
Chapter 2

The Boundary Behaviour of Minimal Surfaces

In this chapter we deal with the boundary behaviour of minimal surfaces,
with particular emphasis on the behaviour of stationary surfaces at their
free boundaries. This and the following chapter will be the most technical
and least geometric parts of our lectures. They can be viewed as a section
of the regularity theory for nonlinear elliptic systems of partial differential
equations. Yet these results are crucial for a rigorous treatment of many geo-
metrical questions, and thus they will again illustrate what role the study of
partial differential equations plays in differential geometry.

The first part of this chapter, comprising Sections 2.1–2.3, deals with the
boundary behaviour of minimal surfaces at a fixed boundary. Consider for
example a minimal surface X : B → R

3 which is continuous on B̄ and maps
∂B onto some closed Jordan curve Γ . Then we shall prove that X is as smooth
on B̄ as Γ , more precisely, that X is of class C∞(B̄, R3) (or X ∈ Cω(B̄, R3), or
X ∈ Cm,α(B̄, R3)) if Γ is of class C∞ (or Γ ∈ Cω, or Γ ∈ Cm,α, respectively).
These results are worked out in Section 2.3. In Section 2.1 we shall supply
some results from potential theory that will be needed, and in Section 2.2 we
shall derive various regularity results and estimates for vector-valued solutions
X of differential inequalities of the kind

|ΔX| ≤ a| ∇X|2

which will be crucial for our considerations in Section 2.3.
The central part of this chapter consists of Sections 2.4–2.9 where we

prove analogous regularity results for minimal surfaces with free boundaries
on a support surface S. If the boundary ∂S of S is empty, the reasoning is
considerably simpler than for ∂S �= ∅; in fact this second case has to be viewed
as a Signorini problem (or else, as a thin obstacle problem). For a survey of the
results on the boundary behaviour of minimal surfaces with free boundaries
we refer the reader to Section 2.4.

Finally, in Section 2.10, we shall derive an asymptotic expansion for any
minimal surface at a boundary branch point which is analogous to the expan-
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76 2 The Boundary Behaviour of Minimal Surfaces

sion at an interior branch point that was obtained in Section 3.2 of Vol. 1.
The results of Section 2.10 are based on the discussion in Chapter 3.

2.1 Potential-Theoretic Preparations

In this section we want to supply some results from potential theory which will
be needed in Section 2.3 for investigating the boundary behaviour of minimal
surfaces which are bounded by smooth Jordan arcs. The reader who is well
acquainted with Schauder estimates may skip this part at a first reading. Al-
though a large part of the material can be found in the treatise of Gilbarg and
Trudinger [1], a brief presentation may be welcome because it will enable the
reader to study the essential results of Section 2.2 on solutions of differential
inequalities without consulting additional sources.

In what follows we shall use the following notation: We write w = u + iv,
ζ = ξ + iη, dζ = dξ + i dη, and d2ζ = dξ dη denotes the two-dimensional area
element. Moreover, we set

∂

∂w
=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w
=

1
2

(
∂

∂u
+ i

∂

∂v

)
,

Δ =
∂2

∂u2
+

∂2

∂v2
= 4

∂

∂w

∂

∂w
,

BR = BR(0) = {w ∈ C : |w| < R}, B := B1(0).

Green’s function GR(w, ζ) for the disk BR is given by

(1) GR(w, ζ) =
1
2π

log
∣∣∣∣ R

2 − wζ

R(ζ − w)

∣∣∣∣ ,
and the Poisson kernel PR(w, ϕ) = P∗

R(w, ζ), w = reiθ, ζ = Reiϕ ∈ ∂BR, is
defined1 by

PR(w, ϕ) =
1
2π

R2 − r2

R2 − 2rR cos(θ − ϕ) + r2
=

1
2π

Re
R + rei(θ−ϕ)

R − rei(θ−ϕ)

(2)

