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Preface

The IEEE International Symposium on Intelligent Signal Processing (WISP) event
series celebrated its 10 years anniversary in 2009. The current volume “New Ad-
vances in Intelligent Signal Processing” contains extended works based on a careful
selection of papers presented originally at the jubilee conference.

The importance of linking the scientific communities working in the fields of in-
telligent systems and signal processing was recognized in the late nineties by the
IEEE Instrumentation and Measurement Society. Such facts that complex industrial
and engineering systems, especially within the framework of large-scale embed-
ded and real-time systems, confront researchers and engineers with completely new
challenges, helped in setting up this new direction of science and research. Fur-
thermore, it turned out that information processing and measurement is much more
than originally meant: measurement and signal processing systems are involved in
almost all kinds of activities in those fields, where control problems, system identi-
fication problems, industrial technologies, etc., are to be solved, i.e., when signals,
parameters, or attributes must be measured, monitored, approximated, or estimated.

In a large number of cases, traditional information processing tools and equip-
ment failed to handle the problems. Not only the handling of the previously un-
seen spatial and temporal complexity became questionable, but also problems had
to be addressed such as the interaction and communication of subsystems based
on entirely different modeling and information expression methods, the handling of
abrupt changes within the environment and/or the processing system, the possible
temporal shortage of computational power, and/or loss of some data, the uncertainty
and ambiguity of the information, data, and perceptions, and last but not least, the
new concepts of optimality and effectiveness.

The solution meant the introduction of new ideas for specifying, designing, im-
plementing, and operating sophisticated signal processing systems. Computational
intelligence, i.e., artificial intelligence, soft computing, anytime, and machine intel-
ligence methods became serious candidates for handling many of the theoretical and
practical problems, providing a better description, and, in many cases, proved to be
the best if not the only alternatives for emphasizing significant aspects of system
behavior.
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Up until recently, however, these new techniques have not been widely used in
the field of signal processing because some of the critical questions related to the
design and verification have not been answered properly and because the uncertainty
has been maintained in a quite different way as it is in the classical metrology.

These initiated the IEEE IM Society, the IEEE Hungary Section, and the Euro-
pean Association for Signal Processing to call to life a new event, hoping that it
will become a series of regular meetings attracting more and more scientists and
engineers in these hot topics. As result, the biannual symposium was launched in
1999.

Since that, five symposia have served as forum and catalyst of new theoretical
and practical achievements in both the intelligent systems and signal processing
communities. The continuous interest in WISP events has proved the soundness of
the initiative, i.e., to link and counteract the scientific communities working in the
fields of intelligent systems and signal processing.

The jubilee sixth IEEE International Symposium on Intelligent Signal Process-
ing (WISP’2009), held in Budapest Hungary, August 26–28, 2009, contained 58
accepted papers out of the 81 submitted, from which 11 have been selected to incor-
porated in this volume. Present book does not intent to be an overall survey on the
fields of interest of the area, but tries to find topics which represent new, hot, and
challenging problems.

The book begins with papers investigating selected problems of Modeling, Identi-
fication, and Clustering. Chapter 1 presents fuzzy random variables as integral com-
ponents of regression models. Chapter 2 introduces evolutionary multi-objective
neural network models evolving optimized model structures that meet pre-specified
design criteria in acceptable computing time. Chapter 3 deals with the structural
learning model of neural networks within a Boltzmann machine. Chapter 4 proposes
robust DNA-based clustering techniques and finally, in Chapter 5 the advances of
combining multi-criteria analysis of signals and pattern recognition using machine
learning principles are discussed.

In the second part of the volume Image Processing is treated. Chapter 6 deals
with fuzzy relation based image enhancement, addressing also detail sharpening and
noise cancellation. Chapter 7 describes an image contrast control technique based
on the application of Łukasiewicz algebra operators. In Chapter 8, low complexity
situational models of image quality improvement are presented. Chapter 9 proposes
a flexible representation to map images to quantum computers. In Chapter 10 ob-
ject recognition in images is addressed and weakly supervised classification models
are proposed. The last chapter of the book, Chapter 11, presents an image process-
ing application for elderly care, performing real-time 3D tracking based on a new
evolutive multi-modal algorithm.

We would like to express out appreciation to all to the authors of this volume.
Without their contributions we will not have this book in our hands. We are also
grateful to the reviewers for offering their time in reviewing the papers. Their effort
made possible to match the prestige of the books published by Springer Verlag.
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A particular acknowledgment goes to Prof. Janusz Kacprzyk (Editor-in-Chief,
Springer Studies in Computational Intelligence Series), Dr. Thomas Ditzinger
(Senior Editor, Engineering/Applied Sciences Springer-Verlag), Ms. Heather King
(Editorial Assistance, Springer Verlag, Heidelberg), and Ms. Teréz Anna Várkonyi
(Editorial Assistance, Óbuda University, Budapest) for the editorial assistance and
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Formulation of Fuzzy Random
Regression Model

Junzo Watada�, Shuming Wang, and Witold Pedrycz

Abstract. In real-world regression analysis, statistical data may be linguis-
tically imprecise or vague. Given the co-existence of stochastic and fuzzy
uncertainty, real data cannot be characterized by using only the formalism
of random variables.

To address regression problems in presence of such hybrid uncertain data,
fuzzy random variables are introduced in this study, and serve as an inte-
gral component of regression models. A new class of fuzzy regression models
based on fuzzy random data is built, and is called the fuzzy random regression
model (FRRM). First, a general fuzzy regression model for fuzzy random data
is introduced. Then, using expectations and variances of fuzzy random vari-
ables, σ-confidence intervals are constructed for fuzzy random input-output
data. The FRRM is established based on the σ-confidence intervals. The
proposed regression model gives rise to a non-linear programming problem
which consists of fuzzy numbers or interval numbers. Since sign-changes in
the fuzzy coefficients modify the entire programming structure of the solu-
tion process, the inherent dynamic non-linearity of this optimization makes
it hard to exploit the techniques of linear programming or classical non-linear
programming. Therefore, we resort to some heuristics. Finally, an illustrative
example is provided.
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1 Introduction

Classical regression model leads to effective statistical analysis of precise, nu-
meric, statistical data. In the past two decades, to cope with imprecise data
coming from fuzzy environments where human (expert) subjective estimates
are used, various fuzzy regression models were introduced. The first fuzzy lin-
ear regression model, which treats fuzzy data instead of statistical data, was
proposed by Tanaka et al. [29]. Tanaka et al. [31], Tanaka and Watada [32],
Watada and Tanaka [38] presented possibilistic regression based on the con-
cept of possibility measure. Chang [2] discussed a fuzzy least-squares regres-
sion, by using weighted fuzzy-arithmetic and the least-squares fitting crite-
rion. Watada [40, 42] developed models of fuzzy time-series by exploiting the
concept of intersection of fuzzy numbers. The limitation in these modelling
pursuits is related with in dealing with fuzzy data with numeric inputs and
fuzzy outputs.

To treat fuzzy input and fuzzy output data, Watada [41] proposed a
heuristics-based fuzzy regression model which relies on heuristic methods
to determine the products of fuzzy numbers. It was emphasized in [41] that
the concepts of fuzzy statistics, fuzzy numbers and fuzzy arithmetic play a
pivotal role in the design of fuzzy regression. More recently, some researchers
have discussed fuzzy input-output data on the basis of nonlinear member-
ship functions or nonlinear evaluation functions, which result in quadratic
or non-linear programming problems. For example, Tanaka and Lee [33] dis-
cussed interval regression analysis based on quadratic programming instead
of linear programming. Hao and Chiang [5] and Hong and Hwang [8] dealt
with the nonlinear fuzzy model by exploiting support vector machines. Choi
and Buckley [4] built fuzzy regression models based on the least absolute
deviation estimators.

As an expansion of the models discussed in [31, 32, 38, 41], Watada and
Mizunuma [43] and Watada and Toyoura [44] built switching fuzzy regression
models to analyze mixed data obtained from various sources. Furthermore,
linguistic regression models were discussed by Toyoura and Watada [34] and
Watada and Pedrycz [45].

There have been many tests of real-world applications of fuzzy regression
models, e.g., estimation of heat tolerance in plants [3], energy loss model-
ing [7], R&D project evaluation [9], peak load estimation of power distribu-
tion systems [20], modeling deregulated electricity markets [24], short-term
load forecasting of power system [27], and reliability assessment [48]. In ad-
dition to fuzzy regression analysis, some other statistical approaches to fuzzy
data can be found in Kandel [10], Nguyen and Wu [23], and Sun and Wu [28].

In contrast to the research noted above, this work is primarily concerned
with regression models with hybrid uncertainty, where both fuzziness and
randomness play a central role. Albeit randomness and fuzziness treated en
bloc has been a controversial issue, the topic deserves attention bearing in
mind that these two facets of uncertainty manifest quite often in real-world
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problems. Zadeh [49] provided essential concepts for dealing with uncertainty
under probabilistic and fuzzy environments.

The generalization of uncertainty theory was presented by Zadeh, where
granularity and generalized constraints form the crux of the way in which
uncertainty is being handled. Fuzzy random variables serve as basic tools for
modeling optimization problems with such two-fold uncertainty. The concept
of fuzzy random variable was introduced by Kwakernaak [12], who defined
these variables as a measurable function linking a probability space with a
collection of fuzzy numbers. Since then, various extensions of this conceept
have been developed, e.g., López-Diaz and Gil [17], Kruse and Meyer [11],
Liu and Liu [15], Luhandjula [18], and Puri and Ralescu [25]. To deal with
fuzzy random variables, a series of optimization models have been proposed,
which help cope with uncertainty due to both randomness and fuzziness pro-
cessed in an integrated fashion, e.g., fuzzy random multi-objective quadratic
programming [1], fuzzy random goal programming [6], fuzzy random chance-
constrained programming [13], two-stage fuzzy random programming [16],
fuzzy random linear programming [37], fuzzy random reliability optimization
models [35], and fuzzy random renewal processes [36].

Nevertheless, most of the existing studies on modelling fuzzy regression
analysis have focused on data consisting of numeric values, interval-like num-
bers or fuzzy numbers without randomness into consideration. In practical
situations, there exxists a genuine need to cope with data that involves the
factors of fuzziness and probability. For example, let us discuss experts’ eval-
uation of products. Assume we have 100 samples of the same agricultural
product. Suppose five inspectors (experts) evaluate the products on the basis
of 10 attributes. Each expert grades each piece according to his experience
and expertise. These gradings are given linguistically, e.g., ”good”, ”very
good”, ”bad” and ”very bad”, or about 5, about 6, and so on. When differ-
ent inspectors give different grades, the grading is stochastic in its nature.
That is, the differences among the five inspectors can be treated statistically,
but each grade itself should be treated by considering the formalism of fuzzy
sets. When we intend to build a multi-attribute model of the experts’ evalu-
ation, we have to consider this two-fold uncertainty, that is, uncertainty due
to both fuzziness and randomness. Therefore, in the example considered here
fuzzy random data should be employed to evaluate the products. Moreover,
if we measure the change of the fuzzy random values using their confidence
intervals, we can handle the multi-attribute problem by taking advantage of
statistical analysis.

Motivated by the above reasoning, the objective of this paper is to de-
sign a fuzzy regression analysis technique, based on fuzzy random variables
with confidence intervals, which will be referred to as fuzzy random regres-
sion analysis (FRRM). This study can be regarded as the generalization of
our previous work [46], which focuses on a fuzzy regression model with an
expected value approach to fuzzy random data. The confidence interval is
defined by the expected value and variance of a fuzzy random variable. In
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the realization of fuzzy random regression, it is difficult to calculate the prod-
uct between a fuzzy coefficient and a confidence interval. We consider two
approaches: a vertices method to describe the model, and a realistic heuristic
method to solve optimization of the fuzzy random regression model.

The remainder of this paper is organized as follows. In Section 2, we cover
some preliminaries of fuzzy random variables. Section III formulates the fuzzy
random regression model. In Section IV, a solution to the problem is dis-
cussed. An explanatory example is provided to illustrate the proposed fuzzy
random regression model in Section V. Finally, concluding remarks are given
in Section 6.

2 Fuzzy Random Variables

Given some universe Γ , let Pos be a possibility measure defined on the power
set P(Γ ) of Γ . Let � be the set of real numbers. A function Y : Γ → � is
said to be a fuzzy variable defined on Γ (see [19]). The possibility distribution
μY of Y is defined by μY (t) = Pos{Y = t}, t ∈ �, which is the possibility
of event {Y = t}. For fuzzy variable Y with possibility distribution μY , the
possibility, necessity and credibility of event {Y ≤ r} are given, as follows

Pos{Y ≤ r} = sup
t≤r

μY (t),

Nec{Y ≤ r} = 1 − sup
t>r

μY (t),

Cr{Y ≤ r} =
1
2

(
1 + sup

t≤r
μY (t) − sup

t>r
μY (t)

)
.

(1)

From (1), we note that the credibility measure is an average of the possibility
and the necessity measure, i.e., Cr{·} = (Pos{·} + Nec{·})/2, and it is a self-
dual set function (see [14]), i.e., Cr{A} = 1−Cr{Ac} for any A in P(Γ ). The
motivation behind the introduction of the credibility measure is to develop a
certain measure which is a sound aggregate of the two extreme cases such as
the possibility (expressing a level of overlap and being highly optimistic in this
sense) and necessity (articulating a degree of inclusion and being pessimistic
in its nature). Based on credibility measure, the expected value of a fuzzy
variable is presented as follows.

Definition 1 ([14]). Let Y be a fuzzy variable. The expected value of Y is
defined as

E[Y ] =
∫ ∞

0

Cr{Y ≥ r}dr −
∫ 0

−∞
Cr{Y ≤ r}dr (2)

provided that the two integrals are finite.
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Example 1. Assume that Y = (c, al, ar)T is a triangular fuzzy variable whose
possibility distribution is

μY (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − al

c − al
, al ≤ x ≤ c

ar − x

ar − c
, c ≤ x ≤ ar

0, otherwise.

Making use of (2), we determine the expected value of Y to be

E[Y ] =
al + 2c + ar

4
.

What follows is the definitions of fuzzy random variable and its expected
value and variance operators. For more theoretical results on fuzzy random
variables, one may refer to Gil et al., Liu and Liu [15], and Wang and Watada.

Definition 2 ([15]). Suppose that (Ω, Σ, Pr) is a probability space, Fv is
a collection of fuzzy variables defined on possibility space (Γ,P(Γ ), Pos). A
fuzzy random variable is a mapping X : Ω → Fv such that for any Borel
subset B of �, Pos{X(ω) ∈ B} is a measurable function of ω.

Let X be a fuzzy random variable on Ω. From the above definition, we
know for each ω ∈ Ω, X(ω) is a fuzzy variable. Furthermore, a fuzzy random
variable X is said to be positive if for almost every ω, fuzzy variable X(ω) is
positive almost surely.

Example 2. Let V be a random variable defined on probability space (Ω, Σ, Pr).
Define that for every ω ∈ Ω, X(ω) = (V (ω)+2, V (ω)−2, V (ω)+6)T which is
a triangular fuzzy variable defined on some possibility space (Γ,P(Γ ), Pos).
Then, X is a (triangular) fuzzy random variable.

For any fuzzy random variable X on Ω, for each ω ∈ Ω, the expected value
of the fuzzy variable X(ω) is denoted by E[X(ω)], which has been proved
to be a measurable function of ω (see [15, Theorem 2]), i.e., it is a random
variable. Given this, the expected value of the fuzzy random variable X is
defined as the mathematical expectation of the random variable E[X(ω)].

Definition 3 ([15]). Let X be a fuzzy random variable defined on a proba-
bility space (Ω, Σ, Pr). The expected value of X is defined as

E[ξ]=
∫
Ω

⎡
⎣

∞∫
0

Cr{ξ(ω) ≥ r}dr−
0∫

−∞
Cr{ξ(ω) ≤ r}dr

⎤
⎦Pr(dω). (3)

Example 3. Consider the triangular fuzzy random variable X as defined in
Example 2. Suppose that V is a discrete random variable, which takes values
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V1 = 3 with probability 0.2, and V2 = 6 with probability 0.8. We calculate
the expected value of X .

From the distribution of random variable V , we know that the fuzzy ran-
dom variable X takes fuzzy variables X(V1) = (5, 1, 9)T with probability
0.2, and X(V2) = (8, 4, 12)T with probability 0.8. We need to compute the
expected values of fuzzy variables X(V1) and X(V2), respectively. That is
E[X(V1)] = (1 + 2 × 5 + 9)/4 = 5, and E[X(V2)] = (4 + 2 × 8 + 12)/4 = 8.
Finally, by Definition 3, the expected value of X is E[X ] = 0.2 · E[X(V1)] +
0.8 · E[X(V2)] = 7.4.

Definition 4 ([15]). Let X be a fuzzy random variable defined on a proba-
bility space (Ω, Σ, Pr) with expected value e. The variance of X is defined as

V ar[X ] = E[(X − e)2] (4)

where e = E[X ] is given by Definition 3.

Example 4. Consider the triangular fuzzy random variable X defined in Ex-
ample 3. Let us calculate the variance of X . From the distribution of ran-
dom variable V , we know that the fuzzy random variable X takes fuzzy
variables X(V1) = (5, 1, 9)T with probability 0.2, and X(V2) = (8, 4, 12)T

with probability 0.8. From Example 3, E(X) = 7.4. Then V ar(X) =
E[(X(V1) − 7.4)2] · 0.2 + E[(X(V2) − 7.4)2] · 0.8.

To obtain V ar[X ], we need to calculate E[(X(V1)−7.4)2] and E[(X(V2)−
7.4)2], where X(V1) − 7.4 = (−2.4,−6.4, 1.6)T and X(V2) − 7.4 =
(0.6,−3.4, 4.6)T . Denoting Y1 = X(V1) − 7.4 = (−2.4,−6.4, 1.6)T , first we
will calculate μY 2

1
and Cr{Y 2

1 ≥ r}. Since

μY 2
1
(t)=Pos

{
Y 2
1 = t

}
=max

{
Pos

{
Y1 =

√
t
}

, Pos
{
Y1 = −√

t
}}

,

where t ≥ 0, we obtain

μY 2
1
(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
1.6 +

√
t
)/

4, 0 ≤ t ≤ 2.42(
6.4 −√

t
)/

4, 2.42 ≤ t ≤ 6.42

0, otherwise.

(5)

Furthermore, we compute

Cr
{
Y 2
1 ≥ r

}
=

⎧⎪⎪⎨
⎪⎪⎩

(
2 − μY 2

1
(r)

)/
2, 0 ≤ r ≤ 2.42(

μY 2
1
(r)

)/
2, 2.42 ≤ r ≤ 6.42

0, otherwise.

(6)
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Therefore, from Definition 1, we obtain E[(X(V1)−7.4)2] = E[Y 2
1 ] as follows:

E
[
Y 2
1

]
=

∫ ∞

0

Cr
{
Y 2
1 ≥ r

}
dr

=
∫ 2.42

0

1
2

(
2 − 1.6 +

√
t

4

)
dr

+
∫ 6.42

2.42

1
2

(
6.4 −√

t

4

)
dr

= 12.08.

(7)

Similarly, we obtain E[(X(V2) − 7.4)2] = E[Y 2
2 ]=4.25. Thus, V ar(X) = 0.2 ·

E(X(V1) − 7.4)2 + 0.8 · E(X(V2) − 7.4)2 = 0.2 × 12.08 + 0.8 × 4.25 = 5.81.

3 Fuzzy Random Regression Model

Fuzzy arithmetic and fuzzy arithmetic operations for fuzzy numbers have
been studied by making use of the extension principle [21], [22]. These studies
have involved the concept of possibility. In 1984, Sanchez [26] discussed the
solution of fuzzy equations in the same way as being intensively studied in
the realm of fuzzy relational equations. Tanaka and Watada [32] pointed out
that fuzzy equations discussed by Sanchez can be regarded as possibilistic
equations.

In the sequel, possibilistic system has been applied to the linear regression
analysis [29],[30], [39]. Our main concern here it to build a new fuzzy regres-
sion model for fuzzy random data, which is based on the possibilistic linear
model.

Table I illustrates a format of data to be dealt with here, where input data
Xik and output data Yi, for all i = 1. · · · , N and k = 1, · · · , K are fuzzy
random variables, which are defined as

Yi=
MYi⋃
t=1

{(
Y t

i , Y t,l
i , Y t,r

i

)
T

, pt
i

}
, (8)

Xik=
MXik⋃
t=1

{(
Xt

ik, Xt,l
ik , Xt,r

ik

)
T

, qt
ik

}
, (9)

respectively. This means that all values are given as fuzzy numbers with
probabilities, where fuzzy variables (Y t

i , Y t,l
i , Y t,r

i )T and (Xt
ik, Xt,l

ik , Xt,r
ik )T

are associated with probability pt
i and qt

ik for i = 1, 2, · · · , N , k = 1, 2, · · · , K
and t = 1, 2, · · · , MYi or t = 1, 2, · · · , MXik

, respectively.
Let us denote fuzzy linear regression model as follows:

Ȳi = Ā1Xi1 + · · · + ĀKXiK , (10)
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Table 1 Fuzzy random input-output data

Sample Output Inputs

i Y X1 X2 · · · Xk · · · , XK

1 Y1 X11 X12 · · · X1k · · · , X1K

2 Y2 X21 X22 · · · X2k · · · , X2K

...
...

...
...

...
...

i Yi Xi1 Xi2 · · · Xik · · · , XiK

...
...

...
...

...
...

N YN XN1 XN2 · · · XNk · · · XNK

where Ȳi denotes an estimate of the output and Āk =
(

Āl
k+Ār

k

2 , Āl
k, Ār

k

)
T

are
symmetric triangular fuzzy coefficients when triangular fuzzy random data
Xik are given for i = 1, · · · , N and k = 1, · · · , K as shown in Table 1.

When outputs Yi =
⋃MYi

t=1

{
(Y t

i , Y t,l
i , Y t,r

i )T , pt
i

}
, i = 1, 2, · · · , N are given

at the same time, we can determine the fuzzy random linear model so that
the model includes all given fuzzy random outputs. Therefore, the following
relation should hold:

Ȳi = Ā1Xi1 + · · · + ĀKXiK ⊃
FR

Yi, i = 1, . . .N, (11)

where ⊃
FR

is a fuzzy random inclusion relation whose precise meaning will be

explained later on. Following the principles of fuzzy arithmetic, the problem
to obtain a fuzzy linear regression model results in the following mathematical
programming problem:
[Regression model with fuzzy random data]

min
Ā

J(Ā) =
K∑

k=1

(
Ār

k − Āl
k

)

subject to
Ār

k ≥ Āl
k,

Ȳi = Ā1Xi1 + · · · + ĀKXiK ⊃
FR

Yi,

for i = 1, . . .N, k = 1, . . . , K.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Here, the fuzzy random inclusion relation ⊃
FR

is critical to the model (12),

which can be defined in various ways. Watada and Wang [46] used the
expectation-based inclusion, and converted the fuzzy random regression
model (12) to the following expected value regression model which corre-
sponds to the conventional fuzzy regression model:
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[Fuzzy random expected value regression model]

min
Ā

J(Ā) =
K∑

k=1

(
Ār

k − Āl
k

)

subject to
Ār

k ≥ Āl
k,

Ȳi =
K∑

k=1

ĀkE(Xik) ⊃∼
h

E(Yi),

for i = 1, . . .N, k = 1, . . . , K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where ⊃∼
h

denotes the fuzzy inclusion relation realized at level h.

In this study, we employ the confidence-interval based inclusion, which
combines the expectation and variance of fuzzy random variables and the
fuzzy inclusion relation satisfied at level h, to deal with the model (12).
There are also some other ways to define the fuzzy random inclusion relation
⊃
FR

, which will yield more complicated fuzzy random regression models. For

instance, in order to retain more complete information of the fuzzy random
data, we can use the fuzzy inclusion relation directly for the product between
a fuzzy parameter and a fuzzy value at some probability level. However, such
calculation could be difficult since the product of two triangular fuzzy num-
bers does not retain the same triangular shape of the resulting membership
function. Given this, the solution to the problem may rely on some heuristics
as proposed in Watada and Pedrycz [45].

Table 2 Input-output data with confidence interval

Sample Output Inputs

i I [eY , σY ] I [eX1 , σX1 ] · · · I [eXK , σXK ]

1 I [eY1 , σY1 ] I [eX11 , σX11 ] · · · I [eX1K , σX1K ]
2 I [eY2 , σY2 ] I [eX21 , σX21 ] · · · I [eX2K , σX2K ]
...

...
...

...
...

i I [eYi , σYi ] I [eXi1 , σXi1 ] · · · I [eXiK , σXiK ]
...

...
...

...
...

N I [eYN , σYN ] I [eXN1 , σXN1 ] · · · I [eXNK , σXNK ]

Before building the fuzzy random regression model, we define the confi-
dence interval which is induced by the expectation and variance of a fuzzy
random variable. When we consider the one sigma confidence (1×σ) interval
of each fuzzy random variable, we can express it as the following interval

I[eX , σX ] �
[
E(X) −

√
V ar(X), E(X) +

√
V ar(X)

]
, (14)
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which is called a one-sigma confidence interval. Similarly, we can define two-
sigma and three-sigma confidence intervals. All of these confidence intervals
are called σ-confidence intervals. Table 2 shows the data with one-sigma
confidence interval. Based on σ-confidence intervals, we formulate a new fuzzy
random regression as follows:
[fuzzy random regression model (FRRM)]

min
Ā

J(Ā) =
K∑

k=1

(
Ār

k − Āl
k

)

subject to
Ār

k ≥ Āl
k,

Ȳi =
K∑

k=1

ĀkI[eXik
, σXi1 ]⊃∼

h

I[eYi , σYi ],

for i = 1, . . .N, k = 1, · · · , K.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Remark 1. Given (15), if all the σ-confidence intervals of fuzzy random vari-
ables are considered as zero-sigma confidence intervals, the FRRM (15) will
degenerate to the fuzzy random expected regression model described by (13).

Since the product of a fuzzy number (fuzzy coefficient) and an interval
(confidence interval) is influenced by the signs of each component, to solve
the FRRM (15) , we need to take into account all the cases corresponding
to different combinations of the signs of the fuzzy coefficients as well as the
σ-confidence intervals of the fuzzy random data. The detailed computing
associated with the the FRRM (15) will be discussed in the next section.

Table 3 Different cases of the product (19)

Case Condition Result

Case I ēik ≥ eik ≥ 0

I-a āk ≥ ak ≥ 0
(
Āk · I [eXik , σXik ]

)
h0 = [ak · eik, āk · ēik]

I-b āk ≥ 0 ≥ ak

(
Āk · I [eXik , σXik ]

)
h0 = [ak · ēik, āk · ēik]

I-c 0 ≥ āk ≥ ak

(
Āk · I [eXik , σXik ]

)
h0 = [ak · ēik, āk · eik]

Case II 0 ≥ ēik ≥ eik

II-a āk ≥ ak ≥ 0
(
Āk · I [eXik , σXik ]

)
h0 = [āk · eik, ak · ēik]

II-b ak ≤ 0 ≤ āk

(
Āk · I [eXik , σXik ]

)
h0 = [āk · eik, ak · eik]

II-c 0 ≥ āk ≥ ak

(
Āk · I [eXik , σXik ]

)
h0 = [āk · ēik, ak · eik]

Case III ēik ≥ 0 ≥ eik

III-a āk ≥ ak ≥ 0
(
Āk · I [eXik , σXik ]

)
h0 = [āk · eik, āk · ēik]

III-b 0 ≥ āk ≥ ak

(
Āk · I [eXik , σXik ]

)
h0 = [ak · ēik, ak · eik]

III-c āk ≥ 0 ≥ ak

(
Āk · I [eXik , σXik ]

)
h0 = [a∗

k · e∗ik, a∗∗
k · e∗∗ik ]
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4 The Solution to the FRRM

The solution of FRRM (15) can be rewritten as a problem of N samples with
one output and K input interval values. This problem is hard to solve, since
it consists of N × K products between the fuzzy coefficients and confidence
intervals. In order to solve the proposed FRRM, we can employ a vertices
method as given below. That is, these multidimensional vertices are taken
as new sample points with fuzzy output numbers. In the sequel, we can
solve this problem using the conventional method. Nevertheless, this problem
suffers from combinatorial explosion which becomes very much visible when
the number of variables increases.

A heuristic method alleviates the difficulty to determine a fuzzy random
regression model by using central values. This intends to simplify the calcu-
lations depending on many cases of the product between fuzzy numbers.

4.1 Vertices Method

Let us restructure the problem into that of N samples with one output in-
terval value and 2K vertices in K-dimension. That is, these multidimensional
vertices are taken as new sample points with one output interval number.
Therefore, we can solve this problem of N × 2K samples with K values of
input by the conventional method. Nevertheless, even in this section the
problem suffers from the effect of combinatorial explosion.

Fuzzy random regression model can be developed to include the mean
interval values of all samples in the model. Therefore, it is sufficient and
necessary to consider only both two vertices of the end points of the interval
of each dimension of a sample. For example, one sample with one input
interval feature can be expressed with two vertices of the end points of the
interval with a fuzzy output value. As a consequence, in FRRM (15), if we
denote IL

ik and IU
ik left and right end points of the confidence intervals of the

input Xik, respectively, that is

IL
ik = E(Xik) −

√
V ar(Xik), IU

ik = E(Xik) +
√

V ar(Xik),

for i = 1, 2, · · · , N, k = 1, 2, · · · , K, the original fuzzy random regression
model (15) can be converted into the following conventional fuzzy regression
model by making use of the vertices method:



12 J. Watada, S. Wang, and W. Pedrycz

min
Ā

J(Ā) =
K∑

k=1

(
Ār

k − Āl
k

)

subject to

Ār
k ≥ Āl

k,

(1) → Ȳi = Ā1 · IL
i1 + Ā2 · IL

i2 + · · ·
+ĀK · IL

iK ⊃
∼

I[eYi
, σYi

],

(2) → Ȳi = Ā1 · IU
i1 + Ā2 · IL

i2 + · · ·
+ĀK · IL

iK ⊃
∼

I[eYi
, σYi

],

(3) → Ȳi = Ā1 · IL
i1 + Ā2 · IU

i2 + · · ·
+ĀK · IL

iK ⊃
∼

I[eYi
, σYi

],

.

.

.
.
.
.

.

.

.

(2K) → Ȳi = Ā1 · IU
i1 + Ā2 · IU

i2 + · · ·
+ĀK · IU

iK ⊃
∼

I[eYi
, σYi

],

for i = 1, . . . N, k = 1, · · · , K

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

where ⊃∼
h

denotes the fuzzy inclusion relation realized at level h. The regression

model (16) can be easily solved by taking advantage of the following linear
programming provided that K is small:

min
Ā

J(Ā) =
K∑

k=1

(
Ār

k − Āl
k

)

subject to

Ār
k ≥ Āl

k,

(1)L → Ȳ l
i = Āl

1 · IL
i1 + Āl

2 · IL
i2

+ · · · + Āl
K · IL

iK ≤ IL
Yi

,

(1)U → Ȳ r
i = Ār

1 · IL
i1 + Ār

2 · IL
i2

+ · · · + Ār
K · IL

iK ≥ IU
Yi

,

(2)L → Ȳ l
i = Āl

1 · IU
i1 + Āl

2 · IL
i2

+ · · · + Āl
K · IL

iK ≤ IL
Yi

,

(2)U → Ȳ r
i = Ār

1 · IU
i1 + Ār

2 · IL
i2

+ · · · + Ār
K · IL

iK ≥ IU
Yi

,

(3)L → Ȳ l
i = Āl

1 · IL
i1 + Āl

2 · IU
i2

+ · · · + Āl
K · IL

iK ≤ IL
Yi

,

(3)U → Ȳ l
i = Ār

1 · IL
i1 + Ār

2 · IU
i2

+ · · · + Ār
K · IL

iK ≥ IU
Yi

,

...
...

...

(
2K

)L → Ȳ l
i = Āl

1 · IU
i1 + Āl

2 · IU
i2

+ · · · + Āl
K · IU

iK ≤ IL
Yi

,

(
2K

)U → Ȳ r
i = Ār

1 · IU
i1 + Ār

2 · IU
i2

+ · · · + Ār
K · IU

iK ≥ IU
Yi

,
for i = 1, . . . N, k = 1, · · · , K.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)
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In (17), there are 2K inequalities for each sample i. Therefore, (17) has K +
2 × N × 2K inequlities in total, where IL

Y i and IU
Y i are the left and right end

points of the confidence intervals of output Yi, respectively.
Unfortunately this problem cannot be solved within a reasonable com-

puting time when K becomes even moderately large. For example, when we
have 1, 000 features and 10, 000 samples, the linear programming problem will
come with 2×10, 000×21,000 constraints and 1, 000 non-negative constraints.
Given this, we have to resort to some heuristic strategies.

4.2 Heuristic Method

Let us use additional notations for variables Āk = [āk, ak] for k = 1, 2, · · · , K

in FRRM (15) and indicate step (n) of the algorithm by a suffix say, Ā
(n)
k =

[ā(n)
k , a

(n)
k ]. According to the sign of Ak, k = 1, 2, · · · , K, the product of

fuzzy number Āk and I[eXik
, σXik

] involves three cases, for i = 1, 2, · · · , N .
Let us use the notation eik = E[Xik], ēik = E[Xik] + V ar[Xik] and eik =
E[Xik] − V ar[Xik], respectively. Also, an α-level set of the fuzzy degree of
a structural attribute I[eXik

, σXik
] (i = 1, 2, · · · , N , k = 1, 2, · · · , K) at the

level h0 is denoted as follows:

(Āk)h0 = [ak, āk]. (18)

For each i and k, due to different combinations of signs of confidence inter-
val I[eXik

, σXik
] = [eik, ēik] and (Āk)h0 = [ak, āk], the interval representing

the product (
Āk · I[eXik

, σXik
]
)
h0 (19)

requires several cases to be considered separately as covered in Table 3.
In Table 3 we have

a∗
k · e∗ik = min

{
ak · ēik, āk · eik

}
and

a∗∗
k · e∗∗ik = max

{
ak · ēik, āk · eik

}
,

respectively. As already underlined, it is difficult to derive analytical solutions
to this problem and we resort ourselves to some heuristics. The proposed
procedure can be outlined as follows (Algorithm 1 and Figure 1).

[Algorithm 1]

STEP 1. (Initial Setting)

The trial count n is set to 1, the termination count to Nmax and using eik

of attributes k = 1, 2, · · · , K for each sample i = 1, 2, · · · , N , determine
both the bounds a

(n)
k and ā

(n)
k of Ā

(n)
k by solving the linear programming

task(13).
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STEP 2. (LP Solution 1)

Determine
(
Ā

(n+1)
k · I[eXik

, σXik
]
)

h0
according to Cases I-III, by assign-

ing the signs of a
(n)
k and ā

(n)
k to a

(n+1)
k and ā

(n+1)
k , for k = 1, 2, · · · , K.

Determine a
(n+1)
k , ā(n+1)

k for k = 1, 2, · · · , K by the linear programming to
minimize the fuzziness J(Ā) under the constraints in the programming
problem (15) according to the conditions for

(
Ā

(n+1)
i · I[eXik

, σXik
]
)

h0

as explained in Table 3.

STEP 3. (Decision 1)

If a
(n+1)
k · a

(n)
k ≥ 0 and ā

(n+1)
k · ā

(n)
k ≥ 0 (k = 1, 2, · · · , K) then go to

STEP 5. Otherwise, let n = n + 1 and go to STEP 4

STEP 4. (Decision 2)

If the trial count n has not exceeded the given termination count Nmax,
then go to STEP 2. Otherwise, go to STEP 5.

STEP 5. (Checking Vertices)

Check all vertices whether each of them are included inside of the fuzzy
regression lines. Then, place the vertex in set S1 if it is included be-
tween the upper and lower lines, or on the upper or lower lines, of the
obtained fuzzy regression; and place the vertex in set S2 if it is outside
the obtained fuzzy regression. If no vertex remains, then go to STEP 6;
otherwise go to STEP 5.

STEP 6. (Decision 3)

If Set S2 is null, then go to STEP 8. Otherwise go to STEP 7.

STEP 7. (LP Solution 2)

Adding all the outside points of fuzzy regression which are included S2 to
the constraints of the latest linear programming LP(n), and then resolve
LP(n). Go to STEP 8.

STEP 8. (Termination)

Output the solution and terminate the algorithm.

Remark 2. Note that STEP 1 solves the conventional fuzzy regression anal-
ysis in order to find the possible ranges of these coefficients. Using these signs
we can solve the latter steps. In the linear programming (13), E(Xik) = eik

for i = 1, 2, · · · , N and k = 1, 2, · · · , K.

Remark 3. Note that we check the optimization status as outlined in
STEP 5. The computational complexity of this porocess is only O(2K).
When the algorithm finds the insufficient solution, we resolve the LP(n) us-
ing adding outlier vertices. The number of these vertices is very limited.
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5 An Example

In this section, we present a simple example to visualize how to use the
proposed FRRM. Assume that the fuzzy random input and output data (4
samples and 2 attributes) are given in the Tables 4 and 5, respectively.

Table 4 Input data

No. X1

1 X11 =
(
(3, 2, 4)T , 0.5; (4, 3, 5)T , 0.5

)
2 X21 =

(
(6, 4, 8)T , 0.5; (8, 6, 10)T , 0.5

)
3 X31 =

(
(12, 10, 14)T , 0.25; (14, 12, 16)T , 0.75

)
4 X41 =

(
(14, 12, 16)T , 0.5; (16, 14, 18)T , 0.5

)
No. X2

1 X12 =
(
(2, 1, 3)T , 0.1; (4, 3, 5)T , 0.9

)
2 X22 =

(
(3, 2, 4)T , 0.5; (4, 3, 5)T , 0.5

)
3 X32 =

(
(12, 10, 16)T , 0.2; (14, 12, 16)T , 0.8

)
4 X42 =

(
(18, 16, 20)T , 0.2; (21, 20, 22)T , 0.8

)

Table 5 Output data

No. Y

1 Y1 =
(
(14, 10, 16)T , 0.4; (18, 16, 20)T , 0.6

)
2 Y2 =

(
(17, 16, 18)T , 0.8; (20, 18, 22)T , 0.2

)
3 Y3 =

(
(22, 20, 24)T , 0.3; (26, 24, 28)T , 0.7

)
4 Y4 =

(
(32, 30, 34)T , 0.4; (36, 32, 40)T , 0.6

)

The fuzzy regression model for the given data reads as follows:

Ȳi = Ā1I[eXi1 , σXi1 ] + Ā2I[eXi2 , σXi2 ],

where I[eXik
, σXik

] for k = 1, 2 are the one-sigma confidence intervals shown
in (14). Since N = 4, K = 2, from the FRRM (15), taken (Āk)h0 =
[Āl

k, Ār
k], k = 1, 2, the model can be built as
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min
Ā

J(Ā) = Ār
1 − Āl

1 + Ār
2 − Āl

2

subject to
Ār

1 ≥ Āl
1, Ā

r
2 ≥ Āl

2

Ȳ1 = (Ā1)h0I[eX11 , σX11 ]
+(Ā2)h0I[eX12 , σX12 ]⊃∼ I[eY1 , σY1 ],

Ȳ2 = (Ā1)h0I[eX21 , σX21 ]
+(Ā2)h0I[eX22 , σX22 ]⊃∼ I[eY2 , σY2 ],

Ȳ3 = (Ā1)h0I[eX31 , σX31 ]
+(Ā2)h0I[eX32 , σX32 ]⊃∼ I[eY3 , σY3 ],

Ȳ4 = (Ā1)h0I[eX41 , σX41 ]
+(Ā2)h0I[eX42 , σX42 ]⊃∼ I[eY4 , σY4 ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

First of all, we need to calculate all the I[eXik
, σXik

] and I[eYk
, σYk

] for
i = 1, 2, 3, 4, k = 1, 2. By using the calculation in Example 4, we obtain all
the pairs

(
eXik

, σXik

)
and

(
eYk

, σYk

)
as shown in Table 6.

Table 6 Expectation and standard deviation of the data

i
(
eXi1 , σXi1

) (
eXi2 , σXi2

) (
eYi , σYi

)
1

(
3.5, 0.56

) (
3.8, 0.75

) (
16.2, 7.68

)
2

(
7.0, 2.25

) (
3.5, 0.56

) (
17.6, 2.41

)
3

(
13.5, 1.87

) (
13.7, 4.20

) (
24.8, 4.68

)
4

(
15.0, 2.25

) (
20.4, 2.00

) (
34.4, 8.24

)

Hence, the confidence intervals for the input data and output data can be
calculated in the form

I[eXki
, σXki

] = [eXki
− σXki

, eXki
+ σXki

] (21)

and
I[eYi , σYi ] = [eYi − σYi , eYi + σYi ], (22)

respectively, for i = 1, 2 and k = 1, 2, 3, 4. They are listed in the Tables 7 and
8, respectively.

Table 7 Confidence intervals of the input data

i I [eXi1 , σXi1 ] I [eXi2 , σXi2 ]

1 [2.94, 4.06] [3.05, 4.75]
2 [4.75, 9.25] [2.94, 4.06]
3 [11.63, 15.37] [9.50, 17.90]
4 [12.75, 17.25] [18.40, 22.40]
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Table 8 Confidence intervals of the output data

i I [eYi , σYi ]

1 [8.52, 23.88]
2 [15.19, 20.01]
3 [20.12, 29.48]
4 [26.16, 42.64]

Therefore, the model (20) can be written as

min
Ā

J(Ā) = Ār
1 − Āl

1 + Ār
2 − Āl

2

subject to
Ār

1 ≥ Āl
1, Ā

r
2 ≥ Āl

2,

Ȳ1 = [Āl
1, Ā

r
1] · [ 2.94, 4.06]

+[Āl
2, Ā

r
2] · [ 3.05, 4.75]⊇ [ 8.52, 23.88],

Ȳ2 = [Āl
1, Ā

r
1] · [ 4.75, 9.25]

+[Āl
2, Ā

r
2] · [ 2.94, 4.06]⊇ [15.19, 20.01],

Ȳ3 = [Āl
1, Ā

r
1] · [11.63, 15.37]

+[Āl
2, Ā

r
2] · [ 9.5, 17.90]⊇ [20.12, 29.48],

Ȳ4 = [Āl
1, Ā

r
1] · [12.75, 17.25]

+[Āl
2, Ā

r
2] · [18.40, 22.40]⊇ [26.16, 42.64].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

We make use of Algorithm 1 to construct a regression model. Noting that
K = 2, and all the confidence intervals I[eXik

, σXik
] are positive, from STEP

1 of the Algorithm 1, we need to set
(
Ā

(1)
k · I[eXik

, σXik
]
)

h0
=

[
a
(1)
k · eik, ā

(1)
k · eik

]
,

for i = 1, 2, 3, 4; k = 1, 2, and the determine a
(1)
k and ā

(1)
k for k = 1, 2,

Thus, the fuzzy random regression model is given in the form:

Ȳi = Ā1I[eXi1 , σXi1 ] + Ā2I[eXi2 , σXi2 ]

= Ā1I[eXi1 , σXi1 ] +
(

Āl
2 + Ār

2

2
, Āl

2, Ā
r
2

)
T

I[eXi2 , σXi2 ]

= 1.31I[eXi1 , σXi1 ] + (3.29, 0.0, 6.57)TI[eXi2 , σXi2 ].

6 Concluding Remarks

In this chapter, we formulated a fuzzy random regression model, called
FRRM (15) based on confidence intervals, by employing expectations and
variances of fuzzy random variables being use here to construct the
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σ-confidence intervals of fuzzy random data. The proposed model general-
ized our previous work, which dealt with a fuzzy random expected value
regression model (13). Because it is difficult to determine the signs of argu-
ments in calculations of the products of the fuzzy coefficients and confidence
intervals, the proposed FRRM cannot be solved analytically.

Some solution approaches were discussed. The proposed vertices method
can convert the original fuzzy random regression to a conventional fuzzy
regression, which makes it possible to solve the original model by large-scale
linear programming. However, the vertices method is limited by the size of the
data, and so a heuristic algorithm was developed. This algorithm integrates
linear programming and vertices checking, which enables us to handle the
proposed regression by solving a series of linear programming problems. An
illustrative example was provided to demonstrate the solution process.

These present work can be impremented in several application cases such
as fuzzy random multi-attribute evaluation for production, and fuzzy random
regression based evaluation of oil palm fruit grading. These applications will
be discussed in our forthcoming studies.
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17. López-Diaz, M., Gil, A.: Constructive definitions of fuzzy random variables.
Statistics and Probability Letters 36(2), 135–143 (1997)

18. Luhandjula, M.K.: Fuzziness and randomness in an optimization framework.
Fuzzy Sets and Systems 77(3), 291–297 (1996)

19. Nahmias, S.: Fuzzy variables. Fuzzy Sets and Systems 1(2), 97–111 (1978)
20. Nazarko, J., Zalewski, W.: The fuzzy regression approach to peak load es-

timation in power distribution systems. IEEE Transactions on Power Sys-
tems 14(3), 809–814 (1999)

21. Negoita, C.V., Ralescu, D.A.: Application of Fuzzy Sets to Systems Analsyis.
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Evolutionary Multiobjective Neural Network
Models Identification: Evolving Task-Optimised
Models

Pedro M. Ferreira and António E. Ruano

Abstract. In the system identification context, neural networks are black-box mod-
els, meaning that both their parameters and structure need to be determined from
data. Their identification is often done iteratively in an ad-hoc fashion focusing the
first aspect. Frequently the selection of inputs, model structure, and model order are
underlooked subjects by practitioners, because the number of possibilities is com-
monly huge, thus leaving the designer at the hands of the curse of dimensionality.
Moreover, the design criteria may include multiple conflicting objectives, which
gives to the model identification problem a multiobjective combinatorial optimisa-
tion character. Evolutionary multiobjective optimisation algorithms are particularly
well suited to address this problem because they can evolve optimised model struc-
tures that meet pre-specified design criteria in acceptable computing time. In this
article the subject is reviewed, the authors present their approach to the problem in
the context of identifying neural network models for time-series prediction and for
classification purposes, and two application case studies are described, one in each
of these fields.

1 Introduction

In most practical applications of Artificial Neural Networks (ANN), they are used
to perform a non-linear mapping between an input space, X, and an output space,
y, in order to model complex relationships between these or to detect patterns in
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input-output data. These functionalities correspond mostly to function approxima-
tion problems in the context of static or dynamic models identification, or decision
problems in the contexts of pattern matching and classification. The non-linear map-
ping function illustrated in Fig. 1 is given by:

ŷk = g(xk,w) (1)

Usually, given a data set D = (X,y) composed of N input-output pairs, the network

xk2

xk3

xkd

xk1

xkd−1

ŷk...

Neural Network Model
• with parameter vector w
• having n hidden units (neurons)

Fig. 1 Illustration of a general mapping ŷk = g(xk,w)

parameter vector w is computed in order to minimise the sum-of-squares of the
mapping error, i.e.,

ε = eT e (2)

where,

e = y− ŷ , ek = yk − ŷk , (3)

ŷ = g(X,w) , ŷk = g(xk,w) ,

X = [x1, x2, . . . , xN ]T , y = [y1, y2, . . . , yN ]T ,

xk = [xk1, xk2, . . . , xkd ] .

In many applications the set of d input features, xki, needs to be selected from a
larger set, F, often having a dimension significantly larger than a prescribed maxi-
mum input vector dimension, dM. Assuming F has q features it may be specified as,

F = [f1, f2, . . . , fq] ,

fl = [ f1l, f2l , . . . , fNl ]
T .

