
Chapter 5

An Overview of the Autoregressive Latent

Trajectory (ALT) Model

Kenneth A. Bollen and Catherine Zimmer

Abstract Autoregressive cross-lagged models and latent growth curve models are
frequently applied to longitudinal or panel data. Though often presented as distinct
and sometimes competing methods, the Autoregressive Latent Trajectory (ALT)
model (Bollen and Curran, 2004) combines the primary features of each into a single
model. This chapter: (1) presents the ALT model, (2) describes the situations when
this model is appropriate, (3) provides an empirical example of the ALT model, and
(4) gives the reader the input and output from an ALT model run on the empirical
example. It concludes with a discussion of the limitations and extensions of the ALT
model. Our focus is on repeated measures of continuous variables.

5.1 Introduction

There are two intuitive ways to approach the modeling of longitudinal data. The first
relies on the idea and common observation that one of the best determinants of the
current value of a variable is its value in the preceding period. So a student’s reading
performance in 2008 is well-determined by her reading performance in 2007, and
this is true for all students in the population. This perspective can be formalized
into what is known as an autoregressive model where the current value of a variable
is determined by its past value. A second intuitively appealing method is to treat
each subject as having a separate trajectory of change over time. Some cases might
have a generally upward trend, others a downward trend, and still others might be
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relatively stable with regard to the outcome of interest. Here individual variability in
change is permitted and each case can have different parameter values where these
values describe the nature of the trajectory. This second approach we refer to as a
latent (growth)1 curve or latent trajectory model.

The autoregressive and latent curve models have long but largely independent
histories. In the social and behavioral sciences autoregressive models were and are
of substantial interest to economists who commonly use autoregressive time-series
models to study economic indicators and lagged endogenous variables in panel data.
The autoregressive models spread throughout the social and behavioral sciences
beyond just economic applications. Anderson (1960), Humphreys (1960), Heise
(1969), Wiley and Wiley (1970), Jöreskog (1970), and Werts, Jöreskog, and Linn
(1971) provide just a few examples of publications that examined autoregressive
models of a single outcome. Campbell (1963), Bohrnstedt (1969), Duncan (1969),
Heise (1969), and Jöreskog (1979) are some of the earlier social science examples
of authors who looked at autoregressive and cross-lagged models for two or more
outcome variables in panel data. Kessler and Greenberg (1981) provided a book
length treatment of these autoregressive and cross-lagged models. These have been
and continue to be popular modeling approaches for longitudinal data.

The growth curve models of biostatistics have a long history (Bollen and Curran,
2006, pp. 9-14). The merger of the growth curve models with the factor analysis
of longitudinal data resulted in the contemporary latent curve models and the re-
sulting latent curve models date back to the 1950s (Bollen, 2007). Rao (1958) and
Tucker (1958) were key works linking growth curve and exploratory factor analysis
models. Meredith and Tisak (1984) was a seminal paper connecting confirmatory
factor analysis to growth curve models leading to the latent curve model tradition
that is influential today. In contrast to the autoregressive models, the repeated mea-
sures are reflective of an underlying pattern of change or trajectory. The trajectory
is described by a set of parameters (e.g., random intercept and random slope) and
these parameters can differ by individuals permitting a rich variety of trends across
the cases in a sample.

Popularity of the autoregressive models preceded that of the growth curve mod-
els in the social and behavioral sciences. Early proponents of the growth curve
model in these disciplines argued that the autoregressive and growth curve mod-
els were in direct competition (e.g., Bast and Reitsma, 1997; Kenny and Campbell,
1989; Rogosa and Willett, 1985) and some advocates argued that growth curve mod-
els were inherently superior to the autoregressive models (e.g., Rogosa, Brandt, and
Zimowski, 1982, p. 744).

More recently the autoregressive and latent curve model have been combined into
what is called the Autoregressive Latent Trajectory (ALT) model (Bollen and Cur-
ran, 2004; Curran and Bollen, 2001). The ALT model incorporates features of both
the autoregressive and the latent curve model in a single framework. It is developed
in recognition of the usefulness and appeal of each model and it permits modeling

1 “Growth” suggests that the outcome variable is always increasing in magnitude and is misleading
in those cases where the outcome decreases or is stable. For this reason, we sometimes omit this
and refer to the models as latent curve or latent trajectory models.
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data that has features of both models. Furthermore, it permits tests that provide in-
formation on whether the data more closely conform to the autoregressive or to the
latent curve model. So if one or the other models is best, the ALT model will help to
reveal that, whereas if both processes are operating both can be accommodated by
the ALT model.

It also is important to distinguish the ALT model from a more established one
that is a latent curve model with an autoregressive disturbance. For example, Chi and
Reinsel (1989), Browne and du Toit (1991), Diggle, Liang and Zeger (1994), and
Goldstein, Healy and Rasbash (1994) discuss modifications of the standard growth
curve model to permit an autoregressive disturbance. In these types of models the
autoregression of the disturbance is a type of nuisance association that is relegated
to the disturbance and it is given little substantive explanation. In the ALT model
the autoregressive relation is between the repeated measures, not the disturbances.2

Furthermore, the lagged effect of the earlier value on the current value should be
substantively meaningful when using the ALT model.

The purposes of this chapter are: (1) to present the ALT model, (2) to describe
the situations when this model is appropriate, (3) to provide an empirical example
of the ALT model, and (4) to give the reader the input and output from an ALT
model run on the empirical example. Much of the technical presentation of the
ALT model is based on Bollen and Curran (2004; 2006). Applications of the ALT
are in many fields, such as psychology to study developmental psychopathology
(Curran and Willoughby, 2003), daily anxiety and panic expectancy (Rodebaugh,
Curran, and Chambliss, 2002), job performance over time (Zyphur, Chaturvedi
and Arvey, 2008), and changes in eating behavior among first-year undergraduate
women (Boyd, 2007). Addiction researchers have found the ALT model useful for
studying how adolescent and peer substance use changes over time and affects each
other (Simons-Morton and Chen, 2006). Wan, Zhang and Unruh (2006) used the
ALT model to investigate outcome improvement in residents of nursing homes.