=
1
2π

Re
ζ + w

ζ − w
=

1
2π

R2 − |w|2
|ζ − w|2 = −R

∂

∂νζ
GR(w, ζ),

where νζ denotes the exterior normal to ∂BR at ζ. One computes that

(3)
∂

∂w
GR(w, ζ) =

1
4π

(
1

ζ − w
− ζ

R2 − wζ

)
,

1 Note that often the expression 1
R

PR(w, ϕ) = − ∂
∂νζ

GR(w, ζ) is called Poisson kernel; cf.

for instance Gilbarg and Trudinger [1], formula (2.29).
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whence it follows that

(4)
∂s

∂ws
GR(w, ζ) =

(s − 1)!
4π

[
1

(ζ − w)s
− ζ

s

(R2 − wζ)s

]
.

A straight-forward estimation shows that

R|ζ − w| ≤ |R2 − wζ| for all w, ζ ∈ BR,

which implies

(5)
∣∣∣∣ ∂s

∂ws
GR(w, ζ)

∣∣∣∣ ≤ (s − 1)!
2π

1
|ζ − w|s for all ζ, w ∈ BR with w �= ζ.

The following results is a direct consequence of Green’s formula and can
be found in any textbook on partial differential equations.2

Proposition 1. Any function x ∈ C0(BR)∩C2(BR) with q := Δx ∈ L∞(BR)
and x(ϕ) := x(Reiϕ) can be written in the form

(6) x(w) = h(w) −
∫

BR

GR(w, ζ)q(ζ) d2ζ,

where

(7) h(w) :=
∫ 2π

0

PR(w, ϕ)x(ϕ) dϕ

denotes the harmonic function in BR which is continuous on BR and satisfies
h = x on ∂BR.

Proposition 2. Suppose that x(ϕ) is of class C2(R) and periodic with the
period 2π, and let q(w) be of class L∞(B). Assume also that

sup
B

|q| ≤ α, sup
R

|x′ ′ | ≤ β

holds for some numbers α, β. Then the function x(w), w ∈ B, defined by (6)
and (7) for R = 1, can be extended to B as a function which is of class
C1,μ(B) for any μ ∈ (0, 1) and satisfies x(eiϕ) = x(ϕ). For suitable numbers
c1(α, β) and c2(α, β, μ) depending only on the indicated parameters and not
on q and x, we have

(8) | ∇x|0,B ≤ c1(α, β), [∇x]μ,B ≤ c2(α, β, μ).

If q ∈ C0,σ(B) holds for some σ ∈ (0, 1), then we have x ∈ C2,σ(B), and the
equation Δx = q is satisfied on B. Moreover, for any R, R′ with 0 < R′ <
R ≤ 1 the function y(w) defined by

2 Cf. for instance Gilbarg and Trudinger [1], p. 18; John [1], p. 96.
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(9) y(w) :=
∫

BR

GR(w, ζ)q(ζ) d2ζ

is of class C2,σ(BR) and satisfies

(10) |y|2+σ,BR′ ≤ c(R, R′, σ)|q|0+σ,BR
.

Here and in the following we use the notation

|x|0,B = sup
B

|x|, [x]μ,B = sup
{

|x(w) − x(w′)|
|w − w′ |μ : w, w′ ∈ B, w �= w′

}
,

|x|s,B =
s∑

k=0

| ∇kx|0,B , |x|s+μ,B + |x|s,B + [∇sx]μ,B .

Moreover, we shall use the notation ∇w = ( ∂
∂u , ∂

∂v ) in order to distinguish the
real gradient ∇wf = (fu, fv) of a function f(u, v) from its complex derivative
fw = 1

2 (fu − ifv).
The reader will find more complete results on Schauder estimates in

Gilbarg and Trudinger [1], Chapters 2–4 and 6; Morrey [8], Chapters 2 and 6;
Stein [1]; Agmon, Douglis, and Nirenberg [1,2]. We shall use some of these re-
fined results later on. For the present the reader might welcome to see how one
can obtain Schauder estimates in the simple situation at hand. Proposition 2
and related results will be proved by a sequence of auxiliary results.