(4)

Then, the input data set X is constructed by selecting d columns from F such that,

xk = [xk1, xk2, . . . , xkd ] =

=
[

fkλ1
, fkλ2

, . . . , fkλd

]
,

(5)

where the λ j are indices to the columns of F.
Also, depending on the type of ANN to be employed, the number n of hidden

units (artificial neurons or simply neurons) must be specified. Once d input features
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are selected and the number of neurons, n, is specified, the ANN parameter vector,
w, is computed by means of a suitable training algorithm.

By taking into account these three aspects of the ANN model identification pro-
cess, the problem addressed in this article may be generally stated as follows:

Considering the application at hands, select d (dm < d ≤ dM) input features
from the set F, a suitable number of neurons n (nm < n ≤ nM), and compute
the ANN parameter vector w, such that the best ANN mapping, given in (1),
is obtained.

It is already clear that the ANN design problem may be separated in two distinct
sub-problems, each reflecting different aspects of the design:

ANN parameters relates to the network parameters. Includes their computation
by means of a training algorithm.

ANN structure relates to the network topology. Includes the selection of suit-
able inputs and an appropriate number of neurons;

Many techniques have been proposed to solve both sub-problems, either sepa-
rately or jointly, some failing to capture their distinct nature, therefore not fully
exploiting existing approaches that are considered more appropriate. The first is
a non-linear parameter optimization problem, to which non-linear gradient-based
methods have proven to be superior. The second is a combinatorial optimisation
problem that, as will be shown, needs to be addressed from a multiobjective optimi-
sation perspective.

In Sect. 2 a more precise definition of the problem statement will be given and
the approach followed successfully by the authors in a number of applications will
be presented. From these, two were selected and are described in Sect. 3, one in the
field of time-series modelling and forecasting, the other in the area of classification
problems. The results from the application of the methodology to the selected ANN
design problems will be presented and discussed in Sects. 3.1.2 and 3.2.2, respec-
tively for each design problem. Finally, some concluding remarks will be made in
Sect. 4.

2 Methodology

The problem statement presented in the previous section is of a general nature leav-
ing open two vague notions that need to be elaborated in order to provide a formal
problem definition. On one hand the concept of ”best ANN mapping” requires the
definition of best. On the other, the sentence ”considering the application at hands”
implies that the problem will be solved by taking the application into account. In
fact the two notions are related as it seems appropriate to define what is a ”best
ANN, considering the application at hands”.
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2.1 Problem Definition

In order to define a ”best ANN, considering the application at hands”, one or more
quality measures are required so that any two different ANN solutions may be com-
pared and a decision can be reached on which is best. The problem decomposition
given in Sect. 1 suggests the existence of quality measures for each sub-problem
and gives clear hints on how to choose them:

ANN parameters The quality measures should reflect how well did the training
stage performed and how good is the mapping obtained by the
parameters computed.

ANN structure The quality measures should tell how fit is the ANN structure
for the application at hands.

This breakdown in the nature of the quality measures allows the definition of a two
component quality vector as,

μ(F,Λ ,n,w) = [μp, μs] , (6)

μp =
[
μ p

1 , μ p
2 , . . . , μ p

u

]
,

μs = [μ s
1, μ s

2, . . . , μ s
v ] ,

Λ = [λ1, λ2, . . . , λd ] ,

where μp and μs contain u and v quality measures related to each of the sub-
problems, Λ is the vector of indices to the columns of F that defines the input
features considered, and the superscripts p and s denote quality measures related
to the ANN training stage and to the ANN fitness for the specific application, re-
spectively. The dependence on F, Λ , n, and w, has been made explicit only for μ for
easiness of reading.

Assuming that the quality measures in μ(F,Λ ,n,w) are well defined quantities
specifying objective functions that should be minimised in order to obtain the ”best
ANN for the application at hands”, the problem statement given in Sect 1 may now
be formally defined as:

Select d ∈ [dm, dM] input features from F, n ∈ [nm, nM] neurons, and compute
w, such that μ(F,Λ ,n,w) is minimised. Formally,

min
Λ ,n,w

μ(F,Λ ,n,w) , given:

(F,y) ,

d ∈ [dm, dM] ,

n ∈ [nm, nM] .

(7)

Given the definition of μ(F,Λ ,n,w) (simply μ in the following), it is likely that
some objective functions are conflicting, e.g. in μP Eq. 2 may be minimised and in
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μs there could be an objective to minimise the complexity of the ANN, expressing
the goals of improving performance while decreasing the network size. Therefore
the search problem defined in (7) is a combinatorial multiobjective optimisation
problem which does not have a single solution minimising all components of μ
simultaneously. Instead, the solution is the set of Pareto points in search space (or
design space) that define the Pareto front in the space of objectives. This means that
the ANN model designer has to select one particular ANN by examining trade-offs
in the objectives of the Pareto front.

Searching exhaustively over the search space defined by (F, [dm,dM] , [nm,nM])
is the preferred solution as it allows finding the true Pareto front, but this is normally
unfeasible in useful time due to the complexity of evaluating μ and to the size of the
search space. Although trial and error may provide an approach to guide the search,
the number of possibilities is often enormous and it may result in the execution of
many trials without obtaining acceptable objective values in μ. Moreover, the results
from the trials may easily misguide the designer into some poor local minima as the
relation between search space and objective space is unknown.

Although a good number of techniques have been proposed over the years to deal
with multiobjective problems it was more recently that the potential of Evolution-
ary algorithms (EAs) to approximate the Pareto front was recognised, generating a
research area now known as evolutionary multiobjective optimisation (EMO). Mul-
tiobjective evolutionary algorithms (MOEAs) have proven to be robust and efficient
when dealing with problems with multiple conflicting objectives and with very large
and complex search spaces, therefore they are employed here to solve the ANN
structure search problem. A review about the EMO field and MOEAs is beyond the
scope of this article, the interested reader can find detailed descriptions in textbooks,
e.g. [10], and excellent overviews on [48, 7, 8].

The application of EAs to the design of ANN models has been addressed by
many researchers, with variations on the aspects of ANN design that are consid-
ered. Distinct formulations employ EAs in order to optimise/select: the number of
neurons and network parameters [32, 5, 3, 6, 47, 29]; both the topology and param-
eters [28, 25]; the complete topology [27, 2]; or, only the network inputs [34]. A
discussion considering the different possible formulations may be found in [4]. The
approach herein presented follows previous work [21, 36] in the context of poly-
nomial models identification. It has been applied by the authors in the contexts of
time-series modelling and prediction [43, 16, 17, 41, 14, 37, 18, 42], and classifica-
tion [9, 12].

2.2 Multiobjective Evolutionary Algorithms

MOEAs are one class of EAs that benefit from a set of procedures and operators
inspired on the process of natural evolution and on the notion of survival of the
fittest, in order to perform a population based search for the Pareto set of solutions
of a given multiobjective problem. The solution candidates are called individuals
and their set is referred to as the population. One run of a MOEA starts with an
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initial population of individuals, the initial generation, which are then evaluated and
manipulated to compute the population of individuals composing the next genera-
tion. Hopefully, after a sufficient number of generations the population has evolved
achieving a satisfactory approximation to the Pareto front.

The operation of most MOEAs follows the flow illustrated in Fig. 2 where
the main procedures and operators are shown. At each iteration the population is

START STOP

Evaluate individuals
in objective space

Generate initial
population

Criteria
met ?

Yes

No Assign fitness
to individuals

Perform
mating selectionRecombinationMutation

Fig. 2 Typical flow of operation of most MOEAs

evaluated for the objectives specified in μ and a check is made to ascertain if the
design criteria was met. If this is the case the MOEA stops and the designer obtains
the individuals that form the current approximation to the Pareto front, otherwise
the algorithm proceeds. In this case each individual in the population is assigned a
fitness value and based on this fitness the individuals are mated. Afterwards each
mated pair will produce two offspring by the application of the recombination op-
erator, thus forming the next generation. Finally the mutation operator is applied to
each children before repeating the whole process.

2.2.1 Individual RepresentationEach individual in the MOEA population must
be specified by a representation, the chromosome, encoding the topology of an
ANN. Most frequently, feed-forward ANNs are employed in modelling, prediction
and classification problems, usually having one or two hidden layers of neurons. In
the following the general class of feed-forward ANNs having one hidden layer of
neurons is considered. As will be shown, if two or more layers are used only slight
changes are required in the chromosome and in the mutation operator.

The topology of the ANN architectures just mentioned may be completely spec-
ified by the number of neurons n and by the indices Λ to the columns of F, defining
the input features to be employed. Therefore the chromosome is a string of integers,
the first representing the number of neurons and the remaining representing the sub-
set of input terms taken from F. The chromosome definition is shown in Fig. 3.
The multiobjective optimisation problem defined in (7) states that the number of
inputs d is required to be in the range [dm,dM]. This corresponds to a variable length
chromosome having at least dm input terms. The first component corresponds to the
number of neurons, those highlighted by a light grey background represent the min-
imum number of inputs, and the remaining are a variable number of input terms up
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Chromosome:
λ2 λdm+1λ1 · · · λdmn · · · λdM

Input space of q features, F:

y(t) y(t −1) · · · y(t − τy) v1 (t) v1 (t −1) · · · v1 (t − τv1 ) · · · vo (t − τvo )vo (t) · · ·

f1 f2 fa0 fa0+1 fa0+2 fa0+a1 fa0+···+ao fq

Fig. 3 Chromosome and input space lookup table

to (in total) dM. The λ j values are the indices of the features fl in the columns of F.
In cases where the ANN acts as a predictor the input-output structure is, in the most
general form, given by a non-linear autoregressive (NAR) with exogenous inputs
(NARX),

y(t + 1) = g(y(t) , y(t −1) , · · · , y(t − τy) ,

v1 (t) , v1 (t −1) , · · · , v1 (t − τv1) ,

· · · ,
vo (t) , vo (t −1) , · · · , vo (t − τvo)) ,

(8)

where y is the output and v1 to vo are o exogenous inputs. In such cases F is com-
posed of a0 output delayed terms with a maximum lag of τy and ai input terms for
each exogenous variable vi, each having τvi as maximum lag. The correspondence
between the features in the columns of F and the inputs of a NARX model is de-
picted in the lower part of Fig. 3, where the inputs corresponding to delayed output
values are highlighted by a light grey background.

It should be noted that the chromosome would require a small change if the ANN
considered had multiple hidden layers. In this situation as many additional compo-
nents as the number of additional hidden layers would be inserted at the beginning
of the chromosome, in order to encode the number of neurons in the various layers.

2.2.2 MOEAs Procedures and OperatorsOnce evaluated in objective space
each individual is assigned a scalar value, the fitness, that should reflect that in-
dividual’s quality. The fitness assignment strategy is one of the distinguishing char-
acteristics of existing MOEAs, thus is usually dependant on the MOEA used in
practice. In general these strategies are based on different principles and belong to
one of three classes: aggregation based; criterion based; and Pareto based strategies.
For more detailed discussions on these strategies, the reader should consult the liter-
ature on the MOEA being used or one of the references given above about MOEAs.

The mating procedure uses the population fitness information in order to create a
mating pool with pairs of individuals that will be combined to form the basis of the
next generation population. It is commonly implemented as a sampling procedure
where the individuals having higher fitness have increased chance of getting multi-
ple copies in the mating pool, and those with lower fitness have little or no chance
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of getting there. The result is that the fittest individuals have a higher probability of
breeding as opposed to the worse individuals that are unlikely to influence the new
generation.

With a given probability, the crossover probability, every pair of individuals in
the mating pool produces two offspring by exchanging part of their chromosomes.
This is accomplished by the recombination operator, whose operation is illustrated
in Fig. 4 by splitting the procedure in two steps. First, the chromosomes are re-
ordered, secondly, parts of the chromosomes are exchanged. Reordering is also

Parent A

Parent B

Original chromosomes: Reordered chromosomes:

16 2 4 8 16 18 23

18 2 5 10 16 23

Parent A

Parent B

16 2 4816 1823

18 2 51016 23

Recombined chromosomes:
Parent A

Parent B

16 2 816

418

23

18 2

5

1016 23
common terms crossover

point

1 2

Fig. 4 Crossover recombination operator

accomplished in two steps: common terms in the chromosomes are swapped to the
left-most positions, then the remaining terms are shuffled. This way the common
terms in the chromosomes are isolated in a way that makes them unavailable for the
exchange. A point is then randomly chosen, the crossover point, and the elements to
its right are exchanged. This procedure, known as full identity preserving crossover
[21, 24], guarantees offspring with no duplicate terms.

Mutation is applied to the new population generated after recombination, inde-
pendently in two parts of the chromosome. The number(s) of neurons in the hidden
layer(s) of the ANN are mutated with a given probability by adding or subtracting
one neuron to the existing quantity. Care must be taken in order to guarantee the
boundary conditions nm ≤ n ≤ nM. The input terms are mutated with a given proba-
bility by one of three operations: replacement, addition or deletion. First, each term
is tested and is either deleted or replaced by another term from the set of those out-
side the chromosome. Deletion only occurs if the chromosome has more terms than
the minimum specified, dm. After this, if the chromosome is not full, one term may
be added by selecting it from the set of those outside the chromosome.

After completing the operations described above the MOEA flow proceeds to the
evaluation step and the cycle repeats itself for the new population of individuals.
Therefore, some criterion is required to stop the MOEA execution. The most simple
approach consists in stopping the execution after a predefined number of genera-
tions. Other options include testing the objectives and design criteria and stop the
execution if a satisfactory individual is found, or checking the population for stagna-
tion. The latter option may be accomplished, for instance, by specifying a maximum
number of consecutive generations during which no change is observed in the Pareto
front approximation.
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2.3 Model Design Cycle

Globally, the ANN structure optimisation problem can be viewed as sequence of ac-
tions undertaken by the model designer, which should be repeated until pre-specified
design goals are achieved. These actions can be grouped into three major categories:
problem definition, solution(s) generation and analysis of results. In the context of
this identification framework, the procedure is executed as depicted in Fig. 5. In

Define search space
(F, [dm,dM ] , [nm,nM ])

Partition F as {Fp,Fv}
Fp for ANN training stage

Fv for ANN validation stage

Define objectives
μ = [μp,μs]

Run the MOEA
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Fig. 5 Model design cycle

summary, the problem definition is carried out by choosing a number of hypo-
thetically relevant input features to construct F, by specifying the minimum and
maximum size of the chromosome input terms string, and by defining the range
allowed for the number of neurons of the ANNs. In the case of a NARX predic-
tive model identification, the specification of F corresponds to the selection of input
variables and the corresponding lags considered. This stage affects the size of the
search space. The input search space is then partitioned into two data sets, Fp and
Fv, the first intended for the ANN parameter training procedure, the second to vali-
date the results obtained by the Pareto set of individuals. The validation step serves
the purpose of detecting any bias that may have occurred towards the Fp data set
during the MOEA model structure optimisation.

Another aspect to be defined is the set of objectives and goals to be attained.
The objectives specified in μs play an important role in the adequacy of the models
obtained to the application problem being considered. Therefore they should be
designed to express the quality of an individual in the context of the final application.
Specifying μ affects the quantity, quality and class of the resulting solutions.
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When the analysis of the solutions provided by the MOEA requires the process to
be repeated, the problem definition steps should be revised. In this case, two major
actions can be carried out: input space redefinition by removing or adding one or
more features (variables and lagged input terms in the case of modelling problems),
and improving the trade-off surface coverage by changing objectives or redefining
goals. This process may be advantageous as usually the output of one run allows
reducing the number of input terms (and possibly variables for modelling problems)
by eliminating those not present in the resulting population. Also, it usually becomes
possible to narrow the range for the number of neurons in face of the results obtained
in one run. This results in a smaller search space in a subsequent run of the MOEA,
possibly achieving a faster convergence and better approximation of the Pareto front.
This cycle of actions can be iterated until a refined set of satisfactory solutions is
obtained.

2.4 ANN Parameter Training

In Sects. 1 and 2.1, the ANN identification problem has been decomposed in two
sub-problems, the first one, related to the optimisation of the network parameters,
being usually treated as a non-linear optimisation problem. It is clear that the train-
ing procedure is most often dependant on the specific ANN being employed, al-
though some procedures may easily be adapted to various kinds of ANNs. The class
of feed-forward ANNs include, among others, radial basis function (RBF) networks,
multi-layer perceptrons (MLPs), B-spline networks, wavelet networks, and some
types of neuro-fuzzy networks. Importantly, a common topology of these archi-
tectures share the property of parameter separation , i.e., they can be regarded as
a non-linear/linear topology because one or more hidden layers of non-linear neu-
rons are followed by a linear combination of neuron outputs to produce the network
overall result. It is commonly accepted that gradient-based algorithms, in particu-
lar the Levenberg-Marquardt (LM) algorithm [31], outperforms other parameter
training methods, and it has been shown that methods exploiting the separability of
parameters [39, 40, 13] achieve increased accuracy and convergence rates.

The two example ANN identification problems that will be introduced in Sect. 3
employ RBF neural networks (NNs) and the LM algorithm in the minimisation of
a modified training criterion that exploits the separability of parameters as found
in RBF NNs. For this reason an outline of the training procedure is given in the
following sub-sections.

2.4.1 Training CriterionFor simplicity, but without loss of generality, feed-
forward ANNs having one hidden layer of neurons are considered. These may be
well represented by the expression,

ŷ(xk,w) = α0 +
n

∑
i=1

αiϕi (xk,βi) , (9)
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where w = [α,β]T is the model parameter vector, α = [α0, α1, · · · , αn] is the vector
of scalar linear parameters, and β = [β1, · · · , βn] is composed of n βi vectors of
non-linear parameters, each one associated with one neuron. For a given set of input
patterns X, training the NN corresponds to finding the values of w such that (10) is
minimised:

Ω (X,w) =
1
2
‖y− ŷ(X,w)‖2 (10)

The 1
2 factor is used for convenience considering the training algorithm to be em-

ployed. As the model output is a linear combination of the neuron activation func-
tions output, (10) may be written as,

Ω (X,w) =
1
2
‖y−φ(X,β)α‖2 (11)

where, omitting the dependence of ϕ on β,

φ (X,β) = [ϕ (x1) ϕ (x2) · · · ϕ (xN)]T .

By computing the optimal value α∗ of the linear parameters α with respect to the
non-linear parameters β, as a least-squares solution,

α∗ = φ+ (X,β)y , (12)

where ”+” denotes a pseudo-inverse operation, and by replacing (12) in (11), the
training criterion to compute the non-linear parameters is obtained:

Ψ (X,β) =
1
2

∥∥y−φ(X,β)φ+ (X,β)y
∥∥2

. (13)

This criterion is independent of the linear parameters α and explicitly incorporates
the finding that, whatever values the non-linear parameters β take, the α∗ parameters
employed are the optimal ones. Moreover, it reflects the non-linear/linear parameters
structure of the feed-forward ANN model in (9), by separating their computation.
This way it becomes possible to iteratively minimise (13) to find β∗, corresponding
to searching for the best non-linear mapping, and then solve (12) using β∗ to obtain
the complete optimal parameter vector w∗. The modified criterion enables the usage
of appropriate methods to compute each type of parameters in the minimisation of
a single explicit criterion. It lowers the dimensionality of the problem and usually
achieves increased convergence rate.

2.4.2 Training AlgorithmVarious training algorithms can be employed to min-
imise (10) or (13). First-order gradient algorithms (known for MLPs as the back-
propagation algorithm) or second-order methods, such as quasi-Newton, Gauss-
Newton or LM can be employed as training algorithm. For non-linear least-squares
problems the LM
algorithm is recognised as the best method, as it exploits the sum-of-squares char-
acteristic of the problem [38].
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Denoting the standard (10) or modified (13) training criteria in iteration k by
Ω (wk) (omitting the dependence of Ω on X), a search direction pk in parameter
space is computed such that Ω (wk + pk) < Ω (wk). This method is said to be of the
restricted step type because it attempts to define a neighbourhood of wk in which a
quadratic function agrees with Ω (wk + pk) in some sense. The step pk is restricted
by the region of validity of the quadratic function which is obtained by formulating
in terms of pk a truncated Taylor series expansion of Ω (wk + pk). Then, it may be
shown that pk can be obtained by solving the following system [31]:

(
JT

k Jk + υkI
)

pk = −gk . (14)

gk and Jk are, respectively, the gradient and Jacobean matrix of Ω (wk), υk ≥ 0 is a
scalar controlling the magnitude and direction of pk. By recalling (3), the gradient
may easily be obtained as,

gk =
∂Ω (wk)

∂wk
=

= −JT
k ek ,

(15)

where the Jacobean matrix has the form:

Jk =

⎛
⎜⎜⎝

∂y1
∂w1

· · · ∂y1
∂wl

...
. . .

...
∂yN
∂w1

· · · ∂yN
∂wl

⎞
⎟⎟⎠ (16)

The advantage of the LM algorithm is that in every iteration the value of υ is
adapted in order to provide a step direction more close to the Gauss-Newton or
gradient-descent methods. When υ → 0 the step direction approaches that of the
Gauss-Newton method, when υ → ∞ it approaches the gradient-descent direction.
Many variations of Marquardt’s algorithm have been proposed concerning the rules
governing the adaptation of υ . The original method [31] or a similar one [20, 11]
should suit most applications.

2.4.3 RBF NetworkThe RBF ANN is formulated by (9) where the ith basis func-
tion or neuron, ϕi (xk,βi), is usually a Gaussian, a multiquadric, or an inverse mul-
tiquadric function. In most cases the Gaussian is employed:

ϕi (xk,βi) = exp

(
− 1

2σ2
i

‖xk − ci‖2
)

(17)

In this case βi = [ci σi] is the non-linear parameter vector where ci is a point in
input space, the centre of the Gaussian function, and σi is the corresponding spread.
The outputs of all neurons are then linearly combined (recall Eq. 9) to produce the
network output.

At the first iteration of the training algorithm the model parameters have to be
initialised. Common approaches consist in selecting ci randomly from the input pat-
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terns or from the input variables range of values. An alternative is to take advantage
of clustering algorithms in order to spread the centres in distinct regions of the input
feature space. The σi parameters may be chosen randomly, or, for instance using the
simple rule [26, p. 299],

σi =
zmax
√

2n
, (18)

where zmax is the maximum Euclidean distance among the initial centres ci, and n is
the number of neurons. Once the vectors of non-linear parameters, βi, are initialized,
(12) may be employed to determine the initial linear parameters, αi.

In order to employ the LM algorithm to optimise the RBF ANN parameter vector,
the error criterion must be defined as well as the derivatives required. If the standard
formulation (10) is used, the three derivatives required to compute J are:

∂y
∂ci

= ϕi (x)
αi

σ2
i

(x− ci)T ,

∂y
∂σi

= ϕi (x)
αi

σ3
i

‖x− ci‖2 ,

∂y
∂αi

= ϕi (x) .

(19)

For the modified criterion (13) alternative Jacobean matrices are available. It has
been shown [39] that a simple and efficient solution consists in using the two first
lines of (19), where the αi are replaced by their optimal values as computed in (12).
Remarkably, the use of this Jacobian matrix implies that each iteration of the LM
method minimising (13) is computationally cheaper than minimising (10).

2.4.4 Stopping the Training AlgorithmAs most ANN training algorithms are
iterative, some criteria is required to stop the training procedure after a certain num-
ber of iterations. Whichever method is employed, it should prevent the algorithm to
overtrain the network parameters. Overtraining is a ”phenomenon” likely to occur
when using iterative training algorithms, characterised by a distinct behaviour of the
error criterion when computed on two, distinct, data sets. On the data set employed
to estimate the model parameters (training data set), the error criterion decreases
with the number of iterations usually reaching a plateau where improvements be-
come negligible. If a second data set is used to test the model at every iteration,
then the error criterion taken on the testing data set decreases to a certain iteration
and starts to increase in subsequent iterations. Beyond this point overtraining oc-
curred because too many iterations were executed and the model became biased by
the training examples, thus loosing the capability to generalise properly when pre-
sented with new input patterns. The methods of regularisation and early stopping
are probably the most common to avoid overtraining. The first is a technique based
on extending the error criterion with a penalty term, therefore numerically changing
the training method, the second is a data driven cross-validation approach that may
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be viewed as an implicit regularisation method. Interesting in-depth reading about
the early stopping and overtraining subjects may be found in [1, 45].

In practice overtraining is avoided by stopping the training algorithm before
reaching the absolute minimum of the training criterion. The method of early stop-
ping, requires splitting the training input space Fp (see Fig. 5, Sect. 2.3) into two
data sets, the first, Ft , to estimate the model parameters, called training data set, the
second, Fg, to assess the model generalisation capability, called generalisation data
set. In the model design cycle presented earlier, by using a given MOEA individual
chromosome, F is indexed by the input terms in the chromosome. After indexing,
the input data set is denoted by X and the input-output data set by D = (X,y). Con-
sequently the training, generalisation, and validation data sets, for a given ANN,
will be defined as,

Dt =
(
Xt ,yt) ,

Dg = (Xg,yg) ,

Dv = (Xv,yv) ,

for training, generalisation testing, and validation, respectively. Recall that Dv is
meant to validate the MOEA model optimisation globally, to avoid bias towards Dt

and Dg in the final model selection. The proportions of points from D that compose
Dt and Dg are often selected in an ad hoc fashion, usually by means of trial and
error. A statistically validated principled way of selecting that proportion may be
found in [1].

By denoting the error criterion computed on the testing and generalisation data
sets at iteration k by Ω

(
Dt ,w∗

k

)
and Ω

(
Dg,w∗

k

)
, the early stopping method consists

in selecting the model parameters corresponding to the iteration where Ω
(
Dg,w∗

k

)
ceased to decrease (assuming Ω

(
Dt ,w∗

k

)≤ Ω
(
Dt ,w∗

k−1

)
). In practice the inflection

point on the Ω
(
Dg,w∗

k

)
curve must not be identified locally by a rule of the type

Ω
(
Dg,w∗

k

)
> Ω

(
Dg,w∗

k−1

)
as this method would be sensitive to small variations

that are still occurring in a more global descending trend. An alternative is to define
kmax as the maximum number of iterations to execute and then find the global mini-
mum of Ω

(
Dg,w∗

k

)
. Formally, assuming monotonically decreasing Ω

(
Dt ,w∗

k

)
, this

may be written as,
w∗ = argmin

w
{Ω (Dg,w∗

k)}kmax

k=1 , (20)

where kmax should be large enough to include the global minimum of Ω
(
Dg,w∗

k

)
.

When this method is used to stop the training algorithm used in a MOEA model
identification experiment, Ω (Dt ,w∗) and Ω (Dg,w∗) are commonly included in μp

expressing the goal of identifying models achieving a good data fitting and good
generalisation capability.

If early-stopping is not possible, an alternative is to employ a set of termination
criteria that is commonly used in unconstrained optimisation [23, p. 306]. Let θk, a
measure of absolute accuracy, be defined as,

θk = τΩ × (
1 +

∣∣Ω (
Dt ,w∗

k

)∣∣) , (21)
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where τΩ is a measure of the desired number of correct digits in the objective func-
tion. The optimisation stops when all the following conditions are met:

Ω
(
Dt ,w∗

k−1

)−Ω
(
Dt ,w∗

k

)
< θk (22)∥∥w∗

k−1 −w∗
k

∥∥ <
√

τΩ (1 +‖w∗
k‖) (23)

‖gk‖ ≤ 3
√

τΩ
(
1 +

∣∣Ω (
Dt ,w∗

k

)∣∣) (24)

The two first conditions test the convergence of the model parameters. The reason-
ing behind the use of two conditions is that for ill-conditioned problems, Ω

(
Dt ,w∗

k

)
may be a good approximation of the global minimum (22), but w∗

k may be far from
the optimum and the algorithm may still be making large adjustments to w∗ (23).
The third condition reflects the necessity that the gradient should be near zero if
Ω

(
Dt ,w∗

k

)
is close to the optimum. This method achieves a certain level of regu-

larisation, implicitly related to the parameter τΩ , and does not require the Dg data
set, therefore lowering the number of function evaluations required by the inclusion
of Ω

(
Dg,w∗

k

)
in the objective space of the model identification problem. The dis-

advantage is that the resulting number of training iterations might not be enough
to adequately converge the model parameters, or it might be in excess and provoke
overtraining.

3 Example Model Identification Problems

To exemplify the use of the methodologies presented in the sections above, two
ANN model identification problems that the authors have been involved with will be
discussed. The first deals with the prediction of the Portuguese electricity consump-
tion profile within an horizon of 48 hours, the second is related to the estimation of
cloudiness from ground-based all-sky hemispherical digital images.

3.1 Electricity Consumption Prediction

The Portuguese power grid company, Rede Eléctrica Nacional (REN), aims to em-
ploy electricity load demand (ELD) predictive models on-line in their dispatch system
to identify the need of reserves to be allocated in the Iberian market. To accomplish
this the evolution of ELD over a prediction horizon of at least 48 hours is required.
The problem is addressed from the point of view of identifying RBF ANN one-step-
ahead ELD predictive models using the framework already described. These models
are iterated in a multi-step fashion in order to predict the electricity consumption pro-
file up to the specified prediction horizon.

In previous work [19] a literature review on the ELD forecasting area was pre-
sented, demonstrating that the approach taken was relevant and ambitious as no
publications were found considering simultaneously four aspects that the team is
actively addressing:
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Prediction scheme To meet the requirement, one-step-ahead predictive models
are iterated in a multi-step fashion in order to obtain the con-
sumption profile up to the specified prediction horizon. Most
work relies on the prediction of daily peak consumption or
accumulated consumption over a certain period, and does not
consider dynamics.

Model adaptation On-line model adaptation strategies are necessary, as the mod-
els are static mappings with external dynamics and the profiles
of electricity consumption vary over time.

Perturbations One input is incorporated in the models to account for the ef-
fect of events that dramatically perturb the typical profile of
load demand (the effect of week-ends, holidays and other fore-
seeable events).

Optimised models The problem of model structure optimisation and selection is
clearly formulated and approached by appropriate methodolo-
gies in order to meet specified design requirements.

By that time a number of exploratory identification experiments were executed
which allowed refining the problem formulation (see Sect. 2.3, model design cy-
cle). In the following, one last identification experiment is described, from which
one model was selected [18]. It is currently in operation at the Portuguese power-
grid company dispatch system.

3.1.1 Problem FormulationTwo types of model structures were previously com-
pared [19], the NAR and the NARX. For the latter only one exogenous input was
considered, encoding the occurrence of events perturbing the daily and weekly pat-
terns of electricity consumption. That comparison favoured the NARX approach as
it consistently achieved a considerably better prediction accuracy.

Table 1 Day of the week and holiday occurrence encoding values

Day of week Regular day Holiday Special

Monday 0.05 0.40 0.70
Tuesday 0.10 0.80
Wednesday 0.15 0.50
Thursday 0.20 1.00
Friday 0.25 0.60 0.90
Saturday 0.30 0.30
Sunday 0.35 0.35

The exogenous input encoding, presented in table 1, distinguishes between the
days of the week and also the occurrence and severity of holidays based on the day of
their occurrence. The regular day column shows the coding for the days that are not
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holidays. The next column presents the encoded values when there is a holiday for
that day of the week, and finally, the special column shows the values that substitute
the regular day value in two special cases: for Mondays when Tuesday is a holiday;
and, for Fridays when Thursday is a holiday. Figure 6 illustrates the severity of the
perturbation that a holiday causes in the electricity consumption profile. It is evident
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Fig. 6 ELD in two consecutive weeks. A holiday occurs in the second week.

that not only during the holiday the change is very large, but also on the following
day a significant change may be observed.

The data used in the model identification experiment corresponds to the Por-
tuguese electrical energy consumption measured at hourly intervals, for a time span
starting around mid October 2007, and ranging to the end of 2008. The complete
time-series is presented in Fig. 7. It was split in four data sets for model training,
generalisation testing, predictive simulation, and validation. The points for each set
were selected from three distinct periods of the year, delimited in Fig. 7 by two ver-
tical dotted lines to the right of the plot. Dt and Dg are composed of 330 and 60 days
of data points randomly selected from the first period. The last 50 days of 2008 were
divided in two parts, the first being used as a simulation data set, Ds, the second as
the validation data set, Dv. Taking into account the use of one input encoding the
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Fig. 7 ELD in Portugal for the time span considered

occurrence of weekends and holidays, care was taken to make sure that the data sets
Ds and Dv included holidays.

The lookup table F, from which the four data sets are built for each ANN by in-
dexation using the input part of the chromosomes, is composed of 168 delayed ELD
input terms plus the input encoding the occurrence and severity of holidays. The
ELD input terms correspond to one week window, an interval for which the time-
series exhibits a clear repetitive pattern. This pool of candidate input terms was
specified by considering the results of previous experiments. Also the limits for the
number of neurons and for the size of the input part of the chromosome were spec-
ified by taking previous results into account. In this case significant changes were
made by doubling the maximum number of neurons, n ∈ [10,28], and by increasing
the maximum number of input terms allowed, d ∈ [2,40].

The model parameters were estimated via the LM algorithm using the modified
training criterion (13) as outlined in Sect. 2.4. The initial centre locations for the
Gaussian activation functions were selected randomly from the input patterns in Dt ,
the corresponding initial spreads, σi, were determined by the rule (18), and the linear
parameters were initialised using (12). The early stopping method was employed to
stop the training algorithm by setting kmax = 200 in (20).

In order to address the model structure selection problem, the multiobjective
genetic algorithm (MOGA) [22] is employed to evolve a preferable set of mod-
els whose number of neurons and selected input terms optimise a number of pre-
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specified goals and objectives. These, as discussed in Sect. 2.1, are specified by a
two component vector of objective functions, μ = [μp,μs]. For the first component,
related to the ANNs parameter training process, two model performance objectives
were considered, given by the root-mean-square (RMS) error computed on the train-
ing and generalisation testing data sets, respectively denoted by ρ(Dt) and ρ(Dg).
The first one is used as a restriction because a clear positive (linear or not) rela-
tionship between the training criterion and a long-term prediction performance (to
be defined below) is not guaranteed and was not observed in practice in previous
experiments. One last objective was specified for the first component of μ, given
by the 2-norm of the linear parameters vector, ‖α‖. It is employed as a restriction
in order to guarantee good numerical properties and parameter convergence in the
models, but in fact it also acts as a penalty term for the complexity of the model.
Regarding μs, the component of μ related to the model structure selection and to the
specific model application, one objective was considered expressing the final goal
of the model application: the prediction of the electricity consumption profile within
an horizon of 48 hours. It is computed on the basis of the long-term model predic-
tion error taken from the multi-step model simulation over the prediction horizon
ph. Assume that a given simulation data set, D, has p data points and for each point
the model is used to make predictions up to ph steps ahead. Then an error matrix is
constructed,

E(D, ph) =

⎛
⎜⎜⎜⎝

e [1,1] e [1,2] · · · e [1, ph]
e [2,1] e [2,2] · · · e [2, ph]

...
...

. . .
...

e [p− ph,1] e [p− ph,2] · · · e [p− ph, ph]

⎞
⎟⎟⎟⎠ ,

where e [i, j] is the model prediction error taken from instant i of D, at step j within
the prediction horizon. Denoting the RMS function operating over the ith column of
its argument matrix by ρ(·, i), then the long term prediction performance measure
is defined as,

ε(D, ph) =
ph

∑
i=1

ρ(E(D, ph) , i) , (25)

which is simply the summed RMS of the columns of E. This way the single objective
in μp is simply given by ε(Ds,48). This represented a considerable change from
previous work as the prediction horizon was doubled from 24 to 48 hours.

The complete objective vector for the ELD prediction problem is therefore spec-
ified as μ = [ρ(Dt) ρ(Dg) ‖α‖ ε(Ds,48)]. Table 2 summarises the objectives
and their configuration as used in the MOGA ELD predictive modelling experiment.
As the ANN parameters are randomly initialised, for each individual, 10 training
trials were executed and the averages of ρ(Dt) and ρ(Dg) were used for evaluation
purposes. This procedure decreases the likelihood of unrealistic fitness assignment
in the MOEA as one good ANN structure could be poorly evaluated due to a bad
choice of initial parameters. In order to decrease the computational load, ε(Ds,48)
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Table 2 Objective space configuration for the MOGA ELD prediction problem

μ component Objective function Set up as

μp
ρ(Dt) restriction < 100 MW
ρ(Dg) to minimise
‖α‖ restriction < 200

μs ε(Ds,48) minimise

was only computed for the trial instance whose pair {ρ(Dt) ,ρ(Dg)} is closer (in
the Euclidean sense) to the averages over the 10 trials.

3.1.2 Results and DiscussionFigure 8 illustrates the results obtained in the space
of objectives after 50 generations of the MOGA (values in Mega Watt (MW)).At this
generation the execution
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Fig. 8 Objectives of the MOGA ELD predictive model identification experiment
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was stopped as the last models having lower values on ε(Ds,48) entered the prefer-
able set on generation 30, and convergence was only occurring for ρ(Dt) and ρ(Dg)
with no effect on ε(Ds,48). This considerably smaller number of generations, when
compared to previous work, clearly shows the benefits of using averaged objective
values over multiple model training trials. The three scatter plots show the results of
non-dominated individuals using dark points, and the results of the 13 models in the
preferable set using white circles (and one white square). The top-left plot shows a
linear relation between the error criterion obtained on the training and generalisation
testing data sets. The plots at the top-right and bottom-left show the relation between
each error criterion and the long-term prediction error measure, where the conflict
between these objectives is well demonstrated .The lower-right plot presents the
evolution of ρ(E(Ds, ph) , i) with i from 1 to ph, the prediction horizon. The curve
marked with white circles was obtained by the model marked using a white square
on the remaining plots. The objective values are slightly better than those obtained
in previous work, however it should be noted that the prediction horizon was dou-
bled. The 13 selected models had from 24 to 28 neurons, 26 the most frequent, and
from 34 to 39 input terms, 36 the most frequent. All of them included the holiday
encoding input, and other 15 input terms were employed in 10 models or more.
When compared to previous work, the increase in model complexity is explained by
a slightly better predictive accuracy over a double size prediction horizon.

The models obtained were evaluated on the validation data set, Dv, in order to
select one for further assessment of predictive accuracy and robustness. Consider-
ing that during the MOGA execution only one out of 10 models was evaluated for
ε(Ds,48), for each of the models in the preferable set 10 further training trials were
executed and their performance was evaluated on Ds and Dv. The results are de-
picted in Fig. 9 where the dark markers highlight the results obtained by the chosen
model structure (marked by white squares in Fig. 8), the square marker correspond-
ing to the instance selected for further study. This was accomplished by comparing

Fig. 9 Detail of the long
term prediction error mea-
sure obtained on the simula-
tion data set, Ds, versus that
obtained in the validation
data set, Dv, for the prefer-
able set of 13 models. Ten
training trials per model.
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Fig. 10 Comparison between the selected ANN (ANN 1), a nearest neighbour approach
(NEN), and the selected ANN with a yearly retraining (ANN 2)

the selected model structure to a nearest neighbour (NEN) predictive approach on
a data set (denoted by DR) ranging from the beginning of 2001 to the end of 2008.
A complete description of the NEN methodology is given in [18]. It was tested by
varying the number of nearest neighbours employed for prediction and by using a
sliding window of past 54 weeks to conduct the nearest neighbour search. The se-
lected ANN was used to predict the ELD on the same instants (≈ 7 years) as the
NEN method, being initially trained using data from the first sliding window (ap-
proximately the 2001 year). Figure 10 shows the evolution of ε

(
DR,48

)
as time

increases. It may be seen that the NEN method is quite robust as the prediction per-
formance measure converges asymptotically to a value near 150× 10−2. The line
labelled ANN 1, corresponding to the model structure selected, shows that as time
passes ε

(
DR,48

)
tends to increase at an almost constant rate, becoming higher than

that of the NEN method after about 4 years of data. This is likely to happen because
the ANN parameters no longer reflect with the same accuracy the underlying dy-
namics and trend of the ELD time series, leading to the conclusion that the ANN
requires some form of adaptation to become robust. Even so it is quite remarkable
that, with no parameter change, it achieves better prediction accuracy during the first
four years of data (significantly better in the first three years). In order to obtain a fair
comparison with the NEN method (in the sense that it uses a sliding window of in-
formation), another set of results was computed by retraining the ANN at every year
interval so that its parameters are readjusted to reflect more closely the ELD data
dynamics and trends. These results are labelled ANN 2 in Fig. 10, showing that the
improvements are significant even though only a yearly retraining was employed.
In terms of robustness this is very promising for the actual implementation of ANN
ELD predictive models in the REN dispatch system, as further improvements are
expectable if more elaborate model adaptation techniques are employed or a more
frequent retraining is used [15]. Figure 11 shows the evolution of the ELD over the
prediction horizon for the simulation instant where the retrained ANN achieved the
RMS error value which was closest to the average over the complete simulation. The
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Fig. 11 Prediction horizon
where the retrained model
(ANN 2) RMS of error is
closest to the average ob-
tained in the complete sim-
ulation. The nearest neigh-
bour approach prediction is
shown for comparison.
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prediction obtained by the NEN method is also shown for comparison. Globally the
results show that the ANN is preferable to the NEN method, although at the cost of
a significant increase in methodology complexity and on computational effort.

In summary, when compared to previous results, better prediction accuracy was
achieved over a longer prediction horizon, and faster convergence (in number of
generations) was observed in the MOGA execution.

3.2 Cloudiness Estimation

Clouds are an important phenomena strongly affecting the total incoming irradi-
ance at a given point in the Earth surface. For a growing number of applications in
diverse fields such as agriculture, forestry or energy production and management,
being able to accurately estimate and predict solar radiation at a given ground loca-
tion and at short time scales, is becoming an extremely important task because solar
radiation strongly influences the relevant processes and energy balances. The use
of ground-based all-sky (GBAS) images acquired by CCD cameras, directly with
fish-eye lenses or projected on hemispherical mirrors, has been receiving growing
interest by researchers from several fields (See [12] for examples and references).
Regarding the use of cloudiness information extracted from GBAS images and its
incorporation into solar radiation predictive modelling, our group made a first at-
tempt in a previous work [9]. The pixel classification approach was quite different
from that being presented here and there was no assessment, other than by visual
inspection, on the accuracy of the cloud cover estimation. By that time no clear con-
clusion could be made on the benefits of using cloudiness information at the inputs
of the neural network predictive solar radiation model. Typically predictive solar
radiation models are identified using one-step-ahead NAR forms. Due to the auto-
regressive characteristic their accuracy becomes severely degraded in the presence
of cloudy sky conditions, hence the need to advance to the NARX form, considering
cloudiness has the exogenous input.
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The motivation for this work is twofold: to improve the predictive performance
of global solar radiation models operating on relatively short time scales (prediction
horizons of a few hours); and, to implement these models on a cheap hardware
daytime all-sky imaging prototype being developed in the laboratory. Ultimately
our goals are to employ global solar radiation predictive models incorporating the
effects of cloudiness in projects related to the efficient energy management in public
buildings and, in the future, in projects related to solar power plants and to the
prediction of electricity consumption.

3.2.1 Problem FormulationA total of 410 all-sky images were used in the model
identification experiment. They were acquired using a Total Sky Imager (TSI) 440A
manufactured by Yankee Environmental Systems, Inc., located on top of one build-
ing (37o02′N, 07o57′W ) in the University of Algarve, Faro, Portugal. The images
are stored in red-green-blue (RGB) colour mode (8 bit/channel) with a dimension
of 704× 576 (width×height). Given the location of the TSI and the time-stamp of
each image, a pixel mask was computed to identify the visible sky pixels for fur-
ther processing (see Fig. 13 for an example). For these, one researcher made an
additional mask including all the cloud pixels according to his personal judgement.
Using these masks the percent cloud cover for each image was computed using the
formula,

C =
Nc

Ns + Nc
×100 , (26)

where Ns and Nc are the numbers of pixels masked as clear sky (class S) and cloud
(class C), respectively. Figure 12 presents information about the images used, il-
lustrating the effort made to include significant numbers of images within intervals
of the cloud cover and the time of day. Additionally, for each pixel intensity scale
considered and for every image, an exhaustive search was conducted to find the
threshold value, to, minimising the cloud cover estimation error resulting from the
thresholding operation.

The general approach consists in finding a threshold value, t̂, on a given pixel in-
tensity scale, which segments the image I pixels with coordinates (x,y) and intensity
γxy into one of the classes, S and C. In this sense these are sets defined as,

S =
{
(x,y) ∈ I : γxy ≤ t̂

}
,

C =
{
(x,y) ∈ I : γxy > t̂

}
,

to which Ns and Nc in (26) are the respective set cardinalities. The evaluation of
thresholding methods relies on the absolute error between the cloud fraction at-
tributed to the images and that estimated by the threshold t̂:

ε =
∣∣C− Ĉt̂

∣∣ . (27)

Several pixel intensity scales were considered to perform the thresholding operation.
From the results in [12] one, denoted hsvR, was selected has it consistently provided
increased cloud cover estimation accuracy for various thresholding methods tested.
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Fig. 12 Details about the 410 images used. Top: Number of images by ascending cloud cover
intervals. Middle and bottom: respectively, the number of images and cloud cover distribution
by the time of day.

This pixel intensity is obtained by converting the original RGB image to the hue-
saturation-value (HSV) colour model, setting the value channel to 1 (the maximum)
for all pixels, and finally converting this image back to the RGB mode. Setting an
equal value on the V channel has an equalisation effect on the pixels luminosity. The
maximum value was chosen because on the HSV colour model the colours become
more distinguishable. The net effect on the converted RGB image is that clear sky
and cloud pixels have improved contrast between them in the red channel.

The model identification problem consists in using the framework presented in
Sect. 2 in order to search for a RBF ANN image segmentation model. As illustrated
in Fig. 13, the output of the ANN is the threshold to be used in an image, the inputs
are a set of features extracted from the masked image or transformations of it.

The set of 410 images was broken into three sub-sets: the training set, denoted
by Dt (290 images); the testing set, Dg (60 images), for generalisation testing; and
the validation set, Dv (60 images), to evaluate the ANNs after the MOEA execution.
From all the images and from transformations of them, a total of 69 features were
extracted from distinct pixel intensity scales: first, from the original RGB image the
HSV and hue-saturation-lightness (HSL) images were obtained; secondly, on the
HSV and HSL images, the V and L channels were set to 1 and 0.5, respectively,
and these transformed images were converted back to RGB mode, thus generating
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Fig. 13 Neural network image segmentation approach.

two additional RGB images; finally, from each RGB mode image, a grey intensity
image was generated. This results in a total of 7 different images and 17 distinct
intensity channels. From the latter, the sample mean, standard deviation, and skew-
ness were extracted. Additionally, from the red and grey intensity channels (6 in
total) histogram, the most frequent, first non-zero, and last non-zero intensity levels
were also extracted.

From the lookup table, F, of 69 features, the model chromosomes were allowed
to have d ∈ [2,36] input terms. The number of neurons, n, was restricted to the
interval [2,24]. As in the electricity consumption prediction problem, the model pa-
rameters were estimated via the LM algorithm using the modified training criterion
(13) as outlined in Sect. 2.4. The initial centre locations for the Gaussian activation
functions were selected randomly from the input patterns in Dt , the corresponding
initial spreads, σi, were determined by the rule (18), and the linear parameters were
initialised using (12). The early stopping method was employed to stop the training
algorithm by setting kmax = 50 in (20).

