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Preface

TCC 2010, the 7th Theory of Cryptography Conference, was held at ETH Zurich,
Zurich, Switzerland, during February 9–11, 2010. TCC 2010 was sponsored by
the International Association of Cryptologic Research (IACR) and was organized
in cooperation with the Information Security and Cryptography group at ETH
Zurich. The General Chairs of the conference were Martin Hirt and Ueli Maurer.

The conference received 100 submissions, of which the Program Committee
selected 33 for presentation at the conference. The Best Student Paper Award
was given to Kai-Min Chung and Feng-Hao Liu for their paper “Parallel Repeti-
tion Theorems for Interactive Arguments.” These proceedings consist of revised
versions of those 33 papers. The revisions were not reviewed, and the authors
bear full responsibility for the contents of their papers. In addition to the regular
papers, the conference featured two invited talks: “Secure Computation and Its
Diverse Applications,” given by Yuval Ishai and “Privacy-Enhancing Cryptog-
raphy: From Theory Into Practice,” given by Jan Camenisch. Abstracts of the
invited talks are also included in this volume.

As in previous years, TCC received a steady stream of high-quality sub-
missions. Consequently, the selection process was very rewarding, but also very
challenging, as a number of good papers could not be accepted due to lack of
space. I would like to thank the TCC Steering Committee, and its Chair Oded
Goldreich, for entrusting me with the responsibility of selecting the conference
program. Since its inception, TCC has been very successful in attracting some of
the best work in theoretical cryptography every year and offering a compelling
program to its audience. I am honored I had the opportunity to contribute to
the continuation of the success of the conference.

I wish to thank all the people who contributed to the conference. Many
thanks to the authors of all submitted papers, whose work is the very reason
for TCC to exist. I am grateful for the dedication of the Program Committee
members, who spent countless hours reviewing and discussing the submissions,
to determine which papers to include in the program, and to provide the authors
with useful feedback. I also thank the many external reviewers who assisted the
Program Committee in its work. Thank you to past TCC Chairs Ran Canetti,
Salil Vadhan and Omer Reingold, who promptly answered my questions each
time I needed their advice. Special thanks to Shai Halevi, who wrote a wonderful
software package to facilitate all aspects of the PC work. I am very grateful
to TCC 2010 General Chairs Martin Hirt and Ueli Maurer without whom the
conference would not have happened. Thanks also to our corporate Sponsors,
Credit Suisse, Microsoft Research and Omnisec. Finally, thanks to the Springer
LNCS editorial staff, including Ingrid Haas, Alfred Hofmann, Frank Holzwarth,
and Anna Kramer, for their assistance in assembling these proceedings.

December 2009 Daniele Micciancio
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An Efficient Parallel Repetition Theorem

Johan H̊astad1, Rafael Pass2, Douglas Wikström3, and Krzysztof Pietrzak4

1 KTH, Stockholm, supported by ERC grant 226-203
2 Cornell University, Ithaca, supported in part by a Microsoft New Faculty

Fellowship, NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197,
and BSF Grant 2006317

3 KTH, Stockholm
4 CWI, Amsterdam

Abstract. We present a general parallel-repetition theorem with an ef-
ficient reduction. As a corollary of this theorem we establish that paral-
lel repetition reduces the soundness error at an exponential rate in any
public-coin argument, and more generally, any argument where the ver-
ifier’s messages, but not necessarily its decision to accept or reject, can
be efficiently simulated with noticeable probability.

1 Introduction

When the soundness error of an interactive proof [7] or interactive argument [3],
or more generally computationally-sound interactive proofs, is too large for appli-
cations, one might hope to prove a direct-product theorem which applies to the
protocol at hand. A direct-product theorem for some class of problems states
that if an adversary has some probability of succeeding in a single instance,
then his chance in solving many independent instances of the problem drops
exponentially. Running several independent instances of a protocol can be done
sequentially or in parallel. Sequential repetition means that the (i + 1)st exe-
cution of the protocol is only started after finishing the ith execution. Parallel
repetition means that all protocols are run simultaneously. It is well-known that
sequential repetition reduces the soundness error at an exponential rate for both
proofs and arguments. However, although parallel repetition is known to reduce
the soundness error in interactive proofs [1,6], Bellare, Impagliazzo and Naor [2]
demonstrate the existence of argument systems where parallel repetition does
not reduce the soundness error, leaving open the following question:

For what computationally-sound proof systems does parallel repetition
reduce the soundness error?

There have been several works addressing this question. Yao’s [17] work on hard-
ness amplification of one-way functions can be viewed as establishing that par-
allel repetition reduces the soundness error at an asymptotically optimal rate
in every “publicly-verifiable” two-round argument—namely arguments where
one can efficiently check if a transcript is accepting without knowing the veri-
fier’s internal randomness. Bellare, Impagliazzo and Naor [2] extended this re-
sult to show that parallel repetition reduces the error for general (not neces-
sarily publicly-verifiable) arguments with at most three rounds. For two-round

D. Micciancio (Ed.): TCC 2010, LNCS 5978, pp. 1–18, 2010.
c Springer-Verlag Berlin Heidelberg 2010
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2 J. H̊astad et al.

protocols, Canetti, Halevi and Steiner [4] obtain a quantitatively better bound
(approaching Yao’s original bound for publicly-verifiable arguments), and Im-
pagliazzo, Jaswal and Kabanets [11] show a more fine-grained “Chernoff-type”
theorem. Finally, Pass and Venkitasubramaniam [13] show that parallel repeti-
tion also reduces the error for any constant-round public-coin protocol.

On the negative side, as shown by Bellare et al [2] and Pietrzak and Wik-
ström [14], parallel repetition does not decrease the error for general (non public-
coin) protocols with eight rounds; furthermore, black-box reductions cannot be
used to establish such a result even for general four round protocols.

Thus, given the current state of the art, it is unknown whether parallel-
repetition reduces the soundness error even in public-coin protocols with a super-
constant number of rounds, or any general classes of non public-coin protocols
with more than 3 rounds. The former of these questions was stated as an open
problem by Bellare et al [2]. In this work we identify a general class of compu-
tationally sound protocols for which parallel repetition reduces the soundness
error. This class encompasses—and significantly extends—all earlier classes of
computationally sounds protocols for which parallel repetition had been estab-
lished; in particular, it includes all public-coin protocols but also natural classes
of private-coin protocols.

1.1 Our Results

We say that a verifier is δ-simulatable if, roughly speaking, given the prover’s
view of any partial interaction, with probability δ, the next-message function of
the verifier (excluding its verdict to accept or reject) can be simulated for all
remaining rounds (with a small statistical error). In other words, it is possible to
efficiently simulate a δ-fraction of the verifier’s continuations without knowing
the verifier’s internal randomness.

Note that any public-coin or three-round protocol trivially is 1-simulatable,
but this notion captures many other protocols. For instance, public-coin pro-
tocols in the public-key model—where the verifier has a secret key and might
determine whether to accept or reject based on this key—are also 1-simulatable.

Our main result is an efficient parallel repetition theorem (i.e., a parallel
repetition theorem with an efficient reduction) for any 1

poly -simulatable verifier.
More precisely, our main theorem says that for any protocol where the verifier
is δ-simulatable, we can turn an arbitrary parallel prover P(k) for the k-fold
repetition of V with success probability ε into a single instance prover P̃ with
success probability 1 − O

(
m
δ

√
− log(ε)/k +

√
m log(mk)/

√
k
)

where 2m + 1 is
the number of rounds. Note that this implies that the error probability decreases
exponentially down to some negligible function when the number of repetitions
is sufficiently larger than the number of rounds. Following Impagliazzo et al. [11]
we can actually prove a more general “Chernoff-type” theorem, where one only
assumes that the parallel prover convinces a certain fraction (and not all) of the
individual verifiers.

As any public-coin protocol or three-round protocol satisfies 1-simulatability,
we get as corollaries parallel repetition theorems for three-round protocols [2] and
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for public-coin protocols [13]. Note that whereas [13] only shows a parallel rep-
etition theorem for constant-round protocols, our theorem applies to protocols
with an arbitrary polynomial number of rounds. Our parameters are, however,
worse that those of [13], which establishes an essentially optimal error reduction
for the case of constant-round protocols.

As can be seen from the expression above, the success probability of the single-
instance prover decreases linearly with the number of rounds in the protocol. If
we restrict our attention to public-coin verifiers, or more generally, 1-simulatable
verifiers with verdict—i.e., verifiers where the next messages function and its
verdict to accept or reject—can be simulated with a small statistical error—
then we can show a stronger parallel repetition theorem, where the decrease in
error probability is independent of the number of rounds.

Finally, we show using a simple argument that our results hold also for concur-
rent provers, which may schedule their interaction with the individual verifiers
arbitrarily.

1.2 Some History and Related Papers

An earlier version of this paper [9], where we established a parallel repetition
only for interactive arguments with (1 − 1

poly )-simulatable verifiers (and some
generalizations thereof), dates back to April 2008. Recent works extend it.

Most notably, Haitner [8] gave a modification of any interactive protocol by
introducing a “random-termination verifier” where the verifier decides to stop
and accept immediately with small but noticeable probability at each round.
Haitner proved that any interactive protocol modified in this way, satisfies a
parallel repetition theorem.

His construction is the main motivation of our study of δ-simulatable verifiers
as it is easy to simulate a verifier that has halted. As a consequence our results
gives a new proof of Haitner’s theorem which is, in our eyes, simpler and which
gives better parameters.

In an even more recent paper Chung and Liu [5] improves the analysis of our
reduction. They manage to avoid the use of any lemma of the type obtained
by Raz getting optimal reduction of the error rate for the public-coin case and
almost optimal result in the case of 1-simulatable verifiers. It does not seem that
their result extends to the case of δ-simulatable verifiers.

In a different direction, Pass, Tseng and Wikström [12] rely on our techniques
to show that parallel repetition of public-coin protocols also gives a qualitative
(rather than quantitative) improvement in soundness: any public-coin argument,
when sufficiently repeated in parallel, becomes sound also against a “resetting”-
attack if the verifier uses a pseudo-random function to pick its messages. As
a corollary of this result, they establish impossibility of public-coin black-box
zero-knowledge protocols (for non-trivial languages) that remain secure under
parallel repetition. Interestingly, [12] show that the dependence on m in our
security reduction for the main theorem is inherent in their setting; this stands
in contrast with our sharper reduction for the case of public-coin protocols.
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1.3 Our Techniques

We show how to turn any parallel-prover P(k) into a single-instance prover P̃ ;
furthermore, we require that P̃’s success probability is significantly higher that
of P(k). Traditionally, P̃ achieves this by internally incorporating P(k), appro-
priately feeding it messages, while at the same time picking one of the parallel
executions that it feeds to an external verifier. In other words, out of the k in-
stances that P(k) believes it is participating in, P̃ controls k − 1 of them, while
one of them is externally forwarded.

The crux of this approach is how to determine the k − 1 messages sampled
in some particular round are good. In the public-coin case, in the work of Pass
and Venkitasubramaniam [13], the “goodness” of a message is determined by
estimating (using sampling) the probability with which P̃ would be able to
complete the partial interaction if this message was fixed; and P̃ selects the
message which leads to the highest success probability. This procedure requires
recursively sampling P̃ and results in a blow-up of the running-time as a function
of the number of rounds and thus only a constant number of rounds can be
handled. In the case of private-coin protocols, another problem arises already
for the case of three-round protocols: we might not be able to determine if
the verifier Vi accepts in a particular transcript as we do not know its random
tape. Bellare et al. [2] overcome this problem by “guessing” that Vi accepts, if,
intuitively, “many” other verifiers accept; as we are internally running all the
other verifiers we know their random tapes and thus their decision.

A-priori, it would seem that a combination of these approaches would at least
give a parallel-repetition theorem for constant-round private-coin protocols as
long as it is possible to appropriately sample the next messages of the verifier.
The problem is that when selecting “good” messages, we might be biasing the
distribution of continued executions. It is, thus, no longer clear that the proce-
dure of “guessing” that Vi accepts if many other verifiers accept, yields a good
estimate of whether Vi actually accepts.

The key technique introduced in this paper is a method for selecting “good”
messages without biasing the distribution too much. We essentially choose the
first continuation that can be seen to lead to a good outcome. The fact that this
procedure does not bias the distribution of interactions by too much follows from
a powerful lemma of Raz [15] which was used in an essential way in the proof of
the parallel repetition theorem for two-prover interactive proofs. Additionally,
this approach does not lead to a blow-up in running-time and can be applied to
any polynomial number of rounds.

Let us first outline the idea for the case of public-coin protocols. Instead of try-
ing to recursively estimate how good a message is, we use the following simple
procedure to pick messages to forward to Vi. Given a partial interaction, repeat-
edly sample random completions of this transcripts, until a successful transcript
is reached, i.e., one where all verifiers accept. When this happens, select the next
message to forward to the external verifier based on what that message was in the
sampled accepting transcript. In other words, sample a random message condi-
tioned on it leading to a successful transcript. To analyze why this works, consider
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the following mental experiment, where messages from P̃ are determined in the
same way, but now also Vi’s messages are selected conditioned on them leading
to an accepting execution. Clearly, in this mental experiment P̃ succeeds in con-
vincing Vi with probability 1. It is also not hard to see that the expected number
of samples required by P̃ is not too high and that its running-time is still poly-
nomial. The problem is that the real external verifier does not pick its messages
conditioned on them leading to an accepting execution; rather, it picks them uni-
formly at random. However, by relying on Raz’ lemma, we can show, provided
that i is picked uniformly at random from [k], that the distribution of messages
actually sent by the real external verifier are statistically close to those sent in the
mental experiment, where we condition on them leading to an accepting execu-
tion. By applying the union bound over each round in the protocol, we conclude
that also in the real execution, P̃ succeeds which high probability.

Note that the above argument directly applies also to 1-simulatable verifiers
with verdict; we only require it to be possible to 1) emulate continuations of
partial interactions with the external verifier, and 2) determine if the external
verifier would have accepted in those executions. To extend this analysis to 1-
simulatable verifiers without verdict, we augment the argument by first showing
that in the mental experiment it is sufficient to guess the decision of Vi based
on the decisions of the other verifiers, in analogy with [2]. Now we can no longer
claim that the success probability in the mental experiment is 1, but it will still
be sufficiently high; the rest of the proof remains the same, and we conclude that
also in the real execution P̃ succeeds with high probability. We mention that to
simplify the analysis, and to generalize it to handle “Chernoff-type” bounds, we
generalize the “guessing” procedure of [2].

Finally, consider the case of 1
poly -simulatable verifiers. Here we can only em-

ulate continuations of the external verifier for a small, but noticeable, fraction
of its true continuations. Nevertheless, by another application of Raz’s lemma,
we can show that the distribution of messages sent to the internal prover does
not change by too much even if we condition the ith execution on a noticeable
subset of continuations, and thus 1

poly -simulatability suffices. More precisely, by
Raz’s lemma, it follows that the probability the external verifier chooses a con-
tinuation that we can simulate is not affected much if we condition on getting an
accepting interaction; this, in particular means that (on average) the probability
that a partial transcript leads to an accepting transcript does not change much
even if we condition on only continuations that we can simulate.

Note that in the above proof sketch we lose a factor of m, i.e., the number of
rounds in the protocol, by the application of the union bound. For the special
case of 1-simulatable verifiers with verdict, we go back to the underlying tool of
relative entropy used to prove Raz’s lemma, and use it to prove a generalization
that considers multiple rounds at once, without losing the factor of m.

1.4 Outline of Paper

We first introduce some basic definitions in Section 2. Then we give a definition of
δ-simulatable verifiers in Section 3. In Section 4 we state the parallel repetition
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theorem. Then in Section 5 we prove the general parallel repetition theorem,
leaving the sharper theorem for the full version. Finally, we explain in Section 6
how to generalize our results to concurrent provers.

2 Notation and Basic Definitions

We denote the set {1, . . . ,m} by [m]. We use n to denote the security parameter.
All random variables are written in uppercase and usually we use the correspond-
ing lower case for outcomes of the variable. When we say that a random variable
X over a set X is chosen randomly, we mean that it is uniformly and indepen-
dently distributed of all other variables. We use log a to denote the logarithm of
a in base 2. We write x ←R X when x is chosen randomly from the set X .

If X is a random variable we write PX (x) = Pr [X = x] to denote the probabil-
ity that it assumes the value x, and we denote its support by [X ]. If X and Y are
random variables we denote the conditional distributions of Y given X by PY |X ,
and when we condition on a fixed value x ∈ [X ] we denote the corresponding
probability function by PY |X ( · |x). Thus, PY |X (y |x ) = PXY (x, y) /PX (x).
When W is an event, we write PX|W (x) = Pr [X = x |W ].

We often use the chain-rule for distributions and we use dots, when we are
interested in a specific conditional distribution, e.g., we write PXY = PY PX|Y
and PX|Y ( · |y ).

Definition 1. The statistical distance between two distributions PX and PY

over a set X is
‖PX − PY ‖ =

1
2

∑
x∈X

|PX (x) − PY (x) | .

In a computationally sound protocol, soundness only holds against efficient (i.e.,
polynomial-time) provers. In general, a computationally sound protocol accepts a
joint parameter λ that may, or may not, contain an instance of a language. We use
P and V to denote the prover and verifier of a protocol, and we write 〈P ,V〉(λ) for
the output of V after an interaction with P on common input λ. For notational
convenience, we consider the security parameter n and any additional advice to
the prover as encoded into λ. We denote the k-wise parallel repetition of a verifier
V by Vk. The repeated verifier simulates the individual verifiers independently,
except that their message rounds are synchronized. It accepts if all the individual
verifiers accept. The ith verifier is denoted by Vi, but all verifiers run the same
program V . We are also interested in repeated threshold verifiers, denoted by Vk

γ ,
that accept if at least (1 − γ)k of the individual verifiers accept.

The number of exchanges in the protocol is denoted by m, where one exchange
consists of two rounds, and the very first message of the prover is considered part
of the 0th exchange.

We denote the lth message of the ith verifier Vi by Cl,i and its state after the
lth message has been computed by Tl,i. We denote the lth message sent by the
prover to the ith verifier Vi by Al,i, and we denote the state of the prover after it
has computed its lth message by Sl. The decision of Vi is denoted by Di, i.e., 1 for
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accept and 0 for reject. We define Cl = (Cl,1, . . . , Cl,k) and Al = (Al,1, . . . , Al,k).
The variables are then related as follows given a random joint parameter Λ

T0,i = Λ (1)

(S0, A0) = P(k)(Λ)
(Tl+1,i, Cl+1,i) = VRl,i

(Tl,i, Al,i) for 0 ≤ l < m

(Sl, Al) = P(k)(Sl−1, Cl) for 0 < l ≤ m

Di = V(Tm,i, Am,i) ,

where we think of both the prover and verifier as deterministic algorithms and
denote the random tape used by Vi in round l by Rl,i. The verifier may of course
“store” randomness from one round to be used in later rounds.

To collect random variables belonging to different exchanges we write, e.g.,
C[l],i = (C1,i, . . . , Cl,i) and C[l] = (C1, . . . , Cl). Sometimes we wish to exclude
only a single index i. Then we write Cl,〈i〉 = (Cl,1, . . . , Cl,i−1, Cl,i+1, . . . , Cl,k).
We mostly view V and P(k) as deterministic functions, but when convenient and
clear from the context we drop the the random tape from our notation.

3 Simulatable Verifiers

Our parallel repetition theorem is applicable to δ-simulatable verifiers. Roughly
speaking, we say that a verifier is δ-simulatable if given only the prover’s view
of any partial interaction (which thus excludes the verifier’s internal state), we
can efficiently simulate a δ fraction of the verifier’s actual continuations.

Recall that given a prover P and a verifier V , a partial transcript of length l is
denoted (λ, a[l], c[l]), the lth states of P and V are denoted sl and tl respectively,
and that these values are defined formally by Equation (1) in Section 2. Thus,
the prover’s view after producing its lth message al is given by (s[l], λ, a[l], c[l]).

Definition 2 (δ-Simulatable Verifier). A verifier V is said to be δ-simulatable
if there exists a PPT simulator S such that for every prover strategy P and
every partial history (s[l], t[l], λ, a[l], c[l]), there is a subset Δ of V’s random tapes,
compatible with the history so far, of density δ such that the output of S on
input (s[l], λ, a[l], c[l]) is statistically close to the prover’s view of a continued
interaction between P and V, including V’s verdict, when V’s random tape is
chosen uniformly from Δ. When the verdict of V is removed from consideration,
we say that V is δ-simulatable without verdict, or simply δ-simulatable.

Remark 1. Note that the definition requires the simulator to simulate a proba-
bility distribution that is allowed to be dependent on the state of the verifier and
that this state is unknown. This seems like an impossible task in general unless
we minimize the information contained in the state. In the early version of this
paper [9] this state was not included in the probability distribution but instead
we required that the next message of the internal, fully simulated verifiers could
be efficiently generated based on the conversation up to this point. If this is in-
deed possible then we can instead let the state be given by the messages already
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sent and then use this generation process to replace the original verifier. With
the current definition we need no condition on the internal verifiers and hence
it is, in our eyes, preferable.

Remark 2. The property that we only demand the two distributions to be sta-
tistically close and not identical is only a technicality. In fact, when using the
definition in this abstract we assume that the two distributions are the same,
to avoid cumbersome notation to take care of the error terms given by a small
statistical distance.

Remark 3. A careful reading of the proof reveals thatwe can let the probability δof
successful sampling depend on the round but not on the partial history it extends.

Remark 4. We can allow a weaker definition of simulatability where the ability
to simulate V also depends on the P ’s messages. This leads to a more complicated
proof of Lemma 4 that either loses a factor of m in the error bounds or uses the
methods of [16] to get the same bounds. In order to keep this extended abstract
self-contained we use the weaker definition here.

Clearly, any public-coin protocol is 1-simulatable with verdict. It is also easy to
see that the “random-termination verifiers” of Haitner are 1

4m -simulatable with
verdict: the simulator simply aborts (accepting) with probability 1

4m . Further-
more, public-coin protocols in a public-key model (where the verifier only sends
random messages, but bases is decision on its secret key), as well as three-round
protocols, are 1-simulatable without verdict.

4 The Parallel Repetition Theorem

We prove a parallel repetition theorem for any verifier that is δ-simulatable
without verdict. The theorem implies that a (2m + 1)-round protocol when re-
peated k = Ω(m2

δ2 t) times in parallel reduces the error probability from 1/2
to 2−t + negl(n) if we require that all parallel verifiers accept. In the general
statement we consider also repeated threshold verifiers Vk

γ that accept if at least
(1 − γ)k of the k parallel verifiers accept.

Theorem 1. Assume ε ≤ 1/2, let V ∈ PPT be a verifier that is δ-simulatable
without verdict, and let P(k) be a polynomial-time parallel prover. Then there ex-
ists a prover P̃ running in time Poly (n, k,m, 1/ε) such that for every λ ∈ {0, 1}∗
where Pr[〈P(k),Vk

γ 〉(λ) = 1] ≥ ε, for some threshold 0 ≤ γ < 1,

Pr
[
〈P̃,V〉(λ) = 1

]
≥ 1 − γ − O

(m
δ

√
− log(ε)/k +

√
m log(mk)/

√
k
)

,

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

The constants hidden in the O (·)-notation in Theorem 1 are small and given
explicitly in our proof. It turns out that in the case of 1-simulatable verifiers we
can get a stronger theorem.
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Theorem 2. Assume ε ≤ 1/2, let V ∈ PPT be a verifier, and let P(k) be a
polynomial-time parallel prover. Then there exists a prover P̃ running in time
Poly (n, k,m, 1/ε) such that for every λ ∈ {0, 1}∗ where Pr[〈P(k),Vk

γ 〉(λ)=1]≥ε,
for some threshold 0 ≤ γ < 1,

1. if V is 1-simulatable with verdict, then

Pr
[
〈P̃ ,V〉(λ) = 1

]
≥ 1 − γ − 2

√
− log(ε)/k −

√
1/k , and

2. if V is 1-simulatable without verdict, then

Pr
[
〈P̃ ,V〉(λ) = 1

]
≥ 1 − γ − O

(√
m
√

− log(ε)/k +
√
m log(mk)/

√
k
)

,

where n is the security parameter, m is the number of messages sent by V, and
k is the number of verifiers interacting with the parallel prover.

Due to the lack of space the proof of Theorem 2 is omitted but can be found in
[16]. It relies on the notion of relative entropy (Kullback-Leibler distance) and
uses a lemma extending Lemma 1 below to treat multiple rounds.

Readers familiar with the recent result of Pass et al. [12], may find Case 1
of Theorem 2 surprising, since superficially it seems the same technique should
be applicable to remove the dependence on the number of rounds in [12], which
would contradict their results. The reason this is not the case is that in [12], the
reduction samples messages in a given round conditioned on two events: (1) that
“all verifiers accept”, and (2) that the “right” message is output by the embedded
“resetting” attacker. Thus, in each round a distinct event is considered. Another
way to say this is that the probability that the “right” messages are output in all
rounds in a straight-line execution of the resetting attacker is Poly (n)−m. Thus,
we could apply this technique to simplify the proof in [12], but the dependence
on m would not disappear.

5 Proof of Theorem 1

We prove Theorem 1 in three steps. First we prove the theorem for public-coin
verifiers in the case where γ = 0. This immediately generalizes to 1-simulatable
verifiers with verdict. Then we show how to generalize the proof to verifiers that
are only δ-simulatable with verdict. Finally, we prove that the result can be
generalized to γ > 0 and verifiers that are δ-simulatable without verdict.

5.1 Proof of Theorem 1 in the Public-Coin Case

It is quite natural to simulate an interaction between the parallel prover P(k) and
the repeated verifier Vk and let the external verifier play the role of Vi for some i. In
other words any message to Vi would instead be forwarded to the external verifier
and its reply is taken as the reply of Vi. The question is how to choose the index
i and how the other verifiers should be simulated. We solve this in a simple way
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by picking a uniformly random i, simulating the other verifiers by picking random
messages and then taking the first answers that can be seen to lead to making all
verifiers accept. Let us discuss the intuition behind this approach.

Consider the tree of all possible interactions between P(k) and Vk, where each
leaf encodes which verifiers accept and the edges on level l are labeled with the
random choices of the verifiers in exchange l. If we could sample a random leaf
such that all verifiers accept, then clearly Vi also accepts for a any choice of i. If
the success probability of P(k) is ε we can efficiently sample from this distribution
in time polynomial in 1/ε and the security parameter n as follows. In exchange
l we repeatedly choose the messages cl = (cl,1, . . . , cl,k) of all verifiers randomly
and simulate a completion conditioned on the interaction so far and our choice of
messages in exchange l. If the completion gives a leaf where all verifiers accept,
then we take cl to be the messages of the verifiers in exchange l. Clearly, if a
suitable cl is found for each l, then all verifiers accept.

Suppose now that we pick a random index i and in exchange l pick the mes-
sage cl,i of Vi only once. The messages cl,〈i〉 = (cl,1, . . . , cl,i−1, cl,i+1, . . . , cl,k)
of all other verifiers are still repeatedly sampled, but now conditioned on cl,i

in addition to the interaction so far. The key observation is that this modified
distribution is quite close to the original one, and that we may view Vi as the
external verifier. Thus, we avoid sampling too much to stay close to the original
distribution on the leaves where all verifiers accept.

More Details. Denote by Complete the probabilistic algorithm that given a par-
tial interaction between P(k) and Vk returns a random sample from the distribu-
tion of the decisions of the verifiers, conditioned on the partial interaction given
as input. The detailed reduction is given by Algorithm 1 below. The parameter

Algorithm 1 (b). P̃u(x)

if x is a joint parameter λ then // Read joint parameter

(s0, a0) ← P(k) (λ) // Compute prover’s first message
i ←R [k] // Choose random index
return

([
i, s0, λ, ∅, a[0]

]
, a0,i

)
// Output state and first message

else
Interpret x as

([
i, sl−1, λ, c[l−1], a[l−1]

]
, cl,i

)
// Read state & verifier’s message

for v = 1, . . . , u do

cl,〈i〉 ←R {0, 1}p(n)×(k−1) // Sample verifiers’ messages

(sl, al) ← P(k) (sl−1, cl) // Compute prover’s reply
if Complete(λ, c[l], a[l]) = 1 then // If messages are good,

return
([

i, sl, λ, c[l], a[l]

]
, al,i

)
// then output reply

done
done
return (fail , fail) // Give up

end
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u denotes the maximal number of samples generated by the prover in each round
to find a suitable reply from the parallel prover. For simplicity we assume that
the message of the verifier in each exchange is drawn from {0, 1}p(n) for some
polynomial p.

Note that the prover keeps as its state the index i corresponding to the exter-
nal verifier, the state of the simulated parallel prover, and a partial interaction.
We now consider the error probability of the constructed prover.

The sampling lemma of Raz [15] says that given independently distributed
random variables U1, . . . , Uk, the distribution of Ui does not change much on av-
erage over the index i by conditioning on an event E, provided that the probabil-
ity of E is not too small. (We mention that the sampling lemma was previously
used by Impagliazzo et al. [11] in the context of parallel-repetition of 2-round
arguments). We make use of the following variant that appears as Corollary 6
in Holenstein’s simplified proof of Raz’ theorem [10].

Lemma 1. [10] Let PY UkV = PY

(∏k
i=1 PUi|Y

)
PV |Y Uk be a probability distri-

bution and E an event. Then

1
k

∑
i=1

∥∥PY UiV |E − PY V |E PUi|Y
∥∥ ≤ k−1/2

√
log |V ∗| − log Pr [E] .

where V ∗ is the set of values of v that can occur conditioned on E occurring.

In our application, the variable Y represents the interaction so far and Ui are
the messages of the verifiers in the current round. We let V be a binary variable
such that PV |Y Uk (1 |y, u) is the probability that all verifiers accept in a random
completion, for every partial interaction (y, u) ∈ [Y, Uk]. The lemma then implies
for a random Y that most Ui are, even if we condition on extending Y to an
accepting interaction, distributed very closely to their unconditional distribution
which in this case is the uniform distribution.

Thus, we can conclude that in any single round, if we have chosen Y up to
this point with the conditional distribution of a partial interaction leading to an
accepting leaf then if we, in this round, pick a random i, the distribution of Ui

is likely to be close to uniform. A problem to be taken care of is that i is chosen
once and remains fixed for all rounds.

Let us consider a modified process where the external verifier Vi instead of
choosing cl,i with the uniform distribution does a process similar to that of P̃u. It
samples complete interactions that extend the current interaction of all verifiers
until it finds a complete interaction where all verifiers accept and then chooses
the value of cl,i in this interaction as its response. Furthermore, let us remove
the restriction that P̃u only makes u attempts to find a complete interaction
where all verifiers accept and let it sample until it finds a completion. Let Dreal

be the distribution on interactions produced by P̃u interacting with Vi and let
Dideal be the distribution on interactions in this modified process.

Clearly, Dideal outputs a uniformly selected interaction in which all verifiers
accept. Thus, in this modified process Vi always accepts. Below we estimate the
statistical distance between this process and the original process. This statistical
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distance is an upper bound on the probability that Vi rejects. Let us first see
that it is unlikely that the modified process ever needs to sample a large number
of times. This is intuitively not surprising. For the sampling to take a long time
we need to choose a partial interaction that is very unlikely to lead to a complete
accepting interaction. But as we are choosing partial interactions as part of an
accepting interaction we are very unlikely to choose such a partial interaction.
This is made formal by the following easy lemma, a proof of which is given below.

Lemma 2. Let Y be a random variable and let X0, X1, X2, . . . be identically
distributed binary random variables which are only dependent through Y , i.e.,
PY,X0,...Xj = PY

∏j
i=0 PXi|Y and PXi|Y = PXj |Y for any i, j. Let J be the

random variable denoting the smallest nonzero index such that XJ = 1. Then
E [J |X0 = 1] ≤ 1

Pr[X0=1] .

Let us see how this lemma proves that the expected number of samples needed to
find an accepting completion is small. We let Y be a random partial interaction
which is chosen by picking a complete accepting interaction, i.e., Y is C[l−1] for
some l, and we let Xi be one if a particular random completion of Y makes all
verifiers accept. Then E [J |X0 = 1] is exactly the expected number of attempts
to complete the interaction Y to make all verifiers accept given that Y was picked
by first picking a complete interaction which makes all verifiers accept and then
truncating to the appropriate length.

Let δ =
√

− log (ε)/k+(εu)−1. We claim that the statistical difference between
Dreal and Dideal when truncated to t rounds is bounded by tδ. This is clearly
true for t = 0 and we proceed by induction using the following lemma.

Lemma 3. Let X0 and X1 be two random variables over X , and let Zx and Z ′
x

be two families of random variables parameterized by x ∈ X such that

‖PX0 − PX1‖ = δ1 and Ex

[∥∥PZx − PZ′
x

∥∥] = δ2 ,

where x is distributed according to PX0 . Then∥∥PX0,ZX0
− PX1,Z′

X1

∥∥ ≤ δ1 + δ2 .

Before we prove Lemma 3, let us see how it enables us to complete the induction
step. We let X0 be a (t − 1)-round interaction chosen according to Dideal, X1 a
(t−1) round interaction chosen according to Dreal, ZX0 the next round message
chosen by the verifiers according to Dideal and Z ′

X0
the next round message

chosen from Dreal. We need to estimate the expected statistical distance between
Z ′

X0
and ZX0 over X0.

We have two differences between the two distributions, how Vi’s message
is chosen and the limited sampling. The latter is, by Lemma 2 and Markov’s
inequality, bounded by (εu)−1 and we claim that former difference is bounded
by
√

− log (ε)/k. Let us see how this follows from Lemma 1.
As stated before, we let Y be the interaction up to the (t − 1)st round and

Ui the message of Vi in round t and V a bit which is one with the probability
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that a random completion of the given interaction accepts. The event E is that
”V = 1”. Then Dideal picks messages with the distribution given by PUi|Y V E

while Vi picks messages with the uniform distribution which in this case is PUi|Y .
Lemma 1 now tells us exactly that for a random Y and i the statistical distance
between these two distributions is at most

√
− log (ε)/k.

Finally, setting u = ε−1m
√
k completes the proof of Theorem 1 in the public-

coin case as claimed. The missing proofs of Lemma 3 and Lemma 2 are given
below.

Proof (Lemma 2). We can consider only values y such that Pr [X0 =1 |Y =y ] > 0
and summing over those we have

E [J |X0 = 1] =
∑

y

Pr [Y = y |X0 = 1] E [J |Y = y ∧ X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] /Pr [X1 = 1 |Y = y ∧ X0 = 1]

=
∑

y

Pr [Y = y |X0 = 1] /Pr [X1 = 1 |Y = y ]

=
∑

y

Pr [Y = y ∧X1 = 1]
Pr [X0 = 1]

· Pr [Y = y]
Pr [X1 = 1 ∧ Y = y]

≤ 1
Pr [X0 = 1]

,

where the third equality follows from the conditional independence of the Xi’s
and the fourth equality follows since the Xi’s are also identically distributed. �

Proof (Lemma 3). We use the characterization that two distributions are at sta-
tistical distance δ if and only if there is a coupled way of choosing elements from
the two distributions such that the two samples are equal with probability 1− δ.
We need to choose coupled pairs (x, z) and (x′, z′) from the given distributions.
First choose a coupled pair (x, x′) distributed according to PX0 and PX1 , re-
spectively. If they are unequal, which happens with probability δ1, we give up. If
they are are equal we choose a coupled pair (z, z′) according to the distributions
PZx and PZ′

x
. The probability that these are unequal (over the choice of x and

the second choice) is upper bounded by δ2. This completes the proof. �

5.2 Proof of Theorem 1 for δ-Simulatable Verifiers with Verdict

When the verifier is no longer public-coin and only δ-simulatable for some δ ≥
1/Poly (n), it may keep its state hidden from the prover inbetween exchanges.
To deal with this, we replace each call to Complete in Algorithm 1 by a call to
the δ-simulator on input (i, s[l], t[l],〈i〉, λ, a[l], a[l]).

We consider a fixed round l and all variables below depend on the value
of l but, for notational convenience, we omit this dependence. Let us define
Xi = (Tl−1, C[l−1], Cl,i) and Yi = (Tl,〈i〉, Cl,〈i〉). Recall that Cl,〈i〉 denotes the
array (Cl,1, . . . , Cl,i−1, Cl,i+1, . . . , Cl,k) and similarly for Tl,〈i〉.
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By δ-simulatability, there is a subset, Δ of the external verifiers possible ran-
dom tapes for which we can simulate Vi.

Let W be an indicator variable of the event D = 1 (that all verifiers accept).
Then define δi

xi,yi
as the probability that the prover’s view of a random comple-

tion of (xi, yi), conditioned on the event W = 1, is an output from the simulator.
Furthermore, let δi

xi
be the expected value of δi

xi,yi
over yi, where yi is chosen

according to the distribution PYi|Xi,W ( · |xi, 1). Due to the conditioning on
W = 1, δ-simulatability does not immediately say anything about these quanti-
tities, but for any fixed xi the distribution of Yi conditioned on both W = 1 and
the event that the output is from simulator is given by the probability function

PYi|Xi,W (yi |xi, 1)
δi
xi,yi

δi
xi

.

We want to prove that this, for a uniformly random i, is statistically close to the
distribution PYi|Xi,W ( · |xi, 1) and thus we should estimate

1
k

k∑
i=1

∑
xi,yi

PXi,Yi|W (xi, yi |1)

∣∣∣∣∣1 −
δi
xi,yi

δi
xi

∣∣∣∣∣ . (2)

The following lemma is the key to estimating this distance.

Lemma 4

1
k

k∑
i=1

∑
xi,yi

PXi,Yi|W (xi, yi |1)
∣∣δi

xi,yi
− δ
∣∣ ≤ O

(√
− log(ε)/k

)
. (3)

We postpone the proof of the lemma until we have seen how it is used. Fix i and
xi and consider the contribution to the sums in (2) and (3) over a random Yi con-
ditioned on W = 1. Define a random variable Z which takes the value δi

xi,yi
/δi

xi

with probability PYi|Xi,W (yi |xi, 1). Then the contribution to Equation (3) is
at most δ E [|1 − sZ|] with s = δi

xi
/δ while the contribution to Equation (2) is

E [|1 − Z|]. Now consider the following lemma.

Lemma 5. Assume that Z is a positive random variable with E [Z] = 1. Then
for any s > 0 we have E [|1 − Z|] ≤ 2 E [|1 − sZ|].

Again, we postpone the proof until we have completed the argument. Since
E [Z] = 1, we see that Equation (2) is bounded by O(δ−1

√
− log(ε)/k). Thus the

additional statistical distance between the ideal distribution and that obtained
by our parallel prover introduced in round l is bounded by this quantity.

Using coupling and the union bound as in Section 5.1, we conclude that re-
placing the 1-simulator by a δ-simulator introduces an additional error of at
most O(m

δ

√
− log(ε)/k).

Finally, let us prove the two lemmas above, completing the proof of Theorem 1
in this case.
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Proof (Lemma 4). We apply Lemma 1 with Ui representing Vi’s random tape
compatible with the interaction up to this point. We need to analyze the proba-
bility that we can simulate Vi conditioned upon all verifiers accepting. Without
conditioning this probability is statistically close to δ by the definition of δ-
simulatability (for notational convenience we assume here that this probability
equals δ). The deviation from this is bounded by the statistical distance of the
conditioned distribution from the uniform distribution. The lemma now follows
from Lemma 1. �

Proof (Lemma 5). Note that
∑

z≤1 PZ (z) (1−z) = 1
2 E [|1 − Z|], since E [Z] = 1

and |1 − z| is symmetric around 1. If s ≤ 1, then |1 − z| < |1 − sz| for every
z ≤ 1 and the claim follows. If s > 1, then we instead consider the partial sum
for z > 1 and apply the corresponding argument. �

5.3 Proof of Theorem 1 for δ-Simulatable Verifiers without Verdict

First we note that it is easy to generalize the above result to the case with a
repeated threshold verifier that accepts if at least (1 − γ)k verifiers accept. Re-
place the definition of the indicator variable W such that it is one if and only
if
∑k

i=1 Di ≥ (1 − γ)k. Then in the corresponding “modified process” discussed
in Section 5.1 the probability that Vi accepts is at least 1 − γ, since i is chosen
uniformly in [k] and independently of the “modified process”. A trivial modifi-
cation of the analysis above then gives the same additional statistical error due
to having an external verifier, the use of limited sampling, and a δ-simulatable
verifier.

To generalize the theorem to δ-simulatable verifiers without verdict, starting
from the result established in Section 5.2 for δ-simulatable verifiers with ver-
dict, we modify the reduction by redefining W using “soft” decisions as was
already done in [2]. Suppose that instead of accepting only samples where at
least (1 − γ)k verifiers accept, we define a binary random variable W that is one
with probability min(1, 2ν(γk−z)), where z is the number of rejecting verifiers,
and accept a sample if W = 1. Then it turns out that, provided that, we choose
ν small enough, this acceptance criteria can be approximated well even if we do
not know the verdict of the external verifier Vi. Let us start with the key lemma,
of which the proof is postponed to the end of this section.

Lemma 6 (Soft Decision). Let D1, . . . , Dk be binary random variables such
that Pr[

∑k
i=1 Di ≥ (1 − γ)k] ≥ ε, let Z = k −

∑k
i=1 Di, let γ > 0, ν > 0, and

m ≥ 1, and let W be a binary random variable such that Pr [W = 1 |Z = z ] =
min(1, 2ν(γk−z)). Then

1
k

k∑
i=1

Pr [Di = 0 |W = 1] ≤ γ +
1
kν

(logm + log k − log ε) +
4

ν2mk2 .

Remark 5. Although setting ν = 1 and γ = 0 recovers the decision procedure in
[2], our analysis differs from theirs. They implicitly use Raz’s lemma to argue
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that the variables Wi and W are close in distribution on average over i. We need
the stronger statement that these variables are close in distribution for any i.
This is why we need the additional parameter ν.

Now set ν = 1√
m

√
− log(ε)/k and suppose now at first that we did know the

verdict of Vi. The old argument carries over and we end up at a random point
where W = 1. Before we could conclude that Vi accepted while currently by
applying Lemma 6, we see that the probability that Vi rejects is at most

γ +
1
kν

(logm + log k − log ε) +
4

ν2mk2

= γ +
√
m√

− log(ε)k
(log(mk) − log(ε)) +

1
− log(ε)k

≤ γ +
√
m log(mk)/

√
k +

√
m
√

− log(ε)/k + 1/k ,

and this is enough to prove Theorem 1.
The key to case the case when we do not know the verdict of Vi is that if ν is

small then the decision of an individual verifier is does not affect the behavior
very much. In fact, let us simply approximate Z by assuming than Di = 1 and
let us run our parallel prover using this approximation. Compare a run of this
modified prover and a run of an ideal prover that uses the correct value of Z
using the same randomness.

These two provers only behave differently when the the modified prover ac-
cepts a history that the ideal prover would have rejected. To be precise, each
time the modified prover accepts a history the probability that the ideal prover
would have rejected the same history is 1 − 2−ν ≤ ν.

As the modified prover only accepts m histories over the course of a run,
the statistical difference between the behavior of modified prover and the ideal
prover is bounded by νm.

This gives a total additional error from using soft decisions when sampling of
(m+1)ν ≤ (

√
m+1)

√
− log(ε)/k. Combined with the proof of Lemma 6 below,

this concludes the proof of Theorem 1 in its full generality.

Proof (Lemma 6). Let pj = Pr[Z = j]. We know by assumption that

kγ∑
j=0

pj ≥ ε . (4)

We know that Pr [Z = j |W = 1] is proportional to pj2−min(0,ν(j−γk)). This im-
plies that the expected number of Di’s equal to zero is

E [Z |W = 1] =

∑k
j=0 jpj2−min(0,ν(j−γk))∑k
j=0 pj2−min(0,ν(j−γk))

. (5)

The denominator is lower bounded by
∑γk

j=0 pj2−min(0,ν(j−γk)) =
∑γk

j=0 pj and
is thus, by Equation (4), at least ε. Let t be a parameter to be determined, then
the numerator is bounded by
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k∑
j=1

max(γk + t, j)pj2−min(0,ν(j−γk))

≤ (γk + t)
k∑

j=1

pj2−min(0,ν(j−γk)) +
k−(γk+t)∑

j=1

jpγk+t+j2−ν(t+j) . (6)

It is not difficult to see that
∑∞

j=1 j2−νj ≤ 4
ν2 and thus the upper bound in

Equation (6) is at most

(γk + t)
k∑

j=1

pj2−min(0,ν(j−γk)) +
4
ν2 2−νt .

Setting t = 1
ν (logm+log k−log ε) and using that the denominator of Equation

(5) is at least ε we see that

E [Z |W = 1] ≤ γk +
1
ν

(logm + log k − log ε) +
4

ν2mk
.

The proof is concluded by remembering that i is chosen uniformly at random
from [k]. �

6 Concurrent Repetition

Although verifiers repeated in parallel perform their computations independently
and use independently generated randomness, their communication is synchro-
nized. It is natural to consider a more general form of repetition where this
restriction is removed, i.e., the prover may arbitrarily schedule its interaction
with the individual verifiers.

Only minor modifications are needed to generalize Theorem 1 and Theorem 2,
with the same parameters, to the setting where a concurrent prover interacting
with the k-wise concurrent repetition of V is converted into a prover P̃ interact-
ing with V . The key observation for this extension is that a concurrent prover
only sends m + 1 messages to Vi. Thus, P̃ need only sample completions at m
points during an interaction with V , and Lemma 1 is only applied m times. Fur-
thermore, the δ-simulator and soft decisions are only used at each point where
P̃ samples completions, i.e., exactly m times. More details will be given in the
full version of this paper.
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Abstract. We study efficient parallel repetition theorems for several
classes of interactive arguments and obtain the following results:

1. We show a tight parallel repetition theorem for public-coin interac-
tive arguments by giving a tight analysis for a reduction algorithm of
H̊astad et al. [HPPW08]. That is, n-fold parallel repetition decreases
the soundness error from δ to δn. The crux of our improvement is a
new analysis that avoid using Raz’s Sampling Lemma, which is the
key ingredient to the previous results.

2. We give a new security analysis to strengthen a parallel repetition
theorem of H̊astad et al. for a more general class of arguments. We
show that n-fold parallel repetition decreases the soundness error
from δ to δn/2, which is almost tight. In particular, we remove
the dependency on the number of rounds in the bound, and as a
consequence, extend the “concurrent” repetition theorem of Wik-
ström [Wik09] to this model.

3. We obtain a way to turn any interactive argument to one in the
class above using fully homomorphic encryption schemes. This gives
a way to amplify the soundness of any interactive argument without
increasing the round complexity.

4. We give a simple and generic transformation which shows that tight
direct product theorems imply almost-tight Chernoff-type theorems.
This extends our results to Chernoff-type theorems, and gives an
alternative proof to the Chernoff-type theorem of Impagliazzo et
al. [IJK09] for weakly-verifiable puzzles.

Keywords: Parallel repetition, interactive argument, public-coin,
Arthur-Merlin, direct product theorem.

1 Introduction

In an interactive protocol 〈P,V〉, the prover P wants to convince the verifier V
of the validity of some statement (e.g., x ∈ L for some language L). Two desired
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properties are completeness : for a valid statement, the honest prover can always
convince the honest verifier; and soundness : for an invalid statement, an honest
verifier, even when interacting with an adversarial prover, should accept with
bounded probability, namely at most some δ, where δ is called the soundness
error or error probability of the protocol. A protocol is called an interactive
proof if the soundness holds against computationally unbounded provers, and
an interactive argument if the soundness only holds against efficient provers.

When the soundness error of a protocol is too high, a natural way to decrease
it is by repetition. That is, a prover and a verifier run n copies of the protocol,
and the verifier decides whether to accept or not based on the outcomes of the n
executions. For example, a direct product verifier Vn,n accepts if all constituent
verifiers accept, and more generally the threshold verifier Vn,k accepts if at least
k constituent verifiers accept. Repetitions can be either sequential or parallel.
Sequential repetition decreases soundness error for all known settings, but in-
creases the round complexity, which is usually undesirable. Parallel repetition
does not increase the number of rounds and decreases soundness error for in-
teractive proofs. However, for interactive arguments, whether parallel repetition
decreases soundness error is a subtle question.

For three-message arguments, a sequence of works [BIN97, CHS05, IJK09,
CLLY09,HS09] shows that parallel repetition decreases the soundness error for
the threshold verifier Vn,k at the optimal, information-theoretic rate, namely,
the probability that n independent Bernoulli random variables with expectation
δ have sum at least k. In contrast, Bellare, Impagliazzo, and Naor [BIN97], and
Pietrzak and Wikström [PW07] construct some protocols where the soundness
error does not decrease at all under parallel repetition. Thus, parallel repetition
theorems for general arguments have been ruled out. (However, Haitner [Hai09]
recently showed that any interactive arguments can be slightly modified so that
parallel repetition decreases the error.) On the other hand, for public-coin argu-
ments, recent study shows that the soundness error decreases even for protocols
with an arbitrary (polynomial) number of messages.

1.1 Parallel Repetition for Public-Coin Arguments

The first parallel repetition theorem for public-coin arguments is by Pass and
Venkitasubramaniam [PV07] for constant-round protocols. They give an efficient
transformation that converts a (cheating) parallel prover Pn∗ who interacts with
a direct product verifier Vn,n with success probability δn to a (cheating) prover
P∗ who interacts with V with success probability essentially1 δ, where the success
probability refers to the probability that Pn∗ (resp., P∗) successfully convinces
the verifier Vn,n (resp., V). This is essentially optimal since one can easily turn
a single-copy prover strategy P∗ with success probability δ to a parallel prover
strategy Pn∗ with success probability δn by applying P∗ independently to each
copy. However, their analysis is only efficient for constant-round protocols.

1 Throughout the introduction, we ignore the required negligible slackness for such
reductions in the discussion.
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H̊astad, Pass, Pietrzak, and Wikström [HPPW08] give a more efficient reduc-
tion algorithm that allows them to prove parallel repetition theorem for public-
coin arguments with an arbitrary number of rounds. They actually proves a
more general threshold theorem which says that a (cheating) prover Pn∗ in-
teracting with a threshold verifier2 Vn,(1−ρ)n with success probability ε can be
converted to a (cheating) prover P∗ interacting with V with success probability
1−ρ−O(m

√
log(1/ε)/n), where ρ ∈ [0, 1) and m is the number of rounds. In the

literature (e.g., [IJK09]), this type of theorems is often referred as Chernoff-type
theorems. In particular, when ρ = 0 (i.e., the direct product case), the suc-
cess probability is 1−O(m

√
log(1/ε)/n), which is suboptimal in comparison to

ε1/n ≈ 1 − O(log(1/ε)/n). Their analysis uses Raz’s Sampling Lemma [Raz98]
in every round, which is the reason for the factor O(m

√
log(1/ε)/n) in the

bound.3 An immediate question is whether the sub-optimality is inherent for
super-constant round protocols.

Recently,Wikström [Wik09] strengthened the bound of H̊astad et al. [HPPW08]
by generalizing Raz’s Lemma and applying it only once instead in every round. He
improves the analysis of [HPPW08] and shows that the construction in [HPPW08]
actually achieves success probability 1 − ρ − O(

√
log(1/ε)/n) for Chernoff-type

case, and 1 −O(
√

log(1/ε)/n) for direct product case. Removing the dependency
on m allows him to prove a more general “concurrent repetition” theorem. The
previous works give bounds on the rate at which the soundness error decreases, but
it remains open whether the bounds are tight for the parallel repetition of public-
coin arguments.

Our Result. In this paper, we prove a tight parallel repetition theorem for
public-coin interactive arguments. We show that n-fold parallel repetition de-
creases the soundness error of public-coin arguments from δ to δn. We use the
same reduction algorithm as [HPPW08], and the crux of our improvement is a
way to avoid using Raz’s Sampling Lemma.

Techniques. The constructions of P∗ from Pn∗ mentioned above share the fol-
lowing structure. Without loss of generality, let Pn∗ be a deterministic parallel
prover. The constructed prover P∗ simulates internally an interaction between
Pn∗ (given as a black-box) and n verifiers V1, . . . ,Vn, where one coordinate Vi for
some i ∈ [n] chosen by P∗ is played by the external verifier V. That is, through-
out the interaction, P∗ forwards the message that Pn∗ sends to Vi to the external
V, and forwards V’s message to Pn∗ as Vi’s message. Since Pn∗ is deterministic,
the interaction of Pn∗ and Vn,n is determined by the verifiers’ messages. In each
round, V selects a uniformly random message for Vi, and the task of P∗ is to
select good messages for the rest verifiers (denoted by V−i) that maximize the
probability of V = Vi accepting at the end of interaction.

For example, the prover P∗ of Pass and Venkitasubramaniam [PV07] uses
recursive sampling to select a good coordinate i ∈ [n] and good messages for V−i

2 Recall that a threshold verifier Vn,(1−ρ)n accepts iff at least (1 − ρ)n constituent
verifiers accept.

3 We elaborate more detail in the Techniques paragraph below.
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such that Pn∗ could convince Vi with the highest probability among the samples
he sees. However, since P∗ recursively takes many samples in each round, the
number of samples grows exponentially in the number of rounds. Thus, this is
only efficient for constant-round protocols.

To cope with the inefficiency, the prover P∗ of H̊astad et al. [HPPW08] se-
lects coordinate i ∈ [n] uniformly at random, and uses rejection sampling to
select good messages for V−i. More precisely, let (v1,p1, . . . ,vm,pm) denote the
messages of 〈Pn∗,Vn,n〉, where vj = (vj,1, . . . , vj,n) and pj = (pj,1, . . . , pj,n) are
messages of Vn,n and Pn∗ in round j ∈ [m], respectively. In the j-th round,
when P∗ receives V’s message, P∗ considers the message as vj,i, and repeat-
edly samples random continuations from the current partial interaction of Pn∗

and Vn,n for a polynomial number of times. That is, P∗ samples messages
vj,−i = (vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n), and vj+1, . . . ,vm uniformly at random
to complete the interaction. Once the continuation is successful, i.e., Vn,n ac-
cepts, P∗ selects the vj,−i of this continuation as V−i’s messages, and forwards
Pn∗’s response pj,i to the external verifier V. If no successful continuations are
found in polynomially many samples, P∗ simply aborts.

To analyze the success probability, H̊astad et al. [HPPW08] consider an “ideal”
version of the procedure, where there is no external verifier, and the prover P̃∗

simulates the interaction of Pn∗ and Vn,n alone by selecting each round of all in-
ternal verifiers’ messages by rejection sampling, i.e., conditioning on a successful
random continuation. Since successful continuation always exists by construc-
tion, P̃∗ can always complete a successful interaction (i.e., Vn,n accepts) with
probability 1. They then apply Raz’s Lemma [Raz98] for every round to upper
bound the statistical distance between the two experiments. Each application of
Raz’s Lemma incurs statistical distance O(

√
log(1/ε)/n). Thus, the constructed

prover P∗ can succeed with probability at least 1 − O(m
√

log(1/ε)/n), where
m is the number of the round. The analysis of Wikström [Wik09] follows the
same structure as H̊astad et al. [HPPW08]. He generalizes Raz’s Lemma to a
“multi-round” setting which allows him to bound the statistical distance by
one application of the generalized lemma, and hence remove the dependency
on m. However, to get a tight direct product theorem, we cannot afford the
O(
√

log(1/ε)/n) loss of applying the Raz’s Lemma. It is also not clear whether
the bound on the statistical distance of two experiments can be improved to
1 − ε1/n.

We instead analyze the construction directly, avoiding the use of any form of
Raz’s Lemma. We lower bound the success probability of the constructed prover
P∗ by induction. Let ηi be the success probability of P∗ (i.e., the probability that
P∗ convinces V) when the external verifier V is embedded in the i-th coordinate,
and γ the success probability of Pn∗ (i.e., the probability that Pn∗ convinces
Vn,n). We essentially4 show by induction on the round j ∈ [m] that

4 Technically, this is for a stronger prover who can sample random continuation for
unbounded number of times. For the real prover, we need to modify the inductive
hypothesis to take into account the fact that the prover may fail to find a successful
continuation and abort.
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n∏
i

ηi ≥ γ, when conditioning on any partial interaction (v1,p1, . . . ,vj ,pj).

The base case where j = m is trivial. The inductive step is proved by two
applications of Hölder’s Inequality. It follows that the success probability of P∗

when j = 0 is

1
n

·
n∑

i=1

ηi ≥
(

n∏
i=1

ηi

)1/n

≥ γ1/n,

which is at least ε1/n by assumption.

1.2 Extension to Arguments with Simulatable Verifiers without
Verdict

The results of H̊astad et al. [HPPW08, HPWP10]5 extend to arguments with
simulatable verifiers without verdict defined in [HPWP10]. The model gener-
alizes both three-message arguments and public-coin arguments, and contains
other natural protocols. Roughly speaking, simulatability of a verifier means
that given only the prover’s view of any partial interaction (which thus excludes
the verifier’s internal state) one can efficiently simulate the verifier in the rest
of the interaction. However, since the verifier’s coins are not given, one may not
know the decision of the verifier in the end of the interaction. In such cases, it
is referred as simulatable verifiers without verdict.

The argument of H̊astad et al. [HPPW08] extends to this model, and gives
parallel repetition theorems with the same parameters. That is, the constructed
prover P∗ achieves success probability 1−ρ−O(m

√
log(1/ε)/n) for Chernoff-type

case, and 1−O(m
√

log(1/ε)/n) for direct product case, where m is the number
of rounds. The bounds are further improved to 1 − ρ − O(

√
m
√

log(1/ε)/n)
and 1 − O(

√
m
√

log(1/ε)/n), respectively in the new version of H̊astad et al.
[HPWP10], which remain dependent on m.

Our Result. We give a new reduction algorithm that converts a parallel prover
Pn∗ for Vn,n with success probability ε to a prover P∗ for V with success proba-
bility ε2/n ≈ 1 − O(log(1/ε)/n), which is almost tight.

Techniques. Recall that the prover P∗ of H̊astad et al. [HPPW08] selects good
messages of V−i by sampling and selecting a “successful” random continuation.
However, since the decision of the external verifier is not known, P∗ needs to
select a “successful” random continuation based only on the decisions of the
internal verifiers. A naive approach for P∗ is to choose a continuation where all
the internal verifiers accept. However, such naive P∗ cannot succeed with good
probability if the “success pattern” has certain bad correlations, as illustrated
by the following example.

5 [HPWP10] is a new version of [HPPW08] that merges the paper [Wik09] and con-
tains additional results.
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Consider a two-message protocol 〈P,V〉, and a (deterministic) parallel prover
Pn∗ such that when interacting with Vn,n, (i) Pn∗ can convince the parallel
verifier Vn,n with probability ε, and (ii) for every i ∈ [n], Pn∗ can convince all
except the i-th verifier with probability (1−ε)/n. As there are only two messages,
the naive prover P∗ receives a message v from the external verifier V, and selects
a response as follows. P∗ randomly selects i ∈ [n], views v as vi, selects v−i such
that Pn∗ convinces V−i, and forwards the corresponding pi to V. Observe that
P∗ will select continuations in both cases but can only successfully convince the
external verifier V in case (i). It is possible that P∗ may succeed with probability
(i)/((i)+(ii)) = ε/(ε+ (1− ε)/n) for every external verifier V’s message v. Thus,
the success probability of P∗ may be only (i)/((i)+(ii)) ≈ nε � ε1/n.

Two techniques have been developed to handle this bad correlation issue since
the study of three-message arguments. Bellare et al. [BIN97] use the idea of soft
decision, namely, the more the number of accepting internal verifiers, the higher
the probability that the prover selects a random continuation. This approach is
taken in both Impagliazzo et al. [IJK09] and H̊astad et al. [HPWP10]. All these
results used Raz’s Sampling Lemma in their analysis.

To avoid the use of Raz’s Sampling Lemma, we adopt another technique
developed by Canetti et al. [CHS05] who prove a tight parallel repetition theorem
for three-message arguments. The key observation is that one can exploit such
a bad correlation to decrease the problem size: they present a transformation
that turns a badly correlated parallel prover Pn∗ (interacting with Vn,n) to a
parallel prover P(n−1)∗ (interacting with Vn−1,n−1) that still has good success
probability. To illustrate the idea using the above example, a such P(n−1)∗ can
simply interact with Vn−1,n−1 by simulating the interaction of Pn∗ and Vn,n

with the first coordinate played by an internal verifier and the rest coordinates
played by Vn−1,n−1. It is not hard to see that such P(n−1)∗ can succeed with
probability ε + (1 − ε)/n.

It follows that one can iteratively apply the transformation until either (i)
n = 1 or (ii) no such bad correlations exist. In case (i), we trivially obtain a
single-copy prover P∗ with good success probability, while in case (ii), Canetti et
al. manage to show that the naive approach works for three-message arguments.
We observe that this idea is generic and applicable to our setting, where our
analysis technique described in Section 1.1 can be generalized to prove that,
in out setting, the naive approach works in case (ii) as well, which leads to an
almost tight bound.

1.3 Reducing Soundness Error for Any Interactive Arguments

We obtain a way to turn any interactive argument 〈P,V〉 to an interactive argu-
ment 〈P′,V′〉 with simulatable verifier without verdict that preserves the com-
pleteness and soundness of the original protocol. As a consequence of the above
section, parallel repetition decreases soundness error of the modified protocol
〈P′,V′〉 in a nearly optimal rate.

The idea is to run the protocol 〈P,V〉 with all messages under the encryption
of a fully homomorphic encryption scheme [Gen09] using verifier’s public key,
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which still allows the prover to simulate the original protocol with messages
under encryption. Intuitively, completeness and soundness are preserved since
the two parties effectively run the same protocol. Furthermore, since all the
messages are encrypted under the verifier’s key, they look random to the prover.
Therefore, the verifier is easy to simulate – simply generate the verifier’s message
by encrypting some junks.

We remark that our result in this section is incomparable to the result of Hait-
ner [Hai09] (subsequently improved by H̊astad et al. [HPWP10]), who also gives
a simple transformation that turns any interactive argument to one with com-
parable soundness where parallel repetition decreases the soundness error. Our
result achieves nearly optimal rate, while the result of Haitner [Hai09] and H̊astad
et al. [HPWP10] has the undesirable dependency on the number of rounds m.
In particular, the number of repetition is required to be at least Ω(m4) for
the soundness error to decrease. On the other hand, we use a relatively strong
cryptographic assumption of fully homomorphic encryption schemes while their
result holds unconditionally.

1.4 Extension to Chernoff-Type Theorems

We give a simple and generic transformation which shows that tight direct prod-
uct theorems imply almost tight Chernoff-type theorems, and thus extend our
results to Chernoff-type theorems. Our transformation applies to various models
such as weakly-verifiable puzzles, and gives an alternative proof to the Chernoff-
type theorem of Impagliazzo et al. [IJK09] as a consequence of the tight direct
product theorem of Canetti et al. [CHS05].

The transformation converts a parallel prover Pn∗ for Vn,k to a parallel prover
Pt∗ for Vt,t for any given t ≤ k. The prover Pt∗ simply samples a random set of
coordinate S ⊂ [n] of size t, and interacts with Vt,t by simulating the interaction
of Pn∗ and Vn,k with coordinates S played by Vt,t and the remaining coordinates
played by internal verifiers. Clearly, Pt∗ convinces Vt,t if and only if Pn∗ convinces
verifiers Vi’s for i ∈ S of Vn,k. Let ε be the success probability of Pn∗. It is not
hard to show that Pt∗ has success probability at least ε ·

(
k
t

)
/
(
n
t

)
by an averaging

argument. Let k = (1 − ρ)n, and suppose a tight direct theorem holds, then
applying the reduction on Pt∗ with properly chosen t gives a prover P∗ with
success probability (ε ·

(
k
t

)
/
(
n
t

)
)1/t ≈ 1 − ρ− O(

√
log(1/ε)/n).6

For public-coin arguments, the transformation extends our direct product
theorem to a Chernoff-type theorem with similar parameter to [Wik09]. For
arguments with simulatable verifiers without verdict, the transformation and
our improved direct product theorem yield a prover P∗ with success probability
(1 − ρ)2 − O(

√
log(1/ε)/n). This bound is incomparable to the bound 1 − ρ −

O(
√
m
√

log(1/ε)/n) of [HPWP10] in that our bound does not depend on m,
but has a slightly worse dependency on ρ.
6 Technically, for the reduction to be efficient, we cannot set the parameter t to

be too large. Thus, the reduction P∗ can only success with probability 1 − ρ −
max{α, O(

√
log(1/ε)/n)} for an arbitrarily small constant α, which suffices for most

applications.
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As an additional contribution, we also prove that the reduction algorithm of
Pass and Venkitasubramaniam [PV07] for constant-round public-coin arguments
gives tight parallel repetition theorems for any threshold verifiers, i.e., if V has
soundness error δ, then Vn,k has soundness error essentially P (n, k, δ), where
P (n, k, δ) = Pr[

∑n
i=1 Xi ≥ k] with Xi’s being i.i.d. binary random variables and

Pr[Xi = 1] = δ.

2 Preliminary and Notation

We introduce the following notation for an interactive protocol 〈P,V〉. Let x
denote the common input. We assume the verifier speaks first. One round con-
tains two message exchanges – from the verifier to the prover and back. Let
m denote the number of rounds. A transcript of an interaction is denoted
by (v1, p1, . . . , vm, pm) = 〈P,V〉(x). When V is public-coin, verifier’s messages
v1, . . . , vm are independent uniformly random strings.

Consider parallel execution of a protocol. We use 〈Pn,Vn,k〉 to denote a n-fold
parallel repetition of 〈P,V〉, where n copies of verifiers are denoted by V1, . . . ,Vn,
and Vn,k accepts iff at least k copies of Vi’s accept. A transcript of an interaction
is denoted by (v1,p1, . . . ,vm,pm) = 〈Pn,Vn,k〉(x), where vj = (vj,1, . . . , vj,n)
and pj = (pj,1, . . . , pj,n).

When a parallel prover Pn∗ is deterministic, the interaction 〈Pn∗,Vn,k〉 is
determined by the verifier’s messages (v1, . . . ,vm). Thus, we can skip prover’s
messages and describe an interaction by (v1, . . . ,vm). We refers to a partial
transcript as a history h̄ = (v1, . . . ,vj).

The main tool used in our analysis is Hölder’s Inequality.

Lemma 1 (Hölder’s Inequality [Dur04])

– Let F,G be two non-negative functions from Ω to R, and a, b > 0 satisfying
1/a + 1/b = 1. Let q be a uniformly random variable over Ω. We have

E
q
[F (q) · G(q)] ≤ E

q
[F (q)a]1/a · E

q
[G(q)b]1/b.

– In general, let F1, . . . , Fn be non-negative functions from Ω to R, and a1, . . .
an > 0 satisfying 1/a1 + . . . 1/an = 1. We have

E
q
[F1(q) · · ·Fn(q)] ≤ E

q
[F1(q)a1 ]1/a1 · · ·E

q
[Fn(q)an ]1/an .

3 Tight Direct Product Theorem for Public-Coin
Arguments

In this section, we prove a tight direct product theorem for public-coin interactive
arguments.

Theorem 1. Let V ∈ PPT be public-coin. There exists a prover strategy P∗

such that for every common input x, every n ∈ N, every ε, ξ ∈ (0, 1), and every
parallel prover strategy Pn∗,
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1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε ⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ ε1/n · (1 − ξ).

We remark that the theorem also holds for interactive arguments with simulat-
able verifier with verdict defined in Section 4.

Without loss of generality we assume that Pn∗ is deterministic, since by sam-
pling, we can find a fixing of the coin tosses of Pn∗ with only a small loss in
the success probability. Let us first recall the common approach of such a reduc-
tion algorithm. On input x, the constructed prover P∗ simulates the interaction
of 〈Pn∗,Vn,n〉(x) internally, where P∗ simulates n − 1 internal verifiers by him-
self, and lets the external verifier V play Vi for some coordinate i ∈ [n] by
forwarding the messages accordingly. Since Pn∗ is deterministic, the interaction
is determined by Vn,n’s message (v1, . . . ,vm). Let Ti(·) denote whether Vi ac-
cepts. That is, Ti(v1, . . . ,vm) = 1 iff Vi accepts in 〈Pn∗,Vn,n〉(x) with history
(v1, . . . ,vm).

This can be viewed as a game G(Pn∗, x) played between P∗ and V as fol-
lows. At beginning, P∗ plays a move i ∈ [n]. Then for each round j ∈ [m],
V plays a random move vj,i, and P∗ plays a (carefully chosen) move vj,−i =
(vj,1, . . . , vj,i−1, vj,i+1, . . . , vj,n) alternately. At the end, P∗ succeeds if Ti(v1, . . . ,
vm) = 1. Note that a node of the game tree is of the form either (i; v1, . . . ,vj),
in which case it is V’s turn to move, or of the form (i; v1, . . . ,vj−1, vj,i), in which
case it if P∗’s turn to move. Phrased in this way, the task is to design a strategy
for P∗ such that if 〈Pn∗,Vn,n〉(x) accepts with probability at least ε, then P∗ can
succeed with probability close to ε1/n in game G(Pn∗, x). We present the “rejec-
tion sampling” reduction algorithm of Hastad et al. [HPPW08] as a strategy of
P∗ in this game:

Definition 1 (Strategy P∗
rej). We define strategy P∗

rej as follows. Let Pn∗ be a
deterministic parallel prover, x a common input, and G(Pn∗, x) the corresponding
game defined as above.

– In the first P∗-move, P∗
rej selects a coordinate i ∈R [n] uniformly at random.

– On P∗-move node u = (i; v1, . . . ,vj−1, vj,i), P∗
rej simulates a random con-

tinuation of G(Pn∗, x) (i.e., the interaction of 〈Pn∗,Vn,n〉(x)) at most M
def=

O(mn/εξ) times. That is, P∗
rej simulates the game from u with both parties

playing random moves vj,−i, . . . ,vm,i,vm,−i. A continuation is successful if
all verifiers accept, i.e., T�(v1, . . . ,vm) = 1 for all � ∈ [n]. The first time a
successful continuation is found, P∗

rej plays the corresponding move vj,−i. If
no successful continuations are found, P∗

rej aborts.

Note that if P∗
rej does not abort, P∗

rej plays move vj,−i with the probability
proportional to the conditional success probability of Pn∗ given on the history
(v1, . . . ,vj).

Clearly, strategy P∗
rej can be implemented in time poly(|x|, n, ε−1, ξ−1). We next

analyze the success probability of P∗
rej by induction on the round j ∈ [m]. For
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the sake of clarity, below we first present the analysis of an ideal version P∗
ideal of

P∗
rej , where P∗

ideal can simulate random continuations for unbounded number of
times. The analysis of P∗

rej is presented in the full version of this paper [CL09].

3.1 Analysis of P∗
ideal

In this subsection, we analyze the success probability of an ideal version P∗
ideal

of strategy P∗
rej , which is the same as P∗

rej except that P∗
ideal can simulate the

random continuations an unbounded number of times. Thus, P∗
ideal will never

abort whenever there is a successful continuation from the current P∗-move node.
We will show that if Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε, then P∗

ideal can succeed with
probability at least ε1/n in game G(Pn∗, x).

We first introduce the following notation to express the success probabil-
ity of P∗

ideal. We define γ(h̄) def= Pr[〈Pn∗,Vn〉(x) = 1|h̄], where h̄ is a history
of the form either (v1, . . . ,vj) or (v1, . . . ,vj−1, vj,i). That is, γ(h̄) is the ac-
cepting probability of 〈Pn∗,Vn〉 conditioning on the history h̄. Note that γ =
Pr[〈Pn∗,Vn〉(x) = 1] ≥ ε by assumption. Next, for every i ∈ [n], we define
ηi(h̄) def= Pr[P∗

ideal succeeds |u = (i; h̄)] to be the success probability of P∗
ideal

conditioning on node u = (i; h̄) of the game tree. Note that the success proba-
bility of P∗

ideal is (1/n) ·
∑n

i=1 ηi.

Claim. For every i ∈ [n] and full history h̄ = (v1, . . . ,vm), we have ηi(h̄) =
Ti(h̄). For every i ∈ [n], j ∈ [m], and history h̄ = (v1, . . . ,vj−1), we have7

ηi(h̄) = E
vj

[
γ(h̄,vj) · ηi(h̄,vj)

γ(h̄, vj,i)

]
.

Proof. The first part follows by definition. For the second part, recall that V
plays the random strategy and P∗

ideal plays the rejection sampling strategy.
V plays each vj,i with probability Pr[vj,i], which corresponds to the expec-
tation operator over vj,i. P∗

ideal plays each vj,−i with probability Pr[vj,−i] ·
(γ(h̄,vj)/γ(h̄, vj,i)), which corresponds to the expectation operator over vj,−i

with factor γ(h̄,vj)/γ(h̄, vj,i) in the expectation.

We now prove that the success probability of P∗
ideal is at least ε1/n by induction.

In fact, we induct on a slightly stronger inductive hypothesis: for every j ∈
{0, . . . ,m} and history h̄ = (v1, . . . ,vj),

∏n
i=1 ηi(h̄) ≥ γ(h̄).

The base case j = m is trivial. For every full history h̄ = (v1, . . . ,vm),
γ(h̄) = 1 iff ηi(h̄) = Ti(h̄) = 1 for every i ∈ [n]. Assuming that the inductive
hypothesis holds for j and every h̄ = (v1, . . . ,vj), we want to prove the inductive
hypothesis for j − 1 and every h̄ = (v1, . . . ,vj−1). More precisely, for every
h̄ = (v1, . . . ,vj−1), we want to show that

7 We use the convention that if γ(h̄, vj,i) = 0 (which implies γ(h̄, vj) = 0), then the
ratio is 0.
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n∏
i=1

ηi(h̄) =
n∏

i=1

E
vj

[
γ(h̄,vj) · ηi(h̄,vj)

γ(h̄, vj,i)

]
≥ γ(h̄),

provided that for every vj ,
∏n

i=1 ηi(h̄,vj) ≥ γ(h̄,vj). For notational simplicity,
we abstract the above statement as the following lemma.

Lemma 2. Let γ, η1, . . . , ηn : Ωn → [0, 1] be [0, 1]-valued functions over a prod-
uct space Ωn such that

∏
i ηi(q) ≥ γ(q) for every q = (q1, . . . , qn) ∈ Ωn. Let

γ = Eq[γ(q)]. For every i ∈ [n], let

γ(qi) = E
q−i

[γ(q)] and ηi = E
q

[
γ(q) · ηi(q)

γ(qi)

]
,

where the above expectation is over uniform distribution over Ωn. We have

n∏
i=1

ηi =
n∏

i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]
≥ γ.

Proof. The trick is to apply Hölder’s Inequality to “swap the operators”. We
present the whole computation first, and then explain how Hölder’s Inequality
is applied.

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]

≥ E
q

[(
γ(q)n ·

∏n
i=1 ηi(q)∏n

i=1 γ(qi)

)1/n
]n

(by Hölder’s Inequality)

≥ E
q

[(
γ(q)n+1∏n
i=1 γ(qi)

)1/n
]n

(by inductive hypothesis)

≥
[(

Eq[γ(q)]n+1

Eq[
∏n

i=1 γ(qi)]

)1/n
]n

(by Hölder’s Inequality)

= (γn+1/γn) = γ.

We now explain the application of Hölder’s Inequalities.

– The first inequality uses E[Xn
1 ]1/n · · · · · E[Xn

n ]1/n ≥ E[X1 · · · · · Xn] with

Xi =
(
γ(q) · ηi(q)

γ(qi)

)1/n

.

– The third inequality uses E
[
Bn+1

]1/(n+1) ·E
[
(A/B)(n+1)/n

]n/(n+1) ≥ E[A],
or equivalently,

E

[(
An+1

Bn+1

)1/n
]
≥
(

E[A]n+1

E[Bn+1]

)1/n
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with {
A = γ(q),
Bn+1 =

∏n
i=1 γ(qi).

Remark 1. One might worry about the legitimacy of the manipulation when
the denominators are zeros. One way to justify it is by adding some μ in the
denominators before the manipulation. Formally, we have

n∏
i=1

E
q

[(
γ(q) · ηi(q)

γ(qi)

)]
≥

n∏
i=1

E
q

[(
γ(q) · ηi(q)
γ(qi) + μ

)]
≥ · · · ≥ (γn+1/(γ + μ)n),

which is valid for arbitrary μ > 0. Taking μ → 0, we obtain the desired result.

Applying the above lemma directly completes the proof of the induction. It
follows that the success probability of P∗

ideal is

1
n

·
n∑

i=1

ηi ≥
(

n∏
i=1

ηi

)1/n

≥ γ1/n ≥ ε1/n.

The next step is to analyze P∗
rej in a similar way as above. The challenge is that

P∗
rej may abort due to the failure of finding a successful continuation in M trials,

which makes the success probability a more complicated formula. Details of the
analysis of P∗

rej can be found in the full version of this paper [CL09].

4 Arguments with Simulatable Verifier without Verdict

In this section, we present a new reduction algorithm that extends our re-
sults to interactive arguments with simulatable verifiers defined by H̊astad et
al. [HPWP10]. Roughly speaking, a verifier is simulatable if given only the
prover’s view of any partial interaction (which thus excludes the verifier’s in-
ternal state), one can efficiently simulate verifier in the rest of the interaction.
In terms of the terminology in [HPWP10], our results holds for arguments with
“1-simulatable verifiers without verdict,” which we refer to as just simulatable
verifiers below for simplicity. For the sake of completeness, we repeat their def-
inition in this special case. For a more general definition of simulatability, we
refer the reader to [HPWP10].

The definition requires the following notation. Recall that we use pj and vj

to denote the prover and verifier’s j-th messages, respectively. We let sj and
tj be the states of the prover and verifier after computing the j-th messages,
respectively. We think of the verifier as using independent random tape Rj for
computing j-th message. Namely, V computes message vj from its previous state
tj−1, prover’s message pj , and fresh randomness Rj . Note that the verifier’s state
tj implicitly contains the content of the random tapes r1, . . . , rj (generated in
the previous rounds) of V. For convenience, we use p[j] to denote p1, . . . , pj, and
the same rule applies to other variables.
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Definition 2 (Simulatable Verifier [HPWP10]). A verifier V is said to
be simulatable without verdict, or just simulatable, if for every PPT prover
strategy P∗ there exists a PPT simulator S such that for every partial interaction
(s[j], t[j], x, p[j], v[j]), the distribution of P∗’s view of an interaction with V (not
including the decision bit of V), starting from states sj and tj and message
pj, is computationally indistinguishable to the distribution of P∗’s view of an
interaction with S starting from states sj and [s[j], x, p[j], v[j]] and message pj.
When the decision bit of V is included in the consideration, we say that V is
simulatable with verdict.

Remark 2. In the above definition, we only require the distributions to be com-
putational indistinguishable, as opposed to the statistical closeness defined in
[HPWP10]. H̊astad et al. requires statistical closeness since they need to han-
dle a general notion of “δ-simulatability.” On the other hand, for the case
of 1-simulatability, it can be shown (e.g., in the old version of H̊astad el al.
[HPPW08]) that the requirement can be relaxed to computational indistin-
guishability. The relaxation to computational indistinguishability is essential to
our application of fully-homomorphic encryption in Section 5.

Remark 3. Another deviation from [HPWP10] is that, in the above definition,
our simulator S interacts with P∗, as opposed to generate the view by himself
in [HPWP10]. This difference is not essential. We adopt to the above definition
since it makes the simulation of the random continuation described below more
intuitive.

We observe that for arguments with simulatable verifier, in the corresponding
game G(Pn∗, x), P∗ can still simulate a random continuation from any P∗-move
node u. Each internal verifier’s next message is easy to generate since the message
depends only on the verifier’s state, the prover’s message, and fresh randomness.
For the external verifier V, although P∗ does not know V’s state, P∗ can invoke
the simulator to generate the verifier’s message. However, P∗ is not able to know
the decision of the external verifier. Thus, P∗ needs to select a “successful”
random continuation based only on the decisions of the internal verifiers. As
illustrated in the example in Section 1.2, there is an issue of “bad correlations.”
We resolve this issue in the spirit of Canetti et al. [CHS05], where we iteratively
exploit bad correlations to decrease the problem size in a preprocssessing stage,
and use a modified rejection sampling strategy when no such bad correlations
exist. Our reduction turns a parallel prover Pn∗ for Vn,n with success probability
δn def= ε to a prover P∗ for a single simulatable verifier V with success probability
δ2 = ε2/n ≈ 1 − O(log(1/ε)/n).8 Formally, we obtain the following theorem.

Theorem 2. Let V ∈ PPT be simulatable without verdict. There exists a prover
strategy P∗ such that for every common input x, every n ∈ N, every ε, ξ ∈ (0, 1),
and every parallel prover strategy Pn∗,

8 It is more convenient to present our proof using parameter δn instead of ε in this
section.
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1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,n〉(x) = 1] ≥ ε ⇒

Pr[〈P∗,V〉(x) = 1] ≥ ε2/n · (1 − ξ).

Detailed description of the reduction algorithms and analysis can be found in
the full version of this paper [CL09].

5 Reducing Soundness Error for Any Arguments

(The ideas in this section were obtained in discussions with Boaz
Barak, Yael Tauman Kalai, and Salil Vadhan.)

In this section, we present a way to turn any interactive argument 〈P,V〉
to an interactive argument 〈P′,V′〉 with simulatable verifier that preserves the
completeness and soundness of the original protocol. It follows that parallel
repetition reduces soundness error of the modified protocol 〈P′,V′〉 in a nearly
optimal rate by Theorem 2.

Recall that the idea is to run the protocol 〈P,V〉 with all messages under the
encryption of a fully homomorphic encryption scheme. Roughly speaking, a fully
homomorphic encryption scheme is a public key encryption scheme with the ad-
ditional property that given a public key pk, and an encryption Encpk(m), one
can homomorphically evaluate any function f (described by a poly-size circuit
C) on the underlying message to obtain an encrypted function value Encpk(f(m))
without knowing the message m. That is, in addition to the standard functions
(KeyGen,Enc,Dec) in public key encryption schemes, a fully homomorphic en-
cryption scheme has an additional efficient function Eval that on inputs a public
key pk, a description of a poly-size circuit C(·), and a cipher text c that is a valid
encryption of m, outputs a cipher text c′ which is a valid encryption of C(m).

Recently in a breakthrough, Gentry [Gen09] showed the first construction of
a fully homomorphic encryption scheme under reasonable hardness assumptions
on ideal lattice problems and sparse subset sum problems. We refer the reader
to [Gen09] for the formal definitions and constructions.

Let 〈P,V〉 be any interactive argument. Recall our notation, P and V receive
some common input x and alternately send to each other messages denoted as
(v1, p1, v2, p2, . . . , vm, pm) where m is the number of the rounds. We define a
modified protocol 〈P′,V′〉 that executes the protocol 〈P,V〉 under a fully homo-
morphic encryption of the verifier’s key as follows. For simplicity, we assume
that V always makes his decision in the end of the protocol, and all messages
of 〈P,V〉 have some fixed length. We also assume that the encryption scheme
has perfect correctness and the decryption algorithm Dec always outputs some
messages (perhaps junks).

– In the first round, the verifier V′ generates (pk, sk) ← KeyGen(),9 prepares
V’s first message v1, and sends the public key pk and the encrypted message
v′1 = Encpk(v1) to P′.

9 For simplicity, we omit the security parameter throughout this section.
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– The prover P′ on the received message v′1, homomorphically computes p′1,
a valid encryption of the first message p1 of P. Namely, let C1(x, v1) be
the next-message function of P. The prover P′ uses Eval to compute p′1 =
Evalpk(v′1, C1(x, ·)).

– In general, in the �-th round, the verifier V′ receives message p′�−1. V
′ first

decrypts the message p′�−1 to obtain p�−1 = Decsk(p′�−1). V′ simulates V
to generate the next message v�, and sends the encrypted message v′� =
Encpk(v�) to P′.

– The prover P′ on the received message v′�, homomorphically computes p′�, a
valid encryption of the first message p� of P. Namely, let C�(x, v[�], p[�−1])
be the next-message function of P. The prover P′ uses Eval to compute
p′� = Evalpk((v′[�], p

′
[�−1]), C�(x, ·)).

– At the end, V′ decrypts the last message p′m. V′ accepts iff V accepts.

We first observe that 〈P′,V′〉 has exactly the same completeness and soundness
as 〈P,V〉 suppose the homomorphic encryption scheme has perfect correctness.
The completeness is trivially the same, since 〈P′,V′〉 simply simulates 〈P,V〉
under a fully homomorphic encryption. For the soundness, note that for every
(cheating) prover strategy P′∗ for 〈P′,V′〉 , we can construct a (cheating) prover
strategy P∗ that interacts with V by simulating the interaction of P′∗ and V′ as
follows. P∗ first generates (pk, sk) by himself and forwards pk to P′∗. P∗ then
simulates the interaction of P′∗ and V′ by (i) encrypting the messages of V and
forwarding them to P′∗, and (ii) decrypting the messages of P′∗ and forwarding
them to V. It follows that P∗ can convince V with the same probability as P′∗

convincing V′. Similarly, for every P∗, there is a P′∗ that applies the same strategy
as P∗ (homomorphically) and convinces V′ with the same probability as P∗

convincing V.
It remains to show that V′ is simulatable. To argue this, we need to specify

the random tape used by V′ in each round, since this affects the states t�’s of
the verifier. For convenience, we define m + 1 random tapes R0, R1, . . . , Rm for
V′, where both R0 and R1 are generated in the first round. We let R0 be the
random tape that contains all the randomness used in V. For � ∈ [m], we let R�

be the randomness that V′ uses to encrypt the �-th round message. Note that
defined in this way, given the state t′�−1 of V′ and prover P′’s message p′�, the
underlying verifier V’s message vi is deterministic, and the randomness of V′’s
message v′i comes only from the encryption. Now it is trivial to simulate V′. A
simulator S simply ignores the prover’s message, and sends a fresh encryption
of junks in each round. By the semantic security of the encryption scheme, the
prover’s view when interacting with V′ is computationally indistinguishable from
that when interacting with S.

We summarize the above discussion in the following theorem.

Theorem 3. Let 〈P,V〉 be any interactive argument with soundness error δ.
Suppose there exists a fully homomorphic encryption scheme with perfect cor-
rectness, then the modified interactive argument 〈P′,V′〉 defined above satisfies
the following properties.
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– 〈P′,V′〉 has exactly the same completeness and soundness as 〈P,V〉.
– V′ is simulatable without verdict, and thus n-fold parallel repetition reduces

soundness error from δ to δn/2 + ngl.

6 Extension to Chernoff-Type Theorems

In this section, we present a generic transformation that converts a parallel
prover Pn∗ that has good success probability against a threshold verifier to a
parallel prover Pt∗ that has good success probability against a direct product
verifier for some t ≤ n. The transformation can be used to show that tight
direct product theorems implies Chernoff-type theorems. For example, using our
transformation with the direct product theorem of Canetti et al. [CHS05] yields
an alternative proof of the Chernoff-type theorem of Impagliazzo et al. [IJK09]
for weakly-verifiable puzzles. The transformation also extends our direct product
theorems to Chernoff-type theorems.

The transformation is defined as follows. Pt∗ first selects a set S ⊂ [n] of size t
uniformly at random, and then interacts with Vt,t by simulating the interaction
of 〈Pn∗,Vn,k〉 with Vt,t playing the coordinates of Vn,k in S and the remaining
n− t coordinates played by internal verifiers. The following simple lemma easily
follows by the definition.

Lemma 3. Let 〈P,V〉 be an interactive protocol, and t, k, n ∈ N such that 1 ≤
t ≤ k ≤ n. Let Pn∗ be a parallel prover strategy, and Pt∗ the induced parallel
prover strategy defined as above. For every common input x, we have

Pr[〈Pt∗,Vt,t〉(x) = 1] ≥ Pr[〈Pn∗,Vn,k〉(x) = 1] ·
(
k
t

)(
n
t

) .
When V is public-coin, the above lemma and Theorem 1 implies that for every
parallel prover Pn∗, every t ≤ k and ξ ∈ (0, 1), there exists a prover P∗ such
that for every x with Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ ε, we have Pr[〈P∗,V〉(x) = 1] ≥(
ε ·
(
k
t

)
/
(
n
t

))1/t

· (1− ξ). However, P∗ runs in time poly(|x|, n,
(
n
t

)
/
(
k
t

)
, ε−1, ξ−1),

which may not be efficient10 for large t. Nevertheless, we can obtain the following
Chernoff-type theorem by setting the parameters properly. We state the theorem
in a similar form to [HPPW08] and [Wik09].

Theorem 4. Let α, ρ ∈ (0, 1) be any constants such that α+ρ < 1. Let V ∈ PPT
be public-coin. There exists a prover strategy P∗ such that for every common
input x, every n ∈ N, every ε, ξ ∈ (0, 1) with n ≥ 4 log(1/ε)/α2, and every
parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,(1−ρ)n〉(x) = 1] ≥ ε ⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ 1 − ρ− α.

10 Here, by efficient we mean the running time is polynomial in |x|, n, ε−1, ξ−1.
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In comparison, the simple reduction and tight direct product theorem yields a
Chernoff-type theorem with a slightly restricted parameter range where α and ρ
are constants. Nevertheless, it suffices for conceivable applications and achieves
almost tight bound 1 − ρ − 2

√
log(1/ε)/n in this regime.

Similarly, when V is simulatable, we can extend Theorem 2 to the following
Chernoff-type theorem.

Theorem 5. Let α, ρ ∈ (0, 1) be any constants such that α+ρ < 1. Let V ∈ PPT
be exteandable and simulatable. There exists a prover strategy P∗ such that for
every common input x, every n ∈ N, every ε, ξ ∈ (0, 1) with n ≥ 16 log(1/ε)/α2,
and every parallel prover strategy Pn∗,

1. P∗(x, n, ε, ξ) runs in time poly(|x|, n, ε−1, ξ−1) given oracle access to Pn∗(x).
2. Pr[〈Pn∗,Vn,(1−ρ)n〉(x) = 1] ≥ ε ⇒

Pr[〈P∗(n, ε, ξ),V〉(x) = 1] ≥ (1 − ρ)2 − α.

Detailed proofs of Lemma 3, Theorem 4, 5 can be found in the full version of
this paper [CL09].

7 Constant-Round AM Arguments Systems

In this section, we prove a tight parallel repetition theorem for threshold veri-
fiers Vn,k for constant-round public-coin arguments, which generalizes the direct
product theorem of Pass and Venkitasubramaniam [PV07]. We state the the-
orem and further details of the proofs can be found in the full version of this
paper [CL09].

Theorem 6. Let m ∈ N be an arbitrary constant, and V ∈ PPT be m-round
and public coin. There exists a prover strategy P∗ such that for every common
input x, every n, k ∈ N with k ∈ [n], every δ, ξ ∈ (0, 1), and every parallel prover
strategy Pn∗,

1. P∗(x, n, k, δ, ξ) runs in time poly(|x|, n, δ−m, P (n, k, δ)−m, ξ−m) given oracle
access to Pn∗(x).

2. Pr[〈Pn∗,Vn,k〉(x) = 1] ≥ P (n, k, δ) ⇒

Pr[〈P∗(n, k, δ, ξ),V〉(x) = 1] ≥ δ · (1 − ξ).
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Almost Optimal Bounds for Direct Product
Threshold Theorem

Charanjit S. Jutla

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract. We consider weakly-verifiable puzzles which are challenge-
response puzzles such that the responder may not be able to verify for
itself whether it answered the challenge correctly. We consider k-wise
direct product of such puzzles, where now the responder has to solve k
puzzles chosen independently in parallel. Canetti et al have earlier shown
that such direct product puzzles have a hardness which rises exponen-
tially with k. In the threshold case addressed in Impagliazzo et al, the
responder is required to answer correctly a fraction of challenges above a
threshold. The bound on hardness of this threshold parallel version was
shown to be similar to Chernoff bound, but the constants in the expo-
nent are rather weak. Namely, Impagliazzo et al show that for a puzzle
for which probability of failure is δ, the probability of failing on less than
(1−γ)δk out of k puzzles, for any parallel strategy, is at most e−γ2δk/40.

In this paper, we develop new techniques to bound this probability,
and show that it is arbitrarily close to Chernoff bound. To be precise, the
bound is e−γ2(1−γ)δk/2. We show that given any responder that solves
k parallel puzzles with a good threshold, there is a uniformized parallel
solver who has the same threshold of solving k parallel puzzles, while
being oblivious to the permutation of the puzzles. This enhances the
analysis considerably, and may be of independent interest.

1 Introduction

Consider challenge-response puzzles where the responder may not be able to
determine if its answer is a correct response or not, either because the chal-
lenge may have multiple correct responses (and the challenger seeks a particular
one of those), or because the responder is computationally constrained, e.g. in
CAPTCHA puzzles [8]. Such puzzles are called weakly-verifiable puzzles [2].

In cryptography, and other applications, the challenge-response puzzles are
often used to distinguish between a real and fake responder, where the differen-
tiation is obtained by the probability of their solving a randomly chosen chal-
lenge. For example, the authentic party may have a probability α of solving the
challenge correctly, whereas non-authentic parties may have a probability only
β (< α) of solving the puzzles correctly. However, if the gap is not large then
direct product, or (parallel) repetition of such puzzles may be sought. Ideally,
one would like that if k puzzles are chosen independently in parallel, then the
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c Springer-Verlag Berlin Heidelberg 2010
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probability of the non-authentic party solving all puzzles correctly is at most
βk [2]. Unfortunately, this also makes the success probability of the authentic
party go down (if α < 1).

In [4], the authors observe that the authentic party is on average expected
to solve αk puzzles, and if a Chernoff-like bound holds, then the probability
of fake parties solving αk puzzles may go down exponentially. They show that
their intuition is correct, and indeed give an exponential bound. However, the
bound they obtain has a weak constant in the exponent. In particular they show
that (setting δ = 1 − β) the probability of the non-authentic party responding
incorrectly to less than (1 − γ)δk puzzles (out of k parallel puzzles) is at most
e−γ2δk/40. For real problems like CAPTCHA, the 1/40 factor in the exponent
is debilitating, and the authors mention it as an open problem to improve this
constant.

As is to be expected, the result in [4] is proved by reducing a single puzzle
instance to a (simulated) direct product puzzle instance. However, multiple sim-
ulations are required to get a good reduction. The complication in analyzing the
reduction then stems from the fact that the given single puzzle instance must
be embedded in all simulated direct product puzzle instances, and hence they
are not independent. In [4], the authors use a nice duality property of good
(bi-partite graph based) samplers to analyze the dependent simulations.

In this paper we develop further new techniques to analyze this probability
and show that one can indeed bound the probability arbitrarily close to as in
Chernoff bound. In particular we upper bound the above probability by about

e−γ2(1−γ)δk/2

Since γ is usually tiny, the above is almost as good as can be expected. Fur-
ther, the techniques developed have potential to improve the bound further, e.g.
replacing (1 − γ) by (1 − γ2).

We show that a uniformized parallel solver, which first permutes its given k-
puzzles randomly, solves them as before, and permutes the results back, has the
same probability of success as before. However, this uniformized solver is much
easier to analyze. While this in itself, when plugged into the “trust reduction”
strategy of [4] gives better bounds than before, to get the bounds similar to
Chernoff bound we need further new techniques. In particular, while a count of
other simulated puzzles being answered incorrectly gives a good guess of whether
the given puzzle may be answered incorrectly, a linearly weighted metric we
consider leads to more optimal bounds.

While the idea of uniformized parallel solver also applies to Raz’s Theorem [7],
in particular because of Holenstein’s observation that the two provers can use
shared randomness [3], it is to be seen if it leads to improved analysis.

The rest of the paper is organized as follows. In Section 2 we describe a result
about samplers which we employ, as well as give definitions of threshold weakly-
verifiable puzzles. In section 3 we consider uniformized parallel solvers and give
the main technical lemmas. In section 4 we give the main theorem and its proof.
In section 5 we describe the pre-processing phase.
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2 Preliminaries

2.1 Basics

Lemma 1. [Chernoff Bound [1]] Let X = (X1 +X2 + ...+Xn)/n, where the Xi

are mutually independent indicator random variables, each with mean μ. Then,
for β ≥ 0,

Pr[X ≥ (1 + β)μ] < (eβ(1 + β)−1−β)μn

Pr[X < (1 − β)μ] < e−β2μn/2

2.2 Samplers

Consider bipartite graphs F = G(L ∪ R,E). We allow graphs with multiple
edges. For a vertex v of G, we denote by NG(v) the multi-set of its neighbours
in G. When the graph G is clear from context, we will drop the subscript G, and
simply write N(v). We say that G is bi-regular if the degree of each vertex in L
is same, and the degree of each vertex in R is same.

Let G = G(L∪R,E) be any bi-regular bipartite graph. For a function λ : [0, 1]
× [0, 1] → [0, 1], we say that G is a λ-sampler [4] if, for every function F : L →
[0, 1] with the average value Ex∈L[F (x)] ≥ μ and any 0 < ν < 1, there are at
most λ(μ, ν) · |R| vertices r ∈ R such that Ey∈N(r)[F (y)] ≤ (1 − ν)μ.

We will employ the following lemma from [5,4]. It says that for any two large
vertex subsets W and F of a sampler, the fraction of edges between W and F
is close to the product of the densities of W and F .

Lemma 2. [5,4] Suppose G = G(L ∪R,E) is a λ-sampler. Let W ⊆ R be any
set of measure at least τ , and let V ⊆ L be any set of measure at least β. Then,
for all 0 < ν < 1 and λ0 = λ(β, ν), we have

Pr
x∈L,y∈N(x)

[x ∈ V & y ∈ W ] ≥ β(1 − ν)(τ − λ0)

where the probability is over first picking x uniformly from L, and then picking
y uniformly from N(x).

We will also need the following observation from [4], which shows that the direct
product is an extremely good sampler. Consider the following bipartite graph
G = G(L ∪ R,L): the set of left vertices is the set of n-bit strings {0, 1}n; the
right vertices R are a pair 〈r, c〉, where r range over all k-tuples of n-bit strings
{0, 1}nk, and c range over m-bit strings {0, 1}m; for every y = 〈(r1, r2, ..., rk), c〉
∈ R, there are k edges (y, r1), (y, r2),...,(y, rk) in E.

Lemma 3. [4] The graph G defined above is a λ-sampler for λ(μ, ν) = e−ν2μk/2.
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2.3 Weakly-Verifiable Puzzles

Definition 1. [2] A weakly-verifiable puzzle P = (C,R, d(n)), with security
parameter n, consists of a polynomial time computable function C, a polynomial
time computable predicate R, and a polynomial d(n). For any functions t(n) and
c(n), the (t(n), c(n))-value (failure value) of the puzzle is

val(P , t, c) := min
X

Pr
r∈Ud(n),s∈Uc(n)

[¬R(r,X(s, C(r)))]

where the minimization is over t(n)-computable randomized algorithms X using
c(n) bits of randomness.

For a parameter δ, 0 ≤ δ ≤ 1, we say that a puzzle P is (δ, t(n), c(n))-hard
if the (t(n), c(n))-value of P is at most δ. In other words, every algorithm X
running in time t(n), and using c(n) bits of randomness, has probability at least
δ of answering the puzzle wrong.

Definition 2. The k-wise direct product Pk of a weakly-verifiable puzzle P =
(C,R, d(n)) is the weakly-verifiable puzzle (Ck, Rk, kd(n)), where Ck(〈r1, ..., rk〉)
is defined to be (C(r1),..., C(rk)), and

Rk(〈r1, ..., rk〉, 〈x1, ..., xk〉) :=
k∧

i=1

R(ri, xi)

For any parameters ν and δ, 0 ≤ ν, δ ≤ 1, and any functions t(n), c(n), the puzzle
Pk is said to be ν-approximate (δ, t(n), c(n))-hard if the following minimum
probability

min
X

Pr
r∈Uk

d(n),s∈Uc(n)

[
|{i ∈ [1..k] : ¬R(ri, Xi(s, Ck(r)))}| > νk

]
is at least δ, where the minimization is over all randomized algorithms X running
in time t(n) and using c(n) bits of randomness. Note that X here takes k puzzles
and returns k answers, 〈X1, ..., Xk〉. Such an algorithm X will be referred to as
a k-parallel solver.

3 Uniformized Parallel Solvers

Given a k-parallel solver X , we consider its uniformized version X, which first
randomly permutes its given k puzzles, solves them using X , and permutes back
the results. In other words, for all i = 1..k,

X i(〈s, π〉, 〈C(r1), ..., C(rk)〉) := Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉)

where π is any permutation of [1..k].
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It is easy to see that the “failure value” of the uniformized parallel solver
remains the same, as the following shows.

Pr
r1,...,rk

Pr
s,π

[
|{i ∈ [1..k] : ¬R(ri, Xi(〈s, π〉, 〈C(r1), ..., C(rk)〉))}| > νk

]
= Pr

r1,...,rk

Pr
s,π

[
|{i : ¬R(ri, Xπ−1(i)(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk

]
= Pr

r1,...,rk

Pr
s,π

[
|{j = π−1(i) : ¬R(rπ(j), Xj(s, 〈C(rπ(1)), ..., C(rπ(k))〉))}| > νk

]
= Pr

r1,...,rk

Pr
s

[
|{j : ¬R(rj , Xj(s, 〈C(r1), ..., C(rk)〉))}| > νk

]
where the last equality follows because r1,...,rk are chosen independently and
identically. Thus, without loss of generality, we can consider only uniformized
parallel solvers.

Notation
Let us fix a parallel solver X , and its uniformized parallel solver X. We will use
the following shorthands to denote some useful quantities and predicates. Let
Ck(r, π) denote 〈C(rπ(1)), ..., C(rπ(k))〉. Thus, Ck(r,1) (where 1 is the identity
permutation) just denotes 〈C(r1), ..., C(rk)〉. Given the randomness r1, ...rk to
generate the k puzzles, and the randomness 〈s, π〉 used by X, define random
variables.

– total(X) := |{i ∈ [1..k] : ¬R(ri, Xi(〈s, π〉, Ck(r,1)))}|
– F(X) (short for first) := ¬R(r1, X1(〈s, π〉, Ck(r,1)))
– others(X) := |{i ∈ [2..k] : ¬R(ri, Xi(〈s, π〉, Ck(r,1)))}|
– others(X, j) := |{i ∈ [1..j − 1, j + 1..k] : ¬R(ri, Xi(〈s, π〉, Ck(r,1)))}|
– for Γ ⊆ [1..k], (failure-) pattern(X , Γ ) denotes∧

i∈Γ

R
(
ri, Xi(〈s, π〉, Ck(r,1))

)
∧
∧
i�∈Γ

¬R
(
ri, Xi(〈s, π〉, Ck(r,1))

)
From now on, unless otherwise stated, all probabilities will be over r1, ..., rk

each chosen uniformly and independently from Ud(n), s chosen uniformly (and
independently) from Uc(n), and π chosen uniformly (and independently) from all
permutations of [1..k]. Further, define

– For any t, 0 ≤ t ≤ k, let pt denote Pr[total(X) = t].
– Let τ = (1 − γ)δk.
– Define P =

∑
t≤τ pt.

– For j ≥ 0, let ψj = γδ(1 − γ) + j · (γ/k). Let α = 1/(1 − τ/k − ψ0).

Lemma 4. For any integer t, 0 ≤ t ≤ k,

Pr[F(X) | total(X) = t] =
t

k

Proof. We first show that for any t, 0 ≤ t ≤ k, and any subset Γ of [1..k] of size
t, the probability of pattern(X , Γ ) is a function only of t, and is independent of
the subset Γ .



42 C.S. Jutla

Indeed, consider Γ , and another subset Γ ′ of size t, and let σ be any permu-
tation of [1..k], such that Γ ′ = σ(Γ ) (a permutation applied to a subset Γ just
yields the set which is the range of the permutation with domain Γ ). It is clear
that such a permutation exists. Then,

Pr[pattern(X, Γ ′)]

= Pr
[ ∧

i∈Γ ′
R
(
ri, Xπ−1(i)(s, Ck(r, π))

) ∧
i�∈Γ ′

¬R
(
ri, Xπ−1(i)(s, Ck(r, π))

)]
= Pr

[ ∧
i∈σ(Γ )

R
(
ri, Xπ−1(i)(s, Ck(r, π))

) ∧
i�∈σ(Γ )

¬R
(
ri, Xπ−1(i)(s, Ck(r, π))

)]
= Pr

[ ∧
j∈Γ

R
(
rσ(j), Xπ−1(σ(j))(s, Ck(r, π))

)
∧

∧
j �∈Γ

¬R
(
rσ(j), Xπ−1(σ(j))(s, Ck(r, π))

)]
Now, denote rσ(j) by wj . Then, the above becomes (with probability now over
wσ−1(1),..., wσ−1(k), s, π)

Pr
[ ∧

j∈Γ

R
(
wj , Xπ−1(σ(j))(s, Ck(w, σ−1π))

)
∧

∧
j �∈Γ

¬R
(
wj , Xπ−1(σ(j))(s, Ck(w, σ−1π))

)]
Now, π−1σ = (σ−1π)−1. Denote σ−1π by π̂. Since permutations form a group,
π̂ is independent of σ, with π chosen uniformly and independently of σ. Then,
the above probability can be written as (with probability now over wσ−1(1),
...,wσ−1(k), s, π̂)

Pr
[ ∧

j∈Γ

R
(
wj , Xπ̂−1(j)(s, Ck(w, π̂))

) ∧
j �∈Γ

¬R
(
wj , Xπ̂−1((j)(s, Ck(w, π̂))

)]
Since, w1, ..., wk are chosen identically and independently, the above remains
same even when the probability is considered over w1, ...wk, s, π̂. This proves that
the above probability is a function only of t, and independent of the particular
subset Γ . Now,

Pr[F(X) | total(X) = t]

=
∑

Γ :|Γ |=t

Pr[F(X) ∧ pattern(X, Γ ) | total(X) = t]

=
∑

Γ :|Γ |=t,1∈Γ

Pr[pattern(X , Γ ) | total(X) = t]

=

∑
Γ :|Γ |=t,1∈Γ Pr[pattern(X, Γ )]

Pr[total(X) = t]
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=

∑
Γ :|Γ |=t,1∈Γ Pr[pattern(X, Γ )]∑

Γ :|Γ |=t Pr[pattern(X , Γ )]

=
(
k − 1
t− 1

)
/

(
k

t

)
= t/k ��

Lemma 5. For t < k,

Pr[F(X) | others(X) ≤ t] =

∑
t′≤t+1(t

′/k)pt′∑
t′≤t pt′ + ((t + 1)/k)pt+1

Proof. First note that, for t < k

Pr[others(X) = t]
= Pr[F(X) ∧ others(X) = t] + Pr[¬F(X) ∧ others(X) = t]
= Pr[F(X) ∧ total(X) = t + 1] + Pr[¬F(X) ∧ total(X) = t]

=
t + 1
k

pt+1 +
k − t

k
pt (by Lemma 4)

The lemma follows easily from this observation. ��

Lemma 6. For any i > 0, suppose for all j, 0 ≤ j < i

Pr[F(X) | others(X) ≤ τ + j] >
τ

k
+ ψj

then

pτ+i > ψ0P · kα

τ + i
·
∏

0<j<i

(
1 + (ψj − j

k
)(

kα

τ + j
)
)

(1)

Proof. For any j, j < i, we first note that Lemma 5, along with the hypothesis
of the lemma for j, yields (by simple manipulation)

pτ+j+1 >
kα

τ + j + 1
·
(
ψjP +

∑
0<j′≤j

pτ+j′(ψj − j′

k
)
)

(2)

The base case, i.e. i = 1, follows immediately from this by considering j = 0.
Now suppose the induction hypothesis holds for i, and we will prove the lemma
for i+1. The antecedent for i+1 completely yields the antecedent for i′ < i+1.
Thus, inequality (1) holds for all such i′.

Let Ψ(j) stand for (ψj − j
k )( kα

τ+j ).
Then by inequality (2), and plugging in inequality (1) for each pτ+j (j < i+1),

while noting that ψj is an increasing function of j, we get that pτ+i+1 is greater
than
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ψ0Pkα

τ + i + 1
·
(
1 +

∑
0<j≤i

Ψ(j)
∏

0<j′<j

(
1 + Ψ(j′)

))
=

ψ0Pkα

τ + i + 1
·
(
1 +

∑
0<j≤i

(
1 + Ψ(j) − 1

) ∏
0<j′<j

(
1 + Ψ(j′)

))
=

ψ0Pkα

τ + i + 1
·
(
1 +

∑
0<j≤i

∏
0<j′≤j

(
1 + Ψ(j′)

)
−

∑
0<j≤i

∏
0<j′<j

(
1 + Ψ(j′)

))
=

ψ0Pkα

τ + i + 1
·
(
1 +

∏
0<j′≤i

(
1 + Ψ(j′)

)
−
∏

0<j′<1

(
1 + Ψ(j′)

))
=

ψ0Pkα

τ + i + 1
·
∏

0<j′<i+1

(
1 + Ψ(j′)

)
��

Lemma 7. For γ < 1, and for any positive integer t < γδk ( = M),
t∏

j=1

τ + ψjk

τ + j
> (1 − γ2) · eγ(1−γ)(1− t

2M )t − O(1/(δk))

Proof. From the definition of ψj , the product can be written as
t∏

j=1

δk − γ2δk + γj

δk − γδk + j
= γt

t∏
j=1

(δ/γ)k − γδk + j

δk − γδk + j

Using the gamma function, which for x > 0 satisfies Γ (x+1) = xΓ (x), the above
can be written as

γt · Γ ((δ/γ)k − γδk + t + 1) Γ (δk − γδk + 1)
Γ ((δ/γ)k − γδk + 1) Γ (δk − γδk + t + 1)

Now, using Stirling’s approximation for gamma function [6]

Γ (z + 1) =

√
2π
z

(z
e

)z

eO(1/z)

the above is greater than

γt(1 − γ2)e−O(1/δk) · ((δ/γ)k − γδk + t)(δ/γ)k−γδk+t · (δk − γδk)δk−γδk

((δ/γ)k − γδk)(δ/γ)k−γδk · (δk − γδk + t)δk−γδk+t

Taking just the product of γt and the big fraction, and factoring out δk from all
terms, we get

(1 − γ2 + γt/(δk))(δ/γ)k−γδk+t · (1 − γ)δk−γδk

(1 − γ2)(δ/γ)k−γδk · (1 − γ + t/(δk))δk−γδk+t
(3)

Now, we use the following series expansion (convergent for z < 1)

− ln (1 − z) =
∑
i≥1

zi

i
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Recalling that M = γδk, and denoting (1 − t/M) by θ, the log of the above
fraction (3) is sum of four terms I1, I2, I3 and I4, where

I1 = −M(1/γ2 − 1 + t/M)
∑ (γ2θ)i

i

I2 = −M(1/γ − 1)
∑ γi

i

I3 = M(1/γ2 − 1)
∑ γ2i

i

I4 = M(1/γ − 1 + t/M)
∑ (γθ)i

i

where all the sums have i ranging from 1 to infinity. Now, a little manipulation
shows that

I2 + I3 = M/γ ·
∑
i≥2

( 1
i − 1

− 1
i

)(
γi − γ2i−1)

Similarly, I1 + I4 is

−M/γ ·
∑
i≥2

( θi−1

i − 1
− θi

i

)(
γi − γ2i−1)+ t ·

∑
i≥1

( (γθ)i

i
− (γ2θ)i

i

)
Thus, all four terms together sum up to

M/γ ·
∑
i≥2

( 1
i − 1

(1 − θi−1) − 1
i
(1 − θi)

)(
γi − γ2i−1)+ t ·

∑
i≥1

( (γθ)i

i
− (γ2θ)i

i

)
Now,

( 1
i−1 (1 − θi−1) − 1

i (1 − θi)
)

is non-negative for all i, as long as θ ≤ 1: it
is positive at θ = 0, is non-negative at θ = 1, and the derivative (w.r.t. θ) is
non-zero everywhere except at θ = 1.

Thus, we will only take the term corresponding to i = 2 from the first sum,
and the term corresponding to i = 1 from the second sum. This leads to a lower
bound of

t(γθ − γ2θ) + M(γ − γ2)(1/2 − θ + θ2/2)

Since θ = 1 − t/M , the above simplifies to γ(1 − γ)(1 − t
2M )t. ��

Finally, we need the following simple calculation. Define

qτ+i = ψ0 · k

τ + i
·

i−1∏
j=1

τ + ψjk

τ + j

Lemma 8. Let M = �γδk�, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i ·χ · 2
γ(1 − γ)2

·e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2 >
χ

2
·e−γ2(1−γ)δk/2

2. qτ+M · 2
γ(1−γ)2 · e−γ2(1−γ)δk/2 > 1

The detailed calculations can be found in Appendix A.
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4 The Main Theorem

Theorem 9. Let P = (C,R, d(n)) be a weakly-verifiable puzzle that is (δ, t(n),
c(n))-hard. Let k be any positive integer such that δk ≥ 1, and γ (1 > γ > 0) be
arbitrary. Further, let ε0 be any arbitrary positive real, and let

ε ≥ 2
γ(1 − γ)2

· e(1−γ)(−γ2δ+ε0)k/2.

Then the direct product puzzle Pk is (1 − γ)δ-approximate ((1 − ε), t′(n), c′(n))-
hard with t′(n) = t(n) · poly(ε, 1/n, 1/(γδk), 1/ ln (1/ε0)), and c′(n) = c(n) ·
poly(ε, 1/(γδk), 1/ ln (1/ε0)).

In the following let ε1 = ε2 = ε3 = ε0/6. Recall the definitions of τ , P , and ψj

from Section 3.
Consider, for contradiction sake, a k-parallel solver X which for the k-wise

direct product Pk has (1 − γ)δ-approximate (failure) value less than 1 − ε, i.e

P = Pr
r∈Uk

d(n),s∈Uc(n)

[
|{i ∈ [1..k] : ¬R(ri, Xi(s, Ck(r)))}| ≤ τ

]
> ε

As explained earlier in Section 3, we consider its uniformized version X, which
has the same failure value (1−P ). Using X as an oracle, we will give an algorithm
Y to solve the underlying puzzle P with failure value less than δ, leading to a
contradiction.

The algorithm Y will have a pre-processing phase (i.e. independent of the
given target puzzle instance x, and function of security parameter n), where it
runs some statistical tests using X to determine the appropriate algorithm C[i]
to run, where C[0], ..., C[M − 1] are M (= �γδk�) algorithms as follows:

C[i]: On input x, run C′[i] below on x. If the value returned is different from
⊥, then return that value; otherwise repeat by calling C′[i] on x again, for
a total of at most T iterations (T = 8

εγ2(1−γ)2 ln (1/ε1) ). If no output is
produced in these T iterations, return ⊥.

C′[i]: On input x, choose k − 1 random tapes α2, ..., αk uniformly and inde-
pendently from {0, 1}d(n). Let x2, ..., xk be the corresponding puzzles, i.e.
xl = C(αl), for l = 2..k. Set x̄ = 〈x, x2, ..., xk〉. Run X on x̄. Check if others
≤ τ + i, and if so return X1(x̄); otherwise return ⊥.

The pre-processing phase η returns η(X,n, δ, γ, k), a value between 0 and M−1.
When it is clear from context, we just call the value η. Thus, 0 ≤ η ≤ M − 1.
As mentioned above, Y runs C[η] on x.
The event valid stands for the following being satisfied by the returned η:

1. For all i < η, Pr[F(X) | others(X) ≤ τ + i] > τ
k + ψi, and

2. Pr[F(X) | others(X) ≤ τ + η] ≤ τ
k + ψη + ε2.

We will later bound the probability of valid not happening by ε3 (lemma 12);
i.e. after we describe how the pre-processing works. In rest of this section, we
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condition on the event valid being true, and we will not mention it explicitly in
the probabilities.

We first need to bound the probability of C[η] timing out, i.e. returning ⊥.
Note that, C′[η] returns something other than ⊥ if (others ≤ τ + η). As in
Lemma 5, it is easy to see that the probability of this happening is at least P
which is at least ε (by hypothesis of the theorem). However, multiple calls to
C′[η] are not independent, as they all include the query x. However, as shown
in [4], the corresponding graph is a good sampler, and that helps us analyze
the probability of C[η] timing out. Of course, we require Lemma 6, and the idea
therein of a linearly increasing ψj , to obtain better bounds.

To this end, we consider a (k-colored) bipartite graph G = G(L ∪ R,E);
the set of left vertices is the set of d(n)-bit strings {0, 1}d(n); the right vertices
are triples 〈ᾱ, s, π〉, where ᾱ ranges over all k-tuples of d(n)-bit strings, and s
ranges over c(n) bit strings, and π ranges over permutations of [k]; for every
y = 〈(α1, ..., αk), s, π〉 ∈ R there are k edges (y, α1), ..., (y, αk) in E, colored 1..k
respectively.

By lemma 3, this graph is a λ-sampler for λ(μ, ν) = e−ν2μk/2.
Corresponding to each (α1, ..., αk) are puzzles (x1, ..., xk). Now, define Goodη

to be the subset of R (the right vertices) such that X when run on input
(x1, ..., xk), with randomness s and π, has the following property

|{i ∈ [1..k] : ¬R(αi, Xi(〈s, π〉, 〈x1, ..., xk〉))}| ≤ τ + η

In other words, total(X) ≤ τ + η. Let the density of Goodη in R be gη. We now
define Hη ⊆ L to be all those vertices α such that α has less than (ε · γ2(1−γ)2

8 )
fraction of its neighbours in the set Goodη. We will later see in Lemma 11 how
Hη is relevant, even though C′[η] embeds α (or it’s x) only in the first position.
We can bound the size of Hη, just as in [4], by employing Lemma 2.

Lemma 10. Hη has density at most δ − τ/k − ψη − ε0.

Proof. Suppose to the contrary, the density of Hη is greater than β = δ− τ/k−
ψη − ε0. Let H ′ ⊆ Hη be any subset of density exactly β. Now, by definition of
Hη, we have Prα∈L,w∈N(α)[α ∈ H ′&w ∈ Goodη] < βεγ2(1−γ)2/8. On the other
hand, by Lemma 2, we get that the same probability is at least β(gη −λ0)(1− ν̄)
for λ0 = λ(β, ν̄), for any 0 ≤ ν̄ ≤ 1. We set ν̄ =

√
1 − γ.

Now, note that gη = Pr[total(X) ≤ τ + η]. If η = 0, then gη = P > ε.
Otherwise, since event valid is true, we can use Lemma 6 to lower bound pτ+η.
Next, noting that in Lemma 6, α is greater than one, we can use Lemma 7 to
get an explicit lower bound for pτ+η, and hence for gη.

Then, using Lemma 8.1, and noting that 1 − ν̄ > γ/2, it can be seen by a
simple calculation that β(gη − λ0)(1 − ν̄) is more than βεγ2(1 − γ)2/8, a
contradiction. ��

Lemma 11. For every α �∈ Hη and the puzzle x corresponding to that random
α, we have Pr[C[η](x) = ⊥] ≤ ε1, where the probability is over the random coins
of C[η] (including those of Xand X).
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Proof. We consider a variation of C[i], where instead of calling C′[i], it calls the
following C′′[i] instead.

C′′[i]: On input x, choose k − 1 random tapes α1, ..., αk−1 uniformly and in-
dependently from {0, 1}d(n). Let x1, ..., xk−1 be the corresponding puzzles,
i.e. xl = C(αl), for l = 1..k − 1. Pick j ∈ [1..k] at random and set x̄ =
〈x1, ..., xj−1, x, xj , ..., xk−1〉. Run X on x̄. Check if others(X, j) ≤ τ + i,
and if so return Xj(x̄); otherwise return ⊥.

For each fixed α, the behaviour of C′[i] and C′′[i] is statistically identical, because
placing x in the random j-th place is just a permutation of placing x in the first
place, and that the permutations form a group.

Further, picking a color j ∈ [1..k] at random, and then picking α1, ..., αk−1 at
random and placing α in the j-th place to form ᾱ is same as picking a random
neighbour of α (random element of NG(α), and note that NG(α) is defined to
be a multi-set)1.

Now, C′′[η] returns something other than ⊥ if the neighbour satisfies others
(X, j) ≤ τ + η, which is implied by total ≤ τ + η. But, for α �∈ Hη, the density
of neighbours satisfying total ≤ τ + η is more than εγ2(1 − γ)2/8. Hence for
such α, the probability of C′′[η] returning something other than ⊥ is more than
εγ2(1 − γ)2/8.

But, the probability of C[η](x), using C′, returning ⊥ is same as probability
of C, using C′′, returning ⊥, which is at most (1 − (ε · γ2(1−γ)2

8 ))T = ε1. ��

Proof of Main Theorem. Now we are ready to prove the main theorem. Since
there are a potential T attempts by C[η] on x, we call the values returned in the
q-th attempt by C′[η]q (1 ≤ q ≤ T ). Now, the input x was set by choosing α
uniformly from {0, 1}d(n). Thus,

Pr
α

[ C[η](x) is wrong] ≤ Pr
α

[ α ∈ Hη] + Pr
α

[ C[η](x) is wrong & α �∈ Hη]

The first term on the right-hand side is at most δ− τ/k−ψη − ε0 by Lemma 10.
We now focus on the second term.

Pr[ C[η](x) is wrong & α �∈ Hη]
≤ Pr[ C[η](x) = ⊥ & α �∈ Hη] + Pr[ C[η](x) is wrong & C[η](x) �= ⊥ & α �∈ Hη]
≤ ε1 + Pr[ C[η](x) is wrong & C[η](x) �= ⊥] (by Lemma 11)
≤ ε1 + Pr[ C[η](x) is wrong | C[η](x) �= ⊥]
= ε1 + Pr[ C′[η]q(x) is wrong | ∃q : C′[η]q(x) �= ⊥]
= ε1 + Pr[F (X) | others(X) ≤ τ + η]

≤ ε1 +
τ

k
+ ψη + ε2 (by event valid)

Thus,
Pr
α

[ C[η](x) is wrong] = δ + ε1 − ε0 + ε2.

1 This follows formally by noting that
∑k

j=1 j
(

k
j

)
(A − 1)k−j = kAk−1, for any A.
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Finally, by Lemma 12 (of the following section), the probability of η being not
valid is at most ε3, and this leads to a contradiction as ε0 > ε1 + ε2 + ε3. �

5 Pre-processing and Hypothesis Testing

As mentioned in Section 4, the algorithm Y first does some pre-processing using
algorithm η, and using X as an oracle. The inputs to η are the security parameter
n, k, as well as γ and δ. It returns a value η, 0 ≤ η ≤ M − 1 (M = �γδk�).

Before we describe this pre-processing algorithm, we remark that it is intended
to compute the smallest j < M , such that Pr[F(X) | others(X) ≤ τ+j] ≤ τ

k +ψj .
Now, we had assumed that P > ε, and the hypothesis of Theorem 9 assumes
a lower bound on ε. Then, by Lemmas 6, 7 and 8.2, it follows that if such a
j does not exist, then pτ+M > 1, an impossibility. So, let η̄ be that smallest
0 ≤ j < M .

The algorithm η(X,n, δ, γ, k) does the following:

η : For each i = 1..M − 1, compute the following statistics

ti =
#(F (X) & others(X) ≤ τ + i)

1 + #(others(X) ≤ τ + i)

where the count is over running X on random and independent ᾱ (each in
{0, 1}d(n)k), for a total of N times (N to be determined below). Set η to be
the smallest i such that ti < τ/k + ψi + ε2/2. If no such η exists then set
η = M − 1. Return η.

Lemma 12. There is a polynomial φ, independent of n, such that with N =
φ(γδk, ln (1/ε2), ln (1/ε3)),

Pr[ not valid ] < ε3

Proof. Clearly, for i = η̄, the actual conditional probability of F is is no more
than τ/k + ψi. Hence, ti > τ/k + ψi + ε2/2 is an exponentially low probability
event by Chernoff bound. Now, for some smaller i, if conditional probability of
F is greater than τ/k + ψi + ε2, then again ti being less than τ/k + ψi + ε2/2 is
an exponentially low probability event. ��
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Appendix A

Recall,

qτ+i = ψ0 · k

τ + i
·

i−1∏
j=1

τ + ψjk

τ + j

Lemma 8. Let M = �γδk�, and suppose δk ≥ 1.

1. For any i, 0 ≤ i < M , and for any χ ≥ 1,

qτ+i ·χ · 2
γ(1 − γ)2

·e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2 >
χ

2
·e−γ2(1−γ)δk/2

2. qτ+M · 2
γ(1−γ)2 · e−γ2(1−γ)δk/2 > 1

Proof. For the first item in the lemma, we have

δ − τ/k − ψi = δ − (1 − γ)δ − γ(1 − γ)δ − i · (γ/k)
= γ2δ − γ · (i/k)

Now, by Lemma 7,

qτ+i >
γδ(1 − γ)k

τ + i
· (1 − γ2) · eγ(1−γ)(1− i−1

2M )(i−1) − O(1/(δk))

But, τ + i < δk, and (1− γ2)(1− γ) > (1− γ)2. Further, e−γ(1−γ) > 1− γ(1− γ)
≥ 3/4. Thus,

qτ+i · χ · 2
γ(1 − γ)2

· e−γ2(1−γ)δk/2 − e−(1−γ)(δ−τ/k−ψi)k/2

>
3
2
· χ · e−γ2(1−γ)δk/2+γ(1−γ)(1− i−1

2M )i − eγ(1−γ)(i/2)−γ2(1−γ)δk/2

= e−γ2(1−γ)δk/2+γ(1−γ)(i/2) · (3
2
· χ · eγ(1−γ)( 1

2− i−1
2M )i − 1)

> e−γ2(1−γ)δk/2 · χ
2
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We have ignored the e−O(1/δk) factor, since the constant in the exponent is
known to be a small fraction (i.e. in Sterling’s formula), and hence this factor is
more than compensated by δk

τ+i which we ignored.
For the second item in the lemma, again using Lemma 7 we have

qτ+M · 2
γ(1 − γ)2

· e−γ2(1−γ)δk/2

>
3
2
· e−γ2(1−γ)δk/2+γ(1−γ)(1−M−1

2M )M

>
3
2
· e−γ2(1−γ)δk/2+γ(1−γ)γδk/2 ��
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Abstract. We show tight connections between several cryptographic primitives,
namely encryption with weakly random keys, encryption with key-dependent
messages (KDM), and obfuscation of point functions with multi-bit output
(which we call multi-bit point functions, or MBPFs, for short). These primitives,
which have been studied mostly separately in recent works, bear some apparent
similarities, both in the flavor of their security requirements and in the flavor of
their constructions and assumptions. Still, rigorous connections have not been
drawn.

Our results can be interpreted as indicating that MBPF obfuscators imply a
very strong form of encryption that simultaneously achieves security for weakly-
random keys and key-dependent messages as special cases. Similarly, each one
of the other primitives implies a certain restricted form of MBPF obfuscation.
Our results carry both constructions and impossibility results from one primitive
to others. In particular:

– The recent impossibility result for KDM security of Haitner and Holenstein
(TCC ’09) carries over to MBPF obfuscators.

– The Canetti-Dakdouk construction of MBPF obfuscators based on a strong
variant of the DDH assumption (EC ’08) gives an encryption scheme which
is secure w.r.t. any weak key distribution of super-logarithmic min-entropy
(and in particular, also has very strong leakage resilient properties).

– All the recent constructions of encryption schemes that are secure w.r.t. weak
keys imply a weak form of MBPF obfuscators.

1 Introduction

Symmetric encryption is an algorithmic tool that allows a pair of parties to communi-
cate secret information over open communication media that are accessible to eaves-
droppers. In order to achieve this goal, the communicating parties need to have some
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shared secret randomness (a key). The classic view of symmetric encryption allows the
encryption scheme to determine the distribution of the key precisely (typically it is a
uniformly random string). It also assumes that the encryption and decryption algorithms
are executed in a completely sealed way, so no information about the key is leaked to
the eavesdroppers. Finally, the classic model assumes that the parties only use the key
in the encryption and decryption routines and not for any other purpose. In particular,
their messages are never related to the key.

In recent years, much research has been done to investigate various relaxations of
this classic (and somewhat naive) model. One relaxation is to consider the case where
the key is chosen using a “defective” source of randomness that does not generate uni-
form and independent random bits. (See e.g. [1,14,21,2,25] and the references therein).
Namely, the key is assumed to be taken from a distribution that is adversarially chosen
under some restriction. Typically the restriction is that the min-entropy of the distribu-
tion of the secret key is at least α, for some value of α. In this case the scheme is said
to be secure w.r.t. α-weak keys.

A different relaxation of the classic model considers the case where the key is chosen
uniformly but some arbitrary information on the key is leaked to the adversary (see e.g.
[1,25]). This models both direct attacks where the adversary gains access to the internal
storage of the parties, such as the freezing attack of [18], and indirect information leak-
age that occurs when the shared key is derived from the communication between the
parties, such as the information exchange used to agree on the key. Of course, all secu-
rity is lost of the adversary learns the key in its entirety, and therefore some restriction
needs to be imposed on the amount of information that the adversary can get. One pos-
sibility is to require that the key has some significant statistical entropy left, even given
the leakage. We call this the entropic setting. Another, stronger, security notion only
insists that it is computationally infeasible to compute the secret key from the leaked
information, but allows the leakage to completely determine the key statistically. We
call this the computational setting.1 It turns out that encryption resilient to weak keys is
also resilient to a comparable amount of leakage in the entropic setting. Conversely, in
some settings there is a simple transformation from leakage resilient encryption to one
that withstands comparably weak keys.2

Yet another relaxation of the classic model considers the case where the messages
may depend on the shared key. Security in this more demanding setting was termed
key-dependent message security (KDM security) by Black, Rogaway and Shrimpton
in [7]. In the last few years, the notion of KDM security has been extensively stud-
ied [19,5,9,4,20,17,8,3], and several positive results emerged, most notably the results
of [8,3] who showed how to obtain KDM security w.r.t. the class of affine functions
(the former under the DDH assumption and the latter under the LWE assumption). In

1 Many other models of leakage-resilience, such as the “only computation leaks information”
model [23,15], place further restrictions on the type of information that may be leaked, and are
not considered in this work.

2 In the case of semantic security for symmetric-key encryption (without chosen-plaintext at-
tacks), we can use the following transformation: Given a scheme (Enc, Dec) that’s secure
against key leakage, construct the weak-key scheme (Enc′k(m) = (r, Enck+r(m)) for a ran-
dom |k|-bit r, Dec′k(r, c) = Deck+r(c)).
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contrast, [17] show that there exist no black-box reductions from the KDM security
of any encryption scheme w.r.t. all efficient functions to “any standard cryptographic
assumption”.

While the constructions for KDM-secure schemes and the constructions of schemes
that are secure w.r.t. α-weak keys bear significant similarities to each other (eg., see
[8,25], [14,3], and [1,3]), no formal connections between the problems have been made
so far.

Another recently studied primitive, which may seem unrelated at a cursory look, is
obfuscation of point functions (programs) with multi-bit output. Obfuscation is the task
of constructing an algorithm, called an obfuscator O, that takes as input a program p
from a family P of programs and outputs a program q = O(p) that has essentially
the same functionality as p, but where the code of q gives no information (or, rather,
no computational ability) that cannot be determined given only oracle access to p. A
central point here is that O should work correctly and securely for any program in P .

A point function with multi-bit output (or a MBPF) is a function I(k,m) which, on
input x, outputs m if x = k and ⊥ otherwise. In the special case of point functions,
the value m is fixed to some constant, say 1. Obfuscators for point functions are con-
structed in [10,26] under strong assumptions (and in [22] in the random oracle model).
Obfuscators for MBPF are only known based on very strong and specific assumptions
(specifically, the existence of fully-composable point function obfuscators) [11]. Differ-
ent constructions exist for restricted settings, such as the case where m is shorter than
k, or the case where m and k are distributed independently from each other [11,14]. In
all of these constructions the obfuscator is given the values k and m explicitly.

The applicability of MBPF obfuscation to symmetric encryption has been pointed
out in [11], who proposed to encrypt a message m with key k by letting O(I(k,m)) be
the ciphertext. The fact that security holds for any k was used to suggest that m remains
hidden even when k is taken from a distribution which is not uniform, as long as it has
sufficient min-entropy (i.e., it cannot be guessed in polynomial time.) Also, [14] show
that their construction of leakage resilient encryption can be used as a restricted variant
of MBPF obfuscation.

1.1 Our Results

We show tight relations between the above primitives. Specifically, we show that weak
key resilience, leakage resilience, and KDM security, each with its own variants, can all
be viewed as natural special cases of the MBPF obfuscation problem. In fact, a gener-
alized version of KDM security, which also withstands the case where the key is taken
from a weakly random distribution, is also a special case of MBPF obfuscation. In addi-
tion to providing some insight and intuition to these primitives, the drawn connections
provide new results — both constructions and hardness results — for the primitives
considered.

The remainder of the introduction overviews our results. We first present the gen-
eral connections between obfuscation and symmetric encryption; next we sketch some
conclusions and corollaries.

As a preliminary step towards drawing general connections, we set up a framework
for relaxing the standard notion of security of MBPF obfuscation. This notion, called
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virtual black-box (VBB) security [6], essentially requires that for any adversary with
binary output there exists a simulator such that, for any k,m, the output of the adver-
sary given O(I(k,m)) is indistinguishable from the output of the simulator given oracle
access to I(k,m). We wish to consider the relaxed case where k and m are taken from
an unknown distribution from a given class. We capture this relaxation by replacing the
“for any k,m” requirement in the VBB definition with “for any distribution on k,m
from a given class of distributions”. Note that here the simulator knows the class of dis-
tributions, but not the distribution itself. This relaxation allows us to relate the different
classes of strong encryption to MBPF obfuscators for different classes of distributions.
Specifically:

Obfuscation vs. Weak-Key and Leakage Resilient Encryption: We say that an MBPF
obfuscator is α-entropic with independent messages if it is an MBPF obfuscator
for product distributions on k,m, where the distribution of k has min-entropy at least
α, and m is drawn independently of k, but need not have any entropy. We say that
the obfuscator is a fully-entropic IM MBPF if it has α-entropic security for all super-
logarithmic α. We show:

From IM MBPF obfuscators to encryption. Any α-entropic IM MBPF obfuscator with
independent messages allows us to construct semantically secure encryption scheme
with security for α-weak keys, via the transformation Enck(m) = O(I(k,m)).

From encryption to IM MBPF obfuscators. Conversely, any encryption scheme with
semantic security for α-weak keys allows us to construct α-entropic IM MBPF ob-
fuscators. The transformation is simple: To obfuscate a pair k,m, simply encrypt m
with key k to obtain a ciphertext c; then, the obfuscated program simply has a hard-
coded ciphertext c, and on inputx, runs the decryption algorithm on cwith the key x.
Here, for the correctness of obfuscation, we require that the encryption scheme can
detect if it is decrypting a ciphertext with an incorrect secret key. We show that this
property can be added generically to any semantically secure encryption scheme.

CPA security vs. self-composability. If we start with a CPA secure encryption for α-
weak keys, then the resulting IM MBPF obfuscator O is self-composable, in the
sense that security is preserved even if O is run multiple times on MBPFs with
the same input k and (possibly) different outputs mi. As was shown by [11], this
property is not, in general, implied by obfuscation alone. Conversely, if we start
with a self-composable IM MBPF obfuscator then we derive an encryption scheme
which is CPA secure for α-weak keys.

Fully-entropic obfuscation and fully-weak key security. If we start with an IM MBPF
obfuscator that has full-entropic security (i.e., it works for any distribution where k
is independent from m and has some super-logarithmic min-entropy) then we ob-
tain an encryption scheme with semantic-security for fully-weak keys. (i.e. security
for any key-distribution with super-logarithmic entropy).

Computational leakage vs. auxiliary information. If we start from a computational
leakage resilient encryption then the resulting MBPF obfuscator is secure with re-
spect to dependent auxiliary input, as defined in [16]. Similarly, if we start from
a MBPF obfuscator that’s secure with dependent auxiliary input then the resulting
encryption scheme is computationally leakage resilient.
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KDM security: All of the above equivalence results in the preceding paragraph were
stated with respect to the restricted notion of obfuscation to independent messages.
Interestingly, the standard notion of MBPF obfuscation provides the additional (and
very powerful) security guarantee for encryption with key-dependent messages (KDM).

We say that O is a α-entropic (dependent) MBPF obfuscator if it withstands any
joint distribution on k,m where the projection distribution on k has min-entropy at
least α (and m may depend on k). We say that O is a fully-entropic (dependent) MBPF
obfuscator if the above holds for all super-logarithmic α .

We also define α-KDM encryption schemes which provide security even when the
key is taken from any distribution of entropy α, and the message can be an arbitrary
function of the secret key. We show:

Obfuscation vs. encryption. Any α-entropic (dependent) MBPF obfuscator provides,
via the same transformation as before, an α-KDM semantically secure encryption
scheme.

Multi message resilience vs. self composability. If the encryption scheme we start with
is multi-message α-KDM secure, in the sense that it withstands the case where the
adversary obtains encryptions of any polynomial number of functions of the secret
key, then the resulting (dependent) MBPF obfuscator has α-entropic security and
is self composable. The converse implication holds as well.

To connect our new α-entropic definition to previous works, we show that any MBPF
obfuscator that is α-entropic for any super-logarithmic α also satisfies the virtual black-
box property, i.e., it works for any k,m. (We note that the proof of this result is trickier
than it might seem, the main difficulty being that in the case of α-entropic security the
simulator has the bound α, whereas in the VBB case no such bound exists.)

1.2 Implications

We show some implications of the above correspondence results:

Secure encryption w.r.t. (fully) weak keys. Known constructions of encryption schemes
that are secure w.r.t. weak keys are parameterized by the min-entropy α tolerated.
That is, a boundαmust be chosen in advance, and then a scheme is constructed based
on α. Using our transformations, we get that, under the strong DDH assumption in
[10], the [10,11] MBPF obfuscator provides an encryption scheme that is secure w.r.t.
α-weak keys, for any super-logarithmic function α. The main advantage is that the
min-entropyα does not need to be chosen in advance. More specifically, we obtain a
single encryption scheme, parameterized only by the security parameter n (and not
by α), which simultaneously achieves security for all α(n) ∈ ω(logn).

We remark that the hardness assumption we use has a similar flavor - it explicitly
makes an assumption for every distribution with super logarithmic min-entropy.
The crucial point is however that the construction does not depend on α and so it
provides a tradeoff between the strength of the assumption and the strength of the
obtained guarantee. See Section 6.1 for further details.

Impossibility for MBPF Obfuscators and fully composable point function obfuscators.
Using our transformations, the negative result due to Haitner and Holenstein [17]
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implies that there are no constructions of MBPF obfuscators that can be proven
secure via a “black box reduction to standard cryptographic primitives.” Since full
MBPF obfuscators can be constructed in a black-box way from fully composable
point function obfuscators [11], the impossibility carries over to this primitive as
well. See Section 6.2 for further details.

Constructing self-composable MBPF obfuscators with independent messages. Using
our transformations, we can use constructions of encryption schemes that are secure
w.r.t. α-weak keys, to get self composable MBPF obfuscators with independent
messages. More specifically, we construct self composable obfuscators for MBPFs
{I(k,m)} as long as the distribution of m is independent of the distribution of k, both
distributions are efficiently sampleable, and the distribution of k has min-entropy α.
See Section 6.2 for further details.

Organization. Section 2 contains some basic definitions for obfuscation and encryption.
Section 3 draws connections between obfuscation and weak key and leakage resilient
encryption. Section 4 draws connections between obfuscation and encryption resilient
to key dependent messages. Section 6 states the corollaries that we draw from the gen-
eral connections. Many proofs are left out and appear only in the full version [12].

2 Definitions

2.1 Obfuscation of Point Functions with Multi-bit Output

Let I(k,m) : {0, 1}∗ ∪ {⊥} → {0, 1}∗ ∪⊥ denote the function

I(k,m)(x) =
{

m if x = k
⊥ otherwise

which outputs the message m given the key k, and ⊥ otherwise. Let I = {I(k,m) | k,
m ∈ {0, 1}∗} be the family of all such functions, which we call the family of point
functions with multi-bit output or just multi-bit point functions (MBPF) for short.

Definition 1 (Obfuscation of Point Functions with Multi-bit Output). A multi-bit
point function (MBPF) obfuscator is a PPT algorithm O which takes as input values
(k,m) describing a function I(k,m) ∈ I and outputs a circuit C. We will abuse notation
and write O(I(k,m)), but will always assume that O gets k and m as clearly delineated
inputs.
Correctness: For all (k,m) ∈ {0, 1}∗ with |k| = n, |m| = poly(n), all x ∈ {0, 1}n,

Pr[C(x) �= I(k,m)(x) | C ← O(I(k,m))] ≤ negl(n)

where the probability is taken over the randomness of the obfuscator algorithm.
Polynomial Slowdown: For any k,m, the size of the circuit C = O(I(k,m)) is polyno-
mial in |k| + |m|.
Entropic Security: We say that the scheme has α(n)-entropic security if for any PPT
adversary A with 1 bit output, any polynomial �(·), there exists a PPT simulator S such



58 R. Canetti et al.

that for all jointly-distributed {Xn, Yn}n∈N where Xn takes values in {0, 1}n, Yn takes
values in {0, 1}�(n) and H∞(Xn) ≥ α(n), we have:∣∣∣Pr

[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m)(·) (1n) = 1

]∣∣∣ ≤ negl(n)

where the probability is taken over the randomness of (k,m) ← (Xn, Yn), the ran-
domness of the obfuscator O and the randomness of A,S. We say that a scheme has
fully-entropic security if it has α(n)-entropic security for all α(n) ∈ ω(log(n)).

We relate the notion of fully-entropic security, defined above, to the standard security
guarantee provided by obfuscation called the virtual black-box property:

Definition 2 (Virtual black-box property [10,6,26]). For any PPT adversary A with
1 bit output and any polynomials p(·), �(·), there exists a PPT simulator S such that for
all distributions {Xn, Yn}n∈N with Xn taking values in {0, 1}n and Yn taking values
in {0, 1}�(n), we have:

∣∣Pr
[
A(O(I(k,m))) = 1

]
− Pr

[
SI(k,m) (1n) = 1

]∣∣ ≤ 1
p(n)

.

The probability is taken over the randomness of (k,m) ← (Xn, Yn), A, S, and O.

Note the difference between the fully-entropic definition and the VBB definition: the
former allows a different simulator for each entropy threshold α(·), but requires a
negligible error in simulation, while the latter allows a different simulator for each
simulation-error p(·), but requires the simulator to work for all distributions regard-
less of entropy. Interestingly, we show that the fully-entropic definition implies VBB
(but don’t know whether the converse holds as well).

Theorem 1. If O is a MBPF obfuscator that satisfies fully-entropic security (as in Def-
inition 1) then O also satisfies virtual black-box obfuscation (as in Definition 2).

The proof of this theorem appears in the full version of this paper [12]. The idea is to
extend the technique used in [10] to show that a distribution-based definition implies the
virtual black box property in the case of point functions. At a high level, the distribu-
tional definition there says that if a user chooses a key from a well-spread distribution,
then an adversary cannot learn anything from an obfuscated point function beyond the
fact that the key is from this distribution, so in particular the key is hard to determine.
We show how to extend the distributional definition to the MBPF setting and use this to
prove that fully-entropic security provides this distributional requirement, and therefore
the virtual black-box property as well.

Fully entropic security, as well as virtual black box security, are quite strong, and
difficult to satisfy. The notion of α(n)-entropic security, for some particular α(n) ∈
ω(log(n)), corresponds to a meaningful weakening of that notion where security is only
provided when the input comes from a reasonably random source. A similar weakening
of obfuscation, in the special case of point functions, was also considered by Canetti,
Micciancio and Reingold [13] in the context of perfectly one-way hash functions.
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Instead of restricting attention to distribution with α(n) min-entropy, one might in-
stead give the simulator the ability to ask its oracle more queries, by a factor of 2α(n)

(i.e. the simulator is no longer polynomial time). In the full version [12], we show that
this alternative relaxed notion is actually implied by α-entropic security.

We consider several additional variants of obfuscation throughout the paper. First,
we propose an additional weakening of the definition, which we call security for in-
dependent messages, and where we require that the distribution on the output m is
independent from that of the input k for a point function I(k,m).

Definition 3 (Independent Messages). We say that an obfuscator O is α(n)-
entropically secure for independent messages if we restrict the definition of α(n)-
entropic security only to distributions {Xn, Yn} where Xn and Yn are independently
distributed. We define the notion of fully-entropic security for independent messages
analogously.

We also define a stronger variant of plain obfuscation, which provides some com-
posability guarantees. There are two variants: For full composition we require that
the security of obfuscation is preserved even if the adversary gets (freshly and in-
dependently) obfuscated circuits for many functions, where the various obfuscated
functions are related in arbitrary ways (i.e., both the keys and the messages may dif-
fer). For self composition we require that all the obfuscated functions have the same
value of the key k. That is, one should obfuscate the functions I(k,m1), . . . , I(k,mt)
with the same key k but potentially different messages m1, . . . ,mt. (For point func-
tions, self composition boils down to the case of many obfuscated versions of the same
function.)

Definition 4 (Composability). A multi-bit point function obfuscator O with α(n)-
entropic security is said to be fully-composable if for any PPT adversary A with 1
bit output, any polynomials t(·), �(·), there exists a PPT simulator S such that for all

distributions {(Xn, Yn)}n∈N, where Xn = X
(1)
n , . . . , X

(t)
n , Yn = Y

(1)
n , . . . , Y

(t)
n , and

X
(i)
n taking values in {0, 1}n, Y (i)

n taking values in {0, 1}�(n) and H∞(Xn) ≥ α(n),
we have:

|Pr[A(O(Ik1,m1), . . . ,O(Ikt,mt))=1] − Pr[SI(k1 ,m1),...,I(kt,mt)(1n)=1]|≤negl(n),

where the probabilities are over (k1, . . . , kt,m1, . . . ,mt) ← (Xn, Yn) and over the
randomness of A,S,O.

If the above holds only for the distributions Xn where Pr[k1 = k2 . . . = kt] = 1,
then we say that O is self-composable.

The notions of composability extend naturally to obfuscators with fully-entropic se-
curity, where we require that the above definition holds for all α(n) ∈ ω(log(n)). It also
extends to obfuscators for independent messages, where we restrict the definition to the
case where Xn and Yn are independent. (It is stressed that there is no independence
assumption among the coordinates within Xn or Yn.)
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2.2 Definitions for Encryption with Weak Keys

A symmetric encryption scheme consists of efficient algorithms (Enc,Dec).3 We say
that the encryption scheme is semantically secure for α(n)-weak keys if the usual notion
of semantic security holds even when the key comes from any weak-source of entropy
α(n). We propose the following definition of symmetric key encryption with weak keys.

Definition 5 (Symmetric Encryption with Weak Keys). We say that an encryption
scheme has CPA security for α(n)-weak keys if there exists an efficient algorithm
D(n, �) running in time poly(n, �), such that, for all PPT adversaries A and all
distribution-ensembles {Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[CPAX,D
0 (A, n) = 1] − Pr[CPAX,D

1 (A, n) = 1]| ≤ negl(n)

where the games CPAX,D
b (A, n) for b = 0, 1 are defined via the following experiment:

1. k ← Xn

2. Repeat: A submits a query m and receives a ciphertext c where:
In game CPAX,D

0 , the challenger sets c ← Enck(m).
In game CPAX,D

1 , the challenger sets c ← D(n, |m|).
3. The output of the game is the output of A.

The algorithm D(n, �) can keep persistent state during stage 2. We define semantic
security with α(n)-weak keys via the games SEMX,D

0 , SEMX,D
1 , which are equivalent

to the CPA games except that step (2) is performed only once.
We say that an encryption scheme is CPA-secure (resp. semantically-secure) for fully

weak keys if it is CPA-secure (resp. semantically-secure) secure for α(n)-weak keys for
all α(n) ∈ ω(log(n)).

Note that, in case of α(n) = n (i.e. uniformly random secret keys), the above defini-
tion is equivalent to the standard notion of CPA/semantic security, since we can always
simply define D(n, �) to always output fresh encryptions Enck(0�), where k is initially
chosen uniformly at random and re-used for all queries. On the other hand, when con-
sidering α(n)-weak keys, the above definition is somewhat stronger than just requiring
that the adversary cannot distinguish between an encryption of m and that of some set
message, such as 0�. In particular, it requires that there is a single universal distribution
D on ciphertexts, which is indistinguishable from encryption with any key distribution
Xn of sufficient entropy. For example, consider an encryption scheme which, along
with the ciphertext, always outputs the first bit of the secret key. Although such scheme
might satisfy a natural definition where encryption of m0 and m1 are indistinguishable,
it could never satisfy the above definition, even for α(n) = n − 1. The reason is that
the ciphertext distribution is now different depending on whether the keys come from a
distribution that fixes the first bit at 0 versus one which fixes the first bit at 1. Although
our definition is stronger than one may need, we will show that it is necessary and suf-
ficient for our equivalence with obfuscation to hold. Moreover, all natural constructions
of encryption schemes with weak-keys that we know of achieve the above definition.

3 That is, the key generation algorithm is implicit and is assumed to always generate a uniform
n-bit string.
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We also define a “wrong-key detection” property, which will be needed to achieve
correctness in obfuscation.

Definition 6 (Wrong-Key Detection). We say that an encryption scheme satisfies the
wrong-key detection property if for all k �= k′ ∈ {0, 1}n, all m ∈ {0, 1}poly(n),
Pr[Deck′(Enck(m)) �= ⊥] ≤ negl(n).

We note that a similar, but weaker, property called confusion freeness, was defined in
[24]. For confusion freeness, the keys k, k′ are random and independent, while we con-
sider a worst-case choice of k, k′ and the probability above is only over the randomness
of the encryption scheme.

Lemma 1 (see the full version [12] for proof) shows that, in the case of semantic
security, wrong-key detection can always be achieved via a simple transformation. We
note, however, that this transformation no longer works in the case of CPA security.

Lemma 1. Let (Enc,Dec) be a semantically-secure encryption scheme for α(n)-weak
keys and let H be a pairwise-independent permutation family. Define an encryption
scheme (Enc′,Dec′) by:

Enc′k(m) �
{

Choose: h ← H, r ← Un

Output: 〈r, h, c = Ench(k)(r||m)〉

Dec′k(〈r, h, c〉) �
{

Compute: (r′||m′) = Dech(k)(c)
Output: m′ if r′ = r and ⊥ otherwise

Then (Enc′,Dec′) is a semantically-secure encryption scheme for α(n)-weak keys, with
wrong-key detection. The above also holds if we replace “α(n)” with “fully”.

3 Encryption with Weak Keys and MBPF Obfuscation

3.1 Sem. Sec. Encryption and Obfuscation with Independent Messages

In this section, we show equivalence between semantically secure encryption with weak
keys and MBPF obfuscators for independent messages.

Theorem 2. Let α(n) ∈ ω(log(n)). There exist MBPF obfuscators with α(n)-entropic
security for independent messages if and only if there exist semantically secure encryp-
tion schemes with wrong key detection for α(n)-weak keys. Furthermore, the above also
holds if we replace “α(n)” with “fully”.

We prove the “if” and “only if” directions in Lemmas Lemma 2 and Lemma 3, respec-
tively.

Lemma 2. Let α(n) ∈ ω(log(n)) and let O be a MBPF obfuscator with α(n)-
entropic security for independent messages. Let Enck(m) � O(I(k,m)), Deck(C) �
C(k) where the ciphertext C is interpreted as a circuit. Then the encryption scheme
(Enc,Dec) is semantically secure with α(n)-weak keys and has the wrong-key detec-
tion property.
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Proof. The correctness of decryption follows from the correctness of obfuscation. For
the security of the encryption scheme with α(n)-weak keys. Fix any adversary A and
any distribution {Xn}n∈N with H∞(Xn) ≥ α(n). The distribution {Yn} is defined
by running A(1n) and outputting the message m that A gives to its challenger. Define
the distribution D(n, �) = O(I(k,m)) where (k,m) ← (Un, U�). Then, by the α(n)-
entropic security of obfuscation, there must be a simulator S such that∣∣∣Pr[SEMX,D

0 (A, n) = 1] − Pr[SEMX,D
1 (A, n) = 1]

∣∣∣
=
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1] − Pr
(k,m)←(Un,U�)

[A(O(I(k,m))) = 1]
∣∣∣∣

≤
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[A(O(I(k,m))) = 1] − Pr
(k,m)←(Xn,Yn)

[
SI(k,m)(·)(1n) = 1

]∣∣∣∣ (1)

+
∣∣∣∣ Pr
(k,m)←(Xn,Yn)

[
SI(k,m) (1n) = 1

]
− Pr

(k,m)←(Un,U�)

[
SI(k,m) (1n) = 1

]∣∣∣∣ (2)

+
∣∣∣∣ Pr
(k,m)←(Un,U�)

[
SI(k,m) (1n) = 1

]
− Pr

(k,m)←(Un,U�)

[
A(O(I(k,m))) = 1

]∣∣∣∣ (3)

≤ negl(n)

where (1),(3) follow by the definition of entropic security of obfuscation, and (2) fol-
lows since the only way that a PPT simulator can get anything from its oracle is by
querying it on the input k, which happens with negligible probability when k comes
from a source of super-logarithmic entropy α(n). �

Lemma 3. Let (Enc,Dec) be an encryption scheme with semantic security for α(n)-
weak keys and with the wrong-key detection property. We define the obfuscator O
which, on input I(k,m), computes a ciphertext c = Enck(m) and outputs the circuit
Cc(·) defined by Cc(x) � Decx(c). Then the obfuscator O has α(n)-entropic security
for independent messages.

Proof. First, we show the correctness property of the obfuscator. Fix k, x ∈ {0, 1}n

and m ∈ {0, 1}poly(n). If k = x then

Pr[C(x) �= I(k,m)(x) | C ← O(I(k,m))] = Pr[Deck(Enck(m)) �= m] ≤ negl(n)

by the correctness of encryption. On the other hand, if k �= x then

Pr[C(x) �= I(k,m)(x) | C ← O(I(k,m))] = Pr[Decx(Enck(m)) �= ⊥] ≤ negl(n)

by the wrong-key detection of encryption.
The polynomial slowdown property of the obfuscator follows from the fact that the

size of the circuit is only proportional to the ciphertext size and the size of the decryption
circuit, which are polynomial in |k|, |m|.

Lastly, we show α(n)-entropic security for independent messages. Let D(n, �) be
the distribution defined by the semantic-security of the encryption scheme. For any
polynomial �(n) any PPT adversary A which attacks the obfuscation scheme, we define
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the simulator S which chooses a random ciphertext c from the distribution D(n, �(n))
and runs A on a circuit Cc constructed using the ciphertext c. Then∣∣∣∣ Pr

(k,m)←(Xn,Yn)

[
A(O(I(k,m))) = 1

]
− Pr

(k,m)←(Xn,Yn)

[
SI(k,m)(1n, 1�) = 1

]∣∣∣∣ (4)

=
∣∣∣∣Pr
[
A(Cc) = 1

∣∣∣∣ (k,m) ← (Xn, Yn)
c ← Enck(m)

]
− Pr [A(Cc) = 1 | c ← D(n, �)]

∣∣∣∣
≤ negl(n) (5)

Where (5) follows by semantic-security. �

3.2 CPA Encryption and Composable Obfuscation for Indep. Messages

In this section, we show equivalence between CPA secure encryption with weak keys
and self-composable MBPF obfuscators for independent messages.

Theorem 3. Let α(n) ∈ ω(log(n)). There exist self-composable MBPF obfuscators
with α(n)-entropic security for independent messages if and only if there exist CPA
secure encryption schemes for α(n)-weak keys and the wrong-key detection property.
The above also holds if we replace “α(n)” with “fully”.

We prove the two sides of the “if and only if” separately. First we show that composable
obfuscation implies encryption (Lemma 4) and then we show that encryption implies
obfuscation (Lemma 5).

In the next lemma, going from obfuscation to encryption, it would be natural to
define Enck(m) = O(I(k,m)). However, we instead define Enck(m) = (O(I(k,r)),m⊕
r) for a uniform r. The reason for this is that the messages m chosen by the adversary
in the CPA game can depend adaptively on prior ciphertexts. However, for composable
obfuscation, the distributions Yi of the messages mi are independent of prior obfuscated
circuits. We get around this by making sure that the obfuscation is applied to a random
value.

Lemma 4. Let α(n) ∈ ω(log(n)) be an arbitrary function. Let O be a self-
composable MBPF obfuscator with α(n)-entropic security for independent messages.
We define (Enc,Dec) by

Enck(m) � (O(I(k,r)),m⊕ r) , Deck(C, y) � C(k) ⊕ y

where r is uniformly random, and C is interpreted as a circuit. The resulting encryption
scheme is CPA secure with α(n)-weak keys.

The other direction is shown via the same construction as in the case of semantic secu-
rity:

Lemma 5. Let (Enc,Dec) be an encryption scheme with CPA security for α(n)-weak
keys and having the wrong-key detection property. We define the obfuscator O which,
on input I(k,m), computes a ciphertext c = Enck(m) and outputs the circuit Cc(·)
defined by Cc(x) = Decx(c). Then, O is a self-composable MBPF obfuscator with
α(n)-entropic security for independent messages.
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4 KDM Encryption and MBPF Obfuscation

First, we define the notion of semantically-secure encryption with key dependent mes-
sages (KDM) and α(n)-weak keys.

Definition 7 (Semantic KDM Encryption with Weak Keys)
A symmetric encryption scheme (Enc,Dec) is semantically secure for key dependent
messages (KDM) and α(n)-weak keys if there exists a distribution D(n, �), which is
efficiently sampleable in time poly(n, �), such that for all functions f , all PPT adver-
saries A, and all distribution-ensembles {Xn}n∈N with H∞(Xn) ≥ α(n), we have:

|Pr[KDMX,D
0 (A, n) = 1] − Pr[KDMX,D

1 (A, n) = 1]| ≤ negl(n), (6)

where KDMX,D
b (A, n) is defined via the following experiment:

k ← Xn

c0 ← Enck(f(k)), c1 ← D(n, �) where � is the output size of f .

Output: A(cb)

We now show that semantically secure encryption with KDM and security for weak
keys is equivalent to MBPF obfuscation.

Theorem 4. Let α(n) ∈ ω(log(n)). There exist MBPF obfuscators with α(n)-entropic
security for the standard notion of dependent messages if and only if there exist
semantically-secure KDM encryption schemes with α(n)-weak keys and the “wrong-
key detection” property. In particular, the above also holds if we replace “α(n)” with
“fully”.

The proof of the above theorems follows from essentially the same arguments as in
Lemma 2 and Lemma 3. We simply observe that allowing the adversary to get encryp-
tion of a value f(k) in the proofs of those lemmas, corresponds to having a distribution
Yn that depends on Xn, that it Yn = f(Xn). Conversely, for any joint distribution
{Xn, Yn}, we can define some (probabilistic, and possibly inefficient) function f so
that Yn = f(Xn).

In the full version of this paper [12], we also explore a notion of CPA security with
KDM and weak-keys. We essentially show results analogous to those in Section 3.2
connecting CPA encryption (without KDM) to obfuscation with independent messages,
but only if we restrict ourselves to a non-adaptive attacker who chooses the function f
of the secret key prior to seeing any ciphertexts.

5 Encryption/Obfuscation with Auxiliary Input

In the full version of this work [12] we also define encryption with semantic/CPA se-
curity with auxiliary input family F , where the adversary gets to learn f(k) for any
f ∈ F .4 Similarly, we define (self-composable) MBPF obfuscation with auxiliary in-
put family F , where the adversary and simulator both get f(k) for some f ∈ F and

4 This is only interesting for families F where each f ∈ F is hard to invert, as otherwise f(k)
completely reveals k and no security is possible. Often, it makes sense to restrict F much
further, such as requiring that f(k) is exponentially-hard to invert . . .
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the obfuscated point k (we only consider this notion for obfuscation with independent
messages). Both notions can be defines for α(n)-weak keys as well as fully weak keys.

We show that all of the results of Section 3 extend naturally to the auxiliary input
setting. That is:

– We extend Theorem 2, to show an equivalence between semantically secure en-
cryption with auxiliary-input family F and wrong-key detection, and obfuscation
of MBPF with auxiliary-input family F and independent messages. The equiva-
lence holds for α(n)-weak keys or “fully weak” keys. The constructions are the
same as those of Lemma 2 and Lemma 3.

– We similarly extend Theorem 3 showing a similar equivalence for CPA secure en-
cryption and self-composable onfuscation with auxiliary input. The constructions
are the same as those of Lemma 4 and Lemma 5.

6 Implications

We now show how to use the above equivalence results between encryption with
weak keys and obfuscation of multi-bit point functions to derive new results in both
directions.

6.1 Encryption with Fully Weak Keys

Encryption with α(n)-weak keys vs. fully-weak keys. Prior work on leakage-resilient
encryption and encryption with weak-keys has given results of the following form:

1. Fix any constant ε > 0 and let α(n) = nε.
2. Construct an encryption scheme, which depends on ε, and achieves security for

α(n)-weak keys.

We note that there are several issues with the above two-step approach. Firstly, we
may not know the exact level of key-entropy, or correspondingly the value of ε, at
design time. Therefore, in practice, it may be difficult to decide on what ε to use when
choosing the encryption scheme. A scheme which is designed for some specific ε does
not provide any security guarantees for key-distributions whose entropy is strictly less
than nε, and so we may be tempted to be conservative with the choice of ε at design
time. On the other hand, when taking an excessively small value of ε in the above
constructions, we are forced to reduce the exact-security of the system (e.g. working in
a group of description-length nε) or reduce the efficiency of the system proportionally
with n1/ε, leading to poorer security or performance even if the system is later only used
with uniformly random keys! Secondly, none of the prior results generalize to allow for
specific super-logarithmic entropy thresholds such as α(n) = log1+ε(n), even if ε is
specified a-priori.

In contrast, an encryption scheme with security for fully-weak keys provides the
corresponding advantages. More specifically, the order of quantifiers now requires that
there is a single encryption scheme, parameterized only by the security parameter n (but
not by ε), which simultaneously achieves security for all α(n) ∈ ω(log(n)). The exact-
security of the scheme may depend on α(n) (since there is always a way to break the
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scheme in time 2α(n)), but this relationship is now more fluid, with the exact-security
gracefully degrading for smaller α(n). In particular, the security guarantees are mean-
ingful even for α(n) = log1+ε(n), and there is no single threshold above which the
scheme is secure and below which it is insecure. This is a significant advantage, as it
does not require one to decide at design time on the tradeoff between allowed entropy
levels and achieved security/efficiency.

New construction of encryption with fully-weak keys. We now describe the point-
function obfuscation scheme of Canetti [10], and notice that it yields a self-composable
MBPF obfuscator with fully-entropic security for independent messages. It is based on
a strengthened version of the DDH assumption, which we describe shortly. Using this
simple observation and our connection between obfuscation and encryption (Lemma 4),
we get the first symmetric-key encryption scheme with CPA security for fully-weak
keys (albeit under a strong assumption). We begin by defining the strengthened DDH
assumption for a prime-ordered group G.

Definition 8 (Strengthened DDH Assumption [10]). Let G be a group of prime order
p = 2poly(n) and let g be a random generator of G. The strengthened DDH assumption
states that, for any distribution {Xn} over Zp with entropy H∞(Xn) ≥ ω(log(n)), we
have 〈ga, gb, gab〉 ≈ 〈ga, gb, gc〉 where a ←R Xn, and b, c ←R Zp.

We now define the function F : Zp → G × G by F (k) = 〈r, rk〉 where r ←R G.
In [10], this was shown to be a secure point-function obfuscator (with fully-entropic
security) under the strengthened DDH assumption. In addition, this point-function ob-
fuscator is self-composable since, given a (random) obfuscation 〈g1, g2〉 of some point
x, it is easy to generate freshly random (and independent) new obfuscation of x by tak-
ing 〈gu

1 , g
u
2 〉 for a random u ∈ Zp. We use the construction of Canetti and Dakdouk [11]

to turn a point-function obfuscator into a multi-bit point-function obfuscator. Define the
function:

O(I(k,m)) =

⎧⎪⎪⎨⎪⎪⎩
Sample r0, r1, . . . , r� ←R G for � = |m|.

Set g0 = rk
0

For each i ∈ {1, . . . , �} : if mi = 1 set gi = rk
i else gi ←R G.

Output: c = (〈r0, g0〉, . . . , 〈r�, g�〉).

Using the techniques of [11], it is easy to show that O is a self-composable obfusca-
tor with fully-entropic security for independent messages under the strengthened DDH
assumption. Combining this with Lemma 4, we get the following theorem.

Theorem 5. Under the strengthened DDH assumption, there exists a CPA-secure sym-
metric encryption scheme with security against fully-weak keys. In particular, this
means that there is a single scheme, parameterized only by the security parameter n,
such that security of the scheme is maintained when the key is chosen from any distri-
bution of entropy α(n) ∈ ω(log(n)).

The strengthened DDH assumption is indeed a strong one. A potentially weaker
formulation would be to limit the min-entropy of Xn to be at least some specific super-
logarithmic function α(n). This way, we would obtain a parameterized version of Theo-
rem 5 that relates the strength of the security guarantee to the strength of the assumption.
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It is important to note that the construction itself is independent of the parameter α. That
is, we obtain a single encryption scheme that provides a range of security guarantees,
depending on the strength of the assumption.

6.2 Obfuscation

Entropically Secure Obfuscation for Independent Messages: It is fairly simple to con-
struct α(n)-entropically secure obfuscation for independent messages, when α(n) =
nε for some constant ε ≥ 0. First we construct a semantically secure encryption scheme
with α(n)-weak keys. This can be done by simply extracting a sufficient amount of
uniform randomness from the key k, using a strong randomness extractor Ext, and then
using the result as a one time pad to encrypt the message. For variable-length mes-
sages, we also need to expand the extracted randomness to an appropriate size, using a
pseudo-random generator PRG. In particular, we define

Enck(m) = 〈r,PRG(Ext(k; r)) ⊕ m〉

where r is a uniformly random seed for the extractor. The output length of Ext and the
input length of PRG are set to some value v which is sufficiently small that the outputs
of the extractor is (statistically) close to uniform, and sufficiently large that the output
of the PRG is pseudo-random.5

One can use this encryption scheme to construct one which also has the wrong-key
detection property using Lemma 1. Such a scheme yields an multi-bit point function
obfuscator with α(n)-entropic security for independent messages, by Lemma 3.

Self-Composable Entropically Secure Obfuscation for Independent Messages: One
problem with the above construction of semantically-secure encryption using extrac-
tors, is that it does not generalize to CPA security. In fact, achieving CPA secure en-
cryption with weak keys seems to be a much harder problem, which has received much
attention in recent works [1,14,25]. We now show how to use these results to achieve
self-composable entropically secure obfuscation for independent messages. On a high
level, we would simply like to just apply our result connecting such encryption and ob-
fuscation (Lemma 5) “out of the box”. However, there are several issues that we must
deal with first.

– Efficiently-Sampleable Distributions: The works of [1,14,25] are concerned with
“key leakage”, where the adversary gets to learn some (short) function of the secret
key, whose output length is bounded by λ bits. Conditioned on such leakage, the
key can be thought of as being derived from a (special type) of weak source with
entropy α(n) ≈ n − λ. It turns out that the constructions are also secure when the
key is chosen from an arbitrary, but efficiently-sampleable weak source of entropy
α(n) [25]. Therefore, our results for obfuscation will only translate to the case
where the distribution obfuscated program is efficiently sampleable.

5 For example, if we choose v = nε/2, then an extractor based on universal-hash functions will
produce an output which is 2−v/2 = negl(n)-close to uniform, and the output of the PRG is
negl(nε/2) = negl(n)-pseudorandom. However, this does not generalize to smaller values of
α such as, α(n) = log2(n).
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– Public Keys/Parameters: Only the scheme of [14] is explicitly designed for the
symmetric key setting. The schemes of [1,25] are public-key encryption schemes.
As noted, such schemes are secure when the key-generation procedure uses
randomness that comes from a weak source. Therefore such schemes naturally
translate to the symmetric key setting, where the randomness of the key-generation
algorithm is the shared secret key. Unfortunately, these schemes also rely on public
parameters which are chosen uniformly at random, and are available to the key-
generation algorithm. Therefore, we will only get an obfuscator in the presence of
public parameters. Note that in the context of standard obfuscation, public parame-
ters are never needed since the obfuscator O could always sample fresh parameters
each time it runs. However, when considering composable obfuscation, this equiv-
alence does not hold since future uses of the obfuscator might compromise secu-
rity of prior uses. Therefore, having randomness in the form of public parameters,
which are re-used for all invocations of the obfuscator, can be useful in this context.

– Uniform Ciphertexts: Recall that our definition of CPA security is slightly different
than the standard (we require that the ciphertexts of any message are indistinguish-
able from some universally specified distribution) and has not been explicitly ana-
lyzed by these schemes. However, in all of these schemes explicitly show in their
proofs that the ciphertexts are indistinguishable from uniform, which satisfies our
definition.

– Wrong-Key Detection: The wrong-key detection property is explicitly analyzed in
[14]. For the schemes of [1,25], we get the property that, given the public param-
eters it is computationally difficult to find k, k′ such that Deck′(Enck(m)) �= ⊥.
This translates to a computational-correctness property for the obfuscator where,
given the public parameters, it is computationally difficult to find k,m, x such that
O(I(k,m))(x) �= I(k,m)(x).

Using our connection between CPA-secure symmetric key encryption and self-
composable obfuscation with independent messages, we get the following new con-
structions of obfuscators as a corollary of Lemma 5, using the schemes of [1,14,25].

Theorem 6. For any constant ε > 0, there exists a self-composable MBPF obfuscator
with independent messages under any of the following assumptions:

1. Decisional Diffie-Hellman (DDH) with nε-entropic security, based on [25]. (∗,†).
2. Learning With Errors (LWE) with nε-entropic security, based on [1]. (∗,†).
3. Learning Subspaces with Noise (LSN) with εn-entropic security, based on [14]. (∗).

where the restrictions are:

* Only works for efficiently sampleable key-distributions.
† Requires public parameters and only achieves computational-correctness.

Difficulty of Achieving Obfuscation with Dependent Messages. The connection between
encryption and obfuscation also yields new negative results for the more standard no-
tion of obfuscation that allows for dependent messages, and in particular for the stan-
dard VBB notion. We rely on a recent result of Haitner and Holenstein [17], which
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shows that there can be no black-box reduction from a semantically secure encryp-
tion scheme with security against key-dependent messages to, essentially, any standard
cryptographic assumption. The notion of “cryptographic assumption” is formalized in
[17] as (essentially) any game between an attacker and a challenger in which we as-
sume that all PPT attackers have a negligible success probability. In particular, this in-
cludes all standard assumptions such as existence of Trapdoor One-Way Permutations
or Claw-Free Permutations, as well as specific algebraic assumptions like the hardness
of factoring, DDH, Learning with Errors and many others.6 Since, by Theorem 4, we
have a reduction from a semantically secure encryption schemes with security against
key-dependent messages to obfuscation of multi-bit point functions with n-entropic
security (i.e. even uniformly random keys), we see that this latter notion of obfusca-
tion cannot be realized from essentially any cryptographic assumption under black-box
reductions.

Theorem 7. No construction of an MBPF obfuscator with α(n)-entropic security for
dependent messages can be proven secure via a black-box reduction to any “standard
cryptographic assumption”, even for α(n) = n (i.e. even uniformly random keys).

We note that Canetti and Dakdouk [11] showed that composable obfuscation of point
functions (with no output) (i.e. functions Ik(x) which output 1 when x = k and ⊥
otherwise) implies multi-bit point function obfuscators with dependent messages. Thus
we get the following as a corollary.

Corollary 1. No construction of a composable obfuscator for single-value point func-
tions with α(n)-entropic security can be proven secure via a black-box reduction to
any “standard cryptographic assumption”, for any α() (even for α(n) = n, namely
uniformly random keys).

We note that the impossibility result of [17] only considers semantically secure encryp-
tion with variable length messages and does not rule out KDM security when the mes-
sage size is shorter than the key. Correspondingly, the work of [11] constructs MBPF
obfuscators with α(n)-entropic security (for some α(n) � n) and for dependent mes-
sages in this special case, where the message size is (significantly) smaller than the key
size (i.e. functions I(k,m) where |m| < |k|). These constructions only relied on standard
cryptographic assumptions such as collision-resistant hash functions. The above theo-
rem shows that such constructions do not generalize to variable-length messages, where
the message size can exceed the key size. Alternatively, in this work we show how to
leverage prior results on leakage-resilient cryptography to construct self-composable
MBPF obfuscators with α(n)-entropic security (for some α(n) � n), under standard
assumptions, in the special case of (variable-length) independent messages. It seems
that there is little hope in generalizing this approach to the standard notion of obfusca-
tion, which also allows key-dependent messages.

6 On the other hand, the impossibility result does not exclude proofs of security in the Random
Oracle model, reductions to non-standard assumptions (which cannot be formulated as a game
between an adversary and a challenger) such as “Knowledge of Exponent”, or non-black-box
reductions.
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Abstract. Previous work on program obfuscation gives strong negative
results for general-purpose obfuscators, and positive results for obfuscat-
ing simple functions such as equality testing (point functions). In this
work, we construct an obfuscator for a more complex algebraic function-
ality: testing for membership in a hyperplane (of constant dimension).
We prove the security of the obfuscator under a new strong variant of the
Decisional Diffie-Hellman assumption. Finally, we show a cryptographic
application of the new obfuscator to digital signatures.

1 Introduction

The problem of program obfuscation has been of long-standing interest to prac-
titioners, and has recently been an active topic of research in theoretical cryp-
tography. The high-level goal of program obfuscation is to compile a computer
program in such a way that an adversary cannot learn anything from seeing
the program beyond could be learned by running the program and observing its
input-output behavior.

Barak et al. [1] formalized the notion of obfuscation using simulation-based
definitions. Over the past decade, the theory community has found a few positive
obfuscation results for specific families of programs. In this paper, we provide
an obfuscator for a new family of programs.

Virtual black-box obfuscation. The procedure of “obfuscating” a computer
program should garble the program’s code and make it unintelligible. The extent
of the garbling is limited by the fact that the program’s functionality should
be preserved. As a result, both honest and adversarial users of the obfuscated
program can learn some information by observing the program’s input-output
functionality, and we do not wish to prevent users from learning information this
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way. Instead, obfuscation ensures that this is the only way that an adversary can
learn information from the obfuscated program.

There are several ways to formalize this intuitive notion [2,3,4]. This paper
uses the virtual black-box formalization of [1]. A significant obstacle to obtain-
ing positive results with respect to this definition is that the security notion
must hold for all programs in a given family, and not just a random instance.
This is one reason why standard cryptographic tools and analytical techniques
(which usually deal with randomly chosen instances) are not always helpful for
obfuscation.

Previous results. Several works have disproved the existence of a “general-
purpose obfuscator” that can simultaneously obfuscate every program [1,2,5]. In
fact, these papers demonstrate specific programs that cannot be obfuscated, and
these programs come from a relatively low complexity class. While these negative
results are disheartening, they focus on specific (often contrived) functionalities.
Obfuscation remains possible for many programs of interest.

Still, very few positive results are known even for specific, simple programs (or
boolean circuits). One family of programs for which positive results are known
is the family of “point circuits”: password-checking programs that accept a single
input string and reject all other inputs. This family can be obfuscated under a
variety of cryptographic assumptions [6,7,8,9]. Some of these constructions can
be generalized in two ways. First, we can obfuscate “multi-point circuits,” which
accept a polynomially-sized list of input strings, and second, we can obfuscate
“point circuits with multi-bit output,” which store a hidden output string that
is revealed only for a single input value [10]. Other formalizations of program
obfuscation [3,4] allow for the obfuscation of cryptographic tasks such as checking
proximity to a hidden point [11], vote mixing [12], and re-encryption [4]. The
latter two applications use a different security guarantee that only holds over a
random choice of the circuit from the family.

Our result. In this paper, we obfuscate programs that perform hyperplane
membership testing. Let P be a hyperplane in a vector space, and let HP be a
program that tests whether its input is a point on the hyperplane. An obfuscation
of HP allows a user to determine whether her input point is on the hyperplane,
but reveals no additional information such as the distance from her point to the
hyperplane or any other points that are on the hyperplane.

More precisely, given a prime p and positive integer d, consider the family of
hyperplanes through the origin in the vector space ( Z

pZ )d over the finite field Z

pZ .
In this setting, a hyperplane can be defined by a vector that is orthogonal to
every point in the plane. Let a be a vector in ( Z

pZ )d and consider the program

Ha(x) =

{
1 if 〈a,x〉 = 0
0 otherwise.

