
Chapter 3

Singular Boundary Points of Minimal Surfaces

The first section of this chapter will be devoted to the study of minimal
surfaces in the neighbourhood of boundary branch points. The fundamental
tool for dealing with this problem is the method of Hartman–Wintner which
yields asymptotic expansions for complex-valued solutions f(w) of a differen-
tial inequality

(1) |fw(w)| ≤ c|w|−λ|f(w)| on BR(0)

at the center w = 0 of a disk BR(0) = {w ∈ C : |w| < R}.
An appropriate modification of the Hartman–Wintner technique will lead

to expansions for vector-valued solutions X(w) of a differential inequality

(2) |ΔX(w)| ≤ c|w|−λ{ |X(w)| + | ∇X(w)| } on BR(0)

at w = 0. One of the main features of the Hartman–Wintner reasoning is that,
instead of (1) and (2), one treats integral inequalities which can be considered
as weak forms of the differential inequalities (1) and (2). This will enable us
to deal with certain singularities at the boundary. In fact, by applying a re-
flection argument, it will in certain situations be possible to treat boundary
singularities as interior singularities of solutions to suitably extended equa-
tions. However, to make this artifice valid, it will be indispensable to work
with integral versions of (1) and (2) because they require less regularity of
their solutions. We refer the reader to Section 2.10 (in particular, Theorems 1
and 2) where we have discussed the behaviour of minimal surfaces at boundary
branch points in detail. We emphasize again that the Hartman–Wintner de-
vice is the essential tool in proving the asymptotic relation (7) in Section 2.10.

In Section 3.1 we shall describe an extended version of the Hartman–
Wintner technique as well as some important generalizations due to Dziuk.

In Section 3.2 we shall study the asymptotic behaviour of the gradient of a
minimal surface near a corner on the boundary. We shall discuss corners on a
Jordan curve as well as corners between curves and supporting surfaces since
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214 3 Singular Boundary Points of Minimal Surfaces

they occur in partially free boundary problems. The results of Section 3.2 pro-
vide the initial regularity indispensable for the methods of Sections 3.3 and 3.4
to work. In these sections a precise discussion of the geometric behaviour of
a minimal surface at corners will be given. Section 3.3 deals with the Plateau
problem for piecewise smooth contours, whereas in Section 3.4 free boundary
problems are investigated.

3.1 The Method of Hartman and Wintner, and Asymptotic
Expansions at Boundary Branch Points

This section deals with the asymptotic behaviour of solutions to certain differ-
ential and integral inequalities at interior singularities. In certain situations,
boundary singularities can be made into inner singularities by extending a
solution, for example, by reflection.

First we shall consider complex-valued or even vector-valued solutions
f(w) of the differential inequality

(1) |fw(w)| ≤ c|w| −λ|f(w)|

in a disk BR(0), where λ and c are real constants with 0 ≤ λ < 1 and c > 0,
and f is of class C1(BR(0), CN ), N ≥ 1. As usual we write

gw =
∂g

∂w
=

1
2
(gu − igv), gw =

∂g

∂w
=

1
2
(gu + igv).

Secondly, we consider vector-valued solutions X(w) = (X1(w), X2(w), . . . ,
XN(w)) of

|ΔX(w)| ≤ c|w| −λ{ |X(w)| + | ∇X(w)| }(2)

in BR(0), c > 0, 0 ≤ λ < 1, which are of class C1 of BR(0). If the right-hand
side of (2) would not contain X but only ∇X, (2) could be considered as a
special case of (1) by setting f(w) := Xw(w).

Both (1) and (2) can be transformed into integral inequalities which require
less regularity of their solutions.

For instance, let f(w) be a solution of (1) in a domain Ω ⊂ C which is
of class C1, and let D � Ω be an arbitrary subdomain of Ω with piecewise
smooth boundary ∂D. Choose an arbitrary function φ ∈ C1(Ω, C) and apply
Green’s formula ∫

∂D

g(w) dw = 2i

∫ ∫
D

∂

∂w
g(w) du dv

to g(w) = φ(w) · f(w).
Differing from our usual notation, we denote double integrals by two inte-

gral signs.
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The integral
∫

∂D
g(w) dw stands for the complex line integral of the func-

tion g over the boundary ∂D which is assumed to be positively oriented with
respect to D. Then we obtain

∫
∂D

φ(w) · f(w) dw = 2i

∫∫
D

[φw(w) · f(w) + φ(w) · fw(w)] du dv,

and (1) yields

(3)
∣∣∣∣
∫

∂D

φ(w) · f(w) dw

∣∣∣∣ ≤ 2
∫∫

D

[|φw(w)| + c|w| −λ|φ(w)|]|f(w)| du dv.

This is the integral inequality associated with (1).
Similarly, we have

∫
∂D

φ · Xw dw = 2i

∫∫
D

[φw · Xw + φ · Xww ] du dv,

and we derive from (2) the inequality
∣∣∣∣
∫

∂D

φ(w) · Xw(w) dw

∣∣∣∣ ≤ 2
∫∫

D

{ |φw(w)| |Xw(w)|(4)

+ c|w| −λ|φ(w)|[|X(w)| + |Xw(w)|]} du dv.

Here c is one quarter of the constant c in (2) because of ΔX = 4Xww .
In the following we shall work with inequalities (3) and (4) rather than

with (1) or (2) respectively. Note that (3) makes sense even for continuous
f(w), and (4) can even be considered for functions X of class C1. Hence we
give the following

Definition 1. A mapping f(w) = (f1(w), . . . , fN (w)), w ∈ BR(0), is said to
satisfy Assumption (A1) on BR(0) if it is of class C0(BR(0) \ {0}, CN ) and
fulfils (3) for every φ ∈ C1(BR(0), C) and for every D � BR(0) with piecewise
smooth boundary ∂D.

Similarly, X(w) = (X1(w), . . . , XN (w)), w ∈ BR(0), is said to fulfil As-
sumption (A2) on BR(0) if it is of class C1(BR(0), RN ) and satisfies (4)
for every φ ∈ C1(BR(0), C) and for each D � BR(0) with piecewise smooth
boundary.

Then we are going to prove the following two theorems:

Theorem 1. Let f(w) satisfy (A1) on BR(0), and suppose that f(w) �≡ 0 in
BR(0), and that there exists a number λ′ ∈ [0, 1) such that

f(w) = O(|w| −λ′
) as w → 0.

Then there is a nonnegative integer ν such that limw→0 w−νf(w) exists and
is different from zero.
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Theorem 2. Let X(w) satisfy (A2) on BR(0) and suppose that there is a
nonnegative integer ν such that

X(w) = o(|w|ν) as w → 0.(5)

Then the limit limw→0 Xw(w)w−ν exists. In addition, if X(w) �≡ 0, then there
is a first nonnegative integer ν such that (5) does not hold and, moreover, that
limw→0 Xw(w) · w−μ exists for μ = ν − 1 and is different from zero.

We shall prove both theorems simultaneously. The proof of the second
theorem differs from the first one in that we have as well to estimate the addi-
tional term involving |X(w)|. We will return to this in detail after completing
the proof of Theorem 1. Without loss of generality we may assume that f is
a scalar function.

Before entering into the proofs, we first mention two interesting corollaries.

Corollary 1. Let f(w) satisfy the assumptions of Theorem 1. Then there ex-
ists a nonnegative integer ν and a complex number a �≡ 0 such that

f(w) = awν + o(|w|ν) as w → 0.

Corollary 2. Let X(w) satisfy (A2) on BR(0) and suppose that X(0) = 0 but
X(w) �≡ 0 on BR(0). Then there exists a nonnegative integer μ and a nonzero
complex vector A such that

Xw(w) = Awμ + o(|w|μ) as w → 0,(6)

and

X(w) = Re{Bwμ+1} + o(|w|μ+1) as w → 0,(7)

where B = 2(μ + 1)−1A.

Proof of Corollary 2. Equation (6) is nothing but a different formulation of
the second statement in Theorem 2. Relation (7) follows by a suitable inte-
gration. In fact,

X(w) =
∫ 1

0

[uX u(tw) + vX v(tw)] dt =
∫ 1

0

Re[2wX w(tw)] dt

=
∫ 1

0

Re[2(Atμwμ+1 + tμo(|w|μ+1)] dt

= Re
[

2
μ + 1

Awμ+1

]
+ o(|w|μ+1). �

Now we begin with the proof of Theorem 1.

Lemma 1. Let f satisfy (A1) and suppose that there exists some nonnegative
integer μ such that

f(w) = o(|w|μ−1) as w → 0.

Then f(w) = O(|w|μ|) as w → 0.
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Proof. Let r < R, ξ ∈ Br(0), ξ �= 0, ε < min( |ξ|
2 , r − |ξ|), and put

Dr,ε := Br(0) \ [Bε(0) ∪ Bε(ξ)].

Fig. 1.

Now we test inequality (3) with the function φ(w) = 1
wμ

1
w−ξ and the domain

Dr,ε. This yields the estimate
∣∣∣∣∣
∫

∂Dr,ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ ≤ 2c

∫∫
Dr,ε

|w| −μ−λ|w − ξ| −1|f(w)| du dv.(8)

The result will now follow by letting ε tend to zero. To accomplish this it will
be necessary to consider the boundary integrals on the left-hand side of (6)
separately. Firstly, we have

∫
|w−ξ|=ε

w−μ(w − ξ)−1f(w) dw = i

∫ 2π

0

(ξ + εeiϕ)−μf(ξ + εeiϕ) dϕ

whence

lim
ε→0

∫
|w−ξ|=ε

w−μ(w − ξ)−1f(w) dw = i

∫ 2π

0

ξ−μf(ξ) dϕ(9)

= 2πif (ξ)ξ−μ.

Furthermore we obtain∣∣∣∣∣
∫

|w|=ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ ≤
∫

|w|=ε

∣∣∣∣ f(w)
wμ−1

∣∣∣∣ |w(w − ξ)| −1|dw|

≤ 2
|ξ|

∫ 2π

0

|f(εeiϕ)|
εμ−1

dϕ,
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where we have used that |w − ξ| > |ξ|
2 for w ∈ ∂Bε(0). Hence

(10) lim
ε→0

∣∣∣∣∣
∫

|w|=ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ = 0,

taking f(w) = o(|w|μ−1) into account.
Now we conclude from (8) the inequality

∣∣∣∣∣2πif (ξ)ξ−μ −
∫

|w|=r

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣(11)

≤ 2c

∫∫
|w|≤r

|w| −μ−λ|w − ξ| −1|f(w)| du dv.

Define J1 and J2 by the formulas

J1(ξ) :=
∫

|w|=r

|w| −μ|w − ξ| −1|f(w)| |dw|

and
J2(ξ) :=

∫∫
|w|≤r

|w| −μ−λ|w − ξ| −1|f(w)| du dv;

then (11) implies the inequality

(12) 2π|f(ξ)ξ−μ| ≤ J1(ξ) + 2cJ2(ξ).

It follows from (12) that the lemma is proved if we find uniform bounds
for J1(ξ) and J2(ξ) and all ξ ∈ Br0(0) for some 0 < r0 < r. The uniform
boundedness of J1(ξ) is obvious since the singularities of the integrand, 0
and ξ, have positive distance from the circle |w| = r. Now we show that
J1(ξ) provides an upper bound for J2(ξ). To this end we multiply (12) by
|ξ| −λ|ξ − w0| −1 where w0 ∈ Br(0) and integrate over the disk Br(0); it follows
that

2πJ2(w0)(13)

= 2π

∫∫
|ξ|<r

|ξ| −μ−λ|ξ − w0| −1|f(ξ)| dξ1 dξ2 ≤ I1(w0) + I2(w0),

where ξ = ξ1 + iξ2 and

I1(w0) :=
∫∫

|ξ|<r

|ξ| −λ|ξ − w0| −1J1(ξ) dξ1 dξ2,

I2(w0) := 2c

∫∫
|ξ|<r

|ξ| −λ|ξ − w0| −1J2(ξ) dξ1 dξ2.

Using the identity
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(w − ξ)−1(ξ − w0)−1 = (w − w0)−1[(w − ξ)−1 + (ξ − w0)−1]

and interchanging the order of integration we obtain

I1(w0) ≤
∫∫

|ξ|<r

{∫
|w|=r

[|w − ξ| −1 + |ξ − w0| −1]|ξ| −λ|w − w0| −1

· |w| −μ|f(w)| |dw |
}

dξ1 dξ2

≤ Mr1−λ

∫
|w|=r

|w| −μ|w − w0| −1|f(w)| |dw |

= Mr1−λJ1(w0),

where we have used the inequality

(∗)
∫∫

|ξ|<r

{ |w − ξ| −1 + |ξ − w0| −1} |ξ| −λ dξ1 dξ2 ≤ Mr1−λ

which will be proved later. Similarly we obtain the estimate

I2(w0) ≤ 2c

∫∫
|ξ|<r

{∫∫
|w|<r

[|w − ξ| −1 + |ξ − w0| −1]|ξ| −λ

· |w − w0| −1|w| −μ−λ|f(w)|du dv

}
dξ1 dξ2

≤ 2Mr1−λcJ 2(w0)

with the same constant M .
Finally we infer from (13) the inequality

2πJ2(w0) ≤ Mr1−λ[J1(w0) + 2cJ 2(w0)]

which implies

2(M −1πrλ−1 − c)J2(w0) ≤ J1(w0).(14)

If we now choose r0 < ( π
cM )1/(1−λ), then the inequality

J2(w0) ≤ 1
2 (M −1πrλ−1 − c)−1J1(w0)

holds for all w0 ∈ Br0(0), and Lemma 1 is proved. �

Now we have to add a proof of inequality (∗). In fact we shall prove a
slightly more general result known as

E. Schmidt’s inequality (see Vekua [1], p. 39). Suppose that w1, w2 ∈ Br(0),
and that α, β < 2 are positive real constants. Then
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∫∫
Br(0)

|ξ − w1| −α|ξ − w2| −β dξ1 dξ2(15)

≤

⎧⎪⎨
⎪⎩

M1|w1 − w2|2−α−β if a + β > 2,

M2 + 8π|log|w1 − w2| | if a + β = 2,

M3r
2−α−β if α + β < 2,

where ξ = ξ1 + iξ2, and M1, M2, M3 are constants depending only on α and β.

Fig. 2.

Proof of (15). We replace Br(0) by the larger domain B2r(w1) ⊃ Br(0). If we
put ρ0 = 2|w1 − w2|, we have for all ξ ∈ B2r(w1) \ Bρ0(w1) that 2|ξ − w2| ≥
|ξ − w1| which yields

∫∫
B2r(w1)\Bρ0(w1)

|ξ − w1| −α|ξ − w2| −β dξ1 dξ2 ≤ 21+βπ

∫ 2r

ρ0

ρ1−α−β dρ(16)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

21+βπ |w1−w2|2−α−β

α+β−2 if α + β > 2,

21+βπlog r
|w1−w2| if α + β = 2,

23−α

2−α−β r2−α−β if α + β < 2.

Applying the linear transformation ξ∗ = ξ−w1
|w2−w1| which maps Bρ0(w1) onto

B2(0), we conclude from the change-of-variables formula that
∫∫

Bρ0 (0)

|ξ − w1| −α|ξ − w2| −β dξ1 dξ2(17)

= |w1 − w2|2−α−β

∫∫
B2(0)

|ξ∗ | −α

∣∣∣∣ξ∗ − w2 − w1

|w2 − w1|

∣∣∣∣
−β

dξ∗
1 dξ∗

2 .
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By virtue of α, β < 2, the integral on the right-hand side can be estimated
by a finite constant M(α, β). Inequality (15) follows by combining the above
estimates. �

Lemma 2. Suppose that f satisfies assumption (A1) and that f(w) =
o(|w|μ−1) as w → 0 for some nonnegative integer μ. Then the limit
limw→0 f(w)w−μ exists.

Proof. Let g(w) := f(w)w−μ and

Fr(ξ) = (2πi)−1

∫
|w|=r

g(w)(w − ξ)−1 dw, r ∈ (0, R).

Then Fr(ξ) is holomorphic on Br(0), and from inequality (11) we infer for all
ξ ∈ Br(0) \ {0} the relation

|g(ξ) − Fr(ξ)| ≤ c

π

∫∫
Br(0)

|w| −μ−λ|w − ξ| −1|f(w)| du dv

≤ c1

∫∫
Br(0)

|w| −λ|w − ξ| −1 du dv,

where we have used Lemma 1. We infer from inequality (15) the estimate

|g(ξ) − Fr(ξ)| ≤ c2r
1−λ

for all ξ ∈ Br(0) \ {0}. Again from the boundedness of g(w) we conclude the
existence of a sequence {wn}n∈N tending to zero such that

a := lim
n→∞

g(wn) ∈ C,

whence
|a − Fr(0)| ≤ c2r

1−λ,

and since λ < 1, we obtain

lim
r→0

Fr(0) = a.

Finally we conclude from

|g(ξ) − a| ≤ |g(ξ) − Fr(ξ)| + |Fr(ξ) − Fr(0)| + |Fr(0) − a| ≤ c3r
1−λ

the relation
lim
ξ→0

g(ξ) = a. �

Proof of Theorem 1. The theorem will be proved if we can find an integer
ν ≥ −1 with the properties f(w) = o(|w|ν) but f(w) �= o|w|ν+1 as w → 0,
taking Lemma 2 into account. Let us assume on the contrary that for all
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nonnegative ν the relation f(w) = o(|w|ν) holds true. We will then show that
f ≡ 0 on BR(0).