The next several sections present single variable and two variable ALT models, a
general equation for all models, the implied moment matrices, and a section on the
estimation and testing of these models. After these we present an empirical example.
A conclusion summarizes the ALT model and its use.

2 Hamaker (2005) has an interesting paper where she shows that an ALT model that has an equal
autoregressive coefficient and is not written with the first wave outcome as predetermined is math-
ematically equivalent to an alternative growth curve model with autoregressive disturbances. These
two forms of the model would have different substantive meanings in that the ALT model hypoth-
esizes that the lagged repeated measure has an impact on the current repeated measure whereas the
autoregressive disturbance model assumes that the prior disturbance influences the current distur-
bance. In the autoregressive disturbance model there is no direct effect of the repeated measures on
other repeated measures and only a direct effect between disturbances. Also the equivalency does
not hold if the autoregressive parameter differs across waves or if the first wave of the outcome is
treated as a predetermined variable as recommended in Bollen and Curran (2004).
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5.2 Autoregressive Latent Trajectory (ALT) Model

5.2.1 Single Variable Unconditional ALT Model

In this subsection we present the single variable, unconditional ALT model. By
single variable we mean that there is only one outcome observed over time. By
unconditional, we refer to the fact that the model has no explanatory variables or
covariates that determine the random intercepts, random slopes, or the repeated mea-
sures other than the lagged value of the repeated measures. Suppose that yit is the
repeated measure of y for the ith observation at the tth time point. The ALT model is

yit = αi +Λtβi +ρt,t−1yi,t−1 + εit (5.1)

where the i indexes the individual in the sample and the t indexes the time with
t = 2,3, ...,T . The αi is the random intercept, βi is the random slope, and Λt is
the time trend variable that describes the pattern of growth so that for a linear
growth model it would 0,1,2, ... . The autoregressive parameter is ρt,t−1,3 yi,t−1
is the lagged value of y, and εit is the disturbance of the equation. We assume
E(εit) = 0, COV (εit ,yi,t−1) = 0, COV (εit ,βi) = 0, and COV (εit ,αi) = 0. We also
assume E(εit ,ε jt) = 0 for all t and i �= j, E(εit ,εit) = σ2

εt for each t and i, and
COV (εit ,εi,t+k) = 0 for k �= 0 though in some cases this latter restriction could be
removed.

If we assume that VAR(βi), VAR(αi), and E(βi) are all zero, then we get

yit = α +ρt,t−1yi,t−1 + εit (5.2)

which is an autoregressive model with an intercept that does not change over time.
If the true model corresponds to an autoregressive model, then we would expect the
variances of the random intercepts and random slopes, and the mean of the slope to
be zero in the ALT model.

Alternatively, suppose that ρt,t−1 in the ALT model is zero for all t. Now the
resulting model is

yit = αi +Λtβi + εit (5.3)

which corresponds to a latent curve model with random intercept αi and random
slope βi.

These preceding constraints give us information on whether the autoregressive or
latent curve model are sufficient to describe data or whether the full ALT model is
required. The basic task is to estimate the ALT model. If the variances of the random
intercepts and random slopes and the mean of the slope are essentially zero, then the

3 In general we assume that |ρt,t−1| < 1 to insure that yit does not grow infinitely as t goes to
infinity. In the time series literature, this is a stationarity condition (e.g., Box and Jenkins, 1976).
In nonstationary data, the autoregressive parameter can equal or exceed one but in our experience
such nonstationary series are rare in panel data. This condition is not critical for our developments
here.
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autoregressive model is appropriate as long as ρt,t−1 is not zero. Alternatively, if the
random intercepts and random slopes have nonzero variances and ρt,t−1 is always
zero, then the latent curve model is preferred. If neither of these conditions are true,
then the full ALT model should be considered.

One complication that we have not mentioned has to do with the first wave of
data. Although Bollen and Curran (2004) show how to model all repeated measures
as endogenous variables, they suggest that there are some useful simplifications that
result when the first wave of the outcome is treated as a predetermined variable as
is shown in Figure 5.1. One advantage follows in that we cannot estimate equation
(5.1) for the first wave of data since by definition we do not have the lagged value of
the first wave of the outcome variable. Treating this first wave as predetermined by-
passes this problem. The equation for the first wave outcome variable then becomes

yi1 = ν1 + εi1 (5.4)

where ν1 is the mean of yi1.

y1

y2 y3 y4

21

32 43

1 1 1 1 2 3

Fig. 5.1 Autoregressive Latent Trajectory (ALT) model with single variable over four waves and
y1 predetermined.

The other two equations to make the single variable ALT model complete are

αi = μα +ζαi (5.5)
βi = μβ +ζβ i (5.6)

where μα and μβ are the means of the random intercepts and random slopes, re-
spectively, and ζαi and ζβ i are the random deviations around the respective means.
The predetermined yi1, αi, and βi are allowed to correlate.
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Given the relations between the ALT model, the latent curve model, and the
autoregressive model just described helps in interpreting the ALT model in equa-
tion (5.1). Consider first the latent curve model without autoregressive effects as in
equation (5.3). In a latent curve model each case can have a distinct trajectory of the
outcome variable. The trajectories are captured by having a random intercept and
random slope that can vary by case. Once you control for the random intercepts and
random slopes there is no influence of prior values of y on current values of y, that
is, there is no autoregressive impact net of the trajectory parameters.

Alternatively, in the pure autoregressive model as in equation (5.2), the current
yit is driven by the past yi,t−1 plus a random disturbance. Each case in the sample has
the same autoregressive coefficient, ρt,t−1. Once the prior value of y is controlled,
there are no individual trajectories for the cases in the sample.

From one perspective the ALT model is a latent curve model with random inter-
cepts and random slopes where each individual can have a distinct trajectory. But
now once we control for the random intercepts and random slopes there remains an
autoregressive relationship between the ys. Taking a different perspective, the ALT
model is an autoregressive model where the lagged value of a repeated measure
partially determines the current value, but even taking account of the autoregressive
relation each case can have a distinct trajectory. To understand the change in y we
need to know the prior value of y and the individual trajectory of change for that in-
dividual. In other words both an autoregressive and growth curve model characterize
the process. Neither a LCM or an autoregressive one alone is sufficient to describe
the change.

