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The rotation of the Earth varies continuously. Its rotation axis changes its orien-
tation with respect to both a space-fixed and an Earth-fixed reference system, and
the angular velocity of the rotation fluctuates with time. The knowledge and there-
with the continuous observation of Earth rotation variations is important for various
reasons. It is fundamental for the realisation of time systems, the accurate deter-
mination of reference frames and precise navigation by providing the link between
an Earth-fixed and a space-fixed coordinate system. Moreover, time series of Earth
rotation parameters are of great interest for various disciplines of geosciences and
astronomy since their changes are related to gravitational and geodynamic pro-
cesses in the Earth system. In this way, Earth rotation monitoring contributes
significantly to the understanding of the dynamics of the Earth system and the inter-
actions between its individual components, e.g. the exchange of angular momentum
between atmosphere, ocean and solid Earth, or the coupling mechanism between
the Earth’s core and mantle. Today the metrological basis for this highly interdisci-
plinary research is provided by precise space geodetic techniques such as Very Long
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Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging (SLR/LLR), Global
Navigation Satellite Systems (GNSS) and ring laser gyroscopes.

6.1 Reference Systems

Generally speaking the rotation of the Earth can be interpreted as a change of the
orientation of an Earth-fixed reference system H relative to a space-fixed reference
system I.

The rotation vector of the Earth ω changes its orientation and its absolute value
with respect to either system. Independent of the coordinate system, the rotation
vector is the vector that provides the direction of the instantaneous rotation axis.
Its absolute value equals the instantaneous angular velocity of Earth rotation. The
temporal variations of the Earth rotation vector in the space-fixed reference system
are known as precession and nutation. Both are caused by lunisolar gravitational
torques which can be described as functions of time by series expansions with high
accuracy. The effects of precession and nutation have been known for centuries from
astronomical observations. The change of the direction of the Earth rotation vector
with respect to an Earth-fixed reference system is referred to as polar motion and
was not observed before the end of the nineteenth century. Different to precession
and nutation, polar motion and the variation of the Earth’s angular velocity are not
easily predictable since they are affected by a multitude of irregular geodynamic
processes.

According to a fundamental theorem of rotational dynamics, the temporal deriva-
tive of the rotation vector of a rotating body is equal with regard to a body-fixed and
a space-fixed reference system. The temporal derivative dx

dt of an arbitrary vector x
with respect to a body-fixed system and its temporal derivative Dx

Dt with respect to a
space-fixed system are related by

Dx

Dt
= dx

dt
+ ω × x . (1)

If the Earth rotation vector ω is introduced instead of x, the equation turns into

Dω

Dt
= dω

dt
+ ω × ω = dω

dt
. (2)

The equality of the derivatives means that the derivative of both the orientation of the
rotation vector and its absolute value is identical in the two systems. Consequently
the variations of the orientation of the Earth rotation axis in the space-fixed and
in the Earth-fixed reference system are not independent of each other. The relation
between the coordinates of the Earth rotation vector with regard to a space-fixed or
Earth-fixed system and the temporal derivatives of the orientation parameters are
expressed by Euler’s kinematical equations (Moritz and Mueller 1987).



6 Earth Rotation 187

Let eHi and eIi (i = 1, 2, 3) be the orthonormal base vectors of the two above-
mentioned reference systems. The orientation of the Earth-fixed system with respect
to the space-fixed system can then be written as

eHi = R eIi , (3)

where R means a time-dependent rotation matrix which is customarily composed of
four parts (Richter 1995, McCarthy and Capitaine 2002):

R = W S N P . (4)

The matrices P and N stand for precession and nutation, respectively. The matrix
S = R3(θ ) is a spin at the so-called Earth rotation angle θ around the axis of the
Celestial Intermediate Pole. W accounts for the components x and y of polar motion.

The transition from the space-fixed system I to the Earth-fixed system H is
depicted as follows:
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Today’s fundamental astronomical space-fixed reference system is the
International Celestial Reference System (ICRS) which was established by the
International Astronomical Union (IAU) in 1997 (Feissel and Mignard 1998). The
ICRS is a kinematically non-rotating coordinate system of high precision. Its origin
is defined to be at the barycentre of the solar system. The ICRS which replaced the
previous Fundamental Catalogue FK5 (Fricke et al. 1988) is realised in the radio fre-
quency domain by the International Celestial Reference Frame (ICRF). The ICRF
is described by equatorial coordinates of extragalactic and compact radio sources
which are estimated from VLBI observations (Ma et al. 1998). At optical wave-
lengths the ICRS is realised by the Hipparcos catalogue. In 1998 the ICRF contained
coordinates of 608 radio sources, and up to now 109 additional sources have been
added by two extensions ICRF-Ext.1 and ICRF-Ext.2 (Fey et al. 2004; Gontier et al.
2006). A total of 212 very compact sources are used in order to define the axes of
the reference frame (so-called defining sources). Presently the ICRF sources are
observed with an accuracy of about 0.1 mas. VLBI is not capable of realising a geo-
centric ICRS, since it is a purely geometrical observation technique which does not
provide any relation to the Earth’s centre of mass. A Geocentric Celestial Reference
Frame (GCRF) can be computed by combining VLBI and satellite observations or
by referencing VLBI stations in a satellite-based geocentric reference frame (Seitz
2009). If the origin of the ICRS is shifted from the barycentre of the solar sys-
tem into the Earth’s centre of mass (under consideration of relativistic effects), the
system experiences slight accelerations due to the motion of the Earth around the
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Sun. Strictly speaking, such a Geocentric Celestial Reference System (GCRS) is no
longer an inertial system. Commonly it is referred to as a quasi-inertial system.

As a consequence of its rotation the Earth is flattened at the poles. Since the
Sun and Moon are generally located above or underneath the equatorial plane, a
gravitational torque forces the equatorial plane towards the ecliptic (Torge 2001).
Due to Earth rotation, this external force results in the precession of the Earth axis
around the pole of the ecliptic, around which the rotation axis revolves on a cone
with an apex angle of 23.5◦. The vernal equinox that marks the intersection point of
equatorial plane, ecliptic plane and the celestial sphere performs a clockwise motion
at a rate of approximately 50.3′′ per year along the ecliptic. In about 25,800 years,
one so-called Platonic year, the vernal equinox performs one complete revolution
around the celestial sphere. The precession matrix P describes the transition from
the quasi-inertial GCRS into the mean celestial equator system Z (Capitaine et al.
2002; Rothacher 2002).

Precession is superposed by the lunisolar nutation, which causes variations of the
Earth rotation axis in the mean celestial equator system. Lunisolar nutation is a con-
sequence of the periodically changing positions of the Moon and Sun relative to the
Earth. It is composed of various oscillations with different amplitudes and periods
between few days and 18.6 years with respect to the space-fixed system (Mathews
et al. 2002). The most prominent fraction of nutation is caused by the inclination
of the lunar orbit by about 5◦ with respect to the ecliptic (Torge 2001). The orbital
node, i.e. the intersection line of the lunar orbital plane and the ecliptic, moves with
a period of 18.6 years along the ecliptic. As a consequence, the normal vector of
the lunar orbital plane revolves along a cone around the ecliptic normal vector. The
torque exerted by the Moon on the flattened Earth varies with the same period: it
is maximum when the node of the lunar orbit coincides with the intersection line
of equatorial plane and ecliptic and the Moon reaches its maximum declination of
+28.5◦ or −28.5◦. Further nutation terms are caused by the motion of the Moon
and Sun between the northern and southern hemispheres. They feature periods of
half a month and half a year, respectively (Torge 2001). With an apex angle of less
than 10′′, nutation is significantly smaller than precession. The nutation matrix N
describes the transformation between the mean celestial equator system and the true
celestial equator system E .

The pole of the true celestial equator system is also known as the Celestial
Intermediate Pole (CIP). According to resolution B1.7 adopted by the IAU in the
year 2000 the CIP has superseded the previously used Celestial Ephemeris Pole
(CEP) since 1 January 2003 (Capitaine 2002; McCarthy and Petit 2004). In pur-
suance of this IAU resolution, the CIP is defined as the axis with respect to which
the Earth rotation angle is defined. The location of the CIP in the Earth-fixed refer-
ence system is provided by the International Earth Rotation and Reference Systems
Service (IERS) on the basis of space geodetic observations and underlying mod-
els. The CIP is defined in such a way that it performs motions with periods longer
than 2 days with respect to the space-fixed reference system. In the Earth-fixed sys-
tem, retrograde motions of the CIP with frequencies between 0.5 and 1.5 cycles per
sidereal day are allocated to nutation, whereas all other motions are interpreted as
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polar motion. The change of the concept from the CEP to the CIP required the intro-
duction of the revised model for precession and nutation IAU 2000A (Souchay et al.
1999; Mathews et al. 2002) according to resolution B1.6 of the IAU in the year 2000
(McCarthy and Petit 2004). A comprehensive overview of the IAU 2000 resolutions
and their implications is given by Kaplan (2005).

If the Earth were solid and external torques were neglected, its instantaneous
rotation axis would be directed towards the CIP. But in reality there is a small
deflection between the CIP and the instantaneous rotation axis which is known as
Oppolzer motion (Schödlbauer 2000; Capitaine 2004). As a consequence of preces-
sion and nutation, the Earth rotation axis changes its direction with respect to the
space-fixed reference system as a function of time. Associated variations of right
ascension and declination of fixed stars must be taken into account in astronomical
observations from the Earth surface. The (true) latitude of a station, i.e. the angle
between the true equatorial plane and the zenith of the station, is unaffected by pre-
cession and nutation. Matrices P and N can be modelled and predicted on the basis
of lunar and solar ephemerides with high accuracy (Lieske et al. 1977; Wahr 1981;
Seidelmann 1992). Small corrections to the current model (celestial pole offsets)
are routinely published by the IERS on its internet site (http://www.iers.org). They
account for model imperfections as well as for unpredictable geophysical signals
such as the free core nutation or the quasi-annual oscillation of the S1 thermal tide
(Dehant et al. 1999; Vondrak et al. 2005). Together with the precession–nutation
model IAU 2000A, the celestial pole offsets allow for a precise computation of the
location of the CIP in the space-fixed GCRF as illustrated in Fig. 6.1 (coordinates
X and Y).

