
Chapter 2

Random Effects Models for Longitudinal Data

Geert Verbeke, Geert Molenberghs, and Dimitris Rizopoulos

Abstract Mixed models have become very popular for the analysis of longitudi-
nal data, partly because they are flexible and widely applicable, partly also because
many commercially available software packages offer procedures to fit them. They
assume that measurements from a single subject share a set of latent, unobserved,
random effects which are used to generate an association structure between the re-
peated measurements. In this chapter, we give an overview of frequently used mixed
models for continuous as well as discrete longitudinal data, with emphasis on model
formulation and parameter interpretation. The fact that the latent structures generate
associations implies that mixed models are also extremely convenient for the joint
analysis of longitudinal data with other outcomes such as dropout time or some
time-to-event outcome, or for the analysis of multiple longitudinally measured out-
comes. All models will be extensively illustrated with the analysis of real data.

2.1 Introduction

Repeated measures are obtained whenever an outcome is measured repeatedly
within a set of units. An array of examples is presented in Section 2.2. The fact
that observations from the same unit, in general, will not be independent poses par-
ticular challenges to the statistical procedures used for the analysis of such data. In
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Section 2.3, an overview is presented of the most commonly used method for both
Gaussian and non-Gaussian repeated measures.

Given their ubiquity, it is not surprising that methodology for repeated measures
has emerged in a variety of fields. For example, Laird and Ware (1982) proposed
the so-called linear mixed-effects models in a biometric context, whereas Goldstein
(1979) proposed what is termed multilevel modeling in the framework of social sci-
ences. Though the nomenclature is different, the underlying idea is the same: hierar-
chical data are modeled by introducing random coefficients, constant within a given
level but changing across levels. Let us provide two examples. In a longitudinal
context, where data are hierarchical because a given subject is measured repeatedly
over time, a random effect is one that remains constant within a patient but changes
across patients. A typical example of a multilevel setting consists of school children
that are nested within classes which are, in turn, nested within schools. Random
effects are then introduced to capture class-level as well as school-level variability.
Examples abound in other fields as well. Methodology has been developed for con-
tinuous, Gaussian data, as well as for non-Gaussian settings, such as binary, count,
and ordinal data. Overviews can be found in Verbeke and Molenberghs (2000) for
the Gaussian case and in Molenberghs and Verbeke (2005) for the non-Gaussian
setting.

In addition, a number of important contemporary extensions and issues will be
discussed.

First, it is not uncommon for multiple repeated measures sequences to be recorded
and analyzed simultaneously, leading to so-called multivariate longitudinal data.
This poses specific methodological and computational challenges, especially when
the problem is high-dimensional. An overview is presented in Section 2.4.

Second, it is quite common for longitudinal data to be collected in conjunction
with time-to-event outcomes. An overview is presented in Section 2.5. Broadly,
there are three main situations where this can occur: (a) The emphasis can be on
the survival outcome with the longitudinal outcome(s) acting as a covariate process;
(b) interest can be on both simultaneously, such as in the evaluation of surrogate
markers in clinical studies, with a longitudinal marker for a time-to-event outcome;
(c) the survival process can act, either in discrete or continuous time, as a dropout
process on the longitudinal outcome.

The above considerations lead us to include a third main theme, surrogate
marker evaluation, in Section 2.6, and a fourth and final theme, incomplete data, in
Section 2.7.
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2.2 Case Studies

2.2.1 Toenail Data

As a typical longitudinal example, we consider data from a randomized, double
blind, parallel group, multicentre study for the comparison of 2 oral treatments (in
the sequel coded as A and B) for toenail dermatophyte onychomycosis (TDO). We
refer to De Backer et al. (1996) for more details about this study. TDO is a common
toenail infection, difficult to treat, affecting more than two percent of the population.
Antifungal compounds classically used for treatment of TDO need to be taken until
the whole nail has grown out healthy. However, new compounds have reduced the
treatment duration to three months. The aim of the present study was to compare the
efficacy and safety of two such new compounds, labelled A and B, and administered
during 12 weeks.

Table 2.1 Toenail Data. Number and percentage of patients with severe toenail infection, for each
treatment arm separately

Group A Group B
# severe # patients percentage # severe # patients percentage

Baseline 54 146 37.0% 55 148 37.2%
1 month 49 141 34.7% 48 147 32.6%
2 months 44 138 31.9% 40 145 27.6%
3 months 29 132 22.0% 29 140 20.7%
6 months 14 130 10.8% 8 133 6.0%
9 months 10 117 8.5% 8 127 6.3%
12 months 14 133 10.5% 6 131 4.6%

In total, 2×189 patients were randomized, distributed over 36 centres. Subjects
were followed during 12 weeks (3 months) of treatment and followed further, up to
a total of 48 weeks (12 months). Measurements were taken at baseline, every month
during treatment, and every 3 months afterwards, resulting in a maximum of 7 mea-
surements per subject. As a first response, we consider the unaffected nail length
(one of the secondary endpoints in the study), measured from the nail bed to the in-
fected part of the nail, which is always at the free end of the nail, expressed in mm.
Obviously this response will be related to the toe size. Therefore, we will include
here only those patients for which the target nail was one of the two big toenails.
This reduces our sample under consideration to 146 and 148 subjects respectively.
Individual profiles for 30 randomly selected subjects in each treatment group are
shown in Figure 2.1. Our second outcome will be severity of the infection, coded as
0 (not severe) or 1 (severe). The question of interest was whether the percentage of
severe infections decreased over time, and whether that evolution was different for
the two treatment groups. A summary of the number of patients in the study at each
time-point, and the number of patients with severe infections is given in Table 2.1.
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Fig. 2.1 Toenail Data. Individual profiles of 30 randomly selected subjects in each treatment arm.

A key issue in the analysis of longitudinal data is that outcome values measured
repeatedly within the same subjects tend to be correlated, and this correlation struc-
ture needs to be taken into account in the statistical analysis. This is easily seen with
paired observations obtained from, e.g., a pre-test/post-test experiment. An obvious
choice for the analysis is the paired t-test, based on the subject-specific difference
between the two measurements. While an unbiased estimate for the treatment ef-
fect can also be obtained from a two-sample t-test, standard errors and hence also
p-values and confidence intervals obtained from not accounting for the correlation
within pairs will not reflect the correct sampling variability, and hence still lead to
wrong inferences. In general, classical statistical procedures assuming independent
observations, cannot be used in the context of repeated measurements. In this chap-
ter, we will give an overview of the most important models useful for the analysis
of clinical trial data, and widely available through commercial statistical software
packages.

2.2.2 Hearing Data

In a hearing test, hearing threshold sound pressure levels (dB) are determined at
different frequencies to evaluate the hearing performance of a subject. A hearing
threshold is the lowest signal intensity a subject can detect at a specific frequency.
In this study, hearing thresholds measured at eleven different frequencies (125Hz,
250Hz, 500Hz, 750Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz, 4000Hz, 6000Hz and
8000Hz), obtained on 603 male participants from the Baltimore Longitudinal Study
of Aging (BLSA, Shock et al. 1984), are considered. Hearing thresholds are mea-
sured at the left as well as at the right ear, leading to 22 outcomes measured re-
peatedly over time. The number of visits per subject varies from 1 to 15 (a median
follow-up time of 6.9 years). Visits are unequally spaced. The age at first visit of
the participants ranges from 17.2 to 87 years (with a median age at first visit of 50.2
years). Analyses of the hearing data collected in the BLSA study can be found in
Brant and Fozard (1990), Morrell and Brant (1991), Pearson et al. (1995), Verbeke
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and Molenberghs (2000), and Fieuws and Verbeke (2006). It is well known that the
hearing performance deteriorates as one gets older, which will be reflected by an
increase in hearing threshold over time. The aim of our analysis will be to inves-
tigate whether this interaction between time and age is frequency related. Also of
interest is to study the association between evolutions at different frequencies. Both
questions can only be answered using a joint model for all 22 outcomes.

2.2.3 Liver Cirrhosis Data

As an illustrative example for the joint modeling of longitudinal and time-to-event
data we consider data on 488 patients with histologically verified liver cirrhosis,
collected in Copenhagen from 1962 to 1969 (Andersen et al. 1993). Liver cirrho-
sis is the condition in which the liver slowly deteriorates and malfunctions due to
chronic injury. From the 488 patients, 251 were randomly assigned to receive pred-
nisone and 237 placebo. Patients were scheduled to return at 3, 6, and 12 months,
and yearly thereafter, and provide several biochemical values related to liver func-
tion. Our main research question here is to test for a treatment effect on survival
after adjusting for one of these markers namely, the prothrombin index, which is
indicative of the severity of liver fibrosis. Since the prothrombin levels are in fact
the output of a stochastic process generated by the patients and is only available at
the specific visit times the patients came to the study center, it constitutes a typical
example of time-dependent covariate measured intermittently and with error.

2.2.4 Orthodontic Growth Data

Consider the orthodontic growth data, introduced by Potthoff and Roy (1964) and
used by Jennrich and Schluchter (1986) as well. The data have the typical struc-
ture of a clinical trial and are simple yet illustrative. They contain growth measure-
ments for 11 girls and 16 boys. For each subject, the distance from the center of
the pituitary to the maxillary fissure was recorded at ages 8, 10, 12, and 14. Fig-
ure 2.2 presents the 27 individual profiles. Little and Rubin (2002) deleted 9 of the
[(11+16)×4] measurements, rendering 9 incomplete subjects which, even though a
somewhat unusual practice, has the advantage of allowing a comparison between the
incomplete data methods and the analysis of the original, complete data. Deletion
is confined to the age 10 measurements and rougly speaking the complete obser-
vations at age 10 are those with a higher measurement at age 8. We will put some
emphasis on ages 8 and 10, the typical dropout setting, with age 8 fully observed
and age 10 partially missing.
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Fig. 2.2 Orthodontic Growth Data. Orthodontic Growth Data. Raw profiles and sample means
(girls are indicated with solid lines and diamonds; boys are indicated with dashed lines and bullets).

2.2.5 Age-related Macular Degeneration Trial

These data arise from a randomized multi-center clinical trial comparing an ex-
perimental treatment (interferon-α) to a corresponding placebo in the treatment of
patients with age-related macular degeneration. In this chapter we focus on the com-
parison between placebo and the highest dose (6 million units daily) of interferon-α
(Z), but the full results of this trial have been reported elsewhere (Pharmacologi-
cal Therapy for Macular Degeneration Study Group 1997). Patients with macular
degeneration progressively lose vision. In the trial, the patients’ visual acuity was
assessed at different time points (4 weeks, 12 weeks, 24 weeks, and 52 weeks)
through their ability to read lines of letters on standardized vision charts. These
charts display lines of 5 letters of decreasing size, which the patient must read from
top (largest letters) to bottom (smallest letters). The raw patient’s visual acuity is the
total number of letters correctly read. In addition, one often refers to each line with
at least 4 letters correctly read as a ‘line of vision.’

Table 2.2 shows the visual acuity (mean and standard error) by treatment group at
baseline, at 6 months, and at 1 year. Visual acuity can be measured in several ways.
First, one can record the number of letters read. Alternatively, dichotomized versions
(at least 3 lines of vision lost, or at least 3 lines of vision lost) can be used as well.
Therefore, these data will be useful to illustrate methods for the joint modeling of
continuous and binary outcomes, with or without taking the longitudinal nature into
account. In addition, though there are 190 subjects with both month 6 and month
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Table 2.2 The Age-related Macular Degeneration Trial. Mean (standard error) of visual acuity
at baseline, at 6 months and at 1 year according to randomized treatment group (placebo versus
interferon-α)

Time point Placebo Active Total
Baseline 55.3 (1.4) 54.6 (1.3) 55.0 (1.0)
6 months 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)
1 year 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

12 measurements available, the total number of longitudinal profiles is 240, but for
only 188 of these have the four follow-up measurements been made.

Thus indeed, 50 incomplete subjects could be considered for analysis as well.
Both intermittent missingness as well as dropout occurs. An overview is given in
Table 2.3. Thus, 78.33% of the profiles are complete, while 18.33% exhibit mono-

Table 2.3 The Age-related Macular Degeneration Trial. Overview of missingness patterns and the
frequencies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
O O O O 188 78.33

Dropouts
O O O M 24 10.00
O O M M 8 3.33
O M M M 6 2.50
M M M M 6 2.50

Non-monotone missingness
O O M O 4 1.67
O M M O 1 0.42
M O O O 2 0.83
M O M M 1 0.42

tone missingness. Out of the latter group, 2.5% or 6 subjects have no follow-up mea-
surements. The remaining 3.33%, representing 8 subjects, have intermittent missing
values. Thus, as in many of the examples seen already, dropout dominates interme-
diate patterns as the source of missing data

2.3 Modeling Tools for Longitudinal Data

In many branches of science, studies are often designed to investigate changes in
a specific parameter which is measured repeatedly over time in the participating
subjects. Such studies are called longitudinal studies, in contrast to cross-sectional
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studies where the response of interest is measured only once for each individual.
As pointed out by Diggle et al. (2002) one of the main advantages of longitudinal
studies is that they can distinguish changes over time within individuals (longitudi-
nal effects) from differences among people in their baseline values (cross-sectional
effects).

In randomized clinical trials, for example, where the aim usually is to compare
the effect of two (or more) treatments at a specific time-point, the need and ad-
vantage of taking repeated measures is at first sight less obvious. Indeed, a simple
comparison of the treatment groups at the end of the follow-up period is often suf-
ficient to establish the treatment effect(s) (if any) by virtue of the randomization.
However, in some instances, it is important to know how the patients have reached
their endpoint, i.e., it is necessary to compare the average profiles (over time) be-
tween the treatment groups. Furthermore, longitudinal studies can be more powerful
than studies evaluating the treatments at one single time-point. Finally, follow-up
studies more often than not suffer from dropout, i.e., some patients leave the study
prematurely, for known or unknown reasons. In such cases, a full repeated measures
analysis will help in drawing inferences at the end of the study. Given that incom-
pleteness usually occurs for reasons outside of the control of the investigators and
may be related to the outcome measurement of interest, it is generally necessary to
reflect on the process governing incompleteness. Only in special but important cases
is it possible to ignore the missingness process.

When patients are examined repeatedly, missing data can occur for various rea-
sons and at various visits. When missing data result from patient dropout, the miss-
ing data pattern is monotone pattern. Non-monotone missingness occurs when there
are intermittent missing values as well. Our focus will be on dropout. We will return
to the missing data issue in Section 2.7. We are now in a position to discuss first a
key modeling tool for Gaussian longitudinal data, where after we will switch to the
non-Gaussian case.

2.3.1 Linear Models for Gaussian Data

With repeated Gaussian data, a general, and very flexible, class of parametric models
is obtained from a random-effects approach. Suppose that an outcome Y is observed
repeatedly over time for a set of people, and suppose that the individual trajecto-
ries are of the type shown in Figure 2.3. Obviously, a linear regression model with
intercept and linear time effect seems plausible to describe the data of each person
separately. However, different people tend to have different intercepts and different
slopes. One can therefore assume that the jth outcome Yi j of subject i (i = 1, . . . ,N,
j = 1, . . . ,ni), measured at time ti j satisfies Yi j = b̃i0 + b̃i1ti j +εi j. Assuming the vec-
tor b̃i = (b̃i0, b̃i1)� of person-specific parameters to be bivariate normal with mean
(β0,β1)� and 2×2 covariance matrix D and assuming εi j to be normal as well, this
leads to a so-called linear mixed model. In practice, one will often formulate the
model as
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Fig. 2.3 Hypothetical example of continuous longitudinal data which can be well described by
a linear mixed model with random intercepts and random slopes. The thin lines represent the
observed subject-specific evolutions. The bold line represents the population-averaged evolution.
Measurements are taken at six time-points 0, 1, 2, 3, 4, 5.

