ω̃24. The difference
y3 − y2 equals

4 + 2
2ω̃24ω̃13 − ω̃2

13 − ω̃2
24 − ω̃35(ω̃14 + 2ω̃13)− ω̃25(ω̃14 + 2ω̃24)

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

Due to (10) we know that ω̃14 + 2ω̃24 < ω̃35 and ω̃14 + 2ω̃13 < ω̃25. Thus

y3 − y2 > 4 + 2
2ω̃24ω̃13 − ω̃2

13 − ω̃2
24 − 2ω̃35ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
> 2.

The estimation holds since (again due to (10)) ω̃24ω̃35 > ω̃2
24 and ω̃25ω̃13 > ω̃2

13,
and hence the fraction is greater −1.

We multiply all y-coordinates by 1/2. This yields y4− y1 = 1 and y3− y2 > 1.
The z-coordinates are scaled such that they lie between 0 and 1. Clearly, the
vertex resolution rule holds for the computed embedding.

We finish this section with some remarks on the running time of the embed-
ding algorithm. As mentioned in [1] the x-monotone stress can be computed in
linear time. The barycentric embedding (which we use twice, once for the pre-
embedding and once for the intermediate plane embedding) can be computed
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by the linear system (2). Since the linear system is based on a planar structure,
we can solve it with nested dissections (see [9,10]) based on the planar separa-
tor theorem. As a consequence a solution can be computed in O(M(

√
n)) time,

where M(n) is the upper bound for multiplying two n × n matrices. The cur-
rent record for M(n) is O(n2.325), which is due Coppersmith and Winograd [2].
The computation of the lifting can be done in linear time. In total we achieve a
running time of O(n1.1625).

6 Additional Properties of the Embedding

6.1 Induced Grid Embedding

Besides the small embedding under the vertex resolution rule, the constructed
embedding has several other nice properties which we discuss in this section.
Since the computed y and z-coordinates are expressed by a linear system of
rational numbers, they are rational numbers as well. Thus, we can scale the final
embedding to obtain a grid embedding.

Theorem 3. The embedding computed with Algorithm 5.1 can be scaled to in-
teger coordinates such that

0 ≤ xi ≤ 2(n− 2),
0 ≤ yi, zi ≤ 2O(n2 log n).

The proof of the theorem can be found in the full version of the paper. Compared
to the grid embedding presented in [12], we were able to reduce the size of the
x-coordinates (from 2n · 8.107n to 2(n − 2)) at the expense of the y and z-
coordinates.

6.2 Spread of the Embedding

The spread of a point set is the quotient of the longest pairwise distance (the
diameter) and the shortest pairwise distance. The smaller this ratio is, the more
densely the point set is packed. A small spread implies that the points are “evenly
distributed”. We define as spread of an embedding of a polytope the spread of its
points.

Theorem 4. The spread of a 3-polytope embedded by Algorithm 5.1 is smaller
than n. There are infinitely many polytopes without an embedding with spread
smaller than (n− 1)/π.

The proof of the theorem can be found in the full version of the paper.
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Abstract. In this paper, we give polynomial-time algorithms that can
take a graph G with a given combinatorial embedding on an orientable
surface S of genus g and produce a planar drawing of G in R2, with a
bounding face defined by a polygonal schema P for S . Our drawings are
planar, but they allow for multiple copies of vertices and edges on P ’s
boundary, which is a common way of visualizing higher-genus graphs in
the plane. As a side note, we show that it is NP-complete to determine
whether a given graph embedded in a genus-g surface has a set of 2g fun-
damental cycles with vertex-disjoint interiors, which would be desirable
from a graph-drawing perspective.

1 Introduction

The classic way of drawing a graph G = (V, E) in R2 involves associating
each vertex v in V with a unique point (xv, yv) and associating with each edge
(v, w) ∈ E an open Jordan curve that has (xv, yv) and (xw, yw) as its endpoints.
If the curves associated with the edges in a classic drawing of G intersect only at
their endpoints, then (the embedding of) G is a plane graph. Graphs that admit
plane graph representations are planar graphs, and there has been a voluminous
amount of work on algorithms on classic drawings of planar graphs. Most notably,
planar graphs can be drawn with vertices assigned to integer coordinates in an
O(n) × O(n) grid, which is often a desired type of classic drawing known as a
grid drawing. Moreover, there are planar graph drawings that use only straight
line segments for edges [2].

The beauty of plane graph drawings is that, by avoiding edge crossings, con-
fusion and clutter in the drawing is minimized. Likewise, straight-line drawings
further improve graph visualization by allowing the eye to easily follow con-
nections between adjacent vertices. In addition, grid drawings enforce a natural
separation between vertices, which further improves readability. Thus, a “gold
standard” in classic drawings is to produce planar straight-line grid drawings
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and, when that is not easily done, to produce planar grid drawings with edges
drawn as simple polygonal chains.

Unfortunately, not all graphs are planar. So drawing them in the classic way
requires some compromise in the gold standard for plane drawings. In particular,
any classic drawing of a non-planar graph must necessarily have edge crossings,
and minimizing the number of crossings is NP-hard [6]. One point of hope for im-
proved drawings of non-planar graphs is to draw them crossing-free on surfaces
of higher genus, such as toruses, double toruses, or, in general, a surface topo-
logically equivalent to a sphere with g handles, that is, a genus-g surface. Such
drawings are called cellular embeddings or 2-cell embeddings, since they parti-
tion the genus-g surface into a collection of cells that are topologically equivalent
to disks. As in classic drawings of planar graphs, these cells are called faces, and
it is easy to see that such a drawing would avoid edge crossings.

In a fashion analogous to the case with planar graphs, cellular embeddings of
graphs in a genus-g surface can be characterized combinatorially. In particular,
it is enough if we just have a rotational order of the edges incident on each
vertex in a graph G to determine a combinatorial embedding of G on a surface
(which has that ordering of associated curves listed counterclockwise around
each vertex). Such a set of orderings is called a rotation system and, since it
gives us a combinatorial description of the set of faces, F , in the embedding,
it gives us a way to determine the genus of the (orientable) surface that G is
embedded into by using the Euler characteristic, |V |− |E|+ |F | = 2− 2g, which
also implies that |E| is O(|V |+ g) [10].

Unfortunately, given a graph G, it is NP-hard to find the smallest g such
that G has a combinatorial cellular embedding on a genus-g surface [11]. This
challenge need not be a deal-breaker in practice, however, for there are heuris-
tic algorithms for producing such combinatorial embeddings (that is, consistent
rotation systems) [1]. Moreover, higher-genus graphs often come together with
combinatorial embeddings in practice, as in many computer graphics and mesh
generation applications.

In this paper, we assume that we are given a combinatorial embedding of
a graph G on an orientable genus-g surface, S, and are asked to produce a
geometric drawing of G that respects the given rotation system. Motivated by
the gold standard for planar graph drawing and by the fact that computer screens
and physical printouts are still primarily two-dimensional display surfaces, the
approach we take is to draw G in the plane rather than on some embedding of
S in R3.

Making this choice of drawing paradigm, of course, requires that we “cut up”
the genus-g surface, S, and “unfold” it so that the resulting sheet is topologically
equivalent to a disk. The traditional method for performing such a cutting is with
a canonical polygonal schema, P , which is a set of 2g cycles on S all containing a
common point, p, such that cutting S along these cycles results in a topological
disk. These cycles are fundamental in that each of them is a continuous closed
curve on S that cannot be retracted continuously to a point. Moreover, these
fundamental cycles can be paired up into complementary sets of cycles, (ai, bi),
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one for each handle, so that if we orient the sides of P , then a counterclockwise
ordering of the sides of P can be listed as a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g ,

where a−1
i (b−1

i ) is a reversely-oriented copy of ai, so that these two sides of P
are matched in orientation on S. Thus, the canonical polygonal schema for a
genus-g surface S has 4g sides that are pairwise identified.

Because we are interested in drawing the graph G and not just the topology
of S, it would be preferable if the fundamental cycles are also cycles in G in
the graph-theoretical sense. It would be ideal if these cycles form a canonical
polygonal schema with no repeated vertices other than the common one. This is
not always possible [8] and furthermore, as we show in [3], the problem of finding
a set of 2g fundamental cycles with vertex-disjoint interiors in a combinatorially
embedded genus-g graph is NP-complete. There are two natural choices, both of
which we explore in this paper:

– Draw G in a polygon P corresponding to a canonical polygonal schema, P ,
possibly with repeated vertices and edges on its boundary.

– Draw G in a polygon P corresponding to a polygonal schema, P , that is not
canonical.

In either case, the edges and vertices on the boundary of P are repeated (since we
“cut” S along these edges and vertices). Thus, we need labels in our drawing of
G to identify the correspondences. Such planar drawings of G inside a polygonal
schema P are called polygonal-schema drawings of G. There are three natural
aesthetic criteria such drawings should satisfy:

1. Straight-line edges: All the edges in a polygonal-schema drawing should be
rendered as polygonal chains, or straight-line edges, when possible.

2. Straight frame: Each edge of the polygonal schema should be rendered as
a straight line segment, with the vertices and edges of the corresponding
fundamental cycle, placed along this segment. We refer to such a polygonal-
schema drawing as having a straight frame.

3. Polynomial area: Drawings should have polynomial area when they are nor-
malized to an integer grid.

It is also possible to avoid repeated vertices and instead use a classic graph
drawing paradigm, by transforming the fundamental polygon rendering using
polygonal-chain edges that run through “overpasses” and “underpasses” as in
road networks, so as to illustrate the topological structure of G; see Fig. 1.

Our Contributions. We provide several methods for producing planar polygo-
nal-schema drawings of higher-genus graphs. In particular, we provide four algo-
rithms, one for torodial (g = 1) graphs and three for non-toroidal (g > 1) graphs.
Our algorithm for toroidal graphs simultaneously achieves the three aesthetic cri-
teria for polygonal schema drawings: it uses straight-line edges, a straight frame,
and polynomial area. The three algorithms for non-toroidal graphs, Peel-and-
Bend, Peel-and-Stretch, and Peel-and-Place, achieve two of the three aesthetic
criteria and differ in which criteria they fail to meet.



48 C.A. Duncan, M.T. Goodrich, and S.G. Kobourov

A1

A2

A1
−1

A2
−1

A

A

A

A

A

A

A

A A A

A

A A A

A

A

1

1

2

2

3

3

4

4

−1

−1

−1

−1

5

5

6

6

7

7

8

8

−1

−1

−1

−1A

A

A

A

A

A

A

A

1

2

2

3

3

4

4

−1

−1

−1

−1

1

Fig. 1. First row: Canonical polygonal schemas for graphs of genus one, two and
four. Second row: Unrolling the high genus graphs with the aid of the overpasses and
underpasses.

2 Finding Polygonal Schemas

Suppose we are given a graph G together with its cellular embedding in an
(orientable) genus-g surface, S. An important first step in all of our algorithms
involves our finding a polygonal schema, P , for G, that is, a set of cycles in G such
that cutting S along these cycles results in a topological disk. We refer to this as
the Peel step, since it involves cutting the surface S until it becomes topologically
equivalent to a disk. Since these cycles form the sides of the fundamental polygon
we will be using as the outer face in our drawing of G, it is desirable that these
cycles be as “nice” as possible with respect to drawing aesthetics.

2.1 Trade-Offs for Finding Polygonal Schemas

Unfortunately, some desirable properties are not effectively achievable. As
Lazarus et al. [8] show, it is not always possible to have a canonical polygonal
schema P such that each fundamental cycle in P has a distinct set of vertices in
its interior (recall that the interior of a fundamental cycle is the set of vertices
distinct from the common vertex shared with its complementary fundamental
cycle—with this vertex forming a corner of a polygonal schema). In addition,
we show in [3] that finding a vertex-disjoint set of fundamental cycles is NP-
complete. So, from a practical point of view, we have two choices with respect
to methods for finding polygonal schemas.

Finding a Canonical Polygonal Schema. As mentioned above, a canonical
polygon schema of a graph G 2-cell embedded in a surface of genus g consists
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of 4g sides, which correspond to 2g fundamental cycles all containing a common
vertex. Lazarus et al. [8] show that one can find such a schema for G in O(gn)
time and with total size O(gn), and they show that this bound is within a
constant factor of optimal in the worst case, where n is the total combinatorial
complexity of G (vertices, edges, and faces), which is O(|V |+ g).

Minimizing the Number of Boundary Vertices in a Polygonal Schema.
Another optimization would be to minimize the number of vertices in the bound-
ary of a polygonal schema. Erikson and Har-Peled [5] show that this problem is
NP-hard, but they provide an O(log2 g)-approximation algorithm that runs in
O(g2n logn) time, and they give an exact algorithm that runs in O(nO(g)) time.

In our Peel step, we assume that we use one of these two optimization cri-
teria to find a polygonal schema, which either optimizes its number of sides
to be 4g, as in the canonical case, or optimizes the number of vertices on its
boundary, which will be O(gn) in the worst case either way. Nevertheless, for
the sake of concreteness, we often describe our algorithms assuming we are given
a canonical polygonal schema. It is straight-forward to adapt these algorithms
for non-canonical schemas.

2.2 Constructing Chord-Free Polygonal Schemas

In all of our algorithms the first step, Peel, constructs a polygonal schema of
the input graph G. In fact, we need a polygonal schema, P , in which there is
no chord connecting two vertices on the same side of P . Here we show how to
transform any polygonal schema into a chord-free polygonal schema.

In the Peel step, we cut the graph G along a canonical set of 2g fundamental
cycles getting two copies of the cycle in G∗, the resulting planar graph. For each
of the two pairs of every fundamental cycle there may be chords. If the chord
connects two vertices that are in different copies of the cycle in G∗ then this is
a chord that can be drawn with a straight-line edge and hence does not create
a problem. However, if the chord connects two vertices in the same copy of the
cycle in G∗, then we will not be able to place all the vertices of that cycle on
a straight-line segment; see Figure 2(a). We show next that a new chord-free
polygonal schema can be efficiently determined from the original schema.

Theorem 1. Given a graph G combinatorially embedded in a genus-g surface
and a canonical polygonal schema P on G with a common vertex p, a chord-free
polygonal schema P∗ can be found in O(gn) time.

Proof. We first use the polygonal schema to cut the embedding of G into a
topological disk; see Fig. 2(a). Notice this cutting will cause certain vertices to
be split into multiple vertices. For each fundamental cycle in ci ∈ P , we stitch
the disk graph back together along this cycle forming a topological cylinder. The
outer edges (left and right) of the cylinder along this stitch will have two copies
of the vertex p, say p1 and p2. We perform a shortest path search from p1 to
p2. This path becomes our new fundamental cycle c∗i , (since p1 and p2 are the
same vertex in G). Observe that this cycle must be chord-free or else the path
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(a) (b)

Fig. 2. (a) A graph embedded on the torus that has been cut into a topological disk
using the cycles 1, 2, 3 and 1, 4, 7, 8, 11, 13, 15 with chord (4, 8). The grey nodes corre-
spond to the identical vertices above. The highlighted path represents a shortest path
between the two copies of vertex 1. (b) The topological disk after cutting along this
new fundamental cycle. The grey nodes show the old fundamental cycle.

chosen was not the shortest path; see Fig. 2(b). We then cut the cylinder along
c∗i and proceed to ci+1. The resulting set, P∗ = {c∗1, c∗2, . . . , c∗2g}, is therefore a
collection of chord-free fundamental cycles all sharing the common vertex p. ��

It should be noted that, although each cycle c∗i is at the time of its creation a
shortest path from the two copies of p, these cycles are not the shortest funda-
mental cycles possible. For example, a change in the cycle of ci+1 could introduce
a shorter possible path for c∗i , but not additional chords.

3 Straight Frame and Polynomial Area

In this section, we describe our algorithms that construct a drawing of G in a
straight frame using polynomial area. Here we are given an embedded genus-g
graph G = (V, E) along with a chord-free polygonal schema, P , for G from the
Peel step. We rely on a modified version of the algorithm of de Fraysseix, Pach
and Pollack [2] for the drawing. Sections 3.1 and 3.2 describe the details for g = 1
and for g > 1, respectively. In the latter case we introduce up to O(k) edges with
single bends where k is the number of vertices on the fundamental cycles. Thus,
we refer to the algorithm for non-toroidal graphs as the Peel-and-Bend algorithm.

3.1 Grid Embedding of Toroidal Graphs

For toroidal graphs we are able to achieve all three aesthetic criteria: straight-line
edges, straight frame, and polynomial area.

Theorem 2. Let G∗ be an embedded planar graph and P = {P1, P2, . . . , P4g}
in G∗ be a collection of 4g paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki} is
chord-free, the last vertex of each path matches the first vertex of the next path,
and when treated as a single cycle, P forms the external face of G∗. If g = 1,
we can in linear time draw G∗ on an O(n)×O(n2) grid with straight-line edges
and no crossings in such a way that, for each path Pi on the external face, the
vertices on that path form a straight line.
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Proof. For simplicity, we assume that every face is a triangle, except for the
outer face (extra edges can be added and later removed). The algorithm of
de Fraysseix, Pach and Pollack (dPP) [2] does not directly solve our problem
because of the additional requirement for the drawing of the external face. In
the case of g = 1, the additional requirement is that the graph must be drawn so
that the external face forms a rectangle, with P1 and P3 as the top and bottom
horizontal boundaries and P2 and P4 as the right and left boundaries.

Recall that the dPP algorithm computes a canonical labeling of the vertices of
the input graph and inserts them one at a time in that order while ensuring that
when a new vertex is introduced it can “see” all of its already inserted neighbors.
One technical difficulty lies in the proper placement of the top row of vertices.
Due to the nature of the canonical order, we cannot force the top row of vertices
to all be the last set of vertices inserted, unlike the bottom row which can be
the first set inserted. Consequently, we propose an approach similar to that of
Miura, Nakano, and Nishizeki [9]. First, we split the graph into two parts (not
necessarily of equal size), perform a modified embedding on both pieces, invert
one of the two pieces, and stitch the two pieces together.

Lemma 1. Given an embedded plane graph G that is fully triangulated except
for the external face and two edges el and er on that external face, it is possible
in linear time to partition V (G) into two subsets V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both con-
nected subgraphs;

2. for edges el = (ul, vl) and er = (ur, vr), we have ul, ur ∈ V1 and vl, vr ∈ V2;
3. the union U of the set of faces in G that are not in G1 or G2 forms an

outerplane graph with the property that the external face of U is a cycle with
no repeated vertices.

Proof. First, we compute the dual D of G, where each face in (the primal graph)
G is a node in D and there is an arc between two nodes in D if their corresponding
primal faces share an edge in common. We ignore the external face in this step.
For clarity we shall refer to vertices and edges in the primal and nodes and arcs
in the dual; see Fig. 3(a). We further augment the dual by adding an arc between
two nodes in D if they also share a vertex in common. Call this augmented dual
graph D∗.

Let the source node s be the node corresponding to the edge el and the sink
node t be the node corresponding to the edge er. We then perform a breadth-first
shortest-path traversal from s to t on D∗; see Fig. 3(b). Let p∗ be a shortest
(augmented) path in D∗ obtained by this search. We now create a (regular) path
p by expanding the augmented arcs added. That is, if there is an arc (u, v) ∈ p∗

such that u and v share a common vertex in G but not a common edge in G,
i.e. they are part of a fan around the common vertex, we add back the regular
arcs from u to v adjacent to this common vertex. The choice of going clockwise
or counter-clockwise around the common vertex depends on the previous visited
arc; see Fig. 3(c).

All of the steps described above can be easily implemented in linear time. The
details of the proof can be found in [3]. ��
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(a) (b)

(c) (d)

Fig. 3. (a) A graph G and its dual D. The dark edges/nodes represent the sink and
source nodes. (b) Each dual node is labeled with its distance (in D∗) from the start
node 0. A shortest path p∗ is drawn with thick dark arcs. This path includes the
augmented arcs of D∗. (c) The path p formed after expanding the augmented arcs.
The edges from the primal that are cut by this path are shown faded. (d) The two
sets V1 (light vertices) and V2 (darker vertices) formed by the removal of path p. The
external face of U is defined by the thick edges along with the edges (1, 2) and (3, 4).

Figure 3(d) illustrates the result of one such partition. In some cases we might
have to start and end with a set of edges rather than just the two edges el and
er. The following extension of Lemma 1 addresses this issue; the details of the
proof can be found in [3].

Lemma 2. Given an embedded plane graph G that is fully triangulated, except
for the external face, and given two vertex-disjoint chord-free paths L and R on
that external face, it is possible in linear time to partition V (G) into two subsets
V1 and V2 such that

1. the subgraphs of G induced by V1 and V2, called G1 and G2, are both con-
nected subgraphs;

2. there exists exactly one vertex v ∈ V (L) (say v ∈ V1) with neighbors in
V (L) \V2 (the opposite vertex set that are not part of V (L)), the same holds
for V (R); and
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3. the union U of the set of faces in G that are not in G1 or G2 forms an
outerplane graph with the property that the external face of U is a cycle with
no repeated vertices.

We can now discuss the steps for the grid drawing of the genus-1 graph G∗

with an external face formed by P . Using Lemma 2, with L = P4 and R = P2,
divide G∗ into two subgraphs G1 and G2. We proceed to embed G1 with G2 being
symmetric. Assume without loss of generality that G1 contains the bottom path,
P3. Compute a canonical order of G1 so that the vertices of P3 are the last vertices
removed. Place all of the vertices of P3 on a horizontal line, p3,k3 , p3,k3−1, . . . , p3,1
placed consecutively on y = 0. This is possible since there are no edges between
them (because the path is chord-free). Recall that the standard dPP algorithm [2]
maintains the invariant that at the start of each iteration, the current external
face consists of the original horizontal line and a set of line segments of slope
±1 between consecutive vertices. The algorithm also maintains a “shifting set”
for each vertex. We modify this condition by requiring that the vertices on the
right and left boundary that are part of P2 and P4 be aligned vertically and
that the current external face might have horizontal slopes corresponding to
vertices from P3; see Fig. 4(a). Upon insertion of a new vertex v, the vertex will
have consecutive neighboring vertices on the external face. We label the left and
rightmost neighbors x� and xr . To achieve our modified invariant, we insert a
vertex v into the current drawing depending on its type, 0, 1, or 2, as follows:

Type 0. Vertices not belonging to a path in P are inserted as with the tradi-
tional dPP algorithm. This insertion might require up to two horizontal shifts
determined by the shifting sets; see Fig. 4(a).

Type 1. Vertices belonging to P2, which must be placed vertically along the
right boundary, are inserted with a line segment of slope +1 between x� and v
and a vertical line segment between v and xr. Notice that xr must also be in P2.
And because P2 is chord-free xr is the topmost vertex on the right side of the
current external face. That is, v can see xr. By Lemma 2 and the fact that the
graph was fully triangulated, we also know that v must have a vertex x�. This
insertion requires only 1 shift, for the visibility of x� and v. Again the remaining
vertices x�+1, . . . , xr−1 are connected as usual; see Fig. 4(b).

Type 2. Vertices belonging to P4, which must be placed vertically along the left
boundary, are handled similarly to Type 1.

Because of Lemma 2, after processing both G1 and G2, we can proceed to stitch
the two portions together. Shift the left wall of the narrower graph sufficiently to
match the width of the other graph. For simplicity, refer to the vertices on the ex-
ternal face of each subgraph that are not exclusively part of the wall or bottom
row as upper external vertices. For each subgraph, consider the point p located
at the intersection of the lines of slope ±1 extending from the left and rightmost
external vertices. Flip G2 vertically placing it so that its point p lies either on or
just above (in case of non-integer intersection) G1’s point. Because the edges be-
tween the upper external vertices have slope |m| ≤ 1 and because of the vertical
separation of the two subgraphs, every upper external vertex on G1 can directly
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(a) (b)

Fig. 4. (a) The embedding process after insertion of the first 11 vertices and the subse-
quent insertion of a Type 0 vertex with v = 12, x� = 2, and xr = 11. Note the invariant
condition allowing the two partial vertical walls {8, 7, 5} ⊂ P2 and {1, 9, 10} ⊂ P4. The
light vertices to the right of 12 including xr have been shifted over one unit. (b) The
result of inserting a Type 1 vertex with v = 13, x� = 2, and xr = 8. Note, the light
vertices to the left of and including x� = 2 are shifted over one unit.

see every upper external vertex on G2. By Lemma 2, we know that the set of edges
removed in the separation along with the edges connecting the upper external ver-
tices forms an outerplanar graph. Therefore, we can reconnect the removed edges,
joining the two subgraphs, without introducing any crossings.

We claim that the area of this grid is O(n) × O(n2). First, let us analyze
the width. From our discussion, we have accounted for each insertion step using
shifts. Since the maximum amount of shifting of 2 units is done with Type
0 vertices, we know that each of the two subgraphs has width at most 2n.
In addition, the stitching stage only required a shifting of the smaller width
subgraph. Therefore, the width of our drawing is at most 2n. The stitching
stage for example only adds at most W ≤ 2n units to the final height. After the
insertion of each wall vertex we know that the height increases by at most W .
Therefore, we know that the height is at most Wn or 2n2 and consequently we
have a correct drawing using a grid of size O(n) × O(n2). Ideally, the height of
our drawing would also match the width bound. ��

3.2 The Peel-and-Bend Algorithm

The case for g > 1 is similar but involves a few alterations. First, we use n = |V |
unlike prior sections which used n = |V | + g. However, the main difference is
that having chord-free fundamental cycles is insufficient to allow rendering the
outer face as a rectangle unless edge bends are allowed. The following theorem
describes our resulting drawing method, called the Peel-and-Bend algorithm.

Theorem 3. Let G∗ be an embedded planar graph and P = {P1, P2, . . . , P4g}
in G∗ be a collection of 4g paths such that each path Pi = {pi,1, pi,2, . . . , pi,ki}
is chord-free, the last vertex of each path matches the first vertex of the next
path, and when treated as a single cycle, P forms the external face of G∗. Let
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k =
∑4g

i=1(ki − 1) be the number of vertices on the external cycle. We can draw
G∗ on an O(n) × O(n2) grid with straight-line edges and no crossings and at
most k− 3 single-bend edges in such a way that for each path Pi on the external
face the vertices on that path form a straight line.

Proof. First, let us assume that the entire external face, represented by P , is
completely chord-free. That is, if two vertices on the external cycle share an
edge then they are adjacent on the cycle. In this case we can create a new set of
4 paths, P ′ = {P1,∪i=2,...,2gPi, P2g+1,∪i=2g+2,4gPi}. We can then use Theorem 2
to prove our claim using no bends.

If, however, there exist chords on the external face, embedding the graph
with straight-lines becomes problematic, and in fact impossible to do using a
rectangular outer face. By introducing a temporary bend vertex for each chord
and retriangulating the two neighboring faces, we can make the external face
chord-free. Clearly this addition can be done in linear time. Since there are at
most k vertices on the external face and since the graph is planar, there are
no more than k − 3 such bend points to add. We then proceed as before using
Theorem 2, subsequently replacing inserted vertices with a bend point. ��

4 Algorithms for Non-toroidal Graphs

In this section, we describe two more algorithms for producing a planar polygonal-
schema drawing of a non-toroidal graph G, which is given together with its
combinatorial embedding in an (orientable) genus-g surface, S, where g > 1. As
mentioned above, these algorithms provide alternative trade-offs with respect
to the three primary aesthetic criteria we desire for polygonal-schema drawings.
For the sake of space, we describe these algorithms at a very high level and leave
their details and full analysis to the full version of this paper [3].

The Peel-and-Stretch Algorithm. In the Peel-and-Stretch Algorithm, we
find a chord-free polygonal schema P for G and cut G along these edges to
form a planar graph G∗. We then layout the sides of P in a straight-frame
manner as a regular convex polygon, with the vertices along each boundary
edge spaced as evenly as possible. We then fix this as the outer face of G∗ and
apply Tutte’s algorithm [12,13] to construct a straight-line drawing of the rest
of G∗. This algorithm therefore achieves a drawing with straight-line edges in a
(regular) straight frame, but it may require exponential area when normalized
to an integer grid, since Tutte’s drawing algorithm may generate vertices with
coordinates that require Θ(n log n) bits to represent.

The Peel-and-Place Algorithm. For this method, we start by finding a
polygonal schema P for G and cut G along these edges to form a planar graph
G∗, as in all our algorithms. We then create a new triangular face, T , place G∗

in the interior of T , and fully triangulate this graph. We then apply the dPP
algorithm [2] to construct a drawing of this graph in an O(n)×O(n) integer grid
with straight-line edges. Finally, we remove all extra edges to produce a polyg-
onal schema drawing of G. The result will be a polygonal-schema drawing with
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straight-line edges having polynomial area, but there is no guarantee that it is a
straight-frame drawing, since the dPP algorithm makes no collinear guarantees
for vertices adjacent to the vertices on the bounding triangle.

5 Conclusion and Future Work

In this paper, we present several algorithms for polygonal-schema drawings of
higher-genus graphs. Our method for toroidal graphs achieves drawings that si-
multaneously use straight-line edges in a straight frame and polynomial area.
Previous algorithms for the torus were restricted to special cases or did not
always produce polygonal-schema renderings [4,7,14]. Our methods for non-
toroidal graphs can achieve any two of these three criteria. It is an open problem
whether it is possible to achieve all three of these aesthetic criteria for non-
toroidal graphs. To our knowledge, previous algorithms for general graphs in
genus-g surfaces were restricted to those with “nice” polygonal schemas [15].
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Abstract. In this paper we introduce a generalization of the c-planarity testing
problem for clustered graphs. Namely, given a clustered graph, the goal of the
SPLIT-C-PLANARITY problem is to split as few clusters as possible in order to
make the graph c-planar. Determining whether zero splits are enough coincides
with testing c-planarity. We show that SPLIT-C-PLANARITY is NP-complete
for c-connected clustered triangulations and for non-c-connected clustered paths
and cycles. On the other hand, we present a polynomial-time algorithm for flat
c-connected clustered graphs whose underlying graph is a biconnected series-
parallel graph, both in the fixed and in the variable embedding setting, when the
splits are assumed to maintain the c-connectivity of the clusters.

1 Introduction

Let C(G, T ) be a clustered graph and suppose that a c-planar drawing of C is impossi-
ble (or very difficult) to find. A natural question is whether C admits a drawing where
each cluster is represented by a small set of connected regions instead of a single con-
nected region of the plane. We formalize this concept by introducing the split operation,
that replaces a cluster μ of T with two clusters μ1 and μ2 with the same parent as μ, and
distributes the children of μ between μ1 and μ2. We search for the minimum number of
splits turning C into a c-planar clustered graph. Formally, the corresponding decision
problem is as follows:

Problem: SPLIT-C-PLANARITY

Instance: A clustered graph C = (G, T ) and an integer k ≥ 0.
Question: Can C(G, T ) be turned into a c-planar clustered graph C(G, T ′)

by performing at most k split operations?

SPLIT-C-PLANARITY is motivated not only by the practical need of drawing non-c-
planar clustered graphs, but also by its implications on the c-planarity theory. In fact,
the long-standing problem of testing c-planarity [8] is a particular case of SPLIT-C-
PLANARITY, where zero splits are allowed. Therefore, SPLIT-C-PLANARITY extends
the c-planarity testing problem to a more general setting, where we are able to show the
NP-hardness even for flat clustered graphs whose underlying graphs are paths or cycles.

Hence, following a strategy that is analogous to the one used in the literature for the
c-planarity testing problem, we focus on peculiar classes of clustered graphs.
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RBIP06BZW8, FIRB project “Advanced tracking system in intermodal freight transportation”.
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Table 1. Time complexity of SPLIT-C-PLANARITY for non-c-connected graphs

Graph Family Fixed Embedding Setting Variable Embedding Setting

Paths, cycles, trees, & outerplanar graphs NP-hard (Th. 5) NP-hard (Th. 5)
Series-parallel graphs NP-hard (Th. 5) NP-hard (Th. 4)

General graphs NP-hard (Th. 1) NP-hard (Th. 1)

Table 2. Time complexity of SPLIT-C-PLANARITY for c-connected graphs

Graph Family Fixed Embedding Setting Variable Embedding Setting

Paths, cycles, & trees Θ(1) (trivial) Θ(1) (trivial)
Outerplanar graphs ? Θ(1) (trivial)

Series-parallel graphs∗ Polynomial (Th. 2) Polynomial (Th. 3)
Series-parallel graphs ? ?

General graphs NP-hard (Th. 1) NP-hard (Th. 1)
∗Flat hierarchy, biconnected underlying graph, c-connectivity preserved.

Restrictions on the c-planarity testing problem that have been considered in the litera-
ture include: (i) assuming that each cluster induces a small number of connected compo-
nents [8,4,11,10,1,2,12] (in particular, the case in which the graph is c-connected, that
is, each cluster induces one connected component, has been deeply investigated); (ii)
considering only flat hierarchies, where all clusters different from the root of T are chil-
dren of the root [3, 6]; (iii) focusing on particular families of underlying graphs [3, 13];
and (iv) fixing the embedding of the underlying graph [6, 12].

We show that SPLIT-C-PLANARITY is NP-hard even for flat c-connected clustered
graphs whose underlying graph is triconnected (hence even for flat c-connected em-
bedded clustered graphs). On the other hand, we show that SPLIT-C-PLANARITY is
polynomial-time solvable for flat c-connected clustered graphs whose underlying graph
is a biconnected series-parallel graph (both if the underlying graph has fixed or variable
embedding) if the splits are assumed to preserve the c-connectivity of the graph.

Tables 1 and 2 summarize the time complexity of SPLIT-C-PLANARITY. Observe
that, being acyclic, every c-connected clustered tree is trivially c-planar. Also, in an
outerplanar embedding of any outerplanar graph no cycle contains a vertex in its inte-
rior. Therefore, every c-connected clustered outerplanar graph is c-planar.

The rest of the paper is organized as follows. In Sect. 2 we introduce some pre-
liminaries; in Sect. 3 we prove the NP-hardness of SPLIT-C-PLANARITY for flat c-
connected clustered triangulations; in Sect. 4 we show a polynomial-time algorithm for
SPLIT-C-PLANARITY on flat c-connected biconnected clustered series-parallel graphs;
in Sect. 5 we show the NP-hardness of SPLIT-C-PLANARITY for flat non-c-connected
clustered paths and cycles; in Sect. 6 we conclude and present some open problems.

2 Background

We refer to [5] for basic definitions about graphs and embeddings, and to [8,4,11,3,10,
1, 6, 2, 13, 12] for basic definitions about clustered graphs and c-planar drawings.

A series-parallel graph is inductively defined as follows. An edge (u, v) is a series-
parallel graph with poles u and v. Denote by ui and vi the poles of a series-parallel
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graph Gi. A series composition of a sequence G1, . . . , Gk of series-parallel graphs,
with k ≥ 2, is a series-parallel graph with poles u = u1 and v = vk such that vi and
ui+1 have been identified, for each i = 1, . . . , k − 1. A parallel composition of a set
G1, . . . , Gk of series-parallel graphs, with k ≥ 2, is a series-parallel graph with poles
u = u1 = · · · = uk and v = v1 = · · · = vk. The SPQ-tree of a series-parallel graph
G is the tree representing the series and parallel compositions of G. Let G be a series-
parallel graph with poles u and v and with a fixed plane embedding Eo. The leftmost
path (resp. rightmost path) of G is the path (w1 = u, w2, . . . , wk = v) (resp. (z1 =
u, z2, . . . , zh = v)) such that: (i) w2 follows w1 (resp. z2 precedes z1) in the counter-
clockwise order of the vertices incident to the outer face of Eo; (ii) edge (wi, wi+1)
follows (wi−1, wi) (resp. (zi, zi+1) precedes (zi−1, zi)) in the counter-clockwise order
of the edges incident to wi (resp. incident to zi). The leftmost and rightmost paths of G
are also called extreme paths of G.

3 General C-Connected Clustered Graphs

We show the NP-hardness of SPLIT-C-PLANARITY for flat c-connected clustered
graphs whose underlying graph is triconnected. This is done by means of a reduction
from HAMILTONIAN-CIRCUIT [9], which takes as an input a triconnected, planar, and
cubic graph G(V, E) and asks whether a simple cycle exists in G traversing each node
v ∈ V exactly once. Given an instance of HAMILTONIAN-CIRCUIT, consider a planar
drawing of it and the dual graph G′ of G (see Fig. 1(a)). Observe that, since G is cubic,
G′ is a triangulation. Construct an instance 〈C(G′′, T ), k〉 of SPLIT-C-PLANARITY as
follows. Graph G′′ is obtained by adding to G′ a node vi in each face fi and by con-
necting vi to the three vertices incident to fi (see Fig. 1(b)). Tree T has height two and
has a cluster μi for each added vertex vi and a cluster μ0 containing all the vertices of
G′. The value of k is set to one. We make use of the following result appeared in [7]:

Lemma 1. (Feng [7]) Let C(G, T ) be a clustered graph where G is a triangulation.
Then C is c-planar only if C is c-connected.

Lemma 2. Instance G of HAMILTONIAN-CIRCUIT admits a solution if and only if the
corresponding instance 〈C(G′′, T ), 1〉 of SPLIT-C-PLANARITY does.

(a) (b) (c) (d)

Fig. 1. (a) A planar graph G (black vertices) and its dual graph G′ (white vertices). (b) Graph
G′′ (the vertices added to G′ are drawn gray). (c) A split of cluster μ0 turning G′′ into a c-planar
clustered graph. (d) The corresponding Hamiltonian circuit on G (thick edges).
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Proof: Suppose 〈C(G′′, T ), 1〉 admits a solution. Since G′′ is triconnected, in any pla-
nar drawing of G′′ each vertex vi inserted into an internal face fi of G′ is inside a cycle
of vertices belonging to cluster μ0. Hence, C(G′′, T ) is not c-planar, and at least one
split of cluster μ0 has to be performed in order to turn C(G′′, T ) into a c-planar graph.
Suppose that a split of cluster μ0 into two clusters μa and μb exists such that the ob-
tained clustered graph C(G′′, T ′) is c-planar (see Fig. 1(c)). The split is a bipartition
of the vertices of G′ into Va and Vb. By Lemma 1, the two graphs induced by Va and
Vb are connected. Hence, the edges between Va and Vb form a cutset. A cutset in G′

corresponds to a cycle C in G [14, pg. 16]. Since C(G′′, T ′) is c-planar, each vertex vi

inserted into a face fi of G′ is adjacent both to a vertex in μa and to a vertex in μb. This
is equivalent to saying that C traverses each vertex of G exactly once (see Fig. 1(d)).

Suppose that a Hamiltonian circuit C exists in G. Split μ0 so that nodes internal to
C belong to μa and nodes external to C belong to μb. The obtained graph C(G′′, T ′) is
c-planar. In fact, C determines a cutset in G′, hence μa and μb induce connected graphs.
Further, since C is Hamiltonian, the graphs induced by μa and μb are acyclic. ��

Since 〈C(G′′, T ), 1〉 can be constructed in polynomial time and since the problem is
easily seen to be in NP, the following holds.

Theorem 1. SPLIT-C-PLANARITY is NP-complete when the input graph is a flat
c-connected clustered graph and k = 1.

4 Series-Parallel C-Connected Clustered Graphs

In this section, we show that SPLIT-C-PLANARITY is polynomial-time solvable if: (i)
the input graph is a flat c-connected clustered graph whose underlying graph is a bi-
connected series-parallel graph, and (ii) the splits have to maintain the c-connectivity
of the input graph. Observe that the reduction shown in Sect. 3 proves that SPLIT-C-
PLANARITY is NP-complete if: (i) the input graph is a flat c-connected clustered graph,
and (ii) the splits have to maintain the c-connectivity of the input graph (namely, such a
condition is always met when splitting clusters of a clustered triangulation). Through-
out this section, we assume that every set of splits turning a c-connected clustered graph
into a c-planar clustered graph maintains the c-connectivity of the graph.

4.1 Series-Parallel Graphs with Fixed Embedding

We show a polynomial-time algorithm that, given a flat c-connected clustered graph
C(G, T ), where G is a biconnected series-parallel graph with fixed planar embedding
E , computes the minimum number of splits turning C into a c-planar clustered graph.
The algorithm performs a bottom-up visit of the SPQ-tree T of G, rooted at any P -node
corresponding to a parallel composition of two series-parallel graphs B1 and B2, where
B1 is an edge e and B2 is the rest of the graph. Topologically, such a choice corresponds
to assuming that e is on the outer face of a plane embedding Eo corresponding to the
planar embedding E . However, there are O(n) ways of making such a choice, hence
the test is repeated a linear number of times. Throughout this subsection, we assume
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Fig. 2. Representation of a node t of T satisfying (a) Condition A, (b) Condition B, (c) Condition
C, (d) Condition D, (e) Condition E, and (f) Condition F

that E is fixed and that e is on the outer face of Eo. We denote by μ(u) the only cluster
different from the root of T containing vertex u.

For each node t of T corresponding to a series-parallel graph B with poles u and
v, the algorithm computes six labels α(t), β(t), γ(t), δ(t), ε(t), and φ(t). Such labels
represent the minimum number of splits on C turning (B, T ′[B]) (that is, the clustered
graph whose cluster hierarchy is the tree obtained from T by performing the splits on
C and by restricting to the clusters containing vertices of B) into a c-planar clustered
graph satisfying, respectively, the following conditions (see Fig. 2):

– Condition A: all the vertices of B belong to μ(u) = μ(v);
– Condition B: μ(u) = μ(v), there exists a path between u and v whose vertices all

belong to μ(u), and pr(B) and pl(B) contain vertices not belonging to μ(u);
– Condition C: μ(u) = μ(v), there exists a path between u and v whose vertices all

belong to μ(u), pr(B) contains vertices not belonging to μ(u), and all the vertices
of pl(B) belong to μ(u);

– Condition D: μ(u) = μ(v), there exists a path between u and v whose vertices
all belong to μ(u), all the vertices of pr(B) belong to μ(u), and pl(B) contains
vertices not belonging to μ(u);

– Condition E: μ(u) = μ(v) and there exists no path between u and v whose vertices
all belong to μ(u); and,

– Condition F: μ(u) �= μ(v).

When (B, T ′[B]) satisfies a certain condition, we equivalently say that t satisfies the
same condition. In general, it could be not possible to make t satisfy a certain condition
with any set of splits. For example, if μ(u) �= μ(v), no set of splits makes u and v belong
to the same cluster, hence labels α(t), β(t), γ(t), δ(t), and ε(t) have no meaning for t.
In such cases, we set the corresponding labels to ∞.

We observe the following lemmata:

Lemma 3. Consider any set of splits turning C(G, T ) into a c-planar clustered graph
C′(G, T ′). Then, (B, T ′[B]) satisfies exactly one of Conditions A, B, C, D, E, and F.

Lemma 4. If (B, T ′[B]) satisfies Condition A, B, C, D, or F, then (B, T ′[B]) is a c-con-
nected clustered graph. Also, if (B, T ′[B]) satisfies Condition E, then each cluster in
T ′[B] induces one connected component in B, except for μ(u), which induces two
connected components, one containing u, and the other containing v.

We now sketch how to compute α(t), β(t), γ(t), δ(t), ε(t), and φ(t). In the base case, t
is an edge (u, v) and the six labels can be easily computed. Namely, if u and v belong
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Fig. 3. Constraints on the children of t, if t is an S-node satisfying Condition x. If x = A, then
all the ti satisfy Condition A (a). If x = B, then either there exists ti satisfying Condition B
and all other tj satisfy Condition A, B, C, or D (b), or there exist ti satisfying Condition C, tj

satisfying Condition D, and all other tl satisfy Condition A, C, or D (c). If x = C, then there
exists ti satisfying Condition C and all other tj satisfy Condition A or C (d). If x = D, then there
exists ti satisfying Condition D and all other tj satisfy Condition A or D (e). If x = E, then u
and v belong to the same cluster in the input clustered graph and either there exists ti satisfying
Condition E and all other tj satisfy Condition A, B, C, or D (f), or there exist ti and tj satisfying
Condition F and all other tl satisfy Condition A, B, C, D, or F (g). If x = F , then there exists ti

satisfying Condition F and all other tj satisfy Condition A, B, C, D, or F (h).

to distinct clusters, then α(t) = β(t) = γ(t) = δ(t) = φ(t) = ∞, and ε(t) = 0. If u
and v belong to the same cluster, then α(t) = 0, β(t) = γ(t) = δ(t) = ε(t) = ∞, and
φ(t) = 1.

Consider a node t of T corresponding to a series-parallel graph B. Let t1, . . . , tk be
the children of t, corresponding to series-parallel graphs B1, . . . , Bk. Let ui and vi be
the poles of Bi. Inductively suppose that the labels of t1, . . . , tk have been computed.

The main idea is that if a set S of splits makes (B, T ′[B]) satisfy Condition A, B, C,
D, E, or F, then several constraints on the conditions that are satisfied by the children of
t can be deduced, also based on whether t is an S-node or a P -node.

As an example, if t is a P -node satisfying Condition C, then either ti exists satisfying
Condition C or not. If such a ti exists, then all the tj with j < i satisfy Condition A and
all the tj with j > i satisfy Condition E; namely, if any tj with j < i satisfies Condition
B or C, then (B, T ′[B]) is not c-planar, as it contains a cycle, whose vertices belong to
the same cluster, enclosing a vertex not belonging to such a cluster; if any tj with j < i
satisfies Condition D or E, then either (B, T ′[B]) is not c-planar or t does not satisfy
Condition C; no tj satisfies Condition F because μ(u) = μ(v); finally, if any tj with
j > i satisfies Condition A, B, C, or D, then (B, T ′[B]) is not c-planar. If no ti satisfies
Condition C, then a sequence of consecutive tj , including t1, satisfy Condition A, and
all other tj , including tk, satisfy Condition E. See Figs. 3 and 4.

As a result of the above argumentations, a set of k-tuples is associated to Condition
x, where x ∈ {A, B, C, D, E, F}, for each node t of T with k children. Each tuple
is such that if ti satisfies the condition indicated at the i-th item of the tuple, for each
i, then t satisfies Condition x. Then, the minimum number of splits turning (B, T ′[B])
into a c-planar clustered graph satisfying Condition x is the minimum among the values
associated with the tuples, where the value associated with each tuple is obtained by
summing up the labels corresponding to the conditions of the tuple, paying attention to
those splits counted more than once in different nodes ti. We get the following:
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Fig. 4. Constraints on the children of t, if t is a P -node satisfying Condition x. If x = A, then all
the ti satisfy Condition A (a). If x = B, then either there exists ti satisfying Condition B and all
other tj satisfy Condition E (b), or there exists ti satisfying Condition D, tj satisfying Condition
C, with j > i, and all the tl satisfy Condition E, if l < i and l > j, or Condition A, if i < l < j
(c), or there exists ti satisfying Condition D, all the tl satisfy Condition E, if l < i and if l > y,
for some i ≤ y < k, and all the tl satisfy Condition A, if i < l ≤ y (d), or there exists ti

satisfying Condition C, all the tl satisfy Condition E, if l > i and if l < x, for some 1 < x ≤ i,
and all the tl satisfy Condition A, if x ≤ l < i (e), or all the tl satisfy Condition E, if l < x and
if l > y, for some 1 < x ≤ y < k, and all the tl satisfy Condition A, if x ≤ l ≤ y (f). If x = C,
then either there exists ti satisfying Condition C, all the tj with j > i satisfy Condition E, and
all the tj with j < i satisfy Condition A (g), or all the tj satisfy Condition A, with 1 ≤ j ≤ y
for some 1 ≤ y < k, and all the tj satisfy Condition E, with j > y (h). If x = D, then either
there exists ti satisfying Condition D, all the tj with j < i satisfy Condition E, and all the tj

with j > i satisfy Condition A (i), or all the tj satisfy Condition A, with x ≤ j ≤ k for some
1 < x ≤ k, and all the tj satisfy Condition E, with j < x (j). If x = E, then all the ti satisfy
Condition E (k). If x = F , then all the ti satisfy Condition F (l).

Theorem 2. Let C(G, T ) be a flat c-connected clustered graph whose underlying
graph G is an n-vertex biconnected series-parallel graph with a fixed planar embed-
ding E . The minimum number of splits turning C into a c-planar clustered graph while
maintaining the c-connectivity of every cluster can be computed in O(n4) time.

4.2 Series-Parallel Graphs with Variable Embedding

We sketch how to extend the result of Sect. 4.1 to the variable embedding scenario.
As in the fixed embedding case, we perform a bottom-up visit of the rooted SPQ-tree

T of G, while computing some labels for each node t of T . However, in this case, we
have to determine some embeddings of the series-parallel graph B corresponding to t.
For each node t of T , we compute five labels α(t), β(t), γδ(t), ε(t), and φ(t). Labels
α(t), ε(t), and φ(t) have the same meaning as in the fixed embedding case. Label β(t)
represents the minimum number of splits turning (B, T [B]) into a c-planar clustered
graph (B, T ′[B]) containing a path between u and v whose vertices all belong to μ(u),
and having vertices not belonging to μ(u) on both extreme paths of a computed planar
embedding. Label γδ(t) represents the minimum number of splits turning (B, T [B])
into a c-planar clustered graph (B, T ′[B]) containing a path between u and v whose
vertices all belong to μ(u) and having vertices not belonging to μ(u) on exactly one ex-
treme path of a computed planar embedding. Observe that labels β(t) and γδ(t) replace
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Fig. 5. (a) A pinwheel gadget of size three. Dashed lines join vertices of the same cluster. (b) An
illustration for the proof of Lemma 5. (c) A symbolic representation of the pinwheel gadget.

labels β(t), γ(t), and δ(t) of the fixed embedding scenario, as in the variable embedding
setting it is not known a priori which are the rightmost and the leftmost path of t.

Theorem 3. Let C(G, T ) be a flat c-connected clustered graph whose underlying
graph G is an n-vertex biconnected series-parallel graph. The minimum number of
splits turning C into a c-planar clustered graph while maintaining the c-connectivity of
every cluster at each split can be computed in O(n4) time.

5 Non-C-Connected Clustered Graphs

We open this section by showing that, given a flat non-c-connected clustered graph
C(G, T ), where G is a biconnected series-parallel graph, it is NP-hard to find the mini-
mum number of splits turning C into a c-planar clustered graph. Namely, we perform a
reduction from NAE3SAT [9], which takes in input a collection of clauses, each con-
sisting of three literals, and asks whether a truth assignment to the variables exists such
that each clause has at least one true literal and at least one false literal.

Given a clustered graph C(G, T ) and a vertex v of G with four incident edges e1, e2,
e3, and e4, we introduce a gadget that forces such edges to appear in this circular order
around v in any c-planar drawing of any clustered graph obtained from C with less than
σ splits. We construct around v a pinwheel gadget of size σ by inserting, in each edge
ei, 2σ vertices vi,j , with j = 1, . . . , 2σ. For each pair (ei, ei+1) we add σ child-clusters
to the root of T and assign vi,j and vi+1,j+σ to the same cluster, for j = 1, . . . , σ.
Figure 5 provides an example for σ = 3.

Lemma 5. Let C(G, T ) be a clustered graph containing a pinwheel gadget of size σ
around a vertex v. Any c-planar drawing of a clustered graph obtained from C with
less than σ splits preserves the circular order of the edges around v, up to a reversal.

Proof: Suppose, for a contradiction, that there exists a c-planar drawing of a clustered
graph obtained from C with less than σ splits such that the order of the edges around v
is e1, e3, e2, and e4, the other cases being analogous. Consider the σ clusters involving
vertices of both e1 and e2. Since less than σ splits are allowed, at least one of such



Splitting Clusters to Get C-Planarity 65

v
L

v
R

v
1

v
2

v
3

v
4

v
5

v
6

1
u

2
u

3
u

4
u

e
1
F

e
4
T

3
w

2
w

1
w

e
2
F e

3
F e

4
F

R
T

R
F 4

w

e
3
T e

2
T e

1
T

Fig. 6. An illustration for the construction of instance 〈C(Gϕ, Tϕ), kϕ〉 of SPLIT-C-PLANARITY

corresponding to an instance ϕ of NAE3SAT with four variables and six clauses

clusters is not split. Hence, the region of the plane delimited by the border of such a
cluster, by e1, and by e2 either encloses vertices v3,j , with j = 1, . . . , 2σ, and does not
enclose vertices v4,j , with j = 1, . . . , 2σ, or vice versa. It follows that all the σ clusters
involving vertices of both e3 and e4 are split, contradicting the hypothesis. ��

Given an instance ϕ of NAE3SAT with n variables and c clauses we construct the
corresponding instance 〈Cϕ(Gϕ, Tϕ), 2c〉 of SPLIT-C-PLANARITY as follows. Graph
Gϕ contains a cycle C with two notable vertices vL and vR (see Fig. 6), and a path
(vL, u1, u2, . . . , un, v1, v2, . . . , vc, wn, wn−1, . . . , w1, vR). Observe that, in any planar
embedding of Gϕ, such a path, together with C, determines two regions (both inside or
both outside C) that we arbitrarily denote by RT and RF . Gϕ also contains two edges
eT

i = (ui, wi) and eF
i = (ui, wi), for each i = 1, . . . , n. Denote u0 = vL, un+1 = v1,

w0 = vR, and wn+1 = vc. For i = 1, . . . , n, two pinwheel gadgets of size 2c + 1
are inserted around ui and wi so that the circular order of the edges around ui and
wi is (ui−1, ui), eT

i , (ui, ui+1), eF
i , and (wi−1, wi), eF

i , (wi, wi+1), eT
i , respectively.

Figure 6 shows an example with n = 4 and c = 6. The insertion of the pinwheel gadgets
turns eT

i and eF
i into two paths, that we denote by pT

i and pF
i , respectively. Observe that,

by Lemma 5, in any c-planar embedding of a clustered graph obtained from Cϕ with
less than 2c + 1 splits, if pT

i lies into RT (RF ), then pF
i lies into RF (RT ).

For each clause j, we introduce two clusters νj,1 and νj,2. Also, we define two literal
gadgets l/∈(j) and l∈(j) as follows. Gadget l/∈(j) is a sequence of three vertices va,
vb, and vc belonging to clusters νj,1, νj,2, and νj,1, respectively (see variable x1 of
Fig. 7(a)). Gadget l∈(j) contains a sequence of four vertices vd, ve, vf , and vg , plus two
additional vertices vh and vi attached to both vd and ve. While vd and ve are assigned
to the root of Tϕ, vf belongs to νj,2 and vg , vh, and vi belong to νj,1. Finally, two
pinwheel gadgets of size 2c + 1 are inserted around vd and ve so that, in any c-planar
drawing of a clustered graph obtained from Cϕ with less than 2c + 1 splits, vh and vi

are on opposite sides with respect to edge (vd, ve) (see variable x2 of Fig. 7(a)).
For each variable xi, with i = 1, . . . , n, and for each clause cj , with j = 1, . . . , c,

we insert into pT
i (pF

i ) gadget l∈(j) if xi (xi, respectively) is a literal of cj and gadget
l/∈(j) otherwise, in such a way that the gadgets for clauses c1, c2, . . . , cc appear in this
order from ui to wi in pT

i and pF
i .
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Fig. 7. (a) Configuration of a clause (x2 ∨x3 ∨x4). (b) and (c) show drawings with two split. (d)
A configuration of a clause with all true literals. Any c-planar drawing of it needs three split (e).

We assign to the root of Tϕ vertices vL, vR, ui and wi, with i = 1, . . . , n. Vertex vj ,
for j = 1, . . . , c, is assigned to νj,1.

Lemma 6. Instance ϕ of NAE3SAT, with n variables and c clauses, admits a solution
if and only if instance 〈Cϕ(Gϕ, Tϕ), 2c〉 of SPLIT-C-PLANARITY admits a solution.

Proof sketch: Suppose ϕ admits a solution and consider an assignment of truth values
to the variables that satisfies ϕ. If variable xi is TRUE (FALSE), then draw pT

i into RT

(RF ) and pF
i into RF (RT ). Observe that, for each clause cj no three l∈(j) are in the

same region. Figure 7(b) shows a portion of a c-planar drawing of a clustered graph
obtained from Cϕ with two splits per clause. Hence, 〈Cϕ, 2c〉 admits a solution.

Suppose 〈Cϕ, 2c〉 admits a solution. In order to obtain a c-planar clustered graph
from Cϕ, at least two splits are needed for νj,1 and νj,2 as a whole (see Figs 7(b)
and 7(c)); further, if the literal gadgets l∈(j) of clause cj are all three in the same
region, then at least three splits are needed for νj,1 and νj,2 as a whole (see Fig. 7(e)).
It follows that, since only 2c splits turn Cϕ into a c-planar graph, there exists a truth
assignment such that each clause has a TRUE and a FALSE literal. ��

Since 〈Cϕ, 2c〉 can be constructed in polynomial time and since the problem is easily
seen to be in NP, the following holds.

Theorem 4. SPLIT-C-PLANARITY is NP-complete when the input is a flat non-c-con-
nected clustered series-parallel graph.

By modifying the above reduction, it is possible to show that SPLIT-C-PLANARITY is
NP-complete even for a non c-connected clustered tree, path, or cycle.

Namely, we introduce the open pinwheel gadget of size σ, whose vertices have
degree at most two, to replace a pinwheel gadget of size σ in the reduction from
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Fig. 8. (a) An open pinwheel gadget. (b) A picture for the proof of Lemma 7. (c) A picture for
the proof of Theorem 5 (the literal gadgets of only one cluster are shown).

NAE3SAT. Such a gadget is obtained from a pinwheel gadget around vertex v by
removing v and joining edges e1 and e2 and edges e3 and e4 (or edges e1 and e4 and
edges e2 and e3) with a path of σ vertices belonging to clusters μ1, . . . , μσ (see Fig. 8).

Lemma 7. Let C∗(G∗, T ∗) be the clustered graph obtained from Cϕ(Gϕ, Tϕ) by re-
placing each pinwheel gadget of size σ with an open pinwheel gadget of the same size.
Then, C∗ can be turned into a c-planar clustered graph with less than σ splits if and
only if Cϕ can be turned into a c-planar clustered graph with less than σ splits.

Theorem 5. Problem SPLIT-C-PLANARITY is NP-complete when the input graph is a
non-c-connected cycle or path.

Proof sketch: Construct instance 〈Cϕ(Gϕ, Tϕ), 2c〉 corresponding to the instance ϕ of
NAE3SAT with c clauses as in the reduction used in Theorem 4. Add an edge con-
necting vL with vR and add two pinwheel gadgets around vL and vR. Observe that
all the vertices have degree two or four and that all the vertices of degree four have
a pinwheel gadget around them. Replace each pinwheel gadget with an open pinwheel
gadget of the same size in such a way that the underlying graph G∗ of the obtained clus-
tered graph C∗(G∗, T ∗) is a cycle, as shown in Fig. 8(c). By Lemma 7, any c-planar
drawing of a clustered graph obtained from C∗ with less than 2c splits corresponds to
a c-planar drawing of a clustered graph obtained from Cϕ with less than 2c splits, and
vice versa. Lemma 6 ensures that instance ϕ admits a solution if and only if instance
〈C∗(G∗, T ∗), 2c〉 of SPLIT-C-PLANARITY admits a solution.

To prove that the problem is NP-complete also for paths it suffices to turn G∗ into a
path by “opening” edge (vL, vR) (dashed edge of Fig. 8(c)). ��

Theorem 5 implies that SPLIT-C-PLANARITY is NP-complete when the input is a non-
c-connected tree both in the fixed and in the variable embedding setting.

6 Conclusions

In this paper we introduced the SPLIT-C-PLANARITY problem, which takes as an input
a clustered graph C(G, T ) and an integer k ≥ 0 and asks whether C can be turned into
a c-planar clustered graph C′(G, T ′) by performing at most k cluster splits.
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We proved that SPLIT-C-PLANARITY is NP-hard, even for non-c-connected clus-
tered paths and cycles, and for c-connected clustered triangulations. Further, SPLIT-C-
PLANARITY is not fixed-parameter tractable with respect to k, as it is NP-hard even with
k = 1. However, it could still be the case that SPLIT-C-PLANARITY is fixed-parameter
tractable with respect to k, when the underlying graph of the input clustered graph is a
path, a cycle, or a graph in a similarly simple graph family. Namely, the reduction we
presented in the c-connected case uses a constant k, but deals with triconnected graphs,
while the reduction we presented for the non-c-connected case deals with paths and
cycles, but uses a k which is function of the size of the problem.

We proved that for flat clustered graphs whose underlying graph is a biconnected
series-parallel graph SPLIT-C-PLANARITY is polynomial-time solvable, if the splits
are assumed to maintain the c-connectivity of the clusters. We believe the following
extensions of such a result to be interesting: (i) non-flat clustered graphs; (ii) simply-
connected series-parallel graphs; (iii) splits not maintaining the c-connectivity.
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11. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in
c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002.
LNCS, vol. 2528, pp. 220–235. Springer, Heidelberg (2002)

12. Jelinek, V., Jelinkova, E., Kratochvil, J., Lidicky, B.: Clustered planarity: Embedded clus-
tered graphs with two-component clusters. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008.
LNCS, vol. 5417, pp. 121–132. Springer, Heidelberg (2009)

13. Jelinkova, E., Kara, J., Kratochvil, J., Pergel, M., Suchy, O., Vyskocil, T.: Clustered planarity:
Small clusters in eulerian graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007.
LNCS, vol. 4875, pp. 303–314. Springer, Heidelberg (2008)

14. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Ann. Discrete Math.,
vol. 32. North-Holland, Amsterdam (1988)



On the Characterization of Level Planar Trees
by Minimal Patterns�

Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov

Department of Computer Science, University of Arizona
{alexeb,fowler}@email.arizona.edu,

kobourov@cs.arizona.edu

Abstract. We consider characterizations of level planar trees. Healy et al. [8]
characterized the set of trees that are level planar in terms of two minimal level
non-planar (MLNP) patterns. Fowler and Kobourov [7] later proved that the set of
patterns was incomplete and added two additional patterns. In this paper, we show
that the characterization is still incomplete by providing new MLNP patterns not
included in the previous characterizations. Moreover, we introduce an iterative
method to create an arbitrary number of MLNP patterns, thus proving that the set
of minimal patterns that characterizes level planar trees is infinite.

1 Introduction

An important application of automatic graph drawing can be found in the layout of
graphs that represent hierarchical relationships. When drawing graphs in the xy-plane,
this translates to a restricted form of planarity where the y-coordinate of a vertex is
given and the drawing algorithm only has the freedom to choose the x-coordinate. This
restricted form of planarity is called level planarity, and each given y-coordinate corre-
sponds to a level.

Jünger, Leipert, and Mutzel [13] provide a linear-time recognition algorithm for level
planar graphs. This algorithm is based on the level planarity test given by Heath and
Pemmaraju [9,10]. The algorithm by Heath and Pemmaraju is based on the more re-
stricted PQ-tree level planarity testing algorithm of hierarchies (level graphs of directed
acyclic graphs in which all edges are between adjacent levels and all the source vertices
are on the uppermost level) given by Di Battista and Nardelli in [3]. In the paper, the
authors also characterize such hierarchies in terms of level non-planar (LNP) patterns.
Jünger and Leipert [12] provide a linear-time level planar embedding algorithm that
outputs a set of linear orderings in the x-direction for the vertices on each level. How-
ever, to obtain a straight-line planar drawing one needs to subsequently run an O(|V |)
algorithm given by Eades et al. [4] who demonstrate that every level planar embedding
has a straight-line drawing, though it may require exponential area.

Healy et al. [8] use LNP patterns to provide a set of minimal level non-planar
(MLNP) subgraph patterns that characterize level planar graphs. This is the counterpart
for level graphs to the characterization of planar graphs by Kuratowski [14] in terms of
forbidden subdivisions of K5 and K3,3. Two new MLNP tree patterns were added in [7]
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by Fowler and Kobourov to the previous set of patterns given by Healy et al. In this
paper, we show that the characterization remains incomplete by providing new MLNP
patterns not included in the previous characterizations. Moreover, we introduce an iter-
ative method to create an arbitrary number of MLNP patterns, thus proving that the set
of minimal patterns that characterizes level planar trees is infinite.

The study of MLNP patterns is motivated in part by the problem of visualizing hi-
erarchical structures. Sugiyama et al. [15] described what has become the standard
framework for drawing directed acyclic graphs. In this framework vertices are assigned
to levels and then on each level vertices are ordered, with the overall goal of minimiz-
ing the number of edge crossings. There exists good heuristics and some exact methods
based upon integer linear programs (ILPs) to find good orders within levels [11]. How-
ever, typically the assignment of vertices to levels is done with the help of greedy local
optimizations [2]. Understanding the underlying obstructions to level planarity (such as
MLNP patterns) could lead to better solutions to the level assignment step.

Level planarity is also related to simultaneous embedding [1]. In general, a set of
restrictions on the layout of one graph may help in the layout of a second graph on the
same vertex set. Specifically, when embedding a path with a planar graph, if the graph
can be drawn on horizontal levels, then the path can be drawn in a y-monotone fashion
without crossings. Estrella-Balderrama et al. [6] characterized the set of unlabeled level
planar (ULP) trees on n vertices that are level planar over all possible labelings of the
vertices in terms of two forbidden trees: T8 and T9. A level non-planar labeling of T9

was used to obtain MLNP patterns P3 and P4 in [7]; see Fig. 3.

2 Preliminaries

A k-level graph G(V, E, φ) on n vertices is a directed graph G(V, E) with a level as-
signment φ : V → {1, . . . , k} such that the induced partial order is strict: φ(u) < φ(v)
for every (u, v) ∈ E. A k-level graph is a k-partite graph in which φ partitions V into
k independent sets V1, V2, . . . , Vk, which form the k levels of G. A level- j vertex v is
on the jth level V j if φ(v) = j (i.e. v ∈ V j). In a level graph, an edge (u, v) is short if
φ(v) = φ(u)+1 while edges spanning multiple levels are long. A proper level graph has
only short edges. Any level graph can be made proper by subdividing long edges into
short edges. In this paper, a level graph is proper unless stated otherwise.

A level graph G has a level drawing if there exists a drawing such that every vertex
in V j is placed along the horizontal line � j = {(x, j) | x ∈ �} and the edges are drawn as
strictly y-monotone polylines. The order that the vertices of V j are placed along each
� j in a level drawing of a proper graph induces a family of linear orders along the x-
direction, which form a linear embedding of G. A level drawing, and consequently its
level embedding, is level planar if it can be drawn without edge crossings. A level graph
G is level planar if it admits a level planar embedding. The definition of level drawings
allowing only straight-line segments for edges is equivalent, given that Eades et al. [4]
have shown that every level planar graph has a straight-line planar drawing.

A path is a non-repeating ordered sequence of vertices (v1, v2, . . . , vn) for n ≥ 1. A
star with n vertices is a tree with one vertex of degree n − 1, called the root, and n − 1
vertices of degree 1. A spider is an arbitrarily subdivided star, where subdividing an
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Fig. 1. Original MLNP patterns P1 in (a) and P2 in (b) proposed by Healy et al

edge (u, v) replaces the edge with a new vertex w and new edges (u,w) and (w, v). In a
degree-k spider, the root has degree k.

A chain-link, denoted u� v, is a path from vertex u to vertex v with u � v such that
each internal vertex w that lies along the path has degree 2. Let φ(u � v) denote the
set of levels of the internal vertices where i ≤ φ(u � v) ≤ j is a short-hand for saying
that i ≤ φ(w) ≤ j for each internal vertex w of the chain-link u � v. Unless stated
otherwise we assume that φ(u) ≤ φ(u� v) ≤ φ(v) for each chain-link u� v. A linking
chain, or simply a chain, is a sequence of one or more chain-links. Notice that a vertex
in the intersection of two chains is not considered a crossing between the chains. In all
figures, a curve connecting two vertices, represents a chain.

In a level non-planar graph, a pattern is an obstructing subgraph with a level as-
signment that forces a crossing. Since here we define particular patterns in terms of
chains, they represent a set of graphs with similar properties in terms of leveling. A
level non-planar pattern is minimal if the removal of an arbitrary edge makes the pat-
tern level planar. All the patterns described here (with the exception of a few that are
symmetrical) have a corresponding horizontally flipped version.

3 Previous Work

3.1 Characterization of Level Planar Trees by Healy et al.

Healy et al. [8] defined MLNP patterns as follows: Let i and j be the minimum and
maximum level, respectively, of any vertex in the pattern. Let x be a vertex of degree
3 with three subtrees with the following properties: (i) each subtree has at least one
vertex on both extreme levels; (ii) a subtree is either a chain or it has two subtrees that
are chains; (iii) all leaves are located on extreme levels (and each leaf is the only vertex
in its subtree on the extreme level); and (iv) the subtrees that are chains and have non-
leaf vertices on one extreme level, also have at least one leaf vertex on the opposite
extreme level.

Then they distinguish two patterns; P1 with x on an extreme level and P2 with x on
a non-extreme level (Healy et al. denote them T1 and T2). Figure 1 shows P1 and P2.
Notice that these patterns are defined in terms of subtrees. This implies, for example,
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Fig. 2. (a-e) Five variations of pattern P1 in addition to the one in Fig. 1(a); (f) One variation of
pattern P2 in addition to the one in Fig. 1(b)

that a subtree with a vertex of degree 3 may be replaced by a path. Fowler and Kobourov,
on the other hand, defined the patterns in terms of paths. Hence, to properly compare
the set of patterns we need to consider the different cases, or variations, of the subtrees
in P1 and P2. Hence, P1 leads to variations PA

1 , . . . , P
F
1 and P2 leads to variations PA

2
and PB

2 ; see Fig. 2. Notice that when a chain reaches an extreme level with a degree-2
vertex, more degree-2 vertices of the chain can also be on the extreme level. This is
illustrated in Fig. 2(a) for the chain c � g � f with a second degree-2 vertex. Healy
et al. [8] showed that both of these patterns are minimal level non-planar.

3.2 Characterization of Level Planar Trees by Fowler and Kobourov

The two trees T8 and T9 were shown to be the only obstructions in the context of un-
labeled level planarity for trees [6]. However, as the tree T9 does not match any of the
MLNP patterns by Healy et al. [8], a new pattern P3 was proposed [7]; see Fig. 3(b).
Note that matching T9 with either of the earlier patterns P1 or P2 would be impossible
as both P1 and P2 are based on a central vertex of degree 3 (vertex x in Fig. 1), while
T9 and its matching pattern P3 have a central vertex of degree 4 (vertex x in Fig. 3(b)).

Yet another pattern P4 can be obtained from P3 by “splitting” vertex x of degree 4
such that i < l ≤ φ(x) ≤ m < j into two vertices of degree 3 connected by a path. In
Fig. 3(b) vertex x is replaced by a chain x� y such that l ≤ φ(x� y) ≤ m in Fig. 3(c).
Patterns P3 and P4 were added to the previous set of two patterns (eight variations) to
obtain a new characterization consisting of four patterns (ten variations). A sketch of a
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Fig. 3. Fowler and Kobourov generalized the forbidden ULP tree T9 in (a) to produce the MLNP
patterns P3 in (b) and P4 in (c)

proof for the claim that this new characterization is complete was made in [7], but in
the next section we show that the characterization remains incomplete.

4 New Minimal Level Non-planar Patterns

In this section, we show that the characterization of level planar trees by minimal pat-
terns is still incomplete. In Sect. 4.1, we show that there are variations of P3 and P4

that were not considered. Then in Sect. 4.2, we describe a new pattern previously not
considered as it has a vertex of degree 5, whereas, all of the previously known MLNP
patterns have maximum degree 4.

4.1 Variations of Patterns P3 and P4

The previous characterization introduces the new patterns P3 and P4. Just as with the
variations of P1 and P2, different variations of P3 and P4 can be produced by replacing
some chains with degree-3 spiders. We describe these variations next.

– Pattern PA
3 . This is the original pattern P3; see Fig. 3(b).

– Pattern PB
3 . This pattern is similar to PA

3 but replaces the chain x � f � g such
that l ≤ φ(x) ≤ m, φ( f ) = m, φ(g) = i, and i ≤ φ( f � g) ≤ m, with a degree-3
spider rooted at f ′ and leaves f , g, and x such that l ≤ φ( f ′) ≤ m, φ(x) = φ( f ) = m,
φ(g) = i, and l ≤ φ( f � f ′) ≤ m; see Fig. 4(a).

– Pattern PC
3 . This pattern is similar to PA

3 but replaces the chain x � e � d, such
that l ≤ φ(x) ≤ m, φ(e) = l, φ(d) = j, and l ≤ φ(x� e) ≤ m with a degree-3 spider
rooted at e′ and leaves e, d, and x such that l ≤ φ(e′) ≤ m, φ(x) = φ(e) = l, φ(d) = j,
and l ≤ φ(e� e′) ≤ m; see Fig. 4(b).

– Pattern PD
3 . This pattern makes both replacements made by patterns PB

3 and PC
3 on

PA
3 such that φ(e) = φ( f ′) = l, φ(e′) = φ( f ) = m, l ≤ φ(x) ≤ m, i ≤ φ(x � g) ≤ m,

and l ≤ φ(x� h) ≤ j; see Fig. 4(c).
– Pattern PA

4 . This is the original pattern P4; see Fig. 3(c).
– Patterns PB

4 , PC
4 , and PD

4 . These patterns make analogous replacements on PA
4 as

those made by PB
3 , PC

3 , and PD
3 on PA

3 ; see Fig. 4(d-f).
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Fig. 4. (a-c) Variations of pattern P3 (PB
3 , PC

3 , and PD
3 ); (d-f) Variations of pattern P4 (PB

4 , PC
4 , and

PD
4 )

The importance of the new variations of P3 and P4 is that they break the fundamental
assumption made in the early attempts at characterizations, namely that in any minimal
level non-planar pattern, leaves must lie on extreme levels i or j. All of the new patterns
have leaves on non-extreme levels. We omit the proofs for the variations of P3 and P4

as in the next section we formally show that a new pattern, P5 with non-extreme leaves
is MLNP. Moreover, in Sect. 5, we show that the set of MLNP patterns for trees is not
just missing a few more patterns but is actually infinite.

4.2 New Pattern P5

In this section, we describe a new pattern P5 and its variations. The main characteristic
of this pattern is the presence of a vertex x with degree 5.

– Pattern PA
5 . This pattern is a degree-5 spider, rooted at x, with two levels l and m

between the extreme levels i and j such that i < l < φ(x) ≤ m < j. There is a chain
x � c such that φ(c) = i, a chain x � d such that φ(d) = j; a chain x � p � q
such that φ(p) = m and φ(q) = l; a chain x � e � f � g � h such that
φ(e) = l, φ( f ) = m, φ(g) = i, and φ(h) = j; and a chain x � k � b � a such that
l < φ(k) < φ(x), φ(b) = j, φ(a) = i and l < φ(x� k� b) ≤ j; see Fig. 5(a).

– Pattern PB
5 . Similar to PA

5 but replaces the chain x � e � f � g � h with a
degree-3 spider rooted at f ′ such that l < φ( f ′) < m, with x, g, and f such that
l < φ(x) ≤ m, φ(e) = l, φ(g) = i, φ( f ) = m, and there is a chain x � e � f ′
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Fig. 5. Patterns PA
5 , PB

5 , and PC
5

such that φ(e) = l where l ≤ φ(x � e � f ′) ≤ m, l ≤ φ( f � f ′) ≤ m, and
i ≤ φ( f ′ � g) ≤ m ; see Fig. 5(b).

– Pattern PC
5 . Similar to PA

5 but replaces the chain x � e � f � g � h with a
degree-3 spider rooted at e such that φ(e) = l with leaves g, x, and f ; see Fig. 5(c).

In the following two lemmas we show that this new pattern is MLNP.

Lemma 1. Pattern P5 is level non-planar.

Proof. We show that PA
5 is level non-planar (the cases for PB

5 and PC
5 are similar). First

notice that to avoid a crossing with chain c � x � d, all the vertices of the chain
x � e � f � g � h must lie to the right of the chain c � x � d while all the
vertices of the chain x � k � b � a must lie to the left, or vice versa; see Fig. 5(a).
Assume w.l.o.g. that x � k � b � a lies to the left and x � e � f � g � h lies to
right of chain c� x� d (as in Fig. 5(a)). Now observe that in order to avoid a crossing
of chain x � p � q with chains a � b, c � x � d or g � h, the chain x � p � q
must lie between chains a � b and c � x � d or lie between chains c � x � d and
g � h. However, in the first case a crossing will occur with chain x � k � b (since
φ(k) < φ(x) and φ(x) ≤ φ(x � p) ≤ m) and in the later case a crossing will occur with
chain x� e� f � g. �

Lemma 2. The removal of any edge in pattern P5 makes it level planar.

Proof. We consider the different cases of edge removal from the chains in PA
5 (PB

5 and
PC

5 are similar):

case 1) If any edge is removed from chain x � p � q, then the crossing with chain
x� e� f is avoided when x� p� q is to the right of c� x� d as in Fig. 6(a).

case 2) If any edge is removed from chains x� k � b� a or x � e� f � g� h,
then all the vertices in the chain (except x) can be to the left or to the right of chain
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Fig. 6. Different cases of removing an edge (dotted) from pattern PA
5

c � x � d where chain x � p � q can be on the other side avoiding the crossing as
in Fig. 6(b).

case 3) If any edge is removed from chain c � x, then chains x � k � b � a and
x � e � f � g can be on the same side with respect to c � x � d. Thus avoiding
the crossing with chain x� p� q; see Fig. 6(c).

case 4) If any edge is removed from chain x � d, then chain x� k � b can lie to the
right of chain x� p� q as in Fig. 6(d). �

We now use Lemmas 1 and 2 to show that P5 is indeed MLNP.

Theorem 1. P5 is a minimal level non-planar pattern for trees.

Proof. By Lemma 1, P5 is level non-planar and by Lemma 2, P5 is minimal. Minimal-
ity also implies that P5 does not contain any MLNP pattern as a subgraph. Moreover,
pattern P5 does not match any of the previous patterns given that vertex x has degree 5,
while all of the previously known patterns have maximum degree 4. �

In this section, we have shown that a new pattern P5 is MLNP. However, P5 is not the
only pattern missing from earlier characterizations. New patterns P6, . . . , P11 are shown
along with their variations in [5]. The proofs of level non-planarity and minimality of
these patterns are similar to the one given for P5. Thus, instead of proving that each of
these patterns is MLNP, we describe a constructive method for generating an infinite
number of distinct MLNP patterns in the next section.
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5 Infinite Minimal Level Non-planar Patterns

Our approach for creating new MLNP patterns is to take a known pattern as a base and
then repeat a subgraph of the pattern making modifications on the leveling such that the
new pattern does not strictly contain the previous one. Here we use PA

4 but the method
applies to other patterns as well.

The first step is to make a copy of the path p0 = c � x � f � g � h such
that φ(c) = φ(g) = i < φ(x) < φ( f ) < φ(h) = j as in Fig. 7(a) in order to get a new
path p1 = c1 � x1 � f1 � g1 � h1 such that φ(c1) = φ(g1) = i − 1, φ(x1) = j,
φ( f1) = j + 1, and φ(h1) = j + 2 as in Fig. 7(b). The second step is to add p1 to PA

4 by
merging vertices x1 and h creating a new vertex of degree 3 that takes the place of h.
This new level assignment creates two new extreme levels i− 1 and j + 2. We complete
the construction of the new pattern by moving vertices a, b, and d to the new extreme
levels, specifically, we set φ(a) = i − 1 and φ(b) = φ(d) = j + 2.

We now generalize the previous construction to an arbitrary number of iterations. We
denote the pattern created at iteration t from pattern P as (P)t. Thus, the original PA

4 is
(PA

4 )0 and the pattern created in Fig. 7(b) is (PA
4 )1. The vertices in the pattern are labeled

in the same way, for example x0 = x. Therefore, in order to create a new pattern (PA
4 )t+1

from pattern (PA
4 )t, we first copy the path pt = ct � xt � ft � gt � ht to get a new

path pt+1 = ct+1 � xt+1 � ft+1 � gt+1 � ht+1 such that φ(ct+1) = φ(gt+1) = i − t − 1,
φ(xt+1) = j + 2t, φ( ft+1) = j + 2t + 1, and φ(ht+1) = j + 2t + 2. We then merge
xt+1 with ht to obtain the new xt+1. Finally, we set the levels as φ(a) = i − t − 1, and
φ(b) = φ(d) = j + 2t + 2; see Fig. 8.

In the next lemma we show that a pattern, (PA
4 )t, generated with the previous method

is level non-planar.

Lemma 3. Pattern (PA
4 )t for t ≥ 0, is level non-planar.

Proof. We use induction on t, the number of iterations in the generation method. The
base case is t = 0; this is the original pattern P4 which is proven to be level non-planar
in the characterization by Fowler and Kobourov [7]. We now assume that (PA

4 )t is level
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Fig. 8. Construction of a new pattern (PA
4 )t+1 in (b) from pattern (PA

4 )t in (a)

non-planar in order to prove that (PA
4 )t+1 is level non-planar. That is, we show that the

modifications made to (PA
4 )t to obtain (PA

4 )t+1 do not affect the level non-planarity of the
new pattern.

Clearly, the addition of vertices and edges cannot affect the level non-planarity of a
tree, hence the addition of the path pt+1 does not make the pattern level planar. More-
over, since the chains a � b and e � d in (PA

4 )t are contained in the chains a � b
and e � d of (PA

4 )t+1, the change on the levels of a and d are simply addition of ver-
tices and edges that cannot affect the level non-planarity of the pattern. Finally, we
consider the change of level of vertex b. Notice that the crossing between the chain
a � b � y � x � f � g and the chain y � e � d in (PA

4 )t cannot be avoided
in (PA

4 )t+1 with the change of level of b. This is because as d is moved to the level of b
the chain f � g � · · · � xt+1 � ft+1 � ht+1 plays an analogous role in the pattern
(PA

4 )t+1 that the chain f � · · · � ht plays in the pattern (PA
4 )t. That is, the addition

of the chain ct+1 � ht+1 to the pattern (PA
4 )t+1 prevents the switch of side of the chain

a � b in order to avoid the crossing with y � e � d as this will produce a crossing
with the chain ct+1 � xt+1 (as in Fig. 9(d)). Therefore, by induction the pattern (PA

4 )t is
level non-planar for all non-negative integers t ≥ 0. �

We next show the minimality of the patterns generated with the method above.

Lemma 4. The removal of any edge in (PA
4 )t for any t ≥ 0, makes it level planar.

Proof. We consider the cases of edge removal in (PA
4 )t.

case 1) If any edge is removed from the chain a � b � y � e � d, then the self-
intersection is avoided as in Fig. 9(a).

case 2) If any edge is removed from the chain x� y, then the chain e� d can use the
gap to avoid the crossing as in Fig. 9(b).
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case 3) If any edge is removed from the chain xα � fα or gα � hα for any α = 0, . . . , t,
then chain a � b � y can use the gap to be drawn between the chains cα � xα and
fα � gα as in Fig. 9(c) or between gα and hα.

case 4) If any edge is removed from the chains cα � xα or fα � gα for any α = 0, . . . , t,
then the chain a � b can interchange sides with the chain hα � gα if α = t as in
Fig. 9(d). When α < t, all the chains cβ � xβ � fβ � gβ � hβ for β = α + 1, . . . , t are
moved along with the chain hα � gα. �

With the last two lemmas we now show that a pattern generated with the iterative
method described in this section is MLNP.

Theorem 2. Pattern (PA
4 )t for t ≥ 0, is a minimal level non-planar pattern for trees.

Proof. By Lemma 3, (PA
4 )t is level non-planar and by Lemma 4, (PA

4 )t is minimal. Mini-
mality implies that (PA

4 )t does not contain any MLNP pattern as a subgraph. In particular,
(PA

4 )t does not contain the previous pattern (PA
4 )t−1. To see this in Fig. 8(b), observe that

in the subgraph between levels i and j, the chain a� b� y is separated by level j into
two disjoint chains. Moreover, pattern (PA

4 )t does not match any of the previous patterns
(PA

4 )α for α = 0, . . . , t − 1 since (PA
4 )t contains an additional vertex of degree 3, xt. �

Theorem 2 implies that we can generate an arbitrary number of different MLNP patterns.
This gives our main result.
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Theorem 3. The set of minimal level non-planar patterns for trees is infinite.

6 Conclusions and Future Work

In this paper, we showed why two earlier attempts to characterize the set of level non-
planar trees in terms of minimal level non-planar patterns failed. In both cases, there
was an implicit assumption that the set of different MLNP patterns is small and finite.
However, it turns out that there are infinitely many different MLNP patterns, and an
altogether different approach might be needed for a complete characterization.
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Abstract. Suppose that an n-vertex graph has a distinct labeling with
the integers {1, . . . , n}. Such a graph is radial level planar if it admits a
crossings-free drawing under two constraints. First, each vertex lies on a
concentric circle such that the radius of the circle equals the label of the
vertex. Second, each edge is drawn with a radially monotone curve. We
characterize the set of unlabeled radial level planar (URLP) graphs that
are radial level planar in terms of 7 and 15 forbidden subdivisions de-
pending on whether the graph is disconnected or connected, respectively.
We also provide linear-time drawing algorithms for any URLP graph.

1 Introduction

Visualizing social networks with respect to centrality, the relative importance
that actors hold within a relational structure, yields a graphical representation
that conveys domain-specific hierarchical information that aids in policy network
analysis [2]. When possible, planar layouts are preferred where actors are placed
at distances from the origin based upon their level of importance. Thus, vertices
are constrained to lie along concentric circles, called rings, with radii proportional
to the centrality of the respective actors. Radially monotone curves can be used
for edges, which denote relationships between actors. Each curve lies between
the rings of the endpoints of the edge. Such layouts are radial level planar if the
drawing is crossings free. If straight-line edges are used, edges may cross rings
interior to their endpoints, which can decrease readability; see Fig. 1.

Spiral edges have the added advantage that the radii used for the rings can
vary uniformly. This is not the case with straight-line edges. For instance, an
outerplanar graph admits a straight-line planar drawing in which the vertices lie
on a unit circle. If each vertex is perturbed to lie on a circle of different radii,
planarity may be lost unless extremely minute perturbations are used [4].

Some social networks have a structure that are conducive to the dynamic
visualization of actors whose centrality changes over time. The most dynamic
networks are radial level planar regardless of the centrality of the actors. In
representing a social network, we take the corresponding graph and label each
vertex with an integer denoting its degree of importance. This then becomes the
distance that each actor is placed from the origin.
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Fig. 1. Drawing a radial graph with different edge types
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Fig. 2. Three equivalent representations of radial level graphs

This leads us to consider the set of unlabeled radial level planar (URLP) graphs
that have a radial level planar layout for any distinct labeling. The term “un-
labeled” implies that the underlying structure of the graph determines whether
radial level planarity is always possible, independent of any labeling scheme. Al-
ternatively, URLP graphs can be defined as the set of graphs that can always be
drawn simultaneously without crossings with a radially monotone path. Labels
are given by the order that the vertices occur along the path; see Fig. 2(a). This
is related to the problem of simultaneous embedding in which multiple planar
graphs are drawn simultaneously on the same vertex set [3].

As an equivalent graphical representation, a radial level graph can be drawn
on a cylinder in which the rings are circles of equal radii at different heights along
the cylinder; see Fig. 2(b). The radial drawing may wrap around the cylinder. A
third alternate representation comes from cutting the cylinder along a vertical
line (a ray from the origin in Fig. 2(a)) and flattening the cut surface onto a
plane. The rings then become horizontal lines, and the edges becomes straight-
lines that can “wrap” from the right to the left side of the drawing; see Fig. 2(c).
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If no edges wrap in this third representation, then the graph is level planar.
Analogous to URLP graphs, graphs that are level planar for any distinct labeling
are unlabeled level planar (ULP). We use this last representation when drawing
radial graphs given its compactness and relationship to ULP graphs.

1.1 Related Previous Work

Radial level planar graphs can be recognized and embedded in linear time [1]. A
linear-time straight-line drawing algorithm exists for level planar graphs [5,11],

(l)(j) (k)(i)(h)

(a) (b) (g)(e) (f)(d)(c)

(q)(o) (p)(n)(m) (r) (s)

(v)(u)(t) (w) (x) (y)

G5 G6 Gα Gκ GδT8 T9
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Connected
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Graphs
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G7 GδpGκpGαpG6pG5pG9

Fig. 3. Forbidden ULP and URLP trees and graphs

(a) caterpillar → generalized caterpillar (b) radius-2 star (c) degree-3 spider → extended 3-spider

(d) K4 → extended K4 subgraph (g) G8(f) tri-K3 star(e) circular caterpillar → generalized circular caterpillar

Fig. 4. Classes of ULP trees and graphs in (a)–(d) and classes of additional URLP
graphs in (e)–(g) where dashed edges are optional and white vertices are cut vertices
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Fig. 5. Six types of ULP blocks where the joining blocks in (a)–(e) can be substituted
for an internal edge (u, v) of a caterpillar and the ending block in (f) can be substituted
for at most one leaf edge (u, �) incident to each endpoint u of the spine in order to
form (g)

which can be adapted for the radial case in terms of radially monotone curves.
These algorithms are for a given labeling in which duplicate labels are permitted.

ULP trees have been characterized in terms of the two forbidden trees T8 and
T9 in Fig. 3(a)–(b) [6,7]. As a result, the universe of trees is partitioned into those
that contain a subtree homeomorphic to T8 or T9 and the class of ULP trees. An
ULP tree was shown to be either (i) a caterpillar (a tree where the removal of all
leaves yields a path, its spine), (ii) a radius-2 star (a subdivided K1,k such that
k ≥ 3 where one or more edges have been subdivided exactly once), or (iii) a
degree-3 spider (an arbitrarily subdivided K1,3); see Fig. 4(a)–(c).

Similarly, ULP graphs have been characterized in terms of the seven forbidden
graphs in Fig. 3(a)–(g) [9,10] where any graph without a subdivision of one
of these seven forbidden graphs is ULP. The class of ULP graphs consists of
(i) generalized caterpillars (GCs) (formed by substituting edges of a caterpillar
for ULP blocks as described in Fig. 5), (ii) rstars (R2Ss), (iii) extended 3-spiders
(E3Ss) (formed by adding two optional edges to a degree-3 spider so as to connect
two leaf vertices or two neighbors of the root vertex of degree 3), or (iv) extended
K4 subgraphs (EK4s) (a connected subgraph of a subdivided K4 where exactly
one edge has been arbitrarily subdivided); see Fig. 4(a)–(d). All ULP graphs
have level planar drawings that only require linear time and space; see Fig. 6.

1.2 Our Contribution

Of the four classes of ULP graphs, only generalized caterpillars are drawn block-
by-block proceeding left to right as in Fig. 6(a). This is unlike extended 3-spiders
that can have spirals when drawn as in Fig. 6(c). Given that edges can wrap
around in a radial level planar graph, this leads to the URLP class of generalized
circular caterpillars (GCCs). These are constructed by substituting any of the
joining ULP blocks in Fig. 5(a)–(e) for a cycle edge of a circular caterpillar
(a graph where the removal of all endpoints yields a cycle); see Fig. 4(e). Observe
that extended K4 subgraphs are a subclass of generalized (circular) caterpillars.
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Fig. 6. Level planar drawings of the four classes of ULP graphs

A tri-K3 star (TK3S) is formed by adding up to three edges to a radius-2 star
(with at most three subdivided edges) that connect one, two, or three leaves to
the root vertex as in Fig. 4(f). The graph G8 in Fig. 4(g) is a subdivision of
Gδ in Fig. 3(g), a tri-K3 star, where the 3-cycle has been subdivided to form a
4-cycle. Both classes of graphs admit radial level planar drawings where an edge
of each cycle can wrap around so as to avoid a crossing.

We extend the ULP characterization to all URLP graphs as follows:

1. First, we show that a disconnected graph is URLP if and only if it neither
contains a subgraph homeomorphic to either tree in Fig. 3(a) or (b) nor
to one of the disconnected graphs in Fig. 3(h)–(l) for a total of 7 forbidden
subdivisions. We prove that this is equivalent to each component being ULP.

2. Second, we show that a connected graph is URLP if and only if it neither
contains a subgraph homeomorphic to either of the trees in Fig. 3(a)–(b) nor
to one of the connected graphs in Fig. 3(m)–(y) for a total of 15 forbidden
subdivisions. We prove that this is equivalent to the graph either being
ULP or belonging to one of the three additional classes of URLP connected
graphs, which are generalized circular caterpillars, tri-K3 stars, and graphs
isomorphic to G8.

3. Third, we provide O(n)-time drawing algorithms for each new class of
n-vertex URLP graphs that are drawn on O(n) × n integer grids.

2 Preliminaries

Track �j is the horizontal line {(x, j) : x ∈ IR}. Ring cj is the circle {(x, y) :
x2+y2 = j2, (x, y) ∈ IR2} in Cartesian coordinates or {(j, θ) : j ∈ IR, 0 ≤ θ ≤ 2π}
in radial coordinates. Curve L = {(x(s), y(s)) : s1 ≤ s ≤ s2} = {(r(s), θ(s)) :
s1 ≤ s ≤ s2} in parametrized Cartesian and radial coordinates, respectively, is
y-monotone if y(s) < y(s′) when s < s′ and r-monotone if r(s) < r(s′) when
s < s′. A m×n circular grid consists of n concentric rings {(r′, θ) : 0 ≤ θ ≤ 2π}
for r′ ∈ {1, . . . , n} and m rays {(r, θ′) : r ∈ IR} for θ′ ∈ { 2kπ

m : k ∈ {1, . . . , m}}.
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Let G(V, E) be an undirected graph with vertex set V and edge set E =
{(u, v) : u, v ∈ V, u �= v} with no isolated vertices. Let φ be a labeling on V
with the integers 1 to k, i.e. φ : V �→ {1, . . . , k} where k ≤ |V |. A level is
a set of vertices with the same label where the jth level is the vertex subset
Vj = {v ∈ V : φ(v) = j}. If φ(u) �= φ(v) for any (u, v) ∈ E, then G(V, E, φ)
forms a (radial) level graph on k levels. Radial level graph G(V, E, φ) is (radial)
level planar if a drawing can be realized such that (i) each vertex of Vj is placed
along track �j (or ring cj), (ii) each edge (u, v) is drawn with a y-monotone
(or r-monotone) curve (that can wrap), and (iii) each pair of curves can only
intersect at their endpoints. Graph G(V, E) is unlabeled (radial) level planar if
(radial) level graph G(V, E, φ) is (radial) level planar for every bijective labeling
φ. A (radial) level planar drawing is also called a realization.

3 Drawing Unlabeled Radial Level Planar Graphs

Any graph that has a level planar drawing has a radial level planar realization as
seen by the equivalence of the layouts in Fig. 2. Hence, the drawing algorithms for
ULP graphs given in [7,9,10] naturally extend to the radial setting. The drawing
algorithm for generalized caterpillars detailed in [9,10] draws each ULP block
proceeding left to right; see Fig. 6(a). Extending this algorithm to draw each
ULP block of a generalized circular caterpillar proceeding clockwise in a radial
setting gives the next lemma. See [8] for a more detailed proof.

Lemma 1. An n-vertex generalized (circular) caterpillar with m ULP blocks can
be realized on a 4m× n (circular) grid in O(n) time for any distinct labeling.

We can also directly extend the drawing algorithms from [7,9,10] for radius-2
stars and extended 3-spiders to give the next two lemmas, respectively.

Lemma 2. An n-vertex radius-2 star can be realized in O(n) time on a (circu-
lar) (2n + 1)× n grid for any distinct labeling.

Lemma 3. An n-vertex extended 3-spider can be realized in O(n) time on an
(n + 1)× n (circular) grid for any distinct labeling.

Next, we show how to realize the remaining two classes of URLP graphs in the
subsequent two lemmas; the full proofs of each can be found in [8].

Lemma 4. An n-vertex tri-K3 star G can be realized on a 5 × n circular grid
in O(n) time for any distinct labeling.
Proof Sketch: Figure 7 illustrates how to handle the four distinct cases of draw-
ing a tri-K3 star with the three 3-cycles r--s--t--r, r--v--w--r, and r--x--y--r where
φ(s) > φ(t), φ(v) > φ(w), φ(x) > φ(y), and φ(s) > φ(v) > φ(x).

Initially, s, t, x, and y are placed two units to the right of r, while v, w are
placed to two units to the left of r. In the first case φ(t) > φ(x) so that no
crossings will occur. In the remaining three cases where φ(x) > φ(t), the vertices
t, w, and y have the minimum labels of any 3-cycle, respectively, and vertices
switch sides as depicted in Fig. 7(b)–(d). Finally, leaf edges are either drawn one
unit to the left or to the right of r so as to avoid any edge overlap. ��
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Fig. 7. Four cases of how to avoid edge overlaps for tri-K3 stars
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Fig. 8. Four cases of how to avoid edge overlaps for G8

Lemma 5. The graph G8 can be realized on a 5× 8 circular grid in O(1) time
for any distinct labeling.

Proof Sketch: If any chain of length 2 of G8 is radially monotone, then drawing
G8 is equivalent to drawing the generalized caterpillar or tri-K3 star obtained by
replacing the chain with a single edge where either the algorithms of Lemmas 1
or 4 can be used. Otherwise, Fig. 8 depicts the four remaining cases of how to
draw G8 if this is not the case. ��

4 Forbidden Unlabeled Radial Level Planar Graphs

We define FULP :={T8, T9, G5, G6, Gα, Gκ, Gδ} in Fig. 3(a)–(g), TURLP :={T8, T9}
(forbidden URLP trees) in Fig. 3(a)–(b), DURLP := {G5 �, G6 �, Gα �, Gκ �, Gδ �}
(disconnected forbidden URLP graphs) in Fig. 3(h)–(l), CURLP := {G9, G7, G5 p,
G6 p, Gα p, Gκ p, Gδ p, Gβ i, G5 i, G6 i, Gα κ, Gκ δ, Gδ α} (connected forbidden URLP
graphs) in Fig. 3(m)–(y), and FURLP := TURLP ∪ DURLP ∪ CURLP

1.
The labelings in Fig. 9 of FULP were shown to be level non-planar in [9,10].

In this section, we prove that of these, only the two trees, T8 and T9, in TURLP

are also radial level non-planar. We show how to add an extra edge to each of

1 Subscripts �, p, and i stand for “lone”, “pendant”, and “internal” edges, respectively.
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Fig. 10. Radial level non-planar labelings of the 20 cyclic forbidden URLP graphs

the five cyclic graphs of FULP in three different ways so as to produce 15 of
the graphs of FURLP in Fig. 3(h)–(l), (o)–(s), and (u)–(y) that have radial level
non-planar labelings in Fig. 10(a)–(e), (g)–(k), and (m)–(q), respectively. For
the three remaining graphs of FURLP in Fig. 3(m),(n), and (t), we show that the
labelings in Fig. 10(f),(l), and (r), respectively, are also radial level non-planar.

Full proofs for omitted or shortened proofs in this section can be found in [8].
First, we observe a property common to all the embeddings in Figs. 9 and 10.

Observation 6. Suppose a radial level graph G has a labeling φ and a path
a--b--c--d--e such that φ(a) > φ(d) > φ(c) > φ(b) > φ(e). For G to be radial level
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planar, G must have an embedding where the path does not wrap such that the
edge a--b intersects the tracks �c and �d to the left of c and d (with respect to
the ray that cuts the cylinder as in Fig. 2(b)–(c)), respectively, and the edge d--e
intersects the tracks �b and �c to the right of b and c, respectively.

We next see that only T8 and T9 of FULP are also radial level non-planar.

Lemma 7. Of the seven forbidden ULP graphs in FULP, only T8 and T9 are also
radial level non-planar with distinct labels.
Proof Sketch: Using the labeling in Fig. 9(a) for T8, Observation 6 implies that
a--b--c--d--e proceeds left to right. Since the vertex c lies between the edges a--b
and d--e, so must the edge c--g. As a result, either the edge f--g or g--h must
cross some edge of a--b--c--d--e. A similar argument can be given for T9 using
the labeling in Fig. 9(b). Finally, each remaining graph is either a generalized
circular caterpillar or a tri-K3 star, which are URLP by Lemmas 1 and 4. ��
Next we show that all of the graphs in FURLP are radial level non-planar.

Lemma 8. There exist distinct labelings preventing each of the cyclic forbidden
URLP graphs in FURLP from being radial level planar.

