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Abstract. In the system identification context, neural networks are black-box mod-
els, meaning that both their parameters and structure need to be determined from
data. Their identification is often done iteratively in an ad-hoc fashion focusing the
first aspect. Frequently the selection of inputs, model structure, and model order are
underlooked subjects by practitioners, because the number of possibilities is com-
monly huge, thus leaving the designer at the hands of the curse of dimensionality.
Moreover, the design criteria may include multiple conflicting objectives, which
gives to the model identification problem a multiobjective combinatorial optimisa-
tion character. Evolutionary multiobjective optimisation algorithms are particularly
well suited to address this problem because they can evolve optimised model struc-
tures that meet pre-specified design criteria in acceptable computing time. In this
article the subject is reviewed, the authors present their approach to the problem in
the context of identifying neural network models for time-series prediction and for
classification purposes, and two application case studies are described, one in each
of these fields.

1 Introduction

In most practical applications of Artificial Neural Networks (ANN), they are used
to perform a non-linear mapping between an input space, X, and an output space,
y, in order to model complex relationships between these or to detect patterns in
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input-output data. These functionalities correspond mostly to function approxima-
tion problems in the context of static or dynamic models identification, or decision
problems in the contexts of pattern matching and classification. The non-linear map-
ping function illustrated in Fig. 1 is given by:

ŷk = g(xk,w) (1)

Usually, given a data set D = (X,y) composed of N input-output pairs, the network
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xkd
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xkd−1
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• with parameter vector w
• having n hidden units (neurons)

Fig. 1 Illustration of a general mapping ŷk = g(xk,w)

parameter vector w is computed in order to minimise the sum-of-squares of the
mapping error, i.e.,

ε = eT e (2)

where,

e = y− ŷ , ek = yk − ŷk , (3)

ŷ = g(X,w) , ŷk = g(xk,w) ,

X = [x1, x2, . . . , xN ]T , y = [y1, y2, . . . , yN ]T ,

xk = [xk1, xk2, . . . , xkd ] .

In many applications the set of d input features, xki, needs to be selected from a
larger set, F, often having a dimension significantly larger than a prescribed maxi-
mum input vector dimension, dM. Assuming F has q features it may be specified as,

F = [f1, f2, . . . , fq] ,

fl = [ f1l, f2l , . . . , fNl ]
T .

(4)

Then, the input data set X is constructed by selecting d columns from F such that,

xk = [xk1, xk2, . . . , xkd ] =

=
[

fkλ1
, fkλ2

, . . . , fkλd

]
,

(5)

where the λ j are indices to the columns of F.
Also, depending on the type of ANN to be employed, the number n of hidden

units (artificial neurons or simply neurons) must be specified. Once d input features
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are selected and the number of neurons, n, is specified, the ANN parameter vector,
w, is computed by means of a suitable training algorithm.

By taking into account these three aspects of the ANN model identification pro-
cess, the problem addressed in this article may be generally stated as follows:

Considering the application at hands, select d (dm < d ≤ dM) input features
from the set F, a suitable number of neurons n (nm < n ≤ nM), and compute
the ANN parameter vector w, such that the best ANN mapping, given in (1),
is obtained.

It is already clear that the ANN design problem may be separated in two distinct
sub-problems, each reflecting different aspects of the design:

ANN parameters relates to the network parameters. Includes their computation
by means of a training algorithm.

ANN structure relates to the network topology. Includes the selection of suit-
able inputs and an appropriate number of neurons;

Many techniques have been proposed to solve both sub-problems, either sepa-
rately or jointly, some failing to capture their distinct nature, therefore not fully
exploiting existing approaches that are considered more appropriate. The first is
a non-linear parameter optimization problem, to which non-linear gradient-based
methods have proven to be superior. The second is a combinatorial optimisation
problem that, as will be shown, needs to be addressed from a multiobjective optimi-
sation perspective.

In Sect. 2 a more precise definition of the problem statement will be given and
the approach followed successfully by the authors in a number of applications will
be presented. From these, two were selected and are described in Sect. 3, one in the
field of time-series modelling and forecasting, the other in the area of classification
problems. The results from the application of the methodology to the selected ANN
design problems will be presented and discussed in Sects. 3.1.2 and 3.2.2, respec-
tively for each design problem. Finally, some concluding remarks will be made in
Sect. 4.

2 Methodology

The problem statement presented in the previous section is of a general nature leav-
ing open two vague notions that need to be elaborated in order to provide a formal
problem definition. On one hand the concept of ”best ANN mapping” requires the
definition of best. On the other, the sentence ”considering the application at hands”
implies that the problem will be solved by taking the application into account. In
fact the two notions are related as it seems appropriate to define what is a ”best
ANN, considering the application at hands”.
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2.1 Problem Definition

In order to define a ”best ANN, considering the application at hands”, one or more
quality measures are required so that any two different ANN solutions may be com-
pared and a decision can be reached on which is best. The problem decomposition
given in Sect. 1 suggests the existence of quality measures for each sub-problem
and gives clear hints on how to choose them:

ANN parameters The quality measures should reflect how well did the training
stage performed and how good is the mapping obtained by the
parameters computed.

ANN structure The quality measures should tell how fit is the ANN structure
for the application at hands.

This breakdown in the nature of the quality measures allows the definition of a two
component quality vector as,

μ(F,Λ ,n,w) = [μp, μs] , (6)

μp =
[
μ p

1 , μ p
2 , . . . , μ p

u

]
,

μs = [μ s
1, μ s

2, . . . , μ s
v ] ,

Λ = [λ1, λ2, . . . , λd ] ,

where μp and μs contain u and v quality measures related to each of the sub-
problems, Λ is the vector of indices to the columns of F that defines the input
features considered, and the superscripts p and s denote quality measures related
to the ANN training stage and to the ANN fitness for the specific application, re-
spectively. The dependence on F, Λ , n, and w, has been made explicit only for μ for
easiness of reading.

Assuming that the quality measures in μ(F,Λ ,n,w) are well defined quantities
specifying objective functions that should be minimised in order to obtain the ”best
ANN for the application at hands”, the problem statement given in Sect 1 may now
be formally defined as:

Select d ∈ [dm, dM] input features from F, n ∈ [nm, nM] neurons, and compute
w, such that μ(F,Λ ,n,w) is minimised. Formally,

min
Λ ,n,w

μ(F,Λ ,n,w) , given:

(F,y) ,

d ∈ [dm, dM] ,

n ∈ [nm, nM] .

(7)

Given the definition of μ(F,Λ ,n,w) (simply μ in the following), it is likely that
some objective functions are conflicting, e.g. in μP Eq. 2 may be minimised and in
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μs there could be an objective to minimise the complexity of the ANN, expressing
the goals of improving performance while decreasing the network size. Therefore
the search problem defined in (7) is a combinatorial multiobjective optimisation
problem which does not have a single solution minimising all components of μ
simultaneously. Instead, the solution is the set of Pareto points in search space (or
design space) that define the Pareto front in the space of objectives. This means that
the ANN model designer has to select one particular ANN by examining trade-offs
in the objectives of the Pareto front.

