
Chapter 6

Branch Points

In R
3 any solution of Plateau’s problem minimizing Dirichlet’s integral D

or, equivalently, the area functional A, is an immersion in the sense that
it has no interior branch points. This fact can easily be proved for planar
boundaries as we have seen earlier, while the corresponding result in R

n is false
for n ≥ 4 according to Federer’s counterexample. Therefore it remains to prove
the assertion for nonplanar minimizers. Here we describe a new method, due to
A. Tromba, to exclude interior branch points for nonplanar relative minimizers
of Dirichlet’s integral D. This method is based on the observation that one
can compute any higher derivative of Dirichlet’s integral in the direction of
so-called (interior) forced Jacobi fields, using methods of complex analysis
such as power series expansions and Cauchy’s integral theorem as well as the
residue theorem. These Jacobi fields lie in the kernel of the second variation
of D; they also play a fundamental role in the index theory and the Morse
theory of minimal surfaces.

We begin by calculating the first five derivatives of Dirichlet’s integral in
the direction of special types of forced Jacobi fields, thereby establishing that
relative minimizers of D cannot have certain kinds of interior branch points.
These introductory calculations will be carried out in Section 6.1, together
with an outline of the variational procedure to be used in the sequel. These
calculations are made transparent by shifting the branch point that is studied
into the origin, and by bringing the minimal surface into a normal form with
respect to the branch point w = 0 with an order n. Then also the index
m of this branch point can be defined, with m > n. Furthermore, w = 0
is called an exceptional branch point if there is an integer κ > 1 such that
m + 1 = κ(n + 1). It turns out that Tromba’s method works perfectly in
excluding nonexceptional branch points of relative minimizers of D, while the
exclusion of exceptional branch points only succeeds for absolute minimizers
of the area A in C(Γ ). Since the general investigation is quite lengthy, we only
discuss one of the several general cases that are possible for nonexceptional
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branch points (see Section 6.2). A comprehensive presentation of the method
for all cases will be given in forthcoming work by A. Tromba.

In Section 6.1 it is described how the variations Ẑ(t) of a minimal surface
X̂ are constructed by using interior forced Jacobi fields. This leads to the
(rather weak) notion of a weak minimizer of D. Any absolute or weak relative
minimizer of D in C(Γ ) will be a weak D-minimizer, and the aim is to inves-
tigate whether such minimizers can have w = 0 as in interior branch point.
This possibility is excluded if one can find an integer L ≥ 3 and a variation
Ẑ(t) of X̂, |t| � 1, such that E(t) := D(Ẑ(t)) satisfies

E(j)(0) = 0 for 1 ≤ j ≤ L − 1, E(L)(0) < 0.

It will turn out that the existence of such an L depends on the order n and
the index m of the branch point w = 0.

In Section 6.1, this idea is studied by investigating the third, fourth and
fifth derivatives of E(t) at t = 0. Here one meets fairly simple cases for test-
ing the technique which show its efficiency. Furthermore, the difficulties are
exhibited that will come up generally.

A case of general nature is treated in Section 6.2. Assuming that n + 1 is
even and m + 1 is odd (whence w = 0 is nonexceptional) it will be seen that
E(m+1)(0) can be made negative while E(j)(0) = 0 for 1 ≤ j ≤ m, and so X̂
cannot be a weak minimizer of D.

In Section 6.3 we study boundary branch points of a minimal surface
X̂ ∈ C(Γ ) with a smooth boundary contour. In particular we show that X̂
cannot be a minimizer of D in C(Γ ) if it has a boundary branch point whose
order n and index m satisfy the condition 2m−2 < 3n (Wienholtz’s theorem).

Furthermore, in Sections 6.1 and 6.3 we exhibit geometric conditions which
furnish bounds for the index of interior and boundary branch points. These
estimates supplement the bounds on the order of branch points provided by
the Gauss–Bonnet theorem.

6.1 The First Five Variations of Dirichlet’s Integral,
and Forced Jacobi Fields

In this chapter we take the point of view of Jesse Douglas and consider minimal
surfaces as critical points of Dirichlet’s integral within the class of harmonic
surfaces X : B → R

3 that are continuous on the closure of the unit disk B and
map ∂B = S1 homeomorphically onto a closed Jordan curve Γ of R

3. It will
be assumed that Γ is smooth of class C∞ and nonplanar. Then any minimal
surface bounded by Γ will be a nonplanar surface of class C∞(B, R3), and so
we shall be allowed to take directional derivatives (i.e. “variations”) of any
order of the Dirichlet integral along an arbitrary C∞-smooth path through
the minimal surface.
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The first goal is to develop a technique which enables us to compute vari-
ations of any order of Dirichlet’s integral, D, at an arbitrary minimal surface
bounded by Γ , using complex analysis in form of Cauchy’s integral theorem.
This will be achieved by varying a given minimal surface via a one-parameter
family of admissible harmonic mappings. Such harmonic variations will be
generated by varying the boundary values of a given minimal surface in an
admissible way and then extending the varied boundary values harmonically
into B. From this point of view the admissible boundary maps ∂B = S1 → Γ
are the primary objects while their harmonic extensions B → R

3 are of sec-
ondary nature. This calls for a change of notation: An admissible boundary
map will be denoted by X : ∂B → Γ , whereas X̂ is the uniquely determined
harmonic extension of X into B; i.e. X̂ ∈ C0(B, R3)∩C2(B, R3) is the solution
of

�X̂ = 0 in B, X̂(w) = X(w) for w ∈ ∂B.

Instead of X̂ we will occasionally write HX or H(X) for this extension, and

D(X̂) :=
1
2

∫
B

∇X̂ · ∇X̂ du dv

is its Dirichlet integral.
In the sequel the main idea is to vary the boundary values X of a given

minimal surface X̂ in direction of a so-called forced Jacobi field, as this restric-
tion will enable us to evaluate the variations of D at X by means of Cauchy’s
integral theorem. In order to explain what forced Jacobi fields are we first
collect a few useful formulas.

Let us begin with an arbitrary mapping X ∈ C∞(∂B, Rn) and its harmonic
extension X̂ ∈ C∞(B, R3). Then X̂ is of the form

(1) X̂(w) = Re f(w),

where f is holomorphic on B and can be written as

(2) f = X̂ + iX̂∗ with X̂u = X̂∗
v and X̂v = −X̂∗

u.

We also note that

(3) f ′(w) = 2X̂w(w) = X̂u(w) − iX̂v(w) in B.

Conversely, if f is holomorphic in B and X̂ = Re f then f ′ and X̂w are related
by the formula f ′ = 2X̂w; in particular, X̂w is holomorphic in B. This simple,
but basic fact will be used repeatedly in later computations.

Let us introduce polar coordinates r, θ about the origin by w = reiθ, and
set Ŷ (r, θ) = X̂(reiθ). Then a straight-forward computation yields

(4) iwX̂w(w)
∣∣∣
w=eiθ

=
1
2

[
Ŷθ(1, θ) + iŶr(1, θ)

]

whence
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(5) 2Re
{

iwX̂w(w)
} ∣∣

w=eiθ = Ŷθ(1, θ) =
∂

∂θ
X(eiθ) = Yθ(θ)

since
Ŷ (1, θ) = X̂(eiθ) = X(eiθ) =: Y (θ).

If X ∈ C∞(S1, R3) maps S1 homeomorphically onto Γ then Yθ(θ) is tangent
to Γ at Y (θ), i.e. Yθ(θ) ∈ TY (θ)Γ , and so the left-hand side of (5) is tangent
to Γ .

Consider now a continuous function τ : B → C that is meromorphic in
B with finitely many poles in B, and that is real on ∂B. Then τ can be
extended to a meromorphic function on an open set Ω with B ⊂ Ω, and τ is
holomorphic in a strip containing ∂B. It follows from (5) that

(6) 2Re
{

iwX̂w(w)τ(w)
} ∣∣

w=eiθ = τ(eiθ)Yθ(θ) ∈ TY (θ)Γ.

Suppose now that X̂ is a minimal surface with finitely many branch points
in B. These points are the zeros of the function F (w) := X̂w(w) which is
of class C∞ on B and holomorphic in B. If τ(w) has its poles at most at
the (interior) zeros of the function wF (w), and if the order of any pole does
not exceed the order of the corresponding zero of wF (w), then the function
K(w) := iwX̂w(w)τ(w) is holomorphic in B and of class C∞(B, R3). We call
ĥ := Re K an inner forced Jacobi field ĥ : B → R

3 at X̂ with the
generator τ .

In case that one wants to study boundary branch points of X̂ it will be
useful to admit factors τ(w) which are meromorphic on B, real on ∂B, with
poles at most at the zeros of wF (w), the pole orders not exceeding the orders
of the associated zeros of wF (w). Then

(7) ĥ := Re K with K(w) := iwF (w)τ(w), w ∈ B, F := X̂w,

is said to be a (general) forced Jacobi field ĥ : B → R
3 at the minimal

surface X̂, and τ is called the generator of ĥ.
The boundary values ĥ|S1 of a forced Jacobi field ĥ are given by

(8) h(θ) := ĥ(eiθ) = ReK(eiθ) =
1
2
τ(eiθ)Yθ(θ), Y (θ) := X̂(cos θ, sin θ).

Using the asymptotic expansion of F (w) = Xw(w) at a branch point w0 ∈ B
having the order λ ∈ N, we obtain the factorization

(9) F (w) = (w − w0)λG(w) with G(w0) �= 0,

and, using Taylor’s expansion in B or Taylor’s formula on ∂B respectively,
it follows that G(w) = G(u, v) is a holomorphic function of w in B and a
C∞-function of (u, v) ∈ B. It follows that any forced Jacobi field ĥ : B → R

3

is of class C∞(B, R3) and harmonic in B.
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Denote by J(X̂) the linear space of forced Jacobi fields at X̂, and let J0(X̂)
be the linear subspace of inner forced Jacobi fields. The importance of J(X̂)
arises from the fact that every forced Jacobi field ĥ at X̂ annihilates the second
variation of D, i.e.

δ2D(X̂, ĥ) = 0 for all ĥ ∈ J(X̂).

This will be proved later in Section 6.3. In the present section we only deal
with inner forced Jacobi fields, and so we only prove the weaker statement
(cf. Proposition 1):

δ2D(X̂, ĥ) = 0 for all ĥ ∈ J0(X).

The existence of forced Jacobi fields arises from the group of conformal au-
tomorphisms of B and from the presence of branch points; the more branch
points X̂ has, and the higher their orders are, the more Jacobi fields appear—
this explains the adjective ‘forced’. To see the first statement we consider
one-parameter families of conformal automorphisms ϕ(·, t), |t| < ε, ε > 0 of B
with

(10) w �→ ϕ(w, t) = w + tη(w) + o(t) and ϕ(w, 0) = w, ϕ̇(w, 0) = η(w).

Type I:
ϕ1(w, t) = eiα(t)w

with α(t) ∈ R, α(0) = 0, α̇(0) = a. Then ϕ1(w, t) = w + tiwa + o(t), and so

η1(w) = iwa with a ∈ R.

Type II:

ϕ2(w, t) :=
w + iβ(t)
1 − iβ(t)w

with β(t) ∈ R, β(0) = 0, β̇(0) = b.
Then ϕ2(w, t) = w + tη2(w) + o(t) with η2(w) = ib + ibw2, and so

η2(w) = iw

(
b

w
+ bw

)
with b ∈ R.

Type III:

ϕ3(w, t) :=
w − γ(t)
1 − γ(t)w

with γ(t) ∈ R, γ(0) = 0, γ̇(0) = c.
Then ϕ3(w, t) = w + tη3(w) + o(t) with η3(w) = −c + cw2, whence

η3(w) = iw

(
ic

w
− icw

)
.
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We set

(11) τ1(w) := a, τ2(w) := b ·
(

1
w

+ w

)
, τ3(w) := c ·

(
i

w
− iw

)
,

with arbitrary constants a, b, c ∈ R. For w = eiθ ∈ ∂B we have

τ1(w) = a, τ2(w) = 2b cos θ, τ3(w) = −2c sin θ,

and so τj , j = 1, 2, 3, are generators of the ‘special’ forced Jacobi field ĥj :=
Re Kj , defined by

(12) Kj(w) := iwF (w)τj(w), w ∈ B, F := X̂w,

which are inner forced Jacobi fields for any minimal surface X̂ bounded by
Γ . If we vary X̂ by means of ϕ = ϕ1, ϕ2, ϕ3 with α := Re ϕ, β := Im ϕ, i.e.
ϕ(w, t) = α(u, v, t) + iβ(u, v, t), setting

Ẑ(w, t) := X̂(ϕ(w, t)) = X̂(α(u, v, t), β(u, v, t)),

we obtain

d

dt
Ẑ =

d

dt
X̂ ◦ ϕ =

d

dt
X̂(α, β) = X̂u(α, β)α̇ + X̂v(α, β)β̇

= 2Re X̂w(ϕ)ϕ̇,

and so
d

dt
Ẑ

∣∣∣
t=0

= 2Re{X̂wϕ̇(0)}.

For ϕ = ϕj we have ϕ̇(0) = ηj , hence

(13)
d

dt
Ẑ(w, t)

∣∣∣
t=0

= 2Re{iwX̂w(w)τj(w)} = 2ĥj(w).

Let us now generate variations Ẑ(t), |t| � 1, of a minimal surface X̂ using any
inner forced Jacobi field ĥ ∈ J0(X̂). We write Ẑ(t) = Ẑ(·, t) for the variation
of X̂ and Z(t) for the variation of the boundary values X of X̂, and start with
the definition of Z(t). Then Ẑ(t) will be defined as the harmonic extension of
Z(t), i.e.

(14) Ẑ(t) = H(Z(t)).

First we pick a smooth family γ(t) = γ(·, t), |t| < δ, of smooth mappings
γ(t) : R → R with γ(0) = idR which are “shift periodic” with the period 2π,
i.e.

(15) γ(θ, 0) = θ and γ(θ + 2π, t) = γ(θ, t) + 2π for θ ∈ R.
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Setting σ(θ, t) := γ(θ, t) − θ we obtain

γ(θ, t) = θ + σ(θ, t) with σ(θ, 0) = 0 and σ(θ + 2π, t) = σ(θ, t)

and
γθ(θ, t) = 1 + σθ(θ, t) = 1 + σθt(θ, 0)t + o(t).

Choosing δ > 0 sufficiently small it follows that

γθ(θ, t) > 0 for (θ, t) ∈ R × (−δ, δ).

Now we define the variation {Z(t)}|t|<δ of X by

(16) Z(eiθ, t) := X(eiγ(θ,t)) = X̂(cos γ(θ, t), sin γ(θ, t)).

Then

∂

∂t
Z(eiθ, t) =

[
−X̂u(eiγ(θ,t)) sin γ(θ, t) + X̂v(eiγ(θ,t)) cos γ(θ, t)

]
γt(θ, t).

By (4) we have

ieiθX̂w(eiθ) =
1
2

[
Xθ(θ) + iX̂r(1, θ)

]

if we somewhat sloppily write X̂(r, θ) for X̂(reiθ) and X(θ) for X̂(1, θ) =
X(eiθ). This leads to

−X̂u(eiγ(θ,t)) sin γ(θ, t) + X̂v(eiγ(θ,t)) cos γ(θ, t) = Xθ(γ(θ, t))

whence
∂

∂t
Z(eiθ, t) = Xθ(γ(θ, t))γθ(θ, t) · γt(θ, t)

γθ(θ, t)
.

On account of

(17) Z(θ, t) := Z(eiθ, t) = X(γ(θ, t))

we have
Zθ(θ, t) = Xθ(γ(t, θ)) · γθ(θ, t),

and so it follows that

∂

∂t
Z(eiθ, t) =

∂

∂t
Z(θ, t) =

∂

∂θ
Z(θ, t) · φ(θ, t)

with

(18) φ(θ, t) :=
γt(θ, t)
γθ(θ, t)

.

Defining the family {φ(t)}|t|<δ of 2π-periodic functions φ(t) : R → R by
φ(t) := φ(·, t), we have
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(19)
∂

∂t
Z(t) = φ(t)Z(t)θ =: h(t).

Now we consider the varied Dirichlet integral

(20) E(t) := D(Ẑ(t)) =
1
2

∫
B

∇Ẑ(t) · ∇Ẑ(t) du dv.

Then
d

dt
E(t) =

∫
B

∇Ẑ(t) · ∇ d

dt
Ẑ(t) du dv.

Since the operations d
dt and H (i.e. Ẑ) commute, we have

d

dt
Ẑ(t) = H

(
d

dt
Z(t)

)

and therefore

d

dt
E(t) =

∫
B

∇Ẑ(t) · ∇H

(
d

dt
Z(t)

)
du dv.

Since �Ẑ(t) = 0, an integration by parts leads to

(21)
d

dt
E(t) =

∫ 2π

0

∂

∂r
Ẑ(t) · h(t) dθ with h(t) =

∂

∂t
Z(t).

For brevity we write in the following computations Ẑ instead of Ẑ(t). We have

wẐw =
1
2
(Ẑr − iẐθ)

if we write Ẑ(r, θ) for Ẑ(w)|w=reiθ , cf. (4), and also

dw = iw dθ for w = eiθ ∈ ∂B.

Then on ∂B:

wẐw · Ẑw dw = i(wẐw) · (wẐw) dθ

=
i

4
(Ẑr − iẐθ) · (Ẑr − iẐθ) dθ

=
[
1
2
Ẑr · Ẑθ − i

4
(Ẑr · Ẑr − Ẑθ · Ẑθ)

]
dθ,

and so
2Re[wẐw · Ẑwφ dw] = Ẑr · Ẑθφ dθ on ∂B.

Furthermore, Ẑθ = Zθ on ∂B as well as h = φZθ (see (19)), and so (21) leads
to the formula
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(22)
d

dt
E(t) = 2Re

∫
S1

wẐ(t)w · Ẑ(t)wφ(t) dw,

where the closed curve S1 is positively oriented. This formula will be the start-
ing point for calculating all higher order derivatives dn

dtn E(t) and, in particular,
of dn

dtn E(0) := dn

dtn E(t)
∣∣
t=0

. In order to evaluate the latter expressions for any
n, it will be essential that we can choose φ(t) and any number of t-derivatives
of φ(t) in an arbitrary way. This is indeed possible according to the following
result:

Lemma 1. By a suitable choice of γ(θ, t) = θ + σ(θ, t) with σ ∈ C∞ on
R × (−δ, δ), σ(θ, 0) = 0 and σ(θ + 2π, t) = σ(θ, t) we can ensure that
the variation of the boundary values of the minimal surface X̂, defined by
Z(θ, t) := X(γ(θ, t)), leads to “test functions” φ(θ, t) in formula (22) such
that the functions

φν(θ) :=
∂ν

∂tν
φ(θ, t)

∣∣
t=0

, ν = 0, 1, 2, . . . , n,

can arbitrarily be prescribed as 2π-periodic functions of class C∞.

Proof. Let us first check that, given φ0, φ1, . . . , φn, the computation of σ, and
so of γ, can be carried out in a formal way. Consider the Fourier expansion of
the function σ(θ, t) which is to be determined:

(23) σ(θ, t) =
1
2
a0(t) +

∞∑
k=1

[ak(t) cos kθ + bk(t) sin kθ].

From σ(θ, 0) = 0 it follows that

a0(0) = ak(0) = bk(0) = 0 for k ∈ N.

Furthermore,

(24) σν(θ) :=
∂ν

∂tν
σ(θ, 0) =

1
2
a
(ν)
0 (0) +

∞∑
k=1

[a(ν)
k (0) cos kθ + b

(ν)
k (0) sin kθ].

Hence if Dν
t σ(θ, 0) are known for ν = 1, 2, . . . , n, one also knows all derivatives

DθD
ν
t σ(θ, 0) = σ′

ν(θ) from the defining equation (18) for σ which amounts to

φ(θ, t) =
σt(θ, t)

1 + σθ(θ, t)
.

By differentiation with respect to t we obtain

φt =
σtt

1 + σθ
− σtσθt

(1 + σθ)2
,

φtt =
σttt

1 + σθ
− 2σttσθt

(1 + σθ)2
− σtσθtt

(1 + σθ)2
+

2σt(σtθ)2

(1 + σθ)3
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etc. Setting t = 0 and observing that σθ(θ, 0) = 0 it follows that

σ1 = φ0 = φ,

σ2 = φ1 + σ1σ
′
1,

σ3 = φ2 + 2σ2σ
′
1 + σ1σ

′
2 − 2σ1(σ′

1)
2,

. . .

σν+1 = φν + fν(σ1, . . . , σν , σ′
1, . . . , σ

′
ν).

Here fν is a polynomial in the variables σ1, . . . , σν , σ′
1, . . . , σ

′
ν . This shows

that, given φ0, φ1, . . . , φn, we can successively determine σ1, σ2, . . . , σn+1. On
account of (23) we then obtain

Aν
0 := a

(ν)
0 (0), Aν

k := a
(ν)
k (0), Bν

k := b
(ν)
k (0) for k ∈ N.

