
Chapter 3
Multivariate and Multilevel Longitudinal
Analysis

Nicholas T. Longford

Abstract This chapter presents a review of perspectives and methods for analysis
of longitudinal data on several related variables. A connection is made with multi-
level analysis in which the longitudinal and multivariate dimensions of the data can
naturally be subsumed. With the focus on large-scale longitudinal studies of human
subjects who are in general disinterested in and not highly motivated by the agenda
of the study, methods for dealing with nonresponse are an essential addendum to the
analytical equipment.

3.1 Introduction

Modern practice of data collection from human subjects is highly aware of the costs
and difficulties in retaining survey respondents, especially in longitudinal studies
in which survey subjects are to be contacted on several occasions, sometimes over
a long period of time. One reaction to these pressures is to collect more complete
information from complying subjects, so that the resulting data would be well suited
for a wider analytical agenda within the remit of the survey. In particular, it would
enable us to study the associations of several variables, and how these associations
are altered over time.

In this perspective, it is more appropriate to consider as an elementary data item
the value of a vector X(t) observed on a (single) occasion t. Any one component
of X(t) offers little information without the other components of X(t). However,
the vector X(t) offers only a snapshot of a social, economic or epidemiological de-
velopment in the studied population so, for any single t, X(t) is also a much poorer
source of information than the sequence X(1), . . . , X(T ). Such a sequence can be pre-
sented as a random matrix, and data for a random sample from the population as a
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three-dimensional array X composed of vectors x(t)
i for subjects i = 1, . . . ,n at time

points t = 1, . . . ,T .
We assume that the goal of an analysis is inference about a particular finite but

large population P , and that this population is represented by a sample S drawn
from P by a simple random sampling design. We assume that the time points
1, . . . ,T , at which the values of a vector of variables X are observed, are selected
noninformatively, without regard for any of the values X of the units in the sample.

We have two perspectives which lead to diverging approaches to inference. In
the sampling-design based perspective, there is a finite set of units 1, . . . ,N with
fixed (unchanging) values of X(t) for every time point t. In a replication of the study,
a different set of units would be selected into the sample, but if a unit i happened
to be selected in both samples, its values of X(t) would be the same in the two
replications. In this view, sampling is the only source of variation, and the sampling
design provides its complete description.

In the model-based perspective, the values of X(t), t = 1, . . . ,T , are generated by
a particular stochastic process, the definition of which (or, in most practical settings,
an approximation to it) is the analyst’s responsibility. Inferences are made assuming
this model, but the analysis is accompanied by a careful diagnosis that searches for
contradictions of the data with the assumptions made. This approach is much more
common nowadays because it is more flexible, with a greater variety of software
tools that have the necessary elements for its implementation.

The two perspectives are not completely separated. Dealing with nonresponse is
a notable concern that they have in common. Even in the sampling-design based
perspective, a model has to be posited for how the missing data are related to the
recorded data (Little and Rubin, 2002); without a model the analysis would be at a
dead end. In contrast, the model-based perspective ignores all the units with empty
records (no data available); in many analyses no information is available about the
units that were selected into the sample but nothing was recorded about them. The
perspective is, however, concerned about making use of the information in incom-
plete records for which some, but not all, values are recorded. The concern about
good representation of a population often appears out of place because no reference
population is defined, or the model is specified in such a way that it implies or gen-
erates an impression of universality; that, within some reasonable bounds, it applies
to any population.

Our view is that this perspective is constructive but not valid. We qualify this view
by adding that we do not regard model validity as an imperative for a respectable
analysis. We illustrate this on a simple example of a growth model

yi = Ziβ + ε i , (3.1)

where yi are T × 1 (column) vectors of outcomes for units i = 1, . . . ,n, Zi is the
regression matrix for unit i, β is the vector of regression parameters, and ε i are a
random sample from a centred multivariate normal distribution, N (0,Σ). We may
regard µ i = Ziβ as the growth for a typical unit, but deviations from µ i , unless they
are extreme, cannot be regarded as anything untypical. The vector of deviations ε i
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does not represent any errors, because deviation from µ i is not necessarily a sign
of anything that has gone wrong. Usually incorrect is the central assumption of the
functional form of µ i — an unavoidable ‘error’ committed by the analyst against
the environment (nature) in which units are exposed to a multitude of influences,
many of them continual, the impact of which defies both our understanding and any
neat algebraic summarisation. The choice of the variables in Z is governed by ana-
lytical pragmatism, attempting to capture the most important features of the studied
phenomenon. With more extensive data (more observed units), we can capture finer
detail and include more variables in Z. When more variables are recorded, we have
a wider choice of variables in Z. Validity of a model, defined as a collection of dis-
tributions according to one of which the data is generated, is an unattainable goal.
Its pragmatic reduction is a model that the data appear not to contradict, as assessed
by various model-diagnostic procedures.

In theory and reality, there is a single valid model (the process); in practice, we
improvise with the information we possess, and the intermediate goal of variable se-
lection has different targets depending on the extent of the information, ignoring the
fact that there is only one valid model. The pretense that the model we have selected
is the valid model is a common logical inconsistency that does considerable harm to
the integrity of the statistical practice. Attempts at addressing this problem (Draper,
1995; Chatfield, 1995; and Longford, 2007) have been largely ignored because of
the complexity involved. They entail taking into account the model uncertainty, ac-
knowledging that the model-selection process is also subject to sampling variation.