We construct an obfuscator for this family of programs.
This primitive subsumes many of the previously-known results. In the d = 2

case, these “hyperplanes” turn out to be equivalent to point circuits, and our
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specific construction and assumption reduce to those in [6]. Furthermore, the
technique of [10] can be applied to our primitive as well, so we can obfuscate
circuits that output a hidden message when its input is on the hyperplane.

We also note that hyperplane membership testing has been considered in the
context of private predicate encryption schemes by Shen, Shi, and Waters [13],
although our results are incomparable to theirs.

Application to digital signatures. As an example of the proposed primitive’s
usefulness, we demonstrate an application of our obfuscator to leakage-resilient
one-time signatures. We emphasize, though, that the main motivation for this
work is the new obfuscator, rather than any single application.

The signature scheme is constructed as follows: the secret key is a randomly
chosen plane in 3-dimensional space, and the public key is the obfuscated mem-
bership program. To sign a message m, find a point on the plane that is related
to m. This signature can be verified by running the public obfuscated program.

This signature scheme satisfies a weaker form of the unforgeability game,
where the adversary is required to submit a message m to be signed before
receiving the public key. Techniques from [14] allows us to transform the weak
scheme into an ordinary one-time signature scheme. Additionally, this one-time
signature scheme remains unforgeable even when a function of the secret key is
leaked whose output length is up to half as long as the secret key. For schemes
that do not use general zero-knowledge proofs, this matches the leakage bound
of [15] (albeit under much stronger assumptions).

Construction. The construction is as follows. Let G be a group of order p
that satisfies a strengthened version of the Decisional Diffie-Hellman assump-
tion, which we describe in more detail below. When the obfuscator is given a
hyperplane Ha to obfuscate, where a = (a1, . . . , ad), it chooses a random gener-
ator g

U← G and outputs gai for all i. This allows the user to compute whether
a given point x = (x1, . . . , xd) is on the hyperplane by computing

(ga1)x1 × · · · × (gad)xd = g〈a,x〉 ,

and checking whether this equals G’s identity element (i.e. whether 〈a,x〉 = 0).

Our assumption. We are not able to prove the security of our construction
based on the standard Decisional Diffie-Hellman assumption, which states that
gab is indistinguishable from uniform, given g, ga, and gb for uniformly-chosen
exponents a and b. We describe the difficulty with basing our scheme on DDH,
as it motivates and clarifies our new assumption.

For our construction, it is crucial that the adversary not be able to compute
any polynomial relationships in the exponent (not just quadratic ones). Consider,
for instance, whether it is possible to compute ga3

given just g and ga. What if
we wish to compute gabc from g, ga, gb, and gc? Can elements of the form ga3

or gabc even be distinguished from uniform? No efficient algorithms for running
these computations are known (e.g. in groups where DDH is hard), but standard
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assumptions such as DDH do not seem to rule out the existence of such algo-
rithms. In general, we wish to understand when gp(a,b) is distinguishable from
uniform, given a polynomial p and group elements g, ga, and gb. Clearly, this
is true when p is linear, or closely resembles a line. Our new assumption states
that these are the only such polynomials for which gp(a,b) can be distinguished
from uniform.

We also consider the effect of choosing exponents from weak entropy distri-
butions. This setting has been previously considered by Canetti [6], who forms
a modified DDH assumption in which gab is considered to be indistinguishable
from uniform, even given g, ga, and gb, where a is chosen from the uniform dis-
tribution but b is chosen from any distribution of super-logarithmic min-entropy.
Our assumption expands upon this idea and considers many exponents that are
not only chosen from weak entropy distributions, but which may also be related.

Specifically, given a tuple of group elements 〈ga1 , ga2 , . . . , gad〉 where the ai’s
are chosen from some joint distribution, we ask for which polynomials p is
gp(a1,...,ad) still indistinguishable from uniform? If the polynomial p looks linear
when restricted to the support of the joint distribution, then of course gp(a1,...,ad)

can be distinguished from uniform. Our new assumption states that indistin-
guishability holds in all other cases.

This new assumption is stronger than the standard DDH assumption, or even
the modified DDH assumption of [6], but we provide evidence of its feasibility
by proving that it holds in the generic group model. Furthermore, we believe
that resolving the status of this new assumption would be interesting either
way. If it holds, then we obtain an obfuscator for a new and interesting family
of functions. Showing that the assumption does not hold would shed new light
on which computations can be run efficiently in the exponent of DDH groups.

Organization. Section 2 defines virtual black-box obfuscation and the hyper-
plane membership testing programs. Section 3 describes our assumption in detail
and compares it to previous assumptions. Section 4 presents our obfuscator for
the family of hyperplanes and proves its security. Section 5 extends our construc-
tion to the multi-bit setting. Section 6 presents our one-time signature scheme.
Some of the proofs are relegated to the full version of this paper [16].

2 Definitions

2.1 Virtual Black-Box Obfuscation

In [1], [5], and other works, an obfuscator is defined as a compiler that takes
a circuit as input and returns another circuit. The output circuit should be
a “garbled” version of the input circuit, in the sense that the circuits should
have the same functionality, but it should be difficult for an adversary to learn
information from the output circuit.

Consider an imaginary world in which people can give others access to ora-
cles at will. In this imaginary world, we can easily perform perfect obfuscation
by giving users oracle access to a computer program. The oracle allows them
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to learn the program’s input-output functionality, but any other aspect of the
program’s behavior is hidden from the users. Unfortunately, in the real world
we cannot hand out oracles to other people. Instead, we want obfuscators to be
able to replicate the power of oracles in the imaginary world. The formalization
of obfuscation provided by Barak et al. [1], called the virtual black-box property,
achieves this goal.

The virtual black-box property considers two different worlds. In the real
world, an efficient adversary has access to the obfuscated program code and at-
tempts to learn a one bit predicate about the underlying program. The definition
ensures that there exists a simulator in imaginary world that only interacts with
an oracle to the program but can still can learn the same predicate that the
adversary learns in the real world. Hence, the virtual black-box property ensures
that access to the code of an obfuscated program is no more useful than access
to the oracle.

We only require that the obfuscator operate over a specified family of circuits.
Throughout this work, all circuits are assumed to be non-uniform.

Definition 1 (Obfuscation). Let C = {Cn}n∈N be a family of polynomial-size
circuits, where Cn denotes all circuits of input length n. A probabilistic polynomial
time (PPT) algorithm O is an obfuscator for the family C if the following three
conditions are met.

1. Approximate functionality: There exists a negligible function ε such that for
every n, every circuit C ∈ Cn and every x in the input space of C,

Pr[O(C)(x) = C(x)] > 1 − ε(n) ,

where the probability is over the randomness of O. If this probability always
equals 1, then we say that O has exact functionality.

2. Polynomial slowdown: There exists a polynomial q such that for every n,
every circuit C ∈ Cn, and every possible sequence of coin tosses for O, the
circuit O(C) runs in time at most q(|C|).

3. Virtual black-box: For every PPT adversary A and polynomial δ, there exists
a PPT simulator S such that for all sufficiently large n, and for all C ∈ Cn,

|Pr[A(O(C)) = 1] − Pr[SC(1n) = 1]| < 1
δ(n)

,

where the first probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.

2.2 Vector Spaces

In this section, we define the vector spaces over which our constructions operate.
Let d ∈ N, p be a prime number, and Fp = Z

pZ . Then, Fp is a field and Fd
p is a

vector space over Fp. We denote a vector in the vector space by x = (x1, . . . , xd),
and we have an inner product-style operation given by 〈x,y〉 =

∑d
i=1 xiyi.
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Definition 2. Let S ⊆ Fd
p be a set.

1. Two vectors x,y ∈ Fd
p are said to be orthogonal if their inner product is

zero, so 〈x,y〉 = 0. Note that the set of all vectors orthogonal to x forms a
(d − 1) dimensional hyperplane.

2. The closure of S, written S̄, is the subspace of all linear combinations of
vectors in S.

3. The orthogonal complement of S, written S⊥, is the subspace of all vectors
that are orthogonal to every vector in S. That is,

S⊥ = {x ∈ Fd
p : 〈x, s〉 = 0 ∀s ∈ S} .

We caution that Fd
p does not satisfy all of the axioms of an inner product space.

Nevertheless, the following theorem about inner product spaces, which we need
in the proof of our main theorem, does hold over Fd

p.

Theorem 3. Let S ⊆ Fd
p be a set. Then, (S⊥)⊥ = S̄.

Proof (sketch). First, S⊥ and S⊥⊥ are subspaces of Fd
p because the conditions

imposed on them are linear. Second, S̄ ⊆ S⊥⊥ because the vectors in S̄ are
orthogonal to those in S⊥, so they are in S⊥⊥. Third, dim(S̄) = dim(S⊥⊥)
because both of them are equal to d− dim(S⊥).

Therefore, S̄ and S⊥⊥ are subspaces of Fd
p of the same dimension such that

one is included in the other, so they are equal. ��

We also note that the vector space Fd
p is a bit redundant for our needs. We wish

to identify a hyperplane P with a vector x that is orthogonal to every vector in
the hyperplane. However, the vector x is not unique: indeed, for any c ∈ Fp \ 0,
the vector cx is also orthogonal to every vector in P , so the normal vector to the
hyperplane is only unique up to scalar multiplication. As a result, we note that
there are only d− 1 degrees of freedom when choosing a normal vector, which is
why the d = 2 case corresponds to point functions. One canonical representation
of the normal vector, which we will use when convenient throughout the paper,
is to consider all of the vectors in Fd

p whose first non-zero coordinate equals 1.1

3 Our Assumption

In this section, we define the main assumption. Then, we relate our assumption
to a DDH variant found in [6] and consider the assumption in the generic group
model.

Our assumption uses groups of increasing prime order. We use the following
definition to encapsulate the order requirement.

1 In fact, the appropriate ambient space from which to consider the normal vectors is
the projective space Pd−1(Fp), and we are using its embedding in Fd

p as a concrete
instantiation of the projective space.
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Definition 4. A function ρ(n) is called a prime sequence if for every n ∈ N,
ρ(n) is a prime number in the range (2n−1, 2n].

Our assumption is parametrized by d ∈ N. We abuse notation a bit and denote
Fd

ρ = {Fd
ρ(n)}n∈N.

Assumption 5. Given d ∈ N, there exists a family of groups G = {Gn}n∈N

(written multiplicatively) such that the following three conditions hold:

1. There are efficient algorithms to perform the group operation, to test for
equality with the identity element, and to sample uniformly from G.

2. The orders of the groups form a prime sequence ρ(n) = |Gn|.
3. For every PPT adversary A and for all families of distributions L = {Ln}n∈N

and R = {Rn}n∈N over Fd
ρ, there exists a polynomial q such that for all n,

|Pr[l ← Ln, g
U← Gn : A(gl1 , . . . , gld) = 1]

− Pr[r ← Rn, g
U← Gn : A(gr1 , . . . , grd) = 1]|

≤ q(n) · max
x∈Fd

ρ(n)

|Pr[l ← Ln : 〈l,x〉 = 0] − Pr[r ← Rn : 〈r,x〉 = 0]| . (1)

In words, this assumption states that an adversary can distinguish two distribu-
tions of vectors if and only if linear tests can do so as well.

3.1 Discussion

We make several remarks:

1. The right-hand side of (1) depends on ρ but not on any other property of G.
2. Note that the adversary is allowed to distinguish L and R better than any

single linear test does. For example, the adversary may try many linear tests.
The assumption merely states that the left-hand side of (1) is negligible
whenever the right-hand side is.

3. For a given adversary A, we denote Al = Pr[g U← Gn : A(gl1 , . . . , gld) = 1]
and AL = Pr[l ← Ln : Al] for simplicity. We will say that L and R are
indistinguishable by linear tests if

ε(n) = max
x∈Fd

ρ(n)

|Pr[l ← L : 〈l,x〉 = 0] − Pr[r ← R : 〈r,x〉 = 0]|

is a negligible function of n. Thus, the assumption states that for all L and
R that are indistinguishable by linear tests, |AL − AR| is negligible as well
for all PPT adversaries A.

4. This assumption is computationally falsifiable, though perhaps inefficiently.
There are two possible obstructions to efficiency. First, the descriptions of
L and R may be inefficient, although this is not a problem for the distribu-
tions constructed in our proof. Second, it may not be efficient to determine
which linear test performs the best. An interesting question is whether this
computation can be performed efficiently, leading to an efficient falsification
procedure.
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3.2 On the Assumption’s Hardness

In this section, we categorize the hardness of our assumption. To begin with, we
present a DDH-based assumption due to Canetti [6].

Assumption 6. Let n be a security parameter and let p = 2q+1 be a randomly
chosen n-bit safe prime. Consider the group Q of squares in F∗

p. For any well-

spread distribution ensemble {Xq} where the domain of Xq is Fq, for g
U← Q, a ←

Xq, b, c
U← Fq, the ensembles 〈g, ga, gb, gab〉 and 〈g, ga, gb, gc〉 are computationally

indistinguishable.

In this assumption, a “well-spread ensemble” means that the min-entropyH∞(Xq)
is a super-logarithmic function of n.

The following theorem exemplifies the strength of our assumption by relating
it to Assumption 6, which is already considered by the cryptographic community
to be quite strong.

Theorem 7. Assumption 6 implies Assumption 5 for dimension 2. For higher di-
mensions, our assumption may be stronger because Assumption 5 for dimension
d + 1 implies Assumption 5 for dimension d.

On the other hand, we provide evidence that our assumption is feasible by show-
ing that it holds in the generic group model.

Theorem 8. For all d ∈ N, Assumption 5 for dimension d holds in the generic
group model.

Finally, we note that Assumption 5 for dimension 1 trivially holds, even by
groups that do not satisfy DDH. A precise definition of the generic group model
and a proof of Theorem 8 can be found in [16]. The rest of this section is devoted
to a proof of Theorem 7, which we break into the following two lemmas.

Lemma 9. Assumption 5 for dimension d+1 implies Assumption 5 for dimen-
sion d.

Lemma 10. Assumption 6 implies Assumption 5 for dimension 2.

Proof (Lemma 9). Assume that Assumption 5 for dimension d is false, so for
every prime sequence ρ and every set of groups G = {Gn}n∈N, there exists
a PPT adversary A and two distributions L, R over vectors in Fd

ρ that are
indistinguishable by linear tests but such that |AL − AR| is noticeable.

Now construct distributions L′ and R′ over vectors in Fd+1
ρ that sample L

and R, respectively, to obtain the first d components of the vector, and then
sample the final component uniformly over Fρ. We claim that linear tests do not
distinguish L′ from R′.

Any linear test x′
n ∈ Fd+1

ρ(n) that has a non-zero final component will not
distinguish L′

n from R′
n because the final component of these two distributions

is uniform, so the inner product will have the uniform distribution in both cases
as well. Furthermore, if there exists a sequence of linear tests {x′

n} ∈ Fd+1
ρ that
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have zero for the final component and distinguish L′ from R′, then the sequence
{xn} ∈ Fd

ρ formed by deleting the final component from x′
n distinguishes L and

R, contradicting our assumption that L and R are indistinguishable by linear
tests.

Finally, let A′ be the adversary that drops its final component and feeds the
rest to A. It is clear that A′

L′ = AL and A′
R′ = AR, so |A′

L′ −A′
R′ | is noticeable.

Therefore, Assumption 5 for dimension d + 1 is false as well. ��

Proof (Lemma 10). Suppose that Assumption 6 holds. For every n, the assump-
tion holds for a randomly chosen safe prime p, and thus for every n there exists
some safe prime pn = 2qn + 1 for which it holds. Let Gn be the subgroup of
quadratic residues in F∗

pn
, and let G = {Gn}n∈N. We claim that Assumption 5

for dimension 2 holds for the family G and prime sequence ρ(n) = qn.
It is clear that the first two properties of Assumption 5 for dimension 2 hold.

Also, using our convention that the first non-zero coordinate of a vector is fixed
to be 1, we may assume without loss of generality that every vector in F2

ρ has
the form (1, x) for x ∈ Fqn except for the vector (0, 1), which is easy to test for.
Thus, a “vector” is really just a group element. Furthermore, a “linear test” is
just an equality check because the vector (y,−1) has an inner product of zero
with the vector (1, x) if and only if y = x.

Hence, it remains to prove the following: for every PPT adversary A and for
all families of distributions L and R over {Fqn}n∈N such that

max
x∈Fqn

|Pr[l ← L : l = x] − Pr[r ← R : r = x]|

is negligible, the quantity

|Pr[l ← Ln, g
U← Gn : A(g, gl) = 1] − Pr[r ← Rn, g

U← Gn : A(g, gr) = 1]|

is negligible as well.
First, we prove that the statement holds when L is well-spread and R is the

uniform distribution. Hence, we wish to show that for all PPT A,

|Pr[l ← Ln, g
U← Gn : A(g, gl) = 1] − Pr[r U← Fqn , g

U← Gn : A(g, gr) = 1]|

is negligible. The proof of this statement closely follows the proofs in [6], so we
only sketch the details here. If this statement is not true, then the probability
Px = A(1,x) = Pr[A(g, gx) = 1] is noticeably different from the mean value
P̄ = AR for super-polynomially many values of x. Without loss of generality,
there exist super-polynomially many values a for which Pa is noticeably larger
than P̄ . Let Xqn be the uniform distribution over all such a. Then, the ensembles
〈g, ga, gb, gc〉 and 〈g, ga, gb, gab〉 are distinguishable when a ← Xqn by running
A on the final two components of the ensemble. In the first case, A outputs 1
with probability P̄ , and in the second case, A outputs 1 with noticeably higher
probability. This contradicts Assumption 6.

Next, we note that the statement immediately extends to the setting where
both L and R are well-spread by a simple hybrid argument.
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Finally, we consider arbitrarily distributions L and R such that

max
x∈Fqn

|Pr[l ← L : l = x] − Pr[r ← R : r = x]|

is negligible. In words, this equation means that for every x that occurs with
noticeable probability in L, it occurs with the same probability in R as well
up to a negligible difference. Thus, the distributions L and R can only differ on
outcomes that occur with negligible probability. Therefore, it suffices to consider
L and R that are well-spread, and in this case we showed that for every PPT A,

|Pr[l ← Ln, g
U← Gn : A(g, gl) = 1] − Pr[r ← Rn, g

U← Gn : A(g, gr) = 1]|

is negligible, so Assumption 5 for dimension 2 holds as desired. ��

We note that a literal converse to this lemma does not quite make sense because
Assumption 6 is specific to the group of quadratic residues modulo F∗

p for a safe
prime p, whereas Assumption 5 makes the more general claim that there exists
some family of groups that satisfy a certain condition (potentially quite different
from the groups used in Assumption 6).

4 Construction

In this section, we define the family of programs that we obfuscate, present the
obfuscator, and prove its security under Assumption 5.

Let d be an integer and ρ be a prime sequence. Given a vector a ∈ Fd
ρ(n),

let Ha be the circuit that has a hardwired, and on input x ∈ Fd
ρ(n), computes

〈a,x〉 in the obvious way and accepts if and only if the inner product equals 0.
Let Fd

ρ = {Ha : n ∈ N,a ∈ Fd
ρ(n)} be the family of all such circuits.

We show how to obfuscate the family Fd
ρ for any d ∈ N, prime sequence

ρ, and set of groups G (written multiplicatively) that satisfy Assumption 5 for
dimension d. The obfuscator OG,d operates as follows.

Algorithm 1. Obfuscator OG,d for the family of hyperplanes Fd
ρ

Input: vector a = (a1, . . . , ad) in Fd
ρ(n)

1: choose a generator g
U← Gn \ {1Gn} uniformly at random

2: compute gi ← gai for i = 1, . . . , d
Output: circuit that has g1, . . . , gd hardwired, and on input a vector x, accepts if and

only if
∏d

i=1 gxi
i = 1Gn

We stress that the generator g is not made public in addition to the gi. How-
ever, recall that the vector a is only defined uniquely up to scalar multiplication,
and that one way to enforce this requirement is to assume that the first non-zero
coordinate of a equals 1. With this convention, the generator g is revealed.
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This convention makes it clear that in the d = 2 case, this construction is the
same as the one in [6], and it can be based off the same DDH assumption by
Theorem 7. Hence, our construction subsumes the one in [6].

We note that in the work of Shen, Shi and Waters [13] on private inner-
product predicate encryption schemes, their construction also tests whether an
inner product is 0 by running it in the exponent of a group where CDH is hard.
Otherwise the settings, constructions, and assumptions are quite different. In
particular, a user who wants to check whether a vector x has inner product
0 with a hidden vector v needs to first encrypt v using a secret key (so their
predicate encryption scheme does not directly yield an obfuscation).

We now show that OG,d is an obfuscator, based on Assumption 5.

Theorem 11. Let d ∈ N and G be a set of groups satisfying Assumption 5. Then,
the algorithm OG,d is an obfuscator for the family Fd

ρ with exact functionality.

It is clear that OG,d satisfies the exact functionality and polynomial slowdown
properties required of an obfuscator, so it remains to prove the virtual black-box
property. Before doing so, we present a definition that will be useful throughout
the proof and an intermediate lemma.

Definition 12. Let d ∈ N and p be a prime number. We say that the set V ⊆ Fd
p

distinguishes two vectors l, r ∈ Fd
p if there exists x ∈ V such that exactly one of

the inner products 〈l,x〉 and 〈r,x〉 equals 0. Otherwise, we say that l and r are
indistinguishable by V , which means that for all x ∈ V , 〈l,x〉 = 0 if and only if
〈r,x〉 = 0.

At a high level, this lemma states that for every adversary A, there exists a set
V that can distinguish vectors in Fd

ρ(n) as well as A can.

Lemma 13. Suppose (G, d) satisfy Assumption 5. For every PPT adversary A
and polynomial ε, there exists a polynomial s (that can depend on A) such that
for every n ∈ N, there exists a set V ⊆ Fd

ρ(n) of size at most s(n), such that for
every pair of vectors l, r ∈ Fd

ρ(n) that are indistinguishable by V , |Al−Ar| < 1
ε(n) .

Using standard techniques found in [6] and other papers, we can show that the
lemma implies that OG,d is an obfuscator.

Proof (Theorem 11 from Lemma 13). Let A be an adversary and ε be a polyno-
mial, and we must construct a simulator S such that for every n ∈ N and every
vector r ∈ Fd

ρ(n),

|Pr[A(OG,d(Hr)) = 1] − Pr[SHr(1n) = 1]| < 1
ε(n)

.

By Lemma 13, there exists a polynomial s such that for every n ∈ N, there exists
a set V ⊆ Fd

ρ(n) of size at most s(n) such that the property in the lemma holds.
Let SHr (1n) be the nonuniform circuit that receives V as advice and does the
following:
1: for all x ∈ V do
2: query the oracle on input x and record the response
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3: end for
4: choose a vector l ∈ Fd

ρ(n) such that ∀x ∈ V, 〈l,x〉 = 0 iff H(x) accepts
5: output A(OG,d(Hl))

Finally, since Pr[A(OG,d(Hr)) = 1] = Ar by definition and Pr[SHr (1n) = 1] =
Al by construction, Lemma 13 ensures that S satisfies the virtual black-box
condition. ��

Next, we provide some high-level intuition about why the lemma is true. Sup-
pose there is an adversary A that breaks the obfuscation (and thus the lemma as
well). We build a new adversary A∗ that runs A many times. Also, we construct
two distributions L and R. These distributions will be uniform over their sup-
port, so we can really just think of them as sets. The construction of L and R
proceeds iteratively, subject to two invariant conditions: first, A∗ must be able
to distinguish these distributions, and second, no linear test should do so. These
constraints together violate Assumption 5.

We achieve the first invariant using the negation of Lemma 13, which contin-
ually gives us a pair of vectors (li, ri) that A (and thus A∗) can distinguish. We
add li to the support of L and ri to the support of R. The second invariant is
achieved by continually monitoring L and R as they grow. We “trap” any linear
test x once it is able to distinguish d of the pairs (li, ri). Once we have identi-
fied such a linear test, we ensure that subsequent pairs of vectors that we add
to L and R are indistinguishable by x. Hence, any linear test only distinguishes
a constant number of the pairs, so by making the distributions L and R well-
spread, we ensure that all linear tests succeed with only negligible probability.
The only downside to the proof is that the “trapping” procedure requires a sim-
ulator whose runtime is exponential in d, so the proof only holds for constant
dimension.

The rest of this section is devoted to a formal proof of the lemma, which uses
some techniques from the proofs in [6], some novel proof concepts, and some
linear algebra. We use the set notation [k] = {1, 2, . . . , k} in this proof.

Proof (Lemma 13). Given G and d, assume for the sake of contradiction that
the obfuscator OG,d does not satisfy Lemma 13. Hence, there exists an adversary
A and polynomial ε such that for all polynomials s, there exist infinitely many
n ∈ N such that for every set V ⊆ Fd

ρ(n) of size at most s(n), there exist vectors
l, r ∈ Fd

ρ(n) with the property that 〈l,x〉 = 0 if and only if 〈r,x〉 = 0 for all
x ∈ V , such that |Ar − Al| ≥ 1

ε(n) .
Because these probabilities are separated by a noticeable amount, an efficient

algorithm is able to determine which of Al and Ar is larger by taking n samples
of each one (using independent randomness for A and the choice of g U← Gn each
time) and observing which sample probability is greater. By a Chernoff bound,
this algorithm succeeds with overwhelming probability. Thus, from now on we
assume without loss of generality that Ar > Al, which allows us to drop the
absolute value.



84 R. Canetti, G.N. Rothblum, and M. Varia

Given a constant c, apply this statement to the polynomial sc(n) = nc and
the resulting n ∈ N in order to build two large sets L̂c

n and R̂c
n iteratively as

follows.

1: initialize V ← ∅ and i ← 1
2: while |V | ≤ nc do
3: given the set V , let li and ri be vectors that violate Lemma 13
4: insert li ∈ L̂c

n and ri ∈ R̂c
n

5: for all subsets T ⊆ L̂c
n ∪ R̂c

n of size at most d− 2 do
6: add to V random bases of (T ∪ {li})⊥ and (T ∪ {ri})⊥
7: end for
8: increment i ← i + 1
9: end while

This algorithm iteratively finds pairs of vectors that the adversary A can
distinguish but the set V cannot. Then, it adds many points to V . We now
describe in detail how these additional points affect future iterations of the loop.

When T = ∅ in the for loop, the algorithm adds to V a basis of vectors
orthogonal to li. Since li is the only vector (up to scalar multiplication) that is
orthogonal to every vector in this basis, it follows that in all future iterations
i′ > i of the loop, li′ and ri′ are linearly independent from li, because li′ and
ri′ must be indistinguishable by V . The same is true for ri, so the sets L̂c

n and
R̂c

n are continually increasing in size.
When T is not equal to the empty set, the additional points added to V ensure

that linear tests cannot distinguish L̂c
n from R̂c

n. Specifically, we claim that for
every vector x ∈ Fd

ρ(n), there are at most d indices such that 〈x, li〉 = 0 but
〈x, ri〉 �= 0, or vice-versa.

To see this, suppose without loss of generality that there exists a vector x ∈
Fd

ρ(n) and J indices i1 < i2 < · · · < iJ such that 〈x, lij 〉 = 0 but 〈x, rij 〉 �= 0 ∀j ∈
[J ]. We show by induction that the vectors li1 , . . . , liJ are linearly independent.
As the base case, we showed above that any two vectors from L̂c

n∪R̂c
n are linearly

independent. Now, for j ≥ 2 suppose that Sj = {li1 , . . . , lij} contains linearly
independent vectors. At iteration ij of the loop, a basis {b1, . . . , bk} of the space
S⊥

j is added to V . By definition, the basis vectors are linearly independent. If
lij+1

were linearly dependent on Sj , say lij+1
= α1li1 + · · · + αjlij , then

〈lij+1
, bi′〉 = 〈α1li1 + · · · + αjlij , bi′〉 = α1〈li1 , bi′〉 + · · · + αj〈lij , bi′〉 = 0

for all i′ ∈ [k]. Because lij+1
and rij+1

are indistinguishable by V , it follows
that 〈rij+1

, bi′〉 = 0 for all i′ ∈ [k] as well, so

rij+1
∈ {b1, . . . , bk}⊥

= (S⊥
j )⊥ = Sj

by Theorem 3, which means that rij+1
is linearly dependent on the vectors in

Sj so 〈x, rij+1
〉 = 0. This contradicts the assumption that x distinguishes lij+1

from rij+1
, so the vectors li1 , . . . , lij+1

must be linearly independent, which
completes the induction. The vectors come from a space with dimension d, so
there can only be d linearly independent vectors, so J ≤ d as desired.
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Next, we find a lower bound on the size of the sets L̂c
n and R̂c

n. The loop
condition is to stop when |V | > nc. On each iteration of the loop, |L̂c

n| and |R̂c
n|

each increase by 1 and |V | increases by at most

2d×
[

d−2∑
k=0

(
|L̂c

n ∪ R̂c
n|

k

)]
≤ 2d2

(
|L̂c

n ∪ R̂c
n|

d − 2

)
≤ O(|L̂c

n ∪ R̂c
n|d−2) ,

which means that the size of V is

|V | = O(2d−2) + O(4d−2) + · · · + O(|L̂c
n ∪ R̂c

n|d−2) = O(|L̂c
n ∪ R̂c

n|d−1) .

We also know that |V | ≤ nc, so it follows that |L̂c
n| and |R̂c

n| are Ω(nc/d).
Consider the 2ε(n) intervals [0, 1

2ε(n) ], [ 1
2ε(n) ,

1
ε(n) ], . . ., [1 − 1

2ε(n) , 1] that par-
tition the unit interval. We say that an interval [α, β] “separates” an li, ri pair if
Ali < α and Ari > β. Since Ari −Ali > 1

ε(n) , each pair is separated by at least
one of the 2ε(n) intervals. Hence, by the pigeonhole principle, there exists one
interval that separates a 1

2ε(n) fraction of the pairs. Call this interval [α∗
c , β

∗
c ].

Let Lc
n and Rc

n be subsets of L̂c
n and R̂c

n, respectively, consisting only of the li,
ri pairs that are separated by [α∗

c , β
∗
c ]. Note that |Lc

n| and |Rc
n| are Ω(nc/d

ε(n) ).
Furthermore, there is an algorithm A∗

c that distinguishes Lc
n from Rc

n. It is
nonuniformly hardcoded with the value μ∗

c = α∗
c+β∗

c

2 , and operates as follows.

Input: a vector v ∈ Fd
ρ(n)

1: run A(OG,d(Hv)) a total of 32n · ε(n)2 times using fresh randomness for A
and O each time

2: let τ denote the fraction of iterations that A accepts
Output: “Lc

n” if τ ≤ μ∗
c and “Rc

n” otherwise

If the input to this algorithm is a vector l ∈ Lc
n, then we know that Al ≤ α∗

c .
By a Chernoff bound, the probability that the empirical acceptance rate τ is
greater than μ∗

c = α∗
c + 1

4ε(n) is at most e−n. The same is true for vectors in
Rc

n, so this algorithm succeeds with probability 1 − e−n. On the other hand, we
argued above that linear tests distinguish Lc

n from Rc
n with probability at most

d
|Lc

n| = O( ε(n)
nc/d ).

Finally, we construct the distributions L and R that break Assumption 5.
Recall that the negation of Lemma 13 yields a function n(c) as follows: for every
poly sc the lemma provides some value n of the security parameter where there
is a counterexample to the lemma. Furthermore, we note that as c → ∞, the
sequence {n(c)}c∈N → ∞ as well. This is due to the fact that if c > nd, then
the lemma considers sets V of size up to nnd > ρ(n)d, so the entire collection of
vectors in Fd

ρ(n) can fit in V and the lemma is obviously true in this case.
We form a sort of inverse to this function as follows: given n, let cn be the

biggest value of c such that the counterexample with c applies to n. Note that
cn is not well-defined for all values of n, but it is defined for infinitely large set of
values which we will denote by N ⊆ N. It follows from the above argument that



86 R. Canetti, G.N. Rothblum, and M. Varia

as n → ∞, the sequence {cn}n∈N → ∞ as well. Hence, there exists an infinitely
large subset N ′ ⊆ N such that {cn}n∈N ′ is monotonically increasing. We form
the families of distributions L and R such that Ln and Rn are uniform over the
sets Lcn

n and Rcn
n , respectively, for all n ∈ N ′. We set Ln = Rn arbitrarily for

all n /∈ N ′.
Consider the following unified adversary A∗ that is nonuniformly hardcoded

with the values μ∗
cn

= 1
2 (α∗

cn
+ β∗

cn
) for all n ∈ N ′ (and arbitrarily values of μ∗

cn

for n /∈ N ′).

Input: a vector v ∈ Fd
ρ(n)

1: run A(OG,d(Hv)) a total of 32n · ε(n)2 times using fresh randomness for A
and O each time

2: let ξ denote the fraction of iterations that A accepts
Output: “Ln” if ξ ≤ μ∗

cn
and “Rn” otherwise

This adversary will succeed at distinguishing L from R with overwhelming
probability 1 − e−n for all n ∈ N ′ (and of course the adversary will fail on
all n /∈ N ′). On the other hand, any sequence of linear tests only succeeds with
probability O( ε(n)

ncn/d ) which is negligible since cn → ∞ as n → ∞. Hence, there is
no polynomial q(n) that bounds the ratio of success probabilities for the infinitely
many n ∈ N ′, so Assumption 5 is false as desired. ��

5 Obfuscation of Hyperplanes with Multi-bit Output

Given an obfuscator for the family of point functions, the work of [10] shows
how to construct an obfuscator for the family of point functions with multi-bit
output. This family also accepts a single point, but instead of just having a yes
or no output, it returns a hidden message on the correct input value. Such an
obfuscator can be used to create a strong symmetric-key encryption scheme that
satisfies leakage resilience and circular security [17]. Their construction applies
in our case too, so we can obfuscate the family of “hyperplanes with multi-bit
output,” with the nice property that the message is not revealed when the input
is the zero vector (the one vector that is known to be in every hyperplane).

Formally, let Ha,m be the circuit that has the vector a ∈ Fd
ρ(n) hardwired,

and on input a vector x ∈ Fd
ρ(n), outputs m if 〈a,x〉 = 0 but x �= 0, and outputs

⊥ otherwise. Let Md
ρ,l = {Ha,m : a ∈ Fd

ρ(n),m ∈ {0, 1}l(n)} be the family of
all such circuits. In particular, we can think of the hyperplanes family Fd

ρ as a
special case of this family where l = 0 (i.e. there is only one possible message).

We show how to obfuscate the family Md
ρ,l given any d ∈ N and obfuscator

for hyperplanes OG,d that is (l + 1)-composable.

Definition 14 (t-composable obfuscation [10]). A PPT O is a t-composable
obfuscator for the family C if functionality and polynomial slowdown hold as be-
fore, and the virtual black-box property holds whenever the adversary and simu-
lator are given up to t circuits in C. Formally, for every PPT adversary A and
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polynomial δ, there exists a PPT simulator S such that for all sufficiently large
n, and for all C1, . . . , Ct ∈ Cn,

|Pr[A(O(C1), . . . ,O(Ct)) = 1] − Pr[SC1,...,Ct(1n) = 1]| < 1
δ(n)

,

where the first probability is taken over the coin tosses of A and O, and the
second probability is taken over the coin tosses of S.

Unfortunately, we do not know how to prove from Assumption 5 that OG,d is
even 2-composable. All we can show is that the composability of OG,d is related
to the length of messages that we can obfuscate. Let ÕG,l,d be an obfuscator for
the family Md

ρ,l that operates as follows.

Algorithm 2. Obfuscator ÕG,l,d for the family Md
ρ,l

Input: vector a ∈ Fd
ρ(n)

1: set C0 = OG,d(a)
2: for i = 1 to l do
3: if mi = 1 then
4: set Ci = OG,d(a)
5: else
6: choose a′ U← Fd

ρ(n) and set Ci = OG,d(a′)
7: end if
8: end for
Output: circuit that hardwires C0, . . . , Cl and operates as follows on input x ∈ Fd

ρ(n):
output ⊥ if C0(x) rejects or if x = 0, otherwise output the string s formed by
si = Ci(x) for i = 1, . . . , l

Theorem 15. Suppose that the obfuscator OG,d is (l + 1)-composable for some
l = poly(n), and let ρ(n) = |Gn|. Then, ÕG,l,d is an obfuscator for the family of
hyperplanes with multi-bit output Md

ρ,l with approximate functionality.

The proof of this theorem is similar to the one in [10].

Proof. The approximate functionality and polynomial slowdown of ÕG,l,d are
clear from the construction and the corresponding properties of OG,d. For i = 1
to l, let ai be the vector such that ai = a if mi = 1 or ai is uniformly chosen
otherwise. By the (l + 1)-composable virtual black-box property, we know that
there exists a simulator S such that the output of

A(ÕG,l,d(a)) = A(OG,d(a1), . . . ,OG,d(ad))

can be simulated by SHa1 ,...,Had . Furthermore, the oracles Ha1 , . . . , Had can be
simulated by the oracle Ha,m up to a negligible simulation error in the following
manner: if Ha,m(x) = ⊥, then we say that Hai(x) = 0 for all i. Otherwise
Ha,m(x) = m, in which case we say that Hai(x) = mi. Hence, the simulator
THa,m that runs SHa1 ,...,Had and emulates the oracle queries in this manner
satisfies the virtual black-box property for ÕG,l,d. ��
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6 One-Time Signature Schemes

We can use an obfuscator for the family of planes in three-dimensional space
to form a one-time signature scheme. Informally, the secret and public keys are
a hidden plane and an obfuscation of the plane membership testing program,
respectively. A signature of a message is a point on the hyperplane that is related
to the message, and the verification procedure runs the obfuscated hyperplane
testing circuit to verify signatures.

More formally, let ρ be a prime sequence, and O be an obfuscator for the family
of hyperplanes over F3

ρ (such as the obfuscator OG,d constructed in Section 4).
Consider the following three algorithms.

KeyGen(1n): Choose field elements sk1, sk2, c
U← Fρ(n) \ 0. Form the vector

sk = (sk1, sk2, 1) in F3
ρ(n) and the obfuscated plane P = O(sk). The secret

key is (sk1, sk2), and the public key is (P, c).
Sign(m ∈ Fρ(n)): Let σ2 be the unique field element such that the inner product

〈sk, (cm, σ2, 1)〉 = 0. The signature is (cm, σ2).
Verify(m, (σ1, σ2)): Accept if and only if σ1 = cm and P (σ1, σ2, 1) accepts.

This signature scheme is unforgeable in a weak sense, described in [14] and
other works, in which the forger must choose the message on which she requests
a signature before being shown the public key. The techniques in [14] allow
us to transform this scheme into one that is existentially unforgeable under
chosen message attacks (the standard security notion for signature schemes).
The transformation requires a chameleon hash function whose seed can be chosen
with public coins. It is known how to construct such a hash function under the
DDH assumption [18].

Furthermore, our one-time signature scheme is resilient to any leakage function
whose output length is less than half as long as the secret key.

Theorem 16. Let ρ be a prime sequence and O be an obfuscator for the fam-
ily of hyperplanes over the vector space F3

ρ. Then, the above algorithm leads to
an existentially unforgeable one-time signature scheme that is resilient to any
leakage function whose output length is bounded by

l(n) = n − ω(log(n)) .

In particular, leakage of l(n) = γn bits for any γ < 1 is permitted.

This theorem is proved in [16]. We note that the leakage bound in the theorem is
tight. Consider the following leakage function that has a message m hardcoded:
use the secret key to form a signature associated to m, and output σ2. This
leakage function has n bits of output, and permits a forgery of the message m
by the signature (cm, σ2).

The secret key consists of two elements of Fρ(n), so it is 2n bits long. Thus,
our signature scheme permits leakage of up to half of the length of the secret
key. This matches the leakage bound attained in [15] for schemes that do not
use general non-interactive zero-knowledge proofs (albeit under a much stronger
assumptions).
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Abstract. Secure multiparty computation (MPC) allows two or more
parties to perform a joint distributed computation without revealing
their secrets to each other. While MPC has traditionally been viewed
as an ends rather than a means, in recent years we have seen a grow-
ing number of unexpected applications of MPC and connections with
problems from other domains.

In this talk we will survey several of these connections and highlight
some research directions which they motivate. In particular, we will dis-
cuss the following connections:

– MPC and locally decodable codes. How can the secrecy property of
MPC protocols be useful for reliable and efficient access to data?

– MPC and the parallel complexity of cryptography. How can progress
on the round complexity of MPC lead to better parallel implemen-
tations of one-way functions and other cryptographic primitives?

– MPC and private circuits. How can MPC be used to protect cryp-
tographic hardware against side-channel attacks?

– MPC in the head. How can MPC protocols which assume an honest
majority be useful in the context of two-party cryptography?
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Abstract. For secure two-party and multi-party computation with abort, clas-
sification of which primitives are complete has been extensively studied in the
literature. However, for fair secure computation, where (roughly speaking) either
all parties learn the output or none do, the question of complete primitives has re-
mained largely unstudied. In this work, we initiate a rigorous study of complete-
ness for primitives that allow fair computation. We show the following results:

– No “short” primitive is complete for fairness. In surprising contrast to
other notions of security for secure two-party computation, we show that for
fair secure computation, no primitive of size O(log k) is complete, where k
is a security parameter. This is the case even if we can enforce parallelism
in calls to the primitives (i.e., the adversary does not get output from any
primitive in a parallel call until it sends input to all of them). This negative
result holds regardless of any computational assumptions.

– A fairness hierarchy. We clarify the fairness landscape further by exhibiting
the existence of a “fairness hierarchy”. We show that for every “short” � =
O(log k), no protocol making (serial) access to any �-bit primitive can be
used to construct even a (� + 1)-bit simultaneous broadcast.

– Positive results. To complement the negative results, we exhibit a k-bit prim-
itive that is complete for two-party fair secure computation. We show how to
generalize this result to the multi-party setting.

– Fairness combiners. We also introduce the question of constructing a proto-
col for fair secure computation from primitives that may be faulty. We show
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that this is possible when a majority of the instances are honest. On the flip
side, we show that this result is tight: no functionality is complete for fairness
if half (or more) of the instances can be malicious.

1 Introduction

In the setting of secure multi-party computation, n participants wish to jointly compute
a function while maintaining several security properties, such as the privacy of their
inputs, correctness of the outputs, and others. The security of their computation is de-
fined by comparing their view in the protocol to an ideal world — one that embodies
complete security — and proving that they are indistinguishable to an outside observer.
In this ideal world there is an additional trusted party that privately receives the inputs
from all participants, performs the computation on their behalf, and returns the outputs.

In the real world, of course, relying on an outside party is undesirable. In some of
the most fundamental results in modern cryptography, many beautiful techniques have
been developed in order to remove the trusted party while retaining most of the security
properties that he affords. In fact, in the two-party setting there is only one security
property for which the trusted third party has remained essential. Informally, we say a
computation is fair if either all players receive their output or none of them do. It is easy
to see that in the ideal world, where there is an additional trusted party, computations
are always fair. This is a difficult property to achieve in the real world, as a malicious
player may abort the protocol prematurely.

In 1986, Richard Cleve [20] proved that, for general functionalities, fairness is im-
possible to achieve unless the majority of parties is honest. Specifically, he showed that
even the very basic functionality of coin-tossing cannot be fairly computed by a two-
party protocol. Recalling that fairness is immediate with the help of a third party, in this
paper we address a very natural question.

What is the minimum amount of help required to be able to compute all func-
tions fairly?

We think of this helper as a naive black box, or a primitive, with no knowledge of
the function being computed. It is charged with a fixed task: it takes inputs from each
player, and then simultaneously outputs some fixed function of the inputs to all players.
Clearly we can compute any function fairly if this primitive is sufficiently complex: we
can simply define its input to be a description of the function being computed, along
with the inputs to that function. (Indeed, this was demonstrated by Fitzi et al. [26], as
discussed below.) However, our interest is in reducing the complexity of these primi-
tives. In particular, we study the minimum input size to such primitives that will enable
the fair computation of any function.

Interestingly, there has been extensive research on very similar questions in the con-
text of unfair secure computation. When there is no honest majority among the players,
it is known that oblivious transfer is both necessary and sufficient for computational
security (without fairness) [51,31,42]. Similarly, in addition to the impossibility of at-
taining fairness without an honest majority, it is also known that we cannot achieve
information-theoretic security in this setting [19], and there is a long line of research
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identifying the minimum primitives that enable information theoretic security (without
fairness). Surprisingly, very little work has addressed the parallel questions with respect
to fairness.

1.1 Our Results

The main theme that recurs throughout our results is that when looking at primitives for
fair computation, input size matters. We classify primitives according to the length of
the inputs provided by the two parties: a k-bit primitive accepts inputs of size k from
both parties.

No “Short” Primitive is Complete for Fairness. For many other notions of security
which are unrealizable in the plain model (such as unconditional security and UC
security) there exist finite functionalities which are complete for that setting (e.g.,
[32,39,41,42]). In other words, to enable (unfair) secure computation in these models,
it suffices to give access to a trusted implementation of some simple function with short
inputs. Surprisingly, we show that no primitive of size O(log κ) is complete for fair com-
putation (where κ is the security parameter). Our impossibility result holds even if we
allow parallel calls to the primitives (where the adversary does not get output from any
primitive in a parallel call until it sends input to all of them), and even if the adversary
may only deviate from the protocol by aborting early.

Coin-Flipping and SimultaneousBroadcastarenotComplete forFairness. Coin-flipping
is perhaps the simplest fair functionality that is known to be unrealizable in the plain
model [20]. Simultaneous broadcast is important because it is one of the most natural
candidates for acompleteprimitive for fairness. It isoften thefirst thing thatcomes to mind
when thinking about how to construct a fair protocol. Lending weight to this intuition,
Katz proved that simultaneous broadcast is complete for partial fairness [40]. Finally,
although we know that is also unrealizable in the plain model (even a 1-bit simultaneous
broadcast implies fair coin-flipping), it can be constructed from conceivable non-standard
assumptions such as timed commitments [12] or physical limits on signal propagation.
Surprisingly, our results imply that simultaneous broadcast of any size (as well as coin-
flipping) is not complete for fair computation (this is a direct corollary of our “No Short
Primitive” result).

A Fairness Hierarchy. We clarify the fairness landscape further by exhibiting the exis-
tence of a “fairness hierarchy.” We show that for every “short” k (when the adversary
can run in time poly(2k)), no k-bit primitive can be used to construct even a k + 1-bit
simultaneous broadcast. This result is almost tight: given a “long” k′-bit simultaneous
broadcast and a semantically-secure encryption scheme with keys of length k′, we can
construct a simultaneous broadcast of any length by first exchanging encrypted inputs
and then exchanging keys. The fairness hierarchy complements the first proof of im-
possibility for achieving fair computation through short primitives (described above).
The latter demonstrates that there exists some function that cannot be fairly computed,
even with (parallel) access to a short primitive. In the hierarchy result, we only consider
serial access to a short, k-bit primitive, but we demonstrates that it does not enable fair
computation for even the most simple k + 1 bit primitives.
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Positive Results. Previous work by Fitzi et al. [26] proposed the Universal Black Box
(UBB) primitive and showed that is is complete for fair secure computation in both
the two-party and multi-party settings. However, the UBB primitive requires as input
a description of functionality to be computed (a more detailed description appears in
Sec. 3.2). Thus, its input size and running time depend on the complexity of the target
functionality.

In this paper, we show that there exists a much simpler primitive that is complete
for two-party fair computation. This primitive implements a “Fair Reconstruction” pro-
cedure for a secret sharing scheme. Before calling the primitive, the parties first run
an unfair secure computation that outputs non-malleable secret shares of the desired
function’s output. They then call the primitive using these secret shares as their input.
The input to the primitive depends on a security parameter and on the output size of the
functionality being computed (but not on its description). With the addition of compu-
tational assumptions (the existence of one-way functions), the input size can be made
to depend only on the security parameter.

We also show how this result can be generalized to the multi-party setting. This
generalization is straightforward if we are satisfied by fairness without robustness (i.e.,
if a single malicious party can cause the entire computation to abort). In the full-security
case, however, our results exhibit a trade-off between the input size and the number of
primitive invocations that may be required to complete the protocol: for n parties, we
describe a primitive that has input size O(n2) but requires O(n) invocations in the worst
case, and a more complex primitive that has input size O(2n), but only requires a single
invocation. (In contrast, the input size of the UBB primitive grows with the number of
parties, the functionality’s input length and description size — however, it requires only
a single invocation.)

Fairness Combiners. We next consider the orthogonal question of constructing a proto-
col for fair computation from primitives which may be faulty. Questions of this nature
have been studied in the context of many other primitives (e.g., [37,38]). We show a
functionality that is complete for two-party fair computation when the majority of its
instances are honest. On the flip side, we show that this result is tight: no functionality
is complete for fairness if half (or more) of the instances can be malicious.

1.2 Related Work

The issue of fairness has not been neglected; there has been a lot of diverging work
on achieving fairness through relaxations in the security definition [10,21,23,29,40,34],
relaxations in the communication model [43,40] and by enabling dispute resolution
through a trusted third party [2,3,13,47]. The recent counter-intuitive results of Gordon,
Hazay, Katz and Lindell [35,36], showing that some non-trivial functions can be fairly
computed in the plain model, have caused a surge of renewed interest in the subject.

Fair Exchange and Contract Signing. One of the earliest related problems in the cryp-
tographic literature is that of fairly exchanging items or information. In a fair exchange,
either both parties receive the item, or neither party does. Although we are interested in
fair computation of arbitrary functions, the problem of fair exchange turns out to be the
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crux of the matter. Exemplifying this, both the security definitions and the solutions for
the more general setting were usually used in this setting first.

In the plain model, Cleve showed that perfectly fair exchange is impossible [20].
Boneh and Naor gave a similar lower bound for fair contract signing [12]. However,
relaxed definitions of fairness are still possible to achieve.

One very common relaxation is that each party would have to perform a similar amount
of computation to compute its output. This definition is weak enough to be satisfied by
protocols in the plain model (using standard cryptographic assumptions), and is usually
accomplished by releasing the information “gradually” ([10,25,28,21,24,11,48,29]). In
a similar approach, the output of the parties is masked with noise that decreases over
the time, allowing their confidence in the output to increase as the protocol proceeds
([45,6,33]).

More recently, the fair exchange problem has been studied in the optimistic model:
this model, introduced by Asokan [2], uses a trusted third party (TTP) but requires that
the TTP be involved in the protocol only if one of the parties is malicious.

A third model was proposed by Chen, Kudla and Paterson [16] and extended by
Lindell [44]. In this model fairness is legally rather than technically enforceable: the
guarantee is the honest party will either receive her output, or a “check” from the other
party (for a pre-agreed amount). In order to invalidate the check in court, the paying
party will have to reveal information which will allow the honest party to compute her
output.

Fairness in General Secure Computation. Positive results in all three models have been
extended to the general two-party computation setting [51,13,44]. Although a complete
primitive for fairness is implied in these works, the construction in each is specific to
the model. In contrast, our positive result (Thm. 1) is generic: in any of the fairness
models above, it is sufficient to implement our simple complete primitive for fairness in
order to get generic fair computation in that model.

A fourth relaxation of the fairness definition, partial fairness, was proposed by Katz
[40]. This definition is phrased in the language of secure computation: informally, a
protocol realizes a functionality with ε-partial fairness if there exists an ideal-world
simulator whose output cannot be distinguished from the real-world adversary with
advantage greater than ε. Katz showed that simultaneous broadcast (SB) is a complete
primitive for ε-partial fairness (for any fixed ε). Our positive result uses techniques
similar to his.

Gordon and Katz study partial fairness in the plain model [34], and show that even
partial fairness is impossible to achieve in general in the plain model. Their proof gives
a specific functionality that is complete for (perfect) fairness, and our proof of Thm. 2
has a similar flavor.

In the multi-party computation setting with an honest majority and a broadcast chan-
nel, completely fair computation is possible for any functionality, even without compu-
tational assumptions [9,15,49]. When there is no honest majority, Cleve’s lower-bound
applies and general fair computation cannot be achieved at all in the plain model. Lep-
inski, Micali, Peikert, and shelat devised a protocol for completely fair multi-party
computation with any number of malicious parties by relying on “envelope” primi-
tives; communication primitives with special physical properties [43]. Our complete
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primitives for the multi-party case are possibly less amenable to implementation via
simple physical means (such as envelopes), but allow us to separate the unfair com-
putation from the calls to the complete primitive (whereas the two are intertwined
in [43]).

We note that we have mentioned only a small fraction of the related work on fair-
exchange and fair computation. See [13,47,48,44] for more works in this area.

Classifying Primitives in Secure Computation. Our result in Sec. 5 defines a fairness
hierarchy, based on the input size of the primitives. While classification based on input
size seems less useful in other contexts of secure computation, other hierarchies have
been studied. For example, classification according to the number of calls to a primi-
tive [5,7], classification by privacy level [17] and by reductions to other primitives [46].
While these works may share some of our goals, namely to further understand the theo-
retical underpinnings of secure computation, their methods are quite different, and they
do not address fairness.

2 Definitions

Definition 1 (Non-Malleable Secret Sharing). A 2-out-of-2 non-malleable secret
sharing scheme (NMSS scheme) is defined by a pair of algorithms (Share,Rec) with
the following properties:

– Share(s, r) returns 2 shares, (s0, s1) (where si is the share of the i-th party) such
that if r is picked at random, then a single share reveals no information about s.

– Rec(Share(s, r)) = (s, 0) for every s, r. The second output of Rec serves as a flag
which is set to 0 if the secret has been successfully reconstructed.

– Any attempt by a player to modify their share (independently of the remaining
share) is detected with overwhelming probability. Formally, we say that (Share,
Rec) is ε-non-malleable if for every secret s, every (computationally unbounded)
adversaryA can win the following game with at most ε probability:
• A corrupts one of the parties.
• Random shares (s0, s1) from Share(s, r) are given to the 2 parties.
• Based on the share sA it observed,A computes a new share s∗A.
• A wins if s∗A � sA and Rec(s∗A, sH) = (s′, 0) for some secret s′, where sH is

the share received by the uncorrupted party.

We note that similar notions of robust secret sharing from the literature (cf. [22] and
references therein) are weaker in that they defineA to win the above game only if s′ �
s. While this weaker notion does not suffice for our purposes, previous constructions
(including the ones from [22]) in fact also satisfy our stronger requirement. We include
a construction of an NMSS scheme in the full version.

The following functionality will play a role in several of our results:

Definition 2 (Fair Reconstruction). FairRec�(x, y) is defined:

FairRec�(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

(s, s) if Rec(x, y) = (s, 0)

(⊥,⊥) otherwise

where x, y ∈ {0, 1}�.
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Intuitively, the FairRec functionality is just a fair implementation of Rec: it takes a non-
malleable secret share from each player, and outputs the result of Rec to both players if
and only if the secret was successfully reconstructed. We will prove that it is complete
for fairness in Section 3.1. Interestingly, it will also play a key role in our proofs of
impossibility in Section 4.

Secure Function Evaluation (SFE). We use the standard definitions for secure func-
tion evaluation in the standalone model. Due to limited space, we do not repeat them
here, but refer the reader to [14] for a complete definition.

The definition of SFE given in [14] guarantees output delivery, as do all of the proto-
cols that we present. Our impossibility results hold even if we only consider a slightly
weaker definition of SFE where the adversary is allowed to abort before giving input to
the trusted party. In the two-party setting these notions are equivalent. We note that any
(polynomial-time computable) functionality can be computed according to a relaxed no-
tion of security in which the adversary receives his output first and may choose to abort
immediately afterwards. Since our interest in this work is in fair secure-computation,
we will always refer to the stronger notion of security described above, except when ex-
plicitly stating a computation is “secure-with-abort”. We sometimes (informally) refer
to a protocol as fair when we actually mean that it is secure according to this stricter
notion (which includes fairness).

Definition 3 (k-bit Primitives). We say a protocol Π implementing some functionality
F has access to a k-bit primitive g, if in every round of the protocol, the players may
submit k-bit inputs to a trusted computation that securely implements g. We write Πg to
make explicit the fact that Π has access to g.

We often consider k-bit primitives where k = k(κ) is a function of the security parameter.
In this case, when we say g is a k-bit primitive we mean that g is an infinite sequence
of primitives, such that for every κ ∈ N there is defined a k(κ)-bit primitive gκ in that
sequence.

We sometimes informally refer to primitives as “short” or “long”. A k-bit primitive
is considered “short” if k = O(log κ), where κ is the security parameter. A k bit primitive
is considered “long” if k = Ω(κ).

Definition 4 (Complete Primitive for Fairness). For a functionalityF and a primitive
g, we say the fairness of F reduces to g if there exists a protocol Πg that securely
computes F. Let C be a class of functionalities. We say that g is C-complete for fairness
if, for all F ∈ C, the fairness of F reduces to g.

When g is C-complete for fairness and C is the class of all functions, we may omit it
and say that g is complete for fairness.

Definition 5 (Parallel Primitives). For a primitive g, we denote park(g) the primitive
that consists of k independent copies of g with enforced parallelism. The parallelism is
enforced in that none of the copies of g in park(g) send output to any party until all k
copies have received input from all parties. We use Πg

p to denote that protocol Π has
access to park(g).
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Definition 6 (Simultaneous Broadcast). This primitive was originally defined by
Chor, Goldwasser, Micali and Awerbuch [18], in the context of multi-party computation.
In the two-party setting, we define the primitive Simultaneous Broadcast (SB) that takes
one input value from each player and (fairly) swaps them. Formally, SB (x, y) = (y, x).
We refer to a k-bit SB when the input sizes are at most k-bits long.

3 Fairness-Complete Primitives

3.1 Fairness-Complete Primitives for Two-Party Computation

In this section we demonstrate an ideal function that is complete for two-party fairness. In
order to compute some function F(x, y) = {F0(x, y), F1(x, y)} fairly, the parties will first
compute a related functionF ′(x, y) that provides player i with an encryption of Fi(x, y),
along with a share of the corresponding decryption key (generated using a 2-out-of-2
NMSS scheme). This reduces the problem to a simple exchange of the secret shares. Of
course, if the players exchanged these on their own, one player might abort just at the
point of exchange, recovering the decryption key (and thus his output) all alone. Instead,
the ideal functionalityFairRec takes the shares from each player and performs the recon-
struction fairly; the non-malleability property of the secret sharing scheme enables the
functionality to verify that both players have provided correct shares. The details follow:

Theorem 1. Any two-party functionalityF with output length m can be fairly computed
in the OT-hybrid model by using a single call to FairRecO(m). If one-way functions exist,
then F can be fairly computed in the OT-hybrid model with a single call to FairRecO(κ).

We begin by defining a function F ′ related to F in the way described above. Specif-
ically, let (Enc,Dec) be the encryption and decryption functions for a semantically
secure symmetric encryption scheme. When using FairRecO(m), as in the first part of
the theorem, the encryption scheme is a one-time pad (with key length m). When using
FairRecO(κ), any semantically-secure symmetric encryption scheme may be used (with
key length O(κ)). Then we define:

F ′(x, y) =
{

F′0(x, y), F′1(x, y)
}

=
{(
EnckEnc(F0(x, y)), s0

)
,
(
EnckEnc(F1(x, y)), s1

)}

where (s0, s1) = Share(kEnc, r), and r is chosen uniformly at random.
The size of the input to FairRec is the size of the share of one decryption key. The

fair computation of F(x, y) follows easily:

1. Execute a secure-with-abort protocol to compute F ′(x, y) in the OT-hybrid model
(e.g., [41]).

2. Player i ∈ {0, 1} parses the output F′i (x, y) as

zi = (zEnc, zFairRec ) =
(
EnckEnc(Fi(x, y)),Share(kEnc, r)i

)

and submits zFairRec to the ideal function FairRec
3. Let Ki denote the output that player i receives from FairRec. If Ki = ⊥, output ⊥.

Otherwise, output DecKi (zEnc).

Due to space limitations, we defer the proof of security for this protocol to the full
version of the paper.
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Standalone vs. Composable Security. Note that the SFE security definitions we use in
this paper are in the standalone setting, and in particular allow the ideal-world simulator
to rewind the adversary. In the first part of Thm. 3.1, using FairRecO(m) and a one-time
pad, this is not a problem: we can use a straight-line simulator (that does not rewind
the adversary) and prove security even under parallel composition. In the second part
of the theorem, however (with a small FairRec functionality), we use rewinding in an
essential way. Thus, FairRecO(κ) may not be complete for fairness under parallel com-
position. The crux of the problem is that the adversary’s actions may depend on the
encryption used to reduce the input size to FairRec (this causes a selective decommit-
ment problem). We note that given access to parO(m)(FairRecO(κ)) (O(m) parallel calls
to a small fair reconstruction functionality) we can construct a protocol that is provably
secure under parallel composition: we can replace the encryption with an all-or-nothing
transform of the output of F, each share of which is then split between the parties us-
ing a 2-out-of-2 NMSS scheme. These shares are fairly reconstructed in parallel using
parO(m)(FairRecO(κ)).

3.2 Fairness-Complete Primitives for Multi-party Computation

If we only cared about achieving fairness, and not about guaranteeing output deliv-
ery, then it is possible to extend the protocol of the previous section to multi-party
setting in a straightforward way by using n-out-of-n NMSS. However, guaranteeing ro-
bustness as well is a bit more subtle (note that in the two-party case, robustness and
fairness are equivalent). Below, we describe three different primitives that are complete
for robust secure computation. Recall that in a robust, ideal-world computation, the
trusted third party will never abort; instead it replaces the inputs of aborting players
with a default value, guaranteeing that the honest parties always receive output. Each
of the three primitives has a different trade-off between the call complexity (how many
times the functionality must be invoked) and the input size to the primitive (depend-
ing on the number of participating parties and the description of the function to be
evaluated).

Universal Black Box (UBB). This primitive was originally proposed by Fitzi et al. [26]:
The UBB receives as input from each party both a circuit (specifying the function to
be computed) and an argument to that function. It then partitions the parties according
to the circuit that they provide. For each set of parties that gave the same circuit as
input, the UBB primitive outputs to that set of parties the evaluation of that circuit on
the arguments given by those parties, using default arguments for the remaining parties.
It is easy to see that a single call to this primitive can be used to securely compute any
function.

Fair Consistent Reconstruction (FCR). Before using the FCR primitive to compute
a functionality F, the n parties first perform a secure computation with abort for the
related function F′. The function F′(x1, . . . , xn) chooses random keys k1, . . . , kn and
computes k =

∑n
i=1 ki and o = Enck (F(x1, . . . , xn)). It also generates a key pair (sk, vk)

for some public-key signature scheme, and computesσi = Sign(sk, ki) for every i ∈ [n].
The output to party i is (o, vk, ki, σi). We note that if any player does abort during this
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computation1, the remaining players simply substitute some default input for him and
begin again.

The parties then invoke FCR primitive on the values (vk, ki, σi) as received from the
execution of F′. The output of FCR is as follows:

Case 1: If not all parties submit the same value for vk, then FCR partitions the players
according to the values of vk they submitted and returns these partitions.

Case 2: If any player submits (vk, ki, σi) such that Vrfy(vk, ki, σi) = 0 (i.e. they submit-
ted an invalid signature on key ki), FCR returns a message identifying player i
as a cheater.

Case 3: If all parties submit valid signatures under the same key vk, then FCR returns
k =
∑n

i=1 ki.

If players receive output indicating that case 1 occurred, then they begin the entire
computation again using default values for anyone outside their own partition. (Note
that all honest players are guaranteed to be in the same partition.) If they receive output
indicating that case 2 occurred, then they begin the computation again excluding the
cheating party and using a default value for his input. Finally, if they receive output
indicating that case 3 occurred, they simply use k to decrypt o and recover the output of
F. This process may continue for a total of n−1 iterations until the protocol terminates.
We defer the proof of security to the full version of the paper.

All-Subsets Reconstruction (ASR). The ASR primitive is, essentially, a version of the
FCR primitive that can be used to fairly compute any functionality with a single invo-
cation (rather than n). The price is that its input size is exponential in the number of
parties (although still independent of the complexity of the target functionality). The
input from party i is a set of inputs to the FCR primitive: one input to FCR for every
subset S ⊆ [n] of the parties such that {i} ⊂ S . The ASR primitive internally runs the
entire reconstruction protocol using FCR:

1. ASR begins by running FCR using the inputs corresponding to the set of all parties.
2. If reconstruction of k fails because FCR ends in either case 1 or case 2, ASR re-

curses, either after partitioning the players, or after dropping a cheater, and calls
FCR with the appropriate corresponding inputs.

3. If the reconstruction succeeds, ASR simply outputs k to all players still “active” in
the successful call to FCR.

In order to use this primitive to compute a functionality F, the n parties first perform
a secure computation with abort for the related function F′′, described below. Let F′
be the function computed in the protocol that uses FCR, and let outi be the output
of player i from F′. Then for every subset of parties S , F′′(x1, . . . , xn) computes the
outputs (out(S )

1 , . . . , out
(S )
n ) = F′(x(S )

1 , . . . , x
(S )
n ) where

x(S )
i =

⎧
⎪⎪⎨
⎪⎪⎩

xi if i ∈ S

⊥ if i � S

1 There exist protocols in which all players are correctly informed of the identity of the aborting
player [31,30].
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(i.e., out(S )
i is the output of the function F′ to party i assuming only the parties in S

are honest and the remaining parties abort). Note that by the definition of F′, out(S )
i =

(o(S ), vk(S ), k(S )
i , σ

(S )
i ). F′′ outputs out(S )

i to player i, for each set S such that {i} ⊂ S .
The parties invoke ASR with these outputs. If an honest party i receives the output

⊥, it assumes it is the only honest party and computes the functionality F on its own.
Otherwise, it uses the output k to decrypt o(S ) (for any S such that i ∈ S ). We again
defer the proof of security to the full version.

4 Limits on Fairness-Completeness

In this section we show that there does not exist a finite (i.e. “short”) primitive that is
complete for fairness. More specifically, we prove that the FairRecκ function cannot
be fairly computed even if the players are given parallel access to a primitive of size
O(log κ). There are two main ideas behind the proof. For simplicity, imagine for now
that the entire protocol consisted of a single call to this short primitive. Our first ob-
servation is that because the primitive is short, the adversary can locally simulate it,
computing its output for each possible input of the other party. This will play a crucial
role in our proof, but it does not itself suffice: so far the adversary has no way of know-
ing which of these outputs are correct. However, because the primitive is supposed to
be complete for fairness, it allows us to compute the FairRec functionality, which has a
very useful property: its output is verifiable. That is, when two parties are given inputs
generated by Share, then the correct output of FairRec is (s, 0), where the flag 0 indi-
cates that s is the correct output. Furthermore, for incorrect inputs, with overwhelming
probability the output of FairRec is (⊥,⊥). The adversary simply computes the primi-
tive for every possible input of the other player, and outputs s when he recovers it.

When we consider a protocol with many calls to the primitive (including parallel
calls), we combine the above ideas using a standard hybrid argument. If the adversary
aborts before any invocations of the primitive, he cannot learn anything about the output
s. On the other hand, if he behaves honestly in all invocations, he should always recover
s. We prove below that there is some specific invocation for which the adversary can
gain a non-negligible advantage over the honest party by aborting and simulating the
input to that invocation as described above. Finally, he can guess which invocation will
allow this advantage with significant probability. Formally, we prove:

Theorem 2. Let g be an O(log κ)-bit primitive. Then for any polynomial p, parp(κ)(g) is
not complete for fairness.

Note that for any k ≥ 1, park(g) is a more powerful primitive than g (i.e., if the fairness
of F reduces to g then the fairness of F also reduces to park(g)). We are proving an
impossibility, so starting with a more powerful primitive strengthens our results. Our
proof will hold even if we restrict the adversarial behavior to aborting early.

Proof. Suppose there exists such a primitive g and polynomial p. Consider the r = r(κ)
round protocolΠ g

p that fairly computes FairRecκ(x, y) while making a call to parp(κ)(g)
in each round. We can think of this call as p(κ) parallel calls to g. Without loss of
generality, we assume that these calls to g constitute the only communication between
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the players2. Let q = p · r be the total number of calls to g. For each round i ∈ r,
we define some arbitrary ordering σi on the parallel calls to g that occur in that round.
This induces a natural ordering over all q calls to g, where for i < j, calls in round i
are ordered before calls in round j. We let gk denote the kth call to g according to this
ordering.

Consider an execution of Π g
p in which Share(s, r) = (s0, s1) is used to generate

shares, for a random s and r. Player j gets the share s j. We let the value ai denote the
output of player 0 when player 1 acts honestly for the first i calls to g (according to
the ordering previously described) and then aborts. We define bi in the symmetric way.
Note that by correctness of Π g

p , and the definition of FairRecκ, for all i

Pr[ai � s ∧ ai � ⊥] = negl(κ) = Pr[bi � s ∧ bi � ⊥]

and
Pr[aq = s] = Pr[bq = s] = 1 − negl(κ).

where the probability is over the random tapes of the players. Furthermore, by the defi-
nition of FairRec and the properties of a NMSS scheme,

Pr[a0 � ⊥] = negl(κ) = Pr[b0 � ⊥].

It follows that for every large enough κ, there exists a polynomial p′(κ) and a round i
such that either

Pr[ai = s] − Pr[bi−1 = s] ≥ 1
p′(κ)

.

or

Pr[bi = s] − Pr[ai−1 = s] ≥ 1
p′(κ)

.

Without loss of generality, we will assume the former, and we demonstrate an adversary
A that breaks the security of Π g

p with probability at least 1/(q · p′(κ)).
A begins by choosing a random value i∗ ∈ [1, . . . , q], and plays honestly for the

first i∗ − 1 calls to g (i.e., submits correct values to g) and then aborts. Note that the
resulting output of player 1 is bi∗−1. The adversary now attempts to compute the value of
ai∗ by simulating the side of player 1. Note, however, that by definition, the value of ai∗

depends on honest input to gi∗ from both players, andAmay not know (anything) about
player 1’s input to gi∗ . Here we use the fact that g has short inputs, and that FairRec is
verifiable.A goes through all possible inputs β ∈ {0, 1}O(log κ) that player 1 might have
sent to gi∗ , and for each such value he simulates g internally, using as input his own
(honest) value that he would have sent if he had not aborted, and β. He computes ai∗

from his view in the (real) interaction with player 1, and the simulated output of gi∗ .
Since one of these values of β is the value used by player 1 in the actual execution,
it follows that the correct value of ai∗ is among this set of outputs. Furthermore, if
some simulated ai∗ = s′ � ⊥ then s′ = s with overwhelming probability. A outputs

2 This is without loss of generality because we can always modify g to do message transmission,
in addition to its original functionality. Note also that if less than p(κ) calls are needed in a
particular round, the players can make extra calls with random inputs, ignoring the outputs, to
make the total number of calls p(κ).
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s′ � ⊥ if this occurs, and ⊥ otherwise. By our assumption, there exists an i such that
Pr[ai = s ∧ bi−1 = ⊥] ≥ 1

p′(κ) . Hence, A recovers s without the honest party receiving
output with probability 1/(q · p′(κ)), contradicting the fairness of protocol.

Theorem 3. Simultaneous broadcast is not complete for fairness.

The fact that short simultaneous broadcast (cf. Section 2) is not complete for fairness
follows from Theorem 2. We give two different proofs that a large simultaneous broad-
cast is not complete for fairness.

Proof (First proof of Thm. 3.). The first proof follows as a corollary of Theorem 2, and
Lemma 1 (below). This is true because if long-SB were complete, then by Lemma 1,
short-SB would also be complete, contradicting Theorem 2.

Lemma 1. Let g denote the k-bit SB primitive. For any p ∈ N, there exists a protocol
Π

g
p that implements kp-bit SB with perfect security.

Proof. The protocol is the (trivial) one round protocol in which both parties split their
inputs into p blocks of size k, submit block i to instance gi, and output the concatenation
of the p outputs (maintaining the order). The proof of the lemma is straightforward, so
we omit a formal exposition. We simply note that the decision of an adversary to change
its input to any instance(s) of g (including the decision to abort in some instance(s)) is
entirely independent of the actions or input of the honest party. The simulator simply
recovers the p values that the adversary intended for g (recall that an abort is treated
as input 0k), concatenates them, and forwards them to the trusted party. After receiving
output, the simulator rewinds the adversary, parses the output into blocks, and uses
block i as the honest player’s input to gi.

In our full version we provide a second proof that is more direct and is of independent
interest. Due to space constraints we omit the proof here.

5 A Fairness Hierarchy

In this section we show that for small k, fairness cannot be “amplified” at all (with
regards to input size). Specifically, for small values of k we show that no k-bit func-
tionality can be used to build (k + 1)-SB, even if standard cryptographic assumptions
are allowed. Unlike in Section 4, here we assume that the players do not have parallel
access to the primitive. More formally:

Theorem 4. For k = O(log κ), the fairness of (k + 1)-SB does not reduce to any k-bit
primitive.

To gain some intuition for how we prove the theorem, consider that in an ideal world
execution of simultaneous broadcast, if the players inputs are chosen independently,
then (by definition) each player’s output is independent of their own input. However,
we show below that in any real world protocol constructing (k + 1)-SB from k-bit func-
tionalities, this property cannot be guaranteed. We demonstrate that there always exists
some round in which an adversary can gain information about the other party’s input,
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as well as some later round in which it can still affect the other party’s output by choos-
ing whether or not to abort. By choosing whether to abort in the later round based on
what is learned in the earlier round, the adversary can correlate the output of the honest
player with his input.

There are two main ideas behind the proof. The first idea is the one used in the
proof of Theorem 2: because the k = O(log κ)-bit inputs to the primitive are small,
the adversary can gain an “information lead” of one round by testing all 2k = poly(κ)
inputs that the honest party might send to the k-bit primitive in the next round. For
each of these possible outputs from the primitive, the adversary computes the k + 1-bit
value that he would have output in the protocol if this were the last thing he received in
the protocol (i.e. if the honest player aborted immediately afterwards). In this way the
adversary computes the set of all “potential outputs” that he could possibly output if the
honest party sends a single additional message and then aborts.

Unfortunately, unlike in the proof of Theorem 2, we cannot argue here that the ad-
versary recognizes the correct output of the protocol among this set: in Theorem 2 the
output was verifiable, while the output of SB is not. Instead, we rely on a different ob-
servation: there are twice as many possible input values to the k + 1-SB protocol as
there are potential outputs from the k-bit primitive used in any particular round. Thus,
for every round, at least half of the possible k + 1 bit inputs to SB will not appear in
the set of potential outputs. We use this fact to show that there exist two inputs, y, y′,
and a round i such that if the honest player has input y, the potential output set in round
i contains y but not y′, while if his input is y′, it contains y′ but not y. Furthermore,
we will prove that at least one of the parties can affect the other’s output by sending a
random message in some later round, i′ > i, and then aborting. The adversarial strategy
is as follows: he runs the protocol honestly until round i, and then determines which
of the two inputs the honest party has. Depending on what he learns, the then chooses
whether to complete the protocol honestly, or to later abort after round i′. By making
this decision, he creates a correlation between the honest party’s output and his input,
violating the security of the simultaneous broadcast.

Due to space considerations, we defer the formal proof to the full version of the
paper.

6 Fairness Combiners

We have demonstrated that one possible approach for achieving fair secure computation
is to rely on a trusted third party to implement the FairRec functionality. A natural
question that arises is, how much can we distribute that trust? Instead of trusting a
single party, can we use multiple parties, guaranteeing both fairness and security so
long as some number of them act honestly?

This can be thought of as a fairness analogue of combiners [37,38]; the two com-
puting parties (clients) have access to n “fairness providers” (servers), of which at least
n − t are guaranteed to be honest. Two questions arise: what are the values of t and n
for which this is possible, and what are the minimal requirements of the honest fairness
providers? Below, we show that combining is possible if and only if n > 2t.
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6.1 Combining with an Honest Majority

If the clients and servers had a broadcast channel and a complete point to point net-
work, the problem would simply be a restricted case of secure multiparty computation
where only two parties have input and output. In this case we could use the protocol of
Rabin and Ben-Or to fairly compute any functionality [49], since a strict majority of the
servers are honest, and at least one client is honest. However, we are interested in using
independent servers, where each provider communicates only with the two clients and
is not expected to know anything about the other primitives.

Instead we model the problem as a secure multiparty computation over an incomplete
point-to-point network, in which there only exist communication channels between the
two computing players, and from each player to each server. The adversary is allowed
to corrupt at most one of the computing players, and at most t of the fairness providers.
Finally, we assume the existence of oblivious transfer, although we discuss how to make
our results unconditional in the full version. Viewing the problem this way, one solution
is to emulate the missing channels (including a broadcast channel), enabling the use of
the general result of Rabin and Ben-Or. We outline this solution below.

The two clients begin by executing an unfair secure computation (using oblivious
transfer) to establish correlated randomness for each pair of servers. This randomness
will include shared secret keys that enable any two servers to authenticate and encrypt
messages to one another, as well as additional correlated randomness that will enable
broadcast for any n > 2t [4,27]. In order to prevent the clients from learning the corre-
lated randomness, the computation will actually output NMSS shares of the output, one
share to each client, which they then relay to the appropriate servers. If the protocol to
establish these keys ends unfairly, then the honest client simply aborts; no information
is leaked and no harm is done, since this execution is independent of their inputs. Oth-
erwise, the servers inform both clients that they have successfully reconstructed their
keys and randomness. If anyone indicates otherwise, all players immediately abort the
protocol. With the communication channels in place, the players can now execute the
protocol of Rabin and Ben-Or [49] to compute the desired functionality.3

In the full version of the paper, we show how to construct a more efficient protocol
for this task and discuss in greater detail the security properties we can guarantee.

Impossibility of Combining with a Faulty Majority. The previous result is tight; if
the majority of the fairness providers are corrupt, they do not help us to achieve fair-
ness. Specifically, we consider the case where the players have access to two fairness
providers, one of which is corrupt, and show that any function that can be computed in
this model can be computed in the plain model. Since there exist functions that cannot
be computed in the plain model [20], it follows that the same functions cannot be com-
puted in our setting. Below, when a protocol Π permits calls to two instances of some
primitive g, we denote this by Πg1,g2 .

3 We note that the protocol of Rabin and Ben-Or is robust, which means that even if some servers
abort, the clients can continue the computation with the remaining servers. This enables even
two honest clients to complete their computation correctly, so long as less than half of the
servers are corrupt.
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Theorem 5. Let g1 and g2 be two instances of some arbitrary functionality g. If Πg1,g2

securely computes function F, even when an adversary corrupts one of the instances
of g, then there exists a protocol Π ′ that securely computes F without access to any
primitives.

Proof (Sketch). The proof is a standard partitioning argument. Π ′ simply follows the
description of Πg1,g2 , delegating the responsibilities for computing g1 and g2 to players
0 and 1 respectively. By our assumption, so long as one of the two instances is executed
fairly and securely, Π ′ fairly and securely computes F. Since one of the players is
honest, the primitive that they control will always be executed honestly.
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Abstract. We study the necessary and sufficient assumptions for uni-
versally composable (UC) computation, both in terms of setup and com-
putational assumptions. We look at the common reference string model,
the uniform random string model and the key-registration authority
model (KRA), and provide new results for all of them. Perhaps most
interestingly we show that:

– For even the minimal meaningful KRA, where we only assume that
the secret key is a value which is hard to compute from the public key,
one can UC securely compute any poly-time functionality if there
exists a passive secure oblivious-transfer protocol for the stand-alone
model. Since a KRA where the secret keys can be computed from the
public keys is useless, and some setup assumption is needed for UC
secure computation, this establishes the best we could hope for the
KRA model: any non-trivial KRA is sufficient for UC computation.

– We show that in the KRA model one-way functions are sufficient for
UC commitment and UC zero-knowledge. These are the first exam-
ples of UC secure protocols for non-trivial tasks which do not assume
the existence of public-key primitives. In particular, the protocols
show that non-trivial UC computation is possible in Minicrypt.

1 Introduction
We study the necessary and sufficient assumptions for universally composable
(UC) computation [Can01], both in terms of which setup models are needed and
how strong assumptions on the setup are needed, and in terms of necessary and
sufficient computational assumptions.

One of the motivation is to study the minimal setup required for UC com-
putation. It is known that some kind of setup is required, which makes it a
theoretically interesting question exactly how strong an assumption must be
made on the setup. We study both the common reference string model (CRS)
and the key registration authority model (KRA), and some variations.

The goal of the study is also to determine the relationships between one way
functions (OWF), passive secure stand-alone oblivious transfer (SA-OT)1, UC

⋆ A full version of this work can be found at http://eprint.iacr.org/2009/247
1 If a passive secure SA-OT exists then also an active secure SA-OT exists via standard

compilation techniques.
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commitments (UC-Com) and UC oblivious transfer (UC-OT) in different set-up
models2: for stand-alone security, we know that OWF are sufficient for other
cryptographic tasks such as commitments and zero-knowledge proofs. Are OWF
equivalent to any of these tasks when it comes to UC security? For the CRS
models, Damgård and Groth [DG03] answered the question negatively showing
that UC-Com implies key agreement in the CRS models and therefore, given the
black-box separation between OWF and key agreement [IR89, RTV04], OWF are
not sufficient to realize UC-Com. We find it interesting to study if this is inherent
or associated to the particular setup model. We include SA-OT because it is
complete for stand alone computation [Kil88], and therefore a natural question
is whether SA-OT is sufficient also for UC computation. On the other hand it is
interesting to know whether this assumption is minimal, i.e. whether SA-OT is
also necessary to implement UC-Com and UC-OT. The motivation for including
UC-OT is that it is complete for general UC computation: it is possible to
implement any well-formed ideal functionality given the UC-OT functionality,
see [CLOS02, IPS08]. Finally the motivation for including UC-Com is that it is
potentially weaker than UC-OT but still implies a number of non-trivial tasks
like coin-flip and zero-knowledge.

Highlights. We highlight some of the new findings which we find particularly
interesting: In the KRA model, we provide the first construction of UC com-
mitment from one-way functions—all previous constructions, to the best of our
knowledge, used special assumptions or assumed at least public-key encryption.
A consequence of it is that zero-knowledge and coin-flip can be UC securely
implemented in Minicrypt. Until now it was not known if any non-trivial UC
computation was possible in Minicrypt.

Remembering that UC-Com implies SA-OT in the CRS models we get another
new result: The choice of the setup model can make a difference in which ideal
functionalities can be implemented under a given computational assumption. In
the CRS model we need SA-OT for UC-Com, but in the KRA model we can do
with just OWF. This seems to be the first such separation of the setup models.

It turns out that SA-OT is sufficient for UC-OT in any setup model we con-
sidered, in particular in the minimal version of both the CRS and KRA model.
Since some setup assumption is needed for general UC computation, this seems
a very positive addition to the UC theory: Some setup is needed, but even the
most trivial setup will allow to implement any well-formed functionality.

Finally, we show how to implement authenticated channels given a mini-
mal meaningful KRA: Implementing authentication in a public-key setting is
of course trivial if one can choose the structure of the public keys—one includes
a verification key in the public key and signs all messages. It is by far trivial
in our relaxed KRA model as we make no assumption on the public keys ex-
cept that they are in the range of some one-way function, which might itself be
maliciously chosen. Standard constructions of signature schemes from one-way
functions use verification keys with much more structure than this. This seems
2 When writing UC-Com or UC-OT we mean the multi-party, multi-session version of

the protocols.
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to be the first result which shows that any value you could hope for to act as a
public key can actually be used to implement an authenticated channel.

Setup models: We look at five setup models:

– In the uniform common random string (U-CRS) model we assume that a
single uniformly random �-bit string crs is chosen by a trusted party and
made public. Here � is chosen by the protocol.

– In the chosen common reference string (C-CRS) model the trusted party
samples crs using a poly-time one-way3 distribution D ∶ {0,1}κ → {0,1}�,
which allows crs to have a particular form. We assume that the trusted party
samples a single crs =D(r) for uniformly random r ∈ {0,1}κ and makes crs
public. The function D might be given by the protocol π.

– The any common reference string (A-CRS) model is like the C-CRS model,
except that we let the adversary pick D, under the only restriction that D is
one-way. The trusted party samples crs =D(r) and makes (D,crs) public. 4

– In the chosen key registration authority (C-KRA) model we assume that the
protocol contains a poly-time function fi for each party Pi. A trusted party
will sample pki = fi(si) for each Pi and give si to Pi and pki to all other
parties. This models a key-registration authority with public keys pki, secret
keys si and where the parties are guaranteed to know their secret keys. 5

– The any key registration authority (A-KRA) model is like the C-KRA model,
except that we allow the adversary to specify each fi, under the only restric-
tion that fi is a one-way function when Pi is honest.

In the CRS models we in addition assume the presence of authenticated channels,
as the existence of a CRS clearly does not allow authentication: All parties
know the CRS and nothing else, so nothing distinguishes an honest party from
the adversary. In the KRA models we start from the unauthenticated channels
model, as the existence of a public-key infrastructure has the potential to allow
authentication. In the A-CRS model the protocol π does not choose D, and the
security of π should hold for any one-way function D. Another way of phrasing
the model is to say that the protocol π, parametrized by D, should be secure
in the C-CRS model for any one-way function D. In some sense this models the
minimal meaningful common random string: we do not make assumptions on
how random it is, but the parties can agree on the fact that there is something
about the string which neither of them knows.

The A-KRA model in some sense is the minimal meaningful assumption on a
key registration authority: Each party has a publicly known public key pki and
3 If D is invertible then the C-CRS and the U-CRS model are trivially equivalent.
4 Note that the A-CRS model generalizes both the U-CRS and the C-CRS, for com-

putational security: the U-CRS is computationally indistinguishable from a setup
where the trusted party picks a random seed and expands it using a pseudo random
generator.

5 This is essentially the key registration with knowledge (KRK) model from [BCNP04].
We cannot start from the KR model from [BCNP04] as we need that parties know
their secret keys to implemented authenticated channels.
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there is some secret about pki which only Pi knows. A protocol for the A-KRA
can therefore be run given any meaningful key registration authority, with no
assumption whatsoever about the form of pki or the exact hardness of finding
si. Note that one can think of simpler public key models, as the bare public key
model (BPK) introduced in [CGGM00], that does not require corrupted parties
to know their secret keys. However, even if the BPK model has been successfully
used to break some impossibility results about concurrent ZK (see [OPV08] and
reference therein), it was shown in [KL07] that UC computation is impossible
even in the BPK model or any other public key model “without knowledge”.

Results: Let C1,C2 ∈ { OWF, SA-OT, UC-Com, UC-OT } and M one of the
described setup model. Then we can ask ourselves questions of the form “is
C1 necessary/sufficient for C2 in the M model?” Some of these are of course
trivial, like is OWF necessary for UC-OT in the U-CRS model?, but many are
non-trivial and theoretically interesting, like is SA-OT sufficient for UC-OT in
the A-CRS model?. The answers to these questions are pictorially illustrated
in Figures 1 and 2. The main results are proved through the text while the
implications that were already known, or that easily follow from our results and
known facts are presented in Sec. 8.

When SA-OT appears on the left side of the implication, the assumption is
that there exist a protocol that implement SA-OT in the stand alone mode.
When UC-Com and UC-OT appear on the left side of the implication, the as-
sumption is that there exist a protocol that implement that functionality in the
model in question, i.e., we are not referring to an hybrid world where the func-
tionality is given to the party: We assume that the parties know a protocol to
implement the functionality.

Note that the figure states that UC-Com is not sufficient for UC-OT in the
C-KRA model, while the answer is yes in the A-KRA model. This may seem
surprising because the C-KRA model (unlike A-KRA) allows the protocol to

U/C/A-CRS, C/A-KRA
⇙ UC-COM⇖

OWF ⇑ SA-OT
⇖ UC-OT ⇙

Fig. 1. One direction of the relationship between the primitives holds in any setup
model

U-CRS, A-CRS, A-KRA C-KRA C-CRS

⇗̸ UC-COM⇘ ⇗ UC-COM⇘̸ ⇗̸ UC-COM
?

⇘

OWF ⇓ SA-OT OWF ⇓̸ SA-OT OWF ⇓? SA-OT

⇘̸ UC-OT ⇗ ⇘̸ UC-OT ⇗ ⇘̸ UC-OT
?

⇗

Fig. 2. The other direction differs in different setup models
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choose how public keys are computed and so it seems that anything that is
possible in the A-KRA model should also possible in C-KRA. The catch is that
the UC-Com assumption is not the same in the two models, in particular, having
a UC-commitment scheme that works in the A-KRA model is a much stronger
tool than one that needs C-KRA.

For all our negative answers to sufficient questions and positive answers to
necessary questions, we mean that there is no black-box construction. We cannot
answer whether OWF is sufficient for UC-Com with our current understanding
of complexity theory: It might be that one-way functions do not exists, in which
case the assumption OWF is false, and then OWF ⇒ UC-Com is true. The

result UC −Com
(C−KRA)
⇏ UC −OT therefore means that there is no black-box

construction which takes an implementation of UC commitment for the C-KRA
model and gives an implementation of UC OT for the C-KRA model. For some
of our positive answers to sufficient questions and negative answers to necessary
questions, we appeal to non-black box constructions. As an example, the result

OWF
(C−KRA)
⇒ UC −Com uses a description of the circuit for the OWF.6

Related work. In [CLOS02] the main feasibility result for UC computation in
the CRS model can be found. [CLOS02] needs to assume enhanced trapdoor
permutation in order to achieve their results, while we use the strictly weaker
assumption SA-OT. On the other hand this comparison is not quite fair as
[CLOS02] tries to achieve adaptive security, and consider static security just
as a special case, while our focus is entirely on static security. In [LPV09] a
general framework for UC feasibility results is presented, showing how different
setup assumptions (including timing model, tamper proof hardware, etc.) can
be seen as different implementations of what the authors call UC puzzles. While
in [LPV09] the results are proved assuming the existence of enhanced trapdoor
permutation, we look at strictly weaker assumptions as OWF and SA-OT.

In a recent series of papers [PR08, MPR09], the classification of the crypto-
graphic complexity of UC functionalities is studied. Perhaps most interestingly
with respect to our work, in [MPR09] it is shown the SA-OT assumption is
equivalent to any UC functionality being either trivial or complete. There is a
clear overlap between these results and some of ours, however we focus on setup
functionalities - that are invoked just once at the beginning of the protocol, while
the constructions in [MPR09] use the ideal functionalities during the protocol in
an on-line fashion.

2 The KRA Model

In this section we give our model of minimal public-key setup, where each party
knows a secret which is not known by the other parties. We associate these
6 It might be possible that A⇏ B and A⇒ B at the same time. However, if for any of

the⇏ separations in Figure 1, 2 this is the case, then one would have a non-black-box
construction of SA-OT using OWF. Such a construction is unlikely to exist - or at
least requires completely new cryptographic techniques - see also [RTV04].
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secrets to public values which we distribute via a key generator G. When sampled
it outputs ((R1, s1), . . . , (Rn, sn)), where each Ri is a description of a PPT
set and si is the secret of Pi, and si ∈ Ri for i ∈ [n] = {1, . . . , n}. We call
R = (R1,R2, . . . ,Rn). For a “normal” KRA we would have that the description
of R contains the parties’ public keys pk1, . . . , pkn and that si ∈ Ri if si is the
secret key associated to pki; in this case we will write (pki, si) ∈ Ri. To model
that a party’s secret si is hard to find for the other parties we require that it
is hard to find any s′i such that s′i ∈ Ri. This should hold even if one is given
R ∪ {sj}j∈[n]∖{i}.

To allow corrupted parties to use secrets different from those of the honest
parties (maybe fixed instead of random or even of another form), we let G depend
on the set C of corrupted parties, and we let the adversary A influence the key
generation as follows: Both G and A are ITMs. First G is given input n and C,
where n defines the number of parties and C ⊂ [n] defines the set of corrupted
parties. Then G and A interact and at some point G outputs (R,s1, . . . , sn);
we write (R,s1, . . . , sn) ← (G(n,C),A). For G to be meaningful we require that
sj ∈ Rj for all parties Pj∈[n]. We only require that the secrets of honest parties,
Pi∈[n]∖C , are hard to find, as it is not necessarily meaningful to require that
corrupted parties keep their secrets hidden.

We introduce some convenient notation for the case where all public keys
are generated using the same function f . For a function f ∶ {0,1}κ → {0,1}�

we define the key generator Gf as follows: For each honest party Pi it samples
si ∈ {0,1}κ and computes pki = f(si). Then it outputs {pki}i∈[n]∖C to the adviser.
It interprets the next message from the adviser as a set {si}i∈C and computes
pki = f(si) for i ∈ C. It defines Rf by (pk, s) ∈ Rf iff pk = f(s) and then outputs
((pk1, s1,R

f
), . . . , (pkn, sn,R

f
)).

– Let n be the number of parties and C the set of corrupted parties, and run
G(n,C) with the UC adversary A as adviser.

– When G(n,C) outputs (R,s1, . . . , sn), then send (R,{si}i∈C) to A and send
(R,si) to each Pi, letting A determine the delivery time.

Fig. 3. The KRA ideal functionality FG
kra for a generator G

Definition 1. We call G meaningful if ∀ A, A wins the following game with
negligible probability: Run A to get (n,C), with n polynomially bounded and
C ⊂ [n]. Then sample (R,s1, . . . , sn) ← (G(n,C),A). At this point A wins if
∃j ∈ [n] sj /∈ Rj. If A did not win here, run A on R to get i ∈ [n] ∖C, and run
A on s−i = {sj}j∈[n]∖{i} to get an output (i, s′i). If s′i ∈ Ri, then A wins.

Definition 2. Let G be a set of key generators, let π be a protocol and F an
ideal functionality. We say that π is a UC secure implementation of F with
a G KRA if π is a UC secure implementation of F in the FG

kra-hybrid model
(Fig. 3) for all G ∈ G. We say that π is a UC secure implementation of F
with any meaningful KRA (A-KRA) if the above holds for G being the set of all
meaningful key generators.
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3 Authentication in the A-KRA Model given OWF

We show here how to implement authentication with any meaningful KRA. We
first construct a system for identification secure under concurrent composition,
using Σ-protocols in a more or less standard manner. Then we extend this iden-
tification system to a UC secure authentication system in a novel manner.

Implementing authentication in a public-key setting is of course trivial if one
can choose the structure of the public keys—one includes a verification key in the
public key and signs all messages. It is by far trivial in our relaxed KRA model
as we make no assumption on the public keys except that they are in the range
of some one-way function, which might itself be maliciously chosen. Standard
constructions of signature schemes from one-way functions use verification keys
with much more structure than this.

3.1 Σ-Protocols

For details on the following brief introduction see [CDS94]. Let R ⊆ {0,1}∗ ×
{0,1}∗ be a binary relation. A Σ-protocol for R consists of (A,E,Z,J,W,S),
where A is a poly-time algorithm which for all (x,w) ∈ R and sufficiently long
randomness r outputs a commit message a = A(x,w, r); E = {0,1}� is a set of
challenges ; Z is a poly-time algorithm which given (x,w) ∈ R and e ∈ E and ran-
domness r outputs a reply z = Z(x,w, e, r); J is a poly-time algorithm, called the
judgment, which given any (x, a, e, z) outputs J(x, a, e, z) ∈ {accept,reject};
and W is a poly-time algorithm called the witness extractor and S is a PPT
algorithm called the simulator. Furthermore:

completeness: For all (x,w) ∈ R, all randomness r and a = A(x,w, r) and
z = Z(x,w, e, r) it holds that J(x, a, e, z) = accept.

special soundness: For all (x, a, e, z) and (x, a, e′, z′) with e ≠ e′, V (x, a, e, z) =
accept and J(x, a, e′, z′) = accept it holds that (x,W (x, a, e, z, e′, z′)) ∈ R.

honest verifier zero-knowledge: For all (x,w) ∈ R and all e ∈ E the sim-
ulator outputs (a, z) ← S(x, e) such that J(x, a, e, z) = accept and such
that the distribution of (x, a, e, z) is computationally indistinguishable from
(x,A(x,w, r), e,Z(x,w, e, r)) for a uniformly random r. This holds even
when the distinguisher is given w.

One round of the standard zero-knowledge protocol for Hamiltonian Cycle using
a statistically binding commitment scheme is a Σ-protocol for Hamiltonian Cycle
with E = {0,1}. Since Σ-protocols are closed under parallel composition, this
gives a Σ-protocol for any NP relation R based on one-way function, with E =
{0,1}� for any polynomial �.

Let R0 and R1 be binary relations and define R = R0∨R1 by ((x0, x1),w) ∈ R
iff (x0,w) ∈ R0 or (x1,w) ∈ R1. Then given two Σ−protocols Σ0,Σ1 for R0,R1
respectively, we can use the OR-construction to construct a Σ−protocol, Σ =
Σ0 ∨Σ1 for the relation R = R0 ∨R1. Let x = (x0, x1) be an instance for which
there exists w0 and w1 such that (x0,w0) ∈ R0 and (x1,w1) ∈ R1. Then the
OR-construction is witness indistinguishable in the following sense: Consider a
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PPT adversary A. Give it (x, (w0,w1)) and give it access to a proof oracle
Ob, which on input prv picks a fresh identifier I, samples a(I) ← A(x,wb, r),
stores the prover intermediate state P (I) = (I, b, r) and returns a(I) to A. On an
input (chl, I, e(I)) when some P (I) = (I, b, r) is stored, it deletes P (I), computes
z(I) = Z(x,wb, e

(I), r) and returns z(I) to A. At the end A outputs a guess at b.
Then ∣Pr[AO0

(x, (w0,w1)) = 0] −Pr[AO1
(x, (w0,w1)) = 0]∣ is negligible.

We call G a hard double-witness generator for R = R0 ∨R1 if it is PPT and a
random sample (x,w0,w1) ← G has the property that (x,w0) ∈ R and (x,w1) ∈ R
and that it is hard to compute w0 from (x,w1) and hard to compute w1 from
(x,w0), i.e., a PPT algorithm given a random (x,wb) outputs (x,w1−b) with
negligible probability. If G is a hard double-witness generator for R = R0 ∨R1,
then Σ = Σ0 ∨Σ1 is witness hiding for G, i.e., an adversary cannot compute a
witness after seeing any number of proofs. Since Σ-protocol are proofs of knowl-
edge, the adversary cannot give a proof without knowing the witness. Putting
these two observations together we get that the adversary cannot give a proof for
a statement x even after seeing any number of proofs for x, in the following sense:
We say that A wins the reprove game in Fig. 4 if at the end of the game there is
a stored value (a, e, z) (from reply verifier), where J(x, a, e, z) = accept and
where A did not challenge a prover (in reply verifier) between receiving e and
returning z. I.e., A did not challenge a prover while it had to compute its own
challenge.

initialize Let I = 0. Sample (x,w0,w1) ← G and give x to A.
start prover WheneverA inputs (prv, b), let I = I+1, sample a(I) ← A(x,wb, r),

store the prover intermediate state P (I) = (I, b, r) and return a(I) to A.
challenge prover Whenever A inputs (chl, I, e(I)) and some P (I) = (I, b, r) is

stored, delete P (I), compute z(I) = Z(x,wb, e
(I), r) and return z(I) to A.

start verifier On input (verify, a) from A, sample a uniformly random e ∈R E,
store (a, e) and return e to A.

reply verifier On input (reply, a, e, z) from A, where (a, e) is stored, delete
(a, e) and store (a, e, z).

Fig. 4. The reprove game for A, Σ and G

Theorem 1. Let Σ0 be a Σ-protocol for R0, Σ1 be a Σ-protocol for R1 and G be
a hard double-witness generator for R = R0 ∨R1. Then for all A PPT verifiers,
A wins the reprove game with Σ = Σ0 ∨Σ1 and G with negligible probability.

The intuition behind the proof is that an adversary A which wins the game can
be used to extract a witness by rewinding the winning conversation and sending
a new challenge, to get two valid conversations. Since A did not challenge a
prover between getting e and sending its reply, the rewinding does not give
problems. Which of the two witnesses w0 and w1 is extracted by A does not
change significantly if we give all the proofs to A using a random fixed witness wb

instead of letting A choose b from proof to proof: If it did, it would clearly allow
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us to break witness indistinguishability. So, with a non-negligible probability A
computes the witness not used to give the proofs. This allows to break G.

3.2 Authentication

We now turn our focus to authentication. Given that we are in the A-KRA model,
the sender S knows a secret sS for his public key pkS s.t. (pkS , sS) ∈ RS for some
poly-time relation RS . In the same way, the receiver R knows sR s.t. (pkR, sR) ∈

RR. Construct a Σ−protocol Σ = Σ0 ∨Σ1 for the relation R = RR ∨RS , i.e. the
verifier V accepts if the prover P knows a secret key for pkS or for pkR. Now
the parties can identify to each other using this Σ−protocol.

The way we build an authenticated channel from this identification protocol
is as follows: S wants to send R a message m ∈ {0,1}�, where � is a fixed message
length. We essentially let the receiver simulate a clock by identifying towards the
sender � times. In each “time period” the sender will then either identify itself or
not. This defines the � bits of the message. At the end the sender does a number
of identifications to bring up the total number of identifications given by the
sender to �. The receiver will accept only if it sees a total of � identifications.
This is done to make it impossible for an adversary to drop identifications from
the sender to the receiver. At the end, we add two last rounds where S identify to
R and then R identifies to S. This is to inform the other party that the message
was accepted.

For m ∈ {0,1}� define σ(m) ∈ {R,S}2�+2 to be Sm1
∥R∥Sm2

∥R∥⋯∥Sm�

∥R∥S�−∑
�
i=1 mi

∥S∥R, where mi is the i-th bit of m. Note that m ≠ m′ ⇒ σ(m) ≠
σ(m′), that σ(m) contains exactly � + 1 symbols of each type, and that the last
symbols are always S∥R. These are sufficient properties for the protocol to be
secure. The protocol is given in Fig. 5.

Theorem 2. If the public keys are set up as in Fig. 3, then the following holds
except with negligible probability: If S outputs accept at the end of πau then R
outputs (accept,m), where m was the message input by S.

The intuition is as follows: For I = 1, . . . ,2� + 2 we match the i’th instance run
by S to the i’th instance run by R. If S and R open a prover respectively a
verifier, or a verifier respectively a prover, then they might both continue to
I +1 without rejecting. If S and R both open a verifier, then one of them will be
terminated without a prover were running. Therefore this verifier will reject (by
Thm. 1), which makes the party running that verifier reject. If S and R both
instantiate a prover, then one of these provers will close without a verifier having
been running at the other party.

Wlog, say that a prover was running at S while no verifier was running at
R (one can repeat the argument switching the role of R and S). This prover
will not make any verifier accept at R, therefore S will run more provers than
the number of accepting verifiers that R runs. Since S starts � + 1 provers, by
construction of σ, it follows that R sees at most � accepting verifiers. Therefore
R will not output accept. It follows that if S and R have different σ, then one
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setup: Sender S knows sS, pkR, RS and RR and receiver R knows pkS, sR, RS

and RR such that (pkS , sS) ∈ RS and (pkR, sR) ∈ RR.
sender: The first time S gets an input m ∈ {0,1}� it computes σ = σ(m), sends

m to R and runs the following:
1. Let I = 1.
2. If σI = S, then instantiate a prover P = P ((pkS, pkR), sS) and let it

interact with R.
3. If σI = R, then instantiate a verifier V = V (pkS, pkR) and let it interact

with R. If V rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V ), then let I = I + 1. If

I ≤ 2� + 2, then go to Step 2. If I > 2� + 2, then output accept.
receiver: The first time R receives m ∈ {0,1}� from S it computes σ = σ(m) and

runs the following:
1. Let I = 1.
2. If σI = R, then instantiate a prover P = P ((pkS, pkR), sR) and let it

interact with S.
3. If σI = S, then instantiate a verifier V = V (pkS, pkR) and let it interact

with S. If V rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V ), then let I = I + 1. If

I ≤ 2� + 2, then go to Step 2. If I > 2� + 2, then output (accept,m).

Fig. 5. The authentication protocol πau((pkS, pkR), sS , sR)

of them does not output accept. In other words, if both parties output accept,
then they saw the same message m, as σ is a unique encoding of m.

Second, assume that R did not accept. This implies that R rejected when
I < 2� + 2 or at least R never reached I = 2� + 2, as σ2�+2 = R implies that R
cannot reject while I = 2�+2. Therefore R ran at most � provers and thus S saw
at most � verifiers accept. Therefore S did not accept either. In other words, if
S accepts, then R accepts.

Putting these two observations together, we conclude that if S accepts, then
both parties accept, and then S and R saw the same message m, as desired. This
symmetric guarantee makes the protocol suitable also to authenticate messages
from R to S, and we will use this property in Thm. 3.

3.3 Multiparty Authentication

Our ideal functionality for authenticated transmission is given in Fig. 6. We have
it do a key setup as FG

kra and output the generated keys before the authenticated
transfer phase begins. This is for compositional reasons—it allows outer protocols
to use the same secrets, which we exploit in later sections. Here we focus on
the phase after the keys are generated: The functionality allows to deliver only
messages which were actually sent, which models authentication. It can deliver
a message several times and reorder them. This can be handled outside Fmau
using e.g. sequence numbers. Any message sent is leaked to the adversary to
model that the transmission is only authenticated, not private.
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init: First it lets initi = 1 for all Pi, and then it runs FG
kra with adversary A, to

generate (R1, pk1, s1), . . . , (Rn, pkn, sn).
init done: If the adversary inputs (done, i) at a point where initi = 1

and after FG
kra terminated, then output (pki, si) to Pi, where pki =

((R1, pk1), . . . , (Rn, pkn)), and set initi = 0.
authenticated transfer, send: On input (j,m) from Pi where initi = 0, store
(i, j,m) and output (i, j,m) to the adversary.

authenticated transfer, receive: On input (i, j,m) from the adversary, if
(i, j,m) was previously stored, wait until initj = 0 and then output (i,m)
to Pj .

Fig. 6. The ideal functionality FG
mau for multiparty authenticated communication

Our implementation of FG
mau runs in the FG

kra hybrid model, see Fig. 7.

setup: When party Pi receives (pki, si) from FG
kra, it parses pki as

((R1, pk1), . . . , (Rn, pkn)) and sets init = 1.
key generation: On its first activation Pi generates a random verification key

vki for a digital signature scheme, along with the corresponding signing key
ski and stores (keys, vki, ski). Then Pi sends vki to all other parties.

key authentication: After key generation each ordered pair of parties
(Pi, Pj) with i < j runs the following in parallel:
– The parties Pi and Pj run the protocol πi,j = πau((pki, pkj), si, sj) from

Fig. 5.
– Party Pi uses the input m = (vki, vk′j), where vk′j is the value it received

from Pj in key generation. Party Pj uses the input m = (vk′i, vkj),
where vk′i is the value it received from Pi in key generation.

– If Pi accepts in πi,j , then it stores (vk, j, vk′j). If Pj accepts in πi,j then
it stores (vk, i, vk′i).

When Pi stored (keys, vki, ski) and (vk, j, vk′j) for all Pj with j ≠ i, then Pi

outputs (pki, si) and sets init = 0.

KRA propagation:authenticated transfer, send: When Pi gets input (j,m),
where init = 0, Pi computes S = sigski

(i∥j∥m) and sends (i, j,m,S) to Pj .
authenticated transfer, receive: On a message (i, j,m,S) the party Pj

waits until init = 0. Then it looks up (vk, i, vki) and outputs (i,m) if
vervki(i∥j∥m,S) = accept.

Fig. 7. The protocol πG
mau for multiparty authenticated communication

Theorem 3. If G is a meaningful key generator, then πG
mau UC securely imple-

ments FG
mau against a static, active adversary.

The proof is essentially a reduction to Thm. 2. If πG
mau is not secure it is possible

to make an honest Pj output (i,m) for an honest Pi without giving input (j,m)
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to Pi. We can reduce that to an attack on the protocol in Fig. 5. First of all,
we can assume that all other parties than Pi and Pj are corrupted, as this can
only help the adversary. Then, whenever Pi or Pj have to interact with any
Pk /∈ {Pi, Pj}, they run the protocol honestly, but use the secret sk of Pk as
witness. By witness indistinguishability (WI) this changes the probability that
Pj outputs (i,m) without Pi having received input (j,m) at most negligibly.
But now all interaction involving other parties than Pi and Pj can be run by the
adversary in its head, as it knows sk for all corrupted parties—whatever messages
Pi would send to Pk can be computed using sk. But this modified adversary is
carrying out an attack on Fig. 7 with n = 2. This is essentially an attack on
Fig. 5. The only difference is that in Fig. 7, during KRA propagation, the
environment gets si and sj from Pi, Pj . This happens after the protocol πi,j was
run, and therefore it is not needed to run the adversary against Fig. 5.

4 UC-OT in the A-KRA Model given SA-OT

Suppose we are given an UC commitment functionality, Fmcom as defined in
[CF01]: then we can implement UC zero-knowledge, Fmzk, for all NP relations,
which in turn allows us to implement a static, active UC secure OT from the
passive secure OT. We can therefore focus on implementing Fmcom using SA-OT.

The main idea of the protocol in Fig. 8 is to “compile” the SA-OT into a
UC-OT using the WI proof for statements of the kind “I followed to protocol or
I know your secret key”.

Theorem 4. The protocol πmcom is a UC secure implementation of Fmcom in
the FG

mau hybrid model secure against a static, active adversary.

The simulator extracts a commitment from a corrupted sender S∗ to an hon-
est receiver R by using selection bit c = 1 to learn m from the SA-OT. If the
sender manages to send m′ ≠m in the opening phase for some commitment, we
can extract the proofs in the SA-OT for this commitment and learn a secret s′R
for R’s public key pkR. Since R never uses sR in the protocol, this contradicts
the hardness of computing a witness for pkR. To be able to use selection bit
c = 1, the simulator gives the proof in the run of the SA-OT using the secret
s′S of the sender. This goes unnoticed by the computational hiding of the com-
mitment scheme, the computational hiding of the SA-OT and the WI of the
OR-construction. To trapdoor open a commitment to some m′ the simulator
simply sends m′ and simulates the proof that this is the correct message, by
using the secret of the receiver as witness. This goes unnoticed as for c = 1.

Corollary 1. If there exists a passive secure OT protocol, then any well-formed
functionality F can be UC implemented in the A-KRA model, against a static,
active adversary.
Proof: By Thm. 4 we can implement Fmcom in the FG

mau-hybrid model, which
implies that we can implement any well-formed F in the FG

mau-hybrid model, if
there exists a passive secure SA-OT protocol. By Thm. 3 we can implement FG

mau
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The following describes a commitment to m from party S to party R. In the full
protocol different instances use session identifiers to separate executions. Here
commit(⋅) is a statistically binding commitment.

1. All communication is authenticated using FG
mau. Use sequence numbers to

guarantee that no identical messages are ever sent, and thus never accept the
same message twice from any party.

2. R samples a uniformly random string u and sends U ← commit(u) to S.
3. S samples a uniformly random string v, sets m0 = 1∣m∣, sets m1 =m and sends

V ← commit(v), M0 ← commit(m0) and M1 ← commit(m1) to R.
4. Then S and R run the SA-OT, where S takes inputs m0 and m1 and uses

randomness v while R gives input c = 0 and uses randomness u. After sending
each message in the SA-OT R shows that it knows an opening of U to u
such that the message it sent is consistent with having run the SA-OT with
randomness u, selection bit c = 0 and the messages received from R so far.
After sending each message in the SA-OT S shows that it knows an opening
of V , M0 and M1 to v, m0 respectively m1 such that the messages it sent are
consistent with the execution of the SA-OT with randomness v, inputs m0,
m1 and the messages received from S. The proofs are given via a Σ-protocol
for NP and use the OR-construction to prove either knowledge of the openings
mentioned above or the secret of the other party.

5. To open S sends m to R and shows that m is the message inside M1 or that S
knows sR such that (pkR, sR) ∈ RR. The proof is given using two Σ-protocols
and the OR-construction.

Fig. 8. The protocol πmcom for UC commitments using SA-OT

in the unauthenticated FG
kra-hybrid model for any meaningful G. It then follows

from the UC composition theorem that we can implement any well-formed F in
the unauthenticated FG

kra-hybrid model for any meaningful G, if there exists a
passive secure SA-OT protocol. ◻

5 UC Commitment in the C-KRA Model given OWFs

In a nutshell, to construct UC-Com in the C-KRA model, we let the public
keys to be commitments of the secret keys. Then to commit the sender send an
encryption of the message under his secret key. To open, he sends the message
m together with a WI proof for a statement “m is the committed message or I
know your secret key”.

Theorem 5. If one-way functions exist, then there exists a UC commitment
scheme for the C-KRA model secure against a static, active adversary.

Proof: The public key is an unconditionally binding commitment pki =

commit(Ki; ri) to a uniformly random value Ki ∈R {0,1}κ. Let F{0,1}κ ∶

{0,1}2κ
→ {0,1}2κ be a pseudo-random permutation (PRP). Both can be in-

stantiated using one-way functions.
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To commit to m ∈ {0,1}κ with session identifier sid ∈ {0,1}κ towards Pj , Pi

sends M = FKi(sid∥m). To open the commitment to Pj , the sender sends m
and gives a proof that it knows K and r such that “pkj = commit(K; r) ∨ (pki =

commit(K; r) ∧M = FK(sid∥m))”. The proof is given using two Σ-protocols
combined with the OR-construction.

To extract, the simulator computes m = F −1Ki
(M), where Ki is found as part

of the secret si = (Ki, ri) of the sender Pi. By pki binding the sender to Ki

unconditionally and the soundness of the proof and the fact that the sender
cannot open the commitment pkj , this will yield the only m that the sender can
open the commitment to later.

To equivocate the simulator sends a uniformly random M . When given m it
sends m and gives the proof using the secret sj of the receiver as witness. By
computational hiding of the commitment scheme, pseudo-randomness of F and
WI of the proof, this will go unnoticed. ◻

6 UC OT in the A-CRS Model given SA-OT

Here we implement UC OT from SA-OT in any CRS model. We prove it for the
A-CRS model, and hence for the U-CRS and C-CRS models too. We already
know how to do UC OT in the A-KRA model given SA-OT, so it is sufficient to
implement FG

kra in the FD
crs for any meaningful G and all one-way D.

Theorem 6. If D is OWF, then GD is meaningful, and if the used OT protocol
is a SA-OT, then πD

kra in Fig. 9 is a UC secure implementation of FGD

kra in the
F

D
crs-hybrid model against a static, active adversary.

The protocol runs in the FD
crs-hybrid model.

– All parties Pi receive (D,crs) from FD
crs.

– Each Pi samples pki = D(si) for a uniformly random si and sends pki to all
parties. All parties resend the received value pki to all parties.

– Then in round-robin, for i = 1, . . . , n, each Pi proves knowledge of si to all
other parties. It does this in round robin, for j = 1, . . . , n. With each Pj it
runs the proof as in Fig. 8: It inputs m0 = 0∣si∣ and m1 = si to the SA-OT and
Pj inputs c = 0. During the run of the SA-OT, Pi proves that either 1) its
messages are consistent with a run of the SA-OT protocol and pki = D(m1)

or 2) its messages are consistent with a run of the SA-OT protocol and crs =
D(m1). Party Pj proves that either 1) its messages are consistent with a run
of the SA-OT protocol with c = 0 or 2) it knows s such that crs =D(s). The
proofs are given via a Σ-protocol for NP and the OR-construction. When Pi

and Pj are done, they both send done to the other parties. Parties only begin
their proof when they received done from all previous pairs.

– If and when a party Pk received crs from FD
crs, a value pki from each Pi and a

resent value pk′i from all other parties Pj with pk′i = pki, and saw an accepting
proof from each Pi, it outputs ((pk1,R

D), . . . , (pkn,RD)), sk.

Fig. 9. The protocol πD
kra that implements a KRA in the A-CRS model
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The proof is very similar to the proof of Thm. 4. The simulator extracts the
secret of corrupted parties using selection bit c = 1. It simulates proofs using the
secret s of crs. We run the proofs in round-robin to ensure that the simulator
will not give a simulated proof (using s) while a corrupted party has to give
a proof. If it did so, we could not show that a corrupted party cannot give an
acceptable proof unless it used m1 such that pki =D(m1) in the SA-OT. When
the proofs are run in round-robin, we can.

7 UC-Com in the A-KRA Model Implies SA-OT

Theorem 7. SA-OT is necessary for UC-Com in the A-KRA model.
Proof: We show how a UC secure commitment scheme for the A-KRA model
can be turned into a SA-OT. Note that this UC-Com protocol needs to work
for any KRA, so we can choose a special KRA that it’s possible to “simulate” in
some sense without using any setup assumptions.

To simplify the proof, consider the AND primitive, where A inputs a ∈ {0,1}
and B inputs a bit b ∈ {0,1} and where A has no output and B gets output
c = ab. It is well-known that if there exists passive, stand-alone secure AND
(SA-AND), then there also exist SA-OT. Then it is sufficient to show how to
implement SA-AND from UC-Com in the A-KRA model.

The existence of UC-Com clearly implies OWFs, so we can assume that we
have a PRG g ∶ {0,1}κ → {0,1}κ+1. Consider the key generator Gf , where f ∶
{0,1} × {0,1}κ × {0,1}κ+1 → {0,1}κ+1 × {0,1}κ+1 and f(b, rb, pk1−b

) = (pk0, pk1
)

for pkb
= g(rb

). This is clearly a meaningful generator, as a PRG g ∶ {0,1}κ →
{0,1}κ+1 is one-way.

From the assumption that there exist UC-Com in the A-KRA model, we
have a protocol π which UC implements Fmcom in the FG

kra-hybrid model with
sender S and receiver R. The sender gets key material (pkS , sS) and pkR and
the receiver gets key material pkS and (pkR, sR). Here pki = f(si) for i = S,R.

Consider the following adversary A against π for the case when the sender
is corrupted: It samples uniformly random c ∈ {0,1}, rc

S ∈ {0,1}
κ and r1−c

S ∈

{0,1}κ and lets pkc
S = g(rc

S) and pk1−c
S = g(r1−c

S ). Then it inputs s′S = (1 −
c, r1−c

S , pkc
S) to FGf

kra. Then it commits to some m ∈ {0,1} by honestly running
the commitment phase of the protocol π with key material (pkS , sS) and pkR,
where sS = (c, r

c
S , pk

1−c
S ). It’s clear here that sS ≠ s′S as the first bit is different,

and f(sS) = f(s′S). Later it decommits by honestly running the opening phase
of the protocol π.

Lemma 1. When running with A, the honest receiver R will accept the com-
mitment and will later accept the opening to m, except with negligible probability.

The proof follows from the fact that R cannot distinguish A from the honest
sender S . By π being UC secure, and the above lemma, it follows that there
exists a UC simulator S which can extract m from the conversation with A
already in the commitment phase. Since S is simulating FGf

kra to A, it follows
that S learns s′S and chooses the value of pkR.
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1. First B samples c ∈ {0,1} uniformly at random. Then, if b = 1, it uses S
to sample pkR, samples r1−c

S ∈ {0,1}κ uniformly at random and lets pk1−c
S =

g(r1−c
S ). If b = 0, then B samples pkR = f(sR) for uniformly random sR and

samples uniformly random pk1−c
S ∈R {0,1}κ+1 . In both cases it sends (c, pk1−c

S )

and pkR to A.
At the same time A samples uniformly random rc

S ∈R {0,1}κ , lets pkc
S = g(rc

S)

and sends pkc
S to B.

2. Both parties let pkS = (pkS
0 , pkS

1 ). A sets sS = (c, r
c
S , pk1−c

S ). If b = 1 then B
lets s′S = (1 − c, r1−c

S , pkc
S). Note that in this case f(sS) = pkS = f(s′S).

3. A inputs a by committing to m = a by honestly running the commitment
phase of π, playing the role of the sender S with key material (pkS, sS) and
pkR.
If b = 1, then B runs S to extract a from the conversation with A, and outputs
a. If b = 0, then B honestly runs the commitment phase of π, playing the role
of the receiver R with key material (pkR, sR) and pkS, and outputs 0.

Fig. 10. SA-AND protocol

Consider then the SA-AND in Fig. 10. If b = 1, then all values are distributed
as in the simulation of π with A and S, so B computes a, except with negligible
probability. This established the correctness, hence it only remains to prove the
following lemma.

Lemma 2. 1) When A and B are honest, then the view of A when b = 0 and b = 1
are computationally indistinguishable. 2) When A and B are honest and b = 0,
then the views of B when a = 0 and a = 1 are computationally indistinguishable.

Part 1) follows readily from the fact that by UC security R and S cannot be
distinguished by A. Part 2) follows readily from the fact that a commitment
hides the message when both parties are honest. ◻

8 Conclusions

Combining our findings with some previous results it is possible to fill the rows
of Table 1. We will make use of the following:

Theorem 8. [IR89] There is no black-box construction of SA-OT from OWF.

Theorem 9. [IR89] There is no black-box construction of key-agreement (KA)
from OWF.

Theorem 10. [DG03] UC-Com in the U/A-CRS model implies SA-OT.

Theorem 11. [DG03] UC-Com in the C-CRS model implies KA.

The answer to (a) follows directly from Thm. 11 and Thm. 9 for the CRS models;
in the same way it follows from (j) and Thm. 8 for the A-KRA model; (b) is
shown in Thm. 5; (c) follows from Thm. 9 and the fact that UC-OT in any model
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Table 1. Questions and answers: If a cell contains more than one element it means
that the answer, Y(es) or N(o), in the row is true for all elements in the cell. As an
example, row (g) says that the answer to the question is SA-OT sufficient for UC-OT
in the A-CRS model? is yes.

Assumption Functionality Model Answer
(a) OWF suf. UC-Com U/C/A-CRS, A-KRA N
(b) OWF suf. UC-Com C-KRA Y
(c) OWF suf. UC-OT U/C/A-CRS, C/A-KRA N
(d) UC-Com suf. UC-OT U/A-CRS, A-KRA Y
(e) UC-Com suf. UC-OT C-CRS open
(f) UC-Com suf. UC-OT C-KRA N
(g) SA-OT suf. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(h) OWF nec. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(i) UC-Com nec. UC-Com, UC-OT U/C/A-CRS, C/A-KRA Y
(j) SA-OT nec. UC-Com U/A-CRS, A-KRA Y
(k) SA-OT nec. UC-Com C-CRS open
(l) SA-OT nec. UC-Com C-KRA N
(m) SA-OT nec. UC-OT U/A/C-CRS, A-KRA Y
(n) SA-OT nec. UC-OT C-CRS open

implies KA; the answer to (d) is built from the fact that UC-Com in those models
implies SA-OT (see (j)), and that we can compile this into a UC-OT using the
UC-Com, as it implies UC-ZK; the answer to (f) goes as follows: (m) tells us that
UC-OT in the C-KRA model implies SA-OT while (b) tells us that OWF are
sufficient for UC-OT in the C-KRA model. Therefore UC-Com is not sufficient
for UC-OT, or we will get a contradiction with Thm. 8; (g) is proved in Thm. 4
and 6; (h) is trivial as OWF are minimal for cryptography, and (i) is trivial as
UC-OT is complete for UC computation; (j) is proved in Thm. 7 and 10; (l)
follows from (b) and Thm. 8; finally (m) follows from the following observation:
semi-honest parties can efficiently simulate the U-CRS (or the A-CRS) setup
model by letting one party pick a random string without learning the trapdoor
and make the crs public. Then the parties will run the UC-OT protocol using
this string as the CRS, therefore achieving a SA-OT. As for the C-KRA (or
the A-KRA) models, they can be efficiently simulated by letting every party
generate his own public/secret key pair and sending the public key to all other
parties. Now the parties can run the UC-OT using those public keys, and they’ll
achieve a SA-OT.

8.1 The C-CRS Setup Assumption

In this section we discuss the C-CRS model, and the open questions (e), (k) and
(n) left in the table. Consider (n): is SA-OT necessary for UC-OT in the C-CRS
model? The way we positively answered the question for the other setup models
is by letting one party honestly pick a random CRS and publish it, therefore
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simulating the setup model. We don’t know how to do it in the C-CRS model:
in fact, we don’t know whether it is possible, for any chosen OWF f , to sample
an image y = f(x) without learning the pre-image x. For instance, if x ∈ Zq

and f(x) = (gx, hx
) for g, h elements in group of large prime order q, then it

is believed that one cannot sample from the image of f without learning x, to
the extent that people construct protocols based on this belief (the so-called
knowledge of exponent assumption [Dam91]). This suggests very strongly that
the open questions cannot be solved using the techniques we have used here. It
could of course be possible to approach (n) in some other way. It seems counter-
intuitive to think that it would be possible to implement UC-OT in a world
where SA-OT does not exist: how much power does a symmetric setup as the
C-CRS give to the parties? However, if it turns out that the answer to (n) is
affirmative, then we could use (g) to turn any UC-OT in the C-CRS model into
a UC-OT in the U/A-CRS model, and this would also be a surprising result.
Similar considerations can be made for (e) and (k).
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Abstract. Aumann and Lindell defined security against covert attacks,
where the adversary is malicious, but is only caught cheating with a
certain probability. The idea is that in many real-world cases, a large
probability of being caught is sufficient to prevent the adversary from
trying to cheat. In this paper, we show how to compile a passively secure
protocol for honest majority into one that is secure against covert attacks,
again for honest majority and catches cheating with probability 1/4. The
cost of the modified protocol is essentially twice that of the original plus
an overhead that only depends on the number of inputs.

1 Introduction

When studying cryptographic protocols, the behavior of the adversary has tradi-
tionally been categorized as being either semi-honest (passive) or malicious (ac-
tive). A semi-honest adversary will only listen in on the network communication
and spy passively on the internal state of the corrupted protocol participants. At
the other end of the spectrum, a malicious adversary can make corrupted parties
behave arbitrarily and will try to actively disrupt the computation in order to
gain extra information and/or cause incorrect results.

Aumann and Lindell [2] introduce a third type of adversary called a covert ad-
versary. This is intuitively an adversary which is able to do an active attack, but
will behave correctly if the risk of being caught is sufficiently large—even if that
probability is not essentially 1. The argument for studying covert adversaries
is that there are many real world situations where the consequences of being
caught out-weights the benefit of cheating—even a small but non-negligible risk
of being caught is a deterrent. An example could be companies that agree to con-
duct an auction using secure multiparty computation. If a company is found to
be cheating it may be subject to fines and it will hurt its long-term relationships
with customers and other companies.

In the standard simulation-based definition of secure multiparty computa-
tion a protocol is said to securely evaluate a function f if no attack against the
protocol can do better than an attack on an ideal process where an ideal func-
tionality evaluates f and hands the result to the parties. Aumann and Lindell
[2] give three different models of what a covert adversary can do by defining
two different ideal functionalities that may compute f as usual, but may also
act differently, depending on what the adversary does. They also define what it
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means for a protocol to implement an ideal functionality securely, this is a fairly
standard simulation-based definition for sequentially composable protocols.

Thus, the special ingredient in the model that allows to accommodate covert
attacks is only in the definition of the functionalities, which correspond to dif-
ferent levels of security, which are called Explicit Cheat Formulation (ECF) and
Strong Explicit Cheat Formulation (SECF).1 The basic idea in both cases is that
the adversary may decide to try to cheat and must inform the functionality about
this. The functionality then decides if the cheating is detected which happens
with probability ε, where ε is called the deterrence factor. In this case all parties
are informed that some specific corrupt party cheated. Otherwise, with probabil-
ity 1−ε, the cheating is undetected, and there is no security guarantee anymore:
the functionality gives all inputs to the adversary and lets him decide the out-
puts. The difference between the two variants is that for ECF, the adversary
gets the inputs of honest parties and decides their outputs immediately when he
decides to cheat. For SECF, this only happens if the cheat is not detected.

Thus, with ECF, the adversary is caught with probability ε, but will learn
the honest parties’ inputs even if he is caught. With SECF, he must try to cheat
and succeed to learn anything he was not supposed to.

1.1 Our Contribution

In this paper we propose a new construction that “compiles” a passively secure
protocol into a new protocol with covert security. The approach is generic, but
for concreteness we describe the idea starting from the classical BGW protocol
[6] for evaluating arithmetic circuits, and only give the full compiler in the full
version of this paper [13].

We assume honest majority and synchronous communication with secure
point-to-point channels. We also assume a poly-time adversary, as we use cryp-
tographic tools.

The basic idea is to first use a protocol with full active security to do a small
amount of computation. Here, we will prepare two sets of (secret-shared) inputs
to the passively secure protocol. However, only one set of sharings contains the
actual inputs, while the other—the dummy shares—contain only zeros. Initially,
it is unknown which set is the dummy one. We then run the passively secure
protocol on both sets of inputs until parties hold shares of the outputs, which
they must commit to. Now we reveal which sharings contained dummy values,
and everything concerning the dummy execution can be then made available to
check that no cheating occurred here. If no cheating was detected, we open the
outputs of the real execution.

The intuition is that the adversary has to decide whether to cheat without
knowing which execution is the dummy one, and therefore we can catch him with
probability 1

2 if he cheats at all, so one would expect this to give a deterrence
factor of 1

2 .

1 They also have a so called Failed Simulation definition which is weaker and which
we do not use here.
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However, while the intuition is straightforward, there are several non-trivial
technicalities to take care of to make this work. We need parties to be able to
prove that they really sent/received a given message earlier, and we have to do
the final check without introducing too much overhead. After solving these prob-
lems, we obtain a protocol with deterrence factor 1

4 whose complexity is essen-
tially twice that of the passive protocol plus the overhead involved in preparing
the inputs (which does not depend on the size of the computation).

It should be noted that there is an overhead involved in proving what messages
were sent in the past. For this, players need to sign the messages they send.
However, unless the arithmetic circuit we compute has very large depth and small
breath, the cost of signing can be amortized over several operations requiring
communication, and so is not significant. For the most advanced version of our
construction, players also need to UC commit at the end to the set of messages
they sent to each player. Our solution to this in the standard model is based on
Paillier encryption and is quite elaborate, but for a practical implementation one
can use the random oracle model, in which case commitment reduces essentially
to hashing the messages, and is not a major cost.

We note that we focus on the complexity we get when there is no deviation
from the protocol. In our construction, the adversary can slow things down by
a factor linear in the number of parties by deviating, but the protocol is still
secure, the adversary can only make it fail if he runs the risk of actually cheating
and hence of being caught. Now, the spirit of covert security is that the adversary
is to some extent rational, he does not cheat because it does not pay off to do
so. It seems to us that there is little benefit in practice for the adversary in only
slowing things down, while he cannot learn extra information or influence the
result. We therefore believe that the complexity in practice can be expected to
be what we get when there is no deviation.

We show our protocol is secure by showing that it implements
Aumann and Lindell’s functionality in the UC model [9], i.e., we do not use
their simulation notion. The only difference this makes is that we get a stronger
composition property for our protocol.

We show that the classical passively secure protocol by Ben-Or et al. [6]
can be compiled to give a protocol with SECF security. Our approach can be
used in a more general way, to compile any passively secure protocols into a
covert protocol, if the original protocol satisfies certain reasonable conditions.
The conditions are essentially as follows. The protocol should be based on secret
sharing and consist of a computation phase and a reconstruction phase.

Computation phase: The computation phase starts from sharings of the in-
puts and produces sharings of the outputs, where the view of t < n/2 pas-
sively corrupted parties is independent of the inputs being computed on.

Reconstruction phase: The reconstruction phase consists of a single message
from each party to each other party—i.e., it is non-interactive.

Passive security: Suppose uniformly random sharings of the inputs are dealt
by an ideal functionality. Consider the protocol that executes the compu-
tation phase on these sharings followed by the reconstruction phase. This
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protocol should be passively secure against t < n/2 statically corrupted
parties.

The approach to obtaining covert security is basically the same as described
above. The details are described in the full version [13]. If the computation
phase leaks no information, even under active attacks (as is the case for the
BGW protocol), we get SECF security, otherwise ECF security is obtained.

1.2 Related Work and Discussion

Goyal et al. [15] improve Aumann and Lindell’s 2-party protocol and also give
a general multiparty computation protocol with covert security for the case of
dishonest majority.

Our work focuses instead on honest majority. The skeptical reader may ask
whether this is really interesting: the motivation for covert security is to settle
for less than full robustness in return for more efficient protocols, and it may
seem that we already know how to have great efficiency with honest majority
and full active security. For instance, in [5, 10], it is shown that unconditionally
secure evaluation of a circuit C for n parties and t < n/3 corruptions can be
done in complexity O(|C|n) plus an overhead that only depends on the depth
of the circuit, and in [12], it is shown under a computational assumption that
this can be reduced to O(|C|) except for logarithmic factors plus an overhead
that is independent of the circuit. Here, the security threshold can be selected
arbitrarily close to 1

2 .
How could we hope to be better than that? There are two answers to this:

First, the previous protocols are not as efficient as it may seem: the result
from [12] only works asymptotically for a large number of parties and very large
computations, it makes non black-box use of a pseudo-random function and is,
in fact, very far from being practical. The protocols in [5, 10] use only cheap
information theoretic primitives, but the security threshold in non-optimal and
there is an overhead implying that deep circuits are expensive.

However, these protocols can all become much simpler and more practical if we
assume the adversary is passive. For instance, when the adversary is passive the
protocols from [5, 10] can tolerate t < n/2 and no longer have an overhead that
depends on the circuit depth. Our compiler works for any “reasonable” protocol
that is based on secret sharing, so we can use it on these simpler passively secure
protocols and get a protocol with covert security, but with efficiency and security
threshold similar to the passively secure solutions.

The second answer is that general circuit evaluation is not the only applica-
tion. There are many special purpose protocols that are designed for a passive
adversary but where obtaining active security comes at a significant cost. One
example is the protocol by Algesheimer et al. [1] for distributed RSA key gen-
eration. Another is the auction application described in [8]. In both cases the
protocols do not go via evaluation of a circuit for the desired function, but gets
significant optimizations by taking other approaches. We can use our construc-
tion here to get covert security at a cost essentially a factor of two.
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2 Preliminaries

Aumann and Lindell [2] present three successively stronger notions of security in
the presence of covert adversaries, of which we consider the two strongest ones.
There the adversary is forced to decide whether to cheat without knowledge of
the honest parties’ inputs. As mentioned, these are called ECF and SECF and
are defined by specifying two (very similar) ideal functionalities.

For convenience, we give the ECF and SECF functionalities here. The only
differences from [2] is that we do not include an option for the adversary to abort
the protocol, and also, if no cheating is detected, the adversary cannot stop the
functionality from giving outputs to the honest parties. This gives a stronger
notion of security, and we can obtain it as we assume an honest majority.

Another difference is that we relax the requirements on the detection mecha-
nism slightly. In [2] it is required that only one corrupted party is detected and
that the honest parties agree on that party. We allow that several corrupted
parties are detected and allow that different honest parties detect different sets
of corrupted parties. The only requirement is that there is at least one corrupted
party which is detected by all honest parties. In the presence of an honest ma-
jority, the stronger detection requirement in [2] can then be implemented using
a Byzantine agreement at the end of the protocol on who should take the blame.
We prefer to see this negotiation as external to the protocol and thus allow the
more relaxed detection. See Fig. 1.

The functionality Ff
secf is defined exactly as Ff

ecf, except that when the ad-
versary sends a cheat message, the functionality does not send the inputs of

Let f be a function with n inputs and n outputs, where n is the number of parties.
The ECF functionality Ff

ecf for function f with deterrence factor ε works as follows:

Inputs: Any honest party Pi sends input xi to Ff
ecf, while the adversary A sends

input on behalf of the corrupted parties.
Cheat detection: Let C ⊂ {1, . . . , n} denote the indices of the corrupted parties

and let H = {1, . . . , n} \ C be the honest parties. The adversary can at any
time instruct Ff

ecf to give outputs of the form (corrupt, j) for j ∈ C to Pi with
i ∈ H . For i ∈ H , let Ji ⊂ C be the set of j for which Pi output (corrupt, j).

Attempted cheat: If Ff
ecf receives (cheat) from A, it will send (x1, . . . , xn) to

A. It then decides randomly if the cheating was detected or not:

Undetected: With probability 1 − ε, Ff
ecf sends (undetected) to the adver-

sary. Then A specifies for each i ∈ H an output yi and Ff
ecf outputs yi to

Pi for i ∈ H .
Detected: With probability ε, Ff

ecf sends (detected) to A. In this case
A also gets to decide the output yi for i ∈ H , but must ensure that
∩i∈HJi �= ∅ at the end of the execution.

Output generation: If A did not attempt to cheat, Ff
ecf computes outputs

(y1, . . . , yn) = f(x1, . . . , xn) and gives yi to Pi.

Fig. 1. Functionality Ff
ecf
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honest parties to the adversary. This only happens if the cheating is undetected.
We can now define security:

Definition 1. Protocol π computes f with ε-ECF (SECF) security and thresh-
old t if it implements Ff

ecf (Ff
secf) in the UC model, securely against poly-time

adversaries corrupting at most t parties.

This definition naturally extends to a hybrid UC model where certain function-
alities are assumed to be available. By the UC composition theorem and given
implementations of the auxiliary functionalities, a protocol follows that satisfy
the above definition without auxiliary functionalities.

In the following, we will consider secure evaluation of an arithmetic circuit C
over some finite field K. We assume that each input and output of C is assigned
to some party, whence C induces in a natural way a function fC of the form
considered above. In the following, “computing C securely” will mean computing
fC securely in the sense of the above definition.

We will denote the participants in the protocol by P1, . . . , Pn for a total
of n parties. Shamir secret sharing of a ∈ K with threshold t results in a set of
shares denoted by [a]t or simply [a] when the threshold is clear from the context.
The share held by Pi is denoted ai.

3 Auxiliary Functionalities

We define some ideal functionalities to make the presentation clearer. We show
how to implement them Section 5.

Message Transmission Functionality. Functionality Ftransmit is an enhance-
ment of the standard model for secure point-to-point channels. It essentially al-
lows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. It does not commit the corrupted
parties to what they sent to each other. See Fig. 2 for details.

The ideal functionality Ftransmit works with message identifiers mid encoding a
sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n}. We assume that no
mid is used twice. The functionality works as follows:
Secure transmit: When receiving (transmit, mid,m) from Ps(mid) and receiving

(transmit, mid) from all (other) honest parties, store (mid, m), mark it as
undelivered, and output (mid, |m|) to the adversary. If Ps does not input a
(transmit, mid, m) message, then output (corrupt, s(mid)) to all parties.

Synchronous delivery: At the end of each round, deliver each undelivered
(mid, m) to Pr(mid) and mark (mid,m) as delivered.

Reveal received message: On input (reveal, mid, i) from a party Pj which at
any point received the output (mid, m), output (mid, m) to Pi.

Do not commit corrupt to corrupt: If both Pj and Ps are corrupt, then the
adversary can ask Ftransmit to output (mid, m′) to any honest Pi for any m′

and any mid with s(mid) = s.

Fig. 2. Ideal Functionality Ftransmit
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This functionality will be used for all private communication in the follow-
ing, and provides a way to reliably show what was received at any earlier
point in the protocol. This is used when the dummy execution is checked for
consistency.

Input Functionality. For notational convenience we assume that each Pi has
one input xi ∈ K. The input functionality is given in Fig. 3. Note that we let
the adversary pick the dummy inputs, which is done simply not to decide at this
abstract level on any specific set of dummy inputs. We also let the adversary pick
the shares the functionality should produce for corrupt players. This is necessary
to be able to implement the functionality with a real-life protocol.

The ideal functionality Finput is parametrized by a secret sharing scheme, sss, and
works as follows.
1. Receive an input xi from each Pi and an input (d1, . . . , dn) from the adversary.

The adversary also inputs xi for i ∈ C.
2. Flip a uniformly random bit d ∈R {0, 1}.
3. Let e = 1 − d. Let x(i,d) = di be the dummy inputs and let x(i,e) = xi be the

enriched inputs.
4. For every xi,d and xi,e, the adversary inputs sets of shares Xi,d and Xi,e.

They each contain a share for every player in C, and we think of Xi,d as the
set of shares of xi,d that the adversary wants the functionality to produce for
corrupt players.

5. For j = 1, . . . , n and c = 0, 1, sample [x(j,c)] ← sss(x(j,c)|Xj,c), by which we
mean that shares of xi,c are sampled, conditioned on players in C receiving
shares Xi,c.

6. Output (x(j,0)
i )n

j=1 and (x(j,1)
i )n

j=1 to Pi.
7. On a later input (reveal, i, k), output d and (x(j,d)

i )n
j=1 to Pk.

Fig. 3. Ideal Functionality Finput

Commitment Functionality. We use a flavor of commitment where the com-
mitter cannot avoid that a commitment is revealed. Details are in Fig. 4.

The functionality Fcommit uses commitment identifiers encoding the sender s(cid)
of the commitment. It works as follows:
Commit: On input (commit, cid, m) from Ps(cid) and input (commit, cid) from

all (other) honest parties, store (cid, m) and output (commit, cid, |m|) to the
adversary.

Reveal: On input (reveal, cid, r) from all honest parties, where (cid, m) is stored,
give (cid, m) to Pr.

Fig. 4. Ideal Functionality Fcommit

Coin-Flip Functionality. We use the coin-flip functionality given in Fig. 5.
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The functionality FB
flip is parametrized by a positive integer B and works as follows:

1. Sample a uniformly random k ∈R {0, . . . , B − 1}.
2. When the first honest party inputs (flip), output k to the adversary.
3. If in the round where the first honest party inputs (flip) there is some party

Pi which does not input (flip), then output (corrupt, i) to all parties.

Fig. 5. Ideal Functionality FB
flip

4 Protocol

Having defined the necessary ideal functionalities, we will now describe how we
use them to compile the classical passively secure protocol by Ben-Or et al.
[6] based on Shamir secret-sharing into one with covert security. This protocol
computes an arithmetic circuit C with passive security. Assuming the inputs
to the arithmetic circuit have been secret shared, the protocol does addition by
having parties add their shares locally, and multiplication by local multiplication
of shares followed by a re-sharing by each parties of the local products. Due to
space constraints, we assume the details are known to the reader.

The protocols in this section use the auxiliary functionalities we defined. Thus
the actual complexity of our construction depends on the implementation of
those auxiliary functionalities. It turns out that the overhead incurred includes
a contribution coming from the cryptographic primitives we use, this overhead
does not depend on the communication complexity of the protocol we compile.
In addition, the adversary can choose to slow down Ftransmit by a factor of n,
but since he cannot make it fail, a covert adversary is unlikely to make such a
choice as discussed in the introduction.

We begin with a simple construction which has a rather poor computational
complexity. Following that, we show how the simple protocol can be adapted to
yield a better complexity.

Theorem 1. The protocol in Fig. 6 computes C with 1
2 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world against a
static adversary.

Proof. Initially S is given the inputs of the corrupt parties. It passes them on
to A and simulates the protocol execution up until the point where the bit d
is revealed and it is determined which of the two executions were the dummy
execution. S does this by inventing random shares whenever A would expect to
see a share from an honest party. A will always see only t shares and any subset
of size t look completely random in the real protocol execution. S can therefore
simulate them perfectly by giving A random values.

During the protocol, A is observed by S and it can thus be determined if A
ever sends an incorrect intermediate result to one of the honest parties.

– If A did not cheat at all, or if A cheated in both executions, then S simply
follows the protocol. In the first case FfC

secf will give S the outputs for the
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In general, if any of the ideal functionalities output (corrupt, j) to Pi, then Pi

also outputs (corrupt, j). Not mentioning this further, the protocol proceeds in
five steps:
1. All parties provide input to Finput. In return they obtain shares of secret

sharings [x(j,0)] and [x(j,1)] for j = 1, . . . , n. Nobody knows which sharings are
dummy at this point.

2. Each party Pi generates random keys K0
i and K1

i and commit to them using
Fcommit twice.

3. The passively secure protocol is run on both input sets {[x(j,0)]}n
j=1 and

{[x(j,1)]}n
j=1. This evaluates the circuit C twice. The parties use Fcommit to

commit to their shares of the output. All randomness used in the first and
second protocol run come from pseudo-random generators seeded by K0

i and
K1

i , respectively.
4. The parties query Finput for the random bit d and the shares of {[x(j,d)]}n

j=1.
They then use Fcommit to reveal the key Kd

i used for the pseudo-random gener-
ator for all Pi. Knowing the initial inputs and the seed for the pseudo-random
generator used, the entire message trace of all parties is fixed. The parties also
open the commitments to the dummy output shares.

5. Each party locally simulates the entire dummy execution to determine if any
cheating took place. This amounts to checking for each party whether his
input shares of [x(j,d)] (revealed by Finput) and seed Kd

i (revealed by Fcommit)
together lead to the shares he claims to have obtained of the output (revealed
by Fcommit) if he follows the passively secure protocol on the messages that
other parties would have sent if they followed the protocol on their shares and
expanded randomness. If no discrepancies are found, the output shares of the
real execution are opened.
Otherwise, the honest parties must determine who cheated.a

The parties have already locally simulated the dummy execution so they know
the correct message trace. It is therefore simple to match this against the actual
message trace revealed by Ftransmit and pinpoint the first deviation. If Pj made
the first mistake, the honest parties output (corrupt, j) and halt.

a Note that it is possible for a corrupt party to “frame” an honest party by sending
him wrong intermediate results. The honest party cannot tell the difference
and will produce incorrect output. Ftransmit is there to safeguard honest parties
against this form of attack. The parties call it to reveal all messages that were
received in the dummy execution.

Fig. 6. Simple version

corrupt parties, which S can pass along to A unchanged. In the second case,
A will be caught with certainty before seeing anything which depend on
the honest parties inputs. S can therefore simulate the protocol execution
towards A using random shares only.

– If A cheats in execution d′ (first or second execution), S will send (cheat)
to F . The functionality then determines if the cheat was successful:
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Detected: The simulator must now ensure that A believes he cheated in
the dummy execution.

A will want to query Finput for the value of d and the shares of
the dummy inputs. In response, S sends a response with d = d′, which
means that A cheated in the dummy execution. S must also send back
shares of the inputs {x(j,d) = dj}n

j=1 consistent with the shares A has
already seen. At this point A has only seen the shares it chose for the
(non-qualified) subset of corrupt parties when Finput was called initially.
S can therefore choose polynomials that agree with these values and
correspond to a sharing of the inputs dj , and finally compute consistent
shares of the honest parties using these polynomials.

If Pj were the first corrupt party who send an incorrect message to
an honest party, S will send (corrupt, j) to FfC

secf.
Undetected: In this case the functionality responded with (undetected)

together with the honest parties’ inputs. The simulator must therefore
make it look as if A cheated in the execution that was not opened, i.e.,
the real execution. As above, S can compute polynomials that will give
a correct sharing of inputs based on what A already knows and with
d = 1 − d′.

Using these inputs together with the corrupt parties’ inputs and out-
puts, S can now compute the consequence of A’s cheating, i.e., the al-
tered outputs of the honest parties. It passes these outputs to FfC

secf as
the honest parties’ outputs.

It is clear that the above simulation matches the output of A in the hybrid world
perfectly when A did not cheat and when A was foolish enough to cheat in both
executions.

When A cheats in just one execution, S will make the honest parties output
(corrupt, j) for some corrupt Pj (if A was detected) or output normal outputs
(if A was undetected). Each of these two cases are picked with probability exactly
1
2 by the random choice made by FfC

secf. We get the same probability distribution
in the hybrid world where Finput picks the bit d uniformly at random.

In total, we can now conclude that the protocol in Fig. 6 computes fC with
1
2 -SECF security.

The above protocol has each party execute the passively secure protocol twice
after which each party simulates the actions of all other parties in the dummy
execution. In the standard BGW protocol [6], each party has a computational
complexity of O(n) per gate. By asking every party to simulate every other party,
we increase the computational complexity to O(n2) per gate.

The communication complexity is doubled by running the passively secure
protocol twice. In the normal case where the dummy execution is found to con-
tain no errors, the communication complexity is increased no further. When er-
rors are detected, every party is sent the messages communicated by every other
party. This will again introduce a quadratic blowup, now in the communication
complexity. We argued in the introduction that even a small fixed probability of
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catching misbehavior is enough to deter the parties. Because of that, we expect
to find no discrepancies most of the time, and thus obtain the same communica-
tion complexity as the original protocol within a constant factor. We still have a
quadratic blowup in the computational complexity. However, local computations
are normally considered free compared to the communication, i.e., the network is
expected to be the bottleneck. So for a moderate number of parties, this simple
protocol can still be quite efficient.

Still, we would like to lower the complexity when errors are detected. Below
we propose a slightly more complex protocol which has only a constant overhead
in both computation and communication both when no errors are detected and
when the parties are forced to do a more careful verification.

This is a modification of the protocol in Fig. 6. After running Step 1–3 unchanged,
it continues with:
1. All Pi use Fcommit to commit to their view of the protocol, i.e., all messages

exchanged between Pi and Pj for all j. This results in commitments comm(i,0)

{i,j}
for the first execution and comm(i,1)

{i,j} for the second, where comm(m,c)
{i,j} is the

view of Pm of what was sent between Pi and Pj in execution number c.
2. The parties query Finput for the random bit d and the shares of the dummy

inputs. They then use Fn−1
flip to flip a uniformly random k ∈ {1, . . . , n−1} that

will be used when checking. Fcommit is used by all parties to reveal the key Kd
i

used for the pseudo-random generator for all Pi. Finally, the commitments to
shares in the output from the dummy execution are opened.

3. Each party Pi checks Pl, where l = (i− 1 + k mod n) + 1, i.e., he checks Pi+k

with wraparound from Pn back to P1.
The commitments comm(j,d)

{l,j} and comm(l,d)
{l,j} are opened to Pi, i.e., the com-

mitted views of Pl and Pj of what was exchanged between them. If there is a
disagreement, then Pi broadcasts a complaint and Pl and Pj must decommit
to all parties and use Ftransmit to show which messages they received from the
other. This will clearly detect at least one corrupt party among Pl and Pj if
Pi was honest, or reveal Pi as corrupt if the commitments were equal after all,
i.e., if Pi made a false accusation.
If all committed views agree, then Pi simulates the local computations done
by Pl and checks whether this leads to the shares of the dummy output opened
by Pl and the messages sent according to comm(l,d)

{l,j}. If a deviation is found,
Pi broadcasts an accusation against Pl, and all parties check Pl as Pi did.
If they verify the deviation they output (corrupt, l), otherwise they output
(corrupt, i).

4. If no accusations were made, the output of the real execution is opened.

Fig. 7. Efficient version

If no errors are detected, each party does two protocol executions followed
by a check of the input/output behavior of one other party. This is clearly a
constant factor overhead compared to the passively secure protocol. When a
party is accused, all other parties must check this party. This adds only a linear
overhead to the overall protocol, and thus the protocol in Fig. 7 has a linear
overhead compared to the passively secure protocol.
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It might seem as an overkill in the protocol in Fig. 7 to use Ftransmit for
communication and then also have the parties commit to their communication
using Fcommit. The reason for the commitments is to commit the corrupted
parties to what they sent among each other before it is revealed which parties
check which parties. If we do not do that, they might decide on which of them
was the deviator after the revelation of d and k and thus always pick the deviator
to be one which is checked by a corrupted party. For an example of what can go
wrong without the commitments the interested reader can refer to the Chinese-

Whispers protocol in the full version of this paper [13].

Theorem 2. The protocol in Fig. 7 computes C with 1
4 -SECF security and

threshold t < n/2 in the (Ftransmit,Finput,Fcommit,Fflip)-hybrid world.

Proof. The simulator for the protocol in Fig. 7 runs like the simulator for the
protocol in Fig. 6, except that it must now only output (corrupt, i) to F if it
determines that a message trace for a corrupt party Pi was checked by an honest
party, and it must do while maintaining the same probability distribution as in
the hybrid world.

As before, S will simulate A and observe the messages sent to honest parties.
As soon as an incorrect message is observed in execution d′ and all parties
committed to their communication with the other parties, we know there exists
an offset k′ ∈ {1, . . . , n − 1} for which an honest Pi would catch a corrupt Pl,
where l = (i − 1 + k′ mod n) + 1 in execution d′:

– If two parties Pl and Pj committed to comm(l,d′)
{l,j} �= comm(j,d′)

{l,j} , then one
of them is corrupted, Pl say, and we pick k′ such that Pl is checked by an
honest Pi.

– If comm(l,d′)
{l,j} = comm(j,d′)

{l,j} for all pairs of parties, then the wrong message
sent to an honest party in execution d′ implies that some party Pl is com-
mitted to values which are not consistent with an execution of the protocol,
and we pick k′ to ensure that Pl is checked by an honest party.2

The simulator sends (cheat) to FfC
secf. We have two outcomes:

Detected: Set d = d′ and sample k at random such that Pl is checked by an
honest party.

Undetected: Set d = d′ with probability 1
3 , and d = 1 − d′ otherwise. Sample

k ∈ {1, . . . , n−1} such that Pl is checked by an honest party with probability
α = 4

3 ( n−t
n−1 − 1

4 ).

If A did not cheat, S selects d and k as in the hybrid protocol. The simulation
continues as in the hybrid world with these choices for d and k. The ideal world
output clearly match the hybrid world.

2 Note that Pl need not be the one who sent the incorrect message to the honest
party—Pl may have behaved locally consistent given its inputs—but S will be able
to find a first deviator, and it will clearly not be one of the honest parties.
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When A did cheat, we will show that d and k are picked with the correct
distribution. First note that S pick d = d′ with probability 1

4 · 1 + 3
4 · 1

3 = 1
2 , as

in the hybrid world.
For the selection of k, note that a cheating party will always have a unique

distance to every honest party. These distances make up a subset of {1, . . . , n−1}
of size n− t. The cheater is caught exactly when the offset is picked within this
subset. This happens with probability n−t

n−1 in the hybrid world. The simulator
picks k among the indices of honest parties with the same probability: 1

4 + 3
4α =

n−t
n−1 . We conclude that S will simulate the hybrid world.

5 Implementation of Sub-protocols

In this section we sketch how to implement the sub-protocols described above.

Detection. In all sub-protocols we will need a tool for stopping the protocol
“gracefully” when corruption is detected This is done by all parties running the
following rules in parallel.

1. If a party Pi sees that a party Pd deviates from the protocol, then Pi signs
(corrupt, d) to get signature γi and sends the signature to all parties. Then
Pi outputs (corrupt, d).

2. If Pk received a signature γi on (corrupt, d) from t + 1 distinct parties Pi,
it considers these as a proof that Pd is corrupted, sends this proof to all
parties, outputs (corrupt, d), waits for one round and then terminates all
protocols.

3. If Pk receives a proof that Pd is corrupt from any party, it relays this proof
to all parties, outputs (corrupt, d), waits for one round and then terminates
all protocols.

If the signature scheme are unforgeable and only corrupted parties deviate from
the protocol, then the protocol has the following two properties, except with
negligible probability.

Detection soundness: If an honest party outputs (corrupt, d), then Pd is
corrupt.

Common detection: If an honest party terminates the protocol prematurely,
then there exists Pd such that all honest parties have output (corrupt, d).

The reason why the relayer Pr waits for one round before terminating is that Pr

wants all other parties to have seen a proof that Pi is corrupt before it terminates
itself. Otherwise the termination of Pr would be considered a deviation and an
honest Pr could be falsely detected. In the following we do not always mention
explicitly that the detection sub-protocol is run as part of all protocols.

Transmission Functionality. The transmission protocol can run in two modes.
In cheap mode Ftransmit is implemented as follows.
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1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to Pr(mid).

2. On input (transmit,mid) party Pr(mid) waits for one round and then ex-
pects a message (mid,m, σs) from Ps(mid), where σs is a valid signature from
Ps on (mid,m). If it receives it, it outputs (mid,m).

3. On input (reveal,mid, i) party Pj , if it at some point output (mid,m),
sends (mid,m, σs) to Pi, which outputs (mid,m) if σs is valid.

It is easy to check that this is a UC secure implementation under the following
restrictions:

Synchronized input from honest parties: If some honest party receives in-
put (transmit,mid), then all honest parties Pi �= Ps(mid) receives the same
input (transmit,mid). Furthermore, if Ps(mid) is honest, it receives input
(transmit,mid,m) for some m.

Signatures: Even corrupted Ps send along the signatures σs.

The restriction synchronized input from honest can be enforced by the way the
ideal functionality is used by an outer protocol, i.e., by ensuring that the honest
parties agree on which message identifiers are used for which message in which
rounds. This is the case for the way we use Ftransmit. The restriction signatures
is unreasonable, and we show how to get rid of it below. We need the rule Do
not commit corrupt to corrupt in Ftransmit as we cannot prevent a corrupt
Ps from providing a corrupt Pi with signatures on arbitrary messages, i.e., we
cannot commit the corrupted parties to what they have sent among themselves.

As mentioned, the above implementation only works if all senders honestly
send the needed signatures. If at some point some Pr does not receive a valid
signature from Ps, it publicly accuses Ps of being corrupted and the parties
switch to the below expensive mode for transmissions from Ps to Pr.

1. On input (transmit,mid,m) party Ps(mid) signs (mid,m) to obtain signa-
ture σs and sends (mid,m, σs) to all Pi �= Ps(mid).

2. On input (transmit,mid) parties Pi �= Ps(mid) wait for one round and then
expects a message (mid,m, σs) from Pr(mid), where σs is a valid signature
of Ps(mid) on (mid,m). If Pi receives it, it sends (mid,m, σs) to Pr(mid).
Otherwise, it sends a signature γi on (corrupt, i) to all parties.

3. On input (transmit,mid) party Pr(mid) waits for two rounds and then ex-
pects a message (mid,m, σs) from each Pi, where σs is a valid signature of
Ps(mid) on (mid,m). If it arrives from some Pi, then Pr outputs (mid,m).

Note that now each round of communication on Ftransmit takes two rounds on the
underlying network. Between two parties where there have been no accusations,
messages are sent as before (Step 1 in the above protocol) and the extra round
is used for silence—it is necessary that also non-accusing parties use two rounds
to not lose synchronization.

If Ps sends a valid signature to just one honest party, then Pr gets its signature
and can proceed as in optimistic mode. If Ps does not send a valid signature to
any honest party, then all n − t honest Pi send γi to all parties and hence all



142 I. Damg̊ard, M. Geisler, and J.B. Nielsen

honest parties output (corrupt, s) in the following round, meaning that Ps was
detected. Using these observations it can easily be shown that the above protocol
is a UC implementation of Ftransmit against covert adversaries with deterrence
factor 1. Note that it is not a problem that we send m in cleartext through all
parties, as an accusation of Ps by Pr means that Ps or Pr is corrupt, and hence
m need not be kept secret.

We skipped the details of how the accusations are handled. We could in prin-
ciple handle accusations by using one round of broadcast after each round of
communication to check if any party wants to make an accusation. After broad-
casting the accusations, the appropriate parties can then switch to expensive
model. To avoid using a Byzantine agreement primitive in each round, we use
a slightly more involved, but much cheaper technique which communicates less
than n2 bits in each round and which only uses a BA primitive when there are
actually some accusations to be dealt with. The details are given in the next
section.

In cheap mode, using Ftransmit adds an overhead Nκ bits compared to plain
transmission, where κ is the length of a signature and N is the number of mes-
sages sent. In expensive mode this overhead is a factor n larger.

Cheap Exception Handling. Consider a protocol consisting of two protocols
πmain and πexcept, both for the authenticated, synchronous point-to-point model.
Initially the parties run πmain. The goal is to allow any party to raise a flag, which
stops πmain and starts πexcept. With some details left out for now, this is handled
as follows.

– If a party Pi wants to stop the main protocol, it sends (stop) to all parties
and stops the execution of πmain. It records the round Ri in which it stopped
running πmain.

– If a party Pi receives (stop) from any party while running πmain, it sends
(stop) to all parties and stops the execution of πmain. It records the round
Ri in which it stopped running πmain.

– After all parties stopped they resynchronize and then run πexcept.
– After having run πexcept, the parties agree on a round C of πmain which was

executed completely, i.e., Ri > C for all honest Pi, and then they rerun from
round C +1. If a party Pr already received a message from Ps for one of the
rounds that are now rerun, then Pr ignores any new message sent by Ps for
that round. This is to avoid that corrupted parties can change their mind
on what they sent in a previous round.

The resynchronization is needed as honest parties might stop in different
rounds—though at most with a staggering of one round.

The resynchronization uses a sub-protocol where the input of Pi is the round
Ri in which it stopped. The output is some common R such that it is guaranteed
that Ri = R for some honest Pi, i.e., at least one honest party stopped in round
R. Since the honest parties stop within one round of each other, it follows that
all honest parties stopped in round R − 1, R or R + 1. In particular, no honest
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party stopped in round R − 2. The parties can therefore safely set C = R − 2,
i.e., rerun from round R − 1.

The protocol used to agree on the round R proceeds as follows:

1. Each Pi has input Ri ∈ N and it is guaranteed that |Ri − Rj | ≤ 1 for all
honest Pi and Pj .

2. Let ri = Ri mod 4 and make 4 calls to the BA functionality—name the calls
BA0, BA1, BA2 and BA3. The input to BAc is 1 if c = ri or c = ri −1 mod 4
and the input to BAc is 0 if c = ri + 1 mod 4 or c = ri + 2 mod 4.

3. Let oc ∈ {0, 1} for c = 0, 1, 2, 3 denote the outcome of BAc. Now Pi finds
the largest R ∈ {Ri − 1, Ri, Ri + 1} for which oR mod 4 = 1 and outputs R.

It is fairly straight forward to see that the honest parties output the same R and
that R was always the input of some honest party. Look at two cases.

– If there exists ρ such that Ri = ρ for all honest Pi, then all honest parties
input the same to the BA functionalities, and then trivially oρ−1 mod 4 = 1,
oρ mod 4 = 1, oρ+1 mod 4 = 0 and oρ+2 mod 4 = 0. Consequently, at honest
parties outputs R = ρ.

– If there exists ρ such that Ri = ρ for some honest Pi and Rj = ρ + 1 for
some honest Pj , then Rk ∈ {ρ, ρ + 1} for all honest Pk, and thus all honest
Pk input 1 to BAρ mod 4, and so oρ mod 4 = 1. Furthermore, all honest parties
input 0 to BAρ+2 mod 4, so oρ+2 mod 4 = 0. It follows that all honest parties
output R = ρ if oρ+1 mod 4 = 0 and that all honest parties output R = ρ + 1
if oρ+1 mod 4 = 1. Both outputs are valid.

The above protocol is an improved version of a protocol by Bar-Noy et al. [3],
which in turn uses techniques from Berman et al. [7]). The protocol in [3] uses
log(B) calls to the BA functionality, where B is an upper bound on the input of
the parties. We use just 4.

Note that at the point where the four BAs are run, the honest parties might
still be desynchronized by one round. We handle this using a technique from [16]
which simulates each round in the BA protocols by three synchronous rounds in
the authenticated channel model.

Commitment Functionality. The protocol uses a one-round UC commitment
scheme with a constant overhead (commit to κ bits using O(κ) bits), which can
be realized with static security in the PKI model [4] given any mixed commitment
scheme [11] with a constant overhead. Concretely we can instantiate such a
scheme under Paillier’s DCR assumption. Note that opposed to Barak et al. [4]
we do not need a setup assumption: We assume honest majority and can thus,
once and for all, use an active secure MPC to generate the needed setup [14].
The protocol also uses an error-correcting code (ECC) for n parties which allows
to compute the message from any n − t correct shares.

If one is willing to use the random oracle model, UC commitment can instead
be done by calling the oracle on input the message to commit to, followed by
some randomness. In practice, this translates to a very efficient solution based
on a hash function.
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The protocol proceeds as follows.

1. On input (commit, cid,m), Ps(cid) computes an ECC (m1, . . . ,mn) of m. The
sender then computes ci ← commitpki(mi) and sends ci to Pi via Ftransmit.

2. On input (reveal, cid, r), Pi opens each ci to Pi. The opening is sent via
Ftransmit. If any Pi receives an invalid opening, it transfers ci and mi to all
parties and Ps is detected as a cheater. Otherwise, Pi transfers ci and the
opening to Pr.

3. Then Pr collects validly opened ci. Let I be the index of these and let mi be
the opening of ci for i ∈ C. If |I| < n − t, then Pr waits for one round and
terminates.3 If (mi)i∈I is not consistent with a codeword in the ECC, then
Pr transfers (ci)i∈I and the valid openings to the other parties which detect
Ps as corrupted. Otherwise, Pr uses (mi)i∈I to determine m and outputs
(cid,m).

Assuming that a commitment to � bits have bit-length O(max(κ, �)), where κ
is the security parameter, the complexity of a commitment to � bits followed by
an opening is O(nmax(κ, �/n)) = O(n(κ + �/n)) = O(� + nκ). This is assuming
that there are no active corruptions, such that Ftransmit has constant overhead.

Flip Functionality. To implement FB
flip

the parties proceed as follows.

1. On input (flip), all Pi commit to a uniformly random ki ∈ {0, . . . , B − 1}.
2. In the next round all Pi reveal ki to all parties.
3. All parties output k =

∑n
i=1 ki mod B.

Under the condition that the protocol is used by the honest parties in a way that
guarantees that they input (flip) in the same round, the argument that the pro-
tocol implements the functionality against a covert adversary (with deterrence
1) is straight forward.

Input Functionality. The input functionality can be implemented using a
VSS with a multiplication protocol active secure against t < n/2 corruptions.
The VSS should have the property that it is possible to verifiable reconstruct
the secret and the share of all parties given the shares of the honest parties—
standard bivariate sharing has this property. We sketch the protocol.

1. Each Pi deals a VSS [[xi]] of its input xi.
2. The parties use standard techniques to compute a VSS [[d]] of a uniformly

random d ∈R {0, 1} ⊂ K.
3. For each input [[xi]] the parties use an actively secure multiplication protocol

to compute [[x(i,0)]] = [[di · xi]] and [[x(i,1)]] = [[(1 − di) · xi]].
Each Pi takes its output to be (x(j,0)

i )n
j=1 and (x(j,1)

i )n
j=1, where x

(j,c)
i is its

point on the polynomial used by the sharing [[x(j,c)]]. The other values of
the VSS are internal to the implementation of Finput and only used for the
below command.

4. On input (reveal, i, k) the parties reconstruct [[d]] and all [[xi,d]] towards Pk

and Pk computes the points x(j,d) of Pj in all sharings and output (x(j,d)
i )n

j=1.
3 Since we assume that at most t parties are corrupted, we can assume that either Ps is

detected or Pr receives n−t commitments with corresponding valid decommitments.
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Abstract. The Naor-Yung (NY) paradigm shows how to build a chosen-
ciphertext secure encryption scheme from three conceptual ingredients:

– a weakly (i.e., IND-CPA) secure encryption scheme,
– a “replication strategy” that specifies how to use the weakly se-

cure encryption scheme; concretely, a NY-encryption contains several
weak encryptions of the same plaintext,

– a non-interactive zero-knowledge (NIZK) proof system to show that
a given ciphertext is consistent, i.e., contains weak encryptions of
the same plaintext.

The NY paradigm served both as a breakthrough proof-of-concept, and
as an inspiration to subsequent constructions. However, the NY con-
struction leads to impractical encryption schemes, due to the usually
prohibitively expensive NIZK proof.

In this contribution, we give a variant of the NY paradigm that leads
to practical, fully IND-CCA secure encryption schemes whose security can
be based on a generic class of algebraic complexity assumptions. Our ap-
proach refines NY’s approach as follows:

– Our sole computational assumption is that of a Diffie-Hellman (DH)
type two-move key exchange protocol, interpreted as a weakly secure
key encapsulation mechanism (KEM).

– Our “replication strategy” is as follows. Key generation consists of
replicating the KEM several times, but only the first pass. Encryp-
tion then consists of performing the second pass with respect to all
of these, but with the same random coins in each instance.

– For proving consistency of a given ciphertext, we employ a practical
universal hash proof system, case-tailored to our KEM and replica-
tion strategy.
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We instantiate our paradigm both from computational Diffie-Hellman
(CDH) and from RSA type assumptions. This way, practical IND-CCA
secure encryption schemes based on search problems can be built and
explained in a generic, NY-like fashion.

We would like to stress that while we generalize universal hash proof
systems as a proof system, we do not follow or generalize the approach
of Cramer and Shoup to build IND-CCA secure encryption. Their ap-
proach uses specific hash proof systems that feature, on top of a NIZK
property, a computational indistinguishability property. Hence they nec-
essarily build upon decisional assumptions, whereas we show how to
implement our approach with search assumptions. Our approach uses
hash proof systems in the NY way, namely solely as a device to prove
consistency. In our case, secrecy is provided by the “weak encryption”
component, which allows us to embed search problems.

Keywords: Public-key encryption, chosen-ciphertext security.

1 Introduction

One of the main fields of interest in cryptography is the design and the analysis of
the security of encryption schemes in the public-key setting (PKE schemes). The
notion of security against chosen-ciphertext attack (IND-CCA security) is due to
Rackoff and Simon [23] and is now widely accepted as the standard security
notion for public-key encryption schemes. In contrast to security against passive
adversaries (security against chosen-plaintext attacks aka semantic security), in
a chosen-ciphertext attack the adversary plays an active role by obtaining the
decryptions of ciphertexts (or even arbitrary bit-strings) of his choosing. The
practical significance of such attacks was demonstrated by Bleichenbacher [1] by
means of an IND-CCA attack against schemes following the encryption standard
PKCS #1.
The Naor-Yung paradigm. Historically, the first scheme that was provably
secure against a weaker variant of IND-CCA attacks (namely, “lunch-time at-
tacks”) is due to Naor and Yung (NY) [21]. Dolev, Dwork, and Naor [9] later
showed how to modify the paradigm of NY to achieve full IND-CCA security. We
briefly outline the general idea in the following. To start, let’s assume a weakly
(i.e., IND-CPA) secure encryption scheme. (IND-CPA secure encryption schemes
are a well-understood primitive, and can be constructed from various search or
decisional computational problems, see, e.g., [11].) Now a ciphertext contains two
weakly secure encryptions of the same message (under different public keys of
the weakly secure scheme), along with a non-interactive zero-knowledge (NIZK)
proof that indeed the same messages were encrypted. During the security proof,
a simulator will know precisely one of the two secret keys for the weakly secure
encryption schemes. (Note that in order to implement the decryption oracle, the
simulator only needs to decrypt one ciphertext component and rely on the sound-
ness of the NIZK proof.) Hence, we can carve out three conceptual ingredients
for the NY paradigm:
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– a weakly (i.e., IND-CPA) secure encryption scheme,
– a “replication strategy” that specifies how to use the weakly secure encryption

scheme, and
– a NIZK proof system to show that a given ciphertext is consistent.

Of course, these ingredients are not independent (e.g., the statement to be proven
by the NIZK proof depends both on the weakly secure encryption scheme and on
the replication strategy). The system of Dolev, Dwork and Naor uses a similar
overall approach, the main difference the used replication strategy. (Additionally,
they also require a more special type of “non-malleable” NIZK proof systems.)

Hash proof systems. The first practical schemes provably IND-CCA secure
under standard cryptographic hardness assumptions were due to Cramer and
Shoup [8,8]. They later generalized their initial scheme to the paradigm of “hash
proof systems” (HPSs) [7], thereby yielding new practical schemes from a number
of alternative intractability assumptions. The approach of Cramer and Shoup is
inspired by the NY paradigm. And indeed, a HPS, as used by Cramer and
Shoup, combines the encryption and the proof part of the NY paradigm in one
primitive. However, even though the concept of HPSs is generic, its use in [7]
to build encryption schemes inherently relies on decisional assumptions, such as
the assumed hardness of deciding if a given integer has a square root modulo a
composite number with unknown factorization, or if deciding if a given tuple is
a Diffie-Hellman tuple or not (DDH assumption).

The theory of hash proof systems has since been developed further (e.g.,
[10,25,18]), and particular instances of the HPS-based schemes could be opti-
mized, leading to a number of even more efficient schemes (e.g., [10,19,14,18]).
However, all of these schemes are based on decisional assumptions (such as the
DDH assumption).

Lossy trapdoor functions and the approach of Rosen and Segev. An al-
ternative generic framework of constructing IND-CCA secure encryption schemes
is given by the recent concept of lossy trapdoor functions [22] that led to the
first construction based on a (decisional) assumption related to finding shortest
vectors on lattices. However, also lossy trapdoor functions inherently rely on
decisional assumptions rather than computational assumptions.1

Recently, Rosen and Segev [24] proposed a refinement of the NY approach
that does not require an explicit NIZK part. (In fact, consistency of a cipher-
text can be checked deterministically be the decryptor, since they employ weak
encryption schemes that are actually functions.) Unfortunately, their approach
requires a nonstandard computational assumption, namely one-way security of
several independent functions under correlated inputs. They show that security
under correlated inputs is implied by lossy trapdoor functions; however, they do
not show security under a standard search assumption.

1 Unless, of course, the decisional assumption can be proved equivalent to a compu-
tational assumption, as it is the case with cryptosystems based on the problem of
“learning with error” [22].
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IND-CCA security from identity-based encryption. Boneh et al [3] describe
a completely generic transformation of a selective-ID secure identitity-based
encryption scheme into an IND-CCA secure PKE scheme. Their assumption (a
selective-ID secure IBE scheme) cannot be directly counted as a search or deci-
sional assumption. However, as it is based upon indistinguishability of adversarial
views, it is arguably closer to a decisional assumption.
Decisional vs. search assumptions. We conclude that all known generic
paradigms of constructing practical IND-CCA secure encryption seem to rely on
decisional assumptions, as opposed to search assumptions. No generic paradigm
is known under which practical IND-CCA secure schemes based on, say, the CDH
problem could be constructed or explained.

In most known cases related to cryptography, decisional assumptions form a
much stronger class of assumptions than the corresponding search assumptions.
For example, deciding if a given integer has a modular square root or not may be
much easier than actually computing a square root (or, equivalently, factoring
the modulus). Only recently were practical schemes proposed whose IND-CCA
security does not rely on decisional assumptions (e.g., [3,5,13,16]). In particular,
the first practical encryption scheme IND-CCA secure under the Computational
Diffie-Hellman (CDH) assumption was proposed by Cash, Kiltz, and Shoup [5]
in 2008, and improved by Hanaoka and Kurosawa [13] later that year. In 2009,
Hofheinz and Kiltz proposed a very efficient IND-CCA secure encryption scheme
under the factoring assumption [16].

However, there seems to be no overarching concept that explains these schemes.
Each of these schemes relies on different techniques to achieve security, and in
particular to conduct a reduction in the security proof.
Our contribution. In this work, we refine the abstract NY paradigm in a
way that allows to construct and explain practical IND-CCA secure encryption
schemes whose security is based on general widely believed search assumptions.
Concretely, we modify the NY paradigm as follows:

– Our sole computational assumption is that of a Diffie-Hellman type two-
move key exchange protocol. This assumption is implied, e.g., under the CDH
assumption in cyclic groups, or under the RSA assumptions. We interpret
the key exchange protocol as a weakly secure key encapsulation mechanism.
(That is, the first KE message is the KEM public key, and the second KE
message is the KEM ciphertext.)

– Our “replication strategy” uses the aboveKEMseveral times, butwith the same
encryption random coins (and not with the same key or plaintext as in the orig-
inal NY paradigm). Our replication strategy comes with a special simulation
setup, such that the simulator in the security proof can decrypt all consistent
ciphertexts, except for one predetermined target/challenge ciphertext.

– For proving consistency of a given ciphertext, we employ a generic but practi-
cal universal hash proof system. This forms a special type of designated-verifier
NIZK proof system, case-tailored to our KEM and replication strategy. We
stress that we do not use the HPS in the same way that Cramer and Shoup
do to achieve IND-CCA security. In fact, [7] require a NIZK proof property and a
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computational property. We only use a proof property of our HPS, and
obtain secrecy from our assumption on the KEM, much like in the original NY
paradigm. Hence we do not generalize the Cramer-Shoup approach to achiev-
ing IND-CCA secure encryption.

The technical assumption we use to capture a Diffie-Hellman type key exchange
protocol is that of a hard algebraic set system. Roughly, an algebraic set system
consists of a finite Abelian group S, together with a commutative, unitary sub-
ring Φ of group endomorphisms over S that fulfil a number of natural algebraic
properties. It is a hard algebraic set system if a Diffie-Hellman style computa-
tional problem is intractable. Examples of hard algebraic set systems can be
obtained from standard computational assumptions such as the CDH and the
RSA assumptions (using hardcore bit extraction). Our main result is an efficient
transformation from any hard algebraic set system into a practical IND-CCA
secure encryption scheme. With respect to the results our construction can be
seen as a generalization of the recent specific constructions from computational
problems [3,5,13,16].

1.1 Technical Details

We now give some technical details of our transformation.

