
Chapter 5

The Thread Problem

The problem to be studied in this chapter is another generalization of the
isoperimetric problem which is related to minimal surfaces. Consider a fixed
arc Γ with endpoints P1 and P2 connected by a movable arc Σ of fixed length.
One may conceive Γ as a thin rigid wire, at the ends of which a thin inexten-
sible thread Σ is fastened. Then the thread problem is to determine a minimal
surface minimizing area among all surfaces bounded by the boundary config-
uration 〈Γ, Σ〉. The particular feature distinguishing this problem from the
ordinary Plateau problem is the movability of the arc Σ.

In Section 5.1 we shall describe several variants of the thread problem, and
we shall depict some experimental solutions. Most of these questions have not
yet been treated mathematically; that is, no existence proof can be found
in the literature. We shall state the mathematical formulation of the thread
problem in the simplest case, and in Section 5.2 we shall outline the existence
proof given by H.W. Alt for this case. The main difficulty to be overcome is
that one can no longer preassign the topological type of the parameter domain
on which the desired minimizer will be defined. The regularity of the movable
part Σ of the boundary of the area-minimizing surface will be investigated in
Section 5.3. The main result is that Σ is a regular real analytic arc of constant
curvature.

5.1 Experiments and Examples. Mathematical Formulation
of the Simplest Thread Problem

Imagine N points P1, P2, . . . , PN in R
3 which are connected by k fixed arcs

Γ1, . . . , Γk and by l movable arcs Σ1, Σ2, . . . , Σl in such a way that the re-
sulting configuration 〈Γ, Σ〉 := 〈Γ1, . . . , Γk, Σ1, . . . , Σl〉 consists of n disjoint
closed curves C1, C2, . . . , Cn of finite length. The lengths of the arcs Σj are
thought to be fixed. Experimentally we can realize the points P1, . . . , PN as
small holes in a plate or as endpoints of thin rods stuck in a plate. The arcs

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,

Grundlehren der mathematischen Wissenschaften 340,

DOI 10.1007/978-3-642-11700-8 5, c© Springer-Verlag Berlin Heidelberg 2010 441

http://dx.doi.org/10.1007/978-3-642-11700-8_5


442 5 The Thread Problem

Γi are made of thin rigid wires, and the curves Σj can be realized by thin and
essentially weightless synthetic fibres. Into such a boundary configuration we
want to span a surface of minimal area, which can experimentally be achieved
by dipping the array into a soap solution and then withdrawing it. This way
a soap film will be generated which models a surface of minimal area within
the configuration. The following figures show a few such experiments. One ob-
tains particularly attractive and surprising results if all arcs are flexible, and
one may very well assume that several of the threads Σj form closed loops
which, by flexible connections, are attached to the ends of supporting rods.
The resulting soap films will often be multiply connected minimal surfaces.

We may also conceive boundary configurations consisting of wires Γi, of
threads Σj , and of supporting surfaces S1, . . . , Sm on which parts of the
boundary of the soap film are allowed to move freely.

Still different soap film experiments can be carried out by using threads as
supporting ridges. This leads to a kind of mathematical questions which are
to be viewed as obstacle problems with movable thin obstacles. Apparently
such questions have not yet been treated.

We want to mention that thread experiments are used by architects to de-
sign light weight structures such as roofs and tents. Beautiful models are de-
picted in the publications of Frei Otto and collaborators (cf. Otto [1], Glaeser
[1]).

Let us now consider the simplest case of a thread problem that was already
mentioned in the introduction. Here we want to minimize area among all
surfaces spanned in a boundary frame that consists of a fixed rectifiable Jordan
arc Γ and of a movable curve Σ of given length L, having the same endpoints
P1 and P2 as Γ, P1 �= P2. We note that the thread experiment may lead to
solutions which are no longer connected surfaces but disintegrate into several
components, even if Γ is a smooth arc. One can even envision boundary
configurations 〈Γ, Σ〉 for which the solution of the thread problem decomposes
into countably many components since the movable arc Σ may in part adhere
to the fixed arc Γ . The existence result to be described in the next section
will take this phenomenon into account. We shall obtain solutions that are
parametrized on a compact connected parameter domain B, the interior B̊ of
which consists of at most countably many components.

Let us now specify the mathematical setting of the thread problem P(Γ, L)
that will be solved in the following section.

Notational Convention. In Sections 5.1 and 5.2 we shall, deviating from
our usual notation, denote a disk of center z0 and radius r by B(z0, r) instead
of Br(z0).

An admissible parameter domain for the thread problem is defined to be a
compact set B which can be represented in the form

(1) B = [−1, 1] ∪
νB⋃

ν=1

Bν , 1 ≤ νB ≤ ∞.
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Fig. 1a. Thread experiments. Courtesy of Institut für Leichte Flächentragwerke, Stuttgart

– Archive

Here the sets Bν with ν ∈ N and ν ≤ νB denote the closures of mutually
disjoint disks B(uν , rν), rν > 0 whose centers uν are contained in the open
interval {u : −1 < u < 1} on the real axis. Moreover, all disks Bν are supposed
to be contained in the unit disk B(0, 1).

Introducing the numbers aν and bν by

(2) aν := uν − rν , bν := uν + rν ,

we then have

(3) aν , bν ∈ [−1, 1].

Let us denote the set of all admissible parameter domains B by B.
For every B ∈ B, we introduce the two mappings p+

B and p−
B : [−1, 1] → ∂B

by

p±
B(u) :=

⎧
⎪⎨

⎪⎩

u u ∈ ∂B ∩ [−1, 1]
if

u ± i
√

r2
ν − (u − uν)2 |u − uν | ≤ rν .

(4)
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Fig. 1b. Thread experiments. Courtesy of Institut für Leichte Flächentragwerke, Stuttgart

– Archive

Let c be a curve mapping a subinterval I ′ = [α, β] of I = [−1, 1] into R
3,

c : I ′ → R
3.

Then the length of c is given by

(5) l(c, I ′) = sup
n∑

j=1

|c(tj) − c(tj−1)|

where the supremum is to be taken with respect to all possible decompositions
α = t0 < t1 < t2 < · · · < tn = β of I ′.
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Fig. 2. (a) A parameter domain, and (b) a corresponding solution to the thread problem

consisting of two components

If I ′ = I we shall write
l(c) := l(c, I).

For any two intervals I1 and I2 in R we introduce the set M(I1, I2) of
continuous, nondecreasing mappings θ : I1 → I2 of I1 onto I2, and we set
M(I) := M(I, I).

We observe that the length L of the movable curve Σ is bounded from
below by the distance of its endpoints P1 and P2,

(6) |P1 − P2| ≤ L.

Given a rectifiable Jordan curve Γ with endpoints P1, P2, and a number
L satisfying 0 < |P1 − P2| < L, we are now going to define the set C(Γ, L) of
admissible surfaces X for the thread problem as follows:

Definition 1. The set C(Γ, L) consists of the mappings X ∈ C0(B, R3) ∩
H1

2 (B̊, R3) with B ∈ B which satisfy the following two conditions:
(i) l(X ◦ p+

B) ≤ L;
(ii) there exists some mapping θ ∈ M(I), I = [−1, 1], such that θ|∂B∩I =

id|∂B∩I and X ◦ p−
B = γ ◦ θ where γ denotes a fixed Lipschitz continuous

representation of Γ which maps I bijectively onto Γ .

In other words, a function X is admissible if it is parametrized on some
domain B ∈ B, if it is continuous and has a finite Dirichlet integral, if the
length of the free part X ◦ p+

B is less or equal to L, and if X ◦ p−
B yields a

weakly monotonic parametrization of Γ . Note that Γ and Σ may have one or
more interior points in common, that is, Σ may in part adhere to Γ .

The thread problem P(Γ, L) now consists in finding some surface X ∈
C(Γ, L), defined on some parameter domain B ∈ B, such that X minimizes
the Dirichlet integral
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D(X, B̊) =
1
2

∫

B̊

| ∇X|2 du dv(7)

among all surfaces of C(Γ, L).
The solution of this problem will be carried out in two steps. First we shall

single out a set B ∈ B which can serve as a parameter domain of a solution
of P(Γ, L); this is the nonstandard part of the construction. We shall obtain
such domains B as minimal elements with respect to inclusion. In a second
step we shall construct a minimizing mapping X parametrized over B.

Let us now introduce the following three infima d, d+, and d−:

d = d(Γ, L) := inf{D(X, B̊) : X ∈ C(Γ, L)};(8)
d+ = d+(Γ, L) := inf{D(X) : X ∈ C(Γ, L), B = B(0, 1)},(9)

where D(X) := D(X, B(0, 1));
d− = d−(Γ, L) := inf{δ : δ has the approximation property (A)}.(10)

The approximation property (A ) is defined as follows: There exists some de-
creasing sequence of real numbers λn > 0 with λn → 0 and a sequence
of surfaces Xn ∈ C(Γ, L + λn) with parameter domains Bn ∈ B such that
D(Xn, B̊n) → δ as n → ∞.

An obvious consequence of these definitions is the relation

(11) d− ≤ d ≤ d+.

We shall prove that
d− = d = d+

holds provided that we assume

|P1 − P2| < L.

In what follows we have to characterize a minimal parameter domain B
among all domains in B. To this end it will be convenient to single out a
certain subclass B∗(Γ, L) of B which is defined as follows:

Definition 2. B∗(Γ, L) is the class of admissible parameter domains B ∈
B with the following property: There exists a decreasing sequence of positive
numbers λn with λn → 0 and a sequence of surfaces Xn ∈ C(Γ, L + λn),
parametrized over B, such that D(Xn, B̊) → d− as n → ∞.

5.2 Existence of Solutions to the Thread Problem

Consider now the particular case P(Γ, L) of the thread problem that was
formulated at the end of the previous section. Our main goal is the proof of
the following existence result which is formulated as
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Theorem 1. Suppose that |P1 − P2| < L < l(Γ ). Then we obtain

d−(Γ, L) = d(Γ, L) = d+(Γ, L).

Moreover, there exists an admissible parameter domain B and a surface X ∈
C(Γ, L) parametrized over B such that

D(X, B̊) = d(Γ, L).

This minimizer X is a minimal surface, that is, X is of class C2(B̊, R3) and
satisfies the equations

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0,

in B̊, and furthermore, the free boundary of X is of maximal length, i.e.,

l(X ◦ p+
B) = L.

The proof of this theorem is divided into two parts. The first one is con-
cerned with the existence of a minimal parameter domain B ∈ B. In the
second part of our discussion we will show that such a parameter set B is the
domain of a solution X for the thread problem P(Γ, L). This will be achieved
by establishing the existence of a minimizing sequence {Xn} whose elements
are defined on B and converge to a solution X of P(Γ, L).

PART I. Construction of a Minimal Parameter Set B ∈ B.

We begin our discussion with the following

Lemma 1. Suppose that X is a surface of class C(Γ, L) which is defined on
B ∈ B, and let ε be an arbitrary positive number. Then there exists some
Xε ∈ C(Γ, L + ε), parametrized over B(0, 1), such that

|D(Xε) − D(X, B̊)| < ε.

(Recall that D(Xε) denotes the Dirichlet integral with the unit disk B(0, 1)
as domain of integration.)

Proof. An admissible domain B is of the form given by formula (1) of Sec-
tion 5.1. Since l(Γ ) < ∞ and

D(X, B̊) =
νB∑

ν=1

D(X, B̊ν) < ∞,

we can find a number ν0 ∈ N such that
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∑

ν>ν0

D(X, B̊ν) < ε

and ∑

ν>ν0

l(γ, [aν , bν ]) < ε.

Set
B′ := I ∪ B1 ∪ B2 ∪ · · · ∪ Bν0 , I = [−1, 1],

and

X1(w) :=

{
X(w) if w ∈ B1 ∪ B2 ∪ · · · ∪ Bν0 ,

γ(w) if w ∈ ∂B′ ∩ [−1, 1].