Lemma 1. Let H(w, ζ) be a C2-kernel on the set {w, ζ ∈ BR : w �= ζ} such
that

(11) |H(w, ζ)| ≤ b

∣∣∣∣log
1
r

∣∣∣∣ , | ∇wH(w, ζ)| ≤ b

r
, | ∇2

wH(w, ζ)| ≤ b

r2

holds for r = |w − ζ| and some constant b > 0. In addition we assume that
q ∈ L∞(BR). Then the function y(w) defined by

(12) y(w) =
∫

BR

H(w, ζ)q(ζ) d2ζ, w ∈ BR,

can be extended to a function of class C1,μ(BR) satisfying

(13) |y|1,BR
≤ c1(b, R)|q|0,BR

,

(14) [∇y]μ,BR
≤ c2(b, R, μ)|q|0,BR

,

with constants c1, c2 depending on the parameters b, R and b, R, μ, respectively.
Moreover, we have

(15) ∇wy(w) =
∫

BR

∇wH(w, ζ)q(ζ) d2ζ for w ∈ BR.
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Proof. As 1
r ∈ L1(BR) and q ∈ L∞(BR), the integrals (12) and (15) are well

defined. We choose a cut-off function ηh ∈ C∞(R) with 0 ≤ ηh ≤ 1, ηh(r) = 0
for r ≤ h, ηh(r) = 1 for r ≥ 2h, and η′

h(r) ≤ 2
h . Then we set

Hh(w, ζ) := ηh(r)H(w, ζ) with r = |w − ζ|.

Then we have |Hh| ≤ |H| and H = Hh for r ≥ 2h. The function

(16) yh(w) :=
∫

BR

Hh(w, ζ)q(ζ) d2ζ, w ∈ BR,

is of class C2 and, setting a := |q|0,BR
, we obtain

|y(w) − yh(w)| ≤ a

∫
BR ∩B2h(w)

{ |H| + |Hh| } d2ζ ≤ 2a

∫
BR ∩B2h(w)

|H| d2ζ

≤ const · h → 0 as h → 0.

Thus we infer that y ∈ C0(BR).
Now we define

z(w) :=
∫

BR

∇wH(w, ζ)q(ζ) d2ζ, w ∈ BR.

We want to show that y ∈ C1(BR) and ∇wy = z. In fact, we have

∇yh(w) = Ih
1 (w) + Ih

2 (w)

with

Ih
1 (w) :=

∫
BR

ηh(r)∇wH(w, ζ)q(ζ) d2ζ,

Ih
2 (w) :=

∫
BR

∇wηh(r)H(w, ζ)q(ζ) d2ζ.

As before we show

|z(w) − Ih
1 (w)| ≤ const · h → 0 as h → 0,

and a straight-forward estimate yields

|Ih
2 (w)| ≤ const h−1h2−α for any α > 0

whence we infer that ∇yh tends uniformly to z on every Ω � BR. Together
with the uniform convergence of yh to y on Ω � BR as h → 0 we infer that
y ∈ C1(BR) and ∇y(w) = z(w) for any w ∈ BR. Consequently

|y(w)| + | ∇wy(w)| ≤
∫

BR

{ |H(w, ζ)| + | ∇wH(w, ζ)| } |q(ζ)| d2ζ

≤ c(b, R)a for all w ∈ BR;

thus (13) is also verified.
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Now let w1, w2 ∈ BR, and set ρ := |w1 − w2|. Then we infer from (15) that
∣∣∣∣∂y

∂u
(w1) − ∂y

∂u
(w2)
∣∣∣∣ =
∣∣∣∣
∫

BR

{
∂H

∂u
(w1, ζ) − ∂H

∂u
(w2, ζ)

}
q(ζ) d2ζ

∣∣∣∣
≤ a

∫
BR ∩B2ρ(w1)

∣∣∣∣∂H

∂u
(w1, ζ)

∣∣∣∣ d2ζ + a

∫
BR ∩B2ρ(w1)

∣∣∣∣∂H

∂u
(w2, ζ)

∣∣∣∣ d2ζ

+ a

∫
BR \B2ρ(w1)

∣∣∣∣∂H

∂u
(w1, ζ) − ∂H

∂u
(w2, ζ)

∣∣∣∣ d2ζ.

