
Chapter 7
Continuous Time Modeling of Panel Data by
means of SEM

Johan H.L. Oud and Marc J.M.H. Delsing

Abstract After a brief history of continuous time modeling and its implementation
in panel analysis by means of structural equation modeling (SEM), the problems of
discrete time modeling are discussed in detail. This is done by means of the popu-
lar cross-lagged panel design. Next, the exact discrete model (EDM) is introduced,
which accounts for the exact nonlinear relationship between the underlying contin-
uous time model and the resulting discrete time model for data analysis. In addition,
a linear approximation of the EDM is discussed: the approximate discrete model
(ADM). It is recommended to apply the ADM-SEM procedure by means of a SEM
program such as LISREL in the model building phase and the EDM-SEM procedure
by means of Mx in the final model estimation phase. Both procedures are illustrated
in detail by two empirical examples: Externalizing and Internalizing Problem Be-
havior in children; Individualism, Nationalism and Ethnocentrism in the Flemish
electorate.

7.1 Introduction

Continuous time modeling goes back to Newton (1643-1727) and Leibniz (1646-
1716), who originated the tools of differential and integral calculus. Newton’s laws
of motion relate the position, speed, and acceleration of physical bodies by means of
differential equations. Not less than two and a half centuries later, Simon (1952) in-
troduced the use of differential equations into social science, followed by Coleman
(1968) and Blalock (1969). Blalock illustrates his discussion by means of two
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examples. In the first example, a system of two simple linear differential equations
is used to describe and explain the arms race process between opposing nations.
The second example was taken from Simon (1952) and formalizes Homans’s theory
about the human group (Homans, 1950), relating the variables interaction, friend-
ship, and activity by means of differential equations. It should be noted that the
applications in Newtonian mechanics as well as the examples provided by Simon
and Blalock are deterministic and do not allow random error to enter the system.

In contrast to its popularity in physics and natural science, the use of continuous
time methods in statistically orientated sciences such as economics and social sci-
ence is still rare. Undoubtedly, one reason for the slow spread has been the difficulty
of handling random phenomena in continuous time, in particular the definition of the
random walk process on a continuous time scale as well as the associated stochastic
integral. It took a century after the discovery of Brownian motion, the random walk
behavior of particles in a liquid, before Norbert Wiener in 1928 succeeded to give
this motion a rigorous mathematical definition. In honor of Wiener, the motion was
later called Wiener process. Wiener was also the first to define integration of the
Wiener process (Wiener stochastic integral), which in 1944 was generalized by the
Japanese mathematician Itô (Itô stochastic integral). Nowadays, there is no reason
to avoid the specification of random error in continuous time or the use of stochastic
differential equations and their solution. The mathematical problems are solved and
need not concern the research practitioner as will be shown in this chapter.

Just as in natural science, most phenomena studied in economics and social sci-
ence evolve in continuous time. As emphasized by Bergstrom, the pioneer of contin-
uous time modeling in econometrics, the economy does not cease to exist in between
observations nor does it function only at quarterly or annual intervals correspond-
ing to the observations (Phillips, 1993, p. 23). Bergstrom (1988) credited the British
statistician Bartlett for being the first to deal with the problem of estimating the pa-
rameters of continuous time stochastic models from discrete time series. As Bartlett
(1946) put it:

The discrete time nature of our observations in many eco-
nomic and other time series does not reflect any lack of con-
tinuity in the underlying series. Thus theoretically it should
often prove more fundamental to eliminate this imposed arti-
ficiality. An unemployment index does not cease to exist be-
tween readings, nor does Yule’s pendulum cease to swing.

Hereby, Bartlett for the first time criticized the unfortunate identification in conven-
tional time series analysis of the dynamically relevant interval with the observation
interval. Continuous time methods put the causal mechanisms on a continuous time
scale, allowing the process to proceed in infinitesimally small steps, and so dis-
tinguish the underlying dynamics clearly from the discrete time measurement time
points. This is especially important in social science, where measurement almost
invariably occurs in discrete time, measurement time points are chosen rather ar-
bitrarily, and observation intervals are often large. Particularly in the case of large
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intervals, approximating the continuous time process by a discrete time model for-
mulated in terms of the observation interval leads to unacceptable results.

Traditionally, the application of continuous time methods is restricted to N = 1
research and estimation in the stochastic case is done by N = 1 time series estima-
tion methods, especially filter techniques. To solve the problem of the data points in
a time series being correlated, which violates the independence assumption of sam-
pling theory, filter techniques purge the data from the predictable correlated parts to
end up with uncorrelated “innovations”. From 1990 onwards, Singer (1990, 1993,
1995, 1998) worked on the adaptation of these techniques for continuous time anal-
ysis of panel data. Singer’s (1991) program LSDE (Linear Stochastic Differential
Equations) performs maximum likelihood estimation of the continuous time model
on the basis of the so-called exact discrete model (EDM). The EDM, claimed to be
developed in 1961-1962 by Bergstrom (Bergstrom, 1988), will also be central in the
present chapter. Many alternative but approximate estimation procedures, such as
the approximate discrete model ADM (Bergstrom, 1966) or the multivariate latent
differential equation MLDE (Boker, Neale, & Rausch, 2004) procedure, provide
more or less accurate approximations of the underlying continuous time parameters
on the basis of discrete time data. The EDM has the major advantage of linking the
discrete time model parameters in an exact way to the underlying continuous time
model parameters by means of nonlinear constraints. The EDM and estimation pro-
cedures using the EDM make sure that the parameters estimated are exactly equal
to the parameters of the underlying differential equation model.

An alternative way to estimate the continuous time parameters for panel data
through the EDM is Structural Equation Modeling (SEM). This was started by
Oud (1978), employing the first published version of the SEM program LISREL
(Jöreskog & Sörbom, 1976) described in Jöreskog’s (1977) seminal publication
about SEM. Later, Arminger (1986) and Oud, van Leeuwe, and Jansen (1993) used
other SEM program versions for the same purpose. A similar approach was fol-
lowed by Tuma and Hannan (1984), although they used related simultaneous equa-
tions procedures rather than SEM. Common to all these authors is that they were
inspired by Coleman (1968) to employ the so-called “indirect” method in estimat-
ing the EDM. This consists of first estimating discrete time parameters by means of
a SEM or similar program and then separately, in a second step, deriving the contin-
uous time parameter values using the EDM. In general, the indirect method cannot
be recommended. A simple example, where the indirect method breaks down, is in
the case of unequal observation intervals (Tuma & Hannan, 1984). Here the impo-
sition of simple equality constraints by the SEM program does not work and the
direct application of the nonlinear constraints is called for.

Oud and Jansen (2000) showed how more recent nonlinear SEM software pack-
ages such as Mx (Neale, Boker, Xie, & Maes, 2006) can also be employed for max-
imum likelihood estimation of the continuous-time state space model parameters,
but using the direct method: applying the nonlinear constraints of the EDM directly
during estimation. A thorough comparison between the LSDE/EDM procedure us-
ing filter techniques and the direct SEM/EDM procedure was made by Oud and
Singer (2008) in a series of Monte Carlo simulation studies. It turns out that in case
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the same model is analyzed in both procedures and the data are appropriate for both
procedures, the estimation results from filter techniques and SEM are equal. In this
chapter we will exclusively deal with SEM.

Although continuous time modeling is pertinent to an extremely broad subject
field in social science, most problems with discrete time analysis and their solution
by means of continuous time modeling are covered by the topic of reciprocal causal
relationships. Reciprocal relationships are traditionally analyzed in discrete time by
means of the cross-lagged panel design. In the next section, we will first go into this
popular but, from the continuous time perspective, insidious analysis design. The
motivation and basic principles of continuous time modeling will be clarified on the
basis of the cross-lagged panel design. The full-fledged model and its estimation
will be dealt with in the ensuing sections.

7.2 Analysis of Reciprocal Relationships in the Cross-Lagged
Panel Design

The cross-lagged panel design studies and compares the effects that variables have
on each other across time. Different from cross-sectional research, the causal di-
rection in panel research is not based on instantaneous relationships between si-
multaneously measured variables x and y. Instead, different variables are used for
opposite directions: x at time point 1 affecting y at time point 2, y at time point 1 af-
fecting x at time point 2 (see Figure 7.1). The cross-lagged panel design is therefore
supposed to be more suitable than cross-sectional research in answering, for exam-
ple, whether parenting characteristics affect adolescents’ adjustment or, conversely,
whether adolescents’ adjustment affects parenting characteristics, or whether both
effects operate reciprocally (Neiderhiser, Reiss, Hetherington, & Plomin, 1999).

1       x2 

y1 y2 

x

Fig. 7.1 Discrete-time cross-lagged panel design.
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Having attracted attention in sociology earlier, the cross-lagged panel design
is now becoming increasingly popular in psychology. Rueter and Conger (1998),
for example, make clear that correlations between parental and children’s behav-
ior, which in the past were interpreted as unidirectional influences from parents to
children, have in recent years assumed a reciprocal causal interpretation. This has
led to a host of cross-lagged panel research to examine and test the direction of
the effects. Other examples include cross-lagged reciprocal relationships between
adolescent problem drug use, delinquent behavior, and emotional distress (Bui, El-
lickson, & Bell, 2000), and between children’s peer relations and antisocial behavior
(Vuchinich, Bank, & Patterson, 1992).
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Fig. 7.2 Two cross-lagged panel designs with different spacings of the measurement time points
and different values of the autoregression coefficients in the problem behavior variables.

Most cross-lagged analyses, however, are performed in discrete time. Although,
for instance, parental behavior (x) and children’s behavior (y), children’s external-
izing problem behavior (x) and children’s internalizing problem behavior (y) or
individualism (x) and ethnocentrism (y) influence themselves and each other con-
tinuously over time, measurements are typically taken not more than one or two
times a year, resulting in a large observation interval. As a consequence, discrete
time modeling becomes an oversimplification and often a distortion of reality. The
path diagrams of the cross-lagged panel design in Figure 7.2 make this very clear.
The oversimplification consists in the assumption that the arrows jump from one
point in time to the next one and that nothing happens between measurements. In
fact, the estimated cross-lagged coefficients (crossing arrows) and autoregression
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coefficients (horizontal arrows) over the observation interval ∆ti are complicated
mixtures of the continuous time cross- and auto-effects in a constant interchange
over, and heavily dependent on the length of, the chosen observation interval ∆ti. A
variable with a high auto-effect, meaning that there is a strong tendency to sustain
its value over time, tends also to retain the influence of other variables over a longer
time interval than a variable with a low auto-effect. So, even a relatively small con-
tinuous time cross-effect can result in a relatively high cross-lagged effect in discrete
time, if the variable influenced has a high auto-effect. But the converse can also be
true: a relatively strong continuous time cross-effect having only small impact over
a discrete time interval because of a rather low auto-effect in the dependent vari-
able. Additionally, the result will be more strongly dependent on the auto-effect
over the larger time interval (∆t2 = 1.25 in diagram B) than over the shorter interval
(∆t1= 0.75 in diagram B). So, the causal picture changes in discrete time, depend-
ing on the length of the chosen observation interval. Continuous time modeling is
necessary to disentangle the continuous time cross-effects and auto-effects from the
discrete time mixtures.

