
Chapter 6

State Space Methods for Latent Trajectory and

Parameter Estimation by Maximum Likelihood

Jacques J. F. Commandeur, Siem Jan Koopman, and Kees van Montfort

Abstract We review Kalman filter and related smoothing methods for the latent
trajectory in multivariate time series. The latent effects in the model are modelled as
vector unobserved components for which we assume particular dynamic stochastic
processes. The parameters in the resulting multivariate unobserved components time
series models will be estimated by maximum likelihood methods. Some essential
details of the state space methodology are discussed in this chapter. An application
in the modelling of traffic safety data is presented to illustrate the methodology in
practice.

6.1 Introduction

This chapter concerns multivariate state space analysis and discusses some particu-
lar issues of interest, see Durbin and Koopman (2001) and Commandeur and Koop-
man (2007).

Multivariate state space analysis is applicable to situations where two or more
time series need to be analysed simultaneously. However, the material in this chap-
ter also provides a unified treatment for univariate time series. In classical regres-
sion analysis a linear relationship is assumed between the dependent variable yi
and an independent variable xi. The standard regression model for n realizations or
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observations of yi and covariate xi for i = 1, . . . ,n can be represented by

yi = a+bxi + εi,

where the disturbances or errors ε1, . . . ,εn are normally and independently dis-
tributed with mean zero and variance σ2

ε . The coefficients a and b are unknown
and fixed and are usually estimated by employing the regression method. It is im-
plied in a classical regression analysis that the observations yi, after the corrections
for intercept and for independent variable xi, are assumed to be independent of each
other. In a time series context, it is not realistic to assume that the observations are
conditionally independent because they are expected to be interrelated through time.
When statistical inference is carried out when the observations are known to be sub-
ject to serial correlations (time dependencies), various problems can arise when it
is based on classical regression analysis. For instance, the well-known F-test and
t-test statistics do not have proper F- and t-distributions, respectively, under the null
hypothesis. Time series analysis has the primary task to uncover the dynamic devel-
opment of observations measured over time. By using state space methodology it is
assumed that the dynamic properties cannot be observed directly from the data. The
unobserved dynamic process at time t can be measured indirectly and is referred to
as the state of the time series. The state of the time series may consist of several
unobserved components and can be estimated by the Kalman filter.

State space methods originated in the field of control engineering, starting with
the ground-breaking paper of Kalman (1960). They were initially (and still are)
deployed for the purpose of accurately tracking the position and velocity of moving
objects such as ships, airplanes, missiles, and rockets.

Around the eighties of the last century it was recognized by scientists involved
in other fields than control engineering that these ideas could well be applied to
time series analysis generally as well. Since then state space methods have been
applied in a wide range of subjects, including economics, finance, political science,
environmental science, the social sciences, road safety and medicine.

The outline of this chapter is as follows. In Section 6.2 we formulate the general
multivariate state space model and we discuss several well-known sub models. Sec-
tion 6.3 deals with the Kalman filter and the estimation of the unobserved states and
the unknown model parameters. In Section 6.4 we discuss some tests to check the
model assumptions such as normality, independency and homoscedasticity. Finally,
we will present an empirical example.

6.2 Linear Gaussian State Space Models

A time series is a set of observations which are sequentially ordered over time. In a
state space analysis the time series observations are assumed to depend linearly on
a state vector that is unobserved and is generated by a stochastically time-varying
process (a dynamic system). The observations are further assumed to be subject to
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measurement error that is independent of the state vector. The state vector can be
estimated or identified once a sufficient set of observations becomes available. In
this section we concentrate on the state space model and its special cases. In Section
6.3 we discuss methods for estimation, residual analysis and forecasting on the basis
of state space models. The expositions rely mostly on the introductory textbook by
Commandeur and Koopman (2007) and on the more advanced textbook by Durbin
and Koopman (2001).

The general linear Gaussian state space model for the n-dimensional observation
sequence y1, . . . ,yn is given by

yt = Ztαt + εt , εt ∼ NID(0,Ht), (6.1)
αt+1 = Ttαt +Rtηt , ηt ∼ NID(0,Qt), t = 1, . . . ,n, (6.2)

where αt is the state vector, εt and ηt are disturbance vectors and the system matri-
ces Zt , Tt , Rt , Ht and Qt are fixed and known but a selection of elements may depend
on an unknown parameter vector. Equation (6.1) is called the observation or mea-
surement equation, while (6.2) is called the state or transition equation. The p× 1
observation vector yt contains the p observations at time t and the m×1 state vector
αt is unobserved. The p× 1 irregular vector εt has zero mean and p× p variance
matrix Ht .

The p×m matrix Zt links the observation vector yt with the unobservable state
vector αt and may consist of regression variables. The m×m transition matrix Tt
in (6.2) determines the dynamic evolution of the state vector. The r×1 disturbance
vector ηt for the state vector update has zero mean and r×r variance matrix Qt . The
observation and state disturbances εt and ηt are assumed to be serially independent
and independent of each other at all time points. In many standard cases, r = m and
matrix Rt is the identity matrix Im. In other cases, matrix Rt is an m× r selection
matrix with r < m. Although matrix Rt can be specified freely, it is often composed
of a selection from the first r columns of the identity matrix Im.