The transformation between E and the Earth-fixed system H is carried out on the
basis of the so-called Earth rotation parameters. The rotation matrix S describes the
diurnal rotation around the z-axis of the true celestial equator system. It is applied
in order to transform between the true celestial equator system and the terrestrial
equator system F . Before 1 January 2003 the matrix S was related to the Greenwich
Apparent Sidereal Time (GAST), i.e. the apparent hour angle of Greenwich with
respect to the true vernal equinox. GAST is related to the Greenwich Mean Sidereal
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Fig. 6.1 Poles of reference
with regard to the coordinate
systems ITRS and GCRS
(and their respective
realisations ITRF/GCRF),
and correspondence between
model values m(t) and
published polar motion values
p(t) (Mendes Cerveira et al.
2009)
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Time (GMST), i.e. the Greenwich hour angle of the mean vernal equinox, by the
equation of equinoxes. From GMST universal time UT1 can be accessed (Aoki
et al. 1982). According to the IAU resolution B1.8 (2000) and its supplement (IAU
resolution B2, 2006), the vernal equinox as the direction of reference for the side-
real rotation of the Earth is now replaced by the so-called Celestial Intermediate
Origin (CIO) in the space-fixed reference system (Capitaine 2002, 2008; McCarthy
and Petit 2004). The CIO represents a non-rotating origin (Guinot 1979; Aoki and
Kinoshita 1983) and is defined in such a way that the rotation vector of the celestial
equator system with regard to a space-fixed reference system has no component in
the direction of the CIP. The motion of the CIO relative to the space-fixed reference
system has no component along the equator but a perpendicular one. Analogously a
Terrestrial Intermediate Origin (TIO) is defined: the rotation vector of the terrestrial
equator system with regard to an Earth-fixed reference system has no component in
the direction of the CIP, and the motion of the TIO relative to the Earth-fixed ref-
erence system has solely a component perpendicular to the equator (Guinot 2002).
In this concept GAST is replaced by the Earth rotation angle θ that is defined as
the angle measured along the equator of the CIP between the unit vectors directed
towards CIO and TIO. Since the direction of reference for UT1 moves uniformly
along the equator, UT1 and θ are linearly related. The implementation of the IAU
resolution B1.8 (2000) allows for a rigorous definition of the sidereal rotation of
the Earth and for describing the rotation of the Earth independently from its orbital
motion (McCarthy and Petit 2004).

The last part of the rotation matrix R, the polar motion matrix W, describes the
transformation from the terrestrial equator system into the Earth-fixed system H.
The z-axis of the terrestrial equator system F is directed towards the CIP, while
the z-axis of the terrestrial system is directed towards the Conventional Terrestrial
Pole (CTP). Today the defined CTP is the IERS Reference Pole, which replaced the
Conventional International Origin in the year 1967. The Conventional International
Origin is identical with the mean direction of the Earth rotation axis between 1900
and 1905. The IERS Reference Pole differs from the Conventional International
Origin by a maximum ±0.03′′ and is realised by coordinates of globally distributed
geodetic markers by means of space geodetic observations. Today’s conventional
Earth-fixed system H is the International Terrestrial Reference System (ITRS). Its
origin is defined to be in the centre of mass of the Earth including atmosphere
and ocean, and the z-axis of the right-hand system is directed towards the IERS
Reference Pole. The orientation of the x-axis of the ITRS was originally defined by
the Bureau International de l’Heure (BIH) for the epoch 1984.0. From this time, the
evolution of the orientation was ensured by a no-net-rotation condition with regard
to horizontal tectonic motions over the whole Earth (McCarthy and Petit 2004). The
ITRS is realised by the determination of three-dimensional positions and velocities
of geodetic observatories using space geodetic techniques. The most recent reali-
sation of the ITRS is the ITRF2008. For details regarding the ITRF computation
strategy see Altamimi et al. (2007).

Both the orientation of the rotation axis with respect to the CTP and the angu-
lar velocity of Earth rotation are influenced by transient, episodic and periodic
exogenous and endogenous processes in the Earth system. Therefore the rotation
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matrices S and W cannot be described or even predicted by models with satisfy-
ing accuracy. The IERS publishes different sets of Earth Orientation Parameters
(EOP) in its circulars as well as on its internet site. Among the available param-
eters are the previously mentioned celestial pole offsets, the pole coordinates xp
and yp and �UT = UT1 − UTC. The pole coordinates xp and yp represent the
misalignment between CIP and IERS Reference Pole, where the orientation of the
xp-axis is consistent with the x-axis of the ITRS, and the yp-axis is directed towards
90◦ western longitude. The parameters xp and yp allow for the transformation
between the terrestrial equator system F and the Earth-fixed system H. Due to polar
motion, the (true) latitude and longitude of a station on the Earth’s surface vary with
time.

Except for a constant offset due to the consideration of leap seconds, the coordi-
nated universal time UTC corresponds to the uniform Temps Atomique International
TAI which is realised by a set of worldwide distributed atomic clocks (BIPM 2007).
Alternative to the parameter �UT, the expression excess length-of-day (�LOD) is
common. �LOD is related to the absolute value of the Earth rotation vector in the
terrestrial equator system and denotes the length of a solar day (length-of-day, LOD)
expressed in UTC or TAI reduced by 86,400 s (Moritz and Mueller 1987):

�LOD = LOD − 86, 400 s . (5)

�LOD and �UT are related according to

�LOD = − d

dt
�UT · 86, 400 s . (6)

Figuratively speaking, the term �LOD expresses the variation of the Earth’s angular
velocity due to geophysical and gravitational influences as a variation of the effec-
tive time for one full revolution. In former times �UT was observed by astronomical
methods. Nowadays this parameter is unambiguously determined by VLBI due to
its connection to the quasi-inertial reference frame of extragalactic radio sources.
Global Navigation Satellite Systems (GNSS) allow for a precise observation of
�LOD on short time scales.

6.2 Polar Motion

Figure 6.2 shows the Earth’s polar motion between 1962 and 2009 as observed
by astrometric and space geodetic observation techniques. The displayed values
are taken from the well-known series EOP 05 C04 (Bizouard and Gambis 2009),
in which the IERS publishes Earth orientation parameters together with respective
formal errors at daily intervals since 1962. Values in this series are provided with
respect to the precession–nutation model IAU 2000A and are consistent with the
ITRF2005. Today polar motion can be determined with an accuracy of better than
0.1 mas (IERS 2008).
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Fig. 6.2 Observations of polar motion from the EOP 05 C04 series of the IERS between 1962 and
2009

A clear beat with a period of 6.3 years is obvious. It is caused by the superposition
of a signal component with annual period (approx mean amplitude 0.09′′) and an
oscillation with a period of about 1.2 years (approx mean amplitude 0.17′′). The
resulting beat amplitude is up to 0.25′′ which corresponds to approximately 9 m on
the Earth’s surface.

While the annual oscillation can be explained by gravitational and geophysical
effects within the Earth system, the oscillation with a period of 1.2 years is a free
rotational mode of the Earth. It was discovered by Chandler (1891, 1892) and is
therefore known as Chandler oscillation. The Chandler oscillation originates from
a misalignment of the polar principal axis of inertia (figure axis) and the rotation
axis of the Earth (Schödlbauer 2000). This causes a tumbling motion of the flattened
Earth gyro, in which the rotation vector revolves on a cone around the figure axis.
The Chandler oscillation is a prograde polar motion, i.e. counter-clockwise when
seen from the North Pole. The existence of such a free oscillation of the Earth had
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earlier been predicted by Euler (1765). From theoretical computations for a solid
body with the Earth’s dimension, he determined a period of 304 days (Euler period)
for one revolution. Since the Earth is deformable, the actual period is lengthened to
about 432 days (Chandler period) (see Sect. 6.4.2.1).

Signal decomposition of observed polar motion by means of wavelet filtering
(Seitz and Schmidt 2005) allows for splitting the entire signal into its two main
constituents, i.e. the Chandler oscillation and the annual oscillation. The resulting
time series (x-components) are shown in Fig. 6.3 for a period of 150 years between
1860 and 2009. Since both signal components are almost circular, the y-components
look very similar. Displayed values for polar motion are taken from the long-term
C01 series, in which the IERS provides observations made since 1846 in a temporal
resolution of 0.1 years (1846–1889) and 0.05 years (1890–2009). During the first
decades the observations were based on optical astrometry and are comparatively
inaccurate (standard deviations up to σ = 0.16′′). The top panel of Fig. 6.3 shows
the x-component of the time series C01 (after removal of a linear trend) together
with the 3σ error margin. The Chandler oscillation (middle) features much stronger
amplitude variations than the annual signal (bottom) which has been rather uni-
form during the last century (the first and the last years in the plot should not be
interpreted due to boundary effects of the applied filter). Although the accuracy of
the older astrometrical data is rather poor, the displayed amplitude variations are
significant since the signal exceeds some 100 mas.
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Fig. 6.3 Long-term observations of polar motion (x-component, linear trend removed) between
1860 and 2009 together with the 3σ error margin plotted in grey (top) and Chandler (middle) and
annual (bottom) signal component determined by wavelet filtering
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The origin of the strong amplitude variations and therewith the causative mech-
anism for the evocation of the Chandler oscillation have been under discussion
for many years. As a consequence of the anelasticity of the Earth mantle and the
associated dissipation due to friction, the Chandler oscillation is a damped oscil-
lation. But the observations indicate that the amplitude of the free polar motion is
excited by some mechanism which counteracts the damping. In numerous publica-
tions this matter has extensively been discussed. It has been investigated whether
atmospheric or hydrologic mass redistributions (Wahr 1983; Hameed and Currie
1989; Sidorenkov 1992; Furuya et al. 1996, 1997) or processes in the Earth’s interior
(Souriau and Cazenave 1985; Gross 1986; Hinderer et al. 1987) are the hurriers of
the oscillation. Since the Chandler oscillation is a resonance oscillation of the Earth,
potential excitation mechanisms require energy in a band close to the Chandler fre-
quency in order to excite the free polar motion and thus to counteract its damping.
In recent years a number of studies came to the conclusion that the Chandler oscil-
lation is excited by the combined effect of atmosphere and ocean (Gross 2000;
Brzezinski and Nastula 2000; Seitz and Schmidt 2005). However, the individual
contributions of these two subsystems could still not be fully assessed, since all
investigations are naturally dependent on imperfect model assumptions of atmo-
spheric and oceanic processes and their related mass transports. Furthermore, minor
effects from continental hydrosphere, cryosphere and other subsystems must also be
taken into account in order to close the budget of polar motion excitation.

The annual signal of polar motion originates similarly to a number of further
significant higher and lower frequencies from gravitational and internal geophysi-
cal excitations, causing mass redistributions and mass motions within and between
the Earth’s subsystems. An overview of important drivers and the corresponding
signatures in polar motion (amplitudes and periods) is given by Chao (1994) and
Gross (2007). As mentioned above, there are also singular and non-periodic contri-
butions from transient and episodic geophysical effects, such as earthquakes (Chao
and Gross 1987, 2005) or El Niño situations (Kosek et al. 2001). Forced variations
of polar motion and the free Chandler oscillation are closely linked. Variations of
the Earth rotation vector induce a change of the Earth’s centrifugal potential which
leads to additional mass redistributions in the solid Earth and the ocean (so-called
rotational deformations). This back-coupling effect causes a motion of the principal
axis of inertia that affects the Chandler oscillation (see Sect. 6.4.2.1).