5.2.2 Single Variable Conditional ALT Model

So far we have limited our description to an unconditional model where the random
intercepts (αi), random slopes (βi), and the first wave of the repeated measures (yi1)
do not include covariates that determine them and they are only represented as a
function of their means and deviations from their respective means (see eqs. (5.4)
to (5.6)). A natural extension allows for covariates to predict αi, βi, and yi1. To
illustrate consider the incorporation of two time invariant exogenous predictors, zi1
and zi2 (though it is easy to generalize this model to any number of covariates). We
modify equations (5.4) to (5.6) by adding these covariates resulting in

αi = μα + γα1zi1 + γα2zi2 +ζαi (5.7)
βi = μβ + γβ1zi1 + γβ2zi2 +ζβ i (5.8)
yi1 = ν1 + γy1zi1 + γy2zi2 + εi1 (5.9)

where μα , μβ , and ν1 now represent regression intercepts rather than unconditional
means. The γs represent the fixed regressions of the random intercepts (αi), ran-
dom slopes (βi), and the predetermined yi1 on the two covariates. Figure 5.2 is a
path diagram of the conditional ALT model for four waves of data and with two
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covariates. We assume that the disturbances (i.e., ζαi, ζβ i, εi1) have zero means and
are uncorrelated with the exogenous variables (zs). Further, we permit ζαi, ζβ i, εi1
to correlate with each other, but none of these is correlated with later values of εit
where t = 2,3, ... . Finally, we assume the exogenous variables are measured without
error.

y1

y2 y3 y4

z1 z2

21

32 43

1 1 1
1 2 3

1
2 1y2

y1
2

Fig. 5.2 Conditional Autoregressive Latent Trajectory (ALT) model with single variable over four
waves and two covariates.
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5.2.3 Bivariate Unconditional ALT Model

In the conditional univariate ALT model, we considered the influences of one or
more time invariant covariates. However, there are many instances in which there
might be interest in the relationship between two repeated measures, each of which
is functionally related to the passage of time. We can extend the single repeated
ALT model to include two or more repeated measures say, yit and xit . We write the
bivariate ALT model for t = 2,3, ...,T as

yit = αyi +Λyt2βyi +ρyt yt−1 yi,t−1 +ρyt xt−1xi,t−1 + εyit (5.10)
xit = αxi +Λxt2βxi +ρxt yt−1 yi,t−1 +ρxt xt−1 xi,t−1 + εxit (5.11)

We maintain similar assumptions about the disturbances (ε’s) as before (means of
zero, not autocorrelated, uncorrelated with the right-hand side variables and random
coefficients). We permit some εyit to correlate with εxit as long as model identifica-
tion is maintained. For this model we treat the yi1and xi1variables as predetermined
and the random intercepts and random slopes as exogenous. Their equations are

yi1 = νy1 + εyi1 (5.12)
xi1 = νx1 + εxi1 (5.13)

αyi = μyα +ζyαi (5.14)
βyi = μyβ +ζyβ i (5.15)

αxi = μxα +ζxαi (5.16)
βxi = μxβ +ζxβ i (5.17)

All disturbances in these equations have means of zero. Generally, we permit
εyi1, εxi1, ζyαi, ζyβ i, ζxαi, and ζxβ i to correlate with each other, but these are as-
sumed not to correlate with εyit and εxit for t = 2,3, ...,T . Figure 5.3 is the path
diagram of a bivariate unconditonal ALT model for four waves of data.

Each of the equations (5.10) and (5.11) are similar to the unconditional single
variable ALT model except for the extra cross-lag term either ρyt xt−1 xi,t−1 in equa-
tion (5.10) or ρxt yt−1 yi,t−1 in equation (5.11). This is a noteworthy difference in
that it permits the repeated measure from one series to directly impact the repeated
measure of another. The bivariate ALT model not only allows the lagged depen-
dent variable to enter the equation along with the random intercepts and random
slopes, but it also permits a second repeated measure to have an impact once we
control for the lagged and latent curve effects on the repeated measure. The flexi-
bility of this model is considerable in that depending on the result of estimation the
model could be an autoregressive model (when VAR(βi), VAR(αi), E(βi), ρyt xt−1 ,
and ρxt yt−1 all equal zero), a cross-lag model (when VAR(βi), VAR(αi), and E(βi)
all equal zero) or a latent curve model (ρyt yt−1 , ρyt xt−1 , ρxt xt−1 and ρxt yt−1 all zero).
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y1

y2 y3 y4

y

1 1 1 1 2 3
y2y1

y3y2 y4y3

x1

x2 x3 x4

1 1 1 1 2 3

x2x1

x3x2 x4x3

y2x1

x2y1

y3x2

x3y2 x4y3

y4x3

Fig. 5.3 Autoregressive Latent Trajectory (ALT) model for two variables over four waves and
lagged effects between observed variables.
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Furthermore additional or different lagged values of the repeated measures could
enter these equations as dictated by the substantive knowledge driving the research.
For instance, if the current value of a repeated measure was affected not only by say,
yt−1, but also by yt−2, then both yt−1 and yt−2 should be included as predictors of yt
in the equations. In addition, the type of model devised for each repeated measure
need not be the same. So if a latent curve model without autoregressive terms fits
the x series best and an ALT model is needed for the y series, there is no reason not
to include different structures for each repeated measure.

