
Chapter 8
Five Steps in Latent Curve and Latent Change
Score Modeling with Longitudinal Data

John J. McArdle and Kevin J. Grimm

Abstract This paper describes a set of applications of one class of longitudinal
growth analysis - latent curve (LCM) and latent change score (LCS) analysis using
structural equation modeling (SEM) techniques. These techniques are organized in
five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and
unobserved longitudinal data. (2) Characterizing the developmental shape of both
individuals and groups. (3) Examining the predictors of individual and group differ-
ences in developmental shapes. (4) Studying dynamic determinants among variables
over time. (5) Studying group differences in dynamic determinants among variables
over time. To illustrate all steps, we present SEM analyses of a relatively large set
of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of
all five aspects of latent curve modeling is not often used in longitudinal analy-
ses, so we discuss why more efforts to include all five are needed in developmental
research.

8.1 Introduction

Many debates in developmental research conclude with a suggestion that the col-
lection of longitudinal data is a necessary ingredient for the study of developmental
phenomena. Methodological researchers have defined these issues in extensive de-
tail, but most rely on “the explanation of inter-individual differences (or similarities)
in intra-individual change patterns” (e.g., Wohlwill, 1973; Baltes & Nesselroade,
1979). During the last two decades, many methodologists have contributed to the
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knowledge base, and the classic models for “growth curve analysis” seem to have
been revived as an important research technique (e.g., see Rogosa & Willett, 1985;
McArdle & Epstein, 1987; Meredith & Tisak, 1990). The term growth curve anal-
ysis denotes the processes of describing, testing hypotheses, and making scientific
inferences regarding growth and change patterns in a wide range of time-related
phenomena. Of course, these curves are not limited to the phases where the organ-
ism grows, but it can also be used to describe and analyze phases where the organism
declines, accelerates, decelerates, oscillates, or even remains stable.

This paper describes a set of applications of one class of longitudinal growth
models - latent change score (LCS) analysis using structural equation modeling
(SEM) techniques. These techniques can be presented in many ways, but we orga-
nize this information in five sections, as steps of developmental data analysis, based
on a sequential rationale inspired by Baltes & Nesselroade (1979):

Step 1 – Describing the Observed and Unobserved Longitudinal Data – We consider
some useful ways to summarize longitudinal data, including statistical information
from both the complete and incomplete cases.

Step 2 – Characterizing the Developmental Shape of Individuals and Groups – We
try to describe both the group and individual characteristics of development and
demonstrate the general ease and flexibility of the SEM approach.

Step 3 – Examining the Predictors of Individual and Group Differences in Devel-
opmental Shapes – We recognize individual differences in growth may be the result
of combinations of other measured variables. We describe how SEM can be used
in both multilevel and multiple-group forms to provide empirical evidence for hy-
potheses concerning the correlates of individual longitudinal patterns.

Step 4 – Studying Dynamic Determinants among Variables over Time – We show
how the time-dependent nature of the latent variables can be represented in SEM
and used to study lead-lag relations using simple dynamic expressions.

Step 5 – Studying Group Differences in Dynamic Determinants Among Variables
over Time – We show how the multi-group and latent mixture dynamic models can
be fit to examine heterogeneous lead-lag relationships for different groups of indi-
viduals.

As the reader will notice, we first use latent curve modeling (LCM) to begin the
analyses, but we then emphasize the direct use of latent change scores (LCS) for
more clarity in the model alternatives. This clarification may assist the researcher in
considering the alternative change models available. This point is important because
the LCS allows us to rather easily join seemingly different concepts about change
from classical models based on time-series and auto-regression or latent growth
curve analyses.

As an illustration for the five steps, we present SEM analyses of data from the
well-known and publicly available National Longitudinal Survey of Youth (NLSY)
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– Children and Young Adults. In this study, the children of female respondents were
repeatedly measured biennially from 1986 through 2000. The longitudinal data of
the NLSY includes measures of achievement (e.g., Peabody Individual Achieve-
ment Test; PIAT; Dunn & Markwardt, 1970) and behavior problems (e.g., Behavior
Problems Index; BPI; Zill, 1990). These analytic illustrations are used to convey the
main presumptions and techniques as well as the benefits and limitations of these
approaches in developmental research.

Our main goal is to present an overview of the general developmental method-
ology, and to demonstrate the practical and flexible utility of these methods for
developmental research. We do not provide extensive mathematical and statistical
details, but the computer input and output scripts for each step of the SEM anal-
yses are available from our website http://kiptron.usc.edu/as well as
from http://www.econ.upf.edu/˜satorra/longitudinallatent/
readme.html.. Most importantly, the inclusion of all five aspects of latent curve
modeling is often overlooked in longitudinal analyses, so we end by discussing why
all five steps are needed in developmental investigations.

8.2 Step 1: Describing the Observed and Unobserved
Longitudinal Data

The first step in any useful data analysis is an adequate description of the data.
However, the collection and presentation of longitudinal data can be difficult, so the
unique aspects of these data should be emphasized.

8.2.1 The National Longitudinal Survey of Youth – Children and
Young Adults

The data examined here come from children who were measured at least once be-
tween age 8 and 14, so the overall N = 6,790. As previously mentioned, data col-
lection occurred biennially with measurements occurring in every even year from
1986 through 2000. Figure 8.1 is a display of individual growth data for the (a)
PIAT reading comprehension and (b) BPI antisocial behavior measure by age for a
sub-sample of n = 100 randomly selected participants. The y-axis indexes the par-
ticipants’ scores and the x-axis is an index of the participants’ age-at-testing. The
connected lines in this figure are graphic descriptions of the change pattern for Read-
ing Comprehension scores for each individual, so each line is termed a growth curve
or trajectory. The plot allows us to see the overall trends for changes in achievement
and antisocial behavior through childhood and adolescence as well as how the data
are incomplete.
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(A)

(B)

Fig. 8.1 Longitudinal plots of (A) Reading Comprehension from the Peabody Individual Achieve-
ment Test and (B) Antisocial Behavior from the Behavior Problems Index for a random sample of
100 participants.
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8.2.2 Describing the Observed Data

The sample sizes, means, standard deviations, and correlations of these raw mea-
sures from age 8 to 14 are listed in Table 8.1. The means and standard deviations
show a simple pattern from age 8 to 14 with increases in performance coupled with
increases in variation. The correlations over time, the unique statistical information
of longitudinal data, also present a relatively simple pattern of results with most cor-
relations suggesting a relatively high level of the stability of individual differences
(e.g., r > .5). We use SEM to test hypotheses about these longitudinal statistics.

8.2.3 Results from Dealing with Incomplete Information

The summary information presented in Table 8.1 is not limited to only those par-
ticipants with complete data at all ages (no participants have complete data). To
deal with this problem we present a description of the patterns of complete and in-
complete data in Table 8.1c. The incomplete data patterns can be represented as the
proportion of data or coverage for each covariance of these scores – at any time no
more than 42% of the participants have data (age 8 and 9) and in some cases only
1% of the information is available (at ages 13 and 14).