7.2.1 Relationship between Continuous and Discrete Time

The relationship between continuous and discrete time is governed by the matrix
exponential

A∆ti = eA∆ti . (7.1)

Many paradoxical aspects of the relationship are explainable by the highly nonlin-
ear character of the matrix exponential. Its power series definition will be given in
(7.9) and a rather general computational form in (7.17). A∆ti is the discrete time
autoregression matrix over observation interval ∆ti = ti− ti−1 (i = 1,2, ...) and A
is the so-called drift matrix, which is the analogue of the autoregression matrix in
continuous time. It is multiplied by the interval in the exponent of (7.1). Autore-
gression matrix A∆ti displays on the diagonal the autoregressions for each of the
variables and off-diagonally the cross-lagged effects between the variables. Anal-
ogously, drift matrix A has the continuous time auto-effects on the diagonal and
the continuous time cross-effects off-diagonally. It should be emphasized that (7.1),
which specifies the exact relationship between A∆ti and A, clearly shows that A∆ti
changes as a function of the length of the observation interval, while A continues to
be equal.

Table 7.1 gives a typical example of an A∆ti with corresponding exact A, for
∆ti = 1 computed according to (7.1). The most conspicuous differences between the
matrices are found in the diagonals of A∆ti (autoregressions 0.50, 0.40, and 0.30)
and A (auto-effects –0.84, –1.05, and –1.60). Whereas the autoregressions in the di-
agonal of A∆ti are all positive, the corresponding auto-effects in A are all negative.
This is a rather technical difference, which should be kept in mind when interpreting
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Table 7.1 Discrete time autoregression matrix (left; ∆ti= 1) and corresponding continuous time
drift matrix (right)

x1 x2 x3 x1 x2 x3

x1
x2
x3

 0.50 0.30 0.22

0.05 0.40 0.20

0.25 0.20 0.30


−0.84 0.64 0.44

−0.09 −1.05 0.69

0.76 0.40 −1.60


A∆ti A

differences. It is simply explained, however, when we take a closer look at the rela-
tionship between discrete and continuous time.

We start from the autoregression equation (7.2), specifying how by means of A∆ti
each of the variables in vector x(ti) is predictable by the variables in vector x(ti−1)
at the previous time point:

x(ti) =A∆tix(ti−1). (7.2)

For clarity, we do not yet specify an error component in (7.2), but this does not
impact the relationship between autoregression matrix and drift matrix. From (7.2)
we derive, dividing ∆x(ti ) = x(ti)−x(ti−1) by ∆ti:

∆x(ti)
∆ti

= A∗ x(ti−1)

with A∗ = (A∆ti − I)/∆ti.
(7.3)

Difference equation (7.3) in terms of A∗ approximates differential equation (7.4) in
terms of continuous time matrix A:

dx(t)
dt =Ax(t). (7.4)

We assume the rather general conditions to be satisfied, which guarantee a unique
solution of (7.4) for initial value x(ti−1) =x(t0) =x0 (Zadeh & Desoer, 1963, p.
294). Note that, although the differential equation model is specified for all t in
some continuous time interval and also its solution is valid for all t in the interval,
the solution is observed only at the discrete time points ti. While the solution is
given in autoregression form for arbitrary discrete time points ti in (7.2), it is made
explicit in terms of continuous time drift matrix A by matrix exponential (7.1).

Basically, differential equation model (7.4) can thus be viewed as a transforma-
tion of the popular autoregression model (7.2). First in (7.3) difference quotient
∆x(ti)/∆ti is placed on the left-hand side, approximation A∗ of A on the right-hand
side, and subsequently shifting the time interval ∆ti towards zero makes A∗ approach
A more and more closely. As seen in (7.3), in the transformation from A∆ti into A∗,
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each autoregression value in the diagonal of A∆ti is diminished by 1 and so becomes
negative for autoregressions between 0 and 1. This explains why in general positive
but less than 1 autoregressions in discrete time correspond to negative auto-effects
in continuous time. By equation (7.1), it is further evident that in the case of zero
off-diagonals in A, autoregressions between 0 and 1 must correspond to negative
auto-effects. Zero off-diagonals cause the matrix exponential in (7.1) to reduce to
scalar exponentials with negative values−∞ < a < 0 in the diagonal of A leading to
positive values 0 < ea∆ti < 1 in the diagonal of A∆ti and vice versa. Note that in Table
7.1, the strength order of the positive autoregressions in the autoregression matrix
(0.30 < 0.40 < 0. 50) is maintained in the negative drift matrix diagonals (–1.60 <
–1.05 < –0.84). Depending on the off-diagonals, however, this is not necessarily the
case.

Causally more interesting than the diagonals of the matrices in Table 7.1 are the
paradoxical differences between discrete and continuous time that occur in the off-
diagonal elements (effects between different variables). It turns out that the conclu-
sions drawn in a discrete time analysis with respect to the cross-lagged coefficients
in A∆ti may differ fundamentally from those to be drawn in a continuous time anal-
ysis on the basis of the corresponding cross-effects in A.

• Equal discrete time coefficients become different in continuous time.

For example, the two reciprocal cross-lagged coefficients with value 0.20 in the
autoregression matrix – which in discrete time might lead to the conclusion that the
strength of the causal effects between the variables x2 and x3 is equal in opposite
directions – differ considerably in continuous time: 0.69 and 0.40.

• The strength order of coefficients reverses going from discrete to continuous time.

For example, in the autoregression matrix, the discrete time effect of x3 on x1 is
greater than that of x3 on x2: 0.22 versus 0.20. However, in the corresponding drift
matrix, it is the other way around: 0.44 for the first effect and 0.69 for the second
effect.

• Discrete time nonzero coefficients vanish or even change sign in continuous time.

The effect of x1 on x2 with positive value 0.05 in discrete time gets the negative value
of –0.09 in continuous time. So, even interpreting the sign of the effect between
variables is not safe for the transition from discrete to continuous time.

7.2.2 Discrete Time Problems with Unequal and Equal
Observation Intervals

Continuous time analysis is needed to draw correct conclusions about causal effects.
Discrete time analysis gets into extreme trouble, however, in the case of unequal
observation intervals. When different discrete time distances are used in the same
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Fig. 7.3 Two different autoregression functions in two different studies A and B.

study or different researchers study the same causal effect in different distances, it
becomes impossible to compare the strength of the causal effects found. This has
long been recognized in discrete time analysis, notably by Gollob and Reichardt
(1987). It seriously hampers cumulative progress of science, but cannot be solved in
a discrete time context. This is exemplified in Figure 7.2 too. Supposing the other
effects in the model to be equal over the two successive equal intervals in diagram
A, one would not need continuous time modeling to conclude, on the basis of the
autoregressions (0.40 and 0.60), that the auto-effect over the first interval is smaller
than the one over the second interval. In diagram B with unequal intervals, how-
ever, no decision can be made as to which one represents a bigger true auto-effect:
0.60 over interval ∆t1 = 0.75 or 0.50 over longer interval ∆t2 = 1.25. This is because
autoregressions depend on the time interval, and, in general, the smaller the inter-
val, the larger the autoregression, reaching 1 for t = 0. To find out whether or not
the auto-effects over the intervals are indeed equal, again continuous time analysis
is needed to relate and compare the discrete time effects on the same underlying
continuous time scale.

The possibly misleading results of a discrete time analysis in case of unequal
observation intervals are clearly shown by the autoregression functions A and B in
Figure 7.3. By definition, autoregression functions have value 1 at an interval of
length 0 (no change) and generally this value decreases, when the observation in-
terval becomes longer. Suppose A is valid in one study and B in a second study,
while in study A an observation interval ∆t1 of 0.50 year is used, and in study B
an observation interval ∆t2 of 1.00 year. Because autoregression function B exceeds
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A everywhere, no other conclusion should be drawn than that the autoregression
in study A is lower than in study B. Nevertheless, investigator A, finding the au-
toregression value of 0.61 at interval ∆t1= 0.50, could erroneously conclude that
the autoregression in his study is larger than in study B, where the lower value of
0.50 was found at interval ∆t2 = 1.00. Clearly, the correct answer can only be found
in continuous time analysis by comparing the auto-effects in the two studies and
generating the complete autoregression functions as in Figure 7.3.

Some discrete time analysts believe that the use of unequal observation intervals
is the only culprit and that all problems would be solved by using and making com-
parisons for equal intervals only. Equal observation intervals are hardly less prob-
lematic than unequal observation intervals, however, as will become clear from the
two reciprocal cross-lagged effect functions for variables x1 and x3 in Figure 7.4,
both based on drift matrix A in Table 7.1. The cross-lagged effect functions specify
the cross-lagged effects, not only for one specific interval (∆ti = 1 in Table 7.1) and
even not only for all discrete time observation intervals ∆ti in the study. Like au-
toregression functions, cross-lagged effect functions go through all infinitesimally
increasing intervals ∆t in continuous time, starting from ∆t = 0. Unlike autoregres-
sion functions, which start at value 1, cross-lagged effect functions have starting
value 0 (different variables cannot yet have any influence on each other over a zero
time interval), build up the effect more or less rapidly until a maximum is reached
somewhere (in Figure 7.4 maxima 0.250 and 0.240 are reached at the quite differ-
ent intervals of ∆t = 1.02 and ∆t = 1.64, respectively), and eventually return to 0
in a stable model. Stability is defined by the eigenvalues of drift matrix A. If all
eigenvalues have negative real parts, the model is stable. Eigenvalues of A can be-
come complex in some situations, but in this chapter only real eigenvalues will be
considered .

Autoregression functions as well as cross-lagged effect functions were computed
by the matrix exponential in (7.5) which differs from (7.1) merely in allowing ∆t to
take all values in continuous time:

A∆t = eA∆t . (7.5)

Crucial is that, in discrete time research, autoregression matrices A∆ti are defined
and estimated for the observation intervals ∆ti in the study only and are therefore un-
known for intervals that are smaller than or unequal to multiples of ∆ti (i = 1,2, ...T ),
whereas A∆t = eA∆t in (7.5) is much more generally interpretable and computable
for arbitrary continuous time intervals ∆t. Basically, what we do in a continuous
time analysis of discrete time data is first using (7.1) to find the continuous time
drift matrix A that fits the empirical observation intervals, and next using (7.5) to
generate the complete autoregression and cross-lagged effect functions on the basis
of A.

A possible and by no means rare property of cross-lagged effect functions is
shown in Figure 7.4. They are crossing at ∆t = 1.44, both having the same value
0.239 at that interval. So, although according to A in Table 7.1 the effect of x1 on x3
is stronger than in the opposite direction from x3 to x1 (0.76 compared to 0.44) and



7 Continuous Time Modeling 211

0.30

x1→x3
0.25

0.20

C
ro

ss
-l

ag
g

ed
 e

ff
ec

t

0.15

0.10

0.05

0.00
0.00

Time Interval

0.50 1.00 1.50 2.00 2.50 3.00

x3→x1
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drift matrix in Table 7.1.

the cross-lagged effects in A∆ti of Table 7.1 indicate the same strength order at time
interval ∆t = 1.00 (0.25 compared to 0.22, both displayed also at ∆t = 1.00 in Figure
7.4), the interplay between the variables over continuous time is such that the cross-
lagged effects in Figure 7.4 become equally strong at ∆t = 1.44 and even reverse
the strength order for intervals ∆t > 1.44. It is this possibility of crossing (non-
monotone) cross-lagged effect functions (as well as non-monotone autoregression
functions) that makes discrete time analysis useless for analyzing reciprocal rela-
tionships in the cross-lagged panel design. The implication of Figure 7.4 is that the
relative strength of the reciprocal causal effects found between x3 and x1 depends
on the observation interval chosen in the study. Investigators choosing their discrete
time interval ∆ti between 0 and 1.44 years will come to the conclusion that x1 has a
stronger effect on x3 (maximum difference of 0.058 reached at ∆ti = 0.46), whereas
investigators choosing ∆ti > 1.44 years will arrive at the opposite conclusion (max-
imum difference of 0.042 reached at ∆ti = 3.26). No comparison problems would
arise, at least not in the sense of contradictory results with regard to the strength
order, if the cross-lagged effect functions in Figure 7.4, like the autoregression func-
tions in Figure 7.3, were monotone (not crossing). Then it would not matter at what
interval the comparison is made, because one would find the same order everywhere.
However, the monotone or non-monotone character is seldom known beforehand
and generally it is just the purpose of the research to find out.
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What is worse is that it would not be of any help to choose and maintain the
same observation interval. The cross-lagged effect functions in Figure 7.4 bring
discrete time investigators using the same observation interval ∆ti = 1.44 also to a
false conclusion, namely that the effect of x1 on x3 is equally strong as the effect
of x3 on x1. This conclusion cannot be generalized to observation intervals ∆ti 6=
1.44, however, where different and, for ∆ti > 1.44, again false conclusions would be
drawn, nor is it confirmed by the cross-effect coefficients in drift matrix A. Clearly,
continuous time analysis, estimating the coefficients of the continuous time drift
matrix A and displaying the consequences over the complete time axis by means of
the full autoregression and cross-lagged effect functions, is the only solution to the
problems of unequal as well as equal observation intervals.