Yi j = (β0 +bi0)+(β1 +bi1)ti j + εi j,

with b̃i0 = β0 +bi0 and b̃i1 = β1 +bi1, and the new random effects bi = (bi0,bi1)� are
now assumed to have mean zero. The above model is a special case of the general
linear mixed model which assumes that the outcome vector Yi of all ni outcomes for
subject i satisfies

Yi = Xiβ + Zibi + εi, (2.1)

in which β is a vector of population-average regression coefficients, called fixed
effects, and where bi is a vector of subject-specific regression coefficients. The bi
are assumed normal with mean vector 0 and covariance D, and they describe how
the evolution of the ith subject deviates from the average evolution in the population.
The matrices Xi and Zi are (ni× p) and (ni×q) matrices of known covariates. Note
that p and q are the numbers of fixed and subject-specific regression parameters in
the model, respectively. The residual components εi are assumed to be independent
N(0,Σi), where Σi depends on i only through its dimension ni.

Estimation of the parameters in (2.1) is usually based on maximum likelihood
(ML) or restricted maximum likelihood (REML) estimation for the marginal distri-
bution of Yi which can easily be seen to be

Yi ∼ N(Xiβ ,ZiDZ�i +Σi). (2.2)

Note that model (2.1) implies a model with very specific mean and covariance
structures, which may or may not be valid, and hence needs to be checked for
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every specific data set at hand. Note also that, when Σi = σ2Ini , with Ini equal to
the identity matrix of dimension ni, the observations of subject i are independent
conditionally on the random effect bi. The model is therefore called the conditional-
independence model. Even in this simple case, the assumed random-effects structure
still imposes a marginal correlation structure for the outcomes Yi j. Indeed, even if
all Σi equal σ2Ini , the covariance matrix in (2.2) is not a diagonal matrix, illustrat-
ing that, marginally, the repeated measurements Yi j of subject i are not assumed to
be uncorrelated. Another special case arises when the random effects are omitted
from the model. In that case, the covariance matrix of Yi is modeled through the
residual covariance matrix Σi. In the case of completely balanced data, i.e., when
ni is the same for all subjects, and when the measurements are all taken at fixed
time points, one can assume all Σi to be equal to a general unstructured covariance
matrix Σ , which results in the classical multivariate regression model. Inference in
the marginal model can be done using classical techniques including approximate
Wald tests, t-tests, F-tests, or likelihood ratio tests. Finally, Bayesian methods can
be used to obtain ‘empirical Bayes estimates’ for the subject-specific parameters bi
in (2.1). We refer to Henderson et al. (1959), Harville (1974, 1976, 1977), Laird and
Ware (1982), Verbeke and Molenberghs (2000), and Fitzmaurice, Laird, and Ware
(2004) for more details about estimation and inference in linear mixed models.

2.3.2 Models for Discrete Outcomes

Whenever discrete data are to be analyzed, the normality assumption in the models
in the previous section is no longer valid, and alternatives need to be considered. The
classical route, in analogy to the linear model, is to specify the full joint distribution
for the set of measurements Yi j, . . . ,Yini per individual. Clearly, this implies the need
to specify all moments up to order ni. Examples of marginal models can be found
in Bahadur (1961), Altham (1978), Efron (1986), Molenberghs and Lesaffre (1994,
1999), Lang and Agresti (1994), and Fahrmeir and Tutz (2001).

Especially for longer sequences and/or in cases where observations are not taken
at fixed time points for all subjects, specifying a full likelihood, as well as mak-
ing inferences about its parameters, traditionally done using maximum likelihood
principles, can become very cumbersome. Therefore, inference is often based on
a likelihood obtained from a random-effects approach. Associations and all higher-
order moments are then implicitly modeled through a random-effects structure. This
will be discussed in Section 2.3.2.1. A disadvantage is that the assumptions about all
moments are made implicitly, and therefore very hard to check. As a consequence,
alternative methods have been in demand, which require the specification of a small
number of moments only, leaving the others completely unspecified. In a large num-
ber of cases, one is primarily interested in the mean structure, whence only the first
moments need to be specified. Sometimes, there is also interest in the association
structure, quantified, for example, using odds ratios or correlations. Estimation is
then based on so-called generalized estimating equations, and inference no longer
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directly follows from maximum likelihood theory. This will be explained in Sec-
tion 2.3.2.2. A comparison of both techniques will be presented in Section 2.3.2.3.
In Section 2.3.3, both approaches will be illustrated in the context of the toenail
data.

2.3.2.1 Generalized Linear Mixed Models (GLMM)

As discussed in Section 2.3.1, random effects can be used to generate an association
structure between repeated measurements. This can be exploited to specify a full
joint likelihood in the context of discrete outcomes. More specifically, condition-
ally on a vector bi of subject-specific regression coefficients, it is assumed that all
responses Yi j for a single subject i are independent, satisfying a generalized linear
model with mean μi j = g(xi j

�β + zi j
�bi) for a pre-specified link function g(·), and

for two vectors xi j and zi j of known covariates belonging to subject i at the jth time
point. Let fi j(yi j|bi) denote the corresponding density function of Yi j, given bi. As
for the linear mixed model, the random effects bi are assumed to be sampled from a
normal distribution with mean vector 0 and covariance D. The marginal distribution
of Yi is then given by

f (yi) =
∫ ni

∏
j=1

fi j(yi j|bi) f (bi)dbi, (2.3)

in which dependence on the parameters β and D is suppressed from the notation.
Assuming independence accross subjects, the likelihood can easily be obtained, and
maximum likelihood estimation becomes available.

In the linear model, the integral in (2.3) could be worked out analytically, leading
to the normal marginal model (2.2). In general, however, this is no longer possible,
and numerical approximations are needed. Broadly, we can distinguish between ap-
proximations to the integrand in (2.3), and methods based on numerical integration.
In the first approach, Taylor series expansions to the integrand are used, simplifying
the calculation of the integral. Depending on the order of expansion and the point
around which one expands, slightly different procedures are obtained. We refer to
Breslow and Clayton (1993), Wolfinger and O’Connell (1993), Molenberghs and
Verbeke (2005), and Fitzmaurice, Laird, and Ware (2004) for an overview of es-
timation methods. In general, such approximations will be accurate whenever the
responses yi j are ‘sufficiently continuous’ and/or if all ni are sufficiently large. This
explains why the approximation methods perform poorly in cases with binary re-
peated measurements, with a relatively small number of repeated measurements
available for all subjects (Wolfinger 1998). Especially in such examples, numerical
integration proves very useful. Of course, a wide toolkit of numerical integration
tools, available from the optimization literature, can be applied. A general class of
quadrature rules selects a set of abscissas and constructs a weighted sum of func-
tion evaluations over those. We refer to Hedeker and Gibbons (1994, 1996) and to
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Pinheiro and Bates (2000) for more details on numerical integration methods in the
context of random-effects models.

2.3.2.2 Generalized Estimating Equations (GEE)

Liang and Zeger (1986) proposed so-called generalized estimating equations (GEE)
which require only the correct specification of the univariate marginal distributions
provided one is willing to adopt ‘working’ assumptions about the association struc-
ture. More specifically, a generalized linear model (McCullagh and Nelder 1989) is
assumed for each response Yi j, modeling the mean μi j as g(xi j

�β ) for a pre-specified
link function g(·), and a vector xi j of known covariates. In case of independent re-
peated measurements, the classical score equations for the estimation of β are well
known to be

S(β ) = ∑
i

∂ μ�i
∂β

V−1
i (Yi−μ i) = 0, (2.4)

where μ i = E(Yi) and Vi is a diagonal matrix with vi j = Var(Yi j) on the main diag-
onal. Note that, in general, the mean-variance relation in generalized linear models
implies that the elements vi j also depend on the regression coefficients β . Gener-
alized estimating equations are now obtained from allowing non-diagonal ‘covari-
ance’ matrices Vi in (2.4). In practice, this comes down to the specification of a
‘working correlation matrix’ which, together with the variances vi j, results in a hy-
pothesized covariance matrix Vi for Yi.

Solving S(β ) = 0 is done iteratively, constantly updating the working correlation
matrix using moment-based estimators. Note that, in general, no maximum likeli-
hood estimates are obtained, since the equations are not first-order derivatives of
some log-likelihood function. Still, very similar properties can be derived. More
specifically, Liang and Zeger (1986) showed that β̂ is asymptotically normally dis-
tributed, with mean β and with a covariance matrix that can easily be estimated in
practice. Hence, classical Wald-type inferences become available. This result holds
provided that the mean was correctly specified, whatever working assumptions were
made about the association structure. This implies that, strictly speaking, one can fit
generalized linear models to repeated measurements, ignoring the correlation struc-
ture, as long as inferences are based on the standard errors that follow from the
general GEE theory. However, efficiency can be gained from using a more appro-
priate working correlation model (Mancl and Leroux 1996).

The original GEE approach focuses on inferences for the first-order moments,
considering the association present in the data as nuisance. Later on, extensions
have been proposed which also allow inferences about higher-order moments. We
refer to Prentice (1988), Lipsitz, Laird and Harrington (1991), and Liang, Zeger and
Qaqish (1992) for more details on this.
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2.3.2.3 Marginal versus Hierarchical Parameter Interpretation

Comparing the GEE results and the GLMM results in Table 2.4, we observe large
differences between the corresponding parameter estimates. This suggests that the
parameters in both models have a different interpretation. Indeed, the GEE approach
yields parameters with a population-averaged interpretation. Each regression param-
eter expresses the average effect of a covariate on the probability of having a severe
infection. Results from the generalized linear mixed model, however, require an in-
terpretation conditionally on the random effect, i.e., conditionally on the subject.
In the context of our toenail example, consider model (2.7) for treatment group A
only. The model assumes that the probability of severe infection satisfies a logistic
regression model, with the same slope for all subjects, but with subject-specific in-
tercepts. The population-averaged probability of severe infection is obtained from
averaging these subject-specific profiles over all subjects. This is graphically pre-
sented in Figure 2.4. Clearly, the slope of the average trend is different from the
subject-specific slopes, and this effect will be more severe as the subject-specific
profiles differ more, i.e., as the random-intercepts variance σ2 is larger. Formally,
the average trend for group A is obtained as

P(Yi(t) = 1) = E [P(Yi(t) = 1|bi)] = E
[

exp(βA0 +bi +βA1t)
1+ exp(βA0 +bi +βA1t)

]
�= E

[
exp(βA0 +βA1t)

1+ exp(βA0 +βA1t)

]
.

Hence, the population-averaged evolution is not the evolution for an ‘average’ sub-
ject, i.e., a subject with random effect equal to zero. The second graph in Figure 2.6
shows the fitted profiles for an average subject in each treatment group, and these
profiles are indeed very different from the population-averaged profiles shown in the
first graph of Figure 2.6 and discussed before. In general, the population-averaged
evolution implied by the GLMM is not of a logistic form any more, and the param-
eter estimates obtained from the GLMM are typically larger in absolute value than
their marginal counterparts (Neuhaus, Kalbfleisch, and Hauck 1991). However, one
should not refer to this phenomenon as bias given that the two sets of parameters
target at different scientific questions. Observe that this difference in parameter in-
terpretation between marginal and random-effects models immediately follows from
their non-linear nature, and therefore is absent in the linear mixed model, discussed
in Section 2.3.1. Indeed, the regression parameter vector β in the linear mixed model
(2.1) is the same as the regression parameter vector modeling the expectation in the
marginal model (2.2).
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Fig. 2.4 Graphical representation of a random-intercepts logistic model. The thin lines represent
the subject-specific logistic regression models. The bold line represents the population-averaged
evolution.

2.3.3 Analysis of Toenail Data

As an illustration, we analyze unaffected nail length response in the toenail exam-
ple. The model proposed by Verbeke, Lesaffre, and Spiessens (2001) assumes a
quadratic evolution for each subject, with subject-specific intercepts, and with cor-
related errors within subjects. More formally, they assume that Yi j satisfies

Yi j(t) =
{

(βA0 +bi)+βA1t +βA2t2 + ε i(t), in group A
(βB0 +bi)+βB1t +βB2t2 + ε i(t), in group B,

(2.5)

where t = 0,1,2,3,6,9,12 is the number of months since randomization. The error
components ε i(t) are assumed to have common variance σ2, with correlation of the
form corr(ε i(t),ε i(t − u)) = exp(−ϕu2) for some unknown parameter ϕ . Hence,
the correlation between within-subject errors is a decreasing function of the time
span between the corresponding measurements. Fitted average profiles are shown
in Figure 2.5. An approximate F-test shows that, on average, there is no evidence
for a treatment effect (p = 0.2029). Note that, even when interest would only be in
comparing the treatment groups after 12 months, this could still be done based on the
above fitted model. The average difference between group A and group B, after 12
months, is given by (βA0−βB0)−12(βA1−βB1)+122(βA2−βB2). The estimate for
this difference equals 0.80 mm (p = 0.0662). Alternatively, a two-sample t-test could
be performed based on those subjects that have completed the study. This yields an
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Fig. 2.5 Toenail Data. Fitted average profiles based on model (2.5).

estimated treatment effect of 0.77 mm (p = 0.2584) illustrating that modeling the
whole longitudinal sequence also provides more efficient inferences at specific time-
points.

As an illustration of GEE and GLMM, we analyze the binary outcome ‘severity
of infection’ in the toenail study. We will first apply GEE, based on the marginal
logistic regression model

log
[

P(Yi(t) = 1)
1−P(Yi(t) = 1)

]
=

{
βA0 +βA1t, in group A
βB0 +βB1t, in group B. (2.6)

Furthermore, we use an unstructured 7×7 working correlation matrix. The results
are reported in Table 2.4, and the fitted average profiles are shown in the top graph
of Figure 2.6. Based on a Wald-type test we obtain a significant difference in the
average slope between the two treatment groups (p = 0.0158).

Table 2.4 Toenail Data. Parameter estimates (standard errors) for a generalized linear mixed model
(GLMM) and a marginal model (GEE)

GLMM GEE
Parameter Estimate (s.e.) Estimate (s.e.)
Intercept group A (βA0) −1.63 (0.44) −0.72 (0.17)
Intercept group B (βB0) −1.75 (0.45) −0.65 (0.17)
Slope group A (βA1) −0.40 (0.05) −0.14 (0.03)
Slope group B (βB1) −0.57 (0.06) −0.25 (0.04)
Random intercepts s.d. (σ ) 4.02 (0.38)
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Fig. 2.6 Toenail Data. Treatment-specific evolutions. (a) Marginal evolutions as obtained from the
marginal model (2.6) fitted using GEE, (b) Evolutions for subjects with random effects in model
(2.7) equal to zero.

Alternatively, we consider a generalized linear mixed model, modeling the as-
sociation through the inclusion of subject-specific, i.e., random, intercepts. More
specifically, we will now assume that
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log
[

P(Yi(t) = 1|bi)
1−P(Yi(t) = 1|bi)

]
=

{
βA0 +bi +βA1t, in group A
βB0 +bi +βB1t, in group B (2.7)

with bi normally distributed with mean 0 and variance σ2. The results, obtained
using numerical integration methods, are also reported in Table 2.4. As before, we
obtain a significant difference between βA1 and βB1 (p = 0.0255).