An IND-CPA secure construction. We start by describing a simple IND-CPA
secure construction from any hard algebraic set system (S, Φ). It is actually a key
encapsulation mechanism [8] (KEM) that can be viewed as a natural abstraction
of the Diffie-Hellman key-exchange protocol. The scheme’s secret key consists of
a random χ ∈ Φ and the public-key is a random g ∈ S and u = χ(g) ∈ S.
Encryption picks random ψ ∈ Φ, computes the ciphertext c = ψ(g) ∈ S and
uses the encapsulated key K = Ext(ψ(u)) to blind the message. (Here Ext is an
extractor function that is part of the underlying hard computational problem of
the algebraic set system.) Decryption reconstructs the key by computing K =
Ext(χ(c)). In our construction, we will have that χ and ψ commute. This directly
implies correctness of the scheme, since then χ(c) = χ(ψ(g)) = ψ(χ(g)) = ψ(u).

Our IND-CCA secure construction. We augment the above IND-CPA secure
construction in a clean and modular way (much like Naor and Yung) by adding
a “replication part” and a “NIZK part” to the scheme. The two new parts require
no computational assumptions, and so the resulting scheme is IND-CCA secure if
the old scheme is IND-CPA secure. More concretely, ciphertexts are now tuples of
the form (c,d, π), where c is from the IND-CPA construction, d is the “trapdoor
element”, and π is the “NIZK element” that proves consistency of the ciphertext.
We now explain our construction by showing how the different parts affect the
ability to perform decryption.

The idea behind the trapdoor element d in the ciphertext is that can be set
up by a simulator such that it is possible to decrypt (without the knowledge of
the scheme’s secret key χ) all consistent ciphertexts (c,d) except the ciphertext
that is used to challenge the adversary (in the security reduction to the IND-
CPA secure scheme). This “all-but-one” simulation technique can be traced back
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at least to [20], where it was used in the context of pseudorandom functions.2
In the encryption context, “all-but-one” simulations have been used in identity-
based encryption [2] and were already applied to several encryption schemes
in [3,4,5,14,17,22,16].

The above all-but-one simulation technique allows to correctly simulate de-
cryption of arbitrary for consistent ciphertexts (c,d) but consistency can only be
checked using the secret key which is not available during simulation. To provide
an alternative consistency check we add the NIZK element π to the ciphertext.
Actually, the NIZK element is generated using a hash proof system [7] and proves
that (c,d) is contained in the trapdoor language consisting of all consistent ci-
phertexts. However, we stress that we use hash proof system techniques here
without relying on a (computational or decisional) assumption. Instead, we use
a hash proof system only as a NIZK proof, in which case the hash proof system’s
soundness is information-theoretic.

We also note that the “trapdoor part” of a consistent ciphertext, along with
the NIZK proof that the ciphertext is consistent, can be seen as a variant of
an (extractable) NIZK proof of knowledge. However, in our case, the challenge
ciphertext plays a special role: we need to construct the trapdoor language from
a given challenge ciphertext. (Hence, extraction is—naturally—not possible for
the challenge ciphertext.)

Our technical contribution (that may be of independent interest) is to boot-
strap the trapdoor part and the the NIZK part (i.e., the hash proof system for
the trapdoor language) generically from the abstract algebraic properties of al-
gebraic set systems. In contrast to the generic NIZK-based constructions from
[9,21] our constructions are relatively efficient: the key-size and ciphertexts of
the obtained IND-CCA secure scheme contain O(k) elements in S, where k is the
security parameter. In many cases the ciphertexts can be “compactified” into a
constant number of elements in S, giving truly practical schemes.

2 Preliminaries

2.1 Notation

Generic notation. A probabilistic polynomial-time (PPT) algorithm is a ran-
domized algorithm which runs in strict polynomial time. By k we denote the
security parameter, which indicates the “amount of security” we desire. A func-
tion f : � → � is negligible if for all c ∈ �, there exists k0 ∈ � such that
|f(k)| < k−c for all k > k0. Furthermore, f is overwhelming if 1 − f is neg-
ligible. For random variables X and Y , we write X

c≈ Y if X and Y are
2 We stress that our use of the term “all-but-one” refers to the ability to generate a secret

key that can be used to decrypt all consistent ciphertexts except for an externally
given ciphertext. This is very different from the techniques of, e.g., [8]: in this latter
framework, the first step in the proof consists in making the challenge ciphertext
inconsistent, and then constructing a secret key that can be used to construct all
consistent ciphertexts. Hence, “all-but-one” really refers to an “artificially punctured”
secret key.
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computationally indistinguishable, i.e., if for all PPT algorithms D, we have
that Pr [D(X) = 1]−Pr [D(Y ) = 1] is negligible. Similarly, we write X

s≈ Y if the
statistical distance between X and Y is negligible. For a vector h = (h1, . . . , h�)
and a nonempty set J ⊆ {1, . . . , �}, we write hJ for the restricted vector (hi)i∈J .
Furthermore, if φ is a function, then φ(h) denotes the component-wise applica-
tion of φ, i.e., φ(h) = (φ(hi))i.

Group endomorphisms. For an abelian group, we denote its group opera-
tion additively. If S is an abelian group, then End(S) consists of all group-
homomorphisms χ : S → S. It has a ring-structure, where point-wise-addition
is ring-addition (denoted “+”) and functional composition is ring-multiplication
(denoted “◦”). Suppose Φ is an additive sub-group of End(R). Then Ann(Φ) ⊂ S,
consists of all g ∈ S for which χ(g) = 0 for all χ ∈ Φ, and it is a sub-group of S.
A sub-ring of End(R) is unitary if it contains the identity endomorphism.

2.2 Key Encapsulation Mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler
KEM framework. It is well-known that an IND-CCA secure KEM combined with
a (one-time-)IND-CCA secure symmetric cipher (DEM) yields a IND-CCA secure
public-key encryption scheme [8]. Efficient one-time IND-CCA secure DEMs can
be constructed even without computational assumptions, using an encrypt-then-
MAC paradigm [8], or using strong pseudorandom permutations.

Syntactics. A key encapsulation mechanism (KEM) KEM = (Gen,Enc,Dec)
consists of three PPT algorithms. Via (pk , sk) ← Gen(1k), the key generation al-
gorithm produces public/secret keys for security parameter k ∈ �; via (K,C) ←
Enc(pk ), the encapsulation algorithm creates a symmetric key3 K ∈ {0, 1}k to-
gether with a ciphertext C; via K ← Dec(sk , C), the possessor of secret key
sk decrypts ciphertext C to get back a key K which is an element in {0, 1}k

or a special reject symbol ⊥. For correctness, we require that for all possible
k ∈ �, and all (K,C) ← Enc(pk ), we have Pr[Dec(sk , C) = K] = 1, where the
probability is taken over the choice of (pk , sk) ← Gen(1k), and the coins of all
the algorithms in the expression above.

Security. The common requirement for a KEM is indistinguishability against
chosen-ciphertext attacks (IND-CCA) [8], where an adversary is allowed to adap-
tively query a decapsulation oracle with ciphertexts to obtain the corresponding
key. Formally:

Definition 1 (IND-CCA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we define the following experiments ExpCCA-realKEM,A

and ExpCCA-randKEM,A :

3 For simplicity we assume that the KEM’s keyspace are bitstrings of length k.
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Experiment ExpCCA-realKEM,A (k)
(pk , sk) ← Gen(1k)

(K∗, C∗) ← Enc(pk )
Return ADec(sk ,·)(pk ,K∗, C∗)

Experiment ExpCCA-randKEM,A (k)
(pk , sk) ← Gen(1k)
R ← {0, 1}k

(K∗, C∗) ← Enc(pk )
Return ADec(sk ,·)(pk , R, C∗)

In the above experiments, the decryption oracle Dec(sk , C) returns K ← Dec(sk ,
C), for all C �= C∗. We define A’s advantage in breaking KEM’s IND-CCA secu-
rity as

AdvCCAKEM,A(k) :=
1
2

∣∣∣Pr [ExpCCA-realKEM,A (k) = 1
]
− Pr

[
ExpCCA-randKEM,A (k) = 1

]∣∣∣ .
We say that KEM is IND-CCA secure if AdvCCAKEM,A is negligible for all PPT A.

As a stepping stone, we will also consider the weaker requirement of IND-CPA
security of a KEM. The IND-CPA security experiment is very similar to the IND-
CCA security experiment, only without a decryption oracle for the adversary:

Definition 2 (IND-CPA security of a KEM). Let KEM = (Gen,Enc,Dec) be a
KEM. For any PPT algorithm A, we define the following experiments ExpCPA-realKEM,A

and ExpCPA-randKEM,A as identical to the experiments ExpCCA-realKEM,A and ExpCCA-randKEM,A from
Definition 1, only that A does not get access to a decryption oracle Dec. Let

AdvCCAKEM,A(k) :=
1
2

∣∣∣Pr [ExpCPA-realKEM,A (k) = 1
]
− Pr

[
ExpCPA-randKEM,A (k) = 1

]∣∣∣ .
We say that KEM is IND-CPA secure if AdvCCAKEM,A is negligible for all PPT A.

3 Set Systems

3.1 Basic Definition

Definition 3 (Set system). A set system SS = (S, Φ) consists of the following

– A finite, non-empty set S.
– A non-empty set Φ of functions χ : S → S.

Furthermore, we require that efficient algorithms exist for the following tasks:

– Sampling∗ with the uniform distribution from S.
– Sampling∗ with the uniform distribution from Φ.
– Evaluating χ(g) when given χ ∈ Φ and g ∈ S.

Here, ∗ means that it is sufficient if sampling can be performed approximatively
uniform (that is, if a distribution can be sampled which is statistically close to
uniform).

We stress that while our definitions are typically asymptotic, an explicit security
parameter is sometimes suppressed for ease of exposition.
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Definition 4 (Commutative set system). A set system (S, Φ) is commu-
tative if the functions in Φ commute pairwise, i.e., for all χ, ψ ∈ Φ, we have
χ ◦ ψ = ψ ◦ χ.

3.2 Hard Set Systems

The following definition encapsulates the computational hardness assumption
associated with set systems.

Definition 5 (Hard set system). Let (S, Φ) be a commutative set system, and
let Ext : S → {0, 1}n be efficiently computable. We say that (S, Φ) is a hard set
system with randomness extractor Ext if

(g, χ(g), ψ(g), E)
c≈ (g, χ(g), ψ(g), R),

where g ∈ S, χ, ψ ∈ Φ, and R ∈ {0, 1}n are uniformly chosen, and E =
Ext(χ(ψ(g)) ∈ {0, 1}n.

3.3 Algebraic Set Systems

We now set abstract algebraic conditions that are sufficient for the existence of
a quite efficient transformation that we will use to achieve CCA security.

Definition 6 (Algebraic set system). A set system (S, Φ) is an algebraic set
system if the following algebraic conditions are fulfilled.
Group structure. S is a finite Abelian group.
Recognizability. S is efficiently recognizable.
Commutative endomorphisms. Φ is a commutative, unitary sub-ring of

End(S).
Almost-transitivity. A g ∈ S is called normal if

∀h ∈ S ∃φ ∈ Φ : h = φ(g) .

We require that a uniformly chosen g ∈ S is normal with overwhelming
probability.

Uniformity. For uniformly chosen g, u ∈ S and χ ∈ Φ, we have (g, χ(g))
s≈

(g, u).

Remark 1. If Φ consists of all multiplications by non-negative integers then Φ is
a commutative, unitary sub-ring of End(S).

3.4 Examples

Diffie-Hellman. Let S be a cyclic group G = 〈g〉 of prime order p. (For this and
the next example, we stick to the more common notation and write the group
multiplicatively.) We define Φ as

Φ := {χ(g) = gx : x ∈ Zp}.
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If we require that S is efficiently recognizable, this makes (S, Φ) a set system.
Let χ, ψ ∈ Φ, i.e., χ(g) = gx and ψ(g) = gy, for some x, y ∈ Zp. Now χ(ψ(g)) =
(gy)x = gxy = (gx)y = ψ(χ(g)) and therefore (S, Φ) is commutative. Since S is
efficiently recognizable, it is easy to see that (S, Φ) is also algebraic.

If the DDH assumption holds in G, then (S, Φ) is a hard set system with
randomness extractor Ext : G → {0, 1}n, where Ext is an arbitrary pseudorandom
generator. If the CDH assumption holds in G, then (S, Φ) is a hard set system
with randomness extractor Exts : G → {0, 1}. Here, Exts maps g ∈ G to the
Goldreich-Levin bit

∑|g|
i=1 gisi, where |g| denotes the bit length and gi the i-th

bit of g in some canonical bit representation, and s = (s1, . . . , s|g|) ∈ {0, 1}|g|.
We stress that knowledge of the order of G is not required. (Only one must

be able to approximatively sample uniform exponents.) In particular, G could
be instantiated over a higher-genus curve.

RSA. We use the group of signed quadratic residues [12,15]. Fix a Blum integer
N = PQ for safe primes P,Q ≡ 3 mod 4 (such that P = 2p + 1 and Q = 2q + 1
for primes p, q). Let JN ⊆ Z∗

N denote the set of elements with Jacobi symbol 1
modulo N and let QRN ⊂ JN denote the set of quadratic residues modulo N .
Consider the quotient group S := QR+

N := QRN/±1. Together with the group
operation a ◦ b := |a · b mod N | this forms a finite Abelian group of order pq.
Furthermore, since QR+

N = J+
N := JN/±1 = {|x| : x ∈ JN}, S is efficiently

recognizable. Define

Φ := {χ(g) = |gx| : x ∈ Z�N/4�}.

Observe that we can sample uniformly from S and Φ. Furthermore, (g, χ(g))
is statistically close to (g, u) for uniform g, u ∈ S and χ ∈ Φ, since �N/4 
approximates pq, the order of S, suitably well. This makes (S, Φ) a set system.

Finally, if the RSA assumption holds in ZN , then (S, Φ) is also hard with
randomness extractor Ext : S → {0, 1}, where Ext maps g ∈ S to the least
significant bit LSB(g) of g.

4 IND-CPA Secure KEMs from Commutative Set Systems

Construction 7 (Semantically secure KEM). Assume that (S, Φ) is a hard
commutative set system with randomness extractor Ext : S → {0, 1}n. Then,
our basic key encapsulation scheme KEM = (Gen,Enc,Dec), which is an obvious
abstraction of the Diffie-Hellman scheme, is defined as follows.

Key Generation. Gen(1k) chooses g ∈ S and χ ∈ Φ uniformly, and computes
u = χ(g) ∈ S. Public key is pk = (g, u) ∈ S×S, and secret key is sk = χ ∈ Φ.

Encapsulation. Given pk = (g, u) ∈ S × S, Enc chooses ψ ∈ Φ uniformly and
computes the ciphertext c = ψ(g) ∈ S. Next, Enc derives the encapsulated
key

K = Ext(ψ(u)) ∈ {0, 1}n. (1)



156 R. Cramer, D. Hofheinz, and E. Kiltz

Decapsulation. Given sk = χ ∈ Φ and c ∈ S, Dec computes

χ(c) = (χ ◦ ψ)(g) = (ψ ◦ χ)(g) = ψ(u)

to derive the encapsulated key K ∈ {0, 1}n as in (1). Note that here it is
exploited that the functions in Φ commute.

Theorem 1 (Definition 7 is an IND-CPA secure KEM). If (S, Φ) is a
hard commutative set system, then the KEM from Definition 7 is IND-CPA secure
in the sense of Definition 2.

Proof. This follows directly from Definition 5.

5 Hash Proof Systems

5.1 Definitions

We will use hash proof systems for a language L, as defined in [7, Section 5 of
full version]. However, we stress that we will neither define nor use the concept
of a subset membership problem (which essentially would require that elements
in the language are computationally indistinguishable from elements outside of
the language, see [7, Section 4 of full version]). For our purposes, only the proof
system itself (whose security is defined information-theoretically) is relevant.

Definition 8 (Hash proof system). Let L be a language and let ε be a real
number with 0 ≤ ε < 1. A hash proof system with error probability ε consists of
the following.

– A finite non-empty set V: this is where the verifier samples a secret
verification-key from, to enable him to check proofs.

– A finite non-empty set P and a function α : V → P: this maps a verification
key to its projection, which is an auxiliary input for the prover to construct
a proof.

– A non-empty finite set Π: this is where proof strings will be sampled from.

Furthermore, efficient algorithms for the following tasks exist.

– Sampling with the uniform distribution from V.
– Computing α(κ) ∈ P when given κ ∈ V.
– Computing the proof π ∈ Π when given the statement x ∈ L, along with ei-

ther the projection α(κ) and a witness φ ∈ Φ (that x ∈ L), or, alternatively,
the verification key κ itself.

The following security properties hold, even in the presence of an unbounded
adversary.

Completeness. If indeed x ∈ L, a proof π ∈ Π thus computed is accepted when
verified using the secret verification key κ. This verification is performed
efficiently by the verifier.
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Soundness. For every x �∈ L, every projection P ∈ P, and every purported proof
π̃ ∈ Π: the probability (over uniform V ∈ V with α(V ) = P ) that π̃ will be
accepted is at most ε.

Uniqueness. The proof π ∈ Π is unique. In the verification procedure referred to
above, the verifier actually first computes π′ from x ∈ L and the verification
key κ. The decision is then made by checking whether π′ = π. In other words,
the verifier can compute the proof himself from seeing the statement, using
his secret verification key.

Note that the uniqueness property implies a non-interactive zero-knowledge
property, in the following sense. In the zero-knowledge setting, the verification
key can be set up by a simulator, who then can generate the unique proofs π as
π = κ(x) for arbitrary statements x and without witness.

We make a number of remarks and comments concerning our definitions:

– The error probability ε can be decreased exponentially by running copies
based on independently selected keys in parallel.

– Such a hash proof system will be “global” in the sense that it does not
essentially depend on the length � or on the choice of the base vectors g,h.
Furthermore, is assumed that the generation of the secret verification key
does not depend on the choice of base vectors.

– Obviously, however, several technical details in the definition above will typi-
cally “scale with �.” Also, all algorithms involved may take � and g,h as input
(except secret key generation, which may not depend on g,h, see above). But
this dependence is suppressed in the notation.

5.2 Our Trapdoor Language

We define a natural language derived from set systems that simply “singles out”
sequences of elements obtained by applying the same function to (a subset of)
some fixed sequence elements. We note that [24] use the related but dual concept
of “correlated products” to obtain chosen-ciphertext security. Namely, they apply
several trapdoor functions to the same preimage, while in our approach, we apply
one function to several preimages. We also note that in their work, it is crucial
that the functions can be inverted (using a trapdoor). We do not have this
requirement.

Definition 9 (Trapdoor language). Let (S, Φ) be a set system, let � be a
positive integer, and let

g ∈ S, h = (h1, . . . , h�) ∈ S�,

be base vectors. Then the trapdoor language L associated to (S, Φ) and g,h is
defined as

L = {(c,d, J) ∈ S × SJ × J | ∃χ ∈ Φ such that c = χ(g) ∧ d = χ(hJ )},

where J consists of all non-empty subsets of {1, . . . , �}. (Recall our abbreviation
χ(hJ ) = (χ(hi))i∈J .) Such a function χ ∈ Φ (not necessarily unique) is called a
witness.
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In the remaining part of this section we show the following theorem.

Theorem 2 (HPS for our trapdoor language). Let (S, Φ) be a an algebraic
set system and let g ∈ S, h ∈ S� be randomly chosen base vectors. If g is normal
(in the sense of Definition 6) and hi �= 0 for all i, then there exists a hash proof
system for the language L. The error probability is at most �/p, where p is the
smallest prime divisor of |S|.

The proof proceeds in two steps. First we prove the case � = 1 and then we show
how the general case follows from that by induction.

Let g ∈ S be normal, and let h ∈ S. Since g is normal, h = ρ(g) for some
ρ ∈ Φ. We now construct a hash proof system for the trapdoor language L. The
hash proof system is defined as follows.

Z = {(χ(g), ψ(h)) : χ, ψ ∈ Φ} ⊂ S × S, (2)
L = {(χ(g), χ(h)) : χ ∈ Φ} ⊂ Z. (3)

(For simplicity and ease of presentation, we omit the J component of Z and L,
since in case � = 1 this component is trivial.)

Setup. The verifier chooses a random secret verification key (δ, ρ) ∈ Φ×Φ, and
computes its projection

α = δ(g) + ρ(h).

Proof phase. The prover holds (c, d) ∈ L and a witness χ ∈ Φ such that

(c, d) = (χ(g), χ(h)).

He computes the proof
π = χ(α).

Verification. The verifier checks whether

π = δ(c) + ρ(d).

Note that if the prover is honest, then indeed by commutativity

π = χ(α) = χ(δ(g) + ρ(h)) = δ(χ(g)) + ρ(χ(h)) = δ(c) + ρ(d) .

We sketch why the above hash proof system satisfies the conditions of
Definition 8. The full proof (as well as the case of general �) is contained in the
full version of this paper [6]. Let (c, d) ∈ Z. Suppose the prover falsely claims
that (c, d) ∈ L. The pair (δ, ρ) is randomly distributed on Φ× Φ conditioned on
the projection being equal to α. Then, by a technical lemma, each solution z of
the two equations α = δ(g) + ρ(h) and z = δ(c) + ρ(d) is equally likely to be the
“correct proof.” Since there are at least p such solutions Theorem 2 now follows
(for � = 1).
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6 IND-CCA Secure KEMs from Algebraic Set Systems

Construction 10 (Chosen-ciphertext secure KEM). Let (S, Φ) a hard al-
gebraic set system with randomness extractor Ext : S → {0, 1}n. Further, assume
a target collision resistant hash function T on S (whose formal definition can
be looked in [6]). For c ∈ S, T(c) is encoded as a subset of {1, . . . , 2k}, with
|T(c)| = k. Note that if T(c) �= T(c′), then these two sets are incomparable by
inclusion.

Key generation. Let (S, Φ) be an algebraic set system. Choose

g ∈ S, h = (h1, . . . , h2k) ∈ S2k.

Using Theorem 2, set up an instance of the hash proof system from Section 5
(with negligible error probability ε) for the trapdoor language L, resulting in
a verification key κ ∈ V . Note that proofs for membership in L are from a
set Π ⊆ Sm for some m. Next, compute the projection value α = α(κ) ∈ P.
Finally, choose a function χ ∈ Φ uniformly and compute

u = χ(g) ∈ S.

The public/secret key pair is

pk = (g, u,h, α) ∈ S × S × S2k × P , sk = (χ, κ) ∈ Φ × V .

Encapsulation. Given pk = (g, u,h, α), choose a function ψ ∈ Φ at random,
and compute

c = ψ(g)

Next, compute J = T(c) ⊂ {1, . . . , 2k} and

d = ψ(hJ) ∈ Sk

Using ψ ∈ Φ, α ∈ P and d ∈ L, compute the proof π ∈ Π ⊆ Sm that
(c,d, J) ∈ L. The ciphertext consists of the pair

(c,d, π) ∈ S × Sk × Sm,

and the session key is computed as

K = Ext(ψ(u)) ∈ {0, 1}n. (4)

Decapsulation. Given sk = (χ, κ) and a ciphertext (c,d, π) ∈ S1+k+m, com-
pute J = T(c) ⊂ {1, . . . , 2n} and verify that π ∈ Sm proves (c,d, J) ∈ L. If
the proof is invalid, reject. Otherwise, compute the session key as

K = Ext(χ(c)) ∈ {0, 1}n.

Correctness. We argue that the above KEM satisfies correctness. Note that for
correctly generated ciphertexts, we have that

(c,d, π) = (ψ(g), ψ(hJ ), π),
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where π is a proof that (c,d, J) ∈ L. Hence, correctly generated ciphertexts
are not rejected. Furthermore,

χ(c) = (χ ◦ ψ)(g) = ψ(u),

which implies that decapsulation extracts the same key as encapsulation.

Theorem 3. If (S, Φ) is a hard algebraic set system, then the above KEM is
IND-CCA secure in the sense of Definition 1.

Proof. We give a simulation of the IND-CCA experiment for an arbitrary PPT
adversary A. It suffices to construct a simulator S such that the following holds.
On input

(g, χ(g), ψ(g), E∗)

(with g, χ, ψ,E∗ as in Definition 5), S simulates the real IND-CCA experiment
ExpCCA-realKEM,A , and on input

(g, χ(g), ψ(g), R∗),

S simulates the random IND-CCA experiment ExpCCA-randKEM,A .
Setup. So say that S is invoked on input (g, u, c∗, P ), for c∗ = ψ(g), u = χ(g),
and unknown χ, ψ ∈ Φ. Furthermore, P ∈ {0, 1}n is either equal to the extraction
E∗ or random.

First, S sets up a substitute decapsulation key that can be used to decrypt
all ciphertexts except the challenge ciphertext, which will be constructed around
ψ(g). Concretely, S computes from its own challenge (g, u, c∗, P ) the value J∗ =
T(c∗) ⊂ {1, . . . , 2k}. Then, S chooses uniformly η = (η1, . . . , η2k) ∈ Φ and defines

hi = ηi(g) for i ∈ J∗, (5)
hi = ηi(g) · u for i �∈ J∗. (6)

Finally, S sets up a hash proof system for the trapdoor language L induced by g
and h (see Definition 9). Let κ and α be the corresponding verification key and
its projection. Then, S defines a public key pk along with a substitute secret key
sk ′ as follows:

pk = (g, u,h, α) ∈ S × S� × S2k × P sk ′ = (η, κ) ∈ Φ� × V .

Note that by the uniformity of (S, Φ) (see Definition 6), the public keys prepared
by S are statistically close to authentic public keys as produced by the key
generation from Definition 10.
Challenge ciphertext and key. Next, S prepares a challenge ciphertext
(c∗,d∗, π∗) ∈ S × SJ∗ × Sm. We have already defined c∗ above, so it remains to
define d∗ = (d∗i )i∈J∗ and π. Namely, S sets d∗i = ηi(c∗) for i ∈ J∗. Since

d∗i = ηi(c∗) = ηi(ψ(g)) = ψ(ηi(g))
i∈J∗
= ψ(hi),

this gives a (c∗,d∗) exactly as produced by the encapsulation algorithm of
Definition 10. Because (c∗,d∗, J∗) ∈ L, a proof π for that statement can be
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produced using the verification key κ. This yields a challenge ciphertext
(c∗,d∗, π∗) exactly as produced by the encapsulation algorithm.

Note that if S’s challenge P satisfies

P = E∗ = Ext((χ ◦ ψ)(g)),

then P equals the real key K as the encapsulation algorithm would have com-
puted in (4), and hence P is distributed as the challenge key K in the real IND-
CCA experiment ExpCCA-realKEM,A . On the other hand, if P is random, then clearly P

is distributed as a random challenge key in the IND-CCA experiment ExpCCA-randKEM,A .
Decapsulation queries. S then invokes adversary A with public key pk ′, chal-
lenge ciphertext (c∗,d∗, π∗), and challenge key P . By the above, this yields a
view for A as in the real, resp. random IND-CCA experiment, depending on
whether P = E∗ or P is random.

It remains to implement a decapsulation oracle for A. To this end, assume
that A makes a decapsulation query (c,d, π). First, we may assume c ∈ S,
d ∈ SJ (for J = T(c)), and π ∈ Sm, since S is efficiently recognizable. If π is
not a correct proof of (c,d, J) ∈ L according to κ, then S rejects, exactly as the
authentic decapsulation algorithm would have done. In the following, we hence
may further assume that π is a valid (with respect to verification key κ) proof
that (c,d, J) ∈ L. By the soundness of the hash proof system,4 this in particular
implies that, with overwhelming probability, there exists ψ̃ ∈ Φ with ψ̃(g) = c
and ψ̃(hi) = di for all i ∈ J .

Observe that c = c∗ would imply J∗ = J , so that for all i ∈ J∗ = J ,

di = ψ̃(hi) = ηi(ψ̃(g)) = ηi(c) = ηi(c∗) = d∗i .

By the uniqueness of valid proofs, this would hence imply (c,d, π) = (c∗,d∗, π∗),
which is a forbidden decapsulation query for A. Thus, we may even assume that
c �= c∗.

Without loss of generality, from c �= c∗ it follows that J = T(c) �= T(c∗) = J∗.
(Otherwise, A has found a T-collision.) But J �= J∗ implies that there exists an
i ∈ J \ J∗, i.e., an i ∈ J for which hi = ηi(g) · u. This allows S to derive χ(c)
using

di = ψ̃(hi) = ψ̃(ηi(g)) · ψ̃(u) = ηi(ψ̃(g)) · χ(ψ̃(g)) = ηi(c) · χ(c)

and its knowledge about ηi. On the other hand, χ(c) allows to compute K =
Ext(χ(c)) exactly as the decapsulation algorithm. Hence, the prepared substitute
secret key sk ′ = (η, κ) can be used to answer A’s decapsulation queries.

Summarizing, the prepared simulation shows Theorem 3.

4 We stress that A only gets to see a proof π∗ of a valid statement, which could have
already been derived from the projected key α. Hence π∗ does not disturb a reduction
to the soundness of the hash proof system. This distinguishes our use of hash proof
systems from the one in [8]. (In [8], the challenge ciphertext contains a proof of an
invalid statement, which reveals information about the verification key κ beyond
what is known from its projection α).
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7 Discussion and Variants

Global parameters. Note that the set system (S, Φ) employed in our encryp-
tion scheme can be re-used in many instances of the scheme. (In other words,
there is no trapdoor related directly to the definition of (S, Φ) itself.) In partic-
ular, in the RSA set system from Section 3.4, no knowledge about the factoriza-
tion of the modulus N is required. That means that N can be used as a global
parameter for many parties.

Parallelization. In some of our examples from Section 3.4, the extracted val-
ues are only bits. This means that when implementing our generic CCA-secure
encryption scheme with these examples, the corresponding KEM keys are only
bits. However, it is possible to get larger keys by running several instances of
the encryption scheme at once, without damaging the chosen-ciphertext security.
Concretely, instead of publishing u = χ(g) in the public key, one can publish
ui = χi(g) for independently chosen χi ∈ Φ (i = 1, . . . , n). The sender still
only uses one witness ψ ∈ Φ to compute c = ψ(g), but now can extract from
n separate values ψ(u1), . . . , ψ(un). The adaptation of hash proof system and
trapdoor language are straightforward. (However, we stress that in order to de-
crypt, there must be 2k elements hi,1, . . . , hi,� for each i = 1, . . . , n. Hence, not
only the public key size, but also the ciphertext size grows linearly in n.)

Compact ciphertexts. For concrete set system platforms, we can substantially
reduce the size of ciphertexts (from O(k) group elements to O(1)). To see how,
recall that in the IND-CCA secure encryption scheme, the ciphertext contains
(the projection of) a vector d = ψ(hJ ), where h is part of the public key. The
setup of h during the security proof (see (5)) has been chosen such that d allows
to recover χ(c) as χ(c) = di/ηi(c) for any i ∈ J \J∗. Now consider what happens
if we substitute the vector d in the ciphertext with a single element

D := ψ

(∏
i∈J

hi

)
=

(∏
i∈J

ηi(c)

)
·

⎛⎝ ∏
i∈J\J∗

χ(c)

⎞⎠ .

Then, the simulation in the security proof can still derive
∏

i∈J\J∗ χ(c) = χ(c)Δ

for Δ := |J \ J∗|. (Note that 0 < Δ ≤ 2k.) If we set L := lcm(1, . . . , 2k), then Δ
divides L, so that the simulation can always compute ψ(u)L. We can then modify
the randomness extraction into Ext′(z) := Ext(zL), such that the decapsulation
can be computed from χ(c)L (instead of χ(c)). Note that this automatically
allows to compress the proof part π of the ciphertext down to one element. In
particular, the ciphertext size (in group elements) is now constant. However, our
modifications require that

(g, χ(g), ψ(g), E′)
c≈ (g, χ(g), ψ(g), R), (7)

where g ∈ S, χ, ψ ∈ Φ, and R ∈ {0, 1}n are uniformly chosen, and E′ =
Ext′(χ(ψ(g)) = Ext(χ(ψ(g))L) ∈ {0, 1}n. Note that (7) holds in the case of
the Diffie-Hellman- and RSA-based set systems from Section 3.4 (since L and
the order of S are coprime).
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Abstract. A family of trapdoor functions is one-way under correlated
inputs if no efficient adversary can invert it even when given the value of
the function on multiple correlated inputs. This powerful primitive was
introduced at TCC 2009 by Rosen and Segev, who use it in an elegant
black box construction of a chosen ciphertext secure public key encryp-
tion. In this work we continue the study of security under correlated
inputs, and prove that there is no black box construction of correlation
secure injective trapdoor functions from classic trapdoor permutations,
even if the latter is assumed to be one-way for inputs from high entropy,
rather than uniform distributions. Our negative result holds for all in-
put distributions where each xi is determined by the remaining n − 1
coordinates. The techniques we employ for proving lower bounds about
trapdoor permutations are new and quite general, and we believe that
they will find other applications in the area of black-box separations.

1 Introduction

In this paper we study the following question: can classic trapdoor permutations
be used to construct trapdoor functions that remain one way even when the
adversary is given Fpub1(x1), . . . , Fpubn

(xn) for independently chosen keys pubi,
but where the inputs xi are correlated. In [17] Rosen and Segev introduce this
problem, and highlight its importance by using such “correlation secure” injec-
tive trapdoor functions in a black box construction of chosen ciphertext secure
public key encryption. Although this important type of public key encryption
can be constructed from classic trapdoor permutations (see e.g., the seminal
work of Dolev et al [8,9]), the constructions that achieve this goal make use of
non-black-box techniques, which tend to be quite inefficient. In recent years there
has been renewed effort to obtain constructions that use simpler primitives in a
black box manner, yet so far no such constructions have been based on either
semantically secure public key encryption, or even trapdoor permutations.

More generally, trapdoor permutations are a powerful public key primitive
that is sufficient for many difficult applications in cryptography. Yet certain
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tasks, such as Identity Based Encryption [4,5], have so far resisted attempts
to be solved using this tool. Indeed, the limits of what can be constructed from
trapdoor permutations are not well understood. In this paper we show that trap-
door permutations do not permit a black box construction of correlation secure
injective trapdoor functions, even if the inputs are chosen from a distribution
with very little correlation.

On a parallel line of research, our work is a step in the study of resettable se-
curity, a notion introduced by Canetti et al [6] in the context of Zero-Knowledge
Proofs, and recently extended to general secure computation by Goyal and Sa-
hai [14]. Informally, in resettable security the adversary is allowed to restart his
security experiment while forcing the target primitive to reuse some of its previ-
ous randomness. The study of correlation security can be seen as another form
of resettability: the adversary is allowed to selectively restart the experiment
by preserving the random input to the functions, but forcing the regeneration
of the function keys. In light of the positive results on resettability it is quite
interesting that trapdoor permutations cannot be easily made resettably secure.
Hence, our result can be seen as a step towards identifying which functionalities
can be made resettably secure, and what is the required amount of interaction
for achieving that level of security.

We now describe our problem and results in more detail, followed by an
overview of related work, and an exposition of our technical approach.

Black-Box Cryptography. A common approach for constructing cryptographic
primitives is to base them on some other, simpler, primitives that are believed
to be secure. A construction of primitive A from primitive B is black box if
the algorithms of A use the algorithms of B as oracles. A security reduction
from A to B is black-box if there exists an adversary S such that for every
adversary T that breaks B, S breaks A. Furthermore, S uses T as an oracle.
In recent years, several breakthrough papers provide non-black-box solutions to
some cryptographic tasks. Nevertheless, black-box constructions remain the most
common approach. In this paper, all our results concern black-box constructions
with a black-box security reduction. Such constructions are called “Fully Black-
Box” in the taxonomy of Reingold et al [16].

Our Contributions. One-way trapdoor functions were introduced by Diffie and
Hellman in [7]. Informally, a family of functions is one-way if given a description
of randomly chosen function fpub of that family, and its image fpub(x) on a ran-
domly chosen input x, no efficient adversary can output x. A family of functions
is “trapdoor” if there is a key generation algorithm that outputs a pair of strings
(pub, pri) such that it is easy to invert Fpub(·) given pri. The notion of correlation
security, introduced by Rosen and Segev in [17], extends the above experiment
by giving the adversary

(
Fpub1(x1), . . . , Fpubn

(xn)
)

where the pubi are indepen-
dently generated public keys, and (xi)i∈[n] are sampled from some distribution
C. The family of functions is considered C-correlation secure if no efficient ad-
versary can invert the function on one of the coordinates. Of particular interest
are distributions where the entire tuple (xi) is reconstructible given some subset
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of the coordinates. Correlation security under such distributions was shown in
[17] to be sufficient to obtain chosen ciphertext security. In this paper we prove
the following black-box separations:

– Let C1 be the uniform 2-repetition distribution: pairs of the form (x, x) where
x is chosen uniformly at random. We show that there does not exist a black
box construction of a C1-correlation secure family of injective trapdoor func-
tions from classic trapdoor permutations.

– We then extend the above result to all input distributions that are (n − 1)-
reconstructible. That is, distributions of the form (x1, . . . , xn) where each
xi is determined by (x1, . . . , xi−1, xi+1, . . . , xn). This includes distributions
with very weak correlation among the coordinates, such as (n − 1)-wise in-
dependent distributions that are reconstructible in the above sense.

The base primitive in our separation actually has much stronger security prop-
erties than mere one-wayness. Indeed, our proofs show that even if one assumes
a trapdoor permutation that is one-way for non-uniform (but high entropy) in-
puts then correlation security still cannot be achieved. Trapdoor permutations
that are one-way for high entropy inputs have been shown by Bellare et al [1]
to be sufficient to obtain deterministic public key encryption – a type of injec-
tive trapdoor functions, introduced by Bellare et al in [2], that hide almost all
information about their input.

Related Work. In [15] Impagliazzo and Rudich introduced an approach for prov-
ing black-box separation results. In that seminal paper they prove a separation
between one-way permutations and secure key-agreement. Since then a large
body of research has followed their basic methodology. We provide a survey
of the most relevant results, and recommend reading [16] for a more complete
overview.

In this paper we study limits of public key primitives. In [11] Gertner et al
show that public key encryption and Oblivious Transfer are incomparable un-
der black-box reductions. They also show that trapdoor permutations cannot be
constructed in a black-box way from public key encryption, and from trapdoor
functions (functions which are not necessarily permutations, but allow sampling
from the pre-image given trapdoor information). In [12] Gertner et al show that
there is no black-box reduction from poly-to-one trapdoor functions to semanti-
cally secure public key encryption. Intuitively, [12] show that public key encryp-
tion is weaker than trapdoor functions because the latter allows the recovery
of the complete input of the encryption algorithm, including the randomness.
In contrast, a public key decryption algorithm recovers only the encrypted mes-
sage, but not the randomness that was used by the encryptor. In [10] Gennaro
et al show limits on the efficiency of cryptographic primitives constructed in
a black-box way from basic tools such as one-way permutations, and trapdoor
permutations. In particular they show bounds on the number of times that a
trapdoor permutation needs to be invoked in order to construct a semantically
secure public key encryption. Their lower bound is a function of the number of
bits that the public key encryption scheme encrypts. Towards obtaining their
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result, Gennaro et al define an oracle model which provides all algorithms access
to a random trapdoor permutation family. We adopt this model partially in our
work.

In [13] Gertner et al prove that chosen ciphertext secure public key encryption
cannot be constructed in a black-box way from semantically secure public key
encryption, provided that the decryption algorithm does not query the encryp-
tion oracle of the underlying primitive. In light of previous results that separate
trapdoor permutations from semantically secure public key encryption the [13]
result leaves open the possibility of achieving chosen ciphertext security using
trapdoor permutations. Interestingly, the decryption algorithm in the construc-
tion of [17] does query the “encryption” algorithm of the underlying trapdoor
function. In [5] Boneh et al show that Identity Based Encryption cannot be con-
structed in a black-box way from trapdoor permutations. In the context of the
transformation by Boneh et al [3] of any Identity Based Encryption to a chosen
ciphertext secure public key encryption, the work of [5] rules out one possible
method of getting CCA public key encryption from trapdoor permutations. Our
work rules out another such approach.

Overview of Techniques. The basic approach of most black-box separation re-
sults can be described as follows. Given a target primitive A and a base primitive
B first define an “idealized” version of B. The idealized B is usually a distri-
bution on functions that satisfy B’s correctness requirements. Then, show that
an adversary that is given oracle access to the ideal B cannot break its secu-
rity, even if that adversary is computationally unbounded1. Then, describe an
adversary that, by making a small number of queries to the ideal B, breaks any
construction of A. Note that the fact that the adversaries are computationally
unbounded requires any non-trivial A to make essential use of the ideal B oracle
(otherwise that A is trivially broken). A common final step is to “project” the
result into the realm of polynomial time computation by adding a PSPACE
complete oracle. This oracle makes a polytime adversary effectively unbounded,
but it does not help break the ideal B. For more details about this general
approach we direct the reader to [15,16,18].

We use the work of [10] and [5] as a basis for defining our ideal trapdoor
permutation oracle. In their work, Gennaro et al define a distribution on triples
of functions (g, e, d) where g(·) is a random function that maps trapdoors to
public keys, e(pub, ·) is an independent random permutation for every public
key pub, and d(pri, ·) inverts the permutation e(pub, ·) if pri is a trapdoor for
pub. Although this model captures nicely the concept of an ideal trapdoor per-
mutation, we cannot adopt it directly. The problem is that the triple (g, e, d)
is in fact correlation secure: for each public key pub the permutation e(pub, ·)
is chosen independently at random. So, seeing e(pub1, x) and e(pub2, x) does
not provide any additional information about x over just seeing e(pub1, x). Our
solution is to introduce an additional oracle which we call Break so that given
access to (g, e, d,Break) it is no longer possible to obtain correlation security, but
1 Note that this necessarily implies that there is no polynomial time implementation

of the idealized B.
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one-wayness is preserved with respect to independently random inputs. It is the
main technical contribution of this paper to find the delicate balance that leaves
the entire oracle just strong enough to preserve one-wayness, but weak enough
to obtain the negative result.

On a high level, the oracle Break can be described as follows: Break takes
as input a triple of circuits G,E,D which are a candidate correlation secure
trapdoor function. The other inputs are, two public keys PUB1 and PUB2, and
the values EPUB1(x) and EPUB2(x). The naive solution would be to return x.
However, this would easily allow an adversary to invert any function simply by
setting pub1 = pub2. Ideally we would like to restrict Break to return x only
when pub1 and pub2 are independently generated public keys of the provided
trapdoor permutation. This, however, seems hard to check. Indeed, how can we
verify that the public keys were properly generated? Moreover, even performing
a simpler test: that the public keys are valid (that is, they are outputs of the key
generation algorithm), may give too much power to the adversary. In particular,
an adversary trying to invert f(x), where f is any function, may design a trap-
door permutation scheme where pub1 is a valid public key if and only if the first
bit of x is 0. To prevent the adversary from performing the above attack, we
require her to provide a triple of functions O′ = (g′, e′, d′) that is defined on a
small part of the domain of (g, e, d) but such that relative to O′, pub1 and pub2
are valid public keys. The partial oracle O′ is then superimposed on O to obtain
a new complete oracle O′′ relative to which pub1 and pub2 are valid public keys.
The oracle Break then performs its computation relative to the new oracle O′′.

This modification successfully deals with the issue of the validity of public
keys, but we are still left with no way of knowing that the public keys were
generated independently. This causes a problem because an adversary trying to
break the random trapdoor permutation (g, e, d) may simply set pub1 to be the
public key that she is trying to break, and set pub2 = pub1. Thus, some kind
of additional check seems necessary, yet testing for independence of pub1 and
pub2 seems too much to hope for. As it turns out, we do not need the two public
keys to be completely independent. As illustrated by the above example, we
run into a problem when our Break oracle allows the adversary to use the same
public key of (g, e, d) in both public keys of (G,E,D). But, if we require that
the sets of public keys of (g, e, d) that are used to generate PUB1 and PUB2 are
disjoint, then it becomes difficult to invert y = e(pub, x). To do so the adversary
would have to find e(pub′, x) for some pub′ different from pub. However, this is
as hard as finding x since the permutations e(pub, ·) and e(pub′, ·) are random
and independent. We formalize the above ideas in Section 3.

2 Preliminaries

2.1 Notation

Denote by N the set of natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}.
For a set S we denote by x ←R S the procedure of uniformly sampling an element
from S and assigning the value to x. We write x ∈R S to denote the fact that x
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is a uniformly sampled element of S. Although the distinction between families
of functions and functions is very important, we occasionally write “trapdoor
permutation” and “trapdoor function” instead of “family of trapdoor permuta-
tions” and “family of trapdoor functions”. We do so to improve exposition, and
only when the meaning is clear from context.

2.2 Probabilistic Lemmas

We will make use of the following simple fact:

Lemma 1. Let X1, . . . , Xn+1 be independent Bernoulli random variables, where
Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for i = 1, . . . , n + 1 and some p ∈ [0, 1].
Let E be the event that the first n variables are sampled at 1, but Xn+1 is sampled
at 0. Then, Pr[E ] ≤ 1

e·n . Note that the bound is independent of p.

2.3 Non-uniform Trapdoor Permutations in the Presence of Oracles

We prove our theorems in a non-uniform computational model. Thus, a collection
of Trapdoor Permutations is specified, for each value of the security parameter m,
by a triple of deterministic PT algorithms (G,E,D), and the following additional
parameters:

– λ(m) is the length parameter of the trapdoor permutation oracle (g, e, d)
that is used by (G,E,D).

– q = q(m) is the maximum number of oracle queries that any of the algorithms
make in a single execution. For convenience we assume that the algorithms
always make exactly q queries.

The functionality of each of the algorithms is as follows: G(·) takes as input
a trapdoor PRI ∈ {0, 1}m, and outputs a function public key PUB ∈ {0, 1}m.
EPUB(·) is a permutation on strings of length m. Finally, DPRI(·) computes the
inverse function of EG(PRI)(·).

We now define two security conditions: one-wayness, and correlation-security
(or one-wayness in the presence of correlated products). Let A be an algorithm
with access to the same oracle as (G,E,D). We define the advantage of A in the
one-wayness experiment with respect to an input distribution D over {0, 1}m as
follows:

δOW (A,D)
def
= Pr[A(PUB, EPUB(x)) = x; PUB ← G(PRI)]

where PRI is chosen uniformly at random from {0, 1}m and x is sampled ac-

cording to D. For convenience, we denote δOW (A)
def
= δOW (A,Um), where Um

is the uniform distribution over {0, 1}m.
For a distribution C on ({0, 1}m)n for some n ∈ N, we define the advantage

of A in the C-correlation security experiment as follows:

δCS(A)
def
= Pr[A((PUBi, EPUBi

(xi))i∈[n]) ∈ {xi}i∈[n] ; PUBi ← G(PRIi)]
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where (xi)i∈[n] ∈R C, and PRIi for i ∈ [n] are chosen uniformly at random from
{0, 1}m. As a convention, we will frequently omit the lengths of strings when
discussing trapdoor permutations, when the length is clear from context.

We measure the complexity of algorithms in the oracle model only by the
number of oracle queries that they make. Using a standard technique of adding
a PSPACE oracle we obtain the fully black-box separation for probabilistic
polynomial time Turing Machines (see [16,18] for a detailed exposition of the
approach).

3 Our Oracles

We prove our theorem in a relativized model where all algorithms have access
to three random oracles (g, e, d) that roughly correspond to the algorithms G,
E, and D of a Trapdoor Permutation. For every λ ∈ N, the oracles (g, e, d)
are sampled uniformly at random from the set of all functions satisfying the
following conditions:

– g : {0, 1}λ → {0, 1}λ. We view g as taking a secret key pri as input and
outputting a public key.

– e : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input pub ∈ {0, 1}λ and
x ∈ {0, 1}λ outputs e(pub, x) ∈ {0, 1}λ. We require that for every pub ∈
{0, 1}λ the function e(pub, ·) be a permutation of {0, 1}λ.

– d : {0, 1}λ × {0, 1}λ → {0, 1}λ is a function that on input pri ∈ {0, 1}λ and
y ∈ {0, 1}λ outputs an x ∈ {0, 1}λ that is the (unique) pre-image of y under
the permutation defined by the function e(g(pri), ·).

Redundancy of d. The function d is completely determined by g, e. Thus,
when discussing a description of a trapdoor permutation oracle O = (g, e, d) we
will assume that d is deduced from g, e rather than being part of the description.

Partial Oracles. In our proofs we will occasionally need to refer to trapdoor
permutation oracles that are defined on a subset of the domain. We call a function
O′ = (g′, e′) which is defined on a subset of the domain of O, a valid partial oracle
if for every pub, e′(pub, ·) is 1-1. Again, d is not part of the description of O′.
Instead, it is determined from (g′, e′) as follows: for strings pri, and y, d(pri, y)
is defined and equal to x if and only if g′(pri) = pub and e′(pub, x) = y.

Conventions. Without loss of generality we assume that whenever an algo-
rithm makes an oracle query of the form d(pri, y), it first queries g(pri). This
assumption is useful for a cleaner presentation of our proofs.

The Oracle Break. In addition to the oracles O = (g, e, d), our adversary
will have access to an oracle Break that weakens the above random trapdoor
permutation. Before we can describe Break we must introduce some additional
notation.
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3.1 Oracle Notation

Before proceeding with the description of the oracle Break, let us introduce
additional notation that we use when discussing various aspects of the trapdoor
permutation oracle.

Oracle algorithms. For a function O and algorithm A we denote by AO the
fact that A may make queries to O.

Functions as sets. It will occasionally be convenient to view the trapdoor per-
mutation oracle O = (g, e, d) as sets of input-output pairs. We will use square
brackets to denote the symbolic form of a mapping. For instance: to denote
that e(pub, x) = y we may write [e(pub, x) = y] ∈ O. We will occasionally use
a wild card form of this notation. For instance: we write [e(pub, ·) = y] ∈ O
to denote that there exists x such that [e(pub, x) = y] ∈ O.
When discussing queries we write [e(pub, x)] to denote a query to e(·, ·)
with inputs (pub, x). This is to differentiate the query from the actual value
e(pub, x) which is the image of (pub, x) under the function e. Given a query q
in symbolic form we write O(q) to denote the mapping under O of that query.
For example: if q = [e(pub, x)] and e(pub, x) = y then O(q) = [e(pub, x) = y].

Adding answers. Given O and a set of queries Q we define O(Q) to be the
set of queries in Q with their answers according to O. Namely, O(Q) =
{[α = β]|α ∈ Q, O(α) = β}.

Public keys that are used in a query. Given a trapdoor permutation ora-
cle O = (g, e, d), and a set Q of (g, e, d) queries we define PKe(Q) to be the
set of all pub such that [e(pub, ·)] ∈ Q. Similarly, we define PKg(Q) to be
the set of all pub such that [g(·) = pub] ∈ O(Q).

Combining trapdoor permutation oracles. Let O1 = (g1, e1) and O2 =
(g2, e2) be two (possibly partial) trapdoor permutation oracles. We write
O1 ! O2 to denote the oracle which answers according to O2 if possible, and
according to O1 otherwise. More precisely, (O1 ! O2)(α) returns O2(α) if it
is defined, and O1(α) otherwise.
We also define a “corrected” version of the ! operator. We write

O1 !c O2
def
= (g1 ! g2, e1 !c e2)

The oracle e = e1!ce2 is defined as follows: let pub, x, y such that e2(pub, x) =
y. We set e(pub, x) = y. Furthermore, if there exists x′ �= x such that
e1(pub, x′) = y then let y′ = e1(pub, x) (note that y′ may be equal to ⊥
if e1(pub, x) is not defined). We then also set e(pub, x′) = y′.
Note that the d part of the oracle O1 !c O2 is deduced from g and e. A useful
property of the !c operator is that for every two possibly partial oracles O1
and O2, the oracle O1 !c O2 has no collisions (i.e. it is a valid partial oracle),
and for every α such that O2(α) is defined, (O1 !c O2)(α) = O2(α).

3.2 The Oracle Break

As mentioned in the introduction, the random trapdoor permutations that the
oracles (g, e, d) represent are, in fact, correlation secure. This is so because each
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permutation is random and independent from the other permutations. Thus,
we add a weakening oracle Break that allows our adversary to break correlation
security of any trapdoor function that makes use of (g, e, d), yet preserves the
one-wayness of (g, e, d). For a better exposition we present the oracle and the
proof for the case of Trapdoor Permutations. However, both easily extend to
handle injective trapdoor functions. The details are given in Section 6.

The functionality of Break is defined as follows:

Input. Break takes the following inputs:
1. A triple of oracle circuits (GO, EO, DO) that may contain (g, e, d) oracle

gates. The functions computed by G,E,D must constitute a valid family
of trapdoor permutations.

2. Two strings PUB1,PUB2. We think of these strings as public keys that
were produced by G.

3. Two strings y1, y2. We think of these strings as the outputs of EPUB1(x)
and EPUB2(x) respectively on some input x.

4. Two partial oracles O′
1 and O′

2, and two strings PRI1 and PRI2.
Computation. The following computation is performed by the oracle:

1. Verify that for every pub ∈ PKg(O′
1) ∩ PKg(O′

2), there exists a pri
such that g(pri) = pub and [g(pri) = pub] ∈ O′

1 ∪ O′
2. Note that the

requirement here is that g(pri) = pub under the real oracle O. Therefore,
for every pub as above, we require that O′

1 or O′
2 provide us with a real

trapdoor for it.
2. Verify that (G,E,D) is a valid family of trapdoor permutations, and

for i ∈ {1, 2}, for every complete trapdoor permutation oracle O′′, if
O′

i ⊆ O′′, then for every x ∈ {0, 1}m, it holds that DO′′
PRIi

(EO′′
PUBi

(x))
returns x.

3. Let O′′
i = O !c O′

i.
4. Run D

O′′
1

PRI1
(y1) to obtain an output x. If x = ⊥, return ⊥.

5. For i ∈ {1, 2}, run E
O′′

i

PUBi
(x), and return ⊥ if one of the following events

occurs: (i) the output of E
O′′

i

PUBi
(x) is not equal to yi, or (ii) E

O′′
i

PUBi
(x)

asks a query α = [g(pri)] such that O(α) �= O′′
i (α). Finally, return x.

Complexity. Each query to Break is counted as 3q+ |O′
1|+ |O′

2| oracle queries.
This is to prevent an adversary from making a very large Break query that
gives away too much information about O. The breakdown of the above cost
is as follows: 3q comes from steps 4 and 5 where Break evaluates D once and
E twice. The count |O′

1| + |O′
2| is due to steps 1, and 3. In step 1 Break has

to compare elements of the form [g(pri) = pub] ∈ O′
1 ∪ O′

2 to O. In step 3
Break has to know at most |O′

1| + |O′
2| entries in O in order to perform the

!c operation.

This concludes the description of our oracles. In the following two sections we
prove the two main lemmas that are required for our theorem: that the oracle
Break preserves the one-wayness of O = (g, e, d), and that there exists an ad-
versary which uses Break that breaks the correlation security of every family of
injective trapdoor functions.
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4 Breaking Security under Correlated Inputs

In this section we describe an adversary that breaks the correlation-security of
any trapdoor permutation, while making only a polynomial number of queries
to the oracles (g, e, d,Break).

Let (G,E,D) be a collection of injective trapdoor functions with length pa-
rameter m, and maximal number of queries q. For simplicity, and due to lack of
space we describe an adversary that breaks only constructions (G,E,D) that do
not query Break, but only use (g, e, d). The extension of the adversary and the
oracle Break to handle injective trapdoor functions (as opposed to permutations)
that make use of Break is quite easy, and is described in Section 6.

4.1 Overview

We start with an informal description of our adversary. The adversary is initially
given two independently generated public keys PUB1 and PUB2. Recall that in
order to make use of the oracle Break the adversary has to come up with two
partial oracles O′

1 and O′
2 such that PUB1 and PUB2 are valid outputs of GO′

1

and GO′
2 respectively. Since our adversary is computationally unbounded, that

is, we count only the number of oracle queries that she makes, it is easy for
her to find two such partial oracles. However, there are two issues that arise:
(i) in order to pass check 1 of Break the adversary has to know the correct
trapdoor for each pub that is appears in the generation of both PUB1 and PUB2;
and (ii) if the actual oracle (g, e, d) is not used, it is quite possible that under
these partial oracles, y1 and y2 will not invert to x. Both issues are dealt with
simultaneously by performing a sampling procedure that discovers all the queries
that are frequently asked by G, and by EPUB1(x) and EPUB1(x) where x is chosen
randomly. The adversary then chooses O′

1 and O′
2 offline, without making any

further oracle queries, but in a manner that is consistent with the information
about (g, e, d) that was learned during the sampling procedure.

To see why the above procedure solves problem (i) recall that PUB1 and
PUB2 are generated independently. Therefore, with high probability any public
keys pub that are needed to generate both PUB1 and PUB2 are also needed to
generate many other PUB’s that G may output. This means that, with high
probability, the adversary will generate at least one such PUB, and discover the
correct trapdoor for pub in the process. Problem (ii) is solved due to the following
simple fact: O′

1 and O′
2 are defined on a polynomial number of points. For each

such point, if it is frequently accessed by one of EPUB1(x) or EPUB2(x) then the
adversary would have discovered the correct value for it during the sampling. If
the point is infrequently accessed, then with high probability it was not accessed
when y1 and y2 were computed. For a similar reason, the adversary’s query to
Break passes the second check of step 5.

If the adversary manages to make a query to Break that is not answered with
⊥ then with overwhelming probability the answer to that query is x, which is
the inverse of y1 and y2. We are now ready to describe the adversary completely
and analyze its performance.
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4.2 The Adversary

For convenience, and without loss of generality, we assume q ≥ 2. For any ε > 0
we provide a PPT adversary A, and a constant c such that δCS(A) ≥ 1−ε and A
makes at most qc oracle queries. More precisely, given ε > 0 choose two integers
c1, c2 such that (i)

(
1 − 1

qc1

)q

≥ 1 − 1
qc1−1 , and (ii) ε ≥

(
qc1+1

eqc1 + 1
qc1−1 + 4

eqc2

)
.

Our adversary proceeds in several steps:

1. The adversary is given PUB1, PUB2, y1, y2. It starts by initializing tables
L,L1, L2, which will be used to store points of O that the adversary discov-
ers. More precisely, these tables are partial oracles that are updated by the
adversary in the following steps, and always satisfy L,L1, L2 ⊆ O.

2. For 1 ≤ i ≤ q2c1 the adversary chooses PRIi ∈R {0, 1}n, and simulates
G(PRIi). For every query α asked by G during the simulation, the adversary
adds the entry (α,O(α)) to L.

3. For 1≤ i≤qc2 the adversary chooses xi ∈R {0, 1}m, and simulates EO
PUB1

(xi)
and EO

PUB2
(xi), recording all queries and answers in L1 and L2 respectively.

4. The adversary now selects partial oracles O′
i, and strings PRI1, PRI2 for

i ∈ {1, 2} such that:
(a) |O′

i| ≤ |L ∪ L1 ∪ L2| + q.
(b) L1 ∪ L2 ∪ L ⊆ O′

i, and GO′
i(PRIi) = PUBi.

(c) For every pub ∈ PKg(O′
1) ∩ PKg(O′

2) there exists an pri such that
[g(pri) = pub] ∈ L ∪ L1 ∪ L2.

If no such partial oracles exist then the adversary gives up and terminates.
5. The adversary queries Break(G,E,D,PUB1,PUB2, y1, y2,O′

1,O′
2,PRI1,

PRI2). If Break returns ⊥ then the adversary fails (this can be modeled
by the adversary returning a random string x ∈ {0, 1}m). Otherwise, Break
returns x, which the adversary returns as well.

4.3 Analysis

This concludes the description of our adversary. We now turn to proving that our
adversary makes a successful query to Break which returns the correct inverse
x. In order to prove this we need to show that the following two statements are
true with high probability:

1. The adversary’s query passes all the checks of Break.
2. Under O′′

i = O !c O′
i it holds that E

O′′
1

PUB1
(x) = y1 and E

O′′
1

PUB2
(x) = y2.

We start with the first statement. We will use the following random variables
in the statement of the lemma. Consider a run of our adversary in the correla-
tion security experiment. Let O,PRI′1,PRI′2 be the TDP oracle, and the private
keys respectively, that are selected by the challenger. Let QPUBi and Qx,i to be
the sets of queries asked during the computations GO(PRI′i), and EO(PUBi, x)
respectively. We define TPUBi

= O(QPUBi
) and Tx,i = O(Qx,i). For the first

statement above we are interested in the following event:
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Event E. For every pub for which there exist pri1, pri2 such that [g(pri1) =
pub] ∈ TPUB1 and [g(pri2) = pub] ∈ TPUB2 there exists an pri such that
[g(pri) = pub] ∈ L.

Essentially, the event E states that our adversary has discovered a trapdoor for
every public key that was generated in the computation of both GO(PRI′1) and
GO(PRI′2). The following claim shows that this happens with high probability.
Intuitively, this is so because PRI′1 and PRI′2 are chosen independently at ran-
dom, and our adversary samples many such computations in step 2. Thus, if a
public key is likely to be generated by GO(PRI) for a random PRI, then our
adversary has already found it. If it is unlikely to be generated then it is unlikely
to appear in the computation for two independent PRI’s.

Claim. At step 5 of the adversary, the event E occurs with probability ≥ 1 −
qc1+1

eqc1 + 1
qc1−1 .

Proof (Sketch). In step 2 the adversary simulates G(PRI) many times, thus
learning all the pubs that are frequently generated by G on random PRI. In
order for a public key pub to be likely to appear in the computation of two
independent executions of G, it must frequently generated by G. Therefore,
with high probability, all the pubs that were generated in both the computation
of G(PRI1) and G(PRI2) have already been observed by the adversary during
the sampling of step 2. The complete proof is given in the full version of this
paper [19].

We now show that it is sufficient for event E to occur in order for our adversary
to successfully construct the partial oracles O′

1 and O′
2, and make a Break query

that passes checks 1 and 2.

Claim. If event E occurs then the adversary successfully constructs the oracles
O′

1 and O′
2 in step 4. Furthermore, the adversary’s query to Break successfully

passes checks 1 and 2.

Proof. If event E occurs then L contains trapdoors for all pub that appear in
both the computation of GO(PRI1) and GO(PRI2). Thus, one possibility for the
values of O′

1,O′
2,PRI1,PRI2 in this case is simply the correct PRI1,PRI2 and

the subset of O that is used in the generation of PUB1 and PUB2 respectively.
Now consider the adversary’s query to Break. Check 1 passes because of the

conditions imposed on the choice of the partial oracles O′
1 and O′

2. To see why
check 2 passes, notice that under O′

i the made up PRIi is a correct private key
for the public key PUBi, and so by the correctness of the trapdoor permuta-
tion (G,E,D), for every oracle O′′ such that O′

i ⊆ O′′, DO′′
(PRIi, y) inverts y

correctly.

Our next step is to prove the second property of our adversary: that for for
i ∈ {1, 2}, with high probability, for every query α that is asked by EO(PUBi, x)
the answers under the oracle O, and the modified oracle O′′

i = O !c O′
i are

identical. The proof of this statement is very similar to Claim 6.9 in [5]. We
repeat it here for completeness.



Two Is a Crowd? A Black-Box Separation of One-Wayness 177

Lemma 2. Let O′
i, for i ∈ {1, 2}, be the partial oracles chosen by the adversary,

and let O′′
i = O !c O′

i. Then, with probability at least 1− 2
eqc2 , for every query α

asked by EO
PUBi

(x), O′′
i (α) = O(α).

Proof. From the fact that O′
i is defined on at most q points that are not in

L ∪ L1 ∪ L2, and the definition of the !c operator we know that O !c O′
i differs

from O on at most 2q points.
More precisely, for a query α of the form α = [g(sk)] where O(α) �= O′′

i (α) =
pk it must be that [g(sk) = pk] ∈ O′

i \ L ∪ L1 ∪ L2. Thus, queries of this form
contribute at most one point on which O′′

i and O differ.
If α is of the form e(pk, x), and [e(pk, x) = y] ∈ O and [e(pk, x) = w] ∈ O′′

i ,
where w �= y, then one of the following holds: either [e(pk, x) = w] ∈ O′

i\L∪L1∪
L2 or there exists x′ such that e(pk, x′) = w, and e′i(pk, x

′) = y. Thus, queries
of this form can contribute at most two points on which O′′

i and O differ.
Consider a query α such that O(α) �= O′′

i (α). Then, [α,O(α)] �∈ L1 ∪L2. This
means that α did not appear in any of the simulations in step 3. Since the simu-
lations in step 3 are done with independently chosen xi, we can apply Lemma 1,
and so the probability of α appearing during the computations E

O′′
i

PUBi
(x) = yi

for i ∈ {1, 2} is at most 1
eqc2 .

Applying the union bound over all ≤ 2q points on which O and O′′
i differ, we

obtain that the probability that a query α is asked during EO
PUBi

(, x) such that
O(α) �= O′′

i (α) is at most 2q
eqc2 .

We are now ready to prove the main theorem of this section: that our adversary
successfully breaks the correlation security of any trapdoor permutation with
probability which is arbitrarily close to one.

Theorem 1. Given PUB1, PUB2, y1, y2 in the correlated one-wayness exper-
iment, our adversary wins with probability ≥ 1 −

(
qc1+1

eqc1 + 1
qc1−1 + 4

eqc2

)
. Fur-

thermore, it does so by making at most 5q + 3qc1+1 + 6qc2+1 oracle queries.

Proof. The theorem follows by simple calculation from the above claims, and
Lemma 2. The complete proof appears in [19].

5 One-Way Trapdoor Permutations Exist Relative to
Our Oracle

In this section we show that the trapdoor permutation (G,E,D) where
GO(pri) = g(pri), EO

pub(x) = e(pub, x) and DO
pri(y) = d(pri, y) is a secure one-

way trapdoor permutation, even when the adversary is given access to the oracle
Break. Let A be an adversary that tries to break the one-wayness of (G,E,D).
We show that δ ≤ 3q

2λ−q
+ 3q

2λ where δ = δOW (A) is the advantage of A in the
one-wayness experiment. In fact, our proof carries through even when the input
x is not uniform, but is chosen from a high entropy distribution.

The adversary’s input is a pair (pub∗, y∗), and she is given access to oracles
(g, e, d,Break). Our proof proceeds in two steps: first, we show that if we modify
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the oracle Break slightly then the adversary can simulate the modified oracle
Break′ on her own with high probability. Since no adversary can break the one-
wayness of a random trapdoor permutation, we obtain a bound on the advantage
of an adversary that has access to Break′ instead of Break. The second step is to
show that, in fact, the oracles Break and Break′ always produce the same answer.
Combining the two steps together we get a bound on the advantage of A.

The Modified Oracle Break′. The oracle Break′ is parameterized by a public key
pub∗, and is defined as follows: Break′ is the same as Break except step 4, which
is modified in Break′ as follows:

4. Let i ∈ {1, 2} such that pub∗ �∈ PKg(O′
i). If pub∗ ∈ PKg(O′

1) ∩ PKg(O′
2) or

pub∗ �∈ PKg(O′
1) ∪ PKg(O′

2) then set i = 1. Then, run D
O′′

i

PRIi
(yi) to obtain

an output x. If x = ⊥ return ⊥.

In other words, instead of always inverting y1, Break′ inverts yi where pub∗ is not
generated during the generation of PUBi. Intuitively, this is a useful property
because A is trying to break a single public key pub∗. Relying on the fact that the
permutation e(pub∗, ·) is random and independent from the rest of the oracle,
A can simulate Break′ by generating the rest of the oracle by herself. She runs
into trouble only when asked to invert e(pub∗, ·). However, this is avoided by
the check that is performed in step 5, and by the above modification. The check
of step 5 prevents E from making a query that requires a trapdoor for pub∗.
Note that although this may seem like a severe restriction, we have shown in
Section 4 that it does not prevent us from breaking correlation security. The
change in Break′ allows A to invert the one yi which does not require knowledge
of a trapdoor for pub∗.

5.1 Simulating Break′

The simulator itself is very technical, and is given in full detail in the full version
[19]. We describe here the main ideas that are used in the construction. As
previously mentioned, our adversary can generate all of O by herself, except for
the permutation e(pub∗, ·). Thus, if she wanted to simulate Break′ she would
run into the following two problems: firstly, she is unable to compute the oracles
O′′

i = O!cO′
i, and secondly she is unable to answer queries of the form [d(pri, y)]

where [g(pri) = pub∗] ∈ O′′
i .

The first problem is caused by the fact that the !c operator resolves collisions,
which requires the knowledge of entries of O of the form [e(pub∗, x) = y] where
[e(pub∗, x′) = y] ∈ O′

i. Our adversary may not possess this knowledge which
prevents her from resolving all collisions. Instead, she resolves only the collisions
that are known to her from the previous queries to the actual oracle O, and
the inputs of the Break′ query. Since the rest of e(pub∗, ·) is random, she is
unlikely to stumble unto any new collisions during the simulation of the Break′

query.
The second problem is caused by the fact that O′

i are adversarially chosen,
and as such may contain an entry [g(pri) = pub∗] which is incorrect according to
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O. This allows D
O′′

i

PRIi
(yi) and E

O′′
i

PUBi
(x) to query d(pri, y), which the adversary

is unable to answer. This is dealt with as follows: to prevent D from making
such queries we introduced the modification in Break′. The only case in which
O′′

1 and O′′
2 may both contain trapdoors for pub is when the adversary knows at

least one such trapdoor which is correct according to O. Consequently, since it
is hard to find a correct trapdoor for pub∗, there is an i such that O′

i does not
define any fake trapdoors for it. It is now safe to simulate D

O′′
i

PRIi
(yi) because

D is unlikely to find a true trapdoor of pub∗. To prevent E from making such
queries, Break (and Break′) perform a check in step 5 that forces the oracle to
return ⊥ if E makes a query of the form g(pri) where O′

i and O disagree on the
answer.

5.2 Equivalence of Break and Break′

We have shown that Break′ provides very little help to an adversary trying to
break the one-wayness of (g, e, d). We now show that Break and Break′ always
answer queries identically, which proves that Break does not break the one-
wayness of (g, e, d).

Claim. The adversary A has advantage δ when given access to Break′ instead of
Break.

Proof (Sketch). The complete proof appears in [19]. Informally, let xi =
D

O′′
i

PRIi
(yi). The only difference between Break and Break′ is that in step 4 Break

always computes x1 and Break′ sometimes computes x2. There are two cases: if
x1 �= x2 then due to the fact that EPUBi

is a permutation, step 5 will return ⊥.
If x1 = x2, then both oracles perform the same computation in step 5.

5.3 Main Theorem

We are now ready to prove the main theorem of this section. We prove a strong
variant that implies the security of (g, e, d) even when the input x is not uniform,
but is chosen from a high entropy distribution. As previously mentioned, this
implies that even a strong type of trapdoor functions (deterministic public key
encryption) is insufficient to obtain correlation security.

Theorem 2. Let G,E,D be the trapdoor permutation that forwards its input
directly to the oracles g, e, d, and let D be a distribution over {0, 1}λ such that
H∞(D) = k. Then, for every adversary A that makes at most q oracle queries
to (g, e, d,Break), δ = δOW (A,D) ≤ 2q

2k−q
+ q

2λ−q
+ 3q

2λ .

Proof (Sketch). The proof follows by a simple calculation from the equivalence
of Break and Break′, and the ability of the adversary to simulate Break′. The
complete argument appears in [19].
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6 Extensions

In this section we present several strengthenings of our basic theorem, and ad-
dress the simplifications that we made for our proof.

Injective Trapdoor Functions. The oracle and proof require few changes to
handle trapdoor functions that are 1-1 but not necessarily onto. The modifica-
tions are as follows:

– Step 2 in the description of Break is modified to verify that (G,E,D) is a
valid injective trapdoor function instead of checking that it is a trapdoor
permutation. The rest of the oracle stays as before.

– The main issue that arises from changing from permutations to injective
functions is the concern that the adversary may design a family of injective
trapdoor functions that give away too much information when the inversion
algorithm is applied to a string that is not in the range of the function.
However, in that case check 5 of both Break and Break′ (which is described
in the proof) will always fail since both permutations are evaluated in the
forward direction on the inverse obtained in step 4.

Weaker Correlation. Our result easily generalizes to obtain the following
stronger theorem: for every n, k ∈ N, and every distribution C on elements of
({0, 1}n)k such that, with high probability each of the k coordinates can be found
given all the remaining k − 1 coordinates of the sample, there is no black-box
construction of a trapdoor permutation that is correlation secure under C from
a one-way trapdoor permutation. On a very high level, our Break oracle can be
generalized to break such constructions due to the following simple fact. In the
simulation of Break′ by an adversary that has access only to (g, e, d) (and not
to Break′, the simulator is unable to invert only one of the strings y1, y2. The
simulator can easily be extended to invert all the strings y1, . . . , yk except one.
More details are given in [19].

Families of Trapdoor Permutations That Use Break. Our adversary in
Section 4 breaks only constructions of trapdoor permutations that only make
use of the (g, e, d) part of the oracle, and never query Break. Similarly, our
simulator in Section 5 only simulates Break queries that do not make recursive
Break queries. We chose to describe the proof in this manner to simplify the
presentation. Both Theorem 1 and Theorem 2 extend to the case where G,E,D
are allowed to make Break queries.

One modification is to the cost of a Break query. When Break may make
recursive queries to itself, a single Break query by the adversary counts as the
sum of the costs of all the Break queries in the resulting recursion tree. A second
modification is to the adversary that uses Break. The modified adversary keeps
track of Break queries and answers that appear during the simulations of G and
E in steps 2 and 3. Then, in step 4, she chooses the partial oracles O′

1 and O′
2

to be consistent with the previously observed queries and answers to Break.
The main property of Break that allows us to handle such constructions is

that in every call to Break, only one of the values yi may require a trapdoor for
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some pub∗ which happens to be the public key that our simulator is trying to
break. Hence, to extend the simulator of Section 5 to handle constructions that
make use of Break, the simulator is modified to recursively simulate Break by
running our simulator for Break′ for each recursive call.

Adding a PSPACE Oracle. In our proofs the only measure of complexity
for algorithms is the number of (g, e, d) queries that they make. This can be
interpreted intuitively as ruling out a certain type of reductions between the
two primitives in question. However, we are interested in showing that there
is an oracle relative to which there exists a secure trapdoor permutation, and
yet there exists a polytime adversary that breaks the correlation security of
every construction. This is achieved by adding a PSPACE oracle. Then, step
4 of our adversary can be implemented in a single step by making a query to
the PSPACE oracle. The rest of the computation that is performed by the
adversary, and by the simulator is done in polynomial time. To complete the
proof it is necessary to observe that a random trapdoor permutation remains
secure, even when the adversary has access to a PSPACE oracle. For more
details about the technique of adding a PSPACE oracle we direct the reader
to [16] and [18].
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Efficient, Robust and Constant-Round
Distributed RSA Key Generation

Ivan Damg̊ard and Gert Læssøe Mikkelsen

Department of Computer Science, Aarhus University

Abstract. We present the first protocol for distributed RSA key gener-
ation which is constant round, secure against malicious adversaries and
has a negligibly small bound on the error probability, even using only
one iteration of the underlying primality test on each candidate number.

1 Introduction

The idea of distributed key generation is to generate a key in secret shared
form among a number players such that it is never available in a single location.
Together with a protocol for distributed signatures, for instance, one gets a
distributed signature scheme that has no single point of attack throughout its
lifetime.

Specifically for distributed RSA key generation, the main problem is to gen-
erate a modulus such that the prime factors are shared among the players. Two
approaches have been suggested in the literature: Boneh and Franklin (BF) [4]
suggest to generate a random candidate modulus N = ab where a, b are random
and shared among the players. One then runs a so-called biprimality test involv-
ing an exponentiation modulo N which is easy to do in a distributed fashion,
and will accept an N with more than two prime factors with probability at most
1
2 . An alternative method was suggested by Algesheimer et al.(ACS) [1], where
one generates candidate primes separately in shared form and tests each one
for primality, by doing a Miller-Rabin primality test securely, i.e., by doing the
required exponentiation while base, exponent and modulus are all secret-shared.

We now compare the methods and discuss whether there is room for im-
provement. Boneh and Franklin’s test is very efficient because the modulus N is
public. On the other hand, one has to wait until both factors a and b happen to
be prime which requires more candidates than the standard method. The error
probability is unfortunately very hard to bound: using only the worst-case result
of 1

2 leads to a very poor result that would seem to require many iterations of
the biprimality test to bring the error down. For the Miller-Rabin test, it was
shown by Damg̊ard et al.[11] that the average case behavior is much better than
the worst case, most composites pass the test with probability much smaller
than the worst case, and hence for large numbers, only one iteration of the test
is necessary for negligible error probability. One might hope for a similar result
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for the biprimality test, but this turns out to be unclear. The method from [11]
relies heavily on the fact that for any prime factor p in a number N to be tested,
p does not divide N − 1. To argue in a similar way for the biprimality test, one
would need that if N = ab and p divides a, p does not divide (a− 1)(b− 1), but
this is clearly not true in general.

Algesheimer et al. test each candidate prime individually and so need fewer
candidates, and one can use [11] to estimate the error. On the other hand, all
exponentiations must be done with a secret modulus which makes them much
slower. According to [1], for a small number of players (the interesting case in
practice) the computational complexity of BF is somewhat larger than ACS while
the communication is smaller. The big difference, however, is that BF is constant-
round for checking a candidate while ACS require θ(n) rounds for checking an n-
bit prime. While Algesheimer et al. claim that this is not important, we disagree,
and believe the issue is very significant both from a theoretic and a practical point
of view (see discussion at the end of the introduction).

Our conclusion is that in many, if not most cases BF is the more attractive
approach. It is therefore of interest to construct a protocol with a good bound
on the error probability which is as efficient as BF. In this paper we do this by
combining the two methods from [1,4] to get, in a sense, the best of both worlds.
We are going to compute a public candidate modulus N = ab like Boneh and
Franklin, but we are going to test a and b for primality separately, as follows: if
we choose a = b = 3 mod 4, then doing the Miller-Rabin test say on a reduces to
testing if r(a−1)/2 mod a = ±1 for a random base r. Now, because N is public,
we can very efficiently choose a random g ∈ Z∗

n and compute y = ga−1 mod N
in secret shared form using essentially Boneh and Franklin’s protocol. Now we
just need to reduce y modulo the secret a and test against 1,−1. This can be
done efficiently and in constant-round using a subprotocol from ACS. Note that
there is no need for an exponentiation mod a, we just need a reduction, which
is something ACS must do for every secure multiplication.

In this way, we get a protocol that is essentially as fast as Boneh and Franklin’s,
but where we can directly use [11] to estimate the error. Note that when testing
a candidate, we can run the (simpler) biprimality test first without affecting the
error probability since it never rejects a good modulus. This way, even if we cannot
prove how well it does in the average case, we still get maximal mileage from it.

A second contribution of the paper is an efficient way to get a protocol secure
against active (malicious) adversaries. Both BF and ACS were described for
passive adversaries. Frankel et al. [14] suggested a way to get active security
for the Boneh-Franklin protocol, but estimated themselves that the cost of this
would be prohibitive in practice.

We suggest an alternative method where our secure computation is based on
replicated integer secret sharing suggested by Damg̊ard and Thorbek [13]. Here,
the secret is shared additively over the integers, but each player gets several shares.
Because of this replication, the scheme allows for secure multiplication in much the
same way as Shamir’s scheme. The observation is that because the scheme is also
additive over the integers, we can use Algesheimer et al.’s protocol for modular
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reduction which exactly requires such a sharing scheme. This is in contrast to their
original protocol where one uses Shamir’s scheme for multiplication and so one
must convert back and forth between the schemes throughout the protocol using
interactive procedures. Finally, we make the scheme verifiable by keeping players
committed to their shares.

The price we pay for the simplifying the protocol is that computational com-
plexity of the scheme does not scale well with the number of players, but we
believe this is not a serious issue: in contrast to earlier proposals the protocol is
genuinely practical for less than, say, 10 players, and in threshold cryptography,
one usually thinks of the number of players as a small constant. For instance,
in the framework for distributed RSA signatures suggested by the authors[12],
it is natural to run a 3-party protocol where a PC, a server and a mobile device
held by the user execute the protocol.

Our protocol is secure against an active and static adversary corrupting any
minority of the players, and the cost of going from passive security to active
security is a constant factor, both regarding computations, network traffic and
the number of rounds. In practice the constant is fairly low, covering committing
including local exponentiations, which are already done in the passive protocol,
and broadcast of commitments.

We close the introduction by discussing the claim by Algesheimer et al. that
the difference in communication and round complexities between BF and ACS
do not matter because one can test many candidates in parallel. We disagree with
this: It is true that on a network with large round trip time, one can make the
average cost of a protocol go down if many instances are to be done in parallel.
Each player sends the next message in an instance as soon as he is ready to do
so, and if we have enough instances, each player has enough local computation
to keep him busy until the other players respond. Ideally, this means that the
amortized time per instance can be almost as if there were no network delays.
This is the basis of the ACS claim that their large round complexity is not a
problem, since of course we can test many candidate primes in parallel. However,
on the other hand, the real time elapsed from we start until we are done can of
course never be smaller than the time it takes to do a single instance stand-alone.

The ACS protocol has some constant number of rounds for every bit in a
candidate prime number so for 1000-2000 bit RSA, it will have something like
5000- 10.000 rounds pr. test (as opposed to our protocol with less than 100 rounds
pr. test.) If we further assume a malicious adversary and that we are running
on a network as the Internet that is basically asynchronous, rounds will tend
to take a long time: a corrupt player may not send anything, so to distinguish
this from a delay of an honest player’s message, one has to wait long enough in
each round so that the chance of an honest player’s message failing to arrive is
negligible. Otherwise, we may exclude an honest player as being corrupt, and
then the protocol is no longer secure. If, for instance, we need to set a time-out
of 1 second to be sure to avoid mistakes, 5000-10.000 rounds will take between
1 and 3 hours to execute. The conclusion is that when the number of rounds is
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very large, as for ACS, the parallellization paradigm only make sense on a fast
network with very strong guarantees on delivery time.

2 Security Model

The protocols described in this paper are all three player protocols, where we
assume that at most one of the players are corrupted. The protocols can be
generalized to n players, however, the underlying secret sharing scheme does not
scale well in the case of many players. Corruption of players is either considered
to be passive, where a corrupt player still follows the protocol, or active where
a corrupted player can misbehave arbitrarily.

Our security model only ensure that misbehavior can be detected, it might
not be the case that the honest players can tell which player misbehaved. Fur-
thermore, the protocols does not guarantee termination, in case of dishonest be-
havior. This simplifies the protocols and security proofs. Both detecting which
player misbehaved and guaranteed termination can, however, easily be ensured
by applying digital signatures such that all messages are signed.

We assume point to point secure communication channels, meaning authen-
ticated and only the length of messages are leaked to the adversary. We also
use a broadcast channel, however, since the channel does not have to ensure
synchronous broadcast and we allow abort, this can easily be implemented on
top of the point to point channels. The player that broadcast a message sends
the message to the two other players, they send what they have received to each
other to check if they agree. If they do not agree on what they have received
they tell the other players and stop the protocol.

Universal Composability and Common Reference String. We use the
Universal Composability (UC) framework [7,8] to specify the security of our pro-
tocols. The active secure versions of our protocols assumes the (chosen) common
reference string model (CRS), where all players have access to a common string,
which can contain key material used to implement, in our case, commitments.
The CRS model is used to improve the power of the simulator. Concretely in
our case the reference string contains among others an RSA key N used to im-
plement commitments. By giving the simulator additional information on some
elements in ZN , the commitment scheme is not binding for the simulator, which
is needed for our proofs. The CRS model might be circumvented by letting each
player choosing its own N that will be used by the other players, when commit-
ting values, however, this is conceptually more complicated, and less efficient.
Therefore it has been left out. On the other hand, the CRS model might be
justifiable in the case of a PKI based on a CA. The CA’ public key might be
used as N , and as long as the CA does not actively cheats e.g., corrupts one of
the players in the protocol, during key generation the protocol remains secure.

Definition 1. Let APass be the class of passive static adversaries corrupting at
most one of the three players; and let AAct be the class of active static adversaries
corrupting at most one of the three players.



Efficient, Robust and Constant-Round Distributed RSA Key Generation 187

3 Probabilistic Primality Test

In this section we present a probabilistic primality test based on the Miller-Rabin
test [19]. The advantage of the test described here is, as we will see later, that it
can be very efficiently implemented as a distributed protocol. By requiring that
the candidate a being tested fulfills a ≡ 3 (mod 4) the Miller-Rabin test on a
reduces to testing if v(a−1)/2 (mod a) ≡ ±1 for a random base v.

ProbPrime. Takes input a and N s.t. a|N . We assume a ∈ [2n−1, 2n] and
N ∈ [22n−2, 22n].

1. v ∈R ZN .
2. γa ← v(a−1)/2 mod N
3. If ±1 ≡ γa (mod a), then output Probably prime, else output Composite.

The correctness and the error probability are stated in the following theorems.
Since the protocol is based on the Miller-Rabin test these theorems are likewise
based on error estimates of this test.

Theorem 1. ProbPrime is a Monte Carlo algorithm with random input v. A
correctly formed prime a ≡ 3 (mod 4) is always accepted, and for worst case
input it accepts a composite with probability < 1

4 .

Proof. ProbPrime is essentially the Miller-Rabin test restricted to numbers
a ≡ 3 (mod 4) and therefore always accepts correctly formed primes, and has
the same worst case error estimate: 1

4 ([19]).

Theorem 2. Let ProbPrime be utilized to generate probable primes by in-
putting randomly chosen n bit integers ai ≡ 3 (mod 4), running the test t in-
dependent times on each ai and outputting the first number passing all test. Let
Pn,t denote the probability that a composite number is output. Assuming the
Extended Riemann Hypothesis and ai > 2.3 × 1010 then Pn,1 < n243−√

n and
Pn,t < n3/22tt−1/243−√

tk for 2 ≤ t ≤ n/9.

Proof. Damg̊ard et al. [11] estimates Pn,1 < n242−√
n and Pn,2≤t≤n/9 <

n3/22tt−1/242−√
tk for the Miller-Rabin test for input chosen uniformly random

in the set Iodd(n) of n bit odd positive integers. We restrict the set we choose
candidates from to I3 mod 4(n) the set of n bit positive integers a ≡ 3 (mod 4).

Let Sodd(n) and S3 mod 4(n) denote the density of the false positives, composite
numbers accepted with high probability in Iodd(n) and I3 mod 4(n) respectively.
Since I3 mod 4(n) is half the size of Iodd(n), S3 mod 4(n) is at most the double of
Sodd(n), which therefore at most doubles the average error probability.

We then consider the density of primes in I3 (mod 4)(n) compared with Iodd(n).
Heuristically the density of primes in Iodd(n) and I3 mod 4(n) are asymptotically
the same. However, by assuming the Extended Riemann Hypothesis and that
ai > 2.3 × 1010 the concrete bound 1: |π(x, 4, 3) − x

2 log x | <
x

log 2x = x
2 log x

2
log x

1 This bound follows from [2][Theorem 8.8.18].
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can be found. This means that the difference between the density of primes in
Iodd(n) and I3 (mod 4)(n) is at most: 2

ln x which for 2n = x > 2.3 × 1010 means
2

ln(x) < 2. This gives us another doubling of the average error probability and
our average error probability is therefore 4 times higher than the one from [11]
on the original Miller-Rabin test.

Two examples of concrete bounds of the average error probability on n = 1024
are P1024,1 < 2−38 and P1024,4 < 2−105. This means that running the test only
one or a few times on each number is sufficient in practise.

4 Replicated Integer Secret Sharing

Secret sharing [20] is a known primitive used in many cryptographic protocols.
This section describes an additive secret sharing scheme over the integers that
enables multi party computation (MPC) over integers in a given interval. Addi-
tive secret sharing over the integers makes it possible to share an integer in some
public known interval [−T, T ], by choosing the shares s0, . . . , sn ∈R [−2κT, 2κT ],
where κ is the security parameter, such that s =

∑
si. The shares are chosen

in the lager interval to make a sharing of s statistically close to a sharing of
zero, and therefore an adversary only gains negligible information of s even if
all except one share is known to the adversary. Addition of two additive secret
shared integers is done by locally adding the shares, however multiplication is
not strait forward.

Replicated Integer Secret Sharing (RISS) is a revised variant of additive integer
secret sharing, where multiplication and other calculations are made possible by
replicating the shares, s.t. each player holds multiple shares, in case of three
players they each holds two shares. The product of two secrets s and t can be
rewritten as st = (s1, s2, s3) × (t1, t2, t3) = s1t1 + s1t2 + · · · s3t2 + s3t3, and
therefore replicating the shares enables multiplication, because each product on
the right hand side are known to at least one player.

When a dealer wants to share a secret s it is done as in the nonreplicated case:
The dealer generates three uniform random numbers s1, s2 and s3 ∈ [−2κT, 2κT ]
s.t. s = s1 + s2 + s3 then the dealer distributes these shares such that player 1
gets s2 and s3, player 2 gets s1 and s3 and player 3 gets s1 and s2.

In the rest of this section we will see how to implement multi party compu-
tation based on RISS, and Verifiable Replicated Integer Secret Sharing (VRISS)
an active secure version of RISS. The specification of MPC using (V)RISS is
defined as the ideal functionality FRISS in figure 1. The intuition of FRISS is a
black box where the players can input values, associated with an index, then the
players can do some computations on the values and the box can output results
to one or more players. The simulator ideal-world adversary is allowed to delay
output from FRISS maybe for infinitely long time, however, not to change values
inside the functionality nor input or output from honest players.

4.1 Passive Secure Protocol Realizing FRISS

We will here describe some protocols based on RISS, which together implements
the functionality FRISS. In this section we prove the security of the passive
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Ideal functionality FRISS

When started FRISS initializes an empty list L, let L(i) denote either the value or
the memory that can store a value at index i. All output from FRISS can be delayed
(maybe infinitely) by the adversary.
Input: Upon receiving (Input, pid, i, x) from player pid and (Input, pid, i) from all
other players store x at L(i).
Output: Upon receiving (Output, pid, i) from all players; send (Value,L(i)) to player
pid.
Publish: Upon receiving (Publish, i) from all players; send (Value,L(i)) to the ad-
versary and afterward to all players. (Maybe output to some or all players is delayed
by the adversary)
Addition and Multiplication: Upon receiving (ADD, i, j, k) or (MUL, i, j, k) from all
players store at L(i) the sum or the product of L(j) and L(k).
Constant Addition and Multiplication: Upon receiving (C-ADD, i, j, x) or
(C-MUL, i, j, x) from all players store at L(i) the sum or product of L(j) and x.
Detected Misbehavior: Upon receiving (Misbehavior) from the adversary, at any
point in the protocol. Then output (Misbehavior) to all players and halt (Note: This
part is only necessary for active secure protocols)

Fig. 1. Ideal functionality defining the security of RISS and VRISS (See section 4.2)

secure protocols, therefore we only consider the security when the players follow
the protocols as described. In section 4.2 active secure protocols are described.

It is easy to see that if the shares of s ∈ [−T, T ] has been chosen uniformly
s.t: s1, s2 ∈R [−2κT, 2κT ] and s3 = s− s1 − s2 and s.t s3 ∈ [−2κT, 2κT ] then two
shares of s are indistinguishable from two shares of a sharing of zero, because
the distributions are statistically close, with security parameter κ.

Lemma 1. Generating and distributing shares in RISS UC-realizes Input in
FRISS with respect to all APass adversaries.

Addition and Constant Multiplication. To add shared numbers, each player
locally adds the shares. Multiplication by a public known constant is done in the
same way by locally multiplying the constant with the shares.

Lemma 2. Since addition and constant multiplication in RISS only involves
local computations it UC-realizes Addition, Constant Addition and Constant
Multiplication in FRISS with respect to all APass adversaries.

Jointly Generating (Pseudo) Random Sharing of Zero. The multipli-
cation protocol has to generate a random nonreplicated integer secret sharing
of zero, such that no player know the complete sharing. By using the technique
pseudo random secret sharing (PRSS) [9] in a novel way, this can be implemented
as a noninteractive protocol. If the players pairwise share a secret key for a pseudo
random function (PRF) in the same way they would share a RISS share, they
can use this PRF and the keys to generate three numbers r1, r2, r3 ∈R [−2n, 2n]
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this is a replicated integer secret sharing of r = r1 + r2 + r3. 0 can be written as
0 = r − r = (r1 + r2 + r3) − (r1 + r2 + r3) = (r1 − r2) + (r2 − r3) + (r3 − r1),
and each of the three summands can be calculated by one of the players. The
shares of zero have size n + 2. If one of the players is corrupt there are n + 1
bit uncertainty for the adversary of the two shares the adversary does not know;
due to the fact that there are n+1 different equally possible values for the share
rx unknown to the adversary. We will later use PRSS to generate random secret
shared values, and publicly known random values. Given point to point secure
channels between the players the shared keys can easily be set up beforehand.

Multiplication. To multiply two RISS shared numbers 〈a〉R and 〈b〉R, such
that 〈c〉R = 〈a〉R × 〈b〉R, each player i locally multiplies the local shares ai−1
and ai+1 of a and bi−1 and bi+1of b. Now each player holds some shares of 〈ab〉R,
however, not all of these shares are replicated, to solve this and to bring the
number of shares at each player down to two again, each player sum shares of
ab and replicates the shares again. To rerandomize the shares a nonreplicated
integer sharing of zero is added to the result before replication.

MUL(〈a〉R, 〈b〉R) Player i holds ai−1, ai+1, bi−1 and bi−1. S.t. −2n < ab < 2n.

– Calculate 〈ab〉Ii ← (ai−1 × bi−1) + (ai−1 × bi+1) + (ai+1 × bi−1)
(Note that 〈ab〉I is a nonreplicated integer secret sharing of a× b)

– Jointly generate a κ + n bit integer secret sharing of zero 〈0〉I .
– 〈c〉Ri−1 ← 〈ab〉Ii + 〈0〉Ii
– Send 〈c〉Ri−1 to player Pi+1, and wait for 〈c〉Ri+1 from player Pi−1.

Lemma 3. Multiplication in RISS UC-realizes Multiplication in FRISS with
respect to all APass adversaries.

Proof. We simulate multiplication by using sharings of zero instead of the real
values. This is statistically close to the real values because the interval of the
shares are κ bit greater than the values. Afterward the simulator can simulate
any result by adjusting the share not known to the adversary. This will result in
a share in the correct interval, except with negligible probability.

Theorem 3. MPC with RISS UC-realizes FRISS with respect to all APass ad-
versaries.

Proof. lemma 1 - 3

4.2 Verifiable Replicated Integer Secret Sharing

The previous section described how RISS can be used to do multiparty com-
putation securely against a passive adversary. To extend the security to active
security, and ensure that secret values are not leaked, and that the adversary
cannot influence the output of a protocol except by changing the input of a
corrupted machine, we need to force the players to follow the protocol. We note
that the protocol we describe in this section does not guarantee termination, and
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we cannot always determine who has been misbehaving if dishonest behavior is
detected. However, to resolve conflicts of which player cheated, digital signatures
might be utilized.

To obtain an active secure version of RISS, we need to ensure that, when a
player shares a value the player is committed to this value, and that a receiver
of a share is committed to the received value. We also need to enforce that each
player proves to the others that calculations has been done correctly. To achieve
these goals we need to assume the chosen common reference string (CRS) model
for our commitments.

Commitment Scheme. Fujisaki and Okamoto [15](see Damg̊ard and Fujisaki
[10] for a revised version) describes an integer commitment scheme, which is ad-
ditively homomorph and can be simulated in UC in the CRS model. The com-
mon reference string used consists of an RSA modulus NCRS and two elements
g, h ∈ ZNCRS , where the discrete log between g and h is unknown to the players,
however, not to the simulator, which allows simulation. When a player wants to
commit to a value s a uniform random value r∈R ZNCRS is chosen and the commit-
ment of s is: com(s, r) #→ gshr mod NCRS, this scheme is additive homomorphic
because: com(s+t, rs+rt) = (gshrs)×(gthrt) mod NCRS To open a commitment
s and r are revealed. These commitments are statistically hiding and computation-
ally binding, assuming the strong RSA assumption. If the discrete log between g
and h is known the commitments are no longer binding.

We also need an other primitive from the commitment scheme, which is the
ability to prove that two commitments c1 and c2 are commitments of the same
value. In the case where the same base (g and h) is used this is an easy task. To
show that c1 = com(s, r1) and c2 = com(s, r2) the prover shows that c1 × c−1

2 =
com(s − s, r1 − r2) can be opened to zero. In the case where different bases are
used the problem is more difficult, however, in our case with three players and
at most one corrupted player, there exists an easy solution. The prover just need
to prove to the two others that he is committing correctly if none of the two
verifiers are corrupted, because if the prover is corrupted then both verifiers are
honest and can thus trust each other, if one of the verifiers is corrupt, then the
prover is honest and by assumption committed to the correct value. The actual
protocol proving s = ŝ for (gshr) and (ĝŝĥr̂) is the following:

1. Generate:
s1, s2 s.t. s1 +s2 = s = ŝ; r1, r2 s.t. r1 +r2 = r and r̂1, r̂2 s.t. r̂1 + r̂2 = r̂

2. Publish:
c1 = gs1hr1 mod N , c2 = gs2hr2 mod N , ĉ1 = ĝs1 ĥr̂1 mod N and
ĉ2 = ĝs2 ĥr̂1 mod N

3. Open c1 and ĉ1 to verifier 1 and c2 and ĉ2 verifier 2. Both accept if cx and
ĉx opens to the same value.

Generating Shares. When player i wants to share a secret s it is done as in the
passive case, with the exception that before the shares are distributed the player
broadcasts a commitment of each share, this is also a commitment to s due to the
additive homomorphic property of com(). When the shares are distributed as in
RISS, player i opens the commitment to each share to the receivers of the share.
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Addition, Constant multiplication. As in the passive case addition and
constant multiplication can be computed without communication between the
players. This can be done because when a player adds shares of two secrets a and
b locally, the other players can calculate com(ai + bi) due to the additive homo-
morphic property of com(). Analogously with constant multiplication because:
com(cai, cri) = gcaihcri = (gaihri)c

Joint Generation of Shares. Utilizing pseudo random secret sharing enables
active secure generation of a random secret shared number s, by only one broad-
cast message pr. player. This is done by generating shares s1, s2 and s3 as in
the passive case, and in addition generate the randomness r1, r2 and r3 for the
commitments by the PRF and the shared keys. Now each player calculates the
commitments cx = com(sx, rx) to the two shares and broadcasts the result. All
three players can check if the two commitments to the same share are equal,
if not, one of the players misbehaved. Because of the additive homomorphism
of com() the joint sharing of zero can also be done in one round with only one
broadcast message pr. player.

VRISS Multiplication. Enabling multiplication in VRISS requires that one
player can prove to the others that he have multiplied two committed values
correctly. This can be done if the prover is committed to a and b with ca =
com(a, ra) and cb = com(b, ry) and proves that cab = com(ab, rab). First let:

cab ← (ca)bhr mod Ncrs ≡ gabhrab+r mod Ncrs

This is indeed a commitment to ab with the base g and h. To prove that it is
correct the prover proves that cab base ca and h is a commitment to the same
value as cb base g and h using the algorithm described earlier. Now the passive
protocol is executed with each player committing and proving to the others that
the commitments are well formed and that the steps of the protocol has been
followed.

Theorem 4. Assuming the strong RSA assumption and the existence of PRF,
then MPC with VRISS UC-realizes FRISS with respect to all AAct adversaries.

Proof. Theorem 3 proves that we can simulate the protocol, if all players follow
the protocol. Adding the commitment scheme and the checks of the commit-
ments, forces a corrupt player to follow the protocol, or the other players will
detect the misbehavior. On the other hand, simulation is still possible because
we assume the discrete log between g and h is know to the simulator, and it can
therefore circumvent the binding property of the commitment scheme.

4.3 Distributed Primality Testing

The ideal functionality FRISS and the protocols of RISS and VRISS describes a
general secret sharing scheme. However, in addition to this our protocol for RSA
key generation needs a protocol implementing a distributed version of the pri-
mality test described in section 3. This extended RISS is described as an ideal
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functionality FEXT-RISS (see Fig. 2), which is an extension of FRISS. The proto-
cols implementing FEXT-RISS has additional requirements on the integers used as
input and on how these integers are shared. We call these special form integers.

Definition 2 (Special Form Integer). An integer a is a special form integer
if it has been generated as such and fulfills: 2n−1 < a < 2n and a ≡ 3 (mod 4).

A resharing of a shared integer does not preserve special form of an integer,
therefore only integers generated as special form can be on special form. This is
because in the realization of FEXT-RISS requires that the sharing of the integer
is on the following form:

Definition 3 (Special Form Integer Sharing). A special form integer shar-
ing is a sharing of a special form integer fulfilling: a1 ≡ 3 (mod 4) and a2 ≡
a3 ≡ 0 (mod 4).

Ideal functionality FEXT-RISS

FEXT-RISS is identical to FRISS except it is extended with the following:
Randomly Generate Special Form Integer Upon receiving (GenSFI, pid, i) from
all players generate a uniform random special form integer a. Store a at L(i), with a
flag specifying that L(i) holds a special form integer.
Trial Division Upon receiving (Div?, pid, B, i) from all players, if ∃� < B s.t. �|L(i)
then output (Fail) to all players, otherwise output (Success) to all players.
Probabilistic Prime Test Upon receiving (ProbPrime?, pid, i, j, N) from all players
and if L(i) is a special form integer, and N = L(i) × L(j), then let a ← L(i), choose
v ∈R ZN and calculate γ = v

a−1
2 mod a. If γ = ±1 output (ProbPrime, v) to all

players, else send {L(i),L(j), v} to the adversary and (Composite, v) to all players.

Fig. 2. Ideal functionality defining the security of Extended RISS

Randomly Generate Special Form Integer. Player 1 and 2 each pick a
random integer a(i) ∈R [2n−2, 2n−1], s.t. a(1) ≡ 3 (mod 4) and a(2) ≡ 0 (mod 4).
This ensures that a = a(1) + a(2) ∈ [2n−1, 2n] and a ≡ 3 (mod 4). Both players
share them s.t a

(1)
1 ≡ 3 (mod 4) and for all other shares: a(i)

j ≡ 0 (mod 4). The
shares are distributed and added, which ensures that the shares fulfills the con-
gruence requirement for a special form integer sharing. The special requirement
of the congruency of the shares only leaks the value of a mod 4. The security
follows from the security of input and addition of RISS shares.

Lemma 4. Randomly Generate Special Form Integer UC-realizes this part of
FEXT-RISS with respect to all APass adversaries.

Trial Division. To do trial division up to a bound B on a shared number a,
the players test if a is divisible by a small prime � by randomly choosing an
n + κ-bit secret shared number r using PRSS as described in section 4.1. 〈ra〉R
is calculated by the multiplication protocol and all shares of 〈ra〉R are locally
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reduced modulo � and afterward broadcast to open α = (ra mod �)+β�, where
0 ≤ β < 3. If α �≡ 0 (mod �) then � � |a, however, if α ≡ 0 (mod �) then either
�|a or �|r. To prevent the protocol from rejecting a when �|r the protocol is
executed a number of times with new random values r. For optimization reasons
local reductions modulo � should be done before and during the calculation of
〈ra〉R, and the trial divisions should be executed in parallel.

Lemma 5. Trial Division UC-realizes this part of FEXT-RISS with respect to all
APass adversaries.

Proof. This can be simulated by simulating the result of 〈ra〉R. The leaked value
α = (ra mod �) + β� does not leak information because it can be perfectly
simulated, by choosing r and its shares appropriately.

Probabilistic Primality Test. Here we present a distributed version of the
primality test described in section 3.
ProbPrime The players holds special form integer shares of the value being
tested 〈a〉R. The value 〈b〉R is secret shared among the players, and N = ab is
publicly known. We assume a, b ∈ [2n−1, 2n] and N ∈ [22n−2, 22n].

1. Distributed generate a public known value v ∈R ZN .
2. The players locally calculates γai s.t.:

γa1 = v(a1−1)/2 mod N and
γa2 = v(a2)/2 mod N
γa3 = v(a3)/2 mod N

3. The players share the values γai and calculate 〈γa〉R =
∏

γai ≡ v(a−1)/2

(mod N)
4. Distributed check if ±1 ≡ 〈γa〉R (mod 〈a〉R), if so output Probably prime,

otherwise output Composite.

Generating v can efficiently be done if all players uses the same key for the PRF.
To check if ±1 ≡ γa (mod a) we use a technique based on the ACS protocols
[1]. However, due to a different setting, where we assume N = ab is publicly
known, we can improve the protocols from O(log(n)) rounds to O(1) rounds, n
being the bit length of a. First note that (γa mod a) = γa −

⌊
γa

a

⌋
a. If we assume

the following 2n−1 < a, b < 2n, 2n−2 < N = ab < 22n and γa < 22n+2 we can
approximate γa

a in the following way 2:

Ñ =
⌈

25n+2

N

⌋
⇒
∣∣∣∣∣ 1
N

− Ñ

25n+2

∣∣∣∣∣ < 2−3n+2 and Ñ < 23n+4 (1)

ã = b × Ñ ⇒
∣∣∣∣1a − ã

25n+2

∣∣∣∣ < 2−2n+2 and ã < 24n+4 (2)

⇒
∣∣∣∣γa

a
− γaã

25n+2

∣∣∣∣ < 1 and γaã < 26n+6 (3)

⇒ γa −
⌊
γaã2−5n+2⌋ a = (γa mod a) + δa, −1 ≤ δ ≤ 1 (4)

2 
x� meaning rounding x to nearest integer (
x� =
⌊
x + 1

2

⌋
).
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In the above equations Ñ is calculated locally by each player, 〈ã〉R is calcu-
lated by the distributed constant multiplication protocol. The value 〈γaã〉R is
calculated by the multiplication protocol. Calculating

⌊
γaã2−5n+2

⌋
is done by

each player locally dividing the shares of γaã by 25n+2 and rounding the result
downwards: �c ≈ c′ = �c1 + �c2 + �c3 , |c′− c| ≤ 3. Therefore we can calculate
y = γa −

⌊
γaã2−5n+2

⌋
= (γa mod a) + δa s.t. −4 ≤ δ ≤ 4 and y < 22n+3.

The last step in the protocol to test if ±1 ≡ γa (mod a) is to calculate:

z =

(
4∏

i=−4

((y + ia) + 1 mod Q)

)(
4∏

i=−4

((y + ia) − 1 mod Q)

)
mod Q (5)

The number Q is a publicly known prime s.t. Q > 22n+3 > (y + ia) + 1, |i| ≤ 4.
The multiplications in (5) are done modulo Q to limit the size of the numbers we
are calculating on to 2n+3 bit numbers. Multiplications modulo Q can be done
by doing local modulo reduction on the shares before and after the multiplication
protocol. Now the players opens z and if z = 0 they output success, otherwise
they output failure. The last step of the protocol is correct because if ±1 ≡ γa

mod a then ((y+ ia)±1) is zero when i = δ, and since the numbers we calculate
on are less than Q, and thereby relatively prime to Q, then z �= 0 is always the
case if ±1 �≡ γa mod a.

Lemma 6. Assuming the existence of PRF’s, then on well formed input (spe-
cial form integer sharing) ProbPrime UC-realizes this part of FEXT-RISS with
respect to all APass adversaries.

Proof. We assume the existence of PRF’s, therefore the value v in the ideal
and real world cannot be distinguished efficiently. If γ �= ±1 in FEXT-RISS the
simulator gets knowledge of all private input and can therefore easily simulate
the protocol. If γ = ±1 the protocol can be simulated as follows. Step two only
contains local calculations and does therefore not leak any information. Step
three can be simulated, see lemma 3. The last step can in the same way be
simulated to output z = 0, because of lemma 3 (it is easy to see that the lemma
still holds modulo Q).

4.4 Active Security Distributed Primality Testing

For active security we need to ensure that the players follow the protocol. This
means player 1 and 2 have to prove that there random input during generation of
a special form integer sharing is well formed. The correct congruence modulo 4
can easily be tested, because each share will be send to two players, and therefore
at least one honest. To prove that a(1) or a(2) is in the correct range we use a
technique, from [6], we note that the solution described here is less efficient than
[6], however, it is conceptually simpler. Proving that a number a ∈ [2n−1, 2n]
can be done by proving that a − 2n−1 ≥ 0 and that 2n − a ≥ 0. Proving that
x ≥ 0 is done by writing x as a sum of squares. Any positive number can be
written as the sum of four squares which efficiently can be calculated [17].
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A protocol for player i to prove a ∈ [2n−1, 2n] is: Player i calculates α1, . . . , α4
and β1, . . .β4 s.t.

∑
α2

i = a − 2n−1 and
∑

β2
i = 2n − a. Player i shares the

numbers using VRISS and the three players calculates α̃ = (a − 2n−1) −
∏

α2
i

and β̃ = (2n−a)−
∏

β2
i . The values α̃ and β̃ is opened and if they are opened to

zero then a ∈ [2n−1, 2n] is true, otherwise player i is deviating from the protocol.
The protocols also includes local computations on the shares, these do not leak

information, and is therefore passively secure. They can be made active secure
with one broadcast message pr. player: The players use the PRF to generate
three random and replicated values. Now the players uses these random values
to commit to the result of the local computation such that each share of the
result is committed with the same randomness by the two players calculating
the same share. The commitments are broadcast, and if the two commitments
of the same value are not equal, one of the players misbehaves.

Theorem 5. Assuming the strong RSA assumption and existence of PRF, then
the above protocols UC-realizes FEXT-RISS with respect to all AAct adversaries.

Proof. This follows from theorem 4, lemma 4 - 6, and the above description.

5 Distributed RSA Moduli Generation

The security of our RSA moduli generating protocol is given by the ideal func-
tionality FKeyGen (Fig. 3). The intuition is that if the players follow the protocol
then the factorization of N is secret, however, if misbehavior is detected by all
players then N should not be used, and it is secure to reveal p and q.

Ideal functionality FKeyGen

Key Generation: Upon receiving (KeyGen, sid, n) from all players; generate two
n-bit primes p and q, s.t. p ≡ q ≡ 3 mod 4 and let N = pq.
Send N to the adversary. When the adversary replies with (Deliver) then send N
to all players and halt.
Detected Misbehavior: Upon receiving (Misbehavior) from the adversary, at any
point in the protocol. Then send p and q to the adversary, output (Misbehavior) to
all players and halt

Fig. 3. Ideal functionality for generating an RSA modulus

The protocol ΠKeyGen implementing FKeyGen is described in Fig. 4. The pro-
tocol is based on the BF protocol [4], with an other probabilistic primality test.
We start by describing a passive secure protocol, and afterward we extend it to
active security. ΠKeyGen assume an MPC scheme realizing FEXT-RISS.

Picking candidates: By the protocol for randomly generating special form inte-
gers, the players jointly generates two prime candidates a and b s.t 2n−1 < a, b <
2n and a ≡ b ≡ 3 (mod 4)
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RSA Moduli Generation Protocol: ΠKeyGen

1. Pick candidates: Secretly pick random numbers a and b s.t. a ≡ b ≡ 3 mod 4.
2. Trial division: Distributed trial divide a and b up to a bound B.

Repeat step 1 and 2 until two candidates a and b passes the trial division.
3. Compute N : The players calculate and publish N = ab.
4. Primality test: Run primality test to check a. If a is accepted, b is tested.

If either a or b was rejected, the protocol is restarted, otherwise output N .
5. Proof honest behavior The players prove that they in the earlier steps of the

protocol followed the protocol honestly.

Fig. 4. Protocol for distributed generation of RSA moduli

Trial Division: Trial division up to a bound B is performed on a and b. Instead
of trial division distributed sieving, which is more efficient, can be utilized, see
section 6.

Computing N : To compute N the parties use the multiplication protocol and
make the result N public. When N is public the players might do more local
trial division before continuing.

Primality Test: To test whether a and b, both having survived trial division, are
indeed primes, or at least with overwhelming probability are primes, ProbPrime
is used to test a and b one or a few times. If a or b is rejected the protocol is
restarted, otherwise in the passive case N is output as the RSA modulus. In the
active secure case the players need to prove honest behavior before N is output.

Active Security. Extending the protocol to active security, can be done using
VRISS instead of RISS. However, a more efficient solution exists. When the play-
ers choose the input they commit and broadcasts the commitments. The rest of
the protocol is run using the RISS protocol for distributed calculations. If either
a or b at some point is rejected as primes the players opens the commitments
of a and b publicly and each player can locally test if a or b should have been
rejected or if a player is misbehaving. When a modulus N is accepted the play-
ers calculates and broadcasts all the proofs of well formed input and of having
executed the protocol correctly. If a player cannot broadcast correct proofs, the
other players reports that misbehavior is detected.

Lemma 7. The probability of generating a modulus N which is not the product
of two primes is the same as in the generic RSA key generation using the Miller-
Rabin test to generate Blum integers.

Proof. In the last round of the protocol, where both a and b passes the test the
value a has been chosen completely independent of b and vice versa. Because we
choose a and b at the same time there are rounds before the last one where b is
rejected and we have to sample a new a. However, since we sample independent
in each round these rounds can just be seen as a delay of randomly chosen time
inserted in the protocol.
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Theorem 6. Assuming the Extended Riemann Hypothesis, existence of Pseudo
Random Functions and the Strong RSA assumption, then ΠKeyGen UC-realizes
FKeyGen with respect to all AAct adversaries.

Proof. From lemma 7 it follows that the output of the protocol and the ideal func-
tionality is indistinguishable. We also need simulate the transcript of the protocol
given N from FKeyGen. First we assume that the adversary follows the protocol as
described. In that case simulating the number of rounds of ΠKeyGen where candi-
dates are rejected either by trial division or by the primality test can be done as:
The simulator run the real protocols on input a and b not being two primes, such
that they are rejected, with the same distribution as in the real world.

The last round, where N is accepted and output from ΠKeyGen, can be sim-
ulated in the following way: The simulator can simulate trial division and the
primality test without knowing the input, this means it can simulate acceptance
of the two protocols, without knowing the factorization of N .

If the corrupted player does not follow the protocol there are the following
two cases: In one of the rounds where a and b should be rejected, but are not,
the adversary cannot present proofs of following the protocol. Therefore in the
real world the honest players will detect misbehavior and in the ideal world the
simulator will report misbehavior. In the last round where N is supposed to
be output, but is rejected, then in the real world the honest players will detect
misbehavior when the adversary cannot present shares of a and b making the
test fail. In the ideal world the simulator reports misbehavior and is given the
factorization of N and can therefor show shares of a = p, b = q to the adversary
such that the test should have passed.

6 Optimizations

Parallelization. If the bottleneck of the protocol is network latency, then test-
ing many candidates in parallel will decrease effect of the latency.

Distributed Sieving. Instead of first pick candidates to be primes, and there-
after perform trial division. It is possible to do distributed sieving for candidates
relatively prime to all small primes less that some bound B. This technique is
due to Malkin et al. [18], and in their implementation distributed sieving gave a
10 fold speedup when generating 1024 bit keys. Distributed sieving is done by
letting M =

∏B
�∈PRIMES(�) and let the players pick random values ai ∈ Z∗

M and
letting the candidate a = (

∏
ai) + rM for a random value r in an appropriate

interval. This makes a relatively prime to M and thereby relatively prime to
all small primes less than B. After converting a into additive shares the players
must initiate a protocol that ensures the additive shares has the right properties
(congruence modulo four), this applies [4] and to our protocol, however, not to
[18] due to their simpler (only heuristically secure) primality test.

Using Multi Prime RSA Modulus. As mentioned in [4] it is possible to avoid
the quadratic slowdown of testing two candidates at the same time instead of



Efficient, Robust and Constant-Round Distributed RSA Key Generation 199

testing two candidates independently as done in [1] and when generating RSA
keys locally by [19]. The trick is to use a modulus which is a product of three
primes, known as multi prime RSA. N = p1p2(a1 + a2) where p1 is a prime
known to player 1 and p2 is a prime known to player 2 and a = a1 + a2 is
a candidate for a third prime. Unlike [3] that need a special tri-primality test
like [5] our protocol can easily be extended to test multi prime moduli due to
primality test. It should be noted that the latest PKCS #1 version (v2.1) [16]
includes the use of multi prime RSA, although the motivation there is improved
speedup when utilizing the Chinese remainder theorem technique.

7 Conclusion and Acknowledgment

We have presented a novel approach to do distributed generation of RSA moduli,
with an active secure constant round primality test with a good bound on the
average error probability. By using parallelization the complete generation of
RSA moduli can made constant round, even when guarantying active security.
An second contribution is a novel way to do multi party computations with
replicated integer secret sharing. An open question remains, whether a better
average case analysis of the Boneh and Franklins biprimality test is possible.

We thank Arjen Lenstra for some useful pointers.
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Abstract. We present a variant of Regev’s cryptosystem first presented
in [Reg05], but with a new choice of parameters. By a recent classical re-
duction by Peikert we prove the scheme semantically secure based on the
worst-case lattice problem GapSVP. From this we construct a threshold
cryptosystem which has a very efficient and non-interactive decryption
protocol. We prove the threshold cryptosystem secure against passive
adversaries corrupting all but one of the players, and againts active ad-
versaries corrupting less than one third of the players. We also describe
how one can build a distributed key generation protocol. In the final part
of the paper we show how one can, in zero-knowledge - prove knowledge
of the plaintext contained in a given ciphertext from Regev’s original
cryptosystem or our variant. The proof is of size only a constant times
the size of the public key.

1 Introduction

Cryptography based on lattice problems is one of the most important examples of
techniques holding promise for public-key cryptography that is secure even under
quantum attacks and are also interesting in that they can be based on worst-
case complexity assumptions. Recently, these techniques have become much more
efficient after it has been realized that one can base the actual cryptosystem on
the learning with error problem (LWE), and then argue that the (variant of
the) LWE problem used is as hard as some lattice related problem, typically
computing the shortest vector in a lattice. In the LWE problem, the adversary
must compute a secret vector s with entries in some field or ring, given only the
inner products of s with some public vectors where, however, some noise has
been added to the products. As mentioned, basing a cryptosystem on LWE can
lead to quite efficent cryptosystems, see, e.g., [Reg05],[PVW08],[MR08],[Pei09].

As lattice-based cryptography moves closer to practice, it becomes an impor-
tant research question to investigate whether these cryptosystems can provide
the same “extra” functionality we have come to expect from well-known public-
key cryptosystems based on factoring or discrete logarithms. For instance, can
we have threshold versions of these systems? In other words, we want to share
the private key among a set of servers and efficently decrypt a ciphertext while
revealing nothing but the plaintext to the adversary. And furthermore, can one
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prove, in zero-knowledge and efficiently, knowledge of the plaintext contained in
a given ciphertext?

In this paper we construct such a threshold cryptosystem, based on a variant
of Regev’s system [Reg05]. We show our scheme semantically secure based on
a worst-case lattice problem using a recent reduction of Peikert [Pei09]. To the
best of our knowledge, it is the first lattice-based threshold cryptosystem. We
need to use a larger modulus than Regev, thus making ciphertexts larger, on
the other hand we get a very efficient and non-interactive decryption protocol:
each player needs only to do local computation and announce a single element
from the underlying ring. The basic version of the protocol is secure against a
passive adversary corrupting all but one of the players. For a small number of
players, we show an equally efficent version secure against a malicious adversary
corrupting less than a third of the players. We also describe a distributed protocol
for generating keys.

Various improvements of Regev’s original cryptosystem have been made since
its first appearence, e.g. in [PVW08] and [MR08]. Our threshold cryptosystem
can be generalized in the same way, but we stick to Regev’s original approach
here for simplicity.

In the final part of the paper we present a zero-knowledge protocol for proving
knowledge of the plaintext contained in a given ciphertext, for Regev’s original
cryptosystem as well as our variant. The proof is much more efficient than what
generic methods would give us: it has size only a constant times the size of the
public key, and the computation required is comparable to what is required to
generate keys. The protocol is based on the construction from [IKOS07] of zero-
knowledge from multiparty computation protocols. Whereas this paradigm has
perhaps been perceived primarily as a theoretical tool, we show here that it can
also be potentially relevant in practice.

2 Preliminaries

When writing x ∈R S we mean that x is chosen uniformly at random from the
set S. Equivalently x ∈χ S means choosing x from the set S according to the
distribution χ. For some distribution χ writing x ∼ χ means that x is distributed
according to χ.

Given a probability distribution χ on Zq, let n be some integer and s ∈ Zn
q .

We define As,χ as the distribution on Zn
q × Zq obtained by choosing a ∈R Zn

q ,
e ∈χ Zq and outputting (a, 〈a, s〉 + e). We define the decisional learning with
errors (LWE) problem as being able to distinguish between a sample from As,χ

and the uniform distribution on Zn
q × Zq with non-negligible probability. We

define the search LWE problem as given a sample from As,χ finding s with
non-negligible probability.

By Ψα we denote a discrete Gaussian distribution on Zq with mean 0 and
standard deviation qα√

2π
. Likewise Ψα is a continuous Gaussian distribution on

T = R/Z with mean 0 and standard deviation α√
2π

. By χ∗k we denote the
distribution given by summing k independent samples from χ.
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3 Cryptosystem

We first present the underlying cryptosystem which was proposed first in [Reg05],
but with a new choice of parameters better suited for the distributed decryption
protocol given later.

Let n be the security parameter of the cryptosystem. Then the main parameter
is an integer q which is chosen as q = 2O(n). More specifically q will not be a
prime but a B-smooth number where B is of polynomial size. That is q =

∏
pi

is a product of prime numbers p1, . . . , pk, where pi < B and also pi > u, the
number of players in the distributed decryption protocol. The latter requirement
on the primes is necessary in order to do secret sharing over the the ring Zq,
more on this later. We also need an integer m which will be chosen to be O(n3).
Finally, we need a distribution χ on Zq which will be taken to be the discrete
Gaussian distribution Ψα, where α = qβ for β = 1/4.

The cryptosystem is now defined as follows:

– Secret key: Choose s ∈R Zn
q . The secret key is then s.

– Public key: Choose m vectors a1, . . . , am ∈R Zn
q , m elements e1, . . . , em ∈χ

Zq. The public key is then given by (ai, bi = 〈ai, s〉 + ei)m
i=1.

– Encryption: Choose a vector r = (r1, . . . , rm) ∈R {0, 1}m. Given a bit γ,
the encryption of γ is given by (

∑m
i=1 riai, γ · � q

2 +
∑m

i=1 ribi).
– Decryption: Given a ciphertext (a, b), calculate b − 〈a, s〉 and determine

whether it is closer to 0, the encrypted bit being 0, or closer to q
2 , the

encrypted bit being 1.

The correctness of the decryption protocol is given by the following theorem.

Theorem 1 (Correctness). If for any k ∈ {0, 1, . . . ,m} it holds that

Pr
e∼χ∗k

(|e| ≥ 3
√
q) ≤ 2−O(n)

then the decryption protocol will give correct output except with negligible prob-
ability.

A similar theorem is proved in [Reg05] for Regev’s original choice of parameters.
The intuition is clear, if the noise added is not too big, we will be able to
decrypt to the right bit. The correctness with the new parameters follows from
the following claim.

Claim (Correctness). For the choice of parameters made, for any k∈{0, 1, . . . ,m},
a constant c ∈ (0, 4) and e ∼ χ∗k it holds that

Pr
e∼χ∗k

(|e| ≥ c
√
q) ≤ 2−O(n)

Proof. We will prove this using the Chebyshev inequality, but first we will reduce
the problem from Ψα to Ψα. Given e ∼ Ψ

∗k

α we have that e =
∑k

i=1�qxi� (mod q),
where xi ∼ Ψα. The value of e is at most k < m < c

√
q/2 away from e′ =∑k

i=1 qxi (mod q), so it is sufficient to prove that |e′| < c
√
q/2 except with
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negligible probability. Since e′ comes from a distribution with standard deviation√
k · 4

√
q and mean 0 we get the following result from Chebyshev’s inequality,

Pr (|e′| ≥ 3
√
q/2) ≤ Pr (|e′| ≥ t ·

√
k 4
√
q) ≤ 1

t2

where m = n3 and t =
c
√

q

2
√

m 4√q
≥ c

√
q

d
√

q 4√q = q1/c · q−1/d · q−1/4, for some constant

d. Now considering 1/t2 we see that this will be negligible if d > − 4c
c−4 . But we

can always choose such a d since c < 4. ��
Note that the inequalities used above are not very tight, especially the Chebyshev
inequality. Therefore in practice one would expect to be able to choose much
better parameters, for instance a bigger standard deviation on the distribution
used. This would in turn give us security reductions to the hardness of somewhat
bigger lattice problem instances. Furthermore the claim is actually stronger than
what is needed for the original decryption protocol to be correct, but we will
need this stronger result in the proofs of the distributed decryption protocols
described below.

The security of the cryptosystem is given by the following theorem.

Theorem 2 (Security). The cryptosystem is semantically secure under the
assumption that GapSVP is hard in the worst case.

Proof. We sketch the ideas of the proof. The proof of security given in [Reg05]
is based on the property that distinguishing between encryptions of 0 and 1 is
at least as hard as distinguishing public keys from randomly chosen elements
in Zn

q × Zq. The latter problem being the decision LWE problem. The proof of
the reduction does not depend heavily on the values of the parameters, and is
therefore still valid with the new choice of parameters.

The decision LWE is then further reduced to search LWE. This reduction in
[Reg05] heavily relies on the fact that q is chosen to be polynomial in that it
does exhaustive search over all elements in Zq. But in fact the same idea can
be used when q is exponential in size, but B-smooth with B polynomial. The
idea being to do the reduction modulo each of the primes pi in q, and recombine
the solutions to a full solution modulo q using the Chinese Remainder Theorem.
This was already observed in [Pei09].

The last step is to reduce search LWE to standard lattice problems. Since q
is chosen to be exponentially large we can use the reduction to GapSVP made
in [Pei09]. ��
This is another advantage of choosing an exponentially large q: With the original
choice of a polynomial q the reductions to lattice problems are either a quantum
reduction as in [Reg05] or a reduction to a special variant of GapSVP, the
hardness of which is not completely understood.

4 Distributed Decryption (Passive Adversaries)

In this section we present a distributed decryption protocol for the above cryp-
tosystem involving u players which is secure against a static, passive adversary
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corrupting up to t = u − 1 players. That is, we assume the adversary is able
to see all messages and internal data of a corrupted player, but the player still
follows the protocol. The adversary must choose which players to corrupt at the
start of the protocol.

We assume that communication is synchronous and that the client has access
to a broadcast channel to all players. Private channels between players are not
necessary since there is no interaction between players in the protocol. We assume
the adversary sees all communication between the client and the players.

We use Shamir secret sharing over Zq as described in [Sha79] to make secret
sharings of various values in the protocol. Normally Shamir secret sharing is done
over a field, but since q is not a prime Zq is only a ring. This turns out not to be
a problem with the choice made of the prime factors in q. The only thing that is
needed is that one can do Lagrange interpolation over the points 1, . . . , u which in
turn boils down to being able to invert elements in this range. We chose q =

∏
pi,

where pi > u, so obviously inversion of the points needed is possible.
We furthermore make use of the concept of pseudorandom secret sharing

(PRSS) described in [CDI05]. PRSS will enable the players to non-interactively
share a common random value from some interval. The idea is as follows. For
each subset A of size t of the players we associate a key KA ∈R Zq. Such a key
is given to player Pj exactly if Pj /∈ A. Assume we are given a pseudorandom
function φ that given a key and a ciphertext as input, will output values in the
interval [−√

q,
√
q]. A player can now compute φKA(c) for all KA he has been

given, and afterwards take an appropriate linear combination of the results.
This will result in all players having a Shamir share of the common random
value x =

∑
A φKA(c). Since |A| = t there are

(
u
t

)
possibilities for A, so x will be

in the interval
[
−
(
u
t

)√
q,
(
u
t

)√
q
]
. We note that

(
u
t

)
= u for our choice of t (but

we will consider other choices later).
The protocol and proofs will be given in the setting of the Universal Compos-

ability (UC) framework proposed by Canetti. For details of this see [Can01].

4.1 Key Generation and Distribution

We assume for now that generation and distribution of keys and key-shares to
players are handled by the functionality FKeyGen.

Functionality FKeyGen

1. When receiving “start” from all honest players, choose the secret key s =
(s1, ..., sn) and construct the public key (ai, bi)m

i=1 as described in section 3.
Furthermore for each subset A of size t of the players, choose key KA ∈R Zq.

2. Receive from the adversary a set of shares si,j , i = 1, . . . , n for each corrupted
player Pj . Then construct using Lagrange interpolation a complete set of
shares si,j , i = 1, . . . , n, j = 1, . . . , u consistent with the shares received from
the adversary, and such that si,1, . . . , si,u form a set of shares of si. We write
[s] as short for the set of all shares. Send privately to each player Pj his
shares from [s] and all keys KA where Pj /∈ A.

3. Finally send the public key to all players and the adversary.
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It may seem strange that this functionality allows the adversary to decide which
shares he wants to get of the secret key – why not let the functionality do the
sharing on its own? However, we need to define the functionality this way to
make sure it can be implemented. The problem is that a simulator trying to
simulate a given protocol will have to make sure that the view of the protocol
it generates for the adversary is consistent with what the functionality says to
the honest players. This is not possible if the functionality decides on all shares
on its own. One could say that what we model here is that we don’t care which
shares the adversary gets, as long as the secret is safe.

4.2 Decryption Protocol

We now describe the decryption protocol. To make things more easily describ-
able we introduce a client, who is the party receiving the ciphertext in the first
place, and who wants to decrypt with help from the players.

Protocol Decrypt

1. Each player sends “start” to FKeyGen and stores the public key, the share of
the secret key and the keys KA received.

2. When receiving a ciphertext c = (a, b), the client broadcasts c to all players.
3. The players compute [e′] = [b − 〈a, s〉] = [e + � q

2 · γ]. Since (a, b) is public
this is a linear operation on s and only requires the players to locally do
the same linear operation on their shares. Then φKA(c) is computed for all
the keys KA the player received and the player takes an appropriate linear
combination of the result to obtain a sharing [x] = [

∑
A φKA(c)]. Finally the

players compute [x + e′], and send all these shares to the client.
4. Having received all the shares of [x+e′] the client reconstructs x+e′, checks

whether it is closer to 0 or to q/2, and outputs 0 or 1 accordingly.

4.3 Security

To prove security we wish to be able to implement the following functionality.

Functionality FKeyGen−and−Decrypt

1. Upon receiving “start” from all honest players, choose the secret key and
construct the public key to be used. Send the public key to all players, the
client and the adversary.

2. Hereafter on receiving “decrypt (a, b)” from the client, send “decrypt (a, b)”
to all players and the adversary.

3. In the next round, send “result γ” to the client and the adversary, where γ
is the bit corresponding to the given ciphertext.

Theorem 3 (Security). When given access to the functionality FKeyGen and
assuming that φ is a pseudo-random function, the protocol Decrypt securely
implements FKeyGen−and−Decrypt. The adversary is assumed to be passive and
static, corrupting up to t = u − 1 of the players.
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Proof. We abbreviate FKeyGen−and−Decrypt by FKG−D in the following. To prove
security we must construct a simulator to work on top of the ideal functionality
FKG−D, such that an adversary playing with either the simulator and ideal func-
tionality or the real world decryption protocol cannot tell in which case he is.
We denote by Adv the adversary communicating with the real decryption pro-
tocol and must show that we can simulate everything Adv sees. The simulation
proceeds as follows.

1. Let B denote the set of players corrupted by Adv. When receiving “start” to
FKeyGen send “start” to FKG−D. Upon receiving the public key, compute a
sharing of 0, the zero-vector in Zn

q , to simulate sharing the secret key. Also
choose the necessary keys KA. Then send to the adversary the public key,
the shares of the secret key corresponding to B, and the keys KA that should
be send to players in B.

2. When receiving “decrypt (a, b)” from FKG−D, the ciphertext is sent to Adv
for each player in B. When “result γ” is received in the next round, we have
to simulate the shares of x + e′ that honest players would send. To play the
role of x, we form a value y as the sum of those φKA(c) where the adversary
knows KA, and one uniformly random value from [−√

q,
√
q] for each KA

that the adversary does not know. The idea is to let y+� q
2 ·γ play the role of

the value x+e+� q
2 ·γ that would be revealed in the real protocol. Note that

from the shares and keys given to the adversary, we can compute the shares
corrupted players would send to the client. Using Lagrange interpolation, we
can compute a polynomial f of degree at most t that is consistent with these
shares and has f(0) = y+ � q

2 ·γ. We use this polynomial to compute shares
for the honest players and give these to the adversary.

The final thing is to prove that no environment is able to distinguish between
the real decryption protocol and the simulation presented above. This basically
comes down to proving that the decryption protocol is able to recover the bit
encrypted and that the distributions of the shares sent to the adversary in both
cases are computationally indistinguishable.

The shares of the secret key in step 1 are distributed in the same way in both
cases beacuse of the security of the underlying secret sharing scheme used. The
keys KA are also obviously distributed identically in the two cases.

Next, note that in both simulation and real protocol, the shares revealed in
the decryption step follow deterministically from the information sent in step 1
and the values y + � q

2 · γ, x + e + � q
2 · γ used in simulation, respectively real

protocol. It is therefore enough to show that these values are computationally
indistinguishable in the view of the adversary. For this, note that in the real
protocol the adversary is not given all keys KA, and so, by pseudorandomness
of φ and construction of y, y + e + � q

2 · γ is computationally indistinguishable
from the x + e + � q

2 · γ in the view of the adversary. Second since y is a sum
including at least one value that is uniform in an interval of size 2

√
q, which is

exponentially larger than the interval [− 3
√
q, 3

√
q] in which e is distributed, we

find that y + � q
2 · γ is statistically indistinguishable from y + e + � q

2 · γ.
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Finally in both the simulated and the real run the client will output the
correctly decrypted value. This is obvious in the simulated case and in the real
world it follows from Lemma 1 below. ��

Lemma 1 (Correctness). Let
(
u
t

)
< 1

4
√
q − 1. Assume that the reconstructed

value in the distributed descryption protocol is given by e + x, and furthermore
that the following is satisfied

Pr [|e| ≥ �√q ] ≤ 2−O(n).

Then the error probability when decrypting is negligible.

Proof. Given an encryption of 0 the result which is reconstructed is given by
b − 〈a, s〉 = e + x =

∑m
i=1 riei + x. Since

(
u
t

)
< 1

4
√
q − 1 according to our

assumption, we have that |x| < q
4 − √

q. Combined with the assumption on |e|
we get that |e + x| < q

4 with probability at least 1 − 2−O(n). In this case the
result is closer to 0 than q

2 and the decryption is correct. A similar proof can be
done for an encryption of 1. ��

The distribution of e is exactly given by χ∗∑ ri , when FKeyGen has been used
to produce the keys, therefore according to the claim of section 3 we know that
|e| < � 3

√
q with probability at least 1 − 2−O(n). And so the assumptions in the

lemma is fulfilled.
We note that the correctness puts an upper bound on the possible number of

players, which is also to be expected, since there is a limit to how much random
noise can be added before an encryption of 0 turns into an encryption of 1.

5 Distributed Decryption for Stronger Adversaries

The protocol for doing distributed decryption against a passive adversary cor-
rupting up to t = u−1 players, can easily be turned into a protocol secure against
a stronger adversary. First, if the adversary is semi-honest, i.e. corrupted players
follow the protocol but may stop at any point, exactly the same protocol will
be secure, if t < u/2. The proof is the same, one just notes that at least t + 1
players will always complete the protocol.

If the adversary is active, again almost the same protocol and proof applies,
if we assume t < u/3. The only significant difference to the protocol is that the
client must use standard methods for error correction to reconstruct x + e′ at
the end of the decryption since some players may lie about their shares. This is
possible exactly when t < u/3.

It should be noted that both variants of the protocol are only feasible to
execute for a small number of players, since the number of keys KA we must give
to each player increases exponentially with u whenever t is a constant fraction of
u. However, in most realistic applications of threshold cryptography, one indeed
expects the number of players to be small.
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6 Distributed Key Generation

In this section we will describe how to do key generation and distribution. In some
of the parts involving interaction between the players, we will have to assume
private communication channels between players. For a passive adversary, key
generation is quite straightforward, so we focus on the more interesting case of
an active, static adversary corrupting less than t = u/3 players.

We will need the following functionality for generating random (shared) val-
ues. It offers a number of commands, and a command is executed if all honest
players input the same command.

Functionality FRand

– On input “Random value to B” for a set of players B, choose s at random
in Zq and send s to all players in B.

– On input “Random shared value”, ask the adversary for a set of shares S =
{sj| Pj is corrupt}. Choose s at random in Zq and use Lagrange interpolation
to construct a set of shares [s] consistent with S, i.e., each corrupt Pj gets
share sj . Send shares from [s] to all honest players.

– On input “Shared value from D”, do the same as for “Random shared value”,
but get s from player D instead of choosing it at random.

– On input “Constrained value from D”, do the same as for “Shared value from
D”, but check that s received from D is in the interval [−2

(
u
t

)
3
√
q, 2
(
u
t

)
3
√
q].

If not, send “fail” to all players. Furthermore, if D is honest, he is assumed
to choose s in the interval [− 3.5

√
q, 3.5

√
q]. The seemingly strange choice of

intervals is dictated by the implementations that are available, see more
details below.

“Shared value from D” can be implemented using any protocol for verifiable
secret sharing. A simulator would simply run the protocol with the adversary
while following the protocol for the honest players (and using a dummy value
for s if D is honest), and then send the shares obtained for corrupt players to
the functionality. “Random shared value” can be done by calling “Shared value
from Pi” for each Pi, asking Pi to supply a random value si, and then locally
adding the resulting shares, thus obtaining [

∑
i si] which we use as [s]. “Random

value to B” is implemented by calling “Random shared value” and then have
players send their shares to all players in B.

Finally, “Constrained value from D” can be implemented using the technique
of non-interactive verifiable secret sharing (NIVSS) described in [CDI05] which
builds on top of PRSS described earlier. In the protocol for doing NIVSS, a set
of keys {KD

A } is assumed to be set up similar as for PRSS, i.e., KD
A is known

to all players not in A. But furthermore player D holds all keys and the value
s to be shared. The keys can be set up by calling “Random value to B”. The
pseudorandom function involved is chosen such that it outputs random values
from the interval [− 3

√
q, 3

√
q]. To generate the shared value, each player locally

computes random shares of a value r as in PRSS, and D can compute r since he
knows all keys. D then broadcasts s− r, and each player adds this value to their
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share in r, thus obtaining [s]. D is disqualified if the value broadcast is not in
the interval [−

(
u
t

)
3
√
q,
(
u
t

)
3
√
q]. This guarantees that s is in the required interval

even if D is corrupt, since r is in the interval [−
(
u
t

)
3
√
q,
(
u
t

)
3
√
q]. If D is honest,

the distribution of s−r is statistically close to uniform in [−
(
u
t

)
3
√
q,
(
u
t

)
3
√
q] since

s is smaller than r by an exponentially large factor.
Given FRand, key generation is for the most part straightforward. The tricky

part, however, is that to generate the noise to be added to the public key, shares
of non-uniformly distributed values are to be generated and distributed. For this
we will invoke “Constrained value from Pj” for each Pj , since we can rely on
honest Pj ’s using the correct distribution, while corrupt Pj ’s cannot choose val-
ues that are large enough to do any damage, as we shall see.

Protocol KeyGeneration
The protocol assumes FRand is available.

1. To generate and distribute the secret key, invoke “Random shared value” n
times to form [s].

2. To generate and distribute the keys KA for PRSS, invoke for each set A of t
players “Random value to B”, where B is the complement of A (we assume
for simplicity that a random value from Zq is sufficient to form a key KA).

3. To generate the public key, invoke “Random value to P” nm times, where
P is the set of all players, and use the output as entries in the vectors ai.

4. Each player Pj chooses noise contributions ei,j , i = 1, . . . ,m according to the
distribution Ψα and uses these as input to invocations of “Constrained value
from Pj”. Note that a correctly chosen ei,j will be in the correct interval
[− 3.5

√
q, 3.5

√
q] except with negligible probability. Thus, we obtain [ei,j ] for

i = 1 . . .u, j = 1, . . . ,m, and players compute by local operations [ei] =
[
∑

j ei,j].
5. Finally the players can compute by local operations [bi] = [ai · s + ei], and

reconstruct the bi’s by broadcasting the shares.

6.1 Security

For proving security one could show that the protocol KeyGeneration securely
implements the functionality FKeyGen defined in section 4.1. This functionality
however does not reflect the influence an active adversary will have on the pub-
lic key when using the protocol above. We therefore define a slightly different
functionality FKeyGen′ and use this in the security proof instead. In the end of
this section we will then show that the differences in the two functionalities does
not matter in terms of correctness and security.

The main difference from FKeyGen is that we will have the adversary supply
additional inputs before constructing and distributing keys. More specifically the
adversary will supply the functionality with noise contributions used in gener-
ating the public key.
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Functionality FKeyGen′

1. When receiving “start” from all honest players, also receive from the adver-
sary, for each corrupted player Pj shares si,j , i = 1, . . . , n of the secret key
to assign to Pj .

2. Choose the secret key s and for each subset A of size t of the players choose
keys KA ∈R Zq.

3. For each entry i in the secret key make a complete set of shares si,j , i =
1, . . . , n, j = 1, . . . , u for each player consistent with the shares already re-
ceived from the adversary. This is done by Lagrange interpolation. To each
player Pj privately send his shares from [s] and all keys KA where Pj /∈ A.

4. For each corrupted player Pj receive noise contributions ei,j , i = 1, . . . ,m for
generating the public key.

5. To generate the public key choose the m vectors a1, . . . , am ∈R Zn
q . For

each non-corrupted player Pj choose noise contributions ei,j according to
the distribution Ψα, the noise elements ei are now given by ei =

∑u
j=1 ei,j .

The public key is then given by (ai, bi = 〈ai, s〉 + ei)m
i=1.

6. Finally send the public key to all players and the adversary.

Theorem 4. Given access to FRand, the protocol KeyGeneration securely im-
plements the functionality FKeyGen′ . The adversary is assumed to be active and
static, corrupting less than t = u/3 of the players.

Proof. We must construct a simulator to work on top of FKeyGen′ , such that
an adversary playing with either the simulator and FKeyGen′ or the real world
key generation protocol cannot tell the difference. By Adv we denote the adver-
sary communicating with the real world and must show that we can simulate
everything Adv sees. The simulation proceeds as follows.

1. When receiving the set of shares S from Adv in order to invoke “Random
shared value”, send “start” to FKeyGen′ and the shares received from Adv.

2. To simulate the generation of the public key, first choose nm random values
and send them to all players to simulate running “Random value to P”.

3. When receiving the noise contributions ei,j from Adv, also give these to
FKeyGen′ . Now we must simulate sharing all the noise contributions in the
real protocol from the invocation of “Constrained value from Pj”. Again
receive the shares that corrupted players will be given from Adv, and for the
rest simply choose random shares.

4. Finally when given the public key (ai, bi = 〈ai, s〉 + ei)m
i=1 from FKeyGen we

must simulate the broadcast of shares of the bi’s in the real protocol. First
compute the shares the corrupted players are holding, based on the shares
provided by the adversary during the simulation. Then broadcast shares of
the bi’s consistent with the shares of the corrupted players. These can be
computed using Lagrange interpolation.

It should be fairly clear from the above steps, that an adversary will not be able
to distinguish communicating with the real protocol and the functionality with
simulator. Everything that is send back and forth, the secret key shares, public
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key shares, KA keys and intermediate shares are distributed exactly the same
and in the same order. ��

We must also prove that security is still maintained in the original cryptosys-
tem, and furthermore that correctness and security is maintained in the dis-
tributed decryption protocol “Decrypt”. We abbreviate FKeyGen′−and−Decrypt

by FKG′−D in the following. By the functionality FKG′−D we denote the func-
tionality FKG−D using FKeyGen′ instead of FKeyGen.

Theorem 5. Assume we use FKeyGen′ to generate a key pair pk, sk and the
number of players u satisfies u

(
u
t

)
< 10

√
q/(2m). If GapSVP is hard in the worst

case, encryption under pk is semantically secure against any polynomial time ad-
versary who gets to interact with FKeyGen′ during key generation. Moreover, the
protocol Decrypt securely implements the slightly modified functionality FKG′−D

when given access to FKeyGen′ , in particular, decryption under sk produces the
correct plaintext except with negligible probability.

Proof. For semantic security note that by previous arguments solving decision
LWE is at least as hard as solving GapSVP. First note that a ciphertext is made
out of the public key (ai, bi = 〈ai, s〉 + ei)m

i=1, especially if the bi’s are random,
ciphertexts contain no information on the plaintext. What we then show is, that
if an adversary is able to distinguish a public key generated by FKeyGen′ from
a sample from the uniform distribution on Zn

q × Zq, then we could use such an
adversary to solve decision LWE. Now given an instance I of LWE pretend to
run the FKeyGen′ functionality with the adversary. Get the noise contributions
from the adversary and add them to the LWE instance I. Return the instance
as the public key to the adversary and output exactly what he outputs. If I
contains uniform values so will the “public key” given to the adversary, if I is
taken from As,χ then our output given to the adversary exactly matches the
output of the real FKeyGen′ .

We will now argue that decryption is still correct except with negligible prob-
ability. Let e + x be the reconstructed value after running the decryption pro-
tocol, we will then look at e. First note that the noise contributed by honest
players is much smaller than that by corrupted players. We will look at the
worst case where the public key is made entirely by corrupted players. We have
e =

∑m
i=1 riei =

∑m
i=1
∑u

j=1 riei,j , where each ei,j has potential size 2
(
u
t

)
3
√
q.

This leads to a worst case with |e| = 2um
(
u
t

)
3
√
q. According to Lemma 1 decryp-

tion will be correct if the probability that |e| ≥ √
q is negligible. Therefore we

get that decryption is correct if the equality u
(
u
t

)
< 6

√
q/(2m) is fulfilled.

Finally we argue that we can still simulate the execution of the protocol
Decrypt now using the slightly modified FKG′−D. The proof is essentially the
same as the proof of Theorem 3, the only difference is that we should argue that
the interval from which e is taken is still exponentially much smaller than the
interval [−√

q,
√
q] from which x is taken. Following the argument from above

we see that if we further limit the number of players, this can still be satisfied.
Assume for instance that we limit e to the interval [− 2.5

√
q, 2.5

√
q], this gives the

requirement that the inequality u
(
u
t

)
< 10

√
q/(2m) should be fulfilled. ��
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7 Zero-Knowledge Proof of Plaintext Knowledge

In this section, we consider Regev’s original cryptosystem, where the random
choices and plaintext are binary and q is a prime. All arithmetic in this section
is modulo q. In the appendix we describe a slightly more complicated scheme
that works for our variant

We define the relation RRegev as the set of pairs {x,w} such that x =
((ai, bi)m

i=1, (a, b)), and w = (r1, . . . , rm, γ) such that (a, b) = (
∑m

i=1 riai, γ ·
� q

2 +
∑m

i=1 ribi). The language LRegev will be the set of x for which there exist
w with (x,w) ∈ RRegev . Our goal is to build a zero-knowledge interactive proof
for LRegev which is also a proof of knowledge for RRegev . In other words, the
prover demonstrates that the ciphertext is well-formed and that he knows the
plaintext and random coins that were used to form it.

We will use the technique from [IKOS07] where it was shown how to construct
zero-knowledge proofs from multiparty computation protocols. We briefly sketch
the idea: Assume we have a multiparty computation protocol π for input client I,
players P1, . . . , Pu and output client O, where I gets the prover’s secret witness
as input, shares it among the players, who then carry out a secure computation
that verifies whether the witness is valid with respect to the public common
input. The players send their results to O who outputs 1 or 0 accordingly. The
protocol must be secure against a malicious adversary corrupting the clients
and/or up to t of the other players. The prover now emulates π “in his head”
and commits to the views of all players. Here, a view consists of the inputs
and random coins of the player, and all received messages. The verifier selects
a random subset of players among those that π can tolerate as corrupted sets1.
The prover must open the corresponding commitments and the verifier checks
that these views are consistent with each other and with the protocol and accepts
or rejects accordingly.

The intuition is that the protocol is zero-knowlegde since π is secure even
if the set chosen by the verifier is corrupted, and hence no information on the
secret witness is released. The protocol is sound since if the witness is invalid,
the prover must introduce some inconsistency to make it seem that π accepts
the witness.

Indeed, it is shown in [IKOS07] that if π implements the function that checks
the witness with perfect sercurity and if both u and t are θ(n), then the re-
sulting two-party protocol has soundness error 2−Ω(n). It is honest verifier zero-
knowledge, and can be made zero-knowledge in general, e.g., by generating the
verifier’s choice of subset to corrupt via a suitable coinflip protocol.

We make a couple of observations that are helpful in constructing a protocol
π for our purposes: first, while broadcast is usually considered an expensive
resource, it is virtually for free in this setting - any information π would broadcast
can just be sent to the verifier immediately, as he would see it anyway no matter
what subset is chosen. This was already noted in [IKOS07]. Second, π does

1 The protocol must be secure against a corrupt I , but the verifier is of course not
allowed to “open” I .
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not have to guarantee termination, in the following sense: suppose all players
broadcast some message in some round of π, and then all honest players decide
(using the same procedure) whether to abort or continue. Suppose further that
if all players have behaved honestly so far, we will never abort, and that further
π has perfect correctness and privacy conditioned on the event that we do not
abort. In this case, we can simply ask the verifier to reject if the prover sends
a set of broadcast messages that would cause an abort. This will not hurt the
honest prover, but will force a cheating prover to claim that he lets the virtual
players behave such that π terminates.

In view of the above, all we have to do is to build an efficient protocol π that
checks r1, . . . , rm, γ against (ai, bi)m

i=1 and (a, b). In order to do this, we need
to borrow two tools from the design of efficient multiparty protocols, namely
Packed Secret-Sharing[FY92] and Hyper-Invertible Matrices[BTH08], which we
describe below.

7.1 Packed Secret Sharing

Packed Secret-Sharing is a generalization of standard Shamir sharing where se-
cret values are assigned to more than one interpolation point. In other words, the
secret to share is in fact a vector (x1, . . . , x�) ∈ Zl

q. To do the sharing, we con-
struct a random polynomial f of degree at most d, such that f(0) = x1, f(−1) =
x2, . . . , f(−� + 1) = x�. The shares are, as usual, f(1), . . . , f(u). To make this
possible, and to guarantee privacy against t corrupted players, d must be at least
t+ �−1. In our case, we will choose � = n+1, and t to be θ(n). Furthermore, we
will need that there are sufficiently many honest players such that their shares
alone can determine a polynomial of degree 2d, i.e., u − t ≥ 2(t + n + 1). This
shows that we can indeed choose u to be θ(n), as promised above.

Note that to ensure that we have enough distinct evaluation points, we need
that if q is a prime, it must be larger than �+ u = n+ 1 + u which is θ(n) or, in
our construction of q for the threshold scheme, the smallest prime factor must
be larger than � + u. This is already satisfied by the schemes as they stand.

We will write [z]d for a set of shares determining a packed sharing of the block
z using a polynomial of degree d.

Note that if players locally add respectively multiply their shares of blocks
z, z’, this results in shares in the coordinate-wise sum respectively product, i.e.,
we have [z]d + [z’]d = [z+z’]d, and [z]d ∗ [z’]d = [z ∗ z’]2d, where ∗ denotes the
coordinate-wise product.

7.2 Hyper-invertible Matrices

A hyper-invertible matrix M (with entries in Zq) has the property that any
square submatrix of M is invertible. Such matrices can be constructed from Van
der Monde matrices and were used in [BTH08] to check consistency of secret
sharings with zero error probability. We briefly explain how this works:

Suppose M is a matrix with u rows and u − t columns. Suppose the players
hold u − t sets of shares [z1], . . . , [zu−t], and we want to check that each set
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of shares is consistent with a polynomial of degree at most e. The players can
locally compute u new sets of shares,

[M(z1, . . . , zu−t)1], . . . , [M(z1, . . . , zu−t)u] := [y1], . . . , [yu],

simply by multiplying M on the vector of u − t shares that they hold (thinking
of the shares as a column vector). Assume now that for i = 1, . . . , u, each player
sends his share in [yi] to Pi. This allows Pi to check that the shares he receives
are e-consistent, i.e., on a polynomial of degree at most e. Pi can now broadcast
whether his check was OK or not.

We can see that if all players are happy, it means in particular that all honest
players are happy, and that they therefore agree with all honest players on the
set of u− t e-consistent shares that they checked. I.e., {[yj ]}j∈H , where H is the
set of honest players, are all e-consistent. Let MH be the matrix we get from M
by only taking the rows corresponding to players in H . This matrix is invertible
by assumption on M , so we can obtain [z1], . . . , [zu−t] as a linear function defined
by M−1

H of the the shares in {[yj ]}j∈H , and hence the [zi]’s are all e-consistent
as well.

Furthermore, if it is important that the shared information is kept secret, one
can arrange the input shares such that only [z1], . . . , [zu−2t] contains informa-
tion we want to protect, while [zu−2t+1], . . . , [zu−t] are chosen randomly using
polynomials of degree at most e. These t random sets of shares will randomize
the t sets of shares seen by corrupt players, again by hyper-invertibility of M .
This also means that we do not need, for instance, [z1] to be a random sharing
of z1 to be able to hide it.

Note also that this method can be used to also check if z1, . . . , zu−t all satisfy
some fixed condition, as long as what the condition asks is that each zi satisfies
some linear equation. For instance, we might want to check that zi = (0, . . . , 0)
for all i. This is done by having players verify that all yi satisfy the same con-
dition.

Regarding the complexity, it is easy to see that a set of shares of total size
T bits can be verified while keeping the shared information perfectly private by
sending O(T ) bits and creating random shares of size O(T ) bits.

7.3 The Multiparty Protocol

Recall that the secret witness to be checked consists of binary values r1, . . . , rm, γ
where (a, b) = (

∑m
i=1 riai, γ·� q

2 +
∑m

i=1 ribi), and where the public information is
public key (ai, bi)m

i=1 and ciphertext (a, b). For any z ∈ Zq, we set z = (z, z, ..., z),
a vector of length n + 1. The protocol works as follows:

Protocol VerifyCiphertext

1. The input client I sends shares [ri]d, i = 1, . . . ,m and [γ]d to the players. In
addition, it also sends random shares as required for the verifications below
using the hyper-invertible matrix M .
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2. Verify that [r1]d, . . . , [rm]d, [γ]d are d-consistent and that in each block
shared, all n + 1 entries are equal. If any player broadcasts “not OK”, the
protocol aborts.

3. Compute, using local multiplications, [ri(1 − ri)]2d for i = 1, . . . ,m and
[γ(1 − γ)]2d.

4. Form sharings of the public vectors: [(ai, bi)]d, i = 1, . . . ,m, [(0, . . . , 0, � q
2 )]d,

and [(a, b)]d (using some default choice of polynomial of degree at most d).
We then emulate the encryption on the shared values: compute, using local
computation,

[
m∑

i=1

ri ∗ (ai, bi)]2d + [(0, . . . , 0, � q
2
 ) ∗ γ]2d = [(

m∑
i=1

riai,
m∑

i=1

ribi + γ� q
2
 )]2d

From this, we locally subtract shares of the ciphertext [(a, b)]d, so we get

[(
m∑

i=1

riai − a,
m∑

i=1

ribi + γ� q
2
 ) − b]2d := [(z, v)]2d

5. Verify that [r1(1 − r1)]2d, . . . , [rm(1 − rm)]2d, [γ(1 − γ)]2d and [(z, v)]2d are
indeed 2d-consistent sharings of all-zero blocks. If any player broadcasts “not
OK”, the protocol aborts. This ensures that the ri’s and γ are binary, and
that encryption results in the claimed ciphertext.

Since the verifications of shares work with zero error probability, it is clear that
if the protocol terminates successfully, we are guaranteed that the shared values
determine the correct ciphertext. No information on the secret is released, since
the only communication is what is required for the verification of sharings, and
we already argued above that these release no information on the shared values
that we verify.

Regarding complexity, it is clear from inspection of the protocol that it is
completely determined by the total size T of the sharings [ri]d, i = 1, . . . ,m and
[γ]d, in particular, the total size of communication is O(T ). We have that T is
O(mu log q) which is O(mn log q). Note that the size of the public key is also
O(mn log q).

It is described in [IKOS07] how to transform this protocol into a zero-
knowledge proof using an unconditionally binding commitment scheme. If this
scheme allows us to commit to strings with an additive length increase that is
independent of the string length, we can preserve the efficiency of the multiparty
protocol. An unconditionally hiding commitment scheme is also needed, for the
verifier to commit to his challenge. This gives us:

Theorem 6. Given an unconditionally binding and an unconditionally hiding
commitment scheme with constant additive overhead, using protocol VerifyCi-
phertext in the construction from [IKOS07] produces a two-party zero-knowledge
proof for LRegev . The protocol has communication complexity O(mn log q) bits
and error probability 2−Ω(n).
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We can base the commitment schemes needed on lattice problems, thus us-
ing assumptions we would need anyway. An efficient unconditionally binding
scheme follows from the cryptosystem in[PVW08], while an unconditionally hid-
ing scheme can be based on any collision intractable hash function [DPP98],
which in turn can be based on lattice assumptions.

In [IKOS07], it was not shown that their construction is a proof of knowl-
edge for RRegev . However, for the honest verifier zero-knowledge version of the
protocol, one can do a rewinding argument to show that it is indeed a proof of
knowledge with negligible knowledge error. If we go to the version that is zero-
knowledge in general, things are different, since the construction from [IKOS07]
has the verifier commit to his challenges, which means rewinding the prover is
not possible unless the extractor can equivocate these commitments.

However, in the common reference string model, we can easily make the proto-
col be a proof of knowledge for RRegev , by having a public key for a commitment
scheme placed in the reference string, e.g., a public key for the cryptosystem from
[PVW08], and the prover uses these for committing to the views. If the extractor
knows the corresponding secret key, it can extract all committed views without
rewinding and easily compute the secret.
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A Zero-Knowledge Proof When q Is Not Prime

The only part of the multiparty protocol underlying our zero-knowledge proof
that does not work when q is not a prime is the step where it is verified that
the ri are binary, essentially by verifying that ri(1 − ri) mod q = 0. Of course,
this check is not good if q is not prime. We sketch a procedure that can be used
instead, but has only statistical security:

The input client I supplies [ri]d and it is checked as in the original protocol
that a block has been shared where all entries are equal. Note that if the sharing
was correctly formed, it would be the case that r′ = 2ri − (1, . . . , 1) would be
(1, . . . , 1) or (−1, . . . ,−1). I also supplies a sharing [z]d = [(z1, . . . , zn+1]d such
that all zi are randomly chosen to be 1 or −1. Finally, a public random challenge
is generated: v = (v1, . . . , vn+1), where each vi is 0 or 1. (When transforming this
to a 2-party protocol, we let the verifier generate the challenge). We compute
(locally)

[r′ ∗ z ∗ v + z ∗ (1 − v)]3d.

Finally we add a random degree 3d-sharing of the all-zero block and open the
result. The opened block must contain only 1’s and −1’s. Put another way, the
opening shows us, in each coordinate position, an entry from z or from r′ ∗z and
they must all be ±1.

For privacy, the intuition is that by random choice of z, r′∗z has no information
on r′ and neither does z, so seeing, for each index i, the i’th entry of r′ ∗ z or z
reveals nothing on r′.

For correctness, if there is just a single position in which both z and r′ ∗ z
are ±1, r′ will be ±1 in that position too, and this implies that the original ri

was 0 or 1. On the other hand, if no such position exists, the honest players will
accept [ri] with probability only 2−n−1, by the assumed randomness of v.
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Abstract. Hierarchical secret sharing is among the most natural gen-
eralizations of threshold secret sharing, and it has attracted a lot of
attention from the invention of secret sharing until nowadays. Several
constructions of ideal hierarchical secret sharing schemes have been pro-
posed, but it was not known what access structures admit such a scheme.
We solve this problem by providing a natural definition for the family of
the hierarchical access structures and, more importantly, by presenting
a complete characterization of the ideal hierarchical access structures,
that is, the ones admitting an ideal secret sharing scheme. Our charac-
terization deals with the properties of the hierarchically minimal sets of
the access structure, which are the minimal qualified sets whose partic-
ipants are in the lowest possible levels in the hierarchy. By using our
characterization, it can be efficiently checked whether any given hierar-
chical access structure that is defined by its hierarchically minimal sets
is ideal. We use the well known connection between ideal secret sharing
and matroids and, in particular, the fact that every ideal access structure
is a matroid port. In addition, we use recent results on ideal multipar-
tite access structures and the connection between multipartite matroids
and integer polymatroids. We prove that every ideal hierarchical access
structure is the port of a representable matroid and, more specifically, we
prove that every ideal structure in this family admits ideal linear secret
sharing schemes over fields of all characteristics. In addition, methods
to construct such ideal schemes can be derived from the results in this
paper and the aforementioned ones on ideal multipartite secret sharing.
Finally, we use our results to find a new proof for the characterization of
the ideal weighted threshold access structures that is simpler than the
existing one.

Keywords: Secret sharing, Ideal secret sharing schemes, Hierarchical
secret sharing, Weighted threshold secret sharing, Multipartite secret
sharing, Multipartite matroids, Integer polymatroids.

1 Introduction

A secret sharing scheme is a method to distribute shares of a secret value among
a set of participants . Only the qualified subsets of participants can recover the
secret value from their shares, while the unqualified subsets do not obtain any in-
formation about the secret value. The qualified subsets form the access structure
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of the scheme, which is a monotone increasing family of subsets of participants.
Only unconditionally secure perfect secret sharing schemes are considered in this
paper.

Secret sharing was independently introduced by Shamir [32] and Blakley [4] in
1979. They presented two different methods to construct secret sharing schemes
for threshold access structures , whose qualified subsets are those with at least
some given number of participants. These schemes are ideal , that is, the length
of every share is the same as the length of the secret, which is the best possible
situation [14].

There exist scenarios in which non-threshold secret sharing schemes are re-
quired because, for instance, some participants should be more powerful than
others. The first attempt to overcome the limitation of threshold access struc-
tures was made by Shamir in his seminal work [32] by proposing a simple modi-
fication of the threshold scheme. Namely, every participant receives as its share
a certain number of shares from a threshold scheme, according to its position in
the hierarchy. In this way a scheme for a weighted threshold access structure is
obtained. That is, every participant has a weight (a positive integer) and a set
is qualified if and only if its weight sum is at least a given threshold. This new
scheme is not ideal because the shares are in general larger than the secret.

Every access structure admits a secret sharing scheme [3,13], but in general the
shares must be larger than the secret [7,9]. Very little is known about the optimal
length of the shares in secret sharing schemes for general access structures, and
there is a wide gap between the best known general lower and upper bounds.

Because of the difficulty (presumably, impossibility) of finding efficient secret
sharing schemes for general access structures, the construction of ideal secret
sharing schemes for families of access structures with interesting properties for
the applications of secret sharing is worth considering. This line of work was
initiated by Simmons [33], who proposed two families of access structures, the
multilevel and the compartmented ones, and conjectured them to admit ideal
secret sharing schemes. The multilevel and compartmented access structures are
multipartite, which means that the participants are divided into several parts
(levels or compartments) and all participants in the same part play an equivalent
role in the structure. In addition, in a multilevel access structure, the participants
are hierarchically ordered, and the participants in higher levels are more powerful
than the ones in lower levels. Multipartite and, in particular, hierarchical secret
sharing are the most natural generalization of threshold secret sharing.

Brickell [5] proposed a general method, based on linear algebra, to construct
ideal secret sharing schemes for access structures that are not necessarily thresh-
old, and he applied it to the construction of particular ideal secret sharing
schemes proving the conjecture by Simmons. By using different kinds of polyno-
mial interpolation, Tassa [35], and Tassa and Dyn [36] proposed constructions
of ideal secret sharing schemes for several families of multipartite access struc-
tures, some of them with hierarchical properties. These constructions are based
on the general linear algebra method by Brickell [5], but they provide schemes for
the multilevel and compartmented access structures that are simpler and more
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efficient than the particular ones proposed in [5] for those structures. Other
constructions of ideal multipartite secret sharing schemes have been presented
in [11,26].

In spite of all those constructions of ideal hierarchical secret sharing schemes,
it was not known what access structures admit such a scheme. This natural
question, which is solved in this paper, is related to the more general problem of
determining what access structures admit an ideal secret sharing scheme, that
is, the characterization of the ideal access structures. This is a very important
and long-standing open problem in secret sharing. Brickell and Davenport [6]
proved that every ideal secret sharing scheme defines a matroid. Actually, this
matroid is univocally determined by the access structure of the scheme. This
implies a necessary condition for an access structure to be ideal. Namely, every
ideal access structure is a matroid port . A sufficient condition is obtained from
the method to construct ideal secret sharing schemes by Brickell [5]: the ports of
representable matroids are ideal access structures. The results in [6] have been
generalized in [16] by proving that, if all shares in a secret sharing scheme are
shorter than 3/2 times the secret value, then its access structure is a matroid
port. At this point, the remaining open question about the characterization of
ideal access structures is determining the matroids that can be defined from ideal
secret sharing schemes. Some important results, ideas and techniques to solve
this question have been given by Matúš [20,21].

In addition to the search of general results, several authors studied this open
problem for particular families of access structures. Some of them deal with fam-
ilies of multipartite access structures. Beimel, Tassa and Weinreb [1] presented
a characterization of the ideal weighted threshold access structures that gen-
eralizes the partial results in [22,29]. Another important result about weighted
threshold access structures have been obtained recently by Beimel and Wein-
reb [2]. They prove that all such access structures admit secret sharing schemes
in which the size of the shares is quasi-polynomial in the number of users. A com-
plete characterization of the ideal bipartite access structures was given in [29],
and related results were given independently in [25,27]. Partial results on the
characterization of the ideal tripartite access structures appeared in [8,11], and
this question was solved in [10]. In every one of these families, all matroid ports
are ports of representable matroids, and hence, all ideal access structures are
vector space access structures , that is, they admit an ideal linear secret sharing
scheme constructed by the method proposed by Brickell [5].

The characterization of the ideal tripartite access structures in [10] was ob-
tained actually from the much more general results about ideal multipartite
access structures in that paper. Pointing out the close connection between mul-
tipartite matroids and integer polymatroids, specially the characterization of
this combinatorial object given by Herzog and Hibi [12], and the use for the
first time in secret sharing of these concepts are among the main contributions
in [10]. The basic definitions and facts about integer polymatroids and the main
results in [10] are recalled in Section 4.
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This paper deals with the two lines of work in secret sharing that have been
discussed previously: first, the construction of ideal secret sharing schemes for
useful classes of access structures, in particular the ones with hierarchical prop-
erties, and second, the characterization of ideal access structures. In this paper
we solve a question that is interesting for both lines of research. Namely, what
hierarchical access structures admit an ideal secret sharing scheme?

First of all, we formalize the concept of hierarchical access structure by in-
troducing in Section 3 a natural definition for it. Basically, if a participant in a
qualified subset is substituted by a hierarchically superior participant, the new
subset must be still qualified. An access structure is hierarchical if, for any two
given participants, one of them is hierarchically superior to the other. Accord-
ing to this definition, the family of the hierarchical access structures contains
the multilevel access structures [5,33], the hierarchical threshold access struc-
tures studied by Tassa [35] and by Tassa and Dyn [36], and also the weighted
threshold access structures that were first considered by Shamir [32] and studied
in [1,2,22,29]. Duality and minors of access structures are fundamental concepts
in secret sharing, as they are in matroid theory. Several important classes of ac-
cess structures are closed by duality and minors, as for instance, matroid ports or
K -vector space access structures. Similarly to multipartite and weighted thresh-
old access structures, the family of the hierarchical access structures is closed by
duality and minors. This is discussed in Section 3.

Our main result is Theorem 16, which provides a complete characterization
of the ideal hierarchical access structures. In particular, we prove that all hier-
archical matroid ports are ports of representable matroids. By combining this
with the results in [16], we obtain the following theorem.

Theorem 1. Let Γ be a hierarchical access structure. The following properties
are equivalent:

1. Γ admits a vector space secret sharing scheme over every large enough finite
field.

2. Γ is ideal.
3. Γ admits a secret sharing scheme in which the length of every share is less

than 3/2 times the length of the secret value.
4. Γ is a matroid port.

This generalizes the analogous statement that holds for weighted threshold access
structures as a consequence of the results in [1,16]. Actually, as an application
of our results, we present in Section 8 a new proof of the characterization of the
ideal weighted threshold access structures that simplifies the complicated proof
given by Beimel, Tassa and Weinreb [1].

Our starting point is the observation that every hierarchical access structure
is determined by its hierarchically minimal sets, which are the minimal qualified
sets that become unqualified if any participant is replaced by another one in a
lower level in the hierarchy. Our results strongly rely on the connection between
matroids and ideal secret sharing schemes discovered by Brickell and Daven-
port [6]. Moreover, since hierarchical access structures are in particular multi-
partite, the results and techniques in [10] about the characterization of ideal
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multipartite access structures, which are recalled in Section 4, are extremely
useful. In particular, integer polymatroids play a fundamental role. Another im-
portant tool is the geometric representation introduced in [10,29] for multipartite
access structures, which is adapted in Section 3 to the hierarchical case by in-
troducing the hierarchically minimal points (or h-minimal points for short) that
represent the hierarchically minimal sets. Our characterization of the ideal hier-
archical access structures is given in terms of some properties of the h-minimal
points that can be efficiently checked. By using our results, given a hierarchical
access structure that is described by its h-minimal points, one can efficiently
determine whether it is ideal or not. If the access structure is described by its
minimal qualified subsets, it is easy to determine the h-minimal points. If the ac-
cess structure is described in another way, one has to find the h-minimal points,
but this can be done efficiently most of the times. This is the case, for instance,
of weighted threshold access structures that are determined by the weights and
the threshold. Moreover, by combining the results in this paper with the ones
on ideal multipartite secret sharing in [10], a method to construct an ideal linear
secret sharing scheme for every given ideal hierarchical access structure can be
obtained. A more detailed study of this method and the analysis of its efficiency
is deferred to future work.

2 Ideal Secret Sharing Schemes and Matroids

We recall in this section some facts about the connection between ideal secret
sharing schemes and matroids that is derived from the results by Brickell [5] and
by Brickell and Davenport [6]. See [16], for instance, for more information on
these topics.

We begin by presenting the method by Brickell [5] to construct ideal secret
sharing schemes as described by Massey [18,19] in terms of linear codes. Let
C be an [n + 1, k]-linear code over a finite field K and let M be a generator
matrix of C, that is, a k × (n + 1) matrix over K whose rows span C. Such
a code defines an ideal secret sharing scheme on a set P = {p1, . . . , pn} of
participants. Specifically, every random choice of a codeword (s0, s1, . . . , sn) ∈ C
corresponds to a distribution of shares for the secret value s0 ∈ K, in which
si ∈ K is the share of the participant pi. Such an ideal scheme is called a K-
vector space secret sharing scheme and its access structures is called a K-vector
space access structure. It is easy to check that a set A ⊆ P is in the access
structure Γ of this scheme if and only if the column of M with index 0 is a
linear combination of the columns whose indices correspond to the players in A.
Therefore, if Q = P ∪ {p0} and M is the representable matroid with ground set
Q and rank function r that is defined by the columns of the matrix M , then
Γ = Γp0(M) = {A ⊆ P : r(A ∪ {p0}) = r(A)}. That is, Γ is the port of the
matroid M at the point p0. Consequently, a sufficient condition for an access
structure to be ideal is obtained. Namely, the ports of representable matroids
are ideal access structures. Actually, they coincide with the vector space access
structures.
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As a consequence the results by Brickell and Davenport [6], this sufficient
condition is not very far from being necessary. Specifically, they proved that
every ideal access structure is a matroid port.

With a slightly different definition, matroid ports were introduced in 1964
by Lehman [15] to solve the Shannon switching game, much before secret shar-
ing was invented by Shamir [32] and Blakley [4] in 1979. A forbidden minor
characterization of matroid ports was given by Seymour [31]. Even though the
results in [5,6] deal with matroid ports, this terminology was not used in those
and many other subsequent works on secret sharing. The old results on ma-
troid ports in [15,31] were rediscovered for secret sharing by Mart́ı-Farré and
Padró [16], who used them to generalize the result by Brickell and Davenport by
proving that, if all shares in a secret sharing scheme are shorter than 3/2 times
the secret, then its access structure is a matroid port.

3 Hierarchical Access Structures

We present here a natural definition for the family of the hierarchical access
structures , which embraces all possible situations in which there is a hierarchy on
the set of participants. For instance, the weighted threshold access structures and
the hierarchical threshold access structures [35] are contained in this new family.
Hierarchical access structures are in particular multipartite. Therefore, we can
take advantage of the results and techniques in [10] about the characterization of
ideal multipartite access structures. Moreover, the geometric representation for
multipartite access structures that was introduced in [10,29] will be very useful as
well for our purposes. This representation is adapted here to hierarchical access
structures by introducing the hierarchically minimal points.

Let Γ be an access structure on a set P of participants. We say that the
participant p ∈ P is hierarchically superior to the participant q ∈ P , and we
write q & p, if A ∪ {p} ∈ Γ for every subset A ⊆ P � {p, q} with A ∪ {q} ∈ Γ .
An access structure is said to be hierarchical if all participants are hierarchically
related, that is, for every pair of participants p, q ∈ P , either q & p or p & q. If
p & q and q & p, we say that these two participants are hierarchically equivalent .
Clearly, this is an equivalence relation, and the hierarchical relation & induces
an order on the set of the equivalence classes. Observe that an access structure
is hierarchical if and only if this is a total order.

For a set P , a sequence Π = (P1, . . . , Pm) of subsets of P is called here a
partition of P if P = P1 ∪· · ·∪Pm and Pi ∩Pj = ∅ whenever i �= j. Observe that
some of the parts may be empty. An access structure Γ is said to be Π-partite
if every pair of participants in the same part Pi are hierarchically equivalent. A
different but equivalent definition for this concept is given in [10]. If m is the
number of parts in Π , such structures are called m-partite access structures. The
participants that are not in any minimal qualified subset are called redundant .
An m-partite access structure is said to be strictly m-partite if there are no
redundant participants, all parts are nonempty, and participants in different
parts are not hierarchically equivalent.
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A Π-partite access structure is said to be Π-hierarchical if q & p for every
pair of participants p ∈ Pi and q ∈ Pj with i < j. That is, the participants in
the first level are hierarchically superior to those in the second level and so on.
Obviously, an access structure is hierarchical if and only if it is Π-hierarchical
for some partition Π of the set of participants. The term m-hierarchical access
structure applies to every Π-hierarchical access structure with |Π | = m.

Some notation is needed to recall the geometric representation of multipartite
access structures introduced in [10,29]. This notation will be used as well to
present in Section 4 the basic facts about integer polymatroids and, because
of that, all through the paper. Consider a finite set J . For every two points
u = (ui)i∈J and v = (vi)i∈J in ZJ , we write u ≤ v if ui ≤ vi for every i ∈ J .
The point w = u ∨ v is defined by wi = max{ui, vi} for every i ∈ J . The
modulus of a point u ∈ ZJ is |u| =

∑
i∈J ui. For every subset X ⊆ J , we notate

u(X) = (ui)i∈X ∈ ZX and |u(X)| =
∑

i∈X ui. We notate Z+ and Z− for the
sets of the non-negative and the non-positive integers, respectively.

For each partition Π = (P1, . . . , Pm) of the set P , we consider a mapping
Π : P(P ) → Zm

+ defined by Π(A) = (|A ∩ P1|, . . . , |A ∩ Pm|) ∈ Zm
+ . We write

p = Π(P ) = (|P1|, . . . , |Pm|) and P = Π(P(P )) = {u ∈ Zm
+ : u ≤ p}. For a

Π-partite access structure Γ ⊆ P(P ), consider Π(Γ ) = {Π(A) : A ∈ Γ} ⊆ P.
Observe that A ∈ Γ if and only if Π(A) ∈ Π(Γ ), so Γ is univocally represented
by the set of points Π(Γ ) ⊆ P. By an abuse of notation, we will use Γ to denote
both a Π-partite access structure on P and the corresponding set Π(Γ ) of points
in P.

Let Γ be a Π-partite access structure on P . If two points u, v ∈ P are such
that u ≤ v and u ∈ Γ , then v ∈ Γ . This is due to the fact that Γ is a monotone
increasing family of subsets. Therefore, Γ ⊆ P is determined by the family
minΓ ⊆ P of its minimal points. We are using here an abuse of notation as
well, because minΓ denotes also the family of minimal subsets of the access
structure Γ .