7.2.3 Lagged and Instantaneous Effects Dilemma

We conclude the discussion of the cross-lagged panel design with another awkward
problem often encountered by discrete time analysts, for which, again, there is no
solution in discrete time. As seen in Figure 7.1, the analysis of the cross-lagged
panel design allows the inclusion of two kinds of reciprocal effects between x and
y: lagged reciprocal effects (i.e., x at time point 1 affecting y at time point 2, and y at
time point 1 affecting x at time point 2) and instantaneous reciprocal effects (i.e., x
at time point 2 affecting y at time point 2 and vice versa). One could choose the in-
stantaneous coefficients, the lagged coefficients, or both to be present in the model,
but the results are often different or even contradictory. This typically confronts the
discrete time analyst with a dilemma. In the study by Vuchinich, Bank, and Patter-
son (1992), for example, the dilemma was whether to choose for instantaneous or
lagged effects between parental disciplinary behavior and child antisocial behavior.
The authors found significant instantaneous effects but no significant cross-lagged
effects. The choice would become even more difficult, if these effects were to be
estimated simultaneously, because then the results become highly dependent on the
time interval ∆ti. In general, the longer the time interval between measurements,
the higher the instantaneous coefficients become in comparison to the lagged coeffi-
cients. Most discrete time analysts feel that instantaneous and lagged effects should
both be taken into consideration somehow. However, they do not and cannot know
in discrete time how to connect and constrain these two types of effects to find the
true underlying continuous time effects.

When analysts estimate the instantaneous and lagged effects simultaneously, au-
toregression equation (7.2) is in fact replaced by

x(ti) = Ainsx(ti) + Alagx(ti−1). (7.6)

Instantaneous matrix Ains includes the instantaneous effects between the “current
endogenous” variables in x(ti). Lagged matrix Alag includes the lagged effects from
the “lagged endogenous” x(ti−1) on the “current endogenous” x(ti). Equation (7.6)
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is known in econometrics as the “structural form” with (7.2) as the associated “re-
duced form”. The clear relationships that exist between the two forms and the con-
tinuous time matrix exponential in (7.1), that is, between the coefficients in the re-
duced form or autoregression matrix A∆ti , in the structural form matrices Ains and
Alag, and in the continuous time drift matrix A, are shown in (7.7):

A∆ti= (I−Ains)−1Alag = eA∆ti . (7.7)

By means of eA∆ti in (7.7), which is the core of the exact discrete model EDM,
nonlinear constraints are directly imposed on the coefficients in the autoregression
matrix A∆ti for generating the exact drift matrix A, skipping Ains and Alag. In this
way, the above mentioned dilemma of the choice between Ains and Alag is simply
circumvented. The structural form is therefore not really indispensible in continuous
time analysis. One might wonder, however, whether constraints could be imposed
on the structural form matrices Ains and Alag for combining the instantaneous and
lagged effects in an appropriate way to generate the underlying continuous time
effects in A and thereby explicitly solving the discrete time dilemma. This has in-
deed been done in the so-called approximate discrete model ADM introduced by
Bergstrom (1966; 1984, pp. 1172-1173), the same econometrician who originated
the EDM. He showed, that by means of the simple linear constraints:

Ains = 1
2 A†∆ti,

Alag = I+ 1
2 A†∆ti,

(7.8)

the ADM generates a quite reasonable approximation A† of exact A. It immediately
solves the dilemma of the discrete time analyst, because by means of (7.8) the two
different matrices Ains and Alag are replaced by one and the same matrix A†, which
is the one to be interpreted and tested.

7.2.4 ADM and EDM

It is true that by using the ADM instead of the EDM one sacrifices exactness. How-
ever, although nonlinear SEM programs such as Mx, which include the exponential
and matrix algebraic functions, can implement the EDM, the linearity of the con-
straints in (7.8) of the ADM also holds some attraction. Less nonlinearly oriented but
more user-friendly SEM programs, which lack the exponential and matrix algebraic
functions and therefore the possibility to apply the EDM, mostly allow implemen-
tation of the ADM. Oud (2007b) explains in detail how to apply the ADM-SEM
procedure by means of LISREL (Jöreskog & Sörbom, 1996). In addition, LISREL
and similar programs are particularly valuable in the modeling process, because
they provide plenty of information about model fit and about modification results
of individual parameters by means of the so-called modification indices. For this
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reason, it could be worthwhile in practice to first apply the ADM-SEM procedure
in the model building phase by means of a program such as LISREL and then the
EDM-SEM procedure in the final model estimation phase by means of Mx.

It should be noted that A†, as an approximation of A, compares favorably
with other well-known approximations such as the relatively crude approximation
A∗ = (A∆ti − I)/∆ti in (7.3). This is seen by putting the exact nonlinear matrix ex-
ponential form A∆ti = eA∆ti and both approximate linear constraint forms in power
series expansion

A∆ti = eA∆ti = ∑
∞
k=0(A∆ti)k/k!

= I + A∆ti + 1
2 A2∆t2

i + 1
6 A3∆t3

i + 1
24 A4∆t4

i + ...
(exact),

A∆ti = (I−Ains)−1Alag = (I− 1
2 A†∆ti)−1(I + 1

2 A†∆ti)

= I + A†∆ti + 1
2 A2

†
∆t2

i + 1
4 A2

†
∆t3

i + 1
8 A4

†
∆t4

i + ...

(A† approximation),

A∆ti = I + A∗∆ti (A∗ approximation).

(7.9)

Whereas the A∗ approximation truncates the exact infinite series, the weights of the
A† approximation ( 1

2 , 1
4 , 1

8 , ...) in the ADM are only seen to decrease less quickly
than in the exact series ( 1

2 , 1
6 , 1

24 , ...) used in the EDM. In a simulation study with
different estimation procedures, Oud (2007a) concluded that the ADM-SEM proce-
dure did indeed yield more biased results than the EDM-SEM procedure, but that
the overall quality in terms of the root mean squared error (RMSE) was hardly lower
than in the EDM-SEM procedure. The ADM-SEM procedure compared also favor-
ably with the approximate MLDE procedure of Boker, Neale, and Rausch (2004). In
the examples to be presented below, we will first apply the ADM-SEM procedure,
followed by the EDM-SEM procedure.

7.3 Linear Stochastic Differential Equation Model

The full linear stochastic differential equation model used in this chapter consists
of two equations: a dynamic explanatory equation and a static measurement equa-
tion. The dynamic equation, shown in (7.10), extends the basic differential equation
model in (7.4) by three important elements.

dx(t)
dt

= Ax(t)+b+κκκ +G
dW(t)

dt
. (7.10)

In addition to the drift matrix term Ax(t), introduced and discussed in detail in
the previous section, the following new elements are found in (7.10): continuous
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time intercepts vector b, continuous time “trait” variables vector κκκ, and finally the
continuous time error process vector G dW(t)

dt , which makes the differential equation
stochastic.

7.3.1 Continuous Time Intercepts

Nonzero intercepts in vector b aptly accommodate for the frequently observed
nonzero mean trajectories E[x(t)]. Importantly, b defines also the final means to-
wards which a stable system eventually converges. In models with b = 0 these final
means are necessarily zero, with zero being the stable equilibrium position. An equi-
librium position is the value of a constant curve satisfying the model. In models with
b 6= 0, it can first be proven, on the basis of (7.10), that the mean trajectories, starting
from initial mean E[x(t0)], follow nonzero curves (7.11) and next that convergence
is towards nonzero −A−1b.

E[x(t)] = eA(t−t0)E[x(t0)]+A−1[eA(t−t0)− I]b
with E[x(t→ ∞)] =−A−1b.

(7.11)

The reason for the latter is the behavior of the matrix exponential eA(t−t0) in a stable
model. Because A in the exponent has negative eigenvalues and is multiplied by the
interval length t−t0, the matrix exponential eventually becomes zero (the concept of
stability is equivalent to this property) and hence E[x(t)]→−A−1b for t→ ∞. The
values in −A−1b, in addition, are (stable) equilibrium positions. As a result of the
commuting property eA(t−t0)A−1 = A−1eA(t−t0), choosing initial means E[x(t0)] =
−A−1b in (7.11) leaves E[x(t)] unchanged.

So, the intercepts b enhance the flexibility of the model by allowing nonzero
mean trajectories and nonzero final means. Flexibility is further enhanced by the
possibility of subpopulation specific mean trajectories and final means within the
same overall model. For this purpose (n x 1)-vector b is replaced by Buu, which
is also (n x 1) but the product of (n x r)-matrix Bu of regression coefficients and
(r x 1)-vector u of exogenous variables. Suppose, for example, that boys and girls
are assumed to follow a different development and to reach a different final po-
sition. As the first element of u we choose the unit variable, u1 = 1 for all sub-
jects in the population, and as the second element a dummy-variable, coded u2 = 0
for boys and u2 = 1 for girls. Let us call the first column of Bu b1 and the sec-
ond column b2. By replacing b in (7.11) by b1 for boys and by b1 + b2 for girls,
we then get two sets of n mean trajectories, E[x(t)]u2=0 for boys and E[x(t)]u2=1
for girls, and two sets of n final means, E[x(t → ∞)]u2=0 = −A−1b1 for boys
and E[x(t → ∞)]u2=1 = −A−1(b1 + b2) for girls. By using the same procedure
to differentiate E[x(t0)]u2=0 for boys from E[x(t0)]u2=1 for girls, we additionally
let boys and girls start from different positions. The procedure is easily extended
for more than two subpopulations, more than two variables in u and, in addition
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to dummy-variables, also for metric variables in u such as income and, as shown
by Oud and Singer (2008), even for changing exogenous variables (time-varying
covariates) u(t). These kinds of models are often called conditional (e.g., see the
chapter of Bollen and Zimmer in this volume). For metric variables ui with many
values (subpopulations) represented in the sample, which is typically the case with
metric variables as, for example, income, the procedure outlined is often the only
possible one. However, in the case of a limited number of subpopulations (e.g., boys
and girls), an attractive alternative approach is performing a so-called multisample
SEM analysis (Jöreskog & Sörbom, 1996), in which b, E[x(t0)], and possibly other
parameters are allowed to vary in the subpopulations.

It should be noted that the intercepts in b are feeding the system continuously
over time by a constant amount and therefore indeed result in different contributions
from unequal intervals. In a discrete time model the intercepts contribute only at the
observation time points chosen.