To accomplish this, we recall inequality (12) with w0 = 0:

2(M −1πrλ−1 − c)J2(0) ≤ J1(0),

where
J1(0) =

∫
|w|=r

|w| −ν−1|f(w)| |dw|,

and
J2(0) =

∫
|w|=r

|w| −ν−λ−1|f(w)| du dv.

We select r < ( π
cM )1/(1−λ) and suppose that there exists some ξ0 ∈ Br(0)

with f(ξ0) �= 0. Clearly there exist numbers 0 < δ1 ≤ δ2, ε > 0, such that
Bε(ξ0) � Br(0) and

2(M −1πrλ−1 − c)δ1[|ξ0| + ε]−ν−λ−1 ≤ δ2r
−ν−1.

Therefore there exists some constant c1 independent of ν such that

0 < c1 ≤
(

ε + |ξ0|
r

)ν+1

.

This relation, however, cannot hold for all ν ∈ Z since |ξ0| + ε < r. In conclu-
sion we have shown that f = 0 on Br(0) for some sufficiently small r, and a
continuation argument implies f = 0 on BR(0). This completes the proof of
Theorem 1. �

Next we are going to prove Theorem 2.

Lemma 3. Suppose X(w) ∈ C1(Br(0), RN ) satisfies X(0) = 0 and Xw(w) =
o(|w|μ−1) as w → 0. Then X(w) = o(|w|μ).

Proof. Fix w ∈ Br(0). Then a simple integration yields

X(w)
wμ

=
∫ 1

0

{ u

wμ
Xu(tw) +

v

wν
Xv(tw)

}
dt(18)

=
∫ 1

0

2
wμ

Re(wX w(tw)) dt

= 2
∫ 1

0

tμ−1

{
1

(tw)μ
Re(twX w(tw))

}
dt

=
2
μ

1
(t0w)μ

Re(t0wX w(t0w))

for some t0 ∈ (0, 1). Consequently,

lim
w→0

X(w)
wμ

= 0. �
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The following auxiliary result provides a counterpart to Lemma 1.

Lemma 4. Let X satisfy Assumption (A2), and suppose that there exists
some nonnegative integer μ such that Xw(w) = o(|w|μ−1) as w → 0. Then
Xw(w) = O(|w|μ) as w → 0.

Proof. As in the proof of Lemma 1 we put

Dr,ε = Br(0) \ [Bε(0) ∪ Bε(ξ)]

and
φ(w) =

1
wμ

· 1
w − ξ

.

Then (4) yields the inequality
∣∣∣∣∣
∫

∂Dr,ε

w−μ(w − ξ)−1Xw(w) dw

∣∣∣∣∣(19)

≤ 2c

∫∫
Dr,ε

|w| −μ−λ|w − ξ| −1[|X(w)| + |Xw(w)|] du dv,

taking φw = 0 on Dr,ε into account. Note that Lemma 3 and the inequality
0 ≤ λ < 1 imply the boundedness of the integral

J3(ξ) :=
∫∫

Br(0)

|w| −μ−λ|w − ξ| −1|X(w)| du dv.

Now we can proceed as in the proof of Lemma 1, i.e. we let ε → 0 and obtain
the estimate

2π|Xw(ξ)ξ−μ| ≤ J1(ξ) + 2c[J2(ξ) + J3(ξ)],(20)

where f has to be replaced by Xw in the formulas for J1 and J2 respectively,
i.e.,

J1(ξ) :=
∫

|w|=r

|w| −μ|w − ξ| −1|Xw(w)| |dw |,

and
J2(ξ) :=

∫∫
|w|≤r

|w| −μ−λ|w − ξ| −1|Xw(w)| du dv.

Since the boundedness of J1 is obvious for small ξ, we only show the bound-
edness of J2. To this end we multiply (18) by |ξ| −λ|ξ − w0| −1, w0 ∈ Br(0), and
integrate over Br(0). Then we obtain

(21) 2πJ2(w0) ≤ I1(w0) + I2(w0) + I3(w0),

where
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I1(w0) :=
∫∫

|ξ|<r

|ξ| −λ|ξ − w0| −1J1(ξ) dξ1 dξ2,

I2(w0) := 2c

∫∫
|ξ|<r

|ξ| −λ|ξ − w0| −1J2(ξ) dξ1 dξ2,

I3(w0) := 2c

∫∫
|ξ|<r

|ξ| −λ|ξ − w0| −1J3(ξ) dξ1 dξ2,

and ξ = ξ1 + iξ2.
As in the proof of Lemma 1 we conclude

I1(w0) ≤ Mr1−λJ1(w0),

I2(w0) ≤ 2Mr1−λcJ 2(w0).

Similarly we infer from (15) and

(w − ξ)−1(ξ − w0)−1 = (w − w0)−1[(w − ξ)−1 + (ξ − w0)−1]

the estimate

I3(w0) ≤ 2M2
3 c1r

2(1−λ) for some constant c1.

Finally, the boundedness of J2 follows from (21) and the above estimates if we
choose r > 0 suitably small. The assertion of the lemma follows from relation
(20) since the right-hand side of (20) remains bounded as ξ → 0. �

Lemma 5. Let X(w) satisfy assumption (A2) and suppose that for some non-
negative integer μ we have

Xw(w) = o(|w|μ−1) as w → 0.

Then the limit limw→0 Xw(w)w−μ exists.

Proof. We put g(w) := Xw(w)w−μ and

Fr(ξ) := (2πi)−1

∫
|w|=r

g(w)(w − ξ)−1 dw.

In the relation (19) we let ε tend to zero (cf. the proof of Lemma 1) and obtain
the inequality

|g(ξ) − Fr(ξ)| ≤ c

π

∫∫
Br(0)

|w| −μ−λ|w − ξ| −1[|X(w)| + |Xw(w)|] du dv,

holding for all ξ ∈ Br(0) \ {0}. Now Lemmata 3 and 4 imply

|g(ξ) − Fr(ξ)| ≤ c1

∫∫
Br(0)

|w| −λ|w − ξ| −1 du dv

for all ξ ∈ Br(0) \ {0} and some constant c1. From here on we can proceed
exactly as in the proof of Lemma 2. �
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Proof of Theorem 2. Recall that X(w) satisfies assumption (A2) and that for
some nonnegative ν ∈ Z we have

(22) X(w) = o(|w|ν) as w → 0.

We first show that the limit limw→0 Xw(w)w−ν exists. Since X is supposed to
be differentiable, this clearly holds when ν = 0. On the other hand, if ν = 1
we infer from (22) that

Xw(w) = o(1) as w → 0,

and an application of Lemma 5 implies the existence of

lim
w→0

Xw(w)w−1.

In order to prove the general case ν > 1, we shall inductively show that

(23) Xw(w) = o(|w|μ−1) as w → 0

holds for all μ ∈ [1, ν]. (The result will then follow by a further application of
Lemma 5.)

Assume the validity of (23) for some μ < ν; then there exists some number
a ∈ C such that

lim
w→0

Xw(w)w−μ = a.(24)

We show that a = 0. To this end, observe that we can write

X(u, 0)
uμ+1

=
∫ 1

0

u

uμ+1
Xu(tu, 0) dt(25)

=
∫ 1

0

tμ
Xu(tu, 0)

(tu)μ
dt =

Xu(t0u, 0)
(t0u)μ

∫ t

0

tμ dt

=
1

μ + 1
Xu(t0u, 0)

(t0u)μ
for some t0 ∈ (0, 1).

On the other hand we infer from (24) that the function g(w) := Xw(w)w−μ

is continuous at w = 0, and again (24) implies

a = lim
n→∞

Xw(un, 0)
uμ

n
= lim

n→∞

Xu(un, 0) − iX v(un, 0)
2uμ

n

whence

Re a = lim
n→∞

Xu(un, 0)
2uμ

n
for every sequence un → 0.(26)

Now (25), (26), the assumption X(w) = o(|w|ν) as w → 0, and the continuity
of g(w) yield the relation
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Re a = 0.

Furthermore, we infer from (24) that

a = lim
n→∞

Xu(0, vn) − iX v(0, vn)
2iμvμ

n
,

and in particular, if μ is even,

± Im a = lim
n→∞

Xv(0, vn)
2vμ

n
, where vn → 0.

Hence the same argument yields that Im a = 0, provided that μ is even. If μ is
odd we consider the function Y (w) = wX (w). Then Yw(w) = X(w)+wX w(w),
and therefore

lim
w→0

Yw(w)
wμ+1

= lim
w→0

X(w)
wμ+1

+ lim
w→0

Xw(w)
wμ

= a.

Also Y (w) = o(|w|μ+2) as w → 0, whence

a = lim
n→∞

Yu(0, vn) − iY v(0, vn)
2iμ+1vμ+1

n

,

whenever vn → 0 with n → ∞. Thus we obtain that Im a = 0 if we repeat
the argument above. This proves the first part of Theorem 2. To establish
the second statement we assume on the contrary that, for all nonnegative
μ ∈ Z, we have X(w) = o(|w|μ). It will then be shown that Xw ≡ 0 in BR(0)
contradicting the assumption that X(w) �≡ 0 on BR(0).

Note that, by the first part of Theorem 2, we obtain the relation

Xw(w) = O(|w|μ) for all μ,

and in particular
Xw(w) = o(|w|μ−1) as w → 0

and for all nonnegative μ ∈ Z. We are thus in a position to repeat the argument
given in the proof of Lemma 4. Inequality (21) with w0 = 0 now reads as

2πJ2(0) ≤ I1(0) + I2(0) + I3(0),(27)

where

I1(0) =
∫∫

|ξ|<r

|ξ| −λ−1J1(ξ) dξ1 dξ2,

I2(0) = 2c

∫∫
|ξ|<r

|ξ| −λ−1J2(ξ) dξ1 dξ2,

I3(0) = 2c

∫∫
|ξ|<r

|ξ| −λ−1J3(ξ) dξ1 dξ2, ξ = ξ1 + iξ2,
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and

J1(ξ) =
∫

|w|=r

|w| −μ|w − ξ| −1|Xw(w)| |dw|,

J2(ξ) =
∫∫

|w|≤r

|w| −μ−λ|w − ξ| −1|Xw(w)| du dv,

J3(ξ) =
∫∫

|w|<r

|w| −μ−λ|w − ξ| −1|Xw(w)| du dv, w = u + iv.

As in the proof of Lemma 1, i.e. using the Schmidt’s inequality and the identity

(28) (w − ξ)−1ξ−1 = w−1[(w − ξ)−1 + ξ−1],

we obtain the estimates

I1(0) ≤ Mr1−λJ1(0),(29)
I2(0) ≤ 2Mr1−λcJ 2(0).(30)

Again we infer from (28) and (15) that

I3(0) = 2c

∫∫
|ξ|<r

dξ1 dξ2|ξ| −λ|ξ| −1

∫∫
|w|<r

|w| −μ−λ|w − ξ| −1|Xw(w)| du dv

= 2c

∫∫
|w−ξ|<r

du dv|w| −μ−λ|w| −1|Xw(w)|

·
∫∫

|ξ|<r

|ξ| −λ[(w − ξ)−1 + ξ−1] dξ1 dξ2

≤ 4cM 3r
1−λ

∫∫
|w|<r

|w| −μ−λ−1

[∫ 1

0

∣∣∣∣ d

dt
X(tw)

∣∣∣∣ dt

]
du dv

≤ 4cM 3r
1−λ

∫ 1

0

dt

[∫∫
|w|<r

|w| −μ−λ|Xw(tw)| du dv

]
.

Now we put z := tw , z = z1+iz 2, and employ the change-of-variables formula.
This yields

I3(0) ≤ 4cM 3r
1−λ

∫ 1

0

dt tμ+λ−2

∫∫
|z|<tr

|z| −μ−λ|Xw(z)| dz1 dz2

≤ 4cM 3r
1−λ

μ + λ − 1

∫∫
|z|<r

|z| −μ−λ|Xw(z)| dz1 dz2,

where we have assumed that μ + λ ≥ 2.
In the following estimates we let r < 1. Then

I3(0) ≤ 4cM 3r
1−λ

∫∫
|w|<r

|w| −μ−λ−1|Xw(w)| du dv,
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or equivalently

I3(0) ≤ 4cM 3r
1−λJ2(0).(31)

The estimates (27), (29), (30), and (31) now imply that

2πJ2(0) ≤ Mr1−λJ1(0) + 2Mr1−λcJ 2(0) + 4cM 3r
1−λJ2(0),

whence we obtain for small r > 0 and some δ > 0 independent of μ that

δJ2(0) ≤ J1(0),

or, more explicitly

δ

∫∫
|w|<r

|w| −μ−λ−1|Xw(w)| du dv ≤
∫∫

|w|=r

|w| −μ−1|Xw(w)| |dw |

for all nonnegative μ. If we now assume the existence of some w0 such that
Xw(w0) �= 0, we are led to a contradiction exactly as in the proof of Theorem 1.

We have shown that there exists some finite integer ν with

X(w) = o(|w|ν−1),
(32)

X(w) �= o(|w|ν) as w → 0.

By the first part of Theorem 2 we conclude the existence of the limit

lim
w→0

Xw(w)w−ν+1 = A.

If A = 0, we could infer from Lemma 3 that X(w) = o(|w|ν) contradicting
(32), and Theorem 2 is proved. �

Now we shall consider a further generalization of Theorem 1 which will
enable us to treat certain systems of differential inequalities as well. This will
be of importance in Sections 3.3 and 3.4.

Definition 2. Two complex-valued functions F (w), G(w) are said to satisfy
Assumption (A3) if they are of class C0,1(B′

δ, C), B′
δ = {0 < |w| < δ}, and

if there are numbers α, β, ν ∈ (0, 1), α + β = 1 such that the relations

(33)
{

|F (w)| = O(|w|ν−α)
|G(w)| = O(|w|ν−β) as w → 0,

and the inequalities

(34)
{

|Fw(w)| ≤ c[|w| −β |F (w)|2 + |w|β−2α|G(w)|2],
|Gw(w)| ≤ c[|w|α−2β |F (w)|2 + |w| −α|G(w)|2]

hold true almost everywhere on B′
δ = Bδ \ {0} for some constant c > 0.
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Here and in the following we shall work with the concept of general-
ized complex derivatives which are defined analogously to generalized real
(or weak) derivatives, and we refer the interested reader to the monograph of
Vekua [1,2] for more detailed background information. Note that by a theorem
of Rademacher (see e.g. Federer [1]) every Lipschitz-continuous function has
a weak derivative which is bounded.

Theorem 3. Suppose that F and G satisfy assumption (A3) on B′
δ. Then

there exists a nonnegative integer m such that the functions

fm(w) := w−mF (w), gm(w) := w−mG(w)

satisfy one of the following two conditions (i) or (ii):

(i) fm(w) ∈ C0,μ(Bδ, C) for all μ < min(1, m + α),

fm(0) �= 0,

|fm
w (w)| = O(|w|m−β) as w → 0,

|gm
w (w)| = O(|w|m+α−2β) as w → 0;

(ii) gm(w) ∈ C0,μ(Bδ, C) for all μ < min(1, m + β),

gm(0) �= 0,

|fm
w (w)| = O(|w|m+β−2α) as w → 0,

|gm
w (w)| = O(|w|m−α) as w → 0.

For the proof of Theorem 3 we shall need the following auxiliary results.

Lemma 6. Suppose that f ∈ C0,1(B′
δ, C) satisfies

(35) |f(w)| = o(|w|−1) as w → 0

and

|fw(w)| = O(|w|λ) as w → 0(36)

with some exponent λ > −2. Then we have:

f ∈ C0,μ(Bδ, C) for all μ < min(1, 1 + λ), if λ > −1,

or
|f(w)| = O(|w|−ε), (w → 0), for all ε > 0, if λ = −1,

or
|f(w)| = O(|w|1+λ), (w → 0), if λ < −1,
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Proof. Since fw(w) ∈ L1(Bδ(0), C), we can apply Theorem 1.16 in Vekua [1]
which implies that the sum

f(w) +
1
π

∫∫
Bδ(0)

fw(ξ)(ξ − w)−1 dξ1 dξ2

is holomorphic in Bδ(0). Hence it is sufficient to prove that the above alter-
native holds for the function

g(w) =
1
π

∫∫
Bδ(0)

fw(ξ)(ξ − w)−1 dξ1 dξ2.

If λ > −1, we conclude for w1, w2 ∈ B′
δ = Bδ \ {0} the inequality

|g(w1) − g(w2)| =
1
π

∣∣∣∣∣
∫∫

Bδ(0)

fw(ξ)
(w1 − w2)

(w1 − ξ)(w2 − ξ)
dξ1 dξ2

∣∣∣∣∣
≤ const |w1 − w2|

∫∫
Bδ(0)

|ξ|λ
|w1 − ξ| |w2 − ξ| dξ1 dξ2.