In Table 8.1a and 8.1b we also use brackets to list an “incomplete data” esti-
mate of the sample means, standard deviations, and correlations. These estimates
are based on what is typically termed full information maximum likelihood (FIML;
Little, 1995; McArdle, 1994; Cnaan, Laird, & Slasor, 1997). This approach allows
us to examine the initial summary statistics “as if all persons were measured at all
occasions” and, hopefully, deal with any selection bias in the longitudinal sampling
strategy. These newly estimated statistics are not exactly the same as the pair-wise
estimates, but they are not altered very much, indicating these data meet the min-
imal conditions of “missing at random” (MAR; Little, 1995). Most importantly,
these estimated statistics do not suffer from some common statistical problems of
pair-wise estimates based on different sample sizes, and use all available informa-
tion from every person. As a result, we do not need to select a subset of persons
because they have complete data, nor do we have to make our timing basis based
on a data collection strategy (e.g., 1986, 1988, . . . , 2000). Instead, we choose to
examine age-at-testing (see equation (8.1) below) as opposed to wave-of-testing or
year-of-testing, based on our developmental interest.

Let us be clear at the start that an age-based approach by itself does not guarantee
that all model assumptions are met (e.g., see McArdle et al., 2002; cf., Sliwinski &
Buschke, 1999; Miyazaki & Raudenbush, 2000). In fact, this age-based approach
is not often used in standard developmental research, where it is much more likely
to find time (e.g., the occasion of measurement) as the focal axis of development.
However, in this specific case, the individuals were sampled from an ongoing devel-
opmental process that is likely to have strong age related components, and there was
no common point of intervention except for the natural differences due to grade and
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maturity. The standard MAR assumptions that are needed do require an important
belief on the part of the analyst – that the ways in which data are incomplete are
somehow reflected in the data that are complete. While we think this is a reasonable

Table 8.1 Observed and unobserved summary statistics for the Peabody Individual Achievement
Test Reading Comprehension (Read) and Behavior Problems Index Antisocial Behavior (Anti)
scores from the National Longitudinal Survey of Youth data at eight time points (N = 6970; MLE-
MAR estimates in brackets; Step 1, see Figures 8.1A and 8.1B

(a) Observed and unobserved means and standard deviations over age

Variable N Mean [MLE] SD [MLE] Skewness Kurtosis Min Max
Read – Age 8 2847 31.1 [30.7] 9.8 [ 9.8] .42 -.23 0 70
Read – Age 9 2833 36.7 [36.6] 10.3 [10.4] .03 -.40 0 78
Read – Age 10 2660 41.5 [41.2] 10.6 [10.7] -.09 .36 0 84
Read – Age 11 2566 44.7 [45.0] 11.4 [11.4] -.13 .43 0 84
Read – Age 12 2226 48.1 [48.1] 11.4 [11.4] -.15 .35 0 81
Read – Age 13 2047 50.3 [50.5] 12.1 [12.3] -.19 .42 0 84
Read – Age 14 1734 52.1 [52.4] 12.0 [12.1] -.24 .47 0 84
Anti – Age 8 3046 1.49 [1.53] 1.52 [1.53] .97 .23 0 6
Anti – Age 9 2987 1.52 [1.52] 1.59 [1.59] 1.04 .36 0 6
Anti – Age 10 2722 1.52 [1.51] 1.61 [1.61] .98 .17 0 6
Anti – Age 11 2644 1.54 [1.50] 1.63 [1.63] .95 .02 0 6
Anti – Age 12 2287 1.60 [1.56] 1.62 [1.63] .88 -.11 0 6
Anti – Age 13 2140 1.66 [1.60] 1.67 [1.68] .81 -.35 0 6
Anti – Age 14 1798 1.70 [1.64] 1.72 [1.74] .75 -.54 0 6

(b) Observed and unobserved correlations(each entry includes pairwise rand[MLE-MAR r])
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

1. Read– Age 8 1.00
2. Read– Age 9 .57

[.46]
1.00

3. Read– Age 10 .63
[.64]

.64
[.58]

1.00

4. Read– Age 11 .56
[.57]

.69
[.69]

.67
[.68]

1.00

5. Read– Age 12 .57
[.58]

.56
[.60]

.68
[.70]

.72
[.65]

1.00

6. Read– Age 13 .48
[.51]

.62
[.62]

.60
[.62]

.66
[.67]

.77
[.75]

1.00

7. Read– Age 14 .53
[.54]

.57
[.59]

.62
[.63]

.69
[.69]

.67
[.68]

.63
[.71]

1.00

8. Anti – Age 8 -.19 -.23 -.22 -.21 -.21 -.18 -.22 1.00
[-.20] [-.20] [-.22] [-.24] [-.22] [-.17] [-.24]

9. Anti – Age 9 -.29 -.22 -.05 -.20 -.30 -.15 -.19 .58 1.00
[-.23] [-.21] [-.16] [-.21] [-.23] [-.17] [-.22] [.53]

10.Anti – Age 10 -.19 -.29 -.21 -.11 -.24 -.16 -.21 .59 .59 1.00
[-.17] [-.25] [-.20] [-.19] [-.22] [-.21] [-.21] [.60] [.64]

11.Anti – Age 11 -.15 -.19 -.20 -.21 -.22 -.21 -.24 .52 .64 .57 1.00
[-.22] [-.19] [-.23] [-.22] [-.23] [-.22] [-.28] [.50] [.64] [.57]

12.Anti – Age 12 -.19 -.17 -.20 -.11 -.21 -.35 -.21 .50 .54 .59 .54 1.00
[-.18] [-.13] [-.20] [-.15] [-.20] [-.21] [-.22] [.50] [.54] [.60] [.58]

13.Anti – Age 13 -.27 -.14 -.25 -.17 -.26 -.20 -.10 .45 .54 .49 .58 .48 1.00
[-.29] [-.16] [-.22] [-.19] [-.20] [-.21] [-.20] [.45] [.53] [.52] [.59] [.51]

14.Anti – Age 14 -.17 -.14 -.17 -.24 -.20 -.05 -.22 .45 .38 .53 .61 .60 .57 1.00
[-.19] [-.15] [-.19] [-.23] [-.21] [-.20] [.24] [.46] [.51] [.54] [.60] [.62] [.61]
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Table 8.1 (Continued)
(c) Covariance coverage (proportion of participants with available data at each age and com-
bination of ages)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
1. Read – Age 8 .42
2. Read – Age 9 .02 .42
3. Read – Age 10 .28 .02 .39
4. Read – Age 11 .05 .28 .02 .38
5. Read – Age 12 .22 .04 .25 .02 .33
6. Read – Age 13 .04 .21 .04 .23 .02 .30
7. Read – Age 14 .17 .03 .20 .03 .20 .01 .26
8. Anti – Age 8 .38 .02 .28 .05 .22 .04 .17 .43
9. Anti – Age 9 .02 .38 .02 .27 .04 .20 .03 .02 .42
10. Anti – Age 10 .27 .02 .35 .02 .24 .04 .18 .28 .02 .38
11. Anti – Age 11 .05 .27 .02 .34 .02 .22 .03 .05 .28 .02 .37
12. Anti – Age 12 .21 .04 .24 .02 .29 .01 .19 .22 .04 .24 .02 .32
13. Anti – Age 13 .04 .20 .04 .23 .02 .27 .01 .04 .21 .04 .23 .02 .30
14. Anti – Age 14 .17 .03 .19 .03 .19 .01 .23 .17 .03 .19 .03 .20 .01 .25

set of assumptions, these will never be completely correct, and we try to point out
critical junctures where a failure to meet MAR assumptions may be important.