Figure 6.4 shows the polar motion curve in units of metres on the Earth surface in
more detail for a time interval of 6 months (Schreiber et al. 2004). The large circle
results from the superposition of signal components with comparatively long peri-
ods (especially the prograde Chandler and pro- and retrograde annual oscillations),
whereas the small circles with magnitudes of approximately 0.01′′ are nearly diurnal
retrograde polar motion components which are related to corresponding precession
and dominant nutation terms in the space-fixed reference system (Oppolzer terms).
The pronounced beat effect with a period of 13.7 days results from the superposition
of oscillations that correspond to precession (period 0.997 days in the Earth-fixed
reference system) and the largest nutation term (period 1.076 days in the Earth-fixed
reference system). Variations of the beat amplitude are caused by further signal com-
ponents that correspond to other nutation terms with approximately diurnal period
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in the Earth-fixed system (McClure 1973). In analogy to precession and nutation
in the space-fixed system, the retrograde nearly diurnal polar motion in the terres-
trial system originates from lunisolar gravitational torques on the equatorial bulge
of the Earth. Earth rotation causes a daily variation of the gravitational forces which
results in the almost circular motion of the rotation pole in the direction opposite
to the rotation. Nearly diurnal retrograde polar motion cannot be directly assessed
by observations of VLBI, SLR/LLR and GNSS since these techniques are sensitive
only to the complete rotation matrix from the Earth-fixed to the space-fixed refer-
ence frame from which no discrimination between celestial pole offsets and nearly
diurnal retrograde polar motion is possible. An inertial rotation sensor on the Earth’s
surface is sensitive to the diurnal retrograde polar motion since the angle between
the axis of the instrument and the rotation axis of the Earth changes with a period
of 1 day. In this way, ring laser gyroscopes allow for the direct observation of the
position of the instantaneous rotation axis and therewith for the assessment of the
diurnal polar motion (Schreiber et al. 2004).

Beside the periodic and irregular fluctuations, polar motion is characterised by a
secular trend at a present rate of 3.3 mas/a in the direction of 76◦–78◦ western lon-
gitude (Vondrak et al. 1995; Schuh et al. 2001). Although the reason is not entirely
understood yet, there is evidence that this secular motion is caused by postglacial
rebound and sea-level variations (Milne and Mitrovica 1998).

6.3 Variations of Length-of-Day and �UT

The variation of the length of a solar day (�LOD) can be determined from the
observations of modern space geodetic techniques with an accuracy of 20μs (IERS
2008). As shown in (6) �LOD is directly related to �UT. While accurate short-
term time series of �LOD, i.e. of the derivative of �UT, can be estimated with
high temporal resolution from GNSS observations, mid-term and long-term stability



196 F. Seitz and H. Schuh

of �LOD as well as �UT series can only be guaranteed by VLBI, providing the
connection to the quasi-inertial reference frame. All satellite-based techniques, such
as GPS or Glonass, meet the problem that Earth rotation cannot be distinguished
from a uniform rotation of the satellite orbit nodes (Ray 1996).

Figure 6.5 (top panel) displays the observed variations of length-of-day from
the EOP 05 C04 of the IERS for the period between 1962 and 2009. The curve
is dominated by a secular signal of the order of milliseconds that is superposed
by significant variations with annual and semi-annual periods due to mainly atmo-
spheric effects and tidal signals with periods of several days. In contrast to polar
motion, there is no free variation of length-of-day due to rotational deformations
(Wahr 1985). The decadal variability of �LOD is ascribed to the exchange of angu-
lar momentum between the Earth’s core and mantle (Liao and Greiner-Mai 1999).
This assumption is supported by strong correlations between the decadal varia-
tions of �LOD with fluctuations of the Earth’s magnetic field (Schuh et al. 2003).
Four potential mechanisms of core–mantle coupling (CMC) are presently under
discussion: topographic, electromagnetic, viscoelastic and gravitational coupling.
Available models of topographic coupling are rather inaccurate since the knowl-
edge of the topography at the core–mantle boundary is insufficient. But presumably
this coupling mechanism does not provide enough energy in order to excite the
strong variations of �LOD (Ponsar et al. 2002). Holme (1998) showed that the
electromagnetic CMC seems to be the most important excitation mechanism. It is
based on variations of the geomagnetic field due to dynamo processes, which exert a
torque on conductive regions of the lower mantle via the Lorentz force (Schuh et al.
2003). Viscoelastic and gravitational coupling are inferior. In the frame of its Special
Bureau for the Core (SBC) of the Global Geophysical Fluids Center (GGFC), the
IERS provides model time series that describe the effects of CMC on �LOD. In
Fig. 6.5b the results of three different models are compared with a moving average
of the observations over 5 years. One of the model data sets (according to Jackson,
Bloxham and Gubbins, JBG) has a temporal resolution of 1 year (Jackson 1997);
the other two models (according to Petrov and Dehant, PD1 and PD2) are available
for intervals of 5 years. All data sets are based on the frozen flux hypothesis (Jault
et al. 1988). While JBG is a free model, PD1 and PD2 are based on observations
of the magnetic field. The comparison of the various models provided by the SBC
reveals significant differences. To a certain extent the data series correspond with
the moving average (especially in the case of PD2), but the temporal resolution is
much too coarse to explain the decadal variations of �LOD with sufficient accuracy
and thus to exclude other causative processes.

Variations of �LOD on annual, seasonal and shorter time scales are highly cor-
related with angular momentum fluctuations within the atmosphere (mainly due to
zonal winds) and, to a minor extent, due to ocean currents. The two strongest signal
components induced by those processes, i.e. the annual and semi-annual oscillation,
feature almost equal amplitudes of approximately 0.36 ms. In addition, there is a
weak quasi-biennial oscillation (QBO) due to irregular variations of zonal winds
and temperatures in the tropical troposphere and stratosphere (Trenberth 1980). Its
amplitude varies from cycle to cycle. In general it is smaller than 0.1 ms (Höpfner
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Fig. 6.5 Variations of length-of-day (�LOD) for the time frame between 1962 and 2009. (a)
Observation time series EOP 05 C04. (b) Moving average over 5 years in comparison with three
models for the influence of core–mantle interaction (dots: JBG; stars: PD1; diamonds: PD2; see
text). (c) Effect of solid Earth tides. (d) Annual and semi-annual signal component. (e) Residual
time series (a-b-c-d)

2001). The most important periods induced by solid Earth tides are 9.13 days
(amplitude 0.07 ms), 13.63 days (0.15 ms), 13.66 days (0.35 ms) and 27.55 days
(0.19 ms) (Yoder et al. 1981; McCarthy and Petit 2004). In contrast to solid Earth
tides, the influence of ocean tides on �LOD is small (Lambeck 1980; Gross 1993),
but not negligible in high-precision space geodesy.

The residual signal of �LOD (Fig. 6.5e), i.e. after reduction of the decadal sig-
nal, the annual and semi-annual oscillations and the tidal effects feature transient
increases of the length-of-day during 1983 and (somewhat less pronounced) during
1997. These episodic signals can be explained by strong El Niño events (Rosen et al.
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1984; Chao 1989). Like polar motion, �LOD is characterised by a secular change.
Especially as a consequence of tidal friction, the length of a solar day increases by
2.3 ms per century (Morrison and Stephenson 1998).

6.4 Physical Model of Earth Rotation

6.4.1 Balance of Angular Momentum in the Earth System

From a physical perspective, Earth rotation can be interpreted as the rotary motion
of a multitude of individual and interrelated mass elements about one common axis.
This rotary motion is comparable to that of a physical gyroscope. Therefore the-
oretical and numerical studies on temporal variations of Earth rotation are based
on equations of gyroscopic motion which follow from the balance of angular
momentum in the Earth system. With respect to an Earth-fixed, i.e. rotating, ref-
erence system, the balance between the Earth’s angular momentum H and external
torques L due to, e.g., lunisolar and planetary gravitational forces is described by
the dynamic Euler equation (Lambeck 1980):

d

dt
H + ω × H = L . (7)

In this equation ω denotes the rotation vector of the Earth with respect to the rotating
reference system. The angular momentum of a rotating rigid body equals the product
of its tensor of inertia I and the rotation vector ω:

H = I · ω . (8)

The symmetric tensor of inertia describes the mass distribution in the system
(Lambeck 1980). In the case of a rigid body it is invariant with respect to body-fixed
axes:

I =
∫ ∫ ∫

ρ(x, y, z)

⎛
⎝y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2

⎞
⎠ dV , (9)

where ρ(x, y, z) is the density at the three-dimensional position (x, y, z). In the
case of a rotating deformable body, the angular momentum H is split into two
parts: one fraction corresponds to the angular momentum of the rotating rigid body
(8), but with the difference that the tensor of inertia is now time variable due to
deformability. The second fraction can be viewed as angular momentum h relative
to the body rotation. It follows from the motion of mass elements with velocity vrel

relative to the rotating reference system, in which the rotation is described:

h =
∫ ∫ ∫

ρ(x, y, z) · (r × vrel) dV , (10)
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where r denotes a three-dimensional position vector. Consequently the angular
momentum of a rotating deformable body is (Schneider 1988)

H = I · ω + h , (11)

where the first summand is also referred to as mass term, the second one as motion
term. Insertion of (11) into (7) yields

d

dt
(I · ω + h) + ω × (I · ω + h) = L . (12)

In this form the equation is also known as Euler–Liouville or in short Liouville
equation (Munk and MacDonald 1960). In the context of Earth rotation studies, the
term deformability not only refers to deformations of the Earth’s body but also to
mass redistributions within and between the various components of the Earth sys-
tem. In particular, atmospheric and oceanic transport processes and related mass
changes are very important on time scales from hours and days to several years.
While the time-variable mass distribution in the system influences the tensor of iner-
tia I, motions of mass elements with respect to the reference system cause relative
angular momenta h. Consequently all elements of the Liouville equation are time
variable:

I = I(t), h = h(t), ω = ω(t), L = L(t) . (13)

Angular momentum is exchanged among the individual components of the Earth
system via mass transfer processes and torques. The occurrence of relative angu-
lar momenta is not necessarily linked to the appearance of variations of the tensor
of inertia. Certainly most of the relevant processes influence both the mass and the
motion term simultaneously. For instance, the atmospheric flow is generally related
to variations of atmospheric pressure, and ocean circulation is usually accompa-
nied by variations of ocean bottom pressure. But on the other hand mass motions
are conceivable that do not influence the mass distribution in the Earth system and
consequently the tensor of inertia. This is the case if one mass element is instan-
taneously replaced by a subsequent one (e.g. in a ring-like ocean current) or if the
Earth’s core experiences an acceleration with respect to the Earth’s mantle. Vice
versa vertical deformations of the Earth as a consequence of loading or the time-
variable snow coverage could be mentioned as examples of mass redistributions
without a significant influence on the motion term.