5.2.4 Bivariate Conditional ALT Model

As we described for the univariate conditional ALT model, we can incorporate one
or more exogenous predictors in the bivariate ALT model as well. This is again
accomplished by the extension of the equations for the random trajectories. Specifi-
cally, we modify equations (5.14) through (5.17) to include time invariant covariates
zi1 and zi2 such that

αyi = μyα + γαy1zi1 + γαy2zi2 +ζyαi (5.18)
βyi = μyβ + γβy1zi1 + γβy2zi2 +ζyβ i (5.19)

and

αxi = μxα + γαx1zi1 + γαx2zi2 +ζxαi (5.20)
βxi = μxβ + γβx1zi1 + γβx2zi2 +ζxβ i (5.21)

As before, the set of gammas represent the fixed regressions of the random trajectory
components on the two correlated exogenous variables. It is possible to have the
random intercepts or random slopes as explanatory variables in equations (5.18)
to (5.21). For instance, the random intercept from the y series (αyi) might affect the
random slope of the x series leading to βxi = μxβ +γβxαyαyi +γβx1zi1 +γβx2zi2 +ζxβ i
or the slope of one series could alter the slope of the other, for example, βyi =
μyβ + γβyβx βx + γβy1zi1 + γβy2zi2 +ζyβ i.

In the bivariate unconditional ALT model, we let the initial repeated measures
correlate with the random intercepts and random slopes. In the conditional bivariate
ALT model, we must regress xi1 and yi1 on the set of exogenous measures. Thus, the
equations for the initial measures for xi1 and yi1 are

yi1 = νy1 + γy1zi1 + γy2zi2 + εyi1 (5.22)
xi1 = νx1 + γx1zi1 + γx2zi2 + εxi1 (5.23)

The same assumptions described for the univariate conditional ALT model hold here
as well.
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5.3 General Equation for All Models

Up to this point we have presented unconditional and conditional ALT models for a
single and two repeated measures using a scalar notation. These and variants of these
models are expressable in a general matrix notation that is convenient for presenting
the estimation and assessment of fit of these models. The matrix model is (Bollen
and Curran, 2004):

ηηη i = μμμ +Bηηη i+ζζζ i (5.24)
oi = Pηηη i (5.25)

where the first equation provides the structural relations between variables, ηηη i is a
vector that contains both the repeated measures and the random intercepts and ran-
dom slopes, μμμ is a vector of means or intercepts, B is a coefficient matrix that gives
the coefficients for the relationships of ηηη is on each other, and ζζζ i is the disturbance
vector for the variables in ηηη i. We assume that E(ζζζ i) = 0. The nature of the covari-
ances of ζζζ i with ηηη i will vary depending on the model, but for identification purposes
at least some of these covariances will be zero or known values. The second equa-
tion functions to pick out the observed variables, oi, from the latent variables of
equation 5.24.

In more detail,

ηηη i =

⎡⎢⎢⎢⎢⎣
yi
xi
zi
ααα i
βββ i

⎤⎥⎥⎥⎥⎦ (5.26)

where yi and xi are two variables repeatedly measured for T time periods, zi is a
q x 1 vector of exogenous determinants of the latent trajectory parameters or of the
repeated measures, αi is the 2 x 1 vector of αyi and αxi, the random intercepts for the
two sets of repeated measures, and βi is the 2 x 1 vector of βyi and βxi the random
slopes for the two repeated measures. The μμμ vector is

μμμ =

⎡⎢⎢⎢⎢⎣
μμμy
μμμx
μμμz
μμμα
μμμβ

⎤⎥⎥⎥⎥⎦ (5.27)

where μμμy and μμμx are vectors of means/intercepts for the yi and xi observed repeated
measures, μμμz is the vector of means for the exogenous covariates in the model, μμμα
is a vector of means/intercepts for the random intercepts, αyi and αxi, and μμμβ is a
vector of the means/intercepts of βyi and βxi.

For the ALT model, the B matrix is
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B =

⎡⎢⎢⎢⎢⎣
Byy Byx Byz Byα Byβ
Bxy Bxx Bxz Bxα Bxβ
0 0 0 0 0

0 0 Bαz Bαα Bαβ
0 0 Bβz Bβα Bββ

⎤⎥⎥⎥⎥⎦ (5.28)

where the double subscript notation in the partition matrix indicates that the subma-
trix contains those coefficients related to effects among the subscripted variables.
For instance, Byy contains the effects of the repeated y variables on each other, and
Bβz contains the impact of the exogenous zi on the random slopes, βyi and βxi, for
the ys and xs. The zi consists of exogenous variables.

The disturbance vector for equation 5.24 is

ζζζ i =

⎡⎢⎢⎢⎢⎣
εεεyi
εεεxi
εεεzi
ζζζ αi
ζζζ β i

⎤⎥⎥⎥⎥⎦ (5.29)

with covariance matrix ΣΣΣζ ζ . Since zi is exogenous, the variance of εεεzi is equivalent
to the variance of zi.

The P matrix is

P =

⎡⎣ IT 0 0 0 0

0 IT 0 0 0

0 0 Iq 0 0

⎤⎦ (5.30)

where IT is a T x T identity matrix with dimensions that depend on the number of
repeated measures and Iq is a q x q identity matrix with q exogenous variables. The
matrix picks out the observed variables in a given model where oi is

oi =

⎡⎣yi
xi
zi

⎤⎦ (5.31)

Bollen and Curran (2004) demonstrate how this matrix expression enables a re-
searcher to incorporate all of the models discussed as well as others. For instance,
the standard autoregressive model for a single repeated measure has

ηηη i = [yi] (5.32)
μμμ =

[
μμμy

]
(5.33)

B = [Byy] (5.34)
ζζζ i = [εεε i] (5.35)
oi = ηηη i (5.36)

with
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Byy =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0

ρ21 0 0 · · · 0
0 ρ32 0 · · · 0
...

...
. . . . . .

...
0 0 · · · ρT,T−1 0

⎤⎥⎥⎥⎥⎥⎦ (5.37)

to capture a first order autoregressive relation.
The unconditional latent curve model has

ηηη i =

⎡⎣ yi
αi
βi

⎤⎦ (5.38)

μμμ =

⎡⎣ 0

μα
μβ

⎤⎦ (5.39)

where the 0 vector in μμμ represents the zero fixed intercepts for the repeated measures
in a latent trajectory model. The B matrix is

B =

⎡⎣0 Byα Byβ
0 0 0

0 0 0

⎤⎦ (5.40)

Byα =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ Byβ =

⎡⎢⎢⎢⎣
0
1
...