Using Hölder’s inequality, we obtain for each μ ∈ (0, 1 + λ) the estimate

|g(w1) − g(w2)| ≤ c|w1 − w2|
[∫∫

Bδ(0)

|ξ|2λ/(1−μ) dξ1 dξ2

](1−μ)/2

·
[∫∫

Bδ(0)

(|w1 − ξ| |w2 − ξ|)−2/(1+μ) dξ1 dξ2

](1+μ)/2

.

Now inequality (15) implies

|g(w1) − g(w2)| ≤ c|w1 − w2|1+(2−(4/(1+μ)))(1+μ)/2 = c|w1 − w2|μ.

If λ < −1, we infer again from (15) that

|g(w)| ≤ c

∫∫
Bδ(0)

|ξ|λ|ξ − w| −1 dξ1 dξ2 ≤ c|w|1+λ

for some suitable constant c. Finally, if λ = −1, it follows that

|g(w)| ≤ c1 + c2|log|w| |. �

In the discussion to follow we shall always assume that 0 < α ≤ 1
2 ≤ β < 1.

Note that this is without loss of generality since α+β = 1 and because of the
symmetry of the following assertions both in α and β and with respect to F
and G. Observe also that we can (and will, if necessary) decrease the decay
exponent ν in the relation (33).
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Lemma 7. Suppose that F and G satisfy assumption (A3) on B′
δ = Bδ \ {0}

with α ≤ 1
2 . Then F ∈ C0,μ(Bδ, C) for all μ ∈ (0, α) and, furthermore, the

relations
|Fw(w)| = O(|w| −β)

as w → 0
|Gw(w)| = O(|w|α−2β)

hold true almost everywhere on Bδ.

Proof. The proof is based on an iteration argument where one has to use
Lemma 6 in each step. To start, let us assume that ν < α, whence for some
k0 ∈ N ∪ {0} we have that 2k0ν ≤ α < 2k0+1ν. Now assume that for some
k ∈ N ∪ {0}, k ≤ k0, we have

|F (w)| = O(|w|2
kν−α), |G(w)| = O(|w|2

kν−β).

Then (34) implies

|Fw(w)| = O(|w|2
k+1ν−α−1), |Gw(w)| = O(|w|2

k+1ν−β−1).

From Lemma 6 we infer

|F (w)| = O(|w|2
k+1ν−α) as w → 0 if k < k0

or
F (w) ∈ C0,μ(Bδ, C) for all μ < 2k0+1ν − α if k = k0.

Also,
|G(w)| = O(1 + |w|2

k+1ν−β) if k ≤ k0.

By virtue of (33) we can start the iteration by putting k = 0. In conclusion
we obtain that

F ∈ C0,μ for all μ < 2k0+1ν − α

and in particular

|F (w)| = O(1), |G(w)| = O(1 + |w|2
k0+1ν−β).

Again we infer from (34) that

|Fw(w)| = O(|w| −β) = O(|w|α−1),

since 2k0+2ν > 2α, and

|Gw(w)| = O(|w|α−2β) = O(|w|1−3β).

Finally we infer from Lemma 6 that F ∈ C0,μ(Bδ, C) for all 0 < μ < α. �

In the next lemma we improve the regularity of G provided we know that
F (0) = 0.
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Lemma 8. Suppose F and G satisfy (A3) on B′
δ = Bδ \ {0} with α ≤ 1

2 , and
that F (0) = 0. Then we have G ∈ C0,μ(Bδ, C) for all μ ∈ (0, β) and

|Fw(w)| = O(|w|1−3α), |Gw(w)| = O(|w| −α) as w → 0.

Proof. Since F (0) = 0, we infer from Lemma 7 that |F (w)| = O(|w|μ) for all
μ < α. Hence the function f(w) := F (w)

w satisfies

|f(w)| = O(|w|μ−1) as w → 0, for all 0 < μ < α.

By Lemma 7 we have |Gw(w)| = O(|w|α−2β) as w → 0, and Lemma 6 yields

|G(w)| = O(1 + |w|α−2β+1) if α − 2β �= −1,

that is,

|G(w)| = O(|w| −ε) for all ε > 0, if α − 2β = −1
(

i.e. α =
1
3

)
.

Using inequalities (34) we obtain the system

(37)

{
|fw(w)| ≤ c1[|w|α|f |2 + |w| −3α|G|2],
|Gw(w)| ≤ c2[|w|3α|f |2 + |w| −α|G|2],

which holds true for almost all w ∈ Bδ.
If α − 2β = −1 (or equivalently α = 1

3 , β = 2
3 ), we infer from (37) the

relations

(38)

{
|fw(w)| = O(|w| −1−ε) as w → 0,

|Gw(w)| = O(|w| −1/3−ε) as w → 0,
for all ε > 0

whence in particular

G(w) ∈ C0,μ(Bδ, C) for all μ <
2
3

= β

and

|G(w)| = O(1), |f(w)| = O(|w| −ε),(39)

for all ε > 0. Inserting (39) into (37) we obtain

|fw(w)| = O(|w| −1) = O(|w| −3α),
|Gw(w)| = O(1) = O(|w|1−3α),

and therefore
|Fw(w)| = O(1) = O(|w|1−3α),

because of Fw = wfw.
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Now we deal with the case α − 2β > −1 (or equivalently β < 2
3 , α > 1

3 ):
Inserting the relations

|G(w)| = O(1) and |f(w)| = O(|w|μ−1), μ < α,

in (37), we obtain

|fw(w)| = O(|w|−3α)
as w → 0.

|Gw(w)| = O(|w|−α)

Now Lemma 6 implies that

|Fw(w)| = O(|w|1−3α),

G(w) ∈ C0,μ(Bδ, C) for all μ < 1 − α = β.

Finally, we have to treat the case α − 2β < −1 (or β > 2
3 and α < 1

3 ):
To this end we fix some μ < α and select some k0 ∈ N ∪ {0} with the

property 2k0(μ + α) < 1 − α < 2k0+1(μ + α). Assume that for some k ≤ k0

the relations

|f(w)| = O(|w|2
k(μ+α)−α−1) as w → 0,(40k)

|G(w)| = O(|w|2
k(μ+α)+α−1) as w → 0,

hold true. Then it follows from (37) that

|fw(w)| = O(|w|2
k+1(μ+α)−α−2)

and
|Gw(w)| = O(|w|2

k+1(μ+α)+α−2).

If k < k0, then Lemma 6 applies and we arrive at the relations

|f(w)| = O(|w|2
k+1(μ+α)−α−1),

|G(w)| = O(|w|2
k+1(μ+α)+α−1);

in other words, the validity of (40k) implies the validity of (40k+1). On the
other hand, for k = k0 we obtain

|f(w)| = O(1 + |w|2
k0+1(μ+α)−α−1),

(41)
|G(w)| = O(1).

We can start the induction because (40k) holds with k = 0 taking μ < α into
account.

We insert (41) into (37) and get |fw(w)| = O(|w|−3α) as w → 0 and
|Gw(w)| = O(|w|−α) whence we infer by means of Lemma 6 that G ∈
C0,μ(Bδ, C) for all μ < 1 − α = β and also |Fw(w)| = O(|w|1−3α). �
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Next we suppose that both F and G vanish at zero. Then on account of
the Lemmata 8 and 6 we conclude that the functions

f(w) := w−1F (w) and g(w) := w−1G(w)

fulfil the relations

|f(w)| =

{
O(1 + |w|1−3α) if α �= 1

3 ,

O(|w| −ε) for all ε > 0, if α = 1
3

and
|g(w)| = O(|w| −α).

Therefore there exists some number λ′ ∈ (0, 1) such that the mapping

h(w) := (f(w), g(w))

satisfies the relation

|h(w)| = O(|w| −λ′
) as w → 0.

From (34) we easily infer an estimate of the type

|hw(w)| ≤ c|w| −λ|h(w)|

holding almost everywhere on Bδ with some constants c and λ ∈ (0, 1). Thus
we are in a position to apply Corollary 1 of this section to the function h
and obtain the existence of some positive integer m and of a complex vector
A ∈ C

2 \ {0} such that

(42) h(w) = Awm−1 + o(|w|m−1) as w → 0

holds true on Bδ.
Now we come to the proof of Theorem 3.
Without loss of generality we only consider the case α ≤ 1

2 . We distinguish
between the following alternatives (which clearly exhaust all possibilities!):

(α) F (0) �= 0, G(0) �= 0, (β) F (0) �= 0, G(0) = 0,

(γ) F (0) = 0, G(0) �= 0, (δ) F (0) = 0, G(0) = 0.

If (α) or (β) hold true, then Lemma 5 yields that (i) must be satisfied with
m = 0. In view of Lemma 8 we obtain (ii) with m = 0 provided that (γ) holds
true. Finally, let us assume that F (0) = G(0) = 0. Then (42) is equivalent to

F (w) = awm + o(|w|m)

G(w) = bwm + o(|w|m)
as w → 0

with complex numbers a, b which are not both equal to zero, and we obtain
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(43)

{
fm(w) = a + o(1)
gm(w) = b + o(1)

as w → 0.

On the other hand, we easily derive from (34) the inequalities

(44)

{
|fm

w (w)| ≤ c[|w|m−β |fm(w)|2 + |w|m+β−2α|gm(w)|2],
|gm

w (w)| ≤ c[|w|m+α−2β |fm(w)|2 + |w|m−α|gm(w)|2],

and, together with (41), this yields

|fm
w (w)| = O(|w|m−β) and |gm

w (w)| = O(|w|m+α−2β) as w → 0.

But then Lemma 6 can be applied which proves that fm ∈ C0,μ(Bδ, C) for all
μ < 1. Assuming that fm(0) �= 0 we have thus shown that (i) holds true.

So let us assume that fm(0) = a = 0 (whence b = gm(0) �= 0). Then
clearly |fm(w)| = O(|w|μ) as w → 0 for all μ < 1, and (44) implies

|fm
w (w)| = O(|w|m+β−2α)

and
|gm

w (w)| = O(|w|m−α).

Again, by Lemma 6 it follows that gm ∈ C0,μ(Bδ, C) for all μ < 1, and hence
(ii) holds true; thus Theorem 3 is proved. �

3.2 A Gradient Estimate at Singularities Corresponding
to Corners of the Boundary

In this section we consider solutions X = X(u, v) of the Plateau problem P(Γ )
for a Jordan curve Γ consisting of two regular pieces Γ+ and Γ − of class C2,μ

which enclose a positive angle β < π at a common point P ∈ Γ+ ∩ Γ −. We
are then interested in the behaviour of X near the corner point P and, in
particular, in asymptotic expansions for the gradient ∇X(u, v) near the point
w0 ∈ ∂B which corresponds to P . More generally, let X ∈ C(Γ, S) be a solution
to the free boundary problem P(Γ, S) and suppose that the configuration
〈Γ, S〉 satisfies some chord-arc condition (see Section 2.5). Then we conclude
from Theorem 2 of Section 2.5 that X is globally Hölder continuous on the
closure of the semi-disk B = {(u, v): u2 + v2 < 1, v > 0}, i.e.,

X ∈ C0,α(B, R3) ∩ C2(B, R3)

for some α > 0. Assuming the usual three-point condition, the points (1, 0)
and (−1, 0) are mapped onto the corner points P1, P2 ∈ Γ ∩ S respectively.
Hence our interest is concentrated on the behaviour of ∇X(w) when w → ±1
respectively.

We first mention a (local) result concerning the Plateau problem.
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Theorem 1. Let Γ+, Γ − ⊂ R
3 be pieces of regular Jordan arcs of class C2,μ

which meet at a point P ∈ R
3 forming a positive angle β < π. Suppose that

X ∈ C0,α(B
+

δ , R3) ∩ C2(B
+

δ \ {0}, R3),

where B+
δ := {w = (u, v): |w| < δ, v > 0} is a minimal surface which satisfies

the boundary conditions X : I±
δ → Γ ± with I±

δ := {(u, 0): 0 < ± u < δ} and
X(0) = P . Then we obtain the asymptotic relation

| ∇X(w)| = O(|w|α−1) as w → 0.

For the free boundary problem we shall prove

Theorem 2. Let Γ be a regular Jordan curve of class C2,μ which has only
its two endpoints P1, P2 in common with a regular closed surface S of class
C3. Suppose that X ∈ C(Γ, S) solves the partially free minimum problem
P(Γ, S) and that Γ, S satisfy some chord-arc condition. Then X(u, v) is of
class C0,α(B, R3) ∩ C2,α(B \ {1, −1}) for some α > 0 where B = {(u, v) : u2 +
v2 < 1, v > 0), and there holds the expansion

| ∇X(w)| = O(|w ∓ 1|α−1) as w → ±1.(1)

We shall only prove Theorem 2 since the proof of the first theorem is
similar. Note that we only have to show the asymptotic relation (1) since the
asserted regularity properties of X were already proved in Chapter 2. Also, it
will be convenient to replace the semi-disk B by the upper half-plane

H = {(u, v) ∈ R
2 : v > 0}.

We may further assume that the point (u, v) = (0, 0) is mapped into the
corner point P1 ∈ Γ ∩ S. Observe that this simplification is without loss of
generality since the conformal map

w = w(z) = −
[
1 − z

1 + z

]2

maps the semi-disk B = {(u, v) : u2 + v2 < 1, v > 0} conformally onto H, and
the point (1, 0) into (0, 0). (Note that w(z) is not conformal at the boundary
point z = 1.) Furthermore, if X is of class C0,α(B) ∩ C2(B), then Y (w) :=
X(z(w)) is of class C0,α/2(H), and if Y satisfies an asymptotic relation of the
type

| ∇Y (w)| = O(|w|α/2−1) as w → 0,

then also

| ∇X(z)| = O

(
| ∇Y (w)|

∣∣∣∣dwdz
∣∣∣∣
)

= O(|1 − z|α−2 · |1 − z|)

= O(|1 − z|α−1) as z → 1, z ∈ B.
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Since we only deal with local properties of X we may throughout this
section require the following Assumption A to be satisfied by the minimal
surface X.

Assumption A. Let δ > 0 be some positive number and put

B+
δ := {w = (u, v) ∈ R

2 : |w| < δ, v > 0},

I+
δ := {w = (u, 0) : 0 < u < δ},

I−
δ := {w = (u, 0) : − δ < u < 0}.

Suppose that the minimal surface X = X(u, v) is of class C0,α(B
+

δ , R3) ∩
C2,α(B

+

δ \ {0}) and satisfies the following boundary conditions:
(i) X : I−

δ → Γ is weakly monotonic;
(ii) X(I+

δ ) ⊂ S, X(0) = 0 = P1 ∈ Γ ∩ S;
(iii) Xv |I+

δ
is orthogonal to S along the free trace X|I+

δ
.

Then Theorem 2 follows from

Proposition 1. Let X ∈ C2,α(B
+

δ \ {0}) ∩ C0,α(B
+

δ ) be a minimal surface
which fulfills assumption (A). Then the gradient ∇X satisfies

(2) | ∇X(w)| = O(|w|α−1) as w → 0.

The proof of Proposition 1 rests on a further investigation of solutions
X̃(w) of the differential inequality

(3) |ΔX̃(u, v)| ≤ a| ∇X̃(u, v)|2

which was already considered in Section 2.2. We recall Proposition 1 of Sec-
tion 2.2.

Proposition A. There is a continuous function κ(t), 0 ≤ t < 1, with the
following properties: For any solution X̃ ∈ C2(BR(w0), RN ) of the differential
inequality (3) satisfying

|X̃(w)| ≤ M, w ∈ BR(w0)(4)

for some M with aM < 1, the estimates

(5) | ∇X̃(w0)| ≤ κ(aM )
M

R
and

(6) | ∇X̃(w0)| ≤ κ(aM )
R

sup
w∈BR(w0)

|X̃(w) − X̃(w0)|

hold true.



238 3 Singular Boundary Points of Minimal Surfaces

Lemma 1. Let D ⊂ B1(0) be a domain such that D contains the origin.
Suppose that X̃ ∈ C2(D, RN ) ∩ C0(D, RN ) satisfies inequality (3). Then there
exists some δ > 0 such that the estimate

(7) | ∇X̃(w0)| ≤ ε−1 · const sup
Bε(w0)

|X̃(w) − X̃(w0)|

holds true for all w0 ∈ D ∩ Bδ(0) and for all ε > 0 with Bε(w0) ⊂ D ∩ Bδ(0).

Proof. We put Y (w) = 1
2a [X̃(w) − X̃(0)], w ∈ D, and choose δ > 0 so small

that supD∩Bδ(0) |Y (w)| < 1. Then Y satisfies (3) on D ∩ Bδ(0) with a = 1
2 .

Applying Proposition A to the function Y ∈ C2(Bε(w0)) and to M = 1, a = 1
2 ,

we get the estimate

| ∇Y (w0)| ≤ κ(1/2)
ε

sup
Bε(w0)

|Y (w) − Y (w0)|,

i.e.,

| ∇X̃(w0)| ≤ κ(1/2)
ε

sup
Bε(w0)

|X̃(w) − X̃(w0)|

as required. �

In order to state our results in a convenient way, we make the following

Assumption B. For some fixed angle π ≥ γ > 0 we denote by Dρ the domain

Dρ := {w = reiϕ : 0 < ϕ < γ, r < ρ}

where r, ϕ denote polar coordinates about the origin. Let

X̃(w) = (X̃1(w), . . . , X̃N (w)), w = (u, v) ∈ Dρ,

be a mapping of class C0(Dρ, R
N ) ∩ C2(Dρ, R

N ) which satisfies

(3) |ΔX̃(w)| ≤ a| ∇X̃(w)|2 on Dρ

and

|X̃(w)| ≤ c1|w|α on Dρ(8)

with numbers a, c1 > 0 and 0 < α < 1.
For arbitrary fixed θ ∈ (0, γ/2) we put

Dρ,θ := {w = reiϕ : θ < ϕ < γ − θ, 0 < r < ρ},

D1
ρ,θ := {w = reiϕ : 0 < ϕ < θ, 0 < r < ρ},

D2
ρ,θ := {w = reiϕ : γ − θ < ϕ < γ, 0 < r < ρ}.