Then we infer X1 ∈ C(Γ, L + ε) and

Fig. 1. A parameter domain with ν0 = 2, and the numbers aν , cν , dν , bν

|D(X, B̊) − D(X1, B̊′)| ≤ ε.(1)

For each v0 with 0 < v0 < min{r1, r2, . . . , rν0 }, there exist numbers cν , dν

with aν < cν < dν < bν such that p−
B′ (cν) = cν − iv0, p−

B′ (dν) = dν − iv0; cf.
Fig. 1.

Now we choose v0 so small that also the following conditions are fulfilled:
(i) X1(u − iv0) is absolutely continuous with respect to u ∈

⋃
ν≤ν0

[cν , dν ]
and has a square integrable first derivative;

(ii) l(X1 ◦ p−
B′ , [aν , cν ]) + l(X1 ◦ p−

B′ , [dν , bν ]) ≤ ε
2ν0

.

For some arbitrary number δ > 0, we define the set

D = D(δ) := D+ ∪ D− ∪ Q

by

Q := {w = u + iv : |u| < 1, 0 < v < δ},

D+ := {w = u + iv : w − i(δ + v0) ∈ B̊′ and v > δ},

D− := {w = u + iv : w − iv0 ∈ B̊′ and v < 0}.
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Fig. 2. The domain D = D(δ)

Fig. 3. The definition of X2

We note that D̊ is conformally equivalent to the unit disk. Thus, in order
to prove the assertion of the lemma, we shall construct a suitable comparison
function X2 defined on D. This function is defined as follows:

X2(w) :=

{
X1(w − i(δ + v0)) if w ∈ D+,

X1(w − iv0) if w ∈ D−.

For 0 ≤ v ≤ δ, we set

X2(w) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1(u − iv0) u ∈ [cν , dν ], 1 ≤ ν ≤ ν0

γ(u) u ∈ [−1, 1] \
⋃

ν≤ν0
(aν , bν)

if
γ(Sν(u)) u ∈ [aν , cν ]
γ(Tν(u)) u ∈ [dν , bν ].

Here Sν is a linear mapping from [aν , cν ] onto [aν , θ1(cν)], and Tν is the lin-
ear map from [dν , bν ] onto [θ1(dν), bν ], where θ1 ∈ M(I) is the transformation
I → I that corresponds to X1. In other words, γ ◦ θ1 = X1 ◦ p−

B′ .
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We infer from the construction that X2 is of class C0(D) ∩ H1
2(D̊).

Furthermore, we have

(2) D(X2, D̊+ ∪ D̊−) = D(X1, B
′)

and

D(X2, Q̊ ) ≤ 1
2

∫

Q

| ∇X2|2 du dv =
δ

2

∫ 1

−1

|DuX2|2 du(2′)

≤ δ

ν0∑

ν=1

∫ dν

cν

|DuX1(u − iv0)|2 du + δ

∫ 1

−1

|γ̇(t)|2 dt.

We, moreover, note that the mapping

X2 : ∂D ∩ {Imw ≤ 0} → Γ

is weakly monotonic, and from (ii) we derive the estimate

l(X2, ∂D ∩ {Imw > 0})

≤ l(X1 ◦ p+
B′ ) + 2

∑

ν≤ν0

{l(X1 ◦ p−
B′ , [aν , cν ]) + l(X ◦ p−

B′ , [dν , bν ])}

≤ l(X1 ◦ p+
B′ ) + ε ≤ L + 2ε.

Now let τ : B(0, 1) → D be a conformal mapping of B(0, 1) onto D̊, leaving
the two points w = ±1 fixed. Then Xε := X2 ◦ τ is of class C(Γ, L + 2ε), and
we infer

|D(Xε) − D(X, B̊)| = |D(X2, D̊) − D(X, B̊)|
≤ |D(X2, D̊) − D(X1, B̊′)| + |D(X1, B̊′) − D(X, B̊)|
≤ δ · const + ε,

taking (1), (2) and (2′) into account. Since we can choose δ > 0 arbitrarily
small, the assertion of Lemma 1 is proved. �

The following result is an easy consequence of Lemma 1.

Proposition 1. The class C(Γ, L) is nonvoid, and B(0, 1) ∈ B∗(Γ, L).

Proof. Define

γ∗(eit) :=

⎧
⎨

⎩

γ(1) + t
π [γ(−1) − γ(1)] 0 ≤ t ≤ π

if
γ

(
−1 + 2 t−π

π

)
π ≤ t ≤ 2π,

where γ(−1) = P1 and γ(1) = P2. Then γ∗ : ∂B → R
3 is Lipschitz continuous,

and a straight-forward computation shows that X∗(w) := |w|γ∗( w
|w| ) is of class

C(Γ, L). Hence C(Γ, L) is nonempty.
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It follows from the definition of d− that there is a sequence of surfaces
Xn ∈ C(Γ, L + 1

n ) parametrized on domains Bn ∈ B such that

|D(Xn, B̊n) − d− | <
1
n

for all n ∈ N.

By virtue of Lemma 1, we can choose a sequence of mappings X∗
n ∈ C(Γ, L+ 2

n )
which are parametrized over B(0, 1) and satisfy

|D(X∗
n) − D(Xn, B̊n)| ≤ 1

n
, n = 1, 2, . . . .

Thus we infer
|D(X∗

n) − d− | ≤ 2
n

, n = 1, 2, . . . ,

and it follows that B(0, 1) ∈ B∗(Γ, L). �

In the next lemma we prove the existence of sets B ∈ B∗(Γ, L) which are
minimal with respect to an ordering of sets defined by inclusion.

Lemma 2. Suppose that L < l(Γ ). Then any set of elements B ∈ B∗(Γ, L)
which is totally ordered with respect to inclusion possesses an infimum in
B∗(Γ, L).

Proof. Let {B∗
α}α∈A be an arbitrary set of elements B∗

α ∈ B∗(Γ, L) with the
index set A which is totally ordered with respect to inclusion, and set

B :=
⋂

α∈A

B∗
α.

We have to show that B is an element of B∗(Γ, L). The first step will be to
prove

(i) B̊ �= ∅.

In fact, if B̊ were empty, we would have

I = clos

(
⋃

α∈A

(I \ B̊∗
α)

)
, I := [−1, 1].

Then, for any partition

−1 = t0 < t1 < t2 < · · · < tk = 1

of I, there exist numbers tnj ∈
⋃

α∈A(I \ B̊∗
α) with 0 ≤ j ≤ k and n ∈ N such

that
lim

n→∞
tnj = tj for j = 0, 1, . . . , k.
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Since the set {B∗
α}α∈A is totally ordered, we infer that, for every n ∈ N, there

exists an index αn ∈ A such that tnj ∈ I \ B̊∗
αn

holds for all j = 0, . . . , k. As
all domains B∗

αn
are contained in B∗(Γ, L), n = 1, 2, . . . , there exist surfaces

Xn ∈ C(Γ, L + 1
n ) parametrized over B∗

αn
. This implies

k∑

j=1

|γ(tnj ) − γ(tnj−1)| =
k∑

j=1

|Xn(tnj ) − Xn(tnj−1)|

≤ l(Xn ◦ p+
B∗

αn
) ≤ L +

1
n

→ L as n → ∞.

Since

lim
n→∞

k∑

j=1

|γ(tnj ) − γ(tnj−1)| =
k∑

j=1

|γ(tj) − γ(tj−1)|,

we arrive at
k∑

j=1

|γ(tj) − γ(tj−1)| ≤ L.

As the partition t0, t1, . . . , tk of I may be chosen arbitrarily, we conclude that

l(Γ ) ≤ L

which contradicts our assumption l(Γ ) > L.
Now we turn to the proof of

(ii) B ∈ B∗(Γ, L).

We have to find surfaces defined on B whose Dirichlet integrals converge
to d−, and whose free boundaries (threads) exceed L only by an arbitrarily
small amount.

First of all, for every ε > 0 there exists some ν0 ∈ N with 1 ≤ ν0 ≤ νB

such that

(3)
∑

ν≥ν0

l(γ, [aν , bν ]) ≤ ε.

For ν ≥ ν0 we define

Qν := {w = u + iv : aν ≤ u ≤ bν , |v| ≤ ε2−ν−1}

and choose conformal mappings τν : B̊ν → Q̊ν from B̊ν onto Q̊ν with fixed
points aν , bν . Here B1, B2, . . . denote the components of the domain B (cf.
Section 5.1, (1)). Then the surfaces

Xν := γ(Re τν), ν ≥ ν0,

are continuous and have the Dirichlet integrals
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Fig. 4. The case ν0 = 2

D(Xν , B̊ν) =
1
2

∫

Bν

| ∇Xν |2 du dv(4)

=
1
2

∫ bν

aν

∫ ε2−ν−1

−ε2−ν−1
|γ̇(u)|2 du dv = ε2−ν−1

∫ bν

aν

|γ̇(u)|2 du.

Moreover, Xν ◦ p−
B is monotonic on [αν , bν ].

For α ∈ A and ν ∈ {1, 2, . . . , ν0} there is a uniquely determined ν∗ =
ν∗(ν, α) with 1 ≤ ν∗ ≤ νB∗

α
such that Bν ⊂ B∗

α,ν∗ . Here B∗
α,ν∗ is the ν∗-th

component of the domain B∗
α; cf. Section 5.1, (1). Since {B∗

α}α∈A is totally
ordered, we infer from the definition of B that there is an index α0 ∈ A such
that the disks B̊∗

α0,ν∗ are mutually disjoint, and that

(5)
∫ aν

a0
ν

|γ̇| dt +
∫ b0ν

bν

|γ̇| dt ≤ ε

ν0

holds. Here aν and bν are the numbers associated with B which are defined
in formula (2) of Section 5.1, and a0

ν , b0
ν are the corresponding numbers for

B∗
α0,ν∗ , i.e. [a0

ν , b0
ν ] := I ∩ B

∗
α0,ν∗ .

We have finitely many (at most ν0 + 1) open intervals I ⊂ I such that

(6)
∫ 1

−1

|γ̇| dt −
∑

ν≤ν0

∫ bν

aν

|γ̇| dt =
∑

{I }

∫

I

|γ̇| dt.

For any such interval I, there is a partition

t0 < t1 < t2 < · · · < tk, tj ∈ I,

such that

(7)
∫

I

|γ̇|dt ≤ ε

ν0 + 1
+

k∑

j=1

|γ(tj) − γ(tj−1)|.

Passing to a suitable refinement of this partition, we may also assume that
there is a subset K of {1, 2, . . . , k} with the following properties:
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(I) j �∈ K if and only if (tj−1, tj) ⊂ (aν , bν) for some ν > ν0;
(II) j ∈ K if and only if [tj−1, tj ] ⊂ I \ B̊.

Moreover we can choose an index α0 ∈ A such that the following can be
achieved:

The values tj ∈ I \ B̊ are replaced by values t′
j ∈ I \ B̊∗

α0
; all other values

tj remain unaltered and will be called t′
j ; we have t′

0 < t′
1 < · · · < t′

k and

(8)
∑

j∈K

|γ(tj) − γ(tj−1)| ≤ ε

ν0 + 1
+

∑

j∈K

|γ(t′
j) − γ(t′

j−1)|.

We infer from (3), (7), and (8) that

∑

{I }

∫

I

|γ̇| dt ≤ ε +
∑

ν>ν0

∫ bν

aν

|γ̇| dt +
∑

{I }

∑

j∈K (I )

|γ(tj) − γ(tj−1)|(9)

≤ 3ε +
∑

{I }

∑

j∈K (I )

|γ(t′
j) − γ(t′

j−1)|.