T −1

⎤⎥⎥⎥⎦ (5.41)

The ζζζ i and P matrices are

ζζζ i =

⎡⎣ εεε i
ζαi
ζβ i

⎤⎦ (5.42)

P =
[

I 0 0
]

(5.43)

As a last example the unconditional univariate ALT model has

B =

⎡⎣Byy Byα Byβ
0 0 0

0 0 0

⎤⎦ (5.44)

where Byy is the same as equation 5.37 and



166 Kenneth Bollen and Catherine Zimmer

Byα =

⎡⎢⎢⎢⎣
0
1
...
1

⎤⎥⎥⎥⎦ Byβ =

⎡⎢⎢⎢⎣
0
1
...

T −1

⎤⎥⎥⎥⎦ (5.45)

for a model where y1i is predetermined. Furthermore

μμμ =

⎡⎣ μμμy
μα
μβ

⎤⎦ (5.46)

with

μμμy =

⎡⎢⎢⎢⎣
μy1
0
...
0

⎤⎥⎥⎥⎦ (5.47)

and

ζζζ i =

⎡⎣ εεε i
ζαi
ζβ i

⎤⎦ (5.48)

The variances of ε1i, ζαi, and ζβ i are equal to the variances of the predetermined
variables, y1i, αi, and βi, respectively.

5.4 Implied Moment Matrices

Structural equation models (SEMs) typically involve expressing the means and co-
variance matrix of the observed variables as a function of the parameters (θθθ) in a
model. These expressions of the implied mean vector (μμμ(θθθ)) and the implied co-
variance matrix (ΣΣΣ(θθθ)) also are referred to as the implied moment matrices and they
are useful in estimation and the assessment of model fit. Bollen and Curran (2004)
show that the implied mean vector is

μμμ(θθθ) = E(oi) = P(I−B)−1μμμ (5.49)

and the implied covariance matrix of observed variables is

ΣΣΣ(θθθ) = [E(oio
′
i)−E(oi)E(o′i)]

= P(I−B)−1ΣΣΣζ ζ (I−B)−1′P′ (5.50)

The exact value of these implied moments depends on the value of the matrices
for the particular type of ALT model, but once the matrices that correspond to the



5 Autoregressive Latent Trajectory Model 167

model of interest are substituted into these expressions, the implied moments are
revealed.

One valuable aspect of the implied moment matrices is in determining the iden-
tification of the model parameters. A parameter is identified if it is possible to find
a unique value for it. In SEMs we have

μμμ= μμμ(θθθ) (5.51)
ΣΣΣ = ΣΣΣ(θθθ) (5.52)

where μμμ and ΣΣΣ are the mean vector and covariance matrix of the observed variables
and we have already defined their corresponding implied moments. Demonstrating
that each θθθ is solvable as a unique value of a function of one or more elements of
μμμ and ΣΣΣ demonstrates that the parameters are identified. In general, we require four
waves of data for the ALT model to be identified if the autoregressive parameter is
equal over time and five waves without the equality restriction on the autoregression
coefficient. If there are only three waves of data, then yi1 must be made endogenous
and the coefficients for the paths from αi and βi to yi1 require nonlinear constraints
for estimation. Bollen and Curran (2004) discuss this special case in more detail.

5.5 Estimation and Testing

SEMs are estimable with a wide variety of estimators. The most appropriate es-
timator depends on whether the endogenous observed variables are continuous or
categorical and the distribution of these variables. In the most straightforward case
of continuous endogenous variables, the Full Information Maximum Likelihood
(FIML) estimator is available in all SEM software:

Fml = ln |ΣΣΣ(θθθ)|+ tr[ΣΣΣ−1(θθθ)S]− ln |S|− p+(z−μμμ(θθθ))′ΣΣΣ−1(θθθ)(z−μμμ(θθθ)) (5.53)

where θθθ is a vector that contains all of the parameters (i.e., coefficients, variances,
and covariances of exogenous variables and errors) in the model that we wish to
estimate, ΣΣΣ(θθθ) is the covariance matrix of the observed variables that is implied by
the model structure, μμμ(θθθ) is the mean vector of the observed variables implied by the
model, S is the sample covariance matrix of the observed variables, z is the vector of
sample means of the observed variables, and p is the number of observed variables
in the model. The implied covariance matrix [ΣΣΣ(θθθ)] and the implied mean vector
[μμμ(θθθ)] are in 5.49 and 5.50, respectively.

The classical derivation of Fml begins with the assumption that the observed
variables come from multivariate normal distributions (see, e.g., Bollen, 1989a, pp.
131-135). The FIML estimator of the parameters, θ̂θθ , has several desirable proper-
ties: the estimator is consistent, asymptotically unbiased, asymptotically normally
distributed, asymptotically efficient, and its covariance matrix equals the inverse
of the information matrix (Lawley and Maxwell 1971). Fortunately, the FIML has
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desirable properties under less restrictive conditions. Browne (1984) proves that the
preceding properties hold as long as the observed variables come from distributions
with no excess multivariate kurtosis. There also are robustness studies that provide
conditions where many of these properties hold even with excess multivariate kur-
tosis (see e.g., Satorra, 1990). Even when the robustness conditions fail there are
corrections to the significance tests and bootstrapping procedures that permit signif-
icance tests (e.g., Satorra and Bentler, 1988; Bollen and Stine, 1990; 1993). Thus,
with continuous outcome variables, estimation is possible even with excess multi-
variate kurtosis. Categorical dependent observed variables require procedures that
take account of their categorical nature, but this is beyond the scope of our chapter.
See Bollen and Curran (2006, Ch. 8) for discussion.