Then we have
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Lemma 2. Suppose X̃ satisfies Assumption B on Dρ. Then, for every θ ∈
(0, γ

2 ), there exists a constant c2 = c2(θ, a, c1) such that the inequality

(9) | ∇X̃(w0)| ≤ c2|w0|α−1

holds true for all w0 ∈ Dδ1,θ and for some δ1 ∈ (0, ρ).

Proof. Let δ > 0 denote the number determined in Lemma 1. We take δ1 :=
1
2 min(δ, ρ) and put ε := 1

2 |w0| sin θ. Then Bε(w0) ⊂ Dρ ∩ Bρ(0) for all w0 ∈
Dδ1,θ, and Lemma 1 implies the estimate

| ∇X̃(w0)| ≤ const ε−1 sup
Bε(w0)

|X̃(w) − X̃(w0)|

≤ const c1ε
−1[|w0|α + (|w0| + ε)α]

≤ c2(θ, a, c1)|w0|α−1.

The estimate (9) controls the behaviour of the gradient on the segments Dδ,θ.
To obtain also some information on the remaining parts D1

δ,θ or D2
δ,θ, we have

to make additional assumptions.

Lemma 3. Suppose that X̃ satisfies Assumption B, and let θ ∈ (0, min{ π
16 , γ

4 }).
In addition, assume that X̃(reiϕ) = 0 on 0 < r < ρ and ϕ = 0 or ϕ = γ,
respectively. Then for small δ > 0 we obtain the estimate

(10) | ∇X̃(w0)| ≤ const |w0|α−1

on D1
δ,θ or D2

δ,θ respectively.

Proof. It is sufficient to prove (10) for w0 ∈ D1
δ,θ. To this end we select some

δ < min(ρ, 1) such that

aM < 1,(11)

where
M := sup

Dδ

|X̃(w)|

and where a denotes the constant in (3). Applying Proposition A, we derive
the gradient bound

| ∇X̃(w0)| ≤ cε−1 sup
Bε(w0)

|X̃(w) − X̃(w0)|(12)

holding for some constant c independent of ε and for all ε > 0 satisfying
0 < ε < dist(w0, ∂Dδ).

Now we restrict w0 further so that |w0| < δ
2 . Put u0 = Re w0, Rθ :=

2u0 sin θ, w1 = (u0, 0) and B+
Rθ

(w1) := BRθ
(w1) ∩ {(u, v) : v > 0}.

Then we find
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Bε(w0) ⊂ B+
Rθ

(w1) for all ε < dist(w0, ∂Dδ)

and
B+

2Rθ
(w1) ⊂ Dδ

taking the smallness of θ into account. We define harmonic functions ϕ(w) =
(ϕ1(w), . . . , ϕN (w)) and ψ(w) by

Δϕ = 0 on B+
2Rθ

(w1), ϕ(w) = X̃(w) on ∂B+
2Rθ

(w1),

and
Δψ = 0 on B+

2Rθ
(w1), ψ(w) = |X̃(w)|2 on ∂B+

2Rθ
(w1).

Consider the function

K(w) := 〈X̃(w) − ϕ(w), e〉 +
a

2(1 − aM )
{ψ(w) − |X̃(w)|2},

w ∈ B+
2Rθ

(w1), where e ∈ R
N is an arbitrary unit vector. Then

ΔK(w) = 〈ΔX̃, e〉 − a

1 − aM
{ | ∇X̃|2 + 〈ΔX̃, X̃〉 }

≤ |ΔX̃| − a

1 − aM
| ∇X̃|2 +

a

1 − aM
|ΔX̃| |X̃|

≤ a| ∇X̃|2 − a

1 − aM
| ∇X̃|2 +

a2M

1 − aM
| ∇X̃|2 = 0

for w ∈ B+
2Rθ

(w1). Furthermore we have K(w) = 0 along ∂B+
2Rθ

(w1); hence
we conclude from the maximum principle that K(w) ≥ 0 on B+

2Rθ
(w1). In

other words,

〈ϕ(w) − X̃(w), e〉 ≤ a

2(1 − aM )
ψ(w) − a

2(1 − aM )
|X̃(w)|2.

Since e is an arbitrary unit vector, this implies the estimate

|ϕ(w) − X̃(w)| ≤ a

2(1 − aM )
{ψ(w) − |X̃(w)|2},

in particular

(13) |X̃(w)| ≤ |ϕ(w)| +
a

2(1 − aM )
|ψ(w)| for w ∈ B+

2Rθ
(w1).

On the other hand, we infer from (8) the inequality

|X̃(w)| ≤ c1{ |w1| + 2Rθ }α

≤ c1{1 + 4 sin θ}α|w0|α

for all w ∈ ∂B+
2Rθ

(w1), whence
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|ϕ(w)| ≤ c2(θ)|w0|α, w ∈ B+
2Rθ

(w1),
(14)

|ψ(w)| ≤ c2
2(θ)|w0|2α ≤ c2

2(θ)|w0|α, w ∈ B+
2Rθ

(w1),

since |w0| < δ < 1. Employing the reflection principle for harmonic functions,
it is possible to extend ϕ and ψ harmonically onto the disk B2Rθ

(w1), taking
account of the fact that ϕ, ψ vanish along the line {(u, 0) : u0 − 2Rθ < u <
u0 + 2Rθ }. Denoting the reflected functions again by ϕ and ψ, we see that
(14) continues to hold. The mean value theorem yields the relations

| ∇ϕ(w)| ≤ 1
Rθ

sup
BRθ

(w1)

|ϕ|, w ∈ BRθ
(w1),

| ∇ψ(w)| ≤ 1
Rθ

sup
BRθ

(w1)

|ψ|, w ∈ BRθ
(w1).

Together with (14) this implies

| ∇ϕ(w)| ≤ c3(θ)|w0|α−1,

| ∇ψ(w)| ≤ c4(θ)|w0|α−1

for all w ∈ BRθ
(w1).

Finally we conclude from (13) and from the mean value theorem that

|X̃(w)| ≤ |ϕ(w) − ϕ(w1)| +
a

2(1 − aM )
|ψ(w) − ψ(w1)|(15)

≤ c5(a, M, θ)|w0|α−1|w − w1|
≤ c5(a, M, θ)|w0|α−12 dist(w0, ∂Dδ),

for all w ∈ Bdist(w0,∂Dδ)(w0). The desired result than follows from (15) and
(12) taking ε = 1

2dist(w0, ∂Dδ). �

Lemmata 2 and 3 imply the following

Proposition 2. Suppose that X̃ satisfies Assumption B and that X̃(reiθ) = 0
for 0 < r < ρ, ϕ = 0 or ϕ = γ. Then the asymptotic relation

| ∇X̃(w)| = O(|w|α−1) as w → 0

holds true.

Now we turn to the

Proof of Proposition 1. (and hence of Theorem 2). Since we have assumed
that X(0) = P1 = 0, we infer from the Hölder continuity the estimate

|X(w)| ≤ c1|w|α as w → 0.

Let us fix some θ ∈ (θ, π
16 ) and take γ = π (see Assumption B). It follows that
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the minimal surface X(w) satisfies Assumption B with ρ = δ, a = 0, and from
Lemma 2 we infer the estimate

(16) | ∇X(w)| ≤ c2|w|α−1 for all w ∈ Dδ1,θ

and some δ1 ∈ (0, ρ).
Next we prove (16) on

D2
δ3,θ = {w = reiϕ : 0 < r < δ, π − θ < ϕ < π}

for some δ3 ≤ δ. Recall that the segment I−
δ = {reiϕ : 0 < r < δ, ϕ = π}

is mapped onto Γ . Employing a suitable orthogonal transformation of R
3

we assume that Γ is locally described by two differentiable functions x =
h1(z), y = h2(z), z ∈ [0, ε), with the properties h1(0) = h2(0) = h′

1(0) =
h′

2(0) = 0 and

(17) |h′
i(z)| <

1
4
, i = 1, 2, z ∈ [0, ε).

We extend the functions h1, h2 as even functions to the interval (−ε, ε) and
define

x̃(w) := x(w) − h1(z(w))
for w ∈ Dδ2 ,(18)

ỹ(w) := y(w) − h2(z(w))

where we have chosen δ2 so as to satisfy z(Dδ2) ⊂ (−ε, ε). Consider the
mapping X̃(w) := (x̃(w), ỹ(w)), w ∈ Dδ2 , which fulfils

(19) X̃(w) = (0, 0) on I−
δ2

.

Furthermore, since X(w) = (x(w), y(w), z(w)) is harmonic we obtain

Δx̃(w) = −h′ ′
1(z(w))| ∇z(w)|2, w ∈ Dδ2 ,

Δỹ(w) = −h′ ′
2(z(w))| ∇z(w)|2, w ∈ Dδ2 ,

whence

|ΔX̃(w)| ≤ c| ∇z(w)|2, w ∈ Dδ2 ,(20)

with a suitable constant c. Relations (17) and (18) imply the estimate

| ∇x(w)| ≤ 1
4

| ∇z(w)| + | ∇x̃(w)|,
w ∈ Dδ2 .(21)

| ∇y(w)| ≤ 1
4

| ∇z(w)| + | ∇ỹ(w)|,

From the conformality condition we conclude
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| ∇z(w)|2 ≤ | ∇x(w)|2 + | ∇y(w)|2

≤ 1
16

| ∇z|2 +
1
2

| ∇z| | ∇x̃| + | ∇x̃|2

+
1
16

| ∇z|2 +
1
2

| ∇z| | ∇ỹ| + | ∇ỹ|2

≤ 5
8

| ∇z|2 +
5
4

{ | ∇x̃|2 + | ∇ỹ|2} on Dδ2 ,

thus

| ∇z(w)|2 ≤ 10
3

| ∇X̃(w)|2, w ∈ Dδ2 .(22)

Inequality (20) now yields |ΔX̃(w)| ≤ a| ∇X̃(w)|2, w ∈ Dδ2 , for some con-
stant a. By virtue of the relation (19) we are in a position to apply Lemma 3
to the function X̃, and we obtain the estimate

(23) | ∇X̃(w)| ≤ c|w|α−1 on D2
δ3,θ

for some number δ3 ≤ δ2. Finally it follows from (21) and (22) that X itself
satisfies (23), i.e. | ∇X| ≤ c|w|α−1 on D2

δ3,θ.
Now we have to verify (23) on the set

D1
δ6,θ = {w = reiϕ : 0 < r < δ6, 0 < ϕ < θ}

with δ6 > 0 chosen appropriately. Performing a suitable rotation in R
3 we can

assume that S is locally given by

z = f(x, y)

with some differentiable function f defined in a neighbourhood of zero such
that

f(0, 0) = 0, ∇f(0, 0) = 0.

Define

z̃(w) := z(w) − f(x(w), y(w)),
x̃(w) := x(w) + z̃(w)fx(x(w), y(w))n(w),
ỹ(w) := y(w) + z̃(w)fy(x(w), y(w))n(w),

where
n(w) := [1 + f2

x(x(w), y(w)) + f2
y (x(w), y(w))]−1

and w ∈ Dδ2 with δ2 so small that (x(w), y(w)) is contained in a neighbour-
hood of zero where f is defined. We remark that z̃(w) = 0 on I+

δ2
and secondly,

because of

x̃v(u, v) = xv(u, v) + z̃v(u, v)fx(x(u, v), y(u, v))n(u, v)
+ z̃(u, v)[fx(x(u, v), y(u, v))n(u, v)]v,
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we have for w ∈ I+
δ2

the equality

x̃v(u, v) = xv(u, v) + {zv(u, v) − fx(x(u, v), y(u, v))xv(u, v)
− fy(x(u, v), y(u, v))yv(u, v)}fx(x(u, v), y(u, v))n(u, v).

Equivalently, for w ∈ I+
δ2

,

x̃v(u, v) = xv(u, v) − 〈Xv(u, v), NS(X(u, v))〉n1(X(u, v)),

where
Ns(X(u, v)) = (n1(X(u, v)), n2(X(u, v)), n3(X(u, v)))

denotes the upward unit normal of S at X(u, v). However, X intersects S
orthogonally along I+

δ2
; thus

x̃v(u, v) = 0 on I+
δ2

.

Analogously we find
ỹv(u, v) = 0 on I+

δ2
,

whence the function X̃(u, v) := (x̃(u, v), ỹ(u, v)), (u, v) ∈ Dδ2 , satisfies

(24) X̃v(u, v) = 0 on I+
δ2

.

Furthermore we infer from the definition of x̃, ỹ, z̃, from f(0, 0) = 0,
∇f(0, 0) = 0, X(0, 0) = 0, as well as from the continuity of X the relation

|x̃v(w)|2 ≥ const{ |xv(w)|2 − ε[|yv(w)|2 + |zv(w)|2]},

which holds true for w ∈ Dδ3 , δ3 = δ3(ε) ≤ δ2, and for arbitrary fixed ε > 0.
We observe that similar relations hold for x̃u, ỹv and ỹu.

From the conformality condition we first obtain that | ∇z|2 ≤ | ∇x|2+| ∇y|2
and hence

| ∇X(u, v)|2 ≤ const | ∇X̃(u, v)|2 on Dδ3 .(25)

Similar arguments show that for some δ4 ≤ δ3 the estimate

(26) |ΔX̃(u, v)| ≤ const | ∇X̃(u, v)|2, (u, v) ∈ Dδ4 ,

holds true. We reflect X̃(u, v) so as to obtain a function X(u, v) given by

X(u, v) =

{
X̃(u, v), (u, v) ∈ Dδ4 ,

X̃(u, −v), (u, −v) ∈ Dδ4 .

By virtue of (24) we obtain for each function Φ ∈ C1
c (Bδ4(0) \ I−

δ4
, R2) the

equalities
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∫
Bδ4 (0)

∇X(u, −v) · ∇Φ(u, v) du dv

=
∫

Dδ4

∇X̃(u, v) · ∇Φ(u, v) du dv +
∫

Bδ4 \Dδ4

∇X̃(u, −v) · ∇Φ(u, v) du dv

= −
∫

Dδ4

ΔX̃ · Φ du dv −
∫

I+
δ4

X̃v(u, 0) · Φ(u, 0) du

−
∫

Bδ4 \Dδ4

ΔX̃ · Φ du dv +
∫

I+
δ4

X̃v(u, 0) · Φ(u, 0) du

=
∫

Bδ4

F (u, v, X(u, v), ∇X(u, v)) · Φ(u, v) du dv

for some function F which grows quadratically in | ∇X| (compare with inequal-
ity (26)). By construction, the function X(u, v) is of class C0(Bδ4(0), R2) ∩
C1(Bδ4(0) \ I−

δ4
), and the preceding discussion shows that it is a weak solution

of the two-dimensional system

(27) ΔX = F (u, v, X, ∇X) in Bδ4(0) \ I−
δ4

.

Standard regularity theory (see, for instance, Section 2.1, and Morrey [8],
Gilbarg-Trudinger [1]) implies that X is in fact of class C2(Bδ4(0) \ Iδ4) and
satisfies (27) classically on all Bδ4(0) \ I−

δ4
. Finally we apply Lemma 1 to the

domain D = Bδ4 \ I−
δ4

and to the function X; the resulting inequality is

| ∇X(w0)| ≤ const ε−1 sup
Bε(w0)

|X(w) − X(w0)|

for all w0 and ε with the property Bε(w0) ⊂ Bδ5 \ I−
δ5

, where δ5 ≤ δ4 is the
constant determined in Lemma 1. If w0 is restricted to lie in D1

δ6,θ, δ6 := 1
2δ5,

then a suitable choice of ε would be ε = 1
2 |w0|. Hence

| ∇X(w0)| ≤ const ε−1[|w0|α + (|w0| + ε)α]
≤ const |w0|α−1,

that is, (23) holds true on D1
δ6,θ. Because of (25) we finally arrive at rela-

tion (2). �

3.3 Minimal Surfaces with Piecewise Smooth Boundary
Curves and Their Asymptotic Behaviour at Corners

In the previous section we proved an asymptotic estimate for the gradient of
a minimal surface X at a corner P of a given piecewise smooth boundary
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arc Γ+ ∪ Γ −. It is the purpose of this section to obtain some more precise
information on the asymptotic behaviour of Xw near the corner P . To give an
idea what might happen we start with a simple but characteristic example:

Let α ∈ (0, 1) and k ∈ N ∪ {0} be given and define

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ B = {u2 + v2 ≤ 1, v ≥ 0}

by

x(u, v) = Re(wα+2k),
y(u, v) = Im(wα+2k), w = u + iv ∈ B,

z(u, v) ≡ 0.

Fig. 1.