The model in (3.1) ascribes a different status to the covariates in Z than to the
outcomes in y, even when there is no distinction in the way their values are collected
in a survey. Both y and Z are attributes of the members of the population that are
not amenable to any control, unlike a treatment assigned by randomisation in an
experimental study. In particular, any causal inference is highly problematic when
Z is observed just as passively as y, without exercising any influence (control) over
its values. The regression in (3.1), summarised by the vector of parameters β , is
a comparison of subpopulations (strata) defined by the values of Z, and it offers
no basis for statements about manipulation — what would happen if a particular
unit had a different value of Z. There would be an answer, in principle, if the valid
data-generating model were known. In practice, such a model is not known and the
recorded variables are usually a small subset of the variables that would have a role
in such an ideal model.

In the modelling perspective, longitudinal analysis combines aspects of multi-
variate and multilevel analyses. It is multivariate, because one or several variables
are observed on several occasions, and the study of the associations of these (time-
specific) versions of the variable(s) is of obvious interest. It is multilevel, because
the observations on a subject at the time points are naturally clustered, and the sub-
jects may be further clustered within families, areas (locations), schools, businesses
and similar organisations. The purpose of this chapter is to elaborate these links and
perspectives, with an emphasis on taking advantage of their strengths in responding
to the various complexities encountered in the analysis of longitudinal data.
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The next section introduces the univariate longitudinal setting and the follow-
ing section discusses nonresponse. Section 3.4 extends the models for multivariate
outcomes. Section 3.5 discusses modelling of univariate outcomes in greater de-
tail, studying dependence across time and variance heterogeneity. Section 3.6 deals
with multivariate versions of these models. Computational issues, model fitting and
graphical presentation, are addressed in Section 3.7. The chapter is concluded with
a discussion.

3.2 Inferential Targets

Assuming that the values of the vector of outcomes x(t) are well defined for any
time-point t ∈ (0,T ), or beyond, we may associate each member j of P with a
multivariate function Fj(t) of time. This function, describing the growth, evolution
or development, is a relevant target of inference. Inference about its behaviour in the
near future amounts to extrapolation, but we can learn from its behaviour in the past,
assuming some form of stationarity. The observations x(t)

j at time points t = 1, . . . ,T
inform about Fj only partially. If all the subjects in the sample are observed in a
regimented fashion, at time points t = 1, . . . ,T , then we have no information about
the behaviour of Fj between any two (integer) time points. This suggests that we
may learn more by implementing designs with unevenly set time points t. The vec-
tors of outcomes may have uneven lengths, and the time points for a unit need not
be distributed evenly. However, the choice of the time points t has to be nonin-
formative for every unit, independently of the functions Fj . This is ensured when
the time points are set by design. When the observational units (subjects) volunteer
to provide the information, (e.g., as patients or customers), or become data donors
opportunistically e. g., by being met at a railway station or a shopping centre, we
have to be concerned about the good representation of the sample, as well as by the
non-ignorable nature of the time-selection process.

The model in (3.1) has no straightforward adaptation for unevenly distributed
time points. For each unit i we posit a model

yih = fi(tih)+ εih ,

where tih is the time at the observation h of unit i and εih are a random sample from
a (univariate) centred normal distribution, N (0,σ2). We may specify a separate
model for the variance σ 2, relating it to time t. The unit-specific functions fi may
involve some coefficients ξ i , for which another model would be defined, linking the
units to vectors ξ i :

ξ i = ν +δ i , (3.2)

where δ i is a random sample from a multivariate distribution. Instead of ν we may
have a model that relates the expectations E(ξ ) to a (linear) function of some co-
variates defined for the units. The decomposition in (3.2) connects the unit-specific
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functions fi and enables us to describe the population of units in terms of a typical
unit given by the parameter vector ν and unit-level variation described by the dis-
tribution of δ i . The link between fi and ξ i need not be linear, and so the function f
that corresponds to ν is, in general, not a population average of the functions fi .

3.3 Incompleteness

By complete data we understand a valid entry for every data item that was intended
to be collected by the design (protocol). A typical protocol calls for collecting a
rectangular dataset, a list of variables recorded at each of a set of time points for ev-
ery unit in the sample. Incompleteness, broadly interpreted as failure to adhere to the
design, is common especially when the units are human subjects for whom the inter-
view and measurement (elicitation) process are an unwelcome distraction. A record
comprising entirely of missing values (unit nonresponse) or lost in the process of
transfer from the interviewer (data collector) to the (secondary) analyst through the
database constructor, may be dropped from the analysis. If no trace is left after such
records in the database the analyst knows nothing about their existence.

A record comprises subrecords for the time points, and any of these subrecords
may be missing (time-point or wave nonresponse). Unless the analyst is aware, or
infers from the patterns in the data, that the design called for the collection of a
rectangular dataset, the dataset can be subjected to an analysis as if it were com-
plete. Similarly, a subrecord may be empty or incomplete, involving item nonre-
sponse. The design, however, is important. Pretending that the incomplete dataset is
complete results in invalid inferences — inappropriate claims of unbiasedness and
efficiency.

