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Preface

Since Charles Spearman published his seminal paper on factor analysis in 1904 and
Karl Jöreskog replaced the observed variables in an econometric structural equation
model by latent factors in 1970, causal modelling by means of latent variables has
become the standard in the social and behavioural sciences. Indeed, the central vari-
ables that social and behavioural theories deal with, can hardly ever be identified
as observed variables. Statistical modelling has to take account of measurement er-
rors and invalidities in the observed variables and so address the underlying latent
variables.

Moreover, during the past decades it has been widely agreed on that serious
causal modelling should be based on longitudinal data. It is especially in the field
of longitudinal research and analysis, including panel research, that progress has
been made in recent years. Many comprehensive panel data sets as, for example, on
human development and voting behaviour have become available for analysis. The
number of publications based on longitudinal data has increased immensely. Papers
with causal claims based on cross-sectional data only experience rejection just for
that reason.

The chapters in this book combine longitudinal research and latent variable
research. They all explain how longitudinal studies with objectives formulated in
terms of latent variables should be performed. The emphasis is on exposing how
the methods are applied. Because currently longitudinal research with latent vari-
ables follows different approaches with different histories, different types of re-
search questions, and different computer programs to perform the analysis, the
book is divided into nine, rather self sufficient chapters. The chapters give an up
to date overview of the current state of the approach. Each chapter is written by
one or more experts in the approach. In addition to some background information
about the specific approach (short history and main publications), the chapter de-
scribes the type of research questions the approach is able to answer and the kind
of data to be collected, gives the statistical and mathematical explanation of the
models used in the analysis of the data, discusses the input and output of the pro-
grams used in the analysis, and provides one or more examples with typical data
sets enabling the reader to apply the programs themselves. Data sets and computer
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vi Preface

code for the analysis with various software programs are a very important compo-
nent of the book and partly made available at the book website http://www.
econ.upf.edu/∼satorra/longitudinallatent/readme.html.

The chapters present an up to date overview of the current state of the approach
in such detail that readers get the means for application in their own research. The
emphasis is not on new results. The main purpose is to give a state of the art expla-
nation of longitudinal research methodology with latent variables and to show how
this methodology is implemented in practice with current state of art software and
real data sets. Each of the chapters is supposed to be rather complete for the specific
approach and the chapters together are meant to cover the field exhaustively.

The book “Longitudinal Research with Latent Variables” addresses the great ma-
jority of researchers in the behavioural and related sciences, in academic as well as
non-academic environments. This includes readers who are involved in research in
psychology, sociology, education, economics, management, and medical sciences.
It is meant as a reference work for all those actually doing longitudinal research.
The book also addresses methodologists and statisticians, who are professionally
dealing with longitudinal research, to provide standards for state of the art prac-
tices. It specially offers PhD students in the fields indicated the means to carry out
longitudinal research with latent variables.

Kees van Montfort, Han Oud, and Albert Satorra
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Chapter 1
Loglinear Latent Variable Models for
Longitudinal Categorical Data

Jacques A. Hagenaars

Abstract Errors and unreliability in categorical data in the form of independent
or systematic misclassifications may have serious consequences for the substantive
conclusions. This is especially true in the analysis of longitudinal data where very
misleading conclusions about the underlying processes of change may be drawn that
are completely the result of even very small amounts of misclassifications. Latent
class models offer unique possibilities to correct for all kinds of misclassifications.
In this chapter, latent class analysis will be used to show the possible distorting in-
fluences of misclassifications in longitudinal research and how to correct for them.
Both simple and more complicated analyses will be dealt with, discussing both sys-
tematic and independent misclassifications.

1.1 Introduction

Longitudinal data come in many varieties and many different approaches exist for
their analysis. In this chapter, analysis techniques will be proposed for strictly lon-
gitudinal data, that is, data that result from repeated observations over time of the
same subjects. Moreover, the emphasis will be on data from panel surveys in which
the subjects’ scores are only known for particular discrete points in time, essentially,
the time points ti at which the panel waves were conducted. In agreement with this,
time will be treated as discrete (Coleman, 1964). This is not to say that it is assumed
that the changes occur always and only at discrete points in time. But with discrete
time observations, what happens in-between the time points ti and ti+1 is in prin-
ciple unknown. Therefore, the application of continuous time models to such data
essentially amounts to the imputation of the missing in-between values by assuming
the validity of some continuous, usually smooth process of change. If this process is

Jacques A. Hagenaars
Department of Methodology and Statistics, Tilburg University, The Netherlands
e-mail: jacques.a.hagenaars@uvt.nl

K. van Montfort et al., Longitudinal Research with Latent Variables,
DOI 10.1007/978-3-642-11760-2 1, c© Springer-Verlag Berlin Heidelberg 2010
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2 Jacques Hagenaars

misspecified, the resulting estimated change parameters can be seriously distorted
(Carlsson, 1972; Kohfeld, & Salert, 1982; Schoenberg, 1977). On the other hand,
a lot of, perhaps most characteristics undergo continuous changes (though often ir-
regular) and not only changes at particular discrete time points and certainly not
only at those points in time that happen to coincide with the moments of observa-
tion. Therefore, in the discrete time models discussed here, a pragmatic position is
assumed in which the consequences of the possibly continuous, but mostly irregular
processes of change will be studied at particular discrete moments in time without
making restrictive assumptions about the nature of the process itself (Hagenaars,
1990, p. 16; continuous time models are explicitly dealt with in other chapters of
this volume).

The proposed models are not only discrete time, but also discrete state models:
the characteristics involved will be treated as truly categorical (Coleman, 1964). The
categorical data may pertain to truly discrete variables, such as political party pref-
erence, religious denomination, or number of children, but also to categorizations of
possibly continuous variables but measured by means of just a few categories like
“1. yes, 2. no” or “1. completely agree, . . . , 5. completely disagree” or “1. always,
2. sometimes, 3. never”. These categorizations of possibly continuous variables can
be analyzed in two ways: either one treats them as truly categorical, discrete vari-
ables (the Yulean approach after George Udny Yule) or one explicitly interprets
the categories as realizations of some underlying continuous variable (the Pearso-
nian approach, after Karl Pearson). The Yulean approach will be adopted here. The
main reason not to use the Pearsonian approach is that this approach always involves
largely untestable assumptions about the data, such as a priori assumptions about the
underlying (normal) distribution of the not observed continuous variable or assump-
tions about the nature of the process that transforms the scores on the continuum into
the observed categorical response. In the Yulean approach, no such assumptions are
necessary as it treats the observed scores as given, as the categories they are. Note
that this does not imply that the discrete states are always or necessarily treated as
categories of a nominal level variable, as is often thought. Categorical variables can
be treated as nominal level, but also where appropriate as ordinal, interval or ratio
level variables. Although most of the examples below involve nominal level vari-
ables, this is only done to keep the expositions simple. In the last section this issue
will be taken up again.

Three general ways of analyzing categorical panel data are often distinguished
(Bergsma, Croon, & Hagenaars, 2009; Molenberghs & Verbeke, 2005; Vermunt &
Hagenaars, 2004). First, there is the marginal modeling approach in which the net
changes are studied. Essentially, the research question is “how different are the time
one from the time two scores”? The dependencies among the observations aris-
ing from repeatedly interviewing the same persons are of no substantive interest
and are just treated as a (statistical) nuisance. Second, there are the subject specific
or random effect models, in which the dependencies among the observations are
taken care of by means of introducing random components at the subject level. Fi-
nally, there is the conditional or transition approach in which the dependencies over
time are the express purpose of the investigation. In this chapter, only conditional
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models will be extensively dealt with, leaving the brief discussion of the other two
approaches to the final section.

Causal models, or rather: Structural Equation Models (SEMs) – the latter term
being preferred here to avoid the often too sloppy use of the causal terminology –
are the most general and flexible forms of conditional analysis (and include multiple
regression or multiple logit models as special cases). As, moreover, loglinear mod-
eling may be considered as the most general and flexible method for the analysis of
categorical data, loglinear SEMs for categorical panel data will be the focus of this
chapter, and then, especially, loglinear SEMs with (categorical) latent variables. The
possibility to include latent variables is especially important in longitudinal analy-
ses as the patterns of observed change do not only result from the true changes, but
also from random and systematic measurement error and misclassifications. Latent
variable SEMs offer the possibility to discover the true patterns of change and to
evaluate the distorting influences of many kinds of errors and biases on the patterns
of change.

The basic latent class model and its extensions form a first step towards the
building of a loglinear SEM with one or more latent variables. This basic latent
class model will be discussed in the next section. It will be shown how even small
amounts of random measurement errors in the form of independent misclassifica-
tions may lead to very misleading conclusions about the nature of the changes over
time, when these conclusions are only and directly based on the observed data. First
in Section 1.2, the changes in one simple dichotomous characteristic will be dis-
cussed. After that, slightly more complicated latent class models will be presented
to study the changes over time involving two or more indicators.

Because SEMs for categorical data in the Yulean tradition may not be familiar
to many readers, the basic principles will be outlined in Section 1.3, first loglinear
SEMs without and thereafter SEMs with latent variables. Substantive applications
of loglinear SEMs with latent variables will be presented in Section 1.4. It will be
shown how true changes can be discovered by explicitly modeling the nature of
independent and systematic misclassifications together with models for the nature
of the true changes and their causes and consequences. Finally, some discussion
points, extensions, and new developments will be presented in the last Section 1.5.

1.2 Latent Class Models: Separating Unreliability and True
Change

Imagine a two-wave panel study into the drinking behavior of young people. A sam-
ple of 1100 respondents was interviewed first at age eleven and again one year later
at age twelve. Now assume that the use of alcohol remained completely the same for
each individual during the whole period of investigation and that 200 of the respon-
dents used alcohol at least once a month (“regular users”) and 900 less than once
a month (“nonusers”). This true state of affairs is represented by the dichotomous,
not directly observed variable X with the latent categories (or latent classes): 1. True
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“regular users” and 2. True “nonusers”. The scores on X are not directly observed,
only the respondents’ manifest answers are. When the respondents are asked about
their drinking behavior, the reliability of their answers is assumed to be very high,
although not perfect: the probability that a respondent answers in agreement with the
true position, that is, with the latent class the respondent belongs to equals .90. This
response probability of .90 is assumed to be true both for the true “regular users”
and for the true “nonusers” and both for the time one and the time two observations.
Moreover, independent misclassifications are assumed. i.e., given the true scores,
the misclassification of one respondent is independent of the misclassification of
another respondent and also, for each and every respondent, the misclassifications
in the first and the second panel wave are independent of each other. The observed
drinking behavior in the first wave will be denoted as (dichotomous) variable A and
in the second wave as (dichotomous) variable B.

Given that all of the above is true, how will the observed data look like? First,
a look at the observed marginal distributions. The total number of respondents that
will be registered as regular user in the first wave will consists of the respondents
who are truly regular users (X = 1) and are expected to answer accordingly (.90 ×
200 = 180) plus those who are expected to give the “wrong answer” compared to
their true position of nonuser (X = 2) (.10 × 900 = 90). Therefore, in total, there
will be (180 + 90 =) 270 regular users (A = 1) and 830 nonusers (A = 2). Because
of the absence of any latent change and the constant response probability of .90
of answering correctly plus the independence of the misclassifications, the same
marginal distribution will be obtained in the second wave for variable B.

Because of the assumed pattern of misclassifications, the observed distribution of
A (or B) will be less peaked than the true distribution (of X). If the response proba-
bility of .90 had been .50 (the maximum unreliability), the marginal distribution of
A or B would have been the uniform distribution. Here, according to the assumed
state of affairs, the observed percentage of nonusers will be 75.5% (= 100 × 830 /
1100) at each point in time, while the true percentage of nonusers equals 81.8%
(= 100 × 900 / 1100). For the distribution of a dichotomous variable, less peaked-
ness implies a larger variance. This is analogous to the consequences of unreliability
in continuous measurements. In the classical error theory for continuous variables,
random measurement error adds to the true variance, as the observed variance is the
sum of the true variance plus the error variance (Allen & Yen, 1979; Lord & Novick,
1968). Although with categorical data, the observed variance is no longer a simple
sum of the true and error variance, a similar increase in variance can be seen. Using
the scores 1 and 2 for the categories, the variance of latent variable X equals .149,
while the variance of the less peaked observed variable A (and B) equals .185.

However no such straightforward analogue exists between the categorical and
the classical error theory concerning the mean or expected value. “Less peakedness”
also implies that the mean of observed variable A (or B) will be different from the
mean of the latent variable X (here: observed mean: 1.755 vs. latent mean: 1.818).
According to classical error theory for continuous data, the observed mean score
will be an unbiased estimate of the true mean. But this is generally not true with
categorical data, not even with independent misclassifications. A frequently (but
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not necessarily) occurring pattern is that the percentages belonging to the smaller
latent categories, the minorities (here: the true regular users) will be overestimated in
the observed data and underestimated for the larger latent categories, the majorities
(here: the true nonusers).

So, the latent and the observed distributions will generally differ from each other.
On the other hand, given the assumptions of the stability of the true scores and the
identical probabilities of misclassifications over time, the two observed marginal
distributions of A and B will be the same and it will be correctly concluded on
the basis of the observed data that there was no net change from age eleven to age
twelve. However, due to the misclassifications, there will be observed gross change,
despite the complete stability of the true scores X. The calculation of the expected
observed cell entries of the 2 × 2 observed turnover table AB under the proposed
model is straightforward. For example, the number of respondents that will belong
to cell (AB = 11) of this table, that is, the observed number of stable regular users
will be: .90 × 200 × .90 = 162 from the truly regular users (X = 1) plus .10 × 900
× .10 = 9 from the truly nonusers (X = 2), summing up to 171 respondents. The
complete observed table, expected under the model, then looks as in Table 1.1.

Table 1.1 Observed transition table alcohol use (simulated data; see text)

A-t1 Regular user Nonuser Total
B-t2 1 2
1 171 99 270

(63.3%) (11.9%) (24.5%)
2 99 731 830

(36.7%) (88.1%) (75.5%)
Total 270 830 1100

(100%) (100%) (100%)

A researcher relying only on the observed cell entries in Table 1.1 would
(wrongly) conclude that 18% (= 100× (99 + 99) / 1100) of the respondents changed
their alcohol use between the ages eleven and twelve. Especially the regular users
are seemingly prone to change: more than one third (36.7%) of those that were
observed as regular users the first time changed to nonuse the second time, while
the corresponding transition probability for the nonusers is just above ten percent
(11.9%). This difference in relative stability is statistically significant as can be
seen by changing the categories of variable B in Table 1.1 into 1. “Same answer
as A” and 2. “Different answer from A”, by rearranging the cell entries accordingly
and testing for independence in the rearranged table. The test results are (for the
maximum-likelihood χ2:) G2 = 75.50, df = 1, p = .00 (and for the Pearson χ2: X2 =
84.74). Researchers will be and have been tempted to find substantive explanations
for such changes and differences in transition probabilities. But these changes and
differences are very misleading here. In reality, there were no true changes at all
and, as far as unreliability and misclassifications might be interpreted as “random
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change”, both the true regular users and true nonusers had the same misclassification
probability and, in that sense, the same amount of random changes. A consequence
of the misclassification pattern assumed above is that the larger the misclassification
probability is, the larger the amount of observed change. And especially, the patterns
of observed change will be such that the smaller, the minority categories will always
seem to change comparatively more than the larger, the majority ones. This latter
phenomenon is yet another appearance of the “regression to the mode”. This “re-
gression to the mode” is closely related to the notorious “regression to the mean”,
which is well known for its misleading consequences in the analysis of continuous
data, but is certainly as misleading for categorical characteristics. The “regression
to the mode” phenomenon has led many researchers astray in simple situations as
the one discussed here, but also in more complicated situations, for larger tables, for
comparisons of changes in several subgroups and in related characteristics, and for
quasi-experimental designs (Hagenaars, 1990, 2005).

So far, it was assumed that the true state of the world and the parameters that
govern this world were known and from this knowledge, the observed data could be
derived. In practice, researchers have only the observed data at their disposal and
have to work the other way around: for a particular observed table (AB) and assum-
ing a particular model, the parameters, essentially the entries in the complete table
ABX have to be estimated. Most, if not all, models for separating true changes in
categorical data from changes due to misclassifications can be formulated as some
variant of the general latent class (Clogg, 1995; Goodman, 1974a, 1974b; Haber-
man, 1979; Lazarsfeld & Henry, 1968; Wiggins, 1973; Hagenaars & McCutcheon,
2002). The latent class model implied by the simple model above can be depicted as
in Figure 1.1. In this figure, X represents the dichotomous, stable characteristic “true
alcohol use” and A and B refer to the observed alcohol use at age eleven and age
twelve, respectively. Crucial is further that, as explained in the model above, there
is no direct influence, no arrow from A to B. Variables A and B are only correlated
with each other because they are both influenced by X.

X

A B

Fig. 1.1 Basic latent class model.

The model in Figure 1.1 can be parameterized in terms of (conditional response)
probabilities as follows, where πABX

i jt refers to the probability that a respondent be-
longs to cell (i, j, t) of table ABX, πX

t indicates the probability of being in latent
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class t of X, and π
A|X
it the conditional response probability of being in category of i

of A, given that respondent belongs to X = t (and the other parameters have obvious,
analogous meanings)

π
ABX
i jt = π

X
t π

A|X
it π

B|X
jt (1.1)

In agreement with Figure 1.1, equation (1.1) embodies the basic latent class as-
sumption of local independence: within the latent classes, A and B are statistically
independent from each other. All A and B have in common is their being an indi-
cator of X. When X is controlled, held constant, the relationship between A and B
disappears. How this basic latent class assumption is represented in equation (1.1)
can be easily seen if one realizes that from elementary rules of probability, it follows
that by definition πABX

i jt = πX
t π

AB|X
i jt . However, the joint conditional response proba-

bility π
AB|X
i jt is written in equation (1.1) as the product (πA|X

it π
B|X
jt ) which is valid if

and only if A and B are conditionally independent of each other, given X.
Because X is a latent, not directly observed variable, table ABX is not an ob-

served table. The link between the observed frequencies and the parameters at the
right hand side of equation (1.1) follows from summing the complete table ABX
over the latent variables to obtain the observed table AB (∑t πABX

i jt = πABX
i j+ = πAB

i j ).
To be able to identify the parameters, first standard identifiability restrictions have to
be imposed. In equation (1.1), it has to be taken into account that the parameters are
probabilities and have to sum to one wherever appropriate, e.g., ∑t πX

t = ∑i π
A|X
it = 1.

However, these minimal identifying restrictions are not sufficient here to be able to
estimate the parameters from the observed Table 1.1. There are still more unknown
parameters to estimate than known observed cell probabilities. Table 1.1 contains
three independent cell entries, as the cell probabilities have to sum to 1. But after the
identifying restrictions have been imposed, the LCA model above still has five inde-
pendent parameters left to estimate (e.g., the set πX

1 , π
A|X
11 , π

A|X
12 , π

B|X
11 , and π

B|X
12 ). In

our little alcohol use example above, extra “restrictions” have been imposed by mak-
ing particular response probabilities equal to each other: π

A|X
11 = π

A|X
22 = π

B|X
11 = π

B|X
22 .

If Table 1.1 had been a normally observed table, all these restrictions together would
yield one degree of freedom that may be used to test the model. In this simulated
case, for the observed frequencies in Table 1.1, a perfectly fitting model is found
with the parameter “estimates” given above.

General overviews of identifiability of latent class models and of procedures to
obtain the maximum likelihood parameter estimates (EM-algorithm, scoring, and
Newton-Raphson methods) and to test the models can be found in the general latent
class literature given above. User friendly and very flexible programs are available
to check the identifiability of the models and to estimate its parameters and test
the goodness of fit, e.g., Vermunt’s LEM, Vermunt and Magidson’s Latent Gold and
Muthén’s Mplus (Muthén & Muthén, 2006; Vermunt, 1997b; Vermunt & Magidson,
2005).

Essentially the same estimation and testing procedures (and programs) can be
employed for another useful and flexible parameterization of the same latent class
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model in Figure 1.1, but now in terms of a loglinear model (in multiplicative or
additive form):

π
ABX
i jt = ητ

A
i τ

B
j τ

X
t τ

AX
it τ

BX
jt (1.2a)

lnπ
ABX
i jt = ϑ +λ

A
i +λ

B
j +λ

X
t +λ

AX
it +λ

BX
jt (1.2b)

In equation (1.2), the constant parameter η (or θ ) has to do with the average cell
probability and is directly related to the sample size. The one-variable parameter τA

i
(or λ A

i ) reflects the average distribution of variable A within the categories of the
other variables in the equation (here: B and X) and the other one-variable parameters
in the equation have obvious, analogous interpretations. The two-variable parameter
τAX

it (or λ AX
it ) indicates the direct association between A and X and is a function of

the partial odds ratio(s) between A and X. More about the precise meaning of the
parameters of the loglinear models can be found in one of the many elementary or
intermediate introductions into the field, e.g., Knoke & Burke (1980) and Hagenaars
(1990). The basic local independence assumption of the latent class model is now
reflected in equation (1.2) by the fact that there is no direct association between A
and B, that is, there is no parameter τAB

i j (or λ AB
i j ) in equation (1.2).

The necessary general identifying restrictions on the loglinear parameters take
the form of the usual dummy or effect coding restrictions. In this chapter, effect
coding will be used as default: the product of each τ-parameter over any of its sub-
scripts equals one (or: the sum of each λ -parameter over any of its subscripts equals
zero).

Equations (1.1) and (1.2) are equivalent representation of the same latent class
model: they imply the same (conditional) independence restrictions on the data, and
as such yield the same expected frequencies. The parameters in equation (1.1) can
be expressed in terms of the loglinear parameters and vice versa. In this connection,
it is interesting to note that the conditional response probability, e.g., π

A|X
it turns

out to be a function of both the loglinear two-variable parameter τAX
it and the one-

variable parameter τA
i , i.e., a function of the association between A and X, but also

of the level or popularity of A = i. Not surprisingly then, the extra restrictions made
in the above simulated example (πA|X

11 = π
A|X
22 = π

B|X
11 = π

B|X
22 ) are equivalent to the

loglinear restrictions: τAX
it = τBX

it and τA
i = τB

i = 1. More and more precise informa-
tion on the relationships between the parameterizations in equations (1.1) and (1.2)
is provided by Hagenaars (1990) and Heinen (1996).

After this extremely simple example, a more elaborate, real world example is
due to illustrate further the flexibility and usefulness of latent class models for the
analysis of change. In the discussion of this and other examples, the relevant models
will often be indicated in the short hand notation that is usual for hierarchical log-
linear models, namely by means of the highest order interactions in the model. The
model in Figure 1.1 is then denoted as model {AX,BX} implying the presence of
the terms τAX

it and τBX
it in the model equation, plus all lower order parameters that

can be formed by the superscripts of each particular higher order term (τA
i , τB

j , and
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τX
t ) (and always including the overall effect parameter η in the models to reflect the

sample size).
The real world example concerns data from a Dutch election study in which

during the six months before the elections the same group of respondents was in-
terviewed once every month. The data are about the respondents’ Political Party
Preference and their Candidate Preference for Prime Minister and are taken from
the waves conducted three (t1) and two months (t2) before the elections. The cat-
egories used for both characteristics are 1. Christian-Democrat, 2. Left Wing, 3.
Other (mainly Right Wing). The data, presented in Table 1.2, have been analyzed be-
fore from similar and different angles (Hagenaars, 1990; Bergsma, Croon, & Hage-
naars, 2009). For the convenience of the reader the data and necessary LEM program
files have been made available on the book website http://www.econ.upf.
edu/∼satorra/longitudinallatent/readme.html.

Table 1.2 Party and candidate preference (source Hagenaars, 1990)

C 1 1 1 2 2 2 3 3 3 Total
D 1 2 3 1 2 3 1 2 3

A B
1 1 84 9 23 6 13 7 24 8 68 242
1 2 0 1 0 0 8 1 2 2 3 17
1 3 3 1 2 0 2 3 2 3 9 25
2 1 1 1 0 1 2 2 1 0 1 9
2 2 2 4 0 1 293 6 1 22 21 350
2 3 1 0 0 1 8 7 0 0 9 26
3 1 6 1 1 4 5 0 9 1 16 43
3 2 0 1 1 0 31 0 2 9 7 51
3 3 14 1 15 3 48 23 12 21 200 337
Total 111 19 42 16 410 49 53 66 334 1100

A - Party Preference t1 1. Christian- Democrat
B - Party Preference t2 2. Left Wing
C - Candidate Preference t1 3. Other
D - Candidate Preference t2

In principle, the data in Table 1.2 provide a wealth of information, e.g., on the asso-
ciation between Party and Candidate Preference, on the changes in this association,
on the net changes and on the gross changes in the Preferences etc. However, the
observed changes and associations between the two characteristics can be very mis-
leading due to measurement errors. Possible misclassifications must be taken into
account and latent class models are useful for this purpose. In all latent class models
in this section, it will be assumed that the misclassifications are independent of each
other (below this assumptions will be relaxed).

Two questions will be the focus of this little investigation. The first question con-
cerns the nature of the true changes: are the true Preferences stable over time or do
true changes take place? The second question concerns the nature of the observed
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variables as indicators: are they measuring one and the same concept (Political Ori-
entation) or do they refer to two different concepts (Party Preference and Candidate
Preference)?

The most restrictive answer to these two questions is that both Party and Can-
didate Preference are just indicators of one and the same underlying concept Polit-
ical Orientation and that, moreover, this underlying variable is stable over time,
i.e., stable during the period of investigation. These two elements of this com-
posite hypothesis can be tested simultaneously by estimating latent class model
{AX,BX,CX,DX}, depicted in Figure 1.2a. In this model, latent variable X is sup-
posed to represent the underlying, stable Political Orientation with three (latent)
categories in agreement with the categories of the observed variables and A through
D are its indicators. However, if model {AX,BX,CX,DX} is tested against the data
in Table 1.2, it turns out that it does not fit the data at all: (ML-)G2 = 362.71, df =
54, p = .00 (Pearson-X2 = 491.23).

One way to arrive at a better fitting model might be to enlarge the number of
latent classes and treat X as a latent variable with four or five categories. Although
this is not done here, as it would not be very logical given the data and the research
problem, latent class models with latent variables that have a number of categories
different from their indicator(s) may have very nice interpretations, also in the analy-
sis of longitudinal data. Hagenaars (1990) discusses this issues further and provides
several examples.

Given the test outcomes, obviously something is wrong with model
{AX,BX,CX,DX}. Taking the three latent classes and the basic local independence
assumptions for granted, it must be either with the assumption of perfect stability of
Political Orientation or with the assumption about the observed variables as indica-
tors of one and the same concept.

a) b) c)

A A A

Y V

B C B

X

C B C

Z W

D D D

{AX,BX,CX,DX} {YZ,AY,BZ,CY,DZ} {VW,AV,BV,CW,DW}

Fig. 1.2 Latent class models for political preference items.

The most unlikely part of the composite hypothesis was thought to be the stabil-
ity assumption. After all, an election campaign was going on that might have caused
people to change their preferences. More confidence was there in the validity of the
other part, because it was believed that in the Netherlands preferences for parties
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and candidates are both just expressions of one’s political orientation. These con-
siderations lead to a two latent variable model with two underlying latent variables,
where trichotomous latent variable Y is now meant to represent the respondents’ true
Political Orientation at time 1 and trichotomous latent variable Z their true Political
Orientation at time 2. So people can change their true political orientation over time.
The changes can be found in latent table YZ with entries πVW

rs . Because the observed
party and candidate preference are still considered to be indicators of one and the
same concept Political Orientation, it is assumed that latent variable Y influences di-
rectly (and only) the scores on the indicators A and C and latent variable Z directly
(and only) the scores on indicators B and D. Together with the usual local indepen-
dence assumptions, all this leads to latent class model {YZ,AY,BZ,CY,DZ}. This
model is depicted in Figure 1.2b where an arrow is inserted from Y to Z because,
given the temporal order, Y is supposed to influence Z (rather than vice versa). How-
ever, contrary to the expectations, model {YZ,AY,BZ,CY,DZ} does not fit the data
in Table 1.2 (G2 = 351.71, df = 48, p = .00 (Pearson X2 = 501.02)) and in terms of
the sizes of the chi-square statistics, about as bad as the previous one latent variable
model {AX,BX,CX,DX}.

Therefore, the problematic part of the one latent variable model in Figure 1.2a
might not have been the latent stability of the true scores, but the idea that the ob-
served candidate preference and party preference are just indicators of the same
underlying concept. Perhaps Party Preference and Candidate Preference must be
regarded as two distinct concepts with indicators (A,B) and (C,D) respectively. To
investigate this possibility, latent class model {VW,AV,BV,CW,DW} (Figure 1.2c)
is estimated for the data in Table 1.2. In model {VW,AV,BV,CW,DW}, the trichoto-
mous latent variable V represents the underlying variable Party Preference which is
now supposed to be stable for the two waves and the trichotomous latent variable
W refers to the underlying stable variable Candidate Preference. The relationship
between the two latent variables V and W is represented in Figure 1.2c by a double-
headed arrow indicating an “unanalyzed correlation” between the (exogenous) latent
variables, as it is not certain in which direction the causal order might go.

The equation for model{VW,AV,BV,CW,DW} is presented in full in equation
(1.3), in terms of probabilities (1.3a) and in terms of loglinear parameters (1.3b),
because its outcomes will be discussed further in this chapter. Although a bit more
complicated, the particular form of equation (1.3) and the relationship between
equation (1.3a) and (1.3b) follows from the above and from the same logic on which
equations (1.1) and (1.2) were based (see also Hagenaars, 1990).

π
VWABCD
rsi jkl = π

VW
rs π

A|V
ir π

B|V
jr π

C|W
ks π

D|W
ls (1.3a)

lnπ
VWABCD
rsi jkl = ϑ +λ

V
r +λ

W
s +λ

A
i +λ

B
j +λ

C
k +λ

D
l

+λ
VW
rs +λ

AV
ir +λ

BV
jr +λ

CW
ks +λ

DW
ls

(1.3b)
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Model {VW,AV,BV,CW,DW} fits the data in Table 1.2 much better than the previous
two models, although still not good enough: G2 = 84,74, df = 48, p = .00 (Pearson
X2 = 94.33). However, given its much better fit and the fact that the Bayesian in-
formation criterion BIC clearly showed that it had to be preferred to the saturated
model and to the models in Figure 1.2a and 1.2b, some of its main implications
and outcomes will be briefly discussed. (In Section 1.4, a slight but important mod-
ification of model {VW,AV,BV,CW,DW} will be discussed. that does fit the data
excellently).

Table 1.3 Outcomes for model c) in Figure 1.2

a

π̂
A|V
ir

V 1 2 3

A
1 .866 .027 .041
2 .023 .871 .054
3 .111 .102 .905

1.000 1.000 1.000

b

λ̂ AV
ir

V 1 2 3

A
1 2.169 -1.321 -.849
2 -1.499 2.108 -.609
3 -.670 -.787 1.457

As always with latent variable models, the meanings of the latent variables have
to be inferred from the relationships between the latent variables and the observed
ones. The relationship between the latent Party Preference (V) and the manifest
Party Preference at t1 (A) is presented in terms of the estimated conditional re-
sponse probabilities in Table 1.3a and in terms of the estimated two-variable log-
linear parameters in Table 1.3b. The conditional response probabilities have the big
advantage of easy interpretation, but at the same time, as discussed above, they are
not only a function of the relationship between the latent and manifest variable but
also depend on the difficulties of the items and the popularity of the manifest cate-
gories. For example, π

A|V
ir (as well as the difference (πA|V

iv −π
A|V
i(v+1))) is not only a

function of the (log)odds ratios in table AV, i.e., loglinear parameters λ AV
ir , but also

of the loglinear one-variable parameter λ A
i that has nothing to do with the relation-

ship between latent and manifest variables (Hagenaars, 1990; Heinen, 1996). But
no matter how we measure the association between V and A, it is clear that V can
be interpreted in terms of true Party Preference with the three categories Christian-
Democratic, Left Wing and Other, certainly because the relation between V and
B (not given here) shows the same pattern. Analogous conclusions can be drawn
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about the status of variable W as the true Candidate Preference, as the relationship
between W and C or D follows largely the same pattern as found in Table 1.3.

Once the intended meanings of the latent variables have been confirmed, it makes
sense to have a closer look at the outcomes. First, the relationships between the latent
and the manifest variables show an interesting pattern over time. The “consistency”
between V and B is stronger than between V and A, and stronger for W-D than for
W-C. The conditional response probabilities as well as the loglinear two-variable
parameters indicating a “correct” answer that is in agreement with the latent class a
respondent belongs to, all increase from time 1 to time 2 (e.g., π̂

A|V
11 = .866, π̂

B|V
11 =

.941; λ̂ AV
11 = 2.169, λ̂ BV

11 = 2.595). The relationship between a latent variable and
its indicator, measured in terms of odds ratios or percentage differences turns out
to be stronger at time two than at time one. As the election campaign evolves, the
respondents make up their minds more firmly and less misclassification occur, in
the sense that the influence of the true position on the expressed opinions becomes
stronger and all kinds of “random events” have less influence. Whether this increase
in “reliabilities” is statistically significant or not can be tested (not done here) by
comparing model {VW,AV,BV,CW,DW} with the fit of the same model, but now
with the extra restrictions that the corresponding conditional response probabilities
or the relevant two-variable loglinear parameters remain the same over time. Note
that restrictions on the conditional response probabilities (e.g., π

A|V
ir = π

B|V
ir ), are

generally not identical, as also indicated before, to restrictions on the two-variable
loglinear parameters alone (e.g., λ AV

ir = λ BV
ir and not λ A

i = λ B
i ), yielding different

models with different degrees of freedom and fit.
Further, regarding the relationships between the latent variable W (Candidate

Preference) and its indicators C or D, it is seen that the probability (or odds) to
choose a candidate in agreement with the latent position rather than a candidate
of a different political color is highest for the Left Wing (e.g., π̂

C|W
22 = .908) and

smallest for the Christian-Democratic candidate (e.g., π̂
C|W
11 = .685). This nicely

reflects the fact that the Left Wing candidate was the Prime Minister at that time
and an established leader of the Left, while the Christian-Democratic candidate was
a newcomer. In such a situation, one can expect there to be more room for random
fluctuations for expressing the preference for Christian-Democratic than for the Left
Wing candidate.

What are the consequences of these misclassifications? First, regarding the net
and gross changes, when model {VW,AV,BV,CW,DW} is accepted, it is also ac-
cepted that there is no net or gross change at all in the underlying characteristics
Party and Candidate Preference, despite the many changes in the observed table.
The observed changes completely result from the (independent) misclassifications.
Further, in this example, the misclassifications do not result in large differences
between the true underlying marginal distributions of Party and Candidate Pref-
erence compared to the observed ones. From the estimates of the probabilities
πVW

rs in equation (1.3a), the marginal distributions of the latent variables π̂VW
r+

and π̂VW
+w can be computed, resulting in the following marginal probabilities for

the categories 1. Christian-Democratic, 2. Left wing, 3. Other: .269, .373, .358 for
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V-Party Preference and .197, .411, .392 for W-Candidate Preference. On the mani-
fest level, the corresponding marginal distribution for A – Party Preference at time
t1 is: .258, .350, .392 and for C – Candidate Preference at time t1: .156, .432, .412.
Contrary to the simple example above, it is not true now that the (latent) largest cat-
egories are under- and the smallest categories overrepresented in the observed data.
One reason is that there are no such really small minorities: the latent categories are
much more evenly distributed. But at least as importantly, with three categories and
changing response probabilities over time, the pattern of misclassifications is much
more complex and leads to less obvious, although easily tractable results.

What, however, is very different at the latent and the manifest level (next to the
complete absence of change at the latent level) is the association between Party
and Candidate Preference. Very much akin to the phenomenon of attenuation of
correlations due to unreliability in classical error theory, the consistency of the pref-
erences in choosing parties and candidates is much larger at the latent than at the
manifest level. For example, the “consistent” two-variable parameters in latent table
VW are λ̂VW

11 = 1.821, λ̂VW
22 = 2.204, λ̂VW

33 = .799, while at the manifest level the
corresponding parameter estimates in table BD for the relation B-D (stronger than
A-C) are much weaker λ̂ BD

11 = 1.223, λ̂ BD
22 = 1.644, λ̂ BD

33 = .674. In terms of odds
ratios, comparing the odds ratios in manifest table BD table and latent table VW
for the first two categories of the variables (Christian-Democratic vs. Left Wing),
it is found that at the observed level, the odds in observed table BD of preferring
the Christian-Democratic candidate above the Left Wing candidate are 157.6 times
larger for those who prefer the Christian-Democratic Party than for those who sup-
port the Left Wing Party; at the latent level, on the other hand, in latent table VW,
the similar odds ratio is almost nine times stronger, viz.: 1409.4.

Many more details might be provided about this real world example, but the
above may be sufficient to show that latent class models are excellently suited to
investigate the true relationships among categorical variables and the changes over
time when measurement errors occur (which is almost always the case). However, it
must be kept in mind that so far independent misclassifications have been assumed
and that this is not always true in practice. Many forms of more systematic distor-
tions of the data exist, certainly in panel data where systematic errors, correlated
over time are often expected. To deal effectively with these kinds of misclassifica-
tions, usually a bit more complicated latent class models are required, often in the
form of SEMs for categorical data. This will be the topic of the next section.

Another feature of the discussion of the latent class models so far, is that terms
like “latent”, “true”, and “underlying” have been used as interchangeable expres-
sions. However, one must be careful here, because mixing these terms is not always
justified, neither are the meanings of these terms themselves always clear. Inter-
pretations of the latent categories in terms of true scores usually makes only sense
if there is a theoretical justification of treating the observed variables as indicators
of the theoretical (latent) variables and if there is a substantively and empirically
justified one-to-one correspondence between the categories of the latent and the
manifest variables. Latent class analysis has many different uses, e.g., to correct for
unobserved heterogeneity or to find clusters or typologies, for which it is usually not
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meaningful to think in terms of true scores and errors (Hagenaars & McCutcheon,
2002).

Moreover, if it is appropriate to think in terms of true scores and measurement
errors, it must be kept in mind that unreliability and misclassifications not only refer
to real mistakes, erroneous answers by the respondents, interviewing mistakes, pro-
cessing errors, etc., but also to “random” but true behavior and attitudes (Converse,
1964, 1980; Hagenaars, 1990; Kendall, 1954; Lazarsfeld, 1972; Lord & Novick,
1968; Saris & Sniderman, 2004; Sutcliffe, 1965a, 1965b). Thinking about misclas-
sifications as strictly and purely measurement errors or mistakes may be justified
if the latent score can be regarded as a platonic score, that somehow really exists:
people have truly voted for a particular political party, they truly have a certain oc-
cupation, are truly married or not, etc. An observation that differs from this existing
true position might be classified as a real mistake, as measurement error in the strict
sense. But this idea of a platonic true score is hardly applicable in terms of the kinds
of variables discussed above, i.e., with attitudes, beliefs, preferences, etc. People’s
true positions on those kinds of variables fluctuate over time and all of the time.
People have different moods and show “true” random fluctuations. Latent variable
models do not separate the two sources of “randomness”, strict random measure-
ment error and “true” random behavior, and in that sense, the latent position, cor-
rected for independent misclassifications adjusts for both strict measurement errors
and “true” random fluctuations. When using latent variable models, researchers ac-
tually indicate that they are not interested in those volatile random fluctuations but
in its stable component. The latent score is best seen as an imaginary “experimental
score”, i.e., the expected value obtained over of a series of hypothetical independent
experiments or measurements. Whether the distinction between the platonic and the
experimental true score matters, depends on the purposes of the investigation. To
give a simple example, if the number of unemployed people is estimated for partic-
ular points in time using panel data and repeated measurements of the respondents’
labor status, latent class models are useful to explain an enduring, latent propen-
sity to unemployment and changes therein, correcting for measurement errors and
“random behavior” (see below and Bassi et al., 2000). If the purpose of the same
investigation is to estimate the true, existing amount of people entitled at a certain
moment to unemployment benefits, only strict measurement errors should be taken
into account and at each point in time several indicators are needed to estimate the
true employment position.

1.3 Concomitant Variable Latent Class Models and SEMs for
Categorical Data

From the nineteen seventies on when Goodman and Haberman developed present
day latent class modeling, models have been proposed by many different authors in
which (categorical) variables have been added to latent class models. Those vari-
ables function as covariates in the latent class model, i.e., as independent variables
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with the latent variable(s) as the dependent ones (for an overview and applications
of these “concomitant variable latent class models”, see several chapters in Hage-
naars & McCutcheon, 2002). For example, one might extend observed Table 1.2 to
include G-Gender to investigate how the differences are between men and women
regarding their true political attitudes. The best model so far for Table 1.2, i.e.,
model {VW,AV,BV,CW,DW} (see Figure 1.2c) might then be extended to model
{GVW,AV,BV,CW,DW} to investigate by means of table GVW the interactions be-
tween Gender and the latent variables true Party Preference and true Candidate Pref-
erence.

As a next step one may want to include more (and perhaps intervening) covariates
and variables such as Voting Behavior that must be regarded as consequences of
the latent variables. In other words, a researcher often wants to set up a “causal”
model, a Structural Equation Model (SEM) in which the latent variable(s) play a
central role. Such models include the concomitant latent class model as a special
“simple” case, but most SEMs can no longer be represented by one loglinear model
or equation, but will consist of several equations.

Most researchers are familiar with Structural Equation Models (SEMs) for con-
tinuous data, using well-known programs such as LISREL, AMOS, or EQS. How-
ever, also SEMs for categorical data have been developed within the loglinear frame-
work a long time ago. Goodman explained the principles of loglinear SEMs for
observed data already in the nineteen seventies (Goodman, 1973a, 1973b); how to
integrate latent class models and latent variables into Goodman’s “modified path
models” has been shown by Hagenaars and others (Hagenaars, Heinen, & Hamers
1980; Hagenaars, 1990, 1993, 1998, 2002; Hagenaars & McCutcheon, 2002; Ver-
munt, 1997a); the incorporation of the principles of graphical modeling has made
the approach more general and flexible (Cox & Wermuth, 1996; Kiiveri & Speed,
1982; Lauritzen, 1996; Pearl, 2000; Whittaker, 1990). The reader should consult
these references for many important particulars, because below only the most ba-
sic elements of the categorical SEM approach will be outlined. The focus will be on
standard recursive models without “causal” loops, with a special emphasis on SEMs
for categorical panel data containing misclassifications.

Starting point is a set of four categorical variables A through D that have a clear
asymmetrical order, denoted by >. For the time being, all variables are treated as
observed variables; later latent variables will be added. The variables to the left
of symbol > are strictly “prior” to the variables to right of that symbol, in some
meaningful (causal, temporal, predictive) sense:

A > B > C > D

For ease of exposition, sometimes a “causal” terminology will be used with notions
such as influence, effect etc., but the reader must remember what has been said
above when preferring the term “structural equation model” above “causal model”:
be careful with causal conclusions.

The first variable in the “causal” chain is variable A. Variable A is the exogenous
variable, not “influenced” or “determined” by any of the variables later in the chain.
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Variable A may be a joint exogenous variable and consist of several exogenous vari-
ables A1, A2, A3, etc. The next variable in the chain, variable B is only determined
by A but not by C or D; variable C is only influenced by A or B; finally, variable D
by all previous variables.

Following the order of the variables, the joint probability πABCD
iikl of belonging to

a particular cell (i, j,k, l) of table ABCD can be decomposed as follows:

π
ABCD
iikl = π

A
i π

B|A
ji π

C|AB
ki j π

D|ABC
li jk (1.4)

Equation (1.4) is a tautological equation in the sense that the decomposition of the
joint probability at the left hand side into the product of (conditional) probabili-
ties at the right hand side is by definition true, as follows from elementary rules of
probability calculus (cf. π

PQ
i j = πP

i π
Q|P
ji ). Other tautological decompositions can be

given, e.g., starting from D and working in an analogous manner backward to A (cf.
π

PQ
i j = πP

i π
Q|P
ji = π

Q
j π

P|Q
i j ). However, the decomposition in equation (1.4) is unique

because it is the only one that reflects the presumed “causal”, asymmetrical order
of the variables. It corresponds to the adage that “later” variables cannot influence
‘prior’ ones and that one should never control for variables that appear later in the
(causal) chain. Therefore, the relationships among the exogenous A (A1, A2, A3,
. . . ) variables in the population must be observed in marginal table A with entries
πA

i , obtained by collapsing table ABCD over B, C, and D. The way B depends on A
has to be found in marginal table AB with entries π

B|A
ji , ignoring the later variables

C and D. The influence of A and B on C must be investigated in marginal table ABC
with entries π

C|AB
ki j , where the direct effect of A on C is determined by only control-

ling for B and the direct effect of B on C by only controlling for A, but not for the
later variable D. Finally, the way D varies with A, B, and C has to be investigated in
table ABCD with entries π

D|ABC
li jk .

The effect parameters for the relationships among the variables can be found by
parameterizing each of the probabilities at the right hand side of equation (1.4) in
terms of loglinear or logit models. To follow the exposition below, remember that
loglinear and logit models are completely equivalent models, in the sense that a
particular logit model is equivalent to a loglinear model that has the same effect
parameters involving the dependent variable as the logit model, plus all parameters
necessary for reproducing the observed joint probability distribution of the inde-
pendent variables (for more details, see Knoke & Burke, 1980; Hagenaars, 1990;
Agresti, 1990, among many others). Further keep in mind that, the loglinear param-
eters for the effect of, e.g., A on B (λ AB

i j ) can be determined for table AB using
the joint probabilities πAB

i j or, with identical outcomes, the conditional probabilities

π
B|A
ji .

If no restrictions are assumed for the right hand side elements in equation (1.4),
i.e., if the effects of the variables upon each other is in no way further restricted, a
set of saturated submodels (or loglinear equations) has to be used, one saturated sub-
model for each right hand side element. In that case, the right hand side elements
can be replaced by their observed counterparts and these can be used to estimate
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the relevant loglinear parameters for the effects of the independent variables on
the dependent ones. If particular restrictions are imposed, appropriate nonsaturated
models must be defined for these right hand side elements. For example, it might be
assumed that C is only directly influenced by B, but not by A. In that case loglinear
model {AB,BC}must be valid for marginal table ABC and the entries π

C|AB
ki j . Model

{AB,BC} will be applied to the observed table ABC with entries f ABC
i jk . The result-

ing estimated expected frequencies F̂ABC
i jk can then be used to obtain an estimate for

π
C|AB
ki j and for λ BC

jk , the effect of B on C. An additional restriction might be that all
variables have a direct effect on D but only in the form of the direct two-variable ef-
fects, excluding all higher order (interaction) effects. This no-interaction restriction
implies that the entries π

D|ABC
li jk must correspond to a logit model with only direct

effects on D and no three- or four-variable interactions, in other words to loglinear
model {ABC,AD,BD,CD}. When such nonsaturated submodels are defined, equa-
tion (1.4) is no longer a tautological equation that is by definition true, but only valid
when the implied restrictions are true.

Starting point for the estimation of all these submodels and for testing the log-
linear SEM as a whole is the complete observed table ABCD with observed fre-
quencies f ABCD

i jkl . The appropriate loglinear submodels are then applied to each of
the observed (marginal) tables corresponding with the right hand side elements
in equation (1.4). Assuming that the two sets of restrictions discussed so far are
the only restrictions, a saturated loglinear submodel {A} is applied to observed
marginal table A with entries f A

i ; further, a saturated submodel {AB} is defined
for f AB

i j ; but a nonsaturated submodel {AB,BC} for f ABC
i jk ; and a nonsaturated sub-

model {ABC,AD,BD,CD} for f ABCD
i jkl . In this way, maximum likelihood estimates

for the pertinent loglinear (effect) parameters are obtained for each submodel. The
estimated expected frequencies F̂ for each submodel can be used to test the validity
of each submodel by means of the G2 test statistic. The saturated submodels have of
course zero degrees of freedom and fit the observed data perfectly. The hypothesis
that all restrictions implied by all submodels are true, in other words, that the whole
SEM is valid can be obtained by simply summing the G2 statistics (not the Pearson-
X2 statistics – see Goodman, 1968, 1970), as well as the degrees of freedom of all
submodels.

There is another way to obtain the overall test statistic G2 for testing the model
as a whole. The estimated expected frequencies F̂ for the different submodels can
be used to estimate each of the (conditional) probabilities at the right hand side of
equation (1.4). By means of these estimated right hand side probabilities elements,
the maximum likelihood estimates π̂ABCD

iikl at the left hand side of equation (1.4) can
be computed, under the condition that all submodels are simultaneously valid in the
population. By multiplying by sample size N and comparing Nπ̂ABCD

iikl with f ABCD
i jkl

by filling them in in the usual formula for the (maximum likelihood) chi square, the
overall test statistic G2 can be obtained where the number of degrees of freedom
is equal to the number of independent restrictions implied by the whole SEM. This
latter overall G2 test statistic has for the simple recursive models discussed above
the same value and degrees of freedom as the former one obtained by summing
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the G2s for the different submodels. However, this latter way of testing the model
directly as a whole rather than summing the G2s for the submodels is more generally
applicable: it can be used in situations in which simply summing the G2s for the
submodels does not work.

This is for example true when “graphical simplifications” are introduced into a
basic equation such as equation (1.4). Graphs are essentially defined in terms of the
(conditional) independence restrictions they imply for the data. In directed graphs,
there are asymmetrical relationships among the variables, as above, and the vari-
ables that are not (conditionally) independent of each other (in the relevant marginal
table) are connected by a directed line or arrow. In undirected graphs, there is no
order among the variables and the direct relationships, obtained by controlling for
all other variables in the graph, are indicated by a straight line. Viewing a structural
equation model as a (directed) graph has several advantages. In this way, it is more
clearly seen that the basic principles underlying SEMs for categorical data are essen-
tially the same as for SEMs for continuous variables (Kiiveri & Speed, 1982; Pearl,
2000). Only their parameterizations differ: for continuous variables, linear regres-
sion equations are used; for categorical data, loglinear and logit equations (and more
recent developments make it possible to mix continuous and categorical variables
in many ways; see the last section). Further, the introduction of the (conditional)
independence restrictions into the basic equation, such as equation (1.4), makes the
representation of SEMs simpler and, more importantly in practice, the estimation
procedures often much more efficient enabling the researcher to estimate models
that otherwise could not be handled. A very simple example can be given by means
of the above discussion of equation (1.4). In that discussion, it was assumed that,
in marginal table ABC, A did not have a direct effect on C. Therefore, submodel
{AB,BC} was defined for f ABC

i jk . Another way of expressing the same hypothesis is
to say that A and C are conditionally independent of each other, conditional on B.
The conditional independence restriction implies here that π

C|AB
ki j does not vary with

A (not over subscript i), but only with B (over subscript j), that is, π
C|AB
ki j = π

C|B
k j .

Therefore equation (1.4) can be replaced by

π
ABCD
iikl = π

A
i π

B|A
ji π

C|B
k j π

D|ABC
li jk (1.5)

In the same way as it is true after imposing nonsaturated submodels for one or
more of the right hand side elements of equation (1.4), equation (1.5) is no longer
a tautological equation but only valid if indeed C is conditionally independent of
A, given B. The overall test of the whole model can, after this “graphical sim-
plification”, no longer be obtained as the sum of the G2-statistics for the several
submodels in equation (1.5). For example, saturated submodel {BC} is defined for
marginal table BC to obtain the parameter estimates for the effect of B on C. But
this saturated submodel would contribute 0 to the overall test statistic, despite the
implied hypothesis in equation (1.5) that A has no direct effect on C. On the other
hand, the alternative testing procedure in which the left hand side entries πABCD

iikl are
estimated by means of the right hand side estimates in equation (1.5) encounters no
such problems.
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Not all restricted loglinear models can be expressed in terms of “graphical sim-
plification”. The other hypothesis in the above example that there were no three- or
higher order interaction terms for the effects on D and that model {ABC,AD,BD,
CD}was valid for π

D|ABC
li jk cannot be formulated in a strict graphical context, because

the absence of particular higher order interaction terms cannot be expressed in terms
of (conditional) independence relations. It is of course also possible to further pa-
rameterize the “simplified” right hand side elements and to define nonsaturated log-
linear models for these simpler “tables”. For example, if it was also assumed that A
had no direct effect on D and that moreover, B and C did not interact in their effects
on D, π

D|ABC
li jk in equation (1.5) can be replaced by π

D|BC
l jk and model {BC,BD,CD}

defined for table BCD.
Altogether, the Goodman SEM approach combined with the principles of graph-

ical modeling offers a very powerful tool for testing and estimating models that
involve categorical data. Especially so, because the logic underlying this approach
can easily be extended to models in which some of the variables are latent. The
estimation and testing procedures become more complicated, but are, on the other
hand, rather straightforward extensions of the basic latent class models discussed
in the previous section (Hagenaars, 1990, 1998, 2002). User friendly and flexible
programs are available to obtain the maximum likelihood estimates for categorical
SEMs with latent variables. Vermunt’s program LEM is probably the best in this re-
spect and can handle almost all categorical SEMs with categorical latent variables;
Magidson and Vermunt’s Latent Gold can be used for many and Muthén’s Mplus
for some models (Vermunt, 1997b; Vermunt & Magidson, 2005; Muthén & Muthén,
2006).

Tests of latent variable SEMs cannot be carried out by summing the G2s of the
several submodels because some of the tables for these submodels involve latent
variables and are not completely observed. But, again, the other way of obtaining
the overall G2 poses no problem.

How such SEM analyses are actually carried out will be illustrated here below by
means of a purely imaginary example, but typical of many kinds of panel analyses.
The SEM involved takes only independent misclassifications into account. In the
next section, some real world examples will be given, showing that SEMs with latent
variables are excellently suited for handling all kinds of systematic measurement
errors.

Imagine the model in Figure 1.3 for a two-wave panel study into Political Pref-
erence.

Variables Y-Political Preference at time 1 and Z-Political Preference at time 2 are
latent variables, not directly measured or observed. Their (imperfect) indicators are
Party and Candidate Preference at time 1 (A,C) and at time 2 (B,D). The researcher
is especially interested in the changes in Political Preference and in the effect of the
observed background variables E-Education and O-Occupation on this (changing)
preference. The research hypotheses are reflected in Figure 1.3. The arrows in Fig-
ure 1.3 denote as usual in such “causal diagrams” the direct two-variable effects of
one variable upon another, controlling for the appropriate antecedent and interven-
ing variables. Absence of an arrow implies and is implied by the absence of a direct
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A C B D

E-Education 

Y-Political Pref. t1 Z-Political Pref. t2

O-Occupation 

Fig. 1.3 Latent variable SEM for categorical data.

effect. Further, the curved double headed arrow between the two exogenous vari-
ables E and O represents a given, unanalyzed, undirected association. Higher order
interactions (three- and higher order parameters) are indicated by a small circle or
knot connecting the interacting variables. Absence of a knot implies and is implied
by the absence of the corresponding interaction terms.

The order of the variables in agreement with Figure 1.3 is (E,O) > Y > A > C >
Z > B > D, where the symbol (E,O) means that there are two exogenous variables
E and O occupying the same position in the order. Further, the order between the
two indicators A > C (A prior to C) is arbitrary here and can be reversed without
consequences (see below), as is “B prior to D”. Given this order, the tautological
“starting” equation’ is

π
EOYACZBD
eoyaczbd = π

EO
eo π

Y |EO
yeo π

A|EOY
aeoy π

C|EOYA
ceoya π

Z|EOYAC
zeoyac π

B|EOYACZ
beoyacz π

D|EOYACZB
deoyaczb (1.6a)

π
EOYACZBD
eoyaczbd = (πEO

eo π
Y |EO
yeo π

Z|EOYAC
zeoyac )(πA|EOY

aeoy π
C|EOYA
ceoya π

B|EOYACZ
beoyacz π

D|EOYACZB
deoyaczb ) (1.6b)

It might be insightful to rearrange the right hand side elements of equation (1.6a)
into two parts, one being the structural part representing the “causal connections”
among the variables and the other the measurement part representing the relations
between the indicators and the other variables.

The SEM in Figure 1.3 implies a number of restrictions that can be formulated
in terms of (conditional) independence relations. Latent variable Z is only directly
influenced by Y and O and each of the indicators only directly by “their” latent
variable. Assuming the validity of these restrictions, equation (1.6) can therefore be
written, “graphically simplified”, as

π
EOYACZBD
eoyaczbd = (πEO

eo π
Y |EO
yeo π

Z|OY
zoy )(πA|Y

ay π
C|Y
cy π

B|Z
bz π

D|Z
dz ) (1.7)

To obtain the appropriate parameter estimates and test the model in equation (1.7),
saturated loglinear submodels are defined for all but one of the right hand side el-
ements of equation (1.7). For marginal table EO, the saturated model is submodel
{EO}; for marginal table EOY, saturated submodel {EOY} and also saturated sub-
models {YA}, {YC}, {ZB}, and {ZD} for tables YA, YC, ZB, and ZD respec-
tively. However, a nonsaturated submodel {OY,YZ,OZ} is required for table OYZ
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with entries π
Z|OY
zoy because the model in Figure 1.3 contains no three-variable in-

teraction term. (Note that this way of specifying the model in Figure 1.3 is com-
pletely equivalent to the following set of submodels and restrictions for the right
hand side elements of equation (1.6): submodel {EO} for marginal table EO; sub-
model {EOY} for table EOY; submodel {EOY,YA} for table EOYA; submodel
{EOYA,YC} for table EOYAC; submodel {EOYAC,OZ,YZ} for table EOYACZ;
submodel {EOYACZ,ZB} for table EOYACZB; submodel {EOYACZB,ZD} for ta-
ble EOYACZBD.)

All these saturated and nonsaturated submodels are estimated simultaneously by
applying one of the algorithms (Newton-Raphson, Scoring, EM) for loglinear SEMs
with latent variables using the observed table EOABCD with entries f EOABCD

eoabcd . In
this way, all right hand side elements in equation (1.7) are estimated, which can
then be used to estimate the left hand side element πEOYACZBD

eoyaczbd under the assumption
that the whole model is true. These estimated left hand side probabilities π̂EOYACZBD

eoyaczbd
are collapsed over the latent variables Y and Z to obtain the estimated probability
distribution π̂EOACBD

eoacbd for the observed variables under the postulated model. Finally,
the estimated expected frequencies F̂EOACBD

eoacbd = Nπ̂EOACBD
eoacbd can be compared to the

observed frequencies f EOACBD
eoacbd by means of G2 to test the whole model with all

its restrictions. The number of degrees of freedom is equal the total number of all
independent restrictions in the model in Figure 1.3.

The choice between two hierarchically nested models can be made on the basis
of a conditional test. One subtracts the G2 for the less restricted model from the G2

obtained for the more restricted model, as well as the their degrees of freedom to
perform the conditional test that the restricted model is true in the population, given
that the unrestricted is true. This conditional testing procedure can also be used to
test just one particular restriction for one particular right hand side element. If the
models to be compared are not nested, information based measured like BIC of AIC
can be used, as well as any of the numerous descriptive fit measures.

1.4 SEMs for Dependent Misclassifications

In the fictitious example from the previous section and the model in Figure 1.3, the
misclassifications in the indicators A through D were assumed to be independent
of each other and of the exogenous variables E and O, given the scores on the la-
tent variables. The relations of the indicators with the latent variables followed the
classical latent class model. However, a large variety of more systematic patterns of
misclassifications can be implemented in an easy and straightforward way follow-
ing the basic principles outlined in the previous section. For example, continuing
the fictitious example in Figure 1.3, it might be argued that the indicator Party Pref-
erence A is also directly influenced by Education and not only by the latent variable
Y: higher educated people express different party preferences compared to lower
educated people, regardless of their true Political Orientation Y. Right hand side
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element π
A|Y
ay in equation (1.5) must then be replaced by π

A|EY
aey . If only a direct,

main effect of E on A is assumed, logit model {EY,YA,EA} must be applied to
marginal table EYA. If it is also expected that higher educated people give more
reliable answers, i.e., that the influence of Y on A is larger for higher than for lower
educated people, the saturated logit model {EYA} has to be estimated for table EYA.
In an analogous manner, it would be possible and straightforward to introduce direct
test-retest effects, such as A-B in Figure 1.3 and equation (1.5) (Hagenaars, 1988,
1990).

A real world application of a model with a test-retest or consistency effect can
be given using the Dutch two-wave panel data presented in Table 1.2. In the pre-
vious analyses of the data in Table 1.2, two main questions were asked: Can Party
and Candidate Preference be regarded as indicators of the same underlying concept
Political Orientation or not, and: Are all manifest changes due to misclassifications
or are they also coming from true changes at the latent level. The best latent class
model so far for the data in Table 1.2 turned out to be model {VW,AV,BV,CW,DW}
in which Party and Candidate Preference were regarded as two different, but stable
underlying characteristics (Figure 1.2c). However, this comparatively best model
did not really fit the data (G2 = 84,74, df = 48, p = .00, Pearson X2 = 94.33) (al-
though it was accepted above for illustrative purposes). In the end, following the
logic of the stated (composite) hypothesis for the data in Table 1.2, it seems neces-
sary to conclude that Party Preference and Candidate Preference are two different
concepts and that, moreover, these two underlying latent characteristics are not sta-
ble over time.

A B

Q R

S T

C D

Fig. 1.4 Four latent variables SEM.

A possible model along these lines is presented in Figure 1.4. In this figure, vari-
ables Q and R are the trichotomous latent variables Party Preference in wave one,
wave two, respectively. Variables S and T are the trichotomous latent variables Can-
didate Preference in the two waves. Manifest variables A through D are as before
the four indicators, but now each one for a different latent variable. The arrows from
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Q to R and from S to T indicate the true stability (or turnover) in Party Preference
and Candidate Preference respectively. The cross-lagged direct effects represent the
influence from wave one to wave two of Party on Candidate Preference (Q-T) and
from Candidate on Party Preference (S-R). Further note that R influences T: It is
assumed somewhat arbitrarily that the true Party Preference influences the true Can-
didate Preference in wave two, rather than vice versa. The appropriate equation after
“graphical simplification” is

π
QRSTABCD
qrstabcd = (πQS

qs π
R|QS
rqs π

T |QRS
tqrs )(πA|Q

aq π
B|R
br π

C|S
cs π

D|T
dt ) (1.8)

In the submodels for each of the right hand side elements in equation (1.8), all three-
variable or higher order interactions terms have been left out in correspondence with
the model in Figure 1.4. It turns out that this model fits the data in Table 1.2 well,
with G2 = 27.96 df = 24, p = .26 (Pearson X2 = 27.95). This well fitting model
is also an extreme model in the sense that there are as many latent as manifest
variables. It may seem strange that this model is even identified. Identification is
bought here by assuming that the three-variable and higher order interaction terms
are absent from all submodels. It must be kept in mind that at least part of these
restrictions on the higher order interactions are no longer empirically testable as
they are needed for identification of the model and have to be assumed to be a priori
true. Hagenaars provides an extensive discussion of the possibilities and limitations
of this type of SEMs for the “cross-lagged panel correlation technique”, applied
to the data in Table 1.2 (Hagenaars, 1990, Chapter 5). The outcomes will not be
further discussed here, as this extreme latent variable model is still an example of a
model with independent misclassifications. Its main functions were to show that it
is possible to relax simultaneously both key assumptions of true stability and of all
indicators measuring one and the same concept by setting up the appropriate SEM,
but especially to be able to contrast it with an alternative, more parsimonious way
of improving model {VW,AV,BV,CW,DW}, viz. a model with dependent rather than
independent misclassifications.

From inspection of the residuals of model {VW,AV,BV,CW,DW} for the data in
Table 1.2 (Figure 1.2c) it was learned that especially the strength of the association
(odds ratio) between Party and Candidate Preference in the first wave (in observed
marginal table AC) was underestimated by the model (Hagenaars, 1990). For exam-
ple, the odds ratio for the 2 × 2 part of marginal table AC involving the first two
categories of A and of C is according to the observed data 105.22 while it is only
63.90 according to the estimated frequencies for model {VW,AV,BV,CW,DW}. It
might be, especially in an early stage of the campaign, that the respondents have
not yet developed a clear and consistent idea of their candidate preferences (see
also the earlier discussions regarding the conditional response probabilities in model
{VW,AV,BV,CW,DW}). In such a situation, perhaps less true in the second wave,
later in the campaign, the respondent’s answer to the (earlier) question on party
preference might have influenced directly the answer to the (later) question on the
candidate preference within the same interview at t1. A model along these lines is
depicted in Figure 1.5a.
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Fig. 1.5 Modeling consistency effect.

The direct effect A-C is a consistency effect, a kind of a test-retest effect but
then within the same interview (Schuman & Presser, 1981). It is also a variant of
“correlated errors”. An alternative representation of correlated errors is a model with
an extra third latent variable Z, uncorrelated with the other variables in the model,
as depicted in model (1.5b); more will be said later about such a latent variable
representation of correlated errors.

The basic equation for the model in Figure 1.5a is a simple extension of equation
(1.3a), replacing π

C|W
ks byπ

C|AW
kis :

π
VWABCD
rsi jkl = π

VW
rs π

A|V
ir π

B|V
jr π

C|AW
kis π

D|W
ls (1.9)

However, the parameters of this model can no longer be obtained by means of one
particular loglinear equation or model, not simply by means of loglinear model
{VW,AV,BV,ACW,DW} or {VW,AV,BV,CW,AC,DW}, but a SEM, a set of log-
linear models or equations is needed to represent the implications of the model
in Figure 1.5a. This is different from all standard latent class models, previously
discussed in Section 1.2. These standard latent class models could have been de-
scribed and estimated according to the SEM principles outlined in Section 1.3, but
an identical, simpler representation in terms of one particular loglinear model was
possible. Whether or not a particular (recursive) SEM can be identically represented
by means of just one loglinear model has to do with the collapsibility of loglinear
models (Bishop, Fienberg, & Holland, 1975, p. 46) and with the question whether
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or not a directed acyclical graph (DAG) can be represented equivalently by means
of a nondirected graph, where the nondirected graph can be represented by means
of one particular loglinear model (Whittaker, 1990). The crucial point is whether or
not the (conditional) independence implications of a directed graph are the same in
its undirected counterpart. If in doubt, note that estimating the SEM in an element-
wise fashion, setting up submodels for each of the right hand side probabilities and
simultaneously estimating all these submodels, is always appropriate.

In this case, because of the direction of the arrow from A to C, the model in Figure
1.5a cannot be represented by means of one particular loglinear model (see also
Hagenaars, 1988). For example, from the model in Figure 1.5a, it follows that A and
W are independent of each other, controlling for V, in other words, in table AVW.
However in its undirected counterpart (and model {VW,AV,BV,ACW,DW}) A is
only independent of W, when controlling for V and C (in table AVWC). Therefore,
the model in Figure 1.5a must be treated as a SEM for which several loglinear
submodels must be defined: saturated submodels for tables VW, AV, BV, and DW
and nonsaturated submodel {AW,AC,CW} for table ACW. This model has only
four degrees of freedom less than the corresponding model {VW,AV,BV,CW,DW}
without the direct effect A-C, but it almost halves the value of G2 and fits the data
in Table 1.2 very well: G2 = 45.97, df = 44, p = .39 (Pearson X2 = 44.04). Adding
a similar consistency effect for the relationship B-D does not further improve the fit
of the model.

The outcomes for this test-retest model are to a large extent not too different
from the corresponding model without the test-retest effect. The same increase of
the reliability over time is seen, i.e., the effect of the latent variable on the indicators
is larger for wave two than for wave one. Especially variable D turns out to be
a more reliable indicator than in the corresponding model without the test-retest
effect. Further, the true relationship between Party and Candidate Preference (V-
W) is still stronger than the corresponding manifest ones, but somewhat weaker
than it was estimated before in model {VW,AV,BV,CW,DW}. The most interesting
new finding is of course the nature of the (statistically significant) test-retest effects,
shown in Table 1.4.

Table 1.4 Estimated consistency effects A-C

λ̂ AC
ik

C 1 2 3

A
1 .683 -.506 -.177
2 -.601 .744 -.142
3 -.082 -.238 .320

The test-retest effect can indeed be interpreted as a consistency effect given the
positive parameter estimates on the main diagonal in Table 1.4. The respondents had
the tendency to express a preference for a candidate that is in agreement with the
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preferred party they have just mentioned over and above their true latent candidate
preferences.

Even more complicated forms of dependent or systematic misclassifications were
needed in the analysis of the data from SIPP – Survey of Income and Program Par-
ticipation in the USA. The example is taken from Bassi et al. (2000). In SIPP, people
were asked about their labor status with categories 1. Employed, 2. Unemployed, 3.
Not in the Labor Force. SIPP is a panel study with four rotation panel groups. Each
rotation group is interviewed every four months and every month one of the rotation
groups is being interviewed. During each interview, information is gathered about
the respondents’ labor status during the previous four months, called the reference
period. The data are presented by Bassi et al. (2000) as monthly figures, where for
one reference period trichotomous variable A indicates the observed labor status in
the first month of the reference period up to variable D indicating the labor status
during the last month of this period.

There were several indications that the manifest data contained errors. As a con-
sequence of the complete SIPP design, the manifest labor status turnover between
two consecutive months is observed for three rotation groups within the reference
period and for one rotation group from the “seam” between two reference periods.
In other words, the data for the turnover table between two consecutive months
are based on two different interviews for one rotation group and for the other three
groups on data gathered within the same interview, albeit for each of the three groups
in a different “phase” of the reference period. Because each rotation group has been
drawn as a random sample from the same population, the turnover tables for all four
rotation groups should be the same within sampling fluctuations. However, it turned
out that the within reference period data always showed less turnover than the be-
tween reference periods data. Moreover, the closer the months were to the moment
of the interview, the more turnover was observed. Bassi et al. (2000) analyzed these
data simultaneously for all four rotation groups and for an extended period of time
and they made use of a second dichotomous indicator (Employed or not). They tried
to correct for the misclassifications, assuming independent misclassifications for the
data coming from different interviews and assuming systematic consistency errors
for the within interview data.

For the purposes here, the example is much more modest in scope: only models
for the within reference period will be dealt with, using just one (trichotomous)
indicator, just one rotation group and only one reference period. The restriction to
this simple situation has the big advantage of focusing on the main issue: how to
model systematic patterns of misclassifications by means of SEMs. But it has the
big disadvantage of discussing models that are as such not identified. Some remarks
about identifiability will be made here, but more can be found in the Bassi et al.
(2000) article.

Given that there must be misclassifications in the data, the natural point to start
accounting for these errors may seem the SEM in Figure 1.6a, after the “graphical
simplification”, represented by equation (1.10)

π
ABCDVWY Z
abcdvwyz = (πV

v π
W |V
wv π

Y |W
yw π

Z|Y
zy )(πA|V

av π
B|W
bw π

C|Y
cy π

D|Z
dz ) (1.10)
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a.

V W Y Z

A B C D

b.

V W Y Z

A B C D

X

c

V W Y Z

A B C D

d.

V W Y Z

A B C D

e.

V W Y Z

A B C D

Fig. 1.6 Latent variable models for turnover in labor status.



1 Loglinear Latent Variable Models 29

The trichotomous variables V, W, Y, and Z are the latent analogues of the mani-
fest variables A through D. The true changes are supposed to follow a (latent) first
order markov chain in which the true labor status at each particular month within the
reference period (e.g., Z), is only influenced directly by the labor status at the im-
mediate previous month (Y) but not by the months (V, W) before that. Higher order
markov chains can be defined by introducing extra direct effects from more distant
months. The markov chain can be made homogenous by making the turnover tables
for two consecutive months equal to each other in terms of the conditional transi-
tion probabilities: π

W |V
i j = π

Y |W
i j = π

Z|Y
i j or, a weaker form of homogeneity, in terms

of the odds ratios and the loglinear two-variable parameters: λVW
i j = λWY

i j = λY Z
i j .

Extensive discussions of these and other varieties of latent markov chains are given
by Langeheine & van de Pol (2002) and Bergsma, Croon, & Hagenaars (2009).
Note that in the model in Figure 1.6a and equation (1.10) the misclassifications are
assumed to be independent, as in standard latent class models.

In the simple situation of the model in Figure 1.6a, restrictions on the latent
changes or the reliabilities are needed to identify the model’s parameters. The latent
changes might be expected to follow the first order, homogeneous markovian change
indicated above. The reliabilities, that is, the relationships between each latent vari-
able and its indicator can be made equal to each other by imposing appropriate equal
response probabilities restrictions or equality restrictions on the relevant loglinear
two-variable parameters. Using the complete SIPP data, as Bassi et al. (2000) did,
far less restrictive identifying assumptions have to be made.

When Bassi et al. (2000) applied the models with independent misclassifications
to the full SIPP data set, the peculiarities in the differences between the outcomes for
the four rotation groups that led to the conclusion that there must be classification
errors did not disappear. On the contrary, the discrepancies between the rotation
groups for the same turnover tables were even larger at the latent level than found at
the manifest level. Actually, this was not unexpected. The most natural explanation
for the differences among the rotation groups is that the answers (including the
misclassifications) given within the same interview, for the same reference period
influence each other and are not independent from one another.

A very common and rather general way to account for such extra associations
among the answers is to introduce correlated error terms. Correlated error terms
are a form of unobserved heterogeneity and indicate essentially that there are extra,
unmeasured sources of association between two variables over and above and inde-
pendent of the measured variables in the model. The model in Figure 1.6b is such
a representation of correlated error terms by means of a (n extra) latent variable
X. The corresponding equation for this SEM with correlated error terms after the
“graphical simplification” is

π
ABCDXVWY Z
abcdxvwyz = π

X
x π

V
v π

W |V
wv π

Y |W
yw π

Z|Y
zy π

A|V X
avx π

B|WX
bwx π

C|Y X
cyx π

D|ZX
dzx (1.11)

As usual in correlated error terms models, the extra latent variable X is assumed to
be independent from the latent labor status. Element πX

x πV
v appears at the right hand

side of equation (1.11) rather than πXV
xv or π

V |X
vx and none of the other conditional
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probabilities for the relationships among the latent variables contains an effect of X,
i.e., conditions on X. However, if so wished and largely depending on the substantive
interpretation of X, direct relationships with the other latent variables can be added
in a straightforward way.

Latent variable X has direct effects on the answers, the manifest variables A
through D. Again depending on theoretical considerations, these direct effects can
be restricted not to interact with the effects of the latent labor status (as in Figure
1.6b) by imposing the main effects only model {VX,AV,AX} to right hand side
element π

A|V X
avx in equation (1.11) and analogous restrictions for the other relevant

conditional probabilities. To arrive at an identifiable model more restrictions will be
needed. In combination with the earlier mentioned possible restrictions on the latent
changes and the reliabilities, it would make sense to impose the restriction that the
effects of X on the indicators are the same for all indicators.