Proof Sketch: Each of the 16 graphs in Fig. 10(a)–(k), (m)–(q) contain a sub-
graph of one of the five cyclic forbidden graphs of FULP using the same relative
labeling as in Fig. 9(c)–(g). This means that in order for any of these graphs
to be radial level planar, an edge e must wrap. However, in each case (except
for Gα κ), the graph has an extra edge with extreme labels that prevents e from
wrapping. In the case of Gα κ in Fig. 10(o), if the edge a--e wraps, then the extra
edge b--d must cross the path f--c--g whose endpoints have extreme labels. In
the cases of G7 and Gβ i in Fig. 10(l) and (r), the labeling is the same as the
labelings of Gα p and Gδ α in Fig. 10(k) and (q) where vertices e and g have been
merged into vertex e with an extreme label that forces crossing in each case. ��
We can extend any radial level non-planar labeling with the next lemma.

Lemma 9. If a graph G contains a subgraph homeomorphic to a graph G̃ with a
radial level non-planar labeling, then G also has a radial level non-planar labeling.

Lemma 9 allows us to generalize Lemmas 7 and 8 to the following lemma:

Lemma 10. If a graph contains a subgraph homeomorphic to any of the graphs
in FURLP, then it cannot be URLP with distinct labels.

5 Characterizing Unlabeled Radial Level Planar Graphs

In this section, we characterize disconnected and connected URLP graphs sepa-
rately. The omitted proofs in this section can be found in [8].
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5.1 Disconnected Unlabeled Radial Level Planar Graphs

We characterize the class of disconnected URLP graphs in terms of the forbidden
graphs TURLP ∪ DURLP. First, we consider minimality.

Lemma 11. Each forbidden graph in TURLP and DURLP is minimal in that the
removal of any edge yields one or more URLP graphs.

In a disconnected graph G, each component (discounting isolated vertices) con-
tains at least one edge. Since one of the components of each graph in DURLP is
an isolated edge, that edge prevents any other component of G from having a
subdivision of a cyclic graph from FULP. Hence, we can extend Theorem 8.3.13
of [9] that characterizes ULP graphs in terms of FULP to the following theorem:
Theorem 12. For a disconnected graph G, with no isolated vertices, the follow-
ing three statements are equivalent:

1. G does not contain a subgraph homeomorphic to T8, T9, G5 �, G6 �, Gα �,
Gκ �, or Gδ �.

2. Each component of G is either a generalized caterpillar, a radius-2 star, an
extended 3-spider, or an extended K4 subgraph.

3. G is URLP with distinct labels.

5.2 Connected Unlabeled Radial Level Planar Graphs

Here we characterize the class of connected URLP graphs in terms of the forbid-
den graphs TURLP ∪ CURLP. We start by considering minimality.

Lemma 13. Each connected forbidden graph in CURLP is minimal in that the
removal of any edge that does not disconnect the graph yields an URLP graph.

Lemma 8.3.7 of [9] characterizes generalized caterpillars in terms of the four
forbidden graphs in Fig. 11(a)–(d) as follows:

Lemma 14. A connected graph G is a generalized caterpillar if and only if G
does not have a subgraph homeomorphic to G6, C5, Gω, or T7.

This requires first characterizing graphs in which the maximum length of any
cycle is 4, which is Corollary 8.3.2 from [9]:

Lemma 15. Every block of a connected graph G is isomorphic to a K4, (K3)∗,
or (C4)+ block, or G contains a C5 subdivision.

(a) G6 (b) C5 (c) Gω (d) T7 (e) G5 i (f) G6 i (g) Gβ

Fig. 11. Forbidden graphs for generalized caterpillars in (a)–(d) and for generalized
circular caterpillars in (d)–(g)
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We extend this characterization to include generalized circular caterpillars in
terms of the four forbidden graphs in Fig. 11(d)–(g) as follows:

Lemma 16. A connected graph G is either a generalized caterpillar or a gen-
eralized circular caterpillar if and only if G does not contain a subgraph homeo-
morphic to T7, G5 i, G6 i, or Gβ.

Two of the four forbidden graphs of generalized (circular) caterpillars are con-
tained in CURLP. For the other two graphs T7 and Gβ , Figs. 12 and 13 consider
all possible ways to add an edge to either obtain an URLP graph or another
forbidden graph in TURLP ∪ CURLP. This gives the following two lemmas:

Lemma 17. If G is a connected graph that contains a subgraph homeomorphic
to T7, but does not contain a subgraph homeomorphic to G6 p, Gα p, Gκ p, Gδ p,
G6 i, Gκ δ, Gδ α, G7, G9, or T8, then G is an extended 3-spider, a radius-2 star,
an tri-K3 star, or is isomorphic to G8.
Lemma 18. If G is a connected graph that contains a subgraph homeomorphic
to Gβ, but does not contain a subgraph homeomorphic to G5 p, G6 p, G6 i, Gα κ,
Gβ i, or T8, then G is an extended 3-spider.

We next show that TURLP∪CURLP forms a set of forbidden URLP graphs with the
subsequent lemma; the full proof of which can be found in [8].

Lemma 19. The class of connected URLP graphs with distinct labels does not
contain a subgraph homeomorphic to any of graph in TURLP ∪ CURLP.

Proof Sketch: By applying Lemma 16 and comparing degree sequences, cycle
lengths, and the number of cycles of each graph G ∈ TURLP ∪CURLP to each class
of URLP graphs, we see that in each case G is a forbidden graph. ��
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Lemma 20. If G does not contain a subgraph homeomorphic to a graph in
TURLP ∪ CURLP, then G is a generalized (circular) caterpillar, a radius-2 star,
an extended 3-spider, a tri-K3 star, or is isomorphic to G8.

Proof. If G is not a generalized (circular) caterpillar, then by Lemma 14 G must
contains a subgraph homeomorphic to T7, G5 i, G6 i, or Gβ . However, since both
G5 i and G6 i are in CURLP, G must either contain a subgraph homeomorphic to
T7 or Gβ . In the first case, G must be an extended 3-spider, a radius-2 star,
tri-K3 star, or is isomorphic to G8 by Lemma 17. In the second case, G can only
be a extended 3-spider by Lemma 18. ��

Combining Lemmas 1, 2, 3, 4, 5, 10 19, and 20 gives our final theorem.

Theorem 21. For a connected graph G, the following statements are equivalent:

1. G does not contain a subgraph homeomorphic to T8, T9, G7, G9, Gβ i, G5 p,
G6 p, Gα p, Gκ p, Gδ p, G5 i, G6 i, Gα κ, Gκ δ, or Gδ α.

2. G is either a generalized caterpillar, a generalized circular caterpillar, a
radius-2 star, an extended 3-spider, a tri-K3 star, or G is isomorphic to G8.

3. G is URLP with distinct labels.

6 Conclusion and Future Work

In this extended abstract, we generalized the ULP characterization to radial level
graphs with URLP graphs that are radial level planar for any distinct labeling.
We provided separate characterizations for disconnected and connected URLP
graphs in terms of 7 and 15 forbidden subdivisions, respectively, along with
linear-time drawing algorithms. Future work includes considering the case of
duplicate labels and providing linear-time recognition algorithms to determine
whether a graph is URLP.
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Upward Planarization Layout
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Abstract. Recently, we presented a new practical method for upward crossing
minimization [6], which clearly outperformed existing approaches for drawing
hierarchical graphs in that respect. The outcome of this method is an upward
planar representation (UPR), a planarly embedded graph in which crossings are
represented by dummy vertices. However, straight-forward approaches for draw-
ing such UPRs lead to quite unsatisfactory results. In this paper, we present a
new algorithm for drawing UPRs that greatly improves the layout quality, lead-
ing to good hierarchal drawings with few crossings. We analyze its performance
on well-known benchmark graphs and compare it with alternative approaches.

1 Introduction

The visualization of hierarchical graphs representing some natural flow of information
is one of the key topics in graph drawing. It has numerous practical applications and
received a lot of scientific attention since the very beginning of graph drawing. For-
mally, we are given a directed acyclic graph (DAG) G and we want to find an upward
drawing of G, i.e., a drawing of G in which all arcs are drawn as curves monotonically
increasing in the vertical direction.

In 1981, Sugiyama et al. [18] proposed their well-known three-phase framework for
creating such drawings, which is still widely used:

1. Layer assignment: Assign nodes to layers such that arcs point from lower to higher
layers; split long arcs spanning several layers by creating dummy nodes.

2. Node Ordering/Crossing reduction: Order nodes on the layer to reduce the num-
ber of arc crossings.

3. Coordinate assignment: Assign coordinates to original nodes and dummy nodes
(bend points) such that we get only few bend points and short arcs.

A vast amount of modifications and alternatives for the individual steps have been pro-
posed, e.g., Gansner et al. [11] give a LP-based formulations for layer and coordinate
assignment. The layer assignment computes a layering which minimize the sum of the
vertical edge lengths (i.e., the number of layers an edge spans). The coordinate assign-
ment minimizes the objective function

∑
e=(v,w)∈A w(e) · |X(v)−X(w)| where w(e)

gives the priority for drawing e vertically and A is the arc set after splitting long arcs.
Brandes and Köpf [3] propose an approach which is simpler and faster than [11], but

� Hoi-Ming Wong was supported by the German Research Foundation (DFG), priority project
(SPP) 1307 “Algorithm Engineering”, subproject “Planarization Practices in Automatic Graph
Drawing”.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 94–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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nevertheless it compute coordinate assignment with similar quality. Brankes et al. [4]
investigate the computation complexity of the width-restricted graph layering problem.
They proved that width-restricted graph layering is NP-hard when taking the dummy
nodes into account. Healy and Nikolov give an experimental analysis of existing layer-
ing algorithms for DAGs. They also give an ILP formulation which computes a layering
with minimum number of dummy nodes with a given upper bound on the width and
height of the layering and an branch and cut algorithm to solve it [14,13].

However, a major drawback of Sugiyama’s framework could not be solved by any of
these modifications: Since layer assignment and crossing reduction are realized as inde-
pendent steps, the resulting drawing might have many unnecessary crossings caused by
an unfortunate layer assignment. A main challenge is to perform crossing reduction in-
dependent of a layer assignment. First steps to adapt the planarization approach for undi-
rected graphs [1,12] have been presented in [2,7]; Eiglsperger et al. [10] presented the
more advanced mixed upward planarization approach. However, even the latter approach
still needs some kind of layering. Experimental results suggested that this approach pro-
duces considerably less crossings than Sugiyama’s algorithm. In [6], we presented a novel
approach for upward planarization that does not require any layering. We could experi-
mentally show that this new approach clearly outperforms Eiglsperger’s mixed upward
planarization and Sugiyama’s algorithm with respect to crossing reduction.

The output of an upward planarization procedure is an upward planar representation,
i.e., a representation of the original digraph, in which crossings are replaced by dummy
vertices (crossing dummies), with a planar embedding and designated external face. In
our case, the upward planar representation will always be a single-source digraph; if the
input digraph contains multiple sources we introduce a super-source ŝ connected to all
sources and do not count crossings with arcs incident to ŝ.

A simple method to draw a DAG by applying upward planarization consists of using
Sugiyama’s coordinate assignment phase for drawing the upward planar representation,
where we use a straight-forwardly obtained layering and the ordering of the nodes on
each layer implied by the upward-planar representation and embedding. However, this
method produces quite unsatisfactory drawings with too many layers and much too long
arcs. The main objective of this paper is to significantly improve on this simple method,
by enhancing the computation of layers and node orderings, taking into account the

(a) Sugiyama (24 crossings) (b) Upward planarization (4 crossings)

Fig. 1. Instance g.29.16 (North DAGs) with 29 nodes and 38 arcs
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special roles of crossing dummies. This will allow us to reduce the heights of the draw-
ings and lengths of the arcs substantially, resulting in much more pleasant drawings.

Since upward planarization yields an upward planar representation, we can alter-
natively also use drawing methods for upward planar digraphs to draw it, cf. [7]. We
consider two such algorithms in our experimental study:

Dominance drawings: The linear-time algorithm by Di Battista et al. [9] draws planar
st-digraphs with small area on a grid. We apply this algorithm by augmenting the
upward planar representation to a planar st-digraph and omitting the augmenting
arcs in the final drawing.

Visibility representations: We use the algorithm by Rosenstiehl and Tarjan [17] for
computing a visibility representation on the grid. This algorithm is based on bipo-
lar orientations implied by an st-numbering. By augmenting the upward planar
representation to an st-planar digraph, we obtain a bipolar orientation such that the
resulting drawing is upward planar. Again, we omit augmenting edges in the final
drawing.

Fig. 1 shows a relatively small digraph, where the benefits of the new upward planariza-
tion approach can be easily seen: While the classical Sugiyama’s approach leads to few
layers, our approach can expand the layout of the subgraph that looks very congested
otherwise.

Upward Planarization. We briefly sketch the planarization approach proposed in [6]. It
can be divided into two phases: the feasible subgraph computation and the reinsertion
phase. In the first phase the input DAG G is transformed into a single source digraph
G′ by adding an artificial super source ŝ and connecting it to the sources of G. Then
we compute a spanning tree T of G′ and iteratively try to insert the remaining arcs
into T . Thereby, we perform a subgraph feasibility test after each inserted arc e: we do
not only test upward planarity but also if all remaining edges can potentially still be
inserted (with crossings) in an upward fashion. If the resulting digraph is not feasible in
this sense, we add e to a set of deleted arcs B instead. By these operations, we obtain
an embedded feasible upward planar subgraph U .

In the second phase, the arcs of B are reinserted into U one after another such that
few crossings arise. Thereby, the crossings caused by the reinsertion are replaced by
crossing dummies. As a result, we obtain an upward planar representation R of G′

(cf. Fig. 2). Note that R is an embedded upward planar single-source digraph. It can
easily be augmented to a single-source, single-sink digraph by adding additional arcs
(face-arcs) and an additional super sink t̂ that is connected with the former sinks on the
external face.

In the following, R will always be an embedded single-source, single-sink upward
planar representation of G. Let v and e be a node and an arc in G, respectively. We
denote the corresponding node and arc in R by vR and eR, respectively.

2 Upward Planarization Layout Algorithm

The crucial starting point of our algorithm can be stated as follows:
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Proposition 1. Given an upward planar representation R of a DAG G, there exists a
layering of the nodes of G, a node order per layer, and a node placement including bend
points, such that the thereby induced drawing of G realizes R, i.e., the crossings arising
in G are the ones modeled by R.

We observe that a realizing drawing of G hence follows Sugiyama’s framework, but
the individual steps do not simply optimize their respective objectives, but follow the
overall goal of simulating R. Our algorithm hence divides naturally into the three steps
known from Sugiyama’s framework, whereby the first two steps are closely related.

As sketched in Sect. 1 (and investigated in the experimental comparison, Sect. 3.1),
it is easy to find some solution that realizes R. Yet, even if G is only of moderate size, R
can become much larger due to the crossing dummies and long arcs. This causes weak
runtime performance, many layers, and overall unsatisfactory drawings. Hence our al-
gorithm aims at minimizing the required layers, thereby also reducing the necessary
dummy nodes from splitting long arcs.
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Fig. 2. Illustration of the upward planarization approach by Chimani et al. [6]. (a) input DAG
G augmented to G′ via the artificial super source ŝ; (b) embedded feasible subgraph U of G′

obtained by deleting the arcs (10, 13), (2, 14), (4, 3), (6, 5); (c) upward planar representation R
of G after reinserting the deleted arcs (dashed line). R contains five crossing dummies. By adding
face-arcs (drawn with hollow arrow heads) and the super sink t̂, R becomes a single-source,
single-sink digraph.

2.1 Layer Assignment and Node Ordering

Let H be a copy of G that we will use to obtain a valid layering for G, cf. Fig. 3. For
any two nodes u, v ∈ V (G), we add an auxiliary arc (u, v) to H if: (a) there exists no
directed path from u to v in G, but (b) there exists a directed path from uR to vR in R.
Part (a) prohibits the unnecessary generations of transitive arcs. Part (b), in conjunction
with the face-arcs and the single-source, single-sink property of R, ensures that the
hierarchical order of R is mapped to H . Since G and R are DAGs, H is also acyclic,
and we can use any existing layering algorithm on H . Let L = 〈L1, L2, ..., L�〉 be the
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Fig. 2. Arcs in H but not in G are drawn as dotted
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Fig. 3. Layer Assignment and Node Ordering

layering of H , and therefore also for G; i.e.,
⋃̇

1≤i≤�Li = V (G). We can extend this
layering naturally, by splitting any arc that spans more than one layer into a chain of arc
segments by introducing dummy nodes (long-arc dummies).

Considering the layering L, we now have to arrange the nodes on each layer accord-
ing to the order induced by R. For this purpose, we consider the order of the arcs around
each node, as given by R. In particular, we can recognize the left incoming arc for any
node v, which is the embedding-wise left-most arc with target v. Note that this arc is
defined for each node except for the super source.

Now consider any two disjoint nodes u and v on the same layer. We can decide their
correct order using the following strategy: we construct a left path pu from ŝ to uR

from back to front, i.e., starting at uR we select its left incoming arc e as the end of pu

and proceed from the source node of e, choosing its left incoming arc as the second to
last arc in pu, and so on. The construction of pu ends when we reach the super source,
which will always happen as R is a single-sink DAG. Analogously, let pv be the left
path from ŝ to vR.

The paths pu and pv may share a common subpath starting at ŝ; let cR be the last
common node of pu and pv , and let eu and ev be the first disjoint path elements, respec-
tively. We determine the ordering of u and v directly by the order of eu and ev at cR.
For example in Fig. 3, if uR and vR are the nodes ‘4’ and ‘12’ respectively (layer 5),
then node ‘0’ is the last common node of their left paths, and hence vR is left of uR.

Algorithmically, we can consider each layer independently. Introducing an auxiliary
digraph A, the above relationship between two nodes on the same layer can be modeled
as an arc between these two nodes in A. We can construct correct ordering for the layer,
by computing the topological order in A. Note that therefore we do not have to compute
the arc direction for all node pairs, but only for the ones that are not already “solved”
by other arcs through transitivity.

The above approach already gives a good layering and ordering realizing R. Yet, in
order to further improve the solution we introduce two postprocessing strategies:
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Fig. 4. A drawing of graph grafo2379.35 (Rome graphs): (left) without postprocessing, (right)
after applying source repositioning (white node) and long-arc dummy reduction (black node)

Long-Arc Dummy Reduction. A dominated subgraph of G w.r.t. a node s is the
subgraph induced by the nodes v for which G contains a directed path from s to v.
Most layering algorithms—in particular also the optimal LP-based approach [11]—
will put the nodes on the lowest possible layer. While this is generally a good idea, this
approach can be counter-productive in the context of the super source node that will be
removed from the final drawing: Since every source node s in G is attached to the super
source node ŝ (which is on the lowest layer), s may end up very low in the drawing,
even though most of its dominated subgraph requires higher layers, hence introducing
long arcs.

We tackle this problem using an approach similarly to the promotion node method
by Nikolov and Tarassov [15] by re-layering parts of dominated subgraphs after the
removal of ŝ incrementally, without modifying the hierarchical order induced by R.
Layers that become empty by these operations can be removed afterwards:

1. For Each source s in G (in decreasing order of their layer index j):
(a) Mark the subgraph dominated by s. Let Mi be the marked nodes on layer Li

(1 ≤ i ≤ �).
(b) For i = j + 1 To �:

If Mi are all long-arc dummies Then
1. Remove the nodes Mi and lift the marked subgraph on the layers be-

low Li by one layer.
2. If the new layering causes more edge crossings Or more long-arc

dummies Then Undo step 1. and Return

Repositioning the Sources. Since our upward planarization algorithm considers G
augmented with ŝ and inserts additional arcs considering a fixed embedding, the final
upward planar representation may contain artifacts in form of seemingly unnecessary
crossings, see, e.g., node ‘5’ in Fig. 4. To overcome this, we sift each source s through
all possible positions on its layer and choose the position where it causes the fewest
crossings.
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Fig. 5. A drawing of graph grafo159.24 (Rome graphs) with random node sizes: without (left)
and with (right) our bending arcs method and individual layer distance assignment

2.2 Coordinate Assignment

After the previous steps we get a correct layering and node ordering, realizing R.
Conceptually, we can use any coordinate assignment strategy (e.g., [11,5]) known for
Sugiyama’s layout; it will always maintain the given number of crossings. Such strate-
gies assign horizontal coordinates to the nodes, while maintaining the given ordering.
The aim is to generate drawings such that the subdivided long arcs are drawn as vertical
straight lines for their most part.

Yet, when considering the hard-to-measure “beauty” or “readability” of the resulting
drawings, we realize that we can improve on traditional coordinate assignment strate-
gies as they usually do not accommodate for the following two drawing problems:

– node-arc crossings: A line segment connecting nodes or bend-points between layer
Li and Li+1 may cross through some nodes of these two layers. This can easily
happen when node sizes are relatively large compared to the layer distance.

– long-line segments: The general direction of upward drawings should naturally be
along the vertical direction. Yet, there can be arc segments between some layers Li

and Li+1 which are very long since they span a large horizontal distance. Such arcs
can make Sugiyama-style drawings hard to read.

Fig. 5 shows the benefit of the two strategies described below. Note that these strategies
are not only applicable to our layout algorithm, but to any Sugiyama-style layout.

Vertical Coordinates. Usually, the vertical coordinates for the nodes on layer Li are
simply given by δ · i, where δ is the minimal layer distance. Yet, often we may prefer
larger distances between layers in order to improve readability: larger distances counter
both above problems, but in our context we are in particular interested in long-line
segments—we will discuss how to tackle node-arc crossings in the paragraph hereafter.

Buchheim et al. [5] propose a solution for variable layer distance computing which
dependents on the gradient of the line segments. However, our experimental results
show that drawing DAGs using upward planarization tends to produce drawings with
large height. Therefore we use a different approach which limits the maximal layer
distance to 3δ.

Let σi be the number of arcs between Li and Li+1 whose horizontal dimension
is at least 3δ. Then we set the vertical distance between these two layers to (1 +
min{σi/4, 2})δ.
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Fig. 6. (top) Avoiding node line-overlapping by introducing new bend-point into an arc e. (bot-
tom) The horizontal coordinates of the bend-points must be all distinct, even if all involved arcs
require a bend.

Bending Arcs. While enlarging the layer distance also helps to prevent node-line cross-
ings, the necessary height increase is usually not worth it, from the readability perspec-
tive. We therefore propose a strategy that allows trading additional bend-points for layer
distance. The strategy can be parameterized to find one’s favorite trade-off between
these two measures.

Let X(v) and Y (v) denote the horizontal and vertical coordinates of a node v, re-
spectively. An arc (or line segment) e = (v, w) is pointing upward from left to right
(right to left) if X(v) < X(w) (X(v) > X(w), resp.). Since purely vertical line seg-
ments cannot cross through nodes, we distinguish four cases: e is pointing upward from
right to left (or left to right) and v (or w) is a node on layer i. In all these cases, e has to
bend if it overlaps some nodes of Li. However, bending e might cause additional cross-
ings. To avoid this, we also have to bend the line segments that cross the just bended
line. W.l.o.g., we only discuss the case X(v) > X(w) with v ∈ Li. The other cases can
be solved analogously.

Let width(v) and height(v) denote the width and height of the bounding box of a
node v. Let a be the node on layer Li with the highest bounding box, and let α :=
height(a)/2. If v is a bend-point, we do not need to introduce an additional bend.
Instead we move v upwards by α. It can happen that v was already shifted downwards
before, due to one of our other cases. Then, we bend e by introducing a new bend-point
b and set X(b) := X(v) and Y (b) := Y (v) + 2α.

Assume v is not a bend-point. Then we have to introduce a bend point along e.
Thereby we have to consider that other arcs might also get rerouted, and accommo-
date enough space for them as well such that no two bend points may coincide. In
particular, it might be that the arcs leaving v’s left neighbor to the right might also
require additional bend points (cf. Fig. 6). Let u be the left neighbor of v on Li and
d := X(v)−X(u)−width(v)/2−width(u)/2 their inner distance. Let r be the num-
ber of line segments adjacent to v and pointing from right to left; among these, assume
that e is the j-th segment when counting from left to right. Let q be the number of line

segments adjacent to u and pointing from left to right. Then, Δ :=
(

d
q+r+1

)
gives the

distances between the potential bend points and the coordinates of the new bend-point b
are given by X(b) := X(u)+ width(u)

2 +Δ·(j+min{q, j−1}) and Y (b) := Y (v)+α.
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3 Experiments

We investigate the quality of our new algorithm in comparison with known algorithms.
We first compare different approaches to draw a computed upward planar representa-
tion, i.e., if the crossing number is the most important factor in our drawing. Afterwards,
we also compare our approach to Sugiyama’s traditional framework.

All algorithms are implemented in the free and open-source (GPL) Open Graph
Drawing Framework (OGDF) [16]. The experiments were conducted on an IBM
Thinkpad with an Intel Pentium M 1.7Ghz and 1GB RAM. We use the following well-
known benchmark sets:

Rome Graphs: The Rome graphs [8] are a widely used benchmark set in graph draw-
ing, obtained from a basic set of 112 real-world graphs. The benchmark contains
11528 instances with 10–100 nodes and 9–158 edges. Although the graphs are orig-
inally undirected, they have been used as directed graphs by artificially directing the
edges according to the node order given in the input files, see, e.g., [10,6].

North DAGs: The North DAGs1 have been introduced in an experimental comparison
of algorithms for drawing DAGs [7]. The set consists of 1277 DAGs collected by
Stephen North. The digraphs are grouped into 9 sets, where the first set contains
digraphs with 10 to 20 nodes and the i-th set contains 10i + 1 to 10(i + 1) nodes
for i = 2, . . . , 9.

3.1 Planarization Layouts

As outlined in the introduction, there are various other possibilities to draw an upward
planar representation R of a digraph. Therefore, we use R as the input for the following
algorithms. After computing the drawing, we can replace the dummy nodes by usual
arc crossings and remove the face-arcs and the super source/sink. By this approach we
guarantee that the resulting drawing realizes the specified representation.

We denote our new algorithm by Upward Planarization Layout (UPL). We compare
it to the Dominance drawing style [9], the Visibility Representation drawing style [17],
and to a straight-forward application of Sugiyama’s framework (UPSugiyama). For the
latter, we use Optimal Ranking [11] for layering, extract the node orders directly from
the upward planar representation, and use Fast Hierarchy [5] for coordinate assignment.

Fig. 7(a)–(d) give the height and width of the resulting drawings, respectively, aver-
aged over the digraphs with the same number of nodes. For a fair comparison between
the approaches, disregarding any differences due to spacing parameters, we have: The
height of a drawing is the number of required layers, in case of UPL and UPSugiyama,
and the number of vertical grid coordinates in case of Dominance and Visibility. The
width of a drawing is the maximum number of elements per layer, or per horizontal grid
line, respectively.

For a fair runtime comparison (Fig. 7(e) and (f), time in seconds), we use the same
coordinate assignment algorithm for UPL as for UPSugiyama. This choice is due to
the fact that the alternative ILP approach [11] would require too much time for UP-
Sugiyama, which has to consider very large digraphs due to the crossing and long-arc

1 www.graphdrawing.org/data/index.html
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Fig. 7. Comparison with other algorithms to draw upward planar representations; the data points
represents average values for the corresponding node groups

dummies. Note that the above height and width measures are invariant under the choice
of coordinate assignment. We omit the runtime figures for the linear-time algorithms
Dominance and Visibility, as they are usually below any measurable threshold.

We see that our new approach clearly outperforms all other approaches on the geom-
etry measures, independent of the benchmark set. Also, the runtime comparison shows
UPL as the clear winner compared to UPSugiyama.
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Fig. 8. Comparison with Sugiyama’s algorithm; the data points represents average values for the
corresponding node groups

3.2 Comparison with Traditional Sugiyama

Finally, we can investigate how much the requirement of having a drawing with few
crossings costs in terms of other quality measures. Therefore we compare UPL to
a traditional Sugiyama approach that is not bound to a specific upward planar rep-
resentation. For the latter we use the experimentally most competitive combination
by layering via Optimal Ranking [11], using the barycenter heuristic for the crossing



Upward Planarization Layout 105

reduction step (best of 5 randomized runs), and assigning the coordinates via the exact
LP approach [11]. For a fair comparison, UPL also uses the latter coordinate assignment
algorithm. This time, the runtime of UPL furthermore includes the computation of the
planarization, as this step is not necessary for Sugiyama. Note that the implementation
of the planarization was vastly improved compared to the performance given in [6].

Clearly, the number of crossings in the pure Sugiyama approach are much higher
(Fig. 8(a) and (b)), which is consistent with the findings in [6]. As shown in Fig. 8(c)
and (d), our UPL drawings are of course higher than Sugiyama’s, by construction. Yet
we observe that the difference is not as large as one might have expected, and UPL
seems to be a good fit also with respect to this measure, if a small number of crossings
is an important issue. We can also see that UPL has certain advantages over Sugiyama’s
approach: A strong packing into few layers will usually require a wider drawing than
our planarization. Furthermore, such few layers can in fact be counterproductive from
the point of readability, see, e.g., Fig. 1. Overall, we can observe that UPL obtains a
more balanced aspect ratio than Sugiyama’s approach.

In terms of running time (Fig. 8(e),(f)), we see that while Sugiyama’s approach is
generally faster, UPL is not too slow either, requiring below 1.5 seconds for the large
instances.

4 Conclusion

Traditional methods of drawing DAGs consider the number of crossings only as a sec-
ond order priority. If it is of highest priority, one has to use algorithms to draw upward
planar representations. Our algorithm constitutes the first such algorithm that takes the
special crossing nodes into account. As our experiments show, it generates drawings
that are preferable over the other known methods to draw a given upward planar rep-
resentation. Furthermore, the drawing is also comparable to Sugiyama’s approach with
respect to other quality measures, while offering a smaller number of crossings.
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Abstract. We describe an algorithm for radial layout of undirected
graphs, in which nodes are constrained to the circumferences of a set
of concentric circles around the origin. Such constraints frequently occur
in the layout of social or policy networks, when structural centrality is
mapped to geometric centrality, or when the primary intention of the lay-
out is the display of the vicinity of a distinguished node. We extend stress
majorization by a weighting scheme which imposes radial constraints on
the layout but also tries to preserve as much information about the graph
structure as possible.

1 Introduction

In radial graph layout the nodes are constrained to be located on a set of con-
centric rings; for some or all nodes in a graph a radius is given, which typically
encodes the results of a preceding analysis step. Such drawings date back to the
1940s and are called ring or target diagrams [18]. The interpretation of these
rings is specific to the particular application at hand. The overall goals which
guide the design of radial layouts can be expressed as two criteria and are pos-
sibly contradictory:

– Representation of distances: The Euclidean distance between two nodes in
the drawing should correspond to their graph-theoretical distance. This is a
general objective common to all “organic” layout styles.

– Radial constraints: Nodes are associated with the radius of a circle centered
in the origin, and are constrained to be placed on the circumference of this
circle.

Radial layout occurs as a task in several applications. It is used for the ex-
ploration of large hierarchies in [19]; the hierarchy is laid out radially as a tree,
followed by an incremental force-based placement. This approach was later mod-
ified for dynamic real-time exploration of a filesharing network in [20], where
users interactively select a node to be moved into the center, while the current
immediate surrounding of that node is updated.
� Part of this work was done while the author was at the University of Konstanz,

Department of Computer & Information Science.
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A different approach is to extend the definition of level planarity to discrete
radial levels [1]; the traditional Sugiyama framework is enhanced accordingly for
linear-time embedding of level-planar graphs.

In the case of continuous radii representing some kind of substance, unary
constraints are imposed on the drawing for mapping centrality scores to visual
centrality [4]. The layout is done by simulated annealing, which allows for penalty
costs, e.g. for edge crossings, and is very flexible but also computationally de-
manding; this prohibits interactivity even for moderately sized graphs.

In the following, the two essential goals above are explicitly formulated as
objective functions, which measure how far a layout is from meeting the criteria,
and which are sought to be minimized. While the first objective is captured by
the traditional energy or stress measures, we try to fulfill the second objective
by introducing radial constraints into the energy-based layout model and using
a linear combination of the two objectives.

Quite recently, extensions of the stress term have been used for drawing graphs
with explicitly formulated aesthetic criteria, such as the uniform scattering of
the nodes in a graph over a unit disk [16], penalizing node overlaps [11], or
preserving a given topology [10].

All these approaches modify the distances themselves in one form or another,
while the approach presented in this contribution is based on engineering the
weights used in the stress minimization model. The weights are coefficients of
error terms involved in the quality criteria to be minimized. If chosen carefully,
the weights can be used to influence the configuration resulting from optimizing
the stress function modified by these weights; see Fig. 1 for an example. We
are not aware of previous work which makes systematic use of such a weighting
scheme to take up a particular perspective on a data set.

(a) unconstrained (b) with radial constraints

Fig. 1. Layouts of a social network (2075 nodes, 4769 edges), consisting of two known
clusters. The brightness of node colors is proportional to the graph-theoretical distances
from a distinguished focal node, which also defines the radii used in the constrained
layout, in which the two clusters are still visible.
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2 Preliminaries

Let G = (V, E) be an undirected graph, E ⊆
(
V
2

)
. We will denote the cardinalities

of the node and edge sets by n = |V | and m = |E|, respectively; it will be
convenient to index nodes by numbers, V = {1, . . . , n}. The graph-theoretical
distance between two nodes i, j is the number of edges on a shortest path between
i and j and is denoted di,j or, when there is no danger of confusion, dij . The
matrix D = (dij)ij ∈ Rn×n contains the distances between every two nodes in
G; the diameter of G is the maximum distance between any two nodes in G,
diam(G) = maxi,j∈V dij . All graphs are assumed to be connected; otherwise, all
connected components are just considered individually.

Two-dimensional node positions are denoted p(i) = (xi, yi); a layout of n
nodes is captured by two column vectors x = [x1, . . . , xn]T , y = [y1, . . . , yn]T ∈
Rn. The Euclidean distance between two nodes in a given layout p is defined as
‖p(i)− p(j)‖ =

(
(xi − xj)2 + (yi − yj)2

)1/2.

3 Stress, Weights, and Constraints

3.1 Stress

The foundation of the method presented in the following is multidimensional
scaling (MDS) [2,7]; originating in psychometrics and the social sciences, MDS
has been established and widely used in the graph drawing community for more
than three decades, as energy-based placement [15]. While there is a wide range of
variants and extensions, we will concentrate on the stress minimization approach
[12] in this contribution.

Given a set of desired distances among a set of n objects, the overall goal is to
place these objects in a low-dimensional Euclidean space in such a way that the
resulting distances fit the desired ones as well as possible. In the graph drawing
literature, the desired distances are usually graph-theoretical distances dij , and
the goal is to find two-dimensional positions p(1), . . . , p(n) with

‖p(i)− p(j)‖ ≈ dij (1)

attained as closely as possible for all pairs i, j. When the configuration is not
required to satisfy any further constraints, the objective function, called stress,
is the sum of squared residuals

σ(p) =
∑
i<j

wij

(
dij − ‖p(i)− p(j)‖

)2 (2)

over all the n(n − 1)/2 pairs of nodes, where wij ≥ 0 is a weight for the con-
tribution of the particular error term (dij − ‖p(i) − p(j)‖)2 for pair i, j to the
stress.

There is a wide consensus that configurations with a small stress value tend to
be aesthetically pleasing. The state-of-the-art approach to finding such layouts
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is stress majorization [8,12]; starting from an initial configuration, it generates
a sequence of improving layouts. When no geometric coordinates are at hand,
the iteration may be initialized at random; however, more favorable and robust
strategies are available for initial layouts, such as classical MDS [5].

In an iterative process, new coordinates x̂ = [x̂1, . . . , x̂n]T , ŷ = [ŷ1, . . . , ŷn]T ∈
Rn are computed from the current ones with the update

x̂i ←
∑

j �=i wij (xj + dij · (xi − xj) · bij)∑
j �=i wij

(3)

ŷi ←
∑

j �=i wij (yj + dij · (yi − yj) · bij)∑
j �=i wij

(4)

where

bij =

{
1

‖p(i)−p(j)‖ if ‖p(i)− p(j)‖ > 0,

0 otherwise.
(5)

This is repeated until the relative change in the configuration is below some
threshold value, or after a predefined number of steps. The sequence of layouts
generated in this way can be shown to have non-increasing stress and to converge
towards a local minimum [9].

3.2 Weights for Constraints

In early applications of MDS, each pair i, j of objects was assigned the same unit
weight by setting wij = 1 in (2); when a desired distance was not known for a
pair, this pair was simply ignored by using a zero weight for its contribution to
the stress.

In graph drawing it is a de-facto standard to set wij = d−2
ij to emphasize

the quality of the fit of local distances, i.e., the contribution of pairs i, j with
smaller target distances is increased compared to pairs with larger distances.
This weighting scheme was introduced in elastic scaling by McGee [17], and is
equal to the one used by Kamada and Kawai [15]. Instead of fitting absolute
values by minimizing absolute residual error terms (dij − ‖p(i) − p(j)‖)2, the
goal is to achieve a fit of the distance magnitudes, expressed by relative error
terms (1− ‖p(i)− p(j)‖/dij)2. Summing these over all pairs gives the sum

∑
i<j

(
1− ‖p(i)− p(j)‖

dij

)2

=
∑
i<j

1
d2

ij

(
dij − ‖p(i)− p(j)‖

)2
. (6)

In this sum the impact of larger distances in the unweighted stress (2) is lessened,
which is due to the square in the error term.

A reason for the favorable aesthetic properties of low-stress layouts is that no
node is preferred over others because minimizing the objective function tries to
achieve a balance in the fit of the desired distances. In most scenarios this is
appropriate and tends to give the drawing a balanced appearance.
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In some cases, users want to put more emphasis on some nodes, while other
nodes are regarded less important, by centering the view on a node and visualiz-
ing this node’s neighborhood more prominently. This can be done by introducing
suitable constraints on the configuration; when these constraints can be formu-
lated as desired distances, choosing the weights in a suitable way allows for
imposing them on the resulting layout.

What follows is a general framework for constraining drawings; while the
range of possible applications is wide, our contribution will concentrate on the
radial scenario. To avoid confusion, the objective function (2) will be termed
distance stress and denoted σW (p), with the subscript indicating that the stress
is modified by a weight matrix W = (wij)ij ∈ Rn×n. This stress model is
enhanced by a second set of weights Z = (zij)ij used in the constraint stress

σZ(p) =
∑
i<j

zij (dij − ‖p(i)− p(j)‖)2 (7)

whose minimization tries to fit the same distances and hence aims at representing
the same information, but highlights different aspects.

3.3 Interpolated Weights

A straightforward approach to imposing the constraints expressed in a weight
matrix is to directly minimize (7), but the resulting solutions tend to be trivial;
for example, consider a linear layout in which xi = ri, yi = 0 for all i ∈ V .
Instead, it is more effective to combine distance and constraint stress into a joint
majorization process, operating on a linear combination of the stress measures
σW (p) and σZ(p).

Initially, the nodes are allowed to move freely without considering the con-
straints at all, by minimizing just σW (x, y). Then, the constraints are granted
more and more control over the appearance of the drawing by dynamically chang-
ing the coefficients in this combination, and the bias is shifted from one to the
other criterion [3]. The influences of the distance and the radial components are
determined by the coefficients in the linear combination

σt(p) = (1 − t) · σW (p) + t · σZ(p) (8)

and the update terms for the majorization process (3) and (4) become

x̂i ←
∑

j �=i

(
(1− t) · wij + t · zij

)
·
(
xj + dij · (xi − xj) · bij

)
∑

j �=i

(
(1− t) · wij + t · zij

) , (9)

ŷi ←
∑

j �=i

(
(1− t) · wij + t · zij

)
·
(
yj + dij · (yi − yj) · bij

)
∑

j �=i

(
(1− t) · wij + t · zij

) . (10)

In the majorization, the radial constraints are not directly and immediately en-
forced; rather, the main visual features of the initial configuration are preserved.
Then the bias is shifted from the distance component towards the radial compo-
nent by gradually increasing t from 0 to 1. When the number of iteration steps
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k is predefined, a linear interpolation gives values t = 0, 1
k , 2

k , . . . , k−1
k , 1; other-

wise, the iterative process may be simply be repeated with a sequence of values
for k converging to 1 from below until the layout is sufficiently stable. Using
either variant, in each step, a slightly different objective function is sought to
be minimized, and the current iterate preconditions the next step, thus keeping
the series of iterates continuous.

In the multidimensional scaling literature, occasionally a distinction is made
between weakly and strongly constrained MDS problems [13]. In the former, the
solutions are allowed to deviate from the given constraints, and this deviation is
penalized by additional stress; in the latter, only solutions which exactly satisfy
the constraints are feasible. In a way, a strongly constrained MDS problem can
be thought of as a special case of a weakly constrained problem, in which the
deviation penalty is zero.

In this terminology, setting t = 1 in (8) turns a weakly constrained prob-
lem into a strongly constrained one, provided that the set of constraints is re-
alizable, i.e., a solution with zero constraint stress exists. In all other cases, it
should be noted that, even though the distance component vanishes when t → 1,
minimizing σt(p) is not the same as minimizing σZ(p) because of the running
preconditioning described above.

4 Radial Layout

4.1 Target Diagrams

The focus is put on a node by emphasizing the visual display of its vicinity, con-
straining all others to attain Euclidean distances corresponding to their graph-
theoretical distances, i.e., relative to the focused node, all structural distance-k
neighborhoods are mapped to a geometric k-neighborhood.

The constraint weight matrix takes only pairs of nodes into account in which
the focused node is involved, while reducing all other weights to zero. Without
loss of generality, let n be the index of the node to be focused. D and W are
defined as above, and the constraint weight matrix Z = (zij)ij has only zero
entries except for the n-th row and column, which contains weights

zij =

{
wij if i = n or j = n

0 otherwise
(11)

derived from the distances to the focal node, so that interpolating from W to Z
gradually increases the focal node’s relative impact on the configuration.

A famous social network was studied by Zachary and, subsequently, many
other sociologists. It describes the friendship relations among 34 members in a
karate club in a US university in the 1970s [21]. Over the course of a two-year
study, the network breaks apart into two clubs because of disagreements between
the administrator and the instructor, who leaves the club and takes about half
of the members with him. Fig. 2 shows how the same initial layout is modified
to a radial layout focused on the instructor (a) and the administrator (b).
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(a) focusing on the instructor

(b) focusing on the administrator

Fig. 2. Radial layouts of Zachary’s karate club network (n = 34, m = 77), by weight
interpolation, for t ∈ {0, 0.9, 1}. Members leaving with the instructor are shown as
yellow squares, members staying with the administrator as red circles.

4.2 Centrality Drawings

When the radial constraints do not directly correspond to one of the columns
in the distance matrix, we assume that this additional input is given as a vector
r = [r1, . . . , rn]T ∈ Rn, with ri ≥ 0 for all i ∈ {1, . . . , n}. The radial constraints
can be formulated in terms distances to the center, added to the distance matrix;
since node i is located on a circle with radius ri if its Euclidean distance to the
center is equal to ri, and the center has coordinates (0, 0), this is equivalent to

‖p(i)‖ ≈ ri. (12)

The origin is treated as an additional dummy node indexed with n + 1. The
stress majorization procedure is applied to a layout problem of n + 1 objects; in
[3] such a dummy is used to enforce a circular configuration by using the same
radius for all objects. The distance and weight matrices involved in (8) are

D =

⎡
⎢⎢⎢⎣

d11 · · · d1n r1
...

. . .
...

...
dn1 · · · dnn rn

r1 · · · rn 0

⎤
⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎣

d−2
11 · · · d−2

1n 0
...

. . .
...

...
d−2

n1 · · · d−2
nn 0

0 · · · 0 0

⎤
⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎣

0 · · · 0 r−2
1

...
. . .

...
...

0 · · · 0 r−2
n

r−2
1 · · · r−2

n 0

⎤
⎥⎥⎥⎦ (13)
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(a) betwenness centrality (b) closeness centrality

Fig. 3. Centrality layouts of the karate club social network, using two centrality mea-
sures to define the radii of nodes

Let c = [c1, . . . , cn]T be a centrality measure on the nodes of graph G. For every
node i ∈ V its radius is given by

ri =
diam(G)

2
·

⎛
⎝1−

ci −min
j∈V

cj

max
j∈V

cj −min
j∈V

cj + c(G)

⎞
⎠ , (14)

where multiplying with half the diameter serves to keep distances and the radial
constraints on the same scale, and c(G) is an offset parameter that prevents more
than one maximally central nodes from coinciding in the center [4]. Simplified
pseudo-code, which is targeted at radial constraints, is given in Algorithm 1. The
majorization is realized as a local variant, in which the coordinates are updated
node-by-node immediately.

For dynamic visualization scenarios, an inherently smooth transition between
layouts with different foci is obtained by simply using the intermediate layouts
given by the steps in the majorization process. In the transition from one focus
to the other, it is advantageous to not directly interpolate between the two
corresponding constraint weight matrices, but to take a detour via the original
weight matrix having entries d−2

ij , so as to re-introduce all the shortest-path
distances to remove artifacts potentially introduced after focusing on the first
node.

4.3 Travel Time Maps

When traveling with a public transportation system, schematic maps are essen-
tial for many users. Such maps depict lines, stations, zones, and connections to
other traffic systems. Since the primary use for such a map is travel planning
within this network, usability and readability are more important criteria than
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Algorithm 1. Radial layout
Input: connected undirected graph G = ({1, . . . , n}, E), radii r1, . . . , rn ∈ R+

number of iterations k ∈ N

Output: coordinates x, y ∈ Rn with
√

x2
i + y2

i = ri for all i ∈ {1, . . . , n}
D ← matrix of shortest path distances dij

W ← matrix of inverse squared distances d−2
ij

(x, y) ← layout with low σW (x, y)
for t = 0, 1

k
, 2

k
, . . . , k−1

k
, 1 do

ai ← ‖p(i)‖−1 if ‖p(i)‖ > 0, 0 otherwise
set all bij as in (5)
foreach i ∈ {1, . . . , n} do

xi ←
∑

j �=i(1 − t) · wij

(
xj + dij · (xi − xj) · bij

)
+ t · r−2

i (rixiai)

(1 − t)
∑

j �=i wij + t · r−2
i

yi ←
∑

j �=i(1 − t) · wij

(
yj + dij · (yi − yj) · bij

)
+ t · r−2

i (riyiai)

(1 − t)
∑

j �=i wij + t · r−2
i

the accurate representation of actual geographic positions. In the graph drawing
literature, this drawing style is called metro map layout [14].

One of the most prominent schematic maps is Beck’s famous London tube
map; it has been and is still being reworked and improved and has inspired simi-
lar maps for systems of public transportation all over the world. While schematic
maps are widely perceived as very useful, a potential drawback is that they tend
to distort a user’s perception of closeness, thus compromising the decisions made
in the travel planning process, e.g., because stations are displayed as more prox-
imate than they actually are.

If the starting and ending stations of a planned journey are known, the radial
constraints can be used to highlight the time needed for traveling between them,
by focusing only on one, as described above. In addition, shortest paths between
the two stations can be highlighted by putting the focus on both of them at the
same time.

Let the nodes in the focus be n− 1 and n, without loss of generality. Again,
D, W ∈ Rn×n are defined as the matrices of shortest-path distances and their
inverse squares, respectively. The weight matrix used is Z = (zij)ij ∈ Rn×n with

zij =

{
wij if i ∈ {n− 1, n} or j ∈ {n− 1, n}
0 otherwise

(15)

and contains a (n− 2)× (n− 2) submatrix with zero entries.
We use the connection graph of the London tube with estimated minimal

travel times obtained from the Transport for London web site, or derived from the
geographic distance, where estimates are not available. For the sake of simplicity,
we did not consider the time needed to walk from one track to the other when
changing lines (see also [6]).
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(a) travel time from Golders Green (b) travel time from Greenwich

(c) travel time between Golders Green and Greenwich

Fig. 4. Radial layouts of the London Tube graph using estimated travel times. The
concentric circles indicate travel times in multiples of 10 minutes. The stations are
constrained to be at distance equal to their minimum travel times.

Radial layouts are given in Fig. 4, where stations are placed at a distance
from the center proportional to their estimated minimum travel times from (a)
Golders Green and (b) Greenwich independently and (c) from both stations at
the same time.

5 Conclusion

Radial constraints fit well into the framework of multidimensional scaling by
stress majorization because the radii can be expressed in terms of desired
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Euclidean distances, which requires only minor modifications of available im-
plementations of the stress minimization.

Motivated by the results obtained from the relatively simple radial constraints,
and other experiments, we feel that they deserve more attention, because they
allow the aesthetic goals of the visualization results to be explicitly formulated
and quantified, and can be easily plugged into existing algorithms.

We think that, with the careful choice of a weighting scheme, the ideas pre-
sented above are easily carried over to layout tasks with more general constraints,
such as the display of grouping, the computation of dynamic layouts, and the
visualization of edge strength, certainty, or probability.
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16. Koren, Y., Çivril, A.: The binary stress model for graph drawing. In: Tollis, I.G.,
Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193–205. Springer, Heidelberg
(2009)

17. McGee, V.E.: The multidimensional scaling of “elastic” distances. The British Jour-
nal of Mathematical and Statistical Psychology 19, 181–196 (1966)

18. Northway, M.L.: A method for depicting social relationships obtained by sociomet-
ric testing. Sociometrics 3, 144–150 (1940)

19. Wills, G.J.: NicheWorks – interactive visualization of very large graphs. In: Di-
Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 403–414. Springer, Heidelberg
(1997)

20. Yee, K.-P., Fisher, D., Dhamija, R., Hearst, M.: Animated exploration of dynamic
graphs with radial layout. In: Proc. InfoVis, pp. 43–50 (2001)

21. Zachary, W.W.: An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33, 452–473 (1977)



WiGis: A Framework for
Scalable Web-Based Interactive Graph Visualizations

Brynjar Gretarsson, Svetlin Bostandjiev, John O’Donovan, and Tobias Höllerer

Department of Computer Science
University of California, Santa Barbara

{brynjar,alex,jod,holl}@cs.ucsb.edu

Abstract. Traditional network visualization tools inherently suffer from scal-
ability problems, particularly when such tools are interactive and web-based.
In this paper we introduce WiGis –Web-based Interactive Graph Visualizations.
WiGis1 exemplify a fully web-based framework for visualizing large-scale graphs
natively in a user’s browser at interactive frame rates with no discernible associ-
ated startup costs. We demonstrate fast, interactive graph animations for up to
hundreds of thousands of nodes in a browser through the use of asynchronous
data and image transfer. Empirical evaluations show that our system outperforms
traditional web-based graph visualization tools by at least an order of magnitude
in terms of scalability, while maintaining fast, high-quality interaction.

1 Introduction

This paper presents a novel visualization framework which supports user interactions
with large graphs in a web browser without the need for plug-ins or special-purpose run-
time systems. Our framework follows the common visual information browsing prin-
ciple: “Overview first, zoom and filter, then details on demand”[15] for exploration of
large information spaces. The WiGis framework supports information discovery in two
phases. Firstly, by enabling users to visualize and interact with large scale network data,
our framework provides a “big picture” of the information space. Secondly, interaction
is used to mold large scale data into the user’s own mental model, which serves as a
useful starting point for more fine-grained analysis.

Many tools for visualizing graphs have previously been developed. Some of these
tools run in a web-browser [6, 16, 17] while others are scalable for up to hundreds
of thousands of nodes [2, 14]. However, to our knowledge, no web-based tools exist
which are capable of interactive visualization of graphs at such scale [13]. We have
developed an extensible framework which enables interactive visualization of hundreds
of thousands of nodes natively in a web browser.

Based on our analysis of existing interactive web-based graph visualization systems,
we find that their main scalability limitation is due to the fact that most of them im-
plement some form of a thick client solution and subsequently need to load the entire
graph onto the client machine. In addition to large startup costs, this limits the maximum

1 www.wigis.net
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size of visualized graphs due to memory limitations of the browser or the client com-
puter. We circumvent these limitations by leveraging a novel technique for storing and
processing graph data on a powerful remote server. The server continuously produces
bitmap images and asynchronously sends them to the client’s browser. This provides
a smooth interactive animation natively in the browser. For example, we achieve more
than 10 frames per second for graphs of 10,000 nodes and 20,000 edges, with minimal
requirements for memory and processing power on the client machine. We believe that
this is an important contribution which supports interactive visualization of large graphs
even on machines with limited resources, such as mobile devices.

We use the term WiGis, or Web-based Interactive Graph Visualizations, for our
framework, which is a new addition to the set of currently available tools providing
“visualization as a service” [6]. This paper describes and evaluates the new framework
with a range of test datasets with focus on performance in terms of speed and scala-
bility. Furthermore, we present a comparative experiment in which our system exhibits
similar results to the best performing desktop applications, while supporting visualiza-
tion of over one million nodes, albeit at lower frame rates. None of the tested systems
could visualize graphs of this size. In comparison with other web-based systems, WiGis
improved on the next best performer by an order of magnitude in terms of scale while
also performing at least as well or better in terms of speed.

The remainder of this paper is organized as follows: A critical review of current
relevant work in the area of large graph visualizations with a focus on web-based ap-
proaches is presented in Section 2. Section 3 describes the architecture of WiGis in
terms of design and implementation. Section 4 discusses an empirical evaluation of our
visualization tool (and its component parts) in terms of scalability and speed with re-
spect to popular graph visualization tools. Section 5 contains a brief discussion of the
benefits and limitations of our technique as well as various deployments of the system.
The paper concludes with a summary of the main contributions.

2 Background

Much research has been conducted on large scale graph visualizations, e.g. [2, 8, 10,
14]. Traditionally, graph visualization applications have been desktop based. For exam-
ple, Cytoscape [14], Pajek [4], Tulip [2], and some implementations of Tom Sawyer
Visualization [16]. Over the past few years, increased web-accessibility and bandwidth
improvements have triggered a general shift towards rich internet applications (RIAs)
capable of providing interactive and responsive interfaces through a web browser. This
shift has a potential benefit for resource-intensive graph visualization, and applications
which take advantage of the rich-internet paradigm are beginning to emerge for visual-
ization of graph and network data. Examples of such applications include Touchgraph
[17], Tom Sawyer Visualization [16] and IBM’s Many Eyes [6]. In general these appli-
cations either do not scale past thousands of nodes or are not fully interactive.

Thick v/s Thin Clients. RIAs can be loosely classified into thick and thin clients. A
thick client typically provides rich functionality that is largely independent of a central
server with the majority of processing done on the client, whereas a thin client requires
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constant communication with a server to provide functionality. Client-based visualiza-
tion [20, 1] can be considered a thick-client solution since data is downloaded from a
server and the visualization and rendering are done at the client side. The popular graph
visualization tool Touchgraph Navigator [17] is a good example of a client-based tool,
since it processes graph interactions locally in Java. A thick client solution needs to
initially download the entire graph data, which may be on the order of GBs for large
graphs, onto the client machine. This severely limits the size of the largest graph a thick
client application can handle and poses significant startup times. Once the graph data is
obtained there is no guarantee that the client has enough memory available to handle the
data. Visualizations can be created on a remote server and passed across a network to
the client. This is referred to by Wood et al. [20] as “server-based” visualization, and is
an example of a thin client solution. WiGis uses both client-based and server-based visu-
alization techniques. An important innovation is the way the system can automatically
and transparently switch between the two modes while allowing smooth interaction in
both.

Plug-in v/s Native Applications. RIAs can be further classified based on the manner
in which they are deployed. Many RIAs are implemented using some form of browser
plug-in, for example Java Applets, Adobe Flash or Microsoft Silverlight. The majority
of graph visualization tools available on the web are plug-in based, e.g. [17, 6]. There
are some fundamental drawbacks with the plug-in approach however. Firstly from a
scalability perspective, plug-in based RIAs are limited to the capabilities of the plug-
in itself. For example, the default memory limit for Java Applets is usually around
60-90 MB. Furthermore, from a security perspective third party plug-ins are usually
not open source and need to access client resources, making them a potential security
threat. Many large organizations with sensitive data require every line of third party
code to be checked for malicious behaviour before deployment on an analysts machine.
The alternative approach to plug-in based RIA implementation is to provide function-
ality natively in the browser through a combination of DHTML and AJAX. Since this
approach does not require any access to client resources outside of the browser it is
much more secure with respect to integrity of the client machine. Examples of native
RIA’s include Google Maps and the JSP and ASP.net implementations of Tom Saywer
Visualization [16]. Since we are concerned about scalability we opted to design our
framework as a native RIA to avoid the inherent limitations and security drawbacks of
browser plug-ins.

While plug-ins such as Flash and Applets provide rich functionality such as object
support and dynamic components, they are not directly suited to solve the problem of
large scale graph visualization on the web. In order to fully utilize these rich features
for visualization of large graphs the entire graph model would have to exist on the
client machine. For large graphs this is not a feasible solution due to potential memory
limitations on the client machine. The only feasible solution is to store the graph data on
a server and pass bitmap images of the graph across the network. While such images can
be displayed inside a plug-in, the visualization framework would not benefit from the
rich functionality of the plug-in. A simpler approach is to display the image natively in a
browser, thus eliminating other drawbacks of the plug-ins, such as memory limitations,
start-up cost, and security issues.
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3 Architecture

Fig. 1. A scalable web-based architecture for
interactive graph visualization, as used in
WiGis

To reiterate, the main contribution of this
work is a scalable web-based technique
for providing smooth interaction with very
large graphs in a user’s web-browser. Fig-
ure 1 describes the novel, lightweight and
flexible architecture we use to achieve this
goal. This architecture does not rely heav-
ily on a client’s resources, and requires
only a basic browser with no external plug-
ins. Two modes of operation are supported:
client-mode and server-mode. In server-
mode the client’s browser only contains
a single bitmap image of the graph. All
layout and interaction algorithms are run
on the server and the bitmap image in the
browser is updated on the fly, giving a very
smooth interaction experience. In client-
mode the browser represents each node as
an image and each edge as an SVG line.
Layout and interaction algorithms run lo-
cally in the browser. The server always
maintains a model of the entire graph,
while the browser can have anywhere from the whole graph model (client-mode with
a small graph) down to no graph model at all (server-mode). The system automatically
switches between these two modes of operation based on the size of the graph being
displayed at a given time.

At the outset of this work, a primary concern was the refresh rate that could be
achieved with this type of design. When considering rendering time, network delay,
and other processing overheads, one is tempted to picture a slow, jumpy interaction
experience. However, as we prove in our evaluations and in our online demonstration2,
this design does achieve fast, smooth graph interactions for up to hundreds of thousands
of nodes, even when these potential bottlenecks are considered.

3.1 Visualization Modes

Client-Mode. When a graph in the viewing window (shown in Figure 2) is sufficiently
small, all layouts, interactions and renderings are performed in the client browser. This
can be either the whole graph or a focused area of a larger graph. The top layer in
Figure 1 represents the browser, which contains a model of the graph, referred to as
the client-side model. As this model is updated by JavaScript layout and interactions,
its state is asynchronously transferred to a remote server, which updates a server-side
graph model accordingly (shown in the third layer from top in Figure 1). Rendering is

2 www.wigis.net

www.wigis.net
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performed by JavaScript using SVG for edges (replicable in VML for Internet Explorer)
and HTML image tags for nodes. This combination was chosen because it exhibited
the best performance out of a multitude of rendering options over a combination of
metrics in our preliminary tests. In client-mode, WiGis can still make use of rich server-
side functionalities such as clustering for instance. The client simply calls the remote
function on the server through AJAX, the server runs a process, updates its model and
passes it to the client.

Fig. 2. A screenshot of WiGis displaying re-
sults expanded from the seed query ”Graph
Visualization” on the Citeseer dataset. Graph
shows 1104 author and article nodes, with
1125 associations. An overview window of the
entire graph is shown in the top right corner
with the detail view highlighted by the zoom
box.

The following list outlines the motiva-
tions for, and benefits of using client-side
graph processing:

Very Smooth Interaction - Client side
computations provide fast interactions for
small graphs because there is no direct
network overhead.

Network Independent - Client-side pro-
cessing does not need a fast network to
function well, and can even function in an
off-line state.

Easy on Server Resources - With a poten-
tially large user base, WiGis can be heavy
on server resources. Utilizing client re-
sources wherever possible eases the load
on a centralized server or server set.
We note that in client-mode, the remote
server still holds a model of full the graph,
so only CPU load is reduced, as opposed
to memory.

Server-Mode. For large graphs, WiGis automatically switches into server-mode. In
this mode, all computations for both layout and interaction are processed on the remote
server. Instead of passing a graph model back to the client browser for reconstruc-
tion, the server generates a bitmap image of the updated graph. This image is passed
across the network and rendered in the browser. Swapping from client to server mode
is a seamless transition for the end-user, with no jumpiness or image differences, as
shown in Figure 3. While in server-mode, interaction is facilitated by capturing mouse
interactions on the image of the graph using JavaScript. Mouse interactions are passed
asynchronously to the server and the interaction/layout algorithms are triggered on the
server-side graph model based on the new input. The server computes an updated graph,
renders it, and sends an image of the rendered graph back to the client. The key success
of our tool lies in the fact that this entire process occurs at interactive speeds giving very
smooth desktop-like interactions with very large graphs.

Our system achieves update rates of 10 frames per second for graphs up to the order
of 10K nodes, while graphs of the order of 100K nodes are rendered at approximately
1 to 2 frames per second (c.f. results in Section 4.6). Theoretically, with sufficient hard-
ware resources on the server-side, the upper bound for the number of nodes WiGis can
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usefully display in an interactive fashion approaches the pixel resolution of the client
display.

Server-side operation of WiGis can loosely be compared to a Google-Maps inter-
face with the difference that transmitted images are not static or pre-defined. Instead,
images are computed on-the-fly based on a combination of user input and the existing
graph state. The following list shows the benefits and drawbacks of using the server-side
approach for large graph computation.

Scalability - Client side graph visualizations generally fail as the graph size approaches
thousands of nodes and edges. Using our server-side technique we can interactively
visualize graphs of up to 1 millon nodes natively in the browser.

Remote Resources - Server-side processing extends the power of the browser well
beyond the resources of the local machine by using a thin client implementation.

Bandwidth Limitation - Server side graph processing relies heavily on network re-
sources, and can perform poorly on slow networks. While many universities operate
very fast connections, home and wireless broadband connections typically range from
64 kb/s to about 1 Mb/s. Our evaluations show that network overhead for the image
transfer becomes negligible for graphs of over 100 thousand nodes.

3.2 System Architecture Layers

Following is a description of the architecture based around the four layers in Figure
1 from top to bottom. These layers represent physical locations or communications
between them, as opposed to the previously discussed client-mode and server-mode,
which are modes of operation spanning across all layers, and are depicted by the vertical
data flows in Figure 1.

Client Browser Layer. The top layer in Figure 1 represents a web-browser running
on a client machine. Depending on the mode of operation, the browser holds either a
JavaScript model and an SVG/HTML visualization of the graph (client-mode) or a sin-
gle bitmap image of the graph in its current state (server-mode). The browser contains
a JavaScript implementation of a selected layout algorithm and a selected interaction
algorithm, both of which are scripted “replicas” of server-side algorithms. Depending
on the current operation mode (client or server), the browser layer communicates either
graph model data or mouse interaction data across the network to the remote server.

Server Layer. The server layer is the “powerhouse” of WiGis, where most of the heavy
processing occurs for large graphs. The server holds a model of the full graph (in mem-
ory if possible), a set of graph layout, clustering, and interaction algorithms (currently
implemented in Java, but extensible to any language). The key concept of the architec-
ture is that the client layer mirrors the server graph model to the capacity of its available
resource. Again, depending on the scale of the visible part of the graph and resources
available on the client, the server either accepts mouse interaction data (server-mode)
or an updated graph model (client-mode) from the client browser. In return, the server
communicates either graph model data or GIF images back to the browser depending
on the current mode of operation. The graph model on the server is always kept in synch
with the client model through AJAX updates.
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Network Layer. The network layer in Figure 1 represents the communication between
the server and client layer. Depending on the mode of operation, image data and inter-
action data (server-mode) or graph model data (client-mode) is sent across the network
to maintain synchronization between the client and server layers.

Persistent Layer. Graph data can be uploaded to the system through a web interface
by users or programmatically by other systems to add interactive visualization capabil-
ities to them. User uploads are provided in several common formats including XML,
GraphML and a simple CSV representation. Regardless of the original source, all data is
converted to an XML representation and read into the graph server. The persistent layer
of WiGis is kept modular to allow data from a broad range of sources to be plugged in
easily. For instance, current data sources include citation data from a publication search
tool and dynamically generated topic models from New York Times articles.

3.3 Client/Server Implementations

(a) Client-Mode (b) Server-Mode (c) Difference

Fig. 3. Seamless transition between client and server renderings.
(a.) Client-Mode. Rendering and layout done with DHTML and
SVG. (b.) Server-Mode. Rendering and layout done in Java on a
remote machine. (c.) Difference image between a and b.

Each algorithm in the
client browser is coded
in JavaScript to exactly
mimic the correspond-
ing server-side java ver-
sion. The algorithms are
designed to be identi-
cal with one exception:
the client side algorithm
operates only on a sub-
graph containing all vis-
ible nodes and their
immediate neighbors.
This constraint is necessary because of the scalability limitations of JavaScript and
the potentially limited resources on the client machine. Since we must use different
platforms and implementation languages, there are also small differences between the
resultant graph layouts. However, in most cases these differences are too small to be
discerned visually by the end-user. Figure 3 depicts a sample graph visualized in (a.)
client-mode and (b.) server-mode. It is clear from Figure 3 that the two representations
are very similar, although they might be misaligned by one pixel as a result of float-
ing point errors in the conversion between different coordinate systems. Other minor
differences exist in the anti-aliasing of the lines and circles. The system automatically
switches from server-mode to client-mode when zoomed into a sufficiently small part
of the graph and back to server-mode when zoomed out to a larger portion of the graph.

3.4 Layout

The WiGis architecture is modular and provides an interface for plugging in multiple
different layout algorithms which can then be selected through the user interface. The
focus of this paper is on scalability with regard to interaction, and accordingly, details of
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various layout algorithms are not included here. For the purpose of our analysis we use
an efficient implementation of a simple force-directed graph layout algorithm [7] [9].

3.5 Interaction

Interaction with large graphs is not as straightforward as interaction with a small num-
ber of nodes, since moving one node at a time can be very time consuming when mold-
ing a layout of thousands of nodes. Moreover, the commonly used rectangular area
selection of multiple nodes that happen to lie close to each other is not ideal when inter-
acting with large graphs because the selected nodes do not necessarily have meaningful
associations with each other apart from proximity as computed by a layout algorithm.
For our framework we have chosen an interaction algorithm, which we refer to as the
interpolation method, originally developed by Trethewey and Höllerer for use in a desk-
top application [18]. This method gives great performance for large graphs in terms of
speed while also making it easy for users to mold a large graph.

4 Evaluation

Now that we have described our technique for enabling interactions with large graphs
on the web, we focus on an empirical evaluation of the technique in terms of speed and
scalability. To properly evaluate our system we break down the interactive visualization
process into its component pieces and present evaluations of each individually, before
testing the system as a whole. As a precursor to this, we define a test dataset of graphs
at different scales and discuss their properties. All of the following experiments use
the same test data. For the purpose of this evaluation we define three steps (potential
bottlenecks) in our interactive visualization process:

Step 1: Rendering - Drawing graphs after a change has been made.

Step 2: Interaction - Capturing user input and calculating modifications to the graph.

Step 3: Network - Passing graph and/or image data across the network from a remote
server.

After evaluating each step in isolation, we combine our results to produce our esti-
mated overall time for the variety of graphs in our test suite. As a sanity-check this is
then compared against recorded times for interaction with the system as a whole. A dis-
cussion of the relative impact of each step is presented. Our evaluation concludes with
a comparison against three popular interactive graph visualization systems.

4.1 Setup

All experiments were performed on a 64 Bit Dell Inspiron 530 with an Intel Q9300
2.5GHz quad core processor, 8GB of RAM, an ATI Radeon HD 3650 video card and a
serial ATA hard drive with 7200 rpm. The operating system was Windows Vista SP1.
No other heavy processes were allowed to run during experiments. A Dell 24” Ultra-
Sharp flatscreen monitor with a refresh rate of 60Hz was connected with a DVI cable.
Screen resolution was constant at 1920x1200 pixels for all experiments. Graph window
sizes were kept constant at 600x600 pixels. This value was chosen because it will fit in
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most browser windows with 1024x768 resolution. Frame rates were recorded either by
WiGis or by FRAPS3. On our multi core machine, FRAPS did not introduce significant
delays in any renderings. All web-based experiments were performed in Mozilla Fire-
fox 3.0.3 and in Google Chrome 1.0.1 with no plug-ins or add-ons running. WiGis is
Java-based and hosted on a JBoss 4.2.2 server running on the same machine as the client
browser. This was done to control network overhead which allowed us to determine the
theoretical network overhead of all connection speeds and provide a more reliable and
consistent result set based on the the exact size of the data which is passed across the
network. It should be noted that we have also successfully tested the system across a
real network, with similar results. Moreover, WiGis is currently accessible on the world
wide web at www.wigis.net.

4.2 Description of Test Data

Table 1. Description of generated small-world data

Graph G1 G2 G3 G4 G5 G6
Nodes 10 100 1K 10K 100K 1M
Edges 20 200 2K 20K 200K 2M

There are many possible ap-
proaches for testing a web-
based system for large-graph
layout and interaction. Our
system works well with real world data, for example citation networks, computational
provenance graphs and topical relations among newspaper articles. We have also ap-
plied our system successfully to specific graph types such as meshes, trees, highly con-
nected and highly sparse data. For this paper we have chosen to perform our tests on
“small world” data [3, 19], because it is abundant in the social web, financial, biological
and many other naturally occurring networks [12]. Small world networks are connected
graphs in which most nodes are not direct neighbors but can be reached in a small
number of hops from most points in the graph. Our test data was generated using the
Barabási-Albert (BA) Model [3] for creation of small world networks. The BA model
uses preferential attachment [3] for the addition of new nodes. Table 1 describes our test
graphs G1, ...,G6. Graph size is increased exponentially from G1 (10 nodes, 20 edges)
to G6 (1M nodes, 2M edges). To confirm the small world nature of our test data, the
degree of connectivity versus number of nodes for all graphs was plotted on a log-log
scale. This test produced linear trends in logarithmic space for all graphs, exhibiting the
trademark power-law distribution of small world networks [3]. Our test data and graph
analysis are available for download online4.

4.3 Rendering

This section describes the procedure and results of an experiment to test the first of
three potential bottlenecks for our system. This bottleneck occurs while re-rendering
the graph after it has been modified. Modifications can happen either on client or server
side, directly by the user, or by interaction and layout algorithms. To evaluate rendering
speeds in both client and server modes, each of our test graphs G1, ...,G6 was rendered
and the average time per frame was recorded. Graphs were redrawn at every frame and
all nodes and edges were constrained to the viewing window for the entire test.

3 www.fraps.com
4 www.wigis.net

www.wigis.net
www.fraps.com
www.wigis.net
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As described in Section 3.1, client-side rendering was performed by JavaScript using
SVG for edges and HTML image tags for nodes. In server-mode, graphs were rendered
into GIF images using Sun Microsystems Java2D graphics library from Java 6.0 and
those images were passed to the browser. Our standard setup (outlined in Section 4.1)
was applied. For this test, edge width was kept constant at 1 pixel and node size was a
constant 4x4 pixels.

Fig. 4. Results of the rendering experiment showing milliseconds
per frame at various graph sizes

Figure 4 shows the
results of the rendering
experiment. Since our
test graphs increase ex-
ponentially in size, re-
sults are presented on a
log-log scale. Note that
on this scale, small dif-
ferences at upper parts
of the graphs repre-
sent significantly larger
differences on a linear
scale. The four plots in
Figure 4 represent the
client and server side frame rates in ms/frame for rendering of test graphs G1, ...,G6 in
both Mozilla Firefox (FF) and Google Chrome (GC). The graph shows that both client
and server methods eventually scale approximately linearly with number of nodes, how-
ever the client side method is notably slower than the server side, because the browser
takes longer to update position data in the document object model as graph size is in-
creased. The smaller graphs create a curve effect because of various overheads, but
importantly, the larger graphs G4, ...,G6 show a linear trend.

In fact, the server side method performs better than linear, as the overhead of loading
the image into the browser and displaying it is almost constant for all graph sizes. At
G1 the methods have identical performance, while at G3 the difference is 260 ms for
GC and approaches 3 seconds in FF. For small graph sizes, typically less than 100
nodes, client side rendering takes about the same time as server side rendering, in the
range of 0 to 260 ms/frame. The client-side approach could not scale past test graph
G3 (1K nodes). This occurs either because the max number of SVG lines the browser
is capable of rendering is exceeded and the page fails to load (FF), or because the
browser slows to an unusable state (GC). Irrespective of these failures however, there
is stronger motivation for using the server side method for large graphs: at about 1000
nodes it simply becomes more efficient to pass an image of the rendered graph across
the network as opposed to sending raw node/edge data and rendering it on the client.

Client side rendering consists of two parts: drawing of SVG lines for edges and
HTML image tags for nodes. In addition to the results in Figure 4, these two parts were
tested individually. Averaged across all test graphs, line drawing took 53% and image
repositioning took 47% of the total rendering time.

Clear performance differences were exhibited between browsers, Chrome was sig-
nificantly faster than Firefox, which took an average of 6 and 1.3 times longer for client
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and server methods respectively across all test graphs. This result is as expected because
more work is being done by the browser while in client-mode, and Google Chrome’s
V8 JavaScript engine is faster than the Firefox 3.0.X engine. Looking forward, improve-
ments to JavaScript engines are underway in most major browsers, and we expect that
our technique will perform better as faster engines are released.

This experiment shows that our technique is capable of rendering graphs in a browser
in the order of hundreds of thousands of nodes and edges in a fraction of a second. This
is clearly indicated by the results in Figure 4, which show that G5 (100K nodes) takes
about half a second while G6 (1M nodes) takes less than 5 seconds. It is important to
note that although 5 seconds may not seem fast, it is a significant improvement over
the other systems which could not load G6. Also, our experiment represents a worst-
case scenario where all geometric primitives are redrawn. This happens only when the
user is working at the overview level that contains the entire graph. If the user is in
a zoomed-in view where a smaller number of primitives need to be redrawn for each
frame, rendering may be on the order of milliseconds.

4.4 Interaction

The second potential bottleneck in our framework is the simple but effective interaction
algorithm we used. However, after evaluation it became clear that the relative time spent
on the interaction algorithm was very little as shown in Table 3. For this reason, and due
to space restrictions this evaluation is not discussed here.

4.5 Network

Table 2. Average image size in kB for each test graph

Graph G1 G2 G3 G4 G5 G6
Avg. Img Size 6.5 20.5 34 32 34 29

The third and final factor in
the component analysis of our
technique is a look at various
network delays that occur as
we pass data asynchronously between the client and server. In client-mode, network
delay is minimal since we are only passing initial layout data for graphs of the order
of G3 or less. Additionally, rendering and interactions are computed locally, so there
is no network delay for interaction. However, updates from the client model are passed
across the network to maintain synchronicity between client and server graph models.
This allows us to switch to server-mode at any time. In server-mode, network capacity
has a severe impact on system performance since images of rendered graphs are con-
stantly passed from server to client side. Table 2 shows the average image size in kB
for all graphs in our test set. Assuming a network speed of 1000 kB/s (which is com-
mon for university campuses) the values in Table 2 are also equivalent to the transfer
time in milliseconds for each image. Table 3 presents a breakdown of the total interac-
tive visualization process with network delays included. For graphs of about 1 million
nodes network delay represents less than 1% of the total processing time. For smaller
graphs, e.g G3, the delay can account for about 59% of the entire process since the size
of an image of the rendered graph is relatively stable across graphs G3, ...,G6. We also
evaluated the amount of delay introduced by a slower connection of 1000 kb/s which
is a common connection speed for residential areas in the USA. This would obviously
introduce eight times more network overhead, resulting in about 330 ms per frame for
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G4 and about 890 ms per frame for G5. Interaction with G6 would still be under 6 sec-
onds per frame. Again, we note that no other system tested was able to load graphs of
the order of G6.

4.6 Putting It All Together

Up to this point, we have focused on analysis of the various components of WiGis at an
individual level. Now we put them all together to evaluate the performance of the system
as a whole. This evaluation is performed in two parts, firstly an analysis of speed and
scalability is presented based on our test data. Secondly, we present a comparison of
our technique against three popular graph visualization systems with respect to speed
and scalability.

Fig. 5. Results of interactive visualization experiment, showing av-
erage times per frame for the worst case scenario, where every
node is repositioned in every frame

Scalability Test.Figure 5
shows the time in mil-
liseconds for the full
interactive visualization
process on GraphsG1,...,
G6, which includes ren-
dering, interaction and
network delays. These
results are for interaction
with the entire graph, i.e:
the effect parameter was
set to maximum value,
making interactions ef-
fect every node. This
represents the worst case
scenario for our system since every node is repositioned in each frame. The test was run
in Firefox (FF) and Google Chrome (GC) browsers in client and server modes. There is
an obvious difference in scalability between client and server modes. At G1 (10 nodes)
there is only a few milliseconds difference between them, but at G3 (1000 nodes) the
client process is taking 96 times longer than the server (4044 ms compared with 42.3
ms). Again in this test we can see that for the client side process, FF is far slower than
GC, taking 4.6 times longer on average. The surprising result in this test is that our
technique for computing graphs remotely (i.e: the server side method) is actually faster
than JavaScript for large and small graphs. (in GC, 1.2 times faster for G1, 2.5 times
faster for G2, and 58 times faster for G3). The test was also performed with single node
interaction and a similar trend was revealed. For full graph interaction in GC, the mil-
lion node graph (G6) took about 6.3 s, while the single node interaction took 5.7 s. It
is important to notice that the rendering of G6 took 77% of the total time and, as noted
earlier, if the user is working at a zoomed-in level instead of at the overview level the
rendering time may be significantly smaller. Thus, interaction with the 1 million node
graph may take as little as 1 second per frame.

Delay Breakdown. To gain an understanding of the delays caused by each part of the
online interactive visualization process we computed a percentage analysis for each step
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over all of our test graphs. Table 3 outlines the results for graphs G1, ...,G6. For G1 and
G2, client-mode was used because this is the system default for small graphs and gives
the best performance in most cases. The table shows the percentage time for rendering,
interaction, and the expected network costs. The total column shows an empirically
tested value for the entire process over each graph. The difference between the total and
the sum of component pieces is shown as “Other”. We suspect that this value is due
to various system processes, browser overheads, other unmeasured parts of our system
and other performance inhibiting overheads.

Table 3. Percentage breakdown of the online interactive visual-
ization process in Google Chrome for our test graphs

Graph G1 G2 G3 G4 G5 G6
Mode Client Client Server Server Server Server

Rendering 89% 83% 39% 57% 71% 77%
Interaction 0.04% 0.04% 0.4% 3.9% 6.5% 7.1%
Network 0% 0% 59% 30% 5% 0.5%
Other 11% 17% 2% 9% 18% 16%
Total ms 13.2 40.9 57.9 108.6 705.6 6299.5

Image size is influen-
tial for the performance
of our tool when operat-
ing in server-mode. For
our evaluations, the graph
window was maintained
600x600 pixels to fit in
the browser at most screen
resolutions, producing for
example, an average im-
age size of 34kB for G5. However, since we are interested in potentially huge graphs,
which may require more screen estate to display adequately, we also considered the im-
pact of bigger window sizes. When we increase the window size to 1200x1200 pixels
(4 times the original area), the average image size becomes 154kB. Running the sys-
tem in server-mode with 600x600 pixel screen size takes 648 ms per frame while the
1200x1200 size takes 1051 ms per frame over a 1000 kB/s network. This is due to net-
work overhead, and increased rendering times since graphical primitives contain more
pixels. To summarize, most of the delay in our web-based graph visualization frame-
work can be attributed to rendering while other delays account for only about 20% of
the total.

4.7 Comparison

To conclude the evaluation of our system, we now discuss a comparative test against
three popular graph visualization systems: Touchgraph Navigator [17] (A Java Applet),
IBM Many Eyes [6] (Java Applet), and Cytoscape [14] (a desktop application). A direct
comparison with the plug-in free web-based version of Tom Sawyer Visualization was
desired, but since this discussion focuses on scalable interaction, a direct comparison
became infeasible because we were unable to interact with graphs in that system when
more than a few hundred nodes are displayed. Our test dataset from Table 1 was con-
verted to appropriate formats for each system and interactions timings were recorded
for each using FRAPS, while keeping all graph elements in the viewing window. We
note that the primary focus for these applications is not necessarily on scalability as
they have many rich data exploration features for a variety of specific tasks, but this
experiment does highlight that some of these systems are quite limited in scale. Since
the other systems did not support interaction with the full graph based on single node
movements, we restricted our system to movement of one node only. However, we note
that in the worst-case, when the entire graph is repositioned based on the interaction
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algorithm, the timings for WiGis increase only by a very small amount. Since our sys-
tem runs natively in the browser, FRAPS could not record timings. A JavaScript test
harness was written to emulate a real user interacting with the graph. (Note: manual
tests were also performed and similar results were achieved.) A click was simulated on
a random node and it was moved to a random position in the view window, thus trig-
gering selection and movement processes. The movement step was repeated 500 times
and an average time was recorded. The experiment was repeated for graphs G1, ...,G6.
Our system was tested with the browser running on the same machine as the server, and
then network overhead with a connection of 1000kB/s was projected based on the image
sizes. The fastest mode was used, which was server-side for all except when network
overhead was included on G1 and G2.

Fig. 6. Results of scalability and speed comparison against other
systems. *Network delay over a 1000 kB/s network connection is
estimated based on average image size.

Figure 6 shows the re-
sults of the interaction
experiment in Google
Chrome. For graphs of
size G3 or less, all
the systems completed
the test in less than
100 ms per frame on
average, except Touch-
graph which took 265
ms per frame. Our sys-
tem showed a time in-
crease with respect to
graph size that is slightly
less than linear. This oc-
curs because overheads
such as network time
take up a smaller percentage of the overall process as graph size increases. The best
performer from the other systems was Cytoscape, which took 570 ms for G5, which
was 37.9 ms (6%) faster than our tool. An interesting trend in the graph occurs between
G2 and G3 on the Cytoscape plot, where time per frame is reduced by 28 ms despite the
increase in graph size. This occurs because Cytoscape renders nodes as squares instead
of circles for graphs above a certain size. WiGis completed the test for G6 in an average
of 5.7 seconds. These results show that the server side technique used in our system is
more efficient than current graph visualization standards on the web.

The blank spaces in the table of Figure 6 represent failed attempts to load data. Under
the setup described in Section 4.1, the largest of our test graphs we could load in Many
Eyes was G3. TouchGraph failed at G5, while Cytoscape failed at G6. WiGis was the
only system to successfully load the million node graph G6. Furthermore, we were
unable to find another web-based graph visualization tool that could display graphs of
the order of G5 or higher.

Load times for each system were also noted, as they contribute greatly to the overall
user experience. WiGis outperformed all other systems for every graph. G1 and G2 were
loaded by all systems in less than 1 second. WiGis, Touchgraph and Cytoscape loaded
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G3 in less than one second, while Many Eyes took 5 s. Only WiGis and Cytoscape
loaded G5, taking 2.6 and 4 seconds respectively, making WiGis 1.5 times faster.

5 Discussion and Conclusion

The main contribution of this paper to the graph drawing community is a framework for
interactive visualization of large graphs over the web. We have presented an argument
for our choice of a native browser implementation over a plug-in based approach. The
framework provides user interaction with hundreds of thousands of nodes through the
use of bitmap graph representations streamed from a remote server. Another novel con-
tribution is the automatic switching between client and server graph models to maximize
use of available resources. This is done in a manner which is transparent to the end user.

The approach used in the WiGis framework has several limitations. Firstly, since
we are transferring data across a network there is a potential security risk and poten-
tial for data-loss. This can be mitigated somewhat by the use of SSL communications.
Secondly, since we have chosen to display graphs natively in the browser, the current
implementation cannot make use of rich functionality provided by plug-ins such as Java
and Flash. Thirdly, as shown in our evaluations, the biggest bottleneck in our system
occurs during rendering. There are a few possible avenues to address this issue. For
example, use of a more powerful rendering technique, such as GPU rendering. Another
possible improvement is to keep track of the nodes that will be re-rendered each frame
and render those on top of an image of all the static nodes.

We have presented a detailed breakdown of the various components of the system
in terms of speed and scalability. We compared WiGis against three popular systems
and showed that our framework outperforms the best performing web-based system we
could find by an order of magnitude in terms of scalability and achieves similar scale
to the best performing desktop-based systems. In addition to the scalability advantages
of our system, the fact that it is fully web-based (i.e: native) gives it the flexibility and
ease-of-use to easily be applied to solve real-world graph visualization problems where
users need to access graph data quickly and easily. For example, the tool is currently
deployed by the U.S government in Blackbook- a data integration and search system
used for counter-terrorism [11]. In this tool, WiGis visualize interconnections between
artifacts from a variety of diverse datasets, such as security reports or financial informa-
tion. At the University of California, Irvine, WiGis have been deployed for visualization
of a topic detection system [5] for newspaper articles. With a view to gathering useful
and informative feedback on our visualization and interaction techniques from a large
number of users, we are currently deploying a WiGis application on Facebook to visual-
ize networks of friends and their various tastes in music, movies, etc. Due to the flexible
nature of the framework it is easily adaptable to this task and we hope to report results
of user evaluations in a future publication.
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Abstract. We present a new application for graph drawing in the con-
text of graphical model-based system design, where manual placing of
graphical items is still state-of-the-practice. The KIELER framework aims
at improving this by offering novel user interaction techniques, enabled
by automatic layout of the diagrams. In this paper we present extensions
of the well-known hierarchical layout approach, originally suggested by
Sugiyama et al. [22], to support port constraints, hyperedges, and com-
pound graphs in order to layout diagrams of data flow languages. A case
study and experimental results show that our algorithm is well suited for
application in interactive user interfaces.

1 Introduction

Graphical modeling languages have evolved to appealing and convenient instru-
ments for the development and documentation of systems, both in hardware and
in software. There are various examples for graphical modeling frameworks that
have become an important part of modern development processes. An important
class of modeling diagrams are data flow diagrams, which are graphical repre-
sentations of data flow models for design of complex systems. Applications of
data flow diagrams can be found in modern software and hardware development
tools. Some of these, such as Simulink (The MathWorks, Inc.), LabVIEW (Na-
tional Instruments Corporation), and ASCET (ETAS Inc.), are mainly used for
model-based design and simulation of embedded systems and digital or ana-
log hardware, while others, such as SCADE (Esterel Technologies, Inc.), are
optimized for automatic code generation from high-level system models. The
Ptolemy project [8] features data flow diagrams for actor-oriented design. All
these examples feature a graphical editor for data flow diagrams, so that users
can create diagrams in drag-and-drop manner.

Typical graphical modeling tools do not support the developer with auto-
matic diagram layout, or do so only in a rudimentary fashion. This leads to
unnecessarily high development times, as the developer has to manually adapt
the layout after each structural change of the model. In this paper we present
methods to apply the hierarchical layout approach [22] to data flow diagrams.
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Fig. 1. A data flow diagram from Simulink

We describe constraints which are imposed by such diagrams and show how to
extend existing methods to satisfy these constraints. This includes methods for
crossing reduction with port constraints and routing of directed hyperedges.

A data flow model is described by a directed graph where the vertices represent
operators that compute data and the edges represent data paths [6]. Such a data
path has a specified source port where data is created and a target port where
data is consumed. A source port may be connected with multiple target ports,
thus forming a hyperedge. Furthermore, the edges of data flow diagrams are
required to be drawn orthogonally. A diagram from Simulink is shown in Fig. 1,
which demonstrates the use of ports and hyperedges.

We will proceed as follows. Port constraints, hyperedges and other specialties
of data flow diagrams are presented in Section 2. Here, we also introduce four
scenarios of port constraints that appear frequently in our applications. Related
work is discussed in Section 3. Section 4 describes our methods to handle the
special requirements of data flow diagrams within the hierarchical approach.
Results of our implementation are shown in Section 5, and we conclude in Sec-
tion 6. A much more in-depth presentation covering the full hierarchical layout
algorithm and details on its implementation can be found on-line [19,20].

2 Port Constraints and Hyperedges

A port based graph is a directed graph G = (V, E) together with a finite set P
of ports. For each v ∈ V we write P (v) for the subset of ports that belong to
v, and we require P (u) ∩ P (v) = ∅ for u �= v. Each edge e = (u, v) ∈ E has a
specified source port ps(e) ∈ P (u) and a target port pt(e) ∈ P (v). We write v(p)
for the vertex u for which p ∈ P (u).

A drawing of a port based graph G is a mapping Γ of the vertices, edges, and
ports of G to subsets of the plane IR2. In general graph drawing it is sufficient that
the drawing of each edge e = (u, v) contacts the drawings of u and v anywhere
at their border. For port based graphs the drawing of each port p ∈ P (v) has
a specific position on the border of Γ (v), and the edges that have p as source
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(a) (b)

Fig. 2. (a) A hyperedge that connects four vertices (b) The vertex Composite contains
connections to external ports, which are shown as small dark boxes on its border

or target port may touch Γ (v) only at that position. We consider four different
scenarios for the positions of the ports P (v) on a vertex v:

FreePorts. Ports may be drawn at arbitrary positions on the border of Γ (v).
FixedSides. The side of Γ (v) is prescribed for each port, i. e. the top, bottom,

left, or right border, but the order of ports is free on each side.
FixedPortOrder. The side is fixed for each port, and the order of ports is

fixed for each side.
FixedPorts. The exact position is fixed for each port.

Mixed-case scenarios, in which some ports of a single vertex have fixed positions
and others are free, are not yet covered in our approach, because they require
very complex handling and are not needed in our applications.

A hyperedge has an arbitrary number of endpoints, thus it may connect more
than two vertices. Although there are approaches to directly handle hyperedges
[10,17], we split all hyperedges into sets of plain edges in order to simplify the
algorithms. For this reason we consider all edges that are incident at the same
port of a vertex as parts of a single hyperedge. For example, the hyperedge
shown in Fig. 2(a) would be represented by the edges (2, 1), (2, 3), and (2, 4).
Such splitting of hyperedges is not unique if the hyperedge has multiple sources
and multiple sinks, but many data flow languages do not allow multiple sources
for hyperedges.

In data flow diagrams, each vertex may contain a nested diagram; in this
context we have to extend our notion of a graph. A compound graph or clustered
graph G = (V, H, E) consists of a set of vertices V , a set of inclusion edges H ,
and a set of adjacency edges E [21]. The inclusion graph (V, H) must form a tree,
hence for each vertex v we can write Vch(v) for the set of children of v and vpar(v)
for the parent of v. For data flow diagrams the adjacency edges are only allowed
to connect vertices that have the same parent in the inclusion tree. However, we
treat the ports P (v) of each vertex v as external ports of the diagram contained
in v, and the children Vch(v) may be connected to the ports P (v) (see Fig. 2(b)).
We employ special edge routing mechanisms to properly connect the ports of a
node v with its children.
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3 Related Work

Besides the context of system modeling, the term data flow diagram and its
abbreviation DFD are used in the area of structured software analysis [5]. In this
sense DFDs are used for software requirements specification and modeling of the
interaction between processes and data. Layout of DFDs has been covered by
Batini et al. [3] and Doorley et al. [7]. As DFDs have little in common with data
flow diagrams for system modeling, these layout algorithms cannot be applied
to our specific problem.

The main specialties that make layout of data flow diagrams for system mod-
eling more difficult than layout of general graphs are ports, hyperedges, orthog-
onal edge routing, and compound graphs. Previous work on layout with port
constraints includes that of Gansner et al. [11] and Sander [14], who gave exten-
sions of the hierarchical approach to consider attachment points of edges. These
methods are mainly designed for the special case of displaying data structures
and are not suited for the more general constraints of data flow diagrams. A
more flexible approach is chosen in the commercial graph layout library yFiles
(yWorks GmbH), which supports two models of port constraints and hyperedge
routing for the hierarchical approach1, but no details on the algorithm have been
published [23]. Either a weak port constraints model (corresponding to Fixed-
Sides) or a strong port constraints model (corresponding to FixedPorts) can
be chosen in yFiles. Other unpublished solutions to drawing with port con-
straints include ILOG JViews [18] and Tom Sawyer Visualization2. Handling of
hyperedges in hierarchical layout has been covered by Eschbach et al. [10] and
Sander [17]. Sugiyama et al. [21] and Sander [16] showed how to draw general
compound graphs, but due to the presence of external ports (see Section 2), our
requirements for compound graphs are different. We adapt the orthogonal edge
routing approach suggested by Eschbach et al. [10]; alternative approaches have
been given by Sander [15,17] and Baburin [2].

The topic of visualization of hardware schematics is quite related to drawing
of data flow diagrams. While traditional approaches for layout of schematic dia-
grams follow the general place and route technique from VLSI design [1,12], more
recent work includes some concepts from the area of graph drawing [9]. However,
these concepts are not sufficient for the needs of our application, since they do
not address our scenarios for port constraints, but concentrate on partitioning
and placement for large schematics and hyperedge routing.

4 Extensions of the Hierarchical Layout Approach

The hierarchical layout method is well suited for laying out directed graphs
and aims at emphasizing the direction of flow, thus expressing the hierarchy of
vertices in the graph. It was proposed by Sugiyama, Tagawa, and Toda [22] and

1 yFiles Developer’s Guide, http://www.yworks.com/
2 Tom Sawyer Software, http://www.tomsawyer.com/

http://www.yworks.com/
http://www.tomsawyer.com/
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Fig. 3. A layered graph with four layers and three long edges, two of which are part of
a hyperedge; the circular vertices are dummy vertices used to split the long edges

has been extensively studied and improved afterwards. We chose the methods of
Di Battista et al. [4] and Sander [15] as a base for our implementation.

Handling of port constraints, hyperedges, orthogonal edge routing, and com-
pound graphs is not addressed in the basic versions of the hierarchical layout
algorithm. The following sections will depict our approaches to handle these
problems. In hierarchical drawings the directed edges are arranged either hori-
zontally or vertically, but only horizontal layout direction is discussed here, as
both variants are symmetric.

4.1 Assignment of Dummy Vertices

In the layer assignment phase we compute layers L1, . . . , Lk for the vertices of
the acyclic graph G using any standard method. A layering is called proper if
all edges e connect only vertices from subsequent layers. As illustrated in Fig. 3,
a proper layering is constructed from a general layering by splitting long edges
using dummy vertices. We use linear segments to organize the dummy vertices:
each vertex v in the layered graph is contained in exactly one linear segment
S(v), and a linear segment contains either a single regular vertex or all dummy
vertices created for a long edge. These linear segments are used in the vertex
placement phase to arrange the dummy vertices of each long edge in a straight
line adapting Sander’s methods [15]. In Fig. 3, the linear segment of the dummy
vertex a is S(a) = {a, c}.

We customized the linear segments approach to support hyperedges which
span multiple layers. In this case, care must be taken to merge the dummy
vertices of their corresponding point-to-point edges. For this reason we split
long edges by processing them iteratively and associating the linear segment of
their dummy vertices with their source and target port. If for any long edge
there is already a linear segment associated with its source or target port, the
dummy nodes of this linear segment are reused. An example is shown in Fig. 3,
where the long edges (1, 3) and (1, 4) share the dummy vertex b.

If the diagram contains external ports, they are also added to the layered
graph: input ports, which have only outgoing connections, are assigned to the
first layer, while output ports, which have only incoming connections, are as-
signed to the last layer. In this way the external ports can be treated as normal
vertices in the following phases of the algorithm.
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4.2 Crossing Minimization

The problem of crossing minimization for layered graphs is usually solved with
a layer-by-layer sweep: choose an arbitrary order for layer L1, then for each
i ∈ {1, . . . , k − 1} optimize the order for layer Li+1 while keeping the vertices
of layer Li fixed. Afterwards the same procedure is applied backwards, and it
can then be repeated for a specified number of iterations. We will only cover the
forward sweep here, because the backward case is symmetric.

Since the standard layer-by-layer sweep is only applied to vertex positions,
we will now look at our extensions for port positions. When ports are used to
determine the source and target point of each edge, the number of crossings
does not only depend on the order of vertices, but also on the order of ports for
each vertex. For each vertex v we define port ranks for the ordered ports P (v) =
{p1, . . . , pm} as r(pi) = i. Furthermore we define extended vertex ranks so that
for each v ∈ Li and p ∈ P (v) the sum of the rank of v and the rank of p is unique.
The rank width of a vertex v ∈ Li is w(v) := 1 if v was created for a dummy
vertex of a long edge or for an external port, and w(v) := |P (v)| otherwise. The
extended vertex ranks of the ordered vertices in the layer Li = {v1, . . . , vh} are
defined as r(vj) :=

∑
g<j w(vg) for all j ≤ h.

We implemented the Barycenter method for the two-layer crossing problem:
first calculate values a(v) ∈ IR for each v ∈ Li+1, then sort the vertices in Li+1
according to these values. Let Ei(v) be the set of incoming edges of v. In our
approach, the a(v) values are determined as the average of the combined vertex
and port ranks for all source ports of incoming edges of v:

a(v) :=
1

|Ei(v)|
∑

(u,v)∈Ei(v)

(r(u) + r(ps(u, v))) . (1)

Vertices vj that have no incoming edges should be assigned values a(v) that re-
spect the previous order of vertices, thus we define a(vj) := 1

2 (a(vj−1)+a(vj+1))
if Ei(vj+1) �= ∅ and a(vj) := a(vj−1) otherwise. By setting a(v0) := 0 and calcu-
lating the missing a(vj) values with increasing j we can assure that a(vj−1) is
always defined.

For vertices with FixedSides or FreePorts port constraints we have the
additional task of finding an order of ports for each vertex that minimizes the
number of crossings. We extend the method described above as follows: instead
of calculating values a(v) to order the vertices, calculate values a(p) to order the
ports first, then calculate

a(v) :=
1

|P (v)|
∑

p∈P (v)

a(p) . (2)

For each port p let Ei(p) be the set of edges which are incoming at that port.
Analogously to Equation 1 we define

a(p) :=
1

|Ei(p)|
∑

(u,v)∈Ei(p)

(r(u) + r(ps(u, v))) . (3)
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(a) (b)

Fig. 4. (a) Routing between layers using vertical line segments (b) Routing around
vertices due to prescribed port positions

If there are long hyperedges that share common dummy vertices, as described in
Section 4.1, crossing reduction must be adapted to avoid inconsistencies in the
following phases. If, for example, backwards crossing reduction is performed for
the second layer of the graph in Fig. 3 while keeping the vertices of the third
layer fixed as (3, c, d), it can happen that the dummy vertex b is placed above
a because of its outgoing connection to vertex 3. This would lead to a crossing
of the edges (a, c) and (b, d), thus the corresponding linear segments {a, c} and
{b, d} could not be drawn as straight horizontal lines.

To resolve this problem, two new rules must be added for each long edge that
is split into dummy vertices v1, . . . , vk:

1. For each dummy vertex vi, i ∈ {2, . . . , k}, only one incoming connection may
be considered for crossing reduction, namely (vi−1, vi).

2. For each dummy vertex vi, i ∈ {1, . . . , k − 1}, only one outgoing connection
may be considered for crossing reduction, namely (vi, vi+1).

4.3 Orthogonal Edge Routing

In order to achieve orthogonal edge routing, each edge that cannot be represented
by a single horizontal line needs a vertical line segment (see Fig. 4(a)). A proper
order of vertical line segments is important to avoid additional edge crossings,
and grouping of hyperedges must be considered. To accomplish this, each port p
of a vertex in layer Li that contains outgoing connections to layer Li+1 is assigned
a routing slot s(p). The resulting routing slots are sorted and given appropriate
horizontal positions, and each edge that has p as source port is given two bend
points with the respective horizontal position of s(p).

We employ the basic sorting of routing slots as depicted by Eschbach et al.
[10], but have to extend it to support the different scenarios of port positions.
An additional difficulty arises when the source port of an edge is not on the right
side of the source vertex, or the target port is not on the left side of the target
vertex. In these cases additional bend points are needed to route the edge around
the vertex, as seen in Fig. 4(b). For this purpose routing slots must be assigned
on each side of a vertex, similarly to layer-to-layer edge routing. This is done
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in an additional phase after crossing reduction; all edges which need additional
bend points are processed here, as well as self-loops. The rank of a routing slot
indicates its distance from the corresponding vertex. For example, the self-loop
(4, 4) in Fig. 4(b) is assigned routing slots of rank 1 on the left, bottom and right
side of vertex 4, while the edge (2, 4) is assigned a routing slot of rank 2 on the
bottom side of vertex 4.