In theoretical studies on Earth rotation, the quantities in the Liouville equation are
often related to a rotating reference system, according to which the mass elements
of a rotating rigid body are invariant with respect to their position at all times. For a
deformable Earth such a system can be defined by a minimum condition (Schneider
1988). An example is the Tisserand system (Tisserand 1891), for which the inte-
gral effect of the relative motions of mass elements with respect to the reference
system is minimised (h = 0). The application of the Tisserand system simplifies
the Liouville equation (12) considerably. But on the other hand the definition of the
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Tisserand system is hypothetical, since relative angular momenta (especially in the
Earth’s interior) are not accessible from observations on the Earth’s surface (Engels
and Grafarend 1999).

Numerical investigations are commonly performed in a geocentric terrestrial ref-
erence system. Its rotation axis is oriented towards the polar moment of inertia C
of the Earth, its x-axis is directed towards the Greenwich meridian and its y-axis
towards 90◦E. The terrestrial system performs a uniform rotation about its z-axis
with angular velocity � = 2π/86, 164 s. Temporal variations of the instantaneous
Earth rotation vector ω(t) are viewed as small deviations of the uniform rotation. In
coordinates of the terrestrial system the Earth rotation vector is expressed as (Munk
and MacDonald 1960)

ω(t) = � ·
⎛
⎝ m1(t)

m2(t)
1 + m3(t)

⎞
⎠ , mi � 1 . (14)

The dimensionless quantities mi(t) (i = 1, 2, 3) represent slight disturbances of the
uniform rotation (Munk and MacDonald 1960). The two components m1(t) and
m2(t) describe the time-variable orientation of the rotation axis with respect to the
z-axis of the terrestrial system (polar motion). Deviations of the Earth’s angular
velocity with respect to � are associated with changes of the length-of-day. They
follow from the temporal variation of the absolute value of the Earth rotation vector
|ω(t)| (Lambeck 1980; Schneider 1988):

|ω(t)| = �

√
m1(t)2 + m2(t)2 + (1 + m3(t))2 ≈ � (1 + m3(t)) . (15)

The error of �LOD due to this approximation is 10−16 s and therefore negligible.
The Earth’s tensor of inertia I(t) can be interpreted as the sum of two components

I0 and �I(t) (Lambeck 1980), where I0 is an approximate tensor. If the axes of the
reference system coincide with the principal axes of inertia, the approximate tensor
has a diagonal structure:

I0 =
⎛
⎝A 0 0

0 B 0
0 0 C

⎞
⎠ , (16)

where A and B are the equatorial principal moments of inertia and C is the axial
principal moment of inertia of the Earth (C > B > A). But the axes of the princi-
pal moments of inertia differ from the axes of the previously described terrestrial
reference system by approximately 15◦ in the equatorial plane (Marchenko and
Schwintzer 2003). This divergence has to be taken into account by means of a rota-
tion. Consequently I0 does not have a diagonal structure with respect to the axes of
the applied terrestrial system.

Due to mass redistributions in the Earth system, small time-dependent devia-
tions �I(t) of the approximate tensor I0 arise (Moritz and Mueller 1987). With the
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tensor elements (so-called deviation moments) cij(t) � A, B, C (i, j = 1, 2, 3) the
symmetric tensor �I(t) reads

�I(t) =
⎛
⎝c11(t) c12(t) c13(t)

c22(t) c23(t)
sym. c33(t)

⎞
⎠ . (17)

If deviations of the tensor cij(t), relative angular momenta h(t) and external
torques L(t) are provided from models or observations, the solution of the Liouville
Equation for ω(t) allows for the forward computation of Earth rotation variations.
The relation between modelled values mi(t) and geodetic observations will be
discussed in Sect. 6.5.

Two different approaches, the angular momentum approach and the torque
approach, are in principle applicable for the set-up and solution of the Liouville
equation. Theoretically both approaches are equivalent, but they differ conceptually
with respect to their view of the Earth system. Accordingly, the procedures of mod-
elling effects of the Earth’s fluid components (e.g. atmosphere, ocean, continental
hydrosphere) on Earth rotation are different (De Viron et al. 2005).

6.4.1.1 Angular Momentum Approach

The angular momentum approach is the classical approach for modelling Earth rota-
tion. It has been described in various publications (Munk and MacDonald 1960;
Lambeck 1980; Barnes et al. 1983; Moritz and Mueller 1987). The rotating body
for which the Liouville equation is set up comprehends the solid Earth, atmosphere,
hydrosphere and all other subsystems. In the absence of external lunisolar and (much
smaller) planetary torques, this system of mass elements is viewed to be isolated, i.e.
the right-hand side of (12) is zero, and the total angular momentum of the rotating
body is conserved. Fractions of angular momentum can be transferred between the
individual system components by redistributions and motions of masses. Changes
of the angular momentum due to atmospheric, oceanic and other dynamic processes
are associated with an opposite change of angular momentum of the solid Earth
which is accompanied by variations of the Earth rotation vector ω(t).

In the angular momentum approach, solely gravitational torques from external
celestial bodies act on the rotating Earth. If the Sun, Moon and planets are viewed
as point masses, the gravitational torque L(t) on the right-hand side of the Liouville
equation (12) can be written as (Moritz and Mueller 1987; Beutler 2005)

L(t) =
∑

j

3GMj

r5
ej(t)

⎛
⎝yj(t) zj(t) (C − B)

xj(t) zj(t) (A − C)
xj(t) yj(t) (B − A)

⎞
⎠ . (18)

In this equation G is the gravitational constant, and index j stands for the respec-
tive celestial body with the (point-)mass Mj; its geocentric distance is denoted
with rej(t); xj(t), yj(t), zj(t) are its coordinates in the rotating reference system. In
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its conventions the IERS recommends the use of the solar, lunar and planetary JPL
Development Ephemeris DE405/LE405 (Standish 1998; McCarthy and Petit 2004).

Each relocation of mass elements within the system leads to an instantaneous
change of the tensor of inertia �I(t). Deviation moments cij(t) for the solid Earth
result from deformations of the Earth’s body as reaction to a tide generating poten-
tial, rotational variations and surface mass loads (Moritz and Mueller 1987; Seitz
et al. 2004) (see Sect. 6.4.2). Relative angular momenta h(t) are due to the motion
of individual mass elements relative to the terrestrial reference system.

The angular momentum approach corresponds to an abstract balance of angu-
lar momentum of all subsystems. Their individual contributions to the angular
momentum budget are linearly superposed:

I(t) = I0 + �I solid Earth(t) + �I atmosphere(t) + �I ocean(t) + · · ·,
h(t) = h solid Earth(t) + h atmosphere(t) + h ocean(t) + · · · .

(19)

Variations of the tensor of inertia can be computed from modelled or observation-
based mass balances of the Earth’s subsystems. Relative angular momenta are
derived from fluxes from global atmosphere and ocean circulation models.

6.4.1.2 Torque Approach

In the torque approach the effects of the Earth’s fluid components, atmosphere
and ocean, on the balance of angular momentum are modelled as (quasi-)external
torques (Wahr 1982). That is, the integral effect of direct atmospheric and oceanic
forces on the solid Earth appears in the vector L(t) on the right-hand side of the
Liouville equation (12). Similar to the angular momentum approach, variations of
the tensor of inertia �I(t) are due to deformations of the solid Earth caused by
tides, surface mass loads and rotational variations. Since atmosphere and ocean are
viewed as external systems, their mass redistributions do not affect the tensor of
inertia. Likewise there are no relative angular momenta h(t) due to atmospheric and
oceanic currents.

Torques between atmosphere/ocean and the solid Earth are assessed on the basis
of global atmosphere and ocean circulation models. The acting torque is composed
of three parts: pressure torque, gravitational torque and friction torque (De Viron
et al. 2001). The pressure torque acts on the Earth’s topography. It is derived from
fields of surface and ocean bottom pressure and the gradient of the topography.
The gravitational torque is a result of the interaction between the mass distributions
within atmosphere/ocean and the solid Earth. The friction torque results from the
relative motion of atmosphere and ocean currents with respect to the Earth surface.
Since the friction drag of the Earth’s surface is widely unknown it is particularly
difficult to model (De Viron and Dehant 2003a). In a study on the influence of the
atmospheric torque on polar motion De Viron et al. (1999) demonstrated that the
time derivatives of the equatorial atmospheric angular momentum and the sum of the
atmospheric equatorial torques agree well in the spectral range of longer than 1 day.
Furthermore this study revealed that the magnitude of the equatorial components of
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pressure and gravitational torque are almost equal (but with opposite signs) and that
both contribute significantly stronger to polar motion than the friction torque.

The effects of atmospheric and oceanic pressure torque, gravitational torque and
friction torque are superposed to the previously described external gravitational
torque exerted by Sun, Moon and planets (18). Therefore the total torque L(t) can
be written as

L(t) = L pressure(t) + L gravitation(t) + L friction(t) + L external(t) . (20)

Since lunisolar and planetary torques have a discrete spectrum in narrow vicinity
of the diurnal retrograde frequency, they can be modelled quite well via harmonic
expansion. Atmospheric and non-tidal oceanic torques, however, have a continu-
ous spectrum and are thus unpredictable. Consequently, the modelling has to be
performed in the time domain.

From the viewpoint of physical understanding, the torque approach is superior to
the angular momentum approach. By modelling explicit interactions between atmo-
sphere/ocean and the solid Earth via particular forces, it is possible to tell which
specific processes lead to a change of the angular momentum budget and thus cause
variations of Earth rotation. The torque approach is ideal for geographical studies
since it allows for a direct identification of regions in which the interaction between
atmosphere, ocean and the solid Earth is stronger than in others (De Viron and
Dehant 2003b). In this way, the approach provides valuable physical insights into
dynamic interactions in the Earth system.

The largest limitation for the torque approach is the lack of sufficiently accu-
rate numerical models for the computation of the torques due to atmospheric and
oceanic pressure, gravitation and friction. While model errors are not so crucial in
the case of the angular momentum approach (where the errors smooth out due to the
computation of one global value), the torque approach is highly sensitive to errors
(De Viron and Dehant 2003b). As stated above, many of the parameters which are
necessary for the computation of torques are not well known, e.g. the friction drag
between air and Earth surface or between water and ocean bottom. Furthermore,
the computation of the pressure torque is unsatisfactory due to the comparatively
coarse spatial resolution of available orography models (De Viron et al. 1999; Stuck
2002).

Due to these data problems, atmospheric and oceanic angular momentum values
presently appear to be more reliable for the interpretation of geodetic observations
of Earth rotation. Nevertheless the torque approach is promising in the light of future
model advancements.