Such restrictions are not only useful for identifying the model, but also for sub-
stantive reasons. All a variable like “X” contributes in a substantive sense is that
there exists another source of association, but the nature of this source is unknown.
A model without correlated error terms can almost always made to fit the data by
introducing correlated errors in one form or another, but, at the same time, without
contributing much to the advancement of our theoretical, substantive knowledge.
By trying to specify the substantive meaning of a latent variable in advance and to
translate these substantive ideas in the form of empirically testable restricted mod-
els, more meaningful results can be expected. For “ordinary” latent variables such
as here V, W, etc. these restrictions concern the restricted relations between a latent
variable and the manifest variables. For a variable such as X, there are by definition
no indicators. Restrictions have to be found in another way.

It starts with the number of categories of X. With a categorical latent variable,
this number has to be chosen a priori by the researcher. One might just try it out, say
from 2 to 15 latent classes, and see which (identifiable) model fits the data (best).
But only rarely will this prove a sound approach. Seeing X here as an extra source
of consistency in the answers during one and the same interview suggests three
latent classes: the tendency to answer consistently Employed, Unemployed, or Not
in the labor respectively. Further restrictions on the direct relations between X and
the indicators are possible. Perhaps the only consistency effect is that people avoid
saying that they are unemployed when they truly are. In that case one might set, in
terms of dummy coding, all λ AX

i j ’s equal to 0, except λ AX
22 and similar restrictions

concerning the other indicators. This kind of theorizing and modeling may make the
interpretation of a latent variable such as X a bit less ex post facto and ad hoc.

Another way of looking at correlated errors is by trying to model the consistency
effects more directly rather than in terms of restrictions on (the effects of) X. For
example, it might be hypothesized that the extra within reference consistency of the
answers is caused by the fact that the respondents adapt all their answers to their
true labor status at the moment of interviewing. The best representation of their
true status is latent variable Z, which is closest to the moment of interviewing. This
particular consistency hypothesis implies that latent variable Z not only has a direct
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influence on D but also on the other indicators. The model is depicted in Figure 1.6c
and in equation form looks like:

π
ABCDVWY Z
abcdvwyz = π

V
v π

W |V
wv π

Y |W
yw π

Z|Y
zy π

A|V Z
avz π

B|WZ
bwz π

C|Y Z
cyz π

D|Z
dz (1.12)

Again, nonsaturated models can be imposed on the right hand side elements as im-
plied by Figure 1.6c.

Still another cause of the extra consistency might be that the respondents tried to
be consistent in their given answers, in the sense that they adapt all their answers
about their labor status during the reference period to the first given answer (not
to their true status) during the interview. If the interviewing process starts within
each reference period from the earliest month to the later ones, such an effect can be
represented by direct effects of A on B, C, and D. If the interviewing process starts
at the moment of interviewing and then goes back in time, this form of consistency
implies a direct effect of D on A, B, and C, as is assumed in Figure 1.6d and the
following equation:

π
ABCDVWY Z
abcdvwyz = π

V
v π

W |V
wv π

Y |W
yw π

Z|Y
zy π

A|V D
avd π

B|WD
bwd π

C|Y D
cyd π

D|Z
dz (1.13)

Finally, it might be thought, as Bassi et al. (2000) did, that the consistency process
might best be represented by an effect of each particular answer on the next one.
Again, going back in time, this would lead to Figure 1.6e and the following equation:

π
ABCDVWY Z
abcdvwyz = π

V
v π

W |V
wv π

Y |W
yw π

Z|Y
zy π

A|V B
avb π

B|WC
bwc π

C|Y D
cyd π

D|Z
dz (1.14)

Bassi et al. (2000) also discuss extensively the nature of this last consistency effect
and the consequences it has for the true monthly changes (and found that now the
“incorrect” observed differences among the rotation groups disappeared at the latent
level).

If at all possible, the best way to correct for systematic distortions of the data is
to try to measure the nature of these distortions directly, e.g., introduce an explicit
measure for “social desirability”. However, if this is not possible, as is certainly not
the exception, defining precise models for the nature of the classification errors, is a
very good and useful second best solution. SEMs are extremely flexible and helpful
models in this respect.

1.5 Extensions and Conclusions

The focus in this chapter has been on the basic principles of the application of SEMs
to categorical panel data that contain measurement errors. However, the reader
should keep in mind that the above indeed only dealt with the basic issues and that a
practical research question may need more complicated models and approaches. It
is then good to know that many varieties of the basic approach exist (see the litera-
ture mentioned throughout this chapter and below) and that the programs mentioned
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before (LEM, Latent Gold, and Mplus) provide easy access to these more compli-
cated procedures.

These programs also give the user clues about the identifiability of the latent class
models (Goodman, 1974b). Not much has been said above about identifiability. A
necessary condition for identifiability is that the number of independent unknowns,
the parameters to be estimated, do not exceed the number of independent knowns
(the number of independent cell frequencies). However, in latent variable models in
general and also in latent class models, this is not a sufficient condition. A sufficient
condition can be formulated and investigated in terms of the variance-covariance
matrix of the estimates (or related matrices) being of full rank. This information is
provided by the programs mentioned.

In our examples above, only discrete variables with a few nominal level cate-
gories have been dealt with. However from the very beginnings of loglinear mod-
eling, many kinds of models have been developed that take the ordered character
of the categories into account, by means of linear or inequality restrictions or esti-
mating the (ordered) scores of the variables; Vermunt (1999) presents an overview;
many applications can be found in Hagenaars & McCutcheon (2002).

Starting point of this chapter was the analysis of categorical data and all mod-
els treated these data as purely categorical and not as realizations of underlying
continuous variables. However, it might well be the case that the research problem
involves a data set in which both continuous and discrete variables are present. Such
data can be handled within the framework sketched here, depending on the research
question and the position of the continuous variables in the models, by imposing
linear restrictions on the relationships with these continuous variables and/or by
categorizing the continuous variables into five or seven categories. Explicit discus-
sions of combinations of continuous and discrete variables analyses are provided by
Dayton & Macready (1988, 2002); Vermunt (2002); van der Heijden, Dessens, &
Böckenholt (1996),Mooijaart&vanMontfort (2006),amongmanyothers;Vermunt&
Magidson’s Latent Gold and Muthen’s Mplus have implemented several models for
combinations of discrete and continuous variables.

Panel data often suffer from serious attrition and mortality. It is not rare that only
20% of the potential respondents survives all waves. Loglinear SEMs can easily
be extended to include and model response indicators to account for the missing
data and the MCAR (missing completely at random), MAR (missing at random) or
nonignorable missing data patterns (Fay, 1986; Hagenaars, 1990; Vermunt, 1997).

Sometimes theories require nonstandard, nonrecursive SEMs in which causal
loops occur; Koster (1997), Cox & Wermuth (1996), and Hagenaars (1998) discuss
several ways of testing such models.

Another way of arriving at a nonstandard, nonrecursive SEM is when restrictions
are imposed that involve simultaneously two or more right hand side elements of
the basic SEM equation. Such restrictions occurred when the homogenous markov
chain was discussed above in the Bassi et al. (2000) example. The program LEM
can handle many of these kinds of restrictions. In general, models with simultaneous
restrictions on several marginal tables are a form of the marginal modeling approach
towards the analysis of panel data. In marginal models, in general, two or more
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marginal tables formed from the same complete table are analyzed simultaneously.
Marginal modeling and conditional modeling in the form of SEM can be combined,
e.g., when extra marginal restrictions are imposed on a SEM or when in a panel
study the SEM at time one is compared to the similar SEM but then at time two;
Bergsma, Croon & Hagenaars (2009) discuss a large number of such combinations
for panel data and other kinds of dependent data.

Next to conditional and marginal analyses, subject specific random coefficient
models for the analysis of panel data have been mentioned in the beginning of this
article. Random effect models can be also defined for latent class and loglinear or
logit models (and consequently SEMs) in the form of continuous or discrete random
component coefficients, as shown by Vermunt (2003, 2004, 2007). Random effect
models can also be regarded as latent variable models to account for unobserved het-
erogeneity. Categorical SEMs can be easily extended to include possible unknown
sources of unobserved heterogeneity, as was essentially done in the discussion above
about correlated error terms. In this way, for panel data, the influence of unknown
disturbing sources can be corrected for, in much the same vein as is possible for the
(first order) fixed effect models for panel data (Hagenaars & McCutcheon, 2002, pp.
345-432; Firebaugh, 2008; Allison, 2009).

With so many possibilities a concluding note of warning is needed. The purpose
of an investigation is not just to find a well fitting model. Especially with latent
variable models, this is always possible. But the purpose of research is to carefully
translate whatever sound theoretical ideas a researcher has into a model that comes
as close as possible to these theoretical ideas and then to test this model against
sound data. If the model has to be rejected, residuals may play an important role to
improve the model, but even more important are theoretical ideas about what might
be wrong with the original rejected model. and in any case, whatever comes out of
the partially exploratory analyses must be theoretically meaningful and evaluated
against additional new evidence. In this process SEMs play an important role, but
not the role “blind model fitters” attribute to them.
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Chapter 2

Random Effects Models for Longitudinal Data

Geert Verbeke, Geert Molenberghs, and Dimitris Rizopoulos

Abstract Mixed models have become very popular for the analysis of longitudi-
nal data, partly because they are flexible and widely applicable, partly also because
many commercially available software packages offer procedures to fit them. They
assume that measurements from a single subject share a set of latent, unobserved,
random effects which are used to generate an association structure between the re-
peated measurements. In this chapter, we give an overview of frequently used mixed
models for continuous as well as discrete longitudinal data, with emphasis on model
formulation and parameter interpretation. The fact that the latent structures generate
associations implies that mixed models are also extremely convenient for the joint
analysis of longitudinal data with other outcomes such as dropout time or some
time-to-event outcome, or for the analysis of multiple longitudinally measured out-
comes. All models will be extensively illustrated with the analysis of real data.

2.1 Introduction

Repeated measures are obtained whenever an outcome is measured repeatedly
within a set of units. An array of examples is presented in Section 2.2. The fact
that observations from the same unit, in general, will not be independent poses par-
ticular challenges to the statistical procedures used for the analysis of such data. In
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Section 2.3, an overview is presented of the most commonly used method for both
Gaussian and non-Gaussian repeated measures.

Given their ubiquity, it is not surprising that methodology for repeated measures
has emerged in a variety of fields. For example, Laird and Ware (1982) proposed
the so-called linear mixed-effects models in a biometric context, whereas Goldstein
(1979) proposed what is termed multilevel modeling in the framework of social sci-
ences. Though the nomenclature is different, the underlying idea is the same: hierar-
chical data are modeled by introducing random coefficients, constant within a given
level but changing across levels. Let us provide two examples. In a longitudinal
context, where data are hierarchical because a given subject is measured repeatedly
over time, a random effect is one that remains constant within a patient but changes
across patients. A typical example of a multilevel setting consists of school children
that are nested within classes which are, in turn, nested within schools. Random
effects are then introduced to capture class-level as well as school-level variability.
Examples abound in other fields as well. Methodology has been developed for con-
tinuous, Gaussian data, as well as for non-Gaussian settings, such as binary, count,
and ordinal data. Overviews can be found in Verbeke and Molenberghs (2000) for
the Gaussian case and in Molenberghs and Verbeke (2005) for the non-Gaussian
setting.

In addition, a number of important contemporary extensions and issues will be
discussed.

First, it is not uncommon for multiple repeated measures sequences to be recorded
and analyzed simultaneously, leading to so-called multivariate longitudinal data.
This poses specific methodological and computational challenges, especially when
the problem is high-dimensional. An overview is presented in Section 2.4.

Second, it is quite common for longitudinal data to be collected in conjunction
with time-to-event outcomes. An overview is presented in Section 2.5. Broadly,
there are three main situations where this can occur: (a) The emphasis can be on
the survival outcome with the longitudinal outcome(s) acting as a covariate process;
(b) interest can be on both simultaneously, such as in the evaluation of surrogate
markers in clinical studies, with a longitudinal marker for a time-to-event outcome;
(c) the survival process can act, either in discrete or continuous time, as a dropout
process on the longitudinal outcome.

The above considerations lead us to include a third main theme, surrogate
marker evaluation, in Section 2.6, and a fourth and final theme, incomplete data, in
Section 2.7.



2 Random Effects Models 39

2.2 Case Studies

2.2.1 Toenail Data

As a typical longitudinal example, we consider data from a randomized, double
blind, parallel group, multicentre study for the comparison of 2 oral treatments (in
the sequel coded as A and B) for toenail dermatophyte onychomycosis (TDO). We
refer to De Backer et al. (1996) for more details about this study. TDO is a common
toenail infection, difficult to treat, affecting more than two percent of the population.
Antifungal compounds classically used for treatment of TDO need to be taken until
the whole nail has grown out healthy. However, new compounds have reduced the
treatment duration to three months. The aim of the present study was to compare the
efficacy and safety of two such new compounds, labelled A and B, and administered
during 12 weeks.

Table 2.1 Toenail Data. Number and percentage of patients with severe toenail infection, for each
treatment arm separately

Group A Group B
# severe # patients percentage # severe # patients percentage

Baseline 54 146 37.0% 55 148 37.2%
1 month 49 141 34.7% 48 147 32.6%
2 months 44 138 31.9% 40 145 27.6%
3 months 29 132 22.0% 29 140 20.7%
6 months 14 130 10.8% 8 133 6.0%
9 months 10 117 8.5% 8 127 6.3%
12 months 14 133 10.5% 6 131 4.6%

In total, 2×189 patients were randomized, distributed over 36 centres. Subjects
were followed during 12 weeks (3 months) of treatment and followed further, up to
a total of 48 weeks (12 months). Measurements were taken at baseline, every month
during treatment, and every 3 months afterwards, resulting in a maximum of 7 mea-
surements per subject. As a first response, we consider the unaffected nail length
(one of the secondary endpoints in the study), measured from the nail bed to the in-
fected part of the nail, which is always at the free end of the nail, expressed in mm.
Obviously this response will be related to the toe size. Therefore, we will include
here only those patients for which the target nail was one of the two big toenails.
This reduces our sample under consideration to 146 and 148 subjects respectively.
Individual profiles for 30 randomly selected subjects in each treatment group are
shown in Figure 2.1. Our second outcome will be severity of the infection, coded as
0 (not severe) or 1 (severe). The question of interest was whether the percentage of
severe infections decreased over time, and whether that evolution was different for
the two treatment groups. A summary of the number of patients in the study at each
time-point, and the number of patients with severe infections is given in Table 2.1.
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Fig. 2.1 Toenail Data. Individual profiles of 30 randomly selected subjects in each treatment arm.

A key issue in the analysis of longitudinal data is that outcome values measured
repeatedly within the same subjects tend to be correlated, and this correlation struc-
ture needs to be taken into account in the statistical analysis. This is easily seen with
paired observations obtained from, e.g., a pre-test/post-test experiment. An obvious
choice for the analysis is the paired t-test, based on the subject-specific difference
between the two measurements. While an unbiased estimate for the treatment ef-
fect can also be obtained from a two-sample t-test, standard errors and hence also
p-values and confidence intervals obtained from not accounting for the correlation
within pairs will not reflect the correct sampling variability, and hence still lead to
wrong inferences. In general, classical statistical procedures assuming independent
observations, cannot be used in the context of repeated measurements. In this chap-
ter, we will give an overview of the most important models useful for the analysis
of clinical trial data, and widely available through commercial statistical software
packages.

2.2.2 Hearing Data

In a hearing test, hearing threshold sound pressure levels (dB) are determined at
different frequencies to evaluate the hearing performance of a subject. A hearing
threshold is the lowest signal intensity a subject can detect at a specific frequency.
In this study, hearing thresholds measured at eleven different frequencies (125Hz,
250Hz, 500Hz, 750Hz, 1000Hz, 1500Hz, 2000Hz, 3000Hz, 4000Hz, 6000Hz and
8000Hz), obtained on 603 male participants from the Baltimore Longitudinal Study
of Aging (BLSA, Shock et al. 1984), are considered. Hearing thresholds are mea-
sured at the left as well as at the right ear, leading to 22 outcomes measured re-
peatedly over time. The number of visits per subject varies from 1 to 15 (a median
follow-up time of 6.9 years). Visits are unequally spaced. The age at first visit of
the participants ranges from 17.2 to 87 years (with a median age at first visit of 50.2
years). Analyses of the hearing data collected in the BLSA study can be found in
Brant and Fozard (1990), Morrell and Brant (1991), Pearson et al. (1995), Verbeke
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and Molenberghs (2000), and Fieuws and Verbeke (2006). It is well known that the
hearing performance deteriorates as one gets older, which will be reflected by an
increase in hearing threshold over time. The aim of our analysis will be to inves-
tigate whether this interaction between time and age is frequency related. Also of
interest is to study the association between evolutions at different frequencies. Both
questions can only be answered using a joint model for all 22 outcomes.

2.2.3 Liver Cirrhosis Data

As an illustrative example for the joint modeling of longitudinal and time-to-event
data we consider data on 488 patients with histologically verified liver cirrhosis,
collected in Copenhagen from 1962 to 1969 (Andersen et al. 1993). Liver cirrho-
sis is the condition in which the liver slowly deteriorates and malfunctions due to
chronic injury. From the 488 patients, 251 were randomly assigned to receive pred-
nisone and 237 placebo. Patients were scheduled to return at 3, 6, and 12 months,
and yearly thereafter, and provide several biochemical values related to liver func-
tion. Our main research question here is to test for a treatment effect on survival
after adjusting for one of these markers namely, the prothrombin index, which is
indicative of the severity of liver fibrosis. Since the prothrombin levels are in fact
the output of a stochastic process generated by the patients and is only available at
the specific visit times the patients came to the study center, it constitutes a typical
example of time-dependent covariate measured intermittently and with error.

2.2.4 Orthodontic Growth Data

Consider the orthodontic growth data, introduced by Potthoff and Roy (1964) and
used by Jennrich and Schluchter (1986) as well. The data have the typical struc-
ture of a clinical trial and are simple yet illustrative. They contain growth measure-
ments for 11 girls and 16 boys. For each subject, the distance from the center of
the pituitary to the maxillary fissure was recorded at ages 8, 10, 12, and 14. Fig-
ure 2.2 presents the 27 individual profiles. Little and Rubin (2002) deleted 9 of the
[(11+16)×4] measurements, rendering 9 incomplete subjects which, even though a
somewhat unusual practice, has the advantage of allowing a comparison between the
incomplete data methods and the analysis of the original, complete data. Deletion
is confined to the age 10 measurements and rougly speaking the complete obser-
vations at age 10 are those with a higher measurement at age 8. We will put some
emphasis on ages 8 and 10, the typical dropout setting, with age 8 fully observed
and age 10 partially missing.
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Fig. 2.2 Orthodontic Growth Data. Orthodontic Growth Data. Raw profiles and sample means
(girls are indicated with solid lines and diamonds; boys are indicated with dashed lines and bullets).

2.2.5 Age-related Macular Degeneration Trial

These data arise from a randomized multi-center clinical trial comparing an ex-
perimental treatment (interferon-α) to a corresponding placebo in the treatment of
patients with age-related macular degeneration. In this chapter we focus on the com-
parison between placebo and the highest dose (6 million units daily) of interferon-α
(Z), but the full results of this trial have been reported elsewhere (Pharmacologi-
cal Therapy for Macular Degeneration Study Group 1997). Patients with macular
degeneration progressively lose vision. In the trial, the patients’ visual acuity was
assessed at different time points (4 weeks, 12 weeks, 24 weeks, and 52 weeks)
through their ability to read lines of letters on standardized vision charts. These
charts display lines of 5 letters of decreasing size, which the patient must read from
top (largest letters) to bottom (smallest letters). The raw patient’s visual acuity is the
total number of letters correctly read. In addition, one often refers to each line with
at least 4 letters correctly read as a ‘line of vision.’

Table 2.2 shows the visual acuity (mean and standard error) by treatment group at
baseline, at 6 months, and at 1 year. Visual acuity can be measured in several ways.
First, one can record the number of letters read. Alternatively, dichotomized versions
(at least 3 lines of vision lost, or at least 3 lines of vision lost) can be used as well.
Therefore, these data will be useful to illustrate methods for the joint modeling of
continuous and binary outcomes, with or without taking the longitudinal nature into
account. In addition, though there are 190 subjects with both month 6 and month
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Table 2.2 The Age-related Macular Degeneration Trial. Mean (standard error) of visual acuity
at baseline, at 6 months and at 1 year according to randomized treatment group (placebo versus
interferon-α)

Time point Placebo Active Total
Baseline 55.3 (1.4) 54.6 (1.3) 55.0 (1.0)
6 months 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)
1 year 44.4 (1.8) 39.1 (1.9) 42.0 (1.3)

12 measurements available, the total number of longitudinal profiles is 240, but for
only 188 of these have the four follow-up measurements been made.

Thus indeed, 50 incomplete subjects could be considered for analysis as well.
Both intermittent missingness as well as dropout occurs. An overview is given in
Table 2.3. Thus, 78.33% of the profiles are complete, while 18.33% exhibit mono-

Table 2.3 The Age-related Macular Degeneration Trial. Overview of missingness patterns and the
frequencies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
O O O O 188 78.33

Dropouts
O O O M 24 10.00
O O M M 8 3.33
O M M M 6 2.50
M M M M 6 2.50

Non-monotone missingness
O O M O 4 1.67
O M M O 1 0.42
M O O O 2 0.83
M O M M 1 0.42

tone missingness. Out of the latter group, 2.5% or 6 subjects have no follow-up mea-
surements. The remaining 3.33%, representing 8 subjects, have intermittent missing
values. Thus, as in many of the examples seen already, dropout dominates interme-
diate patterns as the source of missing data

2.3 Modeling Tools for Longitudinal Data

In many branches of science, studies are often designed to investigate changes in
a specific parameter which is measured repeatedly over time in the participating
subjects. Such studies are called longitudinal studies, in contrast to cross-sectional
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studies where the response of interest is measured only once for each individual.
As pointed out by Diggle et al. (2002) one of the main advantages of longitudinal
studies is that they can distinguish changes over time within individuals (longitudi-
nal effects) from differences among people in their baseline values (cross-sectional
effects).

In randomized clinical trials, for example, where the aim usually is to compare
the effect of two (or more) treatments at a specific time-point, the need and ad-
vantage of taking repeated measures is at first sight less obvious. Indeed, a simple
comparison of the treatment groups at the end of the follow-up period is often suf-
ficient to establish the treatment effect(s) (if any) by virtue of the randomization.
However, in some instances, it is important to know how the patients have reached
their endpoint, i.e., it is necessary to compare the average profiles (over time) be-
tween the treatment groups. Furthermore, longitudinal studies can be more powerful
than studies evaluating the treatments at one single time-point. Finally, follow-up
studies more often than not suffer from dropout, i.e., some patients leave the study
prematurely, for known or unknown reasons. In such cases, a full repeated measures
analysis will help in drawing inferences at the end of the study. Given that incom-
pleteness usually occurs for reasons outside of the control of the investigators and
may be related to the outcome measurement of interest, it is generally necessary to
reflect on the process governing incompleteness. Only in special but important cases
is it possible to ignore the missingness process.

When patients are examined repeatedly, missing data can occur for various rea-
sons and at various visits. When missing data result from patient dropout, the miss-
ing data pattern is monotone pattern. Non-monotone missingness occurs when there
are intermittent missing values as well. Our focus will be on dropout. We will return
to the missing data issue in Section 2.7. We are now in a position to discuss first a
key modeling tool for Gaussian longitudinal data, where after we will switch to the
non-Gaussian case.

2.3.1 Linear Models for Gaussian Data

With repeated Gaussian data, a general, and very flexible, class of parametric models
is obtained from a random-effects approach. Suppose that an outcome Y is observed
repeatedly over time for a set of people, and suppose that the individual trajecto-
ries are of the type shown in Figure 2.3. Obviously, a linear regression model with
intercept and linear time effect seems plausible to describe the data of each person
separately. However, different people tend to have different intercepts and different
slopes. One can therefore assume that the jth outcome Yi j of subject i (i = 1, . . . ,N,
j = 1, . . . ,ni), measured at time ti j satisfies Yi j = b̃i0 + b̃i1ti j +εi j. Assuming the vec-
tor b̃i = (b̃i0, b̃i1)� of person-specific parameters to be bivariate normal with mean
(β0,β1)� and 2×2 covariance matrix D and assuming εi j to be normal as well, this
leads to a so-called linear mixed model. In practice, one will often formulate the
model as
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Fig. 2.3 Hypothetical example of continuous longitudinal data which can be well described by
a linear mixed model with random intercepts and random slopes. The thin lines represent the
observed subject-specific evolutions. The bold line represents the population-averaged evolution.
Measurements are taken at six time-points 0, 1, 2, 3, 4, 5.

Yi j = (β0 +bi0)+(β1 +bi1)ti j + εi j,

with b̃i0 = β0 +bi0 and b̃i1 = β1 +bi1, and the new random effects bi = (bi0,bi1)� are
now assumed to have mean zero. The above model is a special case of the general
linear mixed model which assumes that the outcome vector Yi of all ni outcomes for
subject i satisfies

Yi = Xiβ + Zibi + εi, (2.1)

in which β is a vector of population-average regression coefficients, called fixed
effects, and where bi is a vector of subject-specific regression coefficients. The bi
are assumed normal with mean vector 0 and covariance D, and they describe how
the evolution of the ith subject deviates from the average evolution in the population.
The matrices Xi and Zi are (ni× p) and (ni×q) matrices of known covariates. Note
that p and q are the numbers of fixed and subject-specific regression parameters in
the model, respectively. The residual components εi are assumed to be independent
N(0,Σi), where Σi depends on i only through its dimension ni.

Estimation of the parameters in (2.1) is usually based on maximum likelihood
(ML) or restricted maximum likelihood (REML) estimation for the marginal distri-
bution of Yi which can easily be seen to be

Yi ∼ N(Xiβ ,ZiDZ�i +Σi). (2.2)

Note that model (2.1) implies a model with very specific mean and covariance
structures, which may or may not be valid, and hence needs to be checked for
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every specific data set at hand. Note also that, when Σi = σ2Ini , with Ini equal to
the identity matrix of dimension ni, the observations of subject i are independent
conditionally on the random effect bi. The model is therefore called the conditional-
independence model. Even in this simple case, the assumed random-effects structure
still imposes a marginal correlation structure for the outcomes Yi j. Indeed, even if
all Σi equal σ2Ini , the covariance matrix in (2.2) is not a diagonal matrix, illustrat-
ing that, marginally, the repeated measurements Yi j of subject i are not assumed to
be uncorrelated. Another special case arises when the random effects are omitted
from the model. In that case, the covariance matrix of Yi is modeled through the
residual covariance matrix Σi. In the case of completely balanced data, i.e., when
ni is the same for all subjects, and when the measurements are all taken at fixed
time points, one can assume all Σi to be equal to a general unstructured covariance
matrix Σ , which results in the classical multivariate regression model. Inference in
the marginal model can be done using classical techniques including approximate
Wald tests, t-tests, F-tests, or likelihood ratio tests. Finally, Bayesian methods can
be used to obtain ‘empirical Bayes estimates’ for the subject-specific parameters bi
in (2.1). We refer to Henderson et al. (1959), Harville (1974, 1976, 1977), Laird and
Ware (1982), Verbeke and Molenberghs (2000), and Fitzmaurice, Laird, and Ware
(2004) for more details about estimation and inference in linear mixed models.

2.3.2 Models for Discrete Outcomes

Whenever discrete data are to be analyzed, the normality assumption in the models
in the previous section is no longer valid, and alternatives need to be considered. The
classical route, in analogy to the linear model, is to specify the full joint distribution
for the set of measurements Yi j, . . . ,Yini per individual. Clearly, this implies the need
to specify all moments up to order ni. Examples of marginal models can be found
in Bahadur (1961), Altham (1978), Efron (1986), Molenberghs and Lesaffre (1994,
1999), Lang and Agresti (1994), and Fahrmeir and Tutz (2001).

Especially for longer sequences and/or in cases where observations are not taken
at fixed time points for all subjects, specifying a full likelihood, as well as mak-
ing inferences about its parameters, traditionally done using maximum likelihood
principles, can become very cumbersome. Therefore, inference is often based on
a likelihood obtained from a random-effects approach. Associations and all higher-
order moments are then implicitly modeled through a random-effects structure. This
will be discussed in Section 2.3.2.1. A disadvantage is that the assumptions about all
moments are made implicitly, and therefore very hard to check. As a consequence,
alternative methods have been in demand, which require the specification of a small
number of moments only, leaving the others completely unspecified. In a large num-
ber of cases, one is primarily interested in the mean structure, whence only the first
moments need to be specified. Sometimes, there is also interest in the association
structure, quantified, for example, using odds ratios or correlations. Estimation is
then based on so-called generalized estimating equations, and inference no longer
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directly follows from maximum likelihood theory. This will be explained in Sec-
tion 2.3.2.2. A comparison of both techniques will be presented in Section 2.3.2.3.
In Section 2.3.3, both approaches will be illustrated in the context of the toenail
data.

2.3.2.1 Generalized Linear Mixed Models (GLMM)

As discussed in Section 2.3.1, random effects can be used to generate an association
structure between repeated measurements. This can be exploited to specify a full
joint likelihood in the context of discrete outcomes. More specifically, condition-
ally on a vector bi of subject-specific regression coefficients, it is assumed that all
responses Yi j for a single subject i are independent, satisfying a generalized linear
model with mean μi j = g(xi j

�β + zi j
�bi) for a pre-specified link function g(·), and

for two vectors xi j and zi j of known covariates belonging to subject i at the jth time
point. Let fi j(yi j|bi) denote the corresponding density function of Yi j, given bi. As
for the linear mixed model, the random effects bi are assumed to be sampled from a
normal distribution with mean vector 0 and covariance D. The marginal distribution
of Yi is then given by

f (yi) =
∫ ni

∏
j=1

fi j(yi j|bi) f (bi)dbi, (2.3)

in which dependence on the parameters β and D is suppressed from the notation.
Assuming independence accross subjects, the likelihood can easily be obtained, and
maximum likelihood estimation becomes available.

In the linear model, the integral in (2.3) could be worked out analytically, leading
to the normal marginal model (2.2). In general, however, this is no longer possible,
and numerical approximations are needed. Broadly, we can distinguish between ap-
proximations to the integrand in (2.3), and methods based on numerical integration.
In the first approach, Taylor series expansions to the integrand are used, simplifying
the calculation of the integral. Depending on the order of expansion and the point
around which one expands, slightly different procedures are obtained. We refer to
Breslow and Clayton (1993), Wolfinger and O’Connell (1993), Molenberghs and
Verbeke (2005), and Fitzmaurice, Laird, and Ware (2004) for an overview of es-
timation methods. In general, such approximations will be accurate whenever the
responses yi j are ‘sufficiently continuous’ and/or if all ni are sufficiently large. This
explains why the approximation methods perform poorly in cases with binary re-
peated measurements, with a relatively small number of repeated measurements
available for all subjects (Wolfinger 1998). Especially in such examples, numerical
integration proves very useful. Of course, a wide toolkit of numerical integration
tools, available from the optimization literature, can be applied. A general class of
quadrature rules selects a set of abscissas and constructs a weighted sum of func-
tion evaluations over those. We refer to Hedeker and Gibbons (1994, 1996) and to
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Pinheiro and Bates (2000) for more details on numerical integration methods in the
context of random-effects models.

2.3.2.2 Generalized Estimating Equations (GEE)

Liang and Zeger (1986) proposed so-called generalized estimating equations (GEE)
which require only the correct specification of the univariate marginal distributions
provided one is willing to adopt ‘working’ assumptions about the association struc-
ture. More specifically, a generalized linear model (McCullagh and Nelder 1989) is
assumed for each response Yi j, modeling the mean μi j as g(xi j

�β ) for a pre-specified
link function g(·), and a vector xi j of known covariates. In case of independent re-
peated measurements, the classical score equations for the estimation of β are well
known to be

S(β ) = ∑
i

∂ μ�i
∂β

V−1
i (Yi−μ i) = 0, (2.4)

where μ i = E(Yi) and Vi is a diagonal matrix with vi j = Var(Yi j) on the main diag-
onal. Note that, in general, the mean-variance relation in generalized linear models
implies that the elements vi j also depend on the regression coefficients β . Gener-
alized estimating equations are now obtained from allowing non-diagonal ‘covari-
ance’ matrices Vi in (2.4). In practice, this comes down to the specification of a
‘working correlation matrix’ which, together with the variances vi j, results in a hy-
pothesized covariance matrix Vi for Yi.

Solving S(β ) = 0 is done iteratively, constantly updating the working correlation
matrix using moment-based estimators. Note that, in general, no maximum likeli-
hood estimates are obtained, since the equations are not first-order derivatives of
some log-likelihood function. Still, very similar properties can be derived. More
specifically, Liang and Zeger (1986) showed that β̂ is asymptotically normally dis-
tributed, with mean β and with a covariance matrix that can easily be estimated in
practice. Hence, classical Wald-type inferences become available. This result holds
provided that the mean was correctly specified, whatever working assumptions were
made about the association structure. This implies that, strictly speaking, one can fit
generalized linear models to repeated measurements, ignoring the correlation struc-
ture, as long as inferences are based on the standard errors that follow from the
general GEE theory. However, efficiency can be gained from using a more appro-
priate working correlation model (Mancl and Leroux 1996).

The original GEE approach focuses on inferences for the first-order moments,
considering the association present in the data as nuisance. Later on, extensions
have been proposed which also allow inferences about higher-order moments. We
refer to Prentice (1988), Lipsitz, Laird and Harrington (1991), and Liang, Zeger and
Qaqish (1992) for more details on this.
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2.3.2.3 Marginal versus Hierarchical Parameter Interpretation

Comparing the GEE results and the GLMM results in Table 2.4, we observe large
differences between the corresponding parameter estimates. This suggests that the
parameters in both models have a different interpretation. Indeed, the GEE approach
yields parameters with a population-averaged interpretation. Each regression param-
eter expresses the average effect of a covariate on the probability of having a severe
infection. Results from the generalized linear mixed model, however, require an in-
terpretation conditionally on the random effect, i.e., conditionally on the subject.
In the context of our toenail example, consider model (2.7) for treatment group A
only. The model assumes that the probability of severe infection satisfies a logistic
regression model, with the same slope for all subjects, but with subject-specific in-
tercepts. The population-averaged probability of severe infection is obtained from
averaging these subject-specific profiles over all subjects. This is graphically pre-
sented in Figure 2.4. Clearly, the slope of the average trend is different from the
subject-specific slopes, and this effect will be more severe as the subject-specific
profiles differ more, i.e., as the random-intercepts variance σ2 is larger. Formally,
the average trend for group A is obtained as

P(Yi(t) = 1) = E [P(Yi(t) = 1|bi)] = E
[

exp(βA0 +bi +βA1t)
1+ exp(βA0 +bi +βA1t)

]
�= E

[
exp(βA0 +βA1t)

1+ exp(βA0 +βA1t)

]
.

Hence, the population-averaged evolution is not the evolution for an ‘average’ sub-
ject, i.e., a subject with random effect equal to zero. The second graph in Figure 2.6
shows the fitted profiles for an average subject in each treatment group, and these
profiles are indeed very different from the population-averaged profiles shown in the
first graph of Figure 2.6 and discussed before. In general, the population-averaged
evolution implied by the GLMM is not of a logistic form any more, and the param-
eter estimates obtained from the GLMM are typically larger in absolute value than
their marginal counterparts (Neuhaus, Kalbfleisch, and Hauck 1991). However, one
should not refer to this phenomenon as bias given that the two sets of parameters
target at different scientific questions. Observe that this difference in parameter in-
terpretation between marginal and random-effects models immediately follows from
their non-linear nature, and therefore is absent in the linear mixed model, discussed
in Section 2.3.1. Indeed, the regression parameter vector β in the linear mixed model
(2.1) is the same as the regression parameter vector modeling the expectation in the
marginal model (2.2).
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Fig. 2.4 Graphical representation of a random-intercepts logistic model. The thin lines represent
the subject-specific logistic regression models. The bold line represents the population-averaged
evolution.

2.3.3 Analysis of Toenail Data

As an illustration, we analyze unaffected nail length response in the toenail exam-
ple. The model proposed by Verbeke, Lesaffre, and Spiessens (2001) assumes a
quadratic evolution for each subject, with subject-specific intercepts, and with cor-
related errors within subjects. More formally, they assume that Yi j satisfies

Yi j(t) =
{

(βA0 +bi)+βA1t +βA2t2 + ε i(t), in group A
(βB0 +bi)+βB1t +βB2t2 + ε i(t), in group B,

(2.5)

where t = 0,1,2,3,6,9,12 is the number of months since randomization. The error
components ε i(t) are assumed to have common variance σ2, with correlation of the
form corr(ε i(t),ε i(t − u)) = exp(−ϕu2) for some unknown parameter ϕ . Hence,
the correlation between within-subject errors is a decreasing function of the time
span between the corresponding measurements. Fitted average profiles are shown
in Figure 2.5. An approximate F-test shows that, on average, there is no evidence
for a treatment effect (p = 0.2029). Note that, even when interest would only be in
comparing the treatment groups after 12 months, this could still be done based on the
above fitted model. The average difference between group A and group B, after 12
months, is given by (βA0−βB0)−12(βA1−βB1)+122(βA2−βB2). The estimate for
this difference equals 0.80 mm (p = 0.0662). Alternatively, a two-sample t-test could
be performed based on those subjects that have completed the study. This yields an
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Fig. 2.5 Toenail Data. Fitted average profiles based on model (2.5).

estimated treatment effect of 0.77 mm (p = 0.2584) illustrating that modeling the
whole longitudinal sequence also provides more efficient inferences at specific time-
points.

As an illustration of GEE and GLMM, we analyze the binary outcome ‘severity
of infection’ in the toenail study. We will first apply GEE, based on the marginal
logistic regression model

log
[

P(Yi(t) = 1)
1−P(Yi(t) = 1)

]
=

{
βA0 +βA1t, in group A
βB0 +βB1t, in group B. (2.6)

Furthermore, we use an unstructured 7×7 working correlation matrix. The results
are reported in Table 2.4, and the fitted average profiles are shown in the top graph
of Figure 2.6. Based on a Wald-type test we obtain a significant difference in the
average slope between the two treatment groups (p = 0.0158).

Table 2.4 Toenail Data. Parameter estimates (standard errors) for a generalized linear mixed model
(GLMM) and a marginal model (GEE)

GLMM GEE
Parameter Estimate (s.e.) Estimate (s.e.)
Intercept group A (βA0) −1.63 (0.44) −0.72 (0.17)
Intercept group B (βB0) −1.75 (0.45) −0.65 (0.17)
Slope group A (βA1) −0.40 (0.05) −0.14 (0.03)
Slope group B (βB1) −0.57 (0.06) −0.25 (0.04)
Random intercepts s.d. (σ ) 4.02 (0.38)
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Fig. 2.6 Toenail Data. Treatment-specific evolutions. (a) Marginal evolutions as obtained from the
marginal model (2.6) fitted using GEE, (b) Evolutions for subjects with random effects in model
(2.7) equal to zero.

Alternatively, we consider a generalized linear mixed model, modeling the as-
sociation through the inclusion of subject-specific, i.e., random, intercepts. More
specifically, we will now assume that
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log
[

P(Yi(t) = 1|bi)
1−P(Yi(t) = 1|bi)

]
=

{
βA0 +bi +βA1t, in group A
βB0 +bi +βB1t, in group B (2.7)

with bi normally distributed with mean 0 and variance σ2. The results, obtained
using numerical integration methods, are also reported in Table 2.4. As before, we
obtain a significant difference between βA1 and βB1 (p = 0.0255).

2.4 Multivariate Longitudinal Data

So far, we have considered a single, repeatedly measured outcome. However, often
one observes more than one outcome at the same time, which is essentially known
as multivariate outcomes. These can all be of the same data type, e.g., all Gaussian
or all binary, or of a mixed type, e.g., when the outcome vector is made up of con-
tinuous and binary components. Statistical problems where various outcomes of a
mixed nature are observed have been around for about half a century and are rather
common at present. Many research questions can often only fully be addressed in a
joint analysis of all outcomes simultaneously. For example, the association structure
can be of direct scientific relevance.

It is definitely possible for all of these features to occur simultaneously, whereby
a multivariate outcome vector, possible of a mixed nature, is measured repeatedly
over time. An array of research questions can then be addressed in this way. A
possible question might be how the association between outcomes evolves over time
or how outcome-specific evolutions are related to each other (Fieuws and Verbeke
2004). Another example is discriminant analysis based on multiple, longitudinally
measured, outcomes. Third, interest may be in the comparison of average trends
for different outcomes. As an example, consider testing the difference in evolution
between many outcomes or joint testing of a treatment effect on a set of outcomes.
All of these situations require a joint model for all outcomes.

Let us focus, for a moment, on the combined analysis of a continuous and a
discrete outcome. There then broadly are three approaches. The first one postu-
lates a marginal model for the binary outcome and then formulates a conditional
model for the continuous outcome, given the categorical one. For the former, one
can use logistic regression, whereas for the latter conditional normal models are
a straightforward choice, i.e., a normal model with the categorical outcome used
as a covariate (Tate 1954). The second family starts from the reverse factorization,
combining a marginal model for the continuous outcome with a conditional one for
the categorical outcome. Conditional models have been discussed by Cox and Wer-
muth (1992, 1994a, 1994b), Krzanowski (1988), and Little and Schluchter (1985).
Schafer (1997) presents a so-called general location model where a number of con-
tinuous and binary outcomes can be modeled together. The third model family di-
rectly formulates a joint model for the two outcomes. In this context, one often starts
from a bivariate continuous variable, one component of which is explicitly observed
and the other one observed in dichotomized, or generally discretized, version only
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(Tate 1955). Molenberghs, Geys, and Buyse (2001) presented a model based on a
Plackett-Dale approach, where a bivariate Plackett distribution is assumed, of which
one margin is directly observed and the other one only after dichotomization. Gen-
eral multivariate exponential family based models have been proposed by Prentice
and Zhao (1991), Zhao, Prentice, and Self (1992), and Sammel, Ryan, and Legler
(1997).

Of course, these developments have not been limited to bivariate joint outcomes.
One can obviously extend these ideas and families to a multivariate continuous out-
come and/or a multivariate categorical outcome. For the first and second families,
one then starts from conditional and marginal multivariate normal and appropriately
chosen multinomial models. Such a model within the first family has been formu-
lated by Olkin and Tate (1961). Within the third family, models were formulated by
Hannan and Tate (1965) and Cox (1974) for a multivariate normal with a univariate
bivariate or discrete variable.

As alluded to before, apart from an extension from the bivariate to the multivari-
ate case, one can introduce other hierarchies as well. We will now assume that each
of the outcomes may be measured repeatedly over time, and there could even be
several repeated outcomes in both the continuous and the categorical subgroup. A
very specific hierarchy stems from clustered data, where a continuous and a cate-
gorical, or several of each, are observed for each member of a family, a household,
a cluster, etc. For the specific context of developmental toxicity studies, often con-
ducted in rats and mice, a number of developments have been made. An overview
of such methods, together with developments for probit-normal and Plackett-Dale
based models, was presented in Regan and Catalano (2002). Catalano and Ryan
(1992) and Fitzmaurice and Laird (1995) propose models for a combined continu-
ous and discrete outcome, but differ in the choice of which outcome to condition
on the other one. Both use generalized estimating equations to allow for clustering.
Catalano (1997) extended the model by Catalano and Ryan (1992) to accommodate
ordinal variables. An overview can be found in Aerts et al (2002).

Regan and Catalano (1999a) proposed a probit-type model to accommodate joint
continuous and binary outcomes in a clustered data context, thus extending the cor-
related probit model for binary outcomes (Ochi and Prentice 1984) to incorporate
continuous outcomes. Molenberghs, Geys, and Buyse (2001) used a Plackett la-
tent variable to the same effect, extending the bivariate version proposed by Molen-
berghs, Geys, and Buyse (2001). Estimation in such hierarchical joint models can be
challenging. Regan and Catalano (1999a) proposed maximum likelihood, but con-
sidered GEE as an option too (Regan and Catalano 1999b). Geys, Molenberghs, and
Ryan (1999) made use of pseudo-likelihood. Ordinal extensions have been proposed
in Regan and Catalano (2000).

Thus, many applications of this type of joint models can already be found
in the statistical literature. For example, the approach has been used in a non-
longitudinal setting to validate surrogate endpoints in meta-analyses (Buyse et al.
2000, Burzykowski et al. 2001) or to model multivariate clustered data (Thum
1997). Gueorguieva (2001) used the approach for the joint modeling of a contin-
uous and a binary outcome measure in a developmental toxicity study on mice.



2 Random Effects Models 55

Also in a longitudinal setting, Chakraborty et al. (2003) obtained estimates of the
correlation between blood and semen HIV-1 RNA by using a joint random-effects
model. Other examples with longitudinal studies can be found in MacCallum et
al. (1997), Thiébaut et al. (2002) and Shah, Laird, and Schoenfeld (1997). All of
these examples refer to situations where the number of different outcomes is rela-
tively low. Although the model formulation can be done irrespective of the number
of outcomes to be modeled jointly, standard fitting procedures, such as maximum
likelihood estimation, is only feasible when the dimension is sufficiently low or if
one is willing to make a priori strong assumptions about the association between
the various outcomes. An example of the latter can be found in situations where the
corresponding random effects of the various outcomes are assumed to be perfectly
correlated (Oort 2001, Sivo 2001, Roy and Lin 2000, and Liu and Hedeker 2006).
Fieuws and Verbeke (2006) have developed a model-fitting procedure that is appli-
cable, irrespective of the dimensionality of the problem. This is the route that will
be followed in the next sections.

2.4.1 A Mixed Model for Multivariate Longitudinal Outcomes

A flexible joint model that can handle any number of outcomes measured longitu-
dinally, without any restriction to the nature of the outcomes can be obtained by
modeling each outcome separately using a mixed model (linear, generalized linear,
or non-linear), by assuming that, conditionally on these random effects, the different
outcomes are independent, and by imposing a joint multivariate distribution on the
vector of all random effects. This approach has many advantages and is applicable in
a wide variety of situations. First, the data can be highly unbalanced. For example, it
is not necessary that all outcomes are measured at the same time points. Moreover,
the approach is applicable for combining linear mixed models, non-linear mixed
models, or generalized linear mixed models. The procedure also allows the combi-
nation of different types of mixed models, such as a generalized linear mixed model
for a discrete outcome and a non-linear mixed model for a continuous outcome.

Let m be the dimension of the problem, i.e., the number of outcomes that need
to be modeled jointly. Further, let Yri j denote the jth measurement taken on the
ith subject, for the rth outcome, i = 1, . . . ,N, r = 1, . . . ,m, and j = 1, . . . ,nri. Note
that we do not assume that the same number of measurements is available for all
subjects, nor for all outcomes. Let Yri be the vector of nri measurements taken on
subject i, for outcome r. Our model assumes that each Yri satisfies a mixed model.
Let fri(yri|bri,θr) be the density of Yri, conditional on a qr-dimensional vector bri
of random effects for the rth outcome on subject i. The vector θr contains all fixed
effects and possibly also a scale parameter needed in the model for the rth outcome.
Note that we do not assume the same type of model for all outcomes: A combination
of linear, generalized linear, and non-linear mixed models is possible. It is also not
assumed that the same number qr of random effects is used for all m outcomes.
Finally, the model is completed by assuming that the vector bi of all random effects
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for subject i is multivariate normal with mean zero and covariance D, i.e.,

bi =

⎛⎜⎜⎜⎝
b1i
b2i
...
bmi

⎞⎟⎟⎟⎠∼ N

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0
0
...
0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
D11 D12 · · · D1m
D21 D22 · · · D2m

...
...

. . .
...

Dm1 Dm2 · · · Dmm

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

The matrices Drs represent the covariances between bri and bsi, r,s = 1, . . . ,m. Fi-
nally, D is the matrix with blocks Drs as entries.

A special case of the above model is the so-called shared-parameter model, which
assumes the same set of random effects for all outcomes. This clearly can be ob-
tained as a special case of the above model by assuming perfect correlation between
some of the random effects. The advantage of such shared-parameter models is the
relatively low dimension of the random-effects distribution, when compared to the
above model. The dimension of the random effects in shared parameter models does
not increase with the number of outcomes to be modeled. In the above model, each
new outcome added to the model introduces new random effects, thereby increasing
the dimension of bi. Although the shared-parameter models can reasonably easily
be fitted using standard software, this is no longer the case for the model consid-
ered here. Estimation and inference under the above model will require specific
procedures, which will be discussed in Section 2.4.2. A disadvantage of the shared-
parameter model is that it is based on much stronger assumptions about the associa-
tion between the outcomes, which may not be valid, especially in high-dimensional
settings as considered in this chapter. Note also that, joining valid univariate mixed
models does not necessarily lead to a correct joint model. Fieuws and Verbeke
(2004) illustrate this in the context of linear mixed models for two continuous out-
comes. It is shown how the joint model may imply association structures between
the two sets of longitudinal profiles that may strongly depend on the actual parame-
terization of the individual models and that are not necessarily valid.

2.4.2 A Pairwise Model-fitting Approach

Whereas the modeling approach from the previous setting is rather versatile, it might
become computationally cumbersome for high-dimensional applications. It is there-
fore useful to consider the approach of Fieuws and Verbeke (2006), when a large
number of repeated sequences are to be analyzed simultaneously. The general idea is
that all parameters in the full multivariate model can be identified from all pairwise
models, i.e., all bivariate models for each pair of outcomes. Therefore, using pseudo-
likelihood ideas, also termed pairwise or composite likelihood (Molenberghs and
Verbeke 2005), fitting the full model is replaced by maximum likelihood estimation
of each bivariate model separately. This can be done using standard statistical soft-
ware. Afterwards, all results are appropriately combined, and Wald-type inferences
become available from noticing that the pairwise fitting approach is equivalent to
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maximizing the sum of all the log-likelihoods from all fitted pairs. This sum can
be interpreted as a pseudo-log-likelihood function, and inferences then immediately
follow from the general pseudo-likelihood theory, as will now be explained in the
following sections.

2.4.2.1 Pairwise Fitting

Let Ψ ∗ be the vector of all parameters in the multivariate joint mixed model for
(Y1,Y2, . . . ,Ym). The pairwise fitting approach starts from fitting all m(m−1)/2 bi-
variate models, i.e., all joint models for all possible pairs

(Y1,Y2),(Y1,Y3), . . . ,(Y1,Ym),(Y2,Y3), . . . ,(Y2,Ym), . . . ,(Ym−1,Ym)

of the outcomes Y1,Y2, . . . ,Ym. Let the log-likelihood function corresponding to the
pair (r,s) be denoted by �(yr,ys|Ψrs), and let Ψrs be the vector containing all param-
eters in the bivariate model for pair (r,s).

Let Ψ now be the stacked vector combining all m(m−1)/2 pair-specific param-
eter vectors Ψrs. Estimates for the elements in Ψ are obtained by maximizing each
of the m(m− 1)/2 log-likelihoods �(yr,ys|Ψrs) separately. It is important to realize
that the parameter vectors Ψ and Ψ ∗ are not equivalent. Indeed, some parameters in
Ψ ∗ will have a single counterpart in Ψ , e.g., the covariances between random effects
of different outcomes. Other elements in Ψ ∗ will have multiple counterparts in Ψ ,
e.g., fixed effects from one single outcome. In the latter case, a single estimate for
the corresponding parameter in Ψ ∗ is obtained by averaging all corresponding pair-
specific estimates in Ψ̂ . Standard errors of the so-obtained estimates clearly cannot
be obtained from averaging standard errors or variances. Indeed, two pair-specific
estimates corresponding to two pairwise models with a common outcome are based
on overlapping information and hence correlated. This correlation should also be
accounted for in the sampling variability of the combined estimates in Ψ̂

∗
. Correct

asymptotic standard errors for the parameters in Ψ̂ , and consequently in Ψ̂
∗
, can be

obtained from pseudo-likelihood ideas.

2.4.2.2 Inference for Ψ

Fitting all bivariate models is equivalent to maximizing the function

p�(Ψ)≡ p�(y1i,y2i, . . . ,ymi|Ψ) = ∑
r<s

�(yr,ys|Ψrs), (2.8)

ignoring the fact that some of the vectors Ψrs have common elements, i.e., assuming
that all vectors Ψrs are completely distinct. The function in (2.8) can be considered
a pseudo-likelihood function, maximization of which leads to so-called pseudo-
likelihood estimates, with well-known asymptotic statistical properties. We refer
to Arnold and Strauss (1991) and Geys, Molenberghs, and Ryan (1997) for more
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details. Our application of pseudo-likelihood methodology is different from most
other applications in the sense that the same parameter vector is usually present in
the different parts of the pseudo-likelihood function. Here, the set of parameters in
Ψrs is treated pair-specific, which allows separate maximization of each term in the
pseudo log-likelihood function (2.8). In Section 2.4.2.3, we will account for the fact
that Ψrs and Ψrs′ , s �= s′, are not completely distinct, as they share the parameters
referring to the rth outcome.

It now follows directly from the general pseudo-likelihood theory that Ψ̂ asymp-
totically satisfies

√
N(Ψ̂ −Ψ) ≈ N(0, I−1

0 I1I−1
0 )

in which I−1
0 I1I−1

0 is a ‘sandwich-type’ robust variance estimator, and where I0 and
I1 can be constructed using first- and second-order derivatives of the components in
(2.8). Strictly speaking, I0 and I1 depend on the unknown parameters in Ψ , but these
are traditionally replaced by their estimates in Ψ̂ .

2.4.2.3 Combining Information: Inference for Ψ ∗

In a final step, estimates for the parameters in Ψ ∗ can be calculated, as suggested
before, by taking averages of all the available estimates for that specific parameter.
Obviously, this implies that Ψ̂ ∗ = A�Ψ̂ for an appropriate weight matrix A. Hence,
inference for the elements in Ψ̂ ∗ will be based on

√
N(Ψ̂ ∗ −Ψ ∗) =

√
N(A�Ψ̂ −A�Ψ)≈ N(0,A�I−1

0 I1I−1
0 A).

It can be shown that pseudo-likelihood estimates are less efficient than the full max-
imum likelihood estimates (Arnold and Strauss 1991). However, these results refer
to efficiency for the elements in Ψ , not directly to the elements in Ψ ∗. In general, the
degree of loss of efficiency depends on the context, but Fieuws and Verbeke (2006)
have presented evidence for only very small losses in efficiency in the present con-
text of the pairwise fitting approach for multivariate random-effects models.

2.4.3 Analysis of the Hearing Data

Let Yr,i(t) denote the rth hearing threshold for subject i taken at time t, r = 1, . . . ,11
for the right ear, and r = 12, . . . ,22 for the left ear. Morrell and Brant (1991), and
Pearson et al. (1995) have proposed the following linear mixed model to analyze
the evolution of the hearing threshold for a single frequency:

Yr,i(t) = (βr,1 +βr,2Agei +βr,3Age2
i +ar,i)+

+(βr,4 +βr,5Agei +br,i)t +βr,6Vi(t)+ εr,i(t). (2.9)
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The time t is expressed in years from entry in the study and Agei equals the age
of subject i at the time of entry in the study. The binary time-varying covariate Vi
represents a learning effect from the first to the subsequent visits. Finally, the ar,i are
random intercepts, the br,i are the random slopes for time, and the εr,i represent the
usual error components. The regression coefficients βr,1, . . . ,βr,6 are fixed, unknown
parameters. The 44 random effects a1,i,a2,i, . . . ,a22,i,b1,i,b2,i, . . . ,b22,i are assumed
to follow a joint zero-mean normal distribution with covariance matrix D. At each

Fig. 2.7 Hearing Data. Estimates β̂r,5 with associated 95% confidence intervals, for the measure-
ments from left and right ear separately.
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time point t, the error components ε1,i, . . . ,ε22,i follow a 22-dimensional zero-mean
normal distribution with covariance matrix R. The total number of parameters in D
and R equals 990+253 = 1243.

We applied the pairwise approach to fit model (2.9) to the Hearing data intro-
duced in Section 2.2.2. As discussed before, one of the key research questions is
whether the deterioration of hearing ability with age is different for different fre-
quencies, because this would yield evidence for selective deterioration. Formally,
this requires testing the null-hypotheses H0 : β1,5 = β2,5 = . . . = β11,5 for the right
side, and H0 : β12,5 = β13,5 = . . . = β22,5 for the left side. Figure 2.7 shows all esti-
mates β̂r,5 with associated 95% confidence intervals, for the left and right ear sepa-
rately. We clearly observe an increasing trend implying that age accelerates hearing
loss, but that this is more severe for higher frequencies. Wald-type tests indicate
that these estimates are significantly different between the outcomes, at the left side
(χ2

10 = 90.4, p < 0.0001) as well as at the right side (χ2
10 = 110.9, p < 0.0001).

2.4.4 Some Reflections

The advantage of this technique is that all implied univariate models belong to the
well-known mixed model family. This implies that one can first model each outcome
separately (with separate data exploration and model building), before joining the
univariate models into the full multivariate model. Moreover, the parameters in the
multivariate model keep their interpretation from the separate univariate models.
Finally, this approach is sufficiently flexible to allow for different types of models
for the different outcomes (linear, non-linear, generalized linear).

A disadvantage of the approach is that, when the number of outcomes becomes
large, the dimension of the random effects can become too large to fit the full mul-
tivariate model using standard software for mixed models. Using results of Fieuws
and Verbeke (2006), and Fieuws et al. (2006), we have explained how all parame-
ters in the multivariate model can be estimated from fitting the model to all possible
pairs of outcomes. Inferences follow from pseudo-likelihood theory. Although the
estimates obtained from the pairwise approach do not maximize the full multivari-
ate likelihood, they still have similar asymptotic properties, with no or only marginal
loss of efficiency when compared to the maximum likelihood estimates. It should
be emphasized that we do not advocate fitting multivariate models in order to gain
efficiency for parameters in single univariate models. As long as no inferences are
needed for combinations of parameters from different outcomes, and if no outcomes
share the same parameters, univariate mixed models are by far the preferred tools
for the analysis.

Fitting of the models can usually be done using standard software for the lin-
ear, non-linear, and generalized linear mixed models. Software is available from
http://med.kuleuven.be/biostat/software/software.htm/and
several examples from the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. Calculation of the
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standard errors, however, requires careful data manipulation. In case all univariate
mixed models are of the linear type (e.g., our model for the Hearing Data example),
a SAS macro can be used.

2.5 Joint Models for Longitudinal and Time-to-Event Data

As we have seen earlier in this chapter, it is very common in longitudinal studies
to collect measurements on several types of outcomes. In this section we focus on
settings in which the outcomes recorded on the subjects simultaneously include a
set of repeated measurements and the time at which an event of particular inter-
est occurs, for instance, death, development of a disease or dropout from the study.
Typical areas where such studies are encountered encompass HIV/AIDS and can-
cer studies. In HIV studies, seropositive patients are monitored until they develop
AIDS or die, and they are regularly measured for the condition of their immune
system using markers such as the CD4 lymphocyte count, the estimated viral load,
or whether viral load is below detectable limits. Similarly, in cancer trials the event
outcome is death or metastasis, while patients also provide longitudinal measure-
ments of antibody levels or of other markers of carcinogenesis, such as the prostate
specific antigen levels for prostate cancer.

Depending on the research questions, these two outcomes can be analyzed ei-
ther separately or jointly. Here, we will focus on situations in which a joint analysis
is required. This is typically the case when interest is on the event time and one
wishes to account for the effect of the longitudinal outcome as a time-dependent co-
variate. Traditional approaches for analyzing time-to-event data, such as the partial
likelihood for the Cox proportional hazards models, assume that the time-dependent
covariate is a predictable process; that is, the value of this covariate at time point t is
not affected by the occurrence of an event at time point u, with t > u (Therneau and
Grambsch, 2000, Sect. 1.3). For instance, age can be included as predictable time-
dependent covariate in a standard analysis, because if we know the age of a subject
at baseline, we can ‘predict’ her age at every time point without error. However,
the type of time-dependent covariates encountered in longitudinal studies are often
not predictable. In particular, they are the output of a stochastic process generated
at the level of the subject, and it is directly related to the failure mechanism. The
stochastic nature of these covariates complicates matters in two ways. First, we do
not actually observe the ‘true’ values for these covariates, owing to the fact that the
longitudinal responses usually contain measurement error. Second, we are only able
to observe the, error-contaminated, values intermittently at the specific time points
at which we have collected measurements and not at any time point t. These spe-
cial features complicate analysis with the traditional partial likelihood approaches
(Tsiatis, DeGruttola, and Wolfsohn 1995, Wulfsohn and Tsiatis 1997). Hence, to
produce valid inferences, a model for the joint distribution of the longitudinal and
survival outcomes is required instead.
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Early attempts to tackle such problems considered using the last available value
of the longitudinal outcome for each subject as a representative value for the com-
plete longitudinal history. This method is also known as ‘Last Value or Last Obser-
vation Carried Forward’ (LVCF or LOCF, Molenberghs and Kenward 2007). Even
though the simplicity of such an approach is apparent, Prentice (1982) showed that
it leads to severe bias in the estimation of the model parameters. Later approaches
(Self and Pawitan, 1992; Tsiatis, DeGruttola, and Wulfsohn 1995) focused on joint
models with a survival sub-model for the time-to-event and a longitudinal sub-
model for the longitudinal process, in which so-called two-stage procedures have
been proposed to derive estimates of the model parameters. In particular, at a first
stage, the longitudinal model is estimated ignoring the survival outcome, and at
the second stage a survival model is fitted using the subject-specific predictions of
time-dependent covariates based on the longitudinal model. Such approaches were
shown to reduce bias compared to the naive LVCF without completely eliminating
it. This persistent bias prompted a turn of focus to full maximum likelihood meth-
ods. A fully parametric approach was proposed by DeGruttola and Tu (1994) who
postulated a log-normal sub-model for the time-to-event and a linear mixed model
for the longitudinal responses, respectively. Later, Wulfsohn and Tsiatis (1997) ex-
tended this work by assuming a relative risk model for the survival times with an
unspecified baseline risk function. Excellent overviews of the joint modeling liter-
ature are given by Tsiatis and Davidian (2004) and Yu et al. (2004). In the rest of
this section we will present the basics of the joint modeling framework and provide
a perspective on its features.

2.5.1 Joint Modeling Framework

To introduce joint models for longitudinal and time-to-event data, we need to adapt
and extend the notation introduced so far in this chapter. In particular, for the time-
to-event outcome we denote by Ti the observed failure time for the ith subject
(i = 1, . . . ,n), which is taken as the minimum of the true event time T ∗i and the
censoring time Ci, i.e., Ti = min(T ∗i ,Ci). Furthermore, we define the event indica-
tor as δi = I(T ∗i ≤Ci), where I(·) is the indicator function that takes the value 1 if
the condition T ∗i ≤Ci is satisfied, and 0 otherwise. Thus, the observed data for the
time-to-event outcome consist of the pairs {(Ti,δi), i = 1, . . . ,n}. For the longitudi-
nal responses, we let yi(t) to denote the value of the longitudinal outcome at time
point t for the ith subject. However, we do not actually observe yi(t) at all time points
but only at very specific occasions ti j at which measurements were taken. Thus, the
observed longitudinal data consist of the measurements yi j = {yi(ti j), j = 1, . . . ,ni}.
As noted above, this feature of the longitudinal outcome is one of the main rea-
sons why it cannot be simply included as a standard time-dependent covariate in a
survival model.

In survival analysis, relative risk models have traditionally been used to quantify
effects of both time-independent and time-dependent covariates on the risk of an
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event (Therneau and Grambsch, 2000). In our setting, we introduce the term mi(t)
that denotes the true and unobserved value of the longitudinal outcome at time t,
which is included as a time-dependent covariate in a relative risk model:

hi(t |Mi(t),wi) = lim
dt→0

P{t ≤ T ∗i < t +dt | T ∗i ≥ t,Mi(t),wi}/dt

= h0(t)exp
{

γ�wi +αmi(t)
}
, (2.10)

where Mi(t) = {mi(u),0 ≤ u < t} denotes the history of the true unobserved lon-
gitudinal process up to time point t, h0(·) denotes the baseline risk function, and
wi a vector of baseline covariates, such as a treatment indicator, history of diseases,
etc., with a corresponding vector of regression coefficients γ . Similarly, parameter α
quantifies the effect of the underlying longitudinal outcome to the risk for an event.
For instance, in the AIDS example introduced in Section 2.5, α measures the effect
of the number of CD4 cells to the risk for death. An important note regarding Model
(2.10) is that the risk for an event at time t is assumed to depend on the longitudinal
history Mi(t) only through the current value of the time-dependent covariate mi(t);
on the contrary, survival probabilities depend on the whole history via:

Si(t |Mi(t),wi) = P(T ∗i > t |Mi(t),wi)

= exp
(
−

∫ t

0
h0(s)exp

{
γ�wi +αmi(s)

}
ds

)
, (2.11)

which implies that a correct specification of Mi(t) is required to produce valid es-
timates of Si(t | Mi(t),wi). To complete the specification of the survival model,
we need to specify the baseline risk function. Within the joint modeling framework,
h0(t) is typically left unspecified (Wulfsohn and Tsiatis 1997). However, Hsieh,
Tseng, and Wang (2006) have recently noted that leaving this function completely
unspecified leads to an underestimation of the standard errors of the parameter esti-
mates. In particular, problems arise stemming from the fact that the non-parametric
maximum likelihood estimate for this function cannot be obtained explicitly un-
der the random-effects structure. To avoid this problem, we could either opt for a
standard survival distribution on the one hand, such as the Weibull or Gamma distri-
butions, or for more flexible models on the other, in which h0(t) is sufficiently well
approximated using step functions or spline-based approaches.

So far, in the definition of the survival model we have assumed that the true
underlying longitudinal covariate mi(t) is available at any time point t. Neverthe-
less, longitudinal information is actually collected intermittently for each subject
at a few time points ti j. Therefore, our aim is to estimate mi(t) and successfully
reconstruct the complete longitudinal history, using the available measurements
yi j = {yi(ti j), j = 1, . . . ,ni} of each subject and a set of modeling assumptions. For
the remainder of this section, we will focus on normal data and postulate a linear
mixed effects model, as in Section 2.3.1, to describe the subject-specific longitudinal
evolutions. Here we make explicit the model’s time-dependent nature,

yi(t) = mi(t)+ εi(t) = x�i (t)β + z�i (t)bi + εi(t), εi(t)∼ N(0,σ2), (2.12)
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where β denotes the vector of the unknown fixed effects parameters, xi(t) and zi(t)
denote row vectors of the design matrices for the fixed and random effects, respec-
tively, and εi(t) is the measurement error term, which is assumed independent of
bi, and with variance σ2. As we have seen above, the survival function is a func-
tion of the complete longitudinal history, and therefore, it is important to adequately
specify xi(t) and zi(t) to capture interesting characteristics of the data and produce a
good estimate of Mi(t). For instance, in applications in which subjects show highly
non-linear longitudinal trajectories, it is advisable to consider flexible representa-
tions for xi(t) and zi(t) using a possibly high-dimensional vector of functions of
time t, expressed in terms of high-order polynomials or splines (Ding and Wang
2008, Brown, Ibrahim, and DeGruttola 2005).

An alternative approach is to consider correlated error terms. Joint models with
such error structures have been proposed by Wang and Taylor (2001), who pos-
tulated an integrated Ornstein-Uhlenbeck process, and by Henderson, Diggle, and
Dobson (2000), who considered a latent Gaussian stochastic process shared by both
the longitudinal and event processes. We should note, however, that there is a con-
flict for information between the random-effects structure and a measurement er-
ror structure that assumes correlated errors, given that both aim at modeling the
marginal correlation in the data. Thus, depending on the features of the data at
hand, it is advisable to either opt for an elaborate random-effects structure (using
e.g., splines in the design matrix zi(t)) or for correlated error terms, but not for both.
For an enlightening discussion on the philosophical differences between these two
approaches, we refer to Tsiatis and Davidian (2004, Sect. 2.2).

Finally, a suitable distributional assumption for the random-effects component is
required to complete the specification of the joint model. So far, in this chapter, we
have relied on standard parametric assumptions for this distribution, with a typical
choice being the multivariate normal distribution with mean zero and covariance
matrix D. However, within the joint modeling framework and mainly for two rea-
sons, there is the concern that relying on standard distributions may influence the
derived inferences. First, the random effects have a more prominent role in joint
models, because on the one hand they capture the correlations between the repeated
measurements in the longitudinal outcome and on the other they associate the longi-
tudinal outcome with the event process. Second, joint models belong to the general
family of shared parameter models, and correspond to a non-random dropout mech-
anism. We wil return to this in Section 2.7. As is known from the missing-data
literature, handling dropout can be highly sensitive to modeling assumptions. These
features motivated Song, Davidian, and Tsiatis (2002) to explore the need for a more
flexible model for the distribution of the random effects, especially in the joint mod-
eling framework. However, the findings of these authors suggested that parameter
estimates and standard errors were rather robust to misspecification. This feature has
been further theoretically corroborated by Rizopoulos, Verbeke, and Molenberghs
(2008), who showed that, as the number of repeated measurements per subject ni
increases, misspecification of the random-effects distribution has a minimal effect
in parameter estimators and standard errors.
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2.5.2 Likelihood and Estimation

The main estimation methods that have been proposed for joint models are (semi-
parametric) maximum likelihood (Hsieh, Tseng, and Wang 2006, Henderson,
Diggle, and Dobson 2000, Wulfsohn and Tsiatis 1997) and Bayes using MCMC
techniques (Chi and Ibrahim 2006, Brown and Ibrahim 2003, Wang and Taylor
2001, Xu and Zeger 2001). Moreover, Tsiatis and Davidian (2001) have proposed
a conditional score approach in which the random effects are treated as nuisance
parameters, and they developed a set of unbiased estimating equations that yields
consistent and asymptotically normal estimators. Here, we review the basics of
the maximum likelihood method for joint models as one of the more traditional
approaches.

Maximum likelihood estimation for joint models is based on the maximization
of the log-likelihood corresponding to the joint distribution of the time-to-event and
longitudinal outcomes {Ti,δi,yi}. To define this joint distribution, we will assume
that the vector of time-independent random effects bi underlies both the longitudinal
and survival processes. This means that these random effects account for both the as-
sociation between the longitudinal and event outcomes, and the correlation between
the repeated measurements in the longitudinal process. Formally, we have that,

f (Ti,δi,yi | bi;θ) = f (Ti,δi | bi;θ) f (yi | bi;θ), (2.13)
f (yi | bi;θ) = ∏

j
f{yi(ti j) | bi;θ}, (2.14)

where θ is the parameter vector, yi is the ni×1 vector of longitudinal responses of
the ith subject, and f (·) denotes an appropriate probability density function. Under
this conditional independence assumption we can now define separate models for
the longitudinal responses and the event time data by conditioning on the shared
random effects. Under the modeling assumptions presented in the previous section
and the conditional independence assumptions (2.13) and (2.14), the joint likelihood
contribution for the ith subject can be formulated as

f (Ti,δi,yi;θ) =
∫

f (Ti,δi | bi;θ)
[
∏

j
f{yi(ti j) | bi;θ}

]
f (bi;θ) dbi, (2.15)

where the likelihood of the survival part is written as

f (Ti,δi | bi;θ) = {hi(Ti | bi;θ)}δiSi(Ti | bi;θ), (2.16)

with hi(·) and Si(·) are given by (2.10) and (2.11), respectively, f{yi(ti j) | bi;θ} is
the univariate normal density for the longitudinal responses, and f (bi;θ) is the mul-
tivariate normal density for the random effects. A further implicit assumption in the
above definition of the likelihood is that both the censoring mechanism and the vis-
iting process (i.e., the stochastic mechanism that generates the time points at which
the longitudinal measurements are collected) are non-informative, and thus they can
be ignored. This non-informativeness assumption is similar in spirit to the missing



66 Geert Verbeke, Geert Molenberghs, and Dimitris Rizopoulos

at random (MAR) assumption in the missing data framework (see also Section 2.7),
and in particular, it is assumed that the probabilities of visiting and censoring at
time point t depend only on the observed longitudinal history but not on the event
times and future longitudinal measurements themselves. As observed longitudinal
history we define all available information for the longitudinal process prior to time
point t, i.e., Yi(t) = {yi(u),0≤ u < t}; note that this is different from Mi(t), which
denotes the history of the true unobserved longitudinal outcome mi(t). In practice,
this assumption is valid when the decision on whether a subject withdraws from the
study or appears at the study center for the scheduled visit to provide a longitudinal
measurement at time t, depends only on Yi(t) (and possibly on baseline covariates),
but there is no additional dependence on future longitudinal responses and the un-
derlying random effects bi. Unfortunately, the observed data do not often contain
enough information to corroborate these assumptions, and therefore, it is essential
to use external information from subject-matter experts as to their validity.

Maximization of the log-likelihood function corresponding to (2.15) with respect
to θ is a computationally challenging task, because it requires a combination of nu-
merical integration and optimization algorithms. Numerical integration is required,
owing to the fact that neither the integral with respect to the random effects in (2.15),
nor the integral of the risk function in (2.11) allow for an analytical solution, except
in very special cases. Standard numerical integration techniques, such as Gaussian
quadrature and Monte Carlo have been successfully applied in the joint modelling
framework (Song, Davidian, and Tsiatis 2002, Henderson, Diggle, and Dobson
2000, Wulfsohn and Tsiatis 1997). Furthermore, Rizopoulos, Verbeke, and Lesaffre
(2009b) have recently discussed the use of Laplace approximations for joint mod-
els, that can be especially useful in high-dimensional random-effects settings (e.g.,
when splines are used in random-effects design matrix). For the maximization of the
approximated log-likelihood the EM algorithm has been traditionally used in which
the random effects are treated as ‘missing data’. The main motivation for using
this algorithm is the closed-form M-step updates for certain parameters of the joint
model. However, a serious drawback of the EM algorithm is its linear convergence
rate that results in slow convergence especially near the maximum. Nonetheless,
Rizopoulos, Verbeke, and Lesaffre (2009b) have noted that a direct maximization
of the observed data log-likelihood, using for instance, a quasi-Newton algorithm
(Lange 2004), requires very similar computations to the EM algorithm. Therefore
hybrid optimization approaches that start with EM and then continue with direct
maximization can be easily employed.

