


Lecture Notes in Computer Science 5965
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Fabio Massacci Dan Wallach
Nicola Zannone (Eds.)

Engineering
Secure Software
and Systems
Second International Symposium, ESSoS 2010
Pisa, Italy, February 3-4, 2010
Proceedings

13



Volume Editors

Fabio Massacci
Università di Trento, Dipartimento Ingegneria e Scienza dell’Informazione
Via Sommarive 14, 38050 Povo (Trento), Italy
E-mail: Fabio.Massacci@unitn.it

Dan Wallach
Rice University, Department of Computer Science
3122 Duncan Hall, 6100 Main Street, Houston, TX 77005, USA
E-mail: dwallach@cs.rice.edu

Nicola Zannone
University of Technology, Faculty of Mathematics and Computer Science
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
E-mail: n.zannone@tue.nl

Library of Congress Control Number: 2009943930

CR Subject Classification (1998): C.2, E.3, D.4.6, K.6.5, J.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-11746-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11746-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12989713 06/3180 5 4 3 2 1 0



Preface

It is our pleasure to welcome you to the proceedings of the Second International
Symposium on Engineering Secure Software and Systems.

This unique event aimed at bringing together researchers from software engi-
neering and security engineering, which might help to unite and further develop
the two communities in this and future editions. The parallel technical sponsor-
ships from the ACM SIGSAC (the ACM interest group in security) and ACM
SIGSOF (the ACM interest group in software engineering) is a clear sign of the
importance of this inter-disciplinary research area and its potential.

The difficulty of building secure software systems is no longer focused on
mastering security technology such as cryptography or access control models.
Other important factors include the complexity of modern networked software
systems, the unpredictability of practical development life cycles, the intertwin-
ing of and trade-off between functionality, security and other qualities, the diffi-
culty of dealing with human factors, and so forth. Over the last years, an entire
research domain has been building up around these problems.

The conference program included two major keynotes from Any Gordon
(Microsoft Research Cambridge) on the practical verification of security proto-
cols implementation and Angela Sasse (University College London) on security
usability and an interesting blend of research, industry and idea papers.

In response to the call for papers 58 papers were submitted. The Program
Committee selected nine papers as research papers (16%), presenting new
research results in the realm of engineering secure software and systems. It fur-
ther selected one industry report, detailing a concrete case study in industry,
and eight ideas papers, that the Program Committee judged interesting but not
yet mature for a full paper presentation.

Many individuals and organizations contributed to the success of this event.
First of all, we would like to express our appreciation to the authors of the
submitted papers, and to the Program Committee members and external refer-
ees, who provided timely and relevant reviews. Many thanks go to the Steering
Committee for supporting this and future editions of the symposium, and to all
the members of the Organizing Committee for their tremendous work and for
excelling in their respective tasks. The DistriNet research group of the K.U. Leu-
ven did an excellent job with the website and the advertising for the conference.
Nicola Zannone did a great job by assembling the proceedings for Springer.

We owe gratitude to ACM SIGSAC/SIGSOFT, IEEE TCSE and LNCS for
supporting us in this new scientific endeavor. An honorable mention should be
made of EasyChair, which seems to be “the” system for conference management.



VI Preface

Last but not least, we would like to thank all our sponsors, the SecureChange
EU Project at the University of Trento for covering some of the financial aspects
of the event and the CNR for organizing the symposium.

December 2009 Fabio Massacci
Dan Wallach

Fabio Martinelli



Conference Organization

General Chair

Fabio Martinelli CNR, Italy

Program Co-chairs

Fabio Massacci Università di Trento, Italy
Dan Wallach Rice University, USA

Publication Chair

Nicola Zannone Eindhoven University of Technology,
The Netherlands

Publicity Chair

Yves Younan Katholieke Universiteit Leuven, Belgium

Local Arrangements Chair

Adriana Lazzaroni CNR, Italy

Steering Committee

Jorge Cuellar Siemens AG, Germany
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Fabio Massacci Università di Trento, Italy
Gary McGraw Cigital, USA
Bashar Nuseibeh The Open University, UK
Daniel Wallach Rice University University, USA

Program Committee

Juergen Doser IMDEA, Spain
Manuel Fähndrich Microsoft Research, USA
Michael Franz UC Irvine, USA
Dieter Gollmann Hamburg University of Technology, Germany
Jan Jürjens Open University, UK
Seok-Won Lee University of North Carolina Charlotte, USA



VIII Conference Organization

Antonio Maña University of Malaga, Spain
Robert Martin MITRE, USA
Mattia Monga Milan University, Italy
Fabio Massacci Università di Trento, Italy
Haris Mouratidis University of East London, UK
Gunther Pernul Universitat Regensburg, Germany
Samuel Redwine James Madison University, USA
David Sands Chalmers University of Technology, Sweden
Riccardo Scandariato Katholieke Universiteit Leuven, Belgium
Ketil Stølen Sintef, Norway
Jon Whittle Lancaster University, UK
Mohammad Zulkernine Queen’s University, Canada
Neeraj Suri Technische Universität Darmstadt, Germany
Yingjiu Li Singapore Management University, Singapore
Hao Chen UC Davis, USA
Richard Clayton Cambridge University, UK
Eduardo Fernández-Medina University of Castilla-La Mancha, Spain
Yuecel Karabulut SAP Office of CTO, USA
Vijay Varadharajan Macquarie University, Australia
Jungfeng Yang Columbia University, USA
Daniel Wallach Rice University University, USA

External Reviewers

Birgisson, Arnar
Brandeland, Gyrd
Buyens, Koen
Ceccato, Mariano
Chowdhury, Istehad
Desmet, Lieven
Dinkelaker, Tom
Drbeck, Stefan
Fritsch, Christoph
Fu, Ge
Gmelch, Oliver
Hedin, Daniel
Heldal, Rogart
Heyman, Thomas
Hossain, Shahriar
Joosen, Wouter
Koshutanski, Hristo
Larsson, Andreas
Li, Yan
Lund, Mass Soldal
Muñoz, Antonio
Neuhaus, Stephan

Ochoa, Martin
Omerovic, Aida
Paleari, Roberto
Passerini, Emanuele
Phung, Phu H.
Pironti, Alfredo
Pujol, Gimena
Refsdal, Atle
Reisser, Andreas
Riesner, Moritz
Ruiz, Jose F.
Scandariato, Riccardo
Seehusen, Fredrik
Shahriar, Hossain
Solhaug, Bjornar
Turkmen, Fatih
Wang, Yongge
Yan, Qiang
Yang, Xioafeng
Yautsiukhin, Artsiom
Yskout, Koen



Table of Contents

Session 1. Attack Analysis and Prevention I

BuBBle: A Javascript Engine Level Countermeasure against
Heap-Spraying Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Francesco Gadaleta, Yves Younan, and Wouter Joosen

CsFire: Transparent Client-Side Mitigation of Malicious Cross-Domain
Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Philippe De Ryck, Lieven Desmet, Thomas Heyman,
Frank Piessens, and Wouter Joosen

Idea: Opcode-Sequence-Based Malware Detection . . . . . . . . . . . . . . . . . . . . 35
Igor Santos, Felix Brezo, Javier Nieves, Yoseba K. Penya,
Borja Sanz, Carlos Laorden, and Pablo G. Bringas

Session 2. Attack Analysis and Prevention II

Experiences with PDG-Based IFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Christian Hammer

Idea: Java vs. PHP: Security Implications of Language Choice for Web
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

James Walden, Maureen Doyle, Robert Lenhof, and John Murray

Idea: Towards Architecture-Centric Security Analysis of Software . . . . . . 70
Karsten Sohr and Bernhard Berger

Session 3. Policy Verification and Enforcement I

Formally-Based Black-Box Monitoring of Security Protocols . . . . . . . . . . . 79
Alfredo Pironti and Jan Jürjens

Secure Code Generation for Web Applications . . . . . . . . . . . . . . . . . . . . . . . 96
Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and
Joachim Posegga

Idea: Reusability of Threat Models – Two Approaches with an
Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Per H̊akon Meland, Inger Anne Tøndel, and Jostein Jensen



X Table of Contents

Session 4. Policy Verification and Enforcement II

Model-Driven Security Policy Deployment: Property Oriented
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Stere Preda, Nora Cuppens-Boulahia, Frédéric Cuppens,
Joaquin Garcia-Alfaro, and Laurent Toutain

Category-Based Authorisation Models: Operational Semantics and
Expressive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Clara Bertolissi and Maribel Fernández

Idea: Efficient Evaluation of Access Control Constraints . . . . . . . . . . . . . . . 157
Achim D. Brucker and Helmut Petritsch

Session 5. Secure System and Software Development I

Formal Verification of Application-Specific Security Properties in a
Model-Driven Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Nina Moebius, Kurt Stenzel, and Wolfgang Reif

Idea: Enforcing Consumer-Specified Security Properties for Modular
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Giacomo A. Galilei and Vincenzo Gervasi

Idea: Using System Level Testing for Revealing SQL Injection-Related
Error Message Information Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Ben Smith, Laurie Williams, and Andrew Austin

Session 6. Secure System and Software
Development II

Automatic Generation of Smart, Security-Aware GUI Models . . . . . . . . . . 201
David Basin, Manuel Clavel, Marina Egea, and Michael Schläpfer

Report: Modular Safeguards to Create Holistic Security Requirement
Specifications for System of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Albin Zuccato, Nils Daniels, Cheevarat Jampathom, and
Mikael Nilson

Idea: A Feasibility Study in Model Based Prediction of Impact of
Changes on System Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Aida Omerovic, Anette Andresen, H̊avard Grindheim, Per Myrseth,
Atle Refsdal, Ketil Stølen, and Jon Ølnes

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



BuBBle: A Javascript Engine Level Countermeasure
against Heap-Spraying Attacks

Francesco Gadaleta, Yves Younan, and Wouter Joosen

IBBT-Distrinet, Katholieke Universiteit Leuven, 3001, Leuven Belgium�

Abstract. Web browsers that support a safe language such as Javascript are
becoming a platform of great interest for security attacks. One such attack is a
heap-spraying attack: a new kind of attack that combines the notoriously hard to
reliably exploit heap-based buffer overflow with the use of an in-browser script-
ing language for improved reliability. A typical heap-spraying attack allocates a
high number of objects containing the attacker’s code on the heap, dramatically
increasing the probability that the contents of one of these objects is executed. In
this paper we present a lightweight approach that makes heap-spraying attacks in
Javascript significantly harder. Our prototype, which is implemented in Firefox,
has a negligible performance and memory overhead while effectively protecting
against heap-spraying attacks.

Keywords: heap-spraying, buffer overflow, memory corruption attacks, browser
security.

1 Introduction

Web browsing has become an very important part of today’s computer use. Compa-
nies like GoogleTMand Yahoo are evidence of this trend since they offer full-fledged
software inside the browser. This has resulted in a very rich environment within the
browser that can be used by web programmers. However, this rich environment has
also lead to numerous security problems such as cross site scripting and cross site re-
quest forgeries (CSRF). The browser is often written in C or C++, which exposes it
to various vulnerabilities that can occur in programs written in these languages, such
as buffer overflows, dangling pointer references, format string vulnerabilities, etc. The
most often exploited type of C vulnerability is the stack-based buffer overflow. In this
attack, an attacker exploits a buffer overflow in an array, writing past the bounds of the
memory allocated for the array, overwriting subsequent memory locations. If the at-
tackers are able to overwrite the return address or a different type of code pointer (such

� This research is partially funded by the Interuniversity Attraction Poles Programme Belgian
State, Belgian Science policy, the Research Fund K.U.Leuven, the Interdisciplinary Institute
for Broadband Technology and the European Science Foundation (MINEMA network).

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 F. Gadaleta, Y. Younan, and W. Joosen

as a function pointer), they can gain control over the program’s execution flow, pos-
sibly redirecting it to their injected code. While stack-based buffer overflows are still
an important vulnerability in C programs, they have become harder to exploit due to
the application of many different countermeasures such as StackGuard [30], ProPolice
[14], ASLR [5], etc. The goal of these countermeasures is to protect areas of potential
interest for attackers from being modified or to prevent attackers from guessing where
their injected code is located, thus preventing them from directing control flow to that
location after they have overwritten such an area of potential interest. Attackers have
subsequently focussed on different types of vulnerabilities. One important type of vul-
nerability is the heap-based buffer overflow. However, due to the changing nature of
the heap, these vulnerabilities are notoriously hard to exploit. Especially in browsers,
where the heap can look completely different depending on which and how many sites
the user has visited, it is hard for an attacker to figure out where in the heap space his
overflow has occurred. This makes it hard for attackers to figure out where their in-
jected code is located. The application of countermeasures like ASLR (Address Space
Layout Randomization) on the heap has made it even harder to reliably exploit these
vulnerabilities. ASLR is a technique by which positions of key data areas in a process’s
address space, such as the heap, the stack or libraries, are arranged at random positions
in memory. All attacks based on the knowledge of target addresses (e.g. return-to-libc
attacks in the case of randomized libraries or attacks that execute injected shellcode in
the case of a randomized heap/stack) may fail if the attacker cannot guess the exact tar-
get address. Recently a new attack emerged that combines the rich environment found
in the browser to facilitate exploits of C vulnerabilities, sometimes resulting in the suc-
cessful bypass of countermeasures like ASLR that are supposed to protect against these
type of vulnerabilities. Heap-spraying attacks use the Javascript engine in the browser
to replicate the code they want executed a large amount of times inside the heap mem-
ory, dramatically increasing the possibility that a particular memory location in the heap
will contain their code. Several examples of heap-spraying attacks have already affected
widely used web browsers like Safari, Internet Explorer and Mozilla Firefox.

This paper presents an approach that protects against heap-spraying attacks based on
the observation that the attack relies on the fact that the heap will contain homogenous
data inserted by the attacker. By introducing diversity in the heap at random locations
and by modifying the way that Javascript stores data on the heap at these locations, we
can build an effective protection against these exploits at low cost. We implemented
this countermeasure in the Javascript engine of Firefox, Tracemonkey1 The overhead
of our approach is very low, measuring the overhead of the countermeasure on a num-
ber of popular websites which use a significant amount of Javascript, showed that our
approach has an average overhead of 5%. The rest of the paper is organized as follows:
Section 2 discusses the problem of heap-based buffer overflows and heap-spraying in
more detail, while Section 3.1 discusses our approach and Section 3.2 our prototype
implementation. Section 4 evaluates our prototype implementation, while Section 5
compares our approach to related work. Section 6 concludes.

1 In the remainder of the paper we will refer to Spidermonkey, since Tracemonkey is based
on the former engine to which it adds native-code compilation, resulting in a massive speed
increase in loops and repeated code.



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 3

2 Problem Description

2.1 Heap-Based Buffer Overflows

The main goal of a heap-spraying attack is to inject malicious code somewhere in mem-
ory and jump to that code to trigger the attack. Because a memory corruption is required,
heap-spraying attacks are considered a special case of heap-based attacks. Exploitable
vulnerabilities for such attacks normally deal with dynamically allocated memory. A
general way of exploiting a heap-based buffer overflow is to overwrite management in-
formation the memory allocator stores with the data. Memory allocators allocate mem-
ory in chunks. These chunks are located in a doubly linked list and contain memory
management information (chunkinfo) and real data (chunkdata). Many different alloca-
tors can be attacked by overwriting the chunkinfo.

Since the heap memory area is less predictable than the stack it would be difficult to
predict the memory address to jump to execute the injected code.Some countermeasures
have contributed to making these vulnerabilities even harder to exploit [35,13].

2.2 Heap-Spraying Attacks

An effective countermeasure against attacks on heap-based buffer overflow is Address
Space Layout Randomization (ASLR) [5]. ASLR is a technique which randomly ar-
ranges the positions of key areas in a process’s address space. This would prevent the at-
tacker from easily predicting target addresses. However, attackers have developed more
effective strategies that can bypass these countermeasures. Heap spraying [27] is a tech-
nique that will increase the probability to land on the desired memory address even if
the target application is protected by ASLR. Heap spraying is performed by populating
the heap with a large number of objects containing the attacker’s injected code. The act
of spraying simplifies the attack and increases its likelihood of success. This strategy
has been widely used by attackers to compromise security of web browsers, making
attacks to the heap more reliable than in the past [4,8,22,25,32] while opening the door
to bypassing countermeasures like ASLR.

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

Fig. 1. NOP sled and shellcode appended to the sequence

A heap-spraying attack attempts to increase the probability to jump to the injected
code (shellcode). To achieve this, a basic block of NOP2 instructions is created. The

2 Short for No Operation Performed, is an assembly language instruction that effectively does
nothing at all [17].



4 F. Gadaleta, Y. Younan, and W. Joosen

size of this block is increased by appending the block’s contents to itself, building the so
called NOP sled. Finally shellcode is appended to it. A jump to any location within
the NOP sled will transfer control to the shellcode appended at the end. The bigger
the sled the higher the probability to land in it and the attack to succeed. A schema of
a NOP sled with the shellcode appended to it is provided in Fig.1. The second phase of
the attack consists of populating the heap of the browser with a high number of these ob-
jects, by using the legal constructs provided by the scripting language supported by the
web browser. Figure 2 shows the schema of a heap-spraying attack during heap popula-
tion. Although in this paper we will refer to heap-spraying the memory space of a web
browser, this exploit can be used to spray the heap of any process that allows the user
to allocate objects in memory. For instance Adobe Reader has been affected by a heap-
spraying vulnerability, by which malicious PDF files can be used to execute arbitrary
code [26]. Moreover, heap-spraying is considered an unusual security exploit since the
action of spraying the heap is considered legal and permitted by the application. In our
specific scenario of a heap-spraying attack in a web browser, memory allocation may
be the normal behavior of benign web pages. A web site using AJAX (Asynchronous
Javascript And XML) technology, such as facebook.com or plain Javascript such as
economist.com, ebay.com, yahoo.com and many others, would seem to spray the heap
with a large number of objects during their regular operation. Since a countermeasure
should not prevent an application from allocating memory, heap-spraying detection is a
hard problem to solve.

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

Sprayed heap

legal 
JSObject

vtable

method 1

method 2

call to sprayed area

Fig. 2. A heap-spraying attack: heap is populated of a large number of NOP−shellcode objects.
The attack may be triggered by a memory corruption. This could potentially allow the attacker to
jump to an arbitrary address in memory. The attack relies on the chance that the jump will land
inside one of the malicious objects.

Because the structure of the heap depends on how often the application has allo-
cated and freed memory before the spraying attack, it would be difficult to trigger it
without knowing how contents have been arranged. This would reduce the attack to a
guess of the correct address the malicious object has been injected to. But by using a
client-side scripting language, such as Javascript, it is also possible to create the ideal



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 5

circumstances for such an attack and arrange the heap to get the structure desired by the
attacker, as described in [28,11].

Fig. 3 shows an example of a typical heap-spraying attack in Javascript.

1. var sled;
2. var spraycnt = new Array();
3. sled = <NOP_instruction>;
4. while(sled.length < _size_)
5. {
6. sled+=sled;
7. }
8. for(i=0; i< _large_; i++)
9. {
10. spraycnt[i] = sled+shellcode;
11. }

Fig. 3. A Javascript code snippet to perform a basic heap-spraying attack usually embedded in a
HTML web page

3 BuBBle: Protection against Heap-Spraying

In this section we describe our approach to prevent the execution of shellcode appended
to a NOP sled, when a heap-spraying attack and a memory corruption have occured.
Our general approach is described in Section 3.1 and our implementation is discussed
in Section 3.2.

3.1 Approach

An important property of a heap-spraying attack is that it relies on homogeneity of
memory. This means that it expects large parts of memory to contain the same infor-
mation (i.e., it’s nop-shellcode). It also relies on the fact that landing anywhere in the
nopsled will cause the shellcode to be executed. Our countermeasure breaks that as-
sumption by introducing diversity on the heap, which makes it much harder to perform
a heap-spraying attack. The assumption is broken by inserting special interrupting val-
ues in strings at random positions when the string is stored in memory and removing
them when the string is used by the application. These special interrupting values will
cause the program to generate an exception when it is executed as an instruction. Be-
cause these special values interrupt the strings inside the memory of the application,
the attacker can no longer depend on the nopsled or even the shellcode being intact.
If these values were placed at fixed locations, the attacker could attempt to bypass the
code by inserting jumps over specific possible locations within the code. Such an attack,
however is unlikely, because the attacker does not know exactly where inside the shell-
code control has been transferred. However, to make the attack even harder, the special
interrupting values are placed at random locations inside the string. Since an attacker
does not know at which locations in the string the special interrupting values are stored,



6 F. Gadaleta, Y. Younan, and W. Joosen

he can not jump over them in his nop-shellcode. This lightweight approach thus makes
heap-spraying attacks significantly harder at very low cost.

We have implemented this concept in the Javascript engine of Firefox, an opensource
web browser. The internal representation of Javascript strings was changed in order to
add the interrupting values to the contents when in memory and remove them properly
whenever the string variable is used or when its value is read. Interruption is regulated
by a parameter which can be chosen at browser build time. We have chosen this to be 25
bytes, which is the smallest useful shellcode we found in the wild [33]. This parameter
will set the interval at which to insert the special interrupting values. Given the length n
of the string to transform i (i = � n

25�) intervals are generated (with n > 25). A random
value is selected for each interval. These numbers will represent the positions within
the string to modify. The parameter sets the size of each interval, thus the number of
positions that will be modified per string. By choosing a lower value for the parameter
the amount of special interrupting values that are inserted will be increased. Setting the
size of each interval to the length of the smallest shellcode does not guarantee that the
positions will be at distance of 25 bytes. It may occur that a position p is randomly
selected from the beginning of its interval ip and the next position q from the end of its
interval iq. In this case (q−p) could be greater than 25, allowing the smallest shellcode
to be stored in between. However heap-spraying attacks are based on large amounts
of homogeneous data, not simply on inserting shellcode. Thus being able to insert this
shellcode will not simply allow an attacker to bypass this approach. When the charac-
ters at random positions are changed, a support data structure is filled with metadata to
keep track of original values and where in the string they are stored. The modified string
is then stored in memory. Whenever the string variable is used, the engine will perform
an inverse function, to restore the string to its original value to the caller. This task is
achieved by reading the metadata from the data structure bound to the current Javascript
string and replacing the special interrupting values with their original values on a copy
of the contents of the string. With this approach different strings can be randomized dif-
ferently, giving the attacker even less chances to figure out the locations of the special
values in the string. Because each string variable stays modified as long as it is stored
in memory and a copy of this string variable is only restored to its original value when
the application requests access to that a string. When the function processing the string
stores the result back to memory, the new string is again processed by our countermea-
sure. If the function discards the string, it will simply be freed. Moreover the Javascript
engine considered here implements strings as immutable type. This means that string
operations do not modify the original value. Instead, a new string with the requested
modification is returned.

3.2 Implementation

In this section we discuss the implementation details of our countermeasure. It has been
implemented on Mozilla Firefox (Ver. 3.7 Beta 3) [15], a widely used web browser and
its ECMA-262-3-compliant engine, Tracemonkey (Ver. 1.8.2)[18].

An attacker performing a heap-spraying attack attempts to arrange a contiguous
block of values of his choice in memory. This is required to build a sled that would not
be interrupted by other data. To achieve this, a monolithical data structure is required.



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 7

JSStringstruct JSString {
    size_t  length;
    jschar  *chars;
};

524

length

0D0D0D0D0
D0D0D0D0D
0D0D0D0D0

........
D0D0D0D0D
0D0D0D0D0
D0D0D0D0D

chars

Fig. 4. Spidermonkey’s JSString type is considered a threat for a heap-spraying attack since mem-
ber chars is a pointer to a vector of size (length + 1)* sizeof(jschar)

Javascript offers several possibilities to allocate blocks in memory. The types sup-
ported by Spidermonkey are numbers, objects and strings. An overview about how the
Javascript engine represents Javascript objects in memory is given in [19].

The string type represents a threat and can be used to perform a potentially dangerous
heap-spraying. Figure 4 depicts what a JSString, looks like. It is a data structure
composed of two members: the length member, an integer representing the length of
the string and the chars member which points to a vector having byte size (length
+ 1) * sizeof(jschar). When a string is created, chars will be filled with
the real sequence of characters, representing that contiguous block of memory that the
attacker can use as a sled. We have instrumented the JSString data structure with the
fields needed for BuBBle to store the metadata: a flag transformed will be set to 1 if
the character sequence has been transformed and an array rndpos is used to store the
random positions of the characters that have been modified within the sequence.

Our countermeasure will save the original value of the modified character to rndpos,
change its value (at this point the string can be stored in memory) and will restore the
original value back from rndpos whenever the string is read.

This task is performed respectively by two functions: js Transform(JSString*)

and js Restore(JSString*). The value of the character to modify is changed to
the 1-byte value 0xCC. This is the assembly language instruction for x86 processors to

0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D SHELLCODE

0D0D0D0D0D    0D0  D0D00D0D0D0D0D0    D0D0D0D S H E     L L C O    D E

js_Transform()

Fig. 5. Representation of the transformed string in memory: characters at random positions are
changed to special interrupting values. The potential execution of the object’s contents on the
heap would be interrupted by the special value.



8 F. Gadaleta, Y. Younan, and W. Joosen

"E"507..."0"52"D"28"0"4rndpos =
0 1 2 3 4 5 21 22

Fig. 6. How metadata is stored to array rndpos: index i within the array contains the value of the
position in the string; index (i + 1) contains its original value

generating a software breakpoint. If a heap-spraying attack was successfully triggered
and the byte 0xCC at a random position was executed, an interrupt handler is called to
detect and report the attack. The web browser could expose an alert popup to encourage
the user close the application and notify the browser vendor of the detected issue. The
number of characters to randomize depends on the degree parameter. This parameter
was chosen based on the length of the smallest shellcode found (to date, 25 bytes long3),
but can be tuned to select the level of security and the overhead that will be introduced
by the countermeasure. If size is the length of the string to transform, the number of
intervals is given by � size

24 �. A random value for each interval will be the position of
the character that will be changed. For performance reasons we generate 50 random
values in a range between (0, 24) at program startup and use these values as offsets
to add to the first index of each interval to compute the random position within that
interval. The random values are regenerated whenever the Garbage Collector reclaims
memory. This prevents the attacker from learning the values over time as they may
already have changed. The value of the ith random position is stored at rndpos[2i],
while the original value of the ith character is stored at rndpos[2i+1] (Fig. 6). Function
js Transform(str)will use the values stored in the str→rndpos[] array to restore
the string to its original value.

4 Evaluation

In Section 4.1 we discuss our performance overhead, while in Section 4.2 we report an
analytical study of the memory overhead in the worst case4.

All benchmarks were performed on an Intel Core 2 Duo 2Ghz, 4GB RAM, running
Debian Gnu/Linux.

4.1 Performance Benchmarks

To measure the performance overhead of BuBBle we performed two types of bench-
marks. We collected results of macrobenchmarks on 8 popular websites and accurate
timings of microbenchmarks running SunSpider, Peacekeeper Javascript Benchmark,
and V8 Benchmark Suite.

Macrobenchmarks: To collect timings of BuBBle’s overhead in a real life scenario,
we run a performance test similar to the one used to measure the overhead of Noz-
zle [23]. We downloaded and instrumented the HTML pages of eight popular web sites

3 The smallest setuid and execve shellcode for GNU/Linux Intel x86 to date can be found at
http://www.shell-storm.org/shellcode/files/shellcode-43.php

4 With worst case we mean the case where it is guaranteed that the smallest shellcode cannot be
stored on the heap without being interrupted by random bytes.

http://www.shell-storm.org/shellcode/files/shellcode-43.php


BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 9

by adding the Javascript newDate() routine at the beginning and the end of the page,
and computed the delta between the two values. This represents the time it takes to load
the page and execute the Javascript. Since the browser caches the contents of the web
page, that value will be close to how long it takes to execute the Javascript. We then
ran the benchmark 20 times for each site, 10 times with BuBBle disabled and 10 times
with BuBBle enabled. Table 1 shows that the average performance overhead over these
websites is 4.8%.

Table 1. Performance overhead of BuBBle in action on 8 popular web sites

Site URL Load (ms) Load(ms) BuBBle Perf. overh.
economist.com 17304 18273 +5.6%
amazon.com 11866 12423 +4.7%

ebay.com 7295 7601 +4.2%
facebook.com 8739 9167 +4.9%

maps.google.com 15098 15581 +3.2%
docs.google.com 426 453 +6.3%

cnn.com 12873 13490 +4.8%
youtube.com 12953 13585 +4.9%

Average +4.82

Microbenchmarks: Microbenchmarks, which allow us to better assess the overheads
introduced by BuBBle in different situations were also performed. These microbench-
marks were performed by running three different benchmarks: the SunSpider Javascript
Benchmarks [31], the Peacekeeper benchmarks [9] and the V8 benchmarking suite [16].

SunSpider: SunSpider is used by Mozilla Firefox to benchmark the core Javascript
language only, without the DOM or other browser dependent APIs. The tests are divided
into multiple domains: testing things such as 3D calculations, math, string operations,
etc.. Table 2 contains the runtime in milliseconds of running the various benchmarks
that are part of SunSpider. The results for each domain are achieved by performing a
number of subtests. However for most domains the overhead of the subsets is close to
0%. Thus, to save space in Table 2, we have removed the results of the subtests and
simply included the results of the domain (which is sum of all the subtests). However,
because we modify the way strings are represented in memory and do a number of
transformations on strings, we have included the subtests which test the performance of
string operations.

The results in Table 2 show that the overhead for BuBBle in areas other than string
manipulation are negligible. The overheads for string operations on the other hand vary
from 3% to 27%. This higher overhead of 27% for base64 is due to the way the base64
test is written: the program encodes a string to base64 and stores the result. When the
program starts, it generates a character by adding getting a random number, multiplying
the number by 25 and adding 97. This character is converted to a string and added to
an existing string. This is done until a string of 8192 characters is created. Then to
do the encoding, it will loop over every 3rd character in a string and then perform the



10 F. Gadaleta, Y. Younan, and W. Joosen

Table 2. Microbenchmarks performed by SunSpider Javascript Benchmark Suite

Test Runtime(ms) BuBBle Runtime (ms) Perf. overh.
3d 568.6ms +/- 1.4% 569.0ms +/- 1.2% +0.17%

bitops 66.4ms +/- 1.8% 67ms +/- 1.8% +0.89%
controlflow 13.8ms +/- 1.9% 14.0ms +/- 1.6% +1.44%

math 63.2ms +/- 1.0% 63.6ms +/- 1.7% +0.62%
regexp 84.2ms +/- 2.0% 84.4ms +/- 2.9% +0.23%
string

base64 74.8ms +/- 2.9% 102.2ms +/- 1.9% +27.3%
fasta 280.0ms +/- 1.5% 283.4ms +/- 0.7% +1.24%
tagcloud 293.2ms +/- 2.6% 299.6ms +/- 0.8% +2.20%
unpack-code 352.0ms +/- 0.8% 363.8ms +/- 3.1% +3.24%
validate-input 119.8ms +/- 2.4% 132.2ms +/- 1.0% +9.30%

1119.8ms +/- 0.9% 1181.2ms +/- 1.0% +5.19%

encoding of those three characters to 4 base64 encoded characters. In every iteration of
the loop, it will do 7 accesses to a specific character in the original string, 4 access to
a string which contains the valid base64 accesses and finally it will do 4 += operations
on the result string. Given that our countermeasure will need to transform and restore
the string multiple times, this causes a noticeable slowdown in this application.

Table 3. Peacekeeper Javascript Benchmarks results (the higher the better)

Benchmark Score BuBBle Score Perf. overh.
Rendering 1929 1919 +0.5%

Social Networking 1843 1834 +0.5%
Complex graphics 4320 4228 +2.2%

Data 2047 1760 +14.0%
DOM operations 1429 1426 +0.2%

Text parsing 1321 1298 +2.0%
Total score 1682 1635 +2.8

Peacekeeper: Peacekeeper is currently used to tune Mozilla Firefox. It will assign a
score based on the number of operations performed per second. The results of the
Peacekeeper benchmark are located in Table 3: for most tests in this benchmark, the
overhead is negligible, except for the Data test which has an overhead of 14%. The
Data test is a test which will do all kinds of operations on an array containing numbers
and one test which performs operations on an array containing strings of all possible
countries in the world. The operations on the strings containing all possible countries
are what contribute to the slow down in this benchmark: whenever a country is used,
the string is restored, whenever one is modified the resulting new string is transformed.

V8: The V8 Benchmark Suite is used to tune V8, the Javascript engine of Google
Chrome. The scores are relative to a reference system (100) and as with Peacekeeper,



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 11

Table 4. V8 Benchmark Suite results (the higher the better)

Benchmark Score BuBBle Score Perf. overh.
Richards 151 143 +5.6%
DeltaBlue 173 167 +3.6%

Crypto 110 99.6 +10.4%
Ray Trace 196 193 +1.5%

EarlyBoyer 251 242 +3.7%
RegExp 174 173 +0.6%
Splay 510 501 +1.8%

Total score 198 193 +2.6

the higher the score, the better. Again, most overheads are negligible except for Crypto,
which has an overhead of 10.4%. Crypto is a test encrypts a string with RSA. To encrypt
this string the application does a significant number of string operations, resulting in
transformation and restoration occurring quite often.

These benchmarks show that for string intensive javascript applications that do lit-
tle else besides run string operations, the overhead can be significant, but not a show
stopper. In all other cases the overhead was negligible.

4.2 Memory Overhead

This section discusses the memory overhead of our countermeasure. This is done by
providing both an analytical description of our worst case scenario and providing a
measurement of the memory overheads that the benchmarks incur.

Theoretical memory overhead: An analytical study of memory usage has been con-
ducted in the case of our highest level of security. This is achieved when we want to
prevent the execution of the smallest shellcode by changing at least one character every
24 bytes. If s is the lenght of the smallest shellcode, the js Transform() function
will change the value of a random character every (s−k) bytes, k = 1...(s−1). In a real
life scenario k = 1 is sufficient to guarantee a lack of space for the smallest shellcode.
If the length of the original string is n bytes, the number of positions to transform will
be i = �n

s �. The array used to store the position and the original value of the transform
character will be 2i bytes long.

Memory usage: a numerical example Given the following data:

-----------------------------------------------------
original string length: n = 1 MB = 1.048.576 bytes
smallest shellcode length: s = 25 bytes
injected sequence length: r = 1 byte
-----------------------------------------------------

The number of positions will be i = � 1MB
s � = 43691 and the memory overhead for

the worst case will be 8.3%.



12 F. Gadaleta, Y. Younan, and W. Joosen

Table 5. Memory overhead of BuBBle in action on three Javascript benchmarks suites

Benchmark Mem. usage (MB) BuBBle mem. usage (MB) Mem. overh.
Sunspider 88 93 +5.6%

V8 219 229 +4.2%
Peacekeeper 148 157 +6.5%

Average +5.3%

Memory overhead for the benchmarks: Table 5 contains measurements of the maxi-
mum memory in megabyte that the benchmarks used during their runtime. These values
were measured by starting up the browser, running the benchmarks to completion and
then examining the VmHWM entry in /proc/ < pid > /status. This entry contains
the peak resident set size which is the maximum amount of RAM the program has used
during its lifetime. Our tests were run with swap turned off, so this is equal to the actual
maximum memory usage of the browser. These measurements show that the overhead
is significantly less than the theoretical maximum overhead.

4.3 Security Evaluation

In this section we give a security evaluation of BuBBle. When running the Javascript
snippet of Fig.3 we are able to spray the heap in all cases: spraying means allocating
memory and this is not considered an action to be detected. However, when attempting
to execute the contents of sprayed objects, by a memory corruption, the attack will fail.
The instruction pointer landed within a sled will execute the byte instruction 0xCC at a
random position. This 1-byte instruction will call the interrupt procedure and execution
will be halted. The execution of the 0xCC sequence is sufficient to consider the sys-
tem under attack and to detect an unexpected execution. In fact, a legal access would
purge the string of the 0xCC sequence. A drawback of our countermeasure is that a
heap-spraying attack can still be performed by using a language other than Javascript
such as Java or C#. However, the design in itself gives a reasonably strong security
guarantee against heap-spraying attacks to be implemented for other browser supported
languages. Another way to store malicious objects to the heap of the browser would
be by loading images or media directly from the Internet. But this would generate a
considerable amount of traffic and loading time, making the attack clearly observable.5

5 Related Work

Several countermeasures have been designed and implemented to specifically protect
against heap-based attacks. Others have been designed to prevent memory corruption
in general. We provide an overview of some countermeasures against heap overflow
attacks in Section 5.2. A description of some countermeasures specifically designed to
protect against heap-spraying attacks in web browsers is provided in Section 5.1.

5 Heap spraying by content download might generate a traffic of hundreds of MBs. We are
confident that also a broadband internet access would make the attack observable.



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 13

5.1 Heap-Spraying Defences

Nozzle: Nozzle is the first countermeasure specifically designed against heap-spraying
attacks to web browsers [23]. It uses emulation techniques to detect the presence of ma-
licious objects. This is achieved by the analysis of the contents of any object allocated
by the Web browser. The countermeasure is in fact implemented at memory allocator
level. This has the benefit of protecting against a heap-spraying attack by any scripting
language supported by the browser. Each block on the heap is disassembled and a con-
trol flow graph of the decoded instructions is built. A NOP-shellcode object may
be easily detected by this approach because one basic block in the control flow graph
will be reachable by several directions (other basic blocks). For each object on the heap
a measure of the likelihood of landing within the same object is computed. This mea-
sure is called attack surface area. The surface area for the entire heap is given
by the accumulation of the surface area of individual blocks. This metric reflects the
overall heap health. This countermeasure is more compatible than DEP and would help
to detect and report heap-spraying attacks by handling exceptions, without just crash-
ing. This approach has although some limitations. Because Nozzle examines objects
only at specific times, this may lead to the so called TOCTOU-vulnerability (Time-Of-
Check-Time-Of-Use). This means that an attacker can allocate a benign object, wait
for Nozzle to examine it, then change it to contain malicious content and trigger the
attack. Moreover Nozzle examines only a subset of the heap, for performance reasons.
But this approach will lead to a lower level of security. The performance overhead of
Nozzle examining the whole heap is unacceptable. Another limitation of Nozzle is the
assumption that a heap-spraying attack allocates a relatively small number of large ob-
jects. A design based on this assumption would not protect against a heap-spraying
which allocates a large number of small objects which will have the same probability
to succeed.

Shellcode detection: Another countermeasure specifically designed against heap-
spraying attacks to web browsers is proposed by [12]. This countermeasure is based
on the same assumptions that (1) a heap-spraying attack may be conducted by a special
crafted HTML page instrumented with Javascript and (2) Javascript strings are the only
way to allocate contiguous data on the heap. Thus all strings allocated by the Javascript
interpreter are monitored and checked for the presence of shellcode. All checks have
to be performed before a vulnerability can be abused to change the execution control
flow of the application. If the system detects the presence of shellcode, the execution of
the script is stopped. Shellcode detection is performed by libemu, a small library writ-
ten in C that offers basic x86 emulation. Since libemu uses a number of heuristics to
discriminate random instructions from actual shellcode, false positives may still occur.
Moreover an optimized version of the countermeasure that achieves accurate detection
with no false positives is affected by a significant performance penalty of 170%.

5.2 Alternative Countermeasures

Probabilistic countermeasures: Many countermeasures make use of randomness
when protecting against attacks. Canary-based countermeasures [21,24] use a secret



14 F. Gadaleta, Y. Younan, and W. Joosen

random number that is stored before an important memory location: if the random num-
ber has changed after some operations have been performed, then an attack has been
detected. Memory-obfuscation countermeasures [6,10] encrypt (usually with XOR) im-
portant memory locations or other information using random numbers. Memory layout
randomizers [5,7,34] randomize the layout of memory: by loading the stack and heap
at random addresses and by placing random gaps between objects. Instruction set ran-
domizers [3] encrypt the instructions while in memory and will decrypt them before
execution. While these approaches are often efficient, they rely on keeping memory
locations secret. However, programs that contain buffer overflows could also contain
“buffer overreads” (e.g. a string which is copied via strncpy but not explicitly null-
terminated could leak information) or other vulnerabilities like format string vulner-
abilities, which allow attackers to print out memory locations. Such memory leaking
vulnerabilities could allow attackers to bypass this type of countermeasure. Another
drawback of these countermeasures is that, while they can be effective against remote
attackers, they are easier to bypass locally, because attackers could attempt brute force
attacks on the secrets.

DEP: Data Execution Prevention [29] is a countermeasure to prevent the execution of
code in memory pages. It is implemented either in software or hardware, via the NX
bit. With DEP enabled, pages will be marked non-executable and this will prevent the
attacker from executing shellcode injected on the stack or the heap of the application. If
an application attempts to execute code from a page marked by DEP, an access violation
exception will be raised. This will lead to a crash, if not properly handled. Unfortunately
several applications attempt to execute code from memory pages. The deployment of
DEP is less straightforward due to compatibility issues raised by several programs [2].

Separation and replication of information: Countermeasures that rely on separa-
tion or replication of information will try to replicate valuable control-flow information
[36,37] or will separate this information from regular data. This makes it harder for an
attacker to overwrite this information using an overflow. Some countermeasures will
simply copy the return address from the stack to a separate stack and will compare it
to or replace the return addresses on the regular stack before returning from a function.
These countermeasures are easily bypassed using indirect pointer overwriting where an
attacker overwrites a different memory location instead of the return address by using
a pointer on the stack. More advanced techniques try to separate all control-flow data
(like return addresses and pointers) from regular data, making it harder for an attacker
to use an overflow to overwrite this type of data. While these techniques can efficiently
protect against buffer overflows that try to overwrite control-flow information, they do
not protect against attacks where an attacker controls an integer that is used as an offset
from a pointer, nor do they protect against non-control-data attacks.

Execution monitors: In this section we describe two countermeasures that monitor
the execution of a program and prevent transferring control-flow which could be un-
safe. Program shepherding [20] is a technique that monitors the execution of a program
and will disallow control-flow transfers6 that are not considered safe. An example of

6 Such a control flow transfer occurs when e.g., a call or ret instruction is executed.



BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 15

a use for shepherding is to enforce return instructions to only return to the instruction
after the call site. The proposed implementation of this countermeasure is done using a
runtime binary interpreter. As a result, the performance impact of this countermeasure
is significant for some programs, but acceptable for others. Control-flow integrity [1]
determines a program’s control flow graph beforehand and ensures that the program
adheres to it. It does this by assigning a unique ID to each possible control flow destina-
tion of a control flow transfer. Before transferring control flow to such a destination, the
ID of the destination is compared to the expected ID, and if they are equal, the program
proceeds as normal. This approach, while strong and in the same efficiency range as our
approach, does not protect against non-control data attacks.

6 Conclusion

Heap-spraying attacks expect to have large parts of the heap which are homogenous.
By introducing heterogeneity where attackers expect this homogeneity, we can make
heap-based buffer overflows a lot harder. By modifying the way the strings are stored
in memory in the Javascript engine, we can achieve an effective countermeasure that
introduces this heterogeneity. This is done by inserting special values at random loca-
tions in the string, which will cause a breakpoint exception to occur if they are executed.
If an attacker tries to perform a heap-spraying attack, his injected code will now have
been interrupted at a random location with such a breakpoint exception, allowing the
browser to detect and report that an attack has occurred. Benchmarks show that this
countermeasure has a negligible overhead both in terms of performance and memory
overhead.

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: Proceedings of
the 12th ACM Conference on Computer and Communications Security, Alexandria, Virginia,
U.S.A., November 2005, pp. 340–353. ACM, New York (2005)

2. Anisimov, A.: Defeating microsoft windows xp sp2 heap protection and dep bypass,
http://www.ptsecurity.com

3. Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanović, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: Proceedings of the
10th ACM Conference on Computer and Communications Security (CCS2003), Washington,
D.C., U.S.A., October 2003, pp. 281–289. ACM, New York (2003)

4. Berry-Bryne, S.: Firefox 3.5 heap spray exploit (2009),
http://www.milw0rm.com/exploits/9181

5. Bhatkar, S., Duvarney, D.C., Sekar, R.: Address obfuscation: An efficient approach to com-
bat a broad range of memory error exploits. In: Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., U.S.A., August 2003, pp. 105–120. USENIX Association
(2003)

6. Bhatkar, S., Sekar, R.: Data space randomization. In: Zamboni, D. (ed.) DIMVA 2008.
LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

7. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient techniques for comprehensive protection
from memory error exploits. In: 14th USENIX Security Symposium, Baltimore, MD, August
2005, USENIX Association (2005)

http://www.ptsecurity.com
http://www.milw0rm.com/exploits/9181


16 F. Gadaleta, Y. Younan, and W. Joosen

8. Blog, M.A.L.: New backdoor attacks using pdf documents (2009),
http://www.avertlabs.com/research/blog/index.php/2009/02/
19/new-backdoor-attacks-using-pdf-documents/

9. Futuremark Corporation. Peacekeeper The Browser Benchmark,
http://service.futuremark.com/peacekeeper/

10. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: protecting pointers from buffer
overflow vulnerabilities. In: Proceedings of the 12th USENIX Security Symposium, Wash-
ington, D.C., U.S.A., August 2003, pp. 91–104. USENIX Association (2003)

11. Daniel, M., Honoroff, J., Miller, C.: Engineering heap overflow exploits with javascript. In:
WOOT 2008: Proceedings of the 2nd conference on USENIX Workshop on offensive tech-
nologies, Berkeley, CA, USA, pp. 1–6. USENIX Association (2008)

12. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-by down-
loads: mitigating heap-spraying code injection attacks. In: Flegel, U., Bruschi, D. (eds.)
DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg (2009)

13. Erlingsson, Ú.: Low-level software security: Attacks and defenses. Technical Report MSR-
TR-2007-153, Microsoft Research (November 2007)

14. Etoh, H., Yoda, K.: Protecting from stack-smashing attacks. Technical report, IBM Research
Divison, Tokyo Research Laboratory (June 2000)

15. Mozilla Foundation. Firefox 3.5b4 (2009), http://developer.mozilla.org
16. Google. V8 Benchmark Suite - version 5, http://v8.googlecode.com
17. Intel. Intel architecture software developer’s manual. vol. 2: Instruction set reference (2002)
18. E. C. M. A. International. ECMA-262: ECMAScript Language Specification. ECMA (Eu-

ropean Association for Standardizing Information and Communication Systems), 3rd edn.,
Geneva, Switzerland (December 1999)

19. Jorendorff: Anatomy of a javascript object (2008),
http://blog.mozilla.com/jorendorff/2008/11/17/
anatomy-of-a-javascript-object

20. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding. In:
Proceedings of the 11th USENIX Security Symposium, San Francisco, California, U.S.A.,
August 2002, USENIX Association (2002)

21. Krennmair, A.: ContraPolice: a libc extension for protecting applications from heap-
smashing attacks (November 2003)

22. FireEye Malware Intelligence Lab. Heap spraying with actionscript (2009),
http://blog.fireeye.com/research/2009/07/
actionscript heap spray.html

23. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-spraying code
injection attacks. Technical report, Microsoft Research (November 2008)

24. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-based over-
flows. In: Proceedings of the 17th Large Installation Systems Administrators Conference,
San Diego, California, U.S.A., October 2003, pp. 51–60. USENIX Association (2003)

25. securiteam.com. Heap spraying: Exploiting internet explorer vml 0-day xp sp2 (2009),
http://blogs.securiteam.com/index.php/archives/641

26. Securitylab. Adobe reader 0-day critical vulnerability exploited in the wild, cve-2009-0658
(2009), http://en.securitylab.ru/nvd/368655.php

27. skypher.com. Heap spraying (2007), http://skypher.com/wiki/index.php
28. Sotirov, A.: Heap feng shui in javascript (2007)
29. TMS. Data execution prevention,

http://technet.microsoft.com/en-us/library/cc738483.aspx
30. Wagle, P., Cowan, C.: Stackguard: Simple stack smash protection for gcc. In: Proceedings of

the GCC Developers Summit, Ottawa, Ontario, Canada, May 2003, pp. 243–256 (2003)

http://www.avertlabs.com/research/blog/index.php/2009/02/19/new-backdoor-attacks-using-pdf-documents/
http://www.avertlabs.com/research/blog/index.php/2009/02/19/new-backdoor-attacks-using-pdf-documents/
http://service.futuremark.com/peacekeeper/
http://developer.mozilla.org
http://v8.googlecode.com
http://blog.mozilla.com/jorendorff/2008/11/17/anatomy-of-a-javascript-object
http://blog.mozilla.com/jorendorff/2008/11/17/anatomy-of-a-javascript-object
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blogs.securiteam.com/index.php/archives/641
http://en.securitylab.ru/nvd/368655.php
http://skypher.com/wiki/index.php
http://technet.microsoft.com/en-us/library/cc738483.aspx


BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 17

31. www2.webkit.org Sunspider javascript benchmark (2009),
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

32. www.milw0rm.com Safari (arguments) array integer overflow poc (new heap spray)
(2009), http://www.milw0rm.com/exploits/7673

33. www.packetstormsecurity.org 25bytes-execve (2009),
http://www.packetstormsecurity.org/shellcode/
25bytes-execve.txt

34. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent runtime randomization for security. In: 22nd
International Symposium on Reliable Distributed Systems (SRDS 2003), Florence, Italy,
October 2003, pp. 260–269. IEEE Computer Society, IEEE Press, Los Alamitos (2003)

35. Younan, Y., Joosen, W., Piessens, F.: Code injection in C and C++: A survey of vulnerabilities
and countermeasures. Technical report, Departement Computerwetenschappen, Katholieke
Universiteit Leuven (2004)

36. Younan, Y., Joosen, W., Piessens, F.: Efficient protection against heap-based buffer overflows
without resorting to magic. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 379–398. Springer, Heidelberg (2006)

37. Younan, Y., Pozza, D., Piessens, F., Joosen, W.: Extended protection against stack smashing
attacks without performance loss. In: Proceedings of the Twenty-Second Annual Computer
Security Applications Conference (ACSAC 2006), pp. 429–438. IEEE Press, Los Alamitos
(2006)

www2.webkit.org
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
www.milw0rm.com
http://www.milw0rm.com/exploits/7673
www.packetstormsecurity.org
http://www.packetstormsecurity.org/shellcode/25bytes-execve.txt
http://www.packetstormsecurity.org/shellcode/25bytes-execve.txt


CsFire: Transparent Client-Side Mitigation of
Malicious Cross-Domain Requests

Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens,
and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven

3001 Leuven, Belgium
{philippe.deryck,lieven.desmet}@cs.kuleuven.be

Abstract. Protecting users in the ubiquitous online world is becom-
ing more and more important, as shown by web application security –
or the lack thereof – making the mainstream news. One of the more
harmful attacks is cross-site request forgery (CSRF), which allows an
attacker to make requests to certain web applications while imperson-
ating the user without their awareness. Existing client-side protection
mechanisms do not fully mitigate the problem or have a degrading effect
on the browsing experience of the user, especially with web 2.0 tech-
niques such as AJAX, mashups and single sign-on. To fill this gap, this
paper makes three contributions: first, a thorough traffic analysis on real-
world traffic quantifies the amount of cross-domain traffic and identifies
its specific properties. Second, a client-side enforcement policy has been
constructed and a Firefox extension, named CsFire (CeaseFire), has been
implemented to autonomously mitigate CSRF attacks as precise as pos-
sible. Evaluation was done using specific CSRF scenarios, as well as in
real-life by a group of test users. Third, the granularity of the client-side
policy is improved even further by incorporating server-specific policy
refinements about intended cross-domain traffic.

1 Introduction

Cross-Site Request Forgery (CSRF) is a web application attack vector that can
be leveraged by an attacker to force an unwitting user’s browser to perform
actions on a third party website, possibly reusing all cached authentication cre-
dentials of that user. In 2007, CSRF was listed as one of the most serious web
application vulnerability in the OWASP Top Ten [15]. In 2008, Zeller and Felten
documented a number of serious CSRF vulnerabilities in high-profile websites,
among which was a vulnerability on the home banking website of ING Direct [23].

One of the root causes of CSRF is the abuse of cached credentials in cross-
domain requests. A website can easily trigger new requests to web applications
in a different trust domain without any user intervention. This results in the
browser sending out cross-domain requests, while implicitly using credentials
cached in the browser (such as cookies, SSL certificates or login/password pairs).

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 18–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



CsFire: Transparent Client-Side Mitigation 19

From a server point of view, these implicitly authenticated requests are legitimate
and are requested on behalf of the user. The user, however, is not aware that he
sent out those requests, nor that he approved them.

Currently, a whole range of techniques exist to mitigate CSRF, either by pro-
tecting the server application or by protecting the end-user (e.g. via a browser
extension or a client-side proxy). Unfortunately, the server-side protection mech-
anisms are not yet widely adopted. On the other side, most of the client-side
solutions provide only limited protection or can not deal with complex web 2.0
applications, which use techniques such as AJAX, mashups or single sign-on
(SSO). As a result, even the most cautious web user is unable to appropri-
ately protect himself against CSRF, without compromising heavily on usability.
Therefore, it is necessary to construct more robust client-side protection tech-
niques against CSRF, capable of dealing with current and next-generation web
applications.

This paper presents the following contributions. First, it describes the results
of an extensive, real-world traffic analysis. This analysis shows how many of
the requests a browser makes are cross-domain and what their properties are.
Second, we define CsFire, an autonomous client-side protection policy, which
is independent of user-input or server-provided information. This policy will
determine which cross-domain traffic is considered harmful and will propose
an appropriate action, such as blocking the request or removing the implicit
authentication credentials from the request. The paper also discusses how this
policy can be enforced within the Firefox browser. Finally, this autonomous
policy can be extended by server-specific refinements, to achieve a more flexible
and fine-grained enforcement.

This research builds upon previous work [13]. The main achievements with
respect to the previous preliminary results are (1) a much finer-grained pol-
icy allowing a secure-by-default solution without service degradation, and (2) a
thorough evaluation of the proposed prototype.

The remainder of this paper is structured as follows. Section 2 provides some
background information on CSRF, explores the current state-of-the-art and de-
fines the requirements of client-side mitigation solutions. Next, the detailed traf-
fic analysis results are presented, along with the autonomous client policy, in
Section 3. Section 4 describes the client-side solution in great detail. The re-
finements with server-specific policies and its implementation are discussed in
Section 5. Our solution is evaluated extensively by means of test scenarios, along
with a group of test users. The evaluation results can be found in Section 6. In
Section 7, the presented work is related to alternative mitigation techniques and,
finally, Section 8 summarizes the contributions of this paper.

2 Background

This section provides some background information on CSRF and available
countermeasures. We will also define the requirements for client-side mitigation
against CSRF.



20 P. De Ryck et al.

2.1 Cross-Site Request Forgery (CSRF)

HTTP is a stateless client-server protocol [5], which uses certain methods to
transfer data between web servers and browsers. The two most frequently used
HTTP methods are GET and POST. Conforming to the HTTP specification,
GET methods are used to fetch data from the server, whereas POST methods
are used to update server state. In practice however, GET and POST methods
are used interchangeably, and both can trigger server-side state changes.

Because of the stateless nature of HTTP, session management is built on top
of HTTP. This is typically done by means of cookies, which are small amounts of
session-specific data, created by the server application and stored in the browser.
Alternative approaches such as URL rewriting or hidden form parameters exist
as well [17]. This session-specific data is sent back with each request to that
particular web application, without any user intervention.

Similarly, HTTP basic authentication attaches encoded credentials to each
individual request to enable server-side authentication and authorization. For
user convenience, the credentials are typically cached within the browser, and
are only requested once for the lifespan of the browser session.

Other (albeit lesser used) authentication schemes include client side SSL and
IP-based access control [9], of which the latter is mainly used on intranets. This
paper will focus on the first two authentication mechanisms.

To perform a successful CSRF attack, a number of conditions need to be
met:

1. The target website must use implicit authentication, such as through cookies
or HTTP authentication, as mentioned above.

2. The targeted user must already have been authenticated to the target web
application, and the user’s browser must have cached the authentication
credentials.

3. An attacker forces the user’s browser to make an HTTP request to the target
web application.

When all three conditions are met, the browser will automatically add the im-
plicit authentication, making the request appear as a legitimate one to the target
server.

In general, CSRF attacks happen cross-domain, where an attacker tricks the
user into connecting to another site. Strictly speaking, CSRF can also occur
within the same domain, e.g. due to a script injection vulnerability or when
multiple users can host a web site within the same domain (universities, ISP’s,
. . . ). The focus of this paper lies on the cross-domain CSRF attacks.

2.2 Existing Countermeasures

A number of CSRF protection techniques exist, by either protecting the server
application or by protecting the end-user. This section briefly discusses both.



CsFire: Transparent Client-Side Mitigation 21

Client-side countermeasures: The most widespread countermeasure is the Same
Origin Policy (SOP) [22], implemented in most browsers. This policy limits ac-
cess to DOM properties and methods to scripts from the same ‘origin’, where
origin is usually defined as the triple <domain name, protocol, tcp port>1. This
prevents a malicious script on the website evil.com from reading out session
identifiers stored in a cookie from homebanking.com, for example. Unfortunately,
the protection offered by the SOP is insufficient. Although the SOP prevents the
requesting script from accessing the cookies or DOM properties of a page from
another origin, it does not prevent an attacker from making requests to other
origins. The attacker can still trigger new requests and use cached credentials,
even though the SOP prevents the attacker from processing responses sent back
from the server.

On top of SOP, client-side countermeasures exist to monitor and filter cross-
domain requests. They typically operate as a client-side proxy [9] or as an exten-
sion in the browser [18,23]. These countermeasures monitor outgoing requests
and incoming responses, and filter out implicit authentication or block cross-
domain requests. Unfortunately, these client-side mitigation techniques suffer
from various problems, as will be discussed in Section 7.

Server-side countermeasures: A number of server-side mitigation techniques ex-
ists as well, of which the most popular class is the use of secret tokens [4,10,16].
Each response from the server embeds a secret token into the web page (e.g. a
hidden parameter in an HTML form). For each incoming request, the server ver-
ifies that the received token originated from the server, and is correctly bound to
the user’s session. Since the SOP prevents the attacker from reading responses
from other origins, this is an effective server-side countermeasure.

Another class of server-side countermeasure relies on the HTTP referer
header to determine the origin of the request. Unfortunately, quite often browsers
or proxies block this header for privacy reasons [2]. Furthermore, an attacker can
spoof HTTP headers, e.g. via Flash or request smuggling [11,12].

More intrusively, Barth et al. propose an additional HTTP header to indicate
the origin of the request [2]. This header should not be removed by the browser
or proxies, and is less privacy-intrusive than the referer. In addition to such an
origin header, W3C proposes to add additional headers to the responses as
well, to give server-side cross-domain information to the browser [19].

2.3 Requirements for Client-Side Protection

As stated before, the quality and applicability of the client-side countermea-
sures is still inadequate. The client-side mechanisms are necessarily generic, as
they have to work for every web application, in every application domain. This
usually makes them too coarse grained, often resulting in too permissive or too
restrictive enforcement. In addition, most countermeasures do not handle current
technologies well, such as JavaScript, AJAX and single sign-on (SSO).

1 This definition of ‘origin’ will be used throughout the remainder of this paper.

evil.com
homebanking.com


22 P. De Ryck et al.

Therefore, we propose the following requirements for a client-side CSRF so-
lution in a contemporary web 2.0 context.

R1. The client-side protection should not depend on user input. Nowadays, a
substantial fraction of web requests in an average browsing session is cross-
domain (see Section 6). It is infeasible for the user to validate requests.
Furthermore, users can not be expected to know which third parties a web
application needs to function correctly. Therefore, a transparent operation
is essential.

R2. The protection mechanism should be usable in a web 2.0 context, without
noticeable service degradation. The solution should support the dynamic
interaction behavior of today’s applications (i.e., ‘mashups’), and embrace
current and future web technologies.

R3. Secure by default. The solution should have minimal false negatives using
its default configuration.

3 Secure Cross-Domain Policy

The previous sections have made clear that even though there are effective coun-
termeasures available, the user is left vulnerable due to the slow adoption of these
countermeasures. In this section we will propose a policy defining exactly which
cross-domain traffic is allowed and when protective measures need to be taken.
This fine-grained policy, which is the main contribution of this paper, allows the
users to protect themselves from malicious attackers and ill-secured websites.

To be able to determine an effective policy, information about cross-domain
traffic is of crucial importance. By analyzing common cross-domain traffic, we
can determine which request properties the policy enforcement mechanism can
use to base its decisions on.

3.1 Properties of Cross-Domain Traffic

We have collected real-life traffic from about 15 volunteers over a time period of
2 weeks, resulting in a total of 750334 requests. The analysis of this traffic has
revealed a number of properties that can be used to determine a secure cross-
domain policy. We will discuss the traffic by pointing out how the requests are
distributed in the total data set. We will examine the data through the strict
SOP, which uses the triple <full domain name, protocol, tcp port>, as well as the
relaxed SOP, which only considers the actual domain name (e.g. example.com.
These detailed results are consistent with one million earlier recorded requests,
as reported in [13].

A first overview, presented in Table 1, shows the distribution between the
different request methods (GET, POST and other). Striking is that for the strict
SOP, almost 43% of the requests are cross-domain. For the relaxed SOP, this is
nearly 33%. The number of cross-domain requests is dominated by GET requests,
with the POST requests having a minimal share.



CsFire: Transparent Client-Side Mitigation 23

As far as the other methods are concerned, we have discovered a very small
number of HEAD and OPTIONS requests. Due to their insignificant amount,
we do not focus on this type of requests. We do acknowledge that they need to
be investigated in future research.

Table 1. Traffic statistics: overview of all traffic (for each row, the percentages of the
first 3 columns add up to the percentage of the last column)

GET POST Other Total
Cross-domain requests 320529 1793 0 322322

(strict SOP) (42.72%) (0.24%) (0.00%) (42.96%)
Cross-domain requests 242084 1503 0 243587

(relaxed SOP) (32.26%) (0.20%) (0.00%) (32.46%)
All requests 722298 28025 11 750334

(96.26%) (3.74%) (0.00%) (100.00%)

Table 2 shows a detailed analysis of the GET requests. The columns show how
much requests carry parameters (Params), how many requests are initiated by
direct user interaction, such as clicking a link or submitting a form (User), how
many requests contain a cookie header (Cookies) and how many requests carry
HTTP authentication credentials (HTTP Auth). The results show that approx-
imately 24% of the GET requests contain parameters. Furthermore, we can see
that a very small amount of the GET-requests, especially of the cross-domain
GET requests, originate from direct user interaction. The data also shows that
cookies are a very popular authentication mechanism, whereas HTTP authenti-
cation is rarely used for cross-domain requests.

Table 2. Traffic statistics: overview of GET requests (for each row, the percentages in
the columns are independent of each other and calculated against the total in the last
column)

Params User Cookies HTTP Auth Total
Cross-domain requests 82587 1734 116632 26 320529

(strict SOP) (25.77%) (0.54%) (36.39%) (0.08%) (42.72%)
Cross-domain requests 58372 1100 59980 1 242084

(relaxed SOP) (24.11%) (0.45%) (24.78%) (0.00%) (32.26%)
All GET requests 168509 7132 411056 651 722298

(23.33%) (0.99%) (56.91%) (0.89%) (96.26%)

The analysis of the POST requests is summarized in Table 3, categorized in the
same way as the GET requests, except for the presence of parameters. This data
shows the same patterns as for the GET requests, albeit on a much smaller scale.
We do see a larger percentage of cross-domain requests being initiated by the
user, instead of being conducted automatically. Again, the HTTP authentication
mechanism suffers in popularity, but cookies are used quite often.



24 P. De Ryck et al.

Table 3. Traffic statistics: overview of POST requests (for each row, the percentages
in the columns are independent of each other and calculated against the total in the
last column)

User Cookies HTTP Auth Total
Cross-domain requests 158 1005 0 1793

(strict SOP) (8.81%) (56.05%) (0.00%) (0.24%)
Cross-domain requests 25 753 0 1503

(relaxed SOP) (1.66%) (50.10%) (0.00%) (0.20%)
All POST requests 930 23056 96 28025

(3.32%) (82.27%) (1.99%) (3.74%)

3.2 Defining a Policy

A policy blocking all cross-domain traffic is undoubtedly the most secure policy.
However, from the traffic analysis we can easily conclude that this would lead to a
severely degraded user experience, which conflicts with the second requirement
of a good client-side solution. A policy that meets all three requirements will
have to be more fine-grained and sophisticated. To achieve this goal, the policy
can choose from three options for cross-domain requests: the two extremes are
either allowing or blocking a cross-domain request. The road in the middle leads
to stripping the request from authentication information, either in the form of
cookies or HTTP authentication headers.

In order to preserve as much compatibility as possible, we have chosen to use
the relaxed SOP to determine whether a request is cross-domain or not. This is
comparable to JavaScript, where a relaxation of the origin is also allowed. We
will now define the policy actions for each type of request and where possible,
we will add further refinements. We will start by examining POST requests,
followed by the GET requests. An overview of the policy is given in Table 4.

For a relaxed SOP, the traffic analysis shows that only 0.20 % of the cross-
domain requests are POST requests, of which 1.66% is the result of direct user
interaction. Therefore, we propose to strip all POST requests, even the manually
submitted POST requests. This effectively protects the user from potentially
dangerous UI redressing attacks [14], while having a minimal effect on the user
experience.

Even though the HTTP protocol specification [5] states that GET requests
should not have state-altering effects, we will ensure that CSRF attacks using
GET requests are also prevented. This means that the policy for GET requests
will have to be fine-grained. Since requests with parameters have a higher risk
factor, we will define different rules for GET requests carrying parameters and
GET requests without any parameters. The traffic analysis has shown that cross-
domain GET requests with parameters are very common, which means that
the attack vector is quite large too. Therefore, we propose to strip all GET
requests with parameters from any authentication information. The GET re-
quests without any parameters are less risky, since they are not likely to have
a state-altering effect. Therefore, we have decided to allow GET requests with



CsFire: Transparent Client-Side Mitigation 25

no parameters, if the request originates from user-interaction (e.g. clicking on
a link). This helps preserving the unaltered user experience, because otherwise,
when the user is logged in on a certain website, such as Facebook, and follows
a link to www.facebook.com in for an example a search engine, the authentica-
tion information would be removed, which requires the user to re-authenticate.
GET requests without any parameters that are not the result of direct user in-
teraction will be stripped to cover all bases. If such a request would depend on
authentication information, a re-authentication will be necessary.

Table 4. The secure default policy for cross-domain traffic

Properties Decision

GET
Parameters STRIP

No parameters
User initiated ACCEPT
Not User initiated STRIP

POST
User initiated STRIP
Not User initiated STRIP

4 Mitigating Malicious Cross-Domain Requests

In the previous section we have determined a policy to counter CSRF attacks.
The policy will be enforced by a few specific components, each with their own
responsibility. One of these components is the policy information point (PIP),
where all the available information is collected. This information can be leveraged
by the policy decision point (PDP) to make a decision about a certain request.
This decision is used by the policy enforcement point (PEP), which will provide
active protection for the user. We have implemented this policy as CsFire, an
extension2 for Mozilla Firefox that incorporates each of these components. The
technical details of CsFire will now be discussed.

4.1 The Firefox Architecture

Mozilla Firefox, the second most popular browser, comes with an open and exten-
sible architecture. This architecture is fully aimed at accommodating possible
browser extensions. Extension development for Firefox is fairly simple and is
done using provided XPCOM components [21]. Our Firefox extension has been
developed using JavaScript and XPCOM components provided by Firefox itself.

To facilitate extensions wishing to influence the browsing experience, Firefox
provides several possibilities to examine or modify the traffic. For our extension,
the following four capabilities are extremely important:

– Influencing the user interface using XUL overlays
– Intercepting content-influencing actions by means of the content-policy

event
2 The extension can be downloaded from https://distrinet.cs.kuleuven.be/

software/CsFire/.

https://distrinet.cs.kuleuven.be/software/CsFire/
https://distrinet.cs.kuleuven.be/software/CsFire/


26 P. De Ryck et al.

– Intercepting HTTP requests before they are sent by observing the http-on-
modify-request event (This is the point where the policy needs to be en-
forced).

