
Chapter 4

Enclosure and Existence Theorems for Minimal
Surfaces and H-Surfaces. Isoperimetric
Inequalities

In this chapter we shall discuss certain quantitative geometric properties of
minimal surfaces and surfaces of prescribed mean curvature.

We begin by deriving enclosure theorems. Such results give statements
about the confinement of minimal surfaces to certain “enclosing sets” on the
basis that one knows something about the position of their boundaries. For
example, any minimal surface is contained in the convex hull of its boundary
values. All of our results will in one way or another be founded on some version
of the maximum principle for subharmonic functions.

Closely related to these theorems are nonexistence theorems for multiply
connected surfaces. Everyone who has played with wires and soap films will
have noticed that a soap film catenoid between two coaxial parallel circles
will be torn up if one moves the two wires too far apart. Section 4.1 supplies
a very simple proof of the corresponding mathematical assertion which again
relies on the maximum principle for subharmonic functions.

A comparison principle for solutions of the equation of prescribed mean
curvature is employed in the study of points where two (parametric) surfaces of
continuous mean curvature H (“H-surfaces” for short) touch without crossing
each other. The resulting touching point theorem (Section 4.2) implies further
enclosure and nonexistence theorems. Since the proofs are nearly identical
for minimal surfaces (where H ≡ 0) and for surfaces of continuous mean
curvature H, we shall deal with the latter.

We have chosen to extend these principles to submanifolds of arbitrary
dimension and, if possible, of arbitrary codimension as well (Section 4.3).
In Section 4.4 we discuss a “barrier principle” for submanifolds of R

n+k with
bounded mean curvature and arbitrary codimension k. Furthermore, a similar
argument is used to prove a “geometric inclusion principle” for strong (pos-
sibly branched) subsolutions of a variational inequality, which is later used
(Section 4.7) in a crucial way to solve the Plateau problem for H-surfaces
in Euclidean space. Additionally we present some existence theorems for sur-
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faces of prescribed mean curvature with a given boundary in a Riemannian
manifold (Section 4.8).

The enclosure theorems of this chapter also serve to find conditions en-
suring that the solutions of the free (Chapter 1) or semifree (Chapter 4 of
Vol. 1) variational problems for minimal surfaces remain on one side of their
supporting surface. Only such solutions describe the soap films produced in
experiments because these can evidently never pass through a supporting
surface made of e.g. plexiglas, whereas in general we cannot exclude this phe-
nomenon for the solutions of the corresponding variational problems (unless
we consider problems with obstructions; see Vol. 1, Section 4.10, no. 5).

Moreover, if the minimal surface remains on one side of the supporting
surface, then there are no branch points on the free boundary, as follows from
the asymptotic expansions in Chapter 3 (see also Section 2.10). This will be
of importance for some of the trace estimates proved in Section 4.6.

The two Sections 4.5 and 4.6 deal with the relationship between the area
of a minimal surface and the length of its boundary. In particular, isoperimet-
ric inequalities bound the area in terms of the length of the boundary and,
possibly, of other geometric quantities. It is a surprising fact that minimal
surfaces satisfy the same isoperimetric inequalities as a planar domain Ω for
which the relation

4πA ≤ L2

holds true, A being the area of Ω and L the length of ∂Ω.
In Section 4.6 we shall derive upper and lower bounds for the length L(Σ)

of the free trace Σ of a stationary minimal surface X in a semifree or a free
boundary configuration 〈Γ, S〉 or 〈S〉 respectively. These bounds will depend
on geometric quantities such as the area of X, the length of the fixed part Γof
its boundary, and of parameters bounding the curvature of the supporting
surface S. We shall close this section by discussing analogous questions for
solutions of a partition problem which turn out to be stationary surfaces X of
constant mean curvature with a free boundary on the surface S of a body U
which is partitioned by X.

4.1 Applications of the Maximum Principle
and Nonexistence of Multiply Connected Minimal
Surfaces with Prescribed Boundaries

Our first result is the prototype of an enclosure theorem; it will be obtained by
a straight-forward application of the maximum principle for harmonic func-
tions.

Theorem 1 (Convex hull theorem). Suppose that X ∈ C0(Ω,R3) ∩
C2(Ω,R3) is harmonic in a bounded and connected open set Ω ⊂ R

2. Then
X(Ω) is contained in the convex hull of its boundary values X(∂Ω).
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Proof. Let A be a constant vector in R
3. Then h(w) := 〈A,X(w)〉 is harmonic

in Ω, and we apply the maximum principle to h. Hence, if for some number
d ∈ R, the inequality

〈A,X(w)〉 ≤ d

holds true for all w ∈ ∂Ω, it is also satisfied for all w ∈ Ω. As any closed
convex set is the intersection of its supporting half-spaces, the assertion is
proved. �

Throughout this section, let us agree upon the following terminology :

A finite connected minimal surface is a nonconstant mapping

X ∈ C0(Ω,R3) ∩ C2(Ω,R3)

which is defined on the closure of a bounded, open, connected set Ω ⊂ R
2 and

satisfies

(1) ΔX = 0

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in Ω. We call Ω the parameter domain of X.

Then, on account of Theorem 1, we obtain

Corollary 1. Any finite connected minimal surface X with the parameter do-
main Ω is contained in the convex hull of its boundary values X|∂Ω, that is,

(3) X(Ω) ⊂ convex hull X(∂Ω).

In fact, we can sharpen this statement by inspecting the proof of Theo-
rem 1. Suppose that

h(w0) := 〈A,X(w0)〉 = d

holds for some w0 ∈ Ω, in addition to

h(w) ≤ d for all w ∈ ∂Ω.

Then the maximum principle implies

h(w) = d for all w ∈ Ω.

Thus we obtain

Corollary 2. If a finite connected minimal surface X with the parameter do-
main Ω touches the convex hull K of its boundary values X(∂Ω) at some
“interior point” X(w0), w0 ∈ Ω, then X is a planar surface. In particular, X
cannot touch any corner of ∂K nor any other nonplanar point of ∂K.
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The reader will have noticed that, so far, we have nowhere used the con-
formality relations (2). In other words, all the previous results are even true
for harmonic mappings. Thus we may expect that by using (2) we shall ob-
tain stronger enclosure theorems which will better reflect the saddle-surface
character of nonplanar minimal surfaces. In fact, we have

Theorem 2 (Hyperboloid theorem). If X(w) = (x(w), y(w), z(w)) is a fi-
nite connected minimal surface with the parameter domain Ω, whose boundary
X(∂Ω) is contained in the hyperboloid

Kε :=
{
(x, y, z) ∈ R

3 : x2 + y2 − z2 ≤ ε2
}
,

ε > 0, then X(Ω) lies in Kε. Moreover, we even have X(Ω) ⊂ int Kε.

Proof. Note that Kε is the sublevel set

(4) Kε =
{
(x, y, z) : f(x, y, z) ≤ ε2

}

of the quadratic form

f(x, y, z) := x2 + y2 − z2.

Let us therefore compute the Laplacian of the composed map h := f ◦ X =
f(X). We obtain

(5) Δh = 〈∇X,D2f(X)∇X〉 + 〈Df(x), ΔX〉.

Because of (1) and

D2f =

⎛

⎝
2 0 0
0 2 0
0 0 −2

⎞

⎠ ,

it follows that

(6) Δh = 2(| ∇x|2 + | ∇y|2 − | ∇z|2) in Ω.

Moreover, we can write (2) in the complex form

(7) 〈Xw, Xw 〉 = 0,

that is,
x2

w + y2
w + z2

w = 0,

whence we obtain

(8) | ∇z|2 ≤ | ∇x|2 + | ∇y|2 in Ω.

From (6) and (8) we infer that

Δh ≥ 0 in Ω,
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i.e., h is subharmonic, and the assumption yields h(w) ≤ ε2 for all w ∈ ∂Ω,
taking (4) into account. Then the maximum principle implies h(w) ≤ ε2 for
all w ∈ Ω whence X(Ω) ⊂ Kε.

Suppose that X(w0) ∈ ∂Kε for some w0 ∈ Ω. Then we would have h(w0) =
ε2, and the maximum principle would imply h(w) ≡ ε2, i.e., X(w) ∈ ∂Kε for
all w ∈ Ω. As X(w) �≡ const, we know that X(w) has zero mean curvature
(except for the isolated branch points) which contradicts the relation X(Ω) ⊂
∂Kε, since no open part of ∂Kε is a minimal surface. �

Let us take one step further and assume that the boundary of the minimal
surface X is even contained in the cone

K0 =
{
(x, y, z) ∈ R

3 : f(x, y, z) ≤ 0
}

=
⋂

ε>0

Kε.

Then in view of the hyperboloid theorem the whole surface X(Ω) is contained
in the cone K0.

Can it be true that, in addition, the boundary X(∂Ω) intersects both cones

K±
0 := K0 ∩ {z ≶ 0}?

If so, then there is some w ∈ Ω such that the point X(w) of the minimal
surface lies in the vertex of the cone K0, that is, X(w0) = 0 for some w0 ∈ Ω.

On the other hand, asX(w) �≡ const, the minimal surfaceX has a (possibly
generalized) tangent plane T at X(w0) = 0; cf. Section 3.2 of Vol. 1. Clearly,
there is no neighbourhood U of 0 in R

3 such that T ∩U ⊂ K0. Then one infers
that the relation X(w0) = 0 is impossible, taking the asymptotic expansion

Xw(w) = A(w − w0)m +O(|w − w0|m+1) as w → w0

with A ∈ C
3, A �= 0, m ≥ 0, into account.

Hence, except for a suitable congruence mapping, we have shown the fol-
lowing result:

Theorem 3 (Cone theorem). Let K be a cone congruent to K0 which con-
sists of the two half-cones K+ and K− corresponding to K+

0 and K−
0 . Then

there is no finite connected minimal surface the boundary of which lies in K

and intersects both K+ and K−.

The cone theorem can be used to prove nonexistence results for Plateau
problems, or for free (or partially free) boundary value problems. Instead of
formulating a general theorem, we shall merely consider a special case that
illustrates the situation. The reader can easily set up other – and possibly
more interesting – examples, or he may himself formulate a general neces-
sary criterion for the existence of stationary minimal surfaces within a given
boundary configuration 〈Γ1, . . . , Γl, S1, . . . , Sm〉.
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Fig. 1. Two suitable cones give a nonexistence result

Consider two closed Jordan curves Γ1 and Γ2 which can be separated
by some cone K as described in Theorem 3. That is, we can move the test
cone K0 into such a position K that Γ1 lies in the half-cone K+ and Γ2 is
contained in K−. Then there is no connected solution of the general Plateau (or
Douglas) Problem for the boundary configuration 〈Γ1, Γ2〉. This corresponds
to the experimental fact mentioned in the introduction to this chapter: A soap
film spanned into two closed (non-linked) wires Γ1 and Γ2 will decompose into
two parts separately spanning Γ1 and Γ2 if Γ1 and Γ2 are moved sufficiently
far apart.

We shall show at the end of the next section that the “test cone K0 for
non-existence” may even be replaced by a slightly larger set.

Further results about enclosure and nonexistence of minimal surfaces can
be obtained by an elaboration and extension of the ideas used in the proof
of the Theorems 1–3, some of which will be worked out in the next three
sections. Note, however, that the use of the maximum principle was by no
means the first way to obtain information about the extension of minimal
surfaces and about nonexistence of solutions to boundary value problems,
though the maximum principle is certainly the simplest tool to obtain such
results. Concerning other methods we refer to Nitsche’s monograph [28], Kap.
VI, 3.1, pp. 474–498, and pp. 707–708 of the Appendix (=Anhang).

4.2 Touching H-Surfaces and Enclosure Theorems. Further
Nonexistence Results

In the sequel we shall look for other sets K enclosing any finite connected
minimal surface whose boundary is confined to K. Since nothing is gained if
we restrict our attention to minimal surfaces, we shall more generally study
surfaces of continuous mean curvature H (or “H-surfaces”).

To avoid confusion we recall our notation from Chapter 1 of Vol. 1: E, F, G

and L, M, N denote the coefficients of the first and second fundamental form
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of a surface X; H and K stand for its mean curvature and Gauss curvature
respectively.

Assumption. Throughout this section we will assume that H is a continuous
real-valued function on R

3.

Definition 1. An H-surface X is a nonconstant map X ∈ C2(Ω,R3) defined
on an open set Ω satisfying

(1) ΔX = 2H(X)Xu ∧ Xv

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

We call Ω the parameter domain of the H-surface X. An H-surface X is
said to be finite and connected if its parameter domain Ω is a bounded, open,
connected set in R

2, and if X ∈ C0(Ω,R3).

Clearly, minimal surfaces are H-surfaces with H ≡ 0.
In order to study touching H-surfaces, we need the following

Lemma 1. Suppose that Φ : Br(0) → C is a function of class C1 which can
be written in the form

(3) Φ(w) = a(w − w0)m + Ψ(w), w ∈ Br(0),

for some w0 ∈ Br(0), some real number a > 0, some integer m ≥ 1, and some
mapping Ψ : Br(0) → C with Ψ(w0) = 0 and

(4) ∇Ψ(w) = o(|w − w0|m−1) as w → w0.

Then there is some neighbourhood U of w0 and some C1-diffeomorphism ϕ
from U onto ϕ(U) such that

(5) Φ(w) = [ϕ(w)]m for all w ∈ U

holds true.

Proof. Clearly, if there exists some function ϕ satisfying (5), it has to be the
function

(6) ϕ(w) := (w − w0) m
√
χ(w),

where

(7) χ(w) = a+ (w − w0)−mΨ(w).

We shall have to prove that ϕ is well defined and has the desired properties.
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First of all, the relation (4) implies

Ψ(w) = o(|w − w0|m) as w → w0

since Ψ(w0) = 0. Therefore χ(w) tends to a as w → w0, and we set χ(w0) := a.
Hence there is a neighbourhood U0 of w0 where a single-valued branch m

√ of
the m-th root can be defined. Thus the function ϕ defined by (6) and (7) is a
well-defined function near w0.

Now (4) implies for the derivatives of χ in U0 − {w0} that

χu(w) = −m(w − w0)−m−1Ψ(w) + (w − w0)−mΨu(w) = o(|w − w0| −1),
χv(w) = −mi(w − w0)−m−1Ψ(w) + (w − w0)−mΨv(w) = o(|w − w0| −1),

whence

ϕu(w) = m
√
χ(w) +

1
m

(w − w0)χ(w)(1−m)/mχu(w)

= m
√
χ(w) + o(1),

ϕv(w) = i m
√
χ(w) +

1
m

(w − w0)χ(w)(1−m)/mχv(w)

= i m
√
χ(w) + o(1),

and therefore

lim
w→w0

Dϕ(w) =
(

m
√
a 0

0 i m
√
a

)
.

On the other hand, we have

lim
w→w0

ϕ(w)
w − w0

= lim
w→w0

m
√
χ(w) = m

√
a.

Thus ϕ is a C1-function, and the lemma follows from the inverse mapping
theorem. �

Let us now describe what we can say about touching points of two H-
surfaces, one of which is assumed to be regular.

Theorem 1. Suppose that G is a domain in R
3 and that ∂0G is an open part

of the boundary of G with ∂0G ∈ C2. Secondly let X be a finite connected
H-surface with the parameter domain Ω whose image X(Ω) lies in G ∪ ∂0G.
Finally, denoting the mean curvature of ∂0G at P with respect to the interior
normal by Λ(P ), we assume that

(8) supG |H| ≤ inf∂0GΛ

holds true. Then X(Ω) is completely contained in ∂0G if X(Ω) ∩ ∂0G is
nonempty (that is, if X(Ω) “touches” ∂0G).
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Remark 1. This is, in fact, a local result. Instead of (8), it suffices to assume
that every point P ∈ ∂0G has a neighbourhood U in G such that

(8′) supU |H| ≤ infU ∩∂0G Λ.

This remark implies the following

Enclosure Theorem I. Let G be a domain in R
3 with ∂G ∈ C2, and let H

be a continuous function on R
3 satisfying

|H(P )| < Λ(P ) for all P ∈ ∂G,

where Λ denotes again the mean curvature of ∂G with respect to the inward
normal. Then every finite connected H-surface X with the parameter domain
Ω whose image X(Ω) is confined to the closure G lies in G, i.e. X(Ω) ⊂ G.

Remark 2. Note that the condition |H(P )| ≤ Λ(P ) for all P ∈ ∂G is not
sufficient to conclude the assertion of the theorem. Indeed this follows easily
by considering a plane with Λ ≡ 0 and a paraboloid of fourth order lying on
one side of the plane and touching it in a single point.

Proof of Theorem 1. Clearly we have Ω = Ω1 ∪ Ω2 where

Ω1 := X−1(G), Ω2 := X−1(∂0G).

Since X is continuous, the set Ω1 is open. Suppose that X(Ω) touches ∂0G;
then Ω2 = Ω \ Ω1 is not empty. We show that the assumption “Ω1 �= ∅” will
lead to a contradiction.

In fact, suppose Ω1 �= ∅. Then also ∂Ω1 ∩Ω is nonempty and we can select a
point z0 ∈ Ω1 which is closer to ∂Ω1 ∩Ω than to ∂Ω. Since Ω1 is open, there is
a maximal open disc Br(z0) ⊂ Ω1 with the property w0 ∈ ∂Br(z0) ∩ ∂Ω1 ∩ Ω
for (at least) one point w0 ∈ Ω2, i.e. X(w0) = P0 ∈ ∂0G. Without loss of
generality we may suppose that w0 = 0. By the reasoning of Section 2.10, we
may assume after a suitable shift and rotation of the coordinate system that,
close to w0 = 0, the surface X(w) = (x(w), y(w), z(w)) has the asymptotic
expansion

x(w) + iy(w) = awm + o(|w|m),

z(w) = o(|w|m),

for some integer m > 0 and some a > 0. According to the preceding Lemma 1,
there is a neighbourhood U ⊂ Ω of 0 and a C1-diffeomorphism ϕ : U → ϕ(U)
such that for w ∈ U

x(w) + iy(w) = [ϕ(w)]m.

Next we choose an ε > 0 so small that the disk Bε(0) is contained in ϕ(U),
whence Bεm(0) lies in ϕm(U). Therefore all the disks

Ωε(ξ, η) = Bεm/2(ξ + iη) with ξ2 + η2 =
(
εm

2

)2

,
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which cover Bεm(0) \ {0}, are subsets of ϕm(U), and their preimages under
the mapping ϕm cover a punctured neighbourhood of 0.

Now let m
√ denote an arbitrary single-valued branch of the m-th root

defined on Ωε(ξ, η). Then

z′(x, y) := z
(
ϕ−1( m

√
x+ iy )

)

defines a C1-non-parametric representation of a part of the H-surface X,
namely the one defined on ϕ−1(m

√
Ωε(ξ, η)). For the construction to follow it

is convenient and necessary to choose Ωε(ξ, η) ⊂ Br(z0) such that w0 = 0 ∈
∂Ωε(ξ, η).

The plane {z = 0} is the (possibly “generalized”) tangent plane of X at
P0 = X(w0). Thus

(9) lim
(x,y)→0

∇z′(x, y) = 0.

Fig. 1. The domains used in the proof of Theorem 1

Since X(Ω) lies on one side of ∂0G and since X(w0) belongs to ∂0G, the set
{z = 0} is also the tangent plane of ∂0G at X(w0). Therefore (after decreasing
ε if necessary) we obtain also a local non-parametric representation of ∂0G by
means of a function

z′ ′ = z′ ′(x, y) for (x, y) ∈ Ωε(ξ, η).

By assumption, we have z′ ′ ∈ C2(Ωε(ξ, η)). If the interior normal of ∂0G at
X(w0) points in the direction of the positive z-axis, (the other case is handled
similarly), we have by assumption

(10) z′ ′ < z′ on Ωε(ξ, η), and also z′ ′(0) = z′(0).
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Since {z ≡ 0} is also the tangent plane of ∂0G at X(w0) we have

(11) lim
(x,y)→0

∇z′ ′(x, y) = ∇z′ ′(0, 0) = 0.

Moreover, z′ and z′ ′ are solutions of the corresponding equations of prescribed
mean curvature (cf. Section 2.7 of Vol. 1), i.e.,

Q(z′) := div
∇z′

√
1 + | ∇z′ |2

= ±2H(x, y, z′(x, y)),

Q(z′ ′) := div
∇z′ ′

√
1 + | ∇z′ ′ |2

= 2Λ(x, y, z′ ′(x, y))

for all (x, y) ∈ Ωε(ξ, η). By assumption, it follows that

Q(z′) ≤ Q(z′ ′) in Ωε(ξ, η).

It now readily follows from the theorem of the mean, that the difference ẑ :=
z′ ′ − z′ satisfies a linear differential inequality of the type

L(ẑ) = aij(x)Dij ẑ + bi(x)Diẑ ≥ 0 in Ωε(ξ, η),

where the coefficients bi are locally bounded and the aij ’s are elliptic (for a
similar argument see e.g. the proof of Theorem 10.1 in Gilbarg and Trudinger
[1]).

Now (9) and (11) yield that

lim
(x,y)→0

∇ẑ(x, y) = 0,

and hence also the normal derivative ∂ẑ
∂n (0, 0) = 0.

However, because of ẑ(0) = 0 > ẑ(x, y) for all (x, y) ∈ Ωε(ξ, η), the point
w0 = 0 ∈ ∂Ωε(ξ, η) is a strict maximum, which contradicts Hopf’s boundary
point lemma (Lemma 3.4 in Gilbarg and Trudinger [1]). Consequently Ω1 has
to be empty and hence Ω = Ω2 or X(Ω) ⊂ ∂0G. This completes the proof of
Theorem 1. �
Proof of Enclosure Theorem I. The condition |H(P )| < Λ(P ) for all P ∈ ∂G
clearly implies that every point P ∈ ∂G has a neighbourhood U in G, such
that

sup
U

|H| ≤ inf
U ∩∂G

Λ

holds true. Therefore a local version of Theorem 1 is applicable and we assume,
contradictory to the assertion, that some interior point w0 ∈ Ω is mapped
onto ∂G, i.e. X touches ∂G at X(w0). It then follows from Theorem 1 that
X(Ω) ⊂ ∂G. On the other hand X is an H-surface, which in particular means
that X has mean curvature H, except possibly at isolated singular points,
compare the derivation of the asymptotic expansion near branch points in
Section 2.10. Whence, by continuity, it follows that |H(P )| = Λ(P ) for all P ∈
∂G, a contradiction to the assumption of the theorem. Enclosure Theorem I
is proved. �
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The reasoning used to prove Theorems 2 and 3 in Section 4.1, may be
generalized to H-surfaces X. In fact consider the quadratic function

f(x, y, z) = x2 + y2 − bz2,

with 0 ≤ b < 1, and compute the Laplacian of the composed map h := f ◦ X.
We obtain similarly as in Theorem 2 of Section 6.1

Δh = 〈∇X,D2f(X)∇X〉 + 〈Df(X), ΔX〉.

Because of (1) and

D2f =

⎛

⎝
2 0 0
0 2 0
0 0 −2b

⎞

⎠ ,

it follows that

Δh = 2| ∇x|2 + 2| ∇y|2 − 2b| ∇z|2 + 4H(X) · 〈(x, y, −bz), Xu ∧ Xv 〉
≥ 2| ∇x|2 + 2| ∇y|2 − 2b| ∇z|2 − 4|H(X)| |Xu ∧ Xv | ·

√
x2 + y2 + b2z2.

From the conformality condition (2) we obtain

| ∇z|2 ≤ | ∇x|2 + | ∇y|2,

whence
|Xu ∧ Xv | ≤ | ∇x|2 + | ∇y|2.

Concluding we find

Δh ≥ 2| ∇x|2 + 2| ∇y|2 − 2b| ∇z|2 − 4|H(X)|
(

| ∇x|2 + | ∇y|2
)√

x2 + y2 + b2z2

≥ 2(| ∇x|2 + | ∇y|2)
[
1 − b − 2|H(X)| ·

√
x2 + y2 + b2z2

]
.

Thus we have proved

Theorem 2. Let X be an H-surface on Ω and f(x, y, z) = x2 + y2 − bz2,
0 ≤ b < 1. Then the function h = h(u, v) = f ◦ X(u, v), (u, v) ∈ Ω is
subharmonic on Ω, provided that

b+ 2|H(X)| ·
√
x2 + y2 + b2z2 ≤ 1 on Ω.

A consequence of this result and the asymptotic expansion for H-surfaces
in singular points is the following

Theorem 3 (Cone Theorem). Suppose that X ∈ C2(Ω) ∩ C0(Ω) is an
H-surface on Ω which satisfies

sup
w∈Ω

|X(w)| · |H(X(w))| = q <
1
2
.
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Then, for b = 1−2q ∈ (0, 1] the function h(u, v) = x2(u, v)+y2(u, v)−bz2(u, v)
is subharmonic on Ω and therefore by the maximum principle

sup
Ω

h ≤ sup
∂Ω

h.

Moreover let K = K+ ∪ K− ∪ {0} where

K± =
{
(x, y, z) : x2 + y2 − bz2 ≤ 0, ±z > 0

}
.

Suppose that X(∂Ω) is contained in K, such that both intersections X(∂Ω) ∩
K+ and X(∂Ω) ∩ K− are not empty; then Ω cannot be connected.

Proof. The asymptotic expansion for H-surfaces, cp. Section 2.10 and Chap-
ter 3, or the discussion in the proof of Theorem 1, imply the existence of a
tangent plane for X at every point w ∈ Ω. Hence the H-surface cannot pass
through the vertex of the cone, cp. the discussion in Section 4.1. �

For our next enclosure theorem we need some further terminology which
will allow us to give a lucid formulation of the result.

Definition 2. Let J be an interval in R. We shall say that a family of domains
in R

3, (Gα)αεJ, depends continuously on the parameter α, if for all α0 ∈ J the
symmetric difference

GαΔGα0 := (Gα ∪ Gα0) \ (Gα ∩ Gα0)

tends to ∂Gα0 as α tends to α0, i.e., if for all α0 ∈ J and all ε > 0 there is a
δ > 0 such that |α − α0| < δ implies that

GαΔGα0 ⊂ Tε(∂Gα0) := {P : dist(P, ∂Gα0) < ε} .

Definition 3. If M is a simply connected subset of an open set G in R
3,

then a family (Gα)αεJ of domains depending continuously on its parameter
α is called an enclosure of M with respect to G (or it is said: (Gα)αεJ

encloses M with respect to G) if

(i) M ⊂ Gα for all α ∈ J;
(ii) every P ∈ G \ M does not belong to at least one of the Gα;
(iii) every compact subset K of G lies in at least one of the Gα;

Here are two examples:

1 Let M be a star-shaped domain in R
3 whose boundary may be considered

as a graph of a positive real-valued function f : S2 → (0, ∞) of class C2, i.e.
we assume that

M =
{
λP : P ∈ S2 and 0 ≤ λ < f(P )

}
.

Then ∂M is the level set
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∂M =
{
P ∈ R

3 \ {0} : F (P ) = 1
}

of the function

F (P ) := |P |/f
(
P

|P |

)
for P ∈ R

3 \ {0} , F (0) := 0

satisfying F (cP ) = cF (P ) for c > 0. In particular, we have for c > 0 that

F (P ) = 1 if and only if F (cP ) = c,

i.e., the level sets of F are homothetic, hence the mean curvature of {F = 1}
at P is equal to c-times the mean curvature of {F = c} at the point cP .

Fig. 2. A star-shaped domain M , whose boundary is the graph of a smooth function

f : S2 → R defined on the unit sphere S2, is enclosed with respect to R3 by the family of

domains Gα = {αP : P ∈ M }, α > 1, which are homothetic to M

Moreover, the family

Gα := {F < α} for α > 1

defines an enclosure of M with respect to R
3.

2 Let τ = 1.199678640257 . . . be the solution of the equation τ sinh τ =
cosh τ . Then, for any c > 0, the cone

Kc :=
(
K+ ∪ {0} ∪ K−) ∩ { |z| < c}

with
K± :=

{
(x, y, z) ∈ R

3 : x2 + y2 < (sinh2 τ)z2, z ≶ 0
}

is enclosed by the domains

Kc
α := Kα ∩ { |z| < c} ,
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Kα :=
{

(x, y, z) ∈ R
3 : x2 + y2 < α2 cosh2 z

α

}
, α > 0.

Note that the Kα have catenoids, i.e. minimal surfaces, as their boundaries
∂Kα, cf. Osserman and Schiffer [1].

By the way, the angle of aperture of the cone K+ is α = arctan(sinh2 τ) =̂
56.4658 . . . degrees whereas the angle of the cone K+ appearing in the cone
theorem of Section 6.1 is 45◦.

Fig. 3. Let τ be the solution of the equation τ sinh(τ) = cosh(τ). Then the cone {x2 +y2 <

sinh2(τ)z2, |z| < c} is enclosed by the family of domains {x2 + y2 < α2 cosh2(z/α), |z| < c}
having catenoids as parts of their boundaries

Assumption. In the sequel let M be a simply connected subset of a domain G
in R

3 which possesses an enclosure (Gα)αεJ with respect to G such that each
subset ∂0Gα := G ∩ ∂Gα of ∂Gα is of class C2.

Denote by Λα the mean curvature of ∂Gα with respect to the inward
normal of ∂Gα.

Recall that H ∈ C0(R3), and suppose that we have

(12) supGα
|H| ≤ inf∂0Gα Λα

for every α ∈ J.
Under this assumption we can formulate the

Enclosure Theorem II. Let X ∈ C2(Ω) ∩ C0(Ω) be a finite connected
H-surface with the parameter domain Ω whose image X(Ω) lies in G, and
whose boundary X(∂Ω) is contained in M . Then the image X(Ω) must, in
fact, lie in M .

Proof. If X(Ω) is not contained in M , then, according to the definition of an
enclosure (Gα)α∈J, there is an α1 such that X(Ω) does not lie in Gα1 , and
an α2 (without loss of generality greater than α1) such that X(Ω) remains
in Gα2 . Therefore the number
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α0 := sup
{
α ∈ J : α < α2 and X(Ω) �⊆ Gα

}

is well defined and finite. We shall presently show that

(I) X(Ω) ⊂ Gα0 ∪ ∂0Gα0 ,

(II) X(Ω) ∩ ∂0Gα0 �= ∅.

Then, on account of Theorem 1, we obtain that X(Ω) lies in ∂0Gα0 ; in par-
ticular, X(∂Ω) is confined to ∂Gα0 . This contradicts the assumption that

X(∂Ω) ⊂ M ⊂ Gα0 .

Now, as for (I), let us assume that for some w ∈ Ω, the point X(w) lies at a
distance d > 0 from Gα0 . Then the continuity of the family Gα with respect
to α implies that, for some small ε > 0, the point X(w) is not contained in
Gα0+ε either. This, however, contradicts the definition of α0.

Fig. 4. A simply connected set M which has an enclosure Gα as shown before with respect

to an open set G, and an H-surface X whose image X(Ω) is confined to G and whose

boundary even lies in the smaller set M . If the H-surface would satisfy the curvature

condition of the enclosure theorem II, then all of X(Ω) would remain in M

As for (II), since X(Ω) is contained in G, it will suffice to show that X(Ω)
does not lie in Gα0 . Otherwise, as follows from the compactness of X(Ω), we
have

d′ := dist
(
X(Ω), ∂0Gα0

)
> 0,

which also implies that α0 is not the supremum since, once again, in view of
the continuity of Gα with respect to α, the set X(Ω) lies in Gα0−ε for some
small ε > 0. �

As an illustrative application of the last enclosure theorem, we have the
following

Enclosure Theorem III. Let f : S2 → (0, ∞) be some C2-function on S2,
and let F : R

3 → (0, ∞) be its homogeneous extension to R
3 defined by
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F (0) := 0 and F (P ) := |P |/f( P
|P | ) for P �= 0. Denote by M the star-shaped

domain {F < 1} and assume that the mean curvature of ∂M with respect
to the inward normal is everywhere nonnegative. Then every connected finite
minimal surface X with the parameter domain Ω satisfies X(Ω) ⊂ M if we
assume that X(∂Ω) ⊂ M and if the intersection of X(∂Ω) with M is nonvoid.

This result follows from Theorem 1 and from the remarks about Example
1 in connection with the Enclosure Theorem II. Instead of going into the

details we shall state a nonexistence result that follows from the Enclosure
Theorem III; it can be proved like the nonexistence result in Section 4.1.

Nonexistence Theorem. Assume that M , G, Gα satisfy the assumptions
stated above, and suppose in addition that there are finitely many points
P1, . . . , Pm in M such that M \ {P1, . . . , Pm} decomposes into n ≥ 2 sim-
ply connected components M1, . . . ,Mn. Then there is no finite connected H-
surface with a parameter domain Ω which has the following properties:

(i) X(Ω) ⊂ G;
(ii) X(∂Ω) ⊂ M ;
(iii) X(∂Ω) intersects at least two of the components M1, . . . ,Mn.

Applying the last theorem to Example 2 , we obtain the following im-
provement of the cone theorem of Section 4.1:

Corollary 1. Set

K± :=
{
(x, y, z) ∈ R

3 : z ≶ 0 and x2 + y2 < z2 sinh2 τ
}
,

where τ = 1.199678640257 . . . is a solution of the equation

τ sinh τ = cosh τ,

and define K by
K := K+ ∪ {0} ∪ K−.

Then there is no connected finite minimal surface with boundary which inter-
sects both K+ and K−.

This “nonexistence test-cone” K cannot be further increased as one can
see by means of catenoids between suitable circles as boundary curves, see
Fig. 1 in the introduction of this chapter.

4.3 Minimal Submanifolds and Submanifolds of Bounded
Mean Curvature. An Optimal Nonexistence Result

It is the aim of this section to generalize the results of Sections 4.1 and 4.2
to higher dimensions and codimensions. To accomplish this, we first define
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a concept of n-dimensional surfaces or submanifolds in R
n+k. It turns out

that, for the present purpose, it is not necessary to develop the complete
differential geometric notion of submanifolds in arbitrary ambient manifolds,
as e.g. described in Gromoll, Klingenberg, and Meyer [1], do Carmo [3], Jost
[18] and Kühnel [2], but rather the more elementary concepts of submanifolds
in R

n+k (although later in Section 4.8 we shall also treat surfaces of prescribed
mean curvature in Riemannian manifolds). We start with the following

Definition 1. A subset M ⊂ R
n+k is called an n-dimensional submanifold

of class Cs, if for each x ∈ M there are open neighbourhoods U , V ⊂ R
n+k

of x and 0 in R
n+k respectively, and a Cs-diffeomorphism ϕ : V → U , such

that ϕ(0) = x and ϕ(V ∩ R
n × {0}) = U ∩ M . Here ϕ|V ∩Rn × {0} is a local

parametrization and ϕ−1 is called a local chart for M . In case that k = 1,
M ⊂ R

n+1 is also called a hypersurface (of class Cs).

Given M , x and ϕ as in Definition 1 we have

Definition 2. The tangent space TxM of M at x is the n-dimensional linear
subspace of Rn+k which is spanned by the independent vectors ϕx1(0), . . . ,
ϕxn(0).

One easily convinces oneself that the tangent space TxM is given by all
vectors ξ = α̇(0), where α : (−ε, ε) → M is a regular curve in M with
α(0) = x. That is we have

Proposition 1. The tangent space of M at x is given by

TxM =
{
α̇(0) : α : (−ε, ε) → M is a regular curve with α(0) = x

}
.

Now consider a function f : M → R
m. One way of defining differentiability

of f is to consider all possible compositions of f with parametrizations ϕ and
to requiring the composition f ◦ ϕ : V ∩ R

n × {0} → R
m to be differentiable,

see e.g. Chapter 1. Here we define differentiability somewhat different (but
equivalently)

Definition 3. Let M ⊂ R
n+k be a submanifold of class Cs and f : M → R

m.
f is differentiable of class Cr, r ≤ s, if there exists an open subset U ⊂ R

n+k

with M ⊂ U and a Cr-function F : U → R
m such that f = F |M .

In other words, f : M → R
m is differentiable, if it is the restriction of a

differentiable map from an open set U ⊂ R
n+k. Of particular interest are the

cases m = 1 (scalar functions) and m = n+ k (vector fields). If f : M → R is
differentiable we define the (intrinsic) gradient of f as follows

Definition 4. The gradient of f on M , in symbols ∇Mf , is defined by ∇Mf =
(Df)�, where Df = (fx1 , . . . , fxn+k) denotes the usual (Euclidean) gradient
and (ξ)� stands for the orthogonal projection of the vector ξ ∈ R

n+k onto
the tangent space of M at x. (Note that here and in the discussion to follow
we tacitly assume, that f coincides with its differentiable extension F , cp.
Definition 3).
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Definition 5. The normal space of M at x is given by

TxM
⊥ := {n ∈ Rn+k : 〈n, t〉 = 0 for all t ∈ TxM}.

Here 〈·, · 〉 denotes the Euclidean scalar product in R
n+k.

Let N1, . . . , Nk be an orthonormal basis of TxM
⊥. Then we obtain ∇Mf =

Df − 〈Df,N1〉N1 − · · · − 〈Df,Nk 〉Nk, for the intrinsic gradient of a function
f : M → R.

Equivalently we now consider an orthonormal basis t1, . . . , tn of the tan-
gent space TxM ⊂ R

n+k and an arbitrary vector t ∈ TxM . Recall that the
directional derivative Dtf of f : M → R

m at x in the direction of t is given
by

Dtf(x) :=
d

dε
f(α(ε))ε=0,

where
α : (−δ, δ) → M

is a regular curve in M with α(0) = x and α′(0) = t. It is easily seen, that
this definition is meaningful (i.e. independent of the particular curve α), and
furthermore we have by the chain rule

Dtf(x) = Df(x) · t.

Definition 6. Let f : M → R
m be differentiable. The differential df(x) of f

at x is the linear map df(x) : TxM → R
m

t �→ df(x)(t) := Dtf(x).

In fact, it follows immediately from the definition that df(x) is linear.
Observe now that the gradient of f : M → R is equivalently given by

(1) ∇Mf = (Dt1f)t1 + · · · + (Dtnf)tn =
n∑

i=1

(Dtif)ti,

for any orthonormal basis t1, . . . , tn of TxM . Then equation (1) easily follows
from the previous relation by multiplication with the basis vectors t1, . . . , tn
respectively.

Note that (1) is already meaningful for functions f : M → R which are
merely defined on M , whereas Definition 4 assumes f to be defined (locally)
on an open neighbourhood of M , however we shall not dwell on this.

The next important notion is that of the divergence on M .

Definition 7. Let X : M → R
n+k

X(x) = (X1(x), . . . , Xn+k(x))
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be a differentiable function on a differentiable submanifold M ⊂ R
n+k, i.e.

a—not necessarily tangential—vector field on M . The divergence divMX of
X on M is given by

div MX =
n∑

i=1

〈ti, DtiX〉,

where t1, . . . , tn ∈ TxM is an orthonormal basis of the tangent space TxM .

We observe here that the definition of div M is independent of the partic-
ular orthonormal basis t1, . . . , tn of the tangent space TxM . To see this we
compute

n∑

i=1

〈ti, dX(ti)〉 =
n∑

i=1

〈ti, DtiX〉 =
n∑

i=1

〈

ti, Dti

(
n+k∑

j=1

ej X
j

)〉

=
n∑

i=1

〈

ti,

n+k∑

j=1

ej DtiX
j

〉

=
n∑

i=1

n+k∑

j=1

〈ti, ej DtiX
j 〉

=
n+k∑

j=1

〈

ej ,

n∑

i=1

(DtiX
j)ti

〉

=
n+k∑

j=1

〈ej , ∇MXj 〉

by equation (1), where e1, . . . , en+k denotes the canonical basis of R
n+k and

∇MXj is the gradient of the j-th component Xj of the vector field X on M .
For later computations we note here

Proposition 2. Let X(x) = (X1(x), . . . , Xn+k(x)) be a differentiable vector
field on M . Then the divergence of X on M is given by the relation

divMX =
n+k∑

j=1

〈ej , ∇MXj 〉,

where e1, . . . , en+k stands for the canonical basis of R
n+k.

The next important operator is the Laplace–Beltrami operator.

Definition 8. For f : M → R of class C2 we put ΔMf := div M (∇Mf).
Then ΔM is called the Laplacian on M or Laplace–Beltrami operator.

Note that ΔM coincides with the Laplace–Beltrami operator on a surface
X given in Chapter 1.5 of Vol. 1, equations (15) and (16). Observe also that
ΔM is an elliptic operator on M ; this will be used later in this section when
we compute the Laplacian of a certain quadratic form.

Finally we have to introduce some curvature quantities for the submani-
fold M . To this end we choose an orthonormal basis t1, . . . , tn of TxM , which
together with an orthonormal basis N1, . . . , Nk of the normal space TxM

⊥

forms an orthonormal basis of R
n+k.
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Let us initially assume that the codimension k is equal to 1, so that (up
to a sign) there is only one unit normal N = N1. Consider N = N(x) as a
function of x ∈ M and assume that N(·) is differentiable, which is true if
M ∈ C2. We then define the Weingarten map (cp. Section 1.2 of Vol. 1) of
M at x ∈ M to be the linear map

−dN(x) : TxM → R
n+1 defined by t �→ −dN(x)(t) = −DtN(x),

where Dt denotes the derivative in the direction of t. Because of |N |2 = 1 it
easily follows that −dN(x) is a linear map from TxM into itself.

The second fundamental form II = IIx(·, ·) of M at x with respect to
N is defined to be the bilinear form

II : TxM × TxM → R with
(t, τ) �−→ IIx(t, τ) := −〈dN(t), τ〉 = −〈DtN, τ〉,

where 〈·, · 〉 denotes the scalar product in R
n+1 and N = N(x). It is conve-

nient to consider also the bilinear map Ax(t, τ) := IIx(t, τ) · N , which—by a
slight abuse of notation—is again called the second fundamental form of M .
Observe that for every x ∈ M the bilinear maps Ax : TxM × TxM → TxM

⊥

and IIx : TxM ×TxM → R are symmetric, and that −dN(x) : TxM → TxM is
a symmetric endomorphism field. To see this, consider a mapping Φ : Bε(0) ⊂
R

2 → M ⊂ R
n+1 such that Φ(0, 0) = x, Φx1(0, 0) = t, Φx2(0, 0) = τ . Differen-

tiating the identities
〈Φx1 , N〉 = 0 = 〈Φx2 , N〉

and putting x1 = x2 = 0, we infer 〈Φx1x2(0, 0), N〉 + 〈t,DτN〉 = 0 and
〈Φx1x2(0, 0), N〉 + 〈τ,DtN〉 = 0, whence

IIx(t, τ) = −〈DtN, τ〉 = 〈Φx1x2(0, 0), N〉(2)
= −〈DτN, t〉 = IIx(τ, t).

Similarly

Ax(t, τ) = Ax(τ, t) = 〈Φx1x2(0, 0), N〉 · N = [Φx1x2(0, 0)]⊥,

where ξ⊥ stands for the orthogonal projection of the vector ξ ∈ R
n+1 onto

the normal space TxM
⊥.

As in the case of surfaces in R
3 we define the principal directions of M at

x to be the unit eigenvectors of the Weingarten map

−dN = −dN(x) : TxM → TxM

and the principal curvatures λ1, . . . , λn to be the corresponding eigenvalues.
Note that there is an orthonormal basis of TxM consisting of principal di-
rections. Also, if t1, . . . , tn ∈ TxM are orthonormal principal directions, then
obviously the matrix
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bij := IIx(ti, tj) = diag(λ1, . . . , λn).

More generally, we conclude from a discussion similar to the one in Section 1.2
of Vol. 1, that the principal curvatures are the eigenvalues of the matrix G−1B,
where

B = (bij)i,j=1,...,n, bij := IIx(ξi, ξj),
G = (gij)i,j=1,...,n, gij := 〈ξi, ξj 〉,

and ξ1, . . . , ξn ∈ TxM denotes an arbitrary basis of the tangent space TxM . In
particular, the principal curvatures are eigenvalues of the symmetric matrix
bij = IIx(ti, tj) for any orthonormal basis t1, . . . , tn of TxM .