Even if the design did not call for a rectangular dataset, we may pose the problem
of the analysis as involving missing values, values the addition of which would make
the dataset rectangular and amenable to a relatively simple analysis. Of course, this
approach is not practical when a large fraction of the values in the hypothetical rect-
angular dataset are missing (and have to be imputed) and the pattern of nonresponse
is varied. When practical, this approach is relatively simple to implement because
we are privy to the details of the nonresponse process.

3.4 From Univariate to Structured Multivariate Data

We develop models for multivariate longitudinal data within a more general frame-
work of multivariate structured outcomes from univariate models and data by adding
dimensions. We use the term dimension similarly to the term factor in ordinary
regression (and the software GLIM; Francis, Green and Payne, 1993). Thus the var-
ious outcomes recorded on an occasion are a dimension, and the times of observa-
tion are another dimension. We refer to the outcomes as components of the vector of
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outcomes, although the components themselves can be multivariate; for example, a
row of the timepoint-by-variable matrix of outcomes of a subject is a component.

For a univariate outcome y we consider linear regression on some covariates x:

y = xβ + ε ,

with the usual assumptions of independence, normality and homoscedasticity. We
address departures from normality by generalized linear models, for which an al-
ternative distributional assumption is required, together with a link function that
relates the underlying linear predictors to the conditional expectations of the out-
comes, E(y |x).

The structure of clustering, of sets of units having more similar values of the
outcome y than the units in general, is introduced by assuming that the units within
clusters are correlated. The simplest way of doing this is by the compound symmetry
model, in which

y j = X jβ +δ j + ε j , (3.3)

where y j = (y1 j , . . . ,yn j j)
>

is the vector of outcomes in cluster j, X j is the regression
matrix for these units, composed of the rows xi j ; δ j , j = 1, . . . ,n, are a random
sample from N (0,σ2

B); the n = n1 + · · ·+ nm elements of ε j are a random sample
from N (0,σ2); and the two random samples are independent. The within-cluster
correlation ρ = σ2/(σ2 +σ2

B) summarises the relative similarity of the units within
clusters.

For observational (elementary) units within clusters we can distinguish between
variables that are defined for the units (elements) and for the clusters. The latter vari-
ables are expanded for the elements so that all units within a cluster have the same
value as their cluster. Variables defined for units could, in principle, have values that
are constant within clusters. At the other extreme, the values could have identical
means, or even identical distributions within the clusters. Such variables are called
balanced with respect to clustering. As a convention, we include the intercept, rep-
resented by the vector of unities 1, among the balanced variables. For the vectors of
covariates xi j we have the following decomposition of the matrix of crossproducts:

X>X = B+W , (3.4)

where

B =
m

∑
j=1

n j (x̄ j− x̄)> (x̄ j− x̄)

W =
m

∑
j=1

n j

∑
i=1

(xi j− x̄ j)
> (xi j− x̄ j)

and x̄ j is the sample mean within cluster j and x̄ the overall sample mean. Balanced
variables contribute only to W and cluster-level variables only to B.
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We have to draw a distinction between the sample and population versions of the
summaries B and W, as well as any other quantities we define later. Although the
models we consider have fixed values of the covariates, X, in a typical sampling
process applied in a (human) population the values of X are random. That is, in
a hypothetical replication of the survey, a different matrix X would be realised.
In the (sampling) design-based perspective, the values of X and y are fixed in the
population, and the sampling process is the sole source of variation. That is, if a
subject happened to be included in the sample in two replications, his or her values
of x would be the same, and he or she would be in the same cluster.

The design-based perspective has in the past been regarded as not constructive,
and the inferential effort in many areas has drifted toward model-based approaches.
However, there are areas where the balance is being restored. For example, the po-
tential outcomes framework for observational studies (Holland, 1986; Rubin, 2005)
shifts the focus from the association of X and y to the analysis of the (treatment) as-
signment process. This analysis is model-based, but it is only an intermediary to the
substantive analysis which follows, and which is simple, related to the analysis in
an experimental setting, and has more in common with the design-based paradigm.

In the model-based paradigm, the similarity of the units within clusters can be
interpreted in terms of differing within-cluster associations of X and y. The model
in (3.3) corresponds to parallel within-cluster regressions, which have identical re-
gression slopes, but different intercepts β0 + δ j . This characterisation uncovers its
relative rigidity. Much greater flexibility is attained by allowing some (or all) regres-
sion slopes to vary from cluster to cluster. The within-cluster slope for a variable that
is constant within clusters is not identified. Therefore it is meaningful to consider
varying slopes only with respect to variables defined for the elements. We split the
covariates into the two groups, X = (X(1),X(2)), where X(1) are defined for elements
and X(2) for clusters; we assume that none of the variables in X(1) is constant within
clusters. Then the compound symmetry model is

y j = X(1)
j β

(1) +X(2)
j β

(2) +δ j + ε j .