6.4.2 Solid Earth Deformations

Mass redistributions and corresponding variations of the tensor of inertia are also
caused by deformations of the solid Earth as a consequence of its reaction to
the lunisolar and planetary tide generating potential, variations of the centrifugal
potential due to polar motion and mass loads on the Earth surface.
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Theoretical considerations on the effects of solid Earth and ocean tides on Earth
rotation are provided together with elaborate instructions for numerical computa-
tions in the conventions of the IERS (McCarthy and Petit 2004). For particulars
the reader is referred to this publication and the references therein. The following
section will focus on the deformations induced by rotational variations and surface
mass loads.

6.4.2.1 Rotational Deformations

Temporal variations of the rotation vector ω(t) lead to variations of the Earth’s
centrifugal potential. This causes deformations of the solid Earth and the ocean
which are also known as rotational deformations. While vertical deformations due
to variations of the angular velocity of the rotation are below 0.5 mm at the Earth
surface (Wahr 1985) and therefore negligible, the effects due to polar motion are
up to 25 mm (Gipson and Ma 1998). These changes of the Earth’s geometry are
accompanied by variations of the tensor of inertia that are superposed to other devi-
ations cij(t) (i, j = 1, 2, 3) due to mass redistributions induced by gravity and other
geophysical effects. The back coupling from polar motion to the tensor of iner-
tia influences the Earth’s rotational dynamics significantly: it is well known that
rotational deformations are responsible for the prolongation of the Euler period
of 304 days (which is the period of the free oscillation of a rigid body with the
Earth’s dimensions) to the observed period of the free oscillation of about 432 days
(Chandler period) (Moritz and Mueller 1987).

The effect of polar motion on the Earth’s centrifugal potential is referred to as
pole tide. Parameters m1(t) and m2(t) of the Earth rotation vector are related to tem-
poral variations of the coefficients �C21(t) and �S21(t) of the spherical harmonic
expansion of the geopotential (McCarthy and Petit 2004):

�C21(t) = − �2a3

3GME

(
�(k2) · m1(t) + �(k2) · m2(t)

)
,

�S21(t) = − �2a3

3GME

(
�(k2) · m2(t) − �(k2) · m1(t)

)
,

(21)

where a and ME stand for mean equatorial radius and total mass of the Earth. The
effect of polar motion on rotational deformations and therewith on the variation of
the geopotential depends on the Earth’s rheological properties. In (21) the rheology
is described by the complex pole tide Love number k2 = �(k2) + i�(k2), where �
and � stand for real part and imaginary part, respectively.

The coefficients �C21(t) and �S21(t) are directly linked to the elements of c13(t
and c23(t) of the tensor of inertia (Lambeck 1980):

�C21(t) = −c13(t)

a2ME
,

�S21(t) = −c23(t)

a2ME
.

(22)
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If the Earth was a rigid body, i.e. if the tensor of inertia was invariant with respect
to time and there were no relative angular momenta, the Earth would rotate freely
at the Euler period of 304 days as stated above. In an extensive study Smith and
Dahlen (1981) discussed the consequences of deformability for the period of the
free polar motion and derived an appropriate numerical value of the pole tide Love
number k2 in the light of mantle anelasticity and the dynamics of core and ocean.
In a first step Smith and Dahlen (1981) approximated the Earth as a purely elastic
body and neglected the dynamic response of core and ocean. The pole tide Love
number was introduced with the (preliminary) numerical value of k∗

2 = 0.30088,
which was computed from the hydrostatic ellipsoidal Earth model 1066A (Gilbert
and Dziewonski 1975). It was shown that the period of the free rotation of a fully
elastic Earth would amount to 447 days, i.e. 143 days longer than that of a rigid
body.

In order to refine the Earth’s reaction on rotational variations, the effects of the
dynamic fluid core, the equilibrium ocean pole tides and the mantle anelasticity
must be taken into account for the computation of rotational deformations. In the
following a simple Earth model will be discussed which consists of an anelastic
mantle and a spherical liquid core. Both are assumed to be completely decoupled.
Basic considerations on the application of such a model body for studies on Earth
rotation can be found in, e.g. Moritz and Mueller (1987) and Brzezinski (2001). It
is similar to the models introduced by Molodensky (1961) and Sasao et al. (1980),
but in contrast to the latter studies, the approach does not account for the exchange
of angular momentum between core and mantle. While the effects of core–mantle
coupling on polar motion are significant mainly on subdaily time scales, there are
huge decadal variations of �LOD due to the interaction of core and mantle (see
Sect. 6.3). As a consequence of the decoupling, the principal moments of inertia A,
B and C which are the parameters of the approximate tensor of inertia I0 (16) of
the entire Earth have to be replaced by Am, Bm and Cm, which are attributed to the
mantle alone. Since the core is assumed to be spherical, the principal moments of
inertia used for the computation are derived from Am = A − Ac, Bm = B − Ac, and
Cm = C − Ac, where Ac denotes the principal moment of inertia of the spherical
core. Its value is derived from (Sasao et al. 1980)

Ac = A
ξ

γ
, (23)

where ξ and γ are constants accounting for the rheology of mantle and core.
The values provided by Sasao et al. (1980) are ξ = 2.300 × 10−4 and
γ = 1.970 × 10−3. In a later study, Mathews et al. (1991) computed
ξ = 2.222 × 10−4 and γ = 1.965 × 10−3 from the Preliminary Reference Earth
Model PREM (Dziewonski and Anderson 1981). The non-participation of the core
in the rotation shortens the period of the free polar motion by approximately 50.5
days (Smith and Dahlen 1981). That is, the period of the free rotation of a fully
elastic Earth with liquid core would be around 396 days.

In order to account for the effects of ocean pole tides and mantle anelasticity,
surcharges to the above given value for the elastic pole tide Love number k∗

2 are
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added (Smith and Dahlen 1981). The effective pole tide Love number k2 becomes

k2 = k∗
2 + �kO

2 + �kA
2 , (24)

where �kO
2 and �kA

2 denote the incremental corrections of the elastic pole tide Love
number due to ocean pole tides and the anelastic response of the Earth’s mantle.
Following Smith and Dahlen (1981) and a more recent study by Mathews et al.
(2002) the appropriate addend for the contribution of equilibrium ocean pole tides
amounts to �kO

2 = 0.044. Thereby the period of the free oscillation is lengthened
by about 29.8 days (Smith and Dahlen 1981).

The reaction of the Earth’s mantle on variations of the centrifugal potential is not
ideally elastic. Due to friction, rotational deformations of the mantle are a dissipative
process which is equivalent to an attenuation of the free polar motion. That means, in
the absence of a counteracting excitation mechanism, the rotation axis of the Earth
would dislocate towards its figure axis within a few decades (Moritz and Mueller
1987). The effect of mantle anelasticity causes an extension of the period of the free
rotation by another 8.5 days (Wilson and Haubrich 1976). It is considered by the
complex surcharge �kA

2 = 0.0125+0.0036i to the Love number k∗
2 (Mathews et al.

2002; McCarthy and Petit 2004).
Summing up the effects of ocean, core and mantle, the value of the pole tide Love

number is k2 = 0.35+0.0036i (McCarthy and Petit 2004). This value is appropriate
for a deformable Earth with a spherical liquid core, taking into account the effects
of ocean pole tides and mantle anelasticity. When k2 was applied in a numerical
simulation with a dynamic Earth system model, the resulting Chandler period was
431.9 days (Seitz et al. 2004) which coincides with geodetic observations. The result
of the simulation for the x-component of polar motion over a period of 100 years is
displayed in Fig. 6.6 Since neither gravitational effects nor mass redistributions and
motions in the Earth’s fluid components have been considered in this experiment,
the curve reflects the free polar motion under the influence of mantle anelasticity
or – mathematically speaking – under the influence of the imaginary part of the pole
tide Love number �(k2). The curve is provided in normalised representation since
the choice of the initial values is arbitrary. The damping of the Chandler amplitude
is obvious, and after already 22 years the amplitude is reduced by half.

Year

–1

0

1

1900 1920 1940 1960 1980 2000

Fig. 6.6 Damped Chandler oscillation (x-component) derived from a simulation study with a
dynamic Earth system model over 100 years regarding ocean pole tides and mantle anelasticity
(Seitz et al. 2004)
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The damping function c(t) is the envelope of the oscillation

c(t) = c0 · e−δ(t−t0) , (25)

where c0 is the initial amplitude of the oscillation and δ is the damping coefficient.
The damping coefficient is derived from the proportion of two subsequent maxima
of the oscillation ci(ti) and ci+1(ti+1):

δ = ln (ci/ci+1)

(ti+1 − ti)
. (26)

Usually the damping of the Chandler oscillation is expressed in terms of a quality
factor Q. The reciprocal value Q−1 represents the specific dissipation, i.e. the loss
of energy at the Chandler frequency (Munk and MacDonald 1960). The specific
dissipation is related to the damping coefficient:

Q−1 = δ (ti+1 − ti)

π
. (27)

The numerical value of the quality factor that corresponds to the curve displayed
in Fig. 6.6 (k2 = 0.35 + 0.0036i) is Q = 82. In Table 6.1 values of period and
quality factor of the Chandler oscillation from various studies are provided. They
were computed from geodetic observations and models using different methods.
Especially the quality factor is characterised by a high level of uncertainty.

If effects of gravitational and other geophysical processes are superposed, i.e. if
torques, relative angular momenta and further deviations of the tensor of inertia are
regarded in the Liouville equation, an interaction between forced and free oscillation
occurs due to rotational deformations. While the impacts on the Chandler frequency
are negligible (Okubo 1982; Jochmann 2003), the Chandler amplitude is strongly
affected by the excitations (see Sect. 6.2).

Table 6.1 Periods and quality factors Q (with 90% confidence interval) of the Chandler oscillation
from different studies

Chandler period Q [Interval] Source

434.0 ± 2.5 days 100 [50, 400] Wilson and Haubrich (1976)
431.7 days 24 Lenhardt and Groten (1985)
433.3 ± 3.6 days 179 [47, >1,000] Wilson and Vicente (1990)
439.5 ± 1.2 days 72 [30, 500] Kuehne et al. (1996)
433.7 ± 1.8 days 49 [35, 100] Furuya and Chao (1996)
413 – 439 days Schuh et al. (2001)
434.1 days 69 Seitz and Kutterer (2005)
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6.4.2.2 Deformations Due to Surface Loads

Various processes in the subsystems of the Earth, such as the motion of atmospheric
high-pressure and low-pressure systems, ocean bottom pressure changes or hydro-
logic variations over the continents due to flooding and snow, exert time-variable
surface mass loads on the solid Earth. In this way they cause deformations of the
Earth’s body which are up to few centimetres in the vertical and several millime-
tres in the horizontal (Rabbel and Zschau 1985; Sun et al. 1995). The change of
the surface geometry entails the redistribution of mass elements within the solid
Earth which has a significant effect on both the Earth’s gravity potential and its
rotation. Consequently expedient information about atmosphere loading (van Dam
and Herring 1994), non-tidal ocean loading (van Dam et al. 1997) and continen-
tal water storage variations (van Dam et al. 2001; Schuh et al. 2004) is required
for an advanced interpretation and analysis of space geodetic observations (Rabbel
and Schuh 1986; Manabe et al. 1991; Haas et al. 1997; Boehm et al. 2009). The
surface forces exerted by time-variable mass distributions are in contrast to gravi-
tationally induced body forces. While the latter cause large-scale and very regular
deformations of the Earth that are well predictable, the effects of surface mass loads
are mostly restricted to a few 100 km. Since they are irregular, they are hardly
predictable (van Dam et al. 1997).