A first step in assessing model fit is a test of H0 : ΣΣΣ = ΣΣΣ(θθθ) and μμμ = μμμ(θθθ) where
ΣΣΣ is the population covariance matrix of the observed variables, ΣΣΣ(θθθ) is the co-
variance matrix implied by the model that is a function of the parameters of the
model, μμμ is the population mean vector of the observed variables, and μμμ(θθθ) is the
implied mean vector that is a function of the model parameters. These implied mo-
ment matrices were described above. If the model is true, then H0 should be true.
If the model structure is incorrect, then we should reject H0. The test statistic of
Tml = Fml(N − 1) is asymptotically distributed as a χ2 with degrees of freedom
df = (p(p+1)/2+ p)− t where p is the number of observed variables and t is the
number of estimated parameters. A significant chi-square test statistic is evidence
against H0 : ΣΣΣ = ΣΣΣ(θθθ) and μμμ = μμμ(θθθ) while a nonsignificant test statistic is consis-
tent with the null hypothesis and hence the validity of the model. It is possible to
compare two or more nested models where the parameters of one model are a re-
strictive form of the parameters of another. For instance, if we had an ALT model
with no restrictions on the autoregressive parameter and a second identical to the
first except that the autoregressive parameters were constrained to be equal, then
the equal autoregressive ALT model would be nested in the ALT model where the
autoregressive parameters were freely estimated. The difference in the chi-square
test statistics for these individual ALT models would itself be asymptotically dis-
tributed as a chi-square variate with degrees of freedom equal to the difference in
the degrees of freedom of the two models. The null hypothesis in this comparison of
nested models is that the model with the greatest number of restrictions fits as well
as the less restrictive model. A significant chi-square would be evidence in favor of
the less restrictive model whereas a nonsignificant chi-square is evidence favoring
the more restrictive model.

In practice, the chi-square test statistics are not the sole means of assessing model
fit. Even if we use test statistics that correct for excess multivariate kurtosis, the
power of the chi-square test statistic generally is large when the sample size is large.
Structural misspecifications that might otherwise be judged as minor might result
in a statistically significant chi-square or chi-square difference test. For this reason,
researchers frequently use additional fit statistics to supplement the chi-square test
statistic. There are numerous fit statistics available (Bollen and Long, 1993), but
here we present several that we use in our example section: the Incremental Fit
Index (IFI, Bollen 1989b), 1 minus the Root Mean Square Error of Approximation
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(1−RMSEA, Steiger and Lind, 1980), and the Bayesian Information Criterion (BIC,
Schwartz, 1978; Raftery, 1995):

IFI =
Tb−Th

Tb−d fh
(5.54)

(1−RMSEA) = 1−
√

Th−d fh

(N−1)d fh
(5.55)

BIC = Th−d f (ln(N)) (5.56)

where Tb and Th are the likelihood ratio test statistics for a baseline and the hypoth-
esized models, dfb and dfh are the d f for the baseline and hypothesized models, N
is the sample size and t is the number of free parameters in the model. The hypothe-
sized model is simply the model that the researcher is testing and the baseline model
is a highly restrictive model to which the fit of the hypothesized model is being com-
pared. Typically the baseline model freely estimates the variances and means of the
observed variables but forces their covariances to zero. A value of 1 is an ideal fit
for the IFI and (1−RMSEA). For the BIC, a negative value is evidence that favors
the hypothesized model over the saturated model whereas a positive value favors
the saturated model.4 Although judgement is required in evaluating these fit indices,
values less than .90 are typically considered to signify an inadequate fit to the data
for the IFI and (1−RMSEA).

5.6 Examples

5.6.1 Data

The data for these examples are repeated measures of Rosenberg’s self-esteem scale
from the National Longitudinal Study of Youth (NLSY). The data are organized by
age of respondent rather than by wave of the survey. Using age to measure time
creates missing data so we need to use the direct maximum likelihood estimator to
take account of the missing values. There are 5622 respondents between the ages of
15 and 30 put in two year groupings, ages 15-16 to ages 29-30 with each assessed
a minimum of once and a maximum of 6 times. The observed mean levels of self-
esteem by age group are 3.058 for 15 and 16, 3.090 for 17 and 18, 3.113 for 19 and
20, 3.120 for 21 and 22, 3.125 for 23 and 24, 3.146 for 25 and 26, 3.141 for 27 and
28, and 3.127 for 29 and 30. The average mothers’ education level is 11.544 years.

4 This interpretation holds when calculating BIC as in equation (5.56), but this interpretation will
not be true if different formulas are used.
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5.6.2 Models

We present several models. First, we estimate the unconditional autoregressive (AR)
model. Then we estimate the unconditional latent curve model (LCM). Third, we
present the results from the unconditional ALT model. Fourth, and finally, we add
the respondents’ mothers’ years of education in 1994 as an exogenous predictor
to produce a conditional ALT (cALT) model. All estimation was conducted us-
ing Mplus 5.2. The programs that produced the results and the results themselves
are available in Chapter 5 at the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. Table 5.1 shows the fit
statistics corresponding to the five models we estimated. The first model, AR with
equal intercepts, has a statistically significant chi-square, low values of the IFI and a
positive value for the BIC which suggests that the saturated model fits better than the
hypothesized one. The only fit index that suggests a good fit is the (1−RMSEA).
We also estimated the AR model with unconstrained intercepts. The fit was very
close to that of the autoregressive model we report in Table 5.1 (TML(18) = 262.39,
p = 0.006; IFI = 0.82;1−RMSEA = 0.95;BIC = 106.96).

The second model, the Latent Curve Model (LCM), has a fit that is much better
than the AR one in that the IFI and (1−RMSEA) are high and the BIC is a large
negative value. Combining features of both models in the ALT model we find for
the first time a nonsignificant chi-square, an IFI and (1−RMSEA) that are near
their ideal values, and a large negative BIC. However, closer examination of the
parameter estimates and their standard errors reveals that the mean, variance, and the
covariances of the slope are all not significantly different from zero. This suggests
that the slope factor is not needed in this model. Furthermore, the autoregressive
coefficients appear near equal when their standard errors are taken into account. This
led us to respecify the ALT model without the slope term and with the autoregressive
parameters set equal. The fit statistics suggest that this model fits very well. This
model suggests that there are stable individual differences in self-esteem and that
there is an impact of past self-esteem feelings on current ones.