Let Γ be a Π-hierarchical access structure. If a set B ⊆ P is obtained from a
set A ⊆ P by replacing some participants by participants in superior levels and
u = Π(A) and v = Π(B), then

∑j
i=1 ui ≤

∑j
i=1 vi for every j = 1, . . . ,m. This

motivates the following order relation, which was introduced in [36, Definition
4.2], also in the framework of hierarchical secret sharing. We say that the point
v ∈ Zm

+ is hierarchically superior to the point u ∈ Zm
+ , and we write u & v, if∑j

i=1 ui ≤
∑j

i=1 vi for every j = 1, . . . ,m. The points in P that are minimal ac-
cording to this order are called the hierarchically minimal points (or h-minimal
points for short) of Γ , and the set of these points is denoted by hminΓ . The
hierarchically minimal sets of Γ are the sets A ⊆ P such that Π(A) is a hier-
archically minimal point. Clearly, if u, v ∈ P are such that u ∈ Γ and u & v,
then v ∈ Γ . This implies that every Π-hierarchical access structure is deter-
mined by the partition Π and its h-minimal points. Since u & v if u ≤ v, we
have that hminΓ ⊆ minΓ , and hence describing a hierarchical access structure
by its h-minimal points is more compact than doing so by its minimal points.
Observe that a subset of participants is hierarchically minimal if and only if it
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is a minimal qualified subset such that it is impossible to replace a participant
in it with another participant in an inferior level and still remain qualified.

We present next three examples of families of hierarchical access structures.
For all of them, we consider the same m-partition Π = (P1, . . . , Pm) of the set
p of participants.

Example 2. A weighted threshold access structure Γ is defined from a real weight
vector w = (w1, . . . , wm) ∈ Rm with w1 > w2 > · · · > wm > 0 and a positive
real threshold T > 0. Namely, Γ is the Π-partite access structure defined by
Γ = {u ∈ P : u1w1 + · · · + umwm ≥ T } ⊆ P. That is, every participant has a
weight and a set is qualified if and only if its weight sum is at least the threshold.
Clearly, such an access structure is Π-hierarchical.

Example 3. Brickell [5] showed how to construct ideal schemes for the multilevel
structures proposed by Simmons [33]. These access structures are of the form
Γ = {A ⊆ P : |A ∩ (∪i

j=1Pj)| ≥ ti for some i = 1, . . . ,m} for some monotone
increasing sequence of integers 0 < t1 < . . . < tm. Clearly, such an access
structure is Π-hierarchical and, if the number of participants in each level is
large enough, its h-minimal points are hminΓ = {t1e1, . . . , tmem}, where ei is
the i-th vector of the canonical basis of Rm.

Example 4. Another family of hierarchical threshold access structures was pro-
posed by Tassa [35]. Given integers 0 < t1 < . . . < tm, they are defined by
Γ = {A ⊆ P : |A ∩ (∪i

j=1Pj)| ≥ ti for every i = 1, . . . ,m}. Such an access
structure is Π-hierarchical and, if the number of participants in every level is
large enough, its only h-minimal point is (t1, t2 − t1, . . . , tm − tm−1).

Duality and minors are fundamental concepts in secret sharing, as they are
in matroid theory. Several important classes of access structures are closed by
duality and minors, as for instance, matroid ports or K -vector space access
structures. More information about these operations on access structures and
their relevance in secret sharing can be found in [16]. The dual of an access
structure Γ on a set P is the access structure on the same set defined by Γ ∗ =
{A ⊆ P : P � A /∈ Γ}. For a subset B ⊆ P , we define the access structures
Γ\B and Γ/B on the set P � B by Γ\B = {A ⊆ P � B : A ∈ Γ} and
Γ/B = {A ⊆ P � B : A ∪ B ∈ Γ}. Every access structure that can be obtained
from Γ by repeatedly applying the operations \ and / is called a minor of Γ .
The proof of the following proposition is straightforward.

Proposition 5. The class of the hierarchical access structures is minor-closed
and duality-closed. The same applies to the class of the weighted threshold access
structures.

Let P ′ and P ′′ be two disjoint sets and let Γ ′ and Γ ′′ be access structures on
P ′ and P ′′, respectively. The composition of Γ ′ and Γ ′′ over p ∈ P ′ is denoted
by Γ ′[Γ ′′; p] and is defined as the access structure on the set of participants
P = P ′ ∪ P ′′ � {p} that is formed by all subsets A ⊆ P such that A ∩ P ′ ∈ Γ ′

and all subsets A ⊆ P such that (A ∪ {p}) ∩ P ′ ∈ Γ ′ and A ∩ P ′′ ∈ Γ ′′. The
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composition of matroid ports is a matroid port, and the same applies to K -vector
space access structures. A proof for these facts can be found in [17]. The access
structures that can be expressed as the composition of two access structures on
sets with at least two participants are called decomposable.

Suppose that Γ ′ is (P1, . . . , Pr)-partite and Γ ′′ is (Pr+1, . . . , Pr+s)-partite,
and take p ∈ Pr . Then the composition Γ ′[Γ ′′; p] is (P ′

1, . . . , P
′
r+s)-partite with

P ′
r = Pr � {p} and P ′

i = Pi if i �= r. If Γ ′ and Γ ′′ are hierarchical, then Γ ′[Γ ′′; p]
is also hierarchical. Observe that the composition is made over a participant in
the lowest level of Γ ′.

4 Multipartite Matroid Ports and Integer Polymatroids

The aim of this and the following sections is to present our main result, The-
orem 16, which is a complete characterization of the ideal hierarchical access
structures in terms of the properties of their h-minimal points. First we recall
here some facts about integer polymatroids and we show the connection between
these combinatorial objects and multipartite matroids and their ports. Since all
ideal access structures are matroid ports, we obtain in this way some necessary
conditions for a hierarchical access structure to be ideal in Section 5. Finally, in
Sections 6 and 7 we show that these necessary conditions are also sufficient.

Multipartite matroid ports are ports of multipartite matroids, and those ma-
troids are closely related to integer polymatroids . We recall here some definitions
and basic facts about integer polymatroids and multipartite matroids, the re-
lation between these two combinatorial objects, and their connections to the
characterization of multipartite access structures. We use in the following the
notation for integer vectors that was introduced in Section 3. More information
about these concepts can be found in [10,12].

Similarly to matroids, integer polymatroids can be defined in many different
but equivalent ways. We present next the three of those definitions that are
needed to present our results. The first one is in terms of an integer submodular
rank function. The second one considers an integer polymatroid as a set of in-
teger vectors with certain properties. Finally, the third one is given in terms of
the integer bases, which are the maximal elements in that set of integer vectors.
The equivalence between these definitions is a consequence of results on submod-
ular functions that are well known in the areas of combinatorial optimization
and discrete convex analysis (see, for instance, the works by Murota [23,24]). A
full proof of this equivalence has been presented by Herzog and Hibi [12], who
used integer polymatroids in commutative algebra. The formalization of these
combinatorial concepts presented in [12] has been very useful for our purposes.
Actually, a new term (discrete polymatroid) was introduced in [12] to denote the
set of integer vectors defining an integer polymatroid. In our opinion, this new
term is not needed because these sets should be considered as an alternative
way to define integer polymatroids, and not as a new combinatorial object. Ac-
tually, they are formed by the integer points in the convex polytope associated
to the integer polymatroid. See [37], for instance, for more information about
polymatroids and their associated polytopes.
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We notate P(J) for the power set of a set J . An integer polymatroid is an
ordered pair Z = (J, h), where J is a finite set, the ground set , and h, the rank
function, is a mapping h : P(J) → Z satisfying the following properties

1. h(∅) = 0.
2. h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ).
3. h is submodular : if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

An integer polymatroid with ground set J can be defined as well as a nonempty
finite set D ⊆ ZJ

+ of integer points satisfying the following properties.

1. If u ∈ D and v ∈ ZJ
+ is such that v ≤ u, then v ∈ D.

2. For every pair of points u, v ∈ D with |u| < |v|, there exists w ∈ D with
u < w ≤ u ∨ v.

The equivalence between these two definitions can be proved as follows. On
the one hand, one has to check that, given an integer polymatroid Z = (J, h),
such a set of integer points is univocally determined by the rank function by
D = D(Z) = {u ∈ ZJ

+ : |u(X)| ≤ h(X) for every X ⊆ J}. On the other hand,
it can be proved that, given a set D ⊆ ZJ

+ satisfying the properties above, there
is a unique integer polymatroid Z = (J, h) with D = D(Z), and its rank function
is defined by h(X) = max{|u(X)| : u ∈ D} for every X ⊆ J .

An integer basis of an integer polymatroid Z is a maximal element in D(Z),
that is, a point u ∈ D such that there does not exist any v ∈ D with u <
v. Since we are not going to consider here any other kind of bases of integer
polymatroids, from now on integer bases will be called simply bases. Similarly
to matroids, all bases have the same modulus, and integer polymatroids are
completely determined by their bases. Moreover, a nonempty set B ⊆ ZJ

+ is the
family of bases of an integer polymatroid with ground set J if and only if it
satisfies the following exchange condition.

– For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ J such that uj < vj

and u − ei + ej ∈ B, where ei ∈ ZJ is such that ei
k = 0 if i �= k and ei

i = 1.

Because of that, this can be seen as another definition of integer polymatroid.
For an integer polymatroid Z = (J, h) and a subset X ⊆ J , we consider

the integer polymatroid Z(X) = (X,h′) defined by h′(Y ) = h(Y ) for every
Y ⊆ X . Since h′ is a restriction of h, both will be usually denoted by h. Clearly,
D(Z(X)) = {u(X) : u ∈ D(Z)} ⊆ ZX

+ . We consider as well the set of points
B(Z, X) ⊆ ZJ

+ such that u ∈ B(Z, X) if and only if u(X) is a basis of Z(X) and
ui = 0 for every i ∈ J � X .

For a partition Π = (Q1, . . . , Qm) of the ground set Q, a matroid M = (Q, r)
is said to be Π-partite if every permutation σ on Q such that σ(Qi) = Qi

for i = 1, . . . ,m is an automorphism of M. From now on, we notate Jm =
{1, . . . ,m} and J ′

m = {0, 1, . . . ,m} for every positive integer m. Then the func-
tion h : P(Jm) → Z defined by h(X) = r(

⋃
i∈X Qi) is the rank function of an

integer polymatroid Z(M) = (Jm, h). Reciprocally, for every integer polyma-
troid Z = (Jm, h) with h({i}) ≤ |Qi| for i ∈ Jm, there exists a unique Π-partite
matroid M with Z(M) = Z.
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Consider a partition Π = (P1, . . . , Pm) of a set P and the partition Π0 =
({p0}, P1, . . . , Pm) of the set Q = P ∪ {p0}. A connected matroid port Γ =
Γp0(M) on P is Π-partite if and only if the matroid M is Π0-partite. Therefore,
multipartite matroids, and hence integer polymatroids, are fundamental in the
characterization of ideal multipartite access structures. These connections are in
the core of the results in [10]. In particular, we present next a characterization
of multipartite matroid ports in terms of integer polymatroids that was proved
in [10] and will be extremely useful for our purposes.

Consider a Π-partite matroid port Γ = Γp0(M) and the associated integer
polymatroid Z ′ = Z(M) = (J ′

m, h). The Π-partite matroid port Γ is completely
determined by the partition Π and the integer polymatroid Z ′ and we write
Γ = Γ0(Z ′). As a consequence of this fact, the following characterization of
multipartite matroid ports is proved in [10].

Theorem 6 ([10]). Let Π = (P1, . . . , Pm) be a partition of a set P and let Γ be
an Π-partite access structure on P . Then Γ is a matroid port if and only if there
exists an integer polymatroid Z ′ = (J ′

m, h) with h({0}) = 1 and h({i}) ≤ |Pi|
such that

minΓ = min {u ∈ B(Z, X) : X ⊆ Jm is such that h(X) = h(X ∪ {0})} ,

where Z = Z ′(Jm) = (Jm, h).

Since every ideal access structure is a matroid port, Theorem 6 provides a neces-
sary condition for a multipartite access structure to be ideal. Several necessary
conditions for a hierarchical access structure to be ideal will be deduced from
this result in Section 5.

On the other hand, sufficient conditions can be obtained from the fact that the
ports of linearly representable matroids are ideal access structures. We present in
Theorem 7 an interesting result from [10] connecting the linear representations
of multipartite matroids to the ones of integer polymatroids. This result is used
in Section 6 to find sufficient conditions for a hierarchical access structure to be
ideal.

Let E be a vector space with finite dimension over a finite field K and, for
every i ∈ J , consider a vector subspace Vi ⊆ E. It is not difficult to check that
the mapping h : P(J) → Z defined by h(X) = dim(

∑
i∈X Vi) is the rank function

of an integer polymatroid with ground set J . The integer polymatroids that can
be defined in this way are said to be K -linearly representable.

Theorem 7 ([10]). For every large enough field K , an m-partite matroid M is
K -linearly representable if and only if its associated integer polymatroid Z(M) =
(Jm, h) is K -linearly representable.

5 Hierarchical Matroid Ports

In this section, we use the connection between integer polymatroids and multi-
partite matroid ports that is discussed in Section 4 to find necessary conditions
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for hierarchical access structures to be matroid ports. Of course, these will be
as well necessary conditions for hierarchical access structures to be ideal.

We present first a technical lemma that apply to every integer polymatroid.
Specifical results on integer polymatroids associated to hierarchical matroid
ports will be given afterwards. Due to space constraints, the proofs of most
of these results are omitted.

For every i, j ∈ Z we notate [i, j] = {i, i + 1, . . . , j} if i < j, while [i, i] = {i}
and [i, j] = ∅ if i > j. Let Z = (Jm, h) be an integer polymatroid. For every
i ∈ Jm, consider the point yi(Z) ∈ Zm

+ defined by yi
j(Z) = h([j, i])−h([j +1, i]).

Observe that
∑i

j=s y
i
j(Z) = h([s, i]) for every s ∈ [1, i]. In addition, by the

submodularity of the rank function, yi
j(Z) ≥ yi+1

j (Z) if 1 ≤ j ≤ i < m.

Lemma 8. For every i = 1, . . . ,m, the point yi(Z) is the hierarchically min-
imum point of B(Z, [1, i]), that is, y ∈ B(Z, [1, i]) and y & x for every x ∈
B(Z, [1, i]).

For the remaining of this section, we assume that Γ is a Π-hierarchical matroid
port, where Π = (P1, . . . , Pm) is an m-partition of the set of participants P .
Recall that we notate P = Π(P(P )) ⊆ Zm

+ . In addition, we assume that the
access structure Γ is connected , that is, that every participant is in a minimal
qualified subset or, equivalently, for every i ∈ Jm, there is a minimal point
x ∈ minΓ such that xi > 0. Consider the integer polymatroid Z ′ = (J ′

m, h) such
that Γ = Γ0(Z ′), and the integer polymatroid Z = Z ′(Jm) = (Jm, h). Since Γ is
connected, h({i}) > 0 for all i ∈ Jm, and hence yi

i(Z) > 0. For every x ∈ Zm
+ , we

notate supp(x) = {i ∈ Jm : xi �= 0} ⊆ Jm and s(x) = max(supp(x)). Observe
that s(x) is the index of the most inferior hierarchical level represented in the
sets A ⊆ P with Π(A) = x.

Lemma 9. If x ∈ P is a minimal point of Γ , then x ∈ B(Z, [1, s(x)]).

Lemma 10. If x ∈ P is an h-minimal point of Γ , then x = ys(x)(Z).

Proof. From Lemma 9, x ∈ B(Z, [1, s(x)]) and, since B(Z, [1, s(x)]) ⊆ Γ by
Theorem 6, x is h-minimal in B(Z, [1, s(x)]). By Lemma 8, this implies that
x = ys(x)(Z). ��

At this point, we have identified the h-minimal points of the hierarchical matroid
port Γ . Namely, they are the h-minimal elements in {y1(Z), . . . , ym(Z)}.

Lemma 11. If x, y ∈ P are two different h-minimal points of Γ , then s(x) �=
s(y). Moreover, if s(x) < s(y), then |x| < |y| and xj ≥ yj for all j = 1, . . . , s(x).

Proof. Since s(yi(Z)) = i, it is clear that s(x) �= s(y) if x �= y. Suppose that
s(x) < s(y). Since |x| = h([1, s(x)]) and |y| = h([1, s(y)]), we have that |x| ≤ |y|.
Moreover, if |x| = |y|, then x ∈ B(Z, [1, s(y)]), and hence y & x, a contradiction.
Finally, xj = y

s(x)
j (Z) ≥ y

s(y)
j (Z) = yj for all j = 1, . . . , s(x). ��
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As a consequence of Lemma 11, the h-minimal points in a hierarchical matroid
port behave as in the hierarchical threshold access structure proposed by Sim-
mons [33] (Example 3). Namely, if A and B are both hierarchically minimal
qualified sets, but the least member of B is strictly inferior to the least member
of A, then B must be larger than A. The last necessary condition for a hierar-
chical access structure to be ideal is given in the following lemma, whose proof
is also omitted here.

Lemma 12. Let x, y ∈ P be two different h-minimal points of Γ with s(x) <
s(y) such that there is not any h-minimal point z with s(x) < s(z) < s(y). If
xi > yi for some i ∈ [1, s(x) − 1], then |Pj | = xj for all j ∈ [i + 1, s(x)].

6 A Family of Ideal Hierarchical Access Structures

The results in Section 5 provide necessary conditions for a Π-hierarchical access
structure to be a matroid port, and hence to be ideal, in terms of the properties of
its h-minimal points. A sufficient condition is given in this section by constructing
a new family of hierarchical vector space secret sharing schemes. Specifically, we
present a family of linearly representable integer polymatroids and we prove
that the multipartite access structures that are obtained from them are actually
hierarchical. In addition, they are vector space access structures by Theorem 7.

Consider a finite field K and a pair of integer vectors a = (a0, . . . , am) ∈ Zm+1
+

and b = (b0, . . . , bm) ∈ Zm+1
+ such that a0 = a1 = b0 = 1, and ai ≤ ai+1 ≤ bi ≤

bi+1 for every i = 0, . . .m−1. Take d = bm and consider a basis {e1, . . . , ed} of Kd

and, for every i = 1, . . . ,m, consider the subspace Vi = 〈eai , . . . , ebi〉 ⊆ Kd. Let
Z ′ = Z ′(a,b) = (J ′

m, h) be the integer polymatroid that is linearly represented
by the subspaces V0, V1, . . . , Vm. Observe that the rank function h of Z ′ is such
that h(A) = | ∪i∈A [ai, bi]| for all A ⊆ J ′

m. In particular, h([j, i]) = |[aj , bi]| =
bi − aj + 1 whenever 0 ≤ j ≤ i ≤ m, and hence h({0}) = 1. Therefore, for every
set of players P and for every m-partition Π = (P1, . . . , Pm) of P such that
|Pi| ≥ h({i}) = bi − ai + 1, we can consider the Π-partite matroid port Γ =
Γ0(Z ′) that is determined as in Theorem 6. Since Z ′ is K-linearly representable
for every finite field K, we have from Theorem 7 that Γ is a K-vector space
access structure for every large enough finite field K.

Consider the integer polymatroid Z = Z(a,b) = Z ′(Jm) = (Jm, h) and, for
i = 1, . . . ,m, the points yi = yi(Z) ∈ Zm

+ . Observe that yi
j = h([j, i]) − h([j +

1, i]) = aj+1 −aj if j < i while yi
i = bi −ai +1. Therefore, yi = (a2 −a1, . . . , ai −

ai−1, bi−ai+1, 0, . . . , 0). A proof for the following lemma, which is the key result
in this section, will be given in the full version.

Lemma 13. The access structure Γ is Π-hierarchical.

By taking into account Lemma 13 and the fact that the h-minimal points of Γ
are of the form yi(Z(a,b)), the next proposition can be proved. It provides a
sufficient condition for a hierarchical access structure to be ideal.
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Proposition 14. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P . Let x1, . . . , xr ∈ Zm

+ be the h-minimal
points of Γ and consider si = s(xi) = max(supp(xi)). Suppose that the following
properties are satisfied.

1. If i < j, then si < sj and xi
k = xj

k for all k = 1, . . . , si − 1.
2. If sj−1 < i ≤ sj, then |Pi| ≥

∑sj

�=i x
j
� .

Then Γ is ideal and, moreover, it admits a K-vector space secret sharing scheme

for every finite field K with |K| >
(
|P | + 1
|xr |

)
.

The bound on the size of the field is a consequence of the results in [10] (full
version) about the representability of multipartite matroids. Observe that, in
particular, all hierarchical access structures that have only one h-minimal point
are vector space access structures. Because of that, it can be proved by using
well known basic decomposition techniques (see [34], for instance) that every
hierarchical access structure admits a linear secret sharing scheme in which the
length of every share is at most m times the length of the secret, being m the
number of h-minimal points.

7 A Characterization of Ideal Hierarchical Access
Structures

By using the results in Sections 5 and 6, we present here a complete charac-
terization of ideal hierarchical access structures. Moreover, we prove that every
ideal hierarchical access structure is a K-vector space access structure for every
large enough finite field K. The next result is a consequence of Proposition 14
and the necessary conditions for a hierarchical access structure to be ideal given
in Section 5. It provides a characterization of hierarchical access structures in
which the number of participants in every hierarchical level is large enough in
relation to the h-minimal points. The proof of this result is omitted here.

Theorem 15. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P with hminΓ = {x1, . . . , xr}. For i =
1, . . . , r, consider si = s(xi) = max(supp(xi)) and suppose that |Psi | > xi

si
.

Then Γ is ideal if and only if

1. si �= sj if i �= j, and
2. if si < sj, then xi

k = xj
k for all k = 1, . . . , si − 1.

Moreover, in this situation Γ is a K-vector space access structure for every finite

field K with |K| >
(
|P | + 1
|xr|

)
.

Finally, we present our complete characterization of ideal hierarchical access
structures in terms of the properties of the h-minimal points. Actually, we prove
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that a hierarchical access structure is ideal if and only if it is a minor of an
access structure in the family that is presented in Section 6. Therefore every
ideal hierarchical access structure is a K-vector access structure for all large
enough finite fields K, and this proves Theorem 1. The proof of this result will
be presented in the full version.

Theorem 16. Let Π = (P1, . . . , Pm) be an m-partition of a set P and let Γ
be a Π-hierarchical access structure on P with minH Γ = {x1, . . . , xr}. For i =
1, . . . ,m, consider si = s(xi) = max(supp(xi)) and suppose that the h-minimal
points are ordered in such a way that si ≤ si+1. Then Γ is ideal if and only if

1. si < si+1 and |xi| < |xi+1| for all i = 1, . . . , r − 1, and
2. xi

j ≥ xi+1
j if 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ si, and

3. if xi
j > xr

j for some 1 ≤ i < r and 1 ≤ j < si, then |Pk| = xi
k for all

k = j + 1, . . . , si.

We present in the following a few examples of applications of our characterization
of the ideal hierarchical access structures.

Example 17. Consider a set P with a 4-partition Π = (P1, P2, P3, P4) with |Pi| =
4 for every i = 1, . . . , 4. Let Γ be the weighted threshold access structure defined
as in Example 2 by the weight vector w = (7, 5, 4, 3) and the threshold T = 13.
The h-minimal points of Γ are x1 = (2, 0, 0, 0), x2 = (0, 1, 2, 0), and x3 =
(0, 0, 1, 3). Since x2

2 > x3
2 and |P3| > x2

3, it follows from Theorem 16 that Γ is
not ideal.

Example 18. For a 4-partition Π = (P1, P2, P3, P4) of the set P of participants
and positive integers 0 < t1 < t2 < t3 < t4, consider the Π-hierarchical access
structure Γ that is formed by the sets with at least one participant from P1
that, in addition, have t1 participants in P1, or t2 participants in P1 ∪ P2, or
t3 participants in P1 ∪ P2 ∪ P3, or t4 participants in total. If the number of
participants in each part is large enough, then Γ is ideal by Theorem 16 because
its h-minimal points are (1, 0, 0, t4), (1, 0, t3, 0), (1, t2, 0, 0), and (t1, 0, 0, 0). In
any other case, Γ is a minor of a 4-hierarchical access structure having those
h-minimal points, and hence it is ideal as well.

Example 19. From the constructions by Brickell [5] and by Tassa [35], we know
that the access structures described in Examples 3 and 4 are ideal. Actually, this
fact is proved very easily from our results. The h-minimal points of the access
structures in Example 3 are hminΓ = {t1e1, . . . , tmem}, which clearly satisfy
the conditions in Theorem 16. Since the access structures in Example 4 have
only one h-minimal point, they are ideal as well.

Example 20. Tassa [35] proposed an open problem on hierarchical access struc-
tures that can be solved by using our results. For a partition Π = (P1, . . . , Pm)
of the set P of participants, a sequence of integers 0 < t1 < · · · < tm, and an
integer � ∈ Jm, consider the Π-hierarchical access structure Γ defined as follows:
A point u ∈ P is in Γ if and only if |{i ∈ Jm :

∑i
j=1 uj ≥ ki}| ≥ �. The open
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problem proposed by Tassa [35] is to determine what access structures of this
form are ideal. Observe that the extreme cases � = 1 and � = m correspond
to the ideal hierarchical access structures in Examples 3 and 4, respectively. By
using the results in this paper it can be proved that, if Γ is connected, then it is
ideal if and only if � = 1 or � = m. This is proved by finding, for every connected
access structure of this form with 1 < � < m, two different h-minimal points
x, y ∈ hminΓ with s(x) = s(y).

8 Ideal Weighted Threshold Access Structures

Beimel, Tassa and Weinreb [1] presented a characterization of the ideal weighted
threshold access structures. Their proof is long and complicated. By using our
characterization of ideal hierarchical access structures, we obtained a simpler
proof for the result in [1]. Due to space constraints, we can only present here a
sketch of it. The complete proof will be given in the full version of the paper.

As was noticed in [1], an ideal weighted threshold access structure can be
the composition smaller such ideal structures Because of that, we focus on the
indecomposable structures in this family.

First, we describe several families of ideal weighted threshold access struc-
tures such that, as is stated in Theorem 21, they contain all indecomposable
ideal weighted threshold access structures. The (t, n)-threshold access structures
form the first of those families. Of course, they are ideal weighted threshold
access structures. We consider as well three families of ideal bipartite hierar-
chical access structures, that is, ideal Π-hierarchical access structures for some
partition Π = (P1, P2) of the set of participants. The family B1 consists of
the access structures with hminΓ = {(x1, x2)}, where 0 < x1 < |P1| and
0 < x2 = |P2| − 1. The family B2 is formed by the access structures with
hmin(Γ ) = {(x1, 0), (0, x1 +1)} for some integer x1 > 1. The family B3 contains
the access structures with hminΓ = {(y1 + y2 − 1, 0), (y1, y2)}, where y1 > 0,
y2 > 2, and |P2| ≤ y2 ≤ |P2| + 1. In addition, we consider three families of ideal
tripartite hierarchical access structures. The family T1 consists of the structures
with hminΓ = {(x1, 0, 0), (0, y2, y3)}, where 0 < y2 < |P2| and 1 < y3 = |P3|−1,
and x1 = y2 + y3 − 1. We consider as well the family T2 of the structures such
that hminΓ = {(x1, 0, 0), (y1, y2, y3)} with 0 < y2 = |P2| and 1 < y3 = |P3| − 1,
and x1 = y1 + y2 + y3 − 1. Finally, the family T3 contains the access structures
with hminΓ = {(x1, x2, 0), (y1, y2, y3)}, where 0 < y1 < x1, and 1 < y3 = |P3|,
and 0 < x2 = y2 + 1 = |P2|, and x1 + x2 = y1 + y2 + y3 − 1. It can be proved
that all the members of these families are weighted threshold access structures.
At this point, we can state the characterization of the ideal weighted threshold
access structures.

Theorem 21. A weighted threshold access structure is ideal if and only if

1. it is a threshold access structure, or
2. it is a bipartite access structure in one of the families B1, B2 or B3, or
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3. it is a tripartite access structure in one of the families T1, T2 or T3, or
4. it is a composition of smaller ideal weighted threshold access structures.

We present next a sketch of our proof for this result. To begin with, several
technical results on the properties of h-minimal points in indecomposable hi-
erarchical access structures are needed. Then, several properties that must be
satisfied by every ideal indecomposable weighted threshold access structure Γ
are proved. First, if Γ is strictly bipartite, then it is in one of the families B1,
B2 or B3. Second, if Γ is strictly m-partite with m ≥ 3, then it has exactly
two h-minimal points. Third, if Γ is strictly tripartite, then it is in one of the
families T1, T2 or T3. Finally, it is proved that such an access structure cannot
be strictly m-partite with m > 3.
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20. Matúš, F.: Matroid representations by partitions. Discrete Math. 203, 169–194
(1999)
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Abstract. It is well known that two random variables X and Y with
the same range can be viewed as being equal (in a well-defined sense)
with probability 1− d(X, Y ), where d(X, Y ) is their statistical distance,
which in turn is equal to the best distinguishing advantage for X and
Y . In other words, if the best distinguishing advantage for X and Y is ε,
then with probability 1 − ε they are completely indistinguishable. This
statement, which can be seen as an information-theoretic version of a
hardcore lemma, is for example very useful for proving indistinguishabil-
ity amplification results.

In this paper we prove the computational version of such a hard-
core lemma, thereby extending the concept of hardcore sets from the
context of computational hardness to the context of computational in-
distinguishability. This paradigm promises to have many applications in
cryptography and complexity theory. It is proven both in a non-uniform
and a uniform setting.

For example, for a weak pseudorandom generator (PRG) for which
the (computational) distinguishing advantage is known to be bounded
by ε (e.g. ε = 1

2
), one can define an event on the seed of the PRG which

has probability at least 1 − ε and such that, conditioned on the event,
the output of the PRG is essentially indistinguishable from a string with
almost maximal min-entropy, namely log(1/(1 − ε)) less than its length.
As an application, we show an optimally efficient construction for con-
verting a weak PRG for any ε < 1 into a strong PRG by proving that the
intuitive construction of applying an extractor to an appropriate number
of independent weak PRG outputs yields a strong PRG. This improves
strongly over the best previous construction for security amplification
of PRGs which does not work for ε ≥ 1

2
and requires the seed of the

constructed strong PRG to be very long.

1 Introduction

1.1 (Weak) Pseudorandomness

Randomness is a central resource in cryptography. In many applications, true
randomness must be replaced by pseudorandomness, for example when it needs
to be reproduced at a second location and one can only afford to transmit a short
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value to be used as the seed of a so-called pseudorandom generator (PRG). An ex-
ample are cryptographic applications where a key agreement protocol yields only
a short key. More generally, PRGs are a central building block in cryptographic
protocols and are used in different applications where a random functionality
(e.g. a uniform random function) must be realized from a short secret key.

The concept of a PRG was first proposed by Blum and Micali [2], initiating a
large body of literature dealing with various aspects of pseudorandomness: More
formally, a random variable X is said to be pseudorandom if it is computationally
indistinguishable from a uniformly distributed random variable U with the same
range, i.e., no computationally bounded (i.e., polynomial time) distinguisher can
tell X and U apart with better than negligible advantage. In particular, a PRG
G : {0, 1}k → {0, 1}� (for � > k) extends a uniform random string Uk of length
k into a pseudorandom string G(Uk) of length �.

Computational infeasibility is at the core of cryptographic security. In con-
trast to cryptographic primitives (like a one-way function f) assuring that a
certain value (e.g. the input of f) cannot efficiently be computed, the notion of
computational indistinguishability is substantially more involved. It is hence not
a surprise that all constructions (cf. e.g. [6,5,9]) of a PRG from an arbitrary1

one-way function f are too inefficient (in terms of the number of calls to f) to
be of any practical use.

Therefore, it appears much more difficult to propose a cryptographic function
that can be believed to be a PRG than one that can be believed to be a one-
way function. As a consequence, a prudent approach in cryptography is to make
weaker assumptions about a concrete proposal for a PRG G. One possible way2

to achieve this is by considering a so-called ε-pseudorandom generator (ε-PRG),
where the best distinguishing advantage of an efficient distinguisher is not nec-
essarily negligible, but instead bounded by some noticeable quantity ε, such as
a constant (e.g. ε = 0.75), or even a function in the security parameter k mildly
converging to 1 (e.g. 1 − 1

p(k) for some polynomial p).3

1.2 Security Amplification of PRGs

Security Amplification. In order to deploy some ε-PRG within a particular
cryptographic application, we need to find an efficient construction transforming
it into a fully secure PRG. This is an instance of the general problem of security
amplification, which was first considered by Yao [17] in the context of one-way

1 i.e. without any particular assumption on the combinatorial structure of the function.
2 An alternative approach to modeling a weak PRG is to assume its output to be

computationally indistinguishable from a random variable with only moderate min-
entropy. However, this approach does not capture certain failure types, such as a
function G that with some substantial probability may output a constant value. In
contrast, the notion of an ε-PRG captures this case. One of the contributions of this
paper is to show a tight relation between these two approaches.

3 An ε-PRG G : {0, 1}k → {0, 1}� is only interesting in the case � > k + log
(

1
1−ε

)
, as

otherwise an unconditionally secure ε-PRG is given by the mapping x �→ x‖0log( 1
1−ε ).
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functions, and has subsequently been followed by a prolific line of research con-
sidering a wide range of other cryptographic primitives.

Previous Work.The only known security amplification result for PRGs con-
siders the construction SUMG : {0, 1}mk → � (for any m > 1) which outputs

SUMG(x) := G(x1) ⊕ · · · ⊕ G(xm).

for all inputs x = x1‖ . . . ‖xm ∈ {0, 1}km (with x1, . . . , xm ∈ {0, 1}k). As pointed
out in [14], Yao’s XOR-lemma [17,4] yields a direct proof of security amplification
for the construction SUM, and an improved bound can be obtained using the
tools from [14]. (An independent proof with a weaker bound was also given in [3].)
Namely, one can show that if G is an ε-PRG, then SUMG is a (2m−1εm+ν)-PRG,
where ν is a negligible function. Also, the result extends to the case where ⊕ is
replaced by any quasi-group operation �.

However, this construction has two major disadvantages: First, security am-
plification is inherently limited to the case ε < 1

2 . For instance, the security of a
PRG with a very large stretch and with one constant output bit is not ampli-
fied by the SUM construction, even if all other output bits are pseudorandom.
Second, the construction is expanding only when � > k ·m. Note that this issue
cannot be overcome by first extending the output size of the weak PRG, due to
the high security loss in the extension which would yield an ε′-PRG with ε′ close
to one.

Our Construction. In this paper, we provide the first solution which ampli-
fies the security of an ε-PRG G : {0, 1}k → {0, 1}� for any ε < 1. Our construc-
tion, called concatenate and extract (CaE), takes input x = x1‖ . . . ‖xm‖r, where
x1, . . . , xm ∈ {0, 1}k and r ∈ {0, 1}d, and outputs

CaEG(x) := Ext(G(x1) ‖ . . . ‖G(xm), r) ‖ r,

where Ext : {0, 1}m�×{0, 1}d → {0, 1}n is a sufficiently good strong randomness
extractor. In particular, a good instantiation (for instance using two-universal
hash functions or even appropriate deterministic extractors) allows to achieve
n ≈ (1 − ε)m ·

[
� − log

(
1

1−ε

)]
, and we show the resulting output length n + d

to be optimal with respect to constructions combining m outputs of an ε-PRG.
We provide security proofs both in the non-uniform and in the uniform mod-

els, which follow as an application of a new characterization of computational
indistinguishability that we present in this paper, and which we outline in the
next section.

Finally, we point out that the idea of concatenating strings with weaker pseu-
dorandomness guarantees and then extracting the resulting computational en-
tropy was previously used (most notably in constructions of PRGs from one-way
functions [6,9,5]): However, all these previous results only consider individual
independent bits which are hard to compute (given some other part of the con-
catenation), whereas our result is the first to deal with the more general case of
weakly pseudorandom strings.
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1.3 A Tight Characterization of Computational Indistinguishability

Let X and Y be random variables with the same range U . Assume that we
can show that there exist events A and B defined on the choices of X and Y
by some conditional probability distributions PA|X and PB|Y such that P[A] ≥
1 − ε, P[B] ≥ 1 − ε, and X and Y are identically distributed when conditioned
on A and B, respectively. Then this implies that the advantage ΔD(X,Y ) :=
|P[D(X) = 1] − P[D(Y ) = 1]| is upper bounded by ε for every distinguisher D.
However, is the converse also true? Namely, if the best distinguishing advantage
is upper bounded by ε, do such two events always exist?

An affirmative answer is known to exist if we maximize over all distinguishers:
In this case, the best advantage is the statistical distance

d(X,Y ) :=
1
2

∑
u∈U

|PX(u) − PY (u)| ,

and it is always possible to define two such events A and B by the joint prob-
abilities PAX(u) = PAY (u) = min{PX(u),PY (u)}. Because d(X,Y ) = 1 −∑

u∈U min{PX(u),PY (u)}, it is easy to see that P[A] = P[B] =
∑

u PAX(u) =
1 − d(X,Y ). This can be interpreted as saying the the random variables X and
Y are equal with probability 1 − ε. A generalization of this property to discrete
systems was considered by Maurer, Pietrzak, and Renner [13].

However, the quantity of interest in the cryptographic setting (as for example
in the definition of a PRG) is the best distinguishing advantage of a compu-
tationally bounded (i.e. polynomial-time) distinguisher, which in general is sub-
stantially smaller than the statistical distance d(X,Y ), and hence the above
property is of no help in the context of computational indistinguishability.

The main technical and conceptual contribution of this paper is a computa-
tional version of the above characterization, which we prove both in the uniform
and the non-uniform settings. Roughly speaking, we show that if the advantage
of every computationally bounded distinguisher is bounded by ε (and the statis-
tical distance may be considerably higher), there exist events A and B occurring
each with probability 1−ε such that X and Y are computationally indistinguish-
able when conditioned on A and B. This can be seen as a hardcore lemma for
the setting of computational indistinguishability, and hence solves, for the case
of random variables, an open question stated by Myers [15].

The security of the aforementioned concatenate-and-extract approach follows
then from the simple observation, due to our characterization, that the output of
an ε-PRG can be shown to have high computational min-entropy with probability
1 − ε, and hence the concatenation of sufficiently many such outputs always
contains enough randomness to be extracted.

1.4 Outline of This Paper

The main part of this paper is Section 3, which is devoted to discussing the
characterizations of computational indistinguishability in terms of events in both
the uniform and the non-uniform computational models. Furthermore, Section 4
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is devoted to proving the soundness of the concatenate-and-extract approach for
security amplification of PRGs. All tools employed throughout this paper are
introduced in Section 2, where in particular we discuss the hardcore lemma in the
uniform and non-uniform computational models, which is a central component
of our main proofs.

2 Preliminaries

2.1 Notational Preliminaries and Computational Model

Notation.Recall that a function is negligible if it vanishes faster than the inverse
of any polynomial. We use both notations poly and negl as placeholders for
some polynomial and negligible function, respectively. In particular, a function
γ = 1

poly is called noticeable.
Throughout this paper, we use calligraphic letters X ,Y, . . . to denote sets,

upper-case letters X,Y, . . . to denote random variables, and lower-case letters
x, y, . . . denote the values they take on. Moreover, P[A] stands for the probability
of the event A, while we use the shorthands PX(x) := P[X = x], PA|X(x) :=
P[A|X = x], and PX|A(x) := P[X = x|A]. Also, PX , PA|X and PX|A are the
corresponding (conditional) probability distributions, and x

$← P is the action of
sampling a concrete value x according to the distribution P. (We use x

$← X in
the case where P is the uniform distribution on X .) Finally, E[X ] is the expected
value of the (real-valued) random variable X . Also, we use ‖ to denote the
concatenation of binary strings.
Computational Model. The notation AO(x, x′, . . .) denotes the (oracle) al-
gorithm A which runs on inputs x, x′, . . . with access to the oracle O. In the
asymptotic setting, a uniform algorithm A always obtains the unary represen-
tation 1k of the current security parameter k as its first input and is said to run
in time t : N → N (or to have time complexity t) if for all k > 0 the worst-case
number of steps it takes (counting oracle queries as single steps) on first input 1k,
taken over all randomness values, all compatible additional inputs and oracles,
is at most t(k). In particular, we say that a family of functions F = {fk}k∈N,
where fk : Xk → Yk is efficiently (or polynomial-time) computable if there exists
a uniform algorithm which for every security parameter k computes fk. Finally,
we model as usual non-uniform algorithms in terms of (families of) circuits
C : {0, 1}m → {0, 1}n with bounded size.

For ease of notation, we do not make asymptotics explicit in this paper (in
particular, we omit the input 1k), despite the formal statements being asymptotic
in nature.

2.2 Pseudorandom Generators and Randomness Extractors

Distance Measures. The distinguishing advantage of the distinguisher D in
distinguishing random variables X and Y with equal range U is

ΔD(X,Y ) := |P[D(X) = 1] − P[D(Y ) = 1]| ,
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whereas the statistical distance between X and Y is defined as d(X,Y ) :=
1
2

∑
u∈U |PX(u) − PY (u)| =

∑
u:PX (u)≤PY (u) PY (u) − PX(u).

PseudorandomGenerators.An efficiently computable functionG : {0, 1}k →
{0, 1}� is a (t, ε)-PRG if for all distinguishers D with time complexity t we have
ΔD(G(Uk), U�) ≤ ε, whereUk andU� are uniformlydistributedk- and �-bit strings,
respectively. (In the non-uniform setting we rather use the notation (s, ε)-PRG,
maximizing over all circuits with size at most s.) Furthermore, we use the short-
hands ε-PRG and PRG for (poly, ε)- and (poly, negl)-PRGs, respectively.

Randomness Extractors. A source S is a set of probability distributions,
and an ε-extractor for S is an efficiently computable function Ext : {0, 1}m ×
{0, 1}d → {0, 1}n such that for a uniformly distributed d-bit string R, we have
d(Ext(X,R), Un) ≤ ε for all m-bit random variables X with PX ∈ S and a
uniformly distributed n-bit string Un. Furthermore, the extractor is called strong
if the stronger condition d ((Ext(X,R), R), (Un, R))) ≤ ε holds.

Also recall that the min-entropy of X is H∞(X) := − log (maxx∈X PX(x)). A
two-parameter function h : {0, 1}m × {0, 1}d → {0, 1}n is called two-universal if
P[h(x,K) = h(x′,K)] = 2−n for any two distinct m-bit x and x′ and a uniform
d-bit K. An example with d = m is the function h(x, k) := (x( k)|n, where ( is
the multiplication of binary strings interpreted as elements of GF (2m), and |n
outputs the first n bits of a given string. Two-universal hash functions are good
extractors:

Lemma 1 (Leftover Hash Lemma [1,11]). For any ε > 0, every two-
universal hash function h : {0, 1}m × {0, 1}d → {0, 1}n is a strong ε-extractor
for the source of m-bit random variables with min-entropy at least n+ 2 log

( 1
ε

)
.

We also note that extractors with smaller seed exist for the source of random
variables with guaranteed min-entropy. We refer the reader to [16] for a survey.

Deterministic Extractors.An extractor is deterministic if d = 0, i.e., no ad-
ditional randomness is needed. (Note that such extractors are vacuously strong.)
A class of sources allowing for deterministic extraction are so-called (m, �, k)-
total-entropy independent sources [12], consisting of random variables of the
form (X1, . . . , Xm), where X1, . . . , Xm are independent �-bit strings, and the
total min-entropy of (X1, . . . , Xm) is at least k.4 In particular, the following ex-
tractor from [12] will be useful for our purposes. (Unconditional constructions
requiring a higher entropy rate δ are also given in [12].)

Theorem 1 ([12]). Under the assumption that primes with length in [τ, 2τ ]
can be found in time poly(τ), there is a constant η such that for all m, � ∈ N
and all δ > ζ > (m�)−η, there exists a polynomial-time computable ε-extractor
Ext :

(
{0, 1}�

)m → {0, 1}n for (m, �, δ · m�)-total-entropy independent sources,
where n = (δ − ζ)m� and ε = e−(m�)Ω(1)

.

4 Note that in this case H∞(X1, . . . , Xm) =
∑m

i=1 H∞(Xi).
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2.3 Measures and the Hardcore Lemma

Guessing Advantages. Let (X,B) be a pair of correlated random variables
with joint probability distribution PXB , where B is binary, and let A be an
adversary taking an input in the range X of X and outputting a bit (i.e., A has
the same form as a distinguisher): The guessing advantage of A in guessing B
given X is

GuessA(B |X) := 2 · P[A(X) = B] − 1.

In particular, GuessA(B |X) = 1 means that A is always correct in guessing B
given X , whereas it always errs if GuessA(B |X) = −1.5

Measures. A measure M on a set X is a mapping M : X → [0, 1]. Intuitively,
it captures the notion of a “fuzzy” characteristic function of a subset of X .
Consequently, its size |M| is defined as

∑
x∈X M(x), and its density is μ(M) :=

|M|/|X |. Also one associates with each measure M the probability distribution
PM such that PM(x) := M(x)/|M|, and we say that a random variable M is

sampled according to M if M
$← PM. The following lemma shows that such

random variables have high min-entropy, as long as M is sufficiently dense.

Lemma 2. Let M : X → [0, 1] be a measure with density μ(M) ≥ δ, and let M
be sampled according to M. Then, H∞(M) ≥ log |X | − log

( 1
δ

)
.

Proof. We have PM (x) = M(x)
|M| ≤ M(x)

δ·|X | ≤ 1
δ · 1

|X | due to M(x) ≤ 1, which
implies H∞(M) = − logmaxx∈X PM(x) ≥ log |X | − log(1/δ). ��

The Hardcore Lemma. For a set W , let g : W → Y be a function, and let
P : W → {0, 1} be a predicate. The so-called hardcore lemma shows that, roughly
speaking, if GuessA(P (W ) | g(W )) ≤ δ (for W uniform in W) for all efficient A,
then for all γ > 0 there exists a measure M on W with μ(M) ≥ 1− δ such that
GuessA′

(P (W ′) | g(W ′)) ≤ γ for all efficient adversaries A′ and for W ′ sampled
according to M. This result was first introduced and proven by Impagliazzo [10].
However, his original proof only ensures μ(M) ≥ 1−δ

2 . The following theorem,
due to Holenstein [8], gives a tight version of the lemma for the non-uniform
setting.

Theorem 2 (Non-Uniform Hardcore Lemma). Let g : W → X and P :
W → {0, 1} be functions, and let δ, γ ∈ (0, 1) and s > 0 be given. If for all
circuits C with size s we have

GuessC(P (W ) | g(W )) ≤ δ

for W
$← W, then there exists a measure M on W (called the hardcore measure)

such that μ(M) ≥ 1 − δ and such that all circuits C′ with size s′ = s·γ2

32 log |W|
satisfy GuessC′

(P (W ′) | g(W ′)) ≤ γ, where W ′ $← PM.
5 In particular, flipping the output bit of such an A yields an adversary that is always

correct.
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A slightly weaker statement holds in the uniform setting, where we can only
show that for every polynomial-time adversary A′ there exists a measure M for
which GuessA′

(P (W ′) | g(W ′)) ≤ γ even if A′ is allowed to query the measure M
as an oracle6 before obtaining g(W ′). This is captured by the following theorem
also due to Holenstein [8].

Theorem 3 (Uniform Hardcore Lemma). Let g : W → X , P : W → {0, 1},
δ : N → [0, 1], and γ : N → [0, 1] be functions computable in time poly(k), where
δ and γ are both noticeable. Assume that for all polynomial-time adversaries A
we have

GuessA(P (W ) | g(W )) ≤ δ

for W
$← W, then for all polynomial-time adversaries A′(·), whose oracle queries

are independent of their input7, there exists a measure M on W with μ(M) ≥
1 − δ such that GuessA′M

(P (W ′) | g(W ′)) ≤ γ, where W ′ $← PM.

The independence requirement on oracle queries is due to the hardcore lemma
of [8] considering a model with uniform adversaries A′ which are given oracle
access to M (with no input) and subsequently output a circuit for guessing
P (W ′) out of g(W ′) (which in particular does not make queries to M). The
simpler statement of Theorem 3 follows by standard techniques.

Note that in contrast to [10,8], and the traditional literature on the hardcore
lemma, we swap the roles of δ and 1 − δ in order to align our statements with
the (natural) information-theoretic intuition. Also, note that both theorems have
equivalent versions in terms of hardcore sets (i.e., where M(x) ∈ {0, 1}), yet we
limit ourselves to considering the measure versions in this paper.
Efficient Sampling from Measures. Sometimes, we need to sample a ran-
dom element according to a measure M on X with μ(M) ≥ δ (for a noticeable δ)
given only oracle access to this measure. A solution to this is to sample a random
element x

$← X and then output x with probability M(x), and otherwise go to
the next iteration (and abort if a maximal number of iterations k is achieved.) It
is easy to see that if an output is produced, it has the right distribution, whereas
the probability that no output is produced is at most (1 − δ)k < e−δk, and can
hence be made smaller than any α > 0 by choosing k = 1

δ ln
( 1

α

)
.

In the following, we assume that the sampling can be done perfectly, neglecting
the inherent small error probability in the analysis.

3 Characterizing Computational Indistinguishability Via
Hardcore Theorems

3.1 Non-uniform Case

This section considers a setting with two efficiently computable functions E :
U → X and F : V → X , and we define the random variables X := E(U) and
6 That is, the oracle M answers a query x with M(x) ∈ [0, 1].
7 In particular, they only depend on the randomness of the distinguisher and previous

oracle queries.
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Y := F (V ), where U and V are uniformly8 distributed on U and V , respectively.
Note that this is the usual way to capture that X and Y are efficiently samplable,
where typically U and V both consist of bit strings of some length.

Let us now assume that ΔD(X,Y ) ≤ ε for every efficient distinguisher D. In
full analogy with the information-theoretic setting [13], we aim at extending the
random experiments where E(U) and F (V ) are sampled by adjoining, for all γ >
0, corresponding events A and B defined by conditional probability distributions
PA|U and PB|V , such that both events occur with probability roughly 1− ε, and,
conditioned on A and B, respectively, the random variables E(U) and F (V )
can be distinguished with advantage at most γ by an efficient distinguisher.
Note that for notational convenience (and in order to interpret the result as a
hardcore lemma), we describe the conditional probability distributions PA|U and
PB|V in terms of measures M : U → [0, 1] and N : V → [0, 1]. In particular, the
values M(u) and N (v) take the roles of PA|U (u) and PB|V (v), and note that
μ(M) = 1

|U|
∑

u∈U M(u) =
∑

u∈U PU (u) · PA|U (u) = P[A] and hence PM (u) =
M(u)
|M| = PA|U (u)PU (u)

P[A] = PU|A(u).
This is summarized by the following theorem. We refer the reader to Sec-

tion 3.2 for its proof.

Theorem 4 (Non-Uniform Indistinguishability Hardcore Lemma). Let
E : U → X and F : V → X be functions, and let ε, γ ∈ (0, 1) and s > 0 be given.
If for all distinguishers D with size s we have

ΔD(E(U), F (V )) ≤ ε

for U
$← U and V

$← V, then there exist measures M on U and N on V with
μ(M) ≥ 1 − ε and μ(N ) ≥ 1 − ε such that

ΔD′
(E(U ′), F (V ′)) ≤ γ,

for all distinguishers D′ with size s′ := s·γ2

128(log |U|+log |V|+1) , where U ′ $← PM and

V ′ $← PN .

We stress that the measures M and N given by the theorem generally depend
on γ and s.
PRGs and Computational Entropy. As an example application of Theo-
rem 4, we instantiate the function E by an (s, ε)-PRG G : {0, 1}k → {0, 1}� (in
particular U := {0, 1}k and X := {0, 1}�), whereas F is the identity function and
V = X = {0, 1}�. For any γ > 0, Theorem 4 implies that we can define an event
A on the choice of the seed of the PRG (with PA|U (u) := M(u)) occurring with
probability P[A] = μ(M) ≥ 1 − ε such that conditioned on A, no distinguisher
with size s′ can achieve advantage higher than γ in distinguishing the �-bit PRG
8 In fact, our results can naturally be generalized to the case where U and V have

arbitrary distributions by considering a slightly more general version of Theorem 2
with arbitrary distributions for W .
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output from an �-bit string U ′
� sampled according to N , which, by Lemma 2, has

min-entropy at least � − log
(

1
1−ε

)
.

In other words, the output of every ε-PRG G : {0, 1}k → {0, 1}� exhibits (with
probability 1−ε) high computational min-entropy. Note that the achieved form of
computational entropy is somewhat weaker than the traditional notion of HILL
min-entropy [6], where the random variable U ′

� is the same for all polynomially
bounded s and all noticeable γ > 0. Still, it is strong enough to allow for the use
of G’s output in place of some string which has high min-entropy with probability
1 − ε.

3.2 Proof of Theorem 4

We start by defining a function g : U × V × {0, 1} → X and a predicate P :
U × V × {0, 1} → {0, 1} such that

g(u, v, b) :=
{

E(u) if b = 0,
F (v) if b = 1.

and P (u, v, b) := b for all u ∈ U and v ∈ V . It is well known that for any two
random variables Ũ and Ṽ , and a distinguisher D, the distinguishing advantage
ΔD(E(Ũ ), F (Ṽ )) can equivalently be characterized in terms of the probability
that D guesses the uniform random bit B in a game where it is given E(Ũ) if
B = 0 and F (Ṽ ) otherwise: In particular, we have

ΔD(E(Ũ), F (Ṽ )) =
∣∣∣GuessD(B | g(Ũ , Ṽ , B))

∣∣∣
for a uniform random bit B, where Ũ , Ṽ , and B are sampled independently.

We now assume towards a contradiction that for all pairs of measures M and
N , both with density at least 1 − ε, there exists a distinguisher D′ of size at
most s′ with ΔD′

(E(U ′), F (V ′)) ≥ γ, for U ′ $← PM and V ′ $← PN .
We prove that, under this assumption, for all measures M on U × V ×

{0, 1} with μ(M) ≥ 1 − ε there exists a circuit C′ with size s′ such that

GuessC′
(B′ | g(U ′, V ′, B′)) ≥ γ

2 , for (U ′, V ′, B′) $← PM. As this contradicts the
statement of the non-uniform hardcore lemma (Theorem 2) for γ

2 (instead of γ),
this implies that there must be a circuit C with size s such that

ΔC(E(U), F (V )) ≥ GuessC(B | g(U, V,B)) > ε.

In turn, this contradicts the assumed indistinguishability of E(U) and F (V ),
concluding the proof.
Reduction to the Hardcore Lemma. In the remainder of this proof, let us
assume that we are given a measure M on U × V × {0, 1} with μ(M) ≥ 1 − ε.
We first define the measures M0 and M1 on U and V , respectively, such that

M0(u) :=
1
|V|
∑
v∈V

M(u, v, 0) and M1(v) :=
1
|U|
∑
u∈U

M(u, v, 1)
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Furthermore, let mb :=
∑

u,v M(u, v, b) for b ∈ {0, 1}, and let m := |M| =
m0 + m1. Note that in particular μ(Mb) = mb

|U|·|V| and μ(M) = m
2·|U|·|V| .

We consider two cases in the following, both leading to a circuit C′.

Case
∣∣m0

m − 1
2

∣∣ > γ
4 . Assume that m0

m − 1
2 > γ

4 . (The other case is symmetric.)
Then, for the circuit C′ always outputting the bit 0,

GuessC′
(B′ | g(U ′, V ′, B′)) = 2 · P[B′ = 0] − 1 = 2 · m0

m − 1 >
γ

2
.

Case
∣∣m0

m − 1
2

∣∣ ≤ γ
4 . We assume that 1

2 ≥ m0
m ≥ 1

2 (1 − γ
2 ) and hence also

1
2 (1 + γ

2 ) ≥ m1
m ≥ 1

2 (once again the other case is symmetric). This yields in
particular that (1 − γ/2)μ(M) ≤ μ(M0) ≤ μ(M) and μ(M) ≤ μ(M1) ≤
(1 + γ/2)μ(M).

The goal is to define two measures M̃0 on U and M̃1 on V , both with density
at least 1 − ε, such that a distinguisher D′ achieving advantage larger than γ

in distinguishing E(Ũ ′) and F (Ṽ ′) for Ũ ′ $← PM̃0
and Ṽ ′ $← PM̃1

also achieves
advantage higher than γ/2 in guessing B′ given g(U ′, V ′, B′). Ideally, we would
set M̃b := Mb, but note that μ(M0) < 1− ε possibly holds. We slightly modify
M0 in order to satisfy this property, i.e., we define for all u ∈ U and v ∈ V

M̃0(u) :=
1 − μ(M)
1 − μ(M0)

·M0(u) +
μ(M) − μ(M0)

1 − μ(M0)
and M̃1(v) := M1(v).

(We tacitly assume μ(M0) < 1, otherwise we can simply set M̃0 := M0.) It is
easy to verify that M0(u) ≤ M̃0(u) ≤ 1. Moreover,

μ(M̃0) =
1 − μ(M)
1 − μ(M0)

· μ(M0) +
μ(M) − μ(M0)

1 − μ(M0)
= μ(M) ≥ 1 − ε.

This implies, by our assumption, that for Ũ ′ and Ṽ ′ sampled according to M̃0
and M̃1 there exists D′ such that

P[D′(F (Ṽ ′)) = 1] − P[D′(E(Ũ ′)) = 1] > γ. (1)

We now show that the advantage of D′ in guessing B′ given g(U ′, V ′, B′) is larger
than γ

2 . To this aim, we introduce the following two probability distributions P1
and P2, both with range (U × {0}) ∪ (V × {1}). The former distribution is the
distribution of (g(Ũ ′, Ṽ ′, B), B) for Ũ ′ $← PM̃0

, Ṽ ′ $← PM̃1
, and B

$← {0, 1},
that is

P1(u, 0) :=
M̃0(u)

2|M̃0|
and P1(v, 1) :=

M̃1(v)

2|M̃1|
for all u ∈ U and v ∈ V .

The latter is the distribution of (g(U ′, V ′, B′), B′) for (U ′, V ′, B′) $← PM, i.e.,

P2(u, 0) :=
|V| · M0(u)

|M| and P2(v, 1) :=
|U| · M1(v)

|M| for all u ∈ U and v ∈ V .

We prove the following two lemmas for (X1, B1)
$← P1 and (X2, B2)

$← P2.
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Lemma 3. GuessD′
(B′ | g(U ′, V ′, B′)) > γ − 2 · d((X1, B1), (X2, B2)).

Proof. Consider the distinguisher D which given a pair (x, b) ∈ (U ×{0})∪ (V×
{1}) outputs 1 if b = 0 and D′(E(x)) = 0, or if b = 1 and D′(F (x)) = 1. Then,
note that by (1)

P[D(X1, B1) = 1] = 1
2

(
P[D′(E(Ũ ′)) = 0] + P[D′(F (Ṽ ′)) = 1]

)
= 1

2

(
1 + P[D′(F (Ṽ ′)) = 1] − P[D′(E(Ũ ′)) = 1]

)
> 1

2 + γ
2 .

Furthermore, P(D(X2, B2) = 1] ≤ 1
2 + GuessD′

(B′ | g(U ′,V ′,B′))
2 by the definition

of g. The fact that

P[D(X1, B1) = 1] − P[D(X2, B2) = 1] ≤ ΔD((X1, B1), (X2, B2))
≤ d((X1, B1), (X2, B2))

implies the lemma. ��

Lemma 4. d((X1, B1), (X2, B2)) ≤ γ
4 .

Proof. For all v ∈ V we have P1(v, 1) ≤ P2(v, 1), since |M| ≤ 2 · |U| · |M1|.
Furthermore, for all u ∈ U we have

P1(u, 0) =
M̃0(u)

2|M̃0|
=

M̃0(u)
2|U|μ(M)

≥ M0(u)
2|U|μ(M)

=
|V| · M0(u)

|M| = P2(u, 0)

using the fact that |M| = 2 · μ(M) · |U| · |V|. This yields

d((X1, B1), (X2, B2)) =
∑
v∈V

P2(v, 1) − P1(v, 1)

=
1

2|V|
∑
v∈V

M1(v) ·
(

1
μ(M)

− 1
μ(M1)

)
=

1
2

(
μ(M1)
μ(M)

− 1
)

≤ γ

4
,

since μ(M1) ≤ (1 + γ
2 ) · μ(M). ��

Therefore, we conclude the proof of Theorem 4 by combining both lemmas, which
show that the advantage of C′ := D′ is larger than γ/2, as desired.

3.3 The Uniform Case

In this section, we prove a uniform version of Theorem 4 in the same spirit
as the uniform hardcore lemma (Theorem 3): If E(U) and F (V ) can only be
distinguished with advantage ε by a polynomial-time distinguisher, then for all
noticeable γ > 0 and for all polynomial-time oracle distinguishers D(·,·) (making
input-independent oracle queries), there exist two measures M and N on U and
V , each with density 1 − ε, such that DM,N cannot achieve advantage better
than γ in telling E(U ′) and F (V ′) apart, where U ′ $← PM and V ′ $← PN .
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Theorem 5 (Uniform Indistinguishability Hardcore Lemma). Let E :
U → X and F : V → X , ε : N → [0, 1], and γ : N → [0, 1] be functions
computable in time poly(k), where ε and γ are both noticeable. Assume that for
all polynomial-time distinguishers D we have

ΔD(E(U), F (V )) ≤ ε

for U
$← U and for V

$← V, then for all polynomial time distinguishers D′(·,·)

whose oracle queries are independent of their input, there exist measures M on
U and N on V with μ(M) ≥ 1 − ε and μ(N ) ≥ 1 − ε such that

ΔD′M,N
(E(U ′), F (V ′)) ≤ γ,

where U ′ $← PM and V ′ $← PN .

Due to lack of space, the proof of the theorem (which follows the lines of the
non-uniform case, but with extra difficulties) can be found in the full version.

4 Security Amplification of PRGs

4.1 The Concatenate-and-Extract Construction

This section presents, as an application of Theorems 4 and 5, the first construc-
tion achieving security amplification of arbitrarily weak PRGs.
Construction. Let G : {0, 1}k → {0, 1}� and Ext : {0, 1}m�×{0, 1}d → {0, 1}n

be efficiently computable functions. We consider the Concatenate-and-Extract
(CaE) construction CaEG,Ext : {0, 1}mk+d → {0, 1}n+d such that

CaEG,Ext(x1 ‖ · · · ‖ xm ‖ r) := Ext(G(x1) ‖ · · · ‖G(xm), r) ‖ r.

for all x1, . . . , xm ∈ {0, 1}k and r ∈ {0, 1}d.
Parameters and Main Security Statement. The intuition justifying the
security of the CaE construction relies on the simple observation that, pro-
vided that G is an ε-PRG, each individual and independent PRG output in
the concatenation G(X1)‖ · · · ‖G(Xm) (for uniform X1, . . . , Xm) has computa-
tional min-entropy at least � − log

(
1

1−ε

)
with probability at least 1 − ε, and

thus we can expect the whole concatenation to have computational min-entropy
≈ m · (1 − ε) ·

[
� − log

(
1

1−ε

)]
with very high probability, which can be ex-

tracted if Ext is an appropriate extractor. Note that the resulting construction
is expanding if n/mk > 1, and for an optimal extractor this ratio is roughly
(1 − ε)

[
� − log

(
1

1−ε

)]
/k (we ignore the entropy loss of the extractor for sim-

plicity), or, turned around, our construction expands if the underlying ε-PRG
satisfies �/k > 1

1−ε + log
(

1
1−ε

)
/k holds. In particular, this value is independent

of m. In Section 4.3, we show that for a large class of natural constructions
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this is essentially optimal. For example, for ε = 1
2 , the output length � of the

given generator G needs to be slightly larger than 2k in order to achieve ex-
pansion. For comparison, the SUM construction is expanding if �/k > m, where
m = ω(k/ log(1/ε)) in order for the construction to be secure.

Also, the fact that all �-bit blocks are independent allows for using determin-
istic extractors in the CaE construction, such as the one given by Theorem 1, as
long as (1 − ε)

(
1 − 1

� log
(

1
1−ε

))
is bounded from below by (m�)−η.

The following theorem proves the soundness of the above intuition.

Theorem 6 (Strong Security Amplification for PRGs). Let ρ, δ, ε : N →
[0, 1] be functions, and let G : {0, 1}k → {0, 1}� (for k < �) be an ε-PRG.
Furthermore, let Ext : {0, 1}m� × {0, 1}d → {0, 1}n be a strong δ-extractor for(
m, �, (1 − ε − ρ) ·m ·

[
� − log

(
1

1−ε

)])
-total-entropy independent sources.

Then the function CaEG,Ext : {0, 1}mk+d → {0, 1}n+d is a (e−ρ2m + δ + ν)-
PRG, where ν is a negligible function.

The theorem is proven by means of a uniform reduction using Theorem 5, and
hence holds both in the uniform and in the non-uniform settings. However, the
next paragraph gives an ad-hoc proof for the non-uniform case which follows the
above simple intuition and which is also tighter than the more involved uniform
reduction, which we defer to Section 4.2.
Non-Uniform Proof. In the following, let us fix s, γ > 0, and assume G
is an (s, ε)-PRG. Also consider the m�-bit string G(X1)‖ . . . ‖G(Xm), where
X1, . . . , Xm are independent uniform k-bit strings.

By Theorem 4, there exist independent events A1, . . . ,Am such that Ai can
be adjoined to Xi and P[Ai] ≥ 1 − ε, and, conditioned on theses events, no size
s′ distinguisher can distinguish G(Xi) from some variable U ′

i with min-entropy
H∞(U ′

i) ≥ �− log
(

1
1−ε

)
with advantage larger than γ. In particular, by Hoeffd-

ing’s inequality (Lemma 5), the events Ai occur for a subset I ⊆ {1, . . . ,m} of
indices such that |I| ≥ (1 − ε − ρ) · m, except with probability e−ρ2m. In this
case, for a uniform random d-bit string R, a standard hybrid argument yields
that every distinguisher of size s′′ (where s′′ is only slightly smaller than s′) can
achieve advantage at most mγ in distinguishing CeEG,Ext(X1‖ . . . ‖Xm‖R) =
Ext(G(X1)‖ . . . ‖G(Xm), R)‖R from the string Ext(U ′, R)‖R, where U ′ is ob-
tained by replacing each G(Xi) with i ∈ I with the corresponding U ′

i . In par-
ticular, since U ′ has min-entropy at least (1 − ε − ρ) · m ·

[
� − log

(
1

1−ε

)]
, the

variable Ext(U ′, R)‖R has distance at most δ from a uniform random (n+d)-bit
string Un+d.

Thus, using the triangle inequality and adding the three advantages, we ob-
tain that CaEG,Ext is a (s′′,mγ + δ + e−ρ2m)-PRG. The asymptotic bound fol-
lows by applying the same argument to any polynomially bounded s and to all
noticeable γ.
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Distinguisher D′M,N (z) // On input z ∈ {0, 1}�

x1, . . . , xm
$← {0, 1}k, r

$← {0, 1}d

for all i = 1, . . . , m do
G := G ∪ {i} with probability M(xi)

i∗ $← {1, . . . , m}
for all i = 1, . . . m do

if i ∈ G and i < i∗ then yi
$← PN else yi := G(xi)

if i∗ ∈ G then
return D′

M,N (·) := D(Ext(y1 ‖ . . . ‖ yi∗−1 ‖ z ‖ yi∗+1 ‖ . . . ‖ ym, r) ‖ r)
else

return D′
M,N (·) := D(Ext(y1 ‖ . . . ‖ ym, r)‖ r) // D′

M,N ignores its input

Fig. 1. The distinguisher D′(·,·) in the proof of Theorem 6

4.2 Proof of Theorem 6

Assume, towards a contradiction, that there exists a polynomial-time distin-
guisher D and a noticeable function η such that for infinitely many values of the
security parameter k (which we omit) we have

ΔD(CaEG,Ext(X1 ‖ · · · ‖Xm ‖R), Un+d) > e−ρ2m + δ + η,

where X1, . . . , Xm are uniformly distributed k-bit string, R is a uniformly dis-
tributed d-bit string, and Un+d is a uniformly distributed (n + d)-bit string.

The Distinguisher D′(·,·)
.We give a distinguisher D′(·,·) (which is fully spec-

ified in Figure 1), which on input z ∈ {0, 1}� and given oracle access to any
two measures M : U → [0, 1] and N : V → [0, 1] operates as follows: First,
it chooses m k-bit strings x1, . . . , xm independently and uniformly at random,
and for each i ∈ {1, . . . ,m} an independent coin is flipped (taking value 1 with
probability M(xi), and 0 otherwise), and if the coin flip returns 1, the position
i is marked as “being in the measure”. Let G be the set of marked positions.
Subsequently, an index i∗ is chosen uniformly random from {1, . . . ,m}. Then,
a string y1 ‖ . . . ‖ ym ∈ {0, 1}m� (where y1, . . . , ym ∈ {0, 1}�) is built as follows:
Each yi is set to an independent element sampled according to PN if i ∈ G
and i < i∗, and in any other case it is set to G(xi). Finally, the distinguisher
chooses the seed r for the extractor uniformly at random, and outputs the bit
D(Ext(y1 ‖ . . . ‖ yi∗−1 ‖ z ‖ yi∗+1 ‖ . . . ‖ ym, r) ‖ r) if i∗ ∈ G holds, or it outputs
D(Ext(y1 ‖ . . . ‖ ym, r) ‖ r) else (in particular, the input z is ignored in this latter
case).
Analysis. In the following, let M and N both have density 1 − ε, let X ′ be
sampled according to PM, and let U ′ be sampled according to PN . We compute
the average advantage ΔD′

(G(X ′), U ′) of the distinguisher D′ = D′M,N .
It is convenient to use the shorthands P[D′(·) | g] := P[D′(X) = 1 | |G| =

g] to denote the conditional probability of D′ outputting 1 on input X given
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that |G| = g ∈ {0, 1, . . . ,m}. Similarly, we denote P[D′(X) | g, i] := P[D′(X) =
1 | |G| = g ∧ i∗ = i] when additionally conditioned on i∗ = i. Then,

ΔD′
(G(X ′), U ′) = |P[D′(G(X ′)) = 1] − P[D′(U ′) = 1]|

=

∣∣∣∣∣
m∑

g=0

P|G|(g) (P[D′(G(X ′)) | g] − P[D′(U ′) | g])
∣∣∣∣∣

=

∣∣∣∣∣
m∑

g=0

P|G|(g) ·
1
m

m∑
i∗=1

(P[D′(G(X ′)) | g, i∗] − P[D′(U ′) | g, i∗])
∣∣∣∣∣

By construction P[D′(G(X ′)) | g, i∗] = P[D′(U ′) | g, i∗−1] for g ∈ {1, . . . ,m} and
i∗ = {2, . . . ,m}, and we hence obtain

ΔD′
(G(X ′), U ′) =

1
m

∣∣∣∣∣
m∑

g=0

P|G|(g) · (P[D′(G(X ′)) | g, 1] − P[D′(U ′) | g,m])

∣∣∣∣∣
On the one hand, we now remark that

m∑
g=0

P|G|(g) · P[D′(G(X ′)) | g, 1] = P[D(CaEG,Ext(X1‖ . . . ‖Xm‖R)) = 1].

On the other hand, because μ(N ) ≥ 1−ε, whenever g ≥ (1−ε−ρ)m and i∗ = m,
the distribution of y1‖ . . . ‖ym belongs to an

(
m, �, (1 − ε − ρ)

(
� − log

(
1

1−ε

)))
-

total-entropy independent source, and as Ext is a δ-extractor for this source, we
obtain |P[D′(U ′) | g,m] − P[D(Un+d) = 1]| ≤ δ, whereas P[|G| < (1− ε− ρ)m] <
e−ρ2m by Hoeffding’s inequality (Lemma 5) and that fact that μ(M) ≥ 1 − ε.
We can finally infer

ΔD′
(G(X ′), U ′) ≥ ΔD(CaEG,Ext(X1‖ . . . ‖Xm‖R), Un+d) − δ − e−ρ2m

m
>

η

m

by our assumption on D.
As the queries of D′ do not depend on the inputs, and the above lower bound

on its advantage holds for all measures M and N with density at least 1 − ε,
the distinguisher D′ contradicts Theorem 5 for γ := η

m , which is noticeable, and
implies that G is not an ε-PRG, which is a contradiction.

4.3 Optimality of the Output Length

This final section discusses the optimality of the output length of the concatenate-
and-extract construction with respect to the class of constructions which operate
by combining a number of independent outputs from weak PRGs, and such that
the corresponding security reduction is black-box. In particular, the reduction
only exploits the capability of efficiently sampling a given distribution.9 This is
formally summarized by the following definition.
9 In particular, note that the proof itself uses black-box access to some function sam-

pling the PRG output which is not required to be expanding. All known proofs have
this form.
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Definition 1. A black-box (�, ε)-indistinguishability amplifier consists a pair of
polynomial-time algorithms (C, S) with the following two properties:

(i) For some functions m, d, and h, the algorithm C implements a function
family

(
{0, 1}�

)m × {0, 1}d → {0, 1}h, where the second input parameter
models explicitly the d-bit randomness used by the algorithm C.

(ii) Let PX be an arbitrary distribution on the �-bit strings which is sampled
by an algorithm X, let X1, . . . , Xm be independent samples of PX , and let
R and Uh be uniformly distributed d- and h-bit strings, respectively. Then,
for every distinguisher D such that

ΔD(C(X1, . . . , Xm, R), Uh) > γ

for infinitely many values of the security parameter and a noticeable func-
tion γ, we have ΔSD,X

(X,U�) > ε for infinitely many values of the security
parameter, where X

$← PX and U� is a uniform �-bit string.

The following theorem (proven in the full version) shows that the output length
achieved by concatenate-and-extract is essentially optimal.

Theorem 7. For all � ∈ N, for all constants 0 < ρ < ε < 1, there exists no
black-box (�, ε)-indistinguishability amplifier if h ≥ (1−ε+ρ)·m·

[
� − log

(
1

1−ε

)]
+

d + 1.
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A Tail Estimates

The following well-known result from probability theory [7] is repeatedly used
throughout this paper.

Lemma 5 (Hoeffding’s Inequalities). Let X1, . . . , Xm be independent ran-
dom variables with range [0, 1], and let X := 1

m

∑m
i=1 Xi. Then, for all ρ > 0 we

have
P[X ≥ E[X] + ρ] ≤ e−mρ2

and P[X ≤ E[X] − ρ] ≤ e−mρ2
.

In particular,
P
[∣∣X − E[X]

∣∣ ≥ ρ
]
≤ 2 · e−mρ2

.
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Abstract. Related-key attacks are attacks against constructions which
use a secret key (such as a blockcipher) in which an attacker attempts to
exploit known or chosen relationships among keys to circumvent security
properties. Security against related-key attacks has been a subject of
study in numerous recent cryptographic papers. However, most of these
results are attacks on specific constructions, while there has been little
positive progress on constructing related-key secure primitives.

In this paper, we attempt to address the question of whether related-
key secure blockciphers can be built from traditional cryptographic prim-
itives. We develop a theoretical framework of “related-secret secure”
cryptographic primitives, a class of primitives which includes related-key
secure blockciphers and PRFs. We show that while a single related-secret
pseduorandom bit is sufficient and necessary to create related-key secure
blockciphers, hard-core bits with typical proofs are not related-secret
psuedorandom. Since the pseudorandomness of hard-core bits is the es-
sential technique known to make pseudorandomness from assumptions of
simple hardness, this presents a very strong barrier to the development
of provably related-key secure blockciphers based on standard hardness
assumptions.

1 Introduction

Related-key attacks are attacks against constructions using a secret key (such as
a blockcipher) in which an attacker attempts to exploit known or chosen relation-
ships among keys to circumvent security properties. Several related-key attacks
on primitives have been developed [1,2,3], including attacks on AES [4,5,6,7].
While the realism of an adversary’s ability to directly influence a secret key is
questionable, the issue of related-key security has implications beyond such a
setting. For instance, weakness in a blockcipher’s key scheduling algorithm may
result in known likely relationships amongst round keys, which could lead to an
attack against the cipher [8]. As another example, blockcipher based hash func-
tions are only proven secure in the ideal cipher model [9]; in this strong model,
related-key security is implied [8]. Thus, the use of a real blockcipher for hashing
that is not related-key secure is theoretically questionable: in many such con-
structions, the adversary’s ability to choose the message to be hashed implies an
ability to launch related-key attacks on the underlying cipher. Indeed, a recent
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paper by Biryukov et al has made substantial progress on attacking AES-256 in
Davies-Meyer mode via a strong related-key attack on AES [7]. Finally, there are
settings in which related-key security has been put to good use: several papers
make use of schemes with one-time related-key security properties in order to
make fuzzy extractors robust against adversarial modification [10,11,12].

Positive results concerning related-key security are few. Bellare and Kohno [8]
develop a theoretical framework for defining related-key security, show that some
notions of related-key security are inherently impossible, and prove that an ideal
cipher is related-key secure for a general class of relations. Lucks [13] shows how
to achieve “partial” related-key security (meaning, that only part of the key
can be varied), and also gave two proposed constructions of related-key secure
pseudorandomness from novel, very strong number theoretic assumptions.

Defining related-secret security. Bellare and Kohno define related-key secu-
rity as follows. If FK(x) is a pseudorandom function (or permutation) then it is
related-key secure if an adversary cannot distinguish between (1) an oracle that,
on input x and a perturbation δ, returns Fδ(K)(x) and (2) an oracle that imple-
ments a random function (or permutation) on x independently for each distinct
δ. In order to study the relationship between such strong primitives and sim-
pler ones, we broaden the concept of related-key attacks to “related-secret” at-
tacks, which extends Bellare and Kohno’s notion of related-key security to allow
adversarially-specified perturbations on any inputs unknown to the adversary,
whether or not these inputs are considered “keys”. Simpler related-secret secure
primitives are good candidates for intermediate steps between basic primitives
and related-key security. We give definitions for many different related-secret
secure primitives such as related-secret secure one way functions/permutations,
hardcore bits, pseudorandom generators, pseudorandom functions, and pseudo-
random permutations.1

Our results. We attempt to mirror the development of pseudorandom permu-
tations from one-way functions or permutations in the related-secret setting,
without assuming (as Lucks does [13]) that any part of any secret cannot be
modified by the adversary. Because of this strong requirement, in most cases, we
expect that strong related-secret secure primitives will require simple related-
secret secure building blocks.

Most steps in the strengthening of basic primitives into pseudorandom permu-
tations can be translated to the related-secret setting. We show related-secret
security for any homomorphic one-way function, for instance, modular expo-
nentiation (under the discrete log assumption). The idea is that homomorphic
perturbations can be calculated without knowing the secret. We also show that
the critical step is to obtain related-secret pseudorandomness: we show that
even a 1-bit related-secret pseudorandom generator is sufficient to build related-
secret pseudorandom permutations. Moreover, we show that these “pseudoran-
dom bits” are necessary for related-key blockciphers.

1 Our definitions of RK-PRF’s and RK-PRP’s are the same as [8].
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In the standard model, a hard-core bit fills this role simply: a hard-core bit
is hard to learn, and thus, hard to distinguish from a random bit [14,15]. How-
ever, in the related-secret setting things are different, because of the ability of a
related-secret attacker to obtain multiple related values. So we distinguish be-
tween a related-secret hard-core bit (in which no bits are shown to the adversary,
and one must be learned), and a pseudorandom bit (in which all the bits are
shown to the adversary, who must distinguish them from random).

Here, we give a negative result: any “strong” hard-core bit (that is, a hard-core
bit with a reduction from learning the bit to inverting the associated function)
is not a related-secret pseudorandom bit. More specifically, we give a transfor-
mation from the reduction between the hard-core bit finder and the function
inverter, to an attack against the same hard-core bit as a pseudorandom bit in
the related-secret model. This transformation assumes that the reduction is a
“black-token” reduction, in other words, that it simply manipulates the function
output with known tools while being blind of the actual value of the function
output. The notion of a black-token algorithm is akin to the concept of alge-
braic reductions and generic ring algorithms [16,17,18,19], except that we do not
require the same level of algebraic structure.

This leads us to the conclusion that if related-secret pseudorandomness (in-
cluding related-key blockciphers) are possible, they must be proven either based
on other related-secret pseudorandomness assumptions2, or a dramatically new
way of creating pseudorandomness from hardness must be developed.

2 Definitions

If f : N → R is a function, we say that f is negligible if ∀c, ∃n0 such that for all
n > n0, f(n) < 1

nc .
We use A to denote an adversary or algorithm. We denote the set of all

probabilistic polynomial time adversaries as PPT . If an adversary A takes an
oracle O we denote that as AO.

We denote a value x randomly sampled from a set X as x ← X . For a function
f we denote Df as the domain of f and Rf as the range. We denote the j’th bit
of x as xj and the i’th through the j’th bit of x as xi,···,j . For two inputs x, r we
denote the inner product (

∑k
i=0 xiri) of x and r as 〈x, r〉. If x and r come from

a metric space M we denote the distance between x and r as ||x − r||.

Definition 1. A (k, ρ, p) list decodable code is a triple of algorithms C,C−1,R
where C : {0, 1}k → C ⊂ {0, 1}n, C−1 : C → {0, 1}k and R has the property
that if x ∈ {0, 1}k is the message, and y is the corrupted encoding of x, then
Pr[S ← RY : ∀x ∈ S, ||C(x)− y|| ≤ ρn] ≥ p as long as ||C(x)− y|| ≤ ρn where Y
is the oracle which on input i returns yi. and where |S| is polynomial in k. We
say a list decodable code allows for local decoding if R only queries Y a polynomial
number of times.
2 Such as the related-key pseudorandom constructions of Lucks [13], based on novel

assumptions effectively as strong as related-secret pseudorandomness.
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Definition 2. A list decodable code C,C−1,R is linear when C is a linear sub-
space of {0, 1}n.

2.1 Related-Secret Security

We consider primitives to be related-secret secure if they maintain their secu-
rity even under an adversary which can exploit known or chosen relationships
between related secret inputs. We specify the notion of interacting with the prim-
itives using secrets “related to” the secret input x ∈ D by allowing the adversary
to interact with the primitive under δ(x), where δ is a perturbation (function)
from D → D, which is specified by the adversary. For example, a block-cipher
is related-key secure if no distinguishing adversary exists, even when we allow
the adversary to make queries in which a particular transformation of the secret
key is specified. While we might hope to design related-secret primitives for any
possible set of perturbations, it has been shown in [8] that related-secret attacks
inherently exist when the set of perturbations is “invalid”, defined as follows [8]:

Definition 3 (Valid sets). We say a set of functions Δ : D → D is valid if it
satisfies the following two properties:

– Output unpredictable: Δ is output unpredictable if ∀S ⊂ Δ, ∀X ⊂ D, Pr[x ←
D; {δ(x) : δ ∈ S}∩X �= ∅] is negligible as long as |X | and |S| are polynomial
in log |D|.

– Collision resistant: Δ is collision resistant if ∀S ⊂ Δ, Pr[x ← D; |{δ(x) :
δ ∈ S}| < |S|] is negligible when |S| is polynomial in log |D|.

Due to the power of the attack in [8], it is impossible to design cryptographic
primitives that remain secure under arbitrary perturbations. As such, we will
assume that Δ, the set of “allowable” perturbations, is a valid set. We also
require that Δ has a minimal level of additional structure: we assume it is closed
under function composition and contains the identity perturbation δident ∈ Δ :
δident(x) = x.3

We also say that Δ is complete in that ∀x, y ∈ Df , ∃δ : δ(x) = y. We note
that related-key or related-secret security against an incomplete Δ is a far easier
problem [13].

Two standard examples of Δ classes that meet these criteria:

– Δ+ = {δc : x #→ x + c}
– Δ⊕ = {δc : x #→ x ⊕ c}

In both cases we identify the function δc with the value c. This sort of pertur-
bation class is the most relevant: in many published related-key attack results,
perturbations are from Δ⊕ (for example, [7]).

We start by stating the definitions of a related key secure pseudorandom per-
mutation and a related key secure pseudorandom function in the above notation.
The definitions are taken from [8].
3 For any Δ not closed under composition, or not including the identity, we can expand

it to its closure under composition, and add the identity.
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Definition 4 (Related key secure pseudorandom permutation (RK-
PRP)). An efficiently computable function E : {0, 1}p(k) × {0, 1}k → {0, 1}p(k)

where p is a polynomial is considered a related key secure pseudorandom permu-
tation under Δ if E(·,K) is a permutation for all K ∈ {0, 1}k and if ∀A, ∃ν negli-
gible: ∀k |Pr[K ← {0, 1}k : AFE(·,K),K = 1]−Pr[K ← K : AFP(·,K),K = 1]| ≤ ν(k)
where k is the security parameter, P : {0, 1}p(k)×{0, 1}k → {0, 1}p(k) is a family
of random permutations indexed by its second parameter, and where Ff(·,K),K is
the oracle which on input x, δ ∈ Δ returns f(x, δ(K)).

Definition 5 (Related key secure pseudorandom function (RK-PRF)).
An efficiently computable function R : {0, 1}p(k) × {0, 1}k → {0, 1}p′(k), where
p and p′ are polynomials, is considered to be a related-key secure pseudorandom
function under Δ if ∀A, ∃ν negligible: ∀k |Pr[K ← {0, 1}k : AFR(·,K),K = 1] −
Pr[K ← {0, 1}k : AFF(·,K),K = 1]| ≤ ν(k) where k is the security parameter
and where F : {0, 1}p(k) × {0, 1}k → {0, 1}p′(k) is a family of random functions
indexed by its second parameter, and where Ff(·,K),K is the oracle which on input
x, δ ∈ Δ returns f(x, δ(K)).

We can extend the notion of an RK-PRP / PRF to the notion of a related
secret pseudorandom generator (RS-PRG). Like an RK-PRP or RK-PRF, an
RS-PRG generates pseudorandomness even under an adversary who can affect
the “secret” input. However, an RS-PRG only has one input, the secret seed to
the generator.

Definition 6 (Related-secret secure pseudorandom generator (RS-
PRG)). Let Ff,x be the oracle which on input δ ∈ Δ returns f(δ(x)). An effi-
ciently computable function g(x) which takes n bits to l(n) bits is a related-secret
secure pseudorandom generator under Δ if ∀A ∈ PPT , ∃ν negligible: ∀k

Pr[x ← {0, 1}k;AFg,x = 1] − Pr[x ← {0, 1}k;AFO,x = 1] ≤ ν(k)

where O returns a random string from {0, 1}l(k) on input x.

Note that for plain-model PRGs, it is normally required that l(n) > n, as the
identity function is a PRG for l(n) = n, and because we anticipate using PRGs
repeatedly to obtain arbitrary amounts of randomness. Those reasons for re-
quring l(n) > n do not apply to the related-secret setting: (1) l(n) = n does
not imply a trivial function here, and (2) we anticipate using ordinary PRGs to
stretch randomness, and RS-PRGs to provide related-secret security.

We can extend the notion of related secret security to even simpler primitives
such as one way functions.

Definition 7 (Related-secret secure one way function family (RS-
OWFF)). An indexed family of functions {Fk}, where each function fs ∈ Fk

goes from Ds → Rs is considered a related secret secure one way function family
under Δs if ∀A ∈ PPT , ∃ν : ∀k, Pr[fs ← {F}k;x ← Dfs ;x′ ← AFfs,x(fs) :
fs(x) = fs(x′)] ≤ ν(k) where ν is negligible and where Ffs,x on input δ ∈ Δs

returns fs(δ(x)).
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Definition 8 (Related-secret secure one way permutation family (RS-
OWPF)). A related-secret secure one-way permutation family is a related-secret
secure one-way function family in which each individual fs is a permutation.

2.2 Hard-Core Bits

The technique that has been used to create pseudorandomness from the existence
of hard problems has been the idea of the hard core bit.

Definition 9 (Hard-core bit). A function B(x): {0, 1}k → {0, 1} is consid-
ered hard-core for a function f if:
1. B(x) is polynomial time computable.
2. ∀A ∈ PPT , ∃ν negligible: ∀k, Pr[x ← {0, 1}k; b ← A(f(x)) : B(x) = b] ≤

1
2 + ν(k).

A hardcore bit B(x) for a function f can easily be shown to be pseudorandom
even given the value f(x). This does not imply however, that the pseudoran-
domness of the bit is related to the hardness of any particular problem. Con-
sider f ′(x) = f(x2,···,k). It is clear that x1 is a hard-core bit for f however it
is hard-core due to information loss. As such, no matter what the properties of
the function f are, B(x) can never be recovered with probability bounded away
from 1

2 .4

With this in mind, we define the notion of a strong hard-core bit, a bit whose
security is directly related to the one way security of the function f .

Definition 10 (Strong hard-core bit). A function B(x): {0, 1}k → {0, 1} is
considered a strong hard-core bit for a function f if for any A ∈ PPT such that
∃ non-negligible ε where ∀k Pr[x ← {0, 1}k; b ← A(f(x)) : b = B(x)] ≥ 1

2 + ε(k)
then ∃ A′ ∈ PPT and ε′ non-negligible such that ∀k, Pr[x ← {0, 1}k;x′ ←
A′(f(x)) : f(x) = f(x′)] ≥ ε′(k).

In addition we note that all known non-trivial hard-core bits are in fact strong
hard core bits, as their security is proven via a reduction between the ability to
predict B(x) and the one-way security of f .

We can extend these definitions to the ideas of a related-secret secure hard-
core bit and a related-secret secure strong hard-core bit:

Definition 11 (Related-secret secure hard core bit (RS-HCB)). A func-
tion B(x) is a related-secret secure hard core bit for a function f secure under Δ,
if ∀A ∈ PPT , ∃ν negligible: ∀k, Pr[x ← {0, 1}k; b ← AFf,x : b = B(x)] ≤ 1

2+ν(k)
where Ff,x returns f(δ(x)) on input δ.

Definition 12 (Related-secret secure strong hard core bit (RS-
SHCB)). A function B(x) is considered a related-secret secure strong hard core
bit for a function f secure under Δ, if ∀A ∈ PPT such that if ε(k) non-negligible:
where ∀k Pr[x ← {0, 1}k; b ← AFf,x : b = B(x)] ≥ 1

2 + ε(k) ∃A′ and ε′(k)
non-negligible : Pr[x ← {0, 1}k;x′ ← A′Ff,x (f(x)) : f(x) = f(x′)] ≥ ε′(k) for
non-negligible ε′ where Ff,x returns f(δ(x)) on input δ.
4 Note, however, that a permutation with a hard-core bit is necessarily one-way.
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We finally introduce the idea of a related-secret secure pseudorandom bit or
RS-PRB. As noted before, normal hardcore bits are inherently pseudorandom.
As we will see in the next section however, when the adversary is allowed to see
f(δ(x)) and B(δ(x)) for adversarially chosen δ, B(δ(x)) is no longer necessarily
indistinguishable from random. With this in mind, we define the notion of a
related-secret secure pseudorandom bit as a bit which is pseudorandom even
when the adversary gets to see adaptively perturbed bits B(δ(x)).

Definition 13 (Related-secret secure pseudorandom bit (RS-PRB)).
A function B(x) is considered a related-secret secure pseudorandom bit for a
function f , under Δ, if ∀A ∈ PPT , ∃ν negligible: ∀k

Pr[x ← {0, 1}k;AFf||B,x = 1] − Pr[x ← {0, 1}k;AFf||R,x = 1] ≤ ν(k)

where Fg,x is an oracle that on input δ ∈ Δ, returns g(δ(x)), and where f ||g
denotes the function f ||g : x #→ f(x)||g(x), and where R(x) is a random function
from {0, 1}k to {0, 1}.

2.3 Black Token Algorithms

In this paper we introduce the idea of a black token algorithm. Informally, an
algorithm is black token if it operates, or could equivalently operate, oblivious to
the value of its input, but rather uses a set of allowed operations to manipulate
that value.

Explicitly, in the black token model of computation, an algorithm ABT works
with two types of values: public values, which are known fully, and private values,
which ABT must work with while ignorant of the actual value. For every private
value x, ABT sees only a pseudonym for x, idx.

When ABT receives a private input, it is given only idx rather than the actual
value x; similarly, when ABT makes a private output, the output is taken to
be the value for which ABT specified the pseudonym. That is, if ABT outputs
idy, this is interpreted as outputting y. If ABT makes a private output of a
pseudonym that has not been determined externally to ABT , we interpret this
as outputting a special error symbol ⊥. The input and output wires of A (both
its initial inputs and final outputs, and its means of communicating with its
oracles) are each classified as either public or private and always treated in this
manner. As such, ABT cannot send a pseudonym down a public channel, or vice
versa. Note that A is not inherently given a way to get pseudonyms for values it
knows (or chooses) completely. All pseudonyms A receives, it receives from some
outside source (as input, or as the output from some oracle).

If there is a class of allowable operations that are polynomially time com-
putable given the actual values of the pseudonyms, we allow A to perform these
functions by providing ABT with a “private operation oracle” P, which can be
used to perform such operations without revealing the actual values of the inputs
to A. P returns outputs which may be public or private.

If such a machine ABT exists in a black token model, we can create a black
token algorithm in the standard model by creating a machine T to act as a
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tokenizer. T has oracle access to ABT , as well as any oracle ABT might possess.
As such, (TABT )O(x) is the machine that runs AO

BT where T translates things
to and from pseudonyms as appropriate as it gives input to A, passes messages
back and forth between A and O, and receives final output from A.

For example, B(x), defined to be the parity of x, is a strong hard-core bit
for RSA. The reduction from a hard-core bit finder to inverting RSA is blac-
token: the xe can be treated as a pseudonym, and the algorithm requires only the
ability to calculate (−x)e and (x · 2−1)e, both of which can be done via private
operations with private outputs. For details, see Theorem 11 in the appendix.

Effectively, the assumption that an algorithm is black-token is akin to as-
suming that the algorithm “knows” how to derive the ultimate output from the
input using the allowed private operations. This is a stronger assumption than
“knowledge of exponent assumptions,” which do not restrict the allowable pri-
vate operations, and it is a stronger than the claim that the algorithm is algebraic
or a generic ring algorithm [16,17,18,19], which do restrict allowable operations
but do not explicitly require this sort of knowledge. As such, assuming that any
adversary is a black-token algorithm is an uncomfortably strong assumption.
However, unlike prior results that use assumptions of this type, we never assume
this of an adversary.

3 The Importance of RS-PRBs

In this section we attempt to mirror the construction of a pseudorandom permu-
tation from simpler primitives in the related-secret security model. Since we ad-
dress related-secret security for complete perturbation sets Δ, we cannot expect
to build any related-secret secure constructions without an underlying compo-
nent with related-secret security. As such, we show that homomorphic one-way
functions or permutations are related-secret one-way under a Δ compatible with
the homomorphism.

Theorem 1. Let f be one-way and homomorphic, so that there exist efficiently
computable binary operations ( and �, such that for all x, y, f(x ( y) = f(x) �
f(y). Then f is related-secret one-way under Δ�.

Proof. We use the homomorphic property of f to simulate related-secret queries
f(δc(x)) = f(c ( x) by making queries f(c), f(x) and outputting f(c) � f(x).

For instance, if f is defined as f(x) = gx mod p for prime p and where g is a gen-
erator for Z∗

p, then f is homomorphic where ( is addition and � is multiplication.
So if f is a one-way permutation, f is also a RS-OWP.

In the standard model, the next step would be to find hard-core bits of hard
functions. We give a general construction of related-secret strong hard-core bits.
Our construction will use similiar techniques to the ones found in [20].

Theorem 2. Let C,C−1,R be a (k, ρ, p) linear list decodable code over Fn
2 . Define

B(x, r) as C(x)r, the rth bit of C(x). Let f be an RS-OWF secure under Δ⊕.
Define f ′(x, r) as f(x), r. B(x, r) is an RS-SHCB for f ′.
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Proof. To prove that B(x, r) is an RS-SHCB for f ′ we will create a black-box
reduction MFf′,(x,r),A which will invert f(x) with non-negligible probability as
long as AFf′,(x,r) returns B(x, r) with probability non-negligibly better than 1/2.
We will build MFf′,(x,r) to use R to reconstruct x. As such, M needs to simulate
oracle access to Y for a corrupted codeword y such that ||C(x)− y|| ≤ ρn where
|C(x)| = n. M has access to an oracle A which returns B(x, r) = C(x)r with
probability 1

2 + ε for non-negligible ε. A difficulty in this proof is that 1 − ρ, the
probability that R requires B(x, r) = C(x)r to be correct, will often be much
larger than 1

2 + ε, the probability that AFf′,(x,r) returns B(x, r) correctly. As
such, we cannot directly use the answers returned by A.

To amplify the success probability of A, M will use the fact that Δ is closed
under composition. As such, M given Ff ′,(x,r) can simulate Ff ′,(δc(x),r) for random
δc as Ff ′,(δc(x),r)(δ, δc′) = Ff ′,(x,r)(δδc, δc′) When AFf′,(δc(x),r) returns its guess
at g at B(δc(x), r), M can compute B(x, r) = g ⊕ C(c)r which is correct as
long as g = B(δc(x), r) as the code is linear. For random δc ∈ Δ⊕ δc(x) is
random. This allows MFx,A to find many independent votes for B(x, r), where
each individual vote is correct with non-negligible probability. As such, M can
find C(x)r = B(x, r) with high enough probability to simulate Y and thus run
the reconstruction program R. When R returns S, M computes f(xi) ∀xi ∈ S
until he finds x∗ :, f(x∗) = f(x).

This can be seen as a generalization of the Goldreich-Levin bit to the related-
secret case, and expanded to capture the use of other list-decodable codes. As
most known list decodable codes are linear, this suggests that list decodable
codes in general imply a RS-HCB for any p secure under Δ⊕.5 In Appendix B
we prove a partial converse to this theorem, showing that certain well behaved
strong hard core bits can be used to create list decodable codes.

In the standard model, the next step towards a pseudorandom permutation
would be to show that hard-core bits are pseudorandom. Unfortunately, this
does not hold in general in the related-secret case. In particular, we have shown
the Goldreich-Levin hardcore bit 〈x, r〉 to be an RS-SHCB, but it is trivially
seen to not be a RS-PRB under ⊕ for f ′(x, r) = f(x)||r.
Theorem 3. The Goldreich Levin hardcore bit 〈x, r〉 for the function f ′(x, r) =
f(x), r is not an RS-PRB for f ′ under Δ⊕.

Proof. Just query the oracle under (δident, δc), (δident, δc′), and (δident, δc⊕c′)
receiving either b1 = 〈x, r⊕ c〉, b2 = 〈x, r⊕ c′〉 and b3 = 〈x, r⊕ c⊕ c′〉 or random
bits b1, b2, b3. Output 1 if b1⊕b2 = b3. If the bits are the inner products (outputs
of B(x, r)) then this equation will hold with probability 1. If the bits are random,
the equation will hold with probability 1

2 .

Thus we see a potential separation between the difficulty in predicting the bit
B(x) and the bit being pseudorandom in the related secret attack setting, a
separation that does not exist with regards to normal hardcore bits.
5 Also note that if we have a linear list decodable code that takes words from Fk

q to
Fn
2 , this gives us an RS-SHCB for any RS-OWF secure under vector addition, where

the vectors are in Fk
q .
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We go on to show that related-secret pseudorandom bits can be used to con-
struct related-key secure blockciphers. First, we show how to construct an RS-
PRG from an RS-PRB.

Theorem 4. Let f be a function from {0, 1}k to {0, 1}p(k), such that there is a
B that is a RS-PRB for f under Δ. Then there exists a g that is an RS-PRG
from k2 to k2 bits.

Proof. Since f has an RS-PRB, f must be an RS-OWF: if an adversary were
able to invert f with probability ε, we could attack the PRB by inverting f ,
and, if successful, checking the outputs of B. Since f is an RS-OWF, f must in
particular be a OWF.

Let g′(x) be a k-bit to k2 bit PRG; we know g′ exists because we have shown
that OWFs exist. Define g : {0, 1}k2 → {0, 1}k2

as follows. On input x, parse x
as k k-bit blocks x1, . . . , xk, compute y = B(x1)|| . . . ||B(xk), and output g′(y).

Then g is an RS-PRG for Δk where (δ1, . . . , δk)(x1|| . . . ||xk) = (δ1(x1)|| . . . ||
δk(xk)).

This proof comes easily from the idea that yi = B(δi(xi)) is indistinguishable
from random for all δi selected by A, due to the fact that B() is an RS-PRB and
xi is random. As each xi is random and independent of any other xj , and each
δi is independent from the other δj , we can consider each bit B(δi(xi)) to be
indistinguishable from random, even given the other bits B(δ(xj)). The normal
PRG expands the pseudorandom string to the correct length, finishing the proof.

The proof of the following corollary is obvious from the proof of the previous
theorem.

Corollary 1. Let g() be a RS-PRG that takes n bits to p(n) bits. Then fx(δ) =
g(δ(x)) is a PRF from Δ → {0, 1}p(n).

This proof illustrates an important trick, namely, that if related-key pseudoran-
domness is applied directly to a random secret, we can achieve security using
traditional techniques afterwards.

We now give two proofs, together showing that the existence of an RS-PRG
implies the existence of an RK-PRP and RK-PRF. The proofs illustrate an
easy way to gain related-key security from a related-secret secure pseudorandom
generator. We may use a related-secret pseudorandom generator to eliminate
any advantage an adversary may gain from a related-secret attack on a standard
construction. The adversary’s choice of δ has no effect as it gets translated to a
key that looks random and independent of other keys.

Theorem 5. If RS − PRGs exist under Δ, RK − PRF s exist under Δ.

Proof. Say g is an RS-PRG that takes k bits to l(k) bits. If g is an RS-PRG, g
must be a one-way function. If not, an adversary could distinguish the output of
g from random by inverting g and checking if the result is correct and consistent
with queries to g. From [21] and [22], we know that if one-way functions exist,
so do (standard) pseudorandom functions. Let f be a pseudorandom function
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taking a p(k) bit input and an l(k)-bit seed to a p′(k)-bit output. Let f ′(x,K) =
f(x, g(K)). Then f ′ is a related-key secure pseudorandom function under Δ.

We prove this by a simple hybrid argument. If A can distinguish between Ff ′,K
and FF ,K for random K, then either A can distinguish between Ff ′(·,K),K and
Ff ′′(·,K),K or between Ff ′′(·,K),K and FF(·,K),K , where f ′′(x,K) = f(x,R(K))
where R is a random function from k bits to l(k) bits. If the former, then A
breaks the related-key security of g. If the latter, then A distinguishes between
a random function and f with many independent random seeds.

If |Pr[K ← {0, 1}k : AFf′(·,K),K = 1] − Pr[K ← {0, 1}k : AFf′′(·,K),K = 1]| is
non-negligible, then we can use A to break g. Given an oracle O, we run A in its
attack with oracle Ff′O,K, where f ′

O(x,K) = f(x,O(K)).
If |Pr[K ← {0, 1}k : AFf′′(·,K),K = 1] − Pr[AFF(·,K),K = 1]| ≥ ε(k) non-

negligible, then we can use A to break f . Simply put, FF(·,K),K differs from
Ff ′′(·,K),K only in that f ′′ runs f on a random seed for each distinct δ(K), while
F is a random function for each distinct δ(K). By a simple hybrid reduction, we
obtain a probability of at least ε(k)/T (A), where T (A) is the running time of A,
which is polynomial.

We state the next theorem, showing that RS-PRG’s imply RK-PRP’s, as a corol-
lary. We omit the proof, but it is essentially identical to the proof of Theorem 5.

Corollary 2. Let E(x,K) be a pseudorandom permutation family taking a p(k)-
bit input and an l(k)-bit seed to a p(k)-bit output. Let g be a RS-PRG taking a
k-bit input to an l(k)-bit output. Then E(x, g(K)) is a RK-PRP.

Remark 1. A related-secret PRG effectively allows us to “harden” any secret-
key-based construction to be secure against related-key attacks, by using g(K)
in place of K.

This should apply to any construction X for which security implies security when
an attacker may query X with many independent random secret keys. For such
constructions (such as PRFs, as in the proof of 5), related-key security follows
because no adversary can distinguish between the modified construction and
querying the original consturction on many independent random secret keys,
one for each perturbation.

We have shown that RS-PRBs are sufficient to construct PK-PRPs. We end
this section by showing that RS-PRBs are “necessary” for the existence of related
key secure pseudorandom functions and permutations. We show that RK-PRP’s
imply RS-PRG’s, and RS-PRG’s imply a one way function f and an RS-PRB
B() for f .

Theorem 6. Let E(x,K) be an RK-PRP under Δ. Let g(x′) be the function
which parses x′ as (x,K) and outputs E(x,K),E(x + 1,K),E(x + 2,K). Then
for any valid set of perturbations Δ′ on {0, 1}p(k), g(x) is an RS-PRG under
Δ′ × Δ.

Proof. The proof follows from the fact that g(x) is simulatable given access to
oracle access to E(x,K). As such, if an adversary A can distinguish between
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g and random values, we can build an adversary A′ which picks a random x,
queries its E oracle on (δ1(x), δ2), (δ1(x + 1), δ2), (δ1(x + 2), δ2) when A queries
on δ12 = (δ1||δ2). If A’s oracle is the oracle to the pseudorandom permutation
then A simulates g, otherwise A′ simply returns a random value for each distinct
δ12(x,K). As such, A′ can use A to distinguish between the two cases.

We now demonstrate that RS-PRG’s give us a one way function f(x) and an
RS-PRB B(x) for that one way function B().

Theorem 7. Let g(x) be a k bit to l(k) > k bit RS-PRG. Let f(x) be the first
l(k)−1 bits of g(x) and let B(x) be the last bit of g(x). Then f(x) is an RS-OWF,
and B(x) is an RS-PRB for f .

Proof. If f is not an RS-OWF, then it is easy to show that g is not an RS-PRG.
If A attacks the one way security of f , A′ takes the δ queries made by A queries
it’s oracle, chops off the last bit of the result and returns it to A. If A returns a
value x, A′ can check the outputs of its oracle to see if they are equal to g(δ(x)).

The fact that B(x) is an RS-PRB for f() comes from the fact that g(x) =
f(x)||B(x) is an RS-PRG.

4 Difficulties in Constructing an RS-PRB

In the previous section we demonstrated that related-secret pseudorandom bits
were both necessary and sufficient for the existence of provably secure related-key
pseudorandom permutations. While we discussed related-secret one-wayness and
constructed related-secret strong hard-core bits we were unable to give any con-
struction of an RS-PRB. In fact, the homomorphic properties of known hardcore
bits mean that they cannot be pseudorandom.

In this section we give a surprising result concerning possible constructions
of RS-PRB’s, in that we show that black token, black box strong hard-core bits
cannot be related-secret pseudorandom bits.

Definition 14. If M is a black-token algorithm, its private operation oracle P
is said to be perturbation-private if all operations performed by P with private
outputs are of the form (idf(x), δ) #→ idf(δ(x)) for δ in a class Δ, for some f .

Theorem 8. Let B(x) be a strong hard-core bit for a one way function f that
has a black token, black-box reduction M where the private operation oracle P
is efficiently computable, and perturbation-private for a class Δ that is closed
under composition. Then B(x) is not an RS-PRB under any Δ′ ⊃ Δ.

For example, the reduction that proves that parity is a hard-core bit for RSA is a
black-token, perturbation-private reduction, where the class Δ = {δr : x #→ x·r}.

Proof. If B(x) is a black token, black box SHCB for a one-way function f , then
there exists a black token algorithm M such that MP,A(idf(x)) finds x with non-
negligible probability as long as A(f(x)) outputs B(x) with probability 1/2 + ε
where ε is non-negligible.
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We construct A′ to attack B as an RS-PRB under Δ′. We can view A′ as
having access to two oracles, O and Ff,x, where O either returns B(x) or a
random bit. First A′ queries Ff,x(δident) to obtain f(x), creates a token idf(x)
and then uses as idf(x) as input to M. A′ then runs M, acting as the tokenizer T.
A′ uses O to answer M’s queries to A, and uses Ff,x to answer M’s queries to P,
when necessary. When M returns x′, A′ checks if f(x′) = f(x); if so, it outputs
1, otherwise it outputs 0.

Since M is black token it can only obtain new pseudonyms from P. Since Δ
is closed under composition we can always associate every pseudonym idy M
has with a specific δ ∈ Δ such that y = f(δ(x)). Since A′ keeps track of this
association, when M asks for A(idf(δ(x))), A′ can query O(δ) and return the
result as the answer. A′ answers queries to P of the form idf(δ(x)), δ

′ by querying
Ff,x(δ′ ◦ δ), and returning a pseudonym of the result. Other queries to P may be
possible, but always produce “public” results. For such queries, the answers are
computable given the actual values of all inputs. Thus, A′ need only translate
pseudonyms to real values and then perform the computation.

When O = B, A′ provides a faithful simulation of A and P. As such, the proba-
bility that A′ will output 1 is non-negligible, since the probability that M outputs
the correct x is non-negligible (since B is always right, it has advantage ε = 1/2).
On the other hand, if O = Rx, the bits given to M are random. If MP,A(f(x))
could output the correct value x with non-negligible probability where A returns
only random bits, then MP,S(idf(x)) can output x with non-negligible probability
where S just outputs random bits. As such M can be used by itself to break the
one-wayness of f(x). Thus, with all but negligible probability, if O = Rx, A′ will
receive x′ which is not a preimage of f(x), and will thus return 0. As such, A′ is
a successful distinguisher.

Note that we make only the most general restriction on the types of acceptable
reduction in Theorem 8, the main limitation being that we require that M only
ask A for the hardcore bit of a δ(x) where we know the δ. All known examples
of strong hard-core bits have reductions that can be seen as black-token and
perturbation-private. Note that the conditions of Theorem 8 only require such a
reduction for A that is correct with probability 1: a very useful observation, since
the probability-1 reductions are often far simpler. As an example, consider the
Goldreich-Levin hard-core bit, and its reduction assuming A is always correct:

Theorem 9. Let f(x) be a one way function. Let f ′(x, r) = f(x), r. Let
B(x, r) = 〈x, r〉. B(x, r) is a black token SHCB for f ′ with {I} × Δ⊕

Proof. The machine M is simple to construct. M begins by receiving idf(x),r.
M makes use of P only to compute P (idf(x),r) = r and to compute
P (idf(x),δ(r), δ

′) = idf(x),δ′(δ(r)). It aims to query A on idf(x),ri
for different

ri until it can obtain x via standard linear algebra. In order to do this, it learns
r, and calculates idf(x),ri

by querying P on idf(x),r, δri⊕r.

This reduction can easily extend to an A whose success probability is less than
1. The proof of Goldreich and Levin involves querying f(x), ri for many random
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pairs of ri with specified differences. This allows for us to determine 〈x, ri〉 with
high probability. Since the f(x) value is left untouched, the same argument
applies; the general reduction is also black token.

See Appendix A for discussion of some other hard-core bit reductions.
We have shown that black token strong hard-core bits cannot be related-secret

pseudorandom. We further show that all related-secret pseudroandom bits are
hard-core bits:

Theorem 10. If B is an RS-PRB for a function f under Δ then B is a hard-
core bit for f .

Proof. Suppose there exists an A such that A(f(x)) returns B(x) with probability
1/2 + ε. Then we can attack B as an RS-PRB by obtaining f(x) and O(x) and
checking whether O(x) = A(f(x)); if so, we return 1, otherwise, we return 0.
Then the difference in probabilities is ε, which for non-negligible ε is enough to
break B(x) as an RS-PRB.

5 Discussion

We know of only two ways to construct pseudorandom primitives: directly from
hard-core bits in the standard model, or from other standard-model pseudoran-
dom primitives. Our impossibility result shows that related-secret pseudoran-
domness based off of hard-core bits is unlikely. Nor is it plausible to construct a
related-secret pseudorandom bit directly from standard-model pseudorandom-
ness: all such primitives have a secret seed or key, and thus, in any construction,
the adversary (because of the completeness we require of Δ) must be able to
make queries that require modifications of those secrets. In other words, either
the construction will fail, or the pseudorandomness we are using must already
be related-secret secure.

Since any RS-PRB is inherently a hard-core bit, Theorem 8 leaves open two
potential ways in which an RS-PRB might yet be possible. The RS-PRB might
be a hard-core bit, but not a strong one, or it might be a strong hard-core bit but
not one with a reduction that is black-token and perturbation-private. Normally,
one proves that a bit is hard-core by providing a reduction to the hardness of
inverting the associated function: in other words, normally, hard-core bits are
always strong hard-core bits. This is natural, since the associated function must
be one-way in any case, and thus any proof not requiring extra assumptions
would reduce to its one-wayness.

If B is a strong hard-core bit, then its reduction must not meet the conditions
of Theorem 8. As we discussed, all known examples of strong hard-core bits
have black-token reductions of the type necessary for our impossibility proof.
Note also, that it is difficult to see what useful information M can receive by
running A on input that is not a valid f(δ(x)) value for some δ, or when δ is
unknown to M.

At a higher level, our restrictions on the type of reductions used in the proof
are reasonable ones. Since no assumptions can be made about observable prop-
erties of f(x), these values are mostly ignored in any proof involving generic
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one-way functions or permutations. As such, any “private operations” in those
proofs are kept to a strict minimum because they must be efficiently computable
given only f(x). Also, in the case of bits that are generic - that is, secure for a
variety of functions - it is hard to imagine a proof of their security that is not
black-token and black-box. Finally note that the proof applies if there exists a
reduction of the specified type. As such, even if there is a very unusual reduction
that does not meet the conditions of Theorem 8, if other more usual reductions
exist, the theorem still applies.

The major open problem in related-secret security is whether or not related-
key secure blockciphers exist. We have shown that related-secret pseudorandom
bits are necessary and sufficient for higher forms of related-secret pseudorandom-
ness. However, related-secret pseudorandom bits cannot be constructed using
traditional techniques. This leaves a significant open problem: are related-secret
pseudorandom bits possible under only basic assumptions? Or alternatively, can
fundamentally new techniques be found to create related-secret pseudorandom
bits?
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A Black Token Reductions for Known Hardcore Bits

In this section we examine two other well-known hardcore bits, the hardcore
bits for RSA, discrete log, (the generic hardcore bit of Goldreich and Levin was
examined in the body of the paper). For each one we demonstrate that these
hardcore bits are black token hardcore bits that fit the requirements of Theo-
rem 8. Many of these proofs will simply be restatements of previous reductions,
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or slightly modified versions to emphasize the fact that they are black token.
For each proof, we only formally show that the necessary reduction exists and
is black token for an adversary which always returns the correct hardcore bit
perfectly, however we also informally state how the proof is changed to adapt an
imperfect adversary and how this is also black token.

We next address the hardcore bit for the RSA function. The reduction is taken
from [23].

Theorem 11. Let RSAN,e be the RSA function, that is RSAN,e(x) = xe mod N .
Define B(x) as the parity of x. Then B(x) is a black token SHCB for RSAN,e

Proof. P allows two transformations, δ 1
2
(x) = x(2−1) mod N and δ−1(x) =

−x mod N . These can be viewed as two specific transformation among a more
general class of multiplicative transformations δr(x) = xr mod N . In general, to
calculate (rx)e given xe, we need only multiply xe by re.

M asks A for the parity (LSB) of idxe . If 0, then M runs P on (idxe , δ 1
2
) to

obtain id(x/2)e . If 1, then M runs P on (idxe , δ 1
2
◦ δ−1) to obtain id(−x/2)e .

Since −x has the opposite parity of x (since N is odd), we always divide an
even residue by 2, thus effectively shifting the unknown bits down by one. We
collect one bit of x at a time, keeping track of the number of times we have
applied δ−1, as these reverse our results.

For A with probability of success less than 1, the reduction is far more com-
plicated, but still can be viewed as a sequence of applications of multiplicative
transformations of x by manipulating xe.

We next address the hardcore bit for the discrete log function. The reduction
is taken from [24].

Theorem 12. Let fg,p be the modular exponentiation function, where g is a
generator of the group Z∗

p. Let Bp(x) be the function that outputs 1 if x ≤ p−1
2 ,

0 otherwise. Bp(x) is a black-token SHCB for fg,p.

Proof. P computes several transformations, δ−1(x) = x−1, δ 1
2
(x) which returns

either x
2 or x

2 + p−1
2 , δ+ p−1

2
which returns x + p−1

2 , and p(x), a predicate which
returns the least significant bit of x. These can all be seen as computable using
multiplicative and/or additive transformations on x, which are efficiently com-
putable. gδ+r(x) = gx+r = gxgr, and gδ∗r(x) = gxr = (gx)r. Take Δ to be the
resulting class, closed under composition.

M proceeds as follows. It first obtains idy for y = gx mod p. It then queries
p(idy) and obtains a bit. If 1, M queries P on (idy, δ−1) obtaining a pseudonym
for y′ = gx−1. If 0, M considers y′ = y and idy = idy′ . M then makes a query to
P(idy′ , δ 1

2
) and P(·, δ+ p−1

2
), obtaining pseudonyms for the two square roots, gs

and gs+ p−1
2 where g2s = y′, in unknown order. M then sends both pseudonyms

to A which enables him to find the pseudonym for g
x′
2 where x′ = x or x− 1.

This allows M to obtain the least significant bit of x, then shift the bits of x
one to the right. By repeating this process we may obtain all the bits of x.
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We note that dealing with imperfect A is done by simply computing multipli-
cation mod p by known quadratic residues. As such, the full proof still remains
black token.

A.1 Other Hardcore Bits

There are too many examples of hardcore bits to analyze all known proofs.
Hardcore bits for specific functions tend to work via homomorphic properties of
f(x); the RSA and discrete log examples show how these can be viewed as black
token. Generalized hardcore bits are extensions of Goldreich-Levin, and, as such,
ignore the value of f(x) completely. Note that virtually any algorithm can be
viewed as a black-token algorithm of this sort, for the appropriate class Δ. One
question may be whether Δ is “valid,” but actually the answer is irrelevant: all
perturbatinos in the Δ that arise are in fact secret perturbation we can calculate
efficiently.

B Black Token RS-SHCB’s to Codes

In this section we prove a corollary to Theorem 2, demonstrating that certain
well behaved strong hard core bits can be viewed as error correcting codes.

Theorem 13. Let B(x) be a black token RS-SHCB for a function f secure
under Δ where Δ is of finite size and where M only makes queries to P of the
form P(idf(δ(x)), δ

′). Establish an ordering on Δ, δ1, δ2, · · · δ|Δ|. Define C(x)i as
B(δi(x)). Then we can create a C−1 and a R such that C,C−1,R is a (k, ρ, p) list
decodable code where 1 − ρ = 1

2 + ε, where p is the success probability of M and
where l is the number of queries M makes to A.

Proof. The machine R will use the machine M so it needs to be able to simulate P,
Ff,x and A. The simulations of Ff,x and P will be relatively easy as their outputs
in the black token model are random pseudonyms idf(δ(x)). The simulation of A
is accomplished by using the oracle Y.

RY first creates a random value idf(x) as the “token” for f(x) (which it
does not know) and passes idf(x) to M. When M makes a query Ff,x(δ) or
P(idf(δ(x)), δ

′), R returns a randomly generated token which it associates with
idf(δ(x)) / idf(δ′δ(x)). When M makes a query A(idf(δi(x))), RY simulates A by
querying Y for B(δi(x)) = C(x)i, which is correct with probability 1

2 + ε. Since
M operates in the black token model, and receives only idf(x) as input, and only
queries P on idf(δ(x)), δ

′, R can simulate A perfectly and as such MA,Ff,x will
output x with probability p.
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Abstract. We describe the first domain extender for ideal ciphers, i.e.
we show a construction that is indifferentiable from a 2n-bit ideal cipher,
given a n-bit ideal cipher. Our construction is based on a 3-round Feis-
tel, and is more efficient than first building a n-bit random oracle from a
n-bit ideal cipher (as in [9]) and then a 2n-bit ideal cipher from a n-bit
random oracle (as in [10], using a 6-round Feistel). We also show that 2
rounds are not enough for indifferentiability by exhibiting a simple at-
tack. We also consider our construction in the standard model: we show
that 2 rounds are enough to get a 2n-bit tweakable block-cipher from a
n-bit tweakable block-cipher and we show that with 3 rounds we can get
beyond the birthday security bound.
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1 Introduction

A block cipher is a primitive that encrypts a n-bit string using a k-bit key.
The standard security notion for block-ciphers is to be indistinguishable from a
random permutation, for a polynomially bounded adversary, when the key is gen-
erated at random in {0, 1}k. A block-cipher is said to be a strong pseudo-random
permutation (or chosen-ciphertext secure) when computational indistinguisha-
bility holds even when the adversary has access to the inverse permutation.

When dealing with block-ciphers, it is sometimes useful to work in an idealized
model of computation, in which a concrete block-cipher is replaced by a publicly
accessible random block-cipher (or ideal cipher); this is a block cipher with a
k-bit key and a n-bit input/output, that is chosen uniformly at random among
all block ciphers of this form; this is equivalent to having a family of 2k indepen-
dent random permutations. All parties including the adversary can make both
encryption and decryption queries to the ideal block cipher, for any given key;
this is called the Ideal Cipher Model (ICM). Many schemes have been proven
secure in the ICM [5,11,13,15,19,20,27]; however, it is possible to construct ar-
tificial schemes that are secure in the ICM but insecure for any concrete block
cipher (see [4]). Still, a proof in the ideal cipher model seems useful because it
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shows that a scheme is secure against generic attacks, that do not exploit specific
weaknesses of the underlying block cipher.

It was shown in [9,10] that the Ideal Cipher Model and the Random Oracle
Model are equivalent; the random oracle model is similar to the ICM in that a
concrete hash function is replaced by a publicly accessible random function (the
random oracle). The authors of [9] proved that a random oracle (taking arbitrary
long inputs) can be replaced by a block cipher-based construction, and the result-
ing scheme will remain secure in the ideal cipher model. Conversely, it was shown
in [10] that an ideal cipher can be replaced by a 6-round Feistel construction, and
the resulting scheme will remain secure in the random oracle model. Both direc-
tions were obtained using an extension of the classical notion of indistinguishabil-
ity, called indifferentiability, introduced by Maurer et al. in [24].

Since a block cipher can only encrypt a string of fixed length, one must con-
sider the encryption of longer strings. A mode of operation of a block-cipher is a
method used to extend the domain of applicability from fixed length strings to
variable length strings. Many modes of operations have been defined that pro-
vide both privacy and authenticity (such as OCB [28]). A mode of operation can
also be a permutation; in this case, one obtains an extended block cipher that
must satisfy the same property as the underlying block-cipher, i.e. it must be a
(strong) pseudo-random permutation. Many constructions of domain extender
for block-ciphers have been defined that satisfy this security notion, for example
PEP [6], XCB [14], HCTR [30], HCH [7] and TET [18].

However, it is easy to see that none of those constructions provide the in-
differentiability property that enables to get a 2n-bit ideal cipher from a n-bit
ideal cipher. This is because these constructions were proposed with privacy con-
cerns in mind (mainly for disk encryption purposes) and proven secure only in
the classical pseudo-random permutation model. Therefore, these constructions
cannot be used when security must hold under the random permutation model
(or ideal cipher model). Consider for example the public-key encryption scheme
described by Phan and Pointcheval in [27]. The scheme requires a public random
permutation with the same size as the RSA modulus, say 1024 bits. In order to
replace a 1024-bit random permutation by a construction based on a smaller
primitive (for example a 128-bit block cipher), indifferentiability with respect to
a 1024-bit random permutation is required. Given a 128-bit block-cipher, none
of the previous constructions can provide such property; therefore if one of these
constructions is plugged into the Phan and Pointcheval scheme, nothing can be
said about the security of the resulting scheme.

In this paper we construct the first domain extender for the ideal cipher; that
is we provide a construction of an ideal cipher with 2n-bit input from an ideal
cipher with n-bit input. Given an ideal cipher with n-bit input/output, one could
in principle use the construction in [9] to get a random oracle with n-bit output,
and then use the 6-round Feistel in [10] to obtain an ideal cipher with 2n-bit
input/output, but that would be too inefficient. Moreover the security bound
in [10] is rather loose, which implies that the construction only works for large
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values of n.1 In this paper we describe a more efficient construction, based on
a 3-round Feistel only, and with a better security bound; we view this as the
main result of the paper. More precisely, we show that the 3-round construction
in Figure 1 (left) is enough to get a 2n-bit random permutation from a n-bit
ideal cipher, and that its variant in Figure 1 (right) provides a 2n-bit ideal
cipher. We also show that 2 rounds are not enough by providing a simple attack.
Interestingly, in the so called honest-but-curious model of indifferentiability [12],
we show that 2 rounds are sufficient.

Our construction is similar to that of Luby-Rackoff [23]. However we stress
that the “indifferentiable construction” security notion is very different from the
classical indistinguishability notion. The well known Luby-Rackoff result that 4
rounds are enough to obtain a strong pseudo-random permutation from pseudo-
random functions [23], is proven under the classical indistinguishability notion.
Under this notion, the adversary has only access to the input/output of the
Luby-Rackoff construction, and tries to distinguish it from a random permu-
tation; in particular it does not have access to the input/output of the inner
pseudo-random functions. On the contrary, in our setting, the distinguisher can
make oracle calls to the inner block-ciphers Ei’s (see Fig. 1); the indifferentia-
bility notion enables to accommodate these additional oracle calls in a coherent
definition.

The indifferentiability security notion still requires a (small) ideal component.
We stress that it is unknown how to instantiate such ideal component (be it a
random oracle or an ideal cipher, as opposed to a PRF or a PRP) and that the
security guarantee does not hold anymore once that component is instantiated.
Moreover the recent related-key attacks on AES [2,3] show that AES-192 and
AES-256 do not behave as ideal ciphers; as of 2009 it is unclear if we have a
candidate block-cipher with key-size larger than block-size that behaves like an
ideal cipher.

Finally, we also analyze our construction in the standard model. In this case,
we use a tweakable block-cipher as the underlying primitive. Tweakable block-
ciphers were introduced by Liskov, Rivest and Wagner in [22] and provide an
additional input - the tweak - that enables to get a family of independent block-
ciphers; efficient constructions of tweakable block-ciphers were described in [22],
given ordinary block-ciphers. In this paper we show that our construction with
2 rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweak-
able block-cipher. Moreover we show that with 3 rounds we achieve a security
guarantee beyond the birthday paradox.

1.1 Related Work

At FSE 2009, Minematsu [25] provided two constructions of a 2n-bit block-cipher
from an n-bit tweakable block-cipher :

1 The security bound in [10] for the 6-round Feistel random oracle based construction is
q16/2n, where q is the number of distinguisher’s queries. This implies that for q = 264,
one must take at least n = 1024, which corresponds to a 2048-bit permutation.
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Fig. 1. Construction of a 2n-bit permutation given a n-bit ideal cipher with n-bit key
(left). Construction of a 2n-bit ideal cipher with k-bit key, given a n-bit ideal cipher
with (n + k)-bit key (right).

1. A 3-round Feistel construction with universal hashing in the 1st round and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure pseudo-random permutation beyond the birthday bound.

2. A 4-round Feistel with universal hashing in the 1st and the 4th rounds and
tweakable block ciphers in the 2nd and the 3rd rounds. This construction is
a secure strong pseudo-random permutation beyond the birthday bound.

On the other hand, our construction in this paper is a 3-round Feistel, with
tweakable block ciphers in every round, and it gives a secure (tweakable) strong
pseudo-random permutation beyond the birthday bound. Therefore, the con-
struction in [25] is more efficient as only 2 calls are required to the underlying
tweakable block-cipher, instead of 3 calls in our construction (this is assuming
very fast universal hashing, e.g. [21]). However, we stress that the constructions
in [25] are secure only in the symmetric-key setting; it is easy to see that none of
the two constructions from [25] can achieve the indifferentiability property (the
attack is similar to the attack against 2-round Feistel described in Section 3).

2 Definitions

We first recall the notion of indifferentiability of random systems, introduced
by Maurer et al. in [24]. This is an extension of the classical notion of indistin-
guishability, where one or more oracles are publicly available, such as random
oracles or ideal ciphers.

As in [24], we define an ideal primitive as an algorithmic entity which receives
inputs from one of the parties and delivers its output immediately to the querying
party. In this paper, we consider ideal primitives such as random oracle, random
permutation and ideal cipher. A random oracle [1] is an ideal primitive which
provides a random output for each new query; identical input queries are given
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the same answer. A random permutation is an ideal primitive that provides
oracle access to a random permutation P : {0, 1}n → {0, 1}n and to P−1. An
ideal cipher is a generalization of a random permutation that models a random
block cipher E : {0, 1}k × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}k defines an
independent random permutation Ek = E(k, ·) on {0, 1}n. The ideal primitive
also provides oracle access to E and E−1; that is, on query (0, k,m), the primitive
answers c = Ek(m), and on query (1, k, c), the primitive answers m such that
c = Ek(m). We stress that in the ideal cipher model, the adversary has oracle
access to a publicly available ideal cipher and must send both the key and the
plaintext in order to obtain the ciphertext; this is different from the standard
model in which the key is privately generated by the system.

The notion of indifferentiability [24] enables to show that an ideal primitive
P (for example, a random permutation) can be replaced by a construction C
that is based on some other ideal primitive E; for example, C can be the Feistel
construction illustrated in Fig. 1 (left).

Definition 1 ([24]). A Turing machine C with oracle access to an ideal prim-
itive E is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive P if
there exists a simulator S with oracle access to P and running in time at most
tS, such that for any distinguisher D running in time at most tD and making at
most q queries, it holds that:∣∣∣Pr

[
DCE ,E = 1

]
− Pr

[
DP,SP

= 1
]∣∣∣ < ε

CE is simply said to be indifferentiable from P if ε is a negligible function of the
security parameter n, for polynomially bounded q, tD and tS.

The previous definition is illustrated in Figure 2, where C is our 3-round con-
struction of Figure 1 (left), E is an ideal cipher, P is a random permutation and
S is the simulator. In this paper, for a 3-round construction, we denote these
ideal ciphers by E1, E2, E3 (see Fig. 1). Equivalently, one can consider a single
ideal cipher E and encode in the first 2 key bits which round ideal cipher E1,
E2, or E3 is actually called. The distinguisher has either access to the system

E1

E2

E3 E P S

D 0/1

Fig. 2. The indifferentiability notion
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formed by the construction C and the ideal cipher E, or to the system formed
by the random permutation P and a simulator S. In the first system (left), the
construction C computes its output by making calls to the ideal cipher E (equiv-
alently the 3 ideal ciphers E1, E2 and E3); the distinguisher can also make calls
to E directly. In the second system (right), the distinguisher can either query
the random permutation P , or the simulator that can make queries to P . If
the distinguisher first makes a call to the construction C, and then makes the
corresponding calls to ideal cipher E, he will get the same answer. This must
remain true when the distinguisher interacts with permutation P and simulator
S. The role of simulator S is then to simulate the ideal ciphers Ei’s so that 1) the
output of S should be indistinguishable from that of ideal ciphers Ei’s and 2)
the output of S should look “consistent” with what the distinguisher can obtain
independently from P . We note that in this model the simulator does not see
the distinguisher’s queries to P ; however, it can call P directly when needed for
the simulation.

It is shown in [24] that the indifferentiability notion is the “right” notion
for substituting one ideal primitive with a construction based on another ideal
primitive. That is, if CE is indifferentiable from an ideal primitive P , then CE

can replace P in any cryptosystem, and the resulting cryptosystem is at least as
secure in the E model as in the P model; see [24] or [9] for a proof.

3 An Attack against 2 Rounds

In this section we show that 2 rounds are not enough when the inner ideal ciphers
are publicly accessible, that is we exhibit a property for 2 rounds that does not
exist for a random permutation.

Formally, the 2 round construction is defined as follows (see Fig. 3). Let E1 :
{0, 1}n × {0, 1}n → {0, 1}n be a block cipher, where c = E1(K,m) is the n-bit
ciphertext corresponding to n-bit key K and n-bit input message m; let E2 be
defined similarly. We define the permutation Ψ2 : {0, 1}2n → {0, 1}2n as:

Ψ2(L,R) :=
(
E1(R,L), E2(E1(R,L), R)

)

E1

E2

L R

S

S T

Fig. 3. The 2-round Feistel construction Ψ2(L, R)
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It is easy to see that this defines an invertible permutation over {0, 1}2n. Namely,
given a ciphertext (S, T ) the value R is recovered by “decrypting” T with block-
cipher E2 and key S, and the value L is recovered by “decrypting” S with
block-cipher E1 and key R.

The attack against permutation Ψ2 is straightforward; it is based on the fact
that the attacker can arbitrarily choose both R and S. More precisely, the at-
tacker selects R = 0n and S = 0n and queries L = E−1

1 (R,S) and T = E2(S,R).
This gives Ψ2(L,R) = (S, T ) as required. However, it is easy to see that with
a random permutation P and a polynomially bounded number of queries, it is
impossible to find L,R, S, T such that P (L‖R) = S‖T with both R = 0n and
S = 0n, except with negligible probability. Therefore, the 2-round construction
cannot replace a random permutation.

Theorem 1. The 2-round Feistel construction Ψ2 is not indifferentiable from a
random permutation.

In the full version of the paper [8] we also analyse existing constructions of
domain extender for block ciphers and show that they are not indifferentiable
from an ideal cipher; more precisely, we show that the CMC [16] and EME [17]
constructions are not indifferentiable from an ideal cipher. We stress that our
observations do not imply anything concerning their security in the standard
pseudo-random permutation model.

4 Indifferentiability of 3-Round Feistel Construction

We now prove our first main result: the 3-round Feistel construction is indif-
ferentiable from a random permutation. To get an ideal cipher, it suffices to
prepend a key K to the 3 ideal ciphers E1, E2 and E3; one then gets a family of
independent random permutation, parametrised by K, i.e. an ideal cipher (see
Fig. 1 for an illustration).

Formally, the 3 round permutation Ψ3 : {0, 1}2n → {0, 1}2n is defined as
follows, given block ciphers E1, E2 and E3 with n-bit key (first variable) and
n-bit input/output (second variable):

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)

Ψ3(L,R) := (S, T )

The 3 round block cipher Ψ ′
3 : {0, 1}k ×{0, 1}2n → {0, 1}2n is defined as follows,

given block ciphers E1, E2 and E3 with (k + n)-bit key and n-bit input/output:

X = E1(K‖R,L)
S = E2(K‖X,R)
T = E3(K‖S,X)

Ψ ′
3(K, (L,R)) := (S, T )
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Theorem 2. The 3-round Feistel construction Ψ3 is (tD, tS , q, ε)-indifferentiable
from a random permutation, with tS = O(qn) and ε = 5q2/2n. The 3-round
block-cipher construction Ψ ′

3 is (tD, tS , q, ε)-indifferentiable from an ideal cipher,
with tS = O(qn) and ε = 5q2/2n.

Proof. We only consider the 3-round permutation Ψ3; the extension to block-
cipher Ψ ′

3 is straightforward. We must construct a simulator S such that the two
systems formed by (Ψ3, E) and (P,S) are indistinguishable (see Fig. 2).

Our simulator maintains an history of already answered queries for E1, E2
and E3. Formally, when the simulator answers X for a E1(R,L) query, it stores
(1, R, L,X) in history; the simulator proceeds similarly for E2 and E3 queries.
We write that the simulator “simulates” E1(R,L) ← X when it first generates
a random X ∈ {0, 1}n \ B, where B is the set of already defined values for
E1(R, ·), and then stores (1, R, L,X) in history, meaning that E1(R,L) = X ; we
use similar notations for E2 and E3. The distinguisher’s queries are answered as
follows by the simulator:

E1(R,L) query: E−1
1 (R,X) query

1. Simulate E1(R,L) ← X 1. Simulate E−1
1 (R,X) ← L

2. (S, T ) ← Adapt(L,R,X) 2. (S, T ) ← Adapt(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt(L,R,X):
1. Simulate E−1

1 (R,X) ← L 1. S‖T ← P (L‖R)
2. (S, T ) ← Adapt(L,R,X) 2. Store E2(X,R) = S in history
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T ).

The procedure for answering the other queries is essentially symmetric; we
provide it for completeness:

E−1
3 (S, T ) query: E3(S,X) query

1. Simulate E−1
3 (S, T ) ← X 1. Simulate E3(S,X) ← T

2. (L,R) ← Adapt−1(S, T,X) 2. (L,R) ← Adapt−1(S, T,X)
3. Return X 3. Return T

E−1
2 (X,S) query: Adapt−1(S, T,X):

1. Simulate E3(S,X) ← T 1. L‖R ← P−1(S‖T )
2. (L,R) ← Adapt−1(S, T,X) 2. Store E2(X,R) = S in history.
3. Return R 3. Store E1(R,L) = X in history.

4. Return (L,R)

Finally, the simulator aborts if for some Ei and some key K, it has not de-
fined a permutation for Ei(K, ·); that is the simulator aborts if it has defined
Ei(K,X) = Ei(K,Y ) for some X �= Y or it has defined E−1

i (K,X) = E−1
i (K,Y )

for some X �= Y . This completes the description of the simulator.
As a consistency check, it is easy to see that if the distinguisher makes a

single query for P (L‖R) and then queries the simulator for X ← E1(R,L), S ←
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E2(X,R) and T ← E3(S,X), then the distinguisher obtains S‖T = P (L‖R) as
required.

We now proceed to prove that the systems (Ψ3, E) and (P,S) are indistin-
guishable. We consider a distinguisher D making at most q queries to the system
(Ψ3, E) or (P,S) and outputting a bit γ. We define a sequence Game0, Game1, . . .
of modified distinguisher games. In the first game the distinguisher interacts
with the system (Ψ3, E). We incrementally modify the system so that in the last
game the distinguisher interacts with the system (P,S), where S is the previously
defined simulator. We denote by Si the event that in game i the distinguisher
outputs γ = 1.
• Game0: the distinguisher interacts with Ψ3 and the ideal ciphers Ei.
• Game1: we modify the way Ei queries are answered, without actually changing
the value of the answer. We also maintain an history of already answered queries
for E1, E2 and E3. We proceed as follows:

E1(R,L) query: E−1
1 (R,X) query

1. Let X ← E1(R,L) 1. Let L ← E−1
1 (R,X)

2. (S, T ) ← Adapt′(L,R,X) 2. (S, T ) ← Adapt′(L,R,X)
3. Return X 3. Return L

E2(X,R) query: Adapt′(L,R,X):
1. Let L ← E−1

1 (R,X) 1. S‖T ← Ψ3(L‖R)
2. (S, T ) ← Adapt′(L,R,X) 2. Store E2(X,R) = S in history.
3. Return S 3. Store E3(S,X) = T in history.

4. Return (S, T )

The queries toE−1
2 (X,S),E3(S,X) andE−1

3 (S, T ) are answered symmetrically.
For example, when given a query to E1(R,L), we first query ideal cipher E1

for X ← E1(R,L); then instead of X being returned immediately as in Game0,
we let S‖T = Ψ3(L‖R), which gives S = E2(X,R) and E3(S,X) = T ; we then
store (2, X,R, S) and (3, S,X, T ) in history. Therefore, the value that get stored
in history is exactly the same as the value from ideal ciphers E2 and E3; the
only difference is that this value was obtained indirectly by querying Ψ3 instead
of directly by querying E2 and E3. It is easy to see that this holds for any query
made by the distinguisher, who receives exactly the same answers in Game0 and
Game1; this implies:

Pr[S1] = Pr[S0]

As illustrated in Fig. 4, we have actually constructed a simple simulator S′ that
makes queries to a subsystem T that comprises the construction Ψ3 and the
ideal ciphers E1, E2 and E3. The difference between S′ in Game1 and the main
simulator S defined previously is that 1) S′ calls ideal cipher E1(R,L) instead
of simulating it and 2) S′ makes calls to Ψ3(L‖R) instead of P (L‖R).
• Game2: we modify the way the permutation queries are answered. Instead of
using Ψ3 as in system T , we use the random permutation P in the new system
T ′ (see Fig. 4).
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Fig. 4. Sequence of games for proving indifferentiability

We must show that the distinguisher’s view has statistically close distribution
in Game1 and Game2. For this, we consider the subsystem T with the 3-round Feis-
tel Ψ3 and the ideal ciphers Ei’s in Game1, and the subsystem T ′ with the random
permutation P and ideal ciphers Ei’s in Game2. We show that the output of sys-
tems T and T ′ is statistically close; this in turn shows that the distinguisher’s
view has statistically close distribution in Game1 and Game2. Note that the indis-
tinguishability of T and T ′ only holds for the particular set of queries made by the
distinguisher and the simulator; it could not hold for any possible set of queries.

In the following, we assume that the distinguisher eventually makes a sequence
of Ei queries corresponding to all previous Ψ3 queries that he has made. More
precisely, if the distinguisher has made a Ψ3(L,R) query, then eventually the
distinguisher makes the sequence of queries X ← E1(R,L), S ← E2(X,R) and
T ← E3(S,X) to the simulator; the same holds for Ψ−1

3 (S, T ) queries. This
is without loss of generality, because from any distinguisher D we can build a
distinguisher D′ with the same output that satisfies this property.

The outputs to Ei queries provided by subsystem T in Game1 and by subsys-
tem T ′ in Game2 are the same, since in both cases these queries are answered
by ideal ciphers Ei. Therefore, we must show that the output to P/P−1 queries
provided by T and T ′ have statistically close distribution, when the outputs to
Ei queries provided by T or T ′ are fixed.

We consider a forward permutation query L‖R made by either the distin-
guisher or the simulator S′. If this L‖R query is made by the distinguisher,
since we have assumed that the distinguisher eventually makes the Ei queries
corresponding to all his permutation queries, this L‖R query will also be made
by the simulator S′, by definition of S′. Therefore we can consider L‖R queries
made by the simulator S′ only.

We first consider the answer to S‖T = Ψ3(L‖R) in Game1. In this case the
answer S‖T is computed as follows:

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)
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By definition of the simulator S′, when the simulator S′ makes a query for
Ψ3(L‖R), it must have made an ideal cipher query to E1(R,L) before, or an
ideal cipher query to E−1

1 (R,X) before, with L = E−1
1 (R,X).

If the simulator S′ has made an ideal cipher query for E1(R,L) to subsystem
T , then from the definition of the simulator a call to Adapt′(L,R,X) has oc-
curred, where X = E1(R,L); in this Adapt′ call the values E2(X,R) and E3(S, T )
are defined by the simulator; therefore the simulator does not make these queries
to sub-system T . This implies that the values of E2(X,R) and E3(S,X) are not
included in the subsystem T output; therefore these values are not fixed in the
probability distribution that we consider; only the value X = E1(R,L) is fixed.

Moreover, for fixed X,R the distribution of S = E2(X,R) is uniform in
{0, 1}n\B, where B is the set of already defines values for E2(X, ·). Since there are
at most q queries, the statistical distance between the distribution of E2(X,R)
and the uniform distribution in {0, 1}n is at most 2q/2n; the same holds for
the distribution of T = E3(S,X). Therefore, we obtain that for a fixed X , the
distribution of (S, T ) is statistically close to the uniform distribution in {0, 1}2n,
with statistical distance at most 4q/2n.

If the simulator has made an ideal cipher query for E−1
1 (R,X), then the same

analysis applies and we obtain that for a fixed L = E−1
1 (R,X) the distribution of

(S, T ) is statistically close to the uniform distribution in {0, 1}2n, with statistical
distance at most 4q/2n. Therefore we obtain that in Game1 the statistical distance
of S‖T = Ψ3(L‖R) with the uniform distribution is always at most 4q/2n.

In Game2, the output to permutation query L‖R is S‖T = P (L‖R); since there
are at most q queries to P/P−1, the statistical distance between P (L‖R) and
the uniform distribution in {0, 1}2n is at most 2q/22n.

Therefore the statistical distance between Ψ3(L,R) in Game1 and P (L‖R) in
Game2 is at most 4q/2n +2q/22n ≤ 5q/2n. The same argument applies to inverse
permutation queries. This holds for a single permutation query; since there are
at most q such queries, we obtain that the statistical distance between outputs
of systems T and T ′ to permutation queries and Ei queries, is at most 5q2/2n;
this implies:

|Pr[S2] − Pr[S1]| ≤
5q2

2n

• Game3: eventually the distinguisher interacts with system (P,S). The only
difference between the simulator S′ in Game2 and the simulator S in Game3 is
that instead of querying ideal ciphers Ei in Game2, these ideal ciphers are simply
simulated in Game3, while the answer to permutation queries are exactly the
same. Therefore, the distinguisher’s view has the same distribution in Game2 and
Game3, which gives:

Pr[S2] = Pr[S3]

and finally:

|Pr[S3] − Pr[S0]| ≤
5q2

2n

which terminates the proof of Theorem 2. ��
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We note that the security bound in q2/2n for our 3-round ideal cipher based
construction is much better than the security bound in q16/2n obtained for the
6-round Feistel construction in [10] (based on random oracles).

4.1 Practical Considerations

Extending the Key. So far, we showed how to construct an ideal cipher Ψ3
with 2n-bit message and k-bit key from three ideal ciphers E1, E2, E3 on n-bit
message and (n + k)-bit key. As already mentioned, we can actually implement
E1, E2, E3 from a single n-bit ideal cipher E whose key length is n + k + 2.

However, if only a block-cipher with n-bit key and n-bit message is available
(for example AES-128), we need a procedure to extend the key size. To handle
such cases, we notice that it suffices to first hash the key using a random oracle,
and the resulting block cipher remains indifferentiable from an ideal cipher.

Lemma 1. Assume E : {0, 1}k × {0, 1}n → {0, 1}n is an ideal cipher and
H : {0, 1}t → {0, 1}k is a random oracle. Define E′ : {0, 1}t × {0, 1}n → {0, 1}n

by E′(K ′, X) = E(H(K ′), X), E′−1(K ′, Y ) = E−1(H(K ′), Y ). Then E′ is
(tD, tS , q, ε)-indifferentiable from an ideal cipher, where tS = O(q(n + t)) and
ε = O(q2/2k).

Proof. See the full version of the paper [8].

Using this observation, given a single ideal cipher E on n-bit messages and k-
bit key and a random oracle H with output size k bits, we can first build an
ideal cipher E′ with n-bit message and (n + k′ + 2)-bit key, and then from
Theorem 2 we can obtain an ideal cipher Ψ3 on 2n-bit messages and k′-bit key.
It remains to remove the assumption of having random oracle H ; this can easily
be accomplished by sacrificing 1 key bit from E, and then using one of the two
resulting (independent) ideal ciphers to efficiently implement H using any of the
methods from [9].

Going Beyond Double? Another natural question is to extend the domain of
the ideal cipher beyond doubling it. One way to accomplish this task is to apply
our 3-round construction recursively, each time doubling the domain. However,
in this case it is not hard to see that, to extend the domain by a factor of t, the
original block cipher E will have to be used O(tlog2 3) times.2 This makes the
resulting constructions somewhat impractical for large t.

In contrast, assume that we use the 2-step construction: first build a length-
preserving random oracle H on nt/2 bits (using [9]), and then use the 6-round
Feistel construction [10] to get a nt-bit permutation. To construct a random
oracle from nt/2-bit to nt/2-bit, only O(t) calls to the n-bit ideal cipher are
2 In essence, this is because we call E three times for each doubling. Actually, this is

not counting the calls to the independent variable length random oracle H to hash
down the key, as above. However, because the constructions of such an H in [9] are
so efficient, it is not hard to see that, even when implementing H using E itself, the
dominant term remains O(tlog2 3) (although the constant is slightly worse).
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required (first hash from nt/2-bit to n-bit using [9], then expand back to nt/2-
bits using counter mode). Therefore the 2-step construction requires only O(t)
calls to E, instead of O(tlog2 3) when iterating our construction. This implies
that for large t, the 2-step construction is more efficient.

To give a practical example, let us consider the applications of [15,27], where
one needs to apply a random permutation to the domain of an RSA modulus.
We take the length of modulus N to be 1024 bits and the underlying block-
cipher E to be n = 128 with 128-bit key (as in AES-128). One can see that to
obtain a 1024-bit permutation from E, only 48 calls to E are required for the
2-step construction, instead of 243 when iterating our construction. However for
1024-bit, the exact security of the 2-step construction is dominated by the term
O(q16/2512) from [10], which requires q � 232, whereas the exact security of the
recursive construction is O(q2/2128), which requires q � 264. Therefore, for a
1024-bit permutation our recursive construction still provides a better security
bound; however, for any size larger than 2048 bits, the two constructions have
the same q � 264 bound 3.

To summarize, our construction is more efficient than the 2-step construction
when doubling only once (t = 2). However for a large expansion factor t the
2-step construction is more efficient than the recursive method.

4.2 Indifferentiability for 2 Rounds in the Honest-But-Curious
Model

In the full version of the paper we also consider the honest-but-curious model of
indifferentiability introduced by Dodis and Puniya [12], which is a variant of the
general indifferentiability model. We show that in the honest-but-curious model,
2 rounds as depicted in Fig 3 are actually sufficient to get indifferentiability.

5 Domain Extension of Tweakable Block Cipher

In this section, we also analyse our construction in the standard model, and we
use a tweakable block-cipher as the underlying primitive. The main result of this
section is that a 3-round Feistel enables to get a security guarantee beyond the
birthday paradox.

Tweakable block-ciphers were introduced by Liskov, Rivest and Wagner in
[22] and provide an additional input - the tweak - that enables to get a family
of independent block-ciphers. Efficient constructions of tweakable block-ciphers
were described in [22], given ordinary block-ciphers.

Definition 2. A tweakable block-cipher is an efficiently computable function Ẽ :
{0, 1}k×{0, 1}ω×{0, 1}n → {0, 1}n that takes as input a key K ∈ {0, 1}k, a tweak
W ∈ {0, 1}ω and a message m ∈ {0, 1}n and returns a ciphertext c ∈ {0, 1}n. For
every K ∈ {0, 1}k and W ∈ {0, 1}ω, the function Ẽ(K,W, ·) is a permutation
over {0, 1}n.
3 The length-preserving random oracle used in the 6-round Feistel has the birthday

bound of q2/2128.
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The security notion for a tweakable block-cipher is a straightforward extension of
the corresponding notion for block-ciphers. A classical block-cipher E is a strong
pseudo-random permutation if no adversary can distinguish E(K, ·) from a ran-
dom permutation, where A can make calls to both E and E−1, and K ← {0, 1}k.
For tweakable block-ciphers, the adversary can additionally choose the tweak,
and E(K, ·, ·) should be indistinguishable from a family of random permutations,
parametrised by W ∈ {0, 1}ω:

Definition 3. A tweakable block-cipher is said to be (t, q, ε)-secure if for any
adversary A running in time at most t and making at most q queries, the ad-
versary’s advantage in distinguishing Ẽ(K, ·, ·) with K ← {0, 1}k from a family
of independent random permutation Π̃(·, ·) is at most ε, where A can make calls
to both Ẽ and Ẽ−1.

Ẽ1K

Ẽ2K

L R

S

S T

W

W

Ẽ1K

Ẽ2K

Ẽ3K

L R

X

S

S T

W

W

W

Fig. 5. The tweakable block ciphers Ψ̃2 (left) and Ψ̃3 (right), with key K and tweak W

We first show that 2 rounds are enough to get a 2n-bit tweakable block-cipher
from a n-bit tweakable block-cipher (see Fig. 5, left). Formally, our 2-round
domain extender for tweakable block-cipher works as follows. Let E1 and E2 be
two tweakable block-ciphers with the same signature:

Ẽi : {0, 1}k × {0, 1}ω × {0, 1}n → {0, 1}n

The tweakable block cipher Ψ̃2 : {0, 1}k ×{0, 1}ω−n×{0, 1}2n → {0, 1}2n is then
defined as follows; the difference with Fig. 3 is that the R and S inputs go to
the tweak (concatenated with the main tweak W ) instead of the key.

S = E1(K,W‖R,L)
T = E2(K,W‖S,R)

Ψ̃2(K,W, (L,R)) = (S, T )
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Theorem 3. The tweakable block-cipher Ψ̃2 is a (t′, q, ε′)-secure tweakable block-
cipher, if Ẽ1 and Ẽ2 are both (t, q, ε)-secure tweakable block-ciphers, where ε′ =
2 · ε + q2/2n + q2/22n and t′ = t−O(qn).

Proof. See the full version of the paper [8].

Now we consider the 3 round tweakable block cipher Ψ̃3, defined in a similar
manner as Ψ̃2 (see Fig. 5 for an illustration). The 3-round construction enables
to go beyond the birthday security bound. Namely instead of having a bound
in q2/2n as in the 2-round construction, the bound for the 3-round construction
is now q2/22n, which shows that the construction remains secure until q < 2n

instead of q < 2n/2.

Theorem 4. The tweakable block-cipher Ψ̃3 is a (t′, q, ε′)-secure tweakable block-
cipher, if Ẽ1, Ẽ2 and Ẽ3 are all (t, q, ε)-secure tweakable block-ciphers, where
ε′ = 3 · ε + q2/22n and t′ = t−O(qn).

Proof. See the full version of the paper [8].

One drawback of our construction is that it shrinks the tweak size from ω bits to
ω − n bits. We show a simple construction that extends the tweak size, using a
keyed universal hash function; this construction can be of independent interest.

Definition 4. A family H of functions with signature {0, 1}ω′ → {0, 1}ω is
said to be ε-almost universal if Prh[h(x) = h(y)] ≤ ε for all x �= y, where the
probability is taken over h chosen uniformly at random from H.

Let Ẽ be a tweakable block-cipher with tweak in {0, 1}ω. Given a family H of
hash functions h with signature {0, 1}ω′ → {0, 1}ω and ω′ > ω, our tweakable
block-cipher Ẽ with extended tweak length ω′ is defined as:

Ẽ′((K,h),W ′,m) = Ẽ(K,h(W ′),m)

Theorem 5. The tweakable block cipher Ẽ′ is a (q, t′, ε′)-secure tweakable block
cipher if Ẽ is a (q, t, ε1)-secure tweakable block cipher and the hash function
family H is ε2-almost universal, with ε′ = ε1 + q2 · ε2 and t′ = t −O(q).

Proof. See the full version of the paper [8].

We note that many efficient constructions of universal hash function families
are known, with ε2 * 2−ω. Therefore the new tweakable block-cipher can have
the same level of security as the original one, up to the birthday bound for the
tweak, i.e. for q ≤ 2ω/2.

6 Conclusion

We have described the first domain extender for ideal ciphers, i.e. we have showed
a construction that is indifferentiable from a 2n-bit ideal cipher, given a n-bit
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ideal cipher. Our construction is based on a 3-round Feistel, and is more efficient
and more secure than first building a n-bit random oracle from a n-bit ideal
cipher (as in [9]) and then a 2n-bit ideal cipher from a n-bit random oracle (as
in [10]). We have also shown that in the standard model, our construction with
2 rounds enables to get a 2n-bit tweakable block-cipher from a n-bit tweakable
block-cipher and that with 3 rounds we get a security guarantee beyond the
birthday paradox.
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Abstract. We consider message authentication codes for streams where
the key becomes known only at the end of the stream. This usually
happens in key-exchange protocols like SSL and TLS where the exchange
phase concludes by sending a MAC for the previous transcript and the
newly derived key. SSL and TLS provide tailor-made solutions for this
problem (modifying HMAC to insert the key only at the end, as in SSL,
or using upstream hashing as in TLS). Here we take a formal approach
to this problem of delayed-key MACs and provide solutions which are
“as secure as schemes where the key would be available right away” but
still allow to compute the MACs online even if the key becomes known
only later.

1 Introduction

With the final step in key exchange protocols the parties usually authenticate
the previous communication. This is typically achieved by exchanging message
authentication codes Mac(K, transcript) computed over the transcript of the com-
munication. Examples include the final message in the handshake protocol of SSL
and TLS [17], as well as many other key exchange protocols [4,13,14,8].

The intriguing observation here is that the key for the MAC computations
becomes only known after the transcript is provided. We call this delayed-key
authentication. For such schemes, even MACs which potentially allow to authen-
ticate streams may need to store the entire transcript before the MAC can be
derived. One well-known example is HMAC where the (inner) key is prepended
to the message before hashing, H(Kout, H(Kin,m)). In this case the key must be
available before processing the message in order to take advantage of the iterated
hash function structure.

For computational efficiency and, especially, for storage reasons it is often
desirable to compute the MAC iteratively, though. This has been acknowledged
by popular protocols like SSL, which uses a variant of HMAC where the key
is appended to the message instead, and TLS which first hashes the transcript
iteratively and then runs the MAC on the hash value only. Similarly, for the
key exchange protocols for machine readable travel documents (MRTD) by the
German government [5] the final MAC computation omits large parts of the
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transcript and only inputs the messages of the final rounds. This allows the
resource-bounded passport to free memory immediately. The protocol is under
standardization for ISO/IEC JTC1/SC17.

The SSL and TLS solution to the problem both rely on the collision resistance
of the underlying hash function for HMAC.1 For TLS collision resistance suffices
to show security (assuming HMAC is secure), but introduces another require-
ment on the hash function. Recall that HMAC (resp. its theoretical counterpart
NMAC) can be shown to be secure if the compression function is pseudorandom
[1] or non-malleable [7]. For SSL it is still unclear how the security of the modified
HMAC relates to the security of the original HMAC. As for the MRTD protocol
for German passports, in most key exchange protocols it is recommended to in-
clude the whole transcript (yet, we are not aware of any concrete attack if only
parts of the transcript enter the computation).

An additional constraint originates from the implementation of the MAC algo-
rithm. Key-exchange protocols are often used as building blocks in more complex
cryptographic protocols which, in turn, also use the same MAC algorithm for
subsequent authentication (e.g., the record protocol in TLS/SSL). To be appli-
cable to resource-bounded devices a delayed-key MAC should therefore draw on
the same implementation as the regular MAC. This is particularly true if the im-
plementation has been designed to resist side-channel attacks. Hence, instead of
designing delayed-key MACs from scratch, a “lightweight” transformation given
an arbitrary MAC algorithm is preferable.

Our Results. We initiate a study of solutions for the delayed-key MAC problem.
There are two reasonable scenarios, originating from the key-exchange applica-
tion: The most relevant case in practice is the one-sided case where one party
is resource-bounded while the other party is more powerful, e.g., a TLS/SSL
secured connection between a mobile device and a server, or an authentication
procedure between a smart card and a card reader. Then, ideally, the constraint
device should benefit from solutions with low storage, whereas we can still as-
sume that the server is able to store the entire transcript. If both parties have
storage limitations, e.g., two mobile devices communicating with each other,
then we are interested in two-sided solutions. Since the one-sided case allows for
the weaker devices in terms of resource constraints, the necessity of storage-
optimized protocols in this scenario is usually higher than in the two-sided
case.

Thus, we focus on the one-sided case for which we present efficient solutions
which are all based on the same seemingly obvious principle: to compute a MAC
the sending party first picks an ephemeral key L and computes the MAC for
this key and the data stream. Then, in addition to the MAC under this key, the
party also transmits an “encryption” (or a “pointer”) P allowing the other party
to recover the ephemeral key L from P and the meanwhile available long-term

1 The weaker requirement of preimage resistance does not suffice, because the transcript
that gets authenticated, is partially determined by both the sender and the receiver
of the MAC.
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key K.2 Note that since verification is usually done by re-computing a MAC the
idea also applies to the verification of the other’s party MAC, i.e., one of the
parties in a key-exchange protocol can both compute its own MAC and verify
the other party’s MAC with low storage requirements.

From an efficiency and implementation viewpoint the instantiations of this
principle should interfere as little as possible with the underlying protocol such
that we get a universal solution. Note that this general approach already allows
to obtain a delayed-key solution starting from a regular MAC, such that both
variants can be used conveniently even on severely constraint devices. In terms of
security we require the solution to be as secure as the original scheme. The latter
condition at foremost demands that the instantiation inherits the unforgeability
property of the original MAC. But since the long-term key K is subsequently
used in protocols (like encryption with the derived keys from the master secret
in SSL and TLS), unforgeability alone is not sufficient.

We also demand that the modified scheme only leaks “as much about the key
K as the original scheme would” and call this notion leakage-invariance. The idea
behind this notion is that, in the original key-exchange protocol, the MAC for
K leaks some information about the key itself, and that the subsequent usage of
the key (derivation, direct encryption etc.) should be still be secure. Following
the idea of semantically secure encryption [10] we require that a solution for the
delayed-key problem allows to compute at most the information about K that
one could derive from a Mac(K, ·) oracle (used in the original protocol).

We discuss four solutions which are secure according to our notion (and which
come with different efficiency/security trade-offs). Roughly, these are:

Encrypt-then-MAC: We assume that the underlying (deterministic) MAC is
a pseudorandom function (which is a widely used assumption about HMAC)
and then compute the MAC σ ← Mac(L,m, �) for the ephemeral key and
then encrypt L under K and MAC this data, P = (c, t) = (Mac(K, 0||�) ⊕
L,Mac(K, 1||�||c)) for a label � which can either be the server or client con-
stant as in SSL or a random session identifier. The receiver can then recover
L from the encryption and verify the MAC σ.

Pseudorandom Permutation: We again assume that the MAC is a pseudo-
random function and use a four-round Feistel structure to build a pseudoran-
dom permutation π(K, ·) out of it. Then σ ← Mac(L,m) and P = π−1(K, L)
such that the receiver can re-obtain L = π(K,P) and verify the MAC σ. The
communication overhead here is smaller than in the previous case but the
construction requires more MAC computations.

Encrypt-only: For the pseudorandom MAC we simply let P = (�,Mac(K, �)⊕L)
for random label �. In this case the security condition is that an adversary

2 This approach is more general than it may seem at first glance: One can think of
the MAC computation for key L as a (probabilistic) processing of the message and
the final computation of the pointer (from K, L and the value from the first stage)
as an “enveloping” transformation involving the key. It comprises for example the
SSL/TLS solutions (with empty L). We finally remark that sending L in clear usually
violates the secure deployment of such MACs in key agreement protocols.



Delayed-Key Message Authentication for Streams 293

attacking this modified scheme can only make a limited number of verifi-
cation requests (which corresponds to the common case that in two-party
key-exchange protocols for each exchanged key K the server and the client
compute and verify only one MAC each). Also, we can only show that the
adversary is unable to recover the entire key K from the modified scheme (in
contrast to any information about the key, as in the previous cases). This is
sufficient to provide security if the key is afterwards hashed (assuming that
the hash functions is a good randomness extractor or even behaves like a
random oracle).

XOR: In the most simple case we let P = K⊕L be the one-time pad encryption
of L under K. Assuming that MAC remains pseudorandom under related-
key attacks [3] this is again an unforgeable, leakage-invariant MAC (if the
adversary task is to recover the whole key K). The leakage-invariance also
relies on the assumption that the adversary can only make a limited number
of verification queries, and gets to see at most one MAC. The latter is justified
in schemes where only one of the party sends a MAC or where one party
immediately aborts without sending its MAC if the received MAC is invalid.

As mentioned before all proposed solutions above support the one-sided casewhere
one of the parties can store the message easily. In contrast, the TLS/SSL solutions
also work in the two-sided case of two resource-constraint parties, but both rely on
the collision-resistance of the underlying hash function whereas our solutions can
in principle be implemented based on one-way functions. We therefore address the
question whether or not collision-resistance is necessary for the two-sided case or
not, and show that one-way functions suffice. However, as our solution make use of
digital signatures it is mainly a proof of concept and it remains an interesting open
problem to find more efficient constructions for this case.

Related Results. To the best of our knowledge the delayed-key problem has not
undergone a comprehensive formal treatment so far. The solution in TLS can be
shown to be secure according to our model, but relies on collision-resistance. As
attacks have shown, however, this appears to be a stronger assumption than pseu-
dorandomness, especially in light of the deployed hash functions MD5 and SHA-1
in TLS (see also the discussion in [1]). We note that relaxing the requirement of
collision-resistance is also a goal in other areas like hash-and-sign schemes [12].

Closest to our setting here comes the scenario of broadcast authentication of
streams via the TESLA protocol [16]. There, the two parties share a one-way
chain of keys and authenticate each packet in time t with the t-th key of the chain.
Hence, TESLA also deals with authentication of streams and supports limited
buffering, but in contrast to our setting TESLA covers immediate authentication
of packets, requiring synchronization between the parties, and assumes shared
keys right away (whereas our key is delayed).

Analogously to TESLA, all other works on stream authentication refer to
immediate verification of each packet, e.g. [11].

In a recent work, Garay et al. [9] also address the problem of MAC precomputa-
tions. However, they consider MACs in the context of hardware security and show
how to perform most of a MAC computation offline, before the message is available.
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2 Preliminaries

In this section we introduce the basic notions for message authentication codes.
In the key exchange application the two parties at the end usually compute the
MAC for the same message m but include their identity in the message. For
instance, SSL includes the server and client constant in the computation of the
finished message. Alternatively, the label can also be a random value chosen by
the party computing the MAC. In any case we assume that the label is known at
the outset of the MAC computation. We thus introduce labels in the model such
that each message m is escorted by a label � ∈ {0, 1}n and the authentication
code covers both parts. We note that, for regular MACs, this is rather a syntactic
modification and becomes important only for the case of delayed-key MACs.

Definition 1. A message authentication code scheme MAC = (KGen,Mac,Vf)
(with labels) is a triple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and re-
turns a key k.

Authentication. The authentication algorithm σ ← Mac(k,m, �) takes as in-
put the key k, a message m from a space Mn and a label � ∈ {0, 1}n and
returns a tag σ in a range Rn.

Verification. Vf(k,m, �, σ) returns a bit.

It is assumed that the scheme is complete, i.e., for all k ← KGen(1n), any
(m, �) ∈ Mn, and any σ ← Mac(k,m, �) we have Vf(k,m, �, σ) = 1.

A MAC is called deterministic if algorithm Mac is deterministic. Unforgeability
of MACs demands that it is infeasible to produce a valid tag for a new message:

Definition 2. A message authentication code MAC = (KGen,Mac,Vf) (with la-
bels) is called unforgeable under chosen message attacks if for any efficient algo-
rithm A the probability that the experiment ForgeMAC

A evaluates to 1 is negligible
(as a function of n), where

Experiment ForgeMAC
A (n)

k ← KGen(1n)
(m∗, �∗, σ∗) ← AMAC(k,·,·),Vf(k,·,·,·)(1n)
Return 1 iff

Vf(k,m∗, �∗, σ∗) = 1 and A has never queried Mac(k, ·, ·) about (m∗, �∗).

Note that for deterministic MACs where, in addition, the verification algorithm
recomputes the tag and compares it to the given tag, the verification oracle
Vf(k, ·, ·, ·) can be omitted [2] while decreasing the adversary’s success probability
by at most the number of verification queries. This particularly holds for HMAC.

For some of our security proofs it is necessary to assume that the MAC
is a pseudorandom function. We note again that HMAC (or, to be precise,
NMAC) has this property as long as the underlying compression function is
pseudorandom [1].
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Definition 3. A message authentication code MAC is a pseudorandom function
if for any efficient distinguisher D the advantage∣∣∣Prob

[
DMac(k,·)(1n) = 1

]
− Prob

[
Df(·)(1n) = 1

]∣∣∣
is negligible, where the probability in the first case is over D’s coin tosses and
the choice of k ← KGen(1n), and in the second case over D’s coin tosses and the
choice of the random function f : Mn → Rn.

3 Defining Delayed-Key MACs for Streams

As explained in the introduction in the setting of MACs for streams where the
key K is only available at the end of the communication, we augment the MAC
by a function Point which maps the ephemeral key L (used to derive the MAC
for the stream) via K to a pointer P, and such that the verifier can recover the
ephemeral key from this pointer and K by the “inverse” Point−1. We let Point
also depend on the MAC σ computed with the ephemeral key to capture general
solutions as in TLS and since this information is available when computing the
pointer (see also the remark after the definition). If Point does not depend on σ
we usually omit it from the algorithm’s input.

Definition 4. A delayed-key message authentication code scheme DKMAC =
(KGen, (Mac,Point),Vf) (with labels) is a tuple of efficient algorithms where

Key Generation. KGen(1n) gets as input the security parameter 1n and re-
turns a secret key K.

Authentication. Algorithm Mac on input an ephemeral key L, a message m
and a label � returns a tag σ, and algorithm Point for input two keys K and
L and the label � returns a pointer P. An augmented tag for key K and (m, �)
then consists of the pair (σ,P) ← (Mac(L,m, �),Point(K, L, �, σ)) for random

L
$← KGen(1n).

Verification. Vf(K,P,m, �, σ) returns a bit.

It is assumed that the scheme is complete, i.e., for any K ← KGen(1n), any
(m, �) ∈ Mn×{0, 1}n, any augmented tag (σ,P) ← (Mac(L,m, �),Point(K, L, �))
for L ← KGen(1n) we have Vf(K,P,m, �, σ) = 1.

Both the SSL as well as the TLS solution can be mapped trivially to the definition
above. Namely, in both cases the ephemeral key L is the empty string and the
“MAC” σ is merely the hash value of the message. The pointer P is then the
result of the actual MAC computations for K (i.e., HMAC with appended key
in SSL and HMAC for the hash value in TLS).

We remark that in key exchange protocols usually both parties send a MAC
of the transcript, possibly adding some distinct public identifiers. Our notion
of delayed-key MACs can be easily used to model the one-sided case with a
bounded client and a powerful server such that the client can compute its own
MAC and verify the server’s MAC with limited storage only (assuming that the
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underlying MAC implements verification by recomputing the MAC and compar-
ing the outcome to the given tag): Namely, the client uses an ephemeral key L
to compute its own MAC, and another ephemeral key L′ to start computing the
server’s MAC for verification. At the end, the client transmits the pointers P
and P′ for the two MACs and the server derives L, L′ through K and verifies the
client MAC and computes and sends its own MAC. The client then only needs
to verify that this received MAC matches the previously computed value.

3.1 Security of Delayed-Key MACs

We adapt the security requirement of unforgeable MACs to our scenario of
delayed-key MACs, i.e., we grant the adversary access to an oracle OMAC(K, ·)
that is initialized with a secret key K and mimics the authentication process,
returning augmented tags. Thus, for every query the oracle first chooses a fresh
ephemeral key Li and then returns the augmented tag (σi,Pi) ← (Mac(Li,mi, �i),
Point(K, Li, �i, σi, )). After learning several tags the adversary eventually halts
and outputs a tuple (P∗,m∗, �∗, σ∗). The adversary is successful if the output
verifies as true under key K and the oracle has never been invoked on (m∗, �∗).

Definition 5. A delayed-key message authentication code DKMAC = (KGen,
(Mac,Point),Vf) (with labels) is called unforgeable under chosen message attacks
if for any efficient algorithm A the probability that the experiment ForgeDKMAC

A
evaluates to 1 is negligible (as a function of n), where

Experiment ForgeDKMAC
A (n)

K ← KGen(1n)
(P∗,m∗, �∗, σ∗) ← AOMAC(K,·)(1n)

where OMAC(K, ·) for every query (mi, �i) samples a fresh Li ← KGen
and returns (σi,Pi) ← (Mac(Li,mi, �i, σi),Point(K, Li, �i))

Return 1 iff
Vf(K,P∗,m∗, �∗, σ∗) = 1
and A has never queried OMAC(K, ·) about (m∗, �∗).

When a MAC is used in a stand-alone fashion the security guarantee of unforge-
ability usually suffices. However, when applied as a building block in protocols
like TLS or SSL the MAC is computed for a key which is subsequently used to
derive further keys or to encrypt data. Besides the regular unforgeability require-
ment it is thus also necessary to ensure that any delayed-key MAC is “as secure
as applying the original MAC”. That is, the delayed-key MAC should leak at
most the information about the key K as the deployment of the original MAC
does.

We therefore introduce the notion of leakage-invariance, basically saying that
MACs may leak information about the key, but this information does not de-
pend on the specific key value. In our setting this means that the leakage of the
ephemeral keys and of the long-term key for each MAC computation are iden-
tical (yet, since we augment the tag by the pointer we still need to ensure that
this extra information does not violate security). More formally, we compare the
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success probability of an adversary A predicting some information f(K) about
key K after learning several tuples (Pi,mi, �i, σi) with the success probability of
an adversary B given only access to the plain underlying authentication algo-
rithm Mac(K, ·, ·). For a leakage-invariant delayed-key MAC these probabilities
should be close.

Definition 6. A delayed-key DKMAC = (KGen, (Mac,Point),Vf) (with labels)
is called leakage-invariant if for any probabilistic polynomial-time algorithm A
there exists a probabilistic polynomial-time algorithm B such that for any (prob-
abilistic) function f the difference

Prob
[
Expleak-inv

A,DKMAC(n) = 1
]
− Prob

[
Expleak-inv

B,DKMAC(n) = 1
]

is negligible, where:

Experiment Expleak-inv
A,DKMAC(n)

K ← KGen(1n)
a ← AOMAC(K,·),Vf(K,··· )(1n)

where OMAC(K,mi) samples a key
Li ← KGen(1n) and returns (σi,Pi)
← (Mac(Li,mi, �i),Point(K, Li, �i, σi))

output 1 if and only if
a = f(K)

Experiment Expleak-inv
B,DKMAC(n)

K ← KGen(1n)
a ← BMac(K,·,·),Vf(K,·,·)(1n)

output 1 if and only if
a = f(K)

If the function f is from a set F of functions and A makes at most qMac queries
to oracle OMAC and at most qVf queries to oracle Vf, then we say that the MAC
is (qMac, qVf ,F)-leakage-invariant. The scheme is called leakage-invariant for dis-
tinct labels if A only submits queries with distinct labels to oracle OMAC(K, ·, ·).
It is called leakage-invariant for random labels if the labels are chosen at random
by oracle OMAC (instead of being picked by the adversary).

We can even strengthen our definition by bounding the adversary B to the num-
ber of A’s queries, i.e., if A can derive some information f(K) in q = (qMac, qVf)
queries, then B should be able to deduce f(K) in at most q queries as well. We
call such schemes strongly leakage-invariant. We do not impose such a restriction
per se, since there can be leakage-invariant solutions where B can safely make
more queries (e.g., if MACs are pseudorandom, except that they always leak the
first three bits of the key).

Above we do not put any restriction on the function f , i.e., it could even be
not efficiently computable. For our more efficient solution we weaken the notion
above and demand that the adversary computes the identity function f(K) = K,
i.e., predicts the entire key. Formally, we then let F = {ID}. If, as done in most
key exchange protocols, the key is subsequently piped through a hash function
modeled as a random oracle, then the adversary needs to query the random
oracle about the entire key (and thus needs to predict it). Else the adversary is
completely oblivious about the random hash value and the derived key. In other
words, in this scenario considering the identity function suffices.
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We remark that we refrain from using Canetti’s universal composition (UC)
model [6] although we are interested in how the key is subsequently used. The
second experiment with adversary B of our notion of leakage-invariance already
resembles the notion of an ideal functionality and the ideal-world scenario, and
the actual attack on the concrete scheme mimics the real-world setting. However,
the UC model introduces additional complications like session IDs and seems to
provide more than what is often needed in the applications we have in mind (i.e.,
one typically asks for more than that the adversary cannot recover the entire
key, even though this may be sufficient).

We finally note that the “TLS solution” to first compute H(m) and then
Mac(K, H(m), �) is clearly strongly leakage-invariant if H is collision-resistant
(essentially because the ephemeral key L is empty, σi = H(mi) is publicly known
and the pointer P is the MAC for σi). In addition, it is also unforgeable, providing
a secure solution under the stronger assumption.

Leakage-Invariance vs. Unforgeability. In general, the notions of unforgeability
and leakage-invariance are somewhat incomparable, as we show by separating
examples in the full version of the paper. However, in the case that the leakage
invariance is limited to the function f = ID which is the prediction of the entire
key, an adversary against leakage-invariance trivially gives an adversary against
the unforgeability, as well.

4 One-Sided Delayed-Key MACs: The Unbounded Case

In this section we present our first construction of a delayed-key MAC, that
uses a pseudorandom MAC as building block. We show that this approach is
unforgeable and leakage-invariant if the underlying MAC is a pseudorandom
function. This is independent of any bound on the number of MAC or verification
queries and of any assumption about the function f . We present our second
construction for the unbounded case in the full version of the paper.

4.1 Pseudorandom Permutation

The idea of our construction DKMACPRP is to authenticate a message m for
a random key L and to derive the pointer P = Point(K, L) by applying the
inverse of a four-round Feistel permutation π−1(K, ·) on the ephemeral key L.
For the Feistel permutation we use Mac(K, 〈i〉2 ||·) as round function, where
〈i〉2 denotes the fixed-length binary representation of the round number i =
0, 1, 2, 3 with two bits. To verify a given tuple (K,P, σ,m) one first recovers L by
evaluating the permutation on P and then verifies if (L, σ,m) validates as true.
The pseudorandomness of the MAC ensures that the pointer leaks no information
about the secret key, nor the ephemeral key.