Vertical surface deformations of the solid Earth are usually computed following
the theory of Farrell (1972). Pressure variations p(λ,ϕ) (units of [Pa]) are related to
time-variable surface mass loads q(λ,ϕ) (units of [kg/m2]) by

q(λ,ϕ) = p(λ,ϕ)

g
, (28)

where g is the gravitational acceleration. The radial displacement dr(P) of the Earth
at a position P(ϕP, λP) caused by surface mass loads qQ at locations Q(ϕQ, λQ) on
the Earth’s surface area σQ is estimated by (Moritz and Mueller 1987)

dr(P) = a3

M

∫∫
σQ

qQ

∞∑
n=0

h′
nPn(cosψPQ) dσQ . (29)

In this equation h′
n denotes the degree n load Love number. The spherical dis-

tance between P and the location Q(ϕQ, λQ) of an individual (point-)mass load
is given by ψPQ which is the argument of the degree n Legendre Polynomial
Pn(cosψPQ). More compact (29) can be written as

dr (P) = a2
∫∫
σQ

qQG
(
ψPQ

)
dσQ , (30)

where the abbreviation
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(31)

is the Green’s function for the vertical displacement (Farrell 1972). Function
G(ψPQ) acts as a weighting operator which relates an individual surface mass load
to the associated deformation of the solid Earth according to the spherical distance.
Figure 6.7 shows the Green’s function for continental crust computed from load
Love numbers based on the previously mentioned Earth model PREM (Dziewonski
and Anderson 1981; Scherneck 1990). The strong variability of the dotted curve
truncated at n = 350 reflects the truncation error.

Figure 6.8 shows the time-variable deformations of the solid Earth for a period
of two weeks in February 1994 as caused by atmosphere loading, non-tidal ocean
loading and water storage variations over the continents (Seitz 2004). For the atmo-
sphere and the ocean fields of surface mass loads qQ(ϕQ, λQ) were computed from a
consistent combination of atmosphere surface pressure variations from reanalysis at
the National Centers for Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) (Kalnay et al. 1996) and ocean bottom pressure variations
from the constrained version kf049f of the global ocean circulation model ECCO
(Fukumori 2002). Outputs of both models are provided in daily intervals; spatial
resolutions are 2.5◦ × 2.5◦ for NCEP/NCAR (globally) and 1◦ × 1◦ for ECCO
(between 70◦ N/S; densification of the grid around the equator). Since atmosphere
pressure forcing is not taken into account by ECCO, an inverse barometric cor-
rection is applied to the NCEP/NCAR fields, i.e. air pressure is set to zero over
the ocean. Variations of continental hydrology are taken from the land dynamics
model (LaD; version Euphrates) (Milly and Shmakin 2002). LaD data comprehends
monthly values of global water and groundwater storage as well as snow loads per
1◦ × 1◦ grid cell. While the deformations over the continents are up to 2 cm, the
influence of ocean bottom pressure variations on the surface geometry of the Earth
is marginal.

In order to assess the effect of the deformations on Earth rotation, the verti-
cal surface displacements have to be transformed into variations of the tensor of
inertia �I(t). Since this two-step procedure, i.e. the computation of global load
deformations and the subsequent transformation of the deformations into deviations
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Fig. 6.8 Deformations of the solid Earth due to anomalies of atmospheric surface pressure, ocean
bottom pressure, and continental water storage (Seitz 2004)

of the tensor of inertia (Dill 2002; Seitz 2004), is laborious and time-consuming,
the indirect effect of mass redistributions on Earth rotation is commonly computed
from changes of the geopotential associated with the mass load and the surface
deformation.

The variation �Udef of the Earth’s gravity potential U due to a surface defor-
mation is proportional to the perturbing potential u of the surface mass load. The
proportionality factor is the potential Love number k′ (Moritz and Mueller 1987):

�Udef = k′u . (32)

In general, the gravity potential u of a loading (point-)-mass m equals (Heiskanen
and Moritz 1967)

u = Gm

l
= Gm

a

∞∑
n=0

(
a − dr

a

)n

Pn(cosψPQ) , (33)

or, since the vertical deformation dr is small compared to the Earth radius a:

u = Gm

a

∞∑
n=0

Pn(cosψPQ) . (34)

According to (32), the related change of the geopotential due to the induced
surface deformation is
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δUdef = Gm

a

∞∑
n=0

k′
nPn(cosψPQ) . (35)

If the point mass m is substituted by the (global) surface mass load qQ, this equation
turns into

δUdef = Ga
∫∫
σQ

qQ

∞∑
n=0

k′
nPn(cosψPQ) dσQ , (36)

and the gravity potential u of the loading mass is

u = Ga
∫∫
σQ

qQ

∞∑
n=0

Pn(cosψPQ) dσQ . (37)

Following the derivation given by Moritz and Mueller (1987), (37) can be written
as

u = Ga
∞∑

n=0

4π

2n + 1
qQn , (38)

where qQn is the Laplace surface harmonic of degree n of the function qQ, i.e.

qQ =
∞∑

n=0

qQn . (39)

If accordingly the Laplace surface harmonic un of function u is introduced, the
gravity potential of degree n of the surface mass load can be written as

un = Ga
4π

2n + 1
qQn . (40)

Since the variations of the tensor of inertia �I(t) are solely related to potential
variations of degree 2 (Rochester and Smylie 1974; Chen et al. 2005; see also (22)),
it is sufficient to evaluate (40) for n = 2. The temporal variation of δU2(t) due to the
surface deformation is

δU2(t) = k′
2Ga

4π

5
qQ2 (41)

with k′
2 = −0.308 (Dong et al. 1996). The relation between the spherical harmonic

coefficients of degree 2 and the elements of the Earth tensor of inertia is linear
(Chen et al. 2005). Therefore tensor variations due to the indirect effect �Idef(t)
are computed simply by multiplying the direct tensor variations by the load Love
number k′

2:
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�Idef(t) = k′
2 · �̂I(t) , (42)

where �̂I(t) denotes the direct tensor variations due to the mass redistributions
within atmosphere, ocean and other subsystems that are causative for the Earth’s
surface deformations.

Given the above, the total (direct and indirect) effect of mass redistributions on
the Earth’s tensor of inertia is (Barnes et al. 1983)

�I(t) = (1 + k′
2) · �̂I(t) . (43)

Thus, the direct effect is attenuated by about 30% due to the deformation of the
solid Earth. Note that this is only valid for mass redistributions that actually load
the Earth’s surface. For processes that are not accompanied by surface deformations
(e.g. mass redistributions in the mantle) the load Love number k′

2 must be set to
zero in this equation (Gross 2007).

6.4.3 Solution of the Euler–Liouville Equation

In order to compute variations of Earth rotation from angular momentum changes
and torques, the Liouville equation (12) has to be solved for the unknown quanti-
ties mi(t) of the Earth rotation vector ω(t). In general two different approaches, an
analytical and a numerical approach, are applicable for the solution of the coupled
system of the three first-order differential equations. Both methods will be discussed
in the following.

Less compact the Liouville equation (12) can be written as

İ ω + I ω̇ + ḣ + ω × I ω + ω × h = L , (44)

where the dot denotes the derivative with respect to time. The individual terms read
explicitly

İ ω =
⎛
⎝ ċ11 ċ12 ċ13

ċ12 ċ22 ċ23
ċ13 ċ23 ċ33

⎞
⎠ · �

⎛
⎝ m1

m2
1 + m3

⎞
⎠ , (45)

I ω̇ =
⎛
⎝A + c11 c12 c13

c12 B + c22 c23
c13 c23 C + c33

⎞
⎠ · �

⎛
⎝ ṁ1

ṁ2
ṁ3

⎞
⎠ , (46)

ḣ =
⎛
⎝ ḣ1

ḣ2

ḣ3

⎞
⎠ , (47)

ω × I ω = �

⎛
⎝ m1

m2
1 + m3

⎞
⎠×

⎛
⎝A + c11 c12 c13

c12 B + c22 c23
c13 c23 C + c33

⎞
⎠ · �

⎛
⎝ m1

m2
1 + m3

⎞
⎠ , (48)
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ω × h = �

⎛
⎝ m1

m2
1 + m3

⎞
⎠×

⎛
⎝h1

h2
h3

⎞
⎠ . (49)

The traditionally applied analytical approach has been described and discussed in
various publications (e.g. Munk and MacDonald 1960; Lambeck 1980; Wahr 1982;
Barnes et al. 1983; Moritz and Mueller 1987; Gross 2007). Therefore only its basic
principle shall be sketched in the following. In the numerical ansatz, the non-linear
equation system is solved directly via numerical integration.

6.4.3.1 Linear Analytical Approach

In order to allow for a closed solution of the coupled system of differential equations
(44), the following simplifications are commonly introduced (Lambeck 1980):

• With adequate accuracy, the Earth can be viewed as a biaxial, i.e. rotationally
symmetric, body, so that the principal components A and B can be substituted
by their average value A′ = (A + B)/2. (Indeed the quotient of the difference
between A and B and the absolute value of either of them amounts to only
2.2 × 10−5; see Gross 2007.)

• Terms that contain products of the small quantities mi(t), cij(t) and hi(t) or their
derivatives with respect to time are negligible (linearisation).