Defining

ak(t) :=
n+1∑
ν=1

1
ν!

Aν
ktν , bk(t) :=

n+1∑
ν=1

1
ν!

Bν
k tν ,

equation (23) furnishes the function γ(θ, t) = θ + σ(θ, t) with the desired
properties. Furthermore, the construction shows that this procedure leads to
a C∞-function σ that is 2π-periodic with respect to θ. �

Let us inspect a variation Ẑ(t) = H(Z(t)) of a minimal surface X̂ ∈
C∞(B, R3) as we have just discussed. It is the harmonic extension of a vari-
ation Z(t) of the boundary values X of X̂, given by (15) and (16). Clearly,
Ẑ(t) is not merely an “inner variation” of X̂, generated as a reparametriza-
tion X̂ ◦ σ(t) with a perturbation σ(t) = idB + tλ + · · · of the identity idB on
B, but the image Ẑ(t)(B) will differ from the image X̂(B). Only the images
Z(t)(S1) and X(S1) of the boundary S1 = ∂B will be the same set Σ, but
described by different parametrizations Z(t) : S1 → Σ and X : S1 → Σ.

Definition 1. We call such a variation Ẑ(t) a boundary preserving vari-
ation of X̂ (for |t| � 1).

Note: If X̂ ∈ C(Γ ) then any boundary preserving variation Ẑ(t) (with
|t| � 1) lies in C(Γ ).

Definition 2. We say that X̂ is a weak relative minimizer of D (with
respect to its own boundary) if E(0) ≤ E(t) holds for any variation E(t) =
D(Ẑ(t)) of D by an arbitrary boundary preserving variation Ẑ(t) of X̂ with
|t| � 1.

If X̂ ∈ C(Γ ) is a weak relative minimizer of D in C(Γ ) with respect to
some Ck-norm on B, then X̂ clearly is a weak relative minimizer of D in the
sense of Definition 2.

Let us return to formula (19) which states that
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∂

∂t
Z(t) = φ(t)Z(t)θ.

According to (5) we have

Z(t)θ = 2Re[iwẐw(w, t)]
∣∣
w=eiθ ,

and since φ is real-valued it follows that

(25)
∂

∂t
Z(θ, t) = 2Re[iwẐw(w, t)φ(θ, t)]

∣∣
w=eiθ .

Since ∂
∂t and the harmonic extension H commute we obtain

(26)
∂

∂t
Ẑ(t) = H{2Re[iwẐ(t)wφ(t)]} in B

having for brevity dropped the w, except for the factor iw (as this would
require a clumsy notation). Then, by

∂

∂t

∂

∂w
Ẑ(t) =

∂

∂w

∂

∂t
Ẑ(t),

it follows that

(27)
∂

∂t
Ẑ(t)w =

(
H{2Re[iwẐ(t)wφ(t)]}

)
w

.

Now a straight-forward differentiation of (22) yields

d2

dt2
E(t) = 4Re

∫
S1

w

{
∂Ẑ(t)

∂t

}

w

· Ẑ(t)wφ(t) dw(28)

+ 2Re
∫

S1
wẐ(t)w · Ẑ(t)wφt(t) dw.

From (22) and (28) we obtain

Proposition 1. Since X̂ = Ẑ(0) is a minimal surface we have

(29)
dE

dt
(0) = 0

and

(30)
d2E

dt2
(0) = 4Re

∫
S1

w

{
∂X̂

∂t

}

w

· X̂wτ dw

with τ := φ(0). If τ is the generator of an inner forced Jacobi field attached
to X̂, then
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(31)
d2E

dt2
(0) = 0.

This means that

(32) δ2D(X̂, ĥ) = 0 for all ĥ ∈ J0(X̂),

i.e. for all inner forced Jacobi fields ĥ = Re[iwXw(w)τ(w)].

Proof. We have X̂w · X̂w = 0 since X̂ is a minimal surface, and so (29)
and (30) are proved. Secondly, ĥ is holomorphic in B, as it is an inner forced
Jacobi field, and the w-derivative of any harmonic mapping is holomorphic
whence { ∂X̂

∂t }w is holomorphic in B. Thus the integrand of
∫

S1(. . .) dw in (30)
is holomorphic. Hence this integral vanishes, since Cauchy’s integral theo-
rem implies

∫
∂Br(0)

(. . .) dw = 0 for any r ∈ (0, 1) and then
∫

S1(. . .) dw =
limr→1−0

∫
∂Br(0)

(. . .) dw = 0 as the integrand (. . .) is continuous (and even of
class C∞) on B. �

Now we want to compute d3

dt3 E(t), and in particular d3E
dt3 (0) if τ = φ(0) is

the generator of an inner forced Jacobi field. Differentiating (28) it follows

d3

dt3
E(t) = 4Re

∫
S1

w

{
∂Ẑ(t)

∂t

}

w

·
{

∂Ẑ(t)
∂t

}

w

φ(t) dw(33)

+ 4Re
∫

S1
w

{
∂2Ẑ(t)

∂t2

}

w

· Ẑ(t)wφ(t) dw

+ 8Re
∫

S1
w

{
∂Ẑ(t)

∂t

}

w

· Ẑ(t)wφt(t) dw

+ 2Re
∫

S1
wẐ(t)w · Ẑ(t)wφtt(t) dw.

Proposition 2. Since X̂ = Ẑ(0) is a minimal surface we have

(34)
d3E

dt3
(0) = −4Re

∫
S1

w3X̂ww · X̂wwτ3 dw

if τ := φ(0) is the generator of an inner forced Jacobi field at X̂.

Proof. The fourth integral in (33) vanishes at t = 0 since

Ẑ(0)w · Ẑ(0)w = Xw · Xw = 0.

The integrand of the second integral in (33) is
{

∂2Ẑ

∂t2
(0)

}

w

· wX̂wτ(w)
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which is holomorphic in B since the w-derivative of a harmonic mapping is
holomorphic and ĥ = Re[iwX̂wτ ] is an inner forced Jacobi field. So also the
second integral in (33) vanishes on account of Cauchy’s integral theorem.
Next, using (27), we obtain

(35)
{

∂

∂t
Ẑ(t)

}
w

∣∣∣
t=0

= 2
∂

∂w
H

{
Re[iwX̂wτ ]

}
= [iwX̂wτ ]w.

This implies
[
w

{
∂

∂t
Ẑ(t)

}
w

· Ẑ(t)w

] ∣∣∣
t=0

= w[iwX̂wτ ]w · X̂w

= iwX̂w · X̂wτ + iw2X̂ww · X̂wτ + iw2X̂w · X̂wτw = 0

since X̂w · X̂w = 0, which also yields X̂ww · X̂w = 0. Thus

(36)
[
w

{
∂

∂t
Ẑ(t)

}
w

· Ẑ(t)w

] ∣∣∣∣
t=0

= 0

and so the third integral in (33) vanishes for t = 0. Finally, by (35),
({

∂

∂t
Ẑ(t)

}
w

·
{

∂

∂t
Ẑ(t)

}
w

) ∣∣∣
t=0

= [iwX̂wτ ]w · [iwXwτ ]w
= [iX̂wτ + iwX̂wwτ + iwX̂wτw] · [iX̂wτ + iwX̂wwτ + iwX̂wτw]
= −w2X̂ww · X̂wwτ2,

using again X̂w · X̂w = 0 and X̂w · X̂ww = 0, i.e.

(37)
({

∂

∂t
Ẑ(t)

}
w

·
{

∂

∂t
Ẑ(t)

}
w

) ∣∣∣
t=0

= −w2X̂ww · X̂wwτ2.

Thus the first integral in (33) amounts to

−4Re
∫

S1
w3X̂ww · X̂wwτ3 dw. �

In order to simplify notation we drop the t in (33) and write

d3

dt3
E = Re

[
4

∫
S1

wẐtw · Ẑtwφ dw + 4
∫

S1
wẐttw · Ẑwφ dw

+8
∫

S1
wẐtw · Ẑwφt dw + 2

∫
S1

wẐw · Ẑwφtt dw

]
.

Differentiation yields
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d4

dt4
E = Re

[
12

∫
S1

wẐttw · Ẑtwφ dw + 4
∫

S1
wẐtttw · Ẑwφ dw(38)

+ 12
∫

S1
wẐtw · Ẑtwφt dw + 12

∫
S1

wẐttw · Ẑwφt dw

+12
∫

S1
wẐtw · Ẑwφtt dw + 2

∫
S1

wẐw · Ẑwφttt dw

]

= Re[I1 + I2 + I3 + I4 + I5 + I6].

We have I6(0) = 0 since Ẑw(0) · Ẑw(0) = X̂w · X̂w = 0. Moreover, by Cauchy’s
theorem, I2(0) = 0 since both Ẑtttw

∣∣
t=0

= [Ẑttt(0)]w and wX̂wτ are holo-
morphic. On account of (36) we also get I5(0) = 0. Finally, taking (17) into
account, we see that

I3(0) = −12
∫

S1
w3X̂ww · X̂wwτ2φt(0) dw,

and we arrive at

Proposition 3. Since X̂ = Ẑ(0) is a minimal surface we have

d4E

dt4
(0) = 12Re

∫
S1

Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(39)

− 12Re
∫

S1
w3X̂ww · X̂wwτ2φt(0) dw,

provided that τ = φ(0) is the generator of an inner forced Jacobi field at X̂.

Finally, as an exercise, we even compute d5E
dt5 (0). Differentiating (38) it

follows that

(40)
d5E

dt5
= Re

9∑
j=1

Ij

with

I1 := 16
∫

S1
wẐtttw · Ẑtwφ dw, I2 := 12

∫
S1

wẐttw · Ẑttwφ dw,

I3 := 4
∫

S1
wẐttttw · Ẑwφ dw, I4 := 16

∫
S1

wẐtttw · Ẑwφt dw,

I5 := 48
∫

S1
wẐttw · Ẑtwφt dw, I6 := 24

∫
S1

wẐttw · Ẑwφtt dw,

I7 := 24
∫

S1
wẐtw · Ẑtwφtt dw, I8 := 16

∫
S1

wẐtw · Ẑwφttt dw,

I9 := 2
∫

S1
wẐw · Ẑwφtttt dw.
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I3(0) vanishes by Cauchy’s theorem since both Ẑtttt(0)w and wX̂wτ are holo-
morphic provided that τ = φ(0) is the generator of a forced Jacobi field at X̂.
Furthermore, I8(0) = 0 because of (36), and X̂w · X̂w = 0 implies I9(0) = 0.
Thus we obtain by (37):

Proposition 4. Since X̂ is a minimal surface we have

d5E

dt5
(0) = 16Re

∫
S1

Ẑtttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(41)

+ 12Re
∫

S1
Zttw(0) · [wẐttw(0)τ

+ 4wẐtw(0)φt(0) + 2wX̂wφtt(0)] dw

− 24Re
∫

S1
w3X̂ww · X̂wwτ2φtt(0) dw

provided that τ = φ(0) is the generator of an inner forced Jacobi field at X̂.

Note also that in (39) and (41) we can express Ẑtw(0) by (35) which we
write as

(42) Ẑtw(0) = [iwX̂wτ ]w.

The values of E′ ′(0) and E′ ′ ′(0) in (30) and (34) depend only on τ = φ(0)
and not on any derivatives of φ(t) at t = 0; in this sense we say that E′ ′(0)
and E′ ′ ′(0) are intrinsic. As we shall see later, this reflects important facts,
namely: The Dirichlet integral D has an intrinsic second derivative d2D, and
an intrinsic third derivative d3D in direction of forced Jacobi fields.

Let us try to show that a nonplanar weak relative minimizer X̂ of D cannot
have a branch point in B. To achieve this goal, a somewhat naive approach
would be to compute sufficiently many derivatives E(j)(0) := djE

dtj (0) and to
hope that one can find some first nonvanishing derivative, say, E(L)(0) �= 0,
whereas E(j)(0) = 0 for j = 1, 2, . . . , L − 1. Then Taylor’s formula with
Cauchy’s remainder term yields

E(t) = E(0) +
1
L!

E(L)(ϑt)tL for |t| � 1, 0 < ϑ < 1,

that is,

D(Ẑ(t)) = D(X̂) +
1
L!

E(L)(ϑt)tL,

and we infer for some t with 0 < |t| � 1 that

(i) D(Ẑ(t)) < D(X̂) if L odd = 2� + 1 ≥ 3 and E(2
+1)(0) �= 0,

and

(ii) D(Ẑ(t)) < D(X̂) if L even = 2� ≥ 4 and E(2
)(0) < 0.
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Let us see under which assumption on X̂ this approach works for L = 3. Note
that an arbitrary branch point w0 ∈ B of a minimal surface X̂ can be moved
to the origin by means of a suitable conformal automorphism of B. Hence it
is sufficient for our purposes to show that a minimizer X̂ of D in C(Γ ) does
not have w = 0 as a branch point. Therefore we shall from now on assume the
following normal form of a nonplanar minimal surface X̂ (cf. Vol. 1,
Section 3.2):

X̂ has w = 0 as a branch point of order n, i.e.

X̂w(w) = awn + o(wn) as w → 0.

Choosing a suitable Cartesian coordinate system in R
3 we may assume that

X̂w can be written as

(43) X̂w(w) = (A1w
n +A2w

n+1+ · · · , Rmwm +Rm+1w
m+1+ · · · ), m > n,

with Aj ∈ C
2, Rj ∈ C, A1 �= 0 and Rm �= 0 for some integer m satisfying

m > n; the number m is called index of the branch point w = 0 of X̂ given
in the normal form (43). Note that a surface X̂ can also be brought into the
normal form (43) (with n = 0) if X̂ is regular at w = 0.

Lemma 2. The normal form (43) satisfies

A1 · A1 = 0, Ak = λk · A1 for k = 1, 2, . . . , 2(m − n),
(44)

A1 · A2m−2n+1 = − 1
2
R2

m,

and therefore

(45) X̂ww(w) · X̂ww(w) = (m − n)2R2
mw2m−2 + · · · , Rm �= 0.

Proof. Equation (43) implies

X̂w(w) · X̂w(w) = (w2np(w) + R2
mw2m) + O(|w|2m+1) as w → 0,

where p(w) is a polynomial of degree 2� in w with � := m − n which is of the
form

p(w) = A1 · A1 + 2A1 · A2w + (2A1 · A3 + A2 · A2)w2

+ (2A1 · A4 + 2A2 · A3)w3 + (2A1 · A5 + 2A2 · A4 + A3 · A3)w4

+ · · · + (2A1 · A2
+1 + 2A2 · A2
 + · · · + 2A
+2 · A
 + A
+1 · A
+1)w2


= c0 + c1w + c2w
2 + · · · + c2
w

2
, cj ∈ C.

Since X̂w · X̂w = 0 we obtain

c0 = c1 = · · · = c2
−1 = 0, c2
 + R2
m = 0.
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Let 〈A′, A′ ′ 〉 := A′ ·A′ ′ be the Hermitian scalar product of two vectors A′, A′ ′ ∈
C

2. The two equations c0 = 0 and c1 = 0 yield A1 · A1 = 0 and A1 · A2 = 0
which are equivalent to

〈A1, A1〉 = 0 and 〈A2, A1〉 = 0.

Since A1 �= 0 and A1 �= 0 this implies

A2 = λ2A1 for some λ2 ∈ C,

and so we also obtain
A2 · A2 = λ2

2A1 · A1 = 0.

On account of c2 = 0 it follows A1 · A3 = 0, and thus it follows

〈A1, A1〉 = 0 and 〈A3, A1〉 = 0

whence
A3 = λ3A1 for some λ3 ∈ C,

and so
A2 · A3 = λ2λ3A1 · A1 = 0.

Then c3 = 0 yields A1 · A4 = 0, therefore

〈A1, A1〉 = 0 and 〈A4, A1〉 = 0;

consequently
A4 = λ4A1 for some λ4 ∈ C.

In this way we proceed inductively using c0 = 0, . . . , c2
−1 = 0 and obtain
Ak = λkA1 for k = 1, 2, . . . , 2(m − n). Since A1 · A1 = 0 it follows that

(46) Aj · Ak = 0 for 1 ≤ j, k ≤ 2(m − n).

Then the equation c2
 + R2
m = 0 implies 2A1 · A2
+1 + R2

m = 0, i.e.

(47) A1 · A2(m−n)+1 = − 1
2
R2

m.

Furthermore, from

X̂w(w) = (A1w
n + A2w

n+1 + · · · + A2m−2n+1w
2m−n + · · · , Rmwm + · · · )

we infer

X̂ww(w) = (nA1w
n−1 + · · · + (2m − n)A2m−2n+1w

2m−n−1

+ · · · , mRmwm−1 + · · · ).

Then (46) implies

X̂ww(w) · X̂ww(w) = [2n(2m − n)A1 · A2m−2n+1 + m2R2
m]w2m−2 + · · · ,

and by (47) we arrive at

X̂ww(w) · X̂ww(w) = [−n(2m − n)R2
m + m2R2

m]w2m−2 + · · · ,

which is equivalent to (45). �
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Theorem 1. (D. Wienholtz). Let X̂ be a minimal surface in normal form
with a branch point at w = 0 which is of order n and index m, n < m, and
suppose that 2m − 2 < 3n (or, equivalently, 2m + 2 ≤ 3(n + 1)). Then we can
choose a generator τ of a forced Jacobi field ĥ such that E(3)(0) < 0, and so
X̂ is not a weak relative minimizer of D.

Proof. Define the integer k by

k := (2m + 2) − 2(n + 1).

Because of m > n and 2m − 2 < 3n it follows that

1 < k ≤ n + 1.

Let
τ0 := cw−n−1 + cwn+1, τ1 := cw−k + cwk, c ∈ C,

and set

(i) τ := τ0 if k = n + 1;
(ii) τ := ετ0 + τ1, ε > 0, if k < n + 1.

In both cases τ is a generator of a forced Jacobi field at X̂, since wX̂w(w)
has a zero of order n + 1 at w = 0, and Im τ = 0 on ∂B. By (45) it follows
for w ∈ B that

w3X̂ww(w) · X̂ww(w) = (m − n)2R2
mw2m+1 + · · · ,

where + · · · always stands for higher order terms of a convergent power series.
In case (i) one has

τ3(w) = c3w−3(n+1) + · · · ,

and so

w3X̂ww(w) · X̂ww(w)τ(w)3 = (m − n)2R2
mc3w−1 + f(w),

where f(w) is holomorphic in B and continuous on B. Then formula (34) of
Proposition 3 in conjunction with Cauchy’s integral theorem yields

E(3)(0) = −4Re[2πi(m − n)2R2
mc3] if k = n + 1.

With a suitable choice of c ∈ C we can arrange for E(3)(0) < 0 since Rm �= 0
and (m − n)2 ≥ 1.

In case (ii) we write w3X̂ww · X̂ww as

w3X̂ww(w) · X̂ww(w) = (m − n)2R2
mw2m+1 + f(w),

where
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f(w) := w2m+2
∞∑

j=0

ajw
j , aj ∈ C.

From
τ3 = ε3τ3

0 + 3ε2τ2
0 τ1 + 3ετ0τ

2
1 + τ3

1

it follows that
g(w) := w3X̂ww(w) · X̂ww(w)τ3(w)

is meromorphic in B, continuous in {w : ρ < |w| ≤ 1} for some ρ ∈ (0, 1), and
its Laurent expansion at w = 0 has the residue

Resw=0(g) = 3ε2c3(m − n)2R2
m + ε3c3an−k, 1 < k ≤ n.

Cauchy’s residue theorem together with formula (34) of Proposition 3 then
imply

E(3)(0) = −4Re{2πi[3ε2c3(m − n)2R2
m + ε3c3an−k]} for k < n + 1.

By an appropriate choice of c ∈ C and ε with 0 < ε < 1 we can achieve that
E(3)(0) < 0 also in case (ii). �

The following definition will prove to be very useful.

Definition 3. Let X̂ be a minimal surface in normal form having w = 0 as a
branch point of order n and of index m. Then w = 0 is called an exceptional
branch point if m + 1 = κ(n + 1) for some κ ∈ N; necessarily κ > 1.

Remark 1. If 2m − 2 < 3n, i.e. 2(m + 1) ≤ 3(n + 1), then w = 0 is not
exceptional, because (m+1) = κ(n+1) with κ > 1 implies 2κ(n+1) ≤ 3(n+1)
and therefore 2κ ≤ 3 which is impossible for κ ∈ N with κ > 1.

Remark 2. Now we want to show that the notion “w = 0 is an exceptional
branch point ” is closely related to the notion “w = 0 is a false branch point ”.
To this end we choose an arbitrary minimal surface Ẑ(ζ), ζ ∈ B, in normal
form without ζ = 0 being a branch point, i.e. Ẑ = Re g where g : B → C

3 is
holomorphic and of the form

g(ζ) = Ẑ(0) + (B0ζ + B1ζ
2 + · · · , Cκζκ + · · · ), B0 �= 0, Cκ �= 0, κ > 1.