Another description of the principal curvatures might also be of interest:
Suppose that near a point x ∈ M , the manifold M is locally defined by
a smooth function ϕ : Bε(0) ⊂ R

n → R, xn+1 = ϕ(x1, . . . , xn) and that
e1, . . . , en are principal directions corresponding to the curvatures λ1, . . . , λn.
Such a coordinate system is called a principal coordinate system. Without loss
of generality assume that x = 0, i.e. ϕ(0) = 0, Dϕ(0) = 0 or N(0) = en+1.
It is not difficult to see that M can locally be represented in this way. Now
consider the mapping

Φ : Bε(0) ⊂ R
n → M ⊂ R

n+1

given by Φ(x1, . . . , xn) := (x1, . . . , xn, ϕ(x1, . . . , xn)), i.e. Φ is a local para-
metrization of M . By arguments similar to those leading to equation (2) we
infer

D2ϕ(0) = (ϕxixj (0))i,j=1,...,n = IIx(ei, ej) = bij = diag(λ1, . . . , λn),

since e1, . . . , en are principal directions at x = 0.
Using the elementary symmetric functions of n variables σ1, . . . , σn, it is

now possible to define corresponding curvature quantities Kj by putting

Kj(x) :=
1

(n
j )
σj(λ1, . . . , λn).

The cases j = 1 and j = n deserve special attention: The mean curvature H
and the Gauß(–Kronecker) curvature K are defined by

H(x) := K1(x) =
1
n

(λ1 + · · · + λn), and

K(x) := Kn(x) = λ1 · · · · · λn

corresponding to the elementary symmetric functions σ1 and σn.
In other words we have

H(x) =
1
n

trace(G−1B) =
1
n

n∑

j,k=1

gjkbjk and

(3)
K(x) = det(G−1B) =

det B
det G

,
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where

B = (bij)i,j=1,...,n, bij = IIx(ξi, ξj),
G = (gij)i,j=1,...,n, gij = 〈ξi, ξj 〉, G−1 = (gij)i,j=1,...,n

and ξ1, . . . , ξn stand for a basis of the tangent space TxM . Therefore the
mean curvature is (up to the factor 1

n ) just the trace of the Weingarten map
−dN(x), or—equivalently—of the second fundamental form IIx.

For arbitrary codimension k > 1 it is not possible to define principal
directions and curvatures. However we can define principal curvatures and
directions with respect to a given normal Nj , j = 1, . . . , k, and a corresponding
second fundamental form, but we shall not dwell on this here (for a further
discussion see e.g. Spivak [1]).

Instead we define for arbitrary k ≥ 1 and M ⊂ R
n+k the second funda-

mental form of M at x as the bilinear form Ax : TxM × TxM → TxM
⊥ given

by Ax(t, τ) = −
∑k

j=1〈dNj(t), τ〉Nj(x).
Arguments similar to those mentioned above prove that Ax(·, ·) is a sym-

metric bilinear form.
Motivated by the foregoing discussion, in particular relation (3), we define

the mean curvature vector
⇀

H of M at x to be 1
n traceAx, i.e.

(4)
⇀

H(x) :=
1
n

n∑

i=1

Ax(ti, ti),

where t1, . . . , tn ∈ TxM is some orthonormal basis.
In the codimension one case we obtain for the mean curvature vector

⇀

H(x) =
1
n

n∑

i=1

Ax(ti, ti) = −
n∑

i=1

〈dN(ti), ti〉N(5)

=
1
n

(
n∑

i=1

IIx(ti, ti)

)

N(x) =
(by (3))

H(x)N(x),

where H(x) is the mean curvature of M at x with respect to the normal
N(= N1).

We are thus led to

Definition 9. An n-dimensional C2-submanifold M ⊂ R
n+k is called mini-

mal submanifold, if and only if
⇀

H = 0 on M .

A different expression for
⇀

H is obtained as follows:

⇀

H(x) =
1
n

n∑

i=1

Ax(ti, ti) = − 1
n

n∑

i=1

k∑

j=1

〈dNj(ti), ti〉Nj

= − 1
n

k∑

j=1

n∑

i=1

〈DtiNj , ti〉Nj = − 1
n

k∑

j=1

(div MNj)Nj ,

taking Definition 7 into account. Thus we obtain
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Proposition 3. Let M ⊂ R
n+k be an n-dimensional C2-submanifold of R

n+k

and N1, . . . , Nk be an orthonormal basis of the normal space TxM
⊥. Then the

mean curvature vector
⇀

H =
⇀

H(x) of M at x is given by

(6)
⇀

H(x) = − 1
n

k∑

j=1

(divMNj)Nj .

Remark 1. The mean curvature vector
⇀

H is independent of the particular
choice of the (local) orthonormal fields t1, . . . , tn and N1, . . . , Nk; in particular
independent of the orientation of M .

Remark 2. Using equations (5) and (6) we infer for hypersurfaces the relation

(7) H(x) = − 1
n

divMN,

where the mean curvature H corresponds to the unit normal N of M .

We should point out here, that (7) also leads to an alternative proof of the
Theorem in Section 2.7 of Vol. 1. In fact, suppose that M is the level surface
of some regular function

S : G ⊂ R
n+1 → R,

say M = {x ∈ G : S(x) = c}, c ∈ R, and N(x) = ∇S(x)
|∇S(x)| denotes a unit

normal field along M . Then we claim that

(8) H(x) = − 1
n

divN(x),

where ∇ and div denote the Euclidean gradient and divergence respectively.

Proof of (8). With Definition 4 and Proposition 2 we find for the divergence
of N(x) on M the expression

(9) div MN(x) =
n+1∑

j=1

〈ej , ∇MN j 〉 =
n+1∑

j=1

〈
ej , ∇N j − 〈 ∇N j , N〉 · N

〉
,

where we have put N = (N1, . . . , Nn+1). On the other hand by taking partial
derivatives ∂

∂xi we infer from |N |2 = 1, the relation 〈N, ∂N
∂xi 〉 = 0 for any

i = 1, . . . , n+ 1, or

(10)
n+1∑

j=1

N j(x)
∂N j

∂xi
= 0 for i = 1, . . . , n+ 1.

Now we get by (10)
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n+1∑

j=1

〈
ej , 〈∇N j , N〉 · N

〉
=

n+1∑

j=1

〈∇N j , N〉N j =
n+1∑

j=1

n+1∑

i=1

(
∂N j

∂xi
· N i

)
N j

=
n+1∑

i=1

n+1∑

j=1

(
∂N j

∂xi
N j

)
N i = 0.

Therefore (9) yields

divMN(x) =
n+1∑

j=1

〈ej , ∇N j 〉 =
n+1∑

j=1

∂N j

∂xj
= divN(x).

This proves (cf. Vol. 1, Section 2.7, Theorem)

Proposition 4. If G is a domain in R
n+1, and if S is a function of class

C2(G) such that ∇S(x) �= 0 on G, then the mean curvature H(x) of the level
hypersurface Fc = {x ∈ G;S(x) = c} passing through x ∈ G with respect to
the unit normal field N(x) = | ∇S(x)| −1∇S(x) of Fc is given by the equation

H(x) = − 1
n

divN(x).

Proposition 4 also permits to carry over the Schwarz–Weierstraß field the-
ory for two-dimensional minimal surfaces to R

n+1; compare the discussion
in Section 2.8 of Vol. 1. By essentially the same arguments, using Gauss’s
theorem, we derive

Theorem 1. A C2-family of embedded hypersurfaces Fc covering a domain
G in R

n+1 is a Mayer family of minimal submanifolds if and only if its nor-
mal field is divergence free. Such a foliation by minimal submanifolds is area
minimizing in the following sense:

(i) Let F be a piece of some of the minimal leaves Fc with F � G. Then we
have

Area(F) =
∫

F

dA ≤
∫

S

dA = Area(S)

for each C1-hypersurface S contained in G with ∂F = ∂S.
(ii) (“Kneser’s transversality Theorem”): Let T be a hypersurface in G which,

in all of its points, is tangent to the normal field of the minimal foliation,
and suppose that T cuts out of each leaf Fc some piece F∗

c whose boundary
∂Fc lies on T . Then we have

∫

F∗
c1

dA =
∫

F∗
c2

dA

for all admissible parameter values c1 and c2, and secondly
∫

Fc

dA ≤
∫

S

dA
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for all C1-hypersurfaces S contained in G whose boundary ∂S is homolo-
gous to ∂F on T .

We remark here that a result similar to—but more general than—Theo-
rem 1 has been used by Bombieri, De Giorgi and Giusti [1] to show that the
seven-dimensional “Simons-cone”

C = {(x, y) ∈ R
4 × R

4 : |x|2 = |y|2}

is area minimizing in a very general sense. Indeed they were able to construct
a foliation of R

8 consisting of smooth minimal hypersurfaces and the singular
minimal cone C. This was also the first example of an area-minimizing bound-
ary in R

n+1 with an interior singularity, namely the origin, which dashed the
hope to prove interior regularity of area minimizing boundaries in arbitrary
dimensions.

The divergence theorem for a C2-compact manifold M ⊂ R
n+k with

smooth boundary ∂M = M \ M states that for any C1-vector field X : M →
R

n+k the identity
∫

M

divM X dA = −n

∫

M

X ·
⇀

H dA+
∫

∂M

X · ν dA

holds where ν denotes the exterior unit normal field to ∂M which is tan-
gent to M along ∂M . Here

⇀

H = − 1
n

∑k
i=1(divM Ni)Ni denotes the mean

curvature vector and integration over ∂M is with respect to the standard
(n − 1)-dimensional area measure (or, equivalently, (n − 1)-dimensional Haus-
dorff measure Hn−1).

In particular, if X is a tangential vector field, i.e. X(x) ∈ TxM for each
x ∈ M or if M is minimal, then we have the formula

∫

M

divM X dA =
∫

∂M

X · ν dA.

Similarly, if X has compact support, or if ∂M = ∅, then the divergence theo-
rem yields

∫

M

divM X dA = −n

∫

M

X ·
⇀

H dA,

and finally
∫

M

divM X dA = 0,

if X is a compactly supported, tangential vector field on M .

Remark 3. It can be shown that M ⊂ R
n+k is stationary for the n-

dimensional area functional, if and only if
⇀

H ≡ 0; see Vol. 3, Section 3.2,
for details.
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Remark 4. Some authors use traceAx – instead of 1
n traceAx – as a definition

of the mean curvature vector. This clearly is irrelevant when working with
minimal submanifolds; but it is of importance when

⇀

H �≡ 0.

Next we shall derive a generalization of Theorem 1 in Section 2.5 of Vol. 1
(compare also Theorem 1 in Vol. 1, Section 2.6). To accomplish this we sim-
ply compute the Laplace (–Beltrami) operator of the vector field X(x) = x.
Assuming that M ⊂ R

n+k is an n-dimensional submanifold of class C2, we
find for the gradient of X on M the expression

∇MXi = ∇Mxi = ei − 〈N1, ei〉N1 − · · · − 〈Nk, ei〉Nk,

i = 1, . . . , n + k, where e1, . . . , en+k stands for the canonical basis of R
n+k.

Applying divM to this relation we obtain the identity

ΔMxi = divM (∇Mxi) = −〈N1, ei〉div MN1 − · · · − 〈Nk, ei〉div MNk

= −
k∑

j=1

〈Nj , ei〉div MNj ,

since
〈

∇M 〈Nj , ei〉, Nj

〉
= 0, ∀i, j.

Thus we have for i = 1, . . . , n+ k

ΔM (〈x, ei〉) = −
k∑

j=1

〈Nj , ei〉div MNj = −ei

⎛

⎝
k∑

j=1

Nj · div MNj

⎞

⎠ .

By Proposition 3 this implies ΔMxi = n · Hi, where
⇀

H = (H1, . . . , Hn+k) is
the mean curvature vector of M . Thus we have proved

Theorem 2. Let M ⊂ R
n+k be an n-dimensional C2-submanifold. Then the

position vector x fulfills the identity

ΔMx = n
⇀

H .

Corollary 1. M ⊂ R
n+k is a minimal submanifold, if and only if ΔMx = 0

holds on M .

A straight-forward application of the maximum principle for harmonic
functions yields the following enclosure results (cp. Theorem 1 in Section 4.1
for the case n = 2, k = 1 and its proof).

Corollary 2 (Convex hull theorem). Let M ⊂ R
n+k be a compact n-

dimensional minimal submanifold. Then M is contained in the convex hull
K of its boundary ∂M . Moreover if M touches the convex hull K at some
interior point, then M is part of a plane. In particular there is no compact
minimal submanifold M without boundary.
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We now consider the possibility of obtaining polynomials p which are sub-
harmonic functions on M , i.e. which satisfy

ΔMp ≥ 0 on M if H = 0.

To achieve this, we define for any j = 1, . . . , n − 1 a quadratic function pj =
pj(x1, . . . , xn+k) by

pj(x) :=
n+k−j∑

i=1

|xi|2 − (n − j)
j

n+k∑

i=n+k−j+1

|xi|2.

Note that for n = 2, j = k = 1, we recover the polynomial considered in
Theorem 2 of Section 4.1.

We have the following

Theorem 3. Let M ⊂ R
n+k be an n-dimensional minimal submanifold of

class C2. Then for each j = 1, . . . , n − 1 the quadratic form pj(·) is a subhar-
monic function on M .

Proof. Fixing j ∈ {1, . . . , n − 1} we set P := pj and compute the Laplace–
Beltrami expression ΔMP as follows:

1
2
ΔMP =

1
2

div M (∇MP )

=
1
2
div M

{
2x1∇Mx1 + · · · + 2xn+k−j ∇Mxn+k−j

− (n − j)
j

[
2xn+k−j+1∇Mxn+k−j+1 + · · · + 2xn+k ∇Mxn+k

]}

= | ∇Mx1|2 + · · · + | ∇Mxn+k−j |2 + x1ΔMx1 + · · · + xn+k−jΔMxn+k−j

− (n − j)
j

[
| ∇Mxn+k−j+1|2 + · · · + | ∇xn+k |2

+ xn+k−j+1ΔMxn+k−j+1 + · · · + xn+kΔMxn+k
]
.

Since M is minimal this gives

1
2
ΔMP =

n+k−j∑

s=1

| ∇Mxs|2 − n − j

j

j∑

s=1

| ∇Mxn+k−j+s|2.

To compute the terms | ∇Mxi|2 we denote by P : R
n+k → TxM the orthogonal

projection of R
n+k onto the tangent space TxM . Let (pij)i,j=1,...,n+k stand

for the matrix of P with respect to the canonical basis e1, . . . , en+k of R
n+k.

Then we have (by Definition 4)
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∇xi = P(ei) =
n+k∑

l=1

pliel and

| ∇Mxi|2 =

(
n+k∑

l=1

pliel

)⎛

⎝
n+k∑

j=1

pjiej

⎞

⎠

=
n+k∑

l,j=1

plipjielej =
n+k∑

j=1

p2
ji.

Since P is a projection we clearly have pij = pji and P = P2, whence

pij =
n+k∑

l=1

pilplj ,

in particular

pii =
n+k∑

j=1

p2
ij = | ∇Mxi|2.

Again, since P is a projection, all eigenvalues are either equal to one or zero
and the sum of the eigenvalues is equal to n:

trace P =
n+k∑

i=1

pii =
n+k∑

i=1

| ∇Mxi|2 = n.

Concluding we find for 1
2 ΔMP the estimate

1
2
ΔMP =

n+k−j∑

s=1

| ∇Mxs|2 − n − j

j

j∑

s=1

| ∇Mxn+k−j+s|2

=
n+k−j∑

s=1

pss − n − j

j

j∑

s=1

pn+k−j+s,n+k−j+s

=
n+k∑

s=1

pss −
n+k∑

s=n+k−j+1

pss − n − j

j

j∑

s=1

pn+k−j+s,n+k−j+s

≥ trace P − j − (n − j)
≥ n − j − (n − j) = 0. �

Remark 5. Clearly, for any j ≥ n and n + k − j ≥ 1 the polynomials pj are
trivially subharmonic on M , since − (n−j)

j ≥ 0 in this case.

Again, by a straight-forward application of maximum principle we obtain

Corollary 3. Suppose M ⊂ R
n+k is a minimal submanifold with boundary

∂M contained in a body congruent to
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Hj(ε) :=
{

(x1, . . . , xn+k) ∈ R
n+k : pj(x1, . . . , xn+k) ≤ ε

}
,

for any ε ∈ R. Then M ⊂ Hj(ε), j = 1, . . . , n − 1.

In this Corollary one can take j = 1 obtaining “nonexistence cones” for
any dimension n and any codimension k. In other words we consider the cones
Cn+k = C+

n+k ∪ C−
n+k ∪ {0} defined by

C±
n+k :=

{

(x1, . . . , xn+k) ∈ R
n+k : ±xn+k > 0, and

n+k−1∑

i=1

|xi|2 ≤ (n − 1)|xn+k |2
}

=
{
x ∈ R

n+k : ±xn+k > 0 and p1(x) ≤ 0
}
.

Theorem 4. Let C ⊂ R
n+k be a cone with vertex P0 which is congruent to

Cn+k and let C± denote the two disjoint parts which correspond to C±
n+k. Then

there is no connected, compact, n-dimensional minimal submanifold M ⊂
R

n+k with ∂M ⊂ C such that both ∂M ∩ C+ and ∂M ∩ C− are nonempty.

Proof. By performing a rotation and translation we may assume without loss
of generality that C = Cn+k. Suppose on the contrary that there is a minimal
M satisfying the assumptions of Theorem 4. By Theorem 3 we obtain the
inequality

ΔM

[
n+k−1∑

i=1

|xi|2 − (n − 1)|xn+k |2
]

≥ 0

and by the hypothesis of Theorem 4 we have
[

n+k−1∑

i=1

|xi|2 − (n − 1)|xn+k |2
]

∣
∣
∣
∂M

≤ 0.

The maximum principle yields
[

n+k−1∑

i=1

|xi|2 − (n − 1)|xn+k |2
]

∣
∣
∣
M

≤ 0,

or equivalently, M ⊂ Cn+k. Since M is connected and ∂M ∩ C+
n+k �= ∅,

∂M ∩ C−
n+k �= ∅, M must contain the vertex 0 of the cone, which clearly

contradicts the manifold property of M . �

We remark that Theorem 4 may be used to derive necessary conditions
for the existence of compact, connected minimal submanifolds with several
boundary components.
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Corollary 4 (Necessary Condition). Let B1, B2 ⊂ R
n+k be closed sets

and suppose there exists an n-dimensional compact, connected minimal sub-
manifold M ⊂ R

n+k with ∂M ⊂ B1 ∪ B2 and that both ∂M ∩ B1 �= φ and
∂M ∩ B2 �= φ. Then we have:

(i) If Bi, i = 1, 2 are closed balls with centers xi and radii δi and R :=
|x1 − x2|, then

R ≤
(

n

n − 1

) 1
2

(δ1 + δ2).

(ii) If B1 and B2 are arbitrary compact sets of diameters d1 and d2 which are
separated by a slab of width r > 0, then

r ≤ 1
2

(
2n(n+ k)

(n − 1)(n+ k + 1)

) 1
2

(d1 + d2). �

Next we consider arbitrary n-dimensional submanifolds M ⊂ R
n+k with

mean curvature vector
⇀

H. According to Theorem 2 we have the identity

ΔMx = n
⇀

H,

and by Proposition 3,

⇀

H(x) = − 1
n

k∑

j=1

(divMNj)Nj

for an arbitrary orthonormal basis N1, . . . , Nk ∈ R
n+k of the normal space

TxM
⊥.

Let H1, . . . , Hk be the components of
⇀

H with respect to that basis
N1, . . . , Nk i.e.

H = H1N1 + · · · +HkNk, or

Hi = − 1
n

divMNi for i = 1, . . . , k,

and put

p(x) :=
n+k−j∑

i=1

|xi|2 − (n − j)
j

b

n+k∑

i=n+k−j+1

|xi|2,

where b ∈ R and j = 1, . . . , n − 1. Defining rj and sj by

rj(x) :=
n+k−j∑

i=1

|xi|2 and sj(x) :=
n+k∑

i=n+k−j+1

|xi|2

we obtain
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p(x) = rj(x) − (n − j)
j

bsj(x).

By the same arguments as in the proof of Theorem 3 we conclude

1
2
ΔMp =

n+k−j∑

i=1

xiΔMxi − b
(n − j)

j

n+k∑

i=n+k−j+1

xiΔMxi

+
n+k−j∑

i=1

| ∇Mxi|2 − b
(n − j)

j

n+k∑

i=n+k−j+1

| ∇Mxi|2

≥ n

〈
⇀

H,

(
x1, . . . , xn+k−1, −b

(n − j)
j

xn+k−j+1, . . . , −b
(n − j)

j
xn+k

)〉

+ (n − j)(1 − b)

≥ −n|
⇀

H |
[
rj +

b2(n − j)2

j2
sj

] 1
2

+ (n − j)(1 − b), by Schwarz’s inequality.

Finally we obtain the estimate

1
2
ΔMp ≥ (n − j)

{

(1 − b) − n|
⇀

H |
[

rj

(n − j)2
+
b2

j2
sj

] 1
2
}

.

Thus we have proved:

Theorem 5. Let M ⊂ R
n+k be an n-dimensional submanifold with mean

curvature vector
⇀

H = H1N1 + · · · + HkNk, 0 ≤ b ≤ 1, 1 ≤ j ≤ n − 1 and
p(x) =

∑n+k−j
i=1 |xi|2 − (n−j)

j b
∑n+k

i=n+k−j+1 |xi|2 = rj(x) − (n−j)
j bsj(x). Then

p(x) is subharmonic on M , if

(11) b+ n|
⇀

H |
[

rj(x)
(n − j)2

+
b2

j2
sj(x)

]1/2

≤ 1

holds true, where
|

⇀

H | = (|H1|2 + · · · + |Hk |2)1/2. �

Observe that (11) is satisfied for example if

(12) q := sup
x∈M

|x| |
⇀

H(x)| < 1
n

and b := 1 − n q.

Corollary 5. Suppose that condition (12) holds true. Then for any j =
1, . . . , n − 1 the quadratic polynomial p(x) = rj(x) − ( (n−j)

j ) bsj(x) is sub-
harmonic on M . Therefore, if M is compact the estimate supM p ≤ sup∂M p
is fulfilled. In particular, if K := K+ ∪ {0} ∪ K−, where K± :=

{
x ∈ R

n+k :
∑n+k−1

i=1 |xi|2 − (n − 1)(1 − nq)|xn+k |2 ≤ 0, ±xn+k > 0
}

and ∂M ⊂ K such
that both ∂M ∩K+ and ∂M ∩K− are nonempty, then M cannot be connected.
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Alternatively, (11) is fulfilled provided

(13) q := sup
M

|x| |
⇀

H(x)| < n − j

n
,

and b := min( 1
n−1 , 1 − n q

n−j ).

Corollary 6. Suppose that (13) holds for some j = 1, . . . , n − 1. Then p(x) =
rj(x) − b(n−j)

j . sj(x) is subharmonic on M . In particular, if this holds with

j = 1 then there is no connected compact submanifold with mean curvature
⇀

H
which satisfies ∂M ⊂ K and ∂M ∩ K+ �= ∅, and ∂M ∩ K− �= ∅, where

K = K+ ∪ {0} ∪ K− and

K± :=

{

x ∈ R
n+k :

n+k−1∑

i=1

|xi|2 − (n − 1)b|xn+k |2 ≤ 0, ±xn+k > 0

}

. �

4.3.1 An Optimal Nonexistence Result for Minimal Submanifolds
of Codimension One

Now we address the question whether the “nonexistence cones” Cn+k consid-
ered in Theorem 4 can still be enlarged. In Section 6.2, Corollary, we have
considered the cone

K := K+ ∪ {0} ∪ K−,

where
K± :=

{
(x, y, z) ∈ R

3 : z ≷ 0 and x2 + y2 < z2 sinh2 τ
}

and τ = 1.1996 . . . is a solution of the equation

τ sinh τ = cosh τ.

This cone K is in fact a “nonexistence cone” for n = 2, k = 1 which cannot
be enlarged further, since it is the envelope of a field of suitable catenoids; in
other words K is “enclosed” by the “catenoidal domains”

Kα =
{

(x, y, z) ∈ R
3 : x2 + y2 < α2 cosh2 z

α

}
,

cp. the discussion in Section 4.2. We generalize this argument as follows:
Consider a curve (x, y(x)) in the Euclidean plane and its rotational symmetric
graph (of dimension n+ 1)

Mrot := {(x, y(x) · w) ∈ R × R
n+1 : x ∈ [a, b], w ∈ Sn},

where Sn = {z ∈ R
n+1 : |z| = 1} denotes the unit n-sphere. One readily

convinces oneself that the (n+ 1)-dimensional area of Mrot is proportional to
the one-dimensional variational integral
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I = I(y) =
∫ b

a

yn(x)
√

1 + y′2(x) dx.

In other words, extremals of I correspond to (n + 1)-dimensional minimal
submanifolds in R

n+2, which are rotationally symmetric, the so-called “n-
catenoids” (or, to be more precise, “(n + 1)-catenoids”). The Euler equation
of the integral I is simply

(14)
d

dx

(
y′yn

√
1 + y′2

)

= nyn−1
√

1 + y′2.

Since the integrand f of I(·) does not explicitly depend on the variable x we
immediately obtain a first integral of (14), namely

yn = λ
√

1 + y′2

for any λ > 0. A further integration gives the inverse of a solution y = y(x)
of the Euler equation (14) as follows:

(15) x = x(y) = λ

∫ y

n√
λ

dξ
√
ξ2n − λ2

+ c.

These inverse functions are defined for any λ > 0, c ∈ R and all y ≥ n
√
λ. Note

that (15) with n = 1 leads to the classical catenaries, which—upon rotation
into R

3—determine the well known catenoids. Of importance in our following
construction here, is the one parameter family of “n-catenaries” (or rather of
their inverses)

x = g(y, λ) := λ

∫ y

n√
λ

dξ
√
ξ2n − λ2

, y ≥ n
√
λ.

Claim. The envelope of the family g(y, λ), λ > 0, is the straight line y = τ0x,
x > 0, where τ0 :=

√
z2n
0 − 1, and z0 is the unique solution of the equation

(16)
z√

z2n − 1
=
∫ z

1

dξ
√
ξ2n − 1

.

Proof. First note that (15) implies that d2x
dy2 < 0, whence the solutions x =

g(y, λ), λ > 0, are strictly convex functions when considered as graphs over
x. Hence for each λ > 0 there exist unique numbers τ = τ(λ), x = x(λ) > 0
and y = y(λ) > 0 with the properties

x(λ) = g(y(λ), λ) and τ(λ) =
y(λ)
x(λ)

= y′(x(λ)),

where y′(x(λ)) denotes the slope of the curve x = g(y, λ) considered as a
function y(x) at the particular point x(λ). Since yn = λ

√
1 + y′2, this last

requirement can be written as
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τ(λ) =
y(λ)
x(λ)

=

√
y2n(λ) − λ2

λ
=

{[
y(λ)

n
√
λ

]2n

− 1

} 1
2

.

We now claim that the quotient q(λ) := y(λ)
n√

λ
is independent of λ, i.e. q(λ) =

const. Indeed we find successively x(λ) = y(λ)
τ(λ) = y(λ)

[q2n(λ)−1]
1
2
; on the other

hand,

x(λ) = λ

∫ y

n√
λ

dξ
√
ξ2n − λ2

=
∫ y

n√
λ

dξ

{( ξ
n√

λ
)2n − 1} 1

2
.

Thus q(λ) = y(λ)
n√

λ
satisfies (16). However, there is only one solution of (16),

since the left hand side of (16) is monotonically decreasing, while the right
hand side monotonically increases, and both sides are continuous. Concluding
we have shown that each member of the family g(y, λ), λ > 0, y ≥ n

√
λ,

touches the half line y = τ0x, τ0 =
√
z2n
0 − 1 precisely at one point, namely

at x0(λ) = z0
τ0

n
√
λ, y0(λ) = z0

n
√
λ. Also, each point of the half line y = τ0x,

x > 0, is the point of contact for precisely one member of the family g(·, λ),
λ > 0. This proves the claim. �

Let f(·, λ) denote the family of inverse functions, that is we have

f(g(y, λ), λ) = y, for y ≥ n
√
λ and g(f(x, λ), λ) = x for x ≥ 0.

We extend f by an even reflection i.e. f(x, λ) = f(−x, λ) for x ≤ 0, so as to
obtain a smooth function defined on the real axis. Observe that for n = 1, these
are precisely the catenaries f(x, λ) = λ cosh(x

λ ). Put r := {
∑n+1

i=1 |xi|2} 1
2 ; then

for each λ > 0 the hypersurfaces

Mλ =
{
x ∈ R

n+2 : r = f(xn+2, λ)
}

are smooth (n+ 1)-dimensional minimal submanifolds of R
n+2. Furthermore

the foregoing construction shows that the sets

Gλ :=
{
x ∈ R

n+2 : r < f(xn+2, λ)
}

for λ > 0 enclose the cone

Kτ0 :=
{
x ∈ R

n+2 : ±τ0x
n+2 > r

}
∪ {0}

in the sense of Section 4.2.
By a straightforward modification of Theorem 1, Section 4.2, i.e. by Hopf’s

maximum principle and the arguments in the proof of the Enclosure Theo-
rem II, Section 4.2 we conclude the following “Nonexistence Theorem”.
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Theorem 6. The family of domains {Gλ}λ>0 enclose the cone Kτ0 , where
τ0 :=

√
z2n
0 − 1 and z0 is a solution of the equation (16). Furthermore, if

C = C+ ∪ {0} ∪ C− ⊂ R
n+2 is a cone with vertex p0 which is congruent to Kτ0 ,

then there is no connected, compact (n+1)-dimensional minimal submanifold
M ⊂ R

n+2 with ∂M ⊂ C such that both ∂M ∩ C+ and ∂M ∩ C− are nonempty.

Remark 1. By construction, the hypersurfaces r = f(xn+2, λ), λ > 0 are min-
imal in R

n+2 and intersect the boundary of the cone Kτ0 in an n-dimensional
sphere. Thus there is no “larger” cone with the nonexistence property de-
scribed in Theorem 6. In particular the corresponding nonexistence cones
introduced in Theorem 4 are “smaller” than Kτ0 . This is illustrated in the fol-
lowing table. Observe that the cones Kτ0 become larger when the dimension
increases.

Dimension of the surface: n+ 1 τ0 Angle of aperture
√
n

2 1.51 56.46 1
3 2.37 67.15 1.414
4 3.15 72.40 1.732
5 3.89 75.60 2
6 4.63 77.81 2.236
7 5.44 79.59 2.449
8 6.02 80.58 2.645

4.4 Geometric Maximum Principles

4.4.1 The Barrier Principle for Submanifolds of Arbitrary Codimension

Let S (the “barrier”) be a C2 hypersurface of R
n+1 with mean curvature Λ

with respect to the local normal field ν. Assume that M ⊂ R
n+1 is another

hypersurface with mean curvature H which lies locally on that side of S to
which the normal ν points, and that the inequality

(1) sup
U ∩M

|H| ≤ inf
U ∩S

Λ

holds in a neighbourhood U = U(p0) ⊂ R
n+1 of any point p0 ∈ S ∩ M . If

the intersection S ∩ M is nonempty (in other words, if M touches S in some
interior point p0) then, using Hopf’s lemma and an argument similar as in the
proof of Theorem 1 in Section 4.2, it follows that M must be locally contained
in S. In Section 4.2 we have admitted one of the surfaces to be singular in
possible points of intersection.

Now we discuss a version of this barrier principle for n-dimensional sub-
manifolds M ⊂ R

n+k with bounded mean curvature vector
⇀

H. The crucial
requirement is again a condition of type (1); however, the mean curvature
Λ has to be replaced by the “n-mean curvature” Λn, which is the arithmetic
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mean of the sum of the n smallest principal curvatures of S, while |H| has to be
replaced by the length of the mean curvature vector

⇀

H of the submanifold M .
Let us recall some notations: S ⊂ R

n+k denotes a C2-hypersurface with
(local) normal field ν and λ1 ≤ · · · ≤ λn+k−1 stand for the principal curvatures
of S with respect to that normal ν. We define the “n-mean curvature” Λn with
respect to the normal ν as

Λn :=
1
n

(λ1 + · · · + λn), where λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · λn+k−1.

Furthermore let M ⊂ R
n+k be an n-dimensional C2-submanifold with mean

curvature vector
⇀

H = − 1
n

k∑

j=1

(div MNj)Nj ,

where N1, . . . , Nk denotes an orthonormal basis of the normal space TxM
⊥,

cp. Section 4.3 for definition and properties of the mean curvature vector.

Theorem 1. Let M ⊂ R
n+k be an n-dimensional C2-submanifold with mean

curvature vector
⇀

H, and S ⊂ R
n+k be a C2-hypersurface. Suppose that M

lies locally on that side of S into which the normal ν is pointing. Finally
assume that M touches S at an interior point p0 ∈ M ∩ S and that in some
neighbourhood U(p0) ⊂ R

n+k the inequality

(2) sup
U ∩M

|
⇀

H | ≤ inf
U ∩S

Λn

holds true. Then, near p0, M is contained in S, i.e. we have M ∩ U ⊂ S ∩ U .

Corollary 1. Suppose that M lies locally on that side of S into which the
normal ν is pointing. Then M and S cannot touch at an interior point p0 ∈
M ∩ S if |

⇀

H(p0)| < Λn(p0) holds.

This theorem implies the following

Enclosure Theorem 1. Let G ⊂ R
n+k be a domain with boundary S = ∂G ∈

C2 and M be an n-dimensional C2-submanifold with mean-curvature vector
⇀

H
which is confined to the closure G. Also, let Λn denote the n-mean curvature
of S = ∂G with respect to the inward unit normal ν. Finally assume that, if
M touches S at some interior point p0, then the inequality

sup
U ∩M

|
⇀

H | ≤ inf
U ∩S

Λn

holds true for some neighbourhood U = U(p0) ⊂ R
n+k. Then M lies in the

interior of G, if at least one of its points lies in G.
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Remark 1. Clearly, the hypothesis

|
⇀

H(p0)| < Λn(p0),

implies (2), but excludes e.g. the case
⇀

H ≡ 0 and Λn ≡ 0.

Remark 2. Let us consider an example which shows that Theorem 1 is op-
timal. To see that let S ⊂ R

3 be the cylinder {x2 + y2 = R2}; then the
principal curvatures with respect to the inward unit normal ν are given by
λ1 = 0 ≤ λ2 = 1

R and the n-mean curvature (n = 1 or 2 is possible) are Λ1 = 0

and Λ2 = Λ = 1
2R . Take n = 1; then Theorem 1 requires

⇀

H ≡ 0, and this
implies that M is a straight line. This is indeed necessary for the conclusion
of Theorem 1 to hold since there are circles of arbitrary small “mean curva-
ture” |

⇀

H | = 1
r , r > 0, which locally are on the interior side of the cylinder

S and touch S in exactly one point; yet these circles are not locally contained
in S.

For the proof of Theorem 1 we need to recall some important facts about
the distance function, a proof of which can be found in Gilbarg and Trudinger
[1], Chapter 14.6, or Hildebrandt [19], Section 4.6.

Let S ⊂ R
n+k be a hypersurface with orientation ν. The distance function

d = d(x) is defined by

d(x) = dist(x, S) = inf
y∈S

|x − y|.

Locally we can orient d so as to obtain the signed or oriented distance function
ρ as follows: Choose a point p0 ∈ S. Then there is an open ball Bε(p0) ⊂ R

n+k

which is partitioned by S into two open sets B+
ε and B−

ε . Let B+
ε denote the

set into which the normal ν points. The oriented distance ρ is then given by

ρ(x) =
{
d(x), for x ∈ B+

ε ,
−d(x), for x ∈ B−

ε .

It follows easily that d and ρ are Lipschitz-continuous functions with Lipschitz
constant equal to one. In fact, let y ∈ R

n+k and choose z ∈ S such that
d(y) = |z − y|. Then for any x ∈ R

n+k we have

d(x) ≤ |x − z| ≤ |x − y| + |y − z| = |x − y| + d(y)

and the some inequality holds with x replaced by y, whence we obtain |d(x) −
d(y)| ≤ |x − y|. Observe that this holds without any assumption on the set S.
Similarly, for x ∈ B+

ε , y ∈ B−
ε there exists t0 ∈ [0, 1] with zt0 = t0y + (1 −

t0)x ∈ S and ρ(x) − ρ(y) = d(x) + d(y) = d(x) − d(zt0) + d(y) − d(zt0) ≤
|x − zt0 | + |y − zt0 | = |x − y|, whence also ρ is Lipschitz continuous.

Much more is true, if S is of class Cj , j ≥ 2.
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Lemma 1. Let S ⊂ R
n+k be a hypersurface of class Cj , j ≥ 2, and p0 ∈ S be

arbitrary. Then there is a constant ε > 0 (depending on p0 in general) such
that d ∈ Cj(B

+

ε ), d ∈ Cj(B
−
ε ) and the oriented distance ρ ∈ Cj(Bε(p0)).

For a proof – which consists in an application of the implicit function
theorem – we refer the reader to Gilbarg and Trudinger [1], Section 14.6, or
Hildebrandt [19], Section 4.6.

Remark I. Obviously d /∈ C1(Bε(p0)) for p0 ∈ S, ε > 0.

Remark II. In Gilbarg and Trudinger [1] only the unoriented distance d is
considered; however the proofs can be easily modified with almost no alter-
ations.

Remark III. If S ⊂ R
n+k is a compact closed hypersurface of class Cj , j ≥ 2,

then it satisfies a uniform interior (as well as exterior) sphere condition; that
is at each point p0 ∈ S there exists a ball Bε0 of uniform radius ε0 > 0 which
lies in the interior (or exterior) side of S respectively and such that the closure
Bε0 has just one point in common with the surface S, namely p0. In this case
the distance function is of class Cj on a tube Tε0 of uniform width ε0 where
Tε0 := T+

ε0
∪ T−

ε0
with

T+
ε0

:= {x ∈ R
n+k; 0 ≤ ρ(x) < ε0}, T−

ε0
:= {x ∈ R

n+k; −ε0 < ρ(x) ≤ 0}.

Then we have d ∈ Cj(T+
ε0

), d ∈ Cj(T−
ε0

) and ρ ∈ Cj(Tε0).
Choose p0 ∈ S and ε > 0 such that ρ ∈ Cj(Bε(p0)); consider the parallel

surface
Sτ := {x ∈ R

n+k ∩ Bε(p0) : ρ(x) = τ},

−ε < τ < ε, which is again of class Cj , if S ∈ Cj , j ≥ 2. The unit normal
of Sτ at x ∈ Sτ directed towards increasing ρ is given by ν(x) = Dρ(x) =
(ρx1(x), . . . , ρxn+k(x)). (Note that here – for simplicity of notation – we refrain
from writing ντ instead of ν, so as to obtain a function ν ∈ Cj−1(Bε(p0))
which, on S ∩ Bε(p0) coincides with the unit normal on S.)

For every point x0 ∈ B
+

ε (p0) or Bε(p0) there exists a unique point y0 =
y(x0) ∈ S such that d(x0) = |x0 − y0| or ρ(x0) = ±|x0 − y0| respectively, in
particular x0 = y0+ν(y0)·ρ(x0). We need to compare the principal curvatures
λ1(y0), . . . , λn+k−1(y0) of S at y0 with the principal curvatures of Sρ(x0) at x0.
We recall the following

Lemma 2. Let x0 ∈ Sτ , y0 ∈ S be such that ρ(x0) = ±|x0 − y0|. If y is a
principal coordinate system at y0 and x = y + ν(y)ρ then we have

D2ρ(x0) = ρxixj (x0) = diag
(

−λ1(y0)
1 − λ1(y0)ρ(x0)

, . . . ,
−λn+k−1(y0)

1 − λn+k−1(y0)ρ(x0)
, 0
)
.
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For a proof of Lemma 2 we refer to Gilbarg and Trudinger [1], Lemma 14.17.
�

We now claim that the Hessian matrix (ρxixj (x0)), i, j = 1, . . . , n+ k − 1
is also given by the diagonal matrix (−λi(x0)δij), i, j = 1, . . . , n + k − 1,
where λ1(x0), . . . , λn+k−1(x0) stand for the principal curvatures of Sρ(x0) at
x0. To see this consider ν(x0) = Dρ(x0) = (ρx1(x0), . . . , ρxn+k(x0)) and sup-
pose without loss of generality that Dρ(x0) = (0, . . . , 0, 1). Then there is some
Cj-function xn+k = ϕ(x1, . . . , xn+k−1) such that ρ(x1, . . . , xn+k−1, ϕ(x1, . . . ,
xn+k−1)) = ρ(x0). Differentiating this relation with respect to xi, i =
1, . . . , n+ k − 1 yields ϕxi = − ρxi

ρxn+1
, for i = 1, . . . n+ k − 1, and

ϕxixj = −
(
ρxixjρxn+1 − ρxiρxn+1xj

ρ2
xn+1

)
.

Hence we get

ϕxixj (x̂0) = −ρxixj (x0), i, j = 1, . . . , n+ k − 1,

where x0 = (x̂0, x
n+k).

On the other hand we have seen in the beginning of Section 4.3 that the
eigenvalues of D2ϕ(x̂0) are precisely the principal curvatures λi(x0) of the
graph of ϕ, i.e. of the distance surface Sτ , τ = ρ(x0), at x0. We have shown

Lemma 3. Let S and Sτ be as above, and x0 ∈ Sτ , y0 ∈ S be such that
ρ(x0) = ±|x0 − y0|, i.e. τ = ρ(x0). Denote by λ1(y0), . . . , λn+k−1(y0) the
principal curvatures of S at y0 and by λ1(x0), . . . , λn+k−1(x0) the principal
curvatures of the parallel surface Sτ at x0. Then we have

λi(x0) =
λi(y0)

1 − λi(y0)ρ(x0)
for i = 1, . . . , n+ k − 1.

We continue with further preparatory results for the proof of Theorem 1
and select an orthonormal basis t1, . . . , tn of the tangent space TxM of M at
x, assuming that x is close to S. Introducing the orthogonal projection

t�
i := ti − 〈ti, ν〉 · ν

of ti onto the tangent space TxSρ(x) of the parallel surface Sρ(x) at the point
x. Also let TxM

� stand for the orthogonal projection of the n-dimensional
tangent space TxM onto the (n+ k − 1)-dimensional tangent space TxSρ(x).

Finally II = IIx(·, ·) denotes the second fundamental form of the distance
hypersurface Sρ(x) with respect to the normal ν = Dρ at the particular point
x ∈ Sρ(x), i.e. (cp. Section 4.3) IIx(t, τ) = 〈−Dtν, τ〉, for t, τ ∈ TxSρ(x).

Lemma 4. Let M and S be as in Theorem 1 and p0 ∈ M ∩ S. Then the
distance function ρ = ρ(x) satisfies the equation
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ΔMρ+ bi(∇Mρ)i − n〈
⇀

H,Dρ〉 + trace II|TxM � = 0

in a neighbourhood V ⊂ R
n+k of p0. Here trace II|TxM � denotes the trace of

the second fundamental form II of Sρ(x) at x restricted to the subspace TxM
�

of TxSρ(x), bi = bi(x) := −II(t�
i ,t�

j )(∇M ρ)j

1−|∇M ρ|2 , for i = 1, . . . , n, (∇Mρ)i = Dtiρ

and Dρ = (ρx1 , . . . , ρn+k).

Proof of Lemma 4. We have ∇Mρ = Dρ − 〈Dρ,N1〉N1 − · · · − 〈Dρ,Nk 〉Nk,
where N1, . . . , Nk is an orthonormal basis of the normal space TxM

⊥. There-
fore

ΔMρ = divM ∇Mρ(3)
= divMDρ − 〈Dρ,N1〉divMN1 − · · · − 〈DMρ,Nk 〉divMNk

= divMDρ+ n〈
⇀

H, (Dρ)⊥ 〉,

where (Dρ)⊥ = 〈Dρ,N1〉N1 + · · · + 〈Dρ,Nk 〉Nk is the normal part of ν = Dρ

relative to M , and
⇀

H = − 1
n

∑k
j=1(divNj)Nj is the mean curvature vector of

M (see Proposition 3 of Section 4.3).
Now equation (3) obviously is equivalent to ΔMρ = div M Dρ+ n〈

⇀

H,Dρ〉
and since the divergence on M is the operator

∑n
i=1 tiDti we find, because of

Dρ(x) = ν(x)

(4) ΔMρ =
n∑

i=1

tiDtiν(x) + n〈
⇀

H,Dρ〉.