After these preparations, we proceed as follows: Since B∗
α0

∈ B∗(Γ, L),
there is some surface X ∈ C(Γ, L + ε) defined on B∗

α0
such that

D(X, B̊∗
a0

) ≤ d− + ε.(10)

Furthermore, for each ν with 1 ≤ ν ≤ ν0, there exists a conformal mapping
τν : Bν → B∗

α0,ν∗ such that X ◦τν ◦pB−
ν

furnishes a monotonic parametrization
of that subarc of Γ which corresponds to [aν , bν ]. Then X ′

ν := X ◦ τν defines
a continuous surface defined on Bν satisfying

D(X ′
ν , B̊ν) = D(X, B̊∗

α0,ν∗ ).(11)

By virtue of (5) we obtain

(12) l(X ′
ν ◦ p+

B , [aν , bν ]) ≤ l(X ◦ p+
B∗

α0
, [a0

α, b0
ν ]) +

ε

ν0
.

Let us introduce the surface Xε by

Xε(w) :=

⎧
⎨

⎩

X ′
ν(w) w ∈ Bν , 1 ≤ ν ≤ ν0;

if
γ(w) w ∈ I \

⋃ν0
ν=1 Bν .

Then we have Xε ∈ H1
2 (B̊, R3) ∩ C0(B, R3), and it follows from (4), (10) and

(11) that

D(Xε, B̊) ≤ D(X, B̊∗
α0

) +
∑

ν>ν0

ε2−ν−1

∫ 1

−1

|γ̇|2 dt(13)

≤ d−(Γ, L) + ε + ε

∫ 1

−1

|γ̇|2 dt.
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The length of the movable part of the boundary of Xε is estimated by

l(Xε ◦ p+
B)(14)

≤ l
∑

ν≤ν0

l(X ′
ν ◦ p+

B , [aν , bν ]) +
∑

{I }

∫

I

|γ̇| dt

≤ ε +
∑

ν≤ν0

l(X ◦ p+
B∗

α0
, [a0

ν , b0
ν ]) + 3ε +

∑

{I }

∑

j∈K

|γ(t′
j) − γ(t′

j−1)|

= 4ε +
∑

ν≤ν0

l(X ◦ p+
B∗

α0
, [a0

ν , b0
ν ]) +

∑

{I }

∑

j∈K

|X(t′
j) − X(t′

j−1)|

≤ 4ε + l(X ◦ p+
B∗

α0
) ≤ 5ε + L,

on account of (12), (9) and of X ∈ C(Γ, L + ε).
The relations (13) and (14) yield B ∈ B∗(Γ, L). �

Applying Zorn’s lemma we infer from this lemma that the following result
holds true:

Proposition 2. The set B∗(Γ, L) possesses minimal elements with respect to
inclusion, provided that L < l(Γ ).

PART II. Existence of a Solution of P(Γ, L).

Let B ∈ B∗(Γ, L) be a minimal element the existence of which was established
in Proposition 2. We want to prove that B is the parameter domain of some
minimizer X.

Lemma 3. If X is a function of class H1
2(B(0, 1), R3) with a trace ξ ∈

L2(∂B(0, 1), R3) on the circle ∂B(0, 1) which is of finite total variation∫
∂B(0,1)

|dξ|, then the boundary values ξ : ∂B(0, 1) → R
3 actually are con-

tinuous.

The proof of this result is an immediate consequence of the Courant–
Lebesgue lemma and has essentially been carried out in part (iii) of the proof
of Proposition 3 in Section 4.7 of Vol. 1. In fact, we even know that ξ is
absolutely continuous (see Theorem 1 of Section 4.7 of Vol. 1).

Now we turn to the crucial step in proving Theorem 1, which is to prove

Theorem 2. Let B ∈ B∗(Γ, L) be a minimal parameter domain with respect
to inclusion. Then there exists some X ∈ C(Γ, L), parametrized over B, such
that

D(X, B̊) = d−(Γ, L) = d(Γ, L);

thus X is a solution of the minimum problem P(Γ, L).
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Proof. Since B ∈ B∗(Γ, L), there is a sequence of surfaces Xn ∈ C(Γ, L + 1
n ),

n ∈ N, satisfying

D(Xn, B̊) ≤ d−(Γ, L) +
1
n

≤ M

for some constant M > 0. Denote by θn ∈ M(I) the mappings associated with
Xn, i.e.,

θn|∂B∩I = id|∂B∩I , Xn ◦ p−
B = γ ◦ θn.

Moreover, let uν , rν , aν , bν be the numbers corresponding to B, and let Bν , 1 ≤
ν ≤ νB , be the components of B (see Section 5.1, (1) and (2)). Applying
suitable conformal reparametrizations, we can achieve that

θn(uν) = uν for n ∈ N and 1 ≤ ν ≤ νB .

We claim that the mappings θn|[aν ,bν ], n ∈ N, are equicontinuous for every
ν ∈ N with ν ≤ νB.

Otherwise we could find some ε0 > 0, some ν ≤ νB and two sequences
{tn}, {t′

n} with aν ≤ tn < t′
n ≤ bν , converging to some point t0 ∈ [aν , bν ],

such that

(15) |θn(tn) − θn(t′
n)| ≥ ε0 for all n ∈ N

is satisfied. (Actually, this would hold true for some subsequence of {θn}. How-
ever, by renumbering this subsequence we could achieve that (15) is fulfilled.)
We want to show that (15) leads to a contradiction. In order to do so, we dis-
tinguish the two cases (i) aν < t0 < bν , and (ii) t0 = aν or bν . Case (i) can be
excluded by the discussion given in Chapter 4 of Vol. 1, where we have proved
that the boundary values of a minimizing sequence for the ordinary Plateau
problem are equicontinuous. By this reasoning we obtain that the functions
γ ◦ θn|[cν ,dν ] are equicontinuous for every interval [cν , dν ] ⊂ (aν , bν). The injec-
tivity of γ then implies that also the functions θn|[cν ,dν ] are equicontinuous,
which contradicts (15). In fact, there is some n0 ∈ N such that

aν < cν ≤ tn < t′
n ≤ dν < bν

holds for n > n0 and for suitably chosen numbers cν and dν . Then it follows
from (15) that

|γ(θn(tn)) − γ(θn(t′
n))| ≥ c(ε0) > 0

for some fixed number c(ε0) > 0 and for all n > n0, which contradicts the
equicontinuity of the sequence γ ◦ θn|[cν ,dν ]. Thus case (i) cannot occur.

Now we want to exclude case (ii) as well.
It suffices to show that t0 = aν is impossible since the case t0 = bν can be

handled analogously. Thus let us assume that t0 = aν .
We can choose sequences of numbers δn, rn, and s′

n with δn ∈ (0, 1), δn →
0, 0 < rn < δn, t′

n < s′
n ≤ uν , p−

B(s′
n) ∈ ∂B(aν , rn), and with
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{∫ ∣∣∣∣
∂

∂ϕ
Xn(rn, ϕ)

∣∣∣∣ dϕ

}2

≤ 2πM

log 1/δn
.

Here r, ϕ denote polar coordinates around aν , and the integral on the left-
hand side is extended over the ϕ-interval in [−π, π] corresponding to the arc
in B ∩ ∂B(aν , rn) which contains ϕ = 0; cf. Section 4.4 of Vol. 1, Lemma 1.

There is a subsequence of {θn(s′
n)} converging to some value u0; renum-

bering this sequence we may assume that θn(s′
n) → u0 as n → ∞. By virtue

of (15) we have u0 ≥ aν + ε0.
Choose values sn with aν ≤ sn ≤ uν and θn(sn) = u0, and consider the

two closed disks D1 and D2 defined by

D̊1 := B

(
aν + u0

2
,
u0 − aν

2

)
, D̊2 := B

(
u0 + bν

2
,
bν − u0

2

)
.

Our aim is to define surfaces Yn on D1 ∪ D2 such that the surfaces
X∗

n : B∗ → R
3, given by

X∗
n(w) :=

⎧
⎨

⎩

Xn(w) w ∈ B \ Bν ,
for

Yn(w) w ∈ D1 ∪ D2,(16)

B∗ := (B \ Bν) ∪ D1 ∪ D2 ∈ B,

Fig. 5. The disks D1, D2, and Bν
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are of class C(Γ, L + λn) with λn → 0 and satisfy

D(Xn, B̊∗) → d−(Γ, L)

as n → ∞. This, clearly, would contradict the minimality of B, and therefore
we would also have ruled out t0 = aν (or bν), i.e. case (ii) cannot occur either.

Passing to a subsequence and then renumbering, we can achieve that either

s′
n ≤ sn for all n ∈ N

or else
sn ≤ s′

n for all n ∈ N

holds true. We only treat the first case; the second one can be dealt with in
an analogous way.

Consider topological mappings

τn : D1 → B(aν , rn) ∩ Bν , σn : D2 → Bν \ B(aν , rn)

with τn(aν) = aν , τn(u0) = p−
B(s′

n), σn(bν) = bν , σn(u0) = p−
B(sn) such that

D̊1 is conformally mapped onto B(aν , rn) ∩ B̊ν by τn, and that σn maps D̊2

conformally onto B̊ν \ B(aν , rn).
Note that

(Xn ◦ τn)(u0) = Xn(p−
B(s′

n)) = γ(θn(s′
n)) → γ(u0),

(Xn ◦ σn)(u0) = Xn(p−
B(sn)) = γ(θn(sn)) → γ(u0).

If we had (Xn ◦ τn)(u0) = γ(u0), we would simply define

Yn :=

{
Xn ◦ τn in D1,

Xn ◦ σn in D2,

and the proof would be complete. As we only know Xn ◦ τn(u0) → γ(u0) as
n → ∞, we have to adjust the data correctly. The idea is the same as in the
proof of Lemma 1: we have to fill in the missing parts of Γ , thereby slightly
changing the Dirichlet integral and the length of the free boundary of Xn.
This way we obtain from Xn ◦ τn : D1 → R

3 a new surface (Xn ◦ τn)δn =: Zn

with Zn(u0) = γ(u0) such that

Yn(w) :=

{
Zn(w) for w ∈ D1,

Xn ◦ σn(w) for w ∈ D2

satisfies both
D(Yn, D̊1 ∪ D̊2) ≤ D(Xn, B̊ν) + δn

and
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l(Yn ◦ p+
D1∪D2

, [aν , bν ])

≤ l(Xn ◦ p+
B , [aν , bν ]) + δn + 2

∫ ∣∣∣∣
∂

∂ϕ
Xn(rn, ϕ)

∣∣∣∣ dϕ

+ 2l(γ, [θn(s′
n), θn(sn)])

= l(Xn ◦ p+
B , [aν , bν ]) + λn, lim

n→∞
λn = 0,

and that the surfaces X∗
n : B∗ → R

3 defined by (16) are of class C(Γ, L + λn),
λn → 0. This finishes the proof of equicontinuity of the mappings θn|[aν ,bν ], n ∈
N, for every ν ∈ N with 1 ≤ ν ≤ νB .

Now we can apply the reasoning of Chapter 4 of Vol. 1 to the sequence
{Xn} of surfaces Xn ∈ C(Γ, L+ 1

n ) which are defined on the minimal parameter
domain B ∈ B∗(Γ, L) and satisfy

(17) D(Xn, B̊) ≤ d−(Γ, L) +
1
n

≤ M for all n ∈ N.

From this inequality, together with

sup
∂B

|Xn| ≤ M ′ for all n ∈ N

and some constant M ′ independent of n, we obtain that {Xn} is a bounded
sequence in H1

2(B̊, R3).
Passing to a suitable subsequence of Xn and renumbering it, we can

assume that the sequence {Xn} tends weakly in H1
2(B̊, R3) to some limit

X ∈ H1
2(B̊, R3) such that Xn tends a.e. and also in the L2-sense on ev-

ery boundary ∂Bν to the trace of X. By virtue of the equicontinuity result
proved above we can assume that the mappings θn ∈ M(I) associated with
Xn tend uniformly on I to some limit θ ∈ M(I) such that the relations

θ|∂B∩I = id|∂B∩I , ξ ◦ p−
B = γ ◦ θ

hold true for some continuous, weakly monotonic mapping ξ from p−
B(I) onto

Γ , with the property that ξ and X coincide a.e. on p−
B(I) \ I. Thus we can

use ξ to define X on p−
B(I) by setting X(w) := ξ(w) for w ∈ p−

B(I), and we
have X ◦ p−

B = γ ◦ θ.
Moreover, on account of Helly’s selection theorem1 and of the assumption

l(Xn ◦ p+
B) ≤ L + 1

n , we can assume that Xn ◦ p+
B tends to X ◦ p+

B everywhere
on I, and that l(X ◦ p+

B) ≤ L.
By Lemma 3 we conclude that X has continuous boundary values on every

∂Bν , and consequently X is continuous on ∂B.
Recall that Dirichlet’s integral is weakly lower semicontinuous on

H1
2(B̊, R3), that is, the weak convergence of Xn to X implies

D(X, B̊) ≤ lim inf
n→∞

D(Xn, B̊).