Searching exhaustively over the search space defined by (F, [dm,dM] , [nm,nM])
is the preferred solution as it allows finding the true Pareto front, but this is normally
unfeasible in useful time due to the complexity of evaluating μ and to the size of the
search space. Although trial and error may provide an approach to guide the search,
the number of possibilities is often enormous and it may result in the execution of
many trials without obtaining acceptable objective values in μ. Moreover, the results
from the trials may easily misguide the designer into some poor local minima as the
relation between search space and objective space is unknown.

Although a good number of techniques have been proposed over the years to deal
with multiobjective problems it was more recently that the potential of Evolution-
ary algorithms (EAs) to approximate the Pareto front was recognised, generating a
research area now known as evolutionary multiobjective optimisation (EMO). Mul-
tiobjective evolutionary algorithms (MOEAs) have proven to be robust and efficient
when dealing with problems with multiple conflicting objectives and with very large
and complex search spaces, therefore they are employed here to solve the ANN
structure search problem. A review about the EMO field and MOEAs is beyond the
scope of this article, the interested reader can find detailed descriptions in textbooks,
e.g. [10], and excellent overviews on [48, 7, 8].

The application of EAs to the design of ANN models has been addressed by
many researchers, with variations on the aspects of ANN design that are consid-
ered. Distinct formulations employ EAs in order to optimise/select: the number of
neurons and network parameters [32, 5, 3, 6, 47, 29]; both the topology and param-
eters [28, 25]; the complete topology [27, 2]; or, only the network inputs [34]. A
discussion considering the different possible formulations may be found in [4]. The
approach herein presented follows previous work [21, 36] in the context of poly-
nomial models identification. It has been applied by the authors in the contexts of
time-series modelling and prediction [43, 16, 17, 41, 14, 37, 18, 42], and classifica-
tion [9, 12].

2.2 Multiobjective Evolutionary Algorithms

MOEAs are one class of EAs that benefit from a set of procedures and operators
inspired on the process of natural evolution and on the notion of survival of the
fittest, in order to perform a population based search for the Pareto set of solutions
of a given multiobjective problem. The solution candidates are called individuals
and their set is referred to as the population. One run of a MOEA starts with an
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initial population of individuals, the initial generation, which are then evaluated and
manipulated to compute the population of individuals composing the next genera-
tion. Hopefully, after a sufficient number of generations the population has evolved
achieving a satisfactory approximation to the Pareto front.

The operation of most MOEAs follows the flow illustrated in Fig. 2 where
the main procedures and operators are shown. At each iteration the population is

START STOP

Evaluate individuals
in objective space

Generate initial
population

Criteria
met ?

Yes

No Assign fitness
to individuals

Perform
mating selectionRecombinationMutation

Fig. 2 Typical flow of operation of most MOEAs

evaluated for the objectives specified in μ and a check is made to ascertain if the
design criteria was met. If this is the case the MOEA stops and the designer obtains
the individuals that form the current approximation to the Pareto front, otherwise
the algorithm proceeds. In this case each individual in the population is assigned a
fitness value and based on this fitness the individuals are mated. Afterwards each
mated pair will produce two offspring by the application of the recombination op-
erator, thus forming the next generation. Finally the mutation operator is applied to
each children before repeating the whole process.

2.2.1 Individual RepresentationEach individual in the MOEA population must
be specified by a representation, the chromosome, encoding the topology of an
ANN. Most frequently, feed-forward ANNs are employed in modelling, prediction
and classification problems, usually having one or two hidden layers of neurons. In
the following the general class of feed-forward ANNs having one hidden layer of
neurons is considered. As will be shown, if two or more layers are used only slight
changes are required in the chromosome and in the mutation operator.

The topology of the ANN architectures just mentioned may be completely spec-
ified by the number of neurons n and by the indices Λ to the columns of F, defining
the input features to be employed. Therefore the chromosome is a string of integers,
the first representing the number of neurons and the remaining representing the sub-
set of input terms taken from F. The chromosome definition is shown in Fig. 3.
The multiobjective optimisation problem defined in (7) states that the number of
inputs d is required to be in the range [dm,dM]. This corresponds to a variable length
chromosome having at least dm input terms. The first component corresponds to the
number of neurons, those highlighted by a light grey background represent the min-
imum number of inputs, and the remaining are a variable number of input terms up
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Chromosome:
λ2 λdm+1λ1 · · · λdmn · · · λdM

Input space of q features, F:

y(t) y(t −1) · · · y(t − τy) v1 (t) v1 (t −1) · · · v1 (t − τv1 ) · · · vo (t − τvo )vo (t) · · ·

f1 f2 fa0 fa0+1 fa0+2 fa0+a1 fa0+···+ao fq

Fig. 3 Chromosome and input space lookup table

to (in total) dM. The λ j values are the indices of the features fl in the columns of F.
In cases where the ANN acts as a predictor the input-output structure is, in the most
general form, given by a non-linear autoregressive (NAR) with exogenous inputs
(NARX),

y(t + 1) = g(y(t) , y(t −1) , · · · , y(t − τy) ,

v1 (t) , v1 (t −1) , · · · , v1 (t − τv1) ,

· · · ,
vo (t) , vo (t −1) , · · · , vo (t − τvo)) ,

(8)

where y is the output and v1 to vo are o exogenous inputs. In such cases F is com-
posed of a0 output delayed terms with a maximum lag of τy and ai input terms for
each exogenous variable vi, each having τvi as maximum lag. The correspondence
between the features in the columns of F and the inputs of a NARX model is de-
picted in the lower part of Fig. 3, where the inputs corresponding to delayed output
values are highlighted by a light grey background.

It should be noted that the chromosome would require a small change if the ANN
considered had multiple hidden layers. In this situation as many additional compo-
nents as the number of additional hidden layers would be inserted at the beginning
of the chromosome, in order to encode the number of neurons in the various layers.

2.2.2 MOEAs Procedures and OperatorsOnce evaluated in objective space
each individual is assigned a scalar value, the fitness, that should reflect that in-
dividual’s quality. The fitness assignment strategy is one of the distinguishing char-
acteristics of existing MOEAs, thus is usually dependant on the MOEA used in
practice. In general these strategies are based on different principles and belong to
one of three classes: aggregation based; criterion based; and Pareto based strategies.
For more detailed discussions on these strategies, the reader should consult the liter-
ature on the MOEA being used or one of the references given above about MOEAs.

The mating procedure uses the population fitness information in order to create a
mating pool with pairs of individuals that will be combined to form the basis of the
next generation population. It is commonly implemented as a sampling procedure
where the individuals having higher fitness have increased chance of getting multi-
ple copies in the mating pool, and those with lower fitness have little or no chance



28 P. M. Ferreira and A.E. Ruano

of getting there. The result is that the fittest individuals have a higher probability of
breeding as opposed to the worse individuals that are unlikely to influence the new
generation.

With a given probability, the crossover probability, every pair of individuals in
the mating pool produces two offspring by exchanging part of their chromosomes.
This is accomplished by the recombination operator, whose operation is illustrated
in Fig. 4 by splitting the procedure in two steps. First, the chromosomes are re-
ordered, secondly, parts of the chromosomes are exchanged. Reordering is also

Parent A

Parent B

Original chromosomes: Reordered chromosomes:

16 2 4 8 16 18 23

18 2 5 10 16 23

Parent A

Parent B

16 2 4816 1823

18 2 51016 23

Recombined chromosomes:
Parent A

Parent B

16 2 816

418

23

18 2

5

1016 23
common terms crossover

point

1 2

Fig. 4 Crossover recombination operator

accomplished in two steps: common terms in the chromosomes are swapped to the
left-most positions, then the remaining terms are shuffled. This way the common
terms in the chromosomes are isolated in a way that makes them unavailable for the
exchange. A point is then randomly chosen, the crossover point, and the elements to
its right are exchanged. This procedure, known as full identity preserving crossover
[21, 24], guarantees offspring with no duplicate terms.