With these assumptions, the expansion of the expressions (45), (46), (48) and
(49) results in

İ ω = �

⎛
⎝ ċ13

ċ23
ċ33

⎞
⎠ , (50)

I ω̇ = �

⎛
⎝A′ ṁ1

A′ ṁ2
C ṁ3

⎞
⎠ , (51)

ω × I ω = �2

⎛
⎝ m2(C − A′) − c23

−m1(C − A′) + c13
0

⎞
⎠ , (52)

ω × h = �

⎛
⎝−h2

h1
0

⎞
⎠ . (53)
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Insertion into the Liouville equation (44) yields

�

⎛
⎝ ċ13

ċ23
ċ33

⎞
⎠+ �

⎛
⎝A′ ṁ1

A′ ṁ2
C ṁ3

⎞
⎠+

⎛
⎝ ḣ1

ḣ2

ḣ3

⎞
⎠

+ �2

⎛
⎝ m2(C − A′) − c23

−m1(C − A′) + c13
0

⎞
⎠+ �

⎛
⎝−h2

h1
0

⎞
⎠ =

⎛
⎝L1

L2
0

⎞
⎠ ,

(54)

or component-by-component

ṁ1 · A′

�(C − A′)
+ m2 = 1

�2(C − A′)
·
[
L1 + �2c23 − �ċ13 + �h2 − ḣ1

]
=: �2 ,

(55)

ṁ2· A′

�(C − A′)
−m1 = 1

�2(C − A′)
·
[
L2 − �2c13 − �ċ23 − �h1 − ḣ2

]
=: −�1 ,

ṁ3 = 1

�C
· [−�ċ33 − ḣ3

] =: �̇3 . (57)

The terms containing the time-variable equatorial components of the external
torques L1(t) and L2(t) as well as the quantities cij(t), hi(t) or their derivatives with
respect to time are referred to as excitation functions �i (i = 1, 2, 3) (Munk and
MacDonald 1960). Note that L3 = 0 due to A = B; see (18). Variations of the ten-
sor elements c13(t), c23(t) and c33(t) describe the sum of all direct effects of mass
redistributions in the various system components and the effects of solid Earth defor-
mations due to tides, polar motion and surface loads. For the principal moments of
inertia A′ and C numerical values have to be introduced that account for the effect
of core–mantle decoupling as discussed in Sect. 6.4.2.1.

Due to the linearisation, only three of the six components of the tensor of inertia
appear in the excitation functions. Deviation moments c11(t), c22(t) and c12(t) are
neglected in the analytical approach. The axial component m3(t) of the Earth rotation
vector ω(t) is decoupled from the horizontal components. With adequate accuracy
�LOD(t) can be calculated independently from polar motion (see (15)). For the
computation of polar motion, the first two differential equations are transformed into
a complex equation (Lambeck 1980). Defining m(t) = m1(t) + im2(t) and �(t) =
�1(t) + i�2(t) yields

i ·
(

ṁ
A′

�(C − A′)

)
+ m = � , (58)

where i = √−1. For a rigid body and in the absence of external torques � equals
zero. Then the solution of (58) is

m = m0e iσ t , (59)
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with the abbreviation σ = �
(C − A′)

A′ and the complex coordinate m0 = m(t0) as

initial condition for the epoch t0. The free polar motion of a rigid Earth would be
a prograde and undamped oscillation with amplitude

∣∣m0
∣∣ and frequency σ , which

corresponds to a period of 304 days (Euler period).
The observed frequency of the free polar motion (Chandler frequency) differs

from the Euler frequency due to the deformability of the Earth’s body. As a con-
sequence of mantle anelasticity, rotational deformations are accompanied by a loss
of energy due to friction (see Sect. 6.4.2.1). In order to account for this effect, σ is
substituted by the complex quantity σCW (Lambeck 1980):

σCW = σ0

(
1 + i

2Q

)
. (60)

Here σ0 is the Chandler frequency and Q denotes the quality factor that describes the
damping of the Chandler amplitude due to dissipation. Both quantities are explicitly
predetermined in the analytical approach. Therefore the result is directly dependent
on the choice of the numerical values of σ0 and Q (Wilson and Haubrich 1976). Due
to the assumption of rotational symmetry (A = B), the resulting free polar motion is
circular. For a deformable Earth the solution of the Liouville equation follows from
the convolution

m = eiσCWt
[

m0 − iσCW

∫ t

−∞
�(τ )e−iσCWτdτ

]
. (61)

Alternative to the explicit computation of polar motion from the excitation functions
�1(t) and �2(t), an indirect method is commonly applied, in which the so-called
geodetic excitation is derived by an inverse convolution from the observed polar
motion (Chao 1985; Brzezinski 1992). The comparison between the gravitational
and geophysical processes and the geodetic observations is then performed on the
basis of the excitation functions �1(t) and �2(t) without calculating m1(t) and m2(t).
Since the Chandler oscillation is a priori reduced from the observations in the course
of the computation of the geodetic excitation, the indirect method is just like the
direct method dependent on the choice of the parameters σ0 and Q.

6.4.3.2 Non-linear Numerical Approach

In the non-linear numerical approach the system of the three differential equations
(44) is solved numerically. In contrast to the analytical approach, the Chandler
oscillation is not explicitly predetermined with respect to its period σ0 and qual-
ity factor Q. Instead, the free polar motion is modelled by considering the effect of
the back-coupling mechanism of rotational deformations in �I(t). As described in
Sect. 6.4.2.1, frequency and damping of the Chandler oscillation are closely related
to the value of the complex Love-number k2 in this case (Seitz and Kutterer 2005).

No set-up of linearised excitation functions is required when the system of dif-
ferential equations is solved numerically. This is a major difference compared to the
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analytical approach: the tensor of inertia I(t), the vector of angular momenta h(t)
and the vector of the external torques L(t) are directly introduced into the Liouville
equation. Therefore the temporal variations of the deviation moments c11, c22 and
c12 are also considered in the tensor of inertia, and the previously neglected higher-
order terms are contained in the solution. As a consequence, the first two differential
equations are not decoupled from the third one, i.e. polar motion and �LOD(t) are
solved simultaneously.

Furthermore the numerical approach allows for the introduction of a triaxial
approximate tensor I0(A 
= B 
= C). The free polar motion of such an unsym-
metrical gyro is no longer circular. But since the discrepancy between A and B is
small, the numerical eccentricity of the ellipse described by the Earth rotation vec-
tor with respect to the Earth-fixed reference frame is only 0.10 if all gravitational
and geophysical excitations are neglected. Its semi-minor axis is oriented towards
the direction of the smallest principal moment of inertia A.

The Liouville equation is reformulated as a coupled system of three ordinary
differential equations of the general form

ṁ (t) = f (t, mi (t)) , (62)

(i = 1, 2, 3) with

ṁ (t) =
⎛
⎝ ṁ1 (t)

ṁ2(t)
ṁ3(t)

⎞
⎠ , (63)

and

f (t, mi (t)) =
⎛
⎝ f1(t, m1(t), m2(t), m3(t))

f2(t, m1(t), m2(t), m3(t))
f3(t, m1(t), m2(t), m3(t))

⎞
⎠ . (64)

Function f (t, mi (t)) comprehends the tensor of inertia I(t), relative angular
momenta h(t) and torques L(t). Due to rotational deformations, the tensor of iner-
tia includes deviations, which are dependent on m1 and m2 (cf. (21) and (22)).
Consequently derivatives of these parameters with respect to time ṁi appear in both
terms I ω̇ and İ ω of the Liouville equation (44). In order to solve the Liouville
equation for the unknown quantities mi, their derivatives are assembled on the left-
hand side of the differential equation. Therefore the tensor of inertia İ is divided into
two parts: one component, İR, describes the effect of rotational deformations and
depends on ṁi; the second component İG includes the geophysically induced mass
redistributions in the fluid system components and in the solid Earth due to tidal
deformations and load deformations. This second component İG is independent of
ṁi. Consequently the Liouville equation can be written as

İR ω + I ω̇ = L − İG ω − ḣ − ω × h − ω × I ω . (65)
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If the products of the mi with the (very small) derivatives ṁi are neglected, the term
İR ω equals

İR ω = �3a5

3G

⎡
⎣�(k2) · ṁ1 + �(k2) · ṁ2

�(k2) · ṁ2 − �(k2) · ṁ1
0

⎤
⎦ (66)

≈ �3a5

3G
�(k2)

⎡
⎣ ṁ1

ṁ2
0

⎤
⎦ . (67)

Since the real part of k2 is two orders of magnitude larger than its imaginary part,
the products of �(k2) with ṁi are neglected, too. The left-hand side of system (65)
turns into

İR ω + I ω̇ =
⎛
⎝ �3a5

3G
�(k2)

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦+ � I

⎞
⎠
⎡
⎣ ṁ1

ṁ2
ṁ3

⎤
⎦ (68)

=: F

⎡
⎣ ṁ1

ṁ2
ṁ3

⎤
⎦ , (69)

and the Liouville equation can be converted into

ṁ = F−1 (L − İG ω − ḣ − ω × h − ω × I ω
)

. (70)

This coupled system of three first-order differential equations is solved as an initial
value problem. Just as in the analytical approach, the tensor of inertia is composed of
all contributions from direct mass effects in the components of the Earth system and
from the deformations of the solid Earth induced by tides, polar motion and loading.
The effect of core–mantle decoupling is regarded by the adoption of appropriate
values of the principal moments of inertia A, B, C; see Sect. 6.4.2.1.

The introduction of initial values for the epoch t0

m0 =
⎛
⎜⎝

m0
1

m0
2

m0
3

⎞
⎟⎠ (71)

allows for a unique computation of special solutions for the unknown functions
mi = mi(t) by which the initial conditions mi(t0) = m0

i are fulfilled. Respective
values m0

i are deduced from observations of polar motion and �LOD. For the cor-
respondence between the geodetic observations and the quantities mi(t), see Sect.
6.5.

The efficiency of the numerical solution is naturally linked to the quality of
both the applied initial conditions and the integrator. Using the previously men-
tioned dynamic Earth system model (see Sect. 6.4.2.1), Seitz and Kutterer (2005)
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studied the effect of inaccurate initial values on the numerical solution. They con-
cluded from 30 test runs that the variation of the initial values within an interval of
±3σi (where σi is the standard deviation of the respective observation) is uncritical.
However, if the applied initial values differ substantially from the geodetic observa-
tions (e.g. if m0

i = 0 is assumed), the results are contaminated over many decades. In
this case the model time series are not interpretable before a steady state is reached,
i.e. before the influence of the initial conditions falls below the level of the model
accuracy. Studies on the reliability of the solution from an algorithmic point of view
showed little dependence of the results on the choice of a specific solver: Seitz
(2004) applied various one-step and multi-step solvers as well as an extrapolation
method in the dynamic Earth system model and performed runs over more than two
decades with identical initial values and forcing conditions. It was shown that the
RMS differences between all runs were in the order of 1 mas for polar motion and
1–2 μs for �LOD. In contrast, the absolute accuracy of the model, i.e. the RMS
difference between the simulation and the geodetic observations, was in the order
of 30 mas for polar motion and 120 μs for �LOD.

More details on the non-linear approach, numerical model results from the
dynamic Earth system model and comparisons between modelled and observed
time series for polar motion and �LOD can be found in Seitz (2004) and Seitz
and Schmidt (2005).