The MOGA was also employed to evolve a set of models whose selected number
of neurons and input terms optimise a number of pre-specified goals and objectives.
To this respect two objectives were set-up for minimisation: the RMS of the error
computed on Dt and on Dg, respectively denoted by ρ(Dt) and ρ(Dg). As the ANNs
are randomly initialised, for each of them 25 training trials were executed and the
average of both objectives was used for evaluation purposes. Recall that this proce-
dure decreases the chance of one potentially good model being poorly evaluated due
to a bad choice of initial parameters. Once the MOGA execution was terminated, for
each of the preferable ANN models a larger number of training trials was executed
in order to select one model for application. This choice was made by taking into
account the actual objective values attained on each of the trials and also the RMS
output error obtained on the validation data set.
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The model that was selected from the identification experiment was compared
to other thresholding methodologies [12], namely, a fix threshold approach, the Ri-
dler, Calvard and Trussel (RCT) algorithm [35, 46], and Otsu’s method [33]. For
the first, an histogram based analysis was made in order to identify the best single
threshold value that could be applied to all the 410 images. Global (over all the im-
ages) pixel intensity probability mass functions were separately computed for each
of the classes, S and C. Then, a search was conducted in a vicinity around the in-
tersection point of the PMFs in order to find the threshold minimising the average
(over all images) value of (27). This was found to be t = 158 on the hsvR pixel
intensity scale (the same used for the ANN approach).

The RCT method is an histogram-iteration form [46] of an iterative thresholding
algorithm [35] that we denote by RCT in the following. A brief description of the
method may be found in [12]. For a more in-depth view the reader should consult
[35, 46, 30, 44]. Briefly, the RCT method tries to iteratively estimate the average
pixel intensity of both classes and computes the threshold as the average of the
classes sample mean.

The principle behind the method proposed by [33] is very simple: an exhaustive
search is conducted on the pixel intensity scale for the threshold that maximises the
inter-class variance. Again a brief overview may be found in [12], whereas for more
detailed descriptions [33] or [44] may be consulted.

3.2.2 Results and DiscussionThe MOGA execution was stopped after 50 gener-
ations yielding 11 ANNs in the Pareto front as highlighted in the top-left plot of
Fig. 14, where a detail of the objective values is shown. Regarding the number of
neurons of the 11 selected models, four of them had from 12 to 14, the remaining
seven had 22 or 23 neurons. Concerning the number of input features, the models
employed from 29 to 36.

As mentioned before, 50 additional training trials were executed for each model
selected. The resulting objective values are depicted in the top-right plot of Fig. 14.
The plots at the bottom of the figure show the corresponding results considering the
evaluation of each model structure instance on the validation data set: the RMS error
obtained on Dt and Dg is plotted against the RMS error obtained in the validation
data set, Dv. The results marked with a dark square were obtained by the RBF ANN
that was selected after analysis of all the results. It presented the most favourable
balance in the objectives, achieving the RMS error values of 13.10, 13.12, and 14.65,
respectively on Dt , Dg, and Dv. It is a network with 30 inputs and 22 neurons.

Regarding the cloud cover fraction estimation, Table 3 presents the minimum,
average, and maximum ε results obtained by the ANN model selected and by the
remaining methods employed for comparison. For the ANN, they are presented con-
sidering the training and testing data sets together (involved in the MOGA ANN
optimisation), the validation data set alone, and the three data sets altogether. It may
be seen that the RCT and Otsu methods achieve similar results to those obtained
with a fixed threshold. The results obtained by the RBF ANN selected using the
framework presented in Sect. 2 represent an improvement in average accuracy of
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Table 3 Absolute error of cloud cover estimation obtained by the RFB ANN image thresh-
old approach (first three lines). Results obtained by three additional methods are shown for
comparison (last three lines).

minimum average maximum

Data set:
Training and testing 0.00 5.31 58.46
Validation 0.00 4.74 43.71
Altogether 0.00 5.22 58.46

Other methods:
Fixed threshold 0.00 11.24 82.64
RCT method 0.00 11.34 98.21
Otsu’s method 0.00 11.07 63.59

approximately 50% when compared to the best results obtained by the remaining
methods.
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Figure 15 presents the absolute error values for the reference cloudiness of each
image, where, for the ANN plot (bottom), the circles correspond to images in the
training or testing data sets, and the dark squares to images in the validation data
set. The similarity of results achieved by the three methods used for comparison is
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Fig. 15 Error performance of the three methods used for comparison, and of the RBF ANN
image thresholding approach (bottom)

visible, although the fixed threshold approach exhibits improved uniformity of the
error for the reference cloudiness when compared to the RCT and Otsu’s methods.
The improvement achieved by the selected ANN model is noticeable with most error
values under 20%.

Despite the improvement obtained by the RBF ANN thresholding methodology
there are a few directions in future work expected to further improve the results.
Perhaps the most important, regarding the use of the MOEA to select ANNs, con-
sists in specifying the objective space in a different way. In most images ε is not
symmetric around the optimum threshold, thus minimising the threshold estimation
error may not guarantee the best results. A better approach would consist in build-
ing a matrix where for each image (lines) the value of ε is computed for each pixel
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intensity (columns), so that it becomes possible to map the NN threshold estima-
tion to a cloud cover estimation error. The latter should be minimised in the MOGA
search for NN structures. This is currently being implemented and will result in
another iteration of the model design cycle. Once this is carried out, the resulting
RBF ANN will be used to build a time-series of cloudiness from an existing time-
series of GBAS images. Then a cloudiness predictive model will be identified and
employed for the benefit of global solar radiation predictive models identification
having cloudiness as an exogenous input. The goal is to conclude if that approach is
preferable to auto-regressive solar radiation predictive models.

4 Concluding Remarks

Neural network modelling is an iterative process, requiring, at the present stage, sub-
stantial skills and knowledge from the designer. It is our view that the methodology
presented in this article, employing multiobjective evolutionary algorithms for the
design of neural models, is a suitable tool to aid the designer in this task. It incor-
porates inputs, model order and structure selection, as well as parameter estimation,
providing the designer with a good number of well performing models with varying
degrees of complexity. Importantly, the model identification framework is suitable,
with minor adaptation, to most feed-forward artificial neural network methodolo-
gies. It also allows the incorporation of objectives which are specifically designed
by considering the final application of the model. Through the analysis of the results
obtained in one iteration, the search space can be reduced for future iterations, there-
fore allowing a more refined search in promising model regions. This was demon-
strated in practice, by the presentation of two model identification experiments that
were designed by taking into account results from previously executed experiments.
In both, significant improvements were achieved not only when compared to previ-
ous work, but also by comparison with different methodologies.

Acknowledgements. The authors thank the Portuguese National Science Foundation for
funding this work with project FCT PTDC/ENR/73345/2006, the Portuguese Power Grid
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Abstract. The objective of this research is to realize structural learning within a 
Boltzmann machine (BM), which enables the effective solution of problems 
defined in terms of mixed integer quadratic programming. Simulation results show 
that computation time is up to one fifth faster than conventional BMs. The 
computational efficiency of the resulting double-layer BM is approximately 
expressed as the ratio n divided by N, where n denotes the number of selected 
units (neurons/nodes), and N the total number of units. The double-layer BM is 
applied to efficiently solve the mean-variance problem using mathematical 
programming with two objectives: the minimization of risk and the maximization 
of expected return.  Finally, the effectiveness of our method is illustrated by way 
of a light emitting diodes (LED) signal retrofit example. The double-layer BM 
enables us to not only obtain a more effective selection of results, but also enhance 
effective decision making. The results also enable us to reduce the computational 
overhead, as well as to more easily understand the structure. In other words, 
decision makers are able to select the best solution given their respective points of 
view, by means of the alternative solution provided by the proposed method.  
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1   Introduction 

A neural network consists of a number of mutually connected units (nodes/neurons). 
The Back-Propagation (BP) neural network has units hierarchically structured, 
whereas a mutually connected type of neural network has all units connected with 
each other, and is generally built using large scale data and at the same time requires 
more computation time and cost spent in execution.  

In the case of constructing a hierarchical neural network using BP, the numbers 
of input and output units are uniquely decided as a function of the numbers of 
input and output training data, respectively. On the other hand, the numbers of 
hidden units and hidden layers depend on the learning method as well as on the 
numbers of input and output units (nodes). There needs to be a minimal number of 
hidden units (and hidden layers). Generally, such a number is not known a priori. 
Conventionally, the number of units in the hidden layer is decided by experience. 
In this case, if we decrease the number of units, computation speed and system 
cost can both be saved. Also, the BP method depends very much on the initial 
weight values and it is difficult to forecast an expected value without convergence, 
even if we select an approximately minimal number of units. In order to overcome 
such a problem, the network structure is changed recursively and gradually in 
order to achieve an optimal structure [1, 2]. This process is called structural 
learning.  

In this study, we apply structural learning to a Boltzmann machine. The 
Hopfield network is an interconnected neural network originally proposed by J.J. 
Hopfield in 1982 [3]. Now the Hopfield neural network can easily terminate at a 
local minimum of the describing energy function. The BM [4] is likewise an 
interconnected neural network, which improves Hopfield network performance by 
using probabilities to update both the state of a neuron and its energy function, 
such that the latter rarely falls into a local minimum.  

We formulate a two-layered neural network comprising both a Hopfield 
network and a BM in order to effectively and efficiently select a limited number of 
units from those available. The Hopfield network is employed in the upper layer to 
select the limited number of units, and the BM is employed in the lower layer to 
decide the optimal solution/units from the limited number of units selected by the 
upper layer. The double-layered BM, whose two layers connect corresponding 
units in the upper and lower machines, constitutes an effective problem solving 
method. 

Generally speaking, a conventional BM has considerable computational 
overhead. The reason for this is that the inherent exponential computation time is a 
function of the number of units. In this study, by building a double-layered BM, 
both layers are optimally configured by structural learning. The results enable us 
to reduce the computational time and cost, as well as to more easily understand the 
internal structure. 

In the following sections, the Hopfield network and Boltzmann machine are 
briefly introduced. Section 3 presents an explanation of the BM approach to mean-
variance analysis. Section 4 explains the double-layered BM, followed by 
simulation results. Section 5 provides overviews of LEDs retrofit. We examine the 
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effectiveness of the proposed structural learning model for the LEDs retrofit 
problem in Section 6. In Section 7 we discuss about the simulation and results. 
Finally, conclusions are drawn in Section 8.  

2   Hopfield and Boltzmann Machine 

Research into mutually connected network behavior started around 1948. Simply 
stated, it is difficult to select the required number of units at the same time as 
minimizing the corresponding energy function. This problem cannot be solved by 
either Hopfield or Boltzmann neural networks. In the 1970s, some researchers 
independently came up with the idea of a model of Associative Memory for 
mutual connected networks [5, 6]. In 1982, Hopfield [3] brought together several 
earlier ideas concerning recurrent neural networks, accompanied by a complete 
mathematical analysis. Nowadays, this type of network is generally referred to as 
a “Hopfield network”. Such networks, together with the Back-Propagation 
algorithm, signaled the re-birth of research into neural networks in the early 
1980s, which has continued to the present time. Although the Hopfield network is 
not a good solution for many applications, it nevertheless warrants revisiting in 
terms of structure and internal working. This will lead to a modification, by 
incorporating mutual connections, in order to overcome its drawbacks – in the 
form of the BM. 

The Hopfield network is a fully connected, recurrent neural network, which 
uses a form of the generalized Hebb rule to store Boolean vectors in its memory. 
Each unit (neuron)-n has a state value denoted by sn, In any situation, combining 
the state of all units leads to a global state for the network. For example, let us 
consider a network comprising three units s1, s2 and s3. The global state at time 
step t is denoted by a vector s, whose elements are s1, s2 and s3. When the user 
presents the network with an input, the network will retrieve the item in its 
memory which most closely resembles that particular input.  

In general, the Hopfield network operates by taking an input, evaluating the 
output (in other words the global status s). This global state is the input, providing 
it works correctly, together with other prototypes, which are stored in the weight 
matrix by Hebb’s postulate, formulated as 

pp j
p

iij XX
N

w ∑= 1
 

where, p = 1…P, wij is the weight of the connection from neuron j to neuron i, N is 
the dimension of the vector, p the number of training patterns, and Xip the pth input 
for the neuron i. In other words, using Hebb’s postulate, we create the weight 
matrix, which stores the entire prototype that we want the network to remember. 
Because of these features, it is sometimes referred to as an “Auto-associative 
Memory”. However, it is worth noting that the maximum number of prototypes 
that a Hopfield network can store is only 0.15 times the total number of units in 
the network [3]. 

(1) 
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One application of the Hopfield network is to use it as an energy minimizer. 
This application comes to life because of the ability of Hopfield networks to 
minimize an energy function during its operation. The simplest form of energy 
function is given by the following: 

∑∑
= =

=
N

j

N

i
ijji sswE

1 12

1
 

Here wij denotes the strength of the influence of neuron j on neuron i. The wij are 
created using Hebb’s postulate as mentioned above, and they belong to a 
symmetric matrix with the main diagonal line containing only zeroes (which 
means there are no self-feedback connections). Because of this useful property, 
the Hopfield network can also be used to solve combinatorial optimization 
problems. However, Hopfield networks suffer from a major disadvantage in that 
they sometimes converge to a local rather than to the global minima, which 
usually happens when dealing with noisy inputs. In order to overcome this 
problem, a modification was made to the BM. 

The BM is an interconnected neural network, and is a modification of the 
Hopfield network which helps it to escape from local minima. The main idea is to 
employ simulated annealing, a technique derived from the metallurgy industry. It 
works by first relaxing all the particles (in other words, causing them to freely 
move by applying sufficient “heat”). After that, the temperature is gradually 
decreased. During this process, the particles will move at lower and lower speed 
until they are become fixed and form a new structure as the temperature decreases.  

Simulated annealing is an optimization technique. In Hopfield nets, local 
minima are used in a positive way, but in optimization problems, local minima get 
in the way; one must have a way of escaping from them. When optimizing a very 
large and complex system (i.e., a system with many degrees-of-freedom), instead 
of “always” going downhill, we try to go downhill “most of the time”. Initially, 
the probability of not going downhill should be relatively high (“high 
temperature”), but as time (iterations) go on, this probability should decrease (with 
the temperature decreasing according to an annealing schedule). 

The term “annealing” comes from the technique of hardening a metal (i.e. 
finding a state of its crystalline lattice that is highly packed) by hammering it 
while initially very hot, and then again at a succession of decreasing temperatures. 
It works according to the following algorithm: 

1. Pick a unit at random; 
2. Compute the probability that the unit should be ON using the formula: 

 pi(t+1) = S((1/T[SUMj wij xj(t) + bi]) 
where S(x) = 1/(1 + exp(-x)) and W is symmetric (wij = wji); 

3. Turn the unit ON with probability pi(t+1) and OFF with probability 1-
pi(t+1); 

4. Decrease the temperature parameter T according to the “annealing schedule”. 

Now the convergence time of a BM is usually extremely long. According to the 
“annealing schedule”, if T0 is very large, then a strategy is pursued whereby 

(2) 
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neurons are flipping on and off at random, totally ignoring incoming information. 
If T0 is close to zero, the network behaves “deterministically”, i.e. like a network 
of McCulloch-Pitts neurons. Although the way in which a BM works is similar to 
a Hopfield network, we cannot use Hebb's postulate to create the weight matrix 
representing the correlations between units. Instead, we have to use a training 
(learning) algorithm – one based on the Metropolis algorithm. 

The BM can be seen as a stochastic, generative counterpart of the Hopfield 
network. In the BM, probability rules are employed to update the state of neurons 
and the energy function as follows: 

If Vi( t + 1 ) is the output of neuron i, in the subsequent time iteration t+1, 
( 1)iV t +  is 1 with probability P, and ( 1)iV t +  is 0 with probability 1-P, where 

( )
[ ( 1)] ( )i

i

u t
P V t f

T
+ =  

Here, ( )f ⋅  is the sigmoid function, ( )iu t  is the total input to neuron i  shown in 

equation (4), and T  is the network temperature. 
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where, ijw  is the weight between neurons i and j, iθ  is the threshold of neuron i, 

and Vi is the state of unit i. The energy functions, E, proposed by Hopfield, is 
written as: 
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Hopfield has shown that this energy function simply decreases with learning 
[3]. There is the possibility that this energy function converges to a local 
minimum. However, in the case of the BM, the energy function can increase with 
minute probability. Therefore, the energy function will be unlikely to fall into a 
local minimum. Thus, the combination of Hopfield network and BM offers a 
solution to overcome the problem of finding the optimal number of units in the 
neural network.  Accordingly, this study proposes a double-layered Boltzmann 
machine which we discuss in detail in the Section 4. 

3   Boltzmann Machine Approach to Mean-Variance Analysis 

Mean-variance analysis, originally proposed by H. Markowitz during the early 
1950s [7], is a widely used investment theory. It assumes that most decision 
makers have an aversion to risk even if its obtained return is less. However, it is 
difficult to identify a utility function because they have different utility structures 
of their own. Hence, Markowitz formulated mean-variance analysis as the 
following quadratic programming problem under the restriction that the expected 
return rate must be more than a certain specified amount. 

(3) 

(4) 

(5) 
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[ Formulation 1]  
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where R  denotes an acceptable least rate of expected return, ijσ  a covariance 

between stock i  and stock j , iμ  an expected return rate of stock i , and ix  an 

investment rate of stock i , respectively. 
In Formulation 1, the optimal solution with the least risk is searched under the 

constraint that the expected return rate should be more than the value a decision-maker 
arbitrarily gives. The investment rate for each of the stocks is decided for the solution 
with the least risk to the given expected return rate. Since the risk is estimated under 
the condition of fixing the rate of the expected return, the decision-maker cannot be 
fully satisfied with its solution. Therefore, the following Formulation is much more 
appropriate and reasonable compared with Formulation 1: 
 
[Formulation 2]  
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(6) 

(7) 

(8) 

(9) 
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Formulation 2 is a quadratic programming problem with two objective functions - 
expected return rate, and degree-of-risk. 

Next, we explain how to solve a mean-variance analysis using a BM [8-11]. We 
transform the mean-variance model described by Formulation 1 or 2 into the BM 
energy function.  

First, we transform the objective function, shown as equation (6), into the 
following energy function in equation (5) as follows: 
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In the next step, we show a condition that the total investment rate of all stocks is 
1 (note that the investment rate of each stock cannot be less than 0). The condition 
can be expressed as 
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Equation (18) can be rewritten as follows 
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Then, as we can transform equation (18) into equation (17), the latter can be 
rewritten as 
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Finally, we consider the expected return, given by equation (7). Therefore, we can 
transform equation (7) into equation (21): 
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where K is a real number not less than 0.  
 
If the value K is set to a larger number, the expected return is evaluated much 
more than the risk. Then, if we determine K=0, then the BM converges into a 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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problem of minimizing its risk. When the energy function of the BM described in 
this section converges to the global minimum, we can obtain the investment rate 
of stocks by the output value of each unit. The algorithm of the BM is executed 
according to the following 
 
[Algorithm 2]   

 
Step 1. Give the initial value of all units optionally; 
Step 2. Choose a certain unit ( )i  out of all units at random; 

Step 3. Compute a total of the input ( )iu t  into the chosen unit i (1 ≤ i );  

Step 4. Add a sufficiently small value to the output value Vi(t+1) of unit i , 
according to the probability P shown in equation (3), and subtract a 
sufficiently small value from the output value with probability1-P. 
However, the output value is not varied in the case of ui(t)=0; 

Step 5. The output value of units j except i are not varied; 
Step 6. After iterating from Steps 2 to 5, compute the probability of each unit for 

all units. 

4   Double-Layered Boltzmann Machine Example 

Conventionally, the number of units is decided on the basis of expert experience. 
In order to solve this problem, we formulate a double-layered neural network 
consisting of both Hopfield and Boltzmann neural networks. This double-layered 
model can be employed to select a limited number of units from those available. 
The double-layered model has two layers – referred to as the upper and lower 
layers, respectively. The functions of the layers are as follows:  
     
1. Upper layer (Hopfield neural network) is used to select a limited number of 
units from the total. This Hopfield layer is called a “supervising layer”.  
 
2. Lower layer (Boltzmann machine) is used to decide the optimal units from the 
limited number selected in the upper layer. This Boltzmann layer is called an 
“executing layer”.  

 
This double-layered BM is a new type of neural network model which deletes 
units (neurons) in the lower layer that are not selected in the upper layer during 
execution. The lower layer is then restructured using the selected units. Because of 
this feature, the double-layered BM converges more efficiently than a 
conventional BM. This is an efficient method for solving a selection problem by 
transforming its objective function into the energy function, since the Hopfield 
and Boltzmann networks converge at the minimum point of the energy function.  

The double-layered BM just described converts the objective function into 
energy functions of two components - namely the upper layer (Hopfield network) 
Eu and the lower layer (Boltzmann machine) El, as described below. 
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where 
uK and lK  are the weights of the expected return rates of the layers, and si 

is the output of the ith unit of the upper-layer. 
 

The double-layered BM is tuned such that the upper layer influences the lower 
layer with probability 0.9, and the lower layer influences the upper layer with 
probability 0.1. Thus the double-layered BM is iterated with  

Yi = 0.9 yi + 0.1 xi 

for the upper layer, and 

Xi = xi (0.9 yi + 0.1) 

for the lower layer. Here Yi in the upper layer is a value transferred to the 
corresponding nodes in the upper layer, Xi in the lower layer is a value transferred 
to corresponding nodes in the lower layer, yi is the value of the present state at 
node i in the upper layer, and xi is the value of the present state at node i in the 
lower layer, respectively.  

Xi means that the value is influenced to the tune of 90% from the value of node 
i in the upper layer. When Yi is 1, Xi = xi.; otherwise, when yi is 0, 10% of the 
value of xi is transferred to the other nodes. On the other hand, Yi has a 10% 
influence on the lower layer. Therefore, even if the upper layer converges to a 
local minimum, the disturbance from the lower layer makes the upper layer escape 
from this local minimum. When the local minima possess a large barrier, dynamic 
behavior may be used (by changing 0.9 and 0.1 dynamically) - this phenomenon is 
similar to simulated annealing. 
 
The algorithm of the double-layered BM is as follows: 
 
[Algorithm  1] 
 
Step 1. Set each parameter to its initial value.  

Step 2. Input uK  and lK .  

Step 3. Execute the upper layer.  
Step 4. If the output value of a unit in the upper layer is 1, add some amount of 

this value to the corresponding unit in the lower layer. Execute the lower 
layer.  

. 

(22) 

(23) 
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Step 5.After executing the lower layer at a constant frequency, decrease the 
temperature.  

Step 6. If the output value is sufficiently large, add a certain amount of the value 
to the corresponding unit in the upper layer. 

Step 7. Iterate from Step 3 to Step 6 until the temperature reaches the 
restructuring temperature. 

Step 8. Restructure the lower layer using selected units in the upper layer 
Step 9. Execute the lower layer until reaching the termination condition. 
 

Meta-controlling layer
Meta-controlling
layer

Selected unit

Restructure

Restructured Lower layer

Information
from lower
to meta-controlling

Information from
meta-controlling
to lower

Lower layer

Reach the restructuring
temperature

 

Fig. 1 Meta-controlled BM 

5   Overview on LEDs Signal Retrofit 

In this study, Traffic signals have been considered a way to improve traffic safety 
and traffic operations at intersections. Intersections induce more attention for 
safety analyses than other roadway elements due to the fact many intersections are 
found to be relatively crash-prone spots from safety point of view. Each year, the 
number of traffic crashes occurred has been increased. According to the Traffic 
Safety Facts 2002, in United States, there were 6,316,000 estimated traffic crashes 
in 2002 [12]. 

LED lamps have been developed to replace conventional incandescent or 
fluorescent lamps for increasing reliability and reducing electrical and 
maintenance costs. The new traffic lights are made out off arrays of LED signals. 
This is tiny, purely electronic light that is extremely energy efficient and have a 
very long life. Each LED is about a size of a pencil eraser, so hundreds of them 
are used together in an array. The LED signals are replacing the conventional 
incandescent halogen bulbs rated at between 50 and 150 watts. Three main 
advantages of LED signals: 
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a. LED signals are brighter than conventional signals, which enhance 
intersection safety. 

b. Due to their low wattage, LED signals consume significantly less power, 
which results in lower energy bills. 

c. LED signals can be expected to run for at least 10 years. 
 
In Japan, there are roughly 2 million traffic signal systems. Japan’s government 
supports 50 percent of changing expenditure for each regional government. Now 
10 percent of all systems were already changed to LED type, but the cost of LED 
type is 1.5 times more expensive than conventional tube type. Japan Economy 
Newspaper (NIKKEI) on November 21 2007 reported that the traffic accidents 
were reduced about 30 percent from 2001 to 2005 due to the usage of LED type 
that has an advantage to eliminate the phantom effect during morning and evening 
hours. In the same report also indicates that Japan National Police Agency decided 
to change gradually conventional type traffic signal to LED type for major 
highway from 2007. 

There appears to be growing acceptance of LED signals as viable light sources 
for traffic signals, and a growing awareness of the potential maintenance and 
energy savings achievable with LED signals, but many self-governing bodies face 
significant capital constrains. And huge numbers of intersections could not be 
replaced simultaneously. These are disincentives within local governments to 
perform LED retrofits despite their potential life cycle cost benefits. Thus, 
jurisdictions have to selectively implement LED signals retrofit to enhance traffic 
security and operate more cost-effectively. 

6   LEDs Signal Retrofit and Mean-Variance Problem 

Traffic crashes bring out tragic loss of lives, cost many countries tremendous 
amount of money, and produce substantial congestion to a nation’s transportation 
system. Large percentage of traffic accidents occurs at or near intersections [13]. 
Pernia indicates that intersections-related crashes make up a very high percentage 
of the total number of crashes in the roadway system. For example, in the United 
States, the national statistics show that 22.87 percent of all fatal crashes occurred 
at intersections or intersection-related locations. Traffic signals have been a way to 
improve traffic safety and traffic operations at intersections [12]. 

In order to improve traffic safety and traffic operations at intersections, due to 
the many advantages of operation and energy consumption, LED traffic light is 
preferred [14]. LED traffic lights, whose advantages – in comparison to 
conventional light bulb traffic lights - include the significantly reduction of 
electric power consumption, the dramatic saving of lower maintenance costs and 
the improvement of safety due to greater brightness, were so impressive even after 
a short time that soon further junctions were equipped with LED traffic lights.  

Despite their excellent performance, several barriers hinder more rapid retrofit 
such as high retrofit cost and capital constraints. Thus, one of the most significant 
challenges in retrofit strategy is to decide which intersection to signalize with 
LEDs, which to keep on the table. We provide a method for selecting intersections 
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not through traditional effectiveness measures like cost and performance, but 
instead through a quantitative analysis of the embedded uncertainty in each 
potential intersection. Cost and performance in this approach remain central 
themes in decision making, but uncertainty serves as the focal point to identify 
potentially powerful combinations of intersections to explore concurrently in 
decision phases. It presented is a method to identify and quantify uncertainty in 
intersections, as well as a means to manage it using mean-variance analysis 
(portfolio theory) and optimization. Perhaps best known to economists and 
investors, portfolio theory is based on the objective of minimizing risk subject to a 
decision maker’s sufficient return considering his or her risk aversion. This simple 
concept, as well as the theoretical accuracy that has evolved the theory to practice, 
is presented as one means of exploring the retrofit strategy of potential 
intersections around the central theme of uncertainty. 

A mean-variance approach is proposed to change the situation of investing a 
large amount of money on maintenance and repair based by accident rates. We 
intend to invest using the frequency of accidents under the consideration of past 
data.  

Portfolio theory treats a mathematical allocation problem of a given amount of 
money among several different available investments, such as stocks, bonds and 
securities. This is named the portfolio selection problem. Markowitz originally 
proposed and formulated the mean-variance approach based on the portfolio 
selection problem [7], [11]. That is, assuming the time series of return rates, the 
theoretical method enables us to determine the highest investment rate, which 
minimizes the risk or variance of profit, affirming the highest rate of the expected 
return which a decision maker expects. This method is formulated as a quadratic 
programming. In this paper, a portfolio selection problem is formulated as a 
mathematical programming with two objectives to minimize risk and maximize 
the expected return, since the efficient frontier should be considered in the 
discussion of a portfolio selection. Yang et al. 2004 proposed the multi-objective 
programming model of portfolio and compute the optimal solution with some 
methods by a neural network [15]. 

A Hopfield network and a Boltzmann machine are used to find an optimal 
solution [16], [17]. In this paper, we applied the concepts of a Boltzmann machine 
to solve the portfolio selection problem efficiently. The Boltzmann machine [4] is 
an interconnected neural network proposed by G. E. Hinton. The Boltzmann 
machine is a model that improves a Hopfield network using probability rule to 
update the state of a neuron and its energy function. Thus, the energy function of 
the Boltzmann machine hardly falls into a local minimum. For that reason, if we 
transform the objective function of a portfolio selection problem into an energy 
function of the Boltzmann machine, it enables us to solve the portfolio selection 
problem as its highly approximate solution. And then, the output value of each 
unit represents the investing rate to each stock. In the conventional method to 
solve portfolio selections, the investing rate to each stock is decided to realize the 
minimum risk under the constraints that the goal rate of an expected return given 
by a decision maker should be guaranteed. But in this proposed method, the  
 



Structural Learning Model of the Neural Network  67
 

objective of solving a portfolio selection problem is not only to minimize its risk 
but also to maximize the expected return rate. Therefore, the Boltzmann machine 
can provide the investment rate for each intersection using the output of each unit 
of the neural network. Retrofit traffic signals investment problems are presented in 
order to demonstrate the effectiveness of our proposal. 

7   Numerical Example of LEDs Signal Retrofit 

We take 10 intersections in Hiroshima with their 8-years accident numbers into 
account, in which portfolios of retrofit can be analyzed and optimized. It proposed 
is an effective retrofit strategy where risk, measured by the variance in accident 
numbers, is considered together with accident mean. Our analysis of trade-off 
between accident numbers means and variance employs mean-variance analysis 
and meta-controlled Boltzmann machine, which are considerably efficient as the 
number of intersections dramatically increases. It seemed obviously that investors 
are concerned with risk and return, and that these should be measured for the 
portfolio as a whole. Variance (or, equivalently, standard deviation), came to mind 
as a measure of risk of the portfolio. The fact that the variance of the portfolio, 
that is the variance of a weighted sum, involved all covariance terms added to the 
plausibility of the approach. Since there were two criteria - expected return and 
risk - the natural approach for an economics program was to imagine the investor 
selecting a point from the set of optimal expected return, variance of return 
combinations, now known as the efficient frontier. In this section, we employ 
meta-controlled Boltzmann machine as an efficient model to solve this trade off. 
 
The simulation parameters employed are in the following step: 
 
Upper layer - 
 
1.  The change is done with 0.001 interarrival temperatures. 
2.   Each unit is set to an initial value of 0.1. 
3.   The constant K is simulated for 0.0, 0.3, 0.5, 1.0 and 2.0. 
 
Lower layer - 
 
1.  The temperature T of the BM is changed from 100 to 0.0001.  
2.  The change is done with 0.001 interarrival temperatures. 
3. The initial setting for each unit is 0.1.  
4. The constant K is simulated for 0.0, 0.3, 0.5, 1.0 and 2.0. 
5. As the BM behaves probabilistically, the result is taken to be the average of 

the last 10, 000 times. 
 
The implementation procedure of the proposed method is described as in the 
following five steps: 
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Step

Step 1 Identifying the right uncertainty - Security              

Step 2

Step 3

Step 4

Step 5

Quantifying individual uncertainties - Accident Numbers              

Postprocessing the uncertainty - Covariance Matrix             

Implementing Portfolio Theory - Mean-variance Analysis             

Determing the optimal maintenance strategy - Selection of K           

Task              

 
 
Step 1. Identifying the Right Uncertainty 
 
Identifying the right uncertainties is the first step in mean-variance analysis. The 
right uncertainty will have the following characteristics. The characteristic of an 
uncertainty that should be included in the analysis is one that differentiates one 
asset from another. An example of this characteristic can be found in a set of 
intersections that they don’t rely on the same security. For example, accidents 
occurred in Intersection1 by a mean number of 21, but Intersection 9 by a number 
of 12. Security is just one source of differentiating uncertainty, policy, market 
conditions or manufacturing capability are others. In our case, we select 10 
intersections around Fukuyama station as shown in Fig. 2. 

 

 

Fig. 2 Location of intersections 
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Step 2. Quantifying Individual Uncertainties 
 
Once the relevant sources of uncertainty have been identified, the next step is to 
apply some level of probability and impact to them. Some individual uncertainties 
can be very straightforward to quantify. For example, if the security model being 
used is based on the historical data, this model typically has standard deviations 
that can be included as security modeling uncertainty. Uncertainty identified by 
security is quantified based on 8-years accident numbers. Table 1 shows historical 
accident numbers of 10 intersections as shown in Fig. 2. Other uncertainties might 
not be so straightforward to quantify. These could arise from market conditions, 
policy uncertainty, new technology or novel architectural concepts. 

Table 1 Accident number in intersections 

 

 
Step 3. Post-processing the Uncertainties 
 
Once the uncertainties have been quantified for each alternative, it is necessary to 
post-process and feed the data to the next step in the approach, mean-variance 
analysis. At this point, statistics of each distribution should be calculated. This 
includes standard measures of expected value and standard deviation or variance. 

Once individual distributions have been investigated, the set of distributions 
also needs to be post processed to develop the covariance matrices for use in 
implementing the portfolio optimization. The covariance matrix represents the 
relative independence of the assets, as well as the uncertainty of the assets. The 
matrix is created, as shown in Fig. 3, by placing the variance of assets on the 
diagonal and using pair-wise covariance, as calculated in (24), on the off-
diagonals. 

1 2 1 2 1 2, ,x x x x x xσ ρ σ σ=   (24) 
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Fig. 3 Covariance matrix 

Table 2 shows the covariance matrix of 10 intersections that used in this case 
study. 

Table 2  Covariance matrix of 10 intersections 

Int.1

11.750

-1.875

2.625

3.500

1.750

6.750

3.000

5.875

-7.625

-3.500

-1.875

10.188

-7.688

-2.656

-5.688

-0.281

-1.000

-7.125

0.906

2.688

2.625

-7.688

8.438

2.531

1.313

2.531

0.250

5.250

-4.281

-0.938

3.500

-2.656

2.531

6.734

-0.094

6.797

3.250

4.688

-1.547

-3.156

-7.625

0.906

-4.281

-1.547

3.594

-6.984

1.250

-4.188

11.609

-2.969

5.875

-7.125

5.250

4.688

3.125

4.313

4.875

10.750

-4.188

-3.250

1.750

-5.688

1.313

-0.094

8.188

-3.344

0.875

3.125

3..594

-4.063

6.750

-0.281

2.531

6.797

-3.344

10.359

2.125

4.313

-6.984

-0.781

3.000

-1.000

0.250

3.250

0.875

2.125

7.250

4.875

1.250

-4.750

-3.500

2.688

-0.938

-3.156

-4.063

-0.781

-4.750

-3.250

-2.969

6.438

Int.1

Int.2

Int.2

Int.3

Int.3

Int.4

Int.4

Int.5

Int.5

Int.6

Int.6

Int.7

Int.7

Int.8

Int.8

Int.9

Int.9

Int.10

Int.10
 

 
 
Step 4. Applied Portfolio Theory 
 
In order to enable the decision maker implement LED signals retrofit at an optimal 
set of assets to pursue that maximize return while at the same time consider his 
aversion to risk. The specific class of optimization is a quadratic optimization 
based on an appropriate balance of risk and returns. These risks and returns are 
typically derived from historical accident numbers in intersections historically. 
The quadratic programming problem can be solved by a method named mean-
variance analysis employed meta-controlled Boltzmann machine efficiently. 
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Table 3 Result of simulation in investment rate for each intersection 

K=0.3

Int.1
Int.2
Int.3
Int.4
Int.5
Int.6
Int.7
Int.8
Int.9
Int.10

0.281
0.224
0.237 0.239 0.242 0.245

0.017 0.045
0.255 0.197 0.155 0.041

0.027

0.031 0.051 0.101

0.244 0.245 0.251
0.287 0.289 0.289

K=0.5 K=0.7 K=1.0

 
 
 

As shown in Table 3, in case of K = 0.3, from the total budget allocated, 
Intersection1 should be invested in by 28.1 percent, Intersection2 25.8 percent, 
Intersection3 23.7 percent and Intersection5 25.5 percent. Other intersections 
which are not included in the list of units after restructuring will not get any 
investment. So in the case of K = 0.3, we can select Intersection1, Intersection2, 
Intersection3, and Intersection5 in order to invest maintenance cost in by 28.1 
percent, percent, 22.4 percent, 23.7 percent and 25.5 percent. In case of K = 0.5, 
five intersections were selected in the list of units after restructuring. There were 
Intersection1, Intersection2, Intersection3, Intersection5 and Intersection10 with 
investment maintenance cost percentage 28.7 percent, 24.4 percent, 23.9 percent, 
19.7 percent and 3.1 percent. In case of K = 0.7, six intersections were selected 
and in case of K = 1.0, seven intersections were selected in the list of units after 
restructuring. From that, we can conclude that the number of selected wards in the 
restructured list is directly proportional to K. 
 
Step 5. Determining the Optimal Maintenance Strategy 
 
In Step 4, the portfolio theory algorithm is developed and a mean-variance 
analysis employed neural network is designed that shows the set of solutions on 
the efficient frontier from which an optimal solution should be chosen. In order to 
determine where a decision maker’s optimal strategy lies, their level of aversion to 
uncertainty must be quantified. The most straightforward method of calculating a 
decision maker’s aversion is to find an indifferent curve between the value and 
uncertainty that accurately reflects his/her interests.  
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Table 4 Expected investment rate and risk 

K Return Rate Risk

0.3 16.163

16.261

16.311

16.353

0.036

0.046

0.051

0.059

0.5

0.7

1.0
 

 

The expected investment rate and risk are calculated, as shown in Table 4 and 
also indicates four different levels of risk aversion, value of K, reflect the decision 
maker’s different preference. When K is set at a larger value, the solution is 
obtained with high investment rates and high risk.  

Table 5 Comparison of conventional BM and meta-controlled BM 

Computational Times(sec)

No. of

10

40

7.21 6.42

8.52

12.61

31.90

12.11

43.41

219.12

160

640

Intersection
Conventional Meta-controlled

Boltzmann Machine Boltzmann
Machine

 
 

Table 5 compares meta-controlled Boltzmann machine and conventional 
Boltzmann machine, employing various sizes from 10 intersections to 640 
intersections. The computing time of the meta-controlled Boltzmann machine is 
drastically shorter than a conventional Boltzmann machine. The reason for this is 
because the meta-controlled Boltzmann machine deletes useless units during the 
restructuring step. By contrast, a conventional Boltzmann machine computes all 
units until the termination condition reached. 

8   Conclusions 

This paper demonstrates that structural learning with a double-layer Boltzmann 
machine has various advantages. Structural learning is employed to decide the 
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optimal number of hidden units of the neural network, and its appropriateness has 
been verified. As a result, it was shown that structural learning as proposed in this 
paper can successfully determine the optimal substation solution, as illustrated in 
the numerical example. The simulation also showed that computational times are 
significantly decreased compared with a conventional BM. 

This paper demonstrates that proposed method has various advantages. Mean-
variance analysis and structural learning are employed to solve the problem on 
how to choose intersections to implement LED signal retrofit, and its 
appropriateness has been verified. As a result, it was shown that the proposed 
method in this paper can successfully determine the optimal intersection solution, 
as illustrated in the numerical example. The simulation also showed that 
computational times are significantly decreased compared with a conventional 
Boltzmann machine.  

Mean-variance analysis, which employs the portfolio method using a meta-
controlled Boltzmann machine, can deal much more effectively with these types 
of problems.  The results obtained show that the selection, investment expense rate 
of intersections, and reduced computation time can be prolonged to increase cost 
savings. The results also demonstrate that our proposal for incorporating structural 
learning into the Boltzmann machine is effective and can enhance the decision 
making process. 
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Robustness of DNA-Based Clustering 

Rohani Abu Bakar, Chu Yu-Yi, and Junzo Watada* 

Abstract. The primary objective of clustering is to discover a structure in the data 
by forming some number of  clusters or groups.  In order to achieve optimal clus-
tering results in current soft computing approaches, two fundamental questions 
should be considered; (i) how many clusters should be actually presented in the 
given data, and (ii) how real or good the clustering itself is.  Based on these two 
fundamental questions, almost clustering method needs to determine the number 
of clusters .  Yet, it is difficult to determine an optimal number of a cluster group 
should be obtained for each data set.  Hence, DNA-based clustering algorithms 
were proposed to solve clustering problem without considering any preliminary 
parameters such as a number of clusters, iteration and, etc.. 

Because of the nature of processes between DNA-based solutions with a sili-
con-based solution, the evaluation of obtained results from DNA-based clustering 
is critical to be conducted.  It is to ensure that the obtained results from this pro-
posal can be accepted as well as other soft computing techniques.  Thus, this study 
proposes two different techniques to evaluate the DNA-based clustering algo-
rithms either it can be accepted as other soft computing techniques or the results 
that obtained from DNA-based clustering are not reliable for employed.  

1   DNA Computing Methods for Solving Clustering Problems 

DNA computing began in 1994 when Leonard Adleman has first shown that com-
puting can be done using DNA to solve one of NP-Complete problem Hamiltonian 
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path problem (HPP) and obtained solutions using DNA experiments. Biomedical 
moleculars have been applied to solve kind of computing problems [1]. 

Clustering is regarded as a consortium concept combines algorithms that aims 
to reveal a structure in high dimensional data and obtain the collections of mean-
ingful relationships in data and information granules. DNA computing is used to 
supports as the development of clustering technique. This approach is particular 
when dealing with huge data sets with the unknown number of clusters and encou-
tering a heterogeneous character of available data. 

The primary objective of clustering is to discover the structure in a data by 
forming some number of clusters or groups. We expect that similar objects or pat-
terns will be placed in the same cluster while different objects are assigned to dif-
ferent clusters. Clistering is widely used in various areas such as machine learning, 
image analysis, data mining, bioinformatics and etc. particularly in dealing with a 
very large database. 

Currently a great deal of application in proximity algorithms to cluster different 
sources of information, and it involves specific field knowledge pertinent to pro-
ceeding problems. For instance, Oehler and Gray have developed a clustering 
technique for solving compression performance problems in signal processing and 
vector quantization [4]. Shopbell et al. has proposed a clustering technique to clus-
ter around objects in sky for astronomy [5]. Jiang and Tuzhillin focused on clus-
tering customer’s interests studying in relation with a certain marketing problem 
[6]. Jimmy et al. addressed several issues in clustering medical data [7]. 

The ultimate challenge of clustering associates with a combinatorial expolosion 
of the search space. Another challenge comes with the fact that most clustering 
techniques require the number of clusters is provide in advance. Meanwhile, a 
number of enhancement of the generic clustering techniques; such as tabu search 
and simulated annealing; have been developed. Those refinement are typically re-
stricted to small data sets only [8]. 

In this study, the researchers face substantial combinatorial variant that they 
have to deal with a significant number of clusters in order to optimize clustering 
processes. Though it is not imossible, handling a combinatorial issue as mentioned 
above using conventional computing technique is extremenely difficult. A new 
approach thatcan help to reduce the processing time as well as the memory  
requiments without computing arises as one of the viable and computationally  
alternative. 

2   Background Study of Clustering Problems 

Clustering is concerned with grouping a collection of patterns (observations, data 
items, or feature vectors) into groups (clusters). Clustering has been addressed by 
researchers in various disciplines; this reflects its broad appeal and usefulness as 
one of the fundamental mechanisms of exploratory data analysis. The advantages 
of clustering algorithms are enormous.   

Each of the clustering algorithms comes with some underlying rationales and 
offers certain insight into the data. Additionally, each clustering algorithm comes 
with its own underlying optimization scheme, validation tools and computational 
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enhancements. It depends on the specific category of problems, different termi-
nology, notation, assumptions and resulting outcomes have been encountered. One 
may refer to several clustering techniques including fuzzy clustering [9], the use 
of stochastic complexity functions [10], statistical clustering [11] and clustering is 
done based on the principle of curve technique [12] and etc.       

As pointed out by Jain et al. [13], a majority of these approaches and algo-
rithms proposed in the literature are unable to handle large data set.  While the 
world witnesses, a growing diversity and a surprising sophistication of clustering 
methods; such as those based on genetic algorithms, tabu search and simulated 
annealing, all these methods are typically restricted to relatively small data sets.  
In order to support the claim, Table 1 (refer to [8]) presents time and space com-
plexity of several well-known clustering algorithms. Referring to the table, n 
represents the number of patterns, k represents the number of clusters and l de-
notes the number of iterations used by the algorithm. 

Most of these clustering algorithms exhibit polynomial or exponential complex-
ity.  The problem becomes even more challenging if the number of clusters is un-
known [8] and has to be identified. These situations apparently show that the DNA 
computing can emerge as an interesting and viable alternative in computing field.   

Table 1 Complexity of selected clustering algorithms cited from [12] 

     
With regards to DNA, clustering method is widely employed in the genome da-

tabase. A lot of techniques have been proposed to cluster around genome se-
quences and DNA micro arrays; such as gene cluster based on the most similarity 
tree (CMST) as has been proposed by Lu et al.[11]. The basic idea of this method 
is to express elements in set G, which referred as set of genes in this study.  The 
DNA sequences in a cluster are included as a subset of elements in the set G itself. 
The main advantage of this algorithm is that the number of cluster is customized at 
the end of processing, and it is not fixed as a k-means and self-organization map 
(SOM). 

Volfovsky et al. [14] has developed clustering methods based on repeated 
analysis of DNA sequences. This method has been proposed to distribute DNA 
sequences into different clusters according to similar condition. The transcription 
start site (TSS) method has been proposed by FitzGerald et al.[15] to cluster 
around DNA sequences in the human promoter database. However, this method is 
unable to identify a single DNA sequence that is relatively clustered to the TSS for 
the majority of promoters. Sang et al.[16] have developed software named  

Clustering Algorithm Time Complexity 
k-means O(ndk+1log n) 
K-median O(ndk+2(k/ε)0(1)d2nσ) 
Single-line O(n2 log n ) 
Complete-line O(n2 log n ) 
Hierarchical agglomerative algorithms O(n2 log n ) 
Minimal spanning tree (MST) O(n2 log n ) 
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CLAGen for clustering and annotating gene sequences. In their tool, they imple-
mented a suffix tree algorithm. Their study found that, CLAGen has been success-
fully evaluated with 42 gene sequences in a TCA cycle of bacteria to 11 clusters. 
The study has also proven that the method can find the longest subsequence of 
each cluster.   

Joseph et al. [17] has proposed to improve the hierarchical algorithm in order to 
cluster around a gene. The method was named as optimal linear leaf ordering of 
trees. Joseph et al. [17] tested the effectiveness of their algorithm on several types 
of data sets, which obtained from randomly generated data set, generated data set 
and an artificial data set.  Based on the experiment, they found that the proposed 

clustering algorithm exhibited O(n 4 ) ugh time complexity of the original hierar-

chical algorithm in the study was O(n 3 ) , which is better algorithm, but, they be-
lieved that the latest proposed algorithm is most practical to apply because the 
time consumption of the algorithm is very reasonable as compared to the one of an 
algorithm constructed from the tree approach. 

Other than that, Kim et al. [18] suggested to consider the use of the Fuzzy C-
Means (FMC) in overcoming possible limitations of binary {0-1} clustering.  In 
the suggestion, once the smallest value is determined, its value and transformed 
location are used for normalizing micro array data set as well as generalizing data 
set for simulation purposes.  The experimental results have shown that scale of 
lower normalization is more robust when clustering gene from general micro array 
data than the two commonly used scale and location adjustment methods in par-
ticular when dealing with samples that exhibit changing expression patterns or 
when some noise is inserted.     

This chapter also exposes two different methods based on DNA computing that 
are proposed for solving clustering problem.  The first algorithm is based on mu-
tual order distance meanwhile the second algorithm is based on proximity ap-
proach. At the end of this chapter, the details of each proposed algorithm will be 
discussed. 