Consider a conformal mapping w �→ ζ = ϕ(w) from B into B with ϕ(0) = 0
which is provided by a holomorphic function

ϕ(w) = aw + · · · , a �= 0, w ∈ B.

Then X̂(w) := Re f(w) with f(w) := g(ϕn+1(w)), w ∈ B, is a minimal surface
X̂ : B → R

3 such that X̂(0) = Ẑ(0) and

f(w) = X̂(0) + (an+1B0w
n+1 + · · · , aκ(n+1)Cκwκ(n+1) + · · · ).
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Thus we obtain for X̂w = 1
2f ′ that

X̂w(w) = (A1w
n + · · · , Rmwm + · · · ), A1 �= 0, Rm �= 0,

and so X̂(w), w ∈ B, is a minimal surface in normal form which has the
branch point w = 0 of order n and index m := κ(n + 1) − 1, whence w = 0
is exceptional. Clearly X̂ is obtained from the minimal immersion Ẑ(ζ) as a
false branch point by setting X̂ := Ẑ ◦ ϕn+1. As the “false parametrization”
X̂ of the regular surface S := Ẑ(B) is produced by an analytic expression
ζ = ϕn+1(w) we call w = 0 an “analytic false branch point”.

In Remark 1 we have noted that w = 0 cannot be “exceptional” if 2m−n <
3n, and so it cannot be an “analytic false branch point”.

It will be useful to have a characterization of the nonexceptional
branch points, the proof of which is left to the reader.

Lemma 3. The branch point w = 0 is nonexceptional if and only if one of
the following two conditions is satisfied:

(i) There is an even integer L with

(48) (L − 1)(n + 1) < 2(m + 1) < L(n + 1).

(ii) There is an odd integer L with

(49) (L − 1)(n + 1) < 2(m + 1) ≤ L(n + 1).

We say that w = 0 satisfies condition (TL) if either (48) with L even
or (49) with L odd holds.

In Theorem 1 it was shown that E(3)(0) can be made negative if 2m −
2 < 3n. Therefore we shall now assume that 2m − 2 ≥ 3n. It takes some
experience to realize that the right approach to success lies in separating the
two cases “w = 0 is nonexceptional ” and “w = 0 is exceptional ”. Instead one
might guess that the right generalization of Wienholtz’s theorem consists in
considering the cases

(CL) (L − 1)n ≤ 2m − 2 < Ln, L ∈ N with L ≥ 3

and hoping that one can prove

E(j)(0) = 0 for 1 ≤ j ≤ L − 1, E(L)(0) < 0

using appropriate choices of forced Jacobi fields in varying the minimal surface
X̂. Unfortunately this is not the case. To see what happens we study the two
cases

(C4) 3n ≤ 2m − 2 < 4n
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and

(C5) 4n ≤ 2m − 2 < 5n

by computing E(4)(0) in the first case and E(5)(0) in the second one. We begin
by treating special cases of (C4) and (C5), where we can proceed in a similar
way as before with E(3)(0) for 2n ≤ 2m − 2 < 3n.

The case (C4) with 2m − 2 = 4p, p ∈ N.

Proposition 5. If wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

(50) E(4)(0) = −12Re
∫

S1
w3X̂ww · X̂wwτ2φt(0) dw.

Proof. Since Ẑttw(0) is holomorphic in B, the integrand of the first integral
in (39) is holomorphic, and so this integral vanishes. �

Remark 3. In case (C4) with 2m − 2 = 4p the branch point w = 0 is nonex-
ceptional. To see this we note that p < n whence

2m + 2 = 4(p + 1) < 4(n + 1)

and therefore
n + 1 < m + 1 < 2(n + 1).

Also note that n = 1, 2, 3 are not possible since n = 1 would imply p < 1;
n = 2 would mean p = 1 whence 6 = 3n ≤ 4p = 4; and n = 3 would imply
p ≤ 2, and so 9 = 3n ≤ 4p = 8. Finally 3n ≤ 4p and n ≥ 4 yields p ≥ 3.

Theorem 2. If 3n ≤ 2m − 2 = 4p < 4n for some p ∈ N, then one can find a
variation Ẑ(t) of X̂ such that E(4)(0) < 0, whereas E(j)(0) = 0 for j = 1, 2, 3.

Proof. First we want to choose τ = φ(0) and φt(0) in such a way that the
assumption of Proposition 5 is satisfied. To this end, set

τ(w) := (a − ib)w−p−1 + (a + ib)wp+1,

which clearly is a generator of a forced Jacobi field. By (43) we get

wX̂w(w)τ(w)
= (a − ib)(A1w

n−p + A2w
n−p+1 + · · · + A2m−2n+1w

2m−n−p + · · · ,

Rmwm−p + · · · ) + (a + ib)(A1w
n+p+2 + · · · , Rmwm+p+2 + · · · ).

By (35) it follows

wẐtw(w, 0)τ(w) = w[iwX̂w(w)τ(w)]wτ(w)
= i(a − ib)2((n − p)A1w

n−2p−1 + (n − p + 1)A2w
n−2p + · · ·

+ (2m − n − p)A2m−2n+1w
2m−n−2p−1 + · · · , (m − p)Rmwm−2p−1 + · · · ).
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Note that 2m − 2 = 4p implies m − 2p − 1 = 0, whence n − 2p − 1 < 0 because
of m > n, but 2m − n − 2p − 1 = (m − 2p − 1)+(m − n) = m − n > 0. Thus the
third component above has no pole, while the first (vectorial) component has
a pole at least in the first term, but no pole anymore from the (2m−2n+1)-th
term on. These poles will be removed by adding wX̂wφt(0) to wẐtw(0)τ with
an appropriately chosen value of φt(0). We set φt(0) = ψ1 + · · · + ψs where
ψ1, . . . , ψs are defined inductively. First set

ψ1(w) := −i(n − p)(a − ib)2w−2p−2

+ i(n − p)(a + ib)2w2p+2.

Now wẐtw(0)τ + wX̂wψ1 has no pole associated to A1 while the poles asso-
ciated to Ak, 1 < k ≤ s, are of the same order as before. Then we choose
ψ2 so that there is no pole associated to A2, etc. The number s is the index
of the last term (n − p + s)As+1w

n−2p+s−1 where n − 2p + s − 1 is ≥ 0 and
≤ 2m − 2n. Note that

wX̂w(w) = (A1w
n+1+A2w

n+2+· · ·+A2m−2n+1w
2m−n+1+· · · , Rmwm+1+· · · )

and
A1 · Ak = 0 for k = 1, 2, . . . , 2m − 2n.

Therefore, wX̂wφt(0) = wX̂w · [ψ1 + ψ2 + · · · + ψs] removes all poles from
wẐtw(0)τ and creates no new poles. Consequently wẐtw(0)τ + wX̂wφt(0) is
holomorphic, and so we have

E(4)(0) = −12Re
∫

S1
w3X̂ww · X̂wwτ2φt(0) dw.

Formula (45) yields

w3X̂ww(w) · X̂ww(w) = (m − n)2R2
mw2m+1 + · · · .

The leading term in φt(0) is that of ψ1, and

ψ1(w) = −i(n − p)(a − ib)2w−2p−2 + · · · .

Furthermore,
τ2(w) = (a − ib)2w−2p−2 + · · · ,

and so
τ2(w)φt(w, 0) = −i(a − ib)4(n − p)w−4p−4 + · · · .

Noticing that 2m + 1 = (2m + 2) − 1 = 4(p + 1) − 1, and setting

κ := 12(m − n)2(n − p) > 0

we obtain
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E(4)(0) = κRe
[
i(a − ib)4R2

m

∫
S1

dw

w

]
= −2πκRe[(a − ib)4R2

m]

and an appropriate choice of a and b yields E(4)(0) < 0. Finally we note that
E(2)(0) = 0 and E(3)(0) = 0 for the above choice of Ẑ(t). The first statement
follows from Proposition 1. To verify the second, we recall formula (34) from
Proposition 2:

E(3)(0) = −4Re
∫

S1
w3X̂ww · X̂wwτ3 dw.

From the preceding computations it follows that

w3X̂ww(w) · X̂ww(w)τ3(w) = (m − n)2R2
m(a − ib)3w2m+1−3(p+1) + · · · ,

and, by assumption, 2m − 2 = 4p, whence

2m + 1 − 3(p + 1) = 4p + 3 − 3(p + 1) = p > 1;

therefore E(3)(0) = 0. �

Remark 4. Under the special assumption that 2m − 2 = 4p we were able
to carry out the program outlined above for L = 4. However, applying the
method from Theorem 2 to cases when 2m − 2 �≡ 0 mod 4 one will get
nowhere. Instead, trying another approach similar to that used in the proof
of Theorem 1, one is able to handle the case (C4) under the additional as-
sumption 2m − 2 ≡ 2 mod 4 by considering the next higher derivative, namely
E(5)(0) instead of E(4)(0), cf. Theorem 4 stated later on. This seems to shat-
ter the hope that one can always make E(L)(0) negative, with E(j)(0) = 0
for 1 ≤ j ≤ L − 1, if (CL) is satisfied. In fact, by studying assumption (C5)
we shall realize that (CL) is probably not the appropriate classification for
developing methods that in general lead to our goal. Rather, the case (C5)
will show us that one should distinguish between the cases “exceptional” and
“nonexceptional” using the classification given in Lemma 3 to reach this pur-
pose.

Let us mention that, assuming (C4),the branch point w = 0 is nonexcep-
tional according to Lemma 3, since 3n ≤ 2m − 2 < 4n implies

3(n + 1) < 3n + 4 ≤ 2m + 2 < 4(n + 1).

Let us now turn to the investigation of (C5) by means of the fifth derivative
E(5)(0).

Lemma 4. If f(w) := wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

Ẑttw(0) = {iw[iwX̂wτ ]wτ + iwX̂wφt(0)}w,
(51)

Ẑttw(0) · X̂w = −Ẑtw(0) · Ẑtw(0) = w2X̂ww · X̂wwτ2.
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Proof. By (27) we have

Ẑtw = {2H[Re(iwẐwφ)]}w

whence
Ẑttw = {2H[Re(iwẐtwφ + iwẐwφt)]}w

and therefore

Ẑttw(0) = {2H[Re(if)]}w = {if }w

= {iwẐtw(0)τ + iwX̂wφt(0)}w.

By (35),
Ẑtw(0) = [iwX̂wτ ]w,

and so
Ẑttw(0) = {iw[iwX̂wτ ]wτ + iwX̂wφt(0)}w.

It follows that

Zttw(0) · X̂w = {iw[iX̂wτ + iwX̂wwτ + iwX̂wτw]τ + iwX̂wφt(0)}w · X̂w.

From X̂w · X̂w = 0 one obtains X̂w · X̂ww = 0, and then

X̂www · X̂w = −X̂ww · X̂ww.

This leads to

Ẑttw(0) · X̂w = −w2X̂www · X̂wτ2

= w2X̂ww · X̂wwτ2 = −Ẑtw(0) · Ẑtw(0),

taking (37) into account. �

Proposition 4 and Lemma 4 imply

Proposition 6. If f(w) := wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

(52) E(5)(0) = 12Re
∫

S1
[wẐttw(0) · Ẑttw(0)τ + 4wẐttw(0) · Ẑtw(0)φt(0)] dw.

We are now going to discuss the envisioned program for the case (C5)
using the simplified form (52) for the fifth derivative E(5)(0). It will be useful
to distinguish several subcases of (C5):

(a) 5n ≤ 2m + 2,
(b) 5n > 2m + 2.
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In case (a) we have 5n ≤ 2m + 2 < 5n + 4, that is,

2m + 2 = 5n + α, 0 ≤ α ≤ 3.

Therefore (a) consists of the four subcases

(53) 2m − 5n = 0, 1, −1, −2.

In case (b) we have 5n > 2m + 2, and (C5) implies 2m + 2 ≥ n + 4, whence
5n > n + 4, and so we have n > 1 in case (b).

Case (a) allows an easy treatment based on the following representation
of 2m + 2 which we apply successively for α = 0, 1, 2, 3 to deal with the four
cases (53). We write

α(n + 1) + βn = 2m + 2

with α := 2m + 2 − 5n, β := 5 − α where 0 ≤ α ≤ 3 and β ≥ 2. Then we
choose

τ := τ0 + ετ1, ε > 0,

where
τ0 := cw−n + cwn, τ1 := cw−n−1 + cwn+1, c ∈ C.

With an appropriate choice of φt(0) we obtain by an elimination procedure
similar to the one used in the proof of Theorem 2 that f := wẐtw(0)τ +
wX̂wφt(0) is holomorphic. Here and in the sequel we omit the lengthy com-
putations and merely state the results. As f is holomorphic one can use for-
mula (52) for E(5)(0); we investigate the four different cases of (53) separately,
but note that always

E(j)(0) = 0, j = 1, . . . , 4.

(I) 2m − 5n = 0, 1 ≤ n ≤ 4. Only (i) n = 2 and (ii) n = 4 are possible. This
leads to

(i) n = 2, m = 5, (m + 1) = 2(n + 1), i.e. w = 0 is exceptional;
(ii) n = 4, m = 10, hence m + 1 �≡ 0 mod (n + 1), and so w = 0 is not

exceptional.

For (i) we obtain E(5)(0) = 0 + o(ε), whereas (ii) yields

E(5)(0) = 12Re[2πi · 336 · ε2 · c5R2
m] + o(ε2)

which can be made negative by appropriate choice of c. Thus the method is
inconclusive for (i), but gives the desired result for (ii).

(II) 2m − 5n = 1, 1 ≤ n ≤ 4. Then n necessarily either (i) n = 1 or (ii)
n = 3. Here,
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(i) n = 1, m = 3, m + 1 = 2(n + 1), i.e. w = 0 is exceptional;
(ii) n = 3, m = 8, and m+1 �≡ 0 mod (n+1), hence w = 0 is not exceptional.

For (i) it follows that E(5)(0) = 0 + o(ε3), i.e. the method is inconclusive,
while for (ii) one gets

E(5)(0) = 12 · Re[2πi · 250 · ε3 · c5R2
m] + o(ε3),

and so E(5)(0) < 0 for a suitable choice of c.

(III) 2m − 5n = −1, 1 ≤ n ≤ 4. Then either (i) n = 1 or (ii) n = 3, i.e.

(i) n = 1, m = 2, and so m+1 �≡ 0 mod (n+1), i.e. w = 0 is not exceptional.
(ii) n = 3, m = 7, whence m + 1 = 2(n + 1), i.e. w = 0 is exceptional.

For (i) we have 2m − 2 < 3n, and this case was already dealt with in the
positive sense by using E(3)(0), cf. Theorem 1. For (ii) the method is again
inconclusive since one obtains

E(5)(0) = 0 + o(ε).

(IV) 2m − 5n = −2, 1 ≤ n ≤ 4. Then either (i) n = 2 or (ii) n = 4, that is,

(i) n = 2, m = 4, whence m+1 �≡ 0 mod (n+1), i.e. w = 0 is not exceptional.
(ii) n = 4, m = 9, and so m + 1 = 2(n + 1), i.e. w = 0 is exceptional.

In case (i) we have 3n = 2m − 2 < 4n, i.e. condition (C4) holds, and this
case will be tackled by Theorem 4, to be stated later on. Case (ii) leads to
E(5)(0) = 0 + o(1) as ε → 0 which is once again inconclusive.

Conclusion. The method is inconclusive in all of the exceptional cases. In
the nonexceptional cases it either leads to the positive result E(5)(0) < 0 for
appropriate choice of c, or one can apply the cases (C3) or (C4), and here
one obtains the desired results E(3)(0) < 0 or E(4)(0) < 0 respectively (see
Theorems 1 and 4).

Now we turn to the case (b). We first note that (C5) together with (b)
implies 4(n + 1) ≤ 2m + 2 < 5n. Hence either (i) 2(n + 1) = m + 1, or (ii)
4(n + 1) < 2m + 2 < 5n. Therefore, w = 0 is exceptional in case (i) and
nonexceptional in case (ii). Furthermore we have

2m + 2 = 4n + k with ≤ k < n,

where k = 4 is the case (i) and 4 < k < n is the case (ii).

In order to treat the case (b) which in some sense is the “general subcase”
of (C5) we use
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τ := c · (εw−n + w−k) + c · (εwn + wk).

Choosing φt(0) appropriately we achieve that f is holomorphic, and so E(5)(0)
is given by (52). Moreover, E(j)(0) = 0 for 1 ≤ j ≤ 4. It turns out that

E(5)(0) = 12 · Re[2πic3ε4γR2
m] + o(ε4), ε > 0,

with

γ = (m − n)(k − 4)2
[
5
4
n +

5
8
(k − 2)

]

and γ = 0 in case (i), whereas γ > 0 in case (ii).

Thus the following result is established:

Theorem 3. Suppose that (C5) and (b) hold, hence 4n + 4 ≤ 2m + 2 < 5n.
This implies 2m + 2 = 4n + k with 4 ≤ k < n. For k = 4 the branch point
w = 0 is exceptional, and the method is nonconclusive. If, however, 4 < k < n,
then τ = φ(0) and φt(0) can be chosen in such a way that E(5)(0) < 0 and
E(j)(0) = 0 for j = 1, . . . , 4.

Next, we want to prove that the remaining cases of (C4) lead to a conclusive
result also for the remaining possibility 2m − 2 �= 4p for some p ∈ N with
1 ≤ p < n. Because of 3n ≤ 2m − 2 < 4n we can write 2m − 2 = 4p + k with
0 < k < 4 (the case k = 0 was treated before). Since k must be even, we are
left with k = 2, and we recall that w = 0 is a nonexceptional branch point in
the case (C4).

Theorem 4. Suppose that 3n ≤ 2m − 2 = 4p + 2 < 4n with 1 ≤ p < n holds
(this is the subcase of (C4) that was not treated in Theorem 2). Then τ = φ(0)
and φt(0) can be chosen in such a way that

E(j)(0) = 0 for j = 1, . . . , 4, E(5)(0) < 0.

Proof. This follows with

τ := c(w−k + εw−p−1) + c · (wk + εwp+1), ε > 0.

Then E(j)(0) = 0 for 1 ≤ j ≤ 4 and

E(5)(0) = 12 · Re[2πic5ε4R2
mγ] + o(ε4),

where

γ := (m − n)2(m − 2p − 1)2 + 4(m − n)2(m − 2p − 1)(m − k − p)
−8(n − p)(m − p)(m − n)(m − k − p)
−4(m − n)(m − 2p − 1)[(n − p)(m − p + 1) + (m − p)(2n − p − k + 1)].

Since 4(p + 1) + k = 2m + 2 and

5(p + 1) = 4p + k + p + (5 − k) = (2m − 2) + 3 + p ≥ 2m + 2

one can prove that γ < 0. Thus one can make E(5)(0) < 0 for a suitable choice
of c. �
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Let us return to the case (C4): 3n ≤ 2m − 2 < 4n which splits into the
two subcases 2m − 2 ≡ 0 mod 4 and 2m − 2 ≡ 2 mod 4. The first one was
dealt with by E(4)(0), cf. Theorem 2, the second by E(5)(0), see Theorem 4.
Combining both results we obtain

Theorem 5. Let X̂ be a minimal surface in normal form having the branch
point w = 0 with the order n and the index m such that (C4) holds. Then X̂
cannot be a weak minimizer of D.

We want to give a new proof of this result which combines both cases into
a single one. Note first that 3n ≤ 2m − 2 < 4n is equivalent to 3(n + 1) + 1 ≤
2m+2 < 4(n+1) = 3(n+1)+n+1. Therefore w = 0 is not exceptional, and

(54) 2m + 2 = 3(n + 1) + r, 1 ≤ r ≤ n.

The new approach consists in choosing the generator τ = φ(0) as

(55) τ = τ0 + τ1 with τ0 := εcw−n−1 + εcwn+1, τ1 := cw−r + cwr, c ∈ C.

We need the following auxiliary result:

Lemma 5. For any ν ∈ N and a ∈ C we have

(56) {2H[Re(aw−ν)]}w = νawν−1 on B.

Proof. On S1 one has w−ν = wν whence

aw−ν = awν = awν on S1

and therefore
Re(aw−ν) = Re(awν) on S1.

Consequently
2H[Re(aw−ν)] = 2H[Re(awν)] on B.

This implies

{2H[Re(aw−ν)]}w = {2H[Re(awν)]}w on B.

Finally, since awν is holomorphic in C, it follows that

{2H[Re(awν)]}w =
d

dw
(awν) = νawν−1 on B. �

Now we calculate E(4)(0) using the formulae (37) and (39):

E(4)(0) = 12Re
∫

S1
Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(57)

+ 12Re
∫

S1
wẐtw(0) · Ẑtw(0)φt(0) dw.