The initial state vector α1 is assumed to be generated as

α1 ∼ NID(a1,P1),

independently of the observation and state disturbances εt and ηt . Mean a1 and
variance P1 can be treated as given and known in almost all stationary processes
for the state vector. For nonstationary processes and regression effects in the state
vector, the associated elements in the initial mean a1 can be treated as unknown
and need to be estimated. For an extensive discussion of initialisation in state space
analysis, we refer to Durbin and Koopman (2001, Chapter 5).
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6.2.1 Local Level Model and Other Unobserved Component
Models

By appropriate choices of the vectors αt , εt and ηt , and of the matrices Zt , Tt , Ht , Rt
and Qt , a wide range of different time series models can be derived from (6.1) and
(6.2). Here we discuss the class of unobserved components time series models. A
number of special cases will be discussed in some detail. Special attention is given
to the univariate local level model.

Letting

αt = μt , ηt = ξt , Zt = Tt = Rt = 1, Ht = σ2
ε , Qt = σ2

ξ ,

(all of order 1×1) for t = 1, . . . ,n, model (6.1)-(6.2) reduces to the local level model
as given by

yt = μt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ),

(6.3)

for t = 1, . . . ,n. The level component μt can be conceived of as the equivalent of
the intercept in the classical linear regression model yt = μ + εt which is obtained
by setting all the level disturbances ξt in (6.3) equal to zero and with μ = μ1. The
key difference is that the intercept μ in a regression model is fixed whereas the level
component μt in (6.3) is allowed to change from time point to time point.

Since the second equation in (6.3) defines a random walk, the local level model
is also referred to as the random walk plus noise model (where the noise refers
to the irregular component εt ). It can be shown that the dynamic process for
xt = yt+1− yt = ηt + εt+1− εt , for t = 1, . . . ,n, reduces to the moving average pro-
cess xt = εt + θεt−1 where θ relates to the signal-to-noise ratio q = σ2

ξ /σ2
ε via a

quadratic function. Furthermore, the forecasting function of observations generated
by the local level model is equivalent to the exponentially weighted moving average
scheme or exponential smoothing.

By defining

αt =
(

μt
νt

)
, ηt =

(
ξt
ζt

)
, Tt =

[
1 1
0 1

]
, Zt =

(
1 0

)
,

Ht = σ2
ε , Qt =

[
σ2

ξ 0
0 σ2

ζ

]
, and Rt =

[
1 0
0 1

]
,

the scalar notation of (6.1) and (6.2) leads to

yt = μt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +νt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.4)

νt+1 = νt +ζt , ζt ∼ NID(0,σ2
ζ ),
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for t = 1, . . . ,n, and we obtain the local linear trend model.
The local linear trend model requires a 2× 1 state vector αt : one element for

the level component μt and one element for the slope component νt . The slope
component can be conceived of as the equivalent of the regression coefficient in
the classical regression model where the observed time series yt is regressed on the
independent variable time t: yt = μ + νt + εt with μ = μ1 and ν = ν1. Again, the
important difference is that the regression coefficient or weight ν is fixed in classical
linear regression, whereas the slope νt in the local linear trend model is allowed to
change over time.

In the situation that the observed time series consists of quarterly or monthly
data, for example, the local level and the local linear trend model can be extended
with a stochastic seasonal dummy component denoted here by γt . In the case of a
quarterly time series (the seasonal length is 4), by defining

αt =

⎛⎜⎜⎝
μt
γ1,t
γ2,t
γ3,t

⎞⎟⎟⎠ , ηt =
(

ξt
ωt

)
, Tt =

⎡⎢⎢⎣
1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ , Zt =
(
1 1 0 0

)
,

Ht = σ2
ε , Qt =

⎡⎢⎢⎣
σ2

ξ 0 0 0
0 σ2

ω 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , Rt =

⎡⎢⎢⎣
1 0
0 1
0 0
0 0

⎤⎥⎥⎦ ,

and expanding (6.1) and (6.2) in scalar notation, we obtain

yt = μt + γ1,t + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ),

γ1,t+1 =− γ1,t − γ2,t − γ3,t +ωt , ωt ∼ NID(0,σ2
ω), (6.5)

γ2,t+1 = γ1,t ,

γ3,t+1 = γ2,t ,

for t = 1, . . . ,n, which is a local level and dummy seasonal model for a quarterly
time series where the seasonal component is allowed to change over time. The sea-
sonal dummy model is not the only approach to incorporate time-varying seasonal
effects in unobserved components time series model. For example, the trigonomet-
ric seasonal can also be considered. For details about such alternative specifications
of the seasonal we refer to Harvey (1989) and Durbin and Koopman (2001).

The textbook of Harvey (1989) was instrumental in the dissemination of state
space models outside the field of control engineering. When a slope component is
included in (6.5) as well, Harvey calls this model the basic structural time series
model. A typical application of this model is for the seasonal adjustment of time
series. A seasonally adjusted time series is defined in this context simply by ŷt − γt
for t = 1, . . . ,n.
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Another extension is to include one or more cycles to any of the special models
within the class of unobserved components time series models. By defining

αt =

⎛⎝μt
ct
c∗t

⎞⎠ , ηt =

⎛⎝ξt
κt
κ∗t

⎞⎠ , Tt =

⎡⎣1 0 0
0 ρ cos(λc) ρ sin(λc)
0 −ρ sin(λc) ρ cos(λc)

⎤⎦ , Zt =
(
1 1 0

)
,

Ht = σ2
ε , Qt =

⎡⎣σ2
ξ 0 0

0 σ2
c (1−ρ2) 0

0 0 σ2
c (1−ρ2)