To relate the expression tiDtiν to the second fundamental form of Sρ(x) we
put ti = t�

i + 〈ti, ν〉ν and obtain

tiDtiν = (t�
i + 〈ti, ν〉ν)Dt�

i +〈ti,ν〉νν = t�
i Dt�

i
ν = −IIx(t�

i , t
�
i ),

where we have used that 〈ν,Dt�
i
ν〉 = 0 and Dνν(x) = 0 which is a consequence

of the relations |ν(x)|2 = 1 and ν(x+ tν(x)) = ν(x) for |t| � 1.
Thus (4) implies

(5) Δρ+
n∑

i=1

IIx(t�
i , t

�
i ) − n〈

⇀

H,Dρ〉 = 0

in a neighbourhood of p0 ∈ S ∩ M .
In general the projections t�

i , i = 1, . . . , n are neither of unit length nor
pairwise perpendicular. Therefore, in order to compute the trace of IIx on
TxM

� ⊂ TxSρ(x), we put

gij(x) = gij := 〈t�
i , t

�
j 〉 = 〈ti, −〈ti, ν〉ν, tj − 〈tj , ν〉ν〉

= δij − 〈ti, ν〉〈tj , ν〉.
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If x = p0 ∈ M ∩ S we have gij = gij(x) = δij ; hence in some neighbourhood
V of p0 we can assume that

∑n
i=1〈ti, ν〉2 < 1 and that the inverse matrix

gij = gij(x) is simply

gij = δij +
〈ti, ν〉〈tj , ν〉

1 −
n∑

i=1

〈ti, ν〉2

=: δij + εij , for i, j = 1, . . . , n.

Therefore we get for the trace of IIx on the subspace TxM
� ⊂ TxSρ(x)

trace II|TxM � =
n∑

i,j=1

gijII(t�
i , t

�
j )

=
n∑

i,j=1

II(t�
i , t

�
j ) +

n∑

i,j=1

εijII(t�
i , t

�
j ).

By virtue of (5) this yields

Δρ −
n∑

i,j=1

εijII(t�
i , t

�
j ) + trace II|TxM � − n〈

⇀

H,Dρ〉 = 0 in V ⊂ R
n+k.

Lemma 4 follows by noting that

εij =
〈ti, ν〉〈tj , ν〉

1 −
n∑

i=1

〈ti, ν〉2

=
(∇Mρ)i(∇Mρ)j

1 − | ∇Mρ|2

and taking bi = −(1 − | ∇Mρ|2)−1
∑n

j=1 II(t�
i , t

�
j )(∇Mρ)j . �

Lemma 5. Let II be a quadratic form on an n-dimensional Euclidean space V
with eigenvalues λ1 ≤ · · · ≤ λn. Then for any k-dimensional subspace W ⊂ V
we have the estimate

trace II|W ≥ λ1 + · · · + λk.

The proof of Lemma 5 is carried out by induction on k + n. The case
k + n = 2 is trivial. By the induction hypothesis we may assume that the
assertion holds for all quadratic forms II and linear spaces V,W ⊂ V of
dimension n and k respectively, k ≤ n, such that k + n ≤ N , N ≥ 2. For
given II, V and W we hence assume that k + n = N + 1. By v1 ∈ V we
denote an eigenvector of II corresponding to the smallest eigenvalue λ1 and
put V1 := (span v1)⊥ to denote the (n−1)-dimensional orthogonal complement
of v1. We distinguish between the following two cases:
First case: W ⊂ V1, then by induction hypotheses we have

trace II|W ≥ λ2 + · · · + λk+1 ≥ λ1 + · · · + λk.
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Second case: W �⊂ V1, then there is a nonzero vector w1 ∈ W such that

(w1 − v1) ⊥ W or, equivalently,
(6)

〈w1, w〉 = 〈v1, w〉 ∀w ∈ W.

Select on orthonormal basis w1
|w1| , w2, . . . , wk of W , then by (6) we find

w2, . . . , wk perpendicular to v1, in other words, w2, . . . , wk ∈ V1. Applying
the induction hypothesis to the triple II|V1 , V1 and W1 := span(w2, . . . , wk)
yields the estimate

trace II|W1 =
k∑

j=2

II(wj , wj) ≥ λ2 + · · · + λk

and therefore

trace II|W =
k∑

j=2

II(wj , wj) + II
(
w1

|w1| ,
w1

|w1|

)

≥ λ2 + · · · + λk + II
(
w1

|w1| ,
w1

|w1|

)
≥ λ1 + · · · + λk. �

Proof of Theorem 1. We claim that, under the assumptions of the theorem,
the inequality

(7) −n〈
⇀

H,Dρ〉 + trace II|TxM � ≥ 0

holds true in a neighbourhood of any point p0 ∈ M ∩ S. To prove this let
y0 ∈ S, x0 ∈ M close to S and λ1(y0) ≤ λ2(y0) ≤ · · · ≤ λn+k−1(y0) denote
the principal curvatures of S with respect to the unit normal ν. By Lemma 3
we infer for the principal curvatures of Sτ , τ = ρ(x0), at x0:

λ1(x0) =
λ1(y0)

1 − λ1(y0)ρ(x0)
≤ · · · ≤ λn+k−1(x0) =

λn+k−1(y0)
1 − λn+k−1(y0)ρ(x0)

.

Lemma 5 now implies the estimate

1
n

trace II|TxM � ≥ 1
n

(
λ1(y)

1 − λ1(y)ρ(x)
+ · · · +

λn(y)
1 − λn(y)ρ(x)

)
(8)

≥ 1
n

(λ1(y) + · · · + λn(y)) = Λn(y),

where y ∈ S is such that ρ(x) = |x − y|. By assumption (2) of Theorem 1,

inf
U ∩S

Λn ≥ sup
U ∩M

|
⇀

H |,

we infer from (8)
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1
n

trace II|TxM � ≥ |
⇀

H(x)|

for every x ∈ M close to S. Inequality (7) then follows immediately by
Schwarz’s inequality. Now Theorem 1 is a consequence of Lemma 4. Indeed
by relation (7) and Lemma 4 we conclude the inequality

ΔMρ+ bi(∇Mρ)i ≤ 0

in a neighbourhood of every point p0 ∈ M ∩ S. E. Hopf’s maximum principle
(see e.g. Gilbarg and Trudinger [1], Theorem 3.5) finally proves that ρ = 0 in
a neighbourhood of any point p0 ∈ M ∩ S. Theorem 1 is proved. �

Proof of Corollary 1. Assuming the contrary we conclude from Theorem 1 the
inclusion M ∩ U ⊂ S ∩ U for some neighbourhood U of p0 ∈ M ∩ S. Therefore
we had ρ ≡ 0 on M ∩ U and Lemma 4 implied the relation

trace II|TxM = n〈
⇀

H,Dρ〉 = n〈
⇀

H, ν〉 on M ∩ U,

since TxM
T = TxM and also ∇Mρ = 0 = �Mρ on M ∩ U . In particular we

obtain the estimate
1
n

trace II|TxM ≤ |
⇀

H(x)| on M ∩ U.

On the other hand, by Lemma 5, this leads to the inequality

Λn(x) ≤ |
⇀

H(x)| for all x ∈ M ∩ U,

which obviously contradicts the assumption

|
⇀

H(p0)| < Λn(p0). �

Remark 3. We observe here that the estimate (7) is an immediate conse-
quence of an hypothesis of the type |

⇀

H(p0)| < Λn(p0), p0 ∈ S ∩ M , the
continuity of the involved functions, and Lemma 5, without using the explicit
estimates in Lemma 3.

4.4.2 A Geometric Inclusion Principle for Strong Subsolutions

We now present a version of Theorem 1 for strong (but not necessarily classi-
cal) subsolutions of the parametric mean curvature equation, since they arise
naturally as solutions of suitable obstacle problems to be considered later.
This will be of importance for the existence proof for surfaces of prescribed
mean curvature that will be carried out in Section 4.7.

If S ⊂ R
3 is a regular surface of class C2 with unit normal ν = Dρ and

mean curvature Λ with respect to that normal, we let Sτ , |τ | � 1, denote
the local parallel surface at (small) distance τ and Λτ (x) denote the mean
curvature of Sτ with respect to the normal ν(x) = Dρ(x) at the point x ∈ Sτ .
Clearly τ = ρ(x) and Λτ (x) = Λρ(x)(x).
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Theorem 2. Let S ⊂ R
3 be a regular surface of class C2 with unit normal ν

and mean curvature Λ (with respect to this normal). Furthermore let H denote
some bounded continuous function on R

3 and Ω ⊂ R
2 be a bounded, open and

connected set. Suppose X ∈ C1(Ω,R3) ∩ H2
2,loc(Ω,R

3) lies locally on that side
of S into which the normal ν is directed, and is a conformal solution of the
variational inequality

(9) δF(X,ϕ) =
∫

Ω

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv ≥ 0

for all functions ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞(Ω,R3) with X + εϕ locally on the same

side of S for 0 < ε � 1. Then the following conclusions hold:

(a) Assume that X0 = X(w0) ∈ S and that for some neighbourhood U =
U(X0) ⊂ R

3 one has

(10) |H(x)| ≤ Λρ(x)(x) for all x ∈ U.

Then there exists a disk Bε(w0) ⊂ Ω such that X(Bε(w0)) ⊂ S.
(b) Suppose that (10) holds for every point X0 ∈ S. Then X(Ω) is completely

contained in S, if X(Ω) ∩ S is nonempty.

Corollary 2. The conclusion of the Theorem holds if (10) is replaced by the
(stronger) assumption

(10′) sup
U

|H| ≤ inf
U ∩S

Λ.

Corollary 3. Suppose (10) is replaced by the (stronger) hypotheses

(10′ ′) |H(P0)| < Λ(P0)

for some P0 ∈ S. Then there is no w0 ∈ Ω such that X(w0) = P0. Clearly,
this conclusion holds for a whole neighbourhood U of P0 in S. In particular if
(10′ ′) is fulfilled for all points P0 ∈ S then the intersection X(Ω) ∩ S is empty.

As a further consequence of Theorem 2 we have the following

Enclosure Theorem 2. Let G ⊂ R
3 be a domain with ∂G ∈ C2 and H be a

bounded continuous function on R
3. Assume that every point P ∈ ∂G has a

neighbourhood U ⊂ R
3 ∩ G such that

(11) |H(x)| ≤ Λρ(x)(x) for all x ∈ U,

where Λρ(x) stands for the mean curvatures of ∂Gρ(x) with respect to the in-
ward unit normal ν = Dρ(x). Suppose X ∈ C1(Ω,R3) ∩ H2

2,loc(Ω,R
3) is a

strong subsolution of the H-surface equation, whose image X(Ω) is confined
to the closure G, i.e. X is a conformal solution of the variational inequality
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δF(X,ϕ) =
∫

Ω

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv ≥ 0

for all functions ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞(Ω,R3) with X + εϕ ∈ H1

2 (Ω,G) for
0 ≤ ε < ε0(ϕ). Then X(Ω) ⊂ G if at least one of the points X(w) lies in G.

Corollary 4. The strong inclusion X(Ω) ⊂ G holds for example, if, in ad-
dition to the assumption of Enclosure Theorem 2, X is of class C0(Ω,R3) ∩
C1(Ω,R3) ∩H2

2,loc(Ω,R
3) and maps one point w0 ∈ ∂Ω into the interior of G.

Corollary 5. Enclosure Theorem 2 is valid if (11) is replaced by the (stronger)
assumption

(11′) |H(P )| < Λ(P ) for all P ∈ ∂G.

Remark 4. Suppose X ∈ C1(Ω,R3) ∩ H2
2 (Ω,R3) satisfies the assumptions

of the Enclosure Theorem and that X(Ω) ⊂ G. Then X is a strong (and of
course also weak) H-surface in the sense that

∫

Ω

{
〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv 〉ϕ

}
du dv = 0

for all ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞(Ω,R3). Furthermore, by elliptic regularity results

it follows that X is a classical C2,α-solution of the H-surface equation if H is
Hölder continuous. This means that X is an H-surface, i.e.

ΔX = 2H(X)Xu ∧ Xv,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in Ω.

In Section 4.7 we will see how to find subsolutions X of the kind needed
in Enclosure Theorem 2 by solving suitable obstacle problems.

While condition (11) is sufficient to show strong inclusion X(Ω) ⊂ G
relative to the hypotheses in Enclosure Theorem 2 this is not true under
the weaker assumption |H(P )| ≤ Λ(P ) for all P ∈ ∂G, Λ the inward mean
curvature of ∂G, see Remark 2 following Enclosure Theorem I in Section 4.2.
However this still leaves open the possibility that X might satisfy the H-
surface system a.e. in G. The next result shows that this in indeed the case:

Theorem 3 (Variational equality). Suppose that G ⊂ R
3 is a domain of

class C2, H is bounded and continuous with H(P ) ≤ Λ(P ) for all P ∈ ∂G.
Let X ∈ C1(Ω,R3) ∩H2

2,loc(Ω,R
3) satisfy the assumptions of Enclosure Theo-

rem 2. Then X is a strong H-surface in G, i.e. we have �X = 2H(X)Xu ∧Xv

a.e. in Ω, and |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in Ω.

Proof of Theorem 2. Define the sets Ω1, Ω2 and Ω3 by Ω1 := X−1(S), Ω2 :=
Ω \ Ω1, and Ω3 := {w ∈ Ω : |Xu(w)| = |Xv(w)| = 0}. Observe that Ω1 and
Ω3 are closed, while Ω2 is an open set. Then the function
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H∗(w) :=
{

±Λ(X(w)), for w ∈ Ω1,
H(X(w)), for w ∈ Ω2

is of class L∞,loc(Ω) and we claim that

(12) ΔX = 2H∗(w)(Xu ∧ Xv)

holds a.e. on Ω. In fact, on Ω3, the (possibly empty) set of branch points
of X, we have Xu(w) = Xv(w) = 0. Since X ∈ H2

2,loc(Ω,R
3) this implies

that also Xuu = Xvv = Xuv = 0 a.e. on Ω3 (compare e.g. Gilbarg and
Trudinger [1], Lemma 7.7); in particular (12) holds a.e. on Ω3. Again, because
of X ∈ H2

2,loc(Ω,R
3), we infer from (9) using an integration by parts and

the fundamental lemma of the calculus of variations that (12) is satisfied
a.e. on Ω2. Finally, to verify equation (12) a.e. on Ω1 \ Ω3 we use the same
argument as in the proof of Theorem 1 in Chapter 2.6 of Vol. 1, observing
that X is a conformal and regular parametrization of S on Ω1 \ Ω3 and that
S has mean curvature Λ.

Now the reasoning of Hartman and Wintner as outlined in Section 2.10
and Chapter 3 yields the asymptotic expansion

(13) Xu − iXv = (a − ib)(w − w0)l + o(|w − w0|l)

in a sufficiently small neighbourhood of an arbitrary point w0 ∈ Ω, where l ≥ 0
is an integer and a, b ∈ R

3 satisfy the relations |a| = |b| �= 0 and 〈a, b〉 = 0. In
particular λ(w) := |Xu(w)| = |Xv(w)| > 0 on a punctured neighbourhood of
w0 and λ(w0) = 0, if and only if w0 is a branch point of X. Introducing polar
coordinates w = reiϕ around w0 we infer from (13) the asymptotic relations

Xu(reiϕ) = arl cos(lϕ) + brl sin(lϕ) + o(rl),
Xv(reiϕ) = brl cos(lϕ) − arl sin(lϕ) + o(rl),
|Xu|2 = |Xv |2 = |a|2r2l + o(r2l),

all holding for r → 0. Therefore λ(w) = |a|rl + o(rl), for r → 0, and conse-
quently the unit normal has the asymptotic expansion

Xu ∧ Xv

|Xu ∧ Xv | (w) =
a ∧ b

|a ∧ b| + o(1) as w → w0.

In particular, the normal N(w) = Xu ∧Xv

|Xu ∧Xv | (w) is continuous in Ω and

(14) lim
w→w0

N(w) =
a ∧ b

|a ∧ b| =
a ∧ b

|a|2 =
a ∧ b

|b|2 .

In other words, the surface X has a tangent plane at any point w0 ∈ Ω.
Suppose now that w0 ∈ Ω1, i.e. X(w0) ∈ S, then since X ∈ C1 lies locally

on one side of S and because of (14) we obtain

(15)
a ∧ b

|a ∧ b| = ± ν(X(w0)).
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In fact, (15) can be proved rigorously by the same argument as used in the
proof of Enclosure Theorem 1 of Chapter 4.2, namely by invoking a local non-
parametric representation of the surfaces X and S near a punctured neigh-
bourhood of the point X(w0).

Consider now the oriented distance function ρ(x) = dist(x, S) which is of
class C2 near S and put ν(x) = Dρ(x) = (ρx1 , ρx2 , ρx3), cp. the discussion in
the beginning of this section. Recall that ρ(X(w)) ≥ 0 and “=” if and only if
w ∈ Ω1 and that ν(x) is the unit normal of S at x. For the computations to
follow it is convenient to put u = u1 and v = u2, and define for a – sufficiently
small – neighbourhood Bρ(w0) of an arbitrary point w0 ∈ Ω1,

Xt
uα(w) :=

Xuα(w)
|Xuα | −

〈
Xuα(w)

|Xuα | , ν(X(w))
〉
ν(X(w)),

for w ∈ Bρ(w0) \ {w0} and α = 1, 2, to denote the orthogonal projection of
the unit tangent vector Xuα (w)

|Xuα | of X onto the tangent space of the parallel
surface Sρ(X(w)) := {y ∈ R

3 : ρ(y) = ρ(X(w))} to S at distance ρ(X(w)).
The vectors Xt

uα(w) are continuous in Bδ(w0) \ {w0} but merely bounded
on Bδ(w0). Define the metric

gαβ = gαβ(w) := 〈Xt
uα(w), Xt

uβ (w)〉

= δαβ −
〈
Xuα

|Xuα | , ν
〉〈

Xuβ

|Xuβ | , ν
〉

for w ∈ Bδ(w0) \ {w0}

and α, β = 1, 2, where ν = ν(X(w)) = Dρ(X(w)).
We assert that

(16) lim
w→w0

〈
Xuα(w)

|Xuα | , ν(X(w))
〉

= 0 holds true.

To see this note that (15) yields the relation

ν(X(w)) = ± a ∧ b

|a ∧ b| + o(1) as w → w0,

which implies (16) by virtue of the asymptotic expansions

Xu(w)
|Xu | = arl cos(lϕ)+brl sin(lϕ)

|a|rl + o(1), w → w0,

Xv(w)
|Xv | = brl cos(lϕ)−arl sin(lϕ)

|b|rl + o(1), w → w0.

On the other hand relation (16) shows that the metric gαβ is continuous
on Bδ(w0) and

lim
w→w0

gαβ(w) = δαβ , for α, β = 1, 2.

Hence, by possibly decreasing δ, we can consider the inverse metric gαβ ∈
C0(Bδ(w0)), gαβ = gαβ(w) = δαβ + εαβ , where
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εαβ = εαβ(w) =

〈
Xuα (w)

|Xuα | , ν(X(w))
〉〈

X
uβ (w)

|X
uβ | , ν(X(w))

〉

1 −
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2

and εαβ ∈ C0(Bδ(w0)) with εαβ(w0) = 0 (by (16)). For |τ | � 1 we denote by
Λτ (x) the mean curvature of the distance surface Sτ with respect to the unit
normal ν(x) at x. Also let IIx stand for the second fundamental form of Sρ(x)

with respect to ν(x) at the point x, cp. Chapter 1 of Vol. 1 or Section 4.3, in
particular we have 2Λρ(x)(x) = trace IIx, and since

IIx(t, τ) = 〈−Dtν, τ〉 = −〈Dν(x)t, τ〉

for t, τ ∈ TxSρ(x) this implies for every w ∈ Bδ(w0) \ {w0},

−2Λρ(X)(X(w)) = gαβ(X(w))〈Xt
uα(w), Dν(X(w))Xt

uα(w)〉
= 〈Xt

u, Dν(X)Xt
u〉 + 〈Xt

v, Dν(X)Xt
v 〉 + εαβ 〈Xt

uα(w), Dν(X)Xt
uβ 〉.

Equivalently,

−2|Xu|2Λρ(X)(X(w)) = −(|Xu|2 + |Xv |2)Λρ(X)(X)(17)

= |Xu|2〈Xt
u, Dν(X)Xt

u〉 + |Xv |2〈Xt
v, Dν(X)Xt

v 〉
+ εαβ |Xu| |Xv | 〈Xt

uα , Dν(X)Xt
uβ 〉.

Now, we look at the term

|Xu|2〈Xt
u, Dν(X)Xt

u〉

=
〈
Xu − 〈Xu, ν〉ν,Dν(X)

[
Xu − 〈Xu, ν〉ν

]〉

= 〈Xu, Dν(X)Xu〉 − 〈Xu, ν〉〈ν,Dν(X)Xu〉
− 〈Xu, ν〉〈Xu, Dν(X)ν〉 + 〈Xu, ν〉2〈ν,Dν(X)ν〉

= 〈Xu, Dν(X)Xu〉,

since Dν(X)ν = 0 and IIx is symmetric. Similarly, we find

|Xv |2〈Xt
v, Dν(X)Xt

v 〉 = 〈Xv, Dν(X)Xv 〉

and
|Xu| |Xv | 〈Xt

u, Dν(X)Xt
v 〉 = 〈Xu, Dν(X)Xv 〉.

This combined with (17) yields

〈Xu, Dν(X)Xu〉 + 〈Xv, Dν(X)Xv 〉(18)
= −(|Xu|2 + |Xv |2)Λρ(X)(X) − εij 〈Xui , Dν(X)Xuj 〉,

for all w ∈ Bδ(w0) \ {w0}. However, for continuity reasons (18) clearly holds
on Bδ(w0) ⊂ Ω.
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So far we have not exploited the variational inequality

(19)
∫

Ω

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv ≥ 0

holding for all ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞, such that X + εϕ lies locally on the

same side of S as X for all ε ∈ [0, ε(ϕ)]. We choose as a test function ϕ(w) =
η(w) · ν(X(w)), where 0 ≤ η ∈ C∞

c (Bδ(w0)) is arbitrary and ν(x) = Dρ(x).

Clearly ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞ is an admissible function in (19) and we

compute
∇ϕ = (ϕu, ϕv) = ∇η · ν(X) + η[Dν(X)∇X]

where ∇X = (Xu, Xv), ∇η = (ηu, ηv). Plugging this relation into the varia-
tional inequality (19) we obtain
∫

Bδ(w0)

{〈∇X, ∇η · ν + η[Dν(X)∇X]〉 + 2ηH(X)〈Xu ∧ Xv, ν(X)〉 } du dv ≥ 0

from which we infer, by virtue of

〈∇X, ∇η · ν〉 = ηu〈Xu, ν(X)〉 + ηv 〈Xv, ν(X)〉

= ηu
∂

∂u
ρ(X(w)) + ηv

∂

∂v
ρ(X(w)) = 〈 ∇η, ∇ρ(X)〉

and
η〈∇X,Dν(X)∇X〉 = η〈Xu, Dν(X)Xu〉 + η〈Xv, Dν(X)Xv 〉

the inequality
∫

Bδ(w0)

{
〈∇η, ∇ρ(X)〉 + η〈Xu, Dν(X)Xu〉

+ η〈Xv, Dν(X)Xv 〉 + 2ηH(X)〈Xu ∧ Xv, ν〉
}
du dv ≥ 0.

In this inequality we replace the expression 〈Xu, Dν(X)Xu〉+〈Xv, Dν(X)Xv 〉
using (18) and get

0 ≤
∫

Bδ(w0)

{
〈∇η, ∇ρ(X)〉 − η(|Xu|2 + |Xv |2)Λρ(X)(X)

− ηεαβ 〈Xuα , Dν(X)Xuβ 〉 + 2ηH(X)〈Xu ∧ Xv, ν〉
}
du dv,

or equivalently,

0 ≤
∫

Bδ(w0)

{
〈∇ρ(X), ∇η〉 + η(|Xu|2 + |Xv |2)

[
|H(X)| − Λρ(X)(X)

]
(20)

− η εαβ 〈Xuα , Dν(X)Xuβ 〉
}
du dv.
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To see that the function ρ(X(w)) satisfies a differential equation of second
order we compute the term

εαβ 〈Xuα , Dν(X)Xuβ 〉(21)

=

〈
Xuα

|Xuα | , ν
〉〈

X
uβ

|X
uβ | , ν

〉

1 −
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2 · 〈Xuα , Dν(X)Xuβ 〉

=
1

|Xuα |
∂

∂uα ρ(X)
〈

X
uβ

|X
uβ | , ν

〉

1 − 〈 ·, · 〉2 − 〈·, · 〉2
· 〈Xuα , Dν(X)Xuβ 〉

=: bα(w)
∂

∂uα
ρ(X),

where we have put

bα(w) :=

〈
Xuα

|Xuα | , Dν(X)Xuβ

〉〈
X

uβ

|X
uβ | , ν

〉

1 −
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2 .

Note that by (16), we have limw→w0 〈 Xui

|Xui
| , ν〉 = 0. Thus bα(·) is continuous

in Bδ(w0) with bα(w0) = 0. By assumption (10) we have

(22) |H(X(w))| − Λρ(X)(X(w)) ≤ 0 for all w ∈ Bε(w0)

and some positive ε ≤ δ.
From (20), (21) and (22) we finally infer the inequality

0 ≤
∫

Bε(w0)

{
〈∇ρ(X), ∇η〉 − η · bi(w)

∂

∂ui
ρ(X)

}
du dv

which holds for all nonnegative η ∈ C∞
c (Bε(w0)). Thus the function f(w) :=

ρ(X(w)) is an H2
2 ∩ C1(Bε(w0)) strong (and therefore an almost everywhere)

solution of the inequality

Δf(w) + bi
∂f

∂ui
(w) ≤ 0 in Bε(w0).

By the strong maximum principle (see e.g. Gilbarg and Trudinger [1], Theorem
9.6) it follows that f(w) = ρ(X(w)) ≡ 0 in Bε(w0). This clearly means that
X(w) ∈ S for all w ∈ Bε(w0). Theorem 2 is proved. �

Proof of Corollary 2. We use Lemma 3 to control the mean curvature
Λρ(X)(X) of the parallel surface at X as follows:

Λρ(X)(X) =
1
2

(
λ1(y)

1 − λ1(y)ρ(X)
+

λ2(y)
1 − λ2(y)ρ(X)

)

≥ 1
2
(λ1(y) + λ2(y)) = Λ0(y) = Λ(y),
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where y ∈ S is such that ρ(X) = |X − y| and λ1(y) ≤ λ2(y) are the principal
curvatures of S at y. By assumption (10′) we have

inf
U ∩S

Λ ≥ sup
U

|H|

for some neighbourhood U = U(X(w0)) ⊂ R
3. Hence for some ε > 0 there

holds

Λρ(X)(X) ≥ inf
U ∩S

Λ ≥ sup
U

|H| ≥ |H(X)| on Bε(w0),

that is |H(X(w))| − Λρ(X)(X(w)) ≤ 0 for all w ∈ Bε(w0). The proof of
Corollary 2 can now be completed in the same way as in Theorem 2. �
Proof of Corollary 3. Assume on the contrary the existence of some w0 ∈ Ω
such that X(w0) = P0. By Theorem 2 there exists a disk Bε(w0) ⊂ Ω such
that X maps Bε(w0) into S. Therefore we obtain on Bε(w0) the identities

∇ρ(X(w)) = 0 and εαβ 〈Xuα(w), Dν(X)Xuβ (w)〉 = 0.

The variational inequality (20) then yields the estimate

0 ≤
∫

Bε(w0)

η(|Xu|2 + |Xv |2)[|H(X)| − Λρ(X)(X)] du dv

for all η ∈ C∞
c (Bε(w0)), η ≥ 0. However, this contradicts the assumption

|H(P0)| < Λ(P0), since X cannot be constant on Bε(w0) and H and Λ are
continuous. �
Remark 5. We point out here that the stronger assumption |H(X(w0))| <
Λ(X(w0)) (replacing (10) in Theorem 2) leads to a somewhat more straightfor-
ward proof of the fact X(Bε(w0)) ⊂ S, starting from inequality (20); namely
we have

(|Xu|2 + |Xv |2)
[

|H(X)| − Λρ(X)
]

− εαβ 〈Xuα , Dν(X)Xuβ 〉

= 2|Xu|2
{
[

|H| − Λρ

]
− εαβ

〈
Xuα

|Xuα | , Dν(X)
Xuβ

|Xuβ |

〉}
.

Put σ(w) := εαβ 〈 Xuα

|Xuα | , Dν(X) X
uβ

|X
uβ | 〉; then σ ∈ C0(Bδ(w0)) with σ(w0) = 0,

since εαβ(w0) = 0. Thus the assumption |H(X(w0))| < Λ(X(w0)) implies the
inequality

2|Xu|2
{[

|H(X(w))| − Λρ(X(w))
]

− σ(w)
}

≤ 0

on a suitable disc Bε(w0) ⊂ Bδ(w0), whence (20) yields

0 ≤
∫

Bε(w0)

〈∇ρ(X(w)), ∇η(w)〉 du dv,

i.e. f(w) = ρ(X(w)) is strongly superharmonic on Bε(w0), or Δf(w) ≤ 0 a.e.
in Bε(w0).
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Remark 6. Recall that assumption (10) cannot be replaced by |H(P )| ≤
Λ(P ) for all P ∈ S, see Remark 2 following Enclosure Theorem I in Section 4.2.

Proof of Enclosure Theorem 2. The coincidence set Ω1 = X−1(∂G) is a
closed set in Ω. By Theorem 2 Ω1 is also open, whence either Ω1 = ∅ or
Ω1 = Ω. However, by assumption there exists a w0 ∈ Ω with X(w0) ∈ G and
therefore only the alternative Ω1 = ∅ can hold true, i.e. X(Ω) ⊂ G. �

Proof of Theorem 3. We let T := {w ∈ Ω : X(w) ∈ ∂G} denote the (closed)
coincidence set and put, for ε > 0, Tε := {w ∈ Ω : dist(w,T) < ε}. Then Tε

is open and
⋂

ε>0 Tε = T. Extend ν(x) to a bounded C1-vector field ν̃ on R
3

which coincides with Dρ(x) = ν(x) on a neighbourhood of ∂G. Then we take
nonnegative functions η ∈ C∞

c (Ω) and ηε ∈ C∞
c (Tε) with η = ηε on Tε/2 and

put

ϕ(w) := η(w)ν̃(X(w)), ϕε(w) := ηε(w)ν̃(X(w)).

Since both (ϕ − ϕε) and (ϕε − ϕ) ∈ C1
c (Ω \ Tε/4,R

3) are admissible in the
variational inequality (19) we have δF(X,ϕ − ϕε) = 0; whence, since also ϕ
and ϕε are admissible functions we find as in the proof of Theorem 2, cp. (20),

0 ≤ δF(X,ϕ) = δF(X,ϕε)(23)

=
∫

Tε

[〈∇ρ(X), ∇ηε〉 + ηε(|Xu|2 + |Xv |2)(|H(X)| − Λρ(X)(X))

− ηεεαβ 〈Xuα , Dν(X)Xuβ 〉] du dv,

assuming that ε > 0 is choosen suitably small. We infer from ρ(X(·)) ∈
H2

2,loc(Tε) and an integration by parts
∫

Tε

〈∇ρ(X), ∇ηε〉 du dv = −
∫

Tε

�ρ(X) · ηε du dv.

Taking the relations �ρ(X(w)) = 0 a.e. on T and εαβ(w) = 0 a.e. on T for
α, β = 1, 2 and Lebesgue’s dominated convergence theorem into account we
arrive at

lim
ε→0

∫

Tε

[〈∇ρ(X), ∇ηε〉 + ηε(|Xu|2 + |Xv |2)(|H(X)| − Λρ(X))

− ηεεαβ 〈Xuα , Dν(X)Xuβ 〉] du dv

=
∫

T

η(|Xu|2 + |Xv |2)(|H(X)|) − Λ(X)) du dv.

By (23) and the assumption |H| ≤ Λ along ∂G we obtain the variational
equality

(24) δF(X,ϕ) = 0
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for all functions ϕ of the type ϕ = η(w)ν̃(X(w)), η ∈ C∞
c (Ω), η ≥ 0. Clearly,

this also holds for all normal variation ϕ = ην̃(X) without assuming the sign
restriction on η.

We can now exploit the variational inequality δF(X,ϕ) ≥ 0 which holds

for all ϕ ∈
◦

H1
2 (Ω,R3) ∩ L∞(Ω,R3) with X + εϕ ∈ H1

2 (Ω,G). Note that we
may hence admit variations ϕ(w) = η(w)ζ(X(w)) where ζ denotes a C1-
vectorfield defined on a neighbourhood of ∂G with ζ(P ) = 0 for all P ∈ ∂G
or 〈ζ(P ), ν(P )〉 > 0 along ∂G and η ∈ C1

c (Tε), η ≥ 0, ε > 0 suitably small.
By an approximation argument this also follows for C1-vectorfields as above
which are directed weakly into the interior of ∂G, i.e. 〈ζ(P ), ν(P )〉 ≥ 0 along
∂G. In particular we have δF(X,ϕ) = 0, if ζ as above is tangential to ∂G
along ∂G, since in this case 〈±ζ, ν〉 ≥ 0 on ∂G.

Suppose ϕ ∈ C1
c (Tε,R

3) is arbitrary, then we decompose ϕ = ϕ⊥ + ϕT

where ϕ⊥ = η(w)ν̃(X(w)) with η(w) := 〈ϕ(w), ν̃(X(w))〉 denotes the “normal
component” and 〈ϕT (w), ν̃(X(w))〉 = 0 for all w ∈ Tε. Concluding we find
δF(X,ϕT ) = 0 and because of (24) also δF(X,ϕ⊥) = 0, whence δF(X,ϕ) = 0
for all ϕ ∈ C1

c (Tε,R
3). Since, on the other hand δF(X,ϕ) = 0 whenever ϕ is

supported in Ω \ T we finally conclude the result by virtue of the fundamental
lemma of the calculus of variations. �

4.5 Isoperimetric Inequalities

For the sake of completeness we first repeat the proof of the isoperimetric
inequality for disk-type minimal surfaces X : B → R

3 ∈ H1
2 (B,R3) with the

parameter domain B = {w ∈ C : |w| < 1}, the boundary of which is given by
C = ∂B = {w ∈ C : |w| = 1}. Recall that any X ∈ H1

2 (B,R3) has boundary
values X|C of class L2(C,R3). Denote by L(X) the length of the boundary
trace X|C , i.e.,

L(X) = L(X|C) :=
∫

C

|dX|.

We recall a result that, essentially, has been proved in Section 4.7 of Vol. 1.

Lemma 1. (i) Let X : B → R
3 be a minimal surface with a finite Dirichlet

integral D(X) and with boundary values X|C of finite total variation

L(X) =
∫

C

|dX|.

Then X is of class H1
2 (B,R3) and has a continuous extension to B, i.e.,

X ∈ C0(B,R3). Moreover, the boundary values X|C are of class H1
1 (C,R3).

Setting X(r, θ) := X(reiθ), we obtain that, for any r ∈ (0, 1], the function
Xθ(r, θ) vanishes at most on a set of θ-values of one-dimensional Hausdorff
measure zero, and that the limits
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lim
r→1−0

Xr(r, θ) and lim
r→1−0

Xθ(r, θ)

exist, and that

∂

∂θ
X(1, θ) = lim

r→1−0
Xθ(r, θ) a.e. on [0, 2π]

holds true. Finally, setting Xr(1, θ) := limr→1−0 Xr(r, θ), it follows that

(1)
∫

B

〈∇X, ∇φ〉 du dv =
∫

C

〈Xr, φ〉 dθ

is satisfied for all φ ∈ H1
2 ∩ L∞(B,R3). Moreover, we have

(2) lim
r→1−0

∫ 2π

0

|Xθ(r, θ)|r dθ =
∫ 2π

0

|dX(1, θ)|.

(ii) If X : B → R
3 is a minimal surface with a continuous extension to B

such that L(X) :=
∫

C
|dX| < ∞, then we still have (2).

Proof. Since L(X) < ∞, the finiteness of D(X) is equivalent to the rela-
tion X ∈ H1

2 (B,R3), on account of Poincaré’s inequality. Hence X has an
L2(C)-trace on the boundary C of ∂B which, by assumption, has a finite
total variation

∫
C

|dX|. Consequently, the two one-sided limits

lim
θ→θ0−0

X(1, θ) and lim
θ→θ0+0

X(1, θ)

exists for every θ0 ∈ R. In conjunction with the Courant–Lebesgue lemma, we
obtain that X(1, θ) is a continuous function of θ ∈ R whence X ∈ C0(B,R3).
The rest of the proof follows from Theorems 1 and 2 Vol. 1, in Section 4.7. �

Lemma 2 (Wirtinger’s inequality). Let Z : R → R
3 be an absolutely

continuous function that is periodic with the period L > 0 and has the mean
value

(3) P :=
1
L

∫ L

0

Z(t) dt.

Then we obtain

(4)
∫ L

0

|Z(t) − P |2 dt ≤
(
L

2π

)2 ∫ L

0

|Ż(t)|2 dt,

and the equality sign holds if and only if there are constant vectors A1 and B1

in R
3 such that

(5) Z(t) = P +A1 cos
(

2π
L
t

)
+B1 sin

(
2π
L
t

)

holds for all t ∈ R.
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Proof. We first assume that L = 2π and
∫ 2π

0
|Ż|2 dt < ∞. Then we have the

expansions

Z(t) = P +
∞∑

n=1

(An cosnt+Bn sinnt), Ż(t) =
∞∑

n=1

n(Bn cosnt − An sinnt)

of Z and Ż into Fourier series with An, Bn ∈ R
3, and

∫ 2π

0

|Z − P |2 dt = π
∞∑

n=1

(|An|2 + |Bn|2),

(6) ∫ 2π

0

|Ż|2 dt = π

∞∑

n=1

n2(|An|2 + |Bn|2).

Consequently it follows that

(7)
∫ 2π

0

|Z − P |2 dt ≤
∫ 2π

0

|Ż|2 dt,

and the equality sign holds if and only if all coefficients An and Bn vanish
for n > 1. Thus we have verified the assertion under the two additional hy-
potheses. If

∫ 2π

0
|Ż|2 dt = ∞, the statement of the lemma is trivially satisfied,

and the general case L > 0 can be reduced to the case L = 2π by the scaling
transformation t �→ (2π/L)t. �

Now we state the isoperimetric inequality for minimal surfaces in its sim-
plest form.

Theorem 1. Let X ∈ C2(B,R3) with B = {w : |w| < 1} be a nonconstant
minimal surface, i.e., ΔX = 0, |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0. Assume also
that X is either of class H1

2 (B,R3) or of class C0(B,R3), and that L(X) =∫
C

|dX| < ∞. Then D(X) is finite, and we have

(8) D(X) ≤ 1
4π

L2(X).

Moreover, the equality sign holds if and only if X : B → R
3 represents a

(simply covered) disk.

Remark 1. Note that for every minimal surface X : B → R
3 the area func-

tional A(X) coincides with the Dirichlet integral D(X). Thus (8) can equiv-
alently be written as

(8′) A(X) ≤ 1
4π

L2(X).
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Proof of Theorem 1. (i) Assume first that X is of class H1
2 (B,R3), and that

P is a constant vector in R
3. Because of L(X) < ∞, the boundary values X|C

are bounded whence X is of class L∞(B,R3) (this follows from the maximum
principle in conjunction with a suitable approximation device). Thus we can
apply formula (1) to φ = X − P , obtaining

(9)∫

B

〈∇X, ∇X〉 du dv =
∫

B

〈∇X, ∇(X − P )〉 du dv

=
∫

C

〈Xr, X − P 〉 dθ ≤
∫

C

|Xr | |X − P | dθ

=
∫

C

|Xθ | |X − P | dθ =
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ.

Introducing s = σ(θ) by

σ(θ) :=
∫ θ

0

|Xθ(1, θ)| dθ,

we obtain that σ(θ) is a strictly increasing and absolutely continuous function
of θ, and σ̇(θ) = |Xθ(1, θ)| > 0 a.e. on R. Hence σ : R → R has a continuous
inverse τ : R → R. Let us introduce the reparametrization

Z(s) := X(1, τ(s)), s ∈ R,

of the curve X(1, θ), θ ∈ R. Then, for any s1, s2 ∈ R with s1 < s2, the numbers
θ1 := τ(s1), θ2 := τ(s2) satisfy θ1 < θ2 and

(10)
∫ s2

s1

|dZ| =
∫ θ2

θ1

|dX| = σ(θ2) − σ(θ1) = s2 − s1,

whence
|Z(s2) − Z(s1)| ≤ s2 − s1.

Consequently, the mapping Z : R → R
3 is Lipschitz continuous and therefore

also absolutely continuous, and we obtain from (10) that

(11)
∫ s2

s1

|Z ′(s)| ds = s2 − s1

whence

(12) |Z ′(s)| = 1 a.e. on R.

In other words, the curve Z(s) is the reparametrization of X(1, θ) with respect
to the parameter s of its arc length.

As the mapping σ : R → R is absolutely continuous, it maps null sets onto
null sets, and we derive from
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τ(s2) − τ(s1)
s2 − s1

=
1

σ(θ2)−σ(θ1)
θ2−θ1

and from σ̇(θ) > 0 a.e. on R that

(13) τ ′(s) =
1

σ̇(τ(s))
> 0 a.e. on R.

On account of
σ̇(θ) = |Xθ(1, θ)| a.e. on R

it then follows that

(14) |Xθ(1, τ(s))|dτ
ds

(s) = 1 a.e. on R,

and thus we obtain

(15)
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ =
∫ L

0

|Z(s) − P | ds.

We now infer from (9) and (15) that

(16)
∫

B

〈∇X, ∇X〉 du dv ≤
∫ L

0

|Z(s) − P | ds.

By Schwarz’s inequality, we have

(17)
∫ L

0

|Z(s) − P | ds ≤
√
L

{∫ L

0

|Z(s) − P |2 ds
}1/2

,

and Wirtinger’s inequality (4) together with (12) implies that

(18)

{∫ L

0

|Z(s) − P |2 ds
}1/2

≤ L3/2/(2π)

if we choose P as the barycenter of the closed curve Z : [0, L] → R
3, i.e., if

P :=
1
L

∫ L

0

Z(s) ds.

By virtue of (16)–(18), we arrive at

(19)
∫

B

| ∇X|2 du dv ≤ 1
2π

L2

which is equivalent to the desired inequality (8).
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Suppose that equality holds true in (8) or, equivalently, in (19). Then
equality must also hold in Wirtinger’s inequality (18), and by Lemma 2 we
infer

Z(s) = P +A1 cos
(

2π
L
s

)
+B1 sin

(
2π
L
s

)
.

Set R := L/(2π) and ϕ = s/R. Because of |Z ′(s)| ≡ 1, we obtain

R2 = |A1|2 sin2 ϕ+ |B1|2 cos2 ϕ − 2〈A1, B1〉 sinϕ cosϕ.

Choosing ϕ = 0 or π
2 , respectively, it follows that |A1| = |B1| = R, and

therefore 〈A1, B1〉 = 0. Then the pair of vectors E1, E2 ∈ R
3, defined by

E1 :=
1
R
A1, E2 :=

1
R
B1,

is orthonormal, and we have

Z(Rϕ) = P +R {E1 cosϕ+ E2 sinϕ} .

Consequently Z(Rϕ), 0 ≤ ϕ ≤ 2π, describes a simply covered circle of radius
R, centered at P , and the same holds true for the curve X(1, θ) with 0 ≤
θ ≤ 2π. Hence X : B → R

3 represents a (simply covered) disk of radius R,
centered at P , as we infer from the “convex hull theorem” of Section 4.2 and
a standard reasoning.

Conversely, if X : B → R
3 represents a simply covered disk, then the

equality sign holds true in (8′) and, therefore also in (8).
Thus the assertion of the theorem is proved under the assumption that

X ∈ H1
2 (B,R3).

(ii) Suppose now that X is of class C0(B,R3). Then we introduce noncon-
stant minimal surfaces Xk : B → R

3 of class C∞(B,R3) by defining

Xk(w) := X(rkw) for |w| < 1, rk :=
k

k + 1
.