6.1 The First Five Variations of Dirichlet’s Integral, and Forced Jacobi Fields 515

From

wX̂w = (A1w
n+1 + · · · + A2m−2n+1w

2m−n+1 + · · · , Rmwm+1 + · · · )

it follows that

wX̂wτ

= cε(A1 + · · · + A2m−2n+1w
2m−2n + · · · , Rmwm−n + · · · )

+ c(A1w
n+1−r + · · · + A2m−2n+1w

2m−n−r+1 + · · · , Rmwm+1−r + · · · )
+ g(w), g(w) := wX̂w(w) · [εcwn+1 + cwr].

The expression g(w) is “better” than the sum T1 + T2 of the first two terms
T1, T2 on the right-hand side of this equation, in the sense that it is built
in a similar way as T1 + T2 except that it is less singular. In the sequel this
phenomenon will appear repeatedly, and so we shall always use a notation
similar to the following:

wX̂wτ = T1 + T2 + 〈better〉.

This sloppy notation will not do any harm since in the end we shall see that
each of the two integrands in (57) possesses exactly one term of order w−1 as
w-terms of least order, and no expression labelled “better” is contributing to
them.

Using (35) one obtains

Ẑtw(0) = icε(A2 + · · · + (2m − 2n)A2m−2n+1w
2m−2n−1 + · · · ,

(m − n)Rmwm−n−1 + · · · )
+ ic((n + 1 − r)A1w

n−r + · · ·
+ (2m − n + 1 − r)A2m−2n+1w

2m−n−r

+ · · · , (m + 1 − r)Rmwm−r + · · · ) + 〈better〉.

This implies

wẐtw(0)τ = ic2ε2(A2w
−n + · · · + (2m − 2n)A2m−2n+1w

2m−3n−1 + · · · ,

(m − n)Rmwm−2n−1 + · · · )
+ ic2ε((n + 1 − r)A1w

−r + · · ·
+ (2m − n + 1 − r)A2m−2n+1w

2m−2n−r

+ · · · , (m + 1 − r)Rmwm−n−r + · · · ) + 〈better〉.

Recall that Ak = λkA1 for k = 1, . . . , 2m − 2n. In order to remove all poles
in the first two components of

f := wẐtw(0)τ + wX̂wφt(0)
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one chooses φt(0) in a fashion similar to that used in the proof of Theorem 2:

φt(0) := −ic2λ2ε
2w−2n−1 − ic2ε(n + 1 − r)w−n−1−r + · · · .

Then

f = ic2ε2(· · · (2m − 2n)A2m−2n+1w
2m−3n−1

+ · · · , (m − n)Rmwm−2n−1 + · · · )
+ ic2ε(· · · (2m − n + 1 − r)A2m−2n+1w

2m−2n−r

+ · · · , (m − n)Rmwm−n−r + · · · )
+ 〈better〉.

Here and in the sequel, · · · stand for non-pole terms with coefficients Aj with
j ≤ 2m − 2n.

The first two components of f (i.e. the expressions before the commata)
are holomorphic; the worst pole in the third component is the term with the
power wm−2n−1; note that

γ := m − 2n − 1 =
1
2
[(2m + 2) − 4(n + 1)] < 0.

Thus Lemma 5 yields

{H[Re(Rmwγ)]}w = −γRmw−γ−1.

Using a formula established in the proof of Lemma 4 one obtains

Ẑttw(0) = −c2ε2(· · · (2m − 2n)(2m − 3n − 1)A2m−2n+1w
2m−3n−2,

(m − n)(2n + 1 − m)Rmw2n−m + · · · )
− c2ε(· · · (2m − n)(2m − 2n − r)A2m−2n+1w

2m−2n−r−1 + · · · ,

(m − n)(m − n − r)Rmwm−n−r−1) + 〈better〉.

It follows that

Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)]
= {−ic4ε3(m − n)2(m − n − r)R2

mw−1 + · · · } + o(ε3)

since

(58) 2m − 3n − r − 2 = (2m + 2) − [3(n + 1) + r] − 1 = −1.

A straight-forward calculation shows

wẐtw(0) · Ẑtw(0)φt(0)
= {ic4ε3(m − n)2(n + 1 − r)R2

mw−1 + · · · } + o(ε3).
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Thus one obtains by (57) that

E(4)(0) = 12ε3Re
∫

S1
ikc4R2

m

dw

w
+ o(ε3)

with
k := (m − n)2(n + 1 − r) − (m − n)2(m − n − r).

Since

m − n − r =
1
2

{(2m + 2) − 2(n + 1) − 2r} =
1
2
(n + 1 − r)

it follows that
k =

1
2
(m − n)2(n + 1 − r) > 0.

Hence, by suitable choice of c ∈ C one can achieve that E(4)(0) < 0, while
E(j)(0) = 0 for j = 1, 2, 3. This concludes the new proof of Theorem 5. �

Finally we want to show that it often is possible to estimate the index
m of an interior branch point w0 of a minimal surface X̂ ∈ C(Γ ) with the
aid of a geometric condition on its boundary contour Γ . Following an idea by
J.C.C. Nitsche, we use Radó’s lemma for this purpose (cf. Vol. 1, Section 4.9),
which states the following. If f ∈ C0(B) is harmonic in B, f(w) �≡ 0 in B,
and ∇jf(w0) = 0 at w0 ∈ B for j = 0, 1, . . . , m, then f has at least 2(m + 1)
different zeros on ∂B.

We can assume that the minimal surface X̂ is transformed into the normal
form with respect to the branch point w0 = 0 having the index m. If the
contour Γ is nonplanar, then X3(w) �≡ X3

0 := X3(0), whence m < ∞ and

X3(w) = X3
0 + Re[cwm+1 + O(wm+2)] for w → 0

with c ∈ C \ {0}. Hence f := X3 − X3
0 satisfies the assumptions of Radó’s

lemma, and therefore f has at least 2(m+1) different zeros on ∂B. Hence the
plane Π := {(x1, x2, x3) ∈ R

3 : x3 = X3
0 } intersects Γ in at least 2(m + 1)

different points. If m = ∞ then even Γ ⊂ Π, and so we obtain:

Proposition 7. If the minimal surface X̂ ∈ C(Γ ) possesses a branch point
w0 ∈ B with the index m, then there is a plane Π in R

3 which intersects Γ in
at least 2(m+1) different points. Consequently, if every plane in R

3 intersects
Γ in at most k different points, then the index m is bounded by

2m + 2 ≤ k.

This result motivates the following

Definition 4. The cut number c(Γ ) of a closed Jordan curve Γ in R
3 is the

supremum of the number of intersection points of Γ with any (affine) plane
Π in R

3, i.e.
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(59) c(Γ ) := sup{�(Γ ∩ Π) : Π = affine plane in R
3}.

It is easy to see that

(60) 4 ≤ c(Γ ) ≤ ∞,

and for any nonplanar, real analytic, closed Jordan curve the cut number c(Γ )
is finite.

We can rephrase the second statement of Proposition 7 as follows:

Proposition 8. The index m of any interior branch point of a minimal sur-
face X̂ ∈ C(Γ ) is bounded by

(61) 2m + 2 ≤ c(Γ ).

If n is the order and m the index of some branch point, then 1 ≤ n < m.
On the other hand, c(Γ ) = 4 implies m ≤ 1, and c(Γ ) = 6 yields m ≤ 2. Thus
we obtain

Corollary 1. (i) If c(Γ ) = 4 then every minimal surface X̂ ∈ C(Γ ) is free of
interior branch points.

(ii) If c(Γ ) = 6 then any minimal surface X̂ ∈ C(Γ ) has at most simple
interior branch points of index two; if X̂ has an interior branch point, it
cannot be a weak minimizer of D in C(Γ ).

Proof. (i) follows from 1 ≤ n < m ≤ 1, which is impossible. (ii) 1 ≤ n < m ≤ 2
implies n = 1 and m = 2 for an interior branch point w0 of X̂, whence
2n ≤ 2m − 2 < 3. Thus condition (C3) is satisfied, and therefore the last
assertion follows from Theorem 1. �

Corollary 2. Let X̂ ∈ C(Γ ) be a minimal surface with an interior branch
point of order n, and suppose that the cut number of Γ satisfies c(Γ ) ≤ 4n+3.
Then X̂ is not a weak minimizer of D in C(Γ ).

Proof. By (61) we have
2m + 2 ≤ 4n + 3;

hence either

2n + 4 ≤ 2m + 2 < 3n + 4 ⇔ 2n ≤ 2m − 2 < 3n

or
3n + 4 ≤ 2m + 2 < 4n + 4 ⇔ 3n ≤ 2m − 2 < 4n

hold true, i.e. either (C3) or (C4) are fulfilled. In the first case the assertion
follows from Theorem 1, in the second from Theorem 5. �
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6.2 The Theorem for n + 1 Even and m + 1 Odd

In this section we want to show that a (nonplanar) weak relative minimizer X̂
of Dirichlet’s integral D that is given in the normal form cannot have w = 0
as a branch point if its order n is odd and its index m is even. Note that
such a branch point is nonexceptional since n + 1 cannot be a divisor of
m+1. We shall give the proof only under the assumptions n ≥ 3 since n = 1 is
easily dealt with by a method presented in a forthcoming book by A. Tromba.
(Moreover it would suffice to treat the case m ≥ 6 since 2m−2 < 3n is already
treated by the Wienholtz theorem. So 2m ≥ 3n + 2 ≥ 11, i.e. m ≥ 6 since m
is even.)

The Strategy of the Proof

The strategy to find the first nonvanishing derivative of E(t) at t = 0 that
can be made negative consists in the following four steps:

(I) Guess the candidate L for which E(L)(0) < 0 can be achieved with a
suitable choice of the generator τ = φ(0).

(II) Select Dβ
t φ(0), β ≥ 1, so that the lower order derivatives E(j)(0), j =

1, 2, . . . , L − 1 vanish, (Dβ
t := ∂β

∂tβ ).
(III) Prove that

E(L)(0) = Re
∫

S1
cLkR2

m

dw

w
= Re{2πicLkR2

m},

where c �= 0 is a complex number which can be chosen arbitrarily, and
k ∈ C is to the computed.

(IV) Show that k �= 0.

Remark 1. In order to achieve (II) one tries to choose Dβ
t φ(0), β ≥ 1, in

such a way that the integrands of E(j)(0) for j < L are free of any poles and,
therefore, free of first-order poles. To see that this strategy is advisable, let
us consider the case L = 5; then we have to achieve E(4)(0) = 0. Recall that
E(4)(0) consists of two terms, one of which has the form

I := 12 Re
∫

S1
{2H[Re if ]}wf dw,

where
f := w[iwX̂wτ ]wτ + wX̂wφt(0).

Assume that f had poles, say,

f(w) = g(w) + h(w), g(w) =
∑
j≥1

ajw
−j , h = holomorphic in B,

and h ∈ C0(B). Then, by Lemma 5 of Section 6.1,
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{2H[Re if ]}w(w) = g∗(w) + h′(w), g∗(w) := −i
∑
j≥1

jajw
j−1.

Thus, I = 12 · {I1 + I2 + I3}, with

I1 := Re
∫

S1
g∗g dw, I2 := Re

∫
S1

h′g dw, I3 := Re
∫

S1
(g∗h + h′h) dw.

The worst term is I1; one obtains

I1 = Re
∫

S1

∑
j,
≥1

(−ijajw
j−1a
w

−
) dw = 2π
∑
j≥1

j|aj |2 > 0

and I3 = 0. Hence, in order to achieve I = 0, one would have to balance I2

against I1 > 0 which seems to be pretty hopeless.

Let us now apply the “strategy” to prove

Theorem 1. Let X̂ be a nonplanar minimal surface in normal form that has
w = 0 as a branch point of odd order n ≥ 3 and of even index m ≥ 4. Then,
by a suitable choice of τ = φ(0) and Dβ

t φ(0), one can achieve that

E(m+1)(0) < 0 and E(j)(0) = 0 for 1 ≤ j ≤ m.

Proof. Set N := L − 1, M := L − (α + β + 1) = N − (α + β), hence L − 1 =
α + β + M . By Leibniz’s formula,

DN
t {[Ẑw · Ẑw]φ} =

N −β∑
α=0

N∑
β=0

N !
α!β!(N − β − α)!

(DN −β−α
t Ẑw) · (Dα

t Ẑw)Dβ
t φ.

Since
DtE(t) = 2Re

∫
S1

wẐ(t)w · Ẑ(t)wφ(t) dw,

we can use Leibniz’s formula to compute E(L)(t) from

E(L)(t) = 2Re
∫

S1
wDN

t {[Ẑw(t) · Ẑw(t)]φ(t)} dw.

We choose L := m+1; then L ≥ 5 as we have assumed m ≥ 4. It follows that

(1) E(L)(0) = J1 + J2 + J3,

where the terms J1, J2, J3 are defined as follows: Set

(2) Tα,β := w(Dα
t Ẑ(0))wDβ

t φ(0).

Then,
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J1 := 4 Re
∫

S1
[DL−1

t Ẑ(0)]w · (wX̂wτ) dw(3)

+ 4 · (L − 1) Re
∫

S1
[DL−2

t Ẑ(0)]wf dw

+ 4
L−3∑

M> 1
2 (L−1)

(L − 1)!
M !(L − M − 1)!

Re
∫

S1
[DM

t Ẑ(0)]w · gL−M −1 dw,

f := T 1,0 + T 0,1 = w[Ẑt(0)]wτ + wX̂wφt(0),

gν :=
∑

α+β=ν

cν
αβTα,β with cν

αβ :=
ν!

α!β!
;

J2 :=

1
2 (L−1)∑
M=2

2(L − 1)!
M !M !

Re
∫

S1
[DM

t Ẑ(0)]w · hM dw(4)

+ 2(L − 1)(L − 2) Re
∫

S1
[Ẑt(0)]w · T 1,L−3 dw,

hM :=
M∑

α=0

ψ(M, α)
M !

α!(L − 1 − M − α)!
Tα,L−1−M −α,

ψ(M, α) := 1 for α = M, ψ(M, α) := 2 for α �= M ;

J3 := 4(L − 1) Re
∫

S1
wẐtw(0) · X̂wDL−2

t φ(0) dw(5)

+ 2Re
∫

S1
wX̂w · X̂wDL−1

t φ(0) dw.

We have J3 = 0 since X̂w · X̂w = 0 and Ẑtw(0) · X̂w = 0 on account of
formula (36) in 6.1.

Now we proceed as follows:

Step 1. We choose τ = φ(0) and Dβ
t φ(0) for β ≥ 1 in such a way that f and

gL−M −1 are holomorphic. Then the integrands of the three integrals in J1 are
holomorphic because all w-derivatives [Dj

t Ẑ(0)]w of the harmonic functions
Dj

t Ẑ(t) are holomorphic. Then it follows that J1 = 0, and thus we have

(6) E(L)(0) = J2.

Step 2. Then it will be shown that E(L)(0) reduces to the single term

(7) E(L)(0) =
2 · m!(

m
2

)
!
(

m
2

)
!

Re
∫

S1
w[Dm/2

t Ẑ(0)]w · [Dm/2
t Ẑ(0)]wτ dw
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which can be calculated explicitly; it will be shown that

(8) E(L)(0) =
2 · m!(

m
2

)
!
(

m
2

)
!
Re(2πi · κ · R2

m),

where κ is the number

(9) κ := iL−1(a − ib)L(m − 1)2(m − 3)2 · · · 32 · 12

if the generator τ = φ(0) is chosen as

(10) τ(w) := (a − ib)w−2 + (a + ib)w2.

For a suitable choice of (a − ib) one obtains E(L)(0) < 0. Furthermore the
construction will yield E(j)(0) = 0 for 1 ≤ j ≤ L − 1.

Before we carry out this program for general n ≥ 3, m ≥ 4, n = odd,
m = even, we explain the procedure for the simplest possible case: n = 3 and
m = 4.

From the normal form for X̂w with the order n and the index m of the
branch point w = 0 we obtain

(11) wX̂w = (A1w
n+1 + · · · + A2m−2n+1w

2m−n+1 + · · · , Rmwm+1 + · · · ).

Choosing τ according to (10) it follows from

[Ẑt(0)]w = (iwX̂wτ)w

that

[Ẑt(0)]w(12)
= (a − ib)(i(n − 1)A1w

n−2 + inA2w
n−1 + · · ·

+ i(2m − n − 1)A2m−2n+1w
2m−n−2, i(m − 1)Rmwm−2 + · · · )

+ 〈better〉.

Here, 〈better〉 stands again for terms that are similarly built as those in the
preceding expression but whose w-powers attached to corresponding coeffi-
cients are of higher order. Then

w[Ẑt(0)]wτ(13)
= (a − ib)2(i(n − 1)A1w

n−3 + inA2w
n−2 + · · ·

+ i(2m − n − 1)A2m−2n+1w
2m−n−3 + · · · , i(m − 1)Rmwm−3 + · · · )

+ 〈better〉.

Since this term is holomorphic we have the freedom to set φt(0) = 0. Then
f(w) = wẐtw(0)τ+wX̂wφt(0) is holomorphic, and Proposition 6 in Section 6.1
yields
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(14) E(5)(0) = 12Re
∫

S1
wẐttw(0) · Ẑttw(0)τ dw.

(This follows of course also from the general formulas stated above.)
From formula (51) of Lemma 4 in Section 6.1 we get

Ẑttw(0) = {iw[iwX̂wτ ]wτ }w = i{wẐtw(0)τ }w,

and so

Ẑttw(0) = −(a − ib)2((n − 1)(n − 3)A1w
n−4 + · · ·(15)

+ (2m − n − 1)(2m − n − 3)A2m−2n+1w
2m−n−4

+ · · · , (m − 1)(m − 3)Rmwm−4 + · · · ) + 〈better〉.

Since n − 3 = 0 and m = 4, this leads to

(16) Ẑttw(0) · Ẑttw(0) = (a − ib)4(m − 1)2(m − 3)2R2
m + · · · ,

and by (14) we obtain for L = m + 1 = 5:

E(L)(0) = E(5)(0) = 12 · Re
∫

S1
(a − ib)5(m − 1)2(m − 3)2R2

m

dw

w
(17)

= 12 · Re[2πi(a − ib)5(m − 1)2(m − 3)2R2
m], m = 4.

Now we turn to the general case of an odd n ≥ 3 and an even index
m ≥ 4.

Step 1. The pole removal technique to make the expressions f and gL−M −1

in the integral J1 holomorphic.

We have already seen that f(w) is holomorphic if we set φt(0) = 0. In fact,
we set

(18) Dβ
t φ(0) = 0 for 1 ≤ β ≤ n − 1

2
and for β >

1
2
(L − 3)

and prove the following

Lemma 1. By the pole-removing technique we can inductively choose Dβ
t φ(0)

for β ≤ 1
2 (L − 3) such that gν is holomorphic for ν = 0, 1, . . . , 1

2 (L − 3). Then
the derivative [Dγ

t Ẑ(0)]w is not only holomorphic, but can be obtained in the
form

(19) [Dγ
t Ẑ(0)]w = {igγ−1}w for γ = 1, 2, . . . ,

1
2
(L − 1).

Suppose this result were proved. Since in J1 there appear only gν with
ν = L − M − 1 where 1

2 (L − 1) < M ≤ L − 3, i.e. 2 ≤ ν ≤ 1
2 (L − 3), all

integrands in J1 were indeed holomorphic, and so J1 = 0. Thus it remains to
prove Lemma 1.
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Proof of Lemma 1. By definition we have

(20) gν =
∑

α+β=ν

cν
αβTα,β , Tα,β := w[Dα

t Ẑ(0)]wDβ
t φ(0),

and φ(0) = τ .

The expressions w[Dα
t Ẑ(0)]wτ have no pole for α ≤ n−1

2 , and we make the
important observation that there are numbers c, c′ such that

w[D
n−1

2
t Ẑ(0)]wτ = (cA1 + · · · , c′Rmwm−n + · · · ).

Thus, a pole in w[Dα
t Ẑ(0)]wτ may arise at first for α = 1

2 (n + 1); then we
have, say

(21) w[D
1
2 (n+1)
t Ẑ(0)]wτ = (cA2w

−1 + · · · , c′Rmwm−n−2 + · · · ).

This requires a nonzero D
n+1

2
t φ(0) in case that cA2 �= 0 if we want to make

g 1
2 (n+1) pole-free. Now we go on and discuss the pole removal for ν = 1

2 (n +
3), 1

2 (n + 5), . . . , 1
2 (L − 3).

Observation 1. Since m is even, n is odd, and m > n, we have

(22) m = n + (2k + 1), k = 0, 1, 2, . . . ,

and therefore

(23)
1
2
(L − 3) =

1
2
(m − 2) =

1
2
(n + 2k − 1).