7.3.2 Continuous Time Trait Variables

Although, as discussed above, subpopulation intercepts allow a different mean tra-
jectory and different final mean in each subpopulation, it is nevertheless paradoxi-
cal that a subject’s current and future expected behavior should be exclusively de-
termined by the population or subpopulation the subject happens to be modeled a
member of. The flexibility of the model is further enhanced by the specification of
random subject effects κκκ in (7.10): random intercept variables, called “trait” vari-
ables in the present chapter, which define for every subject an own subject-specific
mean trajectory. The trait variables κκκ, in distinction from the changing “state” vari-
ables x(t), have constant values across time as do the fixed intercepts b. However,
whereas the b are also constant across subjects, the normally distributed trait vari-
ables κκκ with mean E(κκκ) = 0 and covariance matrix Φκ 6= 0 have a different value for
each subject and so model the subject specific deviations from the common mean
defined by b.

The constancy across time implies that κκκ already influences x(t) before the initial
time point t0, so that κκκ should be considered part of the initial state x(t0) and, in
general, κκκ and x(t0) are correlated (Φxt0,κ

6= 0). Both the variances of the trait vari-
ables in Φκ and their covariances with x(t0) in Φxt0,κ

are testable quantities. Both
are expected to be nonzero, if subjects do indeed follow their subject-specific mean
trajectory instead of coinciding with a single general mean trajectory. Supposing this
is indeed the case, the distance between a subject-specific mean trajectory E[x(t)|κκκ]
and the (sub)population mean trajectory E[x(t)] is computed as

E[x(t)|κκκ]−E[x(t)] = eA(t−t0)Φxt0,κ
Φ−1

κ κκκ +A−1[eA(t−t0)− I]κκκ

with E[x(t→ ∞)|κκκ]−E[x(t→ ∞)] =−A−1
κκκ.

(7.12)
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Here the first term on the right-hand side is a consequence of the regression of
x(t0) on κκκ. As a result of the matrix exponential going again to zero for t → ∞ in
a stable model, the distance between the subject-specific and the (sub)population
mean trajectories goes to a constant nonzero value: −A−1

κκκ.
It should be noted that the mean trajectories for (sub)populations or subjects are

not only interesting as such, and in many cases even the main purpose of the study,
but they also play a crucial role in the behavior of the estimated sample trajecto-
ries (conditional means E[x(t)|y], where y is the total data vector of the subject).
The reason is that these regress towards the mean trajectories (in a stable model) or
egress from them (in an unstable model). Particularly, if a model contains trait vari-
ables, a subject’s conditional mean regresses towards its own subject-specific mean
trajectory (see (7.12)), whereas in a pure state model all subjects regress towards one
and the same general mean trajectory (see (7.11)). Figure 7.5, taken from a youth
delinquency study, shows the estimates of a mean trajectory, a subject-specific mean
trajectory, and the subject’s estimated sample trajectory. Outside of the measurement
time points (recognizable by the kinks in the curve) the subject’s sample trajectory
is clearly seen to regress towards its subject-specific mean trajectory. The conse-
quences are particularly dramatic for predictions. As the final values in the study
are 2.12 for the mean trajectory and 3.88 for the subject-specific mean trajectory,
the predicted final value for the subject differs no less than 1.76 from the one that
would be found in a pure state model.
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Fig. 7.5 Examples of mean trajectory, subject-specific mean trajectory and sample trajectory esti-
mate.
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7.3.3 Continuous Time Error Process

It hardly needs comment that the introduction of an error term into a longitudinal
model enhances the applicability of the model. Historically, it took quite some time,
however, to define continuous time error in a mathematically rigorous way. The con-
tinuous time error process G dW(t)

dt in (7.10) builds upon the famous Wiener process
W(t), the random walk through continuous time. At first sight G dW(t)

dt looks quite
complicated. Note, however, that discrete time error can be thought of analogously
as the difference quotient ∆wt

∆t of a discrete time random walk wt = wt−∆t +e. If the
step sizes e for ∆t = 1 are randomly drawn from a standard multinormal distribution
N(0,I), successive non-overlapping increments ∆wt = wt−wt−∆t for ∆t ≥ 1 are in-
dependent with covariance matrix ∆tI. If one wants to model nonstandard error with
larger or smaller variance than 1 for ∆t = 1 and possibly correlated elements, but no
change in the other properties, then the difference quotient for ∆t = 1 could first be
multiplied by lower triangular matrix G, Cholesky factor of the desired covariance
matrix Q.

The properties defining the standard Wiener process W(t) are, in addition to its
sample trajectories being continuous and starting at W(0) = 0 (both with probability
1), precisely the conditions of independently and normally distributed increments
∆W(t) = W(t)−W(t−∆t) with mean 0 and covariance matrix ∆tI (Arnold, 1974,
p. 46; Kuo, 2006, p. 7). The lower triangular matrix G in the continuous time error
process G dW(t)

dt is just there to allow increment variances to become lower or higher
than 1 for ∆t = 1 and to get nonzero correlations between elements. Product Q =
GG′ is the continuous time error covariance matrix, called “diffusion” matrix, and
G the Cholesky factor of Q. So, Q and G provide the same information and are
easily expressed into each other.

The fame of the Wiener process is undoubtedly due to two peculiar facts that
have given rise to a host of mathematical research. Its derivative dW(t)

dt or “white
noise” cannot be defined as a derivative in the normal sense nor can the stochastic
integral

∫ t
t0 F(s)dW(s) in terms of a possibly time-varying function F(t) be defined

as an ordinary integral. Solution (7.13) of stochastic differential equation (7.10) (see
e.g., Arnold, 1974, pp. 128-134) is nevertheless seen to contain this type of integral
for the error component. Defined in a proper way, however, its correct covariance
matrix can be derived as given in (7.13):

x(t) = eA(t−t0)x(t0)+A−1[eA(t−t0)− I](b+κκκ)+
∫ t

t0 eA(t−s)GdW(s)

with cov
∫ t

t0 eA(t−s)GdW(s) =
∫ t

t0 eA(t−s)QeA′(t−s)ds

= irow{A−1
# [eA#(t−t0)− I]rowQ}

for Q=GG′ and A#=A⊗ I + I ⊗ A.

(7.13)

Here⊗ is the Kronecker product (postmultiplying each element of the former matrix
by the latter matrix), “row” the rowvec operation (putting the elements of a matrix
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row-wise in a column vector), and “irow” the inverse operation (putting the elements
back into the matrix again).

Note in solution (7.13) the predominant role of the matrix exponential having
drift matrix A in the exponent, which appears in all three terms in the solution. Note
also the similar structure of the integral expression A−1[eA(t−t0)− I] in the second
term and A−1

# [eA#(t−t0) − I] in the covariance matrix of the error term, replacing
(nxn) matrix A in the second term by (n2 x n2) matrix A# in the covariance matrix.
A# is based again on drift matrix A and has all eigenvalues negative, if A has all
eigenvalues negative. Therefore, analogously to final mean −A−1b, the final error
covariance matrix in a stable model is given by irow(−A−1

# rowQ). If, for κκκ = 0,
the process starts with mean −A−1b and covariance matrix irow(−A−1

# rowQ), the
process is stationary, keeping the same mean and covariance matrix. Details about
solution (7.13) can be found in Singer (1990) and Oud and Jansen (2000). It has the
form that allows all parameters of the model to be estimated by means of the EDM
as will be shown in the next section. Observe also, that the mean trajectory (7.11) is
an immediate derivation from solution (7.13).

The rationale behind the approximate ADM procedure is different. The ADM is
not based on the differential equation solution (7.13), where x(t) appears only on
one side of the equation, but puts differential equation (7.10) first in integral form:

∫ t
t−∆t dx(s) = A

∫ t
t−∆t x(s)d(s)+(b+κκκ)∆t +G[W(t)−W(t−∆t)].

or
x(t) = x(t−∆t)+A

∫ t
t−∆t x(s)d(s)+(b+κκκ)∆t +G∆W(t).

(7.14)

It next replaces the integral
∫ t

t−∆t x(s)d(s) on the right-hand side, having x(t) still
inside of the integral, by the so-called trapezoid approximation 1

2 [x(t)+x(t−∆t)]∆t,
which multiplies the length ∆t of the integration interval by the average value at the
end points. This gives rise to the approximate solution

x(t)≈ [ 1
2 A∆t]x(t)+ [I+ 1

2 A∆t]x(t−∆t)+(b+κκκ)∆t +G∆W(t)

with cov[G∆W(t)] = GG′∆t.
(7.15)

It explains the constraints imposed in (7.8) on the instantaneous and lagged coeffi-
cients for obtaining approximation A† of A.

7.3.4 Measurement Equation

Latent variables abound in social science. It is probably no exaggeration to claim
that the greater part of psychology and sociology draws on latent variables. Some
of the latent variables, such as the trait variables in κκκ of (7.10) or the state vari-
ables x(t) in between measurement time points ti, have no direct connection at all
to the observed variables. For the latent state variables at the measurement points
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ti, however, we need to extend the model with a measurement equation, specifying
how each of them is connected to the directly observed variables in yti :

yti = Cx(ti)+d+vti with cov(vti) = R. (7.16)

Parameter matrix C specifies the loadings of the observed variables on the latent
variables, parameter vector d the measurement intercepts or origins, and R the mea-
surement error variances of the observed variables. If the state variables at the mea-
surement time points are all observed, yti = x(ti) and we specify C = I, d = 0,
R = 0.

For identification reasons it is customary to fix, for each latent variable, one of the
loadings in C at 1 and one of the measurement origins in d at 0. These values fix the
measurement scale of the latent variable, 1 in C giving the latent variable, apart from
measurement error variance, the same variance as the observed variable involved
and 0 in d giving the same mean. Observe that the absence of a time index for the
measurement parameter matrices and vector C, d, and R makes them time-invariant.
Although time-invariance of the measurement model (measurement invariance) is
no strict requirement, it is nevertheless extremely important for making sure that
the latent variables keep the same meaning over time. One should have convincing
reasons to deviate from measurement invariance for specific variables. Therefore, in
the further development of the model, we will assume time-invariance.

7.4 Model Estimation by Means of SEM

In this section, based on the exact differential equation solution (7.13) and the ap-
proximate integral form (7.15), respectively, the full EDM and the full ADM will
be formulated. Next, for estimation by means of a SEM program, all EDM or ADM
parameter matrices will be put into inclusive SEM parameter matrices.

7.4.1 Full EDM

As will be clear from the subscripts ti and ∆ti in the full EDM (7.17), the EDM is
a discrete time model. The matrices with subscript ∆ti in (7.17) are defined for the
discrete-time measurement time points only. Simultaneously, however, the EDM
covers the continuous time model because of the nonlinear constraints imposed
on the discrete time matrices in terms of the continuous time matrices from dif-
ferential equation (7.10). It means that by applying the constraints on the discrete
time matrices A∆ti ,b∆ti ,H∆ti ,Q∆ti during estimation, we simultaneously estimate the
underlying continuous time parameter matrices A, b, Φκ ,Φxt0,κ

, Q = GG′ (for con-
venience, vectors b∆ti and b are called matrices). The connection between the dif-
ferential equation and the EDM is made by the exact solution (7.13) (choosing for
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t− t0 the observation intervals ∆ti = ti− ti−1, starting with ∆t1 = t1− t0). All con-
straints on the discrete time matrices in EDM (7.17) are directly taken from exact
solution (7.13).

For the computation of the matrix exponential eA∆ti in (7.17) the diagonalization
method is used, which reduces the computation to scalar exponentials. After first
diagonalizing A = MVM−1 (M eigenvector matrix and V diagonal eigenvalue ma-
trix of A), next the scalar exponentials in diagonal matrix eV∆ti are computed, which
finally is premultiplied by M and postmultiplied by M−1. SEM programs such as
Mx do not allow to compute the matrix exponential directly, but allow matrix diag-
onalization and provide the scalar exponential function.