8.3 Step 2: Characterizing Developmental Shapes for Groups
and Individuals

The second step in a longitudinal data analysis is the attempt to highlight the key fea-
tures of the data in terms of a model. In contemporary behavioral science research,
one common approach to growth curve analysis is to write a trajectory equation for
each group and individual. One such trajectory equation for repeated measurements
of an observed variable, Read, at multiple times (t = 1 to T ) for the same person
(n = 1 to N), written in the mixed-model form of

Read[t]n = g0n +g1n ·B[t]+ e[t]n . (8.1)

This model includes three unobserved or latent scores representing the individual’s
(1) level (g0n), (2) slope (g1n) representing linear change over time and (3) indepen-
dent errors of measurements (e[t]n). To indicate the form of the systematic change,
we use a set of group coefficients or basis weights (e.g., slope loadings) which de-
fine the timing or shape of the trajectory over time (e.g., B[t] = t− 1). It is typical
to estimate the fixed group means for intercept and slopes (µ0, µ1) but also the
implied random variance and covariance terms (σ2

0 , σ2
1 , σ01) describing the distri-

bution of individual deviations (d0n, d1n) around the group means. We also follow
a traditional convention and assume there is a single random error variance within
each time (σ2

e ), and the error terms are assumed to be normally distributed and
uncorrelated with all other components. This final assumption about a single error
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variance mimics the assumptions of most other repeated measures models (e.g.,
Mixed-Effects ANOVA).

One important issue emerges when we recognize that there is nothing actually
pre-defined about the basis of time (B[t]), and this allows us to investigate many
alternative forms of the time axis (e.g., McArdle & Bell, 2000). For example, it may
be more appropriate in this case to study multiple ages (e.g., age = 8 to 14) on the
same person and write

Read[age]n = g0n +g1n ·B[age]+ e[age]n (8.2)

because using age as the basis of timing allows a more interpretable set of trajecto-
ries.

Fig. 8.2 Path diagram of a latent growth curve for Reading Comprehension.

A path diagram of this growth curve is presented in Figure 8.2 and is an exact
translation of the necessary matrix algebra of these models (See Grimm & McAr-
dle, 2005; McArdle, 2005; McArdle & McDonald, 1984). These diagrams can be
conceptually useful devices for understanding the basic modeling concepts. In this
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path diagram the observed variables are drawn as squares, unobserved variables as
circles, the required constant is included as a triangle, and parameters are labeled
such that invariant parameters (e.g., residual variances) have the same label. Model
parameters representing “fixed” or “group” coefficients are drawn as one headed ar-
rows while “random” or “individual” features are drawn as two-headed arrows. In
this case the level and slope are often assumed to be random variables with “fixed”
means (µ0, µ1) but “random” variances (σ2

0 , σ2
1 ) and covariance (σ01). Of course,

this is essentially a model based on means and covariances with MAR assumptions
about the incomplete data.

8.3.1 Basic Linear Growth Models Results

Some initial growth curve modeling results for the NLSY Reading data are pre-
sented in Table 8.2. In these longitudinal models any change score (g1n) is assumed
to be constant within an individual but is not assumed to be the same between indi-
viduals. We do not estimate the unobserved scores but estimate several parameters
that characterize the key features of the unobserved scores.

Table 8.2 Selected results from five latent growth models fitted to NLSY longitudinal data (N =
6970; Step 2).

Parameter 2a: No Growth 2c: Linear 2d: Latent
Fixed Effects
Basis b[8] =0 =0 =0
Basis b[9] =0 =1 .28
Basis b[10] =0 =2 .48
Basis b[11] =0 =3 .66
Basis b[12] =0 =4 .80
Basis b[13] =0 =5 .92
Basis b[14] =0 =6 =1
Level µ0 42.1* 32.6* 30.7*
Slope µ1 — 3.7* 21.7*
Random Effects
Error σ2

e 114.0* 42.7* 39.9*
Level σ2

0 56.2* 61.1* 61.1*
Slope σ2

1 — 1.0* 35.6*
Correlation ρ01 — .24* .15*
Fit Indices
Parameters 3 6 11
Degrees of Freedom 32 29 24
Log Likelihood -66677 -61710 -61416
χ2 10635 699 110
RMSEA 0.22 0.06 0.02

Note: The fit statistics for the time-based linear model (Model 2b) are not presented here because
the data are considered to be different because of their organization.
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The first model labeled 2a is the no-growth model fitted with only three parame-
ters: a level mean (µ0 = 42.1), a level variance (σ2

0 = 56.1), and an error variance (σ2
e

= 114.0). The model yields a likelihood (L2 = -66677) which shows the no-growth
baseline is a poor fit compared to the totally unrestricted or saturated model (χ2 =
10635, df = 32), in which means, variances, and covariances are estimated for all
observed variables. This model is typically used as a baseline against which to judge
the fit of more informative models. The second growth model (2b) uses a fixed set
of basis coefficients that change linearly with the number of occasions represent-
ing the time passed since the participant was enrolled in the study. Therefore, B[t]
= t − 1 where t is the occasion number. Based on the data collection paradigm of
the NLSY, a one-unit change in t represents a two-year change (e.g., measurements
occurred every two-years from 1986 to 2000). This model has three additional pa-
rameters compared to the no-growth model: a slope mean (µ1), variance (σ2

1 ), and
a level-slope covariance (σ01). This model yielded a new likelihood (L2 = -61856),
which was a distinct improvement over the no-growth model (∆ − 2LL = 9644 for
3 additional parameters). The resulting estimates describe a function that begins at
35.2 at the first occasion and increased by 7.3 units every two years. The variance
estimates of the level and slope parameters were significant (σ 2

0 = 76.4.1, σ2
1 = 3.8)

indicating inter-individual differences in reading ability upon entering the study and
in the linear change over time. Additionally, the level-slope correlation was .20 in-
dicating a small positive relationship between children’s reading performance upon
entering the study and their linear rate of change. The error variance was estimated
to be 41.6.

The second linear growth model (2c) was fit uses a fixed set of basis coefficients
or slope loadings that change linearly with age and formed by taking B[age] = (age-
8), or the fixed values of B[age] = [0, 1, 2, 3, 4, 5, 6]). This linear scaling is only one
of many that could be used, but was chosen to permit a practical interpretation of the
slope parameters in terms of a per-year change and centers the level to represent 8
years of age. Therefore, the parameters related to the level reflect parameters associ-
ated with age 8. This linear growth model has three additional parameters compared
to the no-growth model: a slope mean (µ1) and variance (σ2

1 ), and a level-slope co-
variance (σ01). This model yields a new likelihood (L2 = -61710) that represents a
relatively large distance from the unrestricted model (χ2 = 699 on df = 29) but was
an improvement over the no-growth model (2c vs 2a: ∆ χ2 = 9936 on ∆df = 3). The
resulting means describe a function that started relatively low at age 8 (µ0 = 32.6)
but increased by 3.7 units per year between ages 8 and 14 (µ1 = 3.6). The variance
estimates of the level and slope parameters were significant (σ2

0 = 61.1, σ2
1 = 1.0)

indicating inter-individual differences in the linear growth parameters. Additionally,
the level-slope correlation was .24 indicating a small positive relationship between
children’s reading performance at age 8 and their linear rate of change. The error
variance has been reduced (σ2

e = 42.7) compared to the no-growth model, which
also indicates an improvement in fit.