⎤⎦ , and Rt =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ,

in (6.1) and (6.2), we obtain the following local level plus cycle model as given by

yt = μt + ct + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.6)

ct+1 = ρ[cos(λc)ct + sin(λc)c∗t ]+κt , κt ∼ NID(0,σ2
c (1−ρ2)),

c∗t+1 = ρ[−sin(λc)ct + cos(λc)c∗t ]+κ∗t , κ∗t ∼ NID(0,σ2
c (1−ρ2)),

for t = 1, . . . ,n, where 0 < ρ ≤ 1 is the damping factor and λc is the frequency of the
cycle measured in radians so that 2π /λc is the period of the cycle. In case ρ = 1, the
cycle reduces to a fixed sine-cosine wave but the component is still stochastic since
the initial values c1 and c∗1 are stochastic variables with mean zero and variance σ2

c .
A typical application of this model is for the signal extraction of business cycles
from macro-economic time series.

6.2.2 Regression and Intervention Effects

Another extension of the local level and local linear trend models concerns the
incorporation of fixed explanatory and intervention variables. In the case of one
regression variable xt and one intervention variable wt , for example, we have
yt = μt + βxt + λwt + εt for the local level model and a state vector of three ele-
ments is required: one for the level component μt , one for the regression coefficient
β , and one for the regression coefficient λ . The substitution of

αt =

⎛⎝μt
βt
λt

⎞⎠ , ηt = ξt , Tt =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , Zt =
(
1 xt wt

)
,

Ht = σ2
ε , Qt =

⎡⎣σ2
ξ 0 0

0 0 0
0 0 0

⎤⎦ , Rt =

⎡⎣1
0
0

⎤⎦ ,

in (6.1) and (6.2) results in
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yt = μt +βt xt +λt wt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.7)

βt+1 = βt ,

λt+1 = λt ,

where β = β1 = βt and λ = λ1 = λt for t = 1, . . . ,n. This is the local level model
with one continuous explanatory variable xt and one intervention variable wt . By
adding disturbance terms to the state equation for βt in (6.7), this regression weight
is effectively subjected to a random walk, thus allowing for the estimation of time-
varying regression effects.

Letting τ denote the time point at which an intervention effect occurred, variable
wt can either be coded as a pulse intervention:

wt =

{
0, t < τ, t > τ
1, t = τ

(to model an outlier observation), or as a level intervention:

wt =

{
0, t < τ,

1, t ≥ τ,

(to model a structural break in the level of the series), or as a slope intervention:

wt =

{
0, t < τ,

1+ t− τ, t ≥ τ,

(to model a structural break in the slope of the series). Other types of intervention
effects can be modelled as well, see Box and Tiao (1975).

6.2.3 Structural Time Series Model

What emerges – and this a key advantage of state space methods – is their structural
approach to time series analysis: the different unobserved components or building
blocks responsible for the dynamics of the series such as trend, seasonal, cycle, and
the effects of explanatory and intervention variables are identified separately before
being put together in a state space model. It is the responsibility of the researcher
to decide what components are required in a specific situation, and then to consider
whether they apply to the time series under consideration. This explains why state
space models are also known as structural time series models.
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6.2.4 Multivariate Models

All this is easily extended to multivariate time series. For example, letting yt denote
a p×1 vector of observations, a multivariate local level model can be applied to the
p time series simultaneously:

yt = μt + εt , εt ∼ NID(0,Σε),
μt+1 = μt +ξt , ξt ∼ NID(0,Σξ ),

(6.8)

for t = 1, . . . ,n, where μt , εt , and ξt are p×1 vectors and Σε and Σξ are p× p vari-
ance matrices. In what is known as the seemingly unrelated time series equations
model (6.8), the series are modelled as in the univariate situation, but the distur-
bances driving the level components are allowed to be instantaneously correlated
across the p series. When slope, seasonal, or cycle components are involved, each
of these three components also has an associated p× p variance matrix allowing for
correlated disturbances across series.

If it is found that the rank r of Σξ in (6.8) is smaller than p, then this indicates
that the p series have r common levels. Such common factors may not only have a
nice interpretation, but may also result in more efficient inferences and forecasts.

6.3 State Space Analysis

For given values of all system matrices – and for given initial conditions a1 and P1
– the state vector can be estimated in three different ways, yielding what are known
as the filtered, the predicted, and the smoothed state vector. Depending on the types
of state estimates required in the analysis, the estimates of the state vector can be
obtained by performing one or two passes through the observed time series:

1. a forward pass, from t = 1, . . . ,n, using a recursive algorithm known as the
Kalman filter enables the computation of filtered and predicted states and pre-
diction errors;

2. a backward pass, from t = n, . . . ,1, using output of the Kalman filter and us-
ing recursive algorithms known as state and disturbance smoothers enables the
computation of smoothed estimates of states and disturbances.