Its obvious generalisation is

y j = X(1)
j β

(1) +X(2)
j β

(2) +X(1)
j δ j + ε , (3.5)

where δ j is a random sample from a centred multivariate normal distribution,
N (0,Σ B). We have to extend the definition of the multivariate normal distribu-
tion to singular (degenerate) distributions for which Σ B is singular. Let ph be the
number of covariates (columns) in X(1) and X(2). Then Σ B is a p2× p2 variance ma-
trix. In Σ B , it is meaningful to constrain some variances to zero. This corresponds to
constant within-cluster slopes with respect to the corresponding covariates. When a
variance is constrained to zero, then so are all the covariances in the same row and
column. We have to obey the rules of invariance with respect to linear transforma-
tions (Longford, 2007, Chapter 9), which dictate that the intercept should be associ-
ated with a variance to be estimated so long as any other covariate is. A categorical
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variable with K distinct labels is represented among covariates by K− 1 indicator
variables. When such a variable is defined for elements, the invariance rules imply
that either all the K− 1 variables are associated with variances to be estimated, or
none are. After all, the values of the indicator variables are contingent on the choice
of the reference, which in most cases is arbitrary or opportunistic.

3.5 Univariate Observations at Time Points

In longitudinal analysis, each unit j is observed at a (finite) sequence of time points

t j =
(

t(1)
j , t(2)

j , . . . , t
(n j)
j

)>
.

When all units are observed at the same set of time points, t j ≡ t, the outcomes form
a sample from a multivariate (normal) distribution, so that

y j ∼ N (µ,Σ) .

Structures can be imposed on the vector µ and variance matrix Σ , such as linear
growth and compound symmetry, but these are useful only when the number of
time points, p, is large, so that a linear function, represented by two parameters, or
a quadratic function, by three, provides a much more compact description for the
growth (development, expansion, decay, or the like) than the components of µ . The
unstructured vector µ is ‘always correct’, but may be ineffective, in that it restricts
the inferences that can be made to the specific time points.

In contrast, a functional expression for µ is in general incorrect, but the bias it
entails may be offset by the reduced sampling variance associated with its estima-
tion. The multivariate perspective is inflexible — it cannot be adapted for inferences
about other time points, by inter- or extrapolation. The functional perspective caters
for such inferences by prediction, although the issues of correctness, and its scope
being limited to the particular context, delimit its application, especially for extrap-
olation.

Without a structure imposed on µ , the design has to ensure that the time points in
t are the ones for which inference is desired. With a structure on µ , the design has to
ensure that the function underlying the expectations µ , µ(t), can be estimated with
desired precision and predictions based on it have sufficient quality.

Similar comments can be made about specifying Σ . Without a structure imposed
on Σ , each covariance in Σ is a unique quantity, although in most contexts we can
reasonably assume that greater distance of the time points is associated with lower
correlation. For the variances in Σ , a reasonable assumption may be that they are
constant or increasing with the distance in time, but a function underlying them
amounts to an assumption highly contingent on (the choice and coding of) the time
points t.
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A parametric structure can be imposed on Σ or on its inverse, Σ
−1, called the

concentration matrix or, in principle, on any transformation of Σ . Working with
Σ
−1 is particularly attractive when considering the Markov property of conditional

independence of any two observations given an observation that separates them:(
yt1 |yt2 ,yt3

)
∼ (yt1 |yt2 ) ,

for the outcomes at any time points t1 < t2 < t3 . The corresponding matrix Σ
−1 is

tridiagonal: {
Σ
−1}

kh = 0

whenever |k− h | ≥ 2. When the number of time points is greater, this constraint
may be considered also for |k−h | ≥ 3 or 4; that is, entries outside the diagonal strip
of Σ

−1 of the given width vanish.
The parameters in µ and Σ are indivisible in the following sense. When no struc-

ture is imposed on µ a structure should not be imposed on Σ either. Imposing a
structure on µ is simpler than on Σ , because it is a unidimensional object. There-
fore a structure may be imposed on µ , but not on Σ , but this is mainly a pragmatic
matter reflecting our inability or lack of confidence about specifying suitable sub-
models.

Observations of the outcomes Y in a longitudinal analysis may be accompanied
by the values of covariates. These may be defined for the subjects and for the (el-
ementary) observations. Adjustment for the variables defined for subjects may be
made by multivariate regression:

y j = x jB+ γ j , (3.6)

where y j is the vector of outcomes for subject j, x j the vector of values of the
covariates, B the matrix of regression parameters, and the deviations γ j are a random
sample from a multivariate normal distribution, N (0,Γ ).

Covariates that are specific to time points cannot be accommodated in the model
in (3.6) because the vector y j is treated like a single unit. The problem does not arise
with hierarchical models in which observations and subjects form separate levels of
nesting:

yi j = x(1)
j β

(1) +x(2)
j β

(1) +x(1)
j δ j + εi j , (3.7)

with assumptions similar to those in (3.5). The variables in x(1)
j are defined for the

occasions and those in x(2)
j for subjects. In the variance matrix Σ B = var(δ j), we

can introduce constraints analogous to those in (3.5), so that an expression more
accurate than (3.7) is

yi j = x(1)
j β

(1) +x(2)
j β

(2) + z jδ j + εi j , (3.8)

where z is a subset of the variables in x(1). The interpretation in terms of varying
regression slopes also carries over to the longitudinal setting. The within-subject
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regression slopes with respect to the variables in z vary, and with respect to their
complement in x(1) are constant.