2.5.3 Analysis of Liver Cirrhosis Data

To illustrate the virtues of the joint modeling approach, we will start with a ‘naive’
analysis, in which we ignore the special characteristics of the prothrombin index
and we fit a Cox model that includes treatment indicator and prothrombin as an or-
dinary time-dependent covariate. The results are presented in Table 2.5. We observe
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Table 2.5 Liver Cirrhosis Data. Parameter estimates with standard errors in parenthesis. For the
longitudinal process ‘a:b’ denotes the interaction term between covariates ‘a’ and ‘b’. For the ran-
dom effects σb1 denotes the standard deviation of the random intercepts term, σb2 the standard
deviation of the random slopes term, ρb12 the correlation between the random intercepts and ran-
dom slopes, and σ the measurement error standard deviation

Survival Process Longitudinal Process Variance Comp.
Model Parameter Estimate (s.e.) Effect Est. (s.e.) Param. Est.
Naive prednisone 0.054 (0.130)
Cox prothrombin −0.032 (0.003)

Joint prednisone −0.214 (0.140) intercept 70.49 (1.36) σb1 18.51
Model prothrombin −0.040 (0.004) prednisone 11.10 (1.96) σb2 4.22

baseline −1.49 (1.35) ρb12 0.04
baseline:prednisone −11.20 (1.89) σ 16.86
time 0.40 (0.39)
time:prednisone −1.05 (0.68)

that, after adjusting for prothrombin in the Cox model, there is no statistical evi-
dence for a treatment effect. We proceed by specifying and fitting a joint model that
explicitly postulates a linear mixed effects model for the prothrombin index. In par-
ticular, in the longitudinal sub-model, we include fixed effects of time, treatment,
and an indicator for the baseline measurement at t = 0, as well as the interactions of
treatment with time and treatment with the baseline indicator. In the random-effects
design matrix, we include an intercept and a time term. For the survival sub-model
and similarly to the Cox model above we include the treatment effect and as time-
dependent covariate the true underlying effect of prothrombin as estimated from the
longitudinal model. The baseline risk function is assumed piecewise constant

h0(t) =
Q

∑
q=1

ξqI(vq−1 < t ≤ vq),

where 0 = v0 < v1 < · · ·< vQ denotes a split of the time scale, with vQ being larger
than the largest observed time, and ξq denotes the value of the hazard in the interval
(vq−1,vq]. For the internal knots v1, . . . ,vQ−1 we use equally spaced percentiles of
the observed survival times Ti.

The parameter estimates and standard errors from the joint model fit are also
shown in Table 2.5. For the treatment effect, we arrive at a similar conclusion as with
the standard analysis, that is, there is no clear evidence that prednisone decreases
the risk for an event. However, a comparison between the standard time-dependent
Cox model with the joint model reveals some interesting features. In particular, we
observe that the estimated treatment effect from the joint model is much bigger
in size and on the opposite direction compared to the time-dependent Cox model,
with a standard error of the same magnitude in both models. Similarly, the effect
of the prothrombin index from the joint model is about 2.5 standard errors larger
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compared to the same effect from the Cox model. These comparisons convincingly
demonstrate the degree of attenuation in the regression coefficients of the standard
analysis due to the measurement error in the prothrombin levels.

2.5.4 Some Reflections

Joint modeling of longitudinal and time-to-event data is one of the most rapidly
evolving areas of current biostatistics research, with several extensions of the stan-
dard joint model that we have presented here already proposed in the literature.
These include, among others, handling multiple failure types (Elashoff and Li 2008),
considering categorical longitudinal outcomes (Faucett, Schenker, and Elashoff
1998), assuming that several longitudinal outcomes affect the time-to-event (Chi
and Ibrahim 2006, Brown and Ibrahim 2003), replacing the relative risk model by
an accelerated failure time model (Tseng, Hsieh, and Wang 2005), and associating
the two outcomes via latent classes instead of random effects (Proust-Lima et al.
2009, Lin et al. 2002). Even though there has been considerable work on such ex-
tensions, little attention has been given to the development of diagnostic and model-
assessment tools for these models. The main problem of using standard diagnostic
tools, such as residuals, is the nonrandom dropout caused by the occurrence events.
To this end, Dobson and Henderson (2003) defined residuals conditional on the
dropout times and recommended plotting these residuals per dropout pattern. An-
other, more recent proposal by Rizopoulos, Verbeke, and Molenberghs (2009a) takes
dropout into account by multiply imputing the longitudinal responses that would
have been observed had the event not occurred, and use afterwards standard residu-
als plots.

Finally, one of the main practical limitations for joint modeling finding its way
into the tool box of modern statisticians was the lack of free and reliable soft-
ware. The R package JM has been developed to fill this gap to some extent.
JM can be freely downloaded from the CRAN website at http://cran.r-
project.org/ with more information at http://wiki.r-project.org/
rwiki/doku.php?id=packages:cran:jm/ or from the book website
at http://www.econ.upf.edu/˜satorra/longitudinallatent/
readme.html.. JM has a user-friendly interface to fit joint models and also pro-
vides several supporting functions that extract or calculate various quantities based
on the fitted model (e.g., residuals, fitted values, empirical Bayes estimates, various
plots, and others).

2.6 The Use in Surrogate Markers

Over the years, longitudinal data models, survival analysis tools, and the combina-
tion thereof, have been used in the so-called validation of surrogate endpoints in
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clinical studies. Reviews can be found in Burzykowski, Molenberghs, and Buyse
(2005), Molenberghs et al. (2008, 2009). We provide a bird’s eye perspective on
these developments and their extensions towards information theory.

The field is interesting in its own right, because the use of surrogate endpoints in
the development of new therapies has always been very controversial, partly owing
to a number of unfortunate historical instances where treatments showing a highly
positive effect on a surrogate endpoints were ultimately shown to be detrimental to
the subjects’ clinical outcome, and conversely, some instances of treatments confer-
ring clinical benefit without measurable impact on presumed surrogates (Fleming
and DeMets 1996). For example, in cardiovascular disease, the unsettling discovery
that the two major anti arrhythmic drugs encanaide and flecanaide reduced arrhyth-
mia but caused a more than 3-fold increase in overall mortality stressed the need for
caution in using non-validated surrogate markers in the evaluation of the possible
clinical benefits of new drugs (CAST 1989). On the other hand, the dramatic surge
of the AIDS epidemic, the impressive therapeutic results obtained early on with zi-
dovudine, and the pressure for an accelerated evaluation of new therapies, have all
led to the use of CD4 blood count and later of viral load as endpoints that replaced
time to clinical events and overall survival (DeGruttola and Tu 1994), in spite of
serious concerns about their limitations as surrogate markers for clinically relevant
endpoints (Lagakos and Hoth 1992). Loosely speaking, a surrogate endpoint is a
biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint
is expected to predict clinical benefit, harm, or lack thereof.

One important reason for the present interest in surrogate endpoints is the advent
of a large number of biomarkers that closely reflect the disease process. An increas-
ing number of new drugs have a well-defined mechanism of action at the molecular
level, allowing drug developers to measure the effect of these drugs on the relevant
biomarkers (Ferentz 2002). There is increasing public pressure for new, promising
drugs to be approved for marketing as rapidly as possible, and such approval will
have to be based on biomarkers rather than on some long-term clinical endpoint
(Lesko and Atkinson 2001). If the approval process is shortened, there will be a
corresponding need for earlier detection of safety signals that could point to toxic
problems with new drugs. It is a safe bet, therefore, that the evaluation of tomorrow’s
drugs will be based primarily on biomarkers, rather than on the longer-term, harder
clinical endpoints that have dominated the development of new drugs until now. It
is therefore imperative to use validated surrogates, though one needs to reflect on
the precise meaning and extent of validation (Schatzkin and Gail 2002).

2.6.1 A Meta-analytic Framework for Normally Distributed
Outcomes

Several methods have been suggested for the formal evaluation of surrogate mark-
ers, some based on a single trial with others, currently gaining momentum, of a
meta-analytic nature. The first formal single trial approach to validate markers is
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due to Prentice (1989), who gave a definition of the concept of a surrogate endpoint,
followed by a series of operational criteria. Freedman, Graubard, and Schatzkin
(1992) augmented Prentice’s hypothesis-testing based approach, with the estima-
tion paradigm, through the so-called proportion of treatment effect explained. In
turn, Buyse and Molenberghs (1998) added two further measures: the relative effect
and the adjusted association. All of these proposals are hampered by the fact that
they are single-trial based, in which there evidently is replication at the patient level,
but not at the level of the trial.

Although the single trial based methods are relatively easy in terms of imple-
mentation, they are surrounded with the difficulties stated before. Therefore, several
authors, such as Daniels and Hughes (1997), Buyse et al. (2000), and Gail et al.
(2000) have introduced the meta-analytic approach. This section briefly outlines the
methodology.

The meta-analytic approach was formulated originally for two continuous, nor-
mally distributed outcomes, and extended in the meantime to a large collection of
outcome types, ranging from continuous, binary, ordinal, time-to-event, and longi-
tudinally measured outcomes (Burzykowski, Molenberghs, and Buyse 2005). First,
we focus on the continuous case, where the surrogate and true endpoints are jointly
normally distributed.

The method is based on the linear mixed model of Section 2.3.1. Both a fixed-
effects and a random-effects view can be taken. Let Ti j and Si j be the random vari-
ables denoting the true and surrogate endpoints for the jth subject in the ith trial,
respectively, and let Zi j be the indicator variable for treatment. First, consider the
following fixed-effects models:

Si j = μSi +αiZi j + εSi j, (2.17)
Ti j = μTi +βiZi j + εTi j, (2.18)

where μSi and μTi are trial-specific intercepts, αi and βi are trial-specific effects of
treatment Zi j on the endpoints in trial i, and εSi and εTi are correlated error terms,
assumed to be zero-mean normally distributed with covariance matrix

Σ =
(

σSS σST

σT T

)
. (2.19)

In addition, we can decompose⎛⎜⎜⎝
μSi
μTi
αi
βi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
μS

μT

α
β

⎞⎟⎟⎠+

⎛⎜⎜⎝
mSi
mTi
ai
bi

⎞⎟⎟⎠ , (2.20)

where the second term on the right hand side of (2.20) is assumed to follow a zero-
mean normal distribution with covariance matrix
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D =

⎛⎜⎜⎝
dSS dST dSa dSb

dT T dTa dTb
daa dab

dbb

⎞⎟⎟⎠ . (2.21)

A classical hierarchical, random-effects modeling strategy results from the combi-
nation of the above two steps into a single one:

Si j = μS +mSi +αZi j +aiZi j + εSi j, (2.22)
Ti j = μT +mTi +βZi j +biZi j + εTi j. (2.23)

Here, μS and μT are fixed intercepts, α and β are fixed treatment effects, mSi and mTi
are random intercepts, and ai and bi are random treatment effects in trial i for the
surrogate and true endpoints, respectively. The random effects (mSi,mTi,ai,bi) are
assumed to be mean-zero normally distributed with covariance matrix (2.21). The
error terms εSi j and εTi j follow the same assumptions as in the fixed effects models.

After fitting the above models, surrogacy is captured by means of two quantities:
trial-level and individual-level coefficients of determination. The former quantifies
the association between the treatment effects on the true and surrogate endpoints at
the trial level, while the latter measures the association at the level of the individual
patient, after adjustment for the treatment effect. The former is given by:

R2
trial = R2

bi|mSi,ai
=

(
dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( dSb
dab

)
dbb

. (2.24)

The above quantity is unitless and, at the condition that the corresponding variance-
covariance matrix is positive definite, lies within the unit interval.

Apart from estimating the strength of surrogacy, the above model can also be
used for prediction purposes. To this end, observe that (β + b0|mS0,a0) follows a
normal distribution with mean and variance:

E(β +b0|mS0,a0) = β +
(

dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( μS0−μS

α0−α

)
, (2.25)

Var(β +b0|mS0,a0) = dbb−
(

dSb
dab

)�(
dSS dSa
dSa daa

)−1 ( dSb
dab

)
. (2.26)

A prediction can be made using (2.25), with prediction variance (2.26). Of course,
one has to properly acknowledge the uncertainty resulting from the fact that param-
eters are not known but merely estimated.

Though the above hierarchical modeling is elegant, it often poses a considerable
computational challenge (Burzykowski, Molenberghs, and Buyse 2005). To address
this problem, Tibaldi et al. (2003) suggested several simplifications.
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2.6.2 Non-Gaussian Endpoints

Statistically speaking, the surrogate endpoint and the clinical endpoint are realiza-
tions of random variables. As will be clear from the formalism in Section 2.6.1, one
is in need of the joint distribution of these variables. The easiest, but not the only,
situation is where both are Gaussian random variables, but one also encounters bi-
nary (e.g., CD4+ counts over 500/mm3, tumor shrinkage), categorical (e.g., choles-
terol levels <200 mg/dl, 200-299 mg/dl, 300+ mg/dl, tumor response as complete
response, partial response, stable disease, progressive disease), censored continu-
ous (e.g., time to undetectable viral load, time to cardiovascular death), longitudinal
(e.g., CD4+ counts over time, blood pressure over time), and multivariate longitu-
dinal (e.g., CD4+ and viral load over time jointly, various dimensions of quality
of life over time) endpoints. The models used to validate a surrogate for a clini-
cal endpoint will depend on the type of variables observed in the problem at hand.
Table 2.6 shows some examples of potential surrogate endpoints in various diseases.
In what follows, we will briefly discuss the settings of binary endpoints, failure-time
endpoints, the combination of an ordinal and a survival endpoint, and longitudinal
endpoints.

Table 2.6 Examples of possible surrogate endpoints in various diseases (Abbreviations: AIDS =
acquired immune deficiency syndrome; ARMD = age-related macular degeneration; HIV = human
immunodeficiency virus)

Disease Surrogate Endpoint Type Final Endpoint Type
Resectable solid tumor Time to recurrence Censored Survival Censored
Advanced cancer Tumor response Binary Time to progression Censored
Osteoporosis Bone mineral density Longitudinal Fracture Binary
Cardiovascular disease Ejection fraction Continuous Myocardial infraction Binary
Hypertension Blood pressure Longitudinal Coronary heart disease Binary
Arrhythmia Arrhythmic episodes Longitudinal Survival Censored
ARMD 6-month visual acuity Continuous 24-month visual acuity Continuous
Glaucoma Intraoccular pressure Continuous Vision loss Censored
Depression Biomarkers Multivariate Depression scale Continuous
HIV infection CD4 counts + viral load Multivariate Progression to AIDS Censored

2.6.2.1 Binary Endpoints

Renard et al. (2002) have shown that extension to this situation is easily done using
a latent variable formulation. That is, one posits the existence of a pair of continu-
ously distributed latent variable responses (S̃i j, T̃i j) that produce the actual values
of (Si j,Ti j). These unobserved variables are assumed to have a joint normal dis-
tribution and the realized values follow by double dichotomization. On the latent-
variable scale, we obtain a model similar to (2.17)–(2.18) and in the matrix (2.19)
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the variances are set equal to unity in order to ensure identifiability. This leads to
the following model:{

Φ−1(P[Si j = 1|Zi j,mSi ,ai,mTi ,bi]) = μS +mSi +(α +ai)Zi j,

Φ−1(P[Ti j = 1|Zi j,mSi ,ai,mTi ,bi]) = μT +mTi +(β +bi)Zi j,

where Φ denotes the standard normal cumulative distribution function. Renard et al.
(2002) used pseudo-likelihood methods to estimate the model parameters. Similar
ideas have been used in the case one of the endpoints is continuous, with the other
one binary or categorical (Burzykowski, Molenberghs, and Buyse 2005, Ch. 6).

2.6.2.2 Two Failure-time Endpoints

Assume now that Si j and Ti j are failure-time endpoints. Model (2.17)–(2.18) is re-
placed by a model for two correlated failure-time random variables. Burzykowski et
al. (2001) used copulas to this end (Clayton 1978, Hougaard 1986). Precisely, one
assumes the joint survivor function of (Si j, Ti j) is written as:

F(s, t) = P(Si j ≥ s, Ti j ≥ t) = Kξ{FSi j(s), FTi j(t)}, s, t ≥ 0, (2.27)

where (FSi j, FTi j) denote marginal survivor functions and Kξ is a copula, i.e., a dis-
tribution function on [0, 1]2 with ξ taking values on the real line.

When the hazard functions are specified, estimates of the parameters for the joint
model can be obtained using maximum likelihood. Shih and Louis (1995) discuss
alternative estimation methods. The association parameter is generally hard to inter-
pret. However, it can be shown (Genest and McKay 1986) that there is a link with
Kendall’s τ:

τ = 4
∫ 1

0

∫ 1

0
Kξ (u, v)Kξ (du, dv)−1,

providing an easy measure of surrogacy at the individual level. At the second stage
R2

trial can be computed based on the pairs of treatment effects estimated at the first
stage.

2.6.2.3 An Ordinal Surrogate and a Survival Endpoint

Assume that T is a failure-time random variable and S is a categorical variable with
K ordered categories. To propose validation measures, similar to those introduced in
the previous section, Burzykowski et al. (2004) also used bivariate copulas, combin-
ing ideas of Molenberghs, Geys, and Buyse (2001) and Burzykowski et al. (2001).
One marginal distribution is a proportional odds logistic regression, while the other
is a proportional hazards model. The Plackett copula (Dale 1986) was chosen to
capture the association between both endpoints. The ensuing global odds ratio is
relatively easy to interpret.
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2.6.2.4 Longitudinal Endpoints

Most of the previous work focuses on univariate responses. Alonso et al (2003)
showed that going from a univariate setting to a multivariate framework represents
new challenges. The R2 measures proposed by Buyse et al (2000), are no longer
applicable. Alonso et al (2003) based their calculations of surrogacy measures on
a two-stage approach rather than a full random-effects approach. They assume that
information from i = 1, . . . ,N trials is available, in the ith of which, j = 1, . . . ,ni sub-
jects are enrolled and they denoted the time at which subject j in trial i is measured
as ti jk. If Ti jk and Si jk denote the associated true and surrogate endpoints, respec-
tively, and Zi j is a binary indicator variable for treatment then along the ideas of
Galecki (1994), they proposed the following joint model, at the first stage, for both
responses {

Ti jk = μTi +βiZi j +gTi j(ti jk)+ εTi jk,

Si jk = μSi +αiZi j +gSi j(ti jk)+ εSi jk,
(2.28)

where μTi and μSi are trial-specific intercepts, βi and αi are trial-specific effects of
treatment Zi j on the two endpoints and gTi j and gSi j are trial-subject-specific time
functions that can include treatment-by-time interactions. They also assume that the
vectors, collecting all information over time for patient j in trial i, ε̃Ti j and ε̃Si j are
correlated error terms, following a mean-zero multivariate normal distribution with
covariance matrix

Σi =
(

ΣT Ti ΣT Si
Σ�T Si ΣSSi

)
=

(
σT Ti σT Si
σT Si σSSi

)
⊗Ri. (2.29)

Here, Ri is a correlation matrix for the repeated measurements.
If treatment effect can be assumed constant over time, then (2.24) can still be

useful to evaluate surrogacy at the trial level. However, at the individual level the
situation is totally different, the R2

ind no longer being applicable, and new concepts
are needed.

Using multivariate ideas, Alonso et al (2003) proposed the variance reduction
factor (V RF) to capture individual-level surrogacy in this more elaborate setting.
They quantified the relative reduction in the true endpoint variance after adjustment
by the surrogate as

V RFind =
∑i{tr(ΣT Ti)− tr(Σ(T |S)i)}

∑i tr(ΣT Ti)
, (2.30)

where Σ(T |S)i denotes the conditional variance-covariance matrix of ε̃Ti j given ε̃Si j :
Σ(T |S)i = ΣT Ti−ΣT SiΣ−1

SSi Σ
�
T Si. Here, ΣT Ti and ΣSSi are the variance-covariance ma-

trices associated with the true and surrogate endpoint respectively and ΣT Si contains
the covariances between the surrogate and the true endpoint. Alonso et al (2003)
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showed that the V RFind ranges between zero and one, and that V RFind = R2
ind when

the endpoints are measured only once.
An alternative proposal is

θp = ∑
i

1
N pi

tr
{(

ΣT Ti−Σ(T |S)i
)

Σ−1
T Ti

}
. (2.31)

Structurally, both V RF and θp are similar, the difference being the reversal of sum-
ming the trace and calculating the ratio. In spite of this strong structural similarity
the VRF is not symmetric in S and T and it is only invariant with respect to linear or-
thogonal transformations, whereas θp is both symmetric and invariant with respect
to the broader class of linear bijective transformations.

A common problem of all previous proposals is that they are strongly based on
the normality assumption and extensions to non-normal settings are difficult. To
overcome this limitation, Alonso et al (2005), introduced a new parameter, the so-
called R2

Λ , to evaluate surrogacy at the individual level when both responses are
measured over time or in general when multivariate or repeated measures are avail-
able

R2
Λ =

1
N ∑

i
(1−Λi), (2.32)

where: Λi =
|Σi|

|ΣT Ti| |ΣSSi| . This parameter not only allows the detection of more

general patterns of association but can also be extended to more general settings
that those defined by the normal distribution. They proved that R2

Λ ranges between
zero and one, and that in the cross-sectional case R2

Λ = R2
ind. These authors have

shown that R2
Λ = 1 whenever there is a deterministic relationship between two linear

combinations of both endpoints, allowing the detection of strong associations in
cases where the VRF or θp would fail in doing so.

2.6.3 Towards a Unified Approach

The longitudinal method of the previous section, while elegant, hinges upon nor-
mality. First using the likelihood reduction factor (Section 2.6.3.1) and then an
information-theoretic approach (Section 2.6.3.2), extension, and therefore unifica-
tion, will be achieved.

2.6.3.1 The Likelihood Reduction Factor

Estimating individual-level surrogacy, as the previous developments clearly show,
has frequently been based on a variance-covariance matrix coming from the distri-
bution of the residuals. However, if we move away from the normal distribution,
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it is not always clear how to quantify the association between both endpoints after
adjusting for treatment and trial effect. To address this problem, Alonso et al (2004)
considered the following generalized linear models in the ith trial

gT (Ti j) = μTi +βiZi j, (2.33)
gT (Ti j) = θ0i +θ1iZi j +θ2iSi j. (2.34)

The longitudinal case would be covered by considering particular functions of time
in (2.33) and (2.34). Consider G2

i as the log-likelihood ratio test statistics to compare
(2.33) with (2.34) in trial i, and quantify the association between both endpoints at
the individual level using a scaled likelihood reduction factor (LRF)

LRF = 1− 1
N ∑

i
exp

(
−G2

i
ni

)
. (2.35)

Alonso et al. (2004) established a number of properties for LRF, in particular its
ranging in the unit interval, and its reduction to R2

Λ in the longitudinal and to R2
ind

in the cross-sectional case.

2.6.3.2 An Information-theoretic Unification

This proposal avoids the needs for a joint, hierarchical model, and allows for unifica-
tion across different types of endpoints. The entropy of a random variable (Shannon
1948), a good measure of randomness or uncertainty, is defined in the following
way for the case of a discrete random variable Y , taking values {k1,k2, . . . ,km}, and
with probability function P(Y = ki) = pi:

H(Y ) = ∑
i

pi log
(

1
pi

)
. (2.36)

The differential entropy hd(X) of a continuous variable X with density fX (x) and
support S fX equals

hd(Y ) =−E[log fX (X)] =−
∫

S fX

fX (x) log fX (x)dx. (2.37)

The joint and conditional (differential) entropies are defined in an analogous fash-
ion. Defining the information of a single event as I(A) = log pA, the entropy is
H(A) = −I(A). No information is gained from a totally certain event, pA ≈ 1, so
I(A)≈ 0), while an improbable event is informative.

H(Y ) is the average uncertainty associated with P. Entropy is always non-
negative, satisfies H(Y |X) ≤ H(Y ) for any pair of random variables, with equal-
ity holding under independence, and is invariant under a bijective transformation
(Cover and Tomas 1991). Differential entropy enjoys some but not all proper-
ties of entropy: it can be infinitely large, negative, or positive, and is coordinate
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dependent. For a bijective transformation Y = y(X), it follows hd(Y ) = hd(X)−
EY

(
log

∣∣∣ dx
dy (y)

∣∣∣).
We can now quantify the amount of uncertainty in Y , expected to be removed

if the value of X were known, by I(X ,Y ) = hd(Y )− hd(Y |X), the so-called mu-
tual information. It is always non-negative, zero if and only if X and Y are in-
dependent, symmetric, invariant under bijective transformations of X and Y , and
I(X ,X) = hd(X). The mutual information measures the information of X , shared
by Y .

We will now introduce the entropy-power (Shannon 1948) for comparison of
continuous random variables. Let X be a continuous n-dimensional random vector.
The entropy-power of X is

EP(X) =
1

(2πe)n e2h(X). (2.38)

The differential entropy of a continuous normal random variable is h(X) =
1
2 log

(
2πσ2

)
, a simple function of the variance and, on the natural logarithmic scale:

EP(X) = σ2. In general, EP(X)≤Var(X) with equality if and only if X is normally
distributed.

We can now define an information-theoretic measure of association (Schemper
and Stare 1996):

R2
h =

EP(Y )−EP(Y |X)
EP(Y )

, (2.39)

which ranges in the unit interval, equals zero if and only if (X ,Y ) are independent,
is symmetric, is invariant under bijective transformation of X and Y , and, when
R2

h → 1 for continuous models, there is usually some degeneracy appearing in the
distribution of (X,Y). There is a direct link between R2

h and the mutual information:
R2

h = 1− e−2I(X ,Y ). For Y discrete: R2
h ≤ 1− e−2H(Y ), implying that R2

h then has an
upper bound smaller than 1; we then redefine

R2
hmax =

R2
h

1− e−2H(Y ) ,

reaching 1 when both endpoints are deterministically related.
We can now redefine surrogacy, while preserving previous proposals as special

cases. While we will focus on individual-level surrogacy, all results apply to the trial
level too. Let Y = T and X = S be the true and surrogate endpoints, respectively.
We consider S a good surrogate for T at the individual (trial) level, if a “large”
amount of uncertainty about T (the treatment effect on T ) is reduced when S (the
treatment effect on S) is known. Equivalently, we term S a good surrogate for T at
the individual level, if our lack of knowledge about the true endpoint is substantially
reduced when the surrogate endpoint is known.

A meta-analytic framework, with N clinical trials, produces Nq different R2
hi, and

hence we propose a meta-analytic R2
h:
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R2
h =

Nq

∑
i=1

αiR2
hi = 1−

Nq

∑
i=1

αie−2Ii(Si,Ti),

where αi > 0 for all i and ∑
Nq
i=1 αi = 1. Different choices for αi lead to different

proposals, producing an uncountable family of parameters. This opens the additional
issue of finding an optimal choice. In particular, for the cross-sectional normal-
normal case, Alonso and Molenberghs (2007) have shown that R2

h = R2
ind. The same

holds for R2
Λ , defined in (2.28) for the longitudinal case. Finally, when the true and

surrogate endpoints have distributions in the exponential family, then LRF P→ R2
h

when the number of subjects per trial goes to infinity.

2.6.3.3 Fano’s Inequality and the Theoretical Plausibility of Finding a Good

Surrogate

Fano’s inequality shows the relationship between entropy and prediction:

E
[
(T −g(S))2]≥ EP(T )(1−R2

h) (2.40)

where EP(T ) =
1

2πe
e2h(T ). Note that nothing has been assumed about the distribu-

tion of our responses and no specific form has been considered for the prediction
function g. Also, (2.40) shows that the predictive quality strongly depends on the
characteristics of the endpoint, specifically on its power-entropy. Fano’s inequality
states that the prediction error increases with EP(T ) and therefore, if our endpoint
has a large power-entropy then a surrogate should produce a large R2

h to have some
predictive value. This means that, for some endpoints, the search for a good surro-
gate can be a dead end street: the larger the entropy of T the more difficult it is to
predict. Studying the the power-entropy before trying to find a surrogate is therefore
advisable.

2.7 Incomplete Data

When referring to the missing-value, or non-response, process we will use the ter-
minology of Little and Rubin (2002). A non-response process is said to be missing
completely at random (MCAR), if the missingness is independent of both unob-
served and observed data, and missing at random (MAR), if, conditional on the
observed data, the missingness is independent of the unobserved measurements.
A process that is neither MCAR nor MAR is termed non-random (MNAR). In
the context of likelihood inference, and when the parameters describing the mea-
surement process are functionally independent of the parameters describing the
missingness process, MCAR and MAR are ignorable, while a non-random pro-
cess is non-ignorable. Thus, under ignorable dropout, one can literally ignore the
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Table 2.7 Overview of missing data mechanisms.

Acronym Description Likelih./Bayesian Frequentist
MCAR missing completely at random ignorable ignorable
MAR missing at random ignorable non-ignorable
MNAR missing not at random non-ignorable non-ignorable

missingness process and nevertheless obtain valid estimates of, say, the treatment.
Above definitions are conditional on including the correct set of covariates into the
model. An overview of the various mechanisms, and their (non-)ignorability under
likelihood, Bayesian, or frequentist inference, is given in Table 2.7.

Let us first consider the case where one follow-up measurement per patient is
made. When dropout occurs, and hence there are no follow-up measurements, one
usually is forced to discard such a patient from analysis, thereby violating the in-
tention to treat (ITT) principle which stipulates that all randomized patients should
be included in the primary analysis and according to the randomisation scheme. Of
course, the effect of treatment can be investigated under extreme assumptions, such
as, for example, a worst case and a best case scenario, but such scenarios are most
often not really helpful.

Early work regarding missingness focused on the consequences of the induced
lack of balance of deviations from the study design (Afifi and Elashoff 1966, Hart-
ley and Hocking 1971). Later, algorithmic developments took place, such as the
expectation-maximization algorithm (EM; Dempster, Laird, and Rubin 1977) and
multiple imputation (Rubin 1987). These have brought likelihood-based ignorable
analysis within reach of a large class of designs and models. However, they usually
require extra programming in addition to available standard statistical software.

In the meantime, however, clinical trial practice has put a strong emphasis on
methods such as complete case analysis (CC) and last observation carried forward
(LOCF) or other simple forms of imputation. Claimed advantages include compu-
tational simplicity, no need for a full longitudinal model analysis (e.g., when the
scientific question is in terms of the last planned measurement occasion only) and,
for LOCF, compatibility with the ITT principle. However, a CC analysis assumes
MCAR and the LOCF analysis makes peculiar assumptions on the (unobserved)
evolution of the response, underestimates the variability of the response and ignores
the fact that imputed values are no real data.

On the other hand, a likelihood-based longitudinal analysis requires only MAR,
uses all data (obviating the need for both deleting and filling in data) and is also
consistent with the ITT principle. Further, it can be shown that also the incom-
plete sequences contribute to estimands of interest (treatment effect at the end of
the study), even early dropouts. For continuous responses, the linear mixed model
is quite popular and is a direct extension of ANOVA and MANOVA approaches,
but more broadly valid in incomplete data settings. For categorical responses and
count data, so-called marginal (e.g., generalized estimating equations, GEE) and
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random-effects (e.g., generalized linear mixed-effects models, GLMM) approaches
are in use. While GLMM parameters can be fitted using maximum likelihood, the
same is not true for the frequentist GEE method but modifications have been pro-
posed to accommodate the MAR assumption (Robins, Rotnitzky, and Zhao 1995).

Finally, MNAR missingness can never be fully ruled out based on the observed
data only. It is argued that, rather than going either for discarding MNAR models
entirely or for placing full faith on them, a sensible compromise is to make them a
component of a sensitivity analysis.

2.7.1 Direct Likelihood Analysis

For continuous outcomes, Verbeke and Molenberghs (2000) describe likelihood-
based mixed-effects models, in the spirit of Section 2.3.1, that are valid under the
MAR assumption. Indeed, for longitudinal studies, where missing data are involved,
a mixed model only requires that missing data are MAR. As opposed to the tradi-
tional techniques, mixed-effects models permit the inclusion of subjects with miss-
ing values at some time points (both dropout and intermittent missingness).

This likelihood-based MAR analysis is also termed likelihood-based ignorable
analysis, or, as we will be using in the remainder of this section, a direct likelihood
analysis. In such a direct likelihood analysis, the observed data are used without
deletion nor imputation. In doing so, appropriate adjustments are made to parame-
ters at times when data are incomplete, due to the within-patient correlation.

Thus, even when interest lies, for example, in a comparison between the two
treatment groups at the last occasion, such a full longitudinal analysis is a good
approach, since the fitted model can be used as the basis for inference at the last
occasion.

In many clinical trials, the repeated measures are balanced in the sense that a
common (and often limited) set of measurement times is considered for all subjects,
which allows the a priori specification of a “saturated” model. For example, a full
group-by-time interaction for the fixed effects combined with an unstructured co-
variance matrix. A direct-likelihood analysis is equivalent to a classical MANOVA
analysis when data are complete. This is a strong answer to the common criticism
that a direct likelihood method is making strong assumptions. Indeed, its coinci-
dence with MANOVA for data without missingness shows that the assumptions
made are very mild. However, when data are incomplete, one should be aware that
MANOVA and comparisons per time point are only valid under MCAR and less ef-
ficient compared to a likelihood analysis; this was also noted in Section 2.3.3, where
the t-test for treatment differences at month 12 for the toenail data was found less
efficient than the linear mixed effects model. On the other hand, under MAR, both
MANOVA and comparisons per time point will not only be less efficient, but more
importantly, they will produced biased results, because they do not take into account
that the observed data no longer constitute a random sample from the target popula-
tion. Therefore, the full likelihood analysis constitutes a very promising alternative
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to CC and LOCF. When a relatively large number of measurements is made within
a single subject, the full power of random-effects modeling can be used (Verbeke
and Molenberghs 2000). The practical implication is that a software module with
likelihood estimation facilities and with the ability to handle incompletely observed
subjects, manipulates the correct likelihood, providing valid parameter estimates
and likelihood ratio values.

A few cautionary remarks are warranted. First, when at least part of the scien-
tific interest is directed towards the nonresponse process, obviously both processes
need to be considered. Under MAR, both questions can be answered separately. This
implies that a conventional method can be used to study questions in terms of the
the outcomes of interest, such as treatment effect and time trend, whereafter a sep-
arate model can be considered to study missingness. Second, likelihood inference
is often surrounded with references to the sampling distribution (e.g., to construct
measures of precision for estimators and for statistical hypothesis tests, Kenward
and Molenberghs 1998). However, the practical implication is that standard errors
and associated tests, when based on the observed rather than the expected informa-
tion matrix and given that the parametric assumptions are correct, are valid. Thirdly,
it may be hard to rule out the operation of an MNAR mechanism. This point was
brought up in the introduction and will be discussed further in Section 2.7.4.

2.7.2 Illustration: Orthodontic Growth Data

The simple methods and direct likelihood method are now compared using the
growth data of Section 2.2.4. For this purpose, a linear mixed model is used, as-
suming unstructured mean, i.e., assuming a separate mean for each of the eight
age×sex combinations, together with an unstructured covariance structure, and us-
ing maximum likelihood (ML) as well as restricted maximum likelihood (REML).
The mean profiles of the linear mixed model using maximum likelihood for all four
data sets, for boys, are given in Figure 2.8. The girls’ profiles are similar and hence
not shown.

Next to this longitudinal approach, we will consider a full MANOVA analysis
and a univariate ANOVA analysis, i.e., one per time point. For all of these analyses,
Table 2.8 shows the estimates and standard errors for boys at ages 8 and 10, for the
original data and all available incomplete data, as well as for the CC and the LOCF
data.

First, we consider the group means for the boys in the original data set in Fig-
ure 2.8, i.e., we observe relatively a straight line. Clearly, there seems to be a linear
trend in the mean profile.

In a complete case analysis of the growth data, the 9 subjects which lack one
measurement are deleted, resulting in a working data set with 18 subjects. This
implies that 27 available measurements will not be used for analysis, a quite severe
penalty on a relatively small data set. Observing the profiles for the CC data set in
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Fig. 2.8 Orthodontic Growth Data. Profiles for the original data, CC, LOCF, and direct likelihood
for boys.

Figure 2.8, all group means increased relative to the original data set but mostly so
at age 8. The net effect is that the profiles overestimate the average length.

For the LOCF data set, the 9 subjects that lack a measurement at age 10 are
completed by imputing the age 8 value. It is clear that this procedure will affect the
apparently increasing linear trend found for the original data set. Indeed, the im-
putation procedure forces the means at ages 8 and 10 to be more similar, thereby
destroying the linear relationship. Hence, a simple, intuitively appealing interpreta-
tion of the trends is made impossible.

In case of direct likelihood, we now see two profiles. One for the observed means
and one for the fitted means. These two coincide at all ages except age 10. As men-
tioned earlier, the complete observations at age 10 are those with a higher measure-
ment at age 8. Due to the within-subject correlation, they are the ones with a higher
measurement at age 10 as well, and therefore the fitted model corrects in the appro-
priate direction. The consequences of this are very important. While we are inclined
to believe that the fitted means do not follow the observed means all that well, this
nevertheless is precisely what we should observe. Indeed, since the observed means
are based on a non-random subset of the data, the fitted means take into account all
observed data points, as well as information on the observed data at age 8, through
the measurements that have been taken for such children, at different time points.

As an aside to this, note that, in case of direct likelihood, the observed average
at age 10 coincides with the CC average, while the fitted average does not coin-
cide with anything else. Indeed, if the model specification is correct, then a direct
likelihood analysis produces a consistent estimator for the average profile, as if no-
body had dropped out. Of course, this effect might be blurred in relatively small
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Table 2.8 Orthodontic Growth Data. Comparison of analyses based on means at (completely ob-
served age 8 and incompletely observed age 10 measurement)

Method Boys at Age 8 Boys at Age 10
Original Data

Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)
Direct likelihood, REML 22.88 (0.58) 23.81 (0.51)
MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time point 22.88 (0.61) 23.81 (0.53)

All Available Incomplete Data

Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)
Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 22.88 (0.61) 24.14 (0.74)

Complete Case Analysis

Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
Direct likelihood, REML 24.00 (0.48) 24.14 (0.66)
MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 24.00 (0.51) 24.14 (0.74)

Last Observation Carried Forward Analysis

Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)
Direct likelihood, REML 22.88 (0.58) 22.97 (0.68)
MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time point 22.88 (0.61) 22.97 (0.72)

data sets due to small-sample variability. Irrespective of the small-sample behavior
encountered here, the validity under MAR and the ease of implementation are good
arguments that favor this direct likelihood analysis over other techniques.

Let us now compare the different methods by means of Table 2.8, which shows
the estimates and standard errors for boys at age 8 and 10, for the original data and
all available incomplete data, as well as for the CC data and the LOCF data.

Table 2.8 shows some interesting features. In all four cases, a CC analysis gives
an upward biased estimate, for both age groups. This is obvious, since the complete
observations at age 10 are those with a higher measurement at age 8, as we have
seen before. The LOCF analysis gives a correct estimate for the average outcome
for boys at age 8. This is not surprising since there were no missing observations
at this age. As noted before, the estimate for boys of age 10 is biased downwards.
When the incomplete data are analyzed, we see from Table 2.8 that direct likelihood
produces good estimates. The MANOVA and ANOVA per time point analyses give
an overestimation of the average of age 10, like in the CC analysis. Further, the
MANOVA analysis also yields an overestimation of the average at age 8, again the
same as in the CC analysis.
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Thus, direct likelihood shares the elegant and appealing features of ANOVA and
MANOVA for fully observed data, but is superior with incompletely observed pro-
files.

2.7.3 Incompleteness and Estimating Equations

2.7.3.1 Weighted Generalized Estimating Equations

As Liang and Zeger (1986) pointed out, GEE-based inferences are valid only un-
der MCAR, due to the fact that they are based on frequentist considerations. An
important exception, mentioned by these authors, is the situation where the work-
ing correlation structure (discussed in the previous section) happens to be correct,
since then the estimates and model-based standard errors are valid under the weaker
MAR. This is because then, the estimating equations can be interpreted as likeli-
hood equations. In general, of course, the working correlation structure will not be
correctly specified. The ability to do so is the core motivation of the method, and
therefore Robins, Rotnitzky, and Zhao (1995) proposed a class of weighted estimat-
ing equations to allow for MAR, extending GEE.

The idea is to weight each subject’s contribution in the GEEs by the inverse prob-
ability that a subject drops out at the time he dropped out. This can be calculated,
for example, as

νidi ≡ P[Di = di] =
di−1

∏
k=2

(1−P[Rik = 0|Ri2 = . . . = Ri,k−1 = 1])×

P[Ridi = 0|Ri2 = . . . = Ri,di−1 = 1]I{di≤T}.

Recall that we partitioned Y i into the unobserved components Y m
i and the observed

components Y o
i . Similarly, we can make the exact same partition of μi into μi

m and
μi

o. In the weighted GEE approach, which is proposed to reduce possible bias of β̂ ,
the score equations to be solved when taking into account the correlation structure
are:

S(β ) =
N

∑
i=1

1
νidi

∂ μi

∂β�
(A1/2

i CiA
1/2
i )−1(yi−μi) = 0

=
N

∑
i=1

n+1

∑
d=2

I(Di = d)
νid

∂ μi

∂β�
(d)(A1/2

i CiA
1/2
i )−1(d)(y(d)−μi(d)) = 0, (2.41)

where yi(d) and μi(d) are the first d−1 elements of yi and μi respectively. We define
∂ μi

∂β� (d) and (A1/2
i CiA

1/2
i )−1(d) analogously.
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It is worthwhile to note that the recently proposed so-called doubly robust meth-
ods (van der Laan and Robins 2002) is more efficient and robust to a wider class of
deviations. However, it is harder to implement than the original proposal.

An alternative mode of analysis, generally overlooked but proposed by Schafer
(2003), would consist in multiply imputing the missing outcomes using a parametric
model, e.g., of a random-effects or conditional type, followed by conventional GEE
and conventional multiple-imputation inference on the so-completed sets of data.
This approach is discussed in Beunckens, Sotto, and Molenberghs (2007).

2.7.3.2 Analysis of the Age-related Macular Degeneration Trial

We compare analyses performed on the completers only (CC), on the LOCF imputed
data, as well as on the observed data. For the observed, partially incomplete data,
GEE is supplemented with WGEE. The GEE analyses are reported in Table 2.9. A
working exchangeable correlation matrix is considered. The model has four inter-
cepts and four treatment effects. Precisely, the marginal regression model takes the
form

logit[P(Yi j = 1|Ti)] = β j1 +β j2Ti,

where j = 1, . . . ,4 refers to measurement occasion, Ti is the treatment assignment for
subject i = 1, . . . ,240 and Yi j is the indicator for whether or not 3 lines of vision have
been lost for subject i at time j. The advantage of having separate treatment effects
at each time is that particular attention can be given at the treatment effect assess-
ment at the last planned measurement occasion, i.e., after one year. From Table 2.9
it is clear that the model-based and empirically corrected standard errors agree ex-
tremely well. This is due to the unstructured nature of the full time by treatment
mean structure. However, we do observe differences in the WGEE analyses. Not
only are the parameter estimates mildly different between the two GEE versions,
there is a dramatic difference between the model-based and empirically corrected
standard errors. Nevertheless, the two sets of empirically corrected standard errors
agree very closely, which is reassuring.

When comparing parameter estimates across CC, LOCF, and observed data anal-
yses, it is clear that LOCF has the effect of artificially increasing the correlation
between measurements. The effect is mild in this case. The parameter estimates of
the observed-data GEE are close to the LOCF results for earlier time points and
close to CC for later time points. This is to be expected, as at the start of the study
the LOCF and observed populations are virtually the same, with the same hold-
ing between CC and observed populations near the end of the study. Note also that
the treatment effect under LOCF, especially at 12 weeks and after 1 year, is biased
downward in comparison to the GEE analyses. To properly use the information in
the missingness process, WGEE can be used. To this end, a logistic regression for
dropout, given covariates and previous outcomes, needs to be fitted. Parameter es-
timates and standard errors are given in Table 2.10. Intermittent missingness will
be ignored. Covariates of importance are treatment assignment, the level of lesions
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Table 2.9 Age-related Macular Degeneration Trial. Parameter estimates (model-based standard
errors; empirically corrected standard errors) for the marginal models: GEE on the CC and LOCF
population, and on the observed data. In the latter case, also WGEE is used

Effect Par. CC LOCF Observed data
Unweighted WGEE

Int.4 β11 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 β21 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 β31 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 β41 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr.4 β12 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 β22 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 β32 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 β42 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)
Corr. ρ 0.39 0.44 0.39 0.33

at baseline (a four-point categorical variable, for which three dummies are needed),
and time at which dropout occurs. For the latter covariates, there are three levels,
since dropout can occur at times 2, 3, or 4. Hence, two dummy variables are in-
cluded. Finally, the previous outcome does not have a significant impact, but will be
kept in the model nevertheless. In spite of there being no strong evidence for MAR,
the results between GEE and WGEE differ quite a bit. It is noteworthy that at 12
weeks, a treatment effect is observed with WGEE which goes unnoticed with the
other marginal analyses. This finding is mildly confirmed by the random-intercept
model, when the data as observed are used.

Table 2.10 Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for a
logistic regression model to describe dropout

Effect Parameter Estimate (s.e.)
Intercept ψ0 0.14 (0.49)
Previous outcome ψ1 0.04 (0.38)
Treatment ψ2 -0.86 (0.37)
Lesion level 1 ψ31 -1.85 (0.49)
Lesion level 2 ψ32 -1.91 (0.52)
Lesion level 3 ψ33 -2.80 (0.72)
Time 2 ψ41 -1.75 (0.49)
Time 3 ψ42 -1.38 (0.44)

2.7.4 Sensitivity Analysis

When there is residual doubt about the plausibility of MAR, one can conduct a sen-
sitivity analysis. While many proposals have been made, this is still a very active
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area of research. Obviously, a number of MNAR models can be fitted, provided
one is prepared to approach formal aspects of model comparison with due caution.
Such analyses can be complemented with appropriate (global and/or local) influ-
ence analyses (Verbeke et al. 2001). Another route is to construct pattern-mixture
models, where the measurement model is considered, conditional upon the observed
dropout pattern, and to compare the conclusions with those obtained from the se-
lection model framework, where the reverse factorization is used (Michiels et al.
2002, Thijs et al. 2002). Alternative sensitivity analyses frameworks are provided
by Robins, Rotnitzky, and Scharfstein (1998), Forster and Smith (1998) who present
a Bayesian sensitivity analysis, and Raab and Donnelly (1999). A further paradigm,
useful for sensitivity analysis, are so-called shared parameter models, where com-
mon latent or random-effects drive both the measurement process as well as the
process governing missingness.

Nevertheless, ignorable analyses may provide reasonably stable results, even
when the assumption of MAR is violated, in the sense that such analyses constrain
the behavior of the unseen data to be similar to that of the observed data. A dis-
cussion of this phenomenon in the survey context has been given in Rubin, Stern,
and Vehovar (1995). These authors firstly argue that, in well conducted experiments
(some surveys and many confirmatory clinical trials), the assumption of MAR is of-
ten to be regarded as a realistic one. Secondly, and very important for confirmatory
trials, a MAR analysis can be specified a priori without additional work relative
to a situation with complete data. Thirdly, while MNAR models are more general
and explicitly incorporate the dropout mechanism, the inferences they produce are
typically highly dependent on the untestable and often implicit assumptions built
in regarding the distribution of the unobserved measurements given the observed
ones. The quality of the fit to the observed data need not reflect at all the appro-
priateness of the implied structure governing the unobserved data. Based on these
considerations, we recommend, for primary analysis purposes, the use of ignorable
likelihood-based methods or appropriately modified frequentist methods. To explore
the impact of deviations from the MAR assumption on the conclusions, one should
ideally conduct a sensitivity analysis (Verbeke and Molenberghs 2000).

2.7.5 The Link Between Joint Modeling and Incomplete Data

In Section 2.5, the main research interest was in the time-to-event outcome, and
we have motivated joint modeling approaches in order to adequately take into ac-
count in our analysis the effect of a time-dependent covariate measured with error.
However, joint modeling may be also required when interest is in the longitudi-
nal outcome. In particular, the occurrence of events causes dropout due to the fact
that no longitudinal measurements are usually available at and after the event (e.g.,
death). As we have seen earlier in this section, if the probability of dropout depends
on unobserved longitudinal components, i.e., is MNAR, then the dropout process
must be explicitly taken into account in order to produce valid inferences for the
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longitudinal model. One of the modeling frameworks that has been proposed in the
missing data literature to handle nonrandom dropout is the shared parameter mod-
els (Wu and Carroll 1988, Follmann and Wu 1995). These models posit a survival
sub-model for the time-to-dropout and a mixed effects sub-model for the longitudi-
nal responses, and therefore, they belong in fact to same family as the joint model
(2.15). When approached from the missing-data point of view, the basic assump-
tion behind these models is that the probability of dropout at time t depends on
values of the longitudinal outcome at both past and future time points, through a
set of random effects. To show this more clearly, we define for each subject the
observed and missing part of the longitudinal response vector. The observed part
yo

i = {yi(ti j) : ti j < Ti, j = 1, . . . ,ni} contains all observed longitudinal measure-
ments of the ith subject before the observed event time, whereas the missing part
ym

i = {yi(ti j) : ti j ≥ Ti, j = 1, . . . ,n′i} contains the longitudinal measurements that
would have been taken until the end of the study, had the event not occurred. Un-
der these definitions, we can derive the dropout mechanism, which is the condi-
tional distribution of the time-to-dropout given the complete vector of longitudinal
responses (yo

i ,y
m
i ),

f (T ∗i | yo
i ,y

m
i ;θ) =

∫
f (T ∗i | bi;θ) f (bi | yo

i ,y
m
i ;θ) dbi, (2.42)

which states that the time-to-dropout depends on ym
i through the posterior distribu-

tion of the random effects f (bi | yo
i ,y

m
i ;θ). In practice, this implies that such models

are most meaningful when subjects who experience the event sooner, are the ones
that show steeper evolutions in their longitudinal profiles.

2.8 Software Considerations

Let us provide a brief overview of useful software tools, relative to the methodology
described and exemplified in this chapter.

Linear mixed models can be fitted using the SAS procedures MIXED, GLIM-
MIX, and NLMIXED, and the R packages nlme and lme4.

Generalized linear mixed models have been implemented in the SAS procedures
GLIMMIX and NLMIXED; they can also be fitted using the R packages lme4,
glmmML, MCMCglmm among others.

GEE can be fitted using the SAS procedure GENMOD and the R packages gee
and geepack.

When incomplete data are analyzed using multiple imputation, the SAS proce-
dures MI and MIANALYZE apply. Likewise, a suite of R functions is available
in packages mice, mitools and Hmisc. For direct-likelihood analysis, simply the
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aforementioned SAS and R tools apply. Weighted estimating equations require
user-defined software.

User-defined software is also needed for the validation of surrogate markers, for
high-dimensional data, and for joint modeling.

The authors and their collaborators have developed a variety of software tools,
made available via their web sites.

2.9 Concluding Remarks

Models for the analysis of longitudinal and otherwise hierarchical data are om-
nipresent these days throughout empirical research. Indeed, models and analysis
techniques for longitudinal data, be it for Gaussian or non-Gaussian outcomes, are
showing up in biometry, medical statistics, epidemiology, psychometry, economet-
rics, social science, and survey applications. The models are appealing for the in-
tuition behind their formulation. Inferential apparatus is now well developed, and
many methods have been implemented in standard software packages.

In this chapter, we have presented basic methodology for Gaussian and non-
Gaussian longitudinal data, including the linear and generalized linear mixed model
and generalized estimating equations. We also placed a strong emphasis on the use
of these methods in conjunction with a time-to-event outcome, also known as joint
modeling. Furthermore, we have indicated how models for longitudinal data are
playing a role in the validation of surrogate markers.

Finally, we have placed some emphasis on the problem of incomplete data, and
how likelihood-based or Bayesian analysis of incomplete longitudinal data can be
performed easily when data are not fully observed, given the missing data are miss-
ing at random. Related to this, we have indicated how the joint modeling framework
can play a role when the missing data are not missing at random.
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Chapter 3
Multivariate and Multilevel Longitudinal
Analysis

Nicholas T. Longford

Abstract This chapter presents a review of perspectives and methods for analysis
of longitudinal data on several related variables. A connection is made with multi-
level analysis in which the longitudinal and multivariate dimensions of the data can
naturally be subsumed. With the focus on large-scale longitudinal studies of human
subjects who are in general disinterested in and not highly motivated by the agenda
of the study, methods for dealing with nonresponse are an essential addendum to the
analytical equipment.

3.1 Introduction

Modern practice of data collection from human subjects is highly aware of the costs
and difficulties in retaining survey respondents, especially in longitudinal studies
in which survey subjects are to be contacted on several occasions, sometimes over
a long period of time. One reaction to these pressures is to collect more complete
information from complying subjects, so that the resulting data would be well suited
for a wider analytical agenda within the remit of the survey. In particular, it would
enable us to study the associations of several variables, and how these associations
are altered over time.

In this perspective, it is more appropriate to consider as an elementary data item
the value of a vector X(t) observed on a (single) occasion t. Any one component
of X(t) offers little information without the other components of X(t). However,
the vector X(t) offers only a snapshot of a social, economic or epidemiological de-
velopment in the studied population so, for any single t, X(t) is also a much poorer
source of information than the sequence X(1), . . . , X(T ). Such a sequence can be pre-
sented as a random matrix, and data for a random sample from the population as a
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three-dimensional array X composed of vectors x(t)
i for subjects i = 1, . . . ,n at time

points t = 1, . . . ,T .
We assume that the goal of an analysis is inference about a particular finite but

large population P , and that this population is represented by a sample S drawn
from P by a simple random sampling design. We assume that the time points
1, . . . ,T , at which the values of a vector of variables X are observed, are selected
noninformatively, without regard for any of the values X of the units in the sample.

We have two perspectives which lead to diverging approaches to inference. In
the sampling-design based perspective, there is a finite set of units 1, . . . ,N with
fixed (unchanging) values of X(t) for every time point t. In a replication of the study,
a different set of units would be selected into the sample, but if a unit i happened
to be selected in both samples, its values of X(t) would be the same in the two
replications. In this view, sampling is the only source of variation, and the sampling
design provides its complete description.

In the model-based perspective, the values of X(t), t = 1, . . . ,T , are generated by
a particular stochastic process, the definition of which (or, in most practical settings,
an approximation to it) is the analyst’s responsibility. Inferences are made assuming
this model, but the analysis is accompanied by a careful diagnosis that searches for
contradictions of the data with the assumptions made. This approach is much more
common nowadays because it is more flexible, with a greater variety of software
tools that have the necessary elements for its implementation.

The two perspectives are not completely separated. Dealing with nonresponse is
a notable concern that they have in common. Even in the sampling-design based
perspective, a model has to be posited for how the missing data are related to the
recorded data (Little and Rubin, 2002); without a model the analysis would be at a
dead end. In contrast, the model-based perspective ignores all the units with empty
records (no data available); in many analyses no information is available about the
units that were selected into the sample but nothing was recorded about them. The
perspective is, however, concerned about making use of the information in incom-
plete records for which some, but not all, values are recorded. The concern about
good representation of a population often appears out of place because no reference
population is defined, or the model is specified in such a way that it implies or gen-
erates an impression of universality; that, within some reasonable bounds, it applies
to any population.

Our view is that this perspective is constructive but not valid. We qualify this view
by adding that we do not regard model validity as an imperative for a respectable
analysis. We illustrate this on a simple example of a growth model

yi = Ziβ + ε i , (3.1)

where yi are T × 1 (column) vectors of outcomes for units i = 1, . . . ,n, Zi is the
regression matrix for unit i, β is the vector of regression parameters, and ε i are a
random sample from a centred multivariate normal distribution, N (0,Σ). We may
regard µ i = Ziβ as the growth for a typical unit, but deviations from µ i , unless they
are extreme, cannot be regarded as anything untypical. The vector of deviations ε i
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does not represent any errors, because deviation from µ i is not necessarily a sign
of anything that has gone wrong. Usually incorrect is the central assumption of the
functional form of µ i — an unavoidable ‘error’ committed by the analyst against
the environment (nature) in which units are exposed to a multitude of influences,
many of them continual, the impact of which defies both our understanding and any
neat algebraic summarisation. The choice of the variables in Z is governed by ana-
lytical pragmatism, attempting to capture the most important features of the studied
phenomenon. With more extensive data (more observed units), we can capture finer
detail and include more variables in Z. When more variables are recorded, we have
a wider choice of variables in Z. Validity of a model, defined as a collection of dis-
tributions according to one of which the data is generated, is an unattainable goal.
Its pragmatic reduction is a model that the data appear not to contradict, as assessed
by various model-diagnostic procedures.

In theory and reality, there is a single valid model (the process); in practice, we
improvise with the information we possess, and the intermediate goal of variable se-
lection has different targets depending on the extent of the information, ignoring the
fact that there is only one valid model. The pretense that the model we have selected
is the valid model is a common logical inconsistency that does considerable harm to
the integrity of the statistical practice. Attempts at addressing this problem (Draper,
1995; Chatfield, 1995; and Longford, 2007) have been largely ignored because of
the complexity involved. They entail taking into account the model uncertainty, ac-
knowledging that the model-selection process is also subject to sampling variation.

The model in (3.1) ascribes a different status to the covariates in Z than to the
outcomes in y, even when there is no distinction in the way their values are collected
in a survey. Both y and Z are attributes of the members of the population that are
not amenable to any control, unlike a treatment assigned by randomisation in an
experimental study. In particular, any causal inference is highly problematic when
Z is observed just as passively as y, without exercising any influence (control) over
its values. The regression in (3.1), summarised by the vector of parameters β , is
a comparison of subpopulations (strata) defined by the values of Z, and it offers
no basis for statements about manipulation — what would happen if a particular
unit had a different value of Z. There would be an answer, in principle, if the valid
data-generating model were known. In practice, such a model is not known and the
recorded variables are usually a small subset of the variables that would have a role
in such an ideal model.

In the modelling perspective, longitudinal analysis combines aspects of multi-
variate and multilevel analyses. It is multivariate, because one or several variables
are observed on several occasions, and the study of the associations of these (time-
specific) versions of the variable(s) is of obvious interest. It is multilevel, because
the observations on a subject at the time points are naturally clustered, and the sub-
jects may be further clustered within families, areas (locations), schools, businesses
and similar organisations. The purpose of this chapter is to elaborate these links and
perspectives, with an emphasis on taking advantage of their strengths in responding
to the various complexities encountered in the analysis of longitudinal data.



100 Nicholas Longford

The next section introduces the univariate longitudinal setting and the follow-
ing section discusses nonresponse. Section 3.4 extends the models for multivariate
outcomes. Section 3.5 discusses modelling of univariate outcomes in greater de-
tail, studying dependence across time and variance heterogeneity. Section 3.6 deals
with multivariate versions of these models. Computational issues, model fitting and
graphical presentation, are addressed in Section 3.7. The chapter is concluded with
a discussion.

3.2 Inferential Targets

Assuming that the values of the vector of outcomes x(t) are well defined for any
time-point t ∈ (0,T ), or beyond, we may associate each member j of P with a
multivariate function Fj(t) of time. This function, describing the growth, evolution
or development, is a relevant target of inference. Inference about its behaviour in the
near future amounts to extrapolation, but we can learn from its behaviour in the past,
assuming some form of stationarity. The observations x(t)

j at time points t = 1, . . . ,T
inform about Fj only partially. If all the subjects in the sample are observed in a
regimented fashion, at time points t = 1, . . . ,T , then we have no information about
the behaviour of Fj between any two (integer) time points. This suggests that we
may learn more by implementing designs with unevenly set time points t. The vec-
tors of outcomes may have uneven lengths, and the time points for a unit need not
be distributed evenly. However, the choice of the time points t has to be nonin-
formative for every unit, independently of the functions Fj . This is ensured when
the time points are set by design. When the observational units (subjects) volunteer
to provide the information, (e.g., as patients or customers), or become data donors
opportunistically e. g., by being met at a railway station or a shopping centre, we
have to be concerned about the good representation of the sample, as well as by the
non-ignorable nature of the time-selection process.

The model in (3.1) has no straightforward adaptation for unevenly distributed
time points. For each unit i we posit a model

yih = fi(tih)+ εih ,

where tih is the time at the observation h of unit i and εih are a random sample from
a (univariate) centred normal distribution, N (0,σ2). We may specify a separate
model for the variance σ 2, relating it to time t. The unit-specific functions fi may
involve some coefficients ξ i , for which another model would be defined, linking the
units to vectors ξ i :

ξ i = ν +δ i , (3.2)

where δ i is a random sample from a multivariate distribution. Instead of ν we may
have a model that relates the expectations E(ξ ) to a (linear) function of some co-
variates defined for the units. The decomposition in (3.2) connects the unit-specific
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functions fi and enables us to describe the population of units in terms of a typical
unit given by the parameter vector ν and unit-level variation described by the dis-
tribution of δ i . The link between fi and ξ i need not be linear, and so the function f
that corresponds to ν is, in general, not a population average of the functions fi .

3.3 Incompleteness

By complete data we understand a valid entry for every data item that was intended
to be collected by the design (protocol). A typical protocol calls for collecting a
rectangular dataset, a list of variables recorded at each of a set of time points for ev-
ery unit in the sample. Incompleteness, broadly interpreted as failure to adhere to the
design, is common especially when the units are human subjects for whom the inter-
view and measurement (elicitation) process are an unwelcome distraction. A record
comprising entirely of missing values (unit nonresponse) or lost in the process of
transfer from the interviewer (data collector) to the (secondary) analyst through the
database constructor, may be dropped from the analysis. If no trace is left after such
records in the database the analyst knows nothing about their existence.

A record comprises subrecords for the time points, and any of these subrecords
may be missing (time-point or wave nonresponse). Unless the analyst is aware, or
infers from the patterns in the data, that the design called for the collection of a
rectangular dataset, the dataset can be subjected to an analysis as if it were com-
plete. Similarly, a subrecord may be empty or incomplete, involving item nonre-
sponse. The design, however, is important. Pretending that the incomplete dataset is
complete results in invalid inferences — inappropriate claims of unbiasedness and
efficiency.

Even if the design did not call for a rectangular dataset, we may pose the problem
of the analysis as involving missing values, values the addition of which would make
the dataset rectangular and amenable to a relatively simple analysis. Of course, this
approach is not practical when a large fraction of the values in the hypothetical rect-
angular dataset are missing (and have to be imputed) and the pattern of nonresponse
is varied. When practical, this approach is relatively simple to implement because
we are privy to the details of the nonresponse process.

3.4 From Univariate to Structured Multivariate Data

We develop models for multivariate longitudinal data within a more general frame-
work of multivariate structured outcomes from univariate models and data by adding
dimensions. We use the term dimension similarly to the term factor in ordinary
regression (and the software GLIM; Francis, Green and Payne, 1993). Thus the var-
ious outcomes recorded on an occasion are a dimension, and the times of observa-
tion are another dimension. We refer to the outcomes as components of the vector of
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outcomes, although the components themselves can be multivariate; for example, a
row of the timepoint-by-variable matrix of outcomes of a subject is a component.

For a univariate outcome y we consider linear regression on some covariates x:

y = xβ + ε ,

with the usual assumptions of independence, normality and homoscedasticity. We
address departures from normality by generalized linear models, for which an al-
ternative distributional assumption is required, together with a link function that
relates the underlying linear predictors to the conditional expectations of the out-
comes, E(y |x).

The structure of clustering, of sets of units having more similar values of the
outcome y than the units in general, is introduced by assuming that the units within
clusters are correlated. The simplest way of doing this is by the compound symmetry
model, in which

y j = X jβ +δ j + ε j , (3.3)

where y j = (y1 j , . . . ,yn j j)
>

is the vector of outcomes in cluster j, X j is the regression
matrix for these units, composed of the rows xi j ; δ j , j = 1, . . . ,n, are a random
sample from N (0,σ2

B); the n = n1 + · · ·+ nm elements of ε j are a random sample
from N (0,σ2); and the two random samples are independent. The within-cluster
correlation ρ = σ2/(σ2 +σ2

B) summarises the relative similarity of the units within
clusters.

For observational (elementary) units within clusters we can distinguish between
variables that are defined for the units (elements) and for the clusters. The latter vari-
ables are expanded for the elements so that all units within a cluster have the same
value as their cluster. Variables defined for units could, in principle, have values that
are constant within clusters. At the other extreme, the values could have identical
means, or even identical distributions within the clusters. Such variables are called
balanced with respect to clustering. As a convention, we include the intercept, rep-
resented by the vector of unities 1, among the balanced variables. For the vectors of
covariates xi j we have the following decomposition of the matrix of crossproducts:

X>X = B+W , (3.4)

where

B =
m

∑
j=1

n j (x̄ j− x̄)> (x̄ j− x̄)

W =
m

∑
j=1

n j

∑
i=1

(xi j− x̄ j)
> (xi j− x̄ j)

and x̄ j is the sample mean within cluster j and x̄ the overall sample mean. Balanced
variables contribute only to W and cluster-level variables only to B.
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We have to draw a distinction between the sample and population versions of the
summaries B and W, as well as any other quantities we define later. Although the
models we consider have fixed values of the covariates, X, in a typical sampling
process applied in a (human) population the values of X are random. That is, in
a hypothetical replication of the survey, a different matrix X would be realised.
In the (sampling) design-based perspective, the values of X and y are fixed in the
population, and the sampling process is the sole source of variation. That is, if a
subject happened to be included in the sample in two replications, his or her values
of x would be the same, and he or she would be in the same cluster.

The design-based perspective has in the past been regarded as not constructive,
and the inferential effort in many areas has drifted toward model-based approaches.
However, there are areas where the balance is being restored. For example, the po-
tential outcomes framework for observational studies (Holland, 1986; Rubin, 2005)
shifts the focus from the association of X and y to the analysis of the (treatment) as-
signment process. This analysis is model-based, but it is only an intermediary to the
substantive analysis which follows, and which is simple, related to the analysis in
an experimental setting, and has more in common with the design-based paradigm.

In the model-based paradigm, the similarity of the units within clusters can be
interpreted in terms of differing within-cluster associations of X and y. The model
in (3.3) corresponds to parallel within-cluster regressions, which have identical re-
gression slopes, but different intercepts β0 + δ j . This characterisation uncovers its
relative rigidity. Much greater flexibility is attained by allowing some (or all) regres-
sion slopes to vary from cluster to cluster. The within-cluster slope for a variable that
is constant within clusters is not identified. Therefore it is meaningful to consider
varying slopes only with respect to variables defined for the elements. We split the
covariates into the two groups, X = (X(1),X(2)), where X(1) are defined for elements
and X(2) for clusters; we assume that none of the variables in X(1) is constant within
clusters. Then the compound symmetry model is

y j = X(1)
j β

(1) +X(2)
j β

(2) +δ j + ε j .

Its obvious generalisation is

y j = X(1)
j β

(1) +X(2)
j β

(2) +X(1)
j δ j + ε , (3.5)

where δ j is a random sample from a centred multivariate normal distribution,
N (0,Σ B). We have to extend the definition of the multivariate normal distribu-
tion to singular (degenerate) distributions for which Σ B is singular. Let ph be the
number of covariates (columns) in X(1) and X(2). Then Σ B is a p2× p2 variance ma-
trix. In Σ B , it is meaningful to constrain some variances to zero. This corresponds to
constant within-cluster slopes with respect to the corresponding covariates. When a
variance is constrained to zero, then so are all the covariances in the same row and
column. We have to obey the rules of invariance with respect to linear transforma-
tions (Longford, 2007, Chapter 9), which dictate that the intercept should be associ-
ated with a variance to be estimated so long as any other covariate is. A categorical
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variable with K distinct labels is represented among covariates by K− 1 indicator
variables. When such a variable is defined for elements, the invariance rules imply
that either all the K− 1 variables are associated with variances to be estimated, or
none are. After all, the values of the indicator variables are contingent on the choice
of the reference, which in most cases is arbitrary or opportunistic.

3.5 Univariate Observations at Time Points

In longitudinal analysis, each unit j is observed at a (finite) sequence of time points

t j =
(

t(1)
j , t(2)

j , . . . , t
(n j)
j

)>
.

When all units are observed at the same set of time points, t j ≡ t, the outcomes form
a sample from a multivariate (normal) distribution, so that

y j ∼ N (µ,Σ) .

Structures can be imposed on the vector µ and variance matrix Σ , such as linear
growth and compound symmetry, but these are useful only when the number of
time points, p, is large, so that a linear function, represented by two parameters, or
a quadratic function, by three, provides a much more compact description for the
growth (development, expansion, decay, or the like) than the components of µ . The
unstructured vector µ is ‘always correct’, but may be ineffective, in that it restricts
the inferences that can be made to the specific time points.

In contrast, a functional expression for µ is in general incorrect, but the bias it
entails may be offset by the reduced sampling variance associated with its estima-
tion. The multivariate perspective is inflexible — it cannot be adapted for inferences
about other time points, by inter- or extrapolation. The functional perspective caters
for such inferences by prediction, although the issues of correctness, and its scope
being limited to the particular context, delimit its application, especially for extrap-
olation.

Without a structure imposed on µ , the design has to ensure that the time points in
t are the ones for which inference is desired. With a structure on µ , the design has to
ensure that the function underlying the expectations µ , µ(t), can be estimated with
desired precision and predictions based on it have sufficient quality.

Similar comments can be made about specifying Σ . Without a structure imposed
on Σ , each covariance in Σ is a unique quantity, although in most contexts we can
reasonably assume that greater distance of the time points is associated with lower
correlation. For the variances in Σ , a reasonable assumption may be that they are
constant or increasing with the distance in time, but a function underlying them
amounts to an assumption highly contingent on (the choice and coding of) the time
points t.
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A parametric structure can be imposed on Σ or on its inverse, Σ
−1, called the

concentration matrix or, in principle, on any transformation of Σ . Working with
Σ
−1 is particularly attractive when considering the Markov property of conditional

independence of any two observations given an observation that separates them:(
yt1 |yt2 ,yt3

)
∼ (yt1 |yt2 ) ,

for the outcomes at any time points t1 < t2 < t3 . The corresponding matrix Σ
−1 is

tridiagonal: {
Σ
−1}

kh = 0

whenever |k− h | ≥ 2. When the number of time points is greater, this constraint
may be considered also for |k−h | ≥ 3 or 4; that is, entries outside the diagonal strip
of Σ

−1 of the given width vanish.
The parameters in µ and Σ are indivisible in the following sense. When no struc-

ture is imposed on µ a structure should not be imposed on Σ either. Imposing a
structure on µ is simpler than on Σ , because it is a unidimensional object. There-
fore a structure may be imposed on µ , but not on Σ , but this is mainly a pragmatic
matter reflecting our inability or lack of confidence about specifying suitable sub-
models.

Observations of the outcomes Y in a longitudinal analysis may be accompanied
by the values of covariates. These may be defined for the subjects and for the (el-
ementary) observations. Adjustment for the variables defined for subjects may be
made by multivariate regression:

y j = x jB+ γ j , (3.6)

where y j is the vector of outcomes for subject j, x j the vector of values of the
covariates, B the matrix of regression parameters, and the deviations γ j are a random
sample from a multivariate normal distribution, N (0,Γ ).

Covariates that are specific to time points cannot be accommodated in the model
in (3.6) because the vector y j is treated like a single unit. The problem does not arise
with hierarchical models in which observations and subjects form separate levels of
nesting:

yi j = x(1)
j β

(1) +x(2)
j β

(1) +x(1)
j δ j + εi j , (3.7)

with assumptions similar to those in (3.5). The variables in x(1)
j are defined for the

occasions and those in x(2)
j for subjects. In the variance matrix Σ B = var(δ j), we

can introduce constraints analogous to those in (3.5), so that an expression more
accurate than (3.7) is

yi j = x(1)
j β

(1) +x(2)
j β

(2) + z jδ j + εi j , (3.8)

where z is a subset of the variables in x(1). The interpretation in terms of varying
regression slopes also carries over to the longitudinal setting. The within-subject
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regression slopes with respect to the variables in z vary, and with respect to their
complement in x(1) are constant.

The vector x(1) contains the variable(s) that represent time. For linear within-
subject regressions, time is represented by a single variable, but growth may follow
any other pattern. To cater for the possibilities, transformations of the time have to
be included in X(1), and some of them also in Z. Invariance with respect to linear
transformations dictates that a variable included in Z should be included also in X(1).
Further, when a hierarchy is defined for the variables in X, such as in polynomial
regression, then this hierarchy should also be reflected in the model choice. For
example, if the cubic term, t3, is included in X(1), then so should be the linear and
quadratic terms. Similarly, if t3 is included in Z, then so should be the linear and
quadratic terms. However, if t3 is included in X(1), it does not have to be included
in Z although if t2 is included, then so should be the linear term t.

The two-level model (Longford, 1993; Verbeke and Molenberghs, 2000; and
Goldstein, 2003) can be applied when observations are made at a given (fixed) set of
time points, but some limitations arise for the combination z jδ j . For r time points,
the largest possible dimension of δ j is r. The multivariate model in (3.6) corre-
sponds to r-variate δ j with Z comprising the unity (intercept) and the indicators of
the categories 2, 3, . . . , r. Other options correspond to a reparametrisation of such a
vector Z. When the observations are not made in a regimented fashion, the number
of variables in Z may still have to be restricted. To see this, consider a design with
time points that for every subject are drawn from the same set, such as 1, . . . , 10, but
not every subject has all the ten observations. Then Z should not contain more than
ten covariates (columns). A direct analogy can be drawn with the models for the
analysis of covariance (ANCOVA). The models in (3.8) differ from them solely by
associating the subject specific deviations δ j with randomness; in ANCOVA they
are (fixed) parameters, subject only to the constraints of identifiability.

A subject-level variable X (2) is by definition constant within subjects, and so the
within-subject regression with respect to X (2) is not well defined. The only reason
why such a variable might be included in Z is to model variance heterogeneity —
the dependence of the variance on the covariates. In general, for the model in (3.8),
we have the identities

var(yi j) = σ
2 + zi jΣ B z>i j

cov(yi j ,yi′ j) = zi jΣ B z>i′ j (3.9)

for i 6= i
′
. Both expressions are quadratic functions of the components of z. There-

fore, exploring the properties of var(y) and cov(y1 ,y2) as functions of z is relatively
simple, although the components of z may be interrelated, such as the indicator vari-
ables for a categorical variable, or the linear and quadratic terms of a polynomial.
The range of the values of the time t is usually limited, so we can evaluate var(y) as
a function of t unambiguously when z contains only functions of time. Otherwise
we have to consider a few (typical) values of the other variables and evaluate var(y)
for each of them.
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3.5.1 Example

Figure 3.1 gives an example of a longitudinal dataset with observations at time
points 1, 2, . . . , 12 for 40 subjects. The outcomes are generated according to the
model in (3.8) with no covariates, except for the time and its transformations. For
the regression x(1)β we use a cubic polynomial in t, and for the variation zδ j a
quadratic polynomial in t. Thus, the values x(1)β + zδ j , j = 1, . . . ,40, are cubic
polynomials with the same cubic coefficient but different quadratic (and linear and
absolute) coefficients. The data are generated with

β = (1, 0.3, 0.024, 0.0011)> ,

σ2 = 0.25 and

Σ =

0.60000 0.04000 0.00030
0.04000 0.02000 0.00015
0.00030 0.00015 0.00009

 .