The time-based and age-based models are not nested, which makes directly com-
paring their fit somewhat problematic. But this mimics a traditional problem that
emerges when rescaling any X-variable in a traditional regression – if different
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transformations of X scores are used to predict Y scores the resulting parameters
and fit can change. In the SEM framework the raw data always has the same like-
lihood and degrees of freedom, but different latent variable models based on B[t]
can have different likelihoods and degrees of freedom. One way to compare these
models is based on likelihood comparison fit statistics, such as the AIC or BIC.
In both cases here, the age-based model fit better. More importantly, the age-based
model has important substantive interpretations. In this observational study we are
observing the phenomena of changes in reading scores as they are unfolding. While
the beginning of the study may be of paramount importance for the researchers,
it is not likely that anything happened at this point to consider it important in the
participants’ lives (e.g., unlike a surgical procedure).

8.3.2 Nonlinearity Using Latent Basis Curves

An attractive nonlinear alternative of the linear growth model was proposed by Rao
(1958) and Tucker (1958, 1966) in the form of summations of “latent curves” (see
Meredith & Tisak, 1990). The use of this latent growth curve offers a simple way
to investigate the shape of a growth curve - we allow the basis coefficients (B[age])
to take on a form based on the empirical data. In this approach we estimate the
basis coefficients (e.g., B[9− 13]) with the exception of two (B[8] and B[14]) for
identification purposes. In this latent basis model we end up with an optimal shape
for the group curve and individual differences with one change component (see
McArdle & Epstein, 1987; McArdle & Bell, 2000).

The fourth model fitted (2d) was this kind of latent basis growth model. For
identification purposes, we fixed B[8] = 0 and B[14] = 1, but the remaining basis
coefficients were estimated from the data. This results in a large improvement in the
model likelihood (L2 =−61416), which was much closer to the unrestricted model
(χ2 = 110 on df = 24), and substantially better than the nested baseline (∆ χ2 =
10525 on ∆df = 8) and nested linear models (∆ χ2 = 589 on ∆df = 5). The er-
ror variance has also been reduced (σ2

e = 39.9). The estimated latent means were
µ0 = 30.7 and µι = 21.7, their variances were σ2

0 = 61.1 and σ2
1 = 35.6, and the

intercept/slope correlation was ρ01 = 0.15. The estimated basis coefficients were
.28, .48, .66, .80, and .92 for ages 9 – 13. The coefficients indicated a decelerat-
ing growth function. Additional nonlinear models, including multiphase (Cudeck &
Klebe, 2002) and structured curves (Browne & du Toit, 1991) can be fit to these
data, but are not described here. These additional nonlinear models may be able to
adequately represent the data with fewer parameters. We refer the reader to Oud
& Jansen (2000), Cudeck & Klebe (2002), Browne & du Toit (1991), and Ram &
Grimm (2007) for further details regarding nonlinear models.
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8.4 Step 3: Modeling Individual Differences in Developmental
Scores and Patterns

The estimated means of the level and slope in the previous analyses allow us to plot
the group trajectory over time. Similarly the estimated variance parameters allow us
to consider the size of the between group differences at each age. However, no prior
information obtained in model fitting tells us about the sources of this variance. To
further explore the differences between persons we expand the basic latent growth
model to include impacts on the latent parameters. There are several techniques to
evaluate the sources of inter-individual differences and we consider three common
methods including the growth model with an extension variable, the multiple group
growth model, and the growth mixture model.

8.4.1 The Growth Model with an Extension Variable

Let us assume a variable termed X indicates some measurable difference between
persons (e.g., sex, educational level). If we measure this variable at one occasion
we might like to examine its influence in the context of a growth model for our out-
come of interest (e.g., reading achievement). One popular model is based on the use
of “adjusted” growth parameters as popularly represented in the analysis of covari-
ance. In growth curve terms, this model is written with fixed (group) coefficients (γ)
with some effect on the measured scores at each occasion (Read[t]), and the X is an
independent observed (or assigned) predictor variable and written as

g0n = v0 + γ0 ·Xn +d0n ,
g1n = v1 + γ1 ·Xn +d1n ,

(8.3)

where we have intercepts (ν) and regression slopes (γ) for the effect of X on the
two latent components (g0 and g1) with residuals (d0 and d1). In this case the latent
growth parameters (µ0:x, µ1:x, σ0:x, σ1:x, σ0,1:x) are considered to be conditional on
the expected values of the measured X variable. In the early factor analytic literature
this relation between an observed X and a common factor score was termed an “ex-
tension analysis” (Horn, 1973). The apparent complexity of the covariance model
leads to a simpler and increasingly popular way to add an external variable – we can
write a growth model with an extension variable where the X variable has a direct
effect on the parameters of the growth curve.

8.4.2 Results Growth Model with an Extension Variable

A variety of additional variables have been measured in the NLSY, including de-
mographic (e.g., gender, mother’s and father’s education.), self reported health
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behaviors (e.g., smoking, drinking, physical exercise, etc.) and other problems (e.g.,
general health, illness, medical procedures, etc.). In the analyses presented here we
consider two variables: gender (effect coded as−0.5 for males and +0.5 for females)
and the mother’s age at the child’s birth (centered at 24 years of age).

We add gender and mother’s age at child’s birth as predictors of the level and
slope. Table 8.3 is a list of results including the two variables as predictors of the
level and slope. The model (3a) has a misfit (χ2 = 125 on df = 34) and this is an
improvement when compared to the model in which the regression parameters were
fixed at zero (χ2 = 276 on df = 38; ∆ χ2 = 151 on ∆df = 4). The parameter estimates
suggest the following interpretations. (0) The latent basis coefficients (B[t]) were
unaffected by the inclusion of the predictors. (1) There were accurate (significant)
differences between males and females on both the level and slope with females
predicted to have a greater reading level at age 8 (γ0 = 1.9), but a slightly slower rate
of change from age 8 to 14 (γ1 =−1.3). (2) The mother’s age at the child’s birth was
also predictive of the level (γ0 = 0.19) and slope (γ1 = 0.20) of the growth model for
reading comprehension. Older mothers at the child’s birth were predicted to have
children with a greater level of reading ability at age 8 as well as a faster rate of
change from age 8 to 14.

Table 8.3 Results from latent growth models with extension variables fit to the NLSY longitudinal
data (Step 3)

Parameters 3a: Level 3a: Slope
Fixed Effects
Basis B[t] = 0, .27*, .48*, .66*, .80*, .92*, = 1
Intercept v0 30.8* 22.3*
Regression from gender γg 1.9* -1.3*
Regression from mother’s age at birth γa .19* .20*
Random Effects
Residualδ 2

d 59.6* 34.6*
Error σ2

e 39.9*
Correlation ρd0,ds .15
Fit indices
Parameters 20
Degrees of Freedom 34
Log Likelihood -97446
χ2 125
RMSEA .02

8.4.3 Group Differences from a Multiple Group Perspective

The initial representation of group differences uses a set of estimated parameters to
summarize between group differences. This idea is clearly represented by coding
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a set of variables (X) to characterizing the group differences and then examining
the effect of this set (X) on the model parameters. However, this method is lim-
ited in a number of important ways. For example, some reasonable forms of group
differences in the growth processes (e.g., different developmental shapes) are not
possible within the standard framework. For example, different groups of people
could have different “amplitude” or be in different “phases” in their growth pattern.
These group differences in the features of growth are not separated within the basic
level and change parameters although they may be realistic features of development.