6.3.1 Kalman Filter for Prediction, Filtering and Forecasting

The forward pass through the data with the well-known Kalman (1960) filter pro-
vides all estimates that are relevant for the filtered and the predicted state. The main
purpose of the Kalman filter is to obtain optimal estimates of the state at time point t,
only considering the observations {y1,y2, . . . ,yt−1}. A key property of the predicted
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state and its related estimates is therefore that they are only based on past values of
the observed time series. The recursive formulas for the Kalman filter are

vt = yt −Ztat , Ft = ZtPtZ′t +Ht ,

Kt = TtPtZ′t F
−1

t , Lt = Tt −KtZt , (6.9)
at+1 = Ttat +Ktvt , Pt+1 = TtPtL′t +RtQtR′t ,

for t = 1, . . . ,n. The values of at in (6.9) represent the predicted state, while the
values of Pt quantify the estimation error variance matrix of the predicted state at .
Under the assumption of normality, the latter variances are useful for the construc-
tion of confidence intervals for the predicted state, which – assuming that we are
interested in their 90% confidence limits for example – can be calculated as

at ±1.64
√

Pt ,

for t = 1, . . . ,n. A modification of the Kalman filter also allows the computation of
the filtered estimate of the state vectors, that is

at|t = at +PtZ′t F
−1

t vt , Pt|t = Pt −PtZ′t F
−1

t ZtPt , t = 1, . . . ,n,

where at|t is the optimal estimate of the state at time point t by considering the
observations {y1,y2, . . . ,yt} while Pt|t is the state filtered estimation error variance
matrix. The values of vt in (6.9) are called the one-step ahead prediction or forecast
errors, since they quantify the lack of accuracy of at in predicting the observed
value of yt at time point t; the values of Ft are the variances of these one-step ahead
prediction errors vt .

One of the convenient features of state space methods is the ease with which they
deal with two important aspects of time series analysis – forecasting and missing
observations: by treating them in exactly the same way. Missing observations are
handled by setting Kt and vt in (6.9) equal to 0. Forecasts for yn+1, . . . ,yn+k given
y1, . . . ,yn are simply obtained by applying the Kalman filter for t = 1, . . . ,n,n +
1, . . . ,n+ k and by treating yn+1, . . . ,yn+k as missing observations.

6.3.2 State and Disturbance Smoothing

The backward pass through the data is only required for smoothing that leads to esti-
mates such as the smoothed states and smoothed disturbances. The main purpose of
state and disturbance smoothing is to obtain estimated values of the state and distur-
bance vectors at time point t, considering all available observations {y1,y2, . . . ,yn}.
The recursive formulas for state smoothing are

rt−1 =Z′t F
−1

t vt +Z′t rt , Nt−1 =Z′t F
−1

t Zt +L′tNtLt , (6.10)
α̂t =at +Ptrt−1, Vt =Pt −PtNt−1Pt , (6.11)
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for t = n, . . . ,1. The recursive formulas for smoothing (6.10) are initialised with
rn = 0 and Nn = 0. The state smoothing equations (6.11) yield the smoothed state
estimate α̂t and is defined as the optimal estimate of αt using the full set of obser-
vations {y1,y2, . . . ,yn}; the state smoothing equations also yield the corresponding
smoothed state estimation error variance matrix Vt .

Analogous to the predicted state, under the assumption of normality the smoothed
state estimation error variance matrix Vt is useful for the construction of confidence
intervals for the smoothed state components, which – should we happen to be inter-
ested in their 90% confidence limits for example – can be calculated as

α̂t ±1.64
√

Vt ,

for t = 1, . . . ,n.
The recursions for rt−1 and Nt−1 in (6.10) also enable the computation of the

smoothed estimates of the disturbances εt and ηt in the following way,

ε̂t =Ht
(
F−1

t vt −K′t rt
)
, Var(ε̂t) =Ht

(
F−1

t +K′t NtKt
)

Ht , (6.12)
η̂t =QtR′t rt , Var(η̂t) =QtR′tNtRtQt , (6.13)

for t = n, . . . ,1. The equations (6.12) and (6.13) compute the smoothed observa-
tion disturbances ε̂t , the smoothed state disturbances η̂t , and their corresponding
smoothed estimation error variance matrices Var(ε̂t) and Var(η̂t).

6.3.3 Diagnostic Checking

All significance tests in linear Gaussian state space models – and the construction
of confidence intervals – are based on three assumptions concerning the residuals
of the analysis. The residuals should satisfy independence, homoscedasticity, and
normality, in this order of importance. Whether the residuals satisfy these three as-
sumptions can be established by diagnosing what are known as the standardised
prediction errors. They are defined as

vt√
Ft

, (6.14)

for t = 1, . . . ,n. For the computations of the one step-ahead prediction errors vt and
their variances Ft in (6.14), we refer to the recursive formulas for the Kalman filter
given in (6.9). The assumptions of independence and normality of the residuals
can be diagnosed using the Box-Ljung test statistic and the Bowman and Shenton
test statistic, respectively. The assumption of homoscedasticity can be checked by
testing whether the variance of the standardised prediction errors in the first third
part of the series is equal to the variance of the errors corresponding to the last
third part of the series. For further details concerning these diagnostic tests, we refer
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to Harvey (1989), Durbin and Koopman (2001) and Commandeur and Koopman
(2007).

A second diagnostic tool for determining the appropriateness of a model is pro-
vided by inspection of what are known as the auxiliary residuals. As already men-
tioned above, the disturbance smoothing filters applied in the backward pass through
the data yield, amongst others, estimates of the smoothed observation and state dis-
turbances, and of their variances. The auxiliary residuals are obtained by dividing
the smoothed observation and state disturbances with the square root of their corre-
sponding variances, as follows:

ε̂t√
Var(ε̂t)

, and
η̂t√

Var(η̂t)
, (6.15)

for t = 1, . . . ,n, resulting in standardised smoothed disturbances. Inspection of the
standardised smoothed observation disturbances (shown at the left of (6.15)) allows
for the detection of possible outlier observations in a time series, while inspection of
the standardised smoothed state disturbances (shown at the right of (6.15)) makes it
possible to detect structural breaks in the underlying development of a time series.