Thus, for m = n + 1, all gν with 2 ≤ ν ≤ 1
2 (L − 3) are pole-free if we set

Dβ
t φ(0) = 0 for all β ≥ 1; cf. (18). For m = n + 3, we have to choose Dβ

t φ(0)
appropriately for β = 1

2 (n+1) while the other Dβ
t φ(0) are taken to be zero. For

m = n+5, we must also choose Dβ
t φ(0) appropriately for β = 1

2 (n+3) whereas
the other Dβ

t φ(0) are set to be zero. In this way we proceed inductively and
choose Dβ

t φ(0) in a suitable way for β = 1
2 (n + 1), 1

2 (n + 3), . . . , 1
2 (n + 2k − 1)

in case that m = n + 2k + 1 while all other Dβ
t φ(0) are taken to be zero

according to (18).

Observation 2. The pole-removal procedure would only stop for some gν

with 1
2 (n + 1) ≤ ν ≤ 1

2 (L − 3) if the w-power attached to A2m−2n+1 became
negative. We have to check that this does not happen for ν ≤ 1

2 (L−3). Since at
the α-th stage in defining [Dα

t Ẑ(0)]w the w-powers have been reduced by 2α,
we must check that the terms Tα,β have no poles connected with A2m−2n+1 if
α+β ≤ 1

2 (L − 3). Looking first only at Tα,0 = w[Dα
t Ẑ(0)]wτ for α ≤ 1

2 (L − 3),
we must have
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2m − n − 2α = 2m − n + 1 − 2(α + 1) ≥ 0 for α ≤ 1
2
(L − 3),

which is true since

2m − n + 1 − 2 · 1
2
(L − 1) = m − n + 1 > 0.

We must also check that during the process no pole is introduced into the
third complex component. Again we first look at Tα,0 for α ≤ 1

2 (L − 3). Then
the order of the w-power at the Rm-term is

m − 2α − 1 = (m + 1) − 2(α + 1) ≥ (m + 1) − (L − 1) = 1,

and so there is no pole.

Let us now look at the pole-removal procedure. For m = n + 1 all gν with
2 ≤ ν ≤ 1

2 (L −3) are pole-free if we assume (18). If m = n+3 we have to make

g 1
2 (n+1) pole-free. To this end it suffices to choose D

1
2 (n+1)
t φ(0) appropriately;

it need have a pole at most of order (n+2) in order to remove a possible pole
of Tα,0, α = 1

2 (n + 1), cf. (21).
If m = n + 5, we have to choose Dβ

t φ(0) appropriately for β = 1
2 (n + 1)

and β = 1
2 (n + 3). The derivative D

1
2 (n+1)
t φ(0) will be taken as before, while

D
1
2 (n+3)
t φ(0) is to be chosen in such a way that

g 1
2 (n+3) = T

1
2 (n+3),0 + T 1, 1

2 (n+1) + T 0, 1
2 (n+3)

becomes holomorphic. Since

T 1, 1
2 (n+1) = w[Ẑt(0)]wD

1
2 (n+1)
t φ(0)

= (i(n − 1)(a − ib)A1w
n−1 + · · · ,

i(m − 1)(a − ib)Rmwm−1 + · · · )D
1
2 (n+1)
t φ(0)

= (cA1w
−3 + · · · , c′Rmwm−n−3 + · · · )

with some constants c, c′, the derivative D
1
2 (n+3)
t φ(0) in

T 0, 1
2 (n+3) = wX̂wD

1
2 (n+3)
t φ(0)

should have a pole of order n + 4, while a pole of lower order than n +
4 is needed to remove a possible singularity in the first term T

1
2 (n+3),0 =

w[D
1
2 (n+3)
t Ẑ(0)]wτ .

In this way we can proceed inductively choosing the poles of Dβ
t φ(0) always

at most of order

(24) n + 2
(

β − n − 1
2

)
= 2β + 1 for

1
2
(n + 1) ≤ β ≤ 1

2
(L − 3).

This is the crucial estimate on the order of the pole of Dβ
t φ(0) in order to

ensure that these derivatives play no role in the final calculations.
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Observation 3. Consider the last complex component of

g 1
2 (n+1) = w[D

1
2 (n+1)
t Ẑ(0)]wτ + wX̂wD

1
2 (n+1)
t φ(0).

The lowest w-power attached to Rm in the first term is 1 + m − (n + 1) − 2 =
m − n − 2 ≥ 1 (since in this case m ≥ n + 3 according to Observation 1). The
lowest w-power associated to Rm in the second term is 1 + m − (n + 2) =
m − n − 1 > m − n − 2. Continuing inductively we see that the lowest w-power
attached to Rm in any gν arises from τ = φ(0) and not from any Dβ

t φ(0). �

This ends the proof of Step 1, and we have found that E(L)(0) = J2. Now
we come to

Step 2. The integral J2 is a linear combination of the real parts of the integrals

(25) Iαγβ :=
∫

S1
w[Dα

t Ẑ(0)]w · [Dγ
t Ẑ(0)]wDβ

t φ(0) dw,

where 1 ≤ α, γ ≤ 1
2 (L − 1) and β = (L − 1) − α − γ. Then we have

(26) β = 0 if and only if α = γ =
1
2
(L − 1) =

m

2
.

This implies

(27) J2 =
2 · m!

(m
2 )!(m

2 )!
Re

∫
S1

w[D
m
2

t Ẑ(0)]w · [D
m
2

t Ẑ(0)]wτ dw

because of the following

Lemma 2. We have

(28) Iαγβ = 0 for 1 ≤ α, γ ≤ 1
2
(L − 1) and 1 ≤ β = m − α − γ.

Proof. Let us first show that the product of the last complex components of
[Dα

t Ẑ(0)]w and [Dγ
t Ẑ(0)]w and of wDβ

t φ(0) have a zero integral. In fact, this
product has the form

const(wRmwm−2α · Rmwm−2γ + · · · )(w−2β−1 + · · · )
= constR2

mw1+2m−2(α+β+γ)−1 + · · · = const · R2
m + · · ·

since α + β + γ = L − 1 = m.

The same holds true for the scalar product of the first two complex compo-
nents, multiplied by wDβ

t φ(0). To see this we assume without loss of generality
that α ≥ γ. Denote by Pαγ the expression

Pαγ := w[Cα
1 · Cγ

1 + Cα
2 · Cγ

2 ],
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where Cα
1 , Cα

2 and Cγ
1 , Cγ

2 are the first two complex components of [Dα
t Ẑ(0)]w

and [Dγ
t Ẑ(0)]w respectively.

Case 1. If 2γ ≤ 2α < n then

Pαγ = w(constAjw
n−2α + · · · + constA2m−2n+1w

2m−n−2α + · · · )
· (constA
w

n−2γ + · · · + constA2m−2n+1w
2m−n+γ + · · · )

with j, � < 2m − 2n + 1.

Case 2. If 2γ < n < 2α then

Pαγ = w(constAj + · · · + constA2m−2n+1w
2m−n + · · · )

· (constA
w
n−2γ + · · · + constA2m−2n+1w

2m−n−2γ + · · · )

with j, � < 2m − 2n + 1.

Case 3. If n < 2α and n < 2γ then

Pαγ = w(constAj + · · · + constA2m−2n+1w
2m−n−2α + · · · )

· (constA
 + · · · + constA2m−2n+1w
2m−n−2γ + · · · ).

Let μ(α, γ) be the lowest w-power appearing in PαγDβ
t φ(0). Recalling α +

β + γ = m we obtain the following results:

Case 1.

μ(α, γ) = 1 + 2m − 2γ − 2α − 2β − 1
= 2 + 2m − 2(α + β + γ + 1)
= 2 + 2m − 2(m + 1) = 0.

Case 2. μ(α, γ) is either zero as in Case 1, or

μ(α, γ) = 1 + 2m − n − 2γ − 2β − 1
= 2 + 2m − n − 2(γ + β + 1)
= 2 + 2m − n − 2(m + 1 − α) = 2α − n > 0.

Case 3. As in Case 2 we have μ(α, γ) > 0.

This proves Iαγβ = 0 for 1 ≤ α, γ ≤ m
2 and 1 ≤ β = m − α − γ, which yields

Lemma 2. �

Thus we have arrived at (27), and a straight-forward computation leads
to (8) and (9); so the proof of Theorem 1 is complete. �
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6.3 Boundary Branch Points

In this section we first show that Dirichlet’s integral possesses intrinsic second
and third derivatives at a minimal surface X̂ on the tangent space TXM of
M := H2(∂B, Rn) of X = X̂|∂B on the space J(X̂) of forced Jacobi fields for
X̂. These results will also be used in Vol. 3, Chapters 5 and 6. In particular
it will be seen that J(X̂) is a subspace of the kernel of the Hessian D2E(X)
of Dirichlet’s integral E(X) defined in (1) below, and an interesting formula
(see (16)) for the second variation of Dirichlet’s integral is derived.

Secondly we prove that, for a sufficiently smooth contour Γ in R
3, not only

the order, but also the index of a boundary branch point of a minimal surface
X ∈ C(Γ ) can be estimated in terms of the total curvature of Γ if curvature
and torsion of Γ are nowhere zero.

Finally we prove Wienholtz’s theorem, which states a condition under
which a minimizer for Plateau’s problem cannot possess a boundary branch
point. In particular we show: If n is the order and m the index of a boundary
branch point of X̂ such that 2m−2 < 3n (equivalently 2m+2 ≤ 3(n+1)) then
X̂ cannot be a minimizer of Dirichlet’s integral or of area. The key idea of
the proof will be to recompute the third derivative of Dirichlet’s integral, D,
in an intrinsic way on J(X̂), thereby showing that the formula for E(3)(0) =
d3

dt3 D(Ẑ(t))
∣∣
t=0

derived in Section 6.1 is valid in the presence of boundary
branch points as well.

Towards these goals, we first show that if the boundary contour Γ ⊂ R
n

is of class Dr+7, r ≥ 3, the space H
5/2
Γ (B, Rn) of harmonic surfaces from B

into R
n, mapping S1 = ∂B to Γ , is a Cr manifold, in fact, a Cr-submanifold

of the space H5/2(B, Rn) of harmonic mappings from B into R
n. Instead of

the dimension n = 3 we do this for arbitrary dimension n, since this result
is necessary for the index theorem to be derived in Chapter 5 of Vol. 3. Here
it is essential that we operate in the context of a manifold since the third
derivative of any real-valued C3-smooth function is seen to be well defined as
a trilinear form on the kernel of the Hessian of this function at any critical
point. As in Chapters 5 and 6 of Vol. 3 we shall use the symbol D for the
total derivative or the Fréchet derivative. Therefore we need another notation
for Dirichlet’s integral; instead of D we employ the symbol E and consider
E as a function of boundary values X : S1 → R

n (instead of their harmonic
extension X̂), i.e.

(1) E(X) :=
1
2

∫
B

(X̂u · X̂u + X̂v · X̂v) du dv for X ∈ H1/2(S1, Rn).

It is a well-known fact that R
n carries a Cr+6-Riemannian metric g with

respect to which Γ is totally geodesic, i.e. any g-geodesic σ : (−1, 1) → R
n

with σ(0) ∈ Γ and σ′(0) ∈ Tσ(0)Γ remains on Γ . Let (p, v) �→ expp v denote
the exponential map of g; it is of class Cr+4. Via harmonic extension we
identify the space
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M := H2(S1, Γ )

of H2-maps from S1 to Γ with the space H
5/2
Γ (B, Rn). In order to show that

M is a submanifold of H2(S1, Rn) we need to identify the tangent space TXM
for X ∈ H2(S1, Γ ). (In Vol. 3, Chapters 5 and 6, we shall denote M by Nα if
Γ is given by Γ = α(S1).)

Definition 1. We define the tangent space TXM of M at X ∈ H2(S1, Γ ) as

TXM := {Y ∈ H2(S1, Rn) : Y (eiθ) ∈ TX(eiθ)Γ, θ ∈ R}.

Clearly TXM is a Hilbert subspace of H2(S1, Rn). Our goal is to show
that the map

Φ(Y )(s) := expX(s) Y (s), s = eiθ,

is a local Cr-diffeomorphism about the zero 0 ∈ H2(S1, Rn) mapping a neigh-
bourhood of zero in TXM onto a neighbourhood of X in M . Towards this goal
we have:

Theorem 1. If ϕ ∈ Cr+3(Rn, Rn), then Φ : H2(S1, Rn) → H2(S1, Rn) de-
fined by Φ(Y ) := ϕ ◦ Y is of class Cr. Furthermore,

DmΦY (λ1, . . . , λm)(s) = DmϕY (s)(λ1(0), . . . , λm(s)) for 0 ≤ m ≤ r.

The proof of this theorem will be a consequence of the following

Lemma 1. Let Lm(Rn, Rn) be the space of m-linear maps from R
n into R

n,
and suppose that f ∈ C3(Rn, Lm(Rn, Rn)). Then the map F : H2(S1, Rn) →
Lm(H2(S1, Rn), H2(S1, Rn)) defined by

Y �→ F (Y )(λ1, . . . , λm)(s) := f(Y (s))(λ1(s), . . . , λm(s))

is continuous. Moreover, if f ∈ C4 then F ∈ C1, and the derivative of Y �→
F (Y ) is

λ �→ df(Y (s))(λ(s), λ1(s), . . . , λm(s)).

Proof. Recall that H2(S1, Rn) is continuously and compactly embedded into
C1(S1, Rn). Assume for simplicity that

‖λj ‖H2 ≤ 1, ‖Y ‖H2 < 2, ‖Ỹ ‖H2 < 2,

and consider the difference

[F (Y ) − F (Ỹ )](λ1, . . . , λm)(s) = [f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λm(s)).

Then
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d

ds
[F (Y ) − F (Ỹ )](λ1, . . . , λm)(s)

= df(Y (s))(Y ′(s))(λ1(s), . . . , λm(s)) − df(Ỹ (s))(Ỹ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λj−1(s), λ′
j(s), λj+1(s), . . . , λm(s))

= df(Y (s))(Y ′(s) − Ỹ ′(s))(λ1(s), . . . , λm(s))
+ [df(Y (s) − df(Ỹ (s))](Ỹ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λm(s)).

Since f is Lipschitz continuous, we have

sup
s

|f(Y (s)) − f(Ỹ (s))| ≤ const sup
s

|Y (s) − Ỹ (s)|

≤ const ‖Y − Ỹ ‖H1 ,

and therefore∣∣∣∣∣
m∑

j=1

[f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λm(s))

∣∣∣∣∣

≤ const
m∑

j=1

| |Y − Ỹ | |H1 |λ′
j(s)|,

from which it follows that∥∥∥∥∥
m∑

j=1

[f(Y ) − f(Ỹ )](λ1, . . . , λ
′
j , . . . , λm)

∥∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 .

Furthermore, the Lipschitz continuity of df implies

‖df(Y )(Y ′ − Ỹ ′)(λ1, . . . , λm)‖L2 ≤ const ‖Y − Ỹ ‖H2 ,

‖df(Y ) − df(Ỹ )](Ỹ ′)(λ1, . . . , λm)‖L2 ≤ const ‖Y − Ỹ ‖H2 .

Summarizing these estimates we obtain
∥∥∥∥ d

ds
[F (Y ) − F̃ (Y )](λ1, . . . , λm)

∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 .

In the same manner we infer∥∥∥∥ d2

ds2
[F (Y ) − F̃ (Y )](λ1, . . . , λm)

∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 ,

since f, df , and d2f are Lipschitz continuous, using
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d2

ds2
[F (Y ) − F (Ỹ )](λ1, . . . , λm)(s)

= d2f(Y (s))(Y ′(s))(Y ′(s) − Ỹ ′(s))(λ1(s), . . . , λm(s))
+ df(Y (s))(Y ′ ′(s) − Ỹ ′ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

df(Y (s))(Y ′(s) − Ỹ ′(s))(λ1(s), . . . , λ′
j(s), . . . , λm(s))

+ [d2f(Y (s))(Y ′(s)) − d2f(Ỹ (s))(Ỹ ′(s))](Ỹ ′(s))(λ1(s), . . . , λm(s))
+ [df(Y (s)) − df(Ỹ (s))](Ỹ ′ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[df(Y (s)) − df(Ỹ (s))](Y ′(s))(λ1(s), . . . , λ′
j(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λ′ ′
j (s), . . . , λm(s))

+
m∑

j,k=1,j<k

[f(Y (s)) − f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λ

′
k(s), . . . , λm(s))

+
m∑

j=1

[df(Y (s))(Y ′(s)) − df(Ỹ )(Ỹ ′(s))](λ1(s), . . . , λ′
j(s), . . . , λm(s)).

The estimates above prove that F maps H2(S1, Rn) continuously into the
space

Lm(H2(S1, Rn), H2(S1, Rm)).

If f ∈ C4 then df ∈ C3 and d2f ∈ C2, and Taylor’s theorem yields

f(u + h) − f(u) − df(u)h = r(u, h)(h, h),

where

r(u, h)(h, h) :=
∫ 1

0

(1 − t)[d2f(u + th) − d2f(u)](h, h) dt.

Since f is in C4 we obtain

‖r(u, h)(h, h)‖H2 ≤ const ‖h‖2
H2 for ‖h‖H2 ≤ 1.

This shows that the mapping F is differentiable, and its derivative DF (Y ) at
Y ∈ H2(S1, Rn) is given by

(DF (Y )h)(s) = df(Y (s))h(s).

Since df ∈ C3, the first part of the lemma yields DF ∈ C0. �

Proof of Theorem 1. Applying Lemma 1 to f = dmϕ succesively to m =
0, 1, . . . , r − 1, we infer that DΦ, D2Φ, . . . , DrΦ exist and are continuous. �
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Theorem 2. M = H2(S1, Γ ) is a Cr-submanifold of H2(S1, Rn).

Proof. Since H2(S1, Rn) ⊂ C1(S, Rn), the set M is closed in H2(S1, Rn).
Consider the map Y �→ Φ(Y ) defined by

Φ(Y )(s) := expX(s) Y (s) for X ∈ H2(S1, Γ ),

which is of class Cr by virtue of Theorem 1.
Since Φ(0) is the identity map, the inverse function theorem implies that

Φ is a local Cr-diffeomorphism about 0. Moreover, as the Riemannian metric
g is totally geodesic with respect to Γ , we see that Φ maps TXM into M .
Since Φ is also locally invertible, it provides a coordinate chart for M as a
submanifold of H2(S1, Rn). �

Before we can apply the preceding results to Plateau’s problem we need
an abstract functional analytic reasoning which shows that a C3-function
E : M → R on a Cr-smooth submanifold M of a Hilbert space H, r ≥ 3,
possesses intrinsic first, second, and third order derivatives for any critical
point x of E (i.e. DE(x) = 0). To prove this we need a few prerequisites.

By E ∈ C3(M) we mean that E extends to a C3-map on a neighbourhood
of every point x ∈ M . Equivalently we can use coordinate charts as follows.
From the definition of a submanifold it follows that about each point x ∈ M
there is a Cr-diffeomorphism ρ : V → V′ from a neighbourhood V of x in H

onto a neighbourhood V′ of 0 in H with ρ(x) = 0 such that ρ(V ∩ M) is an
open subset of a fixed subspace H0 of H. Then “E ∈ C3(M)” means that
E ◦ ψ is of class C3 for any such chart (ρ, V) where ψ is the inverse of ρ. For
x ∈ M with the image 0 = ρ(x) we define the tangent space TxM of M at x
by

TxM := Dψ(0)[H0] ⊂ H,

i.e. as the image of H0 under the mapping provided by the derivative Dψ(0).
This definition of TxM does not depend on the choice of the chart (ρ, V).

As each h ∈ TxM can be written as h = Dψ(0)h̃ with h̃ ∈ H0, we define

DE(x)h := D(E ◦ ψ)(0)h̃,

which again can be shown to be independent of the choice of the chart.
A point x ∈ M is a critical point of E : M → R if DE(x) = 0. At a critical

point x of E there is a well-defined bilinear form

D2E(x) : TxM × TxM → R

defined by
D2E(x)(h, k) := D2(E ◦ ψ)(0)(h̃, k̃) for

h = Dψ(0)h̃, k = Dψ(0)k̃; h̃, k̃ ∈ H0.

This is the Hessian (bilinear form), which again does not depend on the choice
of the chart (ρ, V), as we will shortly show. Surprisingly, there is also a third
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intrinsic derivative D3E(x), but this is intrinsically defined only on the kernel
Kx of D2E(x), i.e. on

Kx := {h ∈ TxM : D2E(x)(h, k) = 0 for all k ∈ TxM }.

Let us state this formally as

Theorem 3. At a critical point x of E ∈ C3(M) there is an intrinsically
defined1 second derivative D2E(x) : TxM × TxM → R, and a third derivative
D3E(x) : Kx × Kx × Kx → R defined as a trilinear map on the kernel Kx of
D2E(x).