We can apply (i) to each of the surfaces Xk, thus obtaining

(20) 4πD(Xk) ≤
{∫ 2π

0

|dXk(1, θ)|
}2

.

For k → ∞, we have rk → 1 − 0, D(Xk) → D(X), and part (ii) of Lemma 1
yields

lim
k→∞

∫ 2π

0

|dXk(1, θ)| =
∫ 2π

0

|dX(1, θ)|.

Thus we infer from (20) that 4πD(X) ≤ L2(X) which implies in particular
that X is of class H1

2 (B,R3). For the rest of the proof, we can now proceed
as in part (i). �
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If the boundary of a minimal surface X is very long in comparison to its
“diameter”, then another estimate of A(X) = D(X) might be better which
depends only linearly on the length L(X) of the boundary of X. We call this
estimate the linear isoperimetric inequality. It reads as follows:

Theorem 2. Let X be a nonconstant minimal surface with the parameter
domain B = {w : |w| < 1}, and assume that X is either continuous on B or
of class H1

2 (B,R3). Moreover, suppose that the length L(X) =
∫

C
|dX| of its

boundary is finite, and let KR(P ) be the smallest ball in R
3 containing X(∂B)

and therefore also X(B). Then we have

(21) D(X) ≤ 1
2
RL(X).

Equality holds in (21) if and only if X(B) is a plane disk.

Proof. By Theorem 1 it follows that D(X) < ∞ and X ∈ H1
2 (B,R3), and

formula (9) implies

(22) 2D(X) ≤
∫

C

|Xθ | |X − P | dθ ≤ RL(X)

whence we obtain (21). Suppose now that

(23) D(X) =
1
2
RL(X).

Then we infer from (9) and (22) that
∫

C

〈Xr, X − P 〉 dθ =
∫

C

|Xr | |X − P | dθ

is satisfied; consequently we have

〈Xr, X − P 〉 = |Xr | |X − P |

a.e. on C, that is, the two vectors Xr and X − P are collinear a.e. on C.
Secondly we infer from (22) and (23) that

|X − P | = R a.e. on C.

Hence the H1
1 -curve Σ defined by X : C → R

3 lies on the sphere SR(P ) of
radius R centered at P , and the side normal Xr of the minimal surface X at Σ
is proportional to the radius vector X − P . Thus Xr(1, θ) is perpendicular to
SR(P ) for almost all θ ∈ [0, 2π]. Hence the surface X meets the sphere SR(P )
orthogonally a.e. along Σ. As in the proof of Theorem 1 in Section 1.4 we
can show that X is a stationary surface with a free boundary on SR(P ) and
that X can be viewed as a stationary point of Dirichlet’s integral in the class
C(SR(P )). By Theorems 1 and 2 of Section 2.8, the surface X is real analytic
on the closure B of B. Then it follows from the Theorem in Section 1.7 that
X(B) is a plane disk.

Conversely, if X : B → R
3 represents a plane disk, then (23) is fulfilled.�
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Now we want to state a more general version of the isoperimetric inequality,
valid for global minimal surfaces with boundaries.

Definition 1. A global minimal surface (in R
3) is a nonconstant map

X ∈ C0(M,R3) ∩ C2(M̊,R3)

from a two-dimensional manifold M of class Ck, k ≥ 2, with the boundary
∂M and the interior M̊ = intM into the three-dimensional Euclidean space
R

3 which has the following properties:
(i) M possesses an atlas C which defines a conformal structure on the

interior M̊ of M ;
(ii) for every chart ϕ belonging to the conformal structure C the local map

X = X ◦ ϕ−1 : intϕ(G) → R
3, G ⊂ M,

is harmonic and conformal, i.e. a minimal surface as defined in Section 2.6.

In other words, a global minimal surface is defined on a Riemann surface
M with a smooth boundary ∂M (which might be empty).

Note that X may have branch points and selfintersections. Moreover we
know that, away from the branch points, the map X : M → R

3 induces a
Riemannian metric on M̊ . With respect to the local coordinates determined
by the charts ϕ of the atlas C this metric is given by

gαβ(u, v) = λ(u, v)δαβ ,

where λ = |Xu|2 = |Xv |2, so that the gradient ∇M and the Laplace–Beltrami
operator ΔM are proportional to the corresponding Euclidean operators ∇
and Δ with respect to the local coordinates u and v,

∇M =
1
λ

∇, ΔM =
1
λ
Δ.

In particular, the function |X|2 =
3∑

j=1

|Xj |2 satisfies

(24) ΔM |X|2 = 4.

Moreover, if M is compact, X is of class C1 up to its boundary, and if X has
only finitely many branch points in M , then M \ {branch points} is a Rieman-
nian manifold, and Green’s formulas (in the sense of the Riemannian metric)
are meaningful and true for smooth functions defined on M ; for example, we
obtain from (24) the formula

4 areaX = 4
∫

M

d volM =
∫

M

ΔM |X|2 d volM(25)

= 2
∫

∂M

|X| ∂
∂ν

|X| d vol∂M ,
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where ν is the exterior unit normal to ∂M in the tangent bundle TM |∂M .
In Chapter 2 we have seen that boundary branch points of X on ∂M are

isolated. Hence, for reasonably regular surfaces X, there exist only finitely
many branch points in the interior and on the boundary.

Definition 2. Let X : M → R
3 be a global minimal surface defined on a

compact manifold M . Then the boundary ∂X := X(∂M) of X is called weakly
connected if there is a system of Cartesian coordinates (x1, x2, x3) in R

3 such
that no hyperplane H := {xj = const}, j = 1, 2, 3, separates ∂X, that is, if
H is any hyperplane orthogonal to one of the coordinate axes and if H ∩ ∂X

is empty, then ∂X lies on one side of H. Moreover X : M → R
3 is called

compact if M is compact.

Fig. 1. (a) Three weekly connected curves. No plane E parallel to any of the coordinate

planes shown separates them. (b) Two curves in R3 which are not weakly connected. It is

shown in the text that they lie in opposite quadrants of a suitable coordinate system

Now we can formulate a general version of the isoperimetric inequality .

Theorem 3. Let X : M → R
3 be a global compact minimal surface of class

C1 having at most finitely many branch points defined on a compact Riemann
surface M . Suppose also that the boundary ∂X is weakly connected. Then the
area A(X) of X is bounded from above in terms of the length L(X) of ∂X by
the inequality

(26) A(X) ≤ 1
4π

L2(X).

Moreover, equality holds if and only if X is a plane disk in R
3.

Proof. Let (x1, x2, x3) be the coordinates appearing in the definition of the
weakly connected boundary ∂X. By means of a suitable shift we may even
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assume that the center of mass of the boundary ∂X lies at the origin, i.e. that
for j = 1, 2, 3

(27)
∫

∂M

Xj d vol∂M = 0,

where Xj is, of course, the j-th coordinate function of the surface X.
On account of (25), it follows that

2A(X) =
∫

∂M

|X| ∂
∂ν

|X| d vol∂M ,

and it is easily seen that ∂
∂ν |X| ≤ 1. Therefore Schwarz’s inequality implies

that

2A(X) =
∫

∂M

|X| ∂
∂ν

|X| d vol∂M ≤
∫

∂M

|X| d vol∂M(28)

≤
(∫

∂M

d vol∂M

∫

∂M

|X|2 d vol∂M

)1/2

= L1/2(X)
(∫

∂M

|X|2 d vol∂M

)1/2

.

Case (i): Suppose that ∂X = X(∂M) is connected, i.e., ∂X is a closed curve.
Then the proof is essentially that of Theorem 1. In fact, let s be the parameter
of arc length of ∂X, and assume that ∂X is parametrized by s, we write X(s)
for the parameter representation of ∂X with respect to s. Because of (27) we
have

∫ L

0
X(s) ds = 0, where L := L(X), and Wirtinger’s inequality yields

∫

∂M

|X|2 d vol∂M =
∫ L

0

|X(s)|2 ds(29)

≤ L2

4π2

∫ L

0

∣
∣
∣
∣
∂X

ds
(s)
∣
∣
∣
∣

2

ds =
L3

4π2
.

From (28) and (29) we derive the desired inequality (26).
Case (ii): ∂X is weakly connected, but not connected. Hence we are not al-
lowed to apply Wirtinger’s inequality, and we have to look for some substitute.
Again, we introduce L = L(X) as length of X(∂M).

Since M is compact and regular, its boundary ∂M consists of finitely
many, say, p closed curves ∂1M, . . . , ∂pM . Denote their images under X by
σ1, σ2, . . . , σp, and fix some index j ∈ {1, 2, 3}. By assumption, no hyperplane
{xk = const} separates σ1 from σ2, . . . , σp. Hence, for at least one of these
curves, say, for σ2, we have following property:

There are two points P1 and Q1 on σ1 and σ2, respectively, whose j-th
components P j

1 and Qj
1 coincide. The translation A2 : R

3 → R
3 defined by

P �→ P +(P1 −Q1) leaves the j-th component of every point of R
3 unchanged.

Thus σ1 ∪ A2σ2 is connected. In a second step we find points
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P2 ∈ σ2 and Q2 ∈ σ3 ∪ · · · ∪ σp, say, Q2 ∈ σ3,

such that P j
2 = Qj

2, and a translation A3 : R
3 → R

3 defined by

P �→ P + (P1 − Q1) + (P2 − Q2).

Again, A3 leaves the j-th component of every point in R
3 unchanged, and

σ1 ∪ A2σ2 ∪ A3σ3 is connected. Proceeding by induction, we find translations
A4, . . . , Ap such that cj := σ1 ∪ A2σ2 ∪ · · · ∪ Apσp is a connected curve.

Now let X1(s), . . . ,Xp(s) be the parametrizations of σ1, . . . , σp with respect
to their arc lengths, and

x1(s), 0 ≤ s ≤ L1, . . . , xp(s), 0 ≤ s ≤ Lp,

be their j-th components. We can assume that X1(0) = P1 and X2(0) = Q1

whence x1(0) = x1(L1) = x2(0). Define

y1(s) :=

{
x1(s) for 0 ≤ s ≤ L1,

x2(s − L1) for L1 ≤ s ≤ L1 + L2

and
z2(s) := y1(s+ s2),

where s2 is chosen in such a way that z2(0) = y1(s2) = P j
2 = Qj

2. Then both
y1(s) and z2(s) are continuous and periodic with the period L1 + L2, and we
have a.e. that |ẏ1(s)| = 1 and |ż2(s)| = 1.

In the second step we define

y2(s) :=

{
z2(s) for 0 ≤ s ≤ L1 + L2,

x3(s − L1 − L2) for L1 + L2 ≤ s ≤ L1 + L2 + L3

and
z3(s) := y2(s+ s3),

where s3 is chosen in such a way that z3(0) = y2(s3) = P j
3 = Qj

3. Finally, after
p− 1 steps, we obtain a continuous function yp(s), 0 ≤ s ≤ L := L1 + · · · +Lp,
which is periodic with the period L, and |ẏp(s)| = 1 a.e. on [0, L].

By Wirtinger’s inequality we obtain

(30)
∫ L

0

|yp−1(s)|2 ds ≤
(
L

2π

)2 ∫ L

0

|ẏp−1(s)|2 ds,

as the mean value of the function yp−1 is zero. By construction it follows that

∫ L

0

|yp−1(s)|2 ds =
∫

∂M

|Xj(s)|2 d vol∂M

and that
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∫ L

0

|ẏp−1(s)|2 ds =
∫

∂M

∣
∣
∣
∣
d

ds
Xj

∣
∣
∣
∣

2

d vol∂M

whence

(31)
∫

∂M

|Xj |2 d vol∂M ≤
(
L

2π

)2 ∫

M

∣
∣
∣
∣
d

ds
Xj

∣
∣
∣
∣

2

d vol∂M .

As j is an arbitrary index in {1, 2, 3}, we may sum up the equations (31) for
j = 1, 2, 3, thus obtaining

(32)
∫

∂M

|X2| d vol∂M ≤
(
L

2π

)2 ∫

∂M

∣
∣
∣
∣
d

ds
X

∣
∣
∣
∣

2

d vol∂M .

Thus Wirtinger’s inequality can be generalized to weakly connected bound-
aries X : ∂M → R

3 in the form (32). Now we can proceed as in case (i) to
obtain the isoperimetric inequality (26).

Let us now suppose that equality holds in the isoperimetric inequality, i.e.,

4πA(X) = L2(X).

Then, in particular, equality holds in (28) implying that

|X| ≡ const =: R on ∂M,

i.e., ∂X lies on a sphere of radius R, and R > 0 since X(w) �≡ 0.
Now let P be some point on the curve σ1 which is not the image of a

branch point of X. The parametrization of the curves cj introduced above
with respect to the arc length s can now be chosen such that

cj(0) = P for all j

and, if P is suitably selected, that for some neighbourhood (−ε, ε) of 0 the
curve cj(s) parametrizes a part of σ1. Now equality in the isoperimetric in-
equality implies equality in Wirtinger’s inequality for the j-th component cjj
of the curve cj , thus

cjj(s) = aj cos
(

2π
L
s

)
+ bj sin

(
2π
L
s

)

for two constants aj and bj , L = L(X); in particular, we have for all j that

cjj(0) = pj = aj ,
(
d

ds
cjj

)
(0) =

dσj
1

ds
(0) = bj

2π
L
.

Since ∂X lies on a sphere, the vectors
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a = (a1, a2, a3), b = (b1, b2, b3)

are mutually perpendicular, and they satisfy

R = |a| = |b| =
L

2π
.

Since R > 0, at least one of the components of a, say aj0 , does not vanish;
consequently the function cj0j0(s) has exactly two critical points in the interval
[0, L). This implies that the boundary ∂X of the minimal surface X under
consideration has only one component. In fact, cj0j0 is the j0-th component
of the curve obtained by shifting the boundary components σ1, . . . , σp of ∂X

together in a plane perpendicular to the j0-axis, and every curve σj contributes
at least two critical points to the function cj0j0 , so that cj0j0 has at least four
critical points if p is greater than one.

This proves that the functions cjj are simply the j-th components of the
one and only boundary curve σ1. The preceding identities show that σ1 is a
circle of radius R = L

2π , the boundary of a plane disk containing X; see the
convex hull theorem in Section 4.1. �

We shall now study a minimal surface X : M → R
3 in the three-

dimensional space defined on a compact manifold M whose boundary ∂M
has exactly two components ∂+M and ∂−M . Let us see what happens if ∂X

is not weakly connected.
Denote by ∂+X = X(∂+M) and ∂−X = X(∂−M) the components of ∂X.

They lie in some ball BR(0) ⊂ R
3. We claim that there is a hyperplane E1

∗
with normal N∗ ∈ S2 through a point P∗ such that the components ∂±X of
∂X lie in the two closed half spaces H±

1 defined by E1
∗ respectively and such

that ∂+X and ∂−X touch E1
∗ .

Fig. 2. Construction of E1
∗

Such a plane E1
∗ can be constructed as follows: First of all, there is a plane

E0 with normal N0 which intersects ∂+X and ∂−X. Then consider the open
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Fig. 3. The planes E1
∗ , E2

∗ , E3
∗

set U ⊂ S2 of all unit vectors N for which there is a P ∈ BR(0) such that the
oriented plane E(P,N) through P with normal N separates ∂X, (i.e., ∂+X

and ∂−X lie in the open half spaces defined by E(P,N)). U is not empty since
by assumption ∂X is not weakly connected (see Fig. 2).

Now take a sequence of planes En = E(Pn, Nn) such that Pn ∈ Br(0),
Nn ∈ U , and such that

lim
n→∞

〈Nn, N0〉 = sup {〈N,N0〉 : N ∈ U} ;

this expression is positive since U is open. Passing to a subsequence we may
assume that Pn converges to P∗ and Nn to N∗. The plane E1

∗ = E(P∗, N∗)
then has the desired property (cf. Fig. 2).

No plane parallel to E1
∗ separates ∂X, therefore some plane E2 orthogonal

to E1
∗ separates ∂X since it is not weakly connected. Proceeding as above

we can now construct a plane E2
∗ perpendicular to E1

∗ such that ∂+X and
∂−X lie again in the two closed half spaces defined by E2

∗ and such that both
components of ∂X touch E2

∗ . Once again none of the planes parallel to E2
∗

separates ∂X, hence there has to be a third plane E3
∗ orthogonal to E1

∗ as
well as E2

∗ which separates ∂X (Fig. 3). Thus we can choose x, y, z-coordinate
axes such that E1

∗ , E
2

∗ and E3
∗ correspond to the x, y-, x, z- and y, z-planes

respectively and such that ∂±X lies in the octant

{(x, y, z) : x, y, z ≥ 0(≤ 0)} ;

in particular, putting V = 1√
3
(1, 1, 1), the components ∂±X lie in the cones

C± =
{
P ∈ R

3 : ±〈P, V 〉 ≥ |P |√
3

}

respectively. The opening angle of this cone is 54.7356103. . . degrees.
As we have proved in Section 4.2, this implies that the minimal surface X is

not connected. According to Section 3.6 of Vol. 1, there are not compact global



346 4 Enclosure Theorems and Isoperimetric Inequalities for Minimal Surfaces

minimal surfaces without boundary. Therefore M has exactly two components
M+ and M− with boundaries ∂+M and ∂−M respectively. Applying the
isoperimetric inequality to both of them we obtain

4πA(X) = 4π
{
A(X+) +A(X−)

}

≤ L2(∂+X) + L2(∂−X)
< L2(X).

(Here L(∂±X) denotes the length of ∂±X, and L(X) is the length of ∂X, i.e.,
L(X) = L(∂+X ∪ ∂−X).) Thus we have proved the following

Corollary 1. If X is a global compact minimal surface of class C1(M,R3)
having at most finitely many branch points and whose boundary has no more
than two connected components, then we have the isoperimetric inequality

4πA(X) ≤ L2(X),

and equality holds if and only if X is a plane disk.

One undesirable feature of our isoperimetric inequality is that the minimal
surface X has to be of class C1 up to the boundary. For a minimal surface
X : B → R

3 defined on the disk B = {w : |w| < 1}, it follows that the
lengths of the boundaries of the surfaces Z(r)(w) := X(rw), 0 < r < 1, and
w ∈ B, tend to the length of the boundary of X, if X ∈ C0(B,R3) and X|C
is rectifiable.

Such a continuity property is also known for doubly connected minimal
surfaces defined on annuli; cf. Feinberg [1]. Thus we obtain also

Corollary 2. If X : Ω → R
3 is a minimal surface with X ∈ C0(Ω,R3), which

has a rectifiable boundary and whose parameter domain Ω is either a disk or
an annulus, then we have

A(X) ≤ 1
4π

L2(X).

It can be seen that equality holds if and only if X(Ω) is a plane disk. Note
that Corollary 2 is a generalization of Theorem 1.

4.6 Estimates for the Length of the Free Trace

In this section we want to estimate the length of the free trace of a minimal
surface X : B → R

3 in two situations. First we assume that the image X(I),
I ⊂ ∂B, is contained in some part S0 of the support surface S which can
be viewed as the graph of some function ψ : Ω → R, Ω ⊂ R

2, having a
bounded gradient (that is, the Gauss image of S is compactly contained in
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some open hemisphere of S2). Secondly, we shall study the case that S satisfies
a (two-sided) sphere condition.

To begin with the first situation, we assume that S is an embedded regular
surface of class C1 in R

3, and that Γ is a rectifiable Jordan arc of length L(Γ )
with endpoints P1 and P2 on S. We shall not exclude that Γ and S have
also other points in common. Nevertheless, we can define the class C(Γ, S)
of admissible surfaces X : B → R

3 for the semifree problem with respect to
the boundary configuration 〈Γ, S〉 as in 4.6 of Vol. 1. For technical reasons
we imagine such surfaces to be parametrized on the semidisk B = {w : |w| <
1, Imw > 0}, the boundary of which consists of the interval I and the circular
arc C. For any X ∈ C(Γ, S), the Jordan arc Γ is the weakly monotonic image
of C under X, by Σ we want to denote the free trace X : I → R

3 of the
mapping X on the support surface S. The total variation

L(Σ) :=
∫

I

|dX|

will be called the length of the free trace Σ.

Definition 1. We say that some orientable part S0 of S fulfils a λ-graph
condition, λ > 0, if there is a unit vector N0 ∈ R

3 such that the (suitably
chosen) field NS(P ) of unit normals on S satisfies the condition

(1) 〈N0, NS(P )〉 ≥ λ for all P ∈ S0.

Proposition 1. Let X be a stationary minimal surface in C(Γ, S) (see Sec-
tion 1.4, Definition 1) which satisfies the following two conditions:

(i) The free boundary curve X(I) is contained in an open, orientable part
S0 of S which fulfils a λ-graph condition, λ > 0.

(ii) The scalar product 〈Xv, NS(X)〉 does not change its sign on I.
Then the length L(Σ) of the free trace Σ, given by X : I → R

3, is estimated
from above by

(2) L(Σ) ≤ λ−1L(Γ ),

and the area A(X) = D(X) is bounded by

(3) A(X) ≤ (1 + λ)2

4πλ2
L2(Γ ).

Moreover, the surface X is continuous on B.

Supplement. If we drop the assumption that X maps C monotonically onto
Γ , we obtain the estimates

L(Σ) ≤ λ−1

∫

C

|dX|, A(X) ≤ (1 + λ)2

4πλ2

(∫

C

|dX|
)2

instead of (2) and (3).
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Proof of Proposition 1. We can assume that both

〈Xv, NS(X)〉 ≥ 0

and

(4) 〈N0, NS(X)〉 ≥ λ > 0

hold on I (we possibly have to replace NS and N0 by −NS and −N0 respec-
tively). As X is assumed to be stationary in C(Γ, S), we have by definition
that X is of class C1(B ∪ I,R3) and meets S0 perpendicularly. Consequently
we have

Xv = |Xv |NS(X) on I,

and the conformality relation |Xu| = |Xv | yields

(5) Xv = |Xu|NS(X) on I.

Integration by parts implies

0 =
∫

B

ΔX du dv =
∫

∂B

∂

∂ν
X dH1,

where ν is the exterior normal to ∂B. Introducing polar coordinates r, ϕ by
u+ iv = reiϕ, we arrive at

∫

I

Xv du =
∫

C

Xr dϕ,

and (5) yields ∫

I

NS(X)|Xu| du =
∫

C

Xr dϕ.

Multiplying this identity by N0, we arrive at

(6) λL(Σ) ≤
∫

I

〈N0, NS(X)〉|dX| =
∫

C

〈N0, Xr 〉 dϕ,

taking (4) into account, and the conformality relation

|Xr | = |Xϕ| H1-a.e. on C

yields

(7) λL(Σ) ≤
∫

C

cosα(ϕ)|Xϕ| dϕ ≤
∫

C

|dX|,

where α(ϕ) denotes the angle between N0 and the side normal Xr(1, ϕ) to
Γ on X at the point X(1, ϕ). This implies (2), and (3) follows from the
isoperimetric inequality

A(X) ≤ 1
4π

(∫

∂B

|dX|
)2

.

Finally, a by now standard reasoning yields X ∈ C0(B,R3), taking the rela-
tions D(X) < ∞ and L(Γ ) < ∞ into account. The “Supplement” is proved
by the same reasoning. �
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Remark 1. As X intersects S0 perpendicularly along Σ, the assumption (ii)
is certainly satisfied if X possesses no boundary branch points on the free
boundary I. Taking the asymptotic expansion of X at boundary branch points
into account (see Section 2.10), we see that there are no branch points on I
if, for any r ∈ (0, 1), there is a δ ∈ (0,

√
1 − r2) such that the part X : {w =

u+ iv : |u| < r, 0 < |v| < δ} → R
3 of the minimal surface X lies “on one side

of S0”. The last assumption means that, close to I, the minimal surface X
does not penetrate the supporting surface S0.

Moreover, we read off from the asymptotic expansion that 〈Xv, NS(X)〉
does not change its sign on I close to branch points of even order. Thus
condition (ii) is even fulfilled if branch points of odd order are excluded on I.

Remark 2. By exploiting (6) somewhat more carefully, we can derive an
improvement of estimate (2). To this end, we introduce the representation
{ξ(s) : 0 < s ≤ l}, l = L(Γ ), of the Jordan arc Γ with respect to its para-
meter s of the arc length. Then ξ′(s) is defined a.e. on [0, l], and |ξ′(s)| = 1.
Let β(s) ∈ [0, π

2 ] be the angle between N0 and the unoriented tangent T (s) of
Γ at ξ(s), given by ±ξ′(s). Then we obtain

〈Xr, N0〉 ≤ |Xr | cos
(π

2
− β

)
= |Xr | sinβ = |Xϕ| sinβ

and, because of ds = |Xϕ| dϕ and of the monotonicity of the mapping X :
C → Γ , we infer from (6) the following variant of (7):

λL(Σ) ≤
∫ l

0

sinβ(s) ds.

This yields the following sharpened version of (2):

(8) L(Σ) ≤ 1
λ

∫

Γ

sinβ(s) ds.

Remark 3. The estimate (2) is optimal in the sense that the number λ−1

cannot be replaced by a smaller constant. In order to see this, we consider for
0 < γ < π

2 the surface

S := {(x, y, z) : y = (tan γ)(x+ 1) for x ≤ 0, y = (tan γ)(1 − x) for x ≥ 0}

and the arc
Γ := {(x, 0, 0) : |x| ≤ 1}

(cf. Fig. 1). Let
N0 := (0, 1, 0),

and consider the minimal surface

X(w) := (Re τ(w), Im τ(w), 0),
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Fig. 1. Remark 3: The estimate (2) is sharp

where τ(ω) denotes the conformal mapping of B onto the triangle Δ ⊂ C

with the vertices −1, 1, i tan γ keeping ±1 fixed and mapping i onto 0. Here
we have

〈N0, NS(P )〉 = cos γ > 0

and
L(Σ) =

1
cos γ

L(Γ ),

which shows that the estimate (2) is sharp. However the support surface S
of our example does not quite match with the assumptions of Proposition 1
as it is only a Lipschitz surface. By smoothing the surface S at the edge
E := {(0, tan γ, z)}, we can construct a sequence of support surfaces Sn ∈ C∞

and a sequence of minimal surfaces Xn ∈ C(Γ, Sn) whose free traces Σn are
estimated by

L(Σn) ≤ λ−1
n L(Γ )

with numbers λn tending to λ := cos γ. As we have

inf
P ∈Sn

〈N0, NSn(P )〉 = cos γ

for all n = 1, 2, . . . if we construct Sn from S by smoothing around the edge
E, it follows that (2) is also sharp in the class of C∞-support surfaces.

Remark 4. The λ-graph condition (i) in Proposition 1 is crucial. By way of
example we shall, in fact, show that one cannot bound the length L(Σ) of the
free trace Σ in terms of L(Γ ) and S alone if the λ-graph condition is dropped.

To this end we construct a regular support surface S of class C∞ which is
perpendicularly intersected by the planes

Πn := {(x, y, z) : x = n} , n = 1, 2, . . . .
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We can arrange matters in such a way that the Gauss image of S is contained
in the northern hemisphere S2 ∩ {z ≥ 0} of S2 and that every intersection
curve S ∩ Πn consists of an semi-ellipse

En :=
{
(x, y, z) : x = n, y2 + n−2z2 = 1, z ≥ 0

}

and of two rays {(n, ±1, z) : z ≤ 0}; cf. Fig. 2. Moreover, we choose Γn as
straight segments in Πn connecting the endpoints of En,

Γn := {(n, y, 0) : |y| ≤ 1} .

Fig. 2. A supporting surface S, Jordan curves Γn of length 2 with endpoints on S, and

a sequence of stationary minimal surfaces for these boundary configurations whose surface

areas and the lengths of whose free boundaries are unbounded, cf. Remark 4

Finally we choose conformal maps τn(w) = yn(w)+ izn(w) of B onto the solid
semi-ellipse E∗

n in the y, z-plane, given by

E∗
n :=

{
(y, z) : y2 + n−2z2 < 1, z > 0

}
,

which map C onto Γn. Then the minimal surfaces

Xn(w) := (n,Re τn(w), Im τn(w))

are stationary in C(Γn, S). Their areas A(Xn) and the lengths L(Σn) of their
free traces tend to infinity as n → ∞ whereas L(Γn) is always equal to 2.

Note that the support surface S of our example satisfies a λ-graph condi-
tion with the forbidden value λ = 0 if we choose N0 as (0, 0, 1), but it does
not fulfil a λ-graph condition for any λ > 0, no matter what we choose N0 to
be.
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By a slight change of the previous reasoning, the reader may construct
a similar example of a support surface S with only one Jordan arc Γ such
that 〈Γ, S〉 bounds infinitely many stationary minimal surfaces Xn ∈ C(Γ, S),
n ∈ N, having the property that A(Xn) → ∞ and L(Σn) → ∞ as n → ∞.

Remark 5. We can use Proposition 1 to derive a priori estimates for the
derivatives of X up to the free boundary I. The key step is the following:
Suppose that the assumptions of Proposition 1 are satisfied. Let w0 be some
point on I, d := 1 − |w0|, and let r, θ be polar coordinates around w0, that is,
w = w0 + reiθ. Set Sr(w0) := B ∩ Br(w0) and

ϕ(r) :=
∫

Sr(w0)

| ∇X|2 du dv = 2
∫ r

0

∫ π

0

|Xθ |2ρ−1 dρ dθ.

Then we have
ϕ′(r) = 2r−1

∫ π

0

|Xθ(r, θ)|2 dθ.

By an obvious modification of the proof of Proposition 1 we obtain

ϕ(r) ≤ 2λ1

{∫ π

0

|Xθ(r, θ)| dθ
}2

, λ1 :=
(1 + λ)2

4πλ2
,

and Schwarz’s inequality yields

ϕ(r) ≤ πλ1rϕ(r) for 0 < r < d

whence

(9) ϕ(r) ≤ ϕ(d)(r/d)2μ for 0 ≤ r ≤ d

with

μ :=
1

2πλ1
=

2λ2

(1 + λ)2
.

Because of

(10) ϕ(d) ≤ 2D(X) ≤ 2λ1L
2(Γ )

we arrive at the following result:
If the assumptions of Proposition 1 are satisfied, then, for any w0 ∈ Id :=

{w ∈ I : |w| < 1 − d}, 0 < d < 1, we have

(11)
∫

Sr(w0)

| ∇X|2dudv ≤ K(r/d)2μ for r ∈ [0, d],

where

(12) μ :=
2λ2

(1 + λ)2
, K :=

(1 + λ)2

2πλ2
L2(Γ ).
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By a reasoning used in the proofs of the Theorems 1 and 4 of Section 2.5 we
obtain:

There is a constant K∗ depending only on λ and L(Γ ) such that, for any
w0 ∈ B satisfying |w0| ≤ 1 − d and any r ∈ [0, d], 0 < d < 1, we have

(13)
∫

Sr(w0)

| ∇X|2 du dv ≤ K∗(r/d)2μ,

and Morrey’s Dirichlet growth theorem yields

(14) [X]μ,Zd
≤ c(μ) d−μ

√
K∗

(cf. Section 2.5, Theorem 1).

Remark 6. In consideration of Remark 4 and of the observation stated at
the beginning of Section 2.6 it cannot be expected that estimates of the type
(13) and (14) hold with some constant K∗ depending only on L(Γ ) and S if
we drop assumption (i) in Proposition 1. Nevertheless one could expect such
estimates to be true with numbers K∗ depending solely on L(Γ ), S and D(X).

This seems to be unknown in general except for the following particular
case which we want to formulate as

Proposition 2. Let X be a stationary minimal surface in C(Γ, S) which lies
in the exterior of an open, convex subset K of R

3 that is bounded by S. Suppose
also that S = ∂K is a regular surface of class C3, and suppose that the unit
normal NS of S pointing into the set K satisfies the following condition:

(iii) There exist two constants ρ > 0 and λ > 0 such that 〈NS(P ),
N2(Q)〉 ≥ λ is fulfilled for any two points P,Q ∈ S whose S-intrinsic dis-
tance is at most ρ.

Then there is a constant K∗ depending only on L(Γ ), S and D(X) such
that the inequalities (13) and (14) hold true.

Let us sketch the proof. We begin with the following

Lemma 1. Suppose that the assumptions of Proposition 2 are satisfied. Let
r, θ be polar coordinates about some points w0 ∈ I, defined by w = w0 + reiθ,
and set

ψ(r) :=
∫ π

0

|Xθ(r, θ)|2 dθ, 0 ≤ r ≤ 1 − |w0|.

Then ψ(r) is a monotonically increasing function of r in [0, 1 − |w0|].

Proof. By Proposition 1 of Section 2.8 it follows that X ∈ C2(B ∪ I,R3). Set
Ir(w0) := {w ∈ I : |w − w0| < r}. Then, by partial integration we obtain

rψ′(r) =
∫ π

0

∂

∂r
|Xθ(r, θ)|2r dθ(15)

=
∫

Sr(w0)

Δ|Xθ |2 du dv +
∫

Ir(w0)

∂

∂v
|Xθ |2 du.
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Let X∗ be the adjoint minimal surface to X. Then the mapping f : B → C
3

defined by f(w) = X(w) + iX∗(w) is holomorphic. Consequently also wf ′(w)
is holomorphic, and

|w|2|f ′(w)|2 = r2| ∇X|2 = 2|Xθ |2

is subharmonic. Thus we arrive at

(16) Δ|Xθ |2 ≥ 0 on B.

Moreover, the conformality relations imply

|Xθ |2 = r2|Xu|2,

where r2 = |w − w0| = (u − u0)2 + v2 for w0 = u0 ∈ I, and therefore

∂

∂v
|Xθ |2 = 2v|Xu|2 + 2r2〈Xu, Xuv 〉.

Thus we obtain
∂

∂v
|Xθ |2 = 2(u − u0)2〈Xu, Xuv 〉 on I.

Differentiating 〈Xu, Xv = 0〉 with respect to u it follows that

〈Xu, Xuv 〉 = −〈Xuu, Xv 〉 on B ∪ I,

and consequently

∂

∂v
|Xθ |2 = −2(u − u0)2〈Xuu, Xv 〉 on I.

Note that Xv points in the direction of the exterior normal of K whereas Xuu

points into the interior of K since X : I → R
3 maps I into the boundary S of

the open convex set K. Thus we have

〈Xuu, Xv 〉 ≤ 0 on I

and therefore

(17)
∂

∂v
|Xθ |2 ≥ 0 on I.

On account of (15)–(17) we infer that ψ′(r) ≥ 0. �
In the same way, the following result can be established, we leave its proof

to the reader.

Lemma 2. Suppose that the assumptions of Proposition 2 are satisfied, and
let w = w0+reiθ for some point w0 ∈ I. Then, for any p ∈ [1, ∞), the function

ψp(r) :=
∫ π

0

|Xθ(r, θ)|p dθ

is a monotonically increasing function of r ∈ [0, 1 − |w0|].
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Now we turn to the

Proof of Proposition 2. Fix some d ∈ (0, 1), and let w0 be an arbitrary point
on I with |w0| < 1 − d. By X(r, θ) we denote the representation of X in polar
coordinates r, θ about w0 (i.e. w = w0 + reiθ). Set

χ(r) :=
√
π

λ

{∫ π

0

|Xθ(r, θ)|2 dθ
}1/2

,

χ∗(r) :=
{

2πD(X)
λ2 log 1/r

}1/2

.

By the reasoning of the Courant–Lebesgue lemma (see Section 4.4) we infer
that, for any r ∈ (0, d2), there exists some r′ ∈ (r,

√
r) such that χ(r′) ≤ χ∗(r)

holds true. On account of Lemma 1, the function χ is increasing whence

(18) χ(r) ≤ χ∗(r) for all r ∈ (0, d2).

Since χ∗ is strictly increasing, we have

(19) χ∗(r) < ρ if and only if r < λ2,

where the number λ2 is defined by

λ2 := exp
(

− 2πD(X)
λ2ρ2

)
.

Let us now introduce the increasing function

l(r) :=
∫

Ir(w0)

|dX|,

and set
I(w0) :=

{
r ∈ (0, d2) : l(r) < ρ

}
.

Clearly, I(w0) is an open and non-empty interval contained in (0, d2), and
therefore

m := sup I(w0)

is a positive number which is not contained in I(w0). Set

δ := min{d2, λ2}.

We claim that the interval (0, δ) is contained in I(w0), independently of the
choice of w0. Otherwise we had m < δ, whence

m < d2 and m < λ2,

and therefore also
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(20) χ∗(m) < ρ,

on account of (19). For any r ∈ (0,m) we have r ∈ I(w0), and therefore
l(r) < ρ. Applying assumption (iii), we infer as in Proposition 1 that

(21) l(r) ≤ λ−1

∫ π

0

|Xθ(r, θ)| dθ

and Schwarz’s inequality yields

(22) l(r) ≤ χ(r) for all r ∈ (0,m).

From (18)–(21) we infer that

l(r) ≤ χ(r) ≤ χ∗(r) < χ∗(m) < ρ for all r ∈ (0,m)

whence, by r → m − 0, we deduce that

l(m) < ρ.

This implies m ∈ I(w0) which is impossible. Thus we have proved:
The interval (0, δ) lies in I(w0), for any w ∈ I with |w0| < 1 − d.
Thus we obtain (21) for all r ∈ (0, δ), and the isoperimetric inequality

yields

(23)
∫

Sr(w0)

| ∇X|2du dv ≤ 2λ1

{∫ π

0

|Xθ(r, θ)| dθ
}2

with λ1 = (1+λ)2/(4πλ2), for all r ∈ (0, δ) and for all w0 ∈ I with |w0| < 1−d.
Now we can proceed as in Remark 5 in order to prove the assertion of

Proposition 2.

Theorem 1. Let S be an admissible1 surface of class C3, and assume that X
is a critical point of Dirichlet’s integral which has the following properties:

(i) The free trace X(I) is contained in an open, orientable part S0 of S
that fulfils a λ-graph condition, λ > 0.

(ii) There exist no branch points of X on I which are of odd order.
Then the length L(Σ) =

∫
I

|dX| of the free trace Σ given by X : I → R
3

is estimated by (2):
L(Σ) ≤ λ−1L(Γ ),

and the area A(X) of X is estimated by (3):

A(X) ≤ λ1L
2(Γ ), λ1 :=

(1 + λ)2

4πλ2
.

1 The condition of “admissibility” is essentially a uniformity condition at infinity which is

formulated in Section 2.6.
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Proof. By Theorem 4 of Section 2.7, the surface X is a stationary minimal
surface in C(Γ, S) which is of class C1(B ∪ I,R3). Then the assertion follows
from Proposition 1 and from Remark 1. �

Note that the λ-graph condition imposes no bounds on the principal cur-
vature of S0. Thus S0 was allowed to have arbitrarily sharp wrinkles.

The following assumption is in a sense complementary to the λ-graph
condition; it implies a bound on the principal curvatures of S but does not
restrict the position of the Gauss image NS of S.

Definition 2. We say that a surface S in R
3 satisfies a (two-sided) R-sphere

condition, if S is a C2-submanifold of R
3 which is the boundary of an open

set U of R
3, and if for every P ∈ S the tangent balls

(24) B±(P,R) :=
{
Q ∈ R

3 : |P ± RNS(P ) − Q| < R
}

do not contain any points of S. Here NS denotes the exterior unit normal of
S with respect to U (see Fig. 3).

Fig. 3. The R-sphere condition

Theorem 2. Let S be a support surface satisfying an R-sphere condition, and
let Γ be a rectifiable Jordan arc with its endpoints on S. Let X be a stationary
minimal surface in C(Γ, S) with the free trace Σ given by X : I → R

3. Then
the length L(Σ) of Σ can be estimated by

(25) L(Σ) ≤ L(Γ ) +
2
R
D(X).

This estimate is optimal in the sense that 2 cannot be replaced by any smaller
number.
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For the proof we need the following

Lemma 3. Suppose that the surface S satisfies an R-sphere condition. Then
its principal curvatures are bounded from above by 1/R. Moreover, any point
P in the tubular neighbourhood

(26) TR :=
{
Q ∈ R

3 : dist(Q,S) < R
}

has a unique representation of the form

(27) P = F (P ) + ρ(P )NS(F (P )),

where F (P ) ∈ S is the unique foot of P on S, ρ(P ) is the oriented distance
from S to P , and NS(Q) denotes the exterior normal to S at Q ∈ S (i.e.,
ρ(P ) < 0 if P ∈ U , and ρ(P ) ≥ 0 if P ∈ R

3 − U). The distance function
ρ is of class C2 (and of class Cm or Cm,α if S ∈ Cm or Cm,α respectively,
m ≥ 2, 0 < α < 1), and we have

(28) Dρ(P ) = NS(F (P )) for all P ∈ TR.

Finally the eigenvalues of the Hessian matrix H(P ) = D2ρ(P ) = (ρxixk(P ))
at any P ∈ TR are bounded from above by [R − |ρ(P )|]−1, and the Hessian
annihilates normal vectors, i.e.,

(29) H(P )NS(F (P )) = 0 for all P ∈ TR.

(Here D denotes the three-dimensional gradient in R
3.)

Proof. The representation formula (27) in the tubular neighbourhood TR is
fairly obvious. The other results follow from (27) by means of the implicit
function theorem using the fact that the principal curvature of S at P are
precisely the eigenvalues of the Hessian of a nonparametric representation of
S close to P whose x, y-plane is parallel to the tangent plane of S at P . We
omit the details and refer the reader to Gilbarg and Trudinger [1], Appendix
(pp. 383–384), for the pertinent estimates.

Proof of Theorem 2 in the special case that X has no branch point of odd
order on I. For any δ > 0 we can choose a function ϕ(t), t ∈ R, of class
C∞

C ((−R,R)) having the following properties:

0 ≤ ϕ ≤ 1, ϕ(0) = 1, ϕ(t) = ϕ(−t),
ϕ(t) ≤ (1 − R−1|t|)(1 + δ) for |t| ≤ R,(30)

|ϕ′(t)| ≤ R−1(1 + δ).

Then we define a C1-vector field Z on R
3 by

(31) Z(P ) =

{
ϕ(ρ(P ))NS(F (P )) for P ∈ TR,

0 otherwise.
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We clearly have

|Z(P )| ≤ 1 for all P ∈ R
3,

(32)
Z(Q) = NS(Q) for Q ∈ S,

and we claim that also

(33) | ∇Z(P ) ≤ R−1(1 + δ) for all P ∈ R
3

holds true. As ∇Z vanishes in the exterior of TR, we have to prove (33) only
for P ∈ TR. Thus we fix some P ∈ TR and some unit vector ν ∈ R

3. Then the
directional derivative ∂Z

∂ν (P ) is given by

∂Z

∂ν
(P ) = ϕ′(ρ(P ))

∂ρ

∂ν
(P )NS(F (P )) + ϕ(ρ(P ))

∂

∂ν
NS(F (P )).

If ν = ±NS(F (P )), then

∂Z

∂ν
(P ) = ϕ′(ρ(P ))

∂ρ

∂ν
(P )NS(F (P )),

and by (28) and (303) it follows that

(34)
∣
∣
∣
∣
∂Z

∂ν
(P )
∣
∣
∣
∣ ≤ 1 + δ

R
.

If ν is orthogonal to NS(F (P )), then ∂ρ
∂ν (P ) = 0, and Lemma 3 yields

∂

∂ν
NS(F (P )) =

∂

∂ν
∇ρ(P ) = ∇2ρ(P )ν

and
| ∇2ρ(P )ν| ≤ | ∇2ρ(P )| |ν| ≤ (R − |ρ(P )|)−1.

In conjunction with (302) it follows that
∣
∣
∣
∣
∂Z

∂ν
(P )
∣
∣
∣
∣ ≤ (1 − R−1|ρ(P )|)(1 + δ)(R − |ρ(P )|)−1 =

1 + δ

R

and thus (34) holds true if ν ⊥ NS(F (P )). Hence (34) is satisfied for all unit
vectors ν, and we have established property (33).

By means of the vector field Z on R
3 we define a surface Y (w), w ∈ B, of

class L∞ ∩ H1
2 (B,R3), setting Y (w) = Z(X(w)).