The vector x(1) contains the variable(s) that represent time. For linear within-
subject regressions, time is represented by a single variable, but growth may follow
any other pattern. To cater for the possibilities, transformations of the time have to
be included in X(1), and some of them also in Z. Invariance with respect to linear
transformations dictates that a variable included in Z should be included also in X(1).
Further, when a hierarchy is defined for the variables in X, such as in polynomial
regression, then this hierarchy should also be reflected in the model choice. For
example, if the cubic term, t3, is included in X(1), then so should be the linear and
quadratic terms. Similarly, if t3 is included in Z, then so should be the linear and
quadratic terms. However, if t3 is included in X(1), it does not have to be included
in Z although if t2 is included, then so should be the linear term t.

The two-level model (Longford, 1993; Verbeke and Molenberghs, 2000; and
Goldstein, 2003) can be applied when observations are made at a given (fixed) set of
time points, but some limitations arise for the combination z jδ j . For r time points,
the largest possible dimension of δ j is r. The multivariate model in (3.6) corre-
sponds to r-variate δ j with Z comprising the unity (intercept) and the indicators of
the categories 2, 3, . . . , r. Other options correspond to a reparametrisation of such a
vector Z. When the observations are not made in a regimented fashion, the number
of variables in Z may still have to be restricted. To see this, consider a design with
time points that for every subject are drawn from the same set, such as 1, . . . , 10, but
not every subject has all the ten observations. Then Z should not contain more than
ten covariates (columns). A direct analogy can be drawn with the models for the
analysis of covariance (ANCOVA). The models in (3.8) differ from them solely by
associating the subject specific deviations δ j with randomness; in ANCOVA they
are (fixed) parameters, subject only to the constraints of identifiability.

A subject-level variable X (2) is by definition constant within subjects, and so the
within-subject regression with respect to X (2) is not well defined. The only reason
why such a variable might be included in Z is to model variance heterogeneity —
the dependence of the variance on the covariates. In general, for the model in (3.8),
we have the identities

var(yi j) = σ
2 + zi jΣ B z>i j

cov(yi j ,yi′ j) = zi jΣ B z>i′ j (3.9)

for i 6= i
′
. Both expressions are quadratic functions of the components of z. There-

fore, exploring the properties of var(y) and cov(y1 ,y2) as functions of z is relatively
simple, although the components of z may be interrelated, such as the indicator vari-
ables for a categorical variable, or the linear and quadratic terms of a polynomial.
The range of the values of the time t is usually limited, so we can evaluate var(y) as
a function of t unambiguously when z contains only functions of time. Otherwise
we have to consider a few (typical) values of the other variables and evaluate var(y)
for each of them.
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3.5.1 Example

Figure 3.1 gives an example of a longitudinal dataset with observations at time
points 1, 2, . . . , 12 for 40 subjects. The outcomes are generated according to the
model in (3.8) with no covariates, except for the time and its transformations. For
the regression x(1)β we use a cubic polynomial in t, and for the variation zδ j a
quadratic polynomial in t. Thus, the values x(1)β + zδ j , j = 1, . . . ,40, are cubic
polynomials with the same cubic coefficient but different quadratic (and linear and
absolute) coefficients. The data are generated with

β = (1, 0.3, 0.024, 0.0011)> ,

σ2 = 0.25 and

Σ =

0.60000 0.04000 0.00030
0.04000 0.02000 0.00015
0.00030 0.00015 0.00009

 .

The curves (trajectories) x(1)β + zδ j are plotted in panel A. We refer to them as
smooth or underlying trajectories, because they are devoid of the inexplicable con-
tribution ε . This random term is commonly referred to as an error. In most contexts,
this label is inappropriate and misleading. It would be appropriate if the model we
specify were correct (as it is in a simulation) and if all subjects behaved according
to this model with σ2, and the elementary-level deviations ε arose as a result of an
imperfect measurement process. In most cases, the model is incorrect, and a partic-
ular positive value of σ2 is appropriate because subjects do not behave according to
any conceivable formula, but there are some equations (models) that approximate
the behaviour reasonably well. The approximation is in error, not the behaviour.

Panel B presents the trajectories as they would be observed, made coarse by the
elementary-level deviations ε . It is difficult to infer the patterns of the trajectories,
smooth or coarse, from the parameter values in β , Σ and σ2, except perhaps for
the extent of the average curvature (from β 3) and the extent of inexplicability (from
σ2); using a simulated sample from the fitted model is much more reliable. Such a
sample, replicated several times, also has an important diagnostic value, as discussed
in Section 3.5.3.

The variance of an observation, as a function of time t,

var(y | t) = σ
2 +(1, t, t2)Σ (1, t, t2)> ,

is drawn in panel C, together with the indication of σ2 as its ‘constant’ contributor
(drawn by dashes). There is no profound reason why the elementary-level variance
should be constant; it is merely a convenient assumption. Without it, we would have
to posit a particular form for how σ2 depends on t. Alternatives plausible in some
settings are that the correlation of two outcomes of the same subject is constant, or
the ratio of the within- and between-subject variances is constant.