As an output of this additional routing phase, the number of routing slots for
the top and the bottom side of each vertex v, together with the given height of
v, determines the amount of space that is needed to place v inside its layer. This
information is passed to the vertex placement phase, so that the free space that
is left around each vertex suffices for its assigned routing slots.

4.4 Compound Graphs with External Ports

For general compound graphs G = (V, H, E), the adjacency edges E are allowed
to connect vertices from different levels of the inclusion tree (V, H). As this is not
the case for data flow diagrams, we do not need to employ the special versions
of the hierarchical layout method for compound graphs [21,16], but can follow a
simpler approach, which consists of executing the layout algorithm recursively,
starting with the leaves of the inclusion tree.

However, the presence of external ports (see Fig. 2(b)) leads to the additional
problem that edges of the nested graph may be connected to these ports, which
may be subject to any of the four scenarios of port constraints described in
Section 2. During edge routing such connections must be specially handled, in
particular if there are input ports which are not on the left side of the nested
diagram, or output ports which are not on the right side. These cases require
additional bend points, and if there are multiple edges which need to be routed
along the top or bottom side of the nested diagram, the order of these edges
must be adjusted to minimize the number of crossings. We achieve this through
similar techniques as those used for layer-to-layer edge routing.

5 Implementation and Results

An implementation of our layout algorithm is part of the Kiel Integrated En-
vironment for Layout for the Eclipse RichClientPlatform (KIELER)3. KIELER
is a platform for experimental approaches to graphical model-based design and
for combination of different aspects of graphical modeling, such as methods of
model editing, visualization of simulation, and automatic layout. Unlike its pre-
ceding project, the Kiel Integrated Environment for Layout (KIEL), which was
developed as a stand-alone Java application [13], KIELER builds on Eclipse, an
extensible platform comprised of various integrated development environments.
Our Eclipse interface enables the layout functionality for editors of the Eclipse

3 http://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/
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(a) left: 47 edge crossings, right: 4 edge crossings

(b) left: 41 edge crossings, right: 13 edge crossings

Fig. 5. Comparison with yFiles: (a) our layout method (b) layout with yFiles

Graphical Modeling Framework (GMF)4 and hence for a wide variety of graphi-
cal editors. Since the algorithm is written in Java, it can also be used as a plain
class library outside of Eclipse.

Fig. 5(a) shows results of automatic layout in the FixedPorts scenario for
port positions. Here we see the effectiveness of our method of crossing minimiza-
tion, as the order of vertices in each layer is adapted to the fixed port positions.
Figure 5(b) shows the same diagrams with layouts created in yEd, a free graph
editor of yWorks GmbH which includes the yFiles layout library. The results
demonstrate that our layout method is comparable with the commercial library
yFiles with regard to layout with port constraints.

To test our layout algorithm in an existing modeling framework, it was inte-
grated into Vergil, the editor for Ptolemy II developed at UC Berkeley by Lee
et al. [8]. Ptolemy II is a graphical modeling tool for exploration of the semantics
of different models of computation of formalisms for embedded software design.
Its heterogeneous nature enables to mix it with models of physical phenomena
to result in full system models including the software controller and its physical
environment.

Graphical representations of Ptolemy models can be mapped almost directly
to the layout problem described in this paper. Ptolemy actors are the intercon-
nected software components represented by nodes which consume and produce
data at dedicated ports. Connections can be joined by relation vertices to ob-
tain hyperedges that share a common data source. However, Ptolemy does not

4 http://www.eclipse.org/modeling/gmf/

http://www.eclipse.org/modeling/gmf/
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Fig. 6. Layout of a Ptolemy II model

yet support the setting of connection bendpoints, but dynamically routes them
internally. Additionally, the data flow of ports is sometimes bidirectional, which
results in undirected edges. As our algorithm requires directed graphs, a heuristic
chooses explicit directions for all edges first.

The Ptolemy editor Vergil is not based on Eclipse but implemented in plain
Java. Hence we used our stand-alone algorithm library and interfaced it with the
graphical drawing backend of Ptolemy. Initial results produce diagrams such as
those depicted in Fig. 6 and show that the algorithm is applicable for an impor-
tant set of real-world system modeling tools. More details about the Ptolemy
integration can be found elsewhere [20].

Measurement data for the execution time of the hierarchical layout method
are shown in Fig. 7. For graphs with about 25 000 vertices and the same number
of edges the algorithm takes less than a second, which proves its suitability for
automatic layout in a user interface environment. However, the execution time
highly depends on the average vertex degree, since layout for a graph with 2 000
vertices and 2 000 edges is 8 times faster than layout for 100 vertices and 2 000
edges. One reason for this is that for vertices with a lot of incident edges the
number of long edges that stretch over multiple layers is likely to be high, so that
dummy vertices must be inserted to obtain a proper layering. The consequence
is that the problem size rises with regard to the total number of vertices.

(a) (b)

Fig. 7. Execution time for (a) varying number of vertices and one outgoing edge per
vertex (b) 100 vertices and varying number of outgoing edges per vertex
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6 Conclusion

We introduced four scenarios of port constraints for graph drawing and presented
methods to extend the hierarchical layout approach to handle ports, hyperedges,
orthogonal edge routing, and compound graphs. These methods are implemented
in KIELER, an Eclipse based framework for research on the pragmatics of graph-
ical modeling. The results of our implementation and the low execution times
demonstrate its suitability to enhance graphical modeling tools by automatic
layout of data flow diagrams. Further work can be done to improve the layout
quality:

– Additional support for layout of edge labels.
– Direct support of directed hyperedges with multiple sources and multiple

targets.
– Some data flow languages such as SCADE allow to integrate Statecharts in

their data flow diagrams. A layout algorithm should be able to handle this,
i. e. arbitrarily mix nodes with and without port constraints and hyperedges.

– Some vertices in data flow diagrams are very large, thus forcing their respec-
tive layer to be large. This could be improved by possibly stretching large
vertices over multiple layers.
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Abstract. To produce high quality drawings of graphs with nodes
drawn as shapes it is important to find routes for the edges which do
not intersect node boundaries. Recent work in this area involves finding
shortest paths in a tangent-visibility graph. However, construction of the
full tangent-visibility graph is expensive, at least quadratic time in the
number of nodes. In this paper we explore two ideas for achieving faster
edge routing using approximate shortest-path techniques.

1 Introduction

Most graphs that people need to visualize have nodes with associated textual
or graphical content. For example, in UML class diagrams the nodes are drawn
as boxes with textual content describing the class attributes or methods. In
metabolic pathway diagrams nodes representing chemical compounds may have
long textual labels or a graphic representation of the molecular structure. If
edges that are not directly connected to a particular node are drawn over that
node then the label may be obscured. Alternately, if edges are drawn behind a
node then the reader may erroneously assume a connection to the node. Routing
edges around nodes can avoid this ambiguity.

Some layout algorithms, such as the level scheme for directed graphs or the
topology-shape-metrics approach for orthogonal graph drawing (see [1]) consider
edge routing as an integral step in the layout process. However, the popular
force-directed family of layout algorithms for general undirected graphs do not
usually consider routing edges around node hulls; except perhaps as a post-
processing step (e.g. Gansner and North [9]). Recent work such as [6,7] has
proposed force-directed methods which are able to preserve the topology of a
given edge routing, but a feasible initial routing must still be found using a
standard routing algorithm. As described in Section 2, for graphs with hundreds
of nodes, the quadratic (in the number of nodes) or worse cost of constructing
the visibility graph can be too slow, especially for interactive applications where
the layout is changing significantly from iteration to iteration.

In this paper we present two approaches to achieve faster routing using ap-
proximate shortest paths. The first approach uses a spatial decomposition of
the nodes, moving them slightly to obtain strictly disjoint convex hulls around
groups of nodes, and then computing visibility graphs over these composite hulls

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 147–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) Spanner graph routes with
20◦ cones.

(b) KD-Tree routing

Fig. 1. The “Olympic Torch Relay” graph from the GD’08 competition

rather than individual nodes. The second approach generates a sparse visibility-
graph spanner. The two techniques are complementary, that is they can be used
together to obtain even faster routing.

2 Related Work

Dobkin et al. [4] introduced visibility-graph methods for shortest-path edge rout-
ing into graph-drawing applications. They also considered the problem of fitting
splines to the piecewise-linear path to obtain smooth curves.

Freivalds [8] gives a novel approach which treats edge routing as a problem
of finding a low-cost path across a continuous cost function defined over the
drawing area. A grid simplification is used so that the cost of routing one edge
is O(L2 log L) where L is the length of the path in grid units. The method
is slow but is noteworthy in that adding additional routing criteria, such as
perpendicular crossings between edges and slight offsets between collinear edges,
is very easy.

Wybrow et al. [13] explored an efficient incremental implementation of a
tangent-visibility graph for interactive graph manipulation or editing, for exam-
ple, adding or removing a single node. However, their method is still O(n2 log n)
running time for n nodes in the static case. Faster algorithms for static con-
struction of a visibility graph exist, but they are intricate and the asymptotic
complexity improvement is not clear cut. For example, Ghosh and Mount [10]
give an O(E + V log V ) time algorithm for constructing a visibility graph with
E edges over a set of obstacles with V vertices. Note that the usual tangent-
visibility graph construction is not sensitive to the number of vertices V but
rather to the number of obstacles n, and that the visibility graph may contain
O(n2) edges.
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(a) The edge routing (b) The corresponding KD-tree with compound ob-
stacles enclosed.

Fig. 2. An edge between two nodes a and b, routed using a tangent-visibility graph
over a simplified set of obstacles and the corresponding KD-tree. The labels indicate:
‘h’-a horizontal split internal node; ‘v’-a vertical split internal node; and ‘l’-a KD-tree
leaf-node.

3 A Spatial-Decomposition Routing Scheme

The most expensive part of the routing schemes described above is the O(n2 log n)
construction of the tangent-visibility graph over n nodes with convex boundaries.
Therefore, the first new idea we explore in this paper is a scheme for routing over
simpler visibility graphs using a spatial partitioning scheme. The intuition is to
replace groups of nodes (especially those that are far from the end nodes of the
edge being routed) with their convex hulls, thus reducing the number of obstacles
to consider in construction of the visibility graph. For example, see Figure 2.

To achieve this we need to obtain a recursive spatial partitioning of the nodes
such that the convex hulls of the nodes in each partition are not overlapping
with their siblings in the partition hierarchy. To be precise, recursive application
of a spatial partitioning to nodes positioned in the plane gives a tree structure
where each tree node at level k in the tree has children on level k + 1. We use
desc(T ) to denote the set of all leaf nodes (the original nodes in our graph) that
are contained in a particular tree node T . We require that for any tree node U at
level k in the tree, the convex hull of desc(U) must not overlap with the convex
hull of desc(V ) for any other tree node V also at level k, i.e. a sibling of U .

In order to achieve a reasonable asymptotic complexity, we also require that
the tree be balanced. Obtaining such a tree for a given arrangement of nodes may
be difficult or impossible. However, if we are willing to allow a little adjustment of
node positions then we can enforce separation of siblings in a balanced KD-tree
partitioning [2].

3.1 KD-Tree Partitioning

Our spatial-decomposition routing scheme begins with a starting configuration
of nodes obtained with any layout algorithm, the examples in the paper were
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arranged using a fast-force directed approach. The bounding boxes of nodes can
be initially overlapping as overlaps are removed by the first step, see Section 3.2.
We build a KD-tree structure for these initial node positions as follows.

Fig. 2 shows an example of routing around simplified convex hulls and the
KD-tree used to generate this routing. The KD-tree has internal nodes and leaf
nodes, where an internal node has two child KD-tree nodes and a leaf node has
two copies of the list of nodes from our original graph, one sorted by x-position,
the other sorted by y-position. The KD-tree is built by initially constructing a
single leaf node with lists containing all original graph nodes. We then recursively
split the leaves either horizontally or vertically across the median element in the
appropriate sorted list, and insert a new internal node as parent of these new
leaves in the emerging hierarchy. We follow Lauther [11] in choosing to do a
horizontal split if the bounding box of the elements in the leaf node is wider
than tall, and vice versa otherwise, in order to keep the aspect ratio of leaf
bounding boxes roughly square. We continue splitting until leaves are all smaller
than some arbitrary bucket-size B. Initially sorting the n graph nodes by x- and
y-position takes O(n log n) time. The sortedness of lists for new leaf nodes can
be maintained by copying them in order from their parents. The tree is balanced
since we always split across the median element, so O(log n) splits are performed.
Thus, construction of the KD-tree requires O(n log n) time.

3.2 Removing Overlaps

The routing scheme that follows requires that nodes in the KD-tree do not
overlap their siblings. We first remove overlaps between the B children of each
leaf node in the KD-tree, i.e. the original graph nodes. A number of methods
for effectively resolving overlaps between rectangular bounding boxes exist. We
use the quadratic-programming based method of [5] since we find that it leads
to relatively little displacement of nodes from their starting positions.

Next we must remove overlaps between the bounding boxes of the children of
internal nodes. Each internal node i has two children as the result of a split. If the
split was horizontal then we resolve overlap horizontally. That is, if the amount of
horizontal overlap oh = rightSide(leftChild(i))− leftSide(rightChild(i)) > 0,
then we translate leftChild(i) by −oh/2 and rightChild(i) by oh/2. We resolve
overlap in the same manner vertically if i was constructed with a vertical split.
All internal nodes are processed in this way, proceeding bottom-up.

Since we move each (graph) node up to log n times, the running time of this
overlap removal step is O(n log n).

3.3 Computing Convex Hulls

The next step is to compute convex hulls around the descendents of each internal
node. Again, this is computed bottom up. It is possible to compute the convex
hulls of all internal nodes in the KD-Tree in O(n log n) total time using the
linear time hull merging method of Preparata and Hong [12]. However, we use a
näıve application of Graham Scan to calculate internal node hulls of the points in
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child hulls in O(n log2 n) total time since the overall complexity of edge routing is
dominated by the computation of visibility graphs anyway. In the sequel, hull(i)
refers to the precomputed convex hull of internal node i.

3.4 Simplified Visibility Graphs

Using the KD-tree of non-intersecting convex hulls described above we are able
to construct a simplified visibility graph for all edges between a particular pair
of leaves. Procedure leaf-obstacles returns a list of obstacles for any two leaves
u and v in the KD-Tree T .
leaf-obstacles(u, v, T )

U ← the set of nodes of the shortest path between u and v in the KD-tree
w ← the lowest common ancestor of u and v
H ← {hull(sibling(i))|i ∈ U \ {u, v, w}}

return H ∪ {hull(c)|c ∈ children(u) ∪ children(v)}

Where sibling(i) returns the sibling of internal node i and children(u) returns
the original graph nodes that are children of leaf node u.

Lemma 1. Procedure leaf-obstacles returns O(log n) obstacle hulls.

Proof. If the maximum bucket size B = 1 then the height of the balanced KD-tree
T is log n in which case the hulls returned by leaf-obstacles are just the siblings
of the ancestors of u and v up to the lowest common ancestor. The worst case is
that the lowest common ancestor of u and v is the root of T , resulting in 2 logn
obstacles. In practice we use B ≈ 10 which results in up to 2(log n− log B + B),
i.e. also O(log n) for B << n. ��

3.5 Routing Edges

First we group edges by the (unordered) pair of leaves in KD-Tree T of their end
nodes. For each group of edges between KD-Tree leaves u and v we generate the
visibility graph over leaf-obstacles(u, v, T ). This takes time O(log2 n log log n).

4 A Sparse Visibility-Graph Spanner

An alternative approach for edge routing in a large graph that we explore is
the one suggested by [3]. This approach uses so called Yao graphs which are
built by using fans of cones. A fan of cones is constructed at each vertex of
an obstacle and only one edge of the visibility graph is chosen per cone. The
resulting spanner graph contains only O(πn

α ) edges where n is the number of
vertices of the graph and α is the cone angle. In spite of the graph sparseness for
every ε > 0 one can choose angle α such that for each shortest path in the full
visibility graph the length of the corresponding shortest path in the spanner is
at most (1 + ε) of the length of the former [3]. We construct the spanner graph
by a direct method rather than by following the suggestion of [3] to build the
conic Voronoi diagram first. We have not found the details of this algorithm for
building such a spanner graph in [3] or in literature.
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Fig. 3. Bold-dashed segments depict the edges created by one sweep

The technique presented here is a sweepline algorithm. One sweep finds edges
inside cones constructed with the inner angle α and the bisector pointing to the di-
rection of the sweep. By performing π

α sweeps we cover all possible edge directions
from 0 to π. The input for the algorithm is the set P of convex mutually disjoint
polygonal obstacles, the angle α and a vector representing the cone bisector direc-
tion (sweep direction). We say that a vertex u is visible from vertex v if u �= v and
the line segment uv does not intersect the interior of a polygon in P . This way the
neighbor vertices of an obstacle are visible to each other, and a side of an obsta-
cle can be taken as an edge of the visibility graph. For the sake of simplicity the
following explanation assumes further that the bisector coincides with the vector
(0, 1) and therefore the sweepline is horizontal and processing is from bottom to
top. For points a = (ax, ay) and b = (bx, by) we say the cone distance between
them is |by − ay|. Let V be the set of the vertices of P . For v ∈ V we denote by
Cv the cone with the apex at v, bisector (0, 1), and angle α and by Visv the set of
vertices from V ∩ Cv which are visible from v. For each v ∈ V with Visv �= ∅ the
algorithm finds u ∈ Visv which is closest to v in the cone distance, and adds the
edge (v, u) to the spanner graph, see Fig. 3.

The algorithm works by processing events as the sweepline moves up. There
are the following types of events (see Fig. 4(a)):
lowest vertex at the leftmost lowest vertex of an obstacle;
left vertex at a vertex that can be reached by a clockwise walk on obstacle edges

starting from the vertex of a lowest vertex event and stopping at the rightmost
highest vertex;

right vertex at a vertex that can be reached by a counterclockwise walk starting at
the vertex of a lowest vertex event and stopping at the vertex before the rightmost
highest vertex;

left intersection at the lowest intersection of a left cone side and an obstacle;
right intersection at the lowest intersection of a right cone side and an obstacle;
cone closure see below.

Events are kept in a priority queue Q with those sited at the lowest y-coordinate
taking highest priority. For each cone participating in a sweep we keep pointers
to its left and right sides. A cone side can be a default cone side, i.e. a ray
starting at the cone apex at angle ±α

2 to the y-axis, or it could be a ray along an
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(a) Events (b) Cone sides

Fig. 4. (a) Stars are lowest vertex events; circles labeled L and R are left and right
vertex events; diamonds labeled L and R are left and right intersection events (b)
Dotted lines show the default cone sides, Dashed lines - broken cone sides that are
created at vertex events, solid lines - broken cone sides that are created at intersection
events

(a) Cone closure event (b) Missing bro-
ken side

Fig. 5. (a) The arrow points to a cone closure event. After such an event the cone is
discarded. (b) The lower cone is discarded after discovering the vertex that completes
the grey edge. The cone’s left broken side is removed from LCS and the intersection
marked by the arrow is not detected.

obstacle side if the cone is partially obscured by the obstacle as demonstrated
by Fig. 4(b). We call such a cone side a broken side. Now we can define a cone
closure event as an event happening when a broken side intersects a default cone
side of the same cone, see Fig. 5(a). For a broken side we keep a pointer to its
default cone side.

4.1 Balanced Trees of Active Cone Sides and Obstacle Segments

During the sweep we maintain a set of active cones. An active cone with its apex
at a vertex is constructed at the vertex event. It is discarded when completely
obstructed by an obstacle or when a visible vertex is discovered inside of the
cone. We keep left cone sides of the active cones in a balanced tree LCS, and
their right cone sides in a balanced tree RCS. The processing order guarantees
that no two default active left (right) sides intersect. We also know that the
cone side that we search for, insert into or remove from the tree must inter-
sect the sweepline. This allows us to define the following order between cone
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sides a and b where x is the intersection of a with the sweepline. If x is to
the left of b then a < b, else if x is to the right of b then a > b. Otherwise,
if a and b are both broken sides, then compare the default cone sides they
point to, else we are comparing a broken side and a cone side; (Rule A) in LCS
(RCS) the default left(right) cone side is greater(less) than the broken cone side.

Fig. 6. FindConesSeeingEvent: Cone
side b is the first in RCS not to the left of
e. Side a first takes the value of a0 then a1.
The two cones marked by an arc-segment
“see” e.

Trees LCS and RCS serve to find ac-
tive cones “seeing” a vertex. Another
function of the trees is calculation of
intersection events. However, as shown
at Fig. 5(b), a broken side containing
an intersection event site can be re-
moved before the intersection is found.
To work around this we maintain two
additional balanced trees called LS and
RS. The members of these trees are
called active obstacle segments; they
are line segments connecting two adja-
cent vertices of an obstacle which are
intersected by the current sweepline.
Members of LS are segments traversed
on the clockwise walk from the lowest
vertex to the top of the obstacle and the remaining obstacle segments are mem-
bers of RS. An active segment is added to the tree when its low vertex is pro-
cessed and removed when its top is processed. Elements of LS (RS) are called
left (right) active segments. The order of the segments in LS and RS is defined
by the x-coordinates of the intersections of the segments and the sweepline. We
call a segment almost horizontal if the absolute value of the difference between
the y-coordinates of its start and end point is less than some small positive
ε set in advance. Almost horizontal segments are not included in LS and RS
since their intersections with the sweepline are not well defined, since we assume
that the sweepline is horizontal. The order is well defined since the obstacles are
disjoint.

4.2 Algorithm Description

The main loop of the algorithm is described below.
Sweep (P, α, bisector)

initialize queue Q by all lowest vertex events
while Q is not empty

e ← pop event from Q
ProcessEvent(e)

Routine ProcessEvent proceeds according to the event type. If the event is a
cone closure then we discard the cone. However, it can happen that the cone of
a cone closure event has been discarded earlier when a visible vertex was found
inside the cone. To handle this we keep a Boolean flag associated with a cone
and set it to true when the cone is removed. In the case of a cone closure event
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if flag is not set we remove the cone; that is, its left and right sides are removed
from LCS and RCS respectively.

We describe in detail only the event handlers LeftVertexEvent and LeftIn-
tersectionEvent since other events are symmetric, with the exception of lowest
vertex. We explain this exception below.
LeftVertexEvent(e)

move the sweepline to the site of e
FindConesSeeingEvent(e)
CloseConesByHorizontalSegment(e)
remove from LS the segment incoming into e clockwise
AddConeAtLeftVertex(e)

The procedure FindConesSeeingEvent finds all cones that “see” the site of
e, creates the corresponding edges and discards the cones, see Fig. 6.
FindConesSeeingEvent(e)

b ← the first right cone side in RCS which is not to left of e
if b exists

a ← the left side of the cone of b
while a is defined and a is not to the right of e

create the edge from the apex of the cone of a to the vertex and remove the cone
a ← the successor of a in LCS

Procedure CloseConesByHorizontalSegment handles the case when the ob-
stacle side going clockwise and ending at the vertex of event v is almost hori-
zontal. It finds all cones obstructed by the segment. Since by this time we have
removed all cones “seeing” v or “seeing” the start of the segment, every cone
with a side intersecting the segment is completely obstructed by it. Tree RCS,
for example, can be used to find all such cones in an efficient manner.

In AddConeAtLeftVertex we try to create a cone, enqueue events, and
add a segment to LS. Let v be the vertex of e, and u is the next one on the
obstacle in the clockwise order. We enqueue a left vertex event for u if it is not
below v. The cone is created at v only when it is not completely obscured by the
obstacle. The left side of the cone is a default side: for this side we look for the
intersection with the last segment of RS to the left of v. If the right cone side
is a default cone side we look for the intersection of it with the first segment of
LS to the right of v. If the right side of the cone is an obstacle side we check
for its intersection with the last segment of RCS which is to left of v. If the
cone is created we add new cone left (right) side to LCS (RCS). If the segment
[v, u] is not almost horizontal and points to the left of the default right cone side
starting from v then the segment is added to LS as a left active segment. An
obstacle segment which does not point to the left of the default right cone side
is not inserted into LS since no default right cone with the apex different from
v can intersect it without first intersecting the obstacle at some other segment.

At a lowest vertex event we do almost all the work of a left vertex event and
a right vertex event. However, since the lowest vertex is the first one examined
on the obstacle we do not try to close cones by the horizontal obstacle segments
adjacent to the vertex. When processing a right vertex event we enqueue the next
right vertex event only in the case when the segment from the event vertex to
the next vertex going counterclockwise on the obstacle is not almost horizontal;
this way we avoid processing a top vertex of an obstacle twice.
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Let us describe the way LeftIntersectionEvent works. This procedure deals
with the intersection of a default left cone side and a right obstacle segment.
LeftIntersectionEvent(e)

c ← the cone side of e
x ← the intersection point of e
s ← the obstacle segment of e
u ← the top point of s
if the cone of c is not removed

if segment [x, u] is almost horizontal
remove the cone of c
move the sweepline to the event site

else
RemoveFromTree(c, LCS)
move the sweepline to the event site
t ← new broken side [x, u]
replace c by t in the cone and insert t into LCS
m ← the successor of t in LCS
if m exists and intersects t

enqueue the new left intersection event
if t intersects the cone right side and the intersection point is below u

enqueue a new cone closure event at the intersection point

It can happen that the sweepline passes through a left intersection event site
before calling LeftIntersectionEvent for this event. In this case Remove-
FromTree does not fail because of Rule A of the the order of LCS.

4.3 Performance of the Sweep

Let n be the number of vertices of obstacles from P . The number of events is
O(n) since there are n vertices producing not more than n cones and each cone
creates at most three events: two intersection events and one closure event. The
trees never have more than n elements each. Each search on the trees takes
O(log n) steps. Operations “successor” or “predecessor” on the trees also take
O(log n) steps. In FindConesSeeingEvent and in CloseConesByHorizon-
talSegment we walk the tree by moving to the cone side successor until some
condition holds. We can potentially make O(n log n) steps per call. However, for
each processed cone side we remove the corresponding cone, so the routines can-
not make more then O(n log n) steps during the whole algorithm run. Therefore
the overall number of steps of the algorithm is O(n log n).

5 Spline Refinement

At the final stage of our routing algorithm we “beautify” the spline. The detailed
discussion of this stage is beyond the scope and space limitations of this paper, but
on a very high level we do the following steps; shortcutting, relaxation and fitting.
In shortcutting we try to skip each internal vertex of the shortest path by removing
it and checking that the path still does not intersect the interior of an obstacle.
Intersections are checked efficiently using a binary space partitioning. In relaxation
we modify the path in such a way that it does not touch the obstacles anymore. In
fitting we inscribe cubic Bezier segments into the corners of the shortest path. We
have not carefully proven asymptotic complexity of these steps but in practice we
find only a fraction of the full routing time is spent in refinement.
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6 Experimental Results

We tested routing over various combinations of spanner visibility graphs and KD-
tree partitioning for several different graphs of very different sizes. In summary,
we find that the two methods proposed in this paper are complementary or can be
used in isolation to achieve significant speed-up. For a large graph with 1138 nodes
and 1458 edges shortest-path edge routing over the standard tangent-visibility
graph took around 95 seconds. Routing over a spanner visibility graph with 10◦

cones reduced this time to 43 seconds, including time spent in spline refinement.
With 45◦ cones, this was further reduced to 34 seconds. Increasing cone size was
found to increase the longest edge length - by up to 7% for 45◦ cones, however
the short-cutting step in our spline refinement phase was very effective at keep-
ing average edge lengths relatively short. At a cursory glance the quality of the
spanner-visibility graph routing together with refinement is close to the optimal
shortest path routing. Routes that are slightly longer than necessary (for exam-
ple following the side of an obstacle when a more direct route is possible) are only
noticeable with careful inspection, e.g. see Fig. 7.

Adding the KD-tree routing scheme was found to add a further, very signif-
icant, speed-up. Using a 45◦ cone spanner as well as KD-tree, routing the 1458
edges of our largest graph took only 5 seconds (compared to 95 seconds opti-
mal routing). The extra “spreading-out” of nodes due to the spatial partitioning
scheme, and the resultant increase in edge length (around 20% on average), was
noticeable (e.g. see Fig. 1), but less so for the very large graph.

(a) Optimal (b) 30◦ cone spanner (c) Spline smoothing

Fig. 7. Detail from routing over the GD’08 “Companies” contest graph. (a) shows
the optimal shortest path routing (b) an edge that follows the side of a shape rather
than taking the optimal shortest path when routed using a 30◦ cone spanner (c) spline
smoothing makes this path seem less bad. Even so, such non-optimal routes are rela-
tively rare thanks to short-cutting (see Sec. 5).

7 Conclusion and Further Work

This paper represents the first attempt of which we are aware of using a spanner
visibility graph scheme in routing of graph drawings. We achieve very significant
speed-up with only marginal degradation in route quality so in future we intend
to use it by default with a largish cone-size of 30◦ for all routing. The only
disadvantage of the spanner visibility graph scheme is that it is quite complicated
to implement. However, in this paper we have given more implementation details
than we have found in the literature.



158 T. Dwyer and L. Nachmanson

The KD-tree routing scheme is novel as far as we are aware. This gave us very
significant speed improvement and was found to be particularly fast when used
in combination with the spanner visibility graph scheme. The only disadvantage
is that additional adjustment of nodes is required which may make it impractical
(for example) in interactive scenarios where too much layout adjustment would
spoil the user’s mental map.

We were also pleased with the results of our spline refinement strategy when
applied to spanner visibility graph routing. In the future we intend to do further
analysis and improvement of algorithmic complexity of this step which currently
could be high in the worst case, especially our short-cutting strategy.
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Abstract. Canonical ordering is an important tool in planar graph
drawing and other applications. Although a linear-time algorithm to de-
termine canonical orderings has been known for a while, it is rather com-
plicated to understand and implement, and the output is not uniquely
determined. We present a new approach that is simpler and more in-
tuitive, and that computes a newly defined leftist canonical ordering of
a triconnected graph which is a uniquely determined leftmost canonical
ordering.

1 Introduction

Canonical vertex orderings were introduced by de Fraysseix, Pach, and Pol-
lack [13,14] and are the backbone of several algorithms for planar graphs, in-
cluding graph drawing algorithms [2,3,4,8,9,10,16,17,18,19,20,22,23,28,27,29,30],
graph encoding [1,11,26], construction of realizers, spanners, or orderly spanning
trees [5,6,7,15,31,32,33], and more [12,25,34].

Kant [28] generalized canonical orderings to triconnected graphs. While sev-
eral implementations of the linear-time algorithm of Kant are available, this algo-
rithm is neither trivial to code, nor is its correctness easily understood. Based on
a simple and intuitive criterion, we present a new algorithm that might further
broaden the scope of adoption and ease teaching.

Since a triconnected graph can have many canonical orderings, we introduce
the leftist (and rightist) canonical ordering that is uniquely determined. The
leftist canonical ordering is in particular a leftmost canonical ordering.

The main advantage of our algorithm compared to the algorithm in [28] is
that we do not use the dual graph nor any face labels. Further, we compute
the unique leftist canonical ordering from scratch, i. e., without any reordering,
and we compute it from the low numbers to the high numbers contrary to the
previous algorithm that builds the canonical ordering from the end by shelling
off paths from the outer face. A similar approach for biconnected canonical
orderings can be found in [24]. We also give a detailed pseudocode such that it
can be easily implemented. Finally, our proof of correctness includes a new proof
of the existence of a canonical ordering for triconnected graphs.

The paper is organized as follows. Canonical orderings are defined in Sect. 2.
The new algorithm and its linear-time implementation are described in Sects. 3
and 4, respectively.
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2 Preliminaries

Throughout this paper, let G = (V, E) be a simple undirected graph with n
vertices, n ≥ 3, and m edges. We assume that G is planar and triconnected,
hence it has a unique planar embedding up to the choice of the outer face.
For a subset V ′ ⊆ V we denote by G[V ′] the subgraph of G induced by V ′.
By degG(v) we denote the number of edges of G that contain v. A path is a
sequence P = 〈v0, . . . , v�〉 of distinct adjacent vertices, i. e., {vi, vi+1} ∈ E. We
also denote the set {v0, . . . , v�} by P .

Canonical orderings were introduced originally for triangulated graphs by de
Fraysseix et al. [13,14]. The following rephrases Kant’s generalization to tricon-
nected graphs [28].

Definition 1 (canonical ordering). Let Π = (P0, . . . , Pr) be a partition of V
into paths and let P0 = 〈v1, v2〉, Pr = 〈vn〉 such that v2, v1, vn is a path on the
outer face of G in clockwise direction. For k = 0, . . . , r let Gk = G[Vk] = (Vk, Ek)
be the subgraph induced by Vk = P0 ∪ · · · ∪ Pk, let Ck be the outer face of Gk.
Partition Π is a canonical ordering of (G, v1) if for each k = 1, . . . , r − 1:

1. Ck is a simple cycle.
2. Each vertex zi in Pk has a neighbor in V \ Vk.
3. |Pk| = 1 or degGk

(zi) = 2 for each vertex zi in Pk.

Pk is called a singleton if |Pk| = 1 and a chain otherwise.

A canonical ordering Π is refined to a canonical vertex ordering v1, . . . , vn by
ordering the vertices in each Pk, k > 0, according to their clockwise appearance
on Ck (see Figs. 1(a)-1(c)).

The following observations help build an intuitive understanding of canonical
orderings. Note that Propositions 4 and 5 of Lemma 1 are part of Kant’s original
definition.

Lemma 1. For k = 1, . . . , r − 1:

1. Pk has no chord.
2. For each vertex v in Pk there is a v-vn-path v = vk0 , . . . , vk�

= vn where
each vki is in Pki and ki < kj for 0 ≤ i < j ≤ �. Especially:
(a) G[V \ Vk] is connected.
(b) If degGk

(v) = 2, then v is in Ck.
(c) Pk is on Ck.

3. (a) A singleton Pk+1 and a path of Ck bound some faces or
(b) a chain Pk+1 and a path of Ck bound one face.

4. Gk is biconnected.
5. If v, w is a separation pair of Gk, then both are on Ck.

Proof. The properties are directly implied by the fact that G is triconnected and
by the definition of a canonical ordering. ��

Remark 1. Two incident faces of a triconnected planar graph share one vertex
or one edge. Especially, no face has a chord.
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2.1 Leftmost Canonical Ordering

Kant [28] introduced a leftmost and rightmost canonical ordering of G. Let
P0, . . . , Pk be a sequence of paths that can be extended to a canonical ordering
of G. A path P of G is a feasible candidate for the step k+1 if also P0, . . . , Pk, P
can be extended to a canonical ordering. Let v1 = c1, c2, . . . , cq = v2 be the
vertices from left to right on Ck. Let c� be the neighbor of P on Ck such that �
is as small as possible. We call c� the left neighbor of P .

Definition 2 (leftmost canonical ordering). Acanonical ordering P0, . . . , Pr

is called leftmost (rightmost) if for k = 0, . . . , r − 1 the following is true. Let c�

be the left neighbor of Pk+1 and let Pk′ , k + 1 ≤ k′ ≤ r, be a feasible candidate
for the step k + 1 with left neighbor c�′ . Then either (1) � ≤ �′(� ≥ �′) or (2)
there is an edge between Pk+1 and Pk′ (see Fig. 1(b)).

Note that once a canonical ordering is known a simple linear-time algorithm
can be used to rearrange its paths so that it becomes leftmost [28]. Also note
that Kant did not use Condition 2 of a leftmost canonical ordering in his defini-
tion, however, he used it in his reordering algorithm. While leftmost canonical
orderings are particularly useful for many applications, we stress that the rear-
rangement is applicable to any canonical ordering and that a leftmost canonical
ordering is only unique with respect to a given partiton.

2.2 Leftist Canonical Ordering

In the leftist canonical ordering we add in each step the leftmost possible path
where the choice is not only within an already given partition.

Definition 3 (leftist canonical ordering). A canonical ordering P0, . . . , Pr

is called leftist (rightist) if for k = 0, . . . , r − 1 the following is true. Let c� be
the left neighbor of Pk+1 and let P be a feasible candidate for the step k +1 with
left neighbor c�′ . Then � ≤ �′(� ≥ �′) (see Figs. 1(c) and 1(a)).

Note that a feasible candidate for the step k + 1 needs not to be a feasible
candidate for the step k+2 anymore. Also note that the leftist canonical ordering
is unique irrespective of a given partition and it is a leftmost canonical ordering.
A leftist canonical ordering can also be found by choosing always the rightmost
face or singleton in the algorithm of Kant [28]. A similar concept related to
Schnyder realizers without clockwise cycles was defined for triangulated graphs
in [6].

3 New Algorithm

Starting from P0 = 〈v1, v2〉, we build the canonical ordering by adding P1, . . . , Pr

in this order. In step k + 1, the “belt” around Gk, i. e., the sequence of vertices
not in Gk that lie on faces incident to Gk is considered. Then, a candidate
not causing any “self-intersection” within the belt is chosen. Before we give the
details, we start with a recursive definition of which paths will be considered in
the step k + 1.
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Fig. 1. Different canonical orderings (black paths are chains). (a) Rightist canonical
ordering. (b) Leftmost canonical ordering respecting the ordering in (a). (c) Leftist
canonical ordering and its construction. The light and dark grey faces are the belt of
G0. The next candidate in Algorithm 3 is P1 = 〈3, 4, 5〉. Algorithm 5 substitutes the
dark grey face by the middle grey faces, i. e., by the Extension found by Algorithm 4.

Definition 4 (cut faces and locally feasible candidates). P0 = 〈v1, v2〉
is a locally feasible candidate. Let P0, . . . , Pk be a sequence of locally feasible
candidates and Vk, Gk, and Ck as in Definition 1. A cut face f of Gk is an
inner face of G that is incident to some vertex on Ck but is not a face of Gk. Let
Pf be the clockwise sequence of vertices incident to f that are not in Vk. If f is
incident to an edge on Ck, then f is called a candidate face and Pf is called a
candidate for the step k+1. A candidate face f and the candidate Pf are locally
feasible for the step k + 1 if

1. vn is not in Pf or P0, . . . , Pk, Pf is a partition of V ,
2. G[V \ (Vk ∪ Pf )] is connected, and
3. Pf is a singleton or the degree of each vertex of Pf in G[Vk ∪ Pf ] is two.

In the remainder of this section, we will see that the locally feasible candidates
are exactly the feasible candidates. We start with the following lemma which is
a direct consequence of Definitions 1 and 4 and the triconnectivity of G.

Lemma 2
1. A canonical ordering is a sequence of locally feasible candidates.
2. If a sequence of locally feasible candidates partitions the whole vertex set of

a triconnected graph, it is a canonical ordering.

In what follows, we consider the vertices on Ck to be from left to right between
v1 and v2. Accordingly, we also consider the cut faces from left to right: A cut
edge of Gk is an edge of G that is incident to one vertex in Vk and one vertex
in V \Vk. Let f and f ′ be two cut faces. Let c and c′, respectively, be the leftmost
vertices on Ck that are incident to f and f ′, respectively. We say that f is to
the left of f ′ if c is to the left of c′ on Ck or if c = c′, then the cut edges of f
are to the left of the cut edges of f ′ in the incidence list of c.
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Algorithm 1. Leftist Canonical Ordering
begin

Let v2, v1, v3, . . . , v� be the bound of the inner face incident to {v1, v2}
P0 ← 〈v1, v2〉, P1 ← 〈v3, . . . , v�〉, k ← 1
while |Vk| < n − 1 do

Let f be the leftmost locally feasible candidate face
Pk+1 ← Pf

k ← k + 1
Pk+1 ← 〈vn〉

end

Corollary 1. If Algorithm 1 terminates, it computes the leftist canonical order-
ing of a triconnected planar graph.

Before we prove that in each step there exists a locally feasible candidate face,
we describe locally feasible candidates in terms of “self-intersection“ of the belt.
Let P0, . . . , Pk be a sequence of locally feasible candidates. The belt of Gk is
the sequence of vertices not in Gk that are incident to the cut faces of Gk

from left to right. I. e., let f1, . . . , fs be the cut faces of Gk ordered from left to
right. Let Pf0 be the vertices in V \ Vk that are incident to the outer face in
counterclockwise order. Then, the concatenation of Pf1 , . . . , Pfs and Pf0 is the
belt of Gk. Consider Fig. 1(a). Then, P2 = 〈6, 7〉, P3 = 〈8〉, and the belt of G3
is 15, 14|14|14, 15, 13, 12|12, 10|10, 11, 9|9|9, 11, 13|13, 15|15.

Definition 5 (forbidden, singular, stopper). A vertex v of the belt of Gk is

– forbidden if v does not occur consecutively in the belt of Gk,
– singular if v occurs more than twice in the belt of Gk and its occurrence is

consecutive, and
– a stopper if it is forbidden or singular.

In the above example, 15, 13, and 11 are forbidden and 14 and 9 are singular
vertices. Note that vn is always the first and last vertex of the belt. Hence,
it remains forbidden until the end. It will turn out that the locally feasible
candidates are those that do not contain a stopper or that are singular singletons.

Lemma 3. Let P0, . . . , Pk be a sequence of locally feasible candidates. Let f be
a candidate face for the step k + 1 and let P = Pf .

1. If a vertex v of P is adjacent to more than two vertices in Vk ∪ P , then v
occurs more than twice in the belt.

2. If G[V \ (Vk ∪ P )] is not connected, then P contains a forbidden vertex.
3. If a vertex v of P is singular, then v is a locally feasible singleton.
4. If P contains a forbidden vertex v, then G[V \ (Vk ∪ P )] is not connected or

P contains another vertex with more than two neighbors in Vk ∪ P .

Proof. 1. Let e be an edge incident to v and a vertex in Vk ∪ P that is not
incident to f . By Remark 1, edge e is a cut edge and hence incident to two
cut faces. Thus, v is incident to at least three cut faces.
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2. Let W be the set of vertices in a connected component of the graph induced
by V \ (Vk ∪ P ) and not containing vn. Since V \ Vk was connected, W is
adjacent to P and there is a path from P to vn not intersecting W . By the
triconnectivity of G, there is an edge between W and the part of Ck not
contained in f . Further, there is at least a third vertex on Ck ∪ P adjacent
to W . Let w be the rightmost vertex on Ck ∪ P that is adjacent to W
and let v be the leftmost such vertex. Assume that w is on Ck. Then v is
on P . Consider the face f ′ containing v and w. Then, the belt contains some
vertices of W between the occurrences of v for the belt faces f and f ′ (see
Fig. 2(a)).

3. If v is singular, then it is a candidate. By Proposition 2, G[V \ (Vk ∪ {v})] is
connected.

4. Since v is forbidden, there is a cut face f ′ containing v and a cut face h
between f and f ′ such that Ph contains a vertex w �= v. If w is not incident
to f , then w and vn are in two connected components of G[V \ (Vk ∪ P )]
(see Fig. 2(b)). So assume now that for all faces h′ between f and f ′ the
path Ph′ contains only vertices incident to f . Among these faces let h be the
face that is next to f . By Remark 1, Ph consists of one vertex w �= v and w
is singular (see Fig. 2(c)). ��

Corollary 2. 1. A candidate that is a chain is locally feasible if and only if it
does not contain any stopper.

2. A vertex of the belt is a locally feasible singleton if and only if it is singular.

For example, the locally feasible candidates for the step k + 1 = 4 in Fig. 1(a)
are 〈14〉, 〈12, 10〉, and 〈9〉.

Theorem 1. Algorithm 1 computes the leftist canonical ordering of a tricon-
nected planar graph.

Proof. By Lemma 1, it remains to show that in each step of the algorithm there
is a locally feasible candidate. By Corollary 2.2, if there are any singular vertices,
we have a locally feasible candidate. So, assume now we do not have any singular
vertices. By Corollary 2, we have to show that there is a candidate that does
not contain any forbidden vertex.

Let f be a candidate face and let P = Pf . Assume that P contains a forbidden
vertex v. Let f ′ be a cut face containing v such that the belt contains a vertex
other than v between the occurrence of v in Pf and the occurrence of v in Pf ′ .
Let f, h1, . . . , hα, f ′ be the sequence of cut faces between f and f ′. We show by
induction on the number of forbidden vertices in Ph1 , . . . , Phα that there is a
locally feasible candidate among Ph1 , . . . , Phα .

By the choice of f ′ and by triconnectivity of G, there is at least one i = 1, . . . , α
such that Phi is a candidate that does not contain v. If v is the only forbidden
vertex in Ph1 , . . . , Phα , then Phi is locally feasible.

If Phi contains a forbidden vertex w (recall that by our assumption there are
no singular vertices), there is a cut face h �= hi among f, h1, . . . , hα, f ′ incident
to w such that the belt contains a vertex other than w between the occurrence
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Fig. 2. Illustration of the proof of Lemma 3. (a) W is a connected component of
G[V \(Vk∪Pf )] not containing vn. Faces f and f ′ are not consecutive in the belt of Gk.
Thus, f contains a forbidden vertex v. (b, c) If v is forbidden, then (b) G[V \ (Vk ∪Pf )]
is not connected or (c) there is a singular vertex w.

of w in Phi and in Ph. The cut faces between h and hi do not contain v. Hence,
by the induction hypothesis, one of them is a locally feasible candidate. ��

4 Linear-Time Implementation

We will maintain a list Belt that represents the cut faces from left to right.
For a simpler implementation, Belt contains lists of edges rather than one list
of vertices and each cut face f is represented by a belt item which is a pair
consisting of

– a list Chain of f ’s incident edges not in Gk in clockwise order and
– the rightmost stopper of Pf (if any).

We traverse the list Belt using a pointer candidate.
To decide whether a vertex is a stopper, we maintain two counters. Let

cutFaces(v) be the number of cut faces and cutEdges(v) the number of cut
edges to which v is incident. In order to make the following lemma true also
for vn, we will count the outer face twice in cutFaces(vn).

Lemma 4. A vertex v in the belt of Gk is

– forbidden if and only if cutFaces(v) > cutEdges(v) + 1 and
– singular if and only if 2 < cutFaces(v) = cutEdges(v) + 1.

Proof. A vertex occurs once for each cut face it is incident to in the belt. Two
occurrences of a vertex v in the belt are consecutive if and only if the corre-
sponding cut faces share a cut edge incident to v. So, all occurrences of v in the
belt are consecutive if and only if v is only incident to one more cut face than
to cut edges. ��

The algorithm canonicalOrdering (see Algorithm 2) now works as follows. We
start with a copy of G in which each undirected edge {v, w} is replaced by the
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Algorithm 2. Leftist Canonical Ordering
Input : G = (V, E) planar embedded triconnected undirected graph

v1 ∈ V on the outer face
Output : leftist canonical ordering P0, . . . , Pk of (G, v1)

canonicalOrdering
replace each {v, w} ∈ E by (v, w) and (w, v)
vn ← clockwise neighbor of v1 on outer face
v2 ← counterclockwise neighbor of v1 on outer face

for v ∈ V do cutFaces(v) ← 0; cutEdges(v) ← 0
cutFaces(vn) ← 1

mark (v1, v2) and (v2, v1)
Belt ← 〈(〈(v2, v1), (v1, v2), (v2, v1)〉,nil)〉
k ← −1
candidate ← first item in Belt
while Belt �= ∅ do

k ← k + 1
Pk ← leftmostFeasibleCandidate

updateBelt

end

two directed edges (v, w) and (w, v). In the beginning, the belt is initialized by
(〈(v2, v1), (v1, v2), (v2, v1)〉,nil). Thus, leftmostFeasibleCandidate (see Algo-
rithm 3) chooses P0 = 〈v1, v2〉 as the first path.

In general, each iteration in Algorithm 2 consists of three steps: (1) We choose
the new leftmost locally feasible candidate Pk, (2) we find the new cut faces
incident to Pk, and (3) we replace Pk by its incident cut faces in the belt and
update its neighbors (see Fig. 1(c)). In detail:

leftmostFeasibleCandidate. We traverse Belt from the current cut face
candidate to the right doing the following: If candidate is a candidate
face, traverse candidate.Chain from right to left until a stopper is found.
If so, store it. If candidate.Chain contains no stopper or it is a singular
singleton, it is the next locally feasible candidate. Otherwise, go to the next
face. See Algorithm 3.

beltExtension. To find the new cut faces, we traverse candidate.Chain from
left to right. The outer repeat-loop iterates over all vertices incident to two
edges of candidate.Chain. Each iteration finds the new cut faces incident
to such a vertex and increments the counter cutEdges. In the inner repeat-
loop, we traverse all new edges of a new cut face and store them in the
list Chain. Here the counter cutFaces is incremented. Each list Chain
is finally appended to the list Extension that stores all new belt items
incident to candidate.Chain. See Algorithm 4.

updateBelt. We replace candidate (and all its copies if it was a singleton) by
the new cut faces found by beltExtension. The last edge of the predecessor



Leftist Canonical Ordering 167

and the first edge of the successor of candidate are removed since they are
now contained in Gk. If the predecessor of candidate was not a candidate
face before or it lost its stopper, then we go one step to the left in Belt and
set candidate to its predecessor. See Algorithm 5.

Algorithm 3. Skip infeasible candidates
list leftmostFeasibleCandidate

found ← false

repeat
let 〈(v0, v1), (v1, v2), . . . , (v�, v�+1)〉 := candidate.Chain
if v0 �= v�+1 then

j ← �
while j > 0 and not(forbidden(vj) or singular(vj)) do j ← j − 1
if j > 0 then candidate.stopper ← vj

if j = 0 or
(singular(candidate.stopper) and � = 1)

then

found ← true

for (v, w) ∈ candidate.Chain do mark (w, v)

if not found then
candidate ← successor(candidate)
if candidate = nil then HALT: illegal input graph

until found
return 〈v1, . . . , v�〉

end

Theorem 2. Algorithm 2 computes the leftist canonical ordering of a tricon-
nected planar graph in linear time.

Proof. Linear running time: In the algorithm beltExtension each edge is
touched at most twice. In the algorithm leftmostFeasibleCandidate each
candidate is scanned from right to left until the first stopper occurs. All the
scanned edges will have been deleted from the list when the candidate will
be scanned the next time. In total only 2m edges will be added to Belt.

Correctness: While scanning Belt from left to right, we always choose the
leftmost locally feasible candidate: Assume that at step k + 1 we scan a
face f and there are no locally feasible candidates to the left of f . The face f
is omitted because it is not a candidate or it contains a stopper. None of the
two properties changes if no direct neighbor in Belt had been added to Gk.
Hence, as long as f is not locally feasible, no face to the left of f has to be
considered. Further, the number of incident cut faces or cut edges of a vertex
never decreases. We show that a candidate can only become locally feasible
after his rightmost stopper has become singular.

Let v be the rightmost stopper of Pf and assume v is forbidden. Let
fL be the leftmost and fR be the rightmost cut face containing v. We can
conclude by the proof of Theorem 1 that all occurrences of v between fL and
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Algorithm 4. Construct list of new belt items incident to Pk

list beltExtension(list 〈e0, . . . , e�〉)
Extension ← ∅
for j ← 1, . . . , � do /* check for new cut faces incident to source */

vstart ← source(ej)
vend ← target(ej)
first ← ej

repeat
first = (v, w) ← clockwise next in N+(vstart ) after first
cutEdges(w) ← cutEdges(w) + 1
if first not marked then /* new cut face */

Chain ← ∅
e ← (v, w)
repeat /* traverse clockwise */

mark e
append Chain ← e
cutFaces(w) ← cutFaces(w) + 1
e = (v, w) ← counterclockwise next in N+(w) after (w, v)

until w ∈ {vstart , vend}
mark e
append Chain ← e
append Extension ← (Chain,nil)

until w = vend

return Extension
end

Algorithm 5. Replace feasible candidate with incident faces
updateBelt

if singular(candidate.stopper) then
remove neighboring items with same singleton from Belt

pred ← predecessor(candidate)
succ ← successor(candidate)
if succ �= ∅ then remove first edge from succ.Chain

Extension ← BeltExtension(candidate.Chain)
replace candidate by Extension
if Extension �= ∅ then

candidate ← first item of Extension
else

candidate ← succ

if pred �= ∅ then
remove last edge (v, w) from pred.Chain
if v = pred.stopper or w = source(first edge of pred.Chain) then

pred.stopper ← nil
candidate ← pred

end
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f are consecutive and that Algorithm 2 finds the locally feasible candidates
between f and fR in the belt until the belt contains only v between f and fR.
It follows that all occurrences of v in the belt are consecutive. Let now v be
singular. Then, the only two incident cut faces f = fL and fR of v would
share a cut edge {v, w} that would not have been a cut edge before. Hence,
w would have been a stopper of f to the right of v. ��

Note that the algorithm for computing the leftist canonical ordering can also be
used to compute the rightist canonical ordering. In that case, we store for each
cut face the leftmost stopper and we scan the belt from right to left.
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Graphs. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 324–
336. Springer, Heidelberg (1998)



Succinct Greedy Drawings Do Not Always Exist�

Patrizio Angelini, Giuseppe Di Battista, and Fabrizio Frati

Dipartimento di Informatica e Automazione – Roma Tre University, Italy
{angelini,gdb,frati}@dia.uniroma3.it

Abstract. A greedy drawing is a graph drawing containing a distance-decreasing
path for every pair of nodes. A path (v0, v1, . . . , vm) is distance-decreasing if
d(vi, vm) < d(vi−1, vm), for i = 1, . . . , m. Greedy drawings easily support
geographic greedy routing. Hence, a natural and practical problem is the one of
constructing greedy drawings in the plane using few bits for representing vertex
Cartesian coordinates and using the Euclidean distance as a metric. We show
that there exist greedy-drawable graphs that do not admit any greedy drawing in
which the Cartesian coordinates have less than a polynomial number of bits.

1 Introduction

In geographic routing nodes forward packets based on their geographic locations. A
very simple geographic routing protocol is greedy routing, in which each node knows
its location, the location of its neighbors, and the location of the packet’s destination.
Based on this information, a node forwards the packet to a neighbor that is closer than
itself to the destination’s geographic location.

Unfortunately, greedy routing has two weaknesses. First, GPS devices, typically used
to determine coordinates, are expensive and increase the energy consumption of the
nodes. Second, a bad interaction between the network topology and the node locations
can lead to situations in which the communication fails because a void has been reached,
i.e., a packet has reached a node whose neighbors are all farther from the destination
than the node itself.

A brilliant solution to the greedy routing weaknesses has been proposed by Rao et
al., who in [13] proposed a protocol in which nodes are assigned virtual coordinates and
the standard greedy routing algorithm is applied relying on such virtual locations rather
than on the geographic coordinates. Clearly, virtual coordinates need not to reflect the
nodes actual positions and, hence, they can be suitably chosen to guarantee that the
greedy routing algorithm succeeds in delivering packets.

After the publication of [13], intense research efforts have been devoted to deter-
mine: (i) Which network topologies admit a virtual coordinates assignment such that
greedy routing is guaranteed to work. (ii) Which distance metrics, which systems of
coordinates, and how many dimensions are suitable for virtual coordinates. (iii) How
many bits are needed to represent the vertex coordinates.

From a graph-theoretical point of view, Problem (i) can be stated as follows: Which
are the graphs that admit a greedy drawing, i.e., a drawing such that, for every two nodes
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u and v, there exists a distance-decreasing path from u to v? A path (v0, v1, . . . , vm) is
distance-decreasing if d(vi, vm) < d(vi−1, vm), for i = 1, . . . , m. This formulation of
the problem gives a clear perception of how greedy routing can be seen as a “bridge”
problem between the theory of routing and Graph Drawing, thus explaining why it
attracted attention in both areas.

Concerning drawings in the plane adopting the Euclidean distance, Papadimitriou
and Ratajczak [11] showed that Kk,5k+1 has no greedy drawing, for k ≥ 1. Further,
they observed that, if a graph G has a greedy drawing, then any graph containing G as
a spanning subgraph has a greedy drawing. Dhandapani [2] showed, with an existential
proof based on an application of the Knaster-Kuratowski-Mazurkievicz Theorem [8]
to the Schnyder’s methodology [14], that every triangulation admits a greedy drawing.
Algorithms for constructing greedy drawings of triangulations and triconnected planar
graphs have been proposed in [1,9]. In [9] it is also proved that there exist trees not
admitting any greedy drawing.

Concerning Problem (ii), it has been shown that virtual coordinates guarantee greedy
routing to work for every tree, and hence for every connected topology, when they can
be chosen in the hyperbolic plane [7].

Unfortunately, the above mentioned algorithms construct greedy drawings that are
not succinct, i.e., in the worst case they require Ω(n log n) bits for representing the ver-
tex coordinates (Problem (iii)). This makes them unsuitable for the motivating applica-
tion of greedy routing. For solving this drawback, Eppstein and Goodrich [5] proposed
an elegant algorithm for greedy routing in the hyperbolic plane representing vertex co-
ordinates with O(log n) bits. However, the perhaps most natural question of whether
greedy drawings can be constructed in the plane using O(log n) bits for representing
vertex Cartesian coordinates and using the Euclidean distance as a metric was, up to
now, open. This paper gives a negative answer to the above question.

Theorem 1. For infinitely many n, there exists a (3n + 3)-node greedy-drawable tree
that requires Ω(bn) area in any greedy drawing in the plane using the Euclidean dis-
tance as a metric, under any finite resolution rule, for some constant b > 1.

Observe the equivalence between stating the theorem in terms of area requirement of the
drawing and in terms of number of bits required for the vertex Cartesian coordinates.
Theorem 1 is one of the few results (e.g., [4]) showing that certain families of graph
drawings require exponential area. Notice that greedy drawings are a kind of proxim-
ity drawings [3], a class of graph drawings, including Euclidean Minimum Spanning
Trees [10,6], for which very little is known about the area requirement [12].

The paper is organized as follows. In Sect. 2 we introduce some definitions and
preliminaries; in Sect. 3 we prove that there exists a tree Tn requiring exponential area in
any greedy drawing; in Sect. 4 we show an algorithm for constructing a greedy drawing
of Tn; finally, in Sect. 5 we conclude and present some open problems.

2 Definitions and Preliminaries

A tree is a connected acyclic graph. The degree of a node is the number of edges incident
to it. A leaf is a node with degree 1. A leaf edge is an edge incident to a leaf. A path
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is a tree in which every node other than the leaves has degree 2. A caterpillar is a tree
in which the removal of all the leaves and of all the leaf edges yields a path, called
spine of the caterpillar, whose nodes and edges are called spine nodes and spine edges,
respectively.

A drawing of a graph is a mapping of each node to a distinct point of the plane and of
each edge to a Jordan curve between its endpoints. A planar drawing is such that no two
edges intersect except, possibly, at common endpoints. A straight-line drawing is such
that all the edges are straight-line segments. A planar drawing determines a circular
ordering of the edges incident to each node. Two drawings of the same graph are equiv-
alent if they determine the same circular ordering around each node. An embedding is
an equivalence class of planar drawings.

The area of a straight-line drawing is the area of its convex hull. The concept of
area of a drawing only makes sense for a fixed resolution rule, i.e., a rule that does
not allow, e.g., vertices to be arbitrarily close (vertex resolution rule) or edges to be
arbitrarily short (edge resolution rule). In fact, without any of such rules, one could
construct arbitrarily small drawings with arbitrarily small area. In the following, we
derive a lower bound valid under any of such rules. Namely, we prove that, in any
greedy drawing of an n-node tree Tn, the ratio between the length of the longest edge
and the length of the shortest edge is exponential in n, which implies that such a drawing
requires exponential area when any resolution rule has been fixed.

We now state some basic properties of the greedy drawings of trees.
The cell of a node v in a drawing is the set of all the points in the plane that are closer

to v than to any of its neighbors.

Lemma 1. (Papadimitriou and Ratajczak [11]) A drawing is greedy if and only if the
cell of each node v contains no node other than v.

We remark that the cell of a leaf node v with parent u is the half-plane containing
v and delimited by the axis of segment uv, where the axis of a segment is the line
perpendicular to the segment through its median point.

Lemma 2. Given a greedy drawing Γ of a tree T , any subtree of T is represented in Γ
by a greedy drawing.

Proof: Suppose, for a contradiction, that a subtree T ′ of T exists not represented in Γ
by a greedy drawing. Then, there exist two nodes u and v such that the only path from
u to v in T ′ is not distance-decreasing. However, such a path is also the only path from
u to v in T , a contradiction. �

Lemma 3. Given a greedy drawing Γ of a tree T and given any edge (u, v) of T , the
subtree T ′ of T that contains u and that is obtained by removing edge (u, v) from T
completely lies in Γ in the half-plane containing u and delimited by the axis of segment
uv.

Proof: Suppose, for a contradiction, that there exists a node w of T ′ that lies in Γ in
the half-plane containing v and delimited by the axis of uv. Then, d(v, w) < d(u, w).
The only path from v to w in T passes through u, hence it is not distance-decreasing, a
contradiction. �
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Lemma 4. Any straight-line greedy drawing of a tree is planar.

Proof: Suppose, for a contradiction, that there exists a tree T admitting a non-planar
straight-line greedy drawing Γ . Let e1 = (u, v) and e2 = (w, z) be two edges that cross
in Γ . Edges e1 and e2 are not adjacent, otherwise they would overlap and Γ would not
be greedy. Then, there exists an edge e3 �= e1, e2 in the only path connecting u to w.
Lemma 3 implies that e1 and e2 lie in distinct half-planes delimited by the axis of the
segment representing e3, hence they do not cross, a contradiction. �

Corollary 1. Consider a greedy drawing Γ of a tree T . For each edge, remove its
drawing from Γ and substitute it with a straight-line segment connecting its endpoints.
The resulting drawing is a straight-line planar greedy drawing of T .

Because of Lemma 4 and of Corollary 1, in order to prove Theorem 1, we can restrict
the attention to planar straight-line greedy drawings. In the following, all considered
drawings will be planar and straight-line.

Lemma 5. In any greedy drawing of a tree T , the angle between two adjacent segments
is strictly greater than 60◦.

Proof: Consider any greedy drawing of T in which the angle between two adjacent
segments w1w2 and w2w3 is no more than 60◦. Then, |w1w3| ≤ |w1w2| or |w1w3| ≤
|w2w3|, say |w1w3| ≤ |w2w3|. Since d(w1, w3) ≤ d(w2, w3), the unique path
(w1, w2, w3) from w1 to w3 in T is not distance-decreasing. �
In the following we define a family of trees with 3n + 3 nodes, for every n ≥ 2, that
will be exploited in order to prove Theorem 1. Refer to Fig. 1.

Definition 1. Let Tn be a caterpillar with spine (v1, v2, . . . , vn) such that v1 has degree
5 and vi has degree 4, for each i = 2, 3, . . . , n. Let a1, b1, c1, and d1 be the leaves of Tn

adjacent to v1, let ai and bi be the leaves of Tn adjacent to vi, for i = 2, 3, . . . , n− 1,
and let an, bn, and cn be the leaves of Tn adjacent to vn.

Distinct embeddings of Tn differ for the order of the edges incident to the spine nodes.
More precisely, the clockwise order of the edges incident to each node vi is one of
the following: 1) (vi−1, vi), then a leaf edge, then (vi, vi+1), then a leaf edge: vi is a
central node (node vn in Fig. 1.b); 2) (vi−1, vi), then two leaf edges, then (vi, vi+1):
vi is a bottom node (node v2 in Fig. 1.b); or 3) (vi−1, vi), then (vi, vi+1), then two leaf
edges: vi is a top node (node v3 in Fig. 1.b). Node v1 is considered as a central node.
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Fig. 1. Two embeddings of caterpillar Tn. In (a) all the spine nodes are central nodes. In (b) node
v2 is a bottom node and node v3 is a top node.
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3 The Lower Bound

In this section we prove that any greedy drawing of Tn requires exponential area.
The proof is based on the following intuitions: (i) For any central node vi there

exists a “small” convex region containing all the spine nodes vj , with j > i, and their
adjacent leaves (Lemma 6). (ii) Almost all the spine nodes are central nodes (Lemma 8).
(iii) The slopes of edges (vi, ai), (vi, vi+1), and (vi, bi) incident to a central node vi

are in a certain range, which is more restricted for the edges incident to vi+1 than for
those incident to vi (Lemma 6). (iv) If the angle between (vi, ai) and (vi, bi) is too
small, then vj , aj , and bj , with j ≥ i + 2, can not be drawn (Lemma 10). (v) If both
the angles between (vi, ai) and (vi, bi), and between (vi+1, ai+1) and (vi+1, bi+1) are
large enough, then the ratio between the length of the edges incident to vi and the length
of the edges incident to vi+1 is constant (Lemma 9).

First, we discuss some properties of the slopes of the edges in the drawing. Second,
we argue about the exponential decrease of the edge lengths.

3.1 Slopes

Consider any drawing of v1 and of its adjacent leaves; rename such leaves so that the
counter-clockwise order of the vertices around v1 is a1, c1, d1, b1, and v2.

In the following, when we refer to an angle v̂1v2v3, we mean the angle that brings
the half-line from v2 through v1 to coincide with the half-line from v2 through v3 by a
counter-clockwise rotation.

Property 1. b̂1v1a1 < 180◦.

Proof: By Lemma 5, â1v1c1 > 60◦, ĉ1v1d1 > 60◦, and d̂1v1b1 > 60◦. �
Now we argue that, for any central node vi, there exists a “small” convex region that
contains all the spine nodes vj , with j > i, and their adjacent leaves.

Let vi be a central node and suppose that b̂iviai < 180◦. Denote by Ri the convex
region delimited by viai, by vibi, and by the axes of such segments (see Fig. 2.b).
Denote by pi the intersection between the axes of viai and vibi, and by ha

i (hb
i ) the

midpoint of viai (resp. vibi).
Assume that x(ai) = x(bi), x(vi) < x(ai), and y(ai) > y(bi). Such a setting can

be achieved without loss of generality up to a rotation/mirroring of the drawing and a
renaming of the leaves. In the following, whenever a central node vi is considered, the
drawing is rotated/mirrored and the leaves adjacent to vi are renamed so that x(ai) =
x(bi), x(vi) < x(ai), and y(ai) > y(bi).

Let slope(u, v) be the angle bringing the half-line from u directed downward to co-
incide with the half-line from u through v by a counter-clockwise rotation (see Fig. 2.a).
Further, let slope⊥(u, v) be equal to slope(u, v)− 90◦. We observe the following:

Property 2. slope(vi, bi) < slope⊥(bi, pi) < slope⊥(pi, ai) < slope(vi, ai).

Proof: Inequality slope(vi, bi) < slope⊥(bi, pi) (and analogously slope⊥(pi, ai) <
slope(vi, ai)) holds since slope(hb

i , pi) < slope(bi, pi). Inequality slope⊥(bi, pi) <
slope⊥(pi, ai) holds by assumption. �
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Fig. 2. (a) Region R1 contains the drawing of Tn \ {a1, b1, c1, d1, v1}. The slopes of a1p1 and
b1p1 are shown. (b) Region Ri contains the drawing of path (vi+1, vi+2, . . . , vn) and of its
adjacent leaves.

Lemma 6. Suppose that vi is a central node. Then, the following properties hold: (i)
b̂iviai < 180◦; (ii) the drawing of path (vi+1, vi+2, . . . , vn) and of its adjacent leaves
lies in Ri; and (iii) any edge (vj , x), where x ∈ {aj, bj , vj+1} with j > i, is such that
slope⊥(bi, pi) < slope(vj, x) < slope⊥(pi, ai). See Fig. 3.a.

Proof: When i = 1, Property 1 ensures property (i). Further, Lemma 1 ensures property
(ii), that is, the drawing of Tn \ {a1, b1, c1, d1, v1} lies in R1 (see Fig. 2.a). In order to
prove property (iii), suppose, for a contradiction, that an edge (vj , x) exists, where x ∈
{aj, bj , vj+1} with j > 1, such that slope⊥(b1, p1) < slope(vj, x) < slope⊥(p1, a1)
does not hold. Then, it is easy to see that the half-plane delimited by the axis of vjx and
containing x also contains at least one out of a1, v1, and b1, thus providing a contradic-
tion to the greediness of the drawing, by Lemma 3.

By induction, suppose that properties (i), (ii), and (iii) of the lemma hold for some i.
Let k be the smallest index greater than i such that vk is a central node. Then, by prop-
erty (iii) of the inductive hypothesis and by Property 2, slope(vi, bi) < slope⊥(bi, pi)
< slope(vk, bk) < slope(vk, ak) < slope⊥(pi, ai) < slope(vi, ai) holds, which im-

plies b̂kvkak < b̂iviai < 180◦, and property (i) of the lemma follows for k.
By Lemma 4, the drawing is planar; by Lemma 1, the cells of ak and bk do not

contain any node other than ak and bk, respectively. Hence, if a node u is in Rk, then
no node of any subtree of Tn containing u and not containing vk lies outside Rk. Thus,
vk−1 does not lie in Rk (since a subtree of Tn exists containing vk−1, vi, and not
containing vk); since vk is a central node, then vk+1 lies on the opposite side of vk−1
with respect to the path composed of edges (vk, ak) and (vk, bk). Hence, vk+1 (and path
(vk+1, vk+2, . . . , vn) together with its adjacent leaves) lies inside Rk, and property (ii)
of the lemma follows for k.

Property (iii) can be proved analogously as in the base case, by implicitly exploiting
that properties (i) and (ii) hold for k. Namely, if slope⊥(bk, pk) < slope(vj , x) <
slope⊥(pk, ak) does not hold, for some edge (vj , x) with j > k, then the half-plane
delimited by the axis of vjx and containing x also contains at least one out of ak, vk,
and bk, thus implying that the drawing is not greedy, by Lemma 3. �
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Fig. 3. (a) Possible slopes for an edge (vj , x). (b) Illustration for the proof of Lemma 7.

Now we give a general property of a greedy drawing of a tree. Consider two edges
(u, v) and (w, z) such that the path from u to w does not contain v and z. Suppose
that v and z lie in the same half-plane delimited by the line through u and w. Suppose,
without loss of generality up to a rotation/mirroring of the drawing, that x(u) = x(w),
y(u) < y(w), and 0◦ < slope(u, v), slope(w, z) < 180◦. See Fig. 3.b.

Lemma 7. slope(u, v) < slope(w, z).

Proof: Suppose, for a contradiction, that slope(u, v) ≥ slope(w, z). Then, either v lies
in the half-plane delimited by the axis of wz and containing z, or z lies in the half-plane
delimited by the axis of uv and containing v. Hence, by Lemma 2, the drawing is not
greedy. �

3.2 Exponential Decreasing Edge Lengths

Now we are ready to go in the mainstream of the proof that any greedy drawing of Tn

requires exponential area. Such a proof is in fact based on the following three lemmata.
The first one states that a linear number of spine nodes are central nodes, in any greedy
drawing of Tn.

Lemma 8. Suppose that vi is a central node, for some i ≤ n−3. Then, vi+1 is a central
node.

Proof: Refer to Fig. 4. Suppose, for a contradiction, that vi+1 is not a central node.
Suppose that vi+1 is a top node, the case in which it is a bottom node being analo-
gous. Rename the leaves adjacent to vi+1 in such a way that the counter-clockwise
order of the neighbors of vi+1 is vi, bi+1, ai+1, and vi+2. By property (i) of Lemma 6,

b̂iviai < 180◦. By property (iii) of Lemma 6, by Property 2, and by the assumption
that vi+1 is a top node, slope(vi, bi) < slope(vi+1, bi+1) < slope(vi+1, ai+1) <

slope(vi+1, vi+2) < slope(vi, ai). By Lemma 5, ̂bi+1vi+1ai+1 > 60◦. It follows that
̂ai+1vi+1vi+2 < 120◦.

Suppose that vi+2 is a central node (a top node; a bottom node). Rename the leaves
adjacent to vi+2 in such a way that the counter-clockwise order of the neighbors of vi+2
is vi+1, bi+2, vi+3, and ai+2 (resp. vi+1, bi+2, ai+2, and vi+3; vi+1, vi+3, bi+2, and
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Fig. 4. Illustration for the proof of Lemma 8

ai+2). Notice that node vi+3 exists since i ≤ n− 3. By Lemma 7, slope(vi+2, bi+2) >
slope(vi+1, ai+1) (resp. slope(vi+2, bi+2) > slope(vi+1, ai+1); slope(vi+2, vi+3) >
slope(vi+1, ai+1)). By property (iii) of Lemma 6, slope(vi+2, ai+2) < slope(vi, ai)
(resp. slope(vi+2, vi+3) < slope(vi, ai); slope(vi+2, ai+2) < slope(vi, ai)). It follows

that ̂bi+2vi+2ai+2 < 120◦ (resp. ̂bi+2vi+2vi+3 < 120◦; ̂vi+3vi+2ai+2 < 120◦), hence
at least one of ̂bi+2vi+2vi+3 and ̂vi+3vi+2ai+2 (resp. of ̂bi+2vi+2ai+2 and

̂ai+2vi+2vi+3; of ̂vi+3vi+2bi+2 and ̂bi+2vi+2ai+2) is less than 60◦. By Lemma 5, the
drawing is not greedy. �

The next lemma shows that, if the angles b̂iviai incident to each central node vi are
large enough, then the sum of the lengths of viai and vibi decreases exponentially in
the number of considered central nodes.

Lemma 9. Let vi be a central node, with i ≤ n − 3. Suppose that both the angles
b̂iviai and ̂bi+1vi+1ai+1 are greater than 150◦. Then, the following inequality holds:
|vi+1ai+1|+ |vi+1bi+1| ≤ (|viai|+ |vibi|)/

√
3.

Proof: Refer to Fig. 5.a. By Lemma 8, vi+1 is a central node. Denote by l(vi+1) the
vertical line through vi+1 and denote by l(ha

i ) and l(hb
i) the horizontal lines through ha

i

and hb
i , respectively.

By property (iii) of Lemma 6, we have that slope⊥(bi, pi) < slope(vi+1, bi+1) <
slope(vi+1, ai+1) < slope⊥(pi, ai). Hence, by Property 2, we have slope(vi, bi) <
slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope(vi, ai). It follows that both ai+1 and
bi+1 lie in the half-plane delimited by l(vi+1) and not containing vi. Denote by da

i+1
(db

i+1) the intersection point between l(vi+1) and l(ha
i ) (resp. and l(hb

i)). Observe that

|db
i+1d

a
i+1| < (|vibi| + |viai|)/2. Denote by fa

i+1 (by f b
i+1) the intersection point

between l(ha
i ) and the line through vi+1 and ai+1 (resp. between l(hb

i) and the line
through vi+1 and bi+1). Clearly, |vi+1ai+1| < |vi+1fa

i+1| and |vi+1bi+1| < |vi+1f b
i+1|.

Angles ̂db
i+1vi+1f b

i+1 and ̂fa
i+1vi+1da

i+1 are each less than 30◦, namely such angles

sum up to an angle which is 180◦ minus ̂f b
i+1vi+1fa

i+1, which by hypothesis is greater
than 150◦. Hence, |vi+1ai+1| < |vi+1fa

i+1| < |vi+1da
i+1|/ cos(30) and |vi+1bi+1| <

|vi+1f b
i+1| < |vi+1db

i+1|/ cos(30).
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Fig. 5. Illustrations for the proofs of Lemma 9 (a) and Lemma 10 (b)

It follows that |vi+1ai+1| + |vi+1bi+1| < (|vi+1da
i+1| + |vi+1db

i+1|)/ cos(30) <

2(|vibi|+ |viai|)/2
√

3, thus proving the lemma. �
The next lemma shows that having large angles incident to central nodes is unavoidable
for almost all central nodes.

Lemma 10. No central node vi, with i ≤ n − 3, is incident to an angle b̂iviai that is
less than or equal to 150◦.

Proof: Refer to Fig. 5.b. Suppose, for a contradiction, that there exists a central node vi,
with i ≤ n−3, that is incident to an angle b̂iviai ≤ 150◦. Denote by α and β the angles
p̂iviai and b̂ivipi, respectively. Since triangles (vi, pi, h

a
i ) and (ai, pi, h

a
i ) are congru-

ent, v̂iaipi = α. Analogously, v̂ibipi = β. Summing up the angles of quadrilateral
(vi, ai, pi, bi), we get âipibi = 360◦ − 2(α + β).

By Lemma 8, vi+1 is a central node. Consider the line through vi+1 orthogonal to
aipi and denote by ga

i+1 the intersection point between such a line and aipi. Further,
consider the line through vi+1 orthogonal to bipi and denote by gb

i+1 the intersection
point between such a line and bipi. By property (iii) of Lemma 6, slope⊥(bi, pi) <

slope(vi+1, bi+1) < slope(vi+1, ai+1) < slope⊥(pi, ai). Hence, ̂bi+1vi+1ai+1 <
̂gb

i+1vi+1ga
i+1. Further, ̂gb

i+1vi+1ga
i+1 = 2α + 2β − 180◦, as can be derived by con-

sidering quadrilateral (gb
i+1, vi+1, g

a
i+1, pi). Since, by hypothesis, α + β ≤ 150◦, we

have ̂bi+1vi+1ai+1 < ̂gb
i+1vi+1ga

i+1 = 2α + 2β − 180◦ ≤ 120◦. However, since vi+1

is a central node, edge (vi+1vi+2), that exists since i ≤ n−3, cuts angle ̂bi+1vi+1ai+1.

It follows that at least one of angles ̂bi+1vi+1vi+2 and ̂vi+2vi+1ai+1 is less than 60◦.
By Lemma 5, the drawing is not greedy. �
The previous lemmata immediately imply an exponential lower bound between the ratio
of the lengths of the longest and the shortest edge of the drawing. Namely, node v1 is a
central node. By Lemma 8, vi is a central node, for i = 2, . . . , n−3. By Lemma 10, an-
gle b̂iviai > 150◦, for each i ≤ n− 3. Hence, by Lemma 9, |vi+1ai+1|+ |vi+1bi+1| ≤
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Fig. 6. Illustrations for the algorithm to construct a greedy drawing of Tn. (a) Base case. (b)
Inductive case.

(|viai| + |vibi|)/
√

3, for each i ≤ n − 4; it follows that |vn−3an−3| + |vn−3bn−3| ≤
(|v1a1|+|v1b1|)/(

√
3)n−4. Since one out of v1a1 and v1b1, say v1a1, has length at least

half of |v1a1| + |v1b1|, and since one out of vn−3an−3 and vn−3bn−3, say vn−3an−3,
has length at most half of |vn−3an−3| + |vn−3bn−3|, then |v1a1|/|vn−3an−3| ≥
1
9 (
√

3)n, thus implying the claimed lower bound.

4 Drawability of Tn

In Sect. 3 we have shown that any greedy drawing of Tn requires exponential area.
Since in [11,9] it has been shown that there exist trees that do not admit any greedy
drawing, one might ask whether the lower bound refers to a greedy-drawable tree or
not. Of course, if Tn were not drawable, then the lower bound would not make sense. In
this section we show that Tn admits a greedy drawing by providing a drawing algorithm,
using a supporting exponential-size grid.

Since the algorithm draws the spine nodes in the order they appear on the spine with
the degree-5 node as the last node, we revert the indices of the nodes with respect to
Sects. 2 and 3, that is, node vi of Tn is now node vn−i+1.

The algorithm constructs a drawing of Tn in which all the spine nodes vi are central
nodes lying on the horizontal line y = 0. Since each leaf node ai is drawn above line
y = 0 and bi is placed on the symmetrical point of ai with respect to such a line, we
only describe, for each i = 1, . . . , n, how to draw vi and ai.

In order to deal with drawings that lie on a grid, in this section we denote by Δy/Δx

the slope of a line (of a segment), meaning that whenever there is a horizontal dis-
tance Δx between two nodes of such a line (of such a segment), then their vertical
distance is Δy .

The drawing is constructed by means of an inductive algorithm. In the base case,
place v1 at (0, 0), ha

1 at (−1, 2), a1 at (−2, 4), and c1 at (−9/2, 0) (see Fig. 6.a). At
step i of the algorithm suppose, by inductive hypothesis, that: (i) The drawing of path
(v1, v2, . . . , vi) with its leaf nodes a1, a2, . . . , ai is greedy, and (ii) y(vi) = 0, y(ha

i ) =
22i, y(ai) = 22i+1, and x(vi)− x(ha

i ) = x(ha
i )− x(ai) = 1.

From the above inductive hypothesis it follows that the slope of segment viai is
−22i/1 and the slope of its axis is 1/22i. We show step i + 1 of the algorithm.
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Place vi+1 at point (x(vi) + 24i+3 − 2, 0), ha
i+1 at point (x(vi) + 24i+3 − 3, 22i+2),

and ai+1 at point (x(vi) + 24i+3 − 4, 22i+3) (see Fig. 6.b). Such placements guarantee
that part (ii) of the hypothesis is verified. The slope of segment vi+1ai+1 is−22(i+1)/1.
Hence, the slope of its axis is 1/22(i+1). Such an axis passes through point qi ≡ (x(vi)−
3, 22i+1). Since 0 < 1/22(i+1) < 1/22i, it follows that path (v1, v2, . . . , vi), together
with nodes a1, a2, . . . , ai, lies below the axis of vi+1ai+1. Finally, the axis of viai

passes through point pi+1 ≡ (x(vi)+24i+3−4, 22i +22i+3−3/22i). Thus, y(pi+1) >
y(ai+1), since 22i + 22i+3 − 3/22i > 22i+3 as long as 24i > 3, which holds for each
i ≥ 1. This implies that part (i) of the hypothesis is verified.

When the algorithm has drawn vn and an (and symmetrically bn), cn and dn still
have to be drawn. However, this can be easily done by assigning to segments vncn and
vndn the same length as segment vnan and by placing them so that the angle b̂nvnan,
which is strictly greater than 180◦, is split into three angles strictly greater than 60◦.

We remark that cn and dn are not placed at points with rational coordinates. However,
they still obey to any resolution rule, namely their distance from any node or edge of
the drawing is exponential with respect to the grid unit. Placing such nodes at grid
points is possible after a scaling of the whole drawing and some non-trivial calculations.
However, we preferred not to deal with such an issue since we just needed to prove that
a greedy drawing of Tn exists.

5 Conclusions

In this paper we have shown that constructing succinct greedy drawings in the plane,
when the Euclidean distance is adopted as a metric, may be unfeasible even for simple
classes of trees. In fact, we proved that there exist caterpillars requiring exponential
area in any greedy drawing, under any finite resolution rule. The proof uses a mixed
geometric-topological technique that allows us to analyze the combinatorial space of
the possible embeddings and to identify invariants of the slopes of the edges in any
greedy drawing of such caterpillars.

Many problems remain open in this area. By the results of Leighton and Moitra [9],
every triconnected planar graph admits a greedy drawing.

Problem 1. Which are the area requirements of greedy drawings of triconnected planar
graphs?

While every triconnected planar graph admits a greedy drawing, not all biconnected
planar graphs and not all trees admit a greedy drawing. For example, in [9] it is shown
that a complete binary tree with 31 nodes does not admit any greedy drawing. Hence,
the following problem is worth studying:

Problem 2. Characterize the class of trees (resp. of biconnected planar graphs) that
admit a greedy drawing.

In this paper we argued about the relationship among greedy drawings, planarity, and
straight-line drawability. We have shown, in Lemma 4, that every straight-line greedy
drawing of a tree is planar. It would be interesting to understand whether trees are the
only class of planar graphs with such a property.



182 P. Angelini, G. Di Battista, and F. Frati

Problem 3. Characterize the class of planar graphs such that every straight-line greedy
drawing is planar.
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Abstract. Thegeometric simultaneous embeddingproblemaskswhether
two planar graphs on the same set of vertices in the plane can be drawn
using straight lines, such that each graph is plane. Geometric simultane-
ous embedding is a current topic in graph drawing and positive and nega-
tive results are known for various classes of graphs. So far only connected
graphs have been considered. In this paper we present the first results for
the setting where one of the graphs is a matching.

In particular, we show that there exists a planar graph and a matching
which do not admit a geometric simultaneous embedding. This general-
izes the same result for a planar graph and a path. On the positive side,
we describe algorithms that compute a geometric simultaneous embed-
ding of a matching and a wheel, outerpath, or tree. Our proof for a
matching and a tree sheds new light on a major open question: do a
tree and a path always admit a geometric simultaneous embedding? Our
drawing algorithms minimize the number of orientations used to draw
the edges of the matching. Specifically, when embedding a matching and
a tree, we can draw all matching edges horizontally. When embedding a
matching and a wheel or an outerpath, we use only two orientations.

1 Introduction

The computation of node-link diagrams of two sets of relations on the same set
of data is a recent and already well-established research direction in network vi-
sualization. The interest in this problem is partly due to its theoretical relevance
and partly motivated by its importance in many application areas, such as soft-
ware engineering, data bases, and social networks. There are various application
scenarios where a visual analysis of dynamic and evolving graphs defined on the
same set of vertices is useful, see [3,4] for detailed descriptions.
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Formally, the problem can be stated as follows: Let G1 and G2 be two graphs
that share their vertex set, but which have different sets of edges. We would
like to compute two readable drawings of G1 and G2 such that the locations of
the vertices are the same in both visualizations. Cognitive experiments [9] prove
that the readability of a drawing is negatively affected by the number of edge
crossings and by the number of bends along the edges. Hence, if G1 and G2 are
both planar, we want to compute plane drawings of the two graphs where the
vertices have the same locations and edges are straight-line segments. Note that
we allow edges from different graphs to cross.

In a seminal paper, Brass et al. define a geometric simultaneous embedding
of two planar graphs sharing their vertex set as two crossing-free straight-line
drawings that share the locations of their vertices [1]. Geometric simultaneous
embedding is a current topic in graph drawing and positive and negative results
are known for various classes of graphs. A comprehensive list can be found in
Table 1 of a recent paper by Frati, Kaufmann, and Kobourov [7]. Specifically,
Brass et al. [1] show that two paths, two cycles, and two caterpillars always
admit a geometric simultaneous embedding. (A caterpillar is a tree such that
the graph obtained by deleting the leaves is a path.) The authors also prove
that three paths may not admit a geometric simultaneous embedding. Erten
and Kobourov [5] prove that a planar graph and a path may not admit a geo-
metric simultaneous embedding. Frati, Kaufmann, and Kobourov [7] extend this
negative result to the case where the path and the planar graph do not share
any edges. Geyer, Kaufmann, and Vrt’o [8] show that two trees may not have
a geometric simultaneous embedding. A major open question in this area is the
following: do a tree and a path always admit a geometric simultaneous embed-
ding? Finally, Estrella-Balderrama et al. [6] prove that determining whether two
planar graphs admit a geometric simultaneous embedding is NP-hard.

So far, only connected graphs have been considered and in particular, there are
no results for one of the simplest classes of graphs, namely matchings. A matching
is an independent set of edges. Clearly a geometric simultaneous embedding of
two matchings always exists, since the union of two matchings is a collection
of cycles and hence planar. But already the union of the edges of a path and a
matching does not have to be planar: see Fig. 1 (left), which shows a path and
a matching which form a subdivision of K3,3.
Results. We study geometric simultaneous embeddings of a matching with var-
ious standard classes of graphs. In Section 2 we show that there exists a planar

Fig. 1. Left: The union of a path (black) and a matching (gray), can be non-planar.
Right: Two orientations of the matching edges (gray) are forced.
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graph and a matching which do not admit a geometric simultaneous embedding.
This generalizes the same result for a planar graph and a path [5].

On the positive side, we describe algorithms that compute a geometric simul-
taneous embedding of a matching and a wheel, outerpath, or tree. Specifically,
in Section 3 we sketch a construction that computes a geometric simultaneous
embedding of a wheel and a cycle, which immediately implies an embedding for
a wheel and a matching. In Section 4 and 5 we describe algorithms to embed a
matching together with two specific types of outerplanar graphs, namely outer-
zigzags and outerpaths. An outerzigzag is also known as a triangle strip. Its weak
dual is a path and each of its vertices has degree at most 4. An outerpath is sim-
ply an outerplanar graph whose weak dual is a path. Our result for outerpaths
of course subsumes the result for outerzigzags, but we nevertheless first present
the construction for outerzigzags, to introduce our techniques on a conceptually
simpler class of graphs. The algorithms for the wheel, the outerzigzag, and the
outerpath, preserve the “natural” embedding of these graphs. That is, the center
of the wheel is not incident to the outer face, and the embedding of outerplanar
graphs is outerplanar. Note here, that an outerplanar graph and a path may not
have a geometric simultaneous embedding if the circular ordering of the edges
around the vertices of the outerplanar graph is fixed a-priori [7].

In Section 6 we present an algorithm that computes a geometric simultaneous
embedding of a tree and a matching. This algorithm is inspired by and closely
related to an algorithm by Di Giacomo et al. [2]. Since a path can be viewed
as two matchings, our proof sheds some new light on the embeddabilty question
for a tree and a path.

All our drawing algorithms minimize the number of orientations used to draw
the edges of the matching. This may simplify the visual inspection of the data
and of their relationships in practice. Consider the simple example in Fig. 1
(right). It immediately shows that a geometric simultaneous embedding of an
outerpath or wheel with a matching requires the matching edges to have at
least two orientations. Our constructions match this bound. When embedding a
matching and a tree, we can even draw all matching edges horizontally.

2 Planar Graph and Matching

Theorem 1. There exists a planar graph and a matching that do not admit a
geometric simultaneous embedding.

Fig. 2. A planar graph (black) and a
matching (gray) that do not admit a
geometric simultaneous embedding

Consider the planar graph (black) and the
matching (gray) depicted in Fig. 2. One
can argue that either the subgraph in-
duced by the vertices marked with boxes
or the subgraph induced by the vertices
marked with circles will always incur at
least one crossing. The details can be
found in the full paper.
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3 Wheel and Matching

We can in fact compute a geometric simultaneous embedding of a wheel and
a cycle, which immediately implies the result for a wheel and a matching. The
construction is sketched in Fig. 3. The center of the wheel is marked with a
box, the rim is drawn in black, and the cycle is drawn in gray. When we use
this construction for a matching, then all but one matching edges are drawn
vertically, the remaining edge (the one edge that is necessarily shared with a
spoke of the wheel) is drawn horizontally. Details can be found in the full paper.

Theorem 2. A wheel and a cycle always admit a geometric simultaneous
embedding.

Fig. 3. A geometric simultaneous embedding of a wheel and a cycle

4 Outerzigzag and Matching

Recall that an outerzigzag is a triangle strip: it is a triangulated outerplanar
graph, whose weak dual is a path and whose vertices have degree at most 4.
More precisely, there are exactly two vertices of degree 2, two vertices of degree
3, and all other vertices have degree 4. Let G1 = (V, E1) be an outerzigzag and
let G2 = (V, E2) be a matching. We first place the vertices of V in such a way,
that their placement induces a regular plane drawing of G1. We then move some
of the vertices vertically to planarize G2, while keeping the drawing of G1 planar.

Specifically, we place the vertices of V on a grid of size 2n× 4n at positions
(0, 0), (2, 1), (4, 0), (6, 1), (8, 0), etc. One of the degree-2 vertices of G1 is drawn
at (0, 0), the remainder is drawn in such a way, that the edges of G1 always

0
1

0 1 2 3 4 2n− 2

Fig. 4. Drawing an outerzigzag G1 on a grid
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connect two consecutive points on the line y = 0, or two consecutive points on
the line y = 1, or two points at distance

√
5, see Fig. 4.

We classify the edges of the matching G2 based on the placement of their
vertices on the grid:

BB-edges connect any two vertices on the line y = 0.
TT-edges connect any two vertices on the line y = 1.
BT-edges connect two vertices (i, 0) and (j, 1) with i < j.
TB-edges connect two vertices (i, 1) and (j, 0) with i < j.

We then move half of the vertices of V vertically according to three simple rules:

1. Only the right vertex of a matching edge moves, the left vertex is fixed.
2. The right vertex of every BT-edge and every TT-edge is moved up until the

edge has slope +1.
3. The right vertex of every TB-edge and every BB-edge is moved down until

the edge has slope −1.

BT TT

TB BB TB

BT

TT

TB

BB

TB

Fig. 5. A geometric simultaneous embed-
ding of an outerzigzag (black) and a match-
ing (gray)

See Fig. 5 for an example. It is easy
to see that the displacements preserve
the planarity of the embedding of G1,
because vertices only move vertically.
The displacements also make G2 pla-
nar: all edges of E2 with slope +1 are
on parallel diagonal lines, so they can-
not intersect. Symmetrically, all edges
of E2 with slope −1 cannot inter-
sect. Finally, an edge with slope −1
and an edge with slope +1 from E2
cannot intersect because their only y-
overlap is between 0 and 1, and here
they are sufficiently separated to pre-
vent intersections. Clearly this con-
struction uses only two orientations
for the edges of the matching.

Theorem 3. An outerzigzag and a
matching always admit a geometric si-
multaneous embedding.

5 Outerpath and Matching

We now extend the approach for outerzigzags to outerpaths. First, we assume
that the outerpath is triangulated. Since a triangulated outerpath has two ver-
tices of degree 2, we can make them the ends of an initial placement. We place
all vertices on two horizontal lines y = 0 and y = 1 in such a way, that we obtain
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uk

vi vj

y = 1

y = 0
(0, 0)

Fig. 6. Outerpath with one fan indicated in gray

a plane drawing of the outerpath G1 (see Fig. 6). We say that vertices which
lie on the line y = 1 are on the top chain, correspondingly, vertices which lie on
the line y = 0 are on the bottom chain. The leftmost vertex is placed at (0, 0).
This initial placement again induces a classification of the edges of the matching
into TT-edges, TB-edges, BT-edges, and BB-edges. In the final drawing these
edges have slopes of −1 or +1 as before. However, the embedding algorithm for
outerpaths needs to move vertices not only vertically, but also horizontally and
hence the x-order of the vertices in the initial placement is not preserved.

We view an outerpath as a sequence of maximal fans that are alternatingly
directed upwards and downwards. A maximal fan shares its first and last edge
with a neighboring fan. A downward fan is indicated in gray in Fig. 6. We denote
by d the maximum degree of any vertex in the outerpath G1.

Our algorithm works as follows: we treat one fan after the other, moving
from left to right. When we treat a fan, we place its vertices at new locations
to planarize G2, while keeping the drawing of G1 planar. In the following we
explain the placement algorithm for a downward fan F , upward fans a treated
similarly. We denote the single apex vertex of F by uk and its sequence of finger
vertices by vi, . . . , vj (see Fig. 6). Note that i < j; if i = j then the outerpath
was not triangulated or F was not maximal. We place all vertices of F , with the
exception of vi and vj . Vertex vi has already been placed, since it is the apex of
the preceding fan (or it is the leftmost vertex which remains fixed). We do not
place vj since it is the apex of the following fan and will be placed when that
fan is treated. We distinguish three cases, depending on the matching partner
of the apex uk. Case (1): the matching partner of uk has already been placed,
Case (2): the matching partner of uk has not been placed yet and it is not among
vi+1, . . . , vj−1, and Case (3): the matching partner of uk is among vi+1, . . . , vj−1.

Case (1). Apex uk has a matching partner that has already been placed. Hence
the matching partner lies either on the top chain and has an index smaller than
k, or it lies on the bottom chain and has an index smaller than or equal to i.
Let X denote the total width (x-extent) of the construction so far. We place uk

at x-coordinate 2X + 1 and then move uk upwards until it lies on the line with
slope +1 through its matching partner (see Fig. 7 (left)).

Next we place vi+1, . . . , vj−1 at positions (2X, 0), (2X+1/d, 0), . . ., (2X+(j−
i−2)/d, 0). Consider the j−i−1 lines through uk and each of vi+1, . . . , vj−1. If we
ensure that the final placements of vi+1, . . . , vj−1 lie on these lines, then we will
never invert any triangle of the fan. We now move those vertices of vi+1, . . . , vj−1
that are right vertices of matching edges down on their lines until they reach
the proper position, determined by the slope −1 lines through their matching
partners. Those vertices of vi+1, . . . , vj−1 that are left vertices of matching edges
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uk

vi+1 vj−1

uk

vi+1
vj−1

y = 1

y = 0

Fig. 7. Left: Case 1, uk is a right vertex of a matching edge. Right: Case 2, uk is a left
vertex of a matching edge.

stay where they are; they define slope −1 or +1 lines on which their matching
partners will be placed eventually. By construction, none of these lines intersect
to the right of the vertices that defined them, also not with lines defined by
vertices treated earlier (see Fig. 7 (left)).

See Fig. 8 for a global sketch of Case 1. Note that vi+1 stays to the right of all
vertices placed before. This is true because the line defined by uk and vi+1 has
slope > 1, and the separation between vi+1 and the previously placed vertices is
at least X . The value of X also bounds the y-extent for the previously placed
vertices to the range [−X, +X ], since the edges of the matching have slopes −1
and +1. Further note that triangle�ukvi+1vi is not inverted, regardless of where
vi is placed in the initial part and whether vi+1 is moved on its line. Finally,
note that vj can be placed anywhere on the line y = 0 lower, as long as its
x-coordinate is at least that of uk: the triangle �ukvjvj−1 will not be inverted.

X

X

X

vi+1

uk
u1, . . . , uk−1

v1, . . . , vi

Fig. 8. Global situation of Case 1, previously placed vertices lie inside the gray triangle
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uk

vi+1
vm

y = 1

y = 0 vj−1

Fig. 9. Case 3

Case (2). Apex uk has a matching partner that has not been placed yet and
which is not among vi+1, . . . , vj−1. We place uk at position (3X+2, 1), where X is
again defined as the total width so far. Next we place the vertices vi+1, . . . , vj−1
at positions (3X, 0), (3X + 1/d, 0), . . ., (3X + (j − i − 2)/d, 0). Consider the
j − i − 1 lines through uk and each of vi+1, . . . , vj−1. We again move those
vertices of vi+1, . . . , vj−1 that are right vertices of matching edges down on their
lines until they reach the proper position, determined by the slope −1 lines
through their matching partners (see Fig. 7 (right)).

All lines on which the vertices move have slope at least 1/2, implying that all
vertices of vi+1, . . . , vj−1 are placed to the right of all previously placed vertices,
due to the x-separation of at least 2X . Again we note that �ukvi+1vi is not
inverted, and that vj may be placed anywhere to the right of uk without the risk
of inverting �ukvjvj−1.
Case (3). Apex uk has a matching partner vm that is among vi+1, . . . , vj−1, see
Fig. 9. We place uk at position (3X +2, 1) and vm at position (3X +1, 0), where
X is again the total width so far. Note that the edge (uk, vm) is an edge of both
G1 and G2. Next we place the vertices vi+1, . . . , vm−1 at positions (3X, 0), (3X+
1/d, 0), . . ., (3X + (m− i− 2)/d, 0), and the vertices vm+1, . . . , vj−1 at positions
(3X + 1 + 1/d, 0), (3X + 1 + 2/d, 0), . . . , (3X + 1 + (j −m− 1)/d, 0). As before
we now use the lines through uk and each of vi+1, . . . , vm−1, vm+1, . . . , vj−1 to
move vertices down if they are right vertices of matching edges.

Theorem 4. An outerpath and a matching always admit a geometric simulta-
neous embedding.

6 Tree and Matching

Our algorithm that computes a geometric simultaneous embedding for a tree and
a matching is inspired by and closely related to an algorithm by Di Giacomo
et al. [2], which computes a matched drawing of two trees. Matched drawings
are a relaxation of geometric simultaneous embeddings. Specifically, two planar
graphs G1 and G2 are matched, if they are defined on two vertex sets V1 and
V2 of the same cardinality and if there is a one-to-one mapping between V1
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and V2. A matched drawing of two matched graphs is a pair of planar straight-
line drawings, such that matched vertices of G1 and G2 are assigned the same
y-coordinate. A geometric simultaneous embedding of a tree and a matching
is in essence a matched drawing of half of the vertices of the tree with the
other half. And indeed, the algorithm by Di Giacomo et al. can be adapted in
a straightforward manner to compute a geometric simultaneous embedding of a
tree and a matching. However, the edges of the matching in the resulting drawing
will in general not all have the same orientation. In the remainder of this section
we show how to refine the construction from [2], to compute a simultaneous
embedding where all matching edges are drawn horizontally.

We place the vertices one by one, always placing the two vertices of a matching
edge consecutively at the same y-coordinate. We use y-coordinates 1, . . . , n/2,
from the outside in. That is, at any point of the construction, there are two
indices i and j with 1 ≤ i ≤ j ≤ n/2 such that the coordinates 1, . . . , i− 1 and
j + 1, . . . , n/2 have been used, and the coordinates i, . . . , j have not been used
yet. At every even placement we decide if we should place the next vertex at the
top or at the bottom, that is, at the highest or the lowest available y-coordinate.