The curves (trajectories) x(1)β + zδ j are plotted in panel A. We refer to them as
smooth or underlying trajectories, because they are devoid of the inexplicable con-
tribution ε . This random term is commonly referred to as an error. In most contexts,
this label is inappropriate and misleading. It would be appropriate if the model we
specify were correct (as it is in a simulation) and if all subjects behaved according
to this model with σ2, and the elementary-level deviations ε arose as a result of an
imperfect measurement process. In most cases, the model is incorrect, and a partic-
ular positive value of σ2 is appropriate because subjects do not behave according to
any conceivable formula, but there are some equations (models) that approximate
the behaviour reasonably well. The approximation is in error, not the behaviour.

Panel B presents the trajectories as they would be observed, made coarse by the
elementary-level deviations ε . It is difficult to infer the patterns of the trajectories,
smooth or coarse, from the parameter values in β , Σ and σ2, except perhaps for
the extent of the average curvature (from β 3) and the extent of inexplicability (from
σ2); using a simulated sample from the fitted model is much more reliable. Such a
sample, replicated several times, also has an important diagnostic value, as discussed
in Section 3.5.3.

The variance of an observation, as a function of time t,

var(y | t) = σ
2 +(1, t, t2)Σ (1, t, t2)> ,

is drawn in panel C, together with the indication of σ2 as its ‘constant’ contributor
(drawn by dashes). There is no profound reason why the elementary-level variance
should be constant; it is merely a convenient assumption. Without it, we would have
to posit a particular form for how σ2 depends on t. Alternatives plausible in some
settings are that the correlation of two outcomes of the same subject is constant, or
the ratio of the within- and between-subject variances is constant.

There is a trade-off between a within-subject variance σ2
t and the subject-level

matrix Σ . That is, up to a point, a change in one or several values of σ2
t can be
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Fig. 3.1 Graphical representation of balanced longitudinal data. A simulated example.

compensated by changes in Σ , so long as the ‘new’ Σ remains non-negative def-
inite. In principle, σ2 is identifiable from the data, because it represents the inde-
pendent contribution to the variance var(y). The variance matrix Σ characterises the
covariance structure of the observations of a subject. However, large samples are re-
quired to separate the two components of variance, σ 2

t and Σ , with any meaningful
reliability.

Panel D of Figure 3.1 illustrates the distributions of the outcomes within the time
points. It does not contain all the information about the underlying process, because
it gives no indication of the covariance structure of the outcomes. In this respect,
there is no replacement for the simulated trajectories in panels A and B.

Nonlinear transformations can alter the pattern of the trajectories substantially,
from convex to approximately linear to concave. With a nonlinear transformation,
we manipulate the underlying distributions (normal for ε and δ ), the covariance
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structure, and the pattern of the variances σ2
t . In theory, only one family (class of

equivalence) of transformations yields normally distributed outcomes, so arranging
for all the distributional assumptions to hold is next to impossible. In practice, there
is a considerable leeway in the choice of a transformation to make the assumptions
of normality palatable. In fact, in many settings we can focus on transformations
that bring about variance homogeneity (independence of the variances var(y) and
σ2

t on time t) as well.

3.5.2 The Time-Selection Process

In many longitudinal studies, the values of the time points t are not set by design,
prior to data collection. For example, a study may rely on subscribing individuals
turning up at a given location for a particular service, such as health care, advice with
jobs search, a form of entertainment, and similar. In such settings, the realised values
of t may be informative, and the process that generates its values nonignorable. The
observed data are not a good reflection of the process we set out to study.

This problem does not have a solution, in that there is no straightforward way
of adjusting the analysis so that it would be suitable for inferences about the entire
evolution of the outcome variables, or about the values of the outcome variables at
time points selected by design, with the subjects exercising no choice in the matter.

3.5.3 Simulation-Based Diagnostics

Established methods for model diagnostics are difficult to adapt for longitudinal
analysis because of a combination of concerns about normality, appropriate covari-
ance structure and heteroscedasticity. The following generic procedure, introduced
by Rubin (1984), can be applied. We define a data summary called feature; this can
be a single quantity, a vector, a table, a diagram, or their combination (a multifea-
ture). We evaluate (or apply) this feature to the realised dataset, thus obtaining the
realised feature. Next, we simulate datasets from the model fit using the same de-
sign (sample sizes and values of the covariates) as the realised data, and evaluate
the feature on each replicate dataset. We shuffle the one realised and the several
simulated features, and ask a third party (a colleague) to identify one of them as
being exceptional. If he or she points to the realised feature (without knowing that
it is based on the real dataset and the others are not), we conclude that the model is
not appropriate, because if it were, as it is with the simulated data, then the features
would not look (or be) different. It is advantageous to generate 19, 49 or 99 replicate
datasets, so that we would have 20, 50 or 100 datasets and could relate the proba-
bility of identifying the realised dataset by chance to the size of a test in hypothesis
testing. The price for greater accuracy is having to generate a greater number of
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replicates (a serious problem only with very large datasets), and presenting a more
cumbersome task for the colleague. See Longford (2001) for an example.

3.6 Multivariate Observations at Time Points

Suppose the observations of a set of variables at a time point t are well described
by a multivariate normal distribution N (µ t ,Σ t), specific to the time point t. We are
concerned about the evolution of these distributions across the time points. This en-
tails specifying models for the vectors of expectations µ t and variance matrices Σ t ,
but also for the correlation structure of vectors of observations at distinct (consecu-
tive) time points. This is necessary even in the stationary case, when the matrices Σ t
are identical. For example, the assumption that vectors of outcomes yt and yt ′ are
independent for distinct time points t 6= t ′ is in most settings untenable, and so is the
assumption of perfect correlation, Ctt ′ = cov(yt ,yt ′) = Σ t .

Multivariate longitudinal outcomes are represented by a matrix of variables Y,
comprising vectors of variables yt at a time point as its rows and the time series

of univariate longitudinal outcomes y(k) =
(

y(k)
1 ,y(k)

2 , . . .y(k)
T

)>
as its columns. An

ideal solution for the correlation structure across the time points would allow an
(arbitrary) univariate longitudinal model for each component y(k) and a rich variety
of dependence structures implied by the covariance matrices Ctt ′ . Of course, impos-
ing constraints such as non-negative covariances in Ctt ′ and higher correlations for
pairs of time points t and t ′ in greater proximity, is reasonable in most contexts. We
seek models mainly for short time series (small T ), so we are not concerned about
stationarity and other properties that are related to large T .

3.6.1 Autoregression

The univariate autoregression has an obvious multivariate analogue,

yt+1 = at +Btyt + ε t , (3.10)

where at is a vector and Bt a matrix of coefficients and ε t a centred random vector
independent of y1 , . . . ,yt . To maintain multivariate normality, we assume that ε t ∼
N (0,Ξ) and y1 ∼N (µ1 ,Σ 1). Then

Ct,t = Σ t = BtΣ t−1 B>t +Ξ

Ct,t+1 = Σ t B>t .

An important special case arises when Bt is diagonal. This does not correspond to
independent autoregressions, because dependence is still injected by the covariance
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structure of ε t , as well as the initial covariance matrix Σ 1 . When yt comprises
closely related variables, the components of ε t are correlated.

3.6.2 Moving Average

The univariate moving average model has a similar extension for multivariate out-
comes. Each time point t is associated with an independent random vector ε t with
centred multivariate normal distribution N (0,Ξ), and the vector of outcomes is
assumed to be generated according to the model

yt = µ t +A0ε t +A1ε t−1 (3.11)

for some matrices of constants A0 and A1 . A joint distribution has to be specified
for the start of the series, (y1 ,y2). The essential multivariateness of such a mov-
ing average arises as a result of the covariance structure of Ξ combined with the
non-zero off-diagonal elements of A0 and A1 . The models in (3.10) and (3.11) are
for the respective first-order autoregressive and moving-average models. Their gen-
eralisation to higher-order models is straightforward. However, such models are of
limited use with short time series typically encountered in longitudinal analysis.
Autoregression and moving average yield distinct sets of models, so that, at least
in principle, the issue of distinguishing between them, e.g., by hypothesis testing or
information criteria, may arise. In practice, such tests have limited power even in
the univariate case, so the data-based choice between them is unlikely to be feasible
in a multivariate setting. The two kinds of models can be combined, in analogy with
the univariate case.

3.6.3 Two-Level Models

The multivariate version of the compound symmetry model in (3.3) is

Y j = X j B+1δ
>
j +E j ,

where Y j is the T ×K (times-by-variables) matrix of outcomes for subject j, X j
the corresponding matrix of covariates, B is a matrix of regression parameters, δ j
a random sample from a multivariate normal distribution (one vector per subject),
t j is the vector of time points, and E j a matrix; the rows ei j of E j are mutually
independent random vectors (a multivariate random sample), both within a matrix
E j and across them, from another multivariate normal distribution. The two ran-
dom samples, δ j (for subjects) and ei j (for occasions within subjects), are mutually
independent.

A column of the matrix X j is time and some others are its transformations. These
can be associated with subject-level variation by the model
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Y j = X j B+1δ
(0)
j
>

+ t jδ
(1)
j
>

+E j , (3.12)

where the matrix ∆ j = (δ (0)
j , δ

(1)
j ) is a random sample from a multivariate nor-

mal distribution. In this model, the subjects have different associations with time
(varying coefficients δ

(1)
j ). The model can be supplemented with transformations of

time, injecting more flexibility in how the values of the variables within subjects
evolve. Covariances in var(∆ j) are essential, because the evolution of the variables
is unlikely to be independent (unrelated). Of course, E j induces some dependence

among the rows of Y j , but we can regard E(Y j |E j) = X j B + 1δ
(0)
j
>

+ t jδ
(1)
j
>

as
an underlying trend, and study its dependence structure.

We distinguish among variables defined for subjects, which are represented in
each X j by a column of constants, and variables defined for occasions. The time,
represented in X j by a column t j , is one such variable. Variables that are not func-
tions of time, but are recorded on every occasion (observation), may also be included
in X j . Such variables are usually called time-varying. They can be associated with
subject-level variation to model the varying within-subject regressions of the out-
comes on them. Associations of variables with the outcomes have to be interpreted
with care when the values of these variables are recorded passively, without (ex-
perimental) control over them. In the framework of causal analysis, they may be
‘intermediate’ variables, affected by the earlier outcomes, and so their associations
with the outcomes differ from the causal effects of these variables.

3.7 Maximum Likelihood Estimation

Maximisation of the likelihood with the normality assumptions is conceptually sim-
ple and is relatively easy to implement because the likelihood for all the models we
consider has an analytical form. Some difficulties are caused by the large number
of parameters some of which are connected by the assumed structures. The con-
straints of nonnegative definiteness are difficult to enforce. Other difficulties arise
in the model specification, because there is no obvious way of defining a sequence
of nested models that would represent gradual increase in model complexity. Con-
nection of the substantive information with such constraints is particularly difficult
to establish. In principle, we could define the joint distribution of all the outcomes
directly. In such a definition, it is difficult to reflect the structure of observations
within time points.

Likelihood maximisation involves iterative procedures, and these require a (good)
initial solution. Initial solutions are frequently the fits of some very simple submod-
els which are obtained by a simple algorithm. A practical initial solution for fitting
the model in (3.12) or its generalisations is the set of univariate multilevel model
fits. These themselves require iterations, but they are much simpler than a ‘multi-
variate’ iteration. The univariate model fits are useful also for exploring informally
the choice of models for the marginals, the components of X j B.
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Large variance matrices (of model parameters) are estimated by an algorithm that
does not internally respects the nonnegative definiteness of the estimated variance
matrices. In a large (estimated) matrix Ω̂ , the presence of a negative eigenvalue
is not obvious, so the problem might be ignored, until we come across a negative
value of a quadratic form c>Ω̂c for a vector of constants c or wish to draw a ran-
dom sample from the fitted distribution. The constraints of nonnegative definiteness
are difficult to implement in a full-proof fashion, because they involve a trade-off
between slowing down the convergence rate and ensuring that the solution moves
smoothly from one iteration to the next along (or close to) the boundary of the pa-
rameter space defined by nonnegative definiteness.

Alternative solutions estimate decompositions of the variance matrices, such as
the Cholesky or single-value, but the structures we want to impose on the variance
matrices are very difficult to convert to the constraints on these decompositions.

There is no comprehensive software for multivariate random coefficient models,
but software for univariate models can be adapted for the purpose. MLwin (Rasbash
et al, 2005) and the software nlme described in Pinheiro and Bates (2000) are well
suited for this purpose. For methods, examples and general background, we recom-
mend Diggle et al (2002). Laird and Ware (1982) is a paper of historical importance,
outlining the application of random coefficient models for longitudinal analysis.
There is extensive Bayesian literature on longitudinal analysis, much of it centred
around or using the WinBugs software (wwww.mrc-bsu.ca.ac.uk/bugs).

3.7.1 Graphics – Initial Data Exploration

The first step in an initial exploration of the data is to plot the trajectories (evolu-
tions) for each variable separately. The next step entails representing the dependence
of the observations across the variables. Plotting the trajectories of the distinct vari-
ables side-by-side, with the subject marked for each trajectory is effective only for a
few subjects (e.g., a random sample drawn from the data), so that the trajectories of a
subject could be easily identified in the adjacent panels. In multivariate models with
random slopes, the variances and correlations of the observations are time-specific,
and so we can study their evolution by plotting them as functions of time. This can
be effectively implemented by a matrix plot (function pairs in R), with the vari-
ances plotted in the diagonal panels and the correlations plotted in the off-diagonal
panels. More information is displayed when the correlations are plotted under the
diagonal and the covariances above it.

Figure 3.2 presents a bivariate longitudinal dataset. The relatively smooth lines
in the top panels are for the underlying trends, devoid of the within-subject varia-
tion. The average trend (the regressions) are drawn by thick lines in the top panels.
They enable, however crudely, to gain an impression of the correlation of the two
outcomes (components). Comparisons within columns help us to assess the impact
of the within-subject variation, commonly interpreted as noise or error, although
an attribution of ε to a replication-specific random variable (due to the subject’s
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Fig. 3.2 A bivariate longitudinal dataset. A simulated example. The top panels display the under-
lying trends and the bottom panels the values of the observations. The thick solid line indicates the
marginal (population) mean.

inconsistency in the response or imperfection of the measurement/recording pro-
cess) is not always warranted.

In this example, the subject-level variance matrix was specified as

Ω =


1.042 −0.112 0.376 −0.028
−0.112 1.602 0.104 0.268

0.376 0.104 0.928 0.026
−0.028 0.268 0.026 0.337

 ,

constructed from an eigenvalue decomposition to ensure nonnegative definiteness.
The additional space in the display separates the rows and columns that correspond
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to the outcomes, and within each 2× 2 matrix, the first component corresponds to
the intercept and the second to (linear) time. The within-subject variance matrix is

Σ =

(
1.8 1.0
1.0 1.4

)
,

and the vectors of the population means for the two components are

µ1 = (20.4,21.2,22.0,22.4,22.0,21.7,22.5,23.7)>

µ2 = (24.0,23.0,22.0,22.0,24.0,27.0,28.0,30.0)> .

Figure 3.3 summarizes the marginal distributions graphically, highlighting the
increasing variation with time.
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Fig. 3.3 The (marginal) summaries of a bivariate longitudinal series: trend (expectations), vari-
ances, covariances and correlations. Simulated data, with the parameters given in the text.
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3.8 Discussion

Longitudinal analysis refers to analysis that involves a time dimension. In this
respect it is multivariate, although it may involve other aspects of multivariate-
ness, such as several outcomes being observed at each time point. Longitudinal data
comprise repeated observations on subjects, so that their change (growth, decay
or development) can be studied. The temporal dependence can be accounted for
by regression or correlation structures, or their combinations, and the subject-to-
subject variation by random coefficients. In the model construction, for estimation
and prediction, we can draw on models for time series (autoregression and moving
average) and for random coefficients. These are most conveniently specified with
the assumptions of normality and linearity, for which estimation procedures are rel-
atively simple, based on maximum likelihood. Transformations and the generalized
linear modelling framework cater for departures from normality.

Designing longitudinal studies and dealing with nonresponse, and designing
studies which anticipate nonresponse, are challenging problems that do not have
a universal solution because of the intricate interplay of the correlation structure of
the outcome variables with the quality of the estimation. Survey expenses are an
important consideration, especially in studies that take place over a long period of
time (several years) and in populations that, in general, do not have a stake in the
survey and regard responding as a distraction from their everyday affairs. Methods
for dealing with nonresponse and with data that do not fit into neat rectangular data
structures have an important role in the analysis of such surveys.
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Chapter 4
Longitudinal Research Using Mixture Models

Jeroen K. Vermunt

Abstract This chapter provides a state-of-the-art overview of the use of mixture
and latent class models for the analysis of longitudinal data. It first describes the
three basic types mixture models for longitudinal data: the mixture growth, mixture
Markov, and latent Markov model. Subsequently, it presents an integrating frame-
work merging various recent developments in software and algorithms, yielding
mixture models for longitudinal data that can (1) not only be used with categorical,
but also with continuous response variables (as well as combinations of these), (2)
be used with very long time series, (3) include covariates (which can be numeric or
categorical, as well as time-constant or time-varying), (4) include parameter restric-
tions yielding interesting measurement models, and (5) deal with missing values
(which is very important in longitudinal research). Moreover, it discusses other ad-
vanced models, such as latent Markov models with dependent classification errors
across time points, mixture growth and latent Markov models with random effects,
and latent Markov models for multilevel data and multiple processes. The appendix
shows how the presented models can be defined using the Latent GOLD syntax
system (Vermunt and Magidson, 2005, 2008).

4.1 Introduction

The aim of this chapter is to provide a state-of-the-art overview of the use of mix-
ture and latent class models for the analysis of longitudinal data. While in the more
formal statistical literature the term “latent class model” is typically reserved for
a specific type of mixture model (Everitt and Hand, 1981; McLachlan and Peel,
2000), namely for the mixture model for categorical responses described by Lazars-
feld and Henry (1968) and Goodman (1974), in applied fields these terms are used
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interchangeably. This is also what I will do in this chapter; that is, I will use the
terms mixture model and latent class model to denote latent variable models con-
taining one or more discrete latent variables.

In the context of longitudinal research, a mixture model is a latent variable
model containing a single or multiple time-constant or time-varying discrete latent
variables. The best-known examples are the latent class or mixture growth model
(Muthén 2004; Nagin, 1999; Vermunt, 2007), the mixture Markov model (Good-
man, 1961; Poulsen, 1990; van de Pol and Langeheine, 1990; Vermunt, 1997a), and
the latent or hidden Markov model (Baum, Petrie, Soules, and Weiss, 1970; Bar-
tolucci, Pennoni, and Francis, 2007; Collins and Wugalter, 1992; Mooijaart and van
Montfort, 2007; Poulsen, 1990; van de Pol and de Leeuw, 1986; Vermunt, Lange-
heine, and Böckenholt, 1999; Wiggins, 1973).

Diggle, Liang, and Zeger (1994) distinguished three main approaches for ana-
lyzing longitudinal data: (1) marginal or population-average models, (2) random-
effects, subject-specific, or growth models, and (3) conditional or transitional models.
Marginal models focus on the change in univariate distributions, growth models
study individual-level change over time, and transitional models describe changes
between consecutive time points. These three approaches do not only differ with
regard to the questions they address, but also in how they deal with the dependen-
cies between the repeated measures. Because of their structure, transitional models
take the bivariate dependencies between observations at consecutive occasions into
account. Growth models capture the dependencies using latent variables (random ef-
fects). In marginal models, dependencies are not explicitly modeled, but dealt with
as found in the data and in general are taken into account in a more ad hoc way
in the estimation procedure. Variants of transitional, growth, and marginal models
have been developed for both continuous and categorical response variables.

Discrete latent variables may be introduced in longitudinal data models for vari-
ous purposes, the most important of which are dealing with unobserved heterogene-
ity, dealing with measurement error, and clustering. Or more specific, in context of
the three approaches described above, latent classes can be introduced in growth
models for clustering and dealing with unobserved heterogeneity (yielding mix-
ture growth models), and in transitional models for dealing with measurement error,
static or dynamic clustering, and dealing with unobserved heterogeneity (yielding
mixture and latent Markov models). Hagenaars (1990) and Bergsma, Croon, and
Hagenaars (2009) used a latent class marginal model for dealing with measurement
error in categorical responses.

Starting point of this chapter are the simplest variants of the three basic mix-
ture models for longitudinal data: the mixture growth, mixture Markov, and latent
Markov model. Recent developments in software and algorithms have resulted in
many extensions of these basic models; that is, mixture models for longitudinal
data can nowadays (1) not only be used with categorical, but also continuous re-
sponse variables (as well as combinations of these), (2) be used with very long
time series, (3) include covariates (which can be numeric or categorical, as well as
time-constant or time-varying), (4) include parameter restrictions yielding interest-
ing measurement models, and (5) deal with missing values (which is very important
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in longitudinal research). I will present an integrating framework including all these
extended features. Moreover, I will discuss other more advanced features, such as la-
tent Markov models with dependent classification errors across time points, mixture
growth and latent Markov models with random effects, and latent Markov models
for multilevel data and multiple processes.

There is some overlap between the current chapter and Hagenaars’ chapter in
this volume, which deals with longitudinal categorical data analysis using the log-
linear SEM approach implemented in the LEM software (Vermunt 1997b). On the
one hand, this SEM framework is more general than the framework discussed here
because it allows defining any type of categorical data model. On the other hand, it is
more restricted since it deals with categorical data (responses and covariates) only,
and, because it is not tailored for longitudinal data analysis, it can, for example, not
be used with long time series.

In the remaining of this chapter, I will first describe the three basic mixture mod-
els for longitudinal data analysis, including some of their extensions. Then a general
framework is presented containing each of these as special cases, and allowing var-
ious interesting combinations. Though several other recent developments could be
fit into an even more general framework, these will be discussed as separate exten-
sions in a next section. The last section presents two applications, and the Appendix
illustrates how the models concerned can be defined using the Latent GOLD syntax
system (Vermunt and Magidson, 2005, 2008).

4.2 The three basic models

Before describing the three basic types of mixture models for longitudinal data, I
will introduce the relevant notation. Longitudinal data sets analyzed with the models
described in this chapter will typically contain information on multiple response
variables from multiple subjects at multiple time points. Let yit j denote the response
of subject i on response variable j at occasion t, where 1 ≤ i ≤ N, 1 ≤ j ≤ J, and
0 ≤ t ≤ Ti. Here, N is the number subjects, J the number of response variables,
and Ti + 1 is the number of measurement occasions for subject i. Note that we use
the index i in Ti to be able to deal with the rather common situation in which the
number of measurement occasions differ across individuals. The vector collecting
the responses of subject i at occasion t is denoted as yit and the vector collecting all
responses of subject i as yi.

Three remarks have to made about the response variables. First, response vari-
ables may also be referred to as output variables, dependent variables, indicators,
items, manifest variables, etc. Second, response variables cannot only be categor-
ical variables – in which case 1 ≤ yit j = m j ≤ Mj, with Mj being the number of
categories and m j a particular category of response variable j – but also continuous
variables or counts. As we will see below, the scale type of yit j affects its conditional
distribution, as well as the type of regression model one may specify to restrict its
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expected value. Third, often only one response variable is available, in which case
the index j can be dropped, yielding the simpler notation yit .

Longitudinal data models may not only contain response variables, but also pre-
dictors, also referred to as input variables, independent variables, covariates, con-
comitant variables, etc. The vectors of time-constant predictors and time-varying
predictors at occasion t are denoted by zi and zit , respectively. Note that predictors
cannot only be numeric but also categorical variables, which will typically be in-
cluded in the model using a series of dummies or effects. Note also that time and
functions of time can be included in the vector of time-varying predictors.

What makes a statistical model a latent class or mixture model is that it contains
either a time-constant or a time-varying (or dynamic) discrete latent variable. These
two types of latent variables are denoted by wi and xit , respectively, their number of
categories by L and K, and one of their categories by ` and kt . That is, 1≤wi = `≤ L
and 1≤ xit = kt ≤ K. To clearly distinguish the two types of latent variables, I will
refer to wi as a latent class and to xit as a latent state.

4.2.1 Mixture growth model

A latent class or mixture growth model is a model for a single response variable yit
measured at Ti + 1 occasions (Nagin, 1999; Muthén, 2004; Vermunt 2007). In fact,
a regression model is specified for yit in which time serves as the only explanatory
variable. The aim of growth models is to determine whether individuals differ with
respect to the parameters of the growth model, where differences are usually mod-
eled using random effects under the assumption that these come from a multivariate
normal distribution.

There are two possible reasons for introducing latent classes in a growth model.
First, one may wish to identify (interpretable) clusters of individuals with similar
growth parameters. This is similar to the aim of a standard latent class model, with
the difference that the observed variables used to find the clusters are repeated mea-
surements of a single response variable rather than multiple items or indicators.
A second reason for using a mixture growth model is more technical; that is, one
may wish to specify a model with random effects without making strong distribu-
tional assumptions about the random effects. This yields what is referred to as a
non-parametric maximum likelihood (NPML) approach to random effects model-
ing, which cannot only be used in the context of longitudinal data analysis but in
any type of two-level regression model (Aitkin, 1999; Skrondal and Rabe-Hesketh,
2004; Vermunt 2004; Vermunt and van Dijk, 2001).

A mixture growth model is a statistical model for f (yi|zi), the probability density
of the Ti + 1 responses of subject i collected in the vector yi conditional on a set of
time variables collected in the vector zi. It can be formulated using the following
three equations:
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f (yi|zi) =
L

∑
`=1

P(wi = `) f (yi|wi = `,zi) (4.1)

f (yi|wi = `,zi) =
Ti

∏
t=0

f (yit |wi = `,zit), (4.2)

g[E(yit |wi = `,zit)] = β0` +
P

∑
p=1

βp` zit p, (4.3)

The first of these three equations indicates that the density f (yi|zi) is a weighted
average of class-specific densities f (yi|wi = `,zi), where the class proportions
P(wi = `) serve as weights. More intuitively, the likelihood of the set of responses
yi depends on the class membership of person i (on wi). But because the class mem-
bership is unknown, the likelihood is obtained by averaging over the L classes. Note
that this kind of reasoning applies to any type of mixture or latent class model.

The second equation states that the joint distribution of yi given wi and zi (appear-
ing in the equation 4.1) can be obtained as a product of the Ti +1 univariate marginal
distributions f (yit |wi = `,zit). This expresses that the responses are assumed to be
independent across time points given a person’s class membership, which in the la-
tent class analysis literature is usually referred to as the local independence assump-
tion. The specific form chosen for f (yit |wi = `,zit) depends on the scale type of yit .
For example, with binary responses on will often use a binomial distribution, with
continuous responses a normal distribution, and with counts a Poisson distribution.

The third equation shows that the responses are related to the time variables us-
ing a regression model from the generalized linear modeling (GLM) family (Agresti,
2002). After applying an appropriate transformation g(·), which in GLM terminol-
ogy is referred to as a link function, the expected value of yit is modeled as a lin-
ear function of a set of P time variables. For example, with P = 2, zit1 = t, and
zit2 = t2, the expected value of yit would be a quadratic function of time. A key
feature is that the regression parameters capturing the time dependence of the re-
sponses are assumed to differ across latent classes; that is, each class has its own
pattern of change. Note that by defining a regression model for yit one restricts the
density f (yit |wi = `,zit) which appears in equation 4.2. In fact, we have a latent class
model with restrictions on the class-specific response probabilities/densities which
are specified by assuming that the class-specific means are functions of time.

The basic model described in equations (4.1)–(4.3) can be extended in various
ways. One important extension is the inclusion of covariates in the model for wi.
Similarly to the model proposed by Dayton and Macready (1988) and van der Heij-
den, Dessens, and Böckenholt (1996) in the context of standard latent class analysis,
this involves replacing P(wi = `) in equation (4.2) by P(wi = `|zi) and defining a
multinomial logit model for wi; that is,

P(wi = `|zi) =
exp(γ0` +∑

Q
q=1 γq` ziq)

∑
L
`′=1 exp(γ0`′ +∑

Q
q=1 γq`′ ziq)

, (4.4)
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where for identification we may for example set γ0L = γqL = 0, yielding what is
usually referred to as a baseline category logit model (Agresti, 2002).

Another extension is the inclusion of other predictors than time in the model for
yit (in equation 4.3). These could serve as control variables when one is interested
determining class-specific change patterns after accounting for the fact that other
variables may partially explain the observed change. But other predictors may also
be the ones of main interest, in which case the aim of the analysis changes somewhat
and the mixture variable will mainly be used to capture unobserved heterogeneity
using the NPML approach mentioned above.

4.2.2 Mixture Markov model

As mentioned in the introduction, rather than using a growth model, longitudinal
data may also be modeled using a transitional or conditional model. The best-known
model from this family is the (first-order) Markov model, which assumes that yit de-
pends on yit−1 but not on values at earlier occasions. Similarly to mixture growth
models, in mixture Markov models, one will typically have a single response vari-
able. The main reason for using a mixture variant of a Markov model is to deal
with unobserved heterogeneity; that is, to account for the fact that transition prob-
abilities/densities are not homogeneous, but instead may differ across (unobserved)
subgroups. A more substantive reason may be to find meaningful clusters of indi-
viduals with different change patterns. An example of the latter is the application
by Dias and Vermunt (2007) in which market segments were identified based on
website users’ search patterns.

The mixture Markov can be formulated as follows:

f (yi) =
L

∑
`=1

P(wi = `) f (yi0|wi = `)
Ti

∏
t=1

f (yit |yit−1,wi = `). (4.5)

As can be seen, the L latent classes are assumed to differ with respect to the
initial-state and transition densities. Variants of this model for continuous response
variables – referred to as mixture dynamic regression and mixture autoregressive
models – were proposed by Kaplan (2005) and Wong and Li (2000). However, most
applications of the mixture Markov model concern categorical response variables
(Dias and Vermunt, 2007; Poulsen, 1990), in which case the model may also be
written as

P(yi) =
L

∑
`=1

P(wi = `)P(yi0 = m0|wi = `)[
Ti

∏
t=1

P(yit = mt |yit−1 = mt−1,wi = `)

]
; (4.6)

that is, in terms of initial-state and transition probabilities.
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Various special cases of the mixture Markov model can be obtained by restrict-
ing the transition probabilities. A well-documented special case is the mover-stayer
model (Goodman, 1961), which is a two-class model (L = 2) where one class (say
the second) contains respondents who have a zero probability of making a transi-
tion: P(yit = mt |yit−1 = mt−1,wi = 2) = 0 for mt = mt−1. Another special case is a
Markov model with a random responder class for which the measurements are inde-
pendent across time points: P(yit = mt |yit−1 = mt−1,wi = 2) = P(yit = mt |wi = 2).

Various extensions of the simple models described in equations (4.5) and (4.6)
are possible, the most important of which is the introduction of predictors affect-
ing the class membership, the initial state, and the transitions. The first extension
was discussed above in the context of mixture growth models (see equation 4.4).
Covariates can be allowed to affect the initial state and the transitions by defining
regression models for yi0 and yit , which in the case of a categorical response will
be logistic regression models. With Q predictors in the model for yi0 and P time-
varying predictors in the model for yit conditional on yit−1, we get

P(yi0 = m|wi = `,zi0) =
exp(β 0

`m +∑
Q
q=1 β 0

q+L,m zi0q)

∑
M
m′=1 exp(β 0

`m′ +∑
Q
q=1 β 0

q+L,m′ zi0q)
, (4.7)

P(yit = m|yit−1 = n,wi = `,zit) =
exp(β`nm +∑

P
p=1 βp+L,nm zit p)

∑
M
m′=1 exp(β`nm′ +∑

P
p=1 βp+L,nm′ zit p)

. (4.8)

As in a standard multinomial logit model, identifying restrictions on β 0
`m and β 0

q+L,m
are required, for example, they may be fixed to 0 for m = M. The same applies to
the β`nm and βp+L,nm parameters for which one constraint is needed for each origin
state n. A coding referred to as transition coding by Vermunt and Magidson (2008)
involves setting β`nn = βp+L,nn = 0; that is, the coefficients are fixed to 0 for m = n,
which implies that the free coefficients can be interpreted as effects on the logit of a
transition from n to m.

4.2.3 Latent Markov model

Whereas mixture growth and mixture Markov models contain a static categorical
latent variable (wi), a latent Markov model is a mixture model with a dynamic cate-
gorical latent variable – denoted by xit . One of the key elements of this model is that
latent-state transitions occurring over time are modeled using a first-order Markov
structure. The second key element is that the latent states are connected to one or
more observed response variables via a latent class structure with conditional den-
sities f (yit j|xit = kt). The latent Markov model – which is also referred to as hidden
Markov model (Baum et al., 1970; McDonald and Zucchini, 1997), Markov switch-
ing or regime switching model (Goldfeld and Quandt, 1973), and latent transition
model (Collins and Wugalter, 1992) – can be defined as follows (Poulsen, 1990; van
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de Pol and de Leeuw, 1986, Wiggins, 1973):

f (yi) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j|xit = kt)

]
. (4.9)

Besides the Markov assumption for the latent states and the local independence
assumption for the responses within occasions, the latent Markov model assumes
that responses are independent across occasions conditional on the latent states. The
latter implies that the observed associations across time points are assumed to be
explained by the autocorrelation structure for the latent states.

The typical applications of this model concern either a single continuous re-
sponse variable (Schmittmann, Dolan, van der Maas, and Neale, 2005; Dias,
Vermunt, and Ramos, 2009), a single categorical response variable (Magidson,
Vermunt, and Tran, 2009; Poulsen, 1990; van de Pol and de Leeuw, 1986; Wiggins,
1973), or multiple categorical responses (Bartolucci, Pennoni, and Francis, 2007;
Collins and Wugalter, 1992; Paas, Vermunt, and Bijmolt, 2007). With a single con-
tinuous response, the model may either be used for clustering or for dealing with
unobserved heterogeneity, where contrary to the mixture models described above
respondents may switch across clusters or mixture components over time. When
applied with a single categorical response variable, one will typically assume that
the number of latent states equals the number or categories of the response variable:
K = M. Moreover, model restrictions are required to obtain an identified model,
the most common of which are time-homogeneous transition probabilities or time-
homogeneous misclassification probabilities. The aim is to split observed changes
in the response into a true change component and a measurement error component.
When used with multiple indicators, the model is a longitudinal data extension of
the standard latent class model (Hagenaars, 1990). The time-specific latent states
can be seen as clusters or types which differ in their responses on the J indicators,
and the Markovian transition structure is used to describe and predict changes that
may occur across adjacent measurement occasions.

The most straightforward extension of the latent Markov model presented in
equation (4.9) involves the inclusion of explanatory variables affecting the initial
state and the transition probabilities. Special cases are the multiple-group latent
Markov model proposed by van de Pol and Langeheine (1990), the latent Markov
model with covariates proposed by Vermunt, Langeheine and Böckenholt (1999),
and the input-output model described by Mooijaart and van Montfort (2007). Mod-
els with predictors can be defined using similar logistic equations as we used for the
mixture Markov model (see equations 4.7 and 4.8), but now for xi0 and xit instead
of yi0 and yit and without conditioning on wi; that is,
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P(xi0 = k|zi0) =
exp(α0

0k +∑
Q
q=1 α0

qk zi0q)

∑
K
k′=1 exp(α0

0k′ +∑
Q
q=1 α0

qk′ zi0q)
,

P(xit = k|xit−1 = n,zit) =
exp(α0nk +∑

P
p=1 αpnk zit p)

∑
K
k′=1 exp(α0nk′ +∑

P
p=1 αpnk′ zit p)

.

Again, identifying restrictions are needed on the α0
0k, α0

qk, α0nk, and αpnk parameters,
where for the latter two one may again use transition coding.

Other extensions include models with predictors affecting the responses, mixture
variants with a time-constant latent variable wi, models with restrictions on the tran-
sition probabilities P(xit = kt |xit−1 = kt−1) or the response densities f (yit |xit = kt),
models that relax the assumption that measurement errors are independent across
occasions, and models with multiple dynamic latent variables. These and other ex-
tensions will be discussed below.

4.3 The mixture latent Markov model

4.3.1 The general model

In the previous section, we described three types of mixture models for longitudinal
data analysis. These models contained either a time-constant (wi) or time-varying
(xit ) discrete latent variables. In this section, I present the mixture latent Markov
with covariates, which can be seen as the encompassing model which contains the
three models discussed above as special cases, as well as which allows various inter-
esting extensions and combinations of these. The presented mixture latent Markov
model is an expanded version of the mixed Markov latent class model proposed
by van de Pol and Langeheine (1990) in the sense that it cannot only be used with
categorical but also with continuous responses, it may contain time-constant and
time-varying covariates, and it can be used when the number of time points is large.
For simplicity of exposition, here, I will restrict myself to models with a single
time-constant and a single time-varying latent variable, but in the next section I
will present extensions for multiple time-constant and multiple time-varying latent
variables.

The general model of interest is the following mixture latent Markov model:
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f (yi|zi) =
L

∑
`=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(wi = `,xi = k|zi) f (yi|wi = `,xi = k,zi) (4.10)

=
L

∑
`=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(wi = `|zi)P(xi0 = k0|wi = `,zi0)[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1,wi = `,zit)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j|xit = kt ,wi = `,zit)

]
. (4.11)

As many statistical models, the model in equations (4.10) and (4.11) is a model
for f (yi|zi), the (probability) density associated with the responses of subject i con-
ditional on his/her observed covariate values. The right-hand side of equation (4.10)
shows that we are dealing with a mixture model containing a time constant latent
variable (wi) and T + 1 realizations of a time-varying latent variable (collected in
the vector xi). The total number of mixture components (or latent classes) for in-
dividual i equals L ·KTi+1, which is the product of the number of categories of wi
and xit for t = 0,1,2, ...,Ti. Equation (4.10) shows that, as in any mixture model,
f (yi|zi) is obtained as a weighted average of class-specific probability densities –
here f (yi|wi = `,xi = k,zi) – where the (prior) class membership probabilities or
mixture proportions – here P(wi = `,xi = k|zi) – serve as weights (Everitt and Hand,
1981; McLachlan and Peel, 2000).

Equation (4.11) shows the specific structure assumed for the mixture proportions
and the class-specific densities. The assumption for P(wi = `,xi = k|zi) is that con-
ditional on wi and zi, xit is associated only with xi,t−1 and xi,t+1 and thus not with
the states occupied at the other time points – the well-know first-order Markov as-
sumption. For f (yi|wi = `,xi = k,zi) two assumptions are made: (1) conditionally
on wi, xit , and zit , the J responses at occasion t are independent of the latent states
and the responses at other time points, and (2) conditionally on wi, xit , and zit , the
J responses at occasion t are mutually independent, which is referred to as the local
independence assumption in latent class analysis (Goodman, 1974).

As can be seen from equation (4.11), the models of interest contain four different
kinds of model probabilities/densities:

• P(wi = `|zi) is the probability of belonging to a particular latent class conditional
on a person’s covariate values,

• P(xi0 = k0|wi = `,zi0) is an initial-state probability; that is, the probability of
having a particular latent initial state conditional on an individual’s class mem-
bership and covariate values at t = 0,

• P(xit = kt |xit−1 = kt−1,wi = `,zit) is a latent transition probability; that is, the
probability of being in a particular latent state at time point t conditional on the
latent state state at time point t−1, class membership, and time-varying covariate
values,
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• f (yit j|xit = kt ,wi = `,zit) is a response density, that is, the density corresponding
to the observed value for person i of response variable j at time point t con-
ditional on the latent state occupied at time point t, class membership wi, and
time-varying covariate values.

Typically, these four sets of probabilities/densities will be parameterized and re-
stricted by means of regression models from the generalized linear modeling family.
As shown in various examples in the previous section, this is especially useful when
a model contains covariates, where time itself may be one of the time-varying co-
variates of main interest.

The three key elements of the mixture latent Markov model described in equa-
tion (4.11) are that it can take into account (1) unobserved heterogeneity, (2) au-
tocorrelation, and (3) measurement error. Unobserved heterogeneity is captured by
the time-constant latent variable wi, autocorrelations are captured by the first-order
Markov transition process in which the state at time point t may depend on the state
at time point t− 1, and measurement error or misclassification is accounted for by
allowing an imperfect relationship between the time-specific latent states xit and the
observed responses yit j. Note that these are three of the main elements that should
be taken into account in the analysis of longitudinal data; that is, the inter-individual
variability in patterns of change, the tendency to stay in the same state between con-
secutive occasions, and the spurious change resulting from measurement error in
observed responses.

4.3.2 Estimation, missing data, and time-unit setting

Parameters of the mixture latent Markov model can be estimated by means of max-
imum likelihood (ML). For that purpose, it advisable to use a special variant of the
expectation maximization (EM) algorithm that is usually referred to as the forward-
backward or Baum-Welch algorithm (Baum et al., 1970; McDonald and Zucchini,
1997). This is an EM algorithm in which the E step, which involves computing the
relevant set posterior distributions given the current parameter estimates and the ob-
served data, is implemented in a way that is tailored to the models we are dealing
with. More specifically, this special algorithm is needed because our model con-
tains a potentially huge number of entries in the joint posterior latent distribution
P(wi = `,xi = k|yi,zi), except for cases where T , L and K are all small. For exam-
ple, in a fairly moderate sized situation where Ti = 10, L = 2 and K = 3, the number
of entries in the joint posterior distribution already equals 2 ·311 = 354294, a number
which is impossible to process and store for all N subjects as has to be done within
standard EM. The Baum-Welch algorithm circumvents the computation of this joint
posterior distribution making use of the conditional independencies implied by the
model; that is, rather than computing the joint distribution and subsequently obtain-
ing the relevant marginals, it computes the relevant marginals directly. For more
details, we refer to Vermunt, Tran, and Magidson (2008) who also provided the
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generalized version of the Baum-Welch algorithm which is required for the estima-
tion of the mixture latent Markov model presented in equation (4.11) and which
is implemented in the Latent GOLD 4.5 program (Vermunt and Magidson, 2008).
Rather than using ML estimation, it is also possible to estimate these models us-
ing Bayesian estimation procedures, an excellent overview of which is provided by
Frühwirth-Schnatter (2006).

A common phenomenon in the analysis of longitudinal data is the occurrence
of missing data. Subjects may have missing values either because they refused to
participate at some occasions or because it is part of the research design. A nice
feature of the approach described here is that it can easily accommodate missing
data in the ML estimation of the unknown model parameter. Let δit be an indicator
variable taking on the value 1 if subject i provides information for occasion t and
0 if this information is missing. The only required change with missing data is the
following modification of the model for the response density f (yi|wi = `,xi = k,zi):

f (yi|wi = `,xi = k,zi) =
Ti

∏
t=0

[P(yit |xit = kt ,wi = `,zit)]
δit .

For δit = 1, nothing changes compared to what we had before. However, for δit = 0,
the time-specific conditional density becomes 1, which means that the responses of
a time point with missing values are skipped. Actually, for each pattern of missing
data, we have a mixture latent Markov for a different set of occasions. Two limi-
tations of the ML estimation procedure with missing values should be mentioned:
(1) it can deal with missing values on response variables, but not with missing val-
ues on covariates, and (2) it assumes that the missing data are missing at random
(MAR). The first limitation may be problematic when there are time-varying co-
variates for which the values are also missing. However, in various special cases
discussed below – the ones that do not use a transition structure – it is not a problem
if time-varying covariates are missing for the time points in which the responses
are missing. The second limitation concerns the assumed missing data mechanism:
MAR is the least restrictive mechanism under which ML estimation can be used
without the need of specifying the exact mechanism causing the missing data; that
is, under which the missing data mechanism is ignorable for likelihood-based in-
ference (Little and Rubin, 1987; Schafer, 1997). It is possible to relax the MAR
assumption by explicitly defining a not missing at random (NMAR) mechanism as
a part of the model to be estimated (Fay, 1986; Vermunt 1997a).

An issue strongly related to missing data is the one of unequally spaced measure-
ment occasions. As long as the model parameters defining the transition probabili-
ties are assumed to be occasion specific, no special arrangements are needed. If this
is not the case, unequally spaced measurements can be handled by defining a grid of
equally spaced time points containing all measurement occasions. Using this tech-
nique, the information on the extraneous occasions can be treated as missing data
for all subjects. An alternative is to use a continuous-time rather than a discrete-time
framework (Böckenholt, 2005), which can be seen as the limiting case in which the
elapsed time between consecutive time points in the grid approaches zero.
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Transition Unobserved Measurement
Model name structure heterogeneity error

I. Mixture latent Markov yes yes yes
II. Mixture Markov yes yes no
III. Latent Markov yes no yes
IV. Standard Markov∗ yes no no
V. Mixture latent growth no yes yes
VI. Mixture growth no yes no
VII. Standard latent class no no yes
VIII. Independence∗ no no no

*: This model is not a latent class model.

Another issue related to missing data is the choice of the time variable and the
corresponding starting point of the process. The most common approach is to use
calender time as the time variable and to define the first measurement occasion to
be t = 0. However, one may, for example, also use age as the relevant time variable,
as I do in the second empirical example. Although children’s ages at the first mea-
surement vary between 11 and 17, I use age 11 as t = 0. This implies that for a child
that is 12 years of age information at t = 0 is treated as missing, for a child that is
13 years of age information a t = 0 and t = 1 is treated as missing, etc.

4.3.3 The most important special cases

Table 4.3.3 lists the various special cases that can be derived from the mixture latent
Markov model defined in equation in (4.11) by assuming that one or more of its three
elements – transition structure, measurement error, and unobserved heterogeneity –
is not present or needs to be ignored because the data is not informative enough to
deal with it. Models I-III and V-VII are latent class models, but IV and VIII are not.
Model VII differs from models I-VI in that it is a model for repeated cross-sectional
data rather than a model for panel data. Below we describe the various special cases
in more detail.

4.3.3.1 Mixture latent Markov

First of all, it is possible to define simpler versions of the mixture latent Markov
model itself. Actually, the mixed Markov latent class model proposed by van de Pol
and Langeheine (1990) which served as an inspiration for our model is the special
case in which responses are categorical and in which no covariates are present. van
de Pol and Langeheine (1990) proposed a variant in which the four types of model
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probabilities could differ across categories of a grouping variable (see also Lange-
heine and van de Pol, 2002). A similar model is obtained by replacing the zi and zit
by a single categorical covariate coded using a set of dummy predictors.

4.3.3.2 Mixture Markov

The mixture Markov model for a categorical response variable (Poulsen, 1990; Dias
and Vermunt, 2007) is the special case of the model presented in equation (4.11)
when there is a single response variable (J = 1) that is assumed to be measured
without error, which is specified by K = M and P(yit = mt |xit = kt) = 1 if mt = kt and
0 otherwise. Note that yit is assumed not to depend on w and zit but only on xt . The
mover-stayer model (Goodman, 1961) can be obtained by setting L = 2 and fixing
the transition probabilities to 0 for the second class: P(xit = kt |xtt−1 = kt−1,wi =
2,zit) = 0 if kt = kt−1 and 0 otherwise. Note that the mover-stayer constraint cannot
only be imposed in the mixture Markov but also in the mixture latent Markov, in
which case transitions across imperfectly measured stated are assumed not to occur
in the stayer class.

4.3.3.3 Latent Markov model

The latent Markov, latent transition, or hidden Markov model (Baum et al., 1970;
Collins and Wugalter, 1992; Mooijaart and van Montfort, 2007; van de Pol and de
Leeuw, 1996; Vermunt, Langeheine, and Böckenholt, 1999, Wiggins, 1973) is the
special case of the mixture latent Markov that is obtained by eliminating the time-
constant latent variable wi from the model; that is, by assuming that there is no
unobserved heterogeneity or that it can be ignored. The latent Markov model can be
obtained without modifying the formulae, but by simply assuming that L = 1; that
is, that all subject belong to the same latent class.

4.3.3.4 Markov model

By assuming both perfect measurement as in the mixture Markov model and ab-
sence of unobserved heterogeneity as in the latent Markov model, one obtains a
standard Markov model, which is no longer a mixture model. This model can further
serve as a simple starting point for longitudinal applications with a single response
variable, where one wishes to assume a Markov structure. It provides a baseline for
comparison to the three more extended models discussed above. Use of these more
extended models makes sense only if they provide a significantly better description
of the data than the simple Markov model.
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4.3.3.5 Mixture latent growth model

Now we turn to latent class models for longitudinal research that are not transi-
tion or Markov models. These mixture growth models assume that dependencies
between measurement occasions can be captured by the time-constant latent vari-
able wi. The most extended variant is the mixture latent growth model, which
is obtained from the mixture latent Markov model by imposing the constraint
P(xit = kt |xi,t−1 = kt−1,wi = `,zit) = P(xit = kt |wi = `,zit). This model is a vari-
ant for longitudinal data of the multilevel latent class model proposed by Vermunt
(2003): subjects are the higher-level units and time points the lower-level units. It
should be noted that application of this very interesting model with categorical re-
sponses requires that there be at least two response variables (J ≥ 2).

In mixture growth models one will typically pay a lot of attention to the mod-
eling of the time dependence of the state occupied at the different time points.
The latent class or mixture approach allows identifying subgroups (categories of
the time-constant latent variable wi) with different change patterns (Nagin, 1999).
The extension provided by the mixture latent growth model is that the dynamic de-
pendent variable is itself a (discrete) latent variable which is measured by multiple
indicators.

4.3.3.6 Mixture growth model

The mixture or latent class growth model (Nagin, 1999, Muthén, 2004; Vermunt,
2007) for a categorical response variable can be seen as a restricted variant of the
mixture latent growth model; i.e., as a model for a single indicator measured without
error. The extra constraint is the same as the one used in the mixture Markov model:
K = M and P(yit = mt |xit = kt) = 1 if mt = kt and 0 otherwise. A more natural way
to define the mixture growth model is by omitting the time-varying latent variable
xit from the model specification as was done in equations (4.1) and (4.2).

4.3.3.7 Standard latent class model

When we eliminate both wi and the transition structure, we obtain a latent class
model that assumes observations are independent across occasions. This is a realistic
model only for the analysis of data from repeated cross-sections; that is, to deal
with the situation in which observations from different occasions are independent
because each subject provides information for only one time point.
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4.4 Other extensions

The previous section presented a general mixture model for longitudinal analysis,
which contained the three basic models and various of their extensions as special
cases. This section describes several other interesting extensions, which could be fit
into an even more general mixture model for the longitudinal analysis.

4.4.1 Ordered states

The first extension concerns a latent Markov model for dichotomous or ordered
polytomous responses in which the latent states can be interpreted as ordered cat-
egories. Examples are developmental stages of children, disease stages of patients,
and states representing degrees of agreement in attitude measurement. It may of
course turn out that the estimation of an unrestricted latent Markov model yields the
hypothesized ordering of the latent states. However, it is also possible to force the
latent states to be ordered by imposing constraints on the model parameters.

One class of restrictions concerns the relationship between latent states and re-
sponses. Bartolucci, Pennoni, and Francis (2007) and Vermunt and Georg (2002)
presented various of such models, which can be seen as longitudinal data variants
of the discretized item response theory models described by Heinen (1996) and Ver-
munt (2001). Two possible restrictions for multicategory items are

log
P(yit j = m|xit = k)

P(yit j = m−1|xit = k)
= β0 jm +β1 j νk,

and

log
P(yit j ≥ m|xit = k)
P(yit j < m|xit = k)

= β0 jm +β1 j νk,

where the former defines an adjacent category ordinal logit model for yit j and the
latter a cumulative logit model (Agresti, 2002). Note that νk represents the location
of latent state k, which can either be fixed a priori or treated as a free parameter to
be estimated. Vermunt and Hagenaars (2004) gave an extended overview of longi-
tudinal models for ordinal responses, which also included various types of mixture
models.

Another way to obtain latent states that can be interpreted as ordered cate-
gories is via restrictions on the transition probabilities. An example in which la-
tent states represent (ordered) developmental stages was provided by Collins and
Wugalter (1992). According to the underlying developmental psychology theory,
children may make a transition to a next stage but will never return to a pre-
vious stage. In terms of the latent Markov model parameters, this means that
P(xit = kt |xit−1 = kt−1) = 0 for kt < kt−1.
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4.4.2 Continuous latent variables

The mixture models discussed so far contained only discrete latent variables. How-
ever, in many applications, it may be useful to include also continuous latent vari-
ables in the model, which can play the role of latent factors in a measurement model
or the role of random effects in a regression model. Below, I describe several sit-
uations in which time-constant or time-varying continuous latent variables may be
used in the model for the transitions or in the model for the responses. I will denote
continuous latent variables by F .

4.4.2.1 Time-constant affecting transitions

As a way to account for unobserved heterogeneity, it may be useful to expand the la-
tent Markov model with random effects in the regression models for the initial state
and transition probabilities. An example was provided by Pavlopoulos, Muffels, and
Vermunt (2009) in an application of wage mobility. Their model contains two con-
tinuous latent variables, one affecting the initial state and the other the transitions.

Note that not only continuous random effects can be used to model unobserved
heterogeneity, but also the mixture variable wi can be used for this purpose. The
choice between the two approaches depends on the assumptions one wishes to make
about the nature of the unobserved heterogeneity; that is, whether it can be assumed
to be continuous and normally distributed or whether a discrete specification – for
example, using a mover-stayer structure – is more appropriate.

4.4.2.2 Time-constant affecting responses

Not only the transitions, but also the responses can be affected by time-constant
continuous latent variables. In latent Markov models this would be a way to model
dependencies between responses across occasions using an approach which is sim-
ilar to the random-effects latent class models proposed in the biomedical field
(Hadgu and Qu, 1998). Such a model is obtained by replacing f (yit j|xit = kt) with
f (yit j|xit = kt ,Fi) and defining a regression model for yit j where Fi enters as one of
the predictors.

In mixture growth modeling, it is very common to use a combination of dis-
crete and continuous latent variables, where the continuous latent variables capture
the unobserved heterogeneity within latent classes (Muthén, 2004; Vermunt, 2007).
This involves replacing f (yit |wi = `,zit) by f (yit |wi = `,zit ,Fi) or, equivalently, by
allowing β0` and βp` (see equation 4.3) to be random effects.
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4.4.2.3 Time-varying affecting responses

Rather than using time-constant continuous latent variables, it is also possible to
work with time-varying continuous latent variables. One possible application is in
a latent Markov model for multiple responses which cannot be assumed to be lo-
cally independent within time points. The time-varying continuous latent variables
would capture unobserved time-specific factors which vary across individuals and
which are independent across occasions. Such a model can be obtained by replacing
f (yit j|xit = kt) by f (yit j|xit = kt ,Fit) and defining a regression model for yit j where
Fit enters as a predictor.

Another, very different, type of use of time-varying continuous variables in latent
Markov models is as common factors in a factor analytic model for the response
variables. In other words, the continuous latent variables define a factor analytic
measurement model for the responses. Changes in the factor mean(s) could be mod-
eled using either a mixture growth or a latent Markov model, which defines two
longitudinal data variants of the mixture factor analysis model proposed by Yung
(1997).

For the situation that there is one common factor, the variant using a latent
Markov structure to model the change in the factor means may have the following
form:

f (yi) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
{

Ti

∏
t=0

∫ [
f (Fit |xit = kt)

J

∏
j=1

f (yit j|Fit)

]
dFit

}
,

where the last part shows that the distribution of the latent factor Fit depends on xit
and that Fit affects the responses. Regression models for Fit and yit j complete the
model specification.

4.4.3 Multiple, multilevel, and higher-order processes

This subsection presents extensions of latent Markov models for multiple, multi-
level, and higher-order processes. These have in common that they require including
an additional time-constant or time-varying discrete latent variable in the model. I
will use a number as a subscript to denote the latent variable number (e.g., x1

it and
x2

it ), and an asterisk to refer to a latent variable at a higher level of a nested structure
(e.g., x∗it ).
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4.4.3.1 Parallel processes

The latent Markov models described so far assume that there is a single Markov
process of interest, which is possibly affected by time-constant and time-varying
predictors. Suppose one has a categorical time-varying predictor which cannot be
assumed to be measured without error. As suggested by Vermunt, Langeheine, and
Böckenholt (1999) as a possible extension of their model, a latent Markov structure
could also be defined for such a time-varying predictor. This yields a latent Markov
model with two latent variables x1

it and x2
it , where x1

it is related to the first set of J1

response variables and x2
it to the other set of J2 responses. Assuming that there are

no (other) covariates, such a model has the following form:

f (yi) =
K1

∑
k1

0=1

K1

∑
k1

1=1

...
K1

∑
k1

Ti
=1

K2

∑
k2

0=1

K2

∑
k2

1=1

...
K2

∑
k2

Ti
=1

P(x1
i0 = k1

0,x
2
i0 = k2

0)

[
Ti

∏
t=1

P(x1
it = k1

t ,x
2
it = k2

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)

]
{

Ti

∏
t=0

[
J1

∏
j=1

f (yit j|x1
it = k1

t )

][
J1+J2

∏
j=J1+1

f (yit j|x2
it = k2

t )

]}
.

Additional attention is required with respect to the joint probability of x1
it and x2

it
given x1

it−1 and x2
it−1, which may be decomposed in a specific way and/or modeled

using a logistic regression equation. A meaningful specification is, for example, a
model in which x1

it and x2
it are both affected by x1

it−1 and x2
it−1 but are not associated

with one another, yielding what is sometimes referred to as a cross-lagged panel
model. This involve decomposing the joint transition probability of x1

it and x2
it by

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)P(x2
it = k2

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1).

Another possibility is that the causal effect goes in one direction; that is, x2
it affects

x1
it but x1

it is not affected by x2
it or x2

it−1. This can be specified as follows:

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it = k2

t )P(x2
it = k2

t |x2
it−1 = k2

t−1). (4.12)

A specification for correlated processes that are not causally related is obtained by
allowing xit1 and xit2 to be associated and omitting the cross-lagged direct effects
from the logistic model for xit1 and xit2.

4.4.3.2 State-trait models

Eid and Langeheine (1999) proposed a discrete latent variable variant of the state-
trait model. This model is obtained by expanding the latent Markov model with a J
time-constant discrete latent variables, each of which affects one of the J responses.
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The time-varying latent variable (representing the state) is assumed to be indepen-
dent of the J time-constant latent variables (representing the traits). A state-trait
model can be defined as follows:

f (yi) =
L1

∑
`1=1

L2

∑
`2=1

...
LJ

∑
`J=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(w1
i = `1,w2

i = `2, ...,wJ
i = `J)

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j|xit = kt ,w
j
i = ` j)

]
.

A more restricted variant of this model is obtained by assuming that the states are
independent across occasions: P(xit = kt |xit−1 = kt−1) = P(xit = kt).

Eid and Langeheine (1999) worked with categorical yit j variables for which they
defined logistic models. These contained main effects of the state at time point t and
the trait for response j but no interaction term; that is,

log
P(yit j = m|xit = k,w j

i = `)

P(yit j = M|xit = k,w j
i = `)

= β0 jm +β1 jkm +β2 j`m.

4.4.3.3 Second-order model

As indicated earlier, one of the key assumptions of the latent Markov model is that
the latent state transitions can be described with a first-order Markov structure. This
assumption can be relaxed, for example, by allowing xit to be affected not only by
xit−1, but also by xit−2, which involves replacing P(xit = kt |xit−1 = kt−1) by P(xit =
kt |xit−1 = kt−1,xit−2 = kt−2) for t ≥ 2. Though most software for latent Markov
modeling does not allow defining such a second-order process, it can be defined
with a trick which involves using a second time-varying latent variable x2

it . The
cross-lagged effect of x1

it (the variable of interest) on x2
it is restricted in such a way

that P(x2
it = kt |x1

it−1 = kt−1) = 0 for kt 6= kt−1, which implies that the lag one of
the second latent variable (x2

it−1) is in fact the lag two of the first latent variable
(x1

it−2). The second-order latent Markov model can now be obtained by allowing the
transition probability for x1

it to depend on the lag of the second latent variable, which
yields a model of the form
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f (yi) =
K1

∑
k1

0=1

K1

∑
k1

1=1

...
K1

∑
k1

Ti
=1

K2

∑
k2

0=1

K2

∑
k2

1=1

...
K2

∑
k2

Ti
=1

P(x1
i0 = k1

0)P(x2
i0 = k2

0)

P(x1
i1 = k1

1|x1
i0 = k1

0)

[
Ti

∏
t=2

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)

]
[

Ti

∏
t=1

P(x2
it = k2

t |x1
it−1 = k1

t−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j|x1
it = k1

t )

]
.

4.4.3.4 Processes for nested time units

Another interesting extension of the simple latent Markov model was recently pre-
sented by Rijmen et. al (2008). In their application there were two nested time
units: the higher-level concerned changes occurring between days and the lower-
level changes occurring between (non-sleeping) hours within days. The proposed
model consists of two nested latent Markov models, one for between-day transitions
and one for within-day transitions. A slight expansion of our notation is needed to
write down the relevant model formulae. Let h, i, and t be the indices for a person,
a day, and an hour, respectively. For the rest, notation is kept as much as possible
as above, with the exception that quantities referring to the higher-level process get
an asterisk as a superscript. The higher-level (between-day) model for person h can
now be defined as

f (yh) =
K∗

∑
k∗0=1

K∗

∑
k∗1=1

...
K∗

∑
k∗T∗h

=1
P(x∗h0 = k∗0)

[
T ∗h

∏
i=1

P(x∗hi = k∗i |x∗hi−1 = k∗i−1)

]
[

T ∗h

∏
i=0

f (yhi|x∗hi = k∗i )

]
,

which has the structure of a standard latent Markov model. The lower-level (within-
day) model describing the hourly changes specifies a latent Markov model for
f (yhi|x∗hi = k∗i ),
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f (yhi|x∗hi = k∗i ) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xhi0 = k0|x∗hi = k∗i )[
Thi

∏
t=1

P(xhit = kt |xhit−1 = kt−1,x∗hi = k∗i )

]
[

Thi

∏
t=0

J

∏
j=1

f (yhit j|xhit = kt ,x∗hi = k∗i )

]
.

Note that this is, in fact, a mixture latent Markov model in which the initial-state
and transition probabilities and possibly also the response densities depend on the
higher-level latent state occupied by person h at day i (x∗hi).

4.4.3.5 Multilevel data

Vermunt (2003, 2004) proposed multilevel extensions of various types of mixture
models that may also be useful in longitudinal data analysis. That is, when the ob-
servations for which we have longitudinal data are nested within higher-level units.
Examples are longitudinal data on children which are nested within school, repeated
measures data on patients nested within hospitals, and panel data from respondents
nested within regions.

Palardy and Vermunt (in press) presented a multilevel mixture growth model for
such data sets and illustrated the model with an application in which higher-level
units (schools) are clustered based on the learning rates of children. Vermunt (2004)
presented an application using a similar, but slightly simpler, multilevel mixture
growth model. Denoting a higher-level unit by h, the higher-level part of this model
is

f (yh|zh) =
L∗

∑
`∗=1

P(w∗h = `∗)
I∗h

∏
h=0

f (yhi|w∗h = `∗,zhi),

where Ih is the number of persons belonging to higher-level unit or group h. The
lower-level part is

f (yhi|w∗h = `∗,zhi) =
L

∑
`=1

P(whi = `)
Thi

∏
t=0

f (yhit |whi = `,w∗h = `∗,zhit).

As in the mixture growth model described in equations (4.1) and (4.3), the regression
model for yhit specifies how the higher- and lower-level latent classes differ in term
of the growth parameters.

Yu and Vermunt (in progress) developed a multilevel extension of the latent
Markov model. The structure of this model is similar to that of a mixture latent
Markov model, with the important difference that the mixture is at the group level
and thus not at the individual level. The model can be formulated as follows:
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f (yi) =
L∗

∑
`∗=1

P(w∗h = `∗)
I∗h

∏
i=1

f (yhi|w∗h = `∗).

The lower-level part defines the structure for f (yhi|w∗h = `∗) which is the same as
the lower-level part of the multilevel process model described above, except for that
the conditioning is on w∗h = `∗ instead of x∗hi = k∗i ; that is,

f (yhi|w∗h = `∗) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xhi0 = k0|w∗h = `∗)

[
Thi

∏
t=1

P(xhit = kt |xhit−1 = kt−1,w∗h = `∗)

]
[

Thi

∏
t=0

J

∏
j=1

f (yhit j|xhit = kt ,w∗h = `∗)

]
.

4.4.3.6 Dependent classification errors

One of the assumptions of the latent Markov model is that responses are indepen-
dent across time points conditional on the latent states, an assumption that may be
unrealistic in certain applications. However, it is sometimes possible to relax this
assumption, which is sometimes referred to as ICE (independent classification er-
rors).

Above, we already discussed a non-ICE model; that is, a latent Markov model
with a time-constant continuous latent variable affecting the responses at the differ-
ent time points. In this model, it is assumed that an unobserved individual factor is
causing correlations between measurement errors. This is a good non-ICE model
when these correlations are (almost) equally strong between each pair of occasions.

However, typically, correlations between errors are much stronger between ad-
jacent time points. Possible mechanisms leading to such correlated errors are that
making an error at one occasion increases the likelihood of making an error at the
next occasion (Manzoni et al., in progress), or that experiencing a transition in-
creases the likelihood of making an error (see also Hagenaars, 1988). Bassi et al.
(2000) proposed a non-ICE latent Markov model for employment status measure-
ments obtained using a very specific retrospective data collection design (see also
Hagenaars’ chapter in this volume).

Here, I would like to discuss the non-ICE specification proposed by Manzoni
et al. (in progress). Their application concerned a latent Markov model with two
measures of a person’s monthly employment status (employed, self employed, un-
employed, and not employed) for a period of about a year. The first measure is a ret-
rospective report of the last year and the second is a retrospective report on the same
period collected ten years later. The aim of the analysis was to determine the quality
latter report. Because respondents are likely to misplace or forget unemployment
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spells when these occurred a long time ago, it is clearly incorrect to assume that
errors in the second measure are uncorrelated across occasions. Manzoni et al. pro-
posed a correlated measurement error model which involves replacing the response
probability P(yit2 = mt2|xit = kt) by P(yit2 = mt2|xit = kt ,yit−1,2 = mt−1,2,xit−1 =
kt−1); that is, a model in which yit,2 is not only affected by xit , but also by yit−1,2
and xit−1. Moreover, restrictions were imposed on the way the lagged observed and
latent states affect the measurement error. One restriction yielded a specification in
which respondents making an error at t− 1 have a different (higher) probability of
making an error at t. So, in fact, two sets of error probabilities were estimated, one
for respondents reporting correctly at t−1 (mt−1,2 = kt−1) and another for respon-
dents reporting incorrectly (mt−1,2 6= kt−1). Various alternative specifications were
also investigated.

4.5 Applications

This section presents two applications of the mixture models for longitudinal data
described in this chapter. The first application concerns a repeated measures experi-
mental study and is used to illustrate the mixture growth model, including the more
advanced model with continuous random effects. The second application concerns
a longitudinal survey and is used to illustrate the latent Markov and mixture latent
Markov model, as well as the latent Markov model for parallel processes. For pa-
rameter estimation, I used version 4.5 of the Latent GOLD program (Vermunt and
Magidson, 2005, 2008). Examples of syntax files can be found in the Appendix.

4.5.1 A mixture growth model

The empirical example I will use to illustrate mixture growth modeling is taken from
Hedeker and Gibbon’s (1996) MIXOR program. It concerns a dichotomous outcome
variable “severity of schizophrenia” measured at 7 occasions (consecutive weeks).
This binary outcome was obtained by collapsing a severity score ranging from 1
to 7 into two categories, where a 1 indicates that the severity score was at least 3.5
(severe), and 0 that is was smaller than 3.5 (non severe). In total, there is information
on 437 cases. However, for none of the cases there is complete information. For 42
cases, we have observations at 2, for 66 at 3, for 324 at 4, and for 5 at 5 time
points. There are 434, 426, 14, 374, 11, 9, and 335 observations at the 7 time points.
Besides the repeated measures for the response variable, there is one time-constant
predictor, treatment (0=control group; 1=treatment group). The treatment is a new
drug that is expected to decrease the symptoms related to schizophrenia. The main
research question to be answered with this data set is whether the treatment reduces
the symptoms related to schizophrenia.
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Table 4.1 Test results for the mixture growth models estimated with the schizophrenia data

Model Log-likelihood BIC # Parameters

A1: 1-class growth -704 1421 2
A2: 2-class growth -625 1286 6
A3: 3-class growth -608 1277 10
A4: 4-class growth -601 1287 14
B2: 2-class growth with squared time for class 2 -620 1282 7
B3: 3-class growth with squared time for class 3 -597 1261 11
C2: B2 with random intercept -601 1250 8
C3: B3 with random intercept -595 1263 12

Whereas Vermunt (2007) used the same data set for a more extended comparison
of various types of growth models, here the focus will be on the mixture growth
models described in this chapter. More specifically, it will be shown that two growth
classes can be identified – one class with decreasing severity and one class without
– and that patients receiving the treatment are much more likely to be belong to the
decreasing severity class than the control group. Moreover, it will be shown that
using random effects may yield a simpler solution with a smaller number of latent
classes.

In the analysis of this data set, I followed Hedeker and Gibbon’s (1996) sug-
gestion to set P = 1, with zit1 =

√
t, and to use a binary logit model. This yields a

model in which the logit of severity is a function of the square root of time. Though
there is no strong theoretical motivation for using this functional form for the time
dependence, there is a good empirical motivation: in a simple model without latent
classes nor random effects, this model fits the time-specific response probabilities
much better than a linear or a quadratic model, and almost as well as a model with
an unrestricted time dependence.

Table 4.1 reports the log-likelihood value, the number of parameters, and the BIC
value obtained by applying various of the models described in the previous two sec-
tions to the schizophrenia data set. Models A1-A4 are 1 to 4-class mixture growth
models using the

√
t time dependence and containing treatment as a covariate af-

fecting the class membership. Based on the BIC value, one would select the 3-class
model as the best one. Models B2 and B3 modify models A2 and A3 in the sense
that one latent class (the last one) has a different (quadratic) time dependence. This
is specified by defining zit2 = t and zit3 = t2, and setting the parameters correspond-
ing to these two terms to 0 in all but class K and the parameter corresponding to zit1
to 0 in class K. As can be seen from the BIC values, Models B2 and B3 fit better
than Models A2 and A3, which indicates that it makes sense to assume another type
of time dependence for one of the classes. It can also be seen that the 3-class model
is still preferred to the 2-class model. Models C2 and C3 are variants of Models B2
and B3 containing a random intercept to allow for within class heterogeneity. As can
be seen, these models have lower BIC values than Models B2 and B3. Moreover,
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Table 4.2 Parameter estimates obtained with Model C2

Model for Responses Class 1 Class 2

β or λ s.e. z-value β or λ s.e. z-value

Intercept 9.16 1.22 7.49 6.95 0.92 7.56
StdDev Random Intercept 3.50 0.55 6.42 3.50 0.55 6.42
TIME - 3.82 1.01 -3.77
SQ-TIME 1.13 0.30 3.77
SQRT-TIME -4.98 0.65 -7.66

Model for Latent Classes Class 1
γ s.e. z-value

Intercept -0.64 0.31 -2.08
Treatment 1.80 0.36 4.99

under this specification, the simpler 2-class model (C2) performs better than the
3-class model (C3).

Table 4.2 reports the parameter estimates obtained with Model C2. For each la-
tent class, we have a set of parameters describing the time dependence of the logit
of the probability of being in the severely schizophrenic state – Intercept and SQRT-
TIME in class 1 and Intercept, TIME, and SQ-TIME in class 2 – as well the stan-
dard deviation of the random effect indicating how much the intercept varies within
classes. The size of latter parameter, which is assumed to be equal across latent
classes, indicates that there is quite some variation within classes. Figure 4.5.1 de-
picts the estimated growth curves for the two latent classes, which are obtained by
marginalizing over (integration out) the continuous random effects. Class 1 con-
tains the patients for which the probability of severe symptoms of schizophrenia
decreases during the study. It can now also be seen why the quadratic curve was
needed for class 2: after a small drop in weeks 1 and 2, the probability of a se-
vere form of schizophrenia increased again, a pattern that cannot be described by a
monotonic function.

Out of the total sample, 66% is estimated to belong to latent class 1 and 34% to
latent class 2. These numbers are 76% and 24% for the treatment group and 35% and
65% for the control group. The treatment effect on class member is given in terms
of a logistic regression coefficient and its asymptotic standard error in the lower
part of Table 4.2 – the odds of begin in class 1 instead of 2 is exp(1.80) higher for
the treatment than for the control group. The encountered treatment effect shows,
on the one hand, that there is a rather strong relation between treatment and class
membership, but, on the other hand, that this relationship is far from perfect.
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Fig. 4.1 Class-specific trajectories obtained with Model C2.

4.5.2 A mixture Latent Markov model

The latent Markov models described above will be illustrated with the nine-wave
National Youth Survey (Elliott, Huizinga, and Menard, 1989) for which data were
collected annually from 1976 to 1980 and at three year intervals after 1980. At the
first measurement occasion, the ages of the 1725 children varied between 11 and 17.
To account for the unequal spacing across panel waves and to use age as the time
scale, we define a model for 23 time points (T +1 = 23), where t = 0 corresponds to
age 11 and the last time point to age 33. For each subject, we have observed data for
at most 9 time points (the average is 7.93) which means that the other time points
are treated as missing values.

We study the change in a dichotomous response variable “drugs” indicating
whether young persons used hard drugs during the past year (1=no; 2=yes). It should
be noted that among the 11 years of age nobody in the sample reported to have used
hard drugs, which is something that will be taken into account in our model spec-
ification. Time-varying predictors are age and age squared, and time-constant pre-
dictors are gender and ethnicity. In the second step of the analysis, I will introduce
alcohol use during the past year as a time-varying covariate containing measurement
error.