3   Robustness of DNA-Based Clustering Algorithms 

The primary objective of clustering is to discover a structure in data by forming 
some numer of clusters or groups. Any clustering techniques evolve a nK ×  par-

tition matrix U (X) of a data set X, assuming that },...,,{ 21 nxxxX = , where 

each ix  is an element in Rm , is partitioned into the number, say K, of clusters 

(C1,C2,…,CK).  The partition matrix U(X) is represented as U =[ukj], k=1,…,K, and 
j=1,…,n, where ukj is the membership of pattern xj to cluster around Ck.  In crisp 

partitioning, the following condition holds: ukj = 1 if kj Cx ∈ ; otherwise, ukj = 0.  

In general, clustering can be categorized broadly into two classes; partitioning and 
hierarchical clustering. 

Maulik and Bandyopadhyay address two fundamental questions that should be 
considered in any typical clustering solution; 
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How many clusters should be actually presented in the given data? 
How real or good the clustering itself is? 
Based on these two questions, clustering method needs to determine the num-

ber of clusters and also the goodness or validity of the obtained clusters. 
Additionally, robustness in executing clustering algorithm is another critical is-

sue that has been discussed in these years among clustering researchers. Robust-
ness or stability of clustering algorithm is essentially measured by two aspects; 

i. Evaluation of changes in input data due to errors; and 
ii. The measurements of the differences in the resulting classification. 

Robustness can be defined as the ability of the systems or algorithms to handle 
stresses, pressures or changes in procedure or circumstance. In other words, ro-
bustness deals with the extent of a system or component to perform appropriately 
in the presence of invalid inputs or stressful environmental conditions. 

In soft computing, an algorithm cam be considered as robust if it continues to 
operate despite abnormalities in input, calculations. Formal technique, such as 
fuzz testing, is essential in providing robustness, as this type of testing involves 
invalid or unexpected inputs into the algorithms. Fuzz testing is a software testing 
technique that applies invalid, unexpected, or random data to the inputs of pro-
gram. Using this testing, if the program stops working (by crashing or failing 
built-in code assertions) the defect can be noted. In clustering research area, issue 
of robustness in executing clustering algorithm is very critical issue that has been 
discussed over years. 

To overcome this problem, Yu has suggested that three distortion types are; (i) 
small-sample effects; (ii) the presence of runs in the sample; (iii) the presence of 
Markov type dependence of class indexes. There are several methods for measur-
ing the robustness or stability of proposed clustering algorithms. For instance, 
Rand has proposed a method to measure the similarity between two different clus-
ters or partitions of the same set of an object.   

In Rand’s proposal, the measurement essentially considers how each pair of ob-
jects is assigned to cluster up in two different classifications. If any pair of the  
objects is placed together in some cluster in each of the classifications, or if the 
objects in the pairs are assigned to different clusters in both classifications, then 
this pair of objects is said to be similarly placed. In contrast, an object pair is de-
fined to be differently placed if the pair is in the same cluster in one classification 
and in different clusters for the other.   

Therefore, the objective of this chapter was to evaluate the robustness perform-
ance of two different DNA-based clustering algorithms that have been previously 
proposed. In evaluating the robustness of these proposed algorithms, three differ-
ent artificial data sets were employed. Similarly, a distance measurement was em-
ployed to observe the different between two sets of a result (i.e., before and after 
some noise is inserted). Furthermore, three different conventional clustering, 
namely as k-means, Fuzzy C-Means and Gustoffan Kessel algorithms and two va-
lidity indices were considered in this paper as a comparison with both DNA-based 
clustering algorithms.  
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4   Proximity Distance Approach 

Assuming that a certain sample or pattern is denoted by xi , where  i = 1,…,n. On 
the other hand, when dealing with vectors, it is typically denoted using boldface, 
say x, y or 1,…,n characterized by m features xij , j = 1,…,m. The distance between 

two patterns αx  and βx , D ( )βα xx , , comes in the form of : 
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The mutual distances between patterns are organized in the matrix form Δ: 
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Given the above matrix, the distances between successive pairs of patterns are 
afterwards transformed into the corresponding order values denoted here 

by ),( βα xxO . In essence, the distances are ordered and assigned to the corre-

sponding integer values. These values range from 1 to largest value as
2

)1( −nn
.  

The matrix arrangement is shown as follows: 
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Cβ Code xα Code Ordered distance O(xα , Cβ) Cβ Code 

Fig. 1 DNA encoding design for candidates of centre for each cluster group 

Some patterns were selected to serve as centres of the clusters, therefore, K 
clusters would be formed and they were considered clusters C1,……,CK , respec-
tively. At the early stage of the process, all patterns could serve as possible  
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candidates for centre of the corresponding groups (clusters). Based on the assump-
tion, the corresponding DNA coding scheme appears as illustrated in Figure 1. 

Code Cβ represents a sequence for potential centre patternβ. Meanwhile xα 

represents a pattern that may become a member of clusterβ, Order O(xα , Cβ) is a 
sequence that represents an ordered distance between pattern xβ and pattern xα  and 
the sequence is ended by a sequence that represents Cβ.  

In order to differentiate the candidate of the centre of each cluster and the 
member of the cluster group, a specific nucleotide was embedded when coding the 
candidate centre. This specific nucleotide is named as mark. The function of this 
mark is similar to its function in mutual distance approach. At the same time, all 
patterns can serve as a member of a supposed cluster and all patterns need to be 
represented by a DNA sequence as shown in Figure 2. 

 
Cβ Code SpecialMarking Code xα Code OrderedDistance O(xα , Cβ) Cβ Code 

Fig. 2 DNA encoding 

The coding scheme realized for members of cluster is started with candidate of 
centre (Cβ code) sequence with certain length, followed by (xα code) code for pat-
tern itself, followed by ordered distance between pattern of candidate of centre 
(O(xα, xβ)) and itself. Finally ends up with the sequence for candidate of centre 
(Cβ code) once more.  

For both design schemes, 8-mer of nucleotides is employed to represent the pat-
tern and special marking code. However, the specific DNA sequence with differ-
ent repeat numbers is employed to represent the ordered distance between pattern 
of centre and pattern itself. Consequently, the total length of DNA sequence for 
each pattern is different regarding to the different length of their distances. If two 
patterns are separated with large distance, they may contain large difference num-
ber of their DNA sequence. In case that the distance between 2 patterns is short, 
the length of DNA code is shorter since fewer times of its DNA sequence repeat 
of order distance part. 

According to the definition introduced above, the following procedures are con-
sidered to identify k clusters with their n patterns; 
All designed DNA sequences are placed into a test tube, which is marked with T0 .  

Identify the shortest DNA sequence in test tube T0 denote it as ( )βα xxO , .  

All DNA sequences represent ( ),*αxO and ( )βxO *,  are extracted from test 

tube T0 for all xi where i = 1,…, n and placed into a new test tube T1. 
Then, select the next shortest DNA sequence in test tube T0, denote it 

as ( )βα ',' xxO . 

All the related DNA sequences ( ( ) ( )βα '*,,,*' xOxO ) are extracted from test 

tube T0 and placed into another test tube named as T2. 
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Abstract ( ) ( )βαβα ',',,' xxOxxO , ),( βα xxO  and ( )βα ', xxO  from 

test tube T1 and put them into a new test tube named as T’1. 

If a shorter DNA sequence can be found in test tube T’1 than ( )βα ',` xxO , then 

mix the DNA sequences together from test tube T2 into T1. 
The process will be repeated until all the DNA code patterns in test tube T0 are 

consumptive. 
However, some DNA strands in T0 might not form a solution for a clustering 

group due to some errors that occurred during ligation and hybridization proc-
esses. For instance, the DNA strands may not contain DNA marking sequences as 
a centroid or DNA strands may not include all required patterns.   

Polymerase Chain Reaction (PCR) is a process where the DNA sequences re-
produce themselves to build double-stranded sequences. At the end of the process, 
all possible sequences were in a double stranded form. 

The role of affinity-purification with a magnetic beads system process is to pick 
only sequences, which include all the data required for a candidate of solution in the 
process of procedure 3 in the proposed algorithm.  In carrying out the process, the re-
searchers incubated a double stranded DNA sequence with Watson-Crick complement 
of data that was conjugated to magnetic beads. The process was repeated to generate 
sufficient pattern sequences (the process was repeated as much as the required number 
of patterns obtained) to ensure all patterns were included and put them into T1. 

Besides, only sequences that included all patterns as defined at the beginning of 
the process were available in T1. However, in the ligation and hybridization proc-
ess, it might happen that some sequences may not be able to be a clustering solu-
tion (meaning, there is no marking in sequences) due to some errors. Hence, only 
the sequences that were marked in the test tube could be considered a solution. 
Another process of affinity separation by using magnetic beads was executed to 
ensure that only the marked sequences will undergo for the next process. 

In this process, the complementarity of marking sequences was attached to 
magnetic beads to check the availability of marking sequences in each strand. At 
this point, only the sequences that contain the marking were selected and separate 
them into T2. 

In order to find out the proper result in clustering, a gel electrophoresis tech-
nique was simulated to differentiate size of the sequences.  The shortest DNA se-
quence was referred the best clustering that could be obtained from the data given. 
After determining the shortest DNA sequence from T2, another observation proc-
ess was required to identify the included amount of marks as well as to determine 
the data point that matched to each cluster group. 

5   Robustness in Clustering 

In this section, the evaluation of robustness for both of the proposed method of 
DNA-based clustering algorithm and other conventional clustering algorithms, 
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will be discussed by comparing the content of evaluation approach and obtained 
results.  

5.1   Dataset and Parameter Implementation 

All the simulated data were randomly generated. Two of the three data sets were 
obtained from other places, while the other one was newly generated at random. 
As shown in Figure 2 above, dataset X1 as well as dataset X3 had a significant 
amount of overlap. On the other hand, dataset X2 was well separated. All data are 
plotted in a 2D scheme, as shown in Figure 2. This figure illustrates that noise in 
the data was inserted into either the x- or y-axis. Several patterns were selected for 
the addition of some noise, to get a new location of patterns.   

Both DNA-based clustering algorithms were executed to obtain the results. 
These results were compared with the first results, where patterns were located at 
the original locations. Figure 2 shows the original location (X1-X3) and the new 
location (X1’-X3’) obtained after the addition of noise to each pattern in the x- or 
y-axis. 
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Fig 2 Data sets employed in this chapter 

5.2   Robustness Evaluation of DNA-Based Clustering 

DNA-based computation is a different problem-solving method, compares to sili-
con computer procedures. New approach relies on self annealing characters of 
DNA and the related DNA experiments to obtain its result. It is completely  
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different from other techniques such as classical calculation or computer simula-
tion. Thus, the stability of biological experiment procedure is the most important 
part in ensuring DNA computation is capable of generating a robust result. 

As discussed earlier, several biological and chemical factors (e.g., concentra-
tion control and temperature) might influence the stability of the biological ex-
periment. Theoretically, the biological and chemical factors will affect results of 
experiments a lot, even if the same data set and algorithms were employed. How-
ever, the results should still be within almost the same range of values. 

This paper examines the reliability and acceptability of two different proposed 
DNA-based clustering algorithms. This validity of results obtained by both tech-
niques is scrutinized. Three different sets of data were employed to simulate the 
result. As stated at the beginning of the paper, two well-known conventional clus-
tering algorithms (k-means and FCM) were also considered to show the accept-
ability and validity of results from these two DNA-based clustering algorithms. 
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Fig. 3 Original location (X1-X3) and new location (after adding noises; X1’-X3’) for sam-
ple patterns. A. Data. 
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To evaluate the robustness of the proposed DNA-based clustering algorithms, 
the following method was employed. Two different results were simulated for 
each data set, where the first result represented a preliminary data set and the sec-
ond result was obtained from the data set after the addition of some noise. Then, 
the differences between these two results were observed and studied to identify the 
extent of which these two clustering DNA-based computation techniques could 
deal with some error or noise from data input. Our proposed methods were in 
comparison to another two conventional clustering algorithms.  The patterns as 
shown in Figure 2 are employed to obtain the result in order to examine the ro-
bustness of proposed algorithms. 

All the simulated data were randomly generated. Two of them were extracted 
from [2][3], while another was newly generated at random. Using all of the dataset, 
we changed the number of groups and the overlapping amount in such a way that: 

 
Dataset X1 had the y- and z-axes as “non-informative”, this dataset was adopted 
from [2] and [3]. 
Dataset X2 had only the z-axes as “non informative”. 
Dataset X3 had no prevalent discriminate axes. 

 
As shown in Figure 3 above, dataset X1 had a significant amount of overlap. 

The same was true for dataset X3. On the other hand, dataset X2 was well sepa-
rated. All data are plotted in a 2D scheme, as shown in Figure 3. This figure illus-
trates that noise in the data was inserted into either the x- or y-axis. Several pat-
terns were selected for the addition of some noise, to get a new location of 
patterns.   

Then, both DNA-based clustering algorithms were executed to obtain the re-
sults. These results were compared with the first results, where patterns were lo-
cated at the original locations. Figure 2 shows the original location (X1-X3) and 
the new location (X1’-X3’) obtained after the addition of noise to each pattern in 
the x- or y-axis. 

6   Results and Discussion 

Clustering algorithms may produce different results from each other, even though 
the same data sets are employed. The input parameters can extremely amend the 
behavior and execution of the algorithm. 

In addition, a clustering algorithm might produce different results when noise is 
added to the original data patterns. Thus, results from robust clustering algorithms 
should not be influenced by accumulated noise, in order to generate valid results. 
The aim of examining cluster validity was to evaluate the result of a clustering al-
gorithm proposed in [2][3].  

Therefore, it is important to ensure that the proposed algorithm is acceptable. 
Results obtained from newly generated data patterns were compared to the origi-
nal results. Clustered groups were calculated based on distances between patterns 



86 R.A. Bakar, C. Yu-Yi, and J. Watada
 

and the cluster centroid. These distances were computed in Euclidian distance for 
both approaches.   

Figure 4 shows the results of clustered groups for data patterns before the addi-
tion of error. The approach solution cloud be viewed using a mutual distance. It is 
important to note that the results for samples X1, X2, and X3 are denoted as a, b, and 
c. The results for datasets X1’, X2’, and X3’ are denoted a’, b’, and c’, respectively.  
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The left and right sides represents the obtained results before and after adding noises to the 
original data, respectively. 

Fig. 4 Results of the mutual distance order approach 

On the other hand, Figure 5 shows the result obtained by a proximity approach. 
Here the original data patterns are denoted by a, b, and c. Charts a’, b’, and c’ 
show the result obtained from a proximity approach after the addition of some 
noise into the data patterns. Figures 6 and 7 show the results obtained via both 
conventional clustering algorithms (FMC and k-means). 

DNA-based clustering showed similar results for clustered groups of patterns, 
both without and with the addition of noise, as shown in Figures 4 and 5. In these 
figures, pattern sets X1 and X3 are represented by a, a’, c, and c’, respectively.  
However, for sample X2, denoted by b and b’, a different member of each cluster 
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was identified (b) without noise and (b’) with noise. Here c represents the result 
without noise and c’ the result with noise. Although the pattern information 
changed on the y-axis, this situation did not affect the end result, as shown in Fig-
ures 4(a-a’) and (b-b’), as well as in Figures 5(a-a’) and 5(b-b’).  However, if 
noise was inserted in the x-axis, as shown in Figures 4(c), 4(c’), 5(c), and 5(c’), 
the results were influenced in such a way that some cluster members were 
changed. 
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 c              c’ 

The left and right sides represents the obtained results before and after adding noises to the 
original data, respectively. 

Fig. 5 Results of the proximity approach 

Figure 6 shows the result obtained by FMC, while Figure 7 shows the result ob-
tained by k-means. From Figures 6(a’) - (c’) and 7(a’) - (c’), it is apparent that, for 
datasets that contain overlapping patterns, both of the algorithms could not accu-
rately cluster all of the patterns into unique groups.  

Some patterns could not be assigned to any specific groups or patterns that had 
been collected into two different groups. For example, the result for FCM in  
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  b     b’ 

 

  c        c’ 

The left and right sides represents the obtained results before and after adding noises to the 
original data, respectively. 

Fig. 6 Result show of Fuzzy C-Means 

Figure 6(a), which represents X1, shows that one of the patterns could not be as-
signed to any other groups. It is the same with X3, where three of the patterns 
could not be assigned into any cluster groups, as in Figure 6(c). However, for X2, 
where the patterns were well separated, k-means was able to properly cluster them 
up into optimal groups. 

Additionally, Figures 6(a’) - (c’) show the results obtained by FMC algorithms 
for datasets after the insertion of some noise. For X2’ [Figure 6(b’)], where the 
patterns appear to be well separated from each other, FMC was able to group all 
patterns into unique cluster groups.   

However, for datasets X1’ and X3’ [Figures 6(a’) and (c’)], some cluster mem-
bers changed from their original settings. For dataset X3’, one pattern could not be 
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assigned to any group. For example, different numbers of cluster members were 
observed between datasets X1’ and X1. As shown, the number of members for 
group C was three, when the preliminary sample was considered. This was also 
true for group D. However, when considering dataset X1’, the number of group C 
members increased to seven. Group D, however, experienced a decrease in mem-
ber number from six to three. 

Figure 7 illustrates the results obtained by k-means clustering algorithms. Con-
sidering the same data patterns and noise, Figures 7(a) – (c) demonstrate the re-
sults before noise insertion. Figures 7(a’) - (c’) present the results obtained after 
noise insertion. From Figures 7(a) - (c), it is apparent that k-means was capable of 
clustering data properly only if the patterns were well separated, as shown in Fig-
ure 7(b). However, compared to FMC, k-means was also able to cluster data per-
fectly, even when the patterns had some overlapping data, as shown in Figures 
7(a) and (c). 

 
 

 
a       a’ 

 
b                         b’ 

 
     c                    c’ 

The left and right sides represents the obtained results before and after adding noises to the data, re-

spectively. 

Fig. 7 Results of K-Means 
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In this study, after the insertion of noise, patterns were assigned into two different 
groups (groups B and C). This was also true for dataset X3, where k-means was un-
able to assign one of the patterns to any cluster group. Compared to DNA-based 
clustering, FMC and k-means did not select one of the patterns as a centroid for each 
cluster group. However, the centroid was identified by the central point of the group. 
In this situation, if attempting to solve a practical real-life problem, such as a distri-
bution center problem where it is necessary to select a city from the list as a cen-
troid, it is essential to not point out a place as the centroid for the cluster group.  

Other than this, the proposed algorithms for DNA-based clustering were capable 
of grouping all patterns in both circumstances, with or without noise, into unique 
cluster groups. In conventional clustering methods, a few patterns are sometimes 
unable to be grouped into an exclusive cluster group, owing to their limitations. 
Hence, these ungrouped patterns should undergo some cleaning or normalization 
process in order to adequately group them. Nonetheless, some other techniques, such 
as standard deviations or geometric means, can be employed to solve the problem of 
these ungrouped data in order to improve the clustering results.  

7   Conclusions 

This paper provided detailed information on a new clustering algorithm using 
DNA computing. There are two main issues were discussed in this paper; (i) 
evaluation of robustness by considering noise input data; and (ii) evaluation of 
performance and validity of obtained results from statistical point of view. In or-
der to achieve this objective, three different conventional clustering algorithms 
and two validity indices are considered in this study were compared with proposed 
DNA-based clustering algorithms. 

This paper also explained the procedures of employing the bio-chemical tech-
nique in solving the clustering problem. The experimental results were presented to 
demonstrate the feasibility of the approach in determining the node that should be-
come the centroid for each clustering group without considering any prior informa-
tion regarding the numbers of clusters provided at the beginning of the process.   

This occurred due to the process of ligation and hybridization with Watson-
Crick complementarily that are able to produce all the feasible end solutions in the 
parallel way. Through all these possibilities, all the possible numbers of clustering 
groups are generated. Then, the gel electrophoresis process will sort these results 
based on the length of the DNA strand itself. The shortest strand should become 
the best solution. However, if the user has their own criteria, the user can choose 
their own best results based on the length of the strands. 

One of the issues that should be considered in designing a clustering algorithm 
is the robustness of the algorithm itself. In this study, all DNA sequences that rep-
resent patterns in the final strand are calculated and scrutinized. Of course, if only 
the small number of patterns is considered, the result might be eventually affected 
if any inappropriate sequences interfere during the process. 
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Though DNA might be time-consuming, however, DNA needs only single time 
process to produce all the feasible solutions through the ligation and hybridization 
process without undergoing any repetition process. When considering a large 
number of data, DNA computing approach is very effective in comparison to other 
techniques.  However, in dealing with small-medium data, DNA computing might 
not be the best method to be employed. The reason is that DNA computing re-
quires huge processing time as in comparison to other techniques. Hence, it is in-
appropriate for small or medium size of data. 

In this work, we studied the influence of some error or noise on patterns ob-
tained by a DNA computing approach in clustering. Two DNA computing algo-
rithms, the mutual distance approach [2] and proximity approach [3], were em-
ployed as case studies. 

Based on the findings from both of these approaches, it has been confirmed that 
noise occurring on the y-axis does not affect the clustering result. Nevertheless, 
some changes in information for patterns on the x-axis will influence the end clus-
tering result. Because any pattern changes on the x-axis will cause significant 
changes in the pattern position. On the other hand, changes on the y-axis do not 
result in such obvious changes in pattern position.  

Therefore, it can be concluded that a small change in pattern information will 
not affect the end results. However, if pattern information is significantly 
amended, changes in cluster members will be resulted in. Employing DNA proce-
dures is highly sensitive to any change in patterns. However, DNA computing can 
be proposed for reliable clustering algorithms, the results through this proposed 
techniques are acceptable even noise existing. 

The robustness of clustering results is an important concern in the context of 
clustering research. A valid result enables the employment of the proposed tech-
nique in solving other application problems. Based on this study proved that the 
proposed algorithm is sufficiently robust in dealing with some unexpected errors, 
mainly concerning the data input. There are different points of view regarding re-
liability in the research area of DNA computing, compared to the clustering re-
search field. However, this paper aimed to focus on validating clustering results 
through the DNA computing procedure, to prove the robustness of clustering algo-
rithms when dealing with some error or noise in the data.  

However, if the sufficiently large number of patterns is considered, the small num-
ber of inappropriate sequences such as outliers is not affecting the results of clustering. 
It is important to note that, that instead of distances themselves the study also consid-
ered ordering, which is far more robust than numeric values of distances. 

References 

[1] Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. 
Science 266(11), 1021–1024 (1994) 

[2] Bakar, R.B.A., Watada, J., Pedryzc, W.: DNA approach to solve clustering problem 
based on a mutual distance order. Biosystems 91(1), 1–12 (2008) 



92 R.A. Bakar, C. Yu-Yi, and J. Watada
 

[3] Bakar, R.B.A., Watada, J.: A proximity approach to DNA based clustering analysis. 
International Journal of Innovative Computing, Information and Control 
(IJICIC) 4(5), 1203–1212 (2008) 

[4] Oehler, K.L., Gray, R.M.: Combining image compression and classification using 
vector quantization. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 17(5), 61–473 (1995) 

[5] Shopbell, P.L., Britton, M.C., Ebert, R.: Making the most of missing values: object 
clustering with partial data in astronomy, astronomical data analysis software and sys-
tem XIV. ASP Conference Series, vol. 30 (2005) 

[6] Jiang, T., Tuzhillin, A.: Segmenting customers from population to individuals: Does 
1-to-1 keep your customer forever. IEEE Transaction on Knowledge and Data Engi-
neering 18(10), 1297–1311 (2006) 

[7] Jimmy, L., Karakos, D., Fushman, D.D., Khudanpur, S.: Generative content models 
for structural analysis of medical abstracts. In: Proceedings of the 2006 Workshop on 
Biomedical Natural Language Processing (BioNPL 2006), New York City (June 
2006) 

[8] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computer Sur-
veys 31(3) (September 1999) 

[9] Pedrycz, W.: Knowledge-based clustering:From data to information granules. Wiley 
Interscience, Hoboken (2005) 

[10] Franti, P., Xu, M., Karkkainen, I.: Classification of binary vectors by using ∆ SC dis-
tance to minimize stochastic complexity. Journal of Pattern Recognation 24, 65–73 
(2003) 

[11] Lu, X.-g., Lin, et al.: Gene cluster algorithm based on most similarity tree. In: Pro-
ceedings of the Eighth International Conference on High-Performance Computing in 
Asia-Pacific Region (HPCASIA 2005), Beijing, November 30-December 3 (2005) 

[12] Cleju, I., Franti, P., Wu, X.: Clustering Based on Principal Curve. In: Kalviainen, H., 
Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 872–881. Springer, 
Heidelberg (2005) 

[13] Jain, A.K., Law, M.H.C.: Data clustering: A user’s dilemma. In: Pal, S.K., Bandyop-
adhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, 
Heidelberg (2005) 

[14] Volfovsky, N., et al.: A clustering method for repeat analysis in DNA sequences, Ge-
nome Biology Publication, Citing Internet sources (2001),  
http://genomebiology.com/2001/2/8/research/0027 

[15] FitzGerald, P.C., Shlyakhtenko, A., Mir, A.A., Vinson, C.: Clustering of DNA se-
quences in human promoters. Cold Spring Harbor Laboratory Press (2004); ISBN 
1088-9051/04, http://www.genome.org 

[16] Sang, L., et al.: CLAGen: A tool for clustering and annotating gene se-quences using 
a suffix tree algorithm. BioSystems 84, 175–182 (2006) 

[17] Joseph, Z.B., Gifford, D.K., Jaakkola, T.S.: Fast optimal leaf ordering for hierarchical 
clustering. Bioinformatics 17(suppl.1), S22–S29 (2001) 

[18] Kim, S.Y., Lee, W.L., Bae, J.S.: Effect of data normalization on fuzzy clustering of 
DNA microarray data. BMC Bioinformatics 7,134 (2006),  
http://www.biomedcentrel.com/1471-2105/7/135 

 



Advances in Automated Neonatal Seizure
Detection

Eoin M. Thomas, Andrey Temko, Gordon Lightbody, William P. Marnane,
and Geraldine B. Boylan

Abstract. This chapter highlights the current approaches in automated neonatal
seizure detection and in particular focuses on classifier based methods. Automated
detection of neonatal seizures has the potential to greatly improve the outcome of
patients in the neonatal intensive care unit. The electroencephalogram (EEG) is the
only signal on which 100% of electrographic seizures are visible and thus is consid-
ered the gold standard for neonatal seizure detection. Although a number of meth-
ods and algorithms have been proposed previously to automatically detect neonatal
seizures, to date their transition to clinical use has been limited due to poor per-
formances mainly attributed to large inter and intra-patient variability of seizure
patterns and the presence of artifacts. Here, a novel detector is proposed based
on time-domain, frequency-domain and information theory analysis of the signal
combined with pattern recognition using machine learning principles. The proposed
methodology is based on a classifier with a large and diverse feature set and in-
cludes a post-processing stage to incorporate contextual information of the signal. It
is shown that this methodology achieves high classification accuracy for both classi-
fiers and allows for the use of soft decisions, such as the probability of seizure over
time, to be displayed.

Keywords: Neonatal EEG analysis, biomedical signal classification.

1 Introduction

Neonatal seizures are estimated to occur in 1-5% of babies [1] and can represent
an important sign of neurological dysfunction. The main cause of neonatal seizures
is asphyxia [2], with low birth weight and premature babies particularly at risk [3].
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Clinical signs may be absent in as many as 85% of neonatal seizures, thus requiring
for the electroencephalogram (EEG) in order to detect all seizures [4]. This has led
to the EEG becoming the gold standard for neonatal seizure detection [5]. Neonatal
EEGs are interpreted by neurophysiologists who are generally not available in the
neonatal intensive care unit (NICU) on a 24 hour basis. Therefore, the main aim of
an automated neonatal seizure detection system is to assist clinical staff in a NICU
in interpreting the EEG. An automated seizure detector would also prove useful in
highlighting areas of interest for review by a clinical neurophysiologist, in order to
reduce the work-load of the clinician.

The background patterns of normal, full term babies are in the delta (0-4Hz), theta
(4-7Hz), alpha (7-12Hz) and beta (12-30Hz) bands. Patterns range from continuous
delta and theta activity when the child is awake to tracée alternant (bursts of delta,
theta, alpha and beta activity alternating with theta and alpha activity) patterns dur-
ing quiet sleep [6]. In sick patients, such as patients with seizures, the background
activity is abnormal. For instance, in severely sick patients the background EEG
may be continuously low amplitude (<30μV) or exhibit burst-suppression patterns.
Furthermore, medication such as anti-epileptic drugs may be a confounding factor in
the interpretation of the EEG [6]. An example of background EEG in a sick patient
is shown in Figure 1.

Neonatal seizures in EEG are defined as periods of increased periodicity for a
duration of over 10 seconds [7]. These events can be localized to a single channel
but are more frequently observed on a number of channels simultaneously. Kitayama
et al. [8] reported that the frequency range of neonatal seizures is between 0.5-13Hz
with the dominant components in the 0.5-6Hz range, based on wavelet analysis. An
example of seizure EEG is shown in Figure 2.

The EEG is also subject to artifacts, both physiological and environmental. Ar-
tifacts occur due to movement of the patient, handling of the patient, mains noise
contamination, electrode detachment and respiration among others. These events
are problematic for seizure detection as an artifact may mask a seizure trace, or

Fig. 1 Background EEG in a sick patient. In this example, the EEG shows primarily delta and
theta activity
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Fig. 2 Example of seizure EEG. Here, a repetitive spike pattern can be seen on channels
F4-C4, C4-02, T4-C4 and C4-Cz.

conversely, an artifact may appear as a repetitive trace and be misinterpreted by the
automated detector as a seizure. For a human expert, it may be possible to discern
artifacts using additional recordings such as video, the electrocardiogram and a res-
piration trace.

The majority of approaches to neonatal seizure detection can be grouped into two
classes: threshold based methods and classifier based methods. Threshold based
methods consist in analysing the EEG using a small number of descriptors from
which a decision is made using empirically derived thresholds. Recent examples of
this methodology include the work of Navakatikyan et al. [9] and Deburchgraeve
et al. [10]. Navakatikyan et al. generated features from the peaks and troughs of
successive waves and additionally extracted a correlation coefficient between suc-
cessive waves. A threshold based decision making routine was then used to generate
initial decisions from these features, followed by a postprocessing scheme.

Deburchgraeve et al. [10] proposed a system composed of two independent rou-
tines. One routine analyses the “spikiness” of the EEG, while the second analyses
the EEG for repetitive activity. A drawback of threshold based approaches is that
controlling the trade-off between good detections and false detections is compli-
cated by the multiple thresholds involved in the decision stage.

Classifier based methods employ elements of pattern recognition to classify a
set of features using a data-driven decision rule. Aarabi et al. used feature selec-
tion methods to select an optimal subset of features for use in an Artificial Neural
Network (ANN) [11] and, more recently, trained an ANN to classify neonatal EEG
into several background states and two seizure states [12]. Greene et al. [13] inves-
tigated linear, quadratic and regularised discriminant analysis for neonatal seizure
detection. Recently, Mitra et al. [14] used neural networks as part of a neonatal
seizure detector; however, a large number of heuristic rules and thresholds are also
employed making it unclear which aspects of the detector contributed towards the
final decision.

Classifier based methods have several advantages over threshold methods. The
trade-off between good detections and false detections can be controlled via a single
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parameter. This allows for the system to be tuned to a particular application. For
instance, a system used for reviewing records may be set to obtain a higher rate
of good and false detections than a system used for real time monitoring, due to
false detections being less critical during review. Furthermore, novel features can
be easier to incorporate into a classifier based system than into a threshold based
system.

Support vector machines (SVMs) and Gaussian mixture models (GMMs) are pre-
sented here as examples of discriminative and generative approaches to classifica-
tion. Recent work on statistical machine learning has shown the advantages of dis-
criminative classifiers such as SVMs [15] in a range of applications. Examples of
seizure detectors based on SVMs can be found in the field of epileptic seizure de-
tection in adults such as [16, 17, 18]. An SVM was shown to produce good results
in a patient dependent neonatal seizure detection system [19], however, this study
was limited to only one patient.

Classifiers based on GMMs have been validated in fields such as speech recogni-
tion [20] and have been employed to classify EEG in biomedical applications such
as brain computer interfaces [21] and person authentication [22]. A seizure detector
based on GMMs was proposed by Meng et al. [23] to accurately classify intracranial
recordings from adult patients.

2 Data and Experiment Setup

The dataset employed in this study was comprised of recordings from 17 fullterm
neonates (gestational age range 39-42 weeks) produced in Cork University Mater-
nity Hospital, Cork, Ireland. A Viasys NicOne video EEG machine was used to
record multichannel EEG at 256Hz using the 10-20 system of electrode placement
modified for neonates. In this study, 8 bipolar EEG channels are used (F4-C4, F3-
C3, T4-C4, C4-CZ, CZ-C3, C3-T3, T4-O2, T3-O2). The dataset contained over
267 hours of EEG. A total of 705 seizure events were annotated by 2 experienced
neonatal electroencephalographers, further information on the dataset can be found
in Table 1.

The nature of problem is such that patient-specific data is not available to the
detector prior to testing. Thus, it is important to retain this characteristic in the ex-
perimental setup. Furthermore, due to the limited availability of neonatal EEG data,
it is important to maximise the use of data. For these reasons, the performance of the
detector is assessed by patient-independent leave-one-out (LOO) cross-validation.
The training dataset is obtained from 16 patients and the remaining patient consti-
tutes the testing dataset, this process is then repeated until each patient has been
used as the test subject. The mean result is then reported, this can be viewed as an
appropriate estimate of the performance of the system on unseen patients, as LOO
is known to have low bias despite high variance [24].

The training data used for each classifier is determined by two factors: availability
and processing time. For the seizure class, per channel annotations are required to
indicate which channels the seizure event occurs on and thus which channels should
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Table 1 EEG dataset for the cross-validation set

Patient Record length Seizure events Mean seizure duration
(hours) (minutes)

1 18.23 17 1.50
2 24.74 3 6.17
3 24.24 149 2.29
4 26.10 60 1.05
5 24 49 5.90
6 5.69 41 1.16
7 24.04 6 1.07
8 24.53 17 5.95
9 24.04 156 5.27

10 10.06 25 5.44
11 6.19 15 5.44
12 12 29 2.18
13 12.13 25 4.10
14 5.48 11 8.57
15 12.16 59 2.08
16 7.63 31 10.39
17 6.64 12 8.54

Total 267.90 705 -

be used in training. However, neonatal EEG is not typically annotated in such detail
as it is time consuming for the clinician. In this study, 2 minutes of seizure data
are annotated per channel for each patient, this equates to ∼1500 data points during
training. Thus, the seizure class training data is identical for both classifiers.

For the non-seizure class, per channel annotations are not required as a non-
seizure annotation implies that all channels are non-seizure. Thus the number of
non-seizure training exemplars is limited only by the training time. For SVM, the
training time rises exponentially with the number of data. Furthermore, SVMs are
known to perform well with sparse datasets, thus a high number of training data
are not required [15]. Here, ∼104 points are randomly selected from all training
patients to make up the training dataset. In contrast, the training time for GMMs
increases more linearly with data. Furthermore, better results are obtained when
the PDF of the training data approaches the true PDF of the data as the GMM is a
density estimator. Thus, increasing the size of the training dataset results in a sample
PDF which better approximates the true PDF of the data. Here, ∼106 non-seizure
datapoints are used to train the non-seizure GMM.

3 Probabilistic Classification Framework

The system is designed using a late integration architecture, where each EEG
channel is processed and classified independently prior to combination of the



98 E.M. Thomas et al.

Preprocessing
&

Feature
Extraction

C
lassification

A
verage

M
oving

T
hreshold Output

Multichannel

EEG

Postprocessing stage

OR Collar

feature vectors
Single channel

of seizure
Probability Binary decision

vectors

Fig. 3 Neonatal seizure detector system diagram. The Classification block is explained in
further detail in section 3.2.

decisions as seen in Fig. 3. The following section gives an overview of each stage
of the detector.

3.1 Preprocessing and Feature Extraction

In order to reduce the computational time and memory load of the feature extraction
stage, the EEG is downsampled to 32Hz with an anti-aliasing filter set to 12.8Hz.
The EEG is then segmented into epochs using an 8s sliding window with 50%
overlap.

The features were primarily obtained or modified from a feature comparison
study by Greene et al. [25]. A total of 55 features are extracted from each epoch
and are briefly described here under the headings of frequency domain, time do-
main and information theory techniques.

Frequency-domain features: A number of features are extracted from the power
spectral density (PSD) of the epochs, and are thus considered frequency-domain fea-
tures. The (PSD) of each epoch is obtained using a 256 point fast Fourier transform
(FFT).

The power in the PSD from 0Hz to 12Hz is extracted to quantify increases in
the power of the EEG, this is referred to as the total power. Analysis of the power
in specific subbands has been validated in adult studies [26, 16]. Here, the power
in bands with a width of 2Hz is extracted from the PSD with an overlap of 1Hz
between bands, e.g. 0-2Hz, 1-3Hz, etc. In addition, the power bands are normalised
by the total power in order to minimise the effect of high power artefacts. Both
normalised power bands and non-normalised power bands are used as features. The
dominant-peak frequency as proposed by Gotman et al. [27] is extracted from the
PSD.

Three features are extracted based on spectral edge frequency (SEF), defined as
the frequency under which a certain percentage of the power in the PSD lies. The
three features are calculated corresponding to 80%, 90% and 95% of the power in
the PSD. The entropy of the PSD, referred to as spectral entropy, is used to give
measure of the complexity of the PSD, using the same method as Greene et al. [25].
A final frequency domain feature is calculated not from the FFT but rather based on
wavelet decomposition. The use of wavelet analysis has been validated by [8]. The
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Daubechy 4 wavelet is used to decompose the EEG into 8 coefficients, the energy
in the 5th coefficient corresponding to 1-2Hz is used here as a feature.

Time-domain features: Aarabi et al. [11] performed relevance and redundancy
testing of a large set of simple features. Many of these features came from simple
statistical analysis of the epoch or the first and second derivative of the epoch. Here,
a number of features selected during relevance and redundancy testing are used.
These include the root mean squared amplitude along with the skewness and kur-
tosis of the epoch. The variances of the first and second derivative of the epoch are
calculated. The number of zero crossings is calculated from the epoch and from the
first and second derivative of the epoch.

Additionally, a number of time domain features were implemented based on the
feature comparison work of Greene et al. [25]. The number of maxima and minima
from each epoch. Hjorth [28] designed 3 parameters, activity, mobility and com-
plexity, for EEG analysis which are used as features here. Activity is simply the
variance of the signal. Mobility is the standard deviation of the first derivative of
the signal divided by standard deviation of the signal. Complexity is the standard
deviation of the second derivative of the signal divided by the standard deviation of
the first derivative, all of which is divided by the mobility of the signal.

Features used for epileptic event detection in adults are also employed such as
nonlinear energy and curve length. Nonlinear energy was used by D’Alessandro
et al. [29] for seizure prediction in epileptic patients. Curve length, or line length,
was proposed by Esteller et al. [30] as an indicator of seizure onset. The final time
domain features extracted from the EEG are based on autoregressive modelling. An
autoregressive model is fitted to the first half of the epoch, the residual prediction
error is then obtained from the second half of the epoch and used as a feature. This
technique is used to obtain nine features by using nine different model orders (from
1 to 9).

Information theory features: In a study by Faul et al. [31], results of ANOVA
tests found that information based features showed high separation between seizure
and non-seizure EEG. In this study, a number of features quantifying the complex-
ity of the EEG and showing highest separation in Faul et al. [31] are used. Shannon
entropy is computed from a histogram of the EEG epoch. Singular value decompo-
sition (SVD) entropy is extracted from the EEG For this feature, the EEG is first
embedded using a time delay of 1 and an embedding dimension of 20. The singular
value decomposition algorithm is applied to the embedded matrix yielding a set of
singular values. The entropy of the normalised singular values is then calculated as
a measure of the complexity of the EEG. Fisher information is also used as a feature
based on the singular values of the EEG, but this feature is less influenced by the
power in the signal than SVD entropy.

3.2 Classification

Two classifiers are compared for the decision making task: an SVM classifier and
a GMM classifier. The SVM is a type of discriminative classifier which maximises
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the distance from the decision boundary to the nearest datapoints (called support
vectors) in the training data. In contrast, the GMM is a type of generative classifier
which models the probability density function of a random variable as a weighted
sum of Gaussian distributions.

The SVM Classifier

Support vector machines are part of a family of discriminative classifiers known
as maximum margin classifiers. For the most basic case of classifying two lin-
early separable sets from data X = {x1, ...xn},xi ∈ ℜd with corresponding labels
Y = {y1, ...yn},yi ∈ {1,−1} the problem may be stated as finding the hyperplane
parameters ω and b satisfying:

yi(ωxi +b)≥ 1,∀i. (1)

A number of hyperplanes may satisfy this equation, however in order to obtain a
classifier with good generalization characteristics the margin between the hyper-
plane and the nearest points of each class, known as support vectors, should be
maximal. The margin is given by 2

‖ω‖ , thus the problem of finding the optimal hy-
perplane can be stated as follows:

minimise
1
2
‖ω‖2 , subject to yi(ωxi +b)≥ 1, ∀i. (2)

Data observed in real conditions is frequently inseparable. To account for this, the
decision boundaries can be softened by introducing a slack positive variable ξi.
However, to avoid the trivial solutions caused by a large ξi, we introduce a pe-
nalization cost in the objective function. The problem can thus be formulated as:

minimise
1
2
‖ω‖2 +C

n

∑
i=1

ξi , subject to yi(ωxi +b)≥ 1− ξi, ∀i, (3)

where C is a positive regularization constant which controls the degree of penaliza-
tion of the slack variables. For a non-linearly separable classification problem the
data must first be mapped onto a higher dimensional feature space where the data
are linearly separable. This is achieved via a kernel trick. The kernel can be thought
of as a non-linear similarity measure between two datapoints, e.g. support vector xi

and point x j. The kernel function used here is the radial basis function (RBF):

K(xi,x j) = e−|xi−x j |2/2σ (4)

The Gaussian kernel parameter σ from (4) and generalisation parameter C from (3)
are optimised over five-fold cross validation of the training dataset. The model used
in testing is then obtained over the full training dataset using this pair of parameters.

The output of the SVM is bounded between [0 1] via a sigmoid function whose
parameters are estimated on the training dataset as described in [32]. This is
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implemented both to produce an estimate of probability of seizure for the SVM
and to improve the final results. For unbalanced problems, such as seizure detec-
tion, decisions made with a threshold given by the sigmoid function were shown
to be significantly better than those obtained with the original threshold of zero ap-
plied to the distance to the separating hyperplane [32]. Additionally, the conversion
to probabilistic values facilitates the choice the desired operating point as the thresh-
old has to be chosen from the bounded interval [0 1]. A block diagram of the SVM
classification stage is given in 4.

Feature
Vector Function of Seizure

ProbabilitySigmoid
Score

Output

SVM
(RBF kernel)

Fig. 4 SVM classifier with probabilistic postprocessing

The GMM Classifier

The GMM classifier is a generative classifier, that is the classifier models the under-
lying probability density function (PDF) of each class. For this reason a GMM is
used per class to obtain the likelihood of class membership. The likelihoods are then
combined to create a probability of class membership based on Bayes’ theorem.

A GMM represents the PDF of a random variable, x ∈ ℜd , as a weighted sum of
k Gaussian distributions:

p(x|Θ) =
k

∑
m=1

αmp(x|θm), where
k

∑
m=1

αm = 1, and αm > 0,∀m. (5)

Here Θ is the mixture model, αm corresponds to the weight of component m and the
density of each component is given by the normal probability distribution:

p(x|θm) =
|Σm|−1/2

(2π)d/2
exp

{
−1

2
(x−μm)TΣ−1

m (x−μm)
}
. (6)

During training, the parameters α , μ and Σ are optimised iteratively via the Ex-
pectation Maximisation algorithm [33] in order to maximise the log-likelihood of
the model. Given a group of n independent and identically distributed samples
X = {x1,x2, ...,xn}, the log-likelihood corresponding to a mixture model Θ is given
by

L(X;Θ) = log
n

∏
i=1

p(xi;Θ) =
n

∑
i=1

log
k

∑
m=1

αmp(xi;θm). (7)

In the testing stage, a likelihood estimate is obtained for the seizure class, defined
by the model Θs, and for the non-seizure class, defined by the model Θn, as shown
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in Figure 5. The likelihood estimates are then combined to yield the posterior prob-
ability of seizure for the sample using Bayes’ theorem [34].

To account for the lack of discriminative information in the training of the GMM,
linear discriminant analysis (LDA) is used to preprocess the feature vectors. This
transform maximises the ratio of between class covariance to within class covari-
ance of the training data, yielding a set of discriminant vectors [35]. The set of
discriminant vectors is used to create a matrix transform in order to project the orig-
inal feature vectors into a new feature space. Directions of low discrimination are
subsequently removed from the LDA matrix, allowing for a reduction in the dimen-
sionality of the projected feature space, while retaining the discriminating ability
of the original space. It was found that a final feature dimension of 30 yielded best
results [36]. This transformation matrix is obtained over the training data and is then
used for the testing data. Here, a GMM with 8 full covariance Gaussian distributions
is used as in [36].

Probability
of SeizureTransform

Seizure Class

Non−Seizure Class

Equation
Bayesian

Likelihood

Likelihood

Transformed 
of Seizure

of Non−Seizure

Feature
Vector

Feature Vector

LDA

GMM

GMM

Fig. 5 GMM classifier with LDA preprocessing

3.3 Postprocessing

The probability of seizure obtained from the classification stage is postprocessed to
include contextual information. The postprocessing stage is highlighted in Fig. 3 as
it consists of multiple operations. First, the per channel probabilities of seizure are
filtered using a 15-epoch central moving average filter. This is performed in order
to smooth the probability of seizure vector and serves mainly to remove short false
positives. A seizure is declared on a channel if the filtered probability of seizure
exceeds a certain threshold, resulting in a binary decision for each epoch. The per
channel decisions are fused into a single decision vector where a seizure is declared
if found on any channel. Finally, the collar technique used in speech processing
applications is applied here. Seizure decisions are extended, or grown, from either
side by 40s to compensate for possible difficulties in detecting the start and end
of seizure events. The collar operation is useful in combination with the moving
average filter as the moving average filter may reduce the duration of detections
by smoothing the sharp onset and offset of events. An example of the effects of
postprocessing is shown for a single channel of EEG in Fig. 6.



Advances in Automated Neonatal Seizure Detection 103

0 20 40 60 80 100 120
0

0.5

1

Probability
of seizure

0 20 40 60 80 100 120
0

0.5

1
Moving
average
filter output

0 20 40 60 80 100 120
0

1Binary
decisions
after
threshold

0 20 40 60 80 100 120
0

1Binary
decisions
after collar

0 20 40 60 80 100 120
0

1
Ground
Truth

Time (minutes)

threshold

Fig. 6 Example of postprocessing on a single channel of EEG. The original probability of
seizure is shown first. This probability of seizure is then filtered using a 15 point central
moving average filter. A threshold is applied to obtain binary decisions. The binary decisions
are then expanded by 40s using the collar operation. The last figure shows the ground truth.
For this section all events are detected with one false detection at 10 minutes.

3.4 Metrics

The final output of the detector is a binary decision. In this decision, a 1 is referred to
as a positive decision and indicates seizure. A 0 is referred to as a negative decision
and corresponds to the non-seizure class. This binary decision vector is compared to
the ground truth (annotations from the electroencephalographer) in order to produce
a number of metrics.

Epoch Based Metrics

Epoch based metrics are obtained from the confusion matrix shown in Fig. 7, which
shows the number of True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) epochs.