Note that∣∣∣∣∂H

∂u
(w1, ζ)

∣∣∣∣ ≤ b|w1 − ζ| −1,

∣∣∣∣∂H

∂u
(w2, ζ)

∣∣∣∣ ≤ b|w2 − ζ| −1,

and the mean value theorem implies
∣∣∣∣∂H

∂u
(w1, ζ) − ∂H

∂u
(w2, ζ)

∣∣∣∣ ≤ 2bρ

|w∗ − ζ|2

for some w∗ = (1 − t)w1 + tw2, 0 < t < 1. If |ζ − w1| ≥ 2ρ, we infer that

|ζ − w∗ | ≥ |ζ − w1| − |w1 − w∗ | ≥ 1
2

|ζ − w1|,

and therefore∣∣∣∣∂H

∂u
(w1, ζ) − ∂H

∂u
(w2, ζ)

∣∣∣∣ ≤ 8bρ

|ζ − w1|2 for |ζ − w1| ≥ 2ρ.

Thus we arrive at∣∣∣∣∂y

∂u
(w1) − ∂y

∂u
(w2)
∣∣∣∣

≤ ab

[∫
B2ρ(w1)

|w1 − ζ| −1 d2ζ

+
∫

B3ρ(w2)

|w2 − ζ| −1 d2ζ + 8ρ

∫
BR \B2ρ(w1)

|w1 − ζ| −2 d2ζ

]

≤ ab

[
4πρ + 6πρ + 16πρ log

R

ρ

]
≤ ac(b, R, μ)ρμ

for any μ ∈ (0, 1) and ρ = |w1 − w2|, and (14) is proved. The estimates (13)
and (14) imply that y can be extended to BR as a function of class C1,μ(BR)
for any μ ∈ (0, 1). �

Lemma 2. Let H(w, ζ) be a kernel of the form

H(w, ζ) = K(w − ζ) = K(u − ξ, v − η)
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for some function K(ζ) which is of class C2 on {ζ �= 0}, and suppose that
H(w, ζ) satisfies the growth condition (11). Furthermore we assume that q(w)
is of class C0,μ(BR), 0 < μ < 1. Then the function y(w) defined by (12) is of
class C2(BR), and we have

(17) | ∇2y|0,BR′ ≤ c1|q|μ,BR
, |y|2,BR′ ≤ c2|q|μ,BR

for 0 < R′ < R. Here c1 and c2 denote constants depending solely on b, μ, R
and R′.

Moreover, if K(ζ) is of class C3 for ζ �= 0 and if also

(11∗) | ∇3
wH(w, ζ)| ≤ b|w − ζ| −3,

then y(w) is of class C2,μ(BR) and satisfies

(18) | ∇2y|μ,BR′ ≤ c3|q|μ,BR
, |y|2+μ,BR′ ≤ c4|q|μ,BR

for 0 < R′ < R. Here the numbers c3 and c4 only depend on b, μ, R′, and R.

Proof. We set again Hh = ηhH where ηh is chosen as in the proof of Lemma 1;
but in addition we arrange that |η′ ′

h(r)| ≤ γh−2 for some constant γ > 0. Then

zh(w) :=
∫

BR

∇wHh(w, ζ)q(ζ) d2ζ

is of class C1(BR, R2), and for D = ∂
∂u or ∂

∂v we can write

Dzh(w) =
∫

BR

D∇wHh(w, ζ)q(ζ) d2ζ

=
∫

BR

D∇wHh(w, ζ)[q(ζ) − q(w)] d2ζ + q(w)
∫

BR

D∇wHh(w, ζ) d2ζ.