Let T be the tree with some of its vertices already placed. The placed vertices
partition the tree into connected components (subtrees); we call each component
up to and including the placed vertices a rope. The placed vertices incident to a
rope are called the knots of that rope. We maintain the following invariant: after
every odd placement, every rope of T has one or two knots, but not more. After
an even placement this invariant might be false for exactly one rope, which has
three knots. There is a unique vertex, which we call the splitter, that lies on the
three paths between the knots. We show below how to restore the invariant with
the next odd placement by choosing the splitter as the next vertex to place.

Since we place vertices from the outside in, there are nine types of ropes which
we encounter during the construction. They are the degree-1 ropes with one knot
at the top or at the bottom, the degree-2 ropes with two knots at the top, or two
at the bottom, or one at the top and one at the bottom, and the degree-3 ropes
with zero, one, two, or three knots at the top and three, two, one, or zero knots
at the bottom. We call these ropes T-rope, B-rope, TT-rope, BB-rope, TB-rope,
BBB-rope, TBB-rope, TTB-rope, or TTT-rope.

Even placement. The invariant above implies that before an even placement
there are only degree-1 and degree-2 ropes. Furthermore, there is exactly one
edge (v, w) of the matching M that has one, but not both of its vertices placed.
We assume that v has been placed and place w next, at the same y-coordinate as
v. The exact placement depends on the type of rope w is part of, as well as the
y-coordinate of v. Fig. 10 shows the cases for T-ropes, TB-ropes, and TT-ropes,
B-ropes and BB-ropes are symmetric. Placing w can create at most two degree-
2 ropes or one degree-3 rope, plus zero or more degree-1 ropes. New degree-1
ropes all have w as their knot. The new degree-2 ropes may have no internal
vertices, in which case they are fully placed or tight, as they are a straight edge.
Placing w creates a degree-3 rope, if w was part of a degree-2 rope but did not
lie on the path between its two knots. In this case a new splitter s is identified
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Fig. 10. Even placement for T-ropes, TB-ropes, and TT-ropes

(marked by a circle in Fig. 10), which is placed in the next odd placement. The
top right case depicted in Fig. 10 shows two dashed arrows, indicating that there
are two possible locations for w. Which of the two we have to use depends on the
matching partner of the splitter s. We explain below how to make this decision.
Odd placement. Before an odd placement, all matching edges are either com-
pletely placed, or not placed at all. There are two cases: the previous even place-
ment left us with a splitter, or not. If there is no splitter, then we place any
unplaced vertex, whose placement does not create a splitter. Any vertex that is
directly adjacent to an already placed vertex qualifies. If there is a splitter s,
then we place it next. If s is part of a TTT-rope or a TTB-rope, then we place
it at the lowest unused y-coordinate i, which creates two or three new TB-ropes
and one or zero new BB-ropes. Symmetrically, if s is part of a TBB-rope or a
BBB-rope, then we place it at the highest unused y-coordinate j.

There are two additional things to consider. Let u be the matching partner of
the splitter s. By construction u has not been placed yet, but it will be placed
in the next step, on the same y-coordinate as s.

(1) If s was part of a TTT-rope (or symmetrically, a BBB-rope), then placing
s creates three new TB-ropes. If u is part of one of these TB-ropes, then we need
to ensure that this particular TB-rope is one of the two “on the outside”. The
TTT-rope was created by placing a vertex w at y-coordinate j in the previous
step (top right case in Fig. 10). Recall that we had two choices for the location
of w. One of the two ensures that u is on the outside (see Fig. 11 (top)). Hence
we look ahead and place w accordingly. Placing s might also have created one
or more B-ropes. If u is part of one of these B-ropes, then we need to ensure
again that this particular B-rope is on the outside. We can easily achieve that
by ordering the degree 1-ropes with knot s accordingly.

(2) If s was part of a TTB-rope (or symmetrically, a TBB-rope), then placing
s creates two TB-ropes and one BB-rope. If u is part of one of the TB-ropes,
then we have to ensure again that this particular TB-rope is on the outside.
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Fig. 11. Odd placement for a splitter and a TTT-rope or a TTB-rope

However, we have a choice of two possible locations for s, see Fig. 11 (bottom).
One of the two ensures that u is on the outside, hence we place s accordingly.
Again, placing s might also have created one or more B-ropes. In general we
place these B-ropes between the two TB-ropes. But if u is part of a B-rope, then
we need to place this particular rope on the outside.

Next we have to argue that there is actually space to draw the tree without
crossings and with straight edges. For the matching this is obvious since its edges
are horizontal and lie on different y-coordinates. We maintain the following in-
variant, which holds for every rope after every even placement. Let i and j be
the lowest and highest unused y-coordinates. There exists a parallelogram be-
tween the horizontal lines i and j in which the whole rope can be drawn without
crossings and with straight lines. The parallelograms have positive width and
have an “alignment” that corresponds to the needs of the rope. In particular,
the non-horizontal sides of the parallelogram have a slope s, such that any line
with slope s and through a knot of the rope intersects the interior of the paral-
lelogram. Hence every y-coordinate within the parallelogram can be reached by
a straight line from its knots. Parallelograms of different ropes are disjoint.

It remains to show how to maintain this invariant as ropes are split. We find
the new parallelograms of the sub-ropes inside the parallelogram of the parent.
We might have to scale and shear parallelograms to make this work, creating

Fig. 12. A parallelogram and its rope can be scaled to become arbitrarily narrow and
sheared to get different slopes
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extremely narrow parallelograms in the process (see Fig. 12). However, they
always keep a strictly positive width. The cases are many, but not difficult and
very similar to the ones discussed in [2]. We omit the details.

Theorem 5. A tree and a matching always admit a geometric simultaneous
embedding.

7 Conclusions

We presented the first results for geometric simultaneous embeddings where one
of the graphs is a matching. Specifically, we showed that there exist planar graphs
that do not admit a geometric simultaneous embedding with a matching. We do
not know whether this negative result holds also under the additional constraint
that the matching and the planar graph do not have any edges in common.

We also described algorithms that compute a geometric simultaneous embed-
ding of a matching and a wheel, outerpath, or tree. Our drawing algorithms
minimize the number of orientations used to draw the edges of the matching.
The main remaining open question is: do an outerplanar graph and a matching
always admit a geometric simultaneous embedding?
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Abstract. The study of (minimally) rigid graphs is motivated by nu-
merous applications, mostly in robotics and bioinformatics. A major
open problem concerns the number of embeddings of such graphs, up to
rigid motions, in Euclidean space. We capture embeddability by polyno-
mial systems with suitable structure, so that their mixed volume, which
bounds the number of common roots, to yield interesting upper bounds
on the number of embeddings. We focus on R2 and R3, where Laman
graphs and 1-skeleta of convex simplicial polyhedra, respectively, admit
inductive Henneberg constructions. We establish the first general lower
bound in R3 of about 2.52n, where n denotes the number of vertices.
Moreover, our implementation yields upper bounds for n ≤ 10 in R2 and
R3, which reduce the existing gaps, and tight bounds up to n = 7 in R3.

Keywords: Rigid graph, Euclidean embedding, Henneberg construc-
tion, polynomial system, root bound, cyclohexane caterpillar.

1 Introduction

Rigid graphs (or frameworks) constitute an old but still active area of research
due to certain deep mathematical questions, as well as numerous applications,
e.g. mechanism theory [8,9], and structural bioinformatics [4].

Given graph G = (V, E) and a collection of edge lengths lij ∈ R>0, for (i, j) ∈
E, a Euclidean embedding in Rd, d ≥ 1 is a mapping of the vertices V to points
in Rd, such that lij equals the Euclidean distance between the images of the i-th
and j-th vertices, for all edges (i, j) ∈ E. There is no requirement on whether
the edges cross or not. G is generically rigid in Rd if, for generic edge lengths,
it admits a finite number of embeddings in Rd, modulo rigid motions. G is
minimally rigid if it is no longer rigid once any edge is removed. In the sequel,
generically minimally rigid graphs are referred to as rigid.

A graph is called Laman if |E| = 2|V | − 3 and, additionally, all of its induced
subgraphs on k < |V | vertices have ≤ 2k − 3 edges. The Laman graphs are
precisely the rigid graphs in R2; they also admit inductive constructions. In R3

there is no analogous combinatorial characterization of rigid graphs, but the
1-skeleta, or edge graphs, of (convex) simplicial polyhedra are rigid in R3, and
admit inductive constructions.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 195–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The Desargues graph Fig. 2. All simplicial polyhedra for n = 6

We deal with the problem of computing the maximum number of distinct
planar and spatial Euclidean embeddings of rigid graphs, up to rigid motions, as
a function of the number of vertices. To study upper bounds, we define a square
polynomial system, expressing the edge length constraints, whose real solutions
correspond precisely to the different embeddings. Here is a system expressing
embeddability in R3, where (xi, yi, zi) are the coordinates of the i-th vertex, and
3 vertices are fixed to discard translations and rotations:{

xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = l2ij , (i, j) ∈ E − {(1, 2), (1, 3), (2, 3)} (1)

All nontrivial equations are quadratic; there are 2n− 4 for Laman graphs, and
3n − 9 for 1-skeleta of simplicial polyhedra, where n is the number of vertices.
Bézout’s bound on the number of complex roots equals the product of the de-
grees, hence 4n−2 and 8n−3, respectively.

For the planar and spatial case, the best upper bounds are
(2n−4

n−2

)
and

2n−3

n−2

(2n−6
n−3

)
[2]. In applications, it is crucial to know the number of embeddings

for small n. The main result in this direction was to show that the Desargues (or
3-prism) graph (Figure 1) admits 24 embeddings in R2 [2]. This led the same au-
thors to lower bounds in R2: 24�(n−2)/4� � 2.21n by a “caterpillar” constructed
by concatenating copies of the Desargues graph, and 2 · 12�(n−3)/3� � 2.29n/6
obtained by a Desargues “fan”1.

Bernstein’s bound on the number of roots of a polynomial system exploits
the sparseness of the equations. It is bounded by Bézout’s bound and typically
much tighter. We have developed software to construct all rigid graphs up to
isomorphism, for small n, and compute the Bernstein’s bounds. Besides some
straightforward upper bounds in Lemmas 1 and 6, our main contribution is
twofold. We derive the first general lower bound in R3:

16�(n−3)/3� � 2.52n, n ≥ 9,

by designing a cyclohexane caterpillar. We also obtain improved upper and lower
bounds for n ≤ 10 in R2 and R3 (Tables 1 and 2). Moreover, we establish tight
bounds for n ≤ 7 in R3 by appropriately formulating the polynomial system. We
apply Bernstein’s Second theorem to show that the above polynomial system
cannot yield tight bounds.

1 We have corrected the exponent of the original statement.
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The rest of the paper is structured as follows: Section 2 discusses the planar
case, Section 3 presents our algebraic tools, Section 4 deals with R3, and we
conclude with open questions.

Some results appeared in [5] in preliminary form.

2 Planar Embeddings of Laman Graphs

Laman graphs admit inductive constructions, starting with a triangle, and fol-
lowed by a sequence of Henneberg-1 (or H1) and Henneberg-2 steps (or H2).
Each step adds a new vertex: H1 connects it to two existing vertices, H2 con-
nects it to 3 existing vertices having at least one edge among them, which is
removed. We represent a Laman graph by its Henneberg sequence �s4 . . . , sn,
where si ∈ {1, 2}. A Laman graph is called H1 if and only if it can be constructed
using only H1; otherwise it is called H2. Since two generic circles intersect in two
real points, H1 exactly doubles the maximum number of embeddings. It follows
that a H1 graph has 2n−2 embeddings.

One can easily verify that every �2 graph is isomorphic to a �1 graph and
that every �12 graph is isomorphic to a �11 graph. Consequently, all Laman
graphs with n = 4, 5 are H1, with 4 and 8 embeddings, respectively. For n = 6,
there are 3 possibilities: the graph is either H1, K3,3, or the Desargues graph.
Since the K3,3 graph has at most 16 embeddings [8,9] and the Desargues graph
has 24 embeddings [2], the upper bound is 24.

Using our software (Section 3), we construct all Laman graphs for n =
7, . . . , 10, compute the respective Bernstein’s bounds, and bound the maximum
number of Euclidean embeddings by 64, 128, 512 and 2048, respectively. Table 1
summarizes our results for n ≤ 10. The lower bound for n = 9 follows from the
Desargues fan. All other lower bounds follow from the fact that H1 doubles the
number of embeddings.

We now establish a “sparse” upper bound.

Lemma 1. Let G be Laman, with k ≥ 4 degree-2 vertices. Then, the number of
its planar embeddings is at most 2k−44n−k.

Proof. There are at least k removals of degree-2 vertices, since all created graphs
are Laman. The final graph has a Bézout bound of 4n−k.

3 An Algebraic Interlude

Given a polynomial f in n variables, its support is the set of exponents in Nn

corresponding to nonzero terms (or monomials). The Newton polytope of f is
the convex hull of its support and lies in Rn. Consider polytopes Pi ⊂ Rn and
λi ∈ R, λi ≥ 0, for i = 1, . . . , n. Consider the Minkowski sum λ1P1+ · · ·+λnPn ∈
Rn: its (Euclidean) volume is a homogeneous polynomial of degree n in the λi.
The coefficient of λ1 · · ·λn is the mixed volume of P1, . . . , Pn. If P1 = · · · = Pn,
then the mixed volume is n! times the volume of P1. We focus on C∗ = C−{0}.
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Theorem 2. [1] Let f1 = · · · = fn = 0 be a polynomial system in n variables
with real coefficients, where the fi have fixed supports. The number of isolated
common solutions in (C∗)n is bounded above by the mixed volume of (the Newton
polytopes of) the fi. This bound is tight for generic coefficients of the fi’s.

Bernstein’s Second theorem below was used in R2 [7]; we apply it to R3. Given
v ∈ Rn−{0} and polynomial fi, ∂vfi is the polynomial obtained by keeping only
the terms whose exponents minimize inner product with v; its Newton polytope
is the face of the Newton polytope of fi supported by v.

Theorem 3. [1] If for all v ∈ Rn − {0} the face system ∂vf1 = . . . = ∂vfn = 0
has no solutions in (C∗)n, then the mixed volume of the fi exactly equals the
number of solutions in (C∗)n, and all solutions are isolated. Otherwise, the mixed
volume is a strict upper bound.

In order to bound the number of embeddings of rigid graphs, we have developed
specialized software that constructs all Laman graphs and all 1-skeleta of simpli-
cial polyhedra with n ≤ 10. Our computational platform is SAGE2. We construct
all graphs using the Henneberg steps, which we implemented in Python, using
SAGE’s interpreter. We classify all graphs up to isomorphism using SAGE’s in-
terface with N.I.C.E., an open-source isomorphism check software, keeping, for
each graph, the Henneberg sequence with the fewest H1 steps.

For each graph we construct a system whose real solutions express all embed-
dings, by formulation (2). We bound the number of its (complex) solutions by
mixed volume. For every Laman graph, to discard translations and rotations,
we fix one edge to be of unit length, aligned with an axis, with one vertex at
the origin. In R3, a third vertex is fixed in a coordinate plane. Depending on
the choice of the fixed edge, we obtain different systems hence different mixed
volumes, and we keep their minimum.

We used an Intel Core2, at 2.4GHz, with 2GB of RAM. We tested more that
20, 000 graphs, computed the mixed volume of more than 40, 000 systems, taking
a total time of about 2 days. Tables 1 and 2 summarize our results.

4 Spatial Embeddings of 1-Skeleta of Simplicial
Polyhedra

Let us examine 1-skeleta of (convex) simplicial polyhedra, which are rigid in R3

[6]. For such a graph (V, E), |E| = 3|V |−6 and all induced subgraphs on k < |V |
vertices have ≤ 3k − 6 edges. Consider any k + 2 vertices forming a cycle with
≥ k − 1 diagonals, k ≥ 1. The extended Henneberg-k step (or Hk), k = 1, 2, 3,
corresponds to adding a vertex, connecting it to the k+2 vertices, and removing
k−1 diagonals among them. A graph is the 1-skeleton of a simplicial polyhedron
in R3 if and only if it has a construction starting with the 3-simplex, followed
by any sequence of H1, H2, H3 [3].

2 http://www.sagemath.org/



Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs 199

Since 3 spheres intersect generically in two points, H1 exactly doubles the
maximum number of embeddings. In order to discard translations and rota-
tions, we fix a (triangular) facet of the polytope; we choose, without loss of
generality, the first 3 vertices and obtain system (1) of dimension 3n. Let v =
(0, 0, 0, 0, 0, 0, 0, 0, 0,−1, . . . ,−1) ∈ R3n, the face system is:{

xi = ai, yi = bi, zi = ci, i = 1, 2, 3, ai, bi, ci ∈ R,
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = 0, (i, j) ∈ E, i, j �∈ {1, 2, 3},
x2

i + y2
i + z2

i = 0, (i, j) ∈ E : i /∈ {1, 2, 3}, j ∈ {1, 2, 3}.

This system has (a1, b1, c1, . . . , a3, b3, c3, 1, 1, γ
√

2, . . . , 1, 1, γ
√

2) ∈ (C∗)3n as a
solution, where γ = ±

√
−1. According to Theorem 3, the mixed volume is not

a tight bound on the number of solutions in (C∗)3n. This was also observed, for
R2, in [7]. To remove spurious solutions let wi = x2

i + y2
i + z2

i , for i = 1, . . . , n.
This yields an equivalent system, with lower mixed volume, which will be used
in our computations:⎧⎨

⎩
xi = ai, yi = bi, zi = ci, i = 1, 2, 3,
wi = x2

i + y2
i + z2

i , i = 1, . . . , n,
wi + wj − 2xixj − 2yiyj − 2zizj = l2ij , (i, j) ∈ E − {(1, 2), (1, 3), (2, 3)}.

(2)

For n = 4, the only simplicial polytope is the 3-simplex, which has 2 embeddings.
For n = 5, there is a unique 1-skeleton of a simplicial polyhedron [3], and is
obtained from the 3-simplex by H1, hence it has exactly 4 embeddings.

For n = 6, there are two non-isomorphic graphs G1, G2 (Figure 2) [3], yielding
respective mixed volumes of 8 and 16. G2 is the graph of the cyclohexane, which
admits 16 different embeddings [4]. To see this, the cyclohexane is a 6-cycle with
known lengths between vertices at distance 1 (adjacent) and 2. Alternatively, G2
corresponds to a Stewart platform parallel robot with 16 configurations, where
triangles define the platform and base, and 6 lengths link the triangles in a jigsaw
shape. This proves:

Lemma 4. The 1-skeleton of a simplicial polyhedron with n = 6 has at most 16
embeddings and this is tight.

Let us glue copies of cyclohexanes sharing a triangle, each adding 3 vertices, thus
obtaining the 1-skeleton of a simplicial polytope. Applying Lemma 4 we have:

Theorem 5. There exist edge lengths for which the cyclohexane caterpillar con-
struction has 16�(n−3)/3� � 2.52n embeddings, for n ≥ 9.

Table 2 summarizes our results for n ≤ 10. The upper bounds for n = 7, . . . , 10
are computed by our software. The lower bound for n = 9 is from Theorem 5.
All other lower bounds are obtained by considering a H1 construction.

We state without proof a result similar to Lemma 1.

Lemma 6. Let G be the 1-skeleton of a simplicial polyhedron with k ≥ 9 degree-
3 vertices. The number of embeddings of G is bounded above by 2k−98n−k.
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Table 1. Bounds for Laman graphs

n = 3 4 5 6 7 8 9 10

lower 2 4 8 24 48 96 288 576

upper 2 4 8 24 64 128 512 2048

Table 2. Bounds for 1-skeleta of simpli-
cial polyhedra

n = 4 5 6 7 8 9 10

lower 2 4 16 32 64 256 512

upper 2 4 16 32 160 640 2560

5 Further Work

The most important problem in rigidity theory is the combinatorial character-
ization of rigid graphs in R3. Since we rely on Henneberg constructions, it is
crucial to determine the effect of each step on the number of embeddings: we
conjecture that H2 multiplies it by ≤ 4 and H3 by ≤ 8, but these may not always
be tight. Our conjecture has been verified for small n.
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Abstract. We show that cr(G) ≤
(
2 iocr(G)

2

)
settling an open problem of

Pach and Tóth [5,1]. Moreover, iocr(G) = cr(G) if iocr(G) ≤ 2.

1 Crossing Numbers

Pach and Tóth point out in “Which Crossing Number is It Anyway?” that there
have been many different ideas on how to define a notion of crossing number
including—using current terminology—the following (see [6,13]):

crossing number: cr(G), the smallest number of crossings in a drawing of G,
pair crossing number:1 pcr(G), the smallest number of pairs of edges crossing

in a drawing of G,
odd crossing number: ocr(G), the smallest number of pairs of edges crossing

oddly in a drawing of G.

We make the typical assumptions on drawings of a graph: there are only finitely
many crossings, no more than two edges cross in a point, edges do not pass
through vertices, and edges do not touch. (For a detailed discussion see [13].)
What about adjacent edges though? Do we allow them to cross or not? Do we
count their crossings? Tutte [17] wrote “We are taking the view that crossings
of adjacent edges are trivial, and easily got rid of.” While this is true for the
standard crossing number, it is not at all obvious for other variants. Székely [13]
later commented “We interpret this sentence as a philosophical view and not a
mathematical claim.”

In [5], Pach and Tóth suggest a systematic study of this issue (see also [1,
Section 9.4]): they introduce two rules that can be applied to any notion of
crossing number. “Rule +” restricts the drawings to drawings in which adjacent
edges are not allowed to cross. “Rule −” allows crossings of adjacent edges, but
does not count them towards the crossing number. Pairing ocr, pcr, and cr with
any of these two rules gives a total of eight possible variants (since cr+ = cr as we
� Partially supported by NSA Grant H98230-08-1-0043.
1 Recently, the book by Tao and Vu [15] on additive combinatorics defined the crossing

number as pcr.
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mentioned above); one of them has its own name: iocr := ocr−, the independent
odd crossing number, introduced by Tutte. The figure below is based on a similar
figure from [1].

Rule + ocr+ pcr+ cr
ocr pcr

Rule − iocr = ocr− pcr− cr−

Not much is known about the relationships between these crossing number
variants, apart from what immediately follows from the definitions: the values
in the display increase monotonically as one moves from the left to the right
and from the bottom to the top. Even cr = cr− is open. Pach and Tóth did
show that cr(G) ≤

(2 ocr(G)
2

)
, and this implies that five of the variants, namely

ocr+, ocr, pcr+, pcr, and cr cannot be arbitrarily far apart, but the result does
not cover the “Rule −” variants. There are examples of graphs for which ocr and
pcr differ [12,16]. Valtr [18] showed that cr(G) = O(pcr(G)/ log pcr(G)), which
was improved by Tóth [16] to cr(G) = O(pcr(G)/ log2 pcr(G)).

In this paper, we show that all eight variants are within a square of each other:

Theorem 1. cr(G) ≤
(2 iocr(G)

2

)
.

This answers an open problem from [5, Problem 13]; also see [1, Problem 9.4.7].
Pach and Tóth asked whether there are functions f, g, h, so that cr(G) ≤ f
(cr−(G)), pcr(G) ≤ g(pcr−(G)), and ocr(G) ≤ h(iocr(G)) for all graphs G.
Theorem 1 implies that f = g = h =

(2x
2

)
will do, but this is probably not the

optimal choice for f , g, and h, and quite possibly not for bounding cr in terms
of iocr either.

Theorem 1 immediately implies that iocr(G) = cr(G) if iocr(G) ≤ 1. We can
improve this result:

Theorem 2. If iocr(G) ≤ 2, then cr(G) = iocr(G).

The proof of Theorem 2 is too long to be included in this short note and will
be contained in the journal version of the paper. It is based on an analysis of
the “odd configurations” that can occur in a drawing. We performed such an
analysis for ocr so that we could show that ocr(G) = cr(G) if ocr(G) ≤ 3 [8]. The
proof of Theorem 2 is much harder, since a bound on iocr(G) does not imply any
a priori bound on the number of edges crossing some other edge oddly. Indeed,
the following problem is open:

Is there a function f so that every graph G has a drawing with indepen-
dent odd crossing number iocr(G) and at most f(iocr(G)) crossings?

For ocr(G) such a result can be established; the best upper bound f known in
this case is exponential [11].

Theorem 2 generalizes the Hanani-Tutte theorem, which states that iocr(G) =
0 implies that cr(G) = 0 [2,17]. There are aspects of the Hanani-Tutte theorem
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which are still not well understood; for example, to what extent it relies on the
underlying surface. Only recently was it extended to the projective plane [7],
that is, it was shown that iocrN1(G) = crN1(G) if iocrN1(G) = 0. However, it
is not clear how to extend this to the case that iocrN1(G) ≤ 1 or how to prove
the Hanani-Tutte theorem for surfaces beyond the projective plane. We do know
that ocrS(G) = crS(G) if ocrS(G) ≤ 2 for arbitrary surfaces S [10].

The independent odd crossing number is implicit in Tutte’s paper “Toward a
Theory of Crossing Number” [17] which attempts to build an algebraic founda-
tion for the study of the standard crossing number. From an algebraic point of
view, ocr and iocr are more convenient parameters than the standard crossing
number; for example, the paper by Pach and Tóth [6] shows that iocr ≤ k can be
recast as a vector-space problem. Tutte’s algebraic approach has been continued
by Székely [13,14] and, along different lines, Norine [3] and van der Holst [19].
Theorem 1 justifies the approach of studying standard crossing number via in-
dependent odd crossing number, by showing that they are not too far apart;
indeed, it is tempting to conjecture that cr(G) = O(iocr(G)). And in spite of
the fact that determining the independent odd crossing number of a graph is
NP-complete [9], we feel that due to its algebraic nature it offers an intriguing
and underutilized alternative approach to algorithmic aspects of crossing number
problems.

2 Removing Even More Crossings

An edge in a drawing of a graph is odd if it is part of an odd pair, which is a pair
of edges that cross an odd number of times. Edges that are not odd are even,
and they cross every edge an even number of times (possibly zero times). An
edge in a drawing is independently odd if it is part of an independently odd pair,
which is a pair of non-adjacent edges that cross an odd number of times. Edges
that are not independently odd are independently even, or iocr-0 for short; an
iocr-0 edge crosses all non-adjacent edges evenly (possibly zero times), while it
may cross adjacent edges arbitrarily. Throughout this paper graphs are simple,
that is, they have no loops or multiple edges, unless we say otherwise.

Pach and Tóth showed that if E is the set of even edges in a drawing D of G,
then G can be redrawn so that all edges in E are crossing-free. As a corollary,
they obtained cr(G) ≤

(2 ocr(G)
2

)
[6]. We strengthen the Pach-Tóth result to

the case that E is the set of independently even edges. According to Pach and
Sharir [4], this has been conjectured.

Lemma 1. If D is a drawing of a graph G in the plane, then G has a redrawing
in which the independently even edges of D are crossing-free, and every pair of
edges crosses at most once.

Proof (Theorem 1). Start with a drawing D of G that realizes iocr(G), that is,
iocr(D) = iocr(G). If F is the set of independently odd edges in D, then |F | ≤
2 iocr(D). By Lemma 1, there is a drawing of G with at most

(|F |
2

)
crossings. ��
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To prove Lemma 1, we adapt the following result (a different strengthening of
the Pach-Tóth result) from even/odd edges to iocr-0/independently odd edges.
The rotation of a vertex is the cyclic order in which edges leave the vertex in a
drawing, read clockwise. The rotation system of a drawing is the collection of all
vertex rotations.

Lemma 2 (Pelsmajer, Schaefer, and Štefankovič [8]). If D is a drawing
of G in the plane and F is the set of odd edges in D, then G has a redrawing
with the same rotation system, in which G−F is crossing-free and there are no
new pairs of edges that cross an odd number of times.

Splitting a vertex means creating two copies of the vertex with an edge between
them so that any edge incident to the original vertex is incident to exactly one
of the two copies. (According to this definition, it makes sense to talk about
the edges of the original graph occurring in the graph after a vertex split, even
though the incidences of edges will change.) With this operation we can now
state our analogue of Lemma 2 for iocr-0/independently odd edges.

Lemma 3. If D is a drawing of G in the plane, and F is the set of independently
odd edges in D, then one can apply a sequence of vertex splits to obtain a graph
G′ with drawing D′ and the set F ′ of independently odd edges in D′, such that
(1) there are no new independent odd pairs (and hence F ′ ⊆ F ), and (2) every
edge of G′ − F ′ that is not a cut-edge of G′ − F ′ is crossing-free in D′.

An edge is a cut-edge if and only if it belongs to no cycles, so Property (2) can
be restated as saying that the union of cycles in G′ − F ′ is crossing-free in D′.
Also, if Y is the set of cut-edges of G′ − F ′, then G′ − (F ′ ∪ Y ) is crossing-free
in D′.

Proof (Lemma 3). Fix a drawing D of G = (V, E) and let F be the set of
independently odd edges in D. We establish the theorem by induction. We need
to modify G during the proof by splitting vertices, hence we will use induction
over the weight

w(G) :=
∑
v∈V

d(v)3

of G where d(v) the degree of v in G. For two graphs of the same weight, we
induct over the number of cycles that are not crossing-free.

Suppose that C is a crossing-free cycle, with a vertex u that is incident to
more than one edge on the same side of C. We modify the graph by splitting u
into u1 (replacing u on C) and u2 (attached to the edges on the side with more
than one edge) and inserting an edge between u1 and u2. This operation results
in a graph G′ with smaller weight and it does not create new independently odd
edges (since edges in the exterior of C cannot cross edges on the interior, as all
edges along C are crossing-free). We can now apply induction to G′ to obtain
the result. Thus, we may assume that for every vertex u in a crossing-free cycle
C, u is incident to at most one edge on the interior of C and at most one edge
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on the exterior of C. It follows that any two edges incident to a vertex u in a
crossing-free cycle do not cross.

Suppose that C is a cycle made up of iocr-0 edges only, and C is not crossing-
free. At each vertex u of C we can ensure that the two edges of C incident at
u (say, e and f) cross evenly by modifying the rotation at u and redrawing G
close to u. The rotation of the remaining edges at u can then be changed so
that each of them crosses e and f evenly. After the redrawing, all the edges of
C are even and we can apply Lemma 2 to remove all crossings with edges of C
without changing the rotation system or adding new pairs of edges that cross
oddly. Now C is crossing-free, and no new independently odd pairs have been
added. Suppose that C′ is a cycle that was crossing-free before the redrawing. If
C and C′ share a vertex u, then the rotation at u is not modified when making C
crossing-free, so the drawing of C′ near u is unchanged. C′ remains crossing-free
under the redrawing of Lemma 2, too. Thus we have decreased the number of
cycles that are not crossing-free.

We can therefore assume that any cycle consisting of iocr-0 edges is crossing-
free. Any other iocr-0 edge is a cut-edge in the graph restricted to iocr-0
edges. ��

With Lemma 3, we can now prove Lemma 1.

Proof (Lemma 1). Fix a drawing D of G and let F be the set of independently
odd edges in D. Apply Lemma 3 to obtain a graph G′ with drawing D′, let F ′

be the set of independently odd edges in D′, and let Y be the set of cut-edges in
G′ − F ′. Since F ′ ∪ Y contains all crossings in D′, G′ − (F ′ ∪ Y ) is crossing-free
in D′ and we can let S be the set of its faces. Within each face of S, the edges
of Y contained in it can be redrawn one-by-one without creating any crossings,
since no edge of Y can complete a path that cuts a face in two (because then
it would be part of a cycle in G′ − F ′, which contradicts it being a cut-edge of
G′ − F ′). This yields a crossing-free drawing of G′ − F ′, and each of its faces
corresponds to a face of S, with boundary formed from the boundary of the face
of S and the edges of Y in that face. Therefore, each edge of F ′ still has both
endpoints incident to a face. Within each face, all such edges of F ′ can be drawn
so that every pair of edges crosses at most once.

Since G′ was obtained from G by a sequence of vertex splits, G can be obtained
from G′ by a sequence of edge contractions. The edges in E(G′) − E(G) are
crossing-free, so applying that sequence of contractions to the current drawing
of G′ yields a drawing of G in which G − F ′ is crossing-free and each pair of
edges in F ′ crosses at most once. Since F ′ ⊆ F , this completes the proof. ��
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14. Székely, L.A.: An optimality criterion for the crossing number. Ars Math. Con-
temp. 1(1), 32–37 (2008)

15. Tao, T., Vu, V.: Additive combinatorics. Cambridge Studies in Advanced Mathe-
matics, vol. 105. Cambridge University Press, Cambridge (2006)
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Abstract. In this paper, we explore a new convention for drawing graphs,
the (Manhattan-) geodesic drawing convention. It requires that edges are
drawn as interior-disjoint monotone chains of axis-parallel line segments,
that is, as geodesics with respect to the Manhattan metric. First, we show
that geodesic embeddability on the grid is equivalent to 1-bend embed-
dability on the grid. For the latter question an efficient algorithm has been
proposed. Second, we consider geodesic point-set embeddability where the
task is to decide whether a given graph can be embedded on a given point
set. We show that this problem isNP-hard. In contrast, we efficiently solve
geodesic polygonization—the special case where the graph is a cycle. Third,
we consider geodesic point-set embeddability where the vertex–point cor-
respondence is given. We show that on the grid, this problem is NP-hard
even for perfect matchings, but without the grid restriction, we solve the
matching problem efficiently.

1 Introduction

In this paper we consider a new convention for drawing graphs. One of the most
popular conventions is the orthogonal drawing convention, which requires edges
to be drawn as interior-disjoint rectilinear chains, that is, chains of axis-parallel
line segments. Restricting the number of edge directions potentially yields very
clear drawings. We go a step further and insist that, additionally, edges are drawn
as monotone chains. Such chains are called Manhattan paths. The idea behind
monotonicity is that following the course of a monotone curve is potentially easier
than following the course of a curve that is allowed to make detours. Manhattan
paths are geodesics with respect to the Manhattan metric. Therefore we name
our new convention the (Manhattan-) geodesic drawing convention.

In the Euclidean plane, geodesics are straight-line segments, and the clas-
sic result of König, Fáry, and Stein says that the class of graphs that have a
straight-line drawing is exactly the class of planar graphs. Since there are effi-
cient (linear-time) planarity-testing algorithms, we can decide efficiently whether
a given graph has a Euclidean-geodesic drawing. We consider the same prob-
lem, which we call (Manhattan-) Geodesic Embeddability, with respect
to the Manhattan distance. As an example take K4, the complete graph on four
vertices, which has a geodesic drawing in the Euclidean plane but not in the
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Manhattan plane. To avoid problems of drawing resolution, both questions are
also interesting on the grid. The Euclidean case has been solved, for example,
by Schnyder [14] who can draw any planar n-vertex graph on a grid of size
(n− 2)× (n− 2), which is asymptotically optimal in the worst case.

Fixed point set. Next, we consider the setting where we are given not just a
graph, but also a set of points (in the plane or on the grid) to which the ver-
tices of the graph must be brought into correspondence. We call this problem
Geodesic Point-Set Embeddability. Kaufmann and Wiese [7] considered
point-set embeddability (PSE) with respect to the polyline drawing convention.
They showed that it is NP-hard to decide whether a graph can be embedded on
a point set with at most one bend per edge and that two bends suffice for any
planar graph and any point set. Cabello [1] showed that it is NP-hard to decide
whether a planar graph has a straight-line embedding on a given point set.

A special case of both the straight-line and the orthogonal drawing convention
has also been considered. Rappaport [12] showed that it is NP-hard to decide
whether a set P of n points has an orthogonal polygonization, that is, whether the
n-cycle can be realized on P using horizontal or vertical edges only. O’Rourke [9]
proved that if one forbids 180◦-degree angles in the vertices, then there exists
at most one simple rectilinear polygon with vertex set P . He also showed how
to reconstruct the polygon from P in O(n log n) time. We refer to Demaine’s
survey [2] about problems related to polygonization.

PSE with the same drawing convention but with respect to a different graph
class—perfect matchings—was considered by Rendl and Woeginger [13]. They
showed that given a set of n points in the plane, one can decide in O(n log n) op-
timal time whether each point can be connected to exactly one other point with
an axis-parallel line segment. They also showed that the problem becomes hard if
one insists that the segments do not cross. Hurtado [5] gave a simple O(n log n)-
time algorithm for the same problem under the geodesic drawing convention.
The idea is to alternatingly go up and down the occupied grid columns.

Fixed correspondence. We further restrict the placement of the vertices by mak-
ing the bijection between vertices and points part of the input. We call the
resulting problem Labeled Geodesic PSE. A special case of this problem
(where the graph is a perfect matching) has applications in VLSI layout. Insist-
ing on geodesic connections makes sure that signals reach their destinations as
fast as possible. For example, a popular, but more restrictive wiring technique in
VLSI layout, single-bend wiring, uses special geodesic connections. Raghavan et
al. [11] have shown that one can decide our perfect matching problem efficiently
when insisting on at most one bend per edge.

For the same problem with given vertex–point correspondence but under the
polyline drawing convention, Pach and Wagner [10] showed that it is possible to
embed any planar graph on any set of points, but they also showed that some
edges may require Ω(n) bends. Goaoc et al. [4] showed that it is NP-hard to
decide whether a given graph can be 1-bend embedded on a given set of points
with given vertex–point correspondence.
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Table 1. Overview over results in geodesic embeddability; hard is short for NP-hard

Geodesic Geodesic Point-Set Embeddability
Embeddability unrestricted labeled (on grid) labeled (off grid)

planar graph P [Thm. 1] hard [Thm. 2] hard [Thm. 4] open
matching trivial P [5] hard [Thm. 4] P [Thm. 5]
polygonization trivial P [Thm. 3] open open

Our Contribution. Drawing graphs with (Manhattan) geodesics opens up a large
new field of research; we have done the following first steps.

– We show that Geodesic Embeddability on the grid is equivalent to de-
ciding whether the given graph has a rectilinear one-bend drawing on the
grid, see Section 2. Liu et al. [8] proposed an algorithm to decide the latter
question efficiently. It is easy to see that a rectilinear one-bend drawing of
an n-vertex graph fits on the n× n grid.

– We then prove that Geodesic PSE is NP-hard on (and off) the grid, re-
ducing (in two steps) from Hamiltonian Cycle, see Section 3. In contrast,
we give a complete and easy-to-check characterization of all yes-instances of
Geodesic Polygonization, which is the special case of Geodesic PSE
where the input graph is restricted to a cycle.

– We show that Labeled Geodesic Matching on the grid isNP-hard by re-
duction from 3-Partition, see Section 4. This implies hardness of Labeled
Geodesic PSE on the grid. Our proof vitally exploits the space limitation of
the grid. On the other hand, we show that Labeled Geodesic Matching
becomes easy if we loosen or drop this limitation.

We give a list of results and open questions in geodesic embeddability in Table 1.
In the remainder of the paper, by a grid geodesic (or, even shorter, a geodesic) we
mean a Manhattan-geodesic connecting two grid points on the grid. A geodesic
grid embedding (or geodesic embedding for short) of a graph G is a drawing of G
such that the vertices of G are mapped to grid points and the edges of G are
mapped to interior-disjoint grid geodesics.

2 Geodesic Embeddability

In this section we ask whether a given planar graph has a geodesic embedding
on the grid, that is, we allow the vertices to be mapped to arbitrary grid points.
Clearly, this question makes only sense for graphs of maximum degree 4, but
K4, for instance, does not have a geodesic embedding on the grid.

In the following, we show that a graph has a geodesic embedding on the grid
if and only if it has an orthogonal embedding on the grid with at most one bend
per edge. Liu et al. [8] characterized planar graphs which are orthogonally 1-
bend embeddable and proposed an efficient decision algorithm for this problem.
Hence, we have the somewhat surprising result that we can efficiently recognize
graphs that admit a geodesic embedding on the grid.
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Theorem 1. Let G = (V, E) be a planar graph. Then G has a geodesic embed-
ding on the grid if and only if G is 1-bend embeddable on the grid.

Proof. The “if”-direction is trivially true, so we immediately turn to the “only
if”-direction. Suppose that G has a geodesic embedding E on the grid. We turn E
into an orthogonal representation as introduced by Tamassia [15]. Such a repre-
sentation consists of lists, one for each face of the given embedding. The list for
a face f has, for each edge e incident to f , an entry describing (a) the shape of e
in terms of left (−90◦) and right (+90◦) turns, and (b) the angle that the edge
makes with its successor in the cyclic order of the edges around f .

Since E is geodesic, the angles along each edge sum up to a value in {−90◦, 0◦,
+90◦}. From the representation of E we compute a new representation where
we replace the shape entry of each edge by the corresponding sum. The result
is a valid representation since for each face the sum of the inner angles remains
the same and for each vertex the sum of the angles between consecutive incident
edges also remains the same. Since the new representation is valid, Tamassia’s
flow network [15] yields the corresponding (1-bend) embedding of G. ��

3 Geodesic Point-Set Embeddability

In this section, we ask whether a given planar graph can be embedded on a given
set of grid points. We assume that we are not given a bijection between vertices
and points.

First, we show that this problem, Geodesic PSE, is NP-hard by reduction
from the problem Hamiltonian Cycle Completion (HCC), which is NP-
hard [6]. Our proof also works in the case where the (Manhattan-) geodesics are
not restricted to the grid. HCC is defined as follows. Given a non-Hamiltonian
cubic graph G, decide whether G has two vertices u and v such that G+uv (i) is
planar, (ii) has a Hamiltonian cycle H , and (iii) has an embedding such that u
and v are adjacent to at most two faces on the same side of H .

Theorem 2. Geodesic PSE is NP-hard, even for subdivisions of cubic graphs.

Proof. Our proof is by reduction from HCC. Given an instance G = (V, E) of
HCC, note that n = |V | is even and let k = n

2 + 1. Given three non-negative
integers k0, k1, k2, let P0 = {(−j, 0) | j = 0, . . . , k0 − 1}, P1 = {(j, nj) | j =
1, . . . , k1}, P2 = {(j,−nj) | j = 1, . . . , k2}, and P (k0, k1, k2) = P0 ∪ P1 ∪ P2, see
Fig. 1a. Note that the points in P (k0, k1, k2) are placed such that between any
two consecutive non-empty rows of the integer grid there are n− 1 empty rows.
We now construct a graph G′ = (V ′, E′) by splitting every edge of G by a vertex
of degree 2. This yields |V ′| = |V |+ |E| = 2n− 1 + k. In the following, we show
that G′ can be embedded on P (2n− 1, k1, k2) for some k1, k2 with k1 + k2 = k
if and only if G is a yes-instance of HCC.

Assume G is a yes-instance of HCC. Then there is a pair {u, v} of vertices
such that G + uv contains a Hamiltonian cycle and u and v are incident to two
faces on either side of this cycle. Without loss of generality, we can assume that



Manhattan-Geodesic Embedding of Planar Graphs 211

k0

k1

k2

1
P1

P0

P2

n

(a) P (k0, k1, k2)

u

v

(b)

v

(c)

v u

(d)

Fig. 1. Reduction of HCC to Geodesic PSE

uv is incident to the outer face. An example of a plane graph G′ is depicted
in Fig. 1b; the splitting nodes are marked with circles, the original nodes of G
with black disks. Maintaining the combinatorial embedding, we can embed the
Hamiltonian path connecting u and v including its splitting nodes on a set of
2n− 1 points on a horizontal line as in Fig. 1d. We embed the faces inside the
cycle above the path and the faces outside the cycle below. Since each vertex
of G′ has degree at most 3, each vertex has at most one edge going up or down—
except u and v, which both have exactly one edge going up and one going down.
Set k1 and k2 to the numbers of edges inside and outside the cycle, respectively.
Then we can map the splitting vertices of the remaining edges to the point
sets P1 and P2, and route the edges as follows, see Fig. 1c. Each splitting node v
that is mapped to a point in P1 ∪ P2 has two neighbors, a left neighbor v− and
a right neighbor v+ (according to their x-coordinates). We route the edge vv−

with one bend and the edge vv+ with two bends. Note that the empty rows leave
enough space for all horizontal edge segments.

Conversely, assume G′ has a geodesic embedding on P (2n − 1, k1, k2) with
k1 + k2 = k. Then, the k vertices that are mapped to points in P1 ∪ P2 are
incident to at most 2k = n + 2 edges. This is due to the fact that each such
edge has its lexicographically larger endpoint in either P1 or P2, and we claim
that no point in P1 ∪ P2 can be adjacent to more than two lexicographically
smaller points. To see the claim, note that for any point v ∈ P1 the set of
lexicographically smaller points is contained in the third quadrant with respect
to v. Clearly, at most two geodesics can go from v to points in any fixed quadrant.
For points in P2, the argument is symmetric. Thus our claim holds.

Since G is cubic, G′ has 3n edges. This leaves 3n − (n + 2) = 2n − 2 edges
incident to points in P0 only. Since |P0| = 2n − 1, P0 induces a path π that
alternates between vertices of degree 3 (original nodes) and degree 2 (splitting
nodes). There are two possibilities: either both endpoints—call them s and t—
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have degree 2 or both have degree 3. In the former case, π would contain n− 1
degree-3 vertices, and s and t would be adjacent to the only remaining degree-3
vertex (not in P0). This would mean that G is Hamiltonian—contradiction.

Thus we may assume that s and t have degree 3. In this case, π witnesses
a Hamiltonian path connecting s and t in G. This Hamiltonian path can be
completed to a Hamiltonian cycle by an edge through the outer face of G. Since
both u and v are incident to one edge pointing up and one edge pointing down
from the path, they are incident to two faces on either side of the cycle in this
embedding. This shows that G is indeed a yes-instance of HCC. ��

Now we turn to the case in which the instance consists of a simple cycle. We show
that this problem, which we name Geodesic Polygonization, can be solved
efficiently. We start with a simple characterization of the yes-instances. To this
end, we partition the grid points into two groups as follows. Let B be an axis-
aligned rectangle. We say that a grid point p in B is even if its rectilinear distance
to the lower left corner of B is even. Otherwise, we say that p is odd. We call a
set of points degenerate if the set is contained in an axis-parallel line. It is clear
that a degenerate point set does not have a polygonization. We now characterize
all point sets that do have a polygonization. The proof, which is omitted here
due to space limitations, is constructive, see our technical report [6]. It yields an
efficient algorithm that computes a geodesic polygonization for any set of grid
points with the given properties.

Theorem 3. Let P be a non-degenerate set of points on the grid, let B(P ) be
the bounding box of P , and let h and w be the number of rows and columns
spanned by B(P ), respectively. Then P has a geodesic polygonization if and only
if either (i) h or w is even or (ii) P does not contain all even points w.r.t. B(P ).

4 Labeled Geodesic Point-Set Embeddability

In Section 3, we showed that Geodesic PSE is NP-hard. In this section, we
study the variant where the vertex–point correspondence is given. First, we settle
the complexity of the problem on the grid.

Theorem 4. Labeled Geodesic PSE on the grid is NP-hard, even if the
given graph is a perfect matching.

Proof. We reduce 3-Partition to Labeled Geodesic Matching (LGM),
which is a special case of Labeled Geodesic PSE. An instance of 3-Partition
consists of a multiset A = {a1, . . . , a3m} of 3m positive integers, each in the range
(B/4, B/2), where B = (

∑
A)/m, and the question is whether there exists a

partition of A into m subsets A1, . . . , Am of A, each of cardinality three, such
that the sum of the numbers in each subset is B. Since 3-Partition is strongly
NP-hard [3], we may assume that B is bounded by a polynomial in m.

Based on an instance A of 3-Partition, we now construct an instance M of
LGM consisting of pairs of grid points such that M is a yes-instance of LGM
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Fig. 2. Example of the reduction from 3-Partition to LGM using A1 = {a1, a5, a7},
A2 = {a2, a3, a8}, and A3 = {a4, a6, a9} (not to scale)

if and only if A is a yes-instance of 3-Partition. Figure 2 shows an example
instance M . The instance M consists of three types of point pairs.

The first type represents the numbers in A. We define 3m sets S1, . . . , S3m

of grid points, all lying on the diagonal � : y = −x, in this order from left to
right. For 1 ≤ i ≤ 3m, the points in Si occupy ai consecutive grid points, and
two consecutive sets are separated by a large gap of L = Bm + m − 1 grid
points. The gap between the last point of S3m and the origin is also L. The
points in the sets T3m, . . . , T1 lie on the line �′ : y = −x + L, in this order from
left to right. Again, points within a set are consecutive grid points, and between
consecutive sets there are large gaps of L grid points. The matching is as follows.
For 1 ≤ i ≤ 3m and for 1 ≤ j ≤ ai, the j-th point in Si (counting from the
left) matches the j-th point in Ti (counting from the right). The ai point pairs
in Si ∪ Ti represent the number ai.

The second type of point pairs forms a sort of “dot mask”, the heart of
our construction. These pairs lie on the x-axis. The geodesics between them
are obviously line segments and pairwise disjoint. The leftmost segment goes
from −N to 0, where N = 3mL+mB +2(m−1). The following m−1 segments
have unit length and leave gaps of width B. The rightmost segment goes from L
to L + N .

The third type of point pairs gives rise to geodesics that resemble “fences”
ensuring that all geodesics that represent a number from A go through the
same gap in the mask. There are m − 1 such pairs. Their upper endpoints are
consecutive grid points on the diagonal �. They lie above the points in S1, leaving
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a gap of m−1 grid points. The corresponding lower endpoints lie one unit above
the, say, right endpoints of the unit-length segments on the x-axis. The matching
is as follows: from left to right and for 1 ≤ j ≤ m − 1, the j-th upper endpoint
matches the j-th lower endpoint.

It is easy to see that any geodesic embedding of M induces a partition of A:
due to the fences, all edges corresponding to the same element of A must be
routed through the same gap of the dot mask, each of the m gaps has width B,
and each of the mB edges must go through some gap.

Conversely, given a partition, we construct a geodesic embedding of the match-
ing. We start by drawing the dot mask whose layout only depends on the num-
bers B and m. Then, we analyze the first subset of the partition, A1, and con-
nect the points S1 =

⋃
aj∈A1

Sj to the corresponding points in T 1 =
⋃

aj∈A1
Tj ,

starting with the leftmost point in S1 and the rightmost point in T 1. For each
connection, we use the bottommost geodesic that goes above all geodesics we
have drawn so far. Next, we draw the first (that is, leftmost) fence. Also in this
case, we use the bottommost geodesic that goes above all geodesics we have
drawn so far. We repeat these two steps, connecting the points corresponding to
a subset of the partition and drawing a fence. Since we left enough horizontal
and vertical space, this process does not get stuck. The fences direct the next B
connections into the gaps, which have exactly the right width.

Since we assumed that B is polynomial in m, the numbers L and N , which
determine the grid size needed by M , are also polynomial in m. Given an embed-
ding, the partition can be constructed from it efficiently, and vice versa. Thus
our reduction is polynomial. ��

Next, we show that LGM becomes easy if we loosen or drop the space limitation
of the grid. We call an instance of LGM—a set M of n pairs of grid points
(we call such pairs also edges)—sparse if the minimum distance between any
two occupied columns and between any two occupied rows is at least n + 1. In
the remainder of this section, we give an efficient algorithm that solves sparse
instances of LGM. Clearly, the algorithm can also be used for an instance that
does not “live” on the grid, by underlaying the instance with a fine enough grid.

We say that an edge e ∈ M is downward if its lexicographically larger end-
point e+ lies below its lexicographically smaller endpoint e−, otherwise e is
upward. Clearly, M does not have a geodesic embedding if the bounding box of
an edge crosses (that is, splits into two connected components) the bounding
box of another edge. This can be tested easily, so from now on we assume that M
is non-crossing, that is, no two bounding boxes of edges in M cross.

Let g and g′ be any two geodesics. We say that g is below g′ if there is a
vertical line that intersects g below g′. We say that an edge e ∈ M is strictly
below an edge e′ ∈ M if, for any geodesic embedding γ of the two edges, γ(e) is
below γ(e′).

The precedence graph πM is a directed graph whose vertex set is M and
whose edges represent the strictly-below relationship. The precedence graph can
be computed efficiently by a simple line sweep. It is clear that M does not have
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Fig. 3. (a) Critical region R↑(e, f) with g ∈ M↑(e, f), (b) a matching M , (c) the
precedence graph πM and the extended precedence graph ΠM of M

a geodesic embedding if πM contains a cycle. Now we construct a supergraph
of πM whose acyclicity is equivalent to the realizability of M .

For any point a = (xa, ya) ∈ R2, let Q1(a) = {(x, y) ∈ R2 | xa ≤ x, ya ≤
y} be the first quadrant w.r.t. a and define the other three quadrants w.r.t. a
accordingly, in counterclockwise order. Let e be a downward edge and let f be
any other edge in M . For such a pair (e, f), we define the upper critical region
of e and f as R↑(e, f) = (Q1(f−) ∪Q1(f+)) ∩ B(e) (see Fig. 3a) and the lower
critical region of e and f as R↓(e, f) = (Q3(f−) ∪Q3(f+)) ∩ B(e). The critical
regions for upward edges are defined by replacing Q1 by Q2 and Q3 by Q4. Let
M↑(e, f) and M↓(e, f) be the sets of edges in M with at least one endpoint
in R↑(e, f) and R↓(e, f), respectively.

Let G = (M, E) be a directed graph with vertex set M . We say that an
edge (e, f) of G produces the edge (e, g) if g ∈ M↑(e, f) and the edge (g, f) if
g ∈ M↓(f, e). Now the extended precedence graph ΠM is the closure of πM with
respect to production.

Lemma 2. If ΠM contains a cycle, M does not admit a geodesic embedding.

Proof. We claim that an edge (e, f) in ΠM means that if M has some geodesic
embedding γ, then γ(e) is below γ(f). Clearly, the claim holds for every edge
in πM . Now suppose edge (e, g) has been produced by the edge (e, f) and M
has a geodesic embedding γ. Then we know that g ∈ M↑(e, f). Assume that e
is downward. By definition, at least one of the endpoints of g—call it q—lies
in Q1(p) ∩ B(e), where p is one of the endpoints of f . (In particular, p lies in
B(e), otherwise Q1(p) ∩ B(e) would be empty.) Due to the existence of edge
(e, f), γ(e) is below γ(f) and thus below p. Since e is downward, γ(e) must also
be below q and hence below γ(g). The case that e is upward and the case that
(e, f) has produced an edge (g, f) can be argued symmetrically. Now induction
yields the claim. ��

By Lemma 2, for M to have a geodesic embedding, it is necessary that ΠM is
acyclic. We now show that this condition is also sufficient, by giving an algorithm
that computes an embedding if ΠM is acyclic.

The algorithm sweeps a vertical line from left to right over the plane. Events
occur only at the vertices of M . During the sweep, we partition the edges in M
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into three groups. Completed edges have both endpoints to the left of the sweep-
line. We have already embedded these edges as geodesics. Partial edges have one
endpoint on either side of the sweep-line. A partial edge is embedded as a partial
geodesic ending at the sweep-line. Finally, untouched edges have both endpoints
to the right of the sweep-line. We have not started embedding these edges yet.

Let c and c′ be two consecutive occupied grid columns, with c to the left of c′.
Assume that we have already computed a partial geodesic embedding up to c.
Let u1, . . . , us be the set of upward partial edges which do not end at c, sorted
from bottom to top (including the edges starting at c). We process the edges in
this order. Assuming that we have already embedded u1, . . . , ui−1, we proceed
depending on whether ui ends at c′ or not.

If ui ends at c′, we embed ui as the bottommost geodesic just above all edges
u1, . . . , ui−1, that is, there is no geodesic for ui containing a point strictly below
this geodesic. Hence, u1 has a vertical segment only on the last unoccupied
column to the left of c′. By induction, ui has vertical segments only on the last
i unoccupied columns.

If ui does not end at c′, let Ui denote the set of edges preceding ui in ΠM .
Then ui must necessarily be embedded above all edges in Ui. We embed ui as
the bottommost geodesic above all edes u1, . . . , ui−1 and above all endpoints of
edges in Ui which are on c′. If there is no such restriction, we embed ui as a
straight-line segment.

We then proceed similarly with the downward edges. Let d1, . . . , dt be the
set of partial downward edges that do not end at c, sorted from top to bottom,
that is, sorted inversely to the upward edges. Let Di denote the set of edges
succeeding di in ΠM . We embed each edge di as the topmost geodesic below the
geodesics d1, . . . , di−1 and below all endpoints of edges in Di. As before, di has
vertical segments only on the last i columns left of c′. A sample output of the
algorithm is illustrated in Fig. 3b.

Since there are at most n edges by the definitions of the top- and bottommost
geodesics, we need at most n unoccupied columns between c and c′. Since M is
sparse, there are at least n unoccupied rows between two occupied rows on c′,
so we can embed the given edges between two occupied points on c′.

Theorem 5. Let M be a sparse non-crossing matching with n edges on the grid.
Then M has a geodesic embedding if and only if ΠM is acyclic. In O(n3) time,
we can compute a geodesic embedding of M or prove that no such embedding
exists.

Proof. The “only if” part has been proved in Lemma 2, so we immediately
turn to the “if” part. We first compute ΠM . If ΠM contains a cycle, we reject.
Otherwise, we use the above embedding algorithm to compute an embedding γ
of M .

Concerning running time, it is clear that πM can be computed by a simple
plane sweep in O(n2) time. For computing ΠM , we need O(n2) iterations, one for
each edge. An iteration takes linear time since all endpoints in the correspond-
ing two critical regions can be reported in linear total time. The embedding
algorithm runs in O(n2) time.
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To show that γ is plane and geodesic, we maintain the following invariants
during the execution of the algorithm.

1. All completed and partial edges are (partially) embedded as geodesics.
2. For every partial downward edge the partial embedding is not upward; vice

versa for partial upward edges.
3. If the left endpoint of some downward edge e is above the left endpoint of

an edge e′ and the (partial) geodesic for e is below e′ in the embedding,
then ΠM contains a path from e to e′. A symmetric statement holds for
upward edges.

4. The partial embedding respects all constraints corresponding to edges in ΠM .
5. No two (partial) geodesics intersect.

It is easy to see that invariants 1–4 are maintained by the algorithm. Invari-
ant 1 yields that γ is geodesic. It remains to show that γ is plane (invariant 5).

Suppose that the algorithm introduces a crossing when going from grid col-
umn c to grid column c′ and there is no crossing to the left of c. By definition of
the top- and bottommost geodesic there is no intersection between two upward
or two downward edges, respectively. That is, the algorithm can only introduce
intersections between an upward and a downward edge. Let di be a downward
edge and let uj be an upward edge such that di and uj intersect. Then di must be
above uj on c, otherwise there would be no crossing between the two edges. We
now make a case distinction depending on whether or not there is an edge e ∈ M
with left endpoint e− on c′ such that di must be embedded below e and uj must
be embedded above e, that is, (di, e) and (e, uj) are in ΠM .

First assume that there is no such edge e. Let V ′
M be the points of VM that lie

to the left of or on c′. Let p1 be the lowest point of V ′
M such that di lies below p1.

Similarly, let p2 be the highest point of V ′
M such that uj lies above p2. Clearly,

p2 is below p1 and by assumption there are at least n unoccupied rows between
p1 and p2. By definition of the top- and bottommost geodesic for di and uj the
two edges do not cross, see Fig. 4.

Now assume that there is an edge e with (di, e) and (e, uj) in ΠM . If the left
endpoints d−i and u−

j are in the same column, there is an edge (uj , di) in πM ,
which induces a cycle in ΠM , contradicting the assumption that ΠM is acyclic.
Otherwise, the endpoints d−i and u+

j are in different columns.
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Assume that d−i is to the left of u−
j . Since di is above uj, its right endpoint d+

i

cannot be in the critical region R↓(uj, e) since this would imply that di must be
below uj , which violates invariant 4 at c. Hence, d+

i must be to the right of u+
j .

In this case, however, u+
j is in R↑(di, e), that is, di must be below uj, which

again violates invariant 4 at c (see Fig. 5). The case that d−i is to the right of u−
j

is similar. ��
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Abstract. Orthogonal connectors are used in a variety of common net-
work diagrams. Most interactive diagram editors provide orthogonal con-
nectors with some form of automatic connector routing. However, these
tools use ad-hoc heuristics that can lead to strange routes and even routes
that pass through other objects. We present an algorithm for computing
optimal object-avoiding orthogonal connector routings where the route
minimizes a monotonic function of the connector length and number of
bends. The algorithm is efficient and can calculate connector routings
fast enough to reroute connectors during interaction.

1 Introduction

Most interactive diagram editors provide some form of automatic connector rout-
ing between shapes whose position is fixed by the user. Usually the editor com-
putes an initial automatic route when the connector is created and updates this
each time the connector end-points (or attached shapes) are moved. Orthogonal
connectors, which consist of a sequence of horizontal and vertical line segments,
are a particularly common kind of connector, used in ER and UML diagrams
among others. However, in current diagramming tools that we are aware of,
automatic routing of orthogonal connectors uses ad-hoc heuristics that lead to
aesthetically unpleasing routes and unpredictable behaviour.

For example, the graphic editors OmniGraffle Pro 5.1.1, and Dia 0.97, provide
automatic orthogonal connector routing but these routes may overlap other ob-
jects in the diagram. Both Microsoft Visio 2007, and ConceptDraw Pro 5 provide
object-avoiding orthogonal connector routing but in both applications connec-
tor routing does not use a predictable heuristic, such as minimizing distance or
number of segments. Furthermore, the routes are mostly updated only after ob-
ject movement has been completed, rather than as the action is happening. The
Graph layout library yFiles1 and demonstration editor yEd offers orthogonal
edge routing but routing is not maintained throughout further editing.

Thus, we know of no interactive diagram authoring tool which ensures that
the orthogonal connectors are optimally routed in any meaningful sense. On the
1 http://www.yworks.com/products/yfiles/

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 219–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.yworks.com/products/yfiles/
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(a) (b) (c)

Fig. 1. Three stage routing: (a) the orthogonal visibility graph, (b) the optimal con-
nector routes, (c) the final routes after centering and nudging. Arrows indicate routing
direction for connectors.

other hand, automatic routing of poly-line connectors is better supported: two
tools, Dunnart and Inkscape, provide real-time poly-line connector routing which
is optimal in the sense that it minimizes edge bends and connector length. Both
use the connector routing library libavoid2 which has three steps in connector
routing [1]. The first stage is to compute a visibility graph for the diagram
which contains a node for each vertex of each object in the diagram and an
edge between two nodes iff they are mutually visible. The second stage uses A	

search to find the optimal route through the visibility graph for each connector.
The third stage computes the visual representation of the connector. This three
step approach is also used in the Spline-o-matic library3 developed for GraphViz
which supports poly-line and Bezier curve edge routing [2].

In this paper we describe how we have extended the connector routing library
libavoid to support orthogonal connector routing. The main contribution is
to show that a similar three step process to that used for poly-line connector
routing can also be used for optimal orthogonal connector routing. We introduce
the orthogonal visibility graph in which edges in the graph represent horizontal
or vertical lines of visibility from the vertices and connector ports of each object
(Section 3). Connector routes are found using an A	 search through the orthog-
onal visibility graph (Section 4). The algorithm is guaranteed to find a route for
each connector that is optimal in the sense that it minimizes bends and overall
connector length. Finally, the actual visual route is computed (Section 5). This
step orders and nudges apart the connectors in shared segments so as to ensure
that unnecessary crossings are not introduced and that crossings occur at the
start or end of the shared segment. It also tries to ensure that connectors pass
down the middle of “alleys” in the diagram when this does not lead to additional
cost. Figure 1 shows the three step process for an example layout. Our algorithms
are surprisingly efficient and fast enough to reroute connectors even during

2 http://adaptagrams.sourceforge.net/libavoid/
3 http://www.graphviz.org/Misc/spline-o-matic/

http://adaptagrams.sourceforge.net/libavoid/
http://www.graphviz.org/Misc/spline-o-matic/
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direct manipulation of reasonably sized diagrams, thus giving instant feedback
to the diagram author (Section 6).

2 Problem Statement

For simplicity we model objects by their bounding rectangle and assume for
the purposes of complexity analysis that the number of connector points on
each object is a fixed constant. Also for simplicity, we assume that connectors
must start and end at distinct connection points. In practice, connectors are not
always connected to objects and may have end-points which are not connection
points. This can be handled by adding an extra node to the visibility graph for
this endpoint.

We are interested in finding a poly-line route of horizontal and vertical seg-
ments for each connector. We wish to find routes that are short and which
have few bends. While we also wish to reduce connector crossings we will delay
consideration of this until Section 8. We assume our penalty function p(R) for
measuring the quality of a particular route R is a monotonic function f of the
length of the path, ||R||, and the number of bends (or equivalently segments) in
R, bends(R), i.e. p(R) = f(||R||, bends(R)). We require that the routes are valid :
they do not pass through objects and only contain right-angle bends.

We use the Manhattan distance ||(v1, v2)||1 = |x1 − x2|+ |y1− y2| to measure
the shortest orthogonal route between points v1 = (x1, y1) and v2 = (x2, y2).
We make use of 4 cardinal directions: N, S, E, W. We assume the functions right ,
left , and reverse defined by the mappings:

right = {N �→ E, E �→ S, S �→ W, W �→ N}
left = {N �→ W, E �→ N, S �→ E, W �→ S}

reverse = {N �→ S, E �→ W, S �→ N, W �→ E}

We define the directions of point v2 = (x2, y2) from v1 = (x1, y1) as:

dirns(v1, v2) = {N | y2 > y1} ∪ {E | x2 > x1} ∪ {S | y2 < y1} ∪ {W | x2 < x1}

Note dirns(v1, v2) = {D} means v2 is on the line in direction D drawn from v1.

3 Orthogonal Visibility Graph

The basis for our approach is the observation that when finding routes minimiz-
ing the penalty function we need only consider routes in the orthogonal visibility
graph. This is defined as follows.

Let I be the set of interesting points (x, y) in the diagram, i.e. the connector
points and corners of the bounding box of each object. Let XI be the set of x
coordinates in I and YI the set of y coordinates in I. The orthogonal visibility
graph V G = (V, E) is made up of nodes V ⊆ XI × YI s.t. (x, y) ∈ V iff there
exists y′ s.t. (x, y′) ∈ I and there is no intervening object between (x, y) and
(x, y′) and there exists x′ s.t. (x′, y) ∈ I and there is no intervening object
between (x, y) and (x′, y). There is an edge e ∈ E between each point in V to its
nearest neighbour to the north, south, east and west iff there is no intervening
object in the original diagram.
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An example orthogonal visibility graph is shown in Figure 1(a). It is quite
different to the standard (non-orthogonal) visibility graph used for poly-line
routing. In particular, the standard visibility graph has O(n) nodes if there are
n objects in the diagram while the orthogonal visibility graph has O(n2) nodes.
Both have O(n2) edges.

Observation: Let R be a valid orthogonal route for a connector c. Then there
exists a valid orthogonal route R′ using edges in the orthogonal visibility graph
for c s.t. p(R′) ≤ p(R).

Proof. We simply take the route R and “shrink” each segment on the route onto
a path in the visibility graph to give R′. By construction R′ is no longer than R
and has no additional bends. �

The orthogonal visibility graph can be constructed using the following algorithm.
It has three steps:

1. Generate the interesting horizontal segments

HI = { ((x, y), (x′, y)) | (x, y), (x′, y) ∈ I s.t. x ≤ x′
and there is no intervening object between (x, y) and (x′, y)}.

2. Generate the interesting vertical segments

VI = { ((x, y), (x, y′)) | (x, y), (x, y′) ∈ I s.t. y ≤ y′
and there is no intervening object between (x, y) and (x, y′)}.

3. Compute the orthogonal visibility graph by intersecting all pairs of segments
from HI and VI . We note that this could be done lazily, however for simplicity
we construct the entire visibility graph in one step.

Theorem 1. The orthogonal visibility graph can be constructed in O(n2) time
for a diagram with n objects using the above algorithm.

Proof. The interesting horizontal segments can be generated in O(n log n) time
where n is the number of objects in the diagram by using a variant of the line-
sweep algorithm from [3,4]. This uses a vertical sweep through the objects in the
diagram, keeping a horizontal “scan line” list of open objects with each node
having references to its closest left and right neighbors. Interesting, horizontal
segments are generated, when an object is opened, closed, or a connection point
is reached. Dually, the interesting vertical segments can generated in O(n log n)
time by using a horizontal sweep. The last step takes O(n2) time since there are
O(n) interesting horizontal and vertical segments. �

4 Routing the Connector

We use an A	 algorithm which iteratively builds longer and longer partial paths
that start from the source node s until the destination node d is reached. Partial
paths are stored in a priority queue and at each step the partial path with lowest
cost is taken from the queue and expanded. The expanded nodes are placed in
the queue. The process stops when the path chosen for expansion is already at
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Fig. 2. (a) Minimal required additional bends for reaching the destination with correct
direction from each point and direction. (b) The solid path is preferred to the dashed
path since it is the “initially straighter” path. The dotted line shows the middle of the
“alley” of possible paths for the middle segment of the connector.

d. The cost associated with each partial path is the cost of the partial path so
far plus a lower bound on the remaining cost to the destination.

If we are only trying to minimize connector length, the only state we need to
know about the partial path is the position of its end. However, if the number
of bends is also part of the cost we also need to know the direction of the path.
Thus, entries in the priority queue have form (v, D, lv, bv, p, cv) where v is the
node in the orthogonal visibility graph, D is the “direction of entry” to the node,
lv is the length of the partial path from s to v and bv the number of bends in
the partial path, p a pointer to the parent entry (so that the final path can be
reconstructed), and cv the cost of the partial path. There is at most one entry
popped from the queue for each (v, D) pair. When an entry (v, D, lv, bv, p, cv)
is scheduled for addition to the priority queue, it is only added if no entry with
the same (v, D) pair has been removed from the queue, i.e. is on the closed list.
And only the entry with lowest cost for each (v, D) pair is kept on the priority
queue. When we remove entry (v, D, lv, bv, p, cv) from the priority queue we

1. add the neighbour (v′, D) in the same direction with priority f(lv+||(v, v′)||1+
||(v′, d)||1, sv + sd);

2. conditionally add the neighbours (v′, right(D)) and (v′, left(D)) at right an-
gles to the entry with priority f(lv + ||(v, v′)||1 + ||(v′, d)||1, sv + 1 + sd);

where sd is the estimation of the remaining segments required for the route from
(v′, D′) to (d, Dd). Since some edges are useful only when searching in a particular
direction or for a specific point, we don’t add the left or right neighbours if the
extension of that visibility line neither passes right by an obstacle nor contains
the target endpoint. The estimation of the remaining segments required is: sd =

0. if D′ = Dd and dirns(v′, d) = {D′};
1. if left(Dd) = D′ ∨ right(Dd) = D′ and D′ ∈ dirns(v′, d);
2. if D′ = Dd and dirns(v′, d) �= {D′} but D′ ∈ dirns(v′, d), or D′=reverse(Dd)

and dirns(v′, d) �= {Dd};
3. if left(Dd) = D′ ∨ right(Dd) = D′ and D′ �∈ dirns(v′, d); and
4. if D′=reverse(Dd) and dirns(v′, d)={Dd}, or D′=Dd and D′ �∈ dirns(v′, d).

Figure 2(a) shows all the possible scenarios for determining the remaining min-
imal number of bends. We note that Miriyala et al. [5] use a similar cost.

Even taking into account number of bends, there are usually many alternate
routes of the same cost from source to destination. To make the routing behaviour
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more predictable and faster we add a tie break for equal cost routes based on a
time stamp of when the entry was added to the priority queue. This means that
because the order in which neighbours is added is deterministic—straight, right,
left—there is a slight preference for right turns and also that the latest path is
extended in preference to earlier paths. See Figure 2(b).

The worst-case complexity of the A	 algorithm is that of a priority queue based
implementation of the shortest path algorithm over the orthogonal visibility
graph. Thus:

Theorem 2. The above algorithm will find an optimal valid route for a single
connector through the orthogonal visibility graph in O(n2 log n) time where the
diagram has n objects. �

5 Computing the Visual Representation

The third and last step in orthogonal connector routing is “nudging” of the
connectors to compute their actual position in the drawing. The importance of
this step is often overlooked, but feedback from users of Dunnart and Inkscape
suggests that it has a significant impact on the perception of layout quality. It
has two steps.

5.1 Ordering Shared Edges

The first aspect is determining the relative ordering of connectors in shared
edges. A consequence of routing connectors along the orthogonal visibility graph
is that multiple connectors will share edges of their paths. In order to make the
connector route clearer we want to nudge these paths apart to make the distinct
paths clear. It is important to do so in a manner which does not introduce
unnecessary crossings or bends in segments.

We now explain our algorithm to generate a relative ordering of connectors in
shared edges. Initially we construct the graph of shared edges, that is the subset
of the edges in the visibility graph that have two or more connectors routed along
that edge (plus their incident nodes). We process each connected component in
the graph separately since each defines an independent subproblem in terms of
the parts of connectors whose routes enter and exit this connected component
of shared edges. Note that one connector may enter and exit the connected
component multiple times in which case each sub-route is treated as a separate
connector. Processing of each connected component has two steps.

We first try and assign a uniform pseudo direction for each of these connector
sub-routes. This pseudo direction is independent of the actual direction of the
connector—it is simply used for route adjustment. Choose an arbitrary connector
sub-route A and fix its pseudo direction in an arbitrary direction. Now fix the
pseudo direction of a connector sub-route that shares an edge with A to have
the same direction as one of the shared edges. Follow the sub-route assigning the
same pseudo-direction until there is a conflict in which case we mark the sub-
route with a split point, reverse the pseudo-direction and continue following the
sub-route. Continue this until all sub-routes segments have a pseudo direction.
The whole process is O(e) where e is the number of edges in all the sub-routes
appearing in this tree.
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Fig. 3. (a) A set of orthogonal connectors which share edges, and (b) an ordering
of shared edges to minimize crossings, (c) an order of shared edges that minimizes
crossings and does not introduce additional segments

In practice, we have found that the pseudo-direction assignment for each con-
nector sub-route is almost always consistent. We say a set of connector paths
is path consistent if the pseudo-direction assignment is consistent for each con-
nected component of the shared edge graph.

The next step is to determine for each shared edge a relative order, left to right
along the pseudo direction, of each of the connectors that share that edge. We
do this in an incremental fashion. Each edge starts with an empty sequence of
connectors. We choose an, as yet unconsidered, connector sub-route and process
each of its consistent sub-sections, one at a time (i.e. the sub-sections without
split point. We insert this consistent sub-section in the ordering for each shared
edge it makes use of. The key is that we will ensure that the necessary crossings
of this sub-section with other connectors only occur at the end of the last (in
the pseudo direction) shared edge between them, which is either at the end of
the connector or at a split point.

Consider adding a connector c to a shared edge order O for edge e. We need to
insert c in O in the appropriate place. There are three subsequences of connectors
in O = L++S++R. Those that enter e (along the pseudo direction) from the left
of c, L, those that enter in the same direction as c, S, and those that enter from
the right, R. Now c already shares an edge e′ with connectors in S, so we can
project the order O′ for this edge onto the connectors in S∪{c} to determine an
order SL++[c]++SR.4 The new order for edge s is hence L++SL++[c]++SR++R.
This step is O(e2).

Example 1. Consider the tree of shared edges shown if Figure 3(a). The ordering
of shared edges shown in Figure 3(b), has minimal connector crossings but adds
two extra segments in the route for D. The algorithm proceeds as follows. We as-
sign the pseudo direction left to right to connector A, and this propagates to the
other edges as shown by the arrow heads in Figure 3(c). The tree is path consis-
tent. We first add connector A as the unique route in each of edges 1–5. Next we
add connector B. Since it enters from below it is ordered after A in edge 1 and 2,
implicitly crossing A after edge 2. Similarly we add connector C. The resulting
ordering is ([A,B],[A,B],[A],[A,C],[A,C]). Next we add connector D, it is added

4 It may be that when starting from a split point that while c already shares an edge
e′ with connectors in S the ordering is not yet decided, in which case the ordering
is determined by following the sub-route back across the split point and along the
shared path to find the input ordering.
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last on edges 2 and 3 but since it enters above C it is ordered between A and
C in edge 4. The final resulting ordering is ([A,B],[A,B,D],[A,D],[A,D,C],[A,C]).
The resulting diagram is shown in Figure 3(c). �

Theorem 3. If the shared edge graph is path consistent the above ordering algo-
rithm produces segment orders with the minimal number of connector crossings,
and all connector crossings are produced at the end of the last (in the pseudo
direction) shared edge of the two connectors.

Proof. (Sketch) Consider any pair of (sub-routes of) connectors A and B in a
tree of shared edges. The algorithm ensures that the relative order of A and B
is fixed in all their shared edges. By definition this order is defined by their left
to right order on entry to the shared edge. Hence the two connectors can only
cross at the exit of the shared edge, and only do so if that is necessary. �

Theorem 4. If the shared edge graph is planar then the above ordering algo-
rithm produces a planar layout.

Proof. (Sketch) The relative order of shared edged is always preserved from one
endpoint of the connectors, thus a crossing will only be inserted if the relative
order of the two endpoints is different, in which case the graph is not planar. �

5.2 Final Placement

The final step in the layout is to determine the exact coordinates of the orthogo-
nal connector segments. This nudges connector routes a minimum distance apart
to show the relative order of connectors with shared segments and also ensures
that connectors pass down the middle of “alleys” in the diagrams when this does
not lead to additional cost or additional edge crossings.

We collapse collinear segments in the connector routes into maximal hori-
zontal and vertical segments. This means that segments in the path alternate
horizontal and vertical alignment. We compute the horizontal and vertical po-
sition in separate passes. The horizontal pass works as follows and the vertical
pass is symmetric.

1. Determine a desired horizontal position for all non-end segments in the con-
nector. For the middle segment in an “S” or “Z” bend, this is the middle
of the “alley” that the segment is in. For example, for the solid connector
route shown in Figure 2(c), the dotted line shows the desired position for
this segment. For the middle segment in an “�” or “�” bend, this is that of
the vertex of the object that the segment bends around.

2. Generate a set of horizontal separation constraints to ensure that segments
maintain their current relative horizontal ordering with each other and with
the other objects in the diagram. In the case of shared segments the sep-
aration constraints impose the ordering determined previously. The con-
straints are designed to enforce non-overlap and also to stop segments passing
through each other and so introducing additional connector crossings.

3. Project the desired values on to the separation constraints to find the hori-
zontal position of the segments using the approximate projection algorithm
satisfy VPSC from [3,4].
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The constraints and desired positions can be generated using a variant of the
line-sweep algorithm from [3] in O((n+s) log(n+s)) time where n is the number
of diagram objects and s the total number of vertical connector segments. The
approximate projection algorithm has O((s + n)2) worst-case complexity but in
practice O((s + n) log(s + n)) complexity [4].

6 Evaluation

We have implemented all algorithms in the open source libavoid library and
call them from the Dunnart diagram editor.5 The library is written in C++ and
compiled with gcc 4.2.1 at -O3. To investigate the performance of the algorithms
we have timed libavoid computing connector routes for a variety of diagrams.

We used diagrams with various sized grid arrangements of nodes, where each
outside node is connected to the diagonally opposite node, and each node except
those on the right and bottom edge is connected to the node directly down and
to the right. We also used two larger random graphs and a protein topology
diagram. Figure 4 shows the layout of three of these evaluation diagrams.

We measured the time to construct the orthogonal visibility graph, the time
to find all connector routes using the A	 algorithm, the time to centre routes
in channels and perform nudging. The experiment was run on a MacBook Pro
with a 2.53 GHz Intel Core 2 Duo processor and 2GB of memory. The results are
shown in Table 1. We found for smaller diagrams with fewer than 100 nodes and
edges the routing process for the entire diagram can be performed in a fraction
of a second. Such smaller diagrams typify the sort of diagrams constructed in
interactive authoring software. The size and construction time for the visibility
graph in grid examples is notably smaller, as would be expected since the shapes
have visibility just to their neighbours. The time required to centre routes is
negligible, so should always be performed since it leads to more predictable
routes. The Graph-compact example is notable for the smaller visibility graph
and higher routing time, where both are due to the fact that many of the nodes
in this graph are close together and obscure visibility or block the optimal routes
of connectors.

Table 1. Average time taken to construct the orthogonal visibility graph, route all
connectors, and compute final positions of all connectors for grids and random graphs

Diagram size VisGraph size Times (in msec.) to compute
Diagram |V | |E| |V | |E| VisGraph RouteConns FinalPos Total
Protein-1ABI 26 25 2,138 3,602 7 4 1 12
Grid-6x6 36 35 641 542 1 3 6 10
Grid-8x8 64 63 1,109 928 5 13 22 40
Grid-10x10 100 99 2,261 2,474 5 58 48 111
Grid-12x12 144 143 2,429 2,012 17 63 94 174
Graph-sparse 231 276 52,318 101,589 143 38 149 330
Graph-compact 305 413 51,187 98,801 144 261 605 1,010

5 Dunnart is available for download from http://www.dunnart.org/

http://www.dunnart.org/
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Fig. 4. Evaluation diagrams: (a) Protein-1ABI, (b) Grid-6x6 and (c) Graph-sparse

7 Related Work

Our work extends the previously mentioned research into three-step optimal
routing of poly-line connectors to handle orthogonal connector routing. There
has been some previous work on finding good orthogonal connector routings be-
tween fixed position shapes. The most closely related work in the graph drawing
literature is that of Miriyala et al. [5] who also use an A	 algorithm for comput-
ing orthogonal connector paths. The main difference is that they search through
the rectangulation of the diagram rather than the orthogonal visibility graph.
The rectangulation is obtained by drawing vertical lines from the vertices of each
shape. The search is then through these rectangles. While superficially similar,
the rectangulation is actually quite different to the orthogonal visibility graph.
The key difference is that the rectangulation does not directly model horizontal
visibility. This means that their algorithm is heuristic and routes are not guar-
anteed to be optimal in any meaningful sense even if minimizing edge crossings
is ignored. A disadvantage of our approach is that the rectangulation is O(n) in
size while the orthogonal visibility graph is O(n2) in size for n shapes.

Other related work includes algorithms for orthogonal graph layout. A stan-
dard technique is to solve a network flow problem in order to compute an orthog-
onal representation for the graph which minimizes the total number of connector
bends [6]. A compaction step is then applied to the orthogonal representation
to assign positions to the nodes which minimize the area of the drawing but do
not introduce additional crossings or overlap. The orthogonal graph layout algo-
rithm used in Tom Sawyer [7] uses a different approach. It first uses a heuristic to
position nodes on a grid so that connected nodes are close and no nodes (treated
as points) are on the same horizontal or vertical grid line. Next the edge routing
is chosen using a heuristic. Nodes may be expanded in size in this step to ensure
that edges require at most one bend. A compaction step is then applied.

The key difference between orthogonal graph layout and the problem we ad-
dress is that in orthogonal graph layout the layout algorithm is responsible for
positioning nodes so as to minimize bends, while in our context nodes, i.e. shapes,
have fixed position and dimensions. We also mention incremental approaches to
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orthogonal graph layout which incrementally construct the layout as vertices
(and all of their associated edges) are added one at a time [6,7]. Again nodes are
allowed to move and the focus is on bend minimization.

Orthogonal connector routing has been extensively studied in computational
geometry, in part because of its applications to circuit design. Lee et al. [8]
provides an extensive survey of algorithms for orthogonal connector routing,
while Lenguauer [9] provides an introduction to the algorithms used in circuit
layout.

One of the earliest approaches in circuit design was so-called maze running
in which objects were assumed to be laid out on a uniform grid and a shortest
path algorithm was employed to find the shortest path in the grid [10]. The
complexity is proportional to the size of the grid. In our context, the grid needs
to be very fine because the user is free to place elements where they like and
so the time complexity is prohibitively high. Our approach can be considered a
modification to maze running in which we use a non-uniform grid whose mesh
size is tailored to the geometry of the diagram.

Another approach used in circuit layout is to construct a track graph [11].
The construction is very similar to that of the orthogonal visibility graph. The
difference is that not all intersections of the interesting horizontal and vertical
segments are placed in the graph, thus the track graph is a sub-graph of the
orthogonal visibility graph. The track graph is not suitable for our purposes be-
cause it is only intended for finding minimal length connector paths (the primary
concern in circuit design).

The problem we are addressing is finding a minimum-cost path (MCP) where
the cost is a function of the number of bend points and path length. Algorithms
with O(n log3/2 n) complexity for routing a single connector where n is the num-
ber of objects (assuming they are rectangles) are known for this problem [8].
However, it is fair to say that these algorithms are quite complex and dependent
on the kind of penalty function. Our approach has the advantage of simplicity
and, since A	 search is a generic technique, it can be extended to more com-
plex penalty functions such as one, for instance, penalizing connector crossings
(see Section 8). Furthermore, our approach is analogous to the poly-line con-
nector routing approach already used in libavoid and so implementation effort
is reduced. While the worst-case complexity of our approach is O(n2 log n), in
practice because of the good heuristic used in the A	 search, we have found
performance is perfectly acceptable.

Another significant contribution of our paper is our algorithm for “nudging”
orthogonal connectors apart so as to improve the legibility of the layout. While
Miriyala et. al. do consider nudging, the issues and approach are quite different.
They do not consider the problem of how to avoid introducing unnecessary cross-
ings when separating connectors with a shared path. Our algorithm for ordering
connectors in shared paths so as to avoid introducing unnecessary crossings is
related to algorithms for metro-line crossing [12,13]. The main difference is that
we have the additional requirement that the ordering should not introduce un-
necessary bends in the layout and so crossings are only allowed to occur when a
connector enters or leaves the shared path, but not in the shared path itself.
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8 Conclusion

Most diagram editors and graph construction tools provide some form of auto-
matic orthogonal connector routing. However the routes are typically computed
using ad-hoc techniques and are not usually updated during direct manipula-
tion. We present algorithms for computing optimal object-avoiding orthogonal
connector routings where optimality is w.r.t some monotonic function of the con-
nector length and number of bends. Our approach is based on first computing
an orthogonal visibility graph for the diagram, then an optimal route using an
A	 search, followed by computation of the precise connector path. The approach
is surprisingly fast and allow us to recalculate optimal connector routings fast
enough to reroute connectors interactively for use in authoring applications.

We plan to extend our work to incorporate a cost for edge crossings in the
penalty function. An advantage of using the orthogonal visibility graph and the
shared path ordering step is that it allows easy identification of edge crossings.
Thus computing how many times a new connector route crosses the previously
routed connectors can be done simply and with little additional overhead.
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Abstract. A rectilinear drawing is an orthogonal grid drawing without
bends, possibly with edge crossings, without any overlapping between
edges, between vertices, or between edges and vertices. Rectilinear draw-
ings without edge crossings (planar rectilinear drawings) have been ex-
tensively investigated in graph drawing. Testing rectilinear planarity of
a graph is NP-complete [10]. Restricted cases of the planar rectilinear
drawing problem, sometimes called the “no-bend orthogonal drawing
problem”, have been well studied (see, for example, [13,14,15]).

In this paper, we study the problem of general non-planar rectilinear
drawing; this problem has not received as much attention as the planar
case. We consider a number of restricted classes of graphs and obtain a
polynomial time algorithm, NP-hardness results, an FPT algorithm, and
some bounds.

We define a structure called a “4-cycle block”. We give a linear time
algorithm to test whether a graph that consists of a single 4-cycle block
has a rectilinear drawing, and draw it if such a drawing exists. We show
that the problem is NP-hard for the graphs that consist of 4-cycle blocks
connected by single edges, as well as the case where each vertex has de-
gree 2 or 4. We present a linear time fixed-parameter tractable algorithm
to test whether a degree-4 graph has a rectilinear drawing, where the
parameter is the number of degree-3 and degree-4 vertices of the graph.
We also present a lower bound on the area of rectilinear drawings, and
a upper bound on the number of edges.

1 Introduction

A rectilinear drawing is an orthogonal grid drawing without bends, possibly with
edge crossings, without any overlapping between edges and vertices. A graph is
called a rectilinear graph if it admits a rectilinear drawing.

Rectilinear drawings without edge crossings (planar rectilinear drawings) have
been extensively investigated in graph drawing. An undirected graph is rectilin-
ear planar if it can be drawn in the plane such that every edge is a horizontal
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or vertical segment and no two edges cross. Garg and Tamassia [10] proved that
testing rectilinear planarity of a graph is NP-complete. Restricted cases of the
planar rectilinear drawing problem, sometimes called the “no-bend orthogonal
drawing problem”, have been well studied. Significant examples include linear-
time algorithms to construct planar rectilinear drawings of plane graphs G of
maximum degree three [13], subdivisions of planar triconnected cubic graphs [14],
and series-parallel graphs of the maximum degree three [15].

Vijayan and Wigderson [16] considered the problem of rectilinear planar em-
bedding with edge direction constraints. They gave a linear time testing algo-
rithm and an O(n2) time embedding algorithm to construct such a drawing.
Hoffman and Kriegel [11] improved the running time by presenting a linear time
embedding algorithm. Bodlaender and Tel studied the connection between rec-
tilinearity and angular resolution of planar graphs [5]. Recently, Eppstein [8]
studied bendless orthogonal drawing problem in three dimensions, and showed
that it is NP-complete to determine whether an arbitrary graph has such an
embedding.

Many methods have been developed for constructing orthogonal drawings,
aiming to minimize crossings as well as bends; see, for example, the original
work of Batini et al. [2], or the “three phase method” of Biedl et al. [3]. However,
non-planar rectilinear drawing has not been so well studied. Formann et al. [9]
proved that given a graph G of maximum degree 4, it is NP-hard to decide
whether G has a straight-line drawing with angular resolution π

2 . In this paper,
we investigate the problem of general non-planar rectilinear drawing.

Our work was also motivated by the recent development of RAC (Right Angle
Crossing) drawing [6]. A RAC-drawing is a straight-line drawing of a graph,
where all the crossings are at right angles. Research on RAC drawing arises
from the controversial human experiments on the effects of crossing angles on
performance of path tracing tasks. In 2006, Huang et al. [12] found that task
response times decrease as the crossing angle increases, implying that drawings
with large crossing angles are better for visualization. A rectilinear drawing can
be regarded as an orthogonal-RAC drawing, that is, an orthogonal drawing with
right angle crossings.

In this paper we present NP-completeness results and a linear time algorithm.
The line between NP-completeness and a linear time algorithm is drawn with
the concept of a “4-cycle block”, defined in Section 2. We prove that one can test
whether a graph that consists of a single 4-cycle block has a rectilinear drawing
in linear time, and we can construct such a drawing in linear time. In contrast,
we show that it is NP-complete to test whether a graph has a rectilinear drawing,
even when it consists of a set of 4-cycle blocks connected by single edges. The
NP-hardness remains even when the input graph consists of only degree-2 and
degree-4 vertices.

Further, we present a linear time fixed-parameter tractable algorithm to test
whether a degree-4 graph has a rectilinear drawing, where the parameter is the
number of degree-3 and degree-4 vertices of the graph.
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Note that the use of term “rectilinear drawing” is somewhat inconsistent in
the literature. In 1941, Birkhoff [4] used the term in discussing density functions
that can be approximated by sets of straight lines. In the Graph Theory literature
the term has sometimes been used to mean the same as “straight-line drawing”
(that is, without the requirement for orthogonality). In this paper we use the
common meaning from the graph drawing literature, that is, as an orthogonal
straight-line drawing.

This paper is organized as follows. In Section 2, we describe some basic prop-
erties of rectilinear drawings, including bounds on the area and density. Section 3
presents a linear time algorithm to test whether a graph with a “connected 4-
cycle cover” has a rectilinear drawing. Section 4 presents hardness results on
rectilinear drawings. In Section 5, we describe a fixed-parameter tractable algo-
rithm to test whether a graph has a rectilinear drawing, where the parameter is
the number of degree-3 and degree-4 vertices of the graph. Section 6 concludes
with some open problems.

2 Some Basic Properties

In this Section we first describe some basic concepts and properties of rectilinear
drawings, and then prove some simple bounds on their area and density.

2.1 Four-Cycle Covers and Blocks

Firstly we mention some simple consequences of the assumption that the drawing
has no edge overlaps.

Lemma 1. Suppose that G is a rectilinear graph. Then every vertex of G has
degree at most 4 in G, no two 4-cycles of G share more than one edge, and no
three 4-cycles share an edge.

Motivated by Lemma 1, we say that a 4-cycle cover C4 of a graph G = (V, E)
is a set of 4-cycles that covers every edge, that is, every edge of G is in C4. If G
has a 4-cycle cover, then the 4-cycle incidence graph is a graph G4 with a vertex
for each 4-cycle c ∈ C4 and an edge (c, c′) when the two 4-cycles c and c′ share
an edge. We say that C4 is a connected-4-cycle cover if G4 is connected.

Suppose that G is a graph of maximum degree 4 and that G′ is a subgraph
with a connected 4-cycle cover. If G′ is maximal (that is, if edges or vertices are
added then it no longer has a connected 4-cycle cover) then we say that G′ is a
4-cycle block. The concept of a 4-cycle block is critical in determining the line
between polynomial time and NP-completeness.

A rectilinear drawing of a graph G = (V, E) induces a partition E = Ehor ∪
Evert of the edges into horizontal and vertical edges. Let Ghor = (V, Ehor) and
Gvert = (V, Evert). This partition has several useful properties.

Lemma 2. Suppose that G is a rectilinear graph.

(a) Both Ghor and Gvert are sets of disjoint paths.
(b) A path in Ghor meets a path in Gvert in at most one vertex.
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(c) Every vertex of G is in exactly one path of Ghor and exactly one path of
Gvert. (Note that we regard a single vertex as a trivial path).

Proof. Items (a) and (b) follow from the assumption that edges cannot overlap,
and (c) is immediate.

From Lemma 2 we can deduce some properties of cycles.

Lemma 3. Suppose that G is a rectilinear graph. Then every cycle c in G con-
tains at least two vertical edges and at least two horizontal edges. If c is a 4-cycle
then the edges of c are alternately horizontal and vertical around c.

Proof. Direct the cycle c clockwise. It is clear that every leftward horizontal edge
has at least one corresponding rightward horizontal edge, and so c has at least
two horizontal edges. Similarly, c has at least two vertical edges. If c has 4 edges
then they must alternate.

2.2 Density

From Lemma 1 we can deduce that if G = (V, E) is a rectilinear graph with
n = |V | and m = |E|, then m ≤ 2n. We can show a tighter bound as follows.

Lemma 4. If G = (V, E) is a rectilinear graph with n = |V | and m = |E|, then
m ≤ 2n− 2

√
n. Further, for every n there is a rectilinear graph with n vertices

and 2n− 2�
√

n	 edges.

Proof. Suppose that Xi is the set of vertices with x coordinate i; note that the
induced subgraph on Xi is a set of paths and thus has at most Xi − 1 edges.
Summing over all the sets Xi shows that the number of horizontal edges is at
most n−k, where k is the number of such sets Xi, that is, the number of different
x-coordinates of vertices. Similarly, if � is the number of different y-coordinates
of vertices, then the number of vertical edges is at most n− �. Thus

m ≤ 2n− k − �. (1)

Let x∗ denote maxi |Xi|. Now
∑

i |Xi| = n, and so k ≥ n/x∗. Also, � ≥ x∗, since
no two vertices are at the same location; it follows that k ≥ n/�. We can deduce
from (1) that m ≤ 2n− (� + n/�). Minimizing the term � + n/� over 1 ≤ � ≤ n
gives the upper bound in the Lemma.

We can obtain the lower bound from grid graph of dimensions �
√

n	 × �
√

n	;
this has at least n vertices and 2n− 2�

√
n	 edges.

2.3 Area

Area bounds for planar rectilinear drawings are have a long history (see, for
example, [7]). It is straightforward to show that any rectilinear graph with n
vertices has a rectilinear drawing on an n×n grid, and for planar graphs there is
a corresponding lower bound. It could be tempting to suggest that allowing edge
crossings allows smaller area rectilinear drawings. However, there is a graph on
n vertices for which the minimum area grid drawing (planar or not) has area
Ω(n2); this is illustrated in Figure 1.
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Fig. 1. The area of the rectilinear drawing is Ω(n2)

3 Graphs with a Connected-4-Cycle Cover

In this section we prove that rectilinearity can be tested in linear time is the
graph has a connected-4-cycle cover, that is, it consists of a single 4-cycle block.

Theorem 1. There is a linear time algorithm that tests whether a graph with
a connected-4-cycle cover has a rectilinear drawing, and gives the drawing if it
exists.

The first step is check the necessary conditions of Lemma 1; if any of these
conditions fails to hold, then we reject the input graph G. These conditions can
be checked using a simple search in the set of vertices at distance at most 2 from
each vertex; since the degree is bounded this takes linear time.

Next we partition the edge set E into Ehor and Evert. This can be done with a
depth-first traversal of the 4-cycle incidence graph G4. At each step, we label the
edges of a 4-cycle c as horizontal or vertical so that the labels alternate around
c; we reject G if any inconsistency in labels is found. Since G4 is connected, this
labels every edge; also, the traversal takes linear time. Further note that the
labeling is unique after the choice of labels on the first 4-cycle.

Next we check that the partition satisfies the conditions of Lemma 2. This is
straightforward. Subsequently we assume that Ghor consists of paths {p0, p1, . . . ,
pk−1} and Gvert consists of paths {q0, q1, . . . , q�−1}.

The next step is to assign a direction for each of the nontrivial paths in Ghor.
Looking ahead, this direction induces a partial order on V ; another partial order
can be obtained from the direction of nontrivial paths in Gvert. By topologically
sorting on each partial order, we can obtain x− and y-coordinates for each
vertex. However, we must be careful how the directions are assigned. Consider
Figure 2. If the paths are directed as in Figure 2(a), then it is easy to see that the
x-coordinates can be assigned by a topological sort. However, if a path happens
to be in the wrong direction, as in Figure 2(b), then it is difficult to see how to
assign x-coordinates. So we must choose a direction for each path.

We begin by assigning an arbitrary direction to each pi; this gives an initial
partial order on V . Let p̄i denote the reverse of the path pi. If there are 4 vertices
a, b, c, d where a, b ∈ pi, c, d ∈ pj such that a, c ∈ qs and b, d ∈ qt for some s, t,
then pi and pj have a compatibility relationship, defined as follows. If a < b and
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p1
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p2

p3
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q4
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q1
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p4

q2 q3

q4

Fig. 2. The directed paths

p1

qs

p2

p5

p6

p3

p4

p7

p8

qs qt
qt

p1 and p2 are compatible

p5 is incompatible with both p6
and p6.

p3 and p4 are incompatible,
but p3 is compatible with p4.

p7 is neither compatible nor
incompatible with p8.

Fig. 3. Path direction examples

c > d then we say that pi is incompatible with pj; if a < b and c < d then we
say that pi is compatible with pj . In Figure 3, p1 is compatible with p2, and
p3 is incompatible with p4; note, however, that p3 is compatible with p̄4. The
relationship of compatibility does not apply to the pair p7, p8, because these two
paths share less than two paths in Q. Note that p5 and p6 are incompatible,
further, p5 and p̄6 are incompatible.

If there are two incompatible paths pi and pj, for which pi and p̄j are in-
compatible, then we reject G. Subsequently we assume that there are no such
pairs of paths. In other words, we are assuming that for each pair pi, pj, if the
compatibility relationship is defined then pi is compatible with either pj or p̄j .

Then we associate a boolean formula f with G as follows. For each path pi we
have a boolean variable xi. If pi is compatible with pj then we insert the clause
(xi = xj) into f ; if pi is compatible with p̄j then we insert the clause (xi �= xj)
into f . Now (xi = xj) = (xi∨ x̄j)∧(x̄i∨xj), and (xi �= xj) = (xi∨xj)∧(x̄i∨ x̄j),
and thus f is a 2SAT formula. Satisfiability for this formula can be tested in
linear time. If f is not satisfiable, then we reject G; otherwise, a satisfying set
of values for the xi gives a direction for each path in Ghor so that every pair of
paths is compatible.



238 P. Eades, S.-H. Hong, and S.-H. Poon

Similarly, we can obtain a direction for each of the paths q1, q2, . . . , q� of Gvert

such that each pair qi, qj is compatible (if there is no such direction, then we
reject G).