The construction DKMACPRP is optimal in terms of output length (assuming
that keys are uniform bit strings and that at least |L| additional bits must be
communicated for L). Yet, it slightly increases the computational costs, as the
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Mac algorithm is now also invoked four times to derive the pointer information
(but only on short strings). The construction also shows that neither randomized
encryption nor labels are necessary.

For (keyed) pseudorandom round functions f1, f2, f3, f4 and input x0||y0 (of
equal length parts x0, y0), let xi+1||yi+1 = yi||(xi ⊕ fi(yi)) for i = 0, 1, 2, 3. This
defines a permutation π (with the round functions and keys given implicitly)
mapping input x0||y0 to output x4||y4. For our solution here we assume for
simplicity that keys L are of even length, such that they can be written as L =
x0||y0. Instead of using independent round functions we use quasi-independent
round functions fi = Mac(K, 〈i〉2 ||·) by prepending the round number i in binary
(represented with the fixed length of two bits).

Construction 1. Let MAC = (KGen,Mac,Vf) be a (deterministic) message au-
thentication code. Define DKMACPRP = (KGenPRP, (Mac,Point)PRP,VfPRP) as
follows:

Key Generation KGenPRP. The key generation algorithm gets a security pa-
rameter 1n and outputs a key K ← KGen(1n).

Authentication (Mac,Point)PRP. The authentication procedure takes as input
a secret key K, a message m and first samples a fresh ephemeral key L ←
KGen(1n) by running the key generation of the underlying MAC scheme.
For key L and input message m it computes the tag σ ← Mac(L,m) and the
pointer P ← Point(K, L), where Point computes P ← π−1(K, L) for a four-
round Feistel permutation π that uses Mac(K, 〈i〉2 ||·) as the round functions
for i = 0, 1, 2, 3 and L as input. The output of (Mac,Point)PRP is the pair
(σ,P).

Verification VfPRP. Upon input a secret key K, a pointer P, a message m and
a tag σ, it first derives the ephemeral key L = Point−1(K,P) = π(K,P) and
outputs Vf(L,m, σ).

Correctness of this MAC follows easily form the correctness of the underlying
MAC.

Lemma 1. If MAC = (KGen,Mac,Vf) is a pseudorandom message authenti-
cation code then the delayed-key message authentication scheme DKMACPRP =
(KGenPRP, (Mac,Point)PRP,VfPRP) in Construction 1 is unforgeable against
chosen message attacks.

As for concrete security, the advantage of any adversary ADKMAC making qMAC

queries of bit length at most l is bounded by qMAC times the advantage of an
adversary AMAC against the pseudorandomness of MAC that makes 4qMAC queries
of length at most max(n+ 2, l). Again, the running times of both algorithms are
comparable.

Proof. Assume towards contradiction that an adversary A making q queries
m1, . . . ,mq to the OMAC(K, ·) oracle outputs with non negligible probability a
tuple (P∗,m∗, σ∗), s.t. Vf∗(K,P∗,m∗, σ∗) but m∗ was never submitted to the
oracle. Then we can distinguish between two cases:
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– P∗ �= P1, . . .Pq, i.e., the adversary has created a valid forgery for a fresh
pointer and thus for a fresh ephemeral key L∗ �= L1, . . .Lq, since the pointer
algorithm is a permutation. Denote the event by E1.

– P∗ = Pi for some i ∈ {1, . . . , q}, i.e., the pointer P∗ has already appeared
in one of the oracle replies. Thus, the adversary A has successfully forged a
MAC for a key L∗ after seeing at least one tag σi ← Mac(L∗,mi). We denote
this event by E2.

As one of the two cases has to occur if A is successful —which we denote as the
event Win— we have that Prob[Win] ≤ Prob[E1]+Prob[E2] (note that events
E1, E2 both require a success). We show in the full paper that in both cases we
can construct an adversary that breaks the underlying MAC scheme. ��

Lemma 2. The delayed-key MAC scheme DKMACPRP in Construction 1 is
leakage-invariant.

Proof. To prove leakage-invariance we have to show that for every adversary
A with oracle access to OMAC(K, ·) and Vf(K, · · · ) that predicts with noticeable
probability some information f(K) about the key K, we can derive an adversary
B that only has access to Mac(K, ·) and Vf(K, ·) but predicts f(K) with the same
advantage as A.

Assume that A is able to derive some non-trivial information about K after
sending q queries to its OMAC and Vf oracles, which implements the authenti-
cation process of our delayed-key MAC. Then we can construct an adversary B
that successfully determines f(K) when sending 4q queries to its Mac(K, ·) and
Vf(K, · · · ) oracles. To this end, B mimics the OMAC oracle by computing the tag
σi ← Mac(Li,mi) for any query mi and some self-chosen key Li and calculating
Pi with the help of its own oracle (and analogously for verification requests).
Thus, for each of A’s queries, B has to invoke Mac(K, ·) four times to simulate
OMAC or Vf. If A outputs some information a, B forwards it as its own output.
Since the simulation is perfect from A’s point of view the success probabilities
of B and A are identical. ��

The construction DKMACPRP is already optimal concerning the communication
overhead (assuming, that at least |L| additional bits have to be communicated)
but increases the computational costs by four additional evaluations of the un-
derlying MAC. Our second construction of an unbounded delayed-key MAC,
which we discuss in detail in the full version, requires less Mac computations
(two instead of four) but comes with larger output lengths.

5 One-Sided Delayed-Key MACs: The Bounded Case

In this section we show that, by reducing the security requirements for unforge-
ability and leakage-invariance, we can construct key-delayed MACs that require
less Mac invocations than our previous constructions or are even optimal in both,
computational costs and output length. In other words, we can trade in secu-
rity for efficiency. First, we bound the adversaries against unforgeability and
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leakage-invariance to make at most O(log(n)) many verification queries, which
allows to obtain a construction that requires only two MAC computations and
is almost optimal in terms of output length. We present the construction in the
full version of the paper, where we also show that the scheme is even strongly
leakage-invariant (meaning that B does not make more queries than A), as long
as we only demand that A is unable to predict the entire key.

By further restricting the adversaryagainst the leakage-invariance to make only
a single authentication query, we obtain our most efficient solution that requires
no additional Mac computations and has optimal output length . Note that the
underlying MAC is then assumed to be secure against related-key attacks.

As already mentioned in the introduction, limiting the number of verification
queries corresponds to the common approach that in key-exchange protocols,
both server and client verify only a single MAC each. Leakage-invariance for
only F = {ID} is sufficient, if the key gets afterwards hashed by a hash function
that behaves like a random oracle.

5.1 XOR-Construction

In our most simple and efficient construction, we use the shared key K to directly
mask the ephemeral key. That is, by computing the one-time-pad encryption of
L under K, i.e., P = K⊕ L. Thus, for any authentication query, DKMAC⊕ makes
only a single Mac computation.

Definition 7. Let MAC = (KGen,Mac,Vf) be a message authentication code.
Define the delayed-key DKMAC⊕ = (KGen⊕, (Mac,Point)⊕,Vf⊕) as follows

Key Generation KGen⊕. The key generation algorithm gets a security param-
eter 1n and outputs a key K ← KGen(1n).

Authentication (Mac,Point)⊕. The authentication procedure takes as input a
shared secret key K, a message m and outputs σ ← Mac(L,m) and pointer
P = K⊕ L for a randomly chosen L ← KGen(1n).

Verification Vf⊕. Upon input a secret key K, a pointer P, a message m and a
tag σ it outputs Vf(P⊕ K,m, σ).

Correctness of DKMAC⊕ follows from the correctness of the underlying MAC.

In order to prove the unforgeability of our DKMAC⊕ construction, we require
a stronger assumption on the underlying MAC, namely that it is a related-key
secure pseudorandom function. The first formal security model for related key
attacks was introduced by Bellare and Kohno in [3]. Inter alia, they have shown
that PRFs that are provably secure against those attacks can be achieved when
the set of relations is restricted to some non-trivial class of key transformation
functions, denoted by Φ. The notion for Φ-related-key security then extends
the notion of standard PRF’s and grants the adversary access to a related-key
oracle that is either MacRK(·,k)(·) or fRK(·,k)(·). In both cases a key k is chosen at
random and in the random world, also a function f gets chosen randomly. Each
query of the adversary then consists of a key transformation function φ : K → K
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and an input value m. The query is answered by Mac(φ(k),m) and f(φ(k),m)
respectively.

Definition 8. Let Φ be a set of key transformation functions, and D an adver-
sary with access to related-key oracles that is allowed to send queries (φ,m) ←
Φ×M. A pseudorandom Mac is called secure against related-key attacks if for
any efficient algorithm D the advantage∣∣∣Prob

[
DMacRK(·,k)(·)(1n) = 1

]
− Prob

[
DfRK(·,k)(·)(1n) = 1

]∣∣∣
is negligible, where the probability in the first case is over D’s coin tosses and
the choice of k ← KGen(1n), and in the second case over D’s coin tosses, the
choice of the random function f : Kn ×Mn → Rn and random k ← Kn.

Note that related-key secure pseudorandom MACs are unforgeable with respect
to related-key attacks, too.

For our construction we need related-key security only for one class of trans-
formations, that is the function that adds a given value Δ ∈ {0, 1}n to the
hidden key K. Sticking to the notation of [3] we denote this function by XORΔ :
K → K and the resulting class of functions by Φ⊕

n = {XORΔ : Δ ∈ {0, 1}n}.
Constructions for Φ⊕

n -related-key secure pseudorandom functions were proposed
in [15].

Lemma 3. If MAC = (KGen,Mac,Vf) is a pseudorandom message authentica-
tion code secure against related-key attacks for the relation Φ⊕

n , then the delayed-
key MAC scheme DKMAC⊕ = (KGen⊕, (Mac,Point)⊕,Vf⊕) in Construction 7
is unforgeable against chosen message attacks, if the adversary makes at most
O(log(n)) verification queries.

A closer look at the concrete security reveals that the advantage of any adver-
sary ADKMAC making qMAC, qVf queries each of length at most l, is bounded by
2qVf times the advantage of an adversary AMAC against the related-key pseudo-
randomness of MAC that makes qMAC queries of length at most l.

Proof. Assume towards contradiction that an adversary A after learning several
tags (σ1,P1), . . . , (σ,Pq) from its oracle OMAC(K, ·) is able to compute a forgery
(P∗,m∗, σ∗) with m∗ �= m1 . . .mq. Then we can construct an adversary AMAC

breaking the related-key unforgeability of the underlying MAC.
Our adversary AMAC has black-box access to a related-key oracle MacRK(·,L)(·)

and uses A to produce a forgery (Δ∗,m∗, σ∗) for some key L⊕Δ∗. For the sake
of readability it is assumed, that the real key transformation XOR is already
included in the oracle and the adversary has only to provide some value Δ ∈
{0, 1}n.

When A sends the first authentication query m1, AMAC invokes its own or-
acle on (0n,m1) receiving σ1 = Mac(L,m1) which he passes together with a
randomly chosen P back to A. The value P can also be seen as L ⊕ K for some
unknown K. Due to the pseudorandomness of Mac, the tag σ1 does not leak any
information about the applied key L. Thus, from A’s point of view the value P is
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indistinguishable from a real one-time-pad encryption of some secret key K. For
any further authentication query mi of A, our adversary chooses a random Δi

and sends (Δi,mi) to its own oracle. The adversary AMAC then responds with
the answer σi and a pointer Pi = P⊕ Δi.

When A wants to query its verification oracle, our adversary AMAC has to guess
the answer bit, otherwise it might send the message of the potential forgery to his
tagging oracle, thereby nullifying the message for its own output. Thus, whenever
A makes a verification query, AMAC halts A and then runs two instantiations for
the answer bit b = 0, resp. b = 1. Hence, for efficiency reasons we allow A to
make at most O(log(n)) queries to the verification oracle.

If, at the end, each of the at most n instantiations of A holds with a forgery
(P∗

j ,m
∗
j , σ

∗
j ), our adversary AMAC guesses an index j ∈ {1, . . . , n}. It then com-

putes Δ∗ = P∗
j ⊕ P and outputs (Δ∗,m∗

j , σ
∗
j ) as its own forgery. Overall, AMAC

succeeds with probability 1/poly(n) times the success probability of A, which
contradicts the assumption that MAC is related-key unforgeable. ��
Lemma 4. The delayed-key MAC scheme DKMAC⊕ in Construction 7 is (1,
O(log(n)), {ID})-leakage invariant.

Proof. If there exists an adversary A that outputs with non-negligible probability
the complete secret key K after it received a tag (σ,P) ← 〈Mac(L,m),K ⊕ L〉 for
some random L and chosen m, we can derive an adversary B that is able to
extract K only from σ ← Mac(K,m) for some chosen m as well.

The idea is that by determining K, also the key L can be obtained unambigu-
ously. Thus, when we construct the adversary B that uses A, its target key K
actually plays the role of L in the game of A. Thus, when B receives the au-
thentication query m from A it triggers its oracle Mac(K, ·) on m and passes
the answer σ together with a randomly chosen pointer P back to A. The pointer
value then corresponds to the one-time-pad encryption of K with some random,
secret key L.

For any verification query (Pi,mi, σi) of A, the adversary B first checks
whether Pi = P. If so, it forwards the query to its Vf(K, ·) oracle, otherwise
it has to ”guess” the answer bit. To this end, B runs two instantiations of A,
for each b = 0, 1. Since we allow A to make only at most O(log(n)) verification
queries, B starts at most n instantiations.

Finally, each instantiation of A stops, outputting its guess aj that corresponds
to some Lj in B’s game. To determine the right key, adversary B computes for
each j = 1, 2, . . . , n the potential counterpart Kj = P⊕Lj and outputs Kj where
σ = Mac(Kj ,m).

Due to the limitation of a single authentication query, our adversary B is able
to simulate the oracle OMAC of A perfectly, such that B succeeds with the same
probability as A. ��

6 Two-Sided Delayed-Key MACs: A Feasibility Result

In this section we discuss that two-sided delayed-key MACs are realizable with-
out relying on collision-resistance. The idea —explained in the setting of key
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exchange— is to use a signature scheme to authenticate each transmitted mes-
sage immediately (such that both parties basically only have to store keys for
the MAC), and to finally MAC the public key of the signature scheme.

Note that the existence of one-way functions is shown to be necessary and
sufficient for the existence of secure signature schemes in [18]. As we, in addi-
tion, only require unforgeability from the underlying MAC, the security of our
construction formally relies only on one-way functions. Yet, applying a signature
scheme for each message is very expensive, of course. Hence, this construction
should be seen as a feasibility result only. We leave it as an interesting open
problem to find an efficient construction for this scenario.

Note that in order to turn the idea above into a formal solution we need
to change the notion of unforgeability and leakage-invariant slightly. Namely,
we assume that the adversary A in both cases now can pass another parame-
ter keep or pointer (besides mi, �i) to oracle OMAC. For parameter keep the
oracle returns tags σi for the previously selected ephemeral key L and only if
queried for pointer it returns the pointer P and generates a new ephemeral
key. An adversary A against the unforgeability is then deemed successful if it
outputs a tuple (P∗, m̄∗, �̄∗, σ∗) with Vf(K,P∗, m̄∗, �̄∗, σ∗) = 1 and A has never
issued (m̄∗, �̄∗) = ((m1

∗, �1∗), . . . , (mn
∗, �n

∗)) between two pointer queries to
OMAC(K, ·).

The DKMACtwo Construction. Recall the notion of signature schemes: a sig-
nature scheme consists of three efficient algorithms (SKGen, SSign, SVf) where
SKGen on input 1n returns a key pair (sk, pk); algorithm SSign on input sk and a

Sender S Receiver R

a) before long-term key K is known:

(sk, pk) ← SKGen(1n)

s1 ← SSign(sk, (1, m1))
m1, s1, pk−−−−−−−−−−−−−−→ SVf(pk, (1, m1), s1)

?= true
keep public key pk of S

s2 ← SSign(sk, (2, m2))
m2, s2−−−−−−−−−−−−−−→ SVf(pk, (2, m2), s2)

?= true
...

...
...

sn ← SSign(sk, (n, mn))
mn, sn−−−−−−−−−−−−−−→ SVf(pk, (n, mn), sn) ?= true

b) common K is established :
τ ← Mac(K, pk, n) τ−−−−−−−−−−−−−−→ Vf(K, (pk, n), τ ) ?= true

output true iff all s1, . . . , sn

and τ verified as true.

Fig. 1. DKMACtwo: Two-sided Delayed-Key MAC
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message m ∈ {0, 1}∗ returns a signature s; and algorithm SVf for input pk,m, s
returns a decision bit. We assume completeness in the sense that any signature
generated via SSign is also accepted by SVf. Unforgeability of signature schemes
is defined analogously to unforgeability of MACs, but now the adversary gets as
input the public key pk instead of the security parameter 1n and has access to a
signing oracle SSign(sk, ·).

Our construction DKMACtwo (incorporated into a key exchange protocol) is
given in Figure 1. Note that the sender only needs to store the key pair (sk, pk)
and the receiver merely stores pk and a bit indicating any error in the veri-
fications so far. Formally, we can let Mac(L,m, �) be the algorithm which for
L = (sk, pk) ← SKGen(1n) outputs σ = (pk, SSign(sk,m, �)). The point algo-
rithm Point(K, L, �) returns a MAC value P of pk under key K for an unforgeable
MAC. Then an adversary against the key exchange protocol can be easily cast in
our extended unforgeability and leakage-invariance model. This adversary calls
OMAC several times with (i,mi, �i) for parameter keep and subsequently eventu-
ally calls the oracle about parameter pointer to retrieve the MAC of the public
key under K.

Unforgeability and Leakage-Invariance of DKMACtwo. The DKMACtwo construc-
tion is unforgeable if the underlying signatures scheme is unforgeable against
chosen-message attacks and the underlying MAC is unforgeable as well. The
unforgeability of the MAC and the fact that collisions among independently
generated keys are unlikely implies that the adversary can only use a previously
chosen public key by OMAC (or else forges a MAC under K for a new key pk∗).
But then the adversary must forge a signature for a tuple (i∗,m∗, �∗) which
has not been signed before under this public key. By the unforgeability of the
signature scheme this cannot happen with more than negligible probability.

Obviously, the scheme DKMACtwo is strongly leakage-invariant, as it uses
the secret long-term key K only for a single computation of the underlying
MAC.

Online Verification with Immediate Abort. In the context of online verification
it might be desirable that the verifier can abort the authentication process as
soon as he receives the first invalid tag. To this end, we augment the usual
verification algorithm Vf of DKMAC’s such that it allows online processing:
Vf′(K,P,m, �, σ, st) now also expects some state information st which can ei-
ther be keep or pointer. On input keep the algorithm Vf’ returns Vf(m, �, σ)
and for pointer it outputs Vf(K,P,m, �, σ). Thus, as long as the long-term key
K is unknown, the verifier runs Vf′(⊥,⊥,mi, �i, σi, keep) and aborts when it re-
ceives 0, indicating an invalid tag. Obviously, our construction DKMACtwo allows
for online verification with immediate abort as the verifier can check, while being
in keep-mode, if SVf(pk, (i,mi), si) = true and abort the authentication as soon
as the first verification fails.
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Abstract. A number of works have investigated using tamper-proof
hardware tokens as tools to achieve a variety of cryptographic tasks.
In particular, Goldreich and Ostrovsky considered the problem of soft-
ware protection via oblivious RAM. Goldwasser, Kalai, and Rothblum
introduced the concept of one-time programs: in a one-time program, an
honest sender sends a set of simple hardware tokens to a (potentially
malicious) receiver. The hardware tokens allow the receiver to execute a
secret program specified by the sender’s tokens exactly once (or, more
generally, up to a fixed t times). A recent line of work initiated by Katz
examined the problem of achieving UC-secure computation using hard-
ware tokens.

Motivated by the goal of unifying and strengthening these previous
notions, we consider the general question of basing secure computation
on hardware tokens. We show that the following tasks, which cannot be
realized in the “plain” model, become feasible if the parties are allowed
to generate and exchange tamper-proof hardware tokens.

– Unconditional and non-interactive secure computation. We
show that by exchanging simple stateful hardware tokens, any func-
tionality can be realized with unconditional security against mali-
cious parties. In the case of two-party functionalities f(x, y) which
take their inputs from a sender and a receiver and deliver their out-
put to the receiver, our protocol is non-interactive and only requires
a unidirectional communication of simple stateful tokens from the
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sender to the receiver. This strengthens previous feasibility results
for one-time programs both by providing unconditional security and
by offering general protection against malicious senders. As is typ-
ically the case for unconditionally secure protocols, our protocol is
in fact UC-secure. This improves over previous works on UC-secure
computation based on hardware tokens, which provided computa-
tional security under cryptographic assumptions.

– Interactive secure computation from stateless tokens

based on one-way functions. We show that stateless hardware
tokens are sufficient to base general secure (in fact, UC-secure) com-
putation on the existence of one-way functions.

– Obfuscation from stateless tokens. We consider the problem
of realizing non-interactive secure computation from stateless tokens
for functionalities which allow the receiver to provide an arbitrary
number of inputs (these are the only functionalities one can hope
to realize non-interactively with stateless tokens). By building on
recent techniques for resettably secure computation, we obtain a
general positive result under standard cryptographic assumptions.
This gives the first general feasibility result for program obfuscation
using stateless tokens, while strengthening the standard notion of
obfuscation by providing security against a malicious sender.

1 Introduction

A number of works (e.g. [1,2,3,4,5,6,7,8,9,10,11,12,13]) have investigated using
tamper-proof hardware tokens1 as tools to achieve a variety of cryptographic
goals. There has been a surge of research activity on this front of late. In particu-
lar, the recent work of Katz [9] examined the problem of achieving UC-secure [14]
two party computation using tamper-proof hardware tokens. A number of follow-
up papers [10,11,12] have further investigated this problem. In another separate
(but related) work, Goldwasser et al. [13] introduced the concept of one-time
programs : in a one-time program, a (semi-honest) sender sends a set of very
simple hardware tokens to a (potentially malicious) receiver. The hardware to-
kens allow the receiver to execute a program specified by the sender’s tokens
exactly once (or, more generally, up to a fixed t times). This question is related
to the more general goal of software protection using hardware tokens, which was
first addressed by Goldreich and Ostrovsky [1] using the framework of oblivious
RAM.

The present work is motivated by the observation that several of these pre-
vious goals and concepts can be presented in a unified way as instances of one
general goal: realizing secure computation using tamper-proof hardware tokens.
The lines of work mentioned above differ in the types of functionalities being

1 Informally, a tamper-proof hardware token provides the holder of the token with
black-box access to the functionality of the token. We will often omit the words
“tamper-proof” when referring to hardware tokens, but all of the hardware tokens
referred to in this paper are assumed to be tamper-proof.
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considered (e.g., non-reactive vs. reactive), the type of interaction between the
parties (interactive vs. non-interactive protocols), the type of hardware tokens
(stateful vs. stateless, simple vs. complex), and the precise security model (stan-
dalone vs. UC, semi-honest vs. malicious parties). This unified point of view also
gives rise to strictly stronger notions than those previously considered, which in
turn give rise to new feasibility questions in this area.

The introduction of tamper-proof hardware tokens to the model of secure com-
putation, as formalized in [9], invalidates many of the fundamental impossibility
results in cryptography. Taking a step back to look at this general model from a
foundational perspective, we find that a number of natural feasibility questions
regarding secure computation with hardware tokens remain open. In this work
we address several of these questions, focusing on goals that are impossible to
realize in the plain model without tamper-proof hardware tokens:

– Is it possible to achieve unconditional security for secure computa-
tion with hardware tokens? We note that this problem is open even for
stand-alone security, let alone UC security, and impossible in the plain model
[15]. While in the semi-honest model this question is easy to settle by relying
on unconditional protocols based on oblivious transfer (OT) [16,17,18,19],
this question is more challenging when both parties as well as the tokens
they generate can be malicious. (See Sections 1.2 and 3.1 for relevant discus-
sion.) In the case of stateless tokens, which may be much easier to implement,
security against unbounded adversaries cannot be generally achieved, since
an unbounded adversary can “learn” the entire description of the token. A
natural question in this case is whether stateless tokens can be used
to realize (UC) secure computation based on the assumption that
one-way functions exist.
Previous positive results for secure two-party computation with hardware
tokens relied either on specific number theoretic assumptions [9] or the ex-
istence of oblivious transfer protocols in the plain model [10,11], or alterna-
tively offered weaker notions of security [20].
A related question is: is it possible to obtain unconditionally secure
one-time programs for all polynomial-time computable functions?
The previous work of [13] required the existence one-way functions in order
to construct one-time programs.

– Is it possible to realize non-interactive secure two-party computa-
tion with simple hardware tokens? Again, this problem is open2 even
for stand-alone security, and impossible in the plain model. Constructions of
oblivious RAM [1] and one-time programs [13] provide partial solutions to

2 All the previous questions were open even without any restriction on the size of the
tokens. In the current and the following questions we restrict the tokens to be simple
in the sense that the size of each token can only depend on the security parameter.
This rules out a trivial solution of building a token which realizes a party in a secure
two-party computation protocol.
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this problem; however, in these models the sender is semi-honest.3 Thus, in
the context of one-time programs we ask: is it possible to achieve one-
time programs tolerating a malicious sender? We note that [13] make
partial progress towards this question by constructing one-time zero knowl-
edge proofs, where the prover can be malicious. However, in the setting of
hardware tokens, the GMW paradigm [21] of using zero knowledge proofs to
compile semi-honest protocols into protocols tolerating malicious behavior
does not apply, since one would potentially need to prove statements about
hardware tokens (as opposed to ordinary NP statements).

– Which notions of program obfuscation can be realized using simple
hardware tokens? Again, this problem can be captured in an elegant way
within the framework of secure two-party computation, except that here we
need to consider reactive functionalities which may take a single input from
the “sender” and a sequence of (possibly adaptively chosen) inputs from the
“receiver”. Obfuscation can be viewed as a non-interactive secure realization
of such functionalities. While this general goal is in some sense realized by the
construction of oblivious RAM [1] (which employs stateful tokens), several
natural questions remain: Is it possible to achieve obfuscation using
only stateless tokens? Is it possible to offer a general protection
against a malicious sender using stateless or even stateful tokens?
To illustrate the motivation for the latter question, consider the goal of
obfuscating a poker-playing program. The receiver of the obfuscated program
would like to be assured that the sender did not violate the rules of the game
(and in particular cannot bias the choice of the cards).

– What are the simplest kinds of tamper-proof hardware tokens
needed to realize the above goals? For example, Goldwasser et al. [13] in-
troduce a very simple kind of stateful token that they call an OTM (one-time
memory) token.4 An OTM token stores two strings s0 and s1, takes a single
bit b as input, and then outputs sb and stops working (or self-destructs).
Note that an OTM token essentially implements the one-out-of-two string
OT functionality; a subtle distinction between OTM and traditional OT is
discussed in Section 3.1. An even simpler type of token is a bit-OTM token,
where the strings s0 and s1 are restricted to be single bits. Is it possible
to realize unconditional, non-interactive, or UC-secure two-party
computation using only bit-OTM tokens? We note that previous works
on secure two-party computation with hardware tokens [9,10,11,20] all make
use of more complicated hardware tokens.

3 In these models, the sender is allowed to arbitrarily specify the functionality of the
oblivious RAM or the one-time program, and the receiver knows nothing about this
functionality except an upper bound on its circuit size or running time. (Thus, the
issue of dishonest senders does not arise in these models.) In the present work, by
a one-time program tolerating a malicious sender, we mean that the receiver knows
some partial specification of the functionality – modeled in the usual paradigm of
secure two-party computation.

4 The use of OTM tokens in [13] is motivated in part by the goal of achieving leakage
resilience, a feature that our constructions using such tokens inherit as well.
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1.1 Our Results

We show that the following tasks, which cannot be realized in the “plain”
model, become feasible if the parties are allowed to generate and exchange simple
tamper-proof hardware tokens.

– Unconditional non-interactive secure computation. We show that by
exchanging stateful hardware tokens, any functionality can be realized with
unconditional security against malicious parties. In the case of two-party
functionalities f(x, y) which take their inputs from a sender and a receiver
and deliver their output to the receiver, our protocol is non-interactive and
only requires a unidirectional communication of tokens from the sender to
the receiver (in case an output has to be given to both parties, adding a reply
from the receiver to the sender is sufficient). This result strengthens previous
feasibility results for one-time programs by providing unconditional security,
by offering general protection against malicious senders, and by using only
bit-OTM tokens.

As is typically the case for unconditionally secure protocols, our protocol
is in fact UC-secure. This improves over previous works on UC-secure com-
putation based on hardware tokens, which provided computational security
under cryptographic assumptions.

See Sections 3.1 and 3.2 for details of this result and a high level overview
of techniques.

– Interactive secure computation from stateless tokens based on one-
way functions. We show that stateless hardware tokens are sufficient to
base general secure (in fact, UC-secure) computation on the existence of one-
way functions. One cannot hope for security against unbounded adversaries
with stateless tokens since an unbounded adversary could query the token
multiple times to “learn” the functionality it contains. See Section 4 for
details.

– Obfuscation from stateless tokens. We consider the problem of real-
izing non-interactive secure computation from stateless tokens for reactive
functionalities which take a single input from the sender and an arbitrary
sequence of inputs from the receiver (these are the only functionalities one
can hope to realize non-interactively with stateless tokens). By building on
recent techniques for resettably secure computation [22], we obtain a gen-
eral positive result under standard cryptographic assumptions. This gives the
first general feasibility result for program obfuscation using stateless tokens,
while strengthening the standard notion of obfuscation by providing security
against a malicious sender. We also propose constructions of non-interactive
secure computation for general reactive functionalities with stateful tokens.
See the full version for details.

In all of the above results, the size of each hardware token is either constant or
polynomial in the security parameter, and its code is independent of the inputs
of the parties. Thus, the tokens could theoretically be “mass-produced” before
being used in any particular protocol with any particular inputs.
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We stress that in contrast to some previous results along this line (most no-
tably, [1,13,20]), our focus is almost entirely on feasibility questions, while only
briefly discussing more refined efficiency considerations. However, in most cases
our stronger feasibility results can be realized while also meeting the main effi-
ciency goals pursued in previous works.

The first two results above are obtained by utilizing previous protocols for
secure computation based on OT [18,19], and thus a main ingredient in our
constructions is showing how to securely implement OT using hardware tokens.
Note that in the case of non-interactive secure computation, additional tools are
needed since the protocols of [18,19] are (necessarily) interactive.

1.2 Related Work

The use of tamper-proof hardware tokens for cryptographic purposes was first
explored by Goldreich and Ostrovsky [1] in the context of software protection
(one-time programs [13] is a relaxation of this goal, generally called program
obfuscation [23]), and by Chaum, Pederson, Brands, and Cramer [2,3,4] in the
context of e-cash. Ishai, Sahai, and Wagner [5] and Ishai, Prabhakaran, Sahai
and Wagner [24] consider the question of how to construct tamper-proof hard-
ware tokens when the hardware itself does not guarantee complete protection
against tampering. Gennaro, Lysyanskaya, Malkin, Micali, and Rabin [6] con-
sider a similar question, when the underlying hardware guarantees that part of
the hardware is tamper-proof but readable, while the other part of the hardware
is unreadable but susceptible to tampering. Moran and Naor [8] considered a
relaxation of tamper-proof hardware called “tamper-evident seals,” and given
number of constructions of graphic tasks based on this relaxed notion. Hofheinz,
Müller-Quade, and Unruh [25] consider a model similar to [9] in the context of
UC-secure protocols where tamper-proof hardware tokens (signature cards) are
issued by a trusted central authority.

The model that we primarily build on here is due to Katz [9], who considers
a setting in which users can create and exchange tamper-proof hardware tokens
where malicious users have full control over the functionality realized by each
token they create. The main result of [9] is a general protocol for UC-secure two-
party computation using stateful tokens, under the DDH assumption. Chandran,
Goyal, Sahai [10] implement UC-secure two-party computation using stateless
tokens, under the assumption that oblivious transfer protocols exist in the plain
model. Aside from just considering stateless tokens, [10] also introduce a variant
of the model of [9] that allows for the adversary to pass along tokens, and in
general allows the adversary not to know the code of the tokens he produces. We
do not consider this model here. Moran and Segev [11] also implement UC-secure
two-party computation under the same assumption as [10], but using stateful to-
kens, and only requiring tokens to be passed in one direction. Damg̊ard, Nielsen,
and Wichs [12] show how to relax the “isolation” requirement of tamper-proof
hardware tokens, and consider a model in which tokens can communicate a fixed
number of bits back to its creator. Hazay and Lindell [20] propose construc-
tions of practical protocols for various problems of interest using trusted stateful
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tokens. Very recently and independently of our work, practical oblivious transfer
protocols using stateless tokens and relying only on one-way functions were sug-
gested by Kolesnikov [26]. In contrast to the corresponding feasibility result from
our work, these protocols either provide a weaker security guarantee or assume
that tokens are well-formed, but on the other hand they offer better practical
efficiency.

Goldwasser, Kalai, and Rothblum [13] introduced the notion of one-time pro-
grams, and showed how to realize it under the assumption that one-way functions
exist, as we have already discussed. They also construct one-time zero-knowledge
proofs under the same assumption. Their results focus mainly on achieving effi-
ciency in terms of the number of tokens needed, and a non-adaptive use of the
tokens by the receiver.

Finally, in a seemingly unrelated work which is motivated by quantum physics,
Buhrman, Christandl, Unger, Wehner and Winter [27] consider the application
of non-local boxes to cryptography. Using non-local boxes, Buhrman et al. show
an unconditional construction for oblivious transfer in the interactive setting. A
non-local box implements a trusted functionality taking input and giving out-
put to both the parties (as opposed to OTM tokens which could be prepared
maliciously). However, the key problem faced by Buhrman et al. is similar to a
problem we face as well: delayed invocation of the non-local box by a malicious
party. Indeed, one can give a simple interactive protocol (omitted here) for build-
ing a trusted non-local-box using OTM tokens. This provides an alternative to
the interactive variant of our construction of unconditional secure computation
from hardware tokens described in Section 3.1.

2 Preliminaries

In this section we briefly discuss some of the underlying definitions and concepts.
The reader is referred to the full version for the details.

We use the UC-framework of Canetti [28] to capture the general notion of se-
cure computation of (possibly reactive) functionalities. Our main focus is on the
two-party case. We will usually refer to one party as a “sender” and to another as
a “receiver”. A non-reactive functionality may receive an input from each party
and deliver output to each party (or only to the receiver). A reactive function-
ality may have several rounds of inputs and outputs, possibly maintaining state
information between rounds.

Our model for tamper-proof hardware is similar to that of Katz [9]. As we
consider both stateful and stateless tokens, we define different ideal functionali-
ties for the two. By Fsingle

wrap we denote an ideal functionality that allows a sender
to generate a “one-time token” which can be invoked by its designated receiver.
A one-time token is a stateful token which takes an input from the receiver and
returns a function which is specified in advance by the sender. (Note that if the
sender is malicious, this function can be arbitrary.) After being invoked by the
receiver, such a token “self-destructs”. Thus, the only state these tokens keep is
a flag which indicates whether the token has been run or not. Simple tokens of
this type were used in [13].
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We also define an ideal functionality Fstateless
wrap for stateless tokens. Here the

token computes some (deterministic) function specified by the sender, and the
receiver can query the token an unbounded number of times. Note that this
makes stateless tokens useless if the receiver has enough resources to “learn” the
token’s description (either because the token is too small or the receiver is too
powerful). 5

By a non-interactive protocol we refer to a protocol in which the communi-
cation only involves a single batch of tokens, possibly along with an additional
message, communicated from a sender to a receiver.

3 Unconditional Non-interactive Secure Computation
Using Stateful Tokens

In this section we establish the feasibility of unconditionally non-interactive se-
cure computation based on stateful hardware tokens. As is typically the case for
unconditionally secure protocols, our protocols are in fact UC secure.

This section is organized as follows. In Subsection 3.1 we present an interactive
protocol for arbitrary functionalities, which requires the parties to engage in
multiple rounds of interaction. This gives an unconditional version of previous
protocols for UC-secure computation based on hardware tokens [9,10,11], which
all relied on computational assumptions.6 This subsection also introduces some
useful building blocks that are used for the non-interactive solution in the next
subsection.

In Subsection 3.2 we consider the case of secure evaluation of two-party func-
tionalities which deliver output to only one of the parties (the “receiver”). We
strengthen the previous result in two ways. First, we show that in this case inter-
action can be completely eliminated: it suffices for the sender to non-interactively
send tokens to the receiver, without any additional communication. Second, we
show that even very simple, constant-size stateful tokens are sufficient for this
purpose. This strengthens previous feasibility results for one-time programs [13]
by providing unconditional security (in fact, UC-security), by offering general
protection against malicious senders, and by using constant-size tokens.

3.1 The Interactive Setting

Unconditionally secure two-party computation is impossible to realize for most
nontrivial functionalities, even with semi-honest parties [29,30]. However, if the
parties are given oracle access to a simple ideal functionality such as Oblivious

5 While the formal definition of this functionality forces a malicious sender to also use
only stateless tokens, this requirement can be relaxed without affecting the security
of our protocols. See Section 4 for details.

6 The work of [11] realizes an unconditionally UC-secure commitment from stateful to-
kens. This does not directly yield protocols for secure computation without additional
computational assumptions.
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Transfer (OT) [16,17], then it becomes possible not only to obtain uncondition-
ally secure computation with semi-honest parties [31,32,33], but also uncondi-
tional UC-security against malicious parties [18,19]. This serves as a natural
starting point for our construction.

In the OT-hybrid model, the two parties are given access to the following
ideal OT functionality: the input of P1 (the “sender”) consists of a pair of k-bit
strings (s0, s1), the input of P2 (the “receiver”) is a choice bit c, and the receiver’s
output is the chosen string sc. The natural way to implement a single OT call
using stateful hardware tokens is by having the sender send to the receiver a
token which, on input c, outputs sc and erases s1−c from its internal state.
The use of such hardware tokens was first suggested in the context of one-time
programs [13]. Following the terminology of [13], we refer to such tokens as OTM
(one-time-memory) tokens.

An appealing feature of OTM tokens is their simplicity, which can also lead
to better resistance against side-channel attacks (see [13] for discussion). This
simplicity feature served as the main motivation for using OTM tokens as a
basis for one-time programs. Another appealing feature, which is particularly
important in our context, is that the OTM functionality does not leave room for
bad sender strategies: whatever badly formed token a malicious sender may send
is equivalent from the point of view of an honest receiver to having the sender
send a well-formed OTM token picked from some probability distribution. (This
is not the case for tokens implementing more complex functionalities, such as
2-out-of-3 OT or the extended OTM functionality discussed below, for which
badly formed tokens may not correspond to any distribution over well-formed
tokens.)

Given the above, it is tempting to hope that our goal can be achieved by
simply taking any unconditionally secure protocol in the OT-hybrid model, and
using OTM tokens to implement OT calls. However, as observed in [13], there
is a subtle but important distinction between the OT-hybrid model and the
OTM-hybrid model: while in the former model the sender knows the point in
the protocol in which the receiver has already made its choice and received its
output, in the latter model invoking the token is entirely at the discretion of the
receiver. This may give rise to attacks in which the receiver adaptively invokes
the OTM tokens “out of order,” and such attacks may have a devastating effect
on the security of protocols even in the case of unconditional security. A more
detailed discussion of such attacks and simple solution ideas (that do not work)
is included in the full version.

Extending the OTM functionality. To solve the above problem, we will
realize an extended OTM functionality which takes from the sender a pair of
strings (s0, s1) along with an auxiliary string r, takes from the receiver a choice
bit c, and delivers to the receiver both sc and r. We denote this functionality
by ExtOTM. What makes the ExtOTM functionality nontrivial to realize using
hardware tokens is the need to protect the receiver from a malicious sender who
may try to make the received r depend on the choice bit c while at the same
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time protecting the sender from a malicious receiver who may try to postpone
its choice c until after it learns r.

Using the ExtOTM functionality, it is easy to realize a UC-style version of
the OT functionality which not only delivers the chosen string to the receiver
(as in the OTM functionality) but also delivers an acknowledgement to the
sender. This flavor of the OT functionality, which we denote by FOT, can be
realized by having the sender invoke ExtOTM with (s0, s1) and a randomly
chosen r, and having the receiver send r to the sender. In contrast to OTM,
the FOTfunctionality allows the sender to force any subset of the OT calls to
be completed before proceeding with the protocol. This suffices for instantiating
the OT calls in the unconditionally secure protocols from [18,19]. We refer the
reader to the full version of this paper for a UC-style definition of the OTM,
ExtOTM, and FOTfunctionalities.

Realizing ExtOTM using general7 stateful tokens. As discussed above,
we cannot directly use a stateful token for realizing the ExtOTM functionality,
because this allows the sender to correlate the delivered r with the choice bit
c. On the other hand, we cannot allow the sender to directly reveal r to the
receiver, because this will allow the receiver to postpone its choice until after
it learns r. In the following we sketch our protocol for realizing ExtOTM using
stateful tokens. This protocol is non-interactive (i.e., it only involves tokens sent
from the sender to the receiver) and will also be used as a building block towards
the stronger results in the next subsection. We refer the reader to the full version
of this paper for a formal description of the protocol and its proof of security.
Below we include a detailed overview.

As mentioned above, at a high level, the challenge we face is to prevent un-
wanted correlations in an information-theoretic way for both malicious senders
and malicious receivers. This is a more complex situation than a typical similar
situation where only one side needs to be protected against (c.f. [34,35]). To
accomplish this goal, we make use of secret-sharing techniques combined with
additional token-based “verification” techniques to enforce honest behavior.

Our ExtOTM protocol ΠExtOTM starts by having the sender break its aux-
iliary string r into 2k additive shares ri, and pick 2k pairs of random strings
(qi

0, q
i
1). (Each of the strings qi

b and ri is k-bit long, where k is a statistical
security parameter.) It then generates 2k OTM tokens, where the i-th token
contains the pair (qi

0 ◦ ri, qi
1 ◦ ri) (where ‘◦’ is the concatenation operator). Note

that a malicious sender may generate badly formed OTM tokens which correlate
ri with the i-th choice of the receiver; we will later implement a token-based
verification strategy that convinces an honest receiver that the sender did not
cheat (too much) in this step.

Now the receiver breaks its choice bit c into 2k additive shares ci, and invokes
the 2k OTM tokens with these choice bits. Let (q̂i, r̂i) be the pair of k-bit strings
obtained by the receiver from the i-th token. Note that if the sender is honest, the

7 Here, we make use of general tokens. Later in this section, we will show how to achieve
the ExtOTM functionality (and in fact every poly-time functionality) using only very
simple tokens – just bit OTM tokens.
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receiver can already learn r. We would like to allow the receiver to learn its chosen
string sc while convincing it that the sender did not correlate all of the auxiliary
strings r̂i with the corresponding choice bits ci. (The latter guarantee is required
to assure an honest receiver that r̂ =

∑
r̂i is independent of c as required.)

This is done as follows. The sender prepares an additional single-use hardware
token which takes from the receiver its 2k received strings q̂i, checks that for
each q̂i there is a valid selection ĉi such that q̂i = qi

ĉi
(otherwise the token returns

⊥), and finally outputs the chosen string sĉ1⊕...⊕ĉ2k . (All tokens in the protocol
can be sent to the receiver at one shot.) Note that the additive sharing of r
in the first 2k tokens protects an honest sender from a malicious receiver who
tries to learn sĉ where ĉ is significantly correlated with r, as it guarantees that
the receiver effectively commits to c before obtaining any information about
r. The receiver is protected against a malicious sender because even a badly
formed token corresponds to some (possibly randomized) ideal-model strategy
of choosing (s0, s1).

Finally, we need to provide to the receiver the above-mentioned guarantee
that a malicious sender cannot correlate the receiver’s auxiliary output r̂ =

∑
r̂i

with the choice bit c. To explain this part, it is convenient to assume that both
the sender and the badly formed tokens are deterministic. (The general case is
handled by a standard averaging argument.) In such a case, we call each of the
first 2k tokens well-formed if the honest receiver obtains the same ri regardless
of its choice ci, and we call it badly formed otherwise. By the additive sharing
of c, the only way for a malicious sender to correlate the receiver’s auxiliary
output with c is to make all of the first 2k tokens badly formed. To prevent this
from happening, we require the sender to send a final token which proves that it
knows all of the 2k auxiliary strings r̂i obtained by the receiver. This suffices to
convince the receiver that not all of the first 2k tokens are badly formed. Note,
however, that we cannot ask the sender to send these 2k strings ri in the clear,
since this would (again) allow a malicious receiver to postpone its choice c until
after it learns r.

Instead, the sender generates and sends a token which first verifies that the
receiver knows r (by comparing the receiver’s input to the k-bit string r) and
only then outputs all 2k shares ri. The verification step prevents correlation
attacks by a malicious receiver. The final issue to worry about is that the string
r received by the token (which may be correlated with the receiver’s choices ci)
does not reveal to the sender enough information to pass the test even if all of its
first 2k tokens are badly formed. This follows by a simple information-theoretic
argument: in order to pass the test, the token must correctly guess all 2k bits
ci, but this cannot be done (except with 2−Ω(k) probability) even when given
arbitrary k bits of information about the ci.

The above protocol shows the following (see full version for proof):

Claim. Protocol ΠExtOTM realizes ExtOTM with statistical UC-security in the
Fsingle

wrap -hybrid model.

We are now ready to prove the main feasibility result of this subsection.
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Theorem 1 (Interactive unconditionally secure computation using
stateful tokens). Let f be a (possibly reactive) polynomial-time computable
functionality. Then there exists an efficient, statistically UC-secure interactive
protocol which realizes f in the Fsingle

wrap -hybrid model.

Proof. We compose three reductions. The protocols of [18,19] realize uncondi-
tionally secure two-party (and multi-party) computation of general functionali-
ties using FOT. A trivial reduction described above reduces FOT to ExtOTM.
Finally, the above Claim reduces ExtOTM to Fsingle

wrap .

3.2 The Non-interactive Setting

In this subsection we restrict the attention to the case of securely evaluating
two-party functionalities f(x, y) which take an input x from the sender and an
input y from the receiver, and deliver f(x, y) to the receiver. We refer to such
functionalities as being sender-oblivious. Note that here we consider only non-
reactive sender-oblivious functionalities, which interact with the sender and the
receiver in a single round. The reactive case will be discussed in the full version.

Unlike the case of general functionalities, here one can hope to obtain non-
interactive protocols in which the sender unidirectionally send tokens (possibly
along with additional messages8) to the receiver.

For sender-oblivious functionalities, the main result of this subsection
strengthens the results of Section 3.1 in two ways. First, it shows that a non-
interactive protocol can indeed realize such functionalities using stateful tokens.
Second, it pushes the simplicity of the tokens to an extreme, relying only on
OTM tokens which contain pairs of bits.

Below we provide only a high-level description of the construction and the
underlying ideas. We refer the reader to the full version for the full description
of the protocols and their analysis.

One-time programs. Our starting point is the concept of a one-time pro-
gram (OTP) [13]. A one-time program can be viewed in our framework as a
non-interactive protocol for f(x, y) which uses only OTM tokens, and whose se-
curity only needs to hold for the case of a semi-honest sender (and a malicious
receiver).9 The main result of [13] establishes the feasibility of computationally-
secure OTPs for any polynomial-time computable f , based on the existence
of one-way functions. The construction is based on Yao’s garbled circuit tech-
nique [37]. Our initial observation is that if f is restricted to the complexity
class NC1, one can replace Yao’s construction by an efficient perfectly secure
variant (cf. [38]). This yields perfectly secure OTPs for NC1. Alternatively, we

8 Since our main focus is on establishing feasibility results, the distinction between the
“hardware” part and the “software” part is not important for our purposes.

9 The original notion of OTP from [13] is syntactically different in that it views f as a
function of the receiver’s input, where a description of f is given to the sender. This
can be captured in our framework by letting f(x, y) be a universal functionality.
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also present a general construction of a OTP from any “decomposable random-
ized encoding” of f . This can be used to derive perfectly secure OTPs for larger
classes of functions (including NL) based on randomized encoding techniques
from [39,38]. See the full version for further details.

A next natural step is to construct unconditionally secure OTPs for any
polynomial-time computable function f . In the full version of this paper, we
describe a direct and self-contained construction which uses the perfect OTPs
for NC1 described above to build a statistically secure construction for any f .
However, this result will be subsumed by our main result, which can be proved
(in a less self-contained way) without relying on the latter construction.

Handling malicious senders. As in Section 3.1, the main ingredient in our
solution is an interactive secure protocol Π for f . The high level idea of our con-
struction is obtain a non-interactive protocol for f which emulates Π by having
the sender generate and send a one-time token which computes the sender’s
next message function for each round of Π (a similar idea was used in [13] to
construct one time proofs). Using the above procedure, we transform Π into a
non-interactive protocol Π ′ which uses very complex one-time tokens (for imple-
menting the next message functions of Π). The next idea is that we can break
each such complex token into simple OTM tokens by using a one-time program
realization of each complex token. More details are provided in the full version.

From the plain model to the OT-hybrid model. So far we assumed the
protocol Π to be secure in the plain model. This rules out unconditional security
as well as UC-security, which are our main goals in this section. A natural ap-
proach for obtaining unconditional UC-security is to extend the above compiler
to protocols in the OT-hybrid model. This introduces a subtle difficulty which
was already encountered in Section 3.1: the sender cannot directly implement
the OT calls by using OTM tokens. To solve this problem, we build on the
(non-interactive) ExtOTM protocol from Section 3.1. See full version for details.

From string-OTM to bit-OTMs. As a final optimization, in the full version
we show how to use an unconditionally UC-secure non-interactive implementa-
tion of a string-OTM token using bit-OTM tokens.

This yields the following main result of this section:

Theorem 2 (Non-interactive unconditionally secure computation us-
ing bit-OTM tokens). Let f(x, y) be a non-reactive, sender-oblivious,
polynomial-time computable two-party functionality. Then there exists an efficient,
statistically UC-secure non-interactive protocol which realizes f in the Fsingle

wrap -
hybrid model in which the sender only sends bit-OTM tokens to the receiver.

4 Two-Party Computation with Stateless Tokens

In this section, we again address the question of achieving interactive two-party
computation protocols, but asking the following questions: (1) Can we rely on
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stateless tokens while only assuming that one-way functions exist? (2) Can the
above be achieved without requiring that the complexity or number of the tokens
grows with the complexity of the function being computed, as was the case in
the previous section? We show how to positively answer both questions: We use
stateless tokens, whose complexity is polynomial in the security parameter, to
implement the OT functionality. Since (as discussed earlier) secure protocols for
any two-party task exist given OT, this suffices to achieve the claimed result.

Before turning to our protocols, we make a few observations about stateless
tokens to set the stage. First, we observe that with stateless tokens, it is always
possible to have protocols where tokens are exchanged only at the start of the
protocol. This is simply because each party can create a “universal” token that
takes as input a pair (c, x), where c is a (symmetric authenticated/CCA-secure)
encryption10 of a machine M , and outputs M(x). Then, later in the protocol,
instead of sending a new token T , a party only has to send the encryption of the
code of the token, and the other party can make use of that encrypted code and
the universal token to emulate having the token T . The proof of security and
correctness of this construction is straightforward.

Dealing with dishonestly created stateful tokens. The above discussion,
however, assumes that dishonest players also only create stateless tokens. If that
is not the case, then re-using a dishonestly created token may cause problems
with security. If we allow dishonest players to create stateful tokens, then a
simple solution is to repeat the above construction and send separate universal
tokens for each future use of any token by the other player, where honest players
are instructed to only use each token once. Since this forces all tokens to be used
in a stateless manner, this simple fix is easily shown to be correct and secure;
however, it may lead to a large number of tokens being exchanged. To deal
with this, as was discussed in the previous section, we observe that by Beaver’s
OT extension result [36] (which requires only one-way functions), it suffices to
implement O(k) OTs, where k is the security parameter, in order to implement
any polynomial number of OTs. Thus, it suffices to exchange only a polynomial
number of tokens even in the setting where dishonest players may create stateful
tokens.

Convention for intuitive protocol descriptions. In light of the previous
discussions, in our protocol descriptions, in order to be as intuitive as possible, we
describe tokens as being created at various points during the protocol. However,
as noted above, our protocols can be immediately transformed into ones where
a bounded number of tokens (or in the model where statelessness is guaranteed,
only one token each) are exchanged in an initial setup phase.

4.1 Protocol Intuition

We now discuss the intuition behind our protocol for realizing OT using stateless
tokens; due to the complexity of the protocol, we do not present the intuition
10 An “encrypt-then-MAC” scheme would suffice here.
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for the entire protocol all at once, but rather build up intuition for the different
components of the protocol and why they are needed, one component at a time.
For this intuition, we will assume that the sender holds two random strings s0
and s1, and the receiver holds a choice bit b. Note that OT of random strings is
equivalent to OT for chosen strings [41].

The Basic Idea. Note that, since stateless tokens can be re-used by malicious
players, if we naively tried to create a token that output sb on input the receiver’s
choice bit b, the receiver could re-use it to discover both s0 and s1. A simple
idea to prevent this reuse would be the following protocol, which is our starting
point:

1. Receiver sends a commitment c = com(b; r) to its choice bit b.
2. Sender sends a token, that on input (b, r), checks if this is a valid decommit-

ment of c, and if so, outputs sb.
3. Receiver feeds (b, r) to the token it received, and obtains w = sb

Handling a Malicious Receiver. Similar to the problem discussed in the
previous section, there is a problem that the receiver may choose not to use
the token sent by the sender until the end of the protocol (or even later!). In
our context, this can be dealt with easily. We can have the sender commit to a
random string π at the start of the protocol, and require that the sender’s token
must, in addition to outputting sb, also output a valid decommitment to π. We
then add a last step where the receiver must report π to the sender. Only upon
receipt of the correct π value does the sender consider the protocol complete.

Proving Knowledge. While this protocol seems intuitive, we note that it is
actually insecure for a fairly subtle reason. A dishonest sender could send a token
that on input (b, r), simply outputs (b, r) (as a string). This means that at the
end of the protocol, the dishonest sender can output a specific commitment c,
such that the receiver’s output is a decommitment of c showing that it was a
commitment to the receiver’s choice bit b. It is easy to see that this is impossible
in the ideal world, where the sender can only call an ideal OT functionality.

To address the issue above, we need a way to prevent the sender from creating
a token that can adaptively decide what string it will output. Thinking about it
in a different way, we want the sender to “prove knowledge” of two strings before
he sends his token. We can accomplish this by adding the following preamble to
the protocol above:

1. Receiver chooses a pseudo-random function (PRF) fγ : {0, 1}5k → {0, 1}k,
and then sends a token that on input x ∈ {0, 1}5k, outputs fγ(x).

2. Sender picks two strings x0, x1 ∈ {0, 1}5k at random, and feeds them (one-
at-a-time) to the token it received, and obtains y0 and y1. The sender sends
(y0, y1) to the receiver.

3. Sender and receiver execute the original protocol above with x0 and x1 in
place of s0 and s1. The receiver checks to see if the string w that it obtains
from the sender’s token satisfies fγ(w) = yb, and aborts if not.
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The crucial feature of the protocol above is that a dishonest sender is effectively
committed to two values x0 and x1 after the second step (and in fact the simu-
lator can use the PRF token to extract these values), such that later on it must
output xb on input b, or abort.

Note that a dishonest receiver may learn k bits of useful information about
x0 and x1 each from its token, but this can be easily eliminated later using the
Leftover Hash Lemma (or any strong extractor).

Preventing correlated aborts. A final significant subtle obstacle remains,
however. A dishonest sender can still send a token that causes an abort to be
correlated with the receiver’s input, e.g. it could choose whether or not to abort
based on the inputs chosen by the receiver (see full version for a discussion of
why this is a problem).

To prevent a dishonest sender from correlating the probability of abort with
the receiver’s choice, the input b of the receiver is additively shared into bits
b1, . . . , bk such that b1 +b2 + · · ·+bk = b. The sender, on the other hand, chooses
strings z1, . . . , zk and r uniformly at random from {0, 1}5k. Then the sender and
receiver invoke k parallel copies of the above protocol (which we call the Quasi-
OT protocol), where for the ith execution, the sender’s inputs are (zi, zi + r),
and the receiver’s input is bi. Note that at the end of the protocol, the receiver
either holds

∑
zi if b = 0, or r +

∑
zi if b = 1.

Intuitively speaking, this reduction (variants of which were previously used
by, e.g. [34,35]) forces the dishonest sender to make one of two bad choices: If
each token that it sends aborts too often, then with overwhelming probability
at least one token will abort and therefore the entire protocol will abort. On
the other hand, if few of the sender’s tokens abort, then the simulator will be
able to perfectly simulate the probability of abort, since the bits bi are (k −
1)-wise independent (and therefore all but one of the Quasi-OT protocols can
be perfectly simulated from the receiver’s perspective). We make the receiver
commit to its bits bi using a statistically hiding commitment scheme (which can
be constructed from one-way functions [42]) to make this probabilistic argument
go through.

This completes the intuition behind our protocol. The result of this section is
summarized by the following theorem, whose proof appears in full version.

Theorem 3 (Interactive UC-secure computation using stateless to-
kens). Let f be a (possibly reactive) polynomial-time computable functionality.
Then, assuming one-way functions exist, there exists a computationally UC-
secure interactive protocol which realizes f in the Fstateless

wrap -hybrid model. Fur-
thermore, the protocol only makes a black-box use of the one-way function.

Oblivious Reactive Functionalities in the Non-Interactive Setting. In the full
version, we generalize our study of non-interactive secure computation to the
case of reactive functionalities. Roughly speaking, reactive functionalities are
the ones for which in the ideal world, the parties might invoke the ideal trusted
party multiple times and this trusted party might possibly keep state between
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different invocations. For the interactive setting (i.e. when the parties are allowed
multiple rounds of interaction in the Fwrap-hybrid models) there are standard
techniques using which, given protocol for non-reactive functionality, protocol
for securely realizing reactive functionality can be constructed. However, these
techniques fail in the non-interactive setting. In the full version, we study what
class of reactive functionalities can be securely realized in the non-interactive
setting for the case of stateless as well as stateful hardware token.

Acknowledgements. We thank Jürg Wullschleger for pointing out the relevance
of [27] and for other helpful comments. We thank Guy Rothblum for useful
discussions.
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Abstract. SFE requires expensive public key operations for each input
bit of the function. This cost can be avoided by using tamper-proof hard-
ware. However, all known efficient techniques require the hardware to
have long-term secure storage and to be resistant to reset or duplication
attacks. This is due to the intrinsic use of counters or erasures. Known
techniques that use resettable tokens rely on expensive primitives, such
as generic concurrent ZK, and are out of reach of practice.

We propose a truly efficient String Oblivious Transfer (OT) technique
relying on resettable (actually, stateless) tamper-proof token. Our proto-
cols require between 6 and 27 symmetric key operations, depending on
the model. Our OT is secure against covert sender and malicious receiver,
and is sequentially composable.

If the token is semi-honest (e.g. if it is provided by a trusted entity,
but adversarily initialized), then our protocol is secure against malicious
adversaries in concurrent execution setting.

Only one party is required to provide the token, which makes it ap-
propriate for typical asymmetric client-server scenarios (banking, TV,
etc.)

1 Introduction

We propose efficiency improvements of two-party Secure Function Evaluation
(SFE). We take advantage of tamper-proof hardware issued by one of the par-
ticipants of the computation. We restrict ourselves to stateless (thus resettable)
tokens to avoid the cost of adding long-term secure storage and to protect against
a class of physical attacks on the hardware.

Two-party general (SFE) allows two parties to evaluate any function on their
respective inputs x and y, while maintaining privacy of both x and y. SFE is
(justifiably) a subject of an immense amount of research, e.g. [28,29,23]. Efficient
SFE algorithms enable a variety of electronic transactions, previously impossible
due to mutual mistrust of participants. Examples include auctions [27,8,12], con-
tract signing [11], set intersection [18], etc. As computation and communication
resources have increased, SFE of many useful functions has become practical for
common use.

Still, SFE of most of today’s functions of interest is either completely out of
reach of practicality, or carries costs sufficient to deter would-be adopters, who
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instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see more use in real-life applications.

To achieve this, in addition to improving protocols in the standard model,
it is useful to “give ourselves” some help in the form of less demanding (yet
acceptable) security properties, such as the recently proposed covert adversaries
model [3]. When it fits the setting, we could also rely on additional assumptions
that the world has been long using, such as simple tamper-proof (or tamper-
resistant) tokens. We note that token-supported protocols received a lot of at-
tention recently, e.g., [21,7, 18, 14, 9, 10, 15]. To allow cheaper tokens and higher
confidence in the security of the system, it is desired to minimize the assumptions
on the hardware, while still reaping the performance benefit.

A weaker hardware model that recently received a lot of attention, e.g. [7,
17, 15], is that of resettable token. Here, the adversary, e.g., by interrupting
power supply or applying highly targeted laser or electro-magnetic radiation, is
able to manipulate the token and reset its internal variables (e.g., a counter)
to the initial state1. This realistic capability trivially breaks most of currently
known protocols taking advantage of secure tokens. Similar effect is achieved if
an attacker is able to obtain a clone of the card, e.g. by insider attacks during
manufacturing process, etc. From another perspective, it may be convenient to
allow legitimate clone cards to allow the user operate several instances of itself
independently. For example, a person may sign up for a telephone, wireless, and
TV services from the same provider. It may be convenient to simply provide
him with several identical tokens, which he can use interchangeably in all of his
devices. It is easy to see that such deployment clearly requires resettable tokens.

We consider even weaker stateless tokens. This gives an important advantage
of avoiding the manufacturing cost of long-term secure storage.

Our setting, goals and approach. We consider two-party SFE aided by state-
less tamper-proof tokens. In fact, our protocols work in the very important
client-server setting, where only one party has the capability to issue tokens.
In practice, this occurs in TV, phone, cellular and internet service provision,
banking, etc. We aim to enable efficient computation of a variety of functions on
moderate-size inputs. On the client side, for example, inputs could be viewing
preferences, browsing history, etc. Server’s inputs may include content or other
digital rights to be transferred to the client. We stress that our solutions are
general and can be used to compute any function.

We note the inherently asymmetric trust model in the client-server setting.
Servers are usually established businesses who are likely unwilling to cheat, espe-
cially if there is a chance of being caught. The risk of loss of business and public
embarrassment is a strong deterrent. Therefore, it is natural and sufficient to
model servers as covert adversaries. Also, servers are capable of issuing tamper-
proof tokens, and, in many cases, already routinely do. Clients, on the other

1 Not all is necessarily lost with this adversarial capability. For example, it is much
harder to reprogram the token, simply by resetting certain bits, to, e.g., output its
keys. Thus the resettable token model appears reasonable.
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hand, have much less credibility, and may be more willing to attempt interfering
with the protocol and the provided token. Therefore, it is appropriate to view
them as malicious adversaries, and to aim to reduce the trust assumptions on
the token.

Oblivious Transfer (OT) is often a bottleneck in SFE, due to the high cost of
the required public key operations. Our main contribution is, we believe, the first
truly efficient protocol to use a resettable token to replace public key operations
in OT (and SFE) with symmetric primitives.

The hardware assumption: costs and security comparison with
number-theoretic OT. At first, it may seem that the cost of deployment of
tokens is greater than that of using standard OT based on public key primitives.
We argue that this is often not the case. As noted above, tamper-resistant tokens
are often already deployed in the form of cell phones’ SIM cards, TV cable smart
cards, etc. In these important scenarios, tokens are “free”. Otherwise, they cost
from $2 in retail (e.g., [1]). At the same time, using standard OT may neces-
sitate much higher costs in terms of increased CPU requirements, much slower
processing, and decreased battery life (in mobile devices). Further, evaluating
garbled circuits (our main application) involves transferring them (megabytes or
gigabytes of data, especially in the malicious model) to the client. In large-scale
deployment of SFE (e.g., by banks and service providers), these communication
costs cannot be afforded; fortunately, they can be avoided by generating circuits
from a seed by the server-issued token [20]. This solution requires reliance on
tamper-proof/tamper-resistant tokens, forces their use, fits well with our setting,
and further justifies it.

One may also question the hardware assumption and rightfully presume that a
sufficiently strong attacker can always break into the token. We argue that in many
applications we envision, the cost of the break far exceeds the gain (e.g., free cable
TV for one user). Therefore, the barrier raised by even weak tamper resistance is
high enough for typical applications, and constitutes a reasonable assumption.

1.1 Our Contributions and Outline of the Work

We consider two-party SFE, where one party (Sender S) is able to issue a token
T to the receiver R. T is assumed to be tamper-proof, but resettable. Our main
contribution is a new efficient string OT protocol in the covert adversaries model
[3], which takes advantage of T . To our knowledge, ours is the first truly efficient
protocol that gets rid of public key operations in this setting. Our protocol
requires a total of 6 symmetric key operations if the token is semi-honest and S
and R are malicious, and 27 such operations in the covert adversaries model (with
deterrence ε = 1/2). This immediately leads to corresponding improvements in
2-party SFE.

We start with the overview of related work in Sect. 2 and preliminaries in
Sect. 3. For clarity of presentation, we first present the semi-honest variant of
the OT scheme in Sect. 4. We then show how to achieve security against covert
sender and fully malicious receiver in Sect. 4.1. In Sect. 4.2, we discuss aspects
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of simultaneous execution and sequential composition, and show security in this
case.

Under an additional reasonable assumption that the tokens are trusted to run
the specified code (e.g. when standard tokens are provided by a trusted manu-
facturer), our protocol is composable concurrently and secure against malicious
S and R (Sect. 4.3).

1.2 Main Idea of Our Approach

Our main tool is Strong Pseudorandom Permutation Generators (SPRPG). We
capitalize on the observation that it is difficult to find a collision in a SPRPG F
under independent secret keys k0, k1. At the same time, a value in the range of
F does not reveal which key was used to arrive at this value (via the evaluation
of F ). That is, R can know a preimage of the (random to S) value under (only
one) key of R’s choice. This is naturally used to construct efficient OT protocols.
We use T to securely store the keys and provide R the evaluation interface to F
(but not F−1).

We stress that the use of SPRPG (vs PRPG) does not introduce additional
assumptions, and has no performance impact (Sect. 3.2).

We give additional intuition for semi-honest and covert setting protocols in
Sect. 4 and 4.1, before presenting corresponding protocols.

2 Related Work

There is a massive body of work on SFE, and, in particular, two-party SFE,
of which most relevant to this work is Yao’s garbled circuit [28,29,23] and the
techniques of its implementation in the malicious setting. The complete solutions
are excellently presented in [24,3,16]. We work in the recently introduced security
model of covert adversaries [3], which we find to help significantly in design of
efficient protocols. SFE solutions of [3,16] are presented in this model. Our work
is an improvement of an important building block used by above (and many
other) solutions.

There has been a recent surge of interest in SFE supported by tamper-proof
tokens [21, 7, 18, 14, 10, 15], and, specifically, resettable tokens [7, 15]. Our work
is different from the above, as follows.

Firstly, of the above, only [7,15] consider resettable tokens. Work of Katz [21]
was the first to formalize tamper-proof token model, and show sufficiency for Uni-
versally Composable (UC) security. This is mainly a feasibility and definitional
result. Chandran et al. [7] extended the results of Katz, considered resettable
tokens, and constructed UC-secure protocols. Goyal and Sahai [17] constructed
protocols secure against resettable adversaries (and not just tokens). Very re-
cently, Goyal et al. [15] considered the general question of basing cryptography
on tamper-proof tokens, under minimal computational assumptions. As one of
their results, they showed that stateless tokens and one-way functions are suffi-
cient for UC-secure computation. Damg̊ard et al. [10] consider the setting where
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the tamper-proof token may leak a limited amount of information back to its
issuer. They show how to achieve UC-secure computation in this setting. We
remark that the protocols of [21,7, 10, 17, 15] achieve stronger UC security. Our
protocols either have weaker security guarantee, or rely on a semi-honest token.
In exchange, we use only a few (6 to 27) symmetric key operations and thus offer
truly practical performance.

Hazay and Lindell [18] give a very practical protocol which takes advantage
of secure tokens (standard smart cards). As compared to our work, they solve a
specific problem, using a much stronger assumption (non-resettable semi-honest
smart card) than we do.

Goldwasser et al. [14] consider one-time (or, generally, k-time) programs and
proofs, and rely on tamper-proof tokens to achieve it. Their token security model
is different from ours – it is non-resettable, but it is assumed that data that is ever
accessed by the token’s program may be leaked to the adversary. This assumption
makes impossible the use of pseudorandomness in their construction, and all the
random values (i.e. wire keys used by garbled circuit) ever used by the program
need to be preloaded explicitly. While opening a significant new application of
secure hardware, these tokens can only be used for a predetermined number of
executions. The most important difference, however, is that we achieve security
with resettable token.

3 Preliminaries

3.1 Notation and Security Model

We will use Pseudorandom Permutation Generators (PRPG) and Strong PRPG
(SPRPG). While we don’t need SPRPG properties in all uses of PRPG, for
simplicity we refer to all of them as SPRPG, and denote by F . We denote the
domain and range of F by D, and the key space of F by K. For simplicity, we
set K = D = {0, 1}n, where n is the security parameter. We denote OT Sender
by S, OT Receiver by R and the token by T . In our protocols, R will be testing
the correctness of the actions of S and T . Objects associated with testing would
often have subscript t, for example, Dt is the subdomain of D, reserved for test
queries. By “OT” we mean “string OT”.

We prove security against covert adversaries. Aumann and Lindell [3] propose
several definitions of security in this setting, with various guarantees. Our pro-
tocols are secure in their strongest model (strong explicit cheat formulation).
Informally, this guarantees that covert adversary does not learn anything about
honest party’s input if he is caught.

We stress that this notion of security requires full simulation in the ideal
world (where cheating attempts are modeled by a designated query). Further,
this notion is modularly sequentially composable [3]. In particular, this means
that our OT can be composed, e.g., with a garbled circuit protocol, and result
in a corresponding SFE protocol in the covert model.

For simplicity of presentation, we often omit the introduction of the deterrence
parameter ε (probability of being caught when cheating) in our calculation. Our
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constructions are given w.r.t. ε = 1/2, but are readily generalized to ε polyno-
mially close to 1.

We assume that tokens cannot be internally observed or tampered with; we
only allow R to reset the token at will. We leave it as an interesting direction to
investigate efficient security in presence of both resets and tampering (perhaps
using the techniques of Gennaro et al. [13]).

3.2 Strong Pseudorandom Permutation Generators (SPRPG)

We assume reader’s familiarity with PRPG. SPRPG (sometimes also referred to
as Super PRPG) is a natural extension of the notion of PRPG which considers
efficiently invertible permutations. Informally, in terms of security, the difference
between the two notions is that while PRPG allows the adversary to query the
“forward evaluation” oracle, SPRPG allows to query both “forward evaluation”
and “inversion” oracles. Luby and Rackoff [25] showed how to construct SPRPG
from PRFG. Therefore, our use of SPRPG does not require an additional as-
sumption. Further, invertibility has been a design requirement of almost all block
ciphers, notably, of AES. It appears that the trend will continue in the future as
well. Therefore, in practical terms, our reliance on SPRPG does not incur any
performance penalty. We envision instantiation of SPRPG in our constructions
with AES.

We note thatmost of cryptographicprotocols literature relies onPRFG/PRPG,
and largely ignores SPRPG. The novelty of our approach is in part in using tools
just outside of standard “crypto toolbox”. Use of invertible PRPG seems to be
promising in tamper-proof token designs.

3.3 Oblivious Transfer

Garbled Circuit (GC), excellently presented in [23], is the standard and the most
efficient method of two-party SFE of boolean circuits. An important (and often
the most computationally expensive) step of GC and other SFE techniques is the
oblivious transfer (OT) of a secret (one of the two held by the sender), depending
on the choice of the receiver.

The 1-out-of-2 OT is a two-party protocol. The sender S has two secrets s0, s1,
and the receiver R has an selection bit i ∈ {0, 1}. Upon completion, R learns si,
but nothing about s1−i, and S learns nothing about i. OT is a widely studied
primitive in the standard model [5, 2], with improved implementations in the
Random Oracle model [26,6].

OT Using Tamper-Proof Hardware. While existing OT constructions are
simple, they are not very efficient due to use of several public key operations
for each OT. If parties possess tamper-proof hardware tokens, such as smart
cards, the use of public key operations can be avoided as follows (shown in the
semi-honest model).

Suppose, S creates and gives R the following token T . Equipped with a non-
resettable counter (initially set to 0), and seeded with the secret key k chosen
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by S, T has the following interface. Let F be a PRPG. On input i, where
i ∈ {0, 1}, T sets counter = counter + 2 and outputs Fk(counter + i − 2).
Now, to execute the j-th instance of OT, the sender sends to the receiver
(Fk(counterj) ⊕ sj

0, Fk(counterj + 1) ⊕ sj
1), where counterj is the value of the

counter used for evaluation of j-th OT. Receiver obtains Fk(counterj + i) by
calling T with argument i, and obtains sj

i . Because of the properties of PRPG
and since the token guarantees that Fk will not be evaluated on both counterj

and counterj + 1, the receiver will be able to obtain only one of s0, s1. Further,
S does not learn the receiver’s input i, since nothing is sent to S.

This efficient protocol can be naturally modified to withstand covert adver-
saries, but it (and other natural protocols) fails trivially if T is reset.

4 OT with Resettable Tamper-Proof Cards

We build our presentation incrementally. We find it instructive to first present
the protocol for a hybrid semi-honest model, where the only allowed malicious
behavior is for R to arbitrarily query the token T , and to reset T to the state
T was in when it was received by R. (This additional power is necessary to
exclude trivial solutions secure in the semi-honest model, such as relying on the
semi-honest parties to not reset the token.) We show how to efficiently handle
malicious behavior in Sect. 4.1.

In our construction, we use Strong PRPG (SPRPG), i.e. a PRPG that allows
efficient inversion. As discussed in Sect. 3.2, this does not constitute an addi-
tional assumption and causes no performance penalty (we envision using AES
as SPRPG).

The main idea of our construction is to limit the functionality of the token
to evaluate the SPRPG F in the forward direction only, to keep no state, and to
have S load two random SPRPG keys on the token. Then, the simple but crucial
observation is that it is infeasible for the token receiver to find two preimages
(under the two keys) of any element in the range D of F . (In fact at least one
of the preimages will look random to him.) At the same time, he can trivially
generate a random element on the range with the preimage under either of the
keys. The token creator S, who knows both keys, can invert F and compute both
preimages. If he uses them to encrypt the respective input secrets, the receiver
can recover the secret of his choice. We discuss the intuition for protection against
malicious actions before presenting our main protocol in Sect. 4.1.

Construction 1. (OT, stateless token, augmented semi-honest model)

1. Initialization. The token T is created by sender S, seeded with keys k0, k1,
randomly chosen by S, and given to receiver R. T answers any number of
queries of the form Q(i, x) = Fki(x).

2. OT Protocol execution. S has inputs s0, s1 ∈ D. R has input i ∈ {0, 1}.
(a) R chooses x ∈R D, and queries the token v = Q(i, x) = Fki(x). R sends

v to S.
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(b) S computes encryption keys ek0 = F−1
k0

(v), and ek1 = F−1
k1

(v). He then
sends (e0, e1) = (Fek0 (s0), Fek1 (s1)) to R.

(c) R computes and outputs si = F−1
x (ei).

Observation 1. We need to be careful with the choice of the encryption scheme
used to encrypt Sender’s secrets s0, s1, since R has access to the forward eval-
uation oracle Fki(x). For example, the random pad would not work here, since
this would allow R to check the unknown secret (also transferred, but masked)
for equality to constants of his choice. Jumping ahead, we note that to efficiently
handle malicious attacks (e.g. R reusing x for different executions) and multiple
executions of the protocol, we need a stronger primitive, such as semantically
secure encryption (which, e.g., can be implemented simply by allocating some of
the PRPG domain for randomness used for encryption).

Theorem 1. Assume F is a SPRPG. Then the protocol of Construction 1 eval-
uates the String OT functionality securely in the semi-honest model, where R
is additionally allowed to arbitrarily query and reset the token T to its original
state (i.e. as received by R).

Proof (Sketch). Correctness is straightforward. To prove security, we first show
the simulator SimS which simulates the view of the semi-honest S. It is easy to
see that all S sees is a uniformly distributed element in D, which is trivial to
simulate.

We now show the simulator SimR of the view of semi-honest R, who ad-
ditionally has oracle access to T . Given input i and output s, SimS outputs
(i, x′, (e′0, e′1)), where x′ ∈R D, e′i = Fx′(s), and e′1−i ∈R D. It is easy to see that
the output of SimS is computationally indistinguishable from the real execution.
Indeed, the only “fake” part is e′1−i. In the real execution, e1−i = FF−1

k1−i

(s1−i). A

hybrid argument shows that existence of a distinguisher implies a distinguisher
for F . ��

4.1 Protocols for Malicious (Covert) Setting

The most practical solution to move to malicious model would be to use to-
kens manufactured by a third party, which are trusted to run the specified
functionality (loading the keys, and answering queries as above), and be non-
reprogrammable. In this semi-honest token case, Construction 1 works, with the
small modification of using semantically secure encryption to transfer secrets in
Step 2b (see also Observation 1). In fact, the resulting protocol is concurrently
secure (see Sect. 4.3).

However, it is highly desirable to avoid this trust assumption. With the ex-
ception of Sect. 4.3, we consider tokens running arbitrary code.

Intuition. The main avenue of attack for S and T is to try to combine their
views. This is done by T incorporating a side-channel in its answers to R (recall,
Construction 1 provides no channel from S to T ). We note that R never knows
when this attack occurs, so he must continuously check on T . We handle this by
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a strong variant of a cut-and-choose technique, which we introduce in this work.
The main avenue of attack for R is to adversarily choose his queries to T . We
handle this by using semantic encryption to encrypt secrets being passed back
(see Observation 1).

We start with Construction 1, and extend it as follows. First, we embed an
exponentially large number of keys in the token, by pseudorandomly generating
them. This allows R to test keys of his choice at any time in the lifetime of T , a
what we call continuous cut-and-choose. To achieve this, the keys k0, k1, as used
in Construction 1, will be replaced with derived keys Fk0(y), Fk1 (y), where y is
chosen by R. The token query function Q would now take an extra argument
and return Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x)). To test T ’s response, R will ask S
to reveal Fk0(y), Fk1(y). Of course this y cannot be used for “live” OT transfer.
To avoid S storing large history, R and S agree, after the token has been received
by R, on the test domain Dt ⊂ D. Now, S will only reveal keys for test queries
yt ∈ Dt, and will only use y ∈ D \ Dt for “live” OT. Of course, Dt must be
unpredictable to T . This is easily achieved by R defining it pseudorandomly, e.g.
by R choosing kD and setting Dt = {FkD (x)|x ∈ D,x is even}.

Further, we unconditionally hide the input i of R from T by having R choose
a random bit b and flipping i iff b = 1. S is notified of b to allow for the
corresponding flip of his inputs s0, s1.

The above changes are sufficient. After presenting the protocol, we give addi-
tional intuition of why security holds, and then state and prove the corresponding
theorem. Our construction is for deterrence factor ε = 1/2, since the probability
of catching the attempted cheat is 1/2. This probability can be naturally mod-
ified for any ε polynomially close to 1, simply by performing more test queries.
Namely, k test queries provide for ε = 1 − 1/k.

Let E = (Gen,Enc,Dec) be a CPA-secure encryption scheme, such that every
element of the ciphertext domain is uniquely decrypted. Such schemes can be
easily constructed from a SPRPG.

Construction 2. (OT using resettable tokens, covert adversaries model, deter-
rence ε = 1/2)

1. Initialization. Let Enc be an encryption scheme as described above. The to-
ken T is created by sender S, seeded with keys k0, k1, randomly chosen by
S, and given to receiver R. T answers any number of queries of the form
Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x)). R chooses a random string kD ∈R {0, 1}n

and sends to S. Parties set Dt = {FkD (x)|x ∈ D,x is even}.
2. OT Protocol execution. S has inputs s0, s1 ∈ D.R has input i ∈ {0, 1}.

(a) R chooses yt ∈R Dt and sends to S.
(b) S checks that yt ∈ Dt and if so, responds with k0

t = Fk0(yt) and k1
t =

Fk1(yt). Otherwise, S outputs corruptedR and halts.
(c) R chooses b ∈R {0, 1}, x, xt ∈R D, y ∈R D \ Dt. Then R queries T , in

random order
(v0, v1) = Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x))
(c0, c1) = Q(yt, xt) = (FFk0 (yt)(xt), FFk1 (yt)(xt))

R checks whether the check values c0, c1 match the evaluation of F based
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on keys received from S. If so, R sends b, y, vi⊕b to S. Otherwise, R
outputs corruptedS and halts.

(d) S checks that y �∈ Dt. If not, S outputs corruptedR and halts. If so, S
computes encryption keys ek0 = F−1

Fk0 (y)(vi⊕b), and ek1 = F−1
Fk1 (y)(vi⊕b),

and sends (e0, e1) = (Encek0 (s0⊕b), Encek1 (s1⊕b)) to R.
(e) R computes and outputs si = Decx(ei+b).

Note, only R’s (selective) check is related to catching the possible covert cheating
by S and T . The protocol is secure against malicious R.

Intuition for security. Observe that T only sees two Q queries with easily
simulatable random-looking arguments. While S receives one message from T ,
T does not know which of the two queries it sees is the test one, and which is
safe to attack. If T guesses the test query, then it can pass information with
the other query, and S learns R’s input and can set R’s output. However, if
T guesses incorrectly and attempts to pass information in the test query, he is
caught w.h.p., and without revealing R’s input. (This is because S “fixes” the
test SPRPs by revealing their keys, and T must answer the query according to
the fixed keys not to be caught.) Since the two queries are indistinguishable for
T , the deterrence factor is ε = 1/2. We stress that T /S cannot base their decision
to cheat on R’s input, since they commit to this decision (and are checked by
R) before R sends any input-dependent messages.

If T behaves semi-honestly, S learns no information from seeing vi⊕b, since this
value could have been generated with either of the k0, k1 since F is a permutation.
Other than the above attack, S and T are limited to oblivious input substitution.

Security against malicious R’s attempts to manipulate his queries follows from
the use of semantically secure scheme in Step 2d. Now even if S sends back
multiple encryptions under the same key (e.g., when OT is composed), R will
not be able to relate them without knowing the key. As before, T keeps no state,
and thus resetting T does not help.

Theorem 2. Assume that F is a SPRPG. Then Construction 2 evaluates the
String OT function securely against malicious receiver R and covert sender S
with deterrence factor ε = 1/2. The security against S is in the strongest covert
setting (strong explicit cheat formulation).

Proof (Sketch). We treat each corruption case separately. We give detailed de-
scription of the simulator of the protocol of Construction 2 against covert ad-
versaries.

The OT Sender S is corrupted. We construct an ideal-model simulator SimS of
the view of S that works with a trusted party computing the OT functionality.
Let AS and AT be (arbitrary polytime) adversaries controlling S and T respec-
tively. (We consider AS and AT in full generality. In particular, in contrast with,
e.g., [18], we do not assume that AS initializes AT , and thus do not allow SimS

to intercept the corresponding initialization message sent by AS . Further, AS

may not even know the code of AT .) In its execution, SimS interacts with AS

and AT in a black-box manner. We model the physical separation of S and T
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by the fact that AS and AT cannot exchange messages with each other once
protocol execution begins.

1. SimS will determine whether AT wants to cheat. For this, SimS first obtains
both opening keys from AS , by rewinding AS and setting up different test
domains. More specifically:

(a) SimS chooses two random strings k′
D and k′′

D, which define two testing
domains D′

t, D
′′
t ⊂ D. SimS chooses b′ ∈R {0, 1}, x′, y′, x′

t,
y′t ∈R D, such that y′ ∈ D′′

t \ D′
t and y′t ∈ D′

t \ D′′
t .

(b) SimS gives k′′
D, and then y′ to AS , and receives two keys from AS .

(c) SimS rewinds AS , gives him k′
D, then y′t, and receives another two keys

from AS .

2. SimS calls AT with queries (v′0, v
′
1) = Q(y′, x′), (c′0, c

′
1) = Q(y′t, x

′
t), in ran-

dom order. (Recall, SimS has obtained from AS keys to verify both of AT ’s
responses.)
(a) If neither of AT ’s two responses are valid (where by validity we mean

a response that would not cause R to output corruptedS), SimS sends
corruptedS to the trusted party, simulates the honest R aborting due to
detected cheating, and outputs whatever AS outputs. Since so far SimS

only sent y′t to AS , it is easy to see that the simulation is statistical.
(b) If AT sends exactly one valid response, SimS sends cheatS to the trusted

party.
i. If the trusted party replies with corruptedS , then SimS rewinds AS ,

and hands it the query for which AT ’s invalid response could legally
be the test query. SimS then simulates honest R aborting due to
detecting cheating, and outputs whatever AS outputs.

ii. If the trusted party replies with undetectedS and the honest R’s
input i, then SimS rewinds AS , and hands it the query for which
AT ’s valid response could legally be the test query. In the remainder
of execution, SimS plays honest R with input i. At the conclusion,
SimS outputs whatever AS outputs.

(c) If both of AS ’ responses are valid, then we know that AT is not pass-
ing any information to S. Then SimS proceeds with the simulation by
playing honest R on a randomly chosen input i ∈R {0, 1}. That is, SimS

sends b′, y′, v′i⊕b′ to AS (recall, y′ �∈ D′
t, so this message looks proper to

AS). Once SimS receives the final message from AS , using the extracted
keys, SimS correctly recovers both of AS ’s inputs, and sends them to
the trusted party. SimS outputs whatever AS outputs. This simulation
is also statistical.

This completes the description of SimS. It is not hard to see that SimS simulates
the ideal view of covert S with the (ideal model) deterrent factor ε = 1/2. In par-
ticular, ε is equal to 1/2, since the probability of the honest R catching cheating
in the real execution is 1/2. The simulation is computational since, especially in
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a batched execution, an unbounded T can compute extra information on the test
domain, and have better than 1/2 guess of which one is the test query.

The OT Receiver R is corrupted. We construct an ideal-model simulator SimR

that works with a trusted party computing the OT functionality. Let AR be the
adversary controlling R. In its execution, SimR plays honest S and T in their
interaction with AR in a black-box manner. SimR does not need to rewind AR,
since AR’s input can be extracted from the messages sent to S and T (in real
execution, S and T don’t communicate, so the privacy of R’s input is preserved).

1. SimR runs AR and acts as honest S and T until the computation of e0, e1
in Step 2d of Construction 2. (SimR honestly answers as many queries to T
as AR requests.) At this point, SimR needs to provide the right answer to
AR in its message of Step 2d.

2. If v′ output by AR in simulation of Step 2c was computed as v′i by SimR

while answering a query Q(y′, x′) to T , then SimR can compute the input
i used by AR. SimR sets i = i′ ⊕ b′ (where b′ was sent by AR in Step 2c),
calls the trusted party with input i, and receives output s. SimR randomly
chooses encryption key r, computes random encryptions ei⊕b′ = Encx′(s),
ei⊕b′⊕1 = Encr(0) and sends e0, e1 to AR. SimR outputs whatever AR

outputs.
3. If v′ was never computed by SimR in his simulation of T , AR w.h.p. cannot

know its preimage. SimR chooses two random encryptions of 0 under random
keys, sends to AR, and outputs whatever AR outputs. ��

4.2 Discussion: Protocol Composition and Practical Considerations

In this section, we discuss the issues that arise in OT protocol composition and
its use in SFE.

Reuse of the token. We have argued that in many settings (especially in
established client-server commercial relationships, such as TV and banking) it
is realistic for a player (e.g., a service provider) to provide a token to the other
party. At the same time, the same token must be sent only once, and then reused
for multiple invocation of the protocol, for it to be cost-effective. In case of
SFE, “multiple invocation” usually means sequential execution of simultaneous
executions of OT. This is easy to achieve with our protocol, as discussed below.

Simultaneous OT. As in [3], we define simultaneous OT functionality naturally
as

((s1
0, s

1
1), .., (s

m
0 , sm

1 ), (i1, .., im)) #→ (⊥, (si1 , .., sim)) (1)

It is easy to see that natural self-composition of Construction 2 works. Further,
efficiency may be improved, as compared to independent parallel execution, by
choosing y and yt once for the entire simultaneous OT execution (This saves
about a half of computation by both S and T since Fki(y) and Fki(yt) can be
precomputed and reused.) The resulting protocol is a secure implementation of
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simultaneous OT secure against covert adversaries. The proof is almost identical
to the proof of Theorem 2.

Sequential composition. Even though the token is resettable, it may still
maintain state across executions. That means that if the token successfully
cheats, it may be able to help S compute R’s input in a previous OT execu-
tion. Furthermore, since T in this case is able to transfer a whole element of
D to S, several bit inputs of R may be compromised. In Section 4.2, we argue
that the compromise is limited. However, to simplify the claims and arguments,
we “give up everything” in case of successful cheat, and allow the adversary
to learn the entire previous input of R. The following discussion of sequential
composition and the reuse of the token are with respect to this ideal model.

Even with the above simplification, it is not immediately clear how to prove
sequential composition, since the simulator needs to rewind all the way to the
initialization phase to obtain the second opening key. Therefore, an easy way to
achieve sequential composition is to amend the protocol to run the test domain
selection for each (simultaneous) OT execution. Clearly, this would create a
problem if the keys k0, k1 are reused and R chooses a different test domain. To
prevent this, we instead derive k0, k1 for each execution. This can be done, e.g.
by using kj

0 = Fk0(j), k
j
1 = Fk1 (j) in the j-th batch in place of k0, k1. Of course,

S would need to keep track of the counter, and T would then take an additional
input j. It is easy to see that sequential composition holds in this case, since the
simulator now only needs to rewind to the beginning of the current execution.
It is also clear that T holds no state, and as such is still resettable.

Practical implications andconsiderations. Clearly, the ability of the token to
leak a few bits of information (at the risk of being caught) on a previous execution is
undesirable. This means, for example, that S andR cannot have both “high-cheat-
consequence” and “low-cheat-consequence” transactions, since T could conceiv-
ably help leak high-consequence inputs in low-consequence transactions.

Still, we believe that our protocols are applicable in the majority of practical
situations where the covert model is applicable, namely, where the value of the
privacy of the inputs is not worth the risk associated with being caught. This
is the case especially often in the settings we consider, i.e. where it is cost-
effective for one party to provide a token to the other. Usually, this is a Client-
Server setting, with a long-term association of parties. Examples include Client’s
relationships with Banks, Internet, TV, phone and cellular service providers. In
these settings, there is need in protecting client’s input such as browsing history,
TV channel preferences, list of movies watched, and in general, the profile of
user’s habits and preferences. While Service Providers are interested in obtaining
this information, the potential loss of business far outweighs the benefit.

Amount of the leak. Even though, for the ease of analysis, we generously
“gave up” R’s entire input in case of a successful cheat, this is clearly not the
case in real execution. The amount of data transferred from T to S in this case
is roughly the security parameter, say 128 bits. Recall, T never learns R’s input,
so it can only help S by transferring (compressed) parts of the history of queries
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T saw. Observe that T must compress random values provided by R, since this
is what the query history consists of from the point of view of S. Therefore, S
must spend at least “a few” bits to reasonably let S match the information and
recover a bit of R’s input with some degree of confidence. Therefore, with all
on the attacker’s side, S can potentially recover ≈ 20 input bits of R per each
cheating attempt.

Leak reduction. Our protocol allows querying T out-of-synch with protocol
executions. Further, T can be queried by R arbitrarily, with only a small fraction
of these queries being used for the actual protocol execution. Thus, essentially
for free, R can overwhelm T with queries (which are not seen by S and may not
be even tested by R), so that T is likely to send information on unused queries,
and thus effectively would be able to transfer little beyond a single bit.

Precomputation and OT extension. It is easy to see that much of the work
of R can be precomputed. Further, as shown by Beaver [4], almost all of OT
computation can be shifted to a setup phase. Additionally, the efficient technique
of Ishai at al. [19] can be used to implement an arbitrary number of OT’s, given
a small (security parameter) number of OT’s2.

Deterrence factor. If we allow R the option to request additional test keys,
this effectively increases ε, even if the option not used, since R can test-query T
and delay the verification request.

4.3 Concurrent Composition with the Semi-honest Token

We observe that a realistic change in the setup assumptions adds security in
concurrent executions. This stronger security property holds if both parties trust
that the token executes the prescribed code. This could be the case, e.g. if the
token is supplied by a third party, and S is limited to loading the keys k0, k1 onto
the token. This is a reasonable setting in practice, and this assumption was used,
e.g., by Hazay and Lindell [18], to efficiently achieve concurrent composition.

The simpler Construction 1, modified as discussed in Observation 1, is secure
against malicious S and R. Recall, the modification simply requires using a
semantically secure scheme, instead of direct application of SPRPG, to encrypt
messages e0, e1 in Step 2b of Construction 1.

Theorem 3. Assume that F is a SPRPG. Then modified Construction 1, as
described above, evaluates the String OT function securely against malicious re-
ceiver R and sender S. The security against S is statistical.

We explicate this construction and prove Theorem 3 in the full version.
Further, security holds for concurrent composition. Intuitively, this is because

the simulator will not need to rewind. Indeed, the simulator of the covert case
rewinds twice – to extract the keys loaded into token T , and in relation with
2 [19] requires the use of correlation-robust functions (a weak form of random oracle).

In practice, even the RO assumption seems to be much more solid than that of
tamper-resistance. Thus, its use will not have effect on security.
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testing T . Now, however, the token is modeled as a separate entity from S, and
S must explicitly output the keys loaded into T . Then the need for the first
rewinding disappears, since SimS simply receives the keys from S as the first
step of the simulation. Since T is semi-honest, we do not test it, and thus there
is no need for second rewinding. Then, as shown in [22], this is sufficient to
achieve concurrent general composition (equivalently, universal composability).
In [22], this is only shown for protocols that have additional property of initial
synchronization. Informally, a protocol is said to have initial synchronization if
all parties announce that they are ready to start before they actually start. As
pointed out in [18], this property always holds for two-party protocols.

Acknowledgements. I would like to thank the anonymous referees of this paper
for their valuable comments.
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Abstract. The strongest standard security notion for digital signature
schemes is unforgeability under chosen message attacks. In practice, how-
ever, this notion can be insufficient due to “side-channel attacks” which
exploit leakage of information about the secret internal state. In this
work we put forward the notion of “leakage-resilient signatures,” which
strengthens the standard security notion by giving the adversary the ad-
ditional power to learn a bounded amount of arbitrary information about
the secret state that was accessed during every signature generation. This
notion naturally implies security against all side-channel attacks as long
as the amount of information leaked on each invocation is bounded and
“only computation leaks information.”

The main result of this paper is a construction which gives a (tree-
based, stateful) leakage-resilient signature scheme based on any 3-time
signature scheme. The amount of information that our scheme can safely
leak per signature generation is 1/3 of the information the underlying 3-
time signature scheme can leak in total. Signature schemes that remain
secure even if a bounded total amount of information is leaked were
recently constructed, hence instantiating our construction with these
schemes gives the first constructions of provably secure leakage-resilient
signature schemes.

The above construction assumes that the signing algorithm can sam-
ple truly random bits, and thus an implementation would need some
special hardware (randomness gates). Simply generating this random-
ness using a leakage-resilient stream-cipher will in general not work. Our
second contribution is a sound general principle to replace uniform ran-
dom bits in any leakage-resilient construction with pseudorandom ones:
run two leakage-resilient stream-ciphers (with independent keys) in par-
allel and then apply a two-source extractor to their outputs.

1 Introduction

Traditionally, provable security treats cryptographic algorithms as black-boxes.
An adversary may have access to inputs and outputs, but the computation within
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the box stays secret. In particular, the standard security notion of digital signa-
tures is existential unforgeability under chosen message attacks [16] (UF-CMA),
where one requires that an adversary cannot forge a valid signature even when
given access to a signing oracle.

Unfortunately, this traditional security model often does not match reality
where an adversary can attack the algorithm’s implementation with more pow-
erful attacks. An important example in this context are side-channel attacks,
which provide an adversary with a partial view on the inner secret state (e.g.,
a secret signing key) of an algorithm’s execution due to physical leakage during
computation. In the last two decades a vast number of ingenious side-channel
attacks have been invented and used to break implementations of schemes which
were provably secure in the traditional model. Examples of side-channels include
information derived from running-time [20], electromagnetic radiation [30,14],
power consumption [21], and many more (see, e.g., [31,27]).

1.1 Leakage-Resilient Cryptography

Classical research in side-channel attacks sometimes resembles a cat-and-mouse
game. New side-channel attacks are discovered, and then heuristic counter-
measures are proposed to prevent the specific new attack. This yields coun-
termeasures that are tailored specifically for the class of attacks they intend
to defeat. Not very surprisingly, these countermeasures are often later found
to be vulnerable to new attacks. This state of affairs is fundamentally differ-
ent from the design principles of “modern cryptography,” where one usually
requires that the system is secure against all adversaries from some well de-
fined resource bounded class1 and for a broad and well-defined attack scenario.
(E.g., existential unforgeability for signature schemes or IND-CCA2 security for
encryption.)

As this situation is clearly not very satisfying, in an influential paper Micali
and Reyzin [24] suggest a framework for adapting the methodology of modern
cryptography to the scenario of side-channel attacks.

A formal security definition. Inspired by the framework of Micali-Reyzin
and Maurer’s bounded storage model (and the subsequent bounded-retrieval
model), in [10] the notion of leakage-resilience was proposed.2 A cryptographic
primitive (or protocol) is said to be leakage-resilient, if it is secure in the tra-
ditional (black-box) sense but now the adversary may additionally obtain arbi-
trary side-channel information (also called leakage) during the execution of the

1 In complexity based cryptography one usually bounds the running time. Other
bounds that often are used include the size of the memory an adversary can use
or the number of queries the adversary can make to some oracle.

2 The primary contribution of [10] was not proposing a new model, their model com-
bined ideas that were explicit and implicit in prior work. Rather, the primary contri-
bution was actually constructing a primitive (a stream-cipher) and proving it secure
in this model.
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security experiment. The side-channel information given to the adversary only
has to satisfy the following two restrictions

LR1 (bounded leakage): the amount of leakage in each invocation is
bounded (but overall can be arbitrary large).

LR2 (only computation leaks information): the internal state that is
not accessed during an invocation (“passive state”) does not leak.

At a technical level this is modeled by considering adversaries that, when attack-
ing the primitive, additionally to the regular input specify a leakage function f
with bounded range {0, 1}λ and then (besides the regular output) also obtain
Λ = f(s+, r), where s+ denotes the part of the internal secret state that has
been accessed during this invocation (“active state”) and r are the internal coin
tosses that were made by the cryptosystem during the invocation.

Motivation of the leakage restrictions. It is clear that one has to restrict
the class of leakage functions, as if we would allow the identity function f(s) = s
(where s is the cryptographic algorithm’s internal state) , no security whatsoever
can be achieved.

In this work we focus on leakage functions that are restricted in terms of their
output length. This is a natural resource bound, and allows to model a rich class
of side-channel attacks (e.g. timing or hamming-weight attacks, which exploit
only a polylogarithmic amount of information on each invocation. This is much
smaller than the constant-fraction leakage for which we can still prove security in
this work.) We remark that we could use a more relaxed restriction than a bound
on the leakage function,3 but we will stick to bounded leakage (LR1) which is
more intuitive and simpler to work with.

Bounded leakage alone might not be a sufficiently strong restriction, and we
use a further restriction on the leakage function, which still seems to allow a
rich and very natural family of side-channel attacks. Following [10], we use LR2
(“only computation leaks information”), originally put forward as one of the
axioms of “physically observable cryptography” by Micali and Reyzin [24]. The
original axiom requires that if a primitive with secret internal state s is invoked,
then on this particular invocation, only the part s+ ⊆ s of the memory leaks
that was accessed during this invocation.

Let us stress that the restrictions LR1 and LR2 on the leakage are sufficient,
but not necessary to imply security of a leakage-resilient primitive. For exam-
ple, in a so called “cold-boot attack” [17], the adversary learns (at some point
in time) a random subset of the bits of the entire secret state, even when no
computation is going on. Such an attack clearly does not satisfy the “only com-
putation leaks information” restriction, but nonetheless, leakage-resilience does
imply security against cold-boot attacks for any primitive which satisfies some

3 In particular, we can consider the class F of leakage functions such that the degra-
dation of the HILL-pseudoentropy of the internal state S due to leakage of f(S)
(where f ∈ F) is sufficiently bounded.
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natural additional properties on how the memory is accessed. In particular, these
properties are satisfied by our construction and [10,29].4

1.2 Leakage-Resilient Signatures

Previous work has shown how to build stream-ciphers that are provably resistant
to continual leakage in the standard model [10,29]. In this paper we construct a
leakage-resilient public-key primitive in the plain model, a signature-scheme.

Digital signatures are a central cryptographic primitive and are widely imple-
mented on computational devices that are especially vulnerable to side-channel
attacks (such as smart cards). Starting with the seminal work by Kocher [20],
there have been a great number of theoretical and practical side-channel attacks
on signature schemes (e.g., [20,21,32,13]).

Security Definition. The standard notion for secure signatures schemes is un-
forgeability under adaptive chosen-message attacks [16]. Here one requires that
an adversary cannot forge a signature of any message m, even when given access
to a signing oracle. We strengthen this notion by giving the adversary access to
a more powerful oracle, which not only outputs signatures for chosen messages,
but as an additional input takes a leakage function f : {0, 1}∗ → {0, 1}λ and
outputs f(s+, r) where s+ is the state that has been accessed during computa-
tion of the signature and (if the scheme is probabilistic) r is the randomness that
was sampled. Note that if we want the signature scheme to sign a large number
of messages (i.e., more than the state length), then this security definition inher-
ently requires the signature scheme to update its internal state. We call signature
schemes which are secure in the above sense UF-CMLA (unforgeable under cho-
sen message/leakage attacks) or simply leakage resilient. We also define a notion
called UF-CMTLA (unforgeability under chosen message total leakage attacks),
which is defined similarly to UF-CMLA but is significantly weaker, as here the
total amount of leakage (and not the leakage per invocation) is bounded.

Overview of our construction. Our construction of leakage resilient sig-
nature schemes is done in two steps. First, we give a number of instantiations
of 3-time UF-CMTLA signature schemes offering different trade-offs. Then, we
present a generic tree-based transformation from any UF-CMTLA secure 3-time
signature scheme (i.e., a signature scheme that can securely sign up to 3 mes-
sages) to a UF-CMLA signature scheme.

From UF-CMTLA to UF-CMLA Security. Following the construction of
Naor and Yung [26] and the ideas of Lamport [22] and Merkle [23], we propose
a simple tree-based leakage-resilient signature scheme SIG∗ that is constructed
from any leakage resilient 3-time signature scheme SIG. The scheme we propose

4 One requirement is that ultimately the entire initial secret state is touched. (The
only setting we are aware of where the entire state will not be touched, are the the
tokens used in the construction of one-time programs [15].) The second requirement
is that the memory access is “oblivious”, in the sense that which parts of the memory
are accessed does not depend on the secret state.
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strongly resembles the construction of a forward-secure signature scheme [3]
from [4], but let us stress that leakage-resilience and forward-security are orthog-
onal concepts. In particular, our construction is not forward-secure, but could
be made so in a straight forward way, at the cost of having a more complicated
description.

For any a-priori fixed d ∈ N, our construction can sign up to 2d+1−2 messages
and one can think of the (stateful) signing algorithm as traversing the 2d+1 − 1
nodes of a binary tree of depth d in a depth-first manner. Suppose the signing
algorithm of SIG∗ wants to sign the i-th message m and its state points to
the i-th node w̃ in a depth-first traversal of the tree. It first computes a fresh
public/secret-key pair (pk w̃, sk w̃) of SIG for this node. Next, the signature (σ, Γ )
for m is computed, where σ is a signature on m according to the 3-time signature
scheme SIG using the secret key sk w̃ of the current node w̃, and Γ contains a
signature path from the root of the tree to the node w̃: for each node w on the
path it contains a signature on pkw using the secret key skpar(w), where par(w)
denotes the parent of w in the tree. The public-key of SIG∗ is the public-key
associated to the root node and verification of a signature of SIG∗ is done by
verifying all the 3-time signatures on the path from w̃ to the root.

The crucial observation that will allow us to prove leakage-resilience of our
construction, is that for each node w in the tree, the secret key skw associated
to this node is only accessed a constant number of times (at most three times).
The security we prove roughly states that if SIG is a UF-CMTLA secure 3-time
signature scheme which is secure even after leaking a total of λtotal bits, then
SIG∗ is a UF-CMLA secure signature scheme that can tolerate λ = λtotal/3 bits
of leakage per signature query. The loss in security is a factor of q.

Instantiations UF-CMTLA secure 3-time signature schemes. It is not
hard to see that every signature scheme looses at most an exponential factor
2λtotal in security (compared to the standard UF-CMA security) when λtotal bits
about the secret key are leaked (as the UF-CMA adversary can simply guess the
leakage, and a random guess will be correct with probability 2−λtotal). Recently,
much better constructions have been proposed. Alwen, Dodis, and Wichs [2]
show that the Okamoto-Schnorr signature-scheme [28,33] remains secure even if
almost n/2 bits (where n is the length of the secret key) of information about
the secret-key are leaked. Instantiating our construction with Okamoto-Schnorr
signatures thus gives a leakage resilient signature scheme which can leak a con-
stant fraction (almost 1/6) of the accessed state on each invocation. Due to
the Fiat-Shamir heuristic used in the Okamoto-Schnorr signature scheme, this
scheme can only be proven secure in the random-oracle model. Recently, Katz
and Vaikuntanathan [19] showed how to construct signature schemes in the stan-
dard model (and under standard assumptions) which can tolerate leakage of as
much as λtotal = n−nε bits (ε > 0). With this construction we get a leakage re-
silient signature scheme in the standard model. Unfortunately it is not practical
due to the use of general NIZK proofs.

In the same paper [19], Katz et al. also construct an efficient one-time signa-
ture scheme that tolerates leakage of λtotal = (1/4 − ε)n bits (for any ε > 0).
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This scheme is easily generalized to a (stateful) 3-time signature schemes where
one can leak λtotal = (1/12 − ε)n bits.5 This construction fits well into our gen-
eral transformation, yielding a UF-CMLA secure scheme where one can leak
λtotal = (1/36 − ε)n bits (here n is the size of the accessed state on each in-
vocation). As the construction only assumes universal one-way hash functions
(UOWHF), we get that it is secure in the standard model under the minimal [26]
assumption that one-way functions exist.

1.3 Replacing Randomness in Leakage-Resilient Primitives

In the construction of SIG∗ we silently assumed that the device could sample
uniformly random bits to be used in the key-generation and signing steps of the
underlying scheme SIG. This , however, would require special hardware for gen-
erating random bits (such as noise generating gates). In the non-leakage setting
one can avoid the necessity for such special hardware by using pseudorandomness
(generated by a stream-cipher) instead of truly random bits.

Unfortunately, in the leakage-setting the simple analogous idea of replacing
the random bits with the output of a leakage-resilient stream-cipher (as defined
in [10]) does not work (at least we do not know how to prove it). The reason is
that an output block of a leakage-resilient stream-cipher is only guaranteed to
have high HILL-pseudoentropy when given the leakage that was generated while
computing this block.

A sound approach to replace uniform random bits in any leakage-resilient
construction while provably preserving leakage-resilience is as follows: run two
leakage-resilient stream ciphers with independent keys in parallel and feed their
output to a two-source extractor. For lack of space, this can be found in the
full version [11]. Intuitively, the reason is that now the outputs X,X ′ of the two
stream ciphers are indistinguishable from having high min-entropy (given the
leakage), and thus applying a two source extractor ext gives a (indistinguishable
from) uniform Y = ext(X,X ′) which then can be used in the signature scheme.

While we do not know how to prove in general the security of the simpler
approach of using a single leakage-resilient stream cipher to generate the random
bits, in some special cases this simpler approach does go through. For example:

– If the scheme (for which we want to replace the uniform random bits) already
can be proven leakage-resilient assuming only that the random bits have
high min-entropy (as opposed to being uniform), this is e.g. the case for the
(generalized) Okamoto signature scheme from [2].

– The output of the particular leakage-resilient stream-cipher from [10] can
always be used directly. Informally, the reason is that here (unlike e.g. in
[29]) the final output already was generated by applying an extractor.

5 They propose a general transformation to t-time schemes using cover free sets which
can leak λtotal = Ω(n/t2) bits (which for t = 3 is Ω(n)). We note however, that
(while this leakage bound is worse than ours) their scheme enjoys the advantage of
being stateless, whereas ours is stateful.



Leakage-Resilient Signatures 349

1.4 Related Work

A body of prior work has considered countermeasures against different classes
of side-channel attacks. Most works consider security against some particular
attack, like “template attacks” [34]. Below we mention some work on “provable
security” in the context of side-channel attacks, where only the class of leakage
functions is restricted, but not the adversaries ability to exploit the leakage.

Ishai et al. [18] show how to securely implement any (efficiently computable)
function even when the attacker can probe a bounded number of wires in the
implementation. This result has been recently extendend [12] to allow leakage
functions that get as input the values carried by all the wires in the circuit, as
long as the output of the leakage functions is short, and the leakage functions is
from some low complexity class like AC0.

Micali and Reyzin [24] proposed the influential theoretical framework of
“physically observable cryptography” to model side-channel attacks. In particu-
lar, they explicitly state and motivate the “only computation leaks information”
axiom used in leakage-resilient cryptography [10,29].

Several recent works [1,25,19,7] propose (stateless) constructions which are se-
cure against so called “memory attacks”. This means that they remain secure even
after a bounded total amount of information has leaked (this is sufficient against
attacks like “cold-boot” attacks [17], but not for most other side-channel attacks
which leak on each invocation). Unlike in leakage-resilient cryptography, here the
leakage functions need not obey the only “computation leaks information” restric-
tion. Akavia et. al [1] and Naor and Segev [25] construct symmetric/public-key
encryption schemes that are secure in this model. Katz et al [19] and Alwen et
al [2] construct digital signatures in this setting (see the discussion above). The
“bounded retrieval model” (BRM) [5,8,9,2] is an extension of “memory attacks”
where the key is made artificially huge and thus the tolerated leakage can also be
made arbitrary large (but still a priory bounded by the key size). The difficulty in
this model (as compared to memory attacks), is that in the BRM model the effi-
ciency of a scheme must only depend on some security parameter, but not on the
size of the (potentially huge) secret key. Dodis et al. [7,6] consider the case where
the range of f(·) is not necessarily bounded, but instead one only requires that it
is (exponentially) hard to recover sk from f(sk).

2 Preliminaries

Notion. If x is a string, then |x| denotes its length, while if S is a set then
|S| denotes its size. If k ∈ N then 1k denotes the string of k ones. For n ∈ N,
we write [n] as shorthand for {1, . . . , n}. If S is a set then s

$← S denotes the
operation of picking an element s of S uniformly at random. With PPT we
denote probabilistic polynomial time.

Algorithms. We write y ← A(x) to indicate that A is an algorithm which runs
on input x and outputs y. If A is probabilistic, y

$← A(x) denotes running the
algorithms using fresh randomness.
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To model stateful algorithms we will in particular consider algorithms with
a special input/output syntax. We split the input into three disjoint syntactic
parts: a query x, the state s, and (in case the algorithm is probabilistic) random-
ness r. Similarly, the output is split into the output y and the new state s′. We
write (y, s′) ← B(x, s, r) to make this explicit. Here one can think of the query
x as being chosen (or at least known) to the adversary. The state s and s′ is the
secret internal state of the primitive before and after execution of the algorithm
on input x, respectively.

If we consider the execution (y, s′) ← B(x, s, r) of an algorithm, we can split
the state in two parts s = s+ ∪ s−. The active state, s+, denotes the part that
is accessed by B in order to compute y and update its state.6 The passive state,
s− = s \ s+, is the part of the state that is not accessed (i.e., read and/or
overwritten) during the current execution. We use the notation

(y, s′)
s+

←↩ B(x, s, r) .

to make explicit that s+ is the active state of the execution of B with inputs
x, s, r. This is illustrated in Figure 1. Note that the passive state s− is completely
contained in s′, i.e., state information that is never accessed is contained entirely
in the next state s′.

r

x

y

s−

s+
B

Fig. 1. Illustration of the execution of a stateful algorithm (y, s′)
s+←↩ B(x, s, r). The

secret state s splits into the active state s+ (that is accessed during the execution of
B) and the passive state s−.

3 Leakage Resilient Signatures

3.1 Standard Signatures

A (stateful) digital signature scheme SIG = (Kg, Sign,Vfy) consists of three PPT
algorithms. The key generation algorithm Kg generates a secret signing key sk
and a public verification key pk . The signing algorithm Sign get as input the
6 For this to be well defined, we really need that B is given as an algorithm, e.g. in

pseudocode, and not just as a function.
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signing key sk and a message m and returns a signature and a new state sk ′

which replaces the old signing key. The deterministic verification algorithm Vfy
inputs the verification key and returns 1 (accept) or 0 (reject). We demand the
usual correctness properties.

We recall the definition for unforgeability against chosen-message attacks (UF-
CMA) for stateful signatures. To an adversary F and a signature scheme SIG =
(Kg, Sign,Vfy) we assign the following experiment.

Experiment Expuf-cma
SIG (F , k)

(pk , sk0)
$← Kg(1k) ; i ← 1

(m∗, σ∗) $← FOski−1 (pk )
If Vfy(pk ,m∗, σ∗) = 1 and m∗ �∈ {m1, . . .mi}

then return 1 else return 0.

Oracle Oski−1(mi)
(σi, sk i)

$← Sign(sk i−1,mi)
Return σi and
set i ← i + 1

We remark that for the special case where the signature scheme is stateless
(i.e., sk i+1 = sk i), we can consider a simpler experiment where the signing
oracle Oski

(·) is replaced by Sign(sk , ·). With Advuf-cma
SIG (F , k) we denote the

probability that the above experiment returns 1. Forger F (t, q, ε)-breaks the
UF-CMA security of SIG if Advuf-cma

SIG (F , k) ≥ ε, its running time is bounded by
t = t(k), and it makes at most q = q(k) signing queries. We call SIG UF-CMA
secure (or simply secure) if no forger can (t, q, ε)-break the UF-CMA security of
SIG for polynomial t and q and non-negligible ε.

3.2 Leakage Resilient Signatures

We now define the notion of unforgeability against chosen-message/leakage at-
tacks (UF-CMLA) for stateful signatures. This extends the UF-CMA security
notion as now the adversary can learn λ bits of leakage with every signature
query. With the ith signature query, the adversary can adaptively choose any
leakage function fi (described by a circuit7) with range {0, 1}λ and then learns
the output Λi of fi which as input gets everything the signing algorithm gets,
that is the active state S+

i−1 and the random coins ri. To an adversary F and a
signature scheme SIG = (Kg, Sign,Vfy) we assign the following experiment.

Experiment Expuf-cmla
SIG (F , k, λ)

(PK ,SK 0)
$← Kg(1k) ; i ← 1

(m∗, σ∗) $← FOSKi−1 (PK )
If Vfy(PK ,m∗, σ∗) = 1 and

m∗ �∈ {m1, . . .mi}
then return 1 else return 0.

Oracle OSK i−1(mi, fi)
Sample fresh randomness ri

(σi,SK i)
SK+

i−1←↩ Sign(SK i−1,mi, ri)
Λi ← fi(SK+

i−1, ri)
if |Λi| �= λ then Λi ← 0λ

Return (σi, Λi) and set i ← i + 1

7 We could also model the fi’s as Turing machines, but then we would have to require
that the output length is independent of the input, as otherwise information could
be encoded in the output length itself.
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With Advuf-cmla
SIG (F , k, λ) we denote the probability that the above experiment

returns 1. Forger F (t, q, ε, λ)-breaks the UF-CMLA security of SIG if its run-
ning time is bounded by t = t(k), it makes at most q = q(k) signing queries
and Advuf-cmla

SIG (F , k, λ) ≥ ε(k). We call SIG UF-CMLA secure with λ leakage
(or simply λ-leakage resilient) if no forger can (t, q, ε, λ)-break the UF-CMLA
security of SIG for polynomial t and q and non-negligible ε.

3.3 Signatures with Bounded Total Leakage

In the previous section we defined signatures that remain secure even if λ bits
leak on each invocation. We will construct such signatures using as building
block signature schemes that can only sign a constant number (we will need 3)
of messages, and are unforgeable assuming that a total of λtotal bits are leaked
(including from the randomness r0 that was used at key-generation). Following
[19], we augment the standard UF-CMA experiment with an oracle Oleak which
the adversary can use to learn up to λtotal arbitrary bits about the randomness
used in the entire key generation and signing process. This oracle will use a
random variable state that contains all the random coins used by the signature
scheme so far and a counter λcnt to keep track how much has already been leaked.
Note that we do not explicitly give the leakage functions access to the key sk i,
as those can be efficiently computed given r0 ∈ state.

Experiment Expuf−cmtla
SIG (F , k, λtotal)

(pk , sk0)
r0←Kg(1k); i ← 1; λcnt ← 0; state ← r0

(m∗, σ∗) $← FOski−1 ,Oleak(pk )
If Vfy(pk ,m∗, σ∗) = 1 and m∗ �∈ {m1, . . .mi}

then return 1 else return 0.

Oracle Oski−1(mi)
Sample fresh randomness ri

state ← state ∪ ri

(σi, sk i) ← Sign(sk i−1,mi, ri)
Return σi and set i ← i + 1

Oracle Oleak(f)
Λ ← f(state)
If λcnt + |Λ| > λtotal Return ⊥
λcnt ← λcnt + |Λ|
Return Λ

With Advuf-cmtla
SIG (F , k, λtotal) we denote the probability that the above experi-

ment returns 1. Forger F (t, d, ε, λtotal)-breaks the UF-CMTLA security of SIG
if its running time is bounded by t = t(k), it makes at most d = d(k) signing
queries and Advuf-cmtla

SIG (F , k, λtotal) ≥ ε(k). We call SIG UF-CMTLA secure
with λtotal leakage if no forger can (t, d, ε, λtotal)-break the UF-CMTLA security
of SIG for polynomial t and non-negligible ε.

4 Construction of Leakage Resilient Signature Schemes

We first discuss three constructions of UF-CMTLA secure 3-time signature
schemes. We then prove our main result which shows how to get a leakage-
resilient signature scheme from any UF-CMTLA 3-time signatures scheme using
a tree based construction.
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4.1 Signatures with Bounded Leakage Resilience

Generic construction with exponential loss. We first present a simple
lemma showing that every d-time UF-CMA secure signature scheme is also a d-
time UF-CMTLA secure signature scheme, where the security loss is exponential
in λtotal.

Lemma 1. For any security parameter k, t = t(k), ε = ε(k), d = d(k), and
λtotal, if SIG is (t, d, ε) UF-CMA secure, then SIG is (t′, d, 2λtotalε, λtotal) UF-
CMTLA secure where t′ ≈ t.

Proof. For contradiction, assume there exists an adversary Fλtotal who breaks
the (t′, d, 2λtotal ε, λtotal) UF-CMTLA security. We will show how to construct an
adversary F which on input a public-key pk breaks the (t, d, ε) UF-CMA secu-

rity of SIG in a chosen message attack. FOski−1 (pk) simply runs FOski−1 ,Oleak

λtotal
(pk),

where it randomly guesses the output of the leakage oracle Oleak. As Oleak out-
puts at most λtotal bits, F will guess all the leakage correctly with probability
2−λtotal . Conditioned on F guessing correctly, Fλtotal will output a forgery with
probability at least ε, thus F will output a forgery with probability at least
ε · 2−λtotal .

An efficient scheme in the random oracle model. The security loss in
the above reduction is exponential in λtotal. Recently, Alwen, Dodis and Wichs [2]
proposed a signature scheme which can leak a substantial bounded amount λtotal
of information without suffering an exponential decrease in security. More pre-
cisely, [2,19] show that in the random oracle model (a variant of) the Okamoto-
Schnorr signature scheme [28,33] is still secure even if a constant fraction λtotal
of the total secret key is leaked to the adversary. For concreteness we now recall
the variant SIGOS

� = (KgOS
� , SignOS

� ,VfyOS
� ) of the Okamoto-Schnorr signature

scheme.
Let G(1k) be a group sampling algorithm which outputs a tuple (p,G), where

p is a prime of size log p = 2k and G is a group of order p in which the discrete
logarithm problem is hard.8 Let H : {0, 1}∗ → Zp be a hash function that will
be modeled as a random oracle. The scheme is given in Figure 2.

In [2,19] the authors show that SIGOS
� is secure under the hardness of the

�-representation problem (c.f. [2,19] and the references therein for its description
and its equivalence to the DL problem). More precisely, they prove the following
lemma.

Lemma 2. For any δ > 0 and � ∈ N, security parameter k, t = t(k), ε = ε(k),
d = d(k), λtotal = (1/2−1/2�−δ)n where n = 2k� is the length of the secret key,
if the �-representation problem is (t, ε)-hard then the signature scheme SIGOS

�

8 For technical reasons we assume that elements of G can be sampled “obliviously”,
this means, there exists an efficient algorithm samp

G
that outputs random elements

of G with the property that, given g ∈ G, one can sample uniformly from the set of
coins ω for which g := sampG(ω). See [19] for more details.
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Algorithm KgOS
� (1k)

(G, p) $← G(1k)
(g1, . . . , g�)

$← G�; (x1, . . . , x�)
$← Z�

p

h ← ∏
i gxi

i

return (pk , sk) = ((G, p, g1, . . . , g�, h), (x1, . . . , x�))

Algorithm SignOS
� (sk , m)

(r1, . . . , r�)
$← Z�

q

A ← ∏
i gri

i

c ← H(A,m)
return σ = (A, cx1 + r1, . . . , cx� + r�)

Algorithm VfyOS
� (pk , σ, m)

Parse σ as (A, α1, . . . , α�)
c ← H(A,m)
Iff
∏

gαi
i

?= Ahc return 1; else return 0

Fig. 2. SIGOS
� = (KgOS

� ,SignOS
� ,VfyOS

� )

from Figure 2 is (t′, d, ε′, λtotal) UF-CMTLA secure in the random oracle model,
where t′ ≈ t and ε′ = (qH · (2 · ε + 1/p + qH/p2δ�))1/2, where qH is the number
of random oracle queries made by the adversary.

A scheme in the standard model. From a universal one-way hash func-
tion (UOWHF) H , [19] constructs an efficient one-time signature scheme that
tolerates leakage of a (1 − δ)/4 fraction of the secret key. Using sequential com-
position this scheme is easily generalized to a stateful d-time signature schemes
SIGK

δ which can leak up to a (1 − δ)/4d fraction of the secret-key.

Lemma 3. For any δ > 0, security parameter k, t = t(k), ε = ε(k), d = d(k), if
H is a (t, ε)-secure UOWHF, then SIGK

δ is (t′, d, ε′, λtotal) UF-CMTLA secure,
where ε′ = dε, t′ ≈ t and λtotal = n · 1−δ

4d where n = O(dk2/δ) is the length of
the secret key.

4.2 Construction of Leakage Resilient Signature Schemes

In this section we show how to construct a UF-CMLA secure signature scheme
SIG∗ = (Kg∗, Sign∗,Vfy∗) from any UF-CMTLA 3-time signature scheme SIG =
(Kg, Sign,Vfy).

We first introduce some notation related to binary trees that will be useful for
the description of our signature scheme. For d ∈ N, we denote with {0, 1}≤d =⋃d

i=0{0, 1}i∪ε the set of size 2d+1−1 containing all binary bitstrings of length at
most d including the empty string ε. We will think of {0, 1}≤d as the labels of a
binary tree of depth d. The left and right child of an internal node w ∈ {0, 1}≤d−1

are w0 and w1, respectively. For a node w ∈ {0, 1}≤d\1d, we denote with DF(w)
the node visited after w in a depth-first traversal.

DF(w) :=
{

w0 if |w| < d (w is an internal node)
ŵ1 if |w| = d, where w = ŵ01t (w is the root)

We define the mapping ϕ : {0, 1}≤d → [2d−1 − 1] where ϕ(w) = i if w is the i-th
node to be visited in a depth first traversal, i.e. ϕ(ε) = 1, ϕ(0) = 2, ϕ(00) = 3, . . ..
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ε(pkε, skε)
Kg

0

φ0 = Sign(skε, 0pk0)

(pk0, sk0)
Kg

00

φ00

(pk00, sk00)

01

φ01

(pk01, sk01)

1

φ1

(pk1, sk1)
Kg

10

φ10

(pk10, sk10)

Kg

11

φ11

(pk11, sk11)

Kg

Sign Sign Sign Sign

eval eval eval eval

F F F F F

m1

f1 Λ1

skε, sk0

sk0, Γ0

Σm1 m2

f2 Λ2

sk0, sk00

sk00, Γ00

Σm2
m3

f3 Λ3

sk0, sk01

sk01, Γ01

Σm3
m4

f4 Λ4

skε, sk1sk1, Γ1

Σm4

Fig. 3. Illustration of the execution of SIG∗ in the UF-CMLA experiment. This figure
shows the first 4 rounds of interaction between the adversary F and Sign. The dotted
edges associate a public/secret key to each node. The dashed arrows represent F ’s
oracle queries. F queries for a message mi and a leakage function fi, and obtains the
signature Σmi . Additionally, it obtains the leakage function fi evaluated on the active
state S+

i , which, for instance for i = 1, includes the keys skε, sk0.

We now give the construction of our leakage resilient signature scheme. To
simplify the exposition, we will assume that SIG is a stateless signature scheme,
but this is not required. We fix some d ∈ N such that q = 2d+1 − 2 is an upper
bound on the number of messages that SIG can sign. The signing algorithm
Sign∗ traverses a tree (depth first), “visiting” the node w and associating to it
a key-pair (pkw, skw) generated from the underlying signature scheme SIG. We
will use the following notational conventions for a node w = w1w2 . . .wt.

– Γw = [(pkw1
, φw1), (pkw1w2

, φw1w2), . . . , (pkw, φw)] is a signature path from
w to the root, where φw′ always denotes the signature of pkw′ with its parent
secret key skpar(w′).

– Sw = {skw1w2...wi : wi+1 = 0} denotes a subset of the secret keys on the
path from the root ε to w. Sw contains skw′ , if the path goes to the left child
w′0 at some node w′ on the path. (The reason is, that in this case the right
child w′1 will be visited after w in a depth first search, and we will then need
skw′ to sign the public key pkw′1 of that child.)

The secret key of SIG∗ will always be of the form (w,Sw, Γw), and we will use
stacks S and Γ to keep track of the state. We denote an empty stack with ∅.
For a stack A, push(A, a) denotes putting element a on the stack A, a ← pop(A)
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Algorithm Kg∗(1k)
(pk , sk) $← Kg(1k)
S ← ∅; push(S , sk); Γ ← ∅
SK 0 ← (wε,S , Γ ); PK ← pk
return (PK , SK 0)

Algorithm Vfy∗(PK , m,Σ)
parse Σ as (σ, Γw1w2...wt)
pkε ← PK
for i = 1 to t do

if Vfy(pkw1...wi−1
, 0pkw1...wi

, φw1...wi) = 0 return 0
return Vfy(pkw1w2...wt

, 1m, σ)
Algorithm Sign∗(SK i, m)

parse SK i as (w,S , Γ ) % then S = Sw and Γ = Γw

if w = 1d return ⊥ % stop if last node reached
ŵ ← DF(w) % compute next node to be visited
(sk ŵ, pk ŵ) $← Kg(1n) % generate secret key for the current node
σ

$← Sign(sk ŵ, 1m) % sign m with secret key of current node
sk par(ŵ) ← pop(S) % get secret key of parent (which is on top of S)
φŵ

$← Sign(skpar(ŵ), 0pkŵ) % sign new pk with sk of its parent
if ŵ|ŵ| = 0 then push(S , sk par(ŵ)) % put sk par(ŵ) back if ŵ is a left child
if |ŵ| < d then push(S , sk ŵ) % put sk ŵ on S if it is not a leaf, now S = Sŵ

if |w| = d % if previous node was a leaf then clean signature chain
parse w as w′01j

for i = 1, . . . , j + 1 do trash(Γ );
push(Γ, (pk ŵ, φŵ)) % Now Γ = Γŵ

Σ ← (σ, Γ )
SK i+1 ← (ŵ,S , Γ ) % store key for next signature
return (Σ,SK i+1)

Fig. 4. The leakage resilient signature scheme SIG∗

denotes removing the topmost element from A and assigning it to a, and trash(A)
denotes removing the topmost element from A (without assigning it). To avoid
confusion we will always use upper case letters (PK ,SK ) for keys of SIG∗ and
lower case letters (pk , sk) for keys used by the underlying signature scheme SIG.
To ease exposition, we use the secret key of the node 0, and not the root to sign
the first message. The scheme SIG∗ is defined in Figure 4.

Theorem 1. For any security parameter k, t = t(k), ε = ε(k), q = q(k), λ =
λ(k), if SIG is (t, 3, ε, λtotal) UF-CMTLA secure, then SIG∗ is (t′, q − 1, qε, λ)
UF-CMLA secure where t′ ≈ t and λ = λtotal/3.

Proof. We will show how to construct an adversary F which breaks the UF-
CMTLA security of SIG (with λtotal = 3 · λ bits of total leakage) using as a
subroutine the adversary Fλ who breaks the UF-CMLA security of SIG∗ (with
λ bits of leakage in each of the q observations) with advantage at least

Advuf-cmtla
SIG (F , k, λtotal) ≥ 1

q
· Advuf-cmla

SIG∗ (Fλ, k, λ) . (1)

The adversary F(pk ) (attacking the UF-CMTLA security of SIG) simulates
Fλ(PK ) attacking the UF-CMLA security of SIG∗, embedding its challenge
public-key pk into one of the nodes of SIG∗. That is, F(pk) simulates the fol-
lowing experiment (as defined in Section 3.2, cf. also Figure 3 for a graphical
illustration.)
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Experiment Expuf-cmla
SIG∗ (Fλ, k, λ)

(PK ,SK 0)
$← Kg∗(1k) ; i ← 1

(m,Σ) $← FOSKi−1 (·,·)
λ (PK )

If Vfy∗(PK ,m,Σ) = 1
and m �∈ {m1, . . .mi}
then return 1 else return 0.

Oracle OSK i−1(mi, fi)
Sample fresh randomness ri

(Σi,SK i)
SK+

i−1←↩ Sign∗(SK i−1,mi, ri)
Λi ← fi(SK+

i−1, ri)
if |Λi| �= λ then Λi ← 0λ

Return (Σi, Λi) and set i ← i + 1

Simulation of PK . On input pk , F samples a node w̃ at random from the first
q nodes (i.e., ĩ

$← {1, . . . , q} and w̃ ← ϕ−1 (̃i)). The key (pk w̃, sk w̃) used by
Sign will be the challenge key (pk , sk). Note that sk = sk w̃ is unknown to
F . Next, F generates the other keys (pkw, skw), w ∈ {0, 1}≤d \ w̃ by calling
Kg(1k) using fresh randomness for each call. (Of course, these keys will only
be computed when needed during the simulation of the signing oracle.) F
defines PK = pk ε and runs Fλ on PK .

Simulation of the signing oracle. Let (mi, fi) be the i-th query to oracle
OSK i−1(mi, fi) and let SK+

i−1 be the active state information in an execution

of the real signing algorithm (i.e., (Σi,SK i)
SK+

i−1←↩ Sign∗(SK i−1,mi, ri)).
Depending if sk w̃ ∈ SK+

i−1 or not, adversary F distinguishes the two cases.
Case 1: sk w̃ �∈ SK+

i−1 (Sign(SK i−1,mi, ri) does not access sk w̃.) In this
case the adversary F computes σi

$← Sign(SK i−1,mi, ri) and Λi =
fi(SK+

i−1, ri) itself and outputs (σi, Λi).
Case 2: sk w̃ ∈ SK+

i−1 (Sign(SK i−1,mi, ri) does access sk w̃ ∈ SK+
i−1.) In

this case F can compute (σi, Λi) without knowing sk w̃ = sk as it has
access to the signing oracle Osk w̃ and the leakage oracle Oleak as defined
in the CMTLA attack game. As sk w̃ ∈ SK+

i−1 for at most three different
i, and on for each i the range of fi is λ bits, the total leakage will be
λtotal = 3 · λ bits, which is what we assume F can get from Oleak.

The simulation of the UF-CMLA experiment by F is perfect (i.e. has the right
distribution). As F perfectly simulates the UF-CMLA experiment, by assump-
tion, Fλ does output a forgery with probability Advuf-cmla

SIG (Fλ, k, λ). We now
show that from F ’s forgery one can extract a forgery for at least one of the keys
(pkw, skw) of the underlying signature scheme SIG.

Claim. If Fλ outputs a forgery (σ,Σ) in the UF-CMLA experiment, then one
can extract a forgery for SIG with respect to at least one of the public-keys
(pkw, skw), w ∈ {ϕ−1

d (1), . . . , ϕ−1
d (q)}.

Proof. Let W = {ϕ−1
d (0), . . . , ϕ−1

d (q)} be the set of nodes that have been vis-
ited during the query phase of the UF-CMLA experiment. Further, let U :=
{Γw}w∈W be the set of all signature chains that have been generated during the
experiment. We distinguish two cases.

Case 1: Γ ∈ U . Then Γ = Γw for one w ∈ W . If Σ = (σ, Γ ) is a valid forgery,
then σ ∈ Sign(skw, 1m), where m �= mϕ−1

d
(w). Thus, (1m,σ) is a valid forgery

of SIG for public key pkw.
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Case 2: Γ �∈ U . Then there must exist a node w ∈ W such that φ ∈ Γ with
φ ∈ Sign(skw, 0pkw∗), where pkw∗ �= pkw0 and pkw∗ �= pkw1.9 It follows
that φ is a valid signature for key pkw and message 0pkw∗ that has not been
queried before.

The claim follows. +

With this claim and the fact that the simulation is perfect, it follows that we
can extract a forgery for SIG with respect to the challenge public-key pk with
probability Advuf-cmla

SIG∗ (Fλ, k, λ)/q (namely when the w from the claim is w̃).
This proves (1) and completes the proof. ��

4.3 Efficiency and Trade-offs

We analyze the performance of our basic leakage resilient signature scheme and
provide some efficiency trade-offs. For d ∈ N let D = 2d+1 − 2 be the upper
bound on the number of messages that can be signed.

For simplicity, we assume that for SIG key generation, signing and verification
all take approximately the same time, and further that public keys, secret keys
and signatures are all of the same length. Let us now analyze the efficiency of
SIG∗. Public key size and key generation are as in the underlying scheme.

In the signing process, Sign∗ has to run at most two instances of Sign (i.e., to
sign the message and to certify the next public key) and one run of the underlying
key generation algorithm Kg. This adds up to an overhead of 3 compared to
SIG. In our scheme, a signature consists of the signature of the actual message
together with a signature chain from the current signing node to the root. Thus,
the size of a signature increases in the worst case (if we sign with a leaf node)
by a factor of ≈ 2d. For the verification of a signature, in Vfy∗ we have to first
verify the signature chain, and only if all those verifications pass, we check the
signature on the actual message. This results in an overhead of d compared to
the the underlying verification algorithm Vfy. Finally, in contrast to SIG our
scheme requires storage of ≈ d secret keys, ≈ d public keys and ≈ d signatures,
whereas in a standard signature scheme one only has to store a single secret key.
Note however that only the storage for the secret keys needs to be kept secret.

In the special case, when we instantiate SIG∗ with SIGOS and set δ = 1/2 (thus,
� = 3), then SIG∗ is quite efficient10: signing requires only 9 exponentiations and
2 evaluations of a hash function. Verification is slightly less efficient and needs
in the worst case 4d exponentiations and d evaluations of the underlying hash
function. Finally, in the worst case a signature contains 18d group elements.
Notice that our construction instantiated with SIGOS allows us to leak a 1/36th
fraction of the secret key in each observation. It is easy to increase this to a
1/24th fraction by only using the leafs of SIG∗ to sign actual messages.

9 Wlog assume that w0 and w1 are both in W .
10 Only counting exponentiations and hash function evaluations.
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In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer,
Heidelberg (2000)

33. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Hei-
delberg (1990)

34. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html


Public-Key Encryption Schemes with Auxiliary Inputs

Yevgeniy Dodis1,�, Shafi Goldwasser2,��, Yael Tauman Kalai3, Chris Peikert4,���,
and Vinod Vaikuntanathan5

1 New York University
2 MIT and Weizmann Institute

3 Microsoft Research
4 Georgia Institute of Technology

5 IBM Research

Abstract. We construct public-key cryptosystems that remain secure even when
the adversary is given any computationally uninvertible function of the secret
key as auxiliary input (even one that may reveal the secret key information-
theoretically). Our schemes are based on the decisional Diffie-Hellman (DDH)
and the Learning with Errors (LWE) problems.

As an independent technical contribution, we extend the Goldreich-Levin the-
orem to provide a hard-core (pseudorandom) value over large fields.

1 Introduction

Modern cryptographic algorithms are designed under the assumption that keys are per-
fectly secret and independently chosen for the algorithm at hand. Still, in practice, in-
formation about secret keys does get compromised for a variety of reasons, including
side-channel attacks on the physical implementation of the cryptographic algorithm, or
the use of the same secret key or the same source of randomness for keys across several
applications.

In recent years, starting with the works of [5,15,18], a new goal has been set within
the theory of cryptography community to build a general theory of physical security
against large classes of side channel attacks. A large body of work has accumulated by
now in which different classes of side channel attacks have been defined and different
cryptographic primitives have been designed to provably withstand these attacks (See
[5,15,18,9,1,2,20,8,24,23,14,9,10] and the references therein).

Placing the current paper within this body of work, we focus on side channel attacks
which result from “memory leakages” [1,8,2,20,16]. In this class of attacks, the attacker
chooses an arbitrary, efficiently computable function h (possibly as a function of the
public parameters of the system), and receives the result of h applied on the secret
key SK . Clearly, to have some secrecy left, we must restrict the attacker to choose
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a function h that “does not fully reveal the secret”. The challenge is to model this
necessary constraint in a clean and general manner, which both captures real attacks
and makes the definition achievable. As of now, several models have appeared trying to
answer this question.

Akavia, Goldwasser and Vaikuntanathan [1] considered a model in which the leakage
function h is an arbitrary polynomial-time computable function with bounded output
length. Letting k denote the length (or more generally, the min-entropy) of the secret
key SK , the restriction is that h outputs �(k) < k bits. In particular, this ensures that
the leakage does not fully reveal the secret key. Akavia et al. [1] show that the public-
key encryption scheme of Regev [25] is secure against �(k)-length bounded leakage
functions as long as �(k) < (1 − ε)k for some constant ε > 0, under the intractability
of the learning with error problem (LWE).

Subsequent work of Naor and Segev [20] relaxed the restriction on h so that the
leakage observed by the adversary may be longer than the secret key, but the min-
entropy of the secret drops by at most �(k) bits upon observing h(SK); they call this
the noisy leakage requirement. The work of [20] also showed how to construct a public-
key encryption scheme which resists noisy leakage as long as �(k) < k − kε for some
constant ε > 0, under the decisional Diffie Hellman (DDH) assumption. They also
showed a variety of other public-key encryption schemes tolerating different amounts
of leakage, each under a different intractability assumption: Paillier’s assumption, the
quadratic residuosity assumption, and more generally, the existence of any universal
hash-proof system [7]. We refer the reader to [20] for a detailed discussion of these
results. (Finally, we note that the proof of [1] based on the LWE assumption generalizes
to the case of noisy leakage.).

The bottom line is that both [1] and [20] (and the results that use the models therein)
interpret the necessary restriction on the leakage function h by insisting that it is
(information-theoretically) impossible to recover SK given the leakage h(SK).

1.1 The Auxiliary Input Model

The natural question that comes out of the modeling in [1,20] is whether this restriction
is essential. For example, is it possible to achieve security if the leakage function h
is a one-way permutation? Such a function information-theoretically reveals the entire
secret key SK , but still it is computationally infeasible to recover SK from h(SK).

The focus of this work is the model of auxiliary input leakage functions, introduced
by Dodis, Kalai, and Lovett [8], generalizing [1,20]. They consider the case of sym-
metric encryption and an adversary who can learn an arbitrary polynomial time com-
putable function h of the secret key, provided that the secret key SK is hard to compute
given h(SK) (but not necessarily impossible to determine, as implied by the definitions
of [1,20]). Formally, the restriction imposed by [8] on the leakage function h is that any
polynomial time algorithm attempting to invert h(SK) will succeed with probability
at most 2−λ(k) for some function λ(·) (i.e., a smaller λ(k) allows for a larger class
of functions, and thus a stronger security result). The ultimate goal is to capture all
polynomially uninvertible functions: namely, all functions for which the probability of
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inversion by a polynomial time algorithm is bounded by some negligible
function in k.1

The work of [8] constructed, based on a non-standard variant of the learning parity
with noise (LPN) assumption, a symmetric-key encryption scheme that remains secure
w.r.t. any auxiliary input h(SK), as long as no polynomial time algorithm can invert h
with probability more than 2−εk for some ε > 0.

In the same work [8], it was observed that in addition to generalizing the previous
leakage models, the auxiliary input model offers additional advantages, the main one
being composition. Consider a setting where a user prefers to use the same secret key
for multiple tasks, as is the case when using biometric keys [4,8]. Suppose we construct
an encryption scheme that is secure w.r.t. any auxiliary input which is an uninvertible
function of the secret key. Then, one can safely use his secret and public key pair to run
arbitrary protocols, as long as these protocols together do not (computationally) reveal
the entire secret key.

1.2 Our Results

In this paper, we focus on designing public key encryption algorithms which are secure
in the presence of auxiliary input functions. We adapt the definition of security w.r.t.
auxiliary input from [8] to the case of public-key encryption algorithms. To address the
issue of whether the function h is chosen by the adversary after seeing the correspond-
ing public key PK (so called adaptive security in [1]), we allow the adversary to receive
h(SK,PK). In other words, we allow the leakage function to depend on PK .

We prove auxiliary input security for two public-key encryption schemes based on
different assumptions.

1. We show that the encryption scheme of Boneh, Halevi, Hamburg and Ostrovsky [3]
(henceforth called the BHHO encryption scheme), suitably modified, is CPA-secure
in the presence of auxiliary input functions h that can be inverted with probability
at most 2−kε

for any ε > 0. The underlying hard problem for our auxiliary-input
CPA-secure scheme is again the same as that of the original BHHO scheme, i.e,
the decisional Diffie-Hellman assumption. Previously, [20] showed that the BHHO
scheme is secure w.r.t. bounded length leakage of size at most k − kε (and more
generally, noisy leakages).

2. We show that the “dual” of Regev’s encryption scheme [25], first proposed by Gen-
try, Peikert and Vaikuntanathan [12], when suitably modified is CPA-secure in the
presence of auxiliary input functions h that can be inverted with probability at most
2−kε

for any ε > 0. The underlying hard problem for our auxiliary-input CPA-
secure scheme is the same as that for (standard) CPA-security, i.e, the “learning
with errors” (LWE) problem. This result, in particular, implies that the scheme is

1 It is instructive to contrast uninvertible functions with the standard notion of one-way func-
tions. In the former, we require the adversary who is given h(SK) to come up with the actual
pre-image SK itself, whereas in the latter, the adversary need only output an SK′ such that
h(SK′) = h(SK). Thus, a function h that outputs nothing is an uninvertible function, but not
one-way! The right notion to consider in the context of leakage and auxiliary input is that of
uninvertible functions.
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secure w.r.t. bounded length leakage of size at most k − kε (and more generally,
noisy leakages). This improves on the previous bound of [1] for the [25] system.

We note that we can prove security of both the dual Regev encryption scheme and the
BHHO encryption scheme w.r.t. a richer class of auxiliary inputs, i.e., those that are
hard to invert with probability 2−polylog(k). However, then the assumptions we rely on
are that LWE/DDH are secure against an adversary that runs in subexponential time.

Of course, the holy grail in this line of work would be a public-key encryption
scheme secure against polynomially hard auxiliary inputs, that is functions that no
polynomial-time adversary can invert with probability better than negligible (in k). Is
this in fact achievable? We give two answers to this question.

A Negative Answer. We show that the holy grail is unattainable for public-key en-
cryption schemes. In particular, for every public-key encryption scheme, we show an
auxiliary input function h such that it is hard to compute SK given h(PK,SK), and
yet the scheme is completely insecure in the presence of the leakage given by h. The
crux of the proof is to use the fact that the adversary that tries to break the encryption
scheme gets the public key PK in addition to the leakage h(PK,SK). Thus, it suffices
to come up with a leakage function h such that:

– Given h(PK,SK), it is hard to compute SK (i.e., h is uninvertible), and yet
– Given h(PK,SK) and PK , it is easy to compute SK .

We defer the details of the construction of such a function to the full version.

A Weaker Definition and a Positive Answer. To complement the negative result, we
construct a public key encryption schemes (under DDH and LWE) that are secure if
the leakage function h is polynomially hard to invert even given the public key. This is
clearly a weaker definition, but still it is advantageous in the context of composition.
See Section 3.1 for definitional details, and the full version for the actual scheme.

We end this section by remarking that the complexity of all of the the encryption
schemes above depends on the bound on the inversion probability of h which we desire
to achieve. For example, in the case of the BHHO scheme, the size of the secret key
(and the complexity of encrypting/decrypting) is k1/ε, where k is the length of the se-
cret key (or more generally, the min-entropy) and security is w.r.t. auxiliary inputs that
are hard to invert with probability 2−kε

. (In fact, this is the case for most of the known
schemes, in particular [1,2,20,16].)

1.3 Overview of Techniques

We sketch the main ideas behind the auxiliary input security of the GPV encryption
scheme (slightly modified). The scheme is based on the hardness of the learning with
error (decisional LWE) problem, which states that for a security parameter n and any
polynomially large m, given a uniformly random matrix A ∈ Zn×m

q , the vector AT s+
x is pseudorandom where s ← Zn

q is uniformly random, and each component of x is
chosen from a “narrow error distribution”.
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Let us first recall how the GPV scheme works. The secret key in the scheme is a
vector e ∈ {0, 1}m, and the public key is a matrix A ∈ Zn×m

q together with u = Ae ∈
Zn

q . Here n is the security parameter of the system, q is a prime (typically polynomial
in n, but in our case slightly superpolynomial), and m is a sufficiently large polynomial
in n and log q. (The min-entropy of the secret key k, in this case, is m.) The basic
encryption scheme proceeds bit by bit. To encrypt a bit b, we first choose s ← Zn

q

uniformly at random, x ∈ Zm
q from a “narrow” error distribution, and x′ ∈ Zq from a

“much wider” error distribution. The ciphertext is

(AT s + x,uT s + x′ + b�q/2 ) ∈ Zm
q × Zq.

Given the secret key e, the decryption algorithm computes eT (AT s+x) ≈ (Ae)T s =
uT s (where the approximation holds because eT x and x′ are all small compared to q)
and uses this to recover b from the second component.

The first idea we use to show auxiliary input security for this scheme is that the
intractability assumption (i.e, the hardness of LWE mentioned above) refers “almost
entirely” to the “preamble” of the ciphertext AT s + x, and not to the secret key at all.
This suggests considering an alternative encryption algorithm (used by the simulator)
which generates a ciphertext using knowledge of the secret key e rather than the secret
s. The advantage of this in the context of leakage is that knowing the secret key enables
the simulator to compute and reveal an arbitrary (polynomial-time computable) leakage
function h of the secret key.2 More specifically, we consider an alternate encryption
algorithm that, given a preamble y = AT s + x, encrypts the bit b using the secret key
e as:

(y, eT y + x′ + b�q/2 ).

The distribution thus produced is statistically “as good as” that of the original encryp-
tion algorithm; in particular, eT y+x′ = uT s+(eTx+x′), where eT x+x′ is distributed
(up to negligible statistical distance) like a sample from the “wide” error distribution
when eT x is negligible compared to x′. (This is why we need to use a slightly super-
polynomial q, and to choose e and x to be negligible relative to the magnitude of x′).

Next, by the LWE assumption, we can replace y with a uniformly random vector
over Zm

q . We would then like to show that the term eT y = 〈e,y〉 in the second compo-
nent of the ciphertext is pseudorandom given the rest of the adversary’s view, namely
(A,Ae, h(A, e),y) where y ∈ Zm

q is uniformly random. Assuming that the function
h′(A, e) = (A,Ae, h(A, e)) is uninvertible, this suggests using a Goldreich-Levin
type theorem over the large field GF (q). Providing such a theorem is the first technical
contribution of this work.

The original Goldreich-Levin theorem over the binary field GF (2) says that for an
uninvertible function h : GF (2)m → {0, 1}∗, the inner product 〈e,y〉 ∈ GF (2) is
pseudorandom given h(e) and uniformly random y ∈ GF (2)m. The later work of
[13] extends this result to deal with inner products over GF (q) for a general prime q.
In particular, it shows that any PPT algorithm that distinguishes between 〈y, e〉 and

2 This kind of technique for proving security of public-key encryption was already used in [12],
in the context of leakage in [20,16], and to our knowledge, traces at least as far back as the
Cramer-Shoup CCA-secure encryption scheme [6].
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uniform, given h(e) and y, gives rise to a poly(q)-time algorithm that inverts h(e)
with probability 1/poly(q) (for a more detailed comparison of our result with [13], see
Remark 2). When q is super-polynomial in the main security parameter n, the running
time of the inverter is superpolynomial, which we wish to avoid. We consider a special
class of functions (which is exactly what is needed in our applications) where each
coordinate of e comes from a much smaller subdomain H ⊆ GF (q). For this class of
functions, we show how to make the running time of the inverter polynomial in n (and
independent of q). We state the result informally below.

Informal Theorem 1. Let q be prime, and let H be a poly(m)-sized subset of GF (q).
Let h : Hm → {0, 1}∗ be any (possibly randomized) function. If there is a PPT al-
gorithm D that distinguishes between 〈e,y〉 and the uniform distribution over GF (q)
given h(e) and y ← GF (q)m, then there is a PPT algorithm A that inverts h with
probability 1/(q2 · poly(m)).

Applying this variant of the Goldreich-Levin theorem over GF (q), we get security
against auxiliary input functions h that are hard to invert given (A,Ae, h(A, e)); we
call this weak auxiliary-input security in the rest of the paper. Obtaining strong aux-
iliary input security, i.e., security against functions h that are hard to invert given
only (A, h(A, e)), is very easy in our case: since the public key Ae has bit-length
n log q = mε � |SK|, the reduction can simply guess the value of PK = Ae and lose
only a factor of 2−mε

in the inversion probability.
The proof of security for the BHHO encryption scheme follows precisely the same

line of argument, but with two main differences: (1) the proof is somewhat simpler be-
cause one does not have to deal with any pesky error terms (and the resulting statistical
deviation between encrypting with the public key versus the secret key), and (2) we
use the Goldreich-Levin theorem over an exponentially large field GF (q), rather than
a superpolynomial one.

2 Preliminaries

Throughout this paper, we denote the security parameter by n. We write negl(n) to
denote an arbitrary negligible function, i.e., one that vanishes faster than the inverse of
any polynomial.

The Decisional Diffie Hellman Assumption. Let G be a probabilistic polynomial-time
“group generator” that, given the security parameter n in unary, outputs the description
of a group G that has prime order q = q(n). The decisional Diffie Hellman (DDH)
assumption for G says that the following two ensembles are computationally indistin-
guishable:{

(g1, g2, g
r
1 , g

r
2) : gi ← G, r ← Zq

}
≈c

{
(g1, g2, g

r1
1 , gr2

2 ) : gi ← G, ri ← Zq

}
We will use a lemma of Naor and Reingold [19] which states that a natural generaliza-
tion of the DDH assumption which considers m > 2 generators is actually equivalent
to DDH. The proof follows from the self-reducibility of DDH.
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Lemma 1 ([19]). Under the DDH assumption on G, for any positive integer m,{
(g1, . . . , gm, gr

1, . . . , g
r
m) : gi ← G, r ← Zq

}
≈c{

(g1, . . . , gm, gr1
1 , . . . , grm

m ) : gi ← G, ri ← Zq

}

The Learning with errors (LWE) Assumption. The LWE problem was introduced by
Regev [25] as a generalization of the “learning noisy parities” problem. For positive
integers n and q ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on Zq , let As,χ
be the distribution obtained by choosing a vector a ∈ Zn

q uniformly at random and a
noise term x ← χ, and outputting (a, 〈a, s〉 + x) ∈ Zn

q × Zq .

Definition 1. For an integer q = q(n) and an error distribution χ = χ(n) over Zq , the
(worst-case) learning with errors problem LWEn,m,q,χ in n dimensions is defined as
follows. Given m independent samples from As,χ (where s ∈ Zn

q is arbitrary), output s
with noticeable probability.

The (average-case) decisional variant of the LWE problem, denoted DLWEn,m,q,χ,
is to distinguish (with non-negligible advantage) m samples chosen according to As,χ

for uniformly random s ∈ Zn
q , from m samples chosen according to the uniform distri-

bution over Zn
q × Zq .

For cryptographic applications we are primarily interested in the average-case decision
problemDLWE. Fortunately, Regev [25] showed that for a prime modulus q, the (worst-
case) LWE and (average-case)DLWE problems are equivalent, up to a q ·poly(n) factor
in the number of samples m. We say that LWEn,m,q,χ (respectively, DLWEn,m,q,χ) is
hard if no PPT algorithm can solve it for infinitely many n.

At times, we use a compact matrix notation to describe the LWE problem
LWEn,m,q,χ: given (A,AT s + x) where A ← Zn×m

q is uniformly random, s ← Zn
q

is the LWE secret, and x ← χm, find s. We also use a similar notation for the decision
version DLWE.

Gaussian error distributions. We are primarily interested in the LWE and DLWE prob-
lems where the error distribution χ over Zq is derived from a Gaussian. For any r > 0,
the density function of a one-dimensional Gaussian probability distribution over R is
given by Dr(x) = 1/r · exp(−π(x/r)2). For β > 0, define Ψβ to be the distribu-
tion on Zq obtained by drawing y ← Dβ and outputting �q · y� (mod q). We write
LWEn,m,q,β as an abbreviation for LWEn,m,q,Ψβ

. Here we state two basic facts about

Gaussians (tailored to the error distribution Ψβ); see, e.g. [11].

Lemma 2. Let β > 0 and q ∈ Z. Let the vector x ∈ Zn be arbitrary, and y ← Ψ
n

β .
With overwhelming probability over the choice of y,

∣∣xT y
∣∣ ≤ ||x|| · βq · ω(

√
logn).

Lemma 3. Let β > 0, q ∈ Z and y ∈ Z. The statistical distance between the distribu-
tions Ψβ and Ψβ + y is at most |y|/(βq).
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Evidence for the hardness of LWEn,m,q,β follows from results of Regev [25], who gave
a quantum reduction from approximating certain problems on n-dimensional lattices
in the worst case to within Õ(n/β) factors to solving LWEn,m,q,β for any desired
m = poly(n), when β · q ≥ 2

√
n. Recently, Peikert [21] also gave a related classi-

cal reduction for similar parameters.

3 Security against Auxiliary Inputs

We start by defining security of public-key encryption schemes w.r.t. auxiliary input.

Definition 2. A public-key encryption scheme Π = (Gen,Enc,Dec) with message
space M = {Mn}n∈N is CPA secure w.r.t. auxiliary inputs from
H if for any PPT adversary A = (A1,A2), any function h ∈ H, any polynomial p,
and any sufficiently large n ∈ N,

AdvA,Π,h
def
=
∣∣Pr[CPA0(Π,A, n, h) = 1] − Pr[CPA1(Π,A, n, h) = 1]

∣∣ < 1
p(n)

,

where CPAb(Π,A, n, h) is the output of the following experiment:

(SK,PK) ← Gen(1n)
(M0,M1, state) ← A1(1n, PK, h(SK,PK)) s.t. |M0| = |M1|
cb ← Enc(PK,Mb)
Output A2(cb, state)

3.1 Classes of Auxiliary Input Functions

Of course, we need to decide which function families H we are going to consider. We
define two such families. For future convenience, we will parametrize these families by
the min-entropy k of the secret key, as opposed to the security parameter n. (Note, in
our schemes the secret key will be random, so k is simply the length of the secret key.)

The first family Hbdd is the length-bounded family studied by the prior work
[1,20],3 while the second family How is the auxiliary-input family we introduce and
study in this work, where we only assume that the secret key is “hard to compute”
given the leakage.

– Let Hbdd(�(k)) be the class of all polynomial-time computable functions h :
{0, 1}|SK|+|PK| → {0, 1}�(k), where �(k) ≤ k is the number of bits the attacker is
allowed to learn. If a public-key encryption scheme Π is CPA secure w.r.t. this fam-
ily of functions, it is called �(k)-LB-CPA (length-bounded CPA) secure.

– Let How(f(k)) be the class of all polynomial-time computable functions h :
{0, 1}|SK|+|PK| → {0, 1}∗, such that given h(SK,PK) (for a randomly

3 For simplicity, we do not define a more general family corresponding to the noisy leakage
model of [20]. However, all the discussion, including Lemma 4, easily holds for noisy-leakage
instead of length-bounded leakage.
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generated (SK,PK)), no PPT algorithm can find SK with probability greater
than f(k), where f(k) ≥ 2−k is the hardness parameter. If a public-key encryption
scheme Π is CPA secure w.r.t. this family of functions, it is called f(k)-AI-CPA
(auxiliary input CPA) secure. Our goal is to make f(k) as large (i.e.,
as close to negl(k)) as possible.

We also consider a weaker notion of auxiliary input security, called f(k)-wAI-CPA
(weak auxiliary input CPA) security, where the class of functions un-
der consideration is uninvertible even given the public key of the scheme. This notion is
used as a stepping stone to achieving the stronger f(k)-AI-CPA notion.

– Let Hpk-ow(f(k)) be the class of all polynomial-time computable functions h :
{0, 1}|SK|+|PK| → {0, 1}∗, such that given (PK, h(SK,PK)) (for a randomly
generated (SK,PK)), no PPT algorithm can find SK with probability greater
than f(k), where f(k) ≥ 2−k is the hardness parameter. If a public-key encryption
scheme Π is CPA secure w.r.t. this family of functions, it is called f(k)-wAI-CPA
(weak auxiliary input CPA) secure.

The following lemma shows various relations between these notions of security. The
proof follows directly from the definitions, and is omitted.

Lemma 4. Assume Π is a public-key encryption scheme whose public key is of length
t(k).

1. If Π is f(k)-AI-CPA secure, then Π is f(k)-wAI-CPA secure.
2. If Π is f(k)-wAI-CPA secure, then Π is (2−t(k)f(k))-AI-CPA secure.
3. If Π is f(k)-AI-CPA secure, then Π is (k − log(1/f(k)))-LB-CPA secure.

We now examine our new notions or strong and weak auxiliary input security (f(k)-
AI-CPA and f(k)-wAI-CPA, respectively).

Strong Notion. We start with f(k)-AI-CPA security, which is the main notion we
advocate. It states that as long as the leakage y = h(SK,PK) did not reveal SK (with
probability more than f(k)), the encryption remains secure. First, as shown in Part 3. of
Lemma 4, it immediately implies that it is safe to leak (k − log(1/f(k))) arbitrary bits
about the secret key. Thus, if log(1/f(k)) � k, it means that we can leak almost the
entire (min-)entropy of the secret key! This motivates our convention of using k as the
min-entropy of the secret key, making our notion intuitive to understand in the leakage
setting of [1,20]. Second, it implies very strong composition properties. As long as other
usages of SK make it f(k)-hard to compute, these usages will not break the security
of our encryption scheme.

Weak Notion. We next move to the more subtle notion of f(k)-wAI-CPA security.
Here, we further restrict the leakage functions h to ones where SK remains hard to
compute given both the leakage y = h(PK,SK) and the public key PK . While this
might sound natural, it has the following unexpected “anti-monotonicity” property. By
making PK contain more information about the secret key, we could sometimes make
the scheme more secure w.r.t. to this notion (i.e., the function f(k) becomes larger),
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which seems unnatural. At the extreme, setting PK = SK would make the scheme
wAI-CPA “secure”, since we now ruled out all “legal” auxiliary functions, making the
notion vacuously true. (In the full version, we also give more convincing examples.)

Although this shows that the wAI-CPA security should be taken with care, we show
it is still very useful. First, Lemma 4 shows that it is useful when the scheme has a short
public key. In particular, this will be the case for all the schemes that we construct, where
we will first show good wAI-CPA security, and then deduce almost the same AI-CPA
security. Second, even if the scheme does not have a very short public key, wAI-CPA
security might be useful in composing different schemes sharing the same public-key
infrastructure. For example, assume we have a signature and an encryption scheme
having the same pair (PK,SK). And assume that the signature scheme is shown to
be f(k)-secure against key recovery attacks. Since the auxiliary information obtained
by using the signature scheme certainly includes the public key, we can conclude that
our f(k)-wAI-CPA secure encryption scheme is still secure, despite being used to-
gether with the signature scheme. In other words, while strong auxiliary input security
would allow us to safely compose with any f(k)-secure signature scheme, even using
a different PK , weak auxiliary input security is still enough when the PKI is shared,
which is one of the motivating settings for auxiliary input security. Finally, we are able
to construct f(k)-wAI-CPA secure schemes with the optimal value of f(k), namely
f(k) = negl(k). We defer the details to the full version.

Public Parameters. For simplicity, when defining auxiliary input security, we did not
consider the case when the encryption schemes might depend on system-wide param-
eters params. However, the notions of strong and weak auxiliary input security natu-
rally generalize to this setting, as follows. First, to allow realistic attacks, the leakage
function h can also depend on the parameters. Second, for both AI-CPA and wAI-CPA
notions, SK should be hard to recover given params and h(SK,PK,params) (resp.
(PK, h(SK,PK,params))).4 Correspondingly, when applying Lemma 4, the length
of the parameters is not counted towards the length t(k) of the public key.

4 Goldreich-Levin Theorem for Large Fields

In this section, we prove a Goldreich-Levin theorem over any field GF (q) for a prime
q. In particular, we show:

Theorem 1. Let q be prime, and let H be an arbitrary subset of GF (q). Let f : Hn →
{0, 1}∗ be any (possibly randomized) function. If there is a distinguisher D that runs in
time t such that∣∣∣∣Pr[s ← Hn, y ← f(s), r ← GF (q)n : D(y, r, 〈r, s〉) = 1]

− Pr[s ← Hn, y ← f(s), r ← GF (q)n, u ← GF (q) : D(y, r, u) = 1]
∣∣∣∣ = ε

4 Notice, unlike the case of wAI-CPA security, the inclusion of params as part of the leakage does
not result in the “anti-monotonicity” problem discussed earlier, since params are independent
of the secret key.
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then there is an inverter A that runs in time t′ = t · poly(n, |H |, 1/ε) such that

Pr[s ← Hn, y ← f(s) : A(y) = s] ≥ ε3

512 · n · q2 (1)

Remark 1. Assume that the distinguisher D is a PPT algorithm and the distinguishing
advantage ε is non-negligible in n. When q is polynomial in n, the running time of
A is polynomial, and the success probability is inverse-polynomial in n, irrespective
of H . When q is super-polynomial in n, but |H | is polynomial in n, the running time
of A remains polynomial in n, but the success-probability is dominated by the 1/q2

factor.

Remark 2. We briefly compare our new variant of the GL Lemma for general q with
the similar-looking extension of Goldreich, Rubinfeld and Sudan [13]. The extensions
are incomparable, in the following sense. In [13], the authors assume an ε-predictor
for the inner product 〈r, s〉, which is a stronger assumption than the existence of an
ε-distinguisher, especially as q grows. On the other, in [13] both the running time and
the inversion probability of the inverter they construct depends only on n/ε and is in-
dependent of q (and, hence, |H |, if one considers restricting the domain as we do).
Unfortunately, if one generically converts a distinguisher into a predictor, this con-
version makes the prediction advantage equal to ε/q, which means that applying [13]
would make both the inversion probability and the running time of the inverter de-
pend on q. In contrast, we directly work with the distinguisher, and manage to only
make the inversion probability dependent on q, while the running time dependent only
on |H |.

Overview of the Proof. As in the standard Goldreich-Levin proof, we concentrate on
the vectors s on which the distinguisher has Ω(ε)-advantage for random r. Let c be
a parameter that depends on |H |, n, ε (this parameter will be specified precisely in the
formal proof below). As in the standard proof, our inverter A will guess c inner products
〈s, zi〉 for random vectors z1 . . . zc, losing 1/qc factor in its success probability in the
process. Then, assuming all our c guessed inner products are correct, for each i =
1 . . .n and a ∈ H , we use the assumed distinguisher D to design an efficient procedure
to test, with high probability, if si = a. The details of this test, which is the crux of the
argument, is given in the formal proof below, but the above structure explains why our
running time only depends on |H | and not q.

Proof. We will actually prove a tighter version of the bound stated in Equation (1), and
design an inverter A with success probability ε/4qc, where c ≥ 2 is the smallest integer
such that qc > 128|H |n/ε2. The general bound in Equation (1) follows since

4qc ≤ 4 max(q2, q · (128|H |n/ε2)) = 4q · max(q, 128|H |n/ε2) ≤ 512q2n/ε2.

Thus,

– If q > 128|H |n/ε2 then c = 2 and the above probability is at least ε/4q2.
– If q ≤ 128|H |n/ε2 then qc ≤ q · (128|H |n/ε2), and thus the above probability is

at least ε3/512nq|H | ≥ ε3/512nq2.
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Without loss of generality, we will drop the absolute value from the condition on D,
by flipping the decision of D, if needed. Also, for a fixed value s ∈ H� and fixed
randomness of f (in case f is randomized), let y = f(s) and let

αs,y = Pr[r ← GF (q)n : D(y, r, 〈r, s〉) = 1]
βs,y = Pr[r ← GF (q)n, u ← GF (q) : D(y, r, u) = 1]

Thus, we know that Es[αs,y − βs,y] ≥ ε (note, this expectation also includes possible
randomness of f , but we ignore it to keep the notation uncluttered). Let us call the pair
(s, y) good if αs,y − βs,y ≥ ε/2. Since αs,y − βs,y ≤ 1, a simple averaging argument
implies that

Pr[s ← Hn, y ← f(s) : (s, y) is good] ≥ ε/2 (2)

Below, we will design an algorithm A(y) which will succeed to recover s from y with
probability 1/2qc, whenever the pair (s, y) is good. Coupled with Equation (2), this will
establish that A’s overall probability of success (for random s and y) is at least ε/4qc,
as required. Thus, in the discussion below, we will assume that (s, y) is fixed and good.

Before describing A(y), we will also assume that A(y) can compute, with overwhe-
liming probability, a number γs,y such that (αs,y − ε/8 ≥ γs,y ≥ βs,y + ε/8). Indeed,
by sampling O(n/ε2) random and independent vectors r and u, A(y) can compute an
estimate e for βs,y , such that Pr(|e − βs,y| > ε/8) ≤ 2−n (by the Chernoff’s bound),
after which one can set γs,y = e+ ε/4. So we will assume that A(y) can compute such
an estimate γs,y .

Let m
def= 128|H |n/ε2. By assumption, c ≥ 2 is such that qc > m. Let us fix an

arbitrary subset S ⊆ GF (q)c\{0c} of cardinality m, such that every two elements
in S are linearly independent. This can be achieved for example by choosing S ⊆
GF (q)c\{0c} to be an arbitrary set of cardinality m such that the first coordinate of
each element in S equals 1. The algorithm A(y) works as follows.

1. Compute the value γs,y such that (αs,y − ε/8 ≥ γs,y ≥ βs,y + ε/8), as described
above.

2. Choose c random vectors z1, . . . , zc ← GF (q)n, and c random elements g1, . . . ,
gc ← GF (q).
[Remark: Informally, the gi are A’s “guesses” for the values of 〈zi, s〉.]

3. For every tuple ρ̄ = (ρ1, . . . , ρc) ∈ S, compute

rρ̄ :=
c∑

j=1

ρjzj and hρ̄ :=
c∑

j=1

ρjgj (3)

[Remark: If the guesses gi are all correct, then for every ρ̄, we have hρ̄ = 〈rρ̄, s〉.
Also notice that the vectors rρ̄ are pairwise independent since c ≥ 2 and ρ̄ �= 0c.]

4. For each i ∈ [n], do the following:

– For each a ∈ H , guess that si = a, and run the following procedure to check
if the guess is correct:
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• For each ρ̄ ∈ S, choose a random τ
(i,a)
ρ̄ ∈ GF (q) and run

D(y, rρ̄ + τ
(i,a)
ρ̄ · ei, hρ̄ + τ

(i,a)
ρ̄ · a)

where ei is the ith unit vector. Let p(i,a) be the fraction of D’s answers
which are 1.

• If p(i,a) ≥ γs,y, set si := a and move to the next i + 1.
Otherwise, move to the next guess a ∈ H .

5. Output s = s1s2 . . . sn (or fail if some si was not found).

The procedure invokes the distinguisher D at most O(nm|H |) times (not counting the
estimation step for γs,y which is smaller), and thus the running time is O(t ·nm|H |) =
t·poly(n, |H |, 1/ε), where t is the running time of D. Let us now analyze the probability
that the procedure succeeds.

First, define the event E to be the event that for all ρ̄ ∈ S, we have hρ̄ = 〈rρ̄, s〉.

Pr[E] = Pr[∀ρ̄ ∈ S, hρ̄ = 〈rρ̄, s〉] ≥ Pr[∀i ∈ [1, . . . , c], gi = 〈zi, s〉] =
1
qc

where the last equality follows from the fact that A’s random guess of gi are all correct
with probability 1/qc. For the rest of the proof, we condition on the event E (and, of
course, on the goodness of (s, y)), and show that A’s success is at least 1/2 in this case,
completing the proof.

We next prove two claims. First, in Claim 4 we show that if A’s guess a for si is
correct, then each individual input to D is distributed like (y, r, 〈r, s〉), for a random
r. Thus, the probability that D answers 1 on these inputs is exactly αs,y. Moreover,
the inputs to D are pairwise independent. This follows from their definition in Equa-
tion 3, since every two elements in S are linearly independent and we excluded ρ̄ = 0c.
Thus, by Chebyshev’s inequality, the probability that the average pi,a of m pairwise
independent estimations of αs,y is smaller than γs,y, which is more than ε/8 smaller
than the true average αs,y , is at most 1/(m(ε/8)2) = 1/2|H |n, where we recall that
m = 128|H |n/ε2.

Secondly, in Claim 4 we show that for every incorrect guess a for si, each individual
input to D is distributed like (y, r, u) for random r and u. Thus, the probability that
D answers 1 on these inputs is exactly βs,y. And, as before, different values r, u are
pairwise independent.5 By an argument similar to the above, in this case the probability
that the average pi,a of m pairwise independent estimations of βs,y is larger than γs,y,
which is more than ε/8 larger than the true average βs,y , is at most 1/(m(ε/8)2) =
1/2|H |n.

This suffices to prove our result, since, by the union bound over all i ∈ [1, . . . , n] and
a ∈ |H |, the chance that A will incorrectly test any pair (i, a) (either as false positive
or false negative) is at most |H |n · 1/(2|H |n) = 1/2. Thus, it suffices to prove the two
claims.
5 The argument is the same for r and for the values u, Claim 4 shows that they are in fact

completely independent.
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Claim. If A’s guess is correct, i.e, si = a, the inputs to D are distributed like
(y, r, 〈r, s〉).

Proof: Each input to D is of the form (y, rρ̄ + τ
(i,a)
ρ̄ · ei, hρ̄ + τ

(i,a)
ρ̄ · a). Since we

already conditioned on E, we know that hρ̄ = 〈rρ̄, s〉. Also, we assumed that si = a.
Thus,

hρ̄ + τ
(i,a)
ρ̄ · a = 〈rρ̄, s〉 + τ

(i,a)
ρ̄ · si = 〈rρ̄, s〉 + 〈τ (i,a)

ρ̄ ei, s〉 = 〈rρ̄ + τ
(i,a)
ρ̄ · ei, s〉

Since rρ̄ + τ
(i,a)
ρ̄ · ei is uniformly random by itself (see Equation 3 and remember

ρ̄ �= 0c), the input of D is indeed of the form (y, r, 〈r, s〉), where r := rρ̄ + τ
(i,a)
ρ̄ · ei is

uniformly random. ��

Claim. If A’s guess is incorrect, i.e, si �= a, the inputs to D are distributed like (y, r, u)
for a uniformly random u ∈ GF (q).

Proof: The proof proceeds similar to Claim 4. As before, each input to D is of the form
(y, rρ̄ + τ

(i,a)
ρ̄ · ei, hρ̄ + τ

(i,a)
ρ̄ · a). Now, however, si �= a, so suppose a− si = ti �= 0.

Then

hρ̄ + τ
(i,a)
ρ̄ · a = 〈rρ̄, s〉 + τ

(i,a)
ρ̄ · (si + ti) = 〈rρ̄ + ρ

(i,a)
ρ̄ · ei, s〉 + τ

(i,a)
ρ̄ · ti

Let r := rρ̄ +τ
(i,a)
ρ̄ ·ei and u := hρ̄ +τ

(i,a)
ρ̄ ·a, so that the input to D is (y, r, u). By the

equation above, we have u = 〈r, s〉 + ρ
(i,a)
ρ̄ · ti. Also, since rρ̄ is uniformly random, it

perfectly hides τ
(i,a)
ρ̄ in the definition of r. Thus, r is independent from τ

(i,a)
ρ̄ . Finally,

since we assumed that ti �= 0 and the value τ
(i,a)
ρ̄ was random in GF (q), this means

that u = 〈r, s〉 + τ
(i,a)
ρ̄ · ti is random and independent of r, as claimed. ��

This concludes the proof of Theorem 1.

5 Auxiliary Input Secure Encryption Schemes

5.1 Construction Based on the DDH Assumption

We show that the BHHO encryption scheme [3] is secure against subexponentially hard-
to-invert auxiliary input.

The BHHO Cryptosystem. Let n be the security parameter. Let G be a probabilistic
polynomial-time “group generator” that, given the security parameter n in unary, out-
puts the description of a group G that has prime order q = q(n).

– KeyGen(1n, ε): Let m := (4 log q)1/ε, and let G ← G(1n). Sample m random
generators g1, . . . , gm ← G. Let g = (g1, . . . , gm). Choose a uniformly random
m-bit string s = (s1, . . . , sm) ∈ {0, 1}m, and define

y :=
m∏

i=1

gsi

i ∈ G.
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Let the secret key SK = s, and let the public key PK = (g, y) (plus the descrip-
tion of G). Note, g can be viewed as public parameters, meaning only y can be
viewed as the “user-specific” public key.

– Enc(PK,M): Let the message M ∈ G. Choose a uniformly random r ∈ Zq .
Compute fi := gr

i for each i, and output the ciphertext

C := (f1, . . . , fm, yr ·M) ∈ Gm+1.

– Dec(SK,C): Parse the ciphertext C as (f1, . . . , fm, c), and the secret key SK =
(s1, . . . , sm). Output

M ′ := c ·
( m∏

i=1

fsi

i

)−1

∈ G.

To see the correctness of the encryption scheme, observe that if fi = gr
i for all i, then

the decryption algorithm outputs

M ′ = c ·
( m∏

i=1

fsi

i

)−1

= c ·
( m∏

i=1

gsi

i

)−r

= c · y−r = M

We now show that the BHHO scheme is secure against subexponentially hard auxiliary
inputs, under the DDH assumption.

Theorem 2. Assuming that the Decisional Diffie-Hellman problem is hard for G, the
encryption scheme described above is (2−mε

)-AI-CPA secure (when g is viewed as a
public parameter).

Remark. We can actually handle a richer class of auxiliary functions, namely, any
h(g, s) that (given g) is to hard invert with probability 1/2k, where k can be as small as
polylog(m). However, then the assumption we rely on is that DDH is hard for ad-
versaries that run in subexponential time. For the sake of simplicity, we only state
the theorem for k = mε in which case we can rely on the standard DDH hardness
assumption.

Proof (of Theorem 2). By Lemma 4 (Part 2) and because the length of “user-specific”
public key y is log q bits, to prove the theorem it suffices to show that our encryption
scheme is (q2−mε

)-wAI-CPA secure. Fix any auxiliary-input function h, so that s is
still (q · 2−mε

)-hard given (g, y, h(g, s)), and a PPT adversary A with advantage δ =
δ(n) = AdvA,h(n).