Mutation is applied to the new population generated after recombination, inde-
pendently in two parts of the chromosome. The number(s) of neurons in the hidden
layer(s) of the ANN are mutated with a given probability by adding or subtracting
one neuron to the existing quantity. Care must be taken in order to guarantee the
boundary conditions nm ≤ n ≤ nM. The input terms are mutated with a given proba-
bility by one of three operations: replacement, addition or deletion. First, each term
is tested and is either deleted or replaced by another term from the set of those out-
side the chromosome. Deletion only occurs if the chromosome has more terms than
the minimum specified, dm. After this, if the chromosome is not full, one term may
be added by selecting it from the set of those outside the chromosome.

After completing the operations described above the MOEA flow proceeds to the
evaluation step and the cycle repeats itself for the new population of individuals.
Therefore, some criterion is required to stop the MOEA execution. The most simple
approach consists in stopping the execution after a predefined number of genera-
tions. Other options include testing the objectives and design criteria and stop the
execution if a satisfactory individual is found, or checking the population for stagna-
tion. The latter option may be accomplished, for instance, by specifying a maximum
number of consecutive generations during which no change is observed in the Pareto
front approximation.
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2.3 Model Design Cycle

Globally, the ANN structure optimisation problem can be viewed as sequence of ac-
tions undertaken by the model designer, which should be repeated until pre-specified
design goals are achieved. These actions can be grouped into three major categories:
problem definition, solution(s) generation and analysis of results. In the context of
this identification framework, the procedure is executed as depicted in Fig. 5. In

Define search space
(F, [dm,dM ] , [nm,nM ])

Partition F as {Fp,Fv}
Fp for ANN training stage

Fv for ANN validation stage

Define objectives
μ = [μp,μs]

Run the MOEA

Fp

Pareto set of
ANN models

Fv

Analyse results
(trade-offs in Pareto front)

Select model for application
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Unsatisfied
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Fig. 5 Model design cycle

summary, the problem definition is carried out by choosing a number of hypo-
thetically relevant input features to construct F, by specifying the minimum and
maximum size of the chromosome input terms string, and by defining the range
allowed for the number of neurons of the ANNs. In the case of a NARX predic-
tive model identification, the specification of F corresponds to the selection of input
variables and the corresponding lags considered. This stage affects the size of the
search space. The input search space is then partitioned into two data sets, Fp and
Fv, the first intended for the ANN parameter training procedure, the second to vali-
date the results obtained by the Pareto set of individuals. The validation step serves
the purpose of detecting any bias that may have occurred towards the Fp data set
during the MOEA model structure optimisation.

Another aspect to be defined is the set of objectives and goals to be attained.
The objectives specified in μs play an important role in the adequacy of the models
obtained to the application problem being considered. Therefore they should be
designed to express the quality of an individual in the context of the final application.
Specifying μ affects the quantity, quality and class of the resulting solutions.
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When the analysis of the solutions provided by the MOEA requires the process to
be repeated, the problem definition steps should be revised. In this case, two major
actions can be carried out: input space redefinition by removing or adding one or
more features (variables and lagged input terms in the case of modelling problems),
and improving the trade-off surface coverage by changing objectives or redefining
goals. This process may be advantageous as usually the output of one run allows
reducing the number of input terms (and possibly variables for modelling problems)
by eliminating those not present in the resulting population. Also, it usually becomes
possible to narrow the range for the number of neurons in face of the results obtained
in one run. This results in a smaller search space in a subsequent run of the MOEA,
possibly achieving a faster convergence and better approximation of the Pareto front.
This cycle of actions can be iterated until a refined set of satisfactory solutions is
obtained.

2.4 ANN Parameter Training

In Sects. 1 and 2.1, the ANN identification problem has been decomposed in two
sub-problems, the first one, related to the optimisation of the network parameters,
being usually treated as a non-linear optimisation problem. It is clear that the train-
ing procedure is most often dependant on the specific ANN being employed, al-
though some procedures may easily be adapted to various kinds of ANNs. The class
of feed-forward ANNs include, among others, radial basis function (RBF) networks,
multi-layer perceptrons (MLPs), B-spline networks, wavelet networks, and some
types of neuro-fuzzy networks. Importantly, a common topology of these archi-
tectures share the property of parameter separation , i.e., they can be regarded as
a non-linear/linear topology because one or more hidden layers of non-linear neu-
rons are followed by a linear combination of neuron outputs to produce the network
overall result. It is commonly accepted that gradient-based algorithms, in particu-
lar the Levenberg-Marquardt (LM) algorithm [31], outperforms other parameter
training methods, and it has been shown that methods exploiting the separability of
parameters [39, 40, 13] achieve increased accuracy and convergence rates.

The two example ANN identification problems that will be introduced in Sect. 3
employ RBF neural networks (NNs) and the LM algorithm in the minimisation of
a modified training criterion that exploits the separability of parameters as found
in RBF NNs. For this reason an outline of the training procedure is given in the
following sub-sections.

2.4.1 Training CriterionFor simplicity, but without loss of generality, feed-
forward ANNs having one hidden layer of neurons are considered. These may be
well represented by the expression,

ŷ(xk,w) = α0 +
n

∑
i=1

αiϕi (xk,βi) , (9)
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where w = [α,β]T is the model parameter vector, α = [α0, α1, · · · , αn] is the vector
of scalar linear parameters, and β = [β1, · · · , βn] is composed of n βi vectors of
non-linear parameters, each one associated with one neuron. For a given set of input
patterns X, training the NN corresponds to finding the values of w such that (10) is
minimised:

Ω (X,w) =
1
2
‖y− ŷ(X,w)‖2 (10)

The 1
2 factor is used for convenience considering the training algorithm to be em-

ployed. As the model output is a linear combination of the neuron activation func-
tions output, (10) may be written as,

Ω (X,w) =
1
2
‖y−φ(X,β)α‖2 (11)

where, omitting the dependence of ϕ on β,

φ (X,β) = [ϕ (x1) ϕ (x2) · · · ϕ (xN)]T .

By computing the optimal value α∗ of the linear parameters α with respect to the
non-linear parameters β, as a least-squares solution,

α∗ = φ+ (X,β)y , (12)

where ”+” denotes a pseudo-inverse operation, and by replacing (12) in (11), the
training criterion to compute the non-linear parameters is obtained:

Ψ (X,β) =
1
2

∥
∥y−φ(X,β)φ+ (X,β)y

∥
∥2

. (13)

This criterion is independent of the linear parameters α and explicitly incorporates
the finding that, whatever values the non-linear parameters β take, the α∗ parameters
employed are the optimal ones. Moreover, it reflects the non-linear/linear parameters
structure of the feed-forward ANN model in (9), by separating their computation.
This way it becomes possible to iteratively minimise (13) to find β∗, corresponding
to searching for the best non-linear mapping, and then solve (12) using β∗ to obtain
the complete optimal parameter vector w∗. The modified criterion enables the usage
of appropriate methods to compute each type of parameters in the minimisation of
a single explicit criterion. It lowers the dimensionality of the problem and usually
achieves increased convergence rate.