2.4 Multivariate Longitudinal Data

So far, we have considered a single, repeatedly measured outcome. However, often
one observes more than one outcome at the same time, which is essentially known
as multivariate outcomes. These can all be of the same data type, e.g., all Gaussian
or all binary, or of a mixed type, e.g., when the outcome vector is made up of con-
tinuous and binary components. Statistical problems where various outcomes of a
mixed nature are observed have been around for about half a century and are rather
common at present. Many research questions can often only fully be addressed in a
joint analysis of all outcomes simultaneously. For example, the association structure
can be of direct scientific relevance.

It is definitely possible for all of these features to occur simultaneously, whereby
a multivariate outcome vector, possible of a mixed nature, is measured repeatedly
over time. An array of research questions can then be addressed in this way. A
possible question might be how the association between outcomes evolves over time
or how outcome-specific evolutions are related to each other (Fieuws and Verbeke
2004). Another example is discriminant analysis based on multiple, longitudinally
measured, outcomes. Third, interest may be in the comparison of average trends
for different outcomes. As an example, consider testing the difference in evolution
between many outcomes or joint testing of a treatment effect on a set of outcomes.
All of these situations require a joint model for all outcomes.

Let us focus, for a moment, on the combined analysis of a continuous and a
discrete outcome. There then broadly are three approaches. The first one postu-
lates a marginal model for the binary outcome and then formulates a conditional
model for the continuous outcome, given the categorical one. For the former, one
can use logistic regression, whereas for the latter conditional normal models are
a straightforward choice, i.e., a normal model with the categorical outcome used
as a covariate (Tate 1954). The second family starts from the reverse factorization,
combining a marginal model for the continuous outcome with a conditional one for
the categorical outcome. Conditional models have been discussed by Cox and Wer-
muth (1992, 1994a, 1994b), Krzanowski (1988), and Little and Schluchter (1985).
Schafer (1997) presents a so-called general location model where a number of con-
tinuous and binary outcomes can be modeled together. The third model family di-
rectly formulates a joint model for the two outcomes. In this context, one often starts
from a bivariate continuous variable, one component of which is explicitly observed
and the other one observed in dichotomized, or generally discretized, version only
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(Tate 1955). Molenberghs, Geys, and Buyse (2001) presented a model based on a
Plackett-Dale approach, where a bivariate Plackett distribution is assumed, of which
one margin is directly observed and the other one only after dichotomization. Gen-
eral multivariate exponential family based models have been proposed by Prentice
and Zhao (1991), Zhao, Prentice, and Self (1992), and Sammel, Ryan, and Legler
(1997).

Of course, these developments have not been limited to bivariate joint outcomes.
One can obviously extend these ideas and families to a multivariate continuous out-
come and/or a multivariate categorical outcome. For the first and second families,
one then starts from conditional and marginal multivariate normal and appropriately
chosen multinomial models. Such a model within the first family has been formu-
lated by Olkin and Tate (1961). Within the third family, models were formulated by
Hannan and Tate (1965) and Cox (1974) for a multivariate normal with a univariate
bivariate or discrete variable.

As alluded to before, apart from an extension from the bivariate to the multivari-
ate case, one can introduce other hierarchies as well. We will now assume that each
of the outcomes may be measured repeatedly over time, and there could even be
several repeated outcomes in both the continuous and the categorical subgroup. A
very specific hierarchy stems from clustered data, where a continuous and a cate-
gorical, or several of each, are observed for each member of a family, a household,
a cluster, etc. For the specific context of developmental toxicity studies, often con-
ducted in rats and mice, a number of developments have been made. An overview
of such methods, together with developments for probit-normal and Plackett-Dale
based models, was presented in Regan and Catalano (2002). Catalano and Ryan
(1992) and Fitzmaurice and Laird (1995) propose models for a combined continu-
ous and discrete outcome, but differ in the choice of which outcome to condition
on the other one. Both use generalized estimating equations to allow for clustering.
Catalano (1997) extended the model by Catalano and Ryan (1992) to accommodate
ordinal variables. An overview can be found in Aerts et al (2002).

Regan and Catalano (1999a) proposed a probit-type model to accommodate joint
continuous and binary outcomes in a clustered data context, thus extending the cor-
related probit model for binary outcomes (Ochi and Prentice 1984) to incorporate
continuous outcomes. Molenberghs, Geys, and Buyse (2001) used a Plackett la-
tent variable to the same effect, extending the bivariate version proposed by Molen-
berghs, Geys, and Buyse (2001). Estimation in such hierarchical joint models can be
challenging. Regan and Catalano (1999a) proposed maximum likelihood, but con-
sidered GEE as an option too (Regan and Catalano 1999b). Geys, Molenberghs, and
Ryan (1999) made use of pseudo-likelihood. Ordinal extensions have been proposed
in Regan and Catalano (2000).

Thus, many applications of this type of joint models can already be found
in the statistical literature. For example, the approach has been used in a non-
longitudinal setting to validate surrogate endpoints in meta-analyses (Buyse et al.
2000, Burzykowski et al. 2001) or to model multivariate clustered data (Thum
1997). Gueorguieva (2001) used the approach for the joint modeling of a contin-
uous and a binary outcome measure in a developmental toxicity study on mice.
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Also in a longitudinal setting, Chakraborty et al. (2003) obtained estimates of the
correlation between blood and semen HIV-1 RNA by using a joint random-effects
model. Other examples with longitudinal studies can be found in MacCallum et
al. (1997), Thiébaut et al. (2002) and Shah, Laird, and Schoenfeld (1997). All of
these examples refer to situations where the number of different outcomes is rela-
tively low. Although the model formulation can be done irrespective of the number
of outcomes to be modeled jointly, standard fitting procedures, such as maximum
likelihood estimation, is only feasible when the dimension is sufficiently low or if
one is willing to make a priori strong assumptions about the association between
the various outcomes. An example of the latter can be found in situations where the
corresponding random effects of the various outcomes are assumed to be perfectly
correlated (Oort 2001, Sivo 2001, Roy and Lin 2000, and Liu and Hedeker 2006).
Fieuws and Verbeke (2006) have developed a model-fitting procedure that is appli-
cable, irrespective of the dimensionality of the problem. This is the route that will
be followed in the next sections.

2.4.1 A Mixed Model for Multivariate Longitudinal Outcomes

A flexible joint model that can handle any number of outcomes measured longitu-
dinally, without any restriction to the nature of the outcomes can be obtained by
modeling each outcome separately using a mixed model (linear, generalized linear,
or non-linear), by assuming that, conditionally on these random effects, the different
outcomes are independent, and by imposing a joint multivariate distribution on the
vector of all random effects. This approach has many advantages and is applicable in
a wide variety of situations. First, the data can be highly unbalanced. For example, it
is not necessary that all outcomes are measured at the same time points. Moreover,
the approach is applicable for combining linear mixed models, non-linear mixed
models, or generalized linear mixed models. The procedure also allows the combi-
nation of different types of mixed models, such as a generalized linear mixed model
for a discrete outcome and a non-linear mixed model for a continuous outcome.

Let m be the dimension of the problem, i.e., the number of outcomes that need
to be modeled jointly. Further, let Yri j denote the jth measurement taken on the
ith subject, for the rth outcome, i = 1, . . . ,N, r = 1, . . . ,m, and j = 1, . . . ,nri. Note
that we do not assume that the same number of measurements is available for all
subjects, nor for all outcomes. Let Yri be the vector of nri measurements taken on
subject i, for outcome r. Our model assumes that each Yri satisfies a mixed model.
Let fri(yri|bri,θr) be the density of Yri, conditional on a qr-dimensional vector bri
of random effects for the rth outcome on subject i. The vector θr contains all fixed
effects and possibly also a scale parameter needed in the model for the rth outcome.
Note that we do not assume the same type of model for all outcomes: A combination
of linear, generalized linear, and non-linear mixed models is possible. It is also not
assumed that the same number qr of random effects is used for all m outcomes.
Finally, the model is completed by assuming that the vector bi of all random effects
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for subject i is multivariate normal with mean zero and covariance D, i.e.,

bi =

⎛⎜⎜⎜⎝
b1i
b2i
...
bmi

⎞⎟⎟⎟⎠∼ N

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0
0
...
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
D11 D12 · · · D1m
D21 D22 · · · D2m

...
...

. . .
...

Dm1 Dm2 · · · Dmm

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

The matrices Drs represent the covariances between bri and bsi, r,s = 1, . . . ,m. Fi-
nally, D is the matrix with blocks Drs as entries.

A special case of the above model is the so-called shared-parameter model, which
assumes the same set of random effects for all outcomes. This clearly can be ob-
tained as a special case of the above model by assuming perfect correlation between
some of the random effects. The advantage of such shared-parameter models is the
relatively low dimension of the random-effects distribution, when compared to the
above model. The dimension of the random effects in shared parameter models does
not increase with the number of outcomes to be modeled. In the above model, each
new outcome added to the model introduces new random effects, thereby increasing
the dimension of bi. Although the shared-parameter models can reasonably easily
be fitted using standard software, this is no longer the case for the model consid-
ered here. Estimation and inference under the above model will require specific
procedures, which will be discussed in Section 2.4.2. A disadvantage of the shared-
parameter model is that it is based on much stronger assumptions about the associa-
tion between the outcomes, which may not be valid, especially in high-dimensional
settings as considered in this chapter. Note also that, joining valid univariate mixed
models does not necessarily lead to a correct joint model. Fieuws and Verbeke
(2004) illustrate this in the context of linear mixed models for two continuous out-
comes. It is shown how the joint model may imply association structures between
the two sets of longitudinal profiles that may strongly depend on the actual parame-
terization of the individual models and that are not necessarily valid.

2.4.2 A Pairwise Model-fitting Approach

Whereas the modeling approach from the previous setting is rather versatile, it might
become computationally cumbersome for high-dimensional applications. It is there-
fore useful to consider the approach of Fieuws and Verbeke (2006), when a large
number of repeated sequences are to be analyzed simultaneously. The general idea is
that all parameters in the full multivariate model can be identified from all pairwise
models, i.e., all bivariate models for each pair of outcomes. Therefore, using pseudo-
likelihood ideas, also termed pairwise or composite likelihood (Molenberghs and
Verbeke 2005), fitting the full model is replaced by maximum likelihood estimation
of each bivariate model separately. This can be done using standard statistical soft-
ware. Afterwards, all results are appropriately combined, and Wald-type inferences
become available from noticing that the pairwise fitting approach is equivalent to
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maximizing the sum of all the log-likelihoods from all fitted pairs. This sum can
be interpreted as a pseudo-log-likelihood function, and inferences then immediately
follow from the general pseudo-likelihood theory, as will now be explained in the
following sections.

2.4.2.1 Pairwise Fitting

Let Ψ ∗ be the vector of all parameters in the multivariate joint mixed model for
(Y1,Y2, . . . ,Ym). The pairwise fitting approach starts from fitting all m(m−1)/2 bi-
variate models, i.e., all joint models for all possible pairs

(Y1,Y2),(Y1,Y3), . . . ,(Y1,Ym),(Y2,Y3), . . . ,(Y2,Ym), . . . ,(Ym−1,Ym)

of the outcomes Y1,Y2, . . . ,Ym. Let the log-likelihood function corresponding to the
pair (r,s) be denoted by �(yr,ys|Ψrs), and let Ψrs be the vector containing all param-
eters in the bivariate model for pair (r,s).

Let Ψ now be the stacked vector combining all m(m−1)/2 pair-specific param-
eter vectors Ψrs. Estimates for the elements in Ψ are obtained by maximizing each
of the m(m− 1)/2 log-likelihoods �(yr,ys|Ψrs) separately. It is important to realize
that the parameter vectors Ψ and Ψ ∗ are not equivalent. Indeed, some parameters in
Ψ ∗ will have a single counterpart in Ψ , e.g., the covariances between random effects
of different outcomes. Other elements in Ψ ∗ will have multiple counterparts in Ψ ,
e.g., fixed effects from one single outcome. In the latter case, a single estimate for
the corresponding parameter in Ψ ∗ is obtained by averaging all corresponding pair-
specific estimates in Ψ̂ . Standard errors of the so-obtained estimates clearly cannot
be obtained from averaging standard errors or variances. Indeed, two pair-specific
estimates corresponding to two pairwise models with a common outcome are based
on overlapping information and hence correlated. This correlation should also be
accounted for in the sampling variability of the combined estimates in Ψ̂

∗
. Correct

asymptotic standard errors for the parameters in Ψ̂ , and consequently in Ψ̂
∗
, can be

obtained from pseudo-likelihood ideas.

2.4.2.2 Inference for Ψ

Fitting all bivariate models is equivalent to maximizing the function

p�(Ψ)≡ p�(y1i,y2i, . . . ,ymi|Ψ) = ∑
r<s

�(yr,ys|Ψrs), (2.8)

ignoring the fact that some of the vectors Ψrs have common elements, i.e., assuming
that all vectors Ψrs are completely distinct. The function in (2.8) can be considered
a pseudo-likelihood function, maximization of which leads to so-called pseudo-
likelihood estimates, with well-known asymptotic statistical properties. We refer
to Arnold and Strauss (1991) and Geys, Molenberghs, and Ryan (1997) for more
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details. Our application of pseudo-likelihood methodology is different from most
other applications in the sense that the same parameter vector is usually present in
the different parts of the pseudo-likelihood function. Here, the set of parameters in
Ψrs is treated pair-specific, which allows separate maximization of each term in the
pseudo log-likelihood function (2.8). In Section 2.4.2.3, we will account for the fact
that Ψrs and Ψrs′ , s �= s′, are not completely distinct, as they share the parameters
referring to the rth outcome.

It now follows directly from the general pseudo-likelihood theory that Ψ̂ asymp-
totically satisfies

√
N(Ψ̂ −Ψ) ≈ N(0, I−1

0 I1I−1
0 )

in which I−1
0 I1I−1

0 is a ‘sandwich-type’ robust variance estimator, and where I0 and
I1 can be constructed using first- and second-order derivatives of the components in
(2.8). Strictly speaking, I0 and I1 depend on the unknown parameters in Ψ , but these
are traditionally replaced by their estimates in Ψ̂ .

2.4.2.3 Combining Information: Inference for Ψ ∗

In a final step, estimates for the parameters in Ψ ∗ can be calculated, as suggested
before, by taking averages of all the available estimates for that specific parameter.
Obviously, this implies that Ψ̂ ∗ = A�Ψ̂ for an appropriate weight matrix A. Hence,
inference for the elements in Ψ̂ ∗ will be based on

√
N(Ψ̂ ∗ −Ψ ∗) =

√
N(A�Ψ̂ −A�Ψ)≈ N(0,A�I−1

0 I1I−1
0 A).

It can be shown that pseudo-likelihood estimates are less efficient than the full max-
imum likelihood estimates (Arnold and Strauss 1991). However, these results refer
to efficiency for the elements in Ψ , not directly to the elements in Ψ ∗. In general, the
degree of loss of efficiency depends on the context, but Fieuws and Verbeke (2006)
have presented evidence for only very small losses in efficiency in the present con-
text of the pairwise fitting approach for multivariate random-effects models.