Sensitivity is the percentage of seizure epochs correctly classified. Specificity
is the percentage of non-seizure epochs correctly classified. The sensitivity of the
detector can be increased by reducing the specificity of the system via a decision
threshold. A plot of sensitivity against specificity over the entire range of decision
thresholds is known as the Receiver Operating Characteristic (ROC) curve. The area
under the ROC curve is reported as the ROC area. Precision is the percentage of
correct positive decisions. Precision is plotted against the recall of the system to
obtain a Precision Recall (PR) curve, where recall is equivalent to sensitivity. The
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PR curve provides added information about the performance of the system, as it is
affected by unbalanced prior distributions of classes.

Sensitivity
(Recall)

=
T P

TP+FN
×100

Specificity =
TN

TN +FP
×100

Precision =
T P

T P+FP
×100

Event Based Metrics

Event based metrics are given for the “any overlap” grading scheme. If any positive
decision correctly overlaps with an annotated seizure event, the entire event is con-
sidered detected. In a continuous train of positive decisions, false positives do not
count as false detections provided there is any overlap between any positive decision
and an annotated seizure event. Succeeding false positive decisions are grouped as
a single false detection event. The Good Detection Rate (GDR) is defined as the
percentage of seizure events correctly detected. False detections are reported using
the False Detections per hour (FD/h) metric. The any overlap grading scheme can
result in misleading results if the false detections are of an extended duration. Thus,
the Mean False Detection Duration (MFDD) is also reported.

4 Results

4.1 Results Over All Patients

The mean ROC curves over all patients are plotted in Fig. 8, from which it can be
seen that the mean ROC area for the SVM system (96.3%) is marginally higher
than that of the GMM system (95.8%). However, both systems produce high values
of sensitivity and specificity over all patients. The difference between the systems



Advances in Automated Neonatal Seizure Detection 105

is more evident in the mean PR curves given in Fig. 9. The precision of the SVM
system is higher than that of the GMM system for low values of sensitivity. This
behaviour indicates that for low percentages of detected seizure epochs, a high per-
centage of positive decisions are correct, especially for the SVM. In the desired
sensitivity range of 0.7-1, however, the precision of the GMM system is comparable
to that of the SVM system.
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Fig. 8 ROC curve. The SVM ROC area is larger than that of GMM.
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Fig. 9 PR curve. This curve shows that the SVM precision is higher that the GMM precision,
particularly for lower values of recall.
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The event based metrics are presented in Fig. 10, in which the GDR is plotted
against the number of FD/h. For low FD/h, both classifiers achieve a GDR above
50%. Overall, it can be seen that the SVM system detects a higher percentage of
seizures than the GMM system for the same FD/h. The GMM system has a slightly
lower MFDD for 0.25 and 0.5 FD/h.
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Fig. 10 GDR as a function of FD/h for the SVM and GMM systems. The mean false detection
duration is shown for 0.25, 0.5, 1 and 2 FD/h in minutes.

In order to gain further insight into the performance of the systems, false detec-
tions and missed seizures were analysed with both systems operating at 0.5 FD/h.
Seizure events were grouped into 4 subsets according to the duration of the seizure
event. The percentage of seizures detected is shown for each subset in Fig. 11. There
is a clear trend indicating that the detection rate is linked to the duration of the
seizures (ts). In particular, seizures of duration less than one minute achieve less
than 60% good detection, whereas seizures lasting over 2 minutes achieve over 94%
good detection. It can be seen that the largest difference between the classifiers is for
seizures of duration less than one minute with the SVM correctly detecting 59.7% of
seizures compared to 45.1% for GMM. Thus, the SVM system is more sensitive to
short duration seizures. The GMM system however, correctly identifies more long
duration seizures (ts > 5min) than the SVM.

The EEG was reviewed for each of the 147 false alarms obtained with 0.5 FD/h to
determine the nature of the EEG patterns that resulted in the false detections. False
detections were visually grouped into 3 classes: artifact-free background activity,
artifact contaminated EEG and seizure-like activity. The occurrence of each class
can be seen in Fig. 12. The background activity group was comprised of epilepti-
form activity and delta activity. The most prevalent artifacts causing false detections
were electrode-detachment, respiration artifact and high-amplitude activity caused
by movement or handling of the patient. A small proportion of the false detections
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Fig. 11 Percentage seizures detected over all patients with FD/h set to 0.5. The total number
of seizures in each group from lowest duration to highest is 144, 166, 218 and 177.
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Fig. 12 Events resulting in false detections grouped according to type. Both systems are set
to 0.5 FD/h resulting in 147 false detections per system.

were found to correlate with seizure-like patterns. The GMM system detected 17 of
these events compared to 13 for the SVM system.

4.2 Results for Individual Patients

The ROC and PR areas obtained from both systems are shown for each patient in
table 2. It was shown in section 4.1 that the SVM system yields higher ROC area
over all patients. However, the GMM system obtains larger ROC areas for patient 2,
12 and 16. Three patients (1, 2 and 7) show low PR area for both systems. This is in
part a result of the highly unbalanced classes in the testing dataset of these patients
due to a low number of short duration seizures. In these patients in particular, the
SVM system achieves a larger PR area than the GMM system.
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Table 2 ROC and PR area per patient

Patient ROC area PR area
SVM GMM SVM GMM

1 0.915 0.88 0.412 0.328
2 0.946 0.955 0.622 0.397
3 0.969 0.963 0.927 0.925
4 0.985 0.977 0.784 0.775
5 0.915 0.915 0.713 0.715
6 0.946 0.941 0.742 0.747
7 0.98 0.951 0.317 0.09
8 0.97 0.963 0.808 0.77
9 0.955 0.958 0.974 0.974

10 0.938 0.929 0.879 0.861
11 0.993 0.985 0.979 0.97
12 0.971 0.976 0.81 0.809
13 0.974 0.971 0.903 0.888
14 0.985 0.985 0.966 0.967
15 0.978 0.976 0.942 0.938
16 0.965 0.973 0.986 0.988
17 0.988 0.983 0.972 0.969
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Fig. 13 ROC curves for patient 2
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Analysis of the decisions for specific patients reveals the complementary nature
of the classifiers. The ROC curves for patient 2 are presented in Fig. 13, these show
that no single classifier is preferable for over conditions for this patient. In this case,
the SVM system is preferable when high specificity is required, whereas the GMM
is preferable when high sensitivity is desirable.

A further example of the complementary nature of the classifiers can be found
in the probability of seizure plots shown for both classifiers over a section of EEG
in Fig. 14. These plots are generated by taking the maximum probability of seizure
over all channels for each epoch, as this channel combination is analogous to the ‘or’
operation performed after thresholding. Overall, the classifier agreement is high,
with the majority of seizure events (14/16) being detected with over 20% probability
of seizure by both classifiers. However, it can be seen that two seizure events show
disagreement among classifiers, with only the GMM detecting event (a) and only
the SVM detecting event (b).
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Fig. 14 SVM and GMM probabilities for a section of EEG from patient 6. Two events
have been marked, these represent 2 events (a and b) where there is disagreement among
classifiers.

5 Discussion

The system presented here is based on the pattern recognition framework of fea-
ture extraction followed by classification. The strength of this approach is that a
large number of features can be employed to overcome the complexity of neonatal
EEG. Furthermore, the non-linear classifiers are trained with background EEG data
which include artifact, such that all EEG patterns are modelled within the classi-
fier. This methodology has led to results which outperform other systems such as
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Navakatikyan et al. (87% GDR and 2 FD/h) and Mitra et al. (80% GDR and 0.86
FD/h), despite the lack of a dedicated artifact removal routine. Another advantage
of the system is that a soft decision may be outputted, as shown in Fig. 14, which
may provide more information to the clinician than binary decisions.

The inclusion of many features, particularly power based in this study, can lead
to redundancy as well as high correlations within the set. The SVM system is robust
towards this feature set due to the discriminative and non-parametric nature of the
classifier. For the GMM however, it was found that feature reduction techniques
were required to achieve similar performance to the SVM. In [36], it was shown
that either principle component analysis or LDA could be used to improve the GMM
results.

The mean ROC and PR curves show that the SVM system slightly outperforms
the GMM system over the epoch based metrics. The event based metric curves in-
dicate that the SVM system detects a higher percentage of seizures than the GMM
system for the same number of FD/h, although the duration of false detections is
lower for the GMM. From the analysis of missed seizures in Fig. 11 it can be seen
that the SVM system is more sensitive to seizures of short duration than the GMM
system, thus explaining the higher GDR scores obtained by the SVM system. Both
systems achieve a GDR of over 90% for all seizures of duration above 2 minutes.
However, shorter duration seizures, particularly those lasting less than 1 minute,
achieve lower GDR scores. It should be noted however, that the FD/h rate is set
to 0.5 which can be considered a stringent operating condition and is a lower false
detection rate than that reported by other systems in the literature.

The relatively low GDR scores for shorter seizures can be attributed in part to
the moving average filter length. This is due to background EEG reducing the mean
probability of seizure score for seizures lasting less than the length of the moving
average filter. The moving average filter is 15 epochs in length, corresponding to 64
seconds, as this length was found to maximise the mean ROC area for both systems
[37, 36]. It was found that misclassification of short duration seizures had a smaller
adverse effect on the ROC area than misclassification of longer seizures.

Despite the reduction in sensitivity for short seizures, the postprocessing scheme
used here was shown to significantly improve results in prior studies [36, 37].
The efficacity of the postprocessing routine can be explained due the assumptions
present in the classifiers. The vast majority of classifiers are based on the assump-
tion that the data is independent and identically distributed (i.i.d.). However, within
a short time frame the datapoints are not independent as the EEG is a time series.
Thus, it is possible to incorporate contextual information using neighbouring epochs
(in time) and prior knowledge of the duration of seizure events. This type of post-
processing can be seen in the works of Gotman et al. [27] who use a 30s gap closing
procedure, Mitra et al. [14] who use a set of rules for growing candidate seizures
and Navakatikyan et al. [9] who use a smoothing and gap closing procedure.

For a seizure detector to be viable for implementation in the neonatal intensive
care unit, the number of false detections should be very low. From the analysis of
false detections, it can be seen that false alarms are mostly due to both background
activity and artifact contamination of the EEG record. The false alarms caused by
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background activity were predominantly due to short runs of ’epileptiform’ (peri-
odic sharp activity) and delta activity. Epileptiform activity is a pattern resembling a
seizure but which is not prolonged (less than 10 seconds) and was often found to be
localized to one EEG channel. In some patients, particularly those in status epilep-
ticus, the background EEG can alternate between these epileptiform discharges and
suppressed activity for a period of time. Delta activity was found to trigger false
alarms when the background patterns became more rhythmic.

Electrode detachment was found to be the most predominant cause of false de-
tections among artifacts for both the SVM and GMM system. This artifact is char-
acterised by a large 50Hz component as the electrode becomes contaminated with
electrical noise from the environment. The 50Hz component is removed via lowpass
filtering, however, other environmental signals of lower frequency are preserved in
the recording and cause false alarms. Respiration artifact is repetitive in nature and
thus is a cause of false alarms, along with movement artifact which causes high
amplitude patterns in the EEG.

While the results from both systems are similar in terms of ROC and PR area, it is
important to note that the final decisions from each system are diverse. For instance,
with both systems set to 0.5 FD/h approximately half (75/147) of the false detection
events do not overlap between the SVM and GMM systems outputs. Moreover, the
GMM shows higher detection rates than the SVM system for seizures lasting over
5 minutes, an important subset of the seizure group as the extended length of the
seizures may have implications for the seizure burden of the neonate. Furthermore,
the results from individual patients showed that while the SVM system yields better
ROC area in most (11/17) patients, the GMM system did perform better in some
patients – in particular, patients 2, 12 and 16. It is also shown that for the same
patient, the systems can produce intersecting ROC curves where each system is
preferable under different operating criteria.

It was found that approximately 10% of false detections occurred from seizure-
like activity, that is events for which there was uncertainty over the ground truth.
In adult seizures, the inter-observer agreement was quantified by Wilson et al. [38],
who found that the any-overlap sensitivity, i.e. GDR, was 92% and the number of
false detections between observers was 0.117 per hour. To date, there have not been
any studies on inter-observer agreement in neonatal seizure detection. However tak-
ing the figures obtained by Wilson et al, an approximate bound on the performance
of any seizure detector algorithm can be established. A number of studies report
GDR scores approaching 92%, such as Navakatikyan et al. (87%), Deburchgraeve
et al. (85%) and Mitra et al. (80%). However, the false detection rates reported
by these studies – ranging from 0.66 FD/h for Deburchgraeve et al. to 2 FD/h for
Navakatikyan et al. – are several times larger than the 0.117 FD/h observed by Wil-
son. Thus, lowering the number of false detections remains a challenge in the field.
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6 Conclusion

A brief review of current trends in automated seizure detection is shown, with focus
on classifier based techniques. To this end, two neonatal seizure detectors based on
SVM and GMM classifiers were presented and compared. Both systems are shown
to outperform previously proposed neonatal seizure detectors, indicating that clas-
sifier based methods are a viable solution for neonatal seizure detection. The SVM
system produced the highest mean ROC area and mean PR area, and is therefore the
better choice for classification. However, the GMM system was found to produce
complementary and competitive decisions, thus warranting for research into fusion
of classifiers.
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Design of Fuzzy Relation-Based Image 
Sharpeners 

Fabrizio Russo* 

Abstract. Fuzzy relations among pixel luminances are simple and effective tools 
for the processing of digital images. This chapter shows how fuzzy relations can be 
adopted in the design of a complete image enhancement systems and successfully 
address conflicting tasks such as detail sharpening and noise cancellation. For this 
purpose, the different behaviors of fuzzy relation-based high-pass filters and noise 
smoothers are explained along with the effects of different parameter settings. Re-
sults of computer simulations show that fuzzy relation-based processing is an effec-
tive resource for the sharpening of noisy images and is easy to use. 

Keywords: fuzzy models, fuzzy relations, image sharpening, noise cancellation, 
detail preservation, image quality assessment.  

1   Introduction 

Digital methods for image sharpening [1] are adopted in a growing number of re-
search and application areas such as robotics, medical systems, remote sensing, 
video surveillance and biometrics, where digital images have become a primary 
source of information. Indeed, contrast enhancement aims at highlighting impor-
tant features embedded in the image data, so it can significantly increase the  
accuracy of subsequent processing tasks such as parameter estimation, object rec-
ognition and scene interpretation. Since contrast enhancement typically improves 
the visual quality of a picture, it is widely used in consumer electronics dealing 
with digital cameras and camcorders.  

It is known, however, that a very critical issue in the enhancement of digital 
images is the noise increase generated by the sharpening process. The linear un-
sharp masking (UM) technique is a classical example, where the effect of the 
noise is very annoying [2]. In this method, a fraction of the high-pass filtered  
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image is added to the original data producing edge enhancement and noise ampli-
fication as well. In order to address this issue, more effective approaches have re-
sorted to nonlinear operators that can achieve a better compromise between detail 
sharpening and noise amplification [3-7]. In this framework, significant results 
were obtained by adopting weighted medians (WM) and permutation weighted 
medians (PWMs) as a replacement for high-pass linear filters in the UM scheme, 
because such nonlinear operators can successfully limit the noise amplification 
produced by the sharpening process [8-10]. Polynomial UM methods were also 
investigated. Very interesting examples of this class of nonlinear enhancement 
techniques are the Teager-based operator [11-12] and the cubic UM method [13-
14]. Rational UM operators have shown to be effective for contrast enhancement 
of digital images [15]. These nonlinear techniques can avoid noise increase and 
excessive overshoot on object contours. Nonlinear methods based on fuzzy mod-
els have also been proposed in the literature. Indeed, fuzzy systems are well suited 
to model the uncertainty that occurs when conflicting tasks are performed, for ex-
ample, detail sharpening and noise cancellation [16-19]. In this respect, it should 
be observed that even if rule-based systems are very effective tools, they are not 
the only way to process digital pictures. Image processing algorithms based on 
fuzzy relations can better conjugate simplicity and effectiveness [20]. 

The aim of this chapter is to describe how fuzzy relations can be adopted to 
perform sharpening of noisy digital images. For this purpose, after a brief review 
of the classical linear UM approach, we shall present the basic scheme of a 
nonlinear UM operator adopting a fuzzy relation-based high-pass filter. The be-
havior of this operator will be further analyzed by taking into account how edge 
enhancement and sensitivity to noise depend upon the appropriate choice of fuzzy 
relation shape. The properties of fuzzy relation-based smoothers for the reduction 
of Gaussian noise and the removal of outliers will be discussed too. Finally, the 
design of a complete contrast enhancement system incorporating the mentioned 
algorithms will be presented. Results of computer simulations will be reported to 
show the effectiveness of the proposed method.  

2   Linear Unsharp Masking: A Brief Review  

As aforementioned, the general UM scheme resorts to a high-pass filter in order to 
highlight edges and fine details of a picture. Formally, let us suppose we deal with 
digitized images having L gray levels. Let x(i,j) be the pixel luminance at location 
[i,j] in the input image and let h(i,j) be the pixel luminance at the same location in 
the high-pass filtered picture. Thus, an image sharpener based on the UM ap-
proach can be defined as follows: 

 
                                          ( ) ( ) ( )j,ihj,ixj,iy λ+=                         (1) 

 
where y(i,j) denotes the pixel luminance at location [i,j] in the sharpened image 
and λ is a weighting factor. The classical UM method resorts to a linear high-pass 
filter, such as the following operator: 
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                                               ( ) ( ) ( )∑
∈

−=
0W)n,m(x

n,mxj,ixj,ih        (2) 

 

where W0 is the set of neighboring pixels: ( ) ( ) ( ) ( ){ }1111 +−+− j,ix,j,ix,j,ix,j,ix . 
 
Typically, high-pass filtering increases the noise as shown in Fig.1. In this exam-
ple, we considered the original “Lena” picture as input image (Fig.1a). The en-
hanced and the high-pass filtered data are depicted in Fig.1b and Fig.1c, respec-
tively. The noise amplification yielded by the linear sharpener is clearly 
perceivable, especially if we look at the uniform regions of the picture. In order to 
focus on the noise sensitivity of the method, let  us consider a second example 
where we corrupted the "Lena" image by adding zero-mean Gaussian noise with 
standard deviation σ=5 (Fig.2a). It can be seen that the noise increase is very an-
noying (Fig.2b). Indeed, linear filters cannot distinguish between detail enhance-
ment and noise amplification (Fig.2c), whereas nonlinear operator can. We shall 
describe in the next section how fuzzy relations among pixel luminances can be 
adopted to design pseudo high-pass filters that can offer a very easy control of the 
sharpening action.  

 
 

     
                      (a)                                            (b)                                        (c) 

Fig. 1 Portion of the original 512×512 “Lena” picture (a), result of linear UM (b), high-pass 
component (c)  
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               (a)                                            (b)                                             (c) 

Fig. 2 “Lena” picture corrupted by Gaussian noise with standard deviation σ=5 (a), result 
of linear UM (b), high-pass component (c)  

3   Nonlinear Unsharp Masking Based on Fuzzy Relations 

Since sharpening aims at highlighting the luminance differences among pixels, 
fuzzy relations like “x(m,n) is different from x(i,j)” are the appropriate choice. 
Thus, according to the preceding considerations, we can define a fuzzy relation-
based UM operator as follows: 

 
   ( ) ( ) ( )j,ihj,ixj,iy 1λ+=                    (3)

  

                        ( ) ( ) ( )[ ]
( )

( ) ( )[ ]n,mx,j,ixn,mxj,ix
N

j,ih DIF
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1       (4) 

where h1(i,j) is the output of the pseudo high-pass filter, W denotes a set of N 
neighboring pixels around x(i,j) and ( )v,uDIFμ is the parameterized membership 

function that describes the fuzzy relation “u is different from v”: 
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where a, b and c are parameters ( cba <<<0 ). An example of graphical represen-
tation of the function ( )v,uDIFμ is reported in Fig.3.  

Clearly, the membership function shape plays a key role in providing the cor-
rect behavior of the sharpener. In particular, the sensitivity to noise is controlled 
by the parameter a whereas the responses to small-medium and strong edges de-
pend upon the parameters b and c, respectively. Indeed, the membership function  
 

 

Fig. 3. Example of graphical representation of the membership function ( )v,uDIFμ  

     
                     (a)                                            (b)                                            (c) 
 

Fig. 4 (a) Portion of the original 512×512 ‘‘Lena’’ picture, (b) result of fuzzy relation-
based UM (a=4, b=40, c=80, λ=5), (c) high-pass component 

 



120 F. Russo
 

     
                (a)                                            (b)                                             (c) 

 

Fig. 5 (a) ‘‘Lena’’ picture corrupted by Gaussian noise with standard deviation σ=5,  (b) re-
sult of fuzzy relation-based UM (a=15, b=40, c=80, λ=5), (c) high-pass component  

 
 

shape is designed to limit the noise increase, to strongly enhance small-medium 
edges and to moderately enhance large edges, in order to avoid an excess of over-
shoots along the object contours. The overall amount of sharpening is easily con-
trolled by the parameter λ.   

Two application examples of the operator dealing with the neighborhood 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }111111111111 +++−++−+−−−−= j,ix,j,ix,j,ix,j,ix,j,ix,j,ix,j,ix,j,ixW  

are reported in Fig.4 and 5 for visual inspection. They can be compared to the re-
sults yielded by the linear UM method for original (Fig 1) and noisy (Fig 2) input 
data. The noise increase given by the nonlinear technique is significantly smaller 
in both cases. 

4    Effects of Parameter Settings 

We shall briefly describe in this section the effects of different parameter settings. 
According to (3)−(5), the overall behavior of the fuzzy sharpener is controlled by 
four parameters λ, a, b and c.   

The role played by λ is very simple: it defines the weight of the high-pass com-
ponent in eq.(3), i.e. the amount of the high-pass filtered data added to the input 
image. Thus the sharpening action becomes stronger as the value of λ increases. 
Too large values should be avoided because they typically produce excessive 
overshoots on object borders and amplification of the residual noise. The effects 
of different parameter choices are shown in Fig.6. 
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                 (a)                                            (b)                                             (c) 

Fig. 6 Sharpening of the original “Lena” image and effects of different choices of λ (a=4, 
b=50, c=100): (a) λ=3, (b) λ=5, (c) λ=7 

The sensitivity to noise is mainly controlled by the parameter a. In this ap-
proach, small luminance differences ( |x(i,j)−x(m,n)| < a) are considered as noise, 
thus no sharpening is performed (μDIF =0). The value of this parameter should be 
carefully chosen. 

Too small values increase the noise whereas too large values limit noise ampli-
fication and enhancement of fine details as well. Fig.7 shows examples of wrong 
and correct settings for this parameter when the input image is the “Lena” picture 
corrupted by Gaussian noise with σ =5. The choice a =σ (Fig.7a) is quite unsatis-
factory because the resulting image is very noisy (Fig7b). Indeed, this value is too 
small and the sharpening is activated for all pixels having noise amplitude larger 
than σ. The choice a =3σ (Fig.7c) is much more appropriate. It can be seen 
(Fig.7d) that the image is significantly less noisy. Increasing the value of this pa-
rameter would further limit the noise amplification. In this case, however, more 
details would remain unprocessed, i.e. without any sharpening.   

The role played by parameters b and c is much less critical. Indeed, when the 
luminance differences are not small ( ( ) ( ) an,mxj,ix ≥− ) the sharpening effect is 

activated with variable strength, depending on the slope of the membership func-
tion �DIF. In particular, when the luminance differences are small-medium, i.e. 
when ( ) ( ) bn,mxj,ixa ≤−< , the output yields strong sharpening in order to high-

light image details. Since an excess of overshoots along the object borders would 
be annoying, the sharpening is limited when the luminance differences are large 
( ( ) ( ) cn,mxj,ixb ≤−< ) and further reduced when the luminance differences are 

very large ( ( ) ( ) cn,mxj,ix ≥− ).  
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(a)                                                                         (b) 

 

     
                                           (c)                                                                        (d) 
 
Fig. 7  Effects of different choices of the parameter a when the input image is the ‘‘Lena’’ 
picture corrupted by Gaussian noise with σ =5:  (a) shape of μDIF (a=5, b=50, c=100), (b)  
result (λ=6), (c) shape of μDIF (a=15, b=50, c=100), (d) result (λ=6). 

5   Noise Prefiltering Using Fuzzy Relations 

As described in the previous section, the fuzzy relation-based operator can effec-
tively limit the noise amplification during sharpening. However, it cannot reduce 
the noise. In order to perform this task, a prefiltering action is necessary. We shall 
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focus on noise having Gaussian-like distribution because it is very often encoun-
tered in real images due to noisy sensors and/or high sensitivity settings during 
image acquisition. Furthermore, we shall assume that the amount of noise corrup-
tion is limited (σ <10). The proposed prefiltering is based on classification of 
noisy pixels into two different (fuzzy) classes [21]: 

 
1) pixels corrupted by noise whose amplitude is similar to that of the 

neighbors (class A pixels); 
2) pixels corrupted by noise whose amplitude is much larger than that of the 

neighbors (class B pixels). 
 
A – Fuzzy relation-based prefiltering of type A pixels: basic design 
 
Since this kind of prefiltering deals with class A pixels, fuzzy relations like 
“x(m,n) is similar to x(i,j)” represent the appropriate choice. Thus, a simple fuzzy 
relation-based noise smoother can be defined as follows: 

 
                               ( ) ( ) ( )j,igj,ixj,iy −=            (6) 

 

                     ( ) ( ) ( )[ ]
( )

( ) ( )[ ]q,p,n,mx,j,ixn,mxj,ixj,ig SIM
Wn,mx

μ∑
∈

−=
8

1
  (7) 

 
where g(i,j) is an estimate of the noise amplitude at location [i,j] and μSIM(u.v,p,q) 
is the parameterized membership function that describes the fuzzy relation “u is 
similar to v”: 
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μ   (8) 

 
where p and q are parameters ( 10 ><< q,Lp ). Fig.8 shows the influence of differ-

ent parameter settings on the membership function shape. The operation defined by 
(6-7) is very simple: the processing takes into great account small luminance differ-
ences (possibly caused by type A noise) and excludes large luminance differences 
representing object borders in order to avoid image blurring. When all the absolute 
differences between the central pixel and its neighbors are smaller than p, only noise 
is assumed to be present. Thus a strong smoothing is performed and the result is the 
arithmetic mean of the pixel luminances in the neighborhood. In this model, differ-
ences larger than pq denote edges and then their contribution is zero.  Indeed, when 

( ) ( ) pn,mxj,ix <−  we have 1=SIMμ (type A pixels). Conversely, when 

( ) ( ) pqn,mxj,ix ≥−  we have 0=SIMμ (object border). The shape of the membership 

function μSIM is designed to perform a gradual transition between these opposite  
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(a)  (b) 

 

 
                            (c)                                                                         (d) 

Fig. 8  Examples of graphical representation of the membership function μSIM(u,v,p,q): (a) p=10, 
q=5; (b) p=40, q=5; (c) p=20, q=3; (d) p=20, q=7   

effects when the luminance differences are medium ( ) ( ) pqn,mxj,ixp <−≤ . The 

parameters p and q offer great flexibility in defining the filtering action. By suitably 
choosing these parameters, we can decide how much a luminance difference should 
be considered useful information or unwanted noise. According to these observa-
tions, large values of p are typically required in the presence of large noise vari-
ances. These values increase the smoothing effect at the price of a lower detail 
preservation. The role of the parameter q is less critical: satisfactory values can be 
found in the range 3≤q<8. 
 
B --- Fuzzy relation-based prefiltering of type A pixels: advanced design 
 
We shall briefly describe here a more advanced scheme that can better adapt the 
filtering behavior to the local characteristics of the image. For this purpose, we 
shall consider the spatial and amplitude relationships between the central pixel in 
the moving window and its neighbors [22]. Let the neighboring pixels be grouped 
into two different subsets: 
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( ) ( ) ( ) ( ){ }j,ix,j,ix,j,ix,j,ixW 11111 ++−−= , 

 
( ) ( ) ( ) ( ){ }111111112 ++−++−−−= j,ix,j,ix,j,ix,j,ixW .  

 
Thus, let us define the filter’s output y(i,j) by resorting to two fuzzy relations deal-
ing with the inner and outer subsets, respectively: 
 

                                               ( ) ( ) ( )j,igj,ixj,iy −=         (9) 

 

( ) ( ) ( )[ ]
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1
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1
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−
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             (10)               

 
The filtering defined by (9-10) can be adapted with different strengths to two sub-
sets W1 and W2 in order to exploit the spatial information. The pixels in the set W1 
are closer (and then more correlated) to x(i,j) than the pixels in W2. Thus, a more 
accurate filtering can be performed by applying stronger smoothing in W1 and 
weaker smoothing (i.e. stronger detail preservation) in W2. This goal is achieved 
by setting p2<p1 (Fig.9).  
 
Satisfactory results can be achieved when p1 is the only parameter that depends 
upon the noise variance and q1, q2 , p2/p1 are constant values. 

(a) (b) 

Fig. 9 Examples of membership function choices for different pixel subsets: (a) 
( )11 q,p,v,uSIMμ  for subset ( ) ( ) ( ) ( ){ }j,ix,j,ix,j,ix,j,ixW 11111 ++−−= ; (b) μ

SIM
(u,v,p2,q2) 

for subset ( ) ( ) ( ) ( ){ }111111112 ++−++−−−= j,ix,j,ix,j,ix,j,ixW . 
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C – Fuzzy relation-based prefiltering of type B pixels 
 
We shall focus here on type B pixels that typically represent outliers, i.e., large 
amplitude noisy pixels present in the data as an effect of the “tail” of the Gaussian 
distribution. 

Type B noise prefiltering addresses the luminance differences between the cen-
tral pixel and its neighbors in a different way: if all these differences are very large, 
the pixel is (possibly) an outlier to be cancelled. Clearly, fuzzy relations like “x(i,j) 
is larger than  x(m,n)” would be very helpful for this purpose. Thus, a simple fuzzy 
relation-based filter for the removal of type B noise can be defined as follows: 

 
            ( ) ( ) ( )j,igj,ixj,iy b−=                      (11) 

 
( ) ( )

( )
( ) ( )( ){ }

( )
( )
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0
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−

−−=
              (12)       

 
where μLA(u.v) is the membership function that describes the fuzzy relation “u is 
larger than v”: 

       ( )
0
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vu
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L

vu

v,uLAμ                    (13) 

The shape of μLA(u.v) is designed to yield a perfect correction of the noise in the 
ideal case (Fig.10). Indeed, let W0 be a perfectly uniform neighborhood formed by 
pixels having the same luminance xc and let x(i,j) >> xc be a positive outlier. Ac-
cording to (12) we have gb(i,j)= x(i,j)−xc  and thus y(i,j) = xc. The outlier has been 
cancelled.  
 

 

Fig. 10 Graphical representation of the membership function μLA(u.v) 
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Fig. 11 Block diagram of the complete image enhancement system adopting different  
fuzzy relations for smoothing and sharpening 

6   A Complete Fuzzy Relation-Based Image Enhancement 
System  

The block diagram of a complete enhancement system adopting fuzzy relations for 
noise smoothing and image sharpening is shown in Fig.11. The system is com-
posed of three cascaded modules. 

The first processing block performs prefiltering of type A noisy pixels, accord-
ing to (9-10). The second module removes type B noisy pixels according to  
(11-12). Finally, the third block performs sharpening of the (possibly) noise-free 
resulting picture (see eq.(3-4)).  Fig.11 highlights the different role played by 
membership functions μSIM, μLA, μDIF in the overall processing. The choice of a 
satisfactory shape for μSIM is not a difficult task. As mentioned in Section 5, good 
results can be obtained if we choose p1 according to the noise variance and we 
adopt constant values for q1, q2 and  p2/p1. Table I shows an example of parameter 
assignment. In this example, we considered the “Lena” picture corrupted by Gaus-
sian noise with standard deviation ranging from 4 to 10. We chose q1=q2=6 and 
p2/p1=0.5 in all cases. The table reports (second column) the values of p1 that yield 
the minimum mean squared error (MSE) between the original image and the proc-
essed data. The prefiltering performance  with  respect  to  noise  cancellation  and  
detail preservation can be assessed, without the need for visual inspection  
 

Table.1 Parameter assignment and MSE values (“Lena” picture corrupted by Gaussian 
noise with standard deviation σ ranging from 4 to 10) 

σ p1 MSE MSERN MSECD 
4 5 8.80 3.785 5.016 
6 9 14.35 6.166 8.184 
8 12 20.65 8.585 12.060 

10 16 27.72 11.270 16.447 



128 F. Russo
 

 
  

     
(a)                                                                   (b)                                           (c) 

Fig. 12  (a) Noisy input image (σ=8), (b) result given by linear UM,  (c) result given by the 
complete fuzzy relation-based image enhancement system (p1=12, a=14, b=50, c=60, λ=3). 

 

     
(a)                                             (b)                                           (c) 

Fig. 13  (a) Noisy input image (σ=8), (b) result given by linear UM,  (c) result given by the 
complete fuzzy relation-based image enhancement system (p1=12, a=14, b=50, c=60, λ=3). 
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(and with more accuracy), by resorting to a recently introduced  method  for  ob-
jective  evaluation  of  such  features  [23]. In this approach, the correctness of the 
filtering is analyzed and this information is exploited to decompose the MSE into 
two components that respectively measure the residual noise due to insufficient 
filtering (MSERN) and the collateral distortion due to excessive or wrong filtering 
(MSECD). The values of these MSE components are also reported in Tab.I to char-
acterize the behavior of the adopted fuzzy relation-based prefiltering. 

A first application example of the overall enhancement system is shown in 
Fig.12. In this example we considered the “Lena” picture corrupted by Gaussian 
noise with standard deviation σ=8 (Fig.12a). The result given by the linear UM 
technique is reported in Fig.12b for a comparison. The sharpened image is very 
noisy and the result is quite unsatisfactory. The result yielded by the proposed 
fuzzy relation-based enhancement system is shown in Fig.12c. We prefiltered the 
noisy input image according to the data in Tab.I, i.e., by choosing p1=12 (q1=q2=6, 
p2/p1=0.5). We adopted the following settings for the sharpening parameters: 
a=14, b=50, c=60, λ=3. It can be seen that the sharpened image is significantly 
less noisy than the input picture and the details look very sharp.  

A second application example dealing with the 256×256 “Cameraman” picture 
is reported in Fig.13. We corrupted the image by using the same amount of Gaus-
sian noise as in the previous example (σ=8). We also adopted the same parameter 
settings for the overall enhancement systems in order to test the robustness of the 
approach. The effectiveness of the fuzzy enhancement can be appraised if we ob-
serve the image in Fig.13c and, especially, if we compare it to the result given by 
the linear UM technique (Fig13b).  
 

                   (a)                                              (b)                                             (c) 

Fig. 14 (a) Noisy input image (σ=6), (b) result given by { p1=12, q1=q2=6, p2/p1=0.5, a=14, 
b=50, c=60, λ=3} , (c) result given by {p1=9, q1=q2=6, p2/p1=0.5, a=11, b=50, c=60, λ=3}  
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In a third example, we considered the “Lena” picture corrupted by Gaussian noise 
with standard deviation: σ=6 (Fig.14a) and the results given by two slightly different 
sets of parameter values: { p1=12, q1=q2=6, p2/p1=0.5, a=14, b=50, c=60, λ=3} 
 (Fig.14b) and { p1=9, q1=q2=6, p2/p1=0.5, a=11, b=50, c=60, λ=3 } (Fig.14c).  We 
can see that the differences in the parameter settings are not very critical and satis-
factory results are achieved in both cases (the image in Fig14c represents the correct 
choice). 

7   Conclusion 

In this chapter we have described how fuzzy relation-based operators can consti-
tute the key components of an image enhancement system. First, we have  
presented the basic scheme of a nonlinear UM operator including a fuzzy relation-
based high-pass filter. We have analyzed the behavior of this operator by  
considering how edge enhancement and sensitivity to noise depend upon the ap-
propriate choice of the membership function shape. Thus, we have described dif-
ferent kinds of noise smoothers where fuzzy relations are adopted to reduce noise 
while preserving the image details. Finally, we have presented the design of a 
complete contrast enhancement system combining fuzzy relation-based smoothing 
and sharpening. Computer simulations have shown that the proposed method 
gives very satisfactory results and that the choice of parameter values is easy. 
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Application of Fuzzy Logic and Lukasiewicz
Operators for Image Contrast Control

Angel Barriga and Nashaat Mohamed Hussein Hassan

Abstract. This chapter reviews image enhancement techniques. In particular the
chapter is focused in soft computing technique to improve the contrast of images.
There is a wide variety of contrast control techniques. However, most are not suit-
able for hardware implementation. A technique to control the contrast in images
based on the application of Lukasiewicz algebra operators and fuzzy logic is de-
scribed. In particular, the technique is based on the bounded-sum and the bounded-
product . The selection of the control parameters is performed by a fuzzy system. An
interesting feature when applying these operators is that it allows low cost hardware
realizations (in terms of resources) and high processing speed.

1 Introduction

The sensor y human systems are organized to respond rapidly to the temporary
and spatial changes of the energy stimulus. When there is a temporary change in
the energy applied to the sensor there is initially a strong response. Then the senses
adapt rapidly (they respond less) to the constant and continued use of the energy. The
visual system shows two types of behaviors: firstly to have the aptitude to answer (to
see) both with weak lightings and with very brilliant lightings, and secondly to have
the aptitude to discriminate between two objects that reflect very nearby intensities
between them. To be able to adopt these types of behavior the visual system has
two mechanisms: the mechanism of rapid adjustment and the mechanism of local
adjustment. Into the first case the retina changes its operative range (range of light
intensity) approximately three tenths of second after the change taking place in the
light intensity level. In case of the mechanism of local adjustment different parts of
the retina adapt to different levels from lighting. The human eye is able to adapt to
a range of illumination values around l0 orders of magnitude.
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The luminance describes the energy of the stimulus and does not describe the
changes of the energy. For this reason the contrast is defined in order to describe
the changes of the energy. There are many proposals for the contrast measurement.
Basically the contrast can be defined as the change of the relative luminance of the
elements of an image. Therefore it corresponds to the difference of luminance that
exists between two points of an image. The histogram of the image turns out to be a
useful tool to determine the contrast in the image [1].

It is usual that the image captured by the sensor does not have the quality needed
for the specific application that is required. This is due to deficient lighting con-
ditions, aperture size, the shutter speed, noise coming principally from the capture
sensor (quantization noise ) and from the transmission of the image (fault on trans-
mitting the information bits), etc. In these cases it is required the preprocessing of
the image in order to improve its quality. One task of this preprocessing is to im-
prove the contrast. As a result of the contrast enhancement there is visible additional
information that apparently did not appear in the original image. This improves the
image quality since it increases the dominance of some characteristics and reduces
the ambiguity between different regions of the image.

In this chapter we are going to review the contrast adjustment techniques for
image enhancement. These methods can be classified into two categories: spatial
methods and methods in the frequency domain. The spatial methods are based in
transforming the values of the pixels of the image whereas the methods in the fre-
quency domain are based on modifying the Fourier transform.

Next, soft computing techniques to improve the contrast of images are described.
Basically spatial techniques are discussed based on the uncertainty inherent in the
image. Once the image is fuzzified, a transformation is performed in the fuzzy space.
Some techniques apply some form of metrics to optimize results such as the fuzzy
entropy measure. Finally, a transformation of the fuzzy space to the space of lumi-
nance levels is made.

Another aspect considered is related to the hardware implementations of con-
trast control systems. The hardware constraints in terms of used arithmetic (fixed
point), width of words, processing resources, etc., impose limitations on the type of
technique that can be implemented.

At the end of the chapter a technique based on the application of Lukasiewicz
algebra operators will be described. In particular, the technique is based on the
bounded-sum and the bounded-product in order to change the image contrast. These
operators act as low pass filters as they produce a smoothing of the image and allow
to eliminate noise . The application of Lukasiewicz algebra operators to an image
produces a shift and an expansion of the histogram of the image The selection of
the contrast control parameters is performed by a fuzzy system. An interesting fea-
ture when applying this technique is that it allows low cost hardware realizations (in
terms of resources) and high processing speed.
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2 Contrast Control Techniques

A definition of contrast is the peak-to-peak contrast or Michelson’s contrast that
measures the relation between the variation and the sum of two luminances. This
definition is used in signal processing theory for determining the quality of a signal
regarding to its noise level.

CM =
Lmax −Lmin

Lmax + Lmin
(1)

A further type of contrast measure is the variance. It is given by the following ex-
pression:

σ2 =
1

MN

L

∑
k=1

(k− k̄)2nk (2)

where M and N are the dimension of the image, k is the value of the luminance in
the range [1,L],nk is the frequency of the k luminance level, and k̄ is the mean value
of the luminance distribution,

k̄ =
1

MN

L

∑
k=1

(knk) (3)

When all the pixels have the same gray level its variance is zero, and when the
difference between all the possible pairs of pixels is larger the variance is greater.

On the other hand the values pk = nk/MN;k = 1,2, ...,L constitute a probability
distribution on the set of the luminance values as ∑L

k=1 (pk). It is possible to use the
entropy as a contrast measure [2]:

H = −
L

∑
k=1

pk ln pk (4)

When the distribution of luminance tones of the pixels is uniform (pk = 1/L) then
the entropy reaches its maximum value (which is ln(L)) which corresponds to an
image with maximum contrast. This suggests that a standard measure in the interval
[0,1] of the contrast of an image is H/ ln(L).

Note that entropy is a measure of uncertainty. When it goes to zero corresponds
to minimum contrast and for an image with uniform distribution, which corresponds
to the maximum contrast, the uncertainty or lack of information is maximum.

Due to the process of digitalization of images the pixels are codified by a limited
number of bits. For example, in the case of 8-bit monochrome images supposed
to distinguish 256 levels of gray. If the range of variation in the brightness of the
image is much smaller than the dynamic range of the camera then the true range of
numbers will be much smaller than the full range from 0 to 255. That is, the image
obtained at the output of the sensor s of the camera does not have to cover the full
range. In many situations the recorded image will have a much smaller range of
brightness values. These values can be found in the mid-range (intermediate gray
values) or to bright or dark ends of the range.
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Fig. 1 Linear transformation

The visibility of the elements that form an image can be improved by stretch-
ing the contrast in order to reassign the values of pixels to fill the entire available
range. This means that the pixels are interpolated between the extreme values of the
dynamic range.

The contrast control techniques fall into two categories [3]: spatial techniques and
techniques in the frequency domain. The first are based on making transformations
of the values of the pixels of the image.

g(i, j) = T [ f (i, j)] (5)

where f (i, j) and g(i, j) represent the pixel (i, j) before and after applying the trans-
formation defined by the function T .

The frequency domain techniques are based on the Fourier transform of the im-
age. Thus the pixel value is calculated using the inverse Fourier transform:

g(i, j) = F−1[H(u,v)F(u,v)] (6)

where F and H are the Fourier transforms of f (i, j) and a transformation h(i, j)
respectively.

A usual mechanism of contrast enhancement is to perform a linear interpolation
[4] [5]. This technique of linear expansion of the contrast allows to increase the
visual discrimination and is useful when the image has luminance variations that
allow to distinguish between the elements that comprise it. A simple way is to apply
the function shown in Figure 1. In this case the value of the new pixel is given by
the following expression:

g(i, j) = a + b× f (i, j) (7)

where a and b values are calculated according to Figure 1. This process increases
the image contrast by stretching the values of the luminance of the image to fill the
full range.
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It is possible to observe that if f (i, j) = rk then the new value of luminance of the
pixel (i, j), denoted by sk, is determined by the following expression:

sk =
rL − r1

rq − rp
(rk − rp)+ r1 (8)

A type of transformation more general than the previous one to improve the contrast
is:

f (x) =
α ×u if 0 ≤ u ≤ a
β × (u−a)+ va if a ≤ u < b
γ × (u−b)+ vb if b ≤ u < L−1

(9)

Where u is the tone or luminance level of the original image and v is the luminance
level of the transformed image.

With this transformation we made a change of the luminance value of the pixels
in the image depending on the parameters α,β andγ . The transformation of Figure 2
enhances the contrast in the range [0,a] since α > 1, and also improves the contrast
in the range [b,L− 1] because γ > 1. Therefore this transformation improves the
contrast of the darkest pixels, and also that of the lighter pixels.

One of the non-linear transformations most widely used is the Gaussian transfor-
mation that is given by:

g(i, j) =
φ( f (i, j)−0.5

σ
√

2
)+ [ 0.5

σ
√

2
]

φ( 0.5
σ
√

2
)

(10)

where the brackets in the expression [x] represent the floor function of x, and

φ(x) =
2√
π

∫ x

0
e−y2

dy (11)

Fig. 2 Piecewise linear transformation
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This transformation increases the contrast of the image making the dark parts
darker and the bright part clearer.

3 Soft Computing Techniques

In [6] an excellent review of techniques for improving the contrast by applying fuzzy
logic is presented. In this section we are going to check some of these techniques
along with other recent proposals.

There are many strategies proposed for improving the contrast in images [7].
We will only describe a few of them (due to space limitations). Other techniques
can be revised such as λ -enhancement [8] [9], fuzzy relaxation [10] [11], fuzzy
morphology [12], fuzzy wavelet [13], and others.

3.1 Minimization of Image Fuzziness

One of the first applications of fuzzy logic to control the contrast was proposed in
[14]. The technique is based in fuzzifying the image and modifying the pixels in the
fuzzy domain. For this the INT operator (contrast intensification operator) is used.
The degree of luminance of the pixel (i, j) in the interval [0,1] is denoted by μi j and
is expressed as:

μi j = G( fi j) = [1 +
fmax − fi j

Fd
]−Fc (12)

Where fmax is the maximum luminance of the image and fi j is the luminance of
pixel (i, j). Fc and Fd are parameters of fuzzification. The operator INT is given by

INT (μi j) =
2μ2

i j if 0 < μi j < 0.5
1−2(1− μi j)2 if 0.5 < μi j < 1

(13)

This is a function that increases its value for μi j over the threshold 0.5 and decreases
it below this threshold. This operator is applied iteratively so that the transformation
that is performed at pixel (i, j) is given by:

μ ′
i j = INT1(INTr(μi j)) r = 2,3, ... (14)

The transformation of the fuzzy space to the space of luminance levels is achieved
through the following expression:

f ′i j = G−1(μ ′
i j) (15)

where f ′i j is the luminance of pixel (i, j) for the new image and the function G−1 is
the inverse of G.
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Later, other authors have proposed modifications. Thus [15] considers the fol-
lowing fuzzification function:

μi j = G( fi j) = [1 +
fi j − fmax

fmax − fmin
]−Fc (16)

In [16] [17] [18] successive generalizations of the operator of intensification are
done, and a variable threshold is considered (instead of the constant value 0.5). This
way the new intensification operator GINT (global contrast intensification) includes
quality factors. The parameters of this operator are calculated optimizing the entropy
of the image.

In [19] [20] the approach is based on the generalization of the fuzzy logic intro-
duced by K. Atanassov in which the non-membership values are taken into account.
This way they introduce the contrast intensification operator for Intuitonistic Fuzzy
Sets (IFS).

3.2 Direct Method

In [21] local control is combined with edge detection and makes an adaptive con-
trol to the characteristics of the image. The degree of luminance of the pixel xi j is
expressed as:

μi j = G(xi j) =

0 i f 0 ≤ xi j ≤ a
(xi j−a)2

(b−a)(c−a) i f a ≤ xi j ≤ b

1− (xi j−a)2

(b−a)(c−a) i f b ≤ xi j ≤ c

1 i f xi j ≥ c

(17)

where a,b,c are parameters of contrast control . Next a detection of edges is done
by means of a gradient-based technique (Laplacian or Sobel operator) and the value
of the edges is obtained in the fuzzy domain (δμi j). The next step is to calculate the
mean edge value Eμi j for a window Wi j centered on the pixel xi j.