– Intercepting HTTP responses before they are processed by observing the
http-on-examine-response event

4.2 Policy Enforcement in Firefox

When a new HTTP request is received, the PEP needs to actively enforce the
policy to prevent CSRF attacks. To determine how to handle the request, the
PEP contacts the PDP which can either decide to allow the request, block it or
strip it from any authentication information.

Enforcing an allow or block decision is straightforward: allowing a request
requires no interaction, while blocking a request is simply done by signaling an
error to Firefox. Upon receiving this error message, Firefox will abort the request.
Stripping authentication information is less straightforward and consists of two
parts: stripping cookies and stripping HTTP authentication credentials. How
this can be done will be explained in the following paragraphs.

Firefox 3.5 has introduced a private browsing mode, which causes Firefox to
switch to a mode where no cookies or HTTP authentication from the user’s
database are used. Private browsing mode stores no information about surfing
sessions and uses a separate cookie and authentication store, which is deleted
upon leaving private browsing mode. Unfortunately, we were not able to lever-
age this private browsing mode to strip authentication information from cross-
domain requests, due to some difficulties. The major setback is the fact that
Firefox makes an entire context switch when entering private browsing mode.
This causes active tabs to be reloaded in this private mode, which essentially
causes false origin information and influences all parallel surfing sessions.

Another approach is to manually remove the necessary HTTP headers when
examining the HTTP request, before it is sent out. This technique is very ef-
fective on the cookie headers, but does not work for authorization headers.
These headers are either added upon receiving a response code of 401 or 407 or
appended automatically during an already authenticated session. In the former
case, the headers are available upon examining the request and can be removed,
but in the latter case, they are only added after the request has been examined.
Obviously, this poses a problem, since the headers can not be easily removed.

Investigating this problem revealed that to implement the private browsing
mode, the Firefox developers have added a new load flag3, LOAD ANONYMOUS,
which prevents the addition of any cookie or authorization headers. If we set
this flag when we are examining the HTTP request, we can prevent the addition
of the authorization header. This is not the case for the cookie header, but
as mentioned before, the cookie header, which at this point is already added to
the request, can be easily removed.

3 Load flags can be set from everywhere in the browser and are checked by the Firefox
core during the construction of the request.



CsFire: Transparent Client-Side Mitigation 27

4.3 Considerations of Web 2.0

The difficulty of preventing CSRF can not necessarily be contributed to the
nature of the attack, but more to the complex traffic patterns that are present
in the modern web 2.0 context. Especially sites extensively using AJAX, single
sign-on (SSO) mechanisms or mashup techniques, which combines content of
multiple different websites, make it hard to distinguish intended user traffic from
unintended or malicious traffic. Web 2.0 techniques such as AJAX and SSO can
be dealt with appropriately, but mashups are extremely difficult to distinguish
from CSRF attacks. Our solution has no degrading effect on websites using
AJAX and SSO, but can be inadequate on mashup sites depending on implicit
authentication to construct their content.

A SSO session typically uses multiple redirects to go from the site the user
is visiting to an SSO service. During these redirects, authentication tokens are
exchanged. When the original site receives a valid authentication token, the user
is authenticated. Since all these redirects are usually cross-domain, no cookies or
HTTP authentication headers can be used anyway, due to the SOP restrictions
implemented in browsers. The authentication tokens are typically encoded in
the redirection URLs. Our extension is able to deal with these multiple redirects
and does not break SSO sessions.

5 Server Contributions to a More Fine-Grained Policy

The policy up until now was completely based on information available at the
client-side. Unfortunately, such a policy fails to reflect intentions of web appli-
cations, where cross-domain traffic may be desired in certain occasions. To be
able to obtain a more fine-grained policy, containing per site directives about
cross-domain traffic, we have introduced an optional server policy. This server
policy can tighten or weaken the default client policy. For instance, a server can
prohibit any cross-domain traffic, even if authentication information is stripped,
but can also allow intended cross-domain traffic from certain sites.

The technical implementation of server-side policies are fairly straightforward:
the server defines a cross-domain policy in a pre-determined location, using a
pre-determined syntax. The policy syntax, which is based on JSON, is expressed
in the ABNF metasyntax language [3] and is available online4. The policy is
retrieved and parsed by the browser extension at the client side. The policy is
used by the PDP when decisions about cross-domain traffic need to be made.

The server policy has been made as expressive as possible, without requiring
too many details to be filled out. The server policy can specify whether the
strict SOP or the relaxed SOP needs to be used. Next to this, a list of intended
cross-domain traffic can be specified. This intended traffic consists of a set of
origins and a set of destinations, along with the policy actions to take. We have
also provided the option to specify certain cookies that are allowed, instead of
4 http://www.cs.kuleuven.be/~lieven/research/ESSoS2010/serverpolicy-abnf.

txt

http://www.cs.kuleuven.be/~lieven/research/ESSoS2010/serverpolicy-abnf.txt
http://www.cs.kuleuven.be/~lieven/research/ESSoS2010/serverpolicy-abnf.txt


28 P. De Ryck et al.

stripping all cookies. Finally, we also allow the use of the wild card character *,
to specify rules for all hosts. An example policy can be found in Figure 1.

{"strictDomainEnforcement": true,

"intendedCrossDomainInteraction": [

{"blockHttpAuth": false,

"blockCookies": false,

"methods": ["*"],

"cookieExceptions": [],

"origins": [{

"host": "www.ticket.com",

"port": 443,

"protocol": "https",

"path": "/request.php" }],

"destinations"= [{

"port": 443,

"protocol": "https",

"path": "/confirm.php" }]},

{"blockHttpAuth": true,

"blockCookies": true,

"methods": ["getNoParam"],

"cookieExceptions": ["language"],

"origins": [{ "host": "*" }]

}]}

Fig. 1. An example server policy

Technically, the server policy is enforced as follows: when the PDP has to
decide about a certain request, the request is checked against the target server
policy. If a match is found, the decision specified by the policy will be found. If
no match is found, the request is handled by the default client policy.

At the time, the composition of the server policy and the secure by default
client policy to a unified policy is very rudimentary. This needs to be refined, such
that the server can introduce policy refinements, without severely compromising
the client-side policy. These refinements are left to future research.

6 Evaluation

CSRF attacks, as described earlier, are cross-domain requests abusing the cached
authentication credentials of a user, to make state-altering changes to the target
application. Knowing whether a request is state altering or not, is very applica-
tion specific and very hard to detect at the client-side. The solution we proposed
in the previous sections, examines all cross-domain traffic (intended and un-
intended) and limits the capabilities of such cross-domain requests, thus also
prevents CSRF attacks. The extension is evaluated using a testbed of specially
created test scenarios, to confirm that the capabilities of cross-domain requests



CsFire: Transparent Client-Side Mitigation 29

are indeed limited as specified by the policy. A second part of the evaluation is
done by a group of test users, that have used the extension during their nor-
mal, everyday surfing sessions. This part of the evaluation will confirm that
even though the extension intercepts all cross-domain traffic – and not only the
CSRF attacks –, the user experience is not affected by this fact. We conclude by
presenting a few complex scenarios, that have been tested separately.

6.1 Extensive Evaluation Using the Scenario Testbed

To evaluate the effectiveness of CSRF prevention techniques, including our own
solution, we have created a suite of test scenarios. These scenarios try to execute
a CSRF attack in all different ways possible in the HTTP protocol, the HTML
specification and the CSS markup language. The protocol and language specifi-
cations have been examined for cross-domain traffic possibilities. Each possible
security risk was captured in a single scenario. Where applicable, a scenario has
a version where the user initiates the request, as well as an automated version
using JavaScript. For completeness, an additional JavaScript version using time-
outs was created. In total, we have used a test suite of 59 scenarios. For requests
originating from JavaScript, no scenarios are created, since these requests are
typically blocked by the SOP.

Some highlights of these testing scenarios are redirects, either by the Location
header, the Refresh header5 or the meta-tag. For CSS, all attributes that use
an URL as a value are possible CSRF attack vectors.

The extension has been evaluated against each of these scenarios. For every
scenario, the CSRF attack was effectively prevented. Some scenarios conducted
a hidden CSRF attack, in which case the user does not notice the attack being
prevented. In case the attack is clearly visible, such as by opening a link in the
current window, the user is presented with an authentication prompt for the
targeted site. This is an altered user experience, but since an unwanted attack
is prevented, this can not be considered a degradation of the surfing experience.

When discussing related work, these test scenarios will be used for the evalu-
ation of other CSRF prevention solutions.

6.2 Real-Life Evaluation

A group of more than 50 test users, consisting of colleagues, students and mem-
bers of the OWASP Chapter Belgium, has used CsFire with the policy as defined
in this paper for over three months. The extension provides a feedback button,
where users can easily enter a comment whenever they encounter unexpected
effects. The results of a 1 month time slice are presented in Table 5. These num-
bers show that the extension has processed 1,561,389 requests, of which 27% was
stripped of authentication credentials. The feedback logged by the users was lim-
ited to 3 messages, which was confirmed verbally after the testing period.
5 Even though the Refresh header is not part of the official HTTP specification, it is

supported by browsers.



30 P. De Ryck et al.

Apart from the transparent evaluation by a group of test users, certain specific
scenarios have been tested as well. This includes the use of single sign-on services
such as Shibboleth and OpenID. The use of typical web 2.0 sites such as Facebook
or iGoogle was also included in the evaluation.

Table 5. A 1 month time slice of evaluation data

Number of processed requests 1,561,389
Number of ACCEPT decisions 1,141,807
Number of BLOCK decisions 0
Number of STRIP decisions 419,582
Number of feedback messages 3

The only minor issue we detected, with the help of the feedback possibility of
the extension, was with sites using multiple top-level domains. For instance, when
Google performs authentication, a couple of redirects happen between several
google.com domains and the google.be domain. This causes certain important
session cookies to be stripped, which invalidates the newly authenticated session.
This problem occurs for example with the calendar gadget of iGoogle, as well as
the login form for code.google.com. This issue has not been registered on other
Google services, such as Gmail, or any other websites.

These issues show why it is very difficult for an autonomous client-side pol-
icy to determine legitimate cross-domain traffic from malicious cross-domain
traffic. This problem shows the importance of a server-side policy, which could
relax the client-side policy in such a way that requests between google.be and
google.com would be allowed.

A side-effect from the way Firefox handles its tabs becomes visible when using
multiple tabs to access the same website. If a user is authenticated in tab one,
a session cookie has probably been established. If the user now accesses this
site in another tab, using a cross-domain request, the cookies will be stripped.
This will cause the sessions in both tabs to be invalidated, which is a minor
degrading experience. This behavior is very application-specific, since it depends
on the way the application handles authentication and session management. This
behavior has been experienced on LinkedIn, but does not appear on Facebook or
Wikipedia. This problem can be mitigated with the integration of tab-isolation
techniques. Such techniques are not yet available for Mozilla Firefox, but are in
place in Google Chrome [7] and Microsoft Gazelle [20].

7 Related Work

In this section, we discuss CSRF protection mechanisms that where an inspi-
ration to our solution: RequestRodeo and the Adobe Flash cross-domain policy.
We also discuss two competing solutions: BEAP and RequestPolicy. Finally, we
discuss BEEP, which proposes server-enforced policies, which can lead to future
improvements of CSRF protection techniques.



CsFire: Transparent Client-Side Mitigation 31

RequestRodeo: The work of Johns and Winter aptly describes the issues with
CSRF and a way to resolve these issues [9]. They propose RequestRodeo, a client-
side proxy which protects the user from CSRF attacks. The proxy processes in-
coming responses and augments each URL with a unique token. These tokens are
stored, along with the URL where they originated. Whenever the proxy receives
an outgoing request, the token is stripped off and the origin is retrieved. If the
origin does not match the destination of the request, the request is considered
suspicious. Suspicious requests will be stripped of authentication credentials in
the form of cookies or HTTP authorization headers. RequestRodeo also pro-
tects against IP address based attacks, by using an external proxy to check the
global accessibility of web servers. If a server is not reachable from the outside
world, it is considered to be an intranet server that requires additional pro-
tection. The user will have to explicitly confirm the validity of such internal
cross-domain requests.

By stripping authentication credentials instead of blocking the request, Re-
questRodeo makes an important contribution, which lies at the basis of this
work. Protecting against IP address based attacks is novel, and could also be
added to our browser extension using the same approach. Johns and Winter do
encounter some difficulties due to the use of a client-side proxy, which lacks con-
text information. They also rely on a rewriting technique to include the unique
token in each URL. These issues gain in importance in a web 2.0 world, where
web pages are becoming more and more complex, which can be dealt with grace-
fully by means of a browser extension. Our solution is able to use full context
information to determine which requests are authorized or initiated by a user.

Adobe Flash: By default, the Adobe flash player does not allow flash objects
to access content retrieved from other websites. By means of a server-provided
configurable policy, Adobe provides the option to relax the secure by default
policy [1]. The target server can specify trusted origins, which have access to
its resources, even with cross-domain requests. This technique was a source of
inspiration for our own server-provided policies.

One unfortunate side-effect with the Adobe cross-domain policy and the ex-
ample above is that a lot of sites have implemented an allow all policy [23]. To
obtain a secure unified policy, smart composition of client and server-provided
policies is crucial.

BEAP (AntiCSRF): Mao, Li and Molloy present a technique called Browser-
Enforced Authenticity Protection [14]. Their solution resembles our solution, in
a sense that they also aim to remove authentication credentials and have imple-
mented a Firefox extension. Their policy to determine suspicious requests is quite
flexible and based on the fact that GET requests should not be used for sensitive
operations. As this may hold in theory, practice tells us otherwise, especially in
the modern web 2.0 world. GET requests not carrying an authorization header
are not considered sensitive, which leaves certain windows of attack open. BEAP
addresses one of these issues, namely UI redressing, by using a source-set instead
of a single source, the origin of the page. All the origins in the set, which are the



32 P. De Ryck et al.

origins of all ancestor frames, need to match the destination of the new request
before it is allowed.

We have tested the provided Firefox extension against various test scenarios.
The extension only works effectively against cross-domain POST requests, which
is an expected consequence of the protection policy they propose. Unfortunately,
the provided extension does not remove the authorization header and only
seems to remove the cookie header. Our solution proposes a more realistic and
more secure policy, and contributes technically by providing a clean way to
actually remove an authorization header in Firefox.

RequestPolicy: Samuel has implemented a Firefox extension against CSRF at-
tacks [18]. RequestPolicy is aimed at fully preventing CSRF attacks, which is
realized by blocking cross-domain traffic, unless the sites are whitelisted. The cri-
teria used to identify suspicious cross-domain traffic are user interaction and a
relaxed SOP. Whenever a user is directly responsible for a cross-domain request,
by clicking on a link or submitting a form, the request is allowed. Otherwise,
traffic going to another domain is blocked. the extension allows a way to add
whitelisted sites, such that traffic from x.com is allowed to retrieve content from
y.com. By default, the extension proposes some whitelist entries, such as traffic
from facebook.com to fbcdn.com.

When testing the RequestPolicy extension against our test scenarios, we found
that almost all CSRF attacks are effectively blocked. Only the attacks which are
caused by direct user interaction succeeded, which was expected. Unfortunately,
when testing the extension by surfing on the internet, our experience was severely
degraded. For starters, opening search results on Google stopped working. The
cause for this issue is that clicking a search result actually retrieves a Google
page6, which uses JavaScript to redirect the user to the correct website. This
JavaScript redirect is considered suspicious and therefore blocked. Apart from
the Google issue, other sites suffered very noticeable effects. For instance, the
popular site slashdot.org suffers major UI problems, since the stylesheet is
loaded from a separate domain. These issues do not occur in our solution, since
we only strip authentication information, instead of completely blocking cross-
domain traffic.

BEEP: Jim, Swamy and Hicks propose Browser-enforced Embedded Policies,
which uses a server-provided policy to defeat malicious JavaScript. They argue
that the browser is the ideal point to prevent the execution of malicious scripts,
since the browser has the entire script at execution time, even if it is obfuscated
or comes from multiple sources. Their solution is to inject a protection script at
the server, which will be run first by the browser and validates other scripts.

Such a server-provided but client-enforced technique is very similar to our
solution, which is able to use server-provided policies and enforces security at
the client-side. The solution proposed in BEEP can be an inspiration to work
towards unified client-server CSRF protection mechanisms.
6 When investigating this issue, not much information about this issue was found. We

have noticed that this effect does not happen consistently, but have not found any
logic behind this Google behavior.



CsFire: Transparent Client-Side Mitigation 33

8 Conclusion

We have shown the need for an autonomous client-side CSRF protection mecha-
nism, especially since the already existing server-side protection mechanisms fail
to get widely adopted and the available client-side solutions do not suffice. We
have provided an answer to this requirement with our client-side browser exten-
sion which effectively protects the user from CSRF attacks. A predefined policy
is used to determine which cross-domain requests need to be restricted, by either
blocking the request or stripping the request from authentication credentials.

This work builds on preliminary results presented in an earlier paper, but
presents much more detailed results in every section. We have conducted an
extensive traffic analysis, which resulted in a number of request properties that
can be used to determine the appropriate policy action for a cross-domain re-
quest. The predefined client-side policy uses these fine-grained criteria to achieve
a policy that protects the user, without influencing the user experience in a neg-
ative way. In case cross-domain traffic is intended, which is not known by the
client, servers can provide a cross-domain policy specifying which cross-domain
requests are allowed. The browser extension merges both the client-side policy
and the server-provided policy, to preserve the available protection mechanisms
but also to offer as much flexibility as possible.

The policy and the enforcement mechanism have been thoroughly evaluated
against CSRF attack scenarios, which cover all possibilities to mount a CSRF at-
tack using HTTP, HTML or CSS properties. We have also collected results from a
group of test users, which have actively used the extension during their normal
surfing sessions. Finally, we have evaluated the extension against a few com-
plex scenarios, such as sites using a single sign-on (SSO) mechanism or mashup
techniques. Aside from one minor issue with sites spanning multiple top-level
domains, no degrading effects where monitored, while all CSRF attack scenarios
where successfully prevented. Even on mashup sites and sites using SSO mech-
anisms, no problems where detected.

The solution in this paper is not yet perfect and there is still room for im-
provement. Future research will focus on the refinement of the composition of a
client-side policy and server-provided policies. The policies need to be extended
to include other traffic besides GET and POST. Finally, the use of other au-
thentication mechanisms, such as for instance SSL authentication, needs to be
further investigated to prevent CSRF attacks abusing such credentials.

Acknowledgements

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy, IBBT and the Research Fund
K.U. Leuven.

We would also like to thank our colleagues, students and members of the
OWASP Chapter Belgium, who volunteered to collect traffic information and
test CsFire.



34 P. De Ryck et al.

References

1. Adobe. Adobe Flash Player 9 security (July 2008)
2. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for Cross-Site Request

Forgery. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS 2008), pp. 75–88 (2008)

3. Crocker, D., Overell, P.: Augmented BNF for syntax specifications: ABNF (2008),
http://tools.ietf.org/html/rfc5234

4. Esposito, D.: Take advantage of ASP.NET built-in features to fend off web attacks
(January 2005), http://msdn.microsoft.com/en-us/library/ms972969.aspx

5. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1, rfc2616 (1999),
http://tools.ietf.org/html/rfc2616

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995)

7. Chromium Developer Documentation,
http://dev.chromium.org/developers/design-documents/process-models

8. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: WWW 2007: Proceedings of the 16th international
conference on World Wide Web (2007)

9. Johns, M., Winter, J.: RequestRodeo: Client side protection against session riding.
In: Proceedings of the OWASP Europe 2006 Conference (2006)

10. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing Cross Site Request Forgery at-
tacks. In: IEEE International Conference on Security and Privacy in Communica-
tion Networks (SecureComm), Baltimore, MD, USA (August 2006)

11. Klein, A.: Forging HTTP request headers with Flash (July 2006),
http://www.securityfocus.com/archive/1/441014

12. Linhart, C., Klein, A., Heled, R., Orrin, S.: HTTP request smuggling. Technical
report, Watchfire (2005)

13. Maes, W., Heyman, T., Desmet, L., Joosen, W.: Browser protection against Cross-
Site Request Forgery. In: Workshop on Secure Execution of Untrusted Code (Se-
cuCode), Chicago, IL, USA (November 2009)

14. Mao, Z., Li, N., Molloy, I.: Defeating Cross-Site Request Forgery Attacks with
Browser-Enforced Authenticity Protection. LNCS. Springer, Heidelberg (2001)

15. OWASP. The ten most critical web application security vulnerabilities
16. OWASP. CSRF Guard (October 2008),

http://www.owasp.org/index.php/CSRF_Guard

17. Raghvendra, V.: Session tracking on the web. Internetworking 3(1) (2000)
18. Samuel, J.: Request Policy 0.5.8, http://www.requestpolicy.com
19. van Kesteren, A.: Cross-origin resource sharing (March 2009),

http://www.w3.org/TR/2009/WD-cors-20090317/

20. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The
Multi-Principal OS Construction of the Gazelle Web Browser. Microsoft Research
Technical Report, MSR-TR-2009-16 (2009)

21. XPCOM - MDC (2008), https://developer.mozilla.org/en/XPCOM
22. Zalewski, M.: Browser Security Handbook (2008),

http://code.google.com/p/browsersec/wiki/Main

23. Zeller, W., Felten, E.W.: Cross-Site Request Forgeries: Exploitation and preven-
tion. Technical report (October 2008),
http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf

http://tools.ietf.org/html/rfc5234
http://msdn.microsoft.com/en-us/library/ms972969.aspx
http://tools.ietf.org/html/rfc2616
http://dev.chromium.org/developers/design-documents/process-models
http://www.securityfocus.com/archive/1/441014
http://www.owasp.org/index.php/CSRF_Guard
http://www.requestpolicy.com
http://www.w3.org/TR/2009/WD-cors-20090317/
https://developer.mozilla.org/en/XPCOM
http://code.google.com/p/browsersec/wiki/Main
http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf


Idea: Opcode-Sequence-Based Malware
Detection

Igor Santos1, Felix Brezo1, Javier Nieves1, Yoseba K. Penya2, Borja Sanz1,
Carlos Laorden1, and Pablo G. Bringas1

1 S3Lab
2 eNergy Lab

University of Deusto
Bilbao, Spain

{isantos,felix.brezo,javier.nieves,yoseba.penya,

borja.sanz,claorden,pablo.garcia.bringas}@deusto.es

Abstract. Malware is every malicious code that has the potential to
harm any computer or network. The amount of malware is increasing
faster every year and poses a serious security threat. Hence, malware
detection has become a critical topic in computer security. Currently,
signature-based detection is the most extended method within commer-
cial antivirus. Although this method is still used on most popular com-
mercial computer antivirus software, it can only achieve detection once
the virus has already caused damage and it is registered. Therefore, it
fails to detect new variations of known malware. In this paper, we pro-
pose a new method to detect variants of known malware families. This
method is based on the frequency of appearance of opcode sequences.
Furthermore, we describe a method to mine the relevance of each op-
code and, thereby, weigh each opcode sequence frequency. We show that
this method provides an effective way to detect variants of known mal-
ware families.

Keywords: malware detection, computer security, machine learning.

1 Introduction

Malware (or malicious software) is every computer software that has harmful in-
tentions, such as viruses, Trojan horses, spyware or Internet worms. The amount,
power and variety of malware increases every year as well as its ability to avoid all
kind of security barriers [1] due to, among other reasons, the growth of Internet.

Furthermore, malware writers use code obfuscation techniques to disguise an
already known security threat from classic syntactic malware detectors. These
facts have led to a situation in which malware writers develop new viruses and
different ways for hiding their code, while researchers design new tools and strate-
gies to detect them [2].

Generally, the classic method to detect malware relies on a signature database
[3] (i.e. list of signatures). An example of a signature is a sequence of bytes that is

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 35–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



36 I. Santos et al.

always present in a concrete malware file and within the files already infected by
that malware. In order to determine a file signature for a new malware executable
and to finally find a proper solution for it, specialists have to wait until that
new malware instance has damaged several computers or networks. In this way,
malware is detected by comparing its bytes with that list of signatures. When a
match is found the tested file will be identified as the malware instance it matches
with. This approach has proved to be effective when the threats are known in
beforehand, and it is the most extended solution within antivirus software.

Still, upon a new malware appearance and until the corresponding file signa-
ture is obtained, mutations (i.e. aforementioned obfuscated variants) of the orig-
inal malware may be released in the meanwhile. Therefore, already mentioned
classic signature-based malware detectors fail to detect those new variants [2].

Against this background we advance the state of art in two main ways. First,
we address here a new method that is able to mine the relevance of an opcode
(operational code) for detecting malicious behaviour. Specifically, we compute
the frequency with which the opcode appears in a collection of malware and
in a collection of benign software and, hereafter, we calculate a discrimination
ratio based on statistics. In this way, we finally acquire a weight for each opcode.
Second, we propose a new method to compute similarity between two executable
files that relies on opcode sequence frequency. We weigh this opcode sequence
frequency with the obtained opcode relevance to balance each sequence in the
way how discriminant the composing opcodes are.

2 Mining Opcode Relevance

Opcodes (or operational codes) can act as a predictor for detecting obfuscated or
metamorphic malware [4]. Some of the opcodes (i.e. mov or push), however, have
a high frequency of appearance within malware and benign executables, therefore
the resultant similarity degree (if based on opcode frequency) between two files
can be somehow distorted. Hence, we propose a way to avoid this phenomenon
and to give each opcode the relevance that it really has.

In this way, we have collected malware from the VxHeavens website [5] forming
a malware dataset of 13189 malware executables. This dataset contains only PE
executable files, and, more accurately, it is made up of different kind of malicious
software (e.g. computer viruses, Trojan horses, spyware, etc ). For the benign
software dataset, we have collected 13000 executables from our computers. This
benign dataset includes, for instance, word-processors, drawing tools, windows
games, internet browsers, pdf viewers and so on.

We accomplish the following steps for computing the relevance of each opcode.
First, we disassemble the executables. In this step, we have used The NewBa-
sic Assembler [6] as the main tool for obtaining the assembly files. Second,
using the generated assembly files, we have built an opcode profile file. Specif-
ically, this file contains a list with the operational code and the un-normalized
frequency within both datasets (i.e. benign software dataset and malicious soft-
ware dataset). Finally, we compute the relevance of each opcode based on the



Idea: Opcode-Sequence-Based Malware Detection 37

frequency with which it appears in both datasets. To this extent, we use Mutual
Information [7], I(X ; Y ) =

∑
yεY

∑
xεX p(x, y) log

(
p(x,y)

p(x)·p(y)

)
. Mutual informa-

tion is a measure that indicates how statistically dependant two variables are.
In our particular case, we define the two variables as each opcode frequency and
whether the instance is malware. In this way, X is the opcode frequency and
Y is the class of the file (i.e. malware or benign software), p(x, y) is the joint
probability distribution function of X and Y , p(x) and p(y) are the marginal
probability distribution functions of X and Y .

Furthermore, once we computed the mutual information between each opcode
and the executable class (malware of benign software) and we sorted them, we
created an opcode relevance file. Thereby, this list of opcode relevance can help
us to achieve a more accurate detection of malware variations since we are able
to weigh the similarity function using these calculated opcode relevance and
reducing the noise that irrelevant opcodes can produce.

3 Malware Detection Method

In order to detect both malware variants we extract the opcode sequences and
their frequency of appearance. More accurately, we define a program ρ as a
sequence of instructions I where ρ = (I1, I2, ..., In−1, In). An instruction is com-
posed by an operational code (opcode) and a parameter or list of parameters. In
this way, we assume that a program is made up of opcodes. These opcodes can
gather into several blocks that we call opcode sequences.

More accurately, we assume a program ρ as a set of ordered opcodes o, ρ =
(o1, o2, o3, o4, ..., on−1, on), where n is the number of instructions I of the program
ρ. A subgroup of opcodes is defined as an opcode sequence os where os ⊆ ρ, and
it is made up of opcodes o, os = (o1, o2, o3, ..., om−1, om), where m is the length
of the sequence of opcodes os.

First of all, we choose the length of opcode sequences. Afterwards, we com-
pute the frequency of appearance of each opcode sequence. Specifically, we use
term frequency [8], tfi,j = ni,j∑

k nk,j
, that is a weight widely used in information

retrieval. More accurately, ni,j is the number of times the term ti,j (in our case
opcode sequence) appears in a document d, and

∑
k nk,j is the total number

of terms in the document d (in our case the total number of possible opcode
sequences).

Further, we compute this measure for every possible opcode sequence of a
fixed length n, acquiring by doing so, a vector −→v made up of frequencies of
opcode sequences S = (o1, o2, o3, ..., on−1, on). We weigh the frequency of ap-
pearance of this opcode sequence using the weights described in section 2. To
this extent, we define weighted term frequency (wtf ) as the result of weighting
the relevance of each opcode when calculating the term frequency. Specifically,
we compute it as the result of multiplying term frequency by the calculated
weight of every opcode in the sequence. In this way, weight(o) is the calcu-
lated weight for the opcode o and tfi,j is the term frequency measure for the
given opcode sequence, wtfi,j = tfi,j ·

∏
oεS

weight(o)
100 . Once we have calculated



38 I. Santos et al.

the weighted term frequency, we have the vector of weighted opcode sequence
frequencies. −→v = (wtf1, wtf2, wtf3, ..., wtfn−1, wtfn).

We have focused on detecting known malware variants in this method. In this
way, what we want to provide is a similarity measure between two files. Once we
extract the opcode sequences that will act as features, we have a proper represen-
tation of the files as two input vectors −→v and −→u of opcode sequences. Hereafter,
we can calculate a similarity measure between those two vectors. In this way, we
use cosine similarity, sim(−→v ,−→u ) = cos (θ) =

−→v ·−→u
||−→v ||·||−→u || [9]. Therefore, we think

that this measure will give a high result when two versions of the same malware
instance are compared.

4 Experimental Results

For the following experiment, we have used two different datasets for testing the
system: a malware dataset and a benign software one. First, we downloaded a big
malware collection from VxHeavens [5] website conformed by different malicious
code such as trojan horses, virus or worms. Specifically, we have used the next
malware families: Agobot, Bifrose, Kelvir, Netsky, Opanki and Protoride.

We have extracted the opcode sequences of a fixed length (n) with n = 1 and
n = 2 for each malware and some of its variants. Moreover, we have followed the
same procedure for the benign software dataset. Hereafter, we have computed
the cosine similarity between each malware and its set of variants. Further, we
have computed the similarity of the malware instance with the whole benign
software dataset.

Specifically, we have performed this process for every malware executable file
within the dataset. For each malware family, we have randomly chosen one of
its variants as the known instance and we have computed the cosine similarity
between this variant and the other variants of that specific malware family.
Moreover, we have performed the same procedure with a set of benign software
in order to test the appearance of false positives.

Fig. 1 shows the obtained results of the comparison of malware families and
their variants for an opcode sequence length n of 1. In this way, nearly every
malware variant achieved a similarity degree between 90% and 100%. Still, the
results obtained when comparing with the benign dataset (see Fig. 2) show that
the similarity degree is too high, thus, this opcode sequence length seems to be
not appropriate.

For an opcode sequence length of 2, the obtained results in terms of mal-
ware variant detection(see Fig. 3) show that the similarity degrees are more
distributed in frequencies, however, the majority of the variants achieved a rela-
tively high results. In addition, Fig. 4 shows the obtained results for the benign
dataset. In this way, the results are better for this opcode sequence length, being
more frequent the low similarity ratios.

Summarizing, on one hand, for the obtained results in terms of similarity
degree for malware variant detection, the most frequent similarity degree is in
the 90-100% interval. Moreover, the similarity degree frequency decreases and so



Idea: Opcode-Sequence-Based Malware Detection 39

Fig. 1. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=1

Fig. 2. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=1

Fig. 3. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=2



40 I. Santos et al.

Fig. 4. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=2

Fig. 5. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=1 and n=2
combined

the frequency does. Therefore, this method will be able to detect reliably a high
number of malware variants after selecting the appropriate threshold of similarity
ratio for declaring an executable as malware variant. Nevertheless, some of the
executables were packed and, thereby, there are several malware variants that
when computing the similarity degree did not achieve a high similarity degree.

Still, the similarity degrees between the two kind of sets (i.e. malware variants
and benign software) are not different enough. Therefore, we decided to perform
another experiment where the different opcode sequence lengths are combined
(n = 1 and n = 2). Figures 5 and 6 show the obtained results. In this way,
the malware variant similarity degrees remained quite high whilst the benign
similarity degrees scrolled to lower results. On the other hand, for the obtained



Idea: Opcode-Sequence-Based Malware Detection 41

Fig. 6. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=1 and
n=2 combined

results in terms of similarity degree when comparing the malware instances with
the benign dataset, as one may think in beforehand, the behaviour of the system
yields to be nearly the opposite than when comparing it with its variants. In this
way, the system achieved low similarity degrees in the majority of the cases of
the benign dataset. Hence, if we select a threshold that allows us to detect the
most number of malware variants as possible whilst the number of false positives
is kept to 0, our method renders as a very useful tool to detect malware variants.

5 Related Work

There has been a great concern regarding malware detection in the last years.
Generally, we can classify malware detection in static or dynamic approaches.
Static detectors obtain features for further analysis without executing them since
dynamic detectors execute malware in a contained environment.

In this way, static analysis for malware detection can be focused on the binary
executables [10] or in source code [11] like the method proposed in this paper.

With regard to the binary analysis of the executables, there has been an hectic
activity around the use of machine-learning techniques over byte-sequences. The
first attempt of using non-overlapping sequence of bytes of a given length n as
features to train a machine-learning classifier was proposed by Schulz et al. [12].
In that approach the authors proposed a method using the printable ASCII
strings of the binary, tri-grams of bytes, the list of imported dynamically linked
libraries (DLL), the list of DLL functions imported and the number of functions
for each DLL. They applied multiple learning algorithms showing that multi-
Näıve Bayes perform the best. Kolter et al. [13] improved the results obtained
by Schulz et al. using n-grams (overlapping byte sequences) instead of non-
overlapping sequences. Their method used several algorithms and the best results
were achieved by a boosted decision tree. In a similar vein, a lot of work has



42 I. Santos et al.

been made over n-gram distributions of byte sequences and machine-learning
[14]. Still, most of the features they used for the training of the classifiers can
be changed easily by simply changing the compiler since they focus on byte
distributions.

Moreover, several approaches have been based in the so-called Control Flow
Graph Analysis. In this way, it is worth to mention the work of Christodescu
and Jha [2] that proposed a method based of Control Flow Analysis to handle
obfuscations in malicious software. Lately, Christodescu et. at. [15] improved the
previous work including semantic-templates of malicious specifications. Never-
theless, the time resources they consume render them as not already full prepared
to be adopted for antivirus vendors, although Control Flow Analysis techniques
have proved to obtain some very valuable information of malicious behaviours.

Dynamic analysis for malware detection, as aforementioned, runs a program
in a contained environment and collects information about it. Despite they are
limited by one execution flow, they can overcome the main issue of static analy-
sis: be sure that the code that will be executed is the one that is being analysed
[16]. Therefore, these methods do not have to face obfuscations or in-memory
mutation [17]. In this way, the safe environment can be based on a virtual ma-
chine [18] or based on DLL Injection and API Hooking [19].

6 Conclusions and Future Work

Malware detection has risen to become a topic of research and concern due to
its increasing growth in past years. The classic signature methods that antivirus
vendors have been using are no longer effective since the increasing number of
new malware renders them unuseful. Therefore, this technique has to be comple-
mented with more complex methods that provide detection of malware variants,
in an effort of detecting more malware instances with a single signature.

In this paper, we proposed a method detecting malware variants that relied
in opcodes sequences in order to construct a vector representation of the exe-
cutables. In this way, based upon some length sequences, the system was able
to detect the malicious behaviour of malware variants. Specifically, experiments
have shown the following abilities of the system. First, the system was able to
identify malware variants. Second, it was able to distinguish benign executables.

The future development of this malware detection system is oriented in three
main directions. First, we will focus on facing packed executables using a hybrid
dynamic-static approach. Second, we will expand the used features using even
longer sequences and more information like system calls. Finally, we will perform
experiments with a larger malware dataset.

References

1. Karsperky-Labs: Kaspersky Security Bulletin: Statistics 2008 (2009)
2. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-

terns. In: Proceedings of the 12th USENIX Security Symposium, February 2003,
pp. 169–186 (2003)



Idea: Opcode-Sequence-Based Malware Detection 43

3. Morley, P.: Processing virus collections. In: Proceedings of the 2001 Virus Bulletin
Conference (VB 2001), Virus Bulletin, pp. 129–134 (2001)

4. Bilar, D.: Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics 1(2), 156–168 (2007)

5. VX heavens (2009), http://vx.netlux.org/ (Last accessed: September 29, 2009)
6. NewBasic - An x86 Assembler/Disassembler for DOS,

http://www.frontiernet.net/~fys/newbasic.htm

(Last accessed: September 29, 2009)
7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: cri-

teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1226–1238 (2005)

8. McGill, M., Salton, G.: Introduction to modern information retrieval. McGraw-Hill,
New York (1983)

9. Tata, S., Patel, J.: Estimating the Selectivity of tf-idf based Cosine Similarity
Predicates. SIGMOD Record 36(2), 75–80 (2007)

10. Carrera, E., Erdélyi, G.: Digital genome mapping–advanced binary malware anal-
ysis. In: Virus Bulletin Conference, pp. 187–197 (2004)

11. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In: Proceedings of the 23rd IEEE Symposium on Security and Pri-
vacy, pp. 143–159 (2002)

12. Schultz, M., Eskin, E., Zadok, F., Stolfo, S.: Data mining methods for detection
of new malicious executables. In: Proceedings of the 22nd IEEE Symposium on
Security and Privacy, pp. 38–49 (2001)

13. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild.
In: Proceedings of the 10th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pp. 470–478. ACM, New York (2004)

14. Santos, I., Penya, Y., Devesa, J., Bringas, P.: N-Grams-based file signatures for
malware detection. In: Proceedings of the 11th International Conference on Enter-
prise Information Systems (ICEIS), Volume AIDSS, pp. 317–320 (2009)

15. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pp. 32–46 (2005)

16. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008)

17. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
Journal in Computer Virology 2(1), 67–77 (2006)

18. King, S., Chen, P.: SubVirt: Implementing malware with virtual machines. In: 2006
IEEE Symposium on Security and Privacy, pp. 314–327 (2006)

19. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using cwsandbox. IEEE Security & Privacy 5(2), 32–39 (2007)

http://vx.netlux.org/
http://www.frontiernet.net/~fys/newbasic.htm


Experiences with PDG-Based IFC

Christian Hammer

Purdue University�

cjhammer@purdue.edu

Abstract. Information flow control systems provide the guarantees that
are required in today’s security-relevant systems. While the literature has
produced a wealth of techniques to ensure a given security policy, there
is only a small number of implementations, and even these are mostly
restricted to theoretical languages or a subset of an existing language.

Previously, we presented the theoretical foundations and algorithms
for dependence-graph-based information flow control (IFC). As a comple-
ment, this paper presents the implementation and evaluation of our new
approach, the first implementation of a dependence-graph based anal-
ysis that accepts full Java bytecode. It shows that the security policy
can be annotated in a succinct manner; and the evaluation shows that
the increased runtime of our analysis—a result of being flow-, context-,
and object-sensitive—is mitigated by better analysis results and elevated
practicability. Finally, we show that the scalability of our analysis is not
limited by the sheer size of either the security lattice or the dependence
graph that represents the program.

Keywords: software security, noninterference, program dependence
graph, information flow control, evaluation.

1 Introduction

Information flow control is emerging as an integral component of end-to-end
security inspections. There is very active research on how to secure the gap
between access control and various kinds of I/O. Recent approaches to IFC are
mainly based on special type sytems [20,21], and increasingly also on other forms
of program analysis. This work reports on the experiences gained from our re-
cent approach of the latter kind [14], and relates the insight gained with other
tools based on type systems. The approach leveraged in this paper is based on
program dependence graphs [8], more precisely system dependence graphs [15],
which faithfully represent the semantics of a given program. The actual informa-
tion flow validation is a graph traversal in the style of program slicing, which is
a common program transformation on dependence graphs. The (backward) slice
of a given statement contains all statements that may semantically influence
that statement. Therefore, program slicing is closely connected to information
� This work was partially funded by Deutsche Forschungsgemeinschaft (DFG grant

Sn11/9-2) at Karlsruhe University, Germany, where the experiments were conducted,
and by the Office of Naval Research.

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 44–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Experiences with PDG-Based IFC 45

flow control, which (in its simplest form, known as noninterference) checks that
no secret input channel of a given program might be able to influence what is
passed to a public output channel [11].

The major contributions of this work are:

– This paper presents the first dependence-graph-based IFC for full Java byte-
code and its plugin integration into the Eclipse framework.

– Our IFC mechanism allows for succinct security policy specification as the
number of required annotations is greatly reduced compared to traditional
security type systems. This results a major improvement in practicability.

– The evaluation found that flow-, context-, and object-sensitive analysis pays
off: While the analysis time increases compared to insensitive analyses, the
results become significantly more precise, avoiding all sorts of false positives.

– Furthermore, the evaluation indicates that the analysis scales well to the
security kernels we had in mind and that the scalability of our IFC analyses
is not limited by either the size of the security lattice (which might be seen
as a measure of the security policy’s complexity), nor by the size of the
program’s dependence graph.

Previous work presented the theoretical foundations of dependence-graph-
based IFC and described algorithms to efficiently implement these techniques. All
these details are beyond the scope of this article, which focuses on presenting the
framework for IFC in Eclipse and evaluating the effectiveness of these techniques.
The interested reader is refered to our previous publications [12, 14] to find out
all the details that cannot be covered in this work.

2 IFC Analysis

To illustrate dependence-graph-based IFC, Fig. 2 shows a (partial) SDG for
Fig. 1. In the program, the variable sec is assumed to contain a secret value,

1 class A {
2 int x;
3 void set () { x = 0; }
4 void set(int i) { x = i;}
5 int get () { return x; }
6 }
7 class B extends A {
8 void set () { x = 1; }
9 }

10 class InfFlow {
11 PrintStream sysout = ...;
12 void main(String [] a){
13 //1. no information flow
14 int sec = 0 /*P:High */;

15 int pub = 1 /*P:Low */;
16 A o = new A();
17 o.set(sec );
18 o = new A();
19 o.set(pub );
20 sysout.println (

�������
o.get());

21 //2. dynamic dispatch
22 if (sec ==0 && a[0]. equals(
23 "007")) o = new B();
24 o.set ();
25 sysout.println (

�������
o.get());

26 }
27 }

Fig. 1. An example program for information flow control



46 C. Hammer

main

o o o

x

o o o

x

sec pub o = new B() o o

xo

sec = 0pub =  1 A o = new A() o.set(sec) o = new A() o.set(pub) print ln(o.get()) o.set() print ln(o.get())s e c = = 0

Fig. 2. SDG for the program in Figure 1

which must not influence printed output. First a new A object is created where
field x is initialized to sec. However, this object is no longer used afterward as
the variable is overwritten (“killed”) with a new object whose x field is set to
pub. Note that there is no path in the dependence graph from the initialization
of sec to the first print statement, which means that sec cannot influence that
output, as SDGs contain all possible information flows. This example demon-
strates that in our SDG-based analysis the x fields in the two A objects are
distinguished (object-sensitivity), the side-effects of different calls to set are not
merged (context-sensitivity), and flow-sensitivity kills any influence from the sec
variable to the first println. An analysis missing any of these three dimension of
sensitivity would reject this part of the program, thus producing a false positive.

The next statements show an illegal flow of information: Line 22 checks
whether sec is zero and creates an object of class B in this case. The invo-
cation of o.set is dynamically dispatched: If the target object is an instance of
A then x is set to zero; if it has type B, x receives the value one. Lines 22–24 are
analogous to the following implicit flow:

if (sec==0 && ...) o.x = 0 else o.x = 1;

In the PDG we have a path from sec to the predicate testing sec to o.set()
and its target object o. Following the summary edge one reaches the x field and
finally the second output node. Thus the PDG discovers that the printed value
in line 25 depends on the value of sec.

3 Eclipse Plugins for IFC

We have implemented SDG-based IFC analysis, including declassification, as de-
scribed in our previous work [14]. The prototype is an Eclipse plugin, which allows
interactive definition of security lattices, automatic generation of SDGs, annota-
tion of security levels to SDG nodes via source annotation and automatic security
checks. At the time of this writing, all these components are fully operational.

We implemented the lattice editor based on Eclipse’s GEF graph editing
framework. The lattice elements are represented as bit vectors [1, 9] to support
fast infimum/supremum operators when checking for illegal information flow. It
is worth noting that the algorithm of Ganguly et al. computes incorrect results
without adding synthetic nodes into edges that span more than one level (where
levels are defined in terms of the longest path between two nodes). The authors



Experiences with PDG-Based IFC 47

Fig. 3. The lattice editor in Eclipse with illegal graph

were not very specific concerning this restriction. Fortunately, these synthetic
nodes can safely be removed from the lattice after conversion to a bit vector.
Our editor attempts to convert the given graph to such a lattice. If this fails,
the user is notified that the graph does not represent a valid lattice. Otherwise
the lattice can be saved on disk for annotations. Figure 3 shows an example of
a non-trivial graph with top element “a 1” and bottom element “a 3”. But the
lattice conversion fails for this graph, as the elements “a 4” and “a 6” do not have
a unique upper bound: Both “a 2” and “a 5” are upper bounds for these elements,
which violates a crucial property of lattices. The problem view at the bottom
displays a detailed message to the user that describes the violation. If one of the
relation edges between those four elements were removed, a valid lattice would
be generated, which can be leveraged for annotating the source code.

The IFC algorithm was implemented in a two-stage version: As the first step,
the so-called summary declassification nodes are computed. If the dependence
graph already contained standard summary edges [15], these need to be removed
first, as they would disturb computation of summary declassification nodes. Still,
generating summary edges during SDG generation was not in vain: As summary
declassification nodes can only arise between nodes that originally were con-
nected by a summary edge, we can omit building the transitive closure of de-
pendences for all nodes that are not the target of a summary edge. Algorithm 2
of [14] is therefore initialized with these actual-out nodes only. Note that this
optimization does not improve the worst case complexity of the algorithm, but
it reduces analysis time in practice (see section 5). As a second step, the IFC
constraints are propagated through the backward slice of each output channel



48 C. Hammer

Fig. 4. Example program (with missing declassification) in our Eclipse plugin

according to Algorithm 1 of [14] . Our implementation does not generate these
constraints explicitly, but performs a fixed point analysis.

Figure 4 shows an example program but is missing a declassification in the
foo method. The Eclipse plugin features a full-fledged view for annotations and
security violations. User annotations are shown in the Joana IFC Annotations
view at the bottom of the figure. The message shows the kind of annotation (ANN
stands for provided security level, OUT for required security level, and RED
for declassification with both). Next to the message, the R and P annotations
are shown. The rest of the entries describe the annotated source position and
the ID of the SDG node. Another View, called “Joana IFC Marker/SDGNode
Matching” allows precise matching of the selected source to its respective SDG
node according to the debug information provided in the class file. The last
view, depicted on the right in Figure 4 lists all violations found by the last IFC
checking. For the example program, a run of the IFC algorithm determines a
security violation between nodes 36 (P (36) = secret) and 49 (R(49) = public)
because of the missing declassification in foo. When this declassification from
confidential to public is introduced, no more illicit flow is detected.

4 Case Studies

As an initial micro-benchmark to compare our approach with type-based IFC,
let us reconsider the program from Figure 1. Remember that PDG-based IFC
guarantees that there is no flow from the secure variable (annotated P (11) =
High) to the first output statement in line 20. Hence we analyzed the program
from Figure 1 using Jif [18]. Jif uses a generalization of Denning’s lattices, the



Experiences with PDG-Based IFC 49

so-called decentralized label model [19]. It allows to specify sets of security levels
(called “labels” based on “principals”) for every statement, and to attach a set of
operations to any label. This is written e.g. {o1 : r1, r2; o2 : r2; r3} and combines
access control with IFC.

But note that the decentralized labels encode these access control features in
an automatically generated standard security lattice and thus cannot overcome
the imprecision of type-based analysis. As an example, we adapted the first
part of Figure 1 to Jif syntax and annotated the declaration of o and both
instantiations of A with the principal {pp:}. The output statement was replaced
by an equivalent code that allowed public output. Jif reports that secure data
could flow to that public channel and thus raised a false alarm. In fact, no
annotation is possible that makes Jif accept the first part of Figure 1 without
changing the source code.

4.1 A JavaCard Applet

As another case study for IFC we chose the JavaCard applet called Wallet.1
It is only 252 lines long, but with the necessary API parts and stubs the PDG
consists of 18858 nodes and 68259 edges. The time for PDG construction was 8
seconds plus 9 for summary edges on an Intel Core 2 Duo CPU with 2.33GHz
and 2GB of RAM.

The Wallet stores a balance that is at the user’s disposal. Access to this
balance is only granted after supplying the correct PIN. We annotated all state-
ments that update the balance with the provided security level High and inserted
a declassification to Low into the getBalance method. The methods credit and
debit may throw an exception if the maximum balance would be exceeded or
if there is insufficient credit, resp. In such cases JavaCard applets throw an
exception, and the exception is clearly dependent on the result of a condition
involving balance. The exception is not meant to be caught but percolates to the
JavaCard terminal, so we inserted declassifications for these exceptions as well.
Besides this intended information flow, which is only possible upon user request
and after verifying the PIN, our analysis proved that no further information flow
is possible from the balance to the output of the JavaCard.

Note that this JavaCard applet—while operating on a restricted variant of
Java—leverages many features of this standard: In particular we analyzed about
85 static variables and included all control flow due to implicit exceptions into
our analysis without the need to explicitly declare or catch these. Some of these
features would at least require reengineering of source code, others are explicitly
prohibited by Jif, so this benchmark cannot be certified with Jif. Again we find
that the increased precision of dependence graph based analysis allows a more
permissive language.

4.2 The Battleship Example

The previous experiments demonstrated that our new approach is more general
than Jif, because we can analyze realistic programming languages (in principle
1 http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html

http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html


50 C. Hammer

all

player other

noOne

Fig. 5. The lattice for analyzing the battleship example

all languages that compile to Java bytecode) and accept a larger number of
secure programs due to increased precision. The next step in our evaluation will
examine a native Jif program to get a direct comparison of practicability between
these two systems. As a benchmark program, we chose the battleship example,
which comes with every Jif installation and implements a non-GUI version of
the popular battleship game. In this game, two players place ships of different
lengths on a rectangular board and subsequently “bombard” random cells on the
opponents board until one player has hit all the cells covered by adversary ships.

The source code of this program consists of about 500 lines plus the required
libraries and stubs. These yield an SDG consisting of 10207 nodes and 77290
edges. For this example we use a standard diamond lattice, where all ≤ player ≤
noOne and all ≤ other ≤ noOne but neither player ≤ other nor other ≤ player
(see Figure 5). This ensures that secret information of one player may not be
seen by the other player and vice versa.

Before this example program could be analyzed by our IFC analysis, it had
to be converted back to regular Java syntax. This included removal of all secu-
rity types in the program, conversion of all syntactic anomalies like parentheses
in throws clauses, and replacing all Jif peculiarities like its own runtime sys-
tem. Most of this process required manual conversion. We annotated the ship
placement strategy in the players initialization method with the security level
P (n) = player . The three declassification statements of the original Jif program
are modeled as declassifications from player to all in our system as well. Then
we annotated all parameters to System.out.println with R(x) = all , which
corresponds to the original program’s variable annotation.

When we checked the program with this security policy, illicit information
flow was discovered to all output nodes. Manual inspection found that all these
violations were due to implicit information flow from the players initialization
methods, more precisely, due to possible exceptions thrown in these methods.
However, closer inspection found that all of these exceptional control flow paths
are in fact impossible.

As an example consider the initialization method in Figure 6. If the program
checks whether a SSA variable is null, and only executes an instruction involving
this variable if it is not (cf. line 25), then no null-pointer exception may ever be
thrown at that instruction. However, our intermediate representation currently
does not detect that fact, even if two identical checks for null are present in the
intermediate representation, one directly succeeding the other. Jif supports such



Experiences with PDG-Based IFC 51

1 /**
2 * Initialize the board by placing ships to cover numCovered coords.
3 */
4 void init/*{P:}**/(int/*{}**/ numCovered) {
5 // Here what we would do in a full system is make a call to
6 // some non-Jif function , through the runtime interface , to
7 // get the position of the ships to place. That function would
8 // either return something random, or would implement some
9 // strategy . Here , we fake it with some fixed positions for

10 // ships.
11 final Ship/*[{P:}]**/ [] myCunningStrategy = {
12 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (1, 1), 1, true),
13 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (1, 3), 2, false),
14 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (2, 2), 3, true),
15 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (3, 4), 4, false),
16 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (5, 6), 5, true),
17 new Ship/*[{P:}]**/(new Coordinate/*[{P:}]**/ (5, 7), 6, false),
18 };
19

20 Board /*[{P:}]**/ board = this.board;
21 int i = 0;
22 for (int count = numCovered; count > 0 && board != null; ) {
23 try {
24 Ship/*[{P:}]**/ newPiece = myCunningStrategy[i++];
25 if (newPiece != null && newPiece .length > count) {
26 // this ship is too long!
27 newPiece = new Ship/*[{P:}]**/(newPiece .pos,
28 count ,
29 newPiece .isHorizontal);
30 }
31 board.addShip (newPiece );
32 count -= (newPiece ==null?0:newPiece .length );
33 }
34 catch (ArrayIndexOutOfBoundsException ignored ) {}
35 catch (IllegalArgumentException ignored ) {
36 // two ships overlapped. Just try adding the next ship
37 // instead .
38 }
39 }
40 }

Fig. 6. Initialization method of a Player in Battleship

local reasoning. For less trivial examples, where a final variable is defined in the
constructor, and may thus never be null in any instance method, Jif requires
additional annotation. We plan to integrate an analysis to detected such cases
even in the interprocedural case [16]. Jif can only support non-local reasoning
with additional user annotations.

Apart from null-pointer problems we found exceptional control flow due to
array stores, where Java must ensure that the stored value is an instance of the
array components, because of Java’s covariant array anomaly. When a variable
of an array type a[ ] is assigned an array of a subtype b[ ] where b ≤ a, then
storing an object of type a into that variable throws an ArrayStoreException.
Here Jif seems to have some local reasoning to prune trivial cases (see lines 11-
17 in Figure 6). Our intermediate representation does currently not prune such
cases, however, with the pointer analysis results we use for data dependences,
such impossible flow could easily be removed.

Lastly, for interprocedural analysis, we found that our intermediate repre-
sentation models exceptional return values for all methods, even if a method



52 C. Hammer

is guaranteed to not throw any exception. Pruning such cases can render the
control flow in calling methods more precise and remove spurious implicit flow.
Jif requires user annotations for such cases, as all possibly thrown exceptions
must either be caught or declared, even RuntimeExceptions, which do not have
to be declared in usual Java.

Currently, our tool does not offer such analysis, so there are only external
means to detect such spurious cases: Either by manual inspection, theorem prov-
ing (e.g. pre-/post-conditions), or path conditions [13]. After verifying that such
flow is impossible, we can block the corresponding paths in the dependence
graphs, and we do that with declassification. In contrast to normal declassifi-
cations, where information flow is possible but necessary, this declassification
models the guarantee that there is no information flow. As future work, we plan
to integrate analyses which prune impossible control flow to reduce the false
positive rate and thus the burden of external verification.

After blocking information flow through exceptions in Player’s initialization,
our IFC algorithm proved the battleship example secure with respect to the de-
scribed security policy. No further illicit information flow was discovered. During
the security analysis, based on only four declassifications, 728 summary declas-
sification nodes were created. This result shows that summary declassification
nodes essentially affect analysis precision, as they allow context-sensitive slicing
while blocking transitive information flow at method invocation sites. Instead
they introduce a declassification that summarizes the declassification effects of
the invoked methods. Note that the original Jif program contained about 150
annotations (in Figure 6 these are shown as gray comments), most of which are
concerned with security typing. Some of these annotations model, however, prin-
cipals and their authority. Still the number of annotations is at least an order
of magnitude higher than with our analysis. For a program that contains only
500 lines of code (including comments), this means that the annotation burden
in Jif is considerable.

One of the reasons why slicing-based IFC needs less annotations than type
systems is that side-effects of method calls are explicit in dependence graphs, so
no end-label (which models the impact of side-effects on the program counter)
is required, neither are return-value or exception labels. Those are computed as
summary information representing the dependences of called methods.

Apart from these labels, Jif requires explicit annotations to verify any non-
trivial property about exceptional control flow. In particular, many precondi-
tions (e.g., non-nullness) need to be included into the program text instead of
its annotations, e.g. explicit tests for null pointers or catch clauses, which are
typically followed by empty handlers as in the example shown in Figure 6. Pre-
conditions are therefore included as runtime tests to enable local reasoning. Such
coding style is an ordeal from a software engineering perspective, as it impedes
source comprehension and may conceal violated preconditions, which conflicts
with Dijkstra’s principle of the weakest precondition. What one really wants to
have is verification that such cases cannot happen in any execution and thus do
not need to be included into the source code.



Experiences with PDG-Based IFC 53

5 Scalability

The previous sections demonstrated the precision and practicability of our ap-
proach. To validate the scalability of our new slicing-based information flow
control, we measured execution times on a number of benchmarks with varying
numbers of declassification and using lattices based on different characteristics.
The benchmark programs are characterized in Table 1. We evaluated a bench-
mark of 8 student programs with an average size of 1kLoc, two medium-sized
JavaCard applets and a Java application. The student programs use very few
API calls, and for nearly all we designed stubs (for details see [12]) as to not
miss essential dependences. The “Wallet” case study is the same as in section 4.1,
the “Purse” applet is from the “Pacap” case study [5]. Both applet SDGs contain
all the JavaCard API PDGs, native methods have been added as stubs. The
program mp is the implementation of a mental poker protocol [3]. Again stubs
have been used where necessary.

Table 2 shows the characteristics of the lattices we used in our evaluations:
The first column displays the number of nodes in the lattice, the next column the
maximal height of the lattice. The number of impure nodes in the lattice, which
is shown in the next column, represents all nodes that have more than one parent
in the lattice. The final column displays the number of bits needed in the efficient

Table 1. Data for benchmark programs

Nr Name LOC Nodes Edges Time Summary
1 Dijkstra 618 2281 4999 4 1
2 Enigma 922 2132 4740 5 1
3 Lindenmayer 490 2601 195552 5 10
4 Network Flow 960 1759 3440 6 1
5 Plane-Sweep 1188 14129 386507 24 13
6 Semithue 909 19976 595362 24 33
7 TSP 1383 6102 15430 15 2
8 Union Find 1542 13169 990069 36 103
9 JC Wallet 252 18858 68259 8 9

10 JC Purse 9835 135271 1002589 145 742
11 mp 4750 271745 2405312 141 247

Table 2. Characteristics of the lattices in the evaluation

nodes height impure bits
Lattice A 5 5 0 6

Lattice B 8 4 1 5

Lattice C 8 6 2 10

Lattice D 12 8 2 14

Lattice E 24 11 7 25

Lattice F 256 9 246 266



54 C. Hammer

0

151

303

454

605

5 10 50 100 500
Lattice A Lattice B Lattice C
Lattice D Lattice E Lattice F

Fig. 7. Avg. execution time (y-axis, in s) of IFC analysis for the unionfind benchmark
with different lattices and varying numbers of declassifications (x-axis)

bitset encoding of Ganguly et al. [9]. This encoding allows near-constant2 com-
putation of infima (greatest lower bounds), which will turn out to be essential
for our evaluation. The lattices for evaluation have been designed such that they
cover different characteristics equally: Lattice A is a traditional chain lattice,
lattice B is more flat and contains an impure node. Lattice F has been auto-
matically generated by randomly removing edges from a complete subset lattice
of 9 elements. Conversion to bitset representation is only possible for the Hasse
diagram, i.e. the transitive reduction partial order, which is not guaranteed by
random removal of order edges. So we included a reduction phase before bitset
conversion. Interestingly, Table 2 illustrates that the bitset conversion usually
results in a representation with size linear in the number of lattice nodes.

Figure 7 shows the average execution time of 100 IFC analyses (y-axis, in
seconds) for the unionfind benchmark of Table 1 using the lattices of Table 2.
We chose the unionfind benchmark here, as it had the longest execution time,
and the other benchmarks essentially show the same characteristics. For all IFC
analyses we annotated the SDGs with 100 random security levels as provided
and required security level, respectively. Moreover, we created 5 to 500 random
declassifications to measure the effect of declassification on IFC checking (shown
on the x-axis). The numbers illustrate that our IFC algorithm is quite indepen-
dent of the lattice structure and size. In particular, we got a sub-linear increase
2 The infimum computation is in fact constant, but we need hashing to map lattice

elements to bitsets.



Experiences with PDG-Based IFC 55

0

15125

30250

45375

60500

5 10 50 100 500

Lattice A Lattice B Lattice C

Lattice D Lattice E Lattice F

Fig. 8. Time for summary declassification nodes (in s) of unionfind with different lat-
tices and varying numbers of declassifications (x-axis)

in execution time with respect to the lattice (and bitset) size. Apart from that,
the increase with the number of declassifications is also clearly sub-linear, since
the number of declassifications increases more than linear in our experiments
(see y-axis). Figure 8 depicts the execution time for computing summary de-
classification nodes, which is a prerequisite for precise IFC checking (for details
see [14, section 7]), therefore they have been acquired once for each combination
of program, lattice, and declassifications. They were determined with the same
random annotations as the numbers of Figure 7. Note that we did only compute
summary information between nodes that were originally connected by summary
edges. These numbers expose the same sub-linear correlations between time and
lattice size or numbers of declassifications, respectively.

Figure 9 and 10 show the average execution time (y-axis, in seconds) of 100
IFC analyses and the time for summary declassification node computation, re-
spectively, for all benchmark programs using the largest lattice and varying
numbers of declassifications. Lines in this graph use the scale depicted on the
right, while bars use a different scale, such that we included the numbers into
each bar. For most programs, the analyses took less than a minute, with only
semithue, purse, and unionfind requiring more time. Again, we found the correla-
tion between execution time and number of declassifications sub-linear. In fact,
the execution time for many benchmarks was lower with 500 declassifications
than with 100. These numbers clearly illustrate the scalability of our informa-
tion flow control analysis. There is no clear correlation between the number of
nodes in the dependence graph and analysis time.



56 C. Hammer

0 5 10 50 100 500
0

1.00

2.00

3.00

2

209

273

542

561

525

1

91 87

129 132

105

dijkstra enigma wallet purse lindenmayer mp networkflow planesweep semithue tsp unionfind

Fig. 9. Avg. execution time (y-axis, in s) of IFC analysis for all benchmark programs
with the largest lattice and varying numbers of declassifications (x-axis). Bars use a
different scale.

0 5 10 50 100 500
0

50

100

150

200

250

300

0K

21K

27K

54K

56K

52K

0K

9K 9K

13K 13K

10K

dijkstra enigma wallet purse lindenmayer mp networkflow planesweep semithue tsp unionfind

Fig. 10. Time for summary declassification nodes (y-axis, in s) for all benchmark pro-
grams with the largest lattice and varying numbers of declassifications (x-axis). Bars
use a different scale.



Experiences with PDG-Based IFC 57

However, there seems to be a correlation between the number of edges in the
SDG and the execution time. Unlike slicing, our IFC analysis is not linear in
the number of SDG nodes and edges, but must find a fixed point in the con-
straint system with respect to the given lattice. Therefore, it may traverse a
cycle in the SDG as often as the lattice is high, and when cycles are nested this
effect may become even worse. Our current implementation does not circumvent
these effects, so one observes that the programs with the most edges yield to
a substantial increase in analysis time. But note that the largest program, mp,
does not belong to the outliers but behaves good-naturedly. One reason might
be the different program structure, which can also be seen from original sum-
mary edge computation (see Table 1), which is considerably lower than for other
large programs. This program does—unlike JavaCard applets and our student
programs—not have a big loop in the main method which may invoke nearly
all functionality. Concluding, we assume that the program’s structure plays a
bigger role than the pure number of nodes or edges for analysis time.

While future work must evaluate the impact of standard slicing optimizations
on this technique for faster fixed point computation, we think that 1 minute
execution time, as observed by the majority of our test cases, is definitely rea-
sonable for a security analysis. But even the three outliers require maximally 1.5
hours (including summary declassification analysis), which should be acceptable
for a compile-time analysis that usually needs to be done only once.

5.1 Future Work

While we presented evidence for precision, scalability, and practicability, there is
still room for further improvements: In particular, we expect that optimizations
for slicing, e.g., as presented by Binkley et al. [6], apply to our information
flow analyses as well. These techniques produce up to 71% reduction in run-
time and thus significantly improve scalability. Further research must evaluate
which of these techniques are applicable to information flow control. Apart from
that, compositionality is given for type systems but other analyses, like pointer
analysis which is a prerequisite for our dependence graphs, are usually not. For
more scalability of our approach, we plan to investigate how to make dependence-
graph-based IFC compositional.

6 Related Work

Research in information flow control has been predominantly theoretic during the
last decade (cf. e.g. [17, 20, 21]) where proposed systems were not implemented
at all. More recently, increasingly more approaches are at least implemented
for a rudimentary language, often just a while-language. With Java being a
mainstream language, several approaches have targeted a core bytecode language
(e.g. [2, 4]), but essential features like exceptions, constructors, or unstructured
control flow are often not taken into account. Smith and Thober [22] present a
type inference algorithm for a subset of Java which ameliorates the immoderate



58 C. Hammer

annotation burden of type based IFC. In contrast, the work described in this
paper supports full Java bytecode with unstructured control flow, procedures,
exception handling, etc., and shows that it scales to realistic security kernels.

Genaim and Spoto [10] define an abstract interpretation of the CFG looking
for information leaks. It can handle all bytecode instructions of single-threaded
Java and conservatively handles implicit exceptions of bytecode instructions. The
analysis is flow- and context-sensitive but does not differentiate between fields of
different objects. Instead, they propose an object-insensitive solution that folds
together all fields of a given class. In our experience [12], object-insensitivity
yields too many spurious dependences. The same is true for the approximation
of the call graph by class hierarchy analysis. In this setting, both will result in
many false alarms.

Chandra and Franz [7] implemented a hybrid IFC framework, where Java
bytecode is analyzed statically and the security policy is checked dynamically,
which allows dynamic updates of the policy. However, dynamic enforcement im-
poses a slowdown factor of 2. To improve performance of dynamic label compu-
tation, they only allow fully ordered sets instead of the general security lattices
used in this work. It is, however, not clear if fast infimum computation [9] is ac-
tually slower than their more restrictive scheme. In contrast to their system we
currently only allows a fixed security policy with purely static checking, which
induces higher compile time overhead in favor of zero runtime overhead.

For several years, the most complete and elaborate system for Java-like lan-
guages has been Jif [18]. As noted before, Jif is neither an extension nor a
restriction of Java, but an incompatible variant. Therefore it requires consider-
able reengineering efforts to convert a standard Java program to Jif. The newest
version offers confidentiality as well as integrity checking in the decentralized la-
bel model. Our system differs from Jif in that it directly analyzes Java bytecode
without requiring any refactoring of the source code. It, too, allows both integrity
as well as confidentiality checking, though that entails manual definition of the
security lattice, while Jif’s decentralized label model automatically generates an
appropriate lattice from the annotations. Still, our experiments indicate that the
increased analysis cost is in fact mitigated by a significantly lower annotation
burden and elevated analysis precision.

7 Conclusion

This paper evaluates our novel approach for information flow control based
on system dependence graphs as defined in our previous work [14]. The flow-
sensitivity, context-sensitivity, and object-sensitivity of our slicer extends natu-
rally to information flow control and thus excels over the predominant approach
for information flow control, which is security type systems.