By integration by parts, we obtain∫
BR

Du∇wHh(w, ζ) d2ζ = −
∫

BR

Dξ ∇wHh(w, ζ) d2ζ

= −
∫

∂BR

∇wHh(w, ζ) cos α ds(ζ),

where ds is the line element on ∂BR and cos α = ξ
|ζ| . If 2h < |w − ζ| we obtain

Dzh(w) = φh(w) − q(w)
∫

∂BR

∇wH(w, ζ) cos α ds(ζ)

with cos α = ξ
|ζ| or = η

|ζ| and

φh(w) :=
∫

BR

D∇wHh(w, ζ)[q(ζ) − q(w)] d2ζ.
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Similarly we set

(19) φ(w) :=
∫

BR

D∇wH(w, ζ)[q(ζ) − q(w)] d2ζ.

For r = |w − ζ| and a := |q|μ,BR
we have

|D∇wH(w, ζ)| ≤ br−2 and |q(ζ) − q(w)| ≤ arμ,

whence

(20) |φ(w)|, |φh(w)| ≤ 2πabμ−1Rμ.

By a similar reasoning we obtain (∇ = ∇w and 0 < h 
 1):

|φh(w) − φ(w)| ≤
∫

BR ∩B2h(w)

|ηh(w) − 1| |D∇H(w, ζ)| |q(ζ) − q(w)| d2ζ

+
∫

BR

{ | ∇2ηh| |H| + 2| ∇ηh| | ∇H| } |q(ζ) − q(w)| d2ζ

≤ const · hμ

(
1 + log

1
h

)
→ 0 as h → 0.

Thus Dzh(w) tends uniformly to

φ(w) − q(w)
∫

∂BR

∇wH(w, ζ) cos α(ζ) ds(ζ)

as h → 0, for w ∈ BR′ and 0 < R′ < R. On the other hand, if yh is defined
by (16), we know that

zh = ∇yh, Dzh = D∇yh, zh ∈ C1,

and, as shown in the proof of Lemma 1, we also have

lim
h→0

|y − yh|1,BR′ = 0 for 0 < R′ < R.

Consequently we have y ∈ C2(BR) and

(21) D∇y(w) = φ(w)−q(w)
∫

∂BR

∇wH(w, ζ) cosα(ζ) ds(ζ) for |w| < R.

Now inequalities (17) follow from (20) and (21).
Finally, taking assumption (11∗) into account, we derive from the repre-

sentation formulas (19) and (21) that y is of class C2,μ(BR) and in conjunction
with (17) that the estimates (18) are satisfied. Since we may proceed in the
same way as in the last part of the proof of Lemma 1, we shall skip this part
of the proof. �
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Proposition 3. Suppose that x ∈ C0(BR) ∩ C2(BR) and that ∇x ∈ L2(BR)
and Δx ∈ L∞(BR). Then we obtain the following representation formulas
which are satisfied for w ∈ BR:

(22) x(w) =
1
2π

∫
∂BR

(
Re

ζ + w

ζ − w

)
x(ζ)

dζ

iζ
−
∫

BR

GR(w, ζ)Δx(ζ) d2ζ,

(23)
∂

∂w
x(w) =

1
2πi

∫
∂BR

x(ζ)
(ζ − w)2

dζ −
∫

BR

∂

∂w
GR(w, ζ)Δx(ζ) d2ζ,

xu(0) =
1

πR2

∫
BR

xu(u, v) du dv − 1
2π

∫
BR

u

[
1
r2

− 1
R2

]
Δx(u, v) du dv,(24)

xv(0) =
1

πR2

∫
BR

xv(u, v) du dv − 1
2π

∫
BR

v

[
1
r2

− 1
R2

]
Δx(u, v) du dv,(25)

r = |w| =
√

u2 + v2.