1 Cf. for instance Natanson [1], p. 250.
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Then, by (17), we arrive at

D(X, B̊) ≤ d−(Γ, L).

Consider now mappings Hν ∈ C0(Bν , R3) ∩ H1
2(B̊, R3) which are harmonic in

Bν and coincide with X on ∂Bν . Then we also have

D(Hν , B̊ν) ≤ D(X, B̊ν).

Set

X∗ :=

{
X on B \ B̊,

Hν on Bν , ν ∈ N, 1 ≤ ν ≤ νB .

The surface X∗ is of class C0(B, R3) ∩ H1
2(B̊, R3) and satisfies

D(X∗, B̊) ≤ D(X, B̊),

l(X∗ ◦ p+
B) = l(X ◦ p+

B) ≤ L

and
X∗ ◦ p−

B = γ ◦ θ, θ|∂B∩I = id|∂B∩I .

Consequently we have X∗ ∈ C(Γ, L), whence

d(Γ, L) ≤ D(X∗, B̊).

Thus we obtain

d−(Γ, L) ≤ d(Γ, L) ≤ D(X∗, B̊) ≤ D(X, B̊) ≤ d−(Γ, L),

and therefore

d(Γ, L) = d−(Γ, L) = D(X∗, B̊) = D(X, B̊)

which implies that X = X∗ holds, and that X is a solution of P(Γ, L). �

Theorem 3. Suppose that L < l(Γ ). If X ∈ C(Γ, L) satisfies D(X, B̊) =
d(Γ, L), then X is a minimal surface, that is, X is nonconstant, the equations

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

are satisfied in B̊, and it follows that

l(X ◦ p+
B) = L.

(That is, for any solution of P(Γ, L), the movable part of the boundary is
taut.)
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Proof. The minimal-surface property of X can be derived as in Chapter 4 of
Vol. 1, since each of the mappings X|Bν solves a Plateau problem with respect
to the boundary curve Γν := X(∂Bν). (Here Bν denotes the disk-components
of the parameter domain B of X.) Thus we only have to prove

l(X ◦ p+
B) = L.

Suppose that this inequality were not true. Then, because of X ∈ C(Γ, L), we
would have

l(X ◦ p+
B) < L.

We recall that B̊1 = B(u1, r1), and we set w0 := u1 + ir1. Then we can find
some r0 ∈ (0, r1) such that

l(X ◦ p+
B) + l(X, B1 ∩ ∂B(w0, r0)) < L.

Let τ be a topological mapping of B1 \ B(w0, r0) onto B1 with τ(a1) = a1

and τ(b1) = b1 that maps the interior of B1 conformally onto B1 \ B(w0, r0).
We use τ to define the comparison map X∗ ∈ C(Γ, L) by defining

X∗(w) :=

⎧
⎨

⎩

X(τ(w)) w ∈ B1,
for

X(w) w ∈ B \ B1.

Then it follows that
d(Γ, L) ≤ D(X∗, B̊),

and because of

D(X∗, B̊) = D(X, B̊) − D(X, B̊1 ∩ B(w0, r0))
= d(Γ, L) − D(X, B̊1 ∩ B(w0, r0))

we infer that X|B(w0,r0) = const, whence X|B1 = const, as X|B1 is harmonic
and therefore real analytic. The relation X|B1 = const is a contradiction to
X(a1) �= X(b1). �

Proposition 3. If |P1 − P2| < L then it follows that

d−(Γ, L) = d+(Γ, L).

Proof. Case (i). Suppose that L ≥ l(Γ ). Then we define the surface Z : Q →
R

3 on Q = {u + iv : |u| ≤ 1, |v| ≤ δ} by setting Z(u + iv) := γ(u). It follows
that

D(Z, Q̊) = δ

∫ 1

−1

|γ̇(u)|2 du.

Consider a homeomorphism of B(0, 1) onto Q which maps B(0, 1) conformally
onto Q̊. Then X := Z ◦ τ is of class C(Γ, L), and we have
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d+(Γ, L) ≤ D(X, B(0, 1)) = D(Z, Q̊) = δ

∫ 1

−1

|γ̇(u)|2 du.

As we can make δ > 0 arbitrarily small, it follows that d+(Γ, L) = 0 whence

d(Γ, L) = d−(Γ, L) = d+(Γ, L) = 0.

Case (ii). Assume now that l(Γ ) > L. By Theorem 2, there is some X ∈
C(Γ, L) such that

d−(Γ, L) = d(Γ, L) = D(X, B̊),

where B is the parameter domain of X.
For given ε > 0 there exists some surface

Xε ∈ C(Γ, L + ε2) ∩ H1
2(B(0, 1), R3)

with
D(Xε, B(0, 1)) ≤ D(X, B̊) + ε = d−(Γ, L) + ε,

if we take Lemma 1 into account.
Consider now the surface X∗ ∈ C(Γ, |P1 − P2|) ∩ H1

2(B(0, 1), R3) which was
constructed in the proof of Proposition 1. We define the 1-parameter family
of surfaces

X∗
ε := εX∗ + (1 − ε)Xε, 0 < ε ≤ L − |P1 − P2|.

Then we infer X∗
ε ∈ C(Γ, Lε) where Lε is estimated by

Lε ≤ ε|P1 − P2| + (1 − ε)(L + ε2)
= ε|P1 − P2| + L + ε2 − εL − ε3 ≤ L − ε3 < L.

It follows that

d+(Γ, L) ≤ D(X∗
ε ) for 0 < ε ≤ L − |P1 − P2|.

Furthermore we have

D(X∗
ε ) = ε2D(X∗) + ε(1 − ε)

∫

B

〈∇X∗, ∇Xε〉 du dv + (1 − ε)2D(Xε)

≤ d−(Γ, L) + εK

for some number K > 0 which does not depend on ε with

0 < ε ≤ L − |P1 − P2|.

Letting ε → +0, we arrive at the inequality

d+(Γ, L) ≤ d−(Γ, L).

On the other hand, we have

d−(Γ, L) ≤ d(Γ, L) ≤ d+(Γ, L)

whence
d−(Γ, L) = d(Γ, L) = d+(Γ, L). �
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Theorem 4. If X minimizes the Dirichlet integral D(X, B) in the class
C(Γ, L), then X also furnishes the minimum of the area functional A(X, B)
with C(Γ, L).

Proof. This result can be derived from Morrey’s lemma on ε-conformal map-
pings that we have described in Section 4.5 of Vol. 1. One can proceed in the
same way as in the proof of Theorem 4 in Section 4.5 of Vol. 1. The proof can
also be obtained by the method described in Section 4.10 of Vol. 1. �

5.3 Analyticity of the Movable Boundary

In this section we want to investigate the regularity of the movable part Σ
of a solution X of the thread problem. Let us begin by considering a special
case. We assume that Γ is a planar curve. By a projection argument it can
easily be seen that X has to be contained in the plane E determined by Γ . In
fact, if we assume without loss of generality that E is the plane {z = 0}, and
that X(w) = (x(w), y(w), z(w)) is a solution of P(Γ, L), then also X∗(w) :=
(x(w), y(w), 0) is a surface of class C(Γ, L), and we have

D(X∗, B̊) ≤ D(X, B̊).

The equality sign holds if and only if D(z, B̊) = 0, and D(z, B̊) vanishes if and
only if z(w) = 0 holds for all w ∈

⋃νB

ν=1 Bν . As X is an absolute minimizer for
the thread problem, there cannot be any surface in C(Γ, L) with a Dirichlet
integral smaller than D(X, B̊). Thus we infer that z(w) = 0 on B̊. Since
z ∈ H1

2(B̊), we also have z(w) = 0 a.e. on B \ I. Finally, on B \
⋃ν0

ν=1 Bν

the function z(w) coincides with the z-component of Γ so that z(w) vanishes
identically on I and therefore on all of B.

Thus, X is in fact a planar surface, and by a classical result of analysis,
every part of the movable curve Σ not attached to Γ must be a circular arc,
that is, a regular real analytic curve of constant curvature.

It is the aim of this section to show that the same result holds true for
any solution X of P(Γ, L), even if Γ is not a planar curve. As by-product of
our investigation we shall also obtain that all free (i.e. nonattached) parts of
Σ are asymptotic curves of constant geodesic curvature on X, and it can be
proved that the curvature is the same for all free parts of Σ.

Clearly we can restrict our discussion of X to any part X|Bν where Bν

is an arbitrary disk-component of the parameter domain B of X. Thus we
shall assume that X is a solution of a thread problem which is parametrized
on a disk, say, the unit disk. For this reason we shall from now on abolish
the notation of Sections 5.1 and 5.2 and, instead, return to another notation
similar to that used in previous chapters. To be precise, we now denote by B
the open disk

B = {w = u + iv : |w| < 1}
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in the u, v-plane C =̂ R
2, and by C+ and C− its boundary parts

C+ = {w = u + iv : |w| = 1, v ≥ 0},

C− = {w = u + iv : |w| = 1, v ≤ 0}.

Fig. 1.

The set C(Γ, L) of comparison functions X(w), w ∈ B, now consists of all
surfaces of class C0(B, R3) ∩ H1

2(B, R3) which map C− in a weakly monotonic
way onto a given rectifiable Jordan arc Γ , and whose total variation on C+ is
equal to a fixed number L,

(1) l(Σ) :=
∫

C+
|dX| = L.

Here Σ denotes the movable part X : C+→ R
3 of the boundary of any X ∈

C(Γ, L). We assume that

(2) |P1 − P2| < L < l(Γ ),

where P1 and P2 denote the endpoints of Γ , and l(Γ ) stands for the length of
the fixed arc Γ .

Let X ∈ C(Γ, L) be a minimizer of the Dirichlet integral

DB(X) =
1
2

∫

B

| ∇X|2 du dv

among all surfaces in C(Γ, L). Such a minimizer will now be called a solution
of the thread problem P(Γ, L). We already know that any such solution has to
be a minimal surface. That is, the equations

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

hold true in B, and X(w) �≡ const on B.
Now we state the main result of this section.
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Fig. 2.

Theorem 1. Let X ∈ C(Γ, L) be a minimal surface, that is, X satisfies

(3) ΔX = 0 in B

as well as the conformality relations. Introducing polar coordinates r, θ around
the origin by w = reiθ, these relations can be written as

(4) r2|Xr |2 = |Xθ |2, 〈Xr, Xθ 〉 = 0.

Moreover, suppose that X minimizes the Dirichlet integral within the class
C(Γ, L). Then X(w) can be continued analytically as a minimal surface across
the arc C+, and it has on C+ no branch points of odd order nor any true
branch points of even order. If, moreover, the boundary mapping X : ∂B → R

3

is assumed to be an embedding, then X(w) has no false branch points of even
order on C+ either. Correspondingly, in this case, the free trace Σ defined by
X : C+ → R

3 is a regular, real analytic curve of constant curvature κ �= 0.

For the following we recall some results on the boundary behaviour of
minimal surfaces with a finite Dirichlet integral and with boundary values
of bounded variation. The assumption DB(X) < ∞ implies that X(r, θ) =
X(reiθ) possesses L2-boundary values X(1, θ) on ∂B which are assumed in
the L2-sense as r → 1 − 0. From

∫ 2π

0
|dX(1, θ)| < ∞ we conclude that X(1, θ)

depends continuously on θ (cf. Lemma 3 of Section 5.2). More subtle results
have been derived in Section 4.7 of Vol. 1. For the convenience of the reader,
we collect the pertinent statements in the following lemma.