Each auxiliary residuals can be considered as a t-test for the null hypothesis that
there was no outlier observation (when inspecting the auxiliary residuals at the left
of (6.15)) or as a t-test for the null hypothesis that there was no structural break in the
corresponding unobserved component of the observed time series (when inspecting
the auxiliary residuals at the right of (6.15)). Applying the usual 95% confidence
limits of ±1.96 corresponding to a two-tailed t-test, possible outlier observations or
structural breaks in the unobserved components making up the state vector are thus
easily detected.

6.3.4 Parameter Estimation

So far, we have presented all of the results that can be obtained with state space
methods as if the disturbance variances, the fixed regression effects, the parame-
ters ρ and λc associated with cycles, etcetera, are given and known. In practice, of
course, these parameters are unknown, and have to be estimated.

It can be shown that the Kalman filter presented in (6.9) also provides the neces-
sary ingredients required for evaluating the log-likelihood function, which is given
by

logL(y|ψ) =−np
2

log(2π)− 1
2

n

∑
t=1

(
log |Ft |+ v′tF

−1
t vt

)
, (6.16)

where the vt are the one-step ahead prediction errors, the Ft are their variances for
t = 1, . . . ,n defined in (6.9), and ψ denotes the vector of unknown parameters. The
log-likelihood (6.16) is maximised with respect to ψ numerically using the score
vector or the EM algorithm.
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Numerical quasi-Newton methods for likelihood maximization such as the one
of Broyden-Fletcher-Goldfarb-Shanno (BFGS) are generally regarded as computa-
tionally efficient in terms of convergence speed and numerical stability, see also
the book of Nocedal and Wright (1999). The BFGS iterative optimization method
is based on information from the gradient and terminated when some pre-chosen
convergence criterion is satisfied. The convergence criterion is usually based on the
gradient evaluated at the current estimate, the parameter change compared to the
previous estimate or the likelihood value change compared to the previous estimate.
The number of iterations required to satisfy these criteria depends on the choice of
the initial parameter values, the tightness of the chosen criterion and the shape of
the likelihood surface.

Several problems may arise when maximizing the likelihood function with re-
spect to the parameter vector of a high dimension. For example, the number of
required iterations may be too large for a feasible procedure, different initial param-
eter values and different convergence criteria may lead to different estimates. Also,
flat likelihood surfaces may not allow the optimization procedure to converge.

An alternative method for computing ML estimates is the use of the EM-
algorithm. The EM-algorithm is not an alternative to ML, but it is an alternative
way to obtain the ML estimates. We may compare the different estimation methods
in terms of required calculation time. The EM algorithm in the setting of a state
space model was developed by Shumway and Stoffer (1982) and Watson and En-
gle (1983). The basic EM procedure works roughly as follows. Consider the joint
density p(y1, . . . ,yn,α1, . . . ,αn). The Expectation (E) step takes the expectation of
the components of the joint density conditional on y1, . . . ,yn and maximizes the re-
sulting expression with respect to ψ . The E step mainly consists of evaluating the
estimated state vector using state space smoothing algorithms. The next step is the
Maximization (M) step which usually can be done analytically and is simpler than
maximizing the full likelihood function directly. Given the “new” estimate from the
M step, we can go back to the E step and evaluate the smoothed estimates based on
the new estimate. This iterative procedure converges to the ML estimate of ψ . Un-
der fairly weak conditions it can be proven that each iteration of the EM algorithm
only increases the value of the likelihood, and that the EM estimate converges to a
maximum of the likelihood. The algorithm has similar properties as a well chosen
numerical ML algorithm.

6.4 An Illustration of Multivariate State Space Analysis

In this section we present the practical implications of a multivariate state space
analysis. Various results of a simultaneous analysis of two time series will be dis-
cussed in some detail. In February 1983 a law was introduced in the United King-
dom (UK) obligating front seat passengers in cars (including the driver) to wear a
seat belt. In Durbin and Koopman (2001) and Commandeur and Koopman (2007)
the effect of this law was investigated by applying a bivariate local level with
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seasonal model to the log of the monthly numbers of front seat passengers killed
or seriously injured (KSI) in cars and to the log of the monthly numbers of rear car
seat passengers KSI, but only for the period 1969− 1984 (thus yielding a total of
12×16 = 192 observations per series). These series were analysed previously with
univariate state space models in Harvey and Durbin (1986).

In these studies the numbers of UK front seat passengers KSI in cars were treated
as a treatment series, while the UK rear seat passengers KSI in cars were used as
a control series, based on the assumption that the rear seat passengers KSI in cars
were not affected by the introduction of this seat belt law. It was indeed found that
the seat belt law resulted in a significant 28.4% to 30.5% decrease in the number of
front seat passengers KSI in cars, but did not affect the number of UK rear car seat
passengers KSI.

In this section we re-investigate the effect of the introduction of this law, but
now applied to the same two series supplemented with monthly observations for the
years 1985−2007, resulting in a total of 12×39 = 468 observations per series. The
logs of the two series are displayed in Figure 6.1.