We consider a sequence of experiments, letting Adv
(i)
A,h(n) denote the advantage of

the adversary in experiment i.

Experiment 0: This is the experiment in Definition 2. The adversary A gets as input
PK = (g, y) and the auxiliary input h(g, s). A chooses two messages M0 and M1, and
receives C = Enc(PK,Mb) where b ∈ {0, 1} is uniformly random. A succeeds in the
experiment if he succeeds in guessing b. By assumption,Adv(0)

A,h(n) = AdvA,h(n) = δ.
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Experiment 1: In this experiment, the challenge ciphertext C is generated by “encrypt-
ing with the secret key,” rather than with the usual Enc(PK,Mb) algorithm. In partic-
ular, define the algorithm Enc′(g, s,Mb) as follows.

1. Choose r ← Zq , and compute the first m components of the ciphertext (f1, . . . ,
fm) = (gr

1, . . . , g
r
m).

2. Compute the last component of the ciphertext as c =
∏m

i=1 fsi

i · Mb.

Claim. The distribution produced by Enc′ is identical to the distribution of a real ci-
phertext; in particular, Adv(0)

A,h(n) = Adv
(1)
A,h(n).

Proof. Fix g and s (and hence y). Then for uniformly random r ∈ Zq , both Enc and
Enc′ compute the same f1, . . . , fm, and their final ciphertext components also coincide:

C =
m∏

i=1

fsi

i ·M =
m∏

i=1

grsi

i · M =
( m∏

i=1

gsi

i

)r ·M = yr ·M.

Experiment 2: In this experiment, the vector (f1, . . . , fm) in the ciphertext is taken
from the uniform distribution over Gm, i.e., each fi = gri for uniformly random and
independent ri ∈ Zq (where g is some fixed generator of G), and C =

∏
i f

si

i · Mb as
before. Under the DDH assumption and by Lemma 1, it immediately follows that the
advantage of the adversary changes by at most a negligible amount.

Claim. If the DDH problem is hard for G, then for every PPT algorithm A and for every
function h ∈ H,

∣∣Adv(1)
A,h(n) − Adv

(2)
A,h(n)

∣∣ ≤ negl(n).

Experiment 3: In this experiment, the final component of the ciphertext is replaced by
a uniformly random element u ← G. Namely, the ciphertext is generated as (gr1 , . . . ,
grm , gu), where ri ∈ Zq and u ∈ Zq are all uniformly random and independent.

Claim. For every PPT algorithm A and for every h ∈ H,
∣∣Adv(2)

A,h(n)−Adv
(3)
A,h(n)

∣∣ ≤
negl(n).

Proof. We reduce the task of inverting h (with suitable probability) to the task of gain-
ing some non-negligible δ = δ(n) distinguishing advantage between experiments 2
and 3.

We wish to construct an efficient algorithm that, given PK = (g, y) and h(g, s),
outputs s ∈ Hm = {0, 1}m with probability at least

q · δ3

512n · q3 > q · 1
512n · 23mε/4 · poly(n)

> q · 2−mε

,

for large enough n. By Theorem 1, it suffices to reduce δ-distinguishing

(PK, h(g, s), r ∈ Zm
q , 〈r, s〉) from (PK, h(g, s), r, u ∈ Zq)

to δ-distinguishing between experiments 2 and 3.
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The reduction B that accomplishes this simulates the view of the adversary A as
follows. On input (PK = (g, y), h(g, s), r, z ∈ Zq), give PK to A and get back
two messages M0,M1; choose a bit b ∈ {0, 1} at random and give A the ciphertext
(gr1 , . . . , grm , gz · Mb). Let b′ be the output of A; if b = b′ then B outputs 1, and
otherwise B outputs 0.

By construction, it may be checked that when B’s input component z = 〈r, s〉 ∈ Zq ,
B simulates experiment 2 to A perfectly. Likewise, when z is uniformly random and
independent of the other components, B simulates experiment 3 perfectly. It follows
that B’s advantage equals A’s.

Now the ciphertext in experiment 3 is independent of the bit b that selects which
message is encrypted. Thus, the adversary has no advantage in this experiment, i.e,
Adv

(3)
A,h(n) = 0. Putting together the claims, we get that AdvA,h(n) ≤ negl(n).

5.2 Constructions Based on LWE

First, we present (a modification of) the GPV encryption scheme [12]. We then show
that the system is secure against sub-exponentially hard auxiliary input functions, as-
suming the hardness of the learning with error (LWE) problem.

The GPV Cryptosystem. Let n denote the security parameter, and let 0 < ε ≤ 1. Let
f(n) = 2ω(log n) be some superpolynomial function. Let the prime q ∈ (f(n), 2 ·f(n)],
the integer m = ((n + 3) log q)1/ε and the error-distributions Ψβ and Ψγ where β =
2
√
n/q and γ = 1/(8 · ω(

√
logn)) be parameters of the system.

Gen(1n): Choose a uniformly random matrix A ← Zn×m
q and a random vector e ←

{0, 1}m. Compute u = Ae. The public key PK := (A,u) and the secret key
SK := e. We notice that the matrix A could be viewed as a public parameter,
making u the only “user-specific” part of PK for the purposes of Lemma 4.

Enc(PK, b), where b is a bit, works as follows. Choose a random vector s ← Zn
q , a

vector x ← Ψ
m

β and x′ ← Ψγ . Output the ciphertext(
AT s + x,uT s + x′ + b

⌊
q

2

⌋)
Dec(SK, c): Parse the ciphertext as (y, c) ∈ Zm

q ×Zq and compute b′ = (c−eT y)/q.
Output 1 if b′ ∈ [14 ,

3
4 ] mod 1, and 0 otherwise.

Remark 3. There are two main differences between the cryptosystem in [12] and the
variant described here. First, we choose the error parameter β to be superpolynomially
small in n (and the modulus q to be superpolynomially large), whereas in [12], both
are polynomially related to n. Second, the secret-key distribution in our case is the uni-
form distribution over {0, 1}m, whereas in [12], it is the discrete Gaussian distribution
DZm,r for some r > 0. The first modification is essential to our proof of auxiliary-input
security. The second modification is not inherent; using a discrete Gaussian distribution
also results in an identity-based encryption scheme (as in [12]) secure against auxiliary
inputs. We defer the details to the full version of this paper.
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Remark 4. Although the encryption scheme described here is a bit-encryption scheme,
it can be modified to encrypt O(log q) bits with one invocation of the encryption algo-
rithm, using the ideas of [17,22]. However, we note that another optimization proposed
in [22] that achieves constant ciphertext expansion does not seem to lend itself to se-
curity against auxiliary inputs. Roughly speaking, the reason is that the optimization
enlarges the secret key by repeating the secret key of the basic encryption scheme poly-
nomially many times; this seems to adversely affect auxiliary input security.

We now show that the (modified) GPV scheme is secure against subexponentially hard
auxiliary inputs, under the decisional LWE assumption.

Theorem 3. Let the superpolynomial function f(n) and the parameters m, q, β and
γ be as in the encryption scheme described above. Assuming that the DLWEn,m,q,β

problem is hard, the encryption scheme above is (2−mε

)-AI-CPA secure (when A is
viewed as a public parameter).

Remark. We can actually prove security even for auxiliary functionsh(A, e) that (given
A) are hard to invert with probability 2−k, where k can be as small as polylog(m).
However, then the assumption we rely on is that LWE is hard for adversaries that run in
subexponential time. For the sake of simplicity, we only state the theorem for k = mε

in which case we can rely on the standard LWE hardness assumption.

Proof (of Theorem 3). By Lemma 4 (Part 2) and because the length of “user-specific”
public key u is n log q bits, to show Theorem 3 it suffices to show that our encryption
scheme is (qn2−mε

)-wAI-CPA secure. Fix any auxiliary-input function h, so that e
is still (qn · 2−mε

)-hard given (A,u, h(A, e)), and a PPT adversary A with advantage
δ = δ(n) = AdvA,h(n).

We consider a sequence of experiments, and let Adv(i)
A,h(n) denote the advantage of

the adversary in experiment i.

Experiment 0: This is the experiment in Definition 2. The adversary A gets as input
PK = (A,u) and the auxiliary input h(A, e). A receives Enc(PK, b) where b ∈
{0, 1} is uniformly random. A succeeds in the experiment if he succeeds in guessing b.

By assumption, Adv(0)
A,h(n) = AdvA,h(n) = δ.

Experiment 1: In this experiment, the challenge ciphertext is generated by “encrypting
with the secret key,” rather than with the usual Enc(PK, b) algorithm. In particular,
define the algorithm Enc′(A, e, b) as follows.

1. Choose s ← Zn
q at random and x ← Ψ

m

β , and compute the first component of the
ciphertext y = AT s + x.

2. Choose x′ ← Ψγ and compute the second component of the ciphertext as

c = eT y + x′ + b
⌊
q/2
⌋

Claim. The distribution produced by Enc′ is statistically close to the distribution of a
real ciphertext; in particular, there is a negligible function negl such that∣∣Adv(0)

A,h(n) − Adv
(1)
A,h(n)

∣∣ ≤ negl(n).
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Proof. Fix A and e (and hence u). Then for uniformly random s ∈ Zn
q and x ←

Ψ
m

β , both Enc and Enc′ compute the same y. Given y, the second component of the
ciphertext produced by Enc′ is

c = eT y+x′ + b�q/2 = eTAs+(eT x+x′)+ b�q/2 = uT s+(eT x+x′)+ b�q/2 

It suffices to show that the distribution of eT x+x′ is statistically indistinguishable from
Ψγ . This follows from Lemma 3 and the fact that

eT x/(γq) ≤ ||e|| · ||x||/(γq) ≤
√
m · βq · ω(

√
logn)/(γq) = 2 ·

√
mn · ω(logn)/q

is a negligible function of n.

Experiment 2: In this experiment, the vector y in the ciphertext is taken from the uni-
form distribution over Zm

q . Assuming the DLWEn,m,q,β problem is hard, it immediately
follows that the advantage of the adversary changes by at most a negligible amount.

Claim. If the DLWEn,m,q,β problem is hard, then for every PPT algorithm A and for

every function h ∈ H, there is a negligible function negl such that
∣∣Adv(1)

A,h(n) −
Adv

(2)
A,h(n)

∣∣ ≤ negl(n).

Experiment 3: In this experiment, the second component of the ciphertext is replaced
by a uniformly random element r ← Zq . Namely, the ciphertext is generated as (y, r),
where y ← Zm

q is uniformly random, and r ← Zq is uniformly random.

Claim. For every PPT algorithm A and for every function h ∈ H, there is a negligible
function negl such that

∣∣Adv(2)
A,h(n) − Adv

(3)
A,h(n)

∣∣ ≤ negl(n).

Proof. We reduce the task of inverting h to the task of gaining a non-negligible distin-
guishing advantage between experiments 2 and 3. Suppose for the sake of contradiction
that there exists a PPT algorithm A, a function h ∈ H, and a polynomial p such that for
infinitely many n’s,

∣∣Adv(2)
A,h(n) − Adv

(3)
A,h(n)

∣∣ ≥ 1/p(n). We show that this implies
that there exists a PPT algorithm B so that for infinitely many n’s,∣∣Pr[B(A,u, h(A, e),y, eT y) = 1]− Pr[B(A,u, h(A, e),y, r) = 1]

∣∣ ≥ 1/p(n) (4)

The adversary B will simulate A, as follows. On input (A,u, h(A, e),y, c), algorithm
B will choose a random bit b ∈ {0, 1} and will start emulating A(PK, h(A, e)), where
PK = (A,u). The algorithm B will then sample x′ ← Ψγ and a uniformly random
bit b ← {0, 1} and feed A the ciphertext (y, r + x′ + b�q/2 (mod q)). Let b′ be the
output of A. If b = b′ then B outputs 1, and otherwise B outputs 0.

By definition

Pr[B(A,u, h(A, e),y, eT y) = 1] = Adv
(2)
A,h(n),

and
Pr[B(A,u, h(A, e),y, r) = 1] = Adv

(3)
A,h(n).
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This, together with the assumption that
∣∣Adv(2)

A,h(n) − Adv
(3)
A,h(n)

∣∣ ≥ 1/p(n), implies
that Equation (4) holds. Now, we use Goldreich-Levin theorem over the (large) field Zq

and H = {0, 1} ⊆ Zq (Theorem 1). By Theorem 1, there is an algorithm that, given
PK = (A,u), inverts h(A, e) with probability greater than

δ3

512 · n · q2 = qn · δ3 · q
512 · n · qn+3 > q · 2−mε

since qn+3 = 2mε

and 512 · n/δ3 · q < 1 for large enough n. This provides the desired
contradiction.

The ciphertext in experiment 3 contains no information about the message. Thus, the
adversary has no advantage in this experiment, i.e, Adv(3)

A,h(n) = 0. Putting together the
claims, we get that AdvA,h(n) ≤ negl(n). This concludes the proof.
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Abstract. We propose a semantically-secure public-key encryption
scheme whose security is polynomial-time equivalent to the hardness of
solving random instances of the subset sum problem. The subset sum as-
sumption required for the security of our scheme is weaker than that of
existing subset-sum based encryption schemes, namely the lattice-based
schemes of Ajtai and Dwork (STOC’97), Regev (STOC’03, STOC’05),
and Peikert (STOC’09). Additionally, our proof of security is simple and
direct. We also present a natural variant of our scheme that is secure
against key-leakage attacks, and an oblivious transfer protocol that is
secure against semi-honest adversaries.

1 Introduction

Since the early days of modern cryptography, the presumed intractability of the
subset sum problem has been considered an interesting alternative to hardness
assumptions based on factoring and the discrete logarithm problem. The appeal
of the subset sum problem stems from the fact that it is simple to describe,
and computing the subset sum function requires only a few addition operations.
Another attractive feature is that the subset sum problem seems to be rather
different in nature from number-theoretic problems. In fact, while there are
polynomial-time quantum algorithms that break virtually all number-theoretic
cryptographic assumptions [Sho97], there are currently no known quantum al-
gorithms that perform better than classical ones on the subset sum problem.

The subset sum problem, SS(n,M), is parameterized by two integers n and
M . An instance of SS(n,M) is created by picking a uniformly random vector
a ∈ Zn

M , a uniformly random vector s ∈ {0, 1}n, and outputting a together with
T = a · s mod M . The problem is to find s, given a and T . The hardness of
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breaking SS(n,M) depends on the ratio between n and logM , which is usually
referred to as the density of the subset sum instance. When n/logM is less
than 1/n or larger than n/log2 n, the problem can be solved in polynomial time
[LO85, Fri86, FP05, Lyu05, Sha08]. However, when the density is constant or
even as small as O(1/logn), there are currently no algorithms that require less
than 2Ω(n) time. It is also known that the subset sum problem can only get
harder as its density gets closer to one [IN96].

Starting with the Merkle-Hellman cryptosystem [MH78], there have been
many proposals for constructions of public-key encryption schemes that were
somewhat based on subset sum. Unfortunately, all of these proposals have subse-
quently been broken (see [Odl90] for a survey). While efforts to build subset-sum
based public-key encryption schemes were met with little success, Impagliazzo
and Naor were able to construct provably-secure primitives such as universal
one-way hash functions, pseudorandom generators and bit-commitment schemes,
based on the subset sum problem, that remain secure until this day [IN96]. The
main difference between the public-key constructions and the “minicrypt” con-
structions in [IN96] is that the latter could be proved secure based on random
instances of the standard subset sum problem, whereas the former modified the
subset sum instances in order to allow decryption. Unfortunately, these modifi-
cations always seemed to introduce fatal weaknesses.

A provably-secure cryptosystem based on subset sum was finally constructed
by Ajtai and Dwork [AD97], who showed that their scheme is as hard to break
as solving worst-case instances of a lattice problem called the “unique shortest
vector problem.” The reduction of subset sum to breaking their scheme is then
obtained via the classic reduction from random subset sum to the unique shortest
vector problem [LO85, Fri86]. While the Ajtai-Dwork and the subsequent lattice-
based cryptosystems [Reg03, Reg05, Pei09] are as hard to break as the average-
case subset sum problem, these schemes are based on subset sum in a somewhat
indirect way, and this causes their connection to the subset sum problem to not
be as tight as possible.

In this work, we present a cryptosystem whose security is equivalent to the
hardness of the SS(n, qn) problem, where q is a positive integer of magnitude
Õ(n). Compared to the lattice-based cryptosystems, the subset sum assumption
required for the security of our scheme is weaker, and the proof of security is
much simpler. We direct the reader to Section 1.2 for a more in-depth comparison
between our scheme and the lattice-based ones.

In addition to our semantically-securepublic-key encryption scheme, we present
a semi-honest oblivious transfer protocol based on the same hardness assumption.
We also show that a natural variant of our encryption scheme is resilient to key-
leakage attacks (as formalized by Akavia et al. [AGV09]), but under slightly
stronger assumptions than our basic cryptosystem.

1.1 Our Contributions and Techniques

Semantically-secure public-key encryption. Our main contribution is a se-
mantically secure public-key encryption scheme whose security is based directly
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on the hardness of the subset sum problem. The construction of our scheme is
similar in spirit to the cryptosystem of Alekhnovich based on the Learning Par-
ity with Noise (LPN) problem [Ale03], and that of Regev based on the Learning
With Errors (LWE) problem [Reg05]. Both of the aforementioned schemes are
built from the assumption that for a randomly chosen matrix A ∈ Zm×n

q , a
random vector s ∈ Zn

q , and some “small” noise vector c ∈ Zm
q , the distribution

(A,As + c) is computationally indistinguishable from the uniform distribution
over Zm×(n+1)

q . To construct our scheme, we show that the subset sum problem
can be made to look very similar to the LWE problem. Then the main ideas
(with a few technical differences) used in constructing cryptosystems based on
LWE [Reg05, GPV08, Pei09] can be transferred over to subset sum.

Consider instances of the subset sum problem SS(n, qm) where q is some small
integer. If a is a vector in Zn

qm and s is a vector in {0, 1}n, then a · s mod qm,
written in base q, is equal to As + c mod q, where A ∈ Zm×n

q is a matrix
whose i-th column corresponds to ai written in base q, and c is a vector in Zm

q

that corresponds to the carries when performing “grade-school” addition. For
example, let q = 10, m = n = 3, a = (738, 916, 375), and s = (0, 1, 1). Then

a · s mod 103 = 916 + 375 mod 103 = 291,

which can be written as addition in base q as follows:⎡⎣7 9 3
3 1 7
8 6 5

⎤⎦⎡⎣0
1
1

⎤⎦+

⎡⎣0
1
0

⎤⎦ =

⎡⎣2
9
1

⎤⎦
where all operations are performed over Zq.

The key observation is that the magnitude of the entries in the carries vector
[ 0 1 0 ]T is at most n − 1, and so if q , n, then As + c mod q ≈ As mod q.
In fact, the elements of the vector c are distributed normally around n/2 with
standard deviation

√
n. In the instantiation of our scheme described in Section 3,

we generate the elements in A from the range [− q−1
2 , q−1

2 ] and so the entries in
the carries vector are normally distributed around 0 with standard deviation

√
n.

Readers familiar with the cryptosystems based on LWE [Reg05, GPV08, Pei09]
should recognize the resemblance of the carry vector c to the noise vector in the
LWE-based schemes. The main difference is that in the latter the noise vector
is chosen independently at random, whereas in our scheme, the carries vector c
occurs “naturally” and is completely determined by the matrix A and the vector
s. The fact that the “noise” vector is not random is of no consequence to us,
since it was shown by Impagliazzo and Naor that distinguishing (a,a ·s mod qm)
from uniform is as hard as recovering s [IN96]. Thus the distribution (A,As +
c mod q), which is just the base q representation of the previous distribution, is
also computationally indistinguishable from uniform, based on the hardness of
subset sum. The following theorem summarizes our main result:

Theorem 1.1. For any integer q > 10n log2 n, there exists a semantically secure
cryptosystem encrypting k bits whose security is polynomial-time equivalent to
the hardness of solving the SS(n, qn+k) problem.



Public-Key Cryptographic Primitives Provably as Secure as Subset Sum 385

Leakage-resilient public-key encryption. We show that a natural variant of
our encryption scheme is resilient to any non-adaptive leakage of L(1−o(1)) bits
of its secret key, where L is the length of the secret key (see Appendix A.2 for
the formal definition of non-adaptive key-leakage attacks). In this paper we deal
with the non-adaptive setting of key leakage, and note that this notion of leakage
is still very meaningful as it captures many realistic attacks in which the leakage
does not depend on the parameters of the encryption scheme. For example,
it captures the cold boot attacks of Halderman et al. [HSH+08], in which the
leakage depends only on the properties of the hardware devices that are used for
storing the secret key. We note that although Naor and Segev [NS09] presented
a generic and rather simple construction that protects any public-key encryption
scheme from non-adaptive leakage attacks, we show that for our specific scheme
an even simpler modification suffices.

Oblivious transfer. We use our original encryption scheme to construct an
oblivious transfer (OT) protocol that provides security for the receiver against
a cheating sender and security for the sender against an honest-but-curious re-
ceiver. Our protocol is an instance of a natural construction used by Gertner
et al. [GKM+00], based on ideas of Even et al. [EGL82, EGL85], to show that
public-key encryption with a certain property implies two-message semi-honest
OT. The property is roughly that public keys can be sampled “separately of
private keys,” while preserving the semantic security of the encryption. Pseu-
dorandomness of subset sum implies that our encryption scheme satisfies this
property.

1.2 Comparisons with Lattice-Based Schemes

To the best of our knowledge, the only other cryptosystems based on subset sum
are those that are based on the worst-case hardness of the approximate unique
shortest vector problem (uSVPγ) [AD97, Reg03, Reg05, Pei09]. The cryptosys-
tems of Regev [Reg03] and Peikert [Pei09] are both based on the hardness of
uSVPn1.5 (the latter is based on uSVP via a reduction in [LM09]). What this
means is that an algorithm that breaks these cryptosystems can be used to find
the shortest vector in any lattice whose shortest vector is a factor of n1.5 shorter
than the next shortest vector that is not a multiple of it.

A reduction from the random subset sum problem to uSVPγ was given in
[LO85, Fri86]. The exact parameter γ depends on the density of the subset
sum instance. The smaller the density, the larger the γ can be, and the easier
the uSVPγ problem becomes. The reduction from an instance of SS(n,M) to
uSVPγ is as follows:

Given an instance of SS(n,M) consisting of a vector a ∈ Zn
M and an element

T ∈ ZM , we define the lattice L as

L = {x ∈ Zn+1 : [a|| − T ] · x mod M = 0}.

Notice that the vector x = [s||1] is in L for the s for which a · s mod M = T ,
so the �2 norm of the shortest vector is approximately

√
n. The next shortest
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non-parallel vector is the vector that meets the Minkowski bound of
√
n + 1 ·

det(L)
1

n+1 ≈
√
nM1/n, which is a factor M1/n larger than the shortest vector.

Therefore solving uSVPn1.5 allows us to solve instances of SS(n,M) where M ≈
n1.5n.

The cryptosystem that we construct in this paper is based on the hardness of
SS(n,M) where M ≈ nn. In order to have a lattice scheme based on the same
subset sum assumption, it would need to be based on uSVPn. The construction
of such a scheme is currently not known and would be considered a breakthrough.

We want to point out that we are not claiming that just because our scheme
is based on a weaker instance of subset sum, it is somehow more secure than
the lattice-based schemes. All we are claiming is that the connection of our
scheme to the subset sum problem is better. In terms of security, the lattice-based
schemes based on LWE [Reg05, Pei09] and our scheme are actually very similar
because the LWE and subset sum problems can both be viewed as average-
case instances of the “bounded distance decoding” problem, with essentially the
same parameters but different distributions. Unfortunately, we do not know of
any tight reduction between the two distributions, so there is no clear theoretical
connection between LWE and subset sum.

In practice, though, there may be some advantages of our scheme over the
lattice-based ones. The secret key in our scheme is an n-bit vector s ∈ {0, 1}n,
whereas the secret keys in lattice-based schemes are on the order of n logn bits.
Also, the public key in our scheme is a matrix A ∈ Zn×n

q , whereas lattice-based
schemes use an n×n log n matrix. The reason for the savings of a factor of logn
in the size of both the secret and public keys in our scheme has to do with the
fact that the distribution (A,As + c) is indistinguishable from random, where
s ∈ {0, 1}n, based on the subset sum assumption. But in order to get a proof
of security based on lattices, the vector s has to be chosen uniformly from Zn

q

(see [ACPS09] for a slight improvement), and is thus logn times longer. One can
thus view our proof of security based on subset sum as justification that having
s come from a smaller set and having the “noise” be a deterministic function of
A and s, is still secure.

1.3 Open Problems

Our construction of the subset sum cryptosystem involves transforming the sub-
set sum problem into something that very much resembles the LWE problem. It
would be interesting to see whether the same type of idea could be used to trans-
form other problems into LWE-type problems upon which semantically-secure
cryptosystems can be built.

Another open problem concerns weakening the computational assumption un-
derlying the multi-bit version of our scheme. While our one-bit cryptosystem is
based on the hardness of solving instances of SS(n, qn) for some q = Õ(n), when
simultaneously encrypting k bits using the same randomness our cryptosystem
becomes equivalent to the easier SS(n, qn+k) problem (clearly, it is possible to
encrypt k bits bit-by-bit, but this is less efficient). This is somewhat peculiar
since one can simultaneously encrypt polynomially-many bits using the LWE
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cryptosystem without making the underlying assumption stronger [PVW08],
while simultaneously encrypting Ω(n2) bits in our scheme is completely insecure
(since the SS(n, qn2

) problem can be solved in polynomial time [LO85, Fri86]).
We believe that this weakness in the subset sum construction is due to the fact
that the noise in the LWE schemes is generated independently, whereas in our
scheme, the “noise” is just the carry bits. It is an interesting open problem to
see whether one can modify our scheme so that its security does not depend on
the number of bits being simultaneously encrypted using the same randomness.

Another interesting open problem concerns security against leakage attacks.
First, we were not able to prove the security of our scheme against adaptive
key-leakage attacks, in which the leakage can be chosen as a function of the
public key as well. Although our scheme is somewhat similar to that of Akavia
et al. [AGV09], it seems that their approach for proving security against adaptive
attacks does not immediately apply to our setting. Second, our leakage-resilient
scheme relies on a slightly stronger assumption than our basic scheme, and it
will be interesting to minimize the required computational assumption.

Finally, we leave it as an open problem to construct a CCA-secure scheme in
the standard model based directly on subset sum. While there are CCA-secure
encryption schemes based on lattice problems (and thus on subset sum as well)
[PW08, Pei09], it would be interesting to build one directly based on subset sum
that will hopefully require weaker assumptions than the lattice based ones.

2 Preliminaries

2.1 The Subset Sum Problem

The subset sum problem with parameters n and qm, where n and m are integers
and q is a positive integer such that 2n < qm, is defined as follows: Given n
numbers a1, . . . , an ∈ Zqm and a target T ∈ Zqm , find a subset S ⊆ {1, . . . , n}
such that

∑
i∈S ai = T mod qm. This can be viewed as the problem of inverting

the function fa : {0, 1}n → Zqm defined as

fa(s1, . . . , sn) =
n∑

i=1

siai mod qm ,

where a = (a1, . . . , an) ∈ Zn
qm is its index (i.e., this is a collection of functions,

where a function is sampled by choosing its index a uniformly at random).
We denote by SS(n, qm) the subset sum problem with parameters n and

qm. Using the above notion, the hardness of the subset sum problem is the
assumption that {fa}a∈Zn

qm
is a collection of one-way functions. We now state

two properties of the subset sum problem that were proved by Impagliazzo and
Naor [IN96] and are used in analyzing the security of our constructions. The first
property is that subset sum instances with larger moduli are not harder than
subset sum instances with smaller moduli. The second property is that if the
subset sum is a one-way function, then it is also a pseudorandom generator. In
the following two statements, we fix n, m and q as above.
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Lemma 2.1 ([IN96]). For any integers i and j such that i < j, if qm+i > 2n,
then the hardness of SS(n, qm+j) implies the hardness of SS(n, qm+i).

Lemma 2.2 ([IN96]). The hardness of SS(n, qm) implies that the distributions
(a, fa(s)) and (a, t) are computationally indistinguishable, where a ∈ Zn

qm , s ∈
{0, 1}n, and t ∈ Zqm are chosen independently and uniformly at random.1

2.2 Notation

We represent vectors by bold-case letters and all vectors will be assumed to
be column vectors. Unless stated otherwise, all scalar and vector operations are
performed modulo q. For simplicity, we will assume that q is odd, but our results
follow for all q with minimal changes. We represent elements in Zq by integers in
the range [−(q − 1)/2, (q − 1)/2]. For an element e ∈ Zq, its length, denoted by
|e| is the absolute value of its representative in the range [−(q− 1)/2, (q− 1)/2].
For a vector e = (e1, . . . , em) ∈ Zm

q , we define ‖e‖∞ = max1≤i≤m |ei|.
We now present some notation that is convenient for describing the subset

sum function. For a matrix A ∈ Zm×n
q and a vector s ∈ {0, 1}n, we define A( s

as the vector tT = (t0, . . . , tm−1) such that |ti| ≤ (q − 1)/2 for every 1 ≤ i ≤ m,
and

m−1∑
i=0

tiq
i ≡

⎛⎝n−1∑
j=0

sj

m−1∑
i=0

Ai,jq
i

⎞⎠ mod qm .

In other words, we interpret the n columns of A as elements in Zqm represented
in base q, and sum all the elements in the columns j where sj = 1. The result is
an element in Zqm , which we write in base q using coefficients between −(q−1)/2
and (q − 1)/2. We then write the coefficients of the base q representation as an
m-dimensional vector t. It will sometimes be more convenient to consider the
subset sum of the numbers represented by the rows of A, and to this effect we
naturally define rT ( A =

(
AT ( r

)T .

3 The Encryption Scheme

In this section we present our main contribution: a public-key encryption scheme
that is based directly on the hardness of the subset sum problem. Given a security
parameter n, we set q(n) to be some number greater than 10n log2 n, let k ∈ N
be the number of bits we want to encrypt, and define the following encryption
scheme:

– Key generation: On input 1n sample A′ ∈ Zn×n
q and s1, . . . , sk ∈ {0, 1}n

independently and uniformly at random. For every 1 ≤ i ≤ k let ti = A′(si,
and let A = [A′||t1|| · · · ||tk]. Output pk = A and sk = (s1, . . . , sk).

1 Impagliazzo and Naor [IN96] only prove their result for q’s that are prime or a power
of 2, but their results extend to all q.
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– Encryption: On input a message z ∈ {0, 1}k, sample r ∈ {0, 1}n uniformly
at random, and output the ciphertext uT = rT ( A + ( q−1

2 )[0n||zT ].
– Decryption: On input a ciphertext uT = [vT ||w1|| · · · ||wk] where v ∈ Zn

q

and w1, . . . , wk ∈ Zq, for every 1 ≤ i ≤ k compute yi = vT si − wi. If
|yi| < q/4 then set zi = 0 and otherwise set zi = 1. Output zT = (z1, . . . , zk).

The intuition for the semantic security of the scheme is fairly simple. Because
the vectors ti are subset sums of the numbers represented by the columns of A′,
the public key A is computationally indistinguishable from random. Therefore,
to an observer, the vector rT (A, which is a subset sum of numbers represented
by the rows of A, is again computationally indistinguishable from uniform. The
formal proof is in Section 3.1.

The intuition for decryption is based on the fact that A′ ( si ≈ A′si and
rT ( A ≈ rT A. For simplicity, assume that A′ ( si = A′si and rT ( A = rT A.
Then it is not hard to see that

|vT si − wi| =
∣∣∣∣(rT A′)si −

(
rT (A′si) +

q − 1
2

zi

)∣∣∣∣ = q − 1
2

zi ,

and we recover zi. Because the subset sum function does not quite correspond
to a vector/matrix multiplication, decryption will recover q−1

2 zi + error. What
we will need to show is that this error term is small enough so that we can still
tell whether zi was 0 or 1. The proof is in Section 3.2.

3.1 Proof of Security

Our scheme enjoys a rather simple and direct proof of security. The proof consists
of two applications of the pseudorandomness of the subset sum function, which
by Lemma 2.2 is implied by the hardness of the subset sum problem. Informally,
the first application allows us to replace the values A′ ( s1, . . . ,A′ ( sk in the
public key with k vectors that are sampled independently and uniformly at
random. Then, the second application allows us to replace the value rT ( A in
the challenge ciphertext with an independently and uniformly chosen vector. In
this case, the challenge ciphertext is statistically independent of the encrypted
message and the security of the scheme follows. More formally, the following
theorem establishes the security of the scheme:

Theorem 3.1. Assuming the hardness of the SS(n, qn+k) problem, where n is
the security parameter and k is the plaintext length, the above public-key encryp-
tion scheme is semantically secure.

Proof. We show that for any two messages m0,m1 ∈ {0, 1}k, the ensembles
(pk, Epk(m0)) and (pk, Epk(m1)) are computationally indistinguishable. In fact,
we prove an even stronger statement, namely that (A, rT (A) is computationally
indistinguishable from (M,v), where M ∈ Zn×(n+k)

q and v ∈ Zn+k
q are sampled

independently and uniformly at random. This, in turn, implies that for every
b ∈ {0, 1}, the distribution (pk, Epk(mb)) is computationally indistinguishable



390 V. Lyubashevsky, A. Palacio, and G. Segev

from a distribution that perfectly hides the message mb. Therefore, any prob-
abilistic polynomial-time adversary attacking the scheme will have a negligible
cpa-advantage.

The hardness of the SS(n, qn) problem, Lemmas 2.1 and 2.2, and a stan-
dard hybrid argument imply that the distributions (A′,A′ ( s1, . . . ,A′ ( sk)
and (A′,b1, . . . ,bk), where b1, . . . ,bk ∈ Zn

q are sampled independently and
uniformly at random, are computationally indistinguishable. Letting M =
[A′||b1|| · · · ||bk], it then follows that the distributions (A, rT (A) and (M, rT (
M), are computationally indistinguishable. Now, the hardness of the SS(n, qn+k)
problem and Lemma 2.2 imply that the latter distribution is computationally
indistinguishable from (M,v), where v ∈ Zn+k

q is sampled uniformly at random,
independently of M. This concludes the proof of the theorem. ��

3.2 Proof of Correctness

We will use the following bound due to Hoeffding [Hoe63] throughout our proof.

Lemma 3.2 (Hoeffding Bound). Let X1, . . . , Xn be independent random
variables in the range [a, b] and let X = X1 + . . . + Xn. Then

Pr[|X − E[X ]| ≥ t] ≤ 2e−
(

2t2

n(a−b)2

)
.

The next lemma shows that the carries during the subset sum operation rT (A
are distributed with mean 0 and their absolute value is bounded (with high
probability) by

√
n logn. In addition, the carries are almost independent of each

other. The slight dependency comes from the fact that a carry element can cause
the following carry to increase by 1.

Lemma 3.3. For any n,m ∈ N and r ∈ {0, 1}n,

Pr
A $←Z

n×m
q

[
‖rT ( A − rT A‖∞ <

√
n logn

]
= 1 − n−ω(1) .

Furthermore, the vector rT ( A − rT A can be written as a sum of two vectors
x,y ∈ Zm

q where all the coordinates of x are independently distributed with
mean 0, while all the coordinates of y have absolute value at most 1 (but could
be dependent among themselves).

Proof. Computing rT ( A can be done via the following algorithm, where ai is
the i-th column of A:

c0 = 0
for i = 0 to m− 1

bi = (ci + rT ai) mod q

ci+1 =
⌈

ci+rT ai

q

⌋
output bT = (b0, . . . , bm−1)
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Notice that this algorithm is just performing addition in base q, where all the
coefficients are between −(q− 1)/2 and (q − 1)/2. The difference rT (A− rT A
is simply the “carries” ci. Note that the only dependency among the ci’s is that
ci+1 slightly depends on ci. We can rewrite the above algorithm by writing each
ci as xi + yi such that all the xi’s are independent among themselves, whereas
the yi’s could be dependent but are very small.

x0 = 0 ; y0 = 0
for i = 0 to m− 1

bi = (xi + yi + rT ai) mod q

xi+1 =
⌈

rT ai

q

⌋
yi+1 =

⌈
xi+yi+rT ai

q

⌋
−
⌈

rT ai

q

⌋
output bT = (b0, . . . , bm−1)

Observe that in the second algorithm, the xi’s are completely independent
among themselves. We now bound the absolute value of the xi’s. Each vector
ai consists of numbers uniformly distributed between −(q − 1)/2 and (q − 1)/2.
Applying the Hoeffding bound (Lemma 3.2), we obtain that

Pr[|rT ai| ≥ q
√
n logn] ≤ 2e−2 log2 n .

Therefore, with probability 1 − n−ω(1), |xi| ≤
√
n logn for all 0 ≤ i ≤ m − 1.

Also notice that by symmetry, E[xi] = 0. By induction, we will now show that
|yi| ≤ 1. This is true for y0, and assume it is true for yi. Then,

|yi+1| =
∣∣∣∣⌈xi + yi + rT ai

q

⌋
−
⌈
rT ai

q

⌋∣∣∣∣ ≤ ∣∣∣∣⌈xi + yi

q

⌋
+ 1
∣∣∣∣ ≤ 1 ,

where the last inequality follows because |xi| ≤
√
n logn < q/2− 1 and |yi| ≤ 1,

and so
⌈

xi+yi

q

⌋
= 0. ��

Lemma 3.4. For any r, s ∈ {0, 1}n,

Pr
A $←Z

n×n
q

[
‖(rT ( A)s − rT As‖∞ < n log2 n

]
= 1 − n−ω(1) .

Proof. Using Lemma 3.3, we can rewrite rT ( A as rT A + xT + yT where each
element of x is independently distributed around 0 with magnitude at most√
n logn, and each element of y has magnitude at most 1. Multiplying by s, we

obtain (rT ( A)s − rT As = xT s + yT s.
Because ‖y‖∞ ≤ 1, we have |yT s| ≤ n. By the Hoeffding bound (Lemma 3.2),

we obtain that
Pr[|xT s| ≥ n log2 n] ≤ 2e−

log2 n
2 ,

and the lemma is proved. ��
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Theorem 3.5. Decryption succeeds with probability 1 − n−ω(1).

Proof. The encryption of a message z is the vector uT = rT (A+( q−1
2 )(0n||zT ).

To decrypt bit i, we write uT = [vT ||w1|| . . . ||wk] and compute vT si − wi.
Observe that vT is equal to rT ( A′ + (0n−1||ν) and wi = rT ti + q−1

2 zi + η,
where ν, η are carries whose magnitudes are less than n (actually, we can show
that with high probability ν, η <

√
n logn, but the looser bound suffices here).

Therefore, if sn is the last element of si, then

vT si − wi = (rT ( A′ + (0n−1||ν))si −
(
rT ti +

q − 1
2

zi + η

)
= (rT ( A′)si + νsn −

(
rT (A′ ( si) +

q − 1
2

zi + η

)
.

We will now show that q−1
2 zi is the dominant term in the second equation. Thus,

if zi = 0, the result will be close to 0, and if zi = 1, the result will be close to
−(q − 1)/2. We will show this by bounding the magnitude of the other terms.

|(rT ( A′)si + νsn − rT (A′ ( si) − η|
≤
∣∣(rT ( A′)si − rT A′si − rT (A′ ( si) + rT A′si

∣∣+ |νsn| + |η|
≤
∣∣(rT ( A′)si − rT A′si

∣∣+ ∣∣rT (A′ ( si) − rT A′si

∣∣+ 2n

≤ n log2 n + n log2 n + 2n ,

where the last inequality follows from applying Lemma 3.4 twice to bound∣∣(rT ( A′)si − rT A′si

∣∣ and
∣∣rT (A′ ( si) − rT A′si

∣∣. So if zi = 0, we will have

|vT si − wi| ≤ 2n log2 n + 2n < q/4

with probability 1 − n−ω(1), and we will decrypt to 0. If zi = 1, we will decrypt
to 1 since

|vT si−wi| ≥ (q−1)/2−2n log2 n−2n > q/4 . ��

4 Security against Key-Leakage Attacks

In this section we prove that a natural variant of the scheme described in
Section 3 is resilient to any non-adaptive leakage of L(1 − o(1)) bits, where
L is the length of the secret key (see Appendix A.2 for the formal defini-
tion of non-adaptive key-leakage attacks). Given a security parameter n and
a leakage parameter λ = λ(n), set q = O

((
n + λ

log n

)
n log2 n

)
, T =

√
q, and

m ≥ (�n log q� + λ + ω logn) / logT . Consider the following encryption scheme:

– Key generation: On input 1n sample A′ ∈ Zn×m
q and s ∈ {−(T−1)/2, . . . ,

(T −1)/2}m uniformly and independently at random, and let A = [A′||A′s].
Output pk = A and sk = s.
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– Encryption: On input a bit b, sample r ∈ {0, 1}n uniformly at random,
and output the ciphertext uT = rT ( A + ( q−1

2 )[0m||b].
– Decryption: On input a ciphertext uT = [vT ||w] where v ∈ Zm

q and w ∈
Zq, compute y = vT s − w. If |y| < q/4 then output 0. Otherwise, output 1.

The main idea underlying the scheme is that the min-entropy of the secret key
is m logT ≥ �n log q� + λ + ω logn, and thus even given any leakage of λ bits
it still has average min-entropy at least �n log q� + ω logn. Since the leakage is
independent of the public key, we can apply the leftover hash lemma and argue
that A = [A′||A′s] is statistically close to uniform, even given the leakage.

We note that in this scheme, unlike in the scheme presented in Section 3, we
use matrix-vector multiplication instead of the subset sum operation in forming
the public key. The proof of correctness in this case is similar to that presented
in Section 3. Specifically, a generalization of Lemma 3.4 shows that for every
r ∈ {0, 1}n and s ∈ {−(T − 1)/2, . . . , (T − 1)/2}m, with overwhelming prob-
ability over the choice of A $← Zn×m

q it holds that ‖(rT ( A)s − rT As‖∞ <√
Tmn log2 n+Tm. As in the proof of Theorem 3.5, this implies that vT s−w =

γ + q−1
2 z, where |γ| ≤

√
Tmn log2 n + (T + 2)m. Therefore, we need to set q

to be an integer such that q/4 >
√
Tmn log2 n + (T + 2)m. By setting roughly

q =
(
n + λ

log n

)
n log2 n (ignoring a small leading constant) and T =

√
q, we can

base the security of the scheme on the hardness of the SS(n, qm) problem, where

qm = q
n log q+λ+ω log n

log T = q2(n+ λ+ω log n
log q ) =

((
n +

λ

logn

)
n log2 n

)2n

· 4λ+ω log n .

The following theorem establishes the security of the scheme:

Theorem 4.1. Assuming the hardness of the SS(n, qm+1) problem for q = q(n)
and m = m(n) as above, the scheme is semantically secure against non-adaptive
λ(n)-key-leakage attacks, where n is the security parameter.

Proof. We show that for any efficiently computable leakage function f map-
ping secret keys into {0, 1}λ, the ensembles (pk, Epk(0), f(sk)) and (pk, Epk(1),
f(sk)) are computationally indistinguishable. In fact, we prove a stronger state-
ment, namely that (A, rT ( A, f(s)) is computationally indistinguishable from
(M,v, f(s)), where M ∈ Zn×(m+1)

q , v ∈ Zm+1
q are sampled independently, uni-

formly at random.
Lemma A.1 guarantees that the average min-entropy of s given f(s) is at least

m logT − λ ≥ n log q + ω logn. The leftover hash lemma (when adapted to the
notion of average min-entropy – see Lemma A.3) then implies that the statis-
tical distance between the distributions (A′,A′s, f(s)) and (A′, t, f(s)), where
t ∈ Zn

q is sampled uniformly at random, is negligible in n. Letting M = [A′||t]
and noting that applying a deterministic function cannot increase the statistical
distance between distributions, it follows that the statistical distance between
(A, rT ( A, f(s)) and (M, rT ( M, f(s)), where M ∈ Zn×(m+1)

q is sampled uni-
formly at random, is negligible. Now, the hardness of the SS(n, qm+1) problem
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implies that the latter distribution is computationally indistinguishable from
(M,v, f(s)), where v ∈ Zm+1

q is sampled uniformly at random, independently
of M. This concludes the proof of the theorem. ��

5 Oblivious Transfer Protocol

In this section we present an oblivious transfer (OT) protocol based on sub-
set sum that provides security for the receiver against a cheating sender, and
security for the sender against an honest-but-curious receiver. (See Appendix
A.3 for the formal definition of OT.) Our protocol is an instance of a con-
struction proposed by Gertner et al. [GKM+00], based on protocols by Even et
al. [EGL82, EGL85], to show that a special property of public-key encryption
is sufficient for the construction of two-message semi-honest OT. Informally, the
property is that it is possible to efficiently sample a string pk with a distribution
indistinguishable from that of a properly generated public key, while preserv-
ing the semantic security of the encryption Epk. Our cryptosystem satisfies this
property, by pseudorandomness of subset sum. For the sake of self-containment,
however, we provide direct proofs of our OT protocol’s correctness and security.

5.1 OT Based on Subset Sum

Our oblivious transfer protocol is a simple application of our encryption scheme.
We denote by G, E and D, respectively, the key-generation, encryption and de-
cryption algorithms of the public-key encryption scheme described in Section 3.
The receiver with inputs 1n, b first sends a properly generated public key pkb

and a uniformly random fake public key pk1−b ∈ Zn×(n+k)
q . The sender with

inputs 1n, z0, z1 uses each key pki to encrypt its input zi and replies with the
ciphertexts uT

0 ,uT
1 . The receiver can then retrieve zb by decrypting uT

b , using
the secret key corresponding to pkb. Details follow.

Let n, k ∈ N, b ∈ {0, 1}, and z0, z1 ∈ {0, 1}k

Receiver R(1n, b): (pkb, skb)
$← G(1n) ; pk1−b

$← Zn×(n+k)
q ; Send pk0, pk1

Sender S(1n, z0, z1): uT
0 ← Epk0(z0) ; uT

1 ← Epk1(z1) ; Send uT
0 ,uT

1

Receiver R: zb ← Dskb
(uT

b ) ; Return zb

5.2 Proofs of Correctness and Security

We now show that correctness follows from correctness of the cryptosystem.

Theorem 5.1. If the sender and receiver both follow the protocol, then the for-
mer outputs nothing and the latter outputs zb with probability 1 − n−ω(1).

Proof. Since pkb is a properly generated public key corresponding to secret key
skb, uT

b is a valid encryption of message zb under pkb, and the receiver computes
the decryption of uT

b using skb, the proof follows from Theorem 3.5. ��
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Security for the receiver is proved based on the pseudorandomness of subset sum.
A properly generated public key is indistinguishable from a uniformly random
element in Zn×(n+k)

q . Therefore, for any input bit, the receiver’s message consists
of two elements from computationally indistinguishable distributions. It follows
that the distribution of the receiver’s message when the input is 0 is computa-
tionally indistinguishable from the distribution when the input is 1. The precise
statement of this result is the following.

Theorem 5.2. Assuming the hardness of the SS(n, qn) problem, where n is the
security parameter, the above OT protocol is secure for the receiver.

Proof. Let R(1n, b) denote the message sent by the honest receiver with inputs
1n, b. We show that the ensembles R(1n, 0) and R(1n, 1) are computationally
indistinguishable.

As in the proof of Theorem 3.1, the hardness of the SS(n, qn) problem implies
that the distributions pk0 and pk1 are computationally indistinguishable. This
implies that ensembles R(1n, 0) and R(1n, 1) are indistinguishable as well. ��
The protocol is not secure against malicious receivers. Indeed, a malicious re-
ceiver can properly generate two key pairs pk0, sk0 and pk1, sk1, and then use the
secret keys to decrypt both ciphertexts uT

0 ,uT
1 . The protocol is, however, secure

for the sender against honest-but-curious receivers, as we now show.

Theorem 5.3. Assuming the hardness of the SS(n, qn+k) problem, where n is
the security parameter and k is the length of the sender’s input messages, the
above OT protocol is secure for the sender against an honest-but-curious receiver.

Proof. Let R(1n, b) denote the message sent by the honest receiver with inputs
1n, b, and S(1n, z0, z1, R(1n, b)) denote the reply of the honest sender with in-
puts 1n, z0, z1. We show that the ensembles (S(1n, z0, z1, R(1n, 0)), R(1n, 0)) and
(S(1n, z0, 0k, R(1n, 0)), R(1n, 0)) are computationally indistinguishable, and the
ensembles (S(1n, z0, z1, R(1n, 1)), R(1n, 1)) and (S(1n, 0k, z1, R(1n, 1)), R(1n, 1))
are computationally indistinguishable.

In the proof of Theorem 3.1, we showed that for any m0,m1 ∈ {0, 1}k the en-
sembles (pk, Epk(m0)) and (pk, Epk(m1)) are computationally indistinguishable.
This is true when pk is a properly generated public key and also when pk is a
random element in Zn×(n+k)

q . Therefore, the ensembles (pk1−b, Epk1−b
(z1−b)) and

(pk1−b, Epk1−b
(0k)) are computationally indistinguishable. Hence for b ∈ {0, 1}

the ensembles (S(1n, zb, z1−b, R(1n, b)), R(1n, b)) and (S(1n, zb, 0k, R(1n, b)),
R(1n, b)) are computationally indistinguishable. This completes the proof. ��
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A Cryptographic Definitions

Do to space constraints, the well-known definition of semantically-secure public-
key encryption is presented in the full version of our paper [LPS09].

A.1 Randomness Extraction

We say that two variables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variable X is H∞ (X) = − log(maxx Pr [X = x]).
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Dodis et al. [DORS08] formalized the notion of average min-entropy that
captures the remaining unpredictability of a random variable X conditioned on
the value of a random variable Y , formally defined as follows:

H̃∞ (X |Y ) = − log
(
Ey←Y

[
2−H∞(X|Y =y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guess-
ing X , given knowledge of Y . The following bound on average min-entropy was
proved in [DORS08]:

Lemma A.1 ([DORS08]). If Y has 2r possible values and Z is any random
variable, then

H̃∞ (X |(Y, Z)) ≥ H∞ (X |Z) − r .

A main tool in our constructions in this paper is a strong randomness extractor.
The following definition naturally generalizes the standard definition of a strong
extractor to the setting of average min-entropy:

Definition A.2 ([DORS08]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
an average-case (k, ε)-strong extractor if for all random variables X and I such
that X ∈ {0, 1}n and H̃∞ (X |I) ≥ k it holds that

SD ((Ext(X,S), S, I), (Um, S, I)) ≤ ε ,

where S is uniform over {0, 1}d.

Dodis et al. proved the following lemma stating that any strong extractor is in
fact also an average-case strong extractor:

Lemma A.3 ([DORS08]). For any δ > 0, if Ext is a (worst-case) (m −
log(1/δ), ε)-strong extractor, then Ext is also an average-case (m, ε + δ)-strong
extractor.

A.2 Key-Leakage Attacks

We follow the framework introduced by Akavia et al. [AGV09] and recall their
notion of a key-leakage attack. Informally, an encryption scheme is secure against
key-leakage attacks if it is semantically secure even when the adversary obtains
sensitive leakage information. This is modeled by allowing the adversary to sub-
mit any function f and receive f(sk), where sk is the secret key, as long as the
output length of f is bounded by a predetermined parameter λ.

Akavia et al. defined two notions of key-leakage attacks: adaptive attacks and
non-adaptive attacks. In an adaptive key-leakage attack, the adversary is allowed
to choose the leakage function after seeing the public key, and in a non-adaptive
key-leakage attack the adversary has to choose the leakage function in advance.
In this paper we deal with the non-adaptive setting, and note that this notion
of leakage is still very meaningful as it captures many realistic attacks in which
the leakage does not depend on the parameters of the encryption scheme. For
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example, it captures the cold boot attacks of Halderman et al. [HSH+08], in
which the leakage depends only on the properties of the hardware devices that
are used for storing the secret key.

Formally, for a public-key encryption scheme (G, E ,D) we denote by skn and
pkn the sets of secret keys and public keys that are produced by G(1n). That is,
G(1n) : {0, 1}∗ → skn × pkn for every n ∈ N. The following defines the notion of
a non-adaptive key-leakage attack:

Definition A.4 (non-adaptive key-leakage attacks). A public-key encryp-
tion scheme (G, E ,D) is semantically secure against non-adaptive λ(n)-key-
leakage attacks if for any collection F =

{
fn : skn → {0, 1}λ(n)

}
n∈N

of efficiently
computable functions and any two messages m0 and m1, the distributions (pk,
Epk(m0), fn(sk)) and (pk, Epk(m1), fn(sk)) are computationally indistinguishable,
where (sk, pk) $← G(1n).

A.3 Oblivious Transfer

Oblivious transfer is a cryptographic primitive, introduced by Rabin [Rab81],
which has been shown to be sufficiently strong to enable any multiparty compu-
tation [Yao86, GMW87, Kil88]. There are several equivalent formulations of OT
in the literature. We use the version of Even, et al. [EGL85] known as 1-out-of-2
oblivious transfer, and refer to it as simply OT. Crépeau [Cré87] showed that
this variant is equivalent to the original definition of oblivious transfer.

A 1-out-of-2 oblivious transfer is a two-party protocol in which a sender has
two secret strings z0, z1 and a receiver has a secret bit b. At the end of the
interaction, the receiver learns zb but has no information about z1−b, and the
sender learns nothing about b. General OT guarantees security even in the face
of cheating parties who deviate from the prescribed protocol. Honest OT, on the
other hand, guarantees security only against honest-but-curious parties. These
are parties that follow the protocol, but keep a record of all intermediate results
and may perform any computation to extract additional information from this
record, once the protocol ends. Any honest OT protocol can be transformed
into a general OT protocol, using either black-box techniques [Hai08], or us-
ing zero-knowledge proofs to force parties to behave in an honest-but-curious
manner [Gol04]. The formal definition of OT follows.

Definition A.5. Oblivious Transfer (OT) is a two-party protocol involving
a sender S with inputs 1n and z0, z1 ∈ {0, 1}k, where k is a constant, and
a receiver R with inputs 1n and b ∈ {0, 1}. S and R are polynomial-time
randomized algorithms such that if both follow the protocol, then the former
outputs nothing and the latter outputs zb (with overwhelming probability). We
consider the following security requirements:

Security for the receiver. Let R(1n, b) denote the message sent by the honest
receiver with inputs 1n, b. Then the ensembles {R(1n, 0)}n∈N and {R(1n, 1)}n∈N

are computationally indistinguishable.
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Security for the sender. Let S(1n, z0, z1,m) denote the message sent by the
honest sender with inputs 1n, z0, z1 when the (possibly cheating, polynomial time)
receiver’s message is m. Then for every z0, z1 ∈ {0, 1}k and every polynomial-
length message m ∈ {0, 1}∗, either the ensembles {S(1n, z0, z1,m),m}n∈N

and {S(1n, z0, 0k,m),m}n∈N or the ensembles {S(1n, z0, z1,m),m}n∈N and
{S(1n, 0k, z1,m),m}n∈N are computationally indistinguishable.

Security against honest-but-curious (a.k.a. “semi-honest”) receivers relaxes the
second condition above to consider only a receiver that faithfully follows the
protocol, but keeps a record of all intermediate results and may perform any
computation, after the protocol is completed, to extract additional information
from this record.
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Abstract. We study rationality in protocol design for the full-
information model, a model characterized by computationally un-
bounded adversaries, no private communication, and no simultaneity
within rounds. Assuming that players derive some utility from the out-
comes of an interaction, we wish to design protocols that are faithful:
following the protocol should be an optimal strategy for every player, for
various definitions of “optimal” and under various assumptions about
the behavior of others and the presence, size, and incentives of coali-
tions. We first focus on leader election for players who only care about
whether or not they are elected. We seek protocols that are both faithful
and resilient, and for some notions of faithfulness we provide protocols,
whereas for others we prove impossibility results. We then proceed to
random sampling, in which the aim is for the players to jointly sample
from a set of m items with a distribution that is a function of players’
preferences over them. We construct protocols for m ≥ 3 that are faithful
and resilient when players are single-minded. We also show that there
are no such protocols for 2 items or for complex preferences.

1 Introduction

The full-information model of Ben-Or and Linial [8] is one of the classically-
studied settings for protocol design. In this model there are no computational
limits on the adversary, there is no private communication, and there is no
guarantee of simultaneity within rounds of a protocol. Three famous problems
are collective coin-flipping, leader election, and random sampling. In the first,
players jointly flip a coin; in the second, they jointly select a random player; and
in the third, they jointly select a random element from some universe of m items.
In general, the goal is to design protocols that are resilient: the outcome should
be random even in the presence of an adversary who corrupts and coordinates
the behavior of a fraction of the players.

In this paper we explore the role of preferences in the design of such protocols.
While preferences are not explicitly considered in the well-studied formulations
of the problems, they are implicitly present. For example, leader election has a
fairness criterion, which requires each player to be elected with roughly equal
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probability (presumably because everybody wants to be the leader). A leader
election protocol is resilient if an adversary can not force the elected leader to be
a member of his coalition (or at least will fail to do so with constant probability).
Again, the adversary wants a coalition-member to be elected. For collective coin-
flipping and random sampling, resilience is also measured as a bound on the
probability that an adversary succeeds at something. It is implicitly assumed
that the adversary wants to do this, and that the honest (non-adversarial) players
do not wish him to achieve his goal.

The study of preferences in the design of protocols is primarily the domain
of mechanism design. In mechanism design a planner wishes to implement some
function of players’ private information. His goal is to design a mechanism and
provide incentives for the players so that their optimal strategy is to truthfully
reveal their private information, and more generally to adhere to the mechanism.
The optimality of players’ strategies is measured via some solution concept:
following the mechanism should be in some equilibrium, most commonly Nash,
ex post Nash, or dominant strategy. In this paper we take a similar approach –
we define new solution concepts appropriate for the full-information model, and
seek protocols that are faithful : following them is optimal for players with respect
to these solution concepts (in addition to the usual resilience guarantees).

For any problem of protocol design, making the structure of preferences ex-
plicit has two potential benefits, both of which we achieve in this paper. First,
it can result in better protocols – protocols are arguably of little use if players
have no incentives to follow them. If one can obtain faithful protocols without
harming the original guarantees of the protocol, then one has only gained. Sec-
ond, it may be possible to sidestep some impossibility results of the original
problem, since often these impossibility results are based on arbitrary play by
the adversary. If players do not play arbitrarily but rather obey some preference
structure, then many of these results no longer hold.

The model. In the full-information model all communication is by broadcast. In
each round, some of the players send a message, which may depend on messages
sent in previous rounds. The main difficulty is that adversarial players are allowed
to “rush” – to wait until all messages have been sent within a round, and only
then to send their own messages.

This paper. We are largely motivated by recent work in rational cryptography, in
which the aim is to design cryptographic protocols that participants want to fol-
low. Two of the main difficulties encountered when attempting a game theoretic
analysis of cryptographic protocols are computational limits and potentially ad-
versarial timing. In this paper we focus solely on the latter issue by considering
a model in which (adversarial) players may be computationally unbounded, and
the guaranteed security (i.e. resilience) is information-theoretic. We highlight
the various challenges and subtleties caused by a combination of rational and
adversarial players, particularly in the presence of adversarial timing. We also
draw a possibility-impossibility border for various problems and requirements in
this setting. Finally, we believe that this paper is an illuminating stepping-stone
towards a game theoretic analysis of more general cryptographic protocols.
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1.1 Our Results and Organization

Definitions (Section 2). The initial difficulty encountered when considering pref-
erences in the full-information model is to precisely formulate a notion of equi-
librium. The first notion to consider is Nash equilibrium (NE), in which each
player’s strategy must be expected utility maximizing assuming others also fol-
low their Nash strategies. If the protocol is such that only one player sends a
message in each round, then this suffices. One such protocol is Baton Passing
[32], a protocol that is resilient and in fact satisfies our weaker solution concept1.
However, state-of-the-art protocols are often round-efficient, and allow multiple
players to broadcast within a round. Because of the lack of synchrony within
rounds, however, NE does not suffice. In the Lightest Bin protocol [14], for ex-
ample, a player may increase his chance of winning from 1/n (where n is the
number of players) to a constant by deviating. To deal with asynchrony, we will
require that for any ordering of the players within each round, the protocol is in
a NE. In Section 2 we formalize this and other notions of what it means to be
faithful and faithful in the presence of adversarial players.

Impossibility with complex preferences (Section 3). In Section 3 we encounter our
first impossibility result. Theorem 1 states that no random selection protocol can
satisfy even our weakest solution concept if players have a full preference order
over the outcomes of the protocol. One implication of this impossibility result is
that collective coin-flipping is impossible with players who have some preference
about the outcome. For leader election and random sampling, this result forces
us to concentrate on more restricted preferences for players. For the former, we
assume that players care only about whether or not they are elected, and are
indifferent otherwise. For the latter, we assume players are single-minded: each
prefers one of the items, and is indifferent about the others.

Faithfulness with resilience (Section 4.2). The standard aim of selection pro-
tocols in the full-information model is resilience: if an adversary corrupts and
coordinates the actions of a fraction of the players, he still fails to force his desired
outcome with non-negligible probability. In Section 4.2 we construct optimal pro-
tocols that both satisfy a notion of equilibrium and are resilient. Players wish to
faithfully adhere to the protocol if the others also do, and there is a resilience
guarantee in the presence of an adversary.

Faithfulness in the face of an adversary (Section 4.3). In Section 4.3 we consider
the problem of constructing leader election protocols that are in equilibrium even
when not all others follow the protocol. We show that it is impossible to construct
such protocols in the presence of a malicious adversary, even if the adversary has
his own objective of maximizing the probability that a coalition-member wins.
However, if the adversary maximizes this probability, but also only deviates from
the protocol if he strictly gains from doing so (i.e. if deviating is costly), then
we do design a resilient protocol.
1 More specifically, it is in a full-information ex post NE – see Definition 5. It is not,

however, in a full-information dominant strategy equilibrium (Definition 3).
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Resilience to rational coalitions (Section 4.4). A different form of resilience
against adversarial play is when there is no controlling adversary, but instead
players may form “rational coalitions” to benefit all members. In Section 4.4 we
give an impossibility result for one notion of a “rational coalition”, but for a
weaker notion provide a protocol that is resilient against all such coalitions of
size at most n− 2.2

Random sampling (Section 5). Our final set of results concerns random sampling.
Each player has some preferences over a universe of m items, and the goal is to
design a protocol in which an item is sampled with a probability distribution that
is a function of those preferences. We design protocols that are simultaneously
in a full-information ex post Nash equilibrium (in which truthful revelation of
one’s preferences is optimal) and resilient against adversarial coalitions.

1.2 Related Work

This paper draws from three different literatures – protocol design in cryptogra-
phy and distributed computing, and algorithmic mechanism design. The exten-
sive literature on collective coin-flipping, random sampling, and leader election
in the full-information model includes [32,16,27,3,11,12,17,31,14,13,33,6]. The
paper most closely related to ours is that of Antonakopoulos [6], who also con-
siders 1-round protocols in which individual players have no incentive to deviate.
However, his protocols all attain either faithfulness or resilience, but never both.
Similarly, Ben-Or and Linial [8] have a 2-round protocol that is faithful but not
resilient to larger coalitions. The paper most closely related to ours from the
mechanism design literature is that of Altman and Tennenholtz [5], who con-
struct 1-round protocols that are faithful (but also not resilient). Their goal is
to attain arbitrary distributions over the players. Also related is the literature
on ranking games [10], in which players have preferences about their rankings in
some game.

While we believe that we are the first to study notions of rationality tailored
specifically for the full-information model, such notions have been studied in
other settings for distributed computing. For example, Monderer and Tennen-
holtz [25] consider an implementation problem in a distributed network. Shneid-
man and Parkes [34] introduce the idea that protocols should be faithful. Addi-
tionally, the field of Distributed Algorithmic Mechanism Design (DAMD) focuses
on implementing mechanisms for various problems in a distributed setting. In
a general “mission statement” for DAMD, Feigenbaum and Shenker [15] argue
that it would be desirable to incorporate various fault models into the DAMD
framework. Also, Halpern [21,22] has expressed the need to incorporate faulty or
malicious behavior into distributed settings with rational players. Some papers
that address this issue are Aiyer et al. [2], Abraham et al. [1], and Gradwohl [18].

Finally, as mentioned in the introduction, this work is closely related to the
growing literature on rational cryptography (see, for example, Katz [24] and

2 Compare this with the fact that there are no protocols that are resilient against an
adversary of size n/2 [32].
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the references therein). Many works in this literature study rational behavior in
a cryptographic setting, for which the full-information model is a special case.
However, due to computational issues, the definitions in the general setting are
messier (and often also weaker). We note that the way we model rushing is
closely related to an idea of Ong et al. [29], who adopt the methods of Kalai [23]
to a protocol design setting. The idea of considering rational coalitions was also
explored in this context by Ong et al. [28].

Our notions of stability of coalitions are related to similar notions in the game
theory literature, such as the strong Nash equilibrium of Aumann [7] and the
coalition-proof equilibrium notions of Bernheim et al. [9], Moreno and Wooders
[26], and Abraham et al. [1].

2 Protocols and Games

For any vector X = (X1, . . . , Xn) and S ⊂ [n], we denote by XS = {Xi}i∈S and
by X−S = {Xi}i�∈S.

2.1 Resilient Protocols

We are interested in protocols involving many players and the incentives of
players in following these protocols. Thus, we will assume that players have
preferences over possible outcomes, as well as other private information. As in
the game theory literature, all this information is collectively called a player’s
type. Player i’s type is denoted by ti, and the vector t = (t1, . . . , tn) is called
the type profile. The space of possible types of player i is Ti.

Definition 1 (selection protocol). An n-player selection protocol P is spec-
ified by a function f , a natural number q, and, for each of the n players, a set
of q randomized functions

{
S1

i , . . . , S
q
i

}
i∈[n]. The protocol proceeds as follows:

– At round j, the i’th player broadcasts a random message M j
i obtained by

applying the randomized function Sj
i to all previous messages sent, namely

{M l
k : k ∈ [n], l < j}, as well as player i’s type ti. The randomness of the

function comes from the player’s independent coins.
– After q rounds, the players output f({M l

k : k ∈ [n], l ∈ [q]}) which is an
element of [m] in an m-item random sampling protocol and an element of
[n] in a leader election protocol. If all players follow the protocol then the
output is a uniformly random element (unless stated otherwise).

In any round j, a player i’s legal messages are those in
⋃

ti∈Ti
supp(Sj

i (ti, {M l
k :

k ∈ [n], l < j}))3. We assume that if a player noticeably deviates from the pro-
tocol (by broadcasting a message that is not legal), then his message is changed
to some default legal value.

3 Note that a player’s legal actions include messages in the support of Sj
i for all types,

not just the true one. This is so because the other players do not know i’s true type.
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Players may not legally base their messages in round j on the messages of other
players in round j. However, since we can not guarantee simultaneity within a
round, we allow the dishonest players to rush: they may base their messages on
the messages of other players from the same round (but not from later rounds).
A leader election protocol is ε-resilient to coalitions of size t if the following
holds: If at most t players are playing a coordinated rushing strategy, then the
probability that the elected leader is a cheating player is at most 1 − ε. Often
we will implicitly be referring to a family of protocols, one for each value of n.
In this case, we say a protocol is resilient if there exists some ε > 0 such that all
protocols in the family with enough players are ε-resilient.

A protocol is oblivious if players’ messages are based only on their internal
coin tosses. A protocol is explicit if players’ messages and the function f are com-
putable in probabilistic polynomial time (in the number of players and log(m)).

2.2 Extensive-Form Games and Protocols

An n-player extensive-form game is specified by a game tree in which every
node is owned by a player and outgoing edges are labelled by actions. The game
begins at the root node and proceeds down the tree – at every node following
the edge labelled by the action played by the node’s owner. Payoffs for players
are specified at the leaves.

Definition 2 (Nash equilibrium (NE)). A Nash equilibrium (NE) in an
extensive-form game is a mixed strategy for every player at every node that he
owns, such that: if all players play their NE strategy, then no player obtains a
higher expected payoff by deviating at any of his nodes.

We note that in the games we consider, the NE will be completely mixed strate-
gies (i.e. players will play every action with positive probability). Such Nash
equilibria are in fact subgame perfect (see [30]).

Consider a selection protocol, where each player i derives some utility ui :
Ti × [m] #→ R from outputs of the protocol. ui is such that for o �= o′ ∈ [m], we
have that ui(ti, o) > ui(ti, o′) if and only if player i of type ti strictly prefers o
to o′. Then any protocol in which only one player sends a message in each round
can be viewed as an extensive-form game4: if after j − 1 rounds and messages
M1, . . . ,Mj−1 player i plays in round j, i owns the node at level j in the game
tree reached by the game path M1, . . . ,Mj−1. Player i’s payoff from an instance
of play resulting in o is ui(ti, o). Such a selection protocol is in a NE if, in the
associated game, it is a NE for every player i to play according to strategy Sj

i if
any of his nodes at level j is reached (we say that i follows strategy Si).

2.3 Rationality in Selection Protocols – Definitions

We now define notions of what it means for a protocol to be faithful, i.e. in
which it is in players’ best interests to follow the protocol specification. Because
4 While it is possible to model simultaneous play as an extensive-form game with

imperfect information, the ability to rush and the lack of synchrony are more difficult
to incorporate into this framework.
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there is no synchrony within rounds of a selection protocol, we may view the
possibility of rushing as a strategy for players. That is, a player may choose to
wait until others have played, and only then submit his message. Thus, NE does
not suffice as a solution concept for such games. However, if only one player plays
in each round, then this does not matter (since rushing is only allowed within
rounds), and so for such protocols NE is a reasonable solution concept. For
general protocols, we would like the protocol to be optimal for players regardless
of the order of play within a round. This motivates the following.

For any q-round protocol P , we can construct protocol P ′ with at most qn
rounds, and such that only one player sends a message in each round. We say that
P ′ is a linearization of P , and it is constructed as follows: Let π : [n]× [q] #→ [nq]
be some bijective map. Then P ′ is such that in round �, if (i, k) = π−1(�) then
player i sends a message sampled from Sk

i . This is well-defined for oblivious
protocols, and essentially means players play in an arbitrary order, but only
one player per round. For non-oblivious protocols, we require π to be round-
respecting: π(i, k) = � if and only if for all j ∈ [n] and k′ < k it holds that
π(j, k′) < �. That is, here the arbitrary ordering is only within rounds.

We note that the idea of considering all linearizations appears also in Ong
et al. [29].

Our first solution concept for selection protocols in the full-information model
is a full-information dominant strategy equilibrium, which essentially means that
for any player i, regardless of the messages sent by others in all rounds, i can
never strictly increase his utility by deviating from the protocol. The following
generalizes the definition of [5] to multi-round protocols.

Definition 3 (full-information dominant strategy equilibrium). An
oblivious selection protocol P is in a dominant strategy equilibrium if for all
type profiles, all linearizations of P are in a NE.

An alternative, more direct but equivalent formulation is the following:

Definition 4 (full-information dominant strategy equilibrium – alter-
native formulation). An oblivious n-player, q-round, m-item selection pro-
tocol is in a full-information dominant strategy equilibrium if for all i ∈ [n]
and messages M−i = {M l

k : k ∈ [n] \ {i}, l ∈ [q]} sent by all other play-
ers in all rounds, it holds that ui (ti, f(M−i,Mi)) = ui (ti, f(M−i,M

′
i)), where

Mi,M
′
i ∈ supp(S1

i ) × . . . × supp(Sq
i ).

Remark 1. The reason we have equality above, as opposed to an inequality, is
that the actions in the support of Sj

i are all dominant. That is, all these actions
are best-responses, even conditioned on the actions of others. It can thus not be
that one such action is better than the other, for then the other would not be
dominant.

The definition of a full-information dominant strategy equilibrium is rather
strong, but still achievable (for example, Theorems 2, 3, and 4 below). We note
that our impossibility result, Theorem 1, applies even to our weaker solution
concepts.



408 R. Gradwohl

In a full-information ex post NE the requirement is a bit relaxed: a player i can
not strictly increase his expected utility in any round j by deviating, regardless
of the messages of players in all rounds up to and including round j. That is,
regardless of the order of play within the current round, i has no incentive to
deviate (on expectation over play in future rounds). The following definition is
new:

Definition 5 (full-information ex post Nash equilibrium). A selection
protocol P is in an ex post NE if for all type profiles, all round-respecting lin-
earizations of P are in a NE.

An alternative, more direct but equivalent formulation for this solution concept
is a bit more involved, and appears in the full version of this paper [19].

2.4 Rationality in the Face of an Adversary – Definitions

A protocol that satisfies the definitions of Section 2.3 is an optimal strategy for
players assuming all others also follow the protocol. If some of the players are
adversarial, however, then this may not hold. In this case, we actually want a
stronger guarantee. To this end, we need the following definition, first defined
by [1] (for normal-form games):

Definition 6 (v-tolerant NE). A v-tolerant NE in an extensive-form game
is a mixed strategy for every player at every node that he owns, such that the
following holds: for any V ⊂ [n] of size at most v, if all players in [n] \ {V }
play their NE strategy, then none of them can obtain a higher expected payoff by
deviating from the NE at any of their nodes regardless of the actions of players
in V .

The ideal faithfulness guarantee that we would like for selection protocols is
roughly the following: no player should be able to strictly improve his expected
payoff by deviating, assuming most players follow the protocol, some play arbi-
trarily, and the order within any round is also arbitrary.

Definition 7 (full-information v-tolerant ex post NE). A leader election
protocol P is in a full-information v-tolerant ex post NE if all round-respecting
linearizations of P are in a v-tolerant NE.

One possible weakening of this definition is to consider an adversary who does
not act arbitrarily, but also has his own utility function uA. Suppose an adversary
corrupts a set V of players. Then we say he is playing a coalition-optimal strategy
with respect to strategies S = (S1, . . . , Sn) if, when the players not in V follow
strategies S−V , the members of V play a coordinated strategy that maximizes
the expectation of uA. We say he is playing a strictly coalition-optimal strategy
with respect to strategies S if the above holds, and if, at every node owned by
some i ∈ V , i follows Si if his part of the coordinated deviation does not strictly
increase the expectation of uA. (A more formal definition appears in the full
version of this paper [19]).
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Definition 8 (v-tolerant NE with (strictly) self-interested adversary).
A v-tolerant NE with self-interested adversary in an extensive-form game is a
mixed strategy Sj for every player j for every node that he owns, such that the
following holds: for any V ⊂ [n] of size at most v and any player i �∈ V , if
the players in V play any coalition-optimal strategy and the others play their Sj

strategy, then i can not increase his expected utility by deviating from Si. If this
holds only when the players V play a strictly coalition-optimal strategy, then the
equilibrium is a v-tolerant NE with strictly self-interested adversary.

Definition 9 (full-information v-tolerant ex post NE with (strictly)
self-interested adversary). A leader election protocol P is in a full-
information v-tolerant ex post NE with a (strictly) self-interested adversary if
all round-respecting linearizations of P are in a v-tolerant NE with a (strictly)
self-interested adversary.

2.5 Resilience to Rational Coalitions – Definitions

In Section 2.4 the adversarial coalition could act arbitrarily, or by maximizing
some joint utility function uA. In this section we define notions of rational coali-
tions – i.e. coalitions that rational players might reasonably want to form. In
the following definitions, we assume there is some prescribed protocol P for the
players. When we say players are “at least as well off” or “strictly gain”, this is
with respect to following the prescribed protocol.

Definition 10 (Pareto coalition). A coalition V is a Pareto coalition if there
exists a coordinated rushing strategy S∗

V for the players in V such that all players
in V are at least as well off when playing S∗

V , and one player strictly gains.

Definition 11 (strong coalition). A coalition V is strong if there exists a
coordinated rushing strategy S∗

V for players V such that the expected utility of
every i ∈ V strictly increases when playing S∗

V .

Definition 12 (stable coalition). A coalition V is stable if there exists a
coordinated rushing strategy S∗

V for players V such that the expected utility of
every i ∈ V strictly increases when playing S∗

V , and, in addition, for all sub-
coalitions V ′ ⊂ V and any coordinated rushing strategy S∗

V ′ , playing S∗
V ′ does

not increase the expected utility of all players in V ′ when players V \V ′ play S∗
V .

3 Impossibility with Complex Preferences

A player in a selection protocol has complex preferences if for any two outcomes
o �= o′ he strictly prefers one over the other. We now show that there are no
faithful selection protocols for players with such preferences.

Theorem 1. No selection protocol can be in a full-information ex post NE for
players with complex preferences.
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Proof. Suppose there exists an oblivious selection protocol P in an ex post Nash
equilibrium, and fix some round-respecting linearization of P . Let T be the cor-
responding game tree, where some player i owns a node u (that is reached with
positive probability) at the lowest non-leaf level �. Suppose the protocol speci-
fication is for i to play mixed strategy Si at level �. Now, if different actions in
supp(Si) result in leaves with different outcomes, then i prefers one outcome over
the others (due to complex preferences). However, due to the full-information
ex post NE this can not be the case: a player’s different actions should not af-
fect his expected utility, for otherwise he would have a beneficial deviation. We
conclude that player i’s actions do not influence the final choice of item. Hence,
u can safely be omitted, resulting in a new, smaller tree. We continue shrinking
the tree in this manner, yielding a deterministic selection protocol (a contradic-
tion). The extension to non-oblivious protocols appears in the full version of this
paper [19].

4 Rational Leader Election Protocols

4.1 Basic Faithful Leader Election Protocols

Because of Theorem 1, we must limit the preferences in order to obtain protocols.
One natural setting for leader election is that of self-interested players: players
care only about whether or not they are elected (they either want to win or
want to not win), but are indifferent otherwise. Note that if a leader election
protocol is in a full-information dominant strategy equilibrium for self-interested
players, then the messages sent by others determine whether a player is elected
or not (because the equilibrium holds for all type profiles). That player can
only determine who is elected if he is not. The same holds for leader election
protocols in a full-information ex post NE, but on expectation over messages in
future rounds.

There are some basic protocols that we will use in our constructions. The
first is a 1-round leader election protocol that is in a full-information dominant
strategy equilibrium (but is not resilient). This protocol was given by Anton-
akopoulos [6] for the uniform distribution, and then generalized by Altman and
Tennenholtz [5].

Theorem 2 ([5]). For any n ≥ 4 and any distribution D over [n] there exists
a 1-round, n-player leader election protocol PAT in a full-information dominant
strategy equilibrium, and in which each player i is elected with probability D(i).

[5] also showed that there is no faithful 1-round leader election protocol for 3
players. The following protocol, which we will use in our constructions, does
work for 3 players, albeit at the cost of having 2 rounds5. Fix any natural num-
ber k ≥ 3, and denote i+ = (i mod (k−1))+1. Then for any positive p1, . . . , pk

with p1 + . . . + pk = 1 define
5 Note that the case of 2 players is impossible by the lower bound of [32], regardless of

the number of rounds.
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Protocol Pk

1. Player k chooses one player i �= k, each with probability
pi+

1−pk
.

2. For each j ∈ {1, . . . , k − 1}, if player j is chosen in round 1, he elects player
k with probability pk and player j+ with probability 1 − pk as leader.

Proposition 1. Pk is a leader election protocol in a full-information ex post
NE that elects each player i with probability pi.

4.2 Combining Rationality and Resilience in Leader Election

Neither of the protocols of Section 4.1 is resilient for any t > 1. The following the-
orem can be combined with resilient leader election protocols to obtain protocols
that are both resilient and in full-information dominant strategy equilibria.

Theorem 3. For any n ≥ 4, k = Ω(
√
n), and any explicit, oblivious r(n)-

round leader election protocol P there exists an explicit protocol P ′ in a dominant
strategy equilibrium that has r(�n/4�) rounds. If P is resilient to t(n) faults, then
P ′ is resilient to t(�n/4 ) − k faults.

Proof. In the protocol below and the rest of the proof, indices are cyclical. We
will prove the theorem for n a multiple of 4. The general case follows similar lines.
The players are partitioned into 4 disjoint sets C1, C2, C3, C4, where i ∈ Cj if
�4i/n� = j. The following is done in parallel:

1. Each set Ci runs protocol P to select a representative Ri.
2. For each i, Ri chooses a random player from Ci+1, say Li+1, and outputs

a random message bi to PAT (i.e. bi is a random element of Bi, where PAT

takes inputs from B1 × . . . × B4).
3. The winner is Lj, where j is the winner of PAT with inputs b1, b2, b3, b4.

Since the 3 steps are done in parallel, all players choose a random player and a
random input in step 2., but the output depends only on the choices of the Ri’s.

Fix some player x, and suppose x ∈ Ci. x is chosen as the leader only if Ri−1
chooses x. The probability that this occurs does not change regardless of the
actions of x. Additionally, for x to win, i must be the winner of P4. However,
since PAT is in an ex post NE, no player in Ci can influence the probability that
this occurs. Hence, from x’s perspective, it does not matter who is chosen as Li.

Now consider some cheating coalition of t players. In order for a member of the
coalition to win, at least one member of the coalition must be chosen as Li for
some i. In order for this to occur, either Ri−1 must be a member of the coalition
(and then he can choose a fellow member in Ci), or Ri−1 is an honest player
who chooses a member of the coalition. Suppose there are c1 faulty players in
Ci−1 and c2 faulty players in Ci, where c1 + c2 ≤ t. Then the probability that
there are more than c2 + k honest players in Ci−1 who choose a faulty player
is at most a constant e = exp(−2k2/(n/4 − c1)) < exp(−16k2/n) < 1 by a
multiplicative Chernoff bound, and using the fact that c1 ≤ t(n/4) < n/8 (since
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no leader election protocol can be resilient to more than half the players). Thus,
with probability at least 1− e, there are at most c1 + c2 + k ≤ t(n/4) players in
Ci−1 who choose a coalition member in Ci. The maximal probability that one
of them wins and becomes Ri−1 is at most a constant ε < 1 (since we can view
the honest players who chose a coalition-member as additional faulty players).
The probability that a coalition member becomes Li for any i is thus at most
1 − (1 − ε)4 · (1 − e)4, which is some constant < 1.

In Theorem 3 is that the size of the coalition shrinks by about a factor of 4,
and so we can not use it to get a faithful protocol with resilience close to the
optimal n/2. The following protocol has optimal resilience, is in a full-information
dominant strategy equilibrium, and has log∗(n) + O(1) rounds (same as in the
state-of-the-art leader election protocols [31,14]). The proof is in the full version
of this paper [19].

Theorem 4. For every constant δ > 0 and n ≥ 4 there exists an explicit
(log∗ n + O(1))-round leader election protocol resilient against n(1/2 − δ) faults
that is in a full-information dominant strategy equilibrium.

Extensions and Further Results. Theorem 3 can actually be generalized to obtain
any distribution over the players. If we plug a 1-round leader election protocol
into Theorem 3 with any distribution, we get a 1-round protocol that implements
any distribution and is in a full-information dominant strategy equilibrium. This
confirms a conjecture of Altman and Tennenholtz [4] about the existence of
such protocols in which all players influence the outcome of the protocol in
some instance. We can also construct protocols that satisfy a stronger notion of
resilience against adversarial coalitions – namely, they have bounded cheaters’
edge [6] – that are in a full-information ex post NE. Finally, our protocols can
also be used to construct leader election protocols in which a player is elected at
random from the set of players who want to be elected. All these extensions can
be found in the full version of this paper [19].

4.3 Rationality in the Face of an Adversary

While the protocols of Section 4.2 are resilient against adversarial behavior, they
are in equilibrium only if all players follow the protocol. What if this is not the
case? Can an honest player’s protocol specification be optimal even when some
others play adversarially? The main difficulty here is that a player’s actions may
now also influence the actions of adversarial players in future rounds. Even if the
protocol is oblivious, an adversary’s strategy might not be. Definition 7 defines
a the concept of an full-information v-tolerant ex post NE to deal precisely with
this issue.

Unfortunately, Theorem 5 below implies that no leader election protocol can
be in a v-tolerant ex post NE, and so we must look for some relaxation. For
Definition 7 we make no assumptions about the adversary. If we assume that
the adversary also has some preferences, then we may be able to weaken this
restriction. We will assume here that the adversary’s goal is to maximize the
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probability that some member of his coalition gets elected (the standard as-
sumption for leader election) – that is, we consider Definition 9, where uA is the
probability that a member of the coalition gets elected. Theorem 5 also shows
that this relaxation does not suffice:

Theorem 5. There does not exist a leader election protocol in a v-tolerant ex
post Nash equilibrium with self-interested adversary for any v ≥ 1.

Proof. Fix some protocolP in an ex post Nash equilibrium and a round-respecting
linearization of P . Suppose i is the first player who has a mixed strategy in
the game, where two possible messages in i’s support are I1, I2. Because i is
eventually chosen by P with some probability that i can not influence himself (he
wins with the same expected probability whether he plays I1 or I2), there must
exist some other player whose choice of messages does influence this probability.
In the subtree rooted at the node following i choosing I1 there must exist some
player j who has a strategy S1 that increases the probability of i getting elected,
and some other strategy S2 that decreases this probability. Because P is in an ex
post Nash equilibrium, these choices of player j do not harm his own chance of
getting elected. A valid (adversarial) strategy for player j is to play S1 whenever
i plays I1. Alternatively, j can play S2 whenever i plays I1. Because i does not
know which strategy j is using (since j is adversarial), and in either case one of
I1 or I2 is strictly better than the other, no single strategy of player i can be
optimal in both cases.

If we limit the adversary even more by assuming that deviation is costly, we
can get an explicit protocol. The following assumes that the adversary is strictly
self-interested – he is self-interested, but also only deviates if he strictly gains
from doing so (a formal definition appears in the full version of this paper [19]).

Theorem 6. For any positive k and n = 3k there exists an explicit n-player
2 log3(n)-round leader election protocol P that is in a full-information n-tolerant
ex post Nash equilibrium with a strictly self-interested adversary. Furthermore,
P is resilient against nlog3(2)/2 faults.

To get an idea for the proof, we show that Pk with k = 3 and the uniform
distribution is in a full-information 3-tolerant ex post NE with a strictly self-
interested adversary. If none or all of the players are adversarial, then all non-
adversarial players should follow the protocol (since it is in a full-information
ex post NE). If two players are adversarial, then they can always force a win,
and so the third player may as well follow the protocol. Finally, if only one
player is adversarial, then he can not increase his chance of winning (by the
full-information ex post NE), and since the adversary is strictly self-interested
he will not deviate. Hence, it is also a full-information ex post NE for the others
to follow the protocol.

To generalize this to more players, we divide the players into sets of 3, each
running P3. We then repeat this on the winners, until only one is left. The full
version of this paper [19] contains further details and an analysis of the resilience
of this protocol.
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4.4 Resilience to Rational Coalitions

In Sections 4.2 and 4.3 the adversary corrupts some set of v players, and coordi-
nates their actions. Here we let players form a “rational coalition” to benefit all
members – namely, we consider the definitions of Section 2.5. For the following
theorems (whose proofs appear in the full version [19]), we restrict ourselves to
the case in which players are self-interested, and all want to be elected. First,
we show that it is impossible to have resilience against our weakest notion of a
rational coalition.

Theorem 7. Every leader election protocol in a full-information ex post NE has
a Pareto coalition of two players.

For a stronger notion, however, we can get a protocol that side-steps the impos-
sibility of leader election with adversarial coalitions of size n/2:

Theorem 8. There exists an explicit 2-round leader election protocol in a full-
information ex post Nash equilibrium with only 1 stable coalition. The coalition
is of size n− 1.

The protocol that achieves this is Pk with k = n and the uniform distribution
(see Section 4.1). We also have the following theorem, as a weak illustration
that we gained something by weakening our requirement from strong to stable
coalitions.

Theorem 9. For any n-player leader election protocol in a full-information ex
post Nash equilibrium, all coalitions of size n− 1 are strong.

5 Rational Random Sampling Protocols

We consider some universe of m items, and will construct protocols that output
each item with probability proportional to the number of players who (claim to)
like that item most. In the full version [19] we discuss generalizations to other
distributions. Due to Theorem 1, we restrict ourselves to single-minded players
– each i’s type ti ∈ [m] is the item he prefers, and he is indifferent about the
others. Theorem 1 also implies that no random sampling is possible with m = 2.
If m > 2 but players prefer only one of two items we are sampling from two items.
So we must limit the type profiles. We do this by considering balanced profiles: a
profile (t1, . . . , tn) for m items is z-balanced if each type occurs between n/m+z
and n/m− z times.

Theorem 10. For any n ≥ 66 and explicit r(n)-round leader election protocol
resilient to t(n) faults in a full-information ex post NE, there exists an explicit
(r(n) + 3)-round random selection protocol for a universe of size m ≥ 66 that is
in a full-information ex post NE for all (n(1/66 − 1/m))-balanced type profiles.
For such profiles, the random selection protocol is resilient to t(�n/3 − n/66 )
faults.
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Proof. The protocol is the following:

1. Each player announces his preferred item. Players are split into 3 categories
C1, C2, C3 as follows: all players with the same announced type are in the
same category, and the categories are “roughly” balanced: sets of players
with the same declared type are greedily assigned to the smallest Ci. Fix
ci = |Ci|, and note that |ci − cj | ≤ d for d = n/66 (assuming at most one
player lies about his preferred item).

2. For each i, players in Ci run the leader election protocol P to elect a repre-
sentative Ri.

3. For each i, the players in Ci+1 ∪ Ci+2 run the leader election protocol P ,
and the winner chooses a uniformly random player Li from Ci.

4. R1, R2, and R3 run P3. The protocol is run so that players are elected with
probabilities c1

n , c2
n , and c3

n respectively.
5. The protocol’s output is the announced item of player Lj , where j is the

winner of P3 in the last round.

If a player i ∈ Cj truthfully announces his type, then he can no longer change
the probability of his type getting chosen: he only affects which of the other
types are potential winners (via his choice of Lk for k �= j) or which player from
Ci participates in P3. However, since P3 is in a full-information ex post NE, this
does not matter either.

It remains to show that it is optimal for i to truthfully reveal his type. Suppose
i’s preferred item is B, the fraction of other players who announce B is β, and
they all get placed in Cj . Suppose i lies about his type and gets placed in
Ck �= Cj . How can i cheat? i wins the leader election protocol of step (2) with
probability 1/ck and the leader election protocol of step (3) (choosing Lj) with
probability 1/(ck+c�) for � �= j, k. If i is elected in both leader election protocols,
he can force the winner to be a player who wants B with probability at most
1. If he wins only the leader election protocol of step (2), he can cause j to win
in P3 with probability 1 − ck/n. If he wins only the leader election protocol of
step (3), he can force Lj to be a player who wants B (but that player wins P3
with probability cj/n. The probability that B is the chosen type given that i is
cheating is

Pr [B wins] <
(

1 − 1
ck + c�

− 1
ck

+
1
ck

· 1
ck + c�

)
· β

+
1

ck + c�
· cj

n
+

1
ck

· βn
cj

(
1 − ck

n

)
+

1
ck

· 1
ck + c�

= β − β

ck + c�
− β

ck
+

cj

(ck + c�)n
+

βn

ck · cj
− β

cj
+

1
ck

· 1
ck + c�

.

By our balancedness assumption, we know that n/3−d ≤ c1, c2, c3 ≤ n/3+d, and
that β ≤ d/n. Plugging in these values (and performing some manipulations)
yields

Pr [B wins] < β +
(

n + 3d
2n− 6d

)
1
n

+
9d + 18(
n
3 − d

)2 .
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It can be verified that when d ≤ n/66 and n ≥ 66, we get that Pr [B wins] <
β+1/n. Now, if player i were to bid truthfully, then the probability that B wins
would be β + 1/n (since i’s vote adds to B’s chance of winning). Thus, it is an
optimal strategy for i to bid truthfully.

What about resilience? Suppose there is an adversary of size at most t(�n/3−
n/66 ) faults. In order to force an outcome in some predefined set, the adversary
must win at least one of the 6 runs of the leader election protocol P , and each
runs on a set of at least �n/3−n/66 players. Since P is resilient for this number
of adversaries, the probability that the adversary loses all of them is at least ε6

for some constant ε > 0.

The following works for smaller m, and is proved in the full version [19].

Theorem 11. For n ≥ 3, any explicit r(n)-round leader election protocol re-
silient up to t(n) faults in a full-information ex post NE, and any constant nat-
ural number m ≥ 3, there exists an explicit (r(n) + 4)-round random selection
protocol for a universe of size m that is in a full-information ex post NE for all
z-balanced profiles, where z = n/10m2. For such profiles, the random selection
protocol is resilient up to t(�n/m− z ) faults.

6 Conclusion and Open Problems

Perhaps the main insight of this paper is that the full-information model is a
setting that allows for a relatively clean examination of the interplay between
rationality and adversarial behavior in the presence of asynchronous communi-
cation. While we have explored numerous aspects of this interplay, we are now
faced with many more open questions.

The first set of questions consists of direct extensions of the results presented
here. For example, can one generalize the types of preferences for which there
are faithful and resilient protocols? For random selection protocols, for example,
one might consider a setting in which each players likes some set of items, and
dislikes the others. Are there random sampling protocols with weaker balanced-
ness assumptions? How about such protocols that are rational in the face of
an adversary, or resilient to rational coalitions? Also, are there protocols with
few strong coalitions? Finally, one may consider approximate solution concepts:
for example, one may desire all linearizations of a protocol to be in an ε-Nash
equilibrium for a small but positive ε. Note that in this case our impossibility
result of Theorem 1 no longer applies.

The second set of questions is more open-ended. What can one say about
rationality for more general protocol problems in the full-information model?
And are there other tractable models for the study of the interplay between
rationality and adversarial behavior?
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Abstract. We propose a new methodology for rational secret sharing
leading to various instantiations (in both the two-party and multi-party
settings) that are simple and efficient in terms of computation, share size,
and round complexity. Our protocols do not require physical assumptions
or simultaneous channels, and can even be run over asynchronous, point-
to-point networks.

We also propose new equilibrium notions (namely, computational ver-
sions of strict Nash equilibrium and stability with respect to trembles) and
prove that our protocols satisfy them. These notions guarantee, roughly
speaking, that at each point in the protocol there is a unique legal mes-
sage a party can send. This, in turn, ensures that protocol messages
cannot be used as subliminal channels, something achieved in prior work
only by making strong assumptions on the communication network.

1 Introduction

The classical problem of t-out-of-n secret sharing [28,5] involves a dealer D who
distributes shares of a secret s to players P1, . . . , Pn so that (1) any t or more
players can reconstruct the secret without further involvement of the dealer, yet
(2) any group of fewer than t players gets no information about s. For example,
in Shamir’s scheme [28] the secret s lies in a finite field F, with |F| > n. The
dealer chooses a random polynomial f(x) of degree at most t− 1 with f(0) = s,
and gives each player Pi the “share” f(i). To reconstruct, t players broadcast
their shares and interpolate the polynomial. Any set of fewer than t players has
no information about s given their shares.

The implicit assumption in the original formulation of the problem is that each
party is either honest or corrupt, and honest parties are all willing to cooperate
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when reconstruction of the secret is desired. Beginning with the work of Halpern
and Teague [13], protocols for secret sharing and other cryptographic tasks have
begun to be re-evaluated in a game-theoretic light (see [7, 16] for an overview
of work in this direction). In this setting, parties are neither honest nor corrupt
but are instead viewed as rational and are assumed (only) to act in their own
self-interest.

Under natural assumptions regarding the utilities of the parties, standard
secret-sharing schemes completely fail. For example, assume as in [13] that all
players want to learn the secret above all else, but otherwise prefer that no other
players learn the secret. (Later, we will treat the utilities of the players more
precisely.) For t parties to reconstruct the secret in Shamir’s scheme, each party
is supposed to broadcast their share simultaneously. It is easy to see, however,
that each player does no worse (and potentially does better) by withholding
their share no matter what the other players do. Consider P1: If fewer than t−1
players reveal their shares, P1 does not learn the secret regardless of whether
P1 reveals his share or not. If more than t − 1 other players reveal their shares,
then everyone learns the secret and P1’s actions again have no effect. On the
other hand, if exactly t − 1 other players reveal their shares, then P1 learns the
secret (using his share) but prevents other players from learning the secret by
not revealing his own share. The result is that if all players are rational then no
one will broadcast their share and the secret will not be reconstructed.

Several works [13, 11,24, 1, 18, 19,27,26,4] have focused on designing rational
secret-sharing protocols immune to the above problem. Protocols for rational
secret sharing also follow from the more general results of Lepinski et al. [20,21,
15, 14]. Each of these works has some or all of the following disadvantages:

On-line dealer or trusted/honest parties. Halpern and Teague [13] intro-
duced a general approach to solving the problem that has been followed in most
subsequent work. Their solution, however, requires the continual involvement of
the dealer, even after the initial shares have been distributed. (The Halpern-
Teague solution also applies only when t, n ≥ 3.) Ong et al. [27] assume that
sufficiently many parties behave honestly during the reconstruction phase.

Computational inefficiency. To eliminate the on-line dealer, several schemes
rely on multiple invocations of protocols for generic secure multi-party computa-
tion [11,24,1,18,4]. It is unclear whether computationally efficient protocols with
suitable functionality can be designed. The solutions of [20, 21, 15, 14], though
following a different high-level approach, also rely on generic secure multi-party
computation.

Strong communication models. All prior schemes for n > 2 assume broad-
cast. The solutions in [13, 11,24, 1] assume simultaneous broadcast which means
that parties must decide on what value (if any) to broadcast in a given round
before observing the values broadcast by other parties. The solutions of [20,21,
15, 14] rely on physical assumptions such as secure envelopes and ballot boxes.

Kol and Naor [18] show how to avoid simultaneous broadcast, at the cost of
increasing the round complexity by a (multiplicative) factor linear in the size of
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the domain from which the secret is chosen; this approach cannot (efficiently)
handle secrets of super-logarithmic length. Subsequent work by Kol and Naor [19]
(see also [4]) shows how to avoid the assumption of simultaneous broadcast at
the expense of increasing the round complexity by a (multiplicative) factor of t.
We provide a detailed comparison of our results to those of [19] in Section 1.3.

1.1 Our Results

We show protocols for both 2-out-of-2 and t-out-of-n secret sharing (resilient
to coalitions of size t− 1) that do not suffer from any of the drawbacks men-
tioned above. We do not assume an on-line dealer or any trusted/honest parties,
nor do we resort to generic secure multi-party computation. Our protocols are
(arguably) simpler than previous solutions; they are also extremely efficient in
terms of round complexity, share size, and required computation.

The primary advantage of our protocols, however, is that they do not require
broadcast or simultaneous communication but can instead rely on synchronous
(but non-simultaneous) point-to-point channels. Recall that all prior schemes
for n > 2 assume broadcast; furthermore, the obvious approach of simulating
broadcast by running a broadcast protocol over a point-to-point network will
not, in general, work in the rational setting. Going further, we show that our
protocol can be adapted for asynchronous point-to-point networks (with respect
to a natural extension of the model for rational secret sharing), thus answering
a question that had been open since the work of Halpern and Teague [13].

We also introduce two new equilibrium notions and prove that our protocols
satisfy them. (A discussion of game-theoretic equilibrium notions used in this
and prior work is given in Section 2.2.) The first notion we introduce is a com-
putational version of strict Nash equilibrium. A similar notion was put forth by
Kol and Naor [19], but they used an information-theoretic version of strict Nash
and showed some inherent limitations of doing so. As in all of cryptography,
we believe computational relaxations are meaningful and should be considered;
doing so allows us to circumvent the limitations that hold in the information-
theoretic case. We also formalize a notion of stability with respect to trembles,
motivated by [16]; a different formalization of this notion, with somewhat differ-
ent motivation, is given in [27].

Our definitions effectively rule out “signalling” via subliminal channels in the
protocol. In fact, our protocols ensure that, at every point, there is a unique legal
message each party can send. This prevents a party from outwardly appearing
to follow the protocol while subliminally communicating (or trying to organize
collusion) with other parties. Preventing subliminal communication is an explicit
goal of some prior work (e.g., [15,21,3,2]), which achieved it only by relying on
physical assumptions [15,21] or non-standard network models [3,2].

1.2 Overview of Our Approach

We follow the same high-level approach as in [13, 11,24, 1, 18, 19,4]. Our recon-
struction protocol proceeds in a sequence of “fake” iterations followed by a single
“real” iteration. Roughly speaking:
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– In the real iteration, everyone learns the secret (assuming everyone follows
the protocol).

– In a fake iteration, no information about the secret is revealed.
– No party can tell, in advance, whether the next iteration will be real or fake.

The iteration number i∗ of the real iteration is chosen according to a geometric
distribution with parameter β ∈ (0, 1) (where β depends on the players’ utilities).
To reconstruct the secret, parties run a sequence of iterations until the real
iteration is identified, at which point all parties output the secret. If some party
fails to follow the protocol, all parties abort. Intuitively, it is rational for Pi to
follow the protocol as long as the expected gain of deviating, which is positive
only if Pi aborts exactly in iteration i∗, is outweighed by the expected loss if Pi

aborts before iteration i∗.
In most prior work [11,24,1,18], a secure multi-party computation is performed

in each iteration to determine whether the given iteration should be real or fake.
Instead we use the following approach, described in the 2-out-of-2 case (we omit
some technical details in order to focus on the main idea): The dealer D chooses
i∗ from the appropriate distribution in advance, at the time of sharing. The
dealer then generates two key-pairs (vk1, sk1), (vk2, sk2) for a verifiable random
function (VRF) [25], where vk represents a verification key and sk represents a
secret key, and we denote by VRFsk(x) the evaluation of the VRF on input x
using secret key sk. (See Appendix A for definitions of VRFs.) The dealer gives
the verification keys to both parties, gives sk1 to P1, and gives sk2 to P2. It also
gives s1 = s ⊕ VRFsk2 (i∗) to P1, and s2 = s ⊕ VRFsk1(i∗) to P2. Each iteration
consists of one message from each party: in iteration i, party P1 sends VRFsk1 (i)
while P2 sends VRFsk2(i). Observe that a fake iteration reveals nothing about
the secret, in a computational sense. Furthermore, neither party can identify the
real iteration in advance. (The description above relies on VRFs. We show that,
in fact, trapdoor permutations suffice.)

To complete the protocol, we need to provide a way for parties to identify
the real iteration. Previous work [11,24, 1, 18] allows parties to identify the real
iteration as soon as it occurs. We could use this approach for our protocol as
well if we assumed simultaneous channels, since then each party must decide on
its current-iteration message before it learns whether the current iteration is real
or fake. When simultaneous channels are not available, however, this approach
is vulnerable to an obvious rushing strategy.

Motivated by recent work on fairness (in the malicious setting) [10, 12], we
suggest the following, new approach: delay the signal indicating whether a given
iteration is real or fake until the following iteration. As before, a party cannot
risk aborting until it is sure that the real iteration has occurred; the difference is
that now, once a party learns that the real iteration occurred, the real iteration
is over and all parties can reconstruct the secret. This eliminates the need for
simultaneous channels, while adding only a single round. This approach can be
adapted for t-out-of-n secret sharing and can be shown to work even when parties
communicate over asynchronous, point-to-point channels.
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Our protocol assumes parties have no auxiliary information about the secret s.
(If simultaneous channels are assumed, then our protocol does tolerate auxiliary
information about s.) We believe there are settings where this assumption is
valid, and that understanding this case sheds light on the general question of
rational computation. Prior work in the non-simultaneous model [18, 19] also
fails in the presence of auxiliary information, and in fact this is inherent [4].

1.3 Comparison to the Kol-Naor Scheme

The only prior rational secret-sharing scheme that assumes no honest parties, is
computationally efficient, and does not require simultaneous broadcast or phys-
ical assumptions is that of Kol and Naor [19] (an extension of this protocol is
given in [4]). They also use the strict Nash solution concept and so their work
provides an especially good point of comparison. Our protocols have the follow-
ing advantages with respect to theirs:

Share size. In the Kol-Naor scheme, the shares of the parties have unbounded
length. While not a significant problem in its own right, this is problematic
when rational secret sharing is used as a sub-routine for rational computation of
general functions. (See [18].) Moreover, the expected length of the parties’ shares
in their 2-out-of-2 scheme is O(β−1 · (|s|+ k)) (where k is a security parameter),
whereas shares in our scheme have size |s| + O(k).

Round complexity. The version of the Kol-Naor scheme that does not rely on
simultaneous broadcast [19, Section 6] has expected round complexity O(β−1 ·t),
whereas our protocol has expected round complexity O(β−1). (The value of β is
roughly the same in both cases.)

Resistance to coalitions. For the case of t-out-of-n secret sharing, the Kol-
Naor scheme is susceptible to coalitions of two or more players. We show t-out-
of-n secret-sharing protocols resilient to coalitions of up to (t − 1) parties; see
Section 4 for further details.

Avoiding broadcast. The Kol-Naor scheme for n > 2 assumes synchronous
broadcast, whereas our protocols work even if parties communicate over an asyn-
chronous, point-to-point network.

2 Model and Definitions

We denote the security parameter by k. A function ε : N → R is negligible if for
all c > 0 there is a kc > 0 such that ε(k) < 1/kc for all k > kc; let negl denote
a generic negligible function. We say ε is noticeable if there exist c, kc such that
ε(k) > 1/kc for all k > kc.

We define our model and then describe the game-theoretic concepts used.
Even readers familiar with prior work in this area should skim the next few
sections, since we formalize certain aspects of the problem slightly differently
from prior work, and define new equilibrium notions.
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2.1 Secret Sharing and Players’ Utilities

A t-out-of-n secret-sharing scheme for domain S (with |S| > 1) is a two-phase
protocol carried out by a dealer D and a set of n parties P1, . . . , Pn. In the first
phase (the sharing phase), the dealer chooses a secret s ∈ S. Based on this secret
and a security parameter 1k, the dealer generates shares s1, . . . , sn and gives si

to player Pi. In the second phase (the reconstruction phase), some set I of t∗ ≥ t
active parties jointly reconstruct s. We impose the following requirements:

Secrecy. The shares of any t−1 parties reveal nothing about s, in an information-
theoretic sense.

Correctness. For any set I of t∗ ≥ t parties who run the reconstruction phase
honestly, the correct secret s will be reconstructed, except possibly with proba-
bility negligible in k.

The above views parties as either malicious or honest. To model rationality,
we consider players’ utilities. Given a set I of t∗ ≥ t parties active during the
reconstruction phase, let the outcome o of the reconstruction phase be a vector
of length t∗ with oi = 1 iff the output of Pi is equal to the initial secret s (i.e.,
Pi “learned the secret”). We consider a party to have learned the secret s if and
only if it outputs s, and do not care whether that party “really knows” the secret
or not. In particular, a party who outputs a random value in S without running
the reconstruction phase at all “learns” the secret with probability 1/|S|. We
model the problem this way for two reasons:

1. Our formulation lets us model a player learning partial information about
the secret, something not reflected in prior work. In particular, partial infor-
mation that increases the probability with which a party outputs the correct
secret increases that party’s expected utility.

2. It is difficult, in general, to formally model what it means for a party to “re-
ally” learn the secret, especially when considering arbitrary protocols and
behaviors. Our notion is also better suited for a computational setting, where
a party might “know” the secret from an information-theoretic point of view
yet be unable to output it.

Let μi(o) be the utility of player Pi for the outcome o. Following [13] and most
subsequent work (an exception is [4]), we make the following assumptions about
the utility functions of the players:

– If oi > o′i, then μi(o) > μi(o′).
– If oi = o′i and

∑
i oi <

∑
i o

′
i, then μi(o) > μi(o′).

That is, player Pi first prefers outcomes in which he learns the secret; otherwise,
Pi prefers strategies in which the fewest number of other players learn the secret.
For simplicity, in our analysis we distinguish three cases for the outcome o, de-
scribed from the point of view of Pi (we could also work with utilities satisfying
the more general constraints above, as long as utilities are known):
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1. If Pi learns the secret and no other player does, then μi(o)
def= U+.

2. If Pi learns the secret and at least one other player does also, then μi(o)
def= U .

3. If Pi does not learn the secret, then μi(o)
def= U−.

Our conditions impose U+ > U > U−. Define

Urandom
def=

1
|S| · U

+ +
(

1 − 1
|S|

)
· U− ; (1)

this is the expected utility of a party who outputs a random guess for the secret
(assuming other parties abort without any output, or with the wrong output).
We will also assume that U > Urandom; otherwise, players have (almost) no
incentive to run the reconstruction phase at all.

In contrast to [4], we make no distinction between outputting the wrong secret
and outputting a special “don’t know” symbol; both are considered a failure to
output the correct secret. By adapting techniques from their work, however,
we can incorporate this distinction as well (as long as the relevant utilities are
known). See Remark 2 in Section 3.

Strategies in our context refer to probabilistic polynomial-time interactive
Turing machines. Given a vector of strategies σ for t∗ parties active in the
reconstruction phase, let ui(σ) denote the expected utility of Pi. (The expected
utility is a function of the security parameter k.) This expectation is taken
over the initial choice of s (which we will always assume to be uniform), the
dealer’s randomness, and the randomness of the players’ strategies. Following the
standard game-theoretic notation, we define σ−i

def= (σ1, . . . , σi−1, σi+1, . . . , σt∗)
and (σ′

i,σ−i)
def= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σt∗); that is, (σ′

i,σ−i) denotes the
strategy vector σ with Pi’s strategy changed to σ′

i.

2.2 Notions of Game-Theoretic Equilibria: A Discussion

The starting point for any discussion of game-theoretic equilibria is the Nash
equilibrium. Roughly speaking, a protocol induces a Nash equilibrium if no party
gains any advantage by deviating from the protocol, as long as all other parties
follow the protocol. (In a computational Nash equilibrium, no efficient deviation
confers any advantage.) As observed by Halpern and Teague [13], however, the
Nash equilibrium concept is too weak for rational secret sharing. Halpern and
Teague suggest, instead, to design protocols that induce a Nash equilibrium
surviving iterated deletion of weakly dominated strategies; this notion was used
in subsequent work of [11,24, 1].

The notion of surviving iterated deletion, though, is also problematic in several
respects. Kol and Naor [19] show a secret-sharing protocol that is “intuitively
bad” yet technically satisfies the definition because no strategy weakly dominates
any other. Also, a notion of surviving iterated deletion taking computational
issues into account has not yet been defined (and doing so appears difficult).
See [16, 17] for other arguments against this notion.
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Motivated by these drawbacks (and more), researchers have proposed other
strengthenings of the Nash equilibrium concept [16,18, 19]. Kol and Naor define
resistance to backward induction [18], everlasting equilibrium, and strict Nash
equilibrium [19]. The latter two notions are defined information-theoretically,
and are overly conservative in that they rule out some “natural” protocols using
cryptography. Nevertheless, the notion of strict Nash equilibrium is appealing. A
protocol is in Nash equilibrium if no deviations are advantageous; it is in strict
Nash equilibrium if all deviations are disadvantageous. Put differently, in the
case of a Nash equilibrium there is no incentive to deviate whereas for a strict
Nash equilibrium there is an incentive not to deviate.

Another advantage of strict Nash is that protocols satisfying this notion deter
subliminal communication: since any (detectable) deviation from the protocol
results in lower utility (when other parties follow the protocol), a party who tries
to use protocol messages as a covert channel risks losing utility if there is any
reasonable probability that other players are following the protocol.

We propose here a computational version of strict Nash equilibrium. Our
definition retains the intuitive appeal of strict Nash, while meaningfully tak-
ing computational limitations into account. Moreover, our protocols satisfy the
following, stronger condition: at every point in the protocol, there is a unique
legal message that each party can send. Our protocols thus rule out subliminal
communication in a strong sense, an explicit goal in prior work [20,22,21,3].

We also define a computational notion of stability with respect to trembles.
Intuitively, stability with respect to trembles models players’ uncertainty about
other parties’ behavior, and guarantees that even if a party Pi believes that
other parties might play some arbitrary strategy with small probability δ (but
follow the protocol with probability 1− δ), there is still no better strategy for Pi

than to follow the protocol. Our formulation of this notion follows the general
suggestion of Katz [16], but we flesh out the (non-trivial) technical details. An-
other formulation (trembling-hand perfect equilibrium), with somewhat different
motivation, is discussed in [27].

As should be clear, determining the “right” game-theoretic notions for rational
secret sharing is the subject of ongoing research. We do not suggest that the
definitions proposed here are the only ones to consider, but we do believe they
contribute to our understanding of the problem.

2.3 Definitions of Game-Theoretic Equilibria

We focus on the two-party case; the multi-party case is treated in the full version
of this work [9]. Here, Π is a 2-out-of-2 secret-sharing scheme and σi is the
prescribed action of Pi in the reconstruction phase.

Definition 1. Π induces a computational Nash equilibrium if for any ppt strat-
egy σ′

1 of P1 we have u1(σ′
1, σ2) ≤ u1(σ1, σ2) + negl(k), and similarly for P2.

Our definitions of strict Nash and resistance to trembles require us to first define
what it means to “follow a protocol”. This is non-trivial since a different Turing
machine ρ1 might be “functionally identical” to the prescribed strategy σ1 as
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far as the protocol is concerned: for example, ρ1 may be the same as σ1 except
that it first performs some useless computation; the strategies may be identical
except that ρ1 uses pseudorandom coins instead of random coins; or, the two
strategies may differ in the message(s) they send after the protocol ends. In any
of these cases we would like to say that ρ1 is essentially “the same” as σ1. This
motivates the following definition, stated for the case of a deviating P1 (with an
analogous definition for a deviating P2):

Definition 2. Define the random variable viewΠ
2 as follows:

P1 and P2 interact, following σ1 and σ2, respectively. Let trans denote
the messages sent by P1 but not including any messages sent by P1 af-
ter it writes to its (write-once) output tape. Then viewΠ

2 includes the
information given by the dealer to P2, the random coins of P2, and the
(partial) transcript trans.

Fix a strategy ρ1 and an algorithm T . Define the random variable viewT,ρ1
2

as follows:
P1 and P2 interact, following ρ1 and σ2, respectively. Let trans denote the
messages sent by P1. Algorithm T , given the entire view of P1, outputs
an arbitrary truncation trans′ of trans. (That is, it defines a cut-off point
and deletes any messages sent after that point.) Then viewT,ρ1

2 includes
the information given by the dealer to P2, the random coins of P2, and
the (partial) transcript trans′.

Strategy ρ1 yields equivalent play with respect to Π, denoted ρ1 ≈ Π, if there
exists a ppt algorithm T such that for all ppt distinguishers D∣∣∣Pr[D(1k, viewT,ρ1

2 ) = 1] − Pr[D(1k, viewΠ
2 ) = 1]

∣∣∣ ≤ negl(k).

We write ρ1 �≈ Π if ρ1 does not yield equivalent play with respect to Π . Note
that ρ1 can yield equivalent play with respect to Π even if (1) it differs from the
prescribed strategy when interacting with some other strategy σ′

2 (we only care
about the behavior of ρ1 when the other party runs Π); (2) it differs from the
prescribed strategy in its local computation or output; and (3) it differs from
the prescribed strategy after P1 computes its output. This last point models the
fact that we cannot force P1 to send “correct” messages once, as far as P1 is
concerned, the protocol is finished.

We now define the notion that detectable deviations from the protocol decrease
a player’s utility.

Definition 3. Π induces a computational strict Nash equilibrium if

1. Π induces a computational Nash equilibrium;
2. For any ppt strategy σ′

1 with σ′
1 �≈ Π, there is a c > 0 such that u1(σ1, σ2) ≥

u1(σ′
1, σ2) + 1/kc for infinitely many values of k (with an analogous require-

ment for a deviating P2).

We next turn to defining stability with respect to trembles. We say that ρi is
δ-close to σi if ρi takes the following form: with probability 1− δ party Pi plays
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σi, while with probability δ it follows an arbitrary ppt strategy σ′
i. (In this case,

we refer to σ′
i as the residual strategy of ρi.) The notion of δ-closeness is meant

to model a situation in which Pi plays σi “most of the time,” but with some
(small) probability plays some other arbitrary strategy.

Intuitively, a pair of strategies (σ1, σ2) is stable with respect to trembles if σ1
(resp., σ2) remains a best response even if the other party plays a strategy other
than σ2 (resp., σ1) with some small (but noticeable) probability δ. As in the case
of strict Nash equilibrium, this notion is difficult to define formally because of the
possibility that one party can do better (in case the other deviates) by performing
some (undetectable) local computation.1 Our definition essentially requires that
this is the only way for either party to do better and so, in particular, each party
will (at least outwardly) continue to follow the protocol until the other deviates.
The fact that the prescribed strategies are in Nash equilibrium ensures that any
(polynomial-time) local computation performed by either party is of no benefit
as long as the other party follows the protocol.

Definition 4. Π induces a computational Nash equilibrium that is stable with
respect to trembles if

1. Π induces a computational Nash equilibrium;
2. There is a noticeable function δ such that for any ppt strategy ρ2 that is

δ-close to σ2, and any ppt strategy ρ1, there exists a ppt strategy σ′
1 ≈ Π

such that u1(ρ1, ρ2) ≤ u1(σ′
1, ρ2) + negl(k) (with an analogous requirement

for the case of deviations by P2).

Stated differently, even if a party Pi believes that the other party might play a
different strategy with some small probability δ, there is still no better strategy
for Pi than to outwardly follow the protocol2 (while possibly performing some
additional local computation).

3 Rational Secret Sharing: The 2-Out-of-2 Case

Let S = {0, 1}� be the domain of the secret. Let (Gen, Eval, Prove, Vrfy) be
a VRF with range {0, 1}�, and let (Gen′, Eval′, Prove′, Vrfy′) be a VRF with
range {0, 1}k. Protocol Π is defined as follows:
Sharing phase. Let s denote the secret. The dealer chooses an integer i∗ ∈ N
according to a geometric distribution with parameter β, where β is a constant
that depends on the players’ utilities but is independent of the security parame-
ter; we discuss how to set β below. We assume i∗ < 2k −1 since this occurs with
all but negligible probability. (Technically, if i∗ ≥ 2k −1 the dealer can just send
a special error message to each party.)

The dealer first computes the keys (pk1, sk1), (pk2, sk2) ← Gen(1k) as well as
(pk′

1, sk
′
1), (pk′

2, sk
′
2) ← Gen′(1k). Then the dealer computes:

1 As a trivial example, consider the case where with probability δ one party just sends
its share to the other.

2 Specifically, for any strategy ρi that does not yield equivalent play w.r.t. Π , there is
a strategy σ′

i that does yield equivalent play w.r.t. Π and performs about as well.
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– share1 := Evalsk2(i∗) ⊕ s and share2 := Evalsk1 (i∗) ⊕ s;
– signal1 := Eval′sk′

2
(i∗ + 1) and signal2 := Eval′sk′

1
(i∗ + 1).

Finally, the dealer gives to P1 the values (sk1, sk
′
1, pk2, pk

′
2, share1, signal1), and

gives to P2 the values (sk2, sk
′
2, pk1, pk

′
1, share2, signal2).

As written, the share given to each party only hides s in a computational sense.
Nevertheless, information-theoretic secrecy is easy to achieve; see Remark 1 at
the end of this section.

Reconstruction phase

At the outset, P1 chooses s
(0)
1 uniformly from S = {0, 1}� and P2 chooses s

(0)
2

the same way. Then in each iteration i = 1, . . ., the parties do the following:

(P2 sends message to P1:) P2 computes

– y
(i)
2 := Evalsk2(i), π

(i)
2 := Provesk2(i)

– z
(i)
2 := Eval′sk′

2
(i), π̄

(i)
2 := Prove′sk′

2
(i).

It then sends (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2 ) to P1.

(P1 receives message from P2:) P1 receives (y(i)
2 , π

(i)
2 , z

(i)
2 , π̄

(i)
2 ) from

P2. If P2 does not send anything, or if Vrfypk2
(i, y(i)

2 , π
(i)
2 ) = 0 or

Vrfy′pk′
2
(i, z(i)

2 , π̄
(i)
2 ) = 0, then P1 outputs s

(i−1)
1 and halts.

If signal1
?= z

(i)
2 then P1 outputs s

(i−1)
1 , sends its iteration-i message to P2

(see below), and halts. Otherwise, it sets s
(i)
1 := share1 ⊕ y

(i)
2 and continues.

(P1 sends message to P2:) P1 computes

– y
(i)
1 := Evalsk1(i), π

(i)
1 := Provesk1(i)

– z
(i)
1 := Eval′sk′

1
(i), π̄

(i)
1 := Prove′sk′

1
(i).

It then sends (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1 ) to P2.

(P2 receives message from P1:) P2 receives (y(i)
1 , π

(i)
1 , z

(i)
1 , π̄

(i)
1 ) from

P1. If P1 does not send anything, or if Vrfypk1
(i, y(i)

1 , π
(i)
1 ) = 0 or

Vrfy′pk′
1
(i, z(i)

1 , π̄
(i)
1 ) = 0, then P2 outputs s

(i−1)
2 and halts.

If signal2
?= z

(i)
1 then P2 outputs s

(i−1)
2 and halts. Otherwise, it sets s

(i)
2 :=

share2 ⊕ y
(i)
1 and continues.

Fig. 1. The reconstruction phase of secret-sharing protocol Π .

Reconstruction phase. A high-level overview of the protocol was given in
Section 1.1, and we give the formal specification in Figure 1. The reconstruc-
tion phase proceeds in a series of iterations, where each iteration consists of one
message sent by each party. Although these messages could be sent at the same
time (since they do not depend on each other), we do not want to assume simul-
taneous communication and therefore simply require P2 to communicate first in
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each iteration. (If one were willing to assume simultaneous channels then the
protocol could be simplified by having P2 send Eval′sk′

2
(i + 1) at the same time

as Evalsk2 (i), and similarly for P1.)
We give some intuition as to why the reconstruction phase of Π is a com-

putational Nash equilibrium for an appropriate choice of β. Assume P2 follows
the protocol, and consider possible deviations by P1. (Deviations by P2 are even
easier to analyze since P2 goes first in every iteration.) P1 can abort in iteration
i = i∗ + 1 (i.e., as soon as it receives z

(i)
2 = signal1), or it can abort in some

iteration i < i∗ + 1. In the first case P1 “knows” that it learned the dealer’s se-
cret in the preceding iteration (that is, in iteration i∗) and can thus output the
correct secret; however, P2 will output s

(i∗)
2 = s and so learns the secret as well.

So P1 does not increase its utility beyond what it would achieve by following the
protocol. In the second case, when P1 aborts in some iteration i < i∗ + 1, the
best strategy P1 can adopt is to output s

(i)
1 and hope that i = i∗. The expected

utility that P1 obtains by following this strategy can be calculated as follows:

– P1 aborts exactly in iteration i = i∗ with probability β. Then P1 gets utility
at most U+.

– When i < i∗, player P1 has “no information” about s and so the best it can
do is guess. The expected utility of P1 in this case is thus at most Urandom
(cf. Equation (1)).

Putting everything together, the expected utility of P1 following this strategy
is at most β × U+ + (1 − β) × Urandom. Since Urandom < U by assumption, it
is possible to set β so that the expected utility of this strategy is strictly less
than U , in which case P1 has no incentive to deviate.

That Π induces a strict computational Nash equilibrium (which is also stable
with respect to trembles) follows since there is always a unique valid message
a party can send; anything else is treated as an abort. A proof of the following
theorem appears in the full version of this work [9].

Theorem 1. If β > 0 and U > β · U+ + (1 − β) · Urandom, then Π induces a
computational strict Nash equilibrium that is stable with respect to trembles.

Remark 1. The sharing phase, as described, guarantees computational secrecy
only. A generic transformation from any such protocol (with bounded-size shares)
to one that achieves information-theoretic secrecy follows: After D generates
shares s1, s2 in the computationally secure scheme, it chooses random r1, r2 and
random keys k1, k2, and gives to Pi the share (si ⊕ ri, ki, r3−i, MACk3−i(r3−i)),
where MAC denotes an information-theoretically secure MAC. The reconstruc-
tion phase begins by having the parties exchange r1 and r2 along with the
associated MAC tags, verifying the tags (and aborting if they are incorrect),
and then recovering s1, s2. They then run the original protocol. It is easy to see
that this maintains all the game-theoretic properties of the original protocol.

Remark 2. In the reconstruction phase, as described, one party can cause the
other to output an incorrect secret (by aborting early). If the utilities of doing
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so are known, the protocol can be modified to rule out this behavior (in a game-
theoretic sense) using the same techniques as in [4, Section 5.2]. Specifically, the
dealer can — for each party — designate certain rounds as “completely fake”, so
that the party will know to output ⊥ instead of an incorrect secret in case the
other party aborts in that round. Using VRFs, this still can be achieved with
bounded-size shares. Details will appear in the full version.

3.1 Using Trapdoor Permutations Instead of VRFs

The protocol from the previous section can be adapted easily to use trapdoor
permutations instead of VRFs. The key observation is that the VRFs in the
previous protocol are used only in a very specific way: they applied sequentially to
values 1, 2, . . .. One can therefore use a trapdoor permutation f with associated
hardcore bit h to instantiate the VRF in our scheme in the following way: The
public key is a description of f along with a random element y in the domain
of f ; the secret key is the trapdoor enabling inversion of f . In iteration i, the
“evaluation” of the VRF on input i is the �-bit sequence

h
(
f−(i−1)�−1(y)

)
, h
(
f−(i−1)�−2(y)

)
, . . . , h

(
f−(i−1)�−�(y)

)
,

and the “proof” is πi = f−(i−1)�−�(y). Verification can be done using the original
point y, and can also be done in time independent of i by using πi−1 (namely,
by checking that f �(πi) = πi−1), assuming πi−1 has already been verified.

The essential properties we need still hold: verifiability and uniqueness of
proofs are easy to see, and pseudorandomness still holds with respect to a mod-
ified game where the adversary queries Evalsk(1), . . . ,Evalsk(i) and then has to
guess whether it is given Evalsk(i+1) or a random string. We omit further details.

4 Rational Secret Sharing: The t-Out-of-n Case

In this section we describe extensions of our protocol to the t-out-of-n case, where
we consider deviations by coalitions of up to t− 1 parties. Formal definitions of
game-theoretic notions in the multi-player setting, both for the case of single-
player deviations as well as coalitions, are fairly straightforward adaptations of
the definitions from Section 2.3 and are given in the full version of this work [9].

In describing our protocols we use VRFs for notational simplicity, but all
the protocols given here can be instantiated using trapdoor permutations as
described in Section 3.1.

A protocol for “exactly t-out-of-n” secret sharing. We begin by describing
a protocol Πt,n for t-out-of-n secret sharing that is resilient to coalitions of up
to t − 1 parties under the assumption that exactly t parties are active during
the reconstruction phase. (We also require that the coalition be a subset of the
active parties.) For now, we assume communication over a synchronous (but not
simultaneous) point-to-point network.
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Sharing Phase

To share a secret s ∈ {0, 1}�, the dealer does the following:

– Choose r∗ ∈ N according to a geometric distribution with parameter β.
– Generatea VRF keys (pk1, sk1), . . . , (pkn, skn) ← Gen(1k) followed by

(pk′
1, sk

′
1), . . . , (pk′

n, sk′
n) ← Gen′(1k).

– Choose random (t − 1)-degree polynomials G ∈ F2� [x] and H ∈ F2k [x]
such that G(0) = s and H(0) = 0.

– Send ski, sk
′
i to player Pi, and send to all parties the following values:

1. {(pkj , pk′
j)}1≤j≤n

2. {gj := G(j) ⊕ Evalskj (r∗)}1≤j≤n

3. {hj := H(j) ⊕ Eval′sk′
j
(r∗ + 1)}1≤j≤n

Reconstruction Phase

Let I be the indices of the t active players. Each party Pi (for i ∈ I) chooses
s
(0)
i uniformly from {0, 1}�. In each iteration r = 1, . . ., the parties do:

– For all i ∈ I (in ascending order), Pi sends the following to all players:(
y
(r)
i := Evalski(r), z

(r)
i := Eval′sk′

i
(r), Proveski(r), Prove′sk′

i
(r)
)
.

– If a party Pi receives an incorrect proof (or nothing) from any other
party Pj , then Pi terminates and outputs s

(r−1)
i . Otherwise:

• Pi sets h
(r)
j := hj ⊕ z

(r)
j for all j ∈ I , and interpolates a degree-

(t−1) polynomial H(r) through the t points {h(r)
j }j∈I . If H(r)(0) ?= 0

then Pi outputs s
(r−1)
i immediately, and terminates after sending its

current-iteration message.
• Otherwise, Pi computes s

(r)
i as follows: set g

(r)
j := gj ⊕ y

(r)
j for all

j ∈ I . Interpolate a degree-(t−1) polynomial G(r) through the points
{g(r)

j }j∈I , and set s
(r)
i := G(r)(0).

a Gen outputs VRF keys with range {0, 1}�, and Gen′ outputs VRF keys with
range {0, 1}k.

Fig. 2. Protocol Πt,n for “exactly t-out-of-n” secret sharing

As in the 2-out-of-2 case, every party is associated with two keys for a VRF.
The dealer chooses an iteration r∗ according to a geometric distribution, and
also chooses two random (t−1)-degree polynomials G,H (over some finite field)
such that G(0) = s and H(0) = 0. Each party receives blinded versions of all n
points {G(j), H(j)}n

j=1: each G(j) is blinded by the value of Pj ’s VRF on the
input r∗, and each H(j) is blinded by the value of Pj ’s VRF on the input r∗ +1.
In each iteration r, each party is supposed to send to all other parties the value
of their VRFs evaluated on the current iteration number r; once this is done,
every party can interpolate a polynomial to obtain candidate values for G(0)
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and H(0). When H(0) = 0 parties know the protocol is over, and output the
G(0) value reconstructed in the previous iteration. See Figure 2 for details.

Theorem 2. If β > 0 and U > β · U+ + (1 − β) · Urandom, then Πt,n induces a
(t−1)-resilient computational strict Nash equilibrium that is stable with respect to
trembles, as long as exactly t parties are active during the reconstruction phase.

A proof is exactly analogous to the proof of Theorem 1.

Handling the general case. The prior solution assumes exactly t parties are
active during reconstruction. If t∗ > t parties are active, the “natural” imple-
mentation of the protocol — where the lowest-indexed t parties run Πt,n and
all other parties remain silent — is not a (t − 1)-resilient computational Nash
equilibrium. To see why, let the active parties be I = {1, . . . t + 1} and let
C = {3, . . . , t + 1} be a coalition of t − 1 parties. In each iteration r, as soon as
P1 and P2 send their values the parties in C can compute t+ 1 points {g(r)

j }j∈I .
Because of the way these points are constructed, they are guaranteed to lie on a
(t−1)-degree polynomial when r = r∗, but are unlikely to lie on a (t−1)-degree
polynomial when r < r∗. This gives the parties in C a way to determine r∗ as
soon as that iteration is reached, at which point they can abort and output the
secret while preventing P1 and P2 from doing the same.

Fortunately, a simple modification works: simply have the dealer run indepen-
dent instances Πt,n, Πt+1,n, . . . , Πn,n; in the reconstruction phase, the parties
run Πt∗,n where t∗ denotes the number of active players. It follows as an easy
corollary of Theorem 2 that this induces a (t− 1)-resilient computational strict
Nash equilibrium (that is also stable with respect to trembles) regardless of how
many parties are active during the reconstruction phase. (As in previous work,
we only consider coalitions that are subsets of the parties who are active during
reconstruction. The protocol is no longer a computational Nash equilibrium if
this is not the case.3)

Asynchronous networks. Our protocol Πt,n can be adapted to work even
when the parties communicate over an asynchronous point-to-point network.
(In our model of asynchronous networks, messages can be delayed arbitrarily
and delivered out of order, but any message that is sent is eventually delivered.)
In this case parties cannot distinguish an abort from a delayed message and so
we modify the protocol as follows: each party proceeds to the next iteration as
soon as it receives t − 1 valid messages from the previous iteration, and only
halts if it receives an invalid message from someone. More formal treatment of
the asynchronous case, including a discussion of definitions in this setting and a
proof for the preceding protocol, is given in the full version of this work [9].

As before, we can handle the general case by having the dealer run the “exactly
t∗-out-of-n” protocol just described for all values of t∗ ∈ {t, . . . , n}.
3 This case can be addressed, however, by having the dealer run independent instances

of Πt,n for all
(

n
t

)
subsets of size t; to reconstruct, the t lowest-indexed active players

run the instance corresponding to their subset while the remaining active players are
silent. This is only efficient when t (or n − t) is small.
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A Verifiable Random Functions (VRFs)

A VRF is a keyed function whose output is “random-looking” but can still
be verified as correct, given an associated proof. The notion was introduced by
Micali, Rabin, and Vadhan [25], and various constructions in the standard model
are known [25, 6, 23, 8]. The definition we use is stronger than the “standard”
one in that it includes a uniqueness requirement on the proof as well, but the
constructions of [6,8] achieve it. (Also, we use VRFs only as a stepping stone to
our construction based on trapdoor permutations; see Section 3.1.)

Definition 5. A verifiable random function (VRF) with range R = {Rk} is a
tuple of probabilistic polynomial-time algorithms (Gen, Eval, Prove, Vrfy) such
that the following hold:

Correctness: For all k, any (pk, sk) output by Gen(1k), the algorithm Evalsk

maps k-bit inputs to the set Rk. Furthermore, for any x ∈ {0, 1}k we have
Vrfypk (x,Evalsk(x),Provesk(x)) = 1.
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Verifiability: For all (pk, sk) output by Gen(1k), there does not exist a tuple
(x, y, y′, π, π′) with y �= y′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y′, π′).

Unique proofs: For all (pk, sk) output by Gen(1k), there does not exist a tuple
(x, y, π, π′) with π �= π′ and Vrfypk(x, y, π) = 1 = Vrfypk(x, y, π′).

Pseudorandomness: Consider the following experiment involving an
adversary A:

1. Generate (pk, sk) ← Gen(1k) and give pk to A. Then A adaptively
queries a sequence of strings x1, . . . , x� ∈ {0, 1}k and is given yi =
Evalsk(xi) and πi = Provesk(xi) in response to each such query xi.

2. A outputs a string x ∈ {0, 1}k subject to the restriction x �∈ {x1, . . . , x�}.
3. A random bit b ← {0, 1} is chosen. If b = 0 then A is given y = Evalsk(x);

if b = 1 then A is given a random y ← Rk.
4. A makes more queries as in step 2, as long as none of these queries is

equal to x.
5. At the end of the experiment, A outputs a bit b′ and succeeds if b′ = b.

We require that the success probability of any ppt adversary A is 1
2 +negl(k).
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Abstract. Learning is a task that generalizes many of the analyses that
are applied to collections of data, and in particular, collections of sen-
sitive individual information. Hence, it is natural to ask what can be
learned while preserving individual privacy. [Kasiviswanathan, Lee, Nis-
sim, Raskhodnikova, and Smith; FOCS 2008] initiated such a discussion.
They formalized the notion of private learning, as a combination of PAC
learning and differential privacy, and investigated what concept classes
can be learned privately. Somewhat surprisingly, they showed that, ig-
noring time complexity, every PAC learning task could be performed
privately with polynomially many samples, and in many natural cases
this could even be done in polynomial time.

While these results seem to equate non-private and private learning,
there is still a significant gap: the sample complexity of (non-private)
PAC learning is crisply characterized in terms of the VC-dimension of
the concept class, whereas this relationship is lost in the constructions
of private learners, which exhibit, generally, a higher sample complexity.

Looking into this gap, we examine several private learning tasks and
give tight bounds on their sample complexity. In particular, we show
strong separations between sample complexities of proper and improper
private learners (such separation does not exist for non-private learners),
and between sample complexities of efficient and inefficient proper pri-
vate learners. Our results show that VC-dimension is not the right mea-
sure for characterizing the sample complexity of proper private learning.

We also examine the task of private data release (as initiated by [Blum,
Ligett, and Roth; STOC 2008]), and give new lower bounds on the sample
complexity. Our results show that the logarithmic dependence on size of
the instance space is essential for private data release.

1 Introduction

Consider a scenario in which a survey is conducted among a sample of random
individuals and datamining techniques are applied to learn information on the
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entire population. If such information will disclose information on the individ-
uals participating in the survey, then they will be reluctant to participate in
the survey. To address this question, Kasiviswanathan et al. [10] introduced the
notion of private learning. Informally, a private learner is required to output a
hypothesis that gives accurate classification while protecting the privacy of the
individual samples from which the hypothesis was obtained. The formal notion
of a private learner is a combination of two qualitatively different notions. One
is that of PAC learning [17], the other of differential privacy [7]. In PAC (prob-
ably approximately correct) learning, a collection of samples (labeled examples)
is generalized into a hypothesis. It is assumed that the examples are generated
by sampling from some (unknown) distribution D and are labeled according
to an (unknown) concept c taken from some concept class C. The learned hy-
pothesis h should predict with high accuracy the labeling of examples taken
from the distribution D, an average-case requirement. Differential privacy, on
the other hand, is formulated as a worst-case requirement. It requires that the
output of a learner should not be significantly affected if a particular example d
is replaced with arbitrary d′, for all d and d′. This strong notion provides rig-
orous privacy guarantees even against attackers empowered with arbitrary side
information [11].

Recent research on privacy has shown, somewhat surprisingly, that it is possi-
ble to design differentially private variants of many analyses (see [6] for a recent
survey). In this line, the work of [10] demonstrated that private learning is gen-
erally feasible – any concept class that is PAC learnable can be learned privately
(but not necessarily efficiently), by a “Private Occam’s Razor” algorithm, with
sample complexity that is logarithmic in the size of the hypothesis class. Fur-
thermore, taking into account the earlier result of [2] (that all concept classes
that can be efficiently learned in the statistical queries model can be learned pri-
vately and efficiently) and the efficient private parity learner of [10], we get that
most “natural” computational learning tasks can be performed privately and ef-
ficiently (i.e., with polynomial resources). This is important as learning problems
generalize many of the computations performed by analysts over collections of
sensitive data.

The results of [2, 10] show that private learning is feasible in an extremely
broad sense, and hence one can essentially equate learning and private learning.
However, the costs of the private learners constructed in [2, 10] are generally
higher than those of non-private ones by factors that depend not only on the
privacy, accuracy, and confidence parameters of the private learner. In particular,
the well-known relationship between the sampling complexity of PAC learners
and the VC-dimension of the concept class (ignoring computational efficiency) [5]
does not hold for the above constructions of private learners – as their sample
complexity is proportional to the logarithm of the size of the concept class. Recall
that the VC-dimension of a concept class is bounded by the logarithm of its size,
and is significantly lower for many interesting concept classes, hence there may
exist learning tasks for which “very practical” non-private learner exists, but
any private learner is “impractical”.
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The focus of this work is on a fine-grain examination of the differences in
complexity between private and non-private learning. The hope is that such
an examination will eventually lead to an understanding of which complexity
measure is relevant for the sample complexity of private learning, similar to the
well-understood relationship between the VC-dimension and sample complexity
of PAC learning. Such an examination is interesting also for other tasks, and
a second task we examine is that of releasing a sanitization of a data set that
simultaneously protects privacy of individual contributors and offers utility to
the data analyst. See the discussion in Section 1.1.

1.1 Our Contributions

We now give a brief account of our results. Throughout this rather informal
discussion we will treat the accuracy, confidence, and privacy parameters as
constants (a detailed analysis revealing the dependency on these parameters is
presented in the technical sections). We use the term “efficient” for polynomial
time computations.

Following standard computational learning terminology, we will call learn-
ers for a concept class C that only output hypotheses in C proper, and other
learners improper. The original motivation in computational learning theory for
this distinction is that there exist concept classes C for which proper learning
is computationally intractable [16], whereas it is possible to efficiently learn C
improperly [17]. As we will see below, the distinction between proper and im-
proper learning is useful also when discussing private learning, and for more
reasons than making intractable learning tasks tractable.

Proper and Improper Private Learning. It is instructive to look into the
construction of the Private Occam’s Razor algorithm of [10] and see why its
sample complexity is proportional to the logarithm of the size of the hypothe-
sis class used. The algorithm uses the exponential mechanism of McSherry and
Talwar [14] to choose a hypothesis. The choice is probabilistic, where the prob-
ability mass that is assigned to each of the hypotheses decreases exponentially
with the number of samples that are inconsistent with it. A union-bound argu-
ment is used in the claim that the construction actually yields a learner, and a
sample size that is logarithmic in the size of the hypothesis class is needed for
the argument to go through.

For our analyses in this paper, we consider a simple, but natural, class POINT d

containing the concepts cj : {0, 1}d → {0, 1} where cj(x) = 1 for x = j, and
0 otherwise. The VC-dimension of POINT d is one, and hence it can be learned
(non-privately and efficiently, properly or improperly) with merely O(1) samples.

In sharp contrast, (when used for properly learning POINT d) the Private Oc-
cam’s Razor algorithm requires O(log |POINT d|) = O(d) samples – obtaining
the largest possible gap in sample complexity when compared to non-private
learners! Our first result is a matching lower bound. We prove that any proper
private learner for POINT d must use Ω(d) samples, therefore, answering nega-
tively the question (from [10]) of whether proper private learners should exhibit
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sample complexity that is approximately the VC-dimension (or even a function
of the VC-dimension) of the concept class1.

A natural way to improve on the sample complexity is to use the Private Oc-
cam’s Razor to improperly learn POINT d with a smaller hypothesis class that
is still expressive enough for POINT d, reducing the sample complexity to the
logarithm of the smaller hypothesis class. We show that this indeed is possi-
ble, as there exists a hypothesis class of size O(d) that can be used for learning
POINT d improperly, yielding an algorithm with sample complexity O(log d).
Furthermore, this bound is tight, any hypothesis class for learning POINT d

must contain Ω(d) hypotheses. These bounds are interesting as they give a sep-
aration between proper and improper private learning – proper private learning
of POINT d requires Ω(d) samples, whereas POINT d can be improperly privately
learned using O(log d) samples. Note that such a combinatorial separation does
not exist for non-private learning, as a VC-dimension number of samples are
needed and sufficient for both proper and improper non-private learners. Fur-
thermore, the Ω(d) lower bound on the size of the hypothesis class maps a clear
boundary to what can be achieved in terms of sample complexity using the Pri-
vate Occam’s Razor for POINT d. It might even suggest that any private learner
for POINT d should use Ω(log d) samples.

It turns out, however, that the intuition expressed in the last sentence is
at fault. We construct an efficient improper private learner for POINT d that
uses merely O(1) samples, hence establishing the strongest possible separation
between proper and improper private learners. For the construction we extrapo-
late on a technique from the efficient private parity learner of [10]. The construc-
tion of [10] utilizes a natural non-private proper learner, and hence results in a
proper private learner, whereas, due to the bounds mentioned above, we cannot
use a proper learner for POINT d, and hence we construct an improper (rather
unnatural) learner to base our construction upon. Our construction utilizes a
double-exponential hypothesis class, and hence is inefficient (even outputting a
hypothesis requires super-polynomial time). We use a simple compression using
pseudorandom functions (akin to [15]) to make the algorithm efficient.
Efficient and Inefficient Proper Private Learning. We apply the above
lower bound on the number of samples for proper private learning POINT d to
show a separation in the sample size between efficient and inefficient proper
private learning. Assuming the existence of pseudorandom generators with ex-
ponential stretch, we present a concept class P̂OINT d – a variant of POINT d

– such that every efficient proper private learner for this class requires Ω(d)
samples. In contrast, an inefficient proper private learner exists that uses only a
super-logarithmic number of samples. This is the first example where requiring
efficiency on top of privacy comes at a price of larger sample size.
The Sample Size of Non-Interactive Sanitization Mechanisms. Given
a database containing a collection of individual information, a sanitization is
1 Our proof technique yields lower bounds not only on private learning POINTd prop-

erly, but on private learning of any concept class C with various hypothesis classes
that we call α-minimal for C.
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a release that protects the privacy of the individual contributors while offering
utility to the analyst using the database. The setting is non-interactive if once
the sanitization is released the original database and the curator play no further
role. Blum et al. [3] presented a construction of such non-interactive sanitizers
for count queries. Let C be a concept class consisting of efficiently computable
predicates from a discretized domain X to {0, 1}. Given a collection D of data
items taken from X , Blum et al. employ the exponential mechanism [14] to
(inefficiently) obtain another collection D′ with data items from X such that D′

maintains approximately correct count of
∑

d∈D c(d) for all concepts c ∈ C. Also,
they show that it suffices for D to have a size that is O(log |X | · VCDIM (C)).
The database D′ is referred to as a synthetic database as it contains data items
drawn from the same universe (i.e., from X) as the original database D.

We provide new lower bounds for non-interactive sanitization mechanisms.
We show that for POINT d every non-interactive sanitization mechanism that
is useful2 for POINT d requires a database of Ω(d) size. This lower bound is
tight as the sanitization mechanism of Blum et al. for POINT d uses a database
of O(d · VCDIM (POINT d)) = O(d) size. Our lower bound holds even if the
sanitized output is an arbitrary data structure and not a synthetic database.

1.2 Related Work

The notion of PAC learning was introduced by Valiant [17]. The notion of differ-
ential privacy was introduced by Dwork et al. [7]. Private learning was introduced
in [10]. Beyond proving that (ignoring computation) every concept class can be
PAC learned privately (see Theorem 2 below), they proved an equivalence be-
tween learning in the statistical queries model and private learning in the local
communication model (aka randomized response). The general private data re-
lease mechanism we mentioned above was introduced in [3] along with a specific
construction for halfspace queries. As we mentioned above, both [10] and [3] use
the exponential mechanism of [14], a generic construction of differential private
analyses, that (in general) does not yield efficient algorithms.

A recent work of Dwork et al. [8] considered the complexity of non-interactive
sanitization under two settings: (a) sanitized output is a synthetic database, and
(b) sanitized output is some arbitrary data structure. For the task of sanitizing
with a synthetic database they show a separation between efficient and inefficient
sanitization mechanisms based on whether the size of the instance space and
the size of the concept class is polynomial in a (security) parameter or not.
For the task of sanitizing with an arbitrary data structure they show a tight
connection between the complexity of sanitization and traitor tracing schemes
used in cryptography. They leave the problem of separating efficient private and
inefficient private learning open.

It is well known that for all concept classes C, every learner for C requires
Ω(VCDIM (C)) samples [9]. This lower bound on the sample size also holds for
2 Informally, a mechanism is useful for a concept class if for every input, the output of

the mechanism maintains approximately correct counts for all concepts in the concept
class.
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private learning. Blum, Ligett, and Roth [4] have recently extended this result
to the setting of private data release. They show that for all concept classes
C, every non-interactive sanitization mechanism that is useful for C requires
Ω(VCDIM (C)) samples. We show in Section 4 that this bound is not tight –
there exists a concept class C of constant VC-dimension such that every non-
interactive sanitization mechanism that is useful for C requires a much larger
sample size.

2 Preliminaries
Notation. We use [n] to denote the set {1, 2, . . . , n}. The notation Oγ(g(n)) is
a shorthand for O(h(γ) · g(n)) for some non-negative function h. Similarly, the
notation Ωγ(g(n)). We use negl(·) to denote functions from R+ to [0, 1] that
decrease faster than any inverse polynomial.

2.1 Preliminaries from Privacy

A database is a vector D = (d1, . . . , dm) over a domain X , where each entry
di ∈ D represents information contributed by one individual. Databases D and
D′ are called neighbors if they differ in exactly one entry (i.e., the Hamming
distance between D and D′ is 1). An algorithm is private if neighboring databases
induce nearby distributions on its outcomes. Formally:

Definition 1 (Differential Privacy [7]). A randomized algorithm A is ε-
differentially private if for all neighboring databases D,D′, and for all sets S
of outputs,

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S]. (1)

The probability is taken over the random coins of A.

An immediate consequence of Equation (1) is that for any two databases D,D′

(not necessarily neighbors) of size m, and for all sets S of outputs, Pr[A(D) ∈
S] ≥ exp(−εm) · Pr[A(D′) ∈ S].

2.2 Preliminaries from Learning Theory

We consider Boolean classification problems. A concept is a function that labels
examples taken from the domain X by the elements of the range {0, 1}. The
domain X is understood to be an ensemble X = {Xd}d∈N. A concept class C is
a set of concepts, considered as an ensemble C = {Cd}d∈N where Cd is a class of
concepts from {0, 1}d to {0, 1}.

A concept class comes implicitly with a way to represent concepts and size(c)
is the size of the (smallest) representation of c under the given representation
scheme. Let D be a distribution on Xd. PAC learning algorithms are designed
assuming a promise that the examples are labeled consistently with some target
concept c from a class C. Define,

error
D

(c, h) = Pr
x∼D

[h(x) �= c(x)].
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Definition 2 (PAC Learning [17]). An algorithm A is an (α, β)-PAC learner
of a concept class Cd over Xd using hypothesis class Hd and sample size n if for
all concepts c ∈ Cd, all distributions D on Xd, given an input D = (d1, · · · , dn),
where di = (xi, c(xi)) and xi are drawn i.i.d. from D for i ∈ [n], algorithm
A outputs a hypothesis h ∈ Hd satisfying Pr[errorD(c, h) ≤ α] ≥ 1 − β. The
probability is taken over the random choice of the examples D and the coin
tosses of the learner.

An algorithm A, whose inputs are d, α, β, and a set of samples (labeled exam-
ples) D, is a PAC learner of a concept class C = {Cd}d∈N over X = {Xd}d∈N

using hypothesis class Hd = {Hd}d∈N if there exists a polynomial p(·, ·, ·, ·) such
that for all d ∈ N and 0 < α, β < 1, the algorithm A(d, α, β, ·) is an (α, β)-
PAC learner of the concept class Cd over Xd using hypothesis class Hd and
sample size n = p(d, size(c), 1/α, log(1/β)). If A runs in time polynomial in
d, size(c), 1/α, log(1/β), we say that it is an efficient PAC learner. Also, the
learner is called a proper PAC learner if H = C, otherwise it is called an im-
proper PAC learner.

A concept class C = {Cd}d∈N over X = {Xd}d∈N is PAC learnable using
hypothesis class H = {Hd}d∈N if there exists a PAC learner A learning C over
X using hypothesis class H. If A is an efficient PAC learner, we say that C is
efficiently PAC learnable.

It is well known that improper learning is more powerful than proper learning.
For example, Pitt and Valiant [16] show that unless RP=NP, k-term DNF
formulae are not learnable by k-term DNF, whereas it is possible to learn a
k-term DNF using k-CNF [17]. For more background on learning theory, see,
e.g., [13].

Definition 3 (VC-Dimension [18]). Let C = {Cd} be a class of concepts over
X = {Xd}. We say that Cd shatters a point set Y ⊂ Xd if |{c(Y ) : c ∈ Cd}| =
2|Y |, i.e., the concepts in Cd when restricted to Y produce all the 2|Y | possible
assignments on Y . the VC-dimension of C is defined as the size of the maximum
point set that is shattered by Cd, as a function of d.

Theorem 1 ([5]). A concept class C = {Cd} over X = {Xd} is PAC learnable
using C by a PAC learner A that uses O((VCDIM (Cd)·log 1

α +log 1
β )/α) samples.

2.3 Private Learning

Definition 4 (Private PAC Learning [10]). Let d, α, β be as in Definition 2
and ε > 0. Concept class C is ε-differentially privately PAC learnable using H if
there exists an algorithm A that takes inputs ε, d, α, β,D, where n, the number
of samples (labeled examples) in D is polynomial in 1/ε, d, size(c), 1/α, log(1/β),
and satisfies

Privacy. For all d and ε, α, β > 0, algorithm A(ε, d, α, β, ·) is ε-differentially
private (Definition 1);
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Utility. For all ε > 0, algorithm A(ε, ·, ·, ·, ·) PAC learns C using H (Defini-
tion 2).

A is an efficient private PAC learner if it runs in time polynomial in 1/ε, d,
size(c), 1/α, log(1/β). Also, the private learner is called proper if H = C, oth-
erwise it is called improper.

Remark 1. The privacy requirement in Definition 4 is a worst-case requirement.
That is, Equation (1) must hold for every pair of neighboring databases D,D′

(even if these databases are not consistent with any concept in C). In contrast,
the utility requirement is an average-case requirement, where we only require the
learner to succeed with high probability over the distribution of the databases.
This qualitative difference between the utility and privacy of private learners is
crucial. A wrong assumption on how samples are formed that leads to a mean-
ingless outcome can usually be replaced with a better one with very little harm.
No such amendment is possible once privacy is lost due to a wrong assumption.

Note also that each entry di in a database D is a labeled example. That is,
we protect the privacy of both the example and its label.

Observation 1. The computational separation between proper and improper
learning also holds when we add the privacy constraint. That is unless RP=NP
no proper private learner can learn k-term DNF, whereas there exists an effi-
cient improper private learner that can learn k-term DNF using a k-CNF. The
efficient k-term DNF learner of [17] uses statistical queries (SQ) [12] which can
be simulated efficiently and privately as shown by [2, 10].

More generally, such a gap can be shown for any concept class that cannot
be properly PAC learned, but can be efficiently learned (improperly) in the
statistical queries model.

3 Learning vs. Private Learning

We begin by recalling the upper bound on the sample (database) size for private
learning from [10]. The bound in [10] is for agnostic learning, and we restate it
for (non-agnostic) PAC learning using the following notion of α-representation:

Definition 5. We say that a hypothesis class Hd α-represents a concept class
Cd over the domain Xd if for every c ∈ Cd and every distribution D on Xd there
exists a hypothesis h ∈ Hd such that errorD(c, h) ≤ α.

Theorem 2 (Kasiviswanathan et al. [10], restated). Assume that there is
a hypothesis class Hd that α-represents a concept class Cd. Then, there exists
a private PAC learner for Cd using Hd that uses O((log |Hd| + log(1/β))/(εα))
labeled examples, where ε, α, and β are parameters of the private learner. The
learner might not be efficient.

In other words, using Theorem 2 the number of labeled examples required for
learning a concept class Cd is logarithmic in the size of the smallest hypothesis
class that α-represents Cd. For comparison, the number of labeled examples
required for learning Cd non-privately is proportional to the VC-dimension of
Cd [5, 9].
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3.1 Separation between Private and Non-private PAC Learning

Our first result shows that private learners may require many more samples than
non-private ones. We consider a very simple concept class of VC-dimension one,
and hence is (non-privately) properly learnable using Oα,β(1) labeled examples.
We prove that for any proper learner for this class the required number of la-
beled examples is at least logarithmic in the size of the concept class, matching
Theorem 2.

Proving the lower bound, we show that a large collection of m-record databases
D1, . . . , DN exists, with the property that every PAC learner has to output
a different hypothesis for each of these databases (recall that in our context
a database is a collection of labeled examples, supposedly drawn from some
distribution and labeled consistently with some target concept).

As any two databases Da and Db differ on at most m entries, a private learner
must, because of the differential privacy requirement, output on input Da the
hypothesis that is accurate for Db (and not accurate for Da) with probability
at least (1 − β) · exp(−εm). Since this holds for every pair of databases, unless
m is large enough we get that the private learner’s output on Da is, with high
probability, a hypothesis that is not accurate for Da. We use the following notion
of α-minimality:

Definition 6. If Hd α-represents Cd, and every H′
d � Hd does not α-represent

Cd, then we say that Hd is α-minimal for Cd.

Theorem 3. Let Hd be an α-minimal class for Cd. Then any private PAC
learner that learns Cd using Hd requires Ω((log |Hd| + log(1/β))/ε) labeled ex-
amples.

Proof. Let Cd be over the domain Xd and let Hd be α-minimal for Cd. Since
for every h ∈ Hd, Hd \ {h} does not α-represent Cd, we get that there exists a
concept ch ∈ Cd and a distribution Dh on Xd such that on inputs drawn from
Dh labeled by ch, every PAC learner (that learns Cd using Hd) has to output h
with probability at least 1 − β.

Let A be a private learner that learns Cd using Hd, and suppose A uses m
labeled examples. For every h ∈ Hd, note that there exists a database Dh ∈ Xm

d

on which A has to output h with probability at least 1 − β. To see that, note
that if A is run on m examples chosen i.i.d. from the distribution Dh and labeled
according to ch, then A outputs h with probability at least 1 − β (where the
probability is over the sampling from Dh and over the randomness of A). Hence,
a collection of m labeled examples over which A outputs h with probability 1−β
exists, and Dh can be set to contain these m labeled examples.

Take h, h′ ∈ Hd such that h �= h′ and consider the two corresponding databases
Dh and Dh′ with m entries each. Clearly, they differ in at most m entries, and
hence we get by differential privacy of A that

Pr[A(Dh) = h′] ≥ exp(−εm) · Pr[A(Dh′) = h′] ≥ exp(−εm) · (1 − β).
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Since the above inequality holds for every pair of databases, we fix any h and
get,

Pr[A(Dh) �= h] = Pr[A(Dh) ∈ Hd \ {h}] =
∑

h′∈Hd\{h}
Pr[A(Dh) = h′]

≥ (|Hd| − 1) · exp(−εm) · (1 − β).

On the other hand, we chose Dh such that Pr[A(Dh) = h] ≥ 1−β, equivalently,
Pr[A(Dh) �= h] ≤ β. We hence get that (|Hd|−1)·exp(−εm)·(1−β) ≤ β. Solving
the last inequality for m, we get m = Ω((log |Hd|+log(1/β))/ε) as required. ��

Using Theorem 3, we now prove a lower bound on the number of labeled examples
needed for proper private learning a specific concept class. Let T = 2d and
Xd = {1, . . . , T }. Define the concept class POINT d to be the set of points over
{1, . . . , T }:

Definition 7 (Concept Class POINT d). For j ∈ [T ] define cj : [T ] → {0, 1}
as cj(x) = 1 if x = j, and cj(x) = 0 otherwise. POINT d = {cj}j∈[T ].

We note that we use the set {1, . . . , T } for notational convenience only. We never
use the fact that the set elements are integer numbers.

Proposition 1. POINT d is α-minimal for itself.

Proof. Clearly, POINT d α-represents itself. To show minimality, consider a sub-
set H′

d � POINT d, where ci �∈ H′
d. Note that under the distribution D that

chooses i with probability one, errorD(ci, cj) = 1 for all j �= i. Hence, H′
d does

not α-represent POINT d. ��

The VC-dimension of POINT d is one3. It is well known that a standard (non-
private) proper learner uses approximately VC-dimension number of labeled ex-
amples to learn a concept class [5]. In contrast, we get that far more labeled
examples are needed for any proper private learner for POINT d. The following
corollary follows directly from Theorem 3 and Proposition 1:

Corollary 1. Every proper private PAC learner for POINTd requires Ω((d +
log(1/β))/ε) labeled examples.

Remark 2. We note that the lower bound for POINT d can be improved to Ω((d+
log(1/β))/(εα)) labeled examples, matching the upper bound from Theorem 2.
Also, the proper learner for POINT d from Theorem 2 can be made efficient.
Details are deferred to the full version [1].

We conclude this section showing that every hypothesis class H that α-represents
POINT d should have at least d hypotheses. Therefore, if we use Theorem 2 to
3 Note that every singleton {j} where j ∈ [T ] is shattered by POINTd as cj(j) = 1

and cj′(j) = 0 for all j′ �= j. No set of two points {j, j′} is shattered by POINTd as
cj′′ (j) = cj′′ (j′) = 1 for no j′′ ∈ [T ].
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learn POINT d we need Ω(log d) labeled examples. At first sight, it may seem
that the relationship between |H| and the sample complexity is essential, and
hence, the number of labeled examples needed for every private PAC learner
for POINT d is super-constant. However, this turns out not to be the case. In
Section 3.2, we present a private learner for POINT d that uses Oα,β,ε(1) labeled
examples. For this construction, we use techniques that are very different from
those used in the proof of Theorem 2. In particular, our private learner uses a
very large hypothesis class.

Lemma 1. Let α < 1/2. |H| ≥ d for every hypothesis class H that α-represents
POINT d.

Proof. Let H be a hypothesis class with |H| < d. Consider a table whose T =
2d columns correspond to the possible 2d inputs 1, . . . , T , and whose |H| rows
correspond to the hypothesis in H. The (i, j)th entry is 0 or 1 depending on
whether the ith hypothesis gives 0 or 1 on input j. Since |H| < d = logT , at
least two columns j �= j′ are identical. That is, h(j) = h(j′) for every h ∈ H.
Consider the concept cj ∈ POINT d (defined as cj(x) = 1 if x = j, and 0
otherwise), and the distribution D with probability mass 1/2 on both j and j′.
We get that errorD(cj , h) ≥ 1/2 > α for all h ∈ H (since any hypothesis either
errs on j or on j′). Therefore, H does not α-represent POINT d. ��

3.2 Separation between Proper and Improper Private PAC
Learning

We now use POINT d to show a separation between proper and improper private
PAC learning. We show that POINT d can be privately (and efficiently) learned
by an improper learner using Oα,β,ε(1) labeled examples. We begin by presenting
a non-private improper PAC learner A1 for POINT d that succeeds with only
constant probability. Roughly, A1 applies a simple proper learner for POINT d,
and then modifies its outcome by adding random “noise”. We then use sampling
to convert A1 into a private learner A2, and like A1 the probability that A2
succeeds in learning POINT d is only a constant. Later we amplify the success
probability of A2 to get a private PAC learner. Both A1 and A2 are inefficient
as they output hypotheses with exponential description length. However, using
a pseudorandom function it is possible to compress the outputs of A1 and A2,
and hence achieve efficiency.

Algorithm A1. Given labeled examples (x1, y1), . . . , (xm, ym), algorithm A1 per-
forms the following:

1. If (x1, y1), . . . , (xm, ym) are not consistent with any concept in POINT d,
return ⊥ (this happens only if xi �= xj and yi = yj = 1 for some i, j ∈ [m] or
if xi = xj and yi �= yj).

2. If yi = 0 for all i ∈ [m], then let c = 0 (the all zero hypothesis); otherwise,
let c be the (unique) hypothesis from POINT d that is consistent with the m
input labeled examples.
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3. Modify c at random to get a hypothesis h by letting h(x) = c(x) with prob-
ability 1 − α/8, and h(x) = 1 − c(x) otherwise for all x ∈ [T ]. Return h.

Let m = 2 ln(4)/α. We next argue that if m examples are drawn i.i.d. according
to a distribution D on [T ], and the examples are labeled consistently according
to some cj ∈ POINT d, then Pr[errorD(cj , c) > α/2] ≤ 1/4. If the examples are
labeled consistently according to some cj �= 0, then c �= cj only if (j, 1) is not
in the sample and in this case c = 0. If Prx∼D[x = j] ≤ α/2 and (j, 1) is not
in the sample, then c = 0 and errorD(cj ,0) ≤ α/2. If Prx∼D[x = j] ≤ α/2
and (j, 1) is in the sample, then c = cj and errorD(cj , c) = 0. Otherwise if
Prx∼D[x = j] > α/2, the probability that all m examples are not (j, 1) is at
most (1 − α/2)m = ((1 − α/2)2/α)ln 4 ≤ 1/4.

To see that A1 PAC learns POINT d (with accuracy α and confidence 1/4)
note that

E
h
[error

D
(c, h)] = E

h
E

x∼D
[|h(x) − c(x)|] = E

x∼D
E
h
[|h(x) − c(x)|] =

α

8
,

and hence, using Markov’s Inequality, Prh[errorD(c, h) > α/2] ≤ 1/4. Combining
this with Pr[errorD(cj , c) > α/2] ≤ 1/4 and errorD(cj , h) ≤ errorD(cj , c) +
errorD(c, h), implies that Pr[errorD(cj , h) > α] ≤ 1/2.
Algorithm A2. We now modify learner A1 to get a private learner A2 (a simi-
lar idea was used in [10] for learning parity functions). Given labeled examples
(x1, y1), . . . , (xm′ , ym′), algorithm A2 performs the following:

1. With probability α/8, return ⊥.
2. Construct a set S ⊆ [m′] by picking each element of [m′] with probability

p = α/4. Run the non-private learner A1 on the examples indexed by S.

We first show that, given m′ = 8m/α labeled examples, A2 PAC learns POINT d

with confidenceΘ(1). Note that, by Chernoff bound, Pr[|S| ≤ m] ≤ exp(−m/4) =
Oα(1). Therefore, we get that A2 PAC learns POINT d with accuracy parameter
α′ = α and confidence parameter β′ = 1/2 + α/8 + exp(−m/4) = Θ(1). We now
show that A2 is ε∗-differentially private with bounded ε∗.

Claim. Algorithm A2 is ε∗-differentially private, where ε∗ = ln(4).

Proof. Let D,D′ be two neighboring databases, and assume that they differ on
the ith entry. First let us analyze the probability of A2 outputting ⊥:

Pr[A2(D) =⊥]
Pr[A2(D′) =⊥]

=
p · Pr[A2(D) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]
p · Pr[A2(D′) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

≤ p · 1 + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

=
p

(1 − p) · Pr[A2(D′) =⊥ | i /∈ S]
+ 1 ≤ 8p

α(1 − p)
+ 1,

where the last equality follows noting that if i /∈ S then A2 is equally likely to
output ⊥ on D and D′, and the last inequality follows as ⊥ is returned with
probability α/8 in Step 1 of Algorithm A2.
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For the more interesting case, where A2 outputs a hypothesis h, we get:

Pr[A2(D) = h]
Pr[A2(D′) = h]

=
p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]
p · Pr[A2(D′) = h | i ∈ S] + (1 − p) · Pr[A2(D′) = h | i /∈ S]

≤ p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) = h | i /∈ S]

=
p

1 − p
· Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

+ 1,

where the last equality uses the fact that if i /∈ S then A2 is equally likely to
output h on D and D′. To conclude our proof, we need to bound the ratio of
Pr[A2(D) = h | i ∈ S] to Pr[A2(D) = h | i /∈ S].

Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

=

∑
R⊆[m′]\{i} Pr[A2(D) = h | S = R ∪ {i}] · Pr[A2 selects R from [m′] \ {i}]∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R] · Pr[A2 selects R from [m′] \ {i}]

≤ max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h | S = R]

.

Now, having or not having access to (xi, yi) can only affect the choice of h(xi),
and since, A1 flips the output with probability α/8, we get

max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h |S = R]

≤ 1 − α/8
α/8

≤ 8
α

.

Putting everything together, we get

Pr[A2(D) = h]
Pr[A2(D′) = h]

≤ 8p
α(1 − p)

+ 1 =
8

(4 − α)
+ 1 < 3 + 1 = eε∗ . ��

We can reduce ε∗ to any desired ε using the following simple lemma (implicit
in [10], see proof in [1]):

Lemma 2. Let A be an ε∗-differentially private algorithm. Construct an algo-
rithm B that on input a database D = (d1, . . . , dn) constructs a new database
Ds whose ith entry is di with probability f(ε, ε∗) = (exp(ε) − 1)/(exp(ε∗) +
exp(ε) − exp(ε − ε∗) − 1) and ⊥ otherwise, and then runs A on Ds. Then, B is
ε-differentially private.

It is clearly possible to incorporate the sampling in the lemma directly in Step 2
of A2 (note that for small ε, f(ε, ε∗) ≈ ε/(exp(ε∗)− 1)). We get that the number
of labeled examples required to get a private learner with confidence parameter
Θ(1) is Oα,ε(1). The confidence parameter of the learner can be boosted privately
from Θ(1) to any value β > 0 as explained in [10]. In doing this boosting, the
number of labeled examples required for the learner increases by a factor of
O(log(1/β)). Therefore, we get that a sample size that is polynomial in 1/ε, 1/α,
and log(1/β) is sufficient to learn POINT d improperly with privacy parameter
ε, accuracy parameter α, and confidence parameter β.
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Making the Learner Efficient. Recall that the outcome of A1 (hence A2) is an
exponentially long description of a hypothesis. We now complete our construc-
tion by compressing this description using a pseudorandom function. We use a
slightly non-standard definition of (non-uniform) pseudorandom functions from
binary strings of size d to bits; these pseudorandom functions can be easily
constructed given regular pseudorandom functions.

Definition 8. Let F = {Fd}d∈N be a function ensemble, where for every d, Fd

is a set of functions from {0, 1}d to {0, 1}. We say that the function ensemble
F is q-biased pseudorandom if for every family of polynomial-size circuits with
oracle access {Cd}d∈N, every polynomial p(·), and all sufficiently large d’s,

|Pr[Cf
d (1d) = 1] − Pr[CHq

d

d (1d) = 1]| < 1
p(d)

,

where f is chosen at random from Fd and Hq
d : {0, 1}d → {0, 1} is a function

and the value Hq
d(x) for x ∈ {0, 1}d are selected i.i.d. to be 1 with probability

q and 0 otherwise. The probabilities are taken over the random choice of Hq
d ,

and f .

For convenience, for d ∈ N, we consider Fd as a set of functions from {1, . . . , T }
to {0, 1}, where T = 2d. We set q = αβ/4 in the above definition. Using an
αβ/4-biased pseudorandom function ensemble F , we change Step 3 of algorithm
A1 as follows:
3’. If c = 0, let h be a random function from Fd. Otherwise (i.e., c = cj for some

j ∈ [T ]), let h be a random function from Fd subject to h(j) = 1. Return h.
Call the resulting modified algorithm A3. We next show that A3 is a PAC learner.
Note that the exists a negligible function negl such that for large enough d,
|Pr[h(x) = 1|h(j) = 1]−αβ/4| ≤ negl(d) for every x ∈ {1, . . . , T } (as otherwise,
we get a non-uniform distinguisher for the ensemble F ). Thus,

E
h∈Fd

[error
D

(c, h)] = E
h∈Fd

E
x∼D

[|h(x) − c(x)|]

≤ E
h∈Fd

E
x∼D

[h(x)] = E
x∼D

E
h∈Fd

[h(x)] ≤ αβ

4
+ negl(d).

The first inequality follows as for all x ∈ [T ], h(x) ≥ c(x) by our restriction on
the choice of h. Thus, by the same arguments as for A1, Algorithm A3 is a PAC
learner.

We next modify algorithm A2 by executing the learner A3 instead of the
learner A1. Call the resulting modified algorithm A4. To see that algorithm A4
preserves differential privacy it suffices to give a bound on Equation (2). By
comparing the case where S = R with S = R ∪ {i}, we get that the probability
for a hypothesis h can increase only if c = 0 when S = R, and c = cyi when
S = R ∪ {i}. Therefore,

max
R⊆[m′]\{i}

Pr[A4(D) = h | S = R ∪ {i}]
Pr[A4(D) = h |S = R]

≤ 1
(αβ/4) − negl(d)

≤ 1
(αβ/8)

=
8
αβ

.
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Theorem 4. There exists an efficient improper private PAC learner for
POINT d that uses Oα,β,ε(1) labeled examples, where ε, α, and β are parame-
ters of the private learner.

3.3 Separation between Efficient and Inefficient Proper Private
PAC Learning

In this section, we use the sample size lower bound for proper private learning
POINT d to obtain a separation between efficient and inefficient proper private
PAC learning. Let Ur represent a uniformly random string from {0, 1}r. Let
�(d) : N → N be a function and G = {Gd}d∈N be a deterministic algorithm such
that on input from {0, 1}�(d) it returns an output from {0, 1}d. Informally, we say
that G is pseudorandom generator if on �(d) truly random bits it outputs d bits
that are indistinguishable from d random bits. Formally, for every probabilistic
polynomial time algorithm B there exists a negligible function negl(d) (i.e., a
function that is asymptotically smaller than 1/dc for all c > 0) such that

|Pr[B(Gd(U�(d))) = 1] − Pr[B(Ud) = 1]| ≤ negl(d).

Such exponential stretch pseudorandom generators G (i.e., with �(d) = ω(log d))
exist under various strong hardness assumptions.

Let POINT d = {c1, . . . , c2d}. Now to a polynomially bounded private learner,
cGd(U�(d)) would appear with high probability as a uniformly random concept
picked from POINT d. We will show by using ideas similar to the proof of
Theorem 3 that a polynomially bounded proper private learner would require
Ω((d + log(1/β))/ε) labeled examples to learn cGd(U�(d)). More precisely, define
concept class

P̂OINT d =
⋃

r∈{0,1}�(d)

{cGd(r)}.

Assume that there is an efficient proper private learner A for P̂OINT d with
sample size m = o((d + log(1/β))/ε). We use A to construct a distinguisher
for the pseudorandom generator: Given j we construct the database D with
m entries (j, 1). If A(D) = cj, then the distinguisher returns 1, otherwise it
returns 0. If j = Gd(r) for some r, then, by the utility of the private learner,
A has to return cj on this database with probability at least 1 − β. Thus, the
distinguisher returns 1 with probability at least 1 − β when j is chosen from
Gd(U�(d)). Assume that for (say) 1/4 of the values j ∈ [2d] algorithm A, when
applied to the database with m entries (j, 1), returns cj with probability at least
1/3. Then, we get a contradiction following the same argument as in the proof
of Theorem 3 (as at least a fraction of 1/4 of the cj ’s must have probability at
least (1/3)(1−β) ·exp(−εm)). Thus, the distinguisher returns 1 with probability
at most 1/4 + 3/4 · 1/3 = 1/2 when j is chosen from Ud.

If the learner is not polynomially bounded, then it can use the algorithm from
Theorem 2 to privately learn P̂OINT d. Since, |P̂OINT d| = 2�(d), the private
learner from Theorem 2 uses O((�(d)+log(1/β))/(εα)) labeled examples. We get
the following separation between efficient and inefficient proper private learning:
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Theorem 5. Let �(d) be any function that grows as ω(log d), and G be a be a
pseudorandom generator with stretch d − �(d). For the concept class P̂OINT d,
every polynomial-time proper private PAC learner with probability at least 1 −
negl(d) requires Ω((d + log(1/β))/ε) labeled examples, whereas there exists an
inefficient proper private PAC learner that can learn P̂OINT d using O((�(d) +
log(1/β))/(εα)) labeled examples.

Remark 3. In the non-private setting, there exists an efficient proper learner that
can learn the concept class P̂OINT d using O((log(1/α) + log(1/β))/α) labeled
examples (as VCDIM (P̂OINT d) = 1). In the non-private setting we also know
that even inefficient learners require Ω(log(1/β)/α) labeled examples [9, 13].
Therefore, for P̂OINT d the sample complexities of efficient non-private learners
and inefficient non-private learners are almost the same.

4 Lower Bounds for Non-interactive Sanitization

We now prove a lower bound on the database size (or sample size) needed to
privately release an output that is useful for all concepts in a concept class. We
start by recalling a definition and a result of Blum et al. [3].

Let X = {Xd}d∈N be some discretized domain and consider a class of predi-
cates C over X . A database D contains points taken from Xd. A predicate query
Qc for c : Xd → {0, 1} in C is defined as

Qc(D) =
|{di ∈ D : c(di) = 1}|

|D| .

A sanitizer (or data release mechanism) is a differentially private algorithm A
that on input a database D outputs another database D̂ with entries taken from
Xd. An algorithm A is (α, β)-useful for predicates in class C if with probability
at least 1 − β for every c ∈ C, and every database D, for D̂ = A(D),

|Qc(D) − Qc(D̂)| < α.

Theorem 6 (Blum et al. [3]). For any class of predicates C, and any database
D ∈ Xm

d , such that

m ≥ O

(
log |Xd| · VCDIM (C) log(1/α)

α3ε
+

log(1/β)
εα

)
,

there exists an (α, β)-useful mechanism A that preserves ε-differential privacy.
The algorithm might not be efficient.

We show that the dependency on log |Xd| in Theorem 6 is essential: there
exists a class of predicates C with VC-dimension O(1) that requires |D| =
Ωα,β,ε(log |Xd|). For our lower bound, the sanitized output D̂ could be any ar-
bitrary data structure (not necessarily a synthetic database). For simplicity,



Sample Complexity for Private Learning and Private Data Release 453

however, here we focus on the case where the output is a synthetic database.
The proof of this lower bound uses ideas from Section 3.1.

Let T = 2d and Xd = [T ] be the domain. Consider the class POINT d (where
i ∈ [T ]). For every i ∈ [T ], construct a database Di ∈ Xm

d by setting (1 − 3α)m
entries at 1 and the remaining 3αm entries at i (for i = 1 all entries of D1 are 1).
For i ∈ [T ]\{1} we say that a database D̂ is α-useful for Di if 2α < Qci(D̂) < 4α
and 1 − 4α < Qc1(D̂) < 1 − 2α. We say that D̂ is α-useful for D1 if 1 − α <

Qc1(D̂) ≤ 1. It follows that for i �= j if D̂ is α-useful for Di then it is not α-useful
for Dj .