Lemma 1. Let X : B → R
3 be a disk-type minimal surface, i.e. let (3) and

(4) be satisfied, and denote by X∗ : B → R
3 the adjoint minimal surface to X

which, up to an additive constant, is uniquely determined by the equations

(5) Xr =
1
r
X∗

θ ,
1
r
Xθ = −X∗

r .

Assume that DB(X) < ∞ and
∫

∂B
|dX| < ∞. Then we have:
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(i) X and X∗ are of class C0(B, R3) and

DB(X) = DB(X∗),
∫

∂B

|dX| =
∫

∂B

|dX∗ |.(6)

(ii) The boundary values X(1, θ) and X∗(1, θ) are absolutely continuous
functions of θ, and Xθ(r, θ), X∗

θ (r, θ) tend in the L2-sense to the derivatives
Xθ(1, θ), X∗

θ (1, θ) of the boundary values X(1, θ) and X∗(1, θ) respectively as
r → 1 − 0. Then, on account of (5), we deduce that also Xr(r, θ) and X∗

r (r, θ)
converge in L2 to boundary values as r → 1 − 0, and we set

Xr(1, θ) = lim
r→1−0

Xr(r, θ), X∗
r (1, θ) = lim

r→1−0
X∗

r (r, θ).

It follows that a.e.

(7) Xr(1, θ) = X∗
θ (1, θ), Xθ(1, r) = −X∗

r (1, θ),

(8) |Xr(1, θ)| = |Xθ(1, θ)|, 〈Xr(1, θ), Xθ(1, θ)〉 = 0.

(iii) If C is an open subarc of ∂B, and ξ is a test function of class
H1

2(B, R3) ∩ L∞(C, R3) with ξ = 0 on ∂B \ C, then

(9)
∫

B

〈∇X, ∇ξ〉r dr dθ =
∫

C

〈Xr, ξ〉 dθ.

(iv) If X �≡ const on B, then Xθ(1, θ) and X∗
θ (1, θ) vanish at most on a

subset of [0, 2π] of one-dimensional measure zero.

Now we turn to the proof of Theorem 1 which we want to break up into
three parts. In the first one we consider a stationary version of the thread
problem; here the existence of a Lagrange multiplier is supposed. Thereafter
we prove that every minimizer in C(Γ, L) is in fact a solution of the stationary
problem by establishing the existence of a Lagrange multiplier, and in the
third part we sketch how branch points can be excluded by using the minimum
property.

Definition. A minimal surface X : B → R
3 is said to be a stationary so-

lution of the thread problem with respect to some open subarc C of ∂B
if the following holds:
(i) DB(X) < ∞,

∫
∂B

|dX| < ∞;
(ii) there is a real number λ �= 0 such that

(10)
∫

B

〈∇X, ∇ξ〉r dr dθ + λ

∫

C

〈
Xθ

|Xθ | , ξθ

〉
dθ = 0

holds for all ξ ∈ C1(B, R3) with ξ = 0 on ∂B \ C.
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Taking the identity (9) into account we arrive at
∫

C

(〈Xr, ξ〉 + λ|Xθ | −1〈Xθ, ξθ 〉) dθ = 0,

and (8) yields
∫

C

〈Xr, ξ〉 dθ =
∫

C

〈X∗
θ , ξ〉 dθ = −

∫

C

〈X∗, ξθ 〉 dθ.

Thus (10) is equivalent to
∫

C

〈X∗ − λ|Xθ | −1Xθ, ξθ 〉 dθ = 0(11)

for all ξ ∈ C1(B, R3) with ξ = 0 on ∂B \ C.

DuBois–Reymond’s lemma now implies that (11) – and therefore also (10) –
is equivalent to the following property of X:

There exists a constant vector P ∈ R
3 such that

(12) X∗ = λ|Xθ | −1Xθ + P a.e. on C

holds.

We now prove

Theorem 2. Let X : B → R
3 be a minimal surface which is a stationary

solution of the thread problem with respect to the open arc C ⊂ ∂B. Then, for
some P ∈ R

3 and some λ ∈ R, λ �= 0, equation (12) is satisfied. Moreover, X
and its adjoint X∗ are real analytic on B ∪ C, and X∗ intersects the sphere

S = {Z ∈ R
3 : |Z − P |2 = λ2}

orthogonally along its free trace Σ∗ defined by X∗ : C → R
3. Both X and X∗

have no boundary branch points of odd order on C. Finally, Σ = X|C has a
representation X(s), 0 < s < 1, by its arc length s as parameter, which is of
class C2 and satisfies |Ẋ(s)| ≡ 1, |Ẍ(s)| ≡ 1

|λ| . Thus Σ represents a regular
curve of constant curvature κ = 1

|λ| .

Proof. As we have noticed, the assumption on X implies that (12) holds for
some P ∈ R

3 and some λ ∈ R, λ �= 0. Taking the continuity of X∗(1, θ) into
account, we infer that

|X∗ − P |2 = λ2 on C.(13)

In other words, the trace Σ∗ lies on S. Moreover, equations (12) and (7) yield
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(14) X∗ − P = −λ|X∗
r | −1 · X∗

r a.e. on C.

Therefore the vector X∗
r is normal to S a.e. on C. Thus for almost all w ∈ C

the surface X∗ has a tangent plane which meets S at a right angle. By the
reasoning of Section 1.4 (cf. Theorem 1) we conclude that the adjoint surface
X∗ is a critical point of Dirichlet’s integral within the boundary configuration
〈Γ, S〉 consisting of the arc Γ ∗ = {X∗(w) : w ∈ ∂B \ C} and of the surface S.
We can therefore apply Theorem 2′ of Section 2.8 to X∗ and obtain that X∗

can be continued analytically across C as a minimal surface. (Note that for
this regularity theorem it is not necessary to assume that Γ ∗ be a Jordan arc
which does not meet S except in his two endpoints.) By virtue of (5) we infer
that both X and X∗ are real analytic in B ∪ C, as we have claimed.

We furthermore note that, because of (5), X and X∗ have the same bound-
ary branch points w0 ∈ C. Since X + iX∗ is a nonconstant holomorphic map-
ping U → C

3 of some full neighbourhood U of each branch point w0 ∈ C, we
have the asymptotic formula

(15) Xw(w) = A(w − w0)ν + O(|w − w0|ν+1) as w → w0,

for some integer ν ≥ 1 and some vector A �= 0. Since X∗
w = −iXw, we also

have

(15′) X∗
w(w) = −iA(w − w0)ν + O(|w − w0|ν+1) as w → w0.

That is, the order of w0 as branch point of X equals its order as branch point
of X∗. We moreover infer from (15) and (15′) that the boundary branch points
of X and X∗ are isolated. In addition, the conformality relations (5) imply
〈A, A〉 = 0. Thus A is of the form A = 1

2 (a − ib), where a, b ∈ R
3, |a| =

|b| �= 0, 〈a, b〉 = 0.
If w = eiθ is not a branch point of X on C, we can define the unit tangent

vectors

T (θ) =
Xθ(1, θ)

|Xθ(1, θ)| , T ∗(θ) =
X∗

θ (1, θ)
|X∗

θ (1, θ)|
of the curves Σ and Σ∗ at X(w) and X∗(w), respectively.

Let w0 = eiθ0 ∈ C be a branch point of X (and of X∗). Then we infer
from (15) and (15′) that the one-sided limits

T±(θ0) = lim
θ→θ0 ± 0

T (θ), T ∗
±(θ0) = lim

θ→θ0 ± 0
T ∗(θ)

exist. Moreover, we have

(16) T+(θ0) = T−(θ0), T ∗
+(θ0) = T ∗

−(θ0)

if the order ν of the boundary branch point w0 is even, whereas

(16′) T+(θ0) = −T−(θ0), T ∗
+(θ0) = −T ∗

−(θ0)

if ν is odd.
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We note that the limits T±(θ0), T ∗
±(θ0) are unit vectors. Equation (12), on

the other hand, yields that

(17) T (θ) =
1
λ

{X∗(1, θ) − P }

holds for all θ satisfying 0 < |θ − θ0| < ε where ε is a sufficiently small number
and, moreover, the right-hand side depends continuously on θ ∈ (θ0 −ε, θ0+ε).
Therefore, T+(θ0) = T−(θ0), and ν must be of even order. Hence X and also
X∗ can only have even order branch points on C, as we have claimed. If we
define T (θ0) by T+(θ0) at a branch point w0 = eiθ0 ∈ C of even order, we infer
from (16) that T (θ) is a continuous function on C with |T (θ)| ≡ 1, and (17)
holds everywhere on C.

Suppose now that C = {eiθ : θ1 < θ < θ2} and set

l =
∫ θ2

θ1

|Xθ(1, θ)| dθ =
∫ θ2

θ1

|X∗
θ (1, θ)| dθ.

We furthermore introduce

s = s(θ) =
∫ θ

θ1

|Xθ(1, θ)| dθ =
∫ θ

θ1

|X∗
θ (1, θ)| dθ,

θ1 ≤ θ ≤ θ2, which is the arc length parameter of Σ as well as of Σ∗. Since
s′(θ) = |Xθ(1, θ)| ≥ 0 has only isolated zeros, the function s(θ) can be in-
verted. Let θ(s), 0 ≤ s ≤ l, be its (continuous) inverse. For 0 < s < l we
introduce

t(s) = T (θ(s)), t∗(s) = T ∗(θ(s)),

X(s) = X(1, θ(s)), X ∗(s) = X∗(1, θ(s)).

So far, we only know that θ(s) is continuously differentiable in s-intervals
corresponding to θ-intervals free of branch points. We already know that t(s)
and t∗(s) are continuous for 0 < s < l, and that Ẋ(s) = t(s), Ẋ ∗(s) = t∗(s)
holds at values of s which do not correspond to branch points on C. Then
a simple argument employing the mean value theorem yields that X(s) and
X ∗(s) are of class C1 for 0 < s < l, and that

Ẋ(s) = t(s), Ẋ ∗(s) = t∗(s) for 0 < s < l.(18)

(In these formulas as well as in the following ones, the dot denotes differentia-
tion with respect to the arc length: ˙= d

ds .) Thus Σ and Σ∗ are representations
of regular curves of class C1.

From (17) and (18) we derive the equation

(19) t(s) =
1
λ

{X ∗(s) − P }

and
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(20) ṫ(s) =
1
λ

t∗(s)

for 0 < s < l. Thus X(s) is actually of class C2 on (0, l), |ṫ(s)| = |Ẍ(s)| = 1/|λ|.
This means, Σ represents a regular C2-curve of constant curvature 1/|λ|. This
concludes the proof of Theorem 2. �

The first of Frenet’s equations yields

(21) ṫ (s) = κn(s), κ =
1

|λ| ,

where n(s) is the principal normal of the curve X(s). On the other hand,
differentiating (17) with respect to θ and employing (7) and (8), we arrive at

(22) ṫ (s) =
1
λ

· Xr

|Xr | (1, θ(s)).

Hence n = ±|Xr | −1Xr, and thus the normal curvature of Σ vanishes. Thus
as a by-product of our discussion we obtain the following

Corollary 1. Under the assumptions of Theorem 1 the free trace Σ of X is
an asymptotic line of the surface X of constant geodesic curvature ± κ.

Remark 1. In general, stationary solutions of the thread problem will have
boundary branch points of even order. In fact, one can easily construct ex-
amples of planar minimal surfaces X∗ : B → R

3 that satisfy (14) for some
nonempty open subarc C of ∂B and have a branch point w0 of second order
on C. The adjoint surface X of −X∗ will then satisfy (12) or, equivalently,
(10). Hence X is a stationary solution of a thread problem with respect to C
that has a branch point of second order on C.

Next we come to the second part of the proof of Theorem 1. We shall prove
that, for each solution of the real thread problem, there exists a Lagrange
multiplier. This is not totally trivial since the applicability of the standard
Lagrange multiplier theorem (which requires continuous differentiability of the
involved functions) is not clear. The following result provides an appropriate
substitute.