To prove this we have to show that, with respect to any transition map
ϕ : U → U on U ⊂ M fixing the critical point x ∈ U of E, the second and
third derivative of E ◦ ϕ depend only on the first derivative of ϕ and are
independent of D2ϕ(x) and D3ϕ(x). Since we may choose the critical point x
as the origin 0, the theorem is a consequence of the following

Lemma 2. Let U be an open subset of a Hilbert space and suppose that 0 ∈ U
is a critical point of E ∈ C3(U). Assume also that K is the kernel of the
Hessian of E at 0 and ϕ : U → U is a C3-diffeomorphism of U onto itself
with ϕ(0) = 0. Then

D2(E ◦ ϕ)(0)(k1, k2) = D2E(0)(Dϕ(0)k1, Dϕ(0)k2),

and furthermore, if Dϕ(0)kj ∈ K, j = 1, 2, 3, then

D3(E ◦ ϕ)(0)(k1, k2, k3) = D3E(0)(Dϕ(0)k1, Dϕ(0)k2, Dϕ(0)k3).

Proof. Repeatedly using the chain rule we see that

(i) D(E ◦ ϕ)(x)(h) = DE(ϕ(x))Dϕ(x)h,

(ii) D2(E ◦ ϕ)(x)(h, k) = D2E(ϕ(x))(Dϕ(x)h, Dϕ(x)k)

+DE(ϕ(x))D2ϕ(x)(h, k).

(iii) D3(E ◦ ϕ)(x)(h, k, �) = D3E(ϕ(x))(Dϕ(x)h, Dϕ(x)k, Dϕ(x)�)

+D2E(ϕ(x))(D2ϕ(x)(h, �), Dϕ(x)k)

+D2E(ϕ(x))(Dϕ(x)h, D2ϕ(x)(k, �))

+D2E(ϕ(x))(D2ϕ(x)(h, k), Dϕ(x)�)

+DE(ϕ(x))D3ϕ(x)(h, k, �).

1 An intrinsic derivative D∗f(x) of a map f : M → R on a subspace σ of the tangent space

TxM is an r-linear form σ+ → R of σr = σ × · · · × σ which is defined independently of the

choice of any coordinate chart.
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Set k1 := h, k2 := k, k3 := � and note that DE(0) = 0. Then the first
assertion follows from (ii) and ϕ(0) = 0. The second claim is a consequence
of (iii) noting that ϕ(0) = 0, DE(0) = 0, and by assumption Dϕ(0)kj ∈ K,
1 ≤ j ≤ 3. �

Now we shall apply the preceding result to Dirichlet’s integral E :
H2(S1, Rn) → R defined by (1). Recall the assumption Γ ∈ Cr+7, r ≥ 3. By
Theorem 2 it follows that M := H2(S1, Γ ) is a Cr-submanifold of H2(S1, Rn),
and since E : H2(S1, Rn) → R is of class C∞, it follows immediately that the
restriction E|M is of class Cr. Let us simply write E instead of E|M , i.e. we
view E as a function of class Cr(M).

We wish now to calculate the intrinsic third derivative in the direction
of certain specific elements of the kernel of D2E(X) : TXM × TXM → R,
namely the forced Jacobi fields, in the case that X ∈ H2(S1, Γ ) is a minimal
surface. By the results of Chapter 2 we know that X̂ ∈ Cr+6,α(B, Rn) and
therefore also X ∈ Cr+6,α(S1, Rn) for all α ∈ (0, 1).

Besides assuming that Γ ∈ Cr+7 we make another standing assumption
on Γ , namely that the total curvature

∫
Γ

κ ds of Γ satisfies

(2)
∫

Γ

κ ds ≤ 1
3
πr,

which implies r ≥ 6. Then the generalized Gauss–Bonnet formula (19) of
Section 2.11 implies

2π
∑

wj ∈B

ν(wj) + π
∑

ζk ∈∂B

ν(ζk) + 2π ≤ 1
3
πr,

where ν(wj) are the orders of the interior branch points wj of a (branched)
minimal surface X̂ ∈ C(Γ ), and ν(ζk) are the orders of its boundary branch
points, k = 1, . . . , q. Suppose that q ≥ 1. Then

(3) ν(ζk) ≤ r/3 − 2.

Recall the definition of a forced Jacobi field of a minimal surface X̂ : B → R
3

which we now generalize to a minimal surface X̂ : B → R
n with n ≥ 3 which

has the interior branch points w1, . . . , wp and the boundary branch points
ζ1, . . . , ζq. The generator τ of a forced Jacobi field Ŷ for X̂ is a meromorphic
function on B with poles possibly at w = 0 and at the branch points of X̂
whose orders are at most ν(wj) at wj �= 0, ν(0) + 1 at w = 0, ν(ζj) at ζj , and
which is real on ∂B. Then the forced Jacobi field Ŷ of X̂ with the generator
τ is a mapping Ŷ : B → R

n of the form

Ŷ = 2β Re(iwX̂wτ) with β ∈ R,

and
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Y = βXθτ |S1 : S1 → R
n

are its boundary values. From the regularity of X̂ and (3) we infer as in 6.1
that certainly Y ∈ H2(S1, Rn), Ŷw ∈ C0(B, Rn), and clearly Y ∈ TXM . The
space of forced Jacobi fields of X̂ is denoted by J(X̂).

We shall show that the forced Jacobi fields are in the kernel of the Hessian
of E : M → R, and we will compute the second and third derivative of E
in these directions. In Chapter 5 of Vol. 3 we shall describe how the forced
Jacobi fields were discovered.

Computation of D2E and D3E.
Let Ω(p) : R

n → TpΓ be the Cr+6-smooth orthogonal projection of R
n onto

the tangent space TpΓ for p ∈ Γ . We extend Ω(p) to a Cr+6-smooth mapping
p �→ Ω(p) from R

n into L(Rn, Rn). We then can write the first derivative of
E at X ∈ M = H2(S1, Γ ) as

(4) DE(X) =
∫

S1
〈Ω(X)X̂r, h〉 dθ, X̂r = radial derivative of X̂.

A slight generalization of Theorem 1 yields that X → Ω(X) belongs to
Cr(M, H2(S1, L(Rn, Rn))), M = H2(S1, Γ ), if we take Theorem 2 into ac-
count. Clearly, X is a critical point of E if and only if

(5) Ω(X)X̂r = 0.

X̂ will be a solution to Plateau’s problem if X is also a monotonic map from
S1 onto Γ .

The derivative of Ω(X)X̂r is given by

(6) h �→ Ω(X)ĥr + DΩ(X)h[X̂r],

and so the Hessian of E is

(7) D2E(X)(h, k) =
∫

S1
〈Ω(X)ĥr + DΩ(X)h[X̂r], k〉 dθ.

It follows that the kernel of (6) is just the kernel of the Hessian D2E(X) of
E at X.

Claim: The forced Jacobi fields of X lie in the kernel of D2E(X). To see this
we first note that

(8) |Xθ |2Ω(X)m = 〈m, Xθ 〉Xθ for m ∈ R
n.

Differentiating this in direction of a tangent vector h ∈ TXM , M = H2(S1, Γ ),
we obtain

2〈Xθ, hθ 〉Ω(X)[m] + |Xθ |2DΩ(X)(h)[m](9)
= 〈m, hθ 〉Xθ + 〈m, Xθ 〉hθ.
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Thus the kernel of (6) is the kernel of

h �→ |Xθ | −2{〈X̂r, hθ 〉Xθ + 〈X̂r, Xθ 〉hθ − 2〈Xθ, hθ 〉Ω(X)X̂r } + Ω(X)ĥr.

From (5) we infer

〈X̂r, Xθ 〉 = 0 and Ω(X)X̂r = 0,

and (8) yields
Ω(X)ĥr = |Xθ | −2〈ĥr, Xθ 〉Xθ.

Thus h is in the kernel of (6) if and only if

|Xθ | −2{ 〈X̂r, hθ 〉Xθ + 〈Xθ, ĥr 〉Xθ } = 0

that is, if and only if

(10) 〈X̂r, hθ 〉 + 〈Xθ, ĥr 〉 = 0,

since the zeros of Xθ(θ) are isolated because of the asymptotic expansion of
X̂w at branch points w0 ∈ B.

On S1 = ∂B we have

iwX̂w =
1
2
(Xθ + iX̂r), iwĥw =

1
2
(hθ + iĥr),

implying that

(11) 〈X̂r, hθ 〉 + 〈Xθ, ĥr 〉 = −4 Im{w2〈X̂w, ĥw 〉 }.

If ĥ is a forced Jacobi field we have

h = βXθτ |S1 and ĥ = 2 Re(βiwX̂wτ)

with β ∈ R and τ the generator of ĥ. Since wX̂wτ is holomorphic on B, it
follows

ĥw = β[iwX̂wτ ]w.

Hence, if w ∈ B is not a branch point of X̂, we obtain

ĥw(w) = β[iX̂w(w)τ + iwX̂ww(w)τ(w) + iwX̂w(w)τw(w)].

On the other hand, a minimal surface X̂ satisfies

〈X̂w, X̂w 〉 = 0

and therefore also
〈X̂w(w), ĥw(w)〉 = 0

if w ∈ B is not a branch point of X̂, and by continuity of ĥw on B it follows

(12) 〈X̂w, ĥw 〉 = 0 if ĥ ∈ J(X̂).

From (10), (11) and (12) we infer that for a forced Jacobi field ĥ its boundary
values h lie in the kernel of (6) and therefore in the kernel KX of the Hessian
D2E(X). This proves the claim, and we have established
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Proposition 1. If X̂ is a minimal surface with X ∈ M = H2(S1, Γ ) then
the boundary values h of any ĥ ∈ J(X̂) lie in the kernel KX of the Hessian
D2E(X) of E at X, that is, h ∈ TXM and

D2E(X)(h, k) = 0 for all k ∈ TXM.

Remark 1. We would like to point out that D2E(X) has been defined for
branched minimal surfaces without making normal variations of X̂.

Before we compute D3E(X) we give a geometric interpretation of

D2E(X)(h, h) = δ2E(X, h),

i.e. of the second variation of E at X in direction of h ∈ TXM . An integration
by parts yields

∫
B

∇ĥ · ∇ĥ du dv =
∫

S1
〈ĥr, h〉 dθ −

∫
B

〈Δĥ, ĥ〉 du dv(13)

=
∫

S1
〈ĥr, h〉 dθ

since Δĥ = 0. Away from branch points on S1 we set

h = aXθ and b = 〈ĥr, Xθ 〉.

By (8) we have
Ω(X)ĥr = |Xθ | −2〈ĥr, Xθ 〉Xθ,

and so

〈h, Ω(X)ĥr 〉 = 〈aXθ, bXθ 〉|Xθ | −2 = ab = 〈ĥr, aXθ 〉 = 〈ĥr, h〉

and by continuity it follows

〈ĥr, h〉 = 〈h, Ω(X)ĥr 〉 on S1.

On account of (7) and (13) it follows that

(14) D2E(X)(h, h) =
∫

B

| ∇ĥ|2 du dv +
∫

S1
〈h, DΩ(X)h[X̂r]〉 dθ.

In order to simplify the boundary term we return to (9) where we insert
m = X̂r. Since 〈X̂r, Xθ 〉 = 0 we have Ω(X)X̂r = 0 on S1, and so two terms
in (9) vanish. We are left with

DΩ(X)h[X̂r] = |Xθ | −2〈X̂r, hθ 〉Xθ.

Since h = aXθ (away from branch points), we have
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hθ = aXθθ + aθXθ

whence
〈X̂r, hθ 〉 = a〈X̂r, Xθθ 〉.

This implies

〈h, DΩ(X)h[X̂r]〉
= |Xθ | −2〈aXθ, a〈X̂r, Xθθ 〉Xθ 〉 = a2〈X̂r, Xθθ 〉
= |h|2|Xθ | −2〈X̂r, Xθθ 〉 = |h|2kg,

where

(15) kg := |Xθ | −2〈X̂r, Xθθ 〉

is the signed geodesic curvature of Γ in the minimal surface X̂, i.e. the interior
product of the curvature vector of Γ with the unit vector |X̂r | −1X̂r, since
|Xθ | = |X̂r | on S1.

Thus we infer from (14) the following result which was independently
obtained by R. Böhme and A. Tromba:

Proposition 2. If X̂ is a minimal surface with X ∈ M = H2(S1, Γ ) then,
for any h ∈ TXM , we obtain

(16) D2E(X)(h, h) =
∫

B

| ∇ĥ|2 du dv +
∫

S1
kg |h|2 dθ,

where kg is the signed geodesic curvature (15) of the boundary contour Γ in
the minimal surface X̂.

Now we proceed to compute the intrinsic third derivative D3E(X). Let
us return to formula (9) which will be differentiated in direction of a vector
k ∈ TXM . This yields

2〈hθ, kθ 〉Ω(X)m + 2〈Xθ, hθ 〉DΩ(X)[k]m
+ 2〈Xθ, kθ 〉DΩ(X)[h]m + |Xθ |2D2Ω(X)(h, k)m

= 〈m, hθ 〉kθ + 〈m, kθ 〉hθ.

Choosing m := X̂r we see that

2〈Xθ, hθ 〉DΩ(X)(k)[X̂r] + 2〈Xθ, kθ 〉DΩ(X)(h)[X̂r]
+ |Xθ |2D2Ω(X)(h, k)[X̂r] = 〈X̂r, hθ 〉kθ + 〈X̂r, kθ 〉hθ.

By (7) we may write for h, k in the kernel of D2E(X) (and therefore in the
kernel of (6))

(17) DΩ(X)(h)[X̂r] = −Ω(X)ĥr, DΩ(X)(k)[X̂r] = −Ω(X)k̂r,
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then obtaining

−2〈Xθ, hθ 〉Ω(X)k̂r − 2〈Xθ, kθ 〉Ω(X)ĥr(18)
+ |Xθ |2D2Ω(X)(h, k)[X̂r] = 〈X̂r, hθ 〉kθ + 〈X̂r, kθ 〉hθ.

Setting in (9) m = k̂r we get

2〈Xθ, hθ 〉Ω(X)k̂r + |Xθ |2DΩ(X)[h]k̂r(19)

= 〈k̂r, hθ 〉Xθ + 〈k̂r, Xθ 〉hθ.

Commuting h and k it follows also

2〈Xθ, kθ 〉Ω(X)ĥr + |Xθ |2DΩ(X)[k]ĥr(20)

= 〈ĥr, kθ 〉Xθ + 〈ĥr, Xθ 〉kθ.

Adding (19) and (20) to (18) we see that

|Xθ |2D2Ω(X)(h, k)X̂r + |Xθ |2DΩ(X)[h]k̂r + |Xθ |2DΩ(X)[k]ĥr(21)

= 〈X̂r, hθ 〉kθ + 〈X̂r, kθ 〉hθ + 〈ĥr, kθ 〉Xθ + 〈ĥr, Xθ 〉kθ

+ 〈k̂r, hθ 〉Xθ + 〈k̂r, Xθ 〉hθ.

By (10) we have

〈Xθ, ĥr 〉 = −〈X̂r, hθ 〉 and 〈Xθ, k̂r 〉 = −〈X̂r, kθ 〉.

Therefore (21) reduces to

|Xθ |2{D2Ω(X)(h, k)X̂r + DΩ(X)[h]k̂r + DΩ(X)[k]ĥr }(22)

= {〈ĥr, kθ 〉 + 〈k̂r, hθ 〉}Xθ.

Suppose now that h, k, � lie in the space J(X̂) of forced Jacobi fields. By (7)
we have

(22′) D2E(X)(h, �) =
∫

S1
〈DΩ(X)h[X̂r] + Ω(X)ĥr, �〉 dθ.

Differentiating this in direction of k it follows

D3E(X)(h, �, k)(23)

=
∫

S1
〈D2Ω(X)(h, k)[X̂r] + DΩ[h]k̂r + DΩ(X)[k]ĥr, �〉 dθ,

which by (22) yields

D3E(X)(h, �, k)(24)

=
∫

S1
{ 〈ĥr, kθ 〉 + 〈k̂r, hθ 〉} |Xθ | −2〈Xθ, �〉 dθ.
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Actually there are two more terms on the right-hand side of (24) which come
from the derivatives �′ and h′ of � and h. We have to shows that these terms
are zero if � and h are forced Jacobi fields. The additional �′-term is

∫
S1

〈DΩ(X)h[X̂r] + Ω(X)ĥr, �
′ 〉 dθ.

It vanishes since
DΩ(X)h[X̂r] + Ω(X)ĥr = 0,

as h is a forced Jacobi field.
The second additional term becomes

∫
S1

〈h′, (λ̂Xθ)r − (λX̂r)θ 〉 dθ

if we write � = λXθ = Re{λiwX̂w } and integrate by parts. But � is holomor-
phic in B. and so the Cauchy–Riemann equations yield

− ∂

∂θ
(λ̂Xθ) +

∂

∂r
(λ̂Xθ) = 0.

This equation extends to the boundary S1 = ∂B, and so the second additional
term vanishes too.

The two expressions (23) and (24) yield the intrinsic third derivative of E
at X. We synonymously write

∂E

∂h
(X) = DE(X)h,

∂2E

∂h∂k
(X) = D2E(X)(h, k),(25)

∂3E(X)
∂h∂�∂k

= D3E(X)(h, �, k).

Suppose that h, k, � ∈ J(X̂) have the generators τ, ρ, λ; we shall write τ, ρ, λ
also for the boundary values τ |S1 , ρ|S1 , λ|S1 :

h(θ) = τ(θ)Xθ(θ), so ĥ(w) = 2Re(iwτ(w)X̂w(w)),

k(θ) = ρ(θ)Xθ(θ), k̂(w) = 2Re(iwρ(w)X̂w(w)),

�(θ) = λ(θ)Xθ(θ), �̂(w) = 2Re(iwλ(w)X̂w(w)).

(26)

Then (24) becomes

(27) D3E(X)(h, �, k) =
∫

S1
{ 〈ĥr, kθ 〉 + 〈k̂r, hθ 〉 }λ(θ) dθ.

On S1 we have dθ = dw
iw and
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2wĥw = ĥr − ihθ, 2wk̂w = k̂r − ikθ

whence
〈ĥr, kθ 〉 + 〈k̂r, hθ 〉 = −4 Im(w2ĥwk̂w 〉.

Furthermore,

ĥw = (iwX̂wτ)w = i(wτX̂ww + X̂wτ + wX̂wτw),

k̂w = (iwX̂wρ)w = i(wρX̂ww + X̂wρ + wX̂wρw).

Since X̂w · X̂w = 0 and X̂w · X̂ww = 0 it follows that

w2ĥwk̂w = −w4τρX̂ww · X̂ww

and consequently

〈ĥr, kθ 〉 + 〈k̂r, hθ 〉 = 4 Im(w4τρX̂ww · X̂ww).

This implies

D3E(X)(h, �, k) = 4
∫

S1
Im(w4τρX̂ww · X̂ww)λ dθ

= 4 Im
∫

S1
w4τρλX̂ww · X̂ww dθ

= 4 Im
∫

S1
w4τρλX̂ww · X̂ww

dw

iw
,

and we arrive at

D3E(X)(h, �, k) = −4 Re
∫

S1
w3τρλX̂ww · X̂ww dw(28)

= 4
∫

S1
Im(w4τρλX̂ww · X̂ww) dθ.

It follows from (23) that the right-hand side of (28) is the integral of a contin-
uous function. If we wish to apply the residue theorem to evaluate the integral
in (28) we have to get a better grip to the integrand. To this end we impose
an additional standing assumption: n = 3, i.e. we consider boundary contours
only in R

3.
First we wish to understand what the generators τ of forced Jacobi fields

for a minimal surface X̂ with a boundary branch point w0 ∈ S1 are. By means
of a rotation we can move w0 to the point w = 1. Thus we make the following
further standing assumption:

X̂ ∈ C(Γ ) is a minimal surface in the unit disk B with the boundary branch
point w = 1 of order n, and the boundary contour Γ ∈ C2 has a total cur-
vature κ(Γ ) :=

∫
Γ

κ(s) ds satisfying 3κ(Γ ) ≤ τr. It is also assumed that
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Γ ∈ Cr+7, r ≥ 2, which implies X̂ ∈ Cr+6,β(B, R3), 0 < β < 1, and
n ≤ r/3 − 2.

It is easy to verify that

(29) τ(w) := β

(
i
w + 1
w − 1

)


, β ∈ R,

is a meromorphic function on B with a pole of order � at w = 1 such that
τ(w) ∈ R for w ∈ S1 \ {1}. If � ≤ n then X̂w(w)τ(w) is holomorphic in B and
at least continuous on B since we have the asymptotic expansion

X̂w(w) = a(w − 1)n + o(|w − 1|n) as w → 1, w ∈ B \ {1}(30)
with a ∈ C

3, a �= 0, and a · a = 0.