Proof. Formula (22) is merely a reformulation of (6) and (7). Differentiating
(22), it follows in conjunction with Lemma 2 (in particular, with (15)) that
(23) holds if we take

2ζ

(ζ − w)2
=

∂

∂w

ζ + w

ζ − w
= 2

∂

∂w
Re

ζ + w

ζ − w
= 2

∂

∂w

R2 − |w|2
|ζ − w|2

for ζ ∈ ∂BR into account.
By applying (23) to w = 0 and noting that

∂

∂w
GR(0, ζ) =

1
4π

(
1
ζ

− ζ

R2

)

we infer that

xw(0) =
1

2πi

∫
∂BR

x(ζ)
ζ2

dζ −
∫

BR

ζ

4π

(
1

|ζ|2 − 1
R2

)
Δx(ζ) d2ζ.

Because of ζ−2 dζ = −R−2 dζ, it follows that

1
2πi

∫
∂BR

ζ−2x(ζ) dζ = − 1
2πiR2

∫
∂BR

x(ζ) dζ

= − 1
2πiR2

∫
∂BR

x(ζ)(dξ − i dη)

= − 1
2πiR2

∫
BR

(−ixξ − xη) dξ dη

=
1

πR2

∫
BR

xζ d2ζ.
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Replacing ζ by w, we arrive at (24) and (25) by separating the real and
imaginary parts. Actually we first prove (24) and (25) for BR′ , R′ < R, instead
for BR, and then we let R′ → R. �

Now we prove Schwarz’s result concerning the boundary continuity of Pois-
son’s integral.

Lemma 3. Let x(ϕ) be a continuous, 2π-periodic function on R, and let
h(w) :=

∫ 2π

0
PR(w, ϕ)x(ϕ) dϕ be the corresponding Poisson integral, which

is a harmonic function of w ∈ BR. Then we obtain h(w) → x(ϕ) as
w → Reiϕ. Thus h(w) can be extended to a continuous function on BR such
that h(Reiϕ) = x(ϕ) for all ϕ ∈ R.

Proof. It suffices to treat the case R = 1. Then we have to prove
limr→1−0 h(reiθ) = x(θ) uniformly in θ ∈ R. We can write

h(reiθ) =
1
2π

∫ π

−π

1 − r2

|eiϕ − r|2 x(θ + ϕ) dϕ.

Because of the identity

1
2π

∫ π

−π

1 − r2

|eiϕ − r|2 dϕ = 1

it follows that

h(reiθ) − x(θ) =
1
2π

∫ π

−π

1 − r2

|eiϕ − r|2 [x(θ + ϕ) − x(θ)] dϕ

whence

|h(reiθ) − x(θ)| ≤ 1
2π

∫ π

−π

1 − r2

|eiϕ − r|2 |x(θ + ϕ) − x(θ)| dϕ

≤ 1
2π

∫ −δ

−π

· · · +
1
2π

∫ δ

−δ

· · · +
1
2π

∫ π

δ

· · · = I1 + I2 + I3

for any δ ∈ (0, π
2 ). Fix some ε > 0 and choose δ > 0 so small that

|x(ϕ) − x(θ)| < ε for all ϕ and θ with |ϕ − θ| < δ. Then we obtain

I2 ≤ ε · 1
2π

∫ δ

−δ

1 − r2

|eiϕ − r|2 dϕ ≤ ε.

Moreover, by setting M := maxR |x| we obtain

I1, I3 ≤ 1
2π

(π − δ)(1 − r)(1 + r)
2M

sin2 δ
≤ 2M

sin2 δ
(1 − r)

since |eiϕ − r|2 ≥ sin2 δ for δ ≤ |ϕ| ≤ π. Thus we arrive at
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|h(reiθ) − x(θ)| ≤ ε +
4M

sin2 δ(ε)
(1 − r) for r ∈ (0, 1)

and therefore

lim
r→1−0

h(reiθ) = x(θ) uniformly in θ. ��

As a by-product of this proof we have found:

Lemma 4. Let h ∈ C0(B) ∩ C2(B) be harmonic in B and suppose that
|h(eiϕ) − h(eiθ)| < ε holds for all ϕ with |ϕ − θ| ≤ δ, δ ∈

(
0, π

2

)
. Then it

follows that

(26) |h(reiθ) − h(eiθ)| ≤ ε +
4|h|0,∂B

sin2 δ
(1 − r)

holds for all r ∈ (0, 1).