The evaluation section showed that our new algorithm for information flow
control dramatically reduced the annotation burden compared to type systems,
due to its elevated precision. Furthermore, empirical evaluation showed the scal-
ability of this approach. While it is clearly more expensive than security type



Experiences with PDG-Based IFC 59

systems, the evaluation demonstrates that security kernels are certified in rea-
sonable time. As this certification process is only needed once at compile time,
even an analysis that takes hours is acceptable when it guarantees security for
the whole lifetime of a software artifact. As a consequence, this paper makes
recent developments in program analysis applicable to realistic programming
languages. The presented system implements the first dependence-graph-based
information flow control analysis for a realistic language, namely Java bytecode.
While dependence graph based IFC is not a panacea in that area, it neverthe-
less shows that program analysis has more to offer than just sophisticated type
systems.

References

[1] Aït-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM TOPLAS 11(1), 115–146 (1989)

[2] Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-
oriented programs. In: POPL 2006, pp. 91–102. ACM, New York (2006)

[3] Askarov, A., Sabelfeld, A.: Security-typed languages for implementation of cryp-
tographic protocols: A case study. In: di Vimercati, S.d.C., Syverson, P.F., Goll-
mann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 197–221. Springer, Heidel-
berg (2005)

[4] Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference Java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–
140. Springer, Heidelberg (2007)

[5] Bieber, P., Cazin, J., Marouani, A.E., Girard, P., Lanet, J.L., Wiels, V., Zanon, G.:
The PACAP prototype: a tool for detecting Java Card illegal flow. In: Attali, I.,
Jensen, T. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 25–37. Springer, Heidelberg
(2001)

[6] Binkley, D., Harman, M., Krinke, J.: Empirical study of optimization techniques
for massive slicing. ACM TOPLAS 30(1), 3 (2007)

[7] Chandra, D., Franz, M.: Fine-grained information flow analysis and enforcement
in a Java virtual machine. In: 23rd Annual Computer Security Applications Con-
ference, pp. 463–475. IEEE, Los Alamitos (2007)

[8] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM TOPLAS 9(3), 319–349 (1987)

[9] Ganguly, D.D., Mohan, C.K., Ranka, S.: A space-and-time-efficient coding al-
gorithm for lattice computations. IEEE Trans. on Knowl. and Data Eng. 6(5),
819–829 (1994)

[10] Genaim, S., Spoto, F.: Information flow analysis for Java bytecode. In: Cousot,
R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 346–362. Springer, Heidelberg (2005)

[11] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Symposium on
Security and Privacy, pp. 75–86. IEEE, Los Alamitos (1984)

[12] Hammer, C.: Information flow control for Java - a comprehensive approach based
on path conditions in dependence graphs. Ph.D. thesis, Universität Karlsruhe
(TH), Fak. f. Informatik (2009), URN urn=urn:nbn:de:0072-120494

[13] Hammer, C., Schaade, R., Snelting, G.: Static path conditions for Java. In: PLAS
2008, pp. 57–66. ACM, New York (2008)



60 C. Hammer

[14] Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. Journal of
Information Security 8(6), 399–422 (2009)

[15] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM TOPLAS 12(1), 26–60 (1990)

[16] Hubert, L.: A non-null annotation inferencer for Java bytecode. In: PASTE 2008,
pp. 36–42. ACM, New York (2008)

[17] Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL 2006, pp. 79–90.
ACM, New York (2006)

[18] Myers, A.C., Chong, S., Nystrom, N., Zheng, L., Zdancewic, S.: Jif: Java infor-
mation flow, http://www.cs.cornell.edu/jif/

[19] Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM TOSEM 9(4), 410–442 (2000)

[20] Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

[21] Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security 17(5), 517–548 (2009)

[22] Smith, S.F., Thober, M.: Improving usability of information flow security in Java.
In: PLAS 2007, pp. 11–20. ACM, New York (2007)

http://www.cs.cornell.edu/jif/


Idea: Java vs. PHP: Security Implications of
Language Choice for Web Applications

James Walden, Maureen Doyle, Robert Lenhof, and John Murray

Department of Computer Science
Northern Kentucky University
Highland Heights, KY 41099

Abstract. While Java and PHP are two of the most popular languages
for open source web applications found at freshmeat.net, Java has had
a much better security reputation than PHP. In this paper, we examine
whether that reputation is deserved. We studied whether the variation
in vulnerability density is greater between languages or between differ-
ent applications written in a single language by comparing eleven open
source web applications written in Java with fourteen such applications
written in PHP. To compare the languages, we created a Common Vul-
nerability Metric (CVM), which is the count of four vulnerability types
common to both languages. Common Vulnerability Density (CVD) is
CVM normalized by code size. We measured CVD for two revisions of
each project, one from 2006 and the other from 2008. CVD values were
higher for the aggregate PHP code base than the Java code base, but
PHP had a better rate of improvement, with a decline from 6.25 to 2.36
vulnerabilities/KLOC compared to 1.15 to 0.63 in Java. These changes
arose from an increase in code size in both languages and a decrease in
vulnerabilities in PHP. The variation between projects was greater than
the variation between languages, ranging from 0.52 to 14.39 for Java and
0.03 to 121.36 in PHP for 2006. We used security and software metrics
to examine the sources of difference between projects.

Keywords: web application security, security metrics, open source.

1 Introduction

While Java and PHP are two of the most popular languages for open source web
applications found at Freshmeat [6], they have quite different security reputa-
tions. In this paper, we examine whether the variation in vulnerability density is
greater between languages or between different applications written in a single
language. We compare eleven open source web applications written in Java with
fourteen such applications written in PHP. We also analyzed the source code of
two different revisions of each of these applications to track the evolution of vul-
nerability density over time. PHP applications included both PHP 4 and PHP
5 code. The Java applications were compiled with Sun Java SE 6, but the 2006
versions of some applications had to be compiled with Sun Java SE 5.

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 61–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

freshmeat.net


62 J. Walden et al.

Despite differences in security reputations, more than twice as many open
source web applications are written in PHP than Java, and twelve of the fourteen
PHP applications studied are more popular than any of the Java applications [6].
In part, PHP’s poor security reputation [9] arises from default language features
enabled in earlier versions of the language. However, these features have grad-
ually been turned off as defaults or removed from the language. For example,
the register globals feature which automatically created program variables from
HTTP parameters was turned off as default in PHP 4.2 and removed in PHP 6.

We measured security through the number of vulnerabilities of types common
to both languages as reported by a static analysis tool. Static analysis tools find
common secure programming errors by evaluating source code without executing
it. Static analysis has the advantage of being repeatable and checking all parts of
the code equally, unlike human code reviewers or vulnerability researchers. The
objective nature of static analysis makes it suitable for comparing different code
bases, though, like human reviewers, static analysis tools make mistakes at times.
We computed code size and complexity metrics and also a security resources
indicator metric [15] to examine the source of differences between projects.

We discuss related work in section 2 and study design in section 3. Overall
results are described in section 4, with section 5 analyzing results by vulnerabil-
ity type. Sections 6 and 7 examine software and security metrics to determine
the causes of differences between applications. Limitations of our analysis are
discussed in section 8. Section 9 finishes the paper, giving conclusions and de-
scribing future work.

2 Related Work

Coverity used their Prevent static analysis tool to analyze a large number of open
source projects written in C and C++ [3], using the static analysis vulnerability
density metric. Fortify analyzed a small number of Java projects [5] with their
static analysis tool, using the same metric. Nagappan used static analysis tools
to measure defect density [8] to predict post-release defects. Note that defect
density may not correlate with vulnerability density, as security flaws differ from
reliability flaws.

Ozment and Schechter [12] and Li et. al. [7] studied how the number of security
issues evolves over time. Ozment found a decrease in OpenBSD, while Li found
an increase in both Mozilla and Apache.

Shin [14] and Nagappan et. al. [10] analyzed correlations of cyclomatic com-
plexity with vulnerabilities. They had mixed results, with Shin finding a weak
correlation for Mozilla and Nagappan finding three projects out of five having
strong correlations. Shin also analyzed nesting complexity, finding significant but
weak correlations with vulnerabilities for Mozilla.

Neuhaus and Zimmerman [11] studied the effect of dependencies on vulner-
abilities in several thousand Red Hat Linux packages. Zimmerman et. al. [16]
analyzed the problem of predicting defects based on information from other
projects, finding that only 3.4% of cross-project predictions were both signifi-
cant and had strong correlation coefficients.



Idea: Java vs. PHP: Security Implications of Language Choice 63

3 Study Design

We examined the project history of 25 open source web applications, eleven
of which were written in Java, fourteen of which were written in PHP. The
applications are listed in table 1.

Table 1. Open Source Web Applications

Java PHP

alfresco contelligent daisywiki achievo obm roundcube
dspace jackrabbit jamwiki dotproject phpbb smarty
lenya ofbiz velocity gallery2 phpmyadmin squirrelmail
vexi xwiki mantisbt phpwebsite wordpress

mediawiki po

To be selected, an application had to have a source code repository with
revisions ranging from July 2006 to July 2008. The selected applications were
the only applications that had revisions from those periods that could be built
from source code in their repositories. While most third-party PHP libraries
can be found in the PEAR or PECL repositories, third-party Java libraries are
scattered among a variety of sites. Java developers often use tools like Maven to
retrieve third-party software and manage builds.

Eight Java applications were not included in the study because they could not
be built due to missing third-party software. Some older revisions used reposi-
tories of third-party tools that no longer existed, in which case we modified the
Maven configuration to point to current repositories. This approach succeeded
in some cases, but failed in others, as current Maven repositories do not con-
tain every software version needed by older revisions. Some projects used other
techniques to fetch dependencies, including ivy and custom build scripts.

Only five of the PHP projects and none of the Java projects maintained a
public vulnerability database or had a security category in its bug tracker. While
there were 494 Common Vulnerabilities and Exposures (CVE) listings for the
PHP projects, there were only six such listings for the Java projects. The number
of CVE entries does not necessarily indicate that a project is more or less secure.
Due to the sparse and uneven nature of this data, documented vulnerabilities
could not be used to measure the security of these applications. Instead, we used
static analysis to find vulnerabilities in the source code of these applications.

We used Code Analyzer to compute SLOC, cyclomatic complexity, and nest-
ing complexity for Java, and SLOCCount and Code Sniffer for PHP. We used
Fortify Source Code Analyzer version 5.6 for static analysis. While there is no re-
lease quality free PHP static analysis tool, two of the Java web applications used
the free FindBugs [1] static analysis tool. No web application showed evidence
of use of a commercial static analysis tool in the form of files in the repository
(which is how we identified use of FindBugs) or web site documentation.

Vulnerability density can be measured using the static analysis vulnerability
density (SAVD) metric [15], which normalizes vulnerability counts by KSLOC



64 J. Walden et al.

(thousand source lines of code.) However, Fortify finds 30 types of vulnerabilities
for Java and only 13 types for PHP in our set of applications, which prevents
SAVD from being compared directly between the two languages. Since only four
vulnerability types are shared between the two groups of applications we studied,
we created a common vulnerability metric (CVM), which is the sum of those four
vulnerability types, to more accurately compare results between Java and PHP.
Common vulnerability density (CVD) is CVM normalized by KSLOC.

The four common vulnerability types were cross-site scripting, SQL injection,
path manipulation, and code injection. Three of the four types are in the top
five application vulnerabilities reported by MITRE in 2007 [2]. The two missing
types from MITRE’s top five are PHP remote file inclusion, which is found only
in PHP, and buffer overflows, which are found in neither language.

4 Results

Examining the aggregate code base of the fourteen PHP applications, we found
that common vulnerability density declined from 6.25 vulnerabilities/KSLOC in
2006 to 2.36 in 2008, a decrease of 62.24%. Over the same period, CVD declined
from 1.15 in to 0.63 in the eleven Java applications, a decrease of 45.2%. Common
vulnerabilities in PHP declined from 5425 to 3318, while common vulnerabilities
increased from 5801 to 7045 in Java. The decrease in density for Java is the
result of a tremendous increase in code size, from 5 million to 11 million SLOC.
The expansion of the PHP code base was much smaller, from 870,000 to 1.4
million SLOC.

Java projects were larger on average than PHP projects. While one Java
project, xwiki, had over a million of lines of code, the other ten Java projects
ranged from 30,000 to 500,000 lines. The largest PHP project had 388,000 lines,
and the smallest had under 6,000 lines, with the other twelve ranging from
25,000 to 150,000 lines. This difference tends to support the contention that PHP
requires fewer lines of code to implement functionality than Java, especially as
projects implementing the same type of software, such as wikis, were smaller in
PHP than Java.

If we compare all vulnerability types, including all 30 categories of Java vulner-
abilities and 13 categories of PHP vulnerabilities, we find that the vulnerability
density of the Java code base decreased from 5.87 to 3.85, and PHP decreased
from 8.86 to 6.02 from 2006 to 2008. The total number of PHP vulnerabili-
ties increased from 7730 to 8459, while the total number of Java vulnerabilities
increased from 29,473 to 42,581.

CVD varied much more between projects than between languages. In 2006,
PHP projects ranged from 0.03 to 121.4 vulnerabilities/KLOC while Java
projects had a much smaller range from 0.52 to 14.39. In 2008, both ranges
shrank, with PHP projects varying from 0.03 to 60.41 and Java projects ranging
from 0.04 to 5.96. Photo Organizer (po) had the highest CVD for both years.
Figures 1 and 2 show change in vulnerability density between the initial and
final revision for each project. In sections 6 and 7, we examine some possible
sources of these differences between projects.



Idea: Java vs. PHP: Security Implications of Language Choice 65

Fig. 1. Change in CVD for Java Fig. 2. Change in CVD for PHP

5 Vulnerability Type Analysis

In this section, we examine the four vulnerability types that make up the CVM:
cross-site scripting, SQL injection, path manipulation, and command injection.
Figure 3 shows the changes in each vulnerability type between 2006 and 2008
for the aggregate Java and PHP code bases. The number of vulnerabilities in all
four categories increased for Java, while they decreased for PHP.

Individual projects did not follow these overall patterns; two Java projects,
contelligent and jamwiki, had reductions in three of the four categories. No Java
project reduced the number of command injections. Two projects, alfresco and
jackrabbit, did not reduce the number of vulnerabilities in any category.

Despite the overall decrease for PHP, nine of the fourteen PHP applications
increased CVD. Two projects showed small decreases, while the remaining three
contributed the bulk of the vulnerability reductions: photo organizer, squirrel-
mail, and wordpress. Photo organizer is the only PHP project that saw a re-
duction in all four error types. Eight of the remaining PHP projects increased
cross-site scripting errors, and nine increased path manipulation errors.

Fig. 3. Type Contribution to CVM Fig. 4. Type Changes: 2006-2008



66 J. Walden et al.

We also examined the contribution of each vulnerability type to the overall
CVM and how that changed over the two years. Figure 4 compares the percentage
contribution of each of the four vulnerabilities to the total CVM for Java and
PHP projects in 2006 and 2008.

The 2008 ranking of the contributions of each error type for both languages
and both years are the same: cross-site scripting, followed by path manipulation,
SQL injection, and Command Injection. The total number of command injections
is tiny compared to the other three types, which are found in MITRE’s top five.
The majority of the PHP change resulted from removing SQL injection flaws.
Cross-site scripting vulnerabilities showed the largest decrease in Java, though
the change was not as dramatic as the SQL injection reduction in PHP.

6 Software Metric Analysis

Based on prior work and research [3,8,10,12,13,15], we selected software metrics
which had demonstrated correlations to vulnerability or defect density: cyclo-
matic complexity (CC) and nesting complexity. We used the same metric def-
initions as in [15], including three variants of each complexity metric: average,
total, and maximum. Average is computed per-function for PHP and per-class
for Java. While PHP 5 supports classes, these applications organized their code
primarily with functions.

Figure 5 displays the correlations of metrics to CVD for both revisions. Cor-
relation was computed using the Spearman rank correlation coefficient (ρ) since
no assumptions can be made about the underlying distributions.

Fig. 5. ΔMetric correlations to ΔCVD Fig. 6. Metric correlations to CVD

Significant correlations were found for maximum cyclomatic complexity and
nesting complexity with change in CVD over the two year period (p = 0.02)
for Java projects, but no correlations are signficant for the remaining metrics.
While total code complexity is an indicator of changes in vulnerability density
for Java projects, there are no significant correlations between software metrics
and CVD for PHP projects.



Idea: Java vs. PHP: Security Implications of Language Choice 67

We also compared change in metric values over the time period with change
in CVD. We found only one signficant correlation; CVD is negatively correlated
with SLOC for PHP projects. Since CVD decreased with time for this group of
projects while SLOC increased, this result is not unexpected.

7 Security Resource Indicator

We measured the importance of security to a project by counting the public
security resources made available on the project web site. We used the secu-
rity resource indicator metric (SRI) [15], which is based on four items: security
documentation for application installation and configuration, a dedicated e-mail
alias to report security problems, a list of vulnerabilities specific to the appli-
cation, and documentation of secure development practices, such as techniques
to avoid common secure programming errors. The SRI metric is the sum of the
four indicator items, ranging from zero to four.

Six of the eleven Java projects had security documentation, but none of the
projects had any of the other three indicators. These results are similar to the
results of Fortify’s survey [5], in which only one of the eleven projects they
examined had a security e-mail alias and two had links to security information.
Their survey did not include the other components of the SRI metric.

PHP results were substantially different. While the percentage of projects with
security documentation was lower, with only five of the fourteen projects having
such documentation, six PHP projects had security e-mail contacts, five had
vulnerability databases, and four had secure coding documentation. While there
is no significant correlation of SRI with change in CVD, there is a significant
correlation (p < 0.05) with a strong Spearman rank correlation coefficient, ρ, of
0.67, of SRI with change in SAVD, counting all PHP vulnerability categories.

The difference in SRI may result from the differences in application popularity.
Open source PHP web applications are much more widely used than open source
Java web applications. Popular projects are more likely to have vulnerabilities
listed in the National Vulnerability Database [15], and therefore have a stronger
incentive to track vulnerabilities and provide security contacts.

In addition to the greater number and higher Freshmeat popularity of PHP
applications, language popularity is also revealed in what languages are sup-
ported by web hosting providers. Sixteen of the top 25 web hosting providers
from webhosting.info listed supported languages: 87.5% supported PHP while
only 25% supported Java. Several of the top hosting providers offered hosting
for popular PHP applications, including Drupal, Joomla, Mambo, phpBB, and
WordPress. None provided hosting for specific Java web applications.

8 Analysis Limitations

The 25 open source web applications were the only projects found on freshmeat.
net that met our analysis criteria. Our analysis may not apply to other projects

webhosting.info
freshmeat.net
freshmeat.net


68 J. Walden et al.

that were not analyzed in this work. Different static analysis tools look for dif-
ferent types of vulnerability and use different analysis techniques, so the vul-
nerability density from one tool cannot be compared directly to another. Static
analysis tools also search for different vulnerabilities in different languages.

Static analysis tools report false positives, where a program mistakenly iden-
tifies a line of code as containing a vulnerability that it does not. Walden et al.
[15] found that the Fortify static analysis tool had a false positive rate of 18.1%
when examining web applications written in PHP. Coverity [3] found a false
positive rate of less than 14% for millions of lines of C and C++ code.

9 Conclusion

We found that Java web applications had a substantially lower CVD than similar
applications written in PHP, with 2008 values of 2.36 vulnerabilities/KSLOC
for PHP and 0.63 for Java. Both sets of applications improved from 2006 to
2008, with PHP improving faster due to a decrease in vulnerability count while
Java’s improvement was due to a lower rate of vulnerabilities being inserted
as code size grew. A large part of PHP’s decrease was from a decline in SQL
injection vulnerabilities, which could arise from higher usage of parameterized
query interfaces as hosting providers offered newer versions of PHP database
libraries.

The variation between projects was much greater than the variation between
languages, ranging from 0.52 to 14.39 vulnerabilities/KSLOC for Java and 0.03
to 121.36 in PHP for 2006. Eight of the PHP projects had higher vulnerability
densities in 2008 than 2006, while only three Java projects did. SRI was a use-
ful predictor of how vulnerabilities evolved in PHP projects, but not for Java
since none of the Java projects had security contacts or vulnerability listings.
Complexity metrics were useful predictors for Java but not PHP vulnerability
evolution.

In summary, programming language is not an important consideration in de-
veloping secure open source web applications. The correlation coefficient, ρ =
−0.07, between language and CVD, was quite low, but it was not statistically
significant. However, neither language had a clear advantage over the other in
CVD over time and the variation between applications was much larger than the
variation between languages.

References

1. Ayewah, N., Pugh, W.J., Morgenthaler, D., Penix, J.: Zhou. Y.: Evaluating Static
Analysis Defect Warnings On Production Software. In: The 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(June 2007)

2. Christey, S.M., Martin, R.A.: http://www.cve.mitre.org/docs/vuln-trends/

index.html (published May 22, 2007)
3. Coverity, Coverity Scan Open Source Report 2009, http://www.coverity.com/

scan/ (September 23, 2009)

http://www.cve.mitre.org/docs/vuln-trends/index.html
http://www.cve.mitre.org/docs/vuln-trends/index.html
http://www.coverity.com/scan/
http://www.coverity.com/scan/


Idea: Java vs. PHP: Security Implications of Language Choice 69

4. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach.
Brooks/Cole, Massachusetts (1998)

5. Fortify Security Research Group and Larry Suto: Open Source Security Study (July
2008), http://www.fortify.com/landing/oss/oss_report.jsp

6. http://freshmeat.net/ (accessed September 27, 2009)
7. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?:

an empirical study of bug characteristics in modern open source software. In: Pro-
ceedings of the 1st workshop on Architectural and system support for improving
software dependability, Association of Computing Machinery, New York, pp. 25–33
(2006)

8. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect
density. In: Proceedings of the 27th International Conference on Software Engineer-
ing, Association of Computing Machinery, New York, pp. 580–586 (2005)

9. Shiflett, C.: PHP Security Consortium Redux, http://shiflett.org/blog/2005/
feb/php-security-consortium-redux

10. Nagappan, N., Ball, T., Zeller, A.: Mining Metrics to Predict Component Failures.
In: Proceedings of the 28th International Conference on Software Engineering,
Association of Computing Machinery, New York, pp. 452–461 (2006)

11. Neuhaus, S., Zimmerman, T.: The Beauty and the Beast: Vulnerabilities in Red
Hat’s Packages. In: Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX 2009), San Diego, CA, USA (June 2009)

12. Ozment, A., Schechter, S.E.: Milk or Wine: Does Software Security Improve with
Age? In: Proceedings of the 15th USENIX Security Symposium, USENIX Associ-
ation, California, pp. 93–104 (2006)

13. Shin, Y., Williams, L.: An Empirical Model to Predict Security Vulnerabilities us-
ing Code Complexity Metrics. In: Proceedings of the 2nd International Symposium
on Empirical Software Engineering and Measurement, Association for Computing
Machinery, New York, pp. 315–317 (2008)

14. Shin, Y., Williams, L.: Is Complexity Really the Enemy of Software Security?
In: Quality of Protection Workshop at the ACM Conference on Computers and
Communications Security (CCS) 2008, Association for Computing Machinery, New
York, pp. 47–50 (2008)

15. Walden, J., Doyle, M., Welch, G., Whelan, M.: Security of Open Source Web Appli-
cations. In: Proceedings of the International Workshop on Security Measurements
and Metrics. IEEE, Los Alamitos (2009)

16. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project De-
fect Prediction. In: Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2009), Amsterdam, The Netherlands (August
2009)

http://www.fortify.com/landing/oss/oss_report.jsp
http://freshmeat.net/
http://shiflett.org/blog/2005/feb/php-security-consortium-redux
http://shiflett.org/blog/2005/feb/php-security-consortium-redux


Idea: Towards Architecture-Centric Security
Analysis of Software

Karsten Sohr and Bernhard Berger

Technologie-Zentrum Informatik, Bremen, Germany
{sohr,berber}@tzi.de

Abstract. Static security analysis of software has made great progress
over the last years. In particular, this applies to the detection of low-
level security bugs such as buffer overflows, Cross-Site Scripting and SQL
injection vulnerabilities. Complementarily to commercial static code re-
view tools, we present an approach to the static security analysis which
is based upon the software architecture using a reverse engineering tool
suite called Bauhaus. This allows one to analyze software on a more ab-
stract level, and a more focused analysis is possible, concentrating on
software modules regarded as security-critical. In addition, certain secu-
rity flaws can be detected at the architectural level such as the circum-
vention of APIs or incomplete enforcement of access control. We discuss
our approach in the context of a business application and Android’s
Java-based middleware.

1 Introduction

More and more technologies find their way into our daily life such as PCs, mobile
phones with PC-like functionality, and electronic passports. Enterprises, financial
institutes, or government agencies map their (often security-critical) business
processes to IT systems. With this dependency of technologies new risks go along
which must be adequately addressed. One of the main problems arise from faulty
software which led to most of the security incidents reported to CERT [3]. For
this reason, a lot of work has been done on statically detecting common low-
level security bugs in software such as buffer overflows, simple race conditions or
SQL injection vulnerabilities. These efforts led to research prototypes [4,5,14] and
even to commercial products [11,7,18]. In the future, however, it will be expected
that attackers will also exploit other software errors such as logical flaws in access
control (e.g., inconsistent role-based access control in Web Service applications)
or the wrong usage of the security mechanisms provided by software frameworks
such as JEE or Spring [17].

Moreover, even if the software architecture has been specified with modeling
languages such as UML, it is not clear whether the actual software architec-
ture manifesting in the source code is synchronized with the specified (intended)
architecture. As software is often changed in an ad hoc fashion due to the cus-
tomers demands, the software architecture is steadily eroded. In particular, this

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 70–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Idea: Towards Architecture-Centric Security Analysis of Software 71

problem also applies to the security aspects of the software architecture. For ex-
ample, if access to a security-critical resource ought to be protected by an API
which enforces access control decisions, but an application for reasons of con-
venience can directly call the functionality in question without using this API,
then the application’s security can be easily subverted.

As a consequence, a methodology (including supporting tools) is desirable
which allows one to analyze software on a more abstract level than the detailed
source code. This way, certain kinds of logical security flaws in the software
architecture can be detected as those mentioned above. In addition, a more
abstract view on the software allows the security analyst to focus her analysis
with already available tools more on the relevant software parts, reducing the
rate of the false positives. For example, internal functionality, which is only called
by a limited number of users, need not be analyzed to such an extent as modules
exposed on the Internet. Last but not least, analyses at the architectural level
can be carried out at design time such that security flaws can be detected at early
stages of the software development process. This reduces the costs of resolving
the security problems.

In this paper, we sketch a methodology for an architecture-based security
analysis of software. The basis of this approach is the Bauhaus tool suite, a
general-purpose reverse engineering tool, which has been successfully used in
research projects as well as in commercial projects [19,21]. With the help of the
Bauhaus tool, different kinds of analysis can be conducted at the architectural
level. First, one can directly analyze the high-level architecture of an application
w.r.t. security requirements. Due to the fact that the Bauhaus tool allows one
to extract a low-level architecture from the source code, called resource flow
graph (RFG), one can also check this architecture against the expected high-
level architecture. This way, one can detect security problems such as missing
access control checks in security-critical APIs.

Having carried out the analyses at this architectural level, one can switch to
an analysis at the detail level, i.e., at the source code. This analysis can then
be done with the help of commercially available tools or research tools such as
model checkers and SAT solvers or Bauhaus itself.

The remainder of this paper is organized as follows. In Section 2, we describe
the main concepts of the Bauhaus tool suite, concentrating on the RFG. We
explain the principles of our architecture-based methodology for the security
analysis of software in Section 3. Section 4 discusses some early results of our
approach in the context of two different case studies, namely, a tutorial applica-
tion for JEE and the Java-based middleware of the Android platform. Section 5
gives a short overview of related work, whereas Section 6 concludes and discusses
possible research directions.

2 The Bauhaus Tool Suite

The Bauhaus tool suite is a reverse engineering tool which lets one deduce two
abstractions from the source code, namely the Intermediate Language (IML) and



72 K. Sohr and B. Berger

the resource flow graph (RFG)[19]. The former representation in essence is an
attributed syntax tree (an enhanced AST), which contains the detailed program
information such as loop statements, variable definitions and name binding. The
latter works on a higher abstraction level and represents architecturally relevant
information of the software.

An RFG is a hierarchical graph, which consists of typed Nodes and edges.
Nodes represent objects like routines, types, files and components. Relations be-
tween these elements are modeled with edges. The information stored in the
RFG is structured in views. Each view represents a different aspect of the ar-
chitecture, e.g., the call graph or the hierarchy of modules. Technically, a view
is a subgraph of the RFG. The model of the RFG is fully dynamic and may
be modified by the user, i.e., by inserting or deleting node/edge attributes and
types. For visualizing the different views of RFGs, Graphical Visualiser (Gravis)
has been implemented [8]. The Gravis tool facilitates high-level analysis of the
system and provides rich functionality to produce new views by RFG analyses
or to manipulate generated views.

3 Security Analyses with the Help of a RFG

We now discuss different aspects of analyzing software w.r.t. security based upon
the RFG. Specifically, we describe how the methods and techniques, which have
been well-established in the context of software quality assurance, can be ad-
justed for security analysis.

Notation of the architecture. Due to the fact that the elements of the RFG can
be represented by a meta model, it is possible to define RFG profiles, that are
specific to the software frameworks and security mechanisms used in the an-
alyzed application. The elements of the profile have a well-defined semantics,
which simplifies the analyses at the architectural level and leads to a better un-
derstanding of the security aspects of the architecture. For example, in case of
a JEE business application one might have nodes of types such as “role”, “per-
mission”, or “user” and edges of the types “user assignment” and “permission
assignment” to express role-based access control (RBAC) [1]. In order to secure
the communications, one might have “encrypted RPC channel” or “encrypted
SOAP channel” edges.

Recovery of the software architecture. With the help of the reflexion method [15],
the software architecture can be reconstructed and documented as a separate
view of the RFG. This is done in a semi-automatic and iterative process starting
from an abstract to a more detailed architecture description. Usually, this process
is carried out in workshops with the software architects and developers.

Often the mental architectures, i.e., the architecture each developer / archi-
tect has in mind, might differ for the different participants of this process. These
mental architectures are unified and written down as a hypothesized architec-
ture which is then checked against the implemented low-level architecture. This



Idea: Towards Architecture-Centric Security Analysis of Software 73

way, discrepancies between both architectures, the hypothesized and the imple-
mented one, can be automatically detected. If there are references (edges) in
the implemented architecture which are absent in the hypothesized architecture,
then we speak of divergences. An absence is a reference occurring in the hypoth-
esized architecture and not being present in the source code. The architecture is
manually refined and enhanced with new knowledge gained from previous steps
in an iterative process until the architecture remains stable.

So far, the reflexion analysis was carried out having software quality in general
rather than software security in mind. However, this step neatly fits to the “Am-
biguity analysis” introduced by McGraw [17] because a different understanding
of the software architecture might lead to security holes. This way, a natural
application of the reflexion method in the security context is possible. In par-
ticular, the RFG representing the architecture can be enhanced with security
modeling elements.

This reflexion method is used in 4.1 to find violations of the RBAC policy of
the JEE demo system Duke’s Bank.

Security views. As indicated in Section 2, the Bauhaus tool suite allows one
to define views on the software architecture to concentrate on the aspects to
be analyzed and hence to carry out a more focused analysis. In a JEE-based
business application one might define a view which comprises all remote access
or a view on RBAC. In the context of a mobile phone platform, one might define
a view for the mechanism which implements the enforcement of permissions for
protected resources such as Bluetooth or WiFi.

Further analyses on the RFG. Owing to the fact that applications process data
of different sensitivity (security levels), the data flow through the modules of the
software must be identified and the communications adequately secured. Those
paths through an application’s modules and functions should be identified where
sensitive data flow without appropriate protection such as encryption or digital
signatures. For this to accomplish, we can assign security labels to the data (e.g.,
member variables in Java or global variables in C) and also to the modules and
functions of the application. We can further define which data can be accessed
by which module and function, respectively. At the RFG level, we then can check
whether the defined access control policy is violated.

Security requirements which the RFG must satisfy itself can be represented
as a graph. An example of such a requirement is shown in Figure 1. Here, it
is stated that if we have a remote method call on Entity Java Beans (EJBs),
then the Java annotation “RolesAllowed” is mandatory. This means that remote
method calls are only allowed if (the appropriate) roles are assigned to the caller’s
principal. One now can search for all matching occurrences of remote method
calls on EJBs—the “condition” part in Figure 1—within the RFG and check
whether the requirement is fulfilled for all occurrences of the condition. However,
note that subgraph problems in general are known to be NP-complete such that
heuristics are to be applied [12].



74 K. Sohr and B. Berger

Fig. 1. A security requirement represented as a graph

Analyses on the RFG and the detailed program representation. As the Bauhaus
tool suite also makes available the detailed program representation in form of the
IML, code analyses can be carried out at the source code level. This way, one can
start analyzing the software at the more abstract RFG level. Having identified
security-relevant locations of the application via the RFG, one can analyze the
corresponding source code locations more deeply, i.e., both representations can
be used in conjunction for the security analysis. Alternatively, one can employ the
RFG to pinpoint security-critical parts of the software and then use commercially
available analysis tools to detect low-level security bugs. Research prototypes
based on SAT solvers or theorem provers might also be useful in order to check
the code against constraints (such as invariants or pre- and postconditions). Two
promising examples of such tools are JForge [9] and ESC/Java2 [6].

4 Early Case Studies

We now discuss our architecture-centric security analysis in the context of two
case studies. The first one is named “Duke’s Bank”, a simple application from
Sun’s JEE tutorial [20]. We chose this application because on the one hand, it
is simple, and on the other hand, it has a widely-used architecture for business
applications. In order to show that our approach can also be used in the context
of embedded systems’ software, the second case study is from the mobile phone
domain, namely, the Java-based middleware of the Android platform.

4.1 Analysis of a JEE Application

Duke’s Bank is a demo banking application allowing clerks to administer cus-
tomer accounts and customers to access their account histories and perform
transactions. It is a typical JEE application with a Web-based as well as a
rich client interface (see Figure 2(a)). A customer can access information about
his account via the Web interface, whereas the rich client interface can only
be used by the clerk. The functionality of the application is provided by EJBs
(AccountControllerSessionBean, TxControllerSessionBean, CustomerCon-
trollerSessionBean). In these EJBs, access to the database containing the
account data is encapsulated via the Java Persistence framework.



Idea: Towards Architecture-Centric Security Analysis of Software 75

(a) Intended architecture of the Duke’s
Bank application [20]

(b) The extracted RBAC policy repre-
sented as a graph

Fig. 2. Description of the applications architecture

In Figure 2(a), one can see that the CustomerControllerSessionBean com-
ponent cannot be accessed by the Web interface, i.e., the customers have no
access to this bean. Figure 2(b) then displays the intended RBAC policy for the
JEE application. The nodes represent the roles as well as EJBs and the edges
correspond to the permission to access an EJB (permission assignment). Two
roles Clerk and Customer have been defined, and specifically, there is no access
from Customer to the component CustomerControllerBean.

We now briefly describe how the reflexion analysis can be applied to the
Duke’s Bank application with the focus on RBAC for EJBs. In a first step, we
loaded the source code of this application into the Bauhaus tool and obtained an
RFG as the low-level architecture, which is not given in this paper for reasons
of brevity. The RBAC policy displayed in Figure 2(b) can then be regarded as
the hypothesized architecture or more precisely as a security view representing
the RBAC policy for the Duke’s Bank application. This architecture is checked
against the RFG gained from the source code.

Figure 3(a) shows the results of this reflexion analysis. Notice that the edges
with the solid lines are representing divergences. The consequence of this di-
vergence is that the code allows access that ought to be forbidden according
to the RBAC policy, i.e., security violations are possible. The graph depicted
in Figure 3(b) shows these violations manifesting in the source code’s RFG 1.
For example, now every principal (be it a customer or a clerk) can access the
method getDetails() of the CustomerControllerSessionBean. This way, she
can query information on all customer data such as account numbers. Clearly,
this is only a demo application, but it shows the kinds of problems which our
analysis technique can detect.
1 Note that the roles Clerk and Customer are mapped to the source code roles bankAd-

min and bankCustomer within the frameworks of the reflexion analysis. Therefore,
we have different names in Figure 3(b).



76 K. Sohr and B. Berger

(a) Violations of the intended ar-
chitecture

(b) Violations at the source code level

Fig. 3. Analysis results

4.2 Analysis of Android

We also loaded the Android framework classes, implementing the Java-based
middleware of Android into the Bauhaus tool suite to gain a better program
understanding. Then we constructed an RFG, which can be used to identify
the parts implementing the security concepts of the Android middleware such
as mandatory access control for inter process communication (IPC), protected
APIs, protection levels of applications [10]. This can be done by traversing the
RFG and defining views which correspond to the security concepts implemented
within the framework classes. The views let the analyst conduct a more focused
analysis on the code. After constructing such views, she can switch to source
code analysis as indicated above.

Employing our RFG-based analysis technique, we detected a kind of backdoor
meant for Android developers, which does not seem to be officially documented:
The end user can assign permissions to applications via a system-wide permission
file. If there had not been additional security checks put in place, an end user
could have given access rights defined by the operator to her own applications.

Beyond this, we can also check at the architectural level whether the per-
missions on security-critical resources (e.g., sending SMS, Bluetooth or WiFi
access) are appropriately enforced. This means we can check on the RFG if
the enforcePermission() methods are called for the permissions listed in the
Manifest.permission class.

5 Related Work

There exist a plethora of works for the static security analysis of software. Some
of those tools are research prototypes such as MOPS [4] and Eau Claire [5],
others are successful commercial tools such as Fortify Source Code Analyzer [11],



Idea: Towards Architecture-Centric Security Analysis of Software 77

Coverity Prevent [7], and Ounce [18]. Our approach is complementary to all those
works because we utilize architectural information to focus the analysis on the
source code and carry out our analyses directly on the architecture. Common
low-level security bugs can clearly be detected by well-established analysis tools.
Only, Coverity Prevent considers the software architecture for analyses, which
at this time is limited to the software visualization not supporting more complex
analyses such as the reflexion method.

In addition, as new modeling elements can be added to the RFG through meta-
modeling, domain- and framework-specific security analyses can be performed.
Little work has been done in the context of software frameworks before such as
the LAPSE tool, which can find low-level security bugs in JEE applications [16].

Our work can also be compared with approaches to modeling and analyz-
ing security requirements, specifically, in the context of UML profiles. Two such
specification languages are UMLsec [13], which allows one to formulate security
requirements w.r.t. access control and confidentiality, and SecureUML [2], which
allows one to model RBAC policies. In addition, Basin et al. present an approach
to analyzing RBAC policies based on UML meta-modelling [2]. Our work cur-
rently is focused on checking the intended architecture against the implemented
low-level architecture, although analyzing the architecture itself remains future
work.

6 Conclusion and Outlook

We presented an architecture-centric approach to the security analysis of soft-
ware which can be seen as complementary work to available security review
tools. This allows one to conduct the analyses on a more abstract level detecting
also logical security flaws in the software such as erroneous RBAC of business
applications. Our approach is based upon a reverse engineering tool suite called
Bauhaus. With the help of two early case studies, we showed that our approach
could be employed in different domains, namely, JEE-based business applications
and mobile phones.

As this paper only reports on early results, a lot of work remains to be done
in the future. First, we intend to systematically analyze more comprehensive
business applications which employ software frameworks. Specifically, this will be
done in the context of the Service Oriented Architecture. In addition, we intend
to investigate how security views can be extracted and how far this process
can be automated in the context of an encompassing case study such as the
Android middleware. Last but not least, one can contemplate how to integrate
our architecture-based analysis method into the Software Development Lifecycle
with the focus on the continuous monitoring of the security architecture.

References

1. American National Standards Institute Inc. Role Based Access Control,
ANSI-INCITS 359-2004 (2004)

2. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology 51, 815–831 (2009)



78 K. Sohr and B. Berger

3. CERT/CC. CERT statistics (2008), http://www.cert.org/stats/
4. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties

of software. In: ACM Conference on Computer and Communications Security, pp.
235–244 (2002)

5. Chess, B.: Improving Computer Security Using Extended Static Checking. In:
IEEE Symposium on Security and Privacy, p. 160 (2002)

6. Cok, D.R., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. Technical report,
University of Nijmegen (2004); NIII Technical Report NIII-R0413

7. Coverity. Coverity Prevent (2009), http://www.coverity.com
8. Czeranski, J., Eisenbarth, T., Kienle, H., Koschke, R., Simon, D.: Analyzing xfig

Using the Bauhaus Tool. In: Working Conference on Reverse Engineering, pp. 197–
199. IEEE Computer Society Press, Los Alamitos (2000)

9. Dennis, G., Yessenov, K., Jackson, D.: Bounded Verification of Voting Software.
In: Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 130–145.
Springer, Heidelberg (2008)

10. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security and Privacy 7(1), 50–57 (2009)

11. Fortify Software. Fortify Source Code Analyzer (2009),
http://www.fortify.com/products/

12. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

13. Jürjens, J., Shabalin, P.: Automated verification of UMLsec models for security
requirements. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 365–379. Springer, Heidelberg (2004)

14. Ashcraft, K., Engler, D.-R.: Using Programmer-Written Compiler Extensions to
Catch Security Holes. In: IEEE Symposium on Security and Privacy, pp. 143–159
(2002)

15. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: Working Conference
on Reverse Engineering, pp. 36–45. IEEE Computer Society Press, Los Alamitos
(2003)

16. Livshits, V.B., Lam, M.S.: Finding Security Vulnerabilities in Java Applications
Using Static Analysis. In: Proceedings of the 14th USENIX Security Symposium
(August 2005)

17. McGraw, G.: Software Security: Building Security In. Addison-Wesley, Reading
(2006)

18. Ounce Labs Inc. Website (2009), http://www.ouncelabs.com/
19. Raza, A., Vogel, G., Plödereder, E.: Bauhaus - A Tool Suite for Program Analy-

sis and Reverse Engineering. In: Pinho, L.M., González Harbour, M. (eds.) Ada-
Europe 2006. LNCS, vol. 4006, pp. 71–82. Springer, Heidelberg (2006)

20. Sun Microsystems. The Java EE 5 Tutorial (2008),
http://java.sun.com/javaee/5/docs/tutorial/doc/bnclz.html

21. Universitaet Stuttgart. Project Bauhaus—Software Architecture, Software Reengi-
neering, and Program Understanding (2009),
http://www.bauhaus-stuttgart.de/bauhaus/index-english.html

http://www.cert.org/stats/
http://www.coverity.com
http://www.fortify.com/products/
http://www.ouncelabs.com/
http://java.sun.com/javaee/5/docs/tutorial/doc/bnclz.html
http://www.bauhaus-stuttgart.de/bauhaus/index-english.html


Formally-Based Black-Box Monitoring of
Security Protocols∗

Alfredo Pironti1 and Jan Jürjens2

1 Politecnico di Torino
Turin, Italy

http://alfredo.pironti.eu/research
2 TU Dortmund and Fraunhofer ISST

Dortmund, Germany
http://jurjens.de/jan

Abstract. In the challenge of ensuring the correct behaviour of legacy
implementations of security protocols, a formally-based approach is pre-
sented to design and implement monitors that stop insecure protocol
runs executed by such legacy implementations, without the need of their
source code. We validate the approach at a case study about monitoring
several SSL legacy implementations. Recently, a security bug has been
found in the widely deployed OpenSSL client; our case study shows that
our monitor correctly stops the protocol runs otherwise allowed by the
faulty OpenSSL client. Moreover, our monitoring approach allowed us to
detect a new flaw in another open source SSL client implementation.

1 Introduction

Despite being very concise, cryptographic protocols are quite difficult to get
right, because of the concurrent nature of the distributed environment and the
presence of an active, non-deterministic attacker. Increasing the confidence in
the correctness of security protocol implementations is thus important for the
dependability of software systems. In general exhaustive testing is infeasible,
and for a motivated attacker one remaining vulnerability may be enough to
successfully attack a system. In this paper, we focus in particular on assessing
the correctness of legacy implementations, rather than on the development of
correct new implementations. Indeed, it is often the case in practice that a legacy
implementation is already in use which cannot be substituted by a new one: for
example, when the legacy implementation is strictly coupled with the rest of the
information system, making a switch very costly.

In this context, our proposed approach is based on black-box monitoring of
legacy security protocols implementations. Using the Dolev-Yao [6] model, we
assume cryptographic functions to be correct, and concentrate on their usage
within the cryptographic protocols. Moreover, we concentrate on implementa-
tions of security protocol actors, rather than on the high level specifications of
∗ This research was partially supported by the EU project SecureChange (ICT-FET-

231101).

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 79–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://alfredo.pironti.eu/research
http://jurjens.de/jan


80 A. Pironti and J. Jürjens

Fig. 1. Monitor design and development methodology

such security protocols. That is, we assume that a given protocol specification is
secure (which can be proven using existing tools); instead, by monitoring it, we
want to asses that a given implementation of one protocol’s role is correct with
respect to its specification, and it is resilient to Dolev-Yao attacks.

The overall methodology is depicted in figure 1. Given the protocol definition,
a specification for one agent is manually derived. By using the “agent to monitor”
(a2m) function introduced in this paper, a monitor specification for that protocol
role is automatically generated. Then the monitor implementation is obtained by
using the model driven development framework called spi2java [13], represented
by the dashed box in the figure. The spi2java internals will be discussed later on
in the paper. The monitor application is finally ran together with the monitored
protocol role implementation (not shown in the picture).

A monitor implementation differs from a fresh implementation of a security
protocol, because it does not execute protocol sessions on behalf of its users.
The monitor instead observes protocol sessions started by the legacy implemen-
tations, in order to recognize and stop incorrect sessions, in circumstances where
the legacy implementations cannot be replaced.

For performance trade-offs, monitoring can be performed either “online” or
“offline”. In the first case, all messages are first checked by the monitor, and then
forwarded to the intended recipient only if they are safe. In the second case, all
messages exchanged by the monitored application are logged, and then fed to the
monitor for later inspection. The online paradigm prevents a security property to
be violated, because protocol executions are stopped as soon as an unexpected
message is detected by the monitor, before it reaches the intended recipient.
However, online monitoring may introduce some latency. The offline paradigm
does not introduce any latency and is still useful to recognize compromised
protocol sessions later, which can limit the damage of an attack. For example,
if a credit card number is stolen due to an e-commerce protocol attack, and if



Formally-Based Black-Box Monitoring of Security Protocols 81

offline monitoring is run overnight, one can discover the issue at most one day
later, thus limiting the time span of the fraud.

In this paper, the main goal of monitors is to detect, stop and report incorrect
protocol runs. Monitors are not designed for example to assist one in forensic
diagnosis after an attack has been found.

The monitoring is “black-box” in that the source code of the monitored ap-
plication is not needed; only its observable behaviour (data transmitted over
the medium, or traces) and locally accessed data are required. Thus any legacy
implementation can still be used in production as is, while being monitored. The
correctness of this approach depends on the correctness of the generated mon-
itor. Our approach leverages formal methods in the derivation of the monitor
implementation, so that a trustworthy monitor is obtained.

Note that this approach can be exploited during the testing phase as well:
One can run an arbitrary number of simulated protocol sessions in a testing
environment, and use the monitor to check for the correct behaviour.

In order to validate the proposed approach, a monitor for the SSL proto-
col is presented. The generated monitor stops incorrect sessions that could, for
example, exploit a recently found flaw in the OpenSSL implementation.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 illustrates the formal background used in the paper. Section 4
describes the function translating a Spi Calculus protocol agent’s specification
into a monitor specification for that agent. Then section 5 shows the SSL protocol
case study. Finally section 6 concludes.

For brevity, this paper mainly concentrates on the description of the proposed
approach and on its validation by means of a real-life size case study. An extended
version of this paper that includes all the formal definitions and the source code
of the presented case study and other case studies can be found in [12].

2 Related Work

Several attempts have been made to check that a protocol role implementation is
correct w.r.t. its specification which can be grouped in four main categories: (1)
Model Driven Development (MDD); (2) Static Code Verification; (3) Refinement
Types; (4) Online Monitoring and Intrusion Detection Systems (IDSs).

The first approach consists of designing and verifying a formal, high-level
model of a security protocol and to semi-automatically derive an implementation
that satisfies the same security properties of the formal model [8,9,13]. However,
it has the drawback of not handling legacy implementations of security protocols.

The second approach starts from the source code of an existing implemen-
tation, and extracts a formal model which is verified for the desired security
properties [5, 11]. In principle, this approach can deal with legacy implementa-
tions, but their source code must be available, which is not always the case.

The third approach proves security properties of an implementation by means
of a special kind of type checking on its source code [4]. Working on the source
code, it shares the same advantages and drawbacks of the second approach.



82 A. Pironti and J. Jürjens

The fourth approach comes in two versions. With online monitoring, the
source code of an existing implementation is instrumented with assertions: pro-
gram execution is stopped if any assertion fails at runtime [3]. Besides requiring
the source code, the legacy implementation must be substituted with the instru-
mented one, which may not always be the case. IDSs are systems that monitor
network traffic and compare it against known attack patterns, or expected av-
erage network traffic. By working on averages, in order not to miss real attacks,
IDSs often report false positive warnings. In order to reduce them, sometimes the
source code of the monitored implementation is also instrumented [10], sharing
the same advantages and drawback of online monitoring.

Another branch of research focused on security wrappers for legacy implemen-
tations. In [1], a formal approach that uses security wrappers as firewalls with an
encrypting tunnel is described. Any communication that crosses some security
boundary is automatically and transparently encrypted by the wrappers. That
is, the wrappers add security to a distributed legacy system. In our approach,
the monitor enforces the security already present in the system. Technically, our
approach derives a monitor based on the security requirements already present
in the legacy system, instead of adding a boilerplate layer of security.

Analogously, in [7] wrappers are used, among other things, to transparently
encrypt local files accessed by library calls. However, distributed environments
are not taken into account. Finally, in [17] wrappers are used to harden software
libraries. However, cryptography and distributed systems are not considered,
and the approach is test-driven, rather than formally based.

3 Formal Background

3.1 Network Model

Many network models have been proposed in the Dolev-Yao setting. For example,
sometimes the network is represented as a separate process [16]; the attacker
is connected to this network, and can eavesdrop, drop and modify messages, or
forge new ones. In other cases, the attacker is the medium [15], and honest agents
can only communicate through the attacker. Even more detailed network models
have been developed [19], where some nodes may have direct, private secured
communication with other nodes, while still also being able to communicate
through insecure channels, controlled by the attacker.

In general, it is not trivial to show that all of these models are equivalent in a
Dolev-Yao setting, furthermore different network models and agents granularity
justify different positions of the monitor with respect to the monitored agent,
affecting the way the monitor is actually implemented. In this paper, we focus on
a simple scenario that is usually found in practice, and is depicted in figure 2(a):
the attacker is the medium, and every protocol agent communicates over a single
insecure channel c, and private channels are not allowed. Moreover, agents are
sequential and non-recursive.

Let us define A as the (correct) model of the agent to be monitored, and
MA as the model of its monitor. When the monitor is present, A communicates



Formally-Based Black-Box Monitoring of Security Protocols 83

(a) Agents A and B with the attacker. (b) Agent A monitored by MA and the
attacker.

Fig. 2. The network model

with MA only, through the use of a private channel cAM , while MA is directly
connected to the attacker by channel c, as depicted in figure 2(b). The dashed
box denotes that A and MA run in the same environment, for example they run
on the same system with same privileges. Note that in A channel c is in fact
renamed to cAM .

3.2 The Spi Calculus

In this paper, the formal models are expressed in Spi Calculus [2]. Spi Calculus
is amenable for our approach because it is a domain specific language tailored
at expressing the behaviour of single security protocol agents, where checks on
received data must be explicitly specified. Thus, from the Spi Calculus speci-
fications of protocol agents, the a2m function can derive precise and complete
specifications of their monitors.

Briefly, a Spi Calculus specification is a system of concurrent processes that
operate on untyped data, called terms. Terms can be exchanged between pro-
cesses by means of input/output operations. Table 1(a) contains the terms de-
fined by the Spi Calculus, while table 1(b) shows the processes.

A name n is an atomic value, and a pair (M, N) is a compound term, composed
of the terms M and N . The 0 and suc(M) terms represent the value of zero and
the logical successor of some term M , respectively. A variable x represents any

Table 1. Spi Calculus grammar

(a) Spi Calculus terms.
L, M, N ::= terms
n name
(M, N) pair
0 zero
suc(M) successor
x variable
M∼ shared-key
{M}N shared-key encryption
H (M) hashing
M+ public part
M− private part
{[M ]}N public-key encryption
[{M}]N private-key signature

(b) Spi Calculus processes.
P, Q, R ::= processes

M 〈N〉 .P output
M (x) .P input
P |Q composition
!P replication
(νn) P restriction
[M is N ] P match
0 nil
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case
case L of {x}N in P shared-key decryption
case L of {[x]}N in P decryption
case L of [{x}]N in P signature check



84 A. Pironti and J. Jürjens

term, and it can be bound once to the value of another term. If a variable or
a name is not bound, then it is free. The M∼ term represents a symmetric key
built from key material M , and {M}N represents the encryption of the plaintext
M with the symmetric key N , while H(M) represents the result of hashing M .
The M+ and M− terms represent the public and private part of the keypair
M respectively, while {[M ]}N and [{M}]N represent public key and private key
asymmetric encryptions respectively.

Informally, the M 〈N〉 .P process sends message N on channel M , and then
behaves like P , while the M (x) .P process receives a message from channel M ,
and then behaves like P , with x bound to the received term in P . A process P
can perform an input or output operation iff there is a reacting process Q that
is ready to perform the dual output or input operation. Note, however, that pro-
cesses run within an environment (the Dolev-Yao attacker) that is always ready
to perform input or output operations. Composition P |Q means parallel execu-
tion of processes P and Q, while replication !P means an unbounded number
of instances of P run in parallel. The restriction process (νn)P indicates that
n is a fresh name (i.e. not previously used, and unknown to the attacker) in P .
The match process executes like P , if M equals N , otherwise is stuck. The nil
process does nothing. The pair splitting process binds the variables x and y to
the components of the pair M , otherwise, if M is not a pair, the process is stuck.
The integer case process executes like P if M is 0, else it executes like Q if M is
suc(N) and x is bound to N , otherwise the process is stuck. If L is {M}N , then
the shared-key decryption process executes like P , with x bound to M , else it
is stuck, and analogous reasoning holds for the decryption and signature check
processes.

The assumption that A is a sequential process, means that composition and
replication are never used in its specification.

4 The Monitor Generation Function

The a2m function translates a sequential protocol role specification into a mon-
itor specification for that role; formally, MA � a2m(A). For brevity, a2m is only
informally presented here, by means of a running example. Formal definitions
can be found in [12].

Before introducing the function, the concepts of known and reconstructed
terms are given. For any Spi Calculus state, a term T is said to be known by the
monitor through variable T , iff T is bound to T . This can happen either because
the implementation of MA has access to the agent’s memory location where T is
stored; or because T can be read from a communication channel, and MA stores
T in variable T . A compound term T (that is not a name or a variable) is said
to be reconstructed, if all its subterms are known or reconstructed. For example,
suppose M is known through M and H(N) is known through H(N). It is
the case that (H(N), M) is reconstructed by ( H(N), M). Note that, as terms
become known, other terms may become reconstructed too. In the example given
above, if M was not known, then it was not possible to reconstruct (H(N), M);



Formally-Based Black-Box Monitoring of Security Protocols 85

1a: A(M,k) :=
2a: cAM<{M}k>.

3a: cAM(x).
4a: [x is H(M)]
5a: 0

(a) Agent A specification.

1m: MA(k,_H(M)) :=
2m: cAM(_{M}k).
3m: case _{M}k of {_M}k in
4m: [_H(M) is H(_M)]
5m: c<_{M}k>.
6m: c(x).
7m: [x is _H(M)]
8m: cAM<x>.
9m: 0

(b) Monitor specification derived from agent A one.

Fig. 3. Example specification of agent A along with its derived monitor MA

however, if later M became known (for example, because it was sent over a
channel), then (H(N), M) would become reconstructed.

Note that the monitor implementation presented in this paper does not en-
force that nonces are actually different for each protocol run. To enable this,
the monitor should track all previously used values, in order to ensure that no
value is used twice. Especially in the online mode, this overhead may not be
acceptable. In order to drop this check, it is needed to assume that the random
value generator in the monitored agent is correctly implemented. Also note that
there may be cases where the monitor has not enough information to properly
check protocol execution. These cases are recognised by the a2m function, so
that an error state is reached, and no unsound monitor is generated.

The a2m function behaviour is now described by means of a running exam-
ple. Agent A sends some data M encrypted by the key k to the other party, and
expects to receive the hash of the plaintext, that is H(M). Note that the exam-
ple focuses on the way the a2m function operates, rather than on monitoring
a security protocol, so no security claim is meant to be made on this protocol.
Figure 3(a) shows the specification for agent A, and figure 3(b) its derived mon-
itor specification MA. Here, an ASCII syntax of Spi Calculus is used: the ‘ν’
symbol is replaced by the ‘@’ symbol, and the overline in the output process is
omitted (input and output processes can still be distinguished by the different
brackets).

At line 1a the agent A process is declared: it has two free variables, a message
M and a symmetric key k. At line 2a A sends the encryption of M with key k.
Then, at line 3a it receives a message that is stored into variable x, and, at line
4a, the received message is checked to be equal to the hashing of M : if this is
the case, the process correctly terminates.

At line 1m, the monitor MA is declared: to make this example significant,
it is assumed that in the initial state the key k used by A is known by the
monitor (through the variable k), while M is not known (for example, because
the monitor cannot access those data); however H(M) is known through H(M),
that is the monitor has access to the memory location where H(M) is stored,
and this value is bound to the variable H(M) in the monitor.



86 A. Pironti and J. Jürjens

When line 2a is translated by a2m, lines 2m–5m are produced. The data
sent by A are received by the monitor at line 2m, and stored in variable {M}k.
Afterwards, some checks on the received value are added by the a2m function. In
general, each time a new message is received from the monitored application, it
or its parts are checked against their expected (known or reconstructed) values.
In this case, since {M}k is not known (by hypothesis) or reconstructed (because
M is not known or reconstructed), it cannot be directly compared against the
known or reconstructed value, so it is exploded into its components. As {M}k

is an encryption and k is known, the decryption case process is generated at
line 3m, binding M to the value of the plaintext, that should be M . Since M
is not known or reconstructed, and it is a name, M cannot be dissected any
more; instead, M becomes known through M , in other words, the term stored
in M is assumed by the monitor to be the correct term for M . Note that, before
M was known through M , H(M) was known through H(M), but it was not
reconstructed. After the assignment of M , H(M) becomes reconstructed by
H( M) too. The match process at line 4m ensures that known and reconstructed
values for the same term are actually the same.

After all the possible checks are performed on the received data, they are
forwarded to the attacker at line 5m. Then, line 3a is translated into line 6m.
When translating an input process, the monitor receives message x from the
attacker on behalf of the agent and buffers it; x is said to be known through
x itself. Then the monitor behaves according to what is done by the agent
(usually checks on the received data, as it is the case in the running example).
The received message stored in x is not forwarded to A immediately, because
this could lead A to receive some malicious data, that could for example enable
some denial of service attack. Instead, the received data are buffered, and will
be forwarded to A only when necessary: that is when the process should end (0
case), or when some output data from A are expected.

Line 4a is then translated into line 7m, and finally, line 5a is translated into
lines 8m and 9m. First, all buffered data (x in this case) are forwarded to A,
then the monitor correctly ends.

5 An SSL Server Monitor Example

5.1 Monitor Specification

As shown in figure 1, in order to get the monitor specification, a Spi Calculus
specification of the server role for the SSL protocol is needed. The full SSL
protocol is rather complex: many scenarios are possible, and different sets of
cryptographic algorithms (called ciphersuites) can be negotiated. For simplicity,
this example considers only one scenario of the SSL protocol version 3.0, where
the same cipher suite is always negotiated. Despite these simplifications, we
believe that the considered SSL fragment is still significant, and that adding full
SSL support would increase the example complexity more than its significance.



Formally-Based Black-Box Monitoring of Security Protocols 87

Fig. 4. Typical SSL scenario

In this paper, the chosen scenario requires the server to use a DSA certificate
for authentication and data signature. Although RSA certificates are more com-
mon in SSL, using a DSA certificate allowed us to stress a bug in the OpenSSL
implementation, showing that the monitor can actively drop malicious sessions
that would be otherwise accepted as genuine by the flawed OpenSSL implemen-
tation. The more common RSA scenario has been validated through a dedicated
case-study. However, it is not reported here for brevity; it can be found in [12].

The SSL scenario considered in this example is depicted informally in figure 4,
while figure 5 shows a possible Spi Calculus specification of a server for the
chosen scenario. The ASCII syntax of Spi Calculus is used in figure 5. Also, in
order to model the Diffie-Hellman (DH) key exchange, the EXP (L, M, N) term
is added, which expresses the modular exponentiation LM mod N , along with
the equation EXP (EXP (g, a, p), b, p) = EXP (EXP (g, b, p), a, p).

To make the specification more readable, lists of terms like (A, B, C) are added
as syntactic sugar, and they are translated into left associated nested pairs, like
((A, B), C); a rename n = M in P process is introduced too, that renames the
term M to n and then behaves like P .

The first message is the ClientHello, sent from the client to the server. It
contains the highest protocol version supported by the client, a random value,
a session ID for session resuming, and the set of supported cipher suites and
compression methods. In the server specification, the ClientHello message is
received and split into its parts at line 2S. In the chosen scenario, the client
should send at least 3.0 as the highest supported protocol version, and it should
send 0 as session ID, so that no session resuming will be performed. Moreover,
the client should at least support the always-negotiated cipher suite, namely
SSL DHE DSS 3DES EDE CBC SHA, with no compression enabled. All these con-
straints are checked at lines 3S–4S.



88 A. Pironti and J. Jürjens

1S Server() :=
2S c(c_hello). let (c_version,c_rand,c_SID,c_ciph_suite,c_comp_method) = c_hello in
3S [ c_version is THREE_DOT_ZERO ] [ c_SID is ZERO ]
4S [ c_ciph_suite is SSL_DHE_DSS_3DES_EDE_CBC_SHA ] [ c_comp_method is comp_NULL ]
5S (@s_rand) (@SID)
6S rename S_HELLO = (THREE_DOT_ZERO,s_rand,SID,SSL_DHE_DSS_3DES_EDE_CBC_SHA,comp_NULL) in
7S (@DH_s_pri) rename DH_s_pub = EXP(DH_Q,DH_s_pri,DH_P) in
8S rename S_KEX = ((DH_P,DH_Q,DH_s_pub),[{H(c_rand,s_rand,(DH_P,DH_Q,DH_s_pub))}]s_PriKey) in
9S c<S_HELLO,S_CERT,S_KEX,S_HELLO_DONE>.

10S c(c_kex). let (c_kexHead,DH_c_pub) = c_kex in rename PMS = EXP(DH_c_pub,DH_s_pri,DH_P) in
11S rename MS = H(PMS,c_rand,s_rand) in rename KM = H(MS,c_rand,s_rand) in
12S rename c_w_IV = H(KM,C_WRITE_IV) in rename s_w_IV = H(KM,S_WRITE_IV) in
13S c(c_ChgCipherSpec). [ c_ChgCipherSpec is CHG_CIPH_SPEC ]
14S c(c_encrypted_Finish). case c_encrypted_Finish of {c_Finish_and_MAC}(KM,C_WRITE_KEY)~ in
15S let (c_Finish,c_MAC) = c_Finish_and_MAC in [ c_MAC is H((KM,C_MAC_SEC)~,c_Finish) ]
16S let (final_Hash_MD5, final_Hash_SHA) = c_Finish in
17S [ final_Hash_MD5 is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,MD5) ]
18S [ final_Hash_SHA is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,SHA) ]
19S c<CHG_CIPH_SPEC>.
20S rename DATA = (c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex,c_Finish) in
21S rename S_FINISH = (H(DATA,S_ROLE,MS,MD5),H(DATA,S_ROLE,MS,SHA)) in
22S (@pad) c<{S_FINISH,H((KM,S_MAC_SEC)~,S_FINISH),pad}(KM,S_WRITE_KEY)~>.
23S 0

Fig. 5. A possible Spi Calculus specification of an SSL server

In the second message the server replies by sending its ServerHello message,
that contains the chosen protocol version, a random value, a fresh session ID
and the chosen cipher suite and compression method. The server random value
and the fresh session ID are generated at line 5S, then the ServerHello message
is declared at line 6S. Again, in the chosen scenario, the server chooses protocol
version 3.0, and always selects the SSL DHE DSS 3DES EDE CBC SHA cipher suite,
with no compression enabled. Then the server sends the Certificate message to
the client: in the chosen scenario, this message contains a DSA certificate chain
for the server’s public key, that authenticates the server.

In the fourth message, named ServerKeyExchange, the server sends the DH
key exchange parameters to the client, and digitally signs them with its public
key. In the server specification, the DH server secret value DH s pri and the cor-
responding public value DH s pub are computed at line 7S. Then, at line 8S, the
ServerKeyExchange message is declared: it consists of the server DH parameters,
along with a digital signature of the DH parameters and the client and server
random values, in order to ensure signature freshness.

The fifth message is the ServerHelloDone. It contains no data, but signals the
client that the server ended its negotiation part, so the client can move to the
next protocol stage. In the server specification, these four messages are sent all
at once at line 9S.

In the sixth message, the client replies with the ClientKeyExchange message,
that contains the client’s DH public value. Note that there is no digital signature
in this message, since the client is not authenticated. In the server specification
the ClientKeyExchange is received at line 10S, where the payload is split from
the message header too. Both client and server derive a shared secret from the
DH key exchange. This shared secret is called Premaster Secret (PMS), and
it is used by both parties to derive some shared secrets used for symmetric



Formally-Based Black-Box Monitoring of Security Protocols 89

encryption of application data. The PMS is computed by the server at line 10S.
By applying an SSL custom hashing function to the PMS and the client and
server random data, both client and server can compute the same Master Secret
(MS). The bytes of the MS are then extended (again by using a custom SSL
hashing algorithm) to as many byte as required by the negotiated ciphersuite,
obtaining the Key Material (KM) (line 11S). Finally, different subsets of bytes of
the KM are used as shared secrets and as initialization vectors (IVs). Note that
IVs, that are extracted at line 12S, are never referenced in the specification. They
will be used as cryptographic parameters for subsequent encryptions, during the
code generation step, explained in section 5.2.

The seventh message is the ChangeCipherSpec, received and checked at
line 13S. This message contains no data, but signals the server that the client
will start using the negotiated cipher suite from the next message on.

The client then sends its Finished message. Message Authentication Code
(MAC) and encryption are applied to the Finished message sent by the client,
as the client already sent its ChangeCipherSpec message. The client Fin-
ished message is received and decrypted at line 14S. The decryption key used
(KM,C WRITE KEY)~ is obtained by creating a shared key, starting from the key
material KM and a marker C WRITE KEY that indicates which portion of the KM
to use. At line 15S the MAC is extracted from the plaintext, and verified. The
unencrypted content of the Finished message contains the final hash, that hashes
all relevant session information: all exchanged messages (excluding the Change-
CipherSpec ones) and the MS are included in the final hash, plus some constant
data identifying the protocol role (client or server) that sent the final hash. In
fact, the Finished message includes two versions of the same final hash, one us-
ing the MD5 algorithm, and one using the SHA-1 algorithm. Both versions of
the final hash are extracted and checked at lines 16S–18S. As Spi Calculus does
not support different algorithms for the same hash, they are distinguished by
a marker (MD5 and SHA respectively) as the last hash argument, making them
syntactically different.