Given any ε ∈ (0, 1), we can find two numbers ε1, ε2 ∈ (ε2, ε) such that

(35)
∫

γ1(ε)

|dX| +
∫

γ2(ε)

|dX| ≤ 2
{
πD(X)
log(1/ε)

}1/2

,

where γ1(ε) and γ2(ε) denote the circular arcs
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γ1(ε) := {w ∈ B : |w − 1| = ε1, Imw > 0} ,

γ2(ε) := {w ∈ B : |w + 1| = ε2, Imw > 0} ;

see Section 4.4 of Vol. 1.
Now we apply Green’s formula to the functions X,Y and to the domain

Ω(ε) which is obtained from the semidisk B by removing the parts which are
contained in the disks Bε1(1) or Bε2(−1), respectively:

Ω(ε) := B \ [Bε1(1) ∪ Bε2(−1)].

Thus we obtain

(36)
∫

Ω(ε)

〈∇X, ∇Y 〉 du dv = −
∫

Ω(ε)

〈ΔX,Y 〉 du dv +
∫

∂Ω(ε)

〈
∂X

∂v
, Y

〉
dH1,

where ν denotes the exterior normal on ∂Ω(ε). Set

I(ε) := I ∩ ∂Ω(ε) and C(ε) := C ∩ ∂Ω(ε).

Then
∂Ω(ε) = I(ε) ∪ C(ε) ∪ γ1(ε) ∪ γ2(ε).

On the interval I(ε), we have dH1 = du, ∂X
∂ν = −Xv, Y = NS(X), and

Xv = ±|Xv |NS(X). As there exist no branch points of odd order on I, the
vector Xv always points in the direction of NS(X) or in the direction of
−NS(X). Thus we can assume that

Xv = |Xv |Ns(X) on I(ε),

and we arrive at
〈
∂X

∂ν
, Y

〉
= −|Xv | = −|Xu| on I(ε).

This implies

(37)
∫

I(ε)

〈
∂X

∂ν
, Y

〉
dH1 =

∫

I(ε)

|dX|.

Let ∂
∂τX be the tangential derivative of X along ∂Ω(ε). The conformality

relations yield ∣
∣
∣
∣
∂X

∂ν

∣
∣
∣
∣ =

∣
∣
∣
∣
∂X

∂τ

∣
∣
∣
∣

and therefore
∣
∣
∣
∣

〈
∂X

∂ν
, Y

〉∣∣
∣
∣ ≤

∣
∣
∣
∣
∂X

∂ν

∣
∣
∣
∣ |Y | ≤

∣
∣
∣
∣
∂X

∂τ

∣
∣
∣
∣ along ∂Ω(ε).
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Consequently, we have
∣
∣
∣
∣
∣

∫

C(ε)+γ1(ε)+γ2(ε)

〈
∂X

∂ν
, Y

〉
dH1

∣
∣
∣
∣
∣

(38)

≤
∫

C(ε)

|dX| +
∫

γ1(ε)

|dX| +
∫

γ2(ε)

|dX| ≤ L(Γ ) + f(ε),

where the remainder term f(ε) tends to zero as ε → +0, by virtue of (35).
Finally we infer from Y = Z ◦ X and from (33) that

| ∇Y | ≤ 1 + δ

R
| ∇X|

whence
∣
∣
∣
∣
∣

∫

Ω(ε)

〈∇X, ∇Y 〉 du dv

∣
∣
∣
∣
∣

≤ 1 + δ

R

∫

Ω(ε)

| ∇X|2 du dv .(39)

Because of ΔX = 0 we infer from (36) in conjunction with (37)–(39) that

(40)
∫

I(ε)

|dX| ≤ L(Γ ) +
1 + δ

R

∫

Ω(ε)

| ∇X|2 du dv + f(ε).

Letting ε → +0, it follows that

L(Σ) ≤ L(Γ ) +
1 + δ

R

∫

B

| ∇X|2 du dv .

Since we can choose δ > 0 as small as we please, we arrive at the desired in
equality

L(Σ) ≤ L(Γ ) + 2R−1D(X).

In order to show that the estimate (25) is optimal we consider the following
examples. Let S be the circular cylinder of radius R given by

S :=
{
(x, y, z) : x2 + y2 = R2

}
,

and let Γ be the straight arc

Γ :=
{
(x, y, z) : x = a, y2 ≤ R2 − a2, z = 0

}
,

where a denotes some number with 0 < a < R. Then it is easy to define
a planar minimal surface X : B → R

3 which is stationary in C(Γ, S) and
maps B conformally onto the planar domain Ω = {(x, y, z) : z = 0, x2 + y2 <
R2, x < a}.

If a tends to R then L(Σ) converges to 2πR and cR−1D(X) to cπR whereas
L(Γ ) shrinks to zero. This shows that c = 2 is the optimal value in the estimate
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L(Σ) ≤ L(Γ ) + cR−1D(X),

and the proof of Theorem 2 is complete in the special case that there are no
branch points of odd order on I. �

The proof of Theorem 2 in the general case will be based on the relation

(41) |Xv | = |Dvρ(X)| along I.

This follows by differentiating the relation

X = F (X) + ρ(X)NS(F (X)) on B ∪ I

which holds on B ∪ I close to I (cf. (27)). Hence we can express the length of
the free trace Σ as

(42) L(Σ) =
∫

I

|Dvρ(X)| du.

If X(B) were contained in the tubular neighbourhood TR of S, we could write
∫

I

Dvρ(X) du = −
∫

B

Δρ(X) du dv +
∫

C

∂

∂ν
ρ(x) dH1.

If Dvρ(X) has a uniform sign on I, we could use this identity to derive an
estimate for L(Σ). However, since both facts are not guaranteed, we shall
instead construct some function η(w) of which we can prove that

(43) η ≥ |Dνρ(X)| on I

holds true. Then we can estimate L(Σ) from above by the integral
∫

I
ηv du

which is transformed into

−
∫

B

Δη du dv +
∫

C

∂

∂ν
η dH1,

and this integral will be estimated in terms of X.
In order to define η we first introduce

Ψ(t) :=
∫ t

0

ϕ(s) ds,

where ϕ is a function of class C∞
c ((−R,R)) satisfying (30). Then Ψ satisfies

Ψ(t) = Ψ(R) for t ≥ R, Ψ(t) = −Ψ(R) for t ≥ −R,

Ψ(0) = 0, Ψ ′(0) = 1, 0 ≤ Ψ ′ ≤ 1,
(44)

Ψ(t) ≤ (1 − R−1|t|)(1 + δ) for |t| ≤ R,

|Ψ ′ ′(t)| ≤ R−1(1 + δ).
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Secondly we define
ζ(P ) := Ψ2(ρ(P )) if P ∈ R

3,

α(w) := δv, w = u+ iv.

Then η(w) will be defined as

η(w) :=
{
α2(w) + ζ(X(w))

}1/2
for w ∈ B.

The function η is of class C2(B) ∩ C1(B ∪ I), and its boundary values on C
are absolutely continuous. Moreover, we have

∇η =
{
α2 + ζ(X)

}1/2
[
α∇α+

1
2

∇ζ(X)
]

whence it follows that

ηv =
{
α2 + ζ(X)

}−1/2
[δα+ Ψ ′(ρ(X))Ψ(ρ(X))Dvρ(X)] .

Here and in the sequel we use the notation ∇ζ(X) for ∇(ζ ◦ X), Dvρ(X) for
Dv(ρ ◦ X), etc.

Set w = u0+iv, v > 0, and let v → +0. Then Ψ(ρ(X)) → 0, Ψ ′(ρ(X)) → 1,
and l’Hospital’s rule yields

Ψ(ρ(X(u0 + iv)))
v

→ Dvρ(X)
∣
∣
∣
∣
w=w0

.

Hence ηv tends to

δ2 + |Dvρ(X)|2

{δ2 + |Dvρ(X)|2}1/2
=
{
δ2 + |Dvρ(X)|2

}1/2 ≥ |Dvρ(X)|

whence we have established (43).
Next we want to estimate −Δη from above. We have

∇ζ(X) = 2Ψ ′(ρ(X))Ψ(ρ(X))∇ρ(X),
Δζ(X) = 2γ′(ρ(X))| ∇ρ(X)|2 + 2γ(ρ(X))Δρ(X),

where we have set
γ := ΨΨ ′,

and

−Δη =
{
α2 + ζ(X)

}−3/2
∣
∣
∣
∣α∇α+

1
2

∇ζ(X)
∣
∣
∣
∣

2

−
{
α2 + ζ(X)

}−1/2
[

| ∇α|2 +
1
2
Δζ(X)

]
.

This implies (with ζ = ζ(X), ρ = ρ(X), γ = γ(ρ(X)), etc.) that
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−Δη =
{
α2 + ζ

}−3/2 |α∇α+ γ∇ρ|2

−
{
α2 + ζ

}−1/2
(| ∇α|2 + Ψ ′2| ∇ρ|2 + ΨΨ ′ ′ | ∇ρ|2 + γΔρ)

= −
{
α2 + ζ

}−3/2 |αΨ ′ ∇ρ − Ψ∇α|2

−
{
α2 + ζ

}−1/2
(ΨΨ ′ ′ | ∇ρ|2 + γΔρ)

≤ −
{
α2 + ζ

}−1/2
Ψ(Ψ ′ ′ | ∇ρ|2 + Ψ ′Δρ)

≤
{
α2 + Ψ2

}−1/2
Ψ(|Ψ ′ ′ | | ∇ρ|2 + |Ψ ′ | |Δρ|)

≤ |Ψ ′ ′ | | ∇ρ|2 + |Ψ ′ | |Δρ|.

Thus we have

(45) −Δη ≤ |Ψ ′ ′(ρ(X))| | ∇ρ(X)|2 + |Ψ ′(ρ(X))| |Δρ(X)|.

We can restrict our attention to the set

B′ := {w ∈ B : ρ(X(w)) < R}

since Ψ ′(ρ(X)) and Ψ ′ ′(ρ(X)) vanish in B \ B′ whence also Δη = 0 in B \ B′.
In B′ we have

(46) |Ψ ′ ′(ρ(X))| | ∇ρ(X)|2 ≤ 1 + δ

R
| ∇ρ(X)|2

and

(47) |Ψ ′(ρ(X))| ≤ (1 + δ)(1 − R−1|ρ(X)|),

taking (44) into account.
Furthermore we have

(48) Δρ(X) = XuH(X)Xu +XvH(X)Xv

with H(X) = (ρxixk(X)) = Hessian matrix of ρ composed with X. By means
of Lemma 3 we infer that

(49) |XuH(X)Xu +XvH(X)Xv | ≤ (R − |ρ(X)|)−1
{

| ∇X|2 − | ∇ρ(X)|2
}

since |Xu|2 −Duρ(X)|2 is the square of the norm of the tangential component
of Xu, and an analogous statement holds for |Xv |2 − Dvρ(X)|2. Combining
(47), (48) and (49), we arrive at

(50) |Ψ ′(ρ(X))| |Δρ(X)| ≤ 1 + δ

R
[| ∇X|2 − | ∇ρ(X)|2].

Then (45), (46) and (50) yield

(51) −Δη ≤ 1 + δ

R
| ∇X|2
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on B′, and therefore also on B.
Moreover, a straight-forward estimation yields

∣
∣
∣
∣
∂η

∂ν

∣
∣
∣
∣ ≤

{∣
∣
∣
∣
∂α

∂ν

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂

∂ν
Ψ(X)

∣
∣
∣
∣

2
}1/2

≤
√
δ2 + |Xr |2 =

√
δ2 + |Xθ |2 on C

and therefore

(52)
∣
∣
∣
∣
∂η

∂ν

∣
∣
∣
∣ ≤ δ + |Xθ | on C.

Now choose Ω(ε) as in the proof of the special case as

Ω(ε) = B \ [Bε1(1) ∪ Bε2(−1)]

with
∂Ω(ε) = I(ε) ∪ C(ε) ∪ γ1(ε) ∪ γ2(ε).

Then we obtain

(53)
∫

I(ε)

Dvη du = −
∫

Ω(ε)

Δη du dv +
∫

C(ε)+γ1(ε)+γ2(ε)

∂

∂ν
η dH1.

By (41) and (43) it follows that
∫

I(ε)

|dX| =
∫

I(ε)

|Xu| du =
∫

I(ε)

|Xv | dv(54)

=
∫

I(ε)

|Dvρ(X)| du ≤
∫

I(ε)

Dvη du,

taking |Xu| = |Xv | into account. Thus, by virtue of (51)–(54), we obtain that
∫

I(ε)

|dX| ≤
∫

Ω(ε)

(Δη) du dv +
∫

C(ε)+γ1(ε)+γ2(ε)

∣
∣
∣
∣
∂η

∂ν

∣
∣
∣
∣ dH1

≤ 1 + δ

R

∫

Ω(ε)

| ∇X|2 du dv +
∫

C(ε)

{δ + |Xθ | } dH1

+
∫

γ1(ε)+γ2(ε)

∂η

∂ν
dH1.

Letting first δ and then ε tend to zero, we arrive at
∫

I

|dX| ≤ 1
R

∫

R

| ∇X|2 du dv +
∫

C

|dX|,

where the integral over γ1(ε) is dealt with in the same way as in the previous
proof for the special case. �
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Remark 7. There is no estimate of the form

L(Σ) ≤ c1L(Γ ) + c2H0D(X)

or of the form
L(Σ) ≤ c1L(Γ ) + c2K0D(X)

with absolute constants c1 and c2, where H0 and K0 denote upper bounds for
|H| and |K|1/2, respectively, H and K being the mean curvature and Gauss
curvature of S. In fact, the second inequality is ruled out by the cylinder
example discussed before, and the first is disproved by a similar example
where one replaces the cylinder surface by a suitable catenoid as supporting
surface S (see Fig. 4). In other words, it is quite natural that in (25) an upper
bound for the two principal curvatures κ1 and κ2 of S enters and not an upper
bound for the mean curvature H or for the Gauss curvature K.

Fig. 4. The examples of Remark 7

Remark 8. Suppose that not all of Γ lies in S. Then, by choosing ϕ(t) in
such a way that ϕ(t) < 1 for all t �= 0, a close inspection of the proof of
Theorem 2 shows that we have in fact the strict inequality

(55) L(Σ) < L(Γ ) +
2
R
D(X)

instead of (25).

Remark 9. In addition to the assumptions of Theorem 2 we now assume that
X(B) is contained in a ball KR0(P ) = {Q : |P − Q| ≤ R0} of R

3. Then the
linear isoperimetric inequality of Section 6.3 implies that

D(X) ≤ R0

2
{L(Γ ) + L(Σ)} .
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If R > R0, we infer in conjunction with (25)

(56) L(Σ) ≤ R +R0

R − R0
L(Γ ).

This is an analogue to the inequality (2) in Proposition 1. From the example
S = ∂KR0(P ) we infer that L(Σ) can in general not be bounded from above
by L(Γ ). In this case the inequality (56) fails since we have R = R0.

Remark 10. An estimate similar to (25) can be given for stationary minimal
surfaces with completely free boundaries. In fact, suppose that X : B → R3 is
a stationary minimal surface in C(S) and assume that S satisfies an R-sphere
condition. Then it follows that the free trace Σ of X satisfies

(57) L(Σ) ≤ 2R−1D(X).

Note that we cannot prove strict inequality as equality holds for the cylinder

S =
{
(x, y, z) : x2 + y2 = 1

}
,

where R = 1 and for

X(w) = (Re(wn), Im(wn), 0), w = u+ iv, n ∈ N.

Let us conclude this section by a brief discussion of surfaces X : B → R
3,

parametrized over the unit disk which are the class H1
2 ∩C2(B,R3) and satisfy

both
ΔX = 2HXu ∧ Xv

and
|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

That is, the surface X has constant mean curvature H at all points w where
∇X(w) �= 0. We shall in the following assume that X(w) �≡ const. Then
branch points w0 of X are isolated, and Xw(w) possesses an asymptotic ex-
pansion

Xw(w) = A(w − w0)m + o(|w − w0|m) as w → w0,

A ∈ C
3, A �= 0, 〈A,A〉 = 0, m ∈ N,

which is completely analogous to asymptotic expansions of minimal surfaces
at branch points w0 derived in Vol. 1, Section 3.2 (see Section 3.1).

Moreover we assume that X is of class C(S) where the support surface S
satisfies an R-sphere condition (cf. Definition 2), and that S = ∂U where U
is an open (nonempty) set in R

3.
Finally we suppose that X is of class C1(B,R3) and intersects S perpen-

dicularly along its free trace Σ given by X : ∂B → R
3.
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We shall call such surfaces stationary H-surfaces in C(S). Then, by the
same computations as in the proof of Theorem 2, we obtain the following
analogue of (57) for “stationary H-surfaces in the class C(S)”:

(58) L(Σ) ≤ 2(|H|) +R−1)D(X).

Whenever X satisfies an isoperimetric inequality of the kind

(59) D(X) ≤ cL2(Σ),

it follows that
L(Σ) ≤ 2(|H| +R−1)cL2(Σ)

whence

(60) L(Σ) ≥ 1
2c(|H| +R−1)

.

In particular, for stationary minimal surfaces in C(S) we have H = 0 and
c = 1

4π , whence

(61) L(Σ) ≥ 2πR.

This is a remarkable lower bound for the length of the free trace of a stationary
minimal surface in C(S).

One encounters stationary H-surfaces as solutions of the so-called partition
problem. Given an open set U in R

3 of finite volume V and with S = ∂U , this
is the following task:

Among all surfaces Z of prescribed topological type which are contained in
U , have their boundaries on S, and divide U in two disconnected parts U1 and
U2 of prescribed ratio of volumes, one is to find a surface X which assigns
a minimal value or at least a stationary value to its surface area (Dirichlet
integral).

One can show2 that any solution X : B → R
3 of the partition problem is a

surface of constant mean curvature H which is regular up to its free boundary
and intersects S = ∂U perpendicularly along Σ = X|∂B. That is, any solution
of the partition problem for U is a stationary H-surface in C(S), S := ∂U .

If U is a closed convex body K whose boundary S = ∂K satisfies an R-
sphere condition, and if R∗ is the inradius of K (i.e., the radius of the largest
ball contained in K), then one can also prove the following lower bound for
the length L(Σ) of the free trace Σ of any stationary H-surface X : B → R

3

in C(S) that is parametrized on the unit disk and satisfies X(B) ⊂ K:

(62) L(Σ) ≥ 2πR∗
1 + (diam K − R∗)|H| .

For H = 0 this reduces to

(63) L(Σ) ≥ 2πR∗.

As we have R∗ ≥ R, this inequality is an improvement of (61).
2 Cf. Grüter-Hildebrandt-Nitsche [2].
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Fig. 5. The inradius R∗, and the smallest curvature radius R

Proof of estimate (62). Set L := L(Σ), and define the parameter of the arc
length of Σ by

s(θ) :=
∫ θ

0

|Xθ(eiθ)| dθ =
∫ θ

0

|Xr(eiθ)| dθ

(r, θ = polar coordinates about the origin w = 0).
Let θ(s) be the inverse function, 0 ≤ s ≤ L, and introduce the representa-

tion
Z(s) := X(eiθ(s)), 0 ≤ s ≤ L,

of Σ with respect to the parameter s. Moreover let NS(P ) be the exterior unit
normal of S at the point P ∈ S. As the H-surface X meets S perpendicularly
along Σ, we have

Xr(eiθ) = |Xr(eiθ)|NS(X(eiθ))

and therefore

(64)
∫

∂B

Xr dθ =
∫

Σ

NS(Z) ds :=
∫ L

0

NS(Z(s)) ds.

Secondly, a partial integration yields

(65) 2
∫

B

Xu ∧ Xv du dv =
∫

∂B

X ∧ dX =
∫

Σ

Z ∧ dZ,

and another partial integration implies
∫

∂B

Xr dθ =
∫

B

ΔX du dv .

On account of ΔX = 2HXu ∧ Xv we thus obtain

(66)
∫

∂B

Xr dθ = 2H
∫

B

Xu ∧ Xv du dv .

Now we infer from (64)–(66) that
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(67)
∫

Σ

{NS(Z) ds − HZ ∧ dZ} = 0.

Set

Z := −
∫ L

0

Z(s) ds.

Then Wirtinger’s inequality (Section 6.3, Lemma 2) yields

(68)
∫ L

0

|Z − Z|2 ds ≤ L3

4π2
.

Let us now introduce the support function σ(P ) of the convex surface S by

σ(P ) := 〈P,NS(P )〉 ,

where we have identified P with the radius vector
−−→
OP from the origin 0 to

the point P . We can assume that 0 is the center of the in-ball BR∗ (0) of K.
Then we obtain

σ(P ) ≥ R∗ for all P ∈ S.

Consequently we have

R∗L −
∫ L

0

〈
Z,NS(Z)

〉
ds ≤

∫ L

0

〈Z,NS(Z)〉 ds −
∫ L

0

〈
Z,NS(Z)

〉
ds

=
∫ L

0

〈
Z − Z,NS(Z)

〉
ds

≤ L1/2

{∫ L

0

|Z − Z|2 ds
}1/2

≤ L2

2π
,

taking also (68) into account.

Fig. 6. Concerning the proof of formula (62)

In conjunction with (67) we arrive at
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R∗L =

{

R∗L −
∫ L

0

〈
Z,NS(Z)

〉
ds

}

+
∫ L

0

〈
Z,NS(Z)

〉
ds

≤ L2

2π
+H

∫ L

0

[Z,Z, Z ′] ds.

Here [A1, A2, A3] denotes the volume form 〈A1, A2 ∧ A3〉 = det(A1, A2, A3) of
three vectors A1, A2, A3 of R

3. Because of the identity

[Z,Z, Z ′] = [Z,Z − Z,Z ′]

we arrive at

R∗L ≤ L2

2π
+H

∫ L

0

[Z,Z − Z,Z ′] ds

≤ L2

2π
+ |H|

∫ L

0

|Z| |Z − Z| |Z ′ | ds

≤ L2

2π
+ |H| |Z|

√
L

{∫ L

0

|Z − Z|2 ds
}1/2

≤ L2

2π
(1 + |HZ|).

Moreover, an elementary estimation yields

|Z| ≤ diamK − R∗,

and therefore
R∗L ≤ 1

2π
{1 + (diam K − R∗)|H| } L2.

Now (62) is an obvious consequence of this inequality. �

Let us conclude this section with the remark that equality in (63) implies
that X is a disk.

4.7 Obstacle Problems and Existence Results for Surfaces
of Prescribed Mean Curvature

In this section we treat obstacle problems, that is, we look for surfaces of
minimal area (or minimal Dirichlet integral) which are spanning a prescribed
closed boundary curve Γ and avoid certain open sets (the “obstacles”). This
means that the competing surfaces of the variational problem are confined to
some closed set K which is a subset of R

3 or, more generally a subset of a
three dimensional manifold M . In Chapter 4 of Vol. 1 we have very thoroughly
described the minimization procedure which leads to a solution of Plateau’s



372 4 Enclosure Theorems and Isoperimetric Inequalities for Minimal Surfaces

problem for minimal surfaces. In addition we have outlined the extension of
this argument to a more general variational integral, see Theorem in No. 6 of
the Scholia to that chapter. Therefore we refrain from repeating the procedure
here and refer to Chapter 4 of Vol. 1 as well as to the pertinent literature cited
therein. Instead we focus on higher regularity results for obstacle problems.
Note that the optimal regularity which can be expected is C1,1-regularity of a
solution. Indeed, this can already be seen by considering a thread of minimal
length which is spanned between two fixed points and touches an (analytic)
obstacle in a whole interval.

In a first step we prove Hölder continuity of any solution, and later in
Theorem 6 we use a difference quotient technique to show H2

s,loc-regularity
for any solution of the variational problem. By standard Sobolev imbedding
results this implies the Hölder continuity of the first derivatives.

We also study the Plateau problem for surfaces of prescribed mean cur-
vature in Euclidean space R

3. Here one prescribes a real valued function H
on R

3 and asks for a surface X which is bounded by a given closed Jor-
dan curve Γ and has prescribed mean curvature H(X(u, v)) at a particular
point X(u, v). Clearly, if H ≡ 0, we recover the classical Plateau problem for
minimal surfaces. In this section we discuss some classical existence and also
non-existence results for the general Plateau problem described above.

Set

B = {w ∈ C : |w| < 1} and C := {w ∈ C : |w| = 1} = ∂B

and let Γ denote a closed Jordan curve in R
3 i.e. a topological image of C.

Let H : R
3 → R be a given function which is bounded and continuous.

Definition 1. Given a closed Jordan curve Γ in R
3 and a bounded continuous

function H : R
3 → R. We say that X : B → R

3 is a solution of Plateau’s
problem determined by Γ and H (in short: an “H-surface spanned by Γ”) if
it fulfills the following three conditions:

(i) X ∈ C0(B,R3) ∩ C2(B,R3).
(ii) X satisfies in B the equations

(1) �X = 2H(X(u, v))Xu ∧ Xv

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

(iii) The restriction X|C of X to the boundary C of the parameter domain B
is a homeomorphism of C onto Γ .

It follows from Chapter 2.5 of Vol. 1 that every H-surface X spanned by
Γ has mean curvature H = H(X(u, v)) at each regular point (u, v) ∈ B.

Since, for H ≡ 0, each H-surface with boundary Γ provides a solution to
the classical Plateau problem for minimal surfaces, it is conceivable that a
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similar variational approach using a more general energy functional instead
of Dirichlet’s integral might be successful.

Before we define a suitable energy functional we remark at the outset that
Plateau’s problem can certainly not be solvable for arbitrary Γ and H, in
other words there are necessary conditions for existence.

To see this let us suppose that X ∈ C2(B,R3) is a solution of (ii) and (iii)
with H ≡ const.

Then, by integrating (ii) we obtain
∫

B

�X dudv =
∫

B

div ∇X dudv = 2H
∫

B

(Xu ∧ Xv) du dv

and Gauß’ and Green’s theorem yield
∫

∂B

∇X · nds

= 2H
∫

B

⎡

⎣
yuzv − zuyv

−xuzv + xvzu

xuyv − xvyu

⎤

⎦ du dv

= H

∫

B

⎡

⎣
(yzv)u − (zuy)v

(zxv)u − (xuz)v

(xyv)u − (xyu)v

⎤

⎦ du dv +H

∫

B

⎡

⎣
(zyu)v − (zyv)u

(xzu)v − (xzv)u

(yxu)v − (yxv)u

⎤

⎦ du dv

= H

∫

∂B

⎡

⎣
yzu du+ yzv dv
xuz du+ zxv dv
xyu du+ xyv dv

⎤

⎦+H

∫

∂B

⎡

⎣
−zyu du − zyv dv

−xzu du − xzv dv
−yxu du − yxv dv

⎤

⎦ .

On the other hand we have

X ∧ Xu =

⎛

⎝
yzu − zyu

−xzu + zxu

xyu − yxu

⎞

⎠ and X ∧ Xv =

⎛

⎝
yzv − zyv

−xzv + zxv

xyv − yxv

⎞

⎠

and therefore
∫

∂B

∂X

∂r
ds = H

∫

∂B

(X ∧ Xu) du+H

∫

∂B

(X ∧ Xv) dv

= H

∫

∂B

X ∧ dX.

In particular this implies the relation

|H|
∣
∣
∣
∣

∫

∂B

X ∧ dX

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∂B

∂X

∂r
ds

∣
∣
∣
∣

from which we conclude the necessary condition

|H|
∣
∣
∣
∣

∫

∂B

X ∧ dX

∣
∣
∣
∣ ≤

∫

∂B

∣
∣
∣
∣
∂X

∂r

∣
∣
∣
∣ ds =

∫

∂B

|Xθ(1, θ)| dθ = L(Γ )

= length of the curve Γ .

(Note that here we have used the conformality relation (ii).)
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Putting k(Γ ) := |
∫

∂B
X ∧dX| we obtain the following necessary condition

of Heinz [12] which we formulate as a nonexistence result.

Theorem 1. Suppose k(Γ ) > 0. Then there is no solution X ∈ C2(B,R3) of
Plateau’s problem determined by Γ and H ≡ const, if

|H| > L(Γ )
k(Γ )

.

This theorem also holds for solutions X ∈ C2(B,R3) ∩ C0(B,R3) as was
proved by Heinz [12] using an appropriate approximation procedure.

Example. Let Γ be a circle of radius R,

Γ = {(R cos θ,R sin θ, 0) ∈ R
3 : θ ∈ [0, 2π)}.

Then

k(Γ ) =
∣
∣
∣
∣

∫

∂B

X ∧ dX

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∂B

X ∧ Xθdθ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∂B

R2

⎛

⎝
0
0
1

⎞

⎠ dθ

∣
∣
∣
∣ = 2πR2.

Hence there is no solution of Plateau’s problem for a circle of radius R and
constant mean curvature H if

|H| > 2πR
2πR2

=
1
R
.

Also, if Γ is “close to” a circle of radius R, we cannot expect the existence of
an H-surface bounded by Γ and constant H bigger than 1

R . We will see later
on in this section, that this conditions is sharp.

Recall now that every minimizer X of the Dirichlet integral within the
class C(Γ ) is harmonic in B.

Furthermore we have seen in Theorem 1 of Section 4.5 in Vol. 1 that the
conformality conditions (2) hold if the first inner variation ∂D(X,λ) vanishes
for all vector fields λ ∈ C1(B,R3) (which is the case for a minimizer of D(·)).
As a suitable energy functional to be considered one might therefore try an
integral F of the type

F(X) = D(X) + V (X)

consisting of the Dirichlet integral and a “volume” term

V (X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv,

where Q = (Q1, Q2, Q3) denotes a C1-vector field defined on R
3 or a subset

K of R
3. Since V (·) is invariant with respect to all orientation preserving C1-

diffeomorphisms of B this term would not alter the conformality of minimizers.
Note also that V = V (X) equals the algebraic volume enclosed by the

surface X and the cone over the boundary Γ weighted by the factor div Q, as
follows easily by applying Gauß’s theorem.
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We observe that the Euler equation for the functional F is given by the
system

�X� = divQ(X)(Xu ∧ Xv)�(3)

for ! = 1, 2, 3. (Compare Vol. 1, Section 4.5; here we have put gij = δij and
Γ k

ij = 0).
If in addition to the first outer variation also the first inner variation

∂F(X,λ) = ∂D(X,λ) vanishes for all C1-vector fields λ = (μ, ν), then it
follows that the conformality condition

(4) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

hold true (almost every where) in B.
Theorem 1 of Vol. 1, Section 2.6 now states that a solution X of (3) which

satisfies (4) has mean curvature

H(X) =
1
2
divQ(X)

at each regular point (u, v) ∈ B of X.
We are thus led to consider the “energy” functional

F(X) =
1
2

∫

B

| ∇X|2 du dv +
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv,

where the vector field Q is of class C1(R3,R3) or C1(K,R3),K ⊂ R
3, and has

to be determined such that

(5) divQ(x) = 2H(x)

for all x ∈ R
3 or K respectively.

In addition F(·) has to be coercive on the set of admissible functions, i.e.
there are positive numbers m0 ≤ m1 so that

(6) m0D(X) ≤ F(X) ≤ m1D(X)

holds for every admissible X.
The Lagrangian e ≡ e(x, p1, p2) of F is given by

e(x, p1, p2) =
1
2
(|p1|2 + |p2|2) + 〈Q(x), p1 ∧ p2〉,

where x ∈ R
3 or K and p1, p2 ∈ R

3.
Assuming that

(7) sup
K

|Q| = |Q|0,K < 1

we immediately conclude coerciveness of F(·) since we obtain from Schwarz’s
inequality
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1
2
(1 − |Q|0,K)(|p1|2 + |p2|2) ≤ e(x, p1, p2) ≤ 1

2
(1 + |Q|0,K)(|p1|2 + |p2|2),

that is (6) follows with constants

m0 := (1 − |Q|0,K) > 0 and m1 := (1 + |Q|0,K).

In order to avoid additional difficulties which arise from the discussion of an
obstacle problem it would be desirable to construct a vector field Q of class
C1 which is defined on K = R

3 and is subject to (5) and (7). However, even in
the case H = const, a quick inspection of equation (5), using Gauß’s theorem,
shows that the quantity |Q|0,∂BR

has to grow linearly in the radius R; in other
words (7) can not hold for K = R

3, even if H = const.
Hence we consider the following strategy:

I) The vector field Q:
For given Γ and H satisfying conditions to be determined later, find a
closed set K ⊂ R

3 such that Γ ⊂ K together with a vector field Q ∈
C1(K,R3) which fulfills the conditions (5) and (7).

II) The obstacle problem:
Define the set of admissible functions C = C(Γ,K) := C∗(Γ ) ∩ H1

2 (B,K),
where C∗(Γ ) denotes the class of H1

2 -surfaces spanning Γ which are nor-
malized by a three point condition, and H1

2 (B,K) denotes the subset of
all Sobolev functions f ∈ H1

2 (B,R3) which map almost all of B into K.
Solve the obstacle problem

P(Γ,K) : F(·) → min in C(Γ,K)

and establish some initial regularity of the solutions assuming appropriate
regularity hypotheses on K. Instead of a variational equality δF = 0, a
solution X of P(Γ,K) in general merely satisfies a variational inequality
δF ≥ 0. Therefore we have to apply a suitable inclusion principle.

III) Geometric maximum principle:
Determine conditions on H and K (or ∂K respectively) which guarantee
that the “coincidence” set

T := {w ∈ B : X(w) ∈ ∂K}

is empty for a minimizer or a stationary point X of F in C. In this case
X maps B into the interior of K and hence satisfies the Euler-equation
δF = 0 in a weak sense. We refer to the Enclosure Theorems 2 and 3 in
Section 4.4 for the pertinent results; however note that more elementary
arguments suffice, when K is a ball or a cylinder.
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IV) Regularity:
Show that under natural assumption on H (and Γ ) a minimizer of F in C

is a classical C2,α solutions of the H-surface system (1) and (2). Note that
the conformality conditions (2) are automatically satisfied, compare the
discussion in Vol. 1, Section 4.5, and in No. 6 of the Scholia to Chapter 4
of Vol. 1.

Ad I) Construction of the vector field Q

The construction device requires Q ∈ C1(K,R3) with the properties

divQ(x) = 2H(x) for all x ∈ K

and some given H ∈ C0(K,R) and, in addition,

|Q|0,K < 1, see (5) and (7).

The simplest situation occurs, when K = BR(0) ⊂ R
3 and H ∈ C1(R3,R3).

The vectorfield

Q(x)(8)

:=
2
3

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ,
∫ x3

0

H(x1, x2, τ) dτ

)

clearly is of class C1(R3,R3) and satisfies (5) on R
3 (and in particular on K).

Also

|Q(x)| ≤ 2
3

|x| |H|0,K for all x ∈ K,

whence |Q|0,K ≤ 2
3R|H|0,K; therefore F(·) is coercive, if we take K = BR(0)

and

(9) |H|0,BR(0) <
3
2
R−1.

Now let K = ZR(0) be the cylinder

ZR := {(x1, x2, x3) ∈ R
3 : (x1)2 + (x2)2 ≤ R2}

and H ∈ C1(R3). Instead of (8) we put

(10) Q(x) :=

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ, 0

)

,

which is again of class C1(R3,R3) and fulfills relation (5) for all x ∈ R
3.

Furthermore
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|Q(x)| ≤ |H|0,K((x1)2 + (x2)2)1/2 for x ∈ R
3,

that is

|Q|0,K ≤ R · |H|0,K.

In particular F(·) is coercive if K = ZR(0) and

(11) |H|0,ZR
<

1
R
.

Finally suppose K ⊂ SR is a slab of width 2R,

SR = {(x1, x2, x3) ∈ R
3 : −R ≤ x3 ≤ R}.

Putting

Q(x) := 2
(

0, 0,
∫ x3

0

H(x1, x2, τ) dτ
)

we then have

divQ(x) = 2H(x) in SR

and

|Q(x)| ≤ 2|H(x)| · |x3|.

Therefore F(·) is coercive in this case if K ⊂ SR and

|H|0,SR
<

1
2R

.

The situation for general K ⊂ R
3 is more involved, although the essential idea

is fairly simply, namely to consider a Dirichlet problem for the nonparametric
mean curvature equation in K. To this end suppose that u = u(x1, x2, x3) ∈
C1(K,R) solves the mean curvature equation

(12) div

(
∇u

√
1 + | ∇u|2

)

= 2H in K

then the vector field

Q(x) :=
∇u(x)

√
1 + | ∇u(x)|2

certainly satisfies (5) and also (7) |Q|0,K < 1 holds, provided u has globally
bounded gradient on K.
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For a bounded set K ⊂ R
3 with boundary ∂K ∈ C2 and for constant H

the equation (12) with boundary condition u = 0 on ∂K is uniquely solvable
with u ∈ C2,α(K) if and only if the inward mean curvature Λ of ∂K satisfies

(13) |H| ≤ Λ along ∂K,

for a proof of this result see e.g. Gilbarg and Trudinger [1] Theorem 16.11, or
Serrin [4].

To describe the condition on K and Λ in the case of variable H we let
ρ(x) := dist (x, ∂K) denote the distance of x ∈ K to the boundary ∂K of
K, cp. the discussion of the distance function in Section 4.4. Furthermore we
extend the mean curvature function Λ from ∂K to K by putting

Λ(x) = Λρ(x)(x)

to equal the mean curvature at x of the local surface Sρ(x) through x which is
parallel to ∂K at distance ρ(x) in case this surface exists and is of class C2.
Otherwise we let Λρ(x)(x) = +∞. Condition (13) may now be replaced by

(14) |H(x)| ≤ (1 − aρ(x))Λρ(x)(x) +
a

2

for x ∈ K, where a denotes some number with 0 ≤ a ≤ infx∈K ρ−1(x).

Theorem 2. Suppose K ⊂ R
3 is the closure of a C2 domain whose boundary

∂K has uniformly bounded principal curvatures and a global inward parallel
surface at distance ε > 0. In addition assume that supK ρ(x) < ∞ and let
H ∈ C1(K,R) have uniformly bounded C1-norm on K with (13) and (14) being
fulfilled for some a, 0 ≤ a ≤ infK ρ−1(x). Then there exists a solution u ∈
C2(K) of equation (12) with uniformly bounded gradient on K. In particular
there exists a C1-vector field Q satisfying (5) and (7).

The proof of Theorem 2 in case of bounded domains is due to Serrin [4];
the generalization to unbounded K can be found in Gulliver and Spruck [2].

Ad II) The obstacle problem

Let Γ ∈ R
3 be a closed Jordan curve and K ⊂ R

3 a closed set which contains
Γ . Also put

C = C(Γ,K) = C∗(Γ ) ∩ H1
2 (B,K)

to denote the class of H1
2 (B,R3) ∩C0(∂B,R3)-surfaces which map ∂B weakly

monotonic onto Γ , satisfy a three point condition and have an image almost
everywhere in K.

Since, in Section 4.8, we study surfaces of prescribed mean curvature in a
Riemannian three-manifold we consider now somewhat more generally func-
tionals F(·) which are the sum of a Riemannian Dirichlet integral and a suit-
able volume term.
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Put F(X) = E(X) + V (X), where

E(X) :=
1
2

∫

B

gij(X)(Xi
uX

j
u +Xi

vX
j
v) du dv

and

V (X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv,

that is

F(X) =
∫

B

e(X, ∇X) du dv

with the Lagrangian

e(x, p) =
1
2
gij(x)(pi

1p
j
1 + pi

2p
j
2) + 〈Q(x), p1 ∧ p2〉,

where x = (x1, x2, x3) ∈ R
3 and p = (p1, p2) ∈ R

3 × R
3. In No. 6 of the Scholia

to Vol. 1, Chapter 4, we have outlined the proof of the following

Theorem 3. Suppose Q ∈ C0(K,R3), gij ∈ C0(K) gij = gji for all i, j =
1, 2, 3, and let 0 < m0 ≤ m1 be constants with the property m0(|p1|2 + |p2|2) ≤
e(x, p) ≤ m1(|p1|2 + |p2|2) for all (x, p1, p2) ∈ K × R

3 × R
3. Moreover assume

that K is a closed set in R
3 such that C = C(Γ,K) is nonempty. Then the

variational problem

P = P(Γ,K) : F → min in C

has a solution. Every solution X ∈ C satisfies the conformality relations

(15) gijX
i
uX

j
u = gijX

i
vX

j
v and gijX

i
uX

j
v = 0

almost everywhere in B. �

In order to obtain continuity for solutions of P we have to assume more
regularity of K or ∂K respectively. A reasonable quantitative notion is the
“quasiregularity” of K.

Definition 2. A closed set K ⊂ R
3 is called “quasiregular”, if

(a) K is equal to the closure of its interior K̊;
(b) there are positive numbers d and M such that for each point x0 ∈ K

there exists a compact convex set K∗(K̊∗ �= ∅) and a C1-diffeomorphism
g defined on some open neighbourhood of K∗ with g : K∗ → K ∩ Bd(x0)
with

|Dg|20,K∗ ≤ M and |Dg−1|2
0,K∩Bd(x0)

≤ M.
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Remarks. (i) Closed convex sets K with K =
◦
K are quasiregular.

(ii) If K = K̊ ⊂ R
3 is compact with ∂K ∈ C1, then K is quasiregular.

(iii) Suppose K = K̊, ∂K ∈ C2 and ∂K has uniformly bounded principal
curvatures and a global parallel surface in K̊, then K is quasiregular; for a
proof see Gulliver and Spruck [2].

Theorem 4. Let the assumption of Theorem 3 be satisfied and suppose that
K ⊂ R

3 is quasiregular. Furthermore let X be a solution of the problem

P(Γ,K) : F → min in C(Γ,K).

Then there is a number μ > 0 such that

(16)
∫

Br(w0)

| ∇X|2 du dv ≤
( r
R

)2μ
∫

BR(w0)

| ∇X|2 du dv

for all r ∈ (0, R] and w0 ∈ B with 0 < R ≤ dist(w0, ∂B). It follows that X is
of class C0,μ(B,R3). Furthermore X is continuous up to the boundary.

Proof. Let X be a minimizer of the functional F in C. For an arbitrary point
w0 ∈ B we define

φ(r) = φ(r, w0) =
∫

Br(w0)

| ∇X|2 du dv,

where 0 < r ≤ R = dist(w0, ∂B).

Introducing polar coordinates (ρ, θ) around w0 by w = w0 + ρeiθ and
writing (with a slight but convenient abuse of notation) X(w) = X(w0 +
ρeiθ) = X(ρ, θ), we get

φ(r) =
∫ r

0

∫ 2π

0

{
|Xρ|2 +

1
ρ2

|Xθ |2
}
ρ dρ dθ.

Furthermore, by selecting an ACM-representative of X again denoted by X,
we can assume that for almost all θ ∈ [0, 2π] the restrictionX(·, θ) is absolutely
continuous in ρ ∈ [ε,R], ε > 0, and X(ρ, ·) is absolutely continuous in θ ∈
[0, 2π] for almost all ρ ∈ [0, R].
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There is a Lebesgue null set N ⊂ [0, R] such that for r ∈ [0, R] \ N we have

(i) X(r, ·) is absolutely continuous on [0, 2π],

(ii)
∫ 2π

0
|Xθ(r, θ)|2 dθ < ∞,

(iii) φ(r) is differentiable with

φ′(r) =
∫ 2π

0

{
|Xρ(r, θ)|2 +

1
r2

|Xθ(r, θ)|2
}
r dθ ≥ 1

r

∫ 2π

0

|Xθ(r, θ)|2 dθ,

i.e.

(17)
∫ 2π

0

|Xθ(r, θ)|2 dθ ≤ r · φ′(r) for all r ∈ [0, R].

Take a radius r ∈ [0, R] \ N for which

(18)
∫ 2π

0

|Xθ(r, θ)|2 dθ < π−1

2
d2,

where d denotes the constant in the definition of quasiregularity. Then for any
θ0, θ1 ∈ [0, 2π] we infer the estimate

|X(r, θ1) − X(r, θ0)| ≤
∣
∣
∣
∣

∫ θ2

θ1

|Xθ(r, θ)| dθ
∣
∣
∣
∣ ≤

√
2π
{∫ 2π

0

|Xθ(r, θ)|2 dθ
} 1

2

< d

and hence the image of the curve X(r, ·) is contained in K ∩ Bd(x0), where
x0 = X(r, θ0) is an arbitrary point on that curve. According to the definition
of quasiregularity there is a C1-diffeomorphism h = g−1 : K ∩ Bd(x0) → K∗,
where K∗ is a compact and convex set. Hence the curve ζ(θ) := h(X(r, θ)) is
of class H1

2 ([0, 2π],R3) with values in the convex set K∗. Now let H = H(w)
denote the harmonic vector function defined in Br(w0) whose boundary values
are given by ζ(θ), i.e.