1970 1975 1980 1985 1990 1995 2000 2005

5.0

5.5

6.0

6.5

7.0
LfrontKSI LrearKSI

Fig. 6.1 Log of monthly numbers of front seat passengers (top) and rear seat passengers (bottom)
in cars killed or seriously injured in the UK in the period 1969–2007.

These extended series not only make it possible to confirm or falsify the value
and significance of the effect of the February 1983 seat belt law on front seat pas-
sengers in cars previously found in Durbin and Koopman (2001) and Commandeur
and Koopman (2007) for the monthly 1969−1984 series, but also to investigate the
effects of the introduction of two other seat belt laws in the UK: the obligation for
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children in the rear seat of cars to wear a seat belt in September 1989, and for adults
in the rear seat of cars to wear a seat belt in July 1991. In the evaluation of the effects
of the latter two laws it is typically the monthly number of rear seat passengers KSI
that act as a treatment series while the monthly number of front seat passengers KSI
can now be used as a control series.

All the analyses discussed in this chapter were performed in STAMP 8 of Koop-
man, Harvey, Doornik, and Shephard (2007). STAMP 8 is an easy-to-use package
designed to model and forecast time series, based on uni- and multivariate structural
time series models. No coding is required because all the models are simply formu-
lated by clicking options in dialog windows. Other software packages that currently
have functions for analysing time series with state space methods (but with a pro-
grammatic interface) include SsfPack, R, Matlab, Eviews, Gauss, Stata,
SAS, RATS, and Gretl.

We start by adding three intervention variables to a bivariate local linear trend
with monthly seasonal model applied to both series (in logs). These intervention
variables are: the introduction of the seat belt law for car drivers and front seat car
passengers in February 1983, the introduction of the seat belt law for children in
the rear seat of cars in September 1989, and the introduction of the seat belt law for
adults in the rear seat of cars in July 1991, all applied to both series simultaneously.

The bivariate time series analysis aims to assess the effects of the introduction of
these three seat belt laws in the UK. The intervention of February 1983 is expected
to affect the car drivers and front seat car passengers only, and not the rear seat
car passengers. In contrast, the interventions of September 1989 and July 1991 are
expected to affect the rear seat car passengers only, and not the car drivers and front
seat car passengers. As we already mentioned, the car drivers and front seat car
passengers series can be considered as a treatment series for the evaluation of the
February 1983 intervention, while the rear seat car passengers series can be used as
a control series in this case. For the evaluation of the seat belt laws implemented
in September 1989 and July 1991, on the other hand, the reverse holds true: in that
case it is the car drivers and front seat car passengers series that takes on the role of
a control series, while the rear seat car passengers series can be used as a treatment
series in these two cases.

The residual and fit diagnostics of this analysis are as follows:

Summary statistics
LfrontKSI LrearKSI

T 468.00 468.00
p 3.0000 3.0000
std.error 0.084885 0.10540
Normality 1.9352 10.135
H(150) 0.82104 0.91225
DW 1.9910 2.1078
r(1) 0.0013231 -0.058876
q 24.000 24.000
r(q) -0.029281 -0.078653
Q(q,q-p) 43.697 37.213
Rsˆ2 0.39786 0.43512

The Box-Ljung diagnostic tests for the independence of residuals for the front
and rear seat passengers KSI series are Q(21) = 43.697 and Q(21) = 37.213,
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respectively. Since these should be tested against χ2
(21;0.05) = 32.6705, the resid-

uals of both series are somewhat serially correlated. The tests for homoscedas-
ticity of the residuals for the front and rear seat passengers KSI series are equal
to H(150) = 0.82104 and H(150) = 0.91225, respectively. Since F(150,150;0.025) ≈
1.43, and 1/H(150) = 1.22 and 1/H(150) = 1.10, the assumption of homoscedas-
ticity is satisfied for both series. The Bowman-Shenton diagnostic tests for normality
of the residuals are N = 1.9117 and N = 13.679, respectively, implying that the as-
sumption of normality is only satisfied for the front seat passengers KSI series. This
is not something to worry about very much since we are dealing with 468 observa-
tions. The values of the Akaike Information Criterion (AIC) for the two series are
−4.8603 and −4.4273, respectively.

The estimates of the variance matrices (where the upper off-diagonal elements
denote correlations) for this bivariate state space model are:

Level disturbance variance matrix: Slope disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 0.0002752 0.8798 LfrontKSI 2.249e-008 1.000
LrearKSI 0.0002047 0.0001967 LrearKSI 3.329e-008 4.927e-008

Seasonal disturbance variance matrix: Irregular disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 7.080e-007 0.8030 LfrontKSI 0.005460 0.5935
LrearKSI 1.186e-006 3.082e-006 LrearKSI 0.004033 0.008459

The t-tests for the regression weights of the three level shift intervention variables
are:

Equation LfrontKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) -0.33634 0.05107 -6.58646 [0.00000]
Level break 1989(9) 0.04346 0.05108 0.85077 [0.39535]
Level break 1991(7) -0.03793 0.05108 -0.74260 [0.45811]

Equation LrearKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) 0.02321 0.05208 0.44564 [0.65607]
Level break 1989(9) 0.05752 0.05208 1.10445 [0.26999]
Level break 1991(7) -0.06484 0.05206 -1.24556 [0.21357]

These t-tests indicate that the regression coefficient for the February 1983 level
shift intervention variable applied to the front seat passengers KSI series is very
significant, unlike any of the other five intervention variables. The estimated regres-
sion coefficient for the February 1983 level shift intervention variable on front seat
passengers KSI is −0.33634, implying a 100× (exp(−0.33634)− 1) = −28.56%
change in the number of front seat passengers KSI due to the introduction of this
seat belt law in the UK.