Then the server sends its ChangeCipherSpec message to client (line 19S),
and its Finished message, that comes with MAC and encryption too (lines 20S–
22S). Encryption requires random padding to align the plaintext length to the
cipher block size. This random padding must be explicitly represented in the
server specification, so that the monitor can recognise and discard it, and only
check the real plaintext. Otherwise the monitor would try to locally reconstruct
the encryption, but it would always fail, because it could not guess the padding.
The protocol handshake is now complete, and next messages will contain secured
application data.

In order to verify any security property on this specification, the full SSL
specification, including the client and protocol sessions instantiations is required.
However, this is outside the scope of this paper; SSL security properties have
already been verified, for example, by the AVISPA project [18]. Here it is assumed
instead that the specification of the server is correct, and thus secure, so that
the monitoring approach can be shown.



90 A. Pironti and J. Jürjens

The a2m function described in section 4 is applied on the server specification,
in order to obtain the online monitor specification for the server role. For brevity,
the resulting specification is not shown here. It can be found, along with more
implementation details, in [12]. It is assumed that the monitor has access to
the server private DH value, which is then known, while it is not able to read
the freshly generated server random value s rand, the session ID SID and the
random padding which are then not known nor reconstructed at generation time.
Often, the server will generate a fresh DH private value for each session, and it
will usually only store it in memory. In general, with some effort the monitor will
be able to directly read this secret from the legacy application memory, without
the need of the source code. Nevertheless, in a testing environment, if the source
code of the monitored application happens to be available, it is possible to patch
the monitored application, so that it explicitly communicates the DH private
value to the monitor. Indeed, this is reasonable because the monitor is part of
the trusted system, and is actually more trusted than the monitored application.

5.2 Monitor Implementation

The source code of the monitor implementation can be found in [12]. In order to
generate the monitor implementation, the spi2java MDD framework is used [13].
Briefly, spi2java is a toolchain that, starting from the formal Spi Calculus speci-
fication of a security protocol, semi-automatically derives an interoperable Java
implementation of the protocol actors. In the first place, spi2java was designed
to generate security protocol actors, rather than monitors. In this paper, we
originally reuse spi2java to generate a monitor.

In order to generate an executable Java implementation of a Spi Calculus
specification, some details that are not contained in the Spi Calculus specifi-
cation must be added. That is, the Spi Calculus specification must be refined,
before it can be translated into a Java application.

As shown in figure 1, the spi2java framework assists the developer during the
refinement and code generation steps. The spi2java refiner is used to automati-
cally infer some refinement information from the given specification. All inferred
information is stored into an eSpi (extended Spi Calculus) document, which is
coupled with the Spi Calculus specification. The developer can manually refine
the generated eSpi document; the manually refined eSpi document is passed back
to the spi2java refiner, that checks its coherence against the original Spi Calculus
specification, and possibly infers new information from the user given one. This
iterative refinement step can be repeated until the developer is satisfied with the
obtained eSpi document, but usually one iteration is enough.

The obtained eSpi document and the original Spi Calculus specification are
passed to the spi2java code generator that automatically outputs the Java code
implementing the given specification. The generated code implements the “pro-
tocol logic”, that is the code that simulates the Spi Calculus specification by
coordinating input/output operations, cryptographic primitives and checks on
received data. Dealing with Java sockets or the Java Cryptographic Architec-
ture (JCA) is delegated to the SpiWrapper library, which is part of the spi2java



Formally-Based Black-Box Monitoring of Security Protocols 91

framework. The SpiWrapper library allows the generated code to be compact
and readable, so that it can be easily mapped back to the Spi Calculus speci-
fication. For example, the monitor specification corresponding to line 2S of the
server specification in figure 5 is translated as

/* c_0(c_hello_1). */
Pair c_hello_1 = (Pair) c_0.receive(new PairRecvClHello());

(each Spi Calculus term name is mangled to make sure there is a unique Java
identifier for that term). To improve readability, the spi2java code generator
outputs the translated Spi Calculus process as a Java comment too. In this
example, the Java variable c 0 has type TcpIpChannel, which is a Java class
included in the SpiWrapper library implementing a Spi Calculus channel using
TCP/IP as transport layer. This class offers the receive method that allows the
Spi Calculus input process to be easily implemented, by internally dealing with
the Java sockets. The c hello 1 Java variable has type Pair, which implements
the Spi Calculus pair. The Pair class offers the getLeft and getRight methods,
allowing a straightforward implementation of the pair splitting process. The
spi2java translation function is proven sound in [14].

In order to get interoperable implementations, the SpiWrapper library classes
only deal with the internal representation of data. By extending the SpiWrapper
classes, the developer can provide custom marshalling functions that transform
the internal representation of data into the external one.

In the SSL monitor case study, a two-tier marshalling layer has been imple-
mented. Tier 1 handles the Record Layer protocol of SSL, while tier 2 handles
the upper layer protocols. When receiving a message from another agent, tier 1
parses one Record Layer message from the input stream, and its contained up-
per layer protocol messages are made available to tier 2. The latter implements
the real marshalling functions, for example converting US-ASCII strings to and
from Java String objects. Analogous reasoning applies when sending a message.
The marshalling layer functions only check that the packet format is correct.
No control on the payload is needed: it will be checked by the automatically
generated protocol logic.

The SSL protocol defines custom hashing algorithms, for instance to com-
pute the MS from the PMS, or to compute the MAC value. For each of them,
a corresponding SpiWrapper class has been created, implementing the custom
algorithm. Moreover, the spi2java framework has been extended to support the
modular exponentiation, so that DH key exchange can be supported.

Finally, it is worth pointing out some details about the IVs used by crypto-
graphic operations (declared in the server specification at line 12S). For each
term of the form {M}K , the eSpi document allows its cryptographic algorithm
(such as DES, 3DES, AES) and its IV to be specified. However, the IV is only
known at run time. The spi2java framework allows cryptographic algorithms
and parameters to be resolved either at compile time or at run time. If the
parameter is to be resolved at compile time, the value of the parameter must
be provided (e.g. AES for the symmetric encryption algorithm, or a constant
value for the IV). If the parameter is to be resolved at run time, the identifier



92 A. Pironti and J. Jürjens

of another term of the Spi Calculus specification must be provided: the param-
eter value will be obtained by the content of the referred term, during execu-
tion. In the SSL case study, this feature is used for the IVs. For example, the
{c Finish and MAC}(KM,C WRITE KEY)~ term uses the H(KM,C WRITE IV) term
as IV. Technically, this feature enables support for cipher suite negotiation. How-
ever, as stated above, this would increase the specification complexity more than
it would increase its significance, and is left for future work.

5.3 Experimental Results

The monitor has been coupled in turn with three different SSL server implemen-
tations, namely OpenSSL1 version 0.9.8j, GnuTLS2 version 2.4.2 and JESSIE3

version 1.0.1.
Since the online monitoring paradigm is used in this case study, the monitor

is accepting connections on the standard SSL port (443), while the real server
is started on another port (4433). Each time a client connects to the monitor,
the latter opens a connection to the real server, starting data checking and
forwarding, as explained above.

It is worth noting that switching the server implementation is straightforward.
In the testing scenario, assuming that the server communicates its private DH
value to the monitor, it is enough to shut down the running server implementa-
tion, and to start the other one; the monitor implementation remains the same,
and no action on the monitor is required. Otherwise, it is enough to restart the
monitor too, enabling the correct plugin that gathers the private DH value from
the legacy application memory. In other words, in a production scenario, the
same monitor implementation can handle several different legacy server imple-
mentations; in the monitor, the only server-dependent part is the plugin that
reads the DH secret value from the server application memory.

In order to generate protocol sessions, three SSL clients have been used with
each server; namely the OpenSSL, GnuTLS, and JESSIE clients. During exper-
iments, the monitor helped in spotting a bug in the JESSIE client: This client
always sends packet of the SSL 3.1 version (better known as TLS 1.0), regardless
of the negotiated version, that is SSL 3.0 in our scenario. The monitor correctly
rejected all JESSIE client sessions, reporting the wrong protocol version.

When the OpenSSL or GnuTLS clients are used, the monitor correctly op-
erates with all the three servers. In particular, safe sessions are successfully
handled; conversely, when exchanged data are manually corrupted, they are rec-
ognized by the monitor and the session is aborted: corrupted data are never
forwarded to the intended recipient.

In order to estimate the impact on performances of the online monitoring
approach, execution times of correctly ended protocol sessions with and with-
out the monitor have been measured. Thus, performances regarding the JESSIE

1 Available at: http://www.openssl.org/
2 Available at: http://www.gnu.org/software/gnutls/
3 Available at: http://www.nongnu.org/jessie/



Formally-Based Black-Box Monitoring of Security Protocols 93

Table 2. Average execution times for protocol runs with and without monitoring

Client Server No Monitor [s] Monitor [s] Overhead [s] Overhead [%]
OpenSSL OpenSSL 0.032 0.113 0.081 253.125
GnuTLS OpenSSL 0.108 0.132 0.024 22.253
OpenSSL GnuTLS 0.073 0.128 0.056 76.552
GnuTLS GnuTLS 0.109 0.120 0.011 10.313
OpenSSL JESSIE 0.158 0.172 0.014 8.986
GnuTLS JESSIE 0.144 0.148 0.004 2.788

client are not reported, as no correct session could be completed, due to the
discovered bug. That is, the measured performances all correspond to valid exe-
cutions of the protocol only. Communication between client, server and monitor
happened over local sockets, so that no random network delays could be intro-
duced; moreover system load was constant during test execution. Table 2 shows
the average execution times for different client-server pairs, with and without
monitor enabled. For each client-server pair, the average execution times have
been computed over ten protocol runs. Columns “No Monitor” and “Monitor”
report the average execution times, in seconds, without and with monitoring
enabled respectively. When monitoring is not enabled, the clients directly con-
nect to the server on port 4433. The “Overhead” columns show the overhead
introduced by the monitor, in seconds and in percentage respectively. In four
cases out of six, the monitor overhead is under 25 milliseconds. From a practical
point of view, a client communicating through a real distributed network could
hardly tell whether a monitor is present or not, since network times are orders
of magnitude higher. On the other hand, in the worst cases online monitoring
can slow down the server machine up to 2.5 times. Whether this overhead is
acceptable on the server side depends on the number of sessions per seconds
that must be handled. If the overhead is not acceptable, the offline monitoring
paradigm can still be used.

The OpenSSL security flaw. Recently, the client side of the OpenSSL library
prior to version 0.9.8j has been discovered flawed, such that in principle it could
treat a malformed DSA certificate as a good one rather than as an error.4 By
inspecting the flawed code, we were able to forge such malformed certificate that
exploited the affected versions. This malformed DSA certificate must have the q
parameter one byte longer than expected. Up to our knowledge, this is the first
documented and repeatable exploit for this flaw.

Without monitoring enabled, we generated protocol sessions between an SSL
server sending the offending certificate, and both OpenSSL clients version 0.9.8i
(flawed) and 0.9.8j (fixed). By using the -state command line argument, it is
possible to conclude that the 0.9.8i version completes the handshake by reaching
the “read finished A” state (after message 10 in figure 4); while the 0.9.8j version
correctly reports an “handshake failure” error at state “read server certificate
A”, that is immediately after message 3 in figure 4.
4 http://www.openssl.org/news/secadv 20090107.txt



94 A. Pironti and J. Jürjens

When monitoring is enabled, the malformed server certificate is passed to
the monitor as an input parameter, that is, the server certificate is known by
the monitor. In this case the monitor actually refuses to start. Indeed, when
loading the server certificate, the monitor spots that it is malformed, and does
not allow any session to be even started. If we drop the assumption that the
monitor knows the server certificate, then the monitor starts, and checks the
server certificate when it is received over the network. During these checks, the
malformed certificate is found, and the session is dropped, before the server
Certificate message is forwarded to the client. This prevents the aforecited flaw
to be exploited on OpenSSL version 0.9.8i.

6 Conclusion

The paper shows a formally-based yet practical methodology to design, develop
and deploy monitors for legacy implementations of security protocols, without
the need to modify the legacy implementations or to analyse their source code.
To our knowledge, this is the first work that allows legacy implementations of
security protocol agents to be black-box monitored.

This paper introduces a function that, given the specification of a security
protocol actor, automatically generates the specification of a monitor that stops
incorrect sessions, without rising false positive alarms. From the obtained mon-
itor specification, an MDD approach is used to generate a monitor implemen-
tation; for this purpose, the spi2java framework has been originally reused, and
some of its parts enhanced.

Finally, the proposed methodology has been validated by implementing a
monitor starting from the server role of the widely used SSL protocol. Core
insights gained from conducting the SSL case study include that the same gen-
erated monitor implementation can in fact monitor several different SSL server
implementations against different clients, in a black-box way. The only needed
information is the private Diffie-Hellman key used by the server, in order to check
message contents. Moreover, by reporting session errors, the monitor effectively
helped us in finding a bug in an open source SSL client implementation.

The “online” monitoring paradigm proved useful in avoiding protocol viola-
tions, for example by stopping malicious data that would have otherwise ex-
ploited a known flaw of the widely deployed OpenSSL client. The overhead
introduced by the monitor to check and forward messages is usually negligible. If
the overhead is not acceptable, this paper also proposes an “offline” monitoring
strategy that has no overhead and can still be useful to timely discover protocol
attacks.

As future work, a general result about soundness of the monitor specification
generating function would be useful. The soundness property should show that
the generated monitor specification actually forwards only (and all) the protocol
sessions that would be accepted by the agent’s verified specification. Together
with the soundness proofs of the spi2java framework, this would produce a sound
monitor implementation, directly from the monitored agent’s specification.



Formally-Based Black-Box Monitoring of Security Protocols 95

References

1. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstrac-
tions. Information and Computation 174(1), 37–83 (2002)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi Calculus.
Digital Research Report 149 (1998)

3. Bauer, A., Jürjens, J.: Security protocols, properties, and their monitoring. In:
International Workshop on Software Engineering for Secure Systems, pp. 33–40
(2008)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Computer Security Foundations Symposium,
pp. 17–32. IEEE, Los Alamitos (2008)

5. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. In: Computer Security Foundations Workshop,
pp. 139–152 (2006)

6. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

7. Fraser, T., Badger, L., Feldman, M.: Hardening COTS software with generic soft-
ware wrappers. In: IEEE Symposium on Security and Privacy, pp. 2–16 (1999)

8. Hubbers, E., Oostdijk, M., Poll, E.: Implementing a formally verifiable security
protocol in Java Card. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.)
Security in Pervasive Computing. LNCS, vol. 2802, pp. 213–226. Springer, Heidel-
berg (2004)

9. Jeon, C.W., Kim, I.G., Choi, J.Y.: Automatic generation of the C# code for secu-
rity protocols verified with Casper/FDR. In: International Conference on Advanced
Information Networking and Applications, pp. 507–510 (2005)

10. Joglekar, S.P., Tate, S.R.: ProtoMon: Embedded monitors for cryptographic pro-
tocol intrusion detection and prevention. Journal of Universal Computer Sci-
ence 11(1), 83–103 (2005)

11. Jürjens, J., Yampolskiy, M.: Code security analysis with assertions. In: IEEE/ACM
International Conference on Automated Software Engineering, pp. 392–395 (2005)

12. Pironti, A., Jürjens, J.: Online resources about black-box monitoring,
http://alfredo.pironti.eu/research/projects/monitoring/

13. Pironti, A., Sisto, R.: An experiment in interoperable cryptographic protocol imple-
mentation using automatic code generation. In: IEEE Symposium on Computers
and Communications, pp. 839–844 (2007)

14. Pironti, A., Sisto, R.: Provably correct Java implementations of Spi Calculus secu-
rity protocols specifications. Computers & Security (2009) (in press)

15. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Englewood Cliffs (1997)

16. Schneider, S.: Security properties and CSP. In: IEEE Symposium on Security and
Privacy, pp. 174–187 (1996)

17. Süßkraut, M., Fetzer, C.: Robustness and security hardening of COTS software
libraries. In: IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 61–71 (2007)

18. Viganò, L.: Automated security protocol analysis with the AVISPA tool. Electronic
Notes on Theoretical Computer Science 155, 61–86 (2006)

19. Voydock, V.L., Kent, S.T.: Security mechanisms in high-level network protocols.
ACM Computing Surveys 15(2), 135–171 (1983)

http://alfredo.pironti.eu/research/projects/monitoring/


Secure Code Generation for Web Applications

Martin Johns1,2, Christian Beyerlein3, Rosemaria Giesecke1,
and Joachim Posegga2

1 SAP Research – CEC Karlsruhe
{martin.johns,rosemaria.giesecke}@sap.com

2 University of Passau, Faculty for Informatics and Mathematics, ISL
{mj,jp}@sec.uni-passau.de

3 University of Hamburg, Department of Informatics, SVS
9beyerle@informatik.uni-hamburg.de

Abstract. A large percentage of recent security problems, such as Cross-
site Scripting or SQL injection, is caused by string-based code injection
vulnerabilities. These vulnerabilities exist because of implicit code cre-
ation through string serialization. Based on an analysis of the vulnerabil-
ity class’ underlying mechanisms, we propose a general approach to outfit
modern programming languages with mandatory means for explicit and
secure code generation which provide strict separation between data and
code. Using an exemplified implementation for the languages Java and
HTML/JavaScript respectively, we show how our approach can be real-
ized and enforced.

1 Introduction

The vast majority of today’s security issues occur because of string-based code
injection vulnerabilities, such as Cross-site Scripting (XSS) or SQL Injection.An
analysis of the affected systems results in the following observation: All pro-
grams that are susceptible to such vulnerabilities share a common characteris-
tics – They utilize the string type to assemble the computer code that is sent
to application-external interpreters. In this paper, we analyse this vulnerabil-
ity type’s underlying mechanisms and propose a simple, yet effective extension
for modern programming languages that reliably prevents the introduction of
string-based code injection vulnerabilities.

1.1 The Root of String-Based Injection Vulnerabilities

Networked applications and especially web applications employ a varying amount
of heterogeneous computer languages (see Listing 1), such as programming (e.g.,
Java, PHP, C#), query (e.g., SQL or XPATH), or mark-up languages (e.g., XML
or HTML).

1 // embedded HTML syntax
2 out.write("<a href=’http :// www.foo.org ’>go </a>");
3 // embedded SQL syntax
4 sql = "SELECT * FROM users ";

Listing 1. Examples of embedded syntax

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 96–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Secure Code Generation for Web Applications 97

This observation leads us to the following definition:

Definition 1 (Hosting/Embedded). For the remainder of this paper we will
use the following naming convention:

• Hosting language: The language that was used to program the actual
application (e.g., Java).

• Embedded language: All other computer languages that are employed by
the application (e.g., HTML, JavaScript, SQL, XML).

Embedded language syntax is assembled at run-time by the hosting applica-
tion and then passed on to external entities, such as databases or web browsers.
String-based code injection vulnerabilities arise due to a mismatch in the pro-
grammer’s intent while assembling embedded language syntax and the actual
interpretation of this syntax by the external parser. For example, take a dynam-
ically constructed SQL-statement (see Fig. 1.a). The application’s programmer
probably considered the constant part of the string-assembly to be the code-
portion while the concatenated variable was supposed to add dynamically data-
information to the query. The database’s parser has no knowledge of the pro-
grammer’s intent. It simply parses the provided string according to the embedded
language’s grammar (see Fig. 1.b). Thus, an attacker can exploit this discord in
the respective views of the assembled syntax by providing data-information that
is interpreted by the parser to consist partly of code (see Fig. 1.c).

In general all string values that are provided by an application’s user on
runtime should be treated purely as data and never be executed. But in most
cases the hosting language does not provide a mechanism to explicitly generate
embedded syntax. For this reason all embedded syntax is generated implicitly
by string-concatenation and -serialization. Thus, the hosting language has no
means to differentiate between user-provided dynamic data and programmer-
provided embedded code (see Fig. 1.d). Therefore, it is the programmer’s duty
to make sure that all dynamically added data will not be parsed as code by the
external interpreter. Consequently, if a flaw in the application’s logic allows an
inclusion of arbitrary values into a string segment that is passed as embedded
syntax to an external entity, an attacker can succeed in injecting malicious code.

Code Data

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

Code Data Data

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘mycatiscalled’”;

a. The programmer’s view b. The DB’s view

Code Data Code

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘ ’ OR ‘1’=‘1’”;

StringString String

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

c. The DB’s view (code injection) d. The hosting language’s view

Fig. 1. Mismatching views on code



98 M. Johns et al.

This bug pattern results in many vulnerability types, such as XSS, SQL injection,
directory traversal, shell command injection, XPath injection or LDAP injection.

A considerable amount of work went into addressing this problem by ap-
proaches which track the flow of untrusted data through the application (see
Sec. 4). However, with the exception of special domain solutions, the causing
practice of using strings for code assembly has not been challenged yet.

1.2 The String Is the Wrong Tool!

As motivated above, assembly of computer code using the string datatype is
fundamentally flawed. The string is a “dumb” container type for sequences of
characters. This forces the programmer to create embedded syntax implicitly.
Instead of clearly stating that he aims to create a select-statement which ac-
cesses a specific table, he has to create a stream of characters which hopefully
will be interpreted by the database in the desired fashion. Besides being notori-
ously error-prone, this practice does not take full advantage of the programmer’s
knowledge. He knows that he wants to create a select-statement with very spe-
cific characteristics. But the current means do not enable him to state this intent
explicitly in his source code.

1.3 Contributions and Paper Outline

In this paper we propose to add dedicated capabilities to the hosting language
that

– allow secure creation of embedded syntax through
– enforcing explicit creation of code semantics by the developer and
– providing strict separation between embedded data and code.

This way, our method reliably prevents string-based code injection vulnerabili-
ties. Furthermore, our approach is

– applicable for any given embedded language (e.g., HTML, JavaScript, SQL),
– can be implemented without significant changes in the hosting language,
– and mimics closely the current string-based practices in order to foster ac-

ceptance by the developer community.

The remainder of the paper is organised as follows. In Section 2 we describe
our general objectives, identify our approach’s key components, and discuss how
these components can be realised. Then, in Section 3 we document our practical
implementation and evaluation. For this purpose, we realised our method for the
languages Java and HTML/JavaScript. We end the paper with a discussion of
related work (Sec. 4) and a conclusion (Sec. 5).

2 Concept Overview

In this section, we propose our language-based concept for assembly of embedded
syntax which provides robust security guarantees.



Secure Code Generation for Web Applications 99

2.1 Keeping the Developers Happy

Before describing our approach, in this section we list objectives which we con-
sider essential for any novel language-based methodology to obtain acceptance
in the developer community.

Objectives concerning the hosting language: Foremost, the proposed con-
cepts should not depend on the characteristics of a specific hosting language.
They rather should be applicable for any programming language in the class of
procedural and object-orientated languages1. Furthermore, the realisation of the
concepts should also not profoundly change the hosting language. Only aspects
of the hosting language that directly deal with the assembly of embedded code
should be affected.

Objectives concerning the creation of embedded syntax: The specific
design of every computer language is based on a set of paradigms that were
chosen by the language’s creators. These paradigms were selected because they
fitted the creator’s design goals in respect to the language’s scope. This holds
especially true for languages like SQL that were not designed to be a general
purpose programming language but instead to solve one specific problem domain.
Therefore, a mechanism for assembling such embedded syntax within a hosting
language should aim to mimic the embedded language as closely as possible. If
the language integration requires profound changes in the embedded syntax it is
highly likely that some of the language’s original design paradigms are violated.
Furthermore, such changes would also cause considerable training effort even for
developers that are familiar with the original embedded language.

Finally, string operations, such as string-concatenation, string-splitting, or
search-and-replace, have been proven in practice to be a powerful tool for syntax
assembly. Hence, the capabilities and flexibility of the string type should be
closely mimicked by the newly introduced methods.

2.2 Key Components

We propose a reliable methodology to assemble embedded language syntax in
which all code semantics are created explicitly and which provides a strict sepa-
ration between data and code. In order to do so, we have to introduce three key
components to the hosting language and its run-time environment: A dedicated
datatype for embedded code assembly, a suitable method to integrate the em-
bedded language’s syntax into the hosting code, and an external interface which
communicates the embedded code to the external entity (see Fig. 2).

Datatype: We have to introduce a novel datatype to the hosting language
that is suitable to assemble/represent embedded syntax and that guarantees
strict separation between data and code according to the developer’s intent.
In the context of this document we refer to such a datatype as ELET, which
is short for Embedded Language Encapsulation Type.

1 To which degree this objective is satisfiable for functional and logical programming
languages has to be determined in the future.



100 M. Johns et al.

Hosting Language 

Database External

Interpreters

Web 

Services

Web 

Browser

Language integration

Embedded

language

Datatype

External 

Interfaces

Fig. 2. Key components of the proposed approach

Language integration: To fill the ELET datatype, suitable means have to be
added to the hosting language which enable the developer to pass embed-
ded syntax to the datatype. As motivated above these means should not
introduce significant changes to the embedded language’s syntax.

External interface: For the time being, the respective external entities do not
yet expect the embedded code to be passed on in ELET form. For this reason,
the final communication step is still done in character based form. Therefore,
we have to provide an external interface which securely translates embedded
syntax which is encapsulated in an ELET into a character-based represen-
tation. Furthermore, all legacy, character-based interfaces to the external
entities have to be disabled to ensure our approach’s security guarantees.
Otherwise, a careless programmer would still be able to introduce code in-
jection vulnerabilities.

In the following sections we show how these three key components can be realised.

2.3 The Embedded Language Encapsulation Type (ELET)

This section discusses our design decisions concerning the introduced datatype
and explains our security claims.

As shown in Sec. 1.1, the root cause for string-based code injection vulnerabil-
ities is that the developer-intended data/code-semantics of the embedded syntax
are not correctly enforced by the actual hosting code which is responsible for the
syntax assembly. Therefore, to construct a methodology which reliably captures
the developer’s intent and provides strict separation between data and code, it
is necessary to clarify two aspects of embedded syntax assembly:

For one, an intended classification of syntax into data and code portions im-
plies that an underlying segmentation of individual syntactical language elements
exist. Hence, the details of this segmentation have to be specified. Furthermore,
after this specification step, a rationale has to be built which governs the assign-
ment of the identified language elements into the data/code-classes.

ELET-internal representation of the embedded syntax: The main design
goal of the ELET type is to support a syntax assembly method which bridges
the current gap between string-based code creation and the corresponding pars-
ing process of the application-external parsers. For this reason, we examined the



Secure Code Generation for Web Applications 101

mechanisms of parsing of source code: In general, the parsing is, at least, a two
step process. First a lexical analysis of the input character stream generates a
stream of tokens. Then, a syntactical analysis step matches these tokens accord-
ing to the language’s formal grammar and aligns them into tree structures such
as parse-trees or abstract syntax-trees. The leafs of such trees are the previously
identified tokens, now labeled according to their grammar-defined type (e.g.,
JavaScript defines the following token types: keyword-token, identifier-token,
punctuator-token, and data-value).

Hence, we consider regarding an embedded language statement as a stream of
labeled tokens to be a suitable level of abstraction which allows us to precisely
record the particularities of the embedded syntax. Consequently, the ELET is a
container which holds a flat stream of labeled language tokens. See Listing 2 for
an exemplified representation of Sec. 1.1’s SQL.

1 $sql = {select -token , meta -char(*), from -token , tablename -token(Users),
2 where -token , fieldname -token(Passwd), metachar (=), metachar(’),
3 stringliteral(mycatiscalled), metachar (’)}

Listing 2. ELET-internal representation of Fig. 1.b’s SQL statement

Identification of language elements: An analysis of common embedded lan-
guages, such as HTML, SQL, or JavaScript, along with an investigation of the
current practice of code assembly yields the following observation: The set of ex-
isting token-types can be partitioned into three classes - static tokens, identifier
tokens, and data literals (see Fig. 3):

Static tokens are statically defined terminals of the embedded language’s gram-
mar. Static tokens are either language keywords (such as SQL instructions,
HTML tag- and attribute-names, or reserved JavaScript keywords) or meta-
characters which carry syntactical significance (such as * in SQL, < in HTML,
or ; in JavaScript).

Identifier tokens have values that are not statically defined within the lan-
guage’s grammar. However, they represent semi-static elements of the em-
bedded code, such as names of SQL tables or JavaScript functions. As already
observed and discussed, e.g., in [2] or [6], such identifiers are statically de-
fined at compile-time of the hosting code. I.e., the names of used JavaScript
functions are not dynamically created at run-time – they are hard-coded
through constant string-literals in the hosting application.

Data literals represent values which are used by the embedded code. E.g.,
in Fig. 1.b the term “mycatiscalled” is such a literal. As it can be obtained
from Fig. 1.a the exact value of this literal can change every time the hosting
code is executed. Hence, unlike static and identifier tokens the value of data
literals are dynamic at run-time.

Rules for secure assembly of embedded syntax: As previously stated, our
methodology relies on explicit code creation. This means, for instance, the only
way for a developer to add a static token representing a select-keyword to a



102 M. Johns et al.

$sql = “SELECT * FROM Users WHERE Passwd  = ‘foobar ’ ”;

static token data literalidentifier token

Fig. 3. Examples of the identified token classes

SQL-ELET is by explicitly stating his intent in the hosting source code. Conse-
quently, the ELET has to expose a set of disjunct interfaces for adding members
of each of the three token-classes, e.g. implemented via corresponding APIs. For
the remainder of this paper, we assume that these interfaces are in fact imple-
mented via API-calls. Please note: This is not a defining characteristic of our
approach but merely an implementation variant which enables easy integration
of the ELET into existing languages.

We can sufficiently model the three token-classes by designing the ELET’s
API according to characteristics identified above regarding the define-time of
the tokens’ values (see also Listing 3):

– API calls to add a static token to the ELET container are themselves com-
pletely static. This means, they do not take any arguments. Hence, for every
element of this token-class, a separate API call has to exist. For instance,
to add a select-keyword-token to a SQL-ELET a corresponding, dedicated
addSelectToken()-method would have to be invoked.

– Identifier tokens have values which are not predefined in the embedded lan-
guage’s grammar. Hence, the corresponding ELET interface has to take a
parameter that contains the token’s value. However, to mirror fact that the
values of such tokens are statically defined at compile-time and do not change
during execution, it has to be enforced that the value is a constant literal.
Furthermore, the embedded language’s grammar defines certain syntactic
restrictions for the token’s value, e.g., the names of JavaScript variables can
only be composed using a limited set of allowed characters excluding whites-
pace. As the arguments for the corresponding API methods only accept con-
stant values these restrictions can be checked and enforced at compile-time.

– The values of data literals can be defined completely dynamically at run-
time. Hence, the corresponding API methods do not enforce compile-time
restrictions on the values of their arguments (which in general consist of
string or numeric values).

1 sqlELET.addSelectToken (); // no argument
2 [...]
3 sqlELET.addIdentifierToken (" Users "); // constant argument
4 ...
5 sqlELET.addStringLiteral(password ); // dynamic argument
6 [...]

Listing 3. Exemplified API-based assembly of Fig. 1.b’s SQL statement

Through this approach, we achieve reliable protection against string-based
code injection vulnerabilities: All untrusted, attacker-controlled values enter the



Secure Code Generation for Web Applications 103

application as either string or numeric values, e.g., through HTTP parameters
or request headers. In order to execute a successful code injection attack the
adversary has to cause the hosting application to insert parts of his malicious
values into the ELET in a syntactical code context, i.e., as static or identifier
tokens. However, the ELET interfaces which add these token types to the con-
tainer do not accept dynamic arguments. Only data literals can be added this
way. Consequently, a developer is simply not able to write source code which in-
voluntarily and implicitly creates embedded code from attacker-provided string
values. Hence, string-based code injection vulnerabilities are impossible as the
ELET maintains at all times strict separation between the embedded code (the
static and identifier tokens) and data (the data literal tokens).

2.4 Language Integration

While the outlined API-based approach fully satisfies our security requirements,
it is a clear violation of our developer-oriented objective to preserve the em-
bedded language’s syntactic nature (see Sec. 2.1). A direct usage of the ELET
API in a non-trivial application would result in source code which is very hard
to read and maintain. Consequently, more suitable methods to add embedded
syntax to the ELET have to be investigated.

A direct integration of the embedded syntax into the hosting language, for in-
stance through a combined grammar, would be the ideal solution (see Listing 4).
In such a case, the developer can directly write the embedded syntax into the
hosting application’s source code. First steps in this direction have been taken
by Meijer et al. with Xen [14] and LINQ [13] which promote a subset of SQL and
XML to be first class members of C# However, this approach requires signifi-
cant, non-trivial changes in the hosting language which are not always feasible.
Also achieving full coverage of all features of the embedded language this way is
still an open problem. Even advanced projects such as LINQ only cover a subset
of the targeted languages and omit certain, sophisticated aspects which are hard
to model within C#’s functionality.

1 sqlELET s = SELECT * FROM Users;

Listing 4. Direct integration of the embedded syntax

Instead, we propose a light-weight alternative which uses a source-to-source
preprocessor: The embedded syntax is directly integrated into the hosting ap-
plication’s source code, unambiguously identified by predefined markers, e.g. $$
(see Listing 5). Before the application’s source code is compiled (or interpreted),
the preprocessor scans the source code for the syntactical markers. All embed-
ded syntax that can be found this way is parsed accordingly to the embedded
language’s grammar and for each of the identified language tokens a correspond-
ing API-call is added to the hosting source code (see Listing 6). The resulting
API-based representation is never seen by the developer. He solely has to use un-
modified embedded syntax. To add data values through hosting variables to the
embedded syntax and offer capabilities for more dynamic code assembly (e.g.,



104 M. Johns et al.

selective concatenation of syntax fragments) a simple meta-syntax is provided
(see Sec. 3.2 for details).

1 sqlELET s = $$ SELECT * FROM Users $$

Listing 5. Preprocessor-targeted integration of embedded syntax

1 sqlELET s.addSelectToken (). addStarMetachar (). addFromToken ()
2 .addIdentifierToken (" Users ");

Listing 6. Resulting API representation generated by the preprocessor

Compared to direct language integration, this approach has several advantages.
For one, besides the adding of the ELET type, no additional changes to the
original hosting language have to be introduced. The preprocessor is completely
separate from the hosting language’s parsing process. This allows flexible in-
troduction of arbitrary embedded languages. Furthermore, achieving complete
coverage of all features of the embedded language is not an issue. The only re-
quirements are that the preprocessor covers the complete parsing process of the
embedded language and the ELET provides interfaces for all existing tokens.
Hence, covering obscure or sophisticated aspects of the embedded language is as
easy as providing only a subset of the language.

However, our approach has also a drawback: The source code that is seen by
the hosting application’s parser differs from the code that the developer wrote.
If parsing errors occur in source code regions which were altered by the pre-
processor, the content of the parser’s error message might refer to code that is
unknown to the programmer. For this reason, a wrapped parsing process which
examines the error messages for such occurrences is advisable.

2.5 External Interface

Finally, before communicating with the external entity (e.g., the database), the
ELET-contained embedded syntax has to be serialized into a character-based
representation. This is done within the external interface. From this point on,
all meta-information regarding the tokens is lost. Therefore, the reassembly into
a character-based representation has to be done with care to prevent the rein-
troduction of code injection issues at the last moment. The embedded syntax
is provided within the ELET in a semi-parsed state. Hence, the external in-
terface has exact and reliable information on the individual tokens and their
data/code-semantics. Enforced by the ELET’s restrictive interfaces, the only el-
ements that may be controlled by the adversary are the data values represented
by data literal tokens. As the exact context of these values within the embedded
syntax is known to the external entity, it can reliably choose the correct encod-
ing method to ensure the data-status of the values (see Sec. 3.3 for a concrete
implementation).



Secure Code Generation for Web Applications 105

2.6 Limitations

Before we document our practical implementation of our approach, we discuss
the limitations of our methodology:

Run-time code evaluation: Certain embedded languages, such as JavaScript,
provide means to create code from string values at run-time using function like
eval(). Careless usage of such functionality can lead to string-based code injec-
tion vulnerabilities which are completely caused by the embedded code, such as
DOM-based XSS [9]. The protection capabilities of our approach are limited to
code assembly within the hosting language. To provide protection against this
specific class of injection vulnerabilities, an ELET type has to be added to the
embedded language and the eval()-functionality has to be adapted to expect
ELET-arguments instead of string values.

Dynamically created identifier tokens: As explained in Sec. 2.3 the values
of identifier tokens have to be defined through constant values. However, some-
times in real-life code one encounters identifiers which clearly have been created
at run-time. One example are names of JavaScript variables which contain an
enumeration component, such as handler14, handler15, etc. As this is not al-
lowed by our approach, the developer has to choose an alternative solution like
his purpose, e.g. arrays.

Permitting dynamic identifiers can introduce insecurities as it may lead to
situations in which the adversary fully controls the value of an identifier token.
Depending on the exact situation this might enable him to alter the control or
data flow of the application, e.g. by exchanging function or variable names.

3 Practical Implementation and Evaluation

3.1 Choosing an Implementation Target

To verify the feasibility of our concepts, we designed and implemented our ap-
proach targeting the embedded languages HTML/JavaScript2 and the hosting
language Java. We chose this specific implementation target for various rea-
sons: Foremost, XSS problems can be found very frequently, rendering this
vulnerability-class to be one of the most pressing issues nowadays.Furthermore,
as HTML and JavaScript are two independent languages with distinct syntaxes
which are tightly mixed within the embedded code, designing a suiting preproces-
sor and ELET-type is interesting. Finally, reliably creating secure HTML-code is
not trivial due to the lax rendering process employed by modern web browsers.

3.2 API and Preprocessor Design

The design of the ELET API for adding the embedded syntax as outlined in
Sec. 2.3 was straightforward after assigning the embedded languages’ elements
2 NB: The handling of Cascading Style Sheets (CSS), which embody in fact a third

embedded language, is left out in this paper for brevity reasons.



106 M. Johns et al.

to the three distinct token types. Also, implementing the language preprocessor
to translate the embedded code into API calls was in large parts uneventful.
The main challenge was to deal with situations in which the syntactical context
changed from HTML to JavaScript and vice versa. Our preprocessor contains
two separate parsing units, one for each language. Whenever a HTML element
is encountered that signals a change of the applicable language, the appropriate
parser is chosen. Such HTML elements are either opening/closing script-tags or
HTML attributes that carry JavaScript-code, e.g., event handlers like onclick.

As motivated in Sec. 2.1, we aim to mimic the string type’s characteristics
as closely as possible. For this purpose, we introduced a simple preprocessor
meta-syntax which allows the programmer to add hosting values, such as Java
strings, to the embedded syntax and to combine/extend ELET instances (see
Listings 7 and 8). Furthermore, we implemented an iterator API which allows,
e.g., to search a ELET’s data literals or to split an ELET instance.

1 HTMLElet h $=$ Hello <b> $data(name)$ </b>, nice to see you! $$

Listing 7. Combination of embedded HTML with the Java variable name

3.3 Adding an External Interface for HTML Creation to J2EE

In order to assemble the final HTML output the external interface iterates
through the ELET’s elements and passes them to the output buffer. To deter-
ministically avoid XSS vulnerabilities, all encountered data literals are encoded
into a form which allows the browser to display their values correctly without
accidentally treating them as code. Depending on the actual syntactical context
a given element appears in an HTML page, a different encoding technique has
to be employed:

– HTML: All meta-characters, such as <, >, =, " or ’, that appear in data liter-
als within an HTML context are encoded using HTML encoding (“&...;”)
to prevent the injection of rogue HTML tags or attributes.

– JavaScript-code: JavaScript provides the function String.fromCharCode()
which translates a numerical representation into a corresponding character.
To prevent code injection attacks through malicious string-values, all data
literals within a syntactical JavaScript context are transformed into a rep-
resentation consisting of concatenated String.fromCharCode()-calls.

– URLs: All URLs that appear in corresponding HTML attribute values are
encoded using URL encoding (“%..”).

In our J2EE based implementation the external interface’s tasks are integrated
into the application server’s request/response handling. This is realized by em-
ploying J2EE’s filter mechanism to wrap the ServletResponse-object. Through
this wrapper-object servlets can obtain an ELETPrinter. This object in turn pro-
vides an interface which accepts instantiated ELETs as input (see Fig. 4.a). The
serialized HTML-code is then passed to the original ServletResponse-object’s



Secure Code Generation for Web Applications 107

output buffer. Only input received through the ELETPrinter is included in the
final HTML-output. Any values that are passed to the output-stream through
legacy character-based methods is logged and discarded. This way we ensure that
only explicitly generated embedded syntax is sent to the users web browsers.

Implementing the abstraction layer in the form of a J2EE filter has several
advantages. Foremost, no changes to the actual application-server have to be
applied - all necessary components are part of a deployable application. Further-
more, to integrate our abstraction layer into an existing application only minor
changes to the application’s web.xml meta-file have to be applied (besides the
source code changes that are discussed in Section 3.4).

3.4 Practical Evaluation

We successfully implemented a preprocessor, ELET-library, and abstraction layer
for the J2EE application server framework. To verify our implementation’s protec-
tion capabilities, we ran a list of well known XSS attacks [3] against a specifically
crafted test application. For this purpose, we created a test-servlet that blindly
echos user-provided data back into various HTML/JavaScript data- and code-
contexts (see Fig. 8 for an excerpt).

1 protected void doGet(HttpServletRequest req , HttpServletResponse resp)
2 throws IOException
3 {
4 String bad = req.getParameter ("bad");
5 [...]
6 HTMLElet h $=$ <h3 >Protection test </h3> $$
7 h $+$ Text: $data(bad)$ <br /> $$
8 h $+$ Link: <a href="$data(bad)$">link </a> <br /> $$
9 h $+$ Script: <script >document.write($data(bad)$);</script ><br /> $$

10 [...]
11 EletPrinter.write(resp , h); // Writing the ELET to the output buffer
12 resp.getWriter (). println(bad); // Is the legacy interface disabled?
13 }

Listing 8. Test-servlet for protection evaluation (excerpt)

Furthermore, to gain experiences on our approach’s applicability in respect to
non-trivial software we modified an existing software project to use our method-
ology. Porting an application to our approach requires to locate every portion of
the application’s source code which utilize strings to create embedded code. Such
occurrences have to be changed to employ ELET semantics instead. Therefore,
depending on the specific application, porting an existing code-base might prove
to be difficult. We chose JSPWiki [5] as a porting target. JSPWiki is a mature
J2EE based WikiWiki clone which was initially written by Janne Jalkanen and
is released under the LGPL. More precisely, we chose version 2.4.103 of the soft-
ware, a release which suffers from various disclosed XSS vulnerabilities [10]. The
targeted version of the code consists of 365 java/jsp files which in total contain
69.712 lines of source code.

The porting process was surprisingly straightforward. JSPWiki’s user-interface
follows in most parts a rather clean version of the Model-View-Controller (MVC)



108 M. Johns et al.

pattern which aided the porting process. Besides the user-interface also the ap-
plication’s Wiki-markup parser and HTML-generator had to be adapted. It took
a single programmer about a week to port the application’s core functionality. In
total 103 source files had to be modified.

As expected, all documented XSS vulnerabilities [10] did not occur in the
resulting software. This resolving of the vulnerabilities was solely achieved by
the porting process without specifically addressing the issues in particular.

Finally, to gain first insight of our approach’s runtime behaviour, we exam-
ined the performance of the prototype. For this purpose, we benchmarked the
unaltered JSP code against the adapted version utilizing the ELET paradigm.
The performance tests were done using the HP LoadRunner tool, simulating
an increasing number of concurrent users per test-run. The benchmarked ap-
plications were served by an Apache Tomcat 5.5.20.0 on a 2,8 GHz Pentium
4 computer running Windows XP Professional. In situations with medium to
high server-load, we observed an overhead of maximal 25% in the application’s
response times (see Fig. 4.c). Considering that neither the ELET’s nor the ex-
ternal interface’s implementation have been specifically optimized in respect to
performance, this first result is very promising. Besides streamlining the actual
ELET implementation, further conceptual options to enhance the implementa-
tion’s performance exist. For instance, integrating the abstraction layer directly
into the application server, instead of introducing it via object wrappers would
aid the overall performance.

4 Related Work

In the last decade extensive research concerning the prevention of code injec-
tion attacks has been conducted. In this section we present selected related
approaches. In comparison to our proposed solution, most of the discussed tech-
niques have the limitations that they are not centrally enforceable and/or are
prone to false positives/negatives. Both characteristics do not apply to our
technique.

Martin Johns/ITSec/2008 

PrintWriter

ServletResponse

Processor

Request Response

EletFilter

LogPrintWriterEletPrinter

StringHTMLElet

Log

Web Container 

Servlet

secure embedded 

code

 0

 20

 40

 60

 80

 100

5 10 25 50 75 100 150 200

C
P

U
 U

sa
ge

in
 %

Users

CPU Usage

JSP
FLET

 0

 10

 20

 30

 40

 50

 60

5 10 25 50 75 100

R
es

po
ns

e 
T

im
e 

in
 m

s

Users

Server Response Times

JSP
FLET

a. Concept b. CPU overhead c. Response times

Fig. 4. Implementation of the J2EE EletFilter



Secure Code Generation for Web Applications 109

Manual protection and special domain solutions: The currently used
strategy against XSS attacks is manually coded input filtering and output en-
coding. As long as unwanted HTML and JavaScript code is properly detected
and stripped from all generated web pages, XSS attacks are impossible. However,
implementing these techniques is a non-trivial and error prone task which cannot
be enforced centrally, resulting in large quantities of XSS issues. In order to aid
developers to identify XSS and related issues in their code, several information-
flow based approaches for static source code analysis have been discussed, e.g.,
[4], [11], [7], or [23]. However, due to the undecidable nature of this class of
problems such approaches suffer from false positives and/or false negatives.

Manual protection against SQL injection suffers from similar problems as
observed with XSS. However, most SQL interpreters offer prepared statements
which provide a secure method to outfit static SQL statements with dynamic
data. While being a powerful migration tool to avoid SQL injection vulnerabili-
ties, prepared statements are not completely bulletproof. As dynamic assembly
of prepared statements is done using the string type, injection attacks are still
possible at the time of the initial creation of the statement [22]. Furthermore,
methods similar to prepared statements for most other embedded languages be-
sides SQL do not exist yet. Therefore, dynamic assembly of embedded code in
these languages has to employ similar mitigating strategies as mentioned in the
context of XSS, with comparable results.

Type based protection: In concurrent and independent work [19], Robertson
and Vigna propose a type based approach which is closely related to our ELET
paradigm. They introduce dedicated datatypes that model language features of
HTML and SQL. This way they enforce separation of the content and structure
of the created syntax, two concepts that are similar to this paper’s terms data
and code.

However, their approach is not easily extensible to general purpose program-
ming languages, such as JavaScript. Consequently, cross-site scripting caused
by insecure dynamic assembly of JavaScript code (e.g., see Listing 8, line 9) is
not prevented. In comparison, our approach is language independent and, thus,
covers dynamically assembled JavaScript. Furthermore, notably absent from the
paper is a discussion concerning the actual construction of the embedded code.
For example, it is not explained, how the programmer creates HTML syntax in
practice. As previously discussed, we consider such aspect to be crucial in regard
to acceptance of the developer community.

Taint propagation: Run-time taint propagation is regarded to be a powerful
tool for detecting string-based code injection vulnerabilities. Taint propagation
tracks the flow of untrusted data through the application. All user-provided
data is “tainted” until its state is explicitly set to be “untainted”. This allows
the detection if untrusted data is used in a security sensible context. Taint prop-
agation was first introduced by Perl’s taint mode. More recent works describe
finer grained approaches towards dynamic taint propagation. These techniques



110 M. Johns et al.

allow the tracking of untrusted input on the basis of single characters. In inde-
pendent concurrent works [16] and [18] proposed fine grained taint propagation
to counter various classes of injection attacks. [2] describes a related approach
(“positive tainting”) which, unlike other proposals, is based on the tracking of
trusted data. Furthermore, based on dynamic taint propagation, [21] describe an
approach that utilizes specifically crafted grammars to deterministically identify
code injection attempts. Finally, [24] proposes a fine grained taint mechanism
that is implemented using a C-to-C source code translation technique. Their
method detects a wide range of injection attacks in C programs and in lan-
guages which use interpreters that were written in C. To protect an interpreted
application against injection attacks the application has to be executed by a
recompiled interpreter.

Compared to our approach, dynamic taint propagation provides inferior pro-
tection capabilities. Taint-tracking aims to prevent the exploitation of injection
vulnerabilities while their fundamental causes, string-based code assembly and
the actual vulnerable code, remain unchanged. Therefore, in general the sani-
tazion of the tainted data still relies on string operations. The application has to
“untaint” data after applying manually written validation and encoding function,
a process which in practice has been proven to be non-trivial and error-prone.
This holds especially true in situations where limited user-provided HTML is per-
mitted. E.g., no taint-tracking solution would have prevented the myspace.com
XSS that was exploited by the Samy-worm [8]. In our approach, even in cases
where user-provided HTML is allowed, such markup has to be parsed from the
user’s data and recreated explicitly using ELET semantics, thus, effectively pre-
venting the inclusion of any unwanted code. Furthermore, unlike our approach
taint-tracking is susceptible to second-order code injection vulnerabilities [17]
due to its necessary classification of data origins as either trusted or untrusted.
In the case of second-order code injection the attacker is able to reroute his at-
tack through a trusted component (e.g., temporary storage of an XSS attack in
the DB).

Embedded language integration: Extensive work has been done in the do-
main of specifically integrating a certain given embedded language into hosting
code. Especially SQL and XML-based languages have received a lot of attention.
However, unlike our approach, the majority of these special purpose integration
efforts neither can be extended to arbitrary embedded languages, nor have been
designed to prevent code injection vulnerabilities. In the remainder of this section
we describe selected publications that share similarities with our approach:

As previously discussed in Section 2.3, LINQ [13] promotes subsets of XML
and SQL to be first class members of C#. Furthermore, E4X [20] is a related
approach which integrates XML into JavaScript. The applied techniques are
entirely data-centric with the goal to soften the object-relational impedance
mismatch [14]. Due to this characteristic, their approach is not easily extensi-
ble to procedural embedded languages, such as JavaScript. In comparison, our
approach is completely independent from the characteristics of the embedded

myspace.com


Secure Code Generation for Web Applications 111

language. [12] describes SQL DOM. A given database schema can be used to au-
tomatically generate a SQL Domain Object Model. This model is transformed
to an API which encapsulates the capabilities of SQL in respect to the given
schema, thus eliminating the need to generate SQL statements with the string
datatype. As every schema bears a schema-specific domain object model and
consequently a schema-specific API, every change in the schema requires a re-
generation of the API. Finally, SQLJ [1] and Embedded SQL [15], two inde-
pendently developed mechanisms to combine SQL statements either with Java
or C respectively, employ a simple preprocessor. However, unlike our proposed
approach these techniques only allow the inclusion of static SQL statements in
the source code. The preprocessor then creates hosting code that immediately
communicates the SQL code to the database. Thus, dynamic assembly and pro-
cessing of embedded syntax, as it is provided in our proposed approach via the
ELET, is not possible.

5 Conclusion

In this paper we proposed techniques to enhance programming languages with
capabilities for secure and explicit creation of embedded code. The centerpiece
of our syntax-assembly architecture is the ELET (see Section 2.3), an abstract
datatype that allows the assembly and processing of embedded syntax while
strictly enforcing the separation between data and code elements. This way in-
jection vulnerabilities that are introduced by implicit, string-serialization based
code-generation become impossible. To examine the feasibility of the proposed
approach, we implemented an integration of the embedded languages HTML and
JavaScript into the Java programming language. Usage of our approach results in
a system in which every creation of embedded syntax is an explicit action. More
specifically, the developer always has to define the exact particularities of the as-
sembled syntax precisely. Therefore, accidental inclusion of adversary-provided
semantics is not possible anymore. Furthermore, the only way to assemble em-
bedded syntax is by ELET, which effectively prevents programmers from taking
insecure shortcuts. A wide adoption of our proposed techniques would reduce
the attack surface of code injection attacks significantly.

Acknowledgements

We wish to thank Erik Meijer for giving us valuable feedback and insight into
LINQ.

References

1. American National Standard for Information Technology. ANSI/INCITS 331.1-
1999 - Database Languages - SQLJ - Part 1: SQL Routines using the Java (TM)
Programming Language. InterNational Committee for Information Technology
Standards (formerly NCITS) (September 1999)



112 M. Johns et al.

2. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter sql injection attacks. In: 14th ACM Symposium on the Foun-
dations of Software Engineering, FSE (2006)

3. Hansen, R.: XSS (cross-site scripting) cheat sheet - esp: for filter evasion,
http://ha.ckers.org/xss.html (05/05/07)

4. Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., Kuo, S.-Y.: Securing web
application code by static analysis and runtime protection. In: Proceedings of the
13th conference on World Wide Web, pp. 40–52. ACM Press, New York (2004)

5. Jalkanen, J.: Jspwiki. [software], http://www.jspwiki.org/
6. Johns, M., Beyerlein, C.: SMask: Preventing Injection Attacks in Web Applications

by Approximating Automatic Data/Code Separation. In: 22nd ACM Symposium
on Applied Computing (SAC 2007) (March 2007)

7. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web
application vulnerabilities. In: IEEE Symposium on Security and Privacy (May
2006)

8. Kamkar, S.: Technical explanation of the myspace worm (October 2005),
http://namb.la/popular/tech.html (01/10/06)

9. Klein, A.: DOM Based Cross Site Scripting or XSS of the Third Kind (September
2005),
http://www.webappsec.org/projects/articles/071105.shtml (05/05/07)

10. Kratzer, J.: Jspwiki multiple vulnerabilitie. Posting to the Bugtraq mailinglist
(September 2007), http://seclists.org/bugtraq/2007/Sep/0324.html

11. Livshits, B., Lam, M.S.: Finding security vulnerabilities in java applications using
static analysis. In: Proceedings of the 14th USENIX Security Symposium (August
2005)

12. McClure, R.A., Krueger, I.H.: Sql dom: compile time checking of dynamic sql
statements. In: Proceedings of the 27th International Conference on Software En-
gineering (2005)

13. Meijer, E., Beckman, B., Bierman, G.: LINQ: Reconciling Objects, Relations, and
XML In the.NET Framework. In: SIGMOD 2006 Industrial Track (2006)

14. Meijer, E., Schulte, W., Bierman, G.: Unifying tables, objects, and documents.
In: Declarative Programming in the Context of OO Languages (DP-COOL 2003),
vol. 27. John von Neumann Institute of Computing (2003)

15. MSDN. Embedded sql for c,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

esqlforc/ec 6 epr 01 3m03.asp (27/02/07)
16. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically

hardening web applications using precise tainting. In: 20th IFIP International In-
formation Security Conference (May 2005)

17. Ollmann, G.: Second-order code injection. Whitepaper, NGSSoftware Insight Se-
curity Research (2004),
http://www.ngsconsulting.com/papers/SecondOrderCodeInjection.pdf

18. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-
sensitive string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

19. Robertson, W., Vigna, G.: Static Enforcement of Web Application Integrity
Through Strong Typing. In: USENIX Security (August 2009)

20. Schneider, J., Yu, R., Dyer, J. (eds.): Ecmascript for xml (e4x) specification. ECMA
Standard 357, 2nd edn. (December 2005),
http://www.ecma-international.org/publications/standards/Ecma-357.htm

http://ha.ckers.org/xss.html
http://www.jspwiki.org/
http://namb.la/popular/tech.html
http://www.webappsec.org/projects/articles/071105.shtml
http://seclists.org/bugtraq/2007/Sep/0324.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/esqlforc/ec_6_epr_01_3m03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/esqlforc/ec_6_epr_01_3m03.asp
http://www.ngsconsulting.com/papers/SecondOrderCodeInjection.pdf
http://www.ecma-international.org/publications/standards/Ecma-357.htm


Secure Code Generation for Web Applications 113

21. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: Proceedings of POPL 2006 (January 2006)

22. von Stuppe, S.: Dealing with sql injection (part i) (February 2009),
http://sylvanvonstuppe.blogspot.com/2009/02/

dealing-with-sql-injection-part-i.html (04/24/09)
23. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:

Proceedings of the 30th International Conference on Software Engineering, Leipzig,
Germany, May 2008. ACM Press, New York (2008)

24. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In: 15th USENIX Security Symposium
(August 2006)

http://sylvanvonstuppe.blogspot.com/2009/02/dealing-with-sql-injection-part-i.html
http://sylvanvonstuppe.blogspot.com/2009/02/dealing-with-sql-injection-part-i.html


Idea: Reusability of Threat Models – Two
Approaches with an Experimental Evaluation

Per H̊akon Meland, Inger Anne Tøndel, and Jostein Jensen

SINTEF ICT, SP Andersens vei 15 B, N-7465 Trondheim, Norway
{per.h.meland,inger.a.tondel,jostein.jensen}@sintef.no

http://www.sintef.com/

Abstract. To support software developers in addressing security, we
encourage to take advantage of reusable threat models for knowledge
sharing and to achieve a general increase in efficiency and quality. This
paper presents a controlled experiment with a qualitative evaluation of
two approaches supporting threat modelling - reuse of categorised misuse
case stubs and reuse of full misuse case diagrams. In both approaches,
misuse case threats were coupled with attack trees to give more insight
on the attack techniques and how to mitigate them through security use
cases. Seven professional software developers from two European software
companies took part in the experiment. Participants were able to identify
threats and mitigations they would not have identified otherwise. They
also reported that both approaches were easy to learn, seemed to improve
productivity and that using them were likely to improve their own skills
and confidence in the results.

1 Introduction

For a time now, we have seen a trend towards more connected, dynamic and
complex software systems, along with an increased number of threats and exam-
ples of cybercrime. According to Torr [3], “... even security-conscious products
can fall prey when designers fail to understand the threats their software faces
or the ways in which adversaries might try to attack it.” Torr suggests including
threat modelling as a software development activity to get an overview of po-
tential threats towards applications and how to resolve these. The term threat
models is typically used for models like attack trees [4] and threat trees [5],
but also data flow diagrams [3] and misuse case diagrams [6]. The threat model
types mentioned above all utilise well known structures to developers, like trees
and UML. It is also possible to utilise more formal model types as a basis for
threat modelling, like e.g. Jackson’s problem diagrams [7] or an extension to
the agent-oriented requirements modelling language i* [8]. We agree that threat
modelling is a good approach to address security problems during development.
However, in our experience threat modelling can be a time consuming (i.e. ex-
pensive) and complex task to perform for software developers without extensive
security expertise. Also, we have seen that applications with similar character-
istics tend to end up with very similar threat models. The work presented in

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 114–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Idea: Reusability of Threat Models 115

this paper aims at supporting threat modelling activities and thereby contribute
to improving software security aspects in general. By providing developers with
reusable threat models, security experts can share their knowledge and lessons
learned from the past, and we believe that the modelling efficiency and quality
will be substantially improved. In our work we are primarily concerned with
supporting developers that are not necessarily security experts. We thus focus
on model types that are easy to understand and likely to be familiar to develop-
ers. Earlier experiments indicate that misuse cases and attack trees are easy to
grasp [9]. We have therefore decided to use these as the basis for our research.
We have conducted an experiment to help us evaluate the form of reusable threat
models. A set of developers from two European software development companies
created misuse case diagrams for two experiment case studies, but for each used
a slightly different method of reusing security knowledge from threat models.

We are not aware of any work on reusability of misuse case diagrams. Reuse
of textual misuse cases and security use cases have already been proposed and
described by Sindre et al. [10]. Regarding attack trees, reusability was pointed
out by Schneier as a main advantage already in 1999 [4], but we have not seen
much of that in practice. We are familiar of two experiments evaluating misuse
cases and attack trees together. Diallo et al. [11] describes a limited experiment
where two researchers used the different model types on one single example
application, and documented their experiences. Opdahl and Sindre [9] describes
an experimental evaluation that included in total 63 students. Performance and
perception of the two different model types were evaluated. Results from both
experiments suggest that misuse cases and attack trees would probably benefit
from being used in combination as they have different strengths. Results from the
experimental evaluation also showed that the students tended to prefer misuse
case diagrams over the textual descriptions.

2 Research Method

We have been working with two different approaches to reuse of misuse cases:

1. Reuse of misuse case stubs. Importing generic threats in the form of
stand-alone misuse case elements, which are connected to security use cases
and attack trees.

2. Reuse of full misuse case diagrams for given application types.
Representative misuse case diagrams for specific domains and application
types are used as a source for the application at hand.

Both approaches are based on the claim that recognising relevant model items
from organised lists or examples is easier than creating something from scratch.
In order to get more knowledge on applicability for ordinary developers, we per-
formed an experiment specifically addressing and comparing these approaches.

As we only had a limited number of candidates for the experiment, we chose
a Latin-Squares experimental design. This way all participants could construct
threat models using both approaches, while we could control the order in which



116 P.H. Meland, I.A. Tøndel, and J. Jensen

the different approaches were used. To summarise, experiment participants were
divided into two groups working with case A, where group I started out with
approach 1 (M1), while group II started out with approach 2 (M2). Then both
groups got a new case (case B) and now performed threat modelling with the
other approach (group I used approach 2 (M2) while group II used approach
1 (M1)). Before the experiment started, all participants filled out a question-
naire on their background. Then after the use of each method, they filled out a
questionnaire related to perception based on the Technology Acceptance Model
(TAM) [12].

The following material was used during the experiment:

– An experiment manual, containing a description of both methods (M1
and M2), along with both case study descriptions.

– Questionnaires on background information, completed before the experi-
ment began, and two post-method questionnaires.

– An “attack tree forest”, a document and a set of model files containing
30 attack trees for typical software attacks (used for both M1 and M2).

– A catalogue of misuse case diagrams, a document and a set of model
files containing 8 full misuse case diagrams for various applications. Misuse
case threats were associated to attack trees and mitigating security activi-
ties. Figure 1 shows a misuse case diagram example for a typical Web shop
application.

– A catalogue of threats and misuse case stubs, a document organised
according to 7 threat categories1, where each category had an average of
about 6 threat misuse case stubs associated to it. Misuse case threats were
associated to attack trees and mitigating security activities. Figure 2 shows
examples of such stubs within the category Information disclosure.

– A guide explaining the main principles on how to perform threat modelling
using misuse cases and attack trees (with examples).

– The SeaMonster2 tool, supporting both misuse case and attack tree dia-
grams. The participants were encouraged to use this tool, but this was not
a requirement.

All participation was voluntary and anonymous, and most participants were
familiar with practical threat modelling from exercises conducted earlier. Both
the guide and the SeaMonster tool were made available one month in advance
of the experiment. The participants were divided into two groups (Group I or
Group II), which identified the method they were to start with. Both groups
started with case study A, and spent about 2-3 hours on this before they handed
in their model and text files to the experiment leader, and filled out the post-
method questionnaire. A similar amount of time was then spent on case study

1 We chose to use the STRIDE (Spoofing, Tampering, Repudiation, Information dis-
closure, Denial of service and Elevation of privileges categories [5], with the addition
of a category Other for threats difficult to place.

2 Described by Meland et al. [13] and available from http://sourceforge.net/

projects/seamonster/

http://sourceforge.net/projects/seamonster/
http://sourceforge.net/projects/seamonster/


Idea: Reusability of Threat Models 117

Fig. 1. Example of a Web shop misuse case diagram used with M2 (attack tree relations
omitted)

B with the other method, before filling out another post-method questionnaire.
Both methods started with a common part, which was to analyse the case study
description assisted by a set of steps defined in the guide. Based on the identified
actors, assets and functionality, the participants would then create the actual
misuse case diagrams by applying one of these approaches:

M1: Using existing misuse cases as a source for creating your own mis-
use cases: When you are creating the misuse case(s), go through the “misuse
case diagram catalogue” and look for similar applications and diagram elements
that are also relevant for you. Modify the diagram or add elements to you own
misuse case model. Of course, the catalogue did deliberately not contain any
perfect matches for any of the case studies, and it was composed from the docu-
mentation of several development projects and examples found in the literature.

M2: Using categorised threats and misuse case stubs as a source for
creating your own misuse cases: When you are creating the misuse case(s),



118 P.H. Meland, I.A. Tøndel, and J. Jensen

Fig. 2. Example of misuse case stubs used with M1 (with attack tree relations)

go through the “Threat and misuse case stub catalogue” and look for relevant
threats and misuse case stubs. Select and add these to you own misuse case
model.

We chose to present the participants with two somewhat different applica-
tion areas, and created descriptions that would be typical outcome of an initial
customer meeting. The full descriptions were 1-2 pages for each case study.

Case study A: Online store for mobile phones: This case study was loosely
based on the mobile Web shop case previously used by Opdahl et al. [9]. The
context was an online store with digital content like music, videos, movies, ring
tones, software and other products for mobile equipment like e.g. 3G mobile
phones. It was mainly to be accessed by customers directly through their mobile
phones, but other than that resembles any other online store.

Case study B: Electronic Patient Record (EPR) system: This case study
was created in order to have a different environment, stakeholders and assets
compared to case study A. An electronic patient record system (EPR) is used



Idea: Reusability of Threat Models 119

Table 1. Overview of threat types for M1/M2 and case A/B, and used threat categories

Threats identified per participant Used threat categories
Case A Case A Case B Case B M1 + M2

M1 M2 M1 M2

Spoofing 1,5 3 3,5 3 5 of 5
Tampering 2,5 2 1,5 3 4 of 10
Repudiation 0 0 0,5 0 1 of 2
Information disclosure 2 2 4 1 5 of 8
Denial of Service 0 1 0,5 1 1 of 1
Elevation of privileges 1 2 1,5 2 4 of 6
Other 1 0 0,5 1 3 of 12

by clinicians to register and share information within and between hospitals.
Much of the patient information should be regarded as strictly private/sensitive,
and one fundamental assumption is that the system is only available on a closed
health network for hospitals (not accessible from the Internet or terminals outside
of the hospitals).

3 Results and Discussion

Participant background: In total seven participants took part in the experi-
ment: five from Company A (CA) and two from Company B (CB). The group was
heterogeneous, meaning that the participants’ background differed when it came
to experience in software security, misuse cases, attack trees, prior knowledge of
the guide explaining threat modelling and the SeaMonster tool. In general, at-
tack trees were less familiar to the participants compared to misuse cases.

Coverage of results: To determine similarity regarding the number of and
types of threats, we analysed the misuse cases identified by the participants.
As the threats in the catalogues for M1 and M2 were not always phrased the
same, we manually grouped similar threats. We continued to use the STRIDE
+ Other categories for the analysis, and table 1 gives an overview of the threats
types according to method and case. We can not see any significant differences
based on this small number of participants. The variations are more likely to be
because of differing focus of the participants than because of the approach used.
As an example, more threats of the type Spoofing were identified for M2 than
for M1 in case A, but in case B this was opposite.

Effectiveness/performance: For case A (online store for mobile phones) there
was an existing misuse case diagram for a “Webshop” that provided a pretty
good match, and most participants used this as a starting point. For case B
(EPR system) it was not so obvious which existing misuse case diagrams were
relevant, and also harder to analyse which diagrams have been considered for
reuse. The participants indicated more domain experience with case A than case
B. Regarding the threat stubs, it seems that some threat categories have been



120 P.H. Meland, I.A. Tøndel, and J. Jensen

more extensively used than others. An overview of this is shown in the rightmost
column of table 1. Typically the threats that were not used were application spe-
cific. An obvious observation is that the category Other has not been extensively
used, and may have a tendency to be overlooked. Threats currently placed here
should be moved to other categories if possible.

Perception: Perception was measured by the participants filling out a question-
naire on their experiences with the different approaches to threat model reuse. In
the analysis work we grouped the questions asked according to subject, and ad-
dressed the participants’ responses regarding the different issues. The differences
in mean responses is not large enough to account for deviation in the answers
of individual participants. Therefore, we see these results as more of indications
than proof.

Identification of threats and countermeasures: This method helped me find many
threats I would never have identified otherwise. I was able to identify many
threats in addition to the ones suggested. This method helped me find many
security use cases I would never have identified otherwise. I was able to iden-
tify many additional security use cases as well. For all methods, participants
in general found that they were able to identify threats and security use cases
they would not have identified otherwise. This supports that providing reusable
threat models is a good idea, and that including countermeasures in the form
of security use cases is helpful to developers. There were no major differences
between the methods, except that for M1 participants experienced with the do-
main were more likely to report that they could identify additional threats than
those with less experience.