2.4.3 Analysis of the Hearing Data

Let Yr,i(t) denote the rth hearing threshold for subject i taken at time t, r = 1, . . . ,11
for the right ear, and r = 12, . . . ,22 for the left ear. Morrell and Brant (1991), and
Pearson et al. (1995) have proposed the following linear mixed model to analyze
the evolution of the hearing threshold for a single frequency:

Yr,i(t) = (βr,1 +βr,2Agei +βr,3Age2
i +ar,i)+

+(βr,4 +βr,5Agei +br,i)t +βr,6Vi(t)+ εr,i(t). (2.9)
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The time t is expressed in years from entry in the study and Agei equals the age
of subject i at the time of entry in the study. The binary time-varying covariate Vi
represents a learning effect from the first to the subsequent visits. Finally, the ar,i are
random intercepts, the br,i are the random slopes for time, and the εr,i represent the
usual error components. The regression coefficients βr,1, . . . ,βr,6 are fixed, unknown
parameters. The 44 random effects a1,i,a2,i, . . . ,a22,i,b1,i,b2,i, . . . ,b22,i are assumed
to follow a joint zero-mean normal distribution with covariance matrix D. At each

Fig. 2.7 Hearing Data. Estimates β̂r,5 with associated 95% confidence intervals, for the measure-
ments from left and right ear separately.
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time point t, the error components ε1,i, . . . ,ε22,i follow a 22-dimensional zero-mean
normal distribution with covariance matrix R. The total number of parameters in D
and R equals 990+253 = 1243.

We applied the pairwise approach to fit model (2.9) to the Hearing data intro-
duced in Section 2.2.2. As discussed before, one of the key research questions is
whether the deterioration of hearing ability with age is different for different fre-
quencies, because this would yield evidence for selective deterioration. Formally,
this requires testing the null-hypotheses H0 : β1,5 = β2,5 = . . . = β11,5 for the right
side, and H0 : β12,5 = β13,5 = . . . = β22,5 for the left side. Figure 2.7 shows all esti-
mates β̂r,5 with associated 95% confidence intervals, for the left and right ear sepa-
rately. We clearly observe an increasing trend implying that age accelerates hearing
loss, but that this is more severe for higher frequencies. Wald-type tests indicate
that these estimates are significantly different between the outcomes, at the left side
(χ2

10 = 90.4, p < 0.0001) as well as at the right side (χ2
10 = 110.9, p < 0.0001).

2.4.4 Some Reflections

The advantage of this technique is that all implied univariate models belong to the
well-known mixed model family. This implies that one can first model each outcome
separately (with separate data exploration and model building), before joining the
univariate models into the full multivariate model. Moreover, the parameters in the
multivariate model keep their interpretation from the separate univariate models.
Finally, this approach is sufficiently flexible to allow for different types of models
for the different outcomes (linear, non-linear, generalized linear).

A disadvantage of the approach is that, when the number of outcomes becomes
large, the dimension of the random effects can become too large to fit the full mul-
tivariate model using standard software for mixed models. Using results of Fieuws
and Verbeke (2006), and Fieuws et al. (2006), we have explained how all parame-
ters in the multivariate model can be estimated from fitting the model to all possible
pairs of outcomes. Inferences follow from pseudo-likelihood theory. Although the
estimates obtained from the pairwise approach do not maximize the full multivari-
ate likelihood, they still have similar asymptotic properties, with no or only marginal
loss of efficiency when compared to the maximum likelihood estimates. It should
be emphasized that we do not advocate fitting multivariate models in order to gain
efficiency for parameters in single univariate models. As long as no inferences are
needed for combinations of parameters from different outcomes, and if no outcomes
share the same parameters, univariate mixed models are by far the preferred tools
for the analysis.

Fitting of the models can usually be done using standard software for the lin-
ear, non-linear, and generalized linear mixed models. Software is available from
http://med.kuleuven.be/biostat/software/software.htm/and
several examples from the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. Calculation of the
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standard errors, however, requires careful data manipulation. In case all univariate
mixed models are of the linear type (e.g., our model for the Hearing Data example),
a SAS macro can be used.

2.5 Joint Models for Longitudinal and Time-to-Event Data

As we have seen earlier in this chapter, it is very common in longitudinal studies
to collect measurements on several types of outcomes. In this section we focus on
settings in which the outcomes recorded on the subjects simultaneously include a
set of repeated measurements and the time at which an event of particular inter-
est occurs, for instance, death, development of a disease or dropout from the study.
Typical areas where such studies are encountered encompass HIV/AIDS and can-
cer studies. In HIV studies, seropositive patients are monitored until they develop
AIDS or die, and they are regularly measured for the condition of their immune
system using markers such as the CD4 lymphocyte count, the estimated viral load,
or whether viral load is below detectable limits. Similarly, in cancer trials the event
outcome is death or metastasis, while patients also provide longitudinal measure-
ments of antibody levels or of other markers of carcinogenesis, such as the prostate
specific antigen levels for prostate cancer.

Depending on the research questions, these two outcomes can be analyzed ei-
ther separately or jointly. Here, we will focus on situations in which a joint analysis
is required. This is typically the case when interest is on the event time and one
wishes to account for the effect of the longitudinal outcome as a time-dependent co-
variate. Traditional approaches for analyzing time-to-event data, such as the partial
likelihood for the Cox proportional hazards models, assume that the time-dependent
covariate is a predictable process; that is, the value of this covariate at time point t is
not affected by the occurrence of an event at time point u, with t > u (Therneau and
Grambsch, 2000, Sect. 1.3). For instance, age can be included as predictable time-
dependent covariate in a standard analysis, because if we know the age of a subject
at baseline, we can ‘predict’ her age at every time point without error. However,
the type of time-dependent covariates encountered in longitudinal studies are often
not predictable. In particular, they are the output of a stochastic process generated
at the level of the subject, and it is directly related to the failure mechanism. The
stochastic nature of these covariates complicates matters in two ways. First, we do
not actually observe the ‘true’ values for these covariates, owing to the fact that the
longitudinal responses usually contain measurement error. Second, we are only able
to observe the, error-contaminated, values intermittently at the specific time points
at which we have collected measurements and not at any time point t. These spe-
cial features complicate analysis with the traditional partial likelihood approaches
(Tsiatis, DeGruttola, and Wolfsohn 1995, Wulfsohn and Tsiatis 1997). Hence, to
produce valid inferences, a model for the joint distribution of the longitudinal and
survival outcomes is required instead.
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Early attempts to tackle such problems considered using the last available value
of the longitudinal outcome for each subject as a representative value for the com-
plete longitudinal history. This method is also known as ‘Last Value or Last Obser-
vation Carried Forward’ (LVCF or LOCF, Molenberghs and Kenward 2007). Even
though the simplicity of such an approach is apparent, Prentice (1982) showed that
it leads to severe bias in the estimation of the model parameters. Later approaches
(Self and Pawitan, 1992; Tsiatis, DeGruttola, and Wulfsohn 1995) focused on joint
models with a survival sub-model for the time-to-event and a longitudinal sub-
model for the longitudinal process, in which so-called two-stage procedures have
been proposed to derive estimates of the model parameters. In particular, at a first
stage, the longitudinal model is estimated ignoring the survival outcome, and at
the second stage a survival model is fitted using the subject-specific predictions of
time-dependent covariates based on the longitudinal model. Such approaches were
shown to reduce bias compared to the naive LVCF without completely eliminating
it. This persistent bias prompted a turn of focus to full maximum likelihood meth-
ods. A fully parametric approach was proposed by DeGruttola and Tu (1994) who
postulated a log-normal sub-model for the time-to-event and a linear mixed model
for the longitudinal responses, respectively. Later, Wulfsohn and Tsiatis (1997) ex-
tended this work by assuming a relative risk model for the survival times with an
unspecified baseline risk function. Excellent overviews of the joint modeling liter-
ature are given by Tsiatis and Davidian (2004) and Yu et al. (2004). In the rest of
this section we will present the basics of the joint modeling framework and provide
a perspective on its features.

2.5.1 Joint Modeling Framework

To introduce joint models for longitudinal and time-to-event data, we need to adapt
and extend the notation introduced so far in this chapter. In particular, for the time-
to-event outcome we denote by Ti the observed failure time for the ith subject
(i = 1, . . . ,n), which is taken as the minimum of the true event time T ∗i and the
censoring time Ci, i.e., Ti = min(T ∗i ,Ci). Furthermore, we define the event indica-
tor as δi = I(T ∗i ≤Ci), where I(·) is the indicator function that takes the value 1 if
the condition T ∗i ≤Ci is satisfied, and 0 otherwise. Thus, the observed data for the
time-to-event outcome consist of the pairs {(Ti,δi), i = 1, . . . ,n}. For the longitudi-
nal responses, we let yi(t) to denote the value of the longitudinal outcome at time
point t for the ith subject. However, we do not actually observe yi(t) at all time points
but only at very specific occasions ti j at which measurements were taken. Thus, the
observed longitudinal data consist of the measurements yi j = {yi(ti j), j = 1, . . . ,ni}.
As noted above, this feature of the longitudinal outcome is one of the main rea-
sons why it cannot be simply included as a standard time-dependent covariate in a
survival model.

In survival analysis, relative risk models have traditionally been used to quantify
effects of both time-independent and time-dependent covariates on the risk of an
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event (Therneau and Grambsch, 2000). In our setting, we introduce the term mi(t)
that denotes the true and unobserved value of the longitudinal outcome at time t,
which is included as a time-dependent covariate in a relative risk model:

hi(t |Mi(t),wi) = lim
dt→0

P{t ≤ T ∗i < t +dt | T ∗i ≥ t,Mi(t),wi}/dt

= h0(t)exp
{

γ�wi +αmi(t)
}
, (2.10)

where Mi(t) = {mi(u),0 ≤ u < t} denotes the history of the true unobserved lon-
gitudinal process up to time point t, h0(·) denotes the baseline risk function, and
wi a vector of baseline covariates, such as a treatment indicator, history of diseases,
etc., with a corresponding vector of regression coefficients γ . Similarly, parameter α
quantifies the effect of the underlying longitudinal outcome to the risk for an event.
For instance, in the AIDS example introduced in Section 2.5, α measures the effect
of the number of CD4 cells to the risk for death. An important note regarding Model
(2.10) is that the risk for an event at time t is assumed to depend on the longitudinal
history Mi(t) only through the current value of the time-dependent covariate mi(t);
on the contrary, survival probabilities depend on the whole history via:

Si(t |Mi(t),wi) = P(T ∗i > t |Mi(t),wi)

= exp
(
−

∫ t

0
h0(s)exp

{
γ�wi +αmi(s)

}
ds

)
, (2.11)

which implies that a correct specification of Mi(t) is required to produce valid es-
timates of Si(t | Mi(t),wi). To complete the specification of the survival model,
we need to specify the baseline risk function. Within the joint modeling framework,
h0(t) is typically left unspecified (Wulfsohn and Tsiatis 1997). However, Hsieh,
Tseng, and Wang (2006) have recently noted that leaving this function completely
unspecified leads to an underestimation of the standard errors of the parameter esti-
mates. In particular, problems arise stemming from the fact that the non-parametric
maximum likelihood estimate for this function cannot be obtained explicitly un-
der the random-effects structure. To avoid this problem, we could either opt for a
standard survival distribution on the one hand, such as the Weibull or Gamma distri-
butions, or for more flexible models on the other, in which h0(t) is sufficiently well
approximated using step functions or spline-based approaches.

So far, in the definition of the survival model we have assumed that the true
underlying longitudinal covariate mi(t) is available at any time point t. Neverthe-
less, longitudinal information is actually collected intermittently for each subject
at a few time points ti j. Therefore, our aim is to estimate mi(t) and successfully
reconstruct the complete longitudinal history, using the available measurements
yi j = {yi(ti j), j = 1, . . . ,ni} of each subject and a set of modeling assumptions. For
the remainder of this section, we will focus on normal data and postulate a linear
mixed effects model, as in Section 2.3.1, to describe the subject-specific longitudinal
evolutions. Here we make explicit the model’s time-dependent nature,

yi(t) = mi(t)+ εi(t) = x�i (t)β + z�i (t)bi + εi(t), εi(t)∼ N(0,σ2), (2.12)
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where β denotes the vector of the unknown fixed effects parameters, xi(t) and zi(t)
denote row vectors of the design matrices for the fixed and random effects, respec-
tively, and εi(t) is the measurement error term, which is assumed independent of
bi, and with variance σ2. As we have seen above, the survival function is a func-
tion of the complete longitudinal history, and therefore, it is important to adequately
specify xi(t) and zi(t) to capture interesting characteristics of the data and produce a
good estimate of Mi(t). For instance, in applications in which subjects show highly
non-linear longitudinal trajectories, it is advisable to consider flexible representa-
tions for xi(t) and zi(t) using a possibly high-dimensional vector of functions of
time t, expressed in terms of high-order polynomials or splines (Ding and Wang
2008, Brown, Ibrahim, and DeGruttola 2005).

An alternative approach is to consider correlated error terms. Joint models with
such error structures have been proposed by Wang and Taylor (2001), who pos-
tulated an integrated Ornstein-Uhlenbeck process, and by Henderson, Diggle, and
Dobson (2000), who considered a latent Gaussian stochastic process shared by both
the longitudinal and event processes. We should note, however, that there is a con-
flict for information between the random-effects structure and a measurement er-
ror structure that assumes correlated errors, given that both aim at modeling the
marginal correlation in the data. Thus, depending on the features of the data at
hand, it is advisable to either opt for an elaborate random-effects structure (using
e.g., splines in the design matrix zi(t)) or for correlated error terms, but not for both.
For an enlightening discussion on the philosophical differences between these two
approaches, we refer to Tsiatis and Davidian (2004, Sect. 2.2).

Finally, a suitable distributional assumption for the random-effects component is
required to complete the specification of the joint model. So far, in this chapter, we
have relied on standard parametric assumptions for this distribution, with a typical
choice being the multivariate normal distribution with mean zero and covariance
matrix D. However, within the joint modeling framework and mainly for two rea-
sons, there is the concern that relying on standard distributions may influence the
derived inferences. First, the random effects have a more prominent role in joint
models, because on the one hand they capture the correlations between the repeated
measurements in the longitudinal outcome and on the other they associate the longi-
tudinal outcome with the event process. Second, joint models belong to the general
family of shared parameter models, and correspond to a non-random dropout mech-
anism. We wil return to this in Section 2.7. As is known from the missing-data
literature, handling dropout can be highly sensitive to modeling assumptions. These
features motivated Song, Davidian, and Tsiatis (2002) to explore the need for a more
flexible model for the distribution of the random effects, especially in the joint mod-
eling framework. However, the findings of these authors suggested that parameter
estimates and standard errors were rather robust to misspecification. This feature has
been further theoretically corroborated by Rizopoulos, Verbeke, and Molenberghs
(2008), who showed that, as the number of repeated measurements per subject ni
increases, misspecification of the random-effects distribution has a minimal effect
in parameter estimators and standard errors.
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2.5.2 Likelihood and Estimation

The main estimation methods that have been proposed for joint models are (semi-
parametric) maximum likelihood (Hsieh, Tseng, and Wang 2006, Henderson,
Diggle, and Dobson 2000, Wulfsohn and Tsiatis 1997) and Bayes using MCMC
techniques (Chi and Ibrahim 2006, Brown and Ibrahim 2003, Wang and Taylor
2001, Xu and Zeger 2001). Moreover, Tsiatis and Davidian (2001) have proposed
a conditional score approach in which the random effects are treated as nuisance
parameters, and they developed a set of unbiased estimating equations that yields
consistent and asymptotically normal estimators. Here, we review the basics of
the maximum likelihood method for joint models as one of the more traditional
approaches.