Table 5.1 Overall fit of Autoregressive, Latent Curve, and Autoregressive Latent Trajectory mod-
els for self-esteem, ages 15-30 (N = 5622)

(1) (2) (3) (4) (5)
Overall Fit Autoregressive Latent Curve Unconditional No Slope No Slope

Model Model ALT Model Unconditional Conditional
ALT Model ALT Model

TML 280.69 69.93 22.76 39.03 49.36
df 24 28 18 28 34
p-value <0.001 <0.001 0.200 0.080 0.043
IFI 0.81 0.97 1.00 0.99 0.99
1−RMSEA 0.96 0.98 0.99 0.99 0.99
BIC 73.46 -171.83 -132.66 -202.73 -244.21
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Which of these four models is best? The question is complicated by the fact
that not all of these models are nested. However, some are. If in the unconditional
ALT model (see column (3) in Table 5.1) we set the VAR(βi), VAR(αi), E(βi),
COV (βi,αi), COV (βi,y1), and COV (αi,y1) to zero, then we are led to equation
(5.2) which is the AR model with equal intercepts reported in column (1) of Ta-
ble 5.1. A nested chi-square difference test leads to a highly significant difference
(TML(6) = 280.69− 22.76 = 257.93, p < 0.001) lending support to the ALT over
the AR model. The “No Slope Unconditional ALT Model” of column (4) is nested
in the “Unconditional ALT Model” of column (3) and the chi-square difference test
is not significant (TML(10) = 39.032−22.763 = 16.69, p = 0.092) lending support
to the ALT model without a slope. The “Latent Curve Model” of column (2) is not
nested in the “Unconditional ALT Model” of column (3) because the ALT model
treats y1 as predetermined while the LCM model treats that variable as endogenous.
Despite the nonnesting of some of these models, the other fit statistics are compara-
ble for nonnested models. By all measures the AR model is inadequate. Considering
all of the fit statistics, the “No Slope Unconditional ALT Model” appears to have
the best fit among models (1) to (4).

Given that the “No Slope Unconditional ALT Model” was the best, we used it to
estimate a conditional model that treats mother’s education as a covariate. Though
the chi-square for this model is marginally significant, the other fit statistics look
excellent for this conditional model and we interpret the results of that model in
detail. Table 5.2 shows the parameter estimates from the cALT model, which were
taken from the Mplus 5.2 output for that model.

The first row of Table 5.2 shows the fixed relationships between the random inter-
cepts (set at 1) and the observed repeated measures of self-esteem. The equal autore-
gressive effects of the self-esteem measure, the ρ̂ coefficients, are 0.192, showing
a positive impact of past on current self-esteem. These effects are net of the ran-
dom intercept effects. The residual variances ( ̂VAR(ε)) of the repeated measures are
statistically significant; hence there is age-specific error in the repeated measures.
They are similar in size, however, and could be constrained to be equal as another
potential simplification to the model – the measurement error in the repeated mea-
sures is the same at all ages. The R-squares of all repeated measures but the first are
moderate in size ranging from 0.305 to 0.369. This suggests that the random inter-
cepts and the prior self-esteem variables explain roughly 30 to 37% of the variation
in each self-esteem measure.

We turn now to the impact of mother’s education on the random intercept. This
is equivalent to a regression with the random intercept being the dependent vari-
able and mother’s education being the explanatory variable. There is a regression
constant or fixed intercept (μ̂α ) and a slope (γ̂α1). The slope (γ̂α1) of mother’s
education is 0.005 so that each unit shift in education leads to an expected shift
of 0.005 in the random intercept variable. The regression constant (μ̂α ) from this
regression equation is 2.461 which is the predicted value of the random inter-
cept when mother’s education is zero, though a value of 0 for mother’s educa-
tion does not occur in our data. There is also significant variation of the regression
residuals in the random intercepts equation of 0.025 (= ̂VAR(ζα)) and an R-square
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Table 5.2 ML parameter estimates and z-values in the No Slope Conditional ALT model for self-
esteem, ages 15-30 (N = 5622)

SE SE SE SE SE SE SE SE
Parameter Model 15-16 17-18 19-20 21-22 23-24 25-26 27-28 29-30

λt of α – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(–) (–) (–) (–) (–) (–) (–)

ρ – – 0.192 0.192 0.192 0.192 0.192 0.192 0.192
(7.67) (7.67) (7.67) (7.67) (7.67) (7.67) (7.67)

VAR (ε) – 0.105 0.070 0.077 0.073 0.072 0.086 0.084 0.097
(47.37) (25.50) (23.51) (18.96) (16.86) (14.37) (10.02) (6.86)

μα 2.461 – – – – – – – –
(32.03)

VAR(ζα ) 0.025 – – – – – – – –
(9.66)

v – 2.969 – – – – – – –
(159.76) – – – – – – –

COV(α , SE 15-16) – 0.172 – – – – – – –
(18.85) – – – – – – –

γα1 0.005 – – – – – – – –
(4.63) – – – – – – – –

γSE15−16,1 0.008 – – – – – – – –
(5.065) – – – – – – – –

R2 0.012 (α) 0.007 0.366 0.352 0.367 0.369 0.329 0.336 0.305

for this equation of only 0.012. Mother’s education is a poor predictor of the ran-
dom intercept for self-esteem. Turning to the effect of mother’s education on ini-
tial self-esteem 15 to 16, we again find a low R-square (0.007), but a statistically
significant intercept (ν̂ = 2.969) and slope (γ̂SE15−16,1 = 0.008). In addition, the
random intercepts are significantly correlated with the self-esteem at 15 and 16
( ĈOV (α,SE15−16) = 0.172).

So what have we learned about the trajectories of self-esteem from ages 15 and
16 to ages 29 and 30? First, we found an autoregressive process with prior self-
esteem having a positive effect on current self-esteem, but this is combined with
a random intercept term that provides for a different constant level of self-esteem
for each child. In fact, including only an autoregressive term does not lead to a
good fitting model. The autoregressive and the random intercept effects explained
roughly 30% to 37% of the variation in the self-esteem variables. The random slope
was not needed. This implies that once we control for the random intercept and
the autoregressive relationship, there is no need to add a linear trend term in self-
esteem for each child. There are differences in their levels of self-esteem that tend
to be constant, but that are also affected by prior self-esteem. Our conditional model
revealed statistically significant positive effects of mother’s education on the random



5 Autoregressive Latent Trajectory Model 173

intercept and on the initial self-esteem 15 and 16, but the effects were small as was
the R-square.