Attack trees: It was easy to find relevant attack trees using this method. The
attack trees that were suggested were mostly irrelevant. I hardly used the provided
attack tree forest. The attack tree forest seemed pretty complete. For all methods,
participants in general found that they were able to identify relevant attack trees.
Participants did not agree on the relevance and usefulness of the attack trees and
the completeness of the attack tree forest. In the experiment, the participants
were not expected to create new or update existing attack trees, but to analyse
the attacks to identify mitigating security use cases.

Usability: This method was easy to learn. This method made me spend little time
creating the misuse cases. I feel more productive when using this method. It would
be easy for me to become more skillful using this method. Using this method is a
good idea. I think there are better ways of creating misuse cases. I would like to
use this method in the future. The participants found the methods easy to learn,
while M2 scored slightly better on the time spent. For M2 at Company A the
participants did not create misuse case diagrams that included use cases (func-
tionality), therefore the resulting diagrams contained less information compared
to M1 and M2 at Company B. For both M1 and M2 the participants felt more
productive using the method, but neutral to time consumption. Generally, they
said they would become more skillful using the methods and that it was a good
idea to use these methods, while neutral or agreed to future use. When asked



Idea: Reusability of Threat Models 121

about better ways of creating misuse cases, the participants were in general neu-
tral (though some agreed). We received a comment that M2 seemed to be more
“straight forward” and that it made the reflection more “application centric”
compared to M1, which required finding similarities between different systems.

Result: I am confident in the results I have created. Using this method would
enhance the quality when creating misuse cases. Participants were generally con-
fident in the results they created. For M1 and for M2 as performed by Company
B, participants also reported that they think using the method will enhance
quality. M2 at Company A scored lower, possibly because their models did not
include functionality.

Tool support: Proper tool support makes this method easier. Proper tool support
makes this method more efficient. Tool support was considered important by
some, but far from all participants. This is a bit surprising as we have viewed
tool support as an important prerequisite for successful reuse of threat models.
This result may however be influenced by the current version of SeaMonster,
which is a prototype with several known limitations. It was not our goal to
evaluate this specific tool, but to get opinions on tool support in general.

Quality of catalogue: I hardly used the provided security knowledge in the cat-
alogue. The catalogue for this method seemed pretty complete. Participants re-
ported that they used the provided security knowledge to a different extent. They
also did not think the same on the completeness of the catalogue. In general,
the participants that had experience with software security and threat modelling
were more likely to report on weaknesses in the provided material.

4 Conclusion and Further Work

We have performed a controlled experiment with the aim of evaluating two dif-
ferent methods to threat model reuse. We could not conclude that one approach
is superior to the other, and there are no significant differences in the types and
number of threats identified and in user perception. However, the results and
feedback from the participants indicates that reuse itself will improve threat
modelling.

– For both methods, participants generally found that they were able to iden-
tify threats and security use cases they would not have identified otherwise.

– Regardless of method, participants generally found that they were able to
identify relevant attack trees.

– Responses indicate that, for both methods, it is easy to learn how to use
them and using them seems to improve productivity.

– Independently of the method, participants are in general confident in the
results they have created.

– Participants generally got the impression that using these methods they
would become more skillful and they are good ideas.



122 P.H. Meland, I.A. Tøndel, and J. Jensen

We plan to perform further experiments with larger groups in order to obtain
more statistically valid results, and also work towards improvements of our cur-
rent approaches to reuse. The reusable material will be available to security ex-
perts and software developers through an on-line security model repository [14].

Acknowledgment

The research leading to these results has received funding from the Euro-
pean Community Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 215995.

References

1. McGraw, G.: Software Security: Building Security In. Addison-Wesley, Reading
(2006)

2. Mouratidis, H., Giorgini, P., Manson, G.: When security meets software engineer-
ing: a case of modelling secure information systems. Information Systems 30(8),
609–629 (2005)

3. Torr, P.: Demystifying the threat modeling process. IEEE Security & Privacy 3(5),
66–70 (2005)

4. Schneier, B.: Attack trees. Dr. Dobb’s Journal (1999)
5. Swiderski, F., Snyder, W.: Threat modeling. Microsoft Press, Redmond (2004)
6. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Re-

quirements Engineering 10(1), 34–44 (2005)
7. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: Security requirements engineer-

ing: A framework for representation and analysis. IEEE Transactions on Software
Engineering 34(1), 133–153 (2008)

8. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within
a social setting. In: IEEE International Conference on Requirements Engineering,
pp. 151–161 (2003)

9. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Information and Software Technology 51(5),
916–932 (2009)

10. Sindre, G., Firesmith, D.G., Opdahl, A.L.: A reuse-based approach to determin-
ing security requirements. In: Proceedings of the 9th international workshop on
requirements engineering: foundation for software quality, REFSQ 2003 (2003)

11. Diallo, M.H., Romero-Mariona, J., Sim, S.E., Alspaugh, T.A., Richardson, D.J.: A
comparative evaluation of three approaches to specifying security requirements. In:
12th Working Conference on Requirements Engineering: foundation for Software
Quality, REFSQ 2006 (2006)

12. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of in-
formation technologies. MIS Quarterly 13(3), 319–340 (1989)

13. Meland, P.H., Spampinato, D.G., Hagen, E., Baadshaug, E.T., Krister, K.M., Vell,
K.S.: SeaMonster: Providing tool support for security modeling. In: Norsk infor-
masjonssikkerhetskonferanse, NISK 2008, Tapir (2008)

14. Meland, P.H., Ardi, S., Jensen, J., Rios, E., Sanchez, T., Shahmehri, N., Tøndel,
I.A.: An architectural foundation for security model sharing and reuse. In: Pro-
ceedings of the Fourth International Conference on Availability, Reliability and
Security (ARES2009), pp. 823–828. IEEE Computer Society, Los Alamitos (2009)



Model-Driven Security Policy Deployment:
Property Oriented Approach

Stere Preda, Nora Cuppens-Boulahia, Frédéric Cuppens,
Joaquin Garcia-Alfaro, and Laurent Toutain

IT TELECOM Bretagne CS 17607, 35576 Cesson-Sévigné, France
{first_name.surname}@telecom-bretagne.eu

Abstract. We address the issue of formally validating the deployment
of access control security policies. We show how the use of a formal ex-
pression of the security requirements, related to a given system, ensures
the deployment of an anomaly free abstract security policy. We also de-
scribe how to develop appropriate algorithms by using a theorem proving
approach with a modeling language allowing the specification of the sys-
tem, of the link between the system and the policy, and of certain target
security properties. The result is a set of proved algorithms that consti-
tute the certified technique for a reliable security policy deployment.

1 Introduction

Security is concerned with assets protection. Securing the access to a file server,
guaranteeing a certain level of protection of a network channel, executing par-
ticular counter measures when attacks are detected, are appropriate examples
of security requirements for an information system. Such security requirements
belong to a guide usually called the access control security policy. Deploying the
policy means enforcing (i.e., configuring) those security components or mecha-
nisms so that the system behavior is the one specified by the policy. Successfully
deploying the policy depends not only on the complexity of the security require-
ments but also on the complexity of the system in terms of architecture and
security functionalities.

Specifying, deploying and managing the access control rules of an information
system are some of the major concerns of security administrators. Their task
can be simplified if automatic mechanisms are provided to distribute or update,
in short to deploy the policy in complex systems. A common approach is the
formalization of the security policy, based on an access control model and the
application of a downward process (i.e., the translation and refinement of the
formal policy requirements into concrete security device configurations). Though
PBNM (Policy Based Network Management) architectures (cf. [rfc 3198]) are
such examples, a challenging problem persists: proving the deployment process
to be correct with respect to some initial target security properties and ensuring
that no ambiguities (e.g., inconsistencies [13]) are added within this process.

In this paper we aim at establishing a formal frame for the deployment of secu-
rity policies in information systems. We formally prove the process of deploying

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 123–139, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



124 S. Preda et al.

a security policy related to an information system. To do so, we require (1) an
expressive security access control model that covers a large diversity of secu-
rity requirements, (2) a modeling language for system specification and (3) a
formal expression of security properties modeling the relationships between the
security policy and the system it was designed for. We propose a formal tech-
nique that combines the use of access control policies expressed in the OrBAC
(Organization-Based Access Control) language [1] together with specifications
based on the B-Method [2]. Our proposal avoids, moreover, the existence of
inconsistencies derived from the deployment [13].

Paper Organization — Section 2 gives the motivation of our work and some
related works. Section 3 presents the model on which we base our approach
and establishes some prerequisites necessary for our proposal. Section 4 formally
defines the link between a policy and a system, including the expression of some
security properties. Section 5 provides a discussion upon our approach.

2 Motivation and Related Work

The policy-based configuration of security devices is a cumbersome task. Man-
ual configuration is sometimes unacceptable: the security administrator’s task
becomes not only more difficult but also error-prone given the anomalies he/she
may introduce. Guaranteeing the deployment of anomaly-free configurations in
complex systems is achievable if the policy is first formalized based on an ac-
cess control model and then automatically translated into packages of rules for
each security device. This is the current approach in PBNM architectures where
the PDP, Policy Decision Point, is the intelligent entity in the system and the
PEPs, Policy Enforcement Points, enforce its decisions along with specific net-
work protocols (e.g., Netconf [rfc 4741]). Obtaining these packages of rules (i.e.,
the configurations of PEPs) is the result of the downward translation process:
the abstract policy, given the system architecture, is compiled through a set of
algorithms at the PDP level into, for example, firewall scripts and IPsec tunnel
configurations — all the way through bearing the system architecture details
(interconnections and capabilities) [19].

The correctness of these algorithms is a crucial aspect since the system config-
uration must reflect the abstract policy. One can simply design such algorithms
using imperative languages and then validate them via specific tools [18]. Imper-
ative program verification is performed in three steps: (1) the specification of a
program is first formalized by some properties based on a first order logic; (2) an
automatic process for analyzing the program extracts its semantics, i.e., a set of
equations that define the program theory in the first order logic; (3) a proof sys-
tem is finally used to prove that the program has the properties of step (1) given
the extracted data in step (2). The main concerns with such approaches are:
(a) the verification of these properties is realized at the end and not during the
algorithm implementation; (b) it is difficult to express the interesting properties:
not only those concerning the design of operations which may be seen as generic
(e.g., termination of loops or lack of side effects), but also those reflecting, in our



Model-Driven Security Policy Deployment: Property Oriented Approach 125

case, some network security aspects (e.g., no security anomalies are introduced
during the deployment of the policies [13]). To cope with these issues, we claim
that the algorithms intended for enforcing deployment of policies have to be de-
signed with proof-based development methods, like the B-Method, to allow the
expression and verification of important properties (e.g., security properties).

Formal validation or security policy deployment has already been addressed
in the literature. The approaches in [15] and [16] seem to be the closest to ours.
Jürjens et al. propose in [15] to apply UMLsec [14] to analyze some security
mechanisms enforced with respect to a security policy. UMLsec is an extension
of UML which allows the expression of some security-related information in UML
diagrams. Stereotypes and tags are used to formulate the security requirements.
Analyzing the mechanisms means verifying whether the requirements are met
by the system design. For this purpose two models are proposed: (1) a Security
Requirements Model which includes architectural or behavioral system details
in a prescriptive manner and (2) a Concretized Model summarizing a concrete
architecture which should satisfy the security requirements. Both models ap-
pear as UMLsec diagrams. The verification is realized using the UMLsec tools
which includes several plugins that uses (1) SPIN (Simple Promela Interpreter)
for model-checking and (2) SPAAS (an automated theorem prover for first-order
logic with equality) or Prolog as theorem provers given that some UMLsec se-
quence diagrams are automatically translated to first-order formulas. Applying
the right plugin depends on the scenario, i.e., the architecture and the security
requirements. However, the approach in [15] presents some drawbacks. First, no
abstract model is employed for modeling the policy. Second, the Concretized
Model must already exist in order to automatically derive the first-order for-
mulas to be automatically proved by SPAAS. And finally, the expressions of
security properties are application-dependent: there are no generic properties
dealing with the anomalies that could exist within single- or multi-component
network security policies.

Laborde et al. present in [16] a different solution to the problem of deploying
security policies: the use of (1) Petri Nets as the language to specify the system
and (2) CTL (Computational Tree Logic) as the language to express the security
properties. Four generic system functionalities are identified and modeled as
different Petri Nets which are then interconnected in order to specify the system
(i.e., each security device is modeled by a Petri Net): channel (e.g., network
links), transformation (IPsec and NAT), filtering (to include the firewalls) and
the end-flow functionality for the hosts (the active and passive entities in the
network). The Petri Nets transitions for each PEPs (here, firewalls and IPsec
tunnels) are guards which actually represent the security rules to be enforced by
the PEP. The policy model is RBAC-based. However, no clear downward (i.e.,
refinement) approach is defined and no algorithms for selecting the right PEP
are described either. The model-checking verification is realized after manually
deploying the policy and consequently this approach can be applied to relatively
simple architectures. Besides, it is not clear whether other functionalities (e.g.,



126 S. Preda et al.

intrusion detection performed by IDSs) can be taken into account with one of
the four functionalities.

The research presented in [22] proposes the use of Event B specifications to
provide a link between the two levels of abstractions provided by the OrBAC
model. As further research perspectives, the authors mentioned that their models
can be reused for further developments of real infrastructures with respect to
their security policy. We consider our work as a natural continuation of such
a research line. As we did, the authors in [22] chose not to address the proof
of an OrBAC policy in terms of conflicts. The use of automatic tools (e.g.,
MotOrBAC [4]), allows us to assume that the policy is consistent and free of
anomalies. Similarly, Coq was proposed in [7] to derive OCaml algorithms for
conflict detection in firewall policies. The use of Coq as a theorem prover to derive
refinement algorithms can also be found in [21]. The authors provide a solution to
detect and remove conflicts in policies defined as tuples <permission/prohibition,
subject, read/write/execute, object>. Finally, and regarding the security policy
deployment domain, there exist in the literature several proposals. Some are more
or less RBAC-based (e.g., proposal presented in [5]), others propose different
languages for the high level policy definition. Although the efforts are significant
[10], often such languages are not generic enough [17], covering only some specific
security applications (e.g., host firewalls, system calls management); or they do
not address some key policy matters like the conflict management or the dynamic
and contextual security requirements [8].

3 Model and Notation

We propose a refinement process that guarantees anomaly-free configurations
([13]). The process derives a global policy into specific configurations for each
security component in the system. Our proposal provides the set of algorithms for
such a refinement process, and proves the correctness of the outgoing algorithms.
We briefly justify in the sequel the choice of our formalisms. We also describe
the necessary concepts to establish the link between policies and architectures.

3.1 Choice of OrBAC and B-Method

The OrBAC [1] (Organization-Based Access Control) model is an extended
RBAC [20] access control model which provides means to specify contextual
security requirements. It allows the expression of a wide range of different re-
quirements both static and contextual. OrBAC is well-known for being a robust
language for defining complex administration tasks at the organizational level.
Existing automatic tools (e.g., MotOrBAC [4]) ease, moreover, the administra-
tion of tasks using this model.

In contrast to model checking, we choose the B-Method – a theorem prov-
ing approach – for various reasons. First, the performances of theorem-proving
tools are not influenced by system complexity. For example, we do not make
any assumption concerning the number of nodes in the architecture. Second,
the B Method eases the use of refinement paradigms. Even if B refinement does



Model-Driven Security Policy Deployment: Property Oriented Approach 127

not necessarily mean an enhancement of system specifications (i.e., here it de-
notes the weakening of the preconditions and of the operation indeterminism
towards the implementation level), there is always the possibility of keeping a B
specification up to date. The B refinement allows the decomposition of system
specification in layers and particular B clauses (e.g., use of SEES and IMPORTS
clauses). This allows a modular system proof. New modules can be added to a B
specification and existent ones may be assumed as being already proved; there
is no need to totally reprove (i.e., recompute) the new specification. We there-
fore reuse an already proved specification. This aspect is very important as the
security functionalities may be changed in a given system. Moreover, since spec-
ifying the system is an important step in our proposal, the link with the security
policy must be established in a specific way. In this sense, the OrBAC philoso-
phy considers that the security policy must be detached by functionality and by
technology details at network level; and that changing the system architecture
(hereinafter system or network with the same meaning) has no impact in policy
definition. The same OrBAC policy may be specified for two different systems.
Finally, the specification language must ensure the previous constraint: changing
the security policy or the architecture should not trigger a new call for a total
system proof.

We consider that the B-Method is suitable to achieve these purposes: in our
approach the policy SEES the system it was designed for. The SEES clause in
the B-Method makes the assumption that the seen system is already proved (i.e.,
the INVARIANTS of the SEEING module are being proved with the assumption
that the INVARIANTS of the SEEN module are already proved). Let us notice
that in our approach, we use the terminology security property as a synonym of
correct deployment of a security policy in a system, meaning that it is achievable
whenever certain specific security properties are verified. For instance, all net-
work traffic between two network zones is protected if all traffic passes through
an IPsec tunnel with certain parameters. If an IPsec tunnel is established and
there is no IPsec tunnel anomaly [12] related to the current tunnel, the integrity
security property is consequently verified. Hence, in a B specification there is
the possibility of capturing such details at the INVARIANT clause level.

Some security requirements are dynamic or contextual. It is sometimes nec-
essary to add new security functionalities to the given system. For example,
some firewalls are upgraded with new functionalities (e.g., temporal function-
ality). Taking into account all security functionalities is out of our scope. We,
therefore, address only some basic functionalities such as packet filtering, IPsec
tunneling and signature-based Intrusion Detection. If further functionalities are
added to the specification, their semantics must be reflected in particular SETS,
CONSTANTS and consequently PROPERTIES clauses; but the main deploy-
ment algorithms should remain unaffected.

3.2 Policy and System Modeling

The starting point in deploying a security policy is a set of OrBAC abstract
rules. A first assumption is that the abstract policy is consistent: no OrBAC



128 S. Preda et al.

conflicting rules. This is ensured by some pertaining tools like MotOrBAC which
implements the conflict resolution described in [9].

The context definition may be related to a specific subject, action and object.
Consequently, it is necessary to instantiate the corresponding subjects, actions
and objects for each such contexts before deploying the OrBAC rules over each
PEP. The abstract OrBAC rules, Permission(org, r, a, ν, c), must be brought
to a concrete OrBAC expression [1], Is permitted(org, s, α, o, c). Even if a large
set of concrete security rules will have to be deployed, this may be the only
option if the security requirements imply only such context definitions. At this
point, we refer to the works in [22] that addressed the refinement problem: the
OrBAC abstract expression towards a concrete one and using the B-Method
(cf. Section 2). The works in [22] stopped at our stage, i.e., the link with the
system. Therefore we will make a second assumption: the OrBAC concrete rules
(i.e., Is permitted(org, s, α, o, c)) are already available and they represent the
input to our deployment process. The main entities to implement our approach
are described as follows. The “security policy” is defined as the set of rules
over the domain (Subjects × Actions × Objects × Contexts). “Subjects” and
“objects” represent active and respectively passive entities in the network. A
host in a subnetwork may be modeled as a subject in contrast to a web-server
which may be seen as an object; not only the hosts/network components but
also the clients and servers applications may be seen as subject-object entities.
The “actions” are defined as network services (e.g., http and https are actions of
the same abstract activity, web). We should also include the “contexts” in which
some rules are activated. These may be bound in hard with some functionalities.
For example, the protected context relies on IPsec functionalities and the warning
context on IDS functionality. Is permitted(s, α, o, default) is activated in the
default context only if a path from s to o exists, so the firewalls on this path
have to open some ports corresponding to the action α. Finally, the approach
also includes all those interesting “nodes” in the network (subjects and objects)
will appear as nodes in a connected graph. Those having security functionalities
are the PEPs. A PEP may also be a subject or an object.

Figure 1 depicts a sample network in which an access control policy must be
deployed. The system is modeled as a graph (cf. Figure 2). In real networks,
each link may have a real cost or weight (e.g., an overhead required to send IP
packets over the link and inversely proportional to the bandwidth of the link). A
routing protocol like the OSPF, Open Shortest Path First [rfc 2328], establishes
routes in choosing, for example, the shortest paths (i.e., the less expensive). We
choose positive integers for the link costs and we assume that IP datagrams
always follow the shortest path between two points. In such a system, the PEPs
must be enforced with the right decisions corresponding to each security rule.
For didactical reasons we take into account only permissions. One may choose to
enforce the same rule in all PEPs having the same functionalities: this is what we
call a redundancy anomaly and this is what we try to avoid. Our configuration
approach is the following: for each permission, only the interesting PEPs must
be identified and enforced. This leads us to consider an algorithm for selecting



Model-Driven Security Policy Deployment: Property Oriented Approach 129

Fig. 1. The Real Architecture Fig. 2. The Corresponding Graph

the interesting PEPs: the well placed PEPs for each security rule. For example,
a rule in a default context takes into account only the firewalls on a certain
path. In a protected context, two PEPs must configure an IPsec tunnel and
all firewalls on the tunnel path must permit the establishment of the tunnel.
Regarding the warning context, the most down-stream IDS (i.e., the closest IDS
to the destination) is enough and more efficient to spoofing attacks than the
most up-stream IDS (i.e., the closest to the source).

We aim to formally implement this approach in B and go as far as possible
towards the IMPLEMENTATION level. In this manner we will capture all in-
teresting details for the security property enouncement. In the following sections
we consider the policy at concrete OrBAC level as described above. We deal with
a system where some distributed nodes have security functionalities (PEPs) and
some are either active entities (subjects) or resources (objects) or both.

4 Policy Deployment Process: Formal Specification

Not all B machines will be carried out to an IMPLEMENTATION level: the
Policy and Network (cf. Figure 4) machines should be instantiated for each sce-
nario. The data these machines manipulate does not require highly specialized
mathematical objects: only lists/sequences must be provided. But the other ma-
chines we present will have an IMPLEMENTATION structure. We describe in
detail the Policy and Network (system) machines; they will be incorporated to
our model development as a result of an IMPORTING machine: Deployment
machine which also imports other machines necessary to our process. The Path
machine will implement a tracing path algorithm necessary to select the well
placed PEPs for each security rule which are then updated by the UpdatePep
machine (cf. Figure 3).



130 S. Preda et al.

4.1 Policy and Network Machines

The SUBJECTS, ACTIONS and OBJECTS will represent deferred sets but we
prefer for the moment a concrete/enumerated set of CONTEXTS: default, pro-
tected, user-defined and other. The set of permissions to be deployed as well as
the matching nodes-subjects, nodes-objects may be considered as CONSTANTS.
They will be defined via some relations, more precisely functions. As already
mentioned we prefer to bind in hard a context to a security functionality; we
model this by the matching relation. Moreover, the user will be given the possi-
bility of defining other types of context activation. For instance, a certain user-
defined context may impose a hub-and-spoke tunnel configuration so the user
must be able to manually indicate the hub and the spokes (nodes in the net-
work). We model this by the context constant relation. Besides, the permissions
are progressively read in the deployment process. An abstract variable is con-
sequently necessary, the Read Permissions. All these semantics will be summed
up at PROPERTIES level.

Regarding the dynamic part of the Policy machine: the Read Permissions is
initialized with the empty set and some simple operations are necessary (1) to
read and return a permission (read permission) and (2) to read the attributes
(subject, object, action and context) of a permission (read data in permission).
The INVARIANT is a simple one, it checks the variable type. Other inquiry op-
erations (no read permission, no more permissions) simply return true or false.

Concerning the Network machine, we can envision the following two options.
We can use an abstract machine encapsulating a node, say the Node machine. It
should contain at least the node functionalities as a deferred SET. Node could
be imported in our project by renaming: the project will therefore contain as
many renamed Node machines as the existent ones in the real network. In the
same project, a different SEEN machine will define, via a constant, the network

The Project Organization

A Dependency Graph is automat-
ically obtained from a B project
in Atelier B if no machine sharing
rules (i.e., via SEES, IMPORTS
clauses) are violated.

We deliberately do not charge the
graph with the other machines nec-
essary to the final implementation
of Weighted Forest and Prior-
ity Queue. Their implementation
is similar to the one in [12] and
they do not reveal any important
security details.

Fig. 3. Dependency Graph



Model-Driven Security Policy Deployment: Property Oriented Approach 131

topology (e.g., the nodes connections). The second option is to define a machine
Network containing the topology description from the beginning. This way, we
do not require other machines to carry out the network topology. Network will
simply be imported only once in the project.

We choose the second solution. The Network machine models a graph: a non-
empty set of Nodes, a set of Links ∈ Nodes × Nodes and a weight function
binding a link to a natural number. We choose to identify each node by a natural
number in the sequence 1..nn, where nn = card(Nodes). These are constants
that require a refinement (i.e., valuation) at the IMPLEMENTATION level with
concrete data for each different topology. The graph is undirected, so Links ∩
Links−1 = ∅. The connectedness assumption is caught by All Links∗= (Nodes)
× (Nodes) (where ∗ stands for the transitive closure of relations). Each node may
have security functionalities: functionality ∈ Nodes ↔ FUNCTIONALITIES (a
constant relation). Some definitions are also necessary when a path is traced in
the network: all links having a common node and the cost/weight of a set of
links. These are the λ-functions cost and neigh nodes.

When choosing the variables of the Network machine we take into account not
only the network parsing aspect but also the nodes involved in the construction of
paths (shortest paths) given a source node and a destination one. We, therefore,
introduce some processed nodes (PPnodes) and links variables necessary in our
shortest path algorithm. The INVARIANT of the Network machine acts on the
variables type. We follow a generous style in specifying the operations: almost
each operation has some preconditions. The generous style, in contrast to the
defensive style which considers some internal operation tests (e.g., IF, SELECT
substitutions), is more in the spirit of a B specification ([2]) as it demands prior
design and specification. Such operations may be called from somewhere else
(i.e., operations of other machines) and their preconditions must be verified;
otherwise, they may not terminate.

Policy SEES Network (cf. Figure 4). Although the constants of Network may
appear in the operations of a SEEING machine (e.g., Policy) its variables may
be read-only. No operation of a SEEN machine can be called from within a
SEEING machine. Therefore, Network is not aware of the fact that it is seen.
Even if there are specific proof-obligations generated as a result of a SEES clause
([2]), the invariants of the SEEN machine are considered already proved. If we
change the Policy for the same Network, the latter is once and independently
proved. A SEEN machine, and consequently Network, may be imported only
once somewhere in the project. We pay attention and we import Network only
in a machine that really necessitates more than read-only variable references.
This is illustrated in Figure 3.

4.2 A Tracing Path Algorithm

The role of a tracing path algorithm in our development is to find the security
devices that must enforce each policy rule. These security devices must have
the right functionalities and must be well placed in the network. If the right



132 S. Preda et al.

functionalities are indirectly designated by the OrBAC contexts (i.e., default -
firewall, protected - IPsec and firewalls, warning - IDS), finding the well placed
device in the network is not obvious. Nevertheless things are getting simpler if
we consider that IP packets follow the shortest path in the network. One could
say this is a severe assumption, but conciliating a given routing policy with our
deployment process is a simpler matter: it suffices to take into account the few
hops a route may involve.

Therefore, we use Dijkstra’s shortest path algorithm. Implementing such an
algorithm in imperative languages is not too difficult but it is not obvious using
the B-Method. There are already B algorithms for deriving spanning trees, [11],
[3], but none for shortest-path trees. We base our path derivation algorithm on
the works in [11]; we could not totally reuse their method: the shortest path may
not go along the minimum spanning tree. Moreover, shortest-path tree changes as
a result of choosing different source and destination nodes. Some implementation
details in [11] concerning the priority-queues turned out to be extremely useful:
we reused them although the lists would have been much easier to manipulate.
However, we mention that the project in [11] violates a sharing rule: a SEEN
machine must be imported once but IMPORTS must not introduce loops in the
project. We believe their error is due to their prover which did not check on
machine sharing rules.

Path Machine, Weighted Forest, Min Weight Link: Path machine SEES
Network whose constants (Nodes, Links and weight) are used. We need a defi-
nition of a path in the network. But as a pre-requisite we have to formalize the
notion of a tree, more precisely of a spanning-tree: a forest with (n - 1) links,
where n = card(Nodes) and a forest is a cycle-free set of links. We also need
a definition of the set of paths from a source node to a destination node: all
(i.e., the union of) adjacent links with the source and destination as extremity
nodes. We are therefore interested in selecting the less-expensive path in this
set of paths. This will represent the shortest path which will be simply selected
once the shortest-path tree is generated (shortest path tree). In what follows we
introduce only some specific B details we faced when designing Path machine
and its implementation (the termination of the shortest path tree operation is
ensured by our assumption of a connected graph).

Implementing the Path machine with the previous specifications would
be difficult. The IMPLEMENTATION will therefore import two machines:
Min Weight Link machine, to find the minimum link weight in a set of links
adjacent to some processed nodes (Dijsktra’s algorithm) and Weighted Forest
machine, to build the tree as a union of links. The tree is noted LL which is
an abstract variable of Weighted Forest. LL finally represents the shortest-path-
tree. Due to space limitations we do not go further with our algorithm. The
complete implementation of Weighted Forest and Min Weight Link has several
hundreds of B code lines. We mention only that we used the Abstract Constants
clause in order to avoid the error in [11] regarding the SEES and IMPORTS
clauses: if an abstraction SEES a machine, all the further refinements must also



Model-Driven Security Policy Deployment: Property Oriented Approach 133

Fig. 4. Policy and Network Machines



134 S. Preda et al.

SEES this machine and the final IMPLEMENTATION cannot IMPORTS the
seen machine.

4.3 Deployment Implementation and Security Properties

The root machine of our model is the Deployment machine (cf. Figure 5). Its
abstract specification is quite simple: there is only a Boolean concrete variable,
deployment ok modified by an operation, deploy. The refinement of this operation
is based on other operations of the IMPORTED machines Policy, Path and Up-
datePep. Network is imported in our model indirectly, via the Path machine. By
using the IMPORTS clause, allowed only from within an IMPLEMENTATION
there are specific obligation-proofs generated for the IMPORTING machine. We
deliberately leave the IF substitution unfinished: there are tests concerning the
existence of a path in the network according to the type of context. Therefore,
exists path, a boolean variable of the Path machine, is valued in function of sev-
eral other variables: the security functionalities of the source and destination
nodes (e.g., the IPv6 protocol incorporates the IPsec suite but this functionality
may not be considered in the IPsec tunnel extremities), the security functional-
ities in their neighborhood (e.g., for IDS rules) or the security functionalities of
the whole path (path set) between the source and the destination. These tests
are simple and rely on the definition and implementation of the Path machine.
Finally, the UpdatePep machine stores, for each PEP, the security configuration
as a set of rules {sub �→ act �→ obj �→ ctx} modified via the update pep oper-
ation. The concrete deployment ok variable respects the data types required in
an IMPLEMENTATION. It needed no further refinement and we defined it as
a CONCRETE VARIABLE in the abstraction.

4.4 Security Properties

A security property is generally expressed at a more abstract level than the
security requirements. A security property may rely on the correct enforcement of
several security requirements. Moreover, a property may still not be verified after
the deployment of all security rules. Often, a property violation is the result of
anomalies in deploying the policy. Our refinement approach is a property-aware
one: the target properties determine the enforcement of the security devices.
In the implementation of the Deployment machine (cf. Figure 5), we denote
by P1-P8 some of the most interesting application-independent properties the
policy deployment process should verify. We do not claim to achieve a thorough
analysis of security properties: some may be enounced at higher levels ([6]) and
some may be identified from specific security requirements ([15]).

– Completeness: Captured by INVARIANT P1, this property states that if
the network path from a subject to an object is correctly computed (i.e., it
exists and the security devices belonging to this path have the right func-
tionalities with respect to the context) the security rule may and will be
deployed.



Model-Driven Security Policy Deployment: Property Oriented Approach 135

Fig. 5. Deployment Implementation



136 S. Preda et al.

– Accessibility (and Inaccessibility): Property P6 states that for each per-
mission rule, a subject is able to access an object with respect to the policy.
Thus, there must be a path between the subject and the object network
entities and if this path involves some firewalls, they must all permit the
action the subject is supposed to realize on the object. In this manner, the
default context is activated (this may be seen as a minimal context). How-
ever, P6 must be seen as a partial accessibility property: it is verified at
each WHILE loop iteration, i.e., it does not take into account all deployed
rules. In order to guarantee the global accessibility, P3 relies on the correct
deployment of all permissions. We simplified the notation: given that the
operation shortest path(src, dest) returns a set of links called path set, we
should have written: node ∈ path set. In P3 we use config which is defined in
the UpdatePep machine: config ∈ Nodes↔PERMISSIONS and config[{ni}],
the image of the {ni} set under config, is the set of rules already deployed
over the node ni.

Following the same reasoning we can also enounce the global inaccessi-
bility property, P4: there should be no open path from the subject to the
object. The path variable is given in the Path machine and regroups a set of
links from a source node to a destination one.

– All traffics are regulated by firewalls: Property P7 is also interesting
when there is a new context called logging: this context is managed by those
devices with a logging functionality as today’s most popular firewalls.

– Integrity and confidentiality property: This property is related to the
establishment of IPsec tunnels. It ensures the extremities of the IPsec tunnel.
Moreover, particular IPsec configurations may include recursive encapsula-
tion of traffic on a path. Verifying this property begins at higher levels: if
no OrBAC security rule is enounced with a protected (prot) context, no
further verification is necessary. To ensure the protected context activation,
a configuration of an IPsec tunnel is necessary. If no specific information
concerning the IPsec tunnel establishment is provided, we may suppose the
following two cases: (1) the subject/source and the object/destination are
IPsec enabled (e.g., IPv6 nodes and end-to-end tunnel) or (2) at least one
node in their neighborhood (e.g., site-to-site tunnel) has IPsec functional-
ities. For the first case, it suffices to check on the IPsec functionalities on
both the subject and the object nodes and this is captured by the P8 prop-
erty of the WHILE loop. The second case is handled as follows: in one of
the IMPORTED machines on the Weighted Forest development branch, we
provide an operation predec(node) which returns the precedent node in the
current shortest-path from the source (src) node to the destination (dest)
node. Via PROMOTE clauses, the operation may be called by higher IM-
PORTING machines, including the Deployment machine. We consequently
check on the predec(dest) and predec−1(src) nodes as in the P8 formula.

There is a further case that cannot be addressed at the WHILE loop
INVARIANT level (i.e., after each iteration) because it relies on the correct
enforcement of all IPsec tunnels in the network. Figure 6 shows an exam-
ple of successive encapsulations on a site-to-site topology. It may result in



Model-Driven Security Policy Deployment: Property Oriented Approach 137

violating the confidentiality property. It also shows an example where the
source-destination traffic is twice encapsulated: by n1 (IPsec tunnel mode
between n1 and n2) and by n3 (between n3 and n4). The configurations of
n2 and n3 neighbor nodes include a security rule in a default context (i.e.,
{sub�→act �→obj�→default}) allowing the IP traffic to pass the section n2-n3
with no encapsulation: the confidentiality is not preserved in this topology
(i.e., between n1 and n4). Such an anomaly is the result of deploying sep-
arately the IPsec tunnels and consequently it cannot be controlled by the
WHILE INVARIANT after each iteration. Nevertheless, the main INVARI-
ANT of the Deployment machine is not reproved during these iterations but
after the loop termination and consequently the IPsec anomaly can be dealt
with only at this level. The P2 formula, in logical conjunction with the com-
pleteness property, accomplishes the integrity and confidentiality property.

Fig. 6. Chained IPsec Tunnels

– Authentication: P5 is interesting if we deal with an authentication context:
an action that cannot be applied in a certain context unless an authentica-
tion process is achieved. We can verify these cases by providing a variable
that records the actions realized by the subject concerned with the authen-
tication. We, therefore, impose a workflow constraint (history[{sub}] is the
set of actions that sub realized, with history ∈ SUBJECTS ↔ ACTIONS ).

5 Discussion

The B project depicted in this paper was realized using Atelier B v4.0. Validat-
ing a B project consists in proving the Proof Obligations (POs) automatically
generated after analyzing and type-checking the entire project. The functional
correctness of each machine is validated separately with respect to the specific
B inter-machine clauses (SEES, IMPORTS, etc.). The current project was val-
idated with the assumption of a conflict-free OrBAC policy and of a correct
system architecture: no lack of security functionalities in the security compo-
nents placed on the shortest-paths. This leads us to conclude that the outgoing
algorithms are correct with respect to the security properties we considered. The
number of POs automatically generated for each machine varied based on the
operational complexity: from 2 for the Policy machine which involved very sim-
ple operations to 272 for the Min Weight Link implementation; for the latter
one, 110 POs were automatically discharged, the rest being interactively proved.

The choice of the OrBAC model and of the B-Method was motivated by
the type of applications that we address in this paper: the deployment of ac-
cess control security policies. However, our work shows some limitations. On



138 S. Preda et al.

the one hand, our approach focuses on the deployment of policies in systems
with an already existing set of security devices. The appropriate deployment of
the access control policy is closely related to the interconnections and the ca-
pabilities of these security devices. As we avoid the intra- and inter-component
anomalies ([13]), there may be unaccomplished security requirements because
of a deficient security device capability. Thus, an improvement to our approach
would be to find, for a given system and a given security policy, the best secu-
rity architecture so that all security requirements be met. On the other hand,
the type of security requirements may also induce a limitation to our approach.
As long as we consider only access control requirements, the B-Method is very
efficient. However, temporal logic specifications cannot be addressed with the
B Method. Therefore, except for the specific case of authentication, the security
requirements involving a trace-like modeling (an ordered set of actions to be
realized by a subject on an object) cannot be addressed with the B Method.
The authentication can be dealt with since the subject needs to accomplish a
single (previous) action (modeled by a provisional — history — OrBAC context)
before gaining the access.

6 Conclusions

The configuration of security devices is a complex task. A wrong configuration
leads to weak security policies, easy to bypass by unauthorized entities. The
existence of reliable automatic tools can assist security officers to manage such
a cumbersome task. In this paper, we established a formal frame for developing
such tools. Our proposal allows the administrator to formally specify security
requirements by using an expressive access control model based on OrBAC [1]. A
tool which is proved using the B-Method may therefore implement the so-called
downward process: the set of algorithms realizing the translation of an OrBAC
set of rules into specific devices configurations. Not only the job of administrators
is simplified, but they know for certain what security properties are verified at
the end.

Acknowledgments. This work has been supported by a grant from the Brittany
region of France and by the following projects: POLUX ANR-06-SETIN-012,
SEC6 Project, TSI2007-65406-C03-03 E-AEGIS, and CONSOLIDER CSD2007-
00004 “ARES”.

References

1. Abou el Kalam, A., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miège, A., Saurel, C., Trouessin, G.: Organization Based Access Control. In:
IEEE 4th Intl. Workshop on Policies for Distributed Systems and Networks, Lake
Come, Italy, pp. 120–131 (2003)

2. Abrial, J.R.: The B-Book — Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

3. Abrial, J.R., Cansell, D., Méry, D.: Formal Derivation of Spanning Trees Algo-
rithms. In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp.
457–476. Springer, Heidelberg (2003)



Model-Driven Security Policy Deployment: Property Oriented Approach 139

4. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: MotOrBAC 2: A secu-
rity policy tool. In: SAR-SSI 2008, Loctudy, France (2008)

5. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A novel firewall management
toolkit. In: IEEE Symposium on Security and Privacy, pp. 17–31 (1999)

6. Benaissa, N., Cansell, D., Méry, D.: Integration of Security Policy into System
Modeling. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
232–247. Springer, Heidelberg (2006)

7. Capretta, V., Stepien, B., Felty, A., Matwin, S.: Formal correctness of conflict de-
tection for firewalls. In: ACM workshop on Formal methods in security engineering,
FMSE 2007, Virginia, USA, pp. 22–30 (2007)

8. Casassa Mont, M., Baldwin, A., Goh, C.: POWER prototype: towards integrated
policy-based management. In: Network Operations and Management Symposium,
USA, pp. 789–802 (2000)

9. Cuppens, F., Cuppens-Boulahia, N., Ben Ghorbel, M.: High level conflict manage-
ment strategies in advanced access control models. Electronic Notes in Theoretical
Computer Science (ENTCS) 186, 3–26 (2007)

10. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specifica-
tion language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

11. Fraer, R.: Minimum Spanning Tree. In: FACIT 1999, pp. 79–114. Springer, Heidel-
berg (1999)

12. Fu, Z., Wu, S.F., Huang, H., Loh, K., Gong, F., Baldine, I., Xu, C.: IPSec/VPN
Security Policy: Correctness, Conflict Detection and Resolution. In: Policy 2001
Workshop, Bristol, UK, pp. 39–56 (2001)

13. Garcia-Alfaro, J., Cuppens, N., Cuppens, F.: Complete Analysis of Configuration
Rules to Guarantee Reliable Network Security Policies. International Journal of
Information Security 7(2), 103–122 (2008)

14. Jürjens, J.: Secure Systems Development with UML. Springer, New York (2004)
15. Jürjens, J., Schreck, J., Bartmann, P.: Model-based security analysis for mo-

bile communications. In: 30th international conference on Software engineering,
Leipzig, Germany, pp. 683–692 (2008)

16. Laborde, R., Kamel, M., Barrere, F., Benzekri, A.: Implementation of a Formal
Security Policy Refinement Process in WBEM Architecture. Journal of Network
and Systems Management 15(2) (2007)

17. Ioannidis, S., Bellovin, S.M., Ioannidis, J., Keromitis, A.D., Anagnostakis, K.,
Smith, J.M.: Virtual Private Services: Coordinated Policy Enforcement for Dis-
tributed Applications. International Journal of Network Security 4(1), 69–80 (2007)

18. Ponsini, O., Fédèle, C., Kounalis, E.: Rewriting of imperative programs into logical
equations. In: Sci. Comput. Program., vol. 54, pp. 363–401. Elsevier North-Holland,
Inc., Amsterdam (2005)

19. Preda, S., Cuppens, F., Cuppens-Boulahia, N., Alfaro, J.G., Toutain, L., Elrakaiby,
Y.: A Semantic Context Aware Security Policy Deployment. In: ACM Symposium
on Information, Computer and Communication Security (ASIACCS 2009), Sydney,
Australia (March 2009)

20. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Control
Models. IEEE Computer 29(2), 38–47 (1996)

21. Unal, D., Ufuk Çaglayan, M.: Theorem proving for modeling and conflict check-
ing of authorization policies. In: Proceedings of the International Symposium on
Computer Networks, ISCN, Istanbul, Turkey (2006)

22. ACI DESIRS project: DÉveloppement de Systèmes Informatiques par Raffinement
des contraintes Sécuritaires



Category-Based Authorisation Models:
Operational Semantics and Expressive Power

Clara Bertolissi1 and Maribel Fernández2

1 LIF, Université de Provence, Marseille, France
Clara.Bertolissi@kcl.ac.uk

2 King’s College London, Dept. of Computer Science, London WC2R 2LS, U.K.
Maribel.Fernandez@kcl.ac.uk

Abstract. In this paper we give an operational specification of a meta-
model of access control using term rewriting. To demonstrate the ex-
pressiveness of the meta-model, we show how several traditional access
control models, and also some novel models, can be defined as special
cases. The operational specification that we give permits declarative rep-
resentation of access control requirements, is suitable for fast prototyping
of access control checking, and facilitates the process of proving proper-
ties of access control policies.

Keywords: Security Policies, Access Control, Operational Semantics,
Term Rewriting.

1 Introduction

Over the last few years, a wide range of access control models and languages
for access control policy specification have been developed, often motivated by
particular applications. In contrast, Barker [4] proposes a general meta-model
for access control based on a small number of primitive notions, which can be
specialised for domain-specific applications. This approach has advantages: for
example, by identifying a core set of principles of access control, one can abstract
away many of the complexities that are found in specific access control models;
this, in turn, helps to simplify the task of policy writing.

In this paper, we provide a formal specification of Barker’s meta-model M,
using a general formalism, based on term rewriting, that enables access control
policies to be defined in a declarative way and permits properties of access con-
trol policies to be proven. Term rewriting systems present many advantages as
a specification tool: they have a well-studied theory, with a wealth of results
that can be applied to the analysis of policies, and several rewrite-based pro-
gramming languages are available (see, e.g., Maude [10]). We use distributed
term rewriting [9] to provide a formal semantics for policy specification, an
operational semantics for access request evaluation, and a basis for a prototype

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 140–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Category-Based Authorisation Models 141

implementation. Indeed, term rewrite systems can be seen as a formal, executable
specification.

A key aspect of our approach, following [4], is to focus attention on the notion
of a category.1 A category (a term which can, loosely speaking, be interpreted
as being synonymous with, for example, a sort, a class, a division, a domain)
is any of several fundamental and distinct classes to which entities or concepts
belong. We regard categories as a primitive concept and we view classic types
of groupings used in access control, like a role, a security clearance, a discrete
measure of trust, etc., as particular instances of the more general notion of
category.

To demonstrate the expressive power of the category-based meta-model, we
show how a range of access control models can be defined as specific instances
of the meta-model. In particular, we show how policies defined in terms of the
ANSI hierarchical role-based access control (H-RBAC) model [2], a mandatory
access control (MAC) model [7], and the event-based access control (DEBAC)
model [9], can be represented in our framework. We also describe how a variety
of extended forms of these models may be specified, in terms of notions like time
and location, and how a number of novel access control models can be derived
as particular cases of the meta-model.

Summarising, the main contributions of this paper are:

– a declarative, rewrite-based specification of the category-based access control
model M, together with a formal operational semantics for access request
evaluation, for access control policies specified using M;

– a technique to prove totality and consistency of access control policies, by
proving termination and confluence of the underlying term rewriting system;

– the encoding of well-known access control models in M, to demonstrate the
expressive power of the meta-model: specifically, we show that the H-RBAC,
MAC and DEBAC models can be derived as instances of M, as well as access
control models with time and location constraints, the Chinese Wall policy
model and access control models based on trust.

– the definition of novel access control models as instances of M, such as a
generalisation of DEBAC that we exemplify in a banking scenario.

The remainder of the paper is organised in the following way. In Section 2, we
recall some basic notions in term rewriting, and we describe the main features
of the access control meta-model. In Section 3, we specify the meta-model as a
term rewriting system, give examples of general policy representation in terms of
the meta-model, and describe techniques for proving properties of access control
policies. In Section 4, we show how several different access control models and
associated policies, e.g., RBAC policies and DEBAC policies, can be understood
as special cases of the meta-model. In Section 5, we discuss related work. In
Section 6, conclusions are drawn, and further work is suggested.

1 From the Greek word “kategoria”, which was used by Aristotle to distinguish the
types of questions that may be asked of an entity with a view to categorising the
entity.



142 C. Bertolissi and M. Fernández

2 Preliminaries

In order to make the paper reasonably self-contained, we recall some basic
notions and notations for first-order term rewriting and the category-based
authorisation meta-model that will be used in the rest of the paper. We refer
the reader to [3] and [4] if additional information is required.

Term Rewriting. A signature F is a finite set of function symbols, each with a
fixed arity. X denotes a denumerable set of variables X1, X2, . . .. The set T (F ,X )
of terms built up from F and X can be identified with the set of finite trees where
each node is labelled by a symbol in F ∪ X such that a node labelled by f ∈ F
must have a number of subtrees equal to the arity of f , and variables are only
at the leaves. Positions are strings of positive integers denoting a path from the
root to a node in the tree. The subterm of t at position p is denoted by t|p and the
result of replacing t|p with u at position p in t is denoted by t[u]p. This notation
is also used to indicate that u is a subterm of t. V(t) denotes the set of variables
occurring in t. A term is linear if variables in V(t) occur at most once in t. A term
is ground if V(t) = ∅. Substitutions are written as in {X1 �→ t1, . . . , Xn �→ tn}
where ti is assumed to be different from the variable Xi. We use Greek letters
for substitutions and postfix notation for their application.

Definition 1 (Rewrite step). Given a signature F , a term rewriting system
on F is a set of rewrite rules R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li �∈ X ,
and V(ri) ⊆ V(li). A term t rewrites to a term u at position p with the rule
l → r and the substitution σ, written t →l→r

p u, or simply t →R u, if t|p = lσ
and u = t[rσ]p. Such a term t is called reducible. Irreducible terms are said to
be in normal form.

We denote by →+
R (resp. →∗

R) the transitive (resp. transitive and reflexive) clo-
sure of the rewrite relation →R. The subindex R will be omitted when it is clear
from the context.

Example 1. Consider a signature for lists of natural numbers, with function sym-
bols z (with arity 0) and s (with arity 1) to build numbers; nil (with arity 0) to
denote an empty list, cons (with arity 2) and append (with arity 2) to construct
and concatenate lists, respectively, ∈ (with arity 2) to test the membership of
a natural number in a list. The list containing the numbers 0 and 1 is writ-
ten then as cons(z, cons(s(z), nil)), or simply [z, s(z)] for short. We can specify
list concatenation with the following rewrite rules: append(nil, X) → X and
append(cons(Y, X), Z) → cons(Y, append(X, Z)). Then we have a reduction se-
quence: append(cons(z, nil), cons(s(z), nil)) →∗ cons(z, cons(s(z), nil)).

Boolean operators, such as disjunction, conjunction, and a conditional, can
be specified using a signature that includes the constants true and false.
For example, conjunction is defined by the rules and(true, X) → X , and
and(false, X) → false. The notation t1 and . . . and tn is syntactic sugar for
and(. . . and(and(t1, t2), t3) . . .), and if b then s else t is syntactic sugar for the
term if-then-else(b, s, t), with the rewrite rules: if-then-else(true, X, Y ) → X and
if-then-else(false, X, Y ) → Y .



Category-Based Authorisation Models 143

For example, we can define the membership operator “∈” as follows:

∈ (X, nil) → false, ∈ (X, cons(H, L)) → if X = H then true else ∈ (X, L), where
we assume “=” is a syntactic equality test defined by standard rewrite rules. We
will often write ∈ as an infix operator.

Among the most important properties in term rewriting we have confluence and
termination. A term rewriting system R is confluent if for all terms t, u, v:
t →∗ u and t →∗ v implies u →∗ s and v →∗ s, for some s; it is terminating if all
reduction sequences are finite. If all left-hand sides of rules in R are linear and
rules are non-overlapping (i.e., there are no superpositions of left-hand sides)
then R is orthogonal. Orthogonality is a sufficient condition for confluence [16].

For the approach to distributed access control that we propose later, we use
distributed term rewriting systems (DTRSs); DTRSs are term rewriting systems
where rules are partitioned into modules, each associated with an identifier,
and function symbols are annotated with such identifiers. We assume that each
module has a unique identifier that is associated to the source of the definition of
a function f (this can be a person, a site, . . . ). We say that a rule f(t1, . . . , tn) →
r defines f . There may be several rules defining f : for example, we may write
fν to indicate that the definition of the function symbol f is stored in the site
ν, where ν is a site identifier, or write fu to indicate that the definition of the
function symbol f is provided, or trusted, by the user u. If a symbol is used in
a rule without a site annotation, we assume the function is defined locally. For
more details on Distributed Term Rewriting Systems, we refer the reader to [9].

Fundamental Concepts of the Category-Based Access Control Meta-Model. We
briefly describe below the key concepts underlying the category-based meta-
model of access control. We refer the reader to [4] for a detailed description.

Informally, a category is any of several distinct classes or groups to which
entities may be assigned. Entities are denoted uniquely by constants in a many
sorted domain of discourse, including:

– A countable set C of categories, denoted c0, c1, . . .
– A countable set P of principals, denoted p0, p1, . . .
– A countable set A of named actions, denoted a0, a1, . . .
– A countable set R of resource identifiers, denoted r0, r1, . . .
– A finite set Auth of possible answers to access requests.

Additionally, the following sets are used in specific models:

– A countable set S of situational identifiers.
– A countable set E of event identifiers, denoted e0, e1, . . .

We assume that principals that request access to resources are pre-
authenticated. Situational identifiers are used to denote contextual or environ-
mental information e.g., locations, times, system states, etc. The precise set S
of situational identifiers that is admitted is application specific. Event identifiers
uniquely denote happenings at a point in time. We adopt a one-dimensional,



144 C. Bertolissi and M. Fernández

linear, discrete view of time, with a beginning and no end point. An impor-
tant element in access control models is the request-response component. In the
meta-model, the answer to a request may be one of a series of constants. For
instance, the set Auth might include {grant, deny, grant-if-obligation-is-satisfied,
undefined}.

In addition to the different types of entities that we admit, we consider re-
lationships between entities. The following relations are of primary importance
for the specification of access control policies:

– Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff a
principal p ∈ P is assigned to the category c ∈ C.

– Permissions: ARCA ⊆ A×R×C, such that (a, r, c) ∈ ARCA iff the action
a ∈ A on resource r ∈ R can be performed by principals assigned to the
category c ∈ C.

– Authorisations: PAR ⊆ P×A×R, such that (p, a, r) ∈ PAR iff a principal
p ∈ P can perform the action a ∈ A on the resource r ∈ R.

Thus, PAR defines the set of authorisations that hold according to an access
control policy that specifies PCA and ARCA.

Definition 2 (Axioms). The relation PAR satisfies the following core axiom:

(a1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R, ∀c ∈ C,
(p, c) ∈ PCA ∧ (a, r, c) ∈ ARCA ⇒ (p, a, r) ∈ PAR

If an inclusion relationship between categories, written c ⊆ c′, is admitted then
a more general version of the axiom for PAR can be defined thus:

(b1) ∀p ∈ P , ∀a ∈ A, ∀r ∈ R, ∀c ∈ C,
(p, c) ∈ PCA ∧ (∃c′ ∈ C, c ⊆ c′ ∧ (a, r, c′) ∈ ARCA) ⇒ (p, a, r) ∈ PAR

In terms of principals, the semantics of c ⊆ c′ can simply be set inclusion (the
set of principals assigned to c ∈ C is a subset of the set of principals assigned to
c′ ∈ C), or an application specific relation may be used.

3 An Operational Specification of the Meta-model

The category-based meta-model of access control, henceforth denoted by M, is
based on a core axiom for PAR (see Def. 2). Operationally, this axiom can be
realised through a set of function definitions, as we describe next.

3.1 Rewrite-Based Specification

Recall that authorisations, defined by the relation PAR, are derived from PCA
and ARCA (cf. Def. 2). The information contained in the relations PCA and
ARCA will be modelled by the functions pca and arca, respectively. The function
pca returns the list of categories assigned to a principal and arca returns a
list of permissions assigned to a category. For instance, the following rewrite
rule specifications can be used to define pca and arca: pca(p) → [c], arca(c) →
[(a1, r1), . . . , (an, rn)].



Category-Based Authorisation Models 145

Definition 3. The rewrite-based specification of the axiom (a1) in Def. 2 is
given by the rewrite rule:

(a2) par(P, A, R) → if (A, R) ∈ arca∗(pca(P )) then grant else deny

where the function ∈ is a membership operator on lists (see Section 2), grant and
deny are answers,2 and arca∗ is a generalised version of the previously mentioned
function arca to take into account lists of categories instead of a single category:

arca∗(nil) → nil arca∗(cons(C, L)) → append(arca(C), arca∗(L))

If we consider the more general axiom (b1) in Def. 2, which involves an in-
clusion relationship between categories, the function par may be more generally
defined as:

(b2) par(P, A, R) → if (A, R) ∈ arca∗(contain(pca(P ))) then grant else deny

As the function name suggests, contain computes the set of categories that contain
any of the categories given in the list pca(P ). For example, for a category c, this
can be achieved by using a rewrite rule contain([c]) → [c, c1, . . . , cn].

For optimisation purposes, one can compose the standard list concatenation
operator append with a function removing the duplicate elements in the list.

An access request by a principal p to perform the action a on the resource r
can then be evaluated simply by rewriting the term par(p, a, r) to normal form.

Proposition 1. The rewrite based definition of par given in Def. 3 is a correct
realisation of the axioms in Definition 2: par(p, a, r) →∗ grant if and only if
(p, a, r) ∈ PAR.

Proof. Using the rules given in Definition 3, the normal form of arca∗(pca(p))
is a list containing the elements in arca(c) for each c in pca(p). Thus, if (a, r)
is in arca(c) for some c in pca(p) then par(p, a, r) →∗ grant. By assumption,
(a, r) ∈ arca(c) iff (a, r, c) ∈ ARCA and c ∈ pca(p) iff (p, c) ∈ PCA. Therefore
par(p, a, r) →∗ grant if (a, r, c) ∈ ARCA and (p, c) ∈ PCA, as expected.

A range of access control concepts can be understood in category-based terms.
For example, notions like provisional authorisations can be represented in
category-based terms by defining a specific category c of principals that assume
an obligation, together with the corresponding arca definition for c. By choosing
different notions of category and corresponding definitions of pca, contain and
arca, the core elements of M can be specialised in multiple ways to define dif-
ferent instances of the meta-model. The rewrite rules may contain algebraic and
arithmetic operators as well as functions that are application-specific. Moreover,

2 Answers different from grant or deny can also be accommodated in the definition
(for instance, an undefined answer could be returned when the pair (A, R) is not in
the list of permissions for the category of P ).



146 C. Bertolissi and M. Fernández

site annotations (as defined in Section 2) can be used for functions defined at a
remotely accessible source.

We demonstrate the expressiveness of our proposal through an example that
shows how complex access control requirements can be simply represented in
terms of M.

Example 2. Consider the following access control requirements:

Employees in a company are classified as Managers (Manager), Senior
Managers (Senior mng) or Senior Executives (Senior exec). Any principal
that is a Senior Executive (i.e., a member of the category Senior exec) is
permitted to read the personal information, including salary, stored in
an employee’s file, provided the employee works in a profitable branch
and is categorised as a Manager. To be categorised as a Senior Executive,
a principal must be categorised as being a senior manager (Senior mng)
(according to the source of this information, υ1) and must be a member
of the executive board of the company. All managers’ names are recorded
locally, and the list of profitable branches is kept up to date at site υ2.

Thus, to grant the permission to read a principal’s file, considered as a resource
in this example, it is necessary to deal with various forms of categorisation
including categorisation of an institution (a branch office) having a particular
status (of being profitable).

This policy can be represented by using the following specialised rules of M
together with the rules that define pca remotely, at υ1.

pca(P ) → if Senior mng ∈ pcaυ1(P )
then (if P ∈ Exec board then [Senior exec]

else [Senior mng])
else [Manager]

The specification of the arca function is given below. The auxiliary function
profbranch, defined at site υ2, returns the list of branches that are profitable.
The local function manager returns the name of the manager of a branch B
given as a parameter, and managers(LB) does the same for a list of branches.
We omit the definition of the function zip-read, which, given a list L = [l1, . . . , ln],
returns a list of pairs of the form [(read, l1), . . . , (read, ln)].

arca(Senior exec) → zip-read(managers(profbranchυ2)
managers(nil) → nil
managers(cons(B, LB)) → cons(manager(B), managers(LB))
Exec board → [(p1, . . . , pn)]
profbranchυ2 → [(b1, . . . , bm)]

For more expressive power, categories can be parameterised. For instance, the cat-
egory client can be parameterised in such a way that client(b) indicates a client
of the branch b. More generally, categories can be represented by terms instead of
simply constants, and variables may be used in parameterised expressions.



Category-Based Authorisation Models 147

3.2 Policy Analysis: Proving Properties of Policies

Specifying access control policies via term rewriting systems, which have a formal
semantics, has the advantage that this representation admits the possibility of
proving properties of policies, and this is essential for policy acceptability [21].
Rewriting properties like confluence (which implies the unicity of normal forms)
and termination (which implies the existence of normal forms for all terms) may
be used to demonstrate satisfaction of essential properties of policies, such as
consistency.

More specifically, we are interested in the following properties of access control
policies:

Totality: Each access request from a valid principal p to perform a valid action
a on a resource r receives an answer (e.g., grant, deny, undeterminate).

Consistency: For any p ∈ P , a ∈ A, r ∈ R, at most one result is possible for
an authorisation request par(p, a, r).

Soundness and Completeness : For any p ∈ P , a ∈ A, r ∈ R, an access request
by p to perform the action a on r is granted if and only if p belongs to a category
that has the permission (a, r).

Totality and consistency can be proved, for policies defined as term rewrit-
ing systems, by checking that the rewrite relation is confluent and terminating.
Termination ensures that all access requests produce a result (e.g. a result that
is not grant or deny is interpreted as undeterminate) and confluence ensures that
this result is unique. The soundness and completeness of a policy can be checked
by analysing the normal forms of access requests.

Confluence and termination of rewriting are undecidable properties in general,
but there are several results available that provide sufficient conditions for these
properties to hold, we give examples below.

Termination. An access control model defined as an instance of our meta-model
provides a notion of category and the corresponding definitions of the relations
between categories, between principal and categories and between categories and
permissions. An access control policy can then be defined in terms of the chosen
access control model. The full definition of the policy can be seen as a hierarchical
rewrite system, where the basis includes the set of constants identifying the
main entities in the model (e.g., principals, categories, etc.) as well as the set of
auxiliary data structures (such as booleans, lists) and functions on these data
structures. The next level in the hierarchy contains the parameter functions of
the model, namely pca, arca, arca∗, contain. Finally the last level of the hierarchy
consists of the definition of the function par.

Several sufficient conditions for termination of rewrite systems defined as a
hierarchical union of rules are available. For instance, a hierarchical term rewrit-
ing system is terminating if the basis of the hierarchy is terminating and non-
duplicating (i.e., rules do not duplicate variables in the right-hand side) and
in the next levels of the hierarchy the recursive functions are defined by rules
that satisfy a general scheme of recursion, where recursive calls on the right-
hand sides of rules are made on subterms of the left-hand side [12]. Thus, for



148 C. Bertolissi and M. Fernández

the examples in this paper, provided the auxiliary functions in the basis of the
hierarchy are defined by non-duplicating and terminating rewrite rules, the sys-
tem is terminating (notice that the function par is not recursive). We discuss an
example in more detail below.

Confluence. Confluence can be proved in various ways. Orthogonal systems are
confluent, as shown by Klop [16]. A less restrictive condition, for systems that
terminate, is the absence of critical pairs (the latter, combined with termination
implies confluence by Newman’s lemma [20]).

Application. To illustrate the methodology, we can prove for instance the con-
sistency and totality of the policy specified in Example 2.

Property 1. The policy in Example 2 is consistent and total.

Proof.

– Consistency: It is not difficult to see that the rules used in Example 2 form
an orthogonal (hence confluent) system, therefore the policy is consistent.

– Totality: As mentioned above, we can see the policy as a hierarchical system.
The basis contains the rules defining the functions Exec board, profbranch,
manager, managers, zip-read, together with rules for booleans and lists (as
defined in Example 1), which are non-duplicating and terminating. The next
levels in the hierarchy define functions that satisfy the general scheme of
recursion. Therefore, the whole policy seen as a hierarchical union of rewrite
systems is terminating [12]; hence the policy is total.

Concerning the soundness and completeness of the policy described in Exam-
ple 2, we can prove that if p is a Senior Executive and m is the manager m of a
profitable branch b, then an access request from p to read m’s file will be granted.
For this, we analyse the normal forms of access requests. More precisely: if p is a
Senior Executive and m is the manager of a profitable branch, as recorded in υ2,
then the normal form of par(p, read, m) is grant, since par(p, read, m) →∗ grant.

4 Expressive Power: Access Control Models in M
In this section we show how a range of existing access control models, as well
as novel models of access control, can be represented as specialised instances of
our meta-model. We specify traditional (static) access control models, such as
RBAC, DAC and MAC (including the well-known Bell-LaPadula model), as well
as dynamic models, such as DEBAC. We also discuss briefly the representation
of trust-based access control models.

4.1 Hierarchical Role Based Access Control

Standard Role-Based Access Control (RBAC) models [13,2] assume a single (lim-
ited) form of category: the role. In ANSI Hierarchical RBAC, role hierarchies



Category-Based Authorisation Models 149

are the only form of category-category relationships that are admitted: a role
hierarchy is a partial ordering of roles by seniority, where a senior role inherits
the privileges of its subordinate roles [2]. In an RBAC policy, each principal is
assigned to one or several roles, and permissions are associated to roles. Briefly,
RBAC models can be characterised as follows:

A request access(p, a, r) from a principal p to perform the action a on the
resource r results in grant or deny depending on whether the permission (a, r) is
associated to p’s role (or its subordinate roles).

In terms of our access control primitives, hierarchical RBAC can be ex-
pressed using Def. 3 (b2) where categories are limited to roles. Thus, pca(p) →
[r1, . . . , rn], where r1, . . . , rn are the roles of p. We use an additional function dc
in the definition of contain where dc(ri) = [r1, . . . , rj ] means that r1, . . . rj ∈ C
are direct subordinate roles of ri ∈ C (hence ri is directly senior to r1 . . . rj ). In
order to compute the hierarchy of roles, we can use the following rewrite rules:

contain(nil) → nil
contain(cons(C, L)) → append(cons(C, contain(dc(C)), contain(L))

The permissions assigned to a role, which includes its permissions and the per-
missions of its direct subordinate roles, are then computed by the function arca∗,
as already defined in Section 4.1. We can then evaluate access requests by rewrit-
ing: the answer for a request by p to perform the action a in r can be computed
by rewriting the term par(p, a, r) to normal form, using rule (b2).

Property 2 (Expressing RBAC in M). Given an RBAC policy, an access request
by a principal p to perform the action a in the resource r is granted (respectively
denied) if par(p, a, r) →∗ grant (respectively par(p, a, r) →∗ deny).

Proof. In accordance with the characterisation of RBAC given above, to compute
an answer to the access request we need to check whether (a, r) is in the list of
permissions returned by the function arca∗, whose argument is the list of roles
of p as computed by pca(p) (and the function contain in case of a hierarchy of
roles).

Thus, RBAC and Hierarchical RBAC can be obtained as instances of the meta-
model M. We discuss below an extension of RBAC that takes into account
time and location constraints. More general models, such as Event-based Access
Control (DEBAC) models [9], will be discussed in Section 4.2.

Temporal and Location-Based Models. To satisfy a wider range of application-
specific requirements, constants can be introduced to express intervals of
time (i.e., Int(Tstart, Tstop)) during which principal-category assignments and
permission-category assignments hold.

To accommodate such generalisations, we consider Def. 3 (b2) and we spe-
cialise the rewrite rules for arca and pca. For example, to constrain assignment
of a principal p to a category by time (i.e., to help satisfy the Principle of Least
Privilege) we may use a rule of the following form:



150 C. Bertolissi and M. Fernández

pca(p) → if current time ∈ Int(8am, 1pm) then [clerk, record keeper]
else if current time ∈ Int(1pm, 6pm) and delegated ∈ pcab(p)
then [boss assistant] else [out of office]

Supposing only the boss assistant has the permission of reading the emails
of his boss, i.e. arca(boss assistant) → [(read, mailBoss)], a request of the form
par(p, read, mailBoss) made in the morning will lead to a denial of access:

par(p, read, mailBoss) →∗

if (read, mailBoss) ∈ arca∗([clerk, record keeper]) then grant else deny →∗ deny

but the same request made at 2pm will be successful, if p has been delegated by
the boss, as recorded in pcab(p).

Concerning location-based models, suppose that a categorisation of princi-
pals were required that took into account their current location to determine
the principal’s set of authorisations. A contain relation may then be defined in
terms of the function dc where dc is used to define geographical regions that
are ordered by direct containment, e.g., dc(europe) = [Uk, Fr, It, . . .] ). In this
case, a category c associated to a principal p represents a categorisation of p by
location.

Mandatory Access Control and Discretionary Access Control. MAC and DAC
can be viewed as special cases of RBAC (as has already been noted in the access
control literature e.g., [22]). In terms of our proposed framework, a version of
the Bell-LaPadula model may be viewed as a restricted form of the Hierarchical
RBAC model, with the second parameter of par limited to the read or write
action. In this case, the containment relationship is an ordering of categories
that are restricted to being defined on a common set of security classifications
for resources and security clearances for principals.