A preliminary analysis showed that there is a clear age-dependence in the re-
ported hard-drugs use which can well be described by a quadratic function: us-
age first increases with age and subsequently decreases. That is why we used this
type of time dependence in all reported models. Age and age-squared are used as
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Table 4.3 Test results for the Markov models estimated with the drugs use data

Model Log-likelihood BIC # Parameters

A1. Markov -4143 8330 6
A2. Latent Markov with K=2 -4009 8078 8
A3. Mover-stayer latent Markov with K=2 -4000 8068 9
A4. Mixture latent Markov with L=2 and K=2 -3992 8066 11
A5. A4 with Gender & Ethnicity effects on Wi -3975 8061 15
B1. A5 with Markov model for Alcohol -9328 18789 18
B2. B1 with Alcohol affecting Xit -9185 18520 20
B3. B2 with Alcohol measured with error -8912 17989 22

time-dependent covariates in the regression model for the latent transition probabil-
ities (see also equation 4.8); that is,

log
P(xit = k′|xit−1 = k,wi = `,ageit)
P(xit = k|xit−1 = k,wi = `,ageit)

= α0kk′ +α`kk′ +αL+1,kk′ · ageit

+αL+2,kk′ · (ageit)
2,

where the α coefficients are fixed to 0 for k′ = k and for ` = 1. For the initial-state,
we do not have a model with free parameters but we simply assume that all children
start in the no-drugs state at age 11.

Table 4.3 reports the fit measures for the estimated models, where Models A1 to
A4 do not contain covariates gender and ethnicity. Among these models, the most
general model – the mixture latent Markov model – performs best. By removing
measurement error, simplifying the mixture into a mover-stayer structure, or elimi-
nating the mixture structure, the fit deteriorates significantly. Model A5 is a mixture
latent markov model in which we introduced covariates in the model for the mix-
ture proportions: sex and/or ethnicity seem to be significantly related to the mixture
component someone belongs to.

As a final step, we investigated whether alcohol use affects hard drugs use. We
specified three additional models: Model B1 in which alcohol does not affect drugs
use, Model B2 in which alcohol use at age t affects the transitions in the model for
drugs, and Model B3 in which alcohol use is treated as a time-varying covariate
measured with error. The latter model is a latent Markov model for two parallel pro-
cesses. We used a specification in which alcohol use affects the drugs-use transitions
but in which the reversed effect is absent (see equation 4.12). In Models B1 and B2,
we specified a Markov model without measurement error for alcohol use in order to
be able to compare the BIC values across these three models. Note that as far as the
modeling of drugs use is concerned, Model B1 is, in fact, equivalent to Model A5,
but their log-likelihood values cannot be compared because alcohol is introduced as
an additional response variable in Model B1. Comparison of the fits measures for
Models B1 and B2 shows that alcohol use has a significant effect on the drugs use
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transitions, and comparison of the fit measures for Models B2 and B3 shows that
there is evidence that alcohol use is measured with error.

One set of parameters of the final model (B3) are the probabilities of the mea-
surement models for drugs and alcohol. These show that the latent states are rather
strongly connected to the two observed states: P(yit1 = 1|x1

it = 1) = 0.99 and
P(yit1 = 2|x1

it = 2) = 0.83 for drugs use; P(yit2 = 1|x2
it = 1) = 0.87 and P(yit1 =

2|x2
it = 2) = 0.99 for alcohol use.
The most relevant coefficients in the model for the drugs use transitions are the

effects of alcohol (x2
it ) and of wi. The former show that being in the latent alcohol use

state increases the probability of moving into the drugs use state (α = 4.61;S.E =
1.33) and decreases the probability of exciting the drugs use state (α =−1.86;S.E =
0.52). The parameters for wi show that class 1 is the low-risk class having a lower
probability than class 2 of entering into the use state (α =−1.19;S.E = 0.36) and a
much higher probability of leaving the non-use state (α = 4.16;S.E. = 0.63). This
means that class 1 contains young people that quit the drug-use state quickly when
they get into this state.

The parameters in the logistic regression model for wi shows that males are less
likely to be in the low-risk class than females (γ = −0.67;S.E. = 0.20). More-
over, blacks are more likely (γ = 0.41;S.E = 0.26), hispanics less likely (γ =
−0.75;S.E. = 0.52), and other ethnic groups less likely (γ = −0.09;S.E = 0.70)
to be in the low-risk class than whites, but these ethnicity effects are non significant.

Appendix: Examples of Latent GOLD syntax files

The Latent GOLD 4.5 software package (Vermunt and Magidson, 2008) implements
the mixture models described in this article. In this appendix, I provide examples of
syntax files used for the empirical applications.

The data should be in the format of a person-period file, where for Markov type
models it is important to include also periods with missing values in the file since
each next record for the same subject is assumed to be the next time point. The
definition of a model contains three main sections: “options”, “variables”
and “equations”.

The mixture growth models A1 to A4 from Table 4.1 can be defined as follows:

options
output parameters standarderrors estimatedvalues;

variables
caseid id;
dependent severity binomial;
independent sqrttime, treatment;
latent W nominal 2;

equations
W <- 1 + treatment;
severity <- 1 | W + sqrttime | W;
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In the above options section, only the commands related to the output options
are shown. It is indicated that we wish to output parameters and standard errors of
the parameters, as well as the estimates for the model probabilities.

In the variables section we define the caseid variable connecting the mul-
tiple records of a person, the latent, dependent, and independent variables
to be used in the analysis, as well as various attributes of these variables, such as
their scale types and, for categorical latent variables, also their number of cate-
gories. Note that the model above is a two-class mixture model since we specified
“latent W nominal 2;”.

The equation section contains 2 equations: one for the mixture variable (W)
and another for the response variable. The logit model for W contains an intercept
(the term “1”) and the effect of treatment. The model for the response variable
severity contains an intercept and an effect of square root time. Both parameters
are assumed to vary across latent classes, which is achieved by the conditioning “|
W”.

The more complex final two-class model C2 – containing a continuous random
effect and a different time dependence for classes 1 and 2 – is defined as follows:

options
output parameters standarderrors estimatedvalues;

variables
caseid id;
dependent severity binomial;
independent sqrttime, time, sqtime, treatment;
latent W nominal 2, F continuous;

equations
W <- 1 + treatment;
severity <- 1 | W + (b1) sqrttime | W + (b2) time | W

+ (b3) sqtime | W + F;
b1[2]=0; b2[1]=0; b3[1]=0;

As can be seen, the model contains two additional predictors (time and
sqtime) and a continuous latent variable (F). These are all used as predictors in
the regression model for the response variable. It can also be seen that three of the
regression coefficient get labels, which is needed to be able to define the three con-
straints at the bottom. These restrictions indicate that sqrttime has no effect in
class 2, and that time and sqtime have no effect in class 1.

The syntax for Markov models is somewhat more complicated than for growth
models. As an example, this is the setup for model A5 appearing in Table 4.3, a
mixture latent Markov model with two covariates affecting the mixture distribution
and with a quadratic time dependence of the transition logits:

options
missing includeall;
output parameters=first standarderrors estimatedvalues;

variables
caseid id;
dependent drugs nominal;
independent gender nominal, ethnicity nominal, age, age2;
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latent W nominal 2, X nominal dynamic 2;
equations
W <- 1 + gender + ethnicity;
X[=0] <- (-100) 1;
X <- (˜tra) 1 | X[-1] + (a˜tra) W | X[-1]

+ (˜tra) age | X[-1] + (˜tra) age2 | X[-1];
drugs <- (b˜err) 1 | X;

Compared to the specification above, the options section contains the state-
ment “missing=includeall” indicating that records with missing values
should be retained in the analysis and the output option “parameters=first”
requesting dummy coding with the first category as the reference category for
nominal variables. A new element in the variables section is the keyword
“dynamic” which indicates that the nominal latent variable Xmay change its value
over time (in this case, it is a two-state time-varying latent variable).

The equations section contains 4 equations: one for the mixture variable (W),
one for the initial state (X[=0]), one for the state at time point t (X) conditional on
the state at t−1 (X[-1]), and one for the response variable at time point t (drugs).
The logit model for W contains an intercept as well as effects of gender and ethnicity.
The model for X[=0] contains an intercept that is fixed to -100, which indicates that
everyone starts in latent state 1. The model for X is parameterized in such a way that
the intercept and the effects of W, age, and age2 can be interpreted as effects on
the logit of a transition (as in the equation provided in the text). This is achieved by
the conditioning “| X[-1]” combined with “˜tra” in the parameter label, which
yields a coding for the logit coefficients in which the no transition category serves
as the reference category. The model for the response variable drugs contains an
intercept which varies across latent states, with the same type of coding as used for
the transition (for the dependent variable called error coding). Note that removing
“˜tra” and “˜err” does not change the model but only the identifying constraints that
are imposed in the parameter set concerned. As can be seen, two parameter sets
get labels (a and b), which will be used below to define models with parameter
restrictions.

The 2-class mixture can be changed into a mover-stayer structure with the ad-
ditional line “a = -100;” which fixes the transition probabilities to 0 for the
second class. A latent Markov model is obtained either by removing W from the
variables and equations sections or by setting its number of categories to
1. A standard Markov is obtained with the extra line “b = -100;”. This fixes the
logit parameters in the model for the response variable to -100, which because of
the special error coding (induced with “˜err”) yields a perfect relationship between
X and drugs.

The model in which alcohol is used as a time-varying covariate measured with
error (Model B3 of Table Table 4.3 is obtained by including alcohol as a sec-
ond dependent variable and defining a second dynamic latent variable X2. The
equations section of this more advanced model contains also equations for the
initial state and the transitions of X2, includes X2 in the equation for X, and defines
a measurement equation for alcohol; that is,
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equations
W <- 1 + gender + ethnicity;
X[=0] <- (-100) 1;
X2[=0] <- 1;
X <- (˜tra) 1 | X[-1] + (˜tra) W | X[-1]

+ (˜tra) age | X[-1] + (˜tra) age2 | X[-1]
+ (˜tra) X2 | X[-1];

X2 <- (˜tra) 1 | X2[-1];
drugs <- 1 | X;
alcohol <- 1 | X2;
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Chapter 5

An Overview of the Autoregressive Latent

Trajectory (ALT) Model

Kenneth A. Bollen and Catherine Zimmer

Abstract Autoregressive cross-lagged models and latent growth curve models are
frequently applied to longitudinal or panel data. Though often presented as distinct
and sometimes competing methods, the Autoregressive Latent Trajectory (ALT)
model (Bollen and Curran, 2004) combines the primary features of each into a single
model. This chapter: (1) presents the ALT model, (2) describes the situations when
this model is appropriate, (3) provides an empirical example of the ALT model, and
(4) gives the reader the input and output from an ALT model run on the empirical
example. It concludes with a discussion of the limitations and extensions of the ALT
model. Our focus is on repeated measures of continuous variables.

5.1 Introduction

There are two intuitive ways to approach the modeling of longitudinal data. The first
relies on the idea and common observation that one of the best determinants of the
current value of a variable is its value in the preceding period. So a student’s reading
performance in 2008 is well-determined by her reading performance in 2007, and
this is true for all students in the population. This perspective can be formalized
into what is known as an autoregressive model where the current value of a variable
is determined by its past value. A second intuitively appealing method is to treat
each subject as having a separate trajectory of change over time. Some cases might
have a generally upward trend, others a downward trend, and still others might be
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relatively stable with regard to the outcome of interest. Here individual variability in
change is permitted and each case can have different parameter values where these
values describe the nature of the trajectory. This second approach we refer to as a
latent (growth)1 curve or latent trajectory model.

The autoregressive and latent curve models have long but largely independent
histories. In the social and behavioral sciences autoregressive models were and are
of substantial interest to economists who commonly use autoregressive time-series
models to study economic indicators and lagged endogenous variables in panel data.
The autoregressive models spread throughout the social and behavioral sciences
beyond just economic applications. Anderson (1960), Humphreys (1960), Heise
(1969), Wiley and Wiley (1970), Jöreskog (1970), and Werts, Jöreskog, and Linn
(1971) provide just a few examples of publications that examined autoregressive
models of a single outcome. Campbell (1963), Bohrnstedt (1969), Duncan (1969),
Heise (1969), and Jöreskog (1979) are some of the earlier social science examples
of authors who looked at autoregressive and cross-lagged models for two or more
outcome variables in panel data. Kessler and Greenberg (1981) provided a book
length treatment of these autoregressive and cross-lagged models. These have been
and continue to be popular modeling approaches for longitudinal data.

The growth curve models of biostatistics have a long history (Bollen and Curran,
2006, pp. 9-14). The merger of the growth curve models with the factor analysis
of longitudinal data resulted in the contemporary latent curve models and the re-
sulting latent curve models date back to the 1950s (Bollen, 2007). Rao (1958) and
Tucker (1958) were key works linking growth curve and exploratory factor analysis
models. Meredith and Tisak (1984) was a seminal paper connecting confirmatory
factor analysis to growth curve models leading to the latent curve model tradition
that is influential today. In contrast to the autoregressive models, the repeated mea-
sures are reflective of an underlying pattern of change or trajectory. The trajectory
is described by a set of parameters (e.g., random intercept and random slope) and
these parameters can differ by individuals permitting a rich variety of trends across
the cases in a sample.

Popularity of the autoregressive models preceded that of the growth curve mod-
els in the social and behavioral sciences. Early proponents of the growth curve
model in these disciplines argued that the autoregressive and growth curve mod-
els were in direct competition (e.g., Bast and Reitsma, 1997; Kenny and Campbell,
1989; Rogosa and Willett, 1985) and some advocates argued that growth curve mod-
els were inherently superior to the autoregressive models (e.g., Rogosa, Brandt, and
Zimowski, 1982, p. 744).

More recently the autoregressive and latent curve model have been combined into
what is called the Autoregressive Latent Trajectory (ALT) model (Bollen and Cur-
ran, 2004; Curran and Bollen, 2001). The ALT model incorporates features of both
the autoregressive and the latent curve model in a single framework. It is developed
in recognition of the usefulness and appeal of each model and it permits modeling

1 “Growth” suggests that the outcome variable is always increasing in magnitude and is misleading
in those cases where the outcome decreases or is stable. For this reason, we sometimes omit this
and refer to the models as latent curve or latent trajectory models.
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data that has features of both models. Furthermore, it permits tests that provide in-
formation on whether the data more closely conform to the autoregressive or to the
latent curve model. So if one or the other models is best, the ALT model will help to
reveal that, whereas if both processes are operating both can be accommodated by
the ALT model.

It also is important to distinguish the ALT model from a more established one
that is a latent curve model with an autoregressive disturbance. For example, Chi and
Reinsel (1989), Browne and du Toit (1991), Diggle, Liang and Zeger (1994), and
Goldstein, Healy and Rasbash (1994) discuss modifications of the standard growth
curve model to permit an autoregressive disturbance. In these types of models the
autoregression of the disturbance is a type of nuisance association that is relegated
to the disturbance and it is given little substantive explanation. In the ALT model
the autoregressive relation is between the repeated measures, not the disturbances.2

Furthermore, the lagged effect of the earlier value on the current value should be
substantively meaningful when using the ALT model.

The purposes of this chapter are: (1) to present the ALT model, (2) to describe
the situations when this model is appropriate, (3) to provide an empirical example
of the ALT model, and (4) to give the reader the input and output from an ALT
model run on the empirical example. Much of the technical presentation of the
ALT model is based on Bollen and Curran (2004; 2006). Applications of the ALT
are in many fields, such as psychology to study developmental psychopathology
(Curran and Willoughby, 2003), daily anxiety and panic expectancy (Rodebaugh,
Curran, and Chambliss, 2002), job performance over time (Zyphur, Chaturvedi
and Arvey, 2008), and changes in eating behavior among first-year undergraduate
women (Boyd, 2007). Addiction researchers have found the ALT model useful for
studying how adolescent and peer substance use changes over time and affects each
other (Simons-Morton and Chen, 2006). Wan, Zhang and Unruh (2006) used the
ALT model to investigate outcome improvement in residents of nursing homes.

The next several sections present single variable and two variable ALT models, a
general equation for all models, the implied moment matrices, and a section on the
estimation and testing of these models. After these we present an empirical example.
A conclusion summarizes the ALT model and its use.

2 Hamaker (2005) has an interesting paper where she shows that an ALT model that has an equal
autoregressive coefficient and is not written with the first wave outcome as predetermined is math-
ematically equivalent to an alternative growth curve model with autoregressive disturbances. These
two forms of the model would have different substantive meanings in that the ALT model hypoth-
esizes that the lagged repeated measure has an impact on the current repeated measure whereas the
autoregressive disturbance model assumes that the prior disturbance influences the current distur-
bance. In the autoregressive disturbance model there is no direct effect of the repeated measures on
other repeated measures and only a direct effect between disturbances. Also the equivalency does
not hold if the autoregressive parameter differs across waves or if the first wave of the outcome is
treated as a predetermined variable as recommended in Bollen and Curran (2004).
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5.2 Autoregressive Latent Trajectory (ALT) Model

5.2.1 Single Variable Unconditional ALT Model

In this subsection we present the single variable, unconditional ALT model. By
single variable we mean that there is only one outcome observed over time. By
unconditional, we refer to the fact that the model has no explanatory variables or
covariates that determine the random intercepts, random slopes, or the repeated mea-
sures other than the lagged value of the repeated measures. Suppose that yit is the
repeated measure of y for the ith observation at the tth time point. The ALT model is

yit = αi +Λtβi +ρt,t−1yi,t−1 + εit (5.1)

where the i indexes the individual in the sample and the t indexes the time with
t = 2,3, ...,T . The αi is the random intercept, βi is the random slope, and Λt is
the time trend variable that describes the pattern of growth so that for a linear
growth model it would 0,1,2, ... . The autoregressive parameter is ρt,t−1,3 yi,t−1
is the lagged value of y, and εit is the disturbance of the equation. We assume
E(εit) = 0, COV (εit ,yi,t−1) = 0, COV (εit ,βi) = 0, and COV (εit ,αi) = 0. We also
assume E(εit ,ε jt) = 0 for all t and i �= j, E(εit ,εit) = σ2

εt for each t and i, and
COV (εit ,εi,t+k) = 0 for k �= 0 though in some cases this latter restriction could be
removed.

If we assume that VAR(βi), VAR(αi), and E(βi) are all zero, then we get

yit = α +ρt,t−1yi,t−1 + εit (5.2)

which is an autoregressive model with an intercept that does not change over time.
If the true model corresponds to an autoregressive model, then we would expect the
variances of the random intercepts and random slopes, and the mean of the slope to
be zero in the ALT model.

Alternatively, suppose that ρt,t−1 in the ALT model is zero for all t. Now the
resulting model is

yit = αi +Λtβi + εit (5.3)

which corresponds to a latent curve model with random intercept αi and random
slope βi.

These preceding constraints give us information on whether the autoregressive or
latent curve model are sufficient to describe data or whether the full ALT model is
required. The basic task is to estimate the ALT model. If the variances of the random
intercepts and random slopes and the mean of the slope are essentially zero, then the

3 In general we assume that |ρt,t−1| < 1 to insure that yit does not grow infinitely as t goes to
infinity. In the time series literature, this is a stationarity condition (e.g., Box and Jenkins, 1976).
In nonstationary data, the autoregressive parameter can equal or exceed one but in our experience
such nonstationary series are rare in panel data. This condition is not critical for our developments
here.
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autoregressive model is appropriate as long as ρt,t−1 is not zero. Alternatively, if the
random intercepts and random slopes have nonzero variances and ρt,t−1 is always
zero, then the latent curve model is preferred. If neither of these conditions are true,
then the full ALT model should be considered.

One complication that we have not mentioned has to do with the first wave of
data. Although Bollen and Curran (2004) show how to model all repeated measures
as endogenous variables, they suggest that there are some useful simplifications that
result when the first wave of the outcome is treated as a predetermined variable as
is shown in Figure 5.1. One advantage follows in that we cannot estimate equation
(5.1) for the first wave of data since by definition we do not have the lagged value of
the first wave of the outcome variable. Treating this first wave as predetermined by-
passes this problem. The equation for the first wave outcome variable then becomes

yi1 = ν1 + εi1 (5.4)

where ν1 is the mean of yi1.

y1

y2 y3 y4

21

32 43

1 1 1 1 2 3

Fig. 5.1 Autoregressive Latent Trajectory (ALT) model with single variable over four waves and
y1 predetermined.

The other two equations to make the single variable ALT model complete are

αi = μα +ζαi (5.5)
βi = μβ +ζβ i (5.6)

where μα and μβ are the means of the random intercepts and random slopes, re-
spectively, and ζαi and ζβ i are the random deviations around the respective means.
The predetermined yi1, αi, and βi are allowed to correlate.
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Given the relations between the ALT model, the latent curve model, and the
autoregressive model just described helps in interpreting the ALT model in equa-
tion (5.1). Consider first the latent curve model without autoregressive effects as in
equation (5.3). In a latent curve model each case can have a distinct trajectory of the
outcome variable. The trajectories are captured by having a random intercept and
random slope that can vary by case. Once you control for the random intercepts and
random slopes there is no influence of prior values of y on current values of y, that
is, there is no autoregressive impact net of the trajectory parameters.

Alternatively, in the pure autoregressive model as in equation (5.2), the current
yit is driven by the past yi,t−1 plus a random disturbance. Each case in the sample has
the same autoregressive coefficient, ρt,t−1. Once the prior value of y is controlled,
there are no individual trajectories for the cases in the sample.

From one perspective the ALT model is a latent curve model with random inter-
cepts and random slopes where each individual can have a distinct trajectory. But
now once we control for the random intercepts and random slopes there remains an
autoregressive relationship between the ys. Taking a different perspective, the ALT
model is an autoregressive model where the lagged value of a repeated measure
partially determines the current value, but even taking account of the autoregressive
relation each case can have a distinct trajectory. To understand the change in y we
need to know the prior value of y and the individual trajectory of change for that in-
dividual. In other words both an autoregressive and growth curve model characterize
the process. Neither a LCM or an autoregressive one alone is sufficient to describe
the change.

5.2.2 Single Variable Conditional ALT Model

So far we have limited our description to an unconditional model where the random
intercepts (αi), random slopes (βi), and the first wave of the repeated measures (yi1)
do not include covariates that determine them and they are only represented as a
function of their means and deviations from their respective means (see eqs. (5.4)
to (5.6)). A natural extension allows for covariates to predict αi, βi, and yi1. To
illustrate consider the incorporation of two time invariant exogenous predictors, zi1
and zi2 (though it is easy to generalize this model to any number of covariates). We
modify equations (5.4) to (5.6) by adding these covariates resulting in

αi = μα + γα1zi1 + γα2zi2 +ζαi (5.7)
βi = μβ + γβ1zi1 + γβ2zi2 +ζβ i (5.8)
yi1 = ν1 + γy1zi1 + γy2zi2 + εi1 (5.9)

where μα , μβ , and ν1 now represent regression intercepts rather than unconditional
means. The γs represent the fixed regressions of the random intercepts (αi), ran-
dom slopes (βi), and the predetermined yi1 on the two covariates. Figure 5.2 is a
path diagram of the conditional ALT model for four waves of data and with two
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covariates. We assume that the disturbances (i.e., ζαi, ζβ i, εi1) have zero means and
are uncorrelated with the exogenous variables (zs). Further, we permit ζαi, ζβ i, εi1
to correlate with each other, but none of these is correlated with later values of εit
where t = 2,3, ... . Finally, we assume the exogenous variables are measured without
error.

y1

y2 y3 y4

z1 z2

21

32 43

1 1 1
1 2 3

1
2 1y2

y1
2

Fig. 5.2 Conditional Autoregressive Latent Trajectory (ALT) model with single variable over four
waves and two covariates.
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5.2.3 Bivariate Unconditional ALT Model

In the conditional univariate ALT model, we considered the influences of one or
more time invariant covariates. However, there are many instances in which there
might be interest in the relationship between two repeated measures, each of which
is functionally related to the passage of time. We can extend the single repeated
ALT model to include two or more repeated measures say, yit and xit . We write the
bivariate ALT model for t = 2,3, ...,T as

yit = αyi +Λyt2βyi +ρyt yt−1 yi,t−1 +ρyt xt−1xi,t−1 + εyit (5.10)
xit = αxi +Λxt2βxi +ρxt yt−1 yi,t−1 +ρxt xt−1 xi,t−1 + εxit (5.11)

We maintain similar assumptions about the disturbances (ε’s) as before (means of
zero, not autocorrelated, uncorrelated with the right-hand side variables and random
coefficients). We permit some εyit to correlate with εxit as long as model identifica-
tion is maintained. For this model we treat the yi1and xi1variables as predetermined
and the random intercepts and random slopes as exogenous. Their equations are

yi1 = νy1 + εyi1 (5.12)
xi1 = νx1 + εxi1 (5.13)

αyi = μyα +ζyαi (5.14)
βyi = μyβ +ζyβ i (5.15)

αxi = μxα +ζxαi (5.16)
βxi = μxβ +ζxβ i (5.17)

All disturbances in these equations have means of zero. Generally, we permit
εyi1, εxi1, ζyαi, ζyβ i, ζxαi, and ζxβ i to correlate with each other, but these are as-
sumed not to correlate with εyit and εxit for t = 2,3, ...,T . Figure 5.3 is the path
diagram of a bivariate unconditonal ALT model for four waves of data.

Each of the equations (5.10) and (5.11) are similar to the unconditional single
variable ALT model except for the extra cross-lag term either ρyt xt−1 xi,t−1 in equa-
tion (5.10) or ρxt yt−1 yi,t−1 in equation (5.11). This is a noteworthy difference in
that it permits the repeated measure from one series to directly impact the repeated
measure of another. The bivariate ALT model not only allows the lagged depen-
dent variable to enter the equation along with the random intercepts and random
slopes, but it also permits a second repeated measure to have an impact once we
control for the lagged and latent curve effects on the repeated measure. The flexi-
bility of this model is considerable in that depending on the result of estimation the
model could be an autoregressive model (when VAR(βi), VAR(αi), E(βi), ρyt xt−1 ,
and ρxt yt−1 all equal zero), a cross-lag model (when VAR(βi), VAR(αi), and E(βi)
all equal zero) or a latent curve model (ρyt yt−1 , ρyt xt−1 , ρxt xt−1 and ρxt yt−1 all zero).
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y1

y2 y3 y4

y

1 1 1 1 2 3
y2y1

y3y2 y4y3

x1

x2 x3 x4

1 1 1 1 2 3

x2x1

x3x2 x4x3

y2x1

x2y1

y3x2

x3y2 x4y3

y4x3

Fig. 5.3 Autoregressive Latent Trajectory (ALT) model for two variables over four waves and
lagged effects between observed variables.
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Furthermore additional or different lagged values of the repeated measures could
enter these equations as dictated by the substantive knowledge driving the research.
For instance, if the current value of a repeated measure was affected not only by say,
yt−1, but also by yt−2, then both yt−1 and yt−2 should be included as predictors of yt
in the equations. In addition, the type of model devised for each repeated measure
need not be the same. So if a latent curve model without autoregressive terms fits
the x series best and an ALT model is needed for the y series, there is no reason not
to include different structures for each repeated measure.

5.2.4 Bivariate Conditional ALT Model

As we described for the univariate conditional ALT model, we can incorporate one
or more exogenous predictors in the bivariate ALT model as well. This is again
accomplished by the extension of the equations for the random trajectories. Specifi-
cally, we modify equations (5.14) through (5.17) to include time invariant covariates
zi1 and zi2 such that

αyi = μyα + γαy1zi1 + γαy2zi2 +ζyαi (5.18)
βyi = μyβ + γβy1zi1 + γβy2zi2 +ζyβ i (5.19)

and

αxi = μxα + γαx1zi1 + γαx2zi2 +ζxαi (5.20)
βxi = μxβ + γβx1zi1 + γβx2zi2 +ζxβ i (5.21)

As before, the set of gammas represent the fixed regressions of the random trajectory
components on the two correlated exogenous variables. It is possible to have the
random intercepts or random slopes as explanatory variables in equations (5.18)
to (5.21). For instance, the random intercept from the y series (αyi) might affect the
random slope of the x series leading to βxi = μxβ +γβxαyαyi +γβx1zi1 +γβx2zi2 +ζxβ i
or the slope of one series could alter the slope of the other, for example, βyi =
μyβ + γβyβx βx + γβy1zi1 + γβy2zi2 +ζyβ i.

In the bivariate unconditional ALT model, we let the initial repeated measures
correlate with the random intercepts and random slopes. In the conditional bivariate
ALT model, we must regress xi1 and yi1 on the set of exogenous measures. Thus, the
equations for the initial measures for xi1 and yi1 are

yi1 = νy1 + γy1zi1 + γy2zi2 + εyi1 (5.22)
xi1 = νx1 + γx1zi1 + γx2zi2 + εxi1 (5.23)

The same assumptions described for the univariate conditional ALT model hold here
as well.
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5.3 General Equation for All Models

Up to this point we have presented unconditional and conditional ALT models for a
single and two repeated measures using a scalar notation. These and variants of these
models are expressable in a general matrix notation that is convenient for presenting
the estimation and assessment of fit of these models. The matrix model is (Bollen
and Curran, 2004):

ηηη i = μμμ +Bηηη i+ζζζ i (5.24)
oi = Pηηη i (5.25)

where the first equation provides the structural relations between variables, ηηη i is a
vector that contains both the repeated measures and the random intercepts and ran-
dom slopes, μμμ is a vector of means or intercepts, B is a coefficient matrix that gives
the coefficients for the relationships of ηηη is on each other, and ζζζ i is the disturbance
vector for the variables in ηηη i. We assume that E(ζζζ i) = 0. The nature of the covari-
ances of ζζζ i with ηηη i will vary depending on the model, but for identification purposes
at least some of these covariances will be zero or known values. The second equa-
tion functions to pick out the observed variables, oi, from the latent variables of
equation 5.24.

In more detail,

ηηη i =

⎡⎢⎢⎢⎢⎣
yi
xi
zi
ααα i
βββ i

⎤⎥⎥⎥⎥⎦ (5.26)

where yi and xi are two variables repeatedly measured for T time periods, zi is a
q x 1 vector of exogenous determinants of the latent trajectory parameters or of the
repeated measures, αi is the 2 x 1 vector of αyi and αxi, the random intercepts for the
two sets of repeated measures, and βi is the 2 x 1 vector of βyi and βxi the random
slopes for the two repeated measures. The μμμ vector is

μμμ =

⎡⎢⎢⎢⎢⎣
μμμy
μμμx
μμμz
μμμα
μμμβ

⎤⎥⎥⎥⎥⎦ (5.27)

where μμμy and μμμx are vectors of means/intercepts for the yi and xi observed repeated
measures, μμμz is the vector of means for the exogenous covariates in the model, μμμα
is a vector of means/intercepts for the random intercepts, αyi and αxi, and μμμβ is a
vector of the means/intercepts of βyi and βxi.

For the ALT model, the B matrix is
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B =

⎡⎢⎢⎢⎢⎣
Byy Byx Byz Byα Byβ
Bxy Bxx Bxz Bxα Bxβ
0 0 0 0 0

0 0 Bαz Bαα Bαβ
0 0 Bβz Bβα Bββ

⎤⎥⎥⎥⎥⎦ (5.28)

where the double subscript notation in the partition matrix indicates that the subma-
trix contains those coefficients related to effects among the subscripted variables.
For instance, Byy contains the effects of the repeated y variables on each other, and
Bβz contains the impact of the exogenous zi on the random slopes, βyi and βxi, for
the ys and xs. The zi consists of exogenous variables.

The disturbance vector for equation 5.24 is

ζζζ i =

⎡⎢⎢⎢⎢⎣
εεεyi
εεεxi
εεεzi
ζζζ αi
ζζζ β i

⎤⎥⎥⎥⎥⎦ (5.29)

with covariance matrix ΣΣΣζ ζ . Since zi is exogenous, the variance of εεεzi is equivalent
to the variance of zi.

The P matrix is

P =

⎡⎣ IT 0 0 0 0

0 IT 0 0 0

0 0 Iq 0 0

⎤⎦ (5.30)

where IT is a T x T identity matrix with dimensions that depend on the number of
repeated measures and Iq is a q x q identity matrix with q exogenous variables. The
matrix picks out the observed variables in a given model where oi is

oi =

⎡⎣yi
xi
zi

⎤⎦ (5.31)

Bollen and Curran (2004) demonstrate how this matrix expression enables a re-
searcher to incorporate all of the models discussed as well as others. For instance,
the standard autoregressive model for a single repeated measure has

ηηη i = [yi] (5.32)
μμμ =

[
μμμy

]
(5.33)

B = [Byy] (5.34)
ζζζ i = [εεε i] (5.35)
oi = ηηη i (5.36)

with
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Byy =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0

ρ21 0 0 · · · 0
0 ρ32 0 · · · 0
...

...
. . . . . .

...
0 0 · · · ρT,T−1 0

⎤⎥⎥⎥⎥⎥⎦ (5.37)

to capture a first order autoregressive relation.
The unconditional latent curve model has

ηηη i =

⎡⎣ yi
αi
βi

⎤⎦ (5.38)

μμμ =

⎡⎣ 0

μα
μβ

⎤⎦ (5.39)

where the 0 vector in μμμ represents the zero fixed intercepts for the repeated measures
in a latent trajectory model. The B matrix is

B =

⎡⎣0 Byα Byβ
0 0 0

0 0 0

⎤⎦ (5.40)

Byα =

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦ Byβ =

⎡⎢⎢⎢⎣
0
1
...

T −1

⎤⎥⎥⎥⎦ (5.41)

The ζζζ i and P matrices are

ζζζ i =

⎡⎣ εεε i
ζαi
ζβ i

⎤⎦ (5.42)

P =
[

I 0 0
]

(5.43)

As a last example the unconditional univariate ALT model has

B =

⎡⎣Byy Byα Byβ
0 0 0

0 0 0

⎤⎦ (5.44)

where Byy is the same as equation 5.37 and
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Byα =

⎡⎢⎢⎢⎣
0
1
...
1

⎤⎥⎥⎥⎦ Byβ =

⎡⎢⎢⎢⎣
0
1
...

T −1

⎤⎥⎥⎥⎦ (5.45)

for a model where y1i is predetermined. Furthermore

μμμ =

⎡⎣ μμμy
μα
μβ

⎤⎦ (5.46)

with

μμμy =

⎡⎢⎢⎢⎣
μy1
0
...
0

⎤⎥⎥⎥⎦ (5.47)

and

ζζζ i =

⎡⎣ εεε i
ζαi
ζβ i

⎤⎦ (5.48)

The variances of ε1i, ζαi, and ζβ i are equal to the variances of the predetermined
variables, y1i, αi, and βi, respectively.

5.4 Implied Moment Matrices

Structural equation models (SEMs) typically involve expressing the means and co-
variance matrix of the observed variables as a function of the parameters (θθθ) in a
model. These expressions of the implied mean vector (μμμ(θθθ)) and the implied co-
variance matrix (ΣΣΣ(θθθ)) also are referred to as the implied moment matrices and they
are useful in estimation and the assessment of model fit. Bollen and Curran (2004)
show that the implied mean vector is

μμμ(θθθ) = E(oi) = P(I−B)−1μμμ (5.49)

and the implied covariance matrix of observed variables is

ΣΣΣ(θθθ) = [E(oio
′
i)−E(oi)E(o′i)]

= P(I−B)−1ΣΣΣζ ζ (I−B)−1′P′ (5.50)

The exact value of these implied moments depends on the value of the matrices
for the particular type of ALT model, but once the matrices that correspond to the
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model of interest are substituted into these expressions, the implied moments are
revealed.

One valuable aspect of the implied moment matrices is in determining the iden-
tification of the model parameters. A parameter is identified if it is possible to find
a unique value for it. In SEMs we have

μμμ= μμμ(θθθ) (5.51)
ΣΣΣ = ΣΣΣ(θθθ) (5.52)

where μμμ and ΣΣΣ are the mean vector and covariance matrix of the observed variables
and we have already defined their corresponding implied moments. Demonstrating
that each θθθ is solvable as a unique value of a function of one or more elements of
μμμ and ΣΣΣ demonstrates that the parameters are identified. In general, we require four
waves of data for the ALT model to be identified if the autoregressive parameter is
equal over time and five waves without the equality restriction on the autoregression
coefficient. If there are only three waves of data, then yi1 must be made endogenous
and the coefficients for the paths from αi and βi to yi1 require nonlinear constraints
for estimation. Bollen and Curran (2004) discuss this special case in more detail.

5.5 Estimation and Testing

SEMs are estimable with a wide variety of estimators. The most appropriate es-
timator depends on whether the endogenous observed variables are continuous or
categorical and the distribution of these variables. In the most straightforward case
of continuous endogenous variables, the Full Information Maximum Likelihood
(FIML) estimator is available in all SEM software:

Fml = ln |ΣΣΣ(θθθ)|+ tr[ΣΣΣ−1(θθθ)S]− ln |S|− p+(z−μμμ(θθθ))′ΣΣΣ−1(θθθ)(z−μμμ(θθθ)) (5.53)

where θθθ is a vector that contains all of the parameters (i.e., coefficients, variances,
and covariances of exogenous variables and errors) in the model that we wish to
estimate, ΣΣΣ(θθθ) is the covariance matrix of the observed variables that is implied by
the model structure, μμμ(θθθ) is the mean vector of the observed variables implied by the
model, S is the sample covariance matrix of the observed variables, z is the vector of
sample means of the observed variables, and p is the number of observed variables
in the model. The implied covariance matrix [ΣΣΣ(θθθ)] and the implied mean vector
[μμμ(θθθ)] are in 5.49 and 5.50, respectively.

The classical derivation of Fml begins with the assumption that the observed
variables come from multivariate normal distributions (see, e.g., Bollen, 1989a, pp.
131-135). The FIML estimator of the parameters, θ̂θθ , has several desirable proper-
ties: the estimator is consistent, asymptotically unbiased, asymptotically normally
distributed, asymptotically efficient, and its covariance matrix equals the inverse
of the information matrix (Lawley and Maxwell 1971). Fortunately, the FIML has
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desirable properties under less restrictive conditions. Browne (1984) proves that the
preceding properties hold as long as the observed variables come from distributions
with no excess multivariate kurtosis. There also are robustness studies that provide
conditions where many of these properties hold even with excess multivariate kur-
tosis (see e.g., Satorra, 1990). Even when the robustness conditions fail there are
corrections to the significance tests and bootstrapping procedures that permit signif-
icance tests (e.g., Satorra and Bentler, 1988; Bollen and Stine, 1990; 1993). Thus,
with continuous outcome variables, estimation is possible even with excess multi-
variate kurtosis. Categorical dependent observed variables require procedures that
take account of their categorical nature, but this is beyond the scope of our chapter.
See Bollen and Curran (2006, Ch. 8) for discussion.

A first step in assessing model fit is a test of H0 : ΣΣΣ = ΣΣΣ(θθθ) and μμμ = μμμ(θθθ) where
ΣΣΣ is the population covariance matrix of the observed variables, ΣΣΣ(θθθ) is the co-
variance matrix implied by the model that is a function of the parameters of the
model, μμμ is the population mean vector of the observed variables, and μμμ(θθθ) is the
implied mean vector that is a function of the model parameters. These implied mo-
ment matrices were described above. If the model is true, then H0 should be true.
If the model structure is incorrect, then we should reject H0. The test statistic of
Tml = Fml(N − 1) is asymptotically distributed as a χ2 with degrees of freedom
df = (p(p+1)/2+ p)− t where p is the number of observed variables and t is the
number of estimated parameters. A significant chi-square test statistic is evidence
against H0 : ΣΣΣ = ΣΣΣ(θθθ) and μμμ = μμμ(θθθ) while a nonsignificant test statistic is consis-
tent with the null hypothesis and hence the validity of the model. It is possible to
compare two or more nested models where the parameters of one model are a re-
strictive form of the parameters of another. For instance, if we had an ALT model
with no restrictions on the autoregressive parameter and a second identical to the
first except that the autoregressive parameters were constrained to be equal, then
the equal autoregressive ALT model would be nested in the ALT model where the
autoregressive parameters were freely estimated. The difference in the chi-square
test statistics for these individual ALT models would itself be asymptotically dis-
tributed as a chi-square variate with degrees of freedom equal to the difference in
the degrees of freedom of the two models. The null hypothesis in this comparison of
nested models is that the model with the greatest number of restrictions fits as well
as the less restrictive model. A significant chi-square would be evidence in favor of
the less restrictive model whereas a nonsignificant chi-square is evidence favoring
the more restrictive model.

In practice, the chi-square test statistics are not the sole means of assessing model
fit. Even if we use test statistics that correct for excess multivariate kurtosis, the
power of the chi-square test statistic generally is large when the sample size is large.
Structural misspecifications that might otherwise be judged as minor might result
in a statistically significant chi-square or chi-square difference test. For this reason,
researchers frequently use additional fit statistics to supplement the chi-square test
statistic. There are numerous fit statistics available (Bollen and Long, 1993), but
here we present several that we use in our example section: the Incremental Fit
Index (IFI, Bollen 1989b), 1 minus the Root Mean Square Error of Approximation
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(1−RMSEA, Steiger and Lind, 1980), and the Bayesian Information Criterion (BIC,
Schwartz, 1978; Raftery, 1995):

IFI =
Tb−Th

Tb−d fh
(5.54)

(1−RMSEA) = 1−
√

Th−d fh

(N−1)d fh
(5.55)

BIC = Th−d f (ln(N)) (5.56)

where Tb and Th are the likelihood ratio test statistics for a baseline and the hypoth-
esized models, dfb and dfh are the d f for the baseline and hypothesized models, N
is the sample size and t is the number of free parameters in the model. The hypothe-
sized model is simply the model that the researcher is testing and the baseline model
is a highly restrictive model to which the fit of the hypothesized model is being com-
pared. Typically the baseline model freely estimates the variances and means of the
observed variables but forces their covariances to zero. A value of 1 is an ideal fit
for the IFI and (1−RMSEA). For the BIC, a negative value is evidence that favors
the hypothesized model over the saturated model whereas a positive value favors
the saturated model.4 Although judgement is required in evaluating these fit indices,
values less than .90 are typically considered to signify an inadequate fit to the data
for the IFI and (1−RMSEA).

5.6 Examples

5.6.1 Data

The data for these examples are repeated measures of Rosenberg’s self-esteem scale
from the National Longitudinal Study of Youth (NLSY). The data are organized by
age of respondent rather than by wave of the survey. Using age to measure time
creates missing data so we need to use the direct maximum likelihood estimator to
take account of the missing values. There are 5622 respondents between the ages of
15 and 30 put in two year groupings, ages 15-16 to ages 29-30 with each assessed
a minimum of once and a maximum of 6 times. The observed mean levels of self-
esteem by age group are 3.058 for 15 and 16, 3.090 for 17 and 18, 3.113 for 19 and
20, 3.120 for 21 and 22, 3.125 for 23 and 24, 3.146 for 25 and 26, 3.141 for 27 and
28, and 3.127 for 29 and 30. The average mothers’ education level is 11.544 years.

4 This interpretation holds when calculating BIC as in equation (5.56), but this interpretation will
not be true if different formulas are used.
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5.6.2 Models

We present several models. First, we estimate the unconditional autoregressive (AR)
model. Then we estimate the unconditional latent curve model (LCM). Third, we
present the results from the unconditional ALT model. Fourth, and finally, we add
the respondents’ mothers’ years of education in 1994 as an exogenous predictor
to produce a conditional ALT (cALT) model. All estimation was conducted us-
ing Mplus 5.2. The programs that produced the results and the results themselves
are available in Chapter 5 at the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. Table 5.1 shows the fit
statistics corresponding to the five models we estimated. The first model, AR with
equal intercepts, has a statistically significant chi-square, low values of the IFI and a
positive value for the BIC which suggests that the saturated model fits better than the
hypothesized one. The only fit index that suggests a good fit is the (1−RMSEA).
We also estimated the AR model with unconstrained intercepts. The fit was very
close to that of the autoregressive model we report in Table 5.1 (TML(18) = 262.39,
p = 0.006; IFI = 0.82;1−RMSEA = 0.95;BIC = 106.96).

The second model, the Latent Curve Model (LCM), has a fit that is much better
than the AR one in that the IFI and (1−RMSEA) are high and the BIC is a large
negative value. Combining features of both models in the ALT model we find for
the first time a nonsignificant chi-square, an IFI and (1−RMSEA) that are near
their ideal values, and a large negative BIC. However, closer examination of the
parameter estimates and their standard errors reveals that the mean, variance, and the
covariances of the slope are all not significantly different from zero. This suggests
that the slope factor is not needed in this model. Furthermore, the autoregressive
coefficients appear near equal when their standard errors are taken into account. This
led us to respecify the ALT model without the slope term and with the autoregressive
parameters set equal. The fit statistics suggest that this model fits very well. This
model suggests that there are stable individual differences in self-esteem and that
there is an impact of past self-esteem feelings on current ones.

Table 5.1 Overall fit of Autoregressive, Latent Curve, and Autoregressive Latent Trajectory mod-
els for self-esteem, ages 15-30 (N = 5622)

(1) (2) (3) (4) (5)
Overall Fit Autoregressive Latent Curve Unconditional No Slope No Slope

Model Model ALT Model Unconditional Conditional
ALT Model ALT Model

TML 280.69 69.93 22.76 39.03 49.36
df 24 28 18 28 34
p-value <0.001 <0.001 0.200 0.080 0.043
IFI 0.81 0.97 1.00 0.99 0.99
1−RMSEA 0.96 0.98 0.99 0.99 0.99
BIC 73.46 -171.83 -132.66 -202.73 -244.21
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Which of these four models is best? The question is complicated by the fact
that not all of these models are nested. However, some are. If in the unconditional
ALT model (see column (3) in Table 5.1) we set the VAR(βi), VAR(αi), E(βi),
COV (βi,αi), COV (βi,y1), and COV (αi,y1) to zero, then we are led to equation
(5.2) which is the AR model with equal intercepts reported in column (1) of Ta-
ble 5.1. A nested chi-square difference test leads to a highly significant difference
(TML(6) = 280.69− 22.76 = 257.93, p < 0.001) lending support to the ALT over
the AR model. The “No Slope Unconditional ALT Model” of column (4) is nested
in the “Unconditional ALT Model” of column (3) and the chi-square difference test
is not significant (TML(10) = 39.032−22.763 = 16.69, p = 0.092) lending support
to the ALT model without a slope. The “Latent Curve Model” of column (2) is not
nested in the “Unconditional ALT Model” of column (3) because the ALT model
treats y1 as predetermined while the LCM model treats that variable as endogenous.
Despite the nonnesting of some of these models, the other fit statistics are compara-
ble for nonnested models. By all measures the AR model is inadequate. Considering
all of the fit statistics, the “No Slope Unconditional ALT Model” appears to have
the best fit among models (1) to (4).

Given that the “No Slope Unconditional ALT Model” was the best, we used it to
estimate a conditional model that treats mother’s education as a covariate. Though
the chi-square for this model is marginally significant, the other fit statistics look
excellent for this conditional model and we interpret the results of that model in
detail. Table 5.2 shows the parameter estimates from the cALT model, which were
taken from the Mplus 5.2 output for that model.

The first row of Table 5.2 shows the fixed relationships between the random inter-
cepts (set at 1) and the observed repeated measures of self-esteem. The equal autore-
gressive effects of the self-esteem measure, the ρ̂ coefficients, are 0.192, showing
a positive impact of past on current self-esteem. These effects are net of the ran-
dom intercept effects. The residual variances ( ̂VAR(ε)) of the repeated measures are
statistically significant; hence there is age-specific error in the repeated measures.
They are similar in size, however, and could be constrained to be equal as another
potential simplification to the model – the measurement error in the repeated mea-
sures is the same at all ages. The R-squares of all repeated measures but the first are
moderate in size ranging from 0.305 to 0.369. This suggests that the random inter-
cepts and the prior self-esteem variables explain roughly 30 to 37% of the variation
in each self-esteem measure.

We turn now to the impact of mother’s education on the random intercept. This
is equivalent to a regression with the random intercept being the dependent vari-
able and mother’s education being the explanatory variable. There is a regression
constant or fixed intercept (μ̂α ) and a slope (γ̂α1). The slope (γ̂α1) of mother’s
education is 0.005 so that each unit shift in education leads to an expected shift
of 0.005 in the random intercept variable. The regression constant (μ̂α ) from this
regression equation is 2.461 which is the predicted value of the random inter-
cept when mother’s education is zero, though a value of 0 for mother’s educa-
tion does not occur in our data. There is also significant variation of the regression
residuals in the random intercepts equation of 0.025 (= ̂VAR(ζα)) and an R-square
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Table 5.2 ML parameter estimates and z-values in the No Slope Conditional ALT model for self-
esteem, ages 15-30 (N = 5622)

SE SE SE SE SE SE SE SE
Parameter Model 15-16 17-18 19-20 21-22 23-24 25-26 27-28 29-30

λt of α – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(–) (–) (–) (–) (–) (–) (–)

ρ – – 0.192 0.192 0.192 0.192 0.192 0.192 0.192
(7.67) (7.67) (7.67) (7.67) (7.67) (7.67) (7.67)

VAR (ε) – 0.105 0.070 0.077 0.073 0.072 0.086 0.084 0.097
(47.37) (25.50) (23.51) (18.96) (16.86) (14.37) (10.02) (6.86)

μα 2.461 – – – – – – – –
(32.03)

VAR(ζα ) 0.025 – – – – – – – –
(9.66)

v – 2.969 – – – – – – –
(159.76) – – – – – – –

COV(α , SE 15-16) – 0.172 – – – – – – –
(18.85) – – – – – – –

γα1 0.005 – – – – – – – –
(4.63) – – – – – – – –

γSE15−16,1 0.008 – – – – – – – –
(5.065) – – – – – – – –

R2 0.012 (α) 0.007 0.366 0.352 0.367 0.369 0.329 0.336 0.305

for this equation of only 0.012. Mother’s education is a poor predictor of the ran-
dom intercept for self-esteem. Turning to the effect of mother’s education on ini-
tial self-esteem 15 to 16, we again find a low R-square (0.007), but a statistically
significant intercept (ν̂ = 2.969) and slope (γ̂SE15−16,1 = 0.008). In addition, the
random intercepts are significantly correlated with the self-esteem at 15 and 16
( ĈOV (α,SE15−16) = 0.172).

So what have we learned about the trajectories of self-esteem from ages 15 and
16 to ages 29 and 30? First, we found an autoregressive process with prior self-
esteem having a positive effect on current self-esteem, but this is combined with
a random intercept term that provides for a different constant level of self-esteem
for each child. In fact, including only an autoregressive term does not lead to a
good fitting model. The autoregressive and the random intercept effects explained
roughly 30% to 37% of the variation in the self-esteem variables. The random slope
was not needed. This implies that once we control for the random intercept and
the autoregressive relationship, there is no need to add a linear trend term in self-
esteem for each child. There are differences in their levels of self-esteem that tend
to be constant, but that are also affected by prior self-esteem. Our conditional model
revealed statistically significant positive effects of mother’s education on the random
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intercept and on the initial self-esteem 15 and 16, but the effects were small as was
the R-square.

5.7 Conclusions

This paper reviewed the ALT model which synthesizes features of the
autoregressive/cross-lagged and the latent growth curve models. It permits the
lagged value of a repeated measure to influence the current value while at the same
time permits there to be separate over-time trajectories for individuals in the sam-
ple. As such it provides a researcher added flexibility in capturing the nature of
change exhibited in panel data. Furthermore, the ALT model yields evidence rel-
evant to whether the synthesis is required or if a researcher can get by with only
the autoregressive and cross-lagged model or only the latent curve model. Obvious
generalizations of the ALT model include multiple repeated measures, autoregres-
sive models beyond lag one (e.g., AR(p) models), nonlinear trajectories, or ALT
models for latent variables with separate measurement models with multiple indica-
tors. The ALT model already includes latent variables in that the random intercept
and random slope variables are latent. However, in the case of a multiple indica-
tor model for the repeated “measure,” the ALT model would allow a model of the
autoregressive relation and the trajectory of the latent variables that would control
for the measurement error in the indicators of the latent variables. This also would
provide an estimate of the amount of measurement error in the multiple indicators.
In the conditional ALT model it also would be possible to include latent exogenous
variables as predictors of the random intercepts, random slopes, and the initial value
of the latent repeated variable.

Despite these desirable features, several cautionary notes are in order. First, the
ALT model assumes that the repeated measure has a direct impact on itself at a later
point in time. A researcher should have substantive reasons to believe that this is a
reasonable hypothesis and should not use the ALT model as just a way to improve
model fit. A second related point is that it is possible that the autoregressive rela-
tion resides in the disturbance rather than in the repeated measures. In this situation,
the disturbances should be autoregressive rather than the repeated measures since
this implies a model that generally differs from the ALT.5 Third, our presentation
assumes that the researcher has the correct functional form for the latent curve tra-
jectory in the ALT model. If, for example, we assume a linear functional form when
a trajectory is nonlinear, then the autoregressive part of the ALT model might be due
to the researcher using the wrong functional form (Voelkle, 2008).6 A related point

5 Hamaker (2005) discusses the special cases where the ALT and autoregressive disturbance model
can be made statistically equivalent.
6 We explored nonlinearity in our empirical example by using the “freed loading” model (Bollen
and Curran, 2006, pp. 98-103). There was no improvement to model fit and the autoregressive pa-
rameters were still significant suggesting that the linear functional form was an appropriate starting
point.
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is that extrapolating trends beyond the period of observation should only be done
with great caution. A linear trend might be a good approximation of a trajectory
within the time period of observation, but extrapolating too far out could lead to
highly inaccurate predictions if the relation is really nonlinear. Finally, throughout
our presentation we assume discrete time models are good approximations to con-
tinuous time models. Many processes occur in continuous time even when the data
are available only at fixed times. If the waves of data collection are too spread out
relative to the timing of the relationships, then our discrete time models could be
misleading. For instance, the autoregressive or ALT model might lead to inaccurate
estimates of relationships if the observation interval for the discrete time model is
long. Delsing and Oud (2008) present an extension of the ALT model to continuous
time modeling that enables researchers to use variables observed in panel data but
allow continuous rather than discrete time.

Keeping these limitations in mind, we believe that the ALT model provides a
useful extension to some of the more commonly used models for panel data.
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Werts, C. E., Jöreskog, K. G., & Linn, R. L. (1971). Comment on the estimation of measurement

error in panel data. American Sociological Review, 36, 110-112.
Wiley, D. E., & Wiley, J. A. (1970). The estimation of measurement error in panel data. American

Sociological Review, 35, 112-117.
Zyphur, M. J., Chaturvedi, S., & Arvey, R. D. (2008). Job performance over time is a function of

latent trajectories and previous performance. Journal of Applied Psychology, 93, 217-224.



Chapter 6

State Space Methods for Latent Trajectory and

Parameter Estimation by Maximum Likelihood

Jacques J. F. Commandeur, Siem Jan Koopman, and Kees van Montfort

Abstract We review Kalman filter and related smoothing methods for the latent
trajectory in multivariate time series. The latent effects in the model are modelled as
vector unobserved components for which we assume particular dynamic stochastic
processes. The parameters in the resulting multivariate unobserved components time
series models will be estimated by maximum likelihood methods. Some essential
details of the state space methodology are discussed in this chapter. An application
in the modelling of traffic safety data is presented to illustrate the methodology in
practice.

6.1 Introduction

This chapter concerns multivariate state space analysis and discusses some particu-
lar issues of interest, see Durbin and Koopman (2001) and Commandeur and Koop-
man (2007).

Multivariate state space analysis is applicable to situations where two or more
time series need to be analysed simultaneously. However, the material in this chap-
ter also provides a unified treatment for univariate time series. In classical regres-
sion analysis a linear relationship is assumed between the dependent variable yi
and an independent variable xi. The standard regression model for n realizations or

Jacques J. F. Commandeur
Department of Econometrics, VU University Amsterdam
e-mail: jcommandeur@feweb.vu.nl

Siem Jan Koopman
Department of Econometrics, VU University Amsterdam
e-mail: s.j.koopman@feweb.vu.nl

Kees van Montfort
Department of Econometrics, VU University Amsterdam
e-mail: kvmontfort@feweb.vu.nl

K. van Montfort et al., Longitudinal Research with Latent Variables,
DOI 10.1007/978-3-642-11760-2 6, c© Springer-Verlag Berlin Heidelberg 2010

177



178 Jacques Commandeur, Siem Jan Koopman, and Kees van Montfort

observations of yi and covariate xi for i = 1, . . . ,n can be represented by

yi = a+bxi + εi,

where the disturbances or errors ε1, . . . ,εn are normally and independently dis-
tributed with mean zero and variance σ2

ε . The coefficients a and b are unknown
and fixed and are usually estimated by employing the regression method. It is im-
plied in a classical regression analysis that the observations yi, after the corrections
for intercept and for independent variable xi, are assumed to be independent of each
other. In a time series context, it is not realistic to assume that the observations are
conditionally independent because they are expected to be interrelated through time.
When statistical inference is carried out when the observations are known to be sub-
ject to serial correlations (time dependencies), various problems can arise when it
is based on classical regression analysis. For instance, the well-known F-test and
t-test statistics do not have proper F- and t-distributions, respectively, under the null
hypothesis. Time series analysis has the primary task to uncover the dynamic devel-
opment of observations measured over time. By using state space methodology it is
assumed that the dynamic properties cannot be observed directly from the data. The
unobserved dynamic process at time t can be measured indirectly and is referred to
as the state of the time series. The state of the time series may consist of several
unobserved components and can be estimated by the Kalman filter.

State space methods originated in the field of control engineering, starting with
the ground-breaking paper of Kalman (1960). They were initially (and still are)
deployed for the purpose of accurately tracking the position and velocity of moving
objects such as ships, airplanes, missiles, and rockets.

Around the eighties of the last century it was recognized by scientists involved
in other fields than control engineering that these ideas could well be applied to
time series analysis generally as well. Since then state space methods have been
applied in a wide range of subjects, including economics, finance, political science,
environmental science, the social sciences, road safety and medicine.

The outline of this chapter is as follows. In Section 6.2 we formulate the general
multivariate state space model and we discuss several well-known sub models. Sec-
tion 6.3 deals with the Kalman filter and the estimation of the unobserved states and
the unknown model parameters. In Section 6.4 we discuss some tests to check the
model assumptions such as normality, independency and homoscedasticity. Finally,
we will present an empirical example.

6.2 Linear Gaussian State Space Models

A time series is a set of observations which are sequentially ordered over time. In a
state space analysis the time series observations are assumed to depend linearly on
a state vector that is unobserved and is generated by a stochastically time-varying
process (a dynamic system). The observations are further assumed to be subject to
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measurement error that is independent of the state vector. The state vector can be
estimated or identified once a sufficient set of observations becomes available. In
this section we concentrate on the state space model and its special cases. In Section
6.3 we discuss methods for estimation, residual analysis and forecasting on the basis
of state space models. The expositions rely mostly on the introductory textbook by
Commandeur and Koopman (2007) and on the more advanced textbook by Durbin
and Koopman (2001).

The general linear Gaussian state space model for the n-dimensional observation
sequence y1, . . . ,yn is given by

yt = Ztαt + εt , εt ∼ NID(0,Ht), (6.1)
αt+1 = Ttαt +Rtηt , ηt ∼ NID(0,Qt), t = 1, . . . ,n, (6.2)

where αt is the state vector, εt and ηt are disturbance vectors and the system matri-
ces Zt , Tt , Rt , Ht and Qt are fixed and known but a selection of elements may depend
on an unknown parameter vector. Equation (6.1) is called the observation or mea-
surement equation, while (6.2) is called the state or transition equation. The p× 1
observation vector yt contains the p observations at time t and the m×1 state vector
αt is unobserved. The p× 1 irregular vector εt has zero mean and p× p variance
matrix Ht .

The p×m matrix Zt links the observation vector yt with the unobservable state
vector αt and may consist of regression variables. The m×m transition matrix Tt
in (6.2) determines the dynamic evolution of the state vector. The r×1 disturbance
vector ηt for the state vector update has zero mean and r×r variance matrix Qt . The
observation and state disturbances εt and ηt are assumed to be serially independent
and independent of each other at all time points. In many standard cases, r = m and
matrix Rt is the identity matrix Im. In other cases, matrix Rt is an m× r selection
matrix with r < m. Although matrix Rt can be specified freely, it is often composed
of a selection from the first r columns of the identity matrix Im.

The initial state vector α1 is assumed to be generated as

α1 ∼ NID(a1,P1),

independently of the observation and state disturbances εt and ηt . Mean a1 and
variance P1 can be treated as given and known in almost all stationary processes
for the state vector. For nonstationary processes and regression effects in the state
vector, the associated elements in the initial mean a1 can be treated as unknown
and need to be estimated. For an extensive discussion of initialisation in state space
analysis, we refer to Durbin and Koopman (2001, Chapter 5).
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6.2.1 Local Level Model and Other Unobserved Component
Models

By appropriate choices of the vectors αt , εt and ηt , and of the matrices Zt , Tt , Ht , Rt
and Qt , a wide range of different time series models can be derived from (6.1) and
(6.2). Here we discuss the class of unobserved components time series models. A
number of special cases will be discussed in some detail. Special attention is given
to the univariate local level model.

Letting

αt = μt , ηt = ξt , Zt = Tt = Rt = 1, Ht = σ2
ε , Qt = σ2

ξ ,

(all of order 1×1) for t = 1, . . . ,n, model (6.1)-(6.2) reduces to the local level model
as given by

yt = μt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ),

(6.3)

for t = 1, . . . ,n. The level component μt can be conceived of as the equivalent of
the intercept in the classical linear regression model yt = μ + εt which is obtained
by setting all the level disturbances ξt in (6.3) equal to zero and with μ = μ1. The
key difference is that the intercept μ in a regression model is fixed whereas the level
component μt in (6.3) is allowed to change from time point to time point.

Since the second equation in (6.3) defines a random walk, the local level model
is also referred to as the random walk plus noise model (where the noise refers
to the irregular component εt ). It can be shown that the dynamic process for
xt = yt+1− yt = ηt + εt+1− εt , for t = 1, . . . ,n, reduces to the moving average pro-
cess xt = εt + θεt−1 where θ relates to the signal-to-noise ratio q = σ2

ξ /σ2
ε via a

quadratic function. Furthermore, the forecasting function of observations generated
by the local level model is equivalent to the exponentially weighted moving average
scheme or exponential smoothing.

By defining

αt =
(

μt
νt

)
, ηt =

(
ξt
ζt

)
, Tt =

[
1 1
0 1

]
, Zt =

(
1 0

)
,

Ht = σ2
ε , Qt =

[
σ2

ξ 0
0 σ2

ζ

]
, and Rt =

[
1 0
0 1

]
,

the scalar notation of (6.1) and (6.2) leads to

yt = μt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +νt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.4)

νt+1 = νt +ζt , ζt ∼ NID(0,σ2
ζ ),
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for t = 1, . . . ,n, and we obtain the local linear trend model.
The local linear trend model requires a 2× 1 state vector αt : one element for

the level component μt and one element for the slope component νt . The slope
component can be conceived of as the equivalent of the regression coefficient in
the classical regression model where the observed time series yt is regressed on the
independent variable time t: yt = μ + νt + εt with μ = μ1 and ν = ν1. Again, the
important difference is that the regression coefficient or weight ν is fixed in classical
linear regression, whereas the slope νt in the local linear trend model is allowed to
change over time.

In the situation that the observed time series consists of quarterly or monthly
data, for example, the local level and the local linear trend model can be extended
with a stochastic seasonal dummy component denoted here by γt . In the case of a
quarterly time series (the seasonal length is 4), by defining

αt =

⎛⎜⎜⎝
μt
γ1,t
γ2,t
γ3,t

⎞⎟⎟⎠ , ηt =
(

ξt
ωt

)
, Tt =

⎡⎢⎢⎣
1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ , Zt =
(
1 1 0 0

)
,

Ht = σ2
ε , Qt =

⎡⎢⎢⎣
σ2

ξ 0 0 0
0 σ2

ω 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , Rt =

⎡⎢⎢⎣
1 0
0 1
0 0
0 0

⎤⎥⎥⎦ ,

and expanding (6.1) and (6.2) in scalar notation, we obtain

yt = μt + γ1,t + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ),

γ1,t+1 =− γ1,t − γ2,t − γ3,t +ωt , ωt ∼ NID(0,σ2
ω), (6.5)

γ2,t+1 = γ1,t ,

γ3,t+1 = γ2,t ,

for t = 1, . . . ,n, which is a local level and dummy seasonal model for a quarterly
time series where the seasonal component is allowed to change over time. The sea-
sonal dummy model is not the only approach to incorporate time-varying seasonal
effects in unobserved components time series model. For example, the trigonomet-
ric seasonal can also be considered. For details about such alternative specifications
of the seasonal we refer to Harvey (1989) and Durbin and Koopman (2001).

The textbook of Harvey (1989) was instrumental in the dissemination of state
space models outside the field of control engineering. When a slope component is
included in (6.5) as well, Harvey calls this model the basic structural time series
model. A typical application of this model is for the seasonal adjustment of time
series. A seasonally adjusted time series is defined in this context simply by ŷt − γt
for t = 1, . . . ,n.
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Another extension is to include one or more cycles to any of the special models
within the class of unobserved components time series models. By defining

αt =

⎛⎝μt
ct
c∗t

⎞⎠ , ηt =

⎛⎝ξt
κt
κ∗t

⎞⎠ , Tt =

⎡⎣1 0 0
0 ρ cos(λc) ρ sin(λc)
0 −ρ sin(λc) ρ cos(λc)

⎤⎦ , Zt =
(
1 1 0

)
,

Ht = σ2
ε , Qt =

⎡⎣σ2
ξ 0 0

0 σ2
c (1−ρ2) 0

0 0 σ2
c (1−ρ2)

⎤⎦ , and Rt =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ,

in (6.1) and (6.2), we obtain the following local level plus cycle model as given by

yt = μt + ct + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.6)

ct+1 = ρ[cos(λc)ct + sin(λc)c∗t ]+κt , κt ∼ NID(0,σ2
c (1−ρ2)),

c∗t+1 = ρ[−sin(λc)ct + cos(λc)c∗t ]+κ∗t , κ∗t ∼ NID(0,σ2
c (1−ρ2)),

for t = 1, . . . ,n, where 0 < ρ ≤ 1 is the damping factor and λc is the frequency of the
cycle measured in radians so that 2π /λc is the period of the cycle. In case ρ = 1, the
cycle reduces to a fixed sine-cosine wave but the component is still stochastic since
the initial values c1 and c∗1 are stochastic variables with mean zero and variance σ2

c .
A typical application of this model is for the signal extraction of business cycles
from macro-economic time series.

6.2.2 Regression and Intervention Effects

Another extension of the local level and local linear trend models concerns the
incorporation of fixed explanatory and intervention variables. In the case of one
regression variable xt and one intervention variable wt , for example, we have
yt = μt + βxt + λwt + εt for the local level model and a state vector of three ele-
ments is required: one for the level component μt , one for the regression coefficient
β , and one for the regression coefficient λ . The substitution of

αt =

⎛⎝μt
βt
λt

⎞⎠ , ηt = ξt , Tt =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , Zt =
(
1 xt wt

)
,

Ht = σ2
ε , Qt =

⎡⎣σ2
ξ 0 0

0 0 0
0 0 0

⎤⎦ , Rt =

⎡⎣1
0
0

⎤⎦ ,

in (6.1) and (6.2) results in
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yt = μt +βt xt +λt wt + εt , εt ∼ NID(0,σ2
ε ),

μt+1 = μt +ξt , ξt ∼ NID(0,σ2
ξ ), (6.7)

βt+1 = βt ,

λt+1 = λt ,

where β = β1 = βt and λ = λ1 = λt for t = 1, . . . ,n. This is the local level model
with one continuous explanatory variable xt and one intervention variable wt . By
adding disturbance terms to the state equation for βt in (6.7), this regression weight
is effectively subjected to a random walk, thus allowing for the estimation of time-
varying regression effects.

Letting τ denote the time point at which an intervention effect occurred, variable
wt can either be coded as a pulse intervention:

wt =

{
0, t < τ, t > τ
1, t = τ

(to model an outlier observation), or as a level intervention:

wt =

{
0, t < τ,

1, t ≥ τ,

(to model a structural break in the level of the series), or as a slope intervention:

wt =

{
0, t < τ,

1+ t− τ, t ≥ τ,

(to model a structural break in the slope of the series). Other types of intervention
effects can be modelled as well, see Box and Tiao (1975).

6.2.3 Structural Time Series Model

What emerges – and this a key advantage of state space methods – is their structural
approach to time series analysis: the different unobserved components or building
blocks responsible for the dynamics of the series such as trend, seasonal, cycle, and
the effects of explanatory and intervention variables are identified separately before
being put together in a state space model. It is the responsibility of the researcher
to decide what components are required in a specific situation, and then to consider
whether they apply to the time series under consideration. This explains why state
space models are also known as structural time series models.
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6.2.4 Multivariate Models

All this is easily extended to multivariate time series. For example, letting yt denote
a p×1 vector of observations, a multivariate local level model can be applied to the
p time series simultaneously:

yt = μt + εt , εt ∼ NID(0,Σε),
μt+1 = μt +ξt , ξt ∼ NID(0,Σξ ),

(6.8)

for t = 1, . . . ,n, where μt , εt , and ξt are p×1 vectors and Σε and Σξ are p× p vari-
ance matrices. In what is known as the seemingly unrelated time series equations
model (6.8), the series are modelled as in the univariate situation, but the distur-
bances driving the level components are allowed to be instantaneously correlated
across the p series. When slope, seasonal, or cycle components are involved, each
of these three components also has an associated p× p variance matrix allowing for
correlated disturbances across series.

If it is found that the rank r of Σξ in (6.8) is smaller than p, then this indicates
that the p series have r common levels. Such common factors may not only have a
nice interpretation, but may also result in more efficient inferences and forecasts.

6.3 State Space Analysis

For given values of all system matrices – and for given initial conditions a1 and P1
– the state vector can be estimated in three different ways, yielding what are known
as the filtered, the predicted, and the smoothed state vector. Depending on the types
of state estimates required in the analysis, the estimates of the state vector can be
obtained by performing one or two passes through the observed time series:

1. a forward pass, from t = 1, . . . ,n, using a recursive algorithm known as the
Kalman filter enables the computation of filtered and predicted states and pre-
diction errors;

2. a backward pass, from t = n, . . . ,1, using output of the Kalman filter and us-
ing recursive algorithms known as state and disturbance smoothers enables the
computation of smoothed estimates of states and disturbances.

6.3.1 Kalman Filter for Prediction, Filtering and Forecasting

The forward pass through the data with the well-known Kalman (1960) filter pro-
vides all estimates that are relevant for the filtered and the predicted state. The main
purpose of the Kalman filter is to obtain optimal estimates of the state at time point t,
only considering the observations {y1,y2, . . . ,yt−1}. A key property of the predicted
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state and its related estimates is therefore that they are only based on past values of
the observed time series. The recursive formulas for the Kalman filter are

vt = yt −Ztat , Ft = ZtPtZ′t +Ht ,

Kt = TtPtZ′t F
−1

t , Lt = Tt −KtZt , (6.9)
at+1 = Ttat +Ktvt , Pt+1 = TtPtL′t +RtQtR′t ,

for t = 1, . . . ,n. The values of at in (6.9) represent the predicted state, while the
values of Pt quantify the estimation error variance matrix of the predicted state at .
Under the assumption of normality, the latter variances are useful for the construc-
tion of confidence intervals for the predicted state, which – assuming that we are
interested in their 90% confidence limits for example – can be calculated as

at ±1.64
√

Pt ,

for t = 1, . . . ,n. A modification of the Kalman filter also allows the computation of
the filtered estimate of the state vectors, that is

at|t = at +PtZ′t F
−1

t vt , Pt|t = Pt −PtZ′t F
−1

t ZtPt , t = 1, . . . ,n,

where at|t is the optimal estimate of the state at time point t by considering the
observations {y1,y2, . . . ,yt} while Pt|t is the state filtered estimation error variance
matrix. The values of vt in (6.9) are called the one-step ahead prediction or forecast
errors, since they quantify the lack of accuracy of at in predicting the observed
value of yt at time point t; the values of Ft are the variances of these one-step ahead
prediction errors vt .

One of the convenient features of state space methods is the ease with which they
deal with two important aspects of time series analysis – forecasting and missing
observations: by treating them in exactly the same way. Missing observations are
handled by setting Kt and vt in (6.9) equal to 0. Forecasts for yn+1, . . . ,yn+k given
y1, . . . ,yn are simply obtained by applying the Kalman filter for t = 1, . . . ,n,n +
1, . . . ,n+ k and by treating yn+1, . . . ,yn+k as missing observations.

6.3.2 State and Disturbance Smoothing

The backward pass through the data is only required for smoothing that leads to esti-
mates such as the smoothed states and smoothed disturbances. The main purpose of
state and disturbance smoothing is to obtain estimated values of the state and distur-
bance vectors at time point t, considering all available observations {y1,y2, . . . ,yn}.
The recursive formulas for state smoothing are

rt−1 =Z′t F
−1

t vt +Z′t rt , Nt−1 =Z′t F
−1

t Zt +L′tNtLt , (6.10)
α̂t =at +Ptrt−1, Vt =Pt −PtNt−1Pt , (6.11)
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for t = n, . . . ,1. The recursive formulas for smoothing (6.10) are initialised with
rn = 0 and Nn = 0. The state smoothing equations (6.11) yield the smoothed state
estimate α̂t and is defined as the optimal estimate of αt using the full set of obser-
vations {y1,y2, . . . ,yn}; the state smoothing equations also yield the corresponding
smoothed state estimation error variance matrix Vt .

Analogous to the predicted state, under the assumption of normality the smoothed
state estimation error variance matrix Vt is useful for the construction of confidence
intervals for the smoothed state components, which – should we happen to be inter-
ested in their 90% confidence limits for example – can be calculated as

α̂t ±1.64
√

Vt ,

for t = 1, . . . ,n.
The recursions for rt−1 and Nt−1 in (6.10) also enable the computation of the

smoothed estimates of the disturbances εt and ηt in the following way,

ε̂t =Ht
(
F−1

t vt −K′t rt
)
, Var(ε̂t) =Ht

(
F−1

t +K′t NtKt
)

Ht , (6.12)
η̂t =QtR′t rt , Var(η̂t) =QtR′tNtRtQt , (6.13)

for t = n, . . . ,1. The equations (6.12) and (6.13) compute the smoothed observa-
tion disturbances ε̂t , the smoothed state disturbances η̂t , and their corresponding
smoothed estimation error variance matrices Var(ε̂t) and Var(η̂t).