6.5 Relation Between Modelled and Observed Variations
of Earth Rotation

The parameters mi(t) of the Earth rotation vector ω(t) in the Liouville Equation
(12) are related to the geodetically observed time series of polar motion
[xp(t), yp(t)],�UT(t) and length-of-day variations �LOD(t). The time-variable
angular misalignment between the instantaneous rotation vector ω(t) and the z-axis
of the terrestrial reference frame in x- and y-direction is described by the two com-
ponents m1(t) and m2(t), respectively (see (14)). On the other hand, the coordinates
xp and yp published by the IERS represent the misalignment between the CIP and
the IERS Reference Pole (i.e. the z-axis of the ITRF).

Both coordinate systems differ with respect to the direction of the positive y-
axis: the terrestrial system, to which the rotation vector ω(t) refers to, is a right-hand
system. The system used by the IERS for the publication of the coordinates xp(t) and
yp(t), however, is a left-hand system (yp-axis directed towards 90◦W; see Sect. 6.1).
Therefore the coordinates [p1(t), p2(t)] are defined, in order to describe the position
of the CIP with respect to the IERS Reference Pole in a right-hand system:

p1(t) = xp(t) ,

p2(t) = −yp(t) .
(72)

The relation between [m1(t), m2(t)] and [p1(t), p2(t)] follows from the transforma-
tion between the true celestial equator system and the Earth-fixed system. According
to Sect. 6.1, the rotation matrix A(t) that transforms between both systems accounts
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for the daily spin around the axis of the CIP and polar motion:

A(t) = W(t) S(t) . (73)

The coordinates ω1(t),ω2(t),ω3(t) of the Earth rotation vector ω(t) in the terrestrial
system are the elements of the skew-symmetric matrix B(t):

B(t) =
⎛
⎝ 0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0

⎞
⎠ = Ȧ(t)AT(t) . (74)

Since matrix W(t), and accordingly matrix A(t), do not include the previously men-
tioned Oppolzer motion, the Earth rotation vector ω(t) resulting from (74) does
not account for the subdaily retrograde deflection between the instantaneous rota-
tion axis and the direction to the CIP. In order to include this effect, a vector
that describes the departure between CIP and the instantaneous rotation pole (IRP)
would have to be added to the product Ȧ(t)AT(t) (see below).

For time scales longer than 1 day, the comparison of the coefficients of matrix
B(t) with the result of the product Ȧ(t)AT(t) leads to the relation between the ele-
ments of the Earth rotation vector ω(t) and the coordinates p1(t) and p2(t). To the
first order, this relation is (Brzezinski 1992; Gross 1992)

ω1(t) = � p1(t) + ṗ2(t) ,

ω2(t) = � p2(t) − ṗ1(t) ,
(75)

or with ω1(t) = � m1(t) and ω2(t) = � m2(t)

m1(t) = p1(t) + 1

�
ṗ2(t) ,

m2(t) = p2(t) − 1

�
ṗ1(t) .

(76)

The connection between modelled and observed polar motion is illustrated in
Fig. 6.1 following Mendes Cerveira et al. (2009). The published polar motion values
p(t) refer to the position of the CIP in the ITRF, where p(t) = xp(t) − iyp(t) =
p1(t) + ip2(t). As stated above, the model values m(t) = m1(t) + im2(t) represent
polar motion of the IRP in the terrestrial frame that differs from the CIP by the effect
of the Oppolzer motion (vector d in Fig. 6.1) (Capitaine 2002; Mendes Cerveira et al.
2009). For completeness, the axes of the space-fixed reference frame (GCRF) are
also sketched. The coordinates X(t) and Y(t) of the CIP in the GCRF are derived
from the precession–nutation (PN) model IAU 2000A and the published celestial
pole offsets as described in Sect. 6.1.

The correspondence between the variation of the absolute value of the Earth rota-
tion vector ω(t) and the observed quantities �LOD(t) and �UT(t) results directly
from the definition of �LOD(t), meaning the time span of one full revolution of the
Earth reduced by 86,400 s (see (5)):
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�LOD (t) = 2π κ

|ω(t)| − 86, 400 s , (77)

where

κ = �

2π
· 86, 400 s = 86, 400

86, 164
. (78)

The introduction of the absolute value of ω(t) (15) delivers (Schneider 1988)

�LOD t = 2π κ

�(1 + m3(t))
− 86, 400 s = −m3(t) · 86, 400 s , (79)

and according to the relation between �LOD (t) and �UT (t) (6) (Gross 1992)

d

dt
�UT (t) = m3(t) . (80)

Following the derivations in this section, physical model results and published val-
ues of Earth orientation parameters from space-geodetic observation techniques can
be uniquely related to each other. In this way, physical models of Earth rotation
can contribute significantly to the interpretation of the observations in terms of
geophysical processes in the Earth system. Studies of the Earth’s reaction on gravi-
tational and other geophysical excitations, e.g. processes and interactions within and
between atmosphere, hydrosphere and solid Earth can be performed using theoret-
ical forward models. As described in Sect. 6.4, such models comprehend physical
transfer functions that relate gravitational and geophysical model data and/or obser-
vations to time series of geodetic parameters of rotation, gravity field variations and
changes of the surface geometry of the Earth. In forward models, observations of
Earth rotation are used as a reference in order to examine the quality of geophys-
ical data sets by balancing modelled angular momentum variations in the Earth’s
subsystems with the observed integral signal. Forward models have also been used
for the prediction of geodetic parameters, e.g. in the context of global change, when
climate predictions are introduced as forcing (Winkelnkemper et al. 2008).

Vice versa, observed time series of Earth orientation parameters can be used
in order to support and improve theoretical models via inverse methods. In this
way, the geodetic observations can contribute directly to an improved understand-
ing of Earth system dynamics. Inverse methods have been developed for many years
in geodesy. They are directed towards the gain of knowledge from precise geode-
tic observations about geophysical parameters (Marchenko and Schwintzer 2003),
individual dynamic processes or interactions in the Earth system. While numerous
recent studies deal with the assessment of the Earth’s mass redistribution from an
inversion of the time-variable gravity field from GRACE (Chao 2005; Ramillien
et al. 2005), time series of geometric surface deformations from GPS (Wu et al.
2003) or combination of both (Wu et al. 2002; Kusche and Schrama 2005), there
are hardly any approaches for the inversion of Earth rotation up to now. But due to
the long observation records of polar motion and �LOD, due to the high accuracy
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of the measurements and due to the large spectral range from hours to decades that
is covered by the observations, the development of inverse Earth rotation models is
a highly promising challenge for the future.

Acknowledgement The authors would like to express their gratitude to Urs Hugentobler from
the Technische Universität München, Germany, and to Aleksander Brzezinski from the Polish
Academy of Sciences, Warsaw, Poland, whose comments on the manuscript were very helpful
and substantially improved the content of this chapter.

References

Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. and Boucher, C. (2007) ITRF2005: a new
release of the International Terrestrial Reference Frame based on time series of station positions
and Earth Orientation Parameters. J. Geophys. Res., 112, 10.1029/2007JB004949

Aoki, S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D. and Seidelmann, P.K. (1982)
The new definition of universal time. Astron. Astrophys., 105, 359–361

Aoki, S. and Kinoshita, H. (1983) Note on the relation between the equinox and Guinot’s
nonrotating origin. Celest. Mech. Dyn. Astr., 29, 335–360

Barnes, R.T.H., Hide, R.H., White, A.A. and Wilson, C.A. (1983) Atmospheric angular momentum
fluctuations, length of day changes and polar motion. Proc. R. Soc. Lon., 387, 31–73

Beutler, G. (2005) Methods of Celestial Mechanics I: Physical, Mathematical and Numerical
Principles. Springer, Berlin

BIPM (2007) Director’s Report on the Activity and Management of the International Bureau of
Weights and Measures, Bureau International des Poids et Mesures, sévres Cedex

Bizouard, C. and Gambis, D. (2009) The combined solution C04 for Earth Orientation Parameters
consistent with International Terrestrial Reference Frame 2005. In: Drewes, H. (ed) Geodetic
Reference Frames. IAG Symposia 134, Springer, Berlin

Boehm, J., Heinkelmann, R., Mendes Cerveira, J.P., Pany, A. and Schuh, H. (2009) Atmospheric
loading corrections at the observation level in VLBI analysis, J. Geodesy, 83, 1107–1113

Brzezinski, A. (1992) Polar motion excitation by variations of the effective angular momen-
tum function: considerations concerning deconvolution problem. manuscripta geodaetica, 17,
3–20

Brzezinski, A. (2001) Diurnal and subdiurnal terms of nutation: a simple theoretical model for
a nonrigid Earth. In: Capitaine, N. (ed) Proceedings of the Journées Systémes de Référence
Spatiotemporels 2000, Paris, pp. 243–251

Brzezinski, A. and Nastula, J. (2000) Oceanic excitation of the Chandler wobble. Adv. Space Res.,
30(2), 195–200

Capitaine, N. (2002) Comparison of ‘old’ and ‘new’ concepts: the Celestial Intermediate Pole and
Earth orientation parameters. In: Capitatine, N., Gambis, D., McCarthy, D.D., Petit, G., Ray,
J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J. (eds) Proceedings of the IERS
Workshop on the Implementation of the New IAU Resolutions, IERS Technical Note 29, Verlag
des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp. 35–44

Capitaine, N. (2004) Oppolzer terms: a review, FGS Workshop on ‘Ring Laser Gyroscopes and
Earth Rotation’, Wettzell

Capitaine, N. (2008) Definition and realization of the celestial intermediate reference system. Proc.
IAU 2007, 3, 10.1017/S1743921308019583

Capitaine, N., Chapront, J., Lambert, S. and Wallace, P. (2002) Expressions for the coordinates
of the CIP and the CEO Using IAU 2000 Precession-Nutation. In: Capitatine, N., Gambis, D.,
McCarthy, D.D., Petit, G., Ray, J., Richter, B., Rothacher, M., Standish, E.M. and Vondrak, J.
(eds) Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions,
IERS Technical Note 29, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am
Main, pp. 89–91



222 F. Seitz and H. Schuh

Chandler, S.C. (1891) On the variation of latitude I-IV. Astron. J., 11, 59–61, 65–70, 75–79, 83–86
Chandler, S.C. (1892) On the variation of latitude V-VII. Astron. J., 12, 17–22, 57–72, 97–101
Chao, B.F. (1985) On the excitation of the Earth’s polar motion. Geophys. Res. Lett., 12(8),

526–529
Chao, B.F. (1989) Length-of-day variations caused by El Nino Southern Oscillation and quasibi-

ennial oscillation. Science, 243, 923–925
Chao, B.F. (1994) The geoid and Earth rotation. In: Vanićek, P. and Christou, N.T. (eds) Geoid and
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