Thus τ generates a forced Jacobi field for X̂. Consider the conformal mapping
ϕ : B \ {−1} → H, defined by

(31) w �→ z = ϕ(w) := −i
w − 1
w + 1

, w ∈ B \ { −1},

which maps B = {w ∈ C : |w| < 1} onto the upper halfplane

H := {z ∈ C : Im z > 0}

and takes S1 \ {−1} onto the real line R such that ϕ(1) = 0, ϕ(i) = 1, ϕ(−1) =
∞. The inverse ψ := ϕ−1 is given by

(32) z �→ w = ψ(z) :=
1 + iz

1 − iz
.

We write z = x + iy with x = Re z and y = Im z, while w = u + iv, u =
Re w, v = Imw. From (31) we infer

1
z

= i
w + 1
w − 1

and so

(33) σ := τ ◦ ψ =
β

z

.

Transforming the minimal surface X̂(w) to the new parameter z, we obtain

(34) Ŷ (z) := X̂(ψ(z))

which has the branch point z = 0 on R = ∂H with the asymptotic expansion

Ŷz(z) = bzn + o(|z|n) as z → 0, z ∈ H \ {0}
b ∈ C

3 \ {0}, b · b = 0.
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Choosing a suitable coordinate system in R
3 we may assume that Ŷz(z) can

be written in the normal form

(35) Ŷz(z) = Ã1z
n + o(zn)

with Ã1 = (a1+ib1); a1, b1 ∈ R
3, |a1|2 = |b1|2 �= 0; a1 ·b1 = 0, a1 = (n+1)αe1,

e1 = (1, 0, 0), α > 0, where a1, b1 span the tangent space to X̂ at X(1). Let
us recall that the order of any boundary branch point is even; thus we can set

(36) n = 2ν with ν ∈ N.

Now we wish to write Ŷz in the more specific form

(37) Ŷz(z) = (A1z
n + · · · + Am−n+1z

m + O(|z|m+1), Rmzm + O(|z|m+1))

with

(38) Rm �= 0.

By Taylor’s theorem and (35) we can achieve (37) for any m ∈ N with m > n
and such that Ŷ ∈ Cm+2(H, R3).

However, it is not at all a priori obvious that one can achieve also (38).
This fact is ensured by the following

Proposition 3. Suppose that Ŷ ∈ C3n+6(H, R3) and that both the torsion τ
and the curvature κ of Γ are nonzero. Then there is an m ∈ N with n + 1 <
m + 1 ≤ 3(n + 1) such that

(39) Ŷ 3
z (z) = Rmzm + O(|z|m+1) for |z| � 1 and Rm �= 0.

Proof. Otherwise we have

(40) Ŷ 3
z (z) = O(|z|3n+3).

Let γ(s) = (γ1(s), γ2(s), γ3(s)) be the local representation of Γ with respect
to its arc-length parameter s such that γ(0) = Ŷ (0) and γ′(0) = e1. By (35)
and (36) we have

Ŷx(x, 0) = (n + 1)αe1x
n + O(xn+1), n = 2ν,

and so s and x are related by s = σ(x) with

σ′(x) = |Yx(x)| = [(n + 1)αxn + O(xn+1)],

whence

(41) σ(x) = αxn+1 + O(xn+2) as x → 0.

Then Y (x) = γ(σ(x)) for |x| � 1, and therefore the third component Y 3 of
Y is given by
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Y 3(x) = γ3(σ(x)) = γ3(αxn+1 + O(xn+2)) for x → 0.

Because of (40) we have Y 3
x (x) = O(x3n+3) as x → 0, which implies

(42) Y 3(x) = O(x3n+4) as x → 0.

On the other hand

γ(s) = γ′(0)s + O(s2) as s → 0.

Consequently

Y 3(x) = γ′
3(0)αxn+1 + O(xn+2) as x → 0.

On account of (42) and α > 0 it follows γ′
3(0) = 0. Thus we can write

γ3(s) =
1
2
γ′ ′
3 (0)s2 + O(s3) as s → 0,

which implies

Y 3(x) =
1
2
γ′ ′
3 (0)α2x2n+2 + O(x2n+3) as x → 0.

By (42) and α > 0 we obtain γ′ ′
3 (0) = 0, and we have

γ3(s) =
1
6
γ′ ′ ′
3 (0)s3 + O(s4) as s → 0.

Hence,

Y 3(x) =
1
6
γ′ ′ ′
3 (0)α3x3n+3 + O(x3n+4) as x → 0,

and then γ′ ′ ′
3 (0) = 0 on account of (42) and α > 0. Thus we have found

γ′
3(0) = 0, γ′ ′

3 (0) = 0, γ′ ′ ′
3 (0) = 0,

and so the three vectors γ′(0), γ′ ′(0), γ′ ′ ′(0) are linearly dependent. This will
contradict our assumption κ(s) �= 0 and τ(s) �= 0. To see this we introduce
the Frenet triple T (s), N(s), B(s) of the curve Γ satisfying T = γ′, T ′ =
γ′ ′, T ′ ′ = γ′ ′ ′, and

T ′ = κN

N ′ = −κT +τB

B′ = −τN .

Then T 3(0) = 0, T ′
3(0) = 0, T ′ ′

3(0) = 0, and from T ′ = κN and κ �= 0 it
follows that N3(0) = 0. Since

N ′ =
(

1
κ

)′
T ′ +

1
κ

T ′ ′

we obtain N ′
3(0) = 0 whence τ (0)B3(0) = 0. Because of τ �= 0 it follows that

B3(0) = 0, and so T (0), N(0), B(0) are linearly dependent. This is a contra-
diction since (T , N , B) is an orthonormal frame, hence the assumption (40)
is impossible. �
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Remark 2. Note that n ≤ r/3 − 2 implies 3n + 6 ≤ r < r + 7. Thus the
assumption Ŷ ∈ C3n+6(H, R3) is certainly satisfied if we assume 3κ(Γ ) ≤ πr
and Γ ∈ Cr+7. Thus we have a lower bound on r and upper bounds on n
and m. We call the number m in (39) with n < m < 3n + 3 the index of the
boundary branch point z = 0 of Ŷ , or of the boundary branch point w = 1
of X̂.

Assumption. In what follows we assume that the assumptions and therefore
also the conclusions of Proposition 3 are satisfied.

Proposition 4. If m + 1 �≡ 0 mod(n + 1) (i.e. if z = 0 is not an exceptional
branch point of Ŷ ) then the coefficient Rm in (39) satisfies

(43) Re Rm = 0,

i.e. Rm is purely imaginary, and therefore

(44) R2
m < 0

since Rm �= 0. If we write (39) in the form

(45) Y 3
z (z) = Rmzm + Rm+1z

m+1 + Rm+2z
m+2 + o(|z|m+2) for |z| � 1

and if 2m − 2 < 3n, then we in addition obtain that

(46) Re Rm+1 = 0 and, if n > 2, also Re Rm+2 = 0.

Finally, independent of any assumption on m, we have

(47) Aj = μjA1, j = 1, . . . , min{n + 1, 2m − 2n}, with μj ∈ R

for the coefficients Aj in the expansion (37).

Remark 3. The relations (47) are in some sense a strengthening of the equa-
tions

Aj = λjA1, j = 1, . . . , 2m − 2n, with λj ∈ C

which hold at an interior branch point w = 0 of a minimal surface X̂ in normal
form.

Proof of Proposition 4. (i) From (45) we infer

Y 3(x) = Re
(

Rm

m + 1
xm+1 +

Rm+1

m + 2
xm+2 +

Rm+2

m + 3
xm+3 + o(xm+3)

)
(48)

for x → 0.

On the other hand,

Y 3(x) = γ3(αxn+1 + o(xn+1))
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and γ(0) = 0, γ′(0) = e3 whence also γ3(0) = γ′
3(0) = 0. As pointed out before

it is then impossible that both γ′ ′
3 (0) = 0 and γ′ ′ ′

3 (0) = 0 because this would
imply that T (0), N(0), B(0) are linearly dependent. Thus we obtain

γ3(s) =
1
k!

γ(k)(0)sk + O(sk+1) as s → 0, γ(k)(0) �= 0,

for k = 2 or k = 3. Therefore

(49) Y 3(x) =
1
k!

γ
(k)
3 (0)αkxk(n+1) + o(xk(n+1)) as x → 0.

Comparing (48) and (49) it follows that ReRm �= 0 implies m + 1 = k(n + 1)
for k = 2 or k = 3, which is excluded by assumption. Thus ReRm = 0, and
we have

Y 3(x) = Re
(

Rm+1

m + 2
xm+2 +

Rm+2

m + 3
xm+3 + o(xm+3)

)
(50)

=
1
k!

γk(0)αkxk(n+1) + o(xk(n+1)) as x → 0.

Suppose now that 2m − 2 < 3n, which is equivalent to

(51) 2m ≤ 3n

since n is even, and so

m + 2 < m + 3 ≤ 3
2
n + 3 < 3(n + 1).

Thus, for k = 3, equation (50) can only hold if

Re Rm+1 = 0 and Re Rm+2 = 0.

Furthermore, (51) yields also

m + 2 < m + 3 ≤ 3
2
n + 3 = (2n + 2) +

(
1 − n

2

) {
= 2n + 2
< 2n + 2 and n = 2

n > 2.

Hence it follows in this case that always ReRm+1 = 0 while Re Rm+2 = 0
holds for n > 2.

(ii) From Yx(x) = 2 Re Ŷz(x, 0), (50) and (37) it follows that

Yx(x) = 2 Re(A1x
n + · · · + An+1x

2n + o(x2n), o(x2n))

whence

Y (x) = 2 Re
(

A1

n + 1
xn+1 + · · · +

An+1

2n + 1
x2n+1 + o(x2n+1), o(x2n+1)

)
.
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Furthermore,
γ(s) = e1s + O(s2) as s → 0

and
σ(x) = b1x

n+1 + · · · + bn+1x
2n+1 + o(x2n+1) as x → 0

with b1, . . . , bn+1 ∈ R, αe1 = b1e1 = 2
n+1 Re A1. Then

Y (x) = γ(σ(x)) = (b1x
n+1 + · · · + bn+1x

2n+1)e1 + O(x2n+2).

Comparing the coefficients we get

2 Re Aj = (n + j)bje1 with α = b1 > 0 for 1 ≤ j ≤ n + 1.

Then Re Aj = (n+j)bj

(n+1)α Re A1, and so

Re Aj = μj Re A1 for j = 2, . . . , n + 1

with
μj :=

n + j

n + 1
bj

α
, 2 ≤ j ≤ n + 1.

Set Aj := aj + ibj ; aj := Re Aj , bj := ImAj ∈ R
n. We know from 6.1 that

Aj = λjA1 for j = 1, . . . , 2m − 2n with λj ∈ C hence

aj = (Re λj)a1 − (Im λj)b1 for 2 ≤ j ≤ 2m − 2n

and
aj = μja1 for 2 ≤ j ≤ n + 1.

From |Ŷx| = |Ŷy | it follows that |b1| = |a1| = n+1
2 α > 0, and Ŷx · Ŷy = 0 yields

a1 · b1 = 0; thus we obtain Imλj = 0 for j = 2, . . . , n + 1 whence λj = μj ∈ R

and Aj = μjA1 for 1 ≤ j ≤ min{n + 1, 2m − 2n}. �

Let us now return to formula (28) for D3E(X)(h, k, �) in the direction
of forced Jacobi fields (with the boundary values) h, k, �; note that (28) is
symmetric in h, k, �. We already know that (28) is the integral of a continuous
function; but we need to understand (28) at a level where we can apply the
residue theorem. To this end we consider the conformal mapping (31) defined
by

w �→ z = ϕ(w) := −i
w − 1
w + 1

, w ∈ B \ {−1},

which has the derivative

(52) ϕ′(w) =
−2i

(w + 1)2
.

Using the inverse

z �→ w = ψ(z) :=
1 + iz

1 − iz
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we obtain

(53) ϕ′(ψ(z)) =
−i

2
(1 − iz)2,

or sloppily
dz

dw
= − i

2
(1 − iz)2.

From (34) we get X̂(w) = Ŷ (ϕ(w)), whence

X̂ww = Ŷzz(ϕ)(ϕ′)2 + Ŷz(ϕ)ϕ′ ′.

From Ŷz · Ŷz = 0 it follows Ŷz · Ŷzz = 0, and then

(54) X̂ww · X̂ww = Ŷzz(ϕ) · Ŷzz(ϕ)(ϕ′)4,

which we sloppily write

X̂ww · X̂ww = Ŷzz · Ŷzz

(
dz

dw

)4

.

Lemma 3. Assuming 2m − 2 < 3n (i.e. 2m ≤ 3n) we obtain the Taylor
expansion

(55) (Ŷzz · Ŷzz)(z) =
s∑

j=0

Qjz
2m−2+j + R(z)

with s := (3n − 1) − (2m − 2) = (3n − 2m) + 1 ≥ 1, R(z) = O(z3n), where
Q0 := (m − n)2R2

m < 0 and Im Qj = 0 for 0 ≤ j ≤ s.

Proof. From 2m − 2 < 3n we infer 2m ≤ 3n since n is even. Thus s ≥ 1 and
2m − 2n + 1 ≤ n + 1. Consider the Taylor expansion

Ŷz(z) = (A1z
n + A2z

n+1 + · · · , Rmzm + Rm+1z
m+1 + · · · ),

where “+ · · · ” indicates further z-powers plus a remainder term. As for interior
branch points we have

(56) A1 · A2m−2n+1 = −R2
m/2

and

(57) A2 · A2m−2n+1 + A1 · A2m−2n+2 = −RmRm+1.

By (44) we have R2
m < 0 whence A1 · A2m−2n+1 ∈ R. Since 2 ≤ 2m − 2n ≤ n

it follows A2 = μ2A1 with μ2 ∈ R on account of (47). Then (56) implies
A2 · A2m−2n+1 ∈ R, and furthermore RmRm+1 ∈ R in virtue of (44) and (46).
Then (57) yields A1 · A2m−2n+2 ∈ R, and we arrive at
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Ŷzz(z) · Ŷzz(z) = Q0z
2m−2 + Q1z

2m−1 + · · ·

with Q0 = (m − n)2R2
m, (see Section 6.1), and Q0 < 0 as well as Q1 ∈ R,

since Q1 is a real linear combination of A1 · A2m−2n+2, A2 · A2m−2n+1, and
RmRm+1. Suppose now that s = 3n − 2m+1 > 1. In order to show ImQj = 0
for 2 ≤ j ≤ s, we note that by (54)

τρλw4X̂ww · X̂ww = τρλŶzz · Ŷzz

(
w

dz

dw

)4

,

where τ, ρ, λ are generators of forced Jacobi fields with the pole w = 1. Fur-
thermore, by (52),

(58) w
dz

dw
=

−2iw

(w + 1)2
=

1 + z2

2i
.

Thus

(59) Im(τρλw4X̂ww · X̂ww) =
1
16

Im[τρλ(1 + z2)4Ŷzz · Ŷzz].

By (28) the left-hand side of (59) is a continuous function on S1, and thus
the right-hand side must be continuous in a neighbourhood of 0 in H for all
generators τ, ρ, λ of forced Jacobi fields ĥ, k̂, l̂ with poles at w = 1.

Suppose now that not all Qj with 2 ≤ j ≤ s are real, s = (3n−1)−(2m−2),
and let J be the smallest of the indices j ∈ {2, . . . , s} with the property that
Im Qj �= 0. Then we choose λ, ρ, τ such that the sum of their pole orders at
w = 1 equals (J + 1) + (2m − 2) ≤ 3n. Transforming λ, ρ, τ from w to z it
follows for z = x ∈ R = ∂H that

Im[τρλ(1 + z2)4Ŷzz · Ŷzz]
∣∣∣
z=x∈R

(60)

= (1 + x2)4β1(Im QJ)
1
x

+ 〈terms continuous in x〉,

β1 ∈ R \ {0}. This is clearly not a continuous function unless Im QJ = 0, a
contradiction, therefore no such J exists. �

Now we want to evaluate the integral in (28) by applying the residue
theorem. To this and we state

Proposition 5. Let τ be given by (29), and consider the function

(61) f(w) := τ(w)4w4X̂ww(w) · X̂ww(x), w ∈ B,

which has a continuous imaginary part on S1 = ∂B. Then there is a mero-
morphic function g(w) on B with a pole only at w = 1 such that

(i) Im[f(w) − g(w)] = 0 for w ∈ S1 = ∂B;

(ii) f − g is continous on B.
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Proof. Setting w = ψ(z) = (1 + iz)/(1 − iz) we obtain

f(ψ(z)) =
1
16

τ(ψ(z))3(1 + z2)4Ŷzz(z) · Ŷzz(z).

By (55) of Lemma 3 we see that, in a neighbourhood of z = 0 in H, we can
write the right-hand side as

s∑
j=0

∑

j

β̃jQ̃jz
−lj + G(z)

with β̃j ∈ R, Q̃j ∈ R, 0 < lj ≤ (3n − 1) − (2m − 2) = s, and a continuous term
G(z). Set

g̃(z) :=
s∑

j=0

s∑
lj=1

β̃jQ̃jz
−lj for z ∈ H \ {0}

and

g(w) := g̃(ϕ(w)) =
s∑

j=0

s∑
lj=1

β̃jQ̃j

(
i
w + 1
w − 1

)lj

.

Clearly f and g satisfy (i) and (ii). �

Corollary 1. We have

(62)
∫

S1
[f(w) − g(w)] dθ = −2π resw=0

g(w)
w

.

Proof. For w = eiθ ∈ S1 we have dθ = dw/(iw), whence
∫

S1
[f(w) − g(w)] dθ =

∫
S1

[f(w) − g(w)]
dw

iw

= 2π resw=0

{
f(w) − g(w)

w

}

= −2π resw=0

{
g(w)
w

}

since f(w)/w is holomorphic at w = 0. �

Since Im g = 0 on S1, we obtain

Corollary 2. We have

(63) Im
∫

S1
f(w) dθ = 2π Im resw=0

{
g(w)
w

}
.
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Furthermore we have

−4Re{w3τ3X̂ww · X̂ww dw} = (−4)Re{iw4τ3X̂ww · X̂ww } dθ

= 4Im{w4τ3X̂ww · X̂ww } dθ = 4 Im f(w) dθ.

Then (28) and Corollary 2 imply

(64) D3E(X)(h, h, h) = −8π Im resw=0

{
g(w)
w

}
.

Remark 4. We note the following slight, but very useful generalization of the
three preceding results. Namely, if X̂ has other boundary branch points than
w = 1 we are allowed to change τ by an additive term having poles of first
order at these branch points. Then Proposition 5 as well as Corollaries 1 and 2
also hold for the new f defined by (61) and the modified τ . This observation is
used in order to ensure that the forced Jacobi field ĥ generated by τ produces
a variation Ẑ(t), |t| � 1, of X̂ which is monotonic on ∂B = S1.

Now we turn to evaluation of D3E(X)(h, h, h) using formula (64). We
distinguish three possible cases: There is an l ∈ N such that

(i) 2m − 1 = 3l; then l is odd;

(ii) 2m − 2 = 3l; in this case l is even;

(iii) 2m = 3l; here l is again even.

Since 2m ≤ 3n it follows l < n for (i) and (ii), whereas l ≤ n in case (iii).

Case (i). Choose τ as

τ := βτ1 + ετ ∗ and β > 0, ε > 0, and
(65)

τ1 =
(

i
w + 1
w − 1

)l

=
1
zl

, w ∈ B \ {1},

w = ψ(z), w ∈ B \ { −1}, z ∈ H \ {0}. We will choose τ ∗ as a meromorphic
function that has poles of order 1 at the boundary branch points different
from w = 1 or z = 0 respectively. Then close to w = 1 or z = 0 respectively
we have

τ3w4X̂ww · X̂ww =
1
16

τ3(1 + z2)4Ŷzz · Ŷzz

(55)
=

β3

16
(m − n)2R2

m

1
z

+ G(z) + O(ε)

with a continuous G(z).
Choose

g(w) =
β3

16
(m − n)2R2

m

(
i
w + 1
w − 1

)
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and let ĥ(w) = Re(iwX̂w(w)τ(w)) be the forced Jacobi field generated by
τ, h := ĥ|S1 . Then by Proposition 5 and the Corollaries 1, 2 we obtain

D3E(X)(h, h, h) = − 8π

16
β3(m − n)2R2

mIm
{

resw=1
i

w

(
w + 1
w − 1

)}
(66)

=
1
2
πβ3(m − n)2R2

m + O(ε).

Since R2
m < 0 this yields for 0 < ε � 1 that

D3E(X)(h, h, h) < 0.

Case (ii). Here we have 3l = 2m − 2 < 3n whence l < n. Since both l and n
are even we obtain l+1 < n whence n > 2. Moreover, 2m−1 = 2(l+1)+(l−1).
Set

τ := ετ1 + βτ2 + ε3τ ∗, β > 0, ε > 0,(67)

τ1 :=
(

i
w + 1
w − 1

)l+1

, τ2 :=
(

i
w + 1
w − 1

)l−1

, τ ∗ as in Case 1.