There are two options with regard to the trait covariance matrices Φκ and Φxt0,κ
:

either you impose constraints on the discrete time analogues Φκ∆ti and Φxt0,κ∆ti sep-
arately in the forms shown in (7.17) or you constrain the coefficient matrix H∆ti of
κκκ once, as a result of which both Φκ and Φxt0,κ

come out in the right form automat-
ically. The latter option is easiest and used here.

xti = A∆ti
xti−∆ti

+b∆ti
+H∆ti

κκκ +wti−∆ti

with cov(wti−∆ti
) = Q∆ti

,

A∆ti = eA∆ti = MeV∆tiM−1,

b∆ti = A−1(eA∆ti − I)b,

H∆ti = A−1(eA∆ti − I),
Φκ∆ti = H∆tiΦκ H′

∆ti ,

Φxt0,κ∆ti =Φxt0,κ
H′

∆ti ,

Q∆ti = irow{A−1
# [eA#∆ti − I]rowQ}

with Q = GG′ and A# = A⊗ I + I ⊗ A.

(7.17)

Evidently, the EDM repeats equation (7.17) for successive observation intervals
∆ti = ∆t1,. . . , ∆tT−1 (T the total number of observation time points). If the observa-
tion intervals are unequal, the discrete time matrices with subscript ∆ti are different
across time but relate nonlinearly in terms of the common time-invariant continu-
ous time matrices A, b, Φκ , Φxt0,κ

, G. If the observation intervals are equal, simple
equality constraints between the discrete time matrices of successive observation in-
tervals would suffice too. In addition to the direct estimation method, therefore, the
indirect method would become applicable: computing the estimates of the continu-
ous time matrices on the basis of the five previously estimated discrete time matrices
by applying the constraints in (7.17) in inverse direction. In particular, starting from

A =
1

∆ti
lnA∆ti =

1
∆ti

M ln(V∆ti)M
−1 (7.18)

by diagonalizing A∆ti = MV∆tiM
−1 (M eigenvector matrix and V∆ti = eV∆ti diagonal

eigenvalue matrix of A∆ti ), A is found and then the other continuous time matrices
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easily follow. It cannot be emphasized enough that the indirect method is only appli-
cable in the case of equal observation intervals. As in the case of unequal intervals
no equality constraints can be imposed, each interval yields a different set of dis-
crete time matrices, and, as a result of sampling fluctuations, each interval would
also yield a different set of continuous time parameter matrices. So, in the case of
unequal observation intervals, the direct method is the only suitable one.

In addition to the continuous time parameter matrices and the T − 1 times re-
peated discrete time matrices in (7.17), the EDM as well as the ADM need one
more parameter vector and one more parameter matrix for the initial time point t0:
initial means vector µµµxt0

and initial covariance matrix Φxt0
.

7.4.2 Full ADM

With regard to (7.19), the analogue of (7.17) for the ADM, which is directly taken
from approximate integral form (7.15), the following observations apply. First,
whereas the EDM (7.17) is formulated as a reduced form equation, the ADM (7.19)
is in structural form. It means that the single autoregression matrix A∆ti in the EDM
is replaced by two matrices in the ADM: instantaneous A∗

∆ti and lagged A∗∗
∆ti . Both

have been discussed earlier in Subsection 7.2.3, called there Ains and Alag. The
move from reduced form to structural form in combination with the replacement of
exact drift matrix A by approximation A† leads to a dramatic simplification of the
constraints on the discrete time matrices. The complicated nonlinear constraints in
EDM (7.17) are replaced in ADM (7.19) by extremely simple linear expressions in
terms of just the observation interval ∆ti or 1

2 ∆ti. Whereas the EDM constraints can
only be applied by SEM programs such as Mx, which provide the exponential and
matrix algebraic functions needed, the ADM constraints are applicable by almost
any SEM program, in particular also by LISREL.

xti = A∗
∆tixti +A∗∗

∆tixti−∆ti
+b∗

∆ti +H∗
∆tiκ

κκ +w∗ti−∆ti

with cov(w∗ti−∆ti) = Q∗
∆ti ,

A∗
∆ti=

1
2 ∆tiA†,

A∗∗
∆ti= I+ 1

2 ∆tiA†,

b∗
∆ti = ∆tib†,

H∗
∆ti= ∆tiI,

Φ∗
κ∆ti = ∆t2

i Φ†κ ,

Φ∗xt0,κ∆ti = ∆tiΦ†xt0,κ
,

Q∗
∆ti = ∆tiQ† = ∆tiG†G′†.

(7.19)

Again, if the observation intervals are equal, it becomes possible to extract the
approximate continuous parameter matrices A†, b†, Φ†κ , Φ†xt0,κ

, G† from the previ-
ously estimated set of structural form matrices by applying the simple constraints in
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(7.19) in inverse direction. In fact, after applying during estimation, in addition to
the equality constraints, the simple and only ADM constraints:

A∗∗∆ti =I+A∗∆ti ,
(7.20)

it comes down to dividing the left hand sides in (7.19) by 1
2 ∆ti, ∆ti, ∆t2

i , respectively,
and finally computing the Cholesky factor G† of Q†.

There is more, however, in the case of equal observation intervals. From struc-
tural form (7.19), by means of transformation matrix D = (I−A∗

∆ti)
−1, we obtain

the reduced form (7.21) which is in the form of (7.17). Because, as a result of the
applied equality constraints, the reduced form matrices are equal across the succes-
sive time observation intervals, one-to-one relationships can be built between the
ADM solutions, the reduced form solutions, and the EDM solutions, every reduced
form solution giving rise to just one EDM solution and just one ADM solution and
vice versa. As the confrontation with the data takes place via the common reduced
form solution, the corresponding ADM and EDM solutions are equivalent, giving
exactly the same model fit.

xti = DA∗∗∆tixti−∆ti
+Db∗

∆ti +DH∗
∆tiκκκ +Dw∗ti−∆ti

with cov(Dw∗ti−∆ti) = DQ∗
∆tiD

′.
(7.21)

In practice it means that one could start with the relatively simple ADM solution
(7.19) by means of LISREL or some other user-friendly SEM program. Next, one
could derive its reduced form using (7.21) and finally compute the corresponding
EDM solution by means of the inverse constraints in (7.17) without any new SEM
analysis. It should be noted that this is not possible in the case of unequal observa-
tion intervals, because then the indirect method is no option nor are the ADM and
EDM solutions equivalent. Even then, however, it is often profitable to start with
the relatively simple ADM solution to explore and evaluate the model and then use
it as a reasonable initial solution for the final EDM analysis by means of the Mx
program.

7.4.3 Putting ADM and EDM into SEM

A SEM model often can be specified in quite different ways and by different num-
bers of parameter matrices. Here we will put the ADM and EDM each into two
equations with four parameter matrices: measurement parameter matrices ΛΛΛ and ΘΘΘ,
and structural parameter matrices B and ΨΨΨ:

y = ΛΛΛηηη +εεε with cov(εεε) = ΘΘΘ, (7.22)

ηηη = Bηηη +ζζζ with cov(ζζζ) = ΨΨΨ. (7.23)
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For clarity, we limit the presentation to the case of four time points (T = 4: t0, t1, t2, t3)
but this is easily reduced to three or extended to more than four time points. The
model implied moment matrix ΣΣΣ = f(ΛΛΛ,ΘΘΘ,B,ΨΨΨ) is a function of the parameter ma-
trices, the likelihood in turn is a function of ΣΣΣ and sample moment matrix S, and
the maximum likelihood solution minimizes the discrepancy between ΣΣΣ and S in the
ML sense. Hence, for obtaining the maximum likelihood estimate of the ADM or
EDM by means of a SEM program, it suffices to show how ADM and EDM are put
into SEM parameter matrices ΛΛΛ, ΘΘΘ, B, and ΨΨΨ. As the ADM is slightly simpler than
the EDM, we start with the ADM.

For four time points the vectors y,εεε,ηηη,ζζζ in (7.22) and (7.23) look like:

y =


yt0
yt1
yt2
yt3
1

 , εεε =


εεεt0
εεεt1
εεεt2
εεεt3
0

 , ηηη =


xt0
xt1
xt2
xt3
1
κκκ

 , ζζζ =



xt0 −µµµxt0
wt1−∆t1
wt2−∆t2
wt3−∆t3

1
κκκ


. (7.24)

If the total number of variables in y, the vector of observed variables including as
the last variable the unit variable (1 for every subject in the sample), is T m+1, the
total number of variables in ηηη, the vector of latent variables, is (T + 1)n + 1 with
n the number of state variables as well as trait variables. Hence, case m = n (e.g.,
when all state variables are observed) is one example in which the total number of
latent variables may exceed the total number of observed variables.

B =



0 0 0 0 µµµxt0
0

A∗∗
∆t1

A∗
∆t1

0 0 b∗
∆t1

H∗
∆t1

0 A∗∗
∆t2

A∗
∆t2

0 b∗
∆t2

H∗
∆t2

0 0 A∗∗
∆t3

A∗
∆t3

b∗
∆t3

H∗
∆t3

0 0 0 0 0 0
0 0 0 0 0 0

 ,

ΨΨΨ =



Φxt0
0 Q∗

∆t1
0 0 Q∗

∆t2
0 0 0 Q∗

∆t3
0 0 0 0 1

Φ†xt0 ,κ 0 0 0 0 Φ†κ

 ,

ΛΛΛ =


C 0 0 0 d 0
0 C 0 0 d 0
0 0 C 0 d 0
0 0 0 C d 0
0 0 0 0 1 0

 , ΘΘΘ =


R
0 R
0 0 R
0 0 0 R
0 0 0 0 0

 .

(7.25)
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The ADM (7.19) is put into the SEM model matrices B, ΨΨΨ, ΛΛΛ, ΘΘΘ in the way shown
in (7.25). Observe that, due to the specification of the matrices H∗

∆ti in SEM matrix
B, the trait covariance matrices Φ†κ and Φ†xt0,κ

appear directly in SEM matrix ΨΨΨ.
For the EDM, an alternative specification of the trait variables in the latent vector

ηηη and its error vector ζζζ is employed.

ηηη =



[
xt0
κκκ

]
[

xt1
κκκ

]
[

xt2
κκκ

]
[

xt3
κκκ

]
1


, ζζζ =



[
xt0 −µµµxt0

κκκ

]
[

wt1−∆t1
0

]
[

wt2−∆t2
0

]
[

wt3−∆t3
0

]
1


. (7.26)

B =



0 0 0 0 0 0 0 0 µµµxt0
0 0 0 0 0 0 0 0 0

A
∆t1

H∆t1 0 0 0 0 0 0 b
∆t1

0 I 0 0 0 0 0 0 0
0 0 A

∆t2
H∆t2 0 0 0 0 b

∆t2
0 0 0 I 0 0 0 0 0
0 0 0 0 A

∆t3
H∆t3 0 0 b

∆t3
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0


,

ΨΨΨ =



Φxt0
Φxt0,κ

Φκ

0 0 Q
∆t1

0 0 0 0
0 0 0 0 Q

∆t2
0 0 0 0 0 0
0 0 0 0 0 0 Q

∆t3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


,

ΛΛΛ =


C 0 0 0 0 0 0 0 d
0 0 C 0 0 0 0 0 d
0 0 0 0 C 0 0 0 d
0 0 0 0 0 0 C 0 d
0 0 0 0 0 0 0 0 1

 , ΘΘΘ =


R
0 R
0 0 R
0 0 0 R
0 0 0 0 0

 .