2.4.2 Training AlgorithmVarious training algorithms can be employed to min-
imise (10) or (13). First-order gradient algorithms (known for MLPs as the back-
propagation algorithm) or second-order methods, such as quasi-Newton, Gauss-
Newton or LM can be employed as training algorithm. For non-linear least-squares
problems the LM
algorithm is recognised as the best method, as it exploits the sum-of-squares char-
acteristic of the problem [38].
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Denoting the standard (10) or modified (13) training criteria in iteration k by
Ω (wk) (omitting the dependence of Ω on X), a search direction pk in parameter
space is computed such that Ω (wk + pk) < Ω (wk). This method is said to be of the
restricted step type because it attempts to define a neighbourhood of wk in which a
quadratic function agrees with Ω (wk + pk) in some sense. The step pk is restricted
by the region of validity of the quadratic function which is obtained by formulating
in terms of pk a truncated Taylor series expansion of Ω (wk + pk). Then, it may be
shown that pk can be obtained by solving the following system [31]:

(
JT

k Jk + υkI
)

pk = −gk . (14)

gk and Jk are, respectively, the gradient and Jacobean matrix of Ω (wk), υk ≥ 0 is a
scalar controlling the magnitude and direction of pk. By recalling (3), the gradient
may easily be obtained as,

gk =
∂Ω (wk)

∂wk
=

= −JT
k ek ,

(15)

where the Jacobean matrix has the form:

Jk =

⎛

⎜
⎜
⎝

∂y1
∂w1

· · · ∂y1
∂wl

...
. . .

...
∂yN
∂w1

· · · ∂yN
∂wl

⎞

⎟
⎟
⎠ (16)

The advantage of the LM algorithm is that in every iteration the value of υ is
adapted in order to provide a step direction more close to the Gauss-Newton or
gradient-descent methods. When υ → 0 the step direction approaches that of the
Gauss-Newton method, when υ → ∞ it approaches the gradient-descent direction.
Many variations of Marquardt’s algorithm have been proposed concerning the rules
governing the adaptation of υ . The original method [31] or a similar one [20, 11]
should suit most applications.

2.4.3 RBF NetworkThe RBF ANN is formulated by (9) where the ith basis func-
tion or neuron, ϕi (xk,βi), is usually a Gaussian, a multiquadric, or an inverse mul-
tiquadric function. In most cases the Gaussian is employed:

ϕi (xk,βi) = exp

(
− 1

2σ2
i

‖xk − ci‖2
)

(17)

In this case βi = [ci σi] is the non-linear parameter vector where ci is a point in
input space, the centre of the Gaussian function, and σi is the corresponding spread.
The outputs of all neurons are then linearly combined (recall Eq. 9) to produce the
network output.

At the first iteration of the training algorithm the model parameters have to be
initialised. Common approaches consist in selecting ci randomly from the input pat-
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terns or from the input variables range of values. An alternative is to take advantage
of clustering algorithms in order to spread the centres in distinct regions of the input
feature space. The σi parameters may be chosen randomly, or, for instance using the
simple rule [26, p. 299],

σi =
zmax
√

2n
, (18)

where zmax is the maximum Euclidean distance among the initial centres ci, and n is
the number of neurons. Once the vectors of non-linear parameters, βi, are initialized,
(12) may be employed to determine the initial linear parameters, αi.

In order to employ the LM algorithm to optimise the RBF ANN parameter vector,
the error criterion must be defined as well as the derivatives required. If the standard
formulation (10) is used, the three derivatives required to compute J are:

∂y
∂ci

= ϕi (x)
αi

σ2
i

(x− ci)T ,

∂y
∂σi

= ϕi (x)
αi

σ3
i

‖x− ci‖2 ,

∂y
∂αi

= ϕi (x) .

(19)

For the modified criterion (13) alternative Jacobean matrices are available. It has
been shown [39] that a simple and efficient solution consists in using the two first
lines of (19), where the αi are replaced by their optimal values as computed in (12).
Remarkably, the use of this Jacobian matrix implies that each iteration of the LM
method minimising (13) is computationally cheaper than minimising (10).

2.4.4 Stopping the Training AlgorithmAs most ANN training algorithms are
iterative, some criteria is required to stop the training procedure after a certain num-
ber of iterations. Whichever method is employed, it should prevent the algorithm to
overtrain the network parameters. Overtraining is a ”phenomenon” likely to occur
when using iterative training algorithms, characterised by a distinct behaviour of the
error criterion when computed on two, distinct, data sets. On the data set employed
to estimate the model parameters (training data set), the error criterion decreases
with the number of iterations usually reaching a plateau where improvements be-
come negligible. If a second data set is used to test the model at every iteration,
then the error criterion taken on the testing data set decreases to a certain iteration
and starts to increase in subsequent iterations. Beyond this point overtraining oc-
curred because too many iterations were executed and the model became biased by
the training examples, thus loosing the capability to generalise properly when pre-
sented with new input patterns. The methods of regularisation and early stopping
are probably the most common to avoid overtraining. The first is a technique based
on extending the error criterion with a penalty term, therefore numerically changing
the training method, the second is a data driven cross-validation approach that may
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be viewed as an implicit regularisation method. Interesting in-depth reading about
the early stopping and overtraining subjects may be found in [1, 45].

In practice overtraining is avoided by stopping the training algorithm before
reaching the absolute minimum of the training criterion. The method of early stop-
ping, requires splitting the training input space Fp (see Fig. 5, Sect. 2.3) into two
data sets, the first, Ft , to estimate the model parameters, called training data set, the
second, Fg, to assess the model generalisation capability, called generalisation data
set. In the model design cycle presented earlier, by using a given MOEA individual
chromosome, F is indexed by the input terms in the chromosome. After indexing,
the input data set is denoted by X and the input-output data set by D = (X,y). Con-
sequently the training, generalisation, and validation data sets, for a given ANN,
will be defined as,

Dt =
(
Xt ,yt) ,

Dg = (Xg,yg) ,

Dv = (Xv,yv) ,

for training, generalisation testing, and validation, respectively. Recall that Dv is
meant to validate the MOEA model optimisation globally, to avoid bias towards Dt

and Dg in the final model selection. The proportions of points from D that compose
Dt and Dg are often selected in an ad hoc fashion, usually by means of trial and
error. A statistically validated principled way of selecting that proportion may be
found in [1].

By denoting the error criterion computed on the testing and generalisation data
sets at iteration k by Ω

(
Dt ,w∗

k

)
and Ω

(
Dg,w∗

k

)
, the early stopping method consists

in selecting the model parameters corresponding to the iteration where Ω
(
Dg,w∗

k

)

ceased to decrease (assuming Ω
(
Dt ,w∗

k

)≤ Ω
(
Dt ,w∗

k−1

)
). In practice the inflection

point on the Ω
(
Dg,w∗

k

)
curve must not be identified locally by a rule of the type

Ω
(
Dg,w∗

k

)
> Ω

(
Dg,w∗

k−1

)
as this method would be sensitive to small variations

that are still occurring in a more global descending trend. An alternative is to define
kmax as the maximum number of iterations to execute and then find the global mini-
mum of Ω

(
Dg,w∗

k

)
. Formally, assuming monotonically decreasing Ω

(
Dt ,w∗

k

)
, this

may be written as,
w∗ = argmin

w
{Ω (Dg,w∗

k)}kmax

k=1 , (20)

where kmax should be large enough to include the global minimum of Ω
(
Dg,w∗

k

)
.