Lemma 5. Suppose that G satisfies the conditions of Lemmas 1, 2, and 3. Fur-
ther suppose that each pair of pi, pj of paths in Ghor is compatible, and each pair
qi, qj of paths in Gvert is compatible. Then G has a rectilinear representation.

Proof. We define a partial order on the paths of Gvert as follows. Suppose that pi

is a path in Ghor. Recall that every vertex in pi is in exactly one path of Gvert.
Suppose that e = (u, v) is a (directed) edge of pi, where u ∈ qj and v ∈ qj′ for
two paths qj and qj′ of Gvert; then we define qj < qj′ . Since pairs of paths in
Ghor are compatible, this relation is a partial order. Thus using a topological sort
we can assign an x-coordinate to each path qj in Gvert, and thus to each vertex
in G (recall that every vertex of G is in exactly one path of Gvert). Similarly,
one can assign a y-coordinate to each vertex in G. The resulting drawing is
rectilinear.

This completes the proof of Theorem 1.

4 Hardness Results

4.1 Graphs of 4-Cycle Blocks Connected by Edges

The previous section gives a linear time algorithm for testing rectilinearity when
the graph consists of a single 4-cycle block. In this section, we show that a slight
relaxation of this condition leads to NP-completeness.

Theorem 2. The decision problem whether a graph consisting of a set of 4-cycle
blocks connected by single edges has a rectilinear drawing is NP-complete.

Proof. First we show that the problem is in NP. Note that a rectilinear graph
has a rectilinear drawing on an n×n grid. Thus we can guess a location for each
vertex on an n×n grid, and then check to see whether it is a rectilinear drawing.

We reduce from the 3SAT problem. The input instance for the problem is a
set {x1, x2, . . . , xn} of n variables, and a collection {c1, c2, . . . , cm} of m clauses,
where each clause consists of exactly three literals. The 3SAT problem is to deter-
mine whether there exists a truth assignment to the variables so that each clause
has at least one true literal. In the following, we will describe our polynomial-
time reduction.

First we construct a skeleton which contains ports connecting to the variable
towers and the clause gadgets. The main component of the skeleton consists
of a series of 4-cycles connecting together to form an L-shaped backbone. See
Figure 4 for the illustration of its construction.

The upward spikes are ports connecting to the variable towers, and the 4-
cycles hanging on the right hand side of the skeleton are ports connecting to
the clause gadgets. The variable tower for variable xi is constructed as shown in
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x1 x2 x3 xn

cm

. . . . . .

...

c2

c1

Fig. 4. Skeleton containing ports for connecting to variable towers and clause gadgets
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xi,2
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xi,1
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xi,2

xi,1

xi,m

xi = True

xi

xi = False

...

xi,2

xi,1

xi,m

xi,2

xi,1

xi,m

(a) (b)

Fig. 5. Variable tower for xi and the representation of its truth values

Figure 5(a), where we create a row of four consecutive 4-cycles Rj for each clause
cj and we set the two rightmost (resp. leftmost) vertices as connection ports for
literal xi,j (resp. xi,j), where xi,j takes the same truth value as xi. Moreover,
we connect these m rows of consecutive 4-cycles by two adjacent columns of
consecutive 4-cycles. See Figure 5(a).

This completes the construction of the variable tower for variable xi.
We then connect this variable tower to the corresponding upward spike. The

tower in Figure 5(a) represents the assignment of a true value to variable xi, and
its mirror image in Figure 5(b) represents the assignment of a false value to the
variable xi.

We then proceed to see how we construct the clause gadgets. Suppose that
we want to construct the gadget for clause cj = xi ∨ xk ∨ xl. First, let sj

1, s
j
2 be

the two vertices on the 4-cycle σj at the connection port for cj and adjacent to
the connection edge between cycle σj and the skeleton. See Figure 6(a).

Note that the order of sj
1 and sj

2 are not essential since they are interchange-
able. Now we connect vertex sj

1 to the upper ports of the two literals xi,j and
xk,j , respectively, by a two-bend path. Moreover, at each of the two bending
vertices of this connection path, we attach a 4-cycle. Then we perform the
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Fig. 6. Clause gadget for clause cj = xi ∨ xk ∨ xl

similar construction by connecting vertex sj
2 to the lower ports of the two literals

xi,j and xl,j . This completes the construction of the gadget for clause cj . We
construct all clauses in the same fashion, and we finish the construction step.
Clearly, our construction takes O(mn) time. We let G be the graph we con-
structed. Below we proceed to show that the given 3SAT formula is satisfiable
if and only if graph G has a rectilinear drawing.

We first consider the forward direction. Suppose the given 3SAT formula is
satisfiable with some truth assignment. According to this truth assignment, we
determine the embedding positions for the n variable towers according to the
scenario in Figure 5. Then we will proceed to embed the clause gadgets one by
one. Suppose that we are embedding the gadget for clause cj = xi ∨ xk ∨ xl.
As an example, assume that xk is the true literal causing clause cj to become
true. As xk is connected to sj

1 in our construction, we will rotate the 4-cycle σj

at the connection port of clause cj so that sj
1 is the rightmost vertex on cycle

σj . See Figure 6(a). And we can connect the rightward port of literal xk,j to
the rightward port of sj

1 using the two-bend path between xk and sj
1. Other

connection paths for this gadget can also be embedded accordingly. Figure 6(b)
shows another example of embedding the gadget for clause cj at the time that
xl is the true literal for cj. Thus graph G has a rectilinear drawing.
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We then consider the backward direction. Suppose G has a rectilinear drawing.
Consider the embedded scenario of the gadget for clause cj = xi ∨ xk ∨ xl.
Without loss of generality, suppose that sj

1 is a rightmost vertex of 4-cycle σj .
See Figure 6(a). As each connection path consists of two bends, the rightward
port of sj

1 must connect to some rightward port of some variable tower. As such,
if we set the truth values for the variables according to the embedding positions
of their towers, all clauses will result in true values. Thus the given 3SAT formula
is satisfiable. This finishes our NP-completeness proof.

4.2 Graphs with Degree-2 and Degree-4 Vertices

With our result on graphs with connected-4-cycle cover above, at the first glance,
it is tempting to claim that the rectilinear drawability of a graph with only
degree-2 and degree-4 vertices may be polynomial-time solvable. However, by
slight modification (see below) of the NP-hardness proof in [9], we obtain its
NP-completeness proof for this problem. The vertices with degree one or three
can be eliminated by connecting pairs of them by short paths. Finally, only
degree-2 and degree-4 vertices remain. We conclude in the following theorem.

Theorem 3. Let G be a graph with only degree-2 and degree-4 vertices. The
decision problem whether G has a rectilinear drawing is NP-complete.

5 Fixed-Parameter Algorithm

In this section, we show that the rectilinear drawing problem is fixed-parameter
tractable, where the parameter is the number of degree-3 and degree-4 vertices
in the graph.

Theorem 4. Let Gk be a degree-4 graph with k vertices of degree 3 or 4 for
some constant k. The decision problem whether Gk has a rectilinear drawing can
be answered in linear time, or more precisely, in O(24k · k2k · n) time.

Proof. Let K be the set of these k degree-3 or degree-4 vertices. The vertices in
K can be distributed among k vertical columns. Considering these columns as
boxes, we can have at most kk different ways to put these vertices into the boxes.
On the other hand, the vertices in K also can be distributed among k horizontal
rows, and there are also at most kk different ways to put these vertices into the
corresponding rows. Hence, there are essentially at most k2k ways to embed the
vertices in K on the plane.

Now suppose that Kε is one such embedding of K in the plane. Each vertex v
has degree at most 4 and there are only 4 directions in which edges incident to
v can have; thus there are at most 4! = 24 possible choices of directions for the
edges incident to v. Therefore there are at most 24k ways to select the directions
of all edges incident to the vertices of Kε.

We can check the embeddability of the whole graph for each selection of edge
directions at each vertex of K. Suppose that we have selected the direction for all
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edges incident to the vertices in Kε. We proceed to embed all paths connecting
between vertices in Kε. For instance, suppose that we are going to embed the
path ηu,v between vertices u and v in Kε, and we let eu, ev be the edges of
path ηu,v incident to u, v, respectively. We have known the directions for eu and
ev, and we are going to decide the directions of other edges on path ηu,v. Note
that routing of such paths can be done independently from each other, because
planarity is not required. The feasibility of routing path ηu,v from vertex u
through eu to vertex v through ev depends on the length of ηu,v, and can be
decided in time proportional to the length of ηu,v. Thus testing the feasibility of
routing all paths in the graph Gk takes O(n) time. In all, the decision problem
whether Gk has a rectilinear drawing can be answered in O(24k ·k2k ·n) time.

6 Conclusion

We consider the problem of general non-planar rectilinear drawing for restricted
class of graphs and obtain a polynomial time algorithm and NP-hardness results.
The boundary between NP-completeness and polynomial time is determined by
the structure of 4-cycle blocks in the graph. We also present tight bound on the
drawing area and an FPT algorithm for the parameter of the number of vertices
of degree ≥ 3. It is feasible that there is an FPT algorithm where the exponential
complexity depends on the number of 4-cycle blocks in the graph; this is left as
an open problem.

There are two directions that need to be explored before commercial visual-
ization software can make use of this work. Firstly, the algorithm in Section 3
is restricted graphs with connected 4-cycle covers. This is a relatively restrictive
condition, and it would be wise to investigate whether there are polynomial-time
algorithms for some wider classes. Secondly, many graphs do not have a recti-
linear drawing; it would be interesting to investigate methods that find large
subgraphs with rectilinear drawings (see, for example, [3]).

Finally, we note that Eppstein [8] studied bendless orthogonal drawing prob-
lem in three dimensions, and showed that it is NP-complete to determine whether
an arbitrary graph has such an embedding. It would be interesting to extend the
concept of 4-cycle block to three dimensions and determine the boundary be-
tween polynomial time algorithms and NP-completeness in three dimensions.
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Abstract. In this paper we propose three layout algorithms for semi-
bipartite graphs—bipartite graphs with edges in one partition—that
emerge from microarray experiment analysis. We also introduce a method
that effectively reduces visual complexity by removing less informative
nodes. The drawing quality and running time are evaluated with five
real-world datasets, and the results show significant reduction in crossing
number and total edge length. All the proposed methods are available in
visualization package GEOMI [1], and are well received by domain users.

1 Introduction

Expression microarrays [2] have been widely used to measure gene expression
level—the activity level of genes—in biological experiments. A typical microar-
ray experiment involves comparing the gene expression levels of diseased (e.g.
cancerous) and healthy tissue. The genes that show opposite expression levels—
active in cancer tissue but not in normal, or vice versa—are known as differ-
entially expressed genes. They are commonly used as candidates to study the
genetic cause of the disease. The Gene Ontology [3] is a directed acyclic graph
containing known gene functions (terms). A parent term describes an abstract
function shared by its child terms, which represent more specific functions. All
the edges point from the parent to its children. A gene is annotated by a term
if it has that function, or in other words, the term is an annotation of the gene.

It is a rare case that the functions in the Gene Ontology provide a direct
answer to the genetic cause of a disease. More complex analyses are generally
required, such as how genes regulate each other, and the global function of a gene
group. Many existing tools, such as the family of over-representation methods
[4], only list terms that are statistically important. More recent tools, such as
BiNGO [5], start to show the hierarchical structures among terms. However,
genes are not shown and their performance or visual quality are not properly
evaluated. In this paper, we propose novel methods that address these problems.
Our main contributions are:

– Introduction of a new graph type: semi-bipartite graph;
– Proposing three layout algorithms for the semi-bipartite graphs;
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– A visual complexity reduction technique for semi-bipartite graphs;
– Implementation and evaluation of the proposed methods.

2 Related Work

2.1 Gene Ontology Visualization

To date most work on Gene Ontology analysis has focused on statistical models
designed to identify terms that occur at a higher proportion than random expec-
tation [4]; there are several methods that aim to complement such analysis with
visualization. In the work by Baehrecke et al. [6], a TreeMap [7] is used to dis-
play the part of the Gene Ontology hierarchy identified by the over-represented
terms. The terms with multiple parents have to be duplicated under each parent
to convert the Gene Ontology hierarchy into a tree. The GObar [8] uses the
Graphviz package [9] to produce a layered drawing of the Gene Ontology hier-
archy, but only with graphs less than 20 nodes. In SpindleViz [10] a variation of
the Sugiyama method [11] is proposed to display the Gene Ontology hierarchy
in three dimensions. Other hierarchy visualization methods can also be applied
to the Gene Ontology, such as those surveyed by Katifori et al. [12].

All the work on Gene Ontology visualization illustrates its importance. How-
ever, the genes and how they are annotated are missing from these methods. It
has been shown that such information is important to gene functional analysis
[13]. This issue is attempted by Robinson et al. [14] by showing the number of
annotations each term has. More details are provided in GO PaD [15], which
visualizes both genes and Gene Ontology terms in a network with genes linked
to their annotations. However, only a small number of selected terms, which
are not experiment specific, are shown in the visualization. The BiNGO plug-in
[5] for CytoScape [16] uses the gray-scale of a term color to overlay the over-
representation information onto the Gene Ontology hierarchy. The genes and
how they are annotated are only shown implicitly.

2.2 Layered Drawings and Sugiyama Method

Layered layout algorithms are natural choices for visualizing the Gene Ontology
because of its hierarchical structure. Many existing algorithms are based on
the 4-step framework first proposed by Sugiyama et al. [11]. Various algorithms
have been proposed for each step; the details can be found in the book by Di
Battista et al. [17] and Kaufmann and Wagner [18]. An important part of the
Sugiyama method is the bipartite graph cross minimization problem, which is
also particularly relevant to the layout algorithms we propose in this paper.
Given a bipartite graph G = (V, W, E) with two parallel straight-lines L1 and
L2, a two-layered drawing consists of placing vertices in the vertex set V on L1
and W on L2 respectively. Each edge is a line segment joining one vertex in V
and one in W . The embedding is fully determined by the vertex orderings of
V and W . The one-sided crossing minimization problem has a fixed ordering of
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vertices in W on L2, and the problem is shown to be NP-complete [19,20]. A
number of heuristics, approximation, and exact algorithms have been proposed
[11,19,21]. Eades and Wormald [19] proposed a Median method, which produces
a 3-approximate solution. The Barycenter method by Sugiyama et al. [11] is an
O(
√

n)-approximation algorithm [19]. Currently, the best known approximation
algorithm is given by Nagamochi [21] that delivers a drawing with a 1.4664 factor
approximation.

3 Semi-bipartite Graph and Gene-Term Network

The data used in the Gene Ontology analysis can be treated as a bipartite graph,
with the genes being one partition and the ontology being the other. However,
the Gene Ontology partition is a directed acyclic graph itself. To accommodate
this, we define a semi-bipartite graph as a graph G = (V, W, E, F ), where V
and W are two sets of nodes, E is the set of edges between V and W , i.e.,
E = {(vi, wj) | vi ∈ V, wj ∈ W}, and F is the set of edges between the nodes in
W , i.e., F = {(wi, wj) | wi, wj ∈ W}.

With this definition, we introduce the Gene-Term Network [13]. It contains
two types of nodes: genes and Gene Ontology terms. The genes are those in the
most differentially expressed list, and the terms are those in the induced Gene
Ontology hierarchy (induced hierarchy for short) that includes terms that are
annotated to the genes of interest and all their ancestors in the Gene Ontology
together with induced edges. There are two types of edges: annotation edges that
connect genes to their annotation terms and term edges that link the terms in
the induced Gene Ontology hierarchy. The gene-term network is a semi-bipartite
graph with one partition being a directed acyclic graph. Formally, given a set of
genes V = {v1, v2, . . . , vn} and the Gene Ontology hierarchy GO = {GOT , GOE}
(where GOT and GOE are the set of Gene Ontology terms and edges respec-
tively), a gene-term network is a semi-bipartite graph: G = (V, W, E, F ) where

– W = {w | w ∈ GOT , ∃v ∈ V, w ∈ t(v) or w ∈ a(v)}, where t(v) is the set of
annotations of a gene v and a(v) is the set of ancestor terms of t(v).

– E = {(v, w) | v ∈ V, w ∈ t(v)} is a set of annotation edges linking genes and
their annotations;

– F = GOE ∩ (W ×W ) is a set of term edges induced from GO.
– The induced hierarchy P = (W, F ) is a directed acyclic graph.

4 Layout Algorithms for Semi-bipartite Graphs

4.1 Extended Bipartite Algorithms

This algorithm extends the barycenter method [11] and starts by drawing the
induced hierarchy P using the Sugiyama method, treating it as the partition
with fixed order. The gene nodes V are placed on a parallel layer and ordered
according to the horizontal position of their annotation terms to minimize inter-
partition edge crossings (we assume the drawing is top-down with horizontal
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layers and the same applies to other algorithms in this paper). The gene nodes
are placed on the bottom layer because many of them annotate to the leaf terms
of P ; placing gene nodes above the hierarchy will introduce extra edge crossings.
Please refer to [22] for algorithm details.

The running time of the algorithm is the sum of that of the Sugiyama method
and barycenter computation. The former depends on the algorithms used for the
various stages. In our implementation, we use the layering method by Gansner
et al. [23] that minimizes the number of dummy nodes and requires polynomial
time in the worst case. The crossing reduction algorithm is based on the me-
dian method [19] that runs in linear time (O(|W |+ |F |)). Finally, the horizontal
coordinate assignment uses a heuristic algorithm based on network simplex for-
mulation [24] that requires polynomial time in the worst case. The barycenter
can be computed in time linear to the size of gene node set and the number of
annotation edges [19], i.e., O(|V | + |E|). Therefore, the overall running time is
O(T (|W |, |F |)) + O(|V |+ |E|), where O(T (|W |, |F |)) is the running time of the
Sugiyama method for the induced hierarchy P .

4.2 Sub-hierarchy Barycenter Algorithm

This algorithm aims to reduce crossings caused by annotation edges and achieves
this by adjusting the child term order in the induced hierarchy according to the
gene node order. It is based on the following observations:

– Assume a term w has two child terms w1 and w2 with w1 to the left of
w2 in the drawing. If most genes annotated to w1 are to the right of w2,
changing the order of w1 and w2 is likely to reduce edge crossing. However,
such a change will also affect all the descendants of w1 and w2. Therefore,
the decision to change the order should be based on how genes are annotated
to the sub-hierarchy rooted at w1 and w2.

– Following the previous example, assume w1 and w2 both have two child
terms. The order change between w1 and w2 will affect the order among
their child terms, but the reverse is not true. Therefore, the change of child
order should be breadth-first.

Before describing the algorithm, we need to introduce sub-hierarchy barycenter,
which is based on the position of all the gene nodes annotated to the terms in
the sub-hierarchy rooted at a term (including the term itself). Formally, for a
term w, its sub-hierarchy barycenter b(w) is:

b(w) = average(x(vi)), vi ∈ V, ∃wj ∈ sub(w), (vi, wj) ∈ F

where average() computes the average value, x(vi) is the x-coordinate of vi, and
sub(w) is the sub-hierarchy in the induced hierarchy rooted at w.

The sub-hierarchy barycenter algorithm starts with drawing the gene-term
network with the extended bipartite algorithm. Then, it traverses the induced
hierarchy bottom up to compute the sub-hierarchy barycenter for each term.
After that, it traverses the induced hierarchy again breadth first to re-order the
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child terms accordingly. Finally, the gene nodes are re-ordered according to the
new child term order. The whole process is repeated a fixed number of times.
Because there is a total ordering of sub-hierarchy barycenter, there will be no
ordering conflict when a term has multiple parents. Similarly, common child
terms only need to be sorted once when they are shared by multiple parents.
The details of the algorithm can be found in [22].

Besides the extended bipartite algorithm and Sugiyama method, the running
time consists of three parts: that of the sub-hierarchy barycenter computation,
the child term re-ordering, and the gene nodes ordering. During barycenter com-
putation, each term w is visited 1+ |parent(w)| times (|parent(w)| is the number
of parents of w): once for computing its own barycenter; |parent(w)| times for
all its parents. Because each term edge is visited exactly once when computing
the barycenter of the parent term, the total number of term visits is:∑

w∈W

(|parent(w)| + 1) =
∑

w∈W

|parent(w)| +
∑

w∈W

= |F |+ |W |

During barycenter computation, each gene v is visited |t(v)| times: once for each
term it annotates to. Therefore the total number of gene visits is

∑
v∈V t(v) =

|E|, and the running time for sub-hierarchy barycenter computation is O(|E| +
|F | + |W |). For child term re-ordering, each term is only ordered once, so the
running time is expected to be O(|W | log |W |). Similarly, the running time of
gene nodes re-ordering is O(|V | log |V |). Therefore, the overall running time
of the sub-hierarchy barycenter algorithm is O(T (|W |, |F |)) + O(|E| + |F |) +
O(|W | log |W |) + O(|V | log |V |).

4.3 Partition Merge Algorithm

In the previous algorithm, the crossing reduction is achieved by changing the
induced hierarchy embedding and gene node ordering separately. The partition
merge algorithm makes global crossing reduction possible by merging two par-
titions. There are two variations of the algorithm. The first one places all gene
nodes on the layer beneath the induced hierarchy, which is achieved by assigning
the direction of all annotation edges pointing to gene nodes. No change is re-
quired for the layered layout algorithm if the layering step starts with the sinks
(gene nodes), such as the Longest Path Layering [17], otherwise a constraint is
required that all gene nodes must be placed on the bottom layer.

Relaxing the bottom layer constraint can potentially reduce the total edge
length, which is another factor important to graph readability [25]. To avoid
comparing all possible edge direction assignment permutations, we propose a
level barycenter heuristic that assigns a gene to a layer that is the average of
the layer of its annotation terms. When term layer equals level barycenter value,
the edge direction is from term to gene so that gene with one annotation is
placed under the term. The algorithm details can be found in [22]. Moving gene
nodes up the hierarchy may introduce extra edge crossings, but it is counter
balanced by shorter annotation edges that are less likely to intersect with other
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edges. Overall, the level barycenter algorithm performs very well in terms of
edge crossings. Please refer to the evaluation results in Section 6 for the details.

The running time of the first variation of the Partition Merge algorithm is
similar to that of the Extended Bipartite algorithm with the addition of the
edge direction assignment step, which requires O(|E|) time. Therefore, its total
running time is O(|E|) + O(T (|V + W |, |E + F |)). For the second variation, the
level barycenter computation requires O(|V |+ |E|) time and then the direction
assignment takes O(|E|) time, which leads to a total running time of O(|V | +
|E|) + O(T (|V + W |, |E + F |)).

5 Term Reduction

During this study we found that as the data size increases, the size of the induced
hierarchy increases at a much higher rate than that of the gene nodes. The reason
is that each new gene usually annotates to several new terms, and each new term
in turn introduces several new ancestors. In an effort to reduce the size of the
induced hierarchy, we observe that many terms in the top part of the hierarchy
are abstract and not informative for functional analysis, so they can be removed
to reduce visual complexity. To identify such terms, we introduce the concept
of the subordinate term, which are Gene Ontology terms that have no gene
annotated to them and do not show new relationships between terms with gene
annotation. Formally, we define the indirect gene set g′(w) of a term w as the
set of genes annotated to the term in its sub-hierarchy but not the term itself,
i.e.,

g′(w) = {vi | vi ∈ V, ∃ wj ∈ sub(w), (v, wj) ∈ E, wj �= w}

Similarly, the direct gene set of a term is the set of genes annotate to it, i.e.,

g(w) = {vi | vi ∈ V, (v, w) ∈ E}

Now, we can define a term w is subordinate if

1. g(w) = ∅, and
2. ∃ wi ∈ sub(w), g′(wi) = g′(w), wi �= w

This means that a subordinate term does not have any genes annotated to it, and
its indirect gene set is the same as one of its descendants’. The latter means the
term is not the first common ancestor of two terms with direct gene annotated
to them, i.e., is not of structural importance in function analysis.

However, there are many cases in Gene Ontology where a term can be both a
parent and grandparent of the same term: term w1 is a parent of term w2 and w3,
and w2 is also a parent of w3. In this example, w1 always has the same indirect
gene set as w2 if it has no other child term. According to the previous definition,
w1 is a subordinate term if no genes are annotated to it. However, these cases
are considered biologically important under some conditions. To accommodate
such cases, we define that a term is semi-subordinate if
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1. g(w) = ∅, and
2. ∀ wi ∈ child(w), g′(wi) = g′(w).

The revised Condition 2 means that a term is semi-subordinate only if its indirect
gene set is the same as all of its childrens.

The algorithm of identifying subordinate terms traverses the induced hierar-
chy bottom up. It starts with a queue that contains only the leaf terms. Once a
term is checked, all its parents are appended to the queue, and a term is always
checked after all its child terms. The indirect gene set of a term is the union of
the direct gene set of all its children. A term is subordinate if its indirect gene set
coincides with one of its childrens, and its direct gene set is empty. The process
is repeated until the queue is empty. The algorithm details are available in [22].
The only change required for semi-subordinate terms is the check condition.

Similar to the sub-hierarchy barycenter algorithm, each term w is visited
1+ |parent(w)| times: once for computing its indirect gene set, |parent(w)| times
for all its parents. Each gene v is also visited |t(v)| times: once for each term
it annotates to. Note that the coincidence check can be done in constant time,
because the indirect gene set of a child is always a subset of that of its parent and
equal size is sufficient to show that they coincide. Therefore, the total running
time is O(|E|+|F |+|W |). The semi-subordinate algorithm has the same running
time because the change it needs does not affect running time.

6 Evaluation

6.1 Dataset

The five sets of genes used in the evaluation were generated from the results of
91 microarray experiments with each measuring about 22000 mouse genes. Full
details of the experiment and its findings can be found in [26]. Table 1 shows
the size of the gene-ontology network for every dataset.

Table 1. Dataset size

Dataset Total node
|V | + |W |

Total edge
|E| + |F |

Gene
node |V |

Term
node |W |

Annotation
edge |E|

Term
edge |F |

cgg5 49 65 4 45 7 58
cgg4 150 243 10 140 19 224
cgg3 221 394 13 208 38 356
cgg2 374 627 43 331 89 538
cgg1 447 864 25 422 81 783

6.2 Implementation

All algorithms and the term reduction method are implemented in GEOMI [1],
which is a Java-based graph visualization system. Figure 1 is the user interface:
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The layout is shown in the left panel with navigation functions including zoom
in/out, pan, and rotate. In the right panel, users can choose among different lay-
outs and two levels of term reduction. The blue nodes are genes, green nodes are
terms, and the red node is the over-represented term. The same implementation
of the Sugiyama method is used in all the algorithms, and the method used in
each step is the same as described in Section 4.1. In the sub-hierarchy barycen-
ter algorithm, the re-ordering of the child terms and gene nodes are repeated 20
times to find the embedding with minimal number of edge crossings.

Fig. 1. The GEOMI plug-in with all four algorithms and term reduction (gene: blue,
term: green, over-represented: red). User can choose the layout and term reduction
from the panel on the right.

6.3 Layout Quality

We use edge crossings as one of the visual quality measurements, because it has
been shown to be the most important layout aesthetics [25] for graph readability.
Table 2 shows the number of edge crossings of the different layout methods. The

Table 2. Edge crossings of different layout methods

Dataset Extended
Bipartite

Sub-Hierarchy
Barycenter

Partition
Merge

Level
Barycenter

cgg5 3 0 0 0
cgg4 162 135 119 126
cgg3 870 798 605 646
cgg2 2542 2028 1929 1918
cgg1 4164 3440 3883 3765
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two variations of the partition merge algorithm are shown as Partition Merge
(all the gene nodes on the bottom layer) and Level Barycenter respectively.
The extended bipartite algorithm—the baseline method—is outperformed by
the other algorithms in all cases. The sub-hierarchy barycenter, partition merge,
and level barycenter algorithm have similar performance, providing about 20%
less edge crossings than the extended bipartite algorithm. The sub-hierarchy
barycenter performs better for the larger datasets (cgg2 and cgg1 ) than the
smaller ones (cgg4 and cgg3 ), while the opposite is true for the partition merge
and level barycenter algorithm. The latter performed well with regards to edge
crossings given its main goal is to reduce total edge length.

The total edge lengths are shown in Figure 2. Term edges are not included
in the tests, because level barycenter algorithm has little impact on them. It is
clear that the level barycenter provides a considerable reduction in total edge
length and is more effective as the graph size increases.

Fig. 2. The total annotation edge length

6.4 Term Reduction

The results of the term reduction are shown in Figure 3. Gene nodes are not
included because they are not affected and the induced hierarchy accounts for
the majority of the gene-term network. Term reduction is effective in reducing
network size: the number of term nodes is reduced to at least half of what they
were. Besides reduced graph size, other benefits of term reduction include less
edge crossings and faster running time for the layout algorithms.
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Fig. 3. The number of term nodes after term reduction

6.5 Running Time

Table 3 shows the running time of the four algorithms. All the tests were per-
formed on a laptop equipped with an Intel Core 2 Duo 2.5 GHz CPU with 2
GB memory. The time is the average of 20 repetitions. In most cases all algo-
rithms completed within one second, which means they scale well to graph with
447 nodes and 864 edges (cgg1 ). The relative speed among the algorithms is
consistent with the running time analysis in Section 4.

Table 3. Running time of the algorithms in seconds

Dataset Extended
Bipartite

Sub-Hierarchy
Barycenter

Partition
Merge

Level
Barycenter

cgg5 0.128 0.406 0.11 0.25
cgg4 0.126 0.625 0.109 0.328
cgg3 0.338 0.719 0.297 0.453
cgg2 0.378 0.969 0.375 0.609
cgg1 0.607 1.375 0.594 1.016

6.6 User Feedback

A pilot user study has been conducted to gain feedback from domain experts. We
asked two domain experts: one bioinformatician with statistics background and
one molecular biologist, who are the most likely users. The users were asked to
compare the proposed methods (using GEOMI) against the way they currently
perform function analysis. They found the extra information gene-term network
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provides very useful. The layout produced by the sub-hierarchy barycenter and
partition merge algorithm have similar visual quality; both are better than that
of the extended bipartite algorithm. Term reduction is effective and necessary,
especially when the dataset is large. One possible improvement is to keep the
term levels as they are in the original Gene Ontology hierarchy, which is not the
case currently.

7 Conclusions

In this paper we introduced the semi-bipartite graph for the visual analysis
of microarray experiments using the Gene Ontology. Among the proposed lay-
out algorithms, sub-hierarchy barycenter, partition merge, and level barycenter
produce considerably less edge crossings than the baseline method—extended
bipartite. The result of the level barycenter algorithm has the least total edge
length. All the algorithms take less than or close to one second to complete for
graphs with size up to 447 nodes and 864 edges. The term reduction technique
effectively reduces graph size by more than half. All the methods have been
implemented in GEOMI and well received by the domain experts.
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Abstract. Much of the data generated and analyzed in the life sciences can be
interpreted and represented by networks or graphs. Network analysis and visual-
ization methods help in investigating them, and many universal as well as special-
purpose tools and libraries are available for this task. However, the two fields of
graph drawing and network biology are still largely disconnected. Hence, visu-
alization of biological networks does typically not apply state-of-the-art graph
drawing techniques, and graph drawing tools do not respect the drawing conven-
tions of the life science community.

In this paper, we analyze some of the major problems arising in biological
network visualization. We characterize these problems and formulate a series of
open graph drawing problems. These use cases illustrate the need for efficient
algorithms to present, explore, evaluate, and compare biological network data.
For each use case, problems are discussed and possible solutions suggested.

1 Introduction

In recent years, the improvement of existing and development of novel high-throughput
techniques have led to the generation of huge data sets in the life sciences. Since manual
analysis of this data is costly and time-consuming, scientists are now turning towards
computational methods that support data analysis.

The visualization and the visual analysis of biological networks are one of the key
analysis techniques to cope with the enormous amount of data. In particular, the layout
of networks should be in agreement with biological drawing conventions and should
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draw the user’s attention to relevant system properties that might remain hidden other-
wise. While the approaches and the expertise of the bioinformatics, information visual-
ization, and graph drawing communities may be ideally suited for solving these prob-
lems, little research has been performed to solve the special layout and visualization
problems arising in the life sciences. Currently, most of the available software systems
for the visual analysis of biological networks (e.g., CellDesigner [8], Cytoscape [5],
VANTED [10], see also the review in [24]) provide only implementations of standard
graph-drawing algorithms such as force-directed or layered approaches. Nevertheless,
there are also some tools that offer specialist drawing algorithms more suitable for ap-
plications in the life sciences [2,3,6,7,13].

In general, visualization methods for the life sciences should allow for the layout
and navigation of biological networks for both their static presentation as well as their
interactive exploration. Such methods need to adhere to constraints that originate from
recognized textbook and poster layouts (like [16,18]), from generally accepted drawing
conventions within the life-science community as well as from standardization initia-
tives such as MIM (Molecular Interaction Maps) [14] and SBGN (Systems Biology
Graphical Notation) [19].

In this paper, we want to identify graph drawing problems originating in applied
bioinformatics and network biology. We start by presenting a characterization of
common biological networks, describing their structure and semantics as well as the
mapping of data onto network elements. Afterwards, we present a selection of use
cases describing typical uses of biological network visualization. For each use case, we
present the problem as well as its relevance and discuss existing or possible straight-
forward solutions as well as their drawbacks. The last section will present some con-
clusions. The focus of this paper is less on presenting novel methods for these use
cases, but more on giving an overview about open problems to raise the awareness for
the manifold tasks in information visualization and graph drawing related to biological
networks.

2 The Nature of Biological Network Data

Biological networks are used to communicate many different types of data. These data
can be encoded in the structure of the network as well as represented by the network lay-
out, or as graphical or textual annotations. The data itself may be primary data (i.e., di-
rectly measured), secondary data (i.e., derived, inferred, or predicted), or a mixture of
both. In this section, we discuss some common biological networks and the types of
attributes used to annotate them. Throughout the rest of this article, graphs will play
an important role when trying to represent biological networks. In fact, we will use
the terms graph and network synonymously when talking about the representation of
biological networks.

2.1 Types of Biological Networks

In the following subsection we will review various types of biological networks. This
listing of networks is by no means complete and includes only those networks that are
most central to research in systems biology.
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Fig. 1. A regulatory network representing the yeast cell cycle. The picture is taken from the
CADLIVE homepage (http://www.cadlive.jp/) and was originally published in [15].
Li and Kurata used their implementation of a grid-layout algorithm.

Gene-regulatory and signal-transduction networks use sets of directed edges to convey
a flow of information. While gene regulation (regulation of gene expression) occurs
within a cell and represents a regulatory mechanism for the creation of gene products
(RNA or proteins), signal transduction refers to any process that transports external
or internal stimuli (often via signal cascades) to specific cellular parts where a cell
response is triggered (e.g., gene regulation). While nodes in these networks represent
molecular entities (genes, gene products, or other molecules), edges represent a flow of
information (regulation or passing of a chemically encoded signal). Figure 1 gives an
example layout of a graph representing some part of a gene regulatory network.

Protein Interaction Networks represent physical interactions of proteins with each other
or with other binding partners such as DNA or RNA. The nodes in such networks rep-
resent proteins or sets of proteins. The time scale of protein interactions ranges from
very short, transient processes (for instance, pairwise protein interactions and phospho-
rylation or glycosylation events) to very long lasting, permanent formation of protein
assemblies (protein complexes) working as molecular machines. The interaction edges
are normally undirected, but may be directed in case of specific interaction (such as
activation) or of heterogeneous networks (e.g., protein-protein and protein-DNA/RNA
interactions), resulting in mixed graphs. Each node and edge may be annotated with ad-
ditional biological attributes like expression level, cellular localization, and the number
of interaction partners. For an example layout of a protein network, see Figure 2.
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Fig. 2. Visual representation of the GAL4 protein interaction subnetwork in yeast. The protein
nodes are colored by a shade gradient according to the expression value; green represents the
lowest, red the highest value, and blue a missing value. The node size corresponds to the number
of interactions. The shades and styles of the edges represent different interaction types; solid lines
indicate protein-protein, and dashed lines protein-DNA interactions. The graph was drawn with
Cytoscape [5] using its implementation of the spring-embedder algorithm.

Metabolic Networks describe how metabolites (chemical compounds) are converted
into other metabolites. Such a network is a hypergraph that is usually represented as a
bipartite graph G = (V1 ∪V2, E). The node set is partitioned into the set V1 of metabo-
lite and enzyme nodes (enzymes catalyze the chemical reactions converting metabo-
lites) and V2 the set of reaction nodes. Large network posters (e.g., Nicholson’s [18]
and Michal’s [16] pathway maps) are available, and several projects created graphical
representations of metabolic networks and offer access to these graphs via web pages
(e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) [21] or the BioCyc collec-
tion [11]). The availability of these representations has established a de facto standard
for metabolic network drawings. These near-orthogonal drawings possess several char-
acteristic features, i.e., the main direction of reaction pathways is accentuated, relevant
subgraphs are placed close to the center of the drawing, substances and products of a
reaction are clearly separated, and co-substances are placed out of the main path close
to the reaction. Layout algorithms such as [12,22,23] obey established drawing styles
of these networks. Figure 3 shows an example layout of a metabolic network.

2.2 The Attributes of Network Elements

The visual representation of primary and secondary data that has been mapped onto
the elements of a biological network is an important research field. This is mainly
due to the following two facts: firstly, manual analysis of primary and secondary data
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Fig. 3. Part of the glycolysis/gluconeogenesis pathway with additional data mapped onto some
nodes. Circles encode metabolites, rectangles represent enzymes catalyzing the reaction, and
rectangles with rounded corners denote other pathways. Solid and dashed lines represent reactions
and connections to other pathways, respectively. The pathway data was derived from KEGG [21],
and the graph was drawn with VANTED [10] in a style similar to the KEGG pathway picture.

has become virtually impossible as high-throughput analysis technologies have become
widely available in all the life sciences. Secondly, in recent years, it has become evident
that a deeper understanding of complex biological system such as cells, tissues or even
whole organisms can only be achieved if the findings of life sciences such as proteomics
or genomics are put into context.

The various types of primary data are defined by the different types of biochemi-
cal entities and experiments (e.g., time-series experiments or differential studies) and
entities that are the subjects of analysis, namely, gene sequences, transcripts, expres-
sion levels, proteins, protein concentrations, metabolites, metabolite concentrations, or
fluxes (of mass or information). The structure of the class of secondary data is, how-
ever, even more complex, and different categories of inferred, derived, or predicted
information can be distinguished such as results of correlation analysis or comparisons
of different biological states (e.g., healthy vs. diseased, before vs. after treatment with
a drug, different organisms). The data belongs to different data types, namely:

• nominal data such as sequence names or categories
• ordinal data such as ontologies, rankings, or partly ordered information
• scalar data such as comparisons or ratios
• categorized spatial data such as data points that refer to biological entities from

various parts or substructures of a cell.
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The distinction between these categories is not clear in all cases. It should also be men-
tioned that primary as well as secondary data are subject to uncertainties (measurement
errors, prediction confidences, etc.) and that the visualization of these uncertainties is
often desired.

3 Use Cases and Related Visualization Problems

This section contains a collection of typical use cases that arise in constructing and
viewing networks representing life-science data. Along with each use case, we present
a formalized description of the graph-drawing, information-visualization, or visual-
analytics problem behind the use case. Again, the list should not be interpreted as a
closed set but rather as an attempt to stimulate further research and to demonstrate that
there are many interesting and important visualization problems within the life sciences.

3.1 Visual Analysis of Data Correlation

Correlation graphs are frequently used as a means for visually expressing and exploring
complex forms of correlation within data. As a means for visually exploring data sets
within a life science context, the information contained within a data set is frequently
mapped as annotation onto a graph that represents one or more types of pathways.
Investigators are then interested in a graphical representation that highlights the inter-
relation between the connectivity structure of pairs or subsets of nodes in the original
network and their correlation. An example for an interesting correlation pattern would
be a set of nodes that is closely connected within the underlying graph but exhibits
only weak correlation in the data or vice versa. The represented connectivity structure
should include only statistically significant correlations, for instance, significant up- or
down-regulation of co-expressed genes or proteins. In particular, two or more nodes rep-
resenting biological entities with multiple annotations may be considered to correlate
if a minimum number of node annotations correspond with each other, e.g., regarding
genotype, time value or number of the biological replicates.

One possible way to attack this problem would be to model the correlation data as
a weighted graph. A weighted graph associates a label or weight with every edge in
the graph. The weights are typically integers or real numbers, as this is usually a re-
quirement induced by the algorithm applied to the weighted graph. We thus have a
given graph G1 = (V, E1) (called network in order to distinguish it from the correla-
tion graph) with correlation data that induces a second graph G2 = (V, E2) with edge
weights on the same set of nodes V . This gives us a simultaneous embedding problem.

In our case, the two given graphs typically do not have too many edges in common.
We seek either a layout of the union graph G = (V, E1 ∪ E2), in which the given net-
work G1 and the correlations are clearly displayed, or two disjoint layouts, in which
the coordinates of the nodes in both layouts are identical. In the first case, a challenging
task is to provide a layout which clearly emphasizes the two different edge sets E1 and
E2. Often, a layout π1 of the graph G1 is given that has to be preserved as closely as
possible. In this case, there is a trade-off between preserving the mental map (i.e., each
user’s individual mental representation of a graph and his or her landmarks) and em-
phasizing the correlation structure. Possible solutions may either fix the layout given in
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π1, or try to preserve the mental map by keeping the orthogonal relations, the topologi-
cal embedding (i.e., each node of the graph is mapped to a point in the plane and each
edge is associated with a curve segment between the points of its two end nodes), or the
layout of a backbone (a subgraph of the given graph that serves as an abstraction).

3.2 Visual Comparison of Similar Biological Networks

Conservation of biochemical function during evolution results in structurally similar
molecular subnetworks across different organisms and species. Uncovering relevant
similarities and differences or comparing networks in different states (e.g., diseased
vs. healthy), at different time points, or under various environmental conditions (for
example, temperature, pressure or substrate concentrations) supports the life-science
experts’ knowledge-discovery process, for example, by identifying disease-specific pat-
terns (biomarker discovery).

Given a set of graphs G1, . . . , Gk with a high degree of similarity between each
other, the task is to lay them out in a way so that the differences (or the similarities) are
highlighted. This problem can be attacked via simultaneous embedding, which requires
obtaining either a single layout of the union graph G = G1 ∪ . . . ∪Gk or k disjoint
layouts of the graphs Gi (i = 1, . . . , k) such that the coordinates of all nodes common to
two or more subgraphs are the same. An alternative representation has been given in [4]
where the third dimension has been used to stack the k layouts above each other. In
these layouts, crossings between edges belonging to different graphs Gi �= Gj are either
completely ignored or counted as less important than “real” crossings. In the context of
biological networks and pathways, the stronger simultaneous embedding problem with
fixed edges occurs, which forces not only the nodes but also the edges occurring in
two or more graphs to be drawn identically. This guarantees that identical subnetworks
have an identical layout. Sometimes, it may be important to keep a mental map of
already given layouts of some of the graphs or their backbone structure. In any case, the
layouts must obey the given biological constraints concerning the specific network type.
Sometimes, the networks may be large, and it becomes desirable to hide some parts of
the network and to highlight only the specific points of interest. Points of interest may
be differences between the networks, but could also be important network structures
such as the main pathways in a metabolic network. Here, one possibility would be to
generate layouts in which the differences are all concentrated within only a few layout
areas, which, of course, represents an abstraction and fails to preserve a mental map.

3.3 Integrated Representation of Multiple Overlapping Networks

The different types of biological networks describe different functional aspects of the
whole cell, tissue, or organism in question. To get a deeper, system-wide understand-
ing, these networks need to be combined. For example, the enzymes acting in metabolic
networks are proteins and take part in protein interaction networks. It is thus becoming
increasingly common to integrate these different types of networks into joint networks.
A good joint layout of these networks should reveal the interaction between these net-
works, for example, how specific nodes of the gene regulatory network activate or inacti-
vate whole subnetworks of the metabolic network. In order to simplify the identification
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of these subnetworks, mental map preservation on the level of the metabolic network
is helpful.

We need a representation of combined networks in which the conventional layouts
(there may be several different ones) of each of these networks need to be respected.
Moreover, some groups of nodes in one network may belong to groups of nodes in
another network. This mapping (which may be a 1 : 1, 1 : n, or n : m mapping)
needs to be displayed in the layout. We consider the case of integrating two networks,
in which the involved mapping partners can be viewed as a cluster in a cluster graph
C = (G, T ) of cluster depth 2. Using this approach, the problem may be attacked via
the following formalized problem.

We are given two cluster graphs C1 = (G1, T1) and C2 = (G2, T2) with Gi =
(Vi, Ei) (i = 1, 2) and cluster depth 2, and a mapping function Φ : C1 → C2, where Ci

denote the clusters in Gi. Generate a layout π(G) of the union graph G = G1 ∪ G2 ∪
G[F ], where F denotes the edges induced by the mapping, respecting the clusters as
well as the conventional layouts of each of these networks. In the simpler case when
the graph G2 is highly disconnected (e.g., E2 = ∅), we may prefer a solution in which
the connected components of G2 are integrated into a layout of G1. In this case, we do
not require to respect the root clusters in the problem mentioned above. Sometimes, the
layout of G1 may be given. If this is the case, there is often a trade-off between sticking
to the given layout as closely as possible (or trying to preserve a user’s mental map or
the backbone of the original graph) and obtaining a better representation of G2.

3.4 Visualization of Sub-cellular Localization

Cells consist of distinct compartments, subcellular locations, separated from each other
by membranes. Examples for these are the cytosol, the nucleus, the mitochondria, or
chloroplasts in plants. The membranes enclosing a compartment separate parts of the
biological networks as well. Different partitions of the network will be localized in
different subcellular locations and hence cannot interact with each other directly. It is
thus essential for an understanding of the network’s function to integrate that spatial
information into the layout of the network. The required localization data may be either
already contained in data sets derived from experiments, may be extracted from external
sources, or may be predicted.

Given a network G = (V, E) and additional localization annotation for the nodes
in V, we search for a layout that reflects the topographical information of G and that
conforms to the drawing conventions for that type of network. It should, of course, be
at the same time aesthetically pleasing. Note that the subcellular localization does not
just give a clustering of the nodes, for example, a specific relative position of the cellu-
lar compartments may be implicitly given by the biological morphology. If G reflects
a flow of mass or information, the direction of the flow also needs to be displayed by,
e.g., hierarchical layering of the nodes. A simple representation of a cross-sectional cut
through a cell would be a stacking of layers as in [2]. In a layout that is inspired by
biological morphology, subgraphs of the network should be arranged according to their
subcellular localization in such a fashion that the physical structure of the compartments
delimiting these subgraphs becomes evident [6,17]. In order to increase the user’s ac-
ceptance of such layouts, it may be necessary to resemble the (manually generated)
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layouts from established projects like BioCarta [1]. Using a layered drawing approach
has the inherent flaw that mass and information may only pass freely between members
of neighboring layers.

3.5 Visualization of Multiple Attributes

Analyzing data in a life-science context often requires the consideration of multiple data
attributes. One example for this would be the analysis of several time-series data sets in
the context of a biological network. This is frequently done in order to better understand
the dynamic behavior of a biological system. The combined representation of such time-
series data and a corresponding network should allow investigators to gain new insights
concerning the underlying system, such as co-regulated elements and their connection
within the network. Such an analysis can, for example, be achieved by mapping the data
onto the nodes of a network, see Figure 3 where time-series data from two series (day
and night) were mapped on parts of the network (cp. enlarged nodes).

Mapping the given data onto nodes and/or edges is one possibility of solving the
problem. It is also the simplest and most straight-forward one but has the general prob-
lem that simple use of small visualizations that replace, for example, the node represen-
tations is most of the time not sufficient, as a visual comparison of such small graphics
in a large graph becomes very quickly infeasible. Furthermore, one has to consider that
the attributes involved may belong to various types of data. Each data type needs spe-
cific requirements for its visual representation [9]. The challenge here lies in finding a
harmonic combination of visual representations for mixtures of different data types.

A possible solution lies in the use of so-called preattentive features [9]. A preatten-
tive feature is a visual property of a picture or drawing that can be very rapidly and
accurately detected by the low-level human visual system. Therefore, users do not have
to focus their attention onto one specific part of a drawing in order to understand its ba-
sic visual properties. Another possibility is to use an additional view separated from the
original network view for displaying the attributes. This idea is based on standard coor-
dinated and multiple view visualization techniques. Drawbacks of this method are the
need to add connections between the views as well as the spatial distance between both.
This is usually done using brushing-and-linking techniques that are used to highlight,
select or delete subsets of elements by pointing to specific elements. When multiple
views of the same data are used simultaneously, brushing is typically associated with
linking, i.e., brushing of elements in one view affects the same elements in other views.
First results that try to compare both approaches [25], i.e., multiple views and attribute
integration, cannot be directly used in our complex case of biochemical networks.

3.6 Visualization of Flows and Paths in Networks

The qualitative and quantitative distribution of mass and signal flows (fluxes) within a
biological network has to be analyzed under consideration of uncertainties in the data.
The flow along certain paths may change over time (time-series of measurements) and
the paths through the network may be numerous so that not all of them can be dis-
played. Investigators are, in such cases, primarily interested in the main paths through
the network, i.e., those paths that possess a statistically significant flow and transport
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a considerable percentage of the overall flow through the entire network, and in the
metabolites and reactions that are involved in these paths.

The given network, together with quantitative and qualitative information about the
flow of mass or information (edge weights), may be a potentially very large one. For di-
rected graphs such as metabolic networks, the layout must reflect the hierarchical nature
of the flow, preserve layouts for subnetworks originating from textbook representations
as closely as possibly, adhere to general drawing conventions, and, at the same time,
focus on the relevant parts of the network, e.g., paths that at a certain point in time
transport a large part of the flow. These main paths thus have to be visually emphasized
(e.g., placed at the center of the layout and drawn as straight lines) and the distribution
of the fluxes within the network have to be depicted, for example, by using different
edge widths or colors.

If the dynamic change in the flow over time also needs to be visualized, smooth ani-
mations between layouts are required to preserve the user’s mental map. In the past, this
problem was mainly covered by software visualization techniques, especially by algo-
rithm animation. In information visualization, solutions for showing flows and paths in
networks are relatively rare and mostly limited to special cases or domains, to visualize
communication flows in social networks [20].

3.7 Exploration of Hierarchical Networks

Biological networks often comprise several thousands nodes and edges. To support the
exploration of such large and complex structures, the entire network is usually broken
down in a hierarchical manner into pathways and subpathways. Investigators commonly
focus on (sub)pathways in a region of interest and explore their relation to other path-
ways. However, due to the many connections between different pathways, an abstract
overview-like picture of all pathways interconnections as well as an interactive naviga-
tion from a set of pathways to other connected or related pathways is often desired.

Given a huge biological network, methods for the biologically meaningful visualiza-
tion of selected subsets G1, . . . , Gk (e.g., pathways) and their interrelations, as well as
techniques for the navigation within the network are needed. In order to allow the user
to keep his orientation during exploration of the network, the layout changes result-
ing from a user interaction (e.g., selection of an additional pathway) should be small,
and context information needs to be represented in an appropriate way. Expand-and-
collapse mechanisms thus need to be incorporated into layout algorithms such that
drawing conventions and the mental map are preserved. These operations could be re-
stricted to certain levels of abstraction, e.g., by only collapsing/expanding semantically
meaningful substructures like pathways. One of the main challenges is that layouts for
such subnetworks as well as their relative position to each other may be pre-specified.
This layout information needs to be preserved as closely as possible. As these networks
are too large to be laid out nicely as a whole, an overview graph or a representation of
the backbone could be defined by reduction or abstraction that covers the topologically
or semantically relevant features of the network, thus helping the user in navigating
through the network.

The subsets G1, . . . , Gk do not need to be disjoint but may partially overlap. This
poses an additional challenge for the visualization problem: Either the duplicate
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components are merged, which complicates the task of mental map preservation, or
it has to be clearly emphasized that they represent the same biological entity.

4 Conclusions

Biological networks play a crucial role in systems biology. Many universal as well as
special-purpose tools and libraries are available for laying out and drawing graphs in
order to help visually investigating these networks. However, these tools either do not
adhere to the special drawing conventions and recognized layouts in biology or are not
adequate for handling large graphs.

The use cases presented here reveal graph drawing as well as information visual-
ization problems arising in the biological domain. While we present possible solutions
to these problems, we also consider this paper a challenge to the graph drawing com-
munity and people working on network visualization in systems biology as well as
the life sciences. The problems described here are far from being solved for all practi-
cal scenarios and certainly merit further attention. Developing improved solutions will
require custom state-of-the-art graph-drawing approaches, and more importantly, col-
laboration between researchers from graph drawing, information visualization, visual
analytics, and the life sciences. We hope that this paper encourages such collaborations
and presents interesting research directions in these fields.
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2 Växjö University, School of Mathematics and Systems Engineering, Sweden

Abstract. The universe of biochemical reactions in metabolic pathways
can be modeled as a complex network structure augmented with domain
specific annotations. Based on the functional properties of the involved
reactions, metabolic networks are often clustered into so-called pathways
inferred from expert knowledge. To support the domain expert in the
exploration and analysis process, we follow the well-known Table Lens
metaphor with the possibility to select multiple foci.

In this paper, we introduce a novel approach to generate an interac-
tive layout of such a metabolic network taking its hierarchical structure
into account and present methods for navigation and exploration that
preserve the mental map. The layout places the network nodes on a fixed
rectilinear grid and routes the edges orthogonally between the node po-
sitions. Our approach supports bundled edge routes heuristically mini-
mizing a given cost function based on the number of bends, the number
of edge crossings and the density of edges within a bundle.

1 Introduction

To fully comprehend and appreciate the existing knowledge on chemical pro-
cesses in living organisms it is essential to develop suitable tools to explore and
navigate through vast amounts of information stored in biological databases. In
biochemistry, complex networks defined by interactions and relations between
different chemical compounds are considered as pathways, such as regulatory
pathways controlling gene activity or metabolic pathways comprising chemical
reactions for synthesis, transformation and degradation of organic substances in
biological systems.

In this work, we combine and apply information visualization techniques to
present the complete set of biochemical reactions of metabolic pathways in a
eucaryotic cell supplying means of exploration and navigation. Although the
emphasis of this paper is placed on biochemical network data, the presented
application is not limited to this area. Instead, it can handle any large graph
carrying arbitrary annotational information by mapping given data properties
to attributes being visualized by the software. To capture the complex chemical
interactions of such a reaction network, metabolic pathways may be modeled as
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artate

Fig. 1. A hyperedge depicting a transaminase reaction, which converts amino acids into
corresponding alpha-keto acids and vice versa. In this example, the enzyme Aspartate
Aminotransferase converts the substrates L-Aspartate (amino acid) and 2-Ketoglutarate
(alpha-keto acid) [input nodes] into the products Oxaloacetate (alpha-keto acid) and L-
Glutamate (amino acid) [output nodes]. Many reactions are reversible, so the direction
of the hyperedge simply gives a hint on the reaction’s chemical equilibrium.

hypergraphs, where unlike a regular graph, each edge can connect an arbitrary
number of nodes. In this hypergraph model, each substance is represented by
a node of the graph, and each reaction by a (directed) hyperedge connecting
the input node set—substrates—with the output node set—products— of the
chemical reaction (see Fig. 1). To obtain a hierarchical graph, each metabolic
pathway is represented by a node at the top level, where the pathway’s reaction
network constitutes the nested graph at the bottom level. The division into
separate pathways, although based on expert knowledge, is somewhat arbitrary
and may not be a strict partition of the graph. Nevertheless, we consider the
clustering of the node and edge set as a partition to obtain a strictly confined
hierarchy on the graph. Compound nodes and reactions belonging to more than
one pathway are simply duplicated for the sake of simplicity of the resulting
graph. This step has two benefits: layouting the graph will be a much simpler
task, and we can use the hierarchy to explore the network in a top-down manner
by examining the top-level graph at first and adding additional information on
pathways of interest by expanding nodes.

2 Related Work

The visualization of large and complex biological networks is one of the key
analysis techniques to cope with this enormous amount of data. Here, the lay-
out of networks should be in agreement with biological drawing conventions and
draw attention to relevant system properties that might remain hidden oth-
erwise [14,13]. Further important issues are the preservation of the so-called
mental map [1] when applying small changes to the graph and the possibility of
clustering nodes. Depending on the concrete network drawing, there are further
important visual representation and interaction techniques that play important
roles, e.g., navigation in the complete network, focusing on parts of the network,
or gradual differentiability of nodes with less importance (side metabolites) [12].
However, only little research has been done in the past to solve the special layout
and visualization problems arising in this area. A lot of the most used software
systems for the visual analysis of generic biological networks, i.e., different kinds
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of networks like regulatory networks or protein-protein interactions, only provide
implementations of standard graph drawing algorithms, such as force-directed
or hierarchical approaches [8].

Cytoscape [5] is one of the most popular tools for generic biochemical net-
work visualization and supports a number of standard graph layout algorithms.
Filtering functions are provided to reduce network complexity. For instance, the
user can select nodes and edges according to their name and other attributes.
This system allows a simple mapping of data attributes to visual elements of
nodes and edges. VisANT [4] is another system designed to visualize generic
biochemical networks. In addition to the features of Cytoscape, it provides sta-
tistical analysis tools, e.g., based on node degrees or the distribution of clustering
coefficients. Their results are displayed in separate views, such as scatter plots.

Especially for metabolic networks, large and hand-drawn posters were pro-
duced in the past, for example, Nicholson’s pathway map [9] or the widely-
used metabolic pathway poster published by Roche Applied Science [18]. Other
projects have created graphical representations of metabolic networks and offer
them via web pages (e.g., the BioCyc collection [7]). The widespread pathway
drawings of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
[16], see also Section 3, were also produced by hand. These drawings are con-
nected via links, but real interaction is not available. Because of their manual
generation, they are well readable and can thus serve as an example in terms of
quality and user conventions. Moreover, the availability of these representations
has established a de facto standard for metabolic network drawings: it features
near-orthogonal drawings where, for example, important paths are aligned or
relevant subgraphs are placed close to the center of the drawing [14,13].

Newer approaches are based on a close interdisciplinary work between re-
searchers in visualization and biochemistry. An example is the Caleydo frame-
work [21] that extends the standard pathways of KEGG into 2.5D, similar to the
report of Kerren [12] and the work of Brandes et al. [15], combined with brush-
ing, highlighting, focus&context, and detail on demand. In this way, it supports
the interactive exploration and navigation between several interconnected (but
static!) networks.

Saraiya et al. [19] discussed the requirements of metabolic network visualiza-
tion collected from interviews with biologists. They observed five requirements
that are important for biologists working on pathway analysis, but still not com-
pletely realized in existing visualization systems (adapted from [10]):

1. automated construction and updating of pathways by searching literature
databases;

2. overlaying information on pathways in a biologically relevant format;
3. linking pathways to multi-dimensional data from high-throughput experi-

ments, such as microarrays;
4. overlooking multiple pathways simultaneously with interconnections between

them; and
5. scaling pathways to higher levels of abstraction to analyze effects of complex

molecular interactions at higher levels of biological organization.
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Currently, our approach addresses several of the aforementioned requirements and
improves the most previous work by using of interaction techniques from informa-
tion visualization. Our new, interactive layouts are based on the KEGG data (Req.
1), and we provided the visualization with an intuitive focus&context view. In this
way, we can handle, for example, the complete metabolism of a generalized eucary-
otic cell (Req. 4) by following Shneiderman’s mantra [20]: overview first, zoom and
filter, details on demand. If the user explores the pathways interactively, the vi-
sualization approach preserves the mental map. To the best of our knowledge, no
other system can provide that to this extent. Our system is also able to embed
textual information into the drawings and to use glyphs/icons for the represen-
tation of lower-level subgraphs if needed, similar to the Pathway tools [3]. The
integration of more complicated attributes as well as biological patterns regard-
ing topological substructures are still missing. Here, other tools, such as BioPath
[6], still have an advantage to be fully accepted by biologists.

The generation of the actual layout of the hierarchical pathway graph is mo-
tivated by the style of the “official” KEGG diagrams to be consistent with the
domain experts expectations. The diagrams usually use the orthogonal style for
drawing edges. To avoid overlapping labels, we ensure a minimum separation
of the diagrams elements by using a regular grid based approach. Algorithms
for orthogonal grid drawing have been widely studied; we cannot provide an
extensive overview here and refer the reader to [8,26] for an introduction. These
approaches often follow a topology-shape-metrics approach [25]: First, compute
a planar embedding of the input graph, possibly planarizing it by augmenting
vertices at crossings, second, compute an orthogonal representation of the em-
bedding, and finally generate coordinates by compaction of the orthogonal repre-
sentation. Usually, edges are not allowed to run simultaneously on the same grid
segment, i.e., connection between two neighboring grid positions. The pathways
of the KEGG database can be converted into graphs, but a planarization of them
requires an enormous amount of augmented vertices. If edges are not allowed to
run on the same grid segment, their layout dominates the area of the drawing
resulting in poor resolution. Furthermore, as a pathway constitutes a semantic
entity, they should be presented as a unit and without diagram elements from
foreign pathways interfering. No existing orthogonal drawing algorithm was able
to take these constraints into account, therefore we developed our own that does
not planarize the graph but keeps track of edge crossings and heuristically mini-
mizes them, allows “edge bundling” although it penalizes it, shows pathways as
units and performs dynamic compactions based on the currently focused parts
of the pathway hierarchy.

3 Network Data Source

The development of graph interaction techniques especially suited to fit bio-
logical problems makes it necessary to experiment with realistic datasets. To
generate artificial graph data is of course possible, but it is hard to estimate the
required complexity of such datasets to simulate realistic scenarios. The Kyoto
Encyclopedia of Genes and Genomes (KEGG, [16]) System provides annotated
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pathway data facilitating the construction of metabolic pathway graphs of differ-
ent sizes. KEGG is one of the major bioinformatics resources publicly accessible.
It integrates genomic, chemical, i.e., molecular, and systemic functional informa-
tion describing cellular processes and organism behavior. It provides a knowledge
base for systematic analysis in bioinformatics research and the life sciences. We
extracted the hypergraph structure including semantic information as discussed
in [17]. The constructed graph covers the complete metabolism of a general-
ized eucaryotic cell and contains 4980 compound and 154 pathway nodes, 4943
reactions and 1248 inter-pathway edges.

4 Hierarchical Orthogonal Grid Layout

A hypergraph H = (V, E) as an extension of the graph concept allows the ele-
ments of E called hyperedges to connect multiple vertices. Conceptually, a chem-
ical reaction can be described as a hyperedge between compounds that are mod-
eled as vertices. This requires a mark whether a vertex is a substrate or product.
We model the data in the KEGG database as a hierarchy of one top-level graph
that contains a vertex for each pathway and one hypergraph per pathway. If
two pathways exchange compounds according to KEGG, both a regular edge
exists between them in the top level graph as well as an edge between the two
hypergraphs representing the two pathways.

The layout of the hierarchical KEGG hypergraph is generated by converting
the hypergraphs of the hierarchy into their corresponding bipartite graphs and
computing a layout of this graph hierarchy. The generated layout is orthogonal
to match the style of the official KEGG diagrams. Furthermore, its vertices’
positions lie on a grid to ensure both a minimum separation between labels and to
make the algorithm both simpler and faster. The layout algorithm allows multi-
edges but no loops and proceeds recursively—parents before their children. For
each graph of the hierarchy, the layout consists of three phases named: Vertex
Position, Edge Routing, and Edge Bundling.

In the Vertex Position phase, we try to find a unique integer position
for each vertex that minimizes the stress: the amount of error that takes place
by the projection of the “high-dimensional” graph-theoretic distances to the
geometric distances between the vertices positions. As vertices and edges are
laid out on a regular grid, the Manhattan distance is used as geometric distance.
When an edge leads outside the graph, its hierarchy parent has already been
laid out. Thus, the direction from which the edge enters the graph is known.
For each of the four orientations, we temporarily add a port vertex to the graph
and connect the edges to foreign graphs to that port. Unlike the other graph’s
vertices the position of ports is fixed on the boundary of the grid in the upcoming
optimization phase.

We implemented a stress minimization algorithm inspired by Kamada and
Kawai [22]: starting from an inital random integer positioning of vertices, we se-
lect a vertex with high local stress and find a continuous position for that vertex
where its local stress becomes minimal using the Newton-Raphson method. We
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insert it then at the closest integer position not taken by any vertex. We com-
pared this method with two different approaches. A brute force version picks a
random vertex and tests all integer positions in a vincinity of its position and
insert it at the best position. A simulated annealing [23] variant picks a random
vertex and new position in the vincinity of the old position, but performs the
insertion only on improvement and deterioration with decreasing likelihood. We
found that the brute force method optimized quality as it is difficult to trap this
method in a local minimum. The simulated annealing is very fast, but does not
provide nearly the same quality. All heuristics terminate after a fixed number of
iterations that is proportional to the number of vertices.

The Edge Routing phase computes a combinatorial description of an edge
routing along the edges of the regular grid. The vertices’ positions are not altered
by this phase. The combinatorical description is computed one edge at a time
and after all edges have been processed once, an iterative process removes single
edges and adds them again optimizing on the global cost of the layout. Given a
combinatorial description of the current edge routing, we construct a route graph
that consists of the original graph’s vertices and the grid’s edges as vertices and
edges for valid transitions between these elements. Given this representation,
we are able to compute the optimal routing of an edge by solving a single-pair-
shortest-path instance on the route graph. The optimality is given by a cost
function that takes the number of crossings, the number of bends, the length
of an edge, and the “density” of edges on a grid segment into account. Note
that the quality of the resulting configuration depends both on the original
vertices’ positions and the actual order of edge insertions. Good performance
was achieved when inserting the edges in the order of increasing distances of
their incident vertices. To reduce runtime and memory consumption, we use
the A∗ search algorithm [24] to solve the SPSP instance using the Manhattan
distance as heuristic.

The Edge Bundling phase shifts segments of edges’ routes orthogonal to
the grid segments they lie on to remove overlaps. It preserves the edges’ relative
ordering and straightens them in the process. This problem can be solved for each
row and each column separately. We generate for each row and each column a
directed acyclic graph that contains line segments as vertices and edges between
these lines, if they are ordered in the combinatorial edge routing. Any topological
numbering of this graph gives a displacement that avoids occlusions between
edge routes of the same column/row, and using the topological numbering of
minimum weight packs the edge bundles nicely together.

5 Graph Interaction

The graph interaction and exploration methods described in this section have
all been implemented in our visualization software. The grid layout algorithm
is the central component of the adapted Table Lens method to explore hierar-
chical graphs. We firstly present this technique with supplementary search and
highlighting operations and explain later how the graphical user interface lets
the user apply these methods to interact with the metabolic network graph.



274 M. Rohrschneider et al.

5.1 Exploration Techniques

Two fundamental navigation operations on hierarchical graphs are node expan-
sion to reveal the node’s nested graph and collapse. For 2D graph representa-
tions, it is natural and desirable to present a flat graph at all times regardless
the graph’s expansion state. This means that the expansion of a node requires
it to be hidden and replaced by its nested graph. The inverse operation replaces
the nested graph by its parent. The well-known Table Lens metaphor [2] applied
to hierarchical graph exploration fulfills this requirement. It is an established
focus&context method to give an overview on large tabular datasets to examine
obvious patterns and to provide detailed view on specific items at the same time.
In our application, pathway nodes at the top level are placed in the center of a
cell, edges are routed along the cell borders as intended result of the previously
presented layout algorithm. When a node is expanded, the row and the column
are enlarged in which the node is situated. Edges leading to and from one of the
four ports (see Sec. 4 and Fig. 4 for example) of the pathway node are elongated
while the remaining elements keep their relative position.This approach follows
Ben Shneiderman’s mantra of visual information-seeking: overview first, zoom
and filter, details on demand [20]. Our application supports this concept in the
following ways:

Overview first. The grid layout algorithm positions top-level nodes on a regular
grid where each grid position can be regarded as a cell in a table. The user starts
with examining the completely collapsed graph, i.e., only top-level nodes are vis-
ible. The application allows to display a node simply by showing the associated
pathway’s name as caption (see Fig. 2) or by creating an iconized view of the
node’s nested graph.

Zoom and Filter. We have implemented semantic zooming to display labels once
a certain threshold is reached. Tool tips add additional information on each
pathway node. If enabled, icons in top-level nodes depicting the nested graph
give a quick hint on the pathway’s size and complexity.

Details on Demand. The user can expand selected pathway nodes to explore the
detailed network of chemical reactions. In contrast to the established Table Lens
method, an arbitrary number of cells (pathways) can be enlarged (multiple foci)
and examined in detail (see Fig. 3 and 4). Advanced selection and highlighting
techniques facilitate and support the exploration process: selecting a pathway
node highlights all objects belonging to that cluster. Selecting a specific reac-
tion node highlights all edges to the associated substrate and product nodes.
Selecting a compound node highlights all reactions this compound is involved
including its connections to adjacent pathways.

5.2 Design of the Graphical User Interface

The GUI of the visualization software basically consists of three components,
see Fig. 6 and 7.
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Fig. 4. Three expanded pathway nodes:
”Citrate Cycle (TCA)”, ”Pentose Phos-
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2.3.3.5

1.3.99.3 4.2.1.54

3.1.2.4

6.2.1.-

2.3.1.9

4.3.1.6

1.1.1.-

1.1.1.

- 2.1.2.-

1.3.1.-

2.7.7.12

5.4.2.7

4.1.2.4

1.1.1.44

3.1.3.11

3.1.3.37

2.2.1.1

5.3.1.6

4.1.2.13

3.1.1.17

1.2.7.5

1.1.5.2 1.1.99.3

Ribose 1

-phosp

1.2.7.3

1.8.1.4

1.2.1.22

4.2.3.3

1.3.5.1

4.2.1.3

4.1.3.6

4.2.1.3

2.3.3.1

1.1.1.376.4.1.1

1.2.4.1

4.1.1.49

3.1.2.1

2.7.1.40

1.1.1.38

1.1.39 1.1.1.

1.1.1.82

1.1.1.21

1.1.1.77

1.2.1.49

4.1.1.78

1.1.2.4

1.1.1.37

1.1.99.7

1.1.2.3 1.2.1.3

2.8.3.1

6.4.1.2

ACCB, bccP

2.3.3.14

1.1.1.13

1.2.4.1

5.-.-.-

4.1.1.85

4.1.2.36

3.6.1.7

1.13.12.4

3.2.1.315.3.1.4

1.1.1.56

5.3.1.17

2.7.1.16

2.7.1.47

5.3.1.15

2.7.1.53

5.3.1.5

5.3.1.-

1.1.1.12

3.1.1.681.1.1.21 1.1.1.121

1.1.1.175

1.1.1.22

1.1.1.57

4.3.1.2

4.2.1.84.2.1.7

5.3.1.12

1.1.1.58

1.1.2.2

4.2.2.2

4.2.2.6

4.1.2.19

4.1.1.5

2.7.1.11

2.7.1.144

3.2.1.26

3.2.1.108

3.2.1.22

2.4.1.67

3.2.1.26 3.2.1.22

2.7.1.69

PTS-Lac

5.4.2.2

3.2.1.223.2.1.22

3.2.1.22

2.7.1.1

2.7.1.2

2.7.1.58

2.7.7.9

3.1.1.25

5.1.3.2

5.3.1.26

1.1.1.16

3.1.3.9

1.1.1.122

2.7.1.433.1.1.17

1.1.1.130 1.6.5.4

4.1.2.20

1.2.1.3

4.2.1.41

1.10.3.3

CO2

3.2.1.33

(R)-3-Hy dro

xy butanoate

1.2.- 4.1.2.1

4.1.3.16

C00687

Carbon f ixation

n photosy ntheti

organisms

Lipopoly sa

ccharide

biosy nthesis

Gly ceropho

spholipid

metabolism

Retinol

metabolism

Sy nthesis and

degradation

f  ketone bodie

Valine, leucine

and isoleucine

degradation

map01056

3-Chloroac

ry lic acid

degradation

Pantothenate

and CoA

biosy nthesis

map00523

beta-Alanine

metabolism

Methane

metabolism

Fatty  acid

metabolism

Ty rosine

metabolism

Valine, leucine

and isoleucine

biosy nthesis

Ribof lav in

metabolism

Ly sine

biosy nthesis

D-Glucose

D-Glucose 1

-phosphate

Gly cerone

phosphate

beta-D

-Glucose

Enzy me N6

-(lipoy

l)ly sine

2-(alpha

Hy droxy ethy

l)thiamine

y drolipoy lly s

-residue

ty ltransf eras

Thiamin

diphosphate

Acetal

dehy de

Enzy me N6

-(dihy droli

poy l)ly sine

Arbutin

6-phosphate

Arbutin

2.7.2.3

Oxaloa

cetate

2,3-Bisp

hospho

-D-gly cerate

4.1.1.1

1.8.1.4

6.2.1.1

1.1.1.1

EUTG

1.2.4.1

4.1.2.132.7.1.11

5.3.1.9 2.3.1.121.1.1.27

1.3.13 5.4.2

5.4.2.4

5.4.2.2

2.7.1.1

2.7.1.2

1D-my o

nositol 1,3,4

-tetrak

2.7.1.63

2.7.1.69 PTS

-Arb-EIIC,

2.7.1.69

PTS-Asc

4.1.1.32

3.2.1.86

1.1.99.8

4.1.1.49

1.2.7.5

1.2.7.6

1.2.1.9

1.2.7.1

3.1.3.57

Ferricy to

chrome b5

N-Acety l

-D-glu

cosamine

Chitin

D-Gluc

osamine

Chitobiose

D-Glucos

amine 6

-phosphate

UDP-N

-acety l-D

-glucosamine

N-Acety lne

uraminate 9

-phosphate

UDP-N

-acety l-D

mannosamin

Mucopoly s

accharide

2-Amino

-2-deoxy -D

-gluconate

D-Gluco

saminide

Gly colipid

UDP-N-acety

-2-amino-2

-deoxy

ominic acid(

-reducing N

- or O-acy lne

Gly cop

rotein

3.2.1.52

D-Fruct

ose 6

-phosphate

1.6.2.2

N-Acety l

muramate

1.1.1.158

2.5.1.71.1.1.136

2.4.1.165.1.3.14

1.1.1.-

3.1.4.-

5.1.3.144.1.3.32.7.7.43

1.14.18.2

3.1.3.29

2.7.7.43

2.5.1.56

2.5.1.57

3.1.3.-

2.7.1.60

5.1.3.9

3.5.1.25

2.3.1.4

5.1.3.8

2.7.1.59

3.2.1.14

2.7.1.69

PTS-Dgl

3.2.1.14

2.3.1.96

3.2.1.132

2.7.1.69

PTS-Nag

2.3.1.157

2.7.7.23

3.5.1.33

1.1.3.-

1D-my o

nositol 1,4,5

-tetrak

4-Hy droxy

-2-oxog

lutarate

D-my o-Inosit

1,3,4

trisphosphate

my o-Inositol

hexak

isphosphate

1D-my o

nositol 3,4,5

-tetrak

D-my o-Inosito

1,2,4,5,6

-penta

1D-my o

-Inositol 1,3,

4,5,6-pent

1D-my o

nositol 1,3,4

-tetrak

Inositol

,2,3,5,6-pent

kisphosphate

D-my o-Inosito

3,4

bisphosphate

D-Glucose 6

-phosphate

1-Phospha

tidy l-D-my o

-inositol

Phosphatid

y linositol

-3,4,5

Inositol

1-phosphate

D-Gluc

uronate

-Phosphatidy

-1D-my o

-inositol 4

1-O-Met

hy l-my o

-inositol

3.1.3.36

2.7.1.149

2.7.1.153

3D-(3,5/4)

-Trihy drox

cy clohexane

2.7.1.151

3.1.3.67

2.7.1.151

3.1.3.56

3.1.3.62

2.4.1.11

2.7.1.127

2.7.1.134

3.1.3.8

2.7.1.140

2.7.1.134

3.1.3.56

3.1.3.57

3.1.3.64

3.1.3.66

3.1.3.25

5.5.1.4

1.13.99.1

3.1.3.25

3.1.4.3

4.6.1.13

2.7.1.67

2.7.1.137

3.1.4.11

PLCE PLCZ

3.1.3.64

3.1.3.25

2.1.1.39

2.7.1.158

1.1.1.18

D-2,3-Diketo

4-deoxy -epi

-inositol

3-Oxopr

opanoate

D-Gly cera

ldehy de

3-phosphate

2-Deoxy -5

-keto-D

gluconic acid

Gly cerone

phosphate

5-Deoxy

glucur

onic acid

2,4,6/3,5

-Pentah

y droxy cy

2.7.1.92

1.2.1.18

1.2.1.27

4.1.2.29

1.-.-.-

Citrate

(3S)-3

-Carboxy -3

-hy droxy pro

iolE1.1.1.18

(S)-Malate

Acety l-CoA

3-Phospho-D

-gly cerate Gly colate

Gly cola

ldehy de

Ethy lene

gly col

Gly oxy late

Formate

Oxalate

H+

Hy drogen

Formy l

phosphateOxaly l-CoA

cis-Ac

onitate

Isocitrate

Succinate

3-Oxal

omalate

3-Ethy

lmalate

2-Hy droxy

3-oxoadipate

Butanoy l

-CoA

Pentan

oy l-CoA

3-Propy

lmalate

4.2.1.3

Oxaloa

cetate

5.3.1.22

2.3.3.12

2.3.3.7

3.5.1.56

4.1.3.134.1.3.1

4.1.3.16

3.5.1.68

3.5.1.27

3.5.1.9

3.5.1.10

4.2.1.3

1.2.1.17

4.1.1.8

1.1.3.15

glcE glcF

2.8.3.2

1.1.1.26

1.1.1.29

1.2.3.5

4.1.1.2

1.12.7.2

1.2.3.4

1.1.1.77

2.3.3.1

1.1.1.26

1.1.1.29

1.1.1.60

4.1.1.47

2.3.3.9

5.1.2.5 3.3.2.41.3.1.7

1.1.1.92

3.1.3.18

1.1.1.93

D-Glucose 6

-phosphate Pectin

D-Xy lose

1,4-beta-D

-Xy lan

Pectate

D-Galac

turonate

Sucrose

6-phosphate

Cellulose UDP-glu

curonate

beta-D

Glucuronosid

beta-D

-Glucose

D-Glucose

UDP-g

lucose

alpha

-D-Glucose

CDP-3,6

-dideoxy -D

-glucose

alpha-D

-Glucose 1,6

bisphosphate

D-Glucose 1

-phosphate

CDP-g

lucose

1,3-beta-D

-Glucan

Maltose

Maltod

extrin

Dextrin

Cy clomal

todextrin

alpha,alpha

-Trehalose

beta-D

-Glucose

1-phosphate

Maltose

6'-phosphate

CDP-4

-dehy dro-3,6

-dideoxy

DP-4-dehy d

-6-deoxy

-D-glucose

SucroseCellobiose

Starch

alpha

-D-Glucose

D-Fructose

D-Fructose

Cellobiose

Cellulose

(2,6-beta

D-Fructosy l)

Cellotriose

Cellop

entaose

Celloh

exaose

Celloh

eptaose

Sucrose

-6-phosphate

Maltose

Isomaltose

.7.1.1 2.7.1.

2.7.1.4

3.2.1.26

1.1.99.13

3.2.1.20

3.2.1.26

3.2.1.4

3.2.1.91

2.4.2.24

3.1.3.24

2.4.1.29

4.1.1.35

2.7.1.69

PTS-Scr

4.2.1.45

2.7.1.41

3.6.1.9

2.4.1.342.4.1.14

1.1.1.22

5.1.3.6

2.7.7.33

2.7.1.106

2.7.1.10

2.4.1.432.7.7.9

3.1.1.11Thiamin

diphosphate

2.7.7.27

5.4.2.2

2.3.1.61

2.4.1.18

3.1.3.12

5.4.2.6

3.2.1.1

3.2.1.20 2.4.1.8

2.4.1.4 2.4.1.10

2.4.1.10

3.2.1.74

3.2.1.65

3.2.1.74

3.2.1.74

3.2.1.74

3.2.1.74

3.2.1.74

2.4.1.7

3.6.1.21

3.2.1.10

3.2.1.3

Maleic acid

(S,S)-Butane

-2,3-diol

Succinate

(R)-Acetoin

Fumarate

(R,R)-Butane

-2,3-diol

(R)-Malate

Butanoy l

phosphate

Poly -beta

-hy drox

y buty rate

Butanal

Butanoy l

-CoA

Acetoac

ety l-CoA

Croton

oy l-CoA

Glutacony l

-1-CoA

Acety l-CoA

(S)-3

-Hy droxy -3

-methy lgl

Acetoa

cetate

(R)-3

-Hy droxy but

anoy l-CoA

1-Butanol

3-Buty noate

3-Buty n

-1-al

Diacety l

3-Buty n

-1-ol

1.2.99.3

1.1.99.8

1.2.1.3

4.2.1.27

3.1.1.22

2.8.3.5

6.2.1.16

1.1.1.157

1.1.1.61

1.1.1.36 4.1.3.4

4.2.1.17

2.3.3.10

1.1.1.35

2.3.1.9

5.1.2.3

3.1.1.75

2.3.1.-

5.3.3.3

2.6.1.194.1.1.15

1.3.1.44

1.3.99.2

1.2.1.10 1.2.1.16

1.2.1.24

1.1.1.-

4.2.1.31

2.2.1.6

5.1.2.4

1.1.99.2

4.1.1.70

3.1.2.11

1.1.1.76

4.2.1.-

1.1.1.5

D-Mannose

6-ph

osphate

L-Sorbose

alpha

-D-Glucose

D-Fruct

ose 1

-phosphate

D-Manni

tol 1

-phosphate

1,4-beta-D

-Mannan
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gly can

D-Sorbitol

D-Gly cer

aldehy de

(Alginate)n
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nulose
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-phosphate
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-deoxy -L
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-phosphate
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-D-talose

D-Mannose
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osphate

L-Rhamn
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6-Deoxy
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-deoxy -D
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(R)-Lact

aldehy de

Sorbose

1-phosphate

1.1.1.21

2.7.1.69

PTS-Fru

1.1.1.187

5.3.1.5

1.1.1.11

1.1.1.67 3.1.3.22

3.1.3.-

5.3.1.7

2.7.1.69

PTS-Mtl

3.2.1.78

2.7.1.1

2.7.1.2

Propy noate

.7.1.1 2.7.1.

2.7.1.4

2.7.1.1052.7.7.22

1.1.1.271

5.4.2.8

2.7.7.132.7.7.30

1.1.1.140

2.7.1.69

PTS-Gut

4.2.2.3

2.4.1.33

2.7.1.56

5.3.1.14

4.1.2.13 2.7.1.28

4.1.2.19

4.1.2.13

3.1.1.654.2.1.90

3.1.3.11

3.1.3.37

2.4.1.-

4.1.2.17

2.7.1.51 4.2.1.67

3.6.1.21

1.1.1.- 2.7.1.69 PTS

-Sor-EIIC,2.7.1.52

(S)-2-Met

hy lmalate

(Z)-But-2-ene

-1,2,3

tricarboxy lat
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phosphate
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opropane-1

-carboxy late

Propan
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Propen

oy l-CoA

(S)-Lactate

Lacto

y l-CoA

(S)-Methy l
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Methy lm

alonate

Succinate
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-CoA
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y droxy butan

-1,2,3

Propan-2-ol

beta-Al

any l-CoA

2-Methy

lcitrate

3-Hy dro

xy propi

ony l-CoA

Acetone

Acetoa

cetate

3-Hy droxy

propanoate

Acetoac

ety l-CoA

Acety l-CoA

2-Hy droxy bu

tanoic acid

3-Oxopr

opanoate

4.1.1.41

2-Propy n

-1-ol

Propinol

adeny late

2.3.1.54

2.7.2.1

2.7.2.15

1.2.1.27

5.1.99.1

4.2.1.99

1.2.1.18

6.4.1.3

3.1.2.17

2.1.3.1

6.2.1.1

6.2.1.17

2.8.3.1

6.2.1.4

6.2.1.5

5.4.99.2

4.1.3.30

2.8.3.1

1.2.7.1

2.6.1.192.6.1.18

1.2.1.3 1.2.99.3

1.1.1.59

1.1.99.8 1.2.1.18

2.1.3.1

4.2.1.27

1.1.1.80

2.8.3.8

4.1.1.4

4.1.1.9 6.4.1.2

ACCB, bccP

3.5.99.7

1.1.1.27

1.2.1.18

4.2.1.17

UDP-L

-Ara4FN

UDP-L

-Ara4N

UDP-L

-Ara4O

UDP-D

-galactose

UDP-g

lucose

UDP-glu

curonate

UDP-D-gal

acturonate

UDP-6-sulf

oquinov ose

UDP-L

-iduronate

D-Glucose 1

-phosphate

alpha-D

-Galactose 1

-phosphate

TDP-6-deoxy

-L-talose

dTDP

-glucose

UDP-L
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alpha-D

-Xy lose

1-phosphate
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DP-4-dehy d

-6-deoxy

-D-glucose

L-Ara

binose

beta-L

-Arabinose

1-phosphate
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-glucuronate

1.1.1.

- 2.1.2.-

up:Q7VUF1

2.6.1.-2.7.8.-

1.1.1.186

3.13.1.1

5.1.3.2 4.2.1.46

1.1.1.134

1.1.1.133

5.1.3.13

5.1.3.2

1.1.1.22

4.1.1.35

2.7.7.24

2.7.7.33

5.1.3.12 2.7.7.9

4.2.1.76

1.1.1.-

5.1.3.6

2.7.7.11

4.1.1.67

5.1.3.5

2.7.7.10

2.7.1.44

3.2.1.-

D-Ribose

1,5-bis

phosphate

2.7.7.373.2.1.37

2.4.1.43

3.2.1.-

1.1.1.1335.1.3.13

2.7.1.46

2.4.2.24

D-Glucono

-1,5-lactone

3.2.1.55

D-Gluco

nic acid

D-Ribose

5-phosphate

6-Phospho

-D-gl

uconate

beta-D

-Glucose

alpha-D

-Ribose

1-phosphate
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ose 5

-phosphate
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-D-ribose

5-phosphate
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-Glucose

6-phosphate
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2-Phospho-D

-gly cerate5.3.1.9 1.1.1.49

1.1.1.435.1.3.1

2.7.6.15.4.2.2

5.4.2.7

2.7.1.11

2.7.1.15

2.2.1.1

2.7.1.134.3.1.9

2.7.1.45

4.2.1.12

3.1.1.31

2.7.1.12

4.2.1.39

1.1.3.4

1.1.3.5

1.1.99.10

2.2.1.2

1.1.1.472.7.1.-

1.1.1.215

4.1.2.9

Oxalosu

ccinate

Fumarate (S)-Malate
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cetate

Acety l-

CoA

Isocitrate

cis-Ac

onitate

Citrate

Succinate

N6-(lipo

y l)ly sine

4.1.1.-

N6-(dihy drol

ipoy l)ly sine

2-Oxogl

utarate

3-Carboxy -1

-hy droxy p

ropy l-ThPP

1.2.4.2

Phosphoen

olpy ruv ate

1.2.4.2

6.2.1.4

6.2.1.5

6.2.1.4

6.2.1.5

2.3.3.8

1.1.1.42

1.1.1.41

1.1.1.42

4.2.1.2

1.2.4.1

1.8.1.4

2.3.1.12

1.2.7.1

4.1.1.32

Enzy me N6

-(dihy droli

poy l)ly sine

2-(alpha

Hy droxy ethy

l)thiamine

Propane

-1,2-diol

Gly cerone

phosphate

Formate
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cetate (S)-Malate

Acety l

phosphate

Malon

y l-CoA

(R)-2-Hy dr

oxy butane

-1,2,4-tric

Acetoac

ety l-CoA
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Fig. 5. Bottom-level graph. Reaction
network of pathways associated with the
carbohydrate metabolism. The search re-
sult for ”Pyruvate” is highlighted includ-
ing its incident edges.

The Graph View at the left hand side of the window renders the graph and
provides an interface to interact with or edit the topology of the graph directly.
Each graphical object can be individually selected, and applicable properties can
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Fig. 6. GUI of the Visualization and Editing Tool. The top-level graph consisting of 154
pathway vertices with 4 expanded pathways. The node ”Glycolysis/Gluconeogenesis”
was selected in the Data Browser (right, top) resulting in highlighting all its compound
and reaction nodes including connections to adjacent pathways.

Fig. 7. A more detailed view of the bottom level graph. This portion of the graph dis-
plays the pathway Starch and Sucrose metabolism. The Algorithm Info Area (bottom,
right) gives feedback on invoked algorithms and displays search results. In this scenario,
a search for the term alpha-D-Glucose was performed and resulted in 13 matches being
highlighted in the Graph View and in the hierarchical Data Browser view.
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be assigned via a context menu. The integrated graph editing capability allows
the user to manually construct pathway graphs or to modify a given layout
either generated by the algorithm or loaded from file. Expanding or collapsing
individual nodes can be performed by either double-clicking a node or selecting
the operation via the associated entry in the context menu.

The Data Browser displays the hierarchical structure of the grap (explorer
layout) and grants access to textual or numerical attributes of each graph ele-
ment. Generic graph element properties, e.g., edge width, node size and shape,
color or transparency, can be manipulated, and the effects will be directly dis-
played in the graph view. A simple search function among the textual attributes
can be used as a filter to highlight and select a group of graph elements. This
is an intuitive way to state queries like ”Select all pathways containing the com-
pound Pyruvate” (see Fig. 5). Highlighting elements matching a given search
pattern is also propagated to the top-level.

The Algorithm Info Area at the bottom-right hand side displays textual out-
put giving feedback on the progress of invoked graph or layout algorithms and
to present search results, cf. Fig. 7.

6 Performance Results

Our KEGG import routine is suitable to construct pathway graphs of different
size and complexity. To implement, test and demonstrate the discussed tech-
niques, we constructed two graphs. Images 2 through 5 were created from 17
pathway files downloaded from the KEGG database covering the complete car-
bohydrate metabolism. Additional non-expandable pathway nodes were created
when referenced in one of the input files. A graph with a total of 649 compound
nodes, 50 pathway nodes, 814 reaction hyperedges and 149 regular inter-pathway
edges was created. The portion of the graph containing the hyperedges and
nodes was converted into a bipartite graph, where the previous hyperedges are
displayed as rectangular nodes (yellow) labeled with the EC numbers of the cat-
alyzing enzymes and the nodes as ellipses (green) labeled with the compound’s
chemical name, resulting in a total number of 1,513 nodes and 1,861 edges.
This graph could easily be handled by the visualization software. On an Intel R©

Xeon R© (2 GHz, 32 GB RAM) machine, response times of the graphical user
interface were less than 0.2 sec for any operation discussed previously enabling
a smooth interaction with the displayed graph. A second example was more
complex. After converting the hypergraph portion into a bipartite subgraph, the
graph describing the complete metabolism of a generalized eucaryotic cell had a
total number of 10,067 nodes and 11,706 edges. Depending on the visible portion
in the scrollable graph view area, any collapse/expand operation took up to 4
sec if the complete graph was visible, and up to 2 sec if one pathway was located
in the visible area. The response times for scrolling, zooming, and highlighting
elements for the worst-case scenario (all pathways expanded) were less than 0.75
sec if up to 1/4 of the graph’s elements were visible, and less than 0.25 sec if the
visible portion was 1/10 of the completely laid out graph.
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The runtime of the grid layout algorithm heavily depends on the choice of
parameters. For large graphs, the brute-force method testing all grid positions
naturally takes longer compared to the simulated annealing method. The choice
of the area ratio a = 4 · |V | generally produced more aesthetic layouts for cyclic
and chain-like structures because of the larger space available to unfold those
substructures, but resulted in increased runtime for the brute-force method.

7 Conclusion

The proposed software is able to layout and display complex graphs with a high
number of elements. The development process was intensively accompanied by
domain experts from biology and biochemistry. For metabolic pathway networks,
not only the graph topology is relevant, a high number of additional attributes—
textual annotations in our case—need to be visualized. Semantic zooming and
focus&context methods are applied to accomplish this goal, instant highlighting
of graph elements fitting the pattern of a string based search operation is an intu-
itive way to extract specific information on the dataset. The main benefit of the
adapted Table Lens method is the preservation of the mental map. Many of the vi-
sualization tools lack this key feature. Even though node expansion and collapse
produce very discrete and rather abrupt changes in the graph appearance, only
the row and the column of the grid position are affected while the remaining el-
ements keep their relative position. In combination with continuous zooming, it
is a straightforward task to explore even large graphs. Highlighting individual or
groups of edges greatly facilitates the tracking of routes. In the presented grid lay-
out algorithm, vertex placement and edge routing are performed in two separate
steps. This offers the opportunity to develop alternative node placement routines
fitting the specific needs of pathway visualization in the future.
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Abstract. In this paper, we study small planar drawings of planar
graphs. For arbitrary planar graphs, Θ(n2) is the established upper and
lower bound on the worst-case area. It is a long-standing open problem
for what graphs smaller area can be achieved, with results known only
for trees and outer-planar graphs. We show here that series-parallel can
be drawn in O(n3/2) area, but 2-outer-planar graphs and planar graphs
of proper pathwidth 3 require Ω(n2) area.

1 Introduction

A planar graph is a graph that can be drawn without crossing. It was established
20 years ago [15,20] that it has a straight-line drawing in area O(n2) with vertices
placed at grid points. This is asymptotically optimal, since there are planar
graphs that need Ω(n2) area [14].

A number of other graph drawing models (e.g., poly-line drawings, orthogonal
drawings, visibility representations) exist for planar graphs. In all these models,
O(n2) area can be achieved for planar graphs, see for example [17, 23]. On the
other hand, Ω(n2) area is needed, in all models, for the graph in [14]. This raises
the natural question [5] whether o(n2) area is possible for subclasses of planar
graphs.

Known results. Every tree has a straight-line drawing in O(n log n) area and
in O(n) area if the maximum degree is asymptotically smaller than n. See [7] for
references and many other upper and lower bounds regarding drawings of trees.

It is quite easy (and appears to be folklore) to create straight-line drawings of
outer-planar graphs that have area O(nd), where d is the diameter of the dual
tree of the graph. In an earlier paper [3], we showed that any outer-planar graph
has a visibility representation (and hence a poly-line drawing) of area O(n log n).
Since then, some work has been done on improving the bounds for straight-line
drawings, with the best bounds now being O(n1.48) [8] and O(Δn log n) [12].

Many drawing results are known for series-parallel graphs, see e.g. [1,6,16,
22]. However, the emphasis here was on displaying the series-parallel structure
of the graph, and/or to use the structure to allow for additional constraints. All
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known algorithms bound the area by O(n2) area or worse. Quite recently, Frati
proved a lower bound (for straight-line or poly-line drawings) of Ω(n log n) for
a series-parallel graph [13].

No graph drawing results specifically tailored to k-outer-planar graphs
(for k ≥ 2), or planar graphs with small treewidth/pathwidth appear to be
known for 2-dimensional drawings. Planar graphs with small pathwidth play a
critical role in drawings where the height is bounded by a constant [9], but not
all graphs with small pathwidth have such a drawing.

While higher-dimensional drawings are not the focus of our paper, we would
like to mention briefly that all graph classes considered in this paper can be
drawn with linear area in 3D, because they are partial k-trees for constant k;
see [10], and also [11] for some earlier 3D results for outer-planar graphs.

We would also like to note that all these graphs have small separators, hence
all of them allow a non-planar two-dimensional orthogonal drawing in O(n) area
if the maximum degree is at most 4 [18].

Our Results. In this paper, we provide the following results:

– Every series-parallel graph has a visibility representation with O(n3/2) area.
– A series-parallel graph for which at most f graphs are combined in parallel

has a visibility representation with O(fn log n) area. We know f ≤ Δ.
– There are series-parallel graphs that require Ω(n2) area in any poly-line

drawing that respects the planar embedding.
– There are 2-outer-planar graphs that require Ω(n2) area in any poly-line

drawing. Moreover, these graphs have pathwidth 3.
– There are graphs of proper pathwidth 3 and maximum degree 4 that require

Ω(n2) area.

For algorithms, we restrict our attention to visibility representations, because
any such drawing can be converted to a poly-line drawing with asymptotically
the same area. Hence all our upper bounds also hold for poly-line drawings.

2 Background

Let G = (V, E) be a graph with n = n(G) = |V | vertices and m = m(G) = |E|
edges. Throughout this paper, we will assume that G is simple (has no loops
or multiple edges) and planar, i.e., can be drawn without crossing. A planar
drawing splits the plane into connected pieces; the unbounded piece is called the
outer-face, all other pieces are called interior faces. An outer-planar graph is a
planar graph that can be drawn such that all vertices are on the outer-face.

A 2-terminal series-parallel graph with terminals s, t is a graph defined recur-
sively with one of the following three rules: (a) An edge (s, t) is a 2-terminal
series-parallel graph. (b) If Gi, i = 1, 2 are 2-terminal series-parallel graphs with
terminals si and ti, then in a series composition we identify t1 with s2 to obtain
a 2-terminal series-parallel graph with terminals s1 and t2. (c) If Gi, i = 1, . . . , k,
are 2-terminal series-parallel graphs with terminals si and ti, then in a parallel
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composition we identify s1, s2, . . . , sk into one terminal s and t1, t2, . . . , tk into
one terminal t to obtain a 2-terminal series-parallel graph with terminals s and
t. Here k is as large as possible, i.e., none of the graphs Gi is itself obtained via
a parallel composition. The fan-out of a series-parallel graph is the maximum
number of subgraphs k used in a parallel composition.

Given a 2-terminal series-parallel graph G, a subgraph from the composition
is any of the subgraphs G1, . . . , Gk that was used to create G, or recursively any
subgraph from the composition of G1, . . . , Gk. Since we never consider any other
subgraphs, we will say “subgraphs” instead of “subgraphs from the composition”.

A series-parallel graph, or SP-graph for short, is a graph for which every bicon-
nected component is a 2-terminal series-parallel graph. It is maximal if no edge
can be added while maintaining a simple SP-graph. Any maximal series-parallel
graph is a 2-terminal series-parallel graph where in any parallel composition
there exists an edge between the terminals, and in any series composition each
subgraph is either an edge or obtained from a parallel composition. We will
only considering drawings of maximal series-parallel graph, since this makes no
difference for asymptotic upper bounds on the area of graph drawings.

A polyline-drawing is an assignment of vertices to points and edges to a path of
finitely many line segments connecting their endpoints. A visibiliy representation
is an assignment of vertices to boxes1 and edges to horizontal or vertical line
segment connecting boxes of their endpoints. For a planar graph, such drawings
should be planar, i.e., have no crossing. We also assume that all defining features
have integral coordinates; in particular points of vertices and transition-points
(bends) in the routes of edges have integral coordinates, and boxes of vertices
have integral corner points. We allow boxes to be degenerate, i.e., to be line
segments or points.

The width of a box is the number of vertical grid lines (columns) that are
occupied by it. The height of a box is the number of horizontal grid lines (rows)
that are occupied by it. A drawing whose minimum enclosing box has width w
and height h is called a w × h-drawing, and has area w · h.

3 Visibility Representations of Series-Parallel Graphs

In this section, we study how to create a small visibility representation of a
maximal SP-graph G. Our algorithm draws G and recursively all its subgraphs
H . To ease putting drawings together, we put constraints on the drawing (see
also Fig. 1):

– The visibility representation is what we call flat: every vertex is represented
by a horizontal line segment.

– Vertex s is placed in the upper right corner of the bounding box.
– Vertex t is placed in the lower right corner of the bounding box.

With our construction we develop a recursive formula for the height: h(m) is
the maximum height of a drawing obtained with our algorithm over all maximal
1 In this paper, the term “box” always refers to an axis-parallel box.
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ts

s

t

s

t

Fig. 1. Illustration of the invariant, and the base case n = 2

SP-graphs with m edges.(We have m = 2n − 3, but use m to simplify the
computations.) In the base case (m = 1), simply place s atop t; see Fig. 1. The
conditions are clearly satisfied, and we have h(m) = 2 for m = 1.

Modifying drawings. If m ≥ 2, then we obtain the drawing by merging draw-
ings of subgraphs together suitably. Before doing this, we sometimes modify them
with an operation used earlier [3]. We say that in a drawing a vertex spans the top
(bottom) row if its vertex box contains both the top (bottom) left point and the
top (bottom) right point of the smallest enclosing box of the drawing. We can al-
ways achieve that terminal s spans the top row after adding a row; we call this
releasing terminal s. Similarly we can also release terminal t after adding a row.