5.7 Conclusions

This paper reviewed the ALT model which synthesizes features of the
autoregressive/cross-lagged and the latent growth curve models. It permits the
lagged value of a repeated measure to influence the current value while at the same
time permits there to be separate over-time trajectories for individuals in the sam-
ple. As such it provides a researcher added flexibility in capturing the nature of
change exhibited in panel data. Furthermore, the ALT model yields evidence rel-
evant to whether the synthesis is required or if a researcher can get by with only
the autoregressive and cross-lagged model or only the latent curve model. Obvious
generalizations of the ALT model include multiple repeated measures, autoregres-
sive models beyond lag one (e.g., AR(p) models), nonlinear trajectories, or ALT
models for latent variables with separate measurement models with multiple indica-
tors. The ALT model already includes latent variables in that the random intercept
and random slope variables are latent. However, in the case of a multiple indica-
tor model for the repeated “measure,” the ALT model would allow a model of the
autoregressive relation and the trajectory of the latent variables that would control
for the measurement error in the indicators of the latent variables. This also would
provide an estimate of the amount of measurement error in the multiple indicators.
In the conditional ALT model it also would be possible to include latent exogenous
variables as predictors of the random intercepts, random slopes, and the initial value
of the latent repeated variable.

Despite these desirable features, several cautionary notes are in order. First, the
ALT model assumes that the repeated measure has a direct impact on itself at a later
point in time. A researcher should have substantive reasons to believe that this is a
reasonable hypothesis and should not use the ALT model as just a way to improve
model fit. A second related point is that it is possible that the autoregressive rela-
tion resides in the disturbance rather than in the repeated measures. In this situation,
the disturbances should be autoregressive rather than the repeated measures since
this implies a model that generally differs from the ALT.5 Third, our presentation
assumes that the researcher has the correct functional form for the latent curve tra-
jectory in the ALT model. If, for example, we assume a linear functional form when
a trajectory is nonlinear, then the autoregressive part of the ALT model might be due
to the researcher using the wrong functional form (Voelkle, 2008).6 A related point

5 Hamaker (2005) discusses the special cases where the ALT and autoregressive disturbance model
can be made statistically equivalent.
6 We explored nonlinearity in our empirical example by using the “freed loading” model (Bollen
and Curran, 2006, pp. 98-103). There was no improvement to model fit and the autoregressive pa-
rameters were still significant suggesting that the linear functional form was an appropriate starting
point.
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is that extrapolating trends beyond the period of observation should only be done
with great caution. A linear trend might be a good approximation of a trajectory
within the time period of observation, but extrapolating too far out could lead to
highly inaccurate predictions if the relation is really nonlinear. Finally, throughout
our presentation we assume discrete time models are good approximations to con-
tinuous time models. Many processes occur in continuous time even when the data
are available only at fixed times. If the waves of data collection are too spread out
relative to the timing of the relationships, then our discrete time models could be
misleading. For instance, the autoregressive or ALT model might lead to inaccurate
estimates of relationships if the observation interval for the discrete time model is
long. Delsing and Oud (2008) present an extension of the ALT model to continuous
time modeling that enables researchers to use variables observed in panel data but
allow continuous rather than discrete time.

Keeping these limitations in mind, we believe that the ALT model provides a
useful extension to some of the more commonly used models for panel data.
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G. Jöreskog & D. Sörbom (Eds.), Advances in factor analysis and structural equation models.
Cambridge, Mass: Abt.

Kenny, D. A., & Campbell, D. T. (1989). On the measurement of stability in over-time data. Journal
of Personality, 57, 445-481.

Kessler, R. C., & Greenberg, D. F. (1981). Linear Panel Analysis. New York: Academic Press.
Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method. London: Butter-

worth.
Meredith, W., & Tisak, J. (1984). Tuckerizing curves. Paper presented at the annual meeting of the

Psychometric Society, Santa Barbara, CA.
Muthén, L. K. & Muthén, B. O. (1998-2007). Mplus User’s Guide (5th ed.). Los Angeles: Muthén

& Muthén.
Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrika, 51,

83-90.
Raftery, A. E. (1995). Bayesian model selection in social research (with discussion). Sociological

Methodology, 25, 111-163.
Rodebaugh, T. L., Curran, P. J., & Chambless, D. L. (2002). Expectancy of panic in the mainte-

nance of daily anxiety in panic disorder with agoraphobia: A longitudinal test of competing
models. Behavior Therapy, 33, 315-336.



176 Kenneth Bollen and Catherine Zimmer

Rogosa, D., & Willett, J. B. (1985). Satisfying simplex structure is simpler than it should be.
Journal of Educational Statistics, 10, 99-107.

Rogosa, D. R., Brandt, D., & Zimowski, M. (1982). A growth curve approach to the measurement
of change. Psychological Bulletin, 92, 726-748.

Satorra, A. (1990). Robustness issues in structural equation modeling: A review of recent develop-
ments. Quality & Quantity, 24, 367-386.

Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance
structure analysis. Proceedings of the American Statistical Association, 308-313.

Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.
Simons-Morton, B., & Chen, R. S. (2006). Over time relationships between early adolescent and

peer substance abuse. Addictive Behaviors, 31, 1211-1223.
Steiger, J. H., & Lind, J. M. (1980). Statistically based tests for the number of common factors.

Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psy-

chometrika, 23, 19-23.
Voelkle, M. C. (2008). Reconsidering the use of Autoregressive Latent Trajectory (ALT) models.

Multivariate Behavioral Research, 43, 564-591.
Wan, T. T. H., Zhang, N. J., & Unruh, L. (2006). Predictors of resident outcome improvement in

nursing homes. Western Journal of Nursing Research, 28, 974-993.
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