Lemma 2. Let ϕ(ε, t) and ψ(ε, t) be real-valued functions of

(ε, t) ∈ [−ε0, ε0] × [−t0, t0], ε0 > 0, t0 > 0,

which split in the form

ϕ(ε, t) = ϕ0 + ϕ1(ε) + ϕ2(t), ψ(ε, t) = ψ0 + ψ1(ε) + ψ2(t).

Here it is assumed that ϕ0 and ψ0 are constant, and that
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ϕ1(0) = ϕ2(0) = ψ1(0) = ψ2(0) = 0.

We also suppose that ψ2 is continuous on [−t0, t0], that the derivatives
ϕ′

1(0), ϕ′
2(0), ψ′

1(0), ψ′
2(0) exist, and that ψ′

2(0) = 1. Finally, let the inequality
ϕ(ε, t) ≥ ϕ(0, 0) hold for all (ε, t) in [−ε0, ε0] × [−t0, t0] with ψ(ε, t) = ψ0.

Then the relation

(23) ϕ′
1(0) + λψ′

1(0) = 0

is satisfied for λ = −ϕ′
2(0).

Proof. The assumptions imply that there is a function η(t), −t0 ≤ t ≤ t0,
which satisfies

lim
t→0

η(t) = η(0) = 0

and
ψ2(t) = t{1 + η(t)}.

Then we choose a number δ0 with 0 < δ0 < t0
2 such that |η(2t)| < 1

2 for
|t| < δ0, and infer that

ψ2(−2t) < −t < t < ψ2(2t) for t ∈ (0, δ0).

The continuity of ψ2 now implies the relation

[−δ, δ] ⊂ ψ2([−2δ, 2δ]) for all δ ∈ (0, δ0).

We also note that limε→0 ψ1(ε) = 0 holds. Therefore we can find a number
ε1 with 0 < ε1 ≤ ε0 such that |ψ1(ε)| < δ0 is satisfied for each ε ∈ [−ε1, ε1].
Consequently there exists a real-valued function τ(ε), −ε1 ≤ ε ≤ ε1, with the
properties

τ(0) = lim
ε→0

τ(ε) = 0, ψ2(τ(ε)) + ψ1(ε) = 0,

|τ(ε)| ≤ 2|ψ1(ε)| < t0,

whence also ψ(ε, τ(ε)) = ψ0 for −ε1 ≤ ε ≤ ε1. From the identities

τ(ε)
ε

=
τ(ε) − τ(0)

ε
= − ψ1(ε) − ψ1(0)

ε
· 1
1 + η(τ(ε))

for 0 < |ε| ≤ ε1 we infer that the function τ(ε) is differentiable at ε = 0, and
that

(24) τ ′(0) = lim
ε→0

τ(ε)
ε

= −ψ′
1(0).

Moreover, the minimum property

ϕ(ε, τ(ε)) ≥ ϕ(0, 0) for 0 < ε ≤ ε1
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implies the inequality

0 ≤ ϕ1(ε)
ε

+
ϕ2(τ(ε))

ε
.(25)

Suppose now that we would have τ(ε) ≡ 0 on some interval (0, ε′], where
0 < ε′ ≤ ε1. Then we obtain

0 ≤ ϕ1(ε)
ε

for 0 < ε ≤ ε′

on account of (25), and therefore ϕ′
1(0) ≥ 0. By virtue of (24) we furthermore

have τ ′(0) = 0 and ψ′
1(0) = 0, whence

(26) 0 ≤ ϕ′
1(0) − ψ′

1(0)ϕ′
2(0).

If, on the other hand, there is no ε′ > 0 such that τ(ε) ≡ 0 on (0, ε′], then there
exists a sequence of numbers ε2, ε3, ε4, . . . tending to zero, with 0 < εi ≤ ε′

for i ≥ 2 and τ(εi) �= 0. Set τi = τ(εi). We then infer from (25) that

0 ≤ ϕ1(εi)
εi

+
ϕ2(τi)

τi
· τi

εi
, i = 2, 3, 4, . . . ,

holds. For i → ∞ we once again arrive at the inequality (26) which thus is
established. Similarly we can verify the opposite inequality

0 ≥ ϕ′
1(0) − ψ′

1(0)ϕ′
2(0),

and the Lemma is proved. �

In order to apply the previous lemma, we will introduce the class F(C+)
of test functions defined in the following way:

A function ζ is said to be of class F(C+) if it lies in C1(B, R3), and if
there are a point w0 ∈ C+ and a number r ∈ (0, 1) such that ∂B ∩ Br(w0) is
contained in the open arc C+ and that ζ(w) = 0 for all w ∈ B \ Br/2(w0).

Lemma 3. Suppose that (2) holds and that X is a mapping of class C(Γ, L)
which satisfies the assumptions of Theorem 1. Then there exists some ζ ∈
F(C+) such that

(27)
∫

C+
|Xθ | −1〈Xθ, ζθ 〉 dθ = 1.

Proof. It clearly suffices to establish the existence of some ζ ∈ F(C+) for
which the integral in (27) is nonzero. To this end, let us suppose that the
integral vanishes for all ζ ∈ F(C+). Then, by DuBois–Reymond’s lemma,
there would exist a unit vector e ∈ R

3 such that

|Xθ(1, θ)| −1Xθ(1, θ) = e
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for almost all θ ∈ (0, π). Hence X(C+) would be contained in some straight
line L, and since X : ∂B → R

3 is a continuous mapping, L would have to be
the straight line connecting the two points P1 and P2. Applying the reflection
principle we could extend X analytically and as a minimal surface across C+.
Hence X is real analytic on B ∪ C+ and possesses at most denumerably many
isolated branch points on C+. Then we infer from the equation

Xθ(1, θ) = |Xθ(1, θ)|e for all θ ∈ (0, π)

that X(1, θ) yields a strictly monotonic mapping of [0, π] onto the straight
segment on L with the endpoints P1 and P2, whence we would get

L =
∫

C+
|dX| = |P1 − P2|.

But this contradicts the assumption required in (2). �

Lemma 4. Suppose that (2) holds and that X ∈ C(Γ, L) satisfies the assump-
tions of Theorem 1. Then X is a stationary solution of the thread problem
with respect to the arc C+ = {eiθ : 0 < θ < π}.

Proof. By Lemma 3 there is a test function ζ ∈ F(C+) such that (27)
holds. By definition of F(C+), there exist w0 ∈ C+ and r ∈ (0, 1) such that
ζ(w) vanishes for all w ∈ B\Br/2(w0) and that the closed arc γ := ∂B∩Br(w0)
is contained in C+. Then C+ \ γ consists of two non-empty open arcs C1 and
C2. We first want to show that X is a stationary solution of the thread prob-
lem with respect to C1 as well as to C2. Since the reasoning will be the same
for both arcs, it suffices to verify the assertion for, say, C1.

Firstly, the assumptions of Theorem 1 imply that

DB(X) < ∞,

∫

∂B

|dX| < ∞, and X(w) �≡ const.

Secondly we have to prove that

(28)
∫

B

〈∇X, ∇ξ〉r dr dθ + λ1

∫

C1

〈|Xθ | −1Xθ, ξθ 〉 dθ = 0

holds for some real number λ1 �= 0 and for all ξ ∈ C1(B, R3) that vanish on
∂B \ C1.

Clearly, it suffices to verify (28) for all ξ ∈ C1
c (B ∪ C1, R

3). We shall, in
fact, see that (28) only has to be established for an even smaller class of test
functions. For this purpose, we choose some open disk B′ with the property
that ∂B ∩ B′ = C1, and that Ω := B ∩ B′ does not meet the disk Br/2(w0). By
virtue of some appropriate partition of unity, each element ξ ∈ C1

c (B ∪ C1, R
3)

can be written as the sum ξ = ξ1 +ξ2 of a function ξ1 ∈ C1
c (Ω ∪ C1, R

3) and of
another function ξ2 ∈ C1

c (B, R3). We now note that both integrals appearing
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in (28) vanish separately if ξ is of class C1
c (B, R3). Thus it remains to prove

the following:
There is some number λ1 �= 0 such that (28) holds for all test functions

ξ ∈ C1
c (Ω ∪ C1, R

3).
This will be achieved by employing Lemma 2. To this end we choose some

arbitrary ξ ∈ C1
c (Ω ∪ C1, R

3) which in the sequel is thought to be fixed, and
set

Xε,t = X + εξ + tζ, |ε| ≤ ε0, |t| ≤ t0

for some number ε0 > 0, t0 > 0. (At present, the subscripts ε and t indicate
the dependence of the 2-parameter family Xε,t on the parameters ε and t
and do, deviating from the previous way of notation, not stand for partial
derivatives.)

Let us introduce the functions

ϕ(ε, t) := DB(Xε,t), ψ(ε, t) :=
∫

C+
|dXε,t| =

∫

C+

∣∣∣∣
d

dθ
Xε,t(1, θ)

∣∣∣∣ dθ

of (ε, t) ∈ [−ε0, ε0] × [−t0, t0]. Then we have the representations

ϕ(ε, t) = ϕ0 + ϕ1(ε) + ϕ2(t), ψ(ε, t) = ψ0 + ψ1(ε) + ψ2(t),

where we have set

ϕ0 := DB(X), ψ0 :=
∫

C+
|Xθ(1, θ)| dθ,

ϕ1(ε) := DΩ(X + εξ) − DΩ(X), ϕ2(t) := DΩ0(X + tζ) − DΩ0(X),
Ω := B ∩ Br/2(w0),

ψ1(ε) :=
∫

C1

|Xθ + εξθ | dθ −
∫

C1

|Xθ | dθ,

ψ2(t) :=
∫

γ

|Xθ + tζθ | dθ −
∫

γ

|Xθ | dθ.

(We now have once again used: Xθ = ∂
∂θX, etc.) The functions ϕ1 and ϕ2 are

quadratic polynomials, and clearly

0 = ϕ1(0) = ϕ2(0) = ψ1(0) = ψ2(0).

Moreover, the function ψ2(t) is continuous on [−t0, t0]. We also claim that the
derivatives ψ′

1(0) and ψ′
2(0) exist. In fact, the formula a2 − b2 = (a+ b)(a − b)

yields
1
ε

{ |Xθ + εξθ | − |Xθ | } = f(ε) + g(ε),

where

f(ε) =
2〈Xθ, ξθ 〉

|Xθ + εξθ | + |Xθ | , g(ε) =
ε|ξθ |2

|Xθ + εξθ | + |Xθ | .
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Hence we infer that

|f(ε)| ≤ 2|ξθ |, |g(ε)| ≤ |ξθ | a.e. on C+

and for |ε| > 0. By Lebesgue’s theorem on dominated convergence the deriva-
tives ψ′

1(0) and ψ′
2(0) exist, and

ψ′
1(0) =

∫

C1

|Xθ | −1〈Xθ, ξθ 〉 dθ, ψ′
2(0) =

∫

C+
|Xθ | −1〈Xθ, ζθ 〉 dθ = 1.(29)

Thus the assumptions of Lemma 2 are satisfied, and we obtain

ϕ′
1(0) + λ1ψ

′
1(0) = 0, where λ1 = −ϕ′

2(0).

On the other hand, we infer from (29) and from

ϕ1(ε) = ε

∫

Ω

〈∇X, ∇ξ〉r dr dθ +
ε2

2
DΩ(ξ)

that (28) is true for an arbitrarily chosen ξ ∈ C1
c (Ω ∪ C1, R

3), and hence (28)
holds for all ξ ∈ C1(B, R3) that vanish on ∂B \ C1. Because of the equivalence
of relations (10) and (12) we conclude that

(30) X∗ = λ1|Xθ | −1Xθ + P1

holds a.e. on C1 for some constant vector P1 ∈ R
3. If λ1 = 0, we would

get X∗ = P1; i.e. X∗
θ (1, θ) = 0 a.e on C1, and this contradicts Lemma 1,

(iv). Hence we have indeed λ1 �= 0, and it is proved that X is a stationary
solution of the thread problem with respect to C1 (and to C2). By Theorem 2,
the mappings X and X∗ are real analytic on B ∪ C1 ∪ C2 and have at most
isolated branch points.