Lemma 1. [3] Let Γ (H) be a flat visibility representation of H of height h ≥ 2
that satisfies the invariant. Then there exists a flat visibility representation Γ ′(H)
of H of height h + 1 that satisfies the invariant, and vertex s spans the top row.

Subgraphs from parallel compositions. Assume H is a subgraph of G which
is obtained in a parallel composition from subgraphs H1, . . . , Hk, k ≥ 2. After
possible renaming, assume that mi = m(Hi) satisfies m1 ≥ m2 ≥ . . . ≥ mk.
Recursively obtain drawings of H1, . . . , Hk; the drawing of Hi has height at
most h(mi). Combine them after releasing both terminals in all of H2, . . . , Hk

and adding rows so that all drawings have the same height. Place H1 leftmost,
and all other Hi to the right of it; this gives a drawing of H that satisfies the
invariant, see Fig. 2. Since m2 ≥ m3 ≥ . . . ≥ mk, the height of this drawing is

h(m) ≤ max{h(m1), h(m2) + 2, . . . , h(mk) + 2} = max{h(m1), h(m2) + 2} (1)

Subgraphs from series compositions. Now let H (with terminals s, t) be
obtained from a series composition of graphs Ha and Hb with terminals s, x and
x, t, respectively. Since we consider maximal SP-graphs, each of Ha and Hb is
either an edge or obtained from a parallel composition. We distinguish cases.

Case (S1): One subgraph, say Hb, is an edge. Then we draw Ha recursively,
extend the drawing of terminal s to the right, place t in the bottom row, and
connect edge (x, t) horizontally. See Fig. 3. The case that Ha is an edge is
symmetric. We have h(m) = h(m− 1) in this case.

Case (S2): Both subgraphs have at least two edges. Assume that m(Hb) ≤
m(Ha); the other case is symmetric. Graph Hb was obtained from a parallel
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Hk−1

H1

H2s t

t t

s

t

. . .

Hk−1

s s

H1

s

t

H2

Fig. 2. Combining subgraphs in parallel

Ha

x tHb

s

tx

Ha

s

Fig. 3. A series composition when one subgraph is an edge

composition of subgraphs, say H1, . . . , Hk such that m(H1) ≥ . . . ≥ m(Hk).
Note that Hk is the edge (x, t), which exists since the SP-graph is maximal.

Let L be an integer; we will discuss later how to choose L. For all i <
min{L, k}, we break subgraph Hi up further. Graph Hi is not an edge (since
i < k and Hk is an edge), and so is obtained in a series composition of two
subgraphs Ha

i and Hb
i with terminals x, yi and yi, t, respectively. See also Fig. 4.

Set mβ
α = m(Hβ

α) for any strings α and β.

...

Hk−1

HL

...
...

Hb
1

y1

Ha

Ha
1s

x t

Ha
L−1 Hb

L−1

yL−1

s x t
Ha Hb

Fig. 4. Breaking down subgraph Hb

Recursively draw each of the subgraphs Ha, Ha
i , Hb

i (for i = 1, . . . ,
min{k, L}−1,) and Hi (for i = L, . . . , k−1.) Before we can combine these draw-
ings, we need to release some terminals again (recall Lemma 1). We proceed as
follows:

– The drawing of Ha is unchanged and has height h(ma).
– For i = 1, . . . , min{L, k} − 1, release terminal x in the drawing of Ha

i , and
terminal t in the drawing of Hb

i . The drawings hence have height at most
h(ma

i ) + 1 and h(mb
i) + 1.

– For i = L, . . . , k − 1, release both terminals in the drawing of Hi.
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To explain how we put these drawings together, we distinguish two sub-cases:

Case (S2a): Assume first that k ≤ L, and consider Fig. 5. We place Ha on
the left, followed by Ha

1 , Ha
2 , . . . , Ha

k−1. All these graphs share terminal x, and
it spans the bottom row for Ha

1 , Ha
2 , . . . , Ha

k−1, so this draws x as a horizontal
segment. Now for i = 1, . . . , k − 1, rotate the drawing of Hb

i such that terminal
t spans the bottom row and terminal yi occupies the top left corner. We place
these rotated drawings in order Hb

k−1, H
b
k−2, . . . , H

b
1 ; then t is in the bottom row

and can be connected to x with a horizontal edge.
We increase the heights of these drawings (by inserting rows, if needed) such

that the two representations of yi are in the same row, yi is above the drawing of
yi+1 (for i < k−1), and s is above all yi’s. Then all terminals can be represented
as line segments and the invariant holds.

yk−1

Hb
k−1Ha

k−1

y1

t

s

Ha

x

Hb
1. . .. . .Ha

1

Fig. 5. Combining the subgraphs for a series composition. The case k ≤ L.

Let hi be the height of the drawing of Ha
i and Hb

i together in the final drawing.
Then hk−1 ≤ max{h(ma

k−1) + 1, h(mb
k−1) + 1} ≤ h(mk−1) + 1. For i < k −

1, the height has been increased further to keep yi above yi+1, hence hi ≤
max{h(mi)+1, hi+1+1}. Therefore, y1 is at height h1 ≤ max{h(m1)+1, h(m2)+
2, . . . , h(mk−1) + k − 1}, s is at least one higher, and the total height is

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k} (2)

Case (S2b): Now we study the case k > L, where we treat the graphs
HL, . . . , Hk−1 differently. Place Ha, Ha

1 , . . . , Ha
L−1, H

b
L−1, . . . , H

b
1 exactly as be-

fore. Add rows until HL, . . . , Hk−1 all have the same height, say hd, and place
them below the segment of x. We may have to add some columns to x if it is not
wide enough for the subgraphs. To make the two occurrences of t match up, we
extend the drawings of Hb

L−1, . . . , H
b
1 downwards and draw edge (x, t) vertically.

See Fig. 6.
To obtain a formula for the resulting height, we hence need to add hd − 1 to

the formula of (2) (after replacing k by L in it.) Since hd is the maximum height
among HL, . . . , Hk−1, and mL ≥ . . . ≥ mk, we have hd ≤ h(mL)+ 2 (recall that
both terminals were released for HL, . . . , Hk−1), and therefore

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mL−1) + L}+ h(mL) + 1 (3)

Analysis. Now we show that the above algorithm indeed yields a small area.
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HL . . . Hk−1

Ha Hb
1

s

yk

y1

. . .Ha
1 Ha

L−1 Hb
L−1

x

tt

. . .

Fig. 6. Combining the subgraphs for a series composition. The case k ≥ L.

Lemma 2. For a suitable choice of L, we have h(m) ≤ 12
√

m.

Proof. This clearly holds for m = 1. For a parallel composition, we have m1 ≥ mi

and hence mi ≤ m/2 for i ≥ 2, so by (1) and m ≥ 2

h(m) ≤ max{h(m1), h(m2) + 2, . . . , h(mk) + 2}
≤ max{h(m), h(m/2) + 2} ≤ max{12

√
m, 12

√
m/2 + 2} ≤ 12

√
m.

In case (S1), we have h(m) = h(ma) ≤ 12
√

ma ≤ 12
√

m. In case (S2), we
assumed ma ≥ mb. Also, mb ≥ 3 (because Ha

1 and Hb
1 have each an edge, and

(x, t) exists), and hence m ≥ 6. We choose L = 3
√

ma + 1.2 Now for case (S2a),
we have by (2)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k}
≤ max{h(ma), h(m/2) + L} since mi ≤ mb ≤ m/2 and k ≤ L

≤ max{12
√

ma, 12
√

m/2+3
√

ma+
1√
6

√
m} since L = 3

√
ma+1 and m ≥ 6

≤ max{12, (
12√

2
+ 3 +

1√
6
)}
√

m ≤ 12
√

m

Finally we consider case (S2b). We have m1 ≤ mb ≤ ma and mi ≤ m1, hence
mi ≤ mb/2 ≤ ma/2 for all i ≥ 2. Recall that the height in case (S2b) is by (3)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mL−1) + L}+ h(mL) + 1
≤ max{h(ma), h(ma/2) + L− 2}+ h(mL) + 3 ≤ 12

√
ma + 12

√
mL + 3,

where the last inequality holds by induction and because h(ma/2) + L − 2 ≤
12

√
ma

2 + 3
√

ma − 1 ≤ 12
√

ma. But

(
√

ma +
√

mL +
1
4
)2 = ma + mL +

1
16

+ 2
√

ma
√

mL +
1
2
√

ma +
1
2
√

mL

≤ ma + mL +
1
16
√

mamL + 2
√

mamL +
1
2
√

mamL +
1
3
√

mamL

2 Many thanks to Jason Schattman for helping with MAPLE to find small constants.
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by
√

ma ≥
√

3 ≥ 3
2

≤ ma + mL + 3
√

mamL = ma + mL + (L− 1)mL by L = 3
√

ma + 1
≤ ma + mL + m1 + m2 + . . . + mL−1 by mi ≥ mL for i < L

which is at most m. Putting it together, we get h(m) ≤ 12(
√

ma +
√

mL + 1
4 ) ≤

12
√

m as desired. ��

Theorem 1. Any series-parallel graph has a visibility representation with area
O(n3/2).

Proof. By the previous lemma, the height is O(
√

m) = O(
√

n) by m = 2n−3. To
analyze the width, notice that at the most we use one column for each edge. (Each
vertex obtains at least one incident vertical edge in the base case, and hence does
not contribute additional width.) Hence the width is at most m ≤ 2n − 3, and
the total area is O(n3/2). ��

We get better bounds if case (S2b) does not happen, i.e., if the series-parallel
graph has small fan-out.

Theorem 2. Any series-parallel graph with fan-out f has a visibility represen-
tation of area O(fn log n).

Proof. Assume first the graph is maximal. As in Theorem 1 the width is O(n),
so it suffices to show that h(m) ≤ 2 + f log m for a maximal SP-graph with
fanout f . We proceed by induction on the number of edges. In the base case
h(1) = 2 ≤ 2 + f log m. In case of a parallel composition, by (1) we have m2 ≤
m/2 and height

h(m) ≤ max{h(m1), h(m2) + 2} ≤ max{h(m1), h(m/2) + 2}
≤ max{2 + f log m1, 2 + f log(m/2) + 2} ≤ 2 + f log m

since f ≥ 2. For case (S1), the height is h(m) = h(ma) ≤ 2 + f log ma ≤
2 + f log m. In case (S2), we choose L = f , and hence always have k ≤ L and
are in case (S2a). Here, the height is by (2)

h(m) ≤ max{h(ma), h(m1) + 2, h(m2) + 3, . . . , h(mk−1) + k}
≤ max{h(ma), h(m/2) + f} since mi ≤ m/2 and k ≤ f

≤ max{2 + f log ma, 2 + f log(m/2) + f} ≤ 2 + f log m.

If the graph is not maximal, then it can be made a maximal SP-graph by adding
edges; this adds at most one to the fan-out f and hence the drawing of the
super-graph has area O(fn log n). ��

Note in particular that a series-parallel graph with maximum degree Δ has fan-
out at most Δ, so any series-parallel graph has a flat visibility representation
of area O(Δn log n). Also, any outer-planar graph is an SP-graph with fan-out
f ≤ 2, so this theorem implies our earlier result [3], and in fact yields exactly
the same visibility representation.
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We note here that most algorithms for visibility representations of planar
graphs (e.g. [23, 21]) are uni-directional, i.e., all edges are drawn as vertical line
segments. Our visibility representations use two directions, but since all boxes
of vertices have unit height, they can be made uni-directional at the cost of at
most doubling the height. Details are omitted.

4 Lower Bounds

Series-parallel graphs. Most of the previously given lower bounds for planar
drawings (see e.g. [14,2,19]) rely on an argument that we call the “stacked cycle
argument”, which we briefly review here because we will modify it later. Assume
we have a planar graph G with a fixed planar embedding and outer-face. A set
of disjoint cycles C1, . . . , Ck is called stacked cycles if Ci is outside the region
defined by Ci−1 for all i > 1. The following is well-known:

Fact 1. If G has k stacked cycles, then G needs at least a 2k × 2k-grid in any
planar polyline drawing that reflects the planar embedding and outer-face.

Therefore, to get a bound of Ω(n2) on the area, construct graphs that consist
of n/3 stacked triangles [14], or Ω(n) stacked cycles for some graph classes that
do not allow stacked triangles [19]. The left graph in Fig. 7 is a series-parallel
graph that has n/3 stacked cycles.

Theorem 3. There exists a series-parallel graph that requires a 2
3n × 2

3n-grid
in any polyline drawing that respects the planar embedding and outer-face.

3

4 5

6

7

9

8

1 2

Fig. 7. Two graphs with n/3 stacked cycles

Note that our graph (contrary to the other lower bound graphs cited above)
has many different planar embeddings, and using a different embedding one
can easily construct drawings of it in area O(n). Our algorithm (which changes
the planar embedding) achieves area O(n log n) since the graph has fan-out 2.
Frati [13] showed that another series-parallel graph (consisting of K2,n and a
complete ternary tree) needs Ω(n log n) in any poly-line drawing. Closing the
gap between his lower bound and our upper bound of O(n3/2) remains open.

k-outerplanar graphs. A k-outer-planar graph is defined as follows. Let G be
a graph with a fixed planar embedding. G is called 1-outer-plane if all vertices
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of G are on the outer-face (i.e., if G is outer-planar in this embedding.) G is
called k-outer-plane if the graph that results from removing all vertices from the
outer-face of G is (k − 1)-outer-plane in the induced embedding. A graph G is
called k-outer-planar if it is k-outer-plane in some planar embedding.

Clearly, k-outer-planar graphs generalize the concept of outer-planar graphs,
and hence for small (constant) k are good candidates for o(n2) area. Also, by
definition we cannot use a stacked cycle argument on them (a k-outer-planar
graph has at most k stacked cycles.) Nevertheless, we can show an Ω(n2) lower
bound on the area even for 2-outer-planar graphs.

To show this, we modify the stacked-cycle argument. Let G be a graph with
a fixed planar embedding, and let C1, . . . , Ck be k cycles that are edge-disjoint
and any two cycles have at most one vertex in common. We say that C1, . . . , Ck

are 1-fused stacked cycles if Ci is outside the region defined by Ci−1 except at
the one vertex that they may have in common. See Fig. 8.

6

2

1

3

5

7

4

p = pS

pN

Ck

Γ ′

Fig. 8. A 2-outerplanar graph with (n − 1)/2 1-fused stacked cycles, and adding a
1-fused cycle around a drawing

Lemma 3. Let G be a planar graph with a fixed planar embedding and outer-
face, and assume G has k 1-fused stacked cycles C1, . . . , Ck. Then any poly-line
drawing of G that respects the planar embedding and outer-face has width and
height at least k + 1.

Proof. We proceed by induction on k. Clearly we need width and height 2 to
draw the cycle C1. For k > 1, let G′ be the subgraph formed by the 1-fused
stacked cycles C1, . . . , Ck−1.

Consider an arbitrary poly-line drawing Γ of G, and let Γ ′ be the induced
drawing of G′, which has width and height at least k by induction. Consider
Fig. 8. The drawing of Ck in Γ must stay outside Γ ′, except at the point p
where Ck and Ck−1 have a vertex in common (if any.) Let pN and pS be points
at a vertex or bend in the topmost and bottommost row of Γ ′; by k ≥ 2 they
are distinct. So p �= pN or p �= pS ; assume the former. To go around pN , the
drawing of Ck in Γ must reach a point strictly higher than pN , and hence uses
at least one more row above Γ ′. Similarly one shows that Γ has at least one
more column than Γ ′. ��

Now we give a lower bound for 2-outerplanar graphs. The same graph also has
small pathwidth (defined precisely below.)
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Theorem 4. There exists a 3-connected 2-outer-planar graph of pathwidth 3
that requires an n+1

2 × n+1
2 -grid in any poly-line drawing that reflects the planar

embedding and outer-face.

Proof. (Sketch) Fig. 8 shows a graph that has (n − 1)/2 1-fused stacked cycles
and hence needs an (n + 1)/2 × (n + 1)/2-grid. Clearly it is 2-outerplanar and
has pathwidth 3. ��

Since this graph is 3-connected, no other planar embedding is possible. It is
possible to choose a different outer-face, but at least (n − 1)/4 1-fused stacked
cycles will remain regardless of this choice, and hence an Ω(n2) lower bound
applies to any planar drawing of this graph.

Graphs of small (proper) pathwidth. The same graph can also serve as a
lower-bound example for another restriction of planar graphs, namely, graphs
of bounded treewidth, pathwidth, and proper pathwidth. See for example Bod-
laender’s overview [4] for exact definition of treewidth and applications of these
graph classes. Graphs of treewidth 2 are exactly SP-graphs. Graphs of pathwidth
k are those that have a vertex order v1, . . . , vn such that for any i, at most k ver-
tices in v1, . . . , vi have a neighbour in vi+1, . . . , vn. Graphs of proper pathwidth
k are those that have a vertex order v1, . . . , vn such that for any edge (vi, vj),
we have |j − i| ≤ k. Graphs of proper pathwidth k are a subset of graphs of
pathwidth k, which in turn are a subset of graphs of treewidth k.

The labelling of vertices of the graph in Fig. 8 show that it has pathwidth at
most 3. Many other previously given lower-bound graphs that consist of stacked
cycles (see e.g. [2]) have constant pathwidth, even constant proper pathwidth,
usually equal to the length of the stacked cycles. We give one more example that
also has small maximum degree.

Theorem 5. There exists a 3-connected graph of proper pathwidth 3 with max-
imum degree 4 that requires Ω(n2) area in any poly-line drawing.

Proof. The right graph in Fig. 7 shows an example with proper pathwidth at
most 3 and maximum degree 4, and n/3 stacked cycles, hence needs a 2

3n× 2
3n-

grid in any polyline drawing. ��

Since planar partial 3-trees are also partial k-trees for any k ≥ 3, our lower
bounds holds for all partial k-trees with k ≥ 3, hence destroying the hope that
the linear-area layouts in 3D [10] could be replicated in 2D.
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2 Fachbereich Informatik & Informationswissenschaft, Universität Konstanz

3 Dipartimento di Informatica e Automazione, Università Roma Tre
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Abstract. We introduce a data stream model of computation for Graph Drawing,
where a source produces a graph one edge at a time. When an edge is produced, it
is immediately drawn and its drawing can not be altered. The drawing has an im-
age persistence, that controls the lifetime of edges. If the persistence is k, an edge
remains in the drawing for the time spent by the source to generate k edges, then
it fades away. In this model we study the area requirement of planar straight-line
grid drawings of trees, with different streaming orders, layout models, and quality
criteria. We assess the output quality of the presented algorithms by computing
the competitive ratio with respect to the best known offline algorithms.

1 Introduction

We consider the following model. A source produces a graph one edge at a time. When
an edge is produced, it is immediately drawn (i.e., before the next edge is produced)
and its drawing can not be altered. The drawing has an image persistence, that controls
the lifetime of edges. If the persistence is infinite, edges are never removed from the
drawing. Otherwise, suppose the persistence is k, an edge remains in the drawing for
the time spent by the source to generate k edges, and then it fades away.

Studying this model, which we call streamed graph drawing, is motivated by the
challenge of offering visualization facilities to streaming applications, where massive
amounts of data, too large even to be stored, are produced and processed at a very high
rate [12]. The data are available one element at a time and need to be processed quickly
and with limited resources. Examples of application fields include computer network
traffic analysis, logging of security data, stock exchange quotes’ correlation, etc.

For the user of the visualization facility it is natural to associate any graphic change
with a new datum coming from the stream. Hence, moving pieces of the drawing would
be potentially ambiguous. On the other hand, the drawing should have a size as limited
as possible.

� Work on this problem began at the BICI Workshop on Graph Drawing: Visualization of Large
Graphs, held in Bertinoro, Italy, in March 2008.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 292–303, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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Although streamed graph drawing is related to incremental and dynamic graph draw-
ing, it is qualitatively different from both. In incremental graph drawing the layout is
constructed step by step according to a precomputed vertex ordering that ensures invari-
ants regarding, e.g., its shape [3,7]. In streamed graph drawing the order cannot be cho-
sen. Dynamic graph drawing [4,11,13] usually refers to drawing sequences of graphs,
where drawings of consecutive graphs should be similar. Insertions and/or deletions
of vertices/edges are allowed and the current graph must be drawn without knowledge
of future updates. However, the current layout is only weakly constrained by previ-
ous drawings. In streamed graph drawing modifications concern only single edges and
previous layout decisions may not be altered.

While there is some work on computing properties of streamed graphs (see, e.g.,
[1,5,8]), very little has been done in the context of graph drawing. A result that applies
to streamed graph drawing with infinite persistence is shown in [13] in what is called
no change scenario. In that paper, a graph of maximum degree four is available one-
vertex-at-time and it is drawn orthogonally and with a few crossings.

We consider both a finite persistence and an infinite persistence model. Our results
in these models concern the area requirement for planar straight-line grid drawings of
trees, where we assume that the tree is streamed in such a way that the subtree to be
drawn is connected. Since a streamed graph drawing algorithm is a special case of an
online algorithm, it is reasonable to assess its output quality in terms of its competitive
ratio with respect to the best known offline algorithm. The obtained results are summa-
rized in Table 1, where n is the number of vertices of the current graph. For each type
of streaming order and for each class of trees investigated within each model, the table
reports the competitive ratio of a (specific) drawing algorithm, and the corresponding
lemma/theorem. The table puts in evidence the practical applicability of the finite per-
sistence model. On the other hand, the results on the infinite persistence model show
the intrinsic difficulty of the problem. In fact, in the paper we prove that a large family
of algorithms for the infinite persistence model requires Ω(2

n
8 /n) competitive ratio to

draw binary trees (see Lemma 5).
Another way to interpret our results on the infinite persistence model is the following:

All the area-efficient tree-drawing algorithms known in the literature have the capability
to inspect the entire tree for exploiting some balancing consideration. In the infinite
persistence model we ask the question of which is the achievable area bound if such an
inspection can not be done.

This paper is organized as follows. In Sect. 2 we introduce the concept of streamed
graph drawing. Area requirements for tree drawings in our two main models are derived
in Sects. 3 and 4, and we conclude with directions for future work in Sect. 5.

2 Framework

Let G = (V, E) be a simple undirected graph. A straight-line grid drawing Γ = Γ (G)
is a geometric representation of G such that each vertex is drawn as a distinct point of
an integer-coordinate grid, and each edge is drawn as a straight-line segment between
the points associated with its end-vertices. A drawing is planar if no two edges cross.
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Table 1. Summary of the results: competitive ratios of the proposed algorithms

Finite persistence model (constant persistence k)

Streaming order Graph class Area (competitive ratio)

Eulerian tour tree O(k2) Sect. 3, Theorem 2

Infinite persistence model (unbounded memory, n is the current graph size)

Streaming order Graph class Area (competitive ratio)

connected binary tree Θ(2n) Sect. 4.1, Lemma 4

tree, max. degree d Θ((d − 1)n) Sect. 4.1, Lemma 6

tree Ω(2n/n) Sect. 4.1, Lemma 7

BFS, DFS tree Θ(n) Sect. 4.2, Lemma 8

layered tree, max. degree d Θ(dn) Sect. 4.3, Lemma 9

Since we only consider planar straight-line grid drawings we simply refer to them as
drawings in the remainder.

Given a subset of edges E′ ⊆ E, the edge-induced (sub)graph G[E′] contains ex-
actly those vertices of V incident with edges in E′, and the edges in E′. We study the
problem of drawing a (potentially infinite) graph G described by a sequence of edges
(e1, e2, e3, . . . ), which we call a stream of edges, where ei is known at time i. Through-
out this paper, let W k

i = {ei−k+1, . . . , ei} denote a window of the stream of size k and
let Ei = {e1, . . . , ei} denote the prefix of the stream of length i. Observe that Ei = W i

i .
Our goal is to design online drawing algorithms for streamed graphs. An online

drawing algorithm incrementally constructs a drawing of the graph, by adding one edge
at a time according to the order in which they appear in the stream. Once a vertex is
placed, however, the decision must not be altered unless the vertex is removed.

Let Γ0 be an initially empty drawing. We deal with two models.

Finite persistence model. At each time i ≥ 1 and for some fixed parameter k ≥ 1,
called persistence, determine a drawing Γi of Gi = G[W k

i ] by adding ei to Γi−1
and dropping (if i > k) ei−k from Γi.

Infinite persistence model. At each time i ≥ 1, determine a drawing Γi of Gi =
G[Ei] by adding ei to Γi−1.

We relate the connectivity of the graph to the persistence of the drawing. If the persis-
tence k is finite, a stream of edges is connected if G[W k

i ] is connected for all i ≥ 1.
If the persistence is infinite, then a stream is connected if G[Ei] is connected for all
i ≥ 1. In both models we assume that the stream of edges is connected. Also, in the
finite persistence model we assume that our memory is bounded by O(k).

Since streamed graph drawing algorithms are special online algorithms, an important
assessment of quality is their competitive ratio. For a given online drawing algorithm A
and some measure of quality, consider any stream of edges S = (e1, e2, . . . ). Denote
by A(S) the quality of A executed on S, and by Opt(S) the quality achievable by an
optimal offline algorithm, i.e. an algorithm that knows the streaming order in advance.
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Fig. 1. (a) An Eulerian tour with a persistence k = 5. When W5 is the current window, vertex v
is disappeared from the drawing. (b) A leg of vertex u.

Where possible, we measure the effectiveness of A by evaluating its competitive ratio:
RA = maxS

A(S)
Opt(S) .

In the remainder of the paper we restrict our attention to the case where G is a tree,
the goal is to determine a planar straight-line grid drawing, and the measure of quality
is the area required by the drawing. Note that, Opt(S) = Θ(n) if G[S] is a binary tree
with n vertices [9] or if G[S] is a tree with n vertices and vertex degree bounded by√

n [10]. The best known area bound for general trees is O(n log n) [6,14]. In the next
two sections we give upper and lower bounds on the area competitive ratio of streamed
tree drawing algorithms under several streaming orders.

3 Finite Persistence Drawings of Trees

We consider the following scenario, corresponding to the intuitive notion of a user
traversing an undirected tree: the edges of the stream are given according to an Eu-
lerian tour of the tree where we suppose that the persistence k is much smaller than the
number of the edges of the tree (the tree may be considered “infinite”). Each edge is
traversed exactly twice: the first time in the forward direction and the second time in
the backward direction. This corresponds to a DFS traversal where backtracks explic-
itly appear. Observe that window W k

i contains in general both forward and backward
edges and that G[W k

i ] is always connected. Figure 1 shows an example of an Eulerian
tour where several windows of size 5 are highlighted: window W1 contains two forward
and three backward edges; window W5 contains all backward edges.

In this scenario a vertex may be encountered several times during the traversal. Con-
sider edge ei = (u, v) and assume that the Eulerian tour moves from u to v. We say that
ei leaves u and reaches v. Also, if v was already a vertex of Gi−1 (and hence is already
drawn in Γi−1) then, we say that ei returns to v. Otherwise, v has to be inserted into
the drawing Γi of Gi. Observe that if a vertex v, reached at time i, is reached again at
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time j, with j > i + k + 1, and is not reached at any intermediate time, then v has (in
general) two different representations in Γi and Γj .

The first algorithm presented in this section is the following. Consider m integer-
coordinate points p0, p1, . . . , pm−1 in convex position. An easy strategy is to use such
points clockwise in a greedy way. At each time i, we maintain an index nexti such
that point pnexti is the first unused point in clockwise order. The first edge e1 is drawn
between points p0 and p1 and next2 = 2. Suppose that edge ei = (u, v) has to be added
to the drawing. If v is not present in Γi−1, assign to v the coordinates of pnexti and set
nexti+1 = (nexti + 1) mod m. We call this algorithm GREEDY-CLOCKWISE (GC).

Algorithm GC guarantees a non-intersecting drawing provided that two conditions
are satisfied for all i: (Condition 1) Point pnexti is not used in Γi by any vertex different
from v. (Condition 2) Edge ei does not cross any edge of Γi. Lemma 1 and Lemma 2
show that satisfying Condition 1 implies satisfying Condition 2. Let w be a vertex of
Γi, we denote by i(w) the time when vertex w entered Γi.

Lemma 1. Let Γi be a drawing of Gi constructed by Algorithm GC and let v1, v2, and
v3 be three vertices of Gi such that i(v1) < i(v2) < i(v3) in Γi. If there is a sequence
of forward edges from v1 to v3, then there is a sequence of forward edges from v1 to v2.

Proof. Consider edges ei(v1) = (v0, v1) and ej = (v1, v0) of the stream. The Eulerian
tour implies that the vertices reached by a forward path from v1 are those vertices
incident to some edge eh, with i(v1) < h < j. Suppose for a contradiction that v2
is not reached by a forward path from v1. Since v2 was drawn after v1, this implies
i(v2) > j. It follows that also i(v3) > j. Hence, v3 can not be reached by a forward
path from v1. ��

Lemma 2. Let Γi−1 be a drawing of Gi−1 constructed by Algorithm GC and consider
a vertex v that is not in Gi−1 and should be added to Gi−1 at time i. If Condition 1 is
satisfied, then no crossing is introduced by drawing v at pnexti .

Proof. Let ei = (u, v). Draw v on pnexti . Since Condition 1 is satisfied, then pnexti is
not used by any vertex. Suppose for contradiction that Γi has a crossing. It follows that
there exists in Γi an edge (x, y), such that vertices x, u, y, v appear in this relative order
in the clockwise direction. By Condition 1 and since the points are used in a greedy
way, i(x) < i(u) < i(y) < i(v). Because of edge (x, y), there is a forward path from x
to y and hence by Lemma 1 there is a forward path from x to u. Analogously, because
of edge (u, v), there is a forward path from u to v and hence by Lemma 1 there is a
forward path from u to y. Hence, there is an undirected cycle in Gi involving x, u, and
y. This is a contradiction since we are exploring a tree. ��

Consider two edges ei = (u, v) and ej = (v, u), with j > i. Observe that j − i is odd.
Edges ei, ei+1, . . . , ej are a leg of u. Vertices discovered at times i, i+1, . . . , j, i.e., the
j−i+1

2 distinct vertices incident to edges ei+1, . . . , ej−1, are a foot of u. Node v is the
heel of the foot and the last discovered vertex of the foot is the toe. Figure 1(b) shows
the drawing of a leg (and provides a hint of why its vertices are called a foot). A foot is
itself composed of smaller feet, where the smallest possible foot is when a leaf of the
tree is reached, that is, when its heel and its toe are the same vertex (as for vertex y of
Fig. 1(b)).
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Consider the case when j − i ≤ k. This implies that u is present in all the drawings
Γi−1, . . . , Γj+k . In this case we say that the foot is a regular foot (or R-foot). Otherwise,
we say that it is an extra-large foot (or XL-foot).

Property 1. A regular foot has maximum size �k
2 	.

Observe that in any drawing constructed by Algorithm GC the vertices of a regular foot
are contiguously placed after its heel, the toe being the last in clockwise order.

Property 2. Let i be the time when an extra-large foot of v is entered by the Eulerian
tour. Vertex v disappears from the drawing at time i + k.

Now, we exploit the above properties and lemmas to prove that, if k is the persistence
of the drawing and if the tree has maximum degree d (where a binary tree has d = 3),
then it suffices using �k

2 	 · (d− 1)+ k+1 points in convex position to guarantee to GC
that Condition 1 is satisfied. In order to prove this we need the following lemma.

Lemma 3. Consider Algorithm GC on m points in convex position. Suppose that for
each vertex v it holds that during the time elapsing from when v is discovered and
when it disappears from the drawing at most m− 1 other vertices are discovered. Then
Condition 1 holds at each time.

Proof. Suppose, for a contradiction that there exists a vertex u, discovered at time i, for
which Condition 1 does not hold because point pnexti is used by vertex w �= u. Since
GC is greedy, after u has been inserted all the m points have been used. This implies
that after w and before u, m− 1 vertices have been discovered. Summing up, we have
that w violates the condition of the statement.

Theorem 1. Let S be a stream of edges produced by an Eulerian tour of a tree of degree
at most d. Algorithm GC draws S with persistence k without crossings on �k

2 	 · (d −
1) + k + 1 points in convex position. Also RGC = O(d3k2).

Proof. Due to Lemma 2 it suffices to show that Condition 1 holds at each time i. We
exploit Lemma 3 to show that during the time elapsing from when a vertex v is discov-
ered and when it disappears from the drawing at most �k

2 	 · (d − 1) + k other vertices
are discovered. Suppose v is discovered by edge ei = (u, v). Three cases are possible:
(i) v is a leaf; (ii) all feet of v are regular; (iii) v has an XL-foot. Case (i) is simple: we
have that v disappears from the drawing at time i+k+1. Hence, at most k vertices can
be discovered before it disappears. In Case (ii) since each R-foot can have at most �k

2 	
vertices (Property 1) and since at most (d− 1) of them can be traversed, the maximum
number of vertices that can be discovered after v enters the drawing and before it disap-
pears is �k

2 	·(d−1)+k (see Fig. 1(a) for an example with k = 5). In Case (iii), because
of Property 2, after the XL-foot is entered, at most k vertices can be discovered before
v disappears. Hence, the worst case is that the XL-foot follows d− 2 R-feet. Overall, a
maximum of �k

2 	 · (d− 2) + k vertices can be discovered before v disappears.
Regarding the competitive ratio, m grid points in convex position take O(m3) area

[2], and therefore the area of the drawing of our online algorithm is Θ(d3k3). Finally,
any offline algorithm requires Ω(k) area for placing O(k) vertices. ��
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Fig. 2. (a) Feet 1, 2, and 3 are drawn by GC, foot 4 is drawn by GCC. (b) Foot 3 is an XL-foot
of u. Its size is large enough to promote v as the oldest vertex in place of u.

Theorem 1 uses a number of points that is proportional to the maximum degree of
the tree. In the following we introduce a second algorithm that uses a number of points
that only depends on the persistence k.

Intuitively, the basic strategy is to alternate Algorithm GC with its mirrored version,
called GREEDY-COUNTER-CLOCKWISE (GCC), where, at each step, nexti is possibly
decreased rather than increased. Namely, let old(Γi) be the oldest vertex of Γi, that is,
the vertex that appears in Γi, Γi−1, . . . , Γi−j with highest j. The decision of switching
between GC and GCC (or vice versa) is taken each time you start to draw a new foot of
old(Γi). We begin with Algorithm GC and use points in the clockwise direction with
respect to old(Γi) until we have used enough of them to ensure that the points near
to old(Γi) in the counter-clockwise direction are available. At this point, we switch to
Algorithm GCC, starting from the point immediately next to old(Γi) in the counter-
clockwise direction, and we use Algorithm GCC to draw the next feet of old(Γi)
until the last drawn foot of old(Γi) has used enough points in the counter-clockwise
direction to ensure that the points in clockwise direction are available. Figure 2(a)
shows an example where three feet were drawn by GC and the fourth foot is drawn
by GCC.

Formally, Algorithm SNOWPLOW (SP) works as follows. Let oldi be the index of
the point of Γi where old(Γi) is drawn. Suppose that edge ei = (u, v) has to be added to
the drawing. If v is present in Γi−1 then Γi = Γi−1. Otherwise, if u �= oldi or u = oldi

but (nexti − oldi) mod m ≤ �k
2	, place v on pnexti and set nexti+1 = (nexti + 1)

mod m. If u = oldi and (nexti − oldi) mod m > �k
2	, then switch to GCC, that is,

place v on point p(oldi−1) mod m and set nexti+1 = (oldi − 2) mod m.
A critical step is when old(Γi) �= old(Γi−1). This happens when an XL-foot is drawn

either by GC or by GCC. In this case the heel of such a foot becomes the oldest vertex
(see Fig. 2(b) for an example).

We show in the following that SP needs 2k − 1 points in convex position to pro-
duce a non-crossing drawing of the stream of edges independently of the degree of the
vertices.
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Theorem 2. Let S be a stream of edges produced by an Eulerian tour of a tree. Al-
gorithm SP draws S with persistence k without crossings on 2k − 1 points in convex
position. Also RSP = O(k2).

Sketch of Proof: Suppose that Algorithm SP is in its GC phase. Assume, without loss
of generality, that poldi = p0, and denote by P+ = {p1, p2, . . . p� k

2 �−1} (P− =
{p−1, p−2, . . . p−� k

2 �+1}) the points after poldi in clockwise (counter-clockwise) order.
Consider the case when poldi has a sequence of R-feet. In order to switch to the GCC
phase at least �k

2 	 points and at most 2�k
2 	−1 points of P+ are used. Since at least �k

2 	
points are used of P+, at least the same amount of time elapsed from when the current
GC phase started. Hence, points in P− are not used by any vertex. ��

4 Infinite Persistence Drawings of Trees

We consider different scenarios depending on the ordering of the edges in the stream:
(i) The edges come in an arbitrary order, with the only constraint that the connectivity is
preserved, (ii) the edges come according to a DFS/BFS traversal, (iii) the edges come
layer by layer. For each scenario different classes of trees are analyzed.

4.1 Arbitrary Order Scenario

In the arbitrary order scenario we first analyze the case of binary trees, then we give
results for bounded degree trees and, eventually, for general trees. The following lemma
deals with a very simple drawing strategy.

Lemma 4. Let S = (e1, e2, . . . ) be any stream of edges such that, at each time i ≥ 1,
Gi is a rooted binary tree. Suppose that the root of all Gi is one of the two end-vertices
of e1. There exists a drawing algorithm A for S in the infinite persistence model, such
that the drawing of any Gi is downward with respect to the root and RA = Θ(2n).

Sketch of Proof: Place the root at (0, 0) and place its first child v1 on (0, 1) and its
second child v2 on (1, 1). For every vertex v placed at (x, y) reserve in each subsequent
row z > y the points from xl = 2z−y · x to xr = 2z−y(x + 1)− 1 (see Fig. 3(a)). It is
easy to see that an area of O(n) × O(2n) is always sufficient for any stream of edges
representing a binary tree. The bound is tight since the stream describing the path-like
tree of Fig. 3(a) uses an area of Ω(n) × Ω(2n). Since the best offline algorithm can
draw a binary tree in linear area, the statement follows. ��

The algorithm in the proof of Lemma 4 is such that whatever is the order in which the
edges of a complete binary tree are given, it always computes the same drawing, up
to a permutation of the vertex labels. We call such an algorithm a predefined-location
algorithm for binary trees. Since the competitive ratio of the very simple algorithm in
Lemma 4 is exponential, one can ask if there exists a better algorithm that uses a similar
strategy. Unfortunately, the next result shows that this is not the case.

Lemma 5. Let A be any predefined-location algorithm for binary trees in the infinite
persistence model. Then RA = Ω(2

n
8 /n).
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Fig. 3. (a) A drawing produced by the algorithm in the proof of Lemma 4. Bold edges represent an
edge sequence that causes exponential area. (b) Schematic illustration of the proof of Lemma 5.

Proof. We show that there exists a sequence of edges such that the drawing computed
by A for the binary tree induced by this sequence requires Ω(2

n
8 ) area, where n is

the number of vertices of the tree. Since there exists an offline algorithm that com-
putes a drawing of optimal area Θ(n) for the binary tree, this implies the statement.
Refer to Fig. 3(b). By hypothesis the algorithm always computes the same drawing
for a rooted complete binary tree of depth h. Consider the bounding box R of such a
drawing. Clearly, the area of R is Ω(2h). Every path between two vertices of a com-
plete binary tree of depth h consists of at most 2h + 1 vertices and 2h edges (the first
level has number 0). Independently of the position of the first edge e1 = (u, v) of the
stream, we can define a subsequence of the stream with at most 8h edges that forces
the algorithm to draw two paths, one consisting of at most 4h edges and going from
the left side to the right side of R, and the other consisting of at most 4h edges and
going from the bottom side to the top side of R, as shown in the figure. Therefore, for
this subsequence of n = 8h edges and vertices the algorithm constructs a drawing of
area Ω(2h). ��

If the stream of edges induces at each time a tree whose vertices have degree bounded
by a constant d, then we can define a drawing algorithm similar to the one described in
the proof of Lemma 4. Namely, when a new edge e = (u, v) is processed and v is the
k-th child of u, we set y(v) = y(u)+1 and x(v) = (d−1) ·x(u)+k−1. Hence, using
the same worst case analysis performed in the proof of Lemma 4, the drawing area used
by this algorithm is Θ(n)×Θ((d−1)n). Since there exists an offline drawing algorithm
that takes Θ(n) area for bounded degree trees [10], we get the following result.

Lemma 6. Let S = (e1, e2, . . . ) be any stream of edges such that, at each time i ≥ 1,
Gi is a tree with vertex degree at most d. There exists a drawing algorithm A for S in
the infinite persistence model, such that RA = Θ((d − 1)n).

The next result extends Lemma 6 to general trees. It proves that there exists an algorithm
to draw any infinite tree in the infinite persistence model, under the hypothesis that the
stream is connected. In this case we give only a lower bound of the area.
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(a) (b) (c) (d) (e) (f)

Fig. 4. Illustration of the algorithm described in the proof of Lemma 7

(a) (b) (c)

Fig. 5. Slicing the cone of a vertex and inserting its child: (a) initial configuration; (b) slicing the
cone and finding the closest grid point; (c) inserting the edge.

Lemma 7. There exists an algorithm A that draws in the infinite persistence model any
stream of edges S = (e1, e2, . . . ) such that Gi is a tree of arbitrary vertex degree. The
exponential competitive ratio of A is RA = Ω(2n/n).

Sketch of Proof: A greedy drawing strategy is the following (see Fig. 4 and Fig. 5).
For each vertex u already placed in the drawing, the algorithm reserves an infinite cone
centered at u that does not intersect with any other cone. Each time a new edge e =
(u, v) is added to the drawing, the algorithm splits the cone of u into two halves, one
of which will be the new cone of u and the other will be used to place v at the first
available grid point inside it and to reserve a new (sub-)cone for v. Since all the cones
assigned to vertices are infinite, it is always possible to add further edges.

The lower bound of the competitive ratio is obtained when using as input the fam-
ily Gn = (Vn, En) defined by Vn = {1, . . . , n} and En = {(i, i + 1): 1 ≤ i ≤
n− 2} ∪ {(n− 2, n)}. ��

4.2 BFS and DFS Order Scenarios

If the edges in the stream are given according to some specific order, algorithms can be
designed that improve the competitive ratio obtained in the case of the arbitrary order.
We focus on orderings deriving from BFS or DFS traversals.

Lemma 8. Let S = (e1, e2, . . . ) be a stream of edges such that Gi is a tree of any
vertex degree, at each time i ≥ 1, and the edges of the stream are given according to
a BFS or to a DFS visit of the graph. There exists a drawing algorithm A for S in the
infinite persistence model, such that RA = Θ(n).

Sketch of Proof: In the case of the BFS order, we place the first vertex at (0, 0) and
all of its k children consecutively along the next row, starting at (0, 1). Processing the
children of any vertex at (x, y) we place all its children on the leftmost position that is
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Fig. 6. Running examples of drawing algorithms for (a) BFS (b) DFS, and (c) layer ordering

not yet occupied, starting at (0, y + 1) (see Fig. 6(a)). The required area is clearly in
O(n2) for this algorithm. For offline algorithms the required area is bound from below
by Ω(n) and thus the statement follows. It can be seen that the worst–case for the BFS
order requires a quadratic area, which implies that the analysis is tight. When drawing
a tree that comes in DFS order, every vertex can be placed at the leftmost unoccupied
position below its parent. The area is O(n2) and the analysis of the worst case implies
that this bound is tight. ��

4.3 Layer Order

This scenario is intermediate between the BFS order scenario and the arbitrary order
one. In the layer order scenario edges come layer by layer, but the order of the edges in
each layer is arbitrary. We prove the following.

Lemma 9. Let d > 0 be a given integer constant and let S = (e1, e2, . . . ) be any
stream of edges such that Gi is a tree of vertex degree at most d, at each time i ≥ 1,
and the edges of the stream are given according to a layer order. There exists a drawing
algorithm A for S in the infinite persistence model, such that RA = Θ(dn).

Proof. Algorithm A works as follows. If e1 = (u, v) is the first edge of the stream,
set x(u) = 0, y(u) = 0, x(v) = 0, y(v) = 1. Also, since u has at most other d − 1
adjacent vertices, reserve (d − 1) consecutive grid points to the right of v. When the
first vertex of a new level l (l ≥ 1) enters the drawing, all vertices of the previous level
l − 1 have been already drawn. Hence, if nl−1 is the number of vertices of level l − 1,
reserve (d−1)nl−1 consecutive grid points for the vertices of level l. Namely, denote by
u1, u2, . . . , unl−1 the vertices at level l − 1, from left to right. Use the leftmost (d− 1)
grid points at level l for arranging the children of u1, the next (d − 1) grid points for
arranging the children of u2, and so on. See Fig. 6(c) for an example. The width of the
drawing increases at most linearly with the number of vertices of the tree. Indeed, if the
width of the drawing is w, there is at least one level l of the drawing having a vertex
with x-coordinate equal to w. This implies that level l− 1 contains w/(d− 1) vertices.
Also, since each level contains at least one vertex and since the height of the drawing is
equal to the number of levels, the height of the drawing increases at most linearly with
the number of vertices. Hence, the area is O(dn) × O(n). Also, it is easy to find an
instance requiring such an area. The best offline algorithm takes Θ(n) area. ��
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5 Open Problems

This paper opens many possible research directions, including the following: (i) Some
of our algorithms have high competitive ratio, hence it is natural to investigate better
solutions. (ii) Computing tighter lower bounds would allow us to have a more precise
evaluation of streaming algorithms. (iii) It would be interesting to extend the study to
larger classes of planar graphs or even to general graphs. (iv) Other persistence mod-
els can be considered. For example we could have drawings where the persistence is
O(log n), where n is the size of the stream.
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3-Trees of Bounded Degree
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Abstract. It is known that every planar graph has a planar embed-
ding where edges are represented by non-crossing straight-line segments.
We study the planar slope number, i.e., the minimum number of distinct
edge-slopes in such a drawing of a planar graph with maximum degree Δ.
We show that the planar slope number of every series-parallel graph of
maximum degree three is three. We also show that the planar slope num-
ber of every planar partial 3-tree and also every plane partial 3-tree is
at most 2O(Δ). In particular, we answer the question of Dujmović et al.
[Computational Geometry 38 (3), pp. 194–212 (2007)] whether there is
a function f such that plane maximal outerplanar graphs can be drawn
using at most f(Δ) slopes.

Keywords: graph drawing; planar graphs; slopes; planar slope number.

1 Introduction

The slope number of a graph G was introduced by Wade and Chu [10]. It is
defined as the minimum number of distinct edge-slopes in a straight-line drawing
of G. Clearly, the slope number of G is at most the number of edges of G, and
it is at least half of the maximum degree Δ of G.

Dujmović et al. [2] asked whether there was a function f such that each graph
with maximum degree Δ could be drawn using at most f(Δ) slopes. In general,
the answer is no due to a result of Barát et al. [1]. Later, Pach and Pálvölgyi [9]
and Dujmović et al. [3] proved that for every Δ ≥ 5, there are graphs of maximum
degree Δ that need an arbitrarily large number of slopes.

On the other hand, Keszegh et al. [6] proved that every subcubic graph with at
least one vertex of degree less than three can be drawn using at most four slopes;
Mukkamala and Szegedy [8] extended this bound to every cubic graph. Dujmović
et al. [3] give a number of bounds in terms of the maximum degree: for interval
graphs, cocomparability graphs, or AT-free graphs. All the results mentioned so
far are related to straight-line drawings which are not necessarily non-crossing.
� Supported by project 1M0021620838 of the Czech Ministry of Education.

�� Supported by grant 1M0545 of the Czech Ministry of Education.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 304–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree 305

It is known that every planar graph G can be drawn so that edges of G are
represented by non-crossing segments [5]. Hence, it is natural to examine the
minimum number of slopes in a planar embedding of a planar graph.

In this paper, we make the (standard) distinction between planar graphs,
which are graphs that admit a plane embedding, and plane graphs, which are
graphs accompanied with a fixed prescribed combinatorial embedding, including
a prescribed outer face. Accordingly, we distinguish between the planar slope
number of a planar graph G, which is the smallest number of slopes needed
to construct any straight-line plane embedding of G, as opposed to the plane
slope number of a plane graph G, which is the smallest number of slopes needed
to realize the prescribed combinatorial embedding of G as a straight-line plane
embedding.

The research of slope parameters related to plane embedding was initiated by
Dujmović et al. [2]. In [4], there are numerous results for the plane slope number
of various classes of graphs. For instance, it is proved that every plane 3-tree
can be drawn using at most 2n slopes, where n is its number of vertices. It is
also shown that every 3-connected plane cubic graph can be drawn using three
slopes, except for the three edges on the outer face.

In this paper, we study both the plane slope number and the planar slope
number. The lower bounds of [1,9,3] for bounded-degree graphs do not apply
to our case, because the constructed graphs with large slope numbers are not
planar. Moreover, the upper bounds of [6,8] give drawings that contain crossings
even for planar graphs.

For a fixed k ∈ N, a k-tree is defined recursively as follows. A complete graph
on k vertices is a k-tree. If G is a k-tree and K is a k-clique of G, then the graph
formed by adding a new vertex to G and making it adjacent to all vertices of K
is also a k-tree. A subgraph of a k-tree is called a partial k-tree.

A two-terminal graph (G, s, t) is a graph together with two distinct prescribed
vertices s, t ∈ V (G), known as terminals. The vertex s is called source and t is
called sink. For a pair (G1, s1, t1), (G2, s2, t2) of two-terminal graphs, a serial-
ization is an operation that identifies t1 with s2, yielding a new two-terminal
graph with terminals s1 and t2. Similarly, a parallelization is an operation which
consists of identifying s1 with s2 into a single vertex s, and t1 with t2 into a
single vertex t, thus yielding a two-terminal graph with terminals s and t. A
two-terminal graph (G, s, t) is called series-parallel graph or SP-graph for short,
if it either consists of a single edge connecting the vertices s and t, or if it can
be obtained from smaller SP-graphs by serialization or parallelization.

We present several upper bounds on the plane and planar slope number in
terms of the maximum degree Δ. The most general result of this paper is the
following theorem, which deals with plane partial 3-trees.

Theorem 1. The plane slope number of any plane partial 3-tree with maximum
degree Δ is at most 2O(Δ).

Note that the above theorem implies that the planar slope number of any partial
planar 3-tree is also at most 2O(Δ). Since every outerplanar graph is also a partial
3-tree, the result above answers a question of Dujmović et al. [4], who asked
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whether a plane maximal outerplanar graph can be drawn using at most f(Δ)
slopes.

In this extended abstract, we omit the proof of Theorem 1. Section 3 contains
the proof of a weaker version of this result which deals with (non-partial) plane
3-trees.

In the special case of series-parallel graphs of maximum degree at most 3, we
are able to prove an even better (in fact optimal) upper bound.

Theorem 2. Any series-parallel graph with maximum degree at most 3 has pla-
nar slope number at most 3.

Parts of the proof of Theorem 2 are in Section 2.
Let us introduce some basic terminology and notation that will be used

throughout this paper. Let s be a segment in the plane. The smallest angle
α ∈ [0, π) such that s can be made horizontal by a clockwise rotation by α,
is called the slope of s. The directed slope of a directed segment is an angle
α′ ∈ [0, 2π) defined analogously.

A plane graph is called a near triangulation if all faces, except the outer face,
are triangles.

2 Series-Parallel Graphs

In this section, we show the main ideas of the proof of Theorem 2.
We will in fact show that any series-parallel graph of maximum degree three

can be embedded using the slopes from the set S = {0, π/4,−π/4}. This partic-
ular choice of S is purely aesthetic. Throughout this section, segments of slope
π/4 (or 0, or −π/4) will be known as increasing (or horizontal, or decreasing,
respectively).

First we give some useful definitions. For a pair of integers j and k, we say
that a series-parallel graph (G, s, t) is a (j, k)-graph if G has maximum degree
three, and furthermore, the vertex s has degree at most j and the vertex t has
degree at most k.

Let us begin by a simple but useful lemma whose proof is omitted.

Lemma 1. Let (G, s, t) be a (1, 1)-graph. Then G is either a single edge, a
serialization of two edges, or a serialization of three graphs G1, G2 and G3,
where G1 and G3 consist of a single edge and G2 is a (2, 2)-graph.

We proceed with more terminology. An up-triangle abc is a right isosceles triangle
whose hypotenuse ab is horizontal and whose vertex c is above the hypotenuse.
We say that a series parallel graph (G, s, t) has an up-triangle embedding if it can
be embedded inside an up-triangle abc using the slopes from S, in such a way
that the two vertices s and t coincide with the two endpoints of the hypotenuse
of abc, and all the remaining vertices are either inside or on the boundary of abc.

The concept of up-triangle embedding is motivated by the following lemma.

Lemma 2. Every (2, 2)-graph has an up-triangle embedding.
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Proof. Let (G, s, t) be a (2, 2)-graph. We proceed by induction on the size of G.
If G is a single edge, it obviously has an up-triangle embedding. If G is obtained
by serialization or parallelization then there are a few cases to discuss. They are
depicted in Fig. 1. ��
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Fig. 1. Possible construction of a (2, 2)-graph G by serialization and parallelization of
(1, 1)-graphs

To deal with (3, 2)-graphs, we need a more general concept than up-triangle
embeddings. To this end, we introduce the following definitions.

An up-spade is a convex pentagon with vertices a, b, c, d, e in counterclockwise
order, such that the segment ab is decreasing, the segment bc is horizontal,
the segment cd is increasing, the segment ed is decreasing and the segment ae is
increasing. We say that a series-parallel graph (G, s, t) has an up-spade embedding
if it can be embedded into an up-spade abcde using the slopes from S, in such
a way that the vertex s coincides with the point a, the vertex t coincides either
with the point b or with the point c, and all the remaining vertices of G are inside
or on the boundary of the up-spade. Analogously, a reverse up-spade embedding
is an embedding of a series-parallel graph (G, s, t) in which s coincides with b or
c and t coincides with d.

Lemma 3. Every (3, 2)-graph (G, s, t) has an up-spade embedding or an up-
triangle embedding. Similarly, every (2, 3)-graph (G, s, t) has a reverse up-spade
embedding or an up-triangle embedding.

Proof. It suffices to prove just the first part of the lemma; the other part is
symmetric. We again proceed by induction.

Let (G, s, t) be a (3, 2)-graph. If G is also a (2, 2)-graph, then G has an up-
triangle embedding by Lemma 2. Assume that G is not a (2, 2)-graph. It is easy
to see that in such case G has no up-triangle embedding, since it is impossible
to embed three edges into an up-triangle in such a way that they meet in the
endpoint of its hypotenuse.

Assume that G has been obtained by a serialization of a sequence of graphs
G1, G2, . . . , Gk, and that each of the graphs Gi is a single edge or a parallelization
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of smaller graphs. It follows that the graph G2 is a single edge, because otherwise
the two graphs G1 and G2 would share a vertex of degree at least 4. Let G+

3 be
the (possibly empty) serialization of G3, . . . , Gk. If G+

3 is nonempty, it has an
up-triangle embedding by Lemma 2. The graph G1 has an up-spade embedding
by induction. We may combine these embeddings as shown in Fig. 2 to obtain
an up-spade embedding of G. If G+

3 is empty, the construction is even simpler.
Assume now that G has been obtained by parallelization. Necessarily, it was

a parallelization of a (1, 1)-graph G1 and a (2, 1)-graph G2. The graph G2 can
then be obtained by a serialization of a (2, 2)-graph G1

2 and a single edge G2
2.

The graph G1
2 has an up-triangle embedding. Combining these embeddings, we

obtain an up-spade embedding of G, as shown in Fig. 2. Note that we distinguish
the possible structure of G1 using Lemma 1. ��
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Fig. 2. Constructing an up-spade embedding of a (3, 2)-graph by serialization and
parallelization of smaller graphs

A similar case analysis can be done also for a (3, 3)-graph. The serialization is
easy by connecting two (3, 2)-graphs while the parallelization takes a few cases.
This finishes the proof of Theorem 2.

3 Planar 3-Trees

In this section, we outline a proof of a considerably weaker version of Theorem 1.
Our current goal is to prove the following result.

Theorem 3. There is a function g, such that every plane 3-tree with maximum
degree Δ can be drawn using at most g(Δ) slopes.

It is known that any plane 3-tree can be generated from a triangle by a sequence
of vertex-insertions into inner faces. Here, a vertex-insertion is an operation that
consists of creating a new vertex in the interior of a face, and then connecting
the new vertex to all the three vertices of the surrounding face, thus subdividing
the face into three new faces.

Throughout this section, we assume that Δ is a fixed integer.
For a partial plane 3-tree G we define the level of a vertex v as the smallest

integer k such there is a set V0 of k vertices of G with the property that v is on
the outer face of the plane graph G − V0. Let G be a partial plane 3-tree. An
edge of G is called balanced if it connects two vertices of the same level of G. An
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edge that is not balanced is called tilted. Similarly, a face of G whose vertices all
belong to the same level is called balanced, and any other face is called tilted. In
a 3-tree, the level of a vertex v can also be equivalently defined as the length of
the shortest path from v to a vertex on the outer face. However, this definition
cannot be used for plane partial 3-trees.

Note that whenever we insert a new vertex v into an inner face of a 3-tree,
the level of v is one higher than the minimum level of its three neighbors; note
also that the level of all the remaining vertices of the 3-tree is not affected by
the insertion of a new vertex.

Recall that a near triangulation is a plane graph whose every inner face is a
triangle.

Let u, v be a pair of vertices forming an edge. A bubble over uv is an outer-
planar plane near triangulation that contains the edge uv on the boundary of
the outer face. The edge uv is called the root of the bubble. An empty bubble is
a bubble that has no other edge apart from the root edge. A double bubble over
uv is a union of two bubbles over uv which have only u and v in common and
are attached to uv from its opposite sides. A leg is a graph L created from a
path P by adding a double bubble over every edge of P . The path P is called
the spine of L and the endpoints of P are also referred to as the endpoints of
the leg. Note that a single vertex is also considered to form a leg.

A tripod is a union of three legs which share a common endpoint. A spine
of a tripod is the union of the spines of its legs. Observe that a tripod is an
outerplanar graph. The vertex that is shared by all the three legs of a tripod is
called the central vertex.

Let G be a near triangulation, let Φ be an inner face of G. Let T be a tripod
with three legs X, Y, Z and a central vertex c. An insertion of tripod T into
the face Φ is the operation performed as follows. First, insert the central vertex
c into the interior of Φ an connect it by edges to the three vertices of Φ. This
subdivides Φ into three subfaces. Extend c into an embedding of the whole tripod
T , by embedding a single leg of the tripod into the interior of each of the three
subfaces. Next, connect every non-central vertex of the spine of the tripod to the
two vertices of Φ that share a face with the corresponding leg. Finally, connect
each non-spine vertex v of the tripod to the single vertex of Φ that shares a face
with v. See Fig. 3. Observe that the graph obtained by a tripod insertion into Φ
is again a near triangulation.

Lemma 4. Let G be a graph. The following statements are equivalent:

1. G is a plane 3-tree, i.e., G can be created from a triangle by a sequence of
vertex insertions into inner faces.

2. G can be created from a triangle by a sequence of tripod insertions into inner
faces.

3. G can be created from a triangle by a sequence of tripod insertions into
balanced inner faces.
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Fig. 3. An example of a tripod consisting of vertices of level 1 in a plane 3-tree

Proof. Clearly, (3) implies (2).
To observe that (2) implies (1), it suffices to notice that a tripod insertion

into a face Φ can be simulated by a sequence of vertex insertions: first insert
the central vertex of a tripod into Φ, then insert the vertices of the spine into
the resulting subfaces, and then create each bubble by inserting vertices into the
face that contains the root of the bubble and its subsequent subfaces.

To show that (1) implies (3), proceed by induction on the number of levels
in G. If G only has vertices of level 0, then it consists of a single triangle and there
is nothing to prove. Assume now that the G is a graph that contains vertices
of k > 0 distinct levels, and assume that any 3-tree with fewer levels can be
generated by a sequence of balanced tripod insertions by induction.

We will show that the vertices of level exactly k induce in G a subgraph whose
every connected component is a tripod, and that each of these tripods is inserted
inside a triangle whose vertices have level k − 1.

Let C be a connected component of the subgraph induced in G by the vertices
of level k. Let v1, v2, . . . , vm be the vertices of C, in the order in which they were
inserted when G was created by a sequence of vertex insertions. Let Φ be the
triangle into which the vertex v1 was inserted, and let x, y and z be the vertices
of Φ. Necessarily, all three of these vertices have level k− 1. Each of the vertices
v2, . . . , vm must have been inserted into the interior of Φ, and each of them must
have been inserted into a face that contained at least one of the three vertices
of Φ.

Note that at each point after the insertion of v1, there are exactly three faces
inside Φ that contain a pair of vertices of Φ; each of these three faces is incident
to an edge of Φ. Whenever a vertex vi is inserted into such a face, the subgraph
induced by vertices of level k grows by a single edge. These edges form a union
of three paths that share the vertex v1 as their common endpoint.

On the other hand, when a vertex vi is inserted into a face formed by a single
vertex of Φ and a pair of previously inserted vertices vj , v�, then the graph
induced by vertices of level k grows by two edges forming a triangular face with
another edge whose endpoints have level k.

With these observations, it is easily checked (e.g., by induction on i) that
for every i ≥ 1, the subgraph of G induced by the vertices v1, . . . , vi is a tripod
inserted into Φ. From this fact, it follows that the whole graph G could be created
by a sequence of tripod insertions into balanced faces. ��
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Note that when we insert a tripod into a balanced face, all the vertices of the
tripod will have the same level (which will be one higher than the level of the
face into which we insert the tripod). In particular, each balanced face we create
by this insertion is an inner face of the tripod that we insert.

We will use the construction of plane 3-trees by tripod insertions as a main
tool of our proof. Note that if G is a plane 3-tree of maximum degree at most
Δ, then any tripod T used in the construction of G has fewer than 3Δ vertices.
This is because every vertex of T is adjacent to a vertex of the triangular face
Φ into which T was inserted, but each vertex of Φ has fewer than Δ neighbors
on T . Let us say that a tripod T is Δ-bounded if it has maximum degree at
most Δ and if it has at most 3Δ vertices. We conclude that any plane 3-tree of
maximum degree Δ can be constructed by insertions of Δ-bounded tripods into
balanced inner faces.

Let us give some technical definitions. Let α be a directed slope and let p be a
point. We use the notation (p, α) to denote the ray starting in p with direction α.

Let G be a plane graph, let v be a vertex of G. We say that the vertex v has
visibility in direction α with respect to G, if the ray starting in v and having
direction α does not intersect the embedding of G in any point except v.

Assume now that G is a graph that has been obtained by inserting a tripod T
in to a triangle Φ with vertex set x, y, z. Assume that we are given an embedding
of the three vertices x, y, z as points in the plane, and we are also given a plane
embedding ET of the tripod T . We say that the embedding ET is compatible
with the embedding of x, y, z, if ET is inside the convex hull of x, y, z, and it is
possible to extend the plane embedding ET ∪ {x, y, z} into a plane straight-line
embedding of the whole graph G.

Let us explain in more detail the main idea of the proof. As the principal
step, we show that for every tripod T with at most 3Δ vertices, there is a
finite set FT of “permissible” embeddings of T , with the property that for any
triangle x, y, z embedded in the plane, there exists an embedding from FT whose
appropriately scaled and translated copy is compatible with x, y, z. Since there
are only finitely many tripods to consider, and since each considered tripod
has only finitely many embeddings specified, all these embeddings together only
define finitely many slopes, and finitely many (up to scaling) distinct triangular
faces.

We thus have only finitely many pairs (Φ, T ), where Φ is an embedding of a
triangular face appearing in a permissible embedding of a tripod T ′, and T is
a tripod. For each of these pairs we select a permissible embedding ET of the
tripod T that is compatible with Φ. Whenever we want to insert T into a scaled
copy of the face Φ, we use the appropriately scaled copy of ET , so that the slope
of a segment connecting a given vertex of Φ to a given vertex of ET will only
depend on the two vertices but not on the scaling of Φ.

As we know, any plane 3-tree G can be constructed as a sequence of tripod
insertions into balanced faces. We construct the embedding of G recursively, so
that whenever we need to insert a tripod T into an already embedded balanced
triangle, we use the embedding selected by the procedure from the previous
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paragraph. The total number of slopes of all the balanced edges in the embed-
ding of G can then be bounded by the total number of slopes appearing in
the permissible embeddings of all tripods. The total number of slopes of tilted
edges is bounded as well, which follows from the argument at the end of the last
paragraph.

Let us now turn towards the technical details of the argument.

Lemma 5. Let uv be a horizontal segment in the plane, let H be a halfplane
containing uv on its boundary and extending above uv, and let ϕ ∈ (0, π/2) be
an angle. Let z be the point in H such that the segments uz and vz have slopes
ϕ and −ϕ, respectively. There is a set S ⊆ (−ϕ, ϕ) of 2Δ slopes such that every
bubble B with root uv has a straight line drawing using only the slopes from S.
Furthermore, all the vertices of this drawing except u and v are in the interior
of the triangle uvz, and each vertex has visibility in any direction α ∈ (ϕ, π−ϕ).

Proof (Sketch of proof of Lemma 5). Assume ϕ and B are given. To construct
the drawing, first fix a sequence of slopes 0 < ϕ0 < ϕ1 < ϕ2 < . . . < ϕΔ−2 < ϕ.
In the first step, draw the vertices adjacent to u or v on a common line parallel
to line uv, such that the absolute values of the slopes of the edges between uv
and their neighbors belong to the sequence ϕ0, . . . , ϕΔ−2 (see Fig. 4).

u2 u1 u0 = r = v0 v1 v2
R‖

‖
u v

ϕ0 ϕ0

H

Fig. 4. Illustration of the proof of Lemma 5: drawing vertices adjacent to u and v

The rest of the bubble B can be expressed as a union of smaller bubbles,
each of them rooted at a horizontal edge that has been drawn in the first step.
We recursively apply the same drawing procedure to draw each of these smaller
bubbles, each of them inside its own triangle similar to uvz, as illustrated in
Fig. 5. ��

Now that we can draw isolated bubbles, we may describe how to combine these
drawings into a drawing of the whole leg of a tripod. Simply speaking, the
procedure concatenates the drawings from Lemma 5 (appropriately rotated) on
a single prescribed ray R.

Leg Drawing Procedure (LDP):
Input: A leg L with the central vertex u already drawn. A ray R with origin in u.
Output: Drawing of the leg L.

1. Assume that the spine of leg L contains vertices u = u0, u1, . . . , uk such that
uiui−1 is an edge for 0 < i ≤ k.
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u v

z

z′ z′′

Fig. 5. Drawing a bubble in a triangle

2. Draw vertices ui on R such that |ui−1 − u| < |ui − u| for 0 < i ≤ k.
3. Fix an angle ϕ ∈ (0, π/2).
4. Use the drawing from Lemma 5, rotated and reflected if necessary, on both

bubbles rooted at the edge ui−1ui for 0 < i ≤ k. All the drawings use the
same value of ϕ, and hence the same set S of slopes.

It is again not difficult to check that this procedure generates a correct plane
straight-line drawing of a given leg. A careful analysis allows us to conclude
that the drawing will use at most 2Δ slopes, and contain at most 4Δ distinct
triangular faces, up to scaling and translation. These slopes and face-types only
depend on the slope of the ray R and the choice of ϕ. Since by the choice of ϕ
we can force each bubble to be embedded inside an arbitrarily “flat” isosceles
triangle, we can easily argue that any vertex of the spine has visibility in any
direction that differs from the undirected slope of R by more than ϕ. Moreover,
a vertex v ∈ L that does not belong to the spine has visibility in those directions
that differ from the slope of R by more than ϕ and are directed towards the
half-plane of R containing v. Finally, the central vertex u has visibility in any
direction that differs from the directed slope of R by more than ϕ.

Finally we describe a procedure that combines the drawing of the individual
legs into the drawing of the whole tripod. Let ε denote the value π

100 (any
sufficiently small integral fraction of π is suitable here). The procedure expects
a triangle Φ whose vertices are three points a, b, c. It then selects the position of
a central vertex u, as well as the slopes of three rays R1, R2, R3 emanating from
u, and then draws the three legs of a given tripod on these rays by using LDP.
The slopes of the legs are chosen in such a way that the resulting embedding of
the tripod is compatible with Φ.

Furthermore, the slopes of the three rays are rounded to an integral multiple
of ε. This rounding ensures, that the slopes of the spines of the legs can only
take finitely many values (namely, at most 2π

ε ). It will follow that the procedure
can only generate (up to scaling) a finite number of tripod embeddings, for all
possible triangles Φ.

Tripod Drawing Procedure (TDP):
Input: A triangle Φ = {a, b, c} and a tripod T , where Φ is already drawn.
Output: Drawing of all vertices and edges of the tripod T inside Φ.
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1. Fix an angle ϕ ∈ (0, π
4 − ε)

2. Let u be the central vertex of T and let Li for i ∈ {1, 2, 3} be the legs of T .
3. Draw u to the intersection of the axes of the inner angles of Φ.
4. Process leg Li for i ∈ {1, 2, 3}:

(a) Let e be the endpoint of the spine of Li different from u.
(b) Let x, y be the vertices of Φ adjacent to the end e of Li.
(c) Let o be the axis of the angle cud.
(d) Let Ri be a ray originating at u of slope o rounded to integral multiple

of ε.
(e) Use LDP to draw Li on Ri. Scale the result so that it fits inside Ψ .

It is not difficult to check that the tripod-drawing procedure produces a correct
straight-line embedding of any tripod inside any triangle Φ. Moreover, there is
a set of slopes S of size at most 4Δπε−1 and a set of triangles τ of size at most
8Δπε−1, such that for any tripod T and any triangle Φ, the resulting embedding
of T only uses the slopes from the set S and all its inner faces are scaled copies
of triangles from τ .

The visibility properties and the “flatness” of the leg embedding guarantee
that the resulting tripod embedding is compatible with Φ.

Let us now consider the slopes of the ‘tilted’ segments, i.e., those segments
that connect a vertex of Φ with a vertex of the tripod embedded inside Φ by
TDP. Assume that Φ is fixed. For each Δ-bounded tripod T , there are at most
9Δ segments connecting a vertex of Φ with a vertex of T . The number of Δ-
bounded tripods is clearly finite (in fact, an upper bound of the form 2O(Δ) can
be obtained without much difficulty). We may now easily see that, for a fixed
Φ, the total number of slopes of the segments that connect a vertex of Φ with a
vertex of a Δ-bounded tripod is bounded.

Of course, for different triangles Φ, different slopes of this type arise. However,
this is not an issue for us, because to generate a plane embedding of a plane 3-tree
of maximum degree at most Δ, it is sufficient to insert Δ-bounded tripods into
faces of previously inserted tripods. Thus, there are only finitely many triangles
Φ for which we ever need to perform the tripod drawing procedure. Thus, by
repeated calls of TDP, we may construct an embedding of any plane 3-tree with
maximum degree Δ, while using at most g(Δ) slopes. More careful analysis of
these arguments reveals a bound of the form g(Δ) = 2O(Δ).

4 Conclusion and Open Problems

We have presented an upper bound of 2O(Δ) for the planar slope number of
planar partial 3-trees of maximum degree Δ. It is not obvious to us if the used
methods can be generalized to a larger class of graphs, such as planar partial
k-trees of bounded degree.

Let us remark that our proof of Theorem 1 actually implies a slightly stronger
statement: for any Δ there is a set of slopes S = S(Δ) of size 2O(Δ), such that
all partial plane 3-trees of maximum degree Δ can be drawn using the slopes
of S. This implies, for instance, that there is a constant ε = ε(Δ) > 0 such that
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in our drawing of a partial plane 3-tree of maximum degree Δ, any two edges
sharing a vertex have slopes differing by at least ε. Our method, however, is not
necessarily suitable for obtaining good bounds on ε.

In view of the results of Keszegh et al. [6] and Mukkamala and Szegedy [8]
for the slope number of (sub)cubic planar graphs, it would also be interesting to
find analogous bounds for the planar slope number.

The main open problem is to determine whether the planar slope number of a
planar graph can be bounded from above by a function of its maximum degree.

This paper does not address lower bounds for the planar slope number in
terms of Δ; this might be another direction worth pursuing.
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Drawing Planar 3-Trees with Given Face-Areas�
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Abstract. We study straight-line drawings of planar graphs such that
each interior face has a prescribed area. It was known that such drawings
exist for all planar graphs with maximum degree 3. We show here that
such drawings exist for all planar partial 3-trees, i.e., subgraphs of a
triangulated planar graph obtained by repeatedly inserting a vertex in
one triangle and connecting it to all vertices of the triangle. Moreover,
vertices have rational coordinates if the face-areas are rational, and we
can bound the resolution. We also give some negative results for other
graph classes.

1 Introduction

A planar graph is a graph that can be drawn without crossing. Fáry, Stein and
Wagner [3,9,12] proved independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments. Sometimes additional
constraints are imposed on the drawings. The most famous one is to have integer
coordinates while keeping the area small; it was shown in 1990 that this is always
possible in O(n2) area [4,8]. Another restriction might be to ask whether all edge
lengths are integral; this exists if the graph is 3-regular [5], but is open in general.

In this paper, we consider drawings with prescribed face areas. This has ap-
plications in cartograms, where faces (i.e., countries in a map) should be pro-
portional to some property of the country, such as population. Ringel [7] showed
that such drawings do not exist for all planar graphs. Thomassen [10] showed
that they do exist for planar graphs with maximum degree 3. Quite a few results
are known for drawings with prescribed face areas that are not straight-line, but
instead use orthogonal paths, preferably with few bends [11,1,2].

We show that every planar partial 3-tree, for any given set of face areas, admits
a planar straight-line drawing that respects the face areas. It is quite easy to
show that such drawings exist; our main contribution is that the coordinates are
rational (presuming the face-areas are). This has not been studied before when
drawing planar graphs with prescribed face-areas. Furthermore, we can bound
the resolution in terms of the number of vertices (albeit not polynomially).

It remains open whether Thomassen’s proof could be modified to yield rational
coordinates for all planar graphs of maximum degree 3; we provide some evidence
why this seems unlikely. We also show that some planar partial 4-tree cannot
� Research supported by NSERC.
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be realized at all, and another planar partial 4-tree can be realized only with
irrational coordinates.

2 Background

Let G = (V, E) be a graph with n vertices and m edges that is simple (has no
loops or multiple edges) and planar (can be drawn without crossing.) A planar
drawing of G splits the plane into connected pieces; the unbounded piece is
called the outer-face, all other pieces are called interior faces. We assume that
one combinatorial drawing (characterized by the clockwise order of edges around
each vertex and choice of the outer-face) has been fixed for G.

A planar straight-line drawing of G is an assignment of vertices to distinct
points in the plane such that no two (induced) straight-line segments of edges
cross, and the fixed order of edges and outer-face are respected.

Let A be a function that assigns non-negative rationals1 to interior faces of G.
We say that a planar straight-line drawing of G respects the given face areas if
every interior face f of G is drawn with area const ·A(f), where the constant is
the same for all faces. If A ≡ 1, then the drawing is called an equifacial drawing.

A graph G is a k-tree if it has a vertex order v1, . . . , vn such that for i > k
vertex vi has exactly k predecessors, i.e., earlier neighbours, and they form a
clique. A partial k-tree is a subgraph of a k-tree. Partial k-trees are the same as
graphs of treewidth at most k; such graphs have received huge attention in the
last few years due to the ability to solve many NP-hard problems in polynomial
time on graphs of constant treewidth.

Assume G is a planar 3-tree. Then vertex vi (for i > 3) has three predecessors
and they form a triangle. Hence we can think of G as being built up by starting
with a triangle, and repeatedly picking a face f (which is necessarily a triangle)
and subdividing f into three triangles by inserting a new vertex in it. One can
show that the first triangle in this process can be presumed to be the outer-face.

A planar partial 3-tree is a graph G′ that is planar and is the subgraph of
a 3-tree G [6]. Planar partial 3-trees include outerplanar graphs, series-parallel
graphs, Halin graphs and IO-graphs.

3 Drawing Planar Partial 3-Trees

We now show that every planar partial 3-tree can be drawn with given face areas.
A vital ingredient is how to draw K4 by placing one point inside a triangle.

Lemma 1. Let T be a triangle with area a
and vertices v0, v1, v2 in counterclockwise or-
der. For any non-negative value a0+a1+a2 =
a, there exists a point v∗ inside T such that
triangle {vi+1, vi−1, v

∗} has area ai, for i =
0, 1, 2 and addition modulo 3. v0

v1

v2

v∗
a0

a1

a2

1 Irrational face areas could be allowed, but would force irrational coordinates.
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Proof. Let (x0, y0), (x1, y1), (x2, y2), (x∗, y∗) be the coordinates of v0, v1, v2,
v∗, respectively. The signed area formula expresses the area of a triangle via
determinants; the result is positive if the vertices are counterclockwise around
the triangle and negative otherwise. In particular, for ai to be the area of a
triangle {vi+1, vi−1, v

∗} (for i = 0, 1, 2 and addition modulo 3), we must have

2 · ai =

∣∣∣∣∣∣
xi+1 yi+1 1
xi−1 yi−1 1
x∗ y∗ 1

∣∣∣∣∣∣
= (xi−1 · y∗ − x∗ · yi−1) − (xi−1 · yi+1 − xi+1 · yi−1) + (x∗ · yi+1 − xi+1 · y∗)

Since the triangle defined by v0, v1, v2 has area a = a1 + a2 + a3, we also know

2 · a =

∣∣∣∣∣∣
x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = (x1 · y2 − x2 · y1) − (x1 · y0 − x0 · y1) + (x2 · y0 − x0 · y2)

Combining these equations yields, after sufficient manipulation, that

x∗ =
a1 · x1 + a2 · x2 + a3 · x3

a1 + a2 + a3
and y∗ =

a1 · y1 + a2 · y2 + a3 · y3

a1 + a2 + a3
(1)

Since 2ai is non-negative, the signed-area formula guarantees that v∗ lies to the
left of the directed segments v0v1, v1v2, and v2v0, and hence inside T . �

Lemma 2. Every planar 3-tree can be drawn respecting prescribed face areas.

Proof. Assume v1, . . . , vn is the vertex-order that defined the 3-tree G, with
{v1, v2, v3} the outer-face. We proceed by induction on n. The base case is n = 3,
where this is obvious. If n ≥ 4, then consider the K4 formed by vn and its
neighbours. In G − vn, these neighbours form a triangle T that is an interior
face. Draw G− vn recursively, requiring as area for T the sum of the area of the
faces around vn. Then, by Lemma 1, vn can be added inside T suitably. �

Lemma 3. Every planar partial 3-tree can be drawn respecting prescribed face
areas.

Proof. Recall that a planar partial 3-tree can be augmented into a planar 3-tree
G by adding edges. Each time an edge is added, it divides a face fi into two
faces f1

i and f2
i . Let ai be the prescribed area for fi, then we choose area aj

i

for face f j
i such that a1

i + a2
i = ai, e.g. a1

i = a2
i = ai

2 . By Lemma 2, G can be
drawn respecting the prescribed face areas. Deleting all added edges then gives
the desired drawing. �

In our construction, we are interested not only in whether such a drawing exists,
but what bounds can be imposed on the resulting coordinates. If all areas are
rationals, then Equation (1) shows immediately that the newly placed vertex
v∗ has rational coordinates if the coordinates of T are rational. Hence, using
induction and starting in the base case with a triangle with rational coordinates,
one can immediately show that all coordinates of all vertices are rational. We
summarize:
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Theorem 1. Let G be a planar partial 3-tree and A be an assignment of non-
negative rationals to interior faces of G. Then G has a straight-line drawing such
that each interior face f of G has area A(f) and all coordinates are rationals.

We can also give bounds on the required resolution.

Theorem 2. Any planar 3-tree G has an equifacial straight-line drawing with
integer coordinates and width and height at most

∏n
k=1(2k + 1).

Proof. We show that G has an equifacial straight-line drawing with rational
coordinates in [0, 1] with common denominator at most

∏n
k=1(2k+1); the result

then follows after scaling. Let v1, . . . , vn be a vertex order of G with v1, v2, v3 the
outer-face. The drawing is the one from Theorem 1; we assume that v1, v2, v3 are
at the triangle T = {(1, 0), (0, 1), (0, 0)} (this can be enforced in the base case of
Lemma 2.) Since G is triangulated, it has 2n − 5 faces; so each interior face is
drawn with area a = 1/(4n − 10) since T has area 1/2. We show the bound on
the denominator only for x-coordinates; y-coordinates are proved similarly.

We need some notations. Recall that we can view graph G as being obtained
by inserting vertex vj into the triangle Tj spanned by the three predecessors of
vj . Let Gj be the subgraph of G induced by all vertices on or inside Tj . Since Tj

was a face in the graph induced by {v1, . . . , vj−1}, all vertices in Gj are either
vj , or one of its three predecessor, or a vertex in {vj+1, . . . , vn} and so Gj has
at most n− j + 4 vertices. Let fj be the number of interior faces in Gj ; we have
fj ≤ 2(n− j + 4)− 5 = 2n− 2j + 3. Also note that Tj contains exactly these fj

faces and they all have area 1/(4n− 10), so Tj has area fj/(4n − 10).
We will show by induction on i that vertex vi has x-coordinate

xi =
integer∏
4≤j≤i fj

(2)

for some integer that we will not analyze further to keep notation simple. Nothing
is to show for i = 1, 2, 3, since xi is an integer by choice of the points for the
outer-face triangle. For i ≥ 4, let vi0 , vi1 , vi2 be the three predecessors of vi.

For k = 0, 1, 2, Equation (2) holds for xik
by ik ≤ i − 1 and induction, and

expanding with integers fik+1, . . . , fi−1 yields

xik
=

integer∏
4≤j≤ik

fj
=

integer∏
4≤j≤i−1 fj

Equation (1) states that xi = (a0xi0 + a1xi1 + a2xi2 )/(a0 + a1 + a2), where
a0, a1, a2 are the areas of faces incident to vi. For k = 0, 1, 2, each ak is the
sum of faces in some subgraph, and therefore an integer multiple of 1/(4n− 10).
Furthermore, a0+a1+a2 is exactly the area of triangle Ti spanned by vi1 , vi2 , vi3 ,
which we argued earlier is fi/(4n− 10). Hence, as desired,

xi =
a0xi0 + a1xi1 + a2xi2

a0 + a1 + a2
=

∑2
k=0

integer
4n−10

integer∏
4≤j≤i−1 fj

fi

4n−10

=
integer∏
4≤j≤i fj

.
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Since f4, . . . , fn are integers, by Equation (2) all xi’s have common denominator

∏
4≤j≤n

fj ≤
∏

4≤j≤n

(2n − 2j + 3) =
n−3∏
k=1

(2k + 1) �

We mention without proof that we can obtain similar (but uglier-looking) bounds
for arbitrary integer face areas, by replacing ‘fj ’ by ‘the sum of the fj largest
face areas in G’. We also did experiments to see whether our bounds are tight.
We computed (using Maple) the coordinates in Theorem 2 for the planar 3-tree
v1, . . . , vn where vi has predecessors vi−1, vi−2, vi−3 for i ≥ 4; note that this
graph has fi = 2n−2i+3 and hence is a good candidate to obtain the bound in
Theorem 2. Figure 1 shows the least common denominator for various values of
n; they are smaller than the upper bound but are clearly growing in exponential
fashion as well.

n LCD in drawing upper bound
10 5.0 · 103 2.0 · 106

50 3.1 · 1034 2.8 · 1075

100 1.0 · 1082 1.7 · 10183

500 1.0 · 10427 2.0 · 101271

1000 2.8 · 10852 4.8 · 102853

Fig. 1. Lower and upper bounds on the resolution in the drawing

4 Negative Results

In this section, we give some examples of graphs where no realization with ra-
tional coordinates is possible, hence providing counter-example to some possible
conjectured generalizations of Theorem 1.

The first example is the octahedron where all face areas are 1 except for two
non-adjacent, non-opposite faces, which have area 3. As shown by Ringel [7],
any drawing that respects these areas must have some complex coordinates.
(Ringel’s result was actually for the graph G1 obtained from the octahedron
by subdividing two triangles further; the resulting graph then has no equifacial
drawing.) Note that both the octahedron and G1 are planar partial 4-trees, so
not all partial 4-trees have equifacial drawings.

The second example is the octahedron where all face areas are 1 except that
the three faces adjacent to the outer-face have area 3. (Alternatively, one could
ask for an equifacial drawing of graph G2 in Figure 2.) Assume, after possible
linear transformation, that the vertices in the outer-face are at (0, 0), (0, 13) and
(2, 0). Computing the signed area of all the faces one can show that the vertices
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Fig. 2. Graphs G1, G2 and G3

not on the outerface are at (10
3 + 2

√
3

13 , 5 −
√

3), (10
3 − 2

√
3

13 , 3) and ( 6
13 , 5 +

√
3).

Thus even if a partial 4-tree has an equifacial drawing, it may not have one with
rational coordinates.

The third example is again the octahedron, with three face areas prescribed
to be 0, which forces some edges to be aligned as shown in Figure 2. If all
other interior faces have area 1/8, and the outer-face is at (1, 0), (0, 1), (0, 0),
then similar computations show that some of the coordinates of the other three
vertices are (3 ±

√
5)/8. Let G3 be the graph obtained from the octahedron by

deleting the edges that are dashed in Figure 2. Graph G3 is a crucial ingredient
in Thomassen’s proof [10] that every planar of maximum degree 3 graph has a
straight-line drawing with given face areas: in one case he splits the input graph
into G3 and three subgraphs inside three interior faces of G3, draws G3 with the
edges aligned as in Figure 2, and recursively draws and pastes the subgraphs.
Since we showed that G3 cannot always be drawn with rational coordinates,
then Thomassen’s proof, as is, does not give rational coordinates. It remains an
open problem whether Thomassen’s proof could be modified to show that any
planar graph with maximum degree 3 has a drawing respecting given rational
face-areas that has rational coordinates.
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Abstract. We study 3D visibility representations of complete graphs
where vertices are represented by equal regular polygons lying in planes
parallel to the xy-plane. Edges correspond to the z-parallel visibility
among these polygons.

We improve the upper bound on the maximum size of a complete
graph with a 3D visibility representation by regular n-gons from 2O(n)

to O(n4).

1 Introduction

In this paper we study 3D visibility drawings that represent vertices by two-
dimensional sets placed in planes parallel to the xy-plane. Two vertices are
connected by an edge if and only if they can see each other in the direction that
is orthogonal to their planes, i.e., parallel to the z-axis.

This type of representation was introduced as a generalization of the 2D vis-
ibility drawing. The 2D rectangle visibility drawing received a wide attention
because of its connection to VLSI routing and circuit board layout [7,8].

The representation of vertices by rectangles remains popular also in the 3D
visibility drawing. A lot of papers are focused on the maximum size of a complete
graph with a 3D visibility representation by rectangles. Rote and Zelle provide
a representation of K22 (see [6]). On the other hand, Bose et al. [4] showed that
no complete graph with more than 102 vertices has such a representation. This
result was then improved to 55 by Fekete et al. [3] and recently by Štola [5]
to 50.

If the vertices are represented by unit squares then the largest complete graph
with this type of representation is K7 according to [3]. This is the only exact
result known about representations by equal regular n-gons. Only estimates are
known for n �= 4. Babilon et al. [2] show that K14 can be represented by equal
triangles. They also present a lower bound �n+1

2 � + 2 on the maximum size of
a complete graph with a 3D visibility representation by equal regular n-gons.
Štola [1] then moved this bound to n+1. The first upper bound 22n

was given by
Babilon et al. [2]. This doubly-exponential estimate was improved by Štola [1]
to an exponential

�6n−3
3n−1

�
− 3 ≈ 26n. The main result of this paper is another

significant improvement of this bound. We present a polynomial upper bound
O(n4).
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2 Preliminaries

Let P be a regular n-gon inscribed in a unit circle (with the center c). Let
v0, v1, . . . , vn = v0 be the vertices of P , s0 = v0v1, . . . , sn−1 = vn−1vn, sn = s0
the sides of P , mi the center of si and pi the half-line −−→cmi. If Pi is a copy of P
(shifted by a vector wi) then we denote its vertices by vi

j and the sides by si
j .

c

v0

v1

v2v3

v4

p0

p1

m0

m1 c

v1
0

v1
1

v1
2v1

3

v1
4

p0

p1

q1
0

q1
1P

P1

q1
2

(a) (b)

c1
1

c1
2

c1
3

Fig. 1.

The distance of vj and pj is sin(π/n), similarly dist(vj , pj−1) = sin(π/n)
and dist(sj , c) = cos(π/n). Hence, if |wi| < sin(π/n) then vi

j (the shifted copy
of vj) remains in the angle�mj−1cmj . If in addition |wi| < cos(π/n) then si

j

intersects pj.

Definition 1. Let {Pi, Pi = P + wi} be the set of shifted copies of a regular
n-gon P (inscribed in a unit circle). We say that this set is a short-distance set
if ∀i : |wi| < min(sin(π/n), cos(π/n)).

The definition of a short-distance set requires a reference polygon P that is close
to every polygon from the set. If the polygons Pi = P + wi are far from P but
close to each other, i.e., ∀i, j : |wi − wj | < min(sin(π/n), cos(π/n)) then they
also form a short-distance set because we can take any Pi as a reference polygon
in this case.

For a polygon Pi from a short-distance set we can define qi
j = pj ∩ si

j and
ci
j = dist(c, qi

j) (see Figure 1b). We call the n-tuple (ci
j)

n
j=1 the coordinates of Pi.

Every polygon can be reconstructed from its coordinates (see Figure 2). If
Hi

j is the half-plane with its boundary line hi
j such that c ∈ Hi

j , hi
j⊥pj and

dist(hi
j , c) = ci

j then Pi =
�n

j=1 Hi
j . Therefore the intersection Pi ∩ Pk =�n

j=1(H
i
j ∩ Hk

j ) can be described by coordinates (min(ci
j , c

k
j ))n

j=1.
We assume in the sequel that P is a regular n-gon inscribed in a unit circle

and {Pi = P + wi, i = 1, . . . , m} is a 3D visibility representation of a complete
graph Km. We assume that the z-coordinate of Pi is i but we use it to identify
polygons that can block visibility between other polygons only. Otherwise, we
ignore the z-coordinate and work with the polygons as if they were in the same
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c
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Fig. 2. Reconstruction of the polygon P1 from its coordinates

xy-parallel plane. Formally, these operations represent operations over orthogo-
nal projections of the relevant objects (points, lines, polygons) into a common
xy-parallel plane and the projection of the results (for example, intersection
points) into individual planes of the polygons.

Lemma 1. Polygons Pi and Pk can see each other if and only if there exists l
such that ∀j, i < j < k : (cj

l < min(ci
l, c

k
l ) or cj

l+1 < min(ci
l+1, c

k
l+1)).

Proof. Q = Pi ∩ Pk is a polygon given by coordinates (min(ci
j , c

k
j ))n

j=1. Let Ql

be the intersection of Q with the angle�mlcml+1 and ql be the (only) vertex of
Q in�mlcml+1.

pl pl+1

Ql

Pi Pk
Pjl

ql
pl pl+1

Ql

Pi Pk

ql

Pj

(a) (b)

ci
l
ck
l
cj
l

Fig. 3.

If cj
l < min(ci

l , c
k
l ) or cj

l+1 < min(ci
l+1, c

k
l+1) then Pj doesn’t block the visibility

of Pi and Pk in the neighborhood of ql, see Figure 3a. Hence, if for a fixed l this
condition holds for all polygons Pj between Pi and Pk then Pi and Pk can see
each other in the neighborhood of ql.

On the other hand, if ∀l ∃jl : i < jl < k, cjl

l ≥ min(ci
l , c

k
l ) and cjl

l+1 ≥
min(ci

l+1, c
k
l+1) then Pjl

blocks the visibility of Pi and Pk in the angle�mlcml+1,
see Figure 3b. Therefore Pi cannot see Pk. ��

Lemma 1 describes a sufficient and necessary condition for the visibility between
two polygons from a short-distance set. If we shift the polygon Pi by a sufficiently
small vector then we don’t break any of the strict inequalities in Lemma 1. In
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other words, the shifted polygon can see all polygons that the original polygon
can see. Therefore we can replace the original polygon Pi by the shifted one
without breaking the completeness of the represented graph. This observation
allows us to assume in the sequel that j-th coordinates of polygons are distinct,
i.e., ∀i, j, k, i �= k : ci

j �= ck
j .

Lemma 2. Let Pi be a regular n-gon with coordinates (ci
j)

n
j=1 and Pk = Pi +w

a shifted copy of Pi with coordinates (ck
j )n

j=1. If n is even then there are exactly
n/2 adjacent coordinates with sgn(ck

j − ci
j) = 1 and n/2 adjacent coordinates

with the opposite signum. If n is odd then there are �n/2� or �n/2� adjacent
coordinates with sgn(ck

j − ci
j) = 1 and the rest with the opposite signum.

Proof. The length of the orthogonal projection of w into a line containing pj is
|ck

j − ci
j |. The difference ck

j − ci
j is positive (resp. negative) if this projection of

w has the same (resp. the opposite) orientation as pj .

w

cc H+

H+
H−

H−

h

h

(a) (b)

w

p1

p2

p3

p4 p5

p1

p2p3

p4

p5 p6

Fig. 4.

Let h be a line such that h⊥w and c ∈ h. h divides the plane into half-planes
H+ and H−. Let H+ be the half-plane in the direction of the vector w. pj lies
in H+ resp. H− if ck

j > ci
j resp. ci

j > ck
j .

If n is even then exactly n/2 adjacent half-lines from (pj)n
j=1 lie in H+ and

n/2 adjacent half-lines lie in H−, see Figure 4a. If n is odd then �n/2� or �n/2�
adjacent half-lines lie in H+ and the rest of them lie in H−, see Figure 4b. ��

The next lemma shows that every 3D visibility representation of a complete
graph contains a large short-distance subset. The following sections focus on
these subsets.

Lemma 3. Let {Pi = P + wi, i = 1, . . . , m} be a set of regular n-gons. If {Pi}
is a 3D visibility representation of a complete graph Km then {Pi} contains
a short-distance subset with at least �m/16n2� polygons.

Proof. Every two polygons Pj , Pk from the representation have to intersect (to
see each other). Polygons {Pi} are shifted copies of P (a polygon inscribed into
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a unit circle). Hence, Pj can intersect Pk only if the distance of their centers is
at most 2. Therefore the set C of centers of polygons from {Pi} has the diameter
at most 2.

Let S be a square that contains all points from C and whose side-length
is 2. We can divide this square into 4n × 4n = 16n2 sub-squares with the side-
length 1/2n. At least one of these sub-squares must contain at least �m/16n2�
points of C. We claim that the polygons with the center in this sub-square form
a short-distance set.

It is sufficient to show that two points in one sub-square have the distance
lower than min(sin(π/n), cos(π/n)). For x ∈ (0, π/3〉 we have x√

2π
<

min(sin x, cos x). Hence, for n ≥ 3 we have 1√
2n

< min(sin(π/n), cos(π/n)) and
1√
2n

is the maximum distance of two points in one sub-square. ��

3 Regular 2k-gons

The goal of this section is a polynomial upper bound on the maximum size
of a complete graph with a 3D visibility representation by regular 2k-gons. We
start with a lemma that points out an important forbidden configuration of three
polygons.

Lemma 4. Let {P1, P2, P3} be a short-distance set of regular 2k-gons. If {P1,
P2, P3} is a 3D visibility representation of a complete graph K3 then it cannot
happen that c1

1 < c2
1 < c3

1 and c1
2 > c2

2 > c3
2 (where (ci

j)
n
j=1 are coordinates of Pi).

Proof. If c1
1 < c2

1 < c3
1 and c1

2 > c2
2 > c3

2 then c1
l > c2

l > c3
l for l ∈ {2, . . . , k + 1}

and c1
l < c2

l < c3
l for l ∈ {k + 2, . . . , 2k} ∪ {1} by Lemma 2. Therefore, c2

l >
min(c1

l , c
3
l ) for l ∈ {1, . . . , 2k} and P1 cannot see P3 according to Lemma 1 but

this is a contradiction. ��

The following lemma shows that if the sequence (ci
1)i of the first coordinates is

monotone then the size of the representation is small.

Lemma 5. Let {Pi, i = 1, . . . , m} be a short-distance set of regular 2k-gons.
If {Pi} is a 3D visibility representation of a complete graph Km and (ci

1)
m
i=1 is

a monotone sequence (where (ci
j)

n
j=1 are coordinates of Pi) then m ≤ k + 1.

Proof. We assume that the sequence (ci
1)

m
i=1 is increasing. The proof for a de-

creasing sequence is similar. Let I = {{i, j} : i < j, ci
2 > cj

2}, i.e., the pairs of
polygons whose boundaries intersect in�m1cm2. We claim that I = ∅ or

�
I �= ∅.

We proceed by contradiction. Let’s assume that I �= ∅ and
�

I = ∅. At first
we show that there must be (at least) two disjoint pairs in I. Let’s assume
that there aren’t two disjoint pairs in I. If {a, a : a < a} ∈ I then there exist
B = {b, b : b < b} and C = {c, c : c < c} in I such that a �∈ B and a �∈ C
(because a, a �∈

�
I). Moreover a ∈ B and a ∈ C because the pairs {a, a} and B

(resp. C) are not disjoint. If a = b then ca
1 < ca

1 = cb
1 < cb

1 and ca
2 > ca

2 = cb
2 > cb

2
which is in contradiction with Lemma 4. Therefore a = b and B = {b, a}.
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An analogous argument shows that a = c and C = {a, c}. The pairs B and C
are not disjoint according to our assumption. This can happen only if c = b but
then ca

1 < cc
1 = cb

1 < ca
1 and ca

2 > cc
2 = cb

2 > ca
2 which is in contradiction with

Lemma 4 again. This means that there must be two disjoint pairs in I.
Let {a, a : a < a} and {b, b : b < b} be disjoint pairs in I. We can assume

without loss of generality that a < b.
Let’s assume that a < b (see Figure 5):

a < a < b, a < b < b, (ci
1)i increasing ⇒ ca

1 < ca
1 < cb

1, c
a
1 < cb

1 < cb
1

{a, a : a < a}, {b, b : b < b} ∈ I ⇒ ca
2 > ca

2 , c
b
2 > cb

2

cb
1 < cb

1, c
b
2 > cb

2 ⇒ cb
l > cb

l , l ∈ {2, . . . , k + 1} by Lemma 2
ca
1 < ca

1 , c
a
2 > ca

2 ⇒ ca
l < ca

l , l ∈ {k + 2, . . . , 2k} ∪ {1} by Lemma 2

ca
1 < cb

1 ⇒ cb
k+1 < ca

k+1 by Lemma 2

p1

p2

pk+1

pk+2

PbPb

PaPa

PbPb

PaPa

Fig. 5.

We can see that ca
1 < cb

1 and cb
l > cb

l , l ∈ {2, . . . , k+1}. Therefore cb
l > min(ca

l , cb
l ),

l ∈ {1, . . . , k + 1}. Similarly, cb
k+1 < ca

k+1 and ca
l < ca

l , l ∈ {k + 2, . . . , 2k} ∪
{1}, i.e., ca

l > min(ca
l , cb

l ), l ∈ {k + 1, . . . , 2k} ∪ {1}. Hence, Pa cannot see Pb
according to Lemma 1 but this cannot happen because {Pi} is a representation
of a complete graph. Therefore, it cannot be a < b.

If b < a then a < b < b < a and ca
1 < cb

1 < cb
1 < ca

1 because (ci
1)i is

increasing. ca
2 < ca

2 and cb
2 < cb

2 because {a, a : a < a}, {b, b : b < b} ∈ I.
If ca

2 < cb
2 then Pb, Pb and Pa are in contradiction with Lemma 4. Similarly, if

cb
2 < ca

2 then Pa, Pb and Pb are in contradiction with Lemma 4. Therefore it
must be cb

2 < ca
2 < ca

2 < cb
2 but this means that the disjoint pairs {a, b : a < b},

{b, a : b < a} satisfy assumptions of the previous paragraph and we again have
a contradiction with the completeness of the represented graph.
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We know that a �= b because {a, a} and {b, b} are disjoint. On the other hand,
both possibilities a < b and b < a lead to a contradiction. Hence, the original
assumption that I �= ∅ and

�
I = ∅ cannot be satisfied. It must be either I = ∅

or
�

I �= ∅.
If I = ∅ then (ci

2)i is increasing. If I �= ∅ then there exists a ∈
�

I. This
means that if i < j and c2

i > c2
j then i = a or j = a. In other words, the

sequence (ci
2)i∈{1,...,m}\{a} is increasing.