The function contain is defined as in the RBAC instance and returns a list with
the principal’s category as head of the list and all of its subordinate categories
as tail of the list: contain(c) → [c, c1, . . . , cn]. The function par is specified as in
Def. 3 (b2), using arca∗(contain(pca(p))). We specify two kinds of permissions:
we define a function arcaw(c) returning the write privileges (write, ri) associated
to a category c, and a function arcar(c) returning the read privileges (read, ri)
associated to a category c. Then we can express the requirements “write only
at the subject’s classification level” and “no read up” (which are core axioms of
strict MAC, as the latter term is interpreted in Bell-LaPadula terms) by using
the following definition of function arca∗:

arca∗(nil) → nil arca∗(cons(C, L)) → cons(arcaw(C), arcar∗(cons(C, L)))
arcar∗(cons(C, L)) → cons(arcar(C), arcar∗(L))

Thus, when evaluating arca∗(contain(pca(p))), the arcaw function is applied at
the category level, while arcar is recursively called on all the subordinates of the
initial category.



Category-Based Authorisation Models 151

Property 3 (Expressing Bell-LaPadula inM). An access request access(p, read, r)
or access(p, write, r) in a Bell-LaPadula policy is granted (respectively denied) iff
par(p, read, r) →∗ grant (respectively deny) or par(p, write, r) →∗ grant (respec-
tively deny).

Proof. This can be shown using the fact that the policy can be expressed as a
special case of a RBAC policy (as detailed e.g. in [22]).

We also note that the discretionary access control model of Unix can be naturally
represented, with Unix users being viewed as particular types of principals and
with group and other being a restricted set of categories of principals.

4.2 Generalising RBAC: Event-Based Access Control (DEBAC)

In the DEBAC model [9], users may request to perform actions on resources
that are potentially accessible from any site in a distributed system. A user is
assigned to a particular category on the basis of the history of events that relate
to the user. DEBAC generalises RBAC by taking into account the actions that
involve a user in order to compute its category. Briefly, DEBAC can be described
as follows:

A user is permitted to perform an action a on a resource r if and only if
the user is assigned to a category c to which a access on r has been assigned,
according to the history of events.

To model the history of an agent’s actions, the notion of an event is extensively
used in DEBAC. We view events as structured and described via a sequence h
of ground terms of the form event(ei, p, a, t) where event is a data constructor of
arity four, ei (i ∈ N) denotes unique event identifiers, p identifies a principal, a
is an action associated to the event, and t is the time when the event happened.

Example 3. Consider a university where students may acquire permissions (by
changing category) as they pass their exams. The function pca is defined as
follows:

pca(P ) → head(action(P, h)))

where action is a function returning the categories associated to a principal,
according to the events in which the principal is involved (stored in the list h).
These functions could be defined as follows:

action(P, nil) → [Student]
action(P, cons(E, h)) → if User(E) = P then cons(categ(E), action(P, h))

else action(P, h)

The function action looks recursively in the list of events, and uses an application-
specific function categ that associates a category to a principal according to the



152 C. Bertolissi and M. Fernández

particular event in which he/she was involved. For instance, in the university
context we may have

categ(event(E, P, enroll, T )) → [Registered]
categ(event((E, P, pay, T )) → [Regular]
categ(event(E, P, exampassed, T )) → if pass(P, exams1styear)

then [2nd year Student] else [Irregular]

In this case a student, according to the actions he/she has performed may be
assigned for instance to a 2nd year Student category.

Property 4 (Expressing DEBAC in M). An access request access(p, a, r) in a
DEBAC policy is granted (respectively denied) iff par(P, A, R) →∗ grant (re-
spectively par(P, A, R) →∗ deny).

Proof. To compute an answer to the access request in accordance with the given
DEBAC’s definition, in our specification the main function par checks whether
(a, r) is in the list of permissions returned by the function arca∗, whose argument
is the list of categories of p as computed by pca(p). Thus, provided the function
categ is specified for any event of the list, p’s category is computed by pca(p)
which makes use of the function action to go through the history of events.

Generalising DEBAC in M. We can define a generalisation of the DEBAC
model in M by considering categorisation depending not only on the history
of an agent’s actions, but also on events related to other agents in the system.
Moreover we can introduce an “ascribed” status associated to the user (of which
a role assignment is a particular type) and combine it with a status resulting
from his/her actions to compute the overall status of a user (see Example 4).
This overall categorisation is used as the basis for determining authorised forms
of actions. Ascription and action are simply particular types of category; as such,
two categories can be combined for access control decisions to be made.

Example 4. Consider a bank scenario where two clients share a joint account.
In this case, actions of one client on the joint account, such as withdrawals or
deposits, may affect the category (hence the access permissions) of the second
client. We use the following pca specification to compute the combination of the
ascribed status associated to a principal and its action status.

pca(P ) → cons(ascribed(P ), action(P, h))
ascribed(P ) → if age(P ) ≥ 60 then [Senior] else [Junior]
action(P, nil) → [Client]
action(P, cons(E, h)) → cons(categ(P, E), action(P, h))

with the following rule associated to the event of a withdrawal:

categ(P, event(E, P ′, withdrw500, T )) → if jointaccount(P, P ′) then
if balance(account(P ′)) ≤ 0 then [BlackList] else [Normal]



Category-Based Authorisation Models 153

Thus, according to his/her age and the actions he/she has performed, as well
as the actions of a partner on the joint account, the client may be assigned for
instance to a Senior BlackList category.

It is also possible to introduce in the DEBAC model a function for verifying
the validity of a status assignment over time, and use it for instance to specify
the Chinese Wall policy, as shown in Example 5.

Example 5 (Chinese Wall policy). In the Chinese Wall model resources are
grouped into “conflict of interest classes” and by mandatory ruling all prin-
cipals are allowed access to at most one resource belonging to each such conflict
of interest class. This model can be easily specified in terms of categories in
the meta-model M. It is sufficient to adapt the DEBAC specification shown
previously. We assume that each category c0, . . . cn corresponds to an inter-
est class and that by default all principals are assigned to all categories, i.e.
action(P, nil) → [c0, . . . cn]. In order to verify the validity of a status assignment
over time, we introduce the function filter. This function checks that the occur-
rence of a particular event in the history does not create conflicts with some
previous category assignments (if it does, those categories are not included in
the list computed by the function action).

action(P, cons(E, h)) → if User(E) = P
then cons(categ(E), filter(E, action(P, h)))
else action(P, h)

filter(E, nil) → nil
filter(E, cons(C, h)) → if conflict(E, C) then filter(E, h)

else cons(C, filter(E, h))

In other words, when a principal obtains access to a resource belonging to a
particular class, conflicts between this event and the list of categories are checked
and the access rights of the principal are updated.

4.3 Trust-Based Models

As far as access control models based on trust are concerned, we regard the
association of a trust measure with a principal as the assignment of the principal
to a category of users that have the same degree of trust according to some
authority. In particular, if a policy author α asserts that a principal p is assigned
to a category c, then any policy author that sufficiently trusts α’s categorisation
of p can refer to that category in its specifications of access control requirements.
The next example that we give illustrates the representation of trusted third-
party assertions in our approach.

Example 6 (Third-party assertions). Consider a local policy specification, with
the following access control requirements.

Any principal P is assigned to the category approved uni if a known
principal u is assigned to the category of trusted on uni in the database
d of a trusted source, and u asserts that P is assigned to the category
good university.



154 C. Bertolissi and M. Fernández

To represent these access control requirements, the following definition of pca
is sufficient:

pca(P ) → if trusted on uni ∈ pcad(u) and good university ∈ pcau(P )
then [approved uni]

To appreciate how M can be specialised in the context of the “policy aware
web” [24], consider for example a mutual access partnership (MAP). In such a
policy specification, two principals that trust each other allow the partner the
rights for accessing their resources. In other words, if p′ ∈ P and p′′ ∈ P are in
a MAP then p′ will allow p′′ to access its resources and conversely. To represent
the MAP model in M, it is sufficient for a policy author to declare a category
for each pair of principals in a MAP.

Note that the contain relationship between categories can be arbitrarily de-
fined; we could also specify an equivalence relation between categories (such
relationships are often useful in trust-based models [19]). For instance, consider
an access control model where if members of category c2 trust the assertions of
an immediately “superior” authority category c1 and members of category c3
similarly trust c1, then c2 and c3 trust each others’ assertions. The (Euclidean)
relationship that is required in this case can simply be captured by defining an
equivalence between c2 and c3.

contain(c1) → [c1, c2, c3] contain(c2) → [c2, c3] contain(c3) → [c2, c3]

With the specification given above, access requests from members of c2 or c3
will be treated in the same way. Principals in category c1 have all the permissions
of c2 and c3, reflecting the fact that c2 and c3 trust c1.

5 Related Work

Term rewriting has been used to model a variety of problems in security, from
the analysis of security protocols [6] to the definition of policies for control-
ling information leakage [11]. On access control specifically, Koch et al. [17] use
graph transformation rules to formalise RBAC, and more recently, [5,23,9] use
term rewrite rules to model particular access control models and to express ac-
cess control policies. The approach used in [5,23,9] is operational: access control
policies are specified as sets of rewrite rules and access requests are specified
as terms that are evaluated using the rewrite rules. Our work addresses similar
issues to [5,17,23,9], but is based on a notion of a meta-model of access control
from which various models can be derived, instead of formalising a specific kind
of model such as RBAC or DEBAC.

Several proposals for general models and languages for access control have
already been described in the literature, but neither of them provides the level of
generality of the category-based approach. For example, the Generalised TRBAC
model [15] and ASL [14] aim at providing a general framework for the definition
of policies. In GTRBAC, the focus is on the notion of a role (interpreted as being



Category-Based Authorisation Models 155

synonymous with the notion of job function). In ASL, users, groups and roles
are admitted in the language.

Abadi et al [1] ABLP logic also provides a formal framework for reasoning
about a wide range of features of access control. The focus in ABLP logic is
on language constructs for formulating access control policies and axioms and
inference rules for defining a system for proof, e.g., for proving authorised forms
of access. In contrast, the category-based approach is based on abstracting, from
the generalities of access control models, the common aspects of access control
from which core functions are identified. The rewrite-based specification of the
meta-model is well-adapted to the evaluation of access requests, and emphasises
the use of rewriting properties to derive properties of the policies.

Li et al.’s RT family of role-trust models [18] provides a general framework
for defining access control policies, which can be specialised for defining specific
policy requirements (in terms of credentials). The category-based meta-model,
however, can be instantiated to include concepts like times, events, actions and
histories that may be used to specify principal-category assignments, but which
are not included as elements of RT .

6 Conclusions and Further Work

We have given a rewrite-based specification of a meta-model of access control
that is based on common, core concepts of access control models. The term
rewriting approach can be used to give a meaningful semantics to policies in the
case of both centralised and distributed computer systems. Rewrite rules provide
a declarative specification of access control policies which facilitates the task of
proving properties of policies. Also, term rewriting rules provide an executable
specification of the access control policy. In future work, we will investigate the
design of languages for policy specification and the practical implementation
of category-based policies; in particular, an access control policy may be trans-
formed into a MAUDE [10] program by adding type declarations for the function
symbols and variables used and by making minor syntactical changes (see [8]).

References

1. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access
control in distributed systems. ACM Trans. Program. Lang. Syst. 15(4), 706–734
(1993)

2. ANSI. RBAC, INCITS 359-2004 (2004)
3. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,

Great Britain (1998)
4. Barker, S.: The next 700 access control models or a unifying meta-model? In:

Proceedings of the ACM Int. Conf. SACMAT 2009, pp. 187–196. ACM Press, New
York (2009)

5. Barker, S., Fernández, M.: Term rewriting for access control. In: Damiani, E.,
Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol. 4127, pp. 179–193.
Springer, Heidelberg (2006)



156 C. Bertolissi and M. Fernández

6. Barthe, G., Dufay, G., Huisman, M., Melo de Sousa, S.: Jakarta: a toolset to reason
about the JavaCard platform. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS,
vol. 2140, p. 2. Springer, Heidelberg (2001)

7. Bell, D.E., LaPadula, L.J.: Secure computer system: Unified exposition and multics
interpretation. MITRE-2997 (1976)

8. Bertolissi, C., Fernández, M.: Time and location based services with access control.
In: Proceedings of the 2nd IFIP International Conference on New Technologies,
Mobility and Security. IEEEXplore (2008)

9. Bertolissi, C., Fernández, M., Barker, S.: Dynamic event-based access control as
term rewriting. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security
2007. LNCS, vol. 4602, pp. 195–210. Springer, Heidelberg (2007)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

11. Echahed, R., Prost, F.: Security policy in a declarative style. In: Proc. 7th ACM-
SIGPLAN Symposium on Principles and Practice of Declarative Programming
(PPDP 2005). ACM Press, New York (2005)

12. Fernández, M., Jouannaud, J.-P.: Modular termination of term rewriting systems
revisited. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types
1994 and COMPASS 1994. LNCS, vol. 906. Springer, Heidelberg (1995)

13. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Richard Kuhn, D., Chandramouli, R.:
Proposed NIST standard for role-based access control. ACM TISSEC 4(3), 224–274
(2001)

14. Jajodia, S., Samarati, P., Sapino, M., Subrahmaninan, V.S.: Flexible support for
multiple access control policies. ACM TODS 26(2), 214–260 (2001)

15. Joshi, J., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Trans. Knowl. Data Eng. 17(1), 4–23 (2005)

16. Klop, J.-W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction sys-
tems, introduction and survey. Theoretical Computer Science 121, 279–308 (1993)

17. Koch, M., Mancini, L., Parisi-Presicce, F.: A graph based formalism for rbac. In:
SACMAT, pp. 129–187 (2004)

18. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-
management framework. In: IEEE Symposium on Security and Privacy, pp. 114–
130 (2002)

19. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems–a
modal logic formulation. Artif. Intell. 149(1), 31–60 (2003)

20. Newman, M.H.A.: On theories with a combinatorial definition of equivalence. An-
nals of Mathematics 43(2), 223–243 (1942)

21. Department of Defense. Trusted computer system evaluation criteria (1983); DoD
5200.28-STD

22. Sandhu, R.S., Munawer, Q.: How to do discretionary access control using roles. In:
ACM Workshop on Role-Based Access Control, pp. 47–54 (1998)

23. Santana de Oliveira, A.: Rewriting-based access control policies. In: Proceedings of
SECRET 2006, Venice, Italy. Electronic Notes in Theoretical Computer Science.
Elsevier, Amsterdam (2007) (to appear)

24. Weitzner, D.J., Hendler, J., Berners-Lee, T., Connolly, D.: Creating a policy-aware
web: Discretionary, rule-based access for the world wide web. In: Web and Infor-
mation Security (2006)



Idea: Efficient Evaluation of
Access Control Constraints

Achim D. Brucker and Helmut Petritsch

SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
{achim.brucker,helmut.petritsch}@sap.com

Abstract. Business requirements for modern enterprise systems usually
comprise a variety of dynamic constraints, i. e., constraints that require
a complex set of context information only available at runtime. Thus,
the efficient evaluation of dynamic constraints, e. g., expressing separa-
tion of duties requirements, becomes an important factor for the overall
performance of the access control enforcement.

In distributed systems, e. g., based on the service-oriented architecture
(SOA), the time for evaluating access control constraints depends signif-
icantly on the protocol between the central Policy Decision Point (PDP)
and the distributed Policy Enforcement Points (PEPs).

In this paper, we present a policy-driven approach for generating cus-
tomized protocol for the communication between the PDP and the PEPs.
We provide a detailed comparison of several approaches for querying con-
text information during the evaluation of access control constraints.

Keywords: distributed policy enforcement, XACML, access control.

1 Introduction

Business regulations, e. g., Basel II [3] or the Sarbanes-Oxley Act [16], often re-
quire the enforcement of dynamic or context-aware access control policies [9, 17],
for example, (dynamic) separation-of-duties. As many widely used policy lan-
guages, e. g., [6, 15], are not supporting such context requirements as first class
citizens, they are usually encoded as access control constraints [7]. For example,
XACML [15], PERMIS [6], or SecureUML [4] are supporting access control con-
straints. By definition, these constraints depend on context information such as
attributes of a resource (e. g., its owner, last modification date, shipping desti-
nation) and, as such, are not amenable for caching access control decisions [12].
Thus, an efficient attribute retrieval becomes even more important; astonishingly
this is left unspecified in many policy frameworks, e. g., XACML [1] or EPAL [2].

In distributed systems following the service-oriented architecture (SOA), busi-
ness services are provided by orchestrating a set of loosely coupled technical
services. Still, authentication and authorization rely on centralized components:
single sign on implementations authenticate users within highly distributed sys-
tems using a centralized authority. Moreover, while access control policies are
enforced by distributed Policy Enforcement Points (PEPs), the central Policy

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 157–165, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.brucker.ch/
http://www.petritsch.co.at
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>


158 A.D. Brucker and H. Petritsch

Decision Point (PDP) evaluates the underlying access control requests. Such
a centrally managed and administered PDP stores access control policies for all
secured services. For evaluation of dynamic constraints, attributes need to be re-
solved (i. e., accessible) at runtime within the PDP. Albeit, often the resolution
of attributes can only be done within the service (i. e., its PEP) requesting the
policy evaluation. Thus, resolving attributes often requires substantial network
communication between the centralized PDP and the various distributed PEPs.
All PDP implementations we are aware of are based on an iterative approach.
In contrast, we propose to optimize the required communication overhead by
using a static policy analysis that allows for sending all attributes required for
a specific access control request at once.

Our contributions are three-fold: first, we present an approach for pre-com-
puting the required attributes for evaluating access control constraints, second,
we analyze and present the performance tests for several attribute resolution
strategies for distributed enterprise systems, and, third, we give guidance on
choosing an optimal resolution strategy based on multiple criteria.

2 Efficient Attribute Resolution

2.1 Context Attributes

Context attributes can be classified with respect to the runtime environment in
which they can be resolved efficiently. For example, while information about the
accessed object is usually only available in the context of the service issuing the
access control request, information about a user (e. g., his roles) are often only
available within the PDP. Thus, attributes can be categorized into:

PDP attributes are only available within the centralized security infrastruc-
ture, i. e., the PDP. The information about role hierarchy membership is,
usually, an example for this kind of information.

Service attributes are only available within the client application or service,
e. g., owner of a resource, specific attributes of a resource (e. g., balance of a
bank account) or number of threads running on the application server.

Global attributes are equally resolvable from either the PDP or the services.
For example, this is the case for attributes that need to be resolved by an
additional service, e. g., the single sign-on or identity provider.

While in common implementations such a classification is left implicit, we pro-
pose to use such a classification explicitly.

2.2 Attribute Resolution Strategies

There exist several approaches for the resolution of context attributes during the
evaluation of access control requests. Fig. 1 illustrates the approaches we will
discuss in the following. These sequence diagrams only illustrate the resolution
of service attributes, i. e., within the PEP. The resolution of global or PDP at-
tributes using a Policy Information Point (PIP) or context provider is left out.



Idea: Efficient Evaluation of Access Control Constraints 159

(a) The “trial and error” strategy. (b) Resolving attributes using a PIP.

(c) PEP-prefetch. (d) PDP-prefetch.

Fig. 1. Different strategies for resolving context attributes

Trial and error: The PDP requests the required attributes from the PEP using
an iterative approach (see Fig. 1a). If the evaluation of an access control
request requires a service attribute, the PDP returns a missing attribute
message back to the client. As the PDP is stateless, the initial request has
to be re-send by the PEP until all required attributes are supplied.

PIP: The PIP is responsible for resolving all types of attributes (see Fig. 1b).
For example, the PIP queries the service or PEP over an additional Web
service interface, which requires this interface be reachable from the PIP.

For increasing the performance of access control requiring the resolution of
context attributes, we propose to pre-compute the set of required attributes using
a static analysis of the policy together with one of the following two strategies:

PEP Prefetch: Using a pre-computed look-up-table mapping access control
request to the (potentially over-approximated) set of required service at-
tributes, the PEP can easily determine which attributes could be required
during the evaluation of a concrete access control request. Thus, the PEP
resolves as much services attributes that are potentially required and sends
them, proactively, together with the initial request to the PDP (see Fig. 1c).

PDP Prefetch: By deploying the pre-computed look-up-table only in the cen-
tral PDP implementation, we avoid the need of customizing the various PEPs.
As the PDP can easily check which service attributes might be necessary for
a specific access control request, the PDP is able to request (in its first an-
swer) all potentially required attributes at once. Therefore the number of
evaluation attempts required is strictly bound to two and does not depend
on the number of attributes required (see Fig. 1d).



160 A.D. Brucker and H. Petritsch

2.3 Pre-computing Attribute Sets

In the following, we briefly discuss the steps required for pre-computing the
mapping from access control requests to set of service attributes required by the
two approaches based on pre-fetching. We assume that service attributes are not
used within the core policy language, e. g., in case of XACML within the target
match.

On an abstract level, a security policy P is a mapping of rules to access control
decisions (e. g., deny or allow). For example, in case of RBAC with access control
constraints, a rule is a four-tuple (g, r, a, c) where g is the required role, r is the
resource, a is the action on that resource, and c is a constraint (i. e., a Boolean
expression over context attributes). An access control request is a triple (u′, r′, a′)
where u′ is the requesting user, r′ is the resource the user is requesting access
for executing action a′. Moreover, we say a rule (g, r, a, c) matches a request
(u′, r′, a′) if and only if, the user u′ is a member of the role g, both r = r′ and
a = a′ hold, and the access control constraint c′ evaluates to true.

For PDP Prefetch, we need to compute a mapping from triple (g, r, a) to the
set of potentially required service attributes. Given a policy P ,

1. for each rule (g, r, a, c) in the policy, we compute a four-tuple (g, r, a, As(c))
where As(c) is the set of service attributes that are syntactically referenced
in the access control constraint c.

2. we group the set of four-tuples (g, r, a, As(c)) with respect to their lexico-
graphic order of group, resource, and action (i. e., the triple (g, r, a)).

3. in each group from the previous step, we build die union of all required sets
of service attributes, e. g., given

{
(g, r, a, As(c1)), . . . , (g, r, a, As(cn))

}
, we

compute the triple (g, r, a,
⋃

1≤i≤n As(ci)).
4. we use the consolidated set of triples as input for initializing the hash-table

used in the PDP implementation.

For the PEP Prefetch strategy, we compute analogously a mapping from resource-
action tuples to the set of required service attributes.

While for policy written in an high-level language (e. g., SecureUML [4]) the
set of attributes can be computed exactly, for complicated technical policies
(e. g., XACML using various policy sets together with different policy combining
algorithms) an over-approximation seems to be a good compromise avoiding the
need for the semantical analysis of the given policy. For policy languages sup-
ported by a model-driven-security toolchain, e. g., [5], the required configurations
(or even the complete PEP implementation) can be generated automatically.

3 Empirical Results

3.1 Scenario

We evaluate how the different strategies for resoling context attributes behave
in three different scenarios, whereas these three scenarios differ in the size of the
policies and the requirement to resolve service attributes:



Idea: Efficient Evaluation of Access Control Constraints 161

Scenario I: This scenario uses a relatively small policy consisting out of 200
rules for ten resources, 50 users that are mapped onto fifteen roles, about
0.5 service attributes are resolved per access control request.

Scenario II: Compared to scenario I, this scenario has an increased likelihood
that service attributes need to be resolved (about 1.8 per request), the policy
has 500 rules for ten resources, 200 users are mapped onto 40 roles.

Scenario III: This scenario uses a large policy with 5000 rules for 100 resources,
restricting the access of 800 users mapped to 100 roles. The policies exten-
sively use service attributes, causing that an average access control request
requires the resolution of over six service attributes.

For every scenario, we generated the policy, the user-group assignments, the
required configurations, and a set of 2000 test requests. Attributes are resolved to
a configurable random value. Generating the access control list explicitly allows
for deterministic repetition of our benchmarks ensuring the comparability of the
results for the different resolution strategies.

3.2 Experimental Results

We compare the different resolution strategies using a distributed prototype
based on the Sun’s XACML implementation (http://sunxacml.sourceforge.
net) running on standard hardware. The PDP offers a Web service interface
for the client PEPs and we use the AttributeFinderModule of XACML for
implementing the PIPs used by the PDP.

First, for each attribute resolution strategy we compare the average response
times for each scenario (see Fig. 2a). In general, this time reflects a significant
portion of the time a system needs for reacting on a users actions. Second, we
analyze the average network load, i. e., the amount of data transmitted during
an access control request (see Fig. 2b).

For a small scenario (i. e., scenario I), we do not observe a significant difference
in both the average response time and the average network traffic (see Fig. 2).
For larger policies (i. e., scenario II), PDP Prefetch and PIP require twice as long
as PEP Prefetch and the trial and error strategy takes more than four times
longer. A similar behavior can be observed in scenario III.

Overall, PEP Prefetch is the fastest approach in all scenarios. Interestingly,
the PIP is in scenario three faster than PDP Prefetch, although the PIP has to
execute on average six Web service calls back to the client, compared to one
additional XACML request done by PDP Prefetch.

The average network traffic shows a similar behavior: PEP Prefetch results in
the minimal amount of network traffic per access control request. Both the trail
and error strategy and the PIP are resulting in an increased network traffic that
does grow larger than linear with respect to the increase of the number service
attribute that need to be resolved. Thus, the overhead caused by Web service
calls seems to exceed the overhead of sending additional attributes.

Further, we compare the average response time depending on the number
of (required) service attributes. Fig. 3 shows that the overhead caused by PEP

http://sunxacml.sourceforge.net
http://sunxacml.sourceforge.net


162 A.D. Brucker and H. Petritsch

0
20
40
60
80

100
120
140

Szenario I Szenario II Szenario III

av
g.

re
sp

on
se

ti
m

e
[m

s]

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(a) Comparing the average response time
per request in milliseconds.

0
0.5

1
1.5

2
2.5

3
3.5

4

Szenario I Szenario II Szenario III

ne
tw

or
k

lo
ad

[k
B

/r
eq

ue
st

]

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(b) Comparing the average network load
(i. e., traffic in kilobytes).

Fig. 2. Comparing the average response times and the overall network traffic for the
different usage scenarios and resolution strategies

0
5

10
15
20
25
30
35

0 1 2 3 4

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(a) Scenario I: average response time.

0
20
40
60
80

100
120
140
160
180

0 1 2 3 4 5 6 7 8 9

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(b) Scenario II: average response time.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

av
g.

re
sp

on
se

ti
m

e
[m

s]

number of service attributes required

PEP Prefetch
PDP Prefetch

Context Provider
Trial and Error

(c) Scenario III: average response time.

0
5

10
15
20
25
30
35
40
45

PEP
Prefetch

PDP
Prefetch

Context
Provider

Trial
and Error

av
g.

re
sp

on
se

ti
m

e
[m

s]

No Attr. PDP Attr. All Attr.

(d) Comparing different attribute typs.

Fig. 3. Comparing response times based on (effective) required service attributes, and
comparing scenarios without attributes



Idea: Efficient Evaluation of Access Control Constraints 163

Prefetch causes only minor delay in contrast to the three other approaches. In
scenario I (Fig. 3a), PDP Prefetch results in the worst response time for one
resolved service attribute. Albeit, it remains on this level for two and more
service attributes. In contrast, the trial and error strategy has a similar response
time as the PDP Prefetch approach for one service attribute, but the response
time increases nearly linear with additionally required attributes.

For larger policies, i. e., scenario II and III, the size of the policy seems not
to have a significant effect on how the different approaches behave relatively to
each other (see Fig. 3b and Fig. 3c). Here, the PEP Prefetch strategy enjoys the
fastest response time, which, moreover, also does not depend on the number of
attributes required during the request evaluation.

Marshaling and unmarshaling the XACML (i. e., XML) seems to be a time
consuming task: first, compared to Web service requests the effort for handling
XACML seems to be very high. While for both the PDP Prefetch and the trail
and error approach the same number of Web service requests are executed, the
trial and error approach has a significantly slower response time.

Fig. 3d compares variants of scenario II using policies where all attributes are
resolved on the PDP (i. e., causing no network overhead and delay), and without
any attributes (except group resolution). As expected, using no service attributes
is significantly faster. The four approaches differ only in service resolution sig-
nificantly. The resolution of evaluation of local attributes (i. e., within the PDP)
results in a minor overhead.

4 Discussion

Overall, our proposed resolution strategies (i. e., PEP Prefetch and PDP Prefetch)
do not eliminate or replace the concept of PIPs. For resolving global or PDP
attributes, a context provider directly attached to the PDP should be used.

The PEP Prefetch strategy for resolving context attributes from service side,
produces only little overhead. Thus, even in scenarios rarely using service at-
tributes, our approach is the fastest implementation—leading to the best user
experience, i. e., fast response time of the system. The main drawback of the PEP
Prefetch strategy is the fact that it requires an update of the PEP configuration
whenever the security policy (i. e., the set of rules) requires additional service
attributes for evaluation. The PDP Prefetch strategy overcomes this drawback
while being only resulting in slightly higher response times and network traffic.
As our implementation allows to use the PEP Prefetch strategy with a fallback
strategy (PDP Prefetch or trial and error, e. g., for the time the updates need
to be distributed to all PEPs after a policy update), we propose to use the PEP
Prefetch strategy with a fallback strategy as a general solution.

Overall, the overhead for marshaling and unmarshaling XACML requests en-
coded in XML seems to be very high. Unfortunately, our experiments cannot
give hints if this is an implementation specific or a general problem. Thus, a



164 A.D. Brucker and H. Petritsch

more efficient implementation may increase the overall performance in general
and the performance of the PDP Prefetch approach in particular.

We assume that resolving attributes is possible with low costs. We think that
this is a reasonable assumption (i. e., many attributes required will be assigned
to or available within the current context of the access control request, e. g.,
owner of the accessed resource as attribute or property of the resource itself).
Nonetheless, this cannot be guaranteed for all attributes. Especially for the con-
text provider approach, this assumption is problematic: as the call back to the
service is asynchronous, the resolution is not executed within the context of the
access control request. Thus, the performance and costs of the resolution de-
pends mainly on the underlying application: an intelligent session handling may
allow a fast access of the request context and, therefore, allow the resolution
with nearly the same costs as from within the context itself.

Classifying the attribute types depending in which parts of the overall system
landscape they can be resolved efficiently seems to be a valuable add-on to
existing policy frameworks. Overall, such a classification avoids, first, the need
to transport any kind of status from the client over PDP and PIP to the attribute
resolving component of the client. Second, in the context of the access control
request they are for usual accessible without or with low costs.

5 Conclusion and Future Work

Work on improving the performance of PDPs in distributed service-oriented en-
vironments mainly focuses on three aspects: first, providing highly efficient PDP
implementations for static policies (e. g., [13]), second, optimizing the evaluation
performance by optimizing, statically, the policy (e. g., [14]). Third, while there
is a large body of literature, e. g., [8, 10, 11], on improving the performance of
security frameworks using caching strategies, only proactive caching [11, 12] ad-
dresses the caching of dynamic access control properties. Still, proactive caching
is only able to cache dynamic access control constraints if they are first-class
citizens of the underlying access control language.

As pre-computing the set of required attributes significantly helps in reducing
both the delays caused by resolving context attributes and the overall network
traffic, combining access control caching strategies with the attribute resolution
approaches presented in this paper seems to be an attractive option for improving
the overall performance of today’s enterprise systems.

Furthermore, the performance overheadcaused by encoding requests in XACML
needs to be explored: either by switching to a different XACML policy decision en-
gine, e. g., [13] or by looking at different policy decision languages and evaluation
techniques.

Acknowledgments. This work has been supported by the German “Federal
Ministry of Education and Research” in the context of the projects “SoKNOS”
and “Polytos.” The authors are responsible for the content of this publication.



Idea: Efficient Evaluation of Access Control Constraints 165

References

[1] Anderson, A.H.: A comparison of two privacy policy languages: epal and xacml.
In: ACM workshop on Secure Web services (SWS), pp. 53–60. ACM Press, New
York (2006)

[2] Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (epal 1.2). Tech. rep., ibm (2003),
http://www.zurich.ibm.com/security/enterprise-privacy/epal

[3] Basel Committee on Banking Supervision: Basel II: International convergence of
capital measurement and capital standards. Tech. rep., Bank for International
Settlements, Basel, Switzerland (2004), http://www.bis.org/publ/bcbsca.htm

[4] Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From uml models
to access control infrastructures. acm Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006)

[5] Brucker, A.D., Doser, J., Wolff, B.: An mda framework supporting ocl. Electronic
Communications of the easst 5 (2006)

[6] Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.A.: permis:
a modular authorization infrastructure. Concurrency and Computation: Practice
& Experience 20(11), 1341–1357 (2008)

[7] Chen, H., Li, N.: Constraint generation for separation of duty. In: acm symposium
on access control models and technologies (sacmat), pp. 130–138. ACM Press,
New York (2006)

[8] Crampton, J., Leung, W., Beznosov, K.: The secondary and approximate autho-
rization model and its application to Bell-LaPadula policies. In: acm symposium
on access control models and technologies (sacmat), pp. 111–120. ACM Press,
New York (2006)

[9] Kapsalis, V., Hadellis, L., Karelis, D., Koubias, S.: A dynamic context-aware access
control architecture for e-services. Computers & Security 25(7), 507–521 (2006)

[10] Karjoth, G.: Access control with ibm Tivoli access manager. acm Transactions on
Information and System Security 6(2), 232–257 (2003)

[11] Kohler, M., Brucker, A.D., Schaad, A.: ProActive Caching: Generating caching
heuristics for business process environments. In: Conference on Computational
Science and Engineering (cse), vol. 3, pp. 207–304. IEEE Computer Society, Los
Alamitos (2009)

[12] Kohler, M., Schaad, A.: Pro active access control for business process-driven envi-
ronments. In: Annual Computer Security Applications Conference (acsac) (2008)

[13] Liu, A.X., Chen, F., Hwang, J., Xie, T.: XEngine: A fast and scalable xacml policy
evaluation engine. In: Conference on Measurement and Modeling of Computer
Systems, Sigmetrics (2008)

[14] Miseldine, P.L.: Automated xacml policy reconfiguration for evaluation optimi-
sation. In: Software engineering for secure systems (sess), pp. 1–8. ACM Press,
New York (2008)

[15] OASIS: eXtensible Access Control Markup Language (xacml) 2.0 (2005),
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip

[16] Sarbanes, P., Oxley, G., et al.: Sarbanes-Oxley Act of 2002. 107th Congress Report,
House of Representatives, pp. 107–610 (2002)

[17] Schaad, A., Spadone, P., Weichsel, H.: A case study of separation of duty properties
in the context of the Austrian “eLaw” process. In: acm symposium on applied
computing (SAC), pp. 1328–1332. ACM Press, New York (2005)

http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.bis.org/publ/bcbsca.htm
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip


Formal Verification of Application-Specific
Security Properties in a Model-Driven Approach

Nina Moebius, Kurt Stenzel, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg

86135 Augsburg, Germany
{moebius,stenzel,reif}@informatik.uni-augsburg.de

Abstract. We present a verification method that allows to prove secu-
rity for security-critical systems based on cryptographic protocols. De-
signing cryptographic protocols is very difficult and error-prone and most
tool-based verification approaches only consider standard security prop-
erties such as secrecy or authenticity. In our opinion, application-specific
security properties give better guarantees. In this paper we illustrate how
to verify properties that are relevant for e-commerce applications, e.g.
’The provider of a copying service does not lose money’. This yields a
more complex security property that is proven using interactive verifi-
cation. The verification of this kind of application-specific property is
part of the SecureMDD approach which provides a method to model a
security-critical application with UML and automatically generates exe-
cutable code as well as a formal specification for interactive verification
from the UML models.

1 Introduction

Verification of applications that are based on cryptographic protocols gives a
better confidence in the security of these systems. Many approaches [PM08] ex-
ist that deal with the verification of security for generic cryptographic protocols,
i.e. protocols that are not application-specific and can be used in different con-
texts (e.g. key exchange protocols). In contrast to that only a few approaches
[BMP06] [HGRS07] exist that work on the security of cryptographic protocols
which are tailored to a specific application. One example for such an application
is a copycard system based on smart cards which is e.g. used at universities to
provide a copy service. To verify the security of this application it is essential to
formulate application-specific security properties like ’The provider of the copy-
card system does not lose money’. The property implies that no one can e.g.
use a forged copycard to pay at the copying machines. This kind of security is
usually needed if e-commerce applications that deal with electronic goods are
considered.

In this paper we introduce a method to verify application-specific security
properties using interactive verification and the theorem prover KIV [BRS+00].

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 166–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Formal Verification of Application-Specific Security Properties 167

The verification approach is part of the project SecureMDD which presents a
model-driven software engineering method to develop security-critical applica-
tions based on cryptographic protocols. Here, an application is modeled with
UML (extended by a UML profile and a language called MEL (Model Extension
Language) to describe the protocols on an implementation-independent level).
Then, the models are used to automatically generate executable Java and Java-
Card (for the smart card part) code. At the same time a formal specification is
automatically generated from the UML models which can be imported by the
KIV tool. An overview of the SecureMDD approach can be found in [MSGR09].
We illustrate our approach using the copycard as a small example and present a
technique to cope with the verification. This work improves previous work done
by our group [HGRS07].

The generation of the formal specification from a UML model has several
benefits, and offers many possibilities. The application-dependent data types
defined in the UML models are used directly, instead of a complicated generic
data type. The formal specification is tailored to the application. For example,
if the application does not use encryption this results in a formal specification
which omits the parts relevant for encryption as well and thus simplifies the
verification. Moreover, it becomes possible to check some (standard) properties
automatically using a separate tool (e.g. a model checker), and use them as
axioms in the proof of the main security property. All in all, the verification is
now simpler, and much less time-consuming than before. The experiences and
improvements are described in more detail in section 5.3.

The paper is organized as follows: Section 2 gives an overview of the copycard
example and illustrates its modeling with UML. In section 3 the formal specifica-
tion is described. Section 4 introduces the application-specific security property
for the copycard application and Section 5 presents the verification technique.
Section 6 discusses related work and Section 7 concludes.

2 Example: A Copycard Application

We illustrate the definition of application-specific security properties and their
verification with an example. Our case study is a copycard application which
can be used at universities to pay for copies at a copying machine. Each student
owns a smart card, called copycard, onto which he can deposit money. To make
copies, this copycard is inserted into a terminal (with a smart card reader) that
is connected to a copying machine. Copies are paid by debiting their price from
the card.

In the following the application and especially the security protocols to load
money onto a copycard and to make copies are introduced. This is done by
describing some parts of the platform-independent UML diagrams of the appli-
cation. First, we describe the static view of the copycard system. Afterwards,
the dynamic aspects, i.e. the security protocols, are explained. More information
about the modeling of security-critical applications with UML, the used UML-
Profile and the Model Extension Language (MEL) can be found in [MSR08]. One



168 N. Moebius, K. Stenzel, and W. Reif

specialty of smart cards is that they are tamper-proof (which is a prerequisite
for the protocols introduced here).

Figure 1 shows the class diagram of the copycard application. Central parts of
the diagram are the classes Terminal and Copycard that represent the terminals
to load money onto a card and to make copies as well as the copycard component.
Note that we model only one kind of terminal that is able to debit as well as
to deposit money. Both components have a state to store which message they
expect to receive next (resp. how far they moved on through the protocol). The
possible states are EXPLOAD (expecting a Load message), IDLE (expecting
no specific message; after finishing a protocol run), EXPRESPAY (expecting a
ResPay message) and EXPRESAUTH (expecting a ResAuthenticate message).
Moreover, the copycard component has an attribute balance which stores the
current amount of the card. Both, the terminal and the card, have an attribute
passphrase that stores a Secret which is the same for all authentic components.
Furthermore, both components have an attribute challenge that stores randomly
generated nonces (to prevent replay attacks). Moreover, the terminal has a field
value to store the amount which is loaded or debited in the current protocol run.
The fields issued and collected are only used to express the security property and
are explained in Chapter 4. The message formats used in the protocols are also
defined in the class diagram. All subclasses of class Message describe one of the
message types used in the protocol runs.

In Fig. 2 the communication channels are shown. A Terminal is able to ex-
change messages with a Copycard (while it is in the smart card reader which is
connected to the terminal). Furthermore, the terminal receives messages from

-amount : Number
-terminalchallenge : Nonce

Pay

-cardletchallenge : Nonce
ResAuthenticate

-balance : Number
ResRequestBalance

-instruction : Number
-passphrase : Secret
-challenge : Nonce
-amount : Number

<<HashData>>
AuthData

-balance : Number
-passphrase : Secret
-challenge : Nonce

<<Smartcard>>
Copycard

-challenge : Nonce
-passphrase : Secret
-value : Number
-issued : Number
-collected : Number

<<Terminal>>
Terminal

RequestBalance

-amount : Number
Load

EXPRESAUTH
EXPRESPAY

EXPLOAD
IDLE

<<enumeration>>
State

Authenticate <<Message>>
Message

-PAY
-LOAD

<<Constant>>
Constants

ResPay

<<use>>

<<hashed>>
-authcard 1

<<status>>
-state

<<hashed>>
-authterminal

1

<<status>>
-state

<<use>>

Fig. 1. The platform-independent class diagram of the copycard application



Formal Verification of Application-Specific Security Properties 169

<<Smartcard>>
Copycard

<<Terminal>>
Terminal

User<<Threat>>

{read,  
send, 
suppress}

-TermCard-CardTerm <<Threat>>

{read,  
send, 
suppress}

-UserTerm-TermUser

Fig. 2. Deployment diagram showing the communication infrastructure and attacker
abilities

the User, who initiates a protocol run e.g. via a graphical user interface. The
names associated with the association ends are called ports. These are used to
distinguish the channels. If the attacker has access to a communication chan-
nel, the channel is associated with stereotype �Threat� that has three tags to
indicate if the attacker can read messages that are sent over the channel, send
messages or suppress messages. Then, modifying a message is also possible by
removing a message from the channel and sending a similar one. In our example,
we assume to have a Dolev-Yao attacker [DY81] who has full access to both
channels.

The protocol to load money onto a copycard is shown in Fig. 3. The user
initiates the protocol by inserting money (of amount value) into the terminal.
In a next step, the terminal has to authenticate against the card. This prevents
loading of money with a forged terminal and is done by a challenge-response
authentication. In detail, the terminal checks whether the value is greater or
equal zero, sets its state to EXPRESAUTH and sends an Authenticate message
to the card to request a challenge. The card updates its state to EXPLOAD and
sends back a newly generated nonce (stored in field challenge). The terminal
checks and resets its state and generates a hash value over a constant (that
ensures that the hash value belongs to a Load protocol run), the passphrase (the
secret which is known to all authentic components), the received challenge and
the value to be loaded. Then, the terminal sends a Load message, containing the
amount to load (= value) and the hash value to the card. The card checks its
state as well as the hash value. If both are ok, the value is added to the balance
of the card.

Fig. 4 shows the protocol to make copies. The user tells the terminal the
number of copies he wants to make (resp. the corresponding amount he has
to pay). In this protocol, the card has to authenticate against the terminal to
ensure that no forged card is used to make copies. Again, we use challenge-
response authentication. The terminal sets its state to EXPRESPAY and sends
a Pay message (containing the amount and a newly generated nonce) to the
copycard. The smart card reduces its balance and generates a hash value in the
same way as the terminal in the Load protocol. Then, the hash value is sent
back to the terminal. If the terminal is in state EXPRESPAY and the received
hash value is ok, the payment is accepted and the copying machine makes the
copies.

Furthermore, there exists one protocol to request the current balance of a
card. This protocol is very simple and omitted here.



170 N. Moebius, K. Stenzel, and W. Reif

ULoad(valu
e)

tmp : AuthData := create 
AuthData(Constants.LOAD,passphrase,cha

llenge,value );

hashedauth : HashedData := hash(tmp);

Load(value,hashedauth)

self.value := value; 
state := EXPRESAUTH; 

issued := issued + 
value;

ResAuthenticate(c
hallenge)

Authenticate()

ULoad(valu
e)

state := IDLE

state := IDLE

state := IDLE

challenge := generateNonce()

Load(value,hashedauth)

balance := balance + value

ResAuthenticate(c
hallenge)

Authenticate()

state := IDLE

state := 
EXPLOAD

state := IDLE

CopycardTerminalUser

 [else]

 [else]

 [value >= 0]

 [state == EXPRESAUTH]

 [else]

 [else]

 [else]

 [hashedauth == hash(create AuthData(Constants.LOAD,
                                        passphrase,challenge,value))]

 [not (value <=0 or value + balance > 20000)]

 [state == EXPLOAD]

Fig. 3. Activity diagram showing the Load Protocol

3 Generating a Formal Specification

In this section we describe a part of the formal specification of the copycard
application which is generated from the UML models and directly used as input
for our interactive theorem prover KIV. We present an overview of the part of the
specification which is needed to understand section 5. More detailed information
about the generation of the formal specification from UML can be found in
[MSR09].

In contrast to other approaches our formal specification covers the whole
application. The static part of an application consists of the components of the
system, the used data and message types, the communication infrastructure as
well as the abilities of the attacker. This information is contained in the class and
deployment diagrams in UML. In the formal model the static parts are defined
using algebraic specifications. The components of the copycard application are



Formal Verification of Application-Specific Security Properties 171

challenge := generateNonce(); 
state := EXPRESPAY

Pay(value,challenge)

collected := collected + 
value;

ResPay(authhash
ed)

self.value := value

state := IDLE

UPay(valu
e)

state := IDLE

state := IDLE

UPay(value)

tmp : AuthData := create 
AuthData(Constants.PAY,passphrase,ter

mchallenge,value)

authhashed : HashedData := 
hash(tmp)

balance := balance - value

ResPay(authhashed)

Pay(value, 
termchallenge)

state := IDLE

CopycardTerminalUser

 [else]

 [else]

 [else]

 [state == EXPRESPAY]

 [authhashed == hash(create AuthData(PAY,passphrase,challenge,value))]

 [value >= 0]

 [value <= 0 or balance - value < 0]

 [else]

Fig. 4. Activity diagram showing the Protocol to make copies

the copycards, the terminals, an attacker (that attempts to interfere with the
protocol runs) as well as a user that initiates the protocol executions. In the
formal model the component types smart card and terminal have an arbitrary
but finite number of instances. This models the fact that several terminals and
copycards exist in real world applications. The data and message types defined in
the class diagram are used in the formal specification as well. Additionally, data
types for encrypted, hashed and signed data as well as cryptographic operations
such as encrypt, hash and so on are generated. Since only some components are
able to communicate, we explicitly model the existing communication channels.
Each channel has two endpoints consisting of the component as well as a port
that is used to distinguish the communication channels. Each endpoint has an
inbox which is given as a list of messages. The inbox contains the messages that
were sent to a component but are not yet processed. In the formal specification
the sending of a message over a channel is equal to adding it to the inbox
of the corresponding endpoint. An important part of the formal model is the
specification of the attacker. The attacker is modeled as a component which is
associated with a set of data, his knowledge. If a message is sent over a channel
that the attacker is able to read, this message is added to his knowledge and it is
analyzed whether the attacker knowledge has to be extended. E.g. if the message



172 N. Moebius, K. Stenzel, and W. Reif

contains a key and the attacker already had an encrypted data in his knowledge
that can be decrypted by using this key now, he gains knowledge about the plain
data.

The dynamic part of the application, i.e. the security protocols, are given
as sequence and activity diagrams in UML. In the formal model this part is
translated into an abstract state machine (ASM)[BS03]. The main ASM rule
called ASM consists of a while loop that terminates if a stop flag is set to true.
Initially this flag is false. The body of the loop calls an ASM rule named STEP.
After executing this rule it is non-deterministically chosen if the stop flag is set
to true or false. Note that the names of ASM rules are written in uppercase
letters.

ASM { while ¬ stop do {STEP; choose stop;}}

The ASM rule STEP non-deterministically chooses an action to perform. Pos-
sible steps are a user-step, an attacker-step, a terminal-step or a copycard-step.
For example, if the chosen step is the copycard-step, an arbitrary component
c of type copycard is chosen and the ASM rule COPYCARD is called for this
component.

STEP {
choose asm-step in {

if asm-step = user-step then
{choose c with isUser(c) in USER}

else if asm-step = attacker-step then
{ATTACKER}

else if asm-step = terminal-step then
{choose c with isTerminal(c) in TERMINAL}

else if asm-step = copycard-step then
{choose c with isCopycard(c) in COPYCARD}

else ...
};};

The COPYCARD rule stores the first message in field inmsg and removes it
from the inbox. If the inbox is empty, the COPYCARD rule terminates. Then,
the type of the message inmsg is checked and depending on the result the ASM
rule to process this message is executed. If inmsg is a Load message the rule
LOAD is called. This rule processes the message and updates the state of the
copycard component, i.e. sets its state to IDLE and increases the balance of the
card. One step of the ASM is equivalent to one step of the protocol. In the UML
models the protocol steps can be found in the activity diagrams. Each step starts
with the receiving of a message, followed by some checks, updates and finally
the sending of a message or an activity final node in case the end of the protocol
is reached.



Formal Verification of Application-Specific Security Properties 173

COPYCARD {
let inmsg = inputs(c)(inport) .first in {

inputs(c)(inport) := inputs(c)(inport).rest;
if isRequestBalance(inmsg) then REQUESTBALANCE
else if isLoad(inmsg) then LOAD
else ...
else ABORT }

};

In case the attacker was chosen instead of a copycard component the ASM
rule for the attacker is called. Then, it is non-deterministically chosen if the
attacker suppresses or sends a message. If the attacker suppresses a message a
non-empty inbox is chosen that belongs to a channel where messages can be
suppressed by the attacker. Then, several randomly chosen messages are deleted
from that inbox. In the send case the attackers generates an arbitrary message
from his current knowledge. The message is then sent to an (randomly chosen)
inbox reachable by the attacker (i.e. the channel has the attacker-send property).
For example, if the attacker knows a secret and a nonce, he can use them to
generate an object of type AuthData, hash this object and send a Load message
containing this hash value. Or, if the attacker already knows a hash value, he
can use it to send a Load message. Note that the attacker is not able to generate
arbitrary secrets and nonces that are not already stored in his knowledge. The
specification of the attacker is similar to the attacker in the inductive approach
of Paulson [Pau98].

4 Security Properties

The security properties we are interested in are business-specific and depend on
the application. Most existing tool-based verification approaches (e.g. [Jan05],
[Mea96]) that deal with verification of cryptographic protocols consider and
prove standard security properties such as secrecy, integrity or authentication.
In our opinion, this does not suffice to ensure the security of protocols in certain
applications. For example, in case of the copycard application, the operator of
the copying machines is interested in a verified statement that says ’It is im-
possible to spend more money on the copying machine than was loaded onto a
card by using a real terminal (and inserting real money into this terminal).’ If
this holds, the operator knows that the user of the copying service is not able
to defraud and e.g. use a forged terminal to load money onto his card or change
the balance of the card. This kind of security property always depends on the
application. Although we do not focus on proving standard security properties,
some of them are usually needed as preconditions for the main security proof.

When designing a security protocol one always has to keep in mind that there
are several participants with different security concerns. In case of the copycard,
we focused on the security property which is important for the operator of the
copying machines. For example, the Load protocol (introduced in Fig. 2) does



174 N. Moebius, K. Stenzel, and W. Reif

not ensure that the amount of money which was inserted into the Load terminal
is really loaded onto the card. An attacker could suppress the Load message
which is sent from the terminal to the copycard. In this case, the owner of the
card would not get back his money and would not even notice that the loading
of money was not successful.

To express that the attacker is not able to defraud we add two attributes
to the terminal class. One attribute named issued which counts the amount of
money that was inserted into the terminal by a user. This field is increased af-
ter the terminal received a ULoad message from the user. This message models
the inserting of money and has the inserted amount as argument (= value and
issued is increased by value). Each terminal has a field issued and we are inter-
ested in the sum of money that was inserted into all terminals. Assuming that
numterm is the number of existing terminals we define the axiom allIssued as
follows: allIssued(issued) =

∑numterm
n=1 issued(terminal(n)). In contrast to that

we count the amount of money that was spent by all users to make copies. Thus,
we also define an attribute named collected that increases at the end of the
protocol to make copies (after receiving a ResPay message from the card and
verifying the hash value). Again, we consider all terminals and compute the sum
of money which was collected by all terminals connected to a copying machine:
allCollected(collected) =

∑numterm
n=1 collected(terminal(n)).

Remember that our aim is to verify that the user of the copying service is not
able to defraud. This can be expressed as ’The sum of money that was inserted
into the load terminals (and issued to the cards) is always greater or equal than
the amount that was spent to make copies (and collected by the terminals)’:
allIssued ≥ allCollected.

5 Verification Technique

5.1 Verification of the main Security Property

Our goal is to prove that the main security property allIssued(issued) ≥ allCol-
lected(collected) always holds. Thus, we have to prove that after executing any
possible sequence of protocol steps the security property still holds:

init(..) (1)
� [ASM(..)] allIssued(issued) ≥ allCollected(collected)

[·] is the box operator of dynamic logic. The meaning of [α]ϕ is that if program
α terminates the condition ϕ holds afterwards. We start with an initial state
(i.e. balance is set to zero, the state of all terminals and cards is IDLE, the
attacker-knowledge is empty and so on). Then, the protocol steps are chosen
non-deterministically and executed. Thus, we consider all finite sequences of
steps.

To prove obligation (1) we first verify that the security property is invariant
with respect to all possible steps of the application. We (try to) prove that, under
the assumption that some basic invariants and the security property hold, every
STEP (see section 3) terminates and the security property still holds afterwards:



Formal Verification of Application-Specific Security Properties 175

BASE-INV(..) ∧ allIssued(issued) ≥ allCollected(collected) (2)
� 〈|STEP(..) |〉 allIssued(issued) ≥ allCollected(collected)

〈|· |〉 is the strong diamond operator of dynamic logic. The meaning of a formula
〈|α|〉 ϕ is that all runs of the program α terminate and the condition ϕ holds
afterwards (this corresponds to wp(α,ϕ) in Dijkstra’s wp-calculus). To be able to
prove this invariant, we first have to prove that several other invariants hold. This
includes lemmas dealing with nonces, e.g. the field challenge of all terminals and
copycards never contains the same nonce and the balance of all cards is greater
or equal to zero at any time. Other invariants state that all ’real’ cards and
terminals have the same passphrase and the attacker does not know it. All in
all, there are 10 invariants that are grouped by the BASE-INV invariant.

Unfortunately, proof obligation (2) does not hold. The reason is that the
inequality allIssued(issued) ≥ allCollected(collected) is not invariant for all single
steps. For example, when a ResPay message is received and processed, the field
collected is increased by the value of copies the user makes. The information
that the amount to make copies is less or equal to the amount that was loaded
(and added to issued) earlier is lost because we only consider single steps of the
protocol.

The solution is to extend the security property and keep the knowledge of
every change in the state of the terminals and copycards that has influence
on the fields issued and collected. For example, if the field issued is increased
by a value, the balance of a copycard is increased by the value as well (in the
next step). If collected is increased, the balance of one card is decreased by
the same value in the step before. Thus, we consider the balances of all cards
as well. Assuming that numcards is the number of all copycards that are in
use, we define: allBalance(balance) =

∑numcards
n=1 balance(copycard(n)) and get

the generalized security property allIssued(issued) ≥ allCollected(collected) +
allBalance(balance).

In the Load protocol the terminal receives an ULoad message, updates its field
issued and sends a Load message to the copycard. In another step, the copycard
receives this message (if it is not suppressed by the attacker) and updates its
balance. Since these updates do not happen in the same step, we have to consider
the values of the valid Load messages that are ’in transit’ (= are in an inbox
of the copycard) as well because they may cause an update of the balance in a
later step. Furthermore, it is necessary to consider the values of the valid Load
messages that were suppressed by the attacker but could be replayed by him.
Here, it is utilized that we have a Dolev-Yao attacker and all messages that are
in an inbox of a copycard or terminal are also element of the attacker knowledge.
Thus, we ignore the messages that are stored in the inboxes and only consider
the valid Load messages known to the attacker. We have to determine the most
’valuable’ Load message the attacker can generate for a given nonce and secret.
The attacker is able to generate a Load message with nonce, secret and value i
if he has the corresponding hash value in his knowledge. We use a predicate to
determine whether the attacker knows at least one hash value:



176 N. Moebius, K. Stenzel, and W. Reif

attackerHasLoadHash(attacker-known, nonce, secret)
↔ (∃ i ≥ 0. hash(mkAuthData(LOAD,secret,nonce,i)) ∈ attacker-known)

During the protocol execution it may happen that two or more valid Load mes-
sages exist for one card. If the attacker has more than one valid hash value in
his knowledge, the one with the highest value is considered. This is sufficient
because this is the one that causes the highest increase of the field balance.

getLoadValue(attacker-known,nonce,secret) =
max{i : hash(mkAuthData(LOAD,secret,nonce,i)) ∈ attacker-known}

The maximum of the empty set is zero. All Load messages that are known to the
attacker and which are currently accepted by a copycard have to be considered.
A copycard accepts a Load message if its state is set to EXPLOAD (= expecting
Load message) and the hash value of the message (over the copycards current
challenge and passphrase) is correct (and in the knowledge of the attacker). We
have to sum up the values of all Load messages that are accepted by any card.
This is done using a recursive function called validLoadMessages. Remember
that we have numcards cards (with index n from 1..numcards).

attackerHasLoadHash(attacker-known,
challenge(cardlet(n)), passphrase(cardlet(n)))

∧ state(cardlet(n)) = EXPLOAD
→ validLoadMessages(state,challenge,passphrase,attacker-known,n) =

getLoadValue(attacker-known,
challenge(cardlet(n)), passphrase(cardlet(n)))

+ validLoadMessages(state,challenge,passphrase,attacker-known,n-1)

validLoadMessages(state,challenge,passphrase,attacker-known,n) sums up the
values of all Load messages accepted by the copycards 1..n. n is the index of
the copycard, in the beginning n is set to numcards. If the attacker has a Load
message that is accepted by copycard(n) and this card is in state EXPLOAD,
the sum that counts the valid load values is increased by getLoadValue (which
returns the highest positive value of all valid Load messages for card n) and the
function validLoadMessages is computed for the remaining n-1 copycards.

If the considered copycard is not in state EXPLOAD or the attacker has no
valid Load message for this card, the sum remains unchanged for this card and
the validLoadMessages are computed for the remaining cards 1,..,n-1.

In the same way as in the Load protocol we have to consider the value of the
ResPay messages. Similar to Load, the balance of the card is decreased in the
Pay step while the field collected of the terminal is increased in step ResPay.
After executing the Pay step and before processing the corresponding ResPay
message this message is stored in the inbox of the terminal or was suppressed by
the attacker. Analogue to the function validLoadMessages we define a function
validResPayMessages that considers the ResPay messages which are currently
accepted by an existing terminal and computes the sum of all values that are
added to the fields collected if the valid ResPay message is sent to the corre-
sponding terminal.



Formal Verification of Application-Specific Security Properties 177

A last complication is that we have to count the values of the terminals that
were already added to the field issued but that are not yet stored in the valid-
LoadMessages because we first have to do the authentication with the copycard
(Authenticate and ResAuthenticate steps). Again, we consider all existing ter-
minals and if a terminal is in state EXPRESAUTH we count its value.

state(terminal(n)) = EXPRESAUTH
→
allValues(..,n) = value(terminal(n)) + allValues(..,n-1)

If terminal(n) is not in state EXPRESAUTH, the value of this terminal is ignored
while computing allValues. Our modified security property looks as follows:

modSecProp:
allIssued(issued) (3)

≥
allCollected(collected)

+ allBalance(balance)
+ validLoadMessages(..,attacker-known,numcards)
+ validResPayMessages(..,value,attacker-known,numterms)
+ allValues(value,state,numterms)

Using this inequality all relevant changes of fields that may result in a modifica-
tion of the fields issued and collected in later steps are considered. For example, if
the field issued of one terminal is increased, the validLoadMessages are increased
by the same value in the same step. If the balance is reduced by value v, the
validResPayMessages are increased by the same value in the same step. If the
corresponding ResPay message is processed, the validResPayMessages are de-
creased by v (because the terminal sets its state to IDLE) and the field collected
of this terminal is increased by v in the same step.

Note that the equality of the equation does not hold because the attacker is
able to suppress a valid Load message and e.g. send an Authenticate message
to the same card. In this case, the Load message is invalid, is not counted by
validLoadMessages anymore and cannot be used in the future.

Now, we are able to prove that the modified security property is invariant (see
(4)) using the symbolic execution strategy for KIV dynamic logic.

BASE-INV(..) ∧ modSecProp � 〈|STEP(..) |〉 modSecProp (4)

Then, it is easy to prove formula (1) with an invariant rule.

5.2 Auxiliary Properties

To prove the main security property several lemmas are required. These can be
grouped in four categories:

– Lemmas that are valid for all applications e.g. those only depending on the
model of the attacker, communication and so on. Examples are that the



178 N. Moebius, K. Stenzel, and W. Reif

function generateNonce() never returns a nonce that was already generated
and that data which can be generated from the attacker knowledge can still
be generated if something is added to the knowledge. These theorems are
part of a library which is available for all applications.

– Lemmas that are generated from the UML models. They depend on the
application but are obviously true and no proof is needed. One example is
that if the attacker is able to read messages sent over any channel of the
application, he knows all messages that are in an inbox of a terminal or
copycard.

– Application-dependent standard security properties like the attacker never
gets any knowledge about the common secret of all terminals and copycards.
These properties can be proved using interactive verification but maybe one
could also use model-checking to automatically prove these properties. This
is future work.

– Application-dependent lemmas that cannot be reused for other applications.
An example for the copycard is that the balance of each card is always greater
or equal zero.

5.3 Experiences

The verification of the copycard application took several weeks. This includes
the time that was needed to find design errors in the protocols and to rebuild
the proofs for the modified protocols.

One difficulty while doing the verification was to find the appropriate in-
variants. For example, it is not obvious which properties are needed as basic
invariants for the security proofs. The fact that the balance on the card is never
negative is needed, but the fact that the value contained in a valid load message
also is never negative is not needed. Furthermore, finding the invariant for the
security proof (with valid Load messages and considering the values) was diffi-
cult and took several iterations. This is mostly due to the fact that no equations
hold between the different values, but only inequalities since the attacker can
destroy money.

The number of interactions needed for the proofs is about 3000 in total, about
2500 for the security proofs and about 500 for the lemmas. This is about one
third of the effort needed previously (in [HGRS07]), and can still be improved.

More important than improvements in the sheer numbers are, however, the
improvements in the simplicity and understandability of the formal model, and
the seamless tool support. The complete formal specification is now generated
automatically from UML models that are tailored to the design of cryptographic
protocols [MSR08]. The models are easy to read and understand. For the copy-
card application, we generated 44 specifications, and the ASM is about 350 lines
long. However, since there is a simple mapping between the description of the
protocol steps (with activity diagrams and MEL) and the ASM steps, it is not
necessary to look at the ASM rules at all. It is much more convenient to look at
the UML models while doing the verification. If verification fails and an error is
detected in the protocol it is corrected in the UML model, and the formal model



Formal Verification of Application-Specific Security Properties 179

is updated automatically. The proofs done so far are preserved if they are still
valid (this is checked by the correctness management of the KIV system).

Another major improvement was the shift from a generic data type called
Document to application-specific data types defined in the UML models. The
Document type is recursively nested to allow its reuse for all kinds of protocols
and messages. This requires a huge library of lemmas that are very tricky to
prove (e.g. for the computation of the current attacker-knowledge), and makes
the formulas very difficult to read. The application specific data types are usually
not recursive, and not very deeply nested. Most operations become trivial, and
the few lemmas that are needed are generated automatically.

Another improvement is that the generated formal specification is tailored to
the application. For example, if the application does not use encryption, the com-
putation of the attacker-knowledge is much easier. The communication structure
is fixed based on the deployment diagram (see Fig. 2).

All this is only possible because of the model-driven approach based on model
transformations and generation of the formal specification. It is part of our over-
all approach to develop security-critical applications called SecureMDD. In ad-
dition to the verification this also includes the generation of the full, runnable
code for the terminal as well as Java Card code which is executable on a real
smart card. The transformations that generate the formal specification are im-
plemented using the model-to-text language XPand (which is part of the Eclipse
Modeling tool).

6 Related Work

A lot of verification techniques and tools to prove the security of cryptographic
protocols exist, a recent overview is given in [PM08]. These techniques can be
divided into three categories: belief logics (e.g. [BAN90]), state exploration (e.g.
[BMV05],[Low96]) and theorem proving (e.g. [Pau98], [Mea96], [Bla09]). Most of
them are based on automatic tools and focus on generic security protocols (which
are not specific to an application, e.g. authentication protocols) and prove stan-
dard security properties. In contrast to that the protocols of the copycard system
as well as the security property highly depend on the considered application. It
is not clear if automatic tools can cope with that kind of security property.

Some approaches dealing with application-dependent security properties ex-
ist. One method that is related to ours is the inductive approach of Paulson
[Pau98] that uses the theorem prover Isabelle for verification and was success-
fully applied to several case studies. Bella extends the inductive approach to
deal with smart cards [Bel01] but concentrates on generic security protocols as
well. In [BMP06] Bella, Massacci and Paulson give an overview of their work on
SET (Secure Electronic Transaction), a set of e-commerce protocols devised by
Visa and Mastercard. The case study is formally modeled and verified using the
inductive approach. Considered and proven (application-specific) security prop-
erties are that the payment information of the customer are only known to the
bank, not to the merchant, and that the order information is not known to the
bank.



180 N. Moebius, K. Stenzel, and W. Reif

Jürjens [Jan05] developed a method to model systems based on cryptographic
protocols with UML. Inputs for model checking and automatic theorem proving
are automatically generated from the models and standard security properties
are proven. Besides several other case studies Jürjens worked on the security of
the Common Electronic Purse Specification (CEPS) for cash-free point-of-sale
transactions. One considered security property is that the sum of balances of all
cards (that are used for payments) and all cards of the merchants (where the
earned money is stored) is the same at any time. The appropriate proof was not
done by tools but is paper-based [Jür04].

Another interesting case study with application-specific security properties
is the Mondex Electronic Purse. Mondex has received a lot of attention be-
cause its formal verification has been set up as a challenge for verification tools
[Woo06] that several groups worked on. The results of the participating groups
are summarized in [JW08]. Mondex is about transferring money (from one card
to another) but, except for our group, the participating groups only considered
protocols without cryptography.

7 Conclusion

We presented a technique to interactively verify application-dependent security
properties for applications based on cryptographic protocols, as an example we
used a copycard application. Here, one interesting application-dependent prop-
erty is that the provider of the copying service does not lose money. This kind
of security property gives better confidence in the security of cryptographic pro-
tocols than standard properties, e.g. secrecy and integrity. The verification is
part of the SecureMDD approach which is a model-driven method to develop
security-critical applications. The formal specification used for interactive verifi-
cation is automatically generated from the UML models that are used to specify
the system under development.