An SEM treatment of this kind of a model uses concepts derived from multiple-
group factor analysis (e.g., Jöreskog & Sörbom, 1979; McArdle & Cattell, 1994). In
these kinds of models, each group (g = 1 to G) is assumed to follow a latent growth
model where the basis coefficients (B[t](g)) are allowed to vary across groups. Since
the groups need to be independent (each person can only be in one group) this kind
of grouping is most easily done for discrete categorical variables (i.e., sex, but not
educational level or maternal age at birth). A multiple group growth model (see
McArdle, 1989) with age as the time-basis can be written as

Read[age](g)
n = g(g)

0n +g(g)
1n ·B[age](g) + e[age](g)

n . (8.4)

This multiple group growth model permits the examination of the presumed invari-
ance of the latent basis functions (i.e., B[age](1) = B[age](2) = . . . B[age](g) = . . .
B[age](G)). The rejection of this model implies that each independent group has a
different shape of growth. If invariance is found we can also examine the equality of
the variances of the latent level and slope (σ (g)

0 = . . . σ
(G)
0 and σ

(g)
1 = . . . σ

(G)
1 ) and

their covariance (σ (g)
01 = . . . σ

(G)
01 ). Further analyses could include the fixed effects

(µ0, µ1), error deviations (σ (g)
e ), and functions of all the other parameters. These

multiple group hypotheses represent additional types of group differences than was
possible with the growth modeling with an extension variable approach.

8.4.4 Results for Group Differences in Growth of Reading for
Males and Females

To illustrate this kind of analysis here, we fit multiple group growth models with
gender as the grouping variable. Table 8.4 contains the parameter estimates and
fit statistics for three models. In these cases the two groups were created, so the
unrestricted likelihood for these data was based on two sets of mean and covariance
matrices; one for males and one for females.

The first model (4a) allows both groups to have completely different latent
growth curves. The model now includes 11 parameters for each group, and the
22 estimates are listed in the first two columns. This resulted in a reasonable fit
to both data sets (χ2 = 131 on df = 41). A few small differences in estimates can be
seen between the two groups, but one key difference appears to be the smaller slope
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Table 8.4 Numerical results from multiple group latent growth models fitted to male and female
NLSY longitudinal data (Step 3)

Growth Model 4a: Latent 4b: Loading Invariance 4c: Total Invariance
Parameters Growth for Gender over Both Groups over Both Groups
Fixed Effects Males Females Males Females

n = 3448 n = 3342 n = 3448 n = 3342
Basis b[8] =0 =0 =0 =0
Basis b[9] .27* .29* .28* .28*
Basis b[10] .48* .48* .48* .48*
Basis b[11] .67* .64* .66* .66*
Basis b[12] .80* .79* .80* .80*
Basis b[13] .93* .90* .92* .92*
Basis b[14] =1 =1 =1 =1
Level µ0 29.8* 31.5* 29.7* 31.6* 30.7*
Slope µ1 22.1* 21.4* 22.4* 21.1* 21.7*
Random Effects
Error σ2

e 38.3* 41.4* 38.3* 41.5* 39.9*
Level σ2

0 66.3* 54.2* 66.2* 54.1* 61.6*
Slope σ2

1 41.7* 28.2* 42.6* 27.3* 35.6*
Correlation ρ01 .21* .11* .20* .11* .15*
Fit Statistics
Parameters 22 17 11
Degrees of Freedom 48 53 59
Log Likelihood -61362 -61366 -61416
χ2 131 138 237
RMSEA .02 .02 .03

variance for the females. The second model (4b) adds the restriction that the latent
basis coefficients, while free to vary, must be identical across males and females.
This model was similar in fit to the free model (χ2 = 138 on df = 53; ∆ χ2 = 7 on
∆df = 5), and this indicates the shapes of the curves may be considered the same
across gender.

The third model (4c) adds the restriction that all parameters, while free to vary,
must be identical across males and females. This model showed a loss in fit (χ2 =
237 on df = 59) compared to the previous model (4b vs. 4c: ∆ χ2 = 99 on ∆df = 6),
indicating some of the latent means and/or covariances are different. As previously
seen in the model with gender as an extension variable, the growth factor means
were somewhat different between males and females. Additionally, it appears that
the slope variances were also somewhat different.

8.4.5 Mixture Models for Latent Groups

Another fundamental problem is the discrimination between models of (a) multiple
curves for one group of people from (b) multiple groups of people with different
curves. It is possible for us to have, say, three clusters of people, each with a distinct
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growth curve, but when we aggregate information over all people we end up with a
complex growth pattern with multiple growth factors for a single population as op-
posed to a simple growth pattern for three groupings of people. This is the essence
of a latent grouping of people, and parallels the “person centered approach” to mul-
tivariate data analysis (e.g., Cattell, 1980; Magnussen, 2003).

The recent series of models termed growth mixture models have been developed
for this purpose (Muthén & Muthén, 2000; Muthén & Shedden, 1999; Nagin, 1999;
Wedel & DeSarbo, 1995). In these analyses the distribution of the latent parameters
are assumed to come from a “mixture” of two or more overlapping distributions.
Current techniques in mixture models have largely been developed under the as-
sumption of a small number of discrete or probabilistic “classes of persons” based
on mixtures of multivariate normals. More formally, we can write a model as a prob-
ability weighted sum of curves where the probability of class membership (πcn) is
defined for the person in c = 1 to C classes. With a age-based growth curve as the
within-class model we can write the growth mixture model as

Read[age]n =
C
∑

c=1
πcn

(
g(c)

0n +g(c)
1n ·B[age](c) + e[age](c)n

)
where

C
∑

c=1
πcn = 1 and 0≤ πcn ≤ 1 .

(8.5)

In this kind of growth mixture analysis we estimate the threshold parameter for the
latent distribution (τp, for the pth parameter) while simultaneously estimate separate
model parameters for the resulting latent groups.