Eμi j =
∑i j∈Wi j

μi jδμi j

∑i j∈Wi j
δμi j

(18)

The contrast comes related to the membership value μi j is given as

Cμi j =

∣∣μi j −Eμi j

∣∣∣∣μi j + Eμi j

∣∣ (19)

The contrast is modified by applying the modification constant σi j:

C′
μi j

= (Cμi j )
(σi j) (20)
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where 0 < σi j < 1 to increase the contrast and σi j > 1 to reduce it. The calculation
of this parameter is the critical step. For it the fuzzy entropy is applied. With this
value of the contrast the modified membership value is calculated:

μ ′
i j =

Eμi j (1−C′
μi j

)

1+C′
μi j

) if μi j < Eμi j

Eμi j(1+C′
μi j

)

1−C′
μi j

) if μi j > Eμi j

(21)

The last step is the defuzzification. The grey level is calculated by means of the
following expression:

x′i j =

Lmin if μ ′
i j = 0

Lmin + Lmax−Lmin
c−a

√
μ ′

i j(b−a)(c−a) if 0 < μ ′
i j < b−a

c−a

Lmin + Lmax−Lmin
c−a (c−a−

√
μ ′

i j(b−a)(c−a)) if b−a
c−a < μ ′

i j < 1

Lmax if μ ′
i j = 1

(22)

This technique allows an adaptive contrast enhancement since the modification
parameter is calculated for each image.

3.3 Fuzzy Histogram Hiperbolation

Since the human perception of brightness is nonlinear, in [22] [23] is proposed to
apply a hyperbolic transformation to the histogram given by

x′i j =
L−1

e−1 −1
(eμ(xi j)β −1) (23)

Where the membership function is described as

μ(xi j) =
xi j − xmin

xmax − xmin
(24)

The fuzzification parameter β determines the luminosity of the image. So if β → 0
the image is brighter while if β → 1 the image is darker.

3.4 Sharpening and Noise Reduction

F. Russo [24] uses a fuzzy network structure that combines contrast enhancement
and noise removal. For it a structure of multiple outputs is used in order to improve
the performance of the system since the method is recursive. Basically it is consid-
ered an MxN mask around pixel xi j. The calculation of the output is given by:

Δxi j =
α

NM
[ ∑
m,n∈A

μR1(xi j,xmn,α)− ∑
m,n∈A

μR2(xi j,xmn,α)] (25)
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Where Rq (q = 1,2) represents the class of fuzzy relation described by:

μRq(u,v,α) =
max([1− |u−v−α |

2α ],0) if q = 1

max([1− |u−v+α |
2α ],0) if q = 2

(26)

By means of parameter α (0 < α < L− 1) different non linear behaviors are ob-
tained. The output is obtained by:

yi j = xi j − δxi j (27)

In this case noise has been eliminated making a smoothing of the image. High values
of α increase the cancellation of noise at the cost of increasing the blur. On the other
hand a sharpening of the image can be realized if it is chosen α = αmax = L−1 and
the following operation is performed with the δ ′xi j value:

yi j = xi j + δ ′xi j (28)

The combination of both effects can be expressed as:

yi j = xi j ⊕ (Δ ′xi j −Δxi j) (29)

where operator a⊕b = min(a + b,L−1) is the bounded-sum .
The system architecture includes various fuzzy networks operating on different

subsets of input data. The nonlinear behavior of the system is controlled by only one
parameter α .

4 Hardware Realizations

There are hardware implementations circuits that perform the contrast control . In
[25] a circuit implemented in a 0.25μm CMOS technology is described. The method
is based on the following expression:

yi = (xi −Lmin)(M +US) (30)

where (M +US) is the value of the weight, US corresponds to a control parameter
selected by the user and M is a weight that is calculated as follows:

M = 1 + 2−n if MSB = 1
2m + 2−n in other case

(31)

where MSB is the most significant bit of the difference with the value Lmin, and
the indices m and n are integer values and are calculated using specific heuristics.
The system architecture consists of a module that performs the subtraction between
the input pixel and the value Lmin, the block that calculates the weight and the block
which expands the range of the histogram formed by a shifter and adders. The circuit
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has been synthesized from its VHDL description [26]. It has been implemented in a
0.25 μm CMOS technology. The resulting circuit has a cost of 2317 gates.

The method described in [4] applies in video images and is based on the piece-
wise linear functions approximation of the Cumulative Density Function (CDF).
The CDF function is obtained by a sequential accumulation of the histogram . In
this case the transformation of the image is made by means of linear interpolation:

F ′(pn) = scalex(F(pn)− 256n
N

)+
256n

N
(32)

where F(pn) and F ′(pn) are the old and new values of pixel pn, N is the total number
of segments and n is the segment of pixel pn.

The main problem is that the calculation of the CDF is costly in time so it is not
recomputed between successive frames that contain similar images. The contrast
control circuit consists of four modules. The CDF calculation module requires three
comparators, three counters and memory to store the function. A median filter is
used to alleviate the problem of abrupt changes in the image between consecutive
frames. The authors give no implementation details of the circuit.

Other techniques are based on local transformations of the pixels and are called
point operations. The point operations, or point to point functions, require in each
step to know the value intensity of a single pixel, to which the desired transforma-
tion is applied. After processing the pixel is not needed, therefore these types of
operation are called zero memory.

Point operations are performed more efficiently with lookup tables (LUTs). The
LUTs are simple vector that use the value of the current pixel as an index of the
vector. The new value is the vector element stored at that position. The new image
is constructed by repeating the process for each pixel. Using LUTs avoids repeated
and unnecessary computations. When working with images of, for exam-ple, 8 bits
only need to calculate 256 values. In this case the size of the image is irrelevant since
the value of each pixel of the image is a number between 0 and 255 and the result
of lookup table produces another number between 0 and 255. These algorithms can
be implemented without using any intermediate memory since the output image can
be stored in the same memory space that the input.

5 Contrast Control by Means of Lukasiewicz Operators

The development of the theoretical concepts of the multi-valued logics began in the
decade of the 20s by Jan Lukasiewicz, who established the generalization of the
classic logic to the multi-valued logic. Later, at the end of the 50s, C.C. Chang for-
malized the multi-valued algebra based on Lukasiewicz logic. The basic operator’s
definitions are:

• bounded-sum : x⊕ y = min(1,x + y)
• bounded-product : x⊗ y = max(0,x + y−1)
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In order to visualize the meaning of the operators, Figure 3 shows the graphical
representation of the bounded-sum and the bounded-product.

The application of the operators of Lukasiewicz in an image gives place to a
transformation of the distribution of the levels of the pixels [27]. This transformation
produces a shift from low levels to high or from high levels to low, ie after the
application of Lukasiewicz operators, most of the gray levels of the image undergo
a shift in the histogram.

The bounded-sum operator acts as a low-pass filter. This operator performs im-
age smoothing and allows to reduce salt-peppers noise as well as Gaussian noise.
Another effect of the bounded-sum operator is to perform a shift of the pixels to
high levels. This way a clearer image is obtained. Figure 4 shows the effect of ap-
plying the bounded-sum to consecutive pixels of the original image. It is possible
to observe the displacement of the pixels towards the white by giving a brightness
image.

The contrast control using the bounded-sum can be done by introducing an addi-
tional parameter that allows to regulate the displacement of the frequency:

x⊕ y⊕C (33)

where C is the parameter of control of the contrast. The range of values that C
(encoded with 8 bits) can take is in the interval [-128,127]. Figure 4 shows the
effect of the bounded-sum with different values of the control parameter (C = 0 and
C = 30).

The complementary operation to the bounded-sum corresponds to the bounded-
product. This operator gives place to a displacement of the histogram towards the
black. This effect is observed in Figure 5 that shows the result of applying the
bounded-product and its histogram.

The control of the contrast applying the bounded-product it is realized by means
of parameter C in the following expression:

x⊗ y⊗C (34)

Fig. 3 Surfaces corresponding to the operators (a) bounded-sum and (b) bounded-product
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Fig. 4 Control of contrast using the bounded-sum and the histogram of the images

Figure 5 shows the application of the bounded-product with different values of
the control parameter C.

6 Control Parameters Based on Fuzzy Logic

The technique of contrast control that has been presented is based on making a
transformation of the histogram of the image by applying the operators bounded
product and bounded sum. These operators give place to a shift and expansion of
the values of the histogram . The control for this effect is achieved by a parameter C
that allows to regulate the intensity of the transformation. The variation of contrast
in an image needs not be uniform. So there may be regions where the contrast is
lower than in other parts of the image. Therefore, the parameter C should adapt to
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Fig. 5 Control of contrast using the bounded-product and the histogram of the images

each region of the image in order to improve the quality of the transformation. Thus
the expression that regulates the contrast by means of the bounded sum is given by
the following expression [28]:

x⊕ y⊕ f (x,y) (35)

where x and y are pixels of the image and the parameter of control is the function
f (x,y).

The contrast control function f (x,y) depends on the characteristics of each image
and allows to adapt the control operation locally. In our case we have applied a
heuristic based in a fuzzy logic inference mechanism. Thus the system of decision-
making is based on criteria of proximity, that is, if the values of the pixels are very
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close (low contrast) the function f (x,y) must be high whereas if the pixels are far
the function should be low.

If x is Very Low and y is Very Low then f(x,y) is F1
If x is Very Low and y is Medium then f(x,y) is F2
If x is Very Low and y is Medium High then f(x,y) is F3
. . .

Figure 6 shows the specifications of the fuzzy inference module that generate the
function of control of contrast associated with the bounded sum. The membership
functions correspond to seven equally spaced triangular functions with overlapping
degree of two (VL Very Low, L Low, ML Medium Low, M Medium, MH Medium
High, H High, VH Very High). The output of the system is composed by 9 singleton
functions. The rule base details the heuristic described previously. Figure 7 shows
the surface describing the behavior of the function of control of contrast.

Fig. 6 Fuzzy inference module that generate the function of control of contrast associated
with the bounded sum (7 membership functions for antecedents, 9 for consequent and 49
rules)
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Fig. 7 Surface corresponding to the function of control of contrast)

Fig. 8 a) Original image, b) x⊕y, c) x⊕y⊕ f (x,y)
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Fig. 9 Fuzzy inference module that generate the function of control of contrast associated
with the bounded product (7 membership functions for antecedents, 9 for consequent and 49
rules)

Figure 8 shows an example of application of contrast control . The case of Figure
8b corresponds to the bounded sum; Figure 8c corresponds to the fuzzy control
system. It can be observed in Figure 8 that in the zone corresponding to the column
can be appreciated the effects of the control of contrast. It is noted that when control
is not established the values of the column are saturated (they take the white value)
so that contrast is reduced. Nevertheless when a local control is applied (case c) the
contrast is improved in the zone of the column.

In the case of applying the bounded product the contrast is governed by the fol-
lowing expression:

x⊗ y⊗ f (x,y) (36)

In the same way as in the case of the bounded sum the calculation of the function
of the contrast control associated with the bounded-product is based on a fuzzy
inference engine using the knowledge base shown in Figure 9.

The results obtained from the bounded product application are shown in
Figure 10. Figure 10b shows the results of the bounded product without adaptation
while Figure 10c corresponds to the control using the fuzzy system.
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Fig. 10 a) Original image, b) x⊗y, c) x⊗y⊗ f (x,y)

7 Contrast Controller Architecture

The contrast control technique proposed previously applies each of the two oper-
ators (bounded sum and bounded product) depending on the characteristics of the
image. This way the bounded sum is used in the case of dark images while the
bounded product should be applied in clear images. However, in general, the im-
ages may have zones with different characteristics. This means that dark zones and
clear zones can coexist in the same image. For that reason it is necessary to adapt
the control mechanism to the local characteristics of the image. For it a decision-
making system is required in order to determine the type of operator to be applied
at each case (bounded sum in the dark area of the image and the bounded product in
the clear area).

In agreement with this contrast control strategy the system is based in apply-
ing a mask that moves through the image. Depending on the local contrast the
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system decides to apply the best operator. The global system is composed by 3 fuzzy
inference engines as shown in Figure 11 [28]. The FIM1 and FIM2 fuzzy inference
modules generate the functions of control of contrast associated with the bounded
sum and the bounded product respectively. The FIM3 module corresponds to the
decision-making system that selects the best operator. In this way the functionality
of the system is given by the following expression:

x′ =
x⊕ y⊕ f1(x,y) if z = Z1
x if z = Z2
x⊗ y⊗ f2(x,y) if z = Z3

(37)

The decision-making system is based on a fuzzy logic inference mechanism. The
specification of the fuzzy system is shown in Figure 12. The membership functions
are three functions equally distributed in the universe of discourse and with overlap-
ping degree of two. On the other hand the membership functions of the consequent
are 3 singletons (Z1, Z2 and Z3) that correspond to each of the three mechanisms
to generate the output. Thus Z1 corresponds to perform the bounded sum while Z3
supposes to apply the bounded product. Z2 means that there is no change in contrast
and therefore the output value corresponds to the input.

The rule base consists in 9 rules. When the contrast is low the bounded sum or
the bounded product must be applied whereas if the contrast is high the output does
not change with respect to the input.

Figure 13 shows an example of the application of the control system. The system
receives the input image and calculates the images corresponding to the bounded
sum and bounded product. The last stage corresponds to the selection of the output
by means of a multiplexer controlled by the decision-making system FIM3. The
output image is the result of a composition of the images generated by the bounded
sum and the bounded product.

Figure 14 illustrates the block diagram of a fuzzy inference module (FIM). The
main features of this architecture are low cost and high processing speed [29] [30].

Fig. 11 Schematic of the system for control of contrast
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Fig. 12 Decision-making fuzzy system

Fig. 13 Example of controller operation

The key elements to obtain this performance are due to limit the overlapping degree
of the membership functions, the use of active rules inference mechanisms and the
use of simplified defuzzification methods.

Membership function circuits (MFCs) at the fuzzifier stage calculate the degrees
of membership for the inputs to the fuzzy sets which represent the antecedents of the
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Fig. 14 Block diagram for active rule driven architecture of fuzzy inference module (FIM)

rules. Each MFC provides as many pairs of ”label-activation degree” as overlapping
degrees have been fixed for the system. The maximum number of active rules is
limited by the overlapping degree. The MFC can be implemented using memories
addressed by the inputs. The memory-based implementation has no restrictions on
the shape of the membership functions, and the inference speed depends on the
memory access time.

The inference stage is composed of an active-rule selection circuit (a counter-
controlled multiplexer array is used for this purpose), a product circuit which eval-
uates the rule activation degree (αi) by combining the antecedent activation degrees
provided by the MFCs, and a rule memory that stores the parameters which define
the rule consequents (ci). Finally, the defuzzification stage computes the system out-
put. The circuit in Figure 14 uses the Fuzzy Mean method according to the following
equation:

Out = ∑r αici

∑r αi
(38)

This FIM module has been used in the design of the contrast control system. The
contrast control ler has been implemented on a low-cost FPGA device Spartan3
of Xilinx. The circuit has been optimized in order to reduce the cost in terms of
resources. This circuit requires eight 16x16 bit and four 8x8 bit multipliers. On the
other hand the knowledge base stored in memory. The memory require-ments are:
one 256x11 bit dual-port RAM, two 64x2 bit dual-port RAM and four 64x7 bit dual-
port RAM. Regarding the processing speed the circuit has three stages of pipeline in
order to improve the throughput. This allows to process HD images of 1920x1080
pixels at 60 frames per second.

8 Conclusions

In this chapter we have reviewed contrast control enhancement techniques fo-
cusing in fuzzy logic based methods. While there are many strategies proposed
for improving the contrast in images very few of them are suitable for hardware
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implementation. Taking into account this limitation a new contrast control tech-
nique has been described based on the bounded-sum and bounded-product opera-
tors. These operators produce a shift and expansion in the histogram of the image.
The selection of the control parameters associated to both operators is performed by
fuzzy systems. The resulting circuits are low cost with high processing speed. This
makes the proposed contrast control system very suitable to be embedded together
with the vision sensor and real time applications.
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Low Complexity Situational Models in Image
Quality Improvement

Annamária R. Várkonyi-Kóczy

Abstract. Enhancement of noisy image data is a very challenging issue in many re-
search and application areas. In the last few years, non-linear filters, feature extrac-
tion, high dynamic range (HDR) imaging methods based on soft computing models
have been shown to be very effective in removing noise without destroying the use-
ful information contained in the image data. Although, to distinguish among noise
and useful information is not an easy task and may highly depend on the situation
and aim of the processing. In this chapter new image processing techniques are in-
troduced in the field of image quality improvement, thus contributing to the variety
of advantageous possibilities to be applied. The main intentions of the presented
algorithms are (1) to improve the quality of the image from the point of view of the
aim of the processing, (2) to support the performance, and parallel with it (3) to de-
crease the complexity of further processing using the results of the image processing
phase.

Keywords: image quality improvement, image enhancement, noise filtering, in-
formation extraction, situational models, anytime models, fuzzy decision making,
complexity reduction.

1 Introduction

With the continued growth of multimedia and communication systems, the instru-
mentation and measurement fields have seen a steady increase in the focus on im-
age data. Images contain measurement information of key interest for a variety of
research and application areas such as astronomy, remote sensing, biology, medical
sciences, particle physics, science of materials, etc. Developing tools and techniques
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to enhance the quality of image data plays, in any case, a very relevant role. In
the last few years, non-linear filters, feature extraction, high dynamic range (HDR)
imaging methods based on soft computing models have been shown to be very ef-
fective in removing noise without destroying the useful information contained in the
image data. enhancement of noisy images, however, is not a trivial task. The filter-
ing action should distinguish between unwanted noise (to be removed) and image
details (to be preserved or possibly enhance). The main problem here is that ‘noise’
and ‘useful information’ are ill defined categories because they are usually depen-
dent on the situation and on the intension and objective of the processing. What is
characteristic or useful information in one application can be noise in another one.
Soft computing, and especially fuzzy reasoning based methods are very well suited
to model uncertainty and thus can effectively complete critical tasks where both
noise cancellation and detail preservation (enhancement) have to be addressed.

In this chapter new, so-called situational models [10] of digital image processing
are introduced (with special emphasis on complexity reduction, characteristic fea-
ture extraction, and useful information extraction), thus contributing to the variety
of advantageous possibilities to be applied. The main intentions of the presented
algorithms are (1) to improve the quality of the image from the point of view of the
aim of the processing, (2) to support the performance, and parallel with it (3) to de-
crease the complexity of further processing using the results of the image processing
phase.

In Section 2 corner detection is addressed. Corners (and edges) have an excep-
tional role in image processing related to pattern recognition and 3D reconstruction.

Section 3 deals with useful information extraction. “Useful” information means
that the information is important from the further processing point of view. This
information is enhanced and the, from this aspect non-important (in other situations
possibly significant) image information is handled as noise, i.e. is filtered out.

Section 4 outlines a possible application area (automatic 3D reconstruction) per-
mitted by the situational models of Sections 2–3 while Section 5 is devoted to the
conclusions.

2 Corner Detection

Recently, the significance of feature extraction, e.g. corner detection has increased in
computer vision, as well as in related fields. Corner detection helps to determine the
shapes and the most characteristic points of an object and thus to reconstruct it. Cor-
ners are also useful in pattern recognition. In this section, a novel corner detection
technique is presented, which is based on fuzzy reasoning and applies a special local
structure matrix. Furthermore, by introducing a new attribute associated to the cor-
ners, the method efficiently supports further processing, e.g. point correspondence
matching in stereo images or 3D reconstruction of schemes.
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2.1 Overview

Corner detection plays an important role in computer vision [11], as well as in pat-
tern recognition [20], in shape and motion analysis [19] and in 3D reconstruction
[17] of a scene. The importance of corners can be underlined by many facts. Just
to mention some of them: (1) Motion is unambiguous at a corner (and ambiguous
along e.g. an edge), i.e. if we want to determine or follow some kind of motion it can
be advised to analyze the movement of a corner point. (2) In most cases, shapes can
approximately be reconstructed based on their corners [15]. (Of course, edges may
have similar role however usually with higher complexity.) (3) 3D reconstruction
from images has become an important common issue of several research domains.
In recent time, the interest in 3D models has dramatically increased [2, 6].

More and more applications are using computer generated models. In many
cases, models of existing scenes or objects are desired. Creating photorealistic 3D
models of a scene from multiple photographs is a fundamental problem in computer
vision and in image based modeling. The emphasis for most computer vision algo-
rithms is on automatic reconstruction of the scene with little or no user interaction.
The basic idea behind 3D model reconstruction, from a sequence of un-calibrated
images, can be defined in more steps [17]: first, we need to relate the images in
the whole sequence, then extract information based on pixel correspondences to be
able to apply methods of epipolar geometry. The key element of this latter step is
the correct pixel correspondence matching which also determines the reliability of
the model reconstruction. Because of this, the pixels of interest have to be carefully
chosen and as much support given as possible.

Real life image sequences contain many of the points that are better suited for au-
tomated matching than others. The environments of these points contain significant
intensity variations and are therefore easy to differentiate from others. The corre-
spondence between such points of interest has to be done by some kind of matching
procedure. A possible approach to select points of interest is the corner detection
. Corners in a scene are the end points of the edges. As we know, edges represent
object boundaries and are very useful in 3D reconstruction of a scene. There are
two important requirements for the feature of the points. First, points corresponding
to the same scene point should be extracted consistently over the different views.
Secondly, there should be enough information in the environment of the points so
that the corresponding points can automatically be matched. If we take into consid-
eration both aspects, i.e. feature type and area type attributes, based on the detected
corners, it is possible to determine the corresponding points. If we are able to select
points on the corners of objects we have a greater chance for matching the same
corners in another image.

There are several known corner detection algorithms for the estimation of the
corner points. These detectors are based on different principles, characteristic for
the algorithm. It is known that there are corner detectors, whose functionality is
based on a so-called local structure matrix, consisting of the first partial derivatives
of the intensity function:
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where G(x,y) corresponds to the Gaussian smoothing function and * stands for the
convolution operation. Examples of it are the Harris feature point detector [7] and
Förstner’s method [4].

Harris’ method evaluates a comparison: the measure of the corner strength

RH = det(L(x,y))− k (trace(L(x,y))) (2)

is compared to an appropriately chosen constant threshold. If RH exceeds the thresh-
old, the point is taken as a corner. Here, trace(L(x,y)) = λ1 + λ2, λ1, λ2 stand for
the eigenvalues of matrix L(x,y), and k denotes a parameter effecting the sensitivity
of the method (typical values for k are k ∈ [0.04,0.2]).

Förstner determines the corners as the local maxima of function H(x,y)

H (x,y) =
det(L(x,y))(
∂ I
∂x

)2
+
(

∂ I
∂y

)2 (3)

Another well-known corner detector is the SUSAN (Smallest Univalue Segment As-
similating Nucleus) detector based on brightness comparison [14]. The algorithm
does not depend on image derivatives, it uses the brightness values of the pixels.
The first step of the algorithm is to place a circular mask around the pixel in ques-
tion (the nucleus). After this, the method calculates the number of pixels within the
circular mask which have similar brightness values to the nucleus. (These pixels
define the so-called USAN.). The next step is to produce the corner strength image
by subtracting the USAN size from a given geometric threshold. The possible false
positives can be neglected by finding the USAN’s centroid and its contiguity. The so
called USAN area reaches a minimum ( SUSAN), when the nucleus lies on a corner
point. This method is more resistant to image noise than the previous ones.

The above, most well known algorithms all apply the following idea: When the
calculated value of a certain feature (which is characteristic for a corner) exceeds a
given, concrete threshold, the processed image point is usually detected as a corner.
The effectiveness of these methods from corner detection point of view, is accept-
able.

On the other hand, recent advances of the increased computer facilities and the
new problems arising from the complexity of today’s systems formulate new re-
quirements for information processing. The previously accepted and used (classical)
methods only partially cope with these challenges. As a consequence of the grown
computational resources, more complex tasks can/are to be solved by more sophis-
ticated solutions. The previous “processing” became “preprocessing” giving place
to more advanced problem raising. Related to this, the aims of the newly developed
preprocessing techniques have also changed. Besides the improvement of the per-
formance of certain algorithms, the introduced methods have to accept and fulfill a
new requirement, namely, to give more support to the “main” processing following
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after. In image processing and computer vision it means that the previous process-
ing tasks like noise smoothing, feature extraction (e.g. edge and corner detection),
and even pattern recognition became part of the preprocessing phase and process-
ing covers such fields like 3D modeling, medical diagnostics, and the automation of
intelligent methods and systems (automatic 3D modeling, automatic analysis of ...,
etc.).

The corner detection method presented in the following takes into consideration
all of these requirements. Furthermore, its reliability outperforms that of the other
methods and it opens a new possibility for automatic 3D modeling based on image
point matching, partly because it analyzes both the area and feature type attributes
and partly because it introduces a new parameter to be considered at the scene
reconstruction.

2.2 Detection of Corner Points

Before starting to detect the corner points, it is advantageous to execute a prepro-
cessing procedure including noise elimination and Gaussian smoothing. The cause
of the first is trivial. Good performance noise elimination can be ensured by Russo’s
fuzzy filters (see details in [13] and also see his chapter in this book).

The need of the latter follows from the nature of digital representation. Digital
images are stored as a collection of discrete pixels. An edge is represented as a se-
ries of points possibly resulting in small brakes in the edge which in many of the
cases causes that false corners appear during the detection. In Fig. 1 the left hand
side image illustrates how a line looks like (producing false corners) when the reso-
lution of the image is finite. For improving the performance of the corner detection
algorithm, the false corners should be eliminated before applying the corner detector
by e.g. applying a Gaussian smoothing algorithm, which is usually used to “blur”
images and to remove unimportant details and noise. In Fig. 1 the right hand side
image shows how a line after smoothing appears in the image. After preprocessing
the corner detection step can be performed.

Fig. 1 Edge representation
without smoothing (left) and
after applying a smoothing
algorithm (right)
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Corners are local image features characterized by locations where the variations
of the intensity function I(x,y) are high in both the directions x and y, i.e. both partial
derivatives Ix and Iy are large. This is the reason that many of the corner detection
algorithms uses the local structure matrix L(x,y). The algorithm suggested here also
utilizes L(x,y) as defined in eq. (1).

The local structure matrix L(x,y) can also be derived from locally approximating
the autocovariance function of a real valued stochastic signal I(x,y) (generated by a
stochastic process) in the origin [3].

Based on L(x,y), the following beneficial function H(x,y) can be defined accord-
ing to Förstner’s method [4]
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While Förstner’s algorithm compares H(x,y) to a concrete threshold, a more effec-
tive corner detection method can be developed by handling H(x,y) as a fuzzy term
and by applying fuzzy reasoning during the decision making (whether a point is
corner point or not). This is used for the characterization of the continuous transient
between the localized and non-localized corner points, as well.

After preprocessing, the algorithm calculates the first derivatives of the inten-
sity function I(x,y) in each image point. For determining ∂ I

∂x and ∂ I
∂y , the following

convolution masks can be used:
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It is also proposed to smooth each of the entries I2
x , I2

y , IxIy, in eq. (4). This step
usually improves the effectiveness of the corner detection and it can be solved by
applying again the Gaussian convolution kernel. As next, the values H(x,y) are
calculated for each image point based on the previously determined I2

x , I2
y , and IxIy

smoothed values. If the detected corners are neighbors, then we should keep only
one as corner, the pixel having the largest calculated value H(x,y). The others are
to be ignored. By this, we can avoid multiple detection of a single corner.

In most of the cases, we can not unambiguously determine whether the analyzed
image point is a corner or not based only on a certain concrete threshold value.
Therefore, in the introduced algorithm fuzzy techniques are applied for the cal-
culation of the values (corners) significantly increasing the rate of correct corner
detection. As higher the calculated H value as higher the membership value, that
the analyzed pixel is a corner. This approaches real situations where the view of a
corner can vary between marked and dim.

After fuzzifying the H values into fuzzy sets and applying a fuzzy rulebase we
can evaluate the “ degree of cornerness” of the analyzed pixels. This attribute of
the pixels can advantageously be used when searching for the corresponding cor-
ner points in stereo image pairs, as well. ( point correspondence matching is an
indefinite step of automatic 3D reconstruction. The consideration of an additional
feature, i.e. the similarity of the degree of cornerness of the projections of a certain
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Fig. 2 Illustration of antecedent fuzzy sets CW EAK , CMEDIUM, and CST RONG of universe H.
The values Hk (k=1,2,3,4,5) serve for shaping membership functions μCW EAK , μCMEDIUM,
μCST RONG i.e. for tuning the sensitivity of the detector.

point in different pictures taken from near camera positions, can highly increase the
reliability of the decision.

The antecedent and consequent fuzzy sets of the detector are illustrated in Figs. 2
and 3. In Fig. 2 (antecedent fuzzy sets) the horizontal axis represents the universe
of the H values with three fuzzy sets defined, CW EAK , CMEDIUM , and CST RONG

corresponding to points being WEAK, MEDIUM, and STRONG corners, respec-
tively. Parameters Hk (k=1,2,3,4,5) serve for the shaping of membership functions
μCW EAK , μCMEDIUM , μCST RONG by which the sensitivity of the described detector
can be tuned.

In Fig. 3 (consequent fuzzy sets) the horizontal axis is the axis of universe I
(output intensity) also with three fuzzy sets, ILOW , IMEDIUM , and IHIGH . If the pixel
is not at all a corner (none of the fuzzy rules are fired) then its intensity will be set

Fig. 3 Illustration of consequent fuzzy sets ILOW , IMEDIUM, and IHIGH of universe I. The
values Ik (k=1,2,3,4,5) serve for shaping membership functions μILOW , μIMEDIUM, μIHIGH .
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to zero, while in other cases the output intensity showing the degree of cornerness
will be evaluated by the following fuzzy rulebase:

IF (H(x,y), CW EAK) THEN (I(x,y), ILOW ),
IF (H(x,y), CMEDIUM ) THEN (I(x,y), IMEDIUM ),
IF (H(x,y), CST RONG) THEN (I(x,y), IHIGH ),

which means that if the H(x,y) value is member of the fuzzy set CW EAK then the
output intensity of the pixel is set to low, if the H(x,y) value the member of the fuzzy
set CMEDIUM then the output intensity of the pixel is set to medium, etc. Let μ(.) be
the membership function of the consequent fuzzy set generated as the superposition
of the rule consequents. As defuzzification algorithm, the center of gravity method
is proposed, thus the intensity value of a pixel in the output image can be got by

Io (x,y) =

Imax

∑
i=1

μ (Ii) Ii

Imax

∑
i=1

μ (Ii)
(5)

where Io(x,y) denotes the intensity value of the pixel in the output image at position
[x,y] and Imax stands for the maximum of the intensity.

2.3 Experimental Results

While the new algorithm is no doubt advantageous from further processing and au-
tomation points of view, the author also investigated the effectiveness of the perfor-
mance of the new method by comparing the rate of correct/false corner detections
with that of the other methods. Appr. 35 different simulations have been made and
the methods were tested by running them on different pictures partly taken from the
literature (like the famous “Lena” photo) and partly chosen by the author as prob-
ably characteristic photos from corner detection point of view. For simplicity, gray
scale images have been processed, with a maximum intensity of L = 255.

For ensuring the same conditions, during the preprocessing phase the same noise
smoothing (typically a FIRE filter with a=66 and b=100, see [13]) has been applied
on the images in each case. As an example of the results, we include here a “typ-
ical” running result in Table 1, containing the percentages of the correct/false/non
detected corner points related to the total number of corners in the image. The pa-
rameters of the different corner detectors were set as follows:

• fuzzy corner detector: smoothing - by 2× 2 Gaussian hump, fuzzy set - in the
comparative runs, only one fuzzy set of cornership is used with threshold t=161
and tanα = 1/544 (see Fig. 4) and further, the membership value corresponds to
the strength of being corner. This simplification can be accepted here because the
aim of the illustration is only to show the performance of the corner detection and
not to use it for further complex processing, e.g automatic point correspondence
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Fig. 4 Fuzzy set “corner”

matching. The threshold is set as in case of the Förstner’s method to make the
comparison easier.

• Förstner’s method: threshold=161.
• Harris corner detector: k=0.15, threshold=5000.
• SUSAN corner detector: brightness threshold=10 (the maximum difference in

gray levels between two pixels which allows them to be considered part of the
same “region” in the image), geometric threshold=37 pixel fixed mask.

As illustration, we include two very simple examples to show the effectiveness
of the new method. For more details and examples, see [15].

Fig. 5 presents results got using the fuzzy corner detector (a) by and (b) without
image smoothing. This figure illustrates very well the improvement in the results
when applying smoothing. (As curiosity, we would like to draw your attention to the
following: In the right hand side image you can find a detected corner not located
in a grid point which at first glance could be thought as false detection. However, at
closer look we have found that during the manual cutting out of the check pattern
we have made a corner by the scissors, i.e. the detection is correct.)

The next example serves for the comparison of different corner detection algo-
rithms. Fig. 6 shows the fuzzy (noise) filtered photo of a part of a corridor with
several lamps and doors. In Fig. 7 the corners detected by the introduced new fuzzy
supported algorithm can be seen. By analyzing the results we can see that the most
of the corners are detected and no false corner is found. Figs. 8-10 illustrate the
results obtained by the Förstner’s, Harris, and SUSAN corner detection algorithms,
respectively.

3 “Useful” Information Extraction

Nowadays, in digital image processing a large amount of research has been focused
on information retrieval and image understanding. Typical examples are search-
ing for similar objects/images in large databases and understanding the objects in
pictures. The main point of these tasks is to determine and extract the most
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Fig. 5 Detected corners in the fuzzy filtered image (a) using fuzzy based detector without
image smoothing, (b) using the same detector but with image smoothing

characteristic features of the objects in the images. Edges, corners, characteristic
textures, etc. are typical examples, based on which objects can be identified and
similarities can be found.

On the other hand, the growth of the database-sizes and also the increase in the
complexity of the images, led to an information explosion which has become a
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Fig. 6 Corridor - original photo

Table 1 Comparison of different corner detection methods

Methods / Corners Correct[%] False[%] Not detected [%]

Fuzzy based corner detector (2× 2 Gaussian
hump, a=100, b=161, tanβ = 1/544)

84 0 16

Förstner’s method (threshold=161)
78.8 0 21.3

SUSAN corner detector (brightness thresh-
old=10, geometric threshold=37 pixel fixed
mask)

52 4.7 48

Harris corner detector (k=0.15, thresh-
old=5000)

71 15.3 29

serious limitation on the circle of effectively solvable tasks and also on the reliability
of the results. Because of this, a huge expectancy has girded around any idea aiming
to decrease the amount of processable information.

A possible approach leading to a solution can be the separation of the “signifi-
cant” and “unimportant” parts of the characteristic features, i.e. the enhancement of
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Fig. 7 Corridor - corner detection by the fuzzy corner detection algorithm

those features which carry primary information and to filter out the part, which rep-
resents information of minor importance. By this, the complexity of the searching
and/or interpreting algorithms can be decreased while the performance increased.

Unfortunately, however traditional feature extraction methods (like corner and
edge detectors) do not help too much in this latter task because their aim is to extract
as many features as possible, regardless of their importance. Furthermore, “useful-
ness” is an ambiguous category and in many of the cases depends on the situation
and aim of the processing.

This section describes a new edge processing method which can help in this
matter. This useful information extraction method is able to extract the “primary”
edges, i.e. the object boundaries which can advantageously be used in sketch based
image retrieval algorithms.

3.1 Overview

The recent tremendous growth in computer technology parallel with the appearance
of new advances in digital image processing has brought a substantial increase in
the storage and aims of digital imagery. On one hand, this means the explosion
of database-sizes, while on the other hand the increasing complexity of the stored
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Fig. 8 Corridor - corner detection by Förstner’s method

information calls for new, intelligent information managing methods. To address
this challenge, a large number of the digital image processing algorithms which
have been introduced in the past years apply soft computing and/or intelligent tech-
niques. All of these algorithms aim some kind of (intelligent) feature extraction
supporting the further, more advanced processing, like object recognition, image
understanding, image information retrieval, etc. in a single photo or in (large) data
bases.

A typical problem of the above type is searching for similar objects/images in
large databases. Usually, this process is very time consuming, thus manual search-
ing is not acceptable. A large amount of effort was put on the automation of the
procedure. As a result, numerous methods of different kinds have been developed.

Some of the methods are based on the description of the images using text at-
tributes, enabling the organization of images by topical or semantic hierarchies to
facilitate easy navigation and browsing based on standard boolean queries [8, 1].
Automatically generating descriptive texts for a wide spectrum of images is not
feasible, most text-based image retrieval systems require manual annotation of im-
ages. Obviously, annotating images manually is an expensive task for large image
databases, and is often subjective, context-sensitive, and incomplete [8, 1]. Because
of this reason, searching procedures based on imagecontent analysis have been
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Fig. 9 Corridor - corner detection by the Harris corner detector (k=0.001)

developed, which can select the images more effectively as the text based retrieval
methods.

The possibly most interesting and important step in image retrieval is the ex-
traction of the “useful” features from the images. There are several characteristic
attributes of the images (e.g. the edges and corners) which carry useful information
and can be of help during the extraction of the primary information by appropriate
techniques.

The edges in an image can advantageously be used when comparing two images
and searching for similar objects. An image usually contains a lot of different edges,
among which there are texture edges and object contour edges. From the point of
view of image retrieval, only the latter ones are important because they carry the
primary information about the shape of the objects. By considering both types of
edges during the search/comparison, the complexity/ time need of the procedure
might grow dramatically, and the (probably high number of) non-important details
(edges) might lead to false decisions. As a consequence, it is of key importance to
separate the “significant” and “unimportant” subsets of the edges, i.e. to enhance the
ones which correspond to the object boundaries and thus carry primary information,
but to filter out the others which represent information of minor importance.
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Fig. 10 Corridor - corner detection by the SUSAN detector

The primary edge extraction method introduced in this section, applies surface
deformation combined with fuzzy edge detection technique and leads to a solution
of the above outlined problem.

3.2 Surface Smoothing

Let St be the surface describing an image to be processed, i.e. St = {(x,y,z);z =
I(x,y, t)}, where variables x and y represent the horizontal and vertical coordinates
of the pixels, z stands for the luminance value, which is the function of the pixel
coordinates and of time t. Smoothing is performed by image surface deformation.
Such a process preserves the main edges (contours) in the image. The surface defor-
mation process satisfies the following differential equation [9]:

∂ It
∂ t

= kn (6)

where k corresponds to the “speed” of the deformation along the normal direction
n of the surface St . In our case, value k is represented by the mean curvature of the
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surface at location [x,y], i.e. the speed of the deformation at a point is the function
of the mean curvature at that point. The mean curvature is defined as

k =
k1 + k2

2
(7)

where k1 and k2 stand for the principal curvatures. Starting from Eq. (7), the follow-
ing partial differential equation can be derived (Because of the limitations on the
volume, we skip the details of the deduction. For details, see [9]):

k =

(
1 + I2

y

)
Ixx −2IxIyIxy +

(
1 + I2

x

)
Iyy

2
(
1 + I2

x + I2
y

)3/2
(8)

Here Ix, Iy, Ixx, Ixy, Iyy stand for the partial derivatives with respect to the variables
indicated as lower indices. Starting from Eq. (6) the surface at time t +Δ t (for small
Δ t) can be calculated as follows [9]:

I (x,y,t + Δ t) = I (x,y,t)+ k
√

1 + I2
x (x,y, t)+ I2

y (x,y, t)Δ t + o(Δ t) (9)

where o(Δ t) represents the error of the approximation.
Fig. 11 illustrates the virtual process of the surface deformation along the time.

3.3 Edge Detection

Fuzzy edge detection [13] is one of the key steps of the suggested primary edge
extraction method. As in case of corner detection (see Subsection 2.2), we can not
unambiguously determine whether an analyzed image point belongs to an edge or
not based only on a certain concrete threshold value. The fuzzy interpretation of the
intensity differencies leads to much life-like results.

Let the pixel luminance of the original image at location [x,y] be denoted by
z0,x,y. Considering the group of neighboring pixels which belong to a 3× 3 win-
dow centered on z0,x,y, the output of the edge detector is yielded by the following
equation:

zp
x,y = (L−1)max{mLA (Δv1) ,mLA (Δv2)}

Δv1 =
∣∣z0,x−1,y − z0,x,y

∣∣
Δv2 =

∣∣z0,x,y−1 − z0,x,y
∣∣ (10)

where zp
x,y denotes the pixel luminance in the edge detected image and mLA stands for

the used membership function (see Fig. 12). z0,x−1,y and z0,x,y−1 correspond to the
luminance values of the left and upper neighbors of the processed pixel at location
[x,y]. L−1 equals to the maximum luminance value (e.g. 255).

For more details about fuzzy edge detection, see [13].
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Fig. 11 Illustration of an image surface before (above) and after (below) the deformation

3.4 Edge Separation

The most characteristic edges of the objects are extracted in the smoothed image
(Subsection 3.2 surface deformation) with the help of the constructed edge map of
the original picture. The simultaneous analysis is performed for each edge point.
The procedure is performed as follows:

For each edge point taken from the edge map of the original picture, the envi-
ronment of the point is analyzed in the smoothed image. The analysis is realized by
calculating the mean squared deviation of the color components (in case of greyscale
images the grey-level component) in the environment of the selected edge point.
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Fig. 12 Fuzzy membership
function mLA of “edge”.
L−1 equals to the maximum
intensity value, p and q are
tuning parameters.

Let p = [px, py] be an edge point in the original image and let M denote a rect-
angular environment of p with width w and height h. The mean squared deviation is
calculated as

d =

px+w/2

∑
i=px−w/2

py+h/2

∑
j=py−h/2

(μ − I (i, j, tstop))
2

hw
(11)

where tstop represents the duration of the surface deformation. In the case of
grayscale images, μ denotes the average gray level inside the environment M. For
color images, the whole process should be done for each component separately and
in this case μ corresponds to the average level of this color component inside the
environment M.

If the calculated deviation exceeds a predefined threshold value, then the edge
point is considered as useful edge. Otherwise, the edge point is removed as unimpor-
tant. As result, an image containing only the most characteristic edges is obtained.

3.5 Illustrative Example

The effectivity of the primary information extraction method is illustrated by the
analysis of a simple image. The aim of the processing is to extract the main object
in the picture.

In Fig. 13 the photo of a car can be seen. (The original photo of the car is a color
image and the analysis has been performed based on this picture). Fig. 14 shows
the smoothed image using surface deformation. Figs. 15 and 16 represent the edge
maps before and after the processing, respectively.

Fig. 16 illustrates very well that as a result of the processing, the complexity of
the image significantly reduces, many of the (unimportant) details disappear and
only the characteristic edges of the car are left. This helps filtering out the non-
important details and enhancing the most significant features/objects in images. If
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Fig. 13 Original image taken of a car

Fig. 14 Smoothed image using surface deformation based on mean curvature

we considered all of the possible edges during the searching/ object recognition/ 3D
modeling, etc., it would cause that the complexity/ time need of the procedure might
grow to a possibly intolerable degree and furthermore, the (probably high number
of) non-important details (edges) might lead to false decisions and increased the
uncertainty of the output (e.g. modeling) or caused that we disregarded recogniz-
ing an object. As a consequence, the separation of the significant and unimportant
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Fig. 15 Edge map of the original image

Fig. 16 Characteristic edges of the image extracted by the proposed useful information ex-
traction method

subsets of the edges, i.e. the enhancement of those ones which correspond to the ob-
ject boundaries and thus carry primary information and the filtering out of the others
which represent information of minor importance, not only significantly decreases
the computational complexity of the processing but is of key importance from in-
terpretation point of view thus making easier image retrieval, object recognition,
reconstruction of scenes, etc.
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4 A Possible Application: 3D Reconstruction of Scenes

The topic of building 3D models from images is a relatively new research area in
computer vision and, especially when the objects are irregular, not finished at all. In
the field of computer vision, the main work is done at one hand on the automation of
the reconstruction while on the other on the implementation of an intelligent human-
like system, which is capable to extract relevant information from image data and
not by all means on building a detailed and accurate 3D model like usually in pho-
togrammetry is. For this purpose, i.e. to get the 3D model of scenes, to limit/delimit
the objects in the picture from each other is of key importance [12].

The basic concept of the 3D model estimation based on 2D images can be sum-
marized as follows: As the first step, the pictures, used in the 3D-object reconstruc-
tion are preprocessed, which starts with noise elimination and edge detection by
applying the fuzzy filters and fuzzy edge detection algorithm described in [13]. This
is usually followed by the primary edge extraction method (see Section 3).

For the modeling the determination of the primary edges and corners are very
important because they carry the most characteristic information about the shape of
the objects to be modeled. The applied corner detection method utilizes the notion
that a corner is indicated by two strong edges. It also applies fuzzy reasoning and
the used local structure matrix composed of the partial derivatives of the color (gray
level) intensity of the pixels is extended by fuzzy decision making. The algorithm
assigns also a new attribute, the fuzzy measure of being a corner, to the analyzed
pixel. This property of the corners can advantageously be used at the searching for
the corresponding corner points in stereo image pairs (Section 2).

The next step is the determination of the 3D coordinates of the extracted edge
points. First the corner point correspondences are determined which is followed by
the determination of the edge correspondences in the different images. If the angle
between the camera positions is relatively small then after the estimation of the pro-
jection matrices of the images, necessary for the calibration, (they map the projective
space to the cameras’ retinal plane: 3D to 2D, see [12]) the corresponding points can
be calculated automatically with high reliability in each image. We search for the
characteristic corner or edge points lying (in fuzzy sense) on the epipolar line and
then the point correspondence matching is done by minimizing the fuzzy measure
of the differences of the environment of the points with the help of a fuzzy sup-
ported searching algorithm [16]. The similarity of the above mentioned cornerness
is also considered. (The corresponding corner points keep their cornerness property
in the pictures near to each other with high reliability). Having the point correspon-
dences we can calculate the 3D position of the image points (the camera calibration
is solved by the determination of the Perspective Projection Matrix [12]) and in the
knowledge of the 3D coordinates and the correspondences of the significant points
the spatial model of the scene can easily be built.

The situational models applied in 3D model building open a way for the total
automation (carried out without any human intervention) with high reliability (be-
cause of the fuzzy point matching algorithm based on fuzzy corner detection and
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fuzzy minimization of the environmental differences) and low complexity ( due to
the application of the primary information enhancement technique).

5 Conclusions

Situational models has been designed for modeling complex situations where the
traditional cybernetics models haven‘t proved to be enough sufficient because the
characterization of the system is situation dependent, incomplete or ambiguous, con-
taining unique, dynamically changing, and unforeseen situations. In image process-
ing, “information” and “noise” are such categories which can not unambiguously
distinguished because their definition may highly depend on the situation and the
aim of the processing.

In this chapter, situational models of image processing techniques (corner detec-
tion and primary information extraction) are introduced. The presented algorithms
aim to improve the quality of the images from the point of view of further process-
ing, to support the performance, and parallel with it to decrease the complexity of
the processing. The adaptivity of the models makes possible to reduce and solve
complex problems where up till recently, the complexity of the processing has lim-
ited the effective realization.

The methods presented in the chapter open new possibilities in automation and
intelligent processing. They can advantageous be used in many areas of 2D and 3D
applications, in robotics, computer vision, sketch based image retrieval methods, in-
telligent monitoring and analysis systems, vehicle system dynamics, etc. As exam-
ple, a possible application area, 3D reconstruction of scenes is also presented briefly.
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A Flexible Representation and Invertible
Transformations for Images on Quantum
Computers

Phuc Q. Le, Abdullahi M. Iliyasu, Fangyan Dong, and Kaoru Hirota

Abstract. A flexible representation for quantum images (FRQI) is proposed to pro-
vide a representation for images on quantum computers which captures information
about colors and their corresponding positions in the images. A constructive polyno-
mial preparation for the FRQI state from an initial state, an algorithm for quantum
image compression (QIC), and invertible processing operations for quantum images
are combined to build the whole process for quantum image processing based on
FRQI. The simulation experiments on FRQI include storage and retrieval of images
and detecting a line from binary images by applying quantum Fourier transform
as a processing operation. The compression ratios of QIC between groups of same
color positions range from 68.75% to 90.63% on single digit images and 6.67% to
31.62% on the Lena image. The FRQI provides a foundation not only to express
images but also to explore theoretical and practical aspects of image processing on
quantum computers.