Let D̂i be the set of all databases that are α-useful for Di. Note that for
all i �= 1, D1 and Di differ on 3αm entries, and by our previous observation,
D̂1∩D̂i = ∅. Let A be an (α, β)-useful private release mechanism for POINT d. For
all i, on input Di mechanism A should pick an output from D̂i with probability
at least 1 − β. We get by the differential privacy of A that

Pr[A(D1) ∈ D̂i] ≥ exp(−3εαm) Pr[A(Di) ∈ D̂i] ≥ exp(−3εαm) · (1 − β).

Hence,
Pr[A(D1) �∈ D̂1] ≥ Pr[A(D1) ∈

⋃
i�=1

D̂i]

=
∑
i�=1

Pr[A(D1) ∈ D̂i] (sets D̂i are disjoint)

≥ (T − 1) exp(−3εαm) · (1 − β).

On the other hand, since A is (α, β)-useful, Pr[A(D1) �∈ D̂1] < β, and hence we
get that m = Ω((d + log(1/β))/(εα)).

Theorem 7. Every ε-differentially private non-interactive mechanism that is
(α, β)-useful for POINT d requires an input database of Ω((d + log(1/β))/(εα))
size.
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Abstract. We construct a fully secure HIBE scheme with short cipher-
texts. The previous construction of Boneh, Boyen, and Goh was only
proven to be secure in the selective model, under a non-static assump-
tion which depended on the depth of the hierarchy. To obtain full secu-
rity, we apply the dual system encryption concept recently introduced
by Waters. A straightforward application of this technique is insufficient
to achieve short ciphertexts, since the original instantiation of the tech-
nique includes tags that do not compress. To overcome this challenge,
we design a new method for realizing dual system encryption. We pro-
vide a system in composite order groups (of three primes) and prove the
security of our scheme under three static assumptions.

1 Introduction

An IBE system is a public key system where an encryptor uses only the identity
of the recipient and a set of global public parameters, so a separate public key for
each entity is not required. A trusted authority holds a master secret key which
allows it to create secret keys for identities and distribute them to authenticated
users. A Hierarchical IBE system (HIBE) [1, 2] provides more functionality by
forming levels of an organizational hierarchy. A user at level k can delegate se-
cret keys to descendant identities at lower levels, but cannot decrypt messages
intended for a recipient that is not among its descendants. For example, a user
with the identity “University of Texas: computer science department” can dele-
gate a key for the identity “University of Texas: computer science department:
grad student”, but cannot delegate keys for identities that do not begin with
“University of Texas : computer science department”. A more formal definition
of an HIBE system is given in Section 2.

Most previous HIBE constructions were proven secure in the selective model
of security (where an attacker must declare the identity he intends to attacker
before seeing the public parameters of the system), with two recent exceptions.
Gentry and Halevi [3] employ the techniques of [4] to obtain full security, but at
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the cost of a strong assumption (the BDHE-Set assumption) and ciphertext size
growing linearly in the depth of the hierarchy. Waters [5] obtained full security
with his new dual system encryption methodology from the well-established
d-BDH and decisional Linear assumptions, but also had ciphertexts with size
growing linearly in the depth of the hierarchy. This fell short of the constant size
ciphertexts achieved by Boneh, Boyen, and Goh [6], but their HIBE system was
only proven to be selectively secure in the standard model (or fully secure in the
random oracle model).

In this paper, we resolve the question of whether full security and short ci-
phertexts (like [6]) can be simultaneously achieved in a HIBE system. A natural
approach is to combine the Waters realization of dual system encryption with the
Boneh-Boyen-Goh construction. This direct combination presents two problems:

1. Tags for each level that do not compress
2. Keys that are not fully rerandomized at delegation.

In the Boneh-Boyen-Goh system, group elements corresponding to each level
of an identity are compressed (multiplied together) into a constant number of
ciphertext elements. The tags in the Waters system do not allow this. These
tags also prevent a key from being fully rerandomized upon delegation, meaning
that an attacker can tell the difference between a delegated key and one freshly
generated by the key generation algorithm. This requires a security definition
that keeps track of such subtleties, which substantially complicates the security
proof. Removing the tags from the Waters realization of dual system encryption
is a nontrivial task because the tags were used to avoid a potential paradox in
the dual system proof strategy.

1.1 Our Approach

We develop a new realization of dual system encryption that does not use tags.
This provides several benefits:

1. compression of ciphertext is now possible
2. negligible correctness error caused by the tags is removed
3. schemes appear very natural and closely related to prior schemes.

Before giving the details of our approach, we first review the concept of dual
system encryption.

Dual System Encryption. In a dual system, ciphertexts and keys can take on
two forms: normal or semi-functional. Semi-functional ciphertexts and keys are
not used in the real system, they are only used in the security proof. A normal
key can decrypt normal or semi-functional ciphertexts, and a normal ciphertext
can be decrypted by normal or semi-functional keys. However, when a semi-
functional key is used to decrypt a semi-functional ciphertext, decryption will
fail. More specifically, the semi-functional components of the key and ciphertext
will interact to mask the blinding factor by an additional random term. Security
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for dual systems is proved using a sequence of games which are shown to be
indistinguishable. The first game is the real security game (with normal cipher-
text and keys). In the next game, the ciphertext is semi-functional, while all the
keys are normal. For an attacker that makes q key requests, games 1 through q
follow. In game k, the first k keys are semi-functional while the remaining keys
are normal. In game q, all the keys and the challenge ciphertext given to the
attacker are semi-functional. Hence none of the given keys are useful for decrypt-
ing the challenge ciphertext. At this point, proving security becomes relatively
easy.

The Waters Realization. When arguing that games k and k − 1 are indistin-
guishable, we create a simulator who can use any legal identities for the chal-
lenge ciphertext and keys. This creates a potential problem. The simulator is
prepared to make a semi-functional ciphertext for an identity ID and is also
prepared to make the kth key for identity ID, so it may seem like the simulator
can determine whether key k is semi-functional for itself by test decrypting with
a semi-functional ciphertext for the same identity. To resolve this paradox, the
Waters IBE scheme associates random tag values with each ciphertext and key.
Decryption works only when the tag values of the ciphertext and decrypting
key are unequal. If the simulator attempted to test semi-functionality of key k
for itself by creating a semi-functional ciphertext for the same identity, it would
only be able to create one with an equal tag, and hence decryption would un-
conditionally fail. This correlation of tags is hidden from an attacker who cannot
request a key with the same identity as the challenge ciphertext, so the tags look
randomly distributed from the attacker’s point of view.

Tags are used similarly in the Waters HIBE scheme, but here they cause
two additional problems. First, there is a separate tag value associated with
each level of the identity in a ciphertext or key. All these tag values must be
given out in a ciphertext, so this forces ciphertext size to grow linearly with
the depth of the hierarchy. Secondly, there is no method for rerandomizing the
tags in key delegation. This means that a key at level d + 1 which is delegated
from a key at level d will share its first d tag values, a property which links the
distribution of a key to its lineage. Some previous security definitions for HIBE [1,
2] which did not keep track of delegation paths of keys are hence invalid for such
a system. Security must be argued under a more complete definition introduced
in [7].

Our Realization. The additional complications of the proof and the linear cipher-
text size are undesirable artifacts of building the HIBE system with the same tag
techniques as the IBE system. To remove the tags, we must find a different way
to resolve the paradox. Instead of having decryption unconditionally fail when
the simulator attempts to test semi-functionality of the kth key, we design our
system so that decryption will unconditionally succeed. We introduce a variant
of semi-functional keys which we call nominally semi-functional keys. These keys
are semi-functional in name only, meaning that they are distributed like semi-
functional keys, but are actually correlated with semi-functional ciphertexts so
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that when a nominally semi-functional key is used to decrypt a semi-functional
ciphertext, the interaction of the two semi-functional components results in can-
celation and decryption is successful. If the simulator attempts to answer its own
question by creating the kth key and challenge ciphertext for the same identity,
the created key will be nominally semi-functional and hence test decrypting will
not distinguish this from a normal key. This nominally semi-functional key will
appear to be distributed like a regular semi-functional key to the attacker, who
cannot request a key that can decrypt the challenge ciphertext.

With this technique, we are able to construct a fully secure IBE system with
short parameters without tags, and also give a fully secure HIBE system with
constant-size ciphertexts. Our proofs rely on simple (constant-size) assumptions
which do not depend on the number of queries the attacker makes. Our proof
for our HIBE system is considerably simplified by the fact that our keys can
be fully rerandomized upon delegation, avoiding the corresponding difficulties of
the Waters HIBE proof.

In our the main body we provide a construction under a group of composite
order N where N is the product of three primes. In Appendix C, we provide an
analog of this for prime order groups. Our analog takes advantage of asymmetric
bilinear groups where there is no efficient isomorphism between G1 and G2.

An interesting observation arising from our work is that the existing Boneh-
Boyen IBE [8] and Boneh-Boyen-Goh HIBE [6] schemes which were only proven
to be selectively secure can be transformed into fully secure systems by embed-
ding them in composite order groups. Our IBE and HIBE systems are remarkably
similar to these schemes.

1.2 Related Work

Identity Based Encryption was introduced by Shamir [9] and first realized by
Boneh and Franklin [10] and Cocks [11]. The Boneh-Franklin IBE construc-
tion [10] proved security in the random oracle model. Subsequent constructions
by Canetti, Halevi, and Katz [12] and Boneh and Boyen [8] were proved secure
in the standard model, but under the weaker notion of selective security. Later,
Boneh and Boyen [13] and Waters [14] gave constructions which were fully se-
cure in the standard model. The Waters system was efficient and fully secure
in the standard model under the decisional Bilinear Diffie-Hellman assumption
(d-BDH), but it had public parameters consisting of O(λ) group elements for
security parameter λ. Gentry [4] constructed an IBE system with short public
parameters and proved full security in the standard model, but used an as-
sumption (q-ABHDE) which is substantially more complicated than d-BDH and
depends on the number of queries made by the attacker. Gentry, Peikert, and
Vaikuntanathan also gave an IBE construction based on lattice assumptions [15].

Hierarchical Identity Based Encryption was introduced by Horwitz and
Lynn [2] and then constructed by Gentry and Silverberg [1] in the random ora-
cle model. Boneh and Boyen [8] achieved security in the selective model without
random oracles. Boneh, Boyen, and Goh [6] then gave an HIBE with constant
size ciphertexts, also in the selective model under a q-based assumption. These
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short ciphertexts were particularly useful for applications, including forward se-
cure encryption [12] and converting the NNL broadcast encryption system [16]
into a public-key system [17]. Gentry and Halevi [3] constructed the first fully
secure HIBE for polynomial depth, though also under a complex assumption.
Waters [5] attained full security under the d-BDH and decisional Linear as-
sumptions, but with ciphertext size growing linearly in the hierarchy depth. We
note that Waters first instantiated this result in composite order groups. The
complete definition of security for HIBE that we use in this paper was formulated
by Shi and Waters [7].

1.3 Organization

In Section 2, we formally define an HIBE system and give the complete security
definition, give background on bilinear groups, and state our assumptions. In
Section 3, we present our IBE scheme and prove its security. In Section 4, we
give our HIBE scheme and prove its security. In Section 6, we conclude and
discuss open directions for further research.

2 Background

2.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme has five algorithms: Setup,
Encrypt, KeyGen, Decrypt, and Delegate.

Setup(λ) → PK,MSK. The setup algorithm takes a security parameter λ as
input and outputs the public parameters PK and a master secret key MSK.

KenGen(MSK, I) → SKI . The key generation algorithm takes the master
secret key and an identity vector I as input and outputs a private key SKI .

Delegate(PK,SKI , I) → SKI:I . The delegation algorithm takes a secret key for
the identity vector I of depth d and an identity I as input and outputs a secret
key for the depth d+ 1 identity vector I : I formed by concatenating I onto the
end of I.

Encrypt(PK,M, I) → CT . The encryption algorithm takes the public parame-
ters PK, a message M , and an identity vector I as input and outputs a ciphertext
CT .

Decrypt(PK,CT, SK) → M . The decryption algorithm takes the public pa-
rameters PK, a ciphertext CT , and a secret key SK as input and outputs the
message M , if the ciphertext was an encryption to an identity vector I and the
secret key is for the same identity vector.

Notice that the decryption algorithm is only required to work when the iden-
tity vector for the ciphertext matches the secret key exactly. However, someone
who has a secret key for a prefix of this identity vector can delegate to themselves
the required secret key and also decrypt.
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Security definition. We give the complete form of the security definition [7] which
keeps track of how keys are generated and delegated. Security is defined through
the following game, played by a challenger and an attacker.

Setup. The challenger runs the Setup algorithm to generate public parameters
PK which it gives to the adversary. We let S denote the set of private keys
that the challenger has created but not yet given to the adversary. At this point,
S = ∅.

Phase 1. The adversary makes Create, Delegate, and Reveal key queries. To
make a Create query, the attacker specifies an identity vector I. In response, the
challenger creates a key for this vector by calling the key generation algorithm,
and places this key in the set S. It only gives the attacker a reference to this key,
not the key itself. To make a Delegate query, the attacker specifies a key SKI

in the set S and specifies an identity I ′. In response, the challenger appends I ′

to I and makes a key for this new identity by running the delegation algorithm
on SKI and I ′. It adds this key to the set S and again gives the attacker only a
reference to it, not the actual key. To make a Reveal query, the attacker specifies
an element of the set S. The challenger gives this key to the attacker and removes
it from the set S. We note that the attacker need no longer make any delegation
queries for this key because it can run the delegation algorithm on the revealed
key for itself.

Challenge. The adversary gives the challenger two messages M0 and M1 and a
challenge identity vector I∗. This identity vector must satisfy the property that
no revealed identity in Phase 1 was a prefix of it. The challenger sets β ∈ {0, 1}
randomly, and encrypts Mβ under I∗. It sends the ciphertext to the adversary.

Phase 2. This is the same as Phase 1, with the added restriction that any
revealed identity vector must not be a prefix of I∗.

Guess. The adversary must output a guess β′ for β.
The advantage of an adversary A is defined to be Pr[β′ = β] − 1

2 .

Definition 1. A Hierarchical Identity Based Encryption scheme is secure if all
polynomial time adversaries achieve at most a negligible advantage in the security
game.

2.2 Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [18]. We define them
by using a group generator G, an algorithm which takes a security parameter λ
as input and outputs a description of a bilinear group G. In our case, G outputs
(N = p1p2p3, G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .
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We further require that the group operations in G and GT as well as the bilinear
map e are computable in polynomial time with respect to λ. Also, we assume
the group descriptions of G and GT include generators of the respective cyclic
groups. We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2 and p3 in
G respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for i �= j, e(hi, hj) is
the identity element in GT . To see this, suppose h1 ∈ Gp1 and h2 ∈ Gp2 . We let
g denote a generator of G. Then, gp1p2 generates Gp3 , gp1p3 generates Gp2 , and
gp2p3 generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 .
We note:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 , Gp2 , Gp3 will be a principal tool in our con-
structions.

We now give our complexity assumptions. These same assumptions will be
used to prove the security of our IBE and HIBE systems. We note that they are
static (not dependent on the depth of the hierarchy or the number of queries
made by an attacker). The first assumption is just the subgroup decision problem
in the case where the group order is a product of 3 primes. In Appendix A,
we show that these assumptions hold in the generic group model if finding a
nontrivial factor of the group order is hard. We prove this by applying the
theorems of Katz, Sahai, and Waters [19]. Their work also used composite order
bilinear groups and provided a general framework for proving generic security of
assumptions in this setting.

In the assumptions below, we let Gp1p2 , e.g., denote the subgroup of order
p1p2 in G.

Assumption 1 (Subgroup decision problem for 3 primes). Given a group gener-
ator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e) R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,

D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of Gp1

and an element of Gp2 . We refer to these elements as the “Gp1 part of T1” and
the “Gp2 part of T1” respectively. We will use this terminology in our proofs.

Definition 2. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.
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Assumption 2. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e) R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G, T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]

∣∣.
We use Gp1p3 to denote the subgroup of order p1p3 in G. We note that T1 can
be (uniquely) written as the product of an element of Gp1 , an element of Gp2 ,
and an element of Gp3 . We refer to these as the “Gp1 part of T1”, the “Gp2 part
of T1”, and the “Gp3 part of T1”, respectively. T2 can similarly be written as the
product of an element of Gp1 and an element of Gp3 .

Definition 3. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e) R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]

∣∣.
Definition 4. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

3 Our IBE System

We begin by giving our new dual system encryption realization of IBE. Our
construction will use composite order groups of order N = p1p2p3 and identities
in ZN . Remarkably, our construction looks almost exactly like the Boneh-Boyen
IBE with keys additionally randomized in the subgroup Gp3 . This resemblance
to preexisting selectively secure schemes will continue in our HIBE system as
well. We regard this as a desirable feature of our approach.
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We note that the subgroup Gp2 is not used in our actual scheme, instead it
serves as our semi-functional space. Keys and ciphertexts will be semi-functional
when they include terms in Gp2 and decryption will proceed by pairing key
elements with ciphertext elements. This will give us the decryption functionality
we need: when we pair a normal key with a semi-functional ciphertext or a
normal ciphertext with a semi-functional key, the terms in Gp2 are orthogonal
to terms in Gp1 and Gp3 under the pairing and will cancel out. When we pair a
semi-functional key with a semi-functional ciphertext, we will get an additional
term arising from the pairing of the terms in Gp2 .

3.1 Construction

Setup. The setup algorithm chooses a bilinear group G of order N = p1p2p3
(where p1, p2, and p3 are distinct primes). We let Gpi denote the subgroup of
order pi in G. It then chooses u, g, h ∈ Gp1 and α ∈ ZN . The public parameters
are published as:

PK = {N, u, g, h, e(g, g)α}.
The secret parameters are α and a generator of Gp3 .

Encrypt(M, ID). The encryption algorithm chooses s ∈ ZN randomly and cre-
ates the ciphertext as:

C0 = Me(g, g)αs, C1 = (uIDh)s, C2 = gs.

KeyGen(ID,MSK). The key generation algorithm chooses r ∈ ZN and R3,
R′

3 ∈ Gp3 randomly. (Random elements of Gp3 can be obtained by taking a
generator of Gp3 and raising it to random exponents modulo N .) The key is
formed as:

K1 = grR3,K2 = gα(uIDh)rR′
3.

Decryption. If the ID’s of the ciphertext and key are equal, the decryption
algorithm computes the blinding factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uIDh, g)rs

e(uIDh, g)rs
.

3.2 Security

To prove security of our IBE system, we first define two additional structures:
semi-functional keys and semi-functional ciphertexts. These will not be used in
the real system, but they will be used in our proof.

Semi-functional Ciphertext. We let g2 denote a generator of the subgroup Gp2 .
A semi-functional ciphertext is created as follows: first, a normal ciphertext
C′

0, C
′
1, C

′
2 is generated by the encryption algorithm. Random exponents x, zc ∈

ZN are chosen. Then, C0 is set to be C′
0, C1 is set to be C′

1g
xzc
2 , and C2 is set

to be C′
2g

x
2 .
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Semi-functional Key. A semi-functional key is created as follows: first, a normal
key K ′

1, K ′
2 is generated by the key generation algorithm. Random exponents

γ, zk ∈ ZN are chosen. K1 is set to be K ′
1g

γ
2 and K2 is set to be K ′

2g
γzk

2 .
Notice that if a semi-functional key is used to decrypt a semi-functional

ciphertext, the blinding factor will be obscured by an additional factor of
e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work. In this case, we say
that the key is nominally semi-functional: it has terms in Gp2 , but these do not
hinder decryption.

Our proof of security relies on Assumptions 1, 2, 3 defined in Section 2. We
will prove security by a hybrid argument using a sequence of games. The first
game, GameReal, will be the real security game. The next game, GameRestricted,
will be like the real security game except that the attacker cannot ask for keys for
identities which are equal to the challenge identity modulo p2. This is a stronger
restriction than the real security game, where the identities must be unequal
modulo N . We will retain this stronger restriction throughout the subsequent
games. The reason for it will be explained in the proof. We let q denote the
number of key queries the attacker makes. For k from 0 to q, we define Gamek

as:

Gamek. This is like the restricted security game, except that the ciphertext
given to the attacker is semi-functional and the first k keys are semi-functional.
The rest of the keys are normal.

In Game0, all the keys are normal and the ciphertext is semi-functional. In
Gameq, the ciphertext and all of the keys are semi-functional. Our last game is
GameFinal, which is the same as Gameq except that the ciphertext is a semi-
functional encryption of a random message, not one of the two messages requested
by the attacker. We will prove that each of these games is indistinguishable in
the following four lemmas.

Lemma 1. Suppose there exists an algorithm A such that GameRealAdvA −
GameRestrictedAdvA = ε. Then we can build an algorithm B with advantage ≥ ε

2
in breaking either Assumption 1 or Assumption 2.

Proof. Given g,X3, B can simulate GameReal with A. With probability ε, A
produces identities ID and ID∗ such that ID �= ID∗ modulo N and p2 divides
ID − ID∗. B uses these identities to produce a nontrivial factor of N by com-
puting a = gcd(ID − ID∗, N). We set b = N

a . We note that p2 divides a and
N = ab = p1p2p3. We consider two cases:

1. p1 divides b
2. a = p1p2 and b = p3.

At least one of these cases must occur with probability ≥ ε
2 . In case 1, B will

break Assumption 1. Given g,X3, T , B can determine that p1 divides b by ver-
ifying that gb is the identity and will then test whether T b is the identity. If it
is, then T ∈ Gp1 . If it is not, T ∈ Gp1p2 .

In case 2, B will break Assumption 2. Given g,X1X2, X3, Y2Y3, B can deter-
mine that a = p1p2 by verifying that (X1X2)a is the identity and will then test
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whether e((Y2Y3)b, T ) is the identity. If it is, then T ∈ Gp1p3 . If it is not, then
T ∈ G.

Lemma 2. Suppose there exists an algorithm A such that GameRestrictedAdvA−
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B first receives g,X3, T . It simulates GameRestricted or Game0 with A. It
sets the public parameters as follows. It chooses random exponents α, a, b ∈ ZN

and sets g = g, u = ga, h = gb. It sends these public parameters {N, u, g, h,
e(g, g)α} to A. Each time B is asked to provide a key for an identity IDi, it
chooses random exponents ri, ti, and wi ∈ ZN and sets:

K1 = griXti
3 ,K2 = gα(uIDih)riXwi

3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B chooses
β ∈ {0, 1} randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T aID+b, C2 = T .

(This implicitly sets gs equal to the Gp1 part of T .) If T ∈ Gp1p2 , then this is
a semi-functional ciphertext with zc = aID + b. We note that the value of zc

modulo p2 is not correlated with the values of a and b modulo p1, so this is
properly distributed. If T ∈ Gp1 , this is a normal ciphertext. Hence, B can use
the output of A to distinguish between these possibilities for T .

Lemma 3. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T . B picks random exponents a, b, α ∈
ZN and sets the public parameters as: g = g, u = ga, h = gb, e(g, g)α. It sends
these to A. When A requests the ith key for IDi when i < k, B creates a semi-
functional key. It does this by choosing random exponents ri, zi, ti ∈ ZN and
setting:

K1 = gri(Y2Y3)ti ,K2 = gα(uIDih)ri(Y2Y3)zi .

This is a properly distributed semi-functional key with gγ
2 = Y ti

2 . (We note that
the values of ti and zi modulo p2 and modulo p3 are uncorrelated by the Chinese
Remainder Theorem.)

For i > k, B generates normal keys by using random exponents ri, ti, wi ∈ ZN

and setting:
K1 = griXti

3 ,K2 = gα(uIDih)riXwi
3 .

To create the kth requested key, B lets zk = aIDk+b, chooses a random exponent
wk ∈ ZN , and sets:

K1 = T,K2 = gαT zkXwk
3 .
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At some point, A sends B two messages, M0 and M1, and a challenge identity,
ID. B sets β ∈ {0, 1} randomly. The challenge ciphertext is formed as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)aID+b, C2 = X1X2.

We note that this sets gs = X1 and zc = aID + b. Since f(ID) = aID + b is a
pairwise independent function modulo p2, as long as IDk �= ID(mod p2), zk and
zc will seem randomly distributed to A (again, we note that the values of a and b
modulo p2 are uncorrelated with their values modulo p1). If IDk ≡ ID(mod p2),
then A has made an invalid key request. This is where we use our additional
modular restriction.

Though it is hidden from A, this relationship between zc and zk is crucial:
if B attempts to test itself whether key k is semi-functional by creating a semi-
functional ciphertext for IDk and trying to decrypt, then decryption will work
whether key k is semi-functional or not, because zc = zk. In other words, the
simulator B can only make a nominally semi-functional key k.

If T ∈ Gp1p3 , then B has properly simulated Gamek−1. If T ∈ G, then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish
between these possibilities for T .

Lemma 4. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2, T . B chooses random exponents

a, b ∈ ZN and sets the public parameters as g = g, u = ga, h = gb, e(g, g)α =
e(gαX2, g). It sends these to A. When A requests a key for identity IDi, B
generates a semi-functional key. It does this by choosing random exponents
ci, ri, ti, wi, γi ∈ ZN and setting:

K1 = griZγi

2 Xti
3 ,K2 = gαX2(uIDih)riZci

2 Xwi
3 .

A sends B two messages, M0 and M1, and a challenge identity, ID. B sets
β ∈ {0, 1} randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)aID+b, C2 = gsY2.

This sets zc = aID + b. We note that the value of zc only matters modulo p2,
whereas u = ga and h = gb are elements of Gp1 , so when a and b are chosen
randomly modulo N , there is no correlation between the values of a and b modulo
p1 and the value zc = aID + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext
with message Mβ. If T is a random element of GT , then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for T .

We have now proven the following theorem:

Theorem 1. If Assumptions 1, 2, and 3 hold, then our IBE system is secure.
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Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous
lemmas that the real security game is indistinguishable from GameFinal, in which
the value of β is information-theoretically hidden from the attacker. Hence the
attacker can attain no advantage in breaking the IBE system.

4 Our HIBE System

We build upon our IBE system and extend our techniques to give an HIBE
system with short ciphertexts. The absence of tags allows us to compress the
ciphertext into a constant number of group elements and also to rerandomize
keys fully upon delegation. This dramatically simplifies our proof of security. Our
construction again uses composite order groups of order N = p1p2p3, and looks
almost exactly like the Boneh-Boyen-Goh HIBE system with keys additionally
randomized in subgroup Gp3 . Gp2 will be our semi-functional space, which is not
used in the real system.

4.1 Construction

Setup. The setup algorithm chooses a bilinear group G or order N = p1p2p3.
We let � denote the maximum depth of the HIBE. The setup algorithm chooses
g, h, u1, . . . , u� ∈ Gp1 , X3 ∈ Gp3 , and α ∈ ZN . The public parameters are pub-
lished as:

PK = {N, g, h, u1, . . . , u�, X3, e(g, g)α}.
The secret parameter is α.

Encrypt(M, (ID1, . . . , IDj)). The encryption algorithm chooses s ∈ ZN ran-
domly. It sets:

C0 = Me(g, g)αs, C1 =
(
uID1

1 · · ·uIDj

j h
)s

, C2 = gs.

KeyGen(MSK, (ID1, . . . , IDj)). The key generation algorithm chooses r ∈ ZN

randomly and also chooses random elements R3, R
′
3, Rj+1, . . . , R� of Gp3 . It sets:

K1 = grR3,K2 = gα
(
uID1

1 · · ·uIDj

j h
)r

R′
3, Ej+1 = ur

j+1Rj+1, . . . , E� = ur
�R�.

Delegate. Given a key K ′
1,K

′
2, E

′
j+1, . . . , E

′
� for (ID1, . . . , IDj), the delegation

algorithm creates a key for (ID1, . . . , IDj+1) as follows. It chooses a random
r′ ∈ ZN and random elements of Gp3 denoted, e.g., by R̃3. The new key is set
as:

K1 = K ′
1g

r′
R̃3,

K2 = K ′
2

(
uID1

1 · · ·uIDj

j h
)r′

(E′
j+1)

IDj+1u
r′IDj+1
j+1 R̃′

3,

Ej+2 = E′
j+2u

r′
j+2R̃j+2, . . . , E� = E′

�u
r′
� R̃�.

We note that this new key is fully rerandomized: its only tie to the previous key
is in the values ID1, . . . , IDj .



468 A. Lewko and B. Waters

Decrypt. The decryption algorithm assumes that the key and ciphertext both
correspond to the same identity (ID1, . . . , IDj). If the key identity is a prefix of
this instead, then the decryption algorithm starts by running the key delegation
algorithm to create a key with identity matching the ciphertext identity exactly.
The decryption algorithm then computes the blinding factor as:

e(K2, C2)
e(K1, C1)

=
e(g, g)αse(uID1

1 · · ·uIDj

j h, g)rs

e(g, uID1
1 · · ·uIDj

j h)rs
= e(g, g)αs.

4.2 Security

To prove security of our HIBE system, we again rely on the static Assumptions
1, 2, and 3. We first define two additional structures: semi-functional ciphertexts
and semi-functional keys. These will not be used in the real system, but will be
used in our proof.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-
functional ciphertext is created as follows: first, we use the encryption algo-
rithm to form a normal ciphertext C′

0, C
′
1, C

′
2. We choose random exponents

x, zc ∈ ZN . We set:

C0 = C′
0, C1 = C′

1g
xzc
2 , C2 = C′

2g
x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a normal
key K ′

1, K ′
2, E′

j+1, . . ., E′
� using the key generation algorithm. We choose random

exponents γ, zk, zj+1, . . . , z� ∈ ZN . We set:

K1 = K ′
1g

γ
2 ,K2 = K ′

2g
γzk

2 , Ej+1 = E′
j+1g

γzj+1
2 , . . . , E� = E′

�g
γz�

2 .

We note that when a semi-functional key is used to decrypt a semi-functional
ciphertext, the decryption algorithm will compute the blinding factor multiplied
by the additional term e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work.
In this case, the key is nominally semi-functional.

Our proof of security will again be structured as a hybrid argument over a se-
quence of games. The first game, GameReal, is the real HIBE security game. The
next game, GameReal′ , is the same as the real game except that all key queries will
be answered by fresh calls to the key generation algorithm (the challenger will not
be asked to delegate keys in a particular way). The next game, GameRestricted is
the same as GameReal′ except that the attacker cannot ask for keys for identi-
ties which are prefixes of the challenge identity modulo p2. We will retain this
restriction in all subsequent games. We let q denote the number of key queries the
attacker makes. For k from 0 to q, we define Gamek as:

Gamek. This is like GameRestricted, except that the ciphertext given to the
attacker is semi-functional and the first k keys are semi-functional. The rest of
the keys are normal.

In Game0, only the challenge ciphertext is semi-functional. In Gameq, the chal-
lenge ciphertext and all of the keys are semi-functional. We define GameFinal to
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be like Gameq, except that the challenge ciphertext is a semi-functional encryp-
tion of a random message, not one of the messages provided by the attacker. We
will show these games are indistinguishable in five lemmas. The proofs are very
similar to the proofs for our IBE system, and can be found in Appendix B.

5 Moving to Prime Order Groups

In Appendix C we show an analog of our previous construction in prime order
groups. The prime order group construction we give takes advantage of asym-
metric groups where there is a pairing function e : G1 × G2 → GT , but there is
not believed to be an efficient isomorphism from either G1 to G2 or G2 to G1.

Our prime construction can be viewed as an analog of the composite order one
where we “emulate” the three subgroups with multiple group elements to create
three subspaces. Our “emulation” technique uses some ideas from the Waters [5]
prime order group realization; however, we are able to “squeeze” things down
by using asymmetric groups.

A potential future direction is be to realize our methods in prime order groups
without relying on the lack of isomorphism for security. A natural approach
would be to use an “unsqueezed” version of our techniques. It is possible that
this approach might give a reduction with more cancelations that in turn provides
security from even simpler assumptions.

6 Conclusions and Open Directions

We have given the first HIBE system with constant size ciphertext that is fully
secure in the standard model from simple assumptions. In doing so, we discovered
that instantiations of the selectively secure Boneh-Boyen IBE and Boneh-Boyen-
Goh HIBE schemes in composite order bilinear groups can be proved to be fully
secure using the dual encryption technique of Waters. We overcame the initial
challenges introduced by the use of tags in the original Waters IBE and HIBE
systems by introducing the concept of nominally semi-functional keys. Our work
further demonstrates the power and versatility of the dual system encryption
technique, which we believe will have many future applications.

We leave it as an open problem to transfer our IBE and HIBE systems into
prime order groups with security proven from standard assumptions such as the
decisional Linear assumption and d-BDH. This kind of translation was previously
achieved by Waters [5] for his IBE and HIBE systems, which were originally
constructed in composite order groups.
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A Generic Security of Our Complexity Assumptions

We now prove our three complexity assumptions hold in the generic group model,
as long as it is hard to find a nontrivial factor of the group order, N . We adopt
the notation of [19] to express our assumptions. We fix generators gp1 , gp2 , gp3

of the subgroups Gp1 , Gp2 , Gp3 respectively. Every element of G can then be
expressed as ga1

p1
ga2

p2
ga3

p3
for some values of a1, a2, a3. We denote an element of G

by (a1, a2, a3). The element e(gp1 , gp1)a1e(gp2 , gp2)a2e(gp3 , gp3)a3 in GT will be
denoted by [a1, a2, a3]. We use capital letters to denote random variables, and we
reuse random variables to denote relationships between elements. For example,
X = (X1, Y1, Z1) is a random element of G, and Y = (X1, Y2, Z2) is another
random element that shares the same component in the Gp1 subgroup.

Given random variables X, {Ai} expressed in this form, we say that X is
dependent on {Ai} if there exists values λi ∈ Zn such that X =

∑
i λiAi as

formal random variables. Otherwise, we say that X is independent of {Ai}. We
note the following two theorems from [19]:

Theorem 2. (Theorem A.1 of [19]) Let N =
∏m

i=1 pi be a product of distinct
primes, each greater than 2λ. Let {Ai} be random variables over G, and let
{Bi}, T0, T1 be random variables over GT , where all random variables have degree
at most t. Consider the following experiment in the generic group model:

An algorithm is given N, {Ai}, and {Bi}. A random bit b is chosen, and the
adversary is given Tb. The algorithm outputs a bits b′, and succeeds if b′ = b. The
algorithm’s advantage is the absolute value of the difference between its success
probability and 1

2 .
Say each of T0 and T1 is independent of {Bi} ∪ {e(Ai, Aj)}. Then given any

algorithm A issuing at most q instructions and having advantage δ in the above
experiment, A can be used to find a nontrivial factor of N (in time polynomial
in λ and the running time of A) with probability at least δ −O(q2t/2λ).

Theorem 3. (Theorem A.2 of [19]) Let N =
∏m

i=1 pi be a product of distinct
primes, each greater than 2λ. Let {Ai}, T0, T1 be random variables over G, and
let {Bi} be random variables over GT , where all random variables have degree
at most t. Consider the same experiment as in the theorem above.

Let S := {i|e(T0, Ai) �= e(T1, Ai)} (where inequality refers to inequality as
formal polynomials). Say each of T0 and T1 is independent of {Ai}, and fur-
thermore that for all k ∈ S it holds that e(T0, Ak) is independent of {Bi} ∪
{e(Ai, Aj)}∪{e(T0, Ai)}i�=k, and e(T1, Ak) is independent of {Bi}∪{e(Ai, Aj)}∪
{e(T1, Ai)}i�=k. Then given any algorithm A issuing at most q instructions and
having advantage δ, the algorithm can be used to find a nontrivial factor of N
(in time polynomial in λ and the running time of A) with probability at least
δ − O(q2t/2λ).

We apply these theorems to prove the security of our assumptions in the generic
group model.
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Assumption 1. We apply Theorem 3. We can express this assumption as:

A1 = (1, 0, 0), A2 = (0, 0, 1),

T0 = (X1, X2, 0), T1 = (X1, 0, 0).

We note that S = ∅ in this case. It is clear that T0 and T1 are both independent
of {A1, A2} because X1 does not appear in A1 or A2. Thus, Assumption 1 is
generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 2. We apply Theorem 3. We can express this assumption as:

A1 = (1, 0, 0), A2 = (X1, 1, 0), A3 = (Y1, 0, 0), A4 = (0, X2, 1),

T0 = (Z1, Z2, Z3), T1 = (Z1, 0, Z3).

We note that S = {2, 4} in this case. It is clear that T0 and T1 are both in-
dependent of {Ai} since Z1 does not appear in the Ai’s, for example. We see
that e(T0, A2) is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i�=2 because it is im-
possible to obtain X1Z1 in the first coordinate of a combination of elements of
{e(Ai, Aj)} ∪ {e(T0, Ai)}i�=2. This also allows us to conclude that e(T1, A2) is
independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i�=2. We similarly note that e(T0, A4)
is independent of {e(Ai, Aj)} ∪ {e(T0, Ai)}i�=4 and e(T1, A4) is independent of
{e(Ai, Aj)}∪{e(T1, Ai)}i�=4 because we cannot obtain Z3 in the third coordinate.
Thus, Assumption 2 is generically secure, assuming it is hard to find a nontrivial
factor of N .

Assumption 3. We apply Theorem 2. We can express this assumption as:

A1 = (1, 0, 0), A2 = (B, 1, 0), A3 = (0, 0, 1), A4 = (S,X2, 0), A5 = (0, Y2, 0),

T0 = [BS, 0, 0], T2 = [Z1, Z2, Z3].

T1 is independent of {e(Ai, Aj)} because Z1, Z2, Z3 do not appear in {Ai}. T0
is independent of {e(Ai, Aj)} because the only way to obtain BS in the first
coordinate is to take e(A2, A4), but then we are left with an X2 in the second
coordinate that cannot be canceled. Thus, Assumption 3 is generically secure,
assuming it is hard to find a nontrivial factor of N .

B HIBE Security Proof

Lemma 5. For any algorithm A, GameRealAdvA = GameReal′AdvA.

Proof. We note that keys are identically distributed whether they are produced
by the key delegation algorithm from a previous key or from a fresh call to the
key generation algorithm. Thus, in the attacker’s view, there is no difference
between these games.
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Lemma 6. Suppose there exists an algorithm A such that GameReal′AdvA −
GameRestrictedAdvA = ε. Then we can build an algorithm B with advantage ≥ ε

2
in breaking either Assumption 1 or Assumption 2.

Proof. This proof is identical to the proof of Lemma 5.

Lemma 7. Suppose there exists an algorithm A such that GameRestrictedAdvA−
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B first receives g,X3, T . It simulates GameReal or Game0 with A. It sets
the public parameters as follows. It chooses random exponents α, a1, . . . , a�, b ∈
ZN and sets g = g, ui = gai for i from 1 to � and h = gb. It sends these
public parameters {N, g, u1, . . . , u�, h, e(g, g)α} to A. Each time B is asked to
provide a key for an identity (ID1, . . . , IDj), it chooses random exponents r, t,
w, vj1 , . . . , v� ∈ ZN and sets:

K1 = grXt
3,K2 = gα(uID1

1 · uIDj

j h)rXw
3 , Ej+1 = ur

j+1X
vj+1
3 , . . . , E� = ur

�X
v�
3 .

A sends B two messages, M0 and M1, and a challenge identity, (ID∗
1 , . . . , ID

∗
j ).

B chooses β ∈ {0, 1} randomly. The ciphertext is formed as follows:

C0 = Mβe(T, g)α, C1 = T a1ID∗
1+···ajID∗

j +b, C2 = T .

(This implicitly sets gs equal to the Gp1 part of T .) If T =∈ Gp1p2 , then this is
a semi-functional ciphertext with zc = a1ID

∗
1 + · · ·+ ajID

∗
j + b. If T ∈ Gp1 , this

is a normal ciphertext. Hence, B can use the output of A to distinguish between
these possibilities for T .

Lemma 8. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B first receives g,X1X2, X3, Y2Y3, T .B picks random exponents a1, . . . , a�,
b ∈ ZN and sets the public parameters as: g = g, ui = gai , h = gb, e(g, g)α. It
sends these to A. When A requests the ith key for (ID1, . . . , IDj) when i < k,
B creates a semi-functional key. It does this by choosing random exponents r, z,
t, zj+1, . . . , z� ∈ ZN and setting:

K1 = gr(Y2Y3)t,K2 = gα(uID1
1 · · ·uIDj

j h)r(Y2Y3)z,

Ej+1 = ur
j+1(Y2Y3)zj+1 , . . . , E� = ur

�(Y2Y3)z� .

This is a properly distributed semi-functional key with gγ
2 = Y t

2 .
For i > k, B generates normal keys by calling the usual key generation algo-

rithm.
To create the kth requested key for (ID1, . . . , IDj), B lets zk = a1ID1 +

· · · ajIDj + b, chooses random exponents wk, wj+1, . . . , w� ∈ ZN , and sets:

K1 = T,K2 = gαT zkXwk
3 , Ej+1 = T aj+1X

wj+1
3 , . . . , E� = T a�Xw�

3 .
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If T ∈ Gp1p3 , this is a normal key with gr equal to the Gp1 part of T . If T ∈ G,
this is a semi-functional key.

At some point, A sends B two messages, M0 and M1, and a challenge identity,
(ID∗

1 , . . . , ID
∗
j ). B sets β ∈ {0, 1} randomly. The challenge ciphertext is formed

as:

C0 = Mβe(X1X2, g)α, C1 = (X1X2)a1ID∗
1+···+ajID∗

j +b, C2 = X1X2.

We note that this sets gs = X1 and zc = a1ID
∗
1 + · · · ajID

∗
j + b. Since the kth

key is not a prefix of the challenge key modulo p2, zk and zc will seem randomly
distributed to A. Though it is hidden from A, this relationship between zc and
zk is crucial: if B attempts to test itself whether key k is semi-functional by
creating a semi-functional ciphertext for this identity and trying to decrypt, then
decryption will work whether key k is semi-functional or not, because zc = zk.
In other words, the simulator can only create a nominally semi-functional key k.

If T ∈ Gp1p3 , then B has properly simulated Gamek−1. If T ∈ G, then B
has properly simulated Gamek. Hence, B can use the output of A to distinguish
between these possibilities for T .

Lemma 9. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B first receives g, gαX2, X3, g
sY2, Z2, T . B chooses random exponents

a1, . . . , a�, b ∈ ZN and sets the public parameters as g = g, u1 = ga1 , . . . , u� =
ga� , h = gb, e(g, g)α = e(gαX2, g). It sends these to A. When A requests a key
for identity (ID1, . . . , IDj), B generates a semi-functional key. It does this by
choosing random exponents c, r, t, w, z, zj+1, . . . , z�, wj+1, . . . , w� ∈ ZN and
setting:

K1 = grZz
2X

t
3,K2 = gαX2Z

c
2(u

ID1
1 · · ·uIDj

j h)rXw
3 ,

Ej+1 = ur
j+1Z

zj+1
2 X

wj+1
3 , . . . , E� = ur

�Z
z�
2 Xw�

3 .

A sends B two messages, M0 and M1, and a challenge identity, (ID∗
1 , . . . , ID

∗
j ).

B sets β ∈ {0, 1} randomly. It forms the challenge ciphertext as:

C0 = MβT,C1 = (gsY2)a1ID∗
1+···ajID∗

j +b, C2 = gsY2.

This sets zc = a1ID
∗
1 + · · · + ajID

∗
j + b. We note that the value of zc only

matters modulo p2, whereas u1 = ga1 , . . . , u� = ga� , and h = gb are elements
of Gp1 , so when a1, . . . , a� and b are chosen randomly modulo N , there is no
correlation between the values of a1, . . . , a�, b modulo p1 and the value zc =
a1ID

∗
1 + · · · + ajID

∗
j + b modulo p2.

If T = e(g, g)αs, then this is a properly distributed semi-functional ciphertext
with message Mβ. If T is a random element of GT , then this is a semi-functional
ciphertext with a random message. Hence, B can use the output of A to distin-
guish between these possibilities for T .

We have now proven the following theorem:
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Theorem 4. If Assumptions 1, 2, and 3 hold, then our HIBE system is secure.

Proof. If Assumptions 1, 2, and 3 hold, then we have shown by the previous
lemmas that the real security game is indistinguishable from GameFinal, in which
the value of β is information-theoretically hidden from the attacker. Hence the
attacker can attain no advantage in breaking the HIBE system.

C IBE in Prime Order Groups

Our construction essentially replaces each single group element in our composite
order construction with a 3-tuple of group elements. This 3-tuple is inspired by
a simplification of the Waters dual encryption IBE system [5]. We prove security
under 3 new static assumptions. We leave it as an open problem to obtain security
from the decisional Linear and d-BDH assumptions. One approach would be to
use more of the Waters system (with less simplification).

C.1 Construction

For our construction, we employ prime order groups G1, G2, GT of order p such
that there is an efficient bilinear map e : G1 ×G2 → GT but no efficient isomor-
phism between G1 and G2. We use subscripts to clarify which elements are in
G1 and which are in G2, for example, g1 ∈ G1.

Setup. Our setup algorithm chooses groups G1, G2, GT of order p as above. It
chooses g1, u1, h1 ∈ G1, g2 ∈ G2 randomly. It sets u2 and h2 so that the discrete
log of u2, h2 base g2 is equal to the discrete log of u1, h1 base g1 respectively. It
chooses a, α ∈ Zp randomly. It chooses v2, v

′
2, f2 ∈ G2 randomly and sets τ ∈ Zp

to satisfy f τ
2 = v2(v′2)

a. It publishes the public parameters as:

{g1, u1, h1, g
a
1 , u

a
1 , h

a
1 , g

τ
1 , u

τ
1 , h

τ
1 , e(g1, g2)α}.

The master secret key is g2, α, v2, v
′
2, u2, h2, f2.

Encrypt(M, ID). The encryption algorithm randomly chooses s ∈ Zp and cre-
ates the ciphertext as:

C0 = Me(g1, g2)αs, C1,1 = (uID
1 h1)s, C1,2 = (uID

1 h)as, C1,3 = (uID
1 h1)−sτ ,

C2,1 = gs
1, C2,2 = gas

1 , C2,3 = gτs
1 .

KeyGen(ID,MSK). The key generation algorithm chooses random values y, c1,
c2 ∈ Zp. It creates the key as:

K1,1 = gy
2v

c1
2 ,K1,2 = (v′2)

c1 ,K1,3 = f c1
2 ,

K2,1 = gα
2 (uID

2 h2)yvc2
2 ,K2,2 = (v′2)

c2 ,K2,3 = f c2
2 .

Decryption. If the ID’s of the ciphertext and key are equal, the decryption
algorithm computes the blinding factor as:
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e(C2,1,K2,1)e(C2,2,K2,2)e(C2,3,K2,3)
e(C1,1,K1,1)e(C1,2,K1,2)e(C1,3K1,3)

.

C.2 Complexity Assumptions

We state the assumptions we will rely on in our security proof. These are non-
standard assumptions, but we emphasize that they are static.

Assumption 1. Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let a, b, s ∈ Zp be
chosen randomly. Given

{f1, f
bs
1 , fs

1 , f
a
1 , f

ab2

1 , f b
1 , f

b2

1 , fas
1 , f b2s

1 , f b3

1 , f b3s
1 , T ∈ G1, f2, f

b
2 ∈ G2},

it should be hard to distinguish T = fasb2

1 from random.

Assumption 2. Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c, x ∈ Zp

be chosen randomly. Given

{f1, f
d
1 , f

d2

1 , f bx
1 , fdbx

1 , fd2x
1 ∈ G1, f2, f

d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2},

it should be hard to distinguish T = f bc
2 from random.

Assumption 3. Let f1 ∈ G1 and f2 ∈ G2 be chosen randomly. Let d, b, c ∈ Zp be
chosen randomly. Given

{f1, f
a
1 , f

b
1 , f

c
1 ∈ G1, f2, f

a
2 , f

b
2 , f

c
2 ∈ G2, T ∈ GT },

it should be hard to distinguish T = e(f1, f2)abc from random.

C.3 Security

We first define semi-functional keys and ciphertexts.

Semi-functional Ciphertext. We let f1, v
′
1 denote elements of G1 such that the

discrete log of v′1 base f1 is the same as the discrete log of v′2 base f2. We let
t, zc denote random exponents in Zp. A semi-functional ciphertext is created as
follows: first, a normal ciphertext C′

0, C
′
1,1, C

′
1,2, C

′
1,3, C

′
2,1, C

′
2,2, C

′
2,3 is created.

Then, C0 is set to be C′
0, C1,1 = C′

1,1, C1,2 = C′
1,2f

tzc
1 , C1,3 = C′

1,3(v
′
1)

−tzc ,
C2,1 = C′

2,1, C2,2 = C′
2,2f

t
1, C2,3 = C′

2,3(v′1)−t.

Semi-functional Key. A semi-functional key is created as follows: a normal key
K ′

1,1, K ′
1,2, K ′

1,3, K ′
2,1,K

′
2,2,K

′
2,3 is generated. Random exponents w, zk ∈ Zp

are chosen. Then we set: K1,1 = K ′
1,1f

−aw
2 ,K1,2 = K ′

1,2f
w
2 ,K1,3 = K ′

1,3, K2,1 =
K ′

2,1f
−awzk
2 ,K2,2 = K ′

2,2f
wzk
2 ,K2,3 = K ′

2,3.
We note that when a semi-functional key is paired with a normal ciphertext

or a normal key is paired with a semi-functional ciphertext, decryption still
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works. When a semi-functional key is paired with a semi-functional ciphertext,
the blinding factor is obscured by an additional term: e(f1, f2)tw(zk−zc). (When
zk = zc, decryption will still work.)

We will prove security through a hybrid argument over a sequence of games.
GameReal is the real security game. Game0 is like the real security game, ex-
cept with a semi-functional ciphertext. Gamek for k from 1 to q (where q is
the number of queries by the attacker) is like Game0, except that the first k
requested keys are semi-functional and the rest are normal. In GameFinal, the
semi-functional encryption is of a random message instead of one of the requested
messages. We will rely on Assumptions 1, 2, 3 as defined in the subsection above.
We prove security through the following 3 lemmas.

Lemma 10. Suppose there exists an algorithm A such that GameRealAdvA −
Game0AdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 1.

Proof. B is given

{f1, f
bs
1 , fs

1 , f
a
1 , f

ab2

1 , f b
1 , f

b2

1 , fas
1 , f b2s

1 , f b3

1 , f b3s
1 , T ∈ G1, f2, f

b
2 ∈ G2}.

It chooses random exponents α,A,B, yg, yu, yh, y
′
v ∈ Zp and sets the parameters

as:
g1 = f b2

1 f
yg

1 , u1 = (f b2

1 )Afyu

1 , h1 = (f b2

1 )Bfyh

1 , ga
1 , u

a
1 , h

a
1 ,

f2 = f2, v2 = f b
2 , v

′
2 = f

y′
v

2 , τ = b + ay′v.

Here, a is from the assumption and ga
1 , u

a
1 , h

a
1 can be computed from fa

1 and
fab2

1 . We note that B can also compute gτ
1 , uτ

1 , and hτ
1 using f b3

1 , f b2a
1 , fa

1 , and
f b
1 . It can also compute e(g1, g2)α using f b2

1 , f b
2 , and f b3

1 .
To construct a normal key for ID, B chooses random exponents c′1, c

′
2, y ∈ Zp

and sets f c1
2 = f

c′1
2 (f b

2 )−y and f c2
2 = f

c′2
2 (f b

2)−yAID+B−α. Then the key can be
formed as:

K1,1 = f
ygy
2 (f b

2)c′1 ,K1,2 = (f c1
2 )y′

v ,K1,3 = f c1
2 ,

K2,1 = f
αyg

2 (f b
2)c′2f

y(yuID+yh)
2 ,K2,2 = (f c2

2 )y′
v ,K2,3 = f c2

2 .

To construct the challenge ciphertext for Mβ and ID∗, B sets s = s from the
assumption. Then C1,1 and C2,1 can be computed from fs

1 and f b2s
1 . Next,

C1,2 = TAID+B(fas
1 )yID+yh , C2,2 = T (fas

1 )yg .

We can create C2,3 as:

C2,3 = f b3s
1 (f bs

1 )ygT y′
v(fas

1 )ygy′
v .

C1,3 can similarly be constructed using T y′
v(AID+B). We note that A,B are

information-theoretically hidden from the attacker.
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Lemma 11. Suppose there exists an algorithm A such that Gamek−1AdvA −
GamekAdvA = ε. Then we can build an algorithm B with advantage ε in breaking
Assumption 2.

Proof. B is given {f1, f
d
1 , f

d2

1 , f bx
1 , fdbx

1 , fd2x
1 ∈ G1, f2, f

d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}.

It chooses random exponents α, a,A,B, yu, yh, yv ∈ Zp. It sets the parameters
as follows:

g1 = fd
1 , u1 = (fd

1 )Afyu

1 , h1 = (fd
1 )Bfyh

1 , ga
1 , u

a
1 , h

a
1 , g2 = fd

2 , u2 = (fd
2 )Afyu

2 ,

h2 = (fd
2 )Bfyh

2 , v′2 = f b
2 , v2 = fd

2 f
−ba
2 fyv

2 , f2 = f2.

This sets τ = d − ba + yv + ab = d + yv, so the simulator B can also compute
gτ
1 , u

τ
1 , h

τ
1 and send all of the public parameters to A.

To make normal keys for key queries < k, B can choose y, c1, c2 ∈ Zp randomly
and generate the keys from the MSK. To make semi-functional keys for key
queries > k, B can choose y, c1, c2, w, zk ∈ Zp randomly to generate the semi-
functional key.

To make the challenge key k for ID, B chooses y′, c′2 ∈ Zp randomly and
implicitly sets y = −c + y′, c1 = c, c2 = c(AID + B) + c′2. The key can then be
formed as:

K1,1 = (fd
2 )y′

T−a(f c
2 )yv ,K1,2 = T,K1,3 = f c

2 ,

K2,1 = gα
2 T

−a(AID+B)(f b
2)−ac′2(fd

2 )y′(AID+B)+c′2

(f c
2 )yuID+yh+yv(AID+B)f

y′(yuID+yh)+c′2yv

2 ,

K2,2 = TAID+B(f b
2)c′2 ,K2,3 = (f c

2 )AID+Bf
c′2
2 .

We note that this sets zk = AID + B.
At some point, A sends two messages, M0,M1, to B along with a challenge

identity ID∗. B chooses β ∈ {0, 1} randomly and generates a semi-functional
ciphertext for Mβ and ID∗ as follows. B chooses a random exponent s′ ∈ Zp

and implicitly sets s = bx + s′, t = −d2x. The ciphertext is formed as follows:

C0 = Mβe(fdbx
1 , fd

2 )e(g1, g2)αs′
, C1,1 = (fdbx

1 )AID∗+B(f bx
1 )yuID∗+B(uID∗

1 h1)s′
,

C1,2 = (fdbx
1 )a(AID∗+B)(fd2x

1 )−(AID∗+B)(uID∗
1 h1)as′

,

C1,3 = (fdbx
1 )−yv(AID∗+B)(fd2

1 )−s′(AID∗+B)(fd
1 )−yvs′(AID∗+B),

C2,1 = fdbx
1 (fd

1 )s′
, C2,2 = (fdbx

1 )a(fd
1 )s′a(fd2x

1 )−1,

C2,3 = (fdbx
1 )−yv(fd2

1 )−s′
(fd

1 )−yvs′
.

We note that zc = AID∗ + B. Since A and B are information-theoretically
hidden from the attacker, this will seem properly distributed to the attacker. If
T = f bc

2 , then B has properly simulated Gamek−1, and if T is random, then B
has properly simulated Gamek.
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Lemma 12. Suppose there exists an algorithm A such that GameqAdvA −
GameFinalAdvA = ε. Then we can build an algorithm B with advantage ε in
breaking Assumption 3.

Proof. B is given

{f1, f
d
1 , f

d2

1 , f bx
1 , fdbx

1 , fd2x
1 ∈ G1, f2, f

d
2 , f

b
2 , f

c
2 ∈ G2, T ∈ G2}.

It will implicitly set α = ab, s = c, and a = a. B chooses random exponents
yg, yu, yv, yv, y

′
v ∈ Zp. It sets the parameters as:

g1 = f
yg

1 , u1 = fyu

1 , h1 = fyh

1 , v2 = fyv

2 , v′2 = f
y′

v
2 , g2 = f

yg

2

and sets τ = yv+ay′v. From this, it can calculate the rest of the public parameters
as:

ga
1 = (fa

1 )yg , ua
1 = (fa

1 )yu , ha
1 = (fa

1 )yh , gτ
1 = (ga

1 )y′
vgyv

1 ,

uτ
1 = (ua

1)
y′

vuyv

1 , hτ
1 = (ha

1)y′
vhyv

1 , e(g1, g2)α = e(fa
1 , f

b
2)y2

g .

To make semi-functional keys, B must cancel the term gα
2 in K2,1 since this is

unknown. To do this, the simulator randomly chooses w, c1, c2, y, γ ∈ Zp and
implicitly sets wzk = b + γ.

To make the challenge ciphertext for Mβ and ID∗, B sets s = c and chooses
random values δ, δ′ ∈ Zp. It implicitly sets ca+t = δ and ca(yuID

∗+yh)+tzc = δ′

and acyg + t = δ.

C0 = MβT,C1,1 = (f c
1 )yuID∗+yh , C1,2 = f δ′

1 , C1,3 = (f c
1)−yv(yuID∗+yh)f

−y′
vδ′

1 ,

C2,1 = (f c
1 )yg , C2,2 = f δ

1 , C2,3 = (f c
1)−yvyg(f δ

1 )−y′
v .
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Abstract. We provide a provable-security treatment of “robust” en-
cryption. Robustness means it is hard to produce a ciphertext that is
valid for two different users. Robustness makes explicit a property that
has been implicitly assumed in the past. We argue that it is an essential
conjunct of anonymous encryption. We show that natural anonymity-
preserving ways to achieve it, such as adding recipient identification in-
formation before encrypting, fail. We provide transforms that do achieve
it, efficiently and provably. We assess the robustness of specific encryp-
tion schemes in the literature, providing simple patches for some that
lack the property. We present various applications. Our work enables
safer and simpler use of encryption.

1 Introduction

This paper provides a provable-security treatment of encryption “robustness.”
Robustness reflects the difficulty of producing a ciphertext valid under two differ-
ent encryption keys. The value of robustness is conceptual, “naming” something
that has been undefined yet at times implicitly (and incorrectly) assumed. Ro-
bustness helps make encryption more mis-use resistant. We provide formal def-
initions of several variants of the goal; consider and dismiss natural approaches
to achieve it; provide two general robustness-adding transforms; test robustness
of existing schemes and patch the ones that fail; and discuss some applications.

The definitions. Both the PKE and the IBE settings are of interest and the
explication is simplified by unifying them as follows. Associate to each identity
an encryption key, defined as the identity itself in the IBE case and its (honestly
generated) public key in the PKE case. The adversary outputs a pair id0, id1
of distinct identities. For strong robustness it also outputs a ciphertext C∗; for
weak, it outputs a message M∗, and C∗ is defined as the encryption of M∗

under the encryption key ek1 of id1. The adversary wins if the decryptions of
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C∗ under the decryption keys dk0, dk1 corresponding to ek0, ek1 are both non-⊥.
Both weak and strong robustness can be considered under chosen plaintext or
chosen ciphertext attacks, resulting in four notions (for each of PKE and IBE)
that we denote WROB-CPA, WROB-CCA, SROB-CPA, SROB-CCA.

Why robustness? The primary security requirement for encryption is data-
privacy, as captured by notions IND-CPA or IND-CCA [18,21,16,5,11]. In-
creasingly, we are also seeing a market for anonymity, as captured by notions
ANO-CPA and ANO-CCA [4,1]. Anonymity asks that a ciphertext does not
reveal the encryption key under which it was created.

Where you need anonymity, there is a good chance you need robustness too.
Indeed, we would go so far as to say that robustness is an essential companion
of anonymous encryption. The reason is that without it we would have secu-
rity without basic communication correctness, likely upsetting our application.
This is best illustrated by the following canonical application of anonymous en-
cryption, but shows up also, in less direct but no less important ways, in other
applications. A sender wants to send a message to a particular target recipient,
but, to hide the identity of this target recipient, anonymously encrypts it under
her key and broadcasts the ciphertext to a larger group. But as a member of
this group I need, upon receiving a ciphertext, to know whether or not I am the
target recipient. (The latter typically needs to act on the message.) Of course
I can’t tell whether the ciphertext is for me just by looking at it since the en-
cryption is anonymous, but decryption should divulge this information. It does,
unambiguously, if the encryption is robust (the ciphertext is for me iff my de-
cryption of it is not ⊥) but otherwise I might accept a ciphertext (and some
resulting message) of which I am not the target, creating mis-communication.
Natural “solutions,” such as including the encryption key or identity of the tar-
get recipient in the plaintext before encryption and checking it upon decryption,
are, in hindsight, just attempts to add robustness without violating anonymity
and, as we will see, don’t work.

We were lead to formulate robustness upon revisiting Public key Encryption
with Keyword Search (PEKS) [9]. In a clever usage of anonymity, Boneh, Di
Crescenzo, Ostrovsky and Persiano (BDOP) [9] showed how this property in an
IBE scheme allowed it to be turned into a privacy-respecting communications
filter. But Abdalla et. al [1] noted that the BDOP filter could lack consistency,
meaning turn up false positives. Their solution was to modify the construction.
What we observed instead was that consistency would in fact be provided by the
original construct if the IBE scheme was robust. PEKS consistency turns out to
correspond exactly to communication correctness of the anonymous IBE scheme
in the sense discussed above. (Because the PEKS messages in the BDOP scheme
are the recipients identities from the IBE perspective.) Besides resurrecting the
BDOP construct, the robustness approach allows us to obtain the first consistent
IND-CCA secure PEKS without random oracles.

Sako’s auction protocol [23] is important because it was the first truly practical
one to hide the bids of losers. It makes clever use of anonymous encryption for
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privacy. But we present an attack on fairness whose cause is ultimately a lack of
robustness in the anonymous encryption scheme (cf. [2]).

All this underscores a number of the claims we are making about robust-
ness: that it is of conceptual value; that it makes encryption more resistant to
mis-use; that it has been implicitly (and incorrectly) assumed; and that there is
value to making it explicit, formally defining and provably achieving it.

Weak versus strong. The above-mentioned auction protocol fails because
an adversary can create a ciphertext that decrypts correctly under any decryp-
tion key. Strong robustness is needed to prevent this. Weak robustness (of the
underlying IBE) will yield PEKS consistency for honestly-encrypted messages
but may allow spammers to bypass all filters with a single ciphertext, something
prevented by strong robustness. Strong robustness trumps weak for applications
and goes farther towards making encryption mis-use resistant. We have defined
and considered the weaker version because it can be more efficiently achieved,
because some existing schemes achieve it and because attaining it is a crucial
first step in our method for attaining strong robustness.

Achieving robustness. As the reader has surely already noted, robustness
(even strong) is trivially achieved by appending the encryption key to the ci-
phertext and checking for it upon decryption. The problem is that the resulting
scheme is not anonymous and, as we have seen above, it is exactly for anonymous
schemes that robustness is important. Of course, data privacy is important too.
Letting AI-ATK = ANO-ATK + IND-ATK for ATK ∈ {CPA,CCA}, our goal
is to achieve AI-ATK + XROB-ATK, ideally for both ATK ∈ {CPA,CCA} and
X ∈ {W, S}. This is harder.

Transforms. It is natural to begin by seeking a general transform that takes
an arbitrary AI-ATK scheme and returns a AI-ATK + XROB-ATK one. This
allows us to exploit known constructions of AI-ATK schemes, supports modular
protocol design and also helps understand robustness divorced from the algebra
of specific schemes. Furthermore, there is a natural and promising transform to
consider. Namely, before encrypting, append to the message some redundancy,
such as the recipient encryption key, a constant, or even a hash of the message,
and check for its presence upon decryption. (Adding the redundancy before en-
crypting rather than after preserves AI-ATK.) Intuitively this should provide
robustness because decryption with the “wrong” key will result, if not in re-
jection, then in recovery of a garbled plaintext, unlikely to possess the correct
redundancy.

The truth is more complex. We consider two versions of the paradigm and
summarize our findings in Fig. 1. In encryption with unkeyed redundancy, the
redundancy is a function RC of the message and encryption key alone. In this case
we show that the method fails spectacularly, not providing even weak robustness
regardless of the choice of the function RC. In encryption with keyed redundancy,
we allow RC to depend on a key K that is placed in the public parameters of the
transformed scheme, out of direct reach of the algorithms of the original scheme.
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In this form, the method can easily provide weak robustness, and that too with
a very simple redundancy function, namely the one that simply returns K.

But we show that even encryption with keyed redundancy fails to provide
strong robustness. To achieve the latter we have to step outside the encryption
with redundancy paradigm. We present a strong robustness conferring transform
that uses a (non-interactive) commitment scheme. For subtle reasons, for this
transform to work the starting scheme needs to already be weakly robust. If it
isn’t already, we can make it so via our weak robustness transform.

In summary, on the positive side we provide a transform conferring weak
robustness and another conferring strong robustness. Given any AI-ATK scheme
the first transform returns a WROB-ATK + AI-ATK one. Given any AI-ATK +
WROB-ATK scheme the second transform returns a SROB-ATK+AI-ATK one.
In both cases it is for both ATK = CPA and ATK = CCA and in both cases
the transform applies to what we call general encryption schemes, of which both
PKE and IBE are special cases, so both are covered.

Robustness of specific schemes. The robustness of existing schemes is im-
portant because they might be in use. We ask which specific existing schemes
are robust, and, for those that are not, whether they can be made so at a cost
lower than that of applying one of our general transforms. There is no reason
to expect schemes that are only AI-CPA to be robust since the decryption algo-
rithm may never reject, so we focus on schemes that are known to be AI-CCA.
This narrows the field quite a bit. Our findings and results are summarized in
Fig. 1.

Canonical AI-CCA schemes in the PKE setting are Cramer-Shoup (CS) in the
standard model [15,4] and DHIES in the random oracle (RO) model [3,4]. We
show that both are WROB-CCA but neither is SROB-CCA, the latter because
encryption with 0 randomness yields a ciphertext valid under any encryption
key. We present modified versions CS∗,DHIES∗ of the schemes that we show
are SROB-CCA. Our proof that CS∗ is SROB-CCA builds on the information-
theoretic part of the proof of [15]. The result does not need to assume hardness of
DDH. It relies instead on pre-image security of the underlying hash function for
random range points, something not implied by collision-resistance but seemingly
possessed by candidate functions.

In the IBE setting, the CCA version BF of the RO model Boneh-Franklin
scheme is AI-CCA [10,1], and we show it is SROB-CCA. The standard model
Boyen-Waters schemeBW is AI-CCA [13], and we show it is neither WROB-CCA
nor SROB-CCA. It can be made either via our transforms but we don’t know of
any more direct way to do this.
BF is obtained via the Fujisaki-Okamoto (FO) transform [17] and BW via the

Canetti-Halevi-Katz (CHK) transform [14,8]. We can show that neither trans-
form generically provides strong robustness. This doesn’t say whether they do
or not when applied to specific schemes, and indeed the first does for BF and
the second does not for BW .

Summary. Protocol design suggests that designers have the intuition that ro-
bustness is naturally present. This seems to be more often right than wrong
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Transform WROB-ATK SROB-ATK
Encryption with unkeyed redundancy (EuR) No No
Encryption with keyed redundancy (EkR) Yes No

Scheme setting AI-CCA WROB-CCA SROB-CCA RO model

CS PKE Yes [15,4] Yes No No
CS∗ PKE Yes Yes Yes No
DHIES PKE Yes [3] Yes No Yes
DHIES∗ PKE Yes Yes Yes Yes
BF IBE Yes [10,1] Yes Yes Yes
BW IBE Yes [13] No No No

Fig. 1. Achieving Robustness. The first table summarizes our findings on the en-
cryption with redundancy transform. “No” means the method fails to achieve the
indicated robustness for all redundancy functions, while “yes” means there exists a re-
dundancy function for which it works. The second table summarizes robustness results
about some specific AI-CCA schemes.

when considering weak robustness of specific AI-CCA schemes. Prevailing intu-
ition about generic ways to add even weak robustness is wrong, yet we show it
can be done by an appropriate tweak of these ideas. Strong robustness is more
likely to be absent than present in specific schemes, but important schemes can
be patched. Strong robustness can also be added generically, but with more work.

Related work. There is growing recognition that robustness is important in
applications and worth defining explicitly, supporting our own claims to this end.
In particular the correctness requirement for predicate encryption [20] includes
a form of weak robustness and, in recent work concurrent to, and independent
of, ours, Hofheinz and Weinreb [19] introduced a notion of well-addressedness
of IBE schemes that is just like weak robustness except that the adversary gets
the IBE master secret key. Neither work considers or achieves strong robustness,
and neither treats PKE.

2 Definitions

Notation and conventions. If x is a string then |x| denotes its length, and if
S is a set then |S| denotes its size. The empty string is denoted ε. By a1‖ . . . ‖an,
we denote a string encoding of a1, . . . , an from which a1, . . . , an are uniquely re-
coverable. (Usually, concatenation suffices.) By a1‖ . . . ‖an ← a, we mean that
a is parsed into its constituents a1, . . . , an. Similarly, if a = (a1, . . . , an) then
(a1, . . . , an) ← a means we parse a as shown. Unless otherwise indicated, an
algorithm may be randomized. By y

$← A(x1, x2, . . .) we denote the operation
of running A on inputs x1, x2, . . . and fresh coins and letting y denote the out-
put. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A on inputs
x1, x2, . . .. We assume that an algorithm returns ⊥ if any of its inputs is ⊥.
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proc Initialize

(pars ,msk) $← PG ; b
$← {0, 1}

S, T, U, V ← ∅
Return pars

proc GetEK(id)
U ← U ∪ {id}
(EK[id ],DK[id ]) $← KG(pars ,msk , id)
Return EK[id ]

proc GetDK(id)
If id �∈ U then return ⊥
If id ∈ S then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)
If id �∈ U then return ⊥
If (id , C) ∈ T then return ⊥
M ← Dec(pars ,EK[id ],DK[id ], C)
Return M

proc LR(id∗
0, id

∗
1, M

∗
0 , M∗

1 )
If (id∗

0 �∈ U) ∨ (id∗
1 �∈ U) then return ⊥

If (id∗
0 ∈ V ) ∨ (id∗

1 ∈ V ) then return ⊥
If |M∗

0 | �= |M∗
1 | then return ⊥

C∗ $← Enc(pars ,EK[idb], M∗
b )

S ← S ∪ {id∗
0, id

∗
1}

T ← T ∪ {(id∗
0, C

∗), (id∗
1, C

∗)}
Return C∗

proc Finalize(b′)
Return (b′ = b)

Fig. 2. Game AIGE defining AI-ATK security of general encryption scheme GE =
(PG,KG,Enc,Dec)

Games. Our definitions and proofs use code-based game-playing [6]. Recall that
a game —look at Fig. 2 for an example— has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. A game G
is executed with an adversary A as follows. First, Initialize executes and its
outputs are the inputs to A. Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter, denoted GA, is
called the output of the game, and we let “GA” denote the event that this game
output takes value true. Boolean flags are assumed initialized to false. Games
Gi,Gj are identical until bad if their code differs only in statements that follow
the setting of bad to true. Our proofs will use the following.

Lemma 1 [6] Let Gi,Gj be identical until bad games, and A an adversary.
Then ∣∣Pr

[
GA

i

]
− Pr

[
GA

j

]∣∣ ≤ Pr
[
GA

j sets bad
]

.

The running time of an adversary is the worst case time of the execution of the
adversary with the game defining its security, so that the execution time of the
called game procedures is included.

General encryption. We introduce and use general encryption schemes, of
which both PKE and IBE are special cases. This allows us to avoid repeating
similar definitions and proofs. A general encryption (GE) scheme is a tuple
GE = (PG,KG,Enc,Dec) of algorithms. The parameter generation algorithm PG
takes no input and returns common parameter pars and a master secret key msk .
On input pars ,msk , id , the key generation algorithm KG produces an encryption
key ek and decryption key dk . On inputs pars , ek ,M , the encryption algorithm
Enc produces a ciphertext C encrypting plaintext M . On input pars , ek , dk ,C ,
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proc Initialize

(pars ,msk) $← PG ; U, V ← ∅
Return pars

proc GetEK(id)
U ← U ∪ {id}
(EK[id ],DK[id ]) $← KG(pars , msk , id)
Return EK[id ]

proc GetDK(id)
If id �∈ U then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)
If id �∈ U then return ⊥
M ← Dec(pars ,EK[id ],DK[id ], C)
Return M

proc Finalize(M, id0, id1) // WROBGE

If (id0 �∈ U) ∨ (id1 �∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false

M0 ← M ; C
$← Enc(pars ,EK[id0], M0)

M1 ← Dec(pars ,EK[id1],DK[id1], C)
Return (M0 �= ⊥) ∧ (M1 �= ⊥)

proc Finalize(C, id0, id1) // SROBGE

If (id0 �∈ U) ∨ (id1 �∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false
M0 ← Dec(pars ,EK[id0],DK[id0], C)
M1 ← Dec(pars ,EK[id1],DK[id1], C)
Return (M0 �= ⊥) ∧ (M1 �= ⊥)

Fig. 3. Games WROBGE and SROBGE defining WROB-ATK and SROB-ATK security
(respectively) of general encryption scheme GE = (PG,KG,Enc,Dec). The procedures
on the left are common to both games, which differ only in their Finalize procedures.

the deterministic decryption algorithm Dec returns either a plaintext message M
or ⊥ to indicate that it rejects. We say that GE is a public-key encryption (PKE)
scheme if msk = ε and KG ignores its id input. To recover the usual syntax we
may in this case write the output of PG as pars rather than (pars ,msk) and
omit msk , id as inputs to KG. We say that GE is an identity-based encryption
(IBE) scheme if ek = id , meaning the encryption key created by KG on inputs
pars ,msk , id always equals id . To recover the usual syntax we may in this case
write the output of KG as dk rather than (ek , dk). It is easy to see that in this
way we have recovered the usual primitives. But there are general encryption
schemes that are neither PKE nor IBE schemes, meaning the primitive is indeed
more general.

Correctness. Correctness of a general encryption scheme GE = (PG,KG,Enc,
Dec) requires that, for all (pars ,msk) ∈ [PG], all plaintexts M in the underlying
message space associated to pars , all identities id , and all (ek , dk) ∈ [KG(pars ,
msk , id)], we have Dec(pars , ek , dk ,Enc(pars , ek ,M )) = M with probability one,
where the probability is taken over the coins of Enc.

AI-ATK security. Historically, definitions of data privacy (IND) [18,21,16,5,11]
and anonymity (ANON) [4,1] have been separate. We are interested in schemes
that achieve both, so rather than use separate definitions we follow [12] and
capture both simultaneously via game AIGE of Fig. 2. A cpa adversary is one
that makes no Dec queries, and a cca adversary is one that might make such
queries. The ai-advantage of such an adversary, in either case, is

Advai
GE (A) = 2 · Pr

[
AIAGE

]
− 1.



Robust Encryption 487

We will assume an ai-adversary makes only one LR query, since a hybrid argu-
ment shows that making q of them can increase its ai-advantage by a factor of
at most q.

Oracle GetDK represents the IBE key-extraction oracle [11]. In the PKE
case it is superfluous in the sense that removing it results in a definition that is
equivalent up to a factor depending on the number of GetDK queries. That’s
probably why the usual definition has no such oracle. But conceptually, if it is
there for IBE, it ought to be there for PKE, and it does impact concrete security.

Robustness. Associated to general encryption scheme GE = (PG,KG,Enc,Dec)
are games WROB, SROB of Fig. 3. As before, a cpa adversary is one that makes
no Dec queries, and a cca adversary is one that might make such queries. The
wrob and srob advantages of an adversary, in either case, are

Advwrob
GE (A) = Pr

[
WROBA

GE

]
and Advsrob

GE (A) = Pr
[
SROBA

GE

]
.

The difference between WROB and SROB is that in the former the adversary
produces a message M , and C is its encryption under the encryption key of one
of the given identities, while in the latter it produces C directly, and may not
obtain it as an honest encryption. It is worth clarifying that in the PKE case the
adversary does not get to choose the encryption (public) keys of the identities
it is targeting. These are honestly and independently chosen, in real life by the
identities themselves and in our formalization by the games.

3 Robustness Failures of Encryption with Redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an
encryption scheme is to add redundancy before encrypting, and upon decryption
reject if the redundancy is absent. Here we investigate the effectiveness of this
encryption with redundancy approach, justifying the negative results discussed
in Section 1 and summarized in the first table of Fig. 1.

Redundancy codes and the transform. A redundancy code RED = (RKG,
RC,RV) is a triple of algorithms. The redundancy key generation algorithm RKG
generates a key K. On input K and data x the redundancy computation algo-
rithm RC returns redundancy r. Given K, x, and claimed redundancy r, the
deterministic redundancy verification algorithm RV returns 0 or 1. We say that
RED is unkeyed if the key K output by RKG is always equal to ε, and keyed oth-
erwise. The correctness condition is that for all x we have RV(K,x,RC(K,x)) = 1
with probability one, where the probability is taken over the coins of RKG and
RC. (We stress that the latter is allowed to be randomized.)

Given a general encryption scheme GE = (PG,KG,Enc,Dec) and a redun-
dancy code RED = (RKG,RC,RV), the encryption with redundancy transform
associates to them the general encryption scheme GE = (PG,KG,Enc,Dec)
whose algorithms are shown on the left side of Fig. 5. Note that the trans-
form has the first of our desired properties, namely that it preserves AI-ATK.
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RKG RC(K, ek‖M) RV(K, ek‖M, r)
Return K ← ε Return ε Return 1
Return K ← ε Return 0k Return (r = 0k)
Return K ← ε Return ek Return (r = ek)

Return K ← ε L
$← {0, 1}k ;

Return L‖H(L, ek‖M)
L‖h ← r ;
Return (h = H(L, ek‖M))

Return K
$← {0, 1}k Return K Return (r = K)

Return K
$← {0, 1}k Return H(K, ek‖M) Return (r = H(K, ek‖M))

Fig. 4. Examples of redundancy codes, where the data x is of the form ek‖M . The
first four are unkeyed and the last two are keyed.

Also if GE is a PKE scheme then so is GE , and if GE is an IBE scheme then so
is GE , which means the results we obtain here apply to both settings.

Fig. 4 shows example redundancy codes for the transform. With the first, GE
is identical to GE , so that the counterexample below shows that AI-CCA does
not imply WROB-CPA. The second and third rows show redundancy equal to
a constant or the encryption key as examples of (unkeyed) redundancy codes.
The fourth row shows a code that is randomized but still unkeyed. The hash
function H could be a MAC or a collision resistant function. The last two are
keyed redundancy codes, the first the simple one that just always returns the key,
and the second using a hash function. Obviously, there are many other examples.

SROB failure. We show that encryption with redundancy fails to provide
strong robustness for all redundancy codes, whether keyed or not. More precisely,
we show that for any redundancy code RED and both ATK ∈ {CPA,CCA},
there is an AI-ATK encryption scheme GE such that the scheme GE result-
ing from the encryption-with-redundancy transform applied to GE ,RED is not
SROB-CPA. We build GE by modifying a given AI-ATK encryption scheme
GE∗ = (PG,KG,Enc∗,Dec∗). Let l be the number of coins used by RC, and let
RC(x;ω) denote the result of executing RC on input x with coins ω ∈ {0, 1}l. Let
M∗ be a function that given pars returns a point in the message space associated
to pars in GE∗. Then GE = (PG,KG,Enc,Dec) where the new algorithms are
shown on the bottom right side of Fig. 5. The reason we used 0l as coins for RC
here is that Dec is required to be deterministic.

Our first claim is that the assumption that GE∗ is AI-ATK implies that
GE is too. Our second claim, that GE is not SROB-CPA, is demonstrated
by the following attack. For a pair id0, id1 of distinct identities of its choice,
the adversary A, on input (pars ,K), begins with queries ek0

$← GetEK(id0)
and ek1

$← GetEK(id1). It then creates ciphertext C ← 0 ‖K and returns
(id0, id1, C). We claim that Advsrob

GE (A) = 1. Letting dk0, dk1 denote the de-
cryption keys corresponding to ek0, ek1 respectively, the reason is the following.
For both b ∈ {0, 1}, the output of Dec(pars , ek b, dk b,C ) is M ∗(pars)‖rb(pars)
where rb(pars) = RC(K, ek b‖M ∗(pars); 0l). But the correctness of RED implies
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Algorithm PG

(pars,msk)
$← PG ; K

$← RKG
Return ((pars,K),msk)

Algorithm KG((pars,K),msk , id)

(ek , dk)
$← KG(pars,msk , id)

Return ek

Algorithm Enc((pars,K), ek ,M )

r
$← RC(K, ek‖M )

C
$← Enc(pars, ek ,M ‖r)

Return C

Algorithm Dec((pars,K), ek , dk ,C )

M ‖r ← Dec(pars, ek , dk ,C )
If RV(K, ek‖M, r) = 1 then return M
Else return ⊥

Algorithm Enc(pars, ek ,M )

C
$← Enc∗(pars, ek ,M )

Return C

Algorithm Dec(pars, ek , dk ,C )
M ← Dec∗(pars, ek , dk ,C )
If M = ⊥ then

M ← M ∗(pars)‖RC(ε, ek‖M ∗(pars); 0l)
Return M

Algorithm Enc(pars, ek ,M )

C ∗ $← Enc∗(pars, ek ,M )
Return 1‖C ∗

Algorithm Dec(pars, ek , dk ,C )
b‖C ∗ ← C
If b = 1 then return Dec∗(pars, ek , dk ,C ∗)
Else return M ∗(pars)‖RC(C ∗, ek‖M ∗(pars); 0l)

Fig. 5. Left: Transformed scheme for the encryption with redundancy paradigm. Top
Right: Counterexample for WROB. Bottom Right: Counterexample for SROB.

that RV(K, ek b‖M ∗(pars), rb(pars)) = 1 and hence Dec((pars ,K), ek b, dk b,C )
returns M ∗(pars) rather than ⊥.

WROB failure. We show that encryption with redundancy fails to provide
even weak robustness for all unkeyed redundancy codes. This is still a powerful
negative result because many forms of redundancy that might intuitively work,
such the first four of Fig. 4, are included. More precisely, we claim that for
any unkeyed redundancy code RED and both ATK ∈ {CPA,CCA}, there is
an AI-ATK encryption scheme GE such that the scheme GE resulting from the
encryption-with-redundancy transform applied to GE ,RED is not WROB-CPA.
We build GE by modifying a given AI-ATK + WROB-CPA encryption scheme
GE∗ = (PG,KG,Enc∗,Dec∗). With notation as above, the new algorithms for
the scheme GE = (PG,KG,Enc,Dec) are shown on the top right side of Fig. 5.

Our first claim is that the assumption that GE∗ is AI-ATK implies that GE
is too. Our second claim, that GE is not WROB-CPA, is demonstrated by the
following attack. For a pair id0, id1 of distinct identities of its choice, the ad-
versary A, on input (pars , ε), makes queries ek0

$← GetEK(id0) and ek1
$←

GetEK(id1) and returns (id0, id1,M
∗(pars)). We claim that Advwrob

GE (A) is
high. Letting dk1 denote the decryption key for ek1, the reason is the following.
Let r0

$← RC(ε, ek0‖M∗(pars)) and C
$← Enc(pars , ek0,M

∗(pars)‖r0). The as-
sumed WROB-CPA security of GE∗ implies that Dec(pars , ek1, dk1,C ) is most
probably M ∗(pars)‖r1(pars) where r1(pars) = RC(ε, ek1‖M ∗(pars); 0l). But the
correctness of RED implies that RV(ε, ek1‖M ∗(pars), r1(pars)) = 1 and hence
Dec((pars , ε), ek1, dk1,C ) returns M ∗(pars) rather than ⊥.
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4 Transforms That Work

We present a transform that confers weak robustness and another that confers
strong robustness. They preserve privacy and anonymity, work for PKE as well
as IBE, and for CPA as well as CCA. In both cases the security proofs surface
some delicate issues. Besides being useful in its own right, the weak robustness
transform is a crucial step in obtaining strong robustness, so we begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails
to provide even weak robustness if the redundancy code is unkeyed. Here we show
that if the redundancy code is keyed, even in the simplest possible way where
the redundancy is just the key itself, the transform does provide weak robust-
ness, turning any AI-ATK secure general encryption scheme into an AI-ATK +
WROB-ATK one, for both ATK ∈ {CPA,CCA}.

The transformed scheme encrypts with the message a key K placed in the
public parameters. In more detail, the weak robustness transform associates to a
given general encryption scheme GE = (PG,KG,Enc,Dec) and integer parameter
k, representing the length of K, the general encryption scheme GE = (PG,KG,
Enc,Dec) whose algorithms are depicted in Fig. 6. Note that if GE is a PKE
scheme then so is GE and if GE is an IBE scheme then so is GE , so that our
results, captured by Theorem 2 below, cover both settings.

The intuition for the weak robustness of GE is that the GE decryption under
one key, of an encryption of M ‖K created under another key, cannot, by the
assumed AI-ATK security of GE , reveal K, and hence the check will fail. This
is pretty much right for PKE, but the delicate issue is that for IBE, information
about K can enter via the identities, which in this case are the encryption keys
and are chosen by the adversary as a function of K. The AI-ATK security of
GE is no protection against this. We show however that this can be dealt with
by making K sufficiently longer than the identities.

Theorem 2. Let GE = (PG,KG,Enc,Dec) be a general encryption scheme with
identity space {0, 1}n, and let GE = (PG,KG,Enc,Dec) be the general encryption
scheme resulting from applying the weak robustness transform to GE and integer
parameter k. Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is an ai-adversary
B against GE such that Advai

GE (A) = Advai
GE (B). Adversary B inherits

the query profile of A and has the same running time as A. If A is a cpa
adversary then so is B.

2. WROB-ATK: Let A be a wrob adversary against GE with running time t,
and let � = 2n+�log2(t)�. Then there is an ai-adversary B against GE such
that Advwrob

GE (A) ≤ Advai
GE (B) + 2�−k. Adversary B inherits the query

profile of A and has the same running time as A. If A is a cpa adversary
then so is B.

The first part of the theorem implies that if GE is AI-ATK then GE is AI-ATK
as well. The second part of the theorem implies that if GE is AI-ATK and k is
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Algorithm PG

(pars ,msk) $← PG

K
$← {0, 1}k

Return ((pars , K),msk)

Algorithm Enc((pars , K), ek ,M )
C

$← Enc(pars , ek ,M ‖K))
Return C

Algorithm KG((pars , K),msk , id)
(ek , dk) $← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars , K), ek , dk ,C )
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖K∗ ← M

If (K = K∗) then return M
Else Return ⊥

Fig. 6. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying
our weak-robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec)
and integer parameter k

chosen sufficiently larger than 2n + �log2(t)� then GE is WROB-ATK. In both
cases this is for both ATK ∈ {CPA,CCA}. The theorem says it directly for
CCA, and for CPA by the fact that if A is a cpa adversary then so is B. When
we say that B inherits the query profile of A we mean that for every oracle that
B has, if A has an oracle of the same name and makes q queries to it, then
this is also the number B makes. The proof of the first part of the theorem is
straightforward and is omitted. The proof of the second part is given in [2]. It is
well known that collision-resistant hashing of identities preserves AI-ATK and
serves to make them of fixed length [7] so the assumption that the identity space
is {0, 1}n rather than {0, 1}∗ is not really a restriction. In practice we might hash
with SHA256 so that n = 256, and, assuming t ≤ 2128, setting k = 768 would
make 2�−k = 2−128.

Commitment schemes. Our strong robustness transform will use commit-
ments. A commitment scheme is a 3-tuple CMT = (CPG,Com,Ver). The pa-
rameter generation algorithm CPG returns public parameters cpars . The com-
mittal algorithm Com takes cpars and data x as input and returns a commit-
ment com to x along with a decommittal key dec. The deterministic verifica-
tion algorithm Ver takes cpars , x , com, dec as input and returns 1 to indicate
that accepts or 0 to indicate that it rejects. Correctness requires that, for any
x ∈ {0, 1}∗, any cpars ∈ [CPG], and any (com , dec) ∈ [Com(cpars , x )], we have
that Ver(cpars , x , com, dec) = 1 with probability one, where the probability is
taken over the coins of Com. We require the scheme to have the uniqueness
property, which means that for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any
(com , dec) ∈ [Com(cpars , x )] it is the case that Ver(cpars , x , com∗, dec) = 0 for
all com∗ �= com . In most schemes the decommittal key is the randomness used
by the committal algorithm and verification is by re-applying the committal
function, which ensures uniqueness. The advantage measures Advhide

CMT (A) and
Advbind

CMT (A), referring to the standard hiding and binding properties, are re-
called in [2]. We refer to the corresponding notions as HIDE and BIND.
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Algorithm PG

(pars ,msk) $← PG

cpars
$← CPG

Return ((pars , cpars),msk)

Algorithm Enc((pars , cpars), ek ,M )
(com, dec) $← Com(cpars , ek)
C

$← Enc(pars , ek , M‖dec))
Return (C , com)

Algorithm KG((pars , cpars),msk , id)
(ek , dk) $← KG(pars ,msk , id)
Return (ek , dk)

Algorithm Dec((pars , cpars), ek , dk , (C , com))
M ← Dec(pars , ek , dk ,C )
If M = ⊥ then return ⊥
M ‖dec ← M

If (Ver(cpars , ek , com, dec) = 1) then return M
Else Return ⊥

Fig. 7. General encryption scheme GE = (PG,KG,Enc,Dec) resulting from applying
our strong robustness transform to general encryption scheme GE = (PG,KG,Enc,Dec)
and commitment scheme CMT = (CPG,Com,Ver)

The strong robustness transform. The idea is for the ciphertext to include
a commitment to the encryption key. The commitment is not encrypted, but
the decommittal key is. In detail, given a general encryption scheme GE = (PG,
KG,Enc,Dec) and a commitment scheme CMT = (CPG,Com,Ver) the strong
robustness transform associates to them the general encryption scheme GE =
(PG,KG,Enc,Dec) whose algorithms are depicted in Fig. 7. Note that if GE is a
PKE scheme then so is GE and if GE is an IBE scheme then so is GE , so that
our results, captured by the Theorem 3, cover both settings.

In this case the delicate issue is not the robustness but the AI-ATK security of
GE in the CCA case. Intuitively, the hiding security of the commitment scheme
means that a GE ciphertext does not reveal the encryption key. As a result,
we would expect AI-ATK security of GE to follow from the commitment hiding
security and the assumed AI-ATK security of GE . This turns out not to be true,
and demonstrably so, meaning there is a counterexample to this claim. (See
below.) What we show is that the claim is true if GE is additionally WROB-ATK.
This property, if not already present, can be conferred by first applying our weak
robustness transform.

Theorem 3. Let GE = (PG,KG,Enc,Dec) be a general encryption scheme,
and let GE = (PG,KG,Enc,Dec) be the general encryption scheme resulting
from applying the strong robustness transform to GE and commitment scheme
CMT = (CPG,Com,Ver). Then

1. AI-ATK: Let A be an ai-adversary against GE . Then there is a wrob ad-
versary W against GE , a hiding adversary H against CMT and an ai-
adversary B against GE such that

Advai
GE (A) ≤ 2 · Advwrob

GE (W ) + 2 · Advhide
CMT (H) + 3 · Advai

GE (B) .

Adversaries W,B inherit the query profile of A, and adversaries W,H,B
have the same running time as A. If A is a cpa adversary then so are W,B.
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2. SROB-ATK: Let A be a srob adversary against GE making q GetEK
queries. Then there is a binding adversary B against CMT such that

Advsrob
GE (A) ≤ Advbind

CMT (B) +
(
q

2

)
· CollGE .

Adversary B has the same running time as A.

The first part of the theorem implies that if GE is AI-ATK and WROB-ATK and
CMT is HIDE then GE is AI-ATK, and the second part of the theorem implies
that if CMT is BIND secure and GE has low encryption key collision probability
then GE is SROB-ATK. In both cases this is for both ATK ∈ {CPA,CCA}. We
remark that the proof shows that in the CPA case the WROB-ATK assumption
on GE in the first part is actually not needed. The encryption key collision
probability CollGE of GE is defined as the maximum probability that ek0 = ek1

in the experiment where we let (pars ,msk) $← PG and then let (ek0, dk0)
$←

KG(pars ,msk , id0) and (ek1, dk1)
$← KG(pars ,msk , id1), where the maximum is

over all distinct identities id0, id1. The collision probability is zero in the IBE
case since ek0 = id0 �= id1 = ek1. It is easy to see that GE being AI implies
CollGE is negligible, so asking for low encryption key collision probability is in
fact not an extra assumption. (For a general encryption scheme the adversary
needs to have hardwired the identities that achieve the maximum, but this is
not necessary for PKE because here the probability being maximized is the
same for all pairs of distinct identities.) The reason we made the encryption key
collision probability explicit is that for most schemes it is unconditionally low.
For example, when GE is the ElGamal PKE scheme, it is 1/|G| where G is the
group being used. Proofs of both parts of the theorem are in [2].

The need for weak-robustness. As we said above, the AI-ATK security
of GE won’t be implied merely by that of GE . (We had to additionally as-
sume that GE is WROB-ATK.) Here we justify this somewhat counter-intuitive
claim. This discussion is informal but can be turned into a formal counterex-
ample. Imagine that the decryption algorithm of GE returns a fixed string
of the form (M̂ , ˆdec) whenever the wrong key is used to decrypt. Moreover,
imagine CMT is such that it is easy, given cpars , x , dec, to find com so that
Ver(cpars , x , com, dec) = 1. (This is true for any commitment scheme where
dec is the coins used by the Com algorithm.) Consider then the AI-ATK adver-
sary A against the transformed scheme that that receives a challenge ciphertext
(C∗, com∗) where C∗ ← Enc(pars ,EK[idb],M ∗‖dec∗) for hidden bit b ∈ {0, 1}.
It then creates a commitment ˆcom of EK[id1] with opening information ˆdec, and
queries (C∗, ˆcom) to be decrypted under DK[id0]. If b = 0 this query will prob-
ably return ⊥ because Ver(cpars ,EK[id0], ˆcom, dec∗) is unlikely to be 1, but if
b = 1 it returns M̂ , allowing A to determine the value of b. The weak robustness
of GE rules out such anomalies.



494 M. Abdalla, M. Bellare, and G. Neven

Algorithm PG

K
$← Keys(H) ; g1

$← G∗ ; w
$← Z∗

p ; g2 ← gw
1 ; Return (g1, g2, K)

Algorithm KG(g1, g2, K)
x1, x2, y1, y2, z1, z2

$← Zp ; e ← gx1
1 gx2

2 ; f ← gy1
1 gy2

2 ; h ← gz1
1 gz2

2

Return ((e, f, h), (x1, x2, y1, y2, z1, z2))

Algorithm Enc((g1, g2, K), (e, f, h),M )

u
$← Z*

p ; a1 ← gu
1 ; a2 ← gu

2 ; b ← hu ; c ← b · M ; v ← H(K, (a1, a2, c)) ; d ← eufuv

Return (a1, a2, c, d)

Algorithm Dec((g1, g2, K), (e, f, h), (x1, x2, y1, y2, z1, z2),C )
(a1, a2, c, d) ← C ; v ← H(K, (a1, a2, c)) ; M ← c · a−z1

1 a−z2
2

If d �= ax1+y1v
1 ax2+y2v

2 Then M ← ⊥
If a1 = 1 Then M ← ⊥
Return M

Fig. 8. The original CS scheme [15] does not contain the boxed code while the variant
CS∗ does. Although not shown above, the decryption algorithm in both versions always
checks to ensure that the ciphertext C ∈ G4. The message space is G.

5 A SROB-CCA Version of Cramer-Shoup

Let G be a group of prime order p, and H : Keys(H) × G3 → G a family of
functions. We assume G, p,H are fixed and known to all parties. Fig. 8 shows
the Cramer-Shoup (CS) scheme and the variant CS∗ scheme where 1 denotes the
identity element of G. The differences are boxed. Recall that the CS scheme was
shown to be IND-CCA in [15] and ANO-CCA in [4]. However, for any message
M ∈ G the ciphertext (1,1,M ,1) in the CS scheme decrypts to M under any
pars , pk , and sk , meaning in particular that the scheme is not even SROB-CPA.
The modified scheme CS∗ —which continues to be IND-CCA and ANO-CCA—
removes this pathological case by having Enc choose the randomness u to be
non-zero —Enc draws u from Z∗

p while the CS scheme draws it from Zp— and
then having Dec reject (a1, a2, c, d) if a1 = 1. This thwarts the attack, but
is there any other attack? We show that there is not by proving that CS∗ is
actually SROB-CCA. Our proof of robustness relies only on the security —
specifically, pre-image resistance— of the hash family H : it does not make the
DDH assumption. Our proof uses ideas from the information-theoretic part of
the proof of [15].

We say that a family H : Keys(H) × Dom(H) → Rng(H) of functions is pre-
image resistant if, given a key K and a random range element v∗, it is com-
putationally infeasible to find a pre-image of v∗ under H(K, ·). The notion is
captured formally by the following advantage measure for an adversary I:

Advpre-img
H (I)

= Pr
[
H(K,x) = v∗ : K

$← Keys(H) ; v∗ $← Rng(H) ; x
$← I(K, v∗)

]
.
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Pre-image resistance is not implied by the standard notion of one-wayness, since
in the latter the target v∗ is the image under H(K, ·) of a random domain point,
which may not be a random range point. However, it seems like a fairly mild
assumption on a practical cryptographic hash function and is implied by the
notion of “everywhere pre-image resistance” of [22], the difference being that,
for the latter, the advantage is the maximum probability over all v∗ ∈ Rng(H).
We now claim the following.

Theorem 4. Let B be an adversary making two GetEK queries, no GetDK
queries and at most q− 1 Dec queries, and having running time t. Then we can
construct an adversary I such that

Advsrob
CS∗ (A) ≤ Advpre-img

H (I) +
2q + 1

p
. (1)

Furthermore, the running time of I is t+ q ·O(texp) where texp denotes the time
for one exponentiation in G.

Since CS∗ is a PKE scheme, the above automatically implies security even in the
presence of multiple GetEK and GetDK queries as required by game SROBCS∗ .
Thus the theorem implies that CS∗ is SROB-CCA if H is pre-image resistant.
A detailed proof of Theorem 4 is in [2]. Here we sketch some intuition.

We begin by conveniently modifying the game interface. We replace B with an
adversary A that gets input (g1, g2,K), (e0, f0, h0), (e1, f1, h1) representing the
parameters that would be input to B and the public keys returned in response
to B’s two GetEK queries. Let (x01, x02, y01, y02, z01, z02) and (x11, x12, y11, y12,
z11, z12) be the corresponding secret keys. The decryption oracle takes (only) a
ciphertext and returns its decryption under both secret keys, setting a Win flag
if these are both non-⊥. Adversary A no longer needs an output, since it can
win via a Dec query.

Suppose A makes a Dec query (a1, a2, c, d). Then the code of the decryption
algorithm Dec from Fig. 8 tells us that, for this to be a winning query, it must
be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2

where v = H(K, (a1, a2, c)). Letting u1 = logg1
(a1), u2 = logg2

(a2) and s =
logg1

(d), we have

s = u1(x01 + y01v)+wu2(x02 + y02v) = u1(x11 + y11v)+wu2(x12 + y12v) (2)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈
{0, 1}) through its Dec queries, it is unclear why Equation (2) is prevented by
pre-image resistance —or in fact any property short of being a random oracle—
of the hash function H . In particular, there seems no way to “plant” a target v∗

as the value v of Equation (2) since the adversary controls u1 and u2. However,
suppose now that a2 = aw

1 . (We will discuss later why we can assume this.) This
implies wu2 = wu1 or u2 = u1 since w �= 0. Now from Equation (2) we have

u1(x01 + y01v) + wu1(x02 + y02v) − u1(x11 + y11v) − wu1(x12 + y12v) = 0 .
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We now see the value of enforcing a1 �= 1, since this implies u1 �= 0. After
canceling u1 and re-arranging terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (3)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at
most one solution v (modulo p) to Equation (3). We would like now to design I so
that on input K, v∗ it chooses xb1, xb2, yb1, yb2 (b ∈ {0, 1}) so that the solution v to
Equation (3) is v∗. Then (a1, a2, c) will be a pre-image of v∗ which I can output.

To make all this work, we need to resolve two problems. The first is why
we may assume a2 = aw

1 —which is what enables Equation (3)— given that
a1, a2 are chosen by A. The second is to properly design I and show that it can
simulate A correctly with high probability. To solve these problems, we consider,
as in [15], a modified check under which decryption, rather than rejecting when
d �= ax1+y1v

1 ax2+y2v
2 , rejects when a2 �= aw

1 or d �= ax+yv
1 , where x = x1 + wx2,

y = y1 + wy2, v = H(K, (a1, a2, c)) and (a1, a2, c, d) is the ciphertext being
decrypted. See [2].
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Abstract. We conduct an increasing part of our daily transactions elec-
tronically and thereby we leave an eternal electronic trail of personal
data. We are almost never able to see what data about us we imprint,
where it is processed or where it is stored. Indeed, controlling the dis-
persal of our data and protecting our privacy has become virtually im-
possible.

In this talk we will investigate the extent to which tools from cryp-
tography and other technical means can help us to regain control of our
data and to save our privacy. To this end, we will review the most im-
portant of the practical cryptographic mechanisms and discuss how they
could be applied. In a second part, we will report on the readiness of the
industry to indeed employ such technologies and on how governments
address the current erosion of privacy.

D. Micciancio (Ed.): TCC 2010, LNCS 5978, p. 498, 2010.
c Springer-Verlag Berlin Heidelberg 2010

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-11799-2_36

http://dx.doi.org/10.1007/978-3-642-11799-2_36


Concise Mercurial Vector Commitments and
Independent Zero-Knowledge Sets with Short

Proofs
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Abstract. Introduced by Micali, Rabin and Kilian (MRK), the basic
primitive of zero-knowledge sets (ZKS) allows a prover to commit to
a secret set S so as to be able to prove statements such as x ∈ S or
x �∈ S. Chase et al. showed that ZKS protocols are underlain by a crypto-
graphic primitive termed mercurial commitment. A (trapdoor) mercurial
commitment has two commitment procedures. At committing time, the
committer can choose not to commit to a specific message and rather
generate a dummy value which it will be able to softly open to any mes-
sage without being able to completely open it. Hard commitments, on the
other hand, can be hardly or softly opened to only one specific message.
At Eurocrypt 2008, Catalano, Fiore and Messina (CFM) introduced an
extension called trapdoor q-mercurial commitment (qTMC), which al-
lows committing to a vector of q messages. These qTMC schemes are
interesting since their openings w.r.t. specific vector positions can be
short (ideally, the opening length should not depend on q), which pro-
vides zero-knowledge sets with much shorter proofs when such a commit-
ment is combined with a Merkle tree of arity q. The CFM construction
notably features short proofs of non-membership as it makes use of a
qTMC scheme with short soft openings. A problem left open is that
hard openings still have size O(q), which prevents proofs of membership
from being as compact as those of non-membership. In this paper, we
solve this open problem and describe a new qTMC scheme where hard
and short position-wise openings, both, have constant size. We then show
how our scheme is amenable to constructing independent zero-knowledge
sets (i.e., ZKS’s that prevent adversaries from correlating their set to the
sets of honest provers, as defined by Gennaro and Micali). Our solution
retains the short proof property for this important primitive as well.
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efficiency, independence.

� This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-
F.N.R.S.) for their support and the BCRYPT Interuniversity Attraction Pole.

D. Micciancio (Ed.): TCC 2010, LNCS 5978, pp. 499–517, 2010.
c Springer-Verlag Berlin Heidelberg 2010

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-11799-2_36

http://dx.doi.org/10.1007/978-3-642-11799-2_36


500 B. Libert and M. Yung

1 Introduction

Introduced by Micali, Rabin and Kilian [21], zero-knowledge sets (ZKS) are fun-
damental secure data structures which allow a prover P to commit to a finite set
S in such a way that, later on, he will be able to efficiently (and non-interactively)
prove statements of the form x ∈ S or x �∈ S without revealing anything else
on S, not even its size. Of course, the prover should not be able to cheat and
prove different statements about an element x. The more general notion of zero-
knowledge elementary databases (ZK-EDB) generalizes zero-knowledge sets in
that each element x has an associated value D(x) in the committed database.

In [21], Micali et al. described a beautiful construction of ZK-EDB based on
the discrete logarithm assumption. The MRK scheme relies on the shared ran-
dom string model (where a random string chosen by some trusted entity is made
available to all parties) and suitably uses an extension of Pedersen’s trapdoor
commitment [23]. In 2005, Chase et al. [10] gave general constructions of zero-
knowledge databases and formalized a primitive named mercurial commitment
which they proved to give rise to ZK-EDB protocols. The MRK construction
turned out to be a particular instance of a general design combining mercu-
rial commitments with a Merkle tree [20], where each internal node contains a
mercurial commitment to its two children.

Informally speaking, mercurial commitments are commitments where the
binding property is slightly relaxed in that the committer is allowed to softly
open a commitment and say “if the commitment can be opened at all, then it
opens to that message”. Upon committing, the sender has to decide whether the
commitment will be a hard commitment, that can be hard/soft-opened to only
one message, or a soft one that can be soft-opened to any arbitrary message
without committing the sender to a specific one. Unlike soft commitments that
cannot be hard-opened, hard commitments can be opened either in the soft or
the hard manner but soft openings can never contradict hard ones. In addition,
hard and soft commitments should be computationally indistinguishable.

Related Work. Promptly after the work of Micali, Rabin and Kilian, Ostro-
vsky, Rackoff and Smith [22] described protocols for generalized queries (beyond
membership/non-membership) for committed databases and also show how to
add privacy to their schemes. Liskov [18] also extended the construction of Chase
et al. [10] to obtain updatable zero-knowledge databases in the random oracle
model. Subsequently, Catalano, Dodis and Visconti [8] gave simplified security
definitions for (trapdoor) mercurial commitments and notably showed how to
construct them out of one-way functions in the shared random string model.

In order to extend the properties of non-malleable commitments to zero-
knowledge databases, Gennaro and Micali [15] formalized the notion of inde-
pendent ZK-EDBs. Informally, this notion prevents adversaries from correlating
their committed databases to those produced by honest provers.

More recently, Prabhakaran and Xue [24] defined the related notion of sta-
tistically hiding sets that requires the hiding property of zero-knowledge sets
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to be preserved against unbounded verifiers. At the same time, their notion of
zero-knowledge was relaxed to permit unbounded simulators.

At Eurocrypt 2008, Catalano, Fiore and Messina [9] addressed the problem
of compressing proofs in ZK-EDB schemes and gave significant improvements.

Our Contribution. The original construction of zero-knowledge database
[21,10] considers a binary Merkle tree of height O(λ), where λ is the security pa-
rameter (in such a way that the upper bound on the database size is exponential
in λ and leaks no information on its actual size). Each internal node contains
a mercurial commitment to (a hash value of) its two children whereas each leaf
node is a mercurial commitment to a database entry. The crucial idea is that
internal childless nodes contain soft commitments, which keeps the commitment
generation phase efficient (i.e., polynomial in λ). A proof of membership for the
entry x consists of a sequence of hard openings for commitments appearing in
nodes on the path from leaf x to the root. Proofs of non-membership proceed
similarly but rather use soft openings along the path.

As noted in [9], the above approach often results in long proofs, which may
be problematic in applications, like mobile Internet connections, where users
are charged depending on the number of blocks that they send/receive. To ad-
dress this issue, Catalano, Fiore and Messina (CFM) suggested to increase the
branching factor q of the tree and to use a primitive called trapdoor q-mercurial
commitment (qTMC). The latter is like an ordinary mercurial commitment with
the difference that it allows committing to a vector of q messages at once. With
regular mercurial commitments, increasing the arity of the tree is not appropri-
ate as generating proofs entails to reveal q values (instead of 2) at each level
of the tree. However, it becomes interesting with qTMC schemes that can be
opened with respect to specific vector positions without having to disclose each
one of the q committed messages. The CFM construction makes use of an ele-
gant qTMC scheme where soft commitment openings consist of a single group
element, which yields dramatically shorter proofs of non-membership. On the
other hand, hard openings unfortunately comprise O(q) elements in the qTMC
scheme described in [9]. For this reason, proofs of membership remain signifi-
cantly longer than proofs of non-membership.

In this paper, we solve a problem left open in [9] and consider a primitive
called concise mercurial vector commitment, which is a qTMC scheme allow-
ing to commit to a q-vector in such a way that (1) hard and soft position-wise
openings both have constant (i.e., independent of q) size; (2) the committer can
hard-open the commitment at position i ∈ {1, . . . , q} without revealing anything
on messages at other positions in the vector. We describe a simple and natural
example of such scheme. Like the CFM q-mercurial commitment, our realization
relies on a specific number theoretic assumption in bilinear groups. Implementing
the CFM flat-tree system with our scheme immediately yields very short proofs
of membership and while retaining short proofs of non-membership. Assuming
that 2λ is a theoretical bound on the database size, we obtain proofs compris-
ing O(λ/ log(q)) group elements for membership and non-membership. In the
CFM system, proofs of membership grow as O(λ · q/ log(q)), which prevents one
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from compressing proofs of non-membership without incurring a blow-up in the
length of proofs of membership. Using our commitment scheme, both kinds of
proof can be shortened by increasing q as long as the common reference string
(which has size O(q) as in [9]) is not too large. With q = 128 for instance, proofs
do not exceed 2 kB in instantiations using suitable parameters.

In addition, we also show that our qTMC scheme easily lends itself to the
construction of independent zero-knowledge databases. To construct such proto-
cols satisfying a strong definition of independence, Gennaro and Micali [15] used
multi-trapdoor mercurial commitments that can be seen as families of mercurial
commitments (in the same way as multi-trapdoor commitments [14] are fam-
ilies of trapdoor commitments). Modulo appropriate slight modifications, our
scheme can be turned into a concise multi-trapdoor qTMC scheme. It thus gives
rise to the first ZK-EDB realization that simultaneously provides independence
and short proofs.

Organization. Section 2 recalls the definitions of qTMC schemes and zero-
knowledge databases. We describe the new q-mercurial commitment scheme and
discuss its efficiency impact in sections 3 and 4. Section 5 finally explains how
the resulting ZK-EDB scheme can be made independent.

2 Background

2.1 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable map
e : G × G → GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z
and e(g, h) �= 1GT whenever g, h �= 1G. In this mathematical setting, we rely on
a computational assumption previously used in [5,6].

Definition 1 ([5]). Let G be a group of prime order p and g ∈ G. The q-
Diffie-Hellman Exponent (q-DHE) problem is, given a tuple of elements
(g, g1, . . . , gq, gq+2, . . . , g2q) such that gi = g(αi), for i = 1, . . . , q, q + 2, . . . , 2q
and where α R← Z∗

p, to compute the missing group element gq+1 = g(αq+1).

As noted in [6], this problem is not easier than the one used in [5], which is to
compute e(g, h)(α

q+1) on input of the same values and the additional element
h ∈ G. The generic hardness of q-DHE is thus implied by the generic security of
the family of assumptions described in [4].

2.2 Trapdoor q-Mercurial Commitments

A trapdoorq-mercurialcommitment (qTMC)consistsofa setof efficientalgorithms
(qKeygen, qHCom, qHOpen, qHVer, qSCom, qSOpen, qSVer, qFake, qHEquiv,
qSEquiv) with the following specifications.

qKeygen(λ, q): takes as input a security parameter λ and the number q of mes-
sages that can be committed to in a single commitment. The output is a
pair of public/private keys (pk, tk).
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qHCompk(m1, . . . ,mq): takes as input an ordered tuple of messages. It outputs
a hard commitment C to (m1, . . . ,mq) under the public key pk and some
auxiliary state information aux.

qHOpenpk(m, i, aux): is a hard opening algorithm. Given a pair (C, aux) =
qHCompk(m1, . . . ,mq), it outputs a hard de-commitment π of C w.r.t. posi-
tion i if m = mi. If m �= mi, it returns ⊥.

qHVerpk(m, i, C, π): is the hard verification algorithm. It outputs 1 if π gives
evidence that C is a commitment to a sequence (m1, . . . ,mq) such that
mi = m. Otherwise, it outputs 0.

qSCompk(): is a probabilistic algorithm that generates a soft commitment and
some auxiliary information aux. Such a commitment is not associated with
a specific sequence of messages.

qSOpenpk(m, i, flag, aux): generates a soft de-commitment (a.k.a. “tease”) τ
of C to the message m at position i. The variable flag ∈ {H, S} indi-
cates whether the state information aux corresponds to a hard commitment
(C, aux) = qHCompk(m1, . . . ,mq) or a soft one (C, aux) = qSCompk(). If
flag = H and m �= mi, the algorithm returns the error message ⊥.

qSVerpk(m, i, C, τ): returns 1 if τ is a valid soft de-commitment of C to m at
position i and 0 otherwise. If τ is valid and C is a hard commitment, its
hard opening must be to m at index i.

qFakepk,tk(): is a randomized algorithm that takes as input the trapdoor tk
and generates a q-fake commitment C and some auxiliary information aux.
The commitment C is not bound to any sequence of messages. The q-fake
commitment C is similar to a soft de-commitment with the difference that
it can be hard-opened using the trapdoor tk.

qHEquivpk,tk(m1, . . . ,mq, i, aux): is a non-adaptive hard equivocation algorithm.
Namely, given (C, aux) = qFakepk,tk(), it generates a hard de-commitment
π for C at the ith position of the sequence (m1, . . . ,mq). The algorithm is
non-adaptive in that the sequence of messages has to be determined once-
and-for-all before the execution of qHEquiv.

qSEquivpk,tk(m, i, aux): is a soft equivocation algorithm. Given the auxiliary
information aux returned by (C, aux) = qFakepk,tk(), it creates a soft de-
commitment τ to m at position i.

Standard trapdoor mercurial commitments can be seen as a special case of qTMC
schemes where q = 1.

Correctness. The correctness requirements are similar to those of standard
mercurial commitments. For any sequence (m1, . . . ,mq), these statements must
hold with overwhelming probability.

- Given a hard commitment (C, aux) = qHCompk(m1, . . . ,mq), for all indices
i ∈ {1, . . . , q}, it must hold that qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1
and qSVerpk(mi, i, C, qSOpenpk(mi, i,H, aux)) = 1.

- If (C, aux) = qSCompk(), then qSVerpk(mi, i, C, qSOpenpk(mi, i, S, aux)) = 1
for i = 1, . . . , q.
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- Given a fake commitment (C, aux) = qFakepk,tk(), for each i ∈ {1, . . . , q},
we must have qHVerpk(mi, i, C, qHEquivpk,tk(m1, . . . ,mq, i, aux)) = 1 and
qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1.

Security. The security properties of a trapdoor q-mercurial commitment are
stated as follows:

- q-Mercurial binding: given the public key pk, it should be computation-
ally infeasible to output a commitment C, an index i ∈ {1, . . . , q} and pairs
(m,π), (m′, π′) that satisfy either of these two conditions which are respec-
tively termed “hard collision” and “soft collision”:

• qHVerpk(m, i, C, π) = 1, qHVerpk(m′, i, C, π′) = 1 and m �= m′.
• qHVerpk(m, i, C, π) = 1, qSVerpk(m′, i, C, π′) = 1 and m �= m′.

- q-Mercurial hiding: on input of pk, no PPT adversary can find a tuple
(m1, . . . ,mq) and an index i ∈ {1, . . . , q} for which it is able to distin-
guish (C, qSOpenpk(mi, i,H, aux)) from (C′, qSOpenpk(mi, i, S, aux′)), where
(C, aux) = qHCompk(m1, . . . ,mq), (C′, aux′) = qSCompk().

- Equivocations: given the public key pk and the trapdoor tk, no PPT ad-
versary A should be able to win the following games with non-negligible
probability. In these games, A aims to distinguish the “real” world from the
corresponding “ideal” one. The kind of world that A is faced with depends on
a random b R← {0, 1} flipped by the challenger. If b = 0, the challenger plays
the “real” game and provides A with a real commitment/de-commitment
tuple. If b = 1, the adversary A rather receives a fake commitment and
equivocations. More precisely, A is required to guess the bit b ∈ {0, 1} with
no better advantage than 1/2 in the following games:

• q-HHEquivocation: when A chooses a message sequence (m1, . . . ,mq),
the challenger computes (C, aux) = qHCompk(m1, . . . ,mq) if b = 0 and
(C, aux) = qFakepk,tk() if b = 1. In either case, A receives C. When A
chooses i ∈ {1, . . . , q}, the challenger returns π = qHOpenpk(mi, i, aux)
if b = 0 and π = qHEquivpk,tk(m1, . . . ,mq, i, aux) if b = 1.

• q-HSEquivocation: when A chooses a message sequence (m1, . . . ,mq),
the challenger computes (C, aux) = qHCompk(m1, . . . ,mq) if b = 0 and
(C, aux) = qFakepk,tk() if b = 1. In either case, C is given to A who
then chooses i ∈ {1, . . . , q}. If b = 0, the challenger replies with τ =
qSOpenpk(mi, i,H, aux). If b = 1, A receives τ = qSEquivpk,tk(mi, i, aux).

• q-SSEquivocation: if b = 0, the challenger creates a soft commitment
(C, aux) = qSCompk() and hands C to A. If b = 1, A rather obtains a
fake commitment C, which is obtained as (C, aux) = qFakepk,tk(). Then,
A chooses m ∈ M and i ∈ {1, . . . , q} and gets τ = qSOpenpk(m, i,S, aux)
if b = 0 and τ = qSEquivpk,tk(m, i, aux) if b = 1.

As pointed out in [8] in the case of ordinary trapdoor mercurial commitments,
any qTMC scheme satisfying the q-HSEquivocation and q-SSEquivocation prop-
erties also satisfies the q-mercurial hiding requirement.



Concise Mercurial Vector Commitments 505

In the following, we say that a qTMC scheme is a concise mercurial vector
commitment if the output sizes of qHOpen and qSOpen do not depend on q
and if, when invoked on the index i ∈ {1, . . . , q}, qHOpen does not reveal any
information on messages mj with j �= i.

2.3 Zero-Knowledge Sets and Databases

An elementary database D (EDB) is a set of pairs (x, y) ⊂ {0, 1}∗ × {0, 1}∗,
where x is called key and y is termed value. The support [D] of D is the set
of x ∈ {0, 1}∗ for which there exists y ∈ {0, 1}∗ such that (x, y) ∈ D. When
x �∈ [D], one usually writes D(x) = ⊥. When x ∈ [D], the associated value
y = D(x) must be unique: if (x, y) ∈ D and (x, y′) ∈ D, then y = y′. A zero-
knowledge EDB allows a prover to commit to such a database D while being
able to non-interactively prove statements of the form “x ∈ [D] and y = D(x) is
the associated value” or “x �∈ [D]” without revealing any further information on
D (not even the cardinality of [D]). Zero-knowledge sets are specific ZK-EDBs
where each key is assigned the value 1.

The prover and the verifier both take as input a string σ that can be a random
string (in which case, the protocol stands in the common random string model) or
have a specific structure (in which case we are in the trusted parameters model).
An EDB scheme is formally defined by a tuple (CRS-Gen,P1,P2,V) such that:

- CRS-Gen generates a common reference string σ on input of a security pa-
rameter λ.

- P1 is the commitment algorithm that takes as input the database D and σ.
It outputs commitment and de-commitment strings (Com,Dec).

- P2 is the proving algorithm that, given σ, the commitment/de-commitment
pair (Com,Dec) and a key x ∈ {0, 1}∗, outputs a proof πx.

- V is the verification algorithm that, on input of σ, Com, x and πx, outputs
either y (which must be ⊥ if x �∈ [D]) if it is convinced that D(x) = y or bad
if it believes that the prover is cheating.

The security requirements are formally defined in appendix A. In a nutshell,
they are as follows. Correctness mandates that honestly generated proofs always
satisfy the verification test. Soundness requires that provers be unable to come
up with a key x and convincing proofs πx, π′

x such that y = V(σ,Com, x, πx) �=
V(σ,Com, x, πx) = y′. Finally, zero-knowledge means that each proof πx only
reveals the value D(x) and nothing else: for any computable database D, there
must exist a simulator that outputs a simulated reference string σ′ and a sim-
ulated commitment Com′ that does not depend on D. For any key x ∈ {0, 1}∗
and with oracle access to D, the simulator should be able to simulate proofs πx

that are indistinguishable from real proofs.

3 A Construction of Concise qTMC Scheme

Our idea is to build on the accumulator of Camenisch, Kohlweiss and Soriente
[6], which is itself inspired by the Boneh-Gentry-Waters broadcast encryption
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system [5]. In the former, the public key comprises a sequence of group elements
(g, g1, . . . , gq, gq+2, . . . , g2q), where q is the maximal number of accumulated val-
ues and gi = g(αi) for each i. Elements of V ⊆ {1, . . . , q} are accumulated by com-
puting V =

∏
j∈V gq+1−j and the witness for the accumulation of i ∈ V consists

of Wi =
∏

j∈V\{i} gq+1−j+i, which always satisfies e(gi, V ) = e(g,Wi) · e(g1, gq).
To obtain a commitment scheme, we modify this construction in order to ac-

cumulate messages mi ∈ Z∗
p in a position-sensitive manner and we also add some

randomness γ ∈ Zp to have a hiding commitment. More precisely, we commit to
(m1, . . . ,mq) by computing V = gγ ·

∏q
j=1 g

mj

q+1−j and obtain a kind of general-
ized Pedersen commitment [23]. Thanks to the specific choice of base elements
however, Wi = gγ

i ·
∏q

j=1,j �=i g
mj

q+1−j+i can serve as evidence that mi was the ith

committed message as it satisfies the relation e(gi, V ) = e(g,Wi) · e(g1, gq)mi .
Moreover, the opening Wi at position i does not reveal anything about other
components of the committed vector, which is a property that can be useful in
other applications. This commitment can be proved binding under the q-DHE
assumption, which would be broken if the adversary was able to produce two
distinct openings of V at position i. It is also a trapdoor commitment since any-
one holding gq+1 = g(αq+1) can trapdoor open a commitment as he likes.

The scheme can be made mercurial by observing that its binding property
disappears if the verification equation becomes e(gi, V ) = e(g1,Wi) · e(g1, gq)mi .
The key idea is then to use commitments of the form (C, V ) where C = gθ,
for some θ ∈ Zp, in hard commitments and C = gθ

1 in soft commitments. The
verification equation thus becomes e(gi, V ) = e(C,Wi) · e(g1, gq)mi .

Description. We assume that committed messages are elements of Z∗
p. In

practice, arbitrary messages can be committed to by first applying a collision-
resistant hash function with range Z∗

p.

qKeygen(λ, q): chooses bilinear groups (G,GT ) of prime order p > 2λ and
g R← G. It picks α R← Z∗

p and computes g1, . . . , gq, gq+2, . . . , g2q, where
gi = g(αi) for i = 1, . . . , q, q + 2, . . . , 2q. The public key is defined to be
pk = {g, g1, . . . , gq, gq+2, . . . , g2q} and the trapdoor is tk = gq+1 = g(αq+1).

qHCompk(m1, . . . ,mq): to hard-commit to a sequence (m1, . . . ,mq) ∈ (Z∗
p)

q,
this algorithm chooses γ, θ R← Zp and computes the commitment as the pair

C = gθ V = gγ ·
q∏

j=1

g
mj

q+1−j = gγ · gm1
q · · · gmq

1 .

The output is (C, V ) and the auxiliary information is aux = (m1, . . . ,mq,
γ, θ).

qHOpenpk(mi, i, aux): parses aux as (m1, . . . ,mq, γ, θ) and calculates

Wi =
(
gγ

i ·
q∏

j=1,j �=i

g
mj

q+1−j+i

)1/θ

. (1)

The hard opening of (C, V ) consists of π = (θ,Wi) ∈ Zp × G.



Concise Mercurial Vector Commitments 507

qHVerpk(mi, i, (C, V ), π): parses π as (θ,Wi) ∈ Zp×G and returns 1 if C, V ∈ G
and it holds that

e(gi, V ) = e(C,Wi) · e(g1, gq)mi and C = gθ. (2)

Otherwise, it returns 0.
qSCompk(): chooses θ, γ R← Zp and computes C = gθ

1 , V = gγ
1 . The output is

(C, V ) and the auxiliary information is aux = (θ, γ).
qSOpenpk(m, i, flag, aux): if flag = H, aux is parsed as (m1, . . . ,mq, γ, θ). The

algorithm returns ⊥ if m �= mi. Otherwise, it computes the soft opening as
Wi =

(
gγ

i ·
∏q

j=1,j �=i g
mj

q+1−j+i

)1/θ
. If flag = S, the algorithm parses aux as

(θ, γ) and soft-de-commits to m using Wi =
(
gγ

i · g−m
q

)1/θ
. In either case,

the algorithm returns τ = Wi ∈ G.
qSVerpk(m, i, (C, V ), τ): parses τ as Wi ∈ G and returns 1 if and only if it holds

that C, V ∈ G and the first verification equation of (2) is satisfied.
qFakepk,tk(): the fake commitment algorithm chooses θ, γ R← Zp and returns

(C, V ) = (gθ, gγ). The auxiliary information is aux = (θ, γ).
qHEquivpk,tk(m1, . . . ,mq, i, aux): parses aux as (θ, γ) ∈ (Zp)2. Using the trap-

door tk = gq+1 ∈ G, it computes Wi =
(
gγ

i · g−mi
q+1

)1/θ. The de-commitment
consists of π = (θ,Wi).

qSEquivpk,tk(m, i, aux): parse aux as (θ, γ) and returns Wi =
(
gγ

i · g−m
q+1

)1/θ.

Correctness. In hard commitments, we can check that properly generated
hard de-commitments always satisfy the verification test (2) since

e(gi, V )
e(C,Wi)

= e
(
g(αi), gγ+

∑q
j=1 mj(αq+1−j))/e(gθ, g(γ(αi)+

∑ q
j=1,j �=i mj(αq+1−j+i))/θ

)
= e(g, gγ(αi)+

∑ q
j=1 mj(αq+1−j+i))/e(g, gγ(αi)+

∑ q
j=1,j �=i mj(αq+1−j+i))

= e(g, g)mi(αq+1) = e(g1, gq)mi .

As for soft commitments, soft de-commitments always satisfy the first relation
of (2) since

e(C,Wi) · e(g1, gq)mi = e
(
gθ
1 , (g

γ
i · g−mi

q )1/θ
)
· e(g1, gq)mi

= e
(
g1, g

γ
i · g−mi

q

)
· e(g1, gq)mi = e(gγ

1 , gi) = e(gi, V ).

We finally observe that, in any fake commitment (C, V ) = (gθ, gγ), the hard
de-commitment (θ,Wi) successfully passes the verification test as

e(C,Wi) · e(g1, gq)mi = e
(
gθ, (gγ

i · g−mi
q+1 )1/θ

)
· e(g1, gq)mi

= e
(
g, gγ

i · g−mi
q+1

)
· e(g1, gq)mi = e(gi, g

γ) = e(gi, V ).

Security. To prove the security of the scheme, we first notice that it is a
“proper” qTMC [8] since, in hard commitments, the soft de-commitment is a
proper subset of the hard de-commitment.
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Theorem 1. The above scheme is a secure concise qTMC if the q-DHE as-
sumption holds in G.

Proof. We first show the q-mercurial binding property. Let us assume that, given
the public key, an adversary A is able to generate soft collisions (since the scheme
is “proper”, the case of hard collisions immediately follows). That is, A comes
up with a commitment (C, V ) ∈ G2, an index i ∈ {1, . . . , q}, a valid hard de-
commitment π = (θ,Wi) ∈ Zp × G to mi at position i and a valid soft de-
commitment τ = W ′

i ∈ G to m′
i such that mi �= m′

i. We must have

e(gi, V ) = e(gθ,Wi) · e(g1, gq)mi e(gi, V ) = e(gθ,W ′
i ) · e(g1, gq)m′

i ,

so that e
(
gθ,Wi/W

′
i

)
= e(g1, qq)m′

i−mi and e
(
g, (Wi/W

′
i )

θ/(m′
i−mi)

)
= e(g1, gq).

Since mi �= m′
i, the latter relation implies that gq+1 = (Wi/W

′
i )

θ/(m′
i−mi) is

revealed by the soft collision, which contradicts the q-DHE assumption.
We now turn to the q-HHE, q-HSE and q-SSE equivocation properties (which

imply q-mercurial hiding). A fake commitment has the form (C, V ) = (gθ, gγ)
and its hard equivocation to (mi, i) is the pair

(
θ,Wi = (gγ

i · g−mi
q+1 )1/θ

)
. For any

sequence of messages (m1, . . . ,mq) ∈ (Z∗
p)q, there exists γ′ ∈ Zp such that

V = gγ′
·

q∏
j=1

g
mj

q+1−j . (3)

Then, the corresponding hard opening of (C, V ) w.r.t. mi at position i should
be obtained as W ′

i = (gγ′
i ·
∏q

j=1,j �=i g
mj

q+1−j+i)
1/θ. Since V also equals gγ , if we

raise both members of (3) to the power αi, we find that

gγ
i = gγ′

i ·
q∏

j=1

g
mj

q+1−j+i.

Therefore, the element Wi = (gγ
i · g−mi

q+1 )1/θ returned by the hard equivocation

algorithm can also be written Wi = (gγ′
i ·
∏q

j=1,j �=i g
mj

q+1−j+i)
1/θ. It comes that

fake commitments and hard equivocations have exactly the same distribution as
hard commitments and their hard openings.

The q-HSEquivocation property follows from the above arguments (since the
scheme is “proper”). To prove the indistinguishability in the q-SSEquivocation
game, we note that fake commitments (C, V ) = (gθ, gγ) have the same distri-
bution as soft ones as they can be written (C, V ) = (gθ̃

1 , g
γ̃
1 ) where θ̃ = θ/α

and γ̃ = γ/α. Their soft equivocation Wi = (gγ
i · g−mi

q+1 )1/θ can be written
(gαγ̃

i ·g−mi
q+1 )1/(αθ̃) = (gγ̃

i ·g−mi
q )1/θ̃ and has the distribution of a soft opening. ��

Instantiation with Asymmetric Pairings. It is simple1 to describe the con-
struction in terms of asymmetric pairings e : G × Ĝ → GT , where G �= Ĝ and

1 The security then relies on the hardness of computing ψ(ĝ)(α
q+1) on input of

(ĝ, ĝ1, . . . , ĝq, ĝq+2, . . . , ĝ2q) ∈ Ĝ2q , where ĝi = ĝ(αi) for each i.
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an isomorphism ψ : Ĝ → G is efficiently computable. The public key comprises
generators ĝ ∈ Ĝ and ĝi for i = 1, . . . , q, q + 2, . . . , 2q. Then, hard (resp. soft)
commitments (C, V ) ∈ Ĝ×G are pairs of group elements obtained as C = ĝθ and
V = ψ(ĝ)γ ·

∏q
j=1 ψ(ĝq+1−j)mj (resp. C = ĝθ

1 and V = ψ(ĝ1)γ). Hard openings
are pairs (θ,Wi) ∈ Z∗

p ×G, where Wi = ψ(ĝi)γ/θ ·
∏q

j=1,j �=i ψ(ĝq+1−j+i)mj/θ and
they are verified by checking that C = ĝθ and e(V, ĝi) = e(Wi, C)·e(ψ(ĝ1), ĝq)mi .
Using the trapdoor ĝq+1, fake commitments (C, V ) = (ĝθ, ψ(ĝ)γ) can be equiv-
ocated by outputting θ and Wi = ψ(ĝi)γ/θ · ψ(ĝq+1)−mi/θ.

4 Implications on the Efficiency of ZK-EDBs

The construction [9] of ZK-EDB from qTMC schemes goes as follows. Each key
x is assigned to a leaf of a q-ary tree of height h (and can be seen as the label
of the leaf, expressed in q-ary encoding), so that qh is the theoretical bound on
the size of the EDB.

The committing phase is made efficient by pruning subtrees where all leaves
correspond to keys that are not in the database. Only the roots (called “frontier
nodes” and at least one sibling of which is an ancestor of a leaf in the EDB) of
these subtrees are kept in the tree and contain soft q-commitments. For each key
x such that D(x) �= ⊥, the corresponding leaf contains a standard hard mercu-
rial commitment to a hash value of D(x). As for remaining nodes, each internal
one contains a hard q-commitment to messages obtained by hashing its children.
The q-commitment at the root then serves as a commitment to the entire EDB.

To convince a verifier that D(x) = v �= ⊥ for some key x, the prover gen-
erates a proof of membership consisting of hard openings for commitments in
nodes on the path connecting leaf x to the root. At each level of the tree, the
q-commitment is hard-opened with respect to the position determined by the
q-ary encoding of x at that level.

To provide evidence that some key x does not belong to the database (in other
words, D(x) = ⊥), the prover first generates the missing portion of the subtree
where x lies. Then, it reveals soft openings for all (hard or soft) commitments
contained in nodes appearing in the path from x to the root.

As in the original zero-knowledge EDB construction [21], only storing commit-
ments in subtrees containing leaves x for which D(x) �= ⊥ (and soft commitments
at nodes that have no descendants) is what allows committing with complexity
O(h · |D|) instead of O(qh).

The advantage of using qTMC schemes and q-ary (with q > 2) trees lies
in that proofs can be made much shorter if, at each level, commitments can
be opened w.r.t. the required position i ∈ {1, . . . , q} without having to reveal
q values. The qTMC scheme of [9] features soft openings consisting of a single
group element and, for an appropriate branching factor q, allows reducing proofs
of non-membership by 73% in comparison with [21]. On the other hand, hard
openings still have length O(q) and proofs of membership thus remain signifi-
cantly longer than proofs of non-membership. If h denotes the height of the tree,
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q h Membership Non-Membership Membership in [9]
8 43 220 176 521
16 32 165 132 643
32 26 135 108 941
64 22 115 92 1501
128 19 100 80 2513

Fig. 1. Required number of group elements per proof

the former consist of h(q + 4) + 5 elements of G (in an implementation with
asymmetric pairings) while the latter only demand 4h + 4 such elements.

If we plug our qTMC scheme into the above construction, proofs of mem-
bership become essentially as short as proofs of non-membership. At each in-
ternal node, each hard opening only requires to reveal (C, V ) ∈ Ĝ × G and
(θ,Wi) ∈ Zp × G. At the same time, proofs of non-membership remain as short
as in [9] since, at each internal node, the prover only discloses (C, V ) and Wi.

To concretely assess proof sizes, we assume (as in [9]) that elements of Ĝ count
as two elements of G (since their representation is usually twice as large using
suitable parameters and optimizations such as those of [2]), each one of which
costs |p| bits to represent. Then, we find that proofs of membership and non-
membership eventually amount to 5h+5 and 4h+4 elements of G, respectively.
These short hard openings allow us to increase the branching factor of the tree
as long as the length of the common reference string is deemed acceptable.

The table of figure 1 summarizes the proof lengths (expressed in numbers of G
elements and in comparison with [9]) for various branching factors and assuming
that qh ≈ 2128 theoretically bounds the EDB’s size. In the MRK construction,
membership (resp. non-membership) can be proved using 773 (resp. 644) group
elements. The best tradeoff achieved in [9] was for q = 8, where proofs of non-
membership could be reduced to 176 elements but proofs of membership still
took 521 elements. With q = 8, we have equally short proofs of non-membership
and only need 220 elements to prove membership, which improves CFM [9] by
about 57% and MRK [21] by 71%.

Moreover, we can shorten both kinds of proof by increasing q: with q = 128
for instance, no more than 100 group elements (or 13% of the original length
achieved in [21]) are needed to prove membership whereas 2513 elements are
necessary in [9]. Instantiating our scheme with curves of [2] yields proofs of less
than 2 kB when q = 128. For such relatively small values of q, Cheon’s attack
[12] does not require to increase the security parameter λ and it is reasonable to
use groups (G, Ĝ) where elements of G have a 161-bit representation.

5 Achieving Strong Independence

In [15], Gennaro and Micali formalized the notion of independent zero-knowledge
EDBs which requires that adversaries be unable to correlate their database to
those created by honest provers.
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The strongest flavor of independence considers two-stage adversaries A =
(A1,A2). First, A1 observes � honest provers’ commitments (Com1, . . . , Com�)
and queries proofs for keys of her choice in underlying databases D1, . . . , D� be-
fore outputting her own commitment Com. Then, two copies of A2 are executed:
in the first one, A2 is given oracle access to provers that “open” Comi w.r.t Di

whereas, in the second run, A2 has access to provers for different2 databases
D′

i that agree with Di for the set Qi of queries made by A1. Eventually, both
executions of A2 end with A2 outputting a key x, which is identical in both runs,
and a proof πx. The resulting database value D(x) is required to be the same in
the two copies, meaning that it was fixed at the end of the committing stage.

In the strongest definition of [15], A1 is allowed to copy one of the honest
provers’ commitment (say Comi) as long as the key x returned by A2 is never
queried to Sim2(Sti, Comi) by A1 or A2: in other words, A2’s answer must be
fixed on all values x that were not queried to the ith prover.

Definition 2. [15] A ZK-EDB protocol is strongly independent if, for any poly-
nomial �, any PPT adversary A = (A1,A2) and any databases D1, . . . , D�,
D′

1, . . . , D
′
�, the following probability is negligible.

Pr
[
(σ, St0) ← Sim0(λ); (Comi, Sti) ← Sim1(St0) ∀i = 1, . . . , �;

(Com,ω) ← ASim
Di(·)
2 (Sti,Comi)

1 (σ,Com1, . . . , Com�);

(x, πx) ← ASim
Di(·)
2 (Sti,Comi)

2 (σ, ω); (x, π′
x) ← ASim

D′
i�Qi

Di(·)
2 (Sti,Comi)

2 (σ, ω);(
bad �= V(σ,Com, x, πx) �= V(σ,Com, x, π′

x) �= bad
)
∧
(
(∀i : Com �= Comi)

∨
(
∃i : (Com = Comi) ∧ (x �∈ Qi ∪Q′

i)
))]

,

where Qi (resp. Q′
i) stands for the list of queries made by A1 (resp. A2) to

Sim
Di(·)
2 (Sti, Comi) (resp. Sim

Di(·)
2 (Sti, Comi) and Sim

D′
i�Qi

Di(·)
2 (Sti, Comi))

and D′
i -Qi Di denotes a database that agrees with D′

i on all keys but those in
Qi where it agrees with Di.

An efficient construction of independent ZK-EDB was proved in [15] to satisfy the
above definition under the strong RSA assumption. It was obtained by extending
Gennaro’s multi-trapdoor commitment scheme [14] and making it mercurial.

We show how to turn our qTMC scheme into a multi-trapdoor q-mercurial
commitment scheme that yields strongly independent EDBs with short proofs.

Multi-Trapdoor q-Mercurial Commitments. A multi-trapdoor qTMC
can be seen as extending qTMC schemes in the same way as multi-trapdoor
commitments generalize ordinary trapdoor commitments. It can be defined as a
family of trapdoor q-mercurial commitments, each member of which is identified
2 For this reason, commitments (Com1, . . . , Com�) are produced using the ZK-EDB

simulator, whose definition is recalled in appendix A, as the two executions of A2

proceed as if underlying databases were different.



512 B. Libert and M. Yung

by a string tag and has its own trapdoor tktag. The latter is generated from tag
using a master trapdoor TK that matches the master public key PK.

qKeygen(λ, q): has the same specification as in section 2.2 but, in addition to
the master key pair (PK, TK), it outputs the description of a tag space T .

qHComPK(m1, . . . ,mq, tag): given an ordered tuple (m1, . . . ,mq) and tag ∈ T ,
this algorithm outputs a hard commitment C under (PK, tag) and some
auxiliary state information aux.

qHOpenPK(m, i, tag, aux): given a pair (C, aux) = qHComPK(m1, . . . ,mq, tag),
this algorithm outputs a hard de-commitment π of C w.r.t. position i if
m = mi. If m �= mi, it returns ⊥.

qHVerPK(m, i, C, tag, π): outputs 1 if and only if π gives evidence that, under
the tag tag, C is bound to a sequence (m1, . . . ,mq) such that mi = m.

qSComPK(): generates a soft commitment and some auxiliary information aux.
Such a commitment is not associated with any specific messages or tag.

qSOpenPK(m, i, flag, tag, aux): generates a soft de-commitment τ of C to m at
position i and w.r.t. tag. The variable flag ∈ {H, S} indicates whether τ
pertains to a hard commitment (C, aux) = qHComPK(m1, . . . ,mq, tag) or
a soft commitment (C, aux) = qSComPK(). If flag = H and m �= mi, the
algorithm returns ⊥.

qSVerPK(m, i, C, τ, tag) returns 1 if, under tag ∈ T , τ is deemed as a valid soft
de-commitment of C to m at position i and 0 otherwise.

qTrapGenPK,TK(tag): given a string tag ∈ T , this algorithm generates a tag-
specific trapdoor tktag using the master trapdoor TK.

qFakePK,tktag
(): outputs a q-fake commitment C and some auxiliary state in-

formation aux.
qHEquivPK,tktag

(m1, . . . ,mq, i, tag, aux): given (C, aux) = qFakePK,tktag
(), this

algorithm generates a hard de-commitment π for C and tag ∈ T at the ith

position of the sequence (m1, . . . ,mq). The sequence of messages has to be
determined once-and-for-all before the execution of qHEquiv.

qSEquivPK,tktag
(m, i, tag, aux): using the trapdoor tktag and the state informa-

tion aux returned by (C, aux) = qFakePK,tktag
(), this algorithm creates a soft

de-commitment τ to m at position i and w.r.t. tag ∈ T .

Again, we call such a scheme concise if it satisfies the same conditions as those
mentioned at the end of section 2.2.

The security properties are expressed by naturally requiring the q-mercurial
hiding and equivocation properties to hold for each tag ∈ T . In equivocation
games, the adversary should be unable to distinguish the two games even know-
ing the master trapdoor TK. As for the q-mercurial binding property, it states
that no PPT adversary A should have non-negligible advantage in this game:

q-Mercurial binding game: A chooses strings tag1, . . . , tag� ∈ T . Then, the
challenger generates a master key pair (TK,PK) ← qKeygen(λ, q) and gives
PK to A who starts invoking a trapdoor oracle T G: the latter receives
tag ∈ {tag1, . . . , tag�} and returns tktag ← qTrapGenPK,TK(tag). Eventually,
A chooses a family tag� ∈ T \{tag1, . . . , tag�} for which she aims to generate
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a collision: she wins if she outputs C, an index i ∈ {1, . . . , q} and pairs (m,π),
(m′, π′) (resp. (m,π) and (m′, τ)) such that qHVerPK(m, i, C, tag�, π) = 1
and qHVerPK(m′, i, C, tag�, π′) = 1 (resp. qHVerPK(m, i, C, tag�, π) = 1 and
qSVerPK(m′, i, C, tag�, τ) = 1) but m �= m′.

As in [14], the latter definition captures security in a non-adaptive sense in that
the adversary chooses tag1, . . . , tag� before seeing the public key PK. As noted
in [13,19] in the case of ordinary multi-trapdoor commitments, some applications
might require to consider a notion of adaptive security where, much in the fashion
of identity-based trapdoor commitments [1,7], the adversary can query T G in
an adaptive fashion. In the present context, non-adaptive security suffices.

A Construction of Multi-Trapdoor qTMC. The construction combines
the qTMC scheme of section 3 with a programmable hash function HG : T → G
and techniques that were introduced in [3]. Programmable hash functions, as
formalized by Hofheinz and Kiltz [17], are designed in such a way that a trapdoor
information makes it possible to relate the output HG(M), which lies in a group
G, to computable values aM , bM ∈ Zp satisfying HG(M) = gaM ·hbM . Informally
(see [17] for a formal definition), a (m,n)-programmable hash function is such
that, for any M1, . . . ,Mm, M ′

1, . . . ,M
′
n such that Mi �= M ′

j , there is a non-
negligible probability that bMi = 0 and bM ′

j
�= 0 for i = 1, . . . ,m and j = 1, . . . , n.

The number theoretic hash function used in [11,25] is an example of such a (1, �)-
programmable hash function, for some polynomial �.

qKeygen(λ, q): is as in section 3 but the algorithm also chooses a tag space
T = {0, 1}L and a (1, �)-programmable hash function HG : T → G for some
polynomials �, L. The public key is PK = {T , g, g1, . . . , gq, gq+2, . . . , g2q, HG}
and the master trapdoor is TK = gq+1 = g(αq+1).

qHComPK(m1, . . . ,mq, tag): to hard-commit to a sequence (m1, . . . ,mq) ∈
(Z∗

p)q, this algorithm chooses γ, θ R← Zp and computes (C, V ) =
(
gθ, gγ ·∏q

j=1 g
mj

q+1−j

)
. The output is (C, V ) and the auxiliary information is aux =

(m1, . . . ,mq, γ, θ).
qHOpenPK(mi, i, tag, aux): parses aux as (m1, . . . ,mq, γ, θ), chooses r R← Z∗

p

and computes

(Wi, Zi) =
((

gγ
i ·

q∏
j=1,j �=i

g
mj

q+1−j+i · HG(tag)r
)1/θ

, g−r
)
, (4)

The hard opening of (C, V ) with respect to tag ∈ T consists of the triple
π = (θ,Wi, Zi) ∈ Zp × G2.

qHVerPK(mi, i, (C, V ), tag, π): parses π as (θ,Wi, Zi) ∈ Zp × G2 and returns 1
if C, V ∈ G and relations (5) are both satisfied. Otherwise, it returns 0.

e(gi, V ) = e(C,Wi) · e(g1, gq)mi · e(HG(tag), Zi) C = gθ. (5)

qSComPK(): chooses θ, γ R← Zp and computes C = gθ
1 , V = gγ

1 . The output is
(C, V ) and the auxiliary information is aux = (θ, γ).
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qSOpenPK(m, i, flag, tag, aux): if flag = H, aux is parsed as (m1, . . . ,mq, γ, θ).
The algorithm returns ⊥ if m �= mi. Otherwise, the soft opening τ = (Wi, Zi)
is generated as per (4). If flag = S, the algorithm parses aux as (θ, γ) and
soft-decommits to m using

(Wi, Zi) =
((

gγ
i · g−m

q · HG(tag)r
)1/θ

, g−r
1

)
, (6)

where r R← Z∗
p. In either case, the algorithm returns τ = (Wi, Zi) ∈ G2.

qSVerpk(m, i, (C, V ), τ, tag): parses τ as (Wi, Zi) ∈ G and returns 1 if and only
if C, V ∈ G and the first verification equation of (5) is satisfied.

qTrapGenPK,TK(tag): given TK = gq+1, a trapdoor for tag ∈ T is computed
tktag = (ttag,1, ttag,2) = (gq+1 ·HG(tag)s, g−s) for a random s R← Z∗

p.
qFakePK,tktag

(): outputs a pair (C, V ) = (gθ, gγ), where θ, γ R← Z∗
p, and retains

the state information aux = (θ, γ).
qHEquivPK,tktag

(m1, . . . ,mq, i, tag, aux): parses aux as (θ, γ) ∈ (Z∗
p)2 and the

trapdoor tktag as (ttag,1, ttag,2) ∈ G2. It randomly picks r R← Z∗
p and com-

putes (Wi, Zi) =
((

gγ
i ·t−mi

tag,1 ·HG(tag)r
)1/θ

, t−mi
tag,2 ·g−r

)
. The de-commitment

is π = (θ,Wi, Zi) =
(
θ,
(
gγ

i ·g
−mi

q+1 ·HG(tag)r′)1/θ
, g−r′

)
, where r′ = −smi+r.

qSEquivPK,tktag
(m, i, tag, aux): parse aux as (θ, γ) and computes (Wi, Zi) as in

qHEquivPK,tktag
.

Theorem 2. The scheme is a concise multi-trapdoor qTMC if the q-DHE as-
sumption holds.

Proof. Given in the full version of the paper. ��
Strongly Independent ZK-EDBs from Multi-Trapdoor qTMC. Fol-
lowing [15], a multi-trapdoor qTMC can be combined with a digital signature
and a collision-resistant hash function H : {0, 1}∗ → T to give a strongly in-
dependent ZK-EDB. To commit to a database D, the prover first generates a
key pair (SK,VK) for an existentially unforgeable (in the sense of [16]) signature
scheme Σ = (G,S,V) [16]. The commitment string is (Com,VK), where all com-
mitments are produced using the qTMC family (with q = 1 at the leaves and
q > 1 at internal nodes) indexed by the tag H(VK). To generate a proof for some
key x, the prover generates a proof πx (by opening the appropriate commitments
using Dec) and outputs πx and sigx = S(SK, (Com, x)). Verification entails to
check πx and that V(sigx,VK, (Com, x)) = 1. The security proof of this scheme
(detailed in the full version of the paper) is similar to that of theorem 3 in [15].
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A Security Properties of Zero-Knowledge Databases

The completeness, soundness and zero-knowledge properties of ZK-EDBs are
formally stated as follows.

Completeness: For all databases D and for all keys x, it must hold that

Pr
[
σ ← CRS-Gen(λ); (Com,Dec) ← P1(σ,D);

πx ← P2(σ,D,Com,Dec, x) : V(σ,Com, x, πx) = D(x)
]

= 1 − ν.

for some negligible function ν.
Soundness: For all keys x and for any probabilistic poly-time algorithm P′, the

following probability is negligible:

Pr
[
σ ← CRS-Gen(λ); (Com, x, πx, π

′
x) ← P′(σ,D);

V(σ,Com, x, πx) = y �= bad ∧ V(σ,Com, x, π′
x) = y′ �= bad ∧ (y �= y′)

]
.

Zero-knowledge: for any PPT adversary A and any efficiently computable
database D, there must exist an efficient simulator (Sim0, Sim1, Sim

D
2 ) such

that the outputs of the following experiments are indistinguishable:

Real experiment:

1. Set σ ← CRS-Gen(λ), (Com,Dec) ← P1(σ,D) and s0 = ε, π0 = ε.
2. For i = 1, . . . , n, A outputs (xi, si) ← A(σ,Com, π0 , . . . , πi−1, si−1)

and obtains a real proof πi = P2(σ,D,Com,Dec, xi).

The output is (σ, x1, π1, . . . , xn, πn).
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Ideal experiment:
1. Set (σ′, St0) ← Sim0(λ), (Com′, St1) ← Sim1(St0) as well as s0 = ε,

π′
0 = ε.

2. For i = 1, . . . , n, A outputs (xi, si) ← A(σ′, Com′, π′
0, . . . , π

′
i−1, si−1)

and gets a simulated proof π′
i ← SimD

2 (σ′, St1, xi).
The output of the experiment is (σ′, x1, π

′
1, . . . , xn, π

′
n).

In the above, SimD
2 is an oracle that is permitted to invoke a database oracle

D(.) and obtain values D(x) for the keys x chosen by A.
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Abstract. We present new and efficient concurrent zero-knowledge pro-
tocols in the timing model. In contrast to earlier works—which through
artificially-imposed delays require every protocol execution to run at the
speed of the slowest link in the network—our protocols essentially only
delay messages based on the actual response time of each verifier (which
can be significantly smaller).

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that
allow one player (called the prover) to convince another player (called the ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the verifier. This is formalized by requiring that for ev-
ery PPT adversary verifier V ∗, there is a PPT simulator S that can simulate
the view of V ∗ interacting with the honest prover P . The idea behind this def-
inition is that whatever V ∗ might have learned from interacting with P could
have been learned by simply running the simulator S. The notion of concurrent
ZK (cZK), first introduced and achieved by Dwork, Naor and Sahai [DNS04]
extends the notion of ZK protocols to a concurrent and asynchronous setting.
More precisely, we consider a single adversary mounting a coordinated attack by
acting as a verifier in many concurrent sessions, possibly with many independent
provers. cZK protocols are significantly harder to construct and analyze, and are
often less efficient than the “standalone” ZK protocols.

The original constant-round cZK protocol of [DNS04] is constructed in the
timing model (also explored in [Gol02]). Informally speaking, the timing model
assumes that every party (in our case every honest prover) has a local clock,
and that all these local clocks are roughly synchronized (1 second is roughly
the same on every clock). Also, all parties know a (pessimistic) upper-bound,
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Δ, on the time it takes to deliver a message on the network. As argued by
Goldreich [Gol02], this assumption seems to be most reasonable for systems
today. The problem, however, is that known constructions of cZK protocols in
the timing model [DNS04, Gol02] are not very efficient in terms of execution
time: Despite having a constant number of rounds (4 or 5 messages), the prover
in these protocols delays the response of certain messages by time Δ. In other
words, every instance of the protocol must take time longer than the pessimistic
bound on the max latency of the network (rather than being based on the actual
message-delivery time).

Leaving the timing model, Richardson and Kilian [RK99] (and subsequent
improvments by Kilian and Petrank [KP01] and Prabhakaran, Rosen and Sahai
[PRS02]) show how to construct cZK protocols in the standard model (without
clocks). Here the protocols are “message-delivery” driven, but there is a signifi-
cant increase in round-complexity: Whereas constant-round ZK protocols exists
in the standalone setting, Õ(log n)-rounds are both necessary and sufficient for
(black-box) cZK protocols [PRS02, KPR98, Ros00, CKPR01]. Another related
work of Pass and Venkitasubramaniam [PV08] gives a constant-round cZK proto-
col without clocks, but at the expense of having quasi-polynomial time simulators
(against quasi-polynomial time adversaries).

In this work we revisit the timing model. Ideally, we want to construct cZK
protocols that are efficient in all three manners mentioned so far: Small (con-
stant) round-complexity, low imposed delays, and fast simulation. As communi-
cated by Goldreich [Gol02], Barak and Micciancio suggested the following possible
improvement to cZK protocols in the timing model: The prover may only need to
impose a delay δ that is a linear fraction of Δ (say δ = Δ/d), at the expense of
increasing the running time of the ZK simulator exponentially (around nO(d)). In
other words, there could be a compromise between protocol efficiency and knowl-
edge security [Gol01, MP06] (i.e., simulator running-time). However, as discussed
in [Gol02], this suggestion has not been proven secure. We show that such a trade-
off is not only possible, but can be significantly improved.1

Trading rounds for minimum delays. The original work of Richardson
and Kilian [RK99] shows that increasing the number of communication rounds
can decrease the running-time of the simulator. Our first result shows that by
only slightly increasing the number of rounds, but still keeping it constant (e.g.,
10 messages), the prover may reduce the imposed delay to δ = Δ/2d, while
keeping the simulator running time at nO(d). This is accomplished by combining
simulation techniques from both the timing model [DNS04, Gol02] (polynomial
time simulation but high timing constraints) and the standard model [RK99,
PV08] (quasi-polynomial time simulation but no timing constraints). As far as
we know, this yeilds the first formal proof that constant-round concurrent zero-
knowledge protocols are possible using a delay δ that is smaller than Δ.

1 It seems that traditional techniques can be used to demonstrate the Barak-Micciancio
trade-off when the adversary employs a static scheduling of messages. However, com-
plications arise in the case of adaptive schedules. See Section 3.1 for more details.
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“Eye-for-an-eye” delays. The traditional approach for constructing cZK pro-
tocols is to “penalize” all parties equally, whether it is in the form of added round
complexity or imposed timing delays. One may instead consider the notion of
punishing only adversarial behaviour, similar to the well-known “tit-for-tat” or
“eye-for-an-eye” technique of game theory (see e.g., [Axe84]). The work of Cohen,
Kilian and Petrank [CKP01] first implemented such a strategy (with respect to
cZK) using an iterated protocol where in each iteration, the verifier is given a
time constraint under which it must produce all of its messages; should a verifier
exceed this constraint, the protocol is restarted with doubled the allowed time
constraint (the punishment here is the resetting); their protocol had Õ(log2n)
rounds and Õ(logn) “responsive complexity”—namely, the protocol takes time
Õ(log n)T to complete if each verifier message is sent within time T . The work
of Persiano and Visconti [PV05] and Rosen and shelat [Rs09] takes a different
approach and punish adversaries that perform “bad” schedulings of messages by
adaptively adding more rounds to the protocol; their approaches, however, only
work under the assumption that there is a single prover, or alternatively that
all messages on the network are exposed on a broadcast channel (so that the
provers can check if a problematic scheduling of messages has occurred).

In our work, we instead suggest the following simple approach: Should a ver-
ifier provide its messages with delay t, the prover will delay its message accord-
ingly so that the protocol completes in time p(t) + δ, where p is some penalty
function and δ is some small minimal delay. We note that, at a high-level, this ap-
proach is somewhat reminiscent of how message delivery is performed in TCP/IP.

As we show, such penalty-based adaptive delays may significantly improve
the compromise between protocol efficiency and knowledge security. For exam-
ple, setting p(t) = 2t (i.e., against a verifier that responds in time t < Δ, the
prover responds in time t + δ) has a similar effect as increasing the number of
rounds: The prover may reduce the minimal imposed delay to δ = Δ/2d, while
keeping the simulator running time at nO(d). Moreover, if we are willing to use
more aggressive penalty functions, such as p(t) = t2, the minimal delay may be
drastically reduced to δ = Δ1/2d

, greatly benefiting “honest” parties that respond
quickly, while keeping the same simulator running time. Note that, perhaps sur-
prisingly, we show that such a “tit-for-tat” technique, which is usually employed
in the setting of rational players, provides significant efficiency improvements
even with respect to fully adversarial players.

Combining it all. Finally, we combine our techniques by both slightly increas-
ing the round complexity and implementing penalty-based delays. We state our
main theorem below for p(t) = t (no penalty), ct (linear penalty), and tc (polyno-
mial penalty) (in the main text we provide an expression for a generic p(t)):

Theorem 1. Let Δ be an upper-bound on the time it takes to deliver a mes-
sage on the network. Let r and d be integer parameters, and p(t) be a (penalty)
function. Then, assuming the existence of claw-free permutations, there is a
(2r+6)-message black-box perfect cZK argument for all of NP with the following
properties:
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– The simulator has running time (rn)O(d).
– For any verifier that cumulatively delays its message by time at most T , the

prover will provide its last message in time at most p(T ) + δ, where

δ =

⎧⎪⎨⎪⎩
2Δ/rd if p(t) = t (no penalty)
2Δ/(cr)d if p(t) = ct (linear penalty)

(2Δ)1/cd

r1+1/c+···+1/cd−1 ≤ (2Δ)1/cd

r if p(t) = tc (polynomial penalty)

Remark 1 (On the number of rounds). Even without penalty-based delays, if
r = 2, we achieve an exponential improvement in the imposed delay (δ = Δ/2d),
compared to the suggestion by Barak and Micciancio (which required a delay of
δ = Δ/d). Larger r (i.e., more rounds) allows us to further improve the delay.

Remark 2 (On adversarially controlled networks). If an adversary controls the
whole network, it may also delay messages from the honest players. In this case,
honest players (that answer as fast as they can) are also penalized. However, the
adversary can anyway delay message delivery to honest players, so this problem
is unavoidable. What we guarantee is that, if a pair of honest players are com-
municating over a channel that is not delayed (or only slightly delayed) by the
adversary, then the protocol will complete fast.

Remark 3 (On networks with failure). Note that even if the network is not un-
der adversarial control, messages from honest parties might be delayed due to
network failures. We leave it as an open question to (experimentally or other-
wise) determine the “right” amount of penalty to employ in real-life networks:
Aggressive delays allow us to minimize the imposed delay δ, but can raise the
expected protocol running time if network failures are common.

Remark 4 (On concurrent multi-part computation). [KLP05] and [LPV09] show
that concurrent multi-party computation (MPC) is possible in the timing model
using delays of length O(Δ). Additionally, [LPV09] shows that at least Δ/2 de-
lays are necessary to achieve concurrent MPC in the timing model. In retrospect,
this separation between concurrent ZK and MPC should not be surprising since
cZK can be constructed in the plain model [RK99, KP01, PRS02], but concurrent
MPC cannot [CF01, Lin04].

1.1 Organization

In Sect. 2 we give definitions regarding the timing model and primitives used in
our constructions. An overview of our protocol and zero-knowledge simulator,
followed by their formal descriptions, is given in Sect. 3. Actual formal analyses
are given in Sect. 4 and the appendix.
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2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and argu-
ments, and stand-alone (black-box) zero-knowledge. Let N denote the set of
natural numbers. Given a function g : N → N, let gk(n) be the function com-
puted by composing g together k times, i.e., gk(n) = g(gk−1(n)) and g0(n) = n.

2.1 Timing Model

In the timing model, originally introduced by Dwork, Naor and Sahai [DNS04],
we consider a model that incorporates a “timed” network. Informally, in such a
network, a (known) maximum network latency Δ—the time it takes for a mes-
sage to be computed and delivered over the network—is assumed. Moreover,
each party (in our case the honest provers) possesses a local clock that is some-
what synchronized with the others (in the sense that a second takes about the
same time on each clock).

As in [DNS04, Gol02, KLP05], we model all the parties in the timing model
as interactive Turing machines that have an extra input tape, called the clock
tape. In an adversarial model, the adversary has full control of the content of
everyone’s clock tape (it can initialize and update the tape value at will), while
each machine only has read access to its own clock tape. More precisely, when
a party Pi is invoked, the adversary initializes the local clock of Pi to some
time t of its choice. Thereafter the adversary may, at any time, overwrite the all
existing clock tapes with new time values. To model that in reality most clocks
are reasonably but not perfectly synchronized, we consider adversaries that are
ε-drift preserving, as defined below:

Let σ1, σ2, . . . be a series of global states of all machines in play; these states
are recorded whenever the adversary initiates a new clock or updates the existing
clocks. Denote by clkP (σ) the value of the local clock tape of machine P at state
σ. We say that an adversary is ε-drift preserving if for every pair of parties P
and P ′ and every pair of states σ and σ′, it holds that

1
ε
(clkP (σ) − clkP (σ′)) ≤ clkP ′(σ) − clkP ′(σ′) ≤ ε(clkP (σ) − clkP (σ′))

As in [DNS04, Gol02, KLP05], we use the following constructs that utilize the
clock tapes. Below, by local time we mean the value of the local clock tape.

Delays: When a party is instructed to delay sending a message m by δ time,
it records the present local time t, checks its local clock every time it is
updated, and sends the message when the local time reaches t + δ.

Time-out: When a party is instructed to time-out if a response from some other
party Pi does not arrive in δ time, it records the present time t. When the
message from Pi does arrive, it aborts if the local time is greater than t + δ.

Measure: When a party is instructed to measure the time elapsed between two
messages, it simply reads the local time t when the first message is sent/
received, and reads the local time t′ again when the second message is sent/
received. The party then outputs the elapsed time t′ − t.
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Although the measure operator is not present in previous works, it is essentially
the quantitative version of the time-out operation, and can be implemented with-
out additional extensions of the timing model. For simplicity, we focus on the
model where the adversary is 1-drift preserving, i.e. all clocks are synchronized,
but our results easily extend to ε-drift preserving adversaries.

2.2 Black-Box Concurrent Zero-Knowledge in the Timing Model

The standard notion of concurrent zero-knowledge extends straightforwardly to
the timing model; all machines involved are simply augmented with the afore-
mentioned clock tape. The view of a party still consists of all incoming messages
as well as the parties random tape. In particular, the view of the adversary deter-
mines the value of all the clocks. We repeat the standard definition of black-box
concurrent zero-knowledge below.

Let 〈P, V 〉 be an interactive proof for a language L, and let V ∗ be a concurrent
adversarial verifier that may interact with multiple independent copies of P
concurrently, without any restrictions over the scheduling of the messages in
the different interactions with P . Let {VIEW2[P (x) ↔ V ∗(x, z)]} denote the
random variable describing the view of the adversary V ∗ in an interaction with
P on common input x and auxiliary input z.

Definition 1. Let 〈P, V 〉 be an interactive proof system for a language L. We
say that 〈P, V 〉 is black-box concurrent zero-knowledge if for every polynomi-
als q and m, there exists a probabilistic polynomial time algorithm Sq,m, such
that for every concurrent adversary V ∗ that on common input x and auxiliary
input z opens up m(|x|) sessions and has a running-time bounded by q(|x|),
Sq,m(x, z) runs in time polynomial in |x|. Furthermore, it holds that the en-
sembles {VIEW2[P (x) ↔ V ∗(x, z)]}x∈L,z∈{0,1}∗ and {Sq,m(x, z)}x∈L,z∈{0,1}∗ are
computationally indistinguishable over x ∈ L. We say 〈P, V 〉 is black-box perfect
concurrent zero-knowledge if the above ensembles are identical.

Remark: [Gol02] defines concurrent ZK in the timing model with the assump-
tion (WLOG) that the adversary never trigger a time-out from any prover.
[Gol02] also made the assumption that the adversary always delays the veri-
fier messages as much as permitted, but is assumption is no longer WLOG for
protocols with penalty-based delays. Therefore in our model, the adversary is
given total control over all the clocks (subject to ε-drift preserving), similar to
the definition of [KLP05] for the setting of concurrent multi-party computation.

2.3 Other Primitives

We informally define other primitives used in the construction of our protocols.

Special-sound proofs: A 3-round public-coin interactive proof for the lan-
guage L ∈ NP with witness relation RL is special-sound with respect to
RL, if for any two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial
messages α, α′ are the same but the challenges β, β′ are different, there is a
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deterministic procedure to extract the witness from the two transcripts that
runs in polynomial time. Special-sound WI proofs for languages in NP can
be based on the existence of non-interactive commitment schemes, which in
turn can be based on one-way permutations. Assuming only one-way func-
tions, 4-round special-sound WI proofs for NP exists2. For simplicity, we use
3-round special-sound proofs in our protocol though our proof works also
with 4-round proofs.

Proofs of knowledge: Informally an interactive proof is a proof of knowledge
if the prover convinces the verifier not only of the validity of a statement,
but also that it possesses a witness for the statement. If we consider com-
putationally bounded provers, we only get a “computationally convincing”
notion of a proof of knowledge (aka arguments of knowledge).

3 Our Protocol and Simulator

3.1 Protocol Overview

Following the works of [FS90, GK96], later extended to the concurrent setting
by [RK99, KP01, PRS02, PV08], we consider ZK protocols with two stages:

Stage 1: First the verifier V “commits to a trapdoor” (the start message). This
is followed by one or multiple slots; each slot consists of a prover challenge
(the opening of the slot) followed by a verifier response (the closing of the
slot). A rewinding black-box ZK simulator can rewind any one of these slots
to extract the verifier trapdoor.

Stage 2: The protocol ends with a modified proof of the original statement that
can be simulated given the verifier trapdoor.

To generate the view of an adversarial verifier V ∗ in the standalone setting, a
black-box simulator simply rewinds a slot to learn the trapdoor, and use it to
simulate the final modified proof.

In the concurrent setting, however, V ∗ may fully nest another session inside a
slot (i.e., after the prover sends the opening message, V ∗ schedules a full session
before replying with closing message). In order for the simulator to rewind this
slot, it would need to simulate the view of the nested session twice. Therefore,
repeated nesting may cause a naive simulator to have super-polynomial running
time [DNS04]. Different techniques were employed in different models to circum-
vent this difficulty caused by nesting. In the timing model, [DNS04, Gol02] shows
that by delaying the Stage 2 proof and limiting the time allowed between the
opening and closing of any slot, we can avoid the nesting situation all together.
On the other hand, [RK99] showed that if the protocol has enough slots, the
simulator can always find a slot that isn’t “too nested” to rewind.

The work of Pass and Venkitasubramaniam describes a simulator (based on
the work of [RK99]) that works also for constant-round protocols. Its running
2 A 4-round protocol is special sound if a witness can be extracted from any two

transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ′, α = α′ and β �= β′.
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time (implicitly) depends on the maximum nesting level/depth of the least nested
slot. Specifically, the running time of the simulator is nO(d) when this maximum
depth of nesting is d. Building upon this, we now focus on reducing the maximum
depth of nesting in the timing model.

In the following overview of our techniques, we assume that V ∗ interleaves
different sessions in a static schedule; the full generality of dynamic scheduling
is left for our formal analysis. Additionally, we keep track of the running time of
our protocols as a function of T—the total amount of accumulated delay caused
by the verifier in all the messages.

Imposing traditional timing delays with one slot. We first review the
works of [DNS04, Gol02]. Recall that Δ is the maximum network latency—the
time it takes for a message to be computed and delivered over the network. We
require that the time between the opening and closing of each slot be bounded
by 2Δ (otherwise the prover aborts); this is the smallest time-out value that we
may ask of the honest verifier. At the same time, the prover delays the Stage 2
proof by δ time (after receiving the closing message of the last slot), where δ is a
parameter (Fig. 1(a)). It is easy to see that if δ = 2Δ, then no nesting can occur
(Fig. 1(b)). In this case the running time of the protocol is T + Δ.

P V

2Δ
δ

(a) 1 slot protocol with traditional timing
constraints

2Δ

2Δ

(b) δ = 2Δ prevents nesting.

Fig. 1. Traditional timing delays with 1 slot

If we consider the suggestion of Barak and Micciancio and set δ = 2Δ/d, then
up to d levels of nesting can occur (Fig. 2). In this case, the running time of the
protocol is T + 2Δ and T + 2Δ/d, respectively.
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2Δ

d

<
2(1 − 1

d
)Δ

2Δ/d

2Δ/d

• • •

Fig. 2. δ = 2Δ/d gives at most d levels of nesting

Increasing the number of slots. This idea was first explored by [RK99] in
the standard model where intuitively, more slots translates to more rewinding
opportunities for the simulator. In the timing model, the effect of multiple slots is
much more direct. Let us look at the case of 2 slots. Suppose in some session, V ∗

delays the closing of a slot by the maximum allowed time, 2Δ. Further suppose
that V ∗ nests an entire session inside this slot. Then in this nested session, one of
the slots must have taken time less than Δ (Fig. 3(a)). Continuing this argument,
some fully nested session at level d must take time less than 2Δ/2d. Therefore
if we set δ = 2Δ/2d, V ∗ cannot fully nest every slot beyond depth d, and the
running time of the protocol becomes T + 2Δ/2d.

Penalizing the adversarial verifier with adaptive delays. Here we imple-
ment our “eye-for-an-eye” approach of penalizing adversarial verifiers that delay
messages. Let p(t) be a penalty function that satisfies p(t) > t and is mono-
tonically increasing. During Stage 1 of the protocol, the prover measures t, the
total time elapsed from the opening of the first slot to the closing of the last
slot. Based on this measurement, the prover delays Stage 2 by time p(t) − t or
by the minimal imposed delay δ, whichever is greater. As a result, Stage 2 only
starts after p(t) time has elapsed starting from the opening of the first slot. For
example, suppose p(t) = 2t and that the protocol has 1 slot. Then for V ∗ to fully
nest a session inside a slot that took time 2Δ, the slot of the nested session must
have taken time at most Δ, giving the same effect as having 2 slots (Fig. 3(b)).
Furthermore, if we implement more aggressive penalties, such as p(t) = t2,3
then the slot of the nested session is reduced to time

√
2Δ. Therefore if we set

δ = (2Δ)1/2d

, V ∗ cannot fully nest every slot beyond depth d, and the running
time of the protocol becomes T 2 + (2Δ)1/2d

.

Combining the techniques. In general, we can consider concurrent ZK
protocols that both contain multiple slots and impose penalty-based delays
(e.g., Fig. 4). If we have r slots and impose p(t) penalty on delays, and define
g(t) = p(rt), then δ can be decreased to

3 Formally we may use p(t) = t2 + 1 to ensure that p(t) > t.
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2Δ

< Δ

?

• • •

(a) 2 slots, no penalty. One of the
nested slot must have half the delay.

2Δ

< Δ • • •

(b) 1 slot, 2t penalty. The nested slot
must have half the delay as well.

Fig. 3. Our main techniques of restricting the nesting depth of V ∗

d times

{ p−1

(
· · ·

p−1
(
p−1(2Δ)

r

)
r

)
r

= (g−1)d(2Δ)

=

⎧⎪⎨⎪⎩
2Δ/rd if p(t) = t (no penalty)
2Δ/(cr)d if p(t) = ct (linear penalty)

(2Δ)1/cd

r1+1/c+···+1/cd−1 ≤ (2Δ)1/cd

r if p(t) = tc (polynomial penalty)

while keeping the simulator running time at (rn)O(d). The running time of the
protocol is then p(T ) + δ.

Handling dynamic scheduling. So far we have discussed our analysis (and
have drawn our diagrams) assuming that V ∗ follows a static schedule when
interleaving multiple sessions. In general though, V ∗ may change the schedul-
ing dynamically based on the content of the prover messages. As a result, the
schedule (and nesting) of messages may change drastically when a black-box
simulator rewinds V ∗. This phenomenon introduces many technical difficulties
into the analysis, but fortunately the same difficulties were also present and re-
solved [PV08]. By adapting the analysis in [PV08], we give essentially the same
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2Δ
<

√
2Δ/2

<
√

2Δ

• • •

Fig. 4. 2 slots and t2 penalty. Slots of nesting sessions decrease in size very quickly.

results in the case of dynamic scheduling, with one modification: An additional
slot is needed whenever δ < 2Δ (this includes even the case illustrated in Fig. 2).
For example, a minimal of 2 slots is needed to implement penalty-based delays,
and a minimum of 3 slots is needed to reap the improvements that result from
multiple slots.

Handling ε-drifts in clock tapes. As in the work of [DNS04, Gol02] we
merely need to scale the time-out values in our protocols when the local clocks
are not perfectly synchronized. Specifically, if the adversary is ε-drift preserving
for some ε ≥ 1, then our protocol will impose a minimal delay of εδ and an
adaptive delay of εp(t) (when applicable) between the closing of the last slot and
Stage 2.

3.2 Description of the Protocol

Our concurrent ZK protocol is a slight variant of the precise ZK protocol of
[MP06], which in turn is a modification of the Feige-Shamir protocol [FS90].
Given a one-way function f , a parameter r, a penalty function p(t), and a min-
imal delay δ, our protocol for language L ∈ NP proceeds in the following two
stages on common input x ∈ {0, 1}∗ and security parameter n:

Stage 1: The verifier picks two random strings s1, s2 ∈ {0, 1}n and sends c1 =
f(s1), c2 = f(s2) to the prover. The verifier also sends α1, . . . , αr+1, the first
messages of r + 1 invocations of a WI special-sound proof of the statement
“c1 and c2 are in the image set of f ”. These proofs are then completed
sequentially in r + 1 iterations.

In the jth iteration, the prover first sends βj ← {0, 1}n2
, a random second

message for the jth proof (opening of the jth slot), then the verifier replies
with the third message γj of the jth proof (closing of the jth slot). The prover
times-out the closing of each slot with time 2Δ, and measures the time that
elapsed between the opening of the first slot and the closing of the r + 1st

slot as t.
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Stage 2: The prover delays by time max{p(t) − t, δ} , and then provides a WI
proof of knowledge of the statement “either x ∈ L, or that (at least) one of
c1 and c2 are in the image set of f ”.

More precisely, let L′ be the language characterized by the witness relation
RL′(c1, c2) = {(s1, s2) | f(s1) = c1 or f(s2) = c2}. Let f be a one-way function, r
and δ be integers, p(t) : N → N be a monotonically increasing function satisfying
p(t) > t, and L be a language in NP. Our ZK argument for L, ConcZKArg, is
depicted in Figure 5.

Protocol ConcZKArg
Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Parameters: r (round complexity), p (penalty function), Δ (max delay), δ

(min delay)
Stage 1:

V uniformly chooses s1, s2 ∈ {0, 1}n.
V → P: c1 = f(s1), c2 = f(s2), and r + 1 first messages α1, . . . , αr+1 of

WI special-sound proofs of knowledge of the statement (c1, c2) ∈ L′

(called the start message). The proof of knowledge is with respect to
the witness relation RL′ .

For j = 1 to r + 1 do
P → V [opening of slot j]: Select a second message βj ← {0, 1}n2

for the jth WI special-sound proof. P times-out if the next verifier
message is not received in time 2Δ.

V → P [closing of slot j]: Third message γj for the jth WI special-
sound proof.

P measures the time elapsed between the opening of the first slot and the
closing of the r + 1st slot as t.

Stage 2:
P delays the next message by time max{p(t) − t, δ}.
P ↔ V: A perfect-WI argument of knowledge of the statement (x, c1, c2) ∈

L ∨ L′, where L ∨ L′ is characterized by the witness relation

RL∨L′(x, c1, c2) = {(w, s′1, s
′
2) | w ∈ RL(x) ∨ (r′1, r

′
2) ∈ RL′(c1, c2)

The argument of knowledge is with respect RL∨L′ .