6.3.3 Diagnostic Checking

All significance tests in linear Gaussian state space models – and the construction
of confidence intervals – are based on three assumptions concerning the residuals
of the analysis. The residuals should satisfy independence, homoscedasticity, and
normality, in this order of importance. Whether the residuals satisfy these three as-
sumptions can be established by diagnosing what are known as the standardised
prediction errors. They are defined as

vt√
Ft

, (6.14)

for t = 1, . . . ,n. For the computations of the one step-ahead prediction errors vt and
their variances Ft in (6.14), we refer to the recursive formulas for the Kalman filter
given in (6.9). The assumptions of independence and normality of the residuals
can be diagnosed using the Box-Ljung test statistic and the Bowman and Shenton
test statistic, respectively. The assumption of homoscedasticity can be checked by
testing whether the variance of the standardised prediction errors in the first third
part of the series is equal to the variance of the errors corresponding to the last
third part of the series. For further details concerning these diagnostic tests, we refer
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to Harvey (1989), Durbin and Koopman (2001) and Commandeur and Koopman
(2007).

A second diagnostic tool for determining the appropriateness of a model is pro-
vided by inspection of what are known as the auxiliary residuals. As already men-
tioned above, the disturbance smoothing filters applied in the backward pass through
the data yield, amongst others, estimates of the smoothed observation and state dis-
turbances, and of their variances. The auxiliary residuals are obtained by dividing
the smoothed observation and state disturbances with the square root of their corre-
sponding variances, as follows:

ε̂t√
Var(ε̂t)

, and
η̂t√

Var(η̂t)
, (6.15)

for t = 1, . . . ,n, resulting in standardised smoothed disturbances. Inspection of the
standardised smoothed observation disturbances (shown at the left of (6.15)) allows
for the detection of possible outlier observations in a time series, while inspection of
the standardised smoothed state disturbances (shown at the right of (6.15)) makes it
possible to detect structural breaks in the underlying development of a time series.

Each auxiliary residuals can be considered as a t-test for the null hypothesis that
there was no outlier observation (when inspecting the auxiliary residuals at the left
of (6.15)) or as a t-test for the null hypothesis that there was no structural break in the
corresponding unobserved component of the observed time series (when inspecting
the auxiliary residuals at the right of (6.15)). Applying the usual 95% confidence
limits of ±1.96 corresponding to a two-tailed t-test, possible outlier observations or
structural breaks in the unobserved components making up the state vector are thus
easily detected.

6.3.4 Parameter Estimation

So far, we have presented all of the results that can be obtained with state space
methods as if the disturbance variances, the fixed regression effects, the parame-
ters ρ and λc associated with cycles, etcetera, are given and known. In practice, of
course, these parameters are unknown, and have to be estimated.

It can be shown that the Kalman filter presented in (6.9) also provides the neces-
sary ingredients required for evaluating the log-likelihood function, which is given
by

logL(y|ψ) =−np
2

log(2π)− 1
2

n

∑
t=1

(
log |Ft |+ v′tF

−1
t vt

)
, (6.16)

where the vt are the one-step ahead prediction errors, the Ft are their variances for
t = 1, . . . ,n defined in (6.9), and ψ denotes the vector of unknown parameters. The
log-likelihood (6.16) is maximised with respect to ψ numerically using the score
vector or the EM algorithm.
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Numerical quasi-Newton methods for likelihood maximization such as the one
of Broyden-Fletcher-Goldfarb-Shanno (BFGS) are generally regarded as computa-
tionally efficient in terms of convergence speed and numerical stability, see also
the book of Nocedal and Wright (1999). The BFGS iterative optimization method
is based on information from the gradient and terminated when some pre-chosen
convergence criterion is satisfied. The convergence criterion is usually based on the
gradient evaluated at the current estimate, the parameter change compared to the
previous estimate or the likelihood value change compared to the previous estimate.
The number of iterations required to satisfy these criteria depends on the choice of
the initial parameter values, the tightness of the chosen criterion and the shape of
the likelihood surface.

Several problems may arise when maximizing the likelihood function with re-
spect to the parameter vector of a high dimension. For example, the number of
required iterations may be too large for a feasible procedure, different initial param-
eter values and different convergence criteria may lead to different estimates. Also,
flat likelihood surfaces may not allow the optimization procedure to converge.

An alternative method for computing ML estimates is the use of the EM-
algorithm. The EM-algorithm is not an alternative to ML, but it is an alternative
way to obtain the ML estimates. We may compare the different estimation methods
in terms of required calculation time. The EM algorithm in the setting of a state
space model was developed by Shumway and Stoffer (1982) and Watson and En-
gle (1983). The basic EM procedure works roughly as follows. Consider the joint
density p(y1, . . . ,yn,α1, . . . ,αn). The Expectation (E) step takes the expectation of
the components of the joint density conditional on y1, . . . ,yn and maximizes the re-
sulting expression with respect to ψ . The E step mainly consists of evaluating the
estimated state vector using state space smoothing algorithms. The next step is the
Maximization (M) step which usually can be done analytically and is simpler than
maximizing the full likelihood function directly. Given the “new” estimate from the
M step, we can go back to the E step and evaluate the smoothed estimates based on
the new estimate. This iterative procedure converges to the ML estimate of ψ . Un-
der fairly weak conditions it can be proven that each iteration of the EM algorithm
only increases the value of the likelihood, and that the EM estimate converges to a
maximum of the likelihood. The algorithm has similar properties as a well chosen
numerical ML algorithm.

6.4 An Illustration of Multivariate State Space Analysis

In this section we present the practical implications of a multivariate state space
analysis. Various results of a simultaneous analysis of two time series will be dis-
cussed in some detail. In February 1983 a law was introduced in the United King-
dom (UK) obligating front seat passengers in cars (including the driver) to wear a
seat belt. In Durbin and Koopman (2001) and Commandeur and Koopman (2007)
the effect of this law was investigated by applying a bivariate local level with
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seasonal model to the log of the monthly numbers of front seat passengers killed
or seriously injured (KSI) in cars and to the log of the monthly numbers of rear car
seat passengers KSI, but only for the period 1969− 1984 (thus yielding a total of
12×16 = 192 observations per series). These series were analysed previously with
univariate state space models in Harvey and Durbin (1986).

In these studies the numbers of UK front seat passengers KSI in cars were treated
as a treatment series, while the UK rear seat passengers KSI in cars were used as
a control series, based on the assumption that the rear seat passengers KSI in cars
were not affected by the introduction of this seat belt law. It was indeed found that
the seat belt law resulted in a significant 28.4% to 30.5% decrease in the number of
front seat passengers KSI in cars, but did not affect the number of UK rear car seat
passengers KSI.

In this section we re-investigate the effect of the introduction of this law, but
now applied to the same two series supplemented with monthly observations for the
years 1985−2007, resulting in a total of 12×39 = 468 observations per series. The
logs of the two series are displayed in Figure 6.1.

1970 1975 1980 1985 1990 1995 2000 2005

5.0

5.5

6.0

6.5

7.0
LfrontKSI LrearKSI

Fig. 6.1 Log of monthly numbers of front seat passengers (top) and rear seat passengers (bottom)
in cars killed or seriously injured in the UK in the period 1969–2007.

These extended series not only make it possible to confirm or falsify the value
and significance of the effect of the February 1983 seat belt law on front seat pas-
sengers in cars previously found in Durbin and Koopman (2001) and Commandeur
and Koopman (2007) for the monthly 1969−1984 series, but also to investigate the
effects of the introduction of two other seat belt laws in the UK: the obligation for
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children in the rear seat of cars to wear a seat belt in September 1989, and for adults
in the rear seat of cars to wear a seat belt in July 1991. In the evaluation of the effects
of the latter two laws it is typically the monthly number of rear seat passengers KSI
that act as a treatment series while the monthly number of front seat passengers KSI
can now be used as a control series.

All the analyses discussed in this chapter were performed in STAMP 8 of Koop-
man, Harvey, Doornik, and Shephard (2007). STAMP 8 is an easy-to-use package
designed to model and forecast time series, based on uni- and multivariate structural
time series models. No coding is required because all the models are simply formu-
lated by clicking options in dialog windows. Other software packages that currently
have functions for analysing time series with state space methods (but with a pro-
grammatic interface) include SsfPack, R, Matlab, Eviews, Gauss, Stata,
SAS, RATS, and Gretl.

We start by adding three intervention variables to a bivariate local linear trend
with monthly seasonal model applied to both series (in logs). These intervention
variables are: the introduction of the seat belt law for car drivers and front seat car
passengers in February 1983, the introduction of the seat belt law for children in
the rear seat of cars in September 1989, and the introduction of the seat belt law for
adults in the rear seat of cars in July 1991, all applied to both series simultaneously.

The bivariate time series analysis aims to assess the effects of the introduction of
these three seat belt laws in the UK. The intervention of February 1983 is expected
to affect the car drivers and front seat car passengers only, and not the rear seat
car passengers. In contrast, the interventions of September 1989 and July 1991 are
expected to affect the rear seat car passengers only, and not the car drivers and front
seat car passengers. As we already mentioned, the car drivers and front seat car
passengers series can be considered as a treatment series for the evaluation of the
February 1983 intervention, while the rear seat car passengers series can be used as
a control series in this case. For the evaluation of the seat belt laws implemented
in September 1989 and July 1991, on the other hand, the reverse holds true: in that
case it is the car drivers and front seat car passengers series that takes on the role of
a control series, while the rear seat car passengers series can be used as a treatment
series in these two cases.

The residual and fit diagnostics of this analysis are as follows:

Summary statistics
LfrontKSI LrearKSI

T 468.00 468.00
p 3.0000 3.0000
std.error 0.084885 0.10540
Normality 1.9352 10.135
H(150) 0.82104 0.91225
DW 1.9910 2.1078
r(1) 0.0013231 -0.058876
q 24.000 24.000
r(q) -0.029281 -0.078653
Q(q,q-p) 43.697 37.213
Rsˆ2 0.39786 0.43512

The Box-Ljung diagnostic tests for the independence of residuals for the front
and rear seat passengers KSI series are Q(21) = 43.697 and Q(21) = 37.213,
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respectively. Since these should be tested against χ2
(21;0.05) = 32.6705, the resid-

uals of both series are somewhat serially correlated. The tests for homoscedas-
ticity of the residuals for the front and rear seat passengers KSI series are equal
to H(150) = 0.82104 and H(150) = 0.91225, respectively. Since F(150,150;0.025) ≈
1.43, and 1/H(150) = 1.22 and 1/H(150) = 1.10, the assumption of homoscedas-
ticity is satisfied for both series. The Bowman-Shenton diagnostic tests for normality
of the residuals are N = 1.9117 and N = 13.679, respectively, implying that the as-
sumption of normality is only satisfied for the front seat passengers KSI series. This
is not something to worry about very much since we are dealing with 468 observa-
tions. The values of the Akaike Information Criterion (AIC) for the two series are
−4.8603 and −4.4273, respectively.

The estimates of the variance matrices (where the upper off-diagonal elements
denote correlations) for this bivariate state space model are:

Level disturbance variance matrix: Slope disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 0.0002752 0.8798 LfrontKSI 2.249e-008 1.000
LrearKSI 0.0002047 0.0001967 LrearKSI 3.329e-008 4.927e-008

Seasonal disturbance variance matrix: Irregular disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 7.080e-007 0.8030 LfrontKSI 0.005460 0.5935
LrearKSI 1.186e-006 3.082e-006 LrearKSI 0.004033 0.008459

The t-tests for the regression weights of the three level shift intervention variables
are:

Equation LfrontKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) -0.33634 0.05107 -6.58646 [0.00000]
Level break 1989(9) 0.04346 0.05108 0.85077 [0.39535]
Level break 1991(7) -0.03793 0.05108 -0.74260 [0.45811]

Equation LrearKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) 0.02321 0.05208 0.44564 [0.65607]
Level break 1989(9) 0.05752 0.05208 1.10445 [0.26999]
Level break 1991(7) -0.06484 0.05206 -1.24556 [0.21357]

These t-tests indicate that the regression coefficient for the February 1983 level
shift intervention variable applied to the front seat passengers KSI series is very
significant, unlike any of the other five intervention variables. The estimated regres-
sion coefficient for the February 1983 level shift intervention variable on front seat
passengers KSI is −0.33634, implying a 100× (exp(−0.33634)− 1) = −28.56%
change in the number of front seat passengers KSI due to the introduction of this
seat belt law in the UK.

Although the disturbance variances of the two slope components for both series
are quite small, we decide to keep the slope components in all further multivariate
analyses of these two series because the values of these components in December
2007 are found to significantly deviate from zero:
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Equation LfrontKSI
Value Prob

Slope -0.00395 [0.00486]

Equation LrearKSI
Slope -0.00476 [0.01114]

We now present the results of the same analysis after removing the five non-
significant level shift intervention variables from the previous model. The residual
and fit diagnostics are:

Summary statistics
LfrontKSI LrearKSI

T 468.00 467.00
p 3.0000 3.0000
std.error 0.085015 0.10567
Normality 1.8309 9.5254
H(151) 0.81288 0.91048
DW 1.9886 2.1155
r(1) 0.0021785 -0.063392
q 24.000 24.000
r(q) -0.032486 -0.072441
Q(q,q-p) 43.508 34.964
Rsˆ2 0.39334 0.42977

The Box-Ljung diagnostic tests for the independence of the residuals for the front
and rear seat passengers KSI series in this analysis are Q(21) = 43.508 and Q(21) =
34.964, respectively. The residuals of both series are therefore still serially corre-
lated, although to a somewhat lesser extent than in the previous analysis. The tests
for homoscedasticity of the residuals for the front and rear seat passengers KSI
series for this analysis are equal to H(151) = 0.81288 and H(151) = 0.91048, re-
spectively. Since F(151,151;0.025)≈ 1.43, and 1/H(151) = 1.23 and 1/H(151) = 1.10,
the assumption of homoscedasticity is still satisfied for both series. The Bowman-
Shenton diagnostic tests for normality of the residuals are now N = 1.8309 and
N = 9.5254, respectively, meaning that the assumption of normality is still only sat-
isfied for the front seat passengers KSI series. Again, this is not something to worry
about very much due to the large amount of observations in this data set. The AIC
for the two series are now -4.8658 and -4.4351, respectively, indicating a better fit
than in the previous analysis.

The estimates of the variance matrices (where the upper off-diagonal elements
again denote correlations) for this analysis are:

Level disturbance variance matrix: Slope disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 0.0002708 0.8734 LfrontKSI 2.408e-008 1.000
LrearKSI 0.0002110 0.0002155 LrearKSI 3.581e-008 5.325e-008

Seasonal disturbance variance matrix: Irregular disturbance variance matrix:
LfrontKSI LrearKSI LfrontKSI LrearKSI

LfrontKSI 7.038e-007 0.8051 LfrontKSI 0.005457 0.5927
LrearKSI 1.190e-006 3.105e-006 LrearKSI 0.004005 0.008368

With a value of −10.55 for the t-test, the estimated regression coefficient for the
February 1983 level shift intervention variable applied to the front seat passengers
KSI series is now −0.35120, implying a significant 100× (exp(−0.35120)− 1) =
−29.62% level change in the number of front seat passengers KSI.
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Fig. 6.2 Levels and slope components of full rank model for monthly numbers of front seat pas-
sengers (left) and rear seat passengers (right) killed or seriously injured in the UK in the period
1969–2007.

There is a perfect correlation between the slope disturbances of the two series,
probably due to their very small variances. However, the just mentioned variance
matrix of the level disturbances indicates that the level disturbances are also quite
highly correlated. This is confirmed by the following eigenvalue decompositions of
the level and slope disturbance variance matrices:

Analysis of variance matrices
Level disturbance variance matrix is 2 x 2 with imposed rank 2 and actual rank 2
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 0.0002708 0.8734
LrearKSI 0.0002110 0.0002155
Cholesky decomposition LDL’ with L and D

LfrontKSI LrearKSI
LfrontKSI 1.000 0.0000
LrearKSI 0.7791 1.000
diag(D) 0.0002708 5.112e-005
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI 0.7517 0.6596
LrearKSI 0.6596 -0.7517
eigenvalues 0.0004560 3.036e-005
percentage 93.76 6.243

Slope disturbance variance matrix is 2 x 2 with imposed rank 2 and actual rank 1
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 2.408e-008 1.000
LrearKSI 3.581e-008 5.325e-008
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Eigenvectors and eigenvalues
LfrontKSI LrearKSI

LfrontKSI -0.5580 0.8298
LrearKSI -0.8298 -0.5580
eigenvalues 7.732e-008 4.850e-020
percentage 100.0 6.272e-011

The first eigenvalue of the level disturbance variance matrix explains almost 94% of
the variance in this matrix. This indicates that the model for the analysis of these two
series could be simplified by imposing rank one restrictions on both these matrices,
thus treating the level and slope components as common to both series.

We therefore repeat the analysis only applying a level shift intervention variable
in February 1983 on the front seat passengers KSI series, and restricting the level
and slope disturbance matrices to be of rank one. The residual and fit diagnostics of
this final model are:
Summary statistics

LfrontKSI LrearKSI
T 468.00 467.00
p 3.0000 3.0000
std.error 0.085009 0.10604
Normality 1.7758 10.106
H(151) 0.82200 0.94560
DW 1.9739 2.0539
r(1) 0.010066 -0.029112
q 24.000 24.000
r(q) -0.031552 -0.075277
Q(q,q-p) 43.087 34.490
Rsˆ2 0.39342 0.42570

The Box-Ljung diagnostic tests for the independence of the residuals for the front
and rear seat passengers KSI series are now Q(21) = 43.087 and Q(21) = 34.490,
respectively. The residuals of both series are therefore still serially correlated, al-
though again to a somewhat lesser extent than in the previous analysis. The tests
for homoscedasticity of the residuals for the front and rear seat passengers KSI
series for this analysis equal H(151) = 0.82200 and H(151) = 0.94560, respec-
tively. Since F(151,151;0.025) ≈ 1.43, and 1/H(151) = 1.22 and 1/H(151) = 1.06,
the assumption of homoscedasticity is again satisfied for both series. The Bowman-
Shenton diagnostic tests for normality of the residuals are N = 1.7758 and N =
10.106, respectively, implying that the assumption of normality is still only satisfied
for the front seat passengers KSI series. The AIC for the two series are now -4.8659
and -4.428, respectively, indicating that the previous analysis results in a marginally
better fit than the present one.

The estimates of the variance matrices for this last analysis are:
Level disturbance variance/correlation matrix:

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Level disturbance factor variance for LfrontKSI: 0.000263925
Level disturbance factor loading for LrearKSI: 0.685819

LfrontKSI LrearKSI
Constant 0.0000 0.9298
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Fig. 6.3 Levels and slope components of rank one model for monthly numbers of front seat pas-
sengers (left) and rear seat passengers (right) killed or seriously injured in the UK in the period
1969–2007.

Slope disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Slope disturbance factor variance for LfrontKSI: 7.08383e-008
Slope disturbance factor loading for LrearKSI: 1.68624

LfrontKSI LrearKSI
Constant 0.0000 0.001602

Seasonal disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.048e-007 0.8072
LrearKSI 1.187e-006 3.067e-006

Irregular disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 0.005467 0.5899
LrearKSI 0.004066 0.008690

The t-test for the regression weight of the only level shift intervention variable
is:
Equation LfrontKSI: regression effects in final state at time 2007(12)

Coefficient RMSE t-value Prob
Level break 1983(2) -0.35111 0.03124 -11.23930 [0.00000]

With a t-value of−11.24, the estimated regression coefficient for the February 1983
level shift intervention variable in this final analysis equals −0.35111, indicating a
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significant 100× (exp(−0.35111)− 1) = −29.61% level change in the number of
front seat passengers KSI.

The most important graphical results of this final analysis are presented in Fig-
ures 6.3, 6.4, and 6.5. Figure 6.4 displays the estimated trends for the front and rear
passengers series KSI series (first row in Figure 6.4), the estimated trigonometric
seasonals (second row in Figure 6.4), and the corresponding irregular components
(third row in Figure 6.4), while Figure 6.5 contains the correlograms of the residuals
of the two series. In Figure 6.3 the common level and slope components of the two
series are shown.
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Fig. 6.4 Trends, seasonals and irregular components of rank one model for monthly numbers of
front seat passengers (top) and rear seat passengers (bottom) killed or seriously injured in the UK
in the period 1969–2007.

The correct implementation of the rank one restrictions is confirmed by the out-
put of the STAMP 8 program of Koopman, Harvey, Doornik, and Shephard (2007):
Level disturbance variance/correlation matrix:

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Level disturbance factor variance for LfrontKSI: 0.000263925
Level disturbance factor loading for LrearKSI: 0.685819

Slope disturbance variance/correlation matrix:
LfrontKSI LrearKSI

LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Slope disturbance factor variance for LfrontKSI: 7.08383e-008
Slope disturbance factor loading for LrearKSI: 1.68624
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Fig. 6.5 Correlograms of rank one model for monthly numbers of front seat passengers (top) and
rear seat passengers (bottom) killed or seriously injured in the UK in the period 1969–2007.

and
Analysis of variance matrices
Level disturbance variance matrix is 2 x 2 with imposed rank 1 and actual rank 1
Factors are determined by series LfrontKSI
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 0.0002639 1.000
LrearKSI 0.0001810 0.0001241
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI 0.8247 0.5656
LrearKSI 0.5656 -0.8247
eigenvalues 0.0003881 -5.559e-021
percentage 100.0 -1.432e-015

Slope disturbance variance matrix is 2 x 2 with imposed rank 1 and actual rank 1
Factors are determined by series LfrontKSI
Variance/correlation matrix

LfrontKSI LrearKSI
LfrontKSI 7.084e-008 1.000
LrearKSI 1.195e-007 2.014e-007
Eigenvectors and eigenvalues

LfrontKSI LrearKSI
LfrontKSI -0.5101 0.8601
LrearKSI -0.8601 -0.5101
eigenvalues 2.723e-007 1.016e-023
percentage 100.0 3.731e-015

showing that all of the variation in the level and slope disturbance matrices is now
explained by the first dimension, as expected. It follows that the state equations of
the two level and slope components can be written as
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Notwithstanding the fact that the residual diagnostic tests of the analyses pre-
sented in this section do not satisfy all of the model assumptions of independency
and normality perfectly, we conclude that the impressive reduction in the UK num-
ber of front seat passengers KSI of 28.4% to 30.5% found in Durbin and Koopman
(2001) and Commandeur and Koopman (2007) as a result of the introduction of
the seat belt law in February 1983 is confirmed in the present analyses, even after
adding 24 years of monthly observations to these time series data. However, the in-
troduction of the UK seat belt laws for children and adults in the rear seat of cars in
September 1989 and July 1991 apparently failed to have any significant impact on
these types of road users.

6.5 Conclusions

We have presented an overview of uni- and multivariate state space time series anal-
ysis. An illustration of how the methodology based on state space can be imple-
mented is given for the simultaneous analysis of two time series of traffic safety
data. This account is far from complete and more details – such as how to deal
with nonlinear models and non Gaussian error distributions – can be found in the
references given.
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Chapter 7
Continuous Time Modeling of Panel Data by
means of SEM

Johan H.L. Oud and Marc J.M.H. Delsing

Abstract After a brief history of continuous time modeling and its implementation
in panel analysis by means of structural equation modeling (SEM), the problems of
discrete time modeling are discussed in detail. This is done by means of the popu-
lar cross-lagged panel design. Next, the exact discrete model (EDM) is introduced,
which accounts for the exact nonlinear relationship between the underlying contin-
uous time model and the resulting discrete time model for data analysis. In addition,
a linear approximation of the EDM is discussed: the approximate discrete model
(ADM). It is recommended to apply the ADM-SEM procedure by means of a SEM
program such as LISREL in the model building phase and the EDM-SEM procedure
by means of Mx in the final model estimation phase. Both procedures are illustrated
in detail by two empirical examples: Externalizing and Internalizing Problem Be-
havior in children; Individualism, Nationalism and Ethnocentrism in the Flemish
electorate.

7.1 Introduction

Continuous time modeling goes back to Newton (1643-1727) and Leibniz (1646-
1716), who originated the tools of differential and integral calculus. Newton’s laws
of motion relate the position, speed, and acceleration of physical bodies by means of
differential equations. Not less than two and a half centuries later, Simon (1952) in-
troduced the use of differential equations into social science, followed by Coleman
(1968) and Blalock (1969). Blalock illustrates his discussion by means of two
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examples. In the first example, a system of two simple linear differential equations
is used to describe and explain the arms race process between opposing nations.
The second example was taken from Simon (1952) and formalizes Homans’s theory
about the human group (Homans, 1950), relating the variables interaction, friend-
ship, and activity by means of differential equations. It should be noted that the
applications in Newtonian mechanics as well as the examples provided by Simon
and Blalock are deterministic and do not allow random error to enter the system.

In contrast to its popularity in physics and natural science, the use of continuous
time methods in statistically orientated sciences such as economics and social sci-
ence is still rare. Undoubtedly, one reason for the slow spread has been the difficulty
of handling random phenomena in continuous time, in particular the definition of the
random walk process on a continuous time scale as well as the associated stochastic
integral. It took a century after the discovery of Brownian motion, the random walk
behavior of particles in a liquid, before Norbert Wiener in 1928 succeeded to give
this motion a rigorous mathematical definition. In honor of Wiener, the motion was
later called Wiener process. Wiener was also the first to define integration of the
Wiener process (Wiener stochastic integral), which in 1944 was generalized by the
Japanese mathematician Itô (Itô stochastic integral). Nowadays, there is no reason
to avoid the specification of random error in continuous time or the use of stochastic
differential equations and their solution. The mathematical problems are solved and
need not concern the research practitioner as will be shown in this chapter.

Just as in natural science, most phenomena studied in economics and social sci-
ence evolve in continuous time. As emphasized by Bergstrom, the pioneer of contin-
uous time modeling in econometrics, the economy does not cease to exist in between
observations nor does it function only at quarterly or annual intervals correspond-
ing to the observations (Phillips, 1993, p. 23). Bergstrom (1988) credited the British
statistician Bartlett for being the first to deal with the problem of estimating the pa-
rameters of continuous time stochastic models from discrete time series. As Bartlett
(1946) put it:

The discrete time nature of our observations in many eco-
nomic and other time series does not reflect any lack of con-
tinuity in the underlying series. Thus theoretically it should
often prove more fundamental to eliminate this imposed arti-
ficiality. An unemployment index does not cease to exist be-
tween readings, nor does Yule’s pendulum cease to swing.

Hereby, Bartlett for the first time criticized the unfortunate identification in conven-
tional time series analysis of the dynamically relevant interval with the observation
interval. Continuous time methods put the causal mechanisms on a continuous time
scale, allowing the process to proceed in infinitesimally small steps, and so dis-
tinguish the underlying dynamics clearly from the discrete time measurement time
points. This is especially important in social science, where measurement almost
invariably occurs in discrete time, measurement time points are chosen rather ar-
bitrarily, and observation intervals are often large. Particularly in the case of large
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intervals, approximating the continuous time process by a discrete time model for-
mulated in terms of the observation interval leads to unacceptable results.

Traditionally, the application of continuous time methods is restricted to N = 1
research and estimation in the stochastic case is done by N = 1 time series estima-
tion methods, especially filter techniques. To solve the problem of the data points in
a time series being correlated, which violates the independence assumption of sam-
pling theory, filter techniques purge the data from the predictable correlated parts to
end up with uncorrelated “innovations”. From 1990 onwards, Singer (1990, 1993,
1995, 1998) worked on the adaptation of these techniques for continuous time anal-
ysis of panel data. Singer’s (1991) program LSDE (Linear Stochastic Differential
Equations) performs maximum likelihood estimation of the continuous time model
on the basis of the so-called exact discrete model (EDM). The EDM, claimed to be
developed in 1961-1962 by Bergstrom (Bergstrom, 1988), will also be central in the
present chapter. Many alternative but approximate estimation procedures, such as
the approximate discrete model ADM (Bergstrom, 1966) or the multivariate latent
differential equation MLDE (Boker, Neale, & Rausch, 2004) procedure, provide
more or less accurate approximations of the underlying continuous time parameters
on the basis of discrete time data. The EDM has the major advantage of linking the
discrete time model parameters in an exact way to the underlying continuous time
model parameters by means of nonlinear constraints. The EDM and estimation pro-
cedures using the EDM make sure that the parameters estimated are exactly equal
to the parameters of the underlying differential equation model.

An alternative way to estimate the continuous time parameters for panel data
through the EDM is Structural Equation Modeling (SEM). This was started by
Oud (1978), employing the first published version of the SEM program LISREL
(Jöreskog & Sörbom, 1976) described in Jöreskog’s (1977) seminal publication
about SEM. Later, Arminger (1986) and Oud, van Leeuwe, and Jansen (1993) used
other SEM program versions for the same purpose. A similar approach was fol-
lowed by Tuma and Hannan (1984), although they used related simultaneous equa-
tions procedures rather than SEM. Common to all these authors is that they were
inspired by Coleman (1968) to employ the so-called “indirect” method in estimat-
ing the EDM. This consists of first estimating discrete time parameters by means of
a SEM or similar program and then separately, in a second step, deriving the contin-
uous time parameter values using the EDM. In general, the indirect method cannot
be recommended. A simple example, where the indirect method breaks down, is in
the case of unequal observation intervals (Tuma & Hannan, 1984). Here the impo-
sition of simple equality constraints by the SEM program does not work and the
direct application of the nonlinear constraints is called for.

Oud and Jansen (2000) showed how more recent nonlinear SEM software pack-
ages such as Mx (Neale, Boker, Xie, & Maes, 2006) can also be employed for max-
imum likelihood estimation of the continuous-time state space model parameters,
but using the direct method: applying the nonlinear constraints of the EDM directly
during estimation. A thorough comparison between the LSDE/EDM procedure us-
ing filter techniques and the direct SEM/EDM procedure was made by Oud and
Singer (2008) in a series of Monte Carlo simulation studies. It turns out that in case
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the same model is analyzed in both procedures and the data are appropriate for both
procedures, the estimation results from filter techniques and SEM are equal. In this
chapter we will exclusively deal with SEM.

Although continuous time modeling is pertinent to an extremely broad subject
field in social science, most problems with discrete time analysis and their solution
by means of continuous time modeling are covered by the topic of reciprocal causal
relationships. Reciprocal relationships are traditionally analyzed in discrete time by
means of the cross-lagged panel design. In the next section, we will first go into this
popular but, from the continuous time perspective, insidious analysis design. The
motivation and basic principles of continuous time modeling will be clarified on the
basis of the cross-lagged panel design. The full-fledged model and its estimation
will be dealt with in the ensuing sections.

7.2 Analysis of Reciprocal Relationships in the Cross-Lagged
Panel Design

The cross-lagged panel design studies and compares the effects that variables have
on each other across time. Different from cross-sectional research, the causal di-
rection in panel research is not based on instantaneous relationships between si-
multaneously measured variables x and y. Instead, different variables are used for
opposite directions: x at time point 1 affecting y at time point 2, y at time point 1 af-
fecting x at time point 2 (see Figure 7.1). The cross-lagged panel design is therefore
supposed to be more suitable than cross-sectional research in answering, for exam-
ple, whether parenting characteristics affect adolescents’ adjustment or, conversely,
whether adolescents’ adjustment affects parenting characteristics, or whether both
effects operate reciprocally (Neiderhiser, Reiss, Hetherington, & Plomin, 1999).

1       x2 

y1 y2 

x

Fig. 7.1 Discrete-time cross-lagged panel design.
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Having attracted attention in sociology earlier, the cross-lagged panel design
is now becoming increasingly popular in psychology. Rueter and Conger (1998),
for example, make clear that correlations between parental and children’s behav-
ior, which in the past were interpreted as unidirectional influences from parents to
children, have in recent years assumed a reciprocal causal interpretation. This has
led to a host of cross-lagged panel research to examine and test the direction of
the effects. Other examples include cross-lagged reciprocal relationships between
adolescent problem drug use, delinquent behavior, and emotional distress (Bui, El-
lickson, & Bell, 2000), and between children’s peer relations and antisocial behavior
(Vuchinich, Bank, & Patterson, 1992).
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Fig. 7.2 Two cross-lagged panel designs with different spacings of the measurement time points
and different values of the autoregression coefficients in the problem behavior variables.

Most cross-lagged analyses, however, are performed in discrete time. Although,
for instance, parental behavior (x) and children’s behavior (y), children’s external-
izing problem behavior (x) and children’s internalizing problem behavior (y) or
individualism (x) and ethnocentrism (y) influence themselves and each other con-
tinuously over time, measurements are typically taken not more than one or two
times a year, resulting in a large observation interval. As a consequence, discrete
time modeling becomes an oversimplification and often a distortion of reality. The
path diagrams of the cross-lagged panel design in Figure 7.2 make this very clear.
The oversimplification consists in the assumption that the arrows jump from one
point in time to the next one and that nothing happens between measurements. In
fact, the estimated cross-lagged coefficients (crossing arrows) and autoregression
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coefficients (horizontal arrows) over the observation interval ∆ti are complicated
mixtures of the continuous time cross- and auto-effects in a constant interchange
over, and heavily dependent on the length of, the chosen observation interval ∆ti. A
variable with a high auto-effect, meaning that there is a strong tendency to sustain
its value over time, tends also to retain the influence of other variables over a longer
time interval than a variable with a low auto-effect. So, even a relatively small con-
tinuous time cross-effect can result in a relatively high cross-lagged effect in discrete
time, if the variable influenced has a high auto-effect. But the converse can also be
true: a relatively strong continuous time cross-effect having only small impact over
a discrete time interval because of a rather low auto-effect in the dependent vari-
able. Additionally, the result will be more strongly dependent on the auto-effect
over the larger time interval (∆t2 = 1.25 in diagram B) than over the shorter interval
(∆t1= 0.75 in diagram B). So, the causal picture changes in discrete time, depend-
ing on the length of the chosen observation interval. Continuous time modeling is
necessary to disentangle the continuous time cross-effects and auto-effects from the
discrete time mixtures.

7.2.1 Relationship between Continuous and Discrete Time

The relationship between continuous and discrete time is governed by the matrix
exponential

A∆ti = eA∆ti . (7.1)

Many paradoxical aspects of the relationship are explainable by the highly nonlin-
ear character of the matrix exponential. Its power series definition will be given in
(7.9) and a rather general computational form in (7.17). A∆ti is the discrete time
autoregression matrix over observation interval ∆ti = ti− ti−1 (i = 1,2, ...) and A
is the so-called drift matrix, which is the analogue of the autoregression matrix in
continuous time. It is multiplied by the interval in the exponent of (7.1). Autore-
gression matrix A∆ti displays on the diagonal the autoregressions for each of the
variables and off-diagonally the cross-lagged effects between the variables. Anal-
ogously, drift matrix A has the continuous time auto-effects on the diagonal and
the continuous time cross-effects off-diagonally. It should be emphasized that (7.1),
which specifies the exact relationship between A∆ti and A, clearly shows that A∆ti
changes as a function of the length of the observation interval, while A continues to
be equal.

Table 7.1 gives a typical example of an A∆ti with corresponding exact A, for
∆ti = 1 computed according to (7.1). The most conspicuous differences between the
matrices are found in the diagonals of A∆ti (autoregressions 0.50, 0.40, and 0.30)
and A (auto-effects –0.84, –1.05, and –1.60). Whereas the autoregressions in the di-
agonal of A∆ti are all positive, the corresponding auto-effects in A are all negative.
This is a rather technical difference, which should be kept in mind when interpreting
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Table 7.1 Discrete time autoregression matrix (left; ∆ti= 1) and corresponding continuous time
drift matrix (right)

x1 x2 x3 x1 x2 x3

x1
x2
x3

 0.50 0.30 0.22

0.05 0.40 0.20

0.25 0.20 0.30


−0.84 0.64 0.44

−0.09 −1.05 0.69

0.76 0.40 −1.60


A∆ti A

differences. It is simply explained, however, when we take a closer look at the rela-
tionship between discrete and continuous time.

We start from the autoregression equation (7.2), specifying how by means of A∆ti
each of the variables in vector x(ti) is predictable by the variables in vector x(ti−1)
at the previous time point:

x(ti) =A∆tix(ti−1). (7.2)

For clarity, we do not yet specify an error component in (7.2), but this does not
impact the relationship between autoregression matrix and drift matrix. From (7.2)
we derive, dividing ∆x(ti ) = x(ti)−x(ti−1) by ∆ti:

∆x(ti)
∆ti

= A∗ x(ti−1)

with A∗ = (A∆ti − I)/∆ti.
(7.3)

Difference equation (7.3) in terms of A∗ approximates differential equation (7.4) in
terms of continuous time matrix A:

dx(t)
dt =Ax(t). (7.4)

We assume the rather general conditions to be satisfied, which guarantee a unique
solution of (7.4) for initial value x(ti−1) =x(t0) =x0 (Zadeh & Desoer, 1963, p.
294). Note that, although the differential equation model is specified for all t in
some continuous time interval and also its solution is valid for all t in the interval,
the solution is observed only at the discrete time points ti. While the solution is
given in autoregression form for arbitrary discrete time points ti in (7.2), it is made
explicit in terms of continuous time drift matrix A by matrix exponential (7.1).

Basically, differential equation model (7.4) can thus be viewed as a transforma-
tion of the popular autoregression model (7.2). First in (7.3) difference quotient
∆x(ti)/∆ti is placed on the left-hand side, approximation A∗ of A on the right-hand
side, and subsequently shifting the time interval ∆ti towards zero makes A∗ approach
A more and more closely. As seen in (7.3), in the transformation from A∆ti into A∗,
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each autoregression value in the diagonal of A∆ti is diminished by 1 and so becomes
negative for autoregressions between 0 and 1. This explains why in general positive
but less than 1 autoregressions in discrete time correspond to negative auto-effects
in continuous time. By equation (7.1), it is further evident that in the case of zero
off-diagonals in A, autoregressions between 0 and 1 must correspond to negative
auto-effects. Zero off-diagonals cause the matrix exponential in (7.1) to reduce to
scalar exponentials with negative values−∞ < a < 0 in the diagonal of A leading to
positive values 0 < ea∆ti < 1 in the diagonal of A∆ti and vice versa. Note that in Table
7.1, the strength order of the positive autoregressions in the autoregression matrix
(0.30 < 0.40 < 0. 50) is maintained in the negative drift matrix diagonals (–1.60 <
–1.05 < –0.84). Depending on the off-diagonals, however, this is not necessarily the
case.

Causally more interesting than the diagonals of the matrices in Table 7.1 are the
paradoxical differences between discrete and continuous time that occur in the off-
diagonal elements (effects between different variables). It turns out that the conclu-
sions drawn in a discrete time analysis with respect to the cross-lagged coefficients
in A∆ti may differ fundamentally from those to be drawn in a continuous time anal-
ysis on the basis of the corresponding cross-effects in A.

• Equal discrete time coefficients become different in continuous time.

For example, the two reciprocal cross-lagged coefficients with value 0.20 in the
autoregression matrix – which in discrete time might lead to the conclusion that the
strength of the causal effects between the variables x2 and x3 is equal in opposite
directions – differ considerably in continuous time: 0.69 and 0.40.

• The strength order of coefficients reverses going from discrete to continuous time.

For example, in the autoregression matrix, the discrete time effect of x3 on x1 is
greater than that of x3 on x2: 0.22 versus 0.20. However, in the corresponding drift
matrix, it is the other way around: 0.44 for the first effect and 0.69 for the second
effect.

• Discrete time nonzero coefficients vanish or even change sign in continuous time.

The effect of x1 on x2 with positive value 0.05 in discrete time gets the negative value
of –0.09 in continuous time. So, even interpreting the sign of the effect between
variables is not safe for the transition from discrete to continuous time.

7.2.2 Discrete Time Problems with Unequal and Equal
Observation Intervals

Continuous time analysis is needed to draw correct conclusions about causal effects.
Discrete time analysis gets into extreme trouble, however, in the case of unequal
observation intervals. When different discrete time distances are used in the same
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Fig. 7.3 Two different autoregression functions in two different studies A and B.

study or different researchers study the same causal effect in different distances, it
becomes impossible to compare the strength of the causal effects found. This has
long been recognized in discrete time analysis, notably by Gollob and Reichardt
(1987). It seriously hampers cumulative progress of science, but cannot be solved in
a discrete time context. This is exemplified in Figure 7.2 too. Supposing the other
effects in the model to be equal over the two successive equal intervals in diagram
A, one would not need continuous time modeling to conclude, on the basis of the
autoregressions (0.40 and 0.60), that the auto-effect over the first interval is smaller
than the one over the second interval. In diagram B with unequal intervals, how-
ever, no decision can be made as to which one represents a bigger true auto-effect:
0.60 over interval ∆t1 = 0.75 or 0.50 over longer interval ∆t2 = 1.25. This is because
autoregressions depend on the time interval, and, in general, the smaller the inter-
val, the larger the autoregression, reaching 1 for t = 0. To find out whether or not
the auto-effects over the intervals are indeed equal, again continuous time analysis
is needed to relate and compare the discrete time effects on the same underlying
continuous time scale.

The possibly misleading results of a discrete time analysis in case of unequal
observation intervals are clearly shown by the autoregression functions A and B in
Figure 7.3. By definition, autoregression functions have value 1 at an interval of
length 0 (no change) and generally this value decreases, when the observation in-
terval becomes longer. Suppose A is valid in one study and B in a second study,
while in study A an observation interval ∆t1 of 0.50 year is used, and in study B
an observation interval ∆t2 of 1.00 year. Because autoregression function B exceeds
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A everywhere, no other conclusion should be drawn than that the autoregression
in study A is lower than in study B. Nevertheless, investigator A, finding the au-
toregression value of 0.61 at interval ∆t1= 0.50, could erroneously conclude that
the autoregression in his study is larger than in study B, where the lower value of
0.50 was found at interval ∆t2 = 1.00. Clearly, the correct answer can only be found
in continuous time analysis by comparing the auto-effects in the two studies and
generating the complete autoregression functions as in Figure 7.3.

Some discrete time analysts believe that the use of unequal observation intervals
is the only culprit and that all problems would be solved by using and making com-
parisons for equal intervals only. Equal observation intervals are hardly less prob-
lematic than unequal observation intervals, however, as will become clear from the
two reciprocal cross-lagged effect functions for variables x1 and x3 in Figure 7.4,
both based on drift matrix A in Table 7.1. The cross-lagged effect functions specify
the cross-lagged effects, not only for one specific interval (∆ti = 1 in Table 7.1) and
even not only for all discrete time observation intervals ∆ti in the study. Like au-
toregression functions, cross-lagged effect functions go through all infinitesimally
increasing intervals ∆t in continuous time, starting from ∆t = 0. Unlike autoregres-
sion functions, which start at value 1, cross-lagged effect functions have starting
value 0 (different variables cannot yet have any influence on each other over a zero
time interval), build up the effect more or less rapidly until a maximum is reached
somewhere (in Figure 7.4 maxima 0.250 and 0.240 are reached at the quite differ-
ent intervals of ∆t = 1.02 and ∆t = 1.64, respectively), and eventually return to 0
in a stable model. Stability is defined by the eigenvalues of drift matrix A. If all
eigenvalues have negative real parts, the model is stable. Eigenvalues of A can be-
come complex in some situations, but in this chapter only real eigenvalues will be
considered .

Autoregression functions as well as cross-lagged effect functions were computed
by the matrix exponential in (7.5) which differs from (7.1) merely in allowing ∆t to
take all values in continuous time:

A∆t = eA∆t . (7.5)

Crucial is that, in discrete time research, autoregression matrices A∆ti are defined
and estimated for the observation intervals ∆ti in the study only and are therefore un-
known for intervals that are smaller than or unequal to multiples of ∆ti (i = 1,2, ...T ),
whereas A∆t = eA∆t in (7.5) is much more generally interpretable and computable
for arbitrary continuous time intervals ∆t. Basically, what we do in a continuous
time analysis of discrete time data is first using (7.1) to find the continuous time
drift matrix A that fits the empirical observation intervals, and next using (7.5) to
generate the complete autoregression and cross-lagged effect functions on the basis
of A.

A possible and by no means rare property of cross-lagged effect functions is
shown in Figure 7.4. They are crossing at ∆t = 1.44, both having the same value
0.239 at that interval. So, although according to A in Table 7.1 the effect of x1 on x3
is stronger than in the opposite direction from x3 to x1 (0.76 compared to 0.44) and
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Fig. 7.4 Cross-lagged effect functions for the reciprocal effects between x1 and x3, based on the
drift matrix in Table 7.1.

the cross-lagged effects in A∆ti of Table 7.1 indicate the same strength order at time
interval ∆t = 1.00 (0.25 compared to 0.22, both displayed also at ∆t = 1.00 in Figure
7.4), the interplay between the variables over continuous time is such that the cross-
lagged effects in Figure 7.4 become equally strong at ∆t = 1.44 and even reverse
the strength order for intervals ∆t > 1.44. It is this possibility of crossing (non-
monotone) cross-lagged effect functions (as well as non-monotone autoregression
functions) that makes discrete time analysis useless for analyzing reciprocal rela-
tionships in the cross-lagged panel design. The implication of Figure 7.4 is that the
relative strength of the reciprocal causal effects found between x3 and x1 depends
on the observation interval chosen in the study. Investigators choosing their discrete
time interval ∆ti between 0 and 1.44 years will come to the conclusion that x1 has a
stronger effect on x3 (maximum difference of 0.058 reached at ∆ti = 0.46), whereas
investigators choosing ∆ti > 1.44 years will arrive at the opposite conclusion (max-
imum difference of 0.042 reached at ∆ti = 3.26). No comparison problems would
arise, at least not in the sense of contradictory results with regard to the strength
order, if the cross-lagged effect functions in Figure 7.4, like the autoregression func-
tions in Figure 7.3, were monotone (not crossing). Then it would not matter at what
interval the comparison is made, because one would find the same order everywhere.
However, the monotone or non-monotone character is seldom known beforehand
and generally it is just the purpose of the research to find out.
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What is worse is that it would not be of any help to choose and maintain the
same observation interval. The cross-lagged effect functions in Figure 7.4 bring
discrete time investigators using the same observation interval ∆ti = 1.44 also to a
false conclusion, namely that the effect of x1 on x3 is equally strong as the effect
of x3 on x1. This conclusion cannot be generalized to observation intervals ∆ti 6=
1.44, however, where different and, for ∆ti > 1.44, again false conclusions would be
drawn, nor is it confirmed by the cross-effect coefficients in drift matrix A. Clearly,
continuous time analysis, estimating the coefficients of the continuous time drift
matrix A and displaying the consequences over the complete time axis by means of
the full autoregression and cross-lagged effect functions, is the only solution to the
problems of unequal as well as equal observation intervals.

7.2.3 Lagged and Instantaneous Effects Dilemma

We conclude the discussion of the cross-lagged panel design with another awkward
problem often encountered by discrete time analysts, for which, again, there is no
solution in discrete time. As seen in Figure 7.1, the analysis of the cross-lagged
panel design allows the inclusion of two kinds of reciprocal effects between x and
y: lagged reciprocal effects (i.e., x at time point 1 affecting y at time point 2, and y at
time point 1 affecting x at time point 2) and instantaneous reciprocal effects (i.e., x
at time point 2 affecting y at time point 2 and vice versa). One could choose the in-
stantaneous coefficients, the lagged coefficients, or both to be present in the model,
but the results are often different or even contradictory. This typically confronts the
discrete time analyst with a dilemma. In the study by Vuchinich, Bank, and Patter-
son (1992), for example, the dilemma was whether to choose for instantaneous or
lagged effects between parental disciplinary behavior and child antisocial behavior.
The authors found significant instantaneous effects but no significant cross-lagged
effects. The choice would become even more difficult, if these effects were to be
estimated simultaneously, because then the results become highly dependent on the
time interval ∆ti. In general, the longer the time interval between measurements,
the higher the instantaneous coefficients become in comparison to the lagged coeffi-
cients. Most discrete time analysts feel that instantaneous and lagged effects should
both be taken into consideration somehow. However, they do not and cannot know
in discrete time how to connect and constrain these two types of effects to find the
true underlying continuous time effects.

When analysts estimate the instantaneous and lagged effects simultaneously, au-
toregression equation (7.2) is in fact replaced by

x(ti) = Ainsx(ti) + Alagx(ti−1). (7.6)

Instantaneous matrix Ains includes the instantaneous effects between the “current
endogenous” variables in x(ti). Lagged matrix Alag includes the lagged effects from
the “lagged endogenous” x(ti−1) on the “current endogenous” x(ti). Equation (7.6)
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is known in econometrics as the “structural form” with (7.2) as the associated “re-
duced form”. The clear relationships that exist between the two forms and the con-
tinuous time matrix exponential in (7.1), that is, between the coefficients in the re-
duced form or autoregression matrix A∆ti , in the structural form matrices Ains and
Alag, and in the continuous time drift matrix A, are shown in (7.7):

A∆ti= (I−Ains)−1Alag = eA∆ti . (7.7)

By means of eA∆ti in (7.7), which is the core of the exact discrete model EDM,
nonlinear constraints are directly imposed on the coefficients in the autoregression
matrix A∆ti for generating the exact drift matrix A, skipping Ains and Alag. In this
way, the above mentioned dilemma of the choice between Ains and Alag is simply
circumvented. The structural form is therefore not really indispensible in continuous
time analysis. One might wonder, however, whether constraints could be imposed
on the structural form matrices Ains and Alag for combining the instantaneous and
lagged effects in an appropriate way to generate the underlying continuous time
effects in A and thereby explicitly solving the discrete time dilemma. This has in-
deed been done in the so-called approximate discrete model ADM introduced by
Bergstrom (1966; 1984, pp. 1172-1173), the same econometrician who originated
the EDM. He showed, that by means of the simple linear constraints:

Ains = 1
2 A†∆ti,

Alag = I+ 1
2 A†∆ti,

(7.8)

the ADM generates a quite reasonable approximation A† of exact A. It immediately
solves the dilemma of the discrete time analyst, because by means of (7.8) the two
different matrices Ains and Alag are replaced by one and the same matrix A†, which
is the one to be interpreted and tested.

7.2.4 ADM and EDM

It is true that by using the ADM instead of the EDM one sacrifices exactness. How-
ever, although nonlinear SEM programs such as Mx, which include the exponential
and matrix algebraic functions, can implement the EDM, the linearity of the con-
straints in (7.8) of the ADM also holds some attraction. Less nonlinearly oriented but
more user-friendly SEM programs, which lack the exponential and matrix algebraic
functions and therefore the possibility to apply the EDM, mostly allow implemen-
tation of the ADM. Oud (2007b) explains in detail how to apply the ADM-SEM
procedure by means of LISREL (Jöreskog & Sörbom, 1996). In addition, LISREL
and similar programs are particularly valuable in the modeling process, because
they provide plenty of information about model fit and about modification results
of individual parameters by means of the so-called modification indices. For this
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reason, it could be worthwhile in practice to first apply the ADM-SEM procedure
in the model building phase by means of a program such as LISREL and then the
EDM-SEM procedure in the final model estimation phase by means of Mx.

It should be noted that A†, as an approximation of A, compares favorably
with other well-known approximations such as the relatively crude approximation
A∗ = (A∆ti − I)/∆ti in (7.3). This is seen by putting the exact nonlinear matrix ex-
ponential form A∆ti = eA∆ti and both approximate linear constraint forms in power
series expansion

A∆ti = eA∆ti = ∑
∞
k=0(A∆ti)k/k!

= I + A∆ti + 1
2 A2∆t2

i + 1
6 A3∆t3

i + 1
24 A4∆t4

i + ...
(exact),

A∆ti = (I−Ains)−1Alag = (I− 1
2 A†∆ti)−1(I + 1

2 A†∆ti)

= I + A†∆ti + 1
2 A2

†
∆t2

i + 1
4 A2

†
∆t3

i + 1
8 A4

†
∆t4

i + ...

(A† approximation),

A∆ti = I + A∗∆ti (A∗ approximation).

(7.9)

Whereas the A∗ approximation truncates the exact infinite series, the weights of the
A† approximation ( 1

2 , 1
4 , 1

8 , ...) in the ADM are only seen to decrease less quickly
than in the exact series ( 1

2 , 1
6 , 1

24 , ...) used in the EDM. In a simulation study with
different estimation procedures, Oud (2007a) concluded that the ADM-SEM proce-
dure did indeed yield more biased results than the EDM-SEM procedure, but that
the overall quality in terms of the root mean squared error (RMSE) was hardly lower
than in the EDM-SEM procedure. The ADM-SEM procedure compared also favor-
ably with the approximate MLDE procedure of Boker, Neale, and Rausch (2004). In
the examples to be presented below, we will first apply the ADM-SEM procedure,
followed by the EDM-SEM procedure.

7.3 Linear Stochastic Differential Equation Model

The full linear stochastic differential equation model used in this chapter consists
of two equations: a dynamic explanatory equation and a static measurement equa-
tion. The dynamic equation, shown in (7.10), extends the basic differential equation
model in (7.4) by three important elements.

dx(t)
dt

= Ax(t)+b+κκκ +G
dW(t)

dt
. (7.10)

In addition to the drift matrix term Ax(t), introduced and discussed in detail in
the previous section, the following new elements are found in (7.10): continuous
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time intercepts vector b, continuous time “trait” variables vector κκκ, and finally the
continuous time error process vector G dW(t)

dt , which makes the differential equation
stochastic.

7.3.1 Continuous Time Intercepts

Nonzero intercepts in vector b aptly accommodate for the frequently observed
nonzero mean trajectories E[x(t)]. Importantly, b defines also the final means to-
wards which a stable system eventually converges. In models with b = 0 these final
means are necessarily zero, with zero being the stable equilibrium position. An equi-
librium position is the value of a constant curve satisfying the model. In models with
b 6= 0, it can first be proven, on the basis of (7.10), that the mean trajectories, starting
from initial mean E[x(t0)], follow nonzero curves (7.11) and next that convergence
is towards nonzero −A−1b.

E[x(t)] = eA(t−t0)E[x(t0)]+A−1[eA(t−t0)− I]b
with E[x(t→ ∞)] =−A−1b.

(7.11)

The reason for the latter is the behavior of the matrix exponential eA(t−t0) in a stable
model. Because A in the exponent has negative eigenvalues and is multiplied by the
interval length t−t0, the matrix exponential eventually becomes zero (the concept of
stability is equivalent to this property) and hence E[x(t)]→−A−1b for t→ ∞. The
values in −A−1b, in addition, are (stable) equilibrium positions. As a result of the
commuting property eA(t−t0)A−1 = A−1eA(t−t0), choosing initial means E[x(t0)] =
−A−1b in (7.11) leaves E[x(t)] unchanged.

So, the intercepts b enhance the flexibility of the model by allowing nonzero
mean trajectories and nonzero final means. Flexibility is further enhanced by the
possibility of subpopulation specific mean trajectories and final means within the
same overall model. For this purpose (n x 1)-vector b is replaced by Buu, which
is also (n x 1) but the product of (n x r)-matrix Bu of regression coefficients and
(r x 1)-vector u of exogenous variables. Suppose, for example, that boys and girls
are assumed to follow a different development and to reach a different final po-
sition. As the first element of u we choose the unit variable, u1 = 1 for all sub-
jects in the population, and as the second element a dummy-variable, coded u2 = 0
for boys and u2 = 1 for girls. Let us call the first column of Bu b1 and the sec-
ond column b2. By replacing b in (7.11) by b1 for boys and by b1 + b2 for girls,
we then get two sets of n mean trajectories, E[x(t)]u2=0 for boys and E[x(t)]u2=1
for girls, and two sets of n final means, E[x(t → ∞)]u2=0 = −A−1b1 for boys
and E[x(t → ∞)]u2=1 = −A−1(b1 + b2) for girls. By using the same procedure
to differentiate E[x(t0)]u2=0 for boys from E[x(t0)]u2=1 for girls, we additionally
let boys and girls start from different positions. The procedure is easily extended
for more than two subpopulations, more than two variables in u and, in addition
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to dummy-variables, also for metric variables in u such as income and, as shown
by Oud and Singer (2008), even for changing exogenous variables (time-varying
covariates) u(t). These kinds of models are often called conditional (e.g., see the
chapter of Bollen and Zimmer in this volume). For metric variables ui with many
values (subpopulations) represented in the sample, which is typically the case with
metric variables as, for example, income, the procedure outlined is often the only
possible one. However, in the case of a limited number of subpopulations (e.g., boys
and girls), an attractive alternative approach is performing a so-called multisample
SEM analysis (Jöreskog & Sörbom, 1996), in which b, E[x(t0)], and possibly other
parameters are allowed to vary in the subpopulations.

It should be noted that the intercepts in b are feeding the system continuously
over time by a constant amount and therefore indeed result in different contributions
from unequal intervals. In a discrete time model the intercepts contribute only at the
observation time points chosen.

7.3.2 Continuous Time Trait Variables

Although, as discussed above, subpopulation intercepts allow a different mean tra-
jectory and different final mean in each subpopulation, it is nevertheless paradoxi-
cal that a subject’s current and future expected behavior should be exclusively de-
termined by the population or subpopulation the subject happens to be modeled a
member of. The flexibility of the model is further enhanced by the specification of
random subject effects κκκ in (7.10): random intercept variables, called “trait” vari-
ables in the present chapter, which define for every subject an own subject-specific
mean trajectory. The trait variables κκκ, in distinction from the changing “state” vari-
ables x(t), have constant values across time as do the fixed intercepts b. However,
whereas the b are also constant across subjects, the normally distributed trait vari-
ables κκκ with mean E(κκκ) = 0 and covariance matrix Φκ 6= 0 have a different value for
each subject and so model the subject specific deviations from the common mean
defined by b.

The constancy across time implies that κκκ already influences x(t) before the initial
time point t0, so that κκκ should be considered part of the initial state x(t0) and, in
general, κκκ and x(t0) are correlated (Φxt0,κ

6= 0). Both the variances of the trait vari-
ables in Φκ and their covariances with x(t0) in Φxt0,κ

are testable quantities. Both
are expected to be nonzero, if subjects do indeed follow their subject-specific mean
trajectory instead of coinciding with a single general mean trajectory. Supposing this
is indeed the case, the distance between a subject-specific mean trajectory E[x(t)|κκκ]
and the (sub)population mean trajectory E[x(t)] is computed as

E[x(t)|κκκ]−E[x(t)] = eA(t−t0)Φxt0,κ
Φ−1

κ κκκ +A−1[eA(t−t0)− I]κκκ

with E[x(t→ ∞)|κκκ]−E[x(t→ ∞)] =−A−1
κκκ.

(7.12)
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Here the first term on the right-hand side is a consequence of the regression of
x(t0) on κκκ. As a result of the matrix exponential going again to zero for t → ∞ in
a stable model, the distance between the subject-specific and the (sub)population
mean trajectories goes to a constant nonzero value: −A−1

κκκ.
It should be noted that the mean trajectories for (sub)populations or subjects are

not only interesting as such, and in many cases even the main purpose of the study,
but they also play a crucial role in the behavior of the estimated sample trajecto-
ries (conditional means E[x(t)|y], where y is the total data vector of the subject).
The reason is that these regress towards the mean trajectories (in a stable model) or
egress from them (in an unstable model). Particularly, if a model contains trait vari-
ables, a subject’s conditional mean regresses towards its own subject-specific mean
trajectory (see (7.12)), whereas in a pure state model all subjects regress towards one
and the same general mean trajectory (see (7.11)). Figure 7.5, taken from a youth
delinquency study, shows the estimates of a mean trajectory, a subject-specific mean
trajectory, and the subject’s estimated sample trajectory. Outside of the measurement
time points (recognizable by the kinks in the curve) the subject’s sample trajectory
is clearly seen to regress towards its subject-specific mean trajectory. The conse-
quences are particularly dramatic for predictions. As the final values in the study
are 2.12 for the mean trajectory and 3.88 for the subject-specific mean trajectory,
the predicted final value for the subject differs no less than 1.76 from the one that
would be found in a pure state model.
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Fig. 7.5 Examples of mean trajectory, subject-specific mean trajectory and sample trajectory esti-
mate.
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7.3.3 Continuous Time Error Process

It hardly needs comment that the introduction of an error term into a longitudinal
model enhances the applicability of the model. Historically, it took quite some time,
however, to define continuous time error in a mathematically rigorous way. The con-
tinuous time error process G dW(t)

dt in (7.10) builds upon the famous Wiener process
W(t), the random walk through continuous time. At first sight G dW(t)

dt looks quite
complicated. Note, however, that discrete time error can be thought of analogously
as the difference quotient ∆wt

∆t of a discrete time random walk wt = wt−∆t +e. If the
step sizes e for ∆t = 1 are randomly drawn from a standard multinormal distribution
N(0,I), successive non-overlapping increments ∆wt = wt−wt−∆t for ∆t ≥ 1 are in-
dependent with covariance matrix ∆tI. If one wants to model nonstandard error with
larger or smaller variance than 1 for ∆t = 1 and possibly correlated elements, but no
change in the other properties, then the difference quotient for ∆t = 1 could first be
multiplied by lower triangular matrix G, Cholesky factor of the desired covariance
matrix Q.

The properties defining the standard Wiener process W(t) are, in addition to its
sample trajectories being continuous and starting at W(0) = 0 (both with probability
1), precisely the conditions of independently and normally distributed increments
∆W(t) = W(t)−W(t−∆t) with mean 0 and covariance matrix ∆tI (Arnold, 1974,
p. 46; Kuo, 2006, p. 7). The lower triangular matrix G in the continuous time error
process G dW(t)

dt is just there to allow increment variances to become lower or higher
than 1 for ∆t = 1 and to get nonzero correlations between elements. Product Q =
GG′ is the continuous time error covariance matrix, called “diffusion” matrix, and
G the Cholesky factor of Q. So, Q and G provide the same information and are
easily expressed into each other.

The fame of the Wiener process is undoubtedly due to two peculiar facts that
have given rise to a host of mathematical research. Its derivative dW(t)

dt or “white
noise” cannot be defined as a derivative in the normal sense nor can the stochastic
integral

∫ t
t0 F(s)dW(s) in terms of a possibly time-varying function F(t) be defined

as an ordinary integral. Solution (7.13) of stochastic differential equation (7.10) (see
e.g., Arnold, 1974, pp. 128-134) is nevertheless seen to contain this type of integral
for the error component. Defined in a proper way, however, its correct covariance
matrix can be derived as given in (7.13):

x(t) = eA(t−t0)x(t0)+A−1[eA(t−t0)− I](b+κκκ)+
∫ t

t0 eA(t−s)GdW(s)

with cov
∫ t

t0 eA(t−s)GdW(s) =
∫ t

t0 eA(t−s)QeA′(t−s)ds

= irow{A−1
# [eA#(t−t0)− I]rowQ}

for Q=GG′ and A#=A⊗ I + I ⊗ A.

(7.13)

Here⊗ is the Kronecker product (postmultiplying each element of the former matrix
by the latter matrix), “row” the rowvec operation (putting the elements of a matrix
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row-wise in a column vector), and “irow” the inverse operation (putting the elements
back into the matrix again).

Note in solution (7.13) the predominant role of the matrix exponential having
drift matrix A in the exponent, which appears in all three terms in the solution. Note
also the similar structure of the integral expression A−1[eA(t−t0)− I] in the second
term and A−1

# [eA#(t−t0) − I] in the covariance matrix of the error term, replacing
(nxn) matrix A in the second term by (n2 x n2) matrix A# in the covariance matrix.
A# is based again on drift matrix A and has all eigenvalues negative, if A has all
eigenvalues negative. Therefore, analogously to final mean −A−1b, the final error
covariance matrix in a stable model is given by irow(−A−1

# rowQ). If, for κκκ = 0,
the process starts with mean −A−1b and covariance matrix irow(−A−1

# rowQ), the
process is stationary, keeping the same mean and covariance matrix. Details about
solution (7.13) can be found in Singer (1990) and Oud and Jansen (2000). It has the
form that allows all parameters of the model to be estimated by means of the EDM
as will be shown in the next section. Observe also, that the mean trajectory (7.11) is
an immediate derivation from solution (7.13).

The rationale behind the approximate ADM procedure is different. The ADM is
not based on the differential equation solution (7.13), where x(t) appears only on
one side of the equation, but puts differential equation (7.10) first in integral form:

∫ t
t−∆t dx(s) = A

∫ t
t−∆t x(s)d(s)+(b+κκκ)∆t +G[W(t)−W(t−∆t)].

or
x(t) = x(t−∆t)+A

∫ t
t−∆t x(s)d(s)+(b+κκκ)∆t +G∆W(t).

(7.14)

It next replaces the integral
∫ t

t−∆t x(s)d(s) on the right-hand side, having x(t) still
inside of the integral, by the so-called trapezoid approximation 1

2 [x(t)+x(t−∆t)]∆t,
which multiplies the length ∆t of the integration interval by the average value at the
end points. This gives rise to the approximate solution

x(t)≈ [ 1
2 A∆t]x(t)+ [I+ 1

2 A∆t]x(t−∆t)+(b+κκκ)∆t +G∆W(t)

with cov[G∆W(t)] = GG′∆t.
(7.15)

It explains the constraints imposed in (7.8) on the instantaneous and lagged coeffi-
cients for obtaining approximation A† of A.

7.3.4 Measurement Equation

Latent variables abound in social science. It is probably no exaggeration to claim
that the greater part of psychology and sociology draws on latent variables. Some
of the latent variables, such as the trait variables in κκκ of (7.10) or the state vari-
ables x(t) in between measurement time points ti, have no direct connection at all
to the observed variables. For the latent state variables at the measurement points
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ti, however, we need to extend the model with a measurement equation, specifying
how each of them is connected to the directly observed variables in yti :

yti = Cx(ti)+d+vti with cov(vti) = R. (7.16)

Parameter matrix C specifies the loadings of the observed variables on the latent
variables, parameter vector d the measurement intercepts or origins, and R the mea-
surement error variances of the observed variables. If the state variables at the mea-
surement time points are all observed, yti = x(ti) and we specify C = I, d = 0,
R = 0.

For identification reasons it is customary to fix, for each latent variable, one of the
loadings in C at 1 and one of the measurement origins in d at 0. These values fix the
measurement scale of the latent variable, 1 in C giving the latent variable, apart from
measurement error variance, the same variance as the observed variable involved
and 0 in d giving the same mean. Observe that the absence of a time index for the
measurement parameter matrices and vector C, d, and R makes them time-invariant.
Although time-invariance of the measurement model (measurement invariance) is
no strict requirement, it is nevertheless extremely important for making sure that
the latent variables keep the same meaning over time. One should have convincing
reasons to deviate from measurement invariance for specific variables. Therefore, in
the further development of the model, we will assume time-invariance.

7.4 Model Estimation by Means of SEM

In this section, based on the exact differential equation solution (7.13) and the ap-
proximate integral form (7.15), respectively, the full EDM and the full ADM will
be formulated. Next, for estimation by means of a SEM program, all EDM or ADM
parameter matrices will be put into inclusive SEM parameter matrices.

7.4.1 Full EDM

As will be clear from the subscripts ti and ∆ti in the full EDM (7.17), the EDM is
a discrete time model. The matrices with subscript ∆ti in (7.17) are defined for the
discrete-time measurement time points only. Simultaneously, however, the EDM
covers the continuous time model because of the nonlinear constraints imposed
on the discrete time matrices in terms of the continuous time matrices from dif-
ferential equation (7.10). It means that by applying the constraints on the discrete
time matrices A∆ti ,b∆ti ,H∆ti ,Q∆ti during estimation, we simultaneously estimate the
underlying continuous time parameter matrices A, b, Φκ ,Φxt0,κ

, Q = GG′ (for con-
venience, vectors b∆ti and b are called matrices). The connection between the dif-
ferential equation and the EDM is made by the exact solution (7.13) (choosing for
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t− t0 the observation intervals ∆ti = ti− ti−1, starting with ∆t1 = t1− t0). All con-
straints on the discrete time matrices in EDM (7.17) are directly taken from exact
solution (7.13).

For the computation of the matrix exponential eA∆ti in (7.17) the diagonalization
method is used, which reduces the computation to scalar exponentials. After first
diagonalizing A = MVM−1 (M eigenvector matrix and V diagonal eigenvalue ma-
trix of A), next the scalar exponentials in diagonal matrix eV∆ti are computed, which
finally is premultiplied by M and postmultiplied by M−1. SEM programs such as
Mx do not allow to compute the matrix exponential directly, but allow matrix diag-
onalization and provide the scalar exponential function.

There are two options with regard to the trait covariance matrices Φκ and Φxt0,κ
:

either you impose constraints on the discrete time analogues Φκ∆ti and Φxt0,κ∆ti sep-
arately in the forms shown in (7.17) or you constrain the coefficient matrix H∆ti of
κκκ once, as a result of which both Φκ and Φxt0,κ

come out in the right form automat-
ically. The latter option is easiest and used here.

xti = A∆ti
xti−∆ti

+b∆ti
+H∆ti

κκκ +wti−∆ti

with cov(wti−∆ti
) = Q∆ti

,

A∆ti = eA∆ti = MeV∆tiM−1,

b∆ti = A−1(eA∆ti − I)b,

H∆ti = A−1(eA∆ti − I),
Φκ∆ti = H∆tiΦκ H′

∆ti ,

Φxt0,κ∆ti =Φxt0,κ
H′

∆ti ,

Q∆ti = irow{A−1
# [eA#∆ti − I]rowQ}

with Q = GG′ and A# = A⊗ I + I ⊗ A.

(7.17)

Evidently, the EDM repeats equation (7.17) for successive observation intervals
∆ti = ∆t1,. . . , ∆tT−1 (T the total number of observation time points). If the observa-
tion intervals are unequal, the discrete time matrices with subscript ∆ti are different
across time but relate nonlinearly in terms of the common time-invariant continu-
ous time matrices A, b, Φκ , Φxt0,κ

, G. If the observation intervals are equal, simple
equality constraints between the discrete time matrices of successive observation in-
tervals would suffice too. In addition to the direct estimation method, therefore, the
indirect method would become applicable: computing the estimates of the continu-
ous time matrices on the basis of the five previously estimated discrete time matrices
by applying the constraints in (7.17) in inverse direction. In particular, starting from

A =
1

∆ti
lnA∆ti =

1
∆ti

M ln(V∆ti)M
−1 (7.18)

by diagonalizing A∆ti = MV∆tiM
−1 (M eigenvector matrix and V∆ti = eV∆ti diagonal

eigenvalue matrix of A∆ti ), A is found and then the other continuous time matrices
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easily follow. It cannot be emphasized enough that the indirect method is only appli-
cable in the case of equal observation intervals. As in the case of unequal intervals
no equality constraints can be imposed, each interval yields a different set of dis-
crete time matrices, and, as a result of sampling fluctuations, each interval would
also yield a different set of continuous time parameter matrices. So, in the case of
unequal observation intervals, the direct method is the only suitable one.

In addition to the continuous time parameter matrices and the T − 1 times re-
peated discrete time matrices in (7.17), the EDM as well as the ADM need one
more parameter vector and one more parameter matrix for the initial time point t0:
initial means vector µµµxt0

and initial covariance matrix Φxt0
.

7.4.2 Full ADM

With regard to (7.19), the analogue of (7.17) for the ADM, which is directly taken
from approximate integral form (7.15), the following observations apply. First,
whereas the EDM (7.17) is formulated as a reduced form equation, the ADM (7.19)
is in structural form. It means that the single autoregression matrix A∆ti in the EDM
is replaced by two matrices in the ADM: instantaneous A∗

∆ti and lagged A∗∗
∆ti . Both

have been discussed earlier in Subsection 7.2.3, called there Ains and Alag. The
move from reduced form to structural form in combination with the replacement of
exact drift matrix A by approximation A† leads to a dramatic simplification of the
constraints on the discrete time matrices. The complicated nonlinear constraints in
EDM (7.17) are replaced in ADM (7.19) by extremely simple linear expressions in
terms of just the observation interval ∆ti or 1

2 ∆ti. Whereas the EDM constraints can
only be applied by SEM programs such as Mx, which provide the exponential and
matrix algebraic functions needed, the ADM constraints are applicable by almost
any SEM program, in particular also by LISREL.

xti = A∗
∆tixti +A∗∗

∆tixti−∆ti
+b∗

∆ti +H∗
∆tiκ

κκ +w∗ti−∆ti

with cov(w∗ti−∆ti) = Q∗
∆ti ,

A∗
∆ti=

1
2 ∆tiA†,

A∗∗
∆ti= I+ 1

2 ∆tiA†,

b∗
∆ti = ∆tib†,

H∗
∆ti= ∆tiI,

Φ∗
κ∆ti = ∆t2

i Φ†κ ,

Φ∗xt0,κ∆ti = ∆tiΦ†xt0,κ
,

Q∗
∆ti = ∆tiQ† = ∆tiG†G′†.

(7.19)

Again, if the observation intervals are equal, it becomes possible to extract the
approximate continuous parameter matrices A†, b†, Φ†κ , Φ†xt0,κ

, G† from the previ-
ously estimated set of structural form matrices by applying the simple constraints in
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(7.19) in inverse direction. In fact, after applying during estimation, in addition to
the equality constraints, the simple and only ADM constraints:

A∗∗∆ti =I+A∗∆ti ,
(7.20)

it comes down to dividing the left hand sides in (7.19) by 1
2 ∆ti, ∆ti, ∆t2

i , respectively,
and finally computing the Cholesky factor G† of Q†.

There is more, however, in the case of equal observation intervals. From struc-
tural form (7.19), by means of transformation matrix D = (I−A∗

∆ti)
−1, we obtain

the reduced form (7.21) which is in the form of (7.17). Because, as a result of the
applied equality constraints, the reduced form matrices are equal across the succes-
sive time observation intervals, one-to-one relationships can be built between the
ADM solutions, the reduced form solutions, and the EDM solutions, every reduced
form solution giving rise to just one EDM solution and just one ADM solution and
vice versa. As the confrontation with the data takes place via the common reduced
form solution, the corresponding ADM and EDM solutions are equivalent, giving
exactly the same model fit.

xti = DA∗∗∆tixti−∆ti
+Db∗

∆ti +DH∗
∆tiκκκ +Dw∗ti−∆ti

with cov(Dw∗ti−∆ti) = DQ∗
∆tiD

′.
(7.21)

In practice it means that one could start with the relatively simple ADM solution
(7.19) by means of LISREL or some other user-friendly SEM program. Next, one
could derive its reduced form using (7.21) and finally compute the corresponding
EDM solution by means of the inverse constraints in (7.17) without any new SEM
analysis. It should be noted that this is not possible in the case of unequal observa-
tion intervals, because then the indirect method is no option nor are the ADM and
EDM solutions equivalent. Even then, however, it is often profitable to start with
the relatively simple ADM solution to explore and evaluate the model and then use
it as a reasonable initial solution for the final EDM analysis by means of the Mx
program.