(7.27)

It could also be used for the ADM as the previous specification could be used for
the EDM. The alternative specification highlights that the trait variables κκκ are just
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a special kind of state variables, namely constant across time. Hence, as shown in
(7.26), the trait variables are added to the state vector xti at each time point, leading
to the larger total number of 2T n + 1 variables in latent vector ηηη. The specification
puts the model directly in a suitable form for the application of state space tech-
niques, in particular the Kalman smoother or conditional mean E[x(t)|y], for opti-
mally estimating a subject’s sample trajectory (Oud & Jansen, 1996; Oud, Jansen,
van Leeuwe, Aarnoutse, & Voeten, 1999). Based on (7.17), the SEM specification
of the EDM in (7.27), follows, apart from the trait variables, the same pattern as
in the case of the ADM in (7.25). Whereas the state variables develop across time
according to A

∆ti and are influenced by the trait variables according to H∆ti , the trait
variables themselves, remaining constant over time, develop according to the iden-
tity matrix I. The trait covariance matrix Φκ and state-trait covariance matrix Φxt0,κ

are found in the second row of ΨΨΨ. The measurement model matrices do not differ
from the ones in (7.25), except that ΛΛΛ has extra zero columns at the places of the
unobserved trait variables.

7.4.4 Relating Models on Different Time Scales

Researchers in the same or different subject fields often use different observation
intervals. As argued in Subsection 7.2.2, comparing longitudinal models with dif-
ferent observation intervals, a clear condition for cumulative progress in science,
requires continuous time analysis. This is not all, however. Meaningful comparison
also requires the results to be put on the same time scale. Because both the ADM
and EDM are time-invariant, time scale shifts, t ′ = t + d, do not change the re-
sults. The ADM and EDM in (7.17) and (7.19) show, however, that changing the
time scale unit, t ′ = ct (for example, going from years t to months t ′: t ′ = 12t),
indeed affects the parameter matrices, but in a quite simple way, not requiring any
re-estimation of the parameter matrices. If one wants to compare one’s results with
another researcher, who used time scale t ′ = ct (∆ti′ = c∆ti) instead of one’s own
scale t, simply multiply four of the five parameter matrices by 1/c (A, b, Φxt0,κ

, G
in EDM; A†, b†, Φ†xt0 ,κ , G† in ADM) and one by 1/c2 (Φκ in EDM ; Φ†κ in ADM).
The reason is that the discrete time matrices on the left hand side of the constraints
equations in (7.17) and (7.19) keep the same value, while the change from ∆ti to c∆ti
or from A−1 to cA−1 on the right hand side needs compensation by multiplying by
1/c.
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7.5 Relationships between Externalizing and Internalizing
Problem Behavior

In this and the next section applications will be presented. The LISREL pro-
gram will be used for the ADM-SEM procedure (see the commented LISREL
script in the Appendix of Oud, 2007b) and the Mx program for the EDM-SEM
procedure. All input and output files of the analyses performed in both sections
are available in Chapter 7 at the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. In this section, four
LISREL maximum likelihood analyses and two Mx maximum likelihood analyses
examine the relationships between externalizing and internalizing problem behav-
ior in adolescents. It will be studied in continuous time whether and how strongly
externalizing problem behavior influences internalizing problem behavior (failure
perspective: Burke, Loeber, Lahey, & Rathouz, 2005; Capaldi, 1992), internalizing
problem behavior influences externalizing problem behavior (acting out perspective:
Carlson & Cantwell, 1980; Gold, Mattlin, & Osgood, 1989), or both variables influ-
ence each other reciprocally (mutual influence perspective: Overbeek, Vollebergh,
Meeus, Luypers, & Engels, 2001). The two state variables in the model (external-
izing problem behavior and internalizing problem behavior) are observed. So, the
measurement model part includes only loadings 1, intercepts 0, and measurement
error variances 0. In the next section, a model with an elaborate measurement model
will be presented for relationships between three latent state variables.

The data analyzed are taken from a comprehensive Dutch study of family re-
lationships and adolescent problem behavior (Nijmegen Family and Personality
Study; Haselager & van Aken, 1999). Participants were 280 adolescents (139 boys,
141 girls) who were 14.5 years old on average (ranging from 11.4 to 16.0) at the first
measurement wave. To assess adolescents’ externalizing and internalizing problem
behavior, participants completed the Nijmegen Problem Behavior List (NPBL; De
Bruyn, Scholte, & Vermulst, 2005) at each of the three annual measurement waves.
Further details regarding sample characteristics, measures, and procedure can be
found in Delsing, Oud, van Aken, De Bruyn, and Scholte (2005).

Although the aim of the ADM is the estimation of the (approximate) underlying
continuous time parameters, it is nevertheless clarifying to view in Figure 7.6 the
discrete time part of the ADM in SEM form. The model contains the state vari-
ables Ext and Int and corresponding constant trait variables Trait-Ext and Trait-Int,
for three time points leading to a total of eight variables in the SEM model (apart
from the ninth unit variable, which is not depicted in Figure 7.6). The figure clearly
shows the discrete time part of the ADM with instantaneous coefficients (A∗

∆ti ) as
well as lagged coefficients (A∗∗

∆ti ). The ADM in SEM form is one of the rare SEM
models with self-loop coefficients specified and estimated (diagonals in the instan-
taneous matrices A∗

∆ti , indicated in the figure by self-referencing arrows). In total,
the continuous time part of the model contains 21 parameters to be estimated:

4 drift coefficients in A†,
2 intercepts feeding mean development in b†,
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3 trait variances and covariance in Φ†κ ,
4 covariances between traits and initial states in Φ†xt0,κ

,
3 state variable diffusion coefficients in G†,
2 initial state means in µµµxt0

,
3 initial state variances and covariance in Φxt0

.

Trait
Ext

Ext

Int

Trait
Int

Ext

Int

Ext

Int

Fig. 7.6 The three-wave ADM-SEM cross-lagged panel model for adolescents’ externalizing
and internalizing problem behavior, including corresponding trait variables (subject-specific in-
tercepts).

A full ADM as well as a full EDM can be proven to be identified for T ≥ 3,
assuming the measurement model part is identified. As the ADMs and EDMs in
this section have only observed state variables, the model does not have free mea-
surement parameters and so this part is identified automatically. Column 1 of Table
7.2 displays the estimate of the full ADM model (input file ADM1.ls8 and output
file ADM1.out). For convenience, the subscript † in the ADM parameter names is
suppressed in Table 7.2. For equal observation intervals of length ∆ti = 1, many of
the parameter estimates are immediately found in the LISREL parameter matrices
B (BETA) and ΨΨΨ (PSI). Parameters not immediately found there but estimated as
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Table 7.2 Estimates and model fit information for ADM1 (Full ADM), ADM2 (No Trait 1), ADM3
(No Trait 1, No Int→ Ext) and EDM3 (No Trait 1, No Int→ Ext); standardized drift coefficients

Parameter ADM1 ADM2 ADM3 EDM3

a11(Ext) -0.790** -0.302** -0.317** -0.320**

a12(Int→ Ext) 0.347 -0.039

a21(Ext→ Int) 0.788** 0.616** 0.605** 0.704**

a22(Int) -1.056** -1.134** -1.110** -1.251**

µx1t0
17.943** 17.943** 17.943** 17.943**

µx2t0
21.106** 21.106** 21.106** 21.106**

φx1t0
27.323** 27.323** 27.261** 27.323**

φx2t0
38.212** 38.212** 37.462** 38.212**

φx21t0
10.990** 10.990** 10.774** 10.990**

b1 7.817 5.979** 5.559** 5.606**

b2 5.598 10.890* 10.730* 11.505*

g11 4.922** 4.761** 4.762** 4.782**

g22 6.228** 6.226** 6.219** 6.562**

g21 1.347** 1.648** 1.557** 1.315**

φκ1 10.965

φκ2 26.014 27.646 26.554 33.958

φκ21 -15.059

φx1t0,κ1 7.235

φx2t0,κ1 -5.364

φx1t0,κ2 -12.731* -8.063* -7.988* -8.887*

φx2t0,κ2 14.731 18.619* 17.999 20.694

χ2 5.4 9.9 10.6 10.6

df 6 10 11 11

RMSEA 0.0 0.0 0.0 0.0

*p ≤ .05; **p ≤ .01.

so-called additional parameters are the four drift coefficients: auto-effects a11 and
a22 (called PA(1) and PA(2), respectively, in the LISREL output) and cross-effects
a12 and a21 (PA(3) and PA(4), respectively), and the three diffusion coefficients g11,
g22, and g21 (PA(7), PA(9), and PA(8), respectively).

With regard to the main purpose of the study, assessing the existence and strength
of the cross-effects a12 (Int → Ext) and a21 (Ext → Int) between internalizing
and externalizing problem behavior, one should realize an important difference in
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interpretability between them and the auto-effects a11, a22. The auto-effects are scale
free in the sense that they do not change under arbitrary linear transformations of the
variables Ext and Int and so are directly interpretable. In particular, both Ext and Int
show negative feedback (−.790 and −1.056 ), indicating stability or a quite strong
tendency for an individual to converge to its subject-specific mean trajectory. The
negative eigenvalues of the drift matrix confirm that the model as a whole is stable.
The cross-effects are not scale free, however. Their value depends on the standard
deviations of the independent and dependent variable involved. The cross-effects in
Table 7.2 have therefore been standardized (PA(5) and (PA(6) in the LISREL out-
put) through multiplication by the ratios of the initial standard deviations. However,
as t-values are scale free, testing can best be done in terms of the unstandardized
values of 0.293 for a12 (not significant) and 0.932 for a21 (p < .01) (the t-values
computed by LISREL for the standardized values inappropriately also include the
sampling variability of the standard deviations). The standardized values of 0.347
for a12 and 0.788 for a21 in combination with the testing results reported in Table
7.2 seem to reveal the existence of a strong unidirectional effect from externalizing
to internalizing problem behavior with no or little effect in the opposite direction.

The specification of traits in a model has, in general, high impact on the estimates
of the other parameters. Because in the full ADM no significant variances and co-
variances were found for the traits κ1 and κ2 except for the covariance between κ2
and x1t0 , we decided to retain only κ2 in the next model ADM2 (files ADM2.ls8 and
ADM2.out), so that this model has subject-specific mean trajectories for internal-
izing problem behavior but only a single general mean trajectory for externalizing
problem behavior. It is interesting that the exclusion of κ1 from ADM2 led to the
non-significant effect a12 (Int→ Ext) in ADM1 turning slightly negative in ADM2
but with a non-significant t-value again that was even lower than in the ADM1. This
was reason to next delete a12 from the model. The resulting ADM3 (files ADM3.ls8
and ADM3.out) has all parameters significant except two which are related to κ2. It
retains in particular an impressively strong effect a21 (Ext→ Int) .

Having found a clear and particularly well fitting ADM (the extra constraints
introduced into ADM2 and ADM3 do not deteriorate the fit shown by χ2 and
RMSEA), the obvious next step is to replace the approximate ADM by the exact
EDM (see EDM3 in Table 7.2). As explained above for the case of equal observation
intervals, one possibility would be to apply the indirect method by computing the
reduced form matrices according to (7.21) and deriving the EDM from the ADM3
by (7.17) instead of using the direct method by running the Mx program. Note, that
the (estimated) reduced form autoregression matrix A

∆ti is already computed by
LISREL in the first part of the matrix “Total effects of ETA on ETA” in ADM3.out.
This indeed turns out to be exactly equal to the (estimated) autoregression matrix
A

∆ti computed by Mx in the first part of its BETA matrix (called “A” in GROUP 7
of Mx output file EDM3.mxo). Autoregressions for Ext and Int in both are equal to
0.72627 and 0.28614 and the cross-lagged effect in both is equal to 0.39352. One
reason to apply the direct method by running the Mx program could be, however,
that in addition to the EDM solution itself one gets also the correct standard errors.
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The Mx analysis has therefore indeed been done (files EDM3.mx and EDM3.mxo)
and the results are displayed in the last column of Table 7.2.