The growth mixture models may be seen as a model-restricted fuzzy-set cluster
analysis – a multiple group model without exact knowledge of group membership
for each individual. The concept of an unknown or latent grouping can be succes-
sively based on the logic of multiple group factorial invariance. The resulting esti-
mates yield a likelihood which can be compared to the results obtained from a model
with one less class, so the mixture model distribution can be treated as a hypothesis
to be investigated. As in standard discriminant analysis, we can also estimate the
probability of assignment of individuals to each class in the mixture. In growth mix-
ture modeling, it is important to fully examine how the latent classes differ from one
another. Building on the work of multiple group growth models, described above,
we examine differences in the basis coefficients (i.e., B[age](1) = . . . B[age](c) = . . .
B[age](C)). The rejection of this model implies that each latent class has a different
shape of growth. If invariance is found we can also examine the equality of the vari-
ances of the latent level and slope (σ (c)

0 = . . . σ
(C)
0 and σ

(c)
1 = . . . σ

(C)
1 ) and their

covariance (σ (c)
01 = . . . σ

(C)
01 ). Further analyses could include the fixed effects (µ0,

µ1), error deviations (σ (g)
e ), and functions of all the other parameters.
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8.4.6 Results from Latent Mixture Models

These latent growth mixture models were fit using the NLSY reading data and some
of the results are described here. In a first latent mixture model (4d) we estimated
a two-class model with free parameters for both groups. This model required 23
parameters and led to another likelihood (L2 = −61072). We recognize the statis-
tical basis of this comparison is still somewhat controversial, but if we consider
the threshold as an implied parameter in some previous models, we can get some
sense of the gain in fit. The threshold parameter is a point estimate of the position
on the outcome distribution where the individuals would be separated in classifica-
tion into one group or another. In this case, the threshold (τ = −1.29) is a z-score
that suggests the total group can be considered a mixture of two classes of dif-
ferent sizes, n1 = 1,463 and n2 = 5,327, with different growth patterns between
groups but the same growth pattern within groups. By contrast to the one-class
model (L2 = −61416) this 2-class model appears to be an improvement; however,
numerical instability (and convergence problems) was found (i.e.; for one of the
classes as the level variance was near zero). In a second model the level variance
and level/slope covariance was fixed at zero in the first class. The result was a model
with most participants categorized into the second class (n = 6121; τ =−2.07).

In second set of latent mixture model (4e) we allowed the possibility of two la-
tent classes (C = 2) with different parameters for the latent means and variance but
assumed the same growth basis. This model resulted in a model with convergence
problems for the same reasons as the previous model (4d). Finally, the latent means
were allowed to vary between latent classes, but the remaining parameters were
forced to be equal across latent classes. This final mixture model resulted in con-
vergence problems as the estimated within-class level-slope correlation was greater
than 1. Therefore, the results from these growth mixture models did not provide any
evidence of latent classes with divergent growth patterns. It’s important to remem-
ber there was variability in the growth factors (Model 2c), but the results from these
mixture models confirms that this variation was distributed normally.

8.5 Step 4: Studying Dynamic Determinants across Multiple
Variables

In recent research we have considered some ways to improve the clarity of the basic
dynamic change interpretations with conventional SEM analytic techniques. These
dynamic change hypotheses have led to the development of a set of alternative mod-
els, based on classical principles of dynamic change, but represented in the form
of latent change scores (e.g., McArdle, 2001; McArdle & Nesselroade, 1994). This
alternative representation makes it relatively easy to represent a dynamic hypothesis
about the change within a variable, and about the time-ordered determination of one
variable upon another.
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8.5.1 Modeling Latent Change Scores

The introduction of multiple variables at each longitudinal occasion of measurement
leads naturally to questions about time-dependent relationships among growth. A
classical SEM for multiple variables over time is based on a latent variable cross-
lagged regression model (see Cook & Campbell, 1977; Rogosa, 1978). This model
can be written for latent scores with over-time auto-regressions (ϕy, ϕx) and cross-
regressions (δyx, δxy) for time-lagged predictors, but the standard applications of
this model do not include systematic growth components (i.e., individual slopes).
For this reason, recent SEM analyses have examined parallel growth curves, in-
cluding the correlation of various components (McArdle, 1988, 1989; Willett &
Sayer, 1994). A popular alternative used in multilevel and mixed effects modeling
is based on the analysis of covariance with X [t] as time-varying covariates. In this
model the regression coefficient (e.g., X [t]→Y [t]) is usually assumed to be the same
at all occasions. These last two models are easy to implement using existing com-
puter software (e.g., Sliwinski & Buschke, 1999; Sullivan et al., 2000; Verbeke et
al., 2000), but the typical applications are limited to a few basic forms of dynamic
hypotheses.

To expand our SEM for other dynamic concepts we now reconsider the trajectory
equations from a different starting point. First, we assume we have a pair of ob-
served scores (Y [t] and Y [t−1]) measured over a defined interval of time (∆ t = 1),
and write a model with latent scores (y[t] and y[t−1]), and corresponding errors of
measurement (e[t] and e[t−1]). We can now define a new latent variable that repre-
sents the change in the latent scores for y. The latent change score is defined as in
equation (8.6a). This latent change score is not the same as an observed change score
(∆Y [t]n) because the latent score is considered separate from the model based error
component. Now we can write the trajectory over time in the observed variables as
with (8.6b).

∆y[t]n = y[t]n− y[t−1]n , (8.6a)

Y [t]n = g0n +

(
T

∑
t=2

∆y[t]n

)
+ e[t]n . (8.6b)

Of course, the main alteration in this approach is that in this LCS representation we
do not directly define the basis coefficients (B[t]; as in equation (8.1)), but instead
we directly define change as an accumulation of the first differences among latent
variables. This deceptively simple algebraic device allows us to define the trajectory
equation as an accumulation of the latent changes (∆y[t]) up to time t based on any
model of change.

One benefit of this LCS approach is that all of the previous latent growth models
can be re-conceptualized in terms of first differences, and some new models emerge
(as in McArdle & Nesselroade, 1994; McArdle, 2001, 2009; McArdle & Hamagami,
2001). We first re-iterate traditional models and then present some new models. We
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can start with the simple baseline model of no change by stating (8.7a), so that this
difference model represents a trajectory with (8.7b).

∆y[t]n = 0 , (8.7a)
Y [t]n = g0n + e[t]n . (8.7b)

Thus, the baseline model allows systematic individual differences at all occasions,
and random error at all occasions, but no systematic changes over time.

In contrast, we can write (8.8a), so that this change model represents a trajectory
with (8.8b).

∆y[t]n = g1n , (8.8a)

Y [t]n = g0n +

(
T

∑
t=2

g1n

)
+ e[t]n . (8.8b)

So,
Y [1]n = g0n + e[1]n ,

Y [2]n = g0n +g1n + e[2]n ,

Y [3]n = g0n +g1n +g1n + e[3]n ,

or, in general,

Y [t]n = g0n +g1n (t−1)+ e[t]n ,

and so the trajectory is linear over time.
As another alternative, we can consider a model where the changes are directly

proportional to the previous latent score by writing (8.9a) and this change model
represents a trajectory with (8.9b).

∆y[t]n = β · y[t−1]n (8.9a)

Y [t]n = g0n +

(
T

∑
t=2

β · y[t−1]n

)
+ e[t]n (8.9b)

So
Y [1]n = g0n + e[1]n,
Y [2]n = g0n +(β · y[1])+ e[2]n,
Y [3]n = g0n +(β · y[1]+β · y[2])+ e[3]n ,

and so on.
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This accumulated trajectory is an exponentially accelerating function over time. As
yet another alternative, we can write a composite change expression model where
we consider both a systematic constant change (g1n) and a proportional change (β )
over time. The change equation for this dual change score model can be written as
(8.10a) and this change model represents a trajectory with (8.10b).

∆y[t]n = g1n +β · y[t−1]n , (8.10a)

Y [t]n = g0n +

(
T

∑
t=2

g1n +β · y[t−1]n

)
+ e[t]n . (8.10b)

So

Y [1]n = g0n + e[1]n,
Y [2]n = g0n +(g1n +β · y[1])+ e[2]n,
Y [3]n = g0n +(g1n +β · y[1]+g1n +β · y[2])+ e[3]n ,

or, in general,

Y [t]n = g0n +g1n (t−1)+

(
T

∑
t=2

β · y[t−1]

)
+ e[t]n .