H(w0 + reiθ) = ζ(θ) = h(X(r, θ))

for 0 ≤ θ ≤ 2π. By the maximum principle and the convexity of K∗ it fol-
lows that the image H(Br(w0)) ⊂ K∗ and therefore the function g ◦ H ∈
H1

2 (Br(w0),K) with boundary trace X(r, θ). Setting

Y (w) :=

{
g ◦ H(w) for w ∈ Br(w0),

X(w) for w ∈ B \ Br(w0)

we therefore obtain a function Y ∈ C(Γ,K). Since X is a minimizer of F in
C = C(Γ,K) we have

F(X) ≤ F(Y )
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and by the coercivity assumption and the quasiregularity of K it follows

m0

∫

Br(w0)

| ∇X|2 du dv ≤ m1

∫

Br(w0)

| ∇Y |2 du dv

= m1

∫

Br(w0)

| ∇(g ◦ H)|2 du dv ≤ m1M

∫

Br(w0)

| ∇H|2 du dv,

that is

(19) φ(r) ≤ m1

m0
M

∫

Br(w0)

| ∇H|2 du dv.

On the other hand an expansion of ζ and H in Fourier series yields

ζ(θ) = A0 +
∞∑

n=1

(An cos(nθ) +Bn sin(nθ)),

and

H(w) = A0 +
∞∑

n=1

(ρ
r

)n

[An cos(nθ) +Bn sin(nθ)],

which yields
∫

Br(w0)

| ∇H|2 du dv = π
∞∑

n=1

n(|An|2 + |Bn|2),

and
∫ 2π

0

|ζθ |2 dθ = π

∞∑

n=1

n2(|An|2 + |Bn|2).

In particular we have

(20)
∫

Br(w0)

| ∇H|2 du dv ≤
∫ 2π

0

|ζθ |2 dθ.

But from ζ(θ) = h(X(r, θ)) we obtain, using the quasiregularity of K again,

(21)
∫ 2π

0

|ζθ |2 dθ ≤ M

∫ 2π

0

|Xθ |2 dθ.

Relations (19), (20), (21) and (17) now yield the estimate

φ(r) ≤ m1

m0
M2

∫ 2π

0

|Xθ |2 dθ ≤ m1

m0
M2rφ′(r)

for almost every r ∈ [0, R].
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On the other hand, if (18) does not hold, then we trivially have

φ(r) ≤ φ(R) ≤ φ(R) · 2π
d2

∫ 2π

0

|Xθ |2 dθ ≤ 2π
d2

D(X)r · φ′(r),

again by using (17). Concluding we obtain in both cases the inequality φ(r) ≤
C · rφ′(r), where we have put C := max(2πd−2D(X), m1

m0
M2). From this

inequality we finally obtain by a simple integration

φ(r) ≤
( r
R

)2μ

φ(R)

for all r ∈ [0, R] and μ := 1
2C .

Now X ∈ C0,μ(B) follows from Dirichlet’s growth theorem, see e.g. Gilbarg
and Trudinger [1], Theorem 7.19.

To prove continuity of X up to the boundary, we apply a conformal map-
ping τ which maps the unit disk onto the upper half plane and the unit circle
onto the real axis. Since τ maps circles onto circles, leaves the Dirichlet inte-
gral invariant and is locally bi-Lipschitz, it follows that X ◦τ−1 satisfies again
condition (16) in a neighbourhood of any boundary point of the half plane,
possibly with an additional constant factor K on the right hand side. In ad-
dition we may choose τ in such a way that an arbitrary but fixed point eiΘ is
mapped onto the origin. We are thus led to consider the following situation:
Let Ω be the rectangle {w = u+ iv ∈ C : |u| < 2, 0 < v < 2} and suppose X ∈
H1

2 (Ω,R3) possesses continuous boundary trace ξ(u) = X(u, 0), u ∈ (−2, 2).
Then we have to show that X(w) → ξ(0) as w → 0. To this end we introduce
the entities

ε(X,u, h) :=

(∫ u+2h

u−2h

∫ 2h

0

| ∇X|2 du dv
) 1

2

,

ω(ξ, h) := sup
|u′ −u′ ′ |≤h

|ξ(u′) − ξ(u′ ′)|

and let w = u + ih be an arbitrary point with |u| < 1, 0 < h < 1
2 . Recalling

Morrey’s proof of Dirichlet’s growth theorem (see Morrey [8], Theorem 3.5.2)
we obtain by virtue of condition (16) the estimate

|X(u, h) − X(u′, h)| ≤ C0kε(X,u, h)|u − u′ |μh−μ

for all u′ with |u − u′ | ≤ h < 1
2 with some constant c0 depending only on μ.

Next we select a u1 ∈ [−1, 1], |u − u1| < h with the properties

(i) X(u1, ·) ∈ H1
2 ([0, 2],R3),

(ii) X(u1, v) → ξ(u1) as v → 0+,

(iii) ε2(X,u, h) =
∫ u+2h

u−2h

∫ 2h

0

| ∇X|2 du dv ≥ h

∫ h

0

|Xv(uv, u)|2 dv.
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Consequently

|X(u1, h) − ξ(u1)| ≤
∫ h

0

|Xv(u1, v)| dv

≤
√
h

(∫ h

0

|Xv(u1, v)|2 dv
) 1

2

≤ ε(X,u, h)

by (iii). Finally we obtain for all u ∈ R with |u| < h′ < 1
2 ,

|X(u, h) − ξ(0)| ≤ |X(u, h) − X(u1, h)| + |X(u1, h) − ξ(u1)|
+ |ξ(u1) − ξ(u)| + |ξ(u) − ξ(0)| ≤ (c0k + 1)ε(X,u, h)
+ ω(ξ, h) + ω(ξ, h′),

whence X(u, h) → ξ(0) as (u, h) → (0, 0). This proves that X ∈ C0(B,R3).�

By the same reasoning we can show

Proposition 1. Let F be a family of functions X ∈ H1
2 (B,R3) whose bound-

ary values are equicontinuous on ∂B. Suppose that
∫

Br(w0)

| ∇X|2 du dv ≤ k2
( r
R

)2μ
∫

BR(w0)

| ∇X|2 du dv

holds for all r ∈ (0, R] and w0 ∈ B with 0 < R ≤ dist(w0, ∂B) and uni-
form constants k and μ for all X ∈ F. Furthermore, assume that there exist a
number A > 0 and a function η(r) on 0 < r < ∞ with limr→0 η(r) = 0,
all independent of X ∈ F, such that DB(X) =

∫
B

| ∇X|2 du dv ≤ A,
DB∩Br(w∗)(X) ≤ η(r) for w∗ ∈ ∂Ω and 0 < r < ∞, for all X ∈ F. Then
the family F is equicontinuous on B. �

In Section 4.5 we have derived a formula for the inner variation of a
functional F, see the formulae in Section 4.5 of Vol. 1, (15) and (20). In
particular the conformality relations (15) hold if the first inner variation ∂F

vanishes for all vector fields λ.

Now we have to consider “outer variations”, that is variations of the type
Xε = X + εϕ.

Assumption A. Let K ∈ R
3 be a closed set and Q ∈ C1(S,R3), gij ∈

C1(S,R) for all i, j = 1, 2, 3 and some open set S containing K. In addi-
tion suppose that Q and gij satisfy

(22)
∣
∣
∣
∣
∂Qj

∂xi

∣
∣
∣
∣
0,K

< ∞,

∣
∣
∣
∣
∂gij

∂xk

∣
∣
∣
∣
0,K

< ∞

for all i, j, k = 1, 2, 3 and suppose
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e(x, p1, p2) =
1
2
gij(x)pi

αp
j
α + 〈Q(x), p1 ∧ p2〉

is coercive, i.e.

m0{|p1|2 + |p2|2} ≤ e(x, p1, p2) ≤ m1{|p1|2 + |p2|2}

for all (x, p1, p2) ∈ K × R
3 × R

3 and suitable constants 0 < m0 ≤ m1.

Theorem 5 (First variation formula). Assume Q, gij ,K and e(x, p1, p2)
fulfill Assumption A. Let X ∈ H1

2 (B,K) and ϕ ∈ L∞(B,R3) be functions
such that X + εϕ ∈ H1

2 (B,K) for all ε ∈ [0, ε0) and some ε0 > 0. Then the
first (outer) variation δF(X,ϕ) = limε→0+

F(X+εϕ)−F(X)
ε exists and is given

by

δF(X,ϕ)

=
∫

B

{
gij(X)Xi

uαϕ
j
uα +

1
2
∂gij(X)
∂xe

Xi
uαX

j
uαϕ�

+
〈
∂Q

∂xj
(X), Xu ∧ Xv

〉
ϕj + 〈Q(X), Xu ∧ ϕv + ϕu ∧ Xv 〉

}
du1 du2.

Furthermore, if ϕ ∈
◦
H1

2(B,R
3) ∩ L∞(B,R3) then

δF(X,ϕ) =
∫

B

{
gij(X)Xi

uαϕ
j
uα +

1
2
∂gij

∂x�
Xi

uαX
j
uαϕ�(23)

+ divQ(X)〈Xu ∧ Xv, ϕ〉
}
du dv,

where

divQ(X) =
∂Q1

∂x2
(X) +

∂Q2

∂x2
(X) +

∂Q3

∂x3
(X).

Remark. δF(X,ϕ) is called the first (outer) variation of F at X in direc-
tion ϕ.

We have adopted the summation convention that Latin indices have to be
summed from 1 to 3 and Greek indices from 1 to 2. Also we have replaced
(u, v) by (u1, u2).

Proof of Theorem 5. We compute
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1
ε
[F(X + εϕ) − F(X)] − δF(X,ϕ)

=
1
ε

∫

B

{
1
2
[gij(X + εϕ)(Xi + εϕi)uα(Xj + εϕj)uα − gij(X)Xi

uαX
j
uα ]

+ 〈Q(X + εϕ), (Xu + εϕu) ∧ (Xv + εϕv)〉 − 〈Q(X), Xu ∧ Xv 〉
}
du dv

−
∫

B

{

gij(X)Xi
uαϕ

j
uα +

1
2
∂gij

∂xe
Xi

uαX
j
uαϕe

+
〈
∂Q

∂xj
, Xu ∧ Xv

〉
ϕj + 〈Q(X), Xu ∧ ϕv + ϕu ∧ Xv 〉

}
du dv

=
∫

B

{
1
2

[
1
ε
(gij(X + εϕ) − gij(X)) − ∂gij

∂xe
ϕe

]
Xi

uαX
j
uα

+
〈

1
ε
(Q(X + εϕ) − Q(X)) − ∂Q

∂xj
(X)ϕj , Xu ∧ Xv

〉

+ [gij(X + εϕ) − gij(X)]Xi
uαϕ

j
uα

+ 〈Q(X + εϕ) − Q(X), Xu ∧ ϕv + ϕu ∧ Xv 〉

+
ε

2
gij(X + εϕ)ϕi

uαϕ
j
uα + εQ(X + εϕ)(ϕu ∧ ϕv)

}
du dv

=
∫

B

aε
ij(w)Xi

uαX
j
uα du dv +

∫

B

bεi (w)(Xu ∧ Xv)i du dv

+
∫

B

cεij(w)Xi
uαϕ

j
uα du dv +

∫

B

dε
i (w)[(Xu ∧ ϕv)i + (ϕu ∧ Xv)i] du dv

+ ε

∫

B

[hε
ij(w)ϕi

uαϕ
j
uα + fε

i (w)(ϕu ∧ ϕv)i] du dv

with obvious choices of bounded and measurable functions aε
ij , . . . , f

ε
i on B

whose L∞(B)-norms are uniformly bounded with respect to ε. Furthermore

aε
ij(·), bεi (·), cεij(·), dε

i → 0

a.e. on B as ε → 0.
For any measurable set Ω ⊂ B we have

∣
∣
∣
∣

∫

Ω

aε
ijX

i
uαX

j
uα du dv

∣
∣
∣
∣ ≤ cDΩ(X) = c

∫

Ω

| ∇X|2 du dv,
∣
∣
∣
∣

∫

Ω

bεi (Xu ∧ Xv)i du dv

∣
∣
∣
∣ ≤ cDΩ(X),

∣
∣
∣
∣

∫

Ω

cεijX
i
uαϕ

j
uα du dv

∣
∣
∣
∣ ≤ c(DΩ(X))

1
2 (DΩ(ϕ))

1
2 ,

∣
∣
∣
∣

∫

Ω

dε
i [(Xu ∧ ϕv)i + (ϕu ∧ Xv)i] du dv

∣
∣
∣
∣ ≤ c(DΩ(X))

1
2 (DΩ(ϕ))

1
2
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and
∣
∣
∣
∣

∫

Ω

bεijϕ
i
uαϕ

j
uα du dv

∣
∣
∣
∣ ≤ cDΩ(ϕ),

∣
∣
∣
∣

∫

Ω

fε
i (ϕu ∧ ϕv)i du dv

∣
∣
∣
∣ ≤ cDΩ(ϕ)

for a constant c independent of ε. This implies the uniform absolute continuity
of the integrals under consideration. By virtue of Vitali’s convergence theorem
the first part of Theorem 5 follows. Finally formula (23) can be derived by an
integration by parts using an appropriate approximation argument. �

Remarks. (i) The statements of Theorem 5 hold true without the hypotheses
(22), if X ∈ C0(B,R3) or even X ∈ L∞,loc(B,R3), which is – by Theorem 4 –
true for solutions X of P(Γ,K).

(ii) The first variation formula (23) continues to hold if Q is not necessarily
C1 but divQ is defined (possibly in a weak sense!). For a proof and an appli-
cation of this remark see the proof of Theorem 8, in particular relation (37).

A consequence of Theorem 5 is the Euler equation for the functional F =
E + V (see also Theorem 7), namely

�X� + Γ �
jk(Xj

uX
k
u +XvX

k
v ) = divQ(X)g�m(Xu ∧ Xv)m, ! = 1, 2, 3,(24)

where the Christoffel symbols Γjk� and Γ �
jk are given by (cp. Vol. 1, Chapter 1)

Γjk� =
1
2

(
∂gjk

∂x�
− ∂gj�

∂xk
+
∂gk�

∂xj

)
, Γ �

jk = g�mΓjmk.

Indeed, (24) follows from the first variation formula (23) on testing with ϕ =
(ϕ1, ϕ2, ϕ3), where ϕj = gjk(X)ψk with ψ = (ψ1, ψ2, ψ3) ∈ C∞

0 (B,R3), and
the fundamental lemma of the calculus of variations.

A major step in the regularity theory for obstacle problems is the following

Theorem 6. Suppose Q ∈ C2(S,R3), gij ∈ C2(S,R), i, j = 1, 2, 3 and
e(x, p1, p2) satisfy Assumption A (possibly without relation (22)), where K

is quasiregular and of class C3 and S ⊂ R
3 is open with K ⊂ S. Then each

solution X ∈ C(Γ,K) of the obstacle problem

P(Γ,K) : F → min in C(Γ,K)

is of class H2
s (B′,R3) ∩ C1,α(B,R3) ∩ C0(B,R3) for all B′ ⊂⊂ B and all

s, α ∈ R with 0 ≤ s < ∞ and 1 < α < 1.

This result holds under somewhat weaker regularity hypothesis on Q, see
the Remark at the end of the proof of Theorem 6.

The key argument of the proof of Theorem 6 is given in the following
Lemma 1 where the L2-estimates of the second derivatives are established.
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Definition 3. Let Ω′ ⊂ R
2 be a bounded open set, K ⊂ R

3 a closed set and
S ⊂ R

3 some open set containing K. Consider functions A = A(w, z, p) =
(Aα

j )(w, z, p), j = 1, 2, 3, α = 1, 2 and B = B(w, z, p) = Bj(w, z, p), j = 1, 2, 3
of class C1 on Ω′ × S × R

6 such that the inequalities

m2|η|2 ≤ Aα
jpk

β
(ξ)ηj

αη
k
β ,

∣
∣
∣Aα

jpk
β
(ξ)
∣
∣
∣ ≤ m3

and

|A(ξ)|2 + |Aw(ξ)|2 + |Az(ξ)|2 + |B(ξ)| + |Bw(ξ)| + |Bz(ξ)| + |Bp(ξ)|2

≤ m4(1 + |p|2)

hold for all ξ = (w, z, p) ∈ Ω′ × K × R
6 and for all η = (η1, η2) ∈ R

3 × R
3

with positive constants m2,m3,m4 ∈ R independent of ξ.

Lemma 1. Suppose A,B and Ω′ satisfy Definition 3 with K = B+
1 (0) :=

{(x, y, z) ∈ R
3 : x2 +y2 +z2 ≤ 1, z ≥ 0}. Moreover let z = z(w) ∈ H1

2 (Ω′, B+
1 )

have the following properties

(a) There are positive numbers M0 and μ such that

(25)
∫

Ω′ ∩Bρ(ζ)

| ∇z|2 du dv ≤ M0ρ
2μ for all disks Bρ(ζ) ⊂ R

2,

(b) For all ϕ ∈ C0
c (Ω′,R3) ∩ H1

2 (Ω′,R3) with z3 − εϕ3 ≥ 0 for ε ∈ [0, ε0],
ε0(ϕ) > 0, the variational inequality

(26)
∫

Ω′
{Aα

j (w, z, ∇z)ϕj
uα +Bj(w, z, ∇z)ϕj } du dv ≤ 0

is satisfied.

Then we have z ∈ H2
2 (Ω′ ′,R3) ∩ H1

s (Ω′ ′,R3) for Ω′ ′ � Ω′ and all s ∈
[1, ∞).

Proof. Pick any ζ0 ∈ Ω′ and consider a disk B3R0(ζ0) � Ω′, 0 < R0 < 1 and
choose R ∈ (0, R0). Then there exists a function η ∈ C∞

c (B2R(ζ0)) satisfying
0 ≤ η ≤ 1, | ∇η| ≤ 2

R and η(w) = 1 for w ∈ BR(ζ0). Moreover let us denote
by �hz the difference quotient

�hz =
1
h

[z(w + hζ) − z(w)], h �= 0,

in the direction of a unit vector ζ ∈ R
2. Then we have the relation

z(w) + ε� −h[η2(w)�hz(w)] =
ε

h2
η2(w)z(w + hζ)

+
{

1 − ε

h2
[η2(w) + η2(w − hζ)]

}
z(w) +

ε

h2
η2(w − hζ)z(w − hζ).
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Therefore ϕ = −� −h[η2�hz] is of class C0,μ
c (Ω′,R3) ∩ H1

2 (Ω′,R3) for
0 < |h| < R and satisfies z3 − εϕ3 ≥ 0 provided 0 ≤ ε < ε0 = h2

2 . Thus
ϕ is admissible in (26) and we obtain

(27)
∫ {

�hA(w, z, ∇z)∇(η2�hz) + �hB(w, z, ∇z)(η2�hz)
}
du dv ≤ 0,

where we have for simplicity omitted the domain of integration Ω′. Now we
use the identity

�hA(w, z(w), ∇z(w)) =
∫ 1

0

Aw(ξ(t)) dt · ζ +
∫ 1

0

Az(ξ(t)) dt · �hz(w)(28)

+
∫ 1

0

Ap(ξ(t)) dt · ∇�hz(w),

where ξ(t) = (w+ thζ, z(w)+ th�hz(w), ∇z(w)+ th∇�hz(w)) and analogous
expressions holding for �hB(w, z(w), ∇z(w)). Observe that the set B3R(ζ0) ×
B+

1 × R
6 is convex and z : Ω′ → B+

1 ; hence ξ(t) ∈ B3R(ζ0) × B+
1 × R

6 for all
t ∈ [0, 1], |h| < R and w ∈ B2R(ζ0) � supp η.

By virtue of Definition 3

| �hA(w, z, ∇z)| ≤ m5{(1 + | ∇z| + | ∇zh|) · (1 + | �hz|) + | ∇ �hz| },

| �hA(w, z, ∇z) −
∫ 1

0

Ap(ξ(t)) dt∇�hz(w)|(29)

≤ m5(1 + | ∇z| + | ∇zh|)(1 + | �hz|),
| �hB(w, z, ∇z| ≤ m6{(1 + | ∇z|2 + | ∇zh|2)(1 + | �hz|)

+ (1 + | ∇z| + | ∇zh|)| ∇ �hz| }

with suitable constants m5,m6 and zh(w) := z(w + hζ). Again from Defini-
tion 3 we infer

(30) m2

∫

Ω′
|η∇�hz|2 du dv ≤

∫

Ω′
η2

∫ 1

0

Ap(ξ(t)) dt∇�hz∇�hz du dv.

Now we use the variational inequality (27) and relation (28) together with
∇(η2�hz) = 2η∇η�hz + η2∇�hz and infer

∫

Ω′

∫ 1

0

Ap dt∇�hz∇�hzη
2 du dv

≤ −
∫

Ω′

∫ 1

0

Ap dt∇�hz∇η�hz · 2η du dv

−
∫

Ω′

∫ 1

0

Aw dtζ[2η∇η�hz + η2∇�hz] du dv

−
∫

Ω′

∫ 1

0

Az dt�hz[2η∇η�hz + η2∇�hz] du dv

−
∫

Ω′
�hBη

2�hz du dv.
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Inequality (30) implies the estimate

m2

∫

Ω′
|μ∇�hz|2 du dv ≤ c

∫

Ω′
η| ∇η| | �hz| | ∇ �hz| du dv

+ c

∫

Ω′

∫ 1

0

|Aw | dt η| ∇η| | �hz| du dv + c

∫

Ω′

∫ 1

0

|Aw | dt η2| ∇ �hz| du dv

+ c

∫

Ω′

∫ 1

0

|Az | dt| �hz|2η| ∇η| du dv

+ c

∫

Ω′

∫ 1

0

|Az | dt η2| �hz| | ∇ �hz| du dv

+ c

∫

Ω′
| �hB|η2| �hz| du dv,

where here and in the following c denotes some constant independent of h and
R (and only depending on m2, . . . ,m6).

Definition 3 yields the estimates

|Aw | ≤ c(1 + | ∇z| + | ∇zh|),
|Az | ≤ c(1 + | ∇z| + | ∇zh|)

and together with (29) and the previous inequality we get

∫

Ω′
|η∇�hz|2 du dv ≤ c

∫

Ω′
η| ∇η| | �hz| | ∇ �hz| du dv

+ c

∫

Ω′
η| ∇η| | �hz| {1 + | ∇z| + | ∇zh| } du dv

+ c

∫

Ω′
η2| ∇ �hz| {1 + | ∇z| + | ∇zh| } du dv

+ c

∫

Ω′
η| ∇η| | �hz|2{1 + | ∇z| + | ∇zh| } du dv

+ c

∫

Ω′
η2| �hz| | ∇ �hz| {1 + | ∇z| + | ∇zh| } du dv

+ c

∫

Ω′
η2| �hz| {(1 + | ∇z|2 + | ∇zh|2)(1 + | �hz|)

+ (1 + | ∇z| + | ∇zh|)| ∇ �hz| } du dv.

Taking the elementary inequality 2ab ≤ εa2 + 1
ε b

2 for ε > 0, into account we
can estimate the different integrands as follows
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η| ∇η| | �hz| | ∇ �hz| ≤ εη2| ∇ �hz|2 +
1
ε

| ∇η|2| �hz|2,

η| ∇η| | �hz|2 ≤ η2| �hz|2 + | ∇η|2| �hz|2,
η| ∇η| | �hz| | ∇z| ≤ η2| ∇z|2 + | ∇η|2| �hz|2,
η| ∇η| | �hz|2| ∇z| ≤ η2| �hz|2| ∇z|2 + | ∇η|2| �hz|2,

η2| �hz| | ∇z| | ∇ �hz| ≤ εη2| ∇ �hz|2 +
1
ε
η2| ∇z|2| �hz|2,

and the other terms are treated similarly. In this way we get for ε > 0 arbitrary

∫

Ω′
|η∇�hz|2 du dv ≤ ε

∫

Ω′
|η∇�hz|2 du dv(31)

+ c

(
1 +

1
ε

)∫

Ω′
η2(| ∇z|2 + | ∇zh|2)| �hz|2 du dv

+ c

(
1 +

1
ε

)

×
∫

Ω′
{η2(1 + | �hz|2 + | ∇z|2 + | ∇zh|2 + | ∇η|2| �hz|2} du dv.

For some constant c depending on m2, . . . ,m6 but not on h, R or ε. We observe
that for |h| < R we have (see e.g. Lemma 7.23 in Gilbarg and Trudinger [1])

∫

B2R(ζ0)

| �hz|2 du dv ≤
∫

B3R(ζ0)

| ∇z|2 du dv,

and therefore

∫

Ω′
{η2(1 + | �hz|2 + | ∇z|2 + | ∇zh|2) + | ∇η|2| �hz|2} du dv(32)

≤ c

R2

∫

Ω′
| ∇z|2 du dv + cR2.

Next we apply the Dirichlet-growth condition (25) which yields

∫

B2R(ζ0)∩Bρ(ξ)

(| ∇z|2 + | ∇zh|2) du dv ≤ 2M0ρ
2μ

for all disks Bρ(ξ) ⊂ R
2. Now Lemma 2 in Section 2.7 applied to the func-

tions q(w) := | ∇z(w)|2 + | ∇zh(w)|2 ∈ L1(B2R(ζ0)) and to φ(w) := η�hz ∈
◦
H1

2(B2R(ζ0),R3) gives the estimate
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(33)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

B2R(ζ0)

η2(| ∇z|2 + | ∇zh|2)| �hz|2 du dv

≤ C(M0, μ)R2μ

∫

B2R(ζ0)

| ∇(η�hz)2| du dv

≤ C(M0, μ)R2μ

{∫

B2R(ζ0)

η2| ∇ �hz|2 du dv +R−2

∫

Ω′
| ∇z|2 du dv

}

for |h| < R, since

| ∇(η�hz)|2 ≤ (| ∇η| | �hz| + η| ∇ �hz|)2 ≤ 2η2| ∇ �hz|2 +
8
R2

| �hz|2

and with constants C(M0, μ) indepent of h and R. The formulae (31), (32)
and (33) yield

∫

Ω′
|η∇�hz|2 du dv

≤
[
ε+ c

(
1 +

1
ε

)
C(M0, μ)R2μ

] ∫

B2R

η2| ∇ �hz|2 du dv

+ c

(
1 +

1
ε

)
C(M0, μ)R2μ−2

∫

Ω′
| ∇z|2 du dv

+ c

(
1 +

1
ε

){
c

R2

∫

Ω′
| ∇z|2 du dv + cR2

}
.

By an appropriate choice of ε > 0 and R ∈ (0, R0) the coefficient [. . .] can be
made arbitrary small, for instance [. . .] < 1

2 .
Hence the term [. . .]

∫
B2R

η2| ∇ �hz|2 du dv can be absorbed by the left
hand side and we obtain an estimate of the type

∫

B2R(ζ0)

η2| ∇ �hz|2 du dv ≤ const for all |h| < R

and some constant depending on M0, μ, m2, . . . ,m6 and the Dirichlet integral
of z, but not on h. We conclude that the weak derivatives DiDjz, i, j =
1, 2 exist and that z ∈ H2

2 (BR(ξ0),R3), since η ≡ 1 on BR(ξ0) (see e.g.
Lemma 7.24 in Gilbarg and Trudinger [1]). Then a covering argument yields
that z ∈ H2

2 (Ω′ ′,R3) for all Ω′ ′ � Ω′, and by the Sobolev imbedding the-
orem we finally obtain z ∈ H1

s (Ω′ ′,R3) for any subset Ω′ ′ � Ω′ and all
s ∈ [1, ∞). �

Now we turn to the
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Proof of Theorem 6. Step I: L2-estimates of the second derivatives.
By virtue of Theorem 4 we have X ∈ C0,μ(B,R3) ∩ C0(B,R3) for some
μ > 0. For some arbitrary point ζ0 ∈ B either X(ζ0) ∈ ∂K or X(ζ0) ∈ int K.
We treat the first case by reducing it to Lemma 1; the second case can be
handled similarly. Since K is of class C3 there exists a neighbourhood U of
X(ζ0) and a C3-diffeomorphim ψ : R

3 → R
3 with inverse χ which maps

U ∩ K onto B+
1 (0), U ∩ ∂K onto B+

1 (0) ∩ {x3 = 0} and X(ζ0) onto 0. For
sufficiently small ρ0 > 0 and Ω′ := Bρ0(ζ0) we have Ω′ � B and z := ψ ◦ X ∈
H1

2 (Ω′, B+
1/2(0)) ∩ C0,μ(Ω′,R3). Consider any ϕ ∈ C0

c (Ω′,R3) ∩ H1
2 (Ω′,R3)

with the property z3(w) − εϕ3(w) ≥ 0 for all w ∈ Ω′ and sufficiently small
ε ≥ 0. Then the mapping Xε := χ(z − εϕ) ∈ C(Γ,K) for ε ∈ [0, ε0), ε0 = ε0(ϕ),
while clearly X0 = X. By the minimum property of X we have F(X) ≤ F(Xε)
for all ε ∈ [0, ε0). Introduce the integral F̃(Y ) :=

∫
B
ẽ(Y, ∇Y ) du dv, whose

integrand is defined by

ẽ(y, q) := e(χ(y), χy(y)q),

for (y, q) ∈ K∗ × R
6, K∗ := ψ(K) and where χy = Dχ : R

3 → R
3 denotes

the Jacobian of χ while e(x, p) = 1
2gij(x)[pi

1p
j
1 + pi

2p
j
2] + 〈Q(x), p1 ∧ p2〉, p =

(p1, p2) ∈ R
3 × R

3.
Since χ : R

3 → R
3 is a C3-diffeomorphism it is not difficult (but somewhat

tedious) to prove that the functions defined by

Aα
j (y, q) := ẽqj

α
(y, q)

and

Bj(y, q) := ẽyj (y, q) for α = 1, 2 and j = 1, 2, 3,

satisfy the growth and coercivity conditions of Definition 3.
Furthermore, arguments similar to those used in the proof of the variation

formula Theorem 5 show that the first variation

δF̃(z, ϕ) = lim
ε→0+

1
ε
(F̃(z + εϕ) − F̃(z))

exists for functions ϕ considered above and is given by

δF̃(z, ϕ) =
∫

Ω′
{Aα

j (z, ∇z)ϕj
uα +Bj(z, ∇z)ϕj } du dv.

By the minimality of X we infer that δF̃(z, ϕ) ≤ 0 is satisfied for all ϕ ∈
C0

c (Ω′,R3) ∩ H1
2 (Ω′,R3) with z3 − εϕ3 ≥ 0 on Ω′ and 0 ≤ ε < ε0(ϕ).

By Theorem 4 X satisfies a Dirichlet growth condition of the type (16),
whence also z = ψ ◦ X fulfills the estimate

∫

Ω′ ∩Bρ(ξ)

| ∇z|2 du dv ≤ Moρ
2μ
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for every ball Bρ(ξ) ⊂ R
2 with constant M0 = λ(R − ρ0)−2μDB(X) where

R = dist(ξ0, ∂B) and λ := |G ◦ χ|0,B+
1
, G := ψt

xψx; here we have used ∇z =
ψx ◦ X and | ∇z(w)|2 = ∇X(w)G(X(w))∇X(w) ≤ λ| ∇X(w)|2 for all w ∈
Ω′ = Bρ0(ζ0).

Now we can apply Lemma 1 and obtain z ∈ H2
2 (Ω′ ′,R3) ∩ H1

s (Ω′ ′,R3) for
all 1 ≤ s < ∞ and domains Ω′ ′ � Ω′. Taking X = χ ◦ z on Bρ0(ζ0) into
account, we see by a covering argument that X ∈ H2

2 (Ω′,R3) ∩ H1
s (Ω′,R3)

for all subsets Ω′ � B and all numbers s ∈ [1, ∞).

Step II. Ls-estimates of the second derivatives.

Case 1. X(ζ0) ∈ int K.
Since X is continuous also X(BR0(ζ0)) ⊂ int K for some 0 < R0 � 1, whence
we obtain δF(X,ϕ) = 0, i.e. by Theorem 5
∫

B

{gjk(X)Xj
uαϕk

uα +
1
2
∂gjk

∂xe
Xj

uαXk
uαϕ� + divQ(X)〈Xu ∧ Xv, ϕ〉 } du dv = 0,

for every ϕ of class
◦

H1
2 (BR0(ζ0),R

3) ∩ L∞(BR0(ζ0),R
3). Therefore, since

X ∈ H2
2,loc(B,R

3), the Euler equations

�X� + Γ �
jkX

j
uαXk

uα = divQ(X)g�m(Xu ∧ Xv)m

hold almost everywhere on BR0(ζ0), whence we have the estimate

| �X(w)| ≤ C| ∇X(w)|2

a.e. on BR0(ζ0) for some constant c > 0. Since ∇X ∈ L2s,loc on B for all
s ∈ [1, ∞) we get �X ∈ Ls on BR0(ζ0) and therefore conclude by standard
Lp-theory (e.g. Gilbarg and Trudinger [1]) that X ∈ H2

s (BR0(ζ0),R
3).

Case 2. X(ζ0) ∈ ∂K.
Since K is of class C3 there exists a neighbourhood U of X(ζ0) and a C3-
diffeomorphism ψ of R

3 onto itself which maps U ∩ K onto B+
1 and U ∩ ∂K

onto B0
1 := B+

1 ∩ {x3 = 0} and ψ(X(ζ0)) = 0, detψx > 0.
For sufficiently small R0 > 0 and Ω′ = BR0(ζ0) � B we have z := ψ ◦ X ∈

H1
2 (Ω′, B+

1/2). Pick any ϕ ∈ C0
c (Ω′,R3) ∩ H1

2 (Ω′,R3) with the property that
z3(w) − εϕ3(w) ≥ 0 for all w ∈ Ω′, provided that ε > 0 is sufficiently small.
As in Step I consider the functional

F̃(Y ) =
∫

B

ẽ(Y, ∇Y ) du dv,

where ẽ(y, q) := e(χ(y), χy(y)q) and q = (q1, q2) ∈ R
3 × R

3. A simple calcula-
tion shows that we have

ẽ(y, q) = g̃�m(y)q�
αq

m
α + 〈Q̃(y), q1 ∧ q2〉,
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where

g̃�m = (gjk ◦ χ)χj
y	χ

k
ym and

Q̃ = (detχy)χ−1
y (Q ◦ χ).

In other words, F̃ is of the same structure as F and we can apply Theorem 5.
Also we have δF̃(z, ϕ) ≤ 0 for all ϕ ∈ C0

c (Ω′,R3) ∩ H1
2 (Ω′,R3) with the

property that

z3(w) − εϕ3(w) ≥ 0 for all w ∈ Ω′

and 0 ≤ ε ≤ ε0 = ε0(ϕ). In particular we are free to make arbitrary “tangen-
tial” variations, in other words

δF̃(z, ϕ) = 0 for all ϕ = (ϕ1, ϕ2, 0) ∈ C0
c (Ω′,R3) ∩ H1

2 (Ω′,R3).

Theorem 5 now implies

g̃1j(z)�zj + Γ̃j1kz
j
uαzk

uα = div Q̃(z)(zu ∧ zv)1,
(34)

g̃2j(z)�zj + Γ̃j2kz
j
uαzk

uα = div Q̃(z)(zu ∧ zv)2

a.e. on Ω′, where Γ̃j�k are the Christoffel symbols of the first kind correspond-
ing to g̃ij . Introduce the “coincidence” set

Tz := {w ∈ Ω′ = BR0(ζ0) : z3(w) = 0}
= {w ∈ Ω′ : X(w) ∈ ∂K}.

By a well known property of Sobolev functions we get ∇z3(w) = 0, ∇2z3(w) =
0 a.e. on Tz. Hence, on account of (34)

g̃11(z)�z1 + g̃12�z2 = !1(z, ∇z),
g̃21(z)�z1 + g̃22�z2 = !2(z, ∇z),(35)

�z3 = 0

a.e. on Tz, where the right hand side grows quadratically in | ∇z|, i.e.

|!1(z, ∇z)| + |!2(z, ∇z)| ≤ c| ∇z|2 on Ω′

for some constant c.
The coercivity of e(x, p) (cf. Assumption A) implies that

m̃0|ξ|2 ≤ g̃jk(z)ξjξk ≤ m̃1|ξ|2

for all (z, ξ) ∈ K∗ ∗ × R
3,K∗ ∗ ⊂ K∗ = ψ(K), where m̃0 ≤ m̃1 are positive

numbers. Therefore we infer from equation (35)

| �z| ≤ c∗ | ∇z|2 a.e. on Tz
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for some number c∗.
On the other hand we get as in case 1

�z� + Γ̃ �
jk(z)zj

uαzk
uα = div Q̃(z)g̃�m(z)(zu ∧ zv)m

for ! = 1, 2, 3 a.e. on the (open) set Ω′ \ Tz; whence also

| �z| ≤ c∗ ∗ | ∇z|2 a.e. on Ω′ \ Tz.

Concluding we have

| �z| ≤ c| ∇z|2 a.e. on Ω′

with c := max(c∗, c∗ ∗). Now we can proceed as in case 1 and obtain z ∈
H2

s (BR(ζ0),R3) for any R ∈ (0, R0) and any s ∈ [1, ∞). This implies that
X ∈ H2

s (Ω′,R3) for all Ω′ � B and all s ∈ [1, ∞). Finally, by Sobolev
imbedding theorem we infer that also X ∈ C1,α(Ω′,R3) for all Ω′ � B and
all α ∈ [0, 1). This completes the proof of Theorem 6. �

Remark. The assertion of Theorem 6 still holds true if the condition Q ∈
C2(S,R3) is replaced by the weaker assumption Q ∈ C1(K) and divQ ∈
C1(K). This observation is of importance for the solution of Plateau’s problem
for H-surfaces in the set K.

Proof of the Remark. A careful scrutinizing of the steps in the proof of The-
orem 6 shows that Step II (Lp-estimates of second derivatives) only re-
quires Q ∈ C1(K). Returning to Step I we consider the functional F̃(Y ) =∫

B
ẽ(Y, ∇Y ) du dv, where ẽ(y, q1, q2) = g̃�m(y)q�

αq
m
α + 〈Q̃(y), q1 ∧ q2〉 with

g̃�m(y) = gjk(χ(y))χj
y	χ

k
ym and Q̃(y) = (detχy(y))[χy(y)]−1Q(χ(y)). By The-

orem 5 the first variation δF̃(z, ϕ) for

z ∈ C0
c (Ω′, B+

1
2
(0)) ∩ H1

2 (Ω′,R3) and ϕ ∈ C0
c (Ω′,R3) ∩ H1

2 (Ω′,R3)

is given by

δF̃(z, ϕ)

=
∫

Ω′

{
g̃ij(z)zi

uαz
j
uα +

1
2
∂g̃ij

∂y�
zi
uαz

j
uαϕ� + div Q̃(z)〈zu ∧ zv, ϕ〉

}
du dv,

where

div Q̃(z) =
∂Q̃1

∂y1
(z) +

∂Q̃2

∂y2
(z) +

∂Q̃3

∂y3
(z).

Therefore, in order to apply Lemma 1 and the same arguments as in Step I in
the proof of Theorem 6, it is sufficient to show that still we have div Q̃(y) ∈
C1(K) under the weaker assumption Q, divQ ∈ C1. To this end we put
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Q̃(y) = (detχy(y))Q∗(y) with Q∗(y) := [χy(y)]−1Q(χ(y)) and observe that it
remains to show divQ∗ ∈ C1, since χ is of class C3. Let

χy(y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂χ1

∂y1

∂χ1

∂y2

∂χ1

∂y3

...
...

...
∂χ3

∂y1

∂χ3

∂y2

∂χ3

∂y3

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

then, since ψ(χ(y)) = y we have ψx(χ(y)) · χy(y) = Id and

χ−1
y (y) =

⎡

⎢
⎢
⎢
⎢
⎣

∂ψ1

∂x1
. . .

∂ψ1

∂x3

...
...

∂ψ3

∂x1
. . .

∂ψ3

∂x3

⎤

⎥
⎥
⎥
⎥
⎦

(χ(y)).

In particular we have ∂ψk

∂xi (χ(y))· ∂χj

∂yk (y) = δj
i for i, j = 1, 2, 3. Next we compute

∂Q∗k

∂yi
=

∂

∂yi

[
∂ψk

∂xj
(χ(y))Qj(χ(y))

]

=
∂

∂yi

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂yi
(χ(y))

=
∂

∂yi

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂x�
(χ(y))

∂χ�

∂yi
,

i.e.

divQ∗(y) =
∂

∂yk

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂x�
(χ(y))

∂χ�

∂yk

=
∂

∂yk

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) + divQ(χ(y))

which is of class C1(K). Now Lemma 1 can be applied and the proof can be
completed as in Theorem 6. �

Theorem 7 (Regularity off the coincidence set). Suppose that Assump-
tion A is satisfied (possibly without condition (22)), K is quasiregular and
gij ∈ C1,β(K), divQ ∈ C0,β(K) for 0 < β < 1 and i, j = 1, 2, 3. Let X be
a solution for P(Γ,K) in C(Γ,K) and put Ω := {w ∈ B : X(w) ∈ ∂K} to
denote the coincidence set. Then X ∈ C2,β(B \ Ω,R3) and satisfies the Euler
equation (24) classically on B \ Ω.

Proof. By Theorem 4, X ∈ C0(B,R3); therefore B \ Ω is an open set and for
each w0 ∈ B \ Ω there is a disk Bρ(w0) which is contained in B \ Ω. Conse-
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quently for any testfunction ϕ ∈ C∞
c (Bρ(w0),R3) we have X + εϕ ∈ C(Γ,K)

for all ε ∈ (−ε0, ε0), ε0 = ε0(ϕ) > 0 sufficiently small, and the minimizing
property of X implies

F(X) ≤ F(X + εϕ) for all ε ∈ (−ε0, ε0).

Whence δF(X,ϕ) = 0 and by Theorem 5 we obtain

∫

B

{
gjk(X)Xj

uαϕk
uα +

1
2
∂gjk

∂x�
Xj

uαXk
uαϕ� + divQ(X)〈Xu ∧ Xv, ϕ〉

}
du dv = 0.

Put ϕj := gjk(X)ψk, where (gij) denotes the inverse of the matrix (gij) and
ψ = (ψ1, ψ2, ψ3) ∈ C∞

c (Bρ(w0),R3) is arbitrary. A simple calculation yields
∫

B

{
X�

uαψ�
uα − Γ �

jk(X)Xj
uαXk

uαψ� + divQ(X)g�m(X)(Xu ∧ Xv)mψ
�
}
du dv

= 0

for all ψ ∈ C∞
c (B \ Ω,R3) applying appropriate partitions of unity. The fun-

damental lemma in the calculus of variations shows that (24) is the Euler
equation of F. A regularity theorem of Tomi [1] (for a similar reasoning due
to Heinz see also Section 2.1 and 2.2) now implies that X ∈ C1,μ(B \ Ω,R3)
for all μ ∈ (0, 1). Alternatively, we might also apply Theorem 6 assuming the
somewhat stronger hypotheses gij ∈ C2(S) and Q ∈ C2(S,R3), where S de-
notes an open set containing K. Finally classical results from potential theory
yields that X ∈ C2,β(B \ Ω,R3). �

Now we solve the Plateau problem for surfaces of prescribed mean curva-
ture H. We start with Jordan curves Γ which are contained in a closed ball
BR(P0) ⊂ R

3.

Theorem 8. Let K be the closed ball BR(P0) of radius R and center P0 and
denote by H a function of class C0,β(K), 0 < β < 1, satisfying

|H|0,K <
3
2
R−1 and |H|0,∂K ≤ R−1.

Suppose Γ ⊂ K is a closed Jordan curve such that C(Γ,K) is nonempty. Then
there exists a surface X of class C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3), which
maps ∂B homeomorphically onto Γ and satisfies

�X = 2H(X)Xu ∧ Xv in B,

and

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.
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Proof. Without loss of generality we take P0 = 0 ∈ R
3 and extend H to some

ball BR+r0(0) such that |H|0,BR+r0
< 3

2 (R + r0)−1 and |H(x)| |x| ≤ 1 for all
x ∈ BR+r0 − BR and some r0 > 0. We remark here that the first variation
formula (23) of Theorem 5 extends to cases where Q is not necessarily of
class C1 but divQ is defined (possibly in a weak sense). Here we define the
vectorfield

Q(x) =
2
3

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ,
∫ x3

0

H(x1, x2, τ) dτ

)

which, although not necessarily of class C1(BR+r0 ,R
3), satisfies divQ = 2H.