There is a trade-off between a within-subject variance σ2
t and the subject-level

matrix Σ . That is, up to a point, a change in one or several values of σ2
t can be
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Fig. 3.1 Graphical representation of balanced longitudinal data. A simulated example.

compensated by changes in Σ , so long as the ‘new’ Σ remains non-negative def-
inite. In principle, σ2 is identifiable from the data, because it represents the inde-
pendent contribution to the variance var(y). The variance matrix Σ characterises the
covariance structure of the observations of a subject. However, large samples are re-
quired to separate the two components of variance, σ 2

t and Σ , with any meaningful
reliability.

Panel D of Figure 3.1 illustrates the distributions of the outcomes within the time
points. It does not contain all the information about the underlying process, because
it gives no indication of the covariance structure of the outcomes. In this respect,
there is no replacement for the simulated trajectories in panels A and B.

Nonlinear transformations can alter the pattern of the trajectories substantially,
from convex to approximately linear to concave. With a nonlinear transformation,
we manipulate the underlying distributions (normal for ε and δ ), the covariance
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structure, and the pattern of the variances σ2
t . In theory, only one family (class of

equivalence) of transformations yields normally distributed outcomes, so arranging
for all the distributional assumptions to hold is next to impossible. In practice, there
is a considerable leeway in the choice of a transformation to make the assumptions
of normality palatable. In fact, in many settings we can focus on transformations
that bring about variance homogeneity (independence of the variances var(y) and
σ2

t on time t) as well.

3.5.2 The Time-Selection Process

In many longitudinal studies, the values of the time points t are not set by design,
prior to data collection. For example, a study may rely on subscribing individuals
turning up at a given location for a particular service, such as health care, advice with
jobs search, a form of entertainment, and similar. In such settings, the realised values
of t may be informative, and the process that generates its values nonignorable. The
observed data are not a good reflection of the process we set out to study.

This problem does not have a solution, in that there is no straightforward way
of adjusting the analysis so that it would be suitable for inferences about the entire
evolution of the outcome variables, or about the values of the outcome variables at
time points selected by design, with the subjects exercising no choice in the matter.

3.5.3 Simulation-Based Diagnostics

Established methods for model diagnostics are difficult to adapt for longitudinal
analysis because of a combination of concerns about normality, appropriate covari-
ance structure and heteroscedasticity. The following generic procedure, introduced
by Rubin (1984), can be applied. We define a data summary called feature; this can
be a single quantity, a vector, a table, a diagram, or their combination (a multifea-
ture). We evaluate (or apply) this feature to the realised dataset, thus obtaining the
realised feature. Next, we simulate datasets from the model fit using the same de-
sign (sample sizes and values of the covariates) as the realised data, and evaluate
the feature on each replicate dataset. We shuffle the one realised and the several
simulated features, and ask a third party (a colleague) to identify one of them as
being exceptional. If he or she points to the realised feature (without knowing that
it is based on the real dataset and the others are not), we conclude that the model is
not appropriate, because if it were, as it is with the simulated data, then the features
would not look (or be) different. It is advantageous to generate 19, 49 or 99 replicate
datasets, so that we would have 20, 50 or 100 datasets and could relate the proba-
bility of identifying the realised dataset by chance to the size of a test in hypothesis
testing. The price for greater accuracy is having to generate a greater number of
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replicates (a serious problem only with very large datasets), and presenting a more
cumbersome task for the colleague. See Longford (2001) for an example.

3.6 Multivariate Observations at Time Points

Suppose the observations of a set of variables at a time point t are well described
by a multivariate normal distribution N (µ t ,Σ t), specific to the time point t. We are
concerned about the evolution of these distributions across the time points. This en-
tails specifying models for the vectors of expectations µ t and variance matrices Σ t ,
but also for the correlation structure of vectors of observations at distinct (consecu-
tive) time points. This is necessary even in the stationary case, when the matrices Σ t
are identical. For example, the assumption that vectors of outcomes yt and yt ′ are
independent for distinct time points t 6= t ′ is in most settings untenable, and so is the
assumption of perfect correlation, Ctt ′ = cov(yt ,yt ′) = Σ t .

Multivariate longitudinal outcomes are represented by a matrix of variables Y,
comprising vectors of variables yt at a time point as its rows and the time series

of univariate longitudinal outcomes y(k) =
(

y(k)
1 ,y(k)

2 , . . .y(k)
T

)>
as its columns. An

ideal solution for the correlation structure across the time points would allow an
(arbitrary) univariate longitudinal model for each component y(k) and a rich variety
of dependence structures implied by the covariance matrices Ctt ′ . Of course, impos-
ing constraints such as non-negative covariances in Ctt ′ and higher correlations for
pairs of time points t and t ′ in greater proximity, is reasonable in most contexts. We
seek models mainly for short time series (small T ), so we are not concerned about
stationarity and other properties that are related to large T .