Although the disturbance variances of the two slope components for both series
are quite small, we decide to keep the slope components in all further multivariate
analyses of these two series because the values of these components in December
2007 are found to significantly deviate from zero:
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Equation LfrontKSI
Value Prob

Slope -0.00395 [0.00486]

Equation LrearKSI
Slope -0.00476 [0.01114]

We now present the results of the same analysis after removing the five non-
significant level shift intervention variables from the previous model. The residual
and fit diagnostics are:

Summary statistics
LfrontKSI LrearKSI

T 468.00 467.00
p 3.0000 3.0000
std.error 0.085015 0.10567
Normality 1.8309 9.5254
H(151) 0.81288 0.91048
DW 1.9886 2.1155
r(1) 0.0021785 -0.063392
q 24.000 24.000
r(q) -0.032486 -0.072441
Q(q,q-p) 43.508 34.964
Rsˆ2 0.39334 0.42977

The Box-Ljung diagnostic tests for the independence of the residuals for the front
and rear seat passengers KSI series in this analysis are Q(21) = 43.508 and Q(21) =
34.964, respectively. The residuals of both series are therefore still serially corre-
lated, although to a somewhat lesser extent than in the previous analysis. The tests
for homoscedasticity of the residuals for the front and rear seat passengers KSI
series for this analysis are equal to H(151) = 0.81288 and H(151) = 0.91048, re-
spectively. Since F(151,151;0.025)≈ 1.43, and 1/H(151) = 1.23 and 1/H(151) = 1.10,
the assumption of homoscedasticity is still satisfied for both series. The Bowman-
Shenton diagnostic tests for normality of the residuals are now N = 1.8309 and
N = 9.5254, respectively, meaning that the assumption of normality is still only sat-
isfied for the front seat passengers KSI series. Again, this is not something to worry
about very much due to the large amount of observations in this data set. The AIC
for the two series are now -4.8658 and -4.4351, respectively, indicating a better fit
than in the previous analysis.

The estimates of the variance matrices (where the upper off-diagonal elements
again denote correlations) for this analysis are:

Level disturbance variance matrix: Slope disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 0.0002708 0.8734 LfrontKSI 2.408e-008 1.000
LrearKSI 0.0002110 0.0002155 LrearKSI 3.581e-008 5.325e-008

Seasonal disturbance variance matrix: Irregular disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 7.038e-007 0.8051 LfrontKSI 0.005457 0.5927
LrearKSI 1.190e-006 3.105e-006 LrearKSI 0.004005 0.008368

With a value of −10.55 for the t-test, the estimated regression coefficient for the
February 1983 level shift intervention variable applied to the front seat passengers
KSI series is now −0.35120, implying a significant 100× (exp(−0.35120)− 1) =
−29.62% level change in the number of front seat passengers KSI.
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Fig. 6.2 Levels and slope components of full rank model for monthly numbers of front seat pas-
sengers (left) and rear seat passengers (right) killed or seriously injured in the UK in the period
1969–2007.

There is a perfect correlation between the slope disturbances of the two series,
probably due to their very small variances. However, the just mentioned variance
matrix of the level disturbances indicates that the level disturbances are also quite
highly correlated. This is confirmed by the following eigenvalue decompositions of
the level and slope disturbance variance matrices:

Analysis of variance matrices
Level disturbance variance matrix is 2 x 2 with imposed rank 2 and actual rank 2
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 0.0002708 0.8734
LrearKSI 0.0002110 0.0002155
Cholesky decomposition LDL’ with L and D

LfrontKSI LrearKSI
LfrontKSI 1.000 0.0000
LrearKSI 0.7791 1.000
diag(D) 0.0002708 5.112e-005
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI 0.7517 0.6596
LrearKSI 0.6596 -0.7517
eigenvalues 0.0004560 3.036e-005
percentage 93.76 6.243

Slope disturbance variance matrix is 2 x 2 with imposed rank 2 and actual rank 1
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 2.408e-008 1.000
LrearKSI 3.581e-008 5.325e-008



194 Jacques Commandeur, Siem Jan Koopman, and Kees van Montfort

Eigenvectors and eigenvalues
LfrontKSI LrearKSI

LfrontKSI -0.5580 0.8298
LrearKSI -0.8298 -0.5580
eigenvalues 7.732e-008 4.850e-020
percentage 100.0 6.272e-011

The first eigenvalue of the level disturbance variance matrix explains almost 94% of
the variance in this matrix. This indicates that the model for the analysis of these two
series could be simplified by imposing rank one restrictions on both these matrices,
thus treating the level and slope components as common to both series.