We claim that δFQ(X,ϕ) exists for all X ∈ H1
2 (B,BR+r0), ϕ ∈

◦

H1
2 (B,R3) ∩

L∞(B,R3) and is given by (23) i.e.

δFQ(X,ϕ) =
∫

B

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv.

Note that here we have written FQ to indicate the dependence of F on Q.
Now, to see that (23) holds in this case we take a sequence Hn ∈ C1(BR+r0)
s.t. |Hn − H|0,BR+r0

→ 0, n → ∞ and define Qn ∈ C1(BR+r0 ,R
3) by

Qn(x) =
2
3

(∫ x1

0

Hn(τ, x2, x3) dτ,
∫ x2

0

Hn(x1, τ, x3) dτ,
∫ x3

0

Hn(x1, x2, τ) dτ

)

and

FQn(X) =
1
2

∫

B

| ∇X|2 du dv +
∫

B

〈Qn(X), Xu ∧ Xv 〉 du dv.

Relation (23) of Theorem 5 implies

δFQn(X,ϕ) =
∫

B

{ 〈∇X, ∇ϕ〉 + divQn(X)〈Xu ∧ Xv, ϕ〉 } du dv

=
∫

B

{ 〈∇X, ∇ϕ〉 + 2Hn(X)〈Xu ∧ Xv, ϕ〉 } du dv,

whence, as n → ∞

(36) δFQn(X,ϕ) →
∫

B

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv.

On the other hand we have
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FQ(X + εϕ) − FQ(X)
ε

=
FQn(X + εϕ) − FQn(X)

ε

+
1
ε

{FQ(X + εϕ) − FQ(X) − FQn(X + εϕ) + FQn(X)}

=
FQn(X + εϕ) − FQn(X)

ε

+
1
ε

{∫

B

〈Q − Qn, (Xu + εϕu) ∧ (Xv + εϕv)〉 du dv

+
∫

B

〈Q − Qn, Xu ∧ Xv 〉 du dv
}

=
FQn(X + εϕ) − FQn(X)

ε

+
∫

B

〈Q − Qn, Xu ∧ ϕv + ϕu ∧ Xv 〉 du dv

+ ε

∫

B

〈Q − Qn, ϕu ∧ ϕv 〉 du dv.

Letting ε → 0 we find that δFQ(X,ϕ) exists and is given by

δFQ(X,ϕ) = δFQn(X,ϕ) +
∫

B

〈Q − Qn, Xu ∧ ϕv + ϕu ∧ Xv 〉 du dv.

Since |Q − Qn|0,BR+r0
≤ const|H − Hn|0,BR+r0

→ 0 as n → ∞ we conclude,
by letting n → ∞ and using (36), the first variation formula

(37) δFQ(X,ϕ) =
∫

B

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv.

Next we observe that for every x ∈ BR+r0(0) we have |Q(x)| ≤ 2
3 |x| |H|0,BR+r0

,
whence |Q|0,BR+r0

< 1. By the discussion following Theorem 1 and by virtue
of Theorems 3 and 4 we can find a solution X ∈ C(Γ,BR+r0(0)) of the vari-
ational problem FQ(X) → min in the class C(Γ,BR+r0(0)), which in addi-
tion belongs to the spaces C0,α(B,R3) ∩ C0(B,R3). Consider the function

ϕ(w) := max(|X(w)|2 − R2, 0) · X which is of class
◦

H1
2 (B,R3) ∩ L∞(B,R3)

and satisfies X − εϕ ∈ C(Γ,BR+r0(0)) for all ε ∈ [0, ε0), provided ε0 is suffi-
ciently small. Since X is a minimizer in that class we have FQ(x) ≤ FQ(x−εϕ)
for all ε ∈ [0, ε0) and therefore δFQ(X,ϕ) ≤ 0. On the other hand we compute,
using well known properties to Sobolev functions

∇ϕ = (ϕu, ϕv) =

{
2〈X, ∇X〉X + (|X|2 − R2)∇X, on {w : |X(w)| > R},
0, on {w : |X(w)| ≤ R}.

From the first variation formula (37) and the variational inequality
δFQ(X,ϕ) ≤ 0 we derive

∫

B∩ { |X(w)|>R}
{2〈X,Xu〉2 + 2〈X,Xv 〉2 + (|X|2 − R2)(|Xu|2 + |Xv |2)(38)

+ 2H(X)〈X,Xu ∧ Xv 〉(|X|2 − R2)} du dv ≤ 0.
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But on the set {w : |X(w)| > R} we have

|2H(X)(|X|2 − R2)〈X,Xu ∧ Xv 〉| ≤ (|X|2 − R2)|H(X)| |X|(|Xu|2 + |Xv |2)
≤ (|X|2 − R2)(|Xu|2 + |Xv |2),

whence by (38) it follows that 〈X,Xu〉 = 〈X,Xv 〉 = 0 a.e. on {w : |X(w)| >
R}. This implies that the function η(w) := max(|X(w)|2 − R2, 0) belongs to
H1

2 (B) ∩ C0(B) whose derivative is

∇η =

⎧
⎨

⎩

〈X, ∇X〉 on { |X(w)|2 > R2},

0 on { |X(w)|2 ≤ R2}

must vanish identically on B, since η = 0 on ∂B. Therefore |X(w)| ≤ R on
B and the coincidence set Ω = {w ∈ B : X(w) ∈ ∂BR+r0 } is empty. Now
observe that Theorem 7 is applicable here, since we have already proved the
variational formula (37) to also hold in this case; furthermore we have by
assumption divQ = 2H ∈ C0,β(K). By Theorem 7 we get X ∈ C2,β(B,R3)
and the system

�X = 2H(X)Xu ∧ Xv,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B

is satisfied in a classical sense.
The topological character of the boundary mapping X|∂B : ∂B → Γ is

proved similarly as in Theorem 3 of Chapter 4.5 in Vol. 1. Indeed in some
neighbourhood of a boundary branch point w0 ∈ ∂B we have the asymptotic
expansion Xw(w) = a(w−w0)ν +o(|w−w0|ν) for some integer ν ≥ 1 and some
a ∈ C

3 \ {0}, provided X is of class C1 in a neighbourhood U0 ⊂ B of w0 (cf.
Section 2.10). Therefore | ∇X(w)| > 0 for w ∈ ∂B with 0 < |w − w0| < ε. We
conclude that X(w) cannot be constant on any open arc Γ0 ⊂ ∂B, because this
would imply X ∈ C1(B ∪ Γ0,R

3) and, because of the conformality relations,
∇X = 0 on Γ0, an obvious contradiction. �

Remark. The proof of Theorem 8 also shows the existence of a conformal
weak solution X ∈ C0(B,R3) ∩C1,α(B,R3) of the system �X = 2H(X)Xu ∧
Xv, if H is only of class C0(K); also X maps ∂B homeomorphically onto Γ .

By Theorem 1 the sharpness of the existence result Theorem 8 follows if
all closed curves Γ ⊂ BR(p0) are considered. However, for certain shapes one
expects better results for geometric reasons. Consider for instance a long and
“thin” Jordan curve Γ , say a slightly perturbed rectangle of sidelengths ε and
ε−1 respectively where ε > 0 is small. Then Theorem 8 asserts the existence
of a solution if |H| < ε. However, a much better result holds in this situation.

Theorem 9. Suppose K ⊂ R
3 is a closed circular cylinder CR of radius R > 0

and Γ ⊂ CR is a closed Jordan curve such that C(Γ,K) is nonempty. Denote
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by H a function of class C0,β(K), 0 < β < 1, satisfying |H|0,∂K ≤ 1
2R and

|H|0,K < 1
R . Then the Plateau problem determined by H and Γ is solvable,

i.e. there exists a surface X ∈ C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3) with

�X = 2H(X)Xu ∧ Xv in B, and |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B,

which maps ∂B homeomorphically onto Γ .

Proof. The proof is similar to the one of Theorem 8. Without loss of generality,
we assume at the outset that

K = CR = {(a, b, c) ∈ R
3 : a2 + b2 ≤ R2},

and H ∈ C0(CR0) for some R0 > R, satisfies

(39) |H|0,R0 <
1
R0

, |y| |H(x)| ≤ 1
2

for all x = (x1, x2, x3) ∈ CR0 \ CR and y := (x1, x2, 0). As vector field Q we
choose

Q(x) :=

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ, 0

)

,

which again satisfies

divQ(x) = 2H(X) in CR0

and

|Q(x)| = {(Q1(x))2 + (Q2(x))2} 1
2 ≤ |H|0,CR0

{(x1)2 + (x2)2} 1
2 = |H|0,CR0

|y|.

Whence, by (39) it follows that |Q|0,CR0
< 1. Therefore the variational prob-

lem

(P) : F(X) =
1
2

∫

B

| ∇X|2 du dv +
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv → min

in C(Γ,CR0) is solvable; let X ∈ C(Γ,CR0) ∩ C0,α(B,R3) ∩ C0(B,R3) be a
conformally parametrized solution (cf. Theorems 3 and 4). Denote by Y (w) :=
(x1(w), x2(w), 0) the projection of X(w) onto the plane x3 = 0 and consider

the
◦

H1
2 (B,R3) ∩ L∞(B,R3) function ϕ(w) := max(|Y (w)|2 − R2, 0) · Y (w).

We have X − εϕ ∈ C(Γ,CR0) ∩ H1
2 (B,CR0) for all ε ∈ [0, ε0), provided ε0 > 0

is sufficiently small. Whence, by the minimality of X,

F(X) ≤ F(X − εϕ) for all ε ∈ [0, ε0).(40)

By the same reasoning as in the proof of Theorem 8 we see that the first
variation δF(X,ϕ) exists and is given by (see relation (37))
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δF(X,ϕ) =
∫

B

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv,

whence by (40) we arrive at the variational inequality
∫

B

{〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv ≤ 0.

Now, since

∇ϕ = (ϕu, ϕv) =

⎧
⎨

⎩

2〈Y, ∇Y 〉Y + (|Y |2 − R2)∇Y on {|Y (w)| > R},

0 on {|Y (w)| ≤ R}

we infer

δF(X,ϕ) =
∫

B∩ { |Y |>R}
{2〈Y, Yu〉2 + 2〈Y, Yv 〉2(41)

+ (|Y |2 − R2)(|Yu|2 + |Yv |2)
+ 2H(X)〈Xu ∧ Xv, Y 〉(|Y |2 − R2)} du dv ≤ 0.

By virtue of the conformality relation |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 a.e. on B,
we obtain as in the proof of Theorem 2 in Section 4.1 the inequality

| ∇x3|2 ≤ | ∇x1|2 + | ∇x2|2 = | ∇Y |2.(42)

Whence

2|H(X)〈Xu ∧ Xv, Y 〉| ≤ 2|H(X)| · |Y | · { |x2
ux

3
v − x3

ux
2
v |2 + |x3

ux
1
v − x1

ux
3
v |2} 1

2

≤ 2|H(X)| |Y | { | ∇x2|2| ∇x3|2 + | ∇x1|2| ∇x3|2} 1
2 = 2|H(X)| |Y | | ∇x3| | ∇Y |

≤ 2|H(X)| |Y | | ∇Y |2 ≤ | ∇Y |2 = |Yu|2 + |Yv |2 a.e. on {w : |Y (w)| > R},

where we have used (42) and (39). By virtue of (41) this now implies that
〈Y, Yu〉 = 〈Y, Yv 〉 = 0 a.e. on {w : |Y (w)| > R}. In other words, the H1

2 -
function η(w) := max(|Y (w)|2 − R2, 0) has vanishing derivative a.e. in B
and hence vanishes identically. This means that the coincidence set Ω :=
{w ∈ B : X(w) ∈ ∂CR0 } is empty and by Theorem 7 we conclude that
X ∈ C2,β(B,R3) ∩ C0(B,R3) satisfies the Euler equation

�X = 2H(X)Xu ∧ Xv in B

and

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in the classical sense. The rest of the proof is the same as in Theorem 8. �
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Now we consider Plateau’s problem for surfaces of prescribed mean curva-
ture H and boundary Γ which are confined to arbitrary sets K. In particular
it is desirable to describe geometric conditions on H and K or ∂K respectively,
which guarantee the existence of a solution to this problem. In this respect
Theorem 2 and Enclosure Theorems 2 and 3 of Section 4.4 are of crucial im-
portance. We recall the definition of the “mean curvature” function Λρ(x) for
x ∈ K to denote the mean curvature at x of the surface Sρ(x) through x which
is parallel to ∂K at distance ρ = ρ(x), if this is defined and is equal to infinity
otherwise.

Theorem 10. Suppose K ⊂ R
3 is the closure of a C3 domain whose boundary

∂K has uniformly bounded principal curvatures and a global inward parallel
surface at distance ε > 0. Assume also that supK ρ(x) < ∞ and H ∈ C1(K)
has uniformly bounded C1-norm on K with

|H(x)| ≤ Λ(x) for all x ∈ ∂K,(43)

and

|H(x)| ≤ (1 − aρ(x))Λρ(x) +
a

2
for all x ∈ K(44)

and some number a, 0 ≤ a ≤ infK ρ−1(x). Finally let Γ ⊂ K denote a
closed Jordan curve such that C(Γ,K) �= ∅. Then there exists a solution
X ∈ C2,α(B,R3) ∩ C0(B,K) of the Plateau problem which is determined by
H and Γ . Furthermore X satisfies the H-surface system 1) and 2) classically
in B and maps the boundary of B homeomorphically onto Γ . Moreover, if in
addition

|H(x)| ≤ Λρ(x)(45)

holds for all x in a small strip in K near ∂K and Γ ∩ int K �= ∅, then every
solution X maps B into the interior of K. Finally, if for some point x0 ∈ ∂K

we have

|H(x0)| < Λ(x0),(46)

then there is a neighbourhood U(x0) ⊂ R
3 such that no w0 ∈ B is mapped into

U(x0). In particular if (46) holds true for all x0 ∈ K, then X(B) ⊂ int K.
(Clearly, (45) follows from (44), if a = 0.)

Proof. First we remark that K is quasiregular; for a proof see Lemma 2.4 in
Gulliver and Spruck [2]. Furthermore by Theorem 2 there is a vector field
Q ∈ C1(K,R3) which satisfies

divQ(x) = 2H(x) for all x ∈ K

and |Q|0,K < 1. Now Theorems 3, 4 and 6, in particular the Remark at the end
of the proof of Theorem 6 imply the existence of a conformally parametrized
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solution X ∈ C(Γ,K) ∩H2
s,loc(B,R3) ∩C1,α(B,R3) ∩C0(B,R3), for all s < ∞,

and 0 < α < 1, of the variational problem

P(Γ,K) : F(X) =
1
2

∫

B

| ∇X|2 du dv +
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv → min

in C(Γ,K).

By Theorem 5 the first variation δF(X,ϕ) exists, is given by

δF(X,ϕ) =
∫

B

{ 〈∇X, ∇ϕ〉 + 2H(X)〈Xu ∧ Xv, ϕ〉 } du dv

and satisfies – since X is a minimum of F in C(Γ,K) – the relation

δF(X,ϕ) ≥ 0

for all ϕ ∈
◦

H1
2 (B,R3) ∩ L∞(B) such that (X + εϕ) ∈ C(Γ,K). Assump-

tion (43) together with Enclosure Theorem 3 of Section 4.4 yield that
X ∈ H2

s,loc(B,R
3) ∩ C1,α(B,R3) satisfies the system

�X = 2H(X)Xu ∧ Xv

almost everywhere in B. Since the right hand side is Hölder continuous it
follows from Schauder theory that X is of class C2,α(B,R3) and satisfies the
H-surface system in a classical sense.

By Enclosure Theorem 2 of Section 4.4 and since X ∈ C0(B,R3), we
see that X(B) ⊂ int K, if (45) holds and Γ ∩ int K �= ∅. The rest of the
assertion is a consequence of Corollary 3 in Section 4.4. That the boundary
mapping X|∂B : ∂B → Γ is a homeomorphism follows in a standard manner.
Theorem 10 is completely proved. �

Let us close this section with a simple example when K = {ξ ∈ R
3 :

|ξ| ≤ R} is the closed ball of radius R and center zero. Formula (44) then is
equivalent to

|H(x)| ≤ (1 − a(R − |x|)) 1
|x| +

a

2
,

where 0 ≤ a ≤ R−1; or

|H(x)| ≤ 1
|x| (1 − aR) +

3a
2

for all x ∈ K. For a = R−1 we recover the result of Theorem 8, while a new
existence result is obtained when a = 0. In this case the condition requires
|H(x)| ≤ 1

|x| for all x ∈ K, whence we obtain the existence of an H-surface in
K which lies strictly interior to K if Γ ∩ int K �= ∅.
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4.8 Surfaces of Prescribed Mean Curvature in a Riemannian
Manifold

In this section we shall extend the methods which we have introduced in
Section 4.7 to surfaces of prescribed mean curvature in a three-dimensional
Riemannian manifold. We assume the reader’s acquaintance with basic Rie-
mannian geometry; however we repeat some of the underlying concepts and
calculations when assumed necessary. In particular we discuss in this section
estimates for Jacobi fields. As standard reference on differential geometry we
refer to the monographs by Gromoll, Klingenberg, and Meyer [1], do Carmo
[3], Jost [18], and Kühnel [2], and we also refer to Chapter 1 of Vol. 1, where
most of the formulas needed later can also be found. In what follows we shall
assume, unless stated otherwise, that M is a three-dimensional, connected,
orientable, and complete Riemannian manifold of class C4 with scalar prod-
uct 〈X,Y 〉 and norm ‖X‖ = 〈X,X〉 1

2 for X,Y ∈ TpM , p ∈ M , where TpM
denotes the tangent space of M at p. Observe that this notation contrasts
with the one in the last section, where 〈·, · 〉 has denoted the Euclidean scalar
product, which in this chapter will simply be written as X · Y .

If ϕ : U → R
3, U ⊂ M an open set, denotes a chart we let x =

(x1, x2, x3) = ϕ(p) stand for the local coordinates and ∂k = ∂
∂xk = Xk denote

their basis fields. We put

gij(x) = 〈∂i, ∂j 〉 = 〈Xi, Xj 〉, g(x) = det(gij(x)),
(gij)i,j = (gij)−1

i,j , D∂i∂j = Γ �
ij∂� = DXiXj = Γ �

ijX�

and Γijk = 〈D∂i∂k, ∂j 〉, compare the formulas in Vol. 1, Section 1.5. Here D
denotes covariant differentiation on M , gij is the metric and Γijk, Γ k

ij stand
for the Christoffel symbols. From Chapter 1 we recall the relation

Γ k
ij = gkmΓimj and Γijk =

1
2

{
∂gjk

∂xi
− ∂gik

∂xj
+
∂gij

∂xk

}
.

A mapping f : B → M of the unit disk B into M represents a surface
of (prescribed) mean curvature H in M , if it is of class C2 and any local
representation X(w) = ϕ ◦ f(w) satisfies in B (or a suitable subset of B) the
system

�X� + Γ �
jkX

j
uαXk

uα = 2H(X)
√
g(x)g�m(X)(Xu ∧ Xv)m

for ! = 1, 2, 3, and the conformality condition

gijX
i
uX

j
u = gijX

i
vX

j
v , gijX

i
uX

j
v = 0.

We shall confine ourselves to surfaces which are contained in a “Riemann
normal chart” (ϕ,U) with center p ∈ M . Here (ϕ,U) is called a Riemann
normal chart with center p, if U ⊂ M is an open set with p ∈ U and ϕ : U →
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R
3 is of the form ϕ = j ◦ exp−1

p , where expp : TpM → M is the exponential
map with center p and j : TpM → R

3 is a linear isometry. Recall that the map
expp : TpM → M is defined by expp(v) = c(1) for v ∈ TpM , where c = c(t) is
the geodesic in M with c(0) = p and ċ(0) = v. Hence every point q ∈ U can
be connected with p by exactly one shortest geodesic which is the image of a
straight line through 0 in TpM under the exponential map expp.

Since we want to solve the Plateau problem for surfaces of prescribed
mean curvature in M via a minimization procedure of the functional F(X)
which we have investigated in Section 4.7, it is of crucial importance to have a
quantitative control of the metric tensor and the Christoffel symbols in terms
of the curvature of the underlying manifold M . This will be established by
invoking estimates for Jacobi fields along geodesics. These estimates are of
independent interest and will be of importance later in Subsection 4.8.3.

4.8.1 Estimates for Jacobi Fields

Throughout this subsection we assume that M is a complete m-dimensional
Riemannian manifold of class C4 with covariant derivative D and Riemann
curvature tensor R(X,Y )Z (for a definition and properties of R, see e.g. Vol. 1,
Sections 1.3 and 1.5). A geodesic c(t) starting for t = 0 at p ∈ M is then
defined for all times t ≥ 0.

A vector field J along a geodesic c : [0, ∞) → M with ċ(0) �= 0 is said to
be a Jacobi field along c if it satisfies

(1)
D

dt

D

dt
J +R(J, ċ)ċ = 0.

If no misunderstanding is possible, we shall abbreviate both the ordinary
derivation d

dt and the covariant derivation D
dt with a superscript dot. Then (1)

takes the form

(1′) J̈ +R(J, ċ)ċ = 0.

Here R(X,Y )Z denotes the Riemann curvature tensor of M . The linear equa-
tion (1), the so-called Jacobi equation of the geodesic c, is nothing but the
Euler equation of the second variation of the Dirichlet integral

∫
〈ċ, ċ〉 dt at

c. In local coordinates, the Jacobi equation is equivalent to the system of m
linear ordinary differential equations of second order

η̈k +Rk
�rs(c)η

�ċr ċs = 0

for the unknown functions ηk(t), k = 1, . . . ,m. Thus the Jacobi fields along a
geodesic c span a 2m-dimensional linear space over R which we denote by Jc.
In particular, the tangent vector ċ of a geodesic c is a Jacobi field of constant
length ‖ċ(0)‖ along c, since

D

dt
ċ = 0, R(ċ, ċ)ċ = 0
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and

d

dt
‖ċ‖2 = 2

〈
ċ,
D

dt
ċ

〉
= 0.

Moreover, if J and J∗ ∈ Jc, then

d

dt

{
〈J̇ , J∗ 〉 − 〈J, J̇∗ 〉

}
= 〈J̈ , J∗ 〉 − 〈J, J̈∗ 〉

= −〈R(J, ċ)ċ, J∗ 〉 + 〈R(J∗, ċ)ċ, J〉 = 0.

We therefore obtain

〈J̇ , J∗ 〉 − 〈J, J∗ 〉 = const for all J, J∗ ∈ Jc

and in particular, for J∗ = ċ, we arrive at

(2) 〈J̇ , ċ〉 = const for all J ∈ Jc.

Suppose now that c : [0, ∞) → M is a geodesic normalized by the condition
‖ċ‖ = 1. Then, by setting

JT = αċ, α = 〈J, ċ〉, J⊥ = J − JT ,

we can decompose each Jacobi field J ∈ Jc into a tangential component JT

and a normal component J⊥:

J = JT + J⊥.

We claim that both JT and J⊥ are Jacobi fields. In fact, equation (2) implies
α̈ = 0, and therefore (JT )·· +R(JT , ċ)ċ = (JT )¨= (αċ)˙̇ = (α̇ċ)˙ = α̈ċ = 0 if we
take c̈ = 0 into account.

The tangential part JT is of the form

(3) JT (t) = {at+ b}ċ(t),

where

(3′) a = 〈J̇(0), ċ(0)〉, b = 〈J(0), ċ(0)〉.

Thus the growth of the tangential part JT (t) can easily be determined from
the initial values J(0) and J̇(0).

Hence we can control the growth of all Jacobi fields if we can estimate
the normal Jacobi fields. These are the elements of Jc orthogonal to ċ which,
by (3), span a (2m − 2)-dimensional subspace of Jc that is denoted by J⊥

c .
Unfortunately, there is no simple way to compute the normal Jacobi fields,

yet they can fairly well be estimated in terms of upper and lower bounds on
the sectional curvature of M . To see this, we consider the solutions of the
scalar differential equation
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f̈ + κf = 0, κ ∈ R,

which also satisfy

−
(
ḟ

f

)·

= κ+

(
ḟ

f

)2

,

wherever f does not vanish. In particular the solutions sκ and cκ of the initial
value problems

s̈κ + κsκ = 0

sκ(0) = 0, ṡκ(0) = 1
and

c̈κ + κcκ = 0

cκ(0) = 1, ċκ(0) = 0

We have

sκ(t) = t, cκ(t) = 1 if κ = 0,

sκ(t) =
1√
κ

sin
√
κt, cκ(t) = cos

√
κt if κ > 0,

sκ(t) =
1√

−κ
sinh

√
−κt, cκ(t) = cosh

√
−κt if κ < 0.

Put

tκ =

⎧
⎪⎨

⎪⎩

π√
κ

if κ > 0,

+∞ if κ ≤ 0

that is, tκ is the first positive zero of sκ(t).

Lemma 1. Let c : [0, ∞) → M be a geodesic with ‖ċ‖ = 1, and suppose that
some J ∈ J⊥

c satisfies ‖J‖ > 0 on (0, t∗). Finally we assume that, for some
number κ, the sectional curvature K of M is bounded on Γt∗ = {c(t) : 0 ≤
t ≤ t∗ } by the inequality K ≤ κ. Then ‖J‖ satisfies the differential inequality

(4)
d2

dt2
‖J‖ + κ‖J‖ ≥ 0 on (0, t∗).

Proof. We first obtain

(5)
d

dt
‖J‖ = ‖J‖ −1〈J, J̇〉,

whence

d2

dt2
‖J‖ = ‖J‖ −1〈J, J̈〉 + ‖J‖ −1‖J̇‖2 − ‖J‖ −3〈J, J̇〉2

= ‖J‖ −1〈J, J̈〉 + ‖J‖ −3
{

‖J‖2‖J̇‖2 − 〈J, J̇〉2
}
,
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and, by Schwarz’s inequality, we arrive at

(6)
d2

dt2
‖J‖ ≥ ‖J‖ −1〈J, J̈〉.

The Jacobi equation (1′), on the other hand, implies

〈J, J̈〉 = −〈R(J, ċ)ċ, J〉.

The term on the right hand side is nothing but −K‖J‖2, where K = K(t)
denotes the sectional curvature of M at c(t) with respect to the two-plane
spanned by J(t) and ċ(t). Thus we find

(7) 〈J, J̈〉‖J‖ −1 = −K‖J‖ ≥ −κ‖J‖.

Finally, (4) follows from (6) and (7).

Lemma 2. Let the assumption of Lemma 1 be satisfied. If, moreover, we as-
sume that J(0) = 0 and t∗ ≤ tκ, then

(8)
d

dt

{
‖J‖
sκ

}
≥ 0 on (0, t∗).

Proof. Set

Z = ‖J‖·sκ − ‖J‖ṡκ.

Then, for 0 < t < t∗, we obtain Z(t) ≥ 0 since

Ż = ‖J‖ ··sκ − ‖J‖s̈κ = sκ { ‖J‖ ·· + κ‖J‖} ≥ 0,

if we take (4) into account. Hence, for any t0 ∈ (0, t∗), we infer that

Z(t) ≥ Z(t0) for all t ∈ (t0, t∗).

Moreover, (5) yields

‖J‖· ≤ ‖J̇‖,

and therefore

|Z| ≤ ‖J̇‖sκ + ‖J‖ |ṡκ| on (0, t∗).

As t0 → +0, we have sκ(t0) → 0 and ‖J(t0)‖ → 0, whence Z(t0) → 0 and
Z ≥ 0 on (0, t∗). Then the desired inequality (8) follows from

d

dt

{
‖J‖
sκ

}
=

Z

s2κ
.
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Theorem 1. Let c : [0, ∞) → M be a geodesic with ‖ċ‖ = 1, and let J be a
normal Jacobi field along c which satisfies J(0) = 0. We moreover suppose
that the sectional curvature K of M has an upper bound κ on Γtκ = {c(t) :
0 ≤ t ≤ tκ}. Then

(9) ‖J̇(0)‖sκ(t) ≤ ‖J(t)‖ for all t ∈ [0, tκ).

Proof. If J̇(0) = 0, (9) obviously is correct. We therefore may assume that
‖J̇(0)‖ > 0, whereas J(0) = 0. Then there is a number t∗ ∈ (0, tκ) such that
‖J‖ > 0 on (0, t∗), and Lemma 2 implies

‖J‖
sκ

(t0) ≤ ‖J‖
sκ

(t) for 0 < t0 ≤ t < t∗.

As t0 tends to +0, the quotient on the left hand side is an expression of the
kind 0

0 which, according to L’Hospital’s rule, is determined by

lim
t0→+0

‖J‖2

s2κ
= lim

t0→+0

d
dt ‖J‖2

d
dts

2
κ

= lim
t0→+0

d2

dt2 ‖J‖2

d2

dt2 s
2
κ

= ‖J̇(0)‖2,

since

d

dt
s2κ(t0) → 0,

d2

dt2
s2κ(t0) → 2,

d

dt
‖J‖2(t0) = 2〈J, J̇〉(t0) → 0,

d2

dt2
‖J‖2(t0) = 2

{
‖J̇‖2 + 〈J̈ , J〉

}
(t0)

= 2
{

‖J̇‖2 − 〈R(J, ċ)ċ, J〉
}

(t0) → 2‖J̇(0)‖2,

and (9) is proved for 0 ≤ t ≤ t∗. We then conclude that J(t) cannot vanish
before tκ, and thus (9) must hold for all t ∈ [0, tκ).

By the same reasoning, we can prove

Theorem 1′. Let c : [0, ∞) → M be a geodesic with ‖ċ‖ = 1, and let J ∈ J⊥
c .

Suppose also that the sectional curvature K satisfies K ≤ κ on Γτκ = {c(t) :
0 ≤ t ≤ τκ} where τκ is the first positive zero of

ϕ(t) = ‖J(0)‖cκ(t) + ‖J‖·(0)sκ(t),

and ‖J‖·(0) = ‖J‖ −1〈J, J̇〉(0). We then obtain

(10) ϕ(t) ≤ ‖J(t)‖ for 0 ≤ t < τκ

and

(11) ‖J(t)‖ ≤ ‖J(t∗)‖
ϕ(t∗)

ϕ(t) for all t ∈ [0, t∗],

where 0 < t∗ < τκ.
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Remark. Here we have assumed that J(0) �= 0; the case J(0) = 0 is handled
by a limit consideration.

We now turn to another class of Jacobi field estimates derived from a lower
bound on the sectional curvature of M .

To this end, let c : [0, ∞) → M again be a unit speed geodesic, and let
X1, X2, . . . , Xm be m parallel vector fields along c which, at every point c(t)
of the geodesic, yield on orthogonal frame of the tangent space Tc(t)M . In
other words, we have

Ẋk = 0 and 〈Xk, X�〉 = δk�.

Then every vector field U along c can be written as

U(t) = uk(t)Xk(t).

If we identify R
m with Tc(0)M and introduce the vector function u : [0, ∞) →

R
m by

u(t) =
(
u1(t), . . . , um(t)

)T

we obtain a 1-1-correspondence between the vector functions u : [0, ∞) → R
m

and the vector fields U along c given by parallel translation.
To any m × m-matrix function B(t) = (b�k(t)) which acts on vector func-

tions u(t) according to (B(t)u(t))� = b�k(t)uk(t), we can associate an operator,
again called B, acting on vector fields U = ukXk by the rule

(BU)(t) = (B(t)u(t))�X�(t)

if the vectorfield U is identified with the function u.
We, in particular, can associate with every Jacobi field J = JkXk a vector

function I = (J1, . . . , Jm) which satisfies

(12) Ï +RcI = 0,

where the matrix function Rc(t) = (Rs
k(t)) is defined by

Rs
k = Rs

k�r ċ
�ċr,

where

ċ = ċkXk and R(J, ċ)ċ = Rs
k�rJ

k ċ�ċrXs.

The well known symmetry relation

〈R(U, ċ)ċ, V 〉 = 〈R(V, ċ)ċ, U〉

implies the symmetry of Rc.
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Next we choose a basis J1, . . . , Jm of the m-dimensional subspace J̊c :=
{J ∈ Jc : J(0) = 0} of Jc with J̇k(0) = Xk(0). By Theorem 1 and by (3), the
tangent vectors J1(t), . . . , Jm(t) are linearly independent for all t ∈ (0, tκ) if
we assume K ≤ κ. Let now Ik be the vector functions corresponding to the
Jacobi vectors Jk. Then the matrix A(t), defined by

A = (I1, I2, . . . , Im),

is invertible and satisfies

(13) Ä+RcA = 0, A(0) = 0, Ȧ(0) = 1,

where 1 denotes the unit matrix (δ�
k). We therefore can define the matrix

function

S(t) = −Ȧ(t)A−1(t) for t ∈ (0, tκ),

which satisfies the Riccati equation

(14) Ṡ = Rc + S2,

since the differentiation of AA−1 = 1 and S = −ȦA−1 yields (A−1)· =
−A−1ȦA−1 and Ṡ = −ÄA−1 − Ȧ(A−1)· = −ÄA−1 +(ȦA−1)2, and from (13)
we infer ÄA−1 = −Rc. Moreover,

(15) S(t) = −t−1 · 1 + 0(1) as t → +0

since A(t) = t · 1 + · · · and Ȧ(t) = 1 + · · · .
We also claim that S(t) is a symmetric operator on Tc(t)M , i.e. we must

prove that

〈S(t0)U0, V0〉 = 〈U0, S(t0)V0〉

holds for every t0 ∈ (0, tκ) and for each pair of tangent vectors U0 = uk
0Xk(t0),

V0 = vk
0Xk(t0) ∈ Tc(t0)M .

But, if we introduce the two parallel vector fields U(t) = ukXk(t) and
V (t) = vkXk(t) with u = A−1(t0)u0 and v = A−1(t0)v0, this is equivalent to
saying that the function

φ = 〈ȦU,AV 〉 − 〈AU, ȦV 〉

vanishes for t = t0, which is proved by showing that φ identically vanishes on
(0, tκ). In fact, we infer from the definition of φ that

lim
t→+0

φ(t) = 0,

and, on the other hand, φ is constant because of
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φ̇ = 〈ÄU,AV 〉 − 〈AU, ȦV 〉
= −〈RcAU,AV 〉 + 〈AU,RcAV 〉 = 0.

Let now J be an arbitrary normal Jacobi field in J̊c, and let I be the associated
vector function. Then we infer from Ȧ = −SA that

(16) İ = −SI or J̇ = −SJ

holds on (0, tκ). We fix some t0 ∈ (0, tκ) and set U0 = uk
0Xk(t0) =

‖J(t0)‖−1J(t0). Moreover, we define a parallel vector field U along c with
U(t0) = U0 by setting U(t) = uk

0Xk(t). Then we claim that the function

k(t) = 〈SU,U〉(t)

satisfies

(16′) −k ≤ ṡω

sω
on (0, tκ)

provided that ω ≤ K ≤ κ is assumed. We also note that ω ≤ κ implies tκ ≤ tω.
From (16′) we infer that

− 〈SJ, J〉
‖J‖2

(t) ≤ ṡω

sω
(t)

holds for t = t0. Since t0 was arbitrary, this inequality is true for all t ∈ (0, tκ),
and, together with (16), we arrive at

‖J‖·

‖J‖ =
〈J, J̇〉

‖J‖2
= − 〈J, SJ〉

‖J‖2
≤ ṡω

sω

which is to hold on (0, tκ).
On the other hand, by repeating the proof of Lemma 2 and by taking

Theorem 1 into account, we obtain

Z = ‖J‖ ·sκ − ‖J‖ṡκ ≥ 0 on (0, tκ).

Hence we have

Theorem 2. Let J be a normal Jacobi field with J(0) = 0 along a unit speed
geodesic c : [0, ∞) → M , and suppose that ω ≤ K ≤ κ holds on the set
{c(t) : t ∈ (0, tκ)}. Then we may conclude that

(17)
ṡκ

sκ
≤ 〈J, J̇〉

‖J‖2
≤ ṡω

sω
on (0, tκ).

It remains to prove (16′). We first note that ‖U‖ = 1 and 〈U, ċ〉 = 0 hold
on [0, ∞), since these relations are true for t = t0, and U, ċ are parallel.
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Thus we get

ω ≤ 〈R(U, ċ)ċ, U〉,

and

〈SU,U〉2 ≤ ‖SU‖2 = 〈S2U,U〉.

Furthermore, (14) yields

d

dt
〈SU,U〉 = 〈RcU,U〉 + 〈S2U,U〉

= 〈R(U, ċ)ċ, U〉 + 〈S2U,U〉,

and therefore

(18) k̇ ≥ ω + k2 on (0, tκ).

Consider the function

h = sωk + ṡω

which then satisfies

(19) ḣ ≥ hk,

as we see from

ḣ = ṡωk + sωk̇ + s̈ω ≥ ṡωk + sωk
2 + (s̈ω + ωsω)

if we take (18) and s̈ω + ωsω = 0 into account. By differentiating, one checks
the identity

h(t) exp
(

−
∫ t

ε

k(s) ds
)

= h(ε) +
∫ t

ε

(ḣ − hk)(s) exp
(

−
∫ s

ε

k(τ) dτ
)
ds,

0 < ε < t < tκ, and thus by (19):

h(t) ≥ h(ε) exp
(∫ t

ε

k(s) ds
)
.

As ε tends to +0, (15) yields k(ε) = − 1
ε + 0(1), whence h(ε) → 0 and k(ε) →

−∞. We infer

h(t) ≥ 0 for t ∈ (0, tκ),

which is equivalent to (16′), and thus Theorem 2 is proved.
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From Theorem 2 we infer that

d

dt

{
‖J‖
sω

}
=

‖J‖ ·sω − ‖J‖ṡω

s2ω
=

‖J‖
sω

{
‖J‖ ·

‖J‖ − ṡω

sω

}
=

‖J‖
sω

{
〈J, J̇〉

‖J‖2
− ṡω

sω

}

≤ 0,

i.e., the function ‖J‖/sω is decreasing on (0, tω) and then the same reasoning
as in the proof of Theorem 1 yields ‖J̇(0)‖sω(t) ≥ ‖J(t)‖ for t ∈ (0, tκ).

Thus we have proved

Theorem 3. Let J be a normal Jacobi field with J(0) = 0 along a unit speed
geodesic c : [0, ∞) → M , and suppose that the sectional curvature K of M
satisfies ω ≤ K ≤ κ on the set {c(t) : t ∈ (0, tκ)}. Then the function ‖J ‖

sω
is

decreasing in (0, tκ), and we have

(20) ‖J(t)‖ ≤ ‖J̇(0)‖sω(t) for all t ∈ (0, tκ).

Remarks. 1. We first note that the completeness of M was not really
needed. It was only used to insure the existence of c(t) for all t ∈ (0, tκ).
If we instead assume that c(t) is defined for 0 ≤ t ≤ R, the estimates (9),
(17) and (20) will hold for 0 < t < min(tκ, R).

2. From ω ≤ K ≤ κ and 〈R(J, ċ)ċ, J〉 = K(t)‖J⊥ ‖2 we conclude that

ω‖J⊥ ‖2 ≤ 〈R(J, ċ)ċ, J〉 ≤ κ‖J⊥ ‖2,

and therefore

(21) ω‖J‖2 ≤ 〈R(J, ċ)ċ, J〉 ≤ κ‖J‖2,

if we also assume that ω ≤ 0 ≤ κ. The inequality (21) was all we needed to
derive the statements of the Theorems 1–3, and the assumption 〈J, ċ〉 = 0
was nowhere else used. Thus these statements remain true for all Jacobi
fields J along c with J(0) = 0.

3. Let us once again assume that ω ≤ K ≤ κ and ω ≤ 0 ≤ κ, and suppose
that J ∈

◦
Jc, but not necessarily ‖ċ‖ = 1. Then we define r = ‖ċ‖, c(τ) =

c(τ/r), J(τ) = J(τ/r), and note that J ∈ J̊c and ‖ċ‖ = 1, whence,
by (17),

√
κ ctg

√
κτ ≤ 〈J, J̇〉

‖J‖2
(τ) ≤

√
−ω ctgh

√
−ωτ,

and therefore

r
√
κ ctg

√
κrt ≤ 〈J, J̇〉

‖J‖2
(t) ≤ r

√
−ω ctgh

√
−ωrt.

If we introduce the functions
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aκ(t) = t
√
κ ctg

√
κt for 0 ≤ t < π/

√
κ,

aω(t) = t
√

−ω ctgh
√

−ωt for 0 ≤ t < ∞,

we arrive at

(22) aκ(r)‖J(1)‖2 ≤ 〈J(1), J̇(1)〉 ≤ aω(r)‖J(1)‖2

and

(23) {aκ(r) − 1} ‖J(1)‖2 ≤ 〈J̇ − J, J〉(1) ≤ {aω(r) − 1}‖J(1)‖2

provided that
√
κr < π.

By the same scaling argument, we derive from (9) and (20) the inequal-
ities

‖J̇(0)‖2r−2s2κ(rt) ≤ ‖J(t)‖2 ≤ ‖J̇(0)‖2r−2s2ω(rt) if 0 < rt < π/
√
κ.

By setting

bκ(t) =
sin

√
κt√

κt
and bω(t) =

sinh
√

−ωt√
−ωt

,

we arrive at

(24) ‖J̇(0)‖2b2κ(r) ≤ ‖J(1)‖2 ≤ ‖J̇(0)‖2b2ω(r)

provided that
√
κr < π.

Let us collect these results in the following

Theorem 4. Let J be a Jacobi field with J(0) = 0 along a geodesic c : [0, 1] →
M with r = ‖ċ(0)‖, and suppose that the sectional curvature K of M satisfies
ω ≤ K ≤ κ on the arc c. Then, if ω ≤ 0 ≤ κ and r

√
κ < π, the estimates

(22)–(24) hold.

Remark. We observe that aω, bω ≥ 1 and aκ, bκ ≤ 1, in particular aω(0) =
aκ(0) = bω(0) = bκ(0) = 1.

4.8.2 Riemann Normal Coordinates

Let ψ(t, α) be a mapping ψ : [0, R] × [−α0, α0] → M such that, for every
α ∈ [−α0, α0], α0 > 0, the curve c(t) = ψ(t, α) is a geodesic in M . Then
J(t) = ∂ψ

∂α (t, α) is a Jacobi field along c. This follows from the identities

D

∂t

∂ψ

∂α
− D

∂α

∂ψ

∂t
= 0

and
D

∂t

D

∂α
Z − D

∂α

D

∂t
Z = R

(
∂ψ

∂t
,
∂ψ

∂α

)
Z,



4.8 Surfaces of Prescribed Mean Curvature in a Riemannian Manifold 419

where Z denotes an arbitrary vector field along ψ. In fact, we have

D

∂t

D

∂t

∂ψ

∂α
=

D

∂t

D

∂α

∂ψ

∂t
=

D

∂α

D

∂t

∂ψ

∂t
+R

(
∂ψ

∂t
,
∂ψ

∂α

)
∂ψ

∂t

= 0 − R

(
∂ψ

∂α
,
∂ψ

∂t

)
∂ψ

∂t

or

J̈ +R(J, ċ)ċ = 0.

This idea to construct Jacobi fields will be used in the following.
In what follows we identify the tangent space of TpM at v ∈ TpM with

TpM itself and write Tv(TpM) ≡ TpM . The exponential map expp : TpM →
M with center p is defined by expp(v) = c(1) for v ∈ TpM , where c is the
geodesic with c(0) = p, ċ(0) = v.

Let q = expp v. Then, by Gauss’s lemma, the differential (d expp)v :
Tv(TpM) = TpM → TqM satisfies

(25) 〈ξ, η〉p = 〈ξ̃, η̃〉q,

where η ∈ Tv(TpM) =̃TpM is the radial vector parallel to v (i.e. η = v after
identification of TpM and Tv(TpM)) and ξ̃, η̃ are defined by

(25′) ξ̃ = (d expp)v(ξ), η̃ = (d expp)v(η).

A “normal chart” (ϕ,U) with center p ∈ M is given by an open set U ⊂ M
with p ∈ U , and by a mapping ϕ : U → R

m of the form ϕ = j · exp−1
p , where

j : TpM → R
m is a linear isometry, and exp−1

p is supposed to be existing
on U .