Maximum likelihood estimation for joint models is based on the maximization
of the log-likelihood corresponding to the joint distribution of the time-to-event and
longitudinal outcomes {Ti,δi,yi}. To define this joint distribution, we will assume
that the vector of time-independent random effects bi underlies both the longitudinal
and survival processes. This means that these random effects account for both the as-
sociation between the longitudinal and event outcomes, and the correlation between
the repeated measurements in the longitudinal process. Formally, we have that,

f (Ti,δi,yi | bi;θ) = f (Ti,δi | bi;θ) f (yi | bi;θ), (2.13)
f (yi | bi;θ) = ∏

j
f{yi(ti j) | bi;θ}, (2.14)

where θ is the parameter vector, yi is the ni×1 vector of longitudinal responses of
the ith subject, and f (·) denotes an appropriate probability density function. Under
this conditional independence assumption we can now define separate models for
the longitudinal responses and the event time data by conditioning on the shared
random effects. Under the modeling assumptions presented in the previous section
and the conditional independence assumptions (2.13) and (2.14), the joint likelihood
contribution for the ith subject can be formulated as

f (Ti,δi,yi;θ) =
∫

f (Ti,δi | bi;θ)
[
∏

j
f{yi(ti j) | bi;θ}

]
f (bi;θ) dbi, (2.15)

where the likelihood of the survival part is written as

f (Ti,δi | bi;θ) = {hi(Ti | bi;θ)}δiSi(Ti | bi;θ), (2.16)

with hi(·) and Si(·) are given by (2.10) and (2.11), respectively, f{yi(ti j) | bi;θ} is
the univariate normal density for the longitudinal responses, and f (bi;θ) is the mul-
tivariate normal density for the random effects. A further implicit assumption in the
above definition of the likelihood is that both the censoring mechanism and the vis-
iting process (i.e., the stochastic mechanism that generates the time points at which
the longitudinal measurements are collected) are non-informative, and thus they can
be ignored. This non-informativeness assumption is similar in spirit to the missing
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at random (MAR) assumption in the missing data framework (see also Section 2.7),
and in particular, it is assumed that the probabilities of visiting and censoring at
time point t depend only on the observed longitudinal history but not on the event
times and future longitudinal measurements themselves. As observed longitudinal
history we define all available information for the longitudinal process prior to time
point t, i.e., Yi(t) = {yi(u),0≤ u < t}; note that this is different from Mi(t), which
denotes the history of the true unobserved longitudinal outcome mi(t). In practice,
this assumption is valid when the decision on whether a subject withdraws from the
study or appears at the study center for the scheduled visit to provide a longitudinal
measurement at time t, depends only on Yi(t) (and possibly on baseline covariates),
but there is no additional dependence on future longitudinal responses and the un-
derlying random effects bi. Unfortunately, the observed data do not often contain
enough information to corroborate these assumptions, and therefore, it is essential
to use external information from subject-matter experts as to their validity.

Maximization of the log-likelihood function corresponding to (2.15) with respect
to θ is a computationally challenging task, because it requires a combination of nu-
merical integration and optimization algorithms. Numerical integration is required,
owing to the fact that neither the integral with respect to the random effects in (2.15),
nor the integral of the risk function in (2.11) allow for an analytical solution, except
in very special cases. Standard numerical integration techniques, such as Gaussian
quadrature and Monte Carlo have been successfully applied in the joint modelling
framework (Song, Davidian, and Tsiatis 2002, Henderson, Diggle, and Dobson
2000, Wulfsohn and Tsiatis 1997). Furthermore, Rizopoulos, Verbeke, and Lesaffre
(2009b) have recently discussed the use of Laplace approximations for joint mod-
els, that can be especially useful in high-dimensional random-effects settings (e.g.,
when splines are used in random-effects design matrix). For the maximization of the
approximated log-likelihood the EM algorithm has been traditionally used in which
the random effects are treated as ‘missing data’. The main motivation for using
this algorithm is the closed-form M-step updates for certain parameters of the joint
model. However, a serious drawback of the EM algorithm is its linear convergence
rate that results in slow convergence especially near the maximum. Nonetheless,
Rizopoulos, Verbeke, and Lesaffre (2009b) have noted that a direct maximization
of the observed data log-likelihood, using for instance, a quasi-Newton algorithm
(Lange 2004), requires very similar computations to the EM algorithm. Therefore
hybrid optimization approaches that start with EM and then continue with direct
maximization can be easily employed.

2.5.3 Analysis of Liver Cirrhosis Data

To illustrate the virtues of the joint modeling approach, we will start with a ‘naive’
analysis, in which we ignore the special characteristics of the prothrombin index
and we fit a Cox model that includes treatment indicator and prothrombin as an or-
dinary time-dependent covariate. The results are presented in Table 2.5. We observe
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Table 2.5 Liver Cirrhosis Data. Parameter estimates with standard errors in parenthesis. For the
longitudinal process ‘a:b’ denotes the interaction term between covariates ‘a’ and ‘b’. For the ran-
dom effects σb1 denotes the standard deviation of the random intercepts term, σb2 the standard
deviation of the random slopes term, ρb12 the correlation between the random intercepts and ran-
dom slopes, and σ the measurement error standard deviation

Survival Process Longitudinal Process Variance Comp.
Model Parameter Estimate (s.e.) Effect Est. (s.e.) Param. Est.
Naive prednisone 0.054 (0.130)
Cox prothrombin −0.032 (0.003)

Joint prednisone −0.214 (0.140) intercept 70.49 (1.36) σb1 18.51
Model prothrombin −0.040 (0.004) prednisone 11.10 (1.96) σb2 4.22

baseline −1.49 (1.35) ρb12 0.04
baseline:prednisone −11.20 (1.89) σ 16.86
time 0.40 (0.39)
time:prednisone −1.05 (0.68)

that, after adjusting for prothrombin in the Cox model, there is no statistical evi-
dence for a treatment effect. We proceed by specifying and fitting a joint model that
explicitly postulates a linear mixed effects model for the prothrombin index. In par-
ticular, in the longitudinal sub-model, we include fixed effects of time, treatment,
and an indicator for the baseline measurement at t = 0, as well as the interactions of
treatment with time and treatment with the baseline indicator. In the random-effects
design matrix, we include an intercept and a time term. For the survival sub-model
and similarly to the Cox model above we include the treatment effect and as time-
dependent covariate the true underlying effect of prothrombin as estimated from the
longitudinal model. The baseline risk function is assumed piecewise constant

h0(t) =
Q

∑
q=1

ξqI(vq−1 < t ≤ vq),

where 0 = v0 < v1 < · · ·< vQ denotes a split of the time scale, with vQ being larger
than the largest observed time, and ξq denotes the value of the hazard in the interval
(vq−1,vq]. For the internal knots v1, . . . ,vQ−1 we use equally spaced percentiles of
the observed survival times Ti.

The parameter estimates and standard errors from the joint model fit are also
shown in Table 2.5. For the treatment effect, we arrive at a similar conclusion as with
the standard analysis, that is, there is no clear evidence that prednisone decreases
the risk for an event. However, a comparison between the standard time-dependent
Cox model with the joint model reveals some interesting features. In particular, we
observe that the estimated treatment effect from the joint model is much bigger
in size and on the opposite direction compared to the time-dependent Cox model,
with a standard error of the same magnitude in both models. Similarly, the effect
of the prothrombin index from the joint model is about 2.5 standard errors larger
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compared to the same effect from the Cox model. These comparisons convincingly
demonstrate the degree of attenuation in the regression coefficients of the standard
analysis due to the measurement error in the prothrombin levels.

2.5.4 Some Reflections

Joint modeling of longitudinal and time-to-event data is one of the most rapidly
evolving areas of current biostatistics research, with several extensions of the stan-
dard joint model that we have presented here already proposed in the literature.
These include, among others, handling multiple failure types (Elashoff and Li 2008),
considering categorical longitudinal outcomes (Faucett, Schenker, and Elashoff
1998), assuming that several longitudinal outcomes affect the time-to-event (Chi
and Ibrahim 2006, Brown and Ibrahim 2003), replacing the relative risk model by
an accelerated failure time model (Tseng, Hsieh, and Wang 2005), and associating
the two outcomes via latent classes instead of random effects (Proust-Lima et al.
2009, Lin et al. 2002). Even though there has been considerable work on such ex-
tensions, little attention has been given to the development of diagnostic and model-
assessment tools for these models. The main problem of using standard diagnostic
tools, such as residuals, is the nonrandom dropout caused by the occurrence events.
To this end, Dobson and Henderson (2003) defined residuals conditional on the
dropout times and recommended plotting these residuals per dropout pattern. An-
other, more recent proposal by Rizopoulos, Verbeke, and Molenberghs (2009a) takes
dropout into account by multiply imputing the longitudinal responses that would
have been observed had the event not occurred, and use afterwards standard residu-
als plots.

Finally, one of the main practical limitations for joint modeling finding its way
into the tool box of modern statisticians was the lack of free and reliable soft-
ware. The R package JM has been developed to fill this gap to some extent.
JM can be freely downloaded from the CRAN website at http://cran.r-
project.org/ with more information at http://wiki.r-project.org/
rwiki/doku.php?id=packages:cran:jm/ or from the book website
at http://www.econ.upf.edu/˜satorra/longitudinallatent/
readme.html.. JM has a user-friendly interface to fit joint models and also pro-
vides several supporting functions that extract or calculate various quantities based
on the fitted model (e.g., residuals, fitted values, empirical Bayes estimates, various
plots, and others).

2.6 The Use in Surrogate Markers

Over the years, longitudinal data models, survival analysis tools, and the combina-
tion thereof, have been used in the so-called validation of surrogate endpoints in
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clinical studies. Reviews can be found in Burzykowski, Molenberghs, and Buyse
(2005), Molenberghs et al. (2008, 2009). We provide a bird’s eye perspective on
these developments and their extensions towards information theory.

The field is interesting in its own right, because the use of surrogate endpoints in
the development of new therapies has always been very controversial, partly owing
to a number of unfortunate historical instances where treatments showing a highly
positive effect on a surrogate endpoints were ultimately shown to be detrimental to
the subjects’ clinical outcome, and conversely, some instances of treatments confer-
ring clinical benefit without measurable impact on presumed surrogates (Fleming
and DeMets 1996). For example, in cardiovascular disease, the unsettling discovery
that the two major anti arrhythmic drugs encanaide and flecanaide reduced arrhyth-
mia but caused a more than 3-fold increase in overall mortality stressed the need for
caution in using non-validated surrogate markers in the evaluation of the possible
clinical benefits of new drugs (CAST 1989). On the other hand, the dramatic surge
of the AIDS epidemic, the impressive therapeutic results obtained early on with zi-
dovudine, and the pressure for an accelerated evaluation of new therapies, have all
led to the use of CD4 blood count and later of viral load as endpoints that replaced
time to clinical events and overall survival (DeGruttola and Tu 1994), in spite of
serious concerns about their limitations as surrogate markers for clinically relevant
endpoints (Lagakos and Hoth 1992). Loosely speaking, a surrogate endpoint is a
biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint
is expected to predict clinical benefit, harm, or lack thereof.

One important reason for the present interest in surrogate endpoints is the advent
of a large number of biomarkers that closely reflect the disease process. An increas-
ing number of new drugs have a well-defined mechanism of action at the molecular
level, allowing drug developers to measure the effect of these drugs on the relevant
biomarkers (Ferentz 2002). There is increasing public pressure for new, promising
drugs to be approved for marketing as rapidly as possible, and such approval will
have to be based on biomarkers rather than on some long-term clinical endpoint
(Lesko and Atkinson 2001). If the approval process is shortened, there will be a
corresponding need for earlier detection of safety signals that could point to toxic
problems with new drugs. It is a safe bet, therefore, that the evaluation of tomorrow’s
drugs will be based primarily on biomarkers, rather than on the longer-term, harder
clinical endpoints that have dominated the development of new drugs until now. It
is therefore imperative to use validated surrogates, though one needs to reflect on
the precise meaning and extent of validation (Schatzkin and Gail 2002).

2.6.1 A Meta-analytic Framework for Normally Distributed
Outcomes

Several methods have been suggested for the formal evaluation of surrogate mark-
ers, some based on a single trial with others, currently gaining momentum, of a
meta-analytic nature. The first formal single trial approach to validate markers is
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due to Prentice (1989), who gave a definition of the concept of a surrogate endpoint,
followed by a series of operational criteria. Freedman, Graubard, and Schatzkin
(1992) augmented Prentice’s hypothesis-testing based approach, with the estima-
tion paradigm, through the so-called proportion of treatment effect explained. In
turn, Buyse and Molenberghs (1998) added two further measures: the relative effect
and the adjusted association. All of these proposals are hampered by the fact that
they are single-trial based, in which there evidently is replication at the patient level,
but not at the level of the trial.

Although the single trial based methods are relatively easy in terms of imple-
mentation, they are surrounded with the difficulties stated before. Therefore, several
authors, such as Daniels and Hughes (1997), Buyse et al. (2000), and Gail et al.
(2000) have introduced the meta-analytic approach. This section briefly outlines the
methodology.

The meta-analytic approach was formulated originally for two continuous, nor-
mally distributed outcomes, and extended in the meantime to a large collection of
outcome types, ranging from continuous, binary, ordinal, time-to-event, and longi-
tudinally measured outcomes (Burzykowski, Molenberghs, and Buyse 2005). First,
we focus on the continuous case, where the surrogate and true endpoints are jointly
normally distributed.

The method is based on the linear mixed model of Section 2.3.1. Both a fixed-
effects and a random-effects view can be taken. Let Ti j and Si j be the random vari-
ables denoting the true and surrogate endpoints for the jth subject in the ith trial,
respectively, and let Zi j be the indicator variable for treatment. First, consider the
following fixed-effects models:

Si j = μSi +αiZi j + εSi j, (2.17)
Ti j = μTi +βiZi j + εTi j, (2.18)

where μSi and μTi are trial-specific intercepts, αi and βi are trial-specific effects of
treatment Zi j on the endpoints in trial i, and εSi and εTi are correlated error terms,
assumed to be zero-mean normally distributed with covariance matrix

Σ =
(

σSS σST

σT T

)
. (2.19)

In addition, we can decompose⎛⎜⎜⎝
μSi
μTi
αi
βi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
μS

μT

α
β

⎞⎟⎟⎠+

⎛⎜⎜⎝
mSi
mTi
ai
bi

⎞⎟⎟⎠ , (2.20)

where the second term on the right hand side of (2.20) is assumed to follow a zero-
mean normal distribution with covariance matrix
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D =

⎛⎜⎜⎝
dSS dST dSa dSb

dT T dTa dTb
daa dab

dbb

⎞⎟⎟⎠ . (2.21)

A classical hierarchical, random-effects modeling strategy results from the combi-
nation of the above two steps into a single one:

Si j = μS +mSi +αZi j +aiZi j + εSi j, (2.22)
Ti j = μT +mTi +βZi j +biZi j + εTi j. (2.23)

Here, μS and μT are fixed intercepts, α and β are fixed treatment effects, mSi and mTi
are random intercepts, and ai and bi are random treatment effects in trial i for the
surrogate and true endpoints, respectively. The random effects (mSi,mTi,ai,bi) are
assumed to be mean-zero normally distributed with covariance matrix (2.21). The
error terms εSi j and εTi j follow the same assumptions as in the fixed effects models.

After fitting the above models, surrogacy is captured by means of two quantities:
trial-level and individual-level coefficients of determination. The former quantifies
the association between the treatment effects on the true and surrogate endpoints at
the trial level, while the latter measures the association at the level of the individual
patient, after adjustment for the treatment effect. The former is given by:

R2
trial = R2

bi|mSi,ai
=

(
dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( dSb
dab

)
dbb

. (2.24)

The above quantity is unitless and, at the condition that the corresponding variance-
covariance matrix is positive definite, lies within the unit interval.