Lemma 5. Let h ∈ C0(BR) ∩ C2(BR) be harmonic in BR, and suppose that
the boundary values x(ϕ) of h defined by x(ϕ) := h(Reiθ) are of class C2(R)
and satisfy |x′ ′(ϕ)| ≤ k for all ϕ ∈ R. Then we obtain

(27) | ∇h(w)| ≤ cR−1k for all w ∈ BR,

where c is an absolute constant independent of h and R.

Proof. By virtue of an obvious scaling argument we can restrict our attention
to the case R = 1. Then we have to prove

| ∇h(w)| ≤ const k for w ∈ B.

Let h∗ be the conjugate harmonic function to h. Then f(w) := h(w)+ ih∗(w)
is a holomorphic function of w = u + iv, and we have the convergent power
series expansion

f(w) =
∞∑

l=0

clw
l for |w| < 1.

Set c0 = 1
2 (a0 − ib0), cl = al − ibl if l ≥ 1, al, bl ∈ R. Then we have for w = reiϕ

that

h(w) =
a0

2
+

∞∑
l=1

rl(al cos lϕ + bl sin lϕ)

whence

x(ϕ) =
a0

2
+

∞∑
l=1

(al cos lϕ + bl sin lϕ),

al =
1
π

∫ 2π

0

x(ϕ) cos lϕ dϕ = − 1
πl2

∫ 2π

0

x′ ′(ϕ) cos lϕ dϕ,

bl =
1
π

∫ 2π

0

x(ϕ) sin lϕ dϕ = − 1
πl2

∫ 2π

0

x′ ′(ϕ) sin lϕ dϕ.
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Because of f ′ = hu + ih∗
u = hu − ihv we infer that

| ∇h(w)| = |f ′(w)| =

∣∣∣∣∣
∞∑

l=1

l(al − ibl)wl−1

∣∣∣∣∣

≤
∞∑

l=1

l
√

a2
l + b2

l ≤
{ ∞∑

l=1

1
πl2

}1/2 [∫ 2π

0

|x′ ′(ϕ)|2 dϕ

]1/2

≤ π√
3
k if |w| < 1,

taking Schwarz’s inequality into consideration as well as Parseval’s relation
for the Fourier series expansion of x′ ′. �

The next result is known in the literature as Theorem of Korn and Pri-
valov.

Lemma 6. Let f(w) = h(w) + ih∗(w) be holomorphic in BR, h = Re f , h∗ =
Im f , and suppose that h∗ ∈ C0(BR) ∩ C0,μ(∂BR) holds for some μ ∈ (0, 1).
Then f is of class C0,μ(BR) and we have

(28) [f ]μ,BR
≤ c(μ)[h∗]μ,∂BR

.

Proof. We can assume that R = 1 applying a scaling argument. Set H :=
[h∗]μ,∂B . Then we have

|h∗(eiθ) − h∗(eiϕ)| ≤ H|eiθ − eiϕ|μ(29)

for all θ, ϕ ∈ R. Fix some ϕ ∈ [0, 2π) and consider the function

ψ(w) = Re(1 − we−iϕ)μ

which can be viewed as a univalent harmonic function of w ∈ B. Introducing
the angle α between the rays {teiϕ : t ≥ 0} and {t(eiϕ − w) : t ≥ 0}, we obtain

ψ(w) = |w − eiϕ|μ cos(μα(w)),

where |α(w)| ≤ π
2 . Thus we infer from (29) that

(30) − Hψ(w)
cos μπ

2

≤ h∗(w) − h∗(eiϕ) ≤ Hψ(w)
cos μπ

2

holds for all w ∈ ∂B. Applying the maximum principle, we obtain that (31)
holds for all w ∈ B and in particular for all w ∈ B1−r(reiϕ) if 0 < r < 1.
Hence we infer that

(31) |h∗(w) − h∗(eiϕ)| ≤ 2μH

cos μπ
2

(1