Then X(u, v) is a minimal surface (i.e. ΔX = 0, 〈Xw, Xw 〉 = 0) which maps
the intervals I+ = (0, 1), I− = (−1, 0) onto the straight arcs

Γ+ = {(x, y, z) ∈ R
3 : z = 0, arg(x + iy) = 0, 0 < x2 + y2 < 1}

and

Γ − = {(x, y, z) ∈ R
3 : z = 0, arg(x + iy) = πα, 0 < x2 + y2 < 1}

respectively, and the point w = 0 into the origin of R
3. Note that Γ+, Γ − form

an angle β = απ at zero and that X has a branch point at zero if k ≥ 1 whence
X winds around zero k-times. However, there is another possible solution to
the Plateau problem determined by Γ+ and Γ −, namely the surface

X1(u, v) = (x1(u, v), y1(u, v), z1(u, v))

the components of which are defined by



3.3 Minimal Surfaces with Piecewise Smooth Boundary Curves 247

x1(u, v) = Re(w2−α+2k), y1(u, v) = Im(w2−α+2k), z1(u, v) = 0,

with w = u + iv ∈ B and w = u − iv. Here the semi-disk B is mapped
into the great angle (2 − α)π which is formed by Γ+, Γ − at zero. Again it is
possible that branch points occur and that the surface winds about the origin.
In Theorem 1 of this section we shall show that this behaviour is typical of a
minimal surface X which is bounded by two Jordan arcs forming a positive
angle απ at a corner P where Γ+ and Γ − are tangent to the x, y-plane.

Before we can formulate the main theorem of this section, we have to
state the basic assumptions describing the geometric situation which is to be
considered.

Assumption A. Γ+, Γ − are regular arcs of class C2,μ, μ ∈ (0, 1), which in-
tersect at the origin, thereby enclosing an angle of πα, α ∈ (0, 1). The sets
B+

δ , I+
δ , I−

δ are defined by

B+
δ := {w = (u, v) ∈ R

2 : |w| < δ, v > 0},

I+
δ := {w = (u, 0) ∈ R

2 : 0 < u < δ},

I−
δ := {w = (u, 0) ∈ R

2 : − δ < u < 0},

(and, as usual, we will identify w = u + iv ∈ C with w = (u, v) ∈ R
2 and I+

δ

with (0, δ) ⊂ R, etc.).
Let X be a minimal surface which is of class C0,ν(Bδ+ , R3) ∩ C2(B+

δ \
{0}, R3) for some ν ∈ (0, 1) and δ > 0, and satisfies the boundary conditions
X : I±

δ → Γ ± and X(0) = 0. Moreover, we assume that there exist functions
h±

1 , h±
2 ∈ C2,μ(I±

ε , R), ε > 0, such that

Γ+ = {(t, h+
1 (t), h+

2 (t)) : t ∈ I+
ε } and Γ − = {(t, h−

1 (t), h−
2 (t)) : t ∈ I−

ε },

and that furthermore

h±
j (0) = 0, j = 1, 2, and h± ′

1 (0) = ± cot
(απ

2

)
, h± ′

2 (0) = 0

hold true.

We note that Assumption A is quite natural and not restrictive since, by
performing suitable translations and rotations, we can achieve that any pair of
piecewise smooth boundary curves Γ+, Γ − will satisfy this assumption. Also,
by the results of Chapter 2, any minimal surface bounded by Γ+, Γ − has the
desired regularity properties.

The main result of this section will be

Theorem 1. Suppose that the Assumption A holds. Then there exist Hölder
continuous complex valued functions Φ1 and Φ2 defined on the closure of some
semidisk B+

δ , δ > 0, such that the following assertions hold true:
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(1) Φ1(0) �= 0, Φ2(0) �= 0, Φ2
1(0) + Φ2

2(0) = 0,

(2) xw(w) = wγΦ1(w), yw(w) = wγΦ2(w), and |zw(w)| = O(|w|λ),

where γ = α − 1 + 2k or γ = 1 − α + 2k for some k ∈ N ∪ {0} and λ > γ.
Furthermore there exists some c ∈ C \ {0} such that

(3) x(w) + iy(w) =

⎧⎪⎨
⎪⎩

wα+2k[c + o(1)]
or as w → 0,

w2−α+2k[c + o(1)]

and
z(w) = O(|w|λ+1) as w → 0.

Finally, the unit normal N(w) = (Xu ∧Xv)(w)
|(Xu ∧Xv)(w)| tends to a limit as w → 0:

(4) lim
w→0

N(w) =

⎛
⎝ 0

0
±1

⎞
⎠ .

Remark 1. Theorem 1 extends without essential changes to conformal solu-
tions X(w) of the system ΔX = f(X, ∇X), where the right-hand-side grows
quadratically in | ∇X|. Also two-dimensional surfaces in Rn, n ≥ 3, can be
treated.

In the case of polygonal boundaries we can say more:

Theorem 2. Suppose that Assumption A holds where Γ+, Γ − are straight
lines. Then there exist holomorphic functions Hj and Ĥj , j = 1, 2, 3, which
are defined on a disk Bδ for some δ > 0, such that the following holds true:

(5) wH 2
1(w) + 4H2(w)H3(w) = 0,

(6) Xw(w) = wα−1H2(w)

⎛
⎝ 1

−i
0

⎞
⎠+ w−αH3(w)

⎛
⎝ 1

i
0

⎞
⎠+ H1(w)

⎛
⎝ 0

0
1

⎞
⎠ ,

x(w) + iy(w) = wαĤ2(w) + w1−αĤ3(w),
(7)

z(w) = Re(wĤ1(w)),

where w ∈ B
+

δ \ {0}. Furthermore, (1) holds true as well.

The idea of the proof of Theorems 1 and 2 is to eventually apply Theorem 3
of Section 3.1 to a certain set of functions involving the gradient Xw. Here
it is necessary and convenient to use first a reflection procedure followed by
a smoothing argument. The new function of interest is then defined on a
neighbourhood Bδ \ {0} of zero, and it turns out that Theorem 3 of Section 3.1
can be employed. A further essential ingredient is Theorem 1 of Section 3.2
which provides the starting regularity and thus makes our argument work.
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Proof of Theorem 1. Because of the continuity of X it is possible to select
δ > 0 so small that x(B

+

δ ) ⊂ [−ε, ε]; this will henceforth be assumed. By
Assumption A we have on I±

δ the equality

X(u, 0) = (x(u, 0), h±
1 (x(u, 0)), h±

2 (x(u, 0))),

whence
Xu(u, 0) = (1, h± ′

1 (x(u, 0)), h± ′
2 (x(u, 0)))xu(u, 0).

The conformality conditions (which also hold on I±
δ ) imply that

(8) 〈Xv(u, 0), (1, h± ′
1 (x(u, 0)), h± ′

2 (x(u, 0)))〉 = 0 on I±
δ .

Now we put

a±(t) := [1 + h± ′
1 (t)2 + h± ′

2 (t)2]−1/2(1, h± ′
1 (t), h± ′

2 (t)), t ∈ [−ε, ε],

and consider the linear mappings

S±(t)y := 2〈a±(t), y〉a±(t) − y

which are defined for t ∈ [−ε, ε] and y ∈ R
3. Then, using (8), we infer

S±(x(u, 0))Xu(u, 0) = Xu(u, 0),

S±(x(u, 0))Xv(u, 0) = −Xv(u, 0), where (u, 0) ∈ I±
δ .

This may be rewritten as

(9) S±(x(w))Xw(w) = Xw(w) for all w ∈ I±
δ .

Since S±(t), t ∈ [−ε, ε], is a family of reflections, there exist orthogonal ma-
trices O±(t) such that

S±(t) = O±(t) Diag[−1, −1, 1]O±(t)t,

where we have used the notation

Diag[α, β, γ] =

⎛
⎝ α 0 0

0 β 0
0 0 γ

⎞
⎠

and At denotes the transpose of the matrix A. Furthermore we define

T ±(t) := O±(0)O±(t)t

with
O+(0) = lim

t→0+
O+(t) and O−(0) = lim

t→0−
O−(t).

Now put



250 3 Singular Boundary Points of Minimal Surfaces

T (t) :=

{
T+(t) if 0 ≤ t ≤ ε,

T −(t) if − ε ≤ t < 0.

It follows that the matrix function T is of class C0[(−ε, ε], R9) since

lim
t→0+

T (t) = T+(0) = Id = T −(0) = lim
t→0−

T (t),

and, because of the assumptions on h±
1 , h±

2 , the matrix T is even of the class

C0,1([−c, c], R9)

(although S±(t) is not even continuous at zero).
Next we consider the complex valued function g(w) defined by

(10) g(w) := T (x(w)) · Xw(w) for all w ∈ B+
δ .

We claim that g has the reflection property

(11) S±(0)g(w) = g(w) for all w ∈ I±
δ .

In fact, it follows from (9) that

S±(0)g(w) = S±(0)T ±(x(w))Xw(w)
= S±(0)O±(0)O±(x(w))tXw(w)
= O±(0) Diag[−1, −1, 1]O±(x(w))tXw(w)
= T ±(x(w))S±(x(w))Xw(w)
= T ±(x(w))Xw(w) = g(w).

We now reflect g across the u-axis by

(12) G(w) =

{
g(w) if w ∈ B

+

δ \ {0},

S+(0)g(w) if w ∈ B+
δ .

Then we have

Lemma 1. The function G is of class C0,1(Bδ \I−
δ , C3), and there exists some

constant c > 0 such that the estimate

(13) |Gw(w)| ≤ c|G(w)|2

holds true almost everywhere on Bδ \ {0}. Furthermore G(w) satisfies

G2
1(w) + G2

2(w) + G2
3(w) = 0, w ∈ Bδ \ I−

δ ,(14)
|G(w)| = O(|w|ν−1) as w → 0,(15)

where ν denotes the Hölder exponent of X. Finally there holds the jump rela-
tion

(16) lim
v→0+

G(u, v) = S−(0)S+(0) lim
v→0−

G(u, v)

for all u ∈ I−
δ .
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Proof. Since T is Lipschitz continuous and X ∈ C2(B
+

δ \ {0}, R3) we also have
g ∈ C0,1(B

+

δ \ {0}, C3), and because of (11) we obtain G ∈ C0,1(Bδ \ I−
δ , C3).

To establish (13), we remark that almost everywhere on Bδ we find

Gw(w) =

{
gw = [T ′(x(w))xw(w)]Xw(w) if w ∈ B+

δ ,

S+(0)gw(w) = S+(0)[T ′(x(w))xw(w)]Xw(w) if w ∈ B+
δ

whence

|Gw(w)| ≤ c1|T ′(x(w))| |xw | |Xw | ≤ c2|Xw(w)|2

≤ c3|T −1(x(w))g(w)|2 ≤ c4|g(w)|2 ≤ c5|G(w)|2

for suitable constants c1, . . . , c5. From the conformality condition 〈Xw, Xw 〉 =
0 we easily conclude (14), taking the orthogonality of the matrices T ± into
account.

The relation (15) follows from the estimate |G(w)| ≤ c6| ∇X| and from
Theorem 1 of Section 3.2. Finally, to prove (16), we calculate by means of (11)
that

lim
v→0+

G(u, v) = g(u, 0) = S−(0)g(u, 0)

= S−(0)S+(0)S+(0)g(u, 0) = S−(0)S+(0) lim
v→0−

G(u, v),

where we have used that S+(0)S+(0) = Id. �

The function G(w) itself is not yet accessible to the methods which were
developed at the end of Section 3.1, because of the jump relation (16). To
overcome this difficulty, we have to smooth the function G, which will be
carried out in what follows. Recall that the jump of G at I−

δ is given by

S−(0)S+(0) =

⎛
⎝ cos 2πα − sin 2πα 0

sin 2πα cos 2πα 0
0 0 1

⎞
⎠ .

We can diagonalize S−(0)S+(0) using the unitary matrix

U =
1√
2

⎛
⎝ 0 1 1

0 −i i√
2 0 0

⎞
⎠

and obtain
S−(0)S+(0) = U Diag[1, e2πi(α−1), e−2πiα]U ∗,

where U ∗ = U
t
. We define a new function F (w), w ∈ Bδ \ I+

δ , by

(17) F (w) := Diag[1, w1−α, wα]U ∗G(w)
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or, more explicitly,

F (w) =

⎛
⎝ F1(w)

F2(w)
F3(w)

⎞
⎠ =

⎛
⎝

G3(w)
1√
2
w1−α[G1(w) + iG2(w)]

1√
2
wα[G1(w) − iG2(w)]

⎞
⎠ .

We claim that F is continuous on the punctured disk Bδ(0) \ {0}. In fact, we
infer from (16) the relation

lim
v→0+

F (u, v) = Diag[1, u1−αeiπ(1−α), uαeiπα]U ∗ lim
v→0+

G(u, v)

= Diag[1, u1−αeiπ(1−α), uαeiπα]U ∗S−(0)S+(0) lim
v→0−

G(u, v)

= Diag[1, u1−αeiπ(1−α), uαeiπα]U ∗U

· Diag[1, e2πi(α−1), e−2πiα]U ∗ lim
v→0−

G(u, v))

= Diag[1, u1−αe−iπ(1−α), uαe−iπα]U ∗ lim
v→0−

G(u, v)

= lim
v→0−

F (u, v).

Since G ∈ C0,1(Bδ \ I−
δ , C3), and by Assumption A, it follows that F is even

Lipschitz continuous on the punctured disk Bδ \ {0}.

Lemma 2. The function F (w) = (F1(w), F2(w), F3(w)) defined by (17) be-
longs to the class C0,1(Bδ(0) \ {0}, C3) and satisfies

F 2
1 (w)w + 2F2(w)F3(w) = 0 for w ∈ Bδ \ {0},

(18)

|F1(w)| = O(|w|ν−1) as w → 0,

and

|F2(w)| = O(|w|ν−α) as w → 0,
(19)

|F3(w)| = O(|w|ν−β) as w → 0,

where ν denotes the Hölder exponent of X, and β = 1 − α. Furthermore, the
following differential inequalities hold true:

|F1w(w)| ≤ c{ |w| −2β |F2(w)|2 + |w| −2α|F3(w)|2},

|F2w(w)| ≤ c{ |w| −β |F2(w)|2 + |w|β−2α|F3(w)|2},(20)
|F3w(w)| ≤ c{ |w|α−2β |F2(w)|2 + |w| −α|F3(w)|2}

almost everywhere on Bδ \ {0} for some constant c > 0.
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Proof. We conclude from (14) and (17) that

0 = G2
1(w) + G2

2(w) + G2
3(w) = 1

2 [wα−1F2(w) + w−αF3(w)]2

− 1
2 [wα−1F2(w) − w−αF3(w)]2 + F 2

1 (w)

= 2w−1F2(w)F3(w) + F 2
1 (w),

whence (18) follows. From the definition of F (w) = (F1(w), F2(w), F3(w)) and
from (15) we infer the relations (19). To prove the inequalities (20) we first
note that

|G(w)|2 = |F1(w)|2 + |w| −2β |F2(w)|2 + |w| −2α|F3(w)|2,

whence we obtain from (13) and (17) the inequalities

|F1w(w)| ≤ c[|F1(w)|2 + |w| −2β |F2(w)|2 + |w| −2α|F3(w)|2],
|F2w(w)| ≤ c[|w|β |F1(w)|2 + |w| −β |F2(w)|2 + |w|β−2α|F3(w)|2],
|F3w(w)| ≤ c[|w|α|F1(w)|2 + |w|α−2β |F2(w)|2 + |w| −α|F3(w)|2].

On the other hand, relation (18) yields the estimate

|F1(w)|2 ≤ |w| −1|w|2α−1|F2(w)|2 + |w| −1|w|1−2α|F3(w)|2

= |w|2(α−1)|F2(w)|2 + |w| −2α|F3(w)|2

= |w| −2β |F2(w)|2 + |w| −2α|F3(w)|2.

Together with the above inequalities we finally obtain (20). This finishes the
proof of Lemma 2. �

Now we are in a position to apply Theorem 3 of Section 3.1. We can assume
without loss of generality that 0 < α ≤ β < 1.

Lemma 3. There exists a nonnegative integer m such that the functions
fm

i (w) := w−mFi(w), i = 1, 2, 3, do not vanish simultaneously at zero and
that one of the following conditions holds true:

(i) fm
2 ∈ C0,μ(Bδ, C) for all μ < min(1, m + α), fm

2 (0) �= 0,

|fm
1w(w)| = O(|w|m−2β) as w → 0,

|fm
2w(w)| = O(|w|m−β) as w → 0,

|fm
3w(w)| = O(|w|m+α−2β) as w → 0,

a.e. on Bδ \ {0}.

(ii) fm
3 ∈ C0,μ(Bδ, C) for all μ < min(1, m + β), fm

3 (0) �= 0
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|fm
1w(w)| = O(|w|m−2α) as w → 0,

|fm
2w(w)| = O(|w|m+β−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α) as w → 0,

a.e. on Bδ \ {0}.
In addition, if m ≥ 1, then in both cases

(21) fm
2 (0)fm

3 (0) = 0.

Proof of Lemma 3. From Theorem 3 of Section 3.1 we infer that (i) or (ii)
has to hold, except for the assertions concerning fm

1 . We recall the cases
(α), (β), (γ), and (δ) which occurred in the proof of Theorem 3 in Section 3.1.
Let us treat these cases separately.