Note also that both l + 1 and l − 1 are odd. We then have that

τ3 = β3τ3
2 + 3β2τ2

2 τ1ε + 3βε2τ2
1 τ2 + O(ε3)

= β3z−2m+5 + 3β2z−2m+3 + 3βε2z−2m+1 + O(ε3)

for z close to zero, but this does not add a contribution to (64).
By the same procedure as in Case 1 we find for ĥ = Re(iwX̂wτ) that

(69) D3E(X)(h, h, h) =
3
2
πε2β(m − n)2R2

m + O(ε3),

which implies
D3E(X)(h, h, h) < 0 for 0 < ε � 1.

Case (iii). Now we have 2m = 3l, l = even. We have two subcases.

(a) If l = n we write 2m − 1 = 2l + (l − 1) and set

τ1 :=
(

i
w + 1
w − 1

)l−1

, τ2 :=
(

i
w + 1
w − 1

)l

,(70)

τ := βτ1 + ετ2 + ε3τ ∗, β > 0, ε3 > 0.

(b) If l < n we write 2m − 1 = 2(l − 1) + (l + 1) and set

τ1 :=
(

i
w + 1
w − 1

)l+1

, τ2 :=
(

i
w + 1
w − 1

)l−1

,(71)

τ := ετ1 + βτ2 + ε3τ ∗.
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Then our now established procedure yields
(72)

D3E(X)(h, h, h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
3πβε2(m − n)2R2

m + O(ε3) in Subcase (a),

1
2
3πβ2ε(m − n)2R2

m + O(ε2) in Subcase (b).

This again implies D3E(X)(h, h, h) < 0 for 0 < ε � 1 and ĥ =
Re(iwX̂wτ).

Remark 5. The choice of τ ∗ has to be carried out in such a way that the
variation Z(t) of X produced by ĥ = Re(iwX̂wτ) furnishes a monotonic map-
ping of ∂B = S1 onto the boundary contour Γ . The details on how this can
be achieved by the formulae (65), (67), (70) and (71) can be found in the the-
sis of D. Wienholtz [2]. The complete proof is technically quite involved and
will here be omitted. We just sketch the intuitive idea underlying the proof;
we shall argue only locally, identifying Γ with its tangent line, and writing
Γ =̂ R. The boundary values Y (x), x ∈ R, of our minimal surface Ŷ (z) are
then interpreted as a mapping Y : R → R with Ŷ (0) = 0 where z = 0 is the
boundary branch point of Y which we consider. Then we have

Y (x) =
1

n + 1
anxn+1 + o(xn+1) as x → 0

with an > 0 which shows that Y (x) is (locally) monotone. Suppose now that
τ(x) = βx−k, k < n, k odd, β > 0. Now define a one-parameter family Z(t)
of variations

Z(x, t) = Z(t)(x) = Y (x) + tYx(x)τ(x).

Then

∂

∂x
Z(x, t) = anxn + βt(n − k)xn−k−1 + o(xn) + to(xn−k−1)

and we have
∂

∂x
Z(x, t) > 0 for 0 < |x| � 1 and t > 0

since [n − (k+1)] is even; thus Z(x, t) is monotonic in x for |x| � 1 and t > 0.
In the actual proof one defines a variation

Z̃(t) := Y + tYxτ,

and then, using either the normal bundle projection for Γ or an exponential
map, we project Z̃(t) onto Γ , which defines Z(t). The technical difficulty lies
in showing that this variation remains monotonic near the branch point 0 for
all t ≥ 0. Global monotonicity for small t ≥ 0 will follow from the compactness
of S1.
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In conclusion we have

Theorem 4. (D. Wienholtz). If X̂ is a minimal surface in C(Γ ) with Γ ∈
Cr+7, 3

∫
Γ

κ ds ≤ πr, having a boundary branch point of order n and index
m satisfying the Wienholtz condition 2m − 2 < 3n, then X cannot be an
H2(S1, R3)-minimizer for Dirichlet’s integral E(X) defined by (1), and thus
X̂ cannot be an H5/2(B, R3)-minimizer of area.

Remark 6. There remains the question if one can use higher derivatives of
E to show that minimizers X̂ cannot have boundary branch points if Γ is
taken to be sufficiently smooth. Proposition 3 implies that for this purpose
it would suffice to consider at most seven derivatives of E if one assumes
nonvanishing curvature and torsion of Γ . Focussing on nonexceptional branch
points, merely six derivatives of E would suffice.

The exceptional case is even more challenging since we no longer have
Re Rm = 0.

6.4 Scholia

The solution of Plateau’s problem presented by J. Douglas [12] and T. Radó
[17] was achieved by a – very natural – redefinition of the notion of a minimal
surface X : Ω → R

3 which is also used in our book2: Such a surface is a
harmonic and conformally parametrized mapping; but it is not assumed to
be an immersion. Consequently X may possess branch points, and thus some
authors speak of “branched immersions”. This raises the question whether or
not Plateau’s problem always has a solution which is immersed, i.e. regular
in the sense of differential geometry. Certainly there exist minimal surfaces
with branch points; but one might conjecture that area minimizing solutions
of Plateau’s problem are free of (interior) branch points. To be specific, let Γ
be a closed, rectifiable Jordan curve in R

3, and denote by C(Γ ) the class of
disk-type surfaces X : B → R

3 bounded by Γ which was defined in Vol. 1,
Section 4.2. Then one may ask: Suppose that X ∈ C(Γ ) is a disk-type minimal
surface X : B → R

3 which minimizes both A and D in C(Γ ). Does X have
branch points in B (or in B)?

Radó [17], pp. 791–795 gave a first answer to this question for some special
classes of boundary contours Γ , using the following result:

If Xw(w) vanishes at some point w0 ∈ B then any plane through the point
P0 := X(w0) intersects Γ in at least four distinct points.

This observation has the following interesting consequence: Suppose that
there is a straight line L in R

3 such that any plane through L intersects Γ
in at most two distinct points. Then any minimal surface X ∈ C(Γ ) has no
branch points in B. In fact, for P0 �∈ L, the plane Π determined by P0 and L

2 We now denote a minimal surface by X and no longer by X̂, i.e. we no longer emphasize

the difference between a surface X̂ and its boundary values X.
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meets Γ in at most two points, and for P0 ∈ L there are infinitely many such
planes.

In particular: If Γ has a simply covered star-shaped image under a (central
or parallel) projection upon some plane Π0, then any minimal surface X ∈
C(Γ ) is free of branch points in B.

Somewhat later, Douglas [15], pp. 733, 739, 753 thought that he had found
a contour Γ with the property that any minimal surface X ∈ C(Γ ) is branched,
namely a curve whose orthogonal projection onto the x1, x2-plane is a certain
closed curve with a double point. Radó [21], p. 109 commented on this asser-
tion as follows: A curve Γ with this x1, x2-projection can be chosen in such
a way that its x1, x3-projection is a simply covered star-shaped curve in the
x1, x3-plane; thus no minimal surface in C(Γ ) has a branch point.

In 1941, Courant [11] believed to have found a contour Γ for which some
minimizer of Dirichlet’s integral in C(Γ ) has an interior branch point. This
assertion is not correct, as Osserman [12], p. 567 pointed out in 1970. More-
over, in [12] he described an ingenious line of argumentation which seemed to
exclude interior branch points for area minimizing solutions of Plateau’s prob-
lem. For this purpose he distinguished between true and false branch points
(cf. Osserman, [15], p. 154, Definition 6; and, more vaguely, [12], p. 558):
A branch point is false, if the image of some neighbourhood of the branch point
lies on a regularly embedded minimal surface; otherwise it is a true branch
point. Osserman’s treatment of the false branch points is incomplete,but con-
tains essential ideas used by later authors, while his exclusion of true branch
points is essentially complete (see also W.F. Pohl [1], Gulliver, Osserman, and
Royden [1], p. 751, D. Wienholtz [1], p. 2). The principal ideas of Osserman
in dealing with true branch points w0 are the following: First, the geometric
behaviour of the minimal surface X in the neighbourhood of w0 is studied,
yielding the existence of branch lines. Then a remarkable discontinuous pa-
rameter transformation G is introduced such that X̃ := X ◦ G lies again in
C(Γ ) and has the same area as X, but in addition X̃ has a wedge, and so its
area can be reduced by “smoothing out” the wedge. Osserman’s definition of
G is somewhat sloppy, but K. Steffen has kindly pointed out to us how this
can be remedied and that the construction of the area reducing surface can
rigorously be carried out.

Osserman’s paper [12] was the decisive break-through in excluding true
branch points for area minimizing minimal surfaces in R

3, and it inspired the
succeeding papers by R. Gulliver [2] and H.W. Alt [1,2], which even tackled the
more difficult branch point problem for H-surfaces and for minimal surfaces
in a Riemannian manifold (Gulliver). Nearly simultaneously, both authors
published proofs of the assertion that area minimizing minimal surfaces in
C(Γ ) possess no interior branch points (and of the analogous statement for
H-surfaces).

Gulliver’s reasoning runs as follows: Let us assume that w0 = 0 is an in-
terior branch point of the minimal surface X ∈ C(Γ ), X : B → R

3. Then
there is a neighbourhood V � B of 0 in which two oriented Jordan arcs
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γ1, γ2 ∈ C1([0, 1], B) exist with γ1(0) = γ2(0) = 0, |γ′
j(0)| = 1, γ′

1(0) �=
γ′
2(0), X(γ1(t)) ≡ X(γ2(t)), and such that (Xu ∧ Xv)(γ1(t)), (Xu ∧ Xv)(γ2(t))

are linearly independent for 0 < t ≤ 1. One can assume that ∂V is smooth,
and that γ1, γ2 meet ∂V transversally at distinct points γ1(ε), γ2(ε), 0 < ε < 1.
Then there is a homeomorphism F : Bε → V with F (it) = γ1(t), F (−it) =
γ2(t) for 0 ≤ t ≤ ε, and F ∈ C2(Bε \ {0}) where Bε := Bε(0) = {w ∈ C :

|w| < ε}. Define a discontinuous map G : Bε → Bε such that {it : 0 < t ≤ 1}
and {−it : 0 < t ≤ 1} are mapped to i and −i respectively; ±ε/2 are taken
to zero; on the segments of discontinuity [−ε/2, 0] and [0, ε/2] are each given
two linear mappings by limiting values under approach from the two sides; G
is continuous on a neighbourhood of ∂Bε with G|∂Bε = id∂Bε ; and G is con-
formal on each component of Bε \ Iε\imaginary axis, where Iε is the interval
[−ε/2, ε/2] on the real axis. Thus X ◦ F ◦ G is continuous and piecewise C2.
Now define

X(w) :=

⎧⎨
⎩

(X ◦ F ◦ G ◦ F −1)(w) for w ∈ V,

X(w) for w ∈ B \ V.

Then X is continuous and piecewise C2, and X ∈ C(Γ ). The metric

ds2 := 〈dX, dX〉 = a du2 + 2b du dv + c dv2,

a := |Xu|2, b := 〈Xu, Xv 〉, c := |Xv |2,
induced on B by pulling back the metric induced from R

3 along X has
bounded, piecewise smooth coefficients. “It follows from the uniformization
theorem of Morrey ([1], Theorem 3) that there exists T : B → B with L2 sec-
ond derivatives, which is almost everywhere conformal from B with its usual
metric to B with its induced metric, and T may be extended to a homeomor-
phism B → B”.

Now define X̃ := X ◦ T ; then X̃ ∈ C(Γ ), A(X̃) = A(X), and 〈X̃w, X̃w 〉 = 0
a.e. on B, and consequently

infC(Γ ) D = infC(Γ ) A = D(X) = A(X) = A(X̃) = D(X̃).

Thus X̃ is D-minimizing, and so its surface normal Ñ is continuous on B. On
the other hand, the sets X(B) and X̃(B) are the same, and so X̃(B) has an
edge, whence Ñ cannot be continuous, a contradiction.

This reasoning requires two comments. First, D. Wienholtz in his Diploma
thesis [1], p. 3 (published as [2]), noted that Gulliver’s discontinuous map
G : Bε → Bε does not exist, since its existence contradicts Schwarz’s reflection
principle. A remedy of this deficiency is to set up another definition of G or
T , such as used in Alt [1], pp. 360–361, or in Steffen and Wente [1], p. 218, or
by a modification of the definition of G as in Gulliver and Lesley [1], p. 24.

Secondly, the application of one of Morrey’s uniformization theorems from
[1] is not immediately justified, as Theorem 3 of §2 requires besides a, b, c ∈
L∞(B) the assumption
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(*) ac − b2 = 1,

and Theorem 3 of Moorey’s §4 demands the existence of constants λ1, λ2 ∈ R

with 0 < λ1 ≤ λ2 such that

(**) λ1[ξ2 + η2] ≤ a(w)ξ2 + 2b(w)ξη + c(w)η2 ≤ λ2[ξ2 + η2]

for all (ξ, η) ∈ R
2 and for almost all w ∈ B. However, X(w) ≡ X(w) on B \ V ,

and X might have another branch point w′
0 ∈ B \ V ; then a(w′

0) = b(w′
0) =

c(w′
0) = 0, and so neither (*) nor (**) were satisfied.
This difficulty is overcome by assuring that X is quasiconformal in the

sense that
|Xu|2 + |Xv |2 ≤ κ|Xu ∧ Xv | (a.e. on B)

holds for some constant κ > 0. Then it follows

a, |b|, c ≤ κ
√

ac − b2,

and thus the quadratic form

dσ2 := α du2 + 2β du dv + γ dv2

with
α :=

a√
ac − b2

, β :=
b√

ac − b2
, γ :=

c√
ac − b2

satisfies |α|, |β|, |γ| ≤ κ and αγ − β2 = 1. Hence one can apply Morrey’s
first uniformization theorem (as quoted above), obtaining a homeomorphism
T from B onto B with T, T −1 ∈ H1

2 (B, B) such that the pull-back T ∗ dσ2 is
a multiple of the Euclidean metric ds2

e, i.e.

T ∗ dσ2 = λ ds2
e

whence
T ∗ ds2 = λ̃ ds2

e

with λ̃ := λ
√

ãc̃ − b̃2, ã := a ◦ T, b̃ := b ◦ T, c̃ := c ◦ T .
Now one can proceed for X̃ := X ◦T as above. Alt’s method to exclude true

branch points (worked out in detail by D. Wienholtz [1,2]) eventually uses the
same contradiction argument as Gulliver, namely to derive the existence of an
energy minimizer X̃ ∈ C(Γ ) with a discontinuous normal Ñ . The construction
of X̃ is different from Gulliver’s approach. Alt defines a new surface X on Bε

which is quasiconformal, and by reparametrization a new surface X̃ = X ◦ τ is
obtained which is energy minimizing with respect to its boundary values. Here
Morrey’s lemma on ε-conformal mappings is used as well as an elaboration of
Lemma 9.3.3 in Morrey [8].

The nonexistence of false branch points for solutions X of Plateau’s prob-
lem was proved by R. Gulliver [2], H.W. Alt [2], and then by Gulliver, Osser-
man, and Royden in their fundamental 1973-paper [1]. Here one only needs
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that X|∂B is 1 − 1, and this observation is used by Alt as well as by Gulliver,
Osserman, and Royden, while Gulliver also employs the minimizing property
of X. K. Steffen pointed out to us that Osserman’s original paper [12] already
contains significant contributions to the problem of excluding false branch
points, and it even is satisfactory if, for some reason, an inner point of X
cannot lie on the boundary curve Γ , say, if Γ lies on the surface of a convex
body.

Furthermore, in Section 6 of their paper, Gulliver, Osserman, and Royden
proved a rather general result on branched surfaces X : B → R

n, n ≥ 2, such
that X|∂B is injective, which implies the following: A minimal surface X ∈
C(Γ ) has no false boundary branch points (see [1], pp. 799–809, in particular
Theorem 6.16).

In 1973, R. Gulliver and F.D. Lesley [1] published the following result
which we cite in a slightly weaker form: If Γ is a real analytic and regular
contour in R

3, then any area minimizing minimal surface in C(Γ ) has no
boundary branch points.

To prove this result they extend a minimizer X across the boundary of
the parameter domain B as a minimal surface, so that a branch point w0 on
∂B can be treated as an inner point. Then the same analysis of X in a small
neighbourhood of w0 can be carried out, and w0 is either seen to be false or
true. To exclude the possibility of a true branch point, they apply the method
from Gulliver’s paper [2], except that a new discontinuous “Osserman-type”
mapping G is described, which is appropriate for this situation. In a different
way, true boundary branch points for analytic Γ were excluded by B. White
[24], see below.

The elimination of the possibility of false branch points in the Gulliver–
Lesley paper is achieved by using results from the theory of “branched immer-
sions”, created by Gulliver, Osserman, and Royden.

The theory of branched immersions was extended by Gulliver [4,5,7] in
such a way that it applies to surfaces of higher topological type (minimal
surfaces and H-surfaces in a Riemannian manifold).

K. Steffen and H. Wente [1] showed in 1978 that minimizers of

EQ(X) :=
∫

B

[
1
2

| ∇X|2 + Q(X) · (Xu ∧ Xv)
]

du dv

in C(Γ ) subject to a volume constraint V (X) = const with

V (X) :=
1
3

∫
B

X · (Xu ∧ Xv) du dv

have no interior branch points. While their treatment of true branch points
essentially follows Osserman [12], they simplified, in their special situation,
the discussion of false branch points by Gulliver, Osserman, and Royden [1]
and Gulliver [4].

In 1980, Beeson [2] showed that a minimal surface in C(Γ ), given by a
local Weierstrass representation, cannot have a true interior branch point if it
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is a C1-local minimizer of D in C(Γ ). (According to D. Wienholtz, Beeson’s
proof does not work for Ck-local minimizers with k ≥ 2.) Motivated by the
discovery of forced Jacobi fields, Beeson achieved this result by arguing that
some first non-vanishing derivative must be negative.

Later on, in 1994, M. Micaleff and B. White [1] excluded the existence of
true interior branch points for area minimizing minimal surfaces in a Rieman-
nian 3-manifold, and in 1997, B. White [24] proved that an area minimizing
minimal surface X : B → R

n, n ≥ 3, cannot have a true branch point on any
part of ∂B which is mapped by X onto a real analytic portion of Γ , even
if n ≥ 4. This is quite surprising as X may have interior branch points if
n ≥ 4 (Federer’s examples). However, White pointed out that, for any k < ∞,
one can find Ck-curves Γ in R

4 that bound area minimizing disk-type min-
imal surfaces with true boundary branch points, and Gulliver [11] found a
C∞-curve in R

6 bounding an area minimizer with a true boundary branch
point.

It is a major open question to decide whether or not an area minimizing
minimal surface of disk-type in R

3 can have a boundary branch point assuming
that it is bounded by a (regular) Ck- or C∞-contour Γ , rather than by an
analytic one.

We furthermore mention the paper of H.W. Alt and F. Tomi [1] where
the nonexistence of branch points for minimizers to certain free boundary
problems is proved (see also Section 1.9 of this volume, Theorem 5), and the
work of R. Gulliver and F. Tomi [1] where the absence of interior branch
points for minimizers of higher genus is established. Specifically, they showed
that such a minimizer X : M → N cannot possess false branch points if X
induces an isomorphism on fundamental groups.

In 1977–81, R. Böhme and A. Tromba [1,2] showed that, generically, every
smooth Jordan curve in R

n, n ≥ 4, bounds only immersed minimal surfaces,
and admits only simple interior branch points for n = 3, but no boundary
branch points. “Generic” means that there is an open and dense subset in the
space of all sufficiently smooth α : S1 → R

n defining a Jordan curve Γ , for
which subset the assertion holds. This result is based on the Böhme–Tromba
index theory, which is presented in Vol. 3.

A completely new method to exclude the existence of branch points for
minimal surfaces in R

3 which are weak relative minimizers of D was developed
by A.J. Tromba [11] in 1993 by deriving an intrinsic third derivative of D in
direction of forced Jacobi fields. He showed that if X ∈ C(Γ ) has only simple
interior branch points satisfying a Schüffler condition (a condition which by
K. Schüffler [2] had been identified as generic), then the third variation of D
can be made negative, while the first and second derivatives are zero, and so X
cannot be a weak relative minimizer of D in C(Γ ). D. Wienholtz in his Doctoral
thesis [3] generalized Tromba’s method to interior and boundary branch points
of arbitrary order, satisfying a “Schüffler-type condition”, by computing the
third derivative of D in suitable directions generated by forced Jacobi fields.
This work of Tromba and Wienholtz is described in Sections 6.1 and 6.3. We
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note that Wienholtz’s results also refer to boundary branch points of minimal
surfaces in R

n, n ≥ 3, but they do not apply to Gulliver’s R
6-example (see

Wienholtz [3], p. 244). In forthcoming work by Tromba it will be shown how
the ideas presented in Sections 6.1 and 6.2 can be used to exclude interior
branch points for absolute minimizers of A in C(Γ ).
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