Apart from estimating the strength of surrogacy, the above model can also be
used for prediction purposes. To this end, observe that (β + b0|mS0,a0) follows a
normal distribution with mean and variance:

E(β +b0|mS0,a0) = β +
(

dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( μS0−μS

α0−α

)
, (2.25)

Var(β +b0|mS0,a0) = dbb−
(

dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( dSb
dab

)
. (2.26)

A prediction can be made using (2.25), with prediction variance (2.26). Of course,
one has to properly acknowledge the uncertainty resulting from the fact that param-
eters are not known but merely estimated.

Though the above hierarchical modeling is elegant, it often poses a considerable
computational challenge (Burzykowski, Molenberghs, and Buyse 2005). To address
this problem, Tibaldi et al. (2003) suggested several simplifications.
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2.6.2 Non-Gaussian Endpoints

Statistically speaking, the surrogate endpoint and the clinical endpoint are realiza-
tions of random variables. As will be clear from the formalism in Section 2.6.1, one
is in need of the joint distribution of these variables. The easiest, but not the only,
situation is where both are Gaussian random variables, but one also encounters bi-
nary (e.g., CD4+ counts over 500/mm3, tumor shrinkage), categorical (e.g., choles-
terol levels <200 mg/dl, 200-299 mg/dl, 300+ mg/dl, tumor response as complete
response, partial response, stable disease, progressive disease), censored continu-
ous (e.g., time to undetectable viral load, time to cardiovascular death), longitudinal
(e.g., CD4+ counts over time, blood pressure over time), and multivariate longitu-
dinal (e.g., CD4+ and viral load over time jointly, various dimensions of quality
of life over time) endpoints. The models used to validate a surrogate for a clini-
cal endpoint will depend on the type of variables observed in the problem at hand.
Table 2.6 shows some examples of potential surrogate endpoints in various diseases.
In what follows, we will briefly discuss the settings of binary endpoints, failure-time
endpoints, the combination of an ordinal and a survival endpoint, and longitudinal
endpoints.

Table 2.6 Examples of possible surrogate endpoints in various diseases (Abbreviations: AIDS =
acquired immune deficiency syndrome; ARMD = age-related macular degeneration; HIV = human
immunodeficiency virus)

Disease Surrogate Endpoint Type Final Endpoint Type
Resectable solid tumor Time to recurrence Censored Survival Censored
Advanced cancer Tumor response Binary Time to progression Censored
Osteoporosis Bone mineral density Longitudinal Fracture Binary
Cardiovascular disease Ejection fraction Continuous Myocardial infraction Binary
Hypertension Blood pressure Longitudinal Coronary heart disease Binary
Arrhythmia Arrhythmic episodes Longitudinal Survival Censored
ARMD 6-month visual acuity Continuous 24-month visual acuity Continuous
Glaucoma Intraoccular pressure Continuous Vision loss Censored
Depression Biomarkers Multivariate Depression scale Continuous
HIV infection CD4 counts + viral load Multivariate Progression to AIDS Censored

2.6.2.1 Binary Endpoints

Renard et al. (2002) have shown that extension to this situation is easily done using
a latent variable formulation. That is, one posits the existence of a pair of continu-
ously distributed latent variable responses (S̃i j, T̃i j) that produce the actual values
of (Si j,Ti j). These unobserved variables are assumed to have a joint normal dis-
tribution and the realized values follow by double dichotomization. On the latent-
variable scale, we obtain a model similar to (2.17)–(2.18) and in the matrix (2.19)
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the variances are set equal to unity in order to ensure identifiability. This leads to
the following model:{

Φ−1(P[Si j = 1|Zi j,mSi ,ai,mTi ,bi]) = μS +mSi +(α +ai)Zi j,

Φ−1(P[Ti j = 1|Zi j,mSi ,ai,mTi ,bi]) = μT +mTi +(β +bi)Zi j,

where Φ denotes the standard normal cumulative distribution function. Renard et al.
(2002) used pseudo-likelihood methods to estimate the model parameters. Similar
ideas have been used in the case one of the endpoints is continuous, with the other
one binary or categorical (Burzykowski, Molenberghs, and Buyse 2005, Ch. 6).

2.6.2.2 Two Failure-time Endpoints

Assume now that Si j and Ti j are failure-time endpoints. Model (2.17)–(2.18) is re-
placed by a model for two correlated failure-time random variables. Burzykowski et
al. (2001) used copulas to this end (Clayton 1978, Hougaard 1986). Precisely, one
assumes the joint survivor function of (Si j, Ti j) is written as:

F(s, t) = P(Si j ≥ s, Ti j ≥ t) = Kξ{FSi j(s), FTi j(t)}, s, t ≥ 0, (2.27)

where (FSi j, FTi j) denote marginal survivor functions and Kξ is a copula, i.e., a dis-
tribution function on [0, 1]2 with ξ taking values on the real line.

When the hazard functions are specified, estimates of the parameters for the joint
model can be obtained using maximum likelihood. Shih and Louis (1995) discuss
alternative estimation methods. The association parameter is generally hard to inter-
pret. However, it can be shown (Genest and McKay 1986) that there is a link with
Kendall’s τ:

τ = 4
∫ 1

0

∫ 1

0
Kξ (u, v)Kξ (du, dv)−1,

providing an easy measure of surrogacy at the individual level. At the second stage
R2

trial can be computed based on the pairs of treatment effects estimated at the first
stage.

2.6.2.3 An Ordinal Surrogate and a Survival Endpoint

Assume that T is a failure-time random variable and S is a categorical variable with
K ordered categories. To propose validation measures, similar to those introduced in
the previous section, Burzykowski et al. (2004) also used bivariate copulas, combin-
ing ideas of Molenberghs, Geys, and Buyse (2001) and Burzykowski et al. (2001).
One marginal distribution is a proportional odds logistic regression, while the other
is a proportional hazards model. The Plackett copula (Dale 1986) was chosen to
capture the association between both endpoints. The ensuing global odds ratio is
relatively easy to interpret.
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2.6.2.4 Longitudinal Endpoints

Most of the previous work focuses on univariate responses. Alonso et al (2003)
showed that going from a univariate setting to a multivariate framework represents
new challenges. The R2 measures proposed by Buyse et al (2000), are no longer
applicable. Alonso et al (2003) based their calculations of surrogacy measures on
a two-stage approach rather than a full random-effects approach. They assume that
information from i = 1, . . . ,N trials is available, in the ith of which, j = 1, . . . ,ni sub-
jects are enrolled and they denoted the time at which subject j in trial i is measured
as ti jk. If Ti jk and Si jk denote the associated true and surrogate endpoints, respec-
tively, and Zi j is a binary indicator variable for treatment then along the ideas of
Galecki (1994), they proposed the following joint model, at the first stage, for both
responses {

Ti jk = μTi +βiZi j +gTi j(ti jk)+ εTi jk,

Si jk = μSi +αiZi j +gSi j(ti jk)+ εSi jk,
(2.28)

where μTi and μSi are trial-specific intercepts, βi and αi are trial-specific effects of
treatment Zi j on the two endpoints and gTi j and gSi j are trial-subject-specific time
functions that can include treatment-by-time interactions. They also assume that the
vectors, collecting all information over time for patient j in trial i, ε̃Ti j and ε̃Si j are
correlated error terms, following a mean-zero multivariate normal distribution with
covariance matrix

Σi =
(

ΣT Ti ΣT Si
Σ�T Si ΣSSi

)
=

(
σT Ti σT Si
σT Si σSSi

)
⊗Ri. (2.29)

Here, Ri is a correlation matrix for the repeated measurements.
If treatment effect can be assumed constant over time, then (2.24) can still be

useful to evaluate surrogacy at the trial level. However, at the individual level the
situation is totally different, the R2

ind no longer being applicable, and new concepts
are needed.

Using multivariate ideas, Alonso et al (2003) proposed the variance reduction
factor (V RF) to capture individual-level surrogacy in this more elaborate setting.
They quantified the relative reduction in the true endpoint variance after adjustment
by the surrogate as

V RFind =
∑i{tr(ΣT Ti)− tr(Σ(T |S)i)}

∑i tr(ΣT Ti)
, (2.30)

where Σ(T |S)i denotes the conditional variance-covariance matrix of ε̃Ti j given ε̃Si j :
Σ(T |S)i = ΣT Ti−ΣT SiΣ−1

SSi Σ
�
T Si. Here, ΣT Ti and ΣSSi are the variance-covariance ma-

trices associated with the true and surrogate endpoint respectively and ΣT Si contains
the covariances between the surrogate and the true endpoint. Alonso et al (2003)
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showed that the V RFind ranges between zero and one, and that V RFind = R2
ind when

the endpoints are measured only once.
An alternative proposal is

θp = ∑
i

1
N pi

tr
{(

ΣT Ti−Σ(T |S)i
)

Σ−1
T Ti

}
. (2.31)

Structurally, both V RF and θp are similar, the difference being the reversal of sum-
ming the trace and calculating the ratio. In spite of this strong structural similarity
the VRF is not symmetric in S and T and it is only invariant with respect to linear or-
thogonal transformations, whereas θp is both symmetric and invariant with respect
to the broader class of linear bijective transformations.

A common problem of all previous proposals is that they are strongly based on
the normality assumption and extensions to non-normal settings are difficult. To
overcome this limitation, Alonso et al (2005), introduced a new parameter, the so-
called R2

Λ , to evaluate surrogacy at the individual level when both responses are
measured over time or in general when multivariate or repeated measures are avail-
able

R2
Λ =

1
N ∑

i
(1−Λi), (2.32)

where: Λi =
|Σi|

|ΣT Ti| |ΣSSi| . This parameter not only allows the detection of more

general patterns of association but can also be extended to more general settings
that those defined by the normal distribution. They proved that R2

Λ ranges between
zero and one, and that in the cross-sectional case R2

Λ = R2
ind. These authors have

shown that R2
Λ = 1 whenever there is a deterministic relationship between two linear

combinations of both endpoints, allowing the detection of strong associations in
cases where the VRF or θp would fail in doing so.

2.6.3 Towards a Unified Approach

The longitudinal method of the previous section, while elegant, hinges upon nor-
mality. First using the likelihood reduction factor (Section 2.6.3.1) and then an
information-theoretic approach (Section 2.6.3.2), extension, and therefore unifica-
tion, will be achieved.

2.6.3.1 The Likelihood Reduction Factor

Estimating individual-level surrogacy, as the previous developments clearly show,
has frequently been based on a variance-covariance matrix coming from the distri-
bution of the residuals. However, if we move away from the normal distribution,
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it is not always clear how to quantify the association between both endpoints after
adjusting for treatment and trial effect. To address this problem, Alonso et al (2004)
considered the following generalized linear models in the ith trial

gT (Ti j) = μTi +βiZi j, (2.33)
gT (Ti j) = θ0i +θ1iZi j +θ2iSi j. (2.34)

The longitudinal case would be covered by considering particular functions of time
in (2.33) and (2.34). Consider G2

i as the log-likelihood ratio test statistics to compare
(2.33) with (2.34) in trial i, and quantify the association between both endpoints at
the individual level using a scaled likelihood reduction factor (LRF)

LRF = 1− 1
N ∑

i
exp

(
−G2

i
ni

)
. (2.35)

Alonso et al. (2004) established a number of properties for LRF, in particular its
ranging in the unit interval, and its reduction to R2

Λ in the longitudinal and to R2
ind

in the cross-sectional case.

2.6.3.2 An Information-theoretic Unification

This proposal avoids the needs for a joint, hierarchical model, and allows for unifica-
tion across different types of endpoints. The entropy of a random variable (Shannon
1948), a good measure of randomness or uncertainty, is defined in the following
way for the case of a discrete random variable Y , taking values {k1,k2, . . . ,km}, and
with probability function P(Y = ki) = pi:

H(Y ) = ∑
i

pi log
(

1
pi

)
. (2.36)

The differential entropy hd(X) of a continuous variable X with density fX (x) and
support S fX equals

hd(Y ) =−E[log fX (X)] =−
∫

S fX

fX (x) log fX (x)dx. (2.37)

The joint and conditional (differential) entropies are defined in an analogous fash-
ion. Defining the information of a single event as I(A) = log pA, the entropy is
H(A) = −I(A). No information is gained from a totally certain event, pA ≈ 1, so
I(A)≈ 0), while an improbable event is informative.

H(Y ) is the average uncertainty associated with P. Entropy is always non-
negative, satisfies H(Y |X) ≤ H(Y ) for any pair of random variables, with equal-
ity holding under independence, and is invariant under a bijective transformation
(Cover and Tomas 1991). Differential entropy enjoys some but not all proper-
ties of entropy: it can be infinitely large, negative, or positive, and is coordinate
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dependent. For a bijective transformation Y = y(X), it follows hd(Y ) = hd(X)−
EY

(
log

∣∣∣ dx
dy (y)

∣∣∣).
We can now quantify the amount of uncertainty in Y , expected to be removed

if the value of X were known, by I(X ,Y ) = hd(Y )− hd(Y |X), the so-called mu-
tual information. It is always non-negative, zero if and only if X and Y are in-
dependent, symmetric, invariant under bijective transformations of X and Y , and
I(X ,X) = hd(X). The mutual information measures the information of X , shared
by Y .

We will now introduce the entropy-power (Shannon 1948) for comparison of
continuous random variables. Let X be a continuous n-dimensional random vector.
The entropy-power of X is

EP(X) =
1

(2πe)n e2h(X). (2.38)

The differential entropy of a continuous normal random variable is h(X) =
1
2 log

(
2πσ2

)
, a simple function of the variance and, on the natural logarithmic scale:

EP(X) = σ2. In general, EP(X)≤Var(X) with equality if and only if X is normally
distributed.

We can now define an information-theoretic measure of association (Schemper
and Stare 1996):

R2
h =

EP(Y )−EP(Y |X)
EP(Y )

, (2.39)

which ranges in the unit interval, equals zero if and only if (X ,Y ) are independent,
is symmetric, is invariant under bijective transformation of X and Y , and, when
R2

h → 1 for continuous models, there is usually some degeneracy appearing in the
distribution of (X,Y). There is a direct link between R2

h and the mutual information:
R2

h = 1− e−2I(X ,Y ). For Y discrete: R2
h ≤ 1− e−2H(Y ), implying that R2

h then has an
upper bound smaller than 1; we then redefine

R2
hmax =

R2
h

1− e−2H(Y ) ,

reaching 1 when both endpoints are deterministically related.
We can now redefine surrogacy, while preserving previous proposals as special

cases. While we will focus on individual-level surrogacy, all results apply to the trial
level too. Let Y = T and X = S be the true and surrogate endpoints, respectively.
We consider S a good surrogate for T at the individual (trial) level, if a “large”
amount of uncertainty about T (the treatment effect on T ) is reduced when S (the
treatment effect on S) is known. Equivalently, we term S a good surrogate for T at
the individual level, if our lack of knowledge about the true endpoint is substantially
reduced when the surrogate endpoint is known.

A meta-analytic framework, with N clinical trials, produces Nq different R2
hi, and

hence we propose a meta-analytic R2
h:
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R2
h =

Nq

∑
i=1

αiR2
hi = 1−

Nq

∑
i=1

αie−2Ii(Si,Ti),

where αi > 0 for all i and ∑
Nq
i=1 αi = 1. Different choices for αi lead to different

proposals, producing an uncountable family of parameters. This opens the additional
issue of finding an optimal choice. In particular, for the cross-sectional normal-
normal case, Alonso and Molenberghs (2007) have shown that R2

h = R2
ind. The same

holds for R2
Λ , defined in (2.28) for the longitudinal case. Finally, when the true and

surrogate endpoints have distributions in the exponential family, then LRF P→ R2
h

when the number of subjects per trial goes to infinity.