References

[BAN90] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM
Transactions on Computer Systems 8(1), 18–36 (1990)

[Bel01] Bella, G.: Mechanising a Protocol for Smart Cards. In: Attali, S., Jensen,
T. (eds.) E-smart 2001. LNCS, vol. 2140, p. 19. Springer, Heidelberg (2001)

[Bla09] Blanchet, B.: Automatic Verification of Correspondences for Security Pro-
tocols. Journal of Computer Security 17(4), 363–434 (2009)

[BMP06] Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase proto-
cols. Journal of Automated Reasoning 36(1-2), 5–37 (2006)

[BMV05] Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model
checker for security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005)

[BRS+00] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal sys-
tem development with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS,
vol. 1783, p. 363. Springer, Heidelberg (2000)



Formal Verification of Application-Specific Security Properties 181

[BS03] Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-
Level System Design and Analysis. Springer, Heidelberg (2003)

[DY81] Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proc.
22th IEEE Symposium on Foundations of Computer Science. IEEE, Los
Alamitos (1981)

[HGRS07] Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying Smart Card
Applications: An ASM Approach. In: Davies, J., Gibbons, J. (eds.) IFM
2007. LNCS, vol. 4591, pp. 313–332. Springer, Heidelberg (2007)

[Jan05] Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg
(2005)

[Jür04] Jürjens, J.: Developing high-assurance secure systems with UML: a
smartcard-based purchase protocol. In: IEEE International Symposium
on High Assurance Systems Engineering (2004)

[JW08] Jones, C., Woodcock, J. (eds.): Formal Aspects of Computing, vol. 20 (1).
Springer, Heidelberg (2008)

[Low96] Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Pro-
tocol Using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

[Mea96] Meadows, C.: The NRL protocol analyzer: An overview. Journal of Logic
Programming 26(2), 113–131 (1996)

[MSGR09] Moebius, N., Stenzel, K., Grandy, H., Reif, W.: SecureMDD: A Model-
Driven Development Method for Secure Smart Card Applications. In:
Third International Workshop on Secure Software Engineering, SecSE,
at ARES 2009. IEEE Press, Los Alamitos (2009)

[MSR08] Moebius, N., Stenzel, K., Reif, W.: Modeling Security-Critical Applica-
tions with UML in the SecureMDD Approach. International Journal on
Advances in Software 1(1) (2008)

[MSR09] Moebius, N., Stenzel, K., Reif, W.: Generating Formal Specifications for
Security-Critical Applications - A Model-Driven Approach. In: ICSE 2009
Workshop: International Workshop on Software Engineering for Secure
Systems (SESS 2009). IEEE/ACM Digital Libary (2009)

[Pau98] Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Pro-
tocols. J. Computer Security 6 (1998)

[PM08] Lopez Pimental, J.C., Monroy, R.: Formal support to security protocol
development: A survey. Computacion y Sistemas 12(1) (2008)

[Woo06] Woodcock, J.: First Steps in the Verified Software Grand Challenge. IEEE
Computer 39(10), 57–64 (2006)



Idea: Enforcing Consumer-Specified Security
Properties for Modular Software

Giacomo A. Galilei and Vincenzo Gervasi

Dipartimento di Informatica, Università di Pisa

Abstract. Nowadays systems that download updates from the net or
let the user download third-party code for extending the application
functions (plug-ins) are widespread. In these dynamic environments the
code that is going to be executed is not known at compile-time, and often
not even at application start-up, neither by the application producer nor
by the user. This turns reliable, well designed software into a dangerous
and potentially malicious software for the user and for the system it
runs onto: i.e., a well-behaved modular application becomes the unwilling
host for malicious components. In this scenario, the application producer
lines up with the user in requesting that dynamically loaded third-party
components must satisfy given security requirements.

In this paper we present a framework that allows the consumer side
of untrusted code to state desired properties about it. We exploit the fa-
cilities of the so-called virtual execution environments to encode directly
into the meta-data of object code a well structured specification. Once
the dynamic component is loaded at run-time by the main application,
the framework will recover such specifications and check them against the
requirements gathered from the main application, the user and the host
operating system, injecting run-time checks as needed into the untrusted
code to ensure that the actual behaviour of the component matches the
specified one.

1 Introduction

The spread of modular applications and component-based programming has ren-
dered some well-known analysis approaches [1] ineffective for modern applica-
tions. Many large applications in widespread use (e.g., integrated development
environments such as Eclipse or Microsoft Visual Studio; image processing soft-
ware such as Gimp or Adobe Photoshop; web browsers such us Firefox or Mi-
crosoft Internet Explorer) derive a large chunk, if not most, of their usefulness
from third-party components (plug-ins). For such applications, the code that is
going to be executed is in general not known at application compilation time,
and often (due to dynamic loading techniques), even at application startup time.
To make things worse, plug-ins can be downloaded (even repeatedly, e.g. in the
case of auto-updating software) off the net, and hence be totally unreliable.

This situation calls for improved security assurance techniques, where the
application producer lines up with the user in requesting for dynamic code to
satisfy security requirements.

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 182–191, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Idea: Enforcing Consumer-Specified Security Properties 183

In this paper we introduce an idea to allow the consumer side of untrusted
code (i.e., the user and the host application) to state desired properties about
it. We present a solution based on the Java language (and JVM) and on rela-
tively recent developments such as Annotations and Reflection, but the idea is
well applicable to any other language that runs on the top of so-called virtual
execution environments that provide the same kind of functionalities, like the
CLR and the .NET languages.

Our approach is based on the application of two different techniques. On the
producer side, the code can be annotated with its own specifications; these can
refer to declared properties of the software (e.g., in a well-meaning plug-in) or
to requested properties of a component (e.g., in the host application, whenever
a plug-in is invoked). A well structured language for specifications like JML [2]
can be used at this stage. The JML specifications are parsed at compile-time
to create an Abstract Syntax Tree (AST). Through the Annotations we attach a
serialized form of the AST directly onto the meta-data of the object; this makes
the specification fully and readily recoverable at run-time.

On the consumer side instead, we introduce a wrapper layer, which loads the
host application and, through Reflection, retrieves the application’s requirements
on the plug-ins, and injects appropriate code hooks to verify them (and others) at
run-time. Static verification techniques can also be applied to reduce the number
of run-time checks.

The paper is organized as follows. The next section provides a brief overview
of the problem we are addressing, while Section 3 describes the technical contri-
bution of our framework. An example scenario is provided in Section 4, followed
by some conclusions and by an account of the current state of the work.

2 Security Properties for Modular Software

We address a scenario where a modular application A is executed on a system S
(which includes the operating system and libraries as well as the actual machine),
on behalf of a user U . The application itself is modular in that it relies on one or
more plug-ins P to accomplish whatever U needs A for. The producers of A, S
and P are in principle mutually distinct, and do not trust each other. U trusts
S, may trust A, and typically cannot trust P .

The code that is actually executed is given by A + P (the actual code paths
will include portions of S, but since U trusts S, we can disregard them for our
purposes). Also, S will typically enforce its own requirements on A + P by em-
ploying typical security mechanisms at the OS level (e.g., isolated memory spaces
for different processes, file-system level security, privileged and non-privileged
execution modes etc.), so we can also disregard that part. Our problem is then
how to make sure that the requirements of U on A + P and of A on P are sat-
isfied, respectively, by A + P and P . This problem is not totally new; in fact, it
bears some similarity with the problem of ensuring reliability of libraries used in
traditional applications. However, there are several factors that make standard
security approaches ineffective or impractical in this case:



184 G.A. Galilei and V. Gervasi

1. Source-based trust policies have been attempted for specific devices (e.g., the
Apple Store for iPhone applications - where we can consider the applications
as plug-ins of the front-end running on the device), but they are effective only
in situations where a monopoly can be accepted — which is not the case in
most context. For example, similar applications for PocketPC or SmartPhone
devices (which can be downloaded from arbitrary sources) are hard to verify,
and require a significant leap of faith on the part of the owner of the device.
Having a single source for plug-ins in modular applications almost defeat the
purpose, which is leveraging the creativity of a large number of independent
developers to provide a rich ecosystem of additional functions.

2. Cryptographic signatures have also been used to ensure that a package, once
shipped by the producer, is not altered, and moreover that the identity of
the producer can be established (both for trust purposes and to ensure ac-
countability). This family of techniques also provides only a partial solution;
on one side, they require a shared and pervasive Public Key Infrastructure
system, which is not widespread in the current market. Second, they can
only work if there is a trust relationship between the user and the producer,
which is a reasonable assumption for large, well-known producers (e.g., Mi-
crosoft), but not for the many, small, and relatively unknown producers to
which a plug-in architecture appeals.

3. Most current techniques assume that the security properties that will need
to be verified are the same for all users, and can thus be established once and
for all by the producer, acting as a proxy for his customers. But in practice,
different users have different security requirements (see Section 4), and any
trust relationship established on the basis of the identity of the producer or
of the source for the executable code cannot cater for such cases.

On the other side, emerging technologies provide new opportunities for ad-
dressing our problem. Virtual execution environments with their rich, type-safe
languages; language features such as annotations; standardized deployment for-
mats including rich meta-data capabilities let us leverage new opportunities that
were not available till a few years ago. In particular, we will use these capabilities
to let the producer of A state his requirements on P in the form of meta-data
embedded in A’s code; to let P provide a (partial) specification of its own be-
haviour also as metadata, and to dynamically alter the executable code of A
and P so that U ’s requirements can be checked for at runtime by appropriate
instrumentation.

3 The Framework

Given the four actors of our framework, the plug-in P , the host application A,
the application user U , and the system S on top of which the application runs, we
can identify two groups. On one side the code producer is interested in making
its product (the plug-in) trustable; on the other side the code consumers (the
application, the user and the system) are interested in specify requirements that
the plug-in must satisfy.



Idea: Enforcing Consumer-Specified Security Properties 185

Our approach to the problem operates over these two fronts. The framework
supplies facilities to the code producer that yield a tailored object file which
includes its own specification, while on the code consumer side it will make
available a wrapper for running the application in a safer environment. The
wrapper, which provides an API to the application, will make it possible to
intercept the plug-ins loading process, to inspect their code, to verify it and to
grant or deny execution. If execution is granted, run time checks can be injected
into P ’s code to ensure that required properties are satisfied.

There are two steps in plug-in verification: the first one is performed to make
the plug-in specification trustable; the second one is performed to ensure that
the module will behave in accordance to what required by U , A and S. Note
that the first step will also be used to reduce the scope of the second step of
verification, since we will not verify twice the same property. This means that
the more deeply specifications are detailed, the less costly the second step of
verification will be.

3.1 Code-Producer Side

At compilation-time our framework will let the producer specify the module
behavior. We exploit the JML [2] language for this purpose as shown in Section
3.1. Such specifications will then be tailored into a Java object file to be carried
to the JVM. We are interested only in carrying specifications and not the whole
verification, as for instance presented by Necula [3] in its Proof-Carrying Code
technique. His solution is useful whenever the producer wants to state properties
about its code. In our case instead, the security policy is defined by the code
consumer.

JML - Java Modeling Language: The Java Modeling Language (JML) [2]
is a behavioral interface specification language that can be used to specify the
behavior of Java modules. It combines the design by contract approach of Eif-
fel [4] and the model-based specification approach of the Larch family of interface
specification languages [5], with some elements of the refinement calculus.

Its use is strictly related to Java: the specifications are inserted directly into
the source code as comments starting with the special sequence //@ or between
/*@ and @*/. Such comments can be related to a class, a method, a field, a
variable or a loop. Through a full set of special keywords (e.g. requires, ensures)
it allows the programmer to specify pre and post conditions, invariants and many
other constraints. It also allows to create “class models” that can be used for
specification purposes. Finally, JML comes with a number of tools developed
both by the JML team [6] (e.g. jml-checker, jml-compiler) and by third-parties
(e.g. ESC/Java2 [7]).

We choose JML because of its widespread support and strong structure,
though it comes with some limitations:

– JML does not officially support Java 5. This is due to fact that JML tools re-
leased by the JML team are based upon the MultiJava Project [8] framework,



186 G.A. Galilei and V. Gervasi

a software for extending the Java programming language whose most recent
release addressed Java 1.4. Third-party tools, like ESC/Java2 [7] brought
Java 5 support to JML, asserting the idea (that we also embrace) that this
language is still able to grow. As we will see in Section 3.1, our approach is
in fact based on language features introduced in Java 5, and this has led us
to extend the JML grammar and the JML parser to take into account Java
5 extensions.

– JML is particularly addressed at static, source-level analysis: JML annota-
tions are inserted into Java source as comments, thus making them unable to
survive the compilation. In our approach, JML specifications are needed at
run-time, even when (for efficiency or commercial reasons) the source code
cannot be distributed. We translate JML comments into Java Annotations
and let the Java compiler produce a Java class file including the specification
as metadata.

JML into annotation: Annotations are a recent feature introduced in lan-
guages such as Java, C#, and other languages of the .NET family, which allow
programmers to attach arbitrary, structured and type-safe meta-data to their
code. These meta-data, in Java 5, are characterized by an identifier (akin to a
class or interface name) and by a signature (or schema), akin to the fields of a
class, where each field has an identifier and a value. Custom Annotation types
are declared with a syntax similar to that of a class, through the @interface
keyword. Only field of basic types, String, Class, Enum, Annotation, or ar-
rays of the same are allowed, and default values for them can be defined in the
declaration.

In a recent work [9], Taylor proposes three different approaches to encapsulate
JML annotations into Annotations. We decide to follow and extend the single
annotation approach, that appeared to us to be the more versatile w.r.t. future
JML changes. Taylor’s approach consisted in using an Annotation with a single
value; such value would be the string as used in the JML annotated source. The
example given in Figure 1 would be rewritten as in Figure 2.

The downside of Taylor’s approach for our purposes is that the JML string
still needs to be parsed at run-time, which imposes a huge performance penalty.

//@ requires vals.length > 0;

//@ ensures (\forall i; 0 <= i && i <= vals.length; \result <= vals[i] );

public int getMin( int [] vals ) { ... }

Fig. 1. An example of JML annotated method

@JML("requires vals.length > 0;")

@JML("ensures (\forall i; 0 <= i && i <= vals.length; \result <= vals[i] );")

public int getMin( int [] vals ) { ... }

Fig. 2. JML in annotations: Taylor approach



Idea: Enforcing Consumer-Specified Security Properties 187

We avoid that by computing the JML AST at compilation-time, and using a
source-to-source compiler to generate an equivalent Java source code, where the
AST is serialized in binary form into annotations. This source is then passed to
the Java Compiler to produce the final object class file (example in Figure 3).

@JML( {0x6D, 0x74, 0x63, 0x77, 0x6E, 0x73, 0x79, 0x6F, 0x75, ...} )

public int getMin( int [] vals ) { ... }

Fig. 3. JML in annotations: our approach

3.2 Code-Consumer Side

The approach we proposed in the Section 3.1 is related to the code-producer
side of the framework. We showed how a producer can distribute a plug-in in an
executable form which includes its own specification. Thanks to JML and Java
Annotations we made such specifications available in a well structured manner
to the run-time system. On the code-consumer side, the host application must
now retrieve the specifications of needed plug-ins, verify them if needed, and
finally match them against the local requirements.

Specification validation: Once the JVM loads the class files (viz. jar) for the
plug-in, the framework is able to recover the module specification through the
Java Reflection API. Furthermore, the framework exposes methods to inspect
the JML AST. At this level, the specifications must be validated before use. The
wrapper can be informed by the user about the protection level to use: (i) the
user trusts the plug-in specifications, or (ii) the user does not.

In the former case the framework can skip the verification task and proceed
to requirements gathering and matching. In the latter, we can perform static or
dynamic analysis to ensure that the specification is trustable. Standard static
analysis techniques can be applied, and in certain cases can even fully prove spec-
ification reliability. Alternatively, we can inject snippets of executable code in
the bytecode stream for a class, to verify other properties at run-time. Generally,
we can opt for a full dynamic analysis, or a combination of both.

The paradigmatic application of run-time checks is to generate the bytecode
corresponding to the constraint expressed in a JML annotation, and to inject it
directly into the bytecode of the object class (at the appropriate insertion point).
This will make the plug-in run the check every time a method or part of it is
executed. For example, what seen in Figure 1 would become, at run-time, the
bytecode equivalent of the code in Figure 4.

There are few observations we have to do.

– If the normal execution of the module must be aborted for a failure of a JML-
derived assertion, we throw a RuntimeException(). In fact, since Runtime-
Exception is an unchecked exception, we can inject the bytecode without
need to modify the method signature by adding a throws clause. Note that
the modification of a method signature could lead to a failed verification by
the bytecode verifier at link-time.



188 G.A. Galilei and V. Gervasi

public int getMin( int [] vals ) {

if( vals.length < 0 )

throw new RuntimeException();

int ret = vals[0];

for( int i = 1; i < vals.length; i++ )

if( vals[i] < ret )

ret = vals[i];

for( int i = 0; i < vals.length; i++ )

if( vals[i] < ret )

throw new RuntimeException();

return ret;

}

Fig. 4. JML AST expansion; source code equivalent to injected bytecode from JML
specifications is shown boxed

– JML helps with that due to the fact that it uses a subset of Java (plus a
few keywords) for its expressions. Once the keywords are correctly inter-
preted by our framework to generate the right sequence of Java instructions,
we obtain a fully Java compliant source code without further effort. To ob-
tain the bytecode sequence ready for injection we can exploit directly the
Java Compiler. Note that such compilation must be performed at run-time,
to avoid meta-data corruption that could be still possible if performed at
compile-time.

– Bytecode manipulation in Java is not provided by native API. Libraries like
ASM [10] and BCEL [11] provide such functionalities. Our framework uses
the JDasm library for bytecode manipulation [12], which was developed as
part of the present research. Its main advantage is the transparency it offers
in modifying and executing and already loaded class. In fact, as reported
in [13], once a class is loaded into the JVM, its name is associated to a
class definition that cannot be changed until the JVM instance ends. The
techniques JDasm uses to overcome this limitation consists in sub-classing
the given class C to create a brand new class C′ which extends C. The
modified method are reimplemented and through Java polymorphism C′

can be used as C in the original context.

Requirement match: Once P ’s specification is validated, one last step is
needed before granting execution to the plug-in. The requirements gathering
and matching is the last stage of the loading process. In our idea the host ap-
plication, the user and the system can specify their own requirements over P ’s
behaviour. One possible way to do this is again using JML and Java Annota-
tions: in fact, a traditional plug-in architecture sees a main application loading



Idea: Enforcing Consumer-Specified Security Properties 189

classes that implements a given interface. Such interfaces can be annotated with
JML as well.

As for the specification validation, we apply static and dynamic analysis tech-
niques to grant the P execution. First static analysis is used to reduce the number
of checks needed at run-time. At this stage, the framework can find the plug-
in unable to satisfy the requirements; in this case it will deny its execution.
Otherwise, for all the required properties that are not determinable by simply
looking at the specifications, the application needs to inject run-time checks. As
described in Section 3.2 the requirement specified in JML can be compiled into
a bytecode sequence ready to be injected. A survey of static analysis techniques
that can be used to reduce the scope of run-time checks is found in [14].

4 Scenario

In the following we present a scenario of application for our framework. Consider
a mobile application that implements a typical plug-in infrastructure to extend
its functionalities. The application needs to access local files, including one (a
standard Note on a hand-held device) where high confidential information is
stored (i.e., credit card numbers), but for security reasons the user does not
want to grant access to that file to any plug-in he is going to download from
third-party (potentially unreliable) producers. On the other hand, these plug-ins
can access other files containing less sensitive information.

This is a typical example where the producer of the plug-in cannot provide
a proof that his code matches a user’s requirements (that particular file is used
only by our specific user), nor can the user trust the producer about a property
the producer does not even know about. The plug-in may need to access the local
file system at arbitrary locations, but the producer is unable to specify that a
particular file would never be opened. In this case, the user, through JML, may
declare a model variable f and an invariant I such that (f instanceof File
&& f.equals(my private file) never holds during the plug-in life.

Helped by the module specification, the framework can inspect the plug-in
executable to verify if in some case I is violated; if it is found that the value
of f cannot be determined statically, it will inject bytecode for checking I at
run-time.

5 Conclusions

In this paper we have presented an idea to enforce consumer-specified security
properties for modular software. We have shown a way for the code-producer
to attach behavioral specifications as meta-data directly into an object file us-
ing a combination of JML and Java Annotations. Once the specifications are
available at run-time, we used bytecode injection techniques to verify both the
specifications and the consumer security requirements.



190 G.A. Galilei and V. Gervasi

We meant this to be innovative compared to the traditional techniques that
wants a third-party authority or the code producer himself to be the correctness
and security guarantor (i.e. like in Proof Carrying Code [3]). We have shown
a simple scenario where the security requirements can not be foreseen by any
authority or producer, since they are specific to a given final user. The idea
should suggest that there is a plenty of possible scenarios where the standard
proofs techniques (where properties are chosen by the producer of the plug-in)
are unable to completely satisfy requirements that can vary from user to user,
from application to application and from system to system.

The tool suite for the framework we have described is currently under devel-
opment, but some of the producer-side facilities have already been completed.
In particular we completed the source-to-source compiler to parse JML Java-5-
compliant annotations and to translate them into standard Java Annotations.
Also the bytecode manipulation library for code inspection and injection has
been completed and already successfully used in several related applications.
Future work includes applying static analysis to reduce the number of run-time
checks injected, and extending the scope of the properties that can be expressed
and handled by the framework.

References

1. Thompson, S.: A survey on model checking Java programs. Technical Report
CSRG-407. Department of Computer Science, University of Toronto (2000)

2. Leavens, G., Cheon, Y.: Design by contract with JML (2003)
3. Necula, G.C.: Proof-carrying code. In: Proc. 24th ACM Symp. Principles of Pro-

gramming Languages, pp. 106–119. ACM Press, New York (1997)
4. Thomas, P., Weedon, R.: Object-Oriented Programming in Eiffel, 2nd edn.

Addison-Wesley, Reading (1997)
5. Guttag, J.V., Horning, J.H.: Larch: languages and tools for formal specification.

Springer, Heidelberg (1993)
6. Leavens, G.T.: The Java modeling language (JML) home page,

http://www.cs.ucf.edu/~leavens/JML/

7. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

8. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: Design ratio-
nale, compiler implementation, and applications. ACM Transactions on Program-
ming Languages and Systems 28(3) (2006)

9. Taylor, K.B., Rieken, J., Leavens, G.T.: Adapting the Java Modeling Language
for Java 5 annotations. Technical Report 08-06, Department of Computer Science,
Iowa State University (2008)

10. Bruneton, É., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to im-
plement adaptable systems. In: Proceedings of the ASF (ACM SIGOPS France)
Journées Composants 2002: Systèmes à composants adaptables et extensibles
(Adaptable and extensible component systems) (2002)

http://www.cs.ucf.edu/~leavens/JML/


Idea: Enforcing Consumer-Specified Security Properties 191

11. Apache Jakarta Project: (BCEL - the bytecode engineering library),
http://jakarta.apache.org/bcel/

12. Galilei, G.: JDasm, http://jdasm.sourceforge.net
13. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn. Prentice

Hall PTR, Englewood Cliffs (2002)
14. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K.,

Leino, M., Poll, E.: An overview of JML tools and applications. International Jour-
nal on Software Tools for Technology Transfer 7(3), 212–232 (2005)

http://jakarta.apache.org/bcel/
http://jdasm.sourceforge.net


F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 192–200, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Idea: Using System Level Testing for Revealing SQL 
Injection-Related Error Message Information Leaks  

Ben Smith, Laurie Williams, and Andrew Austin 

North Carolina State University, Computer Science Department 
890 Oval Drive, Raleigh, NC, USA 

{ben_smith,laurie_williams,andrew_austin}@ncsu.edu 

Abstract. Completely handling SQL injection consists of two activities: 
properly protecting the system from malicious input, and preventing any 
resultant error messages caused by SQL injection from revealing sensitive 
information.  The goal of this research is to assess the relative effectiveness of 
unit and system level testing of web applications to reveal both error message 
information leak and SQL injection vulnerabilities. To produce 100% test 
coverage of 176 SQL statements in four open source web applications, we 
augmented the original automated unit test cases with our own system level 
tests that use both normal input and 132 forms of malicious input.  Although we 
discovered no SQL injection vulnerabilities, we exposed 17 error message 
information leak vulnerabilities associated with SQL statements using system 
level testing.  Our results suggest that security testers who use an iterative, test-
driven development process should compose system level rather than unit level 
tests. 

Keywords: SQL, Exception, Tomcat, Java, web application, system level, unit 
testing, database, SQL injection attacks, coverage, error message. 

1   Introduction 

In this paper, we examine two input validation vulnerabilities that are in the 
CWE/SANS Top 25 Most Dangerous Programming Errors1 due to their prevalence 
and potential damage: SQL injection vulnerabilities and error message information 
leak vulnerabilities. SQL injection vulnerabilities occur when a lack of input 
validation could allow a user to force unintended system behavior by altering the 
logical structure of a SQL statement using SQL reserved words and special characters 
[1, 2]. The CWE categorizes SQL injection vulnerabilities as a subset of input 
validation vulnerabilities, which occur when a system does not assert that input falls 
within an acceptable range, allowing the system to be exploited to perform unintended 
functionality [3].  Error message information leak vulnerabilities are caused when an 
application does not correctly handle an exceptional condition and, as a result, 
sensitive information is revealed to the attacker [4, 5]. We contend that in web 

                                                           
1 The CWE/SANS Top 25 can be found at http://cwe.mitre.org/top25/. 



 Idea: Using System Level Testing 193 

applications, where security is paramount, input validation is comprised of both 
ensuring that input falls within an acceptable range (e.g. “integer”) and that the 
application fails gracefully when input is not within said range. 

To expose and mitigate SQL injection vulnerabilities at the white box level, a 
development team can execute unit tests that assert that malicious input is rejected by 
the components that communicate with the database [6]. In some development 
methodologies, components are constructed in horizontal slices that emanate from the 
ground up—the components that perform logic and interact with the database are 
composed and tested long before the user interface.  However, in an iterative 
development methodology, teams build software on a feature-by-feature basis in 
vertical slices that extend from the database to the user interface [22].  Additionally, 
test-driven development implies the incremental creation of tests throughout the 
development process [7].  

The goal of this research is to assess the relative effectiveness of system and unit 
level testing of web applications to reveal both SQL injection vulnerabilities and 
error message information leakage vulnerabilities when used with an iterative test 
automation practice by a feature development team. We conducted a case study on 
four Java-based open source web applications: iTrust2, Hispacta3, LogicServices4, and 
TuduLists5. In our case study, we executed and compared JUnit6 unit tests and 
HtmlUnit7 system level tests. The purpose of this study is to determine whether 
system level testing8 could be used in an iterative or test-driven development scenario 
to expose both parts of input validation earlier in the lifecycle—an important 
component of building security in from the beginning [8].  

The rest of this paper is organized as follows.  Section 2 presents the required 
background for understanding our study procedure.  After that, Section 3 describes 
the case study, including the subject applications and experimental setup.  Next, 
Section 4 presents the results of our case study.  Section 5 presents limitations of the 
study. Finally, Section 6 describes the conclusions we reached from our study.  

2   Background 

In this section, we demonstrate an example of a SQL injection vulnerability and discuss 
error information leakage vulnerabilities. 

SQL Injection Vulnerabilities. Consider a Java method used for the deletion of a 
patient’s information in a medical record system.  We present the relevant source 

                                                           
2 http://sourceforge.net/projects/itrust 
3 http://sourceforge.net/projects/hispacta 
4 http://sourceforge.net/projects/logicservice 
5 http://sourceforge.net/projects/tudu 
6 http://www.junit.org 
7 http://htmlunit.sourceforge.net/  
8 The approach we propose in this paper tests the web application in the context of its server; a 

system level technique. However, our approach also targets specific areas (“hotspots”) of the 
web application; a unit level technique.  Thus, the way we use HtmlUnit in our case study is a 
hybrid of system level and unit level approaches, which is technically considered grey box 
testing [8, 9]. 



194 B. Smith, L. Williams, and A. Austin 

code for this operation in Figure 1 (assume that patients are deleted by their names).  
The vulnerability in this example was introduced in the line defining the SQL 
statement.  The example we have presented in Figure 1 performs no input validation 
and, as a result, the example contains a SQL injection vulnerability relative to the use 
of the name parameter.  An attacker could cause change to the interpretation of the 
SQL query by entering the SQL command fragment “‘ OR TRUE --“ in the input 
field instead of any valid user name in the web form. 

The single quotation mark (‘) indicates to the SQL parser that the character 
sequence for the username column is closed, the fragment OR TRUE is interpreted as 
always true, and the fragment of the query after the hyphens (--) is a comment.  The 
altered WHERE clause of the SQL statement will be interpreted as always true and thus 
every patient is deleted from the table.  Because no input validation was performed, 
the attacker can exploit the system by inserting the malicious input in the name field, 
and cause truncation of the Patients table. Thus, the bolded statement in Figure 1 is 
an example of a SQL injection hotspot (or just “hotspot” in this paper)—any source 
code location that may contain a SQL injection vulnerability [1, 2].  

 
... 
java.sql.Connection mySQLConnector = DriverManager.getConnection(); 
java.sql.Statement s = mySQLConnector.createStatement("DELETE FROM  
Patients WHERE Name = ‘" + name + “’;”); 
int result = s.executeUpdate(); 
 return 1 == result; 
... 

Fig. 1. Patient Deletion Code in Java; hotspot is bolded 

Error message information leak vulnerabilities. These vulnerabilities occur when 
an application does not correctly handle exceptional conditions and subsequently 
leaks sensitive information to a user [4, 5]. This information can be obviously 
dangerous in the case of error messages that contain system or application passwords, 
or it may seem more benign, containing only version numbers or stack traces.  
Unfortunately, even these seemingly benign error information leaks can provide 
valuable information to an attacker and could expose additional attack vectors.  Since 
a tester cannot tell what information an attacker needs to conduct future attacks, a 
good policy is to treat all error information leakage vulnerabilities as if they contain 
obviously dangerous information such as passwords. 

3   Case Study  

In this section, we present information about our case study.  Each part of the case 
study was conducted using Eclipse v3.3 Europa executed using Java v1.6 running on 
an IBM Lenovo T61p running Windows Vista Ultimate with a 2.40Ghz Intel Core 
Duo processor and 2GB of RAM.  We used MySQL9 v5.0.45-community-nt for our 
research database management system.  
                                                           
9 http://www.mysql.com 



 Idea: Using System Level Testing 195 

Table 1. Information about the Test Subjects (n=4) 

Project iTrust Hispacta LogicServices TuduLists 
Version 4.0 0.0.3 1.8 2.2 
Lines of Code₫ 7707 1991 5011 6178 
Production 
Classes* 

143 42 155 132 

Database Classes 20 4 1 5 
Hibernate10 No Yes Yes Yes 
₫ Source Lines of Code calculated by NLOC: http://sourceforge.net/projects/nloc/ 
* A production class is any class that is required to be on the class path for the web 

application to function correctly (excluding test classes and utility classes) 
 
 

To obtain our case study applications, we collected information about 12 enterprise 
Java web applications, which we found by searching SourceForge11 with the query 
“Java web application,” and sampling the first 12 projects that contained the Eclipse 
webtools12 project file structure. We then rejected eight subjects from our study 
because they did not meet one or many of the following criteria: 

• Could be compiled, built, and deployed.  
• Contained automated unit tests, written in JUnit, which were distributed with 

the source code. 
• Relied upon a relational DBMS to store its data. 

We were left with the four subjects presented in Table 1.  In an attempt to reveal 
both SQL injection and error message information leak vulnerabilities in our test 
subjects, as stated in Section 1, we created the following systematic, system level, 
security testing procedure and executed it on our subjects.  By design, this procedure 
produces an automated system level test suite that executes all reachable hotspots 
with normal and malicious input.  We note here that by intrinsic, we mean that we did 
not augment or modify the existing test set in any way; values for these measures 
were achieved by the unit tests that were distributed with each system. 

1. Identify and Instrument Hotspots.  We manually inspected the source 
code to discover any point where the system interacts with the database.   
We note here that hotspots can take many forms; we explain this issue 
more below. We have written the Java program SQLMarker, introduced in 
our earlier work [9]. SQLMarker keeps a record of the execution state at 
runtime for each uniquely identified hotspot13.  SQLMarker has a method, 
SQLMarker.mark(), which passes the line number and file name to a 
research database that stores whether the hotspot has been executed. 

                                                           
10 http://www.hibernate.org/ 
11 http://sourceforge.net/ 
12 http://www.eclipse.org/webtools/ 
13 For larger applications, one could use a static analyzer to determine hotspots’ locations.  



196 B. Smith, L. Williams, and A. Austin 

2. Record Hotspots. A second class we wrote, called Instrumenter, provides 
each manually marked hotspot with a unique identifier comprised of the 
filename and line number, and outputs the number of hotspots found. Once 
we manually marked each, we executed Instrumenter to store a record of 
each of these hotspots. 

3. Execute Original Unit Tests.  After instrumenting each subject to mark 
its executed SQL hotspots, we executed the intrinsic unit tests and 
recorded the resultant number of executed statements. 

4. Create Test Cases. We used the stored file name and line number of the 
hotspot from Step 1 to construct an automated system level test with 
HtmlUnit14 that executed the SQL statement located at the stored file 
name and line number. We constructed an initial automated test for each 
hotspot by using a call hierarchy and manual testing to make web requests 
until the hotspot was marked as being executed and then modeled our 
automated test after the use case we discovered15.  

5. Apply Malicious Input. We modified the test defined in Step 4 to 
emulate a malicious user by using 132 forms of malicious input in an 
attack list from NeuroFuzz [10]  in place of normal input.  This part of the 
procedure is similar to “fuzzing”.  The difference here is that fuzzing is a 
semi-random, black box activity; our approach is targeted to specifically 
attack the areas where user input might reach a hotspot.  

6. Record Result.  We then marked each test that caused incorrect SQL 
operations or an application error in Step 5 as a successful attack and its 
corresponding SQL statement as a vulnerability.   

Identifying hotspots may seem trivial, but in fact can be difficult because hotspots 
may not always take the same form. One way of discovering vulnerabilities is 
automated static analysis tools, which can be designed to check for a particular 
hotspot or vulnerability type [11]. We executed static analysis tools on our subjects 
and the tools reported no input validation vulnerabilities in any project we examined.  

4   Results 

This section presents the results of our case study.  We first observed, as shown in 
Table 2, that there were no intrinsic JUnit test cases that used malicious input. We 
conducted all of our 272 system level tests by using HtmlUnit to inject our attack list 
into a request parameter, or in the case of TuduLists, to conduct an AJAX request 
where the malicious input was injected into an asynchronous JavaScript call. Using 
our technique, we found no instances of SQL injection vulnerabilities at the system 
                                                           
14 HtmlUnit is a "GUI-Less browser for Java programs". It models HTML documents and 

provides an API that allows you to invoke pages, fill out forms, click links, etc, just like you 
do in your "normal" browser.  http://htmlunit.sourceforge.net. 

15  However, some hotspots were not used by the JSPs in the application, perhaps because these 
hotspots were used for database administration only, or the development team had not 
finished implementing the use case that required the query.  If we could not reach the SQL 
statement through the web interface, we augmented the white box test plan to include a 
malicious test that directly calls the database class. 



 Idea: Using System Level Testing 197 

level. No application allowed us to issue commands to the database management 
system because prepared statements and Hibernate both perform strong type checking 
on the variables used in their hotspots. Hibernate allows developers to create 
persistent classes in the object-oriented paradigm that represent individual database 
records [12].  However, we found 17 error message information leak vulnerabilities 
among the four applications in our case study, summarized in Table 2.  

Table 2. Results for the Test Subjects 

Project 

iT
ru

st
 

H
is

pa
ct

a 

L
og

ic
Se

rv
ic

es
 

T
ud

uL
is

ts
 

Hotspots 92 23 48 13 
Covered by Intrinsic Tests 89 20 47 3 
Statement Coverage (EclEmma) 84% 49% 53% 40% 
Test Cases with Malicious Input 0 0 0 0 
New System Level Test Cases (Normal 
and Malicious) 

149 29 80 14 

Confirmed Vulnerabilities 2 2 9 4 

 
We found that unit testing could have identified none of the 17 confirmed 

vulnerabilities; rather, these confirmed vulnerabilities are system level vulnerabilities 
that had to involve the application server.  A missing exception handler for pages or 
Servlets within Apache Tomcat caused each of the vulnerabilities we discovered.  The 
example presented in Table 3 and Table 4 helps illustrate why these vulnerabilities 
cannot be exposed at the unit level.  

Table 3 presents the relevant code from one of the confirmed vulnerabilities that 
we found in iTrust, in the file editHCPs.jsp. In other pages within iTrust, there is a 
JSP directive declared at the top of the page’s code (along with various navigational 
toolbars and headers) that declares an exception handler:  
 
<%@page errorPage="/auth/exceptionHandler.jsp"%> 

 
This directive does not appear in editHCPs.jsp (see Table 3).  At the moment an 

exception is thrown, Apache Tomcat forwards the user to the page declared in this 
directive, if this directive is declared.  Otherwise, Apache Tomcat outputs a revealing 
stack trace to the user’s browser window, also known as an error message information 
leakage.  

Since the omission of an exception handler is something that happens in the JSP 
code and not the Java code, some form of interaction is required with the application 
server (Apache Tomcat) in order to expose the vulnerabilities. One may view each 
JSP as a unit, but still the exception handler is a JSP page directive that involves a 
separate page; the unit therefore cannot be tested in isolation. The confirmed 



198 B. Smith, L. Williams, and A. Austin 

vulnerabilities, then, are caused by a system level error: the absence of an exception 
handler in the JSP or Servlet code of the application.  Consider a JUnit test case that is 
written to execute undeclareHCP (see Table 4). This JUnit test case would pass, but 
would not expose the vulnerability even if it uses the some malicious input, such as ‘ 
UNION SELECT.  However, an HtmlUnit test case that targets editHCPs.jsp (see 
Table 3), produced by our system level testing technique, would expose the 
vulnerability using the same attack.  That is, the vulnerability is not that an exception 
is thrown, but rather that the exception is not correctly handled by the JSP.  

Table 3. JSP for Example Vulnerability (editHCPs.jsp) 

DeclareHCPAction action = // Action class for declaring the HCP. 
String confirm = ""; // used to store the result from the DAO. 
String removeHCP = request.getParameter("removeID"); 
if(removeHCP!=null && !removeHCP.equals("")){ 
  confirm = action.undeclareHCP(removeHCP); 
} 
List<PersonnelBean> hcps = action.getDeclaredHCPS(); 
 

Table 4. Java Method undeclareHCP 

//given: patientDAO, a DAO pertaining to the patients table 
//given: iTrustException, a custom-build Exception class for  
//       handling alternate flow errors 
public String  undeclareHCP(String input) throws iTrustException { 
try { 
long hcpID = Long.valueOf(input); 
boolean confirm = patientDAO.undeclareHCP(loggedInMID, hcpID); 
if (confirm) { 
 return "HCP successfully undeclared"; 
} else 
 return "HCP not undeclared"; 
} catch (NumberFormatException e) { 
 throw new iTrustException("HCP's MID not a number"); 
} catch (DBException e) { 
 throw new iTrustException(e.getMessage()); 
} 
} 

5   Limitations 

Future case studies should examine much larger web applications than the ones in this 
study. In addition, the selective criteria as described in Section 3 could have biased 
the data. For example, perhaps the fact that all of our test subjects were Tomcat 
Servlet applications caused or prevented some security vulnerabilities that would not 
have been observable in another architectural setup.  In addition, if stored procedures 
had been used in any of our test subjects, our results may have been different. The 
development teams for each project may have been using other testing techniques to 
improve the security posture of our subjects, or security may not have been high on 
their list of requirements.   



 Idea: Using System Level Testing 199 

The container for the applications (in this case, Apache Tomcat) could also be 
emulated using a Mock Object pattern [13], and each individual servlet or JSP could 
be tested in isolation from one another.  However, the quality of the testing results is 
entirely dependent on the quality of the mock object’s ability to emulate the server 
[13]; additionally, mock objects may not be any less expensive than system testing. 
Prepared statements, which separate the user’s input from the structure of the query at 
the application level [14], protected the applications in this study. However, prepared 
statements are only useful if developers are aware of them and choose to use them.  
Our own system level procedure may not have exposed all vulnerabilities latent in the 
four subjects. Our procedure was targeted towards SQL injection vulnerabilities, 
which did not exist in these sampled applications at the locations of the hotspots we 
identified, but other vulnerabilities of varying types may exist in our subjects. 

6   Conclusion 

In our investigation of the relative effectiveness of unit and system level testing 
techniques, we have discovered that developers sometimes miss the fact that input 
validation is comprised of both ensuring that input falls within an acceptable range 
(e.g. “integer”) and that the application fails gracefully when input is not within said 
range.  We found that all four of our study subjects use Hibernate and/or properly 
constructed prepared statements, which were completely effective for asserting that 
input falls within a safe (non-attack) range.  Using a systematic system level security 
testing procedure to generate an HtmlUnit test suite, we found 17 error message 
information leakage vulnerabilities in the four web applications of our study.  We 
found it impossible to replicate these same 17 vulnerabilities by augmenting the 
intrinsic unit test suites with additional malicious tests because vulnerabilities cannot 
be exposed at the system level though unit testing.  

Our results show that ensuring that error messages resulting from SQL injection 
attacks do not reveal sensitive information is an inherently system level activity 
because the web server will dictate how and when error messages are displayed.  
Thus, an iterative, a feature-based development team conducting a test-driven 
automation practice can use a system level test procedure like the one described in 
this paper to expose both SQL injection vulnerabilities and error message information 
leak vulnerabilities.  From a security perspective, unit testing would not be effective 
toward this aim, because it cannot take into account the production environment in 
which the system exists. 

 
Acknowledgments. We would like to thank the North Carolina State University 
Realsearch group for their helpful comments on the paper.  In addition, we would like 
to thank Yonghee Shin for the foundational work she performed by providing formal 
definitions for our SQL hotspot metrics and for her input on the content of this paper. 
This work is supported by the National Science Foundation under CAREER Grant 
No. 0346903.  Any opinions expressed in this material are those of the author(s) and 
do not necessarily reflect the views of the National Science Foundation. 



200 B. Smith, L. Williams, and A. Austin 

References 

1. Halfond, W.G.J., Orso, A.: AMNESIA: analysis and monitoring for neutralizing SQL-
injection attacks. In: 20th IEEE/ACM International Conference on Automated Software 
Engineering, Long Beach, CA, USA, pp. 174–183 (2005) 

2. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: syntactic and 
semantic analysis for automated testing against SQL injection. In: 23rd Annual Computer 
Security Applications Conference, Miami Beach, FL, pp. 107–117 (2007) 

3. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-sensitive 
string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 
124–145. Springer, Heidelberg (2006) 

4. Aslam, T., Krsul, I., Spafford, E.: Use of a taxonomy of security faults. In: 19th National 
Information Systems Security Conference, Baltimore, MD, pp. 551–560 (1996) 

5. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of 
software security errors. IEEE Security & Privacy 3, 81–84 (2005) 

6. IEEE: IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering 
Terminology (1990) 

7. Beck, K.: Test-driven development: By example. Addison-Wesley, Boston (2003) 
8. McGraw, G.: Software security: Building security in. Addison-Wesley, Upper Saddle 

River (2006) 
9. Smith, B., Shin, Y., Williams, L.: Proposing SQL statement coverage metrics. In: The 4th 

International Workshop on Software Engineering for Secure Systems at the 30th 
International Conference on Software Engineering, Leipzig, Germany, pp. 49–56 (2008) 

10. Jiang, Y., Cukic, B., Menzies, T.: Fault Prediction using Early Lifecycle Data. In: The 18th 
IEEE International Symposium on Software Reliability, 2007. ISSRE 2007, pp. 237–246 
(2007) 

11. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with static 
analysis. In: USENIX Security Symposium, Baltimore, MD, pp. 18–18 (2005) 

12. Bauer, C., King, G.: Hibernate in Action. Manning Publications (2004) 
13. Brown, M., Tapolcsanyi, E.: Mock object patterns. In: The 10th Conference on Pattern 

Languages of Programs, Monticello, USA (2003) 
14. Thomas, S., Williams, L.: Using automated fix generation to secure SQL statements. In: 

Proceedings of the Third International Workshop on Software Engineering for Secure 
Systems, Minneapolis, MN (2007) 



Automatic Generation of Smart, Security-Aware
GUI Models

David Basin1, Manuel Clavel2,3, Marina Egea1, and Michael Schläpfer1

1 ETH Zürich, Switzerland
{basin,marinae,michschl}@inf.ethz.ch

2 IMDEA Software Institute, Madrid, Spain
manuel.clavel@imdea.org

3 Universidad Complutense de Madrid, Spain

Abstract. In many software applications, users access application data
using graphical user interfaces (GUIs). There is an important, but little
explored, link between visualization and security: when the application
data is protected by an access control policy, the GUI should be aware
of this and respect the policy. For example, the GUI should not display
options to users for actions that they are not authorized to execute on
application data. Taking this idea one step further, the application GUI
should not just be security-aware, it should also be smart. For example,
the GUI should not display options to users for opening other widgets
when these widgets will only display options for actions that the users
are not authorized to execute on application data. We establish this link
between visualization and security using a model-driven development
approach. Namely, we define and implement a many-models-to-model
transformation that, given a security-design model and a GUI model,
makes the GUI model both security-aware and smart.

1 Introduction

In many programs, users access application data using GUI widgets: data is
created, deleted, read, and updated using text boxes, check boxes, buttons, and
the like. There is an important, but little explored, link between visualization
and security: When the application data is protected by an access control policy,
the application GUI should be aware of and respect this policy. For example, the
GUI should not display options to users for actions that they are not authorized
to execute on application data. This prevents user frustration, for example, from
filling out a long electronic form only to have the server reject it because the user
lacks a permission to execute some associated action on the application data.
Taking this idea one step further, the GUI should not, for example, display
options to users to open other widgets when these widgets only display options
for actions that the users are not authorized to execute on application data.
That is, the application GUI should not just be security-aware but also smart.

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 201–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



202 D. Basin et al.

Visualization and security

To see how this link between GUIs and security policies might look, consider
the following example: an application for managing employee information. This
information will include, among other data, employees’ names, phone numbers,
and salaries. Suppose now that the employee information is protected by an
access control policy that includes, among other clauses, the following:

– All users can read employees’ names.
– Only administrators and supervisors can read and update employees’ phone

numbers.
– Only supervisors can read employees’ salaries.

Suppose now that, as shown in Figure 1, our application GUI includes the fol-
lowing windows:

Window #1. This is our main window. Here, users can edit employee data by
clicking on the Edit Phone Number-button.

Window #2. Users can select an employee from a list of names, shown in a
combo box, and view the information associated to the selected employee by
clicking on the View-button.

Window #3. Users can read in the Name, Phone, and Salary-labels, respec-
tively, the name, phone number, and salary of the selected employee. More-
over, users can edit the phone number by clicking on the Edit-button.

Window #4. Users can update the phone number of the selected employee by
typing the new number into the Phone-entry and clicking on the OK-button.

Edit Phone Number

when click on, 
open window #2

#1 John Smith

Mary Ramirez

Hugo Silva

Emma Primbs

ViewBack

#2

when click on, open 
window #3,
with person selected

when created, 
show list of 
person's names

Name:

Phone:

Salary:

John Smith

629208417

45,000.00

EditBack

#3

when click on, open 
window #4,
with this person

when created, show, 
respectively,  this
person's name, 
phone number, and 
salary

Phone: 629208417

OK

#4

when click on, update 
this person's phone 
number,
with data entried

Fig. 1. A simple GUI for editing employees’ phone numbers

What behaviour should our GUI have if it is to be considered “security-
aware”? Suppose that a user with the role administrator wants to edit an em-
ployee’s phone number using our GUI. Since administrators are not authorized



Automatic Generation of Smart, Security-Aware GUI Models 203

to read employees’ salaries, when opening Window #3, our GUI should prevent
an administrator from reading this information in the Salary-label. Furthermore,
how should our GUI behave if it is also to be considered “smart”? Suppose now
that a user with no special privileges wants to edit an employee’s phone number
using our GUI. Since ordinary users are not authorized to read or update em-
ployees’ phone numbers, our GUI should prevent the user from opening Window
#4 by clicking on the Edit-button, since the user should not be able to do anything
within this window (i.e., neither read the phone number of the selected employee
in the Phone-label nor click on the OK-button to update this information).

The problem we address here is how to establish this link between visualization
and security. The default, “ad-hoc” solution, namely, directly hardcoding the
security policy within the GUI, is clearly inadequate. First, the GUI designer
is often not aware of the application data security policy. Second, even if the
designer is aware of it, hardcoding the application data security policy within the
GUI code is cumbersome and error-prone, if done manually. Finally, any changes
in the security policy will require manual changes to the GUI code where this
policy is hardcoded, which again is a cumbersome and error-prone task.

Our approach: model-transformation

We propose in this paper a model-driven approach that links visualization and
security. The key idea is that this link is ultimately defined in terms of data ac-
tions, since data actions are both controlled by the security policy and triggered
by the events supported by the graphical user interface. The key component of
our proposal is a many-models-to-model transformation which, given a security-
design model (specifying the access control policy on the application data) and
a GUI model (specifying the actions triggered by the events supported by the
application’s graphical interface), automatically generates a GUI model that is
both security-aware and smart. Thus, under our proposal, illustrated in Figure 2,
the process of modeling a smart, security-aware GUI has the following parts.

1. Software engineers specify the application-data model C.
2. Security engineers specify the security-design model SC .
3. GUI designers specify the application GUI model GC .
4. A many-models-to-model transformation automatically generates a smart,

security-aware GUI model M(GC,SC) from the security model SC and the
GUI model GC .

To show the applicability of our proposal, we have implemented an Eclipse-
based application that automatically generates smart, security-awareGUI models
from security-design models and GUI models [7]. Moreover, it automatically gen-
erates smart, security-aware web applications from the generated smart, security-
aware GUI models. Specifically, our Eclipse-application includes the following
parts.

– A GMF editor for drawing application-data models.
– A plugin for generating user-friendly GMF editors for drawing security-

design models and GUI models.



204 D. Basin et al.

Fig. 2. Modeling a smart and security-aware GUI

– A plugin for generating smart, security-aware GUI models from security-
design models and GUI models.

– A plugin for generating web applications from smart, security-aware GUI
models.

Due to space limitations, we only report on our plugin for generating smart,
security-aware GUI models. This plugin implements our many-models-to-model
transformation as a QVT operational transformation.

Applicability and extensions

The applicability of our approach crucially depends on the expressiveness of the
modeling languages used to specify the access control policies and the graphical
user interfaces. In this paper, however, we focus on the two main ideas behind
our approach.

1. The link between visualization and security is essentially given by the data
actions, since they are both controlled by the security policy and triggered
by the events supported by the graphical user interface.

2. This link can be systematically established using an appropriate many-
models-to-model transformation to generate smart, security-aware GUI mod-
els from the models specifying the security policy and the models specifying
the graphical user interfaces.

To explain these ideas, we present our approach using abstract notions of both
security-design models and (smart, security-aware) graphical user interface mod-
els. For the sake of illustration, we will also use concrete modeling languages,
which provide the source and target models of a many-models-to-model transfor-
mation that we will introduce to exemplify our approach; however, our approach
is not restricted to or dependant on the use of these languages or our particu-
lar many-models-to-model transformation. In fact, our Eclipse-based application
for generating smart, security-aware GUIs [7] currently supports a modeling lan-
guage for specifying graphical user interfaces that is significantly more expressive
than the one introduced in this paper. For example, it allows one to associate
data to widgets, to pass information from one widget to another widget, to jump
from one widget to another widget, and to call actions on data with parameters.



Automatic Generation of Smart, Security-Aware GUI Models 205

Notice that some of these features are, for example, needed to fully modeled the
graphical user interface described in Figure 1.

Organization. In Sections 2 and 3 we introduce security-design models and GUI
models. Afterwards, in Sections 4 and 5, we introduce smart, security-aware GUI
models and we define a many-models-to-model transformation that automati-
cally generates smart, security-aware GUI models from security-design models
and GUI models. We conclude with a discussion of related and future work.
Throughout the paper we will use the employee information system example,
given above, as our running example.

2 Security-Design Models

Model-driven security (MDS) [2] is a specialization of model-driven development
for developing secure systems. In this approach, designers specify system models
along with their security requirements and use tools to automatically gener-
ate system architectures from the models, including complete, configured access
control infrastructures. MDS is centered around the construction (and analysis)
of security-design models, which are models that combine security requirements
with system designs.

In this section, we define security-design models as they will be considered
throughout this paper. Our focus is on access control security requirements. We
first provide an abstract definition (Definition 2) of security-design models, inde-
pendent of any modeling language that may be used for specifying them. Then,
we introduce a specific language (SecureUML+ComponentUML) for modeling
security-design models.

We begin by defining system design models (Definition 1) and by introduc-
ing a specific modeling language for them (ComponentUML). For the sake of
simplicity, we will consider that system designs are component-based, and we
will use the following (rather simple) notion of a component-based design model
throughout this paper

Definition 1. A component-based design model C is a 4-tuple

C = 〈E, At, As, Md〉

that specifies the entities E which play a role in the system as well as their
properties, given by their attributes At, associations-ends As, and their methods
Md.

Example 1. The component-based design model specifying the data model un-
derlying our running example will consist of a single entity (Person), with three
attributes (name, phone number, and salary).

The ComponentUML language. ComponentUML is a simple language for mod-
eling component-based systems. Essentially, it provides a subset of UML class



206 D. Basin et al.

models: entities can be related by associations and may have attributes and
methods. Its metamodel is shown in Figure 3 (inner rectangle).

Each valid instance of the ComponentUML metamodel specifies a component-
based design model 〈E,At ,As,Md〉 whose components are defined by the fol-
lowing OCL expressions:

E = Entity.allInstances().
At = Attribute.allInstances().
As = AssociationEnd.allInstances().
Md = Method.allInstances().

We are now ready to define security-design models.

Definition 2. Let C be a component-based model C = 〈E,At ,As,Md〉. Then, a
security-design model SC for C is a 5-tuple

SC = 〈Rs ,DaAc,Rl ,RsDaAc,DaAu〉,

with Rs = (E ∪ At ∪ As ∪ Md), RsDaAc : Rs −→ P(DaAc), and DaAu :
DaAc −→ P(Rl). The model SC specifies a security policy for accessing the re-
sources (namely, the entities and their properties) in the component-based system
modeled by C. More concretely, SC specifies

– the actions DaAc whose access policy is modeled;
– the specific actions RsDaAc(rs) supported by a given resource rs ∈ Rs;
– the roles Rl that users may adopt when interacting with the system; and
– the roles DaAu(daac) ⊆ Rl that are authorized to execute a given action

daac ∈ DaAc.

Example 2. The security-design model specifying the security policy of our run-
ning example will define, for example, that:

– the roles that users may adopt when using the system are all (for users with
no special privileges), administrator, and supervisor ;

– the actions supported by the resources include, for example, to read and
update the phone number resource; and

– the role supervisor, for example, is authorized to execute a read action on
(any) salary resource, but not the other two roles.

The SecureUML language. This is a modeling language based on RBAC [5]
for formalizing access control policies on protected resources [2]. The policies
that can be specified in SecureUML are of two kinds: those that depend on
static information, namely the assignments of users and permissions to roles
and those that depend on dynamic information. SecureUML leaves open what
the protected resources are and which actions they offer to clients. These are



Automatic Generation of Smart, Security-Aware GUI Models 207

specified in a so-called dialect and depend on the primitives for constructing
models in the associated system-design modeling language. Each SecureUML
dialect basically declares its own protected resources and the actions that they
offer to clients.1

The SecureUML+ComponentUML language. This is a SecureUML dialect that
connects SecureUML with ComponentUML, providing a convenient language for
specifying security-design models. Its metamodel is shown in Figure 3.

Fig. 3. SecureUML+ComponentUML metamodel

The protected resources are the entities, as well as their attributes, methods,
and association-ends. The atomic actions that are offered to clients are create,
delete, update, read, and execute the entity’s properties or methods. The dialect
also provides composite actions, which are used to group primitive actions into
a hierarchy of higher-level ones. The composite actions that are offered to clients
are read, update, and full access either on entities or entity’s properties: e.g., full
access on an attribute includes both read and update access on this attribute.

Each valid instance2 of the SecureUML+ComponentUML metamodel speci-
fies a security-design model SC = 〈Rs ,DaAc,Rl ,RsDaAc,DaAu〉, whose com-
ponents are defined by the following OCL expressions:

Rs = Resource.allInstances().
DaAc = AtomicAction.allInstances().
Rl = Role.allInstances().
RsDaAc(rs) = rs .actions−>select(a|a.oclIsTypeOf(AtomicAction)).
DaAu(daac) = daac.allAssignedRoles().

1 SecureUML also supports authorization constraints, which are assertions that re-
strict authorizations and are translated to run-time constraints. For the sake of
simplicity, we do not consider such constraints here.

2 We refer to [1] for the complete list of OCL invariants associated with the Se-
cureUML+ComponentUML metamodel.



208 D. Basin et al.

where the operation allAssignedRoles() is defined as follows:3

context AtomicAction::allAssignedRoles():Set(Roles)
body: self.compactionPlus().isassigned.allRoles()−>asSet()

Example 3. Suppose that EmployeeSalaryAtomicRead denotes the action of read-
ing (any) salary resource and that Supervisor denotes the role supervisor. Then,
for any instance of the SecureUML+ComponentUML metamodel that correctly
models the access control policy in our running example, DaAu(EmployeeSalary-
AtomicRead) should return Set{Supervisor}. This is because only supervisors can
read employees’ salaries.

3 GUI Models

In GUI design, it is useful to distinguish between a GUI’s visual elements and
the behavioural properties associated with these elements. Visual elements are
typically called widgets, which are of different types and support different events.
Examples of widgets include buttons, entries, containers, and windows. Buttons
can be clicked on. Entries can be filled in with text. Containers can graphically
contain (group together) other widgets. Windows are a concrete class of con-
tainers. The behavioural properties of the different widgets are defined by the
actions associated to the events that they support. We distinguish between data
actions and widget actions. Data actions act on application data. Widget actions
act upon widgets (including themselves).

In this section, we define GUI models as they will be considered throughout
this paper. We first provide an abstract definition and afterwards we introduce
a specific language for modeling GUIs.

Definition 3. Let C be a component-based model C = 〈E, At, As, Md〉. Then, a
GUI model GC for C is a 9-tuple4

GC = 〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉,
with Wdc ⊆ Wd, In : Wdc −→ P(Wd), WdEv : Wd −→ P(Ev ), EvWdAc :
Ev −→ P(WdAc), and EvDaAc : Ev −→ P(DaAc). The model GC specifies a
graphical interface to interact with the component-based system modeled by C.
More concretely, GC specifies
3 The auxiliary operations compactionPlus() and allRoles() return, respectively, the

collection of composite actions to which an action is (directly or indirectly) subordi-
nated and the collection of roles that are (directly or indirectly) assigned to a given
permission. We again refer to [1] for the full definitions of these operations.

4 For the sake of simplicity, we have left implicit the intended dependency of GC with
respect to C: namely, that the data actions DaAc are indeed actions upon the entities
(and their properties) that are modeled in C. To make this dependency explicit,
similarly to what we did for the case of security-design models, we would extend our
9-tuple in Definition 3 with two additional components: namely Rs and RsDaAc,
with Rs = (E ∪ At ∪ As ∪ Md) and RsDaAc : Rs −→ P(DaAc).



Automatic Generation of Smart, Security-Aware GUI Models 209

– the widgets Wd and widget containers Wdc that make up the GUI;
– the widgets In(wd) that are contained by a given widget container wd;
– the events Ev supported by the GUI;
– the data actions DaAc and the widget actions WdAc that can be triggered by

the events;
– the events WdEv (wd) ⊆ Ev supported by a given widget wd ∈ Wd; and,
– the widget actions EvWdAc(ev ) ⊆ WdAc and data actions EvDaAc(ev ) ⊆

DaAc associated with a given event ev ∈ Ev.

Example 4. The GUI model (partially) specifying the graphical user interface in
our running example will, for example, define that: the widgets are four windows,
which contain six buttons, one combo-box, three labels and one entry; the but-
tons support, among others, on click events; and the on click event supported by
the View-button triggers the widget action of opening the Window #3, while the
on click event supported by the OK-button triggers the data action of updating
a given phone number resource.

The GUI language. This is a simple language for modeling GUIs. The GUI
metamodel is shown in Figure 4 (inner rectangle).5

Application GUIs consist of widgets that are displayed inside containers,
which are themselves widgets. Each widget has a (possibly empty) set of events
associated to it, and each event is in turn associated with a set of actions, which
are the actions triggered by the event. Also, the events’ actions are of two types:
widget actions (which are actions on GUI widgets) and model actions (also de-
noted data actions), which are actions on the application data.

Each valid instance of the GUI metamodel specifies a GUI model GC =
〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉, whose components
are defined by the following OCL expressions:

Wd = Widget.allInstances().
Wdc = Container.allInstances().
In(wd) = wd .contained.
Ev = Event.allInstances().
DaAc = DataAction.allInstances().
WdAc = WidgetAction.allInstances().
WdEv (wd) = wd .widgetEvents.
EvWdAc(ev ) = ev .firedActions−>select(a|a.oclIsTypeOf(WidgetAction)).
EvDaAc(ev) = ev .firedActions−>select(a|a.oclIsTypeOf(ModelAction))

.oclAsType(ModelAction).modelAction).

5 For the sake of simplicity, our metamodel only defines a basic subsets of widgets
(windows, entries, and buttons), of events (entering or leaving a widget, creating a
widget, and clicking or double-clicking on a widget), and of widget actions (opening
and closing a widget). These subsets are, however, sufficient for the purpose of this
paper. The interested reader can find in [7] the definition of a more comprehensive
GUI metamodel.



210 D. Basin et al.

Example 5. Suppose that onCreateSalaryLabelWindow3 denotes the event that cre-
ates a Salary-label in Window #3. Then, for any instance of the GUI meta-
model that correctly models the graphical user interface in our running example,
EvDaAc(onCreateSalaryLabelWindow3) should return Set{EmployeeSalaryAtomic-
Read}. This is because reading a salary resource is the data action triggered
when the Salary-label is created.

4 Security-GUI Models

We are now ready to provide an abstract definition (Definition 4) of security-
GUI models. These are models in which permissions are associated to widget
events in order to specify who can execute them. We also introduce a specific
language for modeling security-GUI models (SecureUML+GUI).

Definition 4. Let C be a component-based model C = 〈E, At, As, Md〉. Let G be
a GUI model for C

GC = 〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉.

Then, a security-GUI model MGC for GC is a triple MGC = 〈G,Rl ,EvAu〉, with
EvAu : Ev −→ P(Rl), that specifies a security policy for accessing the resources
(namely, the events) in the graphical interface modeled by GC . More concretely,
it specifies all the roles Rl that users may adopt when interacting with the GUI,
as well as the specific roles EvAu(ev ) ⊆ Rl that are authorized to execute a given
event ev ∈ Ev.

Example 6. The security-GUI model specifying the expected (security) behaviour
of the graphical user interface in our running example will, for example, define that
the role administrator is authorized to execute the events creating the Name and
Phone-labels in Window #3, but not the event creating the Salary-label.

The SecureUML+GUI language. SecureUML+GUI is another dialect of Se-
cureUML. It combines SecureUML with our simple GUI modeling language,
providing a convenient language for specifying security-GUI models.

The SecureUML+GUI metamodel, shown in Figure 4, provides the connec-
tion between SecureUML and GUI. It specifies the protected resources, namely,
events, as well as the available actions on these protected resources, namely, their
execution.

Each valid instance of the SecureUML+GUI metamodel specifies a security-
GUI model MGC = 〈GC ,Rl ,EvAu〉, whose components are defined by the fol-
lowing OCL expressions:

Rl = Role.allInstances().
EvAu(ev) = ev .allAssignedRoles().



Automatic Generation of Smart, Security-Aware GUI Models 211

Fig. 4. SecureUML+GUI metamodel

where the operation allAssignedRoles() is defined as follows:

context Event::allAssignedRoles():Set(Roles)
body: self.actions.isAssigned.allRoles()−>asSet()

Example 7. For any instance of the SecureUML+GUI metamodel that correctly
models the graphical user interface in our running example, EvAu(onCreateSalary-
LabelWindow3) should return Set{Supervisor}. This is because executing the event
creating the Salary-label will trigger the data action of reading a salary resource,
but only supervisors are authorized to execute this data action.

4.1 Smart Security-Aware GUI Models

Informally, a GUI model is smart and security-aware when roles are authorized
to execute events depending on the actions (both data actions and widget ac-
tions) that these events trigger. This dependency relationship, and therefore,
the corresponding notion of smartness, can be defined in several ways and we
propose one of such definition in this section. Note that our aim is not to give the
one “canonical” definition of smartness (should such a definition even exist), but
rather to show that non-trivial kinds of smart and security-aware GUI models
can be automatically generated from GUI and security-design models using a
well-defined model transformation.

To simplify our definition of smartness, in what follows we assume that any
model GC , with

GC = 〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉,

satisfies the following properties:



212 D. Basin et al.

1. There are only two widget actions, namely, opening and closing a widget.
2. Every widget has a distinguished event, namely, the event of creating the

widget itself. This event has the following properties:
– If a widget is a non-container widget, then the only widget action asso-

ciated to this event is the action of opening the widget itself.
– If a widget is a container widget, then the only actions associated to

this event are the actions of opening the widget itself as well as all the
widgets that it (immediately) contains.

3. There are no cycles in the widget opening actions. That is, no widget wd
can be opened by an action triggered by an event of a widget wd ′ that was
opened by an action triggered by a sequence of events starting from an event
of wd .

We denote by openwd (respectively, closewd) the action of opening (respec-
tively, closing) the widget wd . Also, we denote by EvWdAco(ev) the set of open-
ing actions triggered by the event ev, i.e., EvWdAco(ev ) = {openwd | openwd ∈
EvWdAc(ev )}. Finally, we denote by onCreatewd the event of creating the widget
wd .

Definition 5. Let C be a component-based model, C = 〈E, At, As, Md〉. Let SC
be a security-design model for C,

SC = 〈Rs ,DaAc,Rl ,RsAc,DaAu〉,

with Rs = (E ∪ At ∪ As ∪ Md). Also, let GC be a GUI-model for C,

GC = 〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉.

Note that DaAc is shared by SC and GC, i.e., the data actions whose access policy
is defined by SC are exactly those that can be triggered by events in GC .

Now, let MGC be a security-GUI model for GC,

MGC = 〈GC ,Rl ,EvAu〉.

MGC is a smart and security-aware GUI model with respect to SC if and only
if:

– The roles that are authorized by EvAu to execute an event ev (different from
creating a widget) are exactly those that:
• are also authorized by DaAu to execute all the data actions that will be

triggered when executing the event ev , and
• are also authorized by EvAu to create all the widgets that will be opened

when executing the event ev (closing a widget, however, is not relevant
authorization-wise).

– The roles that are authorized by EvAu to create a non-container widget wd
are exactly those that are also authorized by DaAu to execute all the data
actions that will be triggered when executing this event.



Automatic Generation of Smart, Security-Aware GUI Models 213

– The roles that are authorized by EvAu to create a container widget wd are
exactly those that are also authorized by EvAu to create at least one of the
widgets (immediately) contained by the widget wd.

More formally, for any widget wd ∈ Wd and event ev ∈ WdEv (wd), the follow-
ing holds:

– Case 1: ev �= onCreatewd .
Then, EvAu(ev) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋂n
i=1 DaAu(daaci) if EvDaAc(ev ) = {daac1, . . . , daacn}

and EvWdAco(ev) = ∅.⋂n
i=1 EvAu(onCreatewdi) if EvDaAc(ev ) = ∅ and

EvWdAco(ev ) = {openwd1
, . . . , openwdn

}.
(
⋂n

i=1 DaAu(daaci))
⋂

(
⋂m

i=1 EvAu(onCreatewdi)) if EvDaAc(ev ) = {daac1, . . . , daacn} and
EvWdAco(ev ) = {openwd1

, . . . , openwdm
}.

– Case 2: ev = onCreatewd .
Then, EvAu(ev) =

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rl if wd �∈ Wdc

and EvDaAc(ev) = ∅⋂n
i=1 DaAu(daaci) if wd �∈ Wdc

and EvDaAc(ev) = {daac1, . . . , daacn}.⋃n
i=1 EvAu(onCreatewdi

) if wd ∈ Wdc

and In(wd) = {wd1, . . . ,wdn}.

Lemma 1. Let C be a component-based model, C = 〈E, At, As, Md〉. Let SC be
a security-design model for C,

SC = 〈Rs ,DaAc,Rl ,RsAc,DaAu〉,

with Rs = (E ∪ At ∪ As ∪ Md). Also, let GC be a GUI-model for C,

GC = 〈Wd ,Wdc, In,Ev ,DaAc,WdAc,WdEv ,EvWdAc,EvDaAc〉.