This accumulating of the composite change model (8.10a) leads to a potentially
complex nonlinear growth trajectory (8.10b). Depending on the sign and size of the
coefficients, this nonlinear growth trajectory follows an increasing or decreasing,
accelerating or decelerating exponential form (e.g., Y [t]n = c0n + c1n · (1− eπ·t) +
e[t]n).

Of course, this use of latent change scores is a generic approach that can be
extended to many other forms of change models. For example, McArdle (2001)
examined the proportional change model with an independent residual (i.e., an au-
toregressive model) as well as a model of changes in the common factor scores.
Hamagami & McArdle (2007) investigated the forms of changes based on second
order difference operators. A key feature of this latent change score approach to
defining trajectories over time is that we are not limited to the models discussed
here. Instead, the latent change score approach opens up possibilities for other para-
metric analyses of repeated observations.

An immediate benefit of this approach is seen when we deal with multiple vari-
ables over time. In a simple case, we can first organize the model into a set of bivari-
ate dynamic change score equations that relate the latent changes in each variable
to the previous states of those variables and a constant change component. If we
use the simple starting points of the models considered above, one set of dynamic
equations can be written as

∆y[t]n = g1n +βy · y[t−1]+ γyx · x[t−1]
∆x[t]n = h1n +βx · x[t−1]+ γxy · y[t−1] (8.11)
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Where g1n and h1n are the constant change components for y and x, βy and βx are
the proportional change parameters describing how each variable influences itself
over time, and γyx and γxy are the coupling parameters describing how each variable
influences each other over time. It may be useful to note that all the desirable latent
slope parameters are not jointly identifiable, so we typically estimate only the latent
means (µg1 and µh1; see Figure 8.3). Also, to simplify the expressions, we start with
an explicit repetition of all model parameters across each time (i.e., βx, βy, γyx, and
γxy do not depend on t), and we recognize this is not a necessary feature of real data.
This simplified form of a bivariate trajectory model is depicted as a path diagram in
Figure 8.3.
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Fig. 8.3 Path diagram of a bivariate latent difference score model for Reading Comprehension and
Antisocial Behavior.

In this simplified form of a bivariate dynamic system we assume a dual change
score model within each variable but also permit coupling parameters (γ) across dif-
ferent variables. This model is used to estimate the time-dependent effect of latent
x[t] on ∆y[t +1] (γyx) as well as coupling parameter representing the time-dependent
effect of latent y[t] on ∆x[t + 1] (γxy). This model subsumes all aspects of the pre-
vious cross-lagged, correlated growth, and time-varying covariate models as spe-
cial cases. These latent change score models can lead to more complex nonlinear
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trajectory equations (e.g., non-homogeneous equations) and the use of latent change
scores allow for the analysis of a variety of dynamic models using standard SEM
(for more detailed explanations, see McArdle, 2001, 2009).

8.5.2 Results from Fitting Latent Change Score Models

The latent change score dynamic models were fitted to the reading comprehension
variable and to the antisocial behavior scores. Several alternative Reading/Antisocial
Behavior bivariate coupling models based on Figure 8.3 were fitted to the data. In
the first model (5a), the coupling parameters (γ) were fixed to zero so the changes
in reading and antisocial behaviors were not time-dependent. In the second model
(5b), the coupling parameter from reading to changes in antisocial behavior was
estimated whereas the coupling parameter from antisocial behavior to changes in
reading was fixed to zero. In the third model (6c), the coupling parameter from
reading to changes in antisocial behaviors was fixed to zero and the coupling pa-
rameter from antisocial behavior to changes in reading was estimated. These two
models (5b and 5c) test whether reading was a leading indicator of changes in an-
tisocial behavior (5b) and whether antisocial behavior was a leading indicator of
changes in reading (5c). The final model (5d) was the bidirectional coupling model
in which both coupling parameters were estimated.

The fitting of a sequence of alternative models was needed to interpret the repli-
cability of the coupling across the reading and antisocial variables. Table 8.5 con-
tains parameter estimates and fit statistics for the four bivariate dynamic models fit
to reading and antisocial behaviors to determine whether one or more of the cou-
pling parameters (γ) were different from zero. In the first model (5a), the coupling
parameters were fixed at zero and led to a likelihood of L2 = −92162. This model
can be used as a baseline for comparison for the models in which coupling parame-
ters were estimated. In the second model (5b) the parameter representing the effect
of antisocial behavior on changes in reading was fixed to zero; however the effect
of reading on changes in antisocial behaviors was estimated. This model resulted
in a slight improvement in fit (∆ χ2 = 8 on df = 1) compared to the no coupling
model (5a). Similarly, the third model in which the coupling parameter from antiso-
cial behavior to changes in reading was estimated and the parameter from reading
to changes in antisocial behaviors was fixed to zero resulted in an improvement in
fit (∆ χ2 = 8 on df = 1) compared to the no coupling model. Finally, the bidirec-
tional coupling model (5d) was fit and was an improvement over the no coupling
model (∆ χ2 = 17 on df = 2) and the two unidirectional coupling models (5b and
5c; ∆ χ2 = 9 on df = 1). Therefore, Model 5d, in which reading and antisocial be-
haviors were both dynamically related, was the most reasonable representation of
the time-dependent relationships. The resulting interpretation is a dynamic process
where scores on reading achievement have a tendency to impact changes in antiso-
cial behavior in a positive manner and antisocial behavior has a tendency to effect
subsequent change in reading achievement negatively. Therefore, children who have
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Table 8.5 Results of bivariate latent change score dynamic models fitted to PIAT Reading Com-
prehension and BPI Antisocial Problem Behaviors (Step 4)

Model 5a: 5b: 5c: 5d:
Parameters No Coupling Read→ ∆Anti Anti→ ∆Read Bidirectional Coupling

Read Anti Read Anti Read Anti Read Anti
Fixed Effects
Initial Mean µ0 30.8* 1.5* 30.8* 1.5* 30.8* 1.5* 39.8* 1.5*
Slope Mean µ1 11.7* -.2* 11.8* -.3* 13.6* -.2* 13.7* -.3*
Proportion β -.19* .16* -.19* .13* -.19* .15* -.19* .12*
Coupling γ — — —- .004* -1.32* — -1.32* .004*
Random Effects
Error Variance σ2

e 39.9* 1.0* 39.9* 1.0* 39.7* 1.0* 39.7* 1.0*
Initial Variance σ2

0 61.0* 1.5* 61.0* 1.5* 61.1* 1.5* 61.1* 1.5*
Slope Variance σ2

1 5.5* .06* 5.5* .05* 5.6* .05* 5.7* .04*
Correlation ρ01 .75* -.90* .75* -.82* .51* -.88* .52* -.79*
Correlation ρr0a0 -.30* -.30* -.32* -.31*
Correlation ρr1a1 .22* .05 -.31 -.40
Correlation ρr0a1 .26* .10 .26* .09
Correlation ρr1a0 -.30* .29* .38 .38
Correlation ρerea .01 -.01 -.00 -.00
Fit Statistics
Parameters 19 20 20 21
Degrees of Free-
dom

100 99 99 98

Log Likelihood -92162 -92158 -92158 -92154
χ2 236 228 228 219
RMSEA .01 .01 .01 .01

a greater reading comprehension scores tend to show slightly more positive changes
in antisocial behaviors (negatively valenced) and children displaying more antiso-
cial behaviors tend to show less positive changes in reading comprehension.