Although the reduced forms of ADM3 and EDM3 should be and are indeed equal
in this case of equal observation intervals as is the fit of both models (the models
are equivalent via their reduced form), the solutions themselves are close to each
other but not equal; compare the last two columns in Table 7.2 (the EDM3 solution
is found in GROUP 9 in the Mx output file EDM3.mxo, displaying all estimated
parameter matrices; the standardized value of a21 is computed and found in GROUP
10). Our experience is, that the EDM often yields a somewhat more pronounced
solution with the parameter estimates showing higher absolute values. This is clearly
also the case here. For example, the standardized value of 0.704 for a21 (Ext→ Int)
in EDM3 points to an even stronger effect of externalizing problem behavior on
internalizing problem behavior than found in ADM3. Our analyses leave little doubt
that the failure perspective is the one confirmed by the data in this section and not
the acting out or mutual influence perspectives discussed in the literature.

As has been stressed several times, the equivalence of the ADM and EDM is
based on the equality of the observation intervals. If the observation intervals are
unequal, ADM and EDM can give quite different reduced forms and a quite different
fit. So, then no other choice is left than estimating the EDM independently from
the ADM. To show how analyses with unequal observation intervals are performed
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Fig. 7.7 Autoregression functions of Ext and Int, based on model EDM3 in Table 7.2.
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and what could happen in the example with unequal intervals, instead of the true
equal intervals ∆t1 = ∆t2 = 1, we simulated the second interval to be slightly larger
than the first interval: ∆t1 = 1, ∆t2 = 1.2. So, the interval between the second and
third wave is taken 1.2 years instead of the true 1 year. The analyses are performed
by input files ADM4.ls8 and EDM4.mx for LISREL and Mx, respectively, and the
output is found in files ADM4.out and EDM4.mxo. Instead of the same χ2-value of
10.6 for both ADM3 and EDM3, we now find χ2 = 17.3 for ADM4 and χ2 = 11.2 for
EDM4. In both the fit deteriorates but ADM4 turns out to be much more sensitive to
the wrong specification of the second observation interval than EDM4. Of course,
autoregressions and cross-lagged effect are different for the unequal intervals in
each analysis (whereas, as expected, the autoregressions were lower over the longer
second interval, the cross-lagged effect turned out to be higher), but they also differ
now between ADM4 and EDM4. Over the first interval the autoregressions in the
ADM4 were 0.748 and 0.253 for Ext and Int, respectively, and in the EDM4 0.747
and 0.261; the cross-lagged effect in the ADM4 was 0.405 and in the EDM4 0.410.
This clearly illustrates the necessity to estimate the EDM independently from the
ADM in the case of unequal intervals.

We conclude the example with some of the consequences of the model estimated
in continuous time: autoregression functions for Ext and Int, cross-lagged effect
function for a21 (Ext → Int) and mean trajectories for Ext and Int, all based on
the final EDM3 in Table 7.2. Autoregression and cross-lagged effect functions are
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Fig. 7.8 Standardized cross-lagged effect function for Ext→ Int, based on model EDM3 in Table
7.2.
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computed using (7.5). An autoregression function describes the autonomous de-
velopment of a variable, telling which proportion of its value present at the start
predictably persists after increasing intervals. In discrete time analysis the autore-
gression is only computable on the basis of the discrete time intervals in the study.
The continuous time analysis in Figure 7.7 reveals that the part of Ext predictable
from its value at the start is everywhere higher than for Int, after an interval of ∆t =
2.2 years the predictable Ext part is still not less than half the original Ext, whereas
only 7% of the original Int is left, and already after 6 months half of the original Int
is lost.

The cross-lagged effect function in Figure 7.8 reveals that a unit (standard de-
viation) increase in Ext has its maximum impact of 35.2% of a standard deviation
in Int after 1.5 years and that after 5 years still 15% is left. So, the cross-lagged
effect function nicely clarifies what the meaning and impact across all intervals in
continuous time is of the impressive cross-effect of 0.704 in model EDM3.
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Fig. 7.9 Mean trajectories for Ext and Int and a subject-specific mean trajectory for Int, based on
model EDM3 in Table 7.2.

General mean trajectories for Ext and Int in Figure 7.9 were computed using
(7.11) and the subject-specific mean trajectory for Int using (7.12). As an illustra-
tion, the subject-specific mean trajectory was computed for a subject at one standard
deviation above trait mean for Int, that is for κ2 = 6.18. Because κ1 was deleted from
model EDM3 and therefore Φκ is not positive definite, (7.12) was applied by fill-
ing out in regression matrix Φxt0,κ

Φ−1
κ the regressions of x1t0 and x2t0 on κ2 only.
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It turns out that the means hardly change. The general means, starting from 17.9
and 21.1 in 1998, going down only a tiny fraction over the data collection period
between 1998 and 2000 towards 17.7 and 21.0, are predicted to be 17.6 and 20.9 in
2003 and converge for t→∞ to final values of 17.53 and 20.86. The subject-specific
mean trajectory for Int of the subject with subject-specific intercept value of b2 +
κ2 = 17.7, however, increases: from 24.9 in 1998 to 25.2 in 2000 and then in the
prediction period, after reaching 25.6 in the middle of 2003, to final value 25.80.
This final value is not much higher than the value in 2000 at the end of the data
collection period.

7.6 Relationships between Individualism, Nationalism and
Ethnocentrism in Flandres

The example in this section, taken from Toharudin, Oud, and Billiet (2008), is more
comprehensive than the one in the previous section for two reasons. First, the state
variables are latent and based on an elaborate measurement model for measuring
the theoretical constructs Individualism (I), Nationalism (N) and Ethnocentrism (E).
The constructs were repeatedly measured in three waves (1991, 1995, and 1999) in
a panel of N = 1274 Flemish respondents and Dutch-speaking respondents in Brus-
sels. Second, whereas the number of state variables was two in the previous section,
in this example it is three, leading to a 3 x 3 drift matrix with six different causal
connections between the latent variables. The purpose of the study was to find out,
how the constructs develop and influence each other across time. On the basis of pre-
vious research a recursive causal structure was hypothesized: I→N, N→ E, I→ E.
Thus, in addition to the auto-effects, only three of the six possible cross-effects were
hypothesized to be nonzero. In previous research, causal connections between the
constructs were analyzed cross-sectionally only, or, if longitudinally, solely in cor-
relational form without taking care of the causal direction of the effects, and never in
continuous time. Again, the continuous time analysis of the data set started with an
ADM analysis (LISREL input file ADM-INE.ls8 and output file ADM-INE.out), fol-
lowed by the corresponding EDM analysis (Mx input file EDM-INE.mx and output
file EDM-INE.mxo).

First, attention will be paid to the measurement model. Individualism (I) or “un-
restrained striving for personal interests”, Nationalism (N) or “identification with
the Flemish community in Belgium”, and Ethnocentrism (E) or “negative attitude
toward outgroups” were measured by 5, 4, and 8 items, respectively. Most of the
items were 5-point-scale items, the answers consisting of different degrees of agree-
ment/disagreement. Two item examples for each of the constructs are:

Individualism (I)
-Everybody has to take care of himself first.
-What counts is money and power.
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Nationalism (N)
-Flanders must decide.
-Belgium has to disappear.

Ethnocentrism (N)
-Belgium should not have allowed in guest workers.
-Immigrants cannot be trusted.

Several items under Nationalism had slight differences in formulation between the
first wave year 1991 and the two subsequent wave years 1995 and 1999. Measure-
ment invariance (time invariance) analyses were performed, in which the loadings,
measurement intercepts, and measurement error variances (C, d, and R in (7.16),
respectively) of these N-items were compared between 1991 on the one hand and
1995 and 1999 on the other hand. It yielded that time invariance of N-item 4 for 1991
(called “4na91” in ADM-INE.out) in comparison with 1995 and 1999 had to be re-
jected. Consequently, the three measurement parameters of this item were allowed
to deviate in 1991. Only one more deviation from time-invariance was allowed in
the measurement model by freeing the measurement intercept of I-item 5 in 1999
(called “5in99” in ADM-INE.out). Freeing this single parameter, thereby increasing
its value from 2.456 to 3.286, had the effect of decreasing the model χ2 for ADM
and EDM with the huge amount of 1209, implying a considerable improvement in
model fit. It prevents the increase in this single item from unduly influencing the
latent mean development of I between 1995 and 1999. All information about the
loadings of the items can be found in the main body of matrix “LAMBDA-Y” in
output file ADM-INE.out, about the measurement intercepts in the last column of
this matrix, and about the measurement error variances in “THETA-EPS”.

With regard to the dynamic model part and the initial state variances and means,
first the ADM and EDM estimates will be presented and then details about the way
the input files were formulated to obtain the estimates. Both solutions are given in
Tables 7.3 and 7.4. In Table 7.3 the ADM solution is on the left hand side and the
EDM solution on the right hand side. Because the estimates of the initial state vari-
ances and means are equal in both solutions, they are given only once in Table 7.4.
Both tables also give t-values, providing precise information about the significance
of the parameter estimates as well as about the standard errors (t = estimate/standard
error). Although in both ADM and EDM, trait variables were specified (in the form
of extra state variables as in (7.26) and (7.27)), all three trait variances were fixed
at zero in the final analysis, because no positive estimates were found or expected
to be found (see in ADM-INE.out the negative values under “Expected change for
Psi” for the variances of “04w1TrI”, “05w1TrN”, and “06w1TrE”). We conclude
that the initial variances are sufficient to differentiate trajectories for individual sub-
jects from the mean trajectory and no extra trait variances are warranted. Diffusion
coefficient matrix G and diffusion matrix Q = GG′ were specified diagonal because
of the rather low modification indices and expected changes in ADM-INE.out for
the off-diagonal elements.

Comparing the ADM and EDM solutions in Tables 7.3-7.4, it is striking how
similar both solutions are with only very small differences in the third decimal of
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the parameter estimates. Also the differences in t-values are small, proving that the
standard errors are very similar too. These almost equal results, obtained on the
basis of different models by quite diverse programs, clearly confirm each other. It
means also that the EDM can safely be evaluated by means of the ADM estimates,
standard errors and other information given by the LISREL program. As expected,
also the fit information is equal within precision limits. χ2 = 7881 in LISREL and
χ2 = 7880 in Mx with df = 1304 do not seem to imply a particularly good fit. It
should be noted, however, that the model with 51 observed variables is huge, the
sample of N = 1274 big, and the (almost) strict time-invariance of the continuous-
time model puts a lot of heavy constraints on the model, on the measurement part as
well as on the dynamic part of the model. It is therefore no surprise that the popular

Table 7.3 ADM and EDM estimates; standardized coefficients in drift matrices A† and A, t-values
between parentheses

I N E I N E
I

N

E



−0.069∗∗ −0.007 0.033∗∗
(−9.41) (−1.39) (5.15)

0.013∗ −0.061∗∗ 0.011∗
(2.31) (−10.79) (2.09)

0.039∗∗ 0.003 −0.062∗∗
(7.48) (0.80) (−11.98)





−0.070∗∗ −0.008 0.033∗∗
(−9.23) (−1.44) (5.13)

0.013∗ −0.061∗∗ 0.012∗
(2.33) (−10.17) (2.11)

0.040∗∗ 0.003 −0.063∗∗
(7.53) (0.82) (−11.94)


A† A

I

N

E



0.061∗∗
(3.28)

0.105∗
(2.21)

0.094∗∗
(7.58)





0.061∗∗
(3.32)

0.105∗
(2.19)

0.095∗∗
(7.62)


b† b

I

N

E


0.280∗∗
(11.37)

0.683∗∗
(11.06)

0.210∗∗
(15.39)




0.281∗∗
(10.83)

0.685∗∗
(10.70)

0.211∗∗
(14.92)


G† G

*p ≤ .05; **p ≤ .01.
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Table 7.4 Estimates of initial state (co)variances and means; t-values between parentheses, first
line of ADM and second line of EDM

I N E
I

N

E



0.778∗∗
(17.45)
(16.57)

−0.183∗ 5.999∗∗
(−2.41) (17.38)
(−2.41) (16.51)

0.321∗∗ 0.106 0.508∗∗
(13.44) (1.87) (17.10)
(13.34) (1.86) (17.11)





2.460∗∗
(83.18)
(82.96)

4.231∗∗
(51.64)
(50.49)

2.899∗∗
(116.82)
(116.73)


Φxt0

µµµxt0

*p ≤ .05; **p ≤ .01.

fit measure RMSEA (Browne and Cudeck, 1993) with value 0.068 indicates that the
model fits reasonably.