(α) F2(0) �= 0, F3(0) �= 0: Then (i) of Theorem 3 in Section 3.1 holds with
m = 0. In particular, |F2(w)| = O(1) as w → 0, and |F3w(w)| = O(|w|α−2β)
as w → 0. But then Lemma 6 of Section 3.1 implies that

|F3(w)| =

{
O(1 + |w|α−2β+1) if α − 2β �= −1,

O(|w| −ε) for all ε > 0 if α − 2β = −1.

Now relation (201) yields

|F1w(w)| = O(|w| −2β | as w → 0,

which is the desired assertion.

(β) F2(0) �= 0, F3(0) = 0: Here we obtain (i) of Section 3.1, Theorem 3 with
m = 0. Thus we can proceed as in case (α).

(γ) F2(0) = 0, F3(0) �= 0: In this case we obtain (ii) of Theorem 3 in Section 3.1
with m = 0. In particular,

|F3(w)| = O(1) as w → 0,

|F2w(w)| = O(|w|β−2α) as w → 0.

But 0 < α ≤ 1
2 ≤ β < 1 and β −2α = 1−3α ≥ − 1

2 ; therefore we conclude from
Lemma 6 of Section 3.1 that F2 ∈ C0,μ(Bδ, C) for all μ < min(1, 1 + β − 2α).
Since F2(0) = 0 we have that |F2(w)| = O(|w|μ), w → 0, μ < min(1, 1+β−2α),
and relation (201) implies

|F1w(w)| = O(|w| −2β+2μ + |w| −2α) = O(|w| −2α) as w → 0,

if we choose μ in such a way that 2μ − 2β ≥ 0.

(δ) F2(0) = F3(0) = 0: In this case we find
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F2(w) = awm + o(|w|m) as w → 0,
(22)

F3(w) = bwm + o(|w|m) as w → 0,

with a, b ∈ C not both equal to zero and m ≥ 1. A direct consequence of (20)
is the following system:

|fm
1w(w)| ≤ c[|w|m−2β |fm

2 (w)|2 + |w|m−2α|fm
3 (w)|2],

|fm
2w(w)| ≤ c[|w|m−β |fm

2 (w)|2 + |w|m+β−2α|fm
3 (w)|2],(23)

|fm
3w(w)| ≤ c[|w|m+α−2β |fm

2 (w)|2 + |w|m−α|fm
3 (w)|2],

while (18) yields

(24) w[fm
1 (w)]2 + 2fm

2 (w)fm
3 (w) = 0 in Bδ \ {0}.

The relations (22) and (24) imply that

|fm
2 (w)|, |fm

3 (w)| = O(1) as w → 0

and
|fm

1 (w)| = o(|w| −1) as w → 0.

Now (231) yields |fm
1w(w)| = O(|w|m−2β), and by Lemma 6 of Section 3.1 we

find that fm
1 ∈ C0,μ(Bδ, C) for all μ < min(1, m − 2β + 1). By letting w → 0

in relation (24) we conclude (21): ab = fm
2 (0)fm

3 (0) = 0.

First subcase: a �= 0, b = 0. Then case (i) of Theorem 3, Section 3.1, holds
with m ≥ 1, and this implies (i) of Lemma 3 since we have already shown
that

|fm
1w(w)| = O(|w|m−2β) as w → 0.

Second subcase: a = 0, b �= 0. Here case (ii) of Theorem 3, Section 3.1, holds
with m ≥ 1. In particular,

|fm
2w(w)| = O(|w|m+β−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α) as w → 0.

By virtue of a = fm
2 (0) = 0 and Lemma 6 of Section 3.1 we find

|fm
2 (w)| = O(|w|μ) for all μ < min(1, m + β − 2α + 1) = 1.

Finally we obtain from (231)

|fm
1w(w)| = O(|w|m−2β |w|2μ + |w|m−2α) = O(|w|m−2α) as w → 0.

Thus Lemma 3 is proved. �
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Now we finish the proof of Theorem 1.
From (10), (12) and (17) we infer

Xw(w) = T (x(w))∗U Diag[1, wα−1, w−α]F (w)
= wα−1T (x(w))∗U Diag[w1−α, 1, w1−2α]F (w).

Let us assume that (i) of Lemma 3 holds true whence in particular

fm
2 ∈ C0,μ(Bδ, C), fm

2 (0) �= 0.

Now we define ψ = (ψ1, ψ2, ψ3) by

ψ(w) := w−mU Diag [w1−α, 1, w1−2α]F (w)(25)

=
1√
2
fm
2 (w)

⎛
⎝ 1

−i
0

⎞
⎠+

1√
2
w1−2αfm

3 (w)

⎛
⎝ 1

i
0

⎞
⎠

+ w1−αfm
1 (w)

⎛
⎝ 0

0
1

⎞
⎠

and claim that ψ is Hölder continuous in B
+

δ for 0 < δ � 1 and satisfies

(+) ψ1(0) �= 0, ψ2(0) �= 0, ψ3(0) = 0.

First we note that ψ3(w) = w1−αfm
1 (w) is Hölder continuous in B

+

δ with
ψ3(0) = 0. In fact, if m ≥ 1 then fm

1 is Hölder continuous according to part
(δ) in the proof of Lemma 3. If, however, m = 0, then f0

1 = F1, and so we
have according to Lemma 3, (i), and formula (18) that

(++) |F1(w)| = O(|w|ν−1|), |F1,w(w)| = O(|w| −2β) for w → 0.

We distinguish two cases:

(i) 2α > 1: Then we have −2β > −1, and by (++) and Lemma 6 in Section 3.1,
the function f0

1 is Hölder continuous in B
+

δ . Thus also ψ3 is Hölder continuous
in B

+

δ , and ψ3(0) = 0 since α < 1.

(ii) 2α < 1: By (++) and Lemma 6 in Section 3.1 the function wf0
1 (w) is of

class Cμ(Bδ) for all δ < 2α, and wf0
1 (w) → 0 as w → 0. Therefore,

|w1−αf0
1 (w)| = O(|w|α−ε) for w → 0 and 0 < ε � 1;

consequently ψ3 is continuous in B
+

δ with ψ3(0) = 0. Now we estimate
|ψ3(w1) − ψ3(w2)| for any w1, w2 ∈ B

+

δ \ {0}; w.l.o.g. we assume |w1| ≤ |w2|,
whence |w2| ≥ 1

2 |w2 − w1|. Then
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|ψ3(w1) − ψ3(w2)|
≤ |w−α

1 − w−α
2 | |w1f

0
1 (w1)| + |w2| −α|w1f

0
1 (w1) − w2f

0
2 (w2)|

≤ c{|w1| −α|w2| −α|w1 − w2|α|w1|2α−ε + |w2| −α|w1 − w2|2α−ε}
≤ c{|w2| −α|w1 − w2|α|w1|α−ε + |w1 − w2|α−ε} ≤ c|w1 − w2|α−ε,

which shows that ψ3 is Hölder continuous in B
+

δ also in case (ii).
Now we infer from (18), (24) the identity

w1−2αfm
3 (w) = − [w1−αfm

1 (w)]2

2fm
2 (w)

.

Since the right-hand side is Hölder continuous in B+
δ (note that fm

2 (0) �= 0),
the same holds for w1−2αfm

2 (w); thus we arrive at w1−2αfm
3 (w) → 0 for w →

0. Therefore, ψ is Hölder continuous and satisfies (+). Because of T (0) = Id,
also the function Φ(w) := T (x(w))∗ψ(w) satisfies Φ1(0) �= 0, Φ2(0) �= 0 and
Φ3(0) = 0. Since T is Lipschitz continuous and ψ and X are Hölder continuous,
also Φ is of class C0,ν1(B+

δ , C3) where ν1 := min(ν, μ). Because of (25) we have

Xw(w) = wα−1+mΦ(w) = wα−1+mT (x(w))∗ψ(w),

that is,

xw(w) = wα−1+mΦ1(w), Φ1(0) �= 0,

yw(w) = wα−1+mΦ2(w), Φ2(0) �= 0,(26)
|zw(w)| = |wα−1+m| |Φ3(w)| = O(|w|λ),

as w → 0, with λ > α − 1 + m. This proves relation (2).
On the other hand, let us assume that (ii) of Lemma 3 occurs; then we

argue with the function

ψ̃(w) :=
1√
2
fm
3 (w)

⎛
⎝ 1

i
0

⎞
⎠+

1√
2
w2α−1fm

2 (w)

⎛
⎝ 1

−i
0

⎞
⎠+ wαfm

1 (w)

⎛
⎝ 0

0
1

⎞
⎠

instead of ψ, and similar arguments show that ψ̃(w) is Hölder continuous on
B+

δ and that ψ̃1(0) �= 0, ψ̃2(0) �= 0, ψ̃3(0) = 0. In this case we have γ = m − α
because of

wm−αψ̃(w) = U Diag[1, wα−1, w−α]F (w)

and
Xw(w) = wm−αT (x(w))∗ψ̃(w);

thus (2) holds with γ = m − α.
From the conformality condition

x2
w(w) + y2

w(w) + z2
w(w) = 0, w ∈ I−

δ ∪ I+
δ ,
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we infer, using (2), that

0 = w2γ [Φ2
1(w) + Φ2

2(w)] + O(|w|2λ) as w → 0,

where γ = α − 1 + m or m − α. Letting w → 0, we obtain

0 = Φ2
1(0) + Φ2

2(0)

which proves (1).
Relation (3) follows by integrating formula (2), using the fact that

X(w) = 2 Re
[∫ r

0

Xw(reiϕ)eiϕ dr

]
.

Thus

x(w) + iy(w) =

{
wα+m[c + o(1)]
wm−α+1[c + o(1)] as w → 0(27)

in the two cases respectively. Relation (27) and the boundary conditions imply
that m = 2k in the first and m = 2k + 1 in the second case.

Finally we have to consider the normal

N(w) = (N1, N2, N3) =
Xu ∧ Xv

|Xu ∧ Xv | .

Since

|Xu ∧ Xv | = 2|Xw |2 = 2|w|2γ [|Φ1(w)|2 + |Φ2(w)|2] + O(|w|2λ), λ > γ.

and
Xu ∧ Xv = 2(Im(ywzw), −Im(xwzw), Im(xwyw))

we find by means of (2) that

lim
w→0

N1(w) = lim
w→0

[
const

|w|γ+λ

|w|2γ

]
= 0 since λ > γ,

and
lim
w→0

N2(w) = 0.

Finally

lim
w→0

N3(w) = 2 lim
w→0

Im(xw(w)yw(w))
|Xw(w)|2 = 2

Im(Φ1(0)Φ2(0))
|Φ1(0)|2 + |Φ2(0)|2 = ±1

since Φ1(0) = ±iΦ2(0), and Theorem 1 is proved. �
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Proof of Theorem 2. If Γ+ and Γ − are straight lines, then the matrix T is
the identity Id|3

R
, whence g(w) = Xw(w) and dG

dw (w) = Xww(w) = 0 almost
everywhere in Bδ − {0}. According to Theorem 1.15 in Vekua [1] (or Satz 1.17
in Vekua [2]) we see that G and hence F are holomorphic on Bδ(0). By the
definition of F we obtain

Xw(w) = G(w) = U Diag[1, wα−1, w−α]F (w)

=
wα−1F2(w)√

2

⎛
⎝ 1

−i
0

⎞
⎠+

w−αF3(w)√
2

⎛
⎝ 1

i
0

⎞
⎠+ F1(w)

⎛
⎝ 0

0
1

⎞
⎠ .

Putting H1 := F1, H2 := (
√

2)−1F2 and H3 := (
√

2)−1F3 we obtain represen-
tation (6). Finally (7) follows by integration, and (5) is a consequence of (18).
Thus Theorem 2 is proved. �

3.4 An Asymptotic Expansion for Solutions
of the Partially Free Boundary Problem

The aim of this section is to prove an analogue of Theorem 1 in Section 3.3
for minimal surfaces with partially free boundaries. Here the point of interest
is the intersection point of the boundary arc Γ with the supporting surface
S. Let us again start with an instructive example:

Let S be the coordinate plane {z = 0} and

Γ = {(x, y, z) : z = x tan(απ), y = 0, 0 ≤ x ≤ 1},

Fig. 1.

where α ∈ (0, 1
2 ). For each k ∈ N ∪ {0} we consider the functions

f1(w) = wα+2k, f2(w) = w2−α+2k,
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f3(w) = −wα+1+2k, f4(w) = −w1−α+2k,

and the associated minimal surfaces

Xj(u, v) = (xj(u, v), yj(u, v), zj(u, v)), j ∈ {1, 2, 3, 4};

given by

xj(u, v) = Re fj(w), yj(u, v) = 0, zj(u, v) = Im fj(w),
w ∈ B = {(u, v) ∈ R

2 : u2 + v2 < 1, v > 0}, w = u + iv.

Then each Xj , j = 1, 2, 3, 4, is a minimal surface which maps the interval
[−1, 0] onto Γ and [0, 1] into S while X(0, 0) = 0. Also Xj meets the surface
S orthogonally along its trace Xj |[0,1], and hence it is a stationary solution
of a free boundary problem determined by Γ and S. We shall prove that
any minimal surface with a free boundary behaves near the corner point like
one of the four solutions constructed above. More precisely, it will be shown
that

(1) Xw(w) = wγΦ(w) as w → 0,

where γ > −1, and Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) denotes some Hölder con-
tinuous complex valued function with Φ1(0) �= 0, Φ3(0) �= 0, and Φ2(0) = 0
if α �= 1

2 . From the representation (1) we deduce that the surface nor-
mal tends to a limiting position as w → 0. If in particular α �= 1

2 , then
the tangent space of X at the corner P ∈ Γ ∩ S is spanned by the nor-
mal to S at P and the tangent to Γ at P . Thus the solution surface
X must meet the point P at one of the angles απ, (2 − α)π, (1 − α)π
and (α + 1)π depending on whether X behaves like f1, f2, f3, or f4, re-
spectively. In each of these cases X may penetrate S and can wrap P k-
times.

Let us recall some notation. We define the sets I−
δ , I+

δ as in Sections 3.2
and 3.3, and we formulate Assumption A similar as in Section 3.2:

Assumption A. Let S be a regular surface of class C3, and Γ be a regular
arc of class C2,μ which meets S in a common point P at an angle απ with
0 < α ≤ 1

2 . We assume that P is the origin O, that the x, y-plane is tangent to
S at O, and that the tangent vector to Γ at O lies in the x, z-plane. Moreover,
let X(u, v) be a minimal surface of class C0,v(B+

δ , R3) ∩ C2(B+
δ \ {0}, δ > 0,

which satisfies the boundary conditions

(2) X : I−
δ → Γ, X : I+

δ → S, X(0) = P.

We also suppose that X intersects S orthogonally along its free trace X|I+
δ
.

The main result of this section is
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Theorem 1. Suppose that Assumption A holds. Then there exists an R > 0
and a Hölder continuous function Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) defined on
B+

R such that

Xw(w) = wγΦ(w)(3)

holds true on B+
R \ {0} with either γ = α − 1 + m or γ = −α + m for some

integer m ≥ 0. Moreover, we have Φ1(0), Φ2(0), iΦ3(0) ∈ R and

(4) Φ1(0) = ±iΦ3(0) �= 0, Φ2(0) = 0 if α �= 1
2 ,

that is,

Φ2
1(0) + Φ2

2(0) + Φ2
3(0) = 0(5)

and at least two Φj(0) �= 0 if α = 1
2 . The unit normal vector

N(w) = (N1(w), N2(w), N3(w)) =
Xu ∧ Xv

|Xu ∧ Xv | (w)

satisfies
(6)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

limw→0 N(w) =

⎛
⎝ 0

±1
0

⎞
⎠ if α �= 1

2 ,

limw→0 N(w) =

⎛
⎝ c1

c2

0

⎞
⎠ , if α = 1

2 , where c1, c2 ∈ R and c2
1 + c2

2 = 1.

For the trace X(u, 0), u ∈ I+
R , we find

(7) X(u, 0) = uγ+1ψ(u)

with some Hölder continuous function ψ such that ψ(0) = (Φ1(0), Φ2(0), 0).
Furthermore, the oriented tangent vector t(u) = Xu(u,0)

|Xu(u,0)| , u ∈ I+
R , satisfies

(8) lim
w→0+

t(u) =

⎛
⎝±1

0
0

⎞
⎠ if α �= 1

2
,

and

(9) lim
u→0+

t(u) =

⎛
⎝ d1

d2

0

⎞
⎠ if α =

1
2
, where d2

1 + d2
2 = 1.

If, in addition, S is a plane and if Γ is a straight line segment, then there
exist functions H1, H2, H3, holomorphic on BR(0), such that
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Xw(w) = wα−1H1(w)

⎛
⎝ i

0
1

⎞
⎠+ w−αH3(w)

⎛
⎝−i

0
1

⎞
⎠+ w−1/2H2(w)

⎛
⎝ 0

1
0

⎞
⎠(10)

holds true on B+
R \ {0} and

(11) H2
2 (w) + 4H1(w)H3(w) = 0 on BR(0).