The estimated model parameters were dependent on the scalings used, but the tra-
jectory expectations allow us to interpret the results in a relatively “scale-free” form
– Figure 8.4 gives a summary of this state-space plot as a vector field (for details,
see Boker & McArdle, 1995; McArdle et al., 2001). Any pair of coordinates is a
starting point (e.g., intercept for reading and antisocial behavior) and the directional
arrow is a display of the expected pair of 1-year changes from this point. This fig-
ure shows an interesting dynamic property – the change expectations of a dynamic
model depend on the starting point. From this perspective, we can also interpret the
negative level-level correlation (ρr0,a0 = −.31), which describes the placement of
the individuals in the vector field, and the slope-slope correlation (ρr1,a1 = −.40),
which describes the location of the subsequent change scores for individuals in the
vector field. The resulting “flow” shows a dynamic process where reading compre-
hension and antisocial behavior scores have a tendency to impact changes in each
other from age 8 to 14.
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Fig. 8.4 Vector field for the pattern of results from the bivariate latent change score model for
Reading Comprehension and Antisocial Behavior.

8.6 Step 5: Studying Group Differences in Dynamic
Determinants across Multiple Variables

The final step was to examine whether there were group differences in the dynamic
time-dependent associations. That is, we want to determine whether there were
group differences in the lead-lag relationships (Read → ∆Anti; Anti → ∆Read).
The models for this step are a combination of the previous two steps (Group Dif-
ferences & Dynamics). That is, the bivariate dual change score model with bidirec-
tional coupling is brought into a multiple group and latent mixture framework to
study differences in lead-lag relationships for observed and unobserved groups.

8.6.1 Results for Multiple Group Dynamic Models with Gender

As in the univariate multiple group models for reading we begin with a model in
which all of the parameters were separately estimated for males and females. This
model yields a fit (L2 =−91876) which is reasonable (χ2 = 356 on df = 196) given
the observed data for males and females. The estimated parameters were similar for
males and females; however there were some small interesting differences. For ex-
ample, the males tended to be more antisocial than females at age 8 and the effect of
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reading on changes in antisocial behavior appeared to be stronger for females than
males. The dynamic parameters (β ,γ) were then constrained to be equivalent for
males and females and the resultant fit (L2 = −91878; χ2 = 360 on df = 200) was
similar (∆ χ2 = 4, ∆df = 4) to when the dynamic parameters were independently
estimated for males and females indicating the lead-lag relationships that exist be-
tween reading and antisocial behavior were the same for males and females. Next,
the variance/covariance parameters were set equal for males and females, which re-
sulted in a substantial loss in fit (χ2 = 615 on df = 213). Therefore, there were vari-
ance/covariance parameters that were significantly different for males and females.
From the previous model, it appeared the level and slope variances for reading and
antisocial behaviors were greater for males than females. Additionally, males had
greater level of antisocial behavior at age 8 and females tended to have higher levels
of reading achievement at age 8.

8.6.2 Results for Dynamic Mixture Models

The first dynamic mixture model was a two-class bivariate dual change score model
with bidirectional coupling. In this model all of the parameters were separately es-
timated for the two-classes. This model required 43 parameters and yielded a like-
lihood (L2 = −89639) and likelihood based fit statistics (BIC = 179659). Com-
paring the likelihood and BIC from this two-class mixture model to the likelihood
(−92154) and BIC (184493) from one-class model indicated an improvement. The
threshold parameter (τ) was estimated to be 0.63 indicating the sample could be
considered a mixture of two classes of different sizes, n1 = 4665 and n2 = 2637,
with different dynamic relationships. The first class showed a dynamic pattern that
was similar to the overall model with reading comprehension having a small pos-
itive (0.004) effect on changes in antisocial behaviors while antisocial behaviors
had a large negative effect (−1.64) on changes in reading comprehension. The sec-
ond class, on the other hand, had no significant coupling parameters indicating that
reading comprehension and antisocial behaviors did not have a time-dependent rela-
tionship for this class of participants. This separation of individuals into people who
did show a specific coupling from persons who seem uncoupled is an important the-
oretical issue that requires careful consideration and replication. Although an initial
set of values can be estimated using this latent change mixture model approach, it
also seems obvious that replicated results across multiple studies would give us a
much stronger basis to form homogeneous groupings of people.

8.7 Discussion

This chapter serves to provide some methodological and analytical methods the
examination of longitudinal data using the general rubric of growth curve modeling
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techniques in a structural equation modeling framework. We recognize that SEM is
just one framework for longitudinal data analysis and represents a limited class of
longitudinal data analytic techniques (e.g., Nesselroade & Baltes, 1979; Collins &
Sayer, 2001). However, the analyses presented here include some of the most up-to-
date combinations of longitudinal models dealing with the developmental-dynamic
processes with unobserved heterogeneity. The five steps we outlined here represent
one way to organize some of the inherent complexity of longitudinal data analysis,
but these techniques are central to answering questions that are often posed and
initiate the collection of longitudinal data.

These five steps form a sequence with increasing levels of practical and theo-
retical knowledge, so it is useful to consider them in the order presented here. The
inclusion of all five aspects of latent curve modeling is often overlooked in longitu-
dinal analyses. That is, latent curves models (#2) are often fit without first describing
the basic data (#1). Group differences (#3) are presented without a full evaluation
of various growth curves that may be appropriate for the data (#2). In many recent
cases, inferences about latent curve dynamics across variables (#4 and #5) are of-
fered using simpler models that are incapable of providing this information (e.g.,
#3). For these reasons, a longitudinal researcher should consider the issues within
each step before moving on to the next step. Of course, it is easy to envision sit-
uations where it would be best to apply the steps in a different sequence, or even
to elaborate on one step based on the research questions. Obviously, models of the
complexity of Steps 4 and 5 may only be useful in the more advanced stages of
research. Further steps beyond these are possible, and should deal with dynamic
models from a time-series perspective (e.g., Nesselroade et al., 2002), models based
on differential equations (e.g., Oud & Jansen, 2001), selection effects due to sur-
vival (e.g., McArdle et al., 2005), and deal with experimental group dynamics (e.g.,
McArdle, 2007).

The structural-dynamic models discussed here represent only a sample of the
mathematical and statistical models appropriate for longitudinal data and the choice
of longitudinal models should be based on the specific research question under in-
vestigation (see Grimm, 2007). Indeed, some of the most difficult problems for fu-
ture work on latent curves will be focused on the rather elusive meaning of the latent
model parameters themselves (Zeger & Harlow, 1987; McArdle & Nesselroade,
2003). The choice of an appropriate substantive-vs-methodological interface (see
Wohlwill, 1991) creates problems that remain among the most difficult challenges
for future work. In this sense, the five step sequence advocated here is mainly in-
tended as a practical way to organize the otherwise daunting task of developmental
analyses of multivariate multiple occasion data.
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