We can repeat this proof with c2, c3, . . . , ck subsequently and show that there
is a set A such that |A| ≤ k and (ci

k+1)i∈{1,...,m}\A is increasing. On the other
hand, this sequence is also decreasing by Lemma 2 because (ci

1)i∈{1,...,m}\A is
increasing. Therefore the sequence (ci

k+1)i∈{1,...,m}\A has length at most 1 and
1 ≥ |{1, . . . , m} \ A| ≥ m − k. ��

Now we are ready to prove the main theorem of this section.

Theorem 1. If {Pi, i = 1, . . . , m} is a 3D visibility representation of a complete
graph Km by regular n-gons (where n = 2k) then m ≤ 4n2(n + 2)2.

Proof. The set {Pi} contains a short-distance subset {P ′
i} with at least �m/16n2�

polygons according to Lemma 3. Let (ci
j)

n
j=1 be coordinates of P ′

i . If �m/16n2� ≥
(k + 1)2 + 1 then due to Erdős-Szekeres theorem [9] the sequence (ci

1)
�m/16n2�
i=1

contains a monotone subsequence of length k + 2 which is in contradiction with
Lemma 5. Therefore m/16n2 ≤ �m/16n2� ≤ (k + 1)2. ��

4 Regular (2k + 1)-gons

We focus on regular (2k+1)-gons in this section. We prove a theorem analogous
to Theorem 1. Unfortunately, Lemma 4 doesn’t hold for (2k + 1)-gons. We have
to use a more complicated version.

Lemma 6. Let {P1, P2, P3, P4} be a short-distance set of regular (2k + 1)-gons.
If {Pi} is a 3D visibility representation of a complete graph K4 then it cannot
happen that c1

1 < c2
1 < c3

1 < c4
1 and c1

2 > c2
2 > c3

2 > c4
2 (where (ci

j)
n
j=1 are

coordinates of Pi).

Proof. If c1
1 < c2

1 < c3
1 < c4

1 and c1
2 > c2

2 > c3
2 > c4

2 then c1
l > c2

l > c3
l > c4

l

for l ∈ {2, . . . , k + 1} and c1
l < c2

l < c3
l < c4

l for l ∈ {k + 3, . . . , 2k + 1} ∪ {1}
by Lemma 2. In other words, c2

l > min(c1
l , c

3
l ) and c3

l > min(c2
l , c

4
l ) for l ∈

{1, . . . , 2k + 1} \ {k + 2}.
P1 and P3 can see each other. Therefore, c2

k+2 < min(c1
k+2, c

3
k+2) according

to Lemma 1. Similarly, c3
k+2 < min(c2

k+2, c
4
k+2) because P2 and P4 can see each

other. But this is a contradiction because the first inequality gives us c2
k+2 < c3

k+2
while c3

k+2 < c2
k+2 by the second inequality. ��

We need the following consequence of Lemma 6 several times in the sequel.
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Corollary 1. Let {P1, P2, P3, P4} be a short-distance set of regular (2k + 1)-
gons. If {Pi} is a 3D visibility representation of a complete graph K4 then it
cannot happen that c1

1 < c2
1 < c3

1 < c4
1 and c1

k+1 < c2
k+1 < c3

k+1 < c4
k+1 (or

c1
k+2 < c2

k+2 < c3
k+2 < c4

k+2).

Proof. If c1
1 < c2

1 < c3
1 < c4

1 and c1
k+1 < c2

k+1 < c3
k+1 < c4

k+1 then c1
k+2 >

c2
k+2 > c3

k+2 > c4
k+2 by Lemma 1 but this is in contradiction with Lemma 6 for

coordinates k+1 and k+2 (Lemma 6 holds for any pair of adjacent coordinates).
Similarly, if c1

1 < c2
1 < c3

1 < c4
1 and c1

k+2 < c2
k+2 < c3

k+2 < c4
k+2 then c1

k+1 >
c2
k+1 > c3

k+1 > c4
k+1 by Lemma 1 and we have a contradiction again. ��

The next lemma is an analogy of Lemma 5. The proof of this lemma is more
complicated because the representations by (2k + 1)-gons are more complicated
but the main ideas of both proofs (of Lemma 5 and Lemma 7) are the same.

Lemma 7. Let {Pi, i = 1, . . . , m} be a short-distance set of regular (2k+1)-gons.
There exists c > 0 independent of k such that if {Pi} is a 3D visibility repre-
sentation of a complete graph Km and (ci

1)
m
i=1 is a monotone sequence (where

(ci
j)

n
j=1 are coordinates of Pi) then m ≤ ck.

Proof. We assume that the sequence (ci
1)m

i=1 is increasing. The proof for a de-
creasing sequence is similar. Let I = {{i, j} : i < j, ci

2 > cj
2}. We claim that

there exists n0 ∈ IN (independent of k) such that I doesn’t contain n0 pairwise
disjoint pairs.

Let’s assume that J ⊆ I : ∀A, B ∈ J, A �= B ⇒ A∩B = ∅. Consider a complete
graph on the vertex set J . We color the edge {{a, a : a < a}, {b, b : b < b} : a < b}
by

– color 1 when a < b and ca
k+2 < min(ca

k+2, c
b
k+2)

– color 2 when a < b and ca
k+2 > min(ca

k+2, c
b
k+2)

– color 3 when b < a, ca
2 < cb

2, cb
2 < ca

2 and cb
k+2 < min(ca

k+2, c
a
k+2)

– color 4 when b < a, ca
2 < cb

2, cb
2 < ca

2 and cb
k+2 > min(ca

k+2, c
a
k+2)

– color 5 when b < a, ca
2 < cb

2 and ca
2 < cb

2

– color 6 when b < a, cb
2 < ca

2 and cb
2 < ca

2

– color 7 when b < a, cb
2 < ca

2 and ca
2 < cb

2

If {{a, a : a < a}, {b, b : b < b} : a < b} has the 7th color then ca
1 < cb

1 < cb
1 < ca

1

because a < b < b < a and (ci
1)i is increasing. cb

2 < cb
2 because {b, b : b <

b} ∈ I. Therefore ca
2 < cb

2 < cb
2 < ca

2 and Pa, Pb, Pb, Pa are in contradiction with
Lemma 6. Hence, the 7th the color is not used and every edge of KJ has one of
the first six colors.

According to Ramsey’s theorem [10,11] there exists n0 such that if |J | ≥ n0
then KJ contains a monochromatic subgraph KS, S = {{a, a : a < a}, {b, b : b <
b}, {c, c : c < c}, {d, d : d < d} : a < b < c < d}.

If KS has color 1 then ca
k+2 < cb

k+2 < cc
k+2 < cd

k+2, a < b < c < d and
ca
1 < cb

1 < cc
1 < cd

1 (because (ci
1)i is increasing). This is in contradiction with

Corollary 1.
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If KS has color 2 then we have:

a < b < b, a < a < b, (ci
1)i increasing ⇒ ca

1 < cb
1 < cb

1, c
a
1 < ca

1 < cb
1

{a, a : a < a}, {b, b : b < b} ∈ I ⇒ ca
2 < ca

2 , c
b
2 < cb

2

cb
1 < cb

1, c
b
2 < cb

2 ⇒ cb
l < cb

l , l ∈ {2, . . . , k + 1} by Lemma 2
ca
1 < ca

1 , c
a
2 < ca

2 ⇒ ca
l < ca

l , l ∈ {k + 3, . . . , 2k + 1} ∪ {1} by Lemma 2

We can see that ca
1 < cb

1 and cb
l < cb

l , l ∈ {2, . . . , k + 1}. Hence, cb
l > min(ca

l , cb
l )

for l ∈ {1, . . . , k +1}. Similarly, ca
l < ca

l , l ∈ {k +3, . . . , 2k +1}∪{1} and ca
k+2 >

min(ca
k+2, c

b
k+2). Therefore ca

l > min(ca
l , cb

l ) for l ∈ {k + 2, . . . , 2k + 1} ∪ {1}. If
ca
k+1 > min(ca

k+1, c
b
k+1) then Pa cannot see Pb according to Lemma 1. It must

be ca
k+1 < min(ca

k+1, c
b
k+1), namely ca

k+1 < cb
k+1. The same argument shows that

also cb
k+1 < cc

k+1 < cd
k+1. On the other hand, ca

1 < cb
1 < cc

1 < cd
1 (because

a < b < c < d) which is in contradiction with Corollary 1.
If KS has color 3 then cd

k+2 < cc
k+2 < cb

k+2 < ca
k+2, d < c < b < a and

cd
1 < cc

1 < cb
1 < ca

1 (because (ci
1)i is increasing) and we have a contradiction

again.
If KS has color 4 then we proceed in a similar way as with the second color.

We have:

ca
2 < cb

2, c
b
2 < ca

2

a < b < b < a, (ci
1)i increasing ⇒ ca

1 < cb
1 < cb

1 < ca
1

{a, a : a < a} ∈ I ⇒ ca
2 < ca

2

cb
1 < ca

1 , c
a
2 < ca

2 < cb
2 ⇒ ca

l < cb
l , l ∈ {2, . . . , k + 1} by Lemma 2

ca
1 < cb

1, c
b
2 < ca

2 < ca
2 ⇒ ca

l < cb
l , l ∈ {k + 3, . . . , 2k + 1} ∪ {1} by Lemma 2

We can see that ca
1 < cb

1 and ca
l < cb

l , l ∈ {2, . . . , k + 1}. Hence, cb
l > min(ca

l , ca
l )

for l ∈ {1, . . . , k +1}. Similarly, ca
l < cb

l , l ∈ {k +3, . . . , 2k +1}∪{1} and cb
k+2 >

min(ca
k+2, c

a
k+2). Therefore, cb

l > min(ca
l , ca

l ) for l ∈ {k + 2, . . . , 2k + 1} ∪ {1}. If
cb
k+1 > min(ca

k+1, c
a
k+1) then Pa cannot see Pa according to Lemma 1. It must

be cb
k+1 < min(ca

k+1, c
a
k+1), namely cb

k+1 < ca
k+1. The same argument shows that

also cd
k+1 < cc

k+1 < cb
k+1. On the other hand, cd

1 < cc
1 < cb

1 < ca
1 (because

d < c < b < a) which is in contradiction with Corollary 1.
If KS has color 5 then ca

2 < cb
2 < cc

2 < cd
2, d < c < b < a and cd

1 < cc
1 < cb

1 < ca
1

(because (ci
1)i is increasing). This is in contradiction with Lemma 6.

If KS has color 6 then cd
2 < cc

2 < cb
2 < ca

2 , a < b < c < d and ca
1 < cb

1 < cc
1 < cd

1
(because (ci

1)i is increasing) and we have a contradiction with Lemma 6 again.
We can see that KJ cannot contain a monochromatic subgraph KS. Therefore

|J | ≤ n0 − 1, i.e., I doesn’t contain n0 pairwise disjoint pairs.
Let Jmax ⊆ I be a maximal subset of pairwise disjoint pairs. We know that

|
�

Jmax| = 2|Jmax| ≤ 2(n0 − 1). For any A ∈ I there exists B ∈ Jmax such that
A ∩ B �= ∅. Hence, the sequence (ci

2)i∈{1,...,m}\
�

Jmax
is increasing.
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We can repeat this proof with c2, c3, . . . , ck subsequently and show that there
is a set J ′ such that |J ′| ≤ 2(n0 − 1)k and (ci

k+1)i∈{1,...,m}\J′ is increasing. The
sequence (ci

1)i∈{1,...,m}\J′ is also increasing. Therefore, its length is less than 4
by Corollary 1, i.e., 4 > |{1, . . . , m} \ J ′| ≥ m − 2(n0 − 1)k. ��

Lemma 7 allows us to prove an analogy of Theorem 1 for regular (2k + 1)-gons.

Theorem 2. There exists c > 0 such that if {Pi, i = 1, . . . , m} is a 3D visibility
representation of a complete graph Km by regular n-gons (where n = 2k + 1)
then m ≤ cn4.

Proof. The proof is the same as the proof of Theorem 1 (using Lemma 7 instead
of Lemma 5). ��

If we combine Theorem 1 and Theorem 2 then we obtain the following result.

Theorem 3. If s(n) is the maximum size of a complete graph with a 3D visibility
representation by equal regular n-gons then s(n) = O(n4).

Proof. Theorem 1 if n is even and Theorem 2 if n is odd. ��

5 Conclusion

We show that the maximum size of a complete graph with a 3D visibility rep-
resentation by regular n-gons is O(n4). This result is a significant improvement
of the previously known exponential bound

�6n−3
3n−1

�
− 3 ≈ 26n from [1]. We don’t

attempt to minimize constants in this estimate because there still remains a big
gap between the lower bound Ω(n) and our upper bound O(n4).
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Abstract. We show that recognizing intersection graphs of convex sets
has the same complexity as deciding truth in the existential theory of
the reals. Comparing this to similar results on the rectilinear crossing
number and intersection graphs of line segments, we argue that there is
a need to recognize this level of complexity as its own class.

1 Introduction

We show that determining whether a graph can be realized as an intersection
graph of convex sets in the plane has the same complexity as deciding the truth of
existential first-order sentences over the real numbers. This connection between
geometry and logic is not uncommon: Kratochv́ıl and Matoušek [11], for example,
showed that recognizing intersection graphs of line segments also has the same
complexity as the existential theory of the reals (we include a slightly simplified
proof of that result), and there are several other geometric problems that share
the same complexity. We therefore suggest the introduction of a new complexity
class ∃R, which captures the complexity of deciding the truth of the existential
theory of the reals.

Remark 1. In the formal definition of ∃R we will not allow equality. If we de-
fine ∃=R like ∃R, but with equality allowed, we obtain a complexity class for
which there is a name in the Blum-Shub-Smale model of computing over the
reals: BP(NP0

R
) [3]; this class has not played a major role in that model so

far (as reflected by the complexity of the notation). Somewhat surprisingly,
∃R = ∃=R [21], even though algebraically the two classes differ, e.g. x2 = 2
defines an irrational point, which is not possible without equality.

The first combinatorial problem shown complete for ∃R was stretchability of
simple pseudoline arrangements, a result due to Mnëv as a byproduct of his uni-
versality theorem [14,18,23]. There have been several other problems classified as
∃R-complete since, including the algorithmic Steinitz problem [2], intersection
graphs of line segments [11], and straight-line realizability of abstract topologi-
cal graphs [13]. Very often, however, ∃R-completeness is not claimed explicitly;

� Some of this work was done in the beautiful library at Oberwolfach during the
seminar on Discrete Geometry in September 2008.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 334–344, 2010.
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for example, in the case of the rectilinear crossing number, Bienstock gave a re-
duction from stretchability to the rectilinear crossing number problem. Since the
problem can easily be shown to lie in ∃R (see Section 3) computing the rectilinear
crossing number is ∃R-complete. So—in a sense—the complexity of the problem
is known precisely, but it is not unusual to see the complexity question for the
rectilinear crossing number listed as an open problem [15]. There is some good
reason for that: we do not know how to capture ∃R well with respect to clas-
sical complexity classes: we know that it contains NP (this follows easily from
the definition of ∃R; also, Shor gave a direct proof that stretchability is NP-
hard [23]) and is itself contained in PSPACE, a remarkable improvement on
Tarski’s original decision procedure for the theory of reals by Canny [4]. So, in a
sense, we do not know the complexity of the rectilinear crossing number problem,
since we can only position it between NP and PSPACE. We should approach
this situation in the same spirit as we do NP-completeness: NP-completeness
of a problem does not exclude the possibility that the problems is in P or EXP-
complete, but proving it NP-complete focuses that question on the real issue,
away from the particular problem, and towards the study of the structural as-
pects of NP-completeness as a whole. Something similar should be possible for
∃R-completeness. Knowing that a problem is ∃R-complete does not tell us more
than that it is NP-hard and in PSPACE in terms of classical complexity, but it
does tell us where to start the attack: by studying the structure of ∃R-complete
problems; so asking, like [15], whether the rectilinear crossing number can be
decided in NP is really asking whether ∃R lies in NP. And that puts a different
perspective on the problem. A solution will likely not come out of graph drawing
or graph theory, but out of a better understanding of real algebraic geometry
and logic; what satisfiability is for NP, the existential theory of the reals is
for ∃R.

To justify our claim of the importance of ∃R and the necessity of a new com-
plexity class, we need to find natural ∃R-complete problems. In this note we give
three examples: two known (one implicitly), one new. Plus one bonus problem
in topological inference. This work is part of a more comprehensive project in
which we survey many other problems as candidates for ∃R-completeness includ-
ing several other new results, including graph and linkage realizability and the
complexity of finding Brouwer fixed points and Nash equilibria [19].

2 Background

The existential theory of the reals is the set of true sentences of the form

(∃x1, . . . , xn) ϕ(x1, . . . , xn),

where ϕ is a quantifier-free Boolean formula (without negation) over the sig-
nature (0, 1, +, ∗, <) interpreted over the universe of real numbers. It was first
shown by Tarski that this theory is decidable; it is now known to be decidable
in PSPACE by a result of Canny [4].



336 M. Schaefer

By disallowing negation, we restrict ourselves to strict inequalities, which is
the version of the problem relevant to the examples presented in the current
note; let us call the set of true sentences of this theory STRICT INEQ. With
this we define the complexity class ∃R as the closure of STRICT INEQ under
polynomial-time reductions. A problem is ∃R-complete if it belongs to ∃R and
every problem in ∃R can be reduced to it by a polynomial-time reduction. Note
that NP ⊆ ∃R, since we can express satisfiability of a Boolean formula in ∃R.
For example, (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) is equivalent to

(∃x, y, z)[ (−ε < x < 2) ∧ (−ε < y < 2) ∧ (−ε < z < 2)
∧ (x(1 − y)z) + ((1 − x)yz) + ((1 − x)(1 − y)(1 − z)) < ε],

if we choose ε = 1/8(1 + 4m) = 1/104 where m is the number of clauses, so
m = 3 in the example.

A pseudoline is a simple closed curve in the projective plane that is home-
omorphic to a straight line. An arrangement of pseudolines is a collection of
pseudolines so that each pair of pseudolines cross at most once (and do not
touch). An arrangement is simple if no more than two pseudolines pass through
a point. Two arrangements are equivalent if there is a homeomorphism of the pro-
jective plane turning one into the other. An arrangement of pseudolines is simply
stretchable if it is equivalent to a simple arrangement of straight lines. (So being
simply stretchable means the original arrangement is simple and stretchable.)

Remark 2. If one wants to avoid the reference to the projective plane, one can
define pseudolines in the plane as simple x-monotone curves, that is curves that
cross every vertical line exactly once. If one takes this route, one needs to require
that in an arrangement of pseudolines every pair of pseudolines crosses exactly
once (as opposed to at most once).

Mnëv showed that STRICT INEQ reduces to SIMPLE STRETCHABILITY; since
the reverse is also true, SIMPLE STRETCHABILITY is ∃R-complete. Shor later
simplified the reduction [23]. From this it immediately follows that SIMPLE
STRETCHABILITY is NP-hard, since ∃R-hardness implies NP-hardness as we
saw above. (Shor [23] also gave a direct proof.)

∃R-hard problems typically require large representations; Goodman, Pollack
and Sturmfels [8] showed that there are stretchable arrangements of n pseudo-
lines whose coordinate representation requires 2cn bits for some constant c > 0.
(Equivalently, if we want to draw the endpoints on a grid, it must have size at
least 22c′n

for some c′ > 0.) Typically, reductions from an ∃R-hard problem A to
another problem B are geometric in the sense that if we are given a geometric
representation of B, we can derive a geometric representation of A which is of at
most polynomial size in the bit-size of the original representation. For example,
this is the case for Bienstock’s reduction from simple stretchability to rectilinear
crossing number. We can then conclude (as Bienstock did) that there are graphs
for which any straight-line drawing with optimal rectilinear crossing number re-
quires 2cn bits of storage. All other reductions in this note are also geometric,
so geometric representations of these problem will require exponential precision.
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3 Rectilinear Crossing Number

The rectilinear crossing number of G, lin-cr(G), is the smallest number of cross-
ings in a straight-line drawing of G, that is, a drawing in which every edge is
represented by a straight-line segment and at most two edges intersect in a point.
The problem is NP-hard by Garey and Johnson’s original proof that comput-
ing the crossing number is NP-hard [7] and it remains NP-hard even if the
graph is cubic and 3-connected [9,16]. Bienstock gave an easy and elegant reduc-
tion that shows that SIMPLE STRETCHABILITY reduces to deciding whether
lin-cr(G) ≤ k, even if G is restricted to be cubic [1].

Theorem 1 (Bienstock [1]). Computing the rectilinear crossing number of a
(cubic) graph is ∃R-complete. There are graphs for which the coordinates of the
vertices in an lin-cr-optimal drawing of the graph require exponential precision
(in the size of the graph).

Proof. ∃R-hardness follows from Bienstock’s reduction as does the claim about
exponential precision, so we only have to show that determining whether
lin-cr(G) ≤ k lies in ∃R; the only, small, difficulty is that we do not know
which edges of the graph cross, so we need to guess a subset of pairs of edges of
size at most k using real numbers.

Using quantifier-free formulas, we can define colinear (x1, y1, x2, y2, x3, y3) to
express that the three points (xi, yi)i∈[3] are not colinear and a predicate
cross(x1, y1, x2, y2, x

′
1, y

′
1, x

′
2, y

′
2) expressing that the two line segments deter-

mined by (x1, y1), (x2, y2) and (x′
1, y

′
1), (x′

2, y
′
2) do not have a point in common

(details in the full paper).
For a fixed k and m = |E(G)|, we can write a predicate atmostk(z1, . . . , zm2)

which guarantees that at most k of the zi are greater than zero:∧
i∈[m2]

(
(−1/2m4 < zi < 0) ∨ (1 + 1/2m2 < zi)

)
∧

∑
i∈[m2]

zi < k + 1.

Since lin-cr(G) ≤
(
m
2

)
, we can assume that k ≤

(
m
2

)
; so the sum of the negative

zi is at least −1/2m2. If more than k of the zi are positive, their sum is at least
k + 1 + (k + 1)/2m2, but then the total sum is at least k + 1. On the other
hand, given any subset of the zi of size at most k, we can assign each zi in
the set the value 1 + 2/3m2 and every other zi gets the value −2/3m4, so that∑

i∈[m2] zi ≤ k + 2/3 < k + 1, showing that any subset of the zi can be realized
by atmostk.

With these predicates, we can express lin-cr(G) ≤ k; to simplify the formula,
suppose that V (G) = [n], E(G) = [m], and we have two functions h, t : E → V
so that h(e) = x and t(e) = y if e ∈ E is an edge between x, y ∈ V . We
use z(i−1)m+j > 0 to indicate that edges i and j are allowed to cross. Now
lin-cr(G) ≤ k if and only if
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(∃x1, y1, . . . , xn, yn, z1, . . . , zm) [ atmostk(z1, . . . , zm2)

∧
∧

i<j<k∈[n]

colinear (xi, yi, xj , yj, xk, yk)

∧
∧

i<j∈[m],
not adjacent

(z(i−1)m+j >0) ∨ cross(xh(i), yh(i), xt(i), yt(i), xh(j), yh(j), xt(j), yt(j))].

4 Intersection Graphs of Segments

G = (V, E) is an intersection graph of line segments if for each v ∈ V there is a
line segment �v in the plane so that uv ∈ E if and only if �u and �v intersect.

Theorem 2 (Kratochv́ıl, Matoušek [11]). Recognizing intersection graphs
of line segments is ∃R-complete. There are graphs for which the coordinates of
the endpoints of the line segments in any intersection representation of the graph
require exponential precision (in the size of the graph).

Remark 3. Kratochv́ıl and Pergel showed that the recognition of intersection
graphs of line segments remains NP-hard if the graphs have girth at least k for
any fixed k [12]. Can this be extended to ∃R-completeness?

We give a slightly simplified proof of Theorem 2; the argument will also be used
in Theorem 3. We write [n] for {1, . . . , n}.

Lemma 1. Suppose we have Jordan curves �, (�i)i∈[n], (sj
i )i∈[n−1],j∈[3], and

(ci)i∈[4n] in the plane so that

(i) � crosses �i, i ∈ [n], and s2
i , i ∈ [n − 1],

(ii) ci crosses ci+1 (c1 for i = 4n) exactly once, i ∈ [4n],
(iii) �i crosses c2i and c4n−2i+2, i ∈ [n],
(iv) both s1

i and s3
i cross s2

i , i ∈ [n − 1],
(v) s1

i crosses c2i+1 and s3
i crosses c4n−2i+1, i ∈ [n − 1],

(vi) the only other crossings among these curves are between pairs of �i.

Then the curves �i cross � either in order �1, . . . , �n or in the reverse of that
order. The conclusion remains true if instead of (i) we only require that (i′) �
crosses �i, i ∈ [n], and (i′′) s2

i , i ∈ [n − 1], may cross �, but it does lie in the
same connected component of R2 − ∪i∈[4n]ci as �.

We call the collection of curves (sj
i )i∈[n−1],j∈[3], and (ci)i∈[4n] and the way they

cross each other and the curves � and (�i)i∈[n] the ordering gadget for � with
respect to (�i)i∈[n]. The intended drawing of the curves of the lemma is shown
in Figure 1, but there are other drawings.

Proof. The set
⋃

i∈[4n] ci contains a (unique) closed Jordan curve C. C separates
the plane into two faces; without loss of generality (since we are dealing with
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· · ·

· · ·

c1

c2

�1

s
1
1

s
2
1

s
3
1

�

Fig. 1. An ordering gadget

curves), we may assume that � lies in the inner face. Since � crosses every s2
i , and

these curves do not cross any cj , all the s2
i also lie in the inner face of C (indeed,

(ii′) is sufficient to draw this conclusion). Within each Si := c2i+1 ∪ s1
i ∪ s2

i ∪
s3

i ∪ c4n−2i+1, i ∈ [n− 1] choose a Jordan arc si with endpoints on C. The si are
chords of C that lie in the inner face of C (since s2

i does); moreover, the si do
not intersect each other (since any two Si are disjoint) or any of the �i (since Si

and �j are disjoint for all i, j ∈ [n]). Now the ends of the si and �i along C are in
order �1, s1, �2, . . . , sn−1, �n, �n, sn−1, . . . , s1, �1 (up to cyclic shifts). Since every
�i has to cross � and has to do so within C, it must do so in order �1, . . . , �n or
its reverse.

Proof (Theorem 2). It is easy to see that the problem lies in ∃R. To show ∃R-
hardness, we reduce from SIMPLE STRETCHABILITY. Suppose we are given
a simple arrangement A of pseudolines. Remark 2 allows us to think of the
arrangement as a set of simple, x-monotone curves.

Add a triangle T formed by three pairwise crossing curves so that all crossings
of curves in A lie within the region enclosed by T and one edge of T crosses all
curves in A (for example, choose a vertical line segment to the left of all crossings
in A that is long enough to cross every curve in A). We can choose T so that
we know the order of crossings of curves belonging to A with the curves of T .

Cut off the pseudolines just beyond the boundary of T and let C contain
all the resulting curves together with the three curves from T . For each curve
� ∈ C add the ordering gadget—as constructed in Lemma 1—with respect to
all remaining curves in C. Also, require that curves c2i and c4n−2i+2 for � cross
the corresponding two c-curves of �i (see Figure 2). Let GA be the resulting
intersection graph of all curves.

In any (curvilinear) drawing of GA, the order of crossings along each curve
from A and T with curves from that set is as in the original arrangement or
reversed by Lemma 1, since we added ordering gadgets for each of those curves.
In particular, the crossings with T are first and last along each curve from A, and
therefore all crossings between curves of A occur within the region enclosed by
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T . Now the crossings of A with the edge of T that crosses all curves in A occur
either in the original order or in the reversed order. However, this means that
the order of crossings along edges realizing A must either all be in the original
order, or all of them are reversed. Hence, if GA can be realized as an intersection
graph of straight-line segments, then A is stretchable.

It is easy to see that if the original arrangement A is stretchable, then so is
the extended arrangement (the intended drawing of the ordering gadget is shown
in Figure 1).

Finally, the reduction is geometric, so the claim about exponential precision
follows.

Fig. 2. Two arrangement lines crossing, with gadgets

5 Intersection Graphs of Convex Sets

G = (V, E) is an intersection graph of convex sets if for every v ∈ V there is a
convex set Cv in the plane so that uv ∈ E if and only if Cu and Cv intersect.
We say two regions in the plane intersect if they share a common point. The
problem is known to be in PSPACE and NP-hard [11].

Theorem 3. Recognizing intersection graphs of convex sets is ∃R-complete.
There are graphs for which any realization as intersection graphs of convex poly-
gons requires exponential precision in writing down the coordinates of the vertices
of the polygon.1

For the ∃R-hardness proof we carefully adapt the reduction from
SIMPLE STRETCHABILITY to SEG we saw in Theorem 2, and we begin by
restating Lemma 1 for convex sets.

1 The result on exponential precision has been independently obtained by Martin
Pergel[10].
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Lemma 2. Suppose we have convex sets L, (Li)i∈[n], (Sj
i )i∈[n−1],j∈[3], and

(Ci)i∈[4n] in the plane so that

(i) L intersects Li, i ∈ [n], and S2
i , i ∈ [n − 1],

(ii) Ci intersects Ci+1 (C1 for i = 4n), i ∈ [4n],
(iii) Li intersects C2i and C4n−2i+2, i ∈ [n],
(iv) both S1

i and S3
i intersect S2

i , i ∈ [n − 1],
(v) S1

i intersects C2i+1 and S3
i intersects C4n−2i+1, i ∈ [n − 1],

(vi) the only other intersections among these regions are between pairs of Li.

Moreover, suppose we have Jordan curves � in L and �i in Li, i ∈ [n] so that
every �i crosses �. Then the order of the intersections along � is either �1, . . . , �n

or the reverse of that order.

We call the collection of convex sets (Sj
i )i∈[n],j∈[3], and (Ci)i∈[8n−4] and the way

they intersect each other and the sets L and (Li)i∈[n] the ordering gadget for L
with respect to (�i)i∈[n]. The intended drawing of the convex sets is similar to
the one shown in Figure 1 with line segments replaced by convex sets.

Proof. Pick vertices vi ∈ Ci ∩ Ci+1, i ∈ [4n − 1], and v4n ∈ C4n ∩ C1, and let ci

be a straight-line segment in Ci connecting vi to vi+1 (v1 for i = 4n). Then the
ci form a cycle C without crossings (since any two non-adjacent segments of C
belong to disjoint convex sets). Now we can extend �i in Li ∪ C2i so it connects
to v2i−1 and in Li ∪ C4n−2i+2 so it connects to v4n−2i+1 without crossing C.
Pick vertices t1i ∈ S1

i ∩ S2
i and t2i ∈ S2

i ∩ S3
i . We can connect t1i by a curve s1

i

in S1
i ∪ C2i+1 to v2i and t2i by a curve s3

i in S3
i ∪ C4n−2i+1 to v4n−2i without

crossing any of the curves we have already constructed; finally, we can connect
t1i to t2i within S2

i by a curve s2
i not crossing any other curve except, possibly,

�. Now extend the curves we have constructed slightly, so that shared endpoints
become crossing points. The resulting curves fulfill Lemma 1 with condition (i′)
in place of (i): (i′) is true, since L intersects S2

i , i ∈ [n − 1], and none of these
sets intersect C, so they must all lie on the same side of C. Now Lemma 1 allows
us to conclude that � is crossed by (�i)i∈[n] in order �1, . . . , �n or the reverse of
that order.

Proof (Theorem 3). It it easy to see that the problem lies in ∃R. Suppose we
are given a simple arrangement A of pseudolines. As earlier, we think of the
arrangement as a set of simple, x-monotone curves.

Let D be a disk which contains all the crossings of the pseudolines in its
interior. Cut all the pseudolines at the boundary of D and let their order of
intersection with the boundary be A1, . . . , An, A1, . . . , An. Add sets (Bi)i∈[2n],
required to intersect cyclically: Bi with Bi+1 and B2n with B1, with no other
intersections, and sets (Hi)i∈[2n], so that Hi intersects Bi, and Ai if i ≤ n and
Ai−n otherwise. Now for each of the A-, B- and H-sets add the ordering gadget
described in Lemma 2. Call the resulting intersection graph GA. (We will only
make use of the ordering gadgets for (Ai)i∈[n], but we need to add them in such
a way that they allow for the intersections with the other sets as well.)
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If A is stretchable, then the intersection graph we specified is realizable by
convex sets (actually by line segments).

So suppose there is a drawing of convex sets realizing GA. Pick a vertex
ui ∈ Bi ∩ Bi+1 for i ∈ [2n − 1], and u2n ∈ B2n ∩ B1, and let bi be a straight-
line segment between ui and ui+1 (u1 for i = 2n). Then the bi form a cycle B
(without crossings). None of the Ai intersect any of the Bj so all Ai must be
on the same side of B. For each Ai, i ∈ [n], pick a straight-line segment �i that
starts in Ai ∩ Hi and ends in Ai ∩ Hi+n. We claim that any two �i cross each
other: each �i can be extended through Hi and Hi+n to connect to the cycle B.
But then since two �i connect to alternating endpoints along B and both curves
are on the same side of the cycle, the curves must cross; since the Hi do not
intersect each other, that crossing must occur along the straight-line segments
�i.

Now Lemma 2 implies that the order of crossings along each �i is either the
original order or the reversed order; however, since the order of intersection with
D is fixed by the cycle B, either all those orders are in the original order, or
they are all reversed. But then, in either case, A is stretchable.

The claim about exponential precision again follows because the reduction we
gave is geometric.

6 Topological Inference

Topological inference problems ask whether a specification of topological rela-
tionships can be realized by regions. The problems vary by what type of relation-
ships (e.g. “contained in” and “disjoint with”) and predicates (e.g. “connected”,
“convex”) are available and what types of regions belong to the universe of dis-
course (2-dimensional, 3-dimensional, closed, regular, connected). For the cur-
rent discussion we will restrict our universe to regular regions in the plane, not
necessarily connected, where a region is regular if it is the closure of its interior.

There is a standard set of topological relationships, called RCC8, from the re-
gion connection calculus, that, in some sense, cover all possibilities of how two
regions can be related to each other; the relations are, “disconnected” (DC), “ex-
ternally connected” (EC), “equal” (EQ), “partially overlapping” (PO), “tangen-
tial proper part” (TPP), “tangential proper part inverse” (TPPi), “non-tangential
proper part” (NTPP), and “non-tangential proper part inverse” (NTPPi), for de-
tails see [6,17]. Other relations can be defined from the basic relations, for example
“proper part” (PP) is the disjunction of TPP and NTPP.

In the language of RCC8 a relationship between two regions is a constraint
and the conjunction of several constraints a constraint network (we do not need
to allow negation, since the 8 relations are exhaustive (at least one of them has to
hold). These are special cases of topological expressions, that is, Boolean formulas
involving the 8 relations (typically excluding negation, since it is not necessary).
We say a topological expression is realizable, if it is realized by regular regions
in the plane.
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The problem of determining whether a constraint network (or a topological
expression in general) is realizable lies in NP and is NP-complete for the full set
of relations, though there are tractable fragments [17, Section 6]. If we restrict
the universe to connected regions, the problem remains NP-complete, as shown
in [20,22].

If we add the predicate “convex” to the signature of topological expressions,
then the problem becomes ∃R-complete.

Theorem 4 (Davis, Gotts, Cohn [5]). RCC8 with convexity is ∃R-complete,
this remains true even if the signature is restricted to EC, PP and “convex” or
PO, DC and “convex”. In the second case the result remains true if the constraint
network contains a constraint for every pair of regions (the constraint network
is fully specified).

Davis, Gotts, Cohn [5] only show the first part (EC, PP, and “convex”), we show
the second part (restriction to PO, DC and “convex”) here.

Proof. PO, DC and “convex” are enough to express that a graph G is the in-
tersection graph of convex regions in the plane (we require every region to be
convex, so we are not bothered by the disconnected regions contained in the uni-
verse), which, together with Theorem 3 suffices to establish ∃R-hardness. Note
that we specify for every pair of regions whether they overlap (PO) or are dis-
joint (DC), so the resulting constraint network is fully specified. Davis, Gotts,
Cohn [5] show that the problem lies in ∃R.

Remark 4. If we restrict the universe of discourse to connected sets, then it is
not immediately obvious that the realizability problem (with convexity) remains
in ∃R: the issue at stake is that in this case the realizability problem without
convexity is equivalent to the string graph problem, for which membership in
NP is not trivial [22,20].
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Abstract. A graph G is a support for a hypergraph H = (V,S) if the
vertices of G correspond to the vertices of H such that for each hyperedge
Si ∈ S the subgraph of G induced by Si is connected. G is a planar
support if it is a support and planar. Johnson and Pollak [9] proved that
it is NP-complete to decide if a given hypergraph has a planar support.
In contrast, there are polynomial time algorithms to test whether a given
hypergraph has a planar support that is a path, cycle, or tree. In this
paper we present an algorithm which tests in polynomial time if a given
hypergraph has a planar support that is a tree where the maximal degree
of each vertex is bounded. Our algorithm is constructive and computes
a support if it exists. Furthermore, we prove that it is already NP-hard
to decide if a hypergraph has a 3-outerplanar support.

1 Introduction

A hypergraph H = (V,S) is a generalization of a graph, where V is a set of
elements or vertices and S is a set of non-empty subsets of V , called hyper-
edges [3]. The set S of hyperedges is a subset of the powerset of V . Hypergraphs
are not as common as graphs, but there are several application areas were they
occur. For example, there is a natural correspondence between hypergraphs and
database schemata in relational databases, with vertices corresponding to at-
tributes and hyperedges to relations (e.g., see [2]). Further applications include
VLSI design [13], computational biology [12], and social networks [5].

There is no single “standard” method of drawing hypergraphs, comparable to
the point-and-arc drawings for graphs. In this paper we focus on a set of decision
problems which are motivated by subdivision drawings of hypergraphs as pro-
posed by Kaufmann et al. [10]. In a subdivision drawing each vertex corresponds
uniquely to a face of a planar subdivision and, for each hyperedge, the union of
the faces corresponding to the vertices incident to that hyperedge is connected.
For example, vertex-based Venn diagrams [9] and concrete Euler diagrams [7]
are both subdivision drawings.
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1
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Fig. 1. Tree support for H = (V,S) with V = {1, . . . , 9} and S = {(2, 3, 4, 5),
(1, 3, 4, 6, 7), (6, 7, 8, 9)}

A graph G is a support for a hypergraph H = (V,S) if the vertices of G cor-
respond to the vertices of H such that for each hyperedge Si ∈ S the subgraph
of G induced by Si is connected (see Fig. 1). We say that Si is connected in G.
G is a planar support if it is a support and planar. Intuitively, a planar support
is a subgraph of the dual graph of a subdivision drawing of H . Subdivisions
and their dual graphs have been studied extensively and there are several meth-
ods that can turn a planar support into a dual subdivision. Hence we focus on
finding planar supports for hypergraphs which can then easily be turned into
subdivision drawings.

Johnson and Pollak [9] proved that it is NP-complete to decide if a given hy-
pergraph has a planar support. In contrast, there are polynomial time algorithms
that decide whether a given hypergraph has a planar support that is either a
path, a cycle, or a tree. We discuss these results in some detail in Section 2. Path
or cycle supports naturally lend themselves to the creation of pleasing and easily
readable subdivision drawings which are simple and, in the case of path supports,
compact [10]. However, not many hypergraphs admit a path or a cycle support.
Tree supports, on the other hand, can have vertices of arbitrarily high degree
and hence may not result in easily interpretable subdivision drawings. Therefore
we consider tree supports of bounded vertex tree. For example, a binary tree
support can be interpreted as the dual graph of a triangulation of a (convex)
polygon and as such can be used to create a simple and compact subdivision
drawing where each face of the subdivision is a triangle. In Section 3 we give an
O(kn3) time constructive algorithm based on a flow formulation that solves the
following decision problem: given a hypergraph H together with degrees di for
each element i of the base set, is there a tree support for H such that each vertex
i of the tree has degree at most di? Additionally, in Section 4 we strengthen the
result by Johnson and Pollak by proving that it is even NP-complete to decide
if a hypergraph has a 3-outerplanar support.

Notation and Definitions. Our input is a hypergraph H = (V,S) with n
vertices and k hyperedges. We denote the total input size by N :=

∑
i |Si|. In

the remainder of the paper we interpret H as a set system S = {S1, . . . , Sk} on a
base set V = {1, . . . , n} of n elements. Two elements h and j of V are equivalent
with respect to S if every set Si ∈ S contains either none or both of h and j. To
simplify the discussion we assume that no two elements of V are equivalent. We
also assume that each element of the base set occurs in at least one set (hence
N ≥ n) and that the elements within each set are sorted. The vertices of a planar
support G correspond to the elements of V . We often directly identify a vertex
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with “its” element and use the same name to refer to both. Furthermore, for
each hypergraph H = (V,S) we consider a graph G(H) on V . Two elements u
and v of V are connected by an edge in G(H) if there is a hyperedge Si ∈ S
that contains both u and v. We now define the connected components of H as
the connected components of G(H). Finally, a graph G is k-outerplanar if for
k = 1, G is outerplanar and for k > 1, G has a planar embedding such that
if all vertices on the exterior face are deleted, the connected components of the
remaining graph are all (k − 1)-outerplanar.

2 Path, Cycle, and Tree Supports

In this section we summarize previous work on path, cycle and tree supports.
For all three classes of graphs one can decide whether a given hypergraph has
such a support in linear time.

Path support. Korach and Stern [11] observed that the decision problem for
path supports is equivalent to finding a permutation π of {1, . . . , n} such that,
for every set Si, the elements of Si are consecutive in π. This problem in turn is
directly related to the consecutive ones property: a matrix of zeroes and ones is
said to have the consecutive ones property if there is a permutation of its columns
such that the ones in each row appear consecutively. Let M be a matrix with
n columns and m rows such that entry (i, j) is 1 if j ∈ Si, and 0 otherwise.
H has a path support if and only if M has the consecutive ones property (see
Fig. 2). There are algorithms [4,8] that can test the consecutive ones property
and produce a corresponding permutation in O(m + n + r) time, where m×n is
the size of M , and r is the number of ones in M . Hence using such an algorithm
a path support for a given hypergraph can be found in O(N) time.

Cycle support. Finding a cycle support for a hypergraph H can be reduced to
finding a path support for an auxiliary hypergraph H ′. For a cycle support, a set
Si is connected if and only if its complement Sc

i is connected. For some j ∈ V ,
let H ′ be the hypergraph obtained by replacing the sets Si for which j ∈ Si

with Sc
i . As no set of H ′ contains j, H has a cycle support if and only if H ′

has a path support. By choosing j as the element that occurs in the minimum
number of sets, one can reduce the problem of finding a cycle support for H to
finding a path support for a hypergraph H ′ of size O(N). This can be found in
O(N) time as described above. Finding a cycle support is also directly related
to testing matrices for the circular ones property [16].

⎛
⎜⎜⎝

1 0 1 1 0 1
0 1 0 0 1 1
1 1 1 0 0 1
0 1 1 0 0 1

⎞
⎟⎟⎠

1 2 3 4 5 6
{1, 3, 4, 6}
{2, 5, 6}
{1, 2, 3, 6}
{2, 3, 6}

⎛
⎜⎜⎝

1 1 1 1 0 0
0 0 0 1 1 1
0 1 1 1 1 0
0 0 1 1 1 0

⎞
⎟⎟⎠

4 1 3 6 2 5
1 234 56

Fig. 2. Finding a path support via the consecutive ones property
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Tree support. Johnson and Pollak [9] argued that one can efficiently decide
whether a hypergraph has a tree support by considering its dual. The dual of a
hypergraph H = (V,S) is the hypergraph H∗, such that each hyperedge of H
corresponds to a vertex of H∗, and each vertex v ∈ V of H corresponds to a
hyperedge of H∗ that contains all hyperedges of H (vertices of H∗) that contain
v. The dual of a hypergraph with a tree support is an acyclic hypergraph [2],
and acyclicity can be tested in linear time [15].

Korach and Stern [11] considered the following generalization of finding a tree
support: assume that for a hypergraph H a real weight is given for every pair
of different numbers in the vertex set V , i.e., for each potential edge in the tree.
They showed that the tree support with minimum total edge weight (if it exists),
can be found in polynomial time.

3 Bounded-Degree Tree Supports

We describe an algorithm that solves the following decision problem: given a
hypergraph H = (V,S) together with degrees di for each element i of the base
set V , is there a tree support for H such that each vertex i of the tree has degree
at most di? Our algorithm is constructive and computes a support if it exists. To
simplify the discussion we assume that V ∈ S. This enforces that any support
is connected and does not influence the outcome of the decision problem.

1

23

4

4

23

1

2

3

2

3

14

4 1

Fig. 3. All tree supports

To construct a bounded-degree tree support we
need to know what our choices are when con-
necting vertices. Consider the sets S1 = {1, 2, 3}
and S2 = {2, 3, 4}, all tree supports are shown in
Fig. 3. Each support has an edge connecting 2 to
3, but 1 and 4 can be connected to either 2 or
3. So it appears that the intersection {2, 3} of S1
and S2 must be connected in any tree support.
Korach and Stern proved this observation in [11],
for completeness we include a short proof.

Observation 1. The intersection A∩B of two sets A, B ∈ S must be connected
in every tree support.

Proof. Since A ∩ B is always connected if it contains zero or one elements, we
assume that |A ∩ B| ≥ 2. Let T be a tree support for H . So A and B are both
connected in T . Let x ∈ A ∩ B and y ∈ A ∩ B. Since A is connected in T , there
is a path in T from x to y using only vertices from A. Also there is a path in T
from x to y using only vertices from B. Since paths in trees are unique it follows
all vertices on the path from x to y are in A∩B. So A∩B is connected in T . ��

Let S∗ denote the set of all possible sets that can be obtained by intersecting
any number of sets from S. Clearly S∗ is closed under intersection and S ⊆ S∗.
Observation 1 implies that H has a (bounded-degree) tree support if and only
if H∗ = (V,S∗) does. We now define the intersection structure I as follows. I
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4 0

4 5 1 4 7 1

1 2 3 4 1 2 3 4 7 02 3 4 5 0 4 5 6 7 1

2 3 4 2 4 5 1 4 7 1

1 2 3 4 1 4 5 6 7 1

2 3 4 2

1 2 3 4 5 6 7 0

Fig. 4. The intersection structure for {{1, 2, 3, 4}, {2, 3, 4, 5}, {4, 5, 6, 7}, {2, 3, 4, 7}}
(with the demands next to the sets) and the corresponding connectivity structure

is a directed acyclic graph whose vertices are the sets in S∗. I has a directed
edge (S1, S2) if and only if S1 ⊂ S2 and for no set S3 ∈ S∗, we have S1 ⊂ S3 ⊂
S2. That is, edges are directed from smaller to larger sets and represent direct
containment—I does not contain transitive edges (see Fig. 4 (left)).

The minimum number of edges of any support of a hypergraph H can be
deduced directly from its intersection structure. Let B and A1, . . . , Ah be vertices
of I such that (Aj , B), 1 ≤ j ≤ h, are incoming edges of B in I and there are no
further incoming edges of B. We call the sets Aj the children of B, and B is a
parent of each Aj . Let us assume that the sets Aj are connected in a support G of
H and that G has the fewest edges among all supports with that property. Let c
be the number of connected components implied by the sets Aj , i.e., the number
of connected components of the hypergraph (B, {A1, . . . , Ah}). To connect B we
need to add at least c − 1 additional edges to G—the demand of B (see Fig. 4
(left)). The sum of the demands of all sets in S∗ is the total demand.

Lemma 1. The total demand of the sets in S∗ equals the minimum number of
edges required for any support of H.

Proof. By definition, the demand of a set B is the number of edges required to
connect B, given that its children in I are connected. It remains to argue that
no edge of a support G can simultaneously connect two sets B and B′. Assume
that |B′| ≤ |B|. The statement is obviously true if B∩B′ = ∅. If B′ ⊂ B then B′

is part of a single connected component of B and hence no edge that is used to
connect B connects two elements of B′. Finally, if B∩B′ = A �= ∅, then, because
S∗ is closed under intersection, A must be a vertex of I as well. If an edge e of
G is used to connect simultaneously both B and B′, then e must connect two
elements of A. But then e counts towards the demand of A. ��

Recall that we assume that the base set V is an element of S. Then, by Lemma 1,
a hypergraph H has a tree support if and only if the total demand equals n−1. I
also indicates between which vertices the edges of a support should be. Consider
the example in Fig. 4. The set {4, 5, 6, 7} has a demand of 1. Since the connected
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components are {4, 5, 7} and {6}, the support must contain an edge between 6
and either 4, 5 or 7.

I contains all necessary information to answer our decision problem, but it
can have exponential complexity even if H has a tree support. Consider the set
S of all but one subsets of size n−1 of V = {1, . . . n}. There must be one element
j that is contained in each set of S. The star graph with j as center is a tree
support for H = (V,S). However S∗ is nearly the complete powerset of V and
exponential in size. Hence we restrict ourselves to the connectivity structure, a
limited version of the intersection structure for which we prove that it still carries
all necessary information.

Connectivity structure. We say that sets with zero demand are implied. We
remove all sets with zero demand from S∗ and call the resulting set S−. The
connectivity structure C is built on S− in the same manner as the intersection
structure on S∗ (see Fig. 4 (right)). The demand of a set in C equals its demand
in I. If H has a tree support then S− contains at most n−1 sets. One can easily
construct examples where also in this case C has Ω(n2) edges.

Clearly we do not want to compute S− and the connectivity structure by
first constructing S∗ and the intersection structure and pruning sets with zero
demand. Instead we incrementally compute a graph that is the connectivity
structure if H has a tree support. Let S = {S1, . . . , Sk} with S1 = V = {1, . . . n}.
We incrementally compute the connectivity structures Ci (1 ≤ i ≤ k) for the sets
S1, . . . , Si. To compute Ci+1 from Ci, we first compute all intersections between
the new set Si+1 and all sets in Ci. We then add those intersections which are not
implied to the connectivity structure, starting with the smallest set by inclusion
(see Fig. 5). If as a result any previous sets become implied, then we remove
them. If at any point the total demand exceeds n − 1, then we directly stop
and conclude that the hypergraph has no tree support. We argue in the lemmas
below that this approach is indeed correct.

The graph computed by this incremental construction might conceivably be
missing sets since the intersection of a new set with a (removed) implied set
might not be implied itself and hence should have been included. However, we can
argue that for hypergraphs with a tree support this incremental approach indeed
computes the correct connectivity structure (Lemma 2). But, if a hypergraph
has no tree support, then the algorithm computes a total demand greater than
n − 1. Equivalently, if the total demand determined by the algorithm is n − 1,
then the hypergraph has a tree support (Lemma 3).

2 3 4 2

1 2 3 4 1 2 3 4 5 1

1 2 3 4 5 6 7 2

{4, 5}
2 3 4 2

1 2 3 4 1

1 2 3 4 5 6 7 2

4 5 1

1 2 3 4 1

2 3 4 2

2 3 4 5 0

1 2 3 4 5 6 7 2

4 5 1

Fig. 5. Incremental construction of the connectivity structure
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Lemma 2. The incremental approach described above correctly computes the
connectivity structure C if the hypergraph H has a tree support.

Proof. We could use a similar approach to compute the complete intersection
structure. So it remains to argue that removing implied sets in an intermediate
stage does not influence the final result for hypergraphs with a tree support.

Assume that we have removed an implied set S from Ci. Hence there must
be sets A1, . . . , Ah in Ci that imply that S is connected. Note that Aj ⊂ S for
all 1 ≤ j ≤ h. Let S′ be a new set that is added to Ci. We have to argue that
S′ ∩ S is implied if H has a tree support. In fact we show that S′ ∩ S is implied
by the sets A′

j = S′ ∩Aj . Assume for contradiction that this is not the case and
hence the sets A′

j form at least two connected components in S′ ∩ S. Because
S′∩S must be connected, these connected components are directly connected by
edges in a tree support. However, because the sets Aj imply the connectedness
of S, these connected components are also connected in a different manner in
the tree support, introducing a cycle, which contradicts the assumption that H
has a tree support. Since the total demand of a hypergraph with a tree support
is n − 1, the algorithm does not terminate early for such hypergraphs. ��
Lemma 3. If the total demand during the incremental construction is n − 1
then H has a tree support.

Proof (by induction). Base case: S1 = {1, . . . n} which has a demand of n − 1
and clearly has a tree support. Now assume that the sets S1, . . . , Si have a tree
support T . In the inductive step we add the set Si+1 to Ci, that is, we add the
non-implied intersections of Si+1 with the sets in Ci starting with the smallest
by inclusion. Let S be one of these intersections. After S has been added to
Ci, it has exactly one parent P . If it had two or more parents then it would be
the non-implied intersection of at least two sets in Ci and as such already be
contained in Ci. If S had no parent then its demand would have to be zero for
the total demand not to exceed n − 1. Hence S would be implied.

Let P be the parent of S and let A1, . . . , Ah be the children of P before
adding S. Assume that (P, {A1, . . . , Ah}) had c connected components before
S was added and that S connects x of these components into one connected
component. Then the demand of P becomes c−x. Since the total demand remains
n−1, the demand of S becomes x−1. Since all children of S are former children
of P none of the demand of S can be subsumed by its children. Let B1, . . . , Bx

be the connected components of (P, {A1, . . . , Ah}) that were connected by S.
We change the tree support T as follows. Disconnect the connected components
of P in T . Let B′

j = S ∩ Bj for 1 ≤ j ≤ x. Note that all B′
j are connected in T ,

because these intersections have already been added. Now use the x − 1 edges
covering the demand of S to connect the B′

j into a tree. Finally connect S with
the remaining connected components of (P, {A1, . . . , Ah}), using the c−x edges
covering the demand of P . By construction the new tree still connects all sets of
Ci as well as all intersections already added and S. ��
Lemma 3 directly implies that if H does not have a tree support then the total
demand necessarily exceeds n − 1 at some point during the construction.
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Flow formulation. Using the connectivity structure C we can formulate our
decision problem as a flow problem. To simplify matters we add some additional
sets to C. Let S be a vertex of C and let A1, . . . , Ah be children of S such that
A1, . . . , Ah form a (maximal) single connected component C of S. We say that C
is a connection set (or c-set for short) and add C to C in between A1, . . . , Ah and
S. By construction all c-sets have zero demand. We also add all singleton sets.
The resulting graph C∗ is called the augmented connectivity structure. Every
set in C∗ is either a singleton set, a c-set, or a normal set. Normal sets now
have the property that all their children are disjoint, hence the demand of a
normal set is the number of its children minus one. Let cS be the number of
connected components of a set S in C. The number of c-sets we add to C∗ is
kc ≤

∑
S cS ≤ (n − 1) +

∑
S(cS − 1) = 2n− 2. So C∗ has O(n) vertices as well.

We construct a flow network F from C∗ as follows. We add a source and
connect it to the singletons with edges whose capacities are the maximal degree
of each element. That is, the edge from the source to {i} has capacity di. The
capacities of the remaining edges are unbounded. Every incoming edge of a
normal set requires at least one unit of flow, that is, we have a lower bound
for the flow on these edges. The source produces 2n − 2 units of flow which is
consumed by the normal sets, each normal set consumes twice its demand (see
Fig. 6 (left)). Intuitively the units of flow correspond to the degrees of the vertices
in the tree support. Consider a normal set S and its children A1, . . . , Ah. Since
these children are disjoint in C∗ we need at least one unit of flow from each Ai

to connect S. Also, S has to consume exactly 2h−2 units of flow. Observation 2
follows from a simple inductive argument.

Observation 2 (Tamura and Tamura [14]). For a given degree sequence
(d1, . . . , dh) with di ≥ 1 for all i, a tree exists whose vertices have precisely these
degrees if and only if

∑h
j=1 dj = 2h − 2.

4 5 0 4 7 0

1 2 3 4 0 4 5 6 7 0

2 3 4 2

1 2 3 4 5 6 7 0

1 1 2 1 3 1 4 3 5 1 6 1 7 1

4 5 7 1

4 5 2 4 7 2

1 2 3 4 2 4 5 6 7 2

2 3 4 4

1 2 3 4 5 6 7 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0

4 5 7 0

source 0

d1 d2 d3 d4 d5 d6 d7

source +12

d1 d2 d3 d4 d5 d6 d7

Fig. 6. The original (left) and the new (right) flow network. Thick edges denote a
lower bound on the flow. In the flow networks the production/consumption (left) or
the capacity to the sink (right) is shown instead of the demand.
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Lemma 4. Every tree support T that respects the degree bounds corresponds to
a feasible flow F .

Proof. As argued in the proof of Lemma 1 each edge e = {u, v} of T can be
mapped uniquely to a normal set S of C∗. Let A1, . . . , Ah be the children of S.
We have u ∈ Ai and v ∈ Aj for some i �= j, 1 ≤ i, j ≤ h. We choose an arbitrary
path from the source to S through {u} and Ai and add a unit of flow to every
edge on this path. We do the same for {v} and Aj . Repeating this procedure
for every edge of T constructs a flow F . It remains to argue that F is indeed
feasible. Consider again a normal set S and one of its children Ai. Since S is
connected in T there is at least one edge of T which is mapped to S and contains
an element of Ai. Hence the edge from Ai to S has at least one unit of flow. By
the fact that h− 1 edges are mapped to S, the number of paths from the source
to S is exactly 2h − 2, so S consumes the correct amount of flow. Finally, we
add flow exactly once for each edge in T and so the flow from the source to a
singleton {i} is at most di. ��

Before we explain how to construct a valid tree support from a feasible flow, we
first discuss how to compute such a feasible flow using a standard construction
(see [1], Sections 6.2 and 6.7): we transform the flow network F to a max-
flow network F ′. We remove the lower bounds and the production/consumption
restrictions. We add a sink to F and add edges from all sets to this sink. For a
set S let δS denote its demand. As capacity of the edge from a set S to the sink
we take the number of outgoing edges to a normal set (edges that had a lower
bound of one), and if S is a normal set, we further add δS − 1 to the capacity
(Fig. 6 (right)). The sum of the capacities of the incoming edges of the sink is
now exactly 2n − 2. The following is shown in [1].

Lemma 5. A feasible flow exists for F if and only if the max-flow of F ′ is
exactly 2n − 2.

Tree construction. We now describe how to construct a tree support T from
a feasible flow for F . Although the flow tells us the degrees for each vertex in
T , we need to use the entire flow to build T correctly. We handle the sets of F
in topological order. Consider a normal set S with children A1, . . . , Ah. We can
use the flow consumed by S to connect the sets Aj in T . To know which vertices
need to be connected in T , we need to know from which singletons the flow to a
set Aj originates. We maintain this information using a list Li for each set Si.
The list Li contains a vertex number for every unit of outgoing flow. Initially
the list Lj for a singleton {j} contains a number of copies of j corresponding to
the amount of outgoing flow. Now let S again be a normal set S with children
A1, . . . , Ah. First we build a tree on the components Aj depending on the flow
towards S (note that the ingoing flow of S might exceed 2h− 2, but in that case
we can make choices as long as we use one unit of flow from each child). If we
want to connect Ai to Aj , then we simply take the first elements x of Li and y
of Lj and add an edge (x, y) to T (Fig. 7). Then we remove x and y from Li and
Lj, respectively. After the tree is built for S, we take kj elements from each list
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58

6
7

Fig. 7. A step in the tree construction algorithm. The lists are shown above/below the
sets. The thick edges have been added to the tree support.

Lj of Aj , where kj is the remaining flow from Aj to S, and merge them into the
list L of S. In case S is a c-set, we perform only this final step.

Lemma 6. The method described above correctly constructs a tree support T ,
which respects the degree bounds, from a feasible flow.

Proof. We have to show three things: (i) every set Si is connected in T , (ii) T
is a tree and (iii) the degree bounds are respected. The algorithm adds exactly
n − 1 edges to T , so (ii) follows from (i) since V is an element of S and hence
T is necessarily connected. When we handle a set Si, we make sure that it is
connected in T . Since we never remove edges from T , (i) holds. Finally, when
we add an edge incident to a vertex x to T , we remove it from a list. Note that
vertex numbers are added to the singleton lists, but after that they are only
moved from list to list. So the degree of x can be at most the size of Lx, which
is properly bounded in a feasible flow. ��

Theorem 1. Given a hypergraph H together with degrees di for each element i
of the base set, we can construct a tree support T for H such that each vertex i
of T has degree at most di in O(kn3) time—if such a tree support exists.

Proof. The first step is to compute the connectivity structure. To add a set Si+1
to Ci, we compute and add all intersections between Si+1 and the O(n) sets in Ci

(O(n2) time). Then we compute the direct containment graph on the resulting
O(n) sets which can easily be done in O(n3) time. Next we compute the demand
of every set. We can easily find the connected components formed by the children
of a set in O(n2) time, so this takes O(n3) time. Finally we remove the implied
sets to obtain Ci+1. Hence we can compute the connectivity structure in O(kn3)
time. Then we can augment the connectivity structure and construct the max-
flow network in O(n3) time. We compute the max-flow using the Ford-Fulkerson
algorithm [6], which runs in O(|E|f∗) time, where |E| is the number of edges in
the flow network and f∗ is the maximum flow. As f∗ is O(n), this takes at most
O(n3) time. Finally we construct the tree in O(n2) time. ��

4 Hardness for 3-Outerplanar Graphs

We show that for any instance of 3-SAT (or of SAT), we can reduce it to an
instance of finding a planar support for a hypergraph such that there is a planar
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support if and only if the 3-SAT instance is satisfiable. The planar support—if
one exists—will be 3-outerplanar (or we can assume it to be so without limiting
any options in the planar support).

Let a, b, c, . . . be the variables used in a 3-SAT instance. We represent each
variable, say b, by six elements b1, . . . , b6 and some sets. Many of these sets have
size two, and so any planar support must include an edge that connects the ver-
tices of these two elements. The sets for b are {b1, b2}, {b2, b3}, {b1, b3}, {b2, b4},
{b3, b5}, {b4, b5}, {b5, b6}, and {b4, b6}, see Fig. 8. We connect the variable ele-
ments into some sequence (in any order; we assume it is a, b, c, . . .) by extra ele-
ments a′, b′, c′, . . . and a′′, b′′, c′′, . . ., and use sets {a′, a1}, {a1, b

′}, {b′, b1}, etc.,
and {a′′, a6}, {a6, b

′′}, {b′′, b6}, etc. We also use extra elements a′′′, b′′′, c′′′, . . .
and sets {a′, a′′′}, {a′′′, a′′}, {b′, b′′′}, {b′′′, b′′}, etc., to separate the variables
from each other. Next, we use sets {a′′′, a2}, {a′′′, a4}, {b′′′, a3}, and {b′′′, a5}
for each variable, and four more sets {a′, a2}, {a′′, a4}, {z′, z3}, and {z′′, z5}.
We add one more set, namely {a′′′, z′′′} (see Fig. 8), which ensures that no edge
between any of a′, a1, b

′, b1, c
′, c1, . . . and any of a′′, a6, b

′′, b6, c
′′, c6, . . . can exist

in the planar support. All sets of cardinality two imply a 3-connected planar
graph as a support, so its embedding is fixed up to the choice of the outer face.

A 3-SAT clause (a ∨ c ∨ x) is represented by a set

{a1, b1, c1, . . . , a
′, b′, c′, . . . , a6, b6, c6, . . . , a

′′, b′′, c′′, . . . , a2, a5, c3, c4, x2, x5} .

In Fig. 8, these are all vertices of the top row, all vertices of the bottom row,
the subscript-2 and subscript-5 vertices of the variables that occur as a literal
in the clause, and the subscript-3 and subscript-4 vertices of the variables that
occur negated as a literal in the clause. Their connection in the fixed part of the
planar support is shown in grey in the figure.

The only way to extend the fixed part of the planar support so that the set
of a clause has a connected support is to use at least one of the edges (a2, a5),
(c3, c4), or (x2, x5). The only choices of edges in the support that can help to
give sets planar support are ones like (a2, a5) and (a3, a4) (dotted in Fig. 8).

For any variable, it is easy to see that we can only take the edge (a2, a5) or
(a3, a4), and not both, otherwise the support graph is not planar. This corre-
sponds to the variable assignment of a to true (take edge (a2, a5)) or false
(take edge (a3, a4)). Hence, the 3-SAT instance has a variable assignment that

b1

b2 b3

b4 b5

b6

a1

a2 a3

a4 a5

a6

c1

c2 c3

c4 c5

c6

a′ b′

a′′ b′′

b′′′a′′′

c′

c′′

c′′′ z′′′

d′

d′′

d′′′

z′

z′′

Fig. 8. Construction of a hypergraph and its planar support from a 3-SAT instance
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makes it true if and only if the constructed hypergraph has a planar support. It
is easy to see that the planar support is 3-outerplanar. Hence, if a planar support
exists, then a 3-outerplanar support exists.

Theorem 2. It is NP-complete to decide if a hypergraph has a 3-outerplanar
support.

Acknowledgements. We would like to thank the anonymous referees for point-
ing us to some related work.
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DAGmaps and ε-Visibility Representations of
DAGs
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Abstract. DAGmaps are space filling visualizations of DAGs that gen-
eralize treemaps. Deciding whether or not a DAG admits a DAGmap is
NP-complete. Recently we defined a special case called one-dimensional
DAGmap where the admissibility is decided in linear time. However there
is no complete characterization of the class of DAGs that admit a one-
dimensional DAGmap. In this paper we prove that a DAG admits a
one-dimensional DAGmap if and only if it admits a directed ε-visibility
representation. Then we give a characterization of the DAGs that admit
directed ε-visibility representations. Finally we show that a DAGmap
defines a directed three-dimensional ε-visibility representation of a DAG.

Keywords: DAGmap, Treemap, DAG, Visibility.

1 Introduction

Among the many alternative ways to visualize a tree, space filling visualizations,
such as treemaps, have become very popular due to their efficiency, their scal-
ability, and their easiness of navigation and user interaction [1]. Space filling
techniques make optimal use of the available space and have the capacity to
show thousands of items legibly. On the other hand, the node-link representa-
tions do not make optimal use of the available space since most of the pixels are
used for background. Recently, we investigated space filling visualizations for
hierarchies that are modeled by Directed Acyclic Graphs (DAG). We assumed
that the available space is a rectangle and we defined the constraints for a vi-
sualization that extends the treemap techniques [3,10,1,8] to DAGs and where
the vertices and edges of a DAG are drawn as rectangles [13]. In [13] we use
the term “DAGmap” to describe space filling visualization according to the con-
straints and we show that there are DAGs that admit and DAGs that do not
admit DAGmap drawings. Moreover deciding whether or not a DAG admits a
DAGmap drawing is NP-complete. In the special cases, of Two Terminal Series
Parallel digraphs [14] and of layered planar DAGs the admissibility question can
be answered in linear time with respect to input size [13].
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A visibility representation of a graph G maps vertices of G to sets in Eu-
clidean space and the edges are expressed as visibility relations between these
sets. In a (two-dimensional) visibility representation of a graph G, the vertices
are drawn as horizontal segments in the plane and the edges are represented by
pairs of vertically visible segments [11,5,15,7,4]. Recently, interest has developed
in investigating visibility representations in three-dimensions where vertices are
represented by disjoint axis-aligned closed rectangles lying in planes parallel to
the xy-plane and edges correspond to z-parallel visibility among these rectangles
[2]. If graph G is directed then for every edge (u, v) the rectangle of v is below
the rectangle of u. Note that in order to be consistent with the downward repre-
sentation of DAGs we draw the visibility representation downwards whereas in
the literature it is drawn upwards [5].

In a DAGmap as well as in a visibility representation of a DAG the vertices
are represented by closed rectangles and the edges are closed sets which have
non-empty intersection with the source and destination vertex rectangles. In
this paper we show that a DAGmap (resp. treemap) determines a directed three-
dimensional visibility representation of a DAG (resp. tree). Additionally we show
that there is a one-to-one correspondence between a one-dimensional DAGmap
and a directed ε-visibility representation of a DAG. Using this correspondence
we show that the class of DAGs that admit a one-dimensional DAGmap is the
class of downward planar digraphs that admit an embedding such that all source
and sink vertices appear on the boundary of the external face. Additionally we
propose an admissibility and drawing algorithm that runs in O(n) time.

2 Preliminaries

Let G = (V, E) be a directed acyclic graph (DAG) with n = |V | vertices and
m = |E| edges. A path of length k from a vertex u to a vertex w is a sequence
v0, v1, v2, . . . , vk of vertices such that u = v0, w = vk, and (vi−1, vi) ∈ E for
i = 1, 2, . . . , k. There is always a zero-length path from u to u. If there is a path
p from u to w, we say that w is reachable from u via p.

A topological numbering of G is an assignment of numbers to the vertices
of G, such that for every edge (u, v) of G, the number assigned to v is greater
than the one assigned to u (i.e., number(v) > number(u)). If the edges of G
have nonnegative weights assigned to them, then the number assigned to v is
greater than or equal to the number assigned to u plus the weight of (u, v) (i.e.,
number(v) ≥ number(u)+weight(u, v)). The numbering is optimal if the range
of numbers assigned to vertices is minimized.

If e = (u, v) ∈ E is a directed edge, we say that e is incident from u (or
outgoing from u) and incident to v (or incoming to v); vertex u is the origin of e
and vertex v is the destination of e. The origin of e is denoted by orig(e) and the
destination of e by dest(e). For every vertex u ∈ V , Γ+(u) = {e ∈ E | orig(e) =
u} and Γ−(u) = {e ∈ E | dest(e) = u} are the sets of edges incident from and
to vertex u, respectively.
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A drawing G of a graph (digraph) G is a function which maps each vertex
v to a distinct point G(v) and each edge (u, v) to a simple open Jordan curve
G(u, v), with endpoints G(u) and G(v). A drawing is planar if no two distinct
edges intersect. A graph is planar if it admits a planar drawing. A (planar)
embedding Ĝ of G is an equivalence class of planar drawings and is described by
the circular order of the neighbors of each vertex. An embedded graph is a graph
with a specified embedding.

An st-graph is an acyclic digraph with a single source s and a single sink t. A
planar st-graph is an st-graph that is planar and embedded with vertices s and
t on the boundary of the external face.

Let S be a set of horizontal non-overlapping segments in the plane. Two
segments σ, σ′ of S are said to be visible if they can be joined by a vertical
segment not intersecting any other segment of S. Furthermore, σ and σ′ are
called ε-visible if they can be joined by a vertical band of nonzero width that
does not intersect any other segment of S.

Definition 1. A directed (weak) w-visibility representation for a DAG G con-
sists of mapping each vertex v of G into a horizontal segment σ(v) (called
vertex-segment), and each edge (u, v) ∈ E into a vertical segment σ(u, v) (called
edge-segment), so that, the vertex-segments do not overlap, and for each edge
(u, v) ∈ E the corresponding edge-segment σ(u, v) has its top endpoint on σ(u),
its bottom endpoint on σ(v), and it does not cross any other vertex-segment
σ(a), a �= u, v.

Definition 2. A directed ε-visibility representation for a DAG G is a directed w-
visibility representation with the additional property that two vertex-segments are
directed ε-visible if and only if the vertex that corresponds to the bottom vertex-
segment is adjacent to the vertex that corresponds to the top vertex-segment.

Now consider an arrangement of closed, non-overlapping rectangles in R3 such
that the planes determined by the rectangles are perpendicular to the z-axis,
and the sides of the rectangles are parallel to the x-or y-axes. Two rectangles Ri

and Rj are ε-visible if and only if between the two rectangles there is a closed
cylinder C of positive height and radius such that the ends of C are contained
in Ri and Rj , the axis of C is parallel to the z-axis, and the intersection of C
with any other rectangle in the arrangement is empty [2].

Definition 3. [9] A directed three-dimensional ε-visibility representation for a
DAG G consists of mapping each vertex v of G into a rectangle Rv (called vertex-
rectangle), and each edge (u, v) ∈ E into a vertical closed cylinder C of positive
length and radius (called edge-cylinder), so that, the vertex-rectangles do not
overlap, and for each edge (u, v) ∈ E the corresponding edge-cylinder C has its
top base on Ru, its bottom base on Rv, and does not intersect any other vertex-
rectangle Rw, w �= u, v. Additionally, two vertex-rectangles are ε-visible if and
only if the vertex that corresponds to the bottom vertex-rectangle is adjacent to
the vertex that corresponds to the top vertex-rectangle.

In the following R denotes the initial rectangle, Ru denotes the drawing region
of a vertex u ∈ V and Re denotes the drawing region of an edge e ∈ E.
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Definition 4 (DAGmap drawing [12,13]). A DAGmap drawing of a DAG
G = (V, E) is a space filling visualization of G that satisfies the following drawing
constraints:

B1. Every vertex is drawn as a rectangle (Ru is a rectangle for every u ∈ V ).
B2. The union of the rectangles of the sources of G form a partition of the initial

drawing rectangle (R = ∪s∈SRs and ∀s1, s2 ∈ S with s1 �= s2 area(Rs1 ∩
Rs2) = 0, where S ⊂ V is the set of sources of G).

B3. Every edge is drawn as a rectangle that has positive area (∀e = (u, v) ∈ E,
Re is a rectangle and area(Re) > 0).

B4. The rectangle of every non-source vertex u ∈ V is equal to the union of the
rectangles of edges incident to u (Ru = ∪e∈Γ−(u)Re).

B5. The rectangles of edges incident from a non-sink vertex u ∈ V form a
partition of the rectangle of u (Ru = ∪e∈Γ+(u)Re and ∀e1, e2 ∈ Γ+(u) with
e1 �= e2 area(Re1 ∩ Re2) = 0).

Theorem 1. [12] In a DAGmap drawing of DAG G = (V, E), if for some pair
of edges e1, e2 ∈ E with e1 �= e2, it holds that that orig(e1) is not reachable from
dest(e2) and orig(e2) is not reachable from dest(e1), then the rectangles Re1 and
Re2 do not overlap (i.e., area(Re1 ∩ Re2) = 0).

Proposition 1. [13] In a DAGmap drawing of a DAG G the following hold:
For every pair of vertices u, v ∈ V if there is no path from u to v and from v to
u then their rectangles Ru, Rv do not overlap (area(Ru ∩ Rv) = 0).

3 One-Dimensional DAGmaps and Directed ε-Visibility
Representations

One-dimensional DAGmaps were introduced in [13]. They are constructed by
partitioning the space only along the vertical direction. We will show that
one-dimensional DAGmaps are related to directed ε-visibility representations
of DAGs.

Definition 5. A DAGmap is called one-dimensional if the initial drawing rect-
angle is sliced in one dimension either the vertical or the horizontal. See Figure
1 for an example.

Since the height of all the rectangles is constant and equal to the height of
the initial drawing rectangle, the combinatorial properties of the problem are
unaffected if instead of the vertex and edge rectangles Rq we consider their
projections on the horizontal axis. These projections are intervals Iq .

From the vertex rectangles Rq (resp. intervals Iq) of a one-dimensional DAGmap
we can construct a directed three-dimensional (resp. two-dimensional) ε-visibility
representation by assigning to rectangles (resp. intervals) a z-coordinate. The
construction is described in Theorem 2. A directed three-dimensional ε-visibility
representation of the DAG of Fig. 1(a) is shown in Fig. 2(a). The corresponding
directed (two-dimensional) ε-visibility representation of this DAG is shown in Fig.
2(b). The segments of Fig. 2(b) are the projections of the rectangles of Fig. 2(a)
onto the xz-plane.
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(a) A DAG G

1 2 3 4

5 6

7 8 9

10 11 12

(b) One-dimensional DAGmap of G

Fig. 1. An example of a one-dimensional DAGmap drawing of a DAG G. The hierarchy
structure is visualized via nesting [8] along the vertical direction.

Theorem 2. If a DAG G = (V, E) admits a one-dimensional DAGmap then it
admits a directed ε-visibility representation.

Sketch of Proof. Suppose that G admits a one-dimensional DAGmap. From the
one-dimensional DAGmap we will construct a directed ε-visibility representation
as follows: We compute an optimal topological numbering Y of G, such that only
integer numbers are used and the sources are assigned the number 0. We also
compute the longest path length, h, in the DAG. Each interval Iu, u ∈ V of the
one-dimensional DAGmap is shifted along the vertical direction and is drawn on
the horizontal line with equation y = y(u) = h−Y (u)+ε ·j(u), where ε is a small
positive number (e.g. 0 < ε < 1

1000·|V | ) and j = j(u) ∈ {0, 1, · · · , |V | − 1} is a
unique vertex index. The shifted intervals Iu, u ∈ V become the vertex-segments
σ(u) of the ε-visibility representation. The vertex-segments do not overlap since
they are drawn on different horizontal lines. Next we add the edge-segments. For
each e = (u, v) ∈ E, an edge-segment σ(u, v) = {(μuv, y) | y(u) ≥ y ≥ y(v)} is
created, where μuv is the horizontal coordinate of the middle of the interval Ie.
This construction is always possible since length(Ie) > 0.

Note that the above construction can also be done using st-numbering instead
of an optimal topological numbering. The advantage in this case is that the
term ε · j(u) is not needed since the vertex rectangles have distinct y coordinates
and therefore are disjoint. The disadvantages are: a) Figures 2, 3 and 4 require
more space and b) some proofs become slightly longer since in order to apply
Proposition 1 we need further checks to show that there is no path between
two vertices in the case when two vertices have the same optimal topological
numbering.

Due to space limitation we briefly outline the rest of the proof. First we
show that the conditions of w-visibility are satisfied and then we prove that if
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Fig. 2. Directed ε-visibility representation of the DAG of Fig. 1(a)

two vertex segments σ(u) and σ(v), such that Y (u) < Y (v), are ε-visible then
(u, v) ∈ E. Therefore the conditions of ε-visibility are satisfied. �

4 Characterization of Directed ε-Visibility
Representations

Theorem 2 reveals an interesting relationship between one-dimensional
DAGmaps and ε-visibility representations. Namely a one-dimensional DAGmap
defines an ε-visibility representation of a DAG. The converse of this theorem is
even more interesting because a) the problem of visibility representation of a
DAG has been thoroughly studied and b) it allows us to characterize the class
of DAGs that admit a one-dimensional DAGmap. Before we give the converse
of Theorem 2 we will characterize the class of DAGs that admit a directed
ε-visibility representation. This minor result seems to be lacking from the lit-
erature. We should mention here that a complete characterization of the class
of (undirected) graphs that admit an ε-visibility representation was given by
Tamassia and Tollis [11]. A complete characterization of the class of digraphs
that admit a (weak) w-visibility representation was given by Di Battista and
Tamassia [5].

Theorem 3. [5] A digraph G admits a directed w-visibility representation if and
only if G is a subgraph of a planar st-graph.

For directed ε-visibility representation the following lemma holds.

Lemma 1. [12] If a DAG G admits a directed ε-visibility representation, then
there exists a planar embedding Ĝ of G such that all source and sink vertices
appear on the boundary of the external face.

Let Cw and Cε be the classes of DAGs that admit a directed w-visibility and a
directed ε-visibility representation respectively. From the definition of directed
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ε-visibility representation we have that Cε ⊂ Cw. From Lemma 1 and Theorem
3 it follows that Cε is properly included in Cw.

Lemma 2. [11] For every vertex v of a planar st-graph G, the incoming (out-
going) edges appear consecutively around v.

Now we will present an algorithm, which is based on the Algorithm Tessellation
[4], that computes a directed ε-visibility representation of a planar st-graph. To
describe the algorithm we need to introduce some definitions. Let G be a planar
st-graph and F be its set of faces (recall that G is embedded). We conventionally
assume that F contains two representatives for the external face: the left external
face s∗, which is incident with the edges on the left boundary of G, and the right
external face t∗, which is incident with the edges on the right boundary of G.
For each element o of V ∪ E we define orig(o), dest(o), left(o), and right(o) as
follow:

1) If o = v ∈ V , we define orig(v) = dest(v) = v. Also, with reference to Lemma
2 we denote by left(v) (resp. right(v)) the face that separate the incoming
from the outgoing edges of a vertex v �= s, t in the clockwise direction (resp.
counter-clockwise direction). For v = s or v = t, we conventionally define
left(v) = s∗ and right(v) = t∗.

2) If o = e ∈ E, we denote by left(e) (resp. right(e)) the face on the left
(resp. right) side of e. Also, orig(e) (resp. dest(e)) denotes the origin (resp.
destination) vertex of e.

We define a digraph G∗, associated with planar st-graph G, as follows: The
vertex set of G∗ is the set of faces of G. For every edge e �= (s, t) of G, G∗ has
an edge e∗ = (f, g) where f = left(e) and g = right(e).

Theorem 4. Let G be a planar st-graph with n vertices. Algorithm 1 constructs
a directed ε-visibility representation in O(n) time.

Sketch of Proof. For any pair of vertices u, v ∈ V , the vertex segments σ(u) and
σ(v) do not overlap since they have distinct y coordinates.

For each edge e = (u, v) ∈ E, the corresponding maximal visibility band b(e)
has its top side on σ(u) since yT (e) = y(u) and xL(u) ≤ xL(e) < xR(e) ≤ xR(u),
and its bottom side on σ(v) since yB(e) = y(v) and xL(v) ≤ xL(e) < xR(e) ≤
xR(v). Then we can choose a vertical band b′(e) ⊂ b(e) of non-zero width that
has its top side on σ(u) its bottom side on σ(v) and does not intersect with any
other vertex-segment σ(w).

Finally since the topological numbering X is optimal the vertex-segment of a
non-sink vertex u is covered by the bottom sides of the maximal visibility bands
of edges incident from u. Similarly the vertex-segment of a non-source vertex v
is covered by the top sides of the maximal visibility bands of edges incident to
v. Therefore vertex-segment σ(v) is ε-visible from vertex-segment σ(u) only if G
has an edge (u, v).

The O(n) time bound follows easily since each step of the algorithm can be
accomplished in O(n) time. �
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Algorithm 1. Directed ε-visibility representation
Input: a planar st-graph G = (V, E)
Output: a) a directed ε-visibility representation G of G

b) visibility bands of maximal width that their internal points do
not intersect with any vertex-segment of G and that each one
having its top and bottom sides on two vertex-segments
s(u) and s(v) respectively if and only if (u, v) ∈ E.

1. Construct the planar st-graph G∗.
2. Compute an optimal topological numbering Y of G such that only integer numbers

are used.
3. Compute an optimal topological numbering X of G∗.
4. Let ε be a very small positive number e.g. 0 < ε < 1

1000·|V |
5. j = 0;
6. For each vertex u ∈ V , let the coordinates of segment σ(u) be:

xL(u) = X(left(u)); xR(u) = X(right(u));
y(u) = Y (t) − Y (u) + ε · j; //perturb slightly by adding ε · j
j = j + 1;

7. For each edge e ∈ E, let the coordinates of the corresponding maximal
visibility band b(e) be:

xL(e) = X(left(e)); xR(e) = X(right(e));
yT (e) = y(orig(e)); yB(e) = y(dest(e)).

s 0
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(a) Planar st-graphs G and G∗
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b

dc

gv u

t

(b) ε-visibility representation of G and
maximal visibility bands

Fig. 3. Example of a run of Algorithm 1. Planar st-graphs G and G∗ are labeled by
topological numbering Y and X, respectively.



DAGmaps and ε-Visibility Representations of DAGs 365

Let G = (V, E) be a DAG and G′ = (V ′, E′) be the DAG that is formed by
augmenting DAG G with two vertices s′ and t′ and edges from s′ to all sources of
G and edges from all sinks of G to t′ (i.e. V ′ = V ∪{s′, t′} and E′ = E∪{(s′, s) | s
is a source of G} ∪{(t, t′) | t is a sink of G}). Note that in order to test for st-
planarity and find an appropriate planar embedding of G′ we add edge (s′, t′).
This edge constrains the embedding such that vertices s′ and t′ appear on the
boundary of the same face, say the external face. The following theorem holds.

Theorem 5. [12] DAG G admits a directed ε-visibility representation if and
only if DAG G′ is a planar st-graph.

Corollary 1. A DAG G admits a directed ε-visibility representation if and only
if there exists a planar embedding Ĝ of G such that all source and sink vertices
appear on the boundary of the external face.

5 Characterization of One-Dimensional DAGmaps

We are now in a position to prove the converse of Theorem 2

Theorem 6. If a DAG G = (V, E) admits a directed ε-visibility representation
then it admits a one-dimensional DAGmap.

Sketch of Proof. We compute a directed ε-visibility representation G′ of G′ using
Algorithm 1 and from G′ a directed ε-visibility representation G of G by deleting
segments σ(s′) and σ(t′). From the arrangement of the vertex-segments of G
we will construct a one-dimensional DAGmap drawing of G. To each vertex-
segment σ(u), u ∈ V we correspond an interval Iu by taking its projection on
the horizontal axis. For each edge e = (u, v) ∈ E there is exactly one vertical
band b of maximal width that has its bottom side on σ(u) its top side on σ(v)
and does not ε-intersect any other segment. The coordinates of b are calculated
by Algorithm 1. The edge rectangle Ie is equal to the projection of b on the
horizontal axis.

We show that intervals {Iu | u ∈ V } and {Ie | e ∈ E} satisfy the DAGmap
drawing constraints. Drawing constraints B1, B3 are clearly satisfied. Constraint
B2 is satisfied due to the optimality of the topological numbering X of G∗.
Constraints B4 and B5 are satisfied when the ε-visibility representation of G is
produced by Algorithm 1 due to the optimality of the topological numbering X
of G∗. �

Combining Theorems 2 and 6 we have the following theorem:

Theorem 7. A DAG G = (V, E) admits a one-dimensional DAGmap if and
only if it admits a directed ε-visibility representation.

Corollary 2. The class of DAGs that admit a one-dimensional DAGmap are
the planar st-graphs that admit a planar embedding such that all source and sink
vertices appear on the boundary of the external face.
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Algorithm 2. One-dimensional DAGmap drawing
Input: DAG G = (V, E) and drawing rectangle R = (xleft, ybottom, xright, ytop)
Output: one-dimensional DAGmap drawing of G if G is admits such a drawing

or error message otherwise.

1. From DAG G = (V, E) we construct an st-digraph G′ = (V ′, E′), where V ′ =
V ∪ {s′, t′} and E′ = E ∪ {(s′, u) | u is a source of G } ∪ {(u, t′) | u is a sink of
G } ∪ (s′, t′).

2. If G′ is not st-planar return “DAG G does not admit a one-dimensional DAGmap.”
3. Else find a planar embedding of G′ such that s′ and t′ appear on the boundary of

the external face.
4. Remove edge (s′, t′) from G′

5. Call Algorithm 1 with input G′ to compute the horizontal coordinates of vertex-
segments and maximal visibility bands.

6. Use these coordinates to fill the coordinates of vertex and edge rectangles of G.

Algorithm 2 recognizes whether or not a DAG admits a one-dimensional
DAGmap and in the first case it constructs a one-dimensional DAGmap drawing.
All steps of this algorithm can be computed in O(n) time. Therefore we have
the following theorem.

Theorem 8. Algorithm 2 computes a one-dimensional DAGmap of a DAG or
returns an error message in time O(n) time.

6 DAGmaps and Three Dimensional ε-Visibility
Representations

A treemap determines a three-dimensional ε-visibility representation of a tree
T if vertex rectangles are placed in three dimensional space such that their x
and y coordinates are unaltered and their z coordinates are equal to the tree
height minus the distance of the corresponding vertices from the root (plus tiny
perturbations in order to keep the rectangle disjoint) (see Fig. 4). The above
discussion is extended to DAGmaps as described by Theorem 9.

Theorem 9. When a DAG G admits a DAGmap then it admits a directed
three-dimensional ε-visibility representation which can be constructed by shift-
ing the vertex rectangles along the vertical direction in such a way that their
z-coordinates are determined by an optimal topological numbering of G (plus a
tiny perturbation).

The proof of Theorem 9 is similar to the proof of Theorem 2 and is omitted in this
version. It is interesting to investigate if the converse of the above theorem holds.
If yes, then DAGmap admissibility would be equivalent to three-dimensional
visibility representation and results derived for the former problem would be
valid for the second and vise versa. However the converse of Theorem 9 does not
hold as the counter-example in Fig. 5 shows.



DAGmaps and ε-Visibility Representations of DAGs 367

1

2 3 4

5 10 116 7 8 9 12

(a) A tree T

1
23

4

5

6

7 8 9

10 11 12

(b) A treemap of T

1

3 2

4

97 58

10 11 12 6

(c) Three-dimensional ε-visibility of T

Fig. 4. A tree T , a treemap of T and a three-dimensional ε-visibility representation of
T that is constructed from the treemap of T

a cb d

e g jf h i

Fig. 5. The DAG of this figure does not admit a DAGmap [13]. However it admits a
three-dimensional directed ε-visibility representation.

7 Discussion

In this paper we show that there is a one-to-one correspondence between a one-
dimensional DAGmap and an ε-visibility representation of a DAG. Based on
this correspondence we give a characterization of the class of DAGs that admit
a one-dimensional DAGmap. They are those that admit a planar embedding
such that all source and sink vertices appear on the boundary of the external
face. Additionally we propose linear time, O(n), testing and drawing algorithms
for one-dimensional DAGmaps. Our next steps are a) to implement Algorithm 2
using SPQR trees [6] to find a planar embedding if one exists and b) to investigate
under what restrictions the converse of Theorem 9 holds.
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Drawing Directed Graphs Clockwise
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Abstract. We present a method for clockwise drawings of directed cyclic
graphs. It is based on the eigenvalue decomposition of a skew-symmetric
matrix associated with the graph and draws edges clockwise around the
center instead of downwards, as in the traditional hierarchical drawing
style. The method does not require preprocessing for cycle removal or lay-
ering, which often involves computationally hard problems. We describe
an efficient algorithm which produces optimal solutions, and we present
some application examples.

1 Introduction

Directed graphs are usually drawn with the desire to have edges pointing in
the same direction, say, downwards, assuming that there is a general trend or
direction of flow in the graph. The most popular and thoroughly researched
drawing method is the Sugiyama framework [15], which works well for directed
graphs with no or only few cycles. After preprocessing, in which some edges are
temporarily removed or reversed, the graph is acyclic, which allows all nodes to
be assigned to layered in such a way that all edges point in the same direction.

Instead of discrete levels, nodes may also be assigned continuous vertical co-
ordinates. Carmel et al. [2] minimize a hierarchy energy in which every edge in a
directed graph induces a target height difference between the two incident nodes;
an iterative optimization process computes coordinates which attain these height
differences as well as possible. Sometimes, however, it is not appropriate to as-
sume that there is an overall linear trend of direction; cycles may not just be
considered as “noise”, but as essential information which should be highlighted
and conveyed in a drawing.

An alternative to the traditional style of hierarchical layouts are recurrent
hierarchies [15], which have long gone unnoticed until recently. Such drawings are
read clockwise with respect to a distinguished point of origin. For constructing
a drawing, a cyclic order on all nodes has to be found in which as many edges
as possible point forward.

Sugiyama and Misue introduced a set of modifications of force-directed algo-
rithms to get a cyclic orientation [14]. They use a concentric force field which
rotates around the center and takes edges along, and report about satisfactory
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(a) straight line edges (b) curved edges

Fig. 1. Clockwise drawings of the graph on the cover page of [8]. The crosses indicate
the location of the origin, relative to which the configuration is oriented. The labels
represent the layers in the original drawing.

experimental results for small example graphs. This method is intuitive and
works for small graphs, but is, like many other force-directed methods, suscep-
tible to local minima, sensitive to the choice of initial configurations, and not
very scalable.

Bachmaier et al. extend the traditional Sugiyama approach by a cyclic level
assignment [1]. The lowest level is considered to be on top of the highest level; this
modification renders some of the involved optimization problems NP-complete;
for the combinatorial background of cyclic arrangements for directed graphs, see
also [3,11]. The assignment of levels to nodes in such a cyclic setting is done with
various heuristics.

We describe a novel approach for drawing directed graphs in a cyclic style,
which does not require a discrete leveling, and gives direct and, in a sense to
be specified later, optimal solutions; see Fig. 1 for an example. Positions are
given by eigenvectors of a matrix associated with the graph, which is technically
similar in style to other spectral layout methods [10], but conceptually different.
We give the mathematical background and present a drawing algorithm which
is efficient and easy to implement, together with some application results.

2 Preliminaries

In the following, let G = (V, E) be a directed connected graph with directed edges
(u, v) ∈ E ⊆ V × V . The cardinalities of node and edge sets are denoted by n =
|V |, m = |E|. When (u, v) ∈ E we say that u precedes v and v succeeds u. The sets
of predecessors and successors of a node v ∈ V are denoted N−(v) and N+(v).
Node coordinates are written as column vectors of the form x = (xv)v∈V ∈ Rn,
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and the norms of vectors and matrices are denoted by ‖x‖ = (
∑

v∈V x2
v)

1/2 and
‖A‖ = (

∑n
i=1

∑n
j=1 a2

ij)
1/2.

3 Skew-Symmetry

Let A = A(G) = (auv)u,v∈V denote the adjacency matrix of G, with entries

auv =

{
1 if (u, v) ∈ E

0 otherwise.
(1)

We will assume in the following that between every pair of nodes u, v ∈ V there
is at most one directed edge, and that there are no self-edges (v, v).

From the adjacency matrix, which is asymmetric in general, a skew-symmetric
matrix is derived. A square matrix S = (suv)u,v∈V is skew-symmetric if and only
if suv = −svu for all u, v ∈ V , or equivalently, S = −ST .

The skew-symmetric adjacency matrix S(G) of a directed graph G = (V, E)
is connected to its adjacency matrix A(G) by

S = S(G) = A(G) − A(G)T (2)

with entries

suv =

⎧⎪⎨
⎪⎩

1 if (u, v) ∈ E, (v, u) �∈ E

−1 if (v, u) ∈ E, (u, v) �∈ E

0 otherwise
(3)

for all u, v ∈ V .
We will now use the eigenvalues and eigenvectors of S to obtain positions for

every node and thus a drawing of G. Without loss of generality, the eigenvalue
decomposition of S may be written in the form

S = UΦUT , (4)

where U ∈ Rn×n is an orthogonal matrix whose columns are real unit length
eigenvectors u1, . . . , un ∈ Rn, ‖ui‖ = 1 for all i ∈ {1, . . . , n}, and Φ ∈ Cn×n is a
diagonal matrix of complex eigenvalues.

Since S is skew-symmetric, the complex eigenvalues of S are purely imaginary
and occur in conjugated complex pairs

±
√
−1φ1,±

√
−1φ2, . . . ,±

√
−1φ�n/2� (5)

with an additional singleton zero eigenvalue if n is odd. We will refer to a pair of
eigenvalues ±

√
−1φi as the eigenvalue φi. Without loss of generality we assume

that the eigenvalues in Φ are ordered non-increasingly by their absolute mag-
nitude, φ1 ≥ · · · ≥ φ�n/2� ≥ 0. With the i-th eigenvalue φi (1 ≤ i ≤ �n/2�) a
pair of eigenvectors u2i−1, u2i is associated, which span a two-dimensional space
frequently called (i-th) bimension.
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Through orthogonal transformation, (4) can be brought into a slightly differ-
ent form known as the Gower decomposition [5]

u1 u2 . . . un−1 un

φ1

−φ1

0

0

. . .

φ�n
2 �

0

0
−φ�n

2 �

uT
1

uT
2

...

uT
n−1

uT
n (6)

which allows S to be written as a sum of �n/2� elementary rank-2 matrices

S =
�n/2�∑
i=1

φi

(
u2iu

T
2i−1 − u2i−1u

T
2i

)
, (7)

all of which are skew-symmetric.
An intuitive interpretation of the decomposition (7) is that each of the (at

most) �n/2� summands explains a share of the directional information expressed
by S; the magnitude of the eigenvalue φi is equal to the share of the ith bi-
mension. Note that a pair of eigenvectors u2i−1, u2i may be replaced by any
orthogonal pair of vectors spanning the same two-dimensional space.

4 Clockwise Drawings

Each of the �n/2� bimensions of S(G) may be used to obtain a two-dimensional
drawing of a graph G = (V, E). Since φ1 is the largest eigenvalue, the information
expressed by the edges of G is best captured in two-dimensions by using the
corresponding eigenvectors u1 and u2 as follows.

Positions for every node v ∈ V are simply obtained by setting

x =
√

φ1u1, y =
√

φ1u2 (8)

and using the entries xv, yv as the coordinates of v in two-dimensional Euclidean
space. In such a configuration, the particular skew-symmetry suv between two
nodes u and v, which comes from the orientation (or absence) of the edge (u, v),
is fitted by

suv ≈ xuyv − xvyu. (9)

This quantity is proportional to the signed area of the triangle of the positions
(xu, yu) and (xv , yv) subtended by the origin, since

xuyu − (xvyv/2 + xuyv/2 + (xu − xv)(yv − yu)/2) = (xuyv − xvyu)/2

as illustrated in Fig. 2.
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yu

yv

xv xu

xuyu/2

xvyv/2

u
(xiyj − xjyi)/2

v

(xu − xv)(yv − yu)/2

(xuyv − xvyu)/2

Fig. 2. The signed area of the triangle of the edge pointing from (xu, yu) to (xv, yv)
subtended by the origin represents the amount and direction of the skew-symmetry
between u and v

It can be shown that setting the positions (xv, yv) for each node v ∈ V as in
(8) minimizes the objective function

∑
(u,v)∈E

(xuyv − xvyu − 1)2 +
∑

(u,v),(v,u) �∈E

(xuyv − xvyu)2 (10)

among all two-dimensional layouts x, y ∈ Rn [6]. Intuitively, minimizing (10)
tries to represent all directed edges with a correspondingly oriented triangle
having positive unit area, while all non-adjacent pairs of nodes should be located
on a line through the origin, forming a triangle with area zero; this may be
interpreted as a global repulsion energy for non-adjacent node pairs.

Unlike distance-based layout methods, the origin and the relation of nodes to
the origin are crucial for reading the clockwise drawing. The angle of a node’s
position is determined largely by the angle of its predecessors and successors.
Since two eigenvectors spanning a bimension share the same eigenvalue, axes
are not meaningful, and the configuration may be freely rotated around the
center without modifying triangle areas and signs. Furthermore, it is not deter-
mined whether the bimension blocks in the block-diagonal matrix in (6) are of
the form (

0 φi

−φi 0

)
or

(
0 −φi

φi 0

)
so that the orientation is made clockwise or counterclockwise, as desired, by
reflecting it on any line through the origin. Note that some edges may point
against the desired orientation because the associated triangle areas are negative.
Depending on the context, these edges may be visually highlighted, or re-oriented
by letting them follow the opposite, longer way around the origin.
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(a) φ1 = 2.65843 (b) φ2 = 1.55086 (c) φ3 = 0.72802

Fig. 3. Drawings of an example graph (n = 7, m = 10) in all three possible bimensions.
Note that φ2

1 + φ2
2 + φ2

3 = m, and the bimensions account for about φ2
1/m ≈ 70.6%,

φ2
2/m ≈ 24.1% and φ2

3/m ≈ 5.3% of the skew-symmetry information.

Although the bimension for the largest eigenvalue is the best one can do with
two dimensions in the sense of the criterion (10), drawings in other bimensions
may also be helpful, since they visualize additional, less dominant parts of the
directional information. A small graph and the layout in all possible bimensions
is given in Fig. 3. The second bimension explains as much as possible of the
skew-symmetry remaining after removing the contribution of the first bimension
from the sum in (7), and so on.

5 Implementation

There are some dedicated algorithms for computing the complete spectral de-
composition (4) of a skew-symmetric matrix [12,16]. Fortunately, we need only
the largest eigenvalue and the two associated eigenvectors, and a simple power
iteration is thus sufficient.

Since S = −ST and hence −SST = S2, we can use the fact that the eigenvec-
tors of S are identical to the eigenvectors of the symmetric matrix SST = −S2,
and power-iterate with SST , which is convenient to handle computationally.