2.6.3.3 Fano’s Inequality and the Theoretical Plausibility of Finding a Good

Surrogate

Fano’s inequality shows the relationship between entropy and prediction:

E
[
(T −g(S))2]≥ EP(T )(1−R2

h) (2.40)

where EP(T ) =
1

2πe
e2h(T ). Note that nothing has been assumed about the distribu-

tion of our responses and no specific form has been considered for the prediction
function g. Also, (2.40) shows that the predictive quality strongly depends on the
characteristics of the endpoint, specifically on its power-entropy. Fano’s inequality
states that the prediction error increases with EP(T ) and therefore, if our endpoint
has a large power-entropy then a surrogate should produce a large R2

h to have some
predictive value. This means that, for some endpoints, the search for a good surro-
gate can be a dead end street: the larger the entropy of T the more difficult it is to
predict. Studying the the power-entropy before trying to find a surrogate is therefore
advisable.

2.7 Incomplete Data

When referring to the missing-value, or non-response, process we will use the ter-
minology of Little and Rubin (2002). A non-response process is said to be missing
completely at random (MCAR), if the missingness is independent of both unob-
served and observed data, and missing at random (MAR), if, conditional on the
observed data, the missingness is independent of the unobserved measurements.
A process that is neither MCAR nor MAR is termed non-random (MNAR). In
the context of likelihood inference, and when the parameters describing the mea-
surement process are functionally independent of the parameters describing the
missingness process, MCAR and MAR are ignorable, while a non-random pro-
cess is non-ignorable. Thus, under ignorable dropout, one can literally ignore the
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Table 2.7 Overview of missing data mechanisms.

Acronym Description Likelih./Bayesian Frequentist
MCAR missing completely at random ignorable ignorable
MAR missing at random ignorable non-ignorable
MNAR missing not at random non-ignorable non-ignorable

missingness process and nevertheless obtain valid estimates of, say, the treatment.
Above definitions are conditional on including the correct set of covariates into the
model. An overview of the various mechanisms, and their (non-)ignorability under
likelihood, Bayesian, or frequentist inference, is given in Table 2.7.

Let us first consider the case where one follow-up measurement per patient is
made. When dropout occurs, and hence there are no follow-up measurements, one
usually is forced to discard such a patient from analysis, thereby violating the in-
tention to treat (ITT) principle which stipulates that all randomized patients should
be included in the primary analysis and according to the randomisation scheme. Of
course, the effect of treatment can be investigated under extreme assumptions, such
as, for example, a worst case and a best case scenario, but such scenarios are most
often not really helpful.

Early work regarding missingness focused on the consequences of the induced
lack of balance of deviations from the study design (Afifi and Elashoff 1966, Hart-
ley and Hocking 1971). Later, algorithmic developments took place, such as the
expectation-maximization algorithm (EM; Dempster, Laird, and Rubin 1977) and
multiple imputation (Rubin 1987). These have brought likelihood-based ignorable
analysis within reach of a large class of designs and models. However, they usually
require extra programming in addition to available standard statistical software.

In the meantime, however, clinical trial practice has put a strong emphasis on
methods such as complete case analysis (CC) and last observation carried forward
(LOCF) or other simple forms of imputation. Claimed advantages include compu-
tational simplicity, no need for a full longitudinal model analysis (e.g., when the
scientific question is in terms of the last planned measurement occasion only) and,
for LOCF, compatibility with the ITT principle. However, a CC analysis assumes
MCAR and the LOCF analysis makes peculiar assumptions on the (unobserved)
evolution of the response, underestimates the variability of the response and ignores
the fact that imputed values are no real data.

On the other hand, a likelihood-based longitudinal analysis requires only MAR,
uses all data (obviating the need for both deleting and filling in data) and is also
consistent with the ITT principle. Further, it can be shown that also the incom-
plete sequences contribute to estimands of interest (treatment effect at the end of
the study), even early dropouts. For continuous responses, the linear mixed model
is quite popular and is a direct extension of ANOVA and MANOVA approaches,
but more broadly valid in incomplete data settings. For categorical responses and
count data, so-called marginal (e.g., generalized estimating equations, GEE) and
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random-effects (e.g., generalized linear mixed-effects models, GLMM) approaches
are in use. While GLMM parameters can be fitted using maximum likelihood, the
same is not true for the frequentist GEE method but modifications have been pro-
posed to accommodate the MAR assumption (Robins, Rotnitzky, and Zhao 1995).

Finally, MNAR missingness can never be fully ruled out based on the observed
data only. It is argued that, rather than going either for discarding MNAR models
entirely or for placing full faith on them, a sensible compromise is to make them a
component of a sensitivity analysis.

2.7.1 Direct Likelihood Analysis

For continuous outcomes, Verbeke and Molenberghs (2000) describe likelihood-
based mixed-effects models, in the spirit of Section 2.3.1, that are valid under the
MAR assumption. Indeed, for longitudinal studies, where missing data are involved,
a mixed model only requires that missing data are MAR. As opposed to the tradi-
tional techniques, mixed-effects models permit the inclusion of subjects with miss-
ing values at some time points (both dropout and intermittent missingness).

This likelihood-based MAR analysis is also termed likelihood-based ignorable
analysis, or, as we will be using in the remainder of this section, a direct likelihood
analysis. In such a direct likelihood analysis, the observed data are used without
deletion nor imputation. In doing so, appropriate adjustments are made to parame-
ters at times when data are incomplete, due to the within-patient correlation.

Thus, even when interest lies, for example, in a comparison between the two
treatment groups at the last occasion, such a full longitudinal analysis is a good
approach, since the fitted model can be used as the basis for inference at the last
occasion.

In many clinical trials, the repeated measures are balanced in the sense that a
common (and often limited) set of measurement times is considered for all subjects,
which allows the a priori specification of a “saturated” model. For example, a full
group-by-time interaction for the fixed effects combined with an unstructured co-
variance matrix. A direct-likelihood analysis is equivalent to a classical MANOVA
analysis when data are complete. This is a strong answer to the common criticism
that a direct likelihood method is making strong assumptions. Indeed, its coinci-
dence with MANOVA for data without missingness shows that the assumptions
made are very mild. However, when data are incomplete, one should be aware that
MANOVA and comparisons per time point are only valid under MCAR and less ef-
ficient compared to a likelihood analysis; this was also noted in Section 2.3.3, where
the t-test for treatment differences at month 12 for the toenail data was found less
efficient than the linear mixed effects model. On the other hand, under MAR, both
MANOVA and comparisons per time point will not only be less efficient, but more
importantly, they will produced biased results, because they do not take into account
that the observed data no longer constitute a random sample from the target popula-
tion. Therefore, the full likelihood analysis constitutes a very promising alternative
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to CC and LOCF. When a relatively large number of measurements is made within
a single subject, the full power of random-effects modeling can be used (Verbeke
and Molenberghs 2000). The practical implication is that a software module with
likelihood estimation facilities and with the ability to handle incompletely observed
subjects, manipulates the correct likelihood, providing valid parameter estimates
and likelihood ratio values.

A few cautionary remarks are warranted. First, when at least part of the scien-
tific interest is directed towards the nonresponse process, obviously both processes
need to be considered. Under MAR, both questions can be answered separately. This
implies that a conventional method can be used to study questions in terms of the
the outcomes of interest, such as treatment effect and time trend, whereafter a sep-
arate model can be considered to study missingness. Second, likelihood inference
is often surrounded with references to the sampling distribution (e.g., to construct
measures of precision for estimators and for statistical hypothesis tests, Kenward
and Molenberghs 1998). However, the practical implication is that standard errors
and associated tests, when based on the observed rather than the expected informa-
tion matrix and given that the parametric assumptions are correct, are valid. Thirdly,
it may be hard to rule out the operation of an MNAR mechanism. This point was
brought up in the introduction and will be discussed further in Section 2.7.4.

2.7.2 Illustration: Orthodontic Growth Data

The simple methods and direct likelihood method are now compared using the
growth data of Section 2.2.4. For this purpose, a linear mixed model is used, as-
suming unstructured mean, i.e., assuming a separate mean for each of the eight
age×sex combinations, together with an unstructured covariance structure, and us-
ing maximum likelihood (ML) as well as restricted maximum likelihood (REML).
The mean profiles of the linear mixed model using maximum likelihood for all four
data sets, for boys, are given in Figure 2.8. The girls’ profiles are similar and hence
not shown.

Next to this longitudinal approach, we will consider a full MANOVA analysis
and a univariate ANOVA analysis, i.e., one per time point. For all of these analyses,
Table 2.8 shows the estimates and standard errors for boys at ages 8 and 10, for the
original data and all available incomplete data, as well as for the CC and the LOCF
data.

First, we consider the group means for the boys in the original data set in Fig-
ure 2.8, i.e., we observe relatively a straight line. Clearly, there seems to be a linear
trend in the mean profile.

In a complete case analysis of the growth data, the 9 subjects which lack one
measurement are deleted, resulting in a working data set with 18 subjects. This
implies that 27 available measurements will not be used for analysis, a quite severe
penalty on a relatively small data set. Observing the profiles for the CC data set in
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Fig. 2.8 Orthodontic Growth Data. Profiles for the original data, CC, LOCF, and direct likelihood
for boys.

Figure 2.8, all group means increased relative to the original data set but mostly so
at age 8. The net effect is that the profiles overestimate the average length.

For the LOCF data set, the 9 subjects that lack a measurement at age 10 are
completed by imputing the age 8 value. It is clear that this procedure will affect the
apparently increasing linear trend found for the original data set. Indeed, the im-
putation procedure forces the means at ages 8 and 10 to be more similar, thereby
destroying the linear relationship. Hence, a simple, intuitively appealing interpreta-
tion of the trends is made impossible.

In case of direct likelihood, we now see two profiles. One for the observed means
and one for the fitted means. These two coincide at all ages except age 10. As men-
tioned earlier, the complete observations at age 10 are those with a higher measure-
ment at age 8. Due to the within-subject correlation, they are the ones with a higher
measurement at age 10 as well, and therefore the fitted model corrects in the appro-
priate direction. The consequences of this are very important. While we are inclined
to believe that the fitted means do not follow the observed means all that well, this
nevertheless is precisely what we should observe. Indeed, since the observed means
are based on a non-random subset of the data, the fitted means take into account all
observed data points, as well as information on the observed data at age 8, through
the measurements that have been taken for such children, at different time points.

As an aside to this, note that, in case of direct likelihood, the observed average
at age 10 coincides with the CC average, while the fitted average does not coin-
cide with anything else. Indeed, if the model specification is correct, then a direct
likelihood analysis produces a consistent estimator for the average profile, as if no-
body had dropped out. Of course, this effect might be blurred in relatively small
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Table 2.8 Orthodontic Growth Data. Comparison of analyses based on means at (completely ob-
served age 8 and incompletely observed age 10 measurement)

Method Boys at Age 8 Boys at Age 10
Original Data

Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)
Direct likelihood, REML 22.88 (0.58) 23.81 (0.51)
MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time point 22.88 (0.61) 23.81 (0.53)

All Available Incomplete Data

Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)
Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 22.88 (0.61) 24.14 (0.74)

Complete Case Analysis

Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
Direct likelihood, REML 24.00 (0.48) 24.14 (0.66)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 24.00 (0.51) 24.14 (0.74)

Last Observation Carried Forward Analysis

Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)
Direct likelihood, REML 22.88 (0.58) 22.97 (0.68)
MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time point 22.88 (0.61) 22.97 (0.72)

data sets due to small-sample variability. Irrespective of the small-sample behavior
encountered here, the validity under MAR and the ease of implementation are good
arguments that favor this direct likelihood analysis over other techniques.

Let us now compare the different methods by means of Table 2.8, which shows
the estimates and standard errors for boys at age 8 and 10, for the original data and
all available incomplete data, as well as for the CC data and the LOCF data.

Table 2.8 shows some interesting features. In all four cases, a CC analysis gives
an upward biased estimate, for both age groups. This is obvious, since the complete
observations at age 10 are those with a higher measurement at age 8, as we have
seen before. The LOCF analysis gives a correct estimate for the average outcome
for boys at age 8. This is not surprising since there were no missing observations
at this age. As noted before, the estimate for boys of age 10 is biased downwards.
When the incomplete data are analyzed, we see from Table 2.8 that direct likelihood
produces good estimates. The MANOVA and ANOVA per time point analyses give
an overestimation of the average of age 10, like in the CC analysis. Further, the
MANOVA analysis also yields an overestimation of the average at age 8, again the
same as in the CC analysis.
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Thus, direct likelihood shares the elegant and appealing features of ANOVA and
MANOVA for fully observed data, but is superior with incompletely observed pro-
files.

2.7.3 Incompleteness and Estimating Equations

2.7.3.1 Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only un-
der MCAR, due to the fact that they are based on frequentist considerations. An
important exception, mentioned by these authors, is the situation where the work-
ing correlation structure (discussed in the previous section) happens to be correct,
since then the estimates and model-based standard errors are valid under the weaker
MAR. This is because then, the estimating equations can be interpreted as likeli-
hood equations. In general, of course, the working correlation structure will not be
correctly specified. The ability to do so is the core motivation of the method, and
therefore Robins, Rotnitzky, and Zhao (1995) proposed a class of weighted estimat-
ing equations to allow for MAR, extending GEE.

The idea is to weight each subject’s contribution in the GEEs by the inverse prob-
ability that a subject drops out at the time he dropped out. This can be calculated,
for example, as

νidi ≡ P[Di = di] =
di−1

∏
k=2

(1−P[Rik = 0|Ri2 = . . . = Ri,k−1 = 1])×

P[Ridi = 0|Ri2 = . . . = Ri,di−1 = 1]I{di≤T}.

Recall that we partitioned Y i into the unobserved components Y m
i and the observed

components Y o
i . Similarly, we can make the exact same partition of μi into μi

m and
μi

o. In the weighted GEE approach, which is proposed to reduce possible bias of β̂ ,
the score equations to be solved when taking into account the correlation structure
are:

S(β ) =
N

∑
i=1

1
νidi

∂ μi

∂β�
(A1/2

i CiA
1/2
i )−1(yi−μi) = 0

=
N

∑
i=1

n+1

∑
d=2

I(Di = d)
νid

∂ μi

∂β�
(d)(A1/2

i CiA
1/2
i )−1(d)(y(d)−μi(d)) = 0, (2.41)

where yi(d) and μi(d) are the first d−1 elements of yi and μi respectively. We define
∂ μi

∂β� (d) and (A1/2
i CiA

1/2
i )−1(d) analogously.
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It is worthwhile to note that the recently proposed so-called doubly robust meth-
ods (van der Laan and Robins 2002) is more efficient and robust to a wider class of
deviations. However, it is harder to implement than the original proposal.

An alternative mode of analysis, generally overlooked but proposed by Schafer
(2003), would consist in multiply imputing the missing outcomes using a parametric
model, e.g., of a random-effects or conditional type, followed by conventional GEE
and conventional multiple-imputation inference on the so-completed sets of data.
This approach is discussed in Beunckens, Sotto, and Molenberghs (2007).