Corollary 1. If α �= 1
2 , then there exist some c ∈ C \ {0} and some integer

k ≥ 0 such that one of the following four expansions holds true:

(12) (x + iz )(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wα+2k[c + o(1)], w → 0,

w2−α+2k[c + o(1)], w → 0,

wα+1+2k[c + o(1)], w → 0,

w1−α+2k[c + o(1)], w → 0.

Moreover
|y(w)| = O(|w|λ+1) as w → 0, for some λ > γ

where γ is the exponent in the expansion (x + iz )(w) = wγ [c + o(1)] stated
in (12).

The proof of Theorem 1 consists in an adaptation of the method which
was developed in Section 3.3 for the proof of the corresponding result, see
Theorem 1 in Section 3.3. So from time to time our presentation will be
sketchy and leave the details to the reader as an instructive exercise. We
begin the proof of Theorem 1 with a description of a reflection and a smoothing
procedure. To this end let us henceforth assume that S is locally described by

z = f(x, y), (x, y) ∈ Bε(0) = {(x, y) ∈ R
2 : x2 + y2 < ε},

where f ∈ C3(Bε(0), R), and f(0, 0) = 0, ∇f(0, 0) = 0. Also, Γ may locally
be described by two functions h1(t) and h2(t) of class C2,μ([0, ε], R) such that
(h1(t), h2(t), t) ∈ Γ for t ∈ [0, ε], and h1(0) = h2(0) = h′

2(0) = 0 while
h′

1(0) = cot απ. Thus it follows that the unit tangent vector of Γ at zero is
then given by (cos απ, 0, sin απ). Because of the continuity of X we can select
a number R > 0 such that

X(B+
δ ) ⊂ Kε(0) = {(x, y, z) ∈ R

3 : x2 + y2 + z2 < ε}.

We define the unit vector a(t), t ∈ [0, ε], by

a(t) := [h′
1(t)

2 + h′
2(t)

2 + 1]−1/2

⎛
⎝ h′

1(t)
h′

2(t)
1

⎞
⎠

and the reflection across Γ by
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RΓ (t)Q := 2〈a(t), Q〉a(t) − Q

for Q ∈ R
3, t ∈ [0, ε]. Similarly, we define reflections across S by

RS(x, y)Q := Q − 2〈NS(x, y), Q〉NS(x, y),

for all Q ∈ R
3 and (x, y) ∈ Bε(0) ⊂ R

2, where

NS(x, y) = [1 + f2
x(x, y) + f2

y (x, y)]−1/2

⎛
⎝−fx(x, y)

−fy(x, y)
1

⎞
⎠

is the unit normal of S at the point (x, y, f(x, y)). Identifying the reflections
RΓ and RS with their respective matrices RΓ (t) and RS(x, y), we may con-
struct orthogonal matrices OΓ (t) and OS(x, y) with the properties1

RΓ (t) = OΓ (t) Diag[−1, −1, 1]O∗
Γ (t),

RS(x, y) = OS(x, y) Diag[1, 1, −1]O∗
S(x, y).

We put
TΓ (t) := OΓ (0)O∗

Γ (t)

and
TS(x, y) := OS(0, 0)O∗

S(x, y).

Thus we have obtained matrices RS and TS which are of class C2(Bε(0), R9),
Bε(0) ⊂ R

2, while RΓ and TΓ are of class C1,μ([0, ε], R9). If we extend a(t), t ∈
[0, ε] by ã(t) = a(−t) for t ∈ [−ε, 0] and call the extended functions again a, RΓ

and TΓ , then also a, RΓ , TΓ ∈ C1,μ([−ε, ε]). Now let Kτ denote the cone with
vertex 0 and opening angle τ whose axis is given by x = z cot απ, z ≥ 0, y = 0.
We assume that τ is so small that the vertex 0 is the only point of K2τ ∩ S in
the ball Kε(0). Next we choose a real valued differentiable function η defined
on the punctured ball Kε(0) \ {0} = {0 < x2 + y2 + z2 < ε} which satisfies

η(x, y, z) =

{
1 on Kτ ∩ [Kε(0) \ {0}],
0 on Kε(0) \ {0} \ K2τ ,

and
| ∇η(x, y, z)| ≤ const[x2 + y2 + z2]−1/2 on Kε \ {0}.

We extend η (noncontinuously) by defining η(0, 0, 0) = 0, and denote by
T = T (x, y, z), (x, y, z) ∈ Kε(0), the matrix-valued function

T (x, y, z) := η(x, y, z)[TΓ (z) − TS(x, y)] + TS(x, y).

1 As the symbols t and T are used otherwise, we presently denote the transpose of a matrix

A by A∗.
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Then T is continuous at zero because lim(x,y,z)→0 T (x, y, z) exists and is equal
to IdR3. In fact, T is even Lipschitz continuous on Kε(0) ⊂ R

3 because of

|TΓ (z) − TS(x, y)| ≤ const[x2 + y2 + z2]1/2

and hence | ∇T (x, y, z)| stays bounded as (x, y, z) → 0. Defining

g(w) := T (X(w))Xw(w) for w ∈ B+
R \ {0}

we then obtain

Lemma 1. The function g(w) is of class C0,1(B+
R \ {0}, C3) and has the fol-

lowing properties:

RΓ (0)g(w) = g(w) for all w ∈ I−
R ,(13)

and

RS(0)g(w) = g(w) for all w ∈ I+
R ,(14)

where RS(0) := RS(0, 0).

Proof. The Lipschitz continuity of g(w) is an immediate consequence of the
Lipschitz continuity of T and of the regularity properties of X. Relation (13)
follows similarly as equation (11) in Section 3.3 using the fact that T (X(w)) =
TΓ (z(w)) if w ∈ I−

R . To prove (14), we let w ∈ I+
R ; then

Xu(w) = (xu(w), yu(w), fx(x, y)xu(w) + fy(x, y)yu(w))

and
〈Xu(w), NS(x(w), y(w))〉 = 0.

From the transversality condition we infer that

Xv(w) = 〈Xv(w), NS(x(w), y(w))〉NS(x(w), y(w)),

for all w ∈ I+
R whence

RS(x(w), y(w))Xu(w) = Xu(w),

and
RS(x(w), y(w))Xv(w) = −Xv(w)

or equivalently

(15) RS(x(w), y(w))Xw(w) = Xw(w), w ∈ I+
R .

Now, using (15) and the definition of T , we obtain
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g(w) = T (X(w))Xw(w) = TS(x(w), y(w))Xw(w)

= TS(x, y)RS(x, y)Xw

= OS(0)O∗
S(x, y)OS(x, y) Diag[1, 1, −1]O∗

S(x, y)Xw

= OS(0) Diag[1, 1, −1]O∗
S(0)OS(0)O∗

S(x, y)Xw

= RS(0)TS(x, y)Xw = RS(0)T (X(w))Xw(w)

= RS(0)g(w),

where the argument of X, x, y is always w ∈ I+
R . �

We now reflect g(w) so as to obtain a function G(w),

(16) G(w) :=

{
g(w) if w ∈ B+

R \ {0},

RS(0)g(w) if w ∈ B+
R ;

then G ∈ C0,1(BR(0) \ I−
R , C3) and limv→0+ G(w) = RΓ (0)RS(0) ×

limv→0− G(w) for all w = (u, v) with u ∈ I−
R . Furthermore, G satisfies

(17) |Gw(w)| ≤ c|G(w)|2

almost everywhere in BR, and we infer from Proposition 1 in Section 3.2 that

(18) |G(w)| ≤ c|w|ν−1, w ∈ BR \ {0},

with some constant c, where ν denotes the Hölder exponent of X.
Next we are going to smoothen the jump of G on the interval I−

R by mul-
tiplication with a singular matrix function which is related to the eigenvalues
of the matrix RΓ (0)RS(0). It follows easily that

RΓ (0)RS(0) =

⎛
⎝ cos 2πα 0 − sin 2πα

0 −1 0
sin 2πα 0 cos 2πα

⎞
⎠

and
RΓ (0)RS(0) = U Diag[ei2π(α−1), e−iπ, e−i2πα]U ∗,

where U ∗ is the unitary matrix

1√
2

⎛
⎝ i 0 −i

0
√

2 0
1 0 1

⎞
⎠ .

The smoothed function F (w) = (F1(w), F2(w), F3(w)) is now defined by

(19) F (w) := Diag[w1−α, w1/2, wα]U ∗G(w), for all w ∈ BR(0) \ {0}.

Equation (19) is equivalent to



266 3 Singular Boundary Points of Minimal Surfaces

Xw(w) = T (X(w))−1U Diag[wα−1, w−1/2, w−α]F (w)(20)
for all w ∈ BR(0) \ {0}.

It is easily seen that F is continuous; in particular, we have

lim
v→+0

F (u, v) = lim
v→−0

F (u, v) for all u ∈ I−
R .

In fact we find

Lemma 2. The function F (w) is of class C0,1(BR(0)) \ {0}, C3) and satisfies
the relations

|F1(w)| = O(|w|ν−α)
|F2(w)| = O(|w|ν−1/2) as w → 0(21)
|F3(w)| = O(|w|ν−β)

and β = 1 − α. Furthermore the following differential system holds almost
everywhere on BR(0):

|F1w | ≤ c[|w|α−1|F1|2 + |w|1−3α|F3|2],
|F2w | ≤ c[|w|(1/2)−2β |F1|2 + |w|(1/2)−2α|F3|2],(22)
|F3w | ≤ c[|w|α−2β |F1|2 + |w| −α|F3|2],

where we have dropped the argument w. Moreover, there exist complex-valued
functions χ1, χ2, χ3 which are Hölder continuous on BR(0) such that

F 2
2 (w)χ1(w) + 2F1(w)F3(w)χ2(w)(23)
= [w2α−1F 2

1 (w) + w1−2αF 2
3 (w)](1 − χ3(w)),

and χj(0) = 1 for j = 1, 2, 3.

Proof. Relations (21) follow from the definition of F and from (18). The Lip-
schitz continuity of F on the punctured disk is a consequence of the Lipschitz
continuity of G and of the continuity of F at I−

R . The conformality condi-
tion 〈Xw, Xw 〉 = 0, the definition of G and the relation T (0) = Id imply the
existence of Hölder continuous functions a1(w), a2(w), a3(w) such that

a1(w)G2
1(w) + a2(w)G2

2(w) + a3(w)G2
3(w) = 0 in BR(0) \ {0},

and
a1(0) = a2(0) = a3(0) = 1.

Then (23) follows with

χ1(w) = a2(w), χ2(w) = 1
2 (a1(w) + a3(w)),

χ3(w) = 1 + 1
2 (a1(w) − a2(w)).
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From the definition of G we derive

|G(w)|2 = |w| −2β |F1(w)|2 + |w| −1|F2(w)|2 + |w| −2α|F3(w)|2,

and inequality (17) together with (19) yields

|F1w(w)| ≤ c|w|1−α|G(w)|2,
|F2w(w)| ≤ c|w|1/2|G(w)|2,
|F3w(w)| ≤ c|w|α|G(w)|2,

whence

|F1w(w)| ≤ c[|w| −β |F1|2 + |w| −α|F2|2 + |w|β−2α|F3|2],
|F2w(w)| ≤ c[|w|(1/2)−2β |F1|2 + |w| −1/2|F2|2 + |w|(1/2)−2α|F3|2],
|F3w(w)| ≤ c[|w|α−2β |F1|2 + |w| −β |F2|2 + |w| −α|F3|2].

On the other hand, we deduce from (23) the inequality

|F2|2 ≤ c[|F1| |F3| + |w|2α−1|F1|2 + |w|1−2α|F3|2]
≤ c[|w|2α−1|F1|2 + |w|1−2α|F3|2].

These inequalities imply system (22). �

Relations (211), (213) and (221), (223) are equivalent to (33) and (34) re-
spectively stated in Section 3.1. Hence we infer from Theorem 3 in Section 3.1,
similarly as in Lemma 3 of Section 3.3, the following

Lemma 3. There exists a nonnegative integer m such that the functions
fm

j (w) := w−mFj(w), j = 1, 2, 3 either satisfy
(i) fm

1 (0) �= 0, fm
1 ∈ C0,μ(BR, C) for all μ < min(1, m + α), and

|fm
1w(w)| = O(|w|m−β)

|fm
2w(w)| = O(|w|m+2α−3/2) as w → 0,

|fm
3w(w)| = O(|w|m+3α−2)

or
(ii) fm

1 (0) = 0 and fm
3 (0) �= 0, fm

3 ∈ C0,μ(BR, C) for every μ < min(1, m+β),
and

|fm
1w(w)| = O(|w|m+β−2α)

|fm
2w(w)| = O(|w|m+1/2−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α)

almost everywhere on BR.
If m ≥ 1, then in both cases

(24) [fm
2 (0)]2 + 2fm

1 (0)fm
3 (0) = 0.
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Proof. This can be proved like the corresponding result, Lemma 3, in Sec-
tion 3.3. �

Now we can continue with the proof of Theorem 1. Assume that case (i)
of Lemma 3 holds true; then we put

ψ(w) :=
1√
2
fm
1 (w)

⎛
⎝ i

0
1

⎞
⎠+

1√
2
w1−2αfm

3 (w)

⎛
⎝−i

0
1

⎞
⎠+ w1/2−αfm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠

and
Φ(w) := T −1(X(w))ψ(w), w ∈ B+

R .

Now we claim that ψ is Hölder continuous in B
+

R. On account of Lemma 3, (i)
we first have fm

1 ∈ C0,μ(BR, C) for all μ < min{1, m+α}. Then we distinguish
two cases:

1.) m ≥ 1. Then the functions w1−2αfm
3 (w) and w1/2−αfm

2 (w) are Hölder
continuous. Indeed, we have for w → 0:

(+)
|fm

3 (w)| = O(1), by construction;

|fm
2 (w)| ≤ c{ |w|α−1/2|fm

1 (w)| + |w|1/2−α|f3(w)| } = O(|w|α−1/2).

Here we have employed (23) and α ≤ 1. On account of Lemma 3, (i), we see
that Lemma 6 in Section 3.1 yields the Hölder continuity of fm

2 and fm
3 , and

therefore of ψ, in B
+

R.

2.) m = 0. Now we use (21) instead of (+). By Lemma 6 in Section 3.1 and
Lemma 3, (i), we see that f0

2 = F2 is Hölder continuous for α > 1/4, and so
is f0

3 = F3 for α > 1/3.
If α ≤ 1/3, we consider the function wF3(w), which satisfies

|wF3(w)| = O(|w|ν+α), |[wF3(w)]w | = O(|w|3α−1) for w → 0.

Hence wF3(w) is Hölder continuous for any exponent < 3α, and it vanishes
for w = 0.

For arbitrary w1, w2 ∈ B
+

R \ {0} and 0 < ε � 1 we estimate the expres-
sion |w1−2α

1 F3(w1) − w1−2α
2 F3(w2)| as follows, using w.l.o.g. that |w1| ≤ |w2|

whence |w2| ≥ (1/2)|w1 − w2|:

|w1−2α
1 F3(w1) − w1−2α

2 F3(w2)|
≤ |w−2α

1 − w−2α
2 | |w1F3(w1)| + |w2| −2α|w1F3(w1) − w2F3(w2)|

≤ c{|w1| −2α|w2| −2α|w1 − w2|2α|w1|3α−ε + |w2| −2α|w1 − w2|3α−ε}
≤ c|w1 − w2|α−ε.
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Thus w1−2αF3(w) is Hölder continuous in B
+

R, and similarly one shows the
Hölder continuity of w1/2−αF2(w). Since T −1 is Lipschitz continuous, and
X(w) is Hölder continuous in B

+

R, we see that T −1(X(w)) is Hölder continuous
in B

+

R. This yields the Hölder continuity of Φ(w) = T −1(X(w))ψ(w). On the
other hand, it follows from definition (20) that

(25) Xw(w) = wα−1+mΦ(w), w ∈ B+
R \ {0}.

Because of T (0) = Id, we obtain for α < 1
2 the relations

Φ1(0) =
1√
2
if m

1 (0), Φ3(0) =
1√
2
fm
1 (0) �= 0

(26)
|Φ2(w)| = O(|w|μ

′
) for some μ′ > 0.

Then (25) yields

|yw(w)| = O(|w|λ
′
) for some λ′ > α − 1 + m,

and we also have Ψ2(0) = 0, which is sufficient for the proof of the theorem.
If the second alternative of Lemma 3 holds true, we consider instead of ψ the
function ψ̃ given by

ψ̃(w) :=
1√
2
fm
3 (w)

⎛
⎝−i

0
1

⎞
⎠+

1√
2
w2α−1fm

1 (w)

⎛
⎝ i

0
1

⎞
⎠+ wα−1/2fm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠

and
Φ̃(w) := T −1(X(w))ψ̃(w).

Then Φ̃(w) is Hölder continuous and we have

(27) Xw(w) = w−α+mΦ̃(w), w ∈ B+
R(0) \ {0},

which together with (25) proves (3) of Theorem 1. Also we find for α < 1
2 that

Φ1(0) =
−i√

2
fm
3 (0) �= 0, Φ3(0) =

1√
2
fm
3 (0) �= 0, Φ2(0) = 0,

since (w2α−1fm
1 )(0) = 0 and (wα−1/2fm

2 )(0) = 0. The last relation follows
because of fm

1 (0) = 0, relation (24) if m ≥ 1 or (23) for m = 0, Lemma 3 (ii)
and Lemma 6 of Section 3.1.