3.6.1 Autoregression

The univariate autoregression has an obvious multivariate analogue,

yt+1 = at +Btyt + ε t , (3.10)

where at is a vector and Bt a matrix of coefficients and ε t a centred random vector
independent of y1 , . . . ,yt . To maintain multivariate normality, we assume that ε t ∼
N (0,Ξ) and y1 ∼N (µ1 ,Σ 1). Then

Ct,t = Σ t = BtΣ t−1 B>t +Ξ

Ct,t+1 = Σ t B>t .

An important special case arises when Bt is diagonal. This does not correspond to
independent autoregressions, because dependence is still injected by the covariance
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structure of ε t , as well as the initial covariance matrix Σ 1 . When yt comprises
closely related variables, the components of ε t are correlated.

3.6.2 Moving Average

The univariate moving average model has a similar extension for multivariate out-
comes. Each time point t is associated with an independent random vector ε t with
centred multivariate normal distribution N (0,Ξ), and the vector of outcomes is
assumed to be generated according to the model

yt = µ t +A0ε t +A1ε t−1 (3.11)

for some matrices of constants A0 and A1 . A joint distribution has to be specified
for the start of the series, (y1 ,y2). The essential multivariateness of such a mov-
ing average arises as a result of the covariance structure of Ξ combined with the
non-zero off-diagonal elements of A0 and A1 . The models in (3.10) and (3.11) are
for the respective first-order autoregressive and moving-average models. Their gen-
eralisation to higher-order models is straightforward. However, such models are of
limited use with short time series typically encountered in longitudinal analysis.
Autoregression and moving average yield distinct sets of models, so that, at least
in principle, the issue of distinguishing between them, e.g., by hypothesis testing or
information criteria, may arise. In practice, such tests have limited power even in
the univariate case, so the data-based choice between them is unlikely to be feasible
in a multivariate setting. The two kinds of models can be combined, in analogy with
the univariate case.

3.6.3 Two-Level Models

The multivariate version of the compound symmetry model in (3.3) is

Y j = X j B+1δ
>
j +E j ,

where Y j is the T ×K (times-by-variables) matrix of outcomes for subject j, X j
the corresponding matrix of covariates, B is a matrix of regression parameters, δ j
a random sample from a multivariate normal distribution (one vector per subject),
t j is the vector of time points, and E j a matrix; the rows ei j of E j are mutually
independent random vectors (a multivariate random sample), both within a matrix
E j and across them, from another multivariate normal distribution. The two ran-
dom samples, δ j (for subjects) and ei j (for occasions within subjects), are mutually
independent.

A column of the matrix X j is time and some others are its transformations. These
can be associated with subject-level variation by the model



112 Nicholas Longford

Y j = X j B+1δ
(0)
j
>

+ t jδ
(1)
j
>

+E j , (3.12)

where the matrix ∆ j = (δ (0)
j , δ

(1)
j ) is a random sample from a multivariate nor-

mal distribution. In this model, the subjects have different associations with time
(varying coefficients δ

(1)
j ). The model can be supplemented with transformations of

time, injecting more flexibility in how the values of the variables within subjects
evolve. Covariances in var(∆ j) are essential, because the evolution of the variables
is unlikely to be independent (unrelated). Of course, E j induces some dependence

among the rows of Y j , but we can regard E(Y j |E j) = X j B + 1δ
(0)
j
>

+ t jδ
(1)
j
>

as
an underlying trend, and study its dependence structure.

We distinguish among variables defined for subjects, which are represented in
each X j by a column of constants, and variables defined for occasions. The time,
represented in X j by a column t j , is one such variable. Variables that are not func-
tions of time, but are recorded on every occasion (observation), may also be included
in X j . Such variables are usually called time-varying. They can be associated with
subject-level variation to model the varying within-subject regressions of the out-
comes on them. Associations of variables with the outcomes have to be interpreted
with care when the values of these variables are recorded passively, without (ex-
perimental) control over them. In the framework of causal analysis, they may be
‘intermediate’ variables, affected by the earlier outcomes, and so their associations
with the outcomes differ from the causal effects of these variables.

3.7 Maximum Likelihood Estimation

Maximisation of the likelihood with the normality assumptions is conceptually sim-
ple and is relatively easy to implement because the likelihood for all the models we
consider has an analytical form. Some difficulties are caused by the large number
of parameters some of which are connected by the assumed structures. The con-
straints of nonnegative definiteness are difficult to enforce. Other difficulties arise
in the model specification, because there is no obvious way of defining a sequence
of nested models that would represent gradual increase in model complexity. Con-
nection of the substantive information with such constraints is particularly difficult
to establish. In principle, we could define the joint distribution of all the outcomes
directly. In such a definition, it is difficult to reflect the structure of observations
within time points.

Likelihood maximisation involves iterative procedures, and these require a (good)
initial solution. Initial solutions are frequently the fits of some very simple submod-
els which are obtained by a simple algorithm. A practical initial solution for fitting
the model in (3.12) or its generalisations is the set of univariate multilevel model
fits. These themselves require iterations, but they are much simpler than a ‘multi-
variate’ iteration. The univariate model fits are useful also for exploring informally
the choice of models for the marginals, the components of X j B.
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Large variance matrices (of model parameters) are estimated by an algorithm that
does not internally respects the nonnegative definiteness of the estimated variance
matrices. In a large (estimated) matrix Ω̂ , the presence of a negative eigenvalue
is not obvious, so the problem might be ignored, until we come across a negative
value of a quadratic form c>Ω̂c for a vector of constants c or wish to draw a ran-
dom sample from the fitted distribution. The constraints of nonnegative definiteness
are difficult to implement in a full-proof fashion, because they involve a trade-off
between slowing down the convergence rate and ensuring that the solution moves
smoothly from one iteration to the next along (or close to) the boundary of the pa-
rameter space defined by nonnegative definiteness.