In order to complete the proof of Lemma 4 we now assume w.l.o.g. that
C1 = {eiθ : 0 < θ < θ1} for some θ1 ∈ (0, π). Then we introduce the two arcs

γ1 = {eiθ : 0 < θ < 1
2θ1}, γ2 = {eiθ : 1

2θ1 < θ < π}.

Let us choose two disks B1 and B2 with centers outside of B such that γ1 =
∂B ∩ B1, γ2 = ∂B ∩ B2, and that the open sets Ω1 = B ∩ B1 and Ω2 = B ∩ B2

are disjoint. We claim that there is a function ζ1 ∈ C1
c (Ω1 ∪ γ1, R

3) such that
∫

γ1

|Xθ | −1

〈
Xθ,

∂ζ1

∂θ

〉
dθ = 1.

Otherwise we would have

|Xθ | −1Xθ = const on γ1,

whence by (30) X∗(1, θ) = const for 0 < θ < 1
2θ1, i.e. X∗

r = X∗
θ = 0 on γ1.

This would be impossible since the branch points of X∗ on γ1 are isolated. In
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addition, we choose an arbitrary function ξ ∈ C1
c (Ω2 ∪ γ2, R

3). Then we apply
the previous reasoning to the 2-parameter family

Xε,t = X + εξ + tζ1, |ε| ≤ ε0, |t| ≤ t0.

By the same arguments as before we can establish the existence of a constant
vector P ∈ R

3 and of a number λ ∈ R, λ �= 0, such that

(31) X∗ = λ|Xθ | −1Xθ + P

holds on γ2, and we also know that X and X∗ are real analytic on B ∪ γ2. On
the other hand, equation (30) is satisfied on C1. Since

C1 ∩ γ2 = {eiθ : 1
2θ1 < θ < θ1},

we may infer that λ = λ1 and P = P1. Thus we have proved that X and X∗

are real analytic on B ∪ C+, and that (31) is satisfied on all of C+. This in
turn yields

∫

B

〈∇X, ∇ξ〉r dr dθ + λ

∫

C+
〈|Xθ | −1Xθ, ξθ 〉 dθ = 0

for all ξ ∈ C1(B, R3) with ξ = 0 on ∂B \ C+, and Lemma 4 is proved. �

Resuming the results of Theorem 2 and of the Lemmata 2–4, we see that
all assertions of Theorem 1 are proved, except for the claim that Σ is a
regular curve. The proof of this fact will be sketched in the third and last
part of our discussion. We shall proceed by proving that no minimizer X
can have branch points of even order on C+. Recall that branch points of
odd order were already excluded in Theorem 2; they cannot even occur for
stationary solutions of the thread problem. On the other hand, stationary
solutions may very well possess branch points of even order, as we have noted
in Remark 1. Thus we now really have to employ the minimizing property
of X if we wish to exclude branch points of even order. In what follows we
shall describe some of the main ideas that lead to the exclusion of true branch
points of even order for minimizers X. For this we use some of the reasoning
of Gulliver–Lesley and of Osserman [12]. The impossibility of false branch
points of even order will not be discussed since we have already described the
pertinent ideas in Section 1.9. For further information and for filling in all
details we refer the reader to the Scholia of Chapter 6 (see Section 6.4).

It will be convenient to choose the parameter domain of any minimizer X
as the semi-disk.

B = {w = u + iv : |w| < 1, v > 0},

and C+, C− will be replaced by

C = {w = u + iv : |w| = 1, v ≥ 0}
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and
I = {u ∈ R : |u| < 1}.

We now assume that X : C → R
3 yields a monotonic parametrization of Γ ,

and X : I → R
3 describes the free trace of X, i.e., its movable part Σ of the

boundary. It follows from the previous discussion that X can be continued
analytically as a minimal surface across I. Let u0 be an arbitrary branch
point of even order for X with u0 ∈ I. We want to show that the existence of
such a branch point contradicts the minimizing property of X.

Without loss of generality we can assume that u0 = 0 and that X(0) = 0
because we can always transform u = u0 into u = 0 by a conformal self-
mapping of B that keeps the points u = ±1 fixed, and X(0) = 0 can be
achieved by a suitable translation of R

3. Performing an appropriate rotation
of R

3, we can also accomplish the asymptotic representation

x(w) + iy(w) = awm+1 + O(|w|m+2), a �= 0,

z(w) = O(|w|m+2)

for the Cartesian coordinates x(w), y(w), z(w) of X(w) in the neighbourhood
of w = 0, where a denotes some positive constant and m = 2ν, ν ≥ 1, is the
order of the branch point w = 0. By a suitable scaling it can also be arranged
that

x(w) + iy(w) = wm+1 + O(|w|m+2),
z(w) = O(|w|m+2)

holds true for w → 0. Because of the power-series expansion of X(w) at w = 0
we may write

x(w) + iy(w) = wm+1 + σ(w),
z(w) = ψ(w),(32)

∇kσ(w), ∇kψ(w) = O(|w|m+2−k) for 0 ≤ k ≤ 2

with m = 2ν > 0.
We will now show that this representation can be simplified even further.

Lemma 5. Let X : BR(0) → R
3 be a minimal surface with the representation

(32) at w = 0. Then there exist two neighbourhoods U, V of 0 in BR(0), a
function ϕ ∈ C2(V ) with

∇kϕ(w) = O(|w|m+2−k) for 0 ≤ k ≤ 2

and a C1-diffeomorphism F : U → V of U onto V such that the formulas

x(w) + iy(w) = Fm+1(w),
(33)

z(w) = ϕ(F (w))

hold true for w ∈ U.
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(Note that we use the complex notation ω = F (w) ∈ C; thus ωm+1 is the
(m + 1)-th power of ω.)

Proof. Define
F (w) := w{1 + w−m−1σ(w)}1/(m+1)

on a sufficiently small neighbourhood of w = 0. Because of σ(w) = O(|w|m+2),
this definition is meaningful if we choose the (m+1)-th root to be one at w = 0.
Moreover, we have

lim
w→0

F (w)
w

= 1.

Hence ∇F (0) exists, and ∇F (0) = id. Moreover, we have

(Du + iDv)F (w) = 1 + o(1) as w → 0,

whence
∇F (w) → ∇F (0) as w → 0,

and this implies F ∈ C1. By the inverse function theorem, there exists a C1-
inverse f of F on a neighbourhood V of the origin; set U := f(V ). Since
F ∈ C2(U \ {0}), we see that f ∈ C2(V \ {0}), and it is not difficult to prove
that

∇2F (w) = o(|w| −1).

In order to be able to use the summation convention, we write w = u + iv =
u1 + iu2, u1 = u, u2 = v. Then the identity

fα(F (w)) = uα, α = 1, 2,

implies
fα

,β(F (w))F β
,γ(w) = δα

γ in U,

that is,
fα

,β(w̃)F β
,γ(f(w̃)) = δα

γ in V.

Moreover, we obtain

fα
,βσF β

,γ(f) + fα
,βF β

,γτ (f)fτ
,σ = 0 in V \ {0}.

Multiplying this identity by fγ
ρ we infer

fα
,ρσ = −F β

,γτfτ
,σfα

,βfγ
,ρ

whence we derive that

∇2f(w̃) = o(|w̃| −1) as w̃ → 0, w̃ = F (w).

Now we define ϕ : V → R by ϕ(w̃) = ψ(f(w̃)). Then ϕ is a well defined
function of class C1(V ) ∩ C2(V \ {0}) which satisfies
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(34) ϕ,α = ψ,γfγ
,α in V

and

(35) ϕ,αβ = ψ,γρf
ρ
,βfγ

,α + ψ,γfγ
,αβ in V \ {0}.

The assumptions of the lemma in conjunction with (34) imply that ∇ϕ =
O(|w|m+1). Thus ∇2ϕ(0) exists and is equal to zero. On the other hand,
we infer from (35) that ∇2ϕ(w̃) = O(|w̃|m) holds. Altogether we arrive at
ϕ ∈ C2(V), and the lemma is proved. �

Lemma 5 permits the introduction of a new independent variable w̃ =
F (w) ∈ V such that X = (x, y, z) can be written as

x(w̃) + iy(w̃) = w̃m+1

for w̃ ∈ V,(36)
z(w̃) = ϕ(w̃)

where ϕ ∈ C2(V) and ∇kϕ(w̃) = O(|w̃|m+2−k) for 0 ≤ k ≤ 2. (The reader
will excuse the sloppy notation X(w̃) for the transformed surface; actually we
should write X(F −1(w̃)).)

Now we want to describe some local properties of the function ϕ which
appears in the representation formula (36).

Lemma 6. Let ϕ be the function that appears in (36), and let w = u1 + iu2.
Then we obtain

Dα

{
ϕuα√

1 + c−2| ∇ϕ|2

}
= 0 on V,(37)

where c(w) := (m + 1)|w|m, w = u1 + iu2.

(Here, we were even more careless and renamed w̃ as w. Thus the reader
should bear in mind that X(w) actually means the transformed surface
X(F −1(w̃)). The advantage of our sloppiness is that the following formulas
become less cumbersome to read.)

Proof. From (361) we see that every point p ∈ V \ {0} has a neighbourhood
V1(p) which is mapped in a regular way onto a neighbourhood V2 in the x, y-
plane. We write x1 = x, x2 = y. On V2 the function ϕ(u1, u2) obtains a new
representation ψ(x1, x2), i.e.,

ϕ(u1, u2) = ψ(x1, x2).

As X is a minimal surface, we infer that

z = ψ(x1, x2)

provides a nonparametric representation of this minimal surface. Therefore
ψ(x1,x2) must satisfy the minimal surface equation
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Dα

⎧
⎨

⎩
ψxα√

1 + ψ2
x1 + ψ2

x2

⎫
⎬

⎭ = 0 in V2.

From ϕ(w) = ψ(Re wm, Im wm), we conclude by a straightforward computa-
tion that (37) holds in V1 and therefore also in V \ {0}.

Now we claim that
√

1 + c−2| ∇ϕ|2 is of class C1(V ). In fact, let λα :=
c−1ϕuα . Then we see that λα(w) = O(|w|), whence we can extend λα(w) in
a continuous way to V by setting λα(0) = 0. It follows that λα(w)λβ(w) =
O(|w|2), and therefore ∇(λαλβ)(0) = 0. Finally we derive from

λα,β = ϕ,αβ c−1 − c−2ϕ,α c,β = O(1)

that ∇(λαλβ) = O(|w|), whence λαλβ ∈ C1(V ). This concludes the proof
of (37). �

It follows from the representation (36) that selfintersections of X occur
at points which are images of points w ∈ V with ϕ(w) = ϕ(ηjw) where η
denotes some primitive (m + 1)-th root of unity, and j �≡ 0 mod(m + 1).
Note that ϕ∗(w) := ϕ(ηw) again satisfies (37). Hence the difference Φ(w) :=
ϕ(w) − ϕ∗(w) is a solution of a linear elliptic differential equation. To be
precise, we have

Lemma 7. The difference function Φ satisfies

(38) {aαβ(w)Φuα }uβ = 0 in V,

where aαβ is of class C1(V ) and uniformly elliptic on V, and aαβ(0) = δαβ.

Proof. Set Tα(w, q) := qα/
√

1 + c−2(w)|q|2 with |q|2 = qαqα, and observe
that

Tα(w, ∇ϕ∗) − Tα(w, ∇ϕ) =
∫ 1

0

d

dt
Tα(w, t∇ϕ∗ + (1 − t)∇ϕ) dt

=
(∫ 1

0

Tα,qβ
(w, t∇ϕ∗ + (1 − t)∇ϕ) dt

)
Φuβ .