7.4.3 Putting ADM and EDM into SEM

A SEM model often can be specified in quite different ways and by different num-
bers of parameter matrices. Here we will put the ADM and EDM each into two
equations with four parameter matrices: measurement parameter matrices ΛΛΛ and ΘΘΘ,
and structural parameter matrices B and ΨΨΨ:

y = ΛΛΛηηη +εεε with cov(εεε) = ΘΘΘ, (7.22)

ηηη = Bηηη +ζζζ with cov(ζζζ) = ΨΨΨ. (7.23)
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For clarity, we limit the presentation to the case of four time points (T = 4: t0, t1, t2, t3)
but this is easily reduced to three or extended to more than four time points. The
model implied moment matrix ΣΣΣ = f(ΛΛΛ,ΘΘΘ,B,ΨΨΨ) is a function of the parameter ma-
trices, the likelihood in turn is a function of ΣΣΣ and sample moment matrix S, and
the maximum likelihood solution minimizes the discrepancy between ΣΣΣ and S in the
ML sense. Hence, for obtaining the maximum likelihood estimate of the ADM or
EDM by means of a SEM program, it suffices to show how ADM and EDM are put
into SEM parameter matrices ΛΛΛ, ΘΘΘ, B, and ΨΨΨ. As the ADM is slightly simpler than
the EDM, we start with the ADM.

For four time points the vectors y,εεε,ηηη,ζζζ in (7.22) and (7.23) look like:

y =


yt0
yt1
yt2
yt3
1

 , εεε =


εεεt0
εεεt1
εεεt2
εεεt3
0

 , ηηη =


xt0
xt1
xt2
xt3
1
κκκ

 , ζζζ =



xt0 −µµµxt0
wt1−∆t1
wt2−∆t2
wt3−∆t3

1
κκκ


. (7.24)

If the total number of variables in y, the vector of observed variables including as
the last variable the unit variable (1 for every subject in the sample), is T m+1, the
total number of variables in ηηη, the vector of latent variables, is (T + 1)n + 1 with
n the number of state variables as well as trait variables. Hence, case m = n (e.g.,
when all state variables are observed) is one example in which the total number of
latent variables may exceed the total number of observed variables.

B =



0 0 0 0 µµµxt0
0

A∗∗
∆t1

A∗
∆t1

0 0 b∗
∆t1

H∗
∆t1

0 A∗∗
∆t2

A∗
∆t2

0 b∗
∆t2

H∗
∆t2

0 0 A∗∗
∆t3

A∗
∆t3

b∗
∆t3

H∗
∆t3

0 0 0 0 0 0
0 0 0 0 0 0

 ,

ΨΨΨ =



Φxt0
0 Q∗

∆t1
0 0 Q∗

∆t2
0 0 0 Q∗

∆t3
0 0 0 0 1

Φ†xt0 ,κ 0 0 0 0 Φ†κ

 ,

ΛΛΛ =


C 0 0 0 d 0
0 C 0 0 d 0
0 0 C 0 d 0
0 0 0 C d 0
0 0 0 0 1 0

 , ΘΘΘ =


R
0 R
0 0 R
0 0 0 R
0 0 0 0 0

 .

(7.25)



7 Continuous Time Modeling 225

The ADM (7.19) is put into the SEM model matrices B, ΨΨΨ, ΛΛΛ, ΘΘΘ in the way shown
in (7.25). Observe that, due to the specification of the matrices H∗

∆ti in SEM matrix
B, the trait covariance matrices Φ†κ and Φ†xt0,κ

appear directly in SEM matrix ΨΨΨ.
For the EDM, an alternative specification of the trait variables in the latent vector

ηηη and its error vector ζζζ is employed.

ηηη =



[
xt0
κκκ

]
[

xt1
κκκ

]
[

xt2
κκκ

]
[

xt3
κκκ

]
1


, ζζζ =



[
xt0 −µµµxt0

κκκ

]
[

wt1−∆t1
0

]
[

wt2−∆t2
0

]
[

wt3−∆t3
0

]
1


. (7.26)

B =



0 0 0 0 0 0 0 0 µµµxt0
0 0 0 0 0 0 0 0 0

A
∆t1

H∆t1 0 0 0 0 0 0 b
∆t1

0 I 0 0 0 0 0 0 0
0 0 A

∆t2
H∆t2 0 0 0 0 b

∆t2
0 0 0 I 0 0 0 0 0
0 0 0 0 A

∆t3
H∆t3 0 0 b

∆t3
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0


,

ΨΨΨ =



Φxt0
Φxt0,κ

Φκ

0 0 Q
∆t1

0 0 0 0
0 0 0 0 Q

∆t2
0 0 0 0 0 0
0 0 0 0 0 0 Q

∆t3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


,

ΛΛΛ =


C 0 0 0 0 0 0 0 d
0 0 C 0 0 0 0 0 d
0 0 0 0 C 0 0 0 d
0 0 0 0 0 0 C 0 d
0 0 0 0 0 0 0 0 1

 , ΘΘΘ =


R
0 R
0 0 R
0 0 0 R
0 0 0 0 0

 .

(7.27)

It could also be used for the ADM as the previous specification could be used for
the EDM. The alternative specification highlights that the trait variables κκκ are just
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a special kind of state variables, namely constant across time. Hence, as shown in
(7.26), the trait variables are added to the state vector xti at each time point, leading
to the larger total number of 2T n + 1 variables in latent vector ηηη. The specification
puts the model directly in a suitable form for the application of state space tech-
niques, in particular the Kalman smoother or conditional mean E[x(t)|y], for opti-
mally estimating a subject’s sample trajectory (Oud & Jansen, 1996; Oud, Jansen,
van Leeuwe, Aarnoutse, & Voeten, 1999). Based on (7.17), the SEM specification
of the EDM in (7.27), follows, apart from the trait variables, the same pattern as
in the case of the ADM in (7.25). Whereas the state variables develop across time
according to A

∆ti and are influenced by the trait variables according to H∆ti , the trait
variables themselves, remaining constant over time, develop according to the iden-
tity matrix I. The trait covariance matrix Φκ and state-trait covariance matrix Φxt0,κ

are found in the second row of ΨΨΨ. The measurement model matrices do not differ
from the ones in (7.25), except that ΛΛΛ has extra zero columns at the places of the
unobserved trait variables.

7.4.4 Relating Models on Different Time Scales

Researchers in the same or different subject fields often use different observation
intervals. As argued in Subsection 7.2.2, comparing longitudinal models with dif-
ferent observation intervals, a clear condition for cumulative progress in science,
requires continuous time analysis. This is not all, however. Meaningful comparison
also requires the results to be put on the same time scale. Because both the ADM
and EDM are time-invariant, time scale shifts, t ′ = t + d, do not change the re-
sults. The ADM and EDM in (7.17) and (7.19) show, however, that changing the
time scale unit, t ′ = ct (for example, going from years t to months t ′: t ′ = 12t),
indeed affects the parameter matrices, but in a quite simple way, not requiring any
re-estimation of the parameter matrices. If one wants to compare one’s results with
another researcher, who used time scale t ′ = ct (∆ti′ = c∆ti) instead of one’s own
scale t, simply multiply four of the five parameter matrices by 1/c (A, b, Φxt0,κ

, G
in EDM; A†, b†, Φ†xt0 ,κ , G† in ADM) and one by 1/c2 (Φκ in EDM ; Φ†κ in ADM).
The reason is that the discrete time matrices on the left hand side of the constraints
equations in (7.17) and (7.19) keep the same value, while the change from ∆ti to c∆ti
or from A−1 to cA−1 on the right hand side needs compensation by multiplying by
1/c.
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7.5 Relationships between Externalizing and Internalizing
Problem Behavior

In this and the next section applications will be presented. The LISREL pro-
gram will be used for the ADM-SEM procedure (see the commented LISREL
script in the Appendix of Oud, 2007b) and the Mx program for the EDM-SEM
procedure. All input and output files of the analyses performed in both sections
are available in Chapter 7 at the book website http://www.econ.upf.edu
/˜satorra/longitudinallatent/readme.html.. In this section, four
LISREL maximum likelihood analyses and two Mx maximum likelihood analyses
examine the relationships between externalizing and internalizing problem behav-
ior in adolescents. It will be studied in continuous time whether and how strongly
externalizing problem behavior influences internalizing problem behavior (failure
perspective: Burke, Loeber, Lahey, & Rathouz, 2005; Capaldi, 1992), internalizing
problem behavior influences externalizing problem behavior (acting out perspective:
Carlson & Cantwell, 1980; Gold, Mattlin, & Osgood, 1989), or both variables influ-
ence each other reciprocally (mutual influence perspective: Overbeek, Vollebergh,
Meeus, Luypers, & Engels, 2001). The two state variables in the model (external-
izing problem behavior and internalizing problem behavior) are observed. So, the
measurement model part includes only loadings 1, intercepts 0, and measurement
error variances 0. In the next section, a model with an elaborate measurement model
will be presented for relationships between three latent state variables.

The data analyzed are taken from a comprehensive Dutch study of family re-
lationships and adolescent problem behavior (Nijmegen Family and Personality
Study; Haselager & van Aken, 1999). Participants were 280 adolescents (139 boys,
141 girls) who were 14.5 years old on average (ranging from 11.4 to 16.0) at the first
measurement wave. To assess adolescents’ externalizing and internalizing problem
behavior, participants completed the Nijmegen Problem Behavior List (NPBL; De
Bruyn, Scholte, & Vermulst, 2005) at each of the three annual measurement waves.
Further details regarding sample characteristics, measures, and procedure can be
found in Delsing, Oud, van Aken, De Bruyn, and Scholte (2005).

Although the aim of the ADM is the estimation of the (approximate) underlying
continuous time parameters, it is nevertheless clarifying to view in Figure 7.6 the
discrete time part of the ADM in SEM form. The model contains the state vari-
ables Ext and Int and corresponding constant trait variables Trait-Ext and Trait-Int,
for three time points leading to a total of eight variables in the SEM model (apart
from the ninth unit variable, which is not depicted in Figure 7.6). The figure clearly
shows the discrete time part of the ADM with instantaneous coefficients (A∗

∆ti ) as
well as lagged coefficients (A∗∗

∆ti ). The ADM in SEM form is one of the rare SEM
models with self-loop coefficients specified and estimated (diagonals in the instan-
taneous matrices A∗

∆ti , indicated in the figure by self-referencing arrows). In total,
the continuous time part of the model contains 21 parameters to be estimated:

4 drift coefficients in A†,
2 intercepts feeding mean development in b†,
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3 trait variances and covariance in Φ†κ ,
4 covariances between traits and initial states in Φ†xt0,κ

,
3 state variable diffusion coefficients in G†,
2 initial state means in µµµxt0

,
3 initial state variances and covariance in Φxt0

.

Trait
Ext

Ext

Int

Trait
Int

Ext

Int

Ext

Int

Fig. 7.6 The three-wave ADM-SEM cross-lagged panel model for adolescents’ externalizing
and internalizing problem behavior, including corresponding trait variables (subject-specific in-
tercepts).

A full ADM as well as a full EDM can be proven to be identified for T ≥ 3,
assuming the measurement model part is identified. As the ADMs and EDMs in
this section have only observed state variables, the model does not have free mea-
surement parameters and so this part is identified automatically. Column 1 of Table
7.2 displays the estimate of the full ADM model (input file ADM1.ls8 and output
file ADM1.out). For convenience, the subscript † in the ADM parameter names is
suppressed in Table 7.2. For equal observation intervals of length ∆ti = 1, many of
the parameter estimates are immediately found in the LISREL parameter matrices
B (BETA) and ΨΨΨ (PSI). Parameters not immediately found there but estimated as
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Table 7.2 Estimates and model fit information for ADM1 (Full ADM), ADM2 (No Trait 1), ADM3
(No Trait 1, No Int→ Ext) and EDM3 (No Trait 1, No Int→ Ext); standardized drift coefficients

Parameter ADM1 ADM2 ADM3 EDM3

a11(Ext) -0.790** -0.302** -0.317** -0.320**

a12(Int→ Ext) 0.347 -0.039

a21(Ext→ Int) 0.788** 0.616** 0.605** 0.704**

a22(Int) -1.056** -1.134** -1.110** -1.251**

µx1t0
17.943** 17.943** 17.943** 17.943**

µx2t0
21.106** 21.106** 21.106** 21.106**

φx1t0
27.323** 27.323** 27.261** 27.323**

φx2t0
38.212** 38.212** 37.462** 38.212**

φx21t0
10.990** 10.990** 10.774** 10.990**

b1 7.817 5.979** 5.559** 5.606**

b2 5.598 10.890* 10.730* 11.505*

g11 4.922** 4.761** 4.762** 4.782**

g22 6.228** 6.226** 6.219** 6.562**

g21 1.347** 1.648** 1.557** 1.315**

φκ1 10.965

φκ2 26.014 27.646 26.554 33.958

φκ21 -15.059

φx1t0,κ1 7.235

φx2t0,κ1 -5.364

φx1t0,κ2 -12.731* -8.063* -7.988* -8.887*

φx2t0,κ2 14.731 18.619* 17.999 20.694

χ2 5.4 9.9 10.6 10.6

df 6 10 11 11

RMSEA 0.0 0.0 0.0 0.0

*p ≤ .05; **p ≤ .01.

so-called additional parameters are the four drift coefficients: auto-effects a11 and
a22 (called PA(1) and PA(2), respectively, in the LISREL output) and cross-effects
a12 and a21 (PA(3) and PA(4), respectively), and the three diffusion coefficients g11,
g22, and g21 (PA(7), PA(9), and PA(8), respectively).

With regard to the main purpose of the study, assessing the existence and strength
of the cross-effects a12 (Int → Ext) and a21 (Ext → Int) between internalizing
and externalizing problem behavior, one should realize an important difference in
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interpretability between them and the auto-effects a11, a22. The auto-effects are scale
free in the sense that they do not change under arbitrary linear transformations of the
variables Ext and Int and so are directly interpretable. In particular, both Ext and Int
show negative feedback (−.790 and −1.056 ), indicating stability or a quite strong
tendency for an individual to converge to its subject-specific mean trajectory. The
negative eigenvalues of the drift matrix confirm that the model as a whole is stable.
The cross-effects are not scale free, however. Their value depends on the standard
deviations of the independent and dependent variable involved. The cross-effects in
Table 7.2 have therefore been standardized (PA(5) and (PA(6) in the LISREL out-
put) through multiplication by the ratios of the initial standard deviations. However,
as t-values are scale free, testing can best be done in terms of the unstandardized
values of 0.293 for a12 (not significant) and 0.932 for a21 (p < .01) (the t-values
computed by LISREL for the standardized values inappropriately also include the
sampling variability of the standard deviations). The standardized values of 0.347
for a12 and 0.788 for a21 in combination with the testing results reported in Table
7.2 seem to reveal the existence of a strong unidirectional effect from externalizing
to internalizing problem behavior with no or little effect in the opposite direction.

The specification of traits in a model has, in general, high impact on the estimates
of the other parameters. Because in the full ADM no significant variances and co-
variances were found for the traits κ1 and κ2 except for the covariance between κ2
and x1t0 , we decided to retain only κ2 in the next model ADM2 (files ADM2.ls8 and
ADM2.out), so that this model has subject-specific mean trajectories for internal-
izing problem behavior but only a single general mean trajectory for externalizing
problem behavior. It is interesting that the exclusion of κ1 from ADM2 led to the
non-significant effect a12 (Int→ Ext) in ADM1 turning slightly negative in ADM2
but with a non-significant t-value again that was even lower than in the ADM1. This
was reason to next delete a12 from the model. The resulting ADM3 (files ADM3.ls8
and ADM3.out) has all parameters significant except two which are related to κ2. It
retains in particular an impressively strong effect a21 (Ext→ Int) .

Having found a clear and particularly well fitting ADM (the extra constraints
introduced into ADM2 and ADM3 do not deteriorate the fit shown by χ2 and
RMSEA), the obvious next step is to replace the approximate ADM by the exact
EDM (see EDM3 in Table 7.2). As explained above for the case of equal observation
intervals, one possibility would be to apply the indirect method by computing the
reduced form matrices according to (7.21) and deriving the EDM from the ADM3
by (7.17) instead of using the direct method by running the Mx program. Note, that
the (estimated) reduced form autoregression matrix A

∆ti is already computed by
LISREL in the first part of the matrix “Total effects of ETA on ETA” in ADM3.out.
This indeed turns out to be exactly equal to the (estimated) autoregression matrix
A

∆ti computed by Mx in the first part of its BETA matrix (called “A” in GROUP 7
of Mx output file EDM3.mxo). Autoregressions for Ext and Int in both are equal to
0.72627 and 0.28614 and the cross-lagged effect in both is equal to 0.39352. One
reason to apply the direct method by running the Mx program could be, however,
that in addition to the EDM solution itself one gets also the correct standard errors.
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The Mx analysis has therefore indeed been done (files EDM3.mx and EDM3.mxo)
and the results are displayed in the last column of Table 7.2.

Although the reduced forms of ADM3 and EDM3 should be and are indeed equal
in this case of equal observation intervals as is the fit of both models (the models
are equivalent via their reduced form), the solutions themselves are close to each
other but not equal; compare the last two columns in Table 7.2 (the EDM3 solution
is found in GROUP 9 in the Mx output file EDM3.mxo, displaying all estimated
parameter matrices; the standardized value of a21 is computed and found in GROUP
10). Our experience is, that the EDM often yields a somewhat more pronounced
solution with the parameter estimates showing higher absolute values. This is clearly
also the case here. For example, the standardized value of 0.704 for a21 (Ext→ Int)
in EDM3 points to an even stronger effect of externalizing problem behavior on
internalizing problem behavior than found in ADM3. Our analyses leave little doubt
that the failure perspective is the one confirmed by the data in this section and not
the acting out or mutual influence perspectives discussed in the literature.

As has been stressed several times, the equivalence of the ADM and EDM is
based on the equality of the observation intervals. If the observation intervals are
unequal, ADM and EDM can give quite different reduced forms and a quite different
fit. So, then no other choice is left than estimating the EDM independently from
the ADM. To show how analyses with unequal observation intervals are performed
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Fig. 7.7 Autoregression functions of Ext and Int, based on model EDM3 in Table 7.2.
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and what could happen in the example with unequal intervals, instead of the true
equal intervals ∆t1 = ∆t2 = 1, we simulated the second interval to be slightly larger
than the first interval: ∆t1 = 1, ∆t2 = 1.2. So, the interval between the second and
third wave is taken 1.2 years instead of the true 1 year. The analyses are performed
by input files ADM4.ls8 and EDM4.mx for LISREL and Mx, respectively, and the
output is found in files ADM4.out and EDM4.mxo. Instead of the same χ2-value of
10.6 for both ADM3 and EDM3, we now find χ2 = 17.3 for ADM4 and χ2 = 11.2 for
EDM4. In both the fit deteriorates but ADM4 turns out to be much more sensitive to
the wrong specification of the second observation interval than EDM4. Of course,
autoregressions and cross-lagged effect are different for the unequal intervals in
each analysis (whereas, as expected, the autoregressions were lower over the longer
second interval, the cross-lagged effect turned out to be higher), but they also differ
now between ADM4 and EDM4. Over the first interval the autoregressions in the
ADM4 were 0.748 and 0.253 for Ext and Int, respectively, and in the EDM4 0.747
and 0.261; the cross-lagged effect in the ADM4 was 0.405 and in the EDM4 0.410.
This clearly illustrates the necessity to estimate the EDM independently from the
ADM in the case of unequal intervals.

We conclude the example with some of the consequences of the model estimated
in continuous time: autoregression functions for Ext and Int, cross-lagged effect
function for a21 (Ext → Int) and mean trajectories for Ext and Int, all based on
the final EDM3 in Table 7.2. Autoregression and cross-lagged effect functions are
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Fig. 7.8 Standardized cross-lagged effect function for Ext→ Int, based on model EDM3 in Table
7.2.
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computed using (7.5). An autoregression function describes the autonomous de-
velopment of a variable, telling which proportion of its value present at the start
predictably persists after increasing intervals. In discrete time analysis the autore-
gression is only computable on the basis of the discrete time intervals in the study.
The continuous time analysis in Figure 7.7 reveals that the part of Ext predictable
from its value at the start is everywhere higher than for Int, after an interval of ∆t =
2.2 years the predictable Ext part is still not less than half the original Ext, whereas
only 7% of the original Int is left, and already after 6 months half of the original Int
is lost.

The cross-lagged effect function in Figure 7.8 reveals that a unit (standard de-
viation) increase in Ext has its maximum impact of 35.2% of a standard deviation
in Int after 1.5 years and that after 5 years still 15% is left. So, the cross-lagged
effect function nicely clarifies what the meaning and impact across all intervals in
continuous time is of the impressive cross-effect of 0.704 in model EDM3.
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Fig. 7.9 Mean trajectories for Ext and Int and a subject-specific mean trajectory for Int, based on
model EDM3 in Table 7.2.

General mean trajectories for Ext and Int in Figure 7.9 were computed using
(7.11) and the subject-specific mean trajectory for Int using (7.12). As an illustra-
tion, the subject-specific mean trajectory was computed for a subject at one standard
deviation above trait mean for Int, that is for κ2 = 6.18. Because κ1 was deleted from
model EDM3 and therefore Φκ is not positive definite, (7.12) was applied by fill-
ing out in regression matrix Φxt0,κ

Φ−1
κ the regressions of x1t0 and x2t0 on κ2 only.
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It turns out that the means hardly change. The general means, starting from 17.9
and 21.1 in 1998, going down only a tiny fraction over the data collection period
between 1998 and 2000 towards 17.7 and 21.0, are predicted to be 17.6 and 20.9 in
2003 and converge for t→∞ to final values of 17.53 and 20.86. The subject-specific
mean trajectory for Int of the subject with subject-specific intercept value of b2 +
κ2 = 17.7, however, increases: from 24.9 in 1998 to 25.2 in 2000 and then in the
prediction period, after reaching 25.6 in the middle of 2003, to final value 25.80.
This final value is not much higher than the value in 2000 at the end of the data
collection period.

7.6 Relationships between Individualism, Nationalism and
Ethnocentrism in Flandres

The example in this section, taken from Toharudin, Oud, and Billiet (2008), is more
comprehensive than the one in the previous section for two reasons. First, the state
variables are latent and based on an elaborate measurement model for measuring
the theoretical constructs Individualism (I), Nationalism (N) and Ethnocentrism (E).
The constructs were repeatedly measured in three waves (1991, 1995, and 1999) in
a panel of N = 1274 Flemish respondents and Dutch-speaking respondents in Brus-
sels. Second, whereas the number of state variables was two in the previous section,
in this example it is three, leading to a 3 x 3 drift matrix with six different causal
connections between the latent variables. The purpose of the study was to find out,
how the constructs develop and influence each other across time. On the basis of pre-
vious research a recursive causal structure was hypothesized: I→N, N→ E, I→ E.
Thus, in addition to the auto-effects, only three of the six possible cross-effects were
hypothesized to be nonzero. In previous research, causal connections between the
constructs were analyzed cross-sectionally only, or, if longitudinally, solely in cor-
relational form without taking care of the causal direction of the effects, and never in
continuous time. Again, the continuous time analysis of the data set started with an
ADM analysis (LISREL input file ADM-INE.ls8 and output file ADM-INE.out), fol-
lowed by the corresponding EDM analysis (Mx input file EDM-INE.mx and output
file EDM-INE.mxo).

First, attention will be paid to the measurement model. Individualism (I) or “un-
restrained striving for personal interests”, Nationalism (N) or “identification with
the Flemish community in Belgium”, and Ethnocentrism (E) or “negative attitude
toward outgroups” were measured by 5, 4, and 8 items, respectively. Most of the
items were 5-point-scale items, the answers consisting of different degrees of agree-
ment/disagreement. Two item examples for each of the constructs are:

Individualism (I)
-Everybody has to take care of himself first.
-What counts is money and power.
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Nationalism (N)
-Flanders must decide.
-Belgium has to disappear.

Ethnocentrism (N)
-Belgium should not have allowed in guest workers.
-Immigrants cannot be trusted.

Several items under Nationalism had slight differences in formulation between the
first wave year 1991 and the two subsequent wave years 1995 and 1999. Measure-
ment invariance (time invariance) analyses were performed, in which the loadings,
measurement intercepts, and measurement error variances (C, d, and R in (7.16),
respectively) of these N-items were compared between 1991 on the one hand and
1995 and 1999 on the other hand. It yielded that time invariance of N-item 4 for 1991
(called “4na91” in ADM-INE.out) in comparison with 1995 and 1999 had to be re-
jected. Consequently, the three measurement parameters of this item were allowed
to deviate in 1991. Only one more deviation from time-invariance was allowed in
the measurement model by freeing the measurement intercept of I-item 5 in 1999
(called “5in99” in ADM-INE.out). Freeing this single parameter, thereby increasing
its value from 2.456 to 3.286, had the effect of decreasing the model χ2 for ADM
and EDM with the huge amount of 1209, implying a considerable improvement in
model fit. It prevents the increase in this single item from unduly influencing the
latent mean development of I between 1995 and 1999. All information about the
loadings of the items can be found in the main body of matrix “LAMBDA-Y” in
output file ADM-INE.out, about the measurement intercepts in the last column of
this matrix, and about the measurement error variances in “THETA-EPS”.

With regard to the dynamic model part and the initial state variances and means,
first the ADM and EDM estimates will be presented and then details about the way
the input files were formulated to obtain the estimates. Both solutions are given in
Tables 7.3 and 7.4. In Table 7.3 the ADM solution is on the left hand side and the
EDM solution on the right hand side. Because the estimates of the initial state vari-
ances and means are equal in both solutions, they are given only once in Table 7.4.
Both tables also give t-values, providing precise information about the significance
of the parameter estimates as well as about the standard errors (t = estimate/standard
error). Although in both ADM and EDM, trait variables were specified (in the form
of extra state variables as in (7.26) and (7.27)), all three trait variances were fixed
at zero in the final analysis, because no positive estimates were found or expected
to be found (see in ADM-INE.out the negative values under “Expected change for
Psi” for the variances of “04w1TrI”, “05w1TrN”, and “06w1TrE”). We conclude
that the initial variances are sufficient to differentiate trajectories for individual sub-
jects from the mean trajectory and no extra trait variances are warranted. Diffusion
coefficient matrix G and diffusion matrix Q = GG′ were specified diagonal because
of the rather low modification indices and expected changes in ADM-INE.out for
the off-diagonal elements.

Comparing the ADM and EDM solutions in Tables 7.3-7.4, it is striking how
similar both solutions are with only very small differences in the third decimal of
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the parameter estimates. Also the differences in t-values are small, proving that the
standard errors are very similar too. These almost equal results, obtained on the
basis of different models by quite diverse programs, clearly confirm each other. It
means also that the EDM can safely be evaluated by means of the ADM estimates,
standard errors and other information given by the LISREL program. As expected,
also the fit information is equal within precision limits. χ2 = 7881 in LISREL and
χ2 = 7880 in Mx with df = 1304 do not seem to imply a particularly good fit. It
should be noted, however, that the model with 51 observed variables is huge, the
sample of N = 1274 big, and the (almost) strict time-invariance of the continuous-
time model puts a lot of heavy constraints on the model, on the measurement part as
well as on the dynamic part of the model. It is therefore no surprise that the popular

Table 7.3 ADM and EDM estimates; standardized coefficients in drift matrices A† and A, t-values
between parentheses

I N E I N E
I

N

E



−0.069∗∗ −0.007 0.033∗∗
(−9.41) (−1.39) (5.15)

0.013∗ −0.061∗∗ 0.011∗
(2.31) (−10.79) (2.09)

0.039∗∗ 0.003 −0.062∗∗
(7.48) (0.80) (−11.98)





−0.070∗∗ −0.008 0.033∗∗
(−9.23) (−1.44) (5.13)

0.013∗ −0.061∗∗ 0.012∗
(2.33) (−10.17) (2.11)

0.040∗∗ 0.003 −0.063∗∗
(7.53) (0.82) (−11.94)


A† A

I

N

E



0.061∗∗
(3.28)

0.105∗
(2.21)

0.094∗∗
(7.58)





0.061∗∗
(3.32)

0.105∗
(2.19)

0.095∗∗
(7.62)


b† b

I

N

E


0.280∗∗
(11.37)

0.683∗∗
(11.06)

0.210∗∗
(15.39)




0.281∗∗
(10.83)

0.685∗∗
(10.70)

0.211∗∗
(14.92)


G† G

*p ≤ .05; **p ≤ .01.



7 Continuous Time Modeling 237

Table 7.4 Estimates of initial state (co)variances and means; t-values between parentheses, first
line of ADM and second line of EDM

I N E
I

N

E



0.778∗∗
(17.45)
(16.57)

−0.183∗ 5.999∗∗
(−2.41) (17.38)
(−2.41) (16.51)

0.321∗∗ 0.106 0.508∗∗
(13.44) (1.87) (17.10)
(13.34) (1.86) (17.11)





2.460∗∗
(83.18)
(82.96)

4.231∗∗
(51.64)
(50.49)

2.899∗∗
(116.82)
(116.73)


Φxt0

µµµxt0

*p ≤ .05; **p ≤ .01.

fit measure RMSEA (Browne and Cudeck, 1993) with value 0.068 indicates that the
model fits reasonably.

Turning to the drift matrix A, which should give the answers to the main ques-
tions in the study, we first observe that the auto-effects are all three negative
(−0.069,−0.061,−0.062), indicating stability or a long-term tendency for the tra-
jectories to converge to the mean trajectory. Stability is confirmed by the negative
eigenvalues of the drift matrix. Interestingly, by accounting appropriately for the
4 year observation interval, the auto-effects are correctly comparable to the auto-
effects of −0.320 and −1.251 in the previous example (Section 7.5) with a 1 year
interval. Individualism, Nationalism and Ethnocentrism in the present example have
a much weaker tendency to converge to their mean trajectory than externalizing
problem behavior and internalizing problem behavior in the previous example (Sec-
tion 7.5).

The cross-effects do not confirm the hypothesized recursive structure I → N,
N→ E, I→ E. In the place of non-significant and almost zero effect N→ E come
significant effects E → N and E → I. The role of Nationalism is therefore quite
different from what was expected. N turns out not to influence E, but, in contrast,
to undergo a weak influence from E. So, N comes out as the dependent variable in
the structure, weakly and nearly equally influenced by both other constructs (stan-
dardized coefficients of 0.013 and 0.011). In addition, a clear reciprocal relationship
shows up between Individualism and Ethnocentrism: I → E but also E → I with
standardized coefficients of 0.039 and 0.033, respectively. All standardized effects
are small in strength, though, and, although significant, much smaller than the stan-
dardized effect of 0.704 found in the previous example (Section 7.5).

As mentioned above, in both the ADM and the EDM trait variables were speci-
fied as extra state variables. This can be seen by SEM matrix B (called “BETA” in
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LISREL output ADM-INE.out and “A” in GROUP 42 of Mx output EDM-INE.mxo)
containing 19 variables: in addition to the last variable, the unit variable, at each
time point 3 state variables are followed by the extra 3 trait variables. Just as B, ΨΨΨ

is also a 19 x 19 matrix (called “PSI” in ADM-INE.out and “P” in GROUP 42 of
EDM-INE.mxo), showing the initial covariance matrix Φxt0

in the first 3 x 3 diago-
nal block and the trait covariance matrix Φκ (in the final analysis fixed at zero) in
the next 3 x 3 diagonal block.

For the ADM analysis, the equal observation intervals of ∆t1 = ∆t2 = 4 were
reason to apply the simple ADM constraints in (7.20) between lagged and instan-
taneous matrices A∗∗

∆t1
and A∗

∆t1
in addition to the equality constraints between time

points. In the LISREL output file ADM-INE.out one finds the lagged matrix A∗∗
∆t1

in BETA at variables 7-9 (dependent) and 1-3 (lagged independent) and the instan-
taneous matrix A∗

∆t1
at variables 7-9 (dependent and independent). The ADM con-

straints (7.20) are formulated in LISREL input file ADM-INE.ls8 following “!ADM
equality (auto)” and “!ADM equality constraints (cross)”. As explained below for-
mula (7.20), the estimates of drift coefficients in A† , intercepts in b† , and diffusion
coefficients in G† can easily be obtained by hand from the estimated discrete time
matrices using (7.19). For convenience, these simple computations have also been
done by means of the LISREL program: division of A∗

∆t1
by 1

2 ∆t1 = 2 (multiplica-
tion by 0.5, yielding the drift coefficients in additional LISREL parameters PA(1)-
PA(9)), division of b∗

∆t1
by ∆ti = 4 (multiplication by 0.25, yielding the drift coef-

ficients in additional LISREL parameters PA(16)-PA(18)), and division of Q∗
∆t1

by

∆ti = 4, followed by the square-root of the result (
√

1
4 q∗ii,∆t1

= 0.5x(q∗ii,∆t1
)0.5 yield-

ing the diffusion coefficients in additional LISREL parameters PA(19)-PA(21)). All
elements in trait matrices Φ†κ and Φ†xt0 ,κ were specified zero in the final analysis,
but, if nonzero, they could have been computed by dividing Φ∗

κ∆ti and Φ∗xt0,κ∆ti by

∆t2
1 = 16 and ∆t1 = 4, respectively.
The scale free character of t-values can be observed by comparison of the t-

values for A∗
∆t1

and A† as well as for b∗
∆t1

and b† . In both cases, the estimated values
are different but the t-values are indeed equal. One would expect the t-values also
to be equal for Q∗

∆t1
and G† as well as for the six unstandardized cross-effects in

PA(2), PA(3), PA(4), PA(6), PA(7), PA(8) and their standardized values computed
in PA(10)-PA(15). It turns out that the t-values of the three standard deviations in
G† are not one time but exactly two times those of the variances in Q∗

∆t1
. This is a

consequence of the square root transformation covering negative as well as positive
values. Because negative values have to be excluded for standard deviations, one
should stick to half the values found for the diagonals in G† as reported in Table
7.3. The t-values computed by LISREL for the standardized coefficient values inap-
propriately also take into account the variability of the standard deviations used in
standardization. The scale of the variables can be chosen arbitrarily, however. If the
standard deviations would have been specified in PA(10)-PA(15) as fixed quantities,
the t-values would have been equal to those computed for A∗

∆t1
and A† as reported

in Table 7.3.
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Fig. 7.10 Autoregression functions of I, N, and E, based on model EDM in Table 7.3.

For the EDM analysis a much more elaborate Mx input file was used than in the
previous example (Section 7.5). The 45 GROUPS enable the estimation of the more
general, time-varying model discussed in Oud and Jansen (2000). For estimating
the present time-invariant model, only a subset of the GROUPS is needed, however.
At the start of the input file EDM-INE.mx, it is clearly indicated in which GROUPS
the time-invariant model matrices are specified. GROUP 44 in output file EDM-
INE.mxo displays all the estimated matrices, reported in Tables 7.3-7.4. In GROUP
45 the standardized drift matrix is computed. Standard errors, on the basis of which
the t-values reported in Tables 7.3-7.4 were computed, are displayed by Mx at the
start of the output before GROUP 1. As in the case of the ADM, the t-values for
the diffusion coefficients (standard deviations) in G have been halved. All discrete
time matrices (see (7.17)) are found at the positions specified by (7.27) in B (“A” in
GROUP 42) and in ΨΨΨ (“P” in GROUP 42).

To depict in continuous time the short-run and long-run implications of the model
for Flandres, we conclude the example with the autoregression functions (Figure
7.10), cross-lagged effect functions (Figure 7.11), and mean trajectories (Figure
7.12), all based on the EDM estimates in Tables 7.3-7.4. Autoregression and cross-
lagged effect functions have been computed using (7.5). The autoregressions and
cross-lagged effects are computed not only for the actual observation intervals of 4
and 8 years, but interpolated and predicted for any interval over a rather extended
prediction period. Although the differences between the autoregression functions
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Fig. 7.11 Standardized cross-lagged effect functions for significant cross-effects of EDM in Table
7.3.

in Figure 7.10 are rather small (all three state variables have a strong tendency to
persist over time, much stronger than, for instance, externalizing and internalizing
problem behavior in Figure 7.7), the non-monotone character of the autoregression
functions nicely illustrates the need for analyzing in continuous time. The strength
order between N and I reverses after interval 14.2, N becoming the variable with the
lowest autoregression. It means that a discrete-time analyst confronted, for example,
with observation interval 16 or 20 would come to different conclusions than his col-
league, working with interval 4 or 8. Continuous time analysis, however, prevents
such erroneous conclusions by showing the complete picture.

In contrast to the the autoregression functions in Figure 7.10, the standardized
cross-lagged effect functions in Figure 7.11 show monotonicity. For all intervals,
at least over 0 to 60 years, the strength order between the four cross-lagged effect
functions turns out to be the same as for the actual observation intervals of 4 and
8. Particularly, in the feedback loop between I and E, I→ E exceeds E → I every-
where. With regard to the two relatively smaller effects, we observe that everywhere
I→ N is slightly stronger than E→ N. An interesting result of the continuous time
analysis is further that all four cross-lagged effects reach their maximum quite some
time after the empirical observation intervals of 4 and 8 years. The maximum of
I→ E (0.235) is reached somewhat later, at interval 17.0, than the lower maximum
of E→ I in the opposite direction (0.190), reached at 16.4. The maximum of I→ N
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Fig. 7.12 Latent mean trajectories for I, N and E, based on Tables 7.3–7.4.

(0.105) at interval 22 is reached 1.2 years before the maximum of E→ N (0.099) at
23.2.

Finally, Figure 7.12 shows that the mean values of Individualism and Ethnocen-
trism hardly changed in the data collection period 1991-1999 and are hardly ex-
pected to change in the prediction period. The mean of Individualism, starting at
2.46 in 1991 and decreasing to 2.43 in 1999, is expected to converge to final value
2.30. The mean of Ethnocentrism, starting at 2.90 in 1991 and decreasing to 2.87 in
1999, is expected to converge to final value 2.77. The mean of Nationalism, how-
ever, increased in the data collection period from 4.23 to 4.55, and a further limited
increase for the near future is expected, but then the prediction levels off towards
final value 4.91.

7.7 Conclusions

The development of externalizing and internalizing problem behavior in children or
the attitude change in the Flemish electorate with regard to individualism, national-
ism, and ethnocentrism are continuously evolving processes, rather than processes
that show isolated, sudden changes at discrete points in time. The analyst, however,
only observes at discrete points in time (for example, biennial, yearly or monthly
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observations). The typical approach in conventional (that is, discrete) time series
modeling and panel data analysis is to ignore the continuous time nature of the pro-
cesses underlying discrete time observations. Consequently, discrete time series and
discrete panel data analyses are simplifications and often distortions of reality.

Comparability of results between different studies is the key to cumulative
progress in science. Just because of the frequent model formulation and estimation
in terms of the observation interval at hand, comparability is low in social and be-
havioral science. By means of the continuous-time approach using the exact discrete
model (EDM) or approximate discrete model (ADM), explained in this chapter, the
model parameters are made independent of the observation interval, and thus pro-
vide a common basis for accurate comparison of differently time-spaced models of
the same or similar processes. As shown also in this chapter, if analysis results for
the EDM or ADM from different authors use time scales in different units, they
are easily translated into each other. Thus, results are made comparable without
re-estimation being necessary.

Not all topics in continuous time analysis could be covered by the EDM-SEM
and ADM-SEM procedures as expounded in the present chapter. We mention, in
particular, time-varying models (Oud & Jansen, 2000) and models for oscillating
movements (Oud, 2007a). In our conviction, however, the models presented in this
chapter give a continuous time formulation to the typical kind of problems current
longitudinal and panel research in social and behavioral science is involved with.
A final but important topic not dealt with in the present chapter is the handling of
incomplete data. In a longitudinal SEM context this can be solved in most cases
by the expectation-maximization (EM) procedure using the Kalman smoother, ex-
plained in Oud and Jansen (1996) and applied in continuous-time modeling by Oud
and Jansen (2000), or the individual likelihood procedure (Neale, 2000; Wothke,
2000) as implemented, for instance, in Mx.
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Chapter 8
Five Steps in Latent Curve and Latent Change
Score Modeling with Longitudinal Data

John J. McArdle and Kevin J. Grimm

Abstract This paper describes a set of applications of one class of longitudinal
growth analysis - latent curve (LCM) and latent change score (LCS) analysis using
structural equation modeling (SEM) techniques. These techniques are organized in
five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and
unobserved longitudinal data. (2) Characterizing the developmental shape of both
individuals and groups. (3) Examining the predictors of individual and group differ-
ences in developmental shapes. (4) Studying dynamic determinants among variables
over time. (5) Studying group differences in dynamic determinants among variables
over time. To illustrate all steps, we present SEM analyses of a relatively large set
of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of
all five aspects of latent curve modeling is not often used in longitudinal analy-
ses, so we discuss why more efforts to include all five are needed in developmental
research.

8.1 Introduction

Many debates in developmental research conclude with a suggestion that the col-
lection of longitudinal data is a necessary ingredient for the study of developmental
phenomena. Methodological researchers have defined these issues in extensive de-
tail, but most rely on “the explanation of inter-individual differences (or similarities)
in intra-individual change patterns” (e.g., Wohlwill, 1973; Baltes & Nesselroade,
1979). During the last two decades, many methodologists have contributed to the
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knowledge base, and the classic models for “growth curve analysis” seem to have
been revived as an important research technique (e.g., see Rogosa & Willett, 1985;
McArdle & Epstein, 1987; Meredith & Tisak, 1990). The term growth curve anal-
ysis denotes the processes of describing, testing hypotheses, and making scientific
inferences regarding growth and change patterns in a wide range of time-related
phenomena. Of course, these curves are not limited to the phases where the organ-
ism grows, but it can also be used to describe and analyze phases where the organism
declines, accelerates, decelerates, oscillates, or even remains stable.

This paper describes a set of applications of one class of longitudinal growth
models - latent change score (LCS) analysis using structural equation modeling
(SEM) techniques. These techniques can be presented in many ways, but we orga-
nize this information in five sections, as steps of developmental data analysis, based
on a sequential rationale inspired by Baltes & Nesselroade (1979):

Step 1 – Describing the Observed and Unobserved Longitudinal Data – We consider
some useful ways to summarize longitudinal data, including statistical information
from both the complete and incomplete cases.

Step 2 – Characterizing the Developmental Shape of Individuals and Groups – We
try to describe both the group and individual characteristics of development and
demonstrate the general ease and flexibility of the SEM approach.

Step 3 – Examining the Predictors of Individual and Group Differences in Devel-
opmental Shapes – We recognize individual differences in growth may be the result
of combinations of other measured variables. We describe how SEM can be used
in both multilevel and multiple-group forms to provide empirical evidence for hy-
potheses concerning the correlates of individual longitudinal patterns.

Step 4 – Studying Dynamic Determinants among Variables over Time – We show
how the time-dependent nature of the latent variables can be represented in SEM
and used to study lead-lag relations using simple dynamic expressions.

Step 5 – Studying Group Differences in Dynamic Determinants Among Variables
over Time – We show how the multi-group and latent mixture dynamic models can
be fit to examine heterogeneous lead-lag relationships for different groups of indi-
viduals.

As the reader will notice, we first use latent curve modeling (LCM) to begin the
analyses, but we then emphasize the direct use of latent change scores (LCS) for
more clarity in the model alternatives. This clarification may assist the researcher in
considering the alternative change models available. This point is important because
the LCS allows us to rather easily join seemingly different concepts about change
from classical models based on time-series and auto-regression or latent growth
curve analyses.

As an illustration for the five steps, we present SEM analyses of data from the
well-known and publicly available National Longitudinal Survey of Youth (NLSY)
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– Children and Young Adults. In this study, the children of female respondents were
repeatedly measured biennially from 1986 through 2000. The longitudinal data of
the NLSY includes measures of achievement (e.g., Peabody Individual Achieve-
ment Test; PIAT; Dunn & Markwardt, 1970) and behavior problems (e.g., Behavior
Problems Index; BPI; Zill, 1990). These analytic illustrations are used to convey the
main presumptions and techniques as well as the benefits and limitations of these
approaches in developmental research.

Our main goal is to present an overview of the general developmental method-
ology, and to demonstrate the practical and flexible utility of these methods for
developmental research. We do not provide extensive mathematical and statistical
details, but the computer input and output scripts for each step of the SEM anal-
yses are available from our website http://kiptron.usc.edu/as well as
from http://www.econ.upf.edu/˜satorra/longitudinallatent/
readme.html.. Most importantly, the inclusion of all five aspects of latent curve
modeling is often overlooked in longitudinal analyses, so we end by discussing why
all five steps are needed in developmental investigations.

8.2 Step 1: Describing the Observed and Unobserved
Longitudinal Data

The first step in any useful data analysis is an adequate description of the data.
However, the collection and presentation of longitudinal data can be difficult, so the
unique aspects of these data should be emphasized.

8.2.1 The National Longitudinal Survey of Youth – Children and
Young Adults

The data examined here come from children who were measured at least once be-
tween age 8 and 14, so the overall N = 6,790. As previously mentioned, data col-
lection occurred biennially with measurements occurring in every even year from
1986 through 2000. Figure 8.1 is a display of individual growth data for the (a)
PIAT reading comprehension and (b) BPI antisocial behavior measure by age for a
sub-sample of n = 100 randomly selected participants. The y-axis indexes the par-
ticipants’ scores and the x-axis is an index of the participants’ age-at-testing. The
connected lines in this figure are graphic descriptions of the change pattern for Read-
ing Comprehension scores for each individual, so each line is termed a growth curve
or trajectory. The plot allows us to see the overall trends for changes in achievement
and antisocial behavior through childhood and adolescence as well as how the data
are incomplete.
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(A)

(B)

Fig. 8.1 Longitudinal plots of (A) Reading Comprehension from the Peabody Individual Achieve-
ment Test and (B) Antisocial Behavior from the Behavior Problems Index for a random sample of
100 participants.
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8.2.2 Describing the Observed Data

The sample sizes, means, standard deviations, and correlations of these raw mea-
sures from age 8 to 14 are listed in Table 8.1. The means and standard deviations
show a simple pattern from age 8 to 14 with increases in performance coupled with
increases in variation. The correlations over time, the unique statistical information
of longitudinal data, also present a relatively simple pattern of results with most cor-
relations suggesting a relatively high level of the stability of individual differences
(e.g., r > .5). We use SEM to test hypotheses about these longitudinal statistics.

8.2.3 Results from Dealing with Incomplete Information

The summary information presented in Table 8.1 is not limited to only those par-
ticipants with complete data at all ages (no participants have complete data). To
deal with this problem we present a description of the patterns of complete and in-
complete data in Table 8.1c. The incomplete data patterns can be represented as the
proportion of data or coverage for each covariance of these scores – at any time no
more than 42% of the participants have data (age 8 and 9) and in some cases only
1% of the information is available (at ages 13 and 14).

In Table 8.1a and 8.1b we also use brackets to list an “incomplete data” esti-
mate of the sample means, standard deviations, and correlations. These estimates
are based on what is typically termed full information maximum likelihood (FIML;
Little, 1995; McArdle, 1994; Cnaan, Laird, & Slasor, 1997). This approach allows
us to examine the initial summary statistics “as if all persons were measured at all
occasions” and, hopefully, deal with any selection bias in the longitudinal sampling
strategy. These newly estimated statistics are not exactly the same as the pair-wise
estimates, but they are not altered very much, indicating these data meet the min-
imal conditions of “missing at random” (MAR; Little, 1995). Most importantly,
these estimated statistics do not suffer from some common statistical problems of
pair-wise estimates based on different sample sizes, and use all available informa-
tion from every person. As a result, we do not need to select a subset of persons
because they have complete data, nor do we have to make our timing basis based
on a data collection strategy (e.g., 1986, 1988, . . . , 2000). Instead, we choose to
examine age-at-testing (see equation (8.1) below) as opposed to wave-of-testing or
year-of-testing, based on our developmental interest.

Let us be clear at the start that an age-based approach by itself does not guarantee
that all model assumptions are met (e.g., see McArdle et al., 2002; cf., Sliwinski &
Buschke, 1999; Miyazaki & Raudenbush, 2000). In fact, this age-based approach
is not often used in standard developmental research, where it is much more likely
to find time (e.g., the occasion of measurement) as the focal axis of development.
However, in this specific case, the individuals were sampled from an ongoing devel-
opmental process that is likely to have strong age related components, and there was
no common point of intervention except for the natural differences due to grade and
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maturity. The standard MAR assumptions that are needed do require an important
belief on the part of the analyst – that the ways in which data are incomplete are
somehow reflected in the data that are complete. While we think this is a reasonable

Table 8.1 Observed and unobserved summary statistics for the Peabody Individual Achievement
Test Reading Comprehension (Read) and Behavior Problems Index Antisocial Behavior (Anti)
scores from the National Longitudinal Survey of Youth data at eight time points (N = 6970; MLE-
MAR estimates in brackets; Step 1, see Figures 8.1A and 8.1B

(a) Observed and unobserved means and standard deviations over age

Variable N Mean [MLE] SD [MLE] Skewness Kurtosis Min Max
Read – Age 8 2847 31.1 [30.7] 9.8 [ 9.8] .42 -.23 0 70
Read – Age 9 2833 36.7 [36.6] 10.3 [10.4] .03 -.40 0 78
Read – Age 10 2660 41.5 [41.2] 10.6 [10.7] -.09 .36 0 84
Read – Age 11 2566 44.7 [45.0] 11.4 [11.4] -.13 .43 0 84
Read – Age 12 2226 48.1 [48.1] 11.4 [11.4] -.15 .35 0 81
Read – Age 13 2047 50.3 [50.5] 12.1 [12.3] -.19 .42 0 84
Read – Age 14 1734 52.1 [52.4] 12.0 [12.1] -.24 .47 0 84
Anti – Age 8 3046 1.49 [1.53] 1.52 [1.53] .97 .23 0 6
Anti – Age 9 2987 1.52 [1.52] 1.59 [1.59] 1.04 .36 0 6
Anti – Age 10 2722 1.52 [1.51] 1.61 [1.61] .98 .17 0 6
Anti – Age 11 2644 1.54 [1.50] 1.63 [1.63] .95 .02 0 6
Anti – Age 12 2287 1.60 [1.56] 1.62 [1.63] .88 -.11 0 6
Anti – Age 13 2140 1.66 [1.60] 1.67 [1.68] .81 -.35 0 6
Anti – Age 14 1798 1.70 [1.64] 1.72 [1.74] .75 -.54 0 6

(b) Observed and unobserved correlations(each entry includes pairwise rand[MLE-MAR r])
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

1. Read– Age 8 1.00
2. Read– Age 9 .57

[.46]
1.00

3. Read– Age 10 .63
[.64]

.64
[.58]

1.00

4. Read– Age 11 .56
[.57]

.69
[.69]

.67
[.68]

1.00

5. Read– Age 12 .57
[.58]

.56
[.60]

.68
[.70]

.72
[.65]

1.00

6. Read– Age 13 .48
[.51]

.62
[.62]

.60
[.62]

.66
[.67]

.77
[.75]

1.00

7. Read– Age 14 .53
[.54]

.57
[.59]

.62
[.63]

.69
[.69]

.67
[.68]

.63
[.71]

1.00

8. Anti – Age 8 -.19 -.23 -.22 -.21 -.21 -.18 -.22 1.00
[-.20] [-.20] [-.22] [-.24] [-.22] [-.17] [-.24]

9. Anti – Age 9 -.29 -.22 -.05 -.20 -.30 -.15 -.19 .58 1.00
[-.23] [-.21] [-.16] [-.21] [-.23] [-.17] [-.22] [.53]

10.Anti – Age 10 -.19 -.29 -.21 -.11 -.24 -.16 -.21 .59 .59 1.00
[-.17] [-.25] [-.20] [-.19] [-.22] [-.21] [-.21] [.60] [.64]

11.Anti – Age 11 -.15 -.19 -.20 -.21 -.22 -.21 -.24 .52 .64 .57 1.00
[-.22] [-.19] [-.23] [-.22] [-.23] [-.22] [-.28] [.50] [.64] [.57]

12.Anti – Age 12 -.19 -.17 -.20 -.11 -.21 -.35 -.21 .50 .54 .59 .54 1.00
[-.18] [-.13] [-.20] [-.15] [-.20] [-.21] [-.22] [.50] [.54] [.60] [.58]

13.Anti – Age 13 -.27 -.14 -.25 -.17 -.26 -.20 -.10 .45 .54 .49 .58 .48 1.00
[-.29] [-.16] [-.22] [-.19] [-.20] [-.21] [-.20] [.45] [.53] [.52] [.59] [.51]

14.Anti – Age 14 -.17 -.14 -.17 -.24 -.20 -.05 -.22 .45 .38 .53 .61 .60 .57 1.00
[-.19] [-.15] [-.19] [-.23] [-.21] [-.20] [.24] [.46] [.51] [.54] [.60] [.62] [.61]
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Table 8.1 (Continued)
(c) Covariance coverage (proportion of participants with available data at each age and com-
bination of ages)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
1. Read – Age 8 .42
2. Read – Age 9 .02 .42
3. Read – Age 10 .28 .02 .39
4. Read – Age 11 .05 .28 .02 .38
5. Read – Age 12 .22 .04 .25 .02 .33
6. Read – Age 13 .04 .21 .04 .23 .02 .30
7. Read – Age 14 .17 .03 .20 .03 .20 .01 .26
8. Anti – Age 8 .38 .02 .28 .05 .22 .04 .17 .43
9. Anti – Age 9 .02 .38 .02 .27 .04 .20 .03 .02 .42
10. Anti – Age 10 .27 .02 .35 .02 .24 .04 .18 .28 .02 .38
11. Anti – Age 11 .05 .27 .02 .34 .02 .22 .03 .05 .28 .02 .37
12. Anti – Age 12 .21 .04 .24 .02 .29 .01 .19 .22 .04 .24 .02 .32
13. Anti – Age 13 .04 .20 .04 .23 .02 .27 .01 .04 .21 .04 .23 .02 .30
14. Anti – Age 14 .17 .03 .19 .03 .19 .01 .23 .17 .03 .19 .03 .20 .01 .25

set of assumptions, these will never be completely correct, and we try to point out
critical junctures where a failure to meet MAR assumptions may be important.

8.3 Step 2: Characterizing Developmental Shapes for Groups
and Individuals

The second step in a longitudinal data analysis is the attempt to highlight the key fea-
tures of the data in terms of a model. In contemporary behavioral science research,
one common approach to growth curve analysis is to write a trajectory equation for
each group and individual. One such trajectory equation for repeated measurements
of an observed variable, Read, at multiple times (t = 1 to T ) for the same person
(n = 1 to N), written in the mixed-model form of

Read[t]n = g0n +g1n ·B[t]+ e[t]n . (8.1)

This model includes three unobserved or latent scores representing the individual’s
(1) level (g0n), (2) slope (g1n) representing linear change over time and (3) indepen-
dent errors of measurements (e[t]n). To indicate the form of the systematic change,
we use a set of group coefficients or basis weights (e.g., slope loadings) which de-
fine the timing or shape of the trajectory over time (e.g., B[t] = t− 1). It is typical
to estimate the fixed group means for intercept and slopes (µ0, µ1) but also the
implied random variance and covariance terms (σ2

0 , σ2
1 , σ01) describing the distri-

bution of individual deviations (d0n, d1n) around the group means. We also follow
a traditional convention and assume there is a single random error variance within
each time (σ2

e ), and the error terms are assumed to be normally distributed and
uncorrelated with all other components. This final assumption about a single error
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variance mimics the assumptions of most other repeated measures models (e.g.,
Mixed-Effects ANOVA).

One important issue emerges when we recognize that there is nothing actually
pre-defined about the basis of time (B[t]), and this allows us to investigate many
alternative forms of the time axis (e.g., McArdle & Bell, 2000). For example, it may
be more appropriate in this case to study multiple ages (e.g., age = 8 to 14) on the
same person and write

Read[age]n = g0n +g1n ·B[age]+ e[age]n (8.2)

because using age as the basis of timing allows a more interpretable set of trajecto-
ries.

Fig. 8.2 Path diagram of a latent growth curve for Reading Comprehension.

A path diagram of this growth curve is presented in Figure 8.2 and is an exact
translation of the necessary matrix algebra of these models (See Grimm & McAr-
dle, 2005; McArdle, 2005; McArdle & McDonald, 1984). These diagrams can be
conceptually useful devices for understanding the basic modeling concepts. In this
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path diagram the observed variables are drawn as squares, unobserved variables as
circles, the required constant is included as a triangle, and parameters are labeled
such that invariant parameters (e.g., residual variances) have the same label. Model
parameters representing “fixed” or “group” coefficients are drawn as one headed ar-
rows while “random” or “individual” features are drawn as two-headed arrows. In
this case the level and slope are often assumed to be random variables with “fixed”
means (µ0, µ1) but “random” variances (σ2

0 , σ2
1 ) and covariance (σ01). Of course,

this is essentially a model based on means and covariances with MAR assumptions
about the incomplete data.

8.3.1 Basic Linear Growth Models Results

Some initial growth curve modeling results for the NLSY Reading data are pre-
sented in Table 8.2. In these longitudinal models any change score (g1n) is assumed
to be constant within an individual but is not assumed to be the same between indi-
viduals. We do not estimate the unobserved scores but estimate several parameters
that characterize the key features of the unobserved scores.

Table 8.2 Selected results from five latent growth models fitted to NLSY longitudinal data (N =
6970; Step 2).

Parameter 2a: No Growth 2c: Linear 2d: Latent
Fixed Effects
Basis b[8] =0 =0 =0
Basis b[9] =0 =1 .28
Basis b[10] =0 =2 .48
Basis b[11] =0 =3 .66
Basis b[12] =0 =4 .80
Basis b[13] =0 =5 .92
Basis b[14] =0 =6 =1
Level µ0 42.1* 32.6* 30.7*
Slope µ1 — 3.7* 21.7*
Random Effects
Error σ2

e 114.0* 42.7* 39.9*
Level σ2

0 56.2* 61.1* 61.1*
Slope σ2

1 — 1.0* 35.6*
Correlation ρ01 — .24* .15*
Fit Indices
Parameters 3 6 11
Degrees of Freedom 32 29 24
Log Likelihood -66677 -61710 -61416
χ2 10635 699 110
RMSEA 0.22 0.06 0.02

Note: The fit statistics for the time-based linear model (Model 2b) are not presented here because
the data are considered to be different because of their organization.
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The first model labeled 2a is the no-growth model fitted with only three parame-
ters: a level mean (µ0 = 42.1), a level variance (σ2

0 = 56.1), and an error variance (σ2
e

= 114.0). The model yields a likelihood (L2 = -66677) which shows the no-growth
baseline is a poor fit compared to the totally unrestricted or saturated model (χ2 =
10635, df = 32), in which means, variances, and covariances are estimated for all
observed variables. This model is typically used as a baseline against which to judge
the fit of more informative models. The second growth model (2b) uses a fixed set
of basis coefficients that change linearly with the number of occasions represent-
ing the time passed since the participant was enrolled in the study. Therefore, B[t]
= t − 1 where t is the occasion number. Based on the data collection paradigm of
the NLSY, a one-unit change in t represents a two-year change (e.g., measurements
occurred every two-years from 1986 to 2000). This model has three additional pa-
rameters compared to the no-growth model: a slope mean (µ1), variance (σ2

1 ), and
a level-slope covariance (σ01). This model yielded a new likelihood (L2 = -61856),
which was a distinct improvement over the no-growth model (∆ − 2LL = 9644 for
3 additional parameters). The resulting estimates describe a function that begins at
35.2 at the first occasion and increased by 7.3 units every two years. The variance
estimates of the level and slope parameters were significant (σ 2

0 = 76.4.1, σ2
1 = 3.8)

indicating inter-individual differences in reading ability upon entering the study and
in the linear change over time. Additionally, the level-slope correlation was .20 in-
dicating a small positive relationship between children’s reading performance upon
entering the study and their linear rate of change. The error variance was estimated
to be 41.6.

The second linear growth model (2c) was fit uses a fixed set of basis coefficients
or slope loadings that change linearly with age and formed by taking B[age] = (age-
8), or the fixed values of B[age] = [0, 1, 2, 3, 4, 5, 6]). This linear scaling is only one
of many that could be used, but was chosen to permit a practical interpretation of the
slope parameters in terms of a per-year change and centers the level to represent 8
years of age. Therefore, the parameters related to the level reflect parameters associ-
ated with age 8. This linear growth model has three additional parameters compared
to the no-growth model: a slope mean (µ1) and variance (σ2

1 ), and a level-slope co-
variance (σ01). This model yields a new likelihood (L2 = -61710) that represents a
relatively large distance from the unrestricted model (χ2 = 699 on df = 29) but was
an improvement over the no-growth model (2c vs 2a: ∆ χ2 = 9936 on ∆df = 3). The
resulting means describe a function that started relatively low at age 8 (µ0 = 32.6)
but increased by 3.7 units per year between ages 8 and 14 (µ1 = 3.6). The variance
estimates of the level and slope parameters were significant (σ2

0 = 61.1, σ2
1 = 1.0)

indicating inter-individual differences in the linear growth parameters. Additionally,
the level-slope correlation was .24 indicating a small positive relationship between
children’s reading performance at age 8 and their linear rate of change. The error
variance has been reduced (σ2

e = 42.7) compared to the no-growth model, which
also indicates an improvement in fit.

The time-based and age-based models are not nested, which makes directly com-
paring their fit somewhat problematic. But this mimics a traditional problem that
emerges when rescaling any X-variable in a traditional regression – if different
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transformations of X scores are used to predict Y scores the resulting parameters
and fit can change. In the SEM framework the raw data always has the same like-
lihood and degrees of freedom, but different latent variable models based on B[t]
can have different likelihoods and degrees of freedom. One way to compare these
models is based on likelihood comparison fit statistics, such as the AIC or BIC.
In both cases here, the age-based model fit better. More importantly, the age-based
model has important substantive interpretations. In this observational study we are
observing the phenomena of changes in reading scores as they are unfolding. While
the beginning of the study may be of paramount importance for the researchers,
it is not likely that anything happened at this point to consider it important in the
participants’ lives (e.g., unlike a surgical procedure).

8.3.2 Nonlinearity Using Latent Basis Curves

An attractive nonlinear alternative of the linear growth model was proposed by Rao
(1958) and Tucker (1958, 1966) in the form of summations of “latent curves” (see
Meredith & Tisak, 1990). The use of this latent growth curve offers a simple way
to investigate the shape of a growth curve - we allow the basis coefficients (B[age])
to take on a form based on the empirical data. In this approach we estimate the
basis coefficients (e.g., B[9− 13]) with the exception of two (B[8] and B[14]) for
identification purposes. In this latent basis model we end up with an optimal shape
for the group curve and individual differences with one change component (see
McArdle & Epstein, 1987; McArdle & Bell, 2000).

The fourth model fitted (2d) was this kind of latent basis growth model. For
identification purposes, we fixed B[8] = 0 and B[14] = 1, but the remaining basis
coefficients were estimated from the data. This results in a large improvement in the
model likelihood (L2 =−61416), which was much closer to the unrestricted model
(χ2 = 110 on df = 24), and substantially better than the nested baseline (∆ χ2 =
10525 on ∆df = 8) and nested linear models (∆ χ2 = 589 on ∆df = 5). The er-
ror variance has also been reduced (σ2

e = 39.9). The estimated latent means were
µ0 = 30.7 and µι = 21.7, their variances were σ2

0 = 61.1 and σ2
1 = 35.6, and the

intercept/slope correlation was ρ01 = 0.15. The estimated basis coefficients were
.28, .48, .66, .80, and .92 for ages 9 – 13. The coefficients indicated a decelerat-
ing growth function. Additional nonlinear models, including multiphase (Cudeck &
Klebe, 2002) and structured curves (Browne & du Toit, 1991) can be fit to these
data, but are not described here. These additional nonlinear models may be able to
adequately represent the data with fewer parameters. We refer the reader to Oud
& Jansen (2000), Cudeck & Klebe (2002), Browne & du Toit (1991), and Ram &
Grimm (2007) for further details regarding nonlinear models.
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8.4 Step 3: Modeling Individual Differences in Developmental
Scores and Patterns

The estimated means of the level and slope in the previous analyses allow us to plot
the group trajectory over time. Similarly the estimated variance parameters allow us
to consider the size of the between group differences at each age. However, no prior
information obtained in model fitting tells us about the sources of this variance. To
further explore the differences between persons we expand the basic latent growth
model to include impacts on the latent parameters. There are several techniques to
evaluate the sources of inter-individual differences and we consider three common
methods including the growth model with an extension variable, the multiple group
growth model, and the growth mixture model.

8.4.1 The Growth Model with an Extension Variable

Let us assume a variable termed X indicates some measurable difference between
persons (e.g., sex, educational level). If we measure this variable at one occasion
we might like to examine its influence in the context of a growth model for our out-
come of interest (e.g., reading achievement). One popular model is based on the use
of “adjusted” growth parameters as popularly represented in the analysis of covari-
ance. In growth curve terms, this model is written with fixed (group) coefficients (γ)
with some effect on the measured scores at each occasion (Read[t]), and the X is an
independent observed (or assigned) predictor variable and written as

g0n = v0 + γ0 ·Xn +d0n ,
g1n = v1 + γ1 ·Xn +d1n ,

(8.3)

where we have intercepts (ν) and regression slopes (γ) for the effect of X on the
two latent components (g0 and g1) with residuals (d0 and d1). In this case the latent
growth parameters (µ0:x, µ1:x, σ0:x, σ1:x, σ0,1:x) are considered to be conditional on
the expected values of the measured X variable. In the early factor analytic literature
this relation between an observed X and a common factor score was termed an “ex-
tension analysis” (Horn, 1973). The apparent complexity of the covariance model
leads to a simpler and increasingly popular way to add an external variable – we can
write a growth model with an extension variable where the X variable has a direct
effect on the parameters of the growth curve.

8.4.2 Results Growth Model with an Extension Variable

A variety of additional variables have been measured in the NLSY, including de-
mographic (e.g., gender, mother’s and father’s education.), self reported health
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behaviors (e.g., smoking, drinking, physical exercise, etc.) and other problems (e.g.,
general health, illness, medical procedures, etc.). In the analyses presented here we
consider two variables: gender (effect coded as−0.5 for males and +0.5 for females)
and the mother’s age at the child’s birth (centered at 24 years of age).

We add gender and mother’s age at child’s birth as predictors of the level and
slope. Table 8.3 is a list of results including the two variables as predictors of the
level and slope. The model (3a) has a misfit (χ2 = 125 on df = 34) and this is an
improvement when compared to the model in which the regression parameters were
fixed at zero (χ2 = 276 on df = 38; ∆ χ2 = 151 on ∆df = 4). The parameter estimates
suggest the following interpretations. (0) The latent basis coefficients (B[t]) were
unaffected by the inclusion of the predictors. (1) There were accurate (significant)
differences between males and females on both the level and slope with females
predicted to have a greater reading level at age 8 (γ0 = 1.9), but a slightly slower rate
of change from age 8 to 14 (γ1 =−1.3). (2) The mother’s age at the child’s birth was
also predictive of the level (γ0 = 0.19) and slope (γ1 = 0.20) of the growth model for
reading comprehension. Older mothers at the child’s birth were predicted to have
children with a greater level of reading ability at age 8 as well as a faster rate of
change from age 8 to 14.

Table 8.3 Results from latent growth models with extension variables fit to the NLSY longitudinal
data (Step 3)

Parameters 3a: Level 3a: Slope
Fixed Effects
Basis B[t] = 0, .27*, .48*, .66*, .80*, .92*, = 1
Intercept v0 30.8* 22.3*
Regression from gender γg 1.9* -1.3*
Regression from mother’s age at birth γa .19* .20*
Random Effects
Residualδ 2

d 59.6* 34.6*
Error σ2

e 39.9*
Correlation ρd0,ds .15
Fit indices
Parameters 20
Degrees of Freedom 34
Log Likelihood -97446
χ2 125
RMSEA .02

8.4.3 Group Differences from a Multiple Group Perspective

The initial representation of group differences uses a set of estimated parameters to
summarize between group differences. This idea is clearly represented by coding
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a set of variables (X) to characterizing the group differences and then examining
the effect of this set (X) on the model parameters. However, this method is lim-
ited in a number of important ways. For example, some reasonable forms of group
differences in the growth processes (e.g., different developmental shapes) are not
possible within the standard framework. For example, different groups of people
could have different “amplitude” or be in different “phases” in their growth pattern.
These group differences in the features of growth are not separated within the basic
level and change parameters although they may be realistic features of development.

An SEM treatment of this kind of a model uses concepts derived from multiple-
group factor analysis (e.g., Jöreskog & Sörbom, 1979; McArdle & Cattell, 1994). In
these kinds of models, each group (g = 1 to G) is assumed to follow a latent growth
model where the basis coefficients (B[t](g)) are allowed to vary across groups. Since
the groups need to be independent (each person can only be in one group) this kind
of grouping is most easily done for discrete categorical variables (i.e., sex, but not
educational level or maternal age at birth). A multiple group growth model (see
McArdle, 1989) with age as the time-basis can be written as

Read[age](g)
n = g(g)

0n +g(g)
1n ·B[age](g) + e[age](g)

n . (8.4)

This multiple group growth model permits the examination of the presumed invari-
ance of the latent basis functions (i.e., B[age](1) = B[age](2) = . . . B[age](g) = . . .
B[age](G)). The rejection of this model implies that each independent group has a
different shape of growth. If invariance is found we can also examine the equality of
the variances of the latent level and slope (σ (g)

0 = . . . σ
(G)
0 and σ

(g)
1 = . . . σ

(G)
1 ) and

their covariance (σ (g)
01 = . . . σ

(G)
01 ). Further analyses could include the fixed effects

(µ0, µ1), error deviations (σ (g)
e ), and functions of all the other parameters. These

multiple group hypotheses represent additional types of group differences than was
possible with the growth modeling with an extension variable approach.

8.4.4 Results for Group Differences in Growth of Reading for
Males and Females

To illustrate this kind of analysis here, we fit multiple group growth models with
gender as the grouping variable. Table 8.4 contains the parameter estimates and
fit statistics for three models. In these cases the two groups were created, so the
unrestricted likelihood for these data was based on two sets of mean and covariance
matrices; one for males and one for females.

The first model (4a) allows both groups to have completely different latent
growth curves. The model now includes 11 parameters for each group, and the
22 estimates are listed in the first two columns. This resulted in a reasonable fit
to both data sets (χ2 = 131 on df = 41). A few small differences in estimates can be
seen between the two groups, but one key difference appears to be the smaller slope
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Table 8.4 Numerical results from multiple group latent growth models fitted to male and female
NLSY longitudinal data (Step 3)

Growth Model 4a: Latent 4b: Loading Invariance 4c: Total Invariance
Parameters Growth for Gender over Both Groups over Both Groups
Fixed Effects Males Females Males Females

n = 3448 n = 3342 n = 3448 n = 3342
Basis b[8] =0 =0 =0 =0
Basis b[9] .27* .29* .28* .28*
Basis b[10] .48* .48* .48* .48*
Basis b[11] .67* .64* .66* .66*
Basis b[12] .80* .79* .80* .80*
Basis b[13] .93* .90* .92* .92*
Basis b[14] =1 =1 =1 =1
Level µ0 29.8* 31.5* 29.7* 31.6* 30.7*
Slope µ1 22.1* 21.4* 22.4* 21.1* 21.7*
Random Effects
Error σ2

e 38.3* 41.4* 38.3* 41.5* 39.9*
Level σ2

0 66.3* 54.2* 66.2* 54.1* 61.6*
Slope σ2

1 41.7* 28.2* 42.6* 27.3* 35.6*
Correlation ρ01 .21* .11* .20* .11* .15*
Fit Statistics
Parameters 22 17 11
Degrees of Freedom 48 53 59
Log Likelihood -61362 -61366 -61416
χ2 131 138 237
RMSEA .02 .02 .03

variance for the females. The second model (4b) adds the restriction that the latent
basis coefficients, while free to vary, must be identical across males and females.
This model was similar in fit to the free model (χ2 = 138 on df = 53; ∆ χ2 = 7 on
∆df = 5), and this indicates the shapes of the curves may be considered the same
across gender.

The third model (4c) adds the restriction that all parameters, while free to vary,
must be identical across males and females. This model showed a loss in fit (χ2 =
237 on df = 59) compared to the previous model (4b vs. 4c: ∆ χ2 = 99 on ∆df = 6),
indicating some of the latent means and/or covariances are different. As previously
seen in the model with gender as an extension variable, the growth factor means
were somewhat different between males and females. Additionally, it appears that
the slope variances were also somewhat different.

8.4.5 Mixture Models for Latent Groups

Another fundamental problem is the discrimination between models of (a) multiple
curves for one group of people from (b) multiple groups of people with different
curves. It is possible for us to have, say, three clusters of people, each with a distinct
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growth curve, but when we aggregate information over all people we end up with a
complex growth pattern with multiple growth factors for a single population as op-
posed to a simple growth pattern for three groupings of people. This is the essence
of a latent grouping of people, and parallels the “person centered approach” to mul-
tivariate data analysis (e.g., Cattell, 1980; Magnussen, 2003).

The recent series of models termed growth mixture models have been developed
for this purpose (Muthén & Muthén, 2000; Muthén & Shedden, 1999; Nagin, 1999;
Wedel & DeSarbo, 1995). In these analyses the distribution of the latent parameters
are assumed to come from a “mixture” of two or more overlapping distributions.
Current techniques in mixture models have largely been developed under the as-
sumption of a small number of discrete or probabilistic “classes of persons” based
on mixtures of multivariate normals. More formally, we can write a model as a prob-
ability weighted sum of curves where the probability of class membership (πcn) is
defined for the person in c = 1 to C classes. With a age-based growth curve as the
within-class model we can write the growth mixture model as

Read[age]n =
C
∑

c=1
πcn

(
g(c)

0n +g(c)
1n ·B[age](c) + e[age](c)n

)
where

C
∑

c=1
πcn = 1 and 0≤ πcn ≤ 1 .

(8.5)

In this kind of growth mixture analysis we estimate the threshold parameter for the
latent distribution (τp, for the pth parameter) while simultaneously estimate separate
model parameters for the resulting latent groups.