2.7.3.2 Analysis of the Age-related Macular Degeneration Trial

We compare analyses performed on the completers only (CC), on the LOCF imputed
data, as well as on the observed data. For the observed, partially incomplete data,
GEE is supplemented with WGEE. The GEE analyses are reported in Table 2.9. A
working exchangeable correlation matrix is considered. The model has four inter-
cepts and four treatment effects. Precisely, the marginal regression model takes the
form

logit[P(Yi j = 1|Ti)] = β j1 +β j2Ti,

where j = 1, . . . ,4 refers to measurement occasion, Ti is the treatment assignment for
subject i = 1, . . . ,240 and Yi j is the indicator for whether or not 3 lines of vision have
been lost for subject i at time j. The advantage of having separate treatment effects
at each time is that particular attention can be given at the treatment effect assess-
ment at the last planned measurement occasion, i.e., after one year. From Table 2.9
it is clear that the model-based and empirically corrected standard errors agree ex-
tremely well. This is due to the unstructured nature of the full time by treatment
mean structure. However, we do observe differences in the WGEE analyses. Not
only are the parameter estimates mildly different between the two GEE versions,
there is a dramatic difference between the model-based and empirically corrected
standard errors. Nevertheless, the two sets of empirically corrected standard errors
agree very closely, which is reassuring.

When comparing parameter estimates across CC, LOCF, and observed data anal-
yses, it is clear that LOCF has the effect of artificially increasing the correlation
between measurements. The effect is mild in this case. The parameter estimates of
the observed-data GEE are close to the LOCF results for earlier time points and
close to CC for later time points. This is to be expected, as at the start of the study
the LOCF and observed populations are virtually the same, with the same hold-
ing between CC and observed populations near the end of the study. Note also that
the treatment effect under LOCF, especially at 12 weeks and after 1 year, is biased
downward in comparison to the GEE analyses. To properly use the information in
the missingness process, WGEE can be used. To this end, a logistic regression for
dropout, given covariates and previous outcomes, needs to be fitted. Parameter es-
timates and standard errors are given in Table 2.10. Intermittent missingness will
be ignored. Covariates of importance are treatment assignment, the level of lesions



86 Geert Verbeke, Geert Molenberghs, and Dimitris Rizopoulos

Table 2.9 Age-related Macular Degeneration Trial. Parameter estimates (model-based standard
errors; empirically corrected standard errors) for the marginal models: GEE on the CC and LOCF
population, and on the observed data. In the latter case, also WGEE is used

Effect Par. CC LOCF Observed data
Unweighted WGEE

Int.4 β11 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)
Corr. ρ 0.39 0.44 0.39 0.33

at baseline (a four-point categorical variable, for which three dummies are needed),
and time at which dropout occurs. For the latter covariates, there are three levels,
since dropout can occur at times 2, 3, or 4. Hence, two dummy variables are in-
cluded. Finally, the previous outcome does not have a significant impact, but will be
kept in the model nevertheless. In spite of there being no strong evidence for MAR,
the results between GEE and WGEE differ quite a bit. It is noteworthy that at 12
weeks, a treatment effect is observed with WGEE which goes unnoticed with the
other marginal analyses. This finding is mildly confirmed by the random-intercept
model, when the data as observed are used.

Table 2.10 Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for a
logistic regression model to describe dropout

Effect Parameter Estimate (s.e.)
Intercept ψ0 0.14 (0.49)
Previous outcome ψ1 0.04 (0.38)
Treatment ψ2 -0.86 (0.37)
Lesion level 1 ψ31 -1.85 (0.49)
Lesion level 2 ψ32 -1.91 (0.52)
Lesion level 3 ψ33 -2.80 (0.72)
Time 2 ψ41 -1.75 (0.49)
Time 3 ψ42 -1.38 (0.44)

2.7.4 Sensitivity Analysis

When there is residual doubt about the plausibility of MAR, one can conduct a sen-
sitivity analysis. While many proposals have been made, this is still a very active
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area of research. Obviously, a number of MNAR models can be fitted, provided
one is prepared to approach formal aspects of model comparison with due caution.
Such analyses can be complemented with appropriate (global and/or local) influ-
ence analyses (Verbeke et al. 2001). Another route is to construct pattern-mixture
models, where the measurement model is considered, conditional upon the observed
dropout pattern, and to compare the conclusions with those obtained from the se-
lection model framework, where the reverse factorization is used (Michiels et al.
2002, Thijs et al. 2002). Alternative sensitivity analyses frameworks are provided
by Robins, Rotnitzky, and Scharfstein (1998), Forster and Smith (1998) who present
a Bayesian sensitivity analysis, and Raab and Donnelly (1999). A further paradigm,
useful for sensitivity analysis, are so-called shared parameter models, where com-
mon latent or random-effects drive both the measurement process as well as the
process governing missingness.

Nevertheless, ignorable analyses may provide reasonably stable results, even
when the assumption of MAR is violated, in the sense that such analyses constrain
the behavior of the unseen data to be similar to that of the observed data. A dis-
cussion of this phenomenon in the survey context has been given in Rubin, Stern,
and Vehovar (1995). These authors firstly argue that, in well conducted experiments
(some surveys and many confirmatory clinical trials), the assumption of MAR is of-
ten to be regarded as a realistic one. Secondly, and very important for confirmatory
trials, a MAR analysis can be specified a priori without additional work relative
to a situation with complete data. Thirdly, while MNAR models are more general
and explicitly incorporate the dropout mechanism, the inferences they produce are
typically highly dependent on the untestable and often implicit assumptions built
in regarding the distribution of the unobserved measurements given the observed
ones. The quality of the fit to the observed data need not reflect at all the appro-
priateness of the implied structure governing the unobserved data. Based on these
considerations, we recommend, for primary analysis purposes, the use of ignorable
likelihood-based methods or appropriately modified frequentist methods. To explore
the impact of deviations from the MAR assumption on the conclusions, one should
ideally conduct a sensitivity analysis (Verbeke and Molenberghs 2000).

2.7.5 The Link Between Joint Modeling and Incomplete Data

In Section 2.5, the main research interest was in the time-to-event outcome, and
we have motivated joint modeling approaches in order to adequately take into ac-
count in our analysis the effect of a time-dependent covariate measured with error.
However, joint modeling may be also required when interest is in the longitudi-
nal outcome. In particular, the occurrence of events causes dropout due to the fact
that no longitudinal measurements are usually available at and after the event (e.g.,
death). As we have seen earlier in this section, if the probability of dropout depends
on unobserved longitudinal components, i.e., is MNAR, then the dropout process
must be explicitly taken into account in order to produce valid inferences for the
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longitudinal model. One of the modeling frameworks that has been proposed in the
missing data literature to handle nonrandom dropout is the shared parameter mod-
els (Wu and Carroll 1988, Follmann and Wu 1995). These models posit a survival
sub-model for the time-to-dropout and a mixed effects sub-model for the longitudi-
nal responses, and therefore, they belong in fact to same family as the joint model
(2.15). When approached from the missing-data point of view, the basic assump-
tion behind these models is that the probability of dropout at time t depends on
values of the longitudinal outcome at both past and future time points, through a
set of random effects. To show this more clearly, we define for each subject the
observed and missing part of the longitudinal response vector. The observed part
yo

i = {yi(ti j) : ti j < Ti, j = 1, . . . ,ni} contains all observed longitudinal measure-
ments of the ith subject before the observed event time, whereas the missing part
ym

i = {yi(ti j) : ti j ≥ Ti, j = 1, . . . ,n′i} contains the longitudinal measurements that
would have been taken until the end of the study, had the event not occurred. Un-
der these definitions, we can derive the dropout mechanism, which is the condi-
tional distribution of the time-to-dropout given the complete vector of longitudinal
responses (yo

i ,y
m
i ),

f (T ∗i | yo
i ,y

m
i ;θ) =

∫
f (T ∗i | bi;θ) f (bi | yo

i ,y
m
i ;θ) dbi, (2.42)

which states that the time-to-dropout depends on ym
i through the posterior distribu-

tion of the random effects f (bi | yo
i ,y

m
i ;θ). In practice, this implies that such models

are most meaningful when subjects who experience the event sooner, are the ones
that show steeper evolutions in their longitudinal profiles.

2.8 Software Considerations

Let us provide a brief overview of useful software tools, relative to the methodology
described and exemplified in this chapter.

Linear mixed models can be fitted using the SAS procedures MIXED, GLIM-
MIX, and NLMIXED, and the R packages nlme and lme4.

Generalized linear mixed models have been implemented in the SAS procedures
GLIMMIX and NLMIXED; they can also be fitted using the R packages lme4,
glmmML, MCMCglmm among others.

GEE can be fitted using the SAS procedure GENMOD and the R packages gee
and geepack.

When incomplete data are analyzed using multiple imputation, the SAS proce-
dures MI and MIANALYZE apply. Likewise, a suite of R functions is available
in packages mice, mitools and Hmisc. For direct-likelihood analysis, simply the
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aforementioned SAS and R tools apply. Weighted estimating equations require
user-defined software.

User-defined software is also needed for the validation of surrogate markers, for
high-dimensional data, and for joint modeling.

The authors and their collaborators have developed a variety of software tools,
made available via their web sites.

2.9 Concluding Remarks

Models for the analysis of longitudinal and otherwise hierarchical data are om-
nipresent these days throughout empirical research. Indeed, models and analysis
techniques for longitudinal data, be it for Gaussian or non-Gaussian outcomes, are
showing up in biometry, medical statistics, epidemiology, psychometry, economet-
rics, social science, and survey applications. The models are appealing for the in-
tuition behind their formulation. Inferential apparatus is now well developed, and
many methods have been implemented in standard software packages.

In this chapter, we have presented basic methodology for Gaussian and non-
Gaussian longitudinal data, including the linear and generalized linear mixed model
and generalized estimating equations. We also placed a strong emphasis on the use
of these methods in conjunction with a time-to-event outcome, also known as joint
modeling. Furthermore, we have indicated how models for longitudinal data are
playing a role in the validation of surrogate markers.

Finally, we have placed some emphasis on the problem of incomplete data, and
how likelihood-based or Bayesian analysis of incomplete longitudinal data can be
performed easily when data are not fully observed, given the missing data are miss-
ing at random. Related to this, we have indicated how the joint modeling framework
can play a role when the missing data are not missing at random.
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Tibaldi, F. S, Cortiñas Abrahantes, J., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M.,
Parmar, M., Stijnen, T., & Wolfinger, R. (2003). Simplified hierarchical linear models for the
evaluation of surrogate endpoints. Journal of Statistical Computation and Simulation, 73, 643-
658.

Tseng, Y.-K., Hsieh, F., & Wang, J.-L. (2005). Joint modelling of accelerated failure time and
longitudinal data. Biometrika, 92, 587-603.

Tsiatis, A., & Davidian, M. (2001). A semiparametric estimator for the proportional hazards model
with longitudinal covariates measured with error. Biometrika, 88, 447-458.

Tsiatis, A., & Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An
overview. Statistica Sinica, 14, 809-834.



96 Geert Verbeke, Geert Molenberghs, and Dimitris Rizopoulos

Tsiatis, A., DeGruttola, V., & Wulfsohn, M. (1995). Modeling the relationship of survival to lon-
gitudinal data measured with error: applications to survival and CD4 counts in patients with
AIDS. Journal of the American Statistical Association, 90, 27-37.

Van der Laan, M. J., & Robins, J. M. (2002). Unified methods for censored longitudinal data and
causality. New York: Springer.

Verbeke, G., Lesaffre, E., & Spiessens, B. (2001). The practical use of different strategies to handle
dropout in longitudinal studies. Drug Information Journal, 35, 419-434.

Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York:
Springer.

Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., & Kenward, M. G. (2001). Sensitivity anal-
ysis for non-random dropout: A local influence approach. Biometrics, 57, 7-14.

Wang, Y., & Taylor, J. (2001). Jointly modeling longitudinal and event time data with application
to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96,
895-905.

Wolfinger, R. D. (1998). Towards practical application of generalized linear mixed models. In
B. Marx & H. Friedl (Eds.), Proceedings of the 13th International Workshop on Statistical
Modeling (pp. 388-395). New Orleans, Louisiana, USA.

Wolfinger, R., & O’Connell, M. (1993). Generalized linear mixed models: a pseudo-likelihood
approach. Journal of Statistical Computation and Simulation, 48, 233-243.

Wu, M., & Carroll, R. (1988). Estimation and comparison of changes in the presence of informative
right censoring by modeling the censoring process. Biometrics, 44, 175-188.

Wulfsohn, M., & Tsiatis, A. (1997). A joint model for survival and longitudinal data measured
with error. Biometrics, 53, 330-339.

Xu, J., & Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and
times to events. Applied Statistics, 50, 375-387.

Yu, M., Law, N., Taylor, J., & Sandler, H. (2004). Joint longitudinal-survival-cure models and their
application to prostate cancer. Statistica Sinica, 14, 835-832.

Zhao, L. P., Prentice, R. L., & Self, S. G. (1992). Multivariate mean parameter estimation by using
a partly exponential model. Journal of the Royal Statistical Society B, 54, 805-811.


	2 Random Effects Models for Longitudinal Data
	2.1 Introduction
	2.2 Case Studies
	2.2.1 Toenail Data
	2.2.2 Hearing Data
	2.2.3 Liver Cirrhosis Data
	2.2.4 Orthodontic Growth Data
	2.2.5 Age-related Macular Degeneration Trial

	2.3 Modeling Tools for Longitudinal Data
	2.3.1 Linear Models for Gaussian Data
	2.3.2 Models for Discrete Outcomes
	2.3.2.1 Generalized Linear Mixed Models (GLMM)
	2.3.2.2 Generalized Estimating Equations (GEE)
	2.3.2.3 Marginal versus Hierarchical Parameter Interpretation

	2.3.3 Analysis of Toenail Data

	2.4 Multivariate Longitudinal Data
	2.4.1 A Mixed Model for Multivariate Longitudinal Outcomes 
	2.4.2 A Pairwise Model-fitting Approach
	2.4.2.1 Pairwise Fitting
	2.4.2.2 Inference for 
	2.4.2.3 Combining Information: Inference for * 

	2.4.3 Analysis of the Hearing Data
	2.4.4 Some Reflections

	2.5 Joint Models for Longitudinal and Time-to-Event Data
	2.5.1 Joint Modeling Framework
	2.5.2 Likelihood and Estimation
	2.5.3 Analysis of Liver Cirrhosis Data
	2.5.4 Some Reflections

	2.6 The Use in Surrogate Markers
	2.6.1 A Meta-analytic Framework for Normally Distributed Outcomes
	2.6.2 Non-Gaussian Endpoints
	2.6.2.1 Binary Endpoints
	2.6.2.2 Two Failure-time Endpoints
	2.6.2.3 An Ordinal Surrogate and a Survival Endpoint
	2.6.2.4 Longitudinal Endpoints

	2.6.3 Towards a Unified Approach
	2.6.3.1 The Likelihood Reduction Factor
	2.6.3.2 An Information-theoretic Unification
	2.6.3.3 Fano's Inequality and the Theoretical Plausibility of Finding a Good Surrogate


	2.7 Incomplete Data
	2.7.1 Direct Likelihood Analysis
	2.7.2 Illustration: Orthodontic Growth Data
	2.7.3 Incompleteness and Estimating Equations
	2.7.3.1 Weighted Generalized Estimating Equations
	2.7.3.2 Analysis of the Age-related Macular Degeneration Trial

	2.7.4 Sensitivity Analysis
	2.7.5 The Link Between Joint Modeling and Incomplete Data

	2.8 Software Considerations
	2.9 Concluding Remarks