Then one sees that the assertion follows for

aαβ(w) :=
∫ 1

0

Tα,qβ
(w, t∇ϕ∗(w) + (1 − t)∇ϕ(w)) dt. �

It will be useful to obtain an asymptotic representation for the difference
function Φ. This can be achieved by the technique of Hartman and Wintner
(cf. Section 3.1), which yields the following alternative:

Either Φ(w) ≡ 0, or there exists some integer n ≥ 1 and some number
a ∈ C, a �= 0, such that

Φu1 − iΦu2 = awn−1 + ρ(w)(39)

holds with ρ(w) = o(|w|n−1) as w → 0.
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Integrating (39), we arrive at

Φ(w) = Re
{a

n
wn

}
+ σ(w),

(40)
σu1(w) − iσu2(w) = ρ(w), σ(w) = o(|w|n) as w → 0.

Applying once again the reasoning used in the proof of Lemma 5 we obtain
the existence of some diffeomorphism T defined on some open disk BR(0) such
that

(41) Φ(w) = Re Tn(w),

and that T (0) = 0 and T ′(0) �= 0 hold.
Then we derive from the alternative above the following result:

Proposition 1. Let X : B ∪ I → R
3 denote some solution of the thread prob-

lem, and suppose that 0 ∈ I is a branch point of X of order m = 2ν. Further-
more, let ϕ, ϕ∗, Φ and T be the mappings which we have defined before. Then
there exists some neighbourhood V0 of the origin 0 in C =̂ R

2 such that the
following alternative holds true:

(i) Either X| V0 can be reparametrized in such a way that it becomes an
immersed surface,

(ii) or else, there exist two simple C1-arcs γ1, γ2 : [0, ε] → V0 ∩ B with
γj(0) = 0, |γ′

j(0)| = 1, γ′
1(0) �= γ′

2(0), X(γ1(t)) = X(γ2(t)) for all t ∈ [0, ε]
and such that the vectors Xu(γ1(t)) ∧ Xv(γ1(t)) and Xu(γ2(t)) ∧ Xv(γ2(t)) are
linearly independent for all t ∈ [0, ε].

Proof. Suppose first that Φ(w) ≡ 0. Then, as in Lemma 5, we can show that
(i) holds with V0 = U. In fact, the system (36) assigns to each w̃ ∈ V or to
each w ∈ U a unique point X(w) = (x1(w), x2(w), x3(w)), and the surface X
may locally be written as x3 = ψ(x1, x2) with ψ(x1, x2) = ϕ(w̃), w̃ = F (w)
and ψ ∈ C1 since Dϕ(w̃) = O(|w̃|m+1).

Now we want to settle the case Φ(w) �≡ 0 using the expansion (40). We
note that n ≥ m+2 since Φ(w) = O(|w|m+2). Since m = 2ν ≥ 2, we find that
n ≥ 4. Define V0 := F −1(BR(0)) with a sufficiently small number R > 0, and
consider the mapping T ◦ F : V0 → C which is conformal at the origin. Let
ζ := T ◦ F (w), and denote by Rj , 1 ≤ j ≤ 2n, the 2n rays in the ζ-plane which
emanate from ζ = 0 and are defined by Re ζn = 0. The rays Rj correspond
to 2n curves γj in V0 via the mapping T ◦ F . Moreover, since n ≥ 4, at least
one of the curves γj meets the positive real axis at an angle which is between
0 and π/3. We can assume that γj(t) is such an arc, and we can also assume
that t is the parameter of arc length along γ1. Then we have

0 = Φ(F ◦ γ1(t)) = ϕ(F ◦ γ1(t)) − ϕ(ηF ◦ γ1(t)).

Setting γ2(t) := F −1 ◦ (ηF ◦ γ1(t)), we arrive at X ◦ γ1(t) = X ◦ γ2(t).
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Moreover, because of conformality, γ2(t) hits the positive real axis under an
angle which is strictly between π/3 and π/3+ 2π

m+1 < π. For sufficiently small
ε > 0, the mappings γ1 and γ2 will map [0, ε] into V0 ∩B. Since Φ describes the
difference of two branches of X and because of (41), it immediately follows that
the two surface normals along γ1 and γ2 respectively are linearly independent.

�

Let us now recall the definition of true and false branch points given in
Section 1.9.

Definition. The branch point w = 0 of the minimal surface X(w) is called
a false branch point if case (i) holds true; otherwise w = 0 is called a true
branch point.

Concerning true branch points, we shall prove:

Proposition 2. If X : B → R
3 is a solution of the thread problem, then there

are no true branch points on the interval I = {u ∈ R : |u| < 1}, which is
mapped by X onto the movable boundary Σ.

Proof. We first recall that X not only minimizes Dirichlet’s integral within
C(Γ, L) but also the area functional

AB(X) =
∫

B

|Xu ∧ Xv | du dv;

cf. Theorem 4 of Section 5.2.

We may again assume that the true branch point w ∈ I under considera-
tion is the point w = 0.

Choose a neighbourhood W of 0 in C such that W ∩ B is diffeomor-
phic to B. Suppose that the curves γ1 and γ2 first leave W at γ1(2δ) and
γ2(2δ) transversally to ∂W. Moreover, let h : W ∩ B → B be some C1-
diffeomorphism under consideration which, in addition, maps ∂W ∩ B onto
∂B \ I and W ∩ I onto I. Furthermore we may assume that

h ◦ γ1(t) =
t

δ
ξ, h ◦ γ2(t) = − t

δ
ξ

for 0 ≤ t ≤ 2δ, where ξ ∈ C denotes some number with |ξ| = 1
2 .

It is now possible to construct a mapping G : B → B with the following
properties:

(I) G is continuous and one-to-one on B \ [0, i
2 ];

(II) G|∂B = id|∂B ;
(III) For ζ ∈ C with Re ζ > 0 and 0 ≤ t < 1, the following relations are

fulfilled:

lim
ζ→0

G

(
i

4
(1 ± t) + ζ

)
= (1 − t)ξ,
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Fig. 3.

lim
ζ→0

G

(
i

4
(1 ± t) − ζ

)
= −(1 − t)ξ;

(IV) G is piecewise C1 and extends to a C1-diffeomorphism on each edge of
the slit [0, i

2 ].

We refrain from constructing G explicitly by formulas; Fig. 3 describes the
topological action of G.

Now we define a comparison function X∗ : B → R
3 by

X∗(w) :=
{

X(w) for w ∈ B \ W,
(X ◦ h−1 ◦ G ◦ h)(w) for w ∈ W.

It is clear that X∗ ∈ C(Γ, L) and that AB(X) = AB(X∗). Hence X∗ minimizes
AB(X) within C(Γ, L). This leads to a contradiction, since any point w0 ∈ W

satisfying h(w0) ∈ (0, i
2 ] possesses some neighbourhood which is mapped onto

a surface with two portions intersecting along X(γ1). In view of (ii) this surface
has an edge, and by “smoothing out” one can construct from X∗ a new surface
X∗ ∗ ∈ C(Γ, L) with AB(X∗ ∗) < AB(X∗) = AB(X), a contradiction to the
minimizing property of X. �

To exclude false branch points we assume that X|∂B is an embedding
of ∂B into R

3. The pertinent reasoning is sketched in Section 4.7 of Vol. 1.
A detailed discussion can be found in the paper of Gulliver, Osserman, and
Royden [1].

By these remarks we conclude the proof of Theorem 1. �

5.4 Scholia

1. The existence of solutions of the thread problem in its simplest form was
first proved by H.W. Alt [3]. Except for minor modifications we have presented
Alt’s existence proof in Section 5.2. Without any changes the proof can be
carried over to 2-dimensional surfaces in R

N , N ≥ 2. A different proof has
been given by K. Ecker [1], using methods of geometric measure theory; it
even works for the analogue of the thread problem concerning n-dimensional
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surfaces in R
N . In the framework of integral currents, Ecker has proved the

existence of a minimizer, the movable boundary of which has prescribed mass.
2. It seems to have been known for a long time that the unattached part

of the movable boundary Σ consists of space curves of constant curvature; cf.
van der Mensbrugghe [1], Otto [1]. A satisfactory proof was given by Nitsche
[21] under the assumption that the free part of Σ is known to be regular and
smooth; cf. also Nitsche [28], pp. 435–437 and pp. 706–707.

3. The first results concerning the boundary regularity of solutions for the
thread problem were found by Nitsche [23–25]. He proved that the open com-
ponents of the non-attached part of the movable boundary have a parametriza-
tion of class C2,α, for some α ∈ (0, 1). Between branch points (the existence
of which was not excluded by Nitsche) these parametrizations turn out to be
of class C∞.

The sharper regularity results, presented in Section 5.3, and their proofs
are taken from Dierkes, Hildebrandt, and Lewy [1]. We have quite closely
followed the presentation given in their paper.

4. By completely different techniques, K. Ecker [1] has established C∞-
regularity of the free part of the movable boundary Σ in the context of his
integral-current solutions; the analyticity is in this case still an open question.

5. It is not known whether the thread of the solution constructed in Sec-
tion 10.2 can have self-intersections; we are tempted to conjecture that this
cannot occur. In the context of rectifiable flat chains modulo 2 this was in
fact proved by R. Pilz [1]. He showed that the free boundary of a minimizer
of this kind has no singular points in R

3 \ Γ , Γ being the fixed part of the
boundary.

6. Alt [3] has also proved that the movable arc Σ must always lift off Γ
in a tangential way whenever it adheres to Γ in a subarc of positive length
provided that Γ is supposed to be smooth.

7. As Alt [3] has pointed out, all pieces of the movable boundary Σ not
attached to Γ have the same constant curvature κ. This can easily be proved
by the reasoning given in the proofs of Lemmata 2–4 of Section 5.3.

8. In excluding branch points on the free parts of Σ we have used arguments
of Gulliver and Lesley [1] and of Gulliver, Osserman, and Royden [1]. This part
of our reasoning is restricted to R

3 and cannot be carried over to R
n, n ≥ 4,

according to an example by Federer [2].
9. A new existence proof for the thread problem was given by E. Kuwert

in Section 4 of his Habilitationsschrift [5], pp. 51–52. This proof is a by-
product of Kuwert’s work on the minimization of Dirichlet’s integral D(X)
among surfaces X : B → R

n whose boundary curves X
∣∣
∂B

represent a given
homotopy class α of free loops in a closed configuration S ⊂ R

n. We refer to
the Scholia of Chapter 1 in this volume and to Kuwert [6,7].

10. Recently, the thread problem was anew studied by B.K. Stephens [1–
3]. In Section 2 of [1], a new proof of Alt’s theorem is given, and Section 3
presents two quantitative bounds on the nearness of minimizers to the wire in
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the case that the thread length L is not much less than the length �(Γ ) of the
wire Γ : Suppose that κmax is a bound on the curvature of Γ , and let 0 < λ � 1
(relative to the C3-data of Γ ). Then there is a constant R(Γ, λ) > 0 with the
following property: If X is a minimizer of P(Γ, �(Γ ) − λ), then the image M
of X lies in a “normal R(Γ, λ)-neighbourhood of Γ” whose radius is estimated
by

R(Γ, λ) ≤ 2λ1/2/(πκmax)1/2 + o(λ1/2),

and the area of M is bounded by

A(M) ≤ λ/κmax + o(λ1/2).

Consider now the situation studied in Theorem 1 of Section 5.3 (cf. also Fig. 2
of 5.3), and as Stephens [2], call minimizers of this kind “crescents”. In [2],
several geometric properties of “near-wire crescents” are proved. For instance,
the representation of such a crescent X as a graph of a Lipschitz function f
with Lip(f) ≤ const(Γ )R1/12 is established if X lies in an R-tubular neigh-
bourhood of Γ , 0 < R � 1. The main tool is a sophisticated generalization of
a result due to Radó (see Vol. 1, Section 4.9, Lemma 2), which Stephens calls
“Free Radó Lemma”, as it is an adjustment of the original Radó Lemma to
the situation available in the thread-problem case.
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