The growth mixture models may be seen as a model-restricted fuzzy-set cluster
analysis – a multiple group model without exact knowledge of group membership
for each individual. The concept of an unknown or latent grouping can be succes-
sively based on the logic of multiple group factorial invariance. The resulting esti-
mates yield a likelihood which can be compared to the results obtained from a model
with one less class, so the mixture model distribution can be treated as a hypothesis
to be investigated. As in standard discriminant analysis, we can also estimate the
probability of assignment of individuals to each class in the mixture. In growth mix-
ture modeling, it is important to fully examine how the latent classes differ from one
another. Building on the work of multiple group growth models, described above,
we examine differences in the basis coefficients (i.e., B[age](1) = . . . B[age](c) = . . .
B[age](C)). The rejection of this model implies that each latent class has a different
shape of growth. If invariance is found we can also examine the equality of the vari-
ances of the latent level and slope (σ (c)

0 = . . . σ
(C)
0 and σ

(c)
1 = . . . σ

(C)
1 ) and their

covariance (σ (c)
01 = . . . σ

(C)
01 ). Further analyses could include the fixed effects (µ0,

µ1), error deviations (σ (g)
e ), and functions of all the other parameters.
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8.4.6 Results from Latent Mixture Models

These latent growth mixture models were fit using the NLSY reading data and some
of the results are described here. In a first latent mixture model (4d) we estimated
a two-class model with free parameters for both groups. This model required 23
parameters and led to another likelihood (L2 = −61072). We recognize the statis-
tical basis of this comparison is still somewhat controversial, but if we consider
the threshold as an implied parameter in some previous models, we can get some
sense of the gain in fit. The threshold parameter is a point estimate of the position
on the outcome distribution where the individuals would be separated in classifica-
tion into one group or another. In this case, the threshold (τ = −1.29) is a z-score
that suggests the total group can be considered a mixture of two classes of dif-
ferent sizes, n1 = 1,463 and n2 = 5,327, with different growth patterns between
groups but the same growth pattern within groups. By contrast to the one-class
model (L2 = −61416) this 2-class model appears to be an improvement; however,
numerical instability (and convergence problems) was found (i.e.; for one of the
classes as the level variance was near zero). In a second model the level variance
and level/slope covariance was fixed at zero in the first class. The result was a model
with most participants categorized into the second class (n = 6121; τ =−2.07).

In second set of latent mixture model (4e) we allowed the possibility of two la-
tent classes (C = 2) with different parameters for the latent means and variance but
assumed the same growth basis. This model resulted in a model with convergence
problems for the same reasons as the previous model (4d). Finally, the latent means
were allowed to vary between latent classes, but the remaining parameters were
forced to be equal across latent classes. This final mixture model resulted in con-
vergence problems as the estimated within-class level-slope correlation was greater
than 1. Therefore, the results from these growth mixture models did not provide any
evidence of latent classes with divergent growth patterns. It’s important to remem-
ber there was variability in the growth factors (Model 2c), but the results from these
mixture models confirms that this variation was distributed normally.

8.5 Step 4: Studying Dynamic Determinants across Multiple
Variables

In recent research we have considered some ways to improve the clarity of the basic
dynamic change interpretations with conventional SEM analytic techniques. These
dynamic change hypotheses have led to the development of a set of alternative mod-
els, based on classical principles of dynamic change, but represented in the form
of latent change scores (e.g., McArdle, 2001; McArdle & Nesselroade, 1994). This
alternative representation makes it relatively easy to represent a dynamic hypothesis
about the change within a variable, and about the time-ordered determination of one
variable upon another.
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8.5.1 Modeling Latent Change Scores

The introduction of multiple variables at each longitudinal occasion of measurement
leads naturally to questions about time-dependent relationships among growth. A
classical SEM for multiple variables over time is based on a latent variable cross-
lagged regression model (see Cook & Campbell, 1977; Rogosa, 1978). This model
can be written for latent scores with over-time auto-regressions (ϕy, ϕx) and cross-
regressions (δyx, δxy) for time-lagged predictors, but the standard applications of
this model do not include systematic growth components (i.e., individual slopes).
For this reason, recent SEM analyses have examined parallel growth curves, in-
cluding the correlation of various components (McArdle, 1988, 1989; Willett &
Sayer, 1994). A popular alternative used in multilevel and mixed effects modeling
is based on the analysis of covariance with X [t] as time-varying covariates. In this
model the regression coefficient (e.g., X [t]→Y [t]) is usually assumed to be the same
at all occasions. These last two models are easy to implement using existing com-
puter software (e.g., Sliwinski & Buschke, 1999; Sullivan et al., 2000; Verbeke et
al., 2000), but the typical applications are limited to a few basic forms of dynamic
hypotheses.

To expand our SEM for other dynamic concepts we now reconsider the trajectory
equations from a different starting point. First, we assume we have a pair of ob-
served scores (Y [t] and Y [t−1]) measured over a defined interval of time (∆ t = 1),
and write a model with latent scores (y[t] and y[t−1]), and corresponding errors of
measurement (e[t] and e[t−1]). We can now define a new latent variable that repre-
sents the change in the latent scores for y. The latent change score is defined as in
equation (8.6a). This latent change score is not the same as an observed change score
(∆Y [t]n) because the latent score is considered separate from the model based error
component. Now we can write the trajectory over time in the observed variables as
with (8.6b).

∆y[t]n = y[t]n− y[t−1]n , (8.6a)

Y [t]n = g0n +

(
T

∑
t=2

∆y[t]n

)
+ e[t]n . (8.6b)

Of course, the main alteration in this approach is that in this LCS representation we
do not directly define the basis coefficients (B[t]; as in equation (8.1)), but instead
we directly define change as an accumulation of the first differences among latent
variables. This deceptively simple algebraic device allows us to define the trajectory
equation as an accumulation of the latent changes (∆y[t]) up to time t based on any
model of change.

One benefit of this LCS approach is that all of the previous latent growth models
can be re-conceptualized in terms of first differences, and some new models emerge
(as in McArdle & Nesselroade, 1994; McArdle, 2001, 2009; McArdle & Hamagami,
2001). We first re-iterate traditional models and then present some new models. We
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can start with the simple baseline model of no change by stating (8.7a), so that this
difference model represents a trajectory with (8.7b).

∆y[t]n = 0 , (8.7a)
Y [t]n = g0n + e[t]n . (8.7b)

Thus, the baseline model allows systematic individual differences at all occasions,
and random error at all occasions, but no systematic changes over time.

In contrast, we can write (8.8a), so that this change model represents a trajectory
with (8.8b).

∆y[t]n = g1n , (8.8a)

Y [t]n = g0n +

(
T

∑
t=2

g1n

)
+ e[t]n . (8.8b)

So,
Y [1]n = g0n + e[1]n ,

Y [2]n = g0n +g1n + e[2]n ,

Y [3]n = g0n +g1n +g1n + e[3]n ,

or, in general,

Y [t]n = g0n +g1n (t−1)+ e[t]n ,

and so the trajectory is linear over time.
As another alternative, we can consider a model where the changes are directly

proportional to the previous latent score by writing (8.9a) and this change model
represents a trajectory with (8.9b).

∆y[t]n = β · y[t−1]n (8.9a)

Y [t]n = g0n +

(
T

∑
t=2

β · y[t−1]n

)
+ e[t]n (8.9b)

So
Y [1]n = g0n + e[1]n,
Y [2]n = g0n +(β · y[1])+ e[2]n,
Y [3]n = g0n +(β · y[1]+β · y[2])+ e[3]n ,

and so on.
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This accumulated trajectory is an exponentially accelerating function over time. As
yet another alternative, we can write a composite change expression model where
we consider both a systematic constant change (g1n) and a proportional change (β )
over time. The change equation for this dual change score model can be written as
(8.10a) and this change model represents a trajectory with (8.10b).

∆y[t]n = g1n +β · y[t−1]n , (8.10a)

Y [t]n = g0n +

(
T

∑
t=2

g1n +β · y[t−1]n

)
+ e[t]n . (8.10b)

So

Y [1]n = g0n + e[1]n,
Y [2]n = g0n +(g1n +β · y[1])+ e[2]n,
Y [3]n = g0n +(g1n +β · y[1]+g1n +β · y[2])+ e[3]n ,

or, in general,

Y [t]n = g0n +g1n (t−1)+

(
T

∑
t=2

β · y[t−1]

)
+ e[t]n .

This accumulating of the composite change model (8.10a) leads to a potentially
complex nonlinear growth trajectory (8.10b). Depending on the sign and size of the
coefficients, this nonlinear growth trajectory follows an increasing or decreasing,
accelerating or decelerating exponential form (e.g., Y [t]n = c0n + c1n · (1− eπ·t) +
e[t]n).

Of course, this use of latent change scores is a generic approach that can be
extended to many other forms of change models. For example, McArdle (2001)
examined the proportional change model with an independent residual (i.e., an au-
toregressive model) as well as a model of changes in the common factor scores.
Hamagami & McArdle (2007) investigated the forms of changes based on second
order difference operators. A key feature of this latent change score approach to
defining trajectories over time is that we are not limited to the models discussed
here. Instead, the latent change score approach opens up possibilities for other para-
metric analyses of repeated observations.

An immediate benefit of this approach is seen when we deal with multiple vari-
ables over time. In a simple case, we can first organize the model into a set of bivari-
ate dynamic change score equations that relate the latent changes in each variable
to the previous states of those variables and a constant change component. If we
use the simple starting points of the models considered above, one set of dynamic
equations can be written as

∆y[t]n = g1n +βy · y[t−1]+ γyx · x[t−1]
∆x[t]n = h1n +βx · x[t−1]+ γxy · y[t−1] (8.11)
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Where g1n and h1n are the constant change components for y and x, βy and βx are
the proportional change parameters describing how each variable influences itself
over time, and γyx and γxy are the coupling parameters describing how each variable
influences each other over time. It may be useful to note that all the desirable latent
slope parameters are not jointly identifiable, so we typically estimate only the latent
means (µg1 and µh1; see Figure 8.3). Also, to simplify the expressions, we start with
an explicit repetition of all model parameters across each time (i.e., βx, βy, γyx, and
γxy do not depend on t), and we recognize this is not a necessary feature of real data.
This simplified form of a bivariate trajectory model is depicted as a path diagram in
Figure 8.3.
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Fig. 8.3 Path diagram of a bivariate latent difference score model for Reading Comprehension and
Antisocial Behavior.

In this simplified form of a bivariate dynamic system we assume a dual change
score model within each variable but also permit coupling parameters (γ) across dif-
ferent variables. This model is used to estimate the time-dependent effect of latent
x[t] on ∆y[t +1] (γyx) as well as coupling parameter representing the time-dependent
effect of latent y[t] on ∆x[t + 1] (γxy). This model subsumes all aspects of the pre-
vious cross-lagged, correlated growth, and time-varying covariate models as spe-
cial cases. These latent change score models can lead to more complex nonlinear
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trajectory equations (e.g., non-homogeneous equations) and the use of latent change
scores allow for the analysis of a variety of dynamic models using standard SEM
(for more detailed explanations, see McArdle, 2001, 2009).

8.5.2 Results from Fitting Latent Change Score Models

The latent change score dynamic models were fitted to the reading comprehension
variable and to the antisocial behavior scores. Several alternative Reading/Antisocial
Behavior bivariate coupling models based on Figure 8.3 were fitted to the data. In
the first model (5a), the coupling parameters (γ) were fixed to zero so the changes
in reading and antisocial behaviors were not time-dependent. In the second model
(5b), the coupling parameter from reading to changes in antisocial behavior was
estimated whereas the coupling parameter from antisocial behavior to changes in
reading was fixed to zero. In the third model (6c), the coupling parameter from
reading to changes in antisocial behaviors was fixed to zero and the coupling pa-
rameter from antisocial behavior to changes in reading was estimated. These two
models (5b and 5c) test whether reading was a leading indicator of changes in an-
tisocial behavior (5b) and whether antisocial behavior was a leading indicator of
changes in reading (5c). The final model (5d) was the bidirectional coupling model
in which both coupling parameters were estimated.

The fitting of a sequence of alternative models was needed to interpret the repli-
cability of the coupling across the reading and antisocial variables. Table 8.5 con-
tains parameter estimates and fit statistics for the four bivariate dynamic models fit
to reading and antisocial behaviors to determine whether one or more of the cou-
pling parameters (γ) were different from zero. In the first model (5a), the coupling
parameters were fixed at zero and led to a likelihood of L2 = −92162. This model
can be used as a baseline for comparison for the models in which coupling parame-
ters were estimated. In the second model (5b) the parameter representing the effect
of antisocial behavior on changes in reading was fixed to zero; however the effect
of reading on changes in antisocial behaviors was estimated. This model resulted
in a slight improvement in fit (∆ χ2 = 8 on df = 1) compared to the no coupling
model (5a). Similarly, the third model in which the coupling parameter from antiso-
cial behavior to changes in reading was estimated and the parameter from reading
to changes in antisocial behaviors was fixed to zero resulted in an improvement in
fit (∆ χ2 = 8 on df = 1) compared to the no coupling model. Finally, the bidirec-
tional coupling model (5d) was fit and was an improvement over the no coupling
model (∆ χ2 = 17 on df = 2) and the two unidirectional coupling models (5b and
5c; ∆ χ2 = 9 on df = 1). Therefore, Model 5d, in which reading and antisocial be-
haviors were both dynamically related, was the most reasonable representation of
the time-dependent relationships. The resulting interpretation is a dynamic process
where scores on reading achievement have a tendency to impact changes in antiso-
cial behavior in a positive manner and antisocial behavior has a tendency to effect
subsequent change in reading achievement negatively. Therefore, children who have
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Table 8.5 Results of bivariate latent change score dynamic models fitted to PIAT Reading Com-
prehension and BPI Antisocial Problem Behaviors (Step 4)

Model 5a: 5b: 5c: 5d:
Parameters No Coupling Read→ ∆Anti Anti→ ∆Read Bidirectional Coupling

Read Anti Read Anti Read Anti Read Anti
Fixed Effects
Initial Mean µ0 30.8* 1.5* 30.8* 1.5* 30.8* 1.5* 39.8* 1.5*
Slope Mean µ1 11.7* -.2* 11.8* -.3* 13.6* -.2* 13.7* -.3*
Proportion β -.19* .16* -.19* .13* -.19* .15* -.19* .12*
Coupling γ — — —- .004* -1.32* — -1.32* .004*
Random Effects
Error Variance σ2

e 39.9* 1.0* 39.9* 1.0* 39.7* 1.0* 39.7* 1.0*
Initial Variance σ2

0 61.0* 1.5* 61.0* 1.5* 61.1* 1.5* 61.1* 1.5*
Slope Variance σ2

1 5.5* .06* 5.5* .05* 5.6* .05* 5.7* .04*
Correlation ρ01 .75* -.90* .75* -.82* .51* -.88* .52* -.79*
Correlation ρr0a0 -.30* -.30* -.32* -.31*
Correlation ρr1a1 .22* .05 -.31 -.40
Correlation ρr0a1 .26* .10 .26* .09
Correlation ρr1a0 -.30* .29* .38 .38
Correlation ρerea .01 -.01 -.00 -.00
Fit Statistics
Parameters 19 20 20 21
Degrees of Free-
dom

100 99 99 98

Log Likelihood -92162 -92158 -92158 -92154
χ2 236 228 228 219
RMSEA .01 .01 .01 .01

a greater reading comprehension scores tend to show slightly more positive changes
in antisocial behaviors (negatively valenced) and children displaying more antiso-
cial behaviors tend to show less positive changes in reading comprehension.

The estimated model parameters were dependent on the scalings used, but the tra-
jectory expectations allow us to interpret the results in a relatively “scale-free” form
– Figure 8.4 gives a summary of this state-space plot as a vector field (for details,
see Boker & McArdle, 1995; McArdle et al., 2001). Any pair of coordinates is a
starting point (e.g., intercept for reading and antisocial behavior) and the directional
arrow is a display of the expected pair of 1-year changes from this point. This fig-
ure shows an interesting dynamic property – the change expectations of a dynamic
model depend on the starting point. From this perspective, we can also interpret the
negative level-level correlation (ρr0,a0 = −.31), which describes the placement of
the individuals in the vector field, and the slope-slope correlation (ρr1,a1 = −.40),
which describes the location of the subsequent change scores for individuals in the
vector field. The resulting “flow” shows a dynamic process where reading compre-
hension and antisocial behavior scores have a tendency to impact changes in each
other from age 8 to 14.
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Fig. 8.4 Vector field for the pattern of results from the bivariate latent change score model for
Reading Comprehension and Antisocial Behavior.

8.6 Step 5: Studying Group Differences in Dynamic
Determinants across Multiple Variables

The final step was to examine whether there were group differences in the dynamic
time-dependent associations. That is, we want to determine whether there were
group differences in the lead-lag relationships (Read → ∆Anti; Anti → ∆Read).
The models for this step are a combination of the previous two steps (Group Dif-
ferences & Dynamics). That is, the bivariate dual change score model with bidirec-
tional coupling is brought into a multiple group and latent mixture framework to
study differences in lead-lag relationships for observed and unobserved groups.

8.6.1 Results for Multiple Group Dynamic Models with Gender

As in the univariate multiple group models for reading we begin with a model in
which all of the parameters were separately estimated for males and females. This
model yields a fit (L2 =−91876) which is reasonable (χ2 = 356 on df = 196) given
the observed data for males and females. The estimated parameters were similar for
males and females; however there were some small interesting differences. For ex-
ample, the males tended to be more antisocial than females at age 8 and the effect of
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reading on changes in antisocial behavior appeared to be stronger for females than
males. The dynamic parameters (β ,γ) were then constrained to be equivalent for
males and females and the resultant fit (L2 = −91878; χ2 = 360 on df = 200) was
similar (∆ χ2 = 4, ∆df = 4) to when the dynamic parameters were independently
estimated for males and females indicating the lead-lag relationships that exist be-
tween reading and antisocial behavior were the same for males and females. Next,
the variance/covariance parameters were set equal for males and females, which re-
sulted in a substantial loss in fit (χ2 = 615 on df = 213). Therefore, there were vari-
ance/covariance parameters that were significantly different for males and females.
From the previous model, it appeared the level and slope variances for reading and
antisocial behaviors were greater for males than females. Additionally, males had
greater level of antisocial behavior at age 8 and females tended to have higher levels
of reading achievement at age 8.

8.6.2 Results for Dynamic Mixture Models

The first dynamic mixture model was a two-class bivariate dual change score model
with bidirectional coupling. In this model all of the parameters were separately es-
timated for the two-classes. This model required 43 parameters and yielded a like-
lihood (L2 = −89639) and likelihood based fit statistics (BIC = 179659). Com-
paring the likelihood and BIC from this two-class mixture model to the likelihood
(−92154) and BIC (184493) from one-class model indicated an improvement. The
threshold parameter (τ) was estimated to be 0.63 indicating the sample could be
considered a mixture of two classes of different sizes, n1 = 4665 and n2 = 2637,
with different dynamic relationships. The first class showed a dynamic pattern that
was similar to the overall model with reading comprehension having a small pos-
itive (0.004) effect on changes in antisocial behaviors while antisocial behaviors
had a large negative effect (−1.64) on changes in reading comprehension. The sec-
ond class, on the other hand, had no significant coupling parameters indicating that
reading comprehension and antisocial behaviors did not have a time-dependent rela-
tionship for this class of participants. This separation of individuals into people who
did show a specific coupling from persons who seem uncoupled is an important the-
oretical issue that requires careful consideration and replication. Although an initial
set of values can be estimated using this latent change mixture model approach, it
also seems obvious that replicated results across multiple studies would give us a
much stronger basis to form homogeneous groupings of people.

8.7 Discussion

This chapter serves to provide some methodological and analytical methods the
examination of longitudinal data using the general rubric of growth curve modeling
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techniques in a structural equation modeling framework. We recognize that SEM is
just one framework for longitudinal data analysis and represents a limited class of
longitudinal data analytic techniques (e.g., Nesselroade & Baltes, 1979; Collins &
Sayer, 2001). However, the analyses presented here include some of the most up-to-
date combinations of longitudinal models dealing with the developmental-dynamic
processes with unobserved heterogeneity. The five steps we outlined here represent
one way to organize some of the inherent complexity of longitudinal data analysis,
but these techniques are central to answering questions that are often posed and
initiate the collection of longitudinal data.

These five steps form a sequence with increasing levels of practical and theo-
retical knowledge, so it is useful to consider them in the order presented here. The
inclusion of all five aspects of latent curve modeling is often overlooked in longitu-
dinal analyses. That is, latent curves models (#2) are often fit without first describing
the basic data (#1). Group differences (#3) are presented without a full evaluation
of various growth curves that may be appropriate for the data (#2). In many recent
cases, inferences about latent curve dynamics across variables (#4 and #5) are of-
fered using simpler models that are incapable of providing this information (e.g.,
#3). For these reasons, a longitudinal researcher should consider the issues within
each step before moving on to the next step. Of course, it is easy to envision sit-
uations where it would be best to apply the steps in a different sequence, or even
to elaborate on one step based on the research questions. Obviously, models of the
complexity of Steps 4 and 5 may only be useful in the more advanced stages of
research. Further steps beyond these are possible, and should deal with dynamic
models from a time-series perspective (e.g., Nesselroade et al., 2002), models based
on differential equations (e.g., Oud & Jansen, 2001), selection effects due to sur-
vival (e.g., McArdle et al., 2005), and deal with experimental group dynamics (e.g.,
McArdle, 2007).

The structural-dynamic models discussed here represent only a sample of the
mathematical and statistical models appropriate for longitudinal data and the choice
of longitudinal models should be based on the specific research question under in-
vestigation (see Grimm, 2007). Indeed, some of the most difficult problems for fu-
ture work on latent curves will be focused on the rather elusive meaning of the latent
model parameters themselves (Zeger & Harlow, 1987; McArdle & Nesselroade,
2003). The choice of an appropriate substantive-vs-methodological interface (see
Wohlwill, 1991) creates problems that remain among the most difficult challenges
for future work. In this sense, the five step sequence advocated here is mainly in-
tended as a practical way to organize the otherwise daunting task of developmental
analyses of multivariate multiple occasion data.
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Chapter 9
Structural Interdependence and Unobserved
Heterogeneity in Event History Analysis

Daniel J. Blake, Janet M. Box-Steffensmeier, and Byungwon Woo

Abstract This chapter introduces how latent variables are handled in event history
analysis, a popular method used to examine both the occurrence and the timing of
events. We first emphasize why event history models are popular and what kinds of
research questions the model can be used to answer. We also review the major esti-
mation issues, briefly trace the development of event history models, and highlight
the differences and similarities across various types of event history models. We
then consider how latent variables are handled in event history analysis and demon-
strate this with an example of latent variable analysis. In the conclusion we consider
possible areas for future research.

9.1 Introduction

Event history models focus on the duration of time until an event of interest occurs.
An event is commonly defined as a qualitative transition from an original state to a
destination state at a specific point in time. An event history is a longitudinal record
of the time until an event happens (or does not happen) for each observation. Event
history models have become a popular method of empirical investigation and have
been widely used in many scientific disciplines.
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There has been significant progress in the development of estimation techniques
for event history models since the 1960s that have led to a broad range of scientific
disciplines such as biostatistics, mechanical engineering, labor economics, demog-
raphy, criminology, and political science to utilize event history models to study
a diverse range of research questions. One of the more recent and challenging di-
rections in the development of event history techniques has been the development
of estimation approaches for multiple events. Scholars have addressed the repeti-
tion of events as well as the possibility for an individual observation to experience
multiple different events (competing risks). Importantly, scholars have also sought
to uncover structural independencies amongst multiple events and, in this context,
have endeavored to take into account unobserved heterogeneity and the effects of
latent variables.

Simultaneous equation modeling is the most prominent approach to handling
structural interdependencies and unobserved heterogeneity in an event history con-
text. One sees applications of this approach in demography, sociology, labor eco-
nomics, finance, political science, and transportation engineering, particularly where
scholars have modeled systems of multiple event history equations believing that
multiple event history processes are interdependent, i.e. the time to one event de-
pends on the time to another related event. Studies have examined structural in-
terdependence between the duration of marriage and fertility timing, between the
duration of breast-feeding and the duration of maternal leave, between the com-
peting risks of getting jobs from old or new employers, and between trip and stop
times in shopping activities. In short, the need for simultaneous duration models
is widespread and we pay particular attention to simultaneous event history mod-
els in this chapter. However, scholars have also jointly estimated event history and
non-event history models and have pursued modeling strategies such as seemingly
unrelated regression (SUR) in such cases to reveal the effects of latent variables on
their outcomes of interest. We address these approaches as well and replicate an
existing study that employs a SUR approach to study the direction and timing of
U.S. legislators’ positions towards ratification of the North American Free Trade
Agreement (NAFTA).

The chapter is organized as follows. In the next section, we introduce the ba-
sic elements of event history models, emphasizing why event history models are
popular and what kind of research questions can be answered using event history
techniques. We also briefly review several important estimation issues, briefly trace
the development of event history models and highlight the differences and similari-
ties across different types of event history models. In the third section, we consider
how latent variables are handled in event history analysis. In the fourth section, we
provide an example of latent variable analysis in an event history context before con-
cluding the chapter with a discussion of possible areas for further methodological
developments.
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9.2 Event History Models

9.2.1 Event History Models

Event history models focus on the time until an event of interest occurs. An event is a
change from one state to another, such as marriage (from single to married), divorce
(from married to divorce), war (from peace to military conflict), or unemployment
(from employed to unemployed). An event history is then a longitudinal record of
when events of interest happened, such as a time until one’s marriage or a time until
one’s divorce. Event history models take into account not only whether or not the
event of interest occurs to an observation, but also when the event occurs and allow
an investigation into timing of the occurrence of the event. The dependent variable
in an event history model is the time until the event occurs. Event history models
are also referred to as duration, survival, failure time, and reliability models.

Event history models have many attractive features that make them a popular
choice for researchers. Compared to models that allow researchers to investigate
the occurrence of an event, such as binomial logit or probit models, event history
models provide opportunity to exploit the rich data of the “histories” of events in
addition to the occurrence of events. As the histories provide valuable additional
information, event history models help researchers better understand the causes and
processes of the event of interest. For instance, a labor economist might be interested
in understanding the dynamics of employment. One can see that how long it takes
a job seeker to find a new job is valuable information in addition to the information
about the occurrence of new employment. Event history models allow the labor
economist to investigate not only what makes employment more likely but also what
makes an individual more likely to find employment sooner rather than later.

Modern event history techniques can handle censored observations nicely and
easily incorporate time varying covariates. One may think that ordinary least squares
(OLS) regression might be able to capture factors influencing duration quite nicely,
as it allows researchers to study continuous dependent variables. But event history
data pose several challenges for traditional OLS regression. For one, duration data
are often right skewed and the OLS approach requires an arbitrary transformation
of data. A more serious problem is data truncation. Data truncation happens when
researchers do not know either the exact entry time of an observation (left trunca-
tion) or the end time (right censored). Right censoring is present in almost all event
history data sets as there are often observations that have not experienced an event
of interest by the time data is collected. It is a problem because it results in a miss-
ing value for the dependent variable (time until event). For example, one may be
interested in what causes former inmates to commit another crime and return to jail.
To study this, researchers may collect data for a year after inmates are released. For
those inmates that commit crimes during that year, the researchers obtain values for
time until inmates re-offend. A researcher using OLS needs to treat left truncated
observations as if they have the equivalent entry time with other observations and
to deal with right censored observation either by dropping all the observations that
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have not experienced the event or by capping the history by assuming the event has
occurred at the conclusion of the period of data collection. Both of these arbitrary
assumptions will cause biases. A second problem for cross-sectional OLS estima-
tion of time until events occur emerges from the potential for the values of some
independent variables to change as time passes.

Event history models can handle cases of left truncation and right censoring and
can accommodate time varying covariates (TVCs). Due to these advantages over
more common statistical methods, event history models have garnered increasing
popularity among researchers from diverse disciplines. Biostatisticians have used
event history models to study the effects of medical treatments on patients’ recovery
time after suffering a particular disease. In clinical studies, event history models are
commonly called survival models, because they are often used to study the survival
of patients. In engineering, event history models have been applied to investigate
times until machines or some electronic components break down. Thus, event his-
tory models in engineering are often referred to reliability or failure time models.
Economists have used event history models to study durations of employment and
unemployment, demographers have used them to study durations of education, and
time until marriage or child bearing. Meanwhile, criminologists have used event his-
tory techniques to study the time for released inmates to commit another crime and
political scientists use them to investigate such diverse topics as the timing of the
dissolution of coalition governments, the breakdown of cease-fire or peace agree-
ments between countries, and candidates’ decision to run for an election.

9.2.2 Key Contributions to the Development of Event History
Methods

As early as the early 1900s, life tables were used by actuaries. In the late 1950s
and early 1960s, more modern methods for event history analysis were actively de-
veloped by biomedical scientists and engineers. The former developed these meth-
ods to analyze survival data gathered through clinical trials while the latter needed
new statistical techniques to analyze data on the breakdown of machines and elec-
tronic components (Allison 1984, 11–12). These two research traditions effectively
merged in the 1970s and, as noted earlier, event history methods have since been
employed in a wide range of disciplines.

Fleming and Yin (2000) provide a summary of the most important developments
in event history modeling, focusing on the work done in biostatistics. Chief amongst
these is the development of the Kaplan-Meier method (Kaplan & Meier 1958) “for
estimating the survival function, log-rank statistic for comparing two survival distri-
butions (Mantel 1966)”, and the Cox proportional hazard model for “quantifying the
effects of covariates on the survival time” (Cox 1972). Oakes’ (2001) also credits
these contributions with forming the foundation of modern event history techniques,
noting that “Kaplan and Meier (1958) who formalized the product-limit estima-
tor and Cox (1972) who introduced the proportional hazards model, are primarily
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responsible” for the present state of art of event history models. The Kaplan-Meier
estimator solved the problem of estimating a distribution function with censored
data via nonparametric maximum likelihood. The comparison of two survival dis-
tributions was critical given the need to provide reliable comparisons of two popu-
lations, such as whether a medical intervention led to longer life outcomes. Cox’s
work has been called ingenious for his semiparametric approach that allows assess-
ment of the influence of covariates on censored outcomes. Cox leaves the baseline
hazard function unspecified and discarded the times of observed events and the num-
ber of events at those times along with an assumption that censoring is independent
and uninformative. This means that the partial likelihood is based on the cases that
fail at each event time given the number failing and the number of cases at risk at that
time. Fleming and Yin also highlight the importance of the counting process martin-
gale theory pioneered by Aalen (1975, p. 971) as “providing a unified framework for
studying the small- and large-sample properties of survival analysis statistics.” This
is because it allows “one to obtain simple expressions for moments of complicated
statistics and asymptotic distributions for test statistics and estimators and to exam-
ine the operating characteristics of of censored data regression method” (Fleming &
Lin 2000). These important statistical developments have been instrumental to the
spread of event history methods across multiple fields.

Social scientists were largely unaware of earlier developments in biostatistics
and engineering. A turning point for sociology comes in the late 1970s, when Tuma
(Tuma 1976) introduced “explanatory variables into continuous time Markov mod-
els, an innovation that effectively bridged the gap between the sociological approach
and what had already been done in biostatistics and engineering” (Allison 1984, p.
12). In economics, early applications of event history models appeared in the late
1970s and were mostly used to explain labor force dynamics. In other social science
disciplines, the adoption of event history models came later. For example, event
history techniques have become increasingly popular in political science since the
1990s thanks to the work of Box-Steffensmeier who introduced event history mod-
els to the field. Software packages for survival data analysis have been widely avail-
able since the early 1980s (Allison 1984) and, currently, many common software
packages support estimations of event history models.

9.2.3 Basic Elements of Event History Models

There are a wide variety of event history models, but all event history models share
the same structure. There are some important technical differences between contin-
uous and discrete time models, and between parametric and nonparametric models,
but the following structure and its basic elements are shared by all. Our discussion
here employs continuous time notation.

Let T be a single lifetime variable. T can be thought of as the time until an event
happens and can range from 0 to a theoretical end point. Let f (t) denote the proba-
bility density function of T. Then f (t) denotes the probability of the event of interest
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occurring at any given time point t where t is an element of T. The cumulative den-
sity function of T can be obtained by integrating f (t) from 1 to t.

F(t) = Pr(T < t) =
∫ t

0
f (x)dx (9.1)

This is the probability of the event having occurred between time 0 and t. Then the
probability of survival or the probability for an observation not experiencing the
event until t can be obtained by simply subtracting F(t) from 1. The probability of
an individual surviving to time t is referred to as the survival function.

S(t) = Pr(T ≥ t) = 1−F(t) (9.2)

The hazard rate h(t) is the probability of the event happening at time t given the
observation has not experienced the event until time t. In terms of the equations in-
troduced above, the hazard rate h(t) is equal to f (t)/S(t), the conditional probability
of an event occurring given it has not happened up until time t.

h(t) = lim
∆x→+0

Pr(t ≤ T ≤ t +∆ t|T ≥ t)
∆ t

=
f (t)
S(t)

(9.3)

The hazard is an unobserved variable, much the same way that the Pr(Y = 1) is an
unobserved variable in binomial logit or probit models, yet the hazard controls both
the occurrence and the timing of events.

9.2.4 Different Models of Event History

There are both parametric and semiparametric event history models. The main dif-
ference between parametric and semiparametric models is that parametric models
make assumptions about the structure of the baseline hazard rate once covariates are
included in the model. In comparison, semiparametric models do not make such as-
sumptions. The choice between parametric and semiparametric approaches depends
on how confident researchers are of the shape of the baseline hazard, which ideally
is guided by theory.

There are a wide variety of parametric models and some models are nested in
other, more flexible models with more parameters. For instance, the exponential
model assumes that the baseline hazard is flat across time. This means that the prob-
ability of an event occurring at time t conditional on the event not having occurred
is constant over time. The exact value then depends on included covariates.

The Weibull model is more flexible than the exponential model and it allows the
baseline hazard rate to be monotonically increasing, monotonically decreasing, or
flat over time. This is done by inserting a linear function of t into the right hand side
of the equation. When the coefficient of the t term is 0, the Weibull model becomes
the exponential model. Thus, the Weibull model is nested in the exponential model.
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Since the Weibull model is flexible, it is a popular choice in social science applica-
tions. Yet, in some settings, the monotonicity assumption may not be appropriate.

When one suspects that the monotonicity assumption is not defendable, the log-
logistic and the log-normal models can be used. These models allow hazard rates to
first increase and then decrease as t passes. Neither of these models have the propor-
tional hazards property. The generalized gamma model can be useful to adjudicate
among different parametric models as several parametric models are nested within
the generalized gamma model. The exponential, the Weibull, the log-normal, and
the gamma models are all special forms of the generalized gamma model. When
one has no a priori theoretical justification about how the baseline hazard rate varies
across time, the generalized gamma model is more likely to be useful. If the fit is
correct, parametric models generally have smaller standard errors than their semi-
parametric counterparts. On the other hand, as parametric models require a priori
assumptions about the shape of the baseline hazard, when assumptions are not cor-
rect, the estimation will be biased.

Recently, the Cox (1972, 1975) semiparametric model has become the most com-
monly used in social science applications (Therneau & Grambsch 2001, Singer &
Willett 1993, Box-Steffensmeier & Jones 2004). The Cox semiparametric model’s
primary advantage is that it relaxes the assumption that the time until an event oc-
curs follows a specific distribution. Larsen and Vaupel (1993) point out that “in the
analysis of duration data, if the functional form of the hazard has the wrong shape,
even the best-fitting model may not fit the data well enough to be useful” (p. 96).

A key concept for understanding the Cox model is the hazard rate. Recall, that
the hazard rate can be thought of as the probability that an event will occur for a
particular observation at a particular time, or the rate at which an event occurs for
an observation at time t given that the observation has survived through time t−1.
In the Cox model, the hazard rate for the ith individual is

hi(t) = h0(t)exp(β ′x), (9.4)

where h0(t) is the baseline hazard function, and β ′x are the covariates and regression
parameters. A Cox model does not report an intercept as it is absorbed into the
baseline hazard function. The ratio of two hazards (or hazard ratio) can be written
as,

hi(t)
h0(t)

= exp(β ′(xi−x j)), (9.5)

which demonstrates that this ratio is a fixed proportion across time. Box-
Steffensmeier and Jones (2004) point out that when the proportional hazards as-
sumption holds in the Cox model, the particular form of the baseline hazard rate,
h0(t) is assumed to be unknown and is left unparameterized. More accurately the
duration times are parameterized in terms of a set of covariates, but the particu-
lar distributional form of the duration times is not parameterized, hence the term
“semi-parametric”.

Proportional hazards is the major assumption of the Cox model, as well as many
parametric models. This assumption is tested with both the global model test defined
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by Therneau and Grambusch (1994) and Harrell’s rho for individual covariates
(Box-Steffensmeier & Jones 2004, 135). If the assumption is found to be violated,
the offending covariate(s) is interacted with time and the model is re-estimated.
Like all models, there is a series of general diagnostics for the Cox model. These
include assessments of model fit, functional form, and influence (Therneau, Gramb-
sch, & Fleming 1990, Grambsch, Therneau, & Fleming 1995, Grambsch & Th-
erneau 1994).

Parameters in the Cox model are estimated using a partial likelihood approach.
The partial likelihood method is based on the assumption that the intervals between
successive duration times (or failure times) contributes no information regarding the
relationship between the covariates and the hazard rate (Collett 2003), which com-
ports to the arbitrary form assumed for the baseline hazard. Because the Cox model
only uses “part” of the available data (h0(t) is not estimated), the likelihood function
for the Cox model is a “partial” likelihood function. In contrast, consider the more
typically encountered likelihood function which gives hypothetical population value
that maximizes the likelihood of the observed sample using all of the data. That is,
the maximum likelihood estimate is the value that is the most likely to generate the
sample that is observed.

To derive the partial likelihood function for a data set of size n with k distinct
failure times, the data are first sorted by the ordered failure time, such that t1 <
t2 < .. . < tk, where ti denotes the failure time for the ith individual. For now, we
assume that there are no “tied” events: each uncensored case experiences an event
at a unique time. For censored cases, we define δi, see 9.7, to be 0 if the case is right-
censored, and 1 if the case is uncensored, that is, the event has been experienced.
Finally, the ordered event times are modeled as a function of covariates, x.

The partial likelihood function is derived by taking the product of the conditional
probability of a failure at time ti, given the number of cases that are at risk of failing
at time ti. More formally, if we define R(ti) to denote the number of cases that are
at risk of experiencing an event at time ti, that is, the “risk set,” then the probability
that the jth case will fail at time Ti is given by

Pr(t j = Ti | R(ti)) =
eβ ′xi

∑ j∈R(ti) eβ ′x j
, (9.6)

where the summation operator in the denominator is summing over all individuals
in the risk set. Taking the product of the conditional probabilities in (9.6) yields the
partial likelihood function,

Lp =
K

∏
i=1

[
eβ ′xi

∑ j∈R(ti) eβ ′x j

]δi

, (9.7)

with corresponding log-likelihood function,
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logLp =
K

∑
i=1

δi

[
β
′xi− log ∑

j∈R(ti)
eβ ′x j

]
. (9.8)

By maximizing the log-likelihood in (9.8), estimates of the β are obtained. As (Col-
lett 2003) notes, the likelihood function in (9.7) is not a true likelihood. This is
because the actual survival times of censored and uncensored cases are not directly
incorporated into the likelihood. Nevertheless, Cox (1972, 1975) famously demon-
strated that maximum partial likelihood estimation produces parameter estimates
that have the same properties as maximum likelihood estimates - asymptotically
normal, asymptotically efficient, consistent, and invariant (see also Collett 2003).

The logic underlying the partial likelihood method is seen by considering the
data presented in Table 9.1 (this part of the presentation is directly adapted from
(Collett 2003)). We reproduce this here because of the clarity of Collett’s example.
The survival times for nine cases are provided. Of these nine cases, six of them ex-
perience an event, i.e., they “fail”, and three of them are right-censored. The failure
times can be ordered such that t1 < t2 < .. . < t6. Note that the censored cases do
not contribute a failure time. Each of the nine cases are at risk of experiencing an
event up to the first failure time, t1. After the first failure in the data set, the risk set
decreases in size by 1; thus, the risk set up to the second failure time, t2, includes all
cases except case 7. By the fourth failure time in the data, t4, the risk set includes
only cases 1, 6, and 8; cases 2 and 9 are right-censored before the fourth failure time
is observed and do not contribute any information to this part of the likelihood func-
tion. By the last failure time, only case 6 remains in the risk set. Using the notation
from Collett (2003, 64), let ψ = exp(β ′xi). Then the partial likelihood function for
these data would be equivalent to

Lp =
ψ(7)

ψ(1)+ψ(2)+ψ(3)+ψ(4)+ψ(5)+ψ(6)+ψ(7)+ψ(8)+ψ(9)
×

ψ(4)
ψ(1)+ψ(2)+ψ(3)+ψ(4)+ψ(5)+ψ(6)+ψ(8)+ψ(9)

×

ψ(5)
ψ(1)+ψ(2)+ψ(3)+ψ5+ψ(6)+ψ(8)+ψ(9)

×

ψ(3)
ψ(1)+ψ(3)+ψ(6)+ψ(8)

×

ψ(1)
ψ(1)+ψ(6)

×

ψ(6)
ψ(6)

.

Again we see that the partial likelihood function is based on ordered duration times
and censored observations contribute information to the “risk set” but contribute
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Table 9.1 Data Sorted by Ordered Failure Time

Case Duration Censored
Number Time Case

7 7 No
4 15 No
5 21 No
2 28 Yes
9 30 Yes
3 36 No
8 45 Yes
1 46 No
6 51 No

no information regarding failure times. In terms of the likelihood function in (9.7),
censored observations contribute information to the denominator, but not to the nu-
merator.

“Ties,” or coterminous event occurrences, cannot be accounted for in the partial
likelihood function, as presented in (9.7). This is true for any continuous time model.
However, the literature has adapted a number of approximations to take this into
account. For example, numerically computing “what if” this tied event occurred
first, then the computing the same “what if” for the next tied event and so on. The
Efron method is a popular choice for handling ties.1

In sum, event history models allow scholars to more fully capture the process sur-
rounding the occurrence (or nonoccurrence) of events. We can investigate whether
covariates speed up or slow down the timing of events and gain a more complete
understanding of the process with event history models.

9.3 Statistical Models for System of Equations

In general, simultaneous equation models are used when there is a system of rela-
tionships, such as a two-way flow of influence. For simplicity, consider a variable A
that affects another variable B and that is also affected by variable B. In this case, we
need to consider a two equation setup where there is one equation for each interde-
pendent or endogenous variable. When estimating the parameters for simultaneous
equation models, information from both (or all if there are more than two endoge-
nous variables) equations have to be taken into account. If this is not done, biased
and inconsistent estimators are the result.

A major hurdle for estimation of simultaneous equations is the identification
problem. In short, the identification problem arises because the same set of data
may be compatible with different models. The identification problem needs to be

1 See Golub and Collett (2002) for further discussion of this issue of ties.
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addressed before considering estimation strategies. Identification occurs through the
introduction of a priori information into the analysis. There are a variety of tech-
niques for estimating simultaneous equations and it is a vibrant and long-standing
area of econometric research, as is shown in this volume and in van Montfort, Oud,
and Satorra (2004).

Simultaneous Equation (SEQ) models are used when the equations for each part
of the system are interdependent (also referred to as a substantive approach). Ar-
guably, such interdependence is ubiquitous in the world around us and the questions
studied by social scientists. In this case, it is more than just the disturbances that
are related. For a complete system of equations, the number of equations needs to
equal the number of endogenous variables. Joint estimation of all the equations in
the system provides fully efficient approaches.

The Seemingly Unrelated Regression (SUR) model is an alternative approach to
SEQ estimation of interdependent processes. The SUR model has a series of equa-
tions that are linked through correlated error terms (also referred to as a nuisance
approach) and generalized least-squares (GLS) estimation is used to gain efficiency.
The higher the correlation of the disturbances, the greater the efficiency gain in us-
ing GLS (Zelner 1962, Dwivedi & Srivastava 1978). SUR estimation is “simply the
application of generalized least-squares estimation to a group of seemingly unre-
lated equations. The equations are related through the nonzero covariances associ-
ated with error terms across different equations at a given point in time” (Pindyck
& Rubinfeld 1991, 326). Both autocorrelation and heteroscedasticity can be accom-
modated in the SUR model.

Both the SUR and SEQ approaches are central to the estimation of the effects
of latent variables in an event history context. However, the choice of approach
depends on the type of interdependence between processes the researcher assumes
is present. We discuss the choice between different approaches in more depth and
illustrate how these techniques have been used in the extant literature to ascertain
the presence and effect of latent variables in the next section.

9.4 System of Equations, Interdependent Processes and Latent
Variable Analysis

There are numerous occasions where we want to study the duration of an event
within a framework of a system of equations using either SEQ or SUR approaches.
First, we may wish to model multiple endogenous event history processes simulta-
neously. This can occur in two different ways depending on the relationship between
the events of interest. In many cases, scholars will be interested in jointly modeling
the duration processes for multiple events where the events of interest are not mu-
tually exclusive. Lillard (1993) conceives of this as modeling “multiple clocks,”
which refers to one process depending on the duration of a related process. For ex-
ample, one may be interested in modeling the time until a woman completes her
education and the time until a woman becomes pregnant. The time until a woman
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completes her education may be affected by whether she is pregnant or not and the
timing of a women’s becoming pregnant may be affected by whether she completes
her education or not. There are plenty of research questions that features multiple
endogenous event histories: marital duration and the time to marital conceptions;
duration of breast-feeding and duration of maternal leave; and duration of women’s
education and the time to entry into a first union.

In other contexts, events may appear as competing risks for a common duration
process. Compared to multiple event history processes, competing risks models have
a single duration process that can end with multiple events, whereby the occurrence
of one event necessarily rules out the occurrence of another event. For example,
one could model the duration of military conflict as a competing risks process: mil-
itary conflict can end with an invading country’s victory or a defending country’s
victory. As two states cannot win simultaneously on the battlefield, when an event
(winning by a country), occurs, it is not longer at risk of experiencing the other
event. In the simultaneous equations context, the competing risks can be related
to each other. For instance, an invader’s decision to continue fighting for a victory
may be dependent on a defending country’s decision to continue fighting and vice
versa. In this case, the two hazards of the two competing risks need to be jointly
estimated. Rosholm and Svarer (2001) estimate unemployment durations with two
competing risks: the risk of being recalled by the previous employer and the risk
of being hired by a new employer. As they theoretically expect that the hazard of
getting a new job is dependent on the hazard of being recalled by the previous em-
ployer (the hazard for recall should reduce the hazard of new jobs as those who see
higher probability of being recalled will be less active in pursuing new jobs), they
put the hazard for recall in estimating the hazard for new jobs when constructing a
system of equations and estimate structural dependency between the two hazards.
The simultaneous competing risks models are useful in many situations: duration of
economic sanctions where the duration can end either with target’s capitulation or
sender’s lifting economic sanctions; duration of hospitalization where the duration
can end with different events.

When jointly estimating multiple event histories, the equations in the system are
all structured as some form of duration model. However, we may also wish to model
duration processes jointly with other non-duration processes. In many cases, the
non-duration model we wish to model attempts to estimate some important aspect
of the event itself. For instance, we may wish to simultaneously model the time
until a government calls an election and the result of that election, whereby timing
is modeled using an event history technique and the result, measured as vote share
for the incumbent government, is estimated using ordinary least squares regression
(see Fukumoto 2009).

In sum, SUR and SEQ approaches may be usefully employed in event history
settings when scholars are interested in estimating a system of interrelated event
history models, a system of event history models with mutually exclusive outcomes,
and a system of models containing both event history and non-duration equations.

When deciding which specific modeling strategy to pursue in each of these three
cases, researchers need to be clear about their assumptions regarding the nature of
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interdependence between their multiple processes of interest. If scholars believe the
processes are independent purely through their stochastic components, than a SUR
approach may be appropriate as a SUR approach assumes that outcomes are in-
terdependent because the errors of both processes share a single joint probability
distribution (Hays & Kachi 2009). With respect to latent variables, since a SUR ap-
proach focuses on correlation in the errors terms, it allows scholars to identify the
presence or absence of unobserved factors acting upon the dependent variables of
interest. Fred Boehmke’s (2006) study of the timing and position of U.S. legisla-
tors’ towards the ratification of the North Atlantic Free Trade Agreement (NAFTA),
which we replicate below, is an excellent example of a SUR approach. Boehmke
argues that unobserved bargaining dynamics and competing pressures on legisla-
tors jointly influenced their positioning and timing on NAFTA, causing the two pro-
cesses to be positively related and he finds evidence that Democratic legislators who
declared their positions later in time, also tended to come out in favor of NAFTA.
In another study, Fukumoto (2009) uses copula techniques to model dependence in
latent variables between event history models and models of the event themselves.
One advantage of copula approach is that asymmetric interdependence can be cap-
tured and modeled. Asymmetric interdependence occurs when one actor/process is
more dependent on a second actor/process than the second actor/process is depen-
dent on the first. For example, unobserved heterogeneity in the duration and event
models may be such that latent variables in the duration model affect the event, but
not vice versa. Both Fukumoto and Boehmke employ SUR approaches to model
interdependent processes where only one of those processes is an event history pro-
cess. However, in another study employing copula functions, Quiroz Flores (2008)
estimates two event history models - the tenure in office of chief executives and the
tenure of their foreign ministers - and finds that the tenure of individuals in both
offices are closely correlated.

The main alternative to a SUR approach is to generate simultaneous equation
models (SEQ) of interdependent processes of interest (Hays & Kachi 2009). The
SEQ is preferable when endogeneity extends beyond stochastic components and
one wishes to explicitly model the interdependence among outcomes of interest. In
a system of simultaneous equations, endogenous variables appear on the right hand
side of the equations which has implications for our analysis of the influence of
unobserved, or unobservable, variables. This is because the variances an covariances
among errors, in the reduced form of the structural equations, “need to be consistent
with the structural relationship among endogenous variables” (Hays & Kachi 2009,
p. 4).

The SEQ approach is by far the most popular approach in the extant literature for
scholars interested in modeling multiple interdependent duration processes. Many
researchers have chosen to build off the model developed in Lillard (1993) which has
been quickly established as a classic article on combining simultaneous equations
and duration models. Lillard (1993) presents a comprehensive model of the dynam-
ics of marriage duration and marital fertility, i.e., the timing of marital conceptions
taking into account a number of time-varying covariates, a set of exogenous covari-
ates, and a set of endogenous covariates. He proposes that the hazard of conception
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if influenced by the hazard of marriage dissolution along with other variables and
conversely, the hazard of marriage dissolution is influenced by the duration and out-
come of marital fertility. As is common in the demography literature, he models the
baseline hazard with a Gompertz distribution, then builds a system of equations, and
obtains the reduced form equation.2 As there are variables that influence one hazard
but not the other, he can obtain identification of the structural dependence parame-
ter. Lillard addresses the across-duration interdependence by allowing the baseline
hazards to take flexible shapes through the use of splines.

The errors in Lillard’s model represent residual, unobserved heterogeneity and
their distribution is conditioned on the relationship among the endogenous variables.
Joint normality of the error terms in the two separate hazard equations of fertility
and marriage, is assumed3,(

ε

η

)
∼ N

((
0
0

)
,

(
σ2

ε σεη

σεη σ2
η

))
(9.9)

where ε is the error term in the hazard equation for dissolution of marriage, η is the
error term in the hazard equation for conception (Lillard 1993). No assumption is
made regarding the correlation or lack thereof between ε and η . However, the struc-
tural relationship between endogenous variables introduces some correlation in the
residuals, which, in the reduced form of the simultaneous equation, are distributed
as follows:

(
ε

η +λε

)
∼ N

((
0
0

)
,

(
σ2

ε σεη +λσ2
ε

σεη +λσ2
ε σ2

η +2λσεη +λ 2σ2
ε

))
(9.10)

where λ is the coefficient for the endogenous hazard of marital disruption in the haz-
ard model for conception. Thus, it is through the inclusion of λ that the distribution
of errors is consistent with the structure of endogeneity between marriage dissolu-
tion and conception. It is here that the distinction between SUR and SEQ is perhaps
most important for scholars who wish to investigate the presence of latent variables
through examining the relationship between the residuals of multiple processes of
interest. A SUR approach assumes no endogeneity in independent variables and
therefore λ is never estimated.

Scholars who have modeled simultaneous duration processes, but are interested
in the impact of latent variables have frequently followed Lillard’s modeling ap-
proach and then investigated whether or not there is correlation in the heterogeneity
terms, or errors. For example, Baizán, Aassve, and Billari (2004), interested in the
time until the formation of cohabitation or marital relationships and the time until
a couple’s first child is born, find a positive correlation between the errors in the
model of union formation and the model of childbirth. Other studies have looked at

2 Olshanksy and Carnes (1993) discusses the appropriateness of the Gompertz distribution for
demography based on its U-shape.
3 Recall that the SUR approach also assumes the error terms of multiple models follow a joint
distribution.
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the correlation between heterogeneity components in models of duration of educa-
tion and time to union formation (Billari & Philipov 2004, Coppola 2004), time to
migration and to union dissolution (Boyle, Kulu, Cooke, Gayle, & Mulder 2008),
and time between children and child mortality (Maitra & Pal 2007). An important
attribute of the Lillard approach is that it allows scholars to both model endogenous
processes and investigate the presence of correlated but unobserved heterogeneity.
This makes his approach very suitable if researchers perceive their processes of in-
terest as being “characterized by 1) mutual influence - that is events in one process
trigger events in the other process - and 2) common time-constant influencing fac-
tors - which are usually not observed especially in retrospective surveys and which
represent sources of potential endogeneity” (Billari & Philipov 2004, p. 92).

Many scholars adopting a SEQ approach display a theoretical interest in the en-
dogeneity of the multiple processes, the presence of unobserved heterogeneity and
the possible correlation of this heterogeneity across models. However, some scholars
simply wish to statistically account for endogenous right hand side variables and the
potential effects of unobserved factors. An instrumental variables approach is often
pursued in such cases. For example, in their study of the duration of breast-feeding,
Adair, Popkin and Guilkey (1993) argue that independent variables such as child
health and the use of oral contraception influence how long mothers breast-feed their
newborn infants, but are aware that the duration of breast feeding in turn shapes the
health of the child and the decision to use contraception. Their methodological strat-
egy is to generate predicted values of the potentially endogenous covariates by esti-
mating separate OLS and logistic regression models for each endogenous variables
using a battery of household factors, only some of which they include in their model
of decisions regarding breast-feeding. These predicted values are then used to esti-
mate the main discrete time logit hazard model of breast-feeding, with bootstrapped
standard errors to overcome the problem of conditional standard errors. Addison
and Portugal (1989) take a similar approach in their study of post-unemployment
wage displacement, however, their main dependent variable of interest is not time to
failure, but their potentially endogenous right hand side variable, duration of unem-
ployment, is produced by a survival process. Thus, they generate predicted failure
times for unemployment, which they then use in an OLS model of wage displace-
ment. By enabling researchers to identify and statistically control for endogeneity,
an instrumental variables approach allows them to account for potentially unob-
served factors that affect both the value of endogenous right hand side variables and
the dependent variable of interest.

Rosholm and Svarer (2001) also specify and estimate a simultaneous equations
model for hazards. Yet, they do not examine structural dependency of two district
temporal processes; they estimate the two interdependent hazards of unemployment
duration. They consider unemployment ending with two exits (recall from the pre-
vious employer or a new job) and model the structurally dependent competing risks
between the two processes. They find that the recall hazard affects the new job haz-
ard negatively when taking the structural dependency into account. They suggest
that the structurally dependent competing risks model is a fruitful alternative to the
standard competing risks model.
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There is exciting work in the field of political methodology on the topic of si-
multaneous duration models. In addition to the study of NAFTA positioning by
Boehmke (2006) mentioned above, Boehmke, Morey, and Shannon (2006) start with
Gumbel’s bivariate exponential distribution to model non-random selection when
the outcome of interest is duration. They apply this approach to the study of the
effect of leaders’ decisions to go to war on their subsequent post-crisis tenure. One
of the shortcomings of the Boehmke (2006) and Boehmke et al. (2006) modeling
strategy is that it does not allow researchers to identify the direction of influence be-
tween models when interdependence is asymmetric (Hays & Kachi 2009). Knowing
the direction and strength of that asymmetry is often of theoretical interest.

Hays and Kachi (2009) add structure to the empirical models to estimate precise
causal effects of one process on the other and vice versa. They present a simul-
taneous equations model for multiple interdependent duration processes using the
Weibull distribution and derive its full information maximum likelihood estimator
(FIML). The FIML estimator is shown to be efficient compared to a two stage least
squares approach in the Monte Carlos. In their substantive application, they exam-
ine the interdependence between the duration of coalitional government formation
and the duration of governmental survival. In their simultaneous equations setup,
they create a system of structural equations and present the corresponding reduced
form that is used to derive the likelihood function. With the estimation result of
the simultaneous model, they conclude that government survival causes bargaining
duration rather than the reverse, and thus that the positive covariance between the
two durations is attributable to strategic bargaining. When parties expect a longer
government, they bargain harder, which results in a longer negotiation duration.

Importantly, Hays and Kachi allow across-unit interdependence (in addition to
across-duration dependence). A major contribution of their work is that they intro-
duce a general approach that allows inclusion of both across-duration and across-
unit dependences in one model. For example, there can be multiple interdependent
duration processes, and the observational units within each duration process can be
interdependent as well. They also compare the duration seemingly unrelated regres-
sion (SUR) models, such as Boehmke (2006), Boehmke et al. (2006), and Quiroz
Flores (2008) and the simultaneous equations (SEQ) framework. Thus, they bring
together various strands of work.

9.5 Duration and Discrete Choice: Timing and Direction of
Position Taking by Legislators

We illustrate the duration and discrete choice model estimation and interpretation
by replicating Boehmke (2006), who derives a seemingly unrelated discrete-choice
duration estimator (SUDCD). His work is used to evaluate the presence of unob-
served processes in a duration and a discrete choice context that are not indepen-
dent. This is an excellent example of the SUR approach and a good illustration of
why latent variable estimation may be important and how it can be incorporated
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in an event history setting. The empirical motivation for his model comes from an
already existing study that employs event history techniques. This study is an arti-
cle by Box-Steffensmeier, Arnold, and Zorn (1997) which explains the timing and
direction of positions taken by members of the United States Congress on the rati-
fication of the North American Free Trade Agreement (NAFTA) using two separate
models: a Cox model to estimate timing and a probit model to estimate direction
(for or against NAFTA). Boehmke argues that two unobservable, but strategic, pro-
cesses that link together position choice and the timing of position announcement
are present. First, if legislators face competing pressures regarding which position
to take, they may delay selecting a position to see if their vote will have a significant
effect on the final outcome before deciding which pressure to give in to. Second,
legislators may delay taking a position if they are indifferent towards the outcome
of the vote, but hope to induce side-payments from other representatives and ac-
tors with more at stake. Such legislators refrain from declaring a position early in
case the vote should appear to be very close, thus increasing the importance of their
vote and the amount of side-payments they can extract from both sides. Ultimately,
these legislators will take a position based on which side offered them the best deal.
These two processes are both unobservable and affect both the timing and content
of a legislator’s position on NAFTA.

To better evaluate these processes, Boehmke derives an estimator that follows
a bivariate distribution which allows for nonzero correlation between the duration
and discrete outcome equations. The Cox model cannot be used because it does not
have a parametric assumption about the distribution of errors. So, two estimators
are constructed using two different parameterizations of the baseline hazard that are
commonly used in event history models: the Weibull and log-normal distributions4.

9.5.1 Boehmke’s Derivation of the Weibull SUDCD Estimator

The structure of the likelihood function is of the form (Di,Vi) where Di is the tim-
ing of a position for an individual and Vi is the position on whether to support or
reject NAFTA. The duration equation is the same for individuals who reject or sup-
port NAFTA and thus the critical difference is between individuals’ positions on
NAFTA. The likelihood can be written using the marginal density of the duration
and conditional probabilities of support for NAFTA.

4 We address only the Weibull version in detail as it is the most common parametric model. Please
note that while the Weibull’s companion discrete choice model’s errors follow a bivariate exponen-
tial distribution, the companion for the log-normal is a standard probit model.
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Pr(D,V) =
n

∏
i=1

P(Di = di,Vi = vi)

=
n

∏
i=1

P(Di = di)×P(Vi = 0|Di = di)1−vi ×P(Vi = 1|Di = di)vi (9.11)

For the estimator, the joint density and conditional probabilities are calculated
using the bivariate exponential distribution, where the cumulative and probability
density functions take the form:

Fexp(x,y) = (1− e−x)(1− e−y)(1+αe−x−y), (9.12)
fexp(x,y) = e−x−y[1+α(2e−x−1)(2e−y−1)] (9.13)

It is worth noting that the correlation between x and y is given by ρ = α/4 and as α

is bound between −1 and 1, the value of the correlation parameter, ρ , is restricted
to −0.25≤ ρ ≤ 0.25.

The first part of the estimator is a standard exponential duration equation that is
adapted to allow for Weibull duration dependence. The exponential distribution is
given by: di = exp(xiβ )εi where xi is a vector of independent variables and εi has
an exponential distribution. The marginal density of observing a duration di is given
by:

fw(di|λi) = pλ
p
2id

p−1
i exp[−λ2id

p
i ], (9.14)

where λ2i = exp(−xiβ ) and p is a shape parameter that causes a Weibull distributed
variable, ui, to follow an exponential distribution.

The second part of the estimator is the discrete choice equation, developed to
allow the errors to follow an exponential distribution. As the exponential distribution
is not defined for negative numbers, the outcome is modeled:

Vi =

{
1, if exp(wiγ)ηi > 1
0, otherwise,

(9.15)

where ηi follows an exponential distribution. The marginal probability that Vi = 0
can is given by:

P(exp(wiγ)ηi ≤ 1) = p(ηi ≤ exp(wiγ))
= 1− exp(−λ1i), (9.16)

where λ2i = exp(−wiγ). The likelihood function for SUDCD can now be written
out in full, combining the two parts, as follows:
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L(β ,γ, p,α|X,W,D,V) =
n

∏
i=1

pλ
p
2id

p−1
i exp[−λ2id

p
i ](1−π

1
i )1−vi(π1

i )vi , (9.17)

lnL(β ,γ, p,α|X,W,D,V) =
n

∑
i=1

(ln(p)+ pln(λ2i)+(p−1)ln(di)− (λ2idi)p)

+ [(1− vi)ln(1−π
1
i )+ viln(π1

i )], (9.18)

where π1
i = exp(−λ1i){1 + α[2exp(−(λ2idi)p)− 1][exp(−λ1i)− 1]} is the condi-

tional probability that Vi is one.
With respect to right-censored observations, “their contribution to the overall

likelihood is the joint probability of surviving until right censoring occurs and the
probability of the observed discrete-choice outcome” (Boehmke 2006, p. 7), calcu-
lated as follows:

Pr(Di ≥ dc
i ,Vi = 1) = 1−Fexp(λ1i)−Fexp((λ2idc

i )
p)+Fexp(λ1i,(λ2idc

i )
p), (9.19)

Pr(Di ≥ dc
i ,Vi = 0) = Fexp(λ1i)−Fexp(λ1i,(λ2idc

i )
p), (9.20)

where dc
i is the censoring point.

9.5.2 Practical Application: Position Taking on NAFTA

Box-Steffensmeier, Arnold, and Zorn (1997) identify a range of covariates that po-
tentially influenced the position members of Congress took on NAFTA, when they
chose to publicly announce that position, or both. These independent variables, and
the expected direction of their influence on timing and direction, are summarized in
Table 9.2, adapted from Box-Steffensmeier, Arnold, and Zorn5 (1997). The reader is
directed to this article and Boehmke (2006) for further discussion of the theoretical
reasoning underlying the expected effects of these observable factors.

To investigate the effect of unobserved, but related processes influencing the tim-
ing and direction of positions on NAFTA, three models are estimated. The first
model treats the two equations for timing and direction separate. The second model
uses the SUDCD Weibull estimator derived above where the parameter for correla-
tion of the errors of the discrete choice and duration models is constant. The third
model allows this correlation to be different for Republican and Democratic rep-
resentatives. The relationship between timing and position direction is potentially
stronger for Democrats as the President was a pro-NAFTA Democrat and therefore
likely to apply pressure on members of Congress from his own party to vote in fa-
vor of NAFTA and/or offer inducements and side-payments to do so. This provides
Democratic representatives with a greater incentive to hold out on declaring a po-
sition to see if their votes are critical to the final outcome and/or to receive greater

5 One new independent variable, net endorsements is added by Boehmke (2006).
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side-payments from the President. Furthermore, greater pressure and side-payments
from the President are likely to cause Democrats to vote in favor of NAFTA. Results
for all three models are presented in Table 9.3.

Table 9.3 Separate and SUDCD Weibull Models of Timing and Direction of Positions on NAFTA

Separate Weibull SUDCD6 Weibull SUDCD
Covariate Estimate s.e. Estimate s.e. Estimate s.e.

Vote
Labor Contributions (net %) -2.929*** (0.621) -2.913*** (0.615) -2.938*** (0.615)
Mexican Border 0.521 (0.600) 0.571 (0.598) 0.606 (0.597)
Union Membership -6.089*** (1.477) -6.143*** (1.465) -6.046*** (1.466)
Household Income 2.749** (1.084) 2.721** (1.080) 2.783** (1.081)
Democrat -0.558*** (0.211) -0.568*** (0.209) -0.584*** (0.210)
Net Endorsements 0.011** (0.005) 0.010* (0.005) 0.010** (0.005)
Constant 0.825*** (0.177) 0.793*** (0.177) 0.806*** (0.177)

Timing
Corporate Contributions 0.140** (0.068) 0.144** (0.068) 0.150** (0.068)
Labor Contributions -0.116 (0.077) -0.112 (0.077) -0.112 (0.077)
Mexican Border -0.220*** (0.039) -0.220*** (0.039) -0.217*** (0.039)
Democratic Leadership -0.023 (0.030) -0.023 (0.030) -0.022 (0.030)
Republican Leaderhsip -0.071** (0.032) -0.072** (0.031) -0.072** (0.032)
NAFTA Committee -0.004 (0.014) -0.004 (0.014) -0.003 (0.014)
Ideology 0.005 (0.017) 0.005 (0.017) 0.005 (0.017)
Union Membership -0.352** (0.146) -0.337** (0.145) -0.328** (0.145)
Union Mem. * Ideology 0.486** (0.236) 0.449* (0.234) 0.459* (0.235)
Household Income 0.035 (0.108) 0.041 (0.107) 0.043 (0.107)
Income * Ideology -0.021 (0.016) -0.022 (0.015) -0.021 (0.015)

Constant 6.059*** (0.018) 6.058*** (0.018) 6.057*** (0.018)

Correlation (Z−1(α))
Intercept 0.365 (0.230) 0.075 (0.338)
Democrat 0.480 (0.463)

Duration dependence (ln(p)) 2.086*** (0.0436) 2.089*** (0.0435) 2.090*** (0.0435)

N 434 433 433
Estimates for duration equations have a time-to-failure interpretation.
∗∗∗p < 0.01,∗∗ p < 0.05,∗p < 0.1

We see that there is very little difference in the estimates for the observed covari-
ates, and their statistical significance, across the models. The only notable difference
is that the interaction term between union membership and ideology is statistically
significant when the duration model is estimated separately from the discrete-choice
model at the 0.05 level but is only significant at the 0.1 level in the combined
SUDCD models.

Of most interest here is the estimation of the correlation between the stochastic
elements of the discrete choice model of NAFTA positioning and the duration model
of position timing. The constant correlation is parameterized in the log-likelihood
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function by Z−1(α). Fisher’s Z transformation is employed, as the correlation must
be between −1 and 1, such that:

α = Z(α∗) = (exp(2α
∗)−1)/(exp(2α

∗)+1) (9.21)

and the correlation parameter ρ = α/4. The SUDCD estimator reports Z−1(α) =
α∗. Thus to calculate ρ̂ , when not differentiating between representatives according
to party affiliation, one would substitute the reported value for the intercept (0.365)
into equation (9.21) for α∗ to generate a value for α , which when divided by four
gives a correlation coefficient of 0.087.

The parameterization of the correlation changes when we wish to calculate dif-
ferent different values of ρ̂ for Democratic representatives and Republican repre-
sentatives. When this is done, the parameterization of the correlation is:

α
∗ = Z−1(α) = α

∗
0 +α

∗
1 ×Democrati (9.22)

with α∗0 equal to the reported intercept (0.075) and α∗1 equal to the value reported
for Democrat (0.480). Substituting these values into equation (9.22), we find that
ρ̂ for Republican members of Congress equals 0.019 and for Democrats it equals
0.126. The overall estimated parameter is 0.56 (0.48 + 0.075) with a χ2 value of
2.88 and a p-value of 0.09.

Substantively, the results indicate several things. First, that the correlation be-
tween the errors in the two models is positive and statistically significant at the
0.1 level, indicating that the unobservable influences on NAFTA vote choice and
the timing of that choice are positively related. Those unobservable factors such as
side-payments and competing political pressures that caused legislators to hold out
longer before declaring their position, also caused them to vote in favor of NAFTA.
Furthermore, these factors had a much greater impact on the Democratic members
of Congress than on Republicans as is evident by the comparatively small value
of ρ̂ for Republican representatives. This accords with Boehmke’s expectations.
Democrats, more than Republicans, faced competing pressures from their party, and
the President, to approve NAFTA while their constituents lobbied them to reject the
agreement. As the final vote on NAFTA was close, Democrats that held out until as
late as possible to see if their vote would be crucial were forced to cast their vote
in favor of NAFTA to make sure the measure passed. If the vote did not appear to
be close, they could have voted against NAFTA and thus neither angered their sup-
port base nor the President. Furthermore, the positive relationship between a late
declaration of position and taking a pro-NAFTA stance supports the argument that
an unobservable process whereby indifferent Democratic members held out on tak-
ing a position in order to extract side-payments from NAFTA supporters, and the
President, before agreeing to cast their votes in favor of NAFTA.
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9.6 Promising Future Directions

This review has focused on the modeling of systems of equations using one or more
duration equations as a technique for uncovering the effects of latent variables on
our outcomes of interest, which in the event history context is typically the time
until an event occurs. In the extant literature, these models are generally based on
SUR or SEQ approaches which jointly estimate equations that model interdepen-
dent processes (e.g. time to event). However, Hays and Kachi (2009) have gone
one step further to consider interdependence of durations between actors (or units),
which means that the time to a particular event for one actor depends on the time
to the same event for other actors. They provide several persuasive examples which
suggest that accounting for unobservable inter-unit interdependence is important.
For instance “the time it takes for states to enter wars [often] depends on the time
it takes other states to make these decisions” (2), and the time for states to decide
on a policy issue, such as allowing casino gambling, may depend on when other
states have adopted similar policies. Similarly, the decision to lower gas prices may
depend on when competitors do the same. While Hays and Kachi (2009) argue that
their estimation approach applies to both interdependence between units and inter-
dependence between times to events, the former has previously been modeled with a
spatial duration model with correlated errors (Darmofal 2009) and with a spatial lag
model (Honoré & de Paula, in press), both of which may be of interest to readers.

Note that the literature on estimating duration models in systems of equations is
dominated by parametric approaches for the duration equations. In contrast, most
of the single equation duration literature in the social and behavioral sciences is
dominated by the use of the Cox model. The advantage of relaxing the distributional
assumption about the time until an event occurs suggests that incorporation of the
Cox model into a simultaneous setup would be promising.

Combinations of different types of duration models and simultaneous equations
is also promising, particularly, the use of the competing risks duration model, which
allow for more than one type of event. Problems such as the duration of education
and the time to form a union where a union can be cohabitation or marriage would be
an example of two durations where one of them (union formation) requires the use
of a competing risks duration model. Similarly, the competing risks of the duration
of cohabitation where cohabitation can end with either marriage or break-up and the
discrete choice model for fertility may prove to be a useful model.

In short, the area of simultaneous equations and duration models is a flourishing
area of research with wide applicability to key questions in the social sciences. Re-
cent modeling developments have provided new questions as well as new answers
to old questions.
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Appendix: Computer Code

Example: Duration and Discrete Choice in the NAFTA Study

The results for the NAFTA study examining interdependence between duration and
discrete choice models were generated using STATA. Below is code, adapted from
Boehmke’s own do-files, that allows for replication of his analysis for the models
presented here.

Installing the estimation program SUDCD:

net from http://myweb.uiowa.edu/fboehmke/stata/sudcd
net install sudcd

Defining the likelihood functions for the discrete exponential estimator:

program define expdisc
version 7
args lnf theta1
quietly replace ‘lnf’ = ln(exp(-exp(-‘theta1’)))
if $ML_y1==1

quietly replace ‘lnf’ = ln(1-exp(-exp(-‘theta1’)))
if $ML_y1==0

end

Separate estimation of the discrete choice model of NAFTA support using the dis-
crete exponential estimator:

ml model lf expdisc (vote = contdiff mexbordr pscenter
hhcenter partyid numdiff)

ml search
ml maximize

predict ystar_exp if e(sample), xb
generat yhat_exp = exp(-exp(-ystar_exp))
recode yhat_exp 0/0.5=0 0.5/1=1
tab yhat_exp vote, matcell(crosstab)

Separate estimation of the duration model of NAFTA position timing:

stset timing, failure(position)

streg corptpct labtpct mexbordr dleader rleader
ncomact ideol pscenter

inter1 hhcenter inter2, d(weibull) time
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Estimating the combined SUDCD models:
(Right-censoring is hard coded into the likelihood functions, which requires explic-
itly declaring the rtcens variable using a dummy variable, rtcsensr, which is set to
one if the observation is right censored.7)

gen _rtcens = rtcensr

Joint estimation of the duration and discrete choice equations without estimating
different coefficients of correlation for subsets of the sample:

sudcd timing corptpct labtpct mexbordr dleader rleader
ncomact ideol pscenter inter1

hhcenter inter2, discrete(vote= contdiff mexbordr pscenter
hhcenter partyid numdiff)

dist(weibull) time rtcensor(rtcensr)

Joint estimation of the duration and discrete choice equations, estimating different co-
efficients of correlation for Democrats and Republicans. The variable name for party
affiliation is partyid:

sudcd timing corptpct labtpct mexbordr dleader rleader
ncomact ideol pscenter inter1

hhcenter inter2, discrete(vote= contdiff mexbordr
pscenter hhcenter partyid numdiff)

dist(weibull) time rtcensor(rtcensr) rho(partyid)

display "Correlation for Republicans (rho): "
((exp(2*([Z_alpha]_b[_cons]))-1)/

(exp(2*([Z_alpha]_b[_cons]))+1))/4

display "Correlation for Democrats (rho): "
((exp(2*([Z_alpha]_b[_cons] + [Z_alpha]_b[partyid]))-1)

/(exp(2*([Z_alpha]_b[_cons] + [Z_alpha]_b[partyid]))+1))/4

test [Z_alpha]partyid + [Z_alpha]_cons = 0

Acknowledgements We thank Aya Kachi and Kentaro Fukumoto for correspondence and discus-
sion.

7 To run without right-censoring, just set this variable equal to zero.
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