Fig. 5. Concurrent Perfect ZK argument for NP

The soundness and the completeness of the protocol follows directly from the
proof of Feige and Shamir [FS90]; in fact, the protocol is an instantiation of
theirs. Intuitively, to cheat in the protocol a prover must “know” an inverse to
either c1 or c2, which requires inverting the one-way function f .
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3.3 Simulator Overview

At a very high-level our simulator follows that of Feige and Shamir [FS90].
The simulator will attempt to rewind one of the special-sound proofs (i.e., the
slots), because whenever the simulator obtains two accepting proof transcripts,
the special-soundness property allows the simulator to extract a “fake witness”
ri such that ci = f(ri). This witness can later be used in the second phase of
the protocol. At any point in the simulation, we call a session of the protocol
solved if such a witness has been extracted. On the other hand, if the simulation
reaches Stage 2 of a session without extracting any “fake witnesses”, we say the
simulation is stuck.

In more detail, our simulator is essentially identical to that of [PV08], which in
turn is based on the simulator of [RK99]. The general strategy of the simulator
is to find and rewind the “easiest” slot for each session; during a rewind, the
simulator recursively invokes itself on any nested sessions when necessary. The
main difference between our work and that of [RK99, PV08] lies in determining
which slot to rewind. In [RK99, PV08], a slot that contains a “small” amount of
start messages (freshly started sessions) is chosen, whereas in our simulation, a
slot with “little” elapsed time (between the opening and the closing) is rewound.
As we will see, part of the analysis from [PV08] applies directly to our simulator
modulo some changes in parameters; we only need to ensure that our definition of
“little” elapsed time allows the simulator to always find a slot to rewind (formally
argued in Claim 2).

3.4 Description of the Simulator

Our simulator is defined recursively. Intuitively on recursive level 0, the simu-
lator’s goal is to generate a view of V ∗, while on all other recursive levels, the
simulator’s goal is to rewind a particular slot (from a previous recursion level).
On recursive level �, the simulator starts by feeding random Stage 1 messages to
V ∗. Whenever a slot s closes, S decides whether or not to rewind s depending
on the time elapsed between the opening and the closing of s. If the elapsed time
is “small” (where the definition of small depends on the level �), S begins to
rewind the slot. That is, S recursively invokes itself on level � + 1 starting from
the opening of slot s with a new (random) message β, with the goal of reaching
the closing message of slot s. While in level � + 1, S continues the simulation
until one of the following happens:

1. The closing message γ for slot s occurs: S extracts a “fake” witness using the
special-sound property and continues its simulation (on level �).

2. V ∗ aborts or delays “too much” in the rewinding: S restarts its rewinding
using a new challenge β for s. We show in expectation, S only restarts O(1)
times (intuitively, this follows since during the execution at level �, S only
starts rewinding a slot if V ∗ did not abort and only took “little time”).

3. S is “stuck” at Stage 2 of an unsolved session that started at level � + 1: S
halts and outputs fail (we later show that this never happens).
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4. S is “stuck” at Stage 2 of an unsolved session that started at level �: Again,
S restarts its rewinding. We show that this case can happen at most m− 1
times, where m is the total number of sessions.

5. S is “stuck” at Stage 2 of an unsolved session that started at level �′ < �: S
returns the view to level �′ (intuitively, this is just case 4 for the recursion
at level �′).

In the unlikely event that S asks the same challenge β twice, S performs a brute-
force search for the witness. Furthermore, to simplify the analysis of the running-
time, the simulation is cut-off if it runs “too long” and S extracts witnesses for
each session using brute-force search.

SOLVEV ∗
d (x, 	, hinitial, s,W,R):

Let h ← hinitial. Note that hinitial contains all sessions that are started on previous
recursion levels.
Repeat forever:
1. If v is a Stage 2 verifier message of some session, continue.
2. If V ∗ aborts in the sessions of slot s, or the time elapsed since hinitial exceeds

gd+1−�(δ), restart SOLVE from hinitial.
3. If the next scheduled message is a Stage 2 prover message for session i and

W(i) �= ⊥, then use W(i) to complete the WI proof of knowledge; if W(i) = ⊥
and start message of session i is in hinitial return h, otherwise halt with output
fail.

4. If the next scheduled message is a Stage 1 prover message for slot s′, pick a
random message β ← {0, 1}n2

. Append β to h. Let v ← V ∗(h).
5. Otherwise, if v is the closing message for s′ = slot (i′, j′), then update W with v

(using R) and proceed as follows.
(a) If s = s′, then return h.
(b) Otherwise, if session i′ starts in hinitial, then return h.
(c) Otherwise, if W(i′) �= ⊥ or the time elapsed since the opening of slot (i′, j′)

exceeds gd−�, then continue.
(d) Otherwise, let h′ be the prefix of the history h where the prover message

for s′ is generated. Set R′ ← φ. Repeat the following m times:
i. h∗ ← SOLVEV ∗

d (x, 	 + 1, h′, s′,W,R′)
ii. If h∗ contains an accepting proof transcript for slot s′, extract witness

for session i′ from h and h∗ and update W.
iii. Otherwise, if the last message in h∗ is the closing message for the last

slot of an session that started in hinitial return h∗.
iv. Otherwise, add h∗ to R′.

SV ∗
(x, z):

Let d ← mind{gd(δ) > 2Δ}. Run SOLVEV ∗
d (x, 0, , , , ) and output whatever SOLVE

outputs with one exception. If an execution of SOLVEV ∗
d (x, 0, , , , ) queries V ∗ more

that 2n times, proceed as follows:
Let h denote the view reached in the “main-line” simulation (i.e., in the top-level of
the recursion). Continue the simulation in a “straight-line” fashion from h by using
a brute-force search to find a “fake” witness each time Stage 2 of an session i is
reached.

Fig. 6. Description of our black-box ZK simulator
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The basic idea behind the simulation is similar to [PV08]: We wish to define
“little time” appropriately, so that some slot of every session is rewound and
that expected running time is bounded. For a technical reason (used later in
Claim 2), we actually want the simulator to rewind one of the first r (out of
r + 1) slots of each session.

Take for example p(t) = 2t and r = 2 (3 slots). Based on our intuition
from Sect. 3.1, a good approach would be to ensure that the simulation at
recursive level � finishes within time 2Δ/4�, and define “little time” on level � to
be 2Δ/4�+1. Then, we know that any session that is fully executed at recursive
level � must have taken time less than 2Δ/(4� · 2) in Stage 1 (due to penalty-
based delays), and therefore one of the first two slot must have taken time less
than 2Δ/4�+1, making it eligible for rewind. To show that the expected running
time is bounded, we simply set δ appropriately (as a function of d, Δ and r) as
in Sect. 3.1, and this would guarantee that the recursion depth of the simulator
is bounded.

A formal description of our simulator can be found in Figure 6. We rely on
the following notation.

– Define the function g : N → N by g(n) = p(rn). Recall that gk(n) be the
function computed by composing g together k times, i.e., gk(n) = g(gk−1(n))
and g0(n) = n. Let d (the maximum depth of recursion) be mind{gd(δ) >
2Δ}. Note that if δ = (g−1)k(2Δ), then d = k.

– slot (i, j) will denote slot j of session i.
– W is a repository that stores the witness for each session. The update W

command extracts a witness from two transcripts of a slot (using the special-
sound property). If the two transcripts are identical (i.e. the openings of the
slot are the same), the simulator performs a brute-force search to extract a
“fake” witness si s.t. ci = f(si) for i ∈ {1, 2}.

– R is a repository that stores the transcripts of slots of unsolved sessions.
Transcripts are stored in R when the simulator gets stuck in a rewinding
(cases 4 and 5 mentioned in the high-level description).

4 Analysis of the Simulator

To prove correctness of the simulator, we show that the output of the simulator
is correctly distributed and its expected running-time is bounded. We first prove
in Claim 2 that the simulator never outputs fail. Using Claim 2, we show that the
output distribution of the simulator is correct in Prop. 3, and that the expected
running time of the simulator is at most poly(mdrd) in Prop. 4. Theorem 1 then
follows from Prop. 3 and 4, together with the fact that if δ = (g−1)k(2Δ) then
d = k.

Claim 2. For every x ∈ L, SV ∗
(x, z) never outputs fail.

Proposition 3. The ensembles {VIEW2[P (x,w) ↔ V ∗(x, z)]} and {SV ∗
(x, z)}

are identical over x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗.
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Proposition 4. For all x ∈ L, z ∈ {0, 1}∗, and all V ∗ such that V ∗(x, z) opens
up at most m sessions, E[timeS̃V ∗(x,z)] ≤ poly(mdrd)

The proof of Claim 2 is given below, while the proofs of Prop. 3 and 4 are given in
the full version of the paper; in any case, the proofs of Prop. 3 and 4 are essentially
identical to [PV08], modulo a change of parameters. Throughout the analysis we
assume without loss of generality that the adversary verifier V ∗ is deterministic
(as it can always get its random coins as part of the auxiliary input).

Proof: (Claim 2) Recall that SV ∗
(x, z) outputs fail only if SOLVEV ∗

d (x, 0, , , )
outputs fail. Furthermore, SOLVE outputs fail at recursive level � only if it
reaches Stage 2 of an unsolved session that started at level � (see Step 3 of
SOLVE). We complete the proof in two parts. First we show SOLVEV ∗

d will
rewind at least one of the first r slots of every session at level �. Then, we show
that SOLVE always extracts a witness when it rewinds a slot.

In order for SOLVE to be stuck at a session i that starts at recursive level
�, session i must reach Stage 2 within g(d−�)(δ) time-steps (otherwise SOLVE
would have rewound as per Step 2). This implies that t, the time between the
opening of the first slot and the closing of th last slot of session i, must satisfy
p(t) ≤ g(d−�)(δ) (due to penalty-based delays). This in turn implies that one of
the first r slots of session i must have taking time at most

t

r
≤ p−1(g(d−�)(δ))

r
≤ g(d−�−1)(δ)

(here we use the monotonicity of p). By construction, SOLVE would have re-
wound this slot (i.e., execute Step 5.(d)).

Next we show that whenever SOLVE rewinds a slot, a witness for that session
is extracted. Assume for contradiction that SOLVE fails to extract a witness
after rewinding a particular slot. Let level � and slot j of session i be the first
time this happens. This means at the end of Step 5.(d), m views are obtained,
yet none of them contained a second transcript for slot j. Observe that in such
a view, SOLVE most have encountered Stage 2 of some unsolved session i′ (i.e.,
stuck). Yet, we can show that the m − 1 other sessions can each cause SOLVE
to be stuck at most once; this contradicts the fact that SOLVE is stuck on all
m good views.

For every session i′ that SOLVE gets stuck on, both the opening and the closing
of the last slot occurs inside the rewinding of slot (i, j); otherwise, SOLVE would
have rewound one of the r slots that occurred before the opening of slot (i, j)
successfully and extracted a witness for session i′ (l, i, j was the first “failed”
slot). Furthermore, the transcript of this slot enables SOLVE to never get stuck
on session i′ again, since the next time that the last slot of session i′ closes will
allow SOLVE to extract a witness for session i′. ��
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Abstract. Ever since the invention of Zero-Knowledge by Goldwasser,
Micali, and Rackoff [1], Zero-Knowledge has become a central building
block in cryptography - with numerous applications, ranging from elec-
tronic cash to digital signatures. The properties of Zero-Knowledge range
from the most simple (and not particularly useful in practice) require-
ments, such as honest-verifier zero-knowledge to the most demanding
(and most useful in applications) such as non-malleable and concur-
rent zero-knowledge. In this paper, we study the complexity of efficient
zero-knowledge reductions, from the first type to the second type. More
precisely, under a standard complexity assumption (ddh), on input a
public-coin honest-verifier statistical zero knowledge argument of knowl-
edge π′ for a language L we show a compiler that produces an argument
system π for L that is concurrent non-malleable zero-knowledge (under
non-adaptive inputs – which is the best one can hope to achieve [2,3]).
If κ is the security parameter, the overhead of our compiler is as follows:

– The round complexity of π is r + Õ(log κ) rounds, where r is the
round complexity of π′.

– The new prover P (resp., the new verifier V) incurs an additional
overhead of (at most) r + κ · Õ(log2 κ) modular exponentiations.
If tags of length Õ(log κ) are provided, the overhead is only r +
Õ(log2 κ) modular exponentiations.

The only previous concurrent non-malleable zero-knowledge (under non-
adaptive inputs) was achieved by Barak, Prabhakaran and Sahai [4].
Their construction, however, mainly focuses on a feasibility result rather
than efficiency, and requires expensive NP-reductions.
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1 Introduction

In this paper, we consider Zero-Knowledge argument systems that are non-
malleable and secure against concurrent man-in-the-middle attacks. In such sys-
tems, the adversary has complete control over the communication channel and
can behave as honest prover and honest verifier in any polynomial number of
protocols, therefore controlling the scheduling of the messages. We aim at de-
signing efficient argument systems secure against these attacks, namely efficient
concurrent non-malleable zero knowledge argument systems. Despite the extreme
importance of these proof systems, no efficient and secure (plain model) proto-
col for such settings is known until today. Feasibility results have been given
originally by Dolev, Dwork, and Naor (ddn) [5], restricting the adversary to
two simultaneous proofs. In recent work, Barak, Prabhakaran and Sahai [4] have
obtained concurrent and non-malleable zero-knowledge without restricting the
adversary to a bounded number of proofs, however the solutions proposed there
can be viewed as constructing feasibility results only as their methods require
NP reductions and are highly inefficient.

The need of efficient instantiations of concurrent nmzk for useful languages
and its applicability as sub-protocols motivated the introduction of several strong
set-up assumptions [6,7,8]. In this paper, we focus on achieving efficient trans-
formations in the plain model which does not rely on any setup assumptions.
We show a transformation that on input a public-coin honest-verifier statistical
zero knowledge argument of knowledge π′ for a language L produces a con-
current non-malleable zero-knowledge argument system π for L. Further, our
transformation is an efficiency preserving transformation that does not require
any NP-reduction and works assuming standard number-theoretic assumptions
(see theorem 1 for a precise statement).

It should be noted that cnmzk arguments are significantly harder to con-
struct and analyze. In fact, Lindell proved that in the most general form of
the attack, (non-trivial) cnmzk arguments do not even exist [2,3]. However,
assuming that the honest parties’ inputs are fixed in advance (i.e., are not
chosen adaptively based on the protocol execution), cnmzk was shown to be
achievable by Barak, Prabhakaran, and Sahai (bps). The impossibility results
discussed in [2,3,9] and the plausibility results of [4] suggest that cnmzk (un-
der the non-adaptive input notion) is the best notion of security for proof sys-
tems that one can hope to achieve in the plain model. Our results are the first
efficiency preserving transformation for the concurrent man-in-the-middle set-
ting in the plain model, gaining dramatic efficiency improvements over [4] (see
further discussion on efficiency immediately after the statement of our main
result).

Our Results. Assuming the hardness of (standard) decisional Diffie-Hellman
assumption, we show cnmzk argument-of-knowledge (see theorem 1). Our re-
sults require that the hvzk argument system admit statistical simulation and be
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an “argument of knowledge”1. We remark that the statistical simulation require-
ment for the given hvzk argument, is easy to achieve as most hvzk protocols
that we know of already admit statistical simulation (by using statistically hiding
commitments such as [10] – which exist under the ddh assumption).

Theorem 1 (Main Result). Let π′ : 〈P ′
,V ′〉 be a public coin honest verifier

statistical zero-knowledge argument of knowledge, for some language L ∈ NP.
Let κ be a security parameter, and q be a prime number whose length is de-
termined by κ. Then, assuming that the Decisional Diffie-Hellman Assumption
holds, it is possible to transform π′ into a new argument system π : 〈P ,V〉 such
that,

– Protocol π is a computational concurrent non-malleable zero-knowledge ar-
gument of knowledge for L.

– Protocol π has r + Õ(log κ) rounds of interaction, where r is the round com-
plexity of π′.

– The new prover P (resp., the new verifier V) incurs an additional overhead
of r+κ · Õ(log2 κ) exponentiations in Zq. For tag-based non-malleability, the
overhead is only r + Õ(log2 κ) additional exponentiations in Zq, assuming
tags of length Õ(log κ).

Although our main focus is the plain model, our results about tag-based non-
malleability, lead to more efficient constructions in the Bare-Public-Key (BPK)
model [11]. The BPK model, assumes an untrusted setup which brings it very
close to the plain model. Like the plain model, our results in the BPK model are
the first efficient transformations (see section 5 for more details).

Our starting point to avoid NP-reductions is “Simulatable Commitments”
as defined by Micciancio and Petrank [12] (though our construction and proof
requires development of several new techniques and ideas on top of this work).
Using simulatable commitments, Micciancio and Petrank demonstrate how to
efficiently transform any hvzk argument system into a concurrent zk argument
system which is secure against a cheating verifier V ∗ mounting a concurrent
attack. Their transformation increases the round complexity of the original ar-
gument system by Õ(log κ) and incurs an additional overhead of r + Õ(log κ)
exponentiations in Zq.

Technical Overview and Main Difficulties. We design a new protocol to
make the given protocol πhv secure in the cnmzk model without much compro-
mise in its efficiency. As we explain below, our transformation is conceptually
different from the only known cnmzk protocol of bps. Due to this conceptual
difference in the construction, our proof of security is entirely new.

1 The “argument of knowledge” requirement is actually due to the particular definition
of security we aim to achieve, namely simulation extractability (see Definition 1). If
the given protocol is not an argument of knowledge, our transformation still delivers
simulation soundness.
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To explain the main conceptual ideas/differences, we now sketch our transfor-
mation.2 At a very high level, our transformation has following structure: (1) Our
verifier, V , first executes a kp/prs preamble for a secret v; (2) Our prover, P ,
then commits to 0κ using a (properly instantiated) ddn-commitment; (3) V then
reveals v; (4) and finally, P proves to V that “x ∈ L OR P committed to v”.

Note that in phase-(3) we need an efficient version of ddn-commitments.3

Also, phase 4 needs typically required NP reductions to apply “FLS”-trick which
requires an NP reduction. Instead, we design a new protocol by extending and
applying in a non-trivial way the Micciancio-Petrank (mp) [12] transformation
to the input protocol πhv. We now explain the main conceptual differences from
bps and their proof.

Note that our protocol has only four phases whereas bps has five: we do not
require a separate phase involving a statistically hiding commitment to 0κ, fol-
lowed by a szkaok for the knowledge of randomness to the commitment. This
phase is crucial for bps-proof to go through. This changes the proof significantly
– we directly rely on phase-(3) and phase-(4). Next, it is clear that simulation
will proceed by S extracting v (from kp/prs-preamble) and then committing
to v (instead of 0κ) in the left sessions of ddn. Protocol of bps commits to
the witness (of the statement) instead and relies on this stage for extraction.
Clearly, this completely changes how our extractor would work. Instead, we
must rely on the last phase to perform extraction. This is more involved than
it seems: when simulator uses commitment to v as witness for succeeding in the
last phase. Thus, to be able to argue correctness of extraction, we need statisti-
cal simulation.4 Unfortunately, because of mp-transformation, transformed πhv

loses its statistical simulation – making the proof stuck. However, we identify
a new property: mp-transformation admits “statistical simulation with respect
to lucky provers” (see section 3), and this suffices to argue the correctness of
extraction. Briefly. a “lucky” prover is one who can guess the prs-secret cor-
rectly, in advance. Our extractor also differs from “standard” methods: we first
test whether man-in-the-middle has succeeded in setting up a trapdoor by doing
a preliminary ddn-extraction before performing actual extraction from the last
phase (otherwise the extractor may not be expected-ppt).

Other Related Work. Achieving practical constructions/instantiations of ad-
vanced cryptographic tasks has become an increasingly popular research di-
rection in recent years. To gain efficiency, NP-reductions has been a common
bottleneck that most of these research works also aim at avoiding. Among these,
2 Unfortunately, here reader’s familiarity with the bps-protocol and their proof struc-

ture is required.
3 Interestingly, this is not immediately clear. Before this work, to the best of our knowl-

edge, the only hope for achieving an efficient non-malleable commitment was from
a recent protocol of Lin, Pass, and Venkitasubramaniam [13]. Here, we show a new
and simple technique which provides an efficient instantiation of ddn-commitments
(see section 3.2).

4 This is a somewhat common issue in non-malleability proofs when going from one
hybrid to another (e.g., the non-malleable commitments of Pass and Rosen [14]).
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the most relevant works are those of Garay, MacKenzie, and Yang [6], and De
Santis, Di Crescenzo, Ostrovsky, Persiano, and Sahai [15] (CRS model), and
Micciancio and Petrank [12] (plain model). In the area of secure two-party com-
putation, see the works of Mohassel and Franklin [16], Woodruff [17], Lindell
and Pinkas [18], and Goyal, Mohassel, and Smith [19]. For non-interactive zero-
knowledge see Chase and Lysyanskaya [20], and Groth, Ostrovsky, and Sahai [21].

2 Definitions

In this section we present relevant definitions. We assume familiarity with (stan-
dard) cryptographic concepts such as computational and statistical indistin-
guishability, NP-relations, interactive proof and argument systems, simulation
paradigm, etcetera (see [22]). In the following, L is an NP-language with witness
relation RL. That is, a statement x ∈ L iff there exists a y of length poly(|x|)
such that RL(x, y) = 1.

Concurrent Man-in-the-Middle Attack. The concurrent man-in-the-middle
setting proceeds as follows. First, the inputs to the honest provers, i.e., state-
ments x1, . . . , xmL ∈ L ∩ {0, 1}n are chosen; thereafter, mL honest provers,
Pi

def= P (xi, yi;ωi), are constructed (for i ∈ [mL]) such that RL(xi, yi) = 1, and
ωi is a uniformly chosen random tape of sufficient (polynomial in κ) length. Ad-
versary M may now start interacting with these provers while playing the role of
a verifier of π with each one of them. These interactions are called “left” interac-
tions. At any point, M , may adaptively output a new statement x̃i ∈ L∩{0, 1}n.
Whenever it does so, an honest verifier Vi

def= V (x̃i; ω̃i), is created with input x̃i

and uniformly chosen randomness ω̃i. Such verifiers are created to the “right”
of M who may try to convince Vi of the validity of statement x̃i by playing the
role of the prover in a session of π. These interactions are called the “right”
interactions, and M may simultaneously continue its left interactions. Let mR

denote the number of right hand side sessions before M halts.
A concurrent non-malleable attack, a man-in-the-middle adversary M inter-

acts with provers P1, . . . , PmL in mL “left sessions” and verifiers V1, . . . , VmR in
mR “right sessions” of the protocol with M controlling the scheduling of all the
sessions. “Left inputs” x1, . . . , xmL are fixed in advance, whereas “right inputs”
x̃1, . . . , x̃mR can be decided by M adaptively. We consider only non-uniform PPT
adversaries M , and so both mL,mR are polynomial in κ.

Following the work of Pass and Rosen [14], when dealing with non-malleability
it is sometimes easier to work with a somewhat stronger notion called the
simulation-extractability. They demonstrate that simulation-extractability im-
plies non-malleable zero-knowledge argument (proof) of knowledge property.
This approach was also followed by bps, and we stick to their definition.

Definition 1. A protocol π
def
= 〈P, V 〉 is said to be a Concurrent Non-Malleable

Zero Knowledge (cnmzk) argument of knowledge for membership in an NP
language L with witness relation RL, if it is an interactive argument system
between a prover and verifier (both PPT) such that the following conditions hold.
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Completeness. For every x, y such that RL(x, y) = 1, P (x, y) makes V accept
with probability 1.

Soundness, Zero Knowledge, and Non-malleability. For every PPT ad-
versary M launching a concurrent non-malleable attack as above (i.e., M
interacts with P1, . . . , PmL in “left sessions” and V1, . . . , VmR in right ses-
sions as defined above), there exists an expected polynomial time simulator-
extractor S such that for every set of “left inputs” x1, . . . , xmL we have
S(x1, . . . , xmL) = (ν, ỹ1, . . . , ỹmR) such that,
– ν is the simulated joint view of M and V1, . . . , VmR . Further, for any set

of witnesses (y1, . . . , ymL) defining the provers P1, . . . , PmL , the view ν
is distributed computationally indistinguishably from the view of M in a
real execution.

– In the view ν, let transh denote the transcript of hth left execution,
and ˜trans� that of �th right execution, h ∈ [mL],� ∈ [mR]. If x̃� is the
common input in ˜trans�, ˜trans� �= transh (for all h) and V� accepts,
then RL(x̃�, ỹ�) = 1 except with probability negligible in κ.

The probability is taken over the random coins of S. Further, the protocol is
black-box cnmzk, if S is an universal simulator that uses M only as an oracle,
i.e., S = SM .

The second condition in the definition of soundness above, says that if some right
session is not an exact copy of any of the left sessions, then S should output a
valid witness for the statement of that right session.

The DDH Assumption. Let q be a sufficiently large randomly chosen prime
such that there exists another sufficiently large prime p that divides q − 1. Let
Gp be an order p (multiplicative cyclic) subgroup of Zq, with some generator g.
Then, the ddh assumption states that for randomly and independently chosen
a, b, c ∈ Zp, the following two distributions are computationally indistinguish-
able:

(
ga, gb, gab

)
and

(
ga, gb, gc

)
.

Strong Signatures. A signature scheme (K, sign,verify) is said to be strongly
unforgeable if no efficient adversary, with access to a signing oracle with respect
to verification key vk, can output a pair (m,σ) with non-negligible probability,
such that: verify(m,σ,vk) = 1 and the pair (m,σ) does not correspond to the
input-output pair of a performed oracle query. A strong signature scheme is a
signature scheme that is strongly unforgeable.

Notation. Throughout the paper, μ : N → R denotes a negligible function in κ
(the security parameter). If a message u appears in the “left” session, then its
counterpart in the “right” session will be denoted by ũ.

3 Building Blocks: Efficient Instantiations

We discuss two of our main building blocks: (a) simulatable commitments, and
(b) ddn-commitments. We assume here familiarity with commitment schemes
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and their computational/statistical/perfect binding and hiding properties
(see [22]). Simulatable commitments were used by [12] to compile hvzk ar-
guments into concurrent zk arguments (for us just stand-alone zk suffices) –
which we discuss briefly. Thereafter, we discuss an efficient implementation of
the ddn-commitment scheme. Our descriptions are brief, and we refer the reader
to the respective works for more details.

3.1 Simulatable Commitments

A simulatable commitment [12] scheme is a tuple (com,dcom, Pcom, Vcom, Scom)
such that (com,dcom) specifies an usual (non-interactive, perfectly binding,
computationally hiding) commitment scheme. Additionally, it comes with a 3-
round hvzk proof system (Pcom, Vcom) to show, given two strings (c, v), c is a
commitment to v (i.e., ∃r s.t. c ← com(v; r)). The proof system has perfect
completeness, optimal soundness5, and efficient prover (given input r); Scom is
the simulator for the hvzk property of the system. A construction of a simu-
latable commitment scheme, based on the ddh assumption, is given in the full
version of this paper (the construction is due to [12], and admits statistical sim-
ulation). Note that because of the (computational) hiding property, it follows
that the output of Scom on input a true statement (c, v), is computationally
indistinguishable from its output on input a false statement (c, v′).

HVZK to Stand-alone ZK. Using simulatable commitments, [12] show how to
transform any public coin hvzk argument system πhv : 〈Phv, Vhv〉 to a new
system, which is zero-knowledge with respect to any (PPT) verifier (i.e., the new
system is stand-alone zk). We call this transformation the Micciancio-Petrank
transformation, and denote the new system by πmp : 〈Pmp, Vmp〉.6

To pinpoint a crucial property we need, we briefly explain how the transformed
protocol πmp proceeds. First, parties Pmp and Vmp execute a preamble phase, in
which Vmp commits to a value v ∈ Zp, using a statistically hiding commitment;
Pmp then commits to 0κ using simulatable commitments (let the commitment be
denoted by c). Finally Vmp opens the value v to Pmp. The transcript of conversa-
tion is thus (c, v). Now the second phase of the proof starts, in which Vmp acts
like Vhv, but each challenge of Vmp is decided using “coin-tossing”-type style (see
the full version of this paper for concrete details). The proof system, that comes
with simulatable commitments, is used for this purpose with input statement
(c, v). Statement (c, v) is false in a real execution with high probability (which
results in uniform output for Vhv’s challenges), but the simulator can setup a
true (c, v) via rewinding (and hence bias the output of coin-tossing to any value).
The protocol is thus both: zk and sound. The crucial property that we need, is
described next.

5 Informally, it means that for a false statement (c, v), given the first prover-message
and the verifier-query, there is exactly one convincing answer.

6 As mentioned earlier, the main result of [12] gives concurrent zk; stand-alone zk is
a special case and adds only four more rounds to πhv.
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Statistical Simulation with respect to “lucky” Provers. In general, πmp is only
computational zk, since the prover commits to 0κ while the simulator commits
to v (the message opened by Vmp). However, consider a prover who can always
guess the value v correctly and commits to it instead of 0κ (but uses its witness
in the rest of the execution of Pmp). Call such a prover “lucky”.7 Then, for such
provers, the statement (c, v) (from first phase) is always true. Thus, if πhv admits
statistical simulation, the protocol πmp also admits statistical simulation with
respect to the “lucky” provers. Formally, there exists a simulator Smp for every
verifier V ∗

mp
(of the protocol πmp) such that the output of Smp is statistically

indistinguishable from the view of V ∗
mp

in a real execution with a “lucky” prover
(say P

(lucky)
mp ).

3.2 The DDN Commitment

Our construction needs an efficient instantiation of the ddn-commitment proto-
col. The ddn-commitment protocol is non-malleable which means – intuitively
– given a commitment c on some message v, knowledge of c does not help a
man-in-the-middle adversary in constructing a new commitment c′ of a related
message v′. The formal definition that we shall stick to appears in the full ver-
sion of this paper.(This definition is satisfied by the variant of ddn-commitment
protocol given in [4].) An efficient instantiation appears in Fig. 1.

In step 2, we mention the use of an efficient szkaok. An appropriate szkaok

would be the one obtained by sequentially repeating the Schnorr protocol [23]
ω(1) times. The size of verifier’s challenge in each execution of Schnorr protocol,
however, would only be log κ.

In step 3 of the bck protocol, we need an efficient proof system for statements
of type: “c, c1−r are commitments to v, x1−r resp., s.t. α = x1−r + v mod p”.
Informally, it can be achieved as follows. Commitment c is a pair of values in
Zq: (a, b). Similarly, c1−r = (a′, b′). Compute A = aa′ mod q,B = bb′ mod q.
Now use the proof system of simulatable commitments, to prove that (A,B) is a
commitment to α. (Note that the proof system is only hvzk, but it can be first
converted to (general) zk by using the Micciancio-Petrank transformation once
again before it is used in step 3 of the bck protocol). The details are an easy
exercise, which we defer to the full version of the paper.

4 An Efficiency Preserving Transformation

4.1 The Extraction Preamble

The extraction preamble is just the the “kp/prs-preamble”. This is a protocol
between two players: a sender, A, and a receiver, B. The sender holds a value
v ∈ Zp.8 Let ai

def= {(vi,j
0 , vi,j

1 )}β
j=1 be the list of pairs such that vi,j

0 + vi,j
1 = v

7 Note that in real executions provers will not be “lucky” w.h.p.; the simulator will,
however, setup the situation of the “lucky” prover to succeed.

8 Here, and everywhere else in this paper, when we mention Zp, it should be assumed
that Zp is an appropriately chosen order p subgroup of Zq in which ddh is hard,
where p, q are as defined in the ddh assumption.
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The ddn-commitment protocol.

1. Sddn sends vk – the verification key of a strong signature scheme, computed using
K(1κ). Let |vk| = κ.

2. Sddn commits to v using the simulatable commitment scheme (com,dcom), and
sends c ← com(v; ω) to Rddn. Sddn then proves to Rddn the knowledge of (v, ω)
using an efficient ω(1)-round public-coin statistical zk argument of knowledge
(szkaok). The last message of this szkaok is called the “Knowledge Determining
Message”(kdm).

3. For i = 1, . . . , κ, define t(i) = i◦vki. Thus, |t(i)| = 1+log κ. Let bck‖ denote the
protocol obtained by composing β parallel executions of the bck protocol (de-
scribed below), here β ∈ ω(log κ). Recall that ddn defines two types of scheduling
for bck

‖: type-0 and type-1 (see [5]).
4. In parallel, for i = 1, . . . , |vk|, execute the following protocol

– For j = 1, . . . , (1 + log κ) do sequentially –
Execute bck

‖ with type-t(i)j scheduling.
Execute bck

‖ with type-(1− t
(i)
j ) scheduling.

5. Sddn signs the full transcript of execution, and sends the signature σ to Rddn.
Rddn verifies the signature.

The bck protocol mentioned in step 3 above.

1. Sddn chooses x0, x1 ∈ Zp, and commits to each one of them using simulatable
commitments; cb ← com(xb; ωb), b ∈ {0, 1}. (Step bck1)

2. Rddn sends a bit r to Sddn. (Step bck2)
3. Sddn opens xr and sends α = x1−r + v mod p. Sddn then proves to Rddn using

an efficient zk protocol that:“c, c1−r are commitments to v, x1−r resp., s.t. α =
x1−r + v mod p”. This protocol is discussed in section 3.2. (Step bck3)

Fig. 1. The O(log κ)-round ddn commitment scheme. Sddn holds a value v ∈ Zp.

mod p where values vi,j
b ∈ Zp for all b ∈ {0, 1} and i, j ∈ [β]. Here β = β(κ) is

any function in ω(log κ). So there are β such lists, each consisting of β pairs.
The preamble consists of three steps. First step is the commitment step.

Sender A chooses the parameters for the (perfectly binding) simulatable com-
mitment scheme9, and sends commitments to value v and to each share vi,j

b ∈ Zp

(defined as above), using com. The second step, (called the challenge-response
step), is an interactive protocol consisting of β rounds, where in round i, player
B sends a challenge ri ∈ {0, 1}β, and A sends a response as follows. The response
of A consists of an opening of the commitments to one of the elements of each
pair in ai. That is, if rj

i = b (the jth-bit of ri), then A includes in its response the
value vi,j

b , and the randomness it used to commit to vi,j
b . At the end of this step,

9 These commitments will sometimes be referred to as Micciancio-Petrank commit-
ments.
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we say that the preamble has concluded. The final step is the opening step. This
step consists of A sending to B, the decommitment information corresponding to
all the commitments of the commitment step. That is, A sends to B the values
v, vi,j

b , and the randomness it used to commit to them.
There can be other messages in the protocol between the prover concluding

the preamble and the verifier opening the commitments. It is easy to see that
if com is a commitment scheme10, the extraction-preamble is an interactive
commitment scheme. We now state a result from prs [25].

Lemma 1. (Adapted from [25]) Consider provers P1, . . . , Pm and an adversar-
ial verifier APRS running m sessions of a protocol with the extraction-preamble
as described above, where m is polynomial in κ. Then except with negligible prob-
ability in κ, in every thread of execution output by the kp/prssimulator, if the
simulation reaches a point where Pi accepts the extraction-preamble with v as
the secret of the sender (in that particular thread), then at the point when the
preamble was concluded, the simulator would have already recorded the value v.

In fact, we will also need a refinement of this lemma. However, both the lemma
and the refinement are not needed until the analysis of hybrid simulators (which
appears in the full version of this paper). Thus, the refinement and a more
detailed discussion is provided in the full version of this paper.

4.2 The Transformation

Overview. We provide an overview of our transformation here in order to present
the basic ideas in the construction (issues originating in the proof due to these
ideas, were discussed in the introduction). The transformed protocol has the
following structure. In the first phase, the verifier V executes the extraction
preamble (of Õ(log κ) rounds with a value v ∈ Zp chosen uniformly. In the
second phase, the prover commits to 0κ using our efficient ddn-commitment
scheme. Note that the first message of this ddn-commitment phase includes a
perfectly binding commitment to 0κ using a simulatable commitment scheme –
which we denote by c∗. V now opens the value v in the preamble (along with
opening all other commitments of the preamble). This defines the pair (c∗, v).

Let the input protocol be 〈πhv〉. Recall that the Micciancio-Petrank transfor-
mation goes in two steps. In the first step a preamble is run, to obtain a pair
(c1, v1) and then the second step uses this pair to enforce random challenges
from the verifier of πhv. In our protocol also, both P ,V now proceed exactly
like this transformation, except that the first step of the transformation is not
executed. Instead, (c∗, v) is used in place of (c1, v1).(We also use the standard
trick of sending a verification key vk of a strong signature scheme to be used as
the identity for the ddn-commitment, and in the end sign the whole transcript).
10 In our description, com is chosen to be a simulatable commitment which is per-

fectly binding. For the extraction-preamble, however, a perfectly hiding commitment
scheme (such as [10]) may be used as well. Also, for simplicity, we have chosen to
use the extraction preamble in the prs-style, but the original style of Richardson-
Kilian [24] will be more efficient.
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The Compiler (from hvzk to cnmzk): The given hvzk argument is πhv : 〈Phv, Vhv〉.
P → V: Run the key generation algorithm, (vk, sk) ← K(1κ). Send vk to V.

V ↔ P : V chooses a value v ∈r Zp. V and P then execute the “extraction pream-
ble” where V plays the role of the sender, with input v; P plays the role of the
receiver. Let c ← com(v; ω), ci,j

b ← com(vi,j
b ; ωi,j

b ) denote the corresponding com-
mitments. Recall that: b ∈ {0, 1}, i, j ∈ [β], vi,j

0 + vi,j
1 = v. Here, ω,ωi,j

b denote the
randomness used by the commitment scheme.

P ↔ V: P and V execute a ddn-commitment protocol in which P plays
the role of Sddn with input 0κ, and V plays the role of Rddn. Let fm

∗ =
(p∗, q∗, g∗, h∗,vk∗, c∗ ← com(0κ; ω∗)), denote the first message of the ddn-
commitment protocol.

V → P : V executes the opening step of the “extraction preamble”, by sending the
opening of all commitments sent in phase 2. That is, V sends to P the values:
v, vi,j

b and randomness ω,ωi,j
b , where b, i, j are defined as above.

P ↔ V: P (resp., V) applies the Micciancio-Petrank transformation to Phv (resp.,
Vhv) to obtain the algorithm Pmp (resp., Vmp). Now, P and V execute the (Pmp, Vmp)
protocol with common input (x, c∗, v) in which P (using Pmp) proves to V (using
Vmp) that x ∈ L ∩ {0, 1}n.

P → V: Let trans denote the transcript of communication so far. P computes
σ ← sign(trans, sk,vk), and sends σ to V.

Fig. 2. The Transformed Argument System π : 〈P ,V〉

The formal description of our transformation (sometimes also referred to as
the compiler) is given in Figure 2. The compiler transforms any given public coin
statistical hvzk argument of knowledge in a cnmzk argument of knowledge.

In all steps above, whenever a message is not according to the protocol specifi-
cations, an honest party aborts the protocol.11 We will frequently refer to above
steps as phases. Thus, our transformation has six phases, where in phase-1 P
sends a verification key to V , in phase-2 V and P execute an extraction preamble,
and so on.

4.3 Proving Concurrent Non-malleability

We now proceed to the actual proof that π : 〈P ,V〉 is indeed a cnmzk argument
of knowledge, given that πhv : 〈Phv, Vhv〉 is a public coin honest verifier statisti-
cal zero-knowledge argument of knowledge. Using a series of hybrid simulators,
11 In particular, this means that in second phase (extraction preamble phase), all com-

mitments, challenges, and responses (i.e., openings) are valid; and during the fourth
(i.e., opening) phase, P confirms that all openings are valid and that vi,j

0 + vi,j
1 = v

mod p for all values of i, j.
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we will show how to simulate the joint view of M and V1, . . . , VmR , while simul-
taneously extracting a witness for each x̃� whenever V�’s view is accepting and

˜trans� �= transh (for all h). Assume M to be deterministic, without loss of
generality. It is easy to see that if ṽk� = vkh for some �, h (i.e., M copies the
tag), then due to the strong unforgeability of the signature scheme, it holds that

˜trans� = transh except with negligible probability. Thus, in the proof we will
not attempt to extract a witness for x̃� whenever ṽk� = vkh. We now define
some random variables.

Let ν be a random variable denoting the joint view of M and V1, . . . , VmR in
a real execution of π. Similarly, ν(i) will be the random variable denoting the
output of hybrid simulator Hi, i = 1, 2, . . .. For every “left” session h ∈ [mL], let
v
(i)
h denote the value committed to by M in phase-2 (i.e., extraction-preamble)

of session h; and let v(i)
h denote the value committed to by prover Ph in phase-

3 (i.e., the ddn-commitment phase) of that session. Of course, v(i)
h = 0 for an

honest prover. Define random variables ṽ
(i)
� , ṽ(i)

� for right sessions � ∈ [mR], anal-
ogously. Thus, ṽ(i)

� denotes the value committed to by V� in phase-2 of �th right
session; and ṽ(i)

� denotes the value committed to by M to V� in phase-3 of the
same session on right, here � ∈ [mR]. Finally, define b

(i)
� to be a random boolean

variable denoting whether in right-session �, V� rejects (b(i)� = 0 and 1 otherwise)
at the end of phase-3 (i.e., the ddn-commitment phase) in a simulation by Hi.

Overall strategy of the proof. In our proof the key-idea is to ensure that
∀�, ṽ(i)

� �= ṽ
(i)
� while at the same time v(i)

h = v
(i)
h (∀h) with high probability.

We do this by designing a series of hybrid experiments Hi setting up v(i)
h = v

(i)
h

one-by-one for all left sessions h; it would be done while maintaining ṽ(i)
� �= ṽ

(i)
�

for every right session in all the hybrid experiments with high probability. This
would result in our final simulator using the Micciancio-Petrank method to suc-
ceed on left; whereas the adversary M will be forced to use the real witness due
to the aforementioned condition on right. We start by presenting our first hybrid.

Simulator H0. This simulator is provided with auxiliary inputs y� ∈ RL(x�)
for all left statements x� for � = 1, . . . ,mL. Let γ denote the uniformly cho-
sen random tape of H0. The simulator starts interacting with M(x, z), where
z is M ’s auxiliary input and x

def= (x1, . . . , xmL). On left, H0 acts as honest
provers P1, . . . , PmL (with independent and uniform random tapes) using inputs
y1, . . . , ymL . On right, H0 acts as honest verifiers V1, . . . , VmR (with indepen-
dent and uniform random tapes). When M halts, H0 outputs the (joint) view
of M and all V�, � ∈ [mR], and halts. Recall that ν denotes the joint view in
a real execution of π, and ν(0) is the output of H0. The simulation is perfect,
and so ν ≡ ν(0). Because we use a perfectly binding commitment scheme, values
ṽ
(0)
� , ṽ(0)

� are well defined. Let p0 be the probability that there exists a right

session � such that
(
ṽ
(0)
� = ṽ(0)

�

)
conditioned on the occurrence of the event “V�

accepts”.
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Claim. p0 ≤ μ(κ)

Proof. Contrary to the claim, suppose that p0 ≥ 1/s(κ) for some polynomial
s(·). Hence, for a non-negligible fraction of random tapes γ, it holds that for one
of the right-sessions (say �th) M succeeds in setting ṽ

(0)
� = ṽ(0)

� , and V� accepts
at the end of ddn-commitment phase of right-session � (i.e., b

(0)
� = 1). We

construct two machines M∗,M∗
ddn

, and use them to break the semantic security
of the commitment scheme denoted by the extraction preamble.

Machine M∗ incorporates M(x, z) and interacts with it exactly as H0 except
for the following two differences. First, in the �th-right-session, V� does not exe-
cute the extraction-preamble internally; instead it receives the commitment from
an outside party A. That is, it chooses two values v′0, v

′
1 ∈ Zp uniformly at ran-

dom, and sends them to the outside sender A (of the extraction-preamble12). A
then commits to v′b, where b ∈R {0, 1} which M∗ forwards to M(x, z) as part of
V�. Second, as soon as the preamble (of �th-right-session) concludes, M∗ outputs
its complete internal state, denoted stM∗ , and halts.

Next, we use M∗ to construct a ddn-sender M∗
ddn

as follows. M∗
ddn

starts
with state stM∗ and continues the rest of the execution internally exactly as
H0, except for the following difference. In the ddn-commitment phase of �th-
right-session, instead of internally emulating the actions of a ddn-receiver, V�

(which is an internal part of M∗
ddn

) interacts with an external ddn-receiver Rddn.
M∗

ddn
halts as soon as this phase finishes.

Finally, to break the semantic security of the extraction-preamble, our adver-
sary (say Acom) proceeds as follows. Given M(x, z), Acom first acts as M∗ to
receive a commitment from external A. Once, this interaction is over, we have
the state stM∗ and hence the adversary M∗

ddn
. (By construction, the execution

of M∗
ddn

is identical to that of H0 up to the point where ddn-phase completes).
Now Acom interacts with M∗

ddn
while acting as Rddn, and if the interaction is

accepting, it applies the ddn-extractor, Eddn, to M∗
ddn

and outputs whatever
Eddn outputs.

M∗
ddn

is a machine that succeeds in committing to v′b with probability ≥ p0
over the randomness of whole experiment. It follows that for at least p0/2 fraction
of views stM∗ , M∗

ddn
(using M(x, z)) successfully commits the value v′b to Rddn

with probability at least p0/2. Thus, from the properties of the ddn-commitment
scheme, we conclude thatEddn extracts v′b with probability p0/2−μ(κ)by running
in expectedpolynomial time. Hence,Acom can guess bwith probability p0/2(p0/2−
μ(κ)) ≥ p2

0/8 contradicting the semantic security of the extraction-preamble. ��
Before proceeding further with the proof, imagine the following hybrid exper-
iment H′

1: it is the same as H0 except that it also performs the extraction of
kp/prs-secrets vh on left by running both main as well as look-ahead threads
just like the kp/prs-simulator.13

12 Recall that we can look at the extraction-preamble as an interactive commitment
scheme.

13 Values vh,vh, ṽ�, ṽ� are defined for session h of the main thread. For look-ahead
threads, we’ll introduce a new variable when needed.
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Note that H′
1 simulates honest verifiers V1, . . . , VmR on right, and runs real

provers P1, . . . , PmL on left of M(x, z) in executing all the threads. If extraction
of kp/prs-secrets fails, (i.e., kp/prs-simulator gets “stuck”) than H′

1 aborts.
Recall that the “threads” of a kp/prs-simulator are classified into three types:

a main thread, look-ahead threads that share a prefix with the main thread,
and look-ahead threads that do not share any prefix with the main thread.
Furthermore, all these threads can be ordered by their finishing time: thread 1
is the one that finishes first, thread 2 is the one that finishes second, and so on.

Threads contain several left and right sessions. In each left session belonging
to a thread, if the execution of that session reaches the ddn-commitment phase,
that session will contain the first message fm

∗. Each thread can contain at most
mL such first messages, and there are at most N ∈ O((βmL)2) fm

∗s that ever
appear in an execution of H′

1. Further, in any given thread, these fm
∗s can be

ordered by their order of appearance, and since each thread can be ordered as
explained above, we have an implicit ordering on these first messages which we
denote by fm

∗
1, . . . , fm

∗
N .

Observe that instead of executing all look-ahead threads at once, it is possible
to only execute look-ahead threads of H′

1 up to a specific point (e.g., up to the
point where a specific first message fm

∗
i appears) and then from thereon stop

running any look-ahead threads and just complete the main-thread from where
it was left.

We are now ready to explain our next 3N + 1 hybrid simulators: Hi:0,Hi:1,
and Hi:2 for i = 1, . . . , N . Define H0:2 to be the same as H0.

Simulator Hi:0. This experiment is the same as Hi−1:2 except that it runs look-
ahead threads up to the point where fm

∗
i gets generated. After this point, the

experiment continues the execution of main-thread directly without running any
look-ahead threads at all. Note that up to this point, kp/prs-secret vj must have
been extracted for all left sessions j for which the extraction preamble concludes
successfully (in any thread), with high probability; and the experiment aborts
if this is not the case.

Simulator Hi:1. Consider an execution of our previous simulator Hi:0. Since
the execution reaches to the point fm

∗
i , Hi:0 must have extracted the value

committed to in the extraction preamble of the session to which fm
∗
i belongs.

Denote this value by ei.
Simulator Hi:1 is the same as Hi:0 except that when creating fm

∗
i , it commits

to ei instead of committing to 0κ using uniform randomness λi. It uses (ei, λi)
to complete the ddn-commitment phase of this session when needed.

Note that ei is extracted “correctly” (i.e., equals the value opened by M later
on in this session) with high probability. Hi:1 aborts if this is not the case.

Simulator Hi:2. This simulator is the same as Hi:1 except that in all sessions j
(across all threads) that belong to fm

∗
i , if phase-5 is ever reached, it uses the

Micciancio-Petrank simulator along with “trapdoor” (ei, λi) defined in previous
hybrid-simulator to succeed in this phase.
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Our final simulator-extractor will use HN :2, to construct the final view. Due
to space constraints, an analysis of above hybrid simulators is provided in the
full version of this paper. We move on to present our final simulator.

The Final Simulator-extractor S. For succinctness, let us denote HN :2 by
H2. Our simulator-extractor S works as follows. It first runs the hybrid simulator
H2 to produce a joint view ν(2). The statements in the right executions (in ν(2))
are x̃1, . . . , x̃mR . For each right session � ∈ [mR], if V� accepts the proof and
∀h ∈ [mL] ṽk� �= vkh, the simulator S extracts (a witness) ỹ� ∈ RL(x̃L). The
extraction for each such � is performed one by one, as follows.

1. First, S defines an adversarial machine A(�)
ddn as follows. A(�)

ddn incorporates
M(x, z) and proceeds exactly as H2 by internally simulating all the honest
parties, except for the part of V� in the main thread which receives the
phase-3 ddn-commitment. A(�)

ddn terminates the execution after sending the
knowledge-determining-message (kdm) to the external receiver. Now, S uses
the (guaranteed) extractor which can work on this prefix (up to the kdm)
to extract the value committed to by A(�)

ddn in view ν(2). Let the extracted
value be u (S aborts if extraction fails).

2. If u = ṽ
(2)
� , S aborts the extraction and halts. Otherwise, it defines a new

machine A(�)
mp as follows. A(�)

mp is exactly as H2 that incorporates M(x, z) and
all the simulated honest parties internally, except for the part of V� in the
main thread which receives the phase-5 (i.e., Micciancio-Petrank) proof. A(�)

mp

is then a Micciancio-Petrank prover. It then applies the extractor guaranteed
for such a prover, to extract a value ỹ� – supposedly a witness for x̃� (repeat
this procedure to obtain ỹ = {ỹ1, . . . , ỹmR}). It then outputs ỹ and halts.

A few remarks are in order. First, let us mention why we need to execute the first
step involving A(�)

ddn, and why not directly execute the second step and extract
ỹ� using A(�)

mp . This is done in order to ensure that the extraction procedure has
expected polynomial running time. Because otherwise, if ṽ(2)

� = ṽ
(2)
� (even if with

only negligible probability – equation ??), the extraction procedure would never
halt. As a result, the running time of S will not be bounded by any polynomial.
Extracting u (=ṽ(2)

� ) using A(�)
ddn allows S to abort whenever it is in this case.

Second, a subtlety in constructing A(�)
ddn (and A(�)

mp as well) is worth men-
tioning here. A(�)

ddn acts as H2 internally and hence executes various “threads of
execution” which may share a prefix with the main thread. When A(�)

ddn interacts
with the external receiver, it may define parts of some look-ahead threads. If the
kdm did not appear in the shared prefix, H2 will have to internally continue the
execution of these look-ahead threads who share a prefix with the main-thread
(defined by the external receiver). The fact that the protocol is public coin up to
the kdm, allows H2 to do that if required. Thus A(�)

ddn (and for the same reason,
A(�)

mp) is indeed well defined. From here, deriving our main theorem (Theorem 1)
is not hard. Due to space constraints, this proof appears in the full version of
this paper.
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5 Efficiency

The Actual Cost. It is easy to see that the additional overhead incurred by the
new prover and verifier, is dominated by three steps (overhead from all other
steps is a small additive constant). First overhead is β2 exponentiations (in
Zq) due to the extraction-preamble.14 The second overhead is due to the ddn-
commitment phase, which as we discuss shortly, is κ · Õ(log2 κ) exponentiations.
Finally, the last overhead is due to the Micciancio-Petrank transformation, which
is r exponentiations, where r is the round complexity of πhv. As β ∈ Õ(log κ),
it follows that the additional overhead incurred by each party is (at most) r +
κ · Õ(log2 κ) exponentiations in Zq.

The overhead in ddn-commitments is as follows. The cost is dominated by
the following steps (overhead from all other steps is a small additive constant).
First costly operation is the execution of szkaok, which requires ω(1) exponen-
tiations. The next (in fact, the main) costly operation is the execution of step 3.
This involves performing κ · (1 + log κ) · 2 executions of bck‖. As bck

‖ repeats
bck, in parallel, β times, and each bck has an overhead of constant (less than
10) exponentiations in Zq, it follows that the overall overhead is κ · Õ(log2 κ)
exponentiations in Zq.

Cost for Tag-based Non-malleability. Historically, the verification key vk used
in ddn-commitment protocol, is also called an identity or tag. Currently, the size
of this tag is κ. If identities (or tags) are given to exist, then the first and the
last steps of the protocol are unnecessary (and hence are not executed). Non-
malleability in such cases requires the extraction of witness only when the adver-
sary does not copy the tag entirely, and is called “tag-based” non-malleability. If
tags of shorter length are possible, it results in more efficient protocols. The two
mainly cited reasons for justifying this notion are the following ones. First, for
some applications, it may be reasonable to assume that all parties have unique
identities. As there are only polynomially many parties in real world protocols,
they can all be represented by using tags of length at most ω(log κ). Second,
non-malleable protocols are typically used as building blocks in larger protocols.
The execution of these larger protocols, may somehow, result in establishing tags
for this building block.

For tag-based non-malleability, assuming the tag-length, |vk|, is Õ(log κ) –
which we believe is reasonable – the overhead in the ddn-commitment phase
would only be Õ(log2 κ). And thus, the overhead incurred by each party in our
transformation would be at most r + Õ(log2 κ).

We would like to mention here that our transformed protocol is very suitable
for the employment of preprocessing and batching techniques.

Efficient cnmzk in the BPK Model. In the full version of this paper we show that
our tag-based non-malleable protocols lead to first truly efficient constructions in
the BPK model [11]. This model has been used in sequence of papers [26,27,28] to

14 This overhead is only β exponentiations, if one chooses RK/KP-type preamble.
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initially achieve round and computationally efficient concurrent zero knowledge
and later constant-round concurrent non-malleable zero-knowledge [29,30].

We give an efficiency preserving compiler for obtaining cnmzk arguments
from any HVSZK argument π′ in the (true) BPK model. We obtain these results
by applying our efficient tag-based constructions of cnmzk arguments in the
plain model. (When coupled with a proper π′, this gives efficient constructions
of comparable efficiency.) By efficient we mean that the round complexity of
the new protocol is r + Õ(log κ) while the additional computational overhead
incurred by each party would be at most r + Õ(log2 κ).
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Abstract. Efficient zero-knowledge proofs of knowledge for group ho-
momorphisms are essential for numerous systems in applied cryptogra-
phy. Especially, Σ-protocols for proving knowledge of discrete logarithms
in known and hidden order groups are of prime importance. Yet, while
these proofs can be performed very efficiently within groups of known
order, for hidden order groups the respective proofs are far less efficient.

This paper shows strong evidence that this efficiency gap cannot be
bridged. Namely, while there are efficient protocols allowing a prover to
cheat only with negligibly small probability in the case of known order
groups, we provide strong evidence that for hidden order groups this
probability is bounded below by 1/2 for all efficient Σ-protocols not
using common reference strings or the like.

We prove our results for a comprehensive class of Σ-protocols in the
generic group model, and further strengthen them by investigating cer-
tain instantiations in the plain model.

Keywords: Generic Group Model, Σ-Protocols, Proofs of Knowledge,
Error Bounds.

1 Introduction
A Zero-Knowledge Proof of Knowledge (ZK-PoK) is a two party protocol be-
tween a prover and a verifier enabling the prover to convince the verifier that
he knows some secret value, without the verifier being able to learn anything
about it. More precisely, in a ZK-PoK an honest prover can always convince the
verifier, while no malicious prover (not knowing the secret) can do so with a
probability larger than some threshold value (the knowledge error).

Fundamental results show that there are ZK-PoK for all languages in NP [2].
Yet, the respective protocols are of theoretical interest only, because executing
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them once is either computationally and communicationally too expensive for
real world use, or enables the prover to cheat with a high probability. In the latter
case, the protocols have to be repeated numerous times to reduce the knowledge
error (remember that r repetitions of a ZK-PoK with knowledge error κ result
in a protocol with knowledge error κr), and thus they become inefficient again.

A (group) homomorphism is a mapping between two groups G and H satisfy-
ing φ(a+b) = φ(a)·φ(b) for all a, b ∈ G. Proving knowledge of a preimage under a
homomorphism (i.e., of w satisfying x = φ(w)) can often be done very efficiently
by using the so-called Σφ-protocol (i.e., the Schnorr [3] or Guillou/Quisquater [4]
protocol generalized to arbitrary homomorphisms [5,6,7]). This protocol consists
of three messages being exchanged: the prover chooses r at random from the do-
main of the homomorphism, and sends the commitment t := φ(r) to the verifier.
The verifier then chooses a random challenge c from a predefined challenge set
C, and sends it to the prover, who computes its response s := r + c ·w. The ver-
ifier now accepts the proof, if and only if φ(s) = xc · t. Standard techniques [8]
allow one to transform this protocol into non-interactive versions or so called
signatures of knowledge.

The Σφ-protocol is a very efficient proof of knowledge for many proof goals
existing in cryptography (e.g., knowledge of a discrete logarithm in a known
order group, or of the plaintext encrypted in a Paillier ciphertext). The reason
is that for the respective homomorphisms, a negligibly small knowledge error
can be obtained in a single run of the Σφ-protocol. Yet, the situation is dif-
ferent for the important class of exponentiation homomorphisms with hidden
order co-domain (e.g., φ(·) : Z → Z∗

n : a #→ ga, where g is a generator of the
quadratic residues modulo n). Such homomorphisms play an important role for
many cryptographic applications, e.g., [9,10,11,12,13,14,15,16], including Direct
Anonymous Attestation (DAA) [17], and the identity mixer (idemix) anonymous
credential system [18]. In this case, the Σφ-protocol is only known to be a PoK
with knowledge error 1/2, and hence must be repeated sequentially to get a
sufficiently small knowledge error (e.g., 80 sequential repetitions are required to
obtain a knowledge error of 1/280). The resulting computational and communi-
cational costs are much too high for many practical applications.

A number of authors have tried to overcome the above problem by proposing
alternative protocols for exponentiation homomorphisms with hidden order co-
domain [5,19,20,21,22,23]. All these protocols build on a basic idea put forth by
Fujisaki and Okamoto [22], and we thus call them FO-based henceforth. Unfor-
tunately, none of these FO-based protocols is fully satisfactory, neither from a
practical nor from a theoretical point of view:

– One run of any FO-based protocol is much more expensive than running the
Σφ-protocol once. Moreover, if only standard complexity assumptions (i.e.
the Strong RSA Assumption [22]) are made, a recent analysis has revealed
that in many cases FO-based protocols are even more expensive than the
sequential repetition of the Σφ-protocol with knowledge error 1/2 [20].

– The FO-based protocols in [5,19,20,21,22] make use of a common reference
string, which is either issued by a trusted third party or generated in an
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expensive interactive setup phase. Yet, the presence of common reference
strings reduces the modularity, and thus increases the complexity of the
security analysis of larger applications (as discussed, e.g., in [23,24,25]). The
security proofs for the protocols in [5,19] additionally assume the existence
of ideal hash functions, and thus only hold true in the random oracle model1.

Because of these disadvantages, the natural question arises whether it is neces-
sary to use FO-based protocols at all? After all, the possibilities of Σ-protocols
have not yet been explored thoroughly, and it could be possible that a novel,
cleverly designed Σ-protocol or even the existing Σφ-protocol could be used to
overcome the current efficiency limitations. (We note that the latter could be
quite possible, if one could find a new knowledge extractor working for the Σφ-
protocol with a suitably chosen challenge set that allows one to obtain a small
knowledge error in a single execution of the protocol.).

Contribution and Results. In this paper we are aiming at answering this
question. We provide ample evidence suggesting that the known minimal knowl-
edge error of the Σφ-protocol cannot be underrun, neither by a better knowledge
extractor for the Σφ-protocol nor by any other Σ-protocol. In particular, our
results indicate that using Σ-protocols the knowledge error of 1/2 cannot be
decreased for exponentiation homomorphisms with hidden order co-domain.

More precisely, we first consider PoK based on Σ-protocols in the generic
group model. That is, Σ-protocols where prover, verifier, and knowledge ex-
tractor are generic algorithms that can only access the homomorphism and its
domain and co-domain through an oracle. We then show that there are lower
bounds on the knowledge error for (almost) arbitrary Σ-protocols. These lower
bounds on the knowledge error in turn imply efficiency limitations for most pos-
sible protocol instances. Roughly, these follow by the fact that a PoK with a
large knowledge error needs to be repeated sequentially to reduce the knowledge
error, which results in a high computational and communicational overhead.
Within the generic group model our efficiency analysis shows that the existing
Σφ-protocol is optimal and there cannot be another, more efficient Σ-protocol.

We further complement our results by proving lower bounds on the knowledge
error of the Σφ-protocol in the plain model. First, for homomorphisms of the
form w #→ we in RSA groups we show that 1/d is a lower bound on the knowledge
error, where d is the smallest divisor of e. Then, we show that for exponentiation
homomorphisms with hidden order co-domain, 1/2 is a lower bound on the
knowledge error for all knowledge extractors structurally related to the only one
currently known. These results are in accord with those in the generic model and
again suggest that the knowledge error that is currently known to be achievable
and the associated efficiency limitations cannot be underrun.

Finally, we note that our results do not rule out entirely the possibility to
obtain efficient PoK using Σ-protocols. On the one hand, we describe a large
number of cases (i.e., instances of Σ-protocols) where this is indeed impossible,

1 For completeness, we note that while the protocol in [23] yields ZK-PoK in the plain
model, it is by far too inefficient for practical usage.
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indicating that there are inherent efficiency limitations for Σ-protocols. On the
other hand, the cases that are not covered by our results also seem to be valuable,
since they provide cues for protocol designers on how it could be possible to
conceive novel Σ-protocols that overcome current efficiency limitations.

Related Work. Given the abundant usage of Σ-protocols, very little work on
their theoretical foundations has been done. Shoup [26] shows that the knowledge
error of 1/2 for homomorphisms of the form φ(w) = w2t

in RSA groups cannot
be improved. One of our results in the plain model extends this to arbitrary
exponents. Further, parts of our results are based on unpublished results of
one of the authors [5]. Apart from this we are not aware of any other work
on efficiency limitations of Σ-protocols. Yet, technically we make use of generic
group proof techniques devised by Shoup [26] as well as the extension of these
techniques to groups of hidden order by Damg̊ard/Koprowski [27].

The generic group model goes back to Nechaev and Shoup [28,29]. It has
been extensively used since then to provide evidence for the security of various
cryptographic systems, e.g., [27,28,29,30,31,32,33,34,35,36,37,38]. The model is
often criticized, because of the risk of lulling a user in a false sense of security.
Indeed, there are cases where information only available in the plain model
(i.e., obtained from encoding specific properties of the group) can be used to
break a system which was proved secure in the generic model [39,40]. Yet, the
implications of these observations are different for all the systems cited above
than for our results. All the proofs in the former case are used to give evidence for
the security of a cryptographic system. Thus, if any of them does not hold true
in the plain model, the security of the according system can be flawed, resulting
in dire consequences for all applications using the respective scheme. In contrast
to this, we use the generic group model in a more conservative way. Namely, we
show efficiency limitations on the efficiency of a cryptographic primitive. Thus,
if our results do not hold true in the plain model this means that the efficiency
of the scheme can be increased, but the security of the scheme is not affected by
any means.

We finally remark that our results do not conflict with those in [41]. The
authors there show how to build efficient Σ-protocols for certain exponentiation
homomorphisms with hidden order co-domain. Yet, their approach is not generic,
but rather uses certain properties of the homomorphism at hand. Further, only
very few proofs of practical interest can be performed with their technique.

Structure of this Document. In §2 we recap the basic definitions, and in-
troduce the notion of lower bounds and the class of Σ-protocols for which our
results hold true. In §3 we then formulate our main result in the generic group
model. This result is strengthened in §4, where we give results in the plain model.
We finally conclude and point out some open problems in §5.

2 Preliminaries

In §2.1 we give a short introduction to ZK-PoK and briefly discuss the Σφ-
protocol in §2.2. Then, in §2.3 we introduce the notion of lower bounds on the
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knowledge error of a protocol. In §2.4 we recap the generic group model we are
working in, and finally describe the class of protocols for which our results in
the generic group model hold true in §2.5.

2.1 Zero-Knowledge Proofs of Knowledge

After having defined ZK-PoK We recall the widely accepted definition of zero-
knowledge proofs of knowledge (ZK-PoK) [42,43]. We by (P(w),V)(x) denote a
two party protocol between a prover P and a verifier V with common input x
and private input w to P.

Definition 1 (Computational Proof of Knowledge [42,43]). A computa-
tional proof of knowledge for a binary relation R with knowledge error κ(·) : N →
[0, 1] is a two party protocol (P(w),V)(x), satisfying the following two conditions:

Completeness: The verifier always accepts the proof, if (x,w) ∈ R.
Soundness: There exists a polynomial poly(·), and a probabilistic algorithm M

(the knowledge extractor) with input x and rewindable black-box access to the
prover, such that the following holds true. For every probabilistic polynomial-
time (PPT) prover P∗ that can make V accept the proof with probability
ε(x) > κ(x), M outputs w′ satisfying (x,w′) ∈ R in expected time at most

t+(ε, κ, x) :=
poly(‖x‖)

ε(x) − κ(‖x‖) ,

where access to P∗ counts as one step only.

The computational aspect of this definition, i.e., the restriction of P∗ to be a PPT
algorithm, is of importance for our results, as it (almost) allows us to stay in the
standard complexity class of PPT algorithms. This issue will also be discussed
in §2.3.

A proof of knowledge (PoK) is called honest verifier zero knowledge (HVZK),
if no verifier following the protocol is able to gain any information about the se-
cret value w except that it satisfies the stated relation. For a formal description
we refer to [43]. There are well known techniques to transform HVZK proto-
cols into protocols which are zero-knowledge also against maliciously behaving
verifiers [8].

2.2 The Σφ-Protocol in Hidden-Order Groups

Most practical applications using ZK-PoK make use of the Σφ-protocol explained
in §1. This allows one to prove knowledge of a preimage w of a public value x
under some group homomorphism φ(·) : G → H. If φ(·) is an exponentiation
homomorphism with hidden order co-domain, e.g., φ(·) : Z → Z∗

n : a #→ ga for
some RSA modulus n, the domain of the homomorphism is infinite. To circum-
vent the problem of drawing random values from an infinite set in P’s first step,
the random choice r ∈R G = Z is substituted by r ∈R G′ = {−Δw, . . . , Δw}
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with (Δw−ordG)/ ordG being negligibly small. The rest of the protocol remains
unchanged. This approach can be generalized also to the case G = Zu for some
integer u. For more details see, e.g., [5,23].

It is well known that the Σφ-protocol is a PoK with knowledge error 1/2
for exponentiation homomorphisms with hidden order co-domain. For homo-
morphisms with a co-domain of known order v, and power homomorphisms
(w1, w2) #→ ψ(w1) · we

2, the protocol is known to have a knowledge error of 1/d,
where d is the smallest prime dividing v in the former, respectively e in the latter
case [6].

2.3 Lower Bounds of the Knowledge Error

Let us now introduce the notion of lower bounds, which is a key to our results
stated in the following. Intuitively, β is a lower bound of the knowledge error of
a protocol, if for this protocol it is not possible to achieve any knowledge error
smaller than or equal to β:

Definition 2 (Lower Bound). A function β(·) : N → [0, 1] is called a lower
bound on the knowledge error of the protocol (P,V) for a binary relation R, if
(P,V) is not a computational proof of knowledge for R for any κ′(·) : N → [0, 1]
with κ′(·) ≤ β(·).

An alternative but equivalent characterization is that of β(·) being a lower bound
if and only if (P,V) is not a computational PoK with knowledge error β(·) for
the given relation.

All our results on lower bounds are proven by showing that the conditions of
the following theorem are satisfied.

Theorem 3 (Sufficient Conditions for Lower Bounds). Let (P,V) be a
two-party protocol, let R be a binary relation, and let β(·) : N → [0, 1] be a
function. Then β(·) is a lower bound on the knowledge error of (P,V) for R, if
the following two conditions are satisfied:

Uniformity: There are a polynomial poly(·) and PPT algorithms P∗ and D such
that ε(x) − β(‖x‖) ≥ 1/poly(‖x‖) holds for all sufficiently long x generated
by D, where ε(x) is the probability that P∗ makes V accept on common input
x.

Hardness: For all expected PPT algorithms M having rewindable black-box ac-
cess to P∗, the probability that M outputs a w′ with (x,w′) ∈ R is negligible.

From the uniformity condition and Definition 1 it follows that any hypothetical
knowledge extractor must be an expected PPT algorithm. This is important,
as in our results we show that the hardness condition has to be satisfied by
showing that otherwise the respective knowledge extractor could be used to break
a cryptographic standard assumption, which is typically defined against PPT
attackers. Still, we will have to adopt these assumptions in a natural way. As the
standard definition of PoK allows the knowledge extractor to be an expected time
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algorithm [42,43], we have to generalize the class of attackers the cryptographic
assumption holds against to expected PPT algorithms as well. Yet, we believe
that this generalization is reasonable as by Markov’s inequality we see that
an expected PPT algorithm may only run super-polynomially long for a small
fraction of its executions.

2.4 The Generic Group Model and Groups of Hidden Order

Our main result holds in the generic group model, which we briefly recap next.
The generic group model is used to analyze the complexity of problems by

considering algorithms in groups whose representation does not reveal any infor-
mation to the algorithm. That is, such an algorithm must not exploit encoding
dependent properties of the group, but is restricted to only use group operations.
The hardness of a problem in the generic model is a necessary but not sufficient
condition for a problem to be hard in the plain model [39,40].

Various formalizations of this model have been proposed [28,29,35,44]. They
all have in common that an algorithm does not get the concrete group descrip-
tion, but only handles to group elements (e.g., via random encodings [29] or
indices to elements [35]). Further, the algorithm gets access to an oracle. To
evaluate a group operation, the algorithm inputs the handles of elements and
the operation to perform to the oracle, which then returns the handle of the
result. Similarly, a homomorphism φ(·) : G → H has to be evaluated through an
oracle.

We call an algorithm a generic homomorphism algorithm for φ(·) : G → H, if,
through an oracle Oφ(·), it might perform the following operations.

+ : Evaluation of the group operation within G or H,
− : inverting an element within G or H,
?= : testing the equality of two elements from the same group,

∈R : choosing a group element uniformly at random within G and H, and
φ(·) : evaluating the homomorphism on arbitrary elements a ∈ G.

When proving our results, we show that any generic algorithm, acting as hy-
pothetical knowledge extractor for a knowledge error smaller than the stated
lower bounds, must fail with overwhelming probability. We therefore describe
next which operations such an algorithm may perform.

Definition 4 (Generic Black-Box Algorithm). A generic black-box algo-
rithm is a generic homomorphism algorithm for φ(·) with oracle Oφ(·), which
additionally has rewindable black-box access to P∗. That is, it can (i) execute P∗,
(ii) choose the random inputs of P∗, and (iii) repeatedly reset P∗. Resetting P∗

does not reset Oφ(·).

We remark that the black-box property of such an algorithm is exactly the same
as for a knowledge extractor according to Definition 1.

Groups of Hidden Order. In the following we will be interested in group ho-
momorphisms with hidden order co-domain (resp., image). Intuitively this means
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that the order of the co-domain (image of φ(·), denoted by Im φ(·)) cannot be
computed with non-negligible probability. More precisely, using the formaliza-
tion of Damg̊ard/Koprowski [27], we let π be the largest prime dividing the order
of the co-domain (Im φ(·)), and let α(π) denote the maximal probability that π
occurs when φ(·) is chosen randomly from a predefined finite set of homomor-
phisms. Then φ(·) is said to have a hidden order co-domain (image), if α(π) is
negligibly small.

2.5 Generic Σ-Protocols

We call the class of protocols for which our results hold true generic Σ-protocols.
Informally, this class consists of almost all HVZK Σ-protocols of the follow-
ing form. The prover is allowed to compute and send arbitrary elements ob-
tained from generic homomorphism algorithms in both moves. The verifier may
send multiple randomly chosen challenges in its first move, and use an arbitrary
generic algorithm to decide whether to accept or to reject the proof.

Definition 5 (Generic (Group) Σ-Protocols). Let aij , bij , di, ei, fi, gi be in-
teger coefficients, let {(b11, . . . , b1l), . . . , (bn1, . . . , bnl)} be linearly independent
over the integers, and let C1, . . . , Cp ⊆ Z be arbitrary finite sets. Let further
Verify(·, . . . , ·) be a generic homomorphism algorithm, and let the verifier always
accept for an honest prover. We then call an HVZK two party protocol a generic
(group) Σ-protocol for a homomorphism φ(·) : G → H, if it has the form depicted
in Fig. 1.

It can easily be seen that this class covers the existing Σφ-protocol as well as
the parallel execution of multiple instantiations thereof. Yet, a much broader set
of protocols is covered by the class of generic Σ-protocols.

We make two minor remarks on this definition. First, the required linear
independence can often be inferred from the HVZK property. Namely, if the

P(x, w) V(x)

ri ∈R G ∀ 1 ≤ i ≤ l−
tj := φ(

∑
ajiri + fjw) ∀ 1 ≤ j ≤ m−

sk :=
∑

bkiri + dkw ∀ 1 ≤ k ≤ n−
t1, . . . , tm− , s1, . . . , sn− �

(c1, . . . , cp) ∈R C := C1 × · · · × Cp
c1, . . . , cp�

ri ∈R G ∀ l− < i ≤ l
tj := φ(

∑
ajiri + (fj +

∑
gjici)w) ∀ m− < j ≤ m

sk :=
∑

bkiri + (dk +
∑

ekici)w ∀ n− < k ≤ n
tm−+1, . . . , tm, sn−+1, . . . , sn�

Verify(x, c1, . . . , cp, s1, . . . , sn, t1, . . . , tm)

Fig. 1. Structure of a generic Σ-protocol for a homomorphism φ : G → H
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vectors were not linearly independent the verifier could compute a multiple of
w, and using Shamir’s trick [5] could thus often compute the secret. Second,
the definition of generic homomorphism algorithms also allows to draw random
choices in the co-domain of the homomorphism. The above definition allows to
draw random choices in the image by drawing r ∈R G and computing φ(r).

3 Efficiency Limitations in the Generic Group Model

In this section we describe lower bounds on the knowledge error for generic Σ-
protocols with generic black-box algorithms as knowledge extractors. From these
lower bounds we infer efficiency limitations for ZK-PoK using Σ-protocols.

In the statement of our results we refer to the notion of expected PPT pseudo
random functions. Such functions are defined just as pseudo random functions
(cf., e.g., [43]), except for one minor modification. Namely, we require that no
expected PPT algorithm can distinguish such a function from a truly random
one (usually one considers only strict PPT distinguishers). See §2.3 for a brief
discussion why we resort to expected PPT time assumptions.

We are now ready to formulate our main result in the generic group model.

Theorem 6 (Lower Bounds in the Generic Group Model). Let be given
an arbitrary but fixed polynomial poly(·), a homomorphism φ(·) : G → H with
hidden order image2, and x ∈ H, for which knowledge of a preimage under
φ(·) shall be proven. Consider a generic Σ-protocol as in Definition 5, and let
q be the number of responses sent by the prover in its second step, i.e., q :=
n− n− +m−m−. Assuming that expected PPT pseudo random functions exist,
the knowledge error of this protocol in the generic group model is lower bounded
by

1
2min(p,q) − 1

poly(‖x‖) .

Let us briefly discuss the relevance and implications of this result.

– Our results indicates that a knowledge error of 1/2 is an inherent limitation
of the Σφ-protocol for homomorphisms with hidden order co-domain, which
especially cover exponentiation homomorphisms in RSA groups.

– The best known technique to decrease the knowledge error is to repeat the
Σφ-protocol, sequentially or in parallel. In either case, the number of ele-
ments sent by the prover and the verifier increases by the number of repe-
titions. Our results show that at least for the second and third move, i.e.,
the challenges sent by V and the responses sent by P, this growth cannot be
avoided.

Put differently, Theorem 6 shows that the number p of challenges, and the
number q of responses are the key parameters determining the size of the
knowledge error. This implies that the strategy of repeating the Σφ-protocol
parallely is optimal concerning the second and third move of the protocol.

2 Note that this is a stronger requirement than the requirement that the co-domain
has hidden order. Yet, typically these two properties accompany each other.



562 E. Bangerter, J. Camenisch, and S. Krenn

– Finally, a protocol designer can deduce from Theorem 6 how an alterna-
tive for the Σφ-protocol must not look like. Namely, it must either not be
a generic Σ-protocol, or the protocol must have a non-generic knowledge
extractor, which uses particulars of the homomorphism.

3.1 Generalization to Other Classes of Homomorphisms

So far we have considered homomorphisms with hidden order co-domain. Yet,
in practice this information is sometimes available and could potentially be used
to decrease the lower bounds on the knowledge error.

More generally, we thus consider the class of special homomorphisms next.
A homomorphisms φ(·) : G → H is called special, if for every x ∈ H a pair
(u, v) ∈ G × Z \ {0} satisfying φ(u) = xv can be computed efficiently. The
pair (u, v) is called pseudo-preimage of x under φ(·). Besides homomorphisms
with known order co-domain, also power homomorphisms are known to be
special.

We model this property by adding one more query to the oracle Oφ(·), i.e., we
allow a generic homomorphism algorithm to request a pseudo-preimage under
φ(·) for arbitrary elements from the co-domain of the homomorphism. We then
obtain the following lemma:

Lemma 7 (Lower Bounds for Special Homomorphisms)

(i) For power homomorphisms (w1, w2) #→ ψ(w1) · we
2 with hidden order co-

domain, Theorem 6 can be generalized to a lower bound of 1
dmin(p,q) − 1

poly(‖x‖) ,
where d is the smallest prime dividing e.

(ii) For arbitrary homomorphisms with a co-domain of known order v, Theo-
rem 6 generalizes literally with a lower bound of 1

dmin(p,q) − 1
poly(‖x‖) , where

d is the smallest prime dividing v, if v has a super-polynomially large prime
factor.

Note that no such generalization is suitable for exponentiation homomorphisms
with hidden order co-domain, as they are not known to be special. Analogue
observations as for Theorem 6 on the implications of this lemma hold. Especially,
in the generic group model the known knowledge error of the Σφ-protocol cannot
be underrun for special homomorphisms.

Examples for homomorphisms of Case (i) are those used in the RSA, Paillier,
and Damg̊ard/Jurik encryption schemes [45,46,47,48]. The ZK-PoK for these
homomorphisms was introduced by Guillou/Quisquater [4]. Case (ii) covers the
homomorphisms underlying the ElGamal encryption scheme [49] and the ZK-
PoK for it was proposed by Schnorr [3].

3.2 Proof of Theorem 6

The remainder of this section is now dedicated to proving the theorem. We
therefore recap the following lemma introduced by Damg̊ard/Koprowski.
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Lemma 8 (Lemma 3 of [27]). Let E := a1X1 + · · · + auXu ∈ Z[X1, . . . , Xu]
be a non-zero polynomial, and let z ≥ |ai| for all i. Let further G be a group of
hidden order, and x1, . . . , xu ∈R G. For any positive A, we then have

Pr[a1x1 + · · · + auxu = 0] ≤ 1
A

+ (log2 z + A)α(π).

Proof (of Theorem 6 – Sketch). The proof is structured as follows. We describe
a prover P∗ for which we show that it satisfies the conditions of Theorem 3. We
will see that the uniformity condition holds true by definition. For the hardness
condition we simulate the behavior of P∗ in the additive subgroup of a suitable
polynomial ring. We then estimate the success probability of this simulated game
and the error made when making this simulation.

We start with describing a malicious prover P∗. This cheating prover essen-
tially behaves like the honest prover, except that it does not answer all challenges
but only certain ones. Depending on whether p ≤ q or not, the set C′ of answered
challenges is defined as follows:

p ≤ q: For i = 1, . . . , p, let c̄i ∈ {0, 1} such that at least half of the elements of
Ci have the same parity as c̄i. Then C′ := {(c1, . . . , cp) ∈ C|ci ≡ c̄i mod 2}.

q < p: We define C′ as a subset of C, which has a cardinality of at least #C/2q,
and all (c1, . . . , cp), (c′1, . . . , c

′
p) ∈ C′ satisfy the following q equations for all

j = m− + 1, . . . ,m and all k = n− + 1, . . . , n:∑
gjici ≡

∑
gjic

′
i mod 2 and

∑
ekici ≡

∑
ekic

′
i mod 2

We next describe P∗. We therefore make the random input ζ = (ζ1, . . . , ζl) to
the prover explicit, and let ρ(·) be a pseudo random function.

(i) It sets r′i := ρ(ζi) for i = 1, . . . , l, and using these random elements, it
behaves just as an honest prover.

(ii) If ci ∈ C′, P∗ behaves like an honest prover, using (r′l−+1, . . . , r
′
l) as random

elements. Otherwise it halts.

The uniformity property of Theorem 3 is obviously satisfied, as the prover
answers a fraction of at least 1/2min(p,q) of all challenges, and makes the verifier
accept (because the verifier would accept for an honest prover).

Let us now turn towards the hardness property. We say that a generic
black-box algorithm succeeds, if after v steps it outputs the handle correspond-
ing to a preimage of x under φ(·). Now, instead of letting the knowledge extractor
interact with P∗ and the oracle Oφ(·), we play the following game. We substitute
G and H by the following subgroups of the polynomial rings over the indetermi-
nantes W,Oij , Rij , Tij :

G′ := 〈W,O11, . . . , O1l, . . . , Ov1, . . . , Ovl, R11, . . . , R1m, . . . , Rv1, . . . , Rvm〉
H′ := 〈G′, T11, . . . , T1n, . . . , Tv1, . . . , Tvn〉.

Accordingly, the oracle O′φ(·) now performs its computations within G′ and H′.



564 E. Bangerter, J. Camenisch, and S. Krenn

The prover P∗ is adopted as described next. It maintains a list L, which is
initially empty, and sets u := 0. On random input ζ, it performs the following
steps:

(i) For each ζi, it checks whether there is a pair (ζji, R̄ji) with ζi = ζji in L.
If so, it sets R̂i := R̄ji. Otherwise, it increases u by 1 (but at most once in
each run), sets R̂i := Rui, and adds (ζi, R̂i) to L. Then it sends(

(
∑

aji · R̂i + fj · W )m−
j=1, (

∑
bki · R̂i + dk ·W )n−

k=1

)
to V. Former are marked as elements of G′, latter as elements of H′.

(ii) If ci ∈ C′, P∗ analogously computes its response according to the protocol.
Otherwise, if c �∈ C′, P∗ halts.

By r we denote an element from the set of from which the oracle and by the
generator of the input to the protocol draw their random choices, i.e.,

r ∈
{

(φ(·), x, w, ρ, o, t)
∣∣ φ(·) : G → H has hidden order co-domain,

x = φ(w), ρ(·) pseudo random, o ∈ Gv×l, t ∈ Hv×m
}

We then define the following two mappings. By ιrG′(·) we denote the evaluation
homomorphism from G′ into G. That is, by ιrG′(E) we denote the element in G
which results when all indeterminantes in E are substituted in the following way:

W #→ w Oij #→ oij Rij #→ r′ij .

In absolute analogy we let ιrH′(·) be the evaluation homomorphism from H′ into
H. That is, the substitution is given by:

W #→ φ(w) Oij #→ φ(oij) Rij #→ φ(r′ij) Tij #→ tij .

We observe that for all E ∈ G′ we have φ(ιrG′ (E)) = ιrH′(E).
During its computation the generic black-box algorithm maintains a list of

elements Ei ∈ G′ respectively Fi ∈ H′. We say that the algorithm wins this
modified game, if one of the following to cases occurs. In case (a), the algorithm
finds a preimage of x under φ(·), while in case (b) there is a pair i �= j satisfying
the following. For a randomly chosen r, we either have Ei �= Ej and ιrG′(Ei −
Ej) = 0, or Fi �= Fj and ιrH′(Fi − Fj) = 0.

Observing that the behavior of this game and the actual interaction between
the algorithm and the real oracle are indistinguishable as long as the above game
is not won, we get that the success probability of the generic black-box algorithm
is upper bounded by the probability that the algorithm wins the game [50].

Case (a). Finding a preimage means to compute Ei such that φ(ιrG′ (Ei)) = x.
Using the observation that we always have ιrH′(W ) = x this means to find an Ei

such that ιrH′(Ei−X) = 0. By introspection of how the Ei’s are computed, and by
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using the linear independency of the vectors {(b11, . . . , b1l), . . . , (bn1, . . . , bnl)},
one can show that W �= Ei for all i.

Let K := K(C, aji, bki, gji, eji, fj , dk) be an integer such that K is larger than
the absolute values of all coefficients occurring in the definition of the examined
generic Σ-protocol. Using that Ei �= W and Lemma 8, and noting that after v
oracle queries for Ei’s and Fj ’s each, all coefficients are smaller than 2v · K, we
get

Pr[(a)] ≤ 1
A

+ (v + log2 K + A)α(π) for all A ∈ Z.

Case (b). Using K as before, and observing that there are at most v different
Ei’s and Fj ’s each, we get by a similar argument that the probability for (b) is
bounded by

Pr[(b)] ≤ v2
(

1
A

+ (v + log2 K + A)α(π)
)

for all A ∈ Z.

We here assumed that φ(·) is surjective, and that ρ(·) is a truly random function.
The former can easily be seen to be just a technical issue to ease presentation,
and the latter yields only a negligible error as ρ(·) is pseudo random by definition.

Demonstration of Hardness Condition. The overall probability that the
algorithm wins the game described above is hence limited by

Pr[(a)]+Pr[(b)] ≤ (v2 +1)
(

1
A

+ (v + log2 K + A)α(π)
)

for all A ∈ Z.

for a fixed choice of r. We now set the so far arbitrary value of A to A :=
√

1/α(π)
such that both 1/A and A ·α(π) are negligible, and observe that K and α(π) are
independent from r. Using now that for the hardness condition to be satisfied
we only need to consider generic black-box algorithms the expected number v of
steps of which is polynomially bounded, and computing the expectation value
over all choices of r, we get that the success probability of the generic black-box
algorithm is negligible. ��

4 Lower Bounds for the Σφ-Protocol in the Plain Model

As pointed out by Dent and Fischlin [39,40], restrictions proven in the generic
model do not necessarily hold true in the plain model as well. In this section
we thus confirm our results obtained in the generic model by showing the ex-
istence of lower bounds in the plain model. That is, we provide evidence that
for exponentiation homomorphisms with hidden order co-domain, and for power
homomorphisms of the form φ(·) : H → H : w #→ we, no smaller knowledge error
than in the generic model can be reached in the plain model. The results only
hold for the Σφ-protocol, and not for the entire class of generic Σ-protocols.

The following results are based on a generalization of the Root Assump-
tion [47], which we call the Expected Root Assumption. We say that the Expected
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Root Assumption holds for a group H if there exists no expected PPT algorithm
that on input a random element h ∈R H and e ≥ 2 outputs an eth root of h
with non-negligible probability. In contrast to the standard Root Assumption,
we here also require that no expected PPT algorithm has a noticeable success
probability. This requirement naturally arises from the fact that the definition of
PoK only restricts the expected running time of the knowledge extractor, cf. §2.3.

4.1 Lower Bounds for Power Homomorphisms

We first consider the Σφ-protocol for power homomorphisms of the form φP (·) :
H → H : w #→ we. This is a generalization of the protocol proposed Guil-
lou/Quisquater [4]. We generalize the result from Shoup [26] from exponents of
the form e = 2t to arbitrary values of e.

In the following we use the following notation. For a set S and r ∈ Z, we define
Div(S, r) to be all multiples of r within S, i.e., Div(S, r) := {s : s ∈ S, r|s}.

Theorem 9 (Bounds for Power Homomorphisms). Let poly(·) be an ar-
bitrary but fixed polynomial. Then for every power homomorphism φP (·) : H →
H : w #→ we with e ≥ 2, the knowledge error of the Σφ-protocol for φP (·) is
lower bounded by

max
2≤r≤e,r|e

# Div(C, r)
#C − 1

poly(‖x‖) ,

if the Expected Root Assumption is satisfied for H and gcd(e, ordH) = 1.

Note here that, if H is an RSA group, i.e., H = Z∗
n for a composite modulus n

of unknown factorization, the condition gcd(e, ordH) = 1 is always satisfied.
We stress that, if the challenge set C is an integer interval, the theorem implies

a lower bound which is equal to the smallest knowledge error that is currently
known to be achievable:

Corollary 10. Let the conditions of Theorem 9 be satisfied, and let the challenge
set be an integer interval (i.e., C = {a, . . . , b} for some a, b ∈ Z). Let d denote
the smallest divisor of e. Then knowledge error of the Σφ-protocol is bounded
from below by

1
d
− 1

poly(‖x‖) .

Theorem 9 becomes meaningless if all elements of C are co-prime (e.g., if all
elements of C are primes), as it then implies a lower bound of 0. Though, the
result is still relevant when seen in connection with Theorem 6. Namely, while
the latter states that any hypothetical knowledge extractor has to use encoding
specific properties of the homomorphism φP (·), the former further restricts the
situations where the generic result could potentially be violated in the plain
model. In summary, the existence of an extractor underrunning the limitation
of 1/d seems unlikely.
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4.2 Lower Bounds for Exponentiation Homomorphisms

For exponentiation homomorphisms φE(·) : Z → H : w #→ hw with hidden order
co-domain H, the Σφ-protocol is only known to be a PoK with knowledge error
1/2. In this section we show that (if existing at all) any knowledge error achieving
a smaller knowledge error in this case would require fundamentally new insights
to the Σφ-protocol.

Although being used for numerous different homomorphisms, essentially only
one knowledge extractor is known for the Σφ-protocol. This standard knowl-
edge extractor works as described next. In a first phase, it is given rewindable
black-box access to the prover, and extracts a pseudo preimage (u, v), i.e., a
pair satisfying v �= 0 and xv = φE(u), cf. §3.1. Then, in a second phase in
which the extractor does not have access to the prover any more, it computes
a preimage of x from this pseudo preimage. We call knowledge extractors work-
ing this way pseudo preimage based. We show that no such knowledge extractor
can underrun a knowledge error of 1/2 for the Σφ-protocol and exponentiation
homomorphisms with hidden order co-domain.

Let us introduce some notation: for a set S of integers, we write Diff(S) for
the set of all possible absolute values of differences between different elements
of S, i.e., Diff(S) := {|s1 − s2| : s1 �= s2 ∈ S}. We further say that an integer d
and a set S are co-prime, if gcd(d, s) = 1 for all s ∈ S.

Theorem 11 (Bounds for Exponentiation Homomorphisms). Let poly(·)
be an arbitrary but fixed polynomial. Then for every exponentiation homomor-
phisms φE(·) : Z → H′ : w #→ hw, with h ∈ H′, the knowledge error of the
Σφ-protocol for φE(·) is lower bounded by

1
2
− 1

poly(‖x‖) ,

against pseudo preimage based knowledge extractors, if the following conditions
are satisfied. The co-domain H′ is a large subgroup of H (i.e., #H′/#H is not
negligible), the Expected Root Assumption is satisfied for H, and ordH′ and
Diff(C) are co-prime.

We remark that this result can straightforwardly be generalized to homomor-
phisms of the form φM (·) : Gr → H : (w1, . . . , wr) #→ hw1

1 . . .hwr
r .

In practice the conditions of this theorem are most often satisfied. For instance
consider the case where H = Z∗

n for a safe RSA modulus n, i.e., n = (2p + 1) ·
(2q+1), where p, q, (2p+1), and (2q+1) are primes. Then H′ is usually given by
the set of quadratic residues modulo n, and we have #H′/#H = 1/4. Further,
ordH′ = p · q, and hence any challenge set C only containing elements smaller
than p, q will satisfy the condition of Diff(C) and ordH′ being co-prime.

Although this result only considers pseudo preimage based knowledge extrac-
tors, it is still relevant for the following reason. Together with the results in the
generic group model in §3, Theorem 11 implies that a knowledge extractor for
exponentiation homomorphisms with hidden order co-domain must neither be
generic nor pseudo preimage based. Thus, if possible at all, substantially new
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insights were required to underrun the restriction of 1/2 in this case. Accord-
ing to current knowledge, we doubt the existence of such an extractor. We thus
believe that for reaching a small knowledge error in the case of exponentiation
homomorphisms with hidden order co-domain, either running the Σφ-protocol
repeatedly or employing an FO-based protocol cannot be avoided.

5 Conclusion

We have introduced the class of generic Σ-protocols, and have shown that in
the generic group model a knowledge error of 1/2n (where n is the minimum of
the number of challenges and responses sent in the protocol) is inherent to any
of these protocols for homomorphisms with hidden order co-domain. We further
generalized this result to special homomorphisms as well, covering essentially
all homomorphisms being used in cryptography. Especially, those underlying
various crypto systems fall into this class [45,46,47,48,49]. We then confirmed
our results for the Σφ-protocol and certain homomorphisms in the plain model
as well.

Besides pointing out these limitations, our results also give insights in how
these restrictions could be overcome. Namely, any Σ-protocol overcoming these
bounds must either be substantially different from the Σφ-protocol (i.e., it must
not be a generic Σ-protocol), or it must have a non-generic knowledge extractor.

The former seems to be hard to achieve without using auxiliary constructions
resulting from a common reference string as done in [5,20,21], because the class of
generic Σ-protocols does not leave much design options for other Σ-protocols to
look like. Yet, the latter also is unlikely, because of our results in the plain model.
Thus, although being riddled with various limitations from a theoretical point
of view, FO-based protocols [5,19,20,21,22,23] using common reference strings
seem to be inevitable for many real systems.
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Abstract. We revisit the composability of different forms of zero-
knowledge proofs when the honest prover strategy is restricted to be
polynomial time (given an appropriate auxiliary input). Our results are:

1. When restricted to efficient provers, the original Goldwasser–Micali–
Rackoff (GMR) definition of zero knowledge (STOC ‘85), here called
plain zero knowledge, is closed under a constant number of sequen-
tial compositions (on the same input). This contrasts with the case
of unbounded provers, where Goldreich and Krawczyk (ICALP ‘90,
SICOMP ‘96) exhibited a protocol that is zero knowledge under the
GMR definition, but for which the sequential composition of 2 copies
is not zero knowledge.

2. If we relax the GMR definition to only require that the simulation
is indistinguishable from the verifier’s view by uniform polynomial-
time distinguishers, with no auxiliary input beyond the statement
being proven, then again zero knowledge is not closed under sequen-
tial composition of 2 copies.

3. We show that auxiliary-input zero knowledge with efficient provers
is not closed under parallel composition of 2 copies under the as-
sumption that there is a secure key agreement protocol (in which it
is easy to recognize valid transcripts). Feige and Shamir (STOC ‘90)
gave similar results under the seemingly incomparable assumptions
that (a) the discrete logarithm problem is hard, or (b) UP �⊆ BPP
and one-way functions exist.

1 Introduction

Composition has been one of the most active subjects of research on zero-
knowledge proofs. The goal is to understand whether the zero-knowledge
property is preserved when a zero-knowledge proof is repeated many times. The
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answers vary depending on the variant of zero knowledge in consideration and
the form of composition (e.g. sequential, parallel, or concurrent). The study of
composition was first aimed at reducing the soundness error of basic construc-
tions of zero-knowledge proofs (via sequential or parallel composition), but was
later also motivated by considering networked environments in which an adver-
sary might be able to open several instances of a protocol (even concurrently).

Soon after Goldwasser, Micali, and Rackoff introduced the concept of zero-
knowledge proofs [20], it was realized that composability is a subtle issue. In
particular, this motivated a strengthening of the GMR definition, known as
auxiliary-input zero knowledge [21,19,9], which was shown to be closed under se-
quential composition [19]. The need for this stronger definition was subsequently
justified by a result of Goldreich and Krawczyk [16], who showed that the origi-
nal GMR definition is not closed under sequential composition. Specifically, they
exhibited a protocol that is plain zero knowledge when executed once, but fails
to be zero knowledge when executed twice sequentially.

The starting point for our work is the realization that the Goldreich–Krawczyk
protocol is not an entirely satisfactory counterexample, because the prover strat-
egy is inefficient (i.e. super-polynomial time). Most cryptographic applications
of zero-knowledge proofs require a prover strategy that can be implemented effi-
ciently given an appropriate auxiliary input (e.g. NP witness). Prover efficiency
can intuitively have an impact on the composability of zero-knowledge proofs, be-
cause an adversarial verifier may be able to use the extra computational power
of one prover copy to “break” the zero-knowledge property of another copy.
Indeed, known positive results on the parallel and concurrent composability of
witness-indistinguishable proofs (a weaker variant of zero-knowledge proofs) rely
on prover efficiency [9].

Thus, we revisit the sequential composability of plain zero knowledge, but re-
stricted to efficient provers. Our first result is positive, and shows that such proofs
are closed under any constant number of sequential compositions (in contrast to
the Goldreich–Krawczyk result with unbounded provers). The case of a supercon-
stant or polynomial number of compositions remains an interesting open question.
This positive result refers to the standard formulation of plain zero knowledge,
where the simulation and the verifier’s view are required to be indistinguishable
by nonuniform polynomial-time distinguishers (or distinguishers that are given
the prover’s auxiliary input in addition to the statement being proven).

We then consider the case where the distinguishers are uniform probabilistic
polynomial-time algorithms, whose only additional input is the statement being
proven. In this case, we obtain a negative result analogous to the one of Goldreich
and Krawczyk, showing that zero knowledge is not closed under sequential com-
position of even 2 copies (assuming that NP �⊆ BPP). Informally, these two re-
sults say that plain zero knowledge is closed under a constant number of sequential
compositions if and only if the distinguishers are at least a powerful as the prover.

We also examine the parallel composability of auxiliary-input zero knowledge.
Here, too, Goldreich and Krawczyk [16] gave a negative result that utilizes an
inefficient prover. Feige and Shamir [9], however, gave a negative result with an
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efficient prover, under the assumption that the discrete logarithm is hard, or
more generally under the assumptions that UP �⊆ BPP and one-way functions
exist. We are interested in whether the complexity assumption used by Feige
and Shamir can be weakened. To this end, we provide a negative result under a
seemingly incomparable assumption, namely that there exists a key agreement
protocol (in which it is easy to recognize valid transcripts).

2 Definitions and Preliminaries

2.1 Interactive Proofs

Given two interactive Turing machines – a prover P and a verifier V – we consider
two types of interactive protocols: proofs of language membership (interactive
proofs) and proofs of knowledge. In each case, both parties receive a common
input x, and P is trying to convince V that x ∈ L for some language L. We will
allow P to have an extra “auxiliary input” or “witness” y. We use the notation
(P, V ) to denote an interactive protocol and the notation 〈P (x, y), V (x)〉 to
denote the verifier V ’s view of that protocol with inputs (x, y) and x respectively.
The choices for y will be given by a relation of the following kind:

Definition 2.1 (Poly-balanced Relation). A binary relation R is poly-
balanced if there exists a polynomial p such that for all (x, y) ∈ R, |y| ≤ p(|x|).
The language generated by such a relation is denoted LR = {x : (x, y) ∈ R}.

Observe that we don’t require R to be polynomial-time verifiable, so every lan-
guage L is generated by such a relation, for example the relation R = {(x, y) :
|y| = |x| and x ∈ L}.

Definition 2.2 (Interactive Proof). We say that an interactive protocol
(P, V ) is an interactive proof system for a language L if there exists a poly-
balanced relation R such that L = LR and the following properties hold:

– (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input
x.

– (Completeness): If (x, y) ∈ R then the verifier V (x) accepts with probability
1 after interacting with the prover P (x, y) on common input x and prover
auxiliary input y.

– (Soundness): There exists a function s(n) ≤ 1−1/poly(n) (called the sound-
ness error) for which it holds that for all x /∈ L and for all prover strategies
P ∗, the verifier V (x) accepts with probability at most s(|x|) after interacting
with P ∗ on common input x and prover auxiliary input y.

Definition 2.3 (Proof of Knowledge). Let R be a poly-balanced relation.
Given an interactive protocol (P, V ), we let p(x, y, r) be the probability that V
accepts on common input x when y is P ’s auxiliary input and r is the random
input generated by P ’s random coin flips. Let Px,y,r be the function such that
Px,y,r(m) is the message sent by P after receiving messages m. An interactive
protocol (P (x, y), V (x)) is an interactive proof of knowledge for the relation R
if the following three properties hold:
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– (Verifier Efficiency): The verifier V runs in time at most poly(|x|) on input
x.

– (Completeness): If (x, y) ∈ R, then V accepts after interacting with P on
common input x.

– (Extraction): There exists a function s(n) ≤ 1−1/poly(n) (called the sound-
ness error), a polynomial q, and a probabilistic oracle machine K such that
for every x, y, r ∈ {0, 1}∗, K satisfies the following condition: if p(x, y, r) >
s(|x|) then on input x and with access to oracle Px,y,r machine K out-
puts w such that (x,w) ∈ R within an expected number of steps bounded
by q(|x|)/(p(x, y, r) − s(|x|)).

Observe that extraction implies soundness, so a proof of knowledge for R is also
an interactive proof for LR.

Although the above definitions require a polynomial-time verifier, neither
places any restriction on the computational power of the prover P . In keep-
ing with the standard model of “realistic” computation, we sometimes prefer to
limit the computational resources of both parties to polynomial time. Specifi-
cally, we add the additional requirement that there exists a polynomial p such
that the prover P (x, y) runs in time p(|x|, |y|) where x is the common input
and y is the prover’s auxiliary input. We refer to such protocols as efficient or
efficient-prover proofs.

2.2 Zero Knowledge

In keeping with the literature, we define zero knowledge in terms of the indis-
tinguishability of the output distributions.

Definition 2.4 (Uniform/Nonuniform Indistinguishability). Two en-
sembles of probability distributions {Π1(x)}x∈S and {Π2(x)}x∈S are uniformly
(resp. nonuniformly) indistinguishable if for every uniform (resp. nonuniform)
probabilistic polynomial-time algorithm D, there exists a negligible function μ
such that for every x ∈ S,∣∣∣Pr[D(1|x|, Π1(x)) = 1] − Pr[D(1|x|, Π2(x)) = 1]

∣∣∣ ≤ μ(|x|),

where the probability is taken over the samples of Π1(x) and Π2(x) and the coin
tosses of D.

Often, definitions of computational indistinguishability give the distinguisher
the index x (not just its length). This makes no difference for nonuniform distin-
guishers – since they can have x hardwired in – but it does matter for uniform
distinguishers. Indeed, we will see that zero-knowledge proofs demonstrate dif-
ferent properties under composition depending on how much information the
distinguisher is given about the inputs.

Also, uniform indistinguishability is usually not defined with a universal quan-
tifier over x ∈ S, but instead with respect to all polynomial-time samplable dis-
tributions on x ∈ S (e.g. [2][12]). We use the above definition for simplicity, but
our results also extend to the usual definition.
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For the purposes of this paper, we consider two different definitions of zero
knowledge. The first, which has primarily been of interest for historical reasons,
is the one originally introduced by Goldwasser, Micali, and Rackoff [20]:

Definition 2.5 (Plain Zero Knowledge). An interactive proof system (P, V )
for a language L = LR is plain zero knowledge (with respect to nonuniform
distinguishers) if for all probabilistic polynomial-time machines V ∗, there ex-
ists a probabilistic polynomial-time algorithm MV ∗ that on input x produces
an output probability distribution {MV ∗(x)} such that {MV ∗(x)}(x,y)∈R and
{〈P (x, y), V ∗(x)〉}(x,y)∈R are nonuniformly indistinguishable.

As is standard, the above definition refers to nonuniform distinguishers (which
can have x, y and any additional information depending on x, y hardwired in
as nonuniform advice). However, it is also natural to consider uniform distin-
guishers. In this setting, it is important to differentiate between the case where
the distinguisher is only given the single verifier input x and the case where the
distinguisher is given both x and the prover’s auxiliary input y.

Definition 2.6. An interactive proof system (P, V ) for a language L = LR is
plain zero knowledge with respect to V -uniform distinguishers if for all prob-
abilistic polynomial-time machines V ∗, there exists a probabilistic polynomial-
time algorithm MV ∗ that on input x produces an output probability distribution
{MV ∗(x)} such that {(x,MV ∗(x))}(x,y)∈R and {(x, 〈P (x, y), V ∗(x)〉)}(x,y)∈R are
uniformly indistinguishable.

Definition 2.7. An interactive proof system (P, V ) for a language L = LR is
plain zero knowledge with respect to P -uniform distinguishers if for all prob-
abilistic polynomial-time machines V ∗, there exists a probabilistic polynomial-
time algorithm MV ∗ that on input x produces an output probability distribution
{MV ∗(x)} such that {(x, y,MV ∗(x))}(x,y)∈R and {(x, y, 〈P (x, y), V ∗(x)〉)}(x,y)∈R

are uniformly indistinguishable.

The next definition of zero knowledge that we will consider is the more standard
definition which incorporates an auxiliary input for the verifier.

Definition 2.8 (Auxiliary-Input Zero Knowledge). An interactive proof
system (P, V ) for a language L is auxiliary-input zero knowledge if for every
probabilistic polynomial-time machine V ∗ and every polynomial p there exists a
probabilistic polynomial-time machine MV ∗ such that the probability ensembles
{〈P (x, y), V ∗(x, z)〉}(x,y)∈R,z∈{0,1}p(|x|) and {MV ∗(x, z)}(x,y)∈R,z∈{0,1}p(|x|) are
nonuniformly indistinguishable.

Observe that although this last definition is given only in terms of nonuniform
indistinguishability, this is actually equivalent to requiring only uniform indis-
tinguishability; any nonuniform advice used by the distinguisher can instead be
incorporated into the verifier’s auxiliary input z.
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2.3 Composition

In this section, we explicitly state the definitions of sequential and parallel com-
position that will be used throughout this paper. These definitions can be applied
to any of the definitions of zero knowledge given in the previous section.

Definition 2.9. Given an interactive proof system (P, V ) and a polynomial
t(n), we consider the t(n)-fold sequential composition of this system to be the
interactive system consisting of t(n) copies of the proof executed in sequence.
The ith copy of the protocol is initialized after the (i − 1)th copy has concluded.
All copies of the protocol are initialized with the same inputs.

We can extend our notion of zero knowledge to this setting in the natural way.

Definition 2.10. An interactive proof (P, V ) for the language L is sequential
zero knowledge if for all polynomials t(n), the t(n)-fold sequential composition
of (P, V ) is a zero knowledge proof for L.

Note that although the verifiers in the different proof copies may be distinct
entities and may in fact be honest, this definition implicitly assumes the worst
case in which a single adversary controls all verifier copies. That is, it considers
a sequential adversary (verifier) to be an interactive Turing machine V ∗ that is
allowed to interact with t(n) independent copies of P (all on common input x)
in sequence.

Our definition of parallel composition is analogous to the above definition:

Definition 2.11. Given an interactive proof system (P, V ) and a polynomial
t(n), we consider the t(n)-fold parallel composition of this system to be the
interactive system consisting of t(n) copies of the proof executed in parallel. Each
message in the ith round of a copy of the protocol must be sent before any message
from the (i + 1)th round. All copies of the protocol are initialized with the same
inputs.

We can again extend our notion of zero knowledge to this setting:

Definition 2.12. An interactive proof (P, V ) for the language L is parallel zero
knowledge if for all polynomials t(n) the t(n)-fold parallel composition of (P, V )
is a zero-knowledge proof for L.

Thus a parallel adversary (verifier) is an interactive Turing machine V ∗ that is
allowed to interact with t(n) independent copies of P (all on common input x) in
parallel. That is the ith message in each copy is sent before the (i+1)th message
of any copy of the protocol.

3 Sequential Zero Knowledge

3.1 Previous Results

In the area of sequential zero knowledge, there are two major results. The first
is a negative result concerning the composition of plain zero-knowledge proofs.
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Theorem 3.1 (Goldreich and Krawczyk [16]). There exists a plain zero-
knowledge proof (with respect to nonuniform distinguishers) whose 2-fold sequen-
tial composition is not plain zero-knowledge.

The second significant result to emerge from the area concerns the composition
of auxiliary-input zero-knowledge proofs. In this case it is possible to show that
the zero-knowledge property is retained under sequential composition.

Theorem 3.2 (Goldreich and Oren [19]). If (P, V ) is auxiliary-input zero
knowledge, then (P, V ) is auxiliary-input sequential zero knowledge.

These two results provide a context for our new results on sequential
composition.

3.2 New Results

While Theorem 3.1 demonstrates that the original definition of zero knowledge
is not closed under sequential composition, it relies on the fact that the prover
can be computationally unbounded. In this section, we address the question:
what happens when you compose efficient-prover plain zero-knowledge proofs?
We obtain two results that partially characterize this behavior.

First we show that the Goldreich and Krawczyk result (Theorem 3.1) cannot
be extended to efficient-prover plain zero-knowledge proofs. Indeed, we show
that such proofs are closed under a constant number of compositions.

Theorem 3.3. If (P, V ) is an efficient-prover plain zero-knowledge proof system
with respect to nonuniform (resp., P -uniform) distinguishers then for every con-
stant k, the k-fold sequential composition of (P, V ) is also plain zero knowledge
w.r.t. nonuniform (resp., P -uniform) distinguishers.

We leave the case of a super-constant number of compositions as an intriguing
open problem.

Next we consider the case of V -uniform distinguishers, and we show that
such protocols are not closed under 2-fold sequential composition with efficient
provers.

Theorem 3.4. If NP � BPP then there exists an efficient-prover plain zero-
knowledge proof with respect to V -uniform distinguishers whose 2-fold composi-
tion is not plain zero knowledge with respect to V -uniform distinguishers.

Informally, Theorems 3.3 and 3.4 say that plain zero knowledge is closed under
a constant number of sequential compositions if and only if the distinguishers
are at least as powerful as P .

Proof of Theorem3.3. We now prove that efficient-prover plain zero-knowledge
is closed under O(1)-fold sequential composition.
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Proof. Let (Pk, Vk) denote the sequential composition of k copies of (P, V ). We
prove by induction on k that (Pk, Vk) is plain zero knowledge with respect to
nonuniform (resp., P -uniform) distinguishers.

(P1, V1) is zero knowledge by assumption.
Assume for induction that (Pk−1, Vk−1) is zero knowledge, and consider the

interactive protocol (Pk, Vk). Let V ∗
k be some sequential verifier strategy for

interacting with Pk, and let V ∗
k−1 denote the sequential verifier that emulates

V ∗
k ’s interactions with the first k − 1 copies of the the proof system (P, V ) and

then halts. Since (Pk−1, Vk−1) is zero knowledge, there exists a simulator Mk−1
that successfully simulates V ∗

k−1.
Define H∗

k to be the “hybrid” verifier strategy (for interaction with P ) that
consists of running the simulator Mk−1 to obtain a simulated view v of the
first k− 1 interactions, and then emulates V ∗

k (starting from the simulated view
v) in the kth interaction. Since (P, V ) is plain zero knowledge, there exists a
polynomial-time simulator Mk for this verifier strategy.

We now show that Mk is also a valid simulator for (Pk, V
∗
k ). Since by

induction (Pk−1, Vk−1) is plain zero knowledge versus nonuniform (resp., P -
uniform) distinguishers, the ensembles Π1(x, y) = (x, y, 〈Pk−1(x, y), V ∗

k−1(x)〉)
and Π2(x, y) = (x, y,Mk−1(x)) are nonuniformly (resp., uniformly) indistin-
guishable when (x, y) ∈ R. Consider the function f(x, y, v) = (x, y, v′) that
emulates V ∗

k starting from view v in one more interaction with P (y) to obtain
view v′. Since f is polynomial-time computable, we have that f(Π1(x, y)) and
f(Π2(x, y)) are also nonuniformly (resp., uniformly) indistinguishable. Observe
that f(Π1(x, y)) = (x, y, 〈Pk(x, y), V ∗

k (x)〉) and f(Π2(x, y)) = (x, y,Mk(x))
therefore Mk is a valid simulator for (Pk, V

∗
k ) and hence (Pk, Vk) is plain zero

knowledge with respect to nonuniform (resp., P -uniform) distinguishers. ��

In this proof, we implicitly rely on the fact that the number of copies k is a
constant. It is possible that the running time of the simulation is Θ(ng(k)) for
some growing function g, and hence super-polynomial for nonconstant k.

Note that this result doesn’t conflict with either Theorem 3.1 (in which the
prover was allowed to use exponential time and was therefore able to distinguish
between a simulated interaction and a real interaction) or Theorem 3.4 (in which
the prover is polynomial time but the distributions are only indistinguishable to
a V -uniform distinguisher, so the prover was still able to distinguish between
a simulated interaction and a real interaction). Instead, it demonstrates that
when neither party has more computational resources than the distinguisher, it
is possible to prove a sequential closure result for plain zero knowledge, albeit
restricted to a constant number of compositions.

Proof of Theorem 3.4. We now prove Theorem 3.4, showing that plain
zero knowledge with respect to V -uniform distinguishers is not closed under
sequential composition. Our proof of Theorem 3.4 is a variant of the Goldreich-
Krawczyk [16] proof of Theorem 3.1, so we be begin by reviewing their
construction.
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Overview of the Goldreich-Krawczyk Construction [16]. In the proof of Theo-
rem 3.1, the key to constructing a zero-knowledge protocol that breaks under
sequential composition lies in taking advantage of the difference in computa-
tional power between the unbounded prover and the polynomial-time verifier.
The proof requires the notion of an evasive pseudorandom ensemble. This is
simply a collection of sets Si ⊆ {0, 1}p(i) such that each set is pseudorandom
and no polynomial-time algorithm can generate an element of Si with non-
negligible probability. The existence of such ensembles was proven by Goldreich
and Krawczyk in [17]. Using this, Goldreich and Krawczyk [16] construct a proto-
col such that in the first sequential copy, the verifier learns some element s ∈ S|x|.
In the second iteration, the verifier uses this s (whose membership in S|x| can
be confirmed by the prover) to extract information from P . A polynomial-time
prover would be unable to generate or verify s ∈ S|x|, therefore the result inher-
ently relies on the super-polynomial time allotted to the prover.

Overview of our Construction. As in the Goldreich-Krawczyk construction, we
take advantage of the difference in computational power between the two parties.
However, since both are required to be polynomial-time machines, the only ad-
vantage that the prover has over the verifier is in the amount of nonuniform input
each machine receives. The prover is allowed poly(|x|) bits of auxiliary input y
whereas the verifier receives only the |x| bits from the common input x. In order
to take advantage of this difference, we define efficient bounded-nonuniform eva-
sive pseudorandom ensembles. Using the newly defined ensembles, we construct
an analogous protocol; in the first iteration, the verifier learns some element
of an efficient bounded-nonuniform evasive pseudorandom ensemble, and in the
second it uses this information to extract otherwise unobtainable information
from P .

Definition 3.5. Let q be a polynomial and let S = {S1, S2, . . . } be a sequence
of (non-empty) sets such that each Sn ⊆ {0, 1}n. We say that S is a efficient
q(n)-nonuniform evasive pseudorandom ensemble if the following three properties
hold:

(1) For all probabilistic polynomial-time machines A with at most q(n) bits
of nonuniformity, Sn is indistinguishable from the uniform distribution on
strings of length n. That is, there exists a negligible function ε such that for
all sufficiently large n,∣∣∣∣ Pr

x∈Sn

[A(x) = 1] − Pr
x∈Un

[A(x) = 1]
∣∣∣∣ ≤ ε(n).

(2) For all probabilistic polynomial-time machines B with at most q(n) bits of
nonuniformity, it is infeasible for B to generate any element of Sn except
with negligible probability. That is, there exists a negligible function ε such
that for all sufficiently large n,

Pr
r∈{0,1}q(n)

[B(x, r) ∈ Sn] ≤ ε(n).
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(3) There exists a polynomial p(n) and a sequence of strings {πn}n∈N of length
|πn| = p(n) such that:
(a) There exists a probabilistic polynomial-time machine D such that for all

n ∈ N and x ∈ {0, 1}n, D(πn, x) = 1 if x ∈ Sn and D(πn, x) = 0 else.
(b) There exists an expected probabilistic polynomial-time machine E such

that for all n E(πn) is a uniformly random element of Sn.
That is there exist efficient algorithms with polynomial-length advice for
checking membership in the ensemble and for choosing an element uniformly
at random.

This definition is similar in spirit to the notion of an evasive pseudorandom en-
semble used by Goldreich and Krawczyk in the proof of Theorem 3.1. However,
we add the additional requirement that a polynomial-time machine with an ap-
propriate advice string πn can identify and generate elements of the ensemble.
In order for this to be possible, we relax the pseudorandomness and evasiveness
requirements to only hold with respect to distinguishers with bounded nonuni-
formity rather than with respect to nonuniform distinguishers.

The introduction of this definition begs the question of whether or not such
ensembles exist. Fortunately it turns out that they do.

Theorem 3.6. There exists an efficient n/4-nonuniform evasive pseudorandom
ensemble.

The proof of this theorem appears in the full version [6]. It shows that if we
select a hash function hn : {0, 1}n → {0, 1}5n/16 from an appropriate pairwise
independent family then with high probability Sn = h−1

n (05n/16) is an n/4-
nonuniform evasive pseudorandom set. The pseudorandomness and evasiveness
conditions (items (1) and (2)) are obtained by using pairwise independence and
taking a union bound over all algorithms with n/4 bits of nonuniformity. The
efficiency condition (item (3)) is obtained by taking hn to be from a standard
family (e.g., hn(x) = the first 5n/16 bits of a · x + b) and taking πn to be the
descriptor of hn (e.g., (a, b)).

We use this result to demonstrate that efficient-prover plain zero-knowledge
proofs with respect to V -uniform distinguishers are not closed under sequen-
tial composition. The construction is analogous to the one by Goldreich and
Krawczyk, and can be found in the full version of the paper [6].

4 Parallel Zero Knowledge

4.1 Previous Results

There are two classic results that provide context for our new result concerning
the parallel composition of efficient-prover zero-knowledge proof systems. In both
cases, the result applies to auxiliary-input (as well as plain) zero knowledge, and
both results are negative.

The first result establishes the existence of non-parallelizable zero-knowledge
proofs independent of any complexity assumptions.
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Theorem 4.1 (Goldreich and Krawczyk [16]). There exists an auxiliary-
input zero knowledge proof whose 2-fold parallel composition is not auxiliary-
input zero knowledge (or even plain zero knowledge with respect to nonuniform
distinguishers).

While this result demonstrates that zero knowledge is not closed under parallel
composition in general, the proof (like that of Theorem 3.1) inherently relies
on the unbounded computational power of the provers. Without the additional
computational resources necessary to generate a string and test membership in
an evasive pseudorandom ensemble, the prover would be unable to execute the
defined protocol.

The second such result constructs an efficient-prover non-parallelizable zero-
knowledge proof based on a zero-knowledge proof of knowledge of the discrete-
logarithm relation.

Theorem 4.2 (Feige and Shamir [9]). If the discrete logarithm assumption
holds then there exists an efficient-prover auxiliary-input zero-knowledge proof
whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even
plain zero knowledge with respect to V -uniform distinguishers).

This proof relies on the very specific assumption that the discrete logarithm prob-
lem is intractable. However as Feige and Shamir observed [9], the only properties
of this problem which are actually necessary are the fact that discrete logarithms
are unique and that they have a zero-knowledge proof of knowledge. It is there-
fore natural to consider generalizing the result to proofs of language membership
for any language L ∈ NP with exactly one witness for each element x ∈ L. The
class of such languages is known as UP . Moreover, if one-way functions exist,
then every problem in NP (and hence in UP) has a zero-knowledge proof of
knowledge [18]. Thus:

Theorem 4.3 (Feige and Shamir [9]). If UP � BPP and one-way functions
exist then there exists an efficient-prover auxiliary-input zero-knowledge proof
whose 2-fold parallel composition is not auxiliary-input zero knowledge (or even
plain zero knowledge with respect to V -uniform distinguishers).

4.2 New Results

In thiswork,webroaden the complexityassumptions underwhichwehave efficient-
prover non-parallelizable zero-knowledge proofs under more general complexity
assumptions. Specifically, we show that such protocols canbe constructed from any
key agreement protocol (satisfying an additional technical condition). Following
the standard notion of key agreement, we introduce the following definition.

Definition 4.4. A key agreement protocol is an efficient protocol between two
parties P1, P2 with the following four properties:

– Input: Both parties have common input 1� which is a security parameter
written in unary.
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– Output: The outputs of both parties are k-bit strings (for some k = poly(�)).
– Correctness: The parties have the same output with probability 1 (when they

follow the protocol). This common output is called the key.
– Secrecy: No probabilistic polynomial time Turing machine E given 1� and

the transcript of the protocol (messages between P1, P2) can distinguish with
non-negligible advantage the key from a uniformly distributed k-bit string.
That is, {(1�, transcript(P1, P2), output(P1, P2))}1�:�∈N is nonuniformly in-
distinguishable from {(1�, transcript(P1, P2), Uk)}1�:�∈N.

For technical reasons, we impose an additional technical condition.

Definition 4.5. Let (P1, P2) be a key agreement protocol. We say that a pair
(i, r) ∈ {1, 2} × {0, 1}∗ is consistent with a transcript t of messages if the mes-
sages from Pi in t are what Pi would have sent had its coin tosses been r and had
it received the prior messages specified by t. We say that t is valid if there exist
r1, r2 such that t is consistent with both (1, r1) and (2, r2); that is, t occurs with
nonzero probability when the honest parties P1 and P2 interact. We say that
(P1, P2) has verifiable transcripts if there is a polynomial-time algorithm that
can decide whether a transcript t is valid given t and any pair (i, r) consistent
with t.

We note that many existing key agreement protocols have verifiable transcripts,
including the Diffie-Hellman key exchange and the protocols constructed from
any public-key encryption scheme with verifiable public keys.

Our main result on non-parallelizable zero knowledge proofs follows:

Theorem 4.6. If key agreement protocols with verifiable transcripts exist then
there exists an efficient-prover auxiliary-input zero-knowledge proof whose 2-fold
parallel composition is not auxiliary-input zero knowledge (or even plain zero
knowledge with respect to V -uniform distinguishers).

The existence of secure key agreement protocols with verifiable transcripts seems
incomparable to the assumption that UP � BPP which was used in Theorem 4.3.

Proof of Theorem 4.6

Proof. By assumption, key agreement protocols with verifiable transcripts exist.
We consider an occurrence of a key agreement protocol to consist of the coin
tosses of the two parties (r1, r2 respectively) together with the transcript t of
messages exchanged between the parties during the protocol.

Define a language L = {t : ∃(i, ri) consistent with t}. L = LR for the relation
R = {(t, (i, ri)) : (i, ri) is consistent with t}; we do not claim or require that L /∈
BPP. Observe that L ∈ NP, so there exists an efficient-prover zero-knowledge
proof of knowledge (ZKPOK) of a pair (i, ri) that is consistent with t with
error s(n) ≤ 2−m where m is the maximum length of a witness (i, ri)[18]. If
necessary, the required error can be achieved by sequential composition of any
initial ZKPOK.

We can use this proof as a subprotocol for constructing the following interac-
tive proof for the language L. V begins by sending the message c = 0 to P . If
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c = 0, then P uses the ZKPOK to demonstrate that he knows (i, ri) consistent
with the transcript t. If c �= 0, V demonstrates knowledge of (j, rj) using the
same ZKPOK. If the proof is successful and the transcript is valid (which can
be checked by P by our assumption of verifiable transcripts), then P shows in
zero knowledge that he too knows a witness (i, ri) and then sends the common
key k to V .

The protocol is summarized below.

Step P (t, (i, ri)) V (t)
1 c = 0

← c
2 if c = 0: ZKPOK of (i, ri) →

consistent with t
← if c �= 0 : ZKPOK of (j, rj) consistent with t

3 if c �= 0: ZKPOK of (i, ri) →
consistent with t

4 if c �= 0, V ’s ZKPOK
is successful, and t is valid:

send k →

Fig. 1. A efficient-prover non-parallelizable zero-knowledge proof for L

The described protocol is a zero-knowledge proof for the language L.

Efficient-Prover Interactive Proof. The fact that this protocol is an interac-
tive proof follows directly from the fact that the subprotocol is (by assumption)
a proof of knowledge. Completeness and soundness follow from completeness
and extraction properties of the ZKPOK that P conducts in Step 2 or Step
3 respectively. Prover and verifier efficiency likewise follow from the respective
properties of the ZKPOK subprotocol.

Zero Knowledge. Given any verifier strategy V ∗ we can construct a simulator
MV ∗ . MV ∗ begins by randomly choosing and fixing the coin tosses of the verifier
V ∗, and then runs the verifier V ∗ in order to obtain its first message c. If c = 0,
MV ∗ then emulates the simulator for the ZKPOK to simulate Step 2. It then
does nothing for Step 3. If c �= 0, then MV ∗ simulates the ZKPOK in Step 2 by
following the correct “verifier” protocol and running V ∗ in order to simulate the
“prover” half of the protocol. MV ∗ then simulates Step 3 using the simulator
for the subprotocol. The expected time of all of these steps is polynomial; this
follows directly from the running time of the simulators provided by the various
subprotocols.

Finally, the simulator proceeds to Step 4. If c = 0 then there is no message
sent in Step 4. If c �= 0 and the ZKPOK in Step 2 was unsuccessful, then
there is again no message sent in Step 4. If c �= 0 and the proof in Step 2 was
successful, then MV ∗ runs the following two extraction techniques in parallel,
halting when one succeeds: First, it attempts to extract some (j, rj) consistent
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with t by employing the extractor K using V ∗’s strategy from Step 2 as an
“oracle.” Second it attempts to learn some witness (j, rj) by trying each of the
2m possible witnesses in sequence. If MV ∗ has successfully found a witness, it
uses (j, rj) together with the transcript t to determine whether t is valid and
then to determine the common key k by emulating the actions of one party and
responding to the “messages” from the other party as described in the transcript
t. This key k is then used to simulate Step 4.

The indistinguishability and expected polynomial running time of the sim-
ulation follow from those of the ZKPOK simulator, except for the simulation
of Step 4 in the case c �= 0. To analyze this, let p be the probability that V ∗

succeeds in the ZKPOK in Step 2. If p > 2 · 2−m, then there exists such an
extractor K that extracts a witness (j, rj) in expected time q(|x|)/(p − s(|x|).
Since this occurs with probability p, the expected time for this case is bounded
by (p · q(|x|))/(p− s(|x|)) ≤ (p · q(|x|))/(p−2−m) ≤ (p · q(|x|))/(p/2) ≤ 2q(|x|) =
poly(|x|). If p ≤ 2 · 2m then the brute force technique will find a witness in
expected time p · 2m ≤ 2 = poly(|x|). Checking t’s validity takes polynomial
time by assumption, and determining k takes time Θ(|x|), therefore the entire
simulation runs in expected polynomial time.

The indistinguishability of the final step of this simulation relies on the fact
that the transcript t is valid. Therefore, by the correctness of the key agreement
protocol, the same key will be computed using the extracted witness (j, rj) as
with the prover’s witness (i, ri) even if they are not the same, so the simulation
is polynomially indistinguishable from V ∗’s view of the interactive protocol.

Parallel Execution. Consider now two executions, (P̃1, Ṽ ) and (P̃2, Ṽ ) in par-
allel. A cheating verifier V ∗ can always extract some witness w ∈ {(1, r1), (2, r2)}
from P̃1 and P̃2 using the following strategy: in Step 1, V ∗ sends c = 0 to P̃1 and
c = 1 to P̃2. Now V ∗ has to execute the protocol (P, V ) twice: once as a verifier
talking to the prover P̃1, and once as a prover talking to the verifier P̃2. This he
does by serving as an intermediary between P̃1 and P̃2, sending P̃1’s messages
to P̃2, and P̃2’s messages to P̃1. Now P̃2 willfully sends k to Ṽ (which, by the
secrecy property of the key agreement protocol, Ṽ is incapable of computing on
his own). ��

5 Conclusions and Open Problems

We view our results as pointing out the significance of prover efficiency, as well as
the power of the distinguishers, in the composability of zero-knowledge proofs.
Indeed, we have shown that with prover efficiency, the original GMR definition
enjoys a greater level of composability than without. Nevertheless, the now-
standard notion of auxiliary input zero knowledge still seems to be the appropri-
ate one for most purposes. In particular, we still do not know whether plain zero
knowledge is closed under a super-constant number of compositions. We also
have not considered the case that different statements are being proven in each
of the copies, much less (sequential) composition with arbitrary protocols. For
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these, it seems likely that auxiliary input zero knowledge, or something similar,
is necessary.

One way in which our negative result on sequential composition (of plain
zero knowledge with respect to V -uniform distinguishers, Theorem 3.4) can be
improved is to provide an example where the prover’s auxiliary inputs are de-
fined by a relation that can be decided in polynomial time (in contrast to our
construction, where the prover’s auxiliary input contains the advice string π4n,
which may be hard to recognize).

For the parallel composition of auxiliary-input zero knowledge with efficient
provers, it remains open to determine whether a negative result can be proven
under a more general assumption such as the existence of one-way functions. The
methods of Feige and Shamir [9] (Theorem 4.3) can be generalized to replace the
assumption UP �⊆ BPP with the assumption that there is a a problem in NP
for which the witnesses have a “uniquely determined feature” [22] that is hard to
compute. That is, there is a poly-balanced, poly-time relation R, an efficiently
computable f , and a function g such that (a) if (x,w) ∈ R, then f(x,w) = g(x),
and (b) there is no probabilistic polynomial-time algorithm that computes g(x)
correctly for all x ∈ LR. (The assumption that UP �⊆ BPP corresponds to the
case that f(x,w) = w. In general, we allow the witnesses for x to have a “unique
part,” namely g(x), which is still hard to compute.) Our result (Theorem 4.6)
can be viewed as constructing such an R, f , and g from a key agreement protocol.

Our construction complements that of Haitner, Rosen, and Shaltiel [22] —
they consider the parallel repetition of natural zero-knowledge proofs (such as 3-
Coloring [18] or Hamiltonicity [7]), and argue that “certain black-box techniques”
cannot prove that a feature g(x) will remain hard to compute by the verifier (on
average). In contrast, we consider the parallel repetition of a contrived zero-
knowledge proof and show that a cheating verifier can always learn a certain
hard-to-compute feature g(x).
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Abstract. Goldreich-Krawczyk (Siam J of Comp’96) showed that only
languages in BPP have constant-round public-coin black-box zero-know-
ledge protocols. We extend their lower bound to “fully black-box” private-
coin protocols based on one-way functions. More precisely, we show that
only languages in BPPSam—where Sam is a “collision-finding” oracle in
analogy with Simon (Eurocrypt’98) and Haitner et. al (FOCS’07)—can
have constant-round fully black-box zero-knowledge proofs; the same
holds for constant-round fully black-box zero-knowledge arguments with
sublinear verifier communication complexity. We also establish near-linear
lower bounds on the round complexity of fully black-box concurrent zero-
knowledge proofs (or arguments with sublinear verifier communication)
for languages outside BPPSam.

The technique used to establish these results is a transformation from
private-coin protocols into Sam-relativized public-coin protocols; for the
case of fully black-box protocols based on one-way functions, this trans-
formation preserves zero knowledge, round complexity and communica-
tion complexity.

1 Introduction
Roughly speaking, interactive proofs, introduced by Goldwasser, Micali and
Rackoff [9] and Babai and Moran [1]), are protocols that allow one party P—
called the Prover (or Merlin)—to convince a computationally-bounded party
V —called the Verifier (or Arthur)—of the validity of some statement x ∈ L.
While, the notion of interactive proofs introduced by Goldwasser, Micali and
Rackoff considers arbitrary probability polynomial time verifiers, the notion in-
troduced by Babai and Moran, called Arthur-Merlin games considers verifiers
that only send truly random messages; such proof systems are also called pub-
lic coin. Soon after their introduction, a surprisingly result by Goldwasser and
Sipser [11] showed that the two notions in fact are equivalent in their expressive
power: Any private coin protocol 〈P, V 〉 for a language L can be transformed
into a public-coin 〈P̂ , V̂ 〉 for L with the same round-complexity. Their result
has played an important role in subsequent complexity-theoretic work. However,
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from a cryptographic perspective, the transformation is somewhat unsatisfactory
as it does not preserve the efficiency of the prover—and can thus not be applied
to “computationally-sound” protocols (a.k.a. arguments)—or properties such as
zero-knowledge—the principal notion introduced in [9]. By a result of Vadhan
[26], any transformation that uses the original private-coin protocol 〈P, V 〉 as a
black-box, in fact, must require the prover to run in super-polynomial time.

In this work, we provide different and “robust” transformations from private-
coin protocols to public-coin protocols. Our transformations preserve zero-know-
ledge, computational and communication complexity, but instead require the
prover and the verifier to have oracle access to a certain “collision-finding” ora-
cle [25,13], denoted Sam. Our transformation is black-box and thus by Vadhan’s
results we are required to use a super-polynomial time oracle. Nevertheless, the
Sam oracle is not “too” powerful; in particular, as shown by Haitner, Hoch, Rein-
gold and Segev [13] it cannot be used to invert one-way functions. Therefore, if
the security properties (namely, zero-knowledge and computational soundness)
of the private-coin protocol are based on the hardness of inverting one-way func-
tions (or even trapdoor permutations), we can use our transformation to extended
lower bounds for public-coin protocols to private-coin protocols.

More precisely, Goldreich and Krawczyk [8] showed that only languages in
BPP can have constant-round public-coin black-box zero-knowledge protocols.
Recently, Pass, Tseng and Wikström [21] extended this results to include all
(even super-constant round) black-box zero-knowledge protocols that remain
secure under concurrent (or even parallel) composition (a.k.a concurrent zero-
knowledge protocols). Combining our transformation with these results, we ob-
tain new lower bounds for fully black-box constructions of general, potentially
private-coin, black-box zero-knowledge protocols based on the existence of one-
way permutations.

Theorem 1 (Lower Bounds for Fully Black-Box Zero Knowledge—
Informally stated). Let 〈P, V 〉 be a fully black-box construction of a zero-
knowledge proof (or argument) for the language L from one-way permutations.
Then, L ∈ BPPSam if any of the following hold:

1. 〈P, V 〉 is an O(1)-round proof.
2. 〈P, V 〉 is an O(1)-round argument with o(n) verifier communication com-

plexity.
3. 〈P, V 〉 is an o( n

log n )-round concurrent zero-knowledge proof.
4. 〈P, V 〉 is an o( n

log n )-round concurrent zero-knowledge argument with o(n)
verifier communication complexity.

We remark that all the above type of protocols can be achieved for languages
in NP, assuming the existence of collision-resistant hash-functions [7,17,20]. As-
suming only one-way permutations, however, the best zero-knowledge proofs
require a super-constant number of rounds [10], and O(n/ logn)-rounds for con-
current zero-knowledge [22]. As such, assuming NP �⊆ BPPSam, Theorem 1 is
tight.
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In Section 3, we discuss the complexity of BPPSam. We observe that the
class SZK, of languages having statistical zero-knowledge proofs, is contained in
BPPSam. This should not be surprising as Ong and Vadhan provide unconditional
constructions of constant-round black-box zero-knowledge proofs for languages
in SZK [19]. By extending the result of [13] we also observe that BPPSam does
not “generically” decide all NP languages, and seems thus like an interesting and
natural complexity class in its own right.

We finally mention that the techniques used in our transformation are inter-
esting in their own right. First, it directly follows that that there is no fully
black-box construction of a one-way function, that compresses its input by more
than a constant factor, from one-way permutations. Next, as pointed out to us
by Haitner, it would seem that by our techniques, the black-box lower bounds
from [14] can be extended also to honest-but-curious protocols; see the proof of
Lemma 2 for more details.

2 Preliminaries and Definitions

We assume familiarity with the basic notions of an Interactive Turing Machine
(ITM for brevity) and a protocol (in essence a pair of ITMs). We denote by
PPT the class of probabilistic polynomial time Turing machines and n.u.PPT ,
the class of non-uniform PPT machines. We denote by M• an oracle machine;
we sometimes drop • when it is clear from the context. As usual, if M• is an
oracle machine, MO denotes the joint execution of M with oracle access to O.
Let O be a random variable over functions from {0, 1}∗ → {0, 1}∗. Then, MO

denotes the execution of MO, where O is sampled according to O. Let Πn denote
the set of all permutations on {0, 1}n and Π denote the set of all permutations
{0, 1}∗ → {0, 1}∗ (obtained by choosing a πn from Πn for every n).

2.1 Fully Black-Box Constructions

A construction of a cryptographic primitive p from a primitive q is said to be fully
black-box if both the implementation and the proof of correctness are black-box.
(See [24] for more details on black-box constructions and reductions.) Here, we
focus on fully black-box constructions from one-way permutations. For simplic-
ity, we show our results only for one-way permutations, but analogous to [13],
our results extend to trapdoor permutations as well. We proceed to define fully
black-box constructions of arguments and zero-knowledge.

Definition 1 (Fully black-box interactive arguments). Let 〈P •, V •〉 be
an interactive argument for a language L ⊆ {0, 1}∗. We say that 〈P •, V •〉 is a
fully black-box construction from one-way permutations, if there exists a PPT
machine A•, and a polynomial q(·) such that for every permutation π = {πn}∞n=1,
malicious prover P ∗•, sequence {xn}∞n=1 where xn ∈ L̄∩ {0, 1}n and polynomial
p(·), if Pr[〈P π, V π〉(xn) = 1] ≥ 1

p(n) for infinitely many n, then

Pr[Aπ,P∗π(xn)(1n, y) = π−1
n (y)] >

1
q((p(n))
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for infinitely many n, where the probability is taken uniformly over y ∈ {0, 1}n

(and over all the internal coin tosses of A).

Definition 2 (Fully black-box computational zero-knowledge). Let
〈P •, V •〉 be an interactive proof (or argument) system for a language L. We say
that 〈P •, V •〉 is a fully black-box construction of a computational zero-knowledge
proof (or argument) from one-way permutations, if there exists an expected PPT
simulator S•, a PPT machine A•, and a polynomial q(·) such that for every
permutation π = {πn}∞n=1, a distinguisher D, malicious verifier V ∗•, sequence
{(xn, zn)}∞n=1 where xn ∈ L∩{0, 1}n, zn ∈ {0, 1}∗ and polynomial p(·), if for in-
finitely many n, D distinguishes

{
Sπ,V ∗π

r (xn,zn)(xn)
}

and
{
〈P π, V ∗π

r (zn)〉(xn)
}

with probability at least 1
p(n) where 〈P π, V ∗π

r (z)〉(x) denotes the output of V ∗π

in an interaction between P π and V ∗π
r (z) on common input x, then

Pr[Aπ,V ∗π
r (xn,zn)(1n, y) = π−1

n (y)] >
1

q(p((n))

for infinitely many values of n, where the probability is taken uniformly over
y ∈ {0, 1}n (and over all the internal coin tosses of A).

Remark 1. Note that in Definition 2, the simulator S unconditionally runs in
expected polynomial time. One can consider a weaker definition where A is
required to invert π when the expected running time of S exceeds polynomial
time. For simplicity (and due to the fact that all known black-box zero-knowledge
proofs satisfy this property), we consider the stronger definition, but our results
extend also to the weaker definition.

A fully black-box construction of a computational zero-knowledge arguments
refers to a construction that is a fully black-box construction in the argument
sense and the zero-knowledge sense.

3 The Collision Finding Class

Our transformation makes use of a “collision finding” oracle. Such an oracle was
introduced by Simon [25]. In this work, we require a slightly stronger oracle that
finds “collisions” in interactive protocols. Such an oracle—referred to as Sam—
was recently introduced by Haitner, Hoch, Reingold and Segev [13]. The oracle
comes with a permutation π and a parameter d; the depth parameter d denotes
the number of rounds in the protocol on which it finds collisions. We denote the
oracle by Samπ

d . Below, we recall the Sam oracle from [13].

3.1 The Oracle Samπ
d

Informally, Samπ
d is an oracle, that takes as input a probabilistic interactive

turing machine (ITM) M• and a partial transcript trans of an interaction with
M of d or fewer rounds, and
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– If trans was an output of a previous query, Sam samples a random tape τ for
Mπ among all random tapes that are consistent with trans, and generates
Mπ’s next message m using τ and outputs trans :: m.

– Otherwise, outputs ⊥.

Description of Samπ
d(n). Let π = {πn}∞n=1 be a permutation and M• be a

probabilistic oracle ITM that runs a d-round protocol and has access to π. Let
transi = (a1, b1, . . . , ai, bi) be a partial transcript of the messages exchange with
Mπ in an execution; Define Rtransi(Mπ) to be the set of all random tapes τ for
which Mπ

τ (a1, b1, . . . , bj−1) = aj for all j < i; we say that such a τ is consistent
w.r.t transi. Without loss of generality, we assume that Mπ sends the first
message (i.e. outputs a message on initiation). An input query for Samπ

d(n) is of
the form Q = (Mπ, transi, r) where transi−1 = (a1, b1, . . . , bi−1) and r ∈ {0, 1}∗.
It outputs (τ ′, transi−1 :: ai) such that τ ′ ∈ Rtransj (Mπ) and Mπ

τ ′(transi) = ai,
with the following restrictions:

1. If i > 1, then (a1, b1, . . . , ai−1) was the result of a previous query of the form
(Mπ, (a1, b1, . . . , bi−2), r′) for some r′ ∈ {0, 1}∗.

2. τ ′ is uniformly distributed in Rtransi−1(Mπ) over the randomness of Samπ
d(n),

independent of all other queries.
3. Samπ

d(n) answers queries only up to a depth d(n), i.e. i ≤ d(n).

Otherwise, it outputs ⊥. We remark that the role of r in the query is to obtain
new and independent samples for each r and allow a verifier to obtain the same
sample query by querying on the same r.

Our above description of the Samπ
d(n)-oracle is a stateful instantiation of the

oracle defined in [13]. Just as in [13], for our results, we need the oracle to
be stateless; [13] specify how to modify the oracle to achieve this (using “sig-
natures”); we omit the details. It was shown by Haitner et. al that random
permutations are hard to invert for polynomial time machines that query Sam
oracle upto depth o( n

log n ).

Theorem 2 ([13]). For every PPT machine A•, there exists a negligible func-

tion ν(·), such that, for all n, Pr[A
π,Samπ

o( n
log n

)(y) = π−1
n (y)] ≤ ν(n) where the

probability is taken uniformly over the randomness of Samπ
o( n

log n ), random per-
mutation π = {πn}∞n=1 and y ∈ {0, 1}n.

Looking ahead, in Section 4.2, we show that this result is optimal w.r.t the depth:
Samπ

n
log n

can be used to invert π.

3.2 The Complexity Class CFd

We introduce a new complexity classes CFd, which we call the “collision-finding
class”, that we use as part of our characterization of zero-knowledge protocols.

Definition 3. A language L ∈ CFd = BPPSamd , if there exists a PPT machine
M• such that:
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Completeness: If x ∈ L, Mπ,Samπ
d outputs 1 with probability at least 2

3 .
Soundness: If x �∈ L, Mπ,Samπ

d outputs 1 with probability at most 1
3 .

where both the probabilities are taken uniformly over the random coins of M , the
randomness of Sam and a random permutation π.

The complexity class CFd seems to be interesting classes that lies between P and
NP. Below we state some properties about this class. The formal proofs of these
statements are postponed to the full version.

1. For every d, CFd is closed under complement, (follows from the definition).
2. SZK ⊆ CF1.
3. CFo( n

log n ) does not “generically” solve NP.
4. CF l(n)

log n

can invert any one-way function with output length l(n) on length n

inputs (Theorem 3 in Section 4.2)

We leave a fuller exploration of the collision-finding class for future work. Note
that, by property (4), if NP �⊆ CFpoly(n), we have a “natural” complexity class
that can inverts all one-way functions but not decide NP.

We mention that a somewhat weaker (and perhaps even more natural) defi-
nition of the collision-finding class—let us denote it CF’d—is defined identically,
but without giving M , or Sam, access to a random permutation π. That is, in our
notation CF’d = BPPSam⊥

d , where ⊥ is the all zero oracle. Clearly CF’d ⊆ CFd,
but all the properties above continue to hold also for CF’.

A very recent work by Haitner, Mahmoody-Ghidary and Xiao [16] takes a
step towards showing that CF’O(1) does not contain NP; they show that if the
deciding machine M only makes a constant number of adaptive queries to Sam,
then the language it decides is in coAM.

4 From Private Coins to Public Coins

In this section, we provide our transformation from private-coin to public-coin
protocols. We provide two transformations: The first transformation—or weak
duality—converts any private coin zero-knowledge proof into a public-coin zero-
knowledge proof in the Sam-hybrid model, where the prover, verifier and sim-
ulator have oracle access to Sam. The second transformation—or strong dual-
ity—converts any private coin zero-knowledge argument with sublinear verifier
communication complexity into a public coin zero-knowledge argument in the
Sam-hybrid model. While the first transformation is oracle efficient (the max-
imum depth it queries Sam is “small”), the second transformation is computa-
tionally efficient (the soundness reduction is polynomial-time) and thus can be
applied to arguments.

Our transformations consider zero-knowledge proofs and arguments in an or-
acle world. Let O be a set of oracles O : {0, 1}∗ → {0, 1}∗.

Definition 4 (O-relativized Interactive Proofs). A pair of interactive ma-
chines 〈P •, V •〉 is called an O-relativized interactive proof system for a language
L if machine V • is polynomial-time and the following two conditions hold :
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– Completeness: There is a negligible function ν(·), such that for every n,
x ∈ L ∩ {0, 1}n,

Pr
[
〈PO, V O〉(x) = 1

]
≥ 1 − ν(n)

where the probability is taken over all the internal coin tosses of P , V and
uniformly chosen O ∈ O.

– Soundness: For every machine B•, there exists a negligible function ν(·),
such that, for every x ∈ L ∩ {0, 1}n,

Pr
[
〈BO, V O〉(x) = 1

]
≤ ν(n)

where the probability is taken over all the internal coin tosses of V and
uniformly chosen O ∈ O.

If the soundness holds only against n.u.PPT B, then 〈P, V 〉 is called an O-
relativized interactive argument system.

Definition 5 (O-relativized black-box ZK). Let 〈P •, V •〉 be anO-relativized
interactive proof (argument) system for the language L ∈ NP with the witness
relation RL. We say that 〈P •, V ∗•〉 is O-relativized computational black-box ZK,
if there exists a probabilistic expected polynomial time oracle machine S• such
that for every PPT machine V ∗•, and PPT distinguisher D•, there exists a
negligible function ν(·), such that for all n, x ∈ L ∩ {0, 1}n, z ∈ {0, 1}∗,∣∣∣Pr[DO(SO,V O(x)(x)) = 1] − Pr[DO(〈PO, V ∗O(z)〉(x)) = 1]

∣∣∣ < ν(n)

4.1 Weak Duality Lemma

Lemma 1 (Weak Duality). Let 〈P •, V •〉 be a d-round fully black-box zero-
knowledge proof for a language L from one-way permutations with verifier com-
munication complexity c(n) and prover communication complexity p(n). Then,
there exists a d-round public-coin protocol 〈P̂ Sam•

d , V̂ Sam•
d〉 with the verifier com-

munication complexity O(dc(n)) and prover communication complexity p(n) that
is (π, Samπ

d )-relativized black-box zero-knowledge proof.

Proof. V̂ Samπ
d is a d-round public-coin verifier that sends random coins in each

round. On a high-level, P̂ Samπ
d is a machine that internally incorporates the code

of P π and emulates an interaction with P π by supplying verifier messages accord-
ing to the 〈P π , V π〉 protocol. For every verifier round in the internal emulation,
P̂ Samπ

d first receives random coins externally from V̂ Samπ
d . Using that, it samples

a random message q for V π that is “consistent” with the interaction with P π;
this is made possible using Samπ

d . Next, it q feeds internally to P π. Upon re-
ceiving a message a from P π, P̂ Samπ

d forwards a to V̂ Samπ
d and proceeds to the

next round. Finally, V̂ Samπ
d reconstructs the interaction emulated by P π (again

made possible using Samπ
d ) and outputs the verdict of V π on that transcript. We

remark that since V π is a verifier for a d-round protocol, the maximum depth
of a Samπ

d query made by P̂ Samπ
d and V̂ Samπ

d is d.
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Protocol 〈 bP , bV 〉

Let 〈P π, V π〉 be a d-round protocol with oracle access to the a permutations π. Each
communication round consists of a message sent from the verifier to the prover followed
by a message sent from the prover to the verifier. Without loss of generality, we assume
that the verifier sends the first message and the prover sends the last message. Also,
the verifier outputs its view at the end of the protocol.

1. Common Input: Statement x ∈ L, security parameter n.
2. Private Input: The statement x, for P π and auxiliary input z ∈ {0, 1}∗ for V π.
3. bP Samπ

d internally incorporates the code for P π. Set trans0 = ⊥.
4. for i = 1 to d

(a) bV Samπ
d uniformly chooses si ∈ {0, 1}12(li+log d) where li is the length of V π’s

ith message.
(b) bV → bP : si

(c) bP queries Samπ
d on input (V •, transi−1, si) and obtains as response (transi−1 ::

qi, ri). bP runs P π(transi−1 :: qi) and obtains its response ai. Set transi =
transi−1 :: qi :: ai.

(d) bP → bV : ai.
5. bV Samπ

d computes transi for all i, by querying Samπ
d on (V •, transi−1, si).

bV Samπ
d chooses s ∈ {0, 1}n, queries Samπ

d on (V π, transd, s) and obtains as response
(b, rd+1), (b = 1 means V π accepts). It outputs b.

Fig. 1. Weak Duality Protocol

Informally, the completeness of the protocol follows from the fact that, the in-
ternal emulation carried out by P̂ Samπ

d proceeds exactly as an execution between
P π and the honest verifier V π. The soundness and zero-knowledge of 〈P̂ , V̂ 〉, on
the other hand, holds as the transformation essentially ensures that the messages
from V̂ Samπ

d carry the same amount of “knowledge” as messages from V π. This
is because, in each round, P̂ Samπ

d samples a fresh random tape for V π that is con-
sistent with the partial conversation and obtains V π’s next message by running
V π on that tape. Thus, the only extra knowledge that P̂ possesses in each round
is the random tape sampled and (an unbounded) P π can obtain these samples
too. A formal description of the transformation is provided in Figure 1. We now
proceed to prove correctness.

Claim 1 (Completeness). For all x ∈ L, P̂ Samπ
d convinces V̂ Samπ

d w.p. 1 −
ν(|x|) where the randomness is taken over π, Samπ

d and the internal coin tosses
of P̂ and V̂ , for some negligible function ν(·).

Proof. We show that, for every permutation π, the probability that V̂ Samπ
d

accepts is identical to the probability V π accepts in an interaction with P (where
the probability is over Samπ

d ). The completeness of 〈P̂ , V̂ 〉 then follows from the
completeness of 〈P •, V •〉.

Towards this, fix a permutation π. Consider an intermediate verifier V ′• that
uses Samπ

d and interacts with P π. Informally, this verifier V ′Samπ
d generates
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messages exactly as P̂ Samπ
d does in the internal emulation with P π. More pre-

cisely, for a partial transcript transi−1 at the end of round i−1, V ′Samπ
d samples

a consistent random tape r for V π (using Samπ
d ) and runs V π

r on transi−1 to
generate the next verifier message qi. At the end of the protocol, V ′Samπ

d , samples
a random tape r′ consistent on the entire transcript and outputs V π

r′ ’s verdict on
the transcript. It follows from the construction that the probability that V̂ Samπ

d

accepts is equal to the probability that V ′Samπ
d accepts in an interaction with P π.

In Claim 1 below, we prove that the probability that P π convinces V ′Samπ
d ac-

cepts is equal to the probability that P π convinces V π. Therefore, combining the
two facts, we get that the probability V̂ Samπ

d accepts is equal to the probability
V π accepts.

Sub-Claim 1. For every x, z ∈ {0, 1}∗, π ∈ Π the following distributions are
identical: D1 =

{
〈P π, V π(z)〉(x)

}
and D2 =

{
〈P π , V ′Samπ

d (z)〉(x)
}

where the
distributions are generated by the internal coin tosses of P, V, V ′ and Samπ

d .

Proof. Recall that the only difference between V ′Samπ
d and V π in an interaction

with P π is that V π selects a uniform random tape at the beginning of the
execution and uses that for the entire execution, while V ′Samπ

d selects a (uniformly
chosen) random tape consistent with the partial transcript in each round and
executes V π on that tape. First, we observe that every verifier message in D1 and
D2 are generated by running V π on a particular random tape. For a transcript
trans, let R(trans) denote the set of all random tapes of V π consistent with
trans. We show for D1 and D2, separately, that for every trans, conditioned on
the history being trans, the random tape used to generate the next message is
uniformly distributed in R(trans). This shows that the process for generating
verifier messages in D1 and D2 are identical and that concludes the proof of
the claim. For D2, this holds directly from the definition of Samπ

d . For D1, we
prove this fact by induction on the number of verifier messages. The base case
requires that the random tape is uniformly distributed over all possible tapes;
this clearly holds. Suppose that, conditioned on the transcript transi−1, every
random tape in Rtransi−1 is equally likely. Let m be a possible message for
V π, given the history is transi−1. Since, R(transi−1 :: m) are disjoint sets for
different m, we have that conditioned on the transcript transi−1 :: m, every tape
in R(transi−1 :: m) is equally likely to be chosen. This concludes the induction
step.

Claim 2 (Soundness). Let x ∈ {0, 1}∗. If P̂ ∗Samπ
d convinces V̂ Samπ

d on x with
probability p, then there exists a prover P ∗Samπ

d that convinces V π on input x
with probability at least p

2 . (As usual, the probability are taken over Samπ
d and

the internal coin tosses of V̂ and V .)

Proof. We prove the statement of the claim for every permutation π and over
the randomness of Samπ

d . We construct a machine P ∗Samπ
d that internally incor-

porates P̂ ∗Samπ
d and emulates an interaction with it, while externally interacting
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The algorithm for P ∗Samπ
d

Let bP ∗Samπ
d be the cheating prover for 〈 bP , bV 〉. Denote the length of ith verifier message

in 〈 bP , bV 〉 by Li. Then, Li = 12(li + log d).

1. Internally incorporate bP Samπ
d . Let trans0 = ⊥.

2. for i = 1 to d
(a) Receive qi from V π.
(b) ctr ← 0, found ← false.

(c) while ctr < 2
Li
3 and not(found).

– Choose si uniformly from {0, 1}Li . Let (ri, transi :: q) ←
Samπ

d (V •, transi−1, si). If q = qi, found = true.
– ctr ← ctr + 1

(d) if found = false, abort. Otherwise, compute bP ∗’s next message on transcript
transi−1 :: qi. Let it be ai. Set transi = transi−1 :: qi :: ai.

Fig. 2. Proof of Soundness

with V π. The high-level idea is to make P ∗Samπ
d convince V π whenever P̂ ∗Samπ

d

succeeds in the internal execution. To ensure this, for every private-coin message
qi that P ∗Samπ

d receives externally from V π, it needs to find a corresponding
public-coin message si and feed it to P̂ ∗Samπ

d . Let transi−1 be the transcript of
messages exchanged with V π externally. Then, the message that P ∗Samπ

d needs
to find, is a string si such that Samπ

d on input (V •, transi−1, si) outputs (qi, ri).
We let P ∗Samπ

d sample si until it hits the “right” one; it cuts itself off, if it runs
“too long”. It then feeds it to P̂ ∗Samπ

d internally and obtains a response ai, which
it forwards outside to V π. A formal description is provided in Figure 2.

In Claim 2, we show that P ∗Samπ
d aborts with probability at most 1

2 . In Claim 3,
we show that conditioned on P ∗Samπ

d not aborting, each verifier message fed
internally to P̂ ∗Samπ

d is uniformly distributed and thus identical to distribution
of the messages received by P̂ ∗Samπ

d in a real interaction with V̂ Samπ
d . Combining

the two claims, we have that the probability that P ∗Samπ
d succeeds is at least

1
2 Pr[P̂ ∗Samπ

d succeeds].

Sub-Claim 2. P ∗Samπ
d aborts with probability at most 1

2 (with probability taken
over Samπ

d ).

Proof. We analyze the abort probability by identifying three bad events for each
round and bound their probabilities separately. Then, using an union bound over
the bad events for each round, we conclude that the probability of aborting is
at most 1

2 . Let transi−1 be the partial transcript at the end of i − 1 rounds.
Consider the following events:

1. P ∗Samπ
d picks the same sample si twice: The probability that two strings

in 2
Li
3 trials are the same is at most 2

2Li
3

2Li
≤ 1

24(li+log d) using the birthday
bound.
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2. V π sends an “unlikely” message m: Let pm be the probability that V π

sends m conditioned on transi−1 being the transcript at the end of i − 1
rounds. We say that m is unlikely if pm ≤ 1

22li+2 log d . Using a union bound
over all m we obtain that the probability of an unlikely m being sent is at
most 2li 1

22li+2 log d = 1
2li+2 log d

3. For a “likely” message m, all trials fail: The probability of a “likely”
message m occurring is at least > 1

22(li+log d) . Therefore, the probability that

all 2
Li
3 trials fails is at most

(
1 − 1

22(li+log d)

)2
Li
3

≤ e−22(li+log d)

If the bad events do not occur in round i, then the message m is a “likely”
message and some trial succeeds, which implies that P ∗Samπ

d does not abort in
round i. Using the union bound, we obtain that P ∗Samπ

d aborts with probability
at most 1

d2li
in round i. Using the union bound again over all the d rounds, the

probability that P ∗Samπ
d aborts is at most

∑d
i=1

1
d2li

≤ 1
2L where L is the length

of the shortest message. Thus, P ∗Samπ
d aborts with probability at most 1

2 .

Sub-Claim 3. Conditioned on P ∗Samπ
d not aborting, the probability that P ∗Samπ

d

succeeds in convincing V is identical to the probability that P̂ ∗Samπ
d succeeds in

convincing V̂ Samπ
d .

Proof. Recall that, in every round P ∗Samπ
d samples public-coin messages a fixed

number of times and aborts if none of them correspond to the private-coin mes-
sage received externally from V π . We observe that, the process that decides
whether the random coins sampled by P ∗Samπ

d are the “right” ones depends only
on the randomness of Samπ

d and, in particular, is independent of the actual
public-coin message sampled by P ∗Samπ

d . Therefore, conditioned on P ∗Samπ
d not

aborting, the messages fed internally to P̂ ∗Samπ
d are uniformly distributed. Since,

〈P̂ , V̂ 〉 is a public-coin protocol, we have that the distribution of messages inter-
nally fed to P̂ ∗Samπ

d is identically distributed to the messages generated in a real
interaction with V̂ Samπ

d , and hence the probability that the internal emulation
leads to a successful interaction is identical to the probability that P̂ ∗Samπ

d suc-
ceeds in a real interaction. Recall that the acceptance condition in the internal
emulation is decided by reconstructing a 〈P π, V π〉 transcript, sampling a fresh
random tape consistent with the entire transcript and running V π on that tape
to obtain the verdict. By our construction, the transcript of the internal emula-
tion with P ∗Samπ

d is identical to the transcript between P ∗Samπ
d and the external

V π. However, the random coins of the external V π might not be the same as the
ones sampled internally. Nevertheless, using the same proof as in Sub-Claim 1,
it follows that conditioned on any complete transcript, the probability that the
external verifier V π and the internally emulated V̂ Samπ

d accept are identical.
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Remark 2. Note that in proof of Claim 2 we provide an algorithmic description of
the cheating prover P ∗Samπ

d although we only need to contradict “unconditional
soundness”. This algortihm will be useful in proving the strong duality lemma
(see Lemma 2) where consider also computationally-sound protocols.

Remark 3. The expected running time of P ∗Samπ
d in round i for a partial tran-

script transi−1 of the first i−1 rounds, is bounded by
∑

m pm
1

pm
= 2li where pm

is the conditional probability that V π sent m in round i given transi−1. There-
fore, the total expected running time of P ∗Samπ

d is at most d · 2L = d2L where
L is the length of the longest message that V sends. If either the length of a
message or the number of rounds is super-logarithmic, then the cheating prover
P ∗ does not run in polynomial time. In the strong duality lemma, we show how
to overcome this problem, as long as the verifier communication complexity is
sublinear; this, however, requires querying Sam on larger depths.

Simulation. Let Sπ be the simulator for 〈P π, V π〉. We construct a simulator
ŜSamπ

d for 〈P̂ , V̂ 〉 using Sπ that has oracle access to Samπ
d . Let V̂ ∗Samπ

d be a ma-
licious verifier for 〈P̂ , V̂ 〉. On a high-level, ŜSamπ

d transforms V̂ ∗Samπ
d to a verifier

V ∗Samπ
d for 〈P, V 〉 and simulates V ∗Samπ

d using Sπ. The verifier V ∗Samπ
d with ora-

cle access to V̂ ∗Samπ
d and Samπ

d proceeds as follows. In each round, on receiving
a message from P π, V ∗Samπ

d feeds that message to V̂ ∗Samπ
d . It obtains V̂ ∗Samπ

d ’s
next public-coin message r. V ∗Samπ

d queries Samπ
d using r and generates the next

message of V π (i.e. generates a message following P̂ Samπ
d ’s procedure) and for-

wards that to P π. Finally, V ∗Samπ
d outputs what V̂ ∗Samπ

d outputs. The simulator
for 〈P̂ , V̂ 〉, ŜSamπ

d , internally incorporates Sπ and verifier V ∗Samπ
d , emulates an

execution of Sπ with V ∗Samπ
d and outputs what Sπ outputs.

To show correctness of simulation, we need to show that 〈P̂ , V̂ 〉 is (π, Samπ
d )-

relativized zero-knowledge. Assume for contradiction, that there is a distin-
guisher D• that can distinguish the simulation of V̂ ∗Samπ

d by ŜSamπ
d from the

real interaction for a random (π, Samπ
d ). More precisely, there exists a PPT

distinguisher D•, polynomial p(n), sequence {xn, zn}∞n=1, xn ∈ L ∩ {0, 1}n,
zn ∈ {0, 1}∗ such that for infinitely many n, DSamπ

d distinguishes the out-
put of ŜSamπ

d ,V̂ ∗Samπ
d (xn,zn)(xn, 1n) for a random (π, Samπ

d ) and the output of
V̂ ∗Samπ

d (xn, zn) in a real interaction with probability 1
p(n) (with probability taken

over a random π, Samπ
d ). Using the Borel-Cantelli lemma, it follows that for mea-

sure 1 over permutations π, DSamπ
d distinguishes ŜSamπ

d ,V̂ ∗Samπ
d (xn,yn)(xn, 1n) and

the output of V̂ ∗Samπ
d (xn, yn) in a real interaction with probability 1

n2p(n) for in-
finitely many n (with probability over Samπ

d ). Fix a π = {πn}∞n=1 for which this
happens. It follows by the construction of V ∗Samπ

d that the output of ŜSamπ
d on

V̂ ∗Samπ
d is identically distributed to the output of Sπ on V ∗Samπ

d . We further claim
that the output of V ∗Samπ

d in a real interaction with P π is identically distributed
to the output of V̂ ∗Samπ

d with P̂ Samπ
d (over a random Samπ

d ). The proof of this
identically follows from the proof of Claim 1. Hence, DSamπ

d distinguishes the
output of Sπ with V ∗Samπ

d from the output of V ∗Samπ
d in a real interaction with
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P π with probability 1
p(n) . Recall that, 〈P, V 〉 is a fully black-box zero-knowledge

based on one-way permutations, there exists a PPT machine B•, that with or-
acle access to DSamπ

d and V ∗Samπ
d inverts π (over a random Samπ

d ) for infinitely
many lengths, for measure 1 over permutations π (and hence for a random π).
From Theorem 2, we know that if d ∈ o( n

log n ), then no PPT machine with ora-
cle access to Samπ

d can invert a random one-way permutation π with more than
negligible probability. Therefore, we arrive at a contradiction. This establishes
that 〈P̂ , V̂ 〉 is a (π, Samπ

d )-relativized black-box zero-knowledge proof.

4.2 Strong Duality Lemma

Lemma 2 (Strong Duality). Let 〈P •, V •〉 be a d-round fully black-box zero-
knowledge argument for a language L from one-way permutations with veri-
fier communication complexity c(n) and prover communication complexity p(n).
Then, there exists a d-round public-coin protocol 〈P̂ Sam•

D , V̂ Sam•
D 〉 with the veri-

fier communication complexity O(Dc(n)) (where D = c(n)
log n) and prover commu-

nication complexity p(n) that is (π, Samπ
D)-relativized black-box zero-knowledge

argument.

Proof. We modify the construction and proof from the previous lemma to obtain
this lemma. From Remark 3, we know that the running time of P ∗, is d2L where
L is the length of the longest V -message. In order to use the previous construction
and obtain an efficient P ∗, we need the length of every verifier message to be
logarithmic. Alternatively, if we split every message into segments of length logn
bits and use the random tape sampled by Sam to generate one segment of the
verifier message at a time, this also makes the running time of P ∗ polynomial.
However, now, we need only to ensure the verifier’s communication complexity
is o(n) (as this guarantees that the maximum depth is o( n

log n )). We note that
the idea of splitting messages into segments of logn bits was used in [14] but
their use of this technique is not sufficient for our application. More precisely,
in [14] it is only shown how Sam can be used to generate a new random tape
assuming that the original random tape was also generated using the random
oracle. In our application, we need to be able to find a random tape for the
“external” verifier. (As observed by Haitner in a personal communication, it
would seem that by using our techniques (from Lemma 1) the results of [14]
could be extended to rule-out also constructions that are secure with respect to
only honest-but-curious players.)

We describe the procedure for generating a verifier message using Sam and
the rest of the proof follows identically by plugging in this procedure wherever
V π’s message is required to be generated. Without loss of generality, we assume
that V π’s message in the ith round is a multiple of logn, say k logn. We describe
how to sample the ith round message given transi−1, the partial transcript for
the first i − 1 rounds and a random string si. We first split si into k equal
parts, s1

i , . . . , s
k
i . Using s1

i , we samples a random tape r1 for V π consistent with
transi−1 using Sam. We then run V π

r1
to generate only the first logn bits of
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V π’s message in round i, say q1
i . Next, we sample another random tape r2 using

s2
i , but now r2 is consistent with the extended transcript transi−1 :: q1

i . We
run V π

r2
and obtain the next logn bits, q2

i . In this manner we generate every
logn segment up to qk

i , each time ensuring that it is consistent with all previous
segments. The depth of the maximum Samπ

D query is total number segments
counted over all verifier messages, i.e. D = c(n)

log n where c(n) is the total verifier
communication complexity. Since, c(n) ∈ o(n), the maximum depth of a Sam
query is o( n

log n ).

Completeness, Soundness and Zero-Knowledge. The proof of complete-
ness follows exactly as before. As show for the weak-duality, we prove that if
there exists a cheating prover P̂ ∗ for 〈P̂ , V̂ 〉 that succeeds with probability p,
there is a prover P ∗ with oracle access to Samπ

D succeeds in 〈P, V 〉 with prob-
ability p

2 . The running time of P ∗, computed as before, is c(n)
log n2log n =

(nc(n)
log n

)
which is polynomial since c(n) ∈ o(n). Therefore, there exists a PPT prover
P ∗ with oracle access to Samπ

o( n
log n ) that cheats with probability p

2 . If 〈P̂ , V̂ 〉 is
not a (π, Samπ

D)-relativized argument for a random permutation π, then there
is a sequence {xn}∞n=1, xn ∈ L∩ {0, 1}n, polynomial p such that P ∗ succeeds in
convincing on V on xn with probability 1

p(n) over a random permutation π for
infinitely many n. Applying the Borel-Cantelli lemma, we again have that with
measure 1 over permutations π, P ∗ cheats for infinitely many n. Using the fully
black-box property, we have that for measure 1 over permutations π, there exists
an adversary A that inverts π (and hence, for a random π); this violates Theo-
rem 2 and we arrive at a contradiction. This completes the proof of soundness.
To prove zero-knowledge, we use the same simulator from the weak duality, with
the exception that it treats the verifier messages in logn-bit segments. The rest
of the proof follows as before.

We mention that the proof of the strong duality transformation shows that
Theorem 2 (due to [13]) is optimal.

Theorem 3. Let f• be a function that on inputs of length n has output length

l(n). Then, for any π, there exists an oracle PPT machine A•, such that A
Samπ

l(n)
log n

inverts fπ.

Proof. First, we construct a 1-round protocol 〈P •, V •〉 for the empty language
as follows: On input 1n, V π computes y = fπ(r), where r is its random tape and
sends y to P π. P π sends a string x′ to V π. V π accepts if fπ(x′) = y. Next, we ap-
ply the strong-duality transformation to the protocol 〈P •, V •〉 and obtain 〈P̂ , V̂ 〉.
In 〈P̂ , V̂ 〉, P̂ Samπ

l(n)/ log n on receiving a random string s from V̂ Samπ
l(n)/ log n , queries

Samπ
l(n)/ log n with input s and obtains a random tape r for V π. P̂ Samπ

l(n)/ log n runs
V π

r and obtains fπ(r). V̂ Samπ
l(n)/ log n accepts at the end, if P̂ Samπ

l(n)/ log n can send r′

such that fπ(r′) = fπ(r). Notice that P̂ Samπ
l(n)/ log n knows r from Samπ

l(n)/ log n’s
response, and can just forward r directly to V̂ Samπ

l(n)/ log n . Therefore, there is a
cheating prover for 〈P̂ , V̂ 〉, that succeeds with probability 1. From the proof of
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soundness of the strong duality lemma, we know how to construct a cheating
prover P ∗Samπ

l(n)/ log n that convinces V π with probability at least 1
2 . This means

that P ∗Samπ
l(n)/ log n inverts fπ with probability at least 1

2 . The maximum depth
of a query by P ∗Samπ

l(n)/ log n is l(n)
log n .

We call a function compressing if it on inputs of length n has output length o(n).

Corollary 1. There exists no fully black-box construction of a compressing one-
way function from one-way permutations.

Proof. From Theorem 3, we have an adversary that inverts fπ with oracle
access to Samπ

o( n
log n ). By the fully black-box property, we have an adversary A

with oracle access to Samπ
o( n

log n ) that inverts π. Since this holds for every π, we
arrive at a contradiction to Theorem 2.

5 Black-Box Lower Bounds for Zero Knowledge

All our black-box lower bounds follow by combining the weak or strong duality
lemma with known lower bounds for public-coin protocols.

5.1 Lower Bounds Zero-Knowledge Proofs and Arguments

Goldreich-Krawczyk [8] show that only languages L in BPP have black-box
constant-round public-coin zero-knowledge proofs. We remark that the proof of
GK uses the simulator as a black-box to decide the language L, and relativizes.
We therefore have:

Theorem 4 (Implicit in [8]). Let 〈P •, V •〉 be a O-relativized constant-round
public-coin zero-knowledge proof for a language L with a black-box simulator
S. Then, there exists a PPT machine M•, such that MV O,SO

decides L with
probability 2

3 when the probability is taken over a uniformly chosen O ∈ O.

Combining this theorem with the weak-duality lemma, we obtain the following
corollary.

Corollary 2 (Constant-round Zero-Knowledge Proofs). For any constant
d, only languages L in CFd have d-round fully black-box zero-knowledge proofs
from one-way permutations.

Proof. Let 〈P, V 〉 be fully black-box zero-knowledge proof based on one-way
permutations. Applying the weak duality lemma, we obtain a protocol 〈P̂ , V̂ 〉
that is public-coin protocol where the prover, verifier and the simulator have
access to Samπ

d , that is (π, Samπ
d )-relativized black-box zero-knowledge proof.

Using Theorem 4, we have that L ∈ CFd.

We remark that if NP �⊆ CFO(1), then the corollary is tight; Goldreich, Micali and
Wigderson [10] present a fully black-box construction of an ω(1)-round protocol
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for NP based on one-way functions. On the other hand, Goldreich and Kahan [7],
present a fully black-box O(1)-round zero-knowledge proofs for all of NP using
claw-free permutations.1

Remark 4. A very recent work by Gordon, Wee, Xiao and Yerukhimovich [12]
strengthens Corollary 2 by removing the usage of the random oracle π, and thus
placing the class of languages having O(1)-round fully black-box zero-knowledge
proofs from one-way permutations in CF’O(1) (see Section 3.2). By relying on the
recent work of [16], they obtain as a corollary that only languages in coAM have
constant-round fully black-box zero-knowledge proofs from one-way permuta-
tions where the black-box simulator only makes a “constant number of adaptive
queries” (where adaptive queries are defined in an appropriate way).

Using the strong-duality transformation, we obtain an analogous result for zero-
knowledge arguments as well.

Corollary 3 (Constant-round Zero-Knowledge Arguments). For any
constant d, only languages L in CFo( n

log n ) have d-round fully black-box computa-
tional zero-knowledge argument based on one-way permutations where the total
verifier communication complexity c(n) is sub-linear (i.e. o(n)).

Proof. Applying the strong-duality lemma, there exists a protocol 〈P̂ , V̂ 〉, that
is public-coin protocol where the prover, verifier and the simulator have access
to Samπ

o( n
log n ) that is (π, Samπ

o( n
log n ))-relativized black-box zero-knowledge argu-

ment. Thus, using Theorem 4, we have that L ∈ CFo( n
log n ).

If NP �⊆ CFo( n
log n ), then the corollary is essentially tight. Feige and Shamir [5] and

Pass and Wee [22] present an O(1)-round zero-knowledge arguments based on
one-way functions. While, the former construction relies on one-way functions in
a non black-box way, the latter is a fully black-box construction. Nevertheless,
both the constructions require superlinear verifier communication complexity.
On the other hand, efficient zero-knowledge arguments due to Kilian [17] have
poly-logarithmic communication complexity, but are fully black-box based only
on collision-resistant hash functions.

5.2 Lower Bounds for Concurrent Zero Knowledge

The notion of concurrent zero-knowledge introduced by Dwork, Naor and Sahai
[4], considers the execution of zero-knowledge in a concurrent setting. That is,
a single adversary participates as a verifier in many concurrent executions (see
[23] for a formal definition and discussion). Analogous strong and weak dual-
ity transformation for concurrent zero-knowledge proofs and arguments follow
directly by the proof of Lemma 1 and 2. We now turn to prove our lower bounds.
1 Goldreich-Kahan use claw-free permutations to construct constant-round

statistically-hiding commitments. However, these can be constructed under
the potentially weaker assumption of collision-resistant hash functions [3,15].
Therefore, there also exists constant-round black-box zero-knowledge proofs for all
of NP based on collision-resistant hash functions.
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Recently, Pass, Tseng and Wikström in [21] prove that only languages in BPP
have public-coin black-box concurrent zero-knowledge proofs or arguments. As
the result of Goldreich-Krawczyk [8], this proof uses the simulator as a black-box
to decide the language L, and relativizes. We therefore have:

Theorem 5 (Implicit in [21]). Let 〈P •, V •〉 be a O-relativized public-coin
concurrent zero-knowledge proof (or argument) for a language L with a black-box
simulator S (and negligible soundness error). Then, there exists a PPT machine
M•, such that MV O,SO

decides L with probability 2
3 when the probability is taken

over a uniformly chosen O ∈ O and the internal coin tosses of M .

As corollary of the strong and weak duality transformation for concurrent zero-
knowledge, we obtain the following.

Corollary 4. A language L has a o( n
log n )-round fully black-box concurrent zero-

knowledge proof (or argument with o(n) verifier communication complexity) based
on one-way permutations, then L ∈ CFo( n

log n ).

This result is tight if NP �⊆ CFo( n
log n ); Prabhakaran, Rosen and Sahai [20] pro-

vide a fully black-box constructions of ω(logn)-round concurrent zero-knowledge
proofs, or arguments with polylogarithmic communication complexity, based on
collision-resistant hash functions; Pass and Wee [22] provide an O(n)-round fully
black-box argument based on one-way functions.
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