If α = 1
2 , we obtain relation (3) with

Φ(w) = T −1(X(w))

⎡
⎣ 1√

2
fm
3 (w)

⎛
⎝−i

0
1

⎞
⎠+

1√
2
fm
1 (w)

⎛
⎝ i

0
1

⎞
⎠+ fm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠
⎤
⎦
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and

Φ2
1(0) + Φ2

2(0) + Φ2
3(0) = − 1

2 [f2
1 (0) − 2f1(0)f3(0) + f2

3 (0)]

+f2
2 (0) + 1

2 [f2
1 (0) + 2f1(0)f3(0) + f2

3 (0)]

= 2f1(0)f3(0) + f2
2 (0) = 0

by (23) and (24).
Then the unit normal of X(w) given by N(w) = Xu ∧Xv

|Xu ∧Xv | (w) satisfies by
virtue of (25) or (27) and because of

(Xu ∧ Xv)(w) = 2(Im(ywzw), −Im(xwzw), Im(xwyw))

the relation

lim
w→0

N(w) = 2[|Φ1(0)|2 + |Φ2(0)|2 + |Φ3(0)|2]−1

⎛
⎜⎜⎝

Im(Φ2(0)Φ3(0))

Im(Φ3(0)Φ1(0))

Im(Φ1(0)Φ2(0))

⎞
⎟⎟⎠ .

But now relation (15) implies RS(0)Φ(0) = Φ(0), and this means that

Im Φ1(0) = 0, Im Φ2(0) = 0, and Re Φ3(0) = 0.

Also, if α < 1
2 , then Φ2(0) = 0, and we arrive at

N1(0) = 0, N3(0) = 0, N2(0) = ±1,

whereas, if α = 1
2 , we conclude that

Nj(0) = ± Re Φj(0)[(Re Φ1(0))2 + (Re Φ2(0))2]−1/2, j = 1, 2,

and
N3(0) = 0.

Finally, we obtain for the tangent vector t(u) = Xu(u,0)
|Xu(u,0)| , u > 0, the asymp-

totic behaviour

lim
u→0+

t(u) = [(Re Φ1(0))2 + (Re Φ2(0))2]−1/2

⎛
⎝Re Φ1(0)

Re Φ2(0)
0

⎞
⎠ ,

which proves the relations (8) and (9).
If S is a plane and Γ is a straight line, then T = IdR3 and g = Xw. Hence G

is holomorphic on BR \ {0} and F is holomorphic on BR. Finally (10) and (11)
follows from (20) if we take

H1 :=
1√
2
F1, H2 := F2, H3 :=

1√
2
F3,

and Theorem 1 is proved. �
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3.5 Scholia

3.5.1 References

The basic idea of this chapter, the Hartman–Wintner method, was described
and developed in the paper [1] of Hartman and Wintner in 1953. Its relevance
for the theory of nonlinear elliptic systems with two independent variables was
emphasized by E. Heinz. In particular, he discovered the use of this method
for obtaining asymptotic expansions of minimal surfaces at boundary branch
points, and of H-surfaces at branch points in the interior and at the boundary.

The results of Sections 3.2–3.4 concerning minimal surfaces with non-
smooth boundaries are due to Dziuk (cf. his papers [1–4]). His work is based
on methods by Vekua [1,2], Heinz [5], and Jäger [1–3].

Earlier results on the behaviour of minimal surfaces at a corner were de-
rived by H.A. Schwarz [3] and Beeson [1]. The boundary behaviour of con-
formal mappings at corners was first treated by Lichtenstein, and then by
Warschawski [4]. The continuity of minimal surfaces in Riemannian manifolds
at piecewise smooth boundaries was investigated by Jost [12].

The proofs in the paper [1] of Marx based on joint work of Marx and
Shiffman concerning minimal surfaces with polygonal boundaries are some-
what sketchy and contain several large gaps. Heinz [19–24] was able to fill these
gaps and to develop an interesting theory of quasi-minimal surfaces bounded
by polygons, thereby generalizing classical work of Fuchs and Schlesinger on
linear differential equations in complex domains that have singularities (see
Schlesinger [1]). A survey of Heinz’s work can be found in the Scholia of
Chapter 6 of Vol. 1.

In this context we also mention the work of Sauvigny [3–6]. The papers of
Garnier are also essentially concerned with minimal surfaces having polygonal
boundaries, but apparently these results were rarely studied in detail and
did not have much influence on the further progress. This might be both
unjustified and unfortunate, see the recent thesis by L. Desideri.

3.5.2 Hölder Continuity at Intersection Points

In Theorem 1 of Section 3.4 we have derived asymptotic expansions for Xw(w)
and N(w) at the points w0 = ±1 if X : B → R

3 is a minimal surface of class
C(Γ, S) with the parameter domain B = {w = u + iv : |w| ≤ 1, v > 0} that is
bounded by I = {(u, 0) : |u| < 1} and C = {w : |w| = 1, v ≥ 0}, and w0 = ±1
are mapped onto the two points P1, P2 where the arc Γ meets the surface S.
The basic assumption (cf. Assumption A) was that X is Hölder continuous
on B. Recently, F. Müller [4] has proved that Hölder continuity of X on B
follows from the much weaker assumption that X merely be continuous on B.
His reasoning even applies to continuous solutions X of

(1) |ΔX| ≤ a| ∇X|2,
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satisfying also

(2) |Xu|2 = |Xv |2, 〈Xu · Xv 〉 = 0,

i.e. to H-surfaces with sup |H| ≤ const.
Let us choose the corner w0 = 1 of B, and consider the 3-gon Ωδ :=

B ∩ Bδ(1) as well as the arcs Iδ := I ∩ ∂Ωδ and Cδ := C ∩ ∂Ωδ. We assume
that both Γ and S are of class C3, and that Γ meets S in P1, P2 only. We fix
P := P2 which is assumed to correspond to the corner w0 = 1, i.e. X(1) = P .
Then F. Müller’s result reads as follows:

Theorem 1. Suppose that

X ∈ C0(Ωδ, R
3) ∩ H1

2 (Ωδ, R
3) ∩ C2(Ωδ \ {1}, R3)

satisfies (1) and (2) in Ωδ as well as

(3) X(w) ∈ Γ for w ∈ Cδ, X(1) = P,

(4) X(w) ∈ S and Xv(w)⊥TX(w)S for w ∈ Iδ.

Then we obtain X ∈ C0,μ(Ωδ′ ) for some μ ∈ (0, 1) and some δ′ ∈ (0, δ).

Sketch of the Proof. 1. Let us introduce local coordinates y = (y1, y2, y3) about
P in the same way as in Section 2.7 such that 0 corresponds to P . Suppose
that x and y are related by a C2-diffeomorphism y �→ x = h(y) from the
ball Kr(0) := {y ∈ R

3 : |y| < r} onto a neighbourhood U of P such that
h−1(S ∩ U) = Kr(0) ∩ {y3 = 0} = Br(0) × {0} and

(5) gjk(y1, y2, 0) = diag(E(y1, y2), E(y1, y2), 1) for (y1, y2) ∈ Br(0),

as well as g13 = g31 = g23 = g32 = 0 and g33 = 1 in Kr(0),

(6) m|ξ|2 ≤ gjk(y)ξjξk ≤ m−1|ξ|2 for y ∈ Kr(0), ξ ∈ R
3,

(7)
∣∣∣∣∂gjk

∂y�
(y)
∣∣∣∣ ≤ M for y ∈ Kr(0).

2. Then there is an ε ∈ [0, δ] such that X(Ωε) ⊂ U . We may assume that
ε = δ. Then Y := h−1(X) lies in the same class as X and satisfies

(8)

|ΔY | ≤ b| ∇Y |2 in Ωε for some b ∈ R, b < 0,

gjk(y)yj
wyk

w = 0 in Ωε,

y(w) ∈ Γ ∗ := h−1(Γ ∩ U) for w ∈ Cε,

y1
v(w) = 0, y2

v(w) = 0, y3(w) = 0 for w ∈ Iε.
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We can assume that Γ ∗ \ {0} ⊂ H+ := {y3 > 0}. Set

Ỹ (w) = (ỹ1(w), ỹ2(w), ỹ3(w)) :=

⎧⎪⎨
⎪⎩

Y (w) w ∈ Ωε,

for
(y1(w), y2(w), −y3(w)) w ∈ Ω

∗
ε ,

where Ω∗
ε := {w ∈ C : w ∈ Ωε}.

Let τ : B → Ω̃ε := Ωε ∪ Iε ∪ Ω∗
ε be a conformal mapping of the unit disk

B onto Ω̃ε, and set Z := Ỹ ◦ τ and

γjk := g̃jk ◦ τ with g̃jk(w) :=

⎧⎪⎨
⎪⎩

gjk(Y (w)) w ∈ Ωε,

for
gjk(Y (w)) w ∈ Ω

∗
ε .

Furthermore, let

Γ+ := Γ ∗, Γ − := {(z1, z2, z3) ∈ R
3 : (z1, z2, −z3) ∈ Γ+}.

Then for some ρ ∈ (0, 1), Sρ(0) := B ∩ Bρ(0), and I+
ρ := [0, ρ), I−

ρ := (−ρ, 0]
and a proper choice of τ we obtain for Z|Sρ(0), which is again denoted by Z,
the following relations, by employing the special form of the gjk:

(9)

|ΔZ| ≤ b| ∇Z|2 in Sρ(0),

γjkzj
wzk

w = 0 in Sρ(0),

Z(w) ∈ Γ+ for w ∈ I+
ρ , Z(w) ∈ Γ − for w ∈ I−

ρ .

By a suitable change of the z-coordinates we can arrange for

Γ ± = {(z1, z2, z3) ∈ R
3 : zj = hj

±(z1), 0 ≤ ±z3 ≤ ε0, j = 1, 2}

with some ε0 > 0 and hj
− ∈ C2([−ε0, 0]), hj

+ ∈ C2([0, ε0]),

(10) (h1
±)′(0) = ±cotg

(απ

2

)
, (h2

±)′(0) = 0, α ∈ [0, 1].

Set

hj(t) :=

⎧⎪⎨
⎪⎩

hj
−(t) −ε0 ≤ t0 ≤ 0

for

hj
+(t) 0 ≤ t0 ≤ ε0

⎫⎪⎬
⎪⎭ , j = 1, 2.

For 0 < ρ � 1 we define ζ = (ζ1, ζ2) by

(11) ζj = zj − hj(z3), j = 1, 2.

Then ζ ∈ C0,1(Sρ(0) \ {0}, R2) ∩ C0(Sρ(0), R2) ∩ H1
2 (Sρ(0), R2) satisfies
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∫
Sρ(0)

2∑
j=1

∇ζj ∇ϕj du dv =
∫

Sρ(0)

2∑
j=1

[gj ∇ϕj + f jϕj ] du dv(12)

for all ϕ = (ϕ1, ϕ2) ∈ C∞
c (Sρ(0), R2),

where we have set for j = 1, 2:

(13) f j := −Δzj ∈ L1(Sρ(0)), gj := −(hj)′(z2)∇z3 ∈ L2(Sρ(0), R2).

Claim. For 0 < ρ � 1 we have

(14) |g1∇ζ1| ≤ a1| ∇ζ1|2 + b1| ∇ζ2|2,

(15) |g1| ≤ a2| ∇ζ1| + b2| ∇ζ2|,

(16) |g2| ≤ a3(ρ)| ∇ζ|,

(17) |f j | ≤ b3| ∇ζ|2 for j = 1, 2,

with positive constants a1, a2 ∈ [0, 1), b1, b2, b3, and a function a3(t) → +0 as
t → +0.

Suppose that the claim is proved. Using the boundary condition

(18) ζ(w) = 0 for w ∈ Iρ := {w = u ∈ R : |u| ≤ ρ}

we extend ζ to a continuous function ζ̃ on Bρ(0)by setting

ζ̃(w) :=

⎧⎨
⎩

ζ(w) for w ∈ Sρ(0),

−ζ(w) for w ∈ Sρ(0).

Furthermore, we have ζ̃ ∈ H1
2 (Sρ(0), R2). In addition, we reflect gj

1 =
−(hj)′(z3)z3

u and f j in an odd way and gj
2 = −(hj)′(z3)z3

v evenly across
Iρ, obtaining g̃j

1, f̃
j , g̃j

2. Then it follows

∫
Bρ(0)

2∑
j=1

∇ζ̃j ∇ϕj du dv =
∫

Bρ(0)

2∑
j=1

[g̃j ∇ϕj + f̃ jϕj ] du dv(19)

for all ϕ ∈
◦

H1
2 (Bρ(0), R2) ∩ L∞(Bρ(0), R2).

One checks that f̃ j and g̃j satisfy growth conditions analogous to (14)–(17)
where the ζj are to be replaced by ζ̃j , whereas a1, a2, a3(ρ), b1, b2, b3 remain
the same. Now one can apply a procedure due to Dziuk [1] (cf. the proof of
Satz 1 in [1]) to show that ζ̃ satisfies a “Dirichlet growth condition” on some
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disk Bρ′ (0) with 0 < ρ′ � 1, and the same holds for ζ on Sρ′ (0). From (11)
one infers that also z1 and z2 satisfy such a condition on Sρ′ (0), using also
(15), (16), and

|zj
w |

(11)

≤ |ζj
w | + |(hj)′z3

w |
(15),(16)

≤ c|ζw |, j = 1, 2,

and

(20) γjkzj
wzk

w = 0

implies that

| ∇z3|2 ≤ const(| ∇z1|2 + | ∇z2|2) on Sρ′ (0) for 0 < ρ′ � 1.

Consequently, Z = (z1, z2, z3) satisfies a Dirichlet growth condition on Sρ′ (0),
and therefore Z is Hölder continuous on Sρ′ (0). Since Ỹ = Z ◦ τ −1, it follows
that Ỹ is Hölder continuous on the closure of Ω̃ε′ for 0 < ε′ � 1, and Y is
Hölder continuous on Ωε′ for 0 < ε′ � 1. Since X = h(Y ), we finally conclude
that X ∈ C0,μ(Ωδ′ ) for some μ ∈ (0, 1) and some δ′ ∈ (0, δ).

It remains to prove the Claim. We begin with (15). From (20) and the
special structure of the gjk, and therefore of the γjk, it follows that

−(z3
w)2 − γ11(z1

w)2 = 2γ12z
1
wz2

w + γ22(z2
w)2 in Sρ(0).

Inserting z1
w = ζ1

w + (h1)′(z3)z3
w into the left-hand side we find

(21) −γ(z3
w − ξ1ζ1

w)(z3
w − ξ2ζ

1
w) = 2γ12z

1
wz2

w + γ22(z2
w)2 in Sρ(0)

with

ξ1,2 := −γ−1[γ11(h1)′(z3) ± i
√

γ11],

γ := 1 + γ11[(h1)′(z3)]2.

We have

(22) |ξ1| = |ξ2| =
{

γ̃11

1 + γ̃11[(h1)′(z3)]2

} 1
2

in Sρ(0).

If |z3
w | ≤ |ξ1| |ζ1

w |, we find

|g1| ≤ 2|(h1)′(z3)| |ξ1| |ζ1
w | ≤ a2| ∇ζ1|,

and this is (15) with a2 < 1 and b2 = 0.
Otherwise we infer from (21)

γ(|z3
w | − |ξ1| |ζ1

w |) ≤ |2γ12z
1
wz2

w + γ22(z2
w)2|;
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thus,

√
γ|z3

w | ≤
{√

|γ12||(h1)′(z3)| +
√

γ22 + |γ12|(h2)′(z3)
}

|z3
w |

+
{√

|γ12| +
√

γ|ξ1|
}

|ζ1
w | +

√
γ22 + |γ12| |ζ2

w |.

Furthermore there is a function c(t) with c(t) → +0 as t → 0 such that

(23) |γ̃12| + |(h2)′(z3)| ≤ c(ρ) on Sρ(0),

due to (5) and (10). Thus we have for 0 < ρ � 1 that

|z3
w | ≤ [1 − c̃(ρ)]−1

{[(
|γ12|

γ

) 1
2

+ |ξ1|
]

|ζ1
w |

+

[(
γ22 + |γ12|

γ

) 1
2

|ζ2
w |
]}

in Sρ(0)(24)

with c̃(ρ) → +0 as ρ → 0.
Using (22) and again (23), we obtain for 0 < ρ � 1 that

|g1| ≤ 2|(h1)′(z3)| |z3
w | ≤ a2| ∇ζ1| + b2| ∇ζ2| in Sρ(0)

with a2 ∈ (0, 1) and b2 > 0, as claimed in (15).
The estimate (14) follows easily from (15), and (16) and (17) are derived

from (10) and (24). Thus we have verified the “Dziuk estimates” of the Claim,
and the proof of the theorem is complete. �

3.5.3

We also note that Dziuk [1] has proved Hölder continuity of a minimal
surface X ∈ C(Γ ) at a corner of the boundary contour Γ , assuming only
X ∈ C0(B, R3). This is relevant for Theorem 1 in Section 3.3 where we have
assumed that X ∈ C0,μ(Bδ(0), R3), which in Chapter 2 was only proved for
minimizers.
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