We therefore repeat the analysis only applying a level shift intervention variable
in February 1983 on the front seat passengers KSI series, and restricting the level
and slope disturbance matrices to be of rank one. The residual and fit diagnostics of
this final model are:
Summary statistics

LfrontKSI LrearKSI
T 468.00 467.00
p 3.0000 3.0000
std.error 0.085009 0.10604
Normality 1.7758 10.106
H(151) 0.82200 0.94560
DW 1.9739 2.0539
r(1) 0.010066 -0.029112
q 24.000 24.000
r(q) -0.031552 -0.075277
Q(q,q-p) 43.087 34.490
Rsˆ2 0.39342 0.42570

The Box-Ljung diagnostic tests for the independence of the residuals for the front
and rear seat passengers KSI series are now Q(21) = 43.087 and Q(21) = 34.490,
respectively. The residuals of both series are therefore still serially correlated, al-
though again to a somewhat lesser extent than in the previous analysis. The tests
for homoscedasticity of the residuals for the front and rear seat passengers KSI
series for this analysis equal H(151) = 0.82200 and H(151) = 0.94560, respec-
tively. Since F(151,151;0.025) ≈ 1.43, and 1/H(151) = 1.22 and 1/H(151) = 1.06,
the assumption of homoscedasticity is again satisfied for both series. The Bowman-
Shenton diagnostic tests for normality of the residuals are N = 1.7758 and N =
10.106, respectively, implying that the assumption of normality is still only satisfied
for the front seat passengers KSI series. The AIC for the two series are now -4.8659
and -4.428, respectively, indicating that the previous analysis results in a marginally
better fit than the present one.

The estimates of the variance matrices for this last analysis are:
Level disturbance variance/correlation matrix:

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Level disturbance factor variance for LfrontKSI: 0.000263925
Level disturbance factor loading for LrearKSI: 0.685819

LfrontKSI LrearKSI
Constant 0.0000 0.9298
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Fig. 6.3 Levels and slope components of rank one model for monthly numbers of front seat pas-
sengers (left) and rear seat passengers (right) killed or seriously injured in the UK in the period
1969–2007.

Slope disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Slope disturbance factor variance for LfrontKSI: 7.08383e-008
Slope disturbance factor loading for LrearKSI: 1.68624

LfrontKSI LrearKSI
Constant 0.0000 0.001602

Seasonal disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.048e-007 0.8072
LrearKSI 1.187e-006 3.067e-006

Irregular disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 0.005467 0.5899
LrearKSI 0.004066 0.008690

The t-test for the regression weight of the only level shift intervention variable
is:
Equation LfrontKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) -0.35111 0.03124 -11.23930 [0.00000]

With a t-value of−11.24, the estimated regression coefficient for the February 1983
level shift intervention variable in this final analysis equals −0.35111, indicating a
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significant 100× (exp(−0.35111)− 1) = −29.61% level change in the number of
front seat passengers KSI.

The most important graphical results of this final analysis are presented in Fig-
ures 6.3, 6.4, and 6.5. Figure 6.4 displays the estimated trends for the front and rear
passengers series KSI series (first row in Figure 6.4), the estimated trigonometric
seasonals (second row in Figure 6.4), and the corresponding irregular components
(third row in Figure 6.4), while Figure 6.5 contains the correlograms of the residuals
of the two series. In Figure 6.3 the common level and slope components of the two
series are shown.
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Fig. 6.4 Trends, seasonals and irregular components of rank one model for monthly numbers of
front seat passengers (top) and rear seat passengers (bottom) killed or seriously injured in the UK
in the period 1969–2007.

The correct implementation of the rank one restrictions is confirmed by the out-
put of the STAMP 8 program of Koopman, Harvey, Doornik, and Shephard (2007):
Level disturbance variance/correlation matrix:

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Level disturbance factor variance for LfrontKSI: 0.000263925
Level disturbance factor loading for LrearKSI: 0.685819

Slope disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Slope disturbance factor variance for LfrontKSI: 7.08383e-008
Slope disturbance factor loading for LrearKSI: 1.68624
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Fig. 6.5 Correlograms of rank one model for monthly numbers of front seat passengers (top) and
rear seat passengers (bottom) killed or seriously injured in the UK in the period 1969–2007.

and
Analysis of variance matrices
Level disturbance variance matrix is 2 x 2 with imposed rank 1 and actual rank 1
Factors are determined by series LfrontKSI
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI 0.8247 0.5656
LrearKSI 0.5656 -0.8247
eigenvalues 0.0003881 -5.559e-021
percentage 100.0 -1.432e-015

Slope disturbance variance matrix is 2 x 2 with imposed rank 1 and actual rank 1
Factors are determined by series LfrontKSI
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI -0.5101 0.8601
LrearKSI -0.8601 -0.5101
eigenvalues 2.723e-007 1.016e-023
percentage 100.0 3.731e-015

showing that all of the variation in the level and slope disturbance matrices is now
explained by the first dimension, as expected. It follows that the state equations of
the two level and slope components can be written as
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t +0.001602.

Notwithstanding the fact that the residual diagnostic tests of the analyses pre-
sented in this section do not satisfy all of the model assumptions of independency
and normality perfectly, we conclude that the impressive reduction in the UK num-
ber of front seat passengers KSI of 28.4% to 30.5% found in Durbin and Koopman
(2001) and Commandeur and Koopman (2007) as a result of the introduction of
the seat belt law in February 1983 is confirmed in the present analyses, even after
adding 24 years of monthly observations to these time series data. However, the in-
troduction of the UK seat belt laws for children and adults in the rear seat of cars in
September 1989 and July 1991 apparently failed to have any significant impact on
these types of road users.

6.5 Conclusions

We have presented an overview of uni- and multivariate state space time series anal-
ysis. An illustration of how the methodology based on state space can be imple-
mented is given for the simultaneous analysis of two time series of traffic safety
data. This account is far from complete and more details – such as how to deal
with nonlinear models and non Gaussian error distributions – can be found in the
references given.
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