Let e1, . . . , em be the orthogonal base of TpM which under j corresponds
to the standard base (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of the Euclidean space R

m.
Since TpM is identified with Tv(TpM) for all v ∈ TpM , we may consider
e1, . . . , em as m orthogonal vector fields on TpM , and the base vector fields
X1, . . . , Xm of the normal chart (ϕ,U) are given by

Xi(q) = (d expp)ei,

where q = expp v.
Let c be the geodesic with c(0) = p and ċ(0) = v for some v ∈ TpM , and

let ξ = ξkek be an arbitrary vector in TpM . Then c(t) = expp(tv), and, for
each α, ψ(t, α) = expp{t(v+αξ)} defines a geodesic ψ(·, α) : [0, ∞) → M with
ψ(0, α) = p. By our previous remarks, J(t) = ∂ψ

∂α (t, 0) therefore is a Jacobi
field along c and, moreover,

∂ψ

∂α
(t, 0) = (d expp)tv(tξ) = tξk(d expp)tvek = tξkXk(c(t)).

Thus we have proved:
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Lemma 3. If c : [0, ∞) → M is a geodesic with c(0) = p and ċ(0) = v ∈ TpM ,
then, for every ξ = ξkek, J(t) = tξkXk(c(t)) defines a Jacobi field J along c
with J(0) = 0, J̇(0) = ξkXk(p) and, if q = c(1), with

(26) J(1) = ξkXk(q), J̇(1) =
{
ξ� + Γ �

ik(q)ξiċk(1)
}
X�(q).

For each normal chart (ψ,U) with center p, we may introduce Riemann
normal coordinates by

x = ϕ(q)

for all q ∈ U . Let X1, . . . , Xm be the base vector fields on U corresponding
to the chart (ϕ,U). Then qk�(q) = 〈Xk(q), X�(q)〉q are the components of
the fundamental tensor on U , and Γik�(q) and Γ �

ik(q) denote the Christoffel
symbols of the first and second kind. For the sake of brevity, we set

gk�(x) := gk�

(
ϕ−1(x)

)
, Γik�(x) := Γik�

(
ϕ−1(x)

)
, etc.

without using different notation.
We obviously have

ϕ(p) = 0.

Moreover, (d expp)0 is the identical map, whence Xi(p) = ei, and therefore

gk�(p) = δk� or gk�(0) = δk�.

Let c(t) = expp tv, where v = xkek and j(v) = x = (x1, . . . , xm). Then
η(t) := ϕ(c(t)) satisfies

η̈� + Γ �
ik(η)η̇iη̇k = 0.

On the other hand, the definition of ϕ implies η(t) = tx and therefore c(t) =
ϕ−1(tx) and Γ �

ik(tx)xixk = 0, in particular, Γ �
ik(0)xixk = 0 for all x ∈ R

m.
Therefore,

Γ �
ik(0) = Γik�(0) = 0 or Γ �

ik(p) = Γik�(p) = 0

since Γ �
ik = Γ �

ki.
Let ξ = ek, and η = x�e� be a radial vector that coincides with v = ċ(0).

Then

〈ξ, η〉v = 〈ek, x
�e�〉v = x�δk� = xk.

Since Xi(q) = (d expp)vei, we infer from Gauss’s lemma (25), (25′) that

xk = 〈ξ, η〉v = 〈(d expp)vξ, (d expp)vη〉 = 〈Xk(q), x�X�(q)〉q = x�gk�(q)

= x�gk�(x).
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Thus we have

xk = x�gk�(x) and also xk = x�gk�(x).

Moreover, one also infers from Gauss’s lemma that the distance d(p, q) of the
two points p, q ∈ U with p = c(0), q = c(1) = expp v is given by

d(p, q) = ‖ċ‖ = ‖v‖ = |x|,

where |x| =
√
δk�xkx� denotes the Euclidian length of the vector x ∈ R

m.
Hence we have proved:

Lemma 4. If x = ϕ(q) are Riemann normal coordinates with center p on the
set U ⊂ M , then

(27) gik(0) = δik, Γik�(0) = 0, Γ �
ik(0) = 0,

(28) xk = gk�(x)x�, xk = gk�(x)x�,

(29) d(p, q) = |x|.

Moreover, if v = xmem ∈ TpM,x = (x1, . . . , xm) ∈ R
m, and if c(t) denotes

the geodesic expp tv with c(0) = p and ċ(0) = v, then ϕ(c(t)) = tx. �

For some real-valued function f(x), we write

f�(x) =
∂f

∂x�
(x).

Then the following holds:

Lemma 5. If x = ϕ(q) are Riemann normal coordinates, then

(30) xkgik,�(x) = δi� − gi�(x), xkgik
� (x) = δi� − gi�(x),

(31) xixkgik,�(x) = xix�gik,�(x) = xkx�gik,�(x) = 0,

xixkgik
,� (x) = xix�gik

,� (x) = xkx�gik
,� (x) = 0,

(32) x� {Γi�k(x) + Γik�(x)} = δik − gik(x),

(33) x�Γ �
ik(x) = x�Γi�k(x),

(34) xixkΓik�(x) = xix�Γik�(x) = xixkΓ k
i�(x) = xix�Γ k

i�(x) = 0.
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Proof. By differentiating the formulas (28), we obtain (30), and (31) is a
consequence of (28) and (30). The identity Γik�+Γi�k = gk�,i together with (30)
yields (32). Finally, if we take Γi�k = g�jΓ

j
ik into account, (28) implies (33),

and (34) follows from (31). �

Let us now return to the formulas (26) of Lemma 3. If c(t) = expp tv and
v = xkek, then we infer from Lemma 4 that x = ϕ(q) with q = c(1), and
ċk(1) = xk if ċ(t) = ċk(t)Xk(c(t)). Hence, the Jacobi field J(t) = tξkXk(c(t))
fulfills

(35) J̇(1) =
{
ξ� + Γ �

ik(x)ξixk
}
X�(q).

Thus we obtain the relations

(36) ‖J̇(0)‖2 = δk�ξ
kξ�, ‖J(1)‖2 = gk�(x)ξkξ�,

and

〈J̇(1) − J(1), J(1)〉 = Γ �
ik(x)ξixkg�j(x)ξj(37)

= Γijk(x)ξiξjxk.

We also note that r := d(p, q) = |x| = ‖ċ‖.
For any p0 ∈ M , the interior S̊ of the set {V ∈ Tp0M : ‖V ‖ =

d(p0, expp0
V )} is an open, starshaped neighbourhood of 0 in Tp0M . If we

denote the cut locus of p0 in M by C(p0) = expp0
(∂S̊) ⊂ M then the expo-

nential map expp0
: S̊ → M is a C2-diffeomorphism onto S(p0) := expp0

(S̊)
and we can define Riemann normal coordinates x = ϕ(q) for q ∈ U = S(p0).
In addition, if K denotes the sectional curvature of M we define the numbers

κ(A) := max
{

0, sup
A

K
}
,

ω(A) := min
{

0, inf
A
K
}

for A ⊂ M,

and

κ(x) := κ([0, x]) = κ([p0, p]),
ω(x) := ω([0, x]) = ω([p0, p]),

where [p0, p] is the geodesic segment between p0 and p which in normal co-
ordinates is just the segment [0, x] on the ray from the origin 0 through x.
Recall that we also use the notation

aκ(t) = t
√
κ ctg

√
κt for 0 ≤ t < π/

√
κ,
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aω(t) = t
√

−ωctgh
√

−ωt for 0 ≤ t < ∞

and

bκ(t) =
sin

√
κt√

κt
, bω(t) =

sinh
√

−ωt√
−ωt

.

Theorem 5. Let M be a complete Riemannian manifold and x = ϕ(q) denote
Riemann normal coordinates for q ∈ S(p0). With respect to those coordinates
the following estimates are true:

(38) {aκ(x)(|x|) − 1}giκ(x)ξiξk ≤ Γik�(x)xiξkξ� ≤ {aω(x)(|x|) − 1}gikξ
iξk,

(39) b2κ(x)(|x|)ξiξi ≤ gikξ
iξk ≤ b2ω(x)(|x|)ξiξi,

(40) b2κ(x)(|x|) ≤ √
g(x) ≤ b2ω(x)(|x|)

for all ξ ∈ R
m and all x ∈ ϕ(S(p0)) with |x| · κ(x) < π.

Proof. The inequalities (38) and (39) readily follow from the estimates (23)
and (24) of Theorem 4 and from (36) and (37). Finally relation (28) implies
that λ = 1 is one of the eigenvalues λ1, λ2, λ3 of the matrix gk�(x) and by
virtue of (39) we have b2κ(x)(|x|) ≤ λk ≤ b2ω(x)(|x|) for k = 1, 2, 3. This yields
estimate (40). �

Theorem 6. Let the assumptions of Theorem 5 be satisfied, and set f(q) =
1
2d

2(p, q). Then we have

(41) aκ(q)(r)‖ξ‖2 ≤ (D2f)q(ξ, ξ) ≤ aω(q)(r)‖ξ‖2

for all q ∈ M with r = d(p, q) ≤ R and for ξ ∈ TqM , where (D2f)q(ξ, ξ)
denotes the Hessian form of f at q (cp. Section 1.5 of Vol. 1, equation (28)).

Proof. Let c(t) = expp tv, q = c(1), and ξ = ξkXk(q) ∈ TqM . Then J(t) =
tξkXk(c(t)) forms a Jacobi field J along c with J(1) = ξ and ‖J(1)‖2 = ‖ξ‖2.
Consider normal coordinates x = ϕ(q) with center at p, and set F (x) = f(q).
Then

(D2f)q(ξ, ξ) = F,ik(x)ξiξk − Γ �
ik(x)F,�(x)ξiξk.

Since F (x) = 1
2 |x|2, we get

(D2f)q(ξ, ξ) = δikξ
iξk − Γ �

ik(x)x�ξiξk = Γik�(x)x�ξiξk + gik(x)ξiξk

by virtue of (32) and (33). We then derive from (26) that

〈J̇(1), J(1)〉 = (D2f)q(ξ, ξ)

and thus (41) follows from (22). �
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Theorem 7. Let M be a complete Riemannian manifold, the sectional cur-
vature K of which is bounded from above by

K ≤ κ, κ ≥ 0,

on some ball BR(p) that does not meet the cut locus of its center p. Moreover,
let R

√
κ < π/2. Then any two points q1, q2 of BR(p) can be connected by

a geodesic arc contained in BR(p). This arc does not contain any pairs of
conjugate points, and it is shortest among all arcs in BR(p) that join q1 and q2.

This result was proved by Jost [19].

4.8.3 Surfaces of Prescribed Mean Curvature in a Riemannian Manifold

In the following we consider a complete three-dimensional Riemannian man-
ifold of class C4. Since we restrict our considerations to surfaces in a nor-
mal chart (ϕ,U) with center p0, we shall identify any point q ∈ U ⊂ M
with its normal coordinates x = ϕ(q) ∈ R

3. Correspondingly any subset
K ⊂ U is identified with ϕ(K) and any surface f : B → U is identified with
X = X(w) = ϕ ◦ f(w). In this way we obtain a natural definition of the
Sobolev classes H1

s (B,U) as subsets of H1
s (B,R3). We recall the definition of

a normal neighbourhood U = S(p0) = expp0
S̊, where S̊ is equal to the inte-

rior of {V ∈ Tp0M : ‖V ‖ = d(p0, expp0
V )}. Define the (Riemannian) cross

product of two vector fields Y = Y k(x)Xk, Z = Z�(x)X� with respect to a
chart x by Y × Z :=

√
ggjk(Y ∧ Z)k, where (Y ∧ Z)1 = Y 2Z3 − Y 3Z2 etc.

We then obtain the relation 〈Y1, Y2 × Y3〉 =
√
gY1 · (Y2 ∧ Y3), where the dot

denotes the Euclidean scalar product.

Lemma 6. For any H ∈ C1(U,R) we define the vector potentials

(42) Q(x) = μ(x)x and Q∗(x) =
1

√
g(x)

Q(x),

where x ∈ U and

μ(x) = 2
∫ 1

0

t2
√
g(tx)H(tx) dt.

(i) Q and Q∗ are of class C1(U,R3) and

(43) divQ = 2
√
gH, DivQ∗ = 2H,

where divQ denotes the (noninvariantly defined) expression
∑3

k=1
∂Qk

∂xk ,
while DivQ∗ stands for the divergence on M , i.e. we have

divQ∗ + Γ j
jkQ

∗k =
1

√
g
div(

√
gQ∗) (see Chapter 1.5 of Vol. 1).
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(ii) Suppose K ⊂ S(p0) is starshaped with respect to p0 and let

(44)

⎧
⎪⎪⎨

⎪⎪⎩

ρ+
K := sup

x∈K
(|x|
√
κ(x)) < π,

ρ−
K := sup

x∈K
(|x|
√

−ω(x)) < ∞,

and

(45)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b+(τ) :=
sin τ
τ

for 0 ≤ τ ≤ π,

b−(τ) :=
sinh τ
τ

for τ ≥ 0.

Then we have

(46) q∗
K := sup

K
‖Q∗(x)‖ ≤ 2

3
b2−(ρ−

κ )
b2+(ρ+

κ )
|H|0,K · sup

K
|x|.

Moreover, if in addition K is compact and q∗
K < 1, then for this K

e(x, η) :=
1
2
gjk(x)ηj

αη
k
α +Q(x) · (η1 ∧ η2)(47)

= ‖η1‖2 + ‖η2‖2 + 〈Q∗(x), η1 × η2〉

satisfies Assumption A of Section 4.7 with

m0 := (1 − q∗
K)b2+(ρ+

K) and m1 := (1 + q∗
K)b2(ρ−

K).

Proof. (i) The function μ(x) is well defined for x ∈ S(p0) because this set
is starshaped with respect to p0 and the differentiability of Q and Q∗ is
obvious. Equation (43) follows by using an integration by parts.

(ii) The estimate (46) is obtained from (40), the definition of Q∗ and the
monotonicity properties of the functions b− and b−1

+ . Furthermore, if
η = (η1, η2) ∈ R

3 × R
3 then

Q · (η1 ∧ η2) = 〈Q∗, η1 × η2〉 ≤ ‖Q∗ ‖ ‖η1 × η2‖ ≤ ‖Q∗ ‖ ‖η1‖ ‖η2‖

≤ 1
2

‖Q∗ ‖ {‖η1‖2 + ‖η2‖2}

and in view of (29) we have

b2+(ρ+
K)|ξ|2 ≤ ‖ξ‖2 ≤ b2−(ρ−

K)|ξ|2.

Combining these estimates we obtain (47),

1
2
(1 − q∗

K)b2+(ρ+
K)|ξ|2 ≤ e(x, η) ≤ 1

2
(1 + q∗

K)b2−(ρ−
K)|ξ|2. �
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Definition 1. A subset K of S(p0) is called a “gauge ball” in M with center
p0 if there exists an open neighbourhood U ⊂ S(p0) of p0 which is starshaped
with respect to p0, a function k ∈ C2(U,R) and a real number R > 0 such that

(i) K = KR(p0) := {x ∈ U : k(x) ≤ R2},

(ii) k(0) = 0, Dk(0) = 0,

(iii) γ := infx∈K γk(x) > 0, where for x ∈ U ,

γk(x) := inf{D2k(x; ξ, ξ) : ξ ∈ TxM, ‖ξ‖ = 1}

and D2k(x; ξ, η) = D2kq(ξ, η), q = ϕ(x), stands for the Hessian form
〈DξDk, η〉q. A function k with these properties is called a gauge function.

Remark 1. In local coordinates the coefficients of the Hessian form
D2k(x; ξ, η) are given by

(48) D2k(x;Xj , X�) =
∂2k(x)
∂xj∂x�

− Γm
j� (x)

∂k(x)
∂xm

.

Remark 2. Since we are dealing with Riemann normal coordinates, Lemma 5,
(34) is applicable; in particular it follows that xix�Γ j

i�(x) = 0 for all x ∈ S(p0),
j = 1, 2, 3. This yields by virtue of (48), (ii), (iii) and Taylor’s formula the
following estimates

(49) xj ∂k

∂xj
(x) ≥ γ|x|2 for all x ∈ K, and k(x) ≥ 1

2
γ|x|2 for all x ∈ K.

Therefore, each gauge ball KR(p0) in M is bounded and hence also relatively
compact in M , according to the Theorem of Hopf and Rinow. Also, every
gauge ball is starshaped with respect to p0 = 0. Indeed, (49) implies that the
function g(t) = k(tx) is strictly increasing in t ∈ [0, 1] for any x ∈ K, x �= 0,
which yields the assertion.

The most important example of a gauge function on M is furnished by the
square of the distance function (cp. Lemma 4)

k0(x) := |x|2 = d2(p0, p) on U = S(p0),

where x denotes normal coordinates around p0 = 0. Using relation (28) in
Lemma 4 we find

∂k0

∂xj
= 2xj = 2gj�x

�

and

∂2k0(x)
∂xj∂x�

− Γm
j� (x)

∂k0(x)
∂xm

= 2
∂

∂x�
[gjkx

k] − 2Γm
j� gmkx

k

= 2gjk,�x
k + 2gjkδ

k
� − 2gmnΓjn�gmkx

k

= 2gjk,�x
k + 2gj� − 2Γjk�x

k.
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By virtue of (30) and (32) in Lemma 5 we can compute the coefficients of the
Hessian form

D2k0(x;Xj , X�) =
∂2k0

∂xj∂x�
− Γm

j�

∂k0

∂xm
= 2δj� − 2gj�(50)

+ 2gj� + 2Γj�kx
k − 2δj� + 2gj� = 2[gj� + Γj�k]xk,

and

(51) ‖Dk0(x)‖ = 2|x|.

Lemma 7. (i) Suppose that the sectional curvature of M is bounded from
above, i.e. κ(M) < ∞. Then for K = {x ∈ S(p0) : |x| ≤ R} and R <

π

2
√

κ(M)
we have

inf
K
γk0(x) ≥ 2aκ(M)(R) > 0,

and

γk0(x)
‖Dk0(x)‖ ≥

aκ(M)

R
> 0 for x ∈ K \ {0}.

(ii) If only ρ+
K = supx∈K(|x|

√
κ(x)) < π

2 holds, then we obtain instead
infx∈K γk0(x) ≥ 2a+(ρ+

K) > 0, and

γk0(x)
‖Dk0(x)‖ ≥ a+(ρ+

K)
R

> 0 for x ∈ K \ {0};

here we have put a+(t) := t ctg(t).

Proof. (i) and (ii) follow from the definition of γk0 , relation (50), (51) and (38)
of Theorem 5 and the monotonicity of the functions aκ and a+ respectively.

�

Lemma 8 (Inclusion Principle). Let K = KR(p0) be a compact gauge ball
and consider the Lagrangian (47) and the corresponding variational integral

F(X) =
∫

B

e(X, ∇X) du dv

=
∫

B

{
1
2
gij(X)Xi

uαX
j
uα +Q(X) · (Xu ∧ Xv)

}
du dv.

Suppose that Q ∈ C1(S(p0),R3) satisfies

(52) divQ = 2
√
gH on S(p0)

and
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(53) |H(x)| ≤ γk(x)
‖Dk(x)‖ for all x ∈ K \ {p0}.

Moreover, denote by X a function of class H1
2 (B,K) ∩ C0(B,R3) satisfying

(54) δF(X,φ) ≥ 0 for every φ ∈ L∞,c(B,R3)

such that X + εφ ∈ H1
2 (B,K) for sufficiently small ε > 0. Then X(B) ⊂ Kr

provided X(∂B) ⊂ Kr for some r ≤ R.

Proof. Define φ = (φ1, φ2, φ3) by

φ�(w) = η(w)g�m(X(w))
∂k

∂xm
(X(w)),

where η ∈ C1
c (B,R) satisfies 0 ≤ η ≤ 1 and X is a solution of (54). Since

K � U,X ∈ C0(B,K) and φ ∈ C0
c (B,R3) there is a K′ � U such that

X −εφ ∈ H1
2 (B,K′) for sufficiently small |ε|. Hence k(X(w)−εφ(w)) is defined

for all w ∈ B, provided |ε| is small. Furthermore we have

k(X − εφ)(55)

= k(X) − εkxj (X)φj + ε2
∫ 1

0

(1 − t)kxjx	(X − εtφ)φjφ� dt

= k(X) − εηg�m(X)kx	(X)kxm(X)

+ ε2η2

∫ 1

0

(1 − t)kxjx	(X − εtφ)gjm(X)g�n(X)kxm(X)kxn(X) dt.

Since (gjk) is a positive definite matrix and K is compact, there is a constant
c > 0 such that everywhere on B

gjk(X(w))ξjξk ≥ c|ξ|2 for all ξ ∈ R
3.

Also since (X − εφ)(w) ∈ K′ � U for every w ∈ B there is a constant
c′ > 0 such that the integral in (55) can be estimated in absolute value by
c′kxj (X)kxj (X) for all w ∈ B.

Thus we obtain

k(X − εφ) ≤ k(X) − εηckxj (X)kxj (X) + ε2η2c′kxj (X)kxj (X)

which implies that

k(X − εφ) ≤ R for all w ∈ B and 0 < ε < ε0 :=
c

c′ .

Therefore the function −φ = (−φ1, −φ2, −φ3) is admissible in (54) and by
Theorem 5 in Section 4.7 in particular (23), we have

δF(X,φ) =
∫

B

{gj�(X)Xj
uα [ηg�m(X)kxm(X)]uα

+
1
2
∂gj�

∂xn
Xj

uαX�
uαηgmnkxm(X)

+ η divQ(X)(Xu ∧ Xv)j · gjmkxm(X)} du dv ≤ 0.
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Using the expression

D2k(X;Xuα , Xuα) =
∂2k(X)
∂xj∂x�

Xj
uαX�

uα − Γm
j�

∂k(X)
∂xm

Xj
uαX�

uα

for the Hessian form of k and

2H(X)〈Xu × Xv, Dk(X)〉 = 2H(X)
√
gDk · (Xu ∧ Xv)

= divQgj�kx	(X)(Xu ∧ Xv)j

we obtain the inequality

0 ≥
∫

B

ηuα [k(X)]uα du dv

+
∫

B

{
ηD2k(X;Xuα , Xuα) + 2H(X)〈Xu × Xv, Dk(X)〉

}
du dv

≥
∫

B

ηuα [k(X)]uα du dv

+
∫

B

η{γk(X)(‖Xu‖2 + ‖Xv ‖2)

− 2|H(X)| ‖Xu‖ ‖Xv ‖ ‖Dk(X)‖ } du dv.

By assumption (53) |H(X)| ≤ γk(X)
‖Dk(X)‖ and because of ‖Xu‖ ‖Xv ‖ ≤

1
2 (‖Xu‖2 + ‖Xv ‖2) it follows that {. . .} ≥ 0 on B, whence

∫

B

ηuα [k(X)]uα du dv ≤ 0

for all η ∈ C1
c (B) with 0 ≤ η ≤ 1. Therefore k(X(u, v)) ∈ C0(B) ∩ H1

2 (B) is
subharmonic in B and the assertion follows from the maximum principle. �

Note that by the strong maximum principle (cp. Gilbarg and Trudinger,
Theorem 8.19) we may even conclude X(B) ⊂ int Kr or X(B) ⊂ ∂Kr.

Now we can prove the main result of this section.

Theorem 8. Let K = KR(p0) be a compact gauge ball in M . Suppose that
the restriction ρ+

K < π on the sectional curvature of M is satisfied and that
Γ is a closed Jordan curve in K such that C(Γ,K) �= ∅. Finally let H be a
function of class C0,β(K), 0 < β < 1, satisfying the conditions

(56) |H|0,K <
3
2

1
supp∈K d(p0, p)

b2+(ρ+
K)

b2−(ρ−
K)

,

and

(57) |H(x)| ≤ γk(x)
‖Dk(x)‖ for all x ∈ K \ {p0}.
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Then there exists an X of class C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3) with

(58) �X� + Γ �
ijX

i
uαX

j
uα = 2H(X)

√
g(X)g�m(Xu ∧ Xv)m

in B for ! = 1, 2, 3, and such that the conformality relations

gijX
i
uX

j
u = gijX

i
vX

j
v , gijX

i
uX

j
v = 0

hold everywhere in B. Furthermore X maps ∂B homeomorphically onto Γ .

In other words, we have determined a surface X in the Riemannian man-
ifold M which has mean curvature H(X) in B (except, possibly at isolated
branch points) and which is spanned by the Jordan arc Γ .

Proof of Theorem 8. We extend H continuously to some compact gauge ball
KR+ε(p0), ε > 0, such that (56) and (57) continue to hold for K = KR+ε(p0).
Consider the variational problem

F(X) =
∫

B

{
1
2
gij(X)Xi

uαX
j
uα +Q(X) · (Xu ∧ Xv)

}
du dv → min

in C(Γ,KR+ε) where Q(x) = μ(x) · x, μ(x) = 2
∫ 1

0
t2
√
g(tx)H(tx) dt as in

Lemma 6. Relation (46) and assumption (56) imply that F(·) is coercive;
also KR+ε is quasiregular. Hence we may apply Theorems 3 and 4 in Sec-
tion 4.7 and obtain the existence of a conformally parametrized solution
X ∈ C(Γ,KR+ε) ∩ C0(B,KR+ε) ∩ C0,α(B,R3). By a reasoning analogous to
the one in the proof of Theorem 8 in Section 4.7 one can see that the first
variation formula

δF(X,φ)

=
∫

B

{
gj�X

j
uαX�

uα +
1
2
∂gj�

∂xn
Xj

uαX�
uαφn + 2H

√
g(Xu ∧ Xv)jφj

}
du dv

holds for all φ ∈
◦

H1
2(B,R

3) ∩ L∞(B,R3), cp. Theorem 5 in Section 4.7. More-
over, it follows from the minimum property ofX that the variational inequality

δF(X,φ) ≥ 0

holds for all φ ⊂
◦

H1
2 (B,R3) ∩ L∞(B,R3) with X + εφ ∈ H1

2 (B,KR+ε). The
inclusion principle Lemma 8 now implies that the coincidence set Ω = {w ∈
B : X(w) ∈ ∂KR+ε} must be empty. Finally Theorem 7 in Section 4.7 shows
that X ∈ C2,β(B,KR) ∩C0(B,R3) is a conformal solution of the system (58).

The topological character of the boundary mapping follows in a standard
way. Theorem 8 is completely proved. �

We finally consider the special case k = k0.
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Theorem 9. Let KR = {x ∈ M : |x| ≤ R} ∩ S(p0) be a compact gauge ball,
where k0(x) = |x| = d(p0, p). Suppose that

R <
π

2
√
κ(M)

and ω(M) > −∞.

Let Γ ⊂ K be a closed Jordan curve such that C(Γ,K) is nonempty and
suppose that H is a function of class C0,β(K,R), 0 < β < 1, for which

|H|0,K < min

{
aκ(M)(R)

R
,

3b2+(R
√
κ(M))

2b2−(R
√

−ω(M))

}

.

Then the assertion of Theorem 8 holds. �

4.9 Scholia

4.9.1 Enclosure Theorems and Nonexistence

The observation that a connected minimal surface lies in the convex hull of
its boundary (cf. Theorem 1 of Section 4.1) has been made a long time ago
and was, for instance, known to T. Radó (see e.g. [21]). Apparently S. Hilde-
brandt [11] was the first to observe that also certain nonconvex sets can be
used for enclosing minimal surfaces and H-surfaces, and to apply this fact
for proving nonexistence of connected minimal surfaces whose boundaries are
“too far apart”, cf. Theorem 2.3 of Section 4.1. Earlier, J.C.C. Nitsche [13,15]
had proved various results about the “extension” of minimal surfaces with two
boundary curves, thereby obtaining nonexistence results; cf. also Nitsche [28],
pp. 474–498. The results by Hildebrandt [11] were improved and generalized in
several directions; a survey of this work is presented in Sections 4.1–4.4, based
on papers by Osserman and Schiffer [1], Böhme, Hildebrandt, and Tausch [1],
Gulliver and Spruck [1,2], Hildebrandt [8,11], Hildebrandt and Kaul [1], U.
Dierkes [1–4,6,11], Dierkes and Huisken [1,2], and Dierkes and Schwab [1]. We
particularly mention the geometric maximum principle in Dierkes [6] which
is based on a pull–back version of the standard monotonicity formula from
geometric measure theory due to M. Grüter [2] (see also Section 2.6 of this
volume as well as Böhme, Hildebrandt, and Tausch [1] for a related technique).
Furthermore we refer to the maximum principles proved in Gulliver, Osser-
man, and Royden [1], R. Gulliver [7], and particularly we mention the work
of K. Steffen [6] and of Duzaar and Steffen [5–7] where geometric maximum
principles of an optimal form are derived. Theorems 3–6 in Section 4.3 are
due to Dierkes [11] and Dierkes and Schwab [1]. It is interesting to note that
– despite its simplicity – the argument used here is of considerable generality
and is applicable to a number of important situations. For example, K. Ecker
[2,3] could give a very simple proof of the “neck-pinching” phenomenon for
mean curvature flow by using a parabolic version of the polynomial
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pj =
n+k−j∑

i=1

|xi|2 − (n − j)
j

n+k∑

i=n+k−j+1

|xi|2 (for k = 1).

Furthermore, U. Clarenz [1,2] applied the same argument to F-minimal im-
mersions which arise as extremals of parametric integrals of the type

∫

M

F(X,N) dA

for suitable homogenous integrands F depending on the position X and the
normal of an immersion. Again, general necessary conditions for F-minimal
surfaces are obtained, and the method can be generalized to correspond-
ing parabolic flow problems as well. For details in this direction see Win-
klmann [1].

Apparently the first barrier-principle for minimal immersions with arbi-
trary codimension is due to Jorge and Tomi [1]; however, see also the geomet-
ric inclusion principle for energy minimizers obtained earlier by R. Gulliver
[1]. The barrier principle for submanifolds with arbitrary codimension and
bounded mean curvature, formulated in Theorem 1 of Section 4.4, is due to
Dierkes and Schwab [1].

Geometric inclusion principles valid for conformal H1
2 -solutions of the vari-

ational inequality (9), Section 4.4, were found by Steffen [6], cp. also Duzaar
and Steffen [5–7]. The versions presented in Theorem 2 and 3 require a priori
C1 ∩ H2

2,loc-regularity of the solution, which is, however, always satisfied in
the application we have in mind later in Section 4.7, due to certain regular-
ity results for obstacle problems, cp. Section 4.8. Our proof of Theorem 2 in
Chapter 4.4 is self-contained and independent of the argument in Duzaar and
Steffen [5–7]; it cannot be extended to H1

2 -subsolutions. The proof of Theo-
rem 3 in Chapter 4.4 is reminiscent to Proposition 2.4 in Duzaar and Steffen
[7] and uses the same type of test function argument. We also mention the ge-
ometric inclusion principle of Gulliver and Spruck [2] which uses strict energy
minimality of the solution considered. In fact, pushing in a surface under an
assumption on the boundary curvature similar to those in Theorems 2 and 3
of Section 4.4 saves energy, and hence energy minimizers cannot touch the
boundary of the inclusion domain.

The following terminology due to P. Levy has become customary (see
Nitsche [28], pp. 364, 671–672, [37], pp. 354, 373): A closed set K in R

3 is
said to be H-convex if for every point P ∈ ∂K there is a locally supporting
minimal surface M, i.e.: For any P ∈ M there is an ε > 0 such that K ∩Bε(P )
lies on one side of M ∩ Bε(P ).

If ∂K is a regular C2-surface then H-convexity of K means that the
mean curvature Λ of ∂K with respect to the inward normal is nonnega-
tive.
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4.9.2 The Isoperimetric Problem. Historical Remarks and References
to the Literature

Among all closed curves of a given length, the circle encloses a domain of
maximal area. This is the classical isoperimetric property of the circle which
was already known in antiquity. The first transmitted proof of this property
is due to Zenodorus who lived between 200 B.C. and 100 A.D. Concerning
the history of the isoperimetric problem we refer to Gericke [1]. Of the later
proofs we mention that of Galilei [1], pp. 57–60 who prompts Sagredo to say
at the end of the discussion:

“Mà dove siamo trascorsi à ingolfarci nella Geometria . . .”3

The problem became again popular through the work of Steiner who con-
tributed many beautiful ideas to this and to related questions. Yet all of his
proofs were imperfect as they only showed that no other curve than the cir-
cle can enclose maximal area. It remained open whether there is a curve of
given perimeter whose interior maximizes area. The first rigorous proof of the
isoperimetric property of the circle was given by Weierstrass in his lectures,
and his student H.A. Schwarz established the isoperimetric property of the
sphere, a much more difficult question. A beautiful discussion of the isoperi-
metric problem can be found in Blaschke’s classic [3]: Kreis und Kugel (with
a historical survey in §14).

Fig. 1. Rügen, an island in the Baltic Sea, furnishes an example of a planar domain whose

area A is far less than L2/4π, L being the length of its circumference. It shows how bold it

is to draw conclusions about the area of a domain from the time it takes to sail around it

3 It seems that Galileo was enthusiastic by rights as his reasoning (according to an oral

communication by E. Giusti) can be turned into a proof that is correct by our standards.
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Concerning references to the modern literature we refer to Nitsche [28],
pp. 290–292, and particularly to Osserman’s survey paper [19] that provides
a thorough discussion of all pertaining results as well as a report on related
questions.

The isoperimetric inequality for minimal surfaces of the type of the disk
was first proved by Carleman [3] in 1921.

Beckenbach and Radó [1] proved in 1933: Let S be a surface in R
3 with

Gauss curvature K. Then the inequality 4πA ≤ L2 holds for all simply con-
nected domains Ω in S (A = area S, L = length ∂S) if and only if K is
nonpositive.

The simple connectivity of Ω is crucial as one immediately realizes by
looking a long cylinders. Moreover, in the Beckenbach–Radó theorem it is es-
sential that S is a regular surface, whereas in Carleman’s theorem the minimal
surface may have branch points. Note that in Theorems 1 and 2 of Section 4.5
the minimal surface is allowed to have arbitrarily many branch points.

It is still an open question whether the sharp isoperimetric inequality

(1) A(X) ≤ 1
4π

L2(X)

holds for any compact minimal surface X : M → R
3 with boundary, or if

additional assumptions on X are truly necessary for (1) to be true. It is,
however, known that certain extra-assumptions suffice to ensure the validity
of (1). For instance, Osserman and Schiffer [1] proved (1) for minimal surfaces
X : M → R

3 defined on an annulus M , and Feinberg [1] showed that (1) also
holds for annulus-type surfaces X : M → R

n, n ≥ 2. The Osserman–Schiffer
result implies that the sharp isoperimetric inequality also holds for minimal
surfaces of the topological type of the Möbius strip, see Osserman [18]. The
beautiful result of Theorem 3 of Section 4.5 was found by Li, Schoen, and
Yau [1]. Amazingly it is strong enough to (essentially) imply the Osserman–
Schiffer result. Other interesting conditions guaranteeing (1) were discovered
by Alexander-Hoffmann-Osserman [1] and by Osserman [17].

A variant of the linear isoperimetric inequality (21) in Section 4.5 using
the oscillation of a minimal surface X was pointed out by Nitsche [28]. Küster
[3] showed that the radius of the smallest ball containing X(B) leads to the
optimal version of the inequality for which equality holds precisely for plane
disks.

Concerning generalizations of the isoperimetric inequality to H-surfaces we
refer e.g. to papers by Heinz and Hildebrandt [2], Heinz [11], and Kaul [2,3].
A survey of the entire field of geometric inequalities can be found in the treatise
of Burago and Zalgaller [1]. B. White [3] showed that, for each integer n > 1,
there is a smooth Jordan curve Γ in R

4 such that (1/n)α(nΓ ) < (1/k)(α(kΓ )
for 1 ≤ k < n. Here α(kΓ ) denotes the least area (counting multiplicities) of
any oriented surface with boundary kΓ (= k-fold multiple of Γ ). In a different
way, examples of this kind were somewhat earlier constructed by F. Morgan.
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4.9.3 Experimental Proof of the Isoperimetric Inequality

There are two simple soap film experiments by means of which one can demon-
strate the isoperimetric property of the circle. For instance, take a wire that
has the shape of a plane curve, attach a handle to it, and dip it into a soap
solution. On removing it from the liquid, a soap film spanning the wire will
be formed. Then place a thin loop of thread onto the film and break the part
of the soap film inside of the loop with a blunt tool. As the soap film wants
to reduce its area, it will pull the thread tight into the shape of a circle (see
Fig. 2). The soap film has minimal energy and therefore minimal area; hence
the interior of the strained loop is maximizing area, and since the thread
apparently has the form of a circle, we have an “experimental proof” of its
isoperimetric property. Further experiments and results with soap films and
threads will be described in Chapter 5.

Another experimental proof will be obtained by blowing a soap bubble
between two parallel wetted glass plates. Let us begin with a bubble in the
form of a hemisphere sitting on one of the plates. By blowing more air into the
bubble, it will enlarge until it touches the other plate, whereupon it changes
into a circular cylinder that meets both plates perpendicularly in circles (see
Fig. 3). The cylinder has minimal area among all surfaces enclosing a fixed
volume which touch both plates (a discussion of related mathematical ques-
tions can be found in papers by Athanassenas [1,2] and Vogel [1]), whence one
concludes that the circle has minimal length among all closed curves bound-
ing the same amount of area. But this “dual property” is equivalent to the
isoperimetric property of the circle. This second experiment was apparently
first described by Courant (see Courant and Robbins [1]).

Fig. 2. Experimental proof of the isoperimetric inequality

4.9.4 Estimates for the Length of the Free Trace

The first estimate of this kind was derived by Hildebrandt and Nitsche [4];
an improved version of their result with the optimal constant 2 is due to
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Fig. 3. Another experimental demonstration of this isoperimetric property of the circle

Fig. 4. (a), (b) Experimental proof of the isoperimetric property of the circle. (c) If the

thread is pulled down, one obtains a curve of constant curvature (see Chapter 5). (a), (c)

courtesy of Institut für Leichte Flächentragwerke, Stuttgart – Archive
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Küster [2]. Finally Dziuk [8] removed the assumption that the minimal surface
be free of branch points of odd order on the free boundary. We have presented
this result as Theorem 2.

Using the idea of Hildebrandt and Nitsche, Ye [2] has stated estimates
of the length of the free trace and of the area of a minimal surface with a
partially free boundary in terms of the length of the fixed boundary, in case
that the supporting surface is a strict graph (= λ-graph). Ye also provided the
example described in Remark 4 which shows that the estimates of Section 4.6,
Proposition 1 and Theorem 1, are in a sense optimal. Küster [2] contributed
Remark 7, which shows that neither a bound on the Gauss curvature of the
support surface S nor a bound on its mean curvature will imply an estimate
such as stated in Theorem 2 of Section 4.6; instead, one needs bounds on both
principal curvatures of S. Hence the R-sphere condition is really adequate in
Theorem 2 and by no means artificial.

The partition problem was treated in the paper [2] of Grüter, Hildebrandt,
and Nitsche. These authors derived boundary regularity for arbitrary station-
ary solutions as well as bounds on the length of the free trace such as stated
in formulas (58)–(63) of Section 4.6.

We finally mention that an approach to estimates on the length of the free
trace for area-minimizing solutions of free boundary problems can already be
found in the fundamental work of H. Lewy [4].

Osserman [18] pointed out that there are close connections between the
isoperimetric inequality and an inequality suggested by Gehring: Given in R

3

any closed Jordan curve Γ of length L(Γ ) which is linked with a closed set Σ
such that dist (Γ,Σ) ≥ r, then L(Γ ) ≥ 2πr. Osserman was able to establish
a proof of Gehring’s inequality by means of the isoperimetric inequality. Gen-
eralizations to higher dimensions (n > 3) follow from work of White [1] and
Almgren [7]. Other proofs and generalizations were given by Bombieri and
Simon [1], Gage [1], and Gromov [1].

4.9.5 The Plateau Problem for H-Surfaces

In Sections 4.7 and 4.8 we have discussed the Plateau problem for H-surfaces
in Euclidean space and in Riemannian manifolds. For H = const this problem
was first treated by E. Heinz [2], H. Werner [1,2], and S. Hildebrandt [4,7], and
for variable H by Hildebrandt [5,6]. The Riemannian case was first studied by
Hildebrandt and Kaul [1] and R. Gulliver [3]. Further pioneering work in this
field is due to H. Wente [1–4,6–8], K. Steffen [1–6], Brezis and Coron [1,3],
and M. Struwe [5,7]. The optimal results are due to K. Steffen [6] and Duzaar
and Steffen [6].

We particularly mention the solution of Rellich’s problem by the work of
Brezis and Coron [1,3], M. Struwe [5,7], and K. Steffen [6].

In Section 4.7 (Theorems 3–6) we have outlined several regularity results
for variational problems with obstacles due to S. Hildebrandt [12,13]; for simi-
lar results see Tomi [4]. We have added some important remarks to make these
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results accessible to applications for the existence procedure for H-surfaces,
cp. Theorems 8 and 9. The existence result for H-surfaces in a closed ball is
due to Hildebrandt [5,6]. Our proof given here is a slight modification of his
argument. Theorem 9 was found independently and almost simultaneously by
Gulliver and Spruck [1] and Hildebrandt [10].

A slight improvement of Gulliver and Spruck’s [2] existence theorem for H-
surfaces contained in arbitrary closed sets K with suitably curved boundaries
is presented in Theorem 10. We have replaced their pushing in argument for
minimizers by the geometric maximum principles Enclosure Theorem 2 and 3
of Section 4.4.

H. Wente [1–4] and K. Steffen [1–6] have initiated a completely different
approach to prove existence theorems for H-surfaces by invoking the isoperi-
metric inequality in a suitable way. In his pioneering work, Wente [1] consid-
ered the energy functional for constant H,

EH(x) = D(x) + 2HV,

where

V (x) =
1
3

∫

B

X · (Xu ∧ Xv) du dv

is the volume enclosed by the surface X and the cone over the boundary trace
of X. Using the isoperimetric inequality in R

3 he was able to prove lower
semicontinuity of EH(·) in a class of surfaces with suitably small Dirichlet
integral. In a mayor achievement, Steffen [1–6] generalized and improved these
results to variable H.

The following result holds:

Theorem 1. (Wente, Steffen). Suppose that

sup
R3

|H| ≤ c

√
π

AΓ
,

where AΓ is the infimum of area of all surfaces spanned by Γ and c =
√

2/3.
Then there is an H-surface X bounded by Γ .

Clearly this theorem gives better existence results than the Theorems 6–9
in Section 4.7 for curves Γ which are of the shape of a curled and knotted
rectangle of side lengths ε and 1

ε spread over a large region of R
3. Probably

the optimal constant c in Theorem 1 is c = 1. According to Heinz [12] (see
Section 4.7, Theorem 1), c cannot be larger than one, and a result by Struwe
for constant H indicates that c = 1 is the best possible value. Using con-
cepts from geometric measure theory, Steffen [3,4] introduced his notion of
an H-volume, replacing the volume term VH above, thereby obtaining several
striking existence theorems under very natural conditions on the prescribed
curvature H. A typical result is the following
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Theorem 2. (Steffen [4]). Suppose H : R
3 → R satisfies

∫

R3
|H|3 dx < 9π

2
.

Then there is an H-surface X bounded by Γ which is as regular as H (and
Γ ) permit. In particular, if H is continuous then X is of class C1,α(B,R3)
for every 0 < α < 1, and if H is locally Hölder continuous on R

3 then X is
of class C2,α and solves the H-surface system in the classical sense.

It may surprise that no condition on the boundary curve Γ is needed
here. We remark that all results mentioned above possess suitable analogs for
H-surfaces in three-dimensional manifolds M , see Hildebrandt and Kaul [1],
Gulliver [3], Steffen [6], and Duzaar and Steffen [6,7]. Corresponding results
hold also for H-surfaces which are restricted to lie in given sets K of R

3,
see Steffen [4] and Dierkes [2]. We mention in particular the survey articles
by Steffen [6] and Duzaar and Steffen [6,7] for a thorough account of exis-
tence results for H-surfaces in three-manifolds which are not restricted to a
coordinate patch.

Surfaces with prescribed mean curvature vector in manifolds of arbitrary
dimensions were found by R. Gulliver [1].

The differential geometric background of Section 4.8 is taken from papers
by Hildebrandt and Kaul [1], H. Karcher [6], and S. Hildebrandt [17].
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