When this method is used to stop the training algorithm used in a MOEA model
identification experiment, Ω (Dt ,w∗) and Ω (Dg,w∗) are commonly included in μp

expressing the goal of identifying models achieving a good data fitting and good
generalisation capability.

If early-stopping is not possible, an alternative is to employ a set of termination
criteria that is commonly used in unconstrained optimisation [23, p. 306]. Let θk, a
measure of absolute accuracy, be defined as,

θk = τΩ × (
1 +

∣∣Ω
(
Dt ,w∗

k

)∣∣) , (21)
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where τΩ is a measure of the desired number of correct digits in the objective func-
tion. The optimisation stops when all the following conditions are met:

Ω
(
Dt ,w∗

k−1

)−Ω
(
Dt ,w∗

k

)
< θk (22)

∥
∥w∗

k−1 −w∗
k

∥
∥ <

√
τΩ (1 +‖w∗

k‖) (23)

‖gk‖ ≤ 3
√

τΩ
(
1 +

∣
∣Ω

(
Dt ,w∗

k

)∣∣) (24)

The two first conditions test the convergence of the model parameters. The reason-
ing behind the use of two conditions is that for ill-conditioned problems, Ω

(
Dt ,w∗

k

)

may be a good approximation of the global minimum (22), but w∗
k may be far from

the optimum and the algorithm may still be making large adjustments to w∗ (23).
The third condition reflects the necessity that the gradient should be near zero if
Ω

(
Dt ,w∗

k

)
is close to the optimum. This method achieves a certain level of regu-

larisation, implicitly related to the parameter τΩ , and does not require the Dg data
set, therefore lowering the number of function evaluations required by the inclusion
of Ω

(
Dg,w∗

k

)
in the objective space of the model identification problem. The dis-

advantage is that the resulting number of training iterations might not be enough
to adequately converge the model parameters, or it might be in excess and provoke
overtraining.

3 Example Model Identification Problems

To exemplify the use of the methodologies presented in the sections above, two
ANN model identification problems that the authors have been involved with will be
discussed. The first deals with the prediction of the Portuguese electricity consump-
tion profile within an horizon of 48 hours, the second is related to the estimation of
cloudiness from ground-based all-sky hemispherical digital images.

3.1 Electricity Consumption Prediction

The Portuguese power grid company, Rede Eléctrica Nacional (REN), aims to em-
ploy electricity load demand (ELD) predictive models on-line in their dispatch system
to identify the need of reserves to be allocated in the Iberian market. To accomplish
this the evolution of ELD over a prediction horizon of at least 48 hours is required.
The problem is addressed from the point of view of identifying RBF ANN one-step-
ahead ELD predictive models using the framework already described. These models
are iterated in a multi-step fashion in order to predict the electricity consumption pro-
file up to the specified prediction horizon.

In previous work [19] a literature review on the ELD forecasting area was pre-
sented, demonstrating that the approach taken was relevant and ambitious as no
publications were found considering simultaneously four aspects that the team is
actively addressing:
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Prediction scheme To meet the requirement, one-step-ahead predictive models
are iterated in a multi-step fashion in order to obtain the con-
sumption profile up to the specified prediction horizon. Most
work relies on the prediction of daily peak consumption or
accumulated consumption over a certain period, and does not
consider dynamics.

Model adaptation On-line model adaptation strategies are necessary, as the mod-
els are static mappings with external dynamics and the profiles
of electricity consumption vary over time.

Perturbations One input is incorporated in the models to account for the ef-
fect of events that dramatically perturb the typical profile of
load demand (the effect of week-ends, holidays and other fore-
seeable events).

Optimised models The problem of model structure optimisation and selection is
clearly formulated and approached by appropriate methodolo-
gies in order to meet specified design requirements.

By that time a number of exploratory identification experiments were executed
which allowed refining the problem formulation (see Sect. 2.3, model design cy-
cle). In the following, one last identification experiment is described, from which
one model was selected [18]. It is currently in operation at the Portuguese power-
grid company dispatch system.

3.1.1 Problem FormulationTwo types of model structures were previously com-
pared [19], the NAR and the NARX. For the latter only one exogenous input was
considered, encoding the occurrence of events perturbing the daily and weekly pat-
terns of electricity consumption. That comparison favoured the NARX approach as
it consistently achieved a considerably better prediction accuracy.

Table 1 Day of the week and holiday occurrence encoding values

Day of week Regular day Holiday Special

Monday 0.05 0.40 0.70
Tuesday 0.10 0.80
Wednesday 0.15 0.50
Thursday 0.20 1.00
Friday 0.25 0.60 0.90
Saturday 0.30 0.30
Sunday 0.35 0.35

The exogenous input encoding, presented in table 1, distinguishes between the
days of the week and also the occurrence and severity of holidays based on the day of
their occurrence. The regular day column shows the coding for the days that are not
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holidays. The next column presents the encoded values when there is a holiday for
that day of the week, and finally, the special column shows the values that substitute
the regular day value in two special cases: for Mondays when Tuesday is a holiday;
and, for Fridays when Thursday is a holiday. Figure 6 illustrates the severity of the
perturbation that a holiday causes in the electricity consumption profile. It is evident
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Fig. 6 ELD in two consecutive weeks. A holiday occurs in the second week.

that not only during the holiday the change is very large, but also on the following
day a significant change may be observed.

The data used in the model identification experiment corresponds to the Por-
tuguese electrical energy consumption measured at hourly intervals, for a time span
starting around mid October 2007, and ranging to the end of 2008. The complete
time-series is presented in Fig. 7. It was split in four data sets for model training,
generalisation testing, predictive simulation, and validation. The points for each set
were selected from three distinct periods of the year, delimited in Fig. 7 by two ver-
tical dotted lines to the right of the plot. Dt and Dg are composed of 330 and 60 days
of data points randomly selected from the first period. The last 50 days of 2008 were
divided in two parts, the first being used as a simulation data set, Ds, the second as
the validation data set, Dv. Taking into account the use of one input encoding the
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Fig. 7 ELD in Portugal for the time span considered

occurrence of weekends and holidays, care was taken to make sure that the data sets
Ds and Dv included holidays.

The lookup table F, from which the four data sets are built for each ANN by in-
dexation using the input part of the chromosomes, is composed of 168 delayed ELD
input terms plus the input encoding the occurrence and severity of holidays. The
ELD input terms correspond to one week window, an interval for which the time-
series exhibits a clear repetitive pattern. This pool of candidate input terms was
specified by considering the results of previous experiments. Also the limits for the
number of neurons and for the size of the input part of the chromosome were spec-
ified by taking previous results into account. In this case significant changes were
made by doubling the maximum number of neurons, n ∈ [10,28], and by increasing
the maximum number of input terms allowed, d ∈ [2,40].

The model parameters were estimated via the LM algorithm using the modified
training criterion (13) as outlined in Sect. 2.4. The initial centre locations for the
Gaussian activation functions were selected randomly from the input patterns in Dt ,
the corresponding initial spreads, σi, were determined by the rule (18), and the linear
parameters were initialised using (12). The early stopping method was employed to
stop the training algorithm by setting kmax = 200 in (20).

In order to address the model structure selection problem, the multiobjective
genetic algorithm (MOGA) [22] is employed to evolve a preferable set of mod-
els whose number of neurons and selected input terms optimise a number of pre-
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specified goals and objectives. These, as discussed in Sect. 2.1, are specified by a
two component vector of objective functions, μ = [μp,μs]. For the first component,
related to the ANNs parameter training process, two model performance objectives
were considered, given by the root-mean-square (RMS) error computed on the train-
ing and generalisation testing data sets, respectively denoted by ρ(Dt) and ρ(Dg).
The first one is used as a restriction because a clear positive (linear or not) rela-
tionship between the training criterion and a long-term prediction performance (to
be defined below) is not guaranteed and was not observed in practice in previous
experiments. One last objective was specified for the first component of μ, given
by the 2-norm of the linear parameters vector, ‖α‖. It is employed as a restriction
in order to guarantee good numerical properties and parameter convergence in the
models, but in fact it also acts as a penalty term for the complexity of the model.
Regarding μs, the component of μ related to the model structure selection and to the
specific model application, one objective was considered expressing the final goal
of the model application: the prediction of the electricity consumption profile within
an horizon of 48 hours. It is computed on the basis of the long-term model predic-
tion error taken from the multi-step model simulation over the prediction horizon
ph. Assume that a given simulation data set, D, has p data points and for each point
the model is used to make predictions up to ph steps ahead. Then an error matrix is
constructed,

E(D, ph) =

⎛

⎜⎜
⎜
⎝

e [1,1] e [1,2] · · · e [1, ph]
e [2,1] e [2,2] · · · e [2, ph]

...
...

. . .
...

e [p− ph,1] e [p− ph,2] · · · e [p− ph, ph]

⎞

⎟⎟
⎟
⎠

,

where e [i, j] is the model prediction error taken from instant i of D, at step j within
the prediction horizon. Denoting the RMS function operating over the ith column of
its argument matrix by ρ(·, i), then the long term prediction performance measure
is defined as,

ε(D, ph) =
ph

∑
i=1

ρ(E(D, ph) , i) , (25)

which is simply the summed RMS of the columns of E. This way the single objective
in μp is simply given by ε(Ds,48). This represented a considerable change from
previous work as the prediction horizon was doubled from 24 to 48 hours.

The complete objective vector for the ELD prediction problem is therefore spec-
ified as μ = [ρ(Dt) ρ(Dg) ‖α‖ ε(Ds,48)]. Table 2 summarises the objectives
and their configuration as used in the MOGA ELD predictive modelling experiment.
As the ANN parameters are randomly initialised, for each individual, 10 training
trials were executed and the averages of ρ(Dt) and ρ(Dg) were used for evaluation
purposes. This procedure decreases the likelihood of unrealistic fitness assignment
in the MOEA as one good ANN structure could be poorly evaluated due to a bad
choice of initial parameters. In order to decrease the computational load, ε(Ds,48)
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Table 2 Objective space configuration for the MOGA ELD prediction problem

μ component Objective function Set up as

μp
ρ(Dt) restriction < 100 MW
ρ(Dg) to minimise
‖α‖ restriction < 200

μs ε(Ds,48) minimise

was only computed for the trial instance whose pair {ρ(Dt) ,ρ(Dg)} is closer (in
the Euclidean sense) to the averages over the 10 trials.

3.1.2 Results and DiscussionFigure 8 illustrates the results obtained in the space
of objectives after 50 generations of the MOGA (values in Mega Watt (MW)).At this
generation the execution
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Fig. 8 Objectives of the MOGA ELD predictive model identification experiment
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was stopped as the last models having lower values on ε(Ds,48) entered the prefer-
able set on generation 30, and convergence was only occurring for ρ(Dt) and ρ(Dg)
with no effect on ε(Ds,48). This considerably smaller number of generations, when
compared to previous work, clearly shows the benefits of using averaged objective
values over multiple model training trials. The three scatter plots show the results of
non-dominated individuals using dark points, and the results of the 13 models in the
preferable set using white circles (and one white square). The top-left plot shows a
linear relation between the error criterion obtained on the training and generalisation
testing data sets. The plots at the top-right and bottom-left show the relation between
each error criterion and the long-term prediction error measure, where the conflict
between these objectives is well demonstrated .The lower-right plot presents the
evolution of ρ(E(Ds, ph) , i) with i from 1 to ph, the prediction horizon. The curve
marked with white circles was obtained by the model marked using a white square
on the remaining plots. The objective values are slightly better than those obtained
in previous work, however it should be noted that the prediction horizon was dou-
bled. The 13 selected models had from 24 to 28 neurons, 26 the most frequent, and
from 34 to 39 input terms, 36 the most frequent. All of them included the holiday
encoding input, and other 15 input terms were employed in 10 models or more.
When compared to previous work, the increase in model complexity is explained by
a slightly better predictive accuracy over a double size prediction horizon.

The models obtained were evaluated on the validation data set, Dv, in order to
select one for further assessment of predictive accuracy and robustness. Consider-
ing that during the MOGA execution only one out of 10 models was evaluated for
ε(Ds,48), for each of the models in the preferable set 10 further training trials were
executed and their performance was evaluated on Ds and Dv. The results are de-
picted in Fig. 9 where the dark markers highlight the results obtained by the chosen
model structure (marked by white squares in Fig. 8), the square marker correspond-
ing to the instance selected for further study. This was accomplished by comparing

Fig. 9 Detail of the long
term prediction error mea-
sure obtained on the simula-
tion data set, Ds, versus that
obtained in the validation
data set, Dv, for the prefer-
able set of 13 models. Ten
training trials per model.
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Fig. 10 Comparison between the selected ANN (ANN 1), a nearest neighbour approach
(NEN), and the selected ANN with a yearly retraining (ANN 2)

the selected model structure to a nearest neighbour (NEN) predictive approach on
a data set (denoted by DR) ranging from the beginning of 2001 to the end of 2008.
A complete description of the NEN methodology is given in [18]. It was tested by
varying the number of nearest neighbours employed for prediction and by using a
sliding window of past 54 weeks to conduct the nearest neighbour search. The se-
lected ANN was used to predict the ELD on the same instants (≈ 7 years) as the
NEN method, being initially trained using data from the first sliding window (ap-
proximately the 2001 year). Figure 10 shows the evolution of ε

(
DR,48

)
as time

increases. It may be seen that the NEN method is quite robust as the prediction per-
formance measure converges asymptotically to a value near 150× 10−2. The line
labelled ANN 1, corresponding to the model structure selected, shows that as time
passes ε

(
DR,48

)
tends to increase at an almost constant rate, becoming higher than

that of the NEN method after about 4 years of data. This is likely to happen because
the ANN parameters no longer reflect with the same accuracy the underlying dy-
namics and trend of the ELD time series, leading to the conclusion that the ANN
requires some form of adaptation to become robust. Even so it is quite remarkable
that, with no parameter change, it achieves better prediction accuracy during the first
four years of data (significantly better in the first three years). In order to obtain a fair
comparison with the NEN method (in the sense that it uses a sliding window of in-
formation), another set of results was computed by retraining the ANN at every year
interval so that its parameters are readjusted to reflect more closely the ELD data
dynamics and trends. These results are labelled ANN 2 in Fig. 10, showing that the
improvements are significant even though only a yearly retraining was employed.
In terms of robustness this is very promising for the actual implementation of ANN
ELD predictive models in the REN dispatch system, as further improvements are
expectable if more elaborate model adaptation techniques are employed or a more
frequent retraining is used [15]. Figure 11 shows the evolution of the ELD over the
prediction horizon for the simulation instant where the retrained ANN achieved the
RMS error value which was closest to the average over the complete simulation. The
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Fig. 11 Prediction horizon
where the retrained model
(ANN 2) RMS of error is
closest to the average ob-
tained in the complete sim-
ulation. The nearest neigh-
bour approach prediction is
shown for comparison.
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prediction obtained by the NEN method is also shown for comparison. Globally the
results show that the ANN is preferable to the NEN method, although at the cost of
a significant increase in methodology complexity and on computational effort.

In summary, when compared to previous results, better prediction accuracy was
achieved over a longer prediction horizon, and faster convergence (in number of
generations) was observed in the MOGA execution.

3.2 Cloudiness Estimation

Clouds are an important phenomena strongly affecting the total incoming irradi-
ance at a given point in the Earth surface. For a growing number of applications in
diverse fields such as agriculture, forestry or energy production and management,
being able to accurately estimate and predict solar radiation at a given ground loca-
tion and at short time scales, is becoming an extremely important task because solar
radiation strongly influences the relevant processes and energy balances. The use
of ground-based all-sky (GBAS) images acquired by CCD cameras, directly with
fish-eye lenses or projected on hemispherical mirrors, has been receiving growing
interest by researchers from several fields (See [12] for examples and references).
Regarding the use of cloudiness information extracted from GBAS images and its
incorporation into solar radiation predictive modelling, our group made a first at-
tempt in a previous work [9]. The pixel classification approach was quite different
from that being presented here and there was no assessment, other than by visual
inspection, on the accuracy of the cloud cover estimation. By that time no clear con-
clusion could be made on the benefits of using cloudiness information at the inputs
of the neural network predictive solar radiation model. Typically predictive solar
radiation models are identified using one-step-ahead NAR forms. Due to the auto-
regressive characteristic their accuracy becomes severely degraded in the presence
of cloudy sky conditions, hence the need to advance to the NARX form, considering
cloudiness has the exogenous input.
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The motivation for this work is twofold: to improve the predictive performance
of global solar radiation models operating on relatively short time scales (prediction
horizons of a few hours); and, to implement these models on a cheap hardware
daytime all-sky imaging prototype being developed in the laboratory. Ultimately
our goals are to employ global solar radiation predictive models incorporating the
effects of cloudiness in projects related to the efficient energy management in public
buildings and, in the future, in projects related to solar power plants and to the
prediction of electricity consumption.

3.2.1 Problem FormulationA total of 410 all-sky images were used in the model
identification experiment. They were acquired using a Total Sky Imager (TSI) 440A
manufactured by Yankee Environmental Systems, Inc., located on top of one build-
ing (37o02′N, 07o57′W ) in the University of Algarve, Faro, Portugal. The images
are stored in red-green-blue (RGB) colour mode (8 bit/channel) with a dimension
of 704× 576 (width×height). Given the location of the TSI and the time-stamp of
each image, a pixel mask was computed to identify the visible sky pixels for fur-
ther processing (see Fig. 13 for an example). For these, one researcher made an
additional mask including all the cloud pixels according to his personal judgement.
Using these masks the percent cloud cover for each image was computed using the
formula,

C =
Nc

Ns + Nc
×100 , (26)

where Ns and Nc are the numbers of pixels masked as clear sky (class S) and cloud
(class C), respectively. Figure 12 presents information about the images used, il-
lustrating the effort made to include significant numbers of images within intervals
of the cloud cover and the time of day. Additionally, for each pixel intensity scale
considered and for every image, an exhaustive search was conducted to find the
threshold value, to, minimising the cloud cover estimation error resulting from the
thresholding operation.

The general approach consists in finding a threshold value, t̂, on a given pixel in-
tensity scale, which segments the image I pixels with coordinates (x,y) and intensity
γxy into one of the classes, S and C. In this sense these are sets defined as,

S =
{
(x,y) ∈ I : γxy ≤ t̂

}
,

C =
{
(x,y) ∈ I : γxy > t̂

}
,

to which Ns and Nc in (26) are the respective set cardinalities. The evaluation of
thresholding methods relies on the absolute error between the cloud fraction at-
tributed to the images and that estimated by the threshold t̂:

ε =
∣
∣C− Ĉt̂

∣
∣ . (27)

Several pixel intensity scales were considered to perform the thresholding operation.
From the results in [12] one, denoted hsvR, was selected has it consistently provided
increased cloud cover estimation accuracy for various thresholding methods tested.
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Fig. 12 Details about the 410 images used. Top: Number of images by ascending cloud cover
intervals. Middle and bottom: respectively, the number of images and cloud cover distribution
by the time of day.

This pixel intensity is obtained by converting the original RGB image to the hue-
saturation-value (HSV) colour model, setting the value channel to 1 (the maximum)
for all pixels, and finally converting this image back to the RGB mode. Setting an
equal value on the V channel has an equalisation effect on the pixels luminosity. The
maximum value was chosen because on the HSV colour model the colours become
more distinguishable. The net effect on the converted RGB image is that clear sky
and cloud pixels have improved contrast between them in the red channel.

The model identification problem consists in using the framework presented in
Sect. 2 in order to search for a RBF ANN image segmentation model. As illustrated
in Fig. 13, the output of the ANN is the threshold to be used in an image, the inputs
are a set of features extracted from the masked image or transformations of it.

The set of 410 images was broken into three sub-sets: the training set, denoted
by Dt (290 images); the testing set, Dg (60 images), for generalisation testing; and
the validation set, Dv (60 images), to evaluate the ANNs after the MOEA execution.
From all the images and from transformations of them, a total of 69 features were
extracted from distinct pixel intensity scales: first, from the original RGB image the
HSV and hue-saturation-lightness (HSL) images were obtained; secondly, on the
HSV and HSL images, the V and L channels were set to 1 and 0.5, respectively,
and these transformed images were converted back to RGB mode, thus generating



46 P. M. Ferreira and A.E. Ruano

T
hr

es
ho

ld
t̂

R
B

F
N

eu
ra

l
N

et
w

or
k

Acquired image Masked image Classified image

Fe
at

ur
e

ex
tr

ac
tio

n
Fig. 13 Neural network image segmentation approach.

two additional RGB images; finally, from each RGB mode image, a grey intensity
image was generated. This results in a total of 7 different images and 17 distinct
intensity channels. From the latter, the sample mean, standard deviation, and skew-
ness were extracted. Additionally, from the red and grey intensity channels (6 in
total) histogram, the most frequent, first non-zero, and last non-zero intensity levels
were also extracted.

From the lookup table, F, of 69 features, the model chromosomes were allowed
to have d ∈ [2,36] input terms. The number of neurons, n, was restricted to the
interval [2,24]. As in the electricity consumption prediction problem, the model pa-
rameters were estimated via the LM algorithm using the modified training criterion
(13) as outlined in Sect. 2.4. The initial centre locations for the Gaussian activation
functions were selected randomly from the input patterns in Dt , the corresponding
initial spreads, σi, were determined by the rule (18), and the linear parameters were
initialised using (12). The early stopping method was employed to stop the training
algorithm by setting kmax = 50 in (20).

The MOGA was also employed to evolve a set of models whose selected number
of neurons and input terms optimise a number of pre-specified goals and objectives.
To this respect two objectives were set-up for minimisation: the RMS of the error
computed on Dt and on Dg, respectively denoted by ρ(Dt) and ρ(Dg). As the ANNs
are randomly initialised, for each of them 25 training trials were executed and the
average of both objectives was used for evaluation purposes. Recall that this proce-
dure decreases the chance of one potentially good model being poorly evaluated due
to a bad choice of initial parameters. Once the MOGA execution was terminated, for
each of the preferable ANN models a larger number of training trials was executed
in order to select one model for application. This choice was made by taking into
account the actual objective values attained on each of the trials and also the RMS
output error obtained on the validation data set.
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The model that was selected from the identification experiment was compared
to other thresholding methodologies [12], namely, a fix threshold approach, the Ri-
dler, Calvard and Trussel (RCT) algorithm [35, 46], and Otsu’s method [33]. For
the first, an histogram based analysis was made in order to identify the best single
threshold value that could be applied to all the 410 images. Global (over all the im-
ages) pixel intensity probability mass functions were separately computed for each
of the classes, S and C. Then, a search was conducted in a vicinity around the in-
tersection point of the PMFs in order to find the threshold minimising the average
(over all images) value of (27). This was found to be t = 158 on the hsvR pixel
intensity scale (the same used for the ANN approach).

The RCT method is an histogram-iteration form [46] of an iterative thresholding
algorithm [35] that we denote by RCT in the following. A brief description of the
method may be found in [12]. For a more in-depth view the reader should consult
[35, 46, 30, 44]. Briefly, the RCT method tries to iteratively estimate the average
pixel intensity of both classes and computes the threshold as the average of the
classes sample mean.

The principle behind the method proposed by [33] is very simple: an exhaustive
search is conducted on the pixel intensity scale for the threshold that maximises the
inter-class variance. Again a brief overview may be found in [12], whereas for more
detailed descriptions [33] or [44] may be consulted.

3.2.2 Results and DiscussionThe MOGA execution was stopped after 50 gener-
ations yielding 11 ANNs in the Pareto front as highlighted in the top-left plot of
Fig. 14, where a detail of the objective values is shown. Regarding the number of
neurons of the 11 selected models, four of them had from 12 to 14, the remaining
seven had 22 or 23 neurons. Concerning the number of input features, the models
employed from 29 to 36.

As mentioned before, 50 additional training trials were executed for each model
selected. The resulting objective values are depicted in the top-right plot of Fig. 14.
The plots at the bottom of the figure show the corresponding results considering the
evaluation of each model structure instance on the validation data set: the RMS error
obtained on Dt and Dg is plotted against the RMS error obtained in the validation
data set, Dv. The results marked with a dark square were obtained by the RBF ANN
that was selected after analysis of all the results. It presented the most favourable
balance in the objectives, achieving the RMS error values of 13.10, 13.12, and 14.65,
respectively on Dt , Dg, and Dv. It is a network with 30 inputs and 22 neurons.

Regarding the cloud cover fraction estimation, Table 3 presents the minimum,
average, and maximum ε results obtained by the ANN model selected and by the
remaining methods employed for comparison. For the ANN, they are presented con-
sidering the training and testing data sets together (involved in the MOGA ANN
optimisation), the validation data set alone, and the three data sets altogether. It may
be seen that the RCT and Otsu methods achieve similar results to those obtained
with a fixed threshold. The results obtained by the RBF ANN selected using the
framework presented in Sect. 2 represent an improvement in average accuracy of
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Table 3 Absolute error of cloud cover estimation obtained by the RFB ANN image thresh-
old approach (first three lines). Results obtained by three additional methods are shown for
comparison (last three lines).

minimum average maximum

Data set:
Training and testing 0.00 5.31 58.46
Validation 0.00 4.74 43.71
Altogether 0.00 5.22 58.46

Other methods:
Fixed threshold 0.00 11.24 82.64
RCT method 0.00 11.34 98.21
Otsu’s method 0.00 11.07 63.59

approximately 50% when compared to the best results obtained by the remaining
methods.
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Figure 15 presents the absolute error values for the reference cloudiness of each
image, where, for the ANN plot (bottom), the circles correspond to images in the
training or testing data sets, and the dark squares to images in the validation data
set. The similarity of results achieved by the three methods used for comparison is
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Fig. 15 Error performance of the three methods used for comparison, and of the RBF ANN
image thresholding approach (bottom)

visible, although the fixed threshold approach exhibits improved uniformity of the
error for the reference cloudiness when compared to the RCT and Otsu’s methods.
The improvement achieved by the selected ANN model is noticeable with most error
values under 20%.

Despite the improvement obtained by the RBF ANN thresholding methodology
there are a few directions in future work expected to further improve the results.
Perhaps the most important, regarding the use of the MOEA to select ANNs, con-
sists in specifying the objective space in a different way. In most images ε is not
symmetric around the optimum threshold, thus minimising the threshold estimation
error may not guarantee the best results. A better approach would consist in build-
ing a matrix where for each image (lines) the value of ε is computed for each pixel
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intensity (columns), so that it becomes possible to map the NN threshold estima-
tion to a cloud cover estimation error. The latter should be minimised in the MOGA
search for NN structures. This is currently being implemented and will result in
another iteration of the model design cycle. Once this is carried out, the resulting
RBF ANN will be used to build a time-series of cloudiness from an existing time-
series of GBAS images. Then a cloudiness predictive model will be identified and
employed for the benefit of global solar radiation predictive models identification
having cloudiness as an exogenous input. The goal is to conclude if that approach is
preferable to auto-regressive solar radiation predictive models.

4 Concluding Remarks

Neural network modelling is an iterative process, requiring, at the present stage, sub-
stantial skills and knowledge from the designer. It is our view that the methodology
presented in this article, employing multiobjective evolutionary algorithms for the
design of neural models, is a suitable tool to aid the designer in this task. It incor-
porates inputs, model order and structure selection, as well as parameter estimation,
providing the designer with a good number of well performing models with varying
degrees of complexity. Importantly, the model identification framework is suitable,
with minor adaptation, to most feed-forward artificial neural network methodolo-
gies. It also allows the incorporation of objectives which are specifically designed
by considering the final application of the model. Through the analysis of the results
obtained in one iteration, the search space can be reduced for future iterations, there-
fore allowing a more refined search in promising model regions. This was demon-
strated in practice, by the presentation of two model identification experiments that
were designed by taking into account results from previously executed experiments.
In both, significant improvements were achieved not only when compared to previ-
ous work, but also by comparison with different methodologies.
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