An initial non-zero vector, which may be chosen randomly, is iteratively mul-
tiplied with SST by carrying out the multiplication step

x ← SST x

‖SST x‖ . (11)

over and over again; in general, x will converge to the desired eigenvector [4].
Instead of materializing the matrix SST , which would require O(n3) real multi-
plication operations, the step (11) can be split into

x̂ ← ST x

‖ST x‖ (12)
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αu

αv

ρv

ρu

u

v

α(t)

ρ(t)

Fig. 4. Drawing curved edges using splines with control points

x ← Sx̂

‖Sx̂‖ (13)

which encompasses only O(n2) operations, assuming a constant number of itera-
tive steps to achieve convergence. Furthermore, sparsity of a graph G, i.e., when
S(G) has o(n2) non-zero entries, may be exploited to obtain a power iteration
with linear time per step. The power iteration process in (12) and (13) becomes

x̂ ← Ax − AT x

‖Ax − AT x‖ (14)

x ← AT x̂ − Ax̂

‖AT x̂ − Ax̂‖ (15)

which is just a linear scan over all edges, since only positions of adjacent nodes
need to be accumulated; this is reminiscent of hubs and authorities [9], where
the eigenvectors of AAT and AT A are computed.

The required second eigenvector of SST is computed similarly, but with or-
thogonalizing against the first eigenvector after each step. Pseudo-code of an
algorithm with running time and space complexity in O(n + m) per iteration
step is given in Alg. 1.

To avoid unnecessary crossings by straight lines, edges may be drawn as clock-
wise curves around the origin, e.g., using splines. The corresponding control
points are determined in a linear interpolation between the angles αu, αv, and
the radii ρu, ρv of the nodes u, v by

ρ(t) = (1 − t) · ρu + t · ρv (16)
α(t) = (1 − t) · αu + t · αv (17)
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Algorithm 1. Drawing a directed graph clockwise
Input: Directed graph G = (V, E)
Output: Coordinate vectors x, y ∈ Rn with positions for every v ∈ V
x ← random, y ← random
while x and y change significantly do

x ← x/‖x‖, y ← y/‖y‖ // normalize
y = y − xT y · x // orthogonalize
foreach v ∈ V do

x̂v ←
∑

u∈N−(v)

xu −
∑

w∈N+(v)

xw // x̂ ← (A − AT ) · x

ŷv ←
∑

u∈N−(v)

yu −
∑

w∈N+(v)

yw // ŷ ← (A − AT ) · y

foreach v ∈ V do

xv ←
∑

w∈N+(v)

x̂w −
∑

u∈N−(v)

x̂u // x ← (AT − A) · x̂

yv ←
∑

w∈N+(v)

ŷw −
∑

u∈N−(v)

ŷu // y ← (AT − A) · ŷ

φ ←
√

‖x‖ // estimate for largest eigenvalue

x ← x/φ3/2, y ← y/φ3/2 // scale eigenvectors to have length
√

φ

where 0 ≤ t ≤ 1; when k control points are used, t ∈ {0, 1
k , 2

k , . . . , k−1
k , 1}. Note

that when |αu − αv| > π, this interpolation results in the edge (u, v) winding
around the center with an angle greater than π; the shorter counterpart of that
curve is obtained by adding 2π to the smaller of αu, αv.

6 An Application

A special class of directed graphs is called tournaments [7,13]. A tournament
G = (V, E) on n nodes is an orientation of the complete undirected graph on
n nodes. Tournaments are a model for round-robin competitions in which ev-
erybody competes with everybody else, and every competition {u, v} for u, v ∈
V, u �= v has a winner u and a loser v, say, which is represented by the orientation
(u, v).

Here we use a variant of tournaments, in which the underlying undirected
graph is almost complete, but some edges are allowed to be missing because
there are situations in which no winner can be determined. The method of clock-
wise drawing is applied to results of international football leagues in England,
Germany, Italy, and Spain, in the seasons ending in 2006, 2007, and 2008. In
every season, between every possible pair of teams two matches are carried out,
each team being the home team once. The tournament graph contains an edge
(u, v) ∈ E when u dominates v, i.e., u has won more matches against v than v
against u; ties are not considered.

Fig. 5 shows drawings of all 12 tournaments, as given by the positions in the
bimension of the largest eigenvalue. A cyclic structure is displayed in some of
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Fig. 5. Clockwise drawings (bimension of the largest eigenvalue) of the tournament
graphs in European football leagues in three consecutive seasons. The span of edges
around the center is emphasized by edges curving around the center.
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the configurations, such as England 2006/2007, Germany 2006/2007, and Spain
2006/2007, 2007/2008, which leads to the conjecture that these seasons were
quite balanced, with no clear dominator. In these tournaments, some otherwise
weak teams, which are dominated by most others, won against otherwise strong
teams. For example, in the 2006/2007 season of the English Premier League,
West Ham United (node on the lower left) closed the season on rank 15 of
20 teams, but dominated the champions Manchester United and fourth-ranked
Arsenal FC.

In contrast, it is interesting to observe that the drawings of some other
tournaments appear to be rather non-cyclic, especially England 2005/2006 and
2007/2008, all three seasons in Italy, and Spain 2005/2006. Since all nodes are on
the same side of a line through the origin, the signed triangle areas do not allow
for cyclic node triples in this bimension. Thus, most of the dominance structure
in the skew-symmetric adjacency matrix is intrinsically rather non-cyclic, and
suggests that the classical hierarchical approach is actually more appropriate
than the cyclic one. In the context of football matches, there is a clear tendency
for strong teams to consistently dominate weaker teams and weak teams to be
consistently dominated by stronger teams, with no or only few exceptions.

(a) half-circular (b) hierarchical

Fig. 6. Football tournament graph in England 2007/2008 (bimension of the largest
eigenvalue). The graph exhibits a substantially hierarchical structure, which justifies
the transformation from a polar into a cartesian domain.
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In fact, a polar transformation easily transforms the half-circular arrangement
into the traditional hierarchical drawing style. A natural ranking is given by the
total order of angles of all nodes with respect to the origin, as they are given
by their angular representation. The coordinates for node v after this polar
transformation are given by

ρv =
√

x2
v + y2

v, αv = atan2(yv, xv) (18)

where atan2(·, ·) : R2 → [0, 2π] denotes the two-argument inverse of the tangent
function implemented in most modern programming languages. ρv represents
the transformed clockwise rank of v and αv the amount of skew-symmetry of v
with all other nodes. An example of such a half-clockwise configuration and its
polar transform is given in Fig. 6.

7 Conclusion

The decomposition of the skew-symmetric adjacency matrix yields a method for
drawing directed graphs in a cyclic fashion and provides direct and unique solu-
tions. The drawing area is oriented either clockwise or counterclockwise around
a distingiuished center point; if necessary, the sense of rotation is inverted by
reflecting one axis.

The algorithm is easy to implement because it requires only essential array
operations and no sophisticated data structures. Since no cycle removal or level
assignment is required, some of the computationally hard problems are avoided.
The sparsity of the skew-symmetric adjacency matrix can be used to obtain a
power iteration algorithm which runs in linear time per step and requires linear
space.

When discrete levels or radial level assignments are required, they may be
obtained from the continuous coordinates by a quantization scheme. The clock-
wise configurations can be combined with the force-directed methods in [1,14]. A
straightforward extension would be to use non-uniform edge lengths. For strongly
connected graphs, all distances are finite, and the analysis is also applicable to
the corresponding skew-symmetric distance matrix.

While there is no space here for a detailed discussion of quantitative measures
to characterize the cyclicity of a dominance relation, we would like to point out
that clockwise oriented drawings and the distribution of the involved eigenvalues
are useful for testing hypotheses about the cyclic or hierarchical structure of
directed graphs.

Beyond the graph drawing application, we expect that the presented method
is also useful for generating initial solutions to heuristic methods for general
NP-hard arrangement problems [3,11].
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Abstract. In the metro-line crossing minimization problem, we are
given a plane graph G = (V, E) and a set L of simple paths (or lines)
that cover G, that is, every edge e ∈ E belongs to at least one path
in L. The problem is to draw all paths in L along the edges of G such
that the number of crossings between paths is minimized. This crossing
minimization problem arises, for example, when drawing metro maps, in
which multiple transport lines share parts of their routes.

We present a new line-layout algorithm with O(|L|2 · |V |) running
time that improves the best previous algorithms for two variants of the
metro-line crossing minimization problem in unrestricted plane graphs.
For the first variant, in which the so-called periphery condition holds and
terminus side assignments are given in the input, Asquith et al. [1] gave
an O(|L|3 · |E|2.5)-time algorithm. For the second variant, in which all
lines are paths between degree-1 vertices of G, Argyriou et al. [2] gave
an O((|E| + |L|2) · |E|)-time algorithm.

1 Introduction

Schematic metro maps are effective and popular visualizations of public trans-
port networks all over the world; see Ovenden’s comprehensive collection of
metro maps [3]. Several methods for automatically drawing metro maps have
been suggested in recent years [4,5,6]. These methods, however, focus on draw-
ing the underlying graph, that is, the graph that represents stations as vertices
and direct links between two stations as edges. This graph represents the in-
frastructure of the transport network, for example, railway tracks or roads. A
schematic layout of the underlying graph, whether created manually or by one
of the existing methods mentioned above, does not necessarily yield a proper
metro map yet. The reason is that most real-world networks contain many dif-
ferent transport lines whose routes partially overlap, that is, some edges of the
underlying graph are shared by multiple transport lines. In practice, each trans-
port line is therefore drawn in a distinct color along the edges of its path in the
underlying graph. Consequently, edges that belong to several lines consist in fact
of a bundle of colored parallel curves. As an example, Fig. 1 shows a detail of
the metro map of Cologne.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 381–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Detail of the metro map of Cologne

An immediate consequence of such a visualization is that there are situations
in which two lines in the—otherwise plane—network cross. Some line crossings
are mandatory, induced by the prescribed network topology, others depend on
the line orders in each vertex and can be avoided by choosing the right orders.
Hence, the metro-line crossing minimization (MLCM) problem arises as a sec-
ondary problem in the metro-map layout process: find an ordering of the parallel
lines along each edge of the underlying graph such that as few pairs of lines as
possible cross each other in the final layout. Additionally, the relative order of
lines traversing a vertex in the same direction must not change within this ver-
tex, that is, we do not allow to hide line crossings “below” the area occupied by
the representation of a vertex. Note that the MLCM problem is independent of
the actual layout of the underlying graph. The combinatorial embedding of the
underlying graph, which is usually defined by its geographic input embedding,
is all one needs to define the orderings of the parallel lines. Hence, algorithms
for MLCM can be used both for reducing line crossings in existing layouts and,
as a second step in combination with layout methods for the underlying graph,
for creating metro maps from scratch.

Although we present our results in terms of the classic problem of visualizing
transportation networks, we note that the metro map metaphor has also been
used as a means to visualize potentially much larger networks in other fields, for
example, metabolic pathways [7]. Actually, the MLCM problem appears when-
ever multiple parallel edges in a graph need to be drawn separately along a
common geometric path with the minimum number of crossings among them.

Benkert et al. [8] introduced the general MLCM problem. Subsequently,
MLCM was considered in several variants and for different classes of under-
lying graphs [9, 2, 1], which are discussed in detail in Section 3. One important
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(a) With periphery condition. (b) Without periphery condition.

Fig. 2. Layout of a terminus (middle vertex) with three terminating lines. The layout
in (b) introduces a gap between the continuing lines.

variant, posed as an open problem by Benkert et al. [8] and addressed by Bekos
et al. [9] and by Asquith et al. [1], restricts the positions of each line’s start and
end point (called termini) to be left- or rightmost in the ordered sequence of
lines along the underlying edges leading to its termini. This restriction is called
the periphery condition and prevents gaps between continuing lines, see Fig. 2.
Gaps between parallel lines disrupt the uniform appearance of the underlying
edge and hence are to be avoided in order to improve readability. Apart from
avoiding gaps, an exposed outer position for terminating lines also allows for
better highlighting or labeling of the termini. Often the final destination of a
train or bus in a transport network is used to indicate its direction and hence
termini and their names should be prominent features that are easy to recognize
in a metro map. Many of the real-world maps in Ovenden’s collection [3] adhere
to the periphery condition, as does the metro map of Cologne in Fig. 1. Bekos et
al. [9] showed that the MLCM problem is NP-hard under the periphery condition
if each terminus can lie on either side of the respective final edge. On the other
hand, Asquith et al. [1] showed that the MLCM problem under the periphery
condition can be solved efficiently for general plane graphs if the terminus side
assignment is given as part of the input.

In this paper, we investigate the MLCM problem under the periphery condi-
tion with terminus side assignments and present a new algorithm in Section 4
that solves this problem in O(|L|2 · |V |) time for a graph G = (V, E) and a set of
lines L. The algorithm has two phases. First, for each pair of lines that share a
common subpath, we determine their required relative order at the end of their
common subpath. Then, in a second step, we iteratively insert one line at a time
into the layout such that the relative orders computed in the first phase are re-
spected and no unnecessary line crossings are created. Our algorithm improves
the algorithm of Asquith et al. [1] for the same problem, which has a running
time of O(|L|3 · |E|2.5). Our algorithm can also be used to solve a closely re-
lated problem considered by Argyriou et al. [2], where all lines must be paths
connecting two degree-1 vertices in G. Hence, it also improves the algorithm of
Argyriou et al., which has a running time of O((|E| + |L|2) · |E|). These are the
only two variants of MLCM that are known to be efficiently solvable, and our
algorithm is to the best of our knowledge currently the fastest method to solve
both of them for general plane underlying graphs.
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2 Model

The input to the MLCM problem is a metro graph (G,L), where G = (V, E) is a
planar embedded graph and L is a line cover of G, that is, a set of simple paths
(or lines) that cover G. Note that existing edge crossings in the input graph can
easily be modeled as dummy vertices. For notational convenience, we consider
each undirected edge {u, v} ∈ E as a pair of directed edges uv and vu. Both
notations refer to the same single edge just from two different perspectives.

The vertices v0 and vk of a line � = (v0, v1, . . . , vk) ∈ L of length |�| = k are
called the termini of �, the vertices v1, . . . , vk−1 are called intermediate vertices
of �. An edge uv is included in a line �, in short uv ∈ �, if u and v are consecutive
vertices in �. We denote as Luv = Lvu = {� ∈ L | uv ∈ �} the set of all lines
that include an edge uv. The total edge size of L is defined as NL =

∑
�∈L |�| =∑

uv∈E |Luv|. Note that NL ∈ O(|L| · |V |) since |�| ≤ |V | for each line � ∈ L.
Each vertex u has a cyclic sequence of

∑
uv∈E |Luv | consecutive ports, one for

each line of each incident edge uv. Each port is a point on the boundary of the
geometric representation of u, at which the individual lines in

⋃
uv∈E Luv enter

(or leave) u. We are interested in the order in which the lines in Luv connect to
the consecutive subsequence of ports of u (and of v) that correspond to the lines
along edge uv. So for each edge uv ∈ E, we define two line orders <u

uv and <v
uv

of Luv in the endpoints of uv. For two lines �1 and �2 in Luv we write �1 <u
uv �2

(or �1 <v
uv �2) if �1 is right of �2 at the endpoint u (or v) with respect to

the direction of uv. Note that the orders are reversed if we use the oppositely
directed edge vu instead of uv, that is, �1 <u

uv �2 if and only if �2 <u
vu �1.

The sorted sequence of the lines in Luv with respect to <u
uv is denoted as su

uv;
analogously sv

uv is the sorted sequence of lines with respect to <v
uv. Again, the

sequences su
vu and sv

vu are the reversed sequences of su
uv and sv

uv.
A line crossing is a crossing between two lines �1 and �2 along a shared edge uv.

The two lines cross on uv if �1 <u
uv �2 and �2 <v

uv �1 or vice versa. Abstracting
from geometry, the number of line crossings along an edge uv is thus equal to
the number of inversions in the sequences su

uv and sv
uv.

In order to avoid confusion for the map viewer, it is not allowed to hide line
crossings “below” a vertex. To that end we define a line order <v

uv to be compatible
with the vertex v if the following holds. Apart from uv, let vw1, vw2, . . . , vwk be
the other edges incident to v in counterclockwise order starting from uv. We con-
sider the sequence sv

uv and the concatenated sequence s′ =
∏k

i=1 sv
vwi

. Then <v
uv

is compatible with v if sv
uv is a subsequence of s′. In other words, the lines that

enter v through the edge uv and leave v through the edges vw1, vw2, . . . , vwk do
not change their relative order. We say that a vertex v is admissible if the line
orders for all incident edges are compatible with v.

3 MLCM Variants and Previous Work

In this section we present four different variants of the MLCM problem that
have been considered in the literature so far. Previous results and the results
obtained in this paper are summarized in Table 1.
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Table 1. Overview of results for the MLCM problem and its variants. Algorithmic
results are given by their running time.

problem graph class restrictions result reference

MLCM single edge uv – O(|Luv |2) [8]
path – NP-hard [9]

MLCM-P plane graph – ILP + MLCM-PA [1]
path 2-side model O(|L| · |V |) [9]
left-to-right tree 2-side model O(|L| · |V |) [9]

MLCM-PA plane graph – O(|L|3 · |E|2.5) [1]
plane graph 2-side model O(|V | · (|E| + |L|)) [2]
plane graph – O(|L|2 · |V |) Theorem 1
left-to-right tree 2-side model O(|L| · |V |) [9]
plane graph 2-side model O(|V | · (|E| + |L|)) [2]

MLCM-T1 plane graph – O((|E| + |L|2) · |E|) [2]
plane graph – O(|L|2 · |V |) Corollary 1

The original metro-line crossing minimization problem as introduced by
Benkert et al. [8] is as follows.

Problem 1 (MLCM). Given a metro graph (G = (V, E),L), find for each edge
uv ∈ E two line orders <u

uv and <v
uv of the lines in Luv such that the number

of line crossings is minimal and all vertices are admissible.

A solution to MLCM is denoted as a line layout. Benkert et al. [8] gave a
quadratic-time algorithm to solve MLCM for a single edge of G. Their algo-
rithm does not extend to larger subgraphs and it is a remaining open problem
whether MLCM is NP-hard in its general form.

We have already introduced the periphery condition, which additionally re-
quires that each line terminates in an outer or peripheral position in each of
its two termini (recall Fig. 2). Formally, this means that for each vertex v and
each edge uv all lines in Luv, for which v is a terminus, must be placed in the
beginning or in the end of the sequence sv

uv. In other words, no terminating line
can lie between two continuing lines in the order <v

uv. We denote the following
variant as MLCM with periphery condition (MLCM-P).

Problem 2 (MLCM-P). Given a metro graph (G = (V, E),L), find for each edge
uv ∈ E two line orders <u

uv and <v
uv of the lines in Luv such that the number of

line crossings is minimal, all vertices are admissible, and each terminating line
is placed at a peripheral position in each of its two termini.

Bekos et al. [9] showed that MLCM-P is NP-hard, even if G is a path, and
Asquith et al. [1] formulated an integer linear program (ILP) to solve MLCM-P.
Still, Problem 2 gives rise to a closely related (but computationally feasible)
variant that additionally specifies in the input fixed terminus sides for each line.
We denote this variant as MLCM with periphery condition and terminus side
assignments (MLCM-PA).
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Problem 3 (MLCM-PA). Given a metro graph (G = (V, E),L) and terminus
side assignments for all lines in L, find for each edge uv ∈ E two line orders <u

uv

and <v
uv of the lines in Luv such that the number of line crossings is minimal,

all vertices are admissible, and each terminating line is placed at a peripheral
position on the specified side of each of its two termini.

Problem 3 occurs in situations, in which, for example, the physical location of
the tracks or the bus stop of the terminating line in a terminus yields this in-
formation. Alternatively, the optimal terminus side assignments can be obtained
from the ILP formulation of Asquith et al. [1]. Asquith et al. also presented
an O(|L|3 · |E|2.5)-time algorithm to solve MLCM-PA for general plane graphs.
Bekos et al. [9] gave two algorithms to solve MLCM-PA in the restricted 2-side
model for paths and for a special class of left-to-right directed trees with bounded
vertex degree in O(|L| · |V |) time, respectively. In the 2-side model, all vertices
are drawn as rectangles and all lines are drawn as x-monotone paths that pass
through vertices from the left to the right side. Argyriou et al. [2] recently pre-
sented an algorithm to solve MLCM-PA in the 2-side model for general plane
graphs in O(|V | · (|E| + |L|)) time.

Another interesting MLCM variant restricts the lines in L to terminate at
degree-1 vertices only, that is, all termini in (G,L) are leaves of G.

Problem 4 (MLCM-T1). Given a metro graph (G = (V, E),L) in which the
degree of any terminus v of any path in L equals 1, find for each edge uv ∈ E
two line orders <u

uv and <v
uv of the lines in Luv such that the number of line

crossings is minimal and all vertices are admissible.

Problem 4 is of practical interest since in many real-world networks transport
lines lead from one terminus station in the outskirts of a city through the city
center to another terminus station in the outskirts. This is exactly the sit-
uation in which lines terminate at leaves of the underlying graph. Argyriou
et al. [2] presented an algorithm to solve MLCM-T1 in general plane graphs
in O((|E| + |L|2) · |E|) time. For MLCM-T1 in the previously mentioned 2-side
model, they improved the running time to O((|E| + |L|) · |V |).

We observe that a line layout for an MLCM-T1 instance trivially satisfies the
periphery condition. Since each terminus v is a degree-1 vertex in G, there cannot
be any continuing lines in v, and any position in the line order at v is peripheral
by definition. Furthermore, there is no need to distinguish two different sides for
the assignment of the terminus positions: not being separated by a continuing
line, the two sides of the edge leading to v coincide. Hence, we can reduce any
MLCM-T1 instance to an equivalent MLCM-PA instance by assigning all lines
that terminate at the same leaf v to the same terminus side. This actually means
that there is no restriction to the line order in v at all, and we indeed model the
general setting of MLCM-T1. Obviously, the reduction takes only linear time.
This is summarized in the following lemma.

Lemma 1. An instance of MLCM-T1 can be reduced to an equivalent instance
of MLCM-PA in linear time.
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4 An Improved Algorithm for MLCM-PA

In this section we present our main result, an O(|L|2 · |V |)-time algorithm for
MLCM-PA and MLCM-T1 in general plane graphs. We first show a simple
lemma about the line crossings in an optimal layout for an MLCM-PA instance.
We define a line crossing of two lines in a metro graph (G,L) to be unavoidable,
if it is present in any line layout of (G,L).

Lemma 2. Given a metro graph (G,L) and terminus side assignments for all
lines in L, all line crossings in a crossing-minimal line layout are unavoidable
crossings.

Proof. By definition every unavoidable crossing is present in any crossing-minimal
line layout. We want to show that the opposite is also true: every line crossing in
a crossing-minimal line layout is unavoidable.

So let �1 and �2 be two lines that cross in a crossing-minimal line layout along
an edge uv. By P = (w0, . . . , wi = u, wi+1 = v, . . . , wk), 0 ≤ i < k, we denote
the maximal common subpath of �1 and �2 that contains uv. First of all note
that the crossing along uv is the only crossing of �1 and �2 along P ; any two
consecutive crossings of two lines along a common subpath could be removed
by routing the upper line just below the lower line along the edges between the
two crossings—this contradicts the optimality of the line layout and has been
observed by Asquith et al. [1] before.

We can assume that �1 <u
uv �2 and �2 <v

uv �1. Since there is a single crossing
between �1 and �2 along P , this implies that �1 <w0

w0w1
�2 and �2 <wk

wk−1wk
�1. This

inversion of �1 and �2 in the line orders of vertices w0 and wk is either enforced
by the combinatorial embedding of G as the line orders <w0

w0w1
and <wk

wk−1wk

must be compatible with w0 and wk (if the respective line continues beyond w0
or wk) or by the given terminus side assignment (if the respective line terminates
at w0 or wk). The only case where the relative order of �1 and �2 is not fixed by
the compatibility requirements or the terminus side assignments is if both lines
terminate at the same vertex, say w0, and are assigned to the same terminus
side. In that case, however, they can always be reordered in <w0

w0w1
such that

they reflect their relative order in <wk
wk−1wk

and the crossing would disappear.
This contradicts the optimality of the layout.

We conclude that the crossing of �1 and �2 is unavoidable: the relative order
of �1 and �2 at one end of P is the inverse of their order at the other end of P
due to the given terminus side assignments or the compatibility requirements for
the embedding of G. ��

Lemma 2 implies that there is a line layout that realizes exactly the unavoid-
able crossings and, consequently, that any such layout is optimal. Algorithm 1
constructs such a line layout. It first computes all maximal common subpaths of
all pairs of lines to determine their relative orders as induced by the topology or
the terminus side assignments. In a second phase all lines are iteratively inserted
into the line orders of their edges and the final line layout is fixed.



388 M. Nöllenburg

Algorithm 1. MLCM-PA line layout
Input: metro graph (G,L), terminus side assignments for all � ∈ L
Output: line orders <u

uv, <v
uv for all edges uv ∈ E

/* Phase 1 */
foreach (�1, �2) ∈ L × L, �1 �= �2, �1 = (v0, v1, . . . , vk) do

compute set Λ(�1, �2) of all maximal common subpaths of �1 and �2
foreach (vi, vi+1, . . . , vj) ∈ Λ(�1, �2) do

if �2 leaves �1 towards the left or terminates left of �1 in vj then
for l = i to j − 1 do

side(�1, �2, vlvl+1) ← left

else
for l = i to j − 1 do

side(�1, �2, vlvl+1) ← right

/* Phase 2 */
foreach � = (v0, v1, . . . , vk) ∈ L do

for i = 0 to k − 1 do
insert � into <vi

vivi+1

insert � into <
vi+1
vivi+1

Theorem 1. Given a metro graph (G,L) and terminus side assignments for
all lines in L, Algorithm 1 computes a crossing-minimal line layout under the
periphery condition in O(|L| · NL) time.

Proof. In Phase 1 of Algorithm 1 we compute the value of a binary variable
side(�1, �2, uv) for each triple of two lines �1 and �2 and an edge uv such that uv
is a common edge of �1 and �2. This value represents the side to which line �2
tends with respect to �1 on edge uv. So if side(�1, �2, uv) = left (right), we know
that at the end of the maximal common subpath of �1 and �2 that contains uv
the line �2 must be placed left (right) of �1.

In order to compute the set Λ(�1, �2) of maximal common subpaths of �1 and �2
we walk along �1 = (v0, . . . , vk) and check for each edge vivi+1 whether �2 shares
that edge with �1. If this is the case, we either open a new subpath or extend
the current subpath. Otherwise we close the current subpath if there is one. We
assume that the input (G,L) contains a Boolean edge-line array of size |E|× |L|
so that we can check whether a line uses an edge in constant time.

For each subpath λ = (vi, vi+1, . . . , vj) ∈ Λ(�1, �2) we need to determine
whether �2 tends left- or rightward along λ with respect to �1, that is, whether
at the end of λ the line �2 must be left or right of �1. There are three cases to
consider.

(1) If vj = vk, that is, �1 terminates in vj , and �2 does not terminate in vj ,
then �2 tends leftward (rightward) if �1 is assigned a right (left) terminus
position, respectively.
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(2) If vj = vk and �2 also terminates in vj , then either �1 and �2 are assigned
to different terminus sides and �2 tends to its assigned side, or both are
assigned to the same side. In the latter case, �2 shall stay on the same side
of �1 as in the first vertex vi of λ. So if �2 enters vi to the left of �1, then �2
also tends leftward along λ; otherwise it tends rightward.

(3) If vj �= vk then �2 tends leftward if either �2 is assigned to terminate on the
left in vj or �2 continues along an edge vjw that is left of �1 in the embedding
of the underlying graph G; otherwise �2 tends rightward.

In all three cases the value of side(�1, �2, uv) is either an immediate consequence
of the lines’ terminus assignments or can be determined by a constant-time query
for the relative order of three incident edges in the embedding of G.

Summarizing the above, Phase 1 takes O(|L| · NL) time and space since we
check for each edge of each line if any of the other lines in L share the edge;
if this is the case we assign the leftward/rightward value to the corresponding
variable.

In Phase 2 the actual line layout is computed by iteratively fixing the course of
each line. We show the correctness of the algorithm by maintaining two invariants
during Phase 2.

Invariant 1: There are no invalid intra-vertex crossings, that is, for each vertex
u and each edge uv the line order <u

uv is compatible with u.
Invariant 2: All line crossings are unavoidable crossings with respect to the

input embedding of G and the given terminus side assignments.

Inserting the first line as the only line into the empty line orders clearly satisfies
both invariants. So assume that we already have a partial line layout that satisfies
the invariants and that we want to insert the next line � = (v0, v1, . . . , vk) into
this partial layout.

We start by inserting � into the order <v0
v0v1

. Let’s assume � is assigned to a
left terminus in v0 with respect to the first edge v0v1 (for a right terminus the
insertion is analogous). If � is currently the only line with a left terminus on
this edge, we insert � as the last edge into <v0

v0v1
. Otherwise we scan the lines

with a left terminus in <v0
v0v1

, starting with the largest (or leftmost) element,
for the first line �′ for which side(�, �′, v0v1) = right. We insert � into <v0

v0v1

immediately after (or left) of �′. This first insertion does not create any intra-
vertex crossings, so Invariant 1 is clearly satisfied. Furthermore, if there are
multiple lines terminating along v0v1 on the same side as � then � is inserted
exactly between those lines that tend leftward and those lines that tend rightward
with respect to �. Hence all those lines are already on the correct side of � and
no line crossings are created; Invariant 2 is satisfied.

Next, we consider inserting � into the order <vi
vivi+1

for i > 0 such that Invari-
ant 1 is satisfied. If one of the neighboring lines in the previous line order <vi

vi−1vi

also continues along vivi+1, then � simply keeps its position directly next to that
line. Since the previous layout did not contain any invalid intra-vertex crossings
and � follows a previous line, Invariant 1 is still satisfied. This case is illustrated
in Figure 3a, where the red line �1 follows the neighboring black line through the
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�1 �2

�′

(a) Lines �1 and �2 are in-
serted so that Invariant 1 is
maintained.

vi+1vi

left

right

left
left
left

left
right

left

right
left

left
left

left
right

�r

�l�′

�
<vi

vivi+1 <
vi+1
vivi+1

(b) Line � is inserted into <
vi+1
vivi+1 so that Invariant 2 is

maintained. The values side(�, ·, vivi+1) are indicated
for all lines.

Fig. 3. Insertion of lines into an existing partial line layout

vertex. Otherwise, if � is the only line continuing along vivi+1, we scan <vi
vivi+1

,
starting with the smallest (rightmost) element, for the first line �′, whose previ-
ous edge wvi is left of � in the embedding of G or that terminates in vi with a left
terminus along vivi+1. We insert � immediately before �′ in <vi

vivi+1
. This is illus-

trated in Figure 3a by the blue line �2 which is inserted immediately before the
yellow line �′. If no line �′ is found then � becomes the largest (leftmost) element
in <vi

vivi+1
. The chosen position for � ensures that <vi

vivi+1
remains compatible

with vi and that Invariant 1 is satisfied.
It remains to determine the position of � in the order <

vi+1
vivi+1 . Figure 3b

illustrates the situation. We scan the already determined line order <vi
vivi+1

for
the smallest (rightmost) line �l left of � for which side(�, �l, vivi+1) = left and for
the largest (leftmost) line �r right of �, for which side(�, �r, vivi+1) = right. Note
that it is possible that one or both lines �l and �r do not exist. If they exist, these
two lines �l and �r are the closest lines to � that are already on the correct side.
Since Invariant 2 holds for the previous partial layout, �l and �r do not cross
each other along vivi+1, that is, �r <vi

vivi+1
�l and �r <

vi+1
vivi+1 �l. Obviously, �

may not cross either of them and we must insert � between �r and �l in <
vi+1
vivi+1

(otherwise Invariant 2 will be violated). More precisely, we insert � immediately
left of the largest (leftmost) line �′ in the interval [�r, �l] of <

vi+1
vivi+1 for which

side(�, �′, vivi+1) = right, see Figure 3b. If �r (�l) does not exist we symbolically
assign �r = −∞ (�l = ∞) so that the interval [�r, �l] may become unbounded.
The position of � is determined as before. If there is no line �′ then � becomes
the rightmost line in <

vi+1
vivi+1 .

We claim that in the assigned position � crosses only lines that were to its
left and tend to the right or lines that were to its right and tend to the left—
crossings that are unavoidable. Assume to the contrary that � crosses a line �̂
that was to its left and also tends to the left. Since we insert � immediately to
the left of �′, the two lines �̂ and �′ also cross each other. This is a contradiction
to Invariant 2 for the previous partial layout, though, since �̂ crosses �′ from
left to right but eventually needs to cross �′ again from right to left in order
to reach its leftward destination. If there is no line �′ then � is the rightmost
line in <

vi+1
vivi+1 by definition and cannot cross �̂. Similarly, assume that � crosses
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a line �̃ that was to its right and also tends to the right. Then �l <
vi+1
vivi+1 �̃

since otherwise we would have placed � left of �̃ in the interval [�r, �l]. But this
means that �̃ crosses �l from right to left, which again violates Invariant 2 for
the previous partial layout: there must be a second crossing, where �̃ crosses �l

from left to right in order to reach its rightward destination. If �l = ∞ we would
have placed � left of �̃ which is also a contradiction. So Invariant 2 holds for the
selected position of �.

Finally, we show that Invariant 1 holds for the position of � in <
vi+1
vivi+1 . The

first possibility for a violation is a line �̂ with side(�, �̂, vivi+1) = left that is still
to the right of � but does not continue further along vi+1vi+2. By definition �̂ can
only be right of � if �̂ <

vi+1
vivi+1 �′. But then Invariant 1 would have been violated

before by �̂ and �′. The other possibility for a violation of Invariant 1 is a line �̃
with side(�, �̃, vivi+1) = right that is still to the left of � but does not continue
further along vi+1vi+2. By definition this can only be the case if �l <

vi+1
vivi+1 �̃.

But this means that Invariant 1 would have been violated before by �̃ and �′.
Since both invariants hold at the end of Algorithm 1, we have proven its

correctness. By Invariant 1 all vertices are admissible, and by Invariant 2 the
final line layout realizes exactly the unavoidable crossings and is thus crossing-
minimal by Lemma 2. The running time of Phase 1 is O(|L| ·NL). The running
time of Phase 2 is again O(|L| · NL) since there are 2NL insertion operations,
each of which determines a position for the current line by scanning the line
orders of size O(|L|) of the current edge. ��

We note that the size of a solution for MLCM-PA is Ω(NL) and thus the running
time of our algorithm is only a factor of |L| away from the output size. Since for
the total edge size NL we have NL ∈ O(|L|·|V |), the running time of Algorithm 1
can also be expressed as O(|L|2 · |V |).

By Lemma 1, we can reduce any instance of MLCM-T1 to an equivalent
instance of MLCM-PA in linear time. We thus obtain the following corollary.

Corollary 1. Given a metro graph (G,L) in which the degree of any terminus v
of any line in L equals 1, we can use Algorithm 1 to compute a crossing-minimal
line layout in O(|L| · NL) time.

5 Conclusions

In this paper we have presented a new algorithm that improves the best previous
algorithms for both the MLCM-PA and the MLCM-T1 problem. The running
time of the new algorithm is O(|L| · NL), where NL ∈ O(|L| · |V |).

We conclude with two observations about practical MLCM instances as found,
for example, in Ovenden’s book [3]. First, the number of lines |L| in a transport
network is usually much smaller than the size of the underlying graph G. Since
the output size is already Ω(NL), our algorithm runs in linear time if the number
of lines is constant. Second, many lines in practice indeed terminate at degree-1
vertices of the underlying graph as modeled in the MLCM-T1 variant. Still, most
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networks also have some lines that start or end in non-leaf vertices. We therefore
suggest to use the ILP formulation of Asquith et al. [1] (or a simple exhaustive-
search algorithm) to determine an optimal terminus side assignment for those
lines. We can then transform the original MLCM-P instance together with the
additional terminus side assignments into an MLCM-PA instance that can be
solved efficiently with our algorithm.

There are a few remaining open problems in MLCM. First of all, it is still an
unsolved question whether the general MLCM problem (without periphery con-
dition) is NP-hard for general plane graphs or even for paths. Another interest-
ing open question is whether the NP-hard problem MLCM-P is fixed-parameter
tractable for a suitable small parameter, such as the maximum multiplicity of
the edges. Furthermore, no approximation algorithms for MLCM-P are known
so far.

Acknowledgments. We thank Joachim Gudmundsson, Damian Merrick, and
Thomas Wolle for initial discussions about the problem during a visit in Sydney.
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Abstract. Recent work on constrained graph layout has involved pro-
jection of simple two-variable linear equality and inequality constraints
in the context of majorization or gradient-projection based optimiza-
tion. While useful classes of containment, alignment and rectangular
non-overlap constraints could be built using this framework, a severe lim-
itation was that the layout used an axis-separation approach such that
all constraints had to be axis aligned. In this paper we use techniques
from Procrustes Analysis to extend the gradient-projection approach to
useful types of non-linear constraints. The constraints require subgraphs
to be locally fixed into various geometries—such as circular cycles or
local layout obtained by a combinatorial algorithm (e.g. orthogonal or
layered-directed)—but then allow these sub-graph geometries to be in-
tegrated into a larger layout through translation, rotation and scaling.

1 Introduction

Our past work has explored methods for incorporating various types of con-
straints over node positions and edge routing into force-directed layout. A key
component in achieving stable incremental constraint satisfaction in the context
of such layout has been gradient-projection techniques. Optimization of a goal
function subject to constraints using gradient projection involves finding a gra-
dient related descent vector which is then projected against the constraints to
obtain a descent vector that is feasible with respect to those constraints. Pro-
jection, as described in Section 3, involves solving a constrained least-squares
problem.

Recent work has focused on interactive applications of such constraint-based
layout. For example, a diagram authoring tool [11] and on-line exploration of
large graphs [8]. To achieve interactive responsiveness in such applications the
projection step needs to be efficient and for certain classes of constraints we have
been able to find methods of projection that compare favourably in running time
to the basic unconstrained layout. In [6] we gave a simple active-set algorithm
for projection subject to orthogonal ordering constraints; i.e. a partial ordering
of nodes in either the horizontal or vertical axes of the drawing. In [7] we gave an
algorithm for more general separation constraints : linear equality or inequality
constraints over pairs of either x- or y-position variables.

D. Eppstein and E.R. Gansner (Eds.): GD 2009, LNCS 5849, pp. 393–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A metabolic pathway network with two cycles arranged in two ways using differ-
ent (user defined) constraints. In both cases Procrustes projection (see Section 4) is used
to keep the cycles circular and groups are created around the two cyclic components.
Constraints prevent members of these groups from overlapping with other parts of the
graph. In the lower-left drawing the non-overlap constraint is based on the convex-hulls
of the groups, projected apart as described in Section 3.2. The upper-right drawing is
arranged with rectangular group boundaries using separation constraints (see Section
3.1). Various horizontal and vertical alignment constraints (using equality separation
constraints) have been added interactively by the user to customize the layouts.

Most recently, following position-based dynamics approaches used success-
fully in computer game animation, we showed that a simple class of nonlinear
constraint could also be projected in a cyclical Gauss-Seidel scheme [5]. The con-
straints were simple equalities or inequalities over Euclidean distance between
pairs of nodes. Although simple, we were able to compose these constraints
into more complex rigid structures. In particular we demonstrated wheel-like
constructions to draw directed-graph cycles in a reorientable, but fixed radius
circle. Such circular constraints are useful for achieving the kind of drawing con-
ventions commonly seen, for example, in biology textbooks, for drawing cycles
in metabolic pathways.

Although projecting cycles in this way was successful it led us to an investiga-
tion to see whether a closed-form solution to the projection of such circular con-
straints was possible. Also, we wanted circular constraints with variable as well
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as fixed radii. In this paper we show that the technique of Procrustes analysis—
more commonly used by statisticians to fit experimental observations to a model—
efficiently solves this exact problem and further more, can be used to obtain a
projection of any rigid shape with minimal translation, rotation and scaling.

2 Related Work

A survey of graph-drawing literature—particularly regarding circular layout
style—reveals a number of scenarios where the Procrustes projection described
in this paper could provide a concrete improvement to either the quality of the
drawings or the stability of the layout method.

Six and Tollis [19] give a multi-stage force-directed approach for layout of cir-
cular subgraphs in a non-circular arrangement of the larger graph. At first the
subgraphs are replaced with single nodes and this abridged graph is arranged us-
ing a typical force-directed technique. Then a circular ordering of the subgraphs
is found to minimize internal edge-crossings. The radius of each circle is fixed
based on the number of nodes and an orientation is found by what sounds like
a brute-force search. Finally, another relaxation step is applied using an ad-hoc
local search method over node angles.

Becker and Rojas [2] discuss a technique for drawing the cycles in metabolic
pathways as circles. They do not give many algorithmic details but the brief
description of their two-stage force-directed approach suggests that it is similar
in spirit to Six and Tollis.

Baur and Brandes [1] investigate techniques for circular ordering of nodes in
subgraphs to minimize crossings between both edges internal to the subgraph,
and edges linking the subgraph to other circular subgraphs in so called “Mi-
cro/Macro” graphs, i.e. graphs with one level of semantic grouping. They do not
consider the problem of orienting the circular “micro” graphs in the context of
the larger “macro” graph layout and in many of their examples it is clear that
a little rotation of the circles would significantly reduce edge length.

Friedrich and Eades [14] give a complicated (and unproven) algebraic expres-
sion for finding an affine transformation of a graph to transition between different
layouts such that squared displacement of the transformed graph from the target
graph is minimized. This is exactly a Procrustes problem although Friedrich and
Eades also allow shear transformations. Shearing is forbidden by the orthogonal
Procrustes model described in Section 4 since shearing does not preserve the
“shape” of the model and can collapse the dimensionality: e.g. transform a 2-d
shape to a line [4, pg. 430]. In addition the Procrustes formulation that follows is
easier to describe, implement and debug and does not suffer from potential sin-
gularities that may be a problem in the formulation in [14] (Friedrich and Eades
do not explain how to handle zero value denominators in their expression).

3 Constraint Projection

A key ingredient to the constraint-based layout described in this paper is the
idea of solving a projection problem. Projecting the variables x = (x1, . . . , xn)
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with starting or desired positions d = (d1, . . . , dn) against a set of constraints
that define a feasible region S means finding the point x in S closest to d.

argmin
x∈S

n∑
i=1

(xi − di)2 (1)

While we have in the past considered different ways to project against certain
classes of constraints using specially developed solver techniques, this is the first
paper where we have combined different projection methods for different classes
of constraints in a single unifying framework. Before introducing the new type
of Procrustes constraint projection in Section 4, we briefly review the two other
types of constraint projection that will be used in combination.

3.1 Separation Constraint Projection

A separation constraint is an equality or inequality between a pair of (exclusively)
horizontal or vertical node positions. For example, ux + g ≤ vx requires that
nodes u and v be separated horizontally by at least g. In [7] and also [11] we give
gradient projection techniques for layout using only such horizontal and vertical
separation constraints. They are useful for many drawing conventions involving
constraints that are aligned with the page or screen axes such as rectangular
node and cluster non-overlap constraints, constraints requiring the end node of
a directed edge be strictly above the start node, or for persistent horizontal or
vertical alignments.

Efficient scan-line techniques for generating horizontal or vertical non-overlap
constraints have been developed, see [9]. We also have fast techniques for finding
the projection of all separation constraints in a given axis, see [7].

Although separation constraints are useful there are many drawing conven-
tions requiring non-linear constraints, or linear constraints that are not axis
aligned. In [10] and [12] we experimented with augmentation of the goal func-
tion to simulate other types of constraint. Simply adding terms to the goal
function, however, does not provide the strict “rigidity” of real constraints. In-
creasing the weighting of such terms to reduce “stretchiness” usually overwhelms
the underlying layout goal function or can lead to instability.

3.2 Euclidean Distance Projection

A Euclidean distance constraint of the form |pq| ≥ d requires a minimum
distance d between the positions of two nodes p and q. If such a constraint
is violated the projection, i.e. feasible positions p′ and q′ that minimize the
squared displacement from p and q, are trivially computed as p′ = p− wq

wp+wq
r,

q′ = q+ wp

wp+wq
r where r = |pq|−1(d− |pq|)pq. The “weights” wp and wq for p

and q are by default 1. However, for a constraint involving a cluster of n nodes
it is useful to take the weight as n.

In [5] Euclidean distance constraints (including equality constraints) were the
only type of constraint and the above calculation was the only type of projection
used. Complex constraints like rigid circles were built with a wheel-like frame of
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Euclidean distance equality constraints. The Procrustes projection technique de-
scribed in Section 4 makes this usage redundant. However, this type of Euclidean
distance projection is still useful in the framework described in Section 5, for pre-
venting overlapbetween the convexhulls of node/cluster boundaries.That is, given
two overlapping convex hulls we can minimally project them apart by chosing the
displacement vector r (above) from the minimum penetration depth vector, com-
puted from the Minkowski Difference of the two hulls, see Figure 2. The time to
compute this vector is proportional to the sum of vertices in the two hulls. We use a
binary space partition tree to quickly identify potentially overlapping hulls (rather
than computing Minkowski Differences for all pairs). Figure 1 shows a graph with
non-overlapping cluster boundaries projected apart using this technique.

Fig. 2. To prevent overlap between convex hull cluster boundaries and nodes or other
cluster boundaries we project apart overlapping boundaries using the minimum pene-
tration depth vector

4 Procrustes Projection
Procrustes analysis is a technique for fitting an observed data configuration to an
expected model using only linear transformations. Borg and Groenen [4] give a
comprehensive overview and introduction to Procrustes methods, although the
techniques have been known to statisticians since the 1950s. For a statistical
technique, it is rather colourfully named after the character in Greek mythology
of the same name. Procrustes was a keeper of an inn who “fit” his victims to an
iron bed using drastic means.

The problem that we consider in this paper is projecting a set of n 2-d points
X onto a target constrained configuration Y with a shape that is rigid but which
can be scaled by a factor s, translated by a vector t or rotated by an orthogonal
matrix T such that the sum of squared distances from the transformed Y to the
original X is minimized. That is, we want to find s, t and T that minimize:

n∑
i=1

(Xi − (sYiT + t))2 (2)

subject to T ′T = I, i.e. only orthogonal rotation.
The optimal translation vector t is optained by differentiating (2) with respect

to t and setting the derivative equal to 0 (see [4]):

t =
1
n

n∑
i=1

(Xi − sYiT ) (3)
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The optimal scale s is obtained similarly by substituting (3) for t in (2), differ-
entiating with respect to s and setting this derivative to 0 giving:

s =
trX ′Y T

tr Y ′Y
(4)

where tr is the matrix trace of the 2 × 2 result of the inner products. Note
that this assumes that Y is centered on the origin (or has been centered by
subtracting the barycenter of Y from all of its elements).

Substituting (3) and (4) into (2) we see that the optimal rotation T is invariant
to scale or translation. Conveniently, it can be shown (see Appendix) that T =
QP ′, where P and Q are found from the singular value decomposition X ′Y =
PΦQ′, is exactly the optimal rotation. The singular value decomposition of the
2 × 2 matrix X ′Y can be obtained in closed form using the quadratic formula
to find roots of the characteristic polynomial.

To summarize, the following procedure takes a matrix X of n points (i.e. node
positions), a matrix Y of n points with the target configuration (centered on the
origin), and returns the projection of X on the optimally transformed Y :

procedure ProjectXonY(X, Y )
C ← X ′Y
(P, Φ, Q′) ← SingularValueDecomposition(C)
T ← QP ′

s ← (trCT )/(tr Y ′Y )
t ← 1

n

∑n
i=1(Xi − sYiT )

return sT ′Y ′ + 1′t

Procedure ProjectXonY runs in O(n) time since the most expensive operation
is computing the inner-product of n × 2 matrices.

(a) Unconstrained (b) With circle constraints (c) Convergence

Fig. 3. Circular constraints applied using cyclical Gauss-Seidel Procrustes projection
can even be interlocking. Provided a feasible solution exists, and the starting layout
is reasonably untangled (e.g. the unconstrained layout on the left) cyclical projection
rapidly converges (see Section 5.1).
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4.1 Choosing the Target Configuration

The target configuration matrix Y can be any shape centered at the origin. For
example, to require that n nodes be equally spaced in a given order around
a circle we simply chose Y as the vector of n points (y1, . . . , yn) where yi =
(cos iθ, sin iθ) taking θ = 2π

n . Figures 1, 3 and 6 show the results of using such
circular constraints—in combination with other constraints—in the constrained
layout scheme described in Section 5.

The target configuration can equally easily be the result of a complete layout
algorithm applied to the subgraph. Figure 6(c) demonstrates this by taking the
target configuration Y as the result of a layered layout algorithm applied to
subgraphs with tree structure.

5 Combining Constraints in an Incremental Layout Step

The procedure FeasibleLayoutStep summarizes the operations in a single itera-
tion of layout for a graph G = (V, E), with nodes initially positioned horizontally
and vertically at Vx and Vy respectively, a set C of Procrustes or any other con-
straints that we know how to project and horizontal and vertical separation
constraints Ch and Cv respectively. The last parameter α controls the size of the
unconstrained descent step, see below.
procedure FeasibleLayoutStep(V, E, C, Ch, Cv, α)

D ← ComputeDescentDirection(V, E, α)
d ← D − (Vx, Vy)
D̄ ← ProjectDesiredPositions(C, D)
C′

h ← Ch ∪ GenerateHorizontalNonOverlapConstraints(Vx, Vy)
x ← Project(C′

h, D̄x)
C′

v ← Cv ∪ GenerateVerticalNonOverlapConstraints(x, Vy)
y ← Project(C′

v, D̄y)
return (x, y), |d|

This procedure returns new positions (x, y) which improve the layout (de-
pending on the quality of the result of ComputeDescentDirection), which are
strictly feasible with respect to the separation constraints Ch, Cv and generated
non-overlap constraints, and which are close to feasible with respect to the other
constraints C. We discuss exactly what we mean by close to feasible in Section
5.1. We also return the size of the unconstrained gradient-descent step d. This is
useful in heuristics for determining appropriate step-size α. We have had success
using the adaptive trust-region step-size selection method proposed by Hu [15].
Though more costly, optimum step-size selection or Armijo Rules [3] could also
be used to guarantee strict improvement as in [8].

The procedure ComputeDescentDirection returns updated positions for the
nodes V after taking a gradient-related step, with size controlled by α to reduce
a layout cost function. This could equally well be an unconstrained iteration of
the p-stress minimization method described in [8] or an iteration of any “force”-
based approach. In our experiments we use a Fast-Multipole method following
Lauther [17] so that ComputeDescentDirection completes in O(|V | log |V |+ |E|)
time.
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Fig. 4. A mesh graph with 576 nodes and eight circle constraints, used in timing and
convergence tests

Fig. 5. Total node displacement (the units are roughly screen pixels) versus iteration of
constraint projection for the graph in Figure 4 using either Procrustes circle constraints
or a wheel of Euclidean distance constraints
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(a) Unconstrained (b) Mixing a circular constraint with axis-
aligned separation constraints to prevent
overlap between nodes and to require di-
rected edges to point downwards.

(c) In addition to the Procrustes circle constraint for the nodes involved in the
cycle, this example shows the three subtrees constrained to layered configura-
tions obtained with a Sugiyama algorithm, i.e. the local layout is used as the
target configuration for Procrustes projection, which determines the optimal
scale and rotation. Note, the subtrees could just as easily be DAGs or undi-
rected subgraphs arranged with another algorithm, e.g. orthogonal layout.

Fig. 6. The citrate cycle metabolic pathway, arranged using various constraints
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5.1 Gauss-Seidel Gradient Projection

For solving systems of linear equations, an iterative method of updating one vari-
able at a time to satisfy one or more of the equations is commonly attributed to
Gauss-Seidel. Jakobsen [16] and more recently Müller et al. [18] describe tech-
niques using iterative constraint projection for rigid skeletal animation and cloth
simulation in computer games, as “Gauss-Seidel” approaches. Although we know
of no formal proof for the convergence of such methods our experiments with
simple two-node constraints (see [5]) indicate that they work well in practical
layout applications. In this paper we explore, for the first time, application of
this approach to combining projection of different classes of constraints using
different solver techniques. That is, whereas in [5] we considered only Euclidean
distance constraints between pairs of nodes, in this paper we combine these
with Procrustes projection and separation constraint projection giving us faster
convergence, more stable interactive layout, and more flexible constraints.

Thus, the procedure ProjectDesiredPositions returns new positions for nodes
by—starting from the desired positions D—cyclically projecting each constraint
in C (note that C also conceptually includes any convex-hull non-overlap re-
quirement, although the precise Euclidean projection operations are determined
dynamically as per Section 3.2). Figure 5 shows a comparison of total displace-
ment of nodes for the large example in Figure 4 with circular constraints using
either wheel-like meshes of Euclidean distance constraints (see [5]) projected as
described in Section 3.2 or Procrustes projection using the procedure Projec-
tXonY as in Section 4. Clearly, far fewer iterations are required for Procrustes
projection.

5.2 Separation Constraint Projection

The final steps of ComputeDescentDirection apply axis-aligned separation con-
straints. The GenerateHorizontalNonOverlapConstraints uses the scan-line al-
gorithm described in [9] to generate separation constraints to resolve horizontal
overlap between rectangular node and cluster boundaries horizontally. Note that
it uses the starting configuration Vx, Vy rather than the output of ProjectDesired-
Positions. This is because, if the input is already feasible (i.e. not overlapping)
the relative left-to-right arrangement of nodes should be preserved (unless nodes
have, in the interim, moved vertically so that they can no longer potentially
overlap horizontally). In practice we have found that this makes continuous lay-
out while the user directly manipulates (drags) nodes much smoother and less
surprising.

The next call to Project invokes the separation constraint solver [9] to place
nodes horizontally as close as possible to the desired positions D̄ subject to the
generated and user-defined separation constraints. Next, vertical non-overlap
constraints are generated based on the newly computed feasible horizontal posi-
tions x and the previous vertical positions Vy (again to preserve any applicable
previous vertical ordering). Finally, Project is called again to determine feasible
vertical positions y.
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Applying separation constraints last means that they are always satisfied,
while the Procrustes and Euclidean distance constraints projected cyclically by
ProjectDesiredPositions may be slightly violated. This works well as any vio-
lation of the axis aligned and rectangular non-overlap constraints tends to be
more noticeable than for the other types of constraints. Still, since the whole
FeasibleLayoutStep procedure is applied many times inside a larger layout loop,
all constraints tend to be resolved after a few iterations.

6 Discussion, Conclusion, Further Work

Figures 1 and 6 give practical examples of how the various types of constraints
we have described can be applied in practice. The Procrustes constraints are
very fast compared to the overall layout process: Figure 4 with 576 nodes, 1104
edges and 8 circle constraints took (on a 2.1Ghz PC) 1.86 seconds total layout
time with about 0.01 seconds spent in projection operations due to the conver-
gence criteria described in Section 5.1. Further work should be done to time
much larger, pathological examples to really explore the convergence properties
of cyclical constraint projection. Static layout of all the other smaller examples
in this paper takes a fraction of a second. The real benefit of fast constraint
layout, however, is in supporting incremental layout scenarios. All of the ex-
amples in this paper were produced in an interactive system where users can
directly manipulate nodes and edit the constraints, getting immediate feedback
from “rigid” constraint structures.

In addition to efficiency the Procrustes projection presented in this paper al-
lows for variable radii circles enabling interlocking constraints as in Figure 3. Fur-
thermore, they can be applied to obtain scaling and rigid rotation of any initial
arrangement of nodes such as layout from a different algorithm, see Figure 6(c).
The other contribution of this paper is to show that these and other types of con-
straints can be combined through cyclical projection as described in Section 5.1.

Detecting satisfiability of constraints, and where satisfiable, finding a feasi-
ble starting configuration require much more research. One imperfect strategy
is to detect if error does not significantly decrease inside the cyclical constraint
satisfaction loop. Once unsatisfiable constraints have been detected, communi-
cating this to the user in a way allows them to resolve the unsatisfiability is also
a challenge. In our rudimentary interactive test systems, where constraints are
added incrementally by the user, we have found the most useful strategy has
been a simple undo facility to remove the most recently added constraint. Of
course users unfamiliar with constraint layout would need an intuitive interface
that prevents unsatisfiable constraints from being created at all.

Acknowledgements. Thanks to Lev Nachmanson and Ted Hart for providing
various pieces used in our layout software.
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1 Introduction

In graph drawing, vertices are typically represented as points in two or three
dimensional space and edges are represented as lines between the corresponding
vertices. Other representations have also been considered. For example, treemaps
use a recursive space filling approach to represent trees. There is also a large body
of work on representing planar graphs as contact graphs of geometrical objects.
GMap is an algorithm that represents general graphs as maps [2]. Our over-
all goal is to create a representation which makes the underlying data easy to
understand and visually appealing. Our map representation is especially effec-
tive when the underlying graph contains structural information such as clusters
and/or hierarchy. The traditional point-and-line representation of graphs can re-
quire considerable effort to comprehend, and often puts off general users. On the
other hand, a map representation is more intuitive, as people are very familiar
with maps and even enjoy carefully examining maps.

2 The Mapping and Coloring Algorithm

The first step in our GMap algorithm is to embed the graph in the plane. In our
implementation we use a scalable force directed algorithm [3]. The second step
is a cluster analysis of the underlying graph or the embedded pointset. Here we
use modularity based clustering [4] as it is a good fit [5] for the force directed
algorithm we employ. In the third step the embedding and the clustering are
used to create the map. A Voronoi diagram of the vertices is generated. To
create “European-style” borders we use the vertex sets in each cluster together
with some random points and generate “form fitting” outer boundaries. Vertex
weights are used to determine the font size of the vertex label, and the size of the
label is used to create the area in the map that corresponds to the vertex. We
then merge Vononoi cells that belong to the same cluster, thus forming regions
of complicated shapes. The overall algorithm has complexity O(|V | log |V |) and
easily scales to graphs with tens of thousands of vertices.

Because countries in GMap are not necessarily contiguous, we need as many
colors as the total number of countries, in order to make each country uniquely
identifiable by its color. We use a two-step heuristic color assignment algorithm
to ensure that neighboring countries are colored with as distinctive colors as
possible. In the first step we apply a spectral algorithm to the country graph that
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Fig. 1. Author collaboration map for the GD conference, 1994-2004

captures the neighboring structure of countries. In the second step we apply a
greedy color-swapping algorithm, with the objective of maximizing the minimal
color difference between any two neighboring countries. For further details see [2].

3 GMap Example

We consider the collaboration graph of authors with publications in the Sym-
posium on Graph Drawing in the period 1994 to 2004. Authors are vertices and
there is an edge between two authors if they have collaborated on at least one
paper in this period. The font size of the vertices is proportional to the number
of papers by that author; see Fig. 1. It is easy to see that European authors
dominate the main continent. Several well-defined German groups can be seen
on the west and southwest coasts. A largely Italian cluster occupies the center,
with an adjacent Spanish peninsula in the east. The northwest contains a mostly
Australasian cluster. Two North American clusters are to be found in the south-
east and in the southwest, the latter one made up of three distinct components.
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A combinatorial geometry cluster forms the northernmost point of the main con-
tinent. Most Canadian researchers can be found in the central Italian cluster and
the Spanish peninsula. Northeast of the mainland lies a large Japanese island
and southeast of the mainland there is a large Czech island. Northwest of the
mainland is Crossing Number island.

GMap has been used to visualize data from several different areas [2, 1], in-
cluding similarities between musicians (last.fm data) and books (Amazon.com
data).
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1 Introduction

We describe a simple visualization technique which allows a user to quickly assess
the overall similarity of drawings of similar graphs, and to easily find regions of
stability and of change. It can be used to simultaneously compare any number of
drawings, and does not require that the layouts be adjusted to minimize changes.

The underlying idea — grouping vertices whose relative positions undergo
little change — is shared by the animation technique of Friedrich and Houle [1],
but both our approach to identifying such groups (visually via planes in high
dimensions) and our application (comparing drawings) are quite different.

2 Algorithm

Let D1 and D2 be 2D drawings of some graph G, and let (xvi ,yvi) be the co-
ordinates assigned to vertex v in drawing i. Create a 4D drawing D of G in
which each vertex is associated with the 4-tuple (xv1 ,yv1 ,xv2 ,yv2), then project
that 4D drawing into 3D for viewing. Groups of vertices whose relative positions
are maintained under translation, rotation, and/or scaling appear on the same
plane in both the 4D drawing D and the 3D projection, with different planes
indicating different combinations of transformations. See Figure 1.

The algorithm can be extended to include edges by evenly spacing a number
of points along each edge and creating 4D “edge points” in the same manner
as vertex points. Changes in the graph structure can be accommodated by as-
signing appropriate coordinates to the missing points. In addition, k drawings
can be compared simultaneously by building a 2k-tuple for each point from the
coordinates in each drawing, then projecting to 3D for viewing.

3 Applications

In dynamic graph drawing and layout adjustment, the user must frequently
orient herself to a new drawing of the same or nearly the same graph. The “high-
dimensional comparison” technique of section 2 can be used to provide visual
� Some of this work was completed while the author was a visiting researcher at the

National ICT Australia (ATP Sydney) in 2007.
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(a) (b)

(c) (d)

Fig. 1. D1 and D2 are shown in (a) and (b). Finding similar regions in these drawings
requires repeatedly looking back and forth between the drawings and a lot of mental
gymnastics. Figures (c) and (d) are a stereo pair showing a 3D projection of D —
defocus your eyes until (c) and (d) merge into a third picture. (The visualization is
most effective when the user can also manipulate the viewing angle to enhance the 3D
sense.) Flat areas indicating similar regions can be identified immediately. Brushing
can be used in an interactive viewer to match flat regions to the original drawings.

cues to aid the reorientation process, and is particularly useful when different
parts of the layout have undergone different transformations (see Figure 1).

Time-varying graphs are often drawn by creating a separate layout for each
time step, and either animating the transitions between time steps or stacking
the layouts to create a 2.5D drawing. The success of these techniques requires
adjusting consecutive layouts to reduce changes between time steps, which pre-
cludes the use of drawing algorithms designed to display particular structural
elements of the graph (such as clusters). High-dimensional comparison provides
a new way to visualize the change and stability between layers and over a series
of time steps, and does not require adjustment of consecutive layouts.

In addition, the fit of the high-dimensional points to a single plane provides
a potential similarity measure for comparing drawings and has the novel feature
of being suitable for comparing more than two drawings at once.

Finally, several other applications are based on automatically clustering high-
dimensional points which lie on or near the same plane (e.g. using the techniques
of Friedrich and Houle [1] or Tseng [2]). Clustering information can be used to
color-code similar groups in the Di drawings, to produce a meta-visualization of
how cluster position and membership changes over a series of drawings, or to de-
fine similarity measures based on common features rather than individual nodes.
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1 Introduction

Giordano, Liotta and Whitesides [1] developed an algorithm that, given an em-
bedded planar st-digraph and a topological numbering ρ of its vertices, computes
in O(n2) time a ρ-constrained upward topological book embedding with at most
2n−4 spine crossings per edge. The number of spine crossings per edge is asymp-
totically worst case optimal.

In this poster, we present improved results with respect to the number of
spine crossings per edge and the time required to compute the book embedding.
Firstly, for any embedded planar st-digraph G and any topological numbering ρ
of its vertices, there exists a ρ-constrained upward topological book embedding
with at most n− 3 spine crossings per edge and, moreover, n− 3 spine crossing
per edge are required for some graphs. In this result, we allow edge (s, t) to be
internal in the embedding of the graph. If edge (s, t) is always on the external
face, the corresponding number of spine crossings reduces to at most n−4 and is
worst case optimal. Secondly, a ρ-contrained upward topological book embedding
with minimum number of spine crossings and at most n − 3 spine crossings per
edge can be computed by an output sensitive algorithm in O(α+n) time, where
α is the total number of spine crossings.

2 Results

The problem of Acyclic HP-completion with crossing minimization problem (for
short, Acyclic-HPCCM ) was defined in [2] as follows: Given an embedded up-
ward planar st-digraph G = (V, E) and a non-negative integer c, the Acyclic-
HPCCM problem asks whether there exists a Hamiltonian Path Completion set
(for short, HP-completion set) Ec and a drawing Γ (G′) of graph G′ = (V, E∪Ec)
such that (i) G′ remains acyclic and has a hamiltonian path from vertex s to
vertex t, (ii) Γ (G′) preserves the drawing of the embedded planar graph G and,
(iii) Γ (G′) has at most c edge crossings. In Theorem 2 of [2], the equivalence
between the Acyclic-HPCCM problem and the problem of determining an up-
ward topological book embedding with minimum number of spine crossings was
established. Moreover, in the proof of the theorem it was shown that if we are
given an acyclic HP-completion set Ec and an embedding of its edges on the orig-
inal drawing of G causing c edge crossings, then there is an upward topological
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book embedding of G with c spine crossings and vice versa. In the construction
supporting the proof, the crossings of the original edges of G with the edges of
the HP-completion set are exactly the crossings of the original edges with the
spine in the constructed upward topological book embedding. In the following
theorems, we assume that the edges of Ec do not cross each other and that each
pair of edges in the HP-completed drawing cross at most once.

Theorem 1. Let G be an embedded planar st-digraph and Ec be an acyclic
HP-completion set of G. Then, there exists a unique upward drawing Γ (G′) of
G′ = (V, E ∪ Ec) that respects the original embedding. If edge (s, t) is not on
the external face of G, Γ (G′) has at most n − 3 crossings per edge, otherwise it
has at most n− 4 crossings per edge. Moreover, there exist embedded graphs and
acyclic HP-completions sets that require so many edge crossings.

Theorem 2. Let G be an embedded planar st-digraph, Ec be an acyclic HP-
completion set of G and P be the implied Hamiltonian path. Then, the unique
upward drawing Γ (G′) of G′ = (V, E ∪ Ec) that respects the original embedding
can be computed in O(n+α) time, where α is the total number of edge crossings.

Let ρ = (s = v1, v2, . . . , vn = t) be a topological ordering of the vertices of G.
Then, observe that the edge set Eρ = {(vi, vi+1) | (vi, vi+1) /∈ E, 1 ≤ i < n}
is an HP-completion set for G. Based on this fact, Theorems 1 and 2 and the
equivalence between the Acyclic-HPCCM and the book embedding problems
established in [2], we can state the following theorems:

Theorem 3. Let G be an embedded planar st-digraph and ρ be a topological
numbering of G. Then, G admits a unique ρ-constrained upward topological book
embedding with at most n−3 spine crossings per edge for the case where edge (s, t)
is not on the external face, otherwise it admits a embedding with at most n − 4
spine crossings per edge. Moreover, there exist embedded graphs and topological
orderings that require so many spine crossings.

Theorem 4. Let G be an embedded planar st-digraph and ρ be a topological
numbering of G. Then, the unique ρ-constrained upward topological book em-
bedding of G (with a minimum number of spine crossings) can be computed in
O(n + α) time, where α is the total number of spine crossings.

We note that the improved results on ρ-constrained upward topological book
embeddings can be used to also improve results presented in [1] regarding upward
point set embeddability.
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Finding aesthetic drawings of planar graphs is a main issue in graph drawing. Of
special interest are rectangle of influence drawings.The graphs considered here
are quadrangulations, that is, planar graphs all whose faces have degree four. We
show that each quadrangulation on n vertices has a closed rectangle of influence
drawing on the (n − 2) × (n − 2) grid. Biedl, Bretscher and Meijer [2] proved
that every planar graph on n vertices without separating triangle has a closed
rectangle of influence drawing on the (n − 1)× (n − 1) grid.Our method, which
is completely different from that of [2], is in analogy to Schnyder’s algorithm for
embedding triangulations on an integer grid [9] and gives a simple algorithm.

Schnyder [9] showed that labeling the angles of a triangulation T with 3
colors, with special rules, gives a 3-coloring and 2-orientation of the edges of T
such that the edges of each color form a directed tree. For each interior vertex
of T , the three colored paths to the sinks of the respective trees divide T into
three regions. Counting the number of faces in each region gives the coordinates
of the interior vertex in the grid drawing. Felsner [3] extended this result to the
class of 3-connected plane graphs. In [8] it was studied to adapt this method to
quadrangulations. In this case, the angles of a quadrangulation Q can be colored
with 2 colors, which gives an analogous 2-coloring and 2-orientation of the edges
of Q such that the edges of each color form a directed tree, and for each interior
vertex the two colored paths to the respective sinks divide Q into two regions.
In [5] it is shown that counting the number of faces in a region of an interior
vertex v of Q gives the coordinate of v in a book embedding of Q with two pages.
Each page in this book embedding for Q contains one of the two trees. Book
embeddings of quadrangulations were also found in [6]. Whether this approach
also gives a grid embedding for quadrangulations remained open.

We show here that labeling the angles of Q with 4 colors instead of 2 (which
gives a 4-coloring and 2-orientation of the edges) allows to obtain a pair of book
embeddings of Q such that the coordinates of a vertex v in the two book em-
beddings are the coordinates of v in the grid drawing of Q. It turns out that
this embedding is a closed rectangle of influence drawing. It has the further
property that edges of different colors are oriented in different directions (north-
east, south-east, south-west, north-west). As a by-product of the rectangle of
influence drawing, we also obtain a grid drawing of a quadrangulation on an
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n
2 � × 
 3n

4 � grid by simple scaling. This is not optimal, because quadrangula-
tions on n vertices have a straight-line embedding on an (
n

2 � − 1) × �n
2  grid.

However, the known algorithms by Biedl and Brandenburg [1] and Fusy [7], both
require to add edges to make the quadrangulation 4-connected. An advantage
of our simple algorithm is that it does not need to add edges and also works for
quadrangulations with connectivity 2.

Quadrangulations Q are known to admit a touching segment representation:
de Fraysseix, de Mendez and Pach [6] showed that one can assign vertical seg-
ments and horizontal segments to the vertices of Q such that two segments touch
if and only if the two corresponding vertices of Q are adjacent. A different proof
of this result, based on book embeddings of Q, is by Felsner et al. [4], who pro-
vided a bijection between the two trees of book embeddings of quadrangulations
and rectangulations of a diagonal point set. The 4-labeling of a quadrangulation
Q gives two book embeddings and therefore two rectangulations by [4]. This
pair of rectangulations has the further nice property that in each rectangulation
the boxes correspond isomorphically to the faces of Q (that is, the dual graphs
are isomorphic), both rectangulations have the same fixed outer face, and each
segment intersects the line with slope 1 in one rectangulation and intersects the
line with slope −1 in the other one.

This work builds upon previous results on binary labelings of quadrangu-
lations from [5,8]. The novelty is the use of four colors instead of two and its
application to the grid drawing. 4-labelings are in bijection with binary labelings
from [5]. Using four colors allows us to get more insight into the combinatorial
structure of quadrangulations.
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1 Introduction

Eclipse is becoming increasingly popular within the Java developers’ community,
and with the availability of RCP (Rich Client Platform), Eclipse is also seen as
a very attractive framework for building professional stand-alone applications.
For creating visual interfaces and diagram displays, Eclipse provides the Graph-
ical Modeling Framework (GMF) and the Graphical Editing Framework (GEF).
Both frameworks provide only very simple support for automatic graph layout
natively but lack professional quality layout capabilities. IBM ILOG JViews
Graph Layout for Eclipse fills this gap. It brings a concrete solution to devel-
opers who need to produce professional diagram visualization and modeling on
Eclipse. It contains a wide collection of layout algorithms and configuration ser-
vices, but also interacts well with GEF and GMF. The loose coupling of the
application architecture and the graph layout provides last-minute integration
capabilities giving a chance to incorporate layout services very late in the devel-
opment process.

Fig. 1. Left: UML Diagram, right: Eclipse Application made with IBM ILOG Graph
Layout for Eclipse

2 Highlights

IBM ILOG JViews Graph Layout for Eclipse provides advanced algorithms to
automatically arrange diagrams so that they are readable by a human being.
There are different types of algorithm. Some optimize node and link placement,
some route links in order to minimize crossings, some compute text label place-
ment with minimal overlap. The following families of algorithms are available:
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– Normal tree layouts, Org chart layouts, Radial tree layouts
– Hierarchical layouts
– Spring Embedder
– Bus layout
– Topological mesh layout
– Circular layout
– Recursive layout for nested graphs
– Label layout, annotation layout
– Link routing (several algorithms and variants)
– Improved display of link crossings

The layout services are available as different Eclipse plug-ins. The plug-in based
on GEF delivers graph layout core capabilities via an adapted graph model
that issues GEF requests and triggers GEF commands to position nodes and
links during layout. This is the natural, nondestructive approach for GEF. This
architecture ensures that layout is undoable and persistent. The ILOG JViews
Graph Model for Eclipse hides the complexity and can easily be attached to
any GEF Graph Editing Part. Similarly, the plug-in based on GMF utilizes all
GEF services and additionally provides support for the modelling capabilities of
EMF. An animation framework and various predefined graphic shapes (subgraph
shapes, links with crossing jogs) complete the services offered by IBM ILOG
Graph Layout for Eclipse.

Fig. 2. Sample Layouts of IBM ILOG Graph Layout for Eclipse
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1 Introduction

The most wide-spread notation for process models is the Business Process Modeling
Notation (BPMN). With Oryx, we have a open-source modeling tool at hand that sup-
ports collaborative and web-based modeling of BPMN diagrams. Here, we show how
automatic layout of diagrams can support the designer when starting to model a process
in BPMN. We provide an automatic layout integrated into Oryx that computes a new
layout for a given diagram considering BPMN drawing conventions, e.g. orthogonal
edges, hierarchical structures, partitions, etc.

2 Oryx – A Web2.0-Based Collaborative Graphical Editor

Oryx (http://oryx-project.org) is an extensible framework for graphical modeling in the
web browser. Using JavaScript and Scalable Vector Graphics (SVG), Oryx uses mod-
ern web technologies that realize a similar user experience like a classical modeling
tool that runs on the desktop. The application is loaded into the browser whenever a
graphical model is opened for editing.

In Oryx, each artifact is identified by a URL, so that models can be shared by passing
references, rather than by exchanging model documents as email attachments. Oryx
follows the Representational State Transfer (REST) architectural style, using the HTTP
verbs GET, PUT, POST and DELETE for reading and updating models. This enables a
highly scalable architecture, allowing for caching mechanisms at the protocol level.

The Oryx source code is available under an Open Source license and has become
a widely used technology platform, especially in the Business Process Management
(BPM) community. Here, process modeling using languages such as the Business Pro-
cess Modeling Notation (BPMN) is a central activity.

3 The Automatic Layout Algorithm and Integration into Oryx

Our layout approach for support of automatic layout in ORYX is developed by ex-
tending previous works on layout techniques adoptable for BPMN [1, 2]. The layout is
computed on BPMN diagrams that are based on a graphs. An automatic layout approach
for BPMN-graphs has to support the drawing conventions that represent specific layout
requirements of the BPMN notation. In our case, specfic layout requirements are:
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(a) A BPMN process diagram modeled by a hu-
man process designer. The Oryx user interface
is completely browser-based and allows user-
friendly drag-and-drop usability.

(b) The resulting process diagram of (a) after
our approach is applied. The drawing conven-
tions of BPMN are fulfilled.

– Elements have different sizes.
– We have to consider partitions, e.g. (collapsed/expanded) pools and swimlanes.
– Subprocesses may be nested and edges can start/end at a subprocess. This concept

corresponds to graph clustering.
– Handle labels of pools, swimlanes, elements and edges.

Since BPMN-graphs are usually drawn using orthogonal routes for edges, we use an
orthogonal layout approach for calculating the initial layout of a given BPMN-graph.

Our layout approach employs the implementation described in [3] that incorporates
different constraints needed for the automatic layout of activity diagrams which are
related to business process diagrams. The supported constraints include partitions (a
generalization of swimlanes), clusters (subprocesses/groups) as well as a common work-
flow direction of edges which is especially important for such diagrams. Used tech-
niques are based on Sugiyama’s algorithm [4] and the Topology-Shape-Metrics (TSM)
approach [5]. All layout requirements and drawing conventions demanded by BPMN
models can be satisfied. Further details of this implementation can be found in [2].

For the integration of the layout implementations into Oryx, a wrapper was imple-
mented in JAVA that offers interfaces for the connection to the JavaScript-based BPMN-
editor Oryx and support of its diagram model.
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Encoding as SAT Problem

Given a plane graph G = (V, E) and a rectangle we ask whether there exists a
planar straight-line embedding of G onto the grid-points of the rectangle. For this
NP-hard problem [5] some powerful heuristics have been developed to minimise
the area of an embedding of a given graph [5,4]. Moreover, for particular families
of graphs upper and lower bounds on the area have been proven [2]. However, in
the general case it is not possible to ensure whether there is an embedding that
preserves a particular area restriction A = h ·w. We present an implementation1

based on a translation into SAT to tackle this kind of problems for small graphs.
We only describe the direct encoding into CNF2 that turned out to be most
suitable.

Matching Vertices to Grid Positions. We introduce boolean variables xi,j rep-
resenting whether or not vertex 0 < i ≤ N (N = |V |) is located at grid position
0 < j ≤ A. This causes N · A variables. Moreover, in case N < A we further
introduce one variable x·,j per grid position to represent the fact that position j
is not used by any vertex. Another possibility would be to introduce A−N =: d
disconnected dummy vertices, but this causes d · A additional variables.

The following clauses ensure that each vertex is placed at (at least) one po-
sition: (xi,1 ∨ xi,2 ∨ . . . ∨ xi,A) ∀ 0 < i ≤ N. Analogously we ensure that each
grid position is either used by a vertex or, in case of N < A may be free:
(x·,j ∨ x1,j ∨ x2,j ∨ . . . ∨ xN,j) ∀ 0 < j ≤ A [x·,j is omitted if N = A]
In case N = A the conjunction of the above position clauses would be sufficient
to guarantee that each vertex is placed at exactly one postion and vice versa.
When N < A a valid mapping of vertices to positions has to be enforced by
additional constraints. One possibility is to introduce binary clauses (xi,j ∨xk,l)
for each pair of literals within a clause. Note, that this is necessary for each of the
above clauses. In practice it is important to have these – possibly redundant –
constraints to guide the SAT-solver by enabling early recognition of conflict-
ing assignments. We modified or SAT-solver SApperloT [3] to treat the position
clauses as special constraints where exactly one literal has to be true. This
simulates all O(N · A2 +A ·N2) binary clauses by simultaneously using a linear
amount of memory.
1 www-pr.informatik.uni-tuebingen.de/?site=forschung/sat/algo engineering
2 A formula in CNF (conjunctive normal form) is a conjunction of clauses; clauses are

disjunctions of literals, whereas a literal is a boolean variable or its negation.
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Planar Embedding and Symmetry Breaking. To achieve a planar embedding of
the graph crossings have to be prohibited explicitely. In order to avoid sym-
metric constraints this is done by introducing further A2 variables: For each
possible straight-line connection between any two grid positions we hold a vari-
able yk,l (0 < k, l ≤ A) indicating whether or not the edge between grid position
k and position l is present in an embedding of G.

With this, any placement of any two adjacent vertices onto grid positions
causes a particular edge embedding to be drawn. If, for instance, two adjacent
vertices i and j are placed at the positions k and l then the edge between these
two positions is actually drawn. Hence, xa,k∧xj,l implies variable yk,l to be true.
This can be expressed by the clause (xa,k ∨ xj,l ∨ yk,l). Note that there will be
another clause (xa,l ∨xj,k ∨ yk,l) for the symmetric case. Given that the number
of adjacent vertex pairs in a planar graph is bounded by O(N) the number of
introduced ternary clauses by this kind of constraints is bounded by O(N ·A2).
It remains to prohibit the crossing of any two embedded edges. For this reason
we disallow all combinations of crossing edge embeddings by introducing binary
clauses of the form (yk,l ∨ yq,t). At the same time we forbid any edge embedding
that crosses a grid position k unless k is chosen to contain no vertex (x·,k = true).
The number of binary clauses introduced by these constraints is bounded by A4.

Experimental Results and Conclusion

The purpose of our approach is to realise both: either proving or disproving the
existence of a graph embedding onto a specified rectangle for small graphs. For
our experimental setup we chose seven different kinds of planar graphs (using [1]):
biconnected, triconnected, not biconnected, nested triangles, nested triangles
completely triangulated, trees and grids. We generated the graphs with 16 ≤
N ≤ 100 vertices. For the first three types of graphs each N was combined with
|E| ∈ {N, 3

2N, 2N, 5
2N, 3N − 6} edges. For 393 graphs from a total of 576 test

graphs our software was able to prove (269) or disprove (124) the existence of
a planar straight-line embedding on a specified tight rectangle. We see strong
potential to extend our tool to confirm conjectures for special kinds of graphs
(as e.g. in [2]). For such cases additional constraints could be added to prune
the search space of the solver.

References

1. Open Graph Drawing Framework, http://www.ogdf.net
2. Frati, F., Patrignani, M.: A note on minimum area straight-line drawings of planar

graphs. In: 15th International Symposium on Graph Drawing (2007)
3. Kottler, S.: Solver descriptions for the SAT competition (2009), satcompetition.org
4. Krug, M.: Minimizing the area for planar straight-line grid drawings. Master’s thesis,

University of Karlsruhe (2007)
5. Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid drawings.

In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
207–212. Springer, Heidelberg (2008)

http://www.ogdf.net


Visualization of Complex BPEL Models

Benjamin Albrecht1, Philip Effinger1, Markus Held2, Michael Kaufmann1,
and Stephan Kottler1,2

1 Parallel Computing, Universität Tübingen, Germany
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1 Introduction

In this work, we present our approach for producing layouts of complex workflows
given in the Business Process Execution Language (BPEL) [1]. BPEL is a verbose, hi-
erarchical workflow language containing nested, alternative and concurrent execution
paths. Our approach enhances the Sugiyama algorithm [2] by introducing special paths,
which are constrained to be drawn in parallel, and hence, orthogonally to the layers in
the Sugiyama model. To prove the feasibility of our approach, we have developed an ex-
tension to the collaborative BPEL development system HOBBES [3] [4]. Collaboration
enhances the need for visualizations of complex workflow models, as team members
have to coordinate their activities.

2 Collaborative Workflow Development with HOBBES

The Business Process Execution Language The XML-based Business Process Execu-
tion Language. (BPEL) has become the de-facto standard for business workflows. It
is a key element of the Service Oriented Architecture (SOA) [1]. BPEL control flow
is a mixture of block-oriented and graph-oriented elements. Atomic tasks like service
invocations or waiting commands are called basic activities. Control structures are ex-
pressed as structured activities (e.g. Sequence, If, While), which can contain child ac-
tivities. Concurrency can be modeled using the structured activities Flow and ForEach.
Flow allows the definition of Directed Acyclic Graphs of activities while ForEach loops
may be marked as ”parallel”. Expressions, given in the XPath language, are used for
conditionals, for triggering links between activities and for assignments.

The HOBBES system. HOBBES is a web-based BPEL development system, which en-
ables synchronous collaboration sessions [3, 4]. A team leader may grant privileged
access to workflow parts or assign tasks to team members, as well as inspect the work-
flow using BPEL-specific software metrics (workflow metrics). Team members have
different views on the BPEL model edited in a HOBBES session, to enable parallel de-
velopment activities. For communication purposes and to enable a better understanding
of the entire model, the need for graphical visualizations arises. These have to present
the control flow paths in a concise way and preserve the hierarchies of the process’
structure.
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HOBBES has been implemented using the Adobe Flex framework, which enables rich
user interfaces as well as server-to-client notification. Communication between clients
is relayed via a Java-based server, which governs access to a central object model. A
demo version of HOBBES can be accessed at:
http://www-sr.informatik.uni-tuebingen.de/workflows

(a) Hobbes’ user interface (left): The modeling frame (2) shows a single hierarchical level of
a BPEL model, the tree of the whole current process is provided (3). Rectangle (1) depicts the
palette of available BPEL elements. The result of our layout approach for this process is shown
on the right: The hierarchies of the BPEL model are visualized unfolded. Start and Exit of a
hierarchical element are depicted by green and red boxes, and surrounded by colored rectangles.

(b) Example of a layout for a complex BPEL-Process.

3 Realizing Layout Capabilities in Hobbes

A visualization of BPEL processes suggests a layered drawing technique. Thus, our lay-
out approach is based on the Sugiyama algorithm. Since there is no unique method to
derive paths from a BPEL model, we consider the number of descendant BPEL activites
of structured activities for path construction and embedding. In order to draw each path
in parallel, orthogonally to the layers in the Sugiyama model, three steps of the stan-
dard algorithm (Cycle Removal, Layer Assignment and Computation of the Horizontal
Coordinates) have to be modified.

Each path consists of so-called path-edges and should preferably be drawn from top
to bottom. Regarding cycles in the graph, we have to consider the special case of a cycle
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that consists only of path-edges. In this case, we perform a division of at least one of
the paths contributing at least one edge to the cycle. Furthermore, additional constraints
are added to the layer assignment phase in order to ensure that the source node of each
path-edge is placed in a layer above the target node.

To increase the readability of the main activities in a workflow, paths should be drawn
in a straight vertical manner. Thus, for the computation of the horizontal coordinates,
the standard algorithm is applied as a first step followed by a postprocessing step: For
each path p, the barycenter bp of the x-coordinates of all nodes in p is computed. The
horizontal coordinates of nodes contained in exactly one path p are set to bp. For nodes
contained in paths p1, . . . , pk with k ≥ 2, the x-coordinate is set to the barycenter of
bp1 , . . . , bpk

.
Finally, in order to avoid overlapping nodes, non-path nodes are moved to the left

and to the right until all nodes of the graph adhere to the minimal node distance. Final
modifications are applied to the graphical representation of the elements of the graph:
Each node is assigned its own shape according to its representative activity. All edges
are drawn in a way that they respect the flow from the top to the bottom. To further
improve the readability of the workflow, all hierarchical activities containing several
subordinate activities are surrounded by colored rectangles.
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1 Introduction

In [2] we use the term DAGmap to describe space filling visualizations of DAGs
according to constraints that generalize treemaps and we show that deciding
whether or not a DAG admits a DAGmap drawing is NP-complete. Let G =
(V, E) be a DAG with a single source s. A component st-graph Gu,v of G is a
subgraph of G with a single source u and a single sink v that contains at least
two edges and that is connected with the rest of G through vertex u and/or
vertex v. A vertex w dominates a vertex v if every path from s to v passes
through w. The dominance relation in G can be represented in compact form as
a tree T , called the dominator tree of G, in which the dominators of a vertex v
are its ancestors. Vertex w is the immediate dominator of v if w is the parent of
v in T . A simple and fast algorithm to compute T has been proposed by Cooper
et al. [1]. The post-dominators of G are defined as the dominators in the graph
obtained from G by reversing all directed edges and assuming that all vertices are
reachable from a (possibly artificial) vertex t. Using the definition of DAGmaps,
it is easy to prove that in a DAGmap of G the rectangle of a vertex u includes
the rectangles of all vertices that are dominated (resp. post-dominated) by u.
Therefore when vertex u dominates vertex v and vertex v post-dominates vertex
u then the rectangles Ru and Rv of u and v coincide. Based on this observation,
we propose a heuristic algorithm that transforms a DAG G into a DAG G′ that
admits a DAGmap. When G contains component st-graphs then our algorithm
performs significantly fewer duplications than the transformation of G into a
tree.

2 Transforming a DAG So That It Admits a DAGmap

A component st-graph Gu,v of G behaves under vertex duplications as if it is
encapsulated in a cluster vertex (c-vertex). When vertex u is duplicated then
Gu,v is duplicated as a whole. Additionally duplications that start at a vertex w
of Gu,v, where w �= u, v, stop at vertex v (i.e., they do not propagate to the rest
of G since Rv = Ru). To identify the component st-graphs of G first we compute
the dominator and the post-dominator trees of G. Then for each non-leaf node
v of the post-dominator tree that has more than one incoming edges we find its
immediate dominator u. The st-graph Gu,v that is induced by all paths from u to
v in G is a component st-graph of G. If the immediate post-dominator of u is v
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Fig. 1. Transforming DAG G into G′ that admits a DAGmap. a) A DAG with an
artificial sink vertex t. b) Introduction of artificial b-vertices. c) Folding of component
st-graphs into c-vertices. d) Vertex duplications. e) Unfolding of c-vertices; subgraph
G6,11 appears twice in DAG G′. f) DAGmap drawing of G′.

then Gu,v is clearly discernible, else it is recommended to introduce an artificial
vertex b that is adjacent to u and collects all outgoing edges of u that belong to
paths that lead to v. It is easy to show that a DAG G is converted into a DAG
G′ that admits a DAGmap if we first recursively fold the component st-graphs
of G and then we repeat until termination the following: unfold a c-vertex and
in case that the unfolded subgraph does not admit a DAGmap then perform
duplications of its vertices that have more than one incoming edge. Note that
if we perform duplications even when the unfolded st-graph admits a DAGmap
then an initial st-graph G is converted into a TTSP digraph [2]. In Fig. 1 vertex
s dominates vertex 5 but vertex 5 does not post-dominate vertex s. Therefore
an artificial vertex b1 is introduced. On the other hand the subgraph induced
by vertices s, 3, 4 and 6 cannot be separated since vertex 4 has an outgoing
edge to a vertex that does not belong to the subgraph. Finally c-vertex c2 is
duplicated since it has two incoming edges and this leads to duplication of the
whole st-graph G6,11.
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Abstract. Scaffold Hunter is a Java-based software tool for the anal-
ysis of structure-related biochemical data. It facilitates the interactive
exploration of chemical space by enabling generation of and navigation
in a scaffold tree hierarchy annotated with various data. The graphical
visualization of structural relationships allows to analyze large data sets,
e.g., to correlate chemical structure and biochemical activity.

The search for small molecules that are biologically relevant, e.g., to design new
drugs and diagnostics, is an important task in chemical biology. Even though
high throughput methods are available to test large numbers of chemical com-
pounds, the overwhelming size of chemical space—containing up to 10160 dif-
ferent molecules—renders any exhaustive search infeasible. Methods are needed
that allow to focus the search on the tiny fraction of chemical space that contains
the most promising candidates for biological activity.

Schuffenhauer et al. [1] developed a hierarchical scaffold classification strategy
to chart chemical spaces. A rule set is defined to reduce molecules to scaffolds,
on which a hierarchy is defined based on a substructure relation, cf. Fig. 1. This
way, the compounds are classified by structural similarity, reflecting the fact that
the biological relevance is closely coupled to the molecular structure.

We developed Scaffold Hunter, a software tool that admits the graphical rep-
resentation of chemical compound databases based on this classification strategy.
The software visualizes the set of scaffold trees resulting from the hierarchy gen-
eration step using graph layouts, and allows interactive exploration of the data

(a) Scaffold generation (b) Scaffold tree

Fig. 1. Example for a reduction step that derives a scaffold structure from a given
molecule structure (a) and a partial scaffold tree (b)
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(a) Main view (b) Subtree visualization

Fig. 2. Screenshots of the main view and the visualization of a subtree generated by a
filtering step, both with property-based color shading

based on this representation, cf. Fig. 2(a). Scaffold Hunter provides several lay-
out styles— adaptions of radial, tree, and balloon layout— and iterative scaffold
property filtering can be used to reduce the number of scaffolds displayed. Color
shading based on selected properties, both of scaffolds and specific segments of
the dataset, facilitates orientation and navigation within the dataset. The set
of molecules corresponding to scaffolds of interest and also subtrees derived by
filtering and selection steps can be viewed in a separate window, cf. Fig. 2(b).

The use of Scaffold Hunter fits into the chemist’s workflow for the analysis
of large compound libraries and allows to intuitively explore the underlying
chemical space. It helps to identify ‘holes’ in the structure space analyzed that
may serve as promising starting points for compound library design. Scaffold
Hunter identifies virtual scaffolds that do not represent molecules in the dataset
and that should share bioactivity properties with their parents or child scaffolds.
These virtual scaffolds may provide new opportunities for the identification of
new biologically relevant scaffold classes. An initial proof-of-concept analysis
demonstrated the usefulness of our approach [3].

Scaffold Hunter is implemented in Java and freely available under the GPL [2].

References

1. Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch, M.A., Waldmann, H.: The
scaffold tree - visualization of the scaffold universe by hierarchical scaffold classifi-
cation. J. Chem. Inf. Model. 47(1), 47–58 (2007)

2. Scaffold Hunter Project Webpage,
http://sourceforge.net/projects/scaffoldhunter/

3. Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T.I., Mutzel, P., Waldmann, H.:
Interactive exploration of chemical space with scaffold hunter. Nat. Chem. Biol. 5(8),
581–583 (2009)

http://sourceforge.net/projects/scaffoldhunter/


Graph Drawing Contest Report

Christian A. Duncan1, Carsten Gutwenger2, Lev Nachmanson3,
and Georg Sander4

1 Louisiana Tech University, Ruston, LA 71272, USA
duncan@latech.edu

2 University of Dortmund, Germany
carsten.gutwenger@cs.uni-dortmund.de

3 Microsoft, USA
levnach@microsoft.com

4 IBM, Germany
georg.sander@de.ibm.com

Abstract. This report describes the 16th Annual Graph Drawing Con-
test, held in conjunction with the 2009 Graph Drawing Symposium in
Chicago, USA. The purpose of the contest is to monitor and challenge
the current state of graph-drawing technology.

1 Introduction

This year’s Graph Drawing Contest had two topics: Partial Graph Drawing and
the Graph Drawing Challenge. The partial graph drawing topic provided four
data sets of different kinds of graphs, which were partially laid out. Some of
the nodes had specified coordinates, and some of the edges had specified routing
points. These nodes and edges were considered fixed. Other nodes and edges had
no coordinates and had to be laid out. These nodes and edges were free to be
moved. All nodes had specified sizes. The task was to find the nicest layout that
integrates the free nodes and edges into the layout of the fixed nodes and edges
without changing the positions of fixed nodes and edges. The data sets were a
simple tree, an organization chart, a flow chart, and a mystery graph.

The Graph Drawing Challenge, which took place during the conference, fo-
cused on minimizing the number of crossings of upward grid drawings of graphs
with edge bends. We received 27 submissions: 10 submissions for the Partial
Graph Drawing topic and 17 submissions for the Graph Drawing Challenge.

2 Simple Tree

The simple tree had 56 nodes and 55 directed edges. 16 nodes were fixed. There
were no special requirements concerning the edge shapes. The data was artifi-
cially created and the fixed nodes were roughly arranged in a top down manner.
The challenge was to fit the free nodes into the dense area between the fixed
nodes. We received 4 submissions for the tree data. Two submissions were based
on a spring embedder approach, and two other submissions were based on a
specialized tree layout algorithm.
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Fig. 1. First place, Simple Tree (original in color)

The winning submission by Melanie Badent and Michael Baur from the Uni-
versities of Konstanz and Karlsruhe (Figure 1) used a variation of the algorithm
by Reingold and Tilford [5]. They determined the node spacing from the positions
of the fixed nodes, so that the layout looks uniform. Then, they categorized the
nodes into red nodes (in Figure 1 medium gray) that were fixed, orange nodes
(in Figure 1 lighter gray) that have only fixed or orange nodes as successors,
hence their position is determined by the layout principle as the center above
their successors, blue nodes (in Figure 1 black) that have some red or orange
nodes as successors and hence are partially constrained in their position, and
green nodes (in Figure 1 white) that are completely free to be placed. For the
green subtrees, they computed all possible permutations of successors to obtain
the subtree with minimum width for the previously determined node spacing
to fit into the space between the fixed nodes. For blue nodes, the ordering of
their green child nodes was determined by a test routine that checked all inser-
tion points between red and orange nodes. The algorithm was specially tailored
for this input graph. They reported that for general trees a more sophisticated
method would be advisable.

3 Organization Chart

The organization chart had 171 nodes and 170 directed edges. 101 nodes and 96
edges were fixed. The fixed nodes had a minimal spacing of approximately 40
units (border to border). The edges had to be laid out in an orthogonal fashion,
which was only satisfied by one of the two submissions.

The winning submission came from Nicholas Jefferson from the University of
Sydney (Figure 2; the dark nodes and edges were fixed). The layout was produced
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Fig. 2. First place, Organization Chart (original in color)

using a backtracking search algorithm that used a minimum-size layout for all
descendants of a node whenever possible but otherwise recursed for each permu-
tation of the children of the node, up to subtree isomorphism. The minimum-size
layouts were generated using an approach similar to the Stockmeyer merge [3]
and again the Reingold-Tilford algorithm [5]. The implementation used the pro-
gramming language Ruby and the relational database PostgreSQL, using spatial
indexes to detect occlusion and continuations and savepoints to restore state on
backtracking.

4 Flow Chart

The flow chart had 57 nodes and 72 directed edges. 26 nodes were fixed and 24
edges were fixed. The graph had a single source and single target and was arti-
ficially created. The majority of the edges should point downwards. Orthogonal
edges were preferred but not required.

The winning submission came from Hui Liu from the University of Sydney
(Figure 3; the dark nodes and their connecting edges in the left picture were
fixed). First, an automatic layout was produced using the Neato algorithm of
GraphViz [1]. From this sketch, a drawing was created with Microsoft Visio
that was manually laid out. Finally, a background picture was added showing a
diamond pattern to highlight the fixed nodes (Figure 3, right).

5 Mystery Graph

The mystery graph had the 17 cities of the past Graph Drawing Conferences as
nodes fixed on a circle. 374 city nodes were added to keep the graph connected.
These nodes were free to be moved. The additional task was to determine the
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Fig. 3. First place, Flow Chart (original in color)

meaning of the 911 undirected edges, which depicted the twin towns or sister
city relationships between the cities as collected from Wikipedia [7].

The winning team, again Melanie Badent and Michael Baur, found the correct
answer. Since the fixed nodes formed a circle, they decided to arrange all nodes
in circles as well. The fixed nodes formed the innermost circle, and the free nodes
were placed at outer circles depending on their topological distance from fixed
nodes. The team used a radial layout algorithm from the visone software project
[4] and rotated the circles with free nodes to bring sister cities on different circles
closer to each other.

6 Graph Drawing Challenge

Following the Graph Drawing Challenge tradition of having the same topic in
two subsequent years, we repeated the same challenge as in year 2008, with new
sample graphs however. The challenge, a subproblem of the popular layered lay-
out technique by Sugiyama et al. [6] known to be NP-hard, dealt with minimizing
the number of crossings of upward grid drawings of graphs allowing edge bends.
This technique requires that all nodes be placed on grid positions, that nodes
and edge bends don’t overlap, and that all edge segments point strictly upwards.
At the start of the one-hour on-site competition, the contestants were given six
nonplanar directed acyclic graphs with a legal upward layout that however had
a huge number of crossings. The goal was to rearrange the layout to reduce the
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Fig. 4. First place, Sister city graph

number of crossings. Only the number of crossings was judged; other aesthetic
criteria such as the number of edge bends or the area were ignored.

We partitioned the challenge into two subcategories: automated and manual.
In the automated subcategory, contestants received graphs ranging in size from
26 nodes / 48 edges to 953 nodes / 1529 edges and were allowed to use their own
sophisticated software tools with specialized algorithms. Only one team (TU
Dortmund: Hoi-Ming Wong and Karsten Klein) submitted results and hence
were the winner of this subcategory. They found the optimal solution of four of
the graphs by using a modified version [2] of the same software as last year. For
the largest graph, they found a solution with 57 crossings, which is not far from
the optimal layout with 12 crossings.

The 16 manual teams solved the problems by hand using IBM’s Simple Graph
Editing Tool provided by the committee. They received graphs ranging in size
from 25 nodes / 40 edges to 144 nodes / 365 edges. To determine the winner
among the manual teams, the scores of each graph, determined by dividing the
crossing number of the best submission by the crossing number of the current
submission, were summed up. With a score of 4.87, the winner was J. Joseph
Fowler from the University of Wisconsin-Milwaukee, who found the optimal re-
sult for the 3 smallest graphs and very good results for graphs 4 and 5. For the
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(a) (b)

Fig. 5. Challenge graph with 48 nodes / 83 edges and 4 crossings: (a) the best manually
obtained result by J. Joseph Fowler, (b) the best automated result by team Dortmund

largest graph in the manual category, which can be laid out optimally with only
4 crossings, no contestant found a good solution manually. The submissions for
that graph ranged between 4287 and 5995 crossings. Figure 5 shows the results
of a graph with 48 nodes and 83 edges. This graph was used both in the manual
and automated subcategory and had 4 crossings in the best results, which is
optimal.
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