Then, there exists a unique security-GUI model for GC that is smart and security-
aware with respect to SC. This model is denoted by M(GC,SC),

Proof. Due to space limitations, we only sketch the proof of this lemma here.
The crucial point is that, given a security-GUI model MGC = 〈GC ,Rl ,EvAu〉,
the clauses in Definition 5 precisely define, for any event supported by GC , the set
of roles in Rl that should be returned by EvAu, if MGC is to be considered smart
and security-aware with respect to SC . First, the clauses in Definition 5 cover all
the possible cases. In fact, for every event ev , there is a clause (and only one) that
applies to this event. Then, every clause either identifies a specific set of roles as
the expected result for EvAu or it recursively calls EvAu on some creating events



214 D. Basin et al.

(namely, those associated to the widgets that will be open when executing the
event). Since our GUI models are finite and neither include cycles in the widget
opening action nor in the containment-relationship, these recursive calls always
terminate. Consequently, for any SC and GC , there always exists a security-GUI
model for GC , namely 〈GC ,Rl ,EvAuSmart〉, that is smart and security-aware
with respect to SC , where EvAuSmart : Ev −→ P(Rl) is the function defined by
the clauses in Definition 5 for the given SC and GC .

5 Automatically Generating Smart, Security-GUI Models

In this section, we sketch the definition of a QVT operational transformation
smartandsecure() that, given a SecureUML+ComponentUML model and a
GUI model, automatically generates a SecureUML+GUI model that is both
smart and security-aware. The crucial step in this transformation is, of course,
the creation of the Permission-objects, and how they link Role-objects to Atomic-
Execute-objects (and, through them, to Event-objects). Recall that for the gen-
erated model to be considered smart and security-aware, for any of its Event-
objects, the value returned by the operation allAssignedRoles()−>asSet(), which
“navigates” through those links, must satisfy Definition 5.

We split smartandsecure() into two sequential auxiliary model transfor-
mations: generatemodel() and addpermissions(). The method generate-
model() generates a SecureUML+GUI model M that, basically, contains all
the widgets, events, widget actions, and data actions, along with their links,
that are specified in a given (source) GUI model GC , plus the roles Rl that
are specified in a given (source) SecureUML+ComponentUML SC . More for-
mally, generatemodel() generates a SecureUML+GUI model MGC = 〈GC ,Rl ,
EmptyEvAu〉, where EmptyEvAu(ev) returns, for any event considered in GC , the
empty set of roles, i.e., the expression ev .allAssignedRoles()−>asSet() evaluates to
Set{}. The generated model MC is not yet security-aware or smart (unless the
given security-design model SC does not specify any authorization restrictions.)

Next, based on the results of evaluating an OCL operation EvAuSmart()
(whose definition directly translates into OCL the clauses in Definition 5), the
method addpermission() augments the SecureUML+GUI model MGC with all
the permissions that makes this model smart and security-aware with respect
to SC . More concretely, it adds all the permissions, along with their links to the
appropriate roles and atomic execute actions, that are required for the following
to hold: for any event ev , the expression ev .actions.isAssigned.allRoles()−>asSet()

evaluates to the set of roles that should be authorized to execute the event ev if
MGC is to be considered smart and security-aware with respect to SC .

6 Related and Future Work

Creating user interfaces is a common task in application development and one
that is often time consuming and therefore expensive. There have been numerous



Automatic Generation of Smart, Security-Aware GUI Models 215

proposals and tools that aim to reduce the effort required to build effective, user-
friendly graphical interfaces. Surprisingly, there has been no prior research until
now on the systematic design of GUIs whose functionality should adhere to the
security policy of the underlying application-data model. The idea we develop
here originated in [12], where we first proposed using model-transformations to
generate simple (not necessarily smart) security-aware GUI models.

In the modeling community, other researchers have investigated how to ex-
tend existing modeling languages for GUI modeling. [4] proposes a UML profile
to model GUI layout. We do not consider layout issues since translating secu-
rity from data models into GUI models is independent (except for containment
hierarchies, which we do consider) of the graphical appearance and location of
the widgets. However, we do plan to use widgets’ graphical information to make
our GUIs more appealing to users. [3] proposes a heavyweight, template-based
extension of UML for GUI modeling to help develop GUIs for large-scale sys-
tems, although access control decisions are not part of this work either. This
work is similar to ours in that it also separates concerns within the modeling
phase by separating the construction of the application and the GUIs. Our mod-
eling techniques also differ since we use metamodeling in contrast to their use of
stereotypes. In [3], the task of the GUI designer is reduced to choosing between
window types, which are parameterized templates (including interaction behav-
ior and layout). If we had used stereotyped GUI designs in our approach, we
would have provided different fixed GUI designs that could be made automati-
cally smart and security-aware according to the underlying data model security
policy.

[6] approaches security as a crosscutting concern in terms of aspect-oriented
programming for a software system. The main contribution of this work is a
behavioral definition of aspects. The authors propose enriching a data model with
a security policy by performing a model transformation using the bidirectional
object-oriented transformation language (BOTL) [9,10]. Although they present
examples, they only outline a method for model transformation based on the
proposed definition. Therefore a comparison here would be difficult. Notice also
that such comparison would concern our integration of the SecureUML policies in
the data model, not the GUI model generation itself. In [13], the authors present
a model transformation methodology to integrate non-functional requirements,
such as security, in a model-driven software product line. In this setting, abstract
design models of the application and its security are built and these models
are refined in parallel using model transformation to obtain an implementation
model with Java Platform, Enterprise Edition (JEE) security annotations. In
contrast, we integrate the data, the GUI, and the security platform-independent
models (PIMs) from the design stage to obtain a security-aware GUI PIM from
which one can generate a functional GUI, which will provide a security-aware
and smart access to the data. Regarding GUI generation, there are a number
of tools for the automated design and generation of user interfaces, which can
generate the static layout of an interface from the application’s data model.
However, security concerns are not among the problems addressed.



216 D. Basin et al.

In the programming community, independent of model-driven initiatives, nu-
merous projects have addressed the problem of how to best implement graph-
ical user interfaces for application data. For example, [8] proposes enriching
the application source code with annotations that control the generation of the
graphical user interfaces. Other researchers have designed and implemented spe-
cialized tools that generate graphical user interfaces meeting their own specific
requirements. These tools simplify configuring personal services, enabling the
combination of different kinds of events [11]. Also, there are many GUI builders,
either integrated into IDEs or available as plug-ins, that simplify the task of
creating application GUIs in different programming languages. However, to the
best of our knowledge, [7] is the only tool capable (although still a prototype)
of automatically generating smart, security-aware functional GUIs.

Finally, our work is also related to research in the field of intelligent user
interfaces. In our view, smart security-aware GUIs can be seen as a class of
intelligent user interfaces. Our GUIs take advantage of the users’ status to tailor
their access to the application data. An interesting follow up question concerns
the generality of our model-transformation approach and whether it can be used
to generate other classes of intelligent interfaces.

7 Conclusions

We have presented an approach based on model-transformation for automati-
cally generating smart, security-aware GUIs. Given an application-data model
and a GUI model, our transformation makes the GUI model both smart and
security-aware. We have implemented our approach using the Operational QVT
transformation engine that is provided within Eclipse.

As a design methodology, our approach has three main advantages over tradi-
tional approaches to software design. First, security engineers and GUI designers
can independently model what they know best. Second, security engineers and
GUI designers can independently change their models, and these changes are
automatically propagated to the security-aware GUI models. Third, GUI de-
signers can use the generated security-aware GUI models to check that they are
designing the right GUI to give the (authorized) users access to the (intended)
application data.

The work presented here is the corner stone of a more ambitious project for
making model-driven security an effective and useful approach for generating
multiple layers of security-critical systems in industrial software development.

References

1. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology 51(5), 815–831 (2009)

2. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006)



Automatic Generation of Smart, Security-Aware GUI Models 217

3. Blankenhorn, K., Walter, W.: Extending UML to GUI modeling (2004),
http://www.bitfolge.de/pubs/MC2004_Poster_Blankenhorn.pdf

4. TATA Research Development and Design Center. Heavyweight extension of UML
for GUI modeling: A template based approach (2001),
http://www.omg.org/news/meetings/workshops/presentations/

uml2001 presentations/10-2 Venkatesh typesasStereotypes.pdf

5. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for Role-Based access control. ACM Transactions on Infor-
mation and System Security 4(3), 224–274 (2001)

6. Fox, J., Jürjens, J.: Introducing security aspects with model transformations. In:
12th IEEE International Conference on the Engineering of Computer-Based Sys-
tems (ECBS 2005), Greenbelt, MD, USA, April 4-7, pp. 543–549 (2005)

7. BM1 Software Group. The SmartGUI Project (2009),
http://www.bm1software.com/

8. Jelinek, J., Slavik, P.: GUI generation from annotated source code. In: TAMODIA
2004: Proceedings of the 3rd annual Conference on Task Models and Diagrams,
pp. 129–136. ACM, New York (2004)

9. Marschall, F., Braun, P.: Model transformations for the MDA with BOTL. Tech-
nical report, University of Twente (2003)

10. Marschall, F., Braun, P.: Bidirectional object oriented transformation language
(2005), http://sourceforge.net/projects/botl/

11. Ogura, M., Mineno, H., Ishikaw, N., Osano, T., Mizuno, T.: Automatic GUI Gen-
eration for Meta-data Based PUCC Sensor Gateway. In: Lovrek, I., Howlett, R.J.,
Jain, L.C. (eds.) KES 2008, Part III. LNCS (LNAI), vol. 5179, pp. 159–166.
Springer, Heidelberg (2008)

12. Schläpfer, M., Egea, M., Basin, D., Clavel, M.: Automatic generation of security-
aware GUI models. In: Bagnato, A. (ed.) European Workshop on Security in
Model Driven Arquitecture 2009 (SEC-MDA 2009). Workshop Proceedings Series,
vol. WP09-06, pp. 42–56. CTIT, Enschede (2009)

13. Yie, A., Casallas, R., Deridder, D., Van Der Straeten, R.: Multi-step concern re-
finement. In: EA 2008: Proceedings of the 2008 AOSD workshop on Early aspects,
pp. 1–8. ACM, New York (2008)

http://www.bitfolge.de/pubs/MC2004_Poster_Blankenhorn.pdf
http://www.omg.org/news/meetings/workshops/presentations/uml2001_presentations/10-2_Venkatesh_typesasStereotypes.pdf
http://www.omg.org/news/meetings/workshops/presentations/uml2001_presentations/10-2_Venkatesh_typesasStereotypes.pdf
http://www.bm1software.com/
http://sourceforge.net/projects/botl/


Report: Modular Safeguards to Create Holistic
Security Requirement Specifications for System

of Systems

Albin Zuccato1,2, Nils Daniels1, Cheevarat Jampathom1, and Mikael Nilson1

1 TeliaSonera, Common Development, Product Security, Sweden
2 Stockholm University, Department of Computer and System Science, Sweden

Abstract. The specification of security requirements for systems of sys-
tems is often an activity that is forced upon non-security experts and
performed under time pressure. This paper describes how we have ad-
dressed this problem by using a collection of modular safeguards, which
are tailored to the application domain. These safeguards, which are spe-
cific but still fairly atomic, are combined into requirement profiles that
seamlessly integrate into the overall development approach. These safe-
guards are grouped into 15 classes which subsume requirements that
aim for low, medium and high security capabilities. Each requirement
is further specified with a technical description defining actual values.
To achieve a holistic coverage, we have created requirement profiles that
define combinations of modular safeguards and have added complemen-
tary organizational safeguards. We will show how we have developed
this approach over the years and present our practical experiences of the
seamless integration into the development life cycle.

1 Introduction

Security requirements, as a special type of general system requirements, are an
established way to express what kind of security is expected from a (telecom-
munication) service or product – which are a system of systems. Those security
requirements are an important cornerstone for a secure offering that satisfies
market demands. Within literature we find an almost unanimous consensus that
security requirements shall be elucidated at the beginning of the development
and are supposed to guide all future security activities like implementation, as-
surance, operation and retirement. However, although everybody agrees that
security requirements are needed it seems quite common that they come as an
“ευρηκα” (heureka) experience to the security expert (given more or less exten-
sive preparation by means of risk analysis or similar). Sometimes the security
expert is assisted by a more or less elaborate process. But ultimately it is their
“creativity” that leads to the security requirements.

From a practical viewpoint, we see a number of issues that are difficult to
satisfy with such thinking. First of all it is assumed that there is a security
expert involved. Although desirable, the practical scarcity of security expertise

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 218–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Modular Safeguards to Create Holistic Security Requirement Specifications 219

implies that only security critical projects receive this level of attention. And
even when a security expert at hand, it is likely that this person is under time
critical restrains with little time available to produce solid requirement specifi-
cations. Secondly, it is taken for granted that the resulting security requirements
are detailed enough and unambiguous, but also simple enough to be directly un-
derstandable to developers. Furthermore, we have observed wishes that security
requirements “per se” be uniformed enough to foster generic and reusable secu-
rity solutions. From our own practical experiences and through investigations of
existing approaches we find that this is hardly the case.

We therefore developed an approach that takes a set of modular security safe-
guards, which are specific and fairly atomic, and assembles them into holistic
security requirement profiles. These profiles take the interdependencies and syn-
ergies between the modular safeguards into account and complements them with
higher level organizational security mechanisms. Such profiles can be used sub-
sequently to an information classification [1]. We will show the advantages of
this approach on of our projects. We then describe the practical experiences we
made and indicate a number of advantages we have seen. Finally we deliver our
conclusions and suggest a way forward.

2 Security Requirement Engineering Today

To describe good security requirements for information systems is sometimes
considered in between engineering and art[2]. This is due to the significant por-
tion of creativity that is commonly assumed to be required. Although this might
be true to some extent, it is desirable to encapsulate the creativity into well de-
fined areas and have a structured engineering process at hand. Subsequently, we
present a selection of approaches that can be considered when tasked to find the
(security) requirements for a system and show some practical issues for them.

We would like to start with Common Criteria (CC)[3] which we consider the
most important approach in this area. CC offers a modular set of requirements
with a very wide coverage. They are well written and comprehensible. Given
enough time and expertise, CC would be very suitable for the system of sys-
tems security area. Unfortunately, both time and expertise must be considered
scarce in normal industrial development. The biggest challenge with CC is how
to combine the safeguards in a suitable way. It is not clearly indicated which safe-
guards should be considered indispensable, which are situation dependent and
which are “nice to have”. Furthermore, significant security architecture skills are
required to solve the interdependencies between classes as CC only provides a
dependency indication inside the classes. If a protection profile (a CC construct
for requirements for an explicit and well defined purpose) is available this would
be solved. However, to derive a protection profile implies a significant work effort
which, from an industrial point of view, seldom is feasible. Another problem we
see is that although CC indicates the class, it is the author of a security target
or protection profile (i.e. the requirement specification) that has to define the
actual values for each requirement. We also found that CC has no clear inter-
face towards earlier security demand assessments (e.g. risk analysis). It requires



220 A. Zuccato et al.

expert knowledge to figure out which component(s) mitigate which risk or sat-
isfy which demand. This issue is hardly addressed anywhere in CC. Altogether
this requires a security specialist whom is highly familiar with CC – something
that is not commonly available for the average system engineering project. We
therefore conclude that although CC is technically very sophisticated there are
“soft” issues such as an extensive need for security expertise and high application
threshold due to size and educational effort as well as significant overhead that
makes the usage for Common Criteria too problematic in a practical day-to-day
system development.

Another interesting group is the “monolithic approaches” which provides full
security requirement sets for specific areas. The most prominent among them
which we consider are the specifications published by NIST in their SP800
series[4]. These special publications are organized within areas and usually pro-
vide a very good coverage of the topic. However, they are extremely monolithic
and a normal system of systems covers many areas addressed in various SP’s.
This leads to significant redundancy and makes it difficult to apply the holis-
tic view necessary for system security engineering. We have found that indus-
trial development activities suffer under significant time pressure and consider it
therefore too optimistic to assume that projects, that have to deal with multiple
systems and multiple security requirements, would have the time and knowledge
to harmonize requirements to derive a non-redundant and holistic set. Further-
more, we find that the threshold to access them is quite high due to the fact
that each SP is around 50 to 100 pages and one would be required to read sev-
eral of them. Other approaches in this group are the IEEE RFC’s or PCI DSS.
They suffer from the same problems of redundancy, application threshold and
monolithic thinking.

As a third group of approaches we found “‘security requirement engineer-
ing methods”. Among them we find approaches like HSRE [5] or SQUARE [6].
These approaches investigate various sources and suggest different elicitation
techniques to find security requirements. Unfortunately, to deliver the excellent
requirement specifications they promise a security expert, who select and per-
forms the suitable activities, is required. We also find that these methodologies
describe the “what” but not the “how”. This implies for us that a high adapta-
tion and education threshold must be overcome.

A fourth group of approaches we would like to describe as “methods and
best practices”. A typical example for such approaches are the use-case based
abuse-cases [7] and misuse cases [8]. Both aim to apply standard requirement en-
gineering techniques to security requirements. Another example is ISO27001[9]
which contains instructions of how to derive requirements from a list of require-
ment areas. However, they have too high abstraction level and are not sufficiently
detailed to serve as measurable requirements.

Although this list is not exhaustive, we cannot present more due to space
constrains. In general, we are confident to say that these approaches commonly
provide a solid structure, process and some good advice of how to derive security
requirements. However, they usually neither provide ready-made requirement



Modular Safeguards to Create Holistic Security Requirement Specifications 221

sets nor implementation guidelines and therefore have a fairly high threshold
before they can become applicable. We also find that a great deal of security
expertise is required in order to apply these approaches.

3 Security Requirement Specification Engineering for
System of Systems

Telecommunication products and services are often extremely large and complex
systems made up from other systems. These systems of systems have both overall
and specific requirements for each subsystem. When constructing such systems of
systems it is more common to integrate existing systems rather than to develop
new ones. This implies that some of the sub-systems cannot be modified too
much as it might affect the systems functionality. The requirement specification
process therefore must take those limitations into account.

From an industrial perspective the requirement specification is further con-
strained by factors like execution time, lead time and budget restrictions. How-
ever, most significant is the lack of security expertise for all projects. Security
expert resources are scarce and have to focus on activities where they can be of
most benefit. This implies that the average development projects receives very
little expert attention and is left to its own accord. To derive security require-
ments under these conditions, it is necessary to have a process that requires as
little security knowledge as possible. Furthermore, such a process must be per-
ceived as part of the daily work and needs therefore to have tight integration
into the normal development life cycle.

To accommodate with the complexity, the lack of resources and the need for
compliance with regulations and policies, we have developed a requirement speci-
fication approach that has very little freedom but performs well for non-security-
experts. The foundation of this approach is a collection of modular safeguards.
These safeguards are well encapsulated and have clear interfaces. This implies
that they are tailored to the application domain to be sufficiently specific and
that they are fairly atomic. The safeguards are grouped into approximately 15
classes, which subsume requirements that aim for no, low, medium and high
security capabilities. Each requirement is further specified with a technical de-
scription defining actual values. In order to achieve a holistic coverage, we have
created requirement profiles that define combinations of necessary modular safe-
guards as well as complementary organizational safeguards. From a usage per-
spective they only have to pick the appropriate profile for the security demand
as defined by the information classification. This will automatically yield all nec-
essary safeguards and their associated technical specifications, i.e. the security
requirements.

3.1 Modular Security Requirement Classes

Over the years there have been constant discussions in our organization on
whether different security mechanisms (safeguards) were strong enough or not.



222 A. Zuccato et al.

Fig. 1. Requirement Engineering Process

We think that this should depend on the “relative” strength needed and not on
an abstract “absolute” strength. It is therefore necessary to express the protec-
tion demand in a hierarchical way and to have corresponding levels of security
safeguards. The first part with the demands are realized with the consequence
reference table we find in [1]. The corresponding Security Mechanism Reference
Table (SMRT) is but a logical continuation to describe which requirements that
satisfy each demand. From an organizational policy point of view, a desirable
prerequisite for SMRT is that it have to be fairly stable over time. Thus the secu-
rity safeguards need to be described in a functional (rather then technical) and
modular manner. The goal is that SMRT serves as a repository for requirements
and can be used to evaluate the security protection levels of existing solutions.
This way we save development and assessment time and make security accessible
for the average development engineer.

We started by looking at Common Criteria (CC) [10] to look for safeguards
to choose from. Unfortunately we found CC in its entirety to be too complex
for our needs. Especially the unsuitability for non-security experts was a preven-
tive argument. Instead we browsed CC for security mechanisms that suited our
application domain and intention. For each security mechanism, we defined the
protection level it could offer (valid in our organization) for each of the security
properties confidentiality, integrity and availability. For levels 0 – 3 we define as
none, low, moderate and high security.

This initial list from CC was complemented with safeguards that were used
within our organization. This yielded a quite extensive list of safeguards which
we needed to reduce to accommodate economic needs and minimize usage com-
plexity. The goal was to allow simpler usage and achieve easier comprehension for
the non-experts. This led us to a list containing about 3 safeguard groups with a
total of approximately 15 categories, see Table 1, describing security mechanisms
for level zero to three – see Table 2.



Modular Safeguards to Create Holistic Security Requirement Specifications 223

Table 1. Security mechanism reference table

System dependent User authentication Intrusion detection and response
Access control Disaster recovery
Stored data integrity . . .
Stored data confidentiality

Interdependent Traceability Restorability
Key management . . .

Network dependent Data integrity transfer protection Network Authentication
Data confidentiality transfer protection Pervasive

Table 2. Example for functional and modular authentication mechanism

Lvl Name Description
0 One-factor, clear secret (e.g. password) is stored or transmitted in clear text
1 One-factor, protected secret (e.g. password) is not stored or transmitted in clear text
2 One-factor, strong Lvl 1 + construction requirements, locking mechanisms and issuing

guidelines
2 Two-factor, non-repeatable Radius-based in order to centralize the authentication method
2 Biometrics Biometric authentication mechanisms were FRA and FRR meet at

no more then 3%
3 Two-factor, physical As level 2 plus one factor is a physical token (e.g. calculator, smart

card, biometrics . . . ).

Concerning the usage scenario we formed a two-step process. First, we intro-
duced a baseline security level in which the indispensable security safeguards
were integrated. This baseline is mandatory for all projects and serves primarily
the purpose of infrastructure protection. Secondly, every security development
and maintenance activity is to consider the required protection level and add
security mechanisms to that extent. Concerning the possible combinations we
initially started out with a matrix indicating which mechanisms to combine. This
turned out to be too complicated in the long run as much work effort had to be
spent by each development project to create the requirement sets by them selves.
We therefore improved the approach as presented within the next chapter.

3.2 Security Requirement Profiles

Following up on projects that have used our approach we learned that it was
extremely difficult for non-security-experts to achieve a holistic security coverage
that satisfied the corporate security policies. As a reason we found that prod-
uct developers had difficulties in knowing which combination of safeguards that
where necessary for the required security protection. Especially when constrains
of cost effectiveness and non-interference with functionality and user experience
had to be considered. Our solution was to create security profiles which translate
policies and other steering documents into practical and reasonable security re-
quirements that are understandable and applicable. Due to the fact that we use
information security classification[1] we found that the majority of projects have
their security demands expressed in four levels. For these four levels we crafted
three requirement profiles (for “none” we do not have a profile as the baseline
covers it sufficiently).



224 A. Zuccato et al.

We started out by creating suitable combinations of the security safeguards
from the security mechanism reference table. As the reference table is fairly ex-
tensive we had various mechanisms at each level which had different interdepen-
dencies and we needed to select the desirable alternatives. An example is the con-
fidentiality protection of information in a system. We could then choose between
stored data confidentiality safeguards, which are different types of cryptography,
that need to be combined with key management or access control mechanisms
combined with authentication and audit trails. Although the overall security was
important we also had to consider other factors like performance impacts, im-
plementation costs, maintenance efforts and operation costs. The derived draft
profiles where a great improvement. However, during the prototyping process
we found that we could integrate organizational safeguards to fill eventual gaps
between mechanisms and assure a full holistic coverage and the intended policy
compliance.

To be able to reproduce this we documented our findings in an algorithm. The
first step was that only mechanisms at the same level were allowed in a profile.
The second step was to deal with the interdependencies. For this we created a
matrix that indicated the correlation between mechanisms as synergies, depen-
dencies, conflicts and redundancies. When we constructed a profile, mechanisms
that had synergies were primarily chosen. When it came to dependencies, we
aimed to reduce them as much as possible and documented the motivation for
why and how we reduced the profiles. For the remaining two, our strategy was
to avoid conflicts at all possible costs by choosing alternative mechanisms and
by eliminating redundancies when we did not have dependencies. The third step
was to identify eventual gaps between mechanisms and described organizational
safeguards to mitigate them.

While creating the profiles and performing all trade-offs we could see the diffi-
culties that non-security-experts had to deal with. We found that a great deal of
expertise and pragmatism is necessary and that the profiles could never be per-
fect. However, we have achieved a reasonable balance that is sufficiently accurate
to function without modification in our average projects. For the extraordinary
projects, the profiles provide a solid base for the security expert to perform the
fine tuning and to accommodate to their specific needs.

3.3 Technical Specification

The above presented Security Mechanism Reference Table (SMRT) and profiles
were a very good starting point. We used SMRT for more then seven years and
found that it required a bit too much security expertise to use it to its full po-
tential for the technical specification part and the subsequent design. SMRT and
our profiles indicated what we wanted and how they could be combined. The pro-
files failed, however, to communicate clearly what security mechanisms we had in
mind. Security specialists frequently received the questions from developers and
suppliers what it actually meant. It was necessary to provide interpretations on
a case-by-case base which turned out to consume some extra time and resources.
We also realized that the chosen solutions had significant variations. This was



Modular Safeguards to Create Holistic Security Requirement Specifications 225

not desirable as it prevented economy of scales where we could use the same
solution for various products and by those means to reduce the development
and operational costs.

To solve this problem we started to investigate the common solutions that
were derived in the different projects and created a condensed set of refined
technical specification requirements. We verified these technical specifications
against existing suggestions in literature. For example Common Criteria [3] or
the security patterns community[11]. A typical technical specification would de-
fine all the security mechanisms for a requirement at a given protection level and
provide actual values for the parameters. An example for password to be used
on SMRT level 2 can be seen below. This example was derived from our demand
and internal usage of strong passwords, security patterns [11] for authentication.
To derive and verify the strength we used the algorithms suggested in NIST
SP800-63[12].

Password, to comply with one-factor, strong requirement

Length: 6-8 characters
Composition: ASCII 32-126, 129-165, at least one lower case, upper case and number

(allow for special character but not required)
Source: Individual (recommendations provided) or automatic (which is stronger)
Lifetime: min 1 day, recommended 3 month, max. 6 month
Ownership: Individual (should be made clear in the contract
Authentication period: log-in and after 15 minutes of terminal inactivity
Authentication exception: 3 failed login lock the account; reset is possible via one-time

password by SMS (then for only 15 minutes) or paper mail to enter new password
Distribution: via paper mail a random PW is distributed, must be changed at first login
Storage: Only hashed with a cryptographic Hash (preferably SHA-256)
Transmission: Only encrypted (preferably replay-protected by seeded hash before encrypted)

This step was highly appreciated by the developers and system architects
as they could now derive their security requirements with associated techni-
cal specifications without having to wait for the security experts to refine the
requirements. We found that both the effort and the lead time for security re-
quirement engineering were significantly reduced. Secondary effects like reuse
and complexity reduction are harder to measure, especially given the short time
of usage of about one year, but we think that we see clear indications of these
positive effects.

3.4 General Applicability

In the introduction we mentioned that the approach is fairly tailored to the ap-
plication domain. We are, however, convinced that the structure and artifacts
are generic enough to be useable in other domains. We also find that information
classification becomes more and more used1. Our approach is a logical contin-
uation of that work and we have received external confirmation that it can be
valuable. We therefore investigate all three components and present our ideas
on how to apply them outside of our scope.

1 At workshops and personal interviews with the Swedish National Emergency Re-
sponse Authority, Swedish Banks and the Swedish National Pharmacy Corporation.



226 A. Zuccato et al.

When it comes to the security mechanism reference table the modular struc-
ture per se assures that it can be adapted to any domain. It might not even be
necessary to craft an own SMRT but use the categories and classes we intro-
duce. Eventually the values should be verified to match ones own risk appetite.
We also think that defining complementary classes and mechanisms for the own
application domain is fairly easy due to the modular structure.

The requirement specification profiles are based on our risk appetite and in-
frastructure. To apply them would require the same preconditions. However, the
general algorithm, especially the interdependency matrix, should be reusable. It
is again possible to reassess the dependencies for ones own infrastructure and
risk appetite if it seems unsatisfactory.

Finally the technical specification is the least generic one. It is heavily tailored
to our environment and the values clearly reflect our risk appetite. What we think
can be reused with advantage are the structures and patterns for each mechanism
and the verification infrastructure we have associated to some of them.

4 Example

This section presents an example of how to apply holistic security requirement
profiles to a Mobile Push Email (MPE) service. MPE provides an always-on
functionality where the users are able to access their emails anywhere anytime.
The idea is to support our customers demand for mobility. To enable this ser-
vice the operator needs the following extension components to the existing mail
infrastructure:

– Relay Server - is the central server responsible for message routing which
enables the mobile client to communicate with push connector, and forward
email messages to the end-user.

– Push connector - is the application which connects to an email server, and
transmits email content to the mobile client.

– Support site - is the online fault reporting system.

The first step, in order to retrieve a correct level of security requirement pro-
file, is to list the security-relevant information handled in MPE and classify it –
see [1]. We focus only on the components that are new to the service – see Table 3.
The Relay server and connector handle the user’s email account credentials and
email contents. These credential information is then used to authenticate the user
against the back-end email server. This information is “access control data” with
sensitivity level 3. Once the user is authenticated, the user’s emails are pushed (ac-
tively transferred) to the mobile client. The email content is considered as “user
traffic” with sensitivity level 2. The support site handles log files and possibly some
customer related information. This information types (“logs” and “user informa-
tion”) is classified as level 2.

After classifying the information we define the maximum protection level
needed (for each system). We assume that the security of a system is only as
strong as its weakest part and therefore use a strategy in which the whole system



Modular Safeguards to Create Holistic Security Requirement Specifications 227

Table 3. Information Classification for Mobile Push Email

System Information Description Information type Protection
demand

Relay Server & Email contents Email that are pushed to mobile User traffic (Lvl 2) High
Connector Email account

credentials
Login information for user authen-
tication to mail server

AC data (Lvl 3) (Lvl 3)

Support site Log files Log files that describe problems Logs (Lvl 2) Moderate
Support ticket
data

Detailed customer data might be
in the log files

User info. (Lvl 2) (Lvl 2)

protection has to satisfy its maximum demand level. If, for example a system
handles at least one set of level 3 information, that system automatically will
require high security protection (lvl 3). In our example the relay server and
connector requires high (lvl 3) protection whereas the support system requires
moderate (lvl 2) protection. This implies that for the support system, the “mod-
erate” profile – see Table 4 – has to be used.

Table 4. Moderate security requirement profile (level 2)

Requirement Areas Requirement Name Requirement Description
Authentication One factor, strong secret (e.g. password) is not stored or transmitted in

clear text; construction requirements, locking mecha-
nisms and issuing guidelines.

Access control Discretionary access
control

Access rights granted by the object’s owner. The access
rights have to be reviewed regularly in long interval
(e.g. one year OR when changed).

Data confidentiality
transfer protection

Strong encryption of a
communication path

Strong encryption (e.g. 3DES, AES) shall be used.
Weak encryption algorithms (e.g. DES) are not allowed.

. . .

5 Experiences

The above presented processes and documents have been iteratively developed
over the last nine years. We were inspire by the ideas implied in ISO9000[13] and
SSE-CMM[14] and improved the method based on measuring real world projects.
As the method is part of the mainstream development life cycle, it is performed
by approximately 200 projects per year. One important lesson we learned is that
cost efficiency and complexity reduction are key factors for success. This implies
that “good enough” security which is implemented and used is ultimately better
then optimal security on paper. Subsequently, we shall go through the positive
and negative experiences we had in more detail.

Most importantly for us was that the developers considered that the security
requirement engineering became more understandable to them and that the us-
ability of the method was improved. The need for expert involvement decreased
significantly and since the introduction of profiles most average projects con-
sider it possible to perform the security requirement specification on their own.
Noteworthy is also that due to the iterative improvements the developers felt
integrated and developed a positive attitude.



228 A. Zuccato et al.

In respect to cost efficiency and willingness to perform security work we found
that the time effort was of big significance. We therefore investigated how much
time was required for each project and actively worked with time issues – see
Figure 2. Specifically on the execution time we found a five-fold reduction over
the years. This in turn allowed projects to considerably reduce the amount of
man-hours needed in developing requirement specifications which could then be
forward to suppliers in shorter delivery time frames. Also important in the light of
shorter time-to-market cycles was a three-fold reduction in lead time. Tasks that
needed to wait on one another were then eliminated by having many activities
perform “semi-automatic” due to the clear guidelines available. We also found
that lead time was reduced as the security experts could then prioritize focus to
critical tasks instead of covering a multitude of tasks.

Fig. 2. Experiences of security requirement profiles

When it comes to the quality of requirements we found that in the beginning
we had less requirements which had, however, a better coverage. Over time we
also increased the amount of requirements by maintaining the holistic coverage.
As most of the requirements are now pre-fabricated the ambiguity is reduced. An
important positive side effect is that it is far easier now to show policy compliance
for all projects without the projects to worry about this issue. And last but not
least, the redundancy of requirements has reduced which has positive economic
effects on the development and operational costs.

When it comes to the limitations of this method, it is obvious that this method
applied to its full extent has hardly any freedom of choice. The profiles are not
fully optimized but rather focus to catch as many cases as possible. We consider
it possible to perform an optimization of the result by further tailoring on a case-
by-case bases which requires security expert knowledge. We therefore think that



Modular Safeguards to Create Holistic Security Requirement Specifications 229

a security expert can use the method for guidance but should not feel constrained
to enhance where reasonable.

We also have to emphasize that the strength description of safeguards is fairly
subjective and heavily guided by the risk appetite. We found that we could
establish an agreement concerning the strength inside our organization but are
well aware that this is not necessarily generic. Although subjective we found
that we have something to discuss and compare when talking to third parties
and establish at least a clear picture of different perceptions.

Finally we found that quality assurance and verification is an issue. Mismatches
between profiles and a project’s requirement specification that are detected in as-
surance activities require active treatment. Especially when shortcomings are per-
ceived a special exception handling process is necessary. During such an exception
handling a risk analysis is commonly performed. On the positive side, we found
that such an analysis is fortunately limited in scope and has to investigate only
the problem cases. However, expert resources for this activity have to be taken
into account that do not concern the individual projects but have an impact on
the overall performance.

6 Conclusion

As a telecom provider we have a need for security in our infrastructure and
services. As this infrastructure, and the services running on it, is mainly systems
of systems we need an approach that can provide us with multidimensional
and holistic security requirements. Current approaches require security expertise
which makes them difficult to apply in an industrial setting. We therefore present
an approach that builds on a flexible and extensible modular safeguard base
which is narrowed down into directly applicable security requirement profiles to
remove uncertainty and ambiguity (but also the freedom) for system developers.
As an extension we also showed the capability to attach technical specifications
to further reduce the need for security expertise.

In the experience section we have presented our positive and negative expe-
riences with this approach. We would like to summarize these experiences by
claiming that this approach is simple to use out of the box (like monolithic ap-
proaches) and extensible when necessary, due to its modular base (like the CC)
and the well defined construction algorithms are suitable for adaptation and
optimization (like the best practise approaches).

For future development our focus currently lies on crafting further technical
specifications and keeping our mechanism library up-to-date. Previously we have
also described a testing approach that allows the non-expert to find appropriate
tests[15]. This approach must be further integrated into the profiles to automat-
ically derive the required test specifications and test cases. In addition we aim
to further collect empirical data about the process efficiency to be able to iden-
tify areas were further improvement (e.g. automation, tool development, etc.) is
possible.



230 A. Zuccato et al.

References

1. Zuccato, A., Endersz, V., Daniels, N.: Security requirement Engineering at a
Telekom Provider. In: Jakoubi, S., Tjoa, S., Weippl, E. (eds.) ARES 2008 Pro-
ceedings, pp. 1139–1147. IEEE Computer Society, Los Alamitos (2008)

2. Bishop, M.: Computer Security: Art and Science. Addison Wesley, Reading (2003)
3. International Organization for Standardization: ISO/IEC 15408:2005 - Common

Criteria for Information Technology Evaluation (2005)
4. National Institute of Standards and Technology: Special publications (800 series)

(2009), http://csrc.nist.gov/publications/PubsSPs.html
5. Zuccato, A.: Holistic security requirement engineering for electronic commerce.

Computers & Security 23(1), 63–76 (2004)
6. Mead, N., Hough, E., Stehney II, T.: Security Quality Requirements Engineering

(SQUARE) Methodology. SEI Technical Report (2005)
7. McDermott, J., Fox, C.: Using abuse case models for security requirements analysis.

In: Proceeding of the 15th Annual Computer Security Applications Conference, pp.
55–64. IEEE, Los Alamitos (1999)

8. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Re-
quirements Engineering 10(1), 34–44 (2005)

9. International Organization for Standardization: ISO/IEC 27001:2005, IInformation
technology – Security techniques – Information security management systems –
Requirements (2005)

10. International Organization for Standardization: ISO/IEC 15408-2:1999 Informa-
tion technology – Security techniques – Evaluation criteria for IT security – Part
2: Security functional requirements (1999)

11. Schumacher, M., Fernandez-Buglioni, E., abd Frank Buschman, D.H., Sommer-
lad, P.: Security Patterns - Integrating Security and Systems Engineering. Wiley,
Chichester (2006)

12. Burr, W.E., Dodson, D.F., Polk, W.T.: Electronic Authentication Guideline. NIST
Special Publication 800-63 Version 1.0.2, National Institute of Standards and Tech-
nology (2006)

13. International Organization for Standardization: ISO/IEC 9000:2000 Quality man-
agement systems - Fundamentals and vocabulary (2000)

14. SSE-CMM Project: Systems Security Engineering Capability Maturity Model. v
3.0 edn. (2003)

15. Zuccato, A., Kögler, C.: Functional security testing – closing the gap between
software testing and security testing: A case from a telecom provider. In: Massacci,
F., Redwine Jr., S.T., Zannone, N. (eds.) ESSoS 2009. LNCS, vol. 5429, pp. 185–
194. Springer, Heidelberg (2009)

http://csrc.nist.gov/publications/PubsSPs.html


Idea: A Feasibility Study in Model Based
Prediction of Impact of Changes on System

Quality

Aida Omerovic1,2, Anette Andresen3, H̊avard Grindheim3, Per Myrseth3,
Atle Refsdal1, Ketil Stølen1,2, and Jon Ølnes3

1 SINTEF ICT, Norway
2 University of Oslo, Norway

3 DNV, Norway

Abstract. We propose a method, called PREDIQT, for model based
prediction of impact of architecture design changes on system quality.
PREDIQT supports simultaneous analysis of several quality attributes
and their trade-offs. This paper argues for the feasibility of the PREDIQT
method based on a comprehensive industrial case study targeting a sys-
tem for managing validation of electronic certificates and signatures
worldwide. We give an overview of the PREDIQT method, and present
an evaluation of the method in terms of a feasibility study.

1 Introduction

When adapting a system to new usage patterns or technologies, it is necessary
to foresee what such adaptions of architectural design imply in terms of system
quality. Predictability with respect to non-functional requirements is one of the
necessary conditions for the trustworthiness of a system.

We have developed the PREDIQT method with the aim to facilitate predic-
tion of impacts of architecture design changes on system quality. The PREDIQT
method produces and applies a multi-layer model structure, called prediction
models, which represent system design, system quality and the interrelation-
ship between the two. Our overall hypothesis is that the PREDIQT method
can, within practical settings and with needed accuracy, be used to predict the
effect of specified architecture design changes, on the quality of a system. Qual-
ity is decomposed through a set of quality attributes, relevant for the target
system. PREDIQT supports simultaneous analysis of all the identified quality
attributes and their trade-offs. The PREDIQT approach of merging quality con-
cepts and design models into multiple, quality attribute oriented “Dependency
Views” (DVs), and thereafter simulating impacts of architecture design changes
on quality, is novel.

This paper reports on experiences from using the PREDIQT method in a
major industrial case study focusing on a so-called “Validation Authority” (VA)
system [10] for evaluation of electronic identifiers worldwide. We first give an
overview of the PREDIQT method, and then present an evaluation of the method

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 231–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



232 A. Omerovic et al.

in terms of a feasibility study. The evaluation focuses on security and its trade-
offs with the overall quality attributes identified and defined with respect to
the VA system, namely scalability and availability. The results indicate that
PREDIQT is feasible in practice, in the sense that it can be carried out on a
realistic industrial case and with limited effort and resources.

The paper is organized as follows: An overview of the PREDIQT method is
provided in Section 2. Section 3 presents the feasibility study. Section 4 provides
an overview of related research. Concluding remarks are summarized in Section 5.
See the full technical report [12] for a more detailed presentation.

2 Overview of the the PREDIQT Method

Fig. 1. The overall PREDIQT process

The process of the PREDIQT method
consists of the three overall phases il-
lustrated by Figure 1. Each of these
phases is decomposed into sub-phases.
Sections 2.1 and 2.2 present the
“Target modeling” and “Verification
of prediction models” phases, respec-
tively. The “Application of prediction
models” phase consists of the sub-
phases presented in Section 2.3.

2.1 Target Modeling

The sub-phases within the “Target modeling” phase are depicted in Figure 2.
The requirement specifications and system design models are assumed to be
made available to the analysis team, along with the intended usage, operational
environment constraints (if available) and expected nature and rate of changes.

Characterize the target and the objectives: Based on the initial input,
the stakeholders involved deduce a high level characterization of the target
system, its scope and the objectives of the prediction analysis, by formulat-
ing the system boundaries, system context (including the operational profile),
system life time and the extent (nature and rate) of design changes expected.

Fig. 2. Target modeling phase

Create quality models: Quality
models are created in the form of
a tree, by decomposing total qual-
ity into the system specific quality
attributes and their respective sub-
characteristics. The quality models
represent a taxonomy with interpreta-
tions and formal definitions of system
quality notions.



Idea: A Feasibility Study in Model Based Prediction 233

Map design models: The initially obtained design models are customized so
that (1) only their relevant parts are selected for use in further analysis; and (2)
a mapping within and across high-level design and low-level design models (if
available), is made. The mapped models result in a class diagram which includes
the relevant elements and their relations only.

Create dependency views: In order to ensure traceability to (and between)
the underlying quality models and the mapped design model, a conceptual model
(a tree-formed class diagram) where classes represent elements from the under-
lying design and quality models, relations show the ownership, and the class
attributes indicate the dependencies, interactions and the properties, is created.
The conceptual model is transformed into a generic DV – a directed tree repre-
senting relationships among quality aspects and design of the system. For each
quality attribute defined in the quality model, a quality attribute specific DV
is created, by a new instantiation of the generic DV. Each set of nodes having
a common parent is supplemented with an additional node called “Other”, for
completeness purpose. In addition, a total quality DV is deduced from the qual-
ity models. The DV parameters are evaluated by providing the estimates on the
arcs and the leaf nodes, and propagating them according to a pre-defined model.

2.2 Verification of Prediction Models

Fig. 3. Verification of models – phase

The set of preliminary prediction
models developed during the “Target
modeling” phase, consists of design
models, quality models and the DVs.
The “Verification of prediction mod-
els” phase (Figure 3) aims to validate
the prediction models (with respect to
the structure and the individual pa-
rameters), before they are applied.

Evaluation of models: A measurement plan with the necessary statistical
power is developed, describing what should be evaluated, when and how.

Fitting of prediction models: Model fitting is conducted in order to adjust
the DV parameters to the evaluation results.

Approval of the final prediction models: The objective of this sub-phase is
to evaluate the prediction models as a whole and validate that they are complete,
correct and mutually consistent after the fitting. If the deviation is above the
acceptable threshold after the fitting, the target modelling is re-initiated for
structural model changes.

2.3 Application of Prediction Models

During the “Application of prediction models” phase (depicted by Figure 4), a
specified change is applied and simulated on the approved prediction models.



234 A. Omerovic et al.

Specify a change: The change specification should clearly state all deployment
relevant facts, necessary for applying the change.

Fig. 4. Application of models – phase

Apply the change on prediction
models: This phase involves apply-
ing the specified architecture design
change on the prediction models. See
[12] for further details.

Quality prediction: The propaga-
tion of the change throughout the
rest of each one of the modified DVs,
as well as the total quality DV, is
performed based on the general DV
model. See [12] for further details.

3 Application of PREDIQT in the Industrial Case

The PREDIQT method was tried out in a major industrial case study focusing
on a Validation Authority (VA) [9] system.

3.1 Target Modeling

Based on the initially obtained documentation (requirement specifications, oper-
ational environment specifications etc.) and several interactions with the domain
experts, UML based design models of the VA were developed.

Characterize the target and the objectives: An overview of the functional
properties of the VA, the workflows it is involved in and the potential changes,
was provided, in order to determine the needed level of detail and the scope of
our prediction models. Among the assumed changes were increased number of
requests, more simultaneous users and additional workflows that the VA will be
a part of. The target stakeholder group is the system owner.

Create quality models: An extract of the quality model of the VA is shown by
Figure 5. Total quality of the VA system is first decomposed into the four quality
attributes: availability, scalability, security and “Other Attr.” (this node covers
the possibly unspecified attributes, for model completeness purpose). The X , Y ,
Z and V represent system quality attribute ratings, while u,v g and j represent
the normalized weights expressing each attribute’s contribution to the total qual-
ity of VA. The attributes and their ratings are defined with respect to the VA
system, in such a manner that they are orthogonal and together represent the
total quality of the VA system. Thereafter, the sub-characteristics of each quality
attribute are defined with respect to the VA system, so that they are orthogonal
to each other and represent a complete decomposition of the VA attribute in
question. Both the attribute ratings and the sub-characteristic measures are de-
fined so that their value lies between 0 (minimum) and 1 (maximum fulfillment).



Idea: A Feasibility Study in Model Based Prediction 235

Qtot=uX+vY+gZ+jV ( )

Total Quality

Y ( )

<dimension> SBL {direction decreasing, unit array, StatisticalQualifier mean}

<dimension> Size real {unit fraction, StatisticalQualifier mean}

<dimension> Op int {unit sec, StatisticalQualifier mean}

«QoS attribute»

Security

M=Successes/Total ( )

Non-repudiation

Authentication

Other Sub-charact.

Q=r/a ( )

Access Auditability

X ( )

«QoS attribute»

Availability V ( )

«QoS attribute»

Other Attr.

Z ( )

«QoS attribute»

Scalability

R=1-e/t ( )

Data Corruption Prevension
E=i/r ( )

Data Encryption

W=d/s ( )

Access Controllability

Fig. 5. An extract of the quality model

Consider the attribute “Security” in Figure 5. Its weight is v (the coefficient of
Y in the “Total Quality” class). The definition of the “Security” attribute was
based on [2] and its rating was based on [11]. The dimensions-notation shown in
the form of attributes of the Security class in Figure 5, originates from [3]. The di-
mensions represent the variables constituting the rating of the Security attribute
for the VA system. Given the attribute and rating definition, the appropriate
(for the attribute and the VA system) sub-characteristics were retrieved from [1],
where they are fully defined. The Q,W,E,R,M represent the formal measure defi-
nitions of each sub-characteristic. Security depends on the five sub-characteristics
displayed: access auditability, access controllability, data encryption, data cor-
ruption prevention and “other sub-characteristics”. Access auditability, for ex-
ample, expresses how complete the implementation of access login is, consid-
ering the auditability requirements. Its measure is: Access auditability = r

a ,
where r = Nr. of information recording access log confirmed in review; a =
Nr. of information requiring access log [1].

Map design models: The originally developed design models of the VA covered
both high-level and low level design aspects through use cases, class diagrams,
composite structure diagrams, activity diagrams and sequence diagrams. A se-
lection of the relevant models was made, and a mapping between them was un-
dertaken. The model mapping resulted in a class diagram containing the selected
elements (lifelines, classes, interfaces etc.) as classes, ownership as relations and
interactions/dependencies/properties as class attributes. Due to only ownership
representing a relation, this resulted in a tree-formed class diagram.



236 A. Omerovic et al.

CA data updates ( )

RT usage result updates ( )

unupdated status length

Updates

logging completeness

fraction of detected incidents/faults

Logging

re-trials of failed attempts

re-does

un-does

check points

nr. of successful restores 

Error Handling

VAS 

System

Services

Monitoring

Repository

Statistical Data

Fig. 6. An extract of the conceptual model

Create dependency views: A con-
ceptual model (a tree-formed class
diagram) with classes representing
the selected elements, relations denot-
ing ownership, and selected depen-
dencies, interactions quality proper-
ties, association relationships or their
equivalents represented as the class
attributes, is deduced from (1) the
quality models; and (2) the above
mentioned class diagram. See Figure 6
for an extract. Further details on the
construction of the conceptual model
are provided in [12].

A generic DV – a directed tree rep-
resenting relationships among quality
aspects and design of the system was
obtained by instantiating the conceptual model. Quality attribute specific DVs
were derived in the form of directed trees with the structure from the generic DV.
Each set of nodes having a common parent was supplemented with an additional
node called “Other”, for completeness purpose. In addition, a total quality DV
was instantiated from the top two levels of the quality models.

The DVs were inserted into the tool we have built on top of MS Excel for
enabling automatic simulations within and across the DVs. A QCF denotes the
“degree of Quality attribute or Characteristic Fulfillment” and is associated with
each node of a DV. The QCF values of attribute specific DVs were estimated
by assigning a value of the quality attribute (which the DV under consideration
is dedicated to) to each leaf node of the quality attribute specific DVs. The
QCF value quantification involved revisiting quality models, and providing a
quality attribute rating value to each node. The QCF value expresses to what
degree the quality attribute (given its system specific formal definition from the
quality models) represented by the DV is fulfilled within the scope of the node
in question. Due to the rating definitions, the values of QCFs are constrained
between 0 (minimum) and 1 (maximum). An EI denotes the “Estimated Impact”
and is associated with each arc of the DVs. EI expresses the degree of impact
of a child node (which the arc is directed to) on the parent node, or to what
degree the parent node depends on a child node. An EI value is assigned with
respect to the sub-characteristics of the quality attribute under analysis (defined
in the quality models) and their respective impact on the relation in question.
The EI on each arc was assigned by evaluating the impact of the child node on
its parent node, with respect to the sub-characteristics (defined in the quality
models) of the attribute under consideration. Once a sum of the contributions
of the sub-characteristics was obtained on each arc pointing to children nodes
with a common parent, the EI values were normalized so that they sum up to 1
(due to model completeness).



Idea: A Feasibility Study in Model Based Prediction 237

Quality attribute: Security

QCF=0.870 EI=1.00

Monitoring
QCF=0.86

Other
QCF=0.95

Logging
QCF=0.99

Error handling
QCF=0.82

Error 
detection

QCF=0.99

Error
messaging
QCF=0.90

Recovery 
mechanisms
QCF=0.70

Other
QCF=1.00

Other
QCF=0.90

EI=0.9 EI=0.1

EI=0.1 EI=0.8 EI=0.1

EI=0.1EI=0.2 EI=0.5 EI=0.2

Fig. 7. A part of the Security DV

Figure 7 shows an extract of the
Security attribute specific DV of
VA (the values assigned are ficti-
tious, for confidentiality reasons).
In the case of the “Error detec-
tion” node of Figure 7, the QCF
value expresses the effectiveness of
error detection with respect to se-
curity. The QCFs as well as the
EIs of this particular DV are es-
timated with reference to the def-
inition of Security attribute and
its sub-characteristics, respectively.
The definitions are provided by
the quality models exemplified in
Figure 5. The total quality DV is
assigned weights on the arcs, which, based on the attribute definitions in the
quality models, express the impact of each attribute (in terms of the chosen stake-
holder’s gain or business criticality), on the total system quality. The weights are
system general objectives. The weights are normalized and sum up to 1, since
also this DV is complete. The leaf node QCFs of the total quality DV correspond
to the root node QCFs of the respective quality attribute DVs. Once estimates
of leaf nodes’ QCFs and all EIs are provided, the QCF values of all the non-leaf
nodes are automatically inferred by the tool.

3.2 Verification of Prediction Models

Verification of the prediction models for the VA relied on measurements and
expert judgments. The details are provided in Section 3.2 of [12].

3.3 Application of Prediction Models

The prediction models were applied for simulation of impacts of 14 specified,
independent architecture design changes on the VA quality. Each specified ar-
chitecture design change was first applied on the affected design models, followed
by the conceptual model and finally the DVs. Application of a change on each
quality attribute specific DV involved:

1. The DV structure was modified in order to maintain consistency with the
modified conceptual model (which maps the design and the quality models).

2. For those leaf nodes that were directly traceable to the affected attributes
(which represent properties, interactions and dependencies in the design
models) of the conceptual model illustrated by Figure 6, the leaf node QCFs
were modified by the analyst (based on the quality attribute rating defini-
tion) if appropriate for the DV in question (recall the quality model).



238 A. Omerovic et al.

3. The affected arcs were identified, based on the affected attributes of the
conceptual model (illustrated by Figure 6). The EI values on the affected
arcs were changed by the analyst, by re-evaluating the impact of the sub-
characteristics of the attribute that the DV is dedicated to and normalizing
them on the arcs pointing to the nodes having a common parent. Which DVs
were affected and the extent of modification of the identified EIs on them,
was determined by the definitions from the quality models.

4. The modifications and their rationale were documented.

The propagation of the changes throughout and across the DVs is performed
based on the general DV model, according to which the QCF value of each parent
node is recursively calculated by first multiplying the QCF and EI value for each
closest child and then summing these products. The DVs and the model were
embedded into the above mentioned tool, which allowed simulating the change
propagation in an “what-if” manner. See [12] for further details.

4 Related Work

[13] presents risk identification techniques like principal component analysis, dis-
criminant analysis, tree-based reliability models and optimal set reduction. Com-
mon for all these techniques is that they analyze and, to some degree, predict
defects, based on low-level data. [3] provides a UML notation for QoS modelling,
which has been applied in our quality models. PREDIQT is also compatible with
the established software quality standard [1]. The goal/question/metric paradigm
[5] [4] is also compatible with PREDIQT and can be used for development of qual-
ity models and design of a measurement plan [6]. [8] and [14] introduce approaches
to pattern based quantitative security assessment. Both are solely security oriented
approaches for security assessment (and not prediction) with limited traceability
to the system design and quality notions. [7] argues that traditional statistical
approaches are inadequate and recommends holistic models for software defect
prediction, using Bayesian Networks. However, a drawback that statistical and
BBN-based models suffer, is poor scalability.

5 Conclusions and Future Work

This paper has presented PREDIQT – a method for model based prediction of
impacts of architecture design changes on system quality. We have also reported
on results from applying PREDIQT in a major industrial case study. The case
study focused on prediction of security and its trade-offs with the overall quality
attributes of the target system. We basically did two evaluations, the feasibility
study described above and a thought experiment.

In relation to the feasibility study, a lightweight post-mortem analysis was con-
ducted. The domain experts, who participated in the analysis, expressed that
the development of DVs was relatively simple, thanks to the comprehensible
DV models as well as the confined underlying quality and design models. One of



Idea: A Feasibility Study in Model Based Prediction 239

the main points of the feedback was that the reasoning around DVs, particularly
their parametrization, facilitated understanding the system design and reasoning
about alternatives for potential improvements, as well as existing and potential
weaknesses of architectural design, with respect to the quality attributes. We
managed to conduct all the steps of the PREDIQT method, with limited re-
sources and within the planned time period (six half-a-day workshops with upto
one man-labour week before each). The changes specified were deduced with the
objective of addressing the most relevant parts of the prediction models, being
diverse and realistic. The fact that all the 14 specified changes were within the
scope of the prediction models and could be simulated within the PREDIQT
method, indicates feasibility of developing the prediction models with intended
scope and quality. Overall, applying PREDIQT was feasible within the practical
settings of this case. The models were relatively straight forward to develop, and
judged to be fairly easy to use.

The predictions obtained were evaluated by means of a thought experiment on
a domain expert panel with thorough knowledge of the VA system. The process
and the results from simulation of the 14 specified changes in relation to the fea-
sibility study were obtained and documented by the analysis leader, stored by an
additional analysis participant, and kept unrevealed. Independently, the domain
experts were asked to estimate the impact of each change on the respective qual-
ity attributes defined. The results obtained show quite a low magnitude of de-
viation between the PREDIQT based simulations and the values obtained from
the thought experiment. We do not have hard evidence that the predictions were
correct, but given the research method and the values obtained, the results of the
thought experiment are promising. Further details on the PREDIQT method,
the feasibility study and the thought experiment are presented in [12].

We expect PREDIQT to be applicable in several domains of distributed sys-
tems with high quality and adaptability demands. Handling of inaccuracies in
the prediction models, improving traceability of the models and design of an
experience factory, are among the partially initiated future developments.

Acknowledgments. This work has been conducted within the DIGIT
(180052/S10) project, funded by the Research Council of Norway.

References

1. International Organisation for Standardisation: ISO/IEC 9126 - Software engineer-
ing – Product quality (2004)

2. ISO/IEC 12207 Systems and Software Engineering – Software Life Cycle Processes
(2008)

3. Object Management Group: UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, v. 1.1 (2008)

4. Basili, V., Caldiera, G., Rombach, H.: The Goal Question Metric Approach. In:
Encyclopedia of Software Engineering. Wiley, Chichester (1994)

5. Basili, V.R.: Software Modeling and Measurement: the Goal/Question/Metric
Paradigm. Technical Report TR-92-96, University of Maryland (1992)



240 A. Omerovic et al.

6. Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A., Dumke, R.: Best Prac-
tices in Software Measurement. Springer, Heidelberg (2004)

7. Fenton, N., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Trans-
actions on Software Engineering 25, 675–689 (1999)

8. Heyman, T., Scandariato, R., Huygens, C., Joosen, W.: Using Security Patterns
to Combine Security Metrics. In: ARES 2008: Proceedings of the 2008 Third In-
ternational Conference on Availability, Reliability and Security, Washington, DC,
USA, pp. 1156–1163. IEEE Computer Society, Los Alamitos (2008)

9. Ølnes, J.: PKI Interoperability by an Independent, Trusted Validation Authority.
In: 5th Annual PKI R&D Workshop, NIST Gaithersburg MD, USA (2006)

10. Ølnes, J., Andresen, A., Buene, L., Cerrato, O., Grindheim, H.: Making Digi-
tal Signatures Work across National Borders. In: ISSE 2007 Conference: Securing
Electronic Business Processes, pp. 287–296. Warszawa, Vieweg Verlag (2007)

11. Omerovic, A.: Design Guidelines for a Monitoring Environment Concerning Dis-
tributed Real-Time Systems. Tapir Academic Press, Trondheim (2004)

12. Omerovic, A., Andresen, A., Grindheim, H., Myrseth, P., Refsdal, A., Stølen, K.,
Ølnes, J.: A Feasibility Study in Model Based Prediction of Impact of Changes on
System Quality. Technical report, SINTEF A13339 (2009)

13. Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and Quan-
tifiable Improvement, 1st edn. Wiley-IEEE Computer Society Press, Chichester
(2005)

14. Yautsiukhin, A., Scandariato, R., Heyman, T., Massacci, F., Joosen, W.: Towards
a Quantitative Assessment of Security in Software Architectures. In: 13th Nordic
Workshop on Secure IT Systems, Copenhagen, Denmark (2008)



Author Index

Andresen, Anette 231
Austin, Andrew 192

Basin, David 201
Berger, Bernhard 70
Bertolissi, Clara 140
Beyerlein, Christian 96
Brezo, Felix 35
Bringas, Pablo G. 35
Brucker, Achim D. 157

Clavel, Manuel 201
Cuppens-Boulahia, Nora 123
Cuppens, Frédéric 123

Daniels, Nils 218
De Ryck, Philippe 18
Desmet, Lieven 18
Doyle, Maureen 61

Egea, Marina 201

Fernández, Maribel 140

Gadaleta, Francesco 1
Galilei, Giacomo A. 182
Garcia-Alfaro, Joaquin 123
Gervasi, Vincenzo 182
Giesecke, Rosemaria 96
Grindheim, H̊avard 231

Hammer, Christian 44
Heyman, Thomas 18

Jampathom, Cheevarat 218
Jensen, Jostein 114
Johns, Martin 96
Joosen, Wouter 1, 18
Jürjens, Jan 79

Laorden, Carlos 35
Lenhof, Robert 61

Meland, Per H̊akon 114
Moebius, Nina 166
Murray, John 61
Myrseth, Per 231

Nieves, Javier 35
Nilson, Mikael 218

Ølnes, Jon 231
Omerovic, Aida 231

Penya, Yoseba K. 35
Petritsch, Helmut 157
Piessens, Frank 18
Pironti, Alfredo 79
Posegga, Joachim 96
Preda, Stere 123

Refsdal, Atle 231
Reif, Wolfgang 166

Santos, Igor 35
Sanz, Borja 35
Schläpfer, Michael 201
Smith, Ben 192
Sohr, Karsten 70
Stenzel, Kurt 166
Stølen, Ketil 231

Tøndel, Inger Anne 114
Toutain, Laurent 123

Walden, James 61
Williams, Laurie 192

Younan, Yves 1

Zuccato, Albin 218


	Title Page
	Preface
	Organization
	Table of Contents
	Session 1. Attack Analysis and Prevention I
	BuBBle: A Javascript Engine Level Countermea sureagainst Heap-Spraying Attacks
	Introduction
	Problem Description
	Heap-Based Buffer Overflows
	Heap-Spraying Attacks

	BuBBle: Protection against Heap-Spraying
	Approach
	Implementation

	Evaluation
	Performance Benchmarks
	Macrobenchmarks:
	Microbenchmarks:

	Memory Overhead
	Theoretical memory overhead:
	Memory overhead for the benchmarks:

	Security Evaluation

	Related Work
	Heap-Spraying Defences
	Nozzle:
	Shellcode detection:

	Alternative Countermeasures
	Probabilistic countermeasures:
	DEP:
	Separation and replication of information:
	Execution monitors:


	Conclusion
	References

	CsFire: Transparent Client-Side Mitigation of Malicious Cross-Domain Requests
	Introduction
	Background
	Cross-Site Request Forgery (CSRF)
	Existing Countermeasures
	Requirements for Client-Side Protection

	Secure Cross-Domain Policy
	Properties of Cross-Domain Traffic
	Defining a Policy

	Mitigating Malicious Cross-Domain Requests
	The Firefox Architecture
	Policy Enforcement in Firefox
	Considerations of Web 2.0

	Server Contributions to a More Fine-Grained Policy
	Evaluation
	Extensive Evaluation Using the Scenario Testbed
	Real-Life Evaluation

	Related Work
	Conclusion
	References

	Idea: Opcode-Sequence-Based Malware Detection
	Introduction
	Mining Opcode Relevance
	Malware Detection Method
	Experimental Results
	Related Work
	Conclusions and Future Work
	References


	Session 2. Attack Analysis and Prevention II
	Experiences with PDG-Based IFC
	Introduction
	IFC Analysis
	Eclipse Plugins for IFC
	Case Studies
	A JavaCard Applet
	The Battleship Example

	Scalability
	Future Work

	Related Work
	Conclusion
	References

	Idea: Java vs. PHP: Security Implications of Language Choice for Web Applications
	Introduction
	Related Work
	Study Design
	Results
	Vulnerability Type Analysis
	Software Metric Analysis
	Security Resource Indicator
	Analysis Limitations
	Conclusion
	References

	Idea: Towards Architecture-Centric Security Analysis of Software
	Introduction
	The Bauhaus Tool Suite
	Security Analyses with the Help of a RFG
	Early Case Studies
	Analysis of a JEE Application
	Analysis of Android

	Related Work
	Conclusion and Outlook
	References


	Session 3. Policy Verification and Enforcement I
	Formally-Based Black-Box Monitoring of Security Protocols
	Introduction
	Related Work
	Formal Background
	Network Model
	The Spi Calculus

	The Monitor Generation Function
	An SSL Server Monitor Example
	Monitor Specification
	Monitor Implementation
	Experimental Results

	Conclusion
	References

	Secure Code Generation for Web Applications
	Introduction
	The Root of String-Based Injection Vulnerabilities
	The String Is the Wrong Tool!
	Contributions and Paper Outline

	Concept Overview
	Keeping the Developers Happy
	Key Components
	The Embedded Language Encapsulation Type (ELET)
	Language Integration
	External Interface
	Limitations

	Practical Implementation and Evaluation
	Choosing an Implementation Target
	API and Preprocessor Design
	Adding an External Interface for HTML Creation to J2EE
	Practical Evaluation

	Related Work
	Conclusion
	References

	Idea: Reusability of Threat Models – Two Approaches with an Experimental Evaluation
	Introduction
	Research Method
	Results and Discussion
	Conclusion and Further Work
	References


	Session 4. Policy Verification and Enforcement II
	Model-Driven Security Policy Deployment: Property Oriented Approach
	Introduction
	Motivation and Related Work
	Model and Notation 
	Choice of OrBAC and B-Method
	Policy and System Modeling

	Policy Deployment Process: Formal Specification
	Policy and Network Machines
	A Tracing Path Algorithm
	Deployment Implementation and Security Properties 
	Security Properties

	Discussion
	Conclusions
	References

	Category-Based Authorisation Models: Operational Semantics and Expressive Power
	Introduction
	Preliminaries
	An Operational Specification of the Meta-model
	Rewrite-Based Specification
	Policy Analysis: Proving Properties of Policies

	Expressive Power: Access Control Models in M
	Hierarchical Role Based Access Control
	Generalising RBAC: Event-Based Access Control (DEBAC)
	Trust-Based Models

	Related Work
	Conclusions and Further Work
	References

	Idea: Efficient Evaluation of Access Control Constraints
	Introduction
	Efficient Attribute Resolution
	Context Attributes
	Attribute Resolution Strategies
	Pre-computing Attribute Sets

	Empirical Results
	Scenario
	Experimental Results

	Discussion
	Conclusion and Future Work
	References


	Session 5. Secure System and Software Development I
	Formal Verification of Application-Specific Security Properties in a Model-Driven Approach
	Introduction
	Example: A Copycard Application
	Generating a Formal Specification
	Security Properties
	Verification Technique
	Verification of the main Security Property
	Auxiliary Properties
	Experiences

	Related Work
	Conclusion
	References

	Idea: Enforcing Consumer-Specified Security Properties for Modular Software
	Introduction
	Security Properties for Modular Software
	The Framework
	Code-Producer Side
	Code-Consumer Side

	Scenario
	Conclusions
	References

	Idea: Using System Level Testing for Revealing SQL Injection-Related Error Message Information Leaks
	Introduction
	Background
	Case Study
	Results
	Limitations
	Conclusion
	References


	Session 6. Secure System and Software Development II
	Automatic Generation of Smart, Security-Aware GUI Models
	Introduction
	Security-Design Models
	GUI Models
	Security-GUI Models
	Smart Security-Aware GUI Models

	Automatically Generating Smart, Security-GUI Models
	Related and Future Work
	Conclusions
	References

	Report: Modular Safeguards to Create Holistic Security Requirement Specifications for System of Systems
	Introduction
	Security Requirement Engineering Today
	Security Requirement Specification Engineering for System of Systems
	Modular Security Requirement Classes
	Security Requirement Profiles
	Technical Specification
	General Applicability

	Example
	Experiences
	Conclusion
	References

	Idea: A Feasibility Study in Model Based Prediction of Impact of Changes on System Quality
	Introduction
	Overview of the the PREDIQT Method
	Target Modeling
	Verification of Prediction Models
	Application of Prediction Models

	Application of PREDIQT in the Industrial Case
	Target Modeling
	Verification of Prediction Models
	Application of Prediction Models

	Related Work
	Conclusions and Future Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