Turning to the drift matrix A, which should give the answers to the main ques-
tions in the study, we first observe that the auto-effects are all three negative
(−0.069,−0.061,−0.062), indicating stability or a long-term tendency for the tra-
jectories to converge to the mean trajectory. Stability is confirmed by the negative
eigenvalues of the drift matrix. Interestingly, by accounting appropriately for the
4 year observation interval, the auto-effects are correctly comparable to the auto-
effects of −0.320 and −1.251 in the previous example (Section 7.5) with a 1 year
interval. Individualism, Nationalism and Ethnocentrism in the present example have
a much weaker tendency to converge to their mean trajectory than externalizing
problem behavior and internalizing problem behavior in the previous example (Sec-
tion 7.5).

The cross-effects do not confirm the hypothesized recursive structure I → N,
N→ E, I→ E. In the place of non-significant and almost zero effect N→ E come
significant effects E → N and E → I. The role of Nationalism is therefore quite
different from what was expected. N turns out not to influence E, but, in contrast,
to undergo a weak influence from E. So, N comes out as the dependent variable in
the structure, weakly and nearly equally influenced by both other constructs (stan-
dardized coefficients of 0.013 and 0.011). In addition, a clear reciprocal relationship
shows up between Individualism and Ethnocentrism: I → E but also E → I with
standardized coefficients of 0.039 and 0.033, respectively. All standardized effects
are small in strength, though, and, although significant, much smaller than the stan-
dardized effect of 0.704 found in the previous example (Section 7.5).

As mentioned above, in both the ADM and the EDM trait variables were speci-
fied as extra state variables. This can be seen by SEM matrix B (called “BETA” in
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LISREL output ADM-INE.out and “A” in GROUP 42 of Mx output EDM-INE.mxo)
containing 19 variables: in addition to the last variable, the unit variable, at each
time point 3 state variables are followed by the extra 3 trait variables. Just as B, ΨΨΨ

is also a 19 x 19 matrix (called “PSI” in ADM-INE.out and “P” in GROUP 42 of
EDM-INE.mxo), showing the initial covariance matrix Φxt0

in the first 3 x 3 diago-
nal block and the trait covariance matrix Φκ (in the final analysis fixed at zero) in
the next 3 x 3 diagonal block.

For the ADM analysis, the equal observation intervals of ∆t1 = ∆t2 = 4 were
reason to apply the simple ADM constraints in (7.20) between lagged and instan-
taneous matrices A∗∗

∆t1
and A∗

∆t1
in addition to the equality constraints between time

points. In the LISREL output file ADM-INE.out one finds the lagged matrix A∗∗
∆t1

in BETA at variables 7-9 (dependent) and 1-3 (lagged independent) and the instan-
taneous matrix A∗

∆t1
at variables 7-9 (dependent and independent). The ADM con-

straints (7.20) are formulated in LISREL input file ADM-INE.ls8 following “!ADM
equality (auto)” and “!ADM equality constraints (cross)”. As explained below for-
mula (7.20), the estimates of drift coefficients in A† , intercepts in b† , and diffusion
coefficients in G† can easily be obtained by hand from the estimated discrete time
matrices using (7.19). For convenience, these simple computations have also been
done by means of the LISREL program: division of A∗

∆t1
by 1

2 ∆t1 = 2 (multiplica-
tion by 0.5, yielding the drift coefficients in additional LISREL parameters PA(1)-
PA(9)), division of b∗

∆t1
by ∆ti = 4 (multiplication by 0.25, yielding the drift coef-

ficients in additional LISREL parameters PA(16)-PA(18)), and division of Q∗
∆t1

by

∆ti = 4, followed by the square-root of the result (
√

1
4 q∗ii,∆t1

= 0.5x(q∗ii,∆t1
)0.5 yield-

ing the diffusion coefficients in additional LISREL parameters PA(19)-PA(21)). All
elements in trait matrices Φ†κ and Φ†xt0 ,κ were specified zero in the final analysis,
but, if nonzero, they could have been computed by dividing Φ∗

κ∆ti and Φ∗xt0,κ∆ti by

∆t2
1 = 16 and ∆t1 = 4, respectively.
The scale free character of t-values can be observed by comparison of the t-

values for A∗
∆t1

and A† as well as for b∗
∆t1

and b† . In both cases, the estimated values
are different but the t-values are indeed equal. One would expect the t-values also
to be equal for Q∗

∆t1
and G† as well as for the six unstandardized cross-effects in

PA(2), PA(3), PA(4), PA(6), PA(7), PA(8) and their standardized values computed
in PA(10)-PA(15). It turns out that the t-values of the three standard deviations in
G† are not one time but exactly two times those of the variances in Q∗

∆t1
. This is a

consequence of the square root transformation covering negative as well as positive
values. Because negative values have to be excluded for standard deviations, one
should stick to half the values found for the diagonals in G† as reported in Table
7.3. The t-values computed by LISREL for the standardized coefficient values inap-
propriately also take into account the variability of the standard deviations used in
standardization. The scale of the variables can be chosen arbitrarily, however. If the
standard deviations would have been specified in PA(10)-PA(15) as fixed quantities,
the t-values would have been equal to those computed for A∗

∆t1
and A† as reported

in Table 7.3.
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Fig. 7.10 Autoregression functions of I, N, and E, based on model EDM in Table 7.3.

For the EDM analysis a much more elaborate Mx input file was used than in the
previous example (Section 7.5). The 45 GROUPS enable the estimation of the more
general, time-varying model discussed in Oud and Jansen (2000). For estimating
the present time-invariant model, only a subset of the GROUPS is needed, however.
At the start of the input file EDM-INE.mx, it is clearly indicated in which GROUPS
the time-invariant model matrices are specified. GROUP 44 in output file EDM-
INE.mxo displays all the estimated matrices, reported in Tables 7.3-7.4. In GROUP
45 the standardized drift matrix is computed. Standard errors, on the basis of which
the t-values reported in Tables 7.3-7.4 were computed, are displayed by Mx at the
start of the output before GROUP 1. As in the case of the ADM, the t-values for
the diffusion coefficients (standard deviations) in G have been halved. All discrete
time matrices (see (7.17)) are found at the positions specified by (7.27) in B (“A” in
GROUP 42) and in ΨΨΨ (“P” in GROUP 42).

To depict in continuous time the short-run and long-run implications of the model
for Flandres, we conclude the example with the autoregression functions (Figure
7.10), cross-lagged effect functions (Figure 7.11), and mean trajectories (Figure
7.12), all based on the EDM estimates in Tables 7.3-7.4. Autoregression and cross-
lagged effect functions have been computed using (7.5). The autoregressions and
cross-lagged effects are computed not only for the actual observation intervals of 4
and 8 years, but interpolated and predicted for any interval over a rather extended
prediction period. Although the differences between the autoregression functions
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Fig. 7.11 Standardized cross-lagged effect functions for significant cross-effects of EDM in Table
7.3.

in Figure 7.10 are rather small (all three state variables have a strong tendency to
persist over time, much stronger than, for instance, externalizing and internalizing
problem behavior in Figure 7.7), the non-monotone character of the autoregression
functions nicely illustrates the need for analyzing in continuous time. The strength
order between N and I reverses after interval 14.2, N becoming the variable with the
lowest autoregression. It means that a discrete-time analyst confronted, for example,
with observation interval 16 or 20 would come to different conclusions than his col-
league, working with interval 4 or 8. Continuous time analysis, however, prevents
such erroneous conclusions by showing the complete picture.

In contrast to the the autoregression functions in Figure 7.10, the standardized
cross-lagged effect functions in Figure 7.11 show monotonicity. For all intervals,
at least over 0 to 60 years, the strength order between the four cross-lagged effect
functions turns out to be the same as for the actual observation intervals of 4 and
8. Particularly, in the feedback loop between I and E, I→ E exceeds E → I every-
where. With regard to the two relatively smaller effects, we observe that everywhere
I→ N is slightly stronger than E→ N. An interesting result of the continuous time
analysis is further that all four cross-lagged effects reach their maximum quite some
time after the empirical observation intervals of 4 and 8 years. The maximum of
I→ E (0.235) is reached somewhat later, at interval 17.0, than the lower maximum
of E→ I in the opposite direction (0.190), reached at 16.4. The maximum of I→ N
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Fig. 7.12 Latent mean trajectories for I, N and E, based on Tables 7.3–7.4.

(0.105) at interval 22 is reached 1.2 years before the maximum of E→ N (0.099) at
23.2.

Finally, Figure 7.12 shows that the mean values of Individualism and Ethnocen-
trism hardly changed in the data collection period 1991-1999 and are hardly ex-
pected to change in the prediction period. The mean of Individualism, starting at
2.46 in 1991 and decreasing to 2.43 in 1999, is expected to converge to final value
2.30. The mean of Ethnocentrism, starting at 2.90 in 1991 and decreasing to 2.87 in
1999, is expected to converge to final value 2.77. The mean of Nationalism, how-
ever, increased in the data collection period from 4.23 to 4.55, and a further limited
increase for the near future is expected, but then the prediction levels off towards
final value 4.91.

7.7 Conclusions

The development of externalizing and internalizing problem behavior in children or
the attitude change in the Flemish electorate with regard to individualism, national-
ism, and ethnocentrism are continuously evolving processes, rather than processes
that show isolated, sudden changes at discrete points in time. The analyst, however,
only observes at discrete points in time (for example, biennial, yearly or monthly
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observations). The typical approach in conventional (that is, discrete) time series
modeling and panel data analysis is to ignore the continuous time nature of the pro-
cesses underlying discrete time observations. Consequently, discrete time series and
discrete panel data analyses are simplifications and often distortions of reality.

Comparability of results between different studies is the key to cumulative
progress in science. Just because of the frequent model formulation and estimation
in terms of the observation interval at hand, comparability is low in social and be-
havioral science. By means of the continuous-time approach using the exact discrete
model (EDM) or approximate discrete model (ADM), explained in this chapter, the
model parameters are made independent of the observation interval, and thus pro-
vide a common basis for accurate comparison of differently time-spaced models of
the same or similar processes. As shown also in this chapter, if analysis results for
the EDM or ADM from different authors use time scales in different units, they
are easily translated into each other. Thus, results are made comparable without
re-estimation being necessary.

Not all topics in continuous time analysis could be covered by the EDM-SEM
and ADM-SEM procedures as expounded in the present chapter. We mention, in
particular, time-varying models (Oud & Jansen, 2000) and models for oscillating
movements (Oud, 2007a). In our conviction, however, the models presented in this
chapter give a continuous time formulation to the typical kind of problems current
longitudinal and panel research in social and behavioral science is involved with.
A final but important topic not dealt with in the present chapter is the handling of
incomplete data. In a longitudinal SEM context this can be solved in most cases
by the expectation-maximization (EM) procedure using the Kalman smoother, ex-
plained in Oud and Jansen (1996) and applied in continuous-time modeling by Oud
and Jansen (2000), or the individual likelihood procedure (Neale, 2000; Wothke,
2000) as implemented, for instance, in Mx.
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