1 Introduction

In recent years quantum computation and quantum information have generated so
much interest especially with the prospect of employing its insights to empower our
knowledge on information processing. After Feynman’s proposal of quantum com-
puters [6] , Shor [15] discovered a quantum algorithm to factor integer numbers in
polynomial time in 1994. This was closely followed by Grover’s quadratic speed-
up database search algorithm [8] on the quantum computation model. These results
and the unavoidbly inefficient simulation of quantum physics on classical computers
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[6] provide the solid evidence of the strength of quantum computers over classical
ones. Quantum computation has appeared in various areas of computer science such
as information theory, cryptography, image processing [14] because there are inef-
ficient tasks on classical computers that can be overcomed by exploiting the power
of the quantum computation. Processing and analysis of images in particular and
visual information in general on classical computers have been studied extensively.
On quantum computers, the research on images has faced fundamental difficulties
because the field is still in its infancy. To start with, what are quantum images or
how do we represent images on quantum computers? Secondly, what should we do
to prepare and process the quantum images on quantum computers?

One of the most active fields in quantum computation and information is quantum
image processing. Quantum signal processing transformations such as Fourier[14],
wavelet[7], and discrete cosine[9, 16] are proven to be more efficent than their clas-
sical versions. Using these effecient operations for image processing applications
previously inefficient approaches involving classical operations are realizable[2].
Parallelism in quantum computation can speed up many image processing tasks
which have characteristics of parallelism[14]. Some concepts of quantum images
have been proposed like Qubit Lattice[17, 18] and Real Ket[10] in order to make the
connection between quantum algorithms and image processing applications. Some
impossible processing operations on quantum computers[11] indicate the funda-
mental difference between quantum and classical operations. The complexity of the
preparation of quantum images and the application of quantum transforms to pro-
cess quantum images, however, have not been studied.

In this research, a flexible representation of quantum images (FRQI) which cap-
tures information about colors and their corresponding positions in an image into
a normalized quantum state is proposed. After the proposal of FRQI, the computa-
tional and image processing aspects on FRQI are studied:

• The complexity (the number of simple operations) of the preparation for FRQI,
• The method to reduce number of simple operations that are used in the FRQI

preparation step or quantum image compression (QIC),
• Three types of invertible image processing operators on FRQI.

The first stage of any image processing task based on the FRQI representation in-
volves the use of Hadamard and controlled rotation operations in order to prepare
the input image. As proven by the Polynomial Preparation theorem, the total number
of simple operations used in the preparation is polynomial for the number of qubits
which are used to encode all positions in an image. Human vision is incapable of ef-
fectively distingushing slight variations in color, the QIC algorithm based on FRQI
reduces the computation involving the same color positions by integrating controlled
part of the controlled rotations in the groups. To further process images encoded in
FRQI representation, processing operators based on unitary transformations to op-
erate on the colors only, colors at some positions and the combination of both colors
and positions are proposed. Experiments which involve classical simulation of the
FRQI state and processing operations are performed to confirm the capacity of FRQI
on storage and retrieval quantum images, compression ratio among the same color
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groups on QIC algorithm and an application of an image processing operator for the
third type, using quantum Fourier transform, for a line detection in binary images
on quantum computers.

The results indicate that the FRQI can be the basis to represent and process quan-
tum images. The preparation and processing operations on FRQI improve the whole
procedure of quantum image processing, i.e. a quantum computer starts from its ini-
tial state, then it is prepared to the FRQI state, and it is finally transformed by pro-
cessing operations. The QIC algorithm suggests a way to reduce the main resources
used to represent quantum images and can be extended for better compression meth-
ods on quantum images. The three types of processing operations point out patterns
for designing and applying other operations on quantum images.

2 Flexible Representation of Quantum Images and Its
Polynomial Preparation

Inspired by the pixel representation for images in conventional computers, a repre-
sentation for images on quantum computers capturing information about colors and
the corresponding positions, the quantum flexible representation of images (FRQI)
is proposed. This proposal integrates information about an image into a quantum
state having its formula in (1)

|I(θ )〉 =
1
2n

22n−1

∑
i=0

|ci〉⊗ |i〉, (1)

|ci〉 = cosθi|0〉+ sinθi|1〉, (2)

θi ∈ [0,
π
2

], i = 0,1, . . . ,22n −1, (3)

capturing information about colors and the corresponding positions of those colors,
where⊗ is the tensor product notation, |0〉, |1〉 are 2-D computational basis quantum
states, |i〉, i = 0,1, . . . ,22n − 1 are 22n-D computational basis quantum states and
θ = (θ0,θ1, . . . ,θ22n−1) is the vector of angles encoding colors. There are two parts
in the FRQI representation of an image; ci which encodes the information about
colors and |i〉 that about the corresponding positions in the image, respectively. The
quantum circuits to encode the information in an FRQI image is shown in Fig. 1. An
example of a 2×2 image is shown in Fig. 2. The FRQI state is a normalized state,
i.e. ‖|I(θ )〉‖ = 1 as given by

‖|I(θ )〉‖ =
1
2n

√√√√22n−1

∑
i=0

(cos2 θi + sin2 θi) = 1. (4)

The proposed FRQI form is quite flexible because of the way the positions of col-
ors are encoded into computational basis states. In this way, the presentation of the



182 P.Q. Le et al.

Color
yn−1
yn−2

Y Axis .
.
.

y0
xn−1
xn−2

X Axis .
.
.

x0

Fig. 1 The quantum circuit of FRQI representation

Fig. 2 A simple image and its FRQI state

geometric appearance of colors will affect on the quantum representation of the im-
age. For example, the line by line and block based addressing methods are some of
the encoding mechanisms commonly used. These mechanisms are shown in Fig. 3.

Fig. 3 Two methods for encoding position of colors
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In quantum computation, computers are usually initialized in well-prepared
states. As a result, the preparation process that transforms quantum computers from
the initialized state to the desired quantum image state is necessary. All transforms
used in quantum computation are unitary transforms described by unitary matrices.
A matrix is said to be unitary if its Hermitian conjugate or its adjoint is the same as
its inverse. Quantum mechanics ensure the existence of such unitary transforms for
the preparation process without pointing out explicitly efficient implementation in
the sense of using only simple transforms such as Hadamard transform, rotations,
etc. The polynomial preparation theorem (PPT) as developed by using Lemma 1
and Corollary 1 shows a constructively efficient implementation of the preparation
process. In the quantum circuit of the FRQI representation, the unitary transform P
to achieve the preparation process is shown in Fig. 4.
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Fig. 4 The unitary transformation to achieve the preparation of FRQI images

Lemma 1. Given a vector θ = (θ0,θ1, . . . ,θ22n−1) (n ∈ N) of angles satisfying (3),
there is a unitary transform P that turns quantum computers from the initialized
state, |0〉⊗2n+1, to the FRQI state, |I(θ )〉, composed by Hadamard and controlled
rotation transforms.

Proof. There are two steps to achieve the unitary transform P as shown in Fig. 5.
Hadamard transforms are used in step 1 and then controlled-rotation transforms are
used in step 2 to change from |0〉⊗2n+1 to |H〉 and then from |H〉 to |I(θ )〉.

Let us consider the 2-D identity matrix I and the 2-D Hadamard matrix,

I =
(

1 0
0 1

)
,H =

1√
2

(
1 1
1 1

)
.
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Fig. 5 Two steps to achieve the preparation operation P

The tensor product of 2n Hadamard matrices is denoted by H⊗2n. Applying the
transform H = I⊗H⊗2n on |0〉⊗2n+1 produces the state |H〉,

H (|0〉⊗2n+1) =
1
2n |0〉⊗

22n−1

∑
i=0

|i〉 = |H〉. (5)

Let us also consider the rotation matrices (the rotations about ŷ axis by the angle
2θi), Ry(2θi), and controlled rotation matrices, Ri, with i = 0,1, . . . ,22n −1,

Ry(2θi) =
(

cosθi −sinθi

sin θi cosθi

)
, (6)

Ri = (I⊗
22n−1

∑
j=0, j =i

| j〉〈 j|)+ Ry(2θi)⊗|i〉〈i|. (7)

The controlled rotation Ri is a unitary matrix since RiR
†
i = I⊗2n+1. Applying Rk and

RlRk on |H〉 gives us

Rk(|H〉) = Rk(
1
2n |0〉⊗

22n−1

∑
i=0

|i〉)

=
1
2n

[
I|0〉⊗ (

22n−1

∑
i=0,i=k

|i〉)(
22n−1

∑
i=0

|i〉)+ Ry(θk)|0〉⊗ |k〉〈k|(
22n−1

∑
i=0

|i〉)
]

=
1
2n

[
|0〉⊗

( 22n−1

∑
i=0,i=k

|i〉〈i|
)

+(cosθk|0〉+ sinθk|1〉)⊗|k〉
]
, (8)
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RlRk|H〉 = Rl(Rk|H〉)

=
1
2n

[
|0〉⊗

( 22n−1

∑
i=0,i=k,l

|i〉〈i|
)

+(cosθk|0〉+ sinθk|1〉)⊗|k〉+

+(cosθl|0〉+ sinθl|1〉)⊗|l〉
]
. (9)

From (9), it is clear that

R|H〉 =
( 22n−1

∏
i=0

Ri

)
|H〉 = |I(θ )〉. (10)

Therefore, the unitary transform P = RH is the transform turning quantum com-
puters from the initialized state, |0〉⊗2n+1, to the FRQI state, |I(θ )〉. ��

In the quantum circuit model, a complex transform is broken down into simple
gates, i.e., single qubit and controlled two qubit gates, such as NOT, Hadamard, and
CNOT gates which are shown in Fig. 6 and Fig. 7.

NOT Gate

α |0〉+β |1〉 X β |0〉+α |1〉

Hadamard Gate

α |0〉+β |1〉 H α (|0〉+|1〉)√
2

+β (|0〉−|1〉)√
2

Fig. 6 NOT gate and Hadamard gate

Controlled NOT or CNOT Gate
|A〉 • |A〉
|B〉 �������	 |A⊕B〉

Fig. 7 CNOT gate

Corollary 1. The unitary transform P described in Lemma 1, for a given vec-
tor θ = (θ0,θ1, . . . ,θ22n−1), (n ∈ N) of angles, can be implemented by Hadamard,

CNOT and C2n

(
Ry

(
2θi

22n−1

))
gates, where Ry

(
2θi

22n−1

)
are the rotations about ŷ axis

by the angle 2θi
22n−1

, i = 0,1, . . . ,22n −1.

Proof. From the proof of Lemma 1, the transform P is composed of RH . The
transforms H and R can be directly implemented by 2n Hadamard gates and 22n

controlled rotations Ri or generalized-C2n
(
Ry(2θi)

)
operations, respectively. In ad-

dition, the controlled rotations Ri can be implemented by C2n
(
Ry(2θi)

)
and NOT
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operations [14]. Furthermore, the result in [1] implies that C2n
(
Ry(2θi)

)
operations

can be broken down into 22n −1 simple operations, Ry

(
2θi

22n−1

)
, Ry

(
− 2θi

22n−1

)
, and

22n −2 CNOT operations. The example in the case of n = 1 is shown in Fig. 8.

• • • •
• �������	 • �������	 •

=

Ry(2θ ) Ry(θ ) Ry(−θ ) Ry(−θ )

Fig. 8 C2(Ry(2θ )) gates can be built from C(Ry(θ )), C(Ry(−θ )) and CNOT gates

The total number of simple operations used to prepare FRQI state is

2n + 22n× (22n−1 −1 + 22n−1−2) = 24n −3.22n + 2n. (11)

This number is quadratic to the total 22n angle values, θi, i = 0,1, . . . ,22n −1. This
indicates the effiency of the preparation process. ��
Theorem 1 (Polynomial Preparation Theorem). Given a vector θ = (θ0,θ1, . . . ,
θ22n−1), (n ∈ N) of angles, there is a unitary transform P that turns quantum com-

puters from the initialized state, |0〉⊗2n+1 to the FRQI state,

|I(θ )〉 =
1
2n

22n−1

∑
i=0

|ci〉⊗ |i〉,

composed of polynomial number of simple gates.

Proof. Coming from Lemma 1 and Corollary 1. ��

3 Quantum Image Compression Based on Minimization of
Boolean Expressions

Classical image compression techniques reduce the amount of computational
resources, used to restore or reconstruct images. Similarly, quantum image compres-
sion is the procedure that reduces the quantum resources used to prepare or recon-
struct quantum images. The main resource in quantum computation is the number
of simple quantum gates or simple operations used in the computation. Therefore,
the process, which decreases the number of simple quantum gates in the prepara-
tion and reconstruction of quantum images, is called Quantum Image Compression
(QIC). The preparation and reconstruction of quantum images are the same, how-
ever, in the sense of their computation.
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There are several reasons why image compression must be considered in FRQI.
To start with, studies in classical image processing point out that there is redun-
dancy in the image that can be reduced for compression in quantum image as well.
Secondly, as shown in section 2, preparing a quantum image needs a large num-
ber of simple gates. For example a 216 position image needs 232 simple gates for
preparation. Thirdly, in physical experiments, the number of simple gates should
be decreased for robust implementation. For all of these reasons, the reduction of
simple gates is necessary for both theoretical and practical aspects of the FRQI.

The amount of simple quantum gates used for preparing the FRQI depends
mainly on the number of controlled rotation gates, as shown in Fig. 9. Essentially,
most of the basic gates required for the preparation process are to simulate the C2n(·)
gates. Therefore, the reduction of controlled rotation gates results in a decrease in
the total number of gates. One of the ways to reduce the number of gates is to in-
tegrate some of them under certain conditions. This section describes a method to
integrate controlled rotation gates having the same rotation angle.

Fig. 9 The relation between number of rotation gates and total number of simple gates

As observed in classical image processing, many colors are indistinguishable to
human eyes. Exploiting this fact of human vision, the classical image representa-
tions use a limited number of levels for expressing gray scales or colors in digital
images with various sizes without significant impact on the quality of the images.
Regarding this observation, the input angles encoding colors can take their values
from a discrete set of numbers. Consequently, in the preparation process, controlled
rotation operators with the same angle but different conditions affect the positions
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having the same colors. Therefore, all rotations can be divided into groups such that
each group includes only operators having the same rotation angle.

The difference between controlled rotation gates in one of the divided groups is
only the conditional part on each gate. As presented in section 2, the conditional
part of a controlled rotation gate depends on the binary string which encodes the
corresponding position in a image. Therefore, the rotation angle and binary strings
encoding conditional parts of rotation gates in a group characterize the group. From
this point of view, each group has a generalized controlled rotation gate in which
the rotation angle is the group’s rotation angle and the controlled condition is the
integration of all binary strings in the group.

In order to make the above arguments explicit, let us consider a 8 × 8 image
shown in Fig. 10 as an example. This image contains only two colors, blue and
red with 8 and 56 positions respectively, which requires 64 C6(·) gates in general
preparation discussed in section 2. Dividing all the 64 controlled rotation gates into
2 groups helps to reduce the number of gates from 64 to 4 as shown in Fig. 11
resulting in a reduction of the number of controlled-rotation gates by 93.75%. In
addition, the controlled-rotation gates in the minimized circuit are much simpler
than C6(·) gates, implying that the number of basic gates used in each controlled-
rotation gate is reduced as well. Consequently, the red-group uses one C1(·) and two
C2(·) gates with the controlled conditions satisfy only the red positions.

There is a way to transform a binary string to a Boolean minterm by considering
each position in the binary string as a Boolean variable. If x is the Boolean variable
at a position in the string and the value of that position is 1 then the lateral x is used
in the minterm otherwise the lateral x̄ is used. For example, the binary string 000
and 101 are equivalent to x̄2x̄1x̄0 and x2x̄1x0, respectively. With this method, there
is a one-to-one correspondence between the set of all binary strings with length

Fig. 10 8×8 two-color image
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Ry(2θ1) Ry(2θ2) Ry(2θ2) Ry(2θ2)

X • X •

X • X • X • X

X • X • X • X

Fig. 11 The minimized circuit for 8×8 two-color image

Fig. 12 8-position group, the corresponding Boolean expression and its minimized
expression

n and the set of all Boolean minterms generating from n Boolean variables. After
dividing the controlled rotation gates of an image into same color groups, the next
step is the compression or minimization of the gates in each group. For this purpose,
the binary strings of each group play a key role. Using the method described in
the above paragraph, each of these binary strings corresponds to a Boolean term.
Therefore, the integration of all of binary strings in a group is equivalent to the
conjunction all of their corresponding Boolean minterms. This conjunction forms
a Boolean expression. For example, let us consider an 8-position group in Fig. 12
which comes from the blue-group in Fig. 10. The Boolean expression captures all
information about the binary strings in the group. This means that the expression
contains all information about the conditions for controlling the gates in that group.
The expression can be rewritten in minimized form which contains only one term,
as shown in Fig. 12. This observation suggests that only one controlled-rotation gate
can be used instead of 8 gates.

The quantum image compression (QIC) algorithm is proposed to reduce con-
trolled rotation gates in the same color groups based on the minimization of their
Boolean expression as shown in Fig. 13. The procedure starts with the information



190 P.Q. Le et al.

Fig. 13 Flow chart of the quantum image compression algorithm

about positions in a same color group and ends with the minimized form of the
Boolean expression. The minimized Boolean expressions are used to construct a
quantum circuit with a lesser number of simple gates than the original circuit. The
number of product terms in a minimized Boolean expression indicates the number
of conditioned rotation gates that can be used for the corresponding group of same
color positions. The analysis of the compression ratio in Section 5.2 is based on
this observation. The laterals in a product term in each minimized expression point
out the condition part of the conditioned rotation gates. The Boolean variables with
complement laterals use extra pairs of NOT gates for each complement.

In the QIC algorithm, the minimization of Boolean expressions plays a funda-
mental role because the number of Boolean variables in the expression is not triv-
ial. The problem of minimizing Boolean expressions has been studied extensively,
starting with Karnaugh maps, Espresso algorithm, etc [3]. The Espresso algorithm
is widely used in the implementation of practical design software programs like
Friday Logic, Minilog, etc. Using the Espresso algorithm, programs can minimize
the Boolean expressions on 100 inputs and 100 outputs within reasonable running
time. There are heuristic synthesis methods [3] that reduce the number of simple
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gates in quantum circuits in general. Therefore, applying these methods after the
QIC algorithm could give better results.

4 Image Processing Operators on Quantum Images Based on
Invertible Transformations

Representations of images provide the background for image processing algorithms.
The algorithms use an image as input to produce another image as output by per-
forming simple operations. Furthermore the output image is analyzed to obtain use-
ful information. This procedure in classical computers can be applied to quantum
computers by using unitary transforms as image processing operations.

In classical image processing, basic operators provide fundamental manipula-
tions in various algorithms for processing images. These operators include changes
of colors at some positions, shifting the color of whole image, performing Fourier
transform, etc. These basic operations are important in constructing and understand-
ing the processing algorithms. In quantum images, however, the primary manipula-
tions are not obvious since they should be invertible. Meanwhile, some classical
operations are not invertible such as convolution operators [11] that means they are
physically impossible in quantum computation. With FRQI, the basic operations can
be classified and constructed by using unitary transforms.

With the FRQI proposal, images are expressed in their FRQI states and quan-
tum image processing operations are performed using unitary transforms on those
states. These transforms are divided into 3 categories; G1, G2 and G3, applied to
FRQI states dealing with only colors, colors at some specific positions and the com-
bination of colors and positions, respectively. The first two type of operators are
simple in the sense that the appearance of the output and input images is highly
related. The last type is more complex because the combination of both color and
position in output images make the interpretation of measurements on the output
images difficult.

Operators in the first group use only information about the color, such as color
shifting and the second group contains those based on colors at some position in the
images, for instance the changes in color at specific positions. The last group targets
information about both color and position as in Fourier transform. Each category
has its own type of unitary transform. The unitary transforms are in the following
forms

G1 = U1 ⊗ I⊗n, (12)

G2 = U2 ⊗C + I⊗ C̄, (13)

G3 = I ⊗U3, (14)
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where U1, U2 are single qubit transforms, U3 is an n-qubit transform, C and C̄ are

matrices regarding eligible and ineligible positions, I =
(

1 0
0 1

)
is the identity op-

erator and n is the number of qubits encoding positions. From the point of quantum
circuit modeling, G1 uses a single qubit gate U1, G2 uses an additional control from
the position on the gate U2 and G3 just use the n-qubit transform U3. These circuits
are shown in Fig. 12, 13, and 14, respectively.

P

U1

. .

. .

. .

Fig. 14 Quantum circuit of G1 operations dealing with only the color part by single qubit
gates U1

P

U2

•

������

. .

. .

. .

•
Fig. 15 Quantum circuit of G2 operations dealing with the colors at some positions by single
qubit gates U2.

P
U3. .

. .

. .

Fig. 16 Quantum circuit of G3 operations combining both color and position information by
n-qubit gates U3.

The color shifting operator, S, is defined as an operator in the group G1, S =

U ⊗ I⊗n, by using rotation matrices U = Ry(2θ ) =
(

cosθ −sinθ
sinθ cosθ

)
, where θ is the
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shifting parameter. The following calculation produces the result |IS〉 of the applica-
tion of S on |I〉,

|IS〉 = S(|I〉)

= (U ⊗ I⊗n)(
1
2n

22n−1

∑
i=0

|ci〉⊗ |i〉)

=
1
2n

22n−1

∑
i=0

(cos(θi + θ)|0〉+ sin(θi + θ)|1〉)⊗|i〉. (15)

The quantum image |IS〉 has all of its colors coming from the original image |I〉 by
shifting the θ angle.

The change in color at some points in an image depends on the specific posi-
tions in the image. Information about the positions is used as conditions encoded
in the matrix C of the controlled-gate G2 to construct the processing operators. For
instance, let us consider a 2×2 image and the change in color at positions |0〉, |2〉.
The matrix C = |0〉〈0|+ |2〉〈2| and C̄ = |1〉〈1|+ |3〉〈3| are used to construct the
controlled-gate G2,

G2 = U ⊗ (|0〉〈0|+ |2〉〈2|)+ I⊗ (|1〉〈1|+ |3〉〈3|). (16)

The action of this particular G2 on a general 2 × 2 image in FRQI form, |I〉 =
1
2 ∑3

i=0(cosθi|0〉+ sinθi|1〉)⊗|i〉, is given by

G2|I〉 =
1
2

[(
cosθ0 ×U |0〉+ sinθ0 ×U |1〉)⊗|0〉+

+
(

cosθ2 ×U |0〉+ sinθ2 ×U |1〉)⊗|2〉+
+

(
cosθ1|0〉+ sinθ1|1〉

)⊗|1〉+
+

(
cosθ3|0〉+ sinθ3|1〉

)⊗|3〉]. (17)

The calculation in (16) shows that the action of operator U for changing color has
affects only on the specific positions |0〉, |2〉.

One of the examples on the G3 operators, which combine both colors and po-
sitions in output images, is the operator based on quantum Fourier transform. The
application of QFT on FRQI can be considered as the application of Fourier trans-
form on the cosine part and sin part of the FRQI state coefficients as in the following
calculations of ck and sk.

|T 〉 =
1
2n

22n−1

∑
i=0

(cosθi|0〉+ sinθi|1〉)⊗QFT (|i〉)

=
1
2n

[
22n−1

∑
k=0

ck|0k〉+
22n−1

∑
k=0

sk|1k〉
]

, (18)
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where

ck =
1
2n

22n−1

∑
k=0

e2π jik/22n
cosθi, (19)

sk =
1
2n

22n−1

∑
k=0

e2π jik/22n
sinθi, (20)

k = 0,1, . . . ,22n −1.

The complexity of each type of operation is specified based on the number of simple
gates in the corresponding quantum circuit. The number of simple gates used for an
operation in the G1 category is one gate as in Fig. 12 that means the complexity of
the G1 operation is O(1). The number of controlled rotations used for an operator in
the G2 category depends linearly on the number of positions involving the operator,
O(N), where N is the number of positions in the whole image. The complexity of
G3 operations depends on the complexity of the n-qubit operations U3 as shown in
Fig. 14. If we use the U3 operations with O(log2(N)) like quantum Fourier trans-
form, quantum Wavelet transform, etc. then the complexity of the G3 operation is
O(log2(N)).

5 Experiments on Quantum Images

A desktop computer with Intel Core 2 Duo 1.86GHz CPU and 2GB RAM is used
to simulate the experiments on quantum images. The simulations are based on lin-
ear algebra with complex vectors as quantum states and unitary matrices as unitary
transforms using Matlab. The simulations are based on linear algebra with complex
vectors as quantum states and unitary matrices as unitary transforms using Mat-
lab. The final step in quantum computations is the measurement which converts the
quantum information into the classical form as probability distributions. Extract-
ing and analyzing the distributions gives information for retrieving quantum images
and revealing structures in these images. In section 3, the QIC algorithm reduces
the number of conditioned rotation gates in quantum image storage process. The
experiment on the analysis of how many gates are reduced (or compression ratio)
is done using the Lena image. The minimization part in the QIC is done by Logic
Friday software which is widely used in practice. The application of QFT to com-
bine information on colors and positions on FRQI as presented in section 4 is used
to detect lines in binary images.

5.1 Storage and Retrieval of Quantum Images

The essential requirements for representing a classical or quantum image are the
simplicity and efficiency in the storage and retrieval of the image. The storage of
a quantum image is achieved by the preparation process which is ensured by the
proposed PPT in section 2. The measurement of the quantum image state produces
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Fig. 17 The image used in experiments of storage and retrieval quantum images and its en-
larged 8×8 lower-right block

Fig. 18 64 coefficients of the 8×8 lower-right block from the input image

a probability distribution that is used for the retrieval of the image. Input information
for preparation in this experiment is the gray levels coming from the following 64×
64 gray image.

From the image, the angles encoding the gray levels and corresponding positions
are extracted. The conditioned-rotation gates used in the quantum circuit are built
based on this data. The quantum image state has 8192 complex numbers as its co-
efficients, Fig. 16 shows the 64 coefficients of the 8×8 lower-right block from the
input image.

A measurement of a quantum state based on the set of basis vectors produces only
one result which is one of the basis vectors. In quantum computation, measurements
are performed on identical states instead of one state. With only one quantum state,
it is impossible to get information from that state. Therefore, a measurement process
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needs many identical quantum states. For instance, in order to retrieve information
about the quantum state

|ψ〉 = α|0〉+ β |1〉, (21)

many identical states, |ψ〉, are prepared. Each measurement on |ψ〉 gives either 0
or 1 as result. Many measurements, however, reveal either the result 0, with prob-
ability |α|2, or the result 1, with probability |β |2. This implies that a measurement
process on a quantum state gives information about the quantum state in form of a
probability distribution.

Fig. 19 Probability distribution of the 8×8 block

With general quantum states, the probability distributions are not enough to un-
derstand clearly the states because their coefficients are complex numbers. The
FRQI, however, contains only real valued coefficients that make retrieval of all in-
formation about the state possible. The Fig. 17 shows the probability distribution of
the 8×8 block mentioned in Fig.16. In addition, the quantum circuits indicated by
the PPT provide a way to prepare many identical FRQI states used in the measure-
ment process.

5.2 Analysis of Quantum Image Compression Ratios

As presented in section 3, the QIC method provides a way to reduce resources used
in preparation and reconstruction of quantum images. In our experiments, com-
pression ratios among groups are estimated based on the analysis of minimizations
of Boolean expressions derived from the 8× 4 single digit images (0-9) and the
256× 256 gray image of Lena as in the Fig. 18 and Fig. 19 respectively. The min-
imization step in the QIC algorithm is done by Logic Friday free software. The
compression ratio is as in (22).

Rotations− reducedRotations
Rotations

×100%, (22)
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where Rotations is the number of rotations indicated by the PPT and
reducedRotations is the number of rotations indicated by the QIC algorithm.

The single digit images are binary 8×4 images of digits from 0 to 9. The quantum
system for the images in the FRQI form contains 6 qubits, 5 qubits for encoding
position and 1 qubit for colors. As shown in PPT, the upper bound of the number
of controlled rotations to prepare the FRQI states of the images is 32 rotations.
There are only 2 groups of positions having the same color because the images are
binary images. The single digit images, the number of reduced rotations when QIC
algorithm is applied on each group of positions and the compression ratios for each
single digit image are shown in Fig. 18.

Fig. 20 Single digit images and their corresponding compression ratios

With experiments on the 256× 256 gray scale Lena image, the quantum circuit
includes 17 qubits of which 16 are used to address positions in the image and the
remaining qubit is used to storing colors. The quantum circuit indicated by the PPT
contains 216 conditioned rotation gates. The purpose of this experiment is to analyze
the compression ratio and not to deal with the preparation of the quantum state.
Therefore, the preparation involving very large number of conditioned rotation gates
does not matter.

A gray image can be partitioned into groups of positions having the same gray
level. For the Lena image in Fig. 19, there are 207 groups containing at least one
position having the same color as shown in its histogram graph in Fig. 19. The
number of positions in groups ranges from one to 822 positions. The total number
of conditioned rotation gates for preparation is reduced by applying the QIC for each
group as shown in the upper graph in Fig. 20. The compression ratios of groups are
different since the numbers and of positions and relations between the positions in
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Fig. 21 Lena image and its histogram graph

Table 1 Compression ratios of same color groups in the Lena image

Positions
Level

Gray
Level

Rotations Reduced
Rotations

Compression
Ratio (%)

50 34 77 67 12.99
100 218 105 80 23.81
150 67 151 141 6.67
200 38 207 175 15.46
250 66 253 211 16.60
700 158 702 480 31.62
750 142 775 564 27.23
800 152 806 569 29.40

groups are different. The compression ratios range from 6.67% to 31.62% between
the groups as shown in Table 1 and Fig. 20.

The reasons for the variety of compression ratios between groups are

• Number of positions in the groups are different,
• The relation between positions in each group is different.

5.3 Simple Detection of a Line in a Quantum Image Based on
Quantum Fourier Transform

Based on the discussion on QFT in section 4.2, the simulation of QFT is the ap-
plication of discrete Fourier transform on a classical computer. In this experiment,
each 8× 8 binary image contains a line as a simple structure. These lines can be
defined as periodic functions. The FRQI for the binary images used in the experi-
ment includes 7 qubits; 6 qubits for all the positions and 1 qubit for the color. The
computational basis measurements on the transformed quantum states produce the
probability distribution. The detection of lines in images from the probability distri-
butions is done by using observations on the shapes of the distributions generated
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Fig. 22 The graphs of rotations and compression ratios for each group of positions having the
same gray level

from cosine part of the FRQI states. The experiment studies four cases of lines in
binary images shown in left side of Fig. 21.

Since all coefficients in the FRQI states are real numbers, there is a symmetric
property among amplitudes of coefficients. The difference between the probability
distributions in the first and fourth cases is the distance between the maximas within
each distribution as shown in the right side of Fig. 21.

6 Conclusion

A flexible representation of quantum image (FRQI) is proposed in order to pro-
vide a basis for the polynomial preparation process and quantum image processing
operations based on unitary operators. The FRQI captures image colors and their



200 P.Q. Le et al.

Fig. 23 8×8 binary images and their corresponding probability distributions
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corresponding positions in a quantum state. The proposed polynomial preparation
theorem (PPT) achieves a unitary preparation process using a polynomial number
of simple operators transforming quantum computers from the initiallized state to
FRQI state. It also points out the design of the quantum circuit using Hadamard
gates and controlled rotation gates for the transform. Positions in an image can be
divided into groups of positions having the same color. Using the proposed quantum
image compression (QIC) algorithm on the information of the groups, the number
of simple gates used in FRQI preparation is reduced. The QIC is based on the min-
imization of Boolean equations which derives from the binary strings encoding po-
sitions in same color groups. Quantum image processing operators based on unitary
transforms are addressed on FRQI. These operators are divided into 3 categories
based on the 3 types of unitary transforms applied on FRQI dealing with only col-
ors, colors at some specific positions and the combination of colors and positions.
Experiments on FRQI including storing and retrieving quantum images, compres-
sion ratios of the QIC algorithm and an application of QFT as an image processing
operation were done. Using the result of PPT and measurements of identical quan-
tum states, the quantum image can be stored and retrieved. The compression ratios
of the QIC algorithm on single digit binary images range from 68.75% to 90.63%
and on groups having the same gray level in the Lena image range from 6.67% to
31.62%. The application of QFT in FRQI as in the detection of a line in a binary
image was also discussed.

The above results imply that the FRQI can play a fundamental role in represent-
ing and processing images on quantum computers. The polynomial preparation and
QIC express the efficiency of FRQI in both theory and practice. The division of
three types of image processing operators on FRQI provides a guide to designing
new unitary operators.

As for future work, the results presented here will be extended towards the fol-
lowing directions. Firstly, as the discussion in section 4, the image processing op-
erators are divided into 3 types. The investigation on each of three types of image
processing operations explores new operators on quantum images. For example, the
quantum Wavelet transform, the quantum discrete cosine transform, etc. are able to
replace quantum Fourier transform in the type-3 operation. Secondly, the system-
atic analysis of the compression ratios of QIC algorithm, presented in section 3, on
a larger database of images will provide more insights into the efficiency of the al-
gorithm. Thirdly, information-theoretic aspects on FRQI considering the existence
of errors such as error-correcting codes are required for a robust representation for
practical applications. The above mentioned directions are all on a single image.
There are interesting questions on quantum operations having impacts on multiple
images such as image matching, image searching on a set of images in FRQI states.
These directions will open new results on quantum image processing in general.
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Weakly Supervised Learning: Application to
Fish School Recognition

Riwal Lefort, Ronan Fablet, and Jean-Marc Boucher

Abstract. This chapter deals with object recognition in images involving a weakly
supervised classification model. In weakly supervised learning, the label informa-
tion of the training dataset is provided as a prior knowledge for each class. This
prior knowledge is coming from a global proportion annotation of images. In this
chapter, we compare three opposed classification models in a weakly supervised
classification issue: a generative model, a discriminative model and a model based
on random forests. Models are first introduced and discussed, and an application to
fisheries acoustics is presented. Experiments show that random forests outperform
discriminative and generative models in supervised learning but random forests are
not robust to high complexity class proportions. Finally, a compromise is achieved
by taking a combination of classifiers that keeps the accuracy of random forests and
exploits the robustness of discriminative models.

1 Introduction

Recent signal processing applications involve new problematics in machine learn-
ing. For instance, in addition to supervised learning scheme and unsupervised clus-
tering, semi-supervised classification show the improvement brought by considering
a training dataset formed by labelled and unlabelled data [4]. Semi-supervised clas-
sification is then considered when labelled data are lacking. One can consider a more
general situation: the weakly supervised learning. In weakly supervised learning, the
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label information of training data is composed of the prior for each class grouped
together in a vector. The supervised learning and the semi-supervised learning are
particular cases of weakly supervised learning. For instance, in supervised learning,
prior vector gives 1 if the instance belongs to the considered class and 0 if not. In a
same way, in semi-supervised learning, if the class is unknown the prior is equal for
each class, and if the class is known it leads to a binary vector indicating 1 for the
corresponding class as in supervised classification.

The field of fisheries acoustics provides weakly supervised learning schemes [22]
[19] [16]. In fisheries acoustics, people try to recognize fish schools in images, the
objective being to assess fish stock biomass, to study the marine ecosystem, or to
carry out selective trawl catches. For example, when assessing the fish stock biomass
in a given area, the oceanographic vessel covers the area to bring back species in-
formation. In figure 1-left, an area to be assessed is shown. The vessel transversal
motion is schematically represented. Through the transversal motion, the vessel ac-
quires images of the water column thanks to an acoustic sounder mounted on the
hull. An example of acquired images is shown in figure 1-right. By successive ver-
tical acoustic pulses, an echogram can be built in which acoustic echo samples are
represented. The image then shows the acoustic response of each sample of the
underwater space. Each sample of one fish school has different acoustic response
compared to the seabed, the water, or the plankton. In the example of figure 1-right,
the sea surface is visible as well as the bottom sea and some fish schools. The ob-
jective being to conceive classification models, a labelled training dataset is needed.
In that sense, trawl catches are carried out to give the proportion of species in the
related image. This proportion gives a prior knowledge for each fish schools of
the images. As shown in figure 1-left, several trawl catches are realized during the
acoustic campaign (trawl catches are represented with black points). Note that trawl
catches often provide multi-class catch as a class proportion (classes being species).
These species proportion sampling allows to built a training dataset of prior labelled
fish schools. Once classification models are built, species biomasses are evaluated in
non-labelled images thanks to a physic relation that links the backscattered acoustic
energy to the biomass species. Several other examples of weakly supervised learn-
ing can be found in the field of computer vision. For instance, in computer vision
people try to recognize objects in images for detecting their localization, their rota-
tions and/or their scale [10] [24] [6] [5] [29]. The training dataset is then composed
of images that contain objects and that are labelled with the indication of the pres-
ence or the absence of class in each image. Proposed models can then be based on
Expectation-Maximization (EM) algorithm [28] [26] [20], on discriminative models
[25] [27], or on Gaussian Markov random field [14].

In this chapter, three classification models are compared and studied. The first
one is a generative model based on the EM algorithm [26] [9], the second one is a
Fisher-based discriminative model that is extended to the non linear case [9], and the
last one is a soft random forest [2] [17] that has been extended to weakly supervised
learning. Classification models are useful in different situations. For instance, one
model may provide strong accuracy but may not be robust to complex weakly super-
vised dataset. A procedure is then presented to combine the probabilistic classifiers
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to improve classification performances. The three models are evaluated on a dataset
composed of real fish schools. Experiments are carried out to evaluate both the ro-
bustness of the classification models as regards to the complexity of the training
labels and the accuracy of the correct classification rate reached that is reached.

Section 2 is dedicated to notations and to the general framework. In the next
sections 3, 4 and 5, the generative model, the discriminative model and the soft
random forests are respectively presented. In section 6, the method that combines
several classification models and improves classification performance is presented.
Experiments are done in section 7 and concluding remarks close the chapter in
section 8.

Fig. 1 In order to assess fish stock in an area (left), the vessel acquires images of the water
column throughout transversal motion (left). Images contain fish schools (right) that must
be classified according to their class species. Species are discriminant as a function of the
shape, the position in the water column or the energy. The ground truth allowing training
classification models is achieved by successive trawls catches (fishing with a net). Trawl
catches spots are shown on the left with dark points.

2 Notations and General Framework

The training data is composed of objects characterized by feature vectors along with
class prior vectors such that the training dataset can be written as {xn,πn}1≤n≤N,
where xn = {xd

n}1≤d≤D is the nth object of the dataset, d being a feature index, and
πn = {πni}1≤i≤I is the vector of the prior of each class i for object xn.

We aim at defining probabilistic classification models with parameters Θ . The
classification step involves the computation of the posterior p(y = i|x,Θ) for any
non-labelled object x, where y = i refers to the class of the object x. The classification
rule typically resorts to selecting the maximum according to the posterior likelihood.
Three main categories of models can be investigated:

• Generative models based on the distribution of the feature vectors for each class
p(x|y = i,Θ). The required posterior probabilities are then obtained using Bayes’
theorem:
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p(y = i|x,Θ) =
p(y = i)p(x|y = i,Θ)

I

∑
j=1

p(y = j|x,Θ)

(1)

• The discriminative model that aims at determining hyperplans that separate
classes in the descriptor space. The training consists in determining each co-
efficients Θ = {ωi,bi}i of the hyperplane that separates class i from the others,
such as the posterior is given by:

p(y = i|x,Θ) =
exp[< Φ(x),ωi > +bi]

I

∑
j=1

exp[< Φ(x),ω j > +b j]

(2)

where Φ(x) is a function that allows to map the feature space in order to take in
account non linear solutions and <,> is the dot product.

• The soft random forests from the boosting family. It consists in determining a set
of weak classifiers that are mixed using a vote. In this paper, the weak classifiers
are soft decision trees that take probabilities at the input and provide probabil-
ities at the output. Considering Θ = {Θt}1≤t≤T where Θt are parameters of the
tth decision tree of the forest, and considering a forest that contains T decision
trees, the required posterior probabilities are then obtained using the following
normalizing expression:

p(y = i|x,Θ) =
1
T

T

∑
t=1

p(y = i|x,Θt) (3)

The three approaches are detailed in the next sections.

3 Generative Model

Given Θ =
{

ρi1 . . .ρiM,μi1 . . .μiM,σ2
i1 . . .σ2

iM

}
the parameters of a Gaussian mixture

model, the distribution of the feature vector for each class i is given by:

p(x|y = i,Θ) =
M

∑
m=1

ρimN (x|μim,σ2
im) (4)

N (x|μim,σ2
im) is the normal distribution with mean μim and a diagonal covariance

matrix with component σ2
im on the diagonal. The weakly supervised learning of

model parameters Θ is then stated as a probabilistic inference issue. For prior train-
ing data set of the form {xn,πn}n such as πni = p(yn = i), a maximum likelihood
criterion can be derived:

Θ̃ = argmax
Θ ∏

n
p(πn|xn,Θ) (5)
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We detail in this paper the solution to (5). The EM (Expectation-Maximization)
procedure is exploited to estimate model parameters Θ [7]. It relies on the iterated
maximization of the conditional expectation log likelihood:

Q(Θ ,Θ c) = Ey

[
lnp(x,y|π ,Θ)

∣∣∣∣∣x,π ,Θ c

]
(6)

c refers to current parameters. Assuming that objects in any image are independent,
(6) can be turned into :

Q(Θ ,Θ c) =
N

∑
n=1

{
I

∑
i

p(yn = i|xn,Θ c) ln
[
πnip(xn|yn = i,Θ)

]}
(7)

When considering proportion-based training data, the proportion data is regarded as
a class prior for each image, such that the E-step is modified to take into account
this prior knowledge as follows:

p(yn = i|xn,Θ c) =
πnip(xn|yn = i,Θ c)

∑
j

πn j p(xn|yn = j,Θ c)
(8)

In the M-step, log-likelihood (7) is maximized with the respect to the variable Θ .
Reminding that the dependency of (7) upon Θ c is only due to p(yn = i|xn,Θ c) and
independently separating the maximization for each class i, the M-step amounts to
maximizing a typical log likelihood weighted by p(yn = i|xn,Θ c) of the Gaussian
mixture model defined by (4):

Qi(Θ ,Θ c) =
N

∑
n=1

p(yn = i|xn,Θ c) ln
[
p(yn = i|x,Θ)

]
(9)

The maximization of (9) with respect to Θ is then issued from a second EM proce-
dure. Introducing the hidden variable sni, defined as p(sni = m) = ρim that indicates
the probability for the item to be classified among the mth mode of the distribution
of the class i, the conditional expectation log likelihood is maximized:

Q∗
i (θ ,θ c) = Es

[
ln
(

p(x,s|θ )
)∣∣∣∣∣x,π ,θ c

]
(10)

Where θ = {μi1 . . .μiM,σi1 . . .σiM}, i.e. the mean and the variance for each mode of
the Gaussian mixture for class i. Similarly to (7), the complete log likelihood (10)
can be rewritten as:

Q∗
i (θ ,θ c)=

N

∑
n=1

{
p(yn = i|xn,Θ c)

M

∑
m=1

p(sni = m|xn,θ c) ln
[
ρimN (xn|yn = i,θ )

]}
(11)
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The E-step of the second EM algorithms is given by:

p(sni = m|xn,θ c) =
ρimN (xn|sni = m,θ c)
M

∑
l=1

ρil p(xn|sni = l,θ c)

(12)

New parameters θ are given in the M-step, by optimization of the complete log
likelihood (11) with the respect to θ . A typical Lagrange multipliers procedure is
then used to compute {ρim}.

The whole algorithm is shown in table 1. In comparison to the algorithm pro-
posed in [26] for which the presence or the absence of classes are known in training
images, here the class priors πn must not be assessed in the 3rd step of the procedure.
Secondly, in comparison to the common EM procedure that considers a single hid-
den variable indicating the considered mode, the weakly supervised learning needs
to take into account two hidden variables: yn and sni such as sni = m indicates that
object xn is classified in mode m of the multi modal distribution of class i. This con-
straint leads to develop two EM procedures that are mixed. This is shown in table 1
where there are two E-steps in items 1 and 2, and one M-step in item 3.

The advantages of the generative model are the solid mathematical developments
and the large quantity of papers that deals with the EM procedures. Furthermore,
generative models are close to data and describe the data distribution with accuracy.
Drawbacks of the model are the possibility for the optimization to be in a local
maximum point. Generative models are known to do not fit well in presence of noisy
datasets that produce weak classification accuracy. For lots of datasets, in supervised
learning, these models are then outperformed by other classification models such as
Support Vector Machine (SVM) or random forest.

Table 1 Learning of the generative classification model

Given an initialization for Θ = {ρim, μim, σ2
im}i,m, do until convergence:

1. Update the posterior likelihood of the 1st hidden variable likelihood:

τni = p(yn = i|xn,Θ) = πni p(xn|yn=i,Θ )
∑I

j=1 πn j p(xn|yn= j,Θ )

2. Update the posterior likelihood of the 2nd hidden variable likelihood:

γnim = p(sni = m|xn,Θ) = ρimN (xn|sni=m,Θ )
∑M

l=1 ρil p(xn|sni=l,Θ )

3. Update the parameters Θ = {ρim, μim, σ2
im} :

ρim = ∑n τniγnim
∑n τni

, μim = ∑n τniγnimxn
∑n τniγnim

, and σ2
im = ∑n τniγnim(xn−μim)(xn−μim)T

∑n τniγnim
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4 Discriminative Model

4.1 Linear Model

Discriminative models are stated as an explicit parameterization of the classification
likelihood. They are here defined as probabilistic versions of discriminative models.
As proposed by [26] [9] [16], probabilistic linear discriminative models can be de-
fined as follows:

p(y = i|x,Θ) ∝ F(〈ωi,x〉+ bi) (13)

where 〈ωi,x〉+ bi is the distance to the separation hyperplane defined by 〈ωi,x〉+
bi = 0 in the feature space. Model parameter Θ is given by {ωi,bi}i. F is an increas-
ing function, typically an exponential or a continuous stepwise function. Hereafter,
F will be chosen to be the exponential function:

p(y = i|x,Θ) =
exp(〈ωi,x〉+ bi)

I

∑
j=1

exp
(〈

ω j,x
〉
+ b j

) (14)

In [26], a maximum likelihood (ML) criterion is derived for the estimation of the
model parameters for the presence/absence training data. The resulting gradient-
based optimization was proven experimentally weakly robust to the initialization. A
two-stage optimization was then developped. It exploits a Fisher-based criterion to
estimate a normalized vector defining each discrimination plane. In a second step, a
gradient-based optimization of the norm of this vector w.r.t. a ML criterion is carried
out.

The Fisher-based discrimination is derived as follows. A ”one-versus-all” strat-
egy is considered, so we hereafter consider a two-class case. Fisher discrimination
[12] amounts to maximizing the ratio between inter-class and intra-class variances:

ω̂i = argmax
ωi

{(
ωT

i (mi1 −mi2)
)

ωT
i

(
Σi1 + Σi2

)
ωi

}
(15)

where mi1 and Σi1 are the mean and variance of the class i, and mi2 and Σi2 are the
mean and variance of the remaining classes. The estimate is given by ω̂ = (Σi1 +
Σi2)−1(mi1 −mi2).