Alternative solutions estimate decompositions of the variance matrices, such as
the Cholesky or single-value, but the structures we want to impose on the variance
matrices are very difficult to convert to the constraints on these decompositions.

There is no comprehensive software for multivariate random coefficient models,
but software for univariate models can be adapted for the purpose. MLwin (Rasbash
et al, 2005) and the software nlme described in Pinheiro and Bates (2000) are well
suited for this purpose. For methods, examples and general background, we recom-
mend Diggle et al (2002). Laird and Ware (1982) is a paper of historical importance,
outlining the application of random coefficient models for longitudinal analysis.
There is extensive Bayesian literature on longitudinal analysis, much of it centred
around or using the WinBugs software (wwww.mrc-bsu.ca.ac.uk/bugs).

3.7.1 Graphics – Initial Data Exploration

The first step in an initial exploration of the data is to plot the trajectories (evolu-
tions) for each variable separately. The next step entails representing the dependence
of the observations across the variables. Plotting the trajectories of the distinct vari-
ables side-by-side, with the subject marked for each trajectory is effective only for a
few subjects (e.g., a random sample drawn from the data), so that the trajectories of a
subject could be easily identified in the adjacent panels. In multivariate models with
random slopes, the variances and correlations of the observations are time-specific,
and so we can study their evolution by plotting them as functions of time. This can
be effectively implemented by a matrix plot (function pairs in R), with the vari-
ances plotted in the diagonal panels and the correlations plotted in the off-diagonal
panels. More information is displayed when the correlations are plotted under the
diagonal and the covariances above it.

Figure 3.2 presents a bivariate longitudinal dataset. The relatively smooth lines
in the top panels are for the underlying trends, devoid of the within-subject varia-
tion. The average trend (the regressions) are drawn by thick lines in the top panels.
They enable, however crudely, to gain an impression of the correlation of the two
outcomes (components). Comparisons within columns help us to assess the impact
of the within-subject variation, commonly interpreted as noise or error, although
an attribution of ε to a replication-specific random variable (due to the subject’s
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Fig. 3.2 A bivariate longitudinal dataset. A simulated example. The top panels display the under-
lying trends and the bottom panels the values of the observations. The thick solid line indicates the
marginal (population) mean.

inconsistency in the response or imperfection of the measurement/recording pro-
cess) is not always warranted.

In this example, the subject-level variance matrix was specified as

Ω =


1.042 −0.112 0.376 −0.028
−0.112 1.602 0.104 0.268

0.376 0.104 0.928 0.026
−0.028 0.268 0.026 0.337

 ,

constructed from an eigenvalue decomposition to ensure nonnegative definiteness.
The additional space in the display separates the rows and columns that correspond
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to the outcomes, and within each 2× 2 matrix, the first component corresponds to
the intercept and the second to (linear) time. The within-subject variance matrix is

Σ =

(
1.8 1.0
1.0 1.4

)
,

and the vectors of the population means for the two components are

µ1 = (20.4,21.2,22.0,22.4,22.0,21.7,22.5,23.7)>

µ2 = (24.0,23.0,22.0,22.0,24.0,27.0,28.0,30.0)> .

Figure 3.3 summarizes the marginal distributions graphically, highlighting the
increasing variation with time.
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Fig. 3.3 The (marginal) summaries of a bivariate longitudinal series: trend (expectations), vari-
ances, covariances and correlations. Simulated data, with the parameters given in the text.
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3.8 Discussion

Longitudinal analysis refers to analysis that involves a time dimension. In this
respect it is multivariate, although it may involve other aspects of multivariate-
ness, such as several outcomes being observed at each time point. Longitudinal data
comprise repeated observations on subjects, so that their change (growth, decay
or development) can be studied. The temporal dependence can be accounted for
by regression or correlation structures, or their combinations, and the subject-to-
subject variation by random coefficients. In the model construction, for estimation
and prediction, we can draw on models for time series (autoregression and moving
average) and for random coefficients. These are most conveniently specified with
the assumptions of normality and linearity, for which estimation procedures are rel-
atively simple, based on maximum likelihood. Transformations and the generalized
linear modelling framework cater for departures from normality.

Designing longitudinal studies and dealing with nonresponse, and designing
studies which anticipate nonresponse, are challenging problems that do not have
a universal solution because of the intricate interplay of the correlation structure of
the outcome variables with the quality of the estimation. Survey expenses are an
important consideration, especially in studies that take place over a long period of
time (several years) and in populations that, in general, do not have a stake in the
survey and regard responding as a distraction from their everyday affairs. Methods
for dealing with nonresponse and with data that do not fit into neat rectangular data
structures have an important role in the analysis of such surveys.
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