Fisher discrimination is applied to weakly supervised learning based on the es-
timation of class mean and variance for known object class priors. Formally, for a
given class i, mean m1 is estimated as:

mi1 ∝
N

∑
n

πnixn (16)

mi2 are computed replacing πk by (1−πk), Σi1 and Σi2 are calculated identically:
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Σi1 ∝
N

∑
n

πni(xn −m1)(xn −m1)T (17)

Once the initialization is done, in order to find the better coefficients Θ̃ , a minimum
error criterion using a typical gradient minimization is considered:

Θ̃ = argmin
Θ ∑

k

D(π̃k(Θ),πk) (18)

where π̃k(Θ) and πk are respectively the vector of the estimated class priors in image
k and the real class priors in image k, and D a distance between the observed and
estimated priors. Among the different distances between likelihood functions, the
Battacharrya distance [1] is chosen:

D(π̃k(Θ),πk) =
1
N

N

∑
k=1

√
π̃k(Θ) ·πk (19)

The major drawback of this basic model is that the non linear separations of classes
are not taken into account.

4.2 Non Linear Model

A non-linear extension of the model defined by (13) can be derived using a kernel
approach. The non linear mapping using kernel trick [23] [9] is based on the Kernel
principal component analysis method (Kpca). It consists in a transformation of the
feature space in which linear solutions are difficult to obtain. In the mapped space,
a linear model is specified. The expression of the posterior is then as follows:

p(y = i|x,Θ) ∝ F(〈ωi,Φ(x)〉+ bi) (20)

The ”kernel trick” is that the function Φ(x) must not be known explicitly, but
only the dot product < Φ(x1),Φ(x2) > defined by kernel function K(x1,x2) =<
Φ(x1),Φ(x2) >. Here, a Gaussian kernel with scale parameter a is chosen:

<,Φ(x1),Φ(x2) >= exp

(−||x1− x2||2
2a2

)
(21)

In order to reduce the space dimensionality, the kernel trick is associated to a princi-
pal component analysis (PCA) whose size is N pca (see table 2). This model is very
similar to the SVM. In comparison to SVM that maximizes merges in the mapped
space [23], the weighted Fisher criterion is here used in the mapped space. The
whole procedure including the non linear mapping and the parameters assessment
is given in table 2.
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Table 2 Learning of the non-linear discriminative classification model

Given a training dataset {xn,πn}1≤n≤N , do:

1. Computation of the covariance matrix:

K = {K(xn,xm)} = exp
(−||xn−xm||2

2a2

)
2. Diagonalization of the covariance matrix:

Nλα = Kα

where λ = {λ d}d are eigen values (sorted by order) and α = {αd} are eigen vectors.

3. Projection of training instances in the mapped space:

Φ(xn)d =
N pca

∑
m=1

αd
mK(xm,xn)

where d denotes the feature index in the mapped space, N pca denotes the size of the trun-
cated mapped space, and αd

m denotes the components of the dth eigen vector of the covari-
ance matrix K.

4. Computation of the linear separation hyperplans in the mapped space for each class i:

ωi = (Σi1 +Σi2)−1(mi1 −mi2) and bi = ωi(Σi1 +Σi2)/2.

5. Optimization of the linear separation hyperplans in the mapped space for each class i:

Θ̃ = argminΘ ∑k D(π̃k(Θ),πk).

The advantages of the discriminative model are the good performance reached,
the robustness of the parameterized posterior function and the flexibility in use re-
garding to the kernel choice and associated parameters. The drawbacks are the same
than the SVM, i.e. a possibility for the optimization to find a local minimum point,
the kernel choice that can not be matched to the considered dataset, and the difficulty
to interpret the data, especially in the mapped space.

5 Soft Decision Trees and Soft Random Forests

5.1 Soft Decision Trees

Decision trees are classification models that sample the feature space in homoge-
neous groups. This unstable classifier is well used with random forests that generate
several trees and reduce the unstability.
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Learning a classification tree involves an iterative procedure which sequentially
creates children nodes from the terminal nodes of the current iteration. At each node,
the corresponding cluster of objects is splitted in several homogeneous groups. This
procedure is typically carried out until children groups reach some predefined level
of class homogeneity. Known methods propose different criterions to split instances
in homogeneous groups [3] [21] [15] [18].

Formally, at a given parent node, the attribute and associated split value are de-
termined with respect to the maximization of some information gain G:

arg max
{d,Sd}

G(Sd) (22)

where d indexes attributes and Sd is the split value associated to the attribute d. The
Shannon entropy of object classes is among the popular gain criterion [21]:⎧⎪⎨

⎪⎩
G =

(
∑
m

Em
)
−E0

Em = −∑
i

pmilog(pmi)
. (23)

where E0 indicates the entropy at the parent considered node, Em is the entropy
obtained at the children node m, and pmi the likelihood of the class i at node m.
Regarding the classification step, an unlabelled object passes though the decision
tree and is assigned to the class of the terminal node that it reaches.

We here present a criterion to build classification trees in a weakly supervised
context. From the original C4.5 scheme [21], an entropy-based splitting criterion
computed from class priors instead of class labels is proposed. It relies on the eval-
uation of likelihoods pmi of object classes i for children nodes m. A first solution
might be to consider the mean of the class likelihoods over all the instances in the
considered cluster. It should however be noted that class priors can be interpreted
as classification uncertainties for each training sample. Consequently, the contribu-
tions of samples with low and high uncertainties are expected to be weighted. For
instance, samples associated with a uniform prior should weakly contribute to the
computation of the class priors at the cluster level. In contrast, a sample known to
belong to a given class provides a particularly informative prior. For feature index d,
denoting xd

n the feature value for sample n and considering the children node m1 that
groups together data such as {xd

n}n < Sd , the following fusion rule is then proposed:

pm1i ∝ ∑
{n}|{xd

n}<Sd

(πni)α (24)

For the second children node m2 that groups data such as {xd
n}n > Sd , the equivalent

fusion rule is suggested:
pm2i ∝ ∑

{n}|{xd
n}>Sd

(πni)α (25)
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The considered power exponent α weights low-uncertain samples, i.e. samples such
that class priors closer to 1 should contribute more to the overall cluster mean pmi.
An infinite exponent values resorts to assign the class with the greatest prior over all
samples in the cluster. In contrast, an exponent value close to zero withdraws low
class prior from the weighted sum. In practice, we typically set α to 0.8. This setting
comes to give more importance to priors close to one. If α < 1, high class priors are
given a similar greater weight compared to low class priors. If α > 1, the closer to
one the prior, the greater the weight.

Note that in comparison to previous work, final nodes are associated to prior
vector instead of integer indicating the class.

The procedure to train a soft tree is given in table 3.

Table 3 Learning of the soft random forests

Given a training dataset {xn,πn}1≤n≤N , learn T soft decision trees as follows:

1. At a given children node m that is not identified as a final node and that is not split again,
find the split value Sd and the descriptor d that maximize G:

G =

−
I

∑
i=1

⎡
⎣ ∑
{n}|{xd

n}<Sd

(πni)α log

⎛
⎝ ∑

{n}|{xd
n}<Sd

(πni)α

⎞
⎠+ ∑

{n}|{xd
n}>Sd

(πni)α log

⎛
⎝ ∑

{n}|{xd
n}>Sd

(πni)α

⎞
⎠
⎤
⎦

2. Split the data in two groups {xn|xd
n < Sd} and {xn|xd

n > Sd} respectively associated to
children nodes m1 and m2.

3. Compute the class priors pm1 = {pm1i}i in children node m1 and the class priors pm2 =
{pm2i}i in children node m2 such as:

pm1i ∝ ∑
{n}|{xd

n}<Sd

(πni)α and pm2i ∝ ∑
{n}|{xd

n}>Sd

(πni)α

4. If the children node m1 is class-homogeneous enough, then m1 is a final node with asso-
ciated class prior pm1 .
If the children node m2 is class-homogeneous enough, then m2 is a final node with associ-
ated class prior pm2 .

5. If there exists node m that are not final nodes return to step 1 and treat them.

5.2 Soft Random Forest

Whereas the unsteadiness of one tree is a critical issue, boosting procedures can
exploit this drawback to build ensemble classifiers to reach remarkable classifica-
tion performance [8] [2] [13]. The randomization of classification trees, especially
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random forests [2], have been shown to be a powerful and flexible tool for improv-
ing classification performances. This randomization may occur at different levels:
in the random selection of subsets of the training dataset, in the random selection of
the feature space, in the random selection of the features considered for each split-
ting rule. The classification step generally comes to a voting procedure over all the
generated trees.

Once a tree is built from weakly labelled data, a random forest [2] can be elabo-
rated in the same way. Trees are not pruned. Let t, 1 ≤ t ≤ T be the tree index for
the created random forests.

Regarding the classification of unknown samples, we proceed as follows. A test
instance x goes through all the trees of the forest. As a result, the output from each
tree t is a prior vector pt = [pt1 . . . ptI ]. pt is the class probability at the terminal node
of the tree t. The probability that x is assigned to class i, i.e. the posterior likelihood
p(y = i|x), is then computed as a mean:

p(y = i|x) =
1
T

T

∑
t=1

pti (26)

6 Classifier Combination

In this section, a combination of classifiers is investigated. Different experimental
properties can be expected from the considered classifiers, especially random forest
and discriminative models, in terms of robustness to the complexity of the training
data. The latter models might be more robust to uncertainties, and thus to complex
training mixtures, as they rely on a parametric (linear) estimation of the separation
planes between object classes. In contrast, random forests potentially depict greater
adaption capabilities. This property may become a drawback for datasets with larger
training uncertainties. Then it should be appropriate to combine posteriors from
different classifiers in order to extract positive information.

Let Θ1 and Θ2 be the parameters of two assessed classifiers and let p(y = i|x,Θ1)
and p(y = i|x,Θ2) be their posterior classification likelihoods. Two approaches
might be undertaken to exploit the two posteriors:

• A way may be to use the usual classifier combination that is expressed as follows
[11]:

p(y = i|x,Θ1,Θ2) ∝ β p(y = i|x,Θ1)+ (1−β )p(y = i|x,Θ2) (27)

where β is a parameter that gives less or more weight to each classifier. For
example, if Θ1 and Θ2 are respectively the parameters of the discriminative model
and the random forests, β will set a compromise between the robustness of the
discriminative model as regard to the high complexity labels and the random
forests as regard to the high accuracy reached in supervised learning.

• An other way will be to update the prior with a classifier and use the updated prior
to train an other classifier. Formally, we proceed as follows. Given a probabilistic
classifier with parameters Θ1, we compute the resulting posterior classification
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likelihoods {p(yn = i|xn,Θ1)}n,i for any training sample xn. Given the training
prior πn = {πni} for sample xn, this prior is updated as:

πnew
ni ∝ p(yn = i|xn,Θ1)π

β
ni (28)

Finally, this new training prior is considered to learn the final classifier with pa-
rameters Θ2. The considered training dataset is then {xn,πnew

n }n. Coefficient β
states the relative confidence in the posterior issued from the classifier Θ1 w.r.t.
the initial training prior. It might be noted that this fusion rule guarantees that
impossible classes for a given sample (i.e. classes associated with a null prior)
remain excluded. In particular, the prior labelled samples, i.e. priors equalling 1
for one class, will not be modified by this update. This procedure is particularly
relevant for training samples with highly uncertain priors.

In the experiments the second proposed solution will be chosen with Θ1 being
the parameters of a discriminative model and Θ2 the parameters of a soft random
forests. The drawback of the first solution is that prior training knowledge, such as
pini = 0, are not conserved.

7 Application to Fisheries Acoustics

7.1 Simulation Method

In practice, because the ground truth is only composed of the proportion of classes
in images, no one can know exactly the individual class of each object in the images.
Weakly supervised training dataset are then built from supervised training dataset.

The procedure to build a weakly supervised training dataset from a given super-
vised dataset is reported in table 4. We distribute all the training examples in several
groups according to predefined target class proportions. All the instances in a given
group are assigned to the class proportion of the group. In table 4, examples of tar-
get proportions are shown for a four-class dataset. The objective being to evaluate
the comportment of classification models as regard to the complexity of the class
mixture, we create groups containing from one class (supervised learning) to the
maximum-class available (four classes in the example of table 4). For each case of
class-mixture, different mixture complexities can be created: from one class dom-
inating the mixture, i.e. the prior of one class being close to one, to equiprobable
class, i.e. nearly equal values of the priors. For example, in table 4, considering
three-class mixture, 24 images are built with the corresponding class proportions.

Mean classification rates are assessed using a cross validation procedure over 100
tests. 90% of data are used to train classifier while the 10% remainders are used to
test. Dataset is randomly split every test and the procedure that affects weak labels
to the training data is carried out at each test. For each test of the cross validation,
the correct classification rate corresponds to the mean of the correct classification
rate per class.



216 R. Lefort, R. Fablet, and J.-M. Boucher

Table 4 Construction of weakly supervised dataset from supervised dataset

Given a supervised training dataset {xn,yn}1≤n≤N with four classes such as 1 ≤ yn ≤ 4,
build a weakly supervised dataset as follows:

1. Generate a set of target proportions.

Mixtures with one class:

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠(supervised case)

Mixtures with two classes:

⎛
⎜⎜⎝

0.9
0.1
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.1
0.9
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.6
0.4
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0.6
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.9
0.1
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.1
0.9
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.6
0.4
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.4
0.6
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0

0.9
0.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0

0.1
0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0

0.6
0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0

0.4
0.6

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.9
0

0.1
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.1
0

0.9
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.6
0

0.4
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0

0.6
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.9
0
0

0.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.1
0
0

0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.6
0
0

0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0
0

0.6

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.9
0

0.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.1
0

0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.6
0

0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.4
0

0.6

⎞
⎟⎟⎠

Mixtures with three classes:

⎛
⎜⎜⎝

0.9
0.05
0.05

0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0.9
0.05

0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0.05
0.9
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0.3
0.3
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0.4
0.3
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0.3
0.4
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.9
0

0.05
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0

0.9
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0

0.05
0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0

0.3
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0

0.4
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0

0.3
0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.9

0.05
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.05
0.9

0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.05
0.05
0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.4
0.3
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.3
0.4
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0.3
0.3
0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.9
0

0.05
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0

0.9
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0

0.05
0.9

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0

0.3
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0

0.4
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0

0.3
0.4

⎞
⎟⎟⎠

Mixtures with four classes:

⎛
⎜⎜⎝

0.85
0.05
0.05
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0.85
0.05
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0.05
0.85
0.05

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.05
0.05
0.05
0.85

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0.2
0.2
0.2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.2
0.4
0.2
0.2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.2
0.2
0.4
0.2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.2
0.2
0.2
0.4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.4
0.1
0.2
0.3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.3
0.4
0.1
0.2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.2
0.3
0.4
0.1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.1
0.2
0.3
0.4

⎞
⎟⎟⎠

2. Choose a type of mixture (one, two, three, or four) and distribute examples {xn}n|yn=i in
each group of data following the different proportions of class i.

3. Build the weakly supervised training dataset {xn,πn}n by attributing to xn his correspond-
ing class proportion.

7.2 The Fish School Dataset

The dataset is a set a fish schools that have been observed in 13 different acous-
tic campaigns from 1989 to 1993 in the Bay of Biscay. Software has automatically
detected the fish schools in the image according to a given acoustic threshold. Be-
cause fish has a backscattering strength larger than water or plankton, the threshold
determines if the acoustics sample is fish or not. The same software extracted sets
of descriptors for each fish school. Typically, morphological descriptors are used
such as the length, the height, the depth, the fractal dimension, and the seabed alti-
tude of the fish school (figure 2). Other descriptors indicate the mean backscattering
strength, the upper backscattering strength, and the lower backscattering strength of
each fish school. The backscattering strength gives some information about the fish
density of the considered school, but also about the fish species. For example, fish
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with swim bladder has a more important bachscattering strength than fish without
swim bladder.

In practice, fish schools are identified by experts from association between mono
specific trawl catches and acoustic images acquired during the trawling operation.
If trawl catches provide only one species, we suppose that fish schools in the corre-
sponding images contain only the considered species.

In the database, four classes of species are identified: Sardina (179 fish schools),
Anchovy (478 fish schools), Horse Mackerel (667 fish schools), and Blue Whiting
(95 fish schools). For instance, different fish schools are represented in figure 2.
Sardina schools appear dense and large with lot of backscattering strength, Anchovy
schools are scattered from the seabed to the middle of the water column, and Horse
Mackerel are rather situated close to the seabed with spatial organisation similar to
Anchovy.

Fig. 2 Examples of fish school organisations in one echogram for Anchovy, Sardina, and
Horse Mackerel

7.3 Results

Results are shown in figure 3. The mean correct classification rate is reported for
the generative model (EM), for the discriminative model based only on the Fisher
model (Fisher) that is presented in equation (15), for the discriminative based on
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the Fisher model followed by the optimization (Fisder + Optim) that is presented in
equation (18), for the soft random forest (SRF), and for the combination between
SRF and Fisher (SRF + Fisher). The combination of the two classification models is
carried out in applying the method proposed in section 6 with equation (28). Θ1 are
the parameters of the Fisher-based discriminative model and Θ2 are the parameters
of the random forest that is built with the dataset {xn,πnew

n }n. The classification rate
is shown as a function of the number of class in training images from one class
(supervised learning) to four classes and following the target proportion shown the
table 4.

Firstly, we analyse the supervised learning to notice that, for this dataset, random
forests greatly outperforms the generative and the discriminative models. Actually,
the rate goes from 0.63 to 0.7 with generative and discriminative models whereas it
reaches 0.9 with random forest. The high performances reached by random forest in
supervised learning justified their use in a weakly supervised learning.

Secondly, looking at the weakly supervised learning, we notice that performance
fall down compared to supervise learning. It is particularly true for the random
forests that loose around 30% accuracy in four-class mixture compare to supervised
learning and the generative model that looses around 20% accuracy in four-class
mixture compared to supervised learning. For random forests the explanation is that
the used criterion to find acceptable split at the corresponding node m does not
fit for prior labelling. Actually, in most of cases because of mean calculation (24)
and (5.1), situations may produce uniform class distribution pm. In fact, there is no
normalization term in equations (24) and (5.1) that provides information about the
number of instance that are involved by each class. The falling down performances
provided by the generative model can be explained by the difficulty for the EM
procedure to fit with complex data. Especially when the data organisation in the
descriptor space does not correspond to Gaussian mixture and when there is a lot
of overlapping between classes. In comparison, the weighted Fisher-based model is
more robust as regards to the prior complexity. Actually, the discriminative model is
down only around 1% accuracy from the supervised learning to the four-class mix-
ture. The simplicity of the Fisher weighting and the non linear mapping explains
this robustness. The analysis of the comportment of the discriminative optimization
reveals the drawback of this approach, i.e. the non-optimal convergence. A rate im-
provement from the weighted-Fisher was waited but there is a significant loss from
3% to 5% rate. This can be explained by the fact that a lot of solutions exist for
equation (18) and there is not enough constraints to find the true solution.

On the opposite, the classifier combination seems to be a very good solution to
weakly supervised data. Using equation (28) to combine the discriminative model
and the random forests, high accuracy performances are reached compared to single
models such as discriminative model or soft random forest. By fusing responses,
the robustness of the discriminative model is kept (there is a rate loss around 2%
from the supervised learning to the three class mixture and around 10% from the
supervised learning to the four-class mixture) and the high accuracy reached by the
random forests is conserved too (the correct classification rate goes from 89.2% in
the supervised learning case to 77.2% in the four-class mixture case).
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Fig. 3 Mean correct classification rate as a function of the number of class per training images

In figure 4, two confusion matrixes are shown for the classification model that
combine the soft random forests with the discriminative model. The confusion ma-
trixes are reported for the supervised learning (figure 4-left) for which the mean
correct classification rate equals 0.893 and the four-class mixture (figure 4-right)
for which the mean correct classification rate equals 0.772. Note that confusion
matrixes are obtained by computing the mean over the cross validation which ex-
plains that horizontal and vertical sums do not exactly equal to 1. In the supervised
learning case, correct classification rates per class reach high performance except
for Sardina that provides a mean correct classification rate that equals 73.8%. Blue
Whiting seams to be the class that is well separated from the others with a cor-
rect classification rate of 97%. In the four-class mixture case, the Sardina does not
change and the correct classification rate of the other classes fall down from around
15%.

While the combination of the random forests and of the discriminative models re-
sorts to the best performances, we further analyse the robustness of each classifier. In
figure 5, we report classification performances w.r.t. mixture complexity. We evolve
the complexity of the 3-class training mixture from the supervised case to the unsu-
pervised case (i.e. uniform prior). Note that for each experiment all training samples
are generated with the same type of mixture proportion (see table 4), i.e. the train-
ing data does include both low and high uncertainty samples. These results clearly
illustrate the relative robustness of the different classifiers to the degree of class un-
certainty in the training dataset. Obviously, classification performance decreases in
all cases. The slopes are however different. Whereas the classification trees greatly
outperform the two other types of classifiers in the supervised case, it also shown to
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Fig. 4 Confusion matrixes for the classifier that results from the combination of the dis-
criminative model and the random forests. Confusion Matrixes are shown for the supervised
learning (left) and the four-class mixture.

Fig. 5 Mean correct classification rate for 3-classes images with different target proportions
going from the supervised case (on the left) to uniform situations (on the right)

be the less robust to the increased mixture complexity with a loss in classification
performances greater than 50% between the supervised and unsupervised cases. In
contrast, the performances of the discriminative models only decrease by less than
15%.

These additional experiments further validate the choice of the combination of
the discriminative models and the random forest. It should be noted that for real
applications training datasets would involve a variety of mixture complexities such
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that the performances of the random forest would not be as degraded as in the ex-
treme situations considered in figure 5. The combination of the two classifiers lead
to the best results in all cases and the improvement w.r.t. random forests alone reach
a classification gain up to 14% and 20%.

8 Conclusion

This paper is dedicated to weakly supervised learning. The majority of models pro-
cesses training data that are labelled with binary vector indicating the presence or
the absence of object class in images. Here training data are provided with prior
labelling, the label being a vector that indicates the prior for each class. These
training data are obtained with class proportion knowledge in images instead of
presence/absence knowledge. This kind of training data is typical from fisheries
acoustics that provide objects in images that are labelled with relative class propor-
tion.

Three probabilistic classification models are presented and analysed. We inten-
tionally choose models that are very different in terms of global and mathematical
approaches: a generative model, a discriminative model and random forests. These
three models take probabilities at the input and provide probabilities at the output.
For the fisheries acoustics dataset, in supervised learning, random forests reach the
better correct classification rate but results fall down in weakly supervised learn-
ing and are equivalent. The generative model provides the lower results with cor-
rect accuracy in supervised learning but very low performance in weakly supervised
learning. The discriminative model is the more robust model as regard to the weakly
supervised learning but accuracy is not correct. A classifier combination method has
been then proposed to fuse two classification models and to combine their classifi-
cation abilities, i.e. the strong accuracy and the robustness. Results prove the perti-
nence of the approach by providing more robust and accurate correct classification
rates.

As regards to the application, the operational situations typically involve mixtures
between two or three species and the reported recognition performances (between
90% and 77%) are relevant w.r.t. ecological objectives in terms of species biomass
evaluation and the associated expected uncertainty levels. However, this approach
does not take in account the spatial organisation of species in the given area. So, an
effort must be done to include spatial information [16].

References

1. Bhattacharyya, A.: On a measure of divergence between two statistical populations de-
fined by probability distributions. Bull. Calcutta Maths. Soc. 35, 99–109 (1943)

2. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees.

Chapman and Hall, Boca Raton (1984)



222 R. Lefort, R. Fablet, and J.-M. Boucher

4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge
(2006)

5. Chung, J., Kim, T., Nam Chae, Y., Yang, H.: Unsupervised constellation model learning
algorithm based on voting weight control for accurate face localization. Pattern Recog-
nition 42(3), 322–333 (2009)

6. Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial mod-
els for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)

7. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the
em algorithm. Jour. of the RSS 39, Series B(1), 1–38 (1977)

8. Dietterich, T.: An experimental comparison of three methods for constructing ensembles
of decision trees. Machine Learning 40(2), 139–158 (2000)

9. Fablet, R., Lefort, R., Scalabrin, C., Massé, J., Boucher, J.M.: Weakly supervised learn-
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Intelligent Spaces as Assistive
Environments: Visual Fall Detection
Using an Evolutive Algorithm�

José Maŕıa Cañas, Sara Marugán, Marta Marrón, and Juan C. Garćıa

Abstract. Artificial vision provides a remarkable good sensor when develop-
ing applications for intelligent spaces. Cameras are passive sensors that sup-
ply a great amount of information and are quite cheap. This chapter presents
an application for elderly care that detects falls or faints and automatically
triggers the health alarm. It promotes the independent lifestyle of elder peo-
ple at their homes as the monitoring application will call for timely health
assistance when needed. The system extracts 3D information from several
cameras and performs 3D tracking of the people in the intelligent space. One
evolutive multimodal algorithm has been developed to continuously estimate
the 3D positions in real time of several persons moving in the monitored area.
It is based on 3D points and learns the visual appearance of the persons and
uses colour and movement as tracking cues. The system has been validated
with some experiments in different real environments.

Keywords: detection, vision, fall, three-dimensional, eldercare.

1 Introduction

The aging of population all around the world, especially in Europe, challenges
to economies and societies and also generates new needs, both at societal and
individual levels. The elder sector of population is growing and technology
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may play a big role improving their quality of life and serving both as an
assistant and as an integration tool.

Advances in miniaturization of computing devices, new sensor elements
and networking make it possible to embed some kind of computational in-
telligence into working environments, private homes or public spaces. The so
called Intelligent Spaces open a wide range of possibilities of interaction be-
tween humans and the surrounding environment. Based on Intelligent Spaces
resources and concepts, Assistive Technologies research has received a new
impulse looking for new solutions and applications. Many different aspects
of intelligent spaces concerning Assistive Technologies are open to research
and development: sensor and monitoring devices, processing units and actu-
ators, man-machine interaction, and even ethic or legal implications of the
deployment of such systems.

Over one-third of elders 65-years-old fall each year [12]. The falls usually
result in serious injuries like hip fracture, head traumas, etc. The rapid health
assistance in case of fall may reduce the severity of the injuries. The care of
elderly implies a continuous monitoring of their daily tasks. In many cases
their own families or the social services are in charge of their care at their own
homes or in specialized institutions. But even counting with the necessary
amount of caregivers, it is impossible to watch these patients continuously
in order to detect any incident as fast as possible. The problem worsens for
people who live alone at home, as they need much more this type of assistance
in case of emergency. An interesting application for elder care is to detect falls
or faints in order to automatically trigger a health alarm. Such application
would promote the independent lifestyle of elder people at their homes as the
monitoring application will call for timely health assistance when needed.

Fig. 1 Traditional tele-assistance system - (a) Pushing necklace, (b) Assistive
service

In the context of fall detection and prevention there are several technologi-
cal products in the market. First, traditional monitoring systems as pendants
or wristbands worn by the patients [3], who must activate such devices when
needed, usually pressing a button (Figure 1). The system sends an emergency
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call to the appropriate health service. These traditional systems require hu-
man intervention to report an alarm or ask for help, and user’s potential
non-compliance (both intended and unintended) is a potential problem. In
certain situations, for instance a faint that causes a fall to the floor, it will
not be possible for the patient to activate the device, and that can be dan-
gerous as the severity of the damage may increase with the time at the floor
without health assistance. A second group of wearable systems relies on ac-
celerometers and tilt sensors to automatically detect the falls [15]. Carrying
this devices continuously may become a nuisance for the users.

Other solutions are embedded in the environment, they use external mon-
itoring devices and then, the user’s compliance is not required. There are
systems which are based on floor-vibrations [1], on infrared array detectors
[14] and on cameras. Inside this broad area of possibilities, artificial vision
provides a remarkable good sensor when developing applications for intel-
ligent spaces. Cameras are passive sensors that supply a great amount of
information and most of them are quite cost effective. Several vision based
assistive systems use omni-directional cameras [16, 9]. In particular [9] looks
for activity patterns, models the patient’s behavior and detects abnormal
activities. Other works use optic flow as the main visual feature [5] or the
motion history and human shape variation [13].

Fig. 2 Camera proliferation

One naive alternative is to use vision for external monitoring. A set of cam-
eras transmit images to a service center where someone watches the display
and decides whether a dangerous situation has been happened or not. This
kind of tele-watch systems work in case of conscience loss, but have some dis-
advantages like the need of a person continuously watching the images and,
even worse, it is unconvenient from the patient privacy. One way to over-
come such disavantages is to build autonomous tele-assistance systems, that
continuously monitor the images without the need of a watching person and
only show the patient images in case of alarm. The major difficulties building
such systems lie in the complexity of extracting relevant information from
the raw pixels in the image flow, in real time, and in the high computational
cost it might demand. This kind of vision-based autonomous tele-assistance
system shares a common background with general visual tracking techniques
[4, 10, 11, 17], which have been applied to different scenarios.
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In this chapter we present an autonomous tele-assistance system that
tracks people positions in an Intelligent Space using a set of regular cam-
eras at the same time. The system works in real time. When it detects some
anomalous patient behavior, such as a falling to the floor, the system auto-
matically can send an emergency message for immediate health assistance.

The system core is based on a novel evolutive multimodal algorithm which
allows to continuously estimate the 3D position in real time and to learn
the visual appearance of those people located into the covered area. People
movement is described as a sequence of 3D positions. With this information,
it is not difficult to determine whether people are laid on the floor, inside a
dangerous area, etc.. The system has been validated with a set of experiments
in different simulated and real environments.

The remainder of the chapter is organized in four additional sections.
A global functional description of the fall detector system is presented in
section 2. In section 3 the 3D localization algorithm and the tracking tech-
nology are described. In section 4 we show experimental results that validate
and describe the system performance. Finally, conclusions are exposed in
section 5.

2 Global System Description

For monitoring applications, a great part of the useful information in the
work space is mainly three-dimensional, like the relative position of an object
opposed to another or the movement of a person. One of the main problems
in the identification of dangerous situations using vision sensors is their two
dimension nature. For instance, when using a flat image to detect whether
a person is near to an ignited oven, a window, a door, etc or not, there
is ambiguity in the estimation of the distance, so we could easily make a
mistake. High risk situtions are better described, and in a more simple way,
in 3D spatial terms.

Fig. 3 Blocks diagram of ElderCare application
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We have built an application, named ElderCare, whose main blocks are
depicted at Fig. 3. First, the image capture block is responsible of getting
the frames from several camera sensors along the monitored area. Analog
cameras, wireless cameras, firewire and regular USB cameras are supported.
Second, the visual 3D people tracking block extracts three-dimensional infor-
mation in real time from the images, tracking the 3D position of every person
at the monitored zone. It provides the current 3D position of every person at
the area to the fall detection block. This third block defines a set of alarm
rules which take into account 3D position and time conditions to trigger a
health assistance alarm. For instance, if the position of a person is close to
the floor (less than 20 cm) for a minute or more then the fall condition is
triggered and an alarm is signaled to the communications block. This fourth
block is responsible of sending such alarm to the health services via SMS,
MMS, automatic phone call, etc.

Input data to the system consists of an image set of one or more house
rooms and a set of rules that determine dangerous situations. For correct op-
eration of the system there should be at least two cameras for each monitored
room. Output data is an alarm signal sent, in general, to health assistant ser-
vices or patient relatives. The system triggers it when detects a dangerous
situation according to regular person positions, following certain rules. The
rules that trigger the alarm are fully configurable and provide flexibility to
the system in terms of alarm definition. They can be introduced during in-
stallation process.

In addition, a graphical interface has been developed, but only for debug-
ging purposes (Figure 14). The system itself presents no window at operation
time and records no single image to keep privacy of the monitored people. It
has been implemented with a set of low cost cameras and a conventional PC.
One 3D estimation technique has been carefully designed to run at real time
on commodity hardware. It uses colour and movement to track the people 3D
position. Combination of colour and movement offers some advantages over
using each feature separately. On the one hand, motion locates and tracks
people during their walk through the scene. It allows to reject all the static
objects in the room and focus the visual computation on the regions of inter-
est. On the other hand, colour information is easy to use and very selective.
The combination of both features allows to learn colour when someone is
moving and to keep her tracking when she is still. The algorithm will be
described in detail in section 3.

3 Multimodal Evolutive Algorithm for Vision Based
3D Tracking

Evolutive algorithms manage an individual population that combine their
properties to achieve new generations that approximate to the problem
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solution. Normally evolutive algorithms execute repeatedly two steps until
the populations converge to problem solution.

• New population generation.
• Fitness or quality computation for each individual.

Population generation requires genetic operators like random mutation,
thermal-noise, cross, repulsion and others, it depends on the problem.

When an individual is compatible with sensorial observations its fitness will
be high and also its probability for keeping it in the following generation. On
the other hand, individuals not compatible with observations will have low
fitness.

In this system, and individual is a 3D point, P(x,y,z), due to the problem
consists of finding the solution for 3D position estimation of people. The
fitness is computed base on image information, specifically colour and motion.

Fig. 4 Flow diagram
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This is similar to other approaches with individuals in 3D space and fitness
functions which are based on image features [6, 7, 8, 2].

The image 4 shows the flow diagram of the evolutive algorithm.
First of all we introduce two kinds of populations, then we describe how

each kind of individual is evaluated through the fitness function and at least,
we explain 3D position calculation.

3.1 Explorers and Races

Two types of populations are used: explorers and exploiters. Explorers search
for movement in the whole space covered by cameras and it has a defined
number of individuals. On the contrary, exploiters consist of an undefined
number of races, each one analyzing one region where explorers have detected
movement.

Fig. 5 Two types of populations: (a) Explorers, (b) Exploiters

To generate new populations the algorithm uses different genetic opera-
tors for each kind of population. Explorers are generated through random
mutation and abduction. Random mutation consists of changing individual
position randomly considering all position states inside the room. Abduc-
tion operator consists of generating new individuals in high probability space
zones based on observations, zones where there is an object in movement.
Abductions speed up exploiters solution convergence. The image 6(a) shows
a person moving his arm and in the image 6(b) we can see the majority
explorer population situated in compatible zones with movement in images.

On the other hand, exploiters are generated by elitism and thermal-noise
operators. Thermal-noise operator is quite similar to random mutation, the
difference is that thermal-noise explores new positions locally. The new indi-
vidual position is near its old position.
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Fig. 6 Abduction operator: (a) Real image, (b) Virtual image

Elitism operator consists of passing the high fitness individuals without
change to the next population. This allows to remember the best positions
from the last iteration and to generate the thermal-noise individuals around
them.

Depending on percentage of individuals assigned to each operator, ex-
ploiters behavior may vary. High thermal-noise configuration provokes that
more exploiters explore the local zone.

The image 7(a) shows high percentage for thermal-noise and 7(b) image
shows high percentage for elitism.

Fig. 7 Percentage configuration for thermal-noise and elitism: (a) High thermal-
noise, (b) High elitism
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3.2 Fitness Function Observation Model

Fitness calculation also requires a distinction between two types of popula-
tions. Explorer’s fitness is calculated based on motion information. A high
explorer’s fitness is the trigger for tracker generation. Once one tracker is ini-
tiated, exploiters learn automatically the person clothes colour. Thus, fitness
equations will be:

Explorer:

hi =
∑

P (movi | imgm) (1)

Exploiter:

hi =
∑

P (colouri | imgm) +
∑

P (movi | imgm)
2

(2)

(3)

where P (colouri|imgm) and P (movi|imgm) are m image pixel percent com-
patible with colour and movement.

For each individual, it calculates the pixel in that projects in each image
and for fitness calculation also pixels in 5x5 neighborhood are analyzed. Pixel
percent will be:

∑
P (colouri | imgm) =

k

25

∑
P (movi | imgm) =

k

25
(4)

where k is pixels that pass applied filter.
The algorithm generates a exploit race for each person in movement. A

race tracks a person while he or she is visualized in two cameras at least.
Two or more cameras are needed to extract three-dimensional information.
They have to be calibrated in relation to each other.

Once the person is located inside the room, it can determine if there is a
dangerous situation. The system detects if the person is fallen in the floor
checking Z coordinate. If Z coordinate is under a threshold it activates a
visual and audible alarm.

As we have mentioned before, this system extract colour and motion in-
formation from images. The following sections describe this process.

3.2.1 Motion Detection

When an object is in movement, some pixels changes their values. The system
detects this change through consecutive frame comparison and background
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extraction. The background extraction is calculated using a learned back-
ground image for each camera. These images are created as a result of a
frame weighted sum in defined intervals (see equation 5).

background(t) = α × background(t − β) + (1 − α) × frame(t) (5)

where alpha is in range [0,1] and beta indicates time interval for background
updating.

Frames comparison is a simply absolute difference between two images. If
a pixel difference is above a defined threshold, this pixel passes the filter.

Thus, motion filter let pass pixels that have a significant difference with
regard to previous frame or background image. The difference is determined
between RGB images. The difference equation on a pixel p(x,y) is:

DiffImg(x, y) = (diffR AND diffG)OR(diffG AND diffB)OR(diffR AND diffB) (6)

Fig. 8 Background learning: (a) Instantaneous image, (b) Background image

Fig. 9 Motion filter: (a) Real image, (b) Filtered image
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where diffR, diffG and diffB are booleans and indicates if the difference is
above a given threshold. In order to consider real difference between pixels
requires differences in at least two RGB channels.

Motion mask is calculated following this equation:

mask(x, y) = DiffImgprev(x, y) OR DiffImgbackgd(x, y) (7)

where DiffImgprev is the binary image from previous image difference and
DiffImgbackgd from background image difference.

Then, fitness function uses motion mask for its equations.

3.2.2 Automatic Colour Learning

Object tracking only based on movement detection does not solve the problem
when the object is still. Eldercare system learns clothe people colour to keep
the track in this situation. Therefore, the system associates one colour to
each person.

Firstly, the system uses motion filter to learn people colour and generates
a colour filter dynamically for each race. It takes motion pixels as samples
for a HSV histogram, that is associated to the race. Thus, the colour model
used is Hue-Saturation-Value model.

HSV (Hue, Saturation and Value) - defines a type of colour space. It is
similar to the modern RGB and CMYK models. The HSV colour space has
three components: hue, saturation and value. ’Value’ is sometimes substituted
with ’brightness’ and then it is known as HSB. The HSV model was created
by Alvy Ray Smith in 1978. HSV is also known as the hex-cone colour model.e

• Hue represents colour. In this model, hue is an angle from 0 degrees to 360
degrees.

• Saturation indicates the range of grey in the colour space. It ranges from
0 to 100%. Sometimes the value is calculated from 0 to 1. When the value
is ’0,’ the colour is grey and when the value is ’1,’ the colour is a primary
colour. A faded colour is due to a lower saturation level, which means the
colour contains more grey.

• Value is the brightness of the colour and varies with colour saturation.
It ranges from 0 to 100%. When the value is ’0’ the colour space will be
totally black. With the increase in the value, the colour space brightness
up and shows various colours.

Filter consists of defining tolerances on each channel using as reference values
the major HSV value registered by the histogram. A pixel passes the filter if
has low HSV difference with respect to tolerances. The colour filter equation
for a pixel i:



236 J.M. Cañas et al.

Fig. 10 HSV colour cone

F ilteri = abs(H − hi)
1 < Htol AND abs(S − si) < Stol AND abs(V − vi) < V tol (8)

where Htol, Stol and Vtol are filter tolerances.

The HSV filter allows to learn all kind of colours, including dark and pale
colours (see image 11).

Fig. 11 Colour filter example: (a) Original image, (b) Filtered image

3.3 Determine 3D Positions

Three-dimensional position estimation is calculated through exploiter elitism
individuals of each race with a weighted sum. Therefore, we have one position
1 Angle substraction.
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estimation for each person inside the room. The reason for using only elitism
individuals is the stability of the race position along the time.

raceposition =
∑N

n=1 totalF itnessn ∗ xyzn

N
(9)

where N is elitism individuals number, totalF itnessn is an elitism individual
fitness in range [0,1] and xyzn is the 3D point that represents an elitism
individual.

4 Experiments

We have done some experiments in the Robotics Laboratory in our Univer-
sity. This room has approximately 40 square meters and 4 cameras connected
with local net and situated in the room up-corners. We use the Jderobot2

platform developed in our Robotics Group. This is a middleware for gener-
ating autonomous behavior related to robotic, domotic and computer vision
applications.

Jderobot has an active community of developers, so latest devices are sup-
ported. It is written in the C language that is a good compromise between
power and efficiency. Jderobot has a human interface for managing applica-
tions. This applications in this architecture are called schemas. Schemas can
be organized in hierarchy. For example, each one is in charge of a certain
behavior and all together combined make up and the complete autonomous
behavior.

The platform also offers several drivers and application examples (schemas)
that use them. Eldercare uses three drivers:

• Firewire driver. This driver uses the libdc1394 library for getting images
from firewire cameras. Cameras are iSigth models and provide 30 fps.

• Networkserver driver. This driver serves the images through the net.
Firstly receives the images from Firewire driver and then puts them on
the net.

• Networkclient driver. Networkserver and Networkclient drivers have their
own communication protocol to transmit the images. Networkclient driver
receives images by main computer from four networkserver driver in-
stances, one for each camera.

The main computer executes the algorithm and its characteristics are Intel
Quad Core with 4GB RAM memory.

2 http://jderobot.org
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Fig. 12 Testing scenario - (a) iSight camera, (b) laboratory

Fig. 13 Infrastructure diagram

Here we have an infrastructure diagram that shows how the application is
connected to four networkserver driver instances executing in four different
computers.
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Fig. 14 Eldercare graphic interface

Another important element from our application is the graphic interface
(see Fig. 14), that offers us the posibility to see the results of the algorithm
and debugg it.

4.1 Typical Execution

This experiment has consisted of tracking several people during a typical El-
dercare execution. Switch on the system, some people enter inside the room
and the system tracks them without difficulty keeping 30 iterations per sec-
ond. In fact, the algorithm can reach 55 fps but image flow works on 30 fps.
Due to this restriction, we force the application to keep the same frame ratio.
Therefore, the system works with sufficient required speed.

In the images below we can see a typical execution for tracking people.
This experiment shows us that the system can track more than one person
without problem.

In the first image we can see the trajectory that has followed the person
since she entered the room until she is standing up in the middle of the room.
The system can obtain 3D person position repeteadly in real time.
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Fig. 15 One person tracking

In the second image two people appear that Eldercare is tracking and
their repestive trajectories. We checked that the system can track two people
without losing real time performance.

Fig. 16 Two people tracking

The last image shows three people tracking. In the right image above there
are races drawed through all their individuals, like a cloud. Tracking three
people the system works on 26 fps.

Another experiment consists of tracking one person that falls on the floor.
In this situation, 3D position is too near to the floor and the system actives
a visual and audible signal. The Z coordinate threshold that we choose is 30
centimeters. It allows to detect a person laying on the floor in all cases.
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Fig. 17 Three people tracking

4.2 Time Performance

In this experiment we have analyzed Eldercare time performance in two dif-
ferent terms.

For the first term we used Oprofile, a continuous system-wide profiler for
Linux. It consists of a kernel driver and a daemon for collecting sample data,
and several post-profiling tools for turning data into information. With this
tool we know that in a typical execution 85% of the samples belong to El-
dercare source code. In particular, we obtain sample percentages, that mean
time percentages, for the main functions of the algorithm (see table 4.2).

The second kind of data consists of measuring time intervals for the
same main functions in milliseconds. This gives us a good idea about time
requirements.

In the table we can see three groups of functions. The first one contains
functions for checking and generating algorithm populations. Regarding race
similarity check function, it takes 5 milliseconds only if there are more than
5 races.

The second group belongs to fitness function, that takes the major part of
the algorithm time. The motion complete filter and the individual window
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Fig. 18 Detected fall

filter are called from this function. For each exploiter individual the algo-
rithm executes a window filter for each instantaneous camera image. Fitness
calculation takes 2 milliseconds for exploiter population and 13 milliseconds
for explorer population.

The last group are visualization functions to show the results on the GUI.

Functions Time % Milliseconds
Race similarity check 0.17 0 - 5

New population generation 3.24 1
Fitness calculation (FC) 69.03 2 - 13

FC - complete image motion filter 42.33 9
FC - individual window image colour filter 5.03 4

Virtual image generation (GUI thread) 1.28 5
Fill visualization buffers (GUI thread) 9.14 5

4.3 System Accuracy

To analyze the system accuracy we have done two kinds of experiments. The
first one consists of comparing simulated 3D object positions to positions
estimated by the algorithm. Jderobot offers a driver that generate virtual
images called Simulated3D. This driver receives a world configuration file
and camera parameters to simulate schematic images from camera’s point of
view. Here we have a diagram that represents this Eldercare configuration.

During eight seconds we have been collecting distance errors between sim-
ulated object position and estimated position from algorihtm. Then we have
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Fig. 19 Eldercare connected to simulated3D driver

Fig. 20 Position estimation error graphic for simulated 3D object

put the results on the graphic below. This experiment shows us the system
position estimation error without calibration camera errors and well-known
object 3D positions.

For real 3D positions we measured 3D person position in different points
of the room, considering the middle of the torso as the person position. We
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have selected five 3D point (see image 21) that are visible by all the cameras.
We measured the estimation error for each point and the tables below show
the results.

• Using four cameras.

Point X error Y error Z error Total error (mm)
P1 118 148 91 210
P2 136 127 111 217
P3 80 160 75 194
P4 120 70 95 168
P5 94 88 158 204

• Using three cameras.

Point X error Y error Z error Total error (mm)
P1 108 56 143 188
P2 119 130 123 215
P3 148 86 137 220
P4 138 159 102 234
P5 83 122 129 197

• Using two cameras from the same side of the room (AB from image 21).

Point X error Y error Z error Total error (mm)
P1 145 130 147 244
P2 158 207 120 287
P3 145 167 213 308
P4 154 235 165 326
P5 214 174 178 328

• Using two cameras from the same side of the room (AD from image 21).

Point X error Y error Z error Total error (mm)
P1 207 239 224 388
P2 198 286 254 431
P3 268 304 209 456
P4 305 249 300 496
P5 226 308 287 478

Mean estimation errors:

Number of cameras Mean error (mm)
4 cameras 199
3 cameras 211

2 cameras (AB) 299
2 cameras (AD) 450
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Fig. 21 Position estimation error experiment

The results show that Eldercare position estimation error with three or
more cameras is in the order of 10 centimeters. This permits the system to
differentiate between a person sitting on the floor and laying on the floor.

The data also show that estimation error decreases introducing more cam-
eras. Using three cameras we obtained similar results to using four. Never-
theless, using two cameras increases the estimation error in 10 centimeters if
the cameras are at the same side of the room. With two cameras situated in
different sides of the laboratory the error is quite high.

5 Conclusions

We have presented a system called Eldercare that detects automatically dan-
gerous situations for tele-assistance of old people. It activates an alarm when
these situations happen, specially when a person falls on the floor. The alarm
may also transmit a signal through sending a message to assistance service.

The system is made up of several cameras, a personal computer and image
processing software. The hardware is conventional and it permits an easy
installation and mainteinance. Software is based on advanced technology for
visual 3D racking and genetic multiobjective algorithm.

We have built an experimental prototype and it has been proved detecting
people falls and warning about dangerous situations through an acoustic
alarm. The algorithm is fast enough to detect falls in the same instant that
they happen, which permits a quick response to emergencies.

The are several future lines to improve the current system. The first one
consists of changing the individual primitive from 3D point to a prism, that
has volume. People will be better represented and possibly position estima-
tion error will decrease. A second way for improving Eldercare is managing
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alarms from cell phones. The system would be more useful if a relative from
the patient family may receive health alarms in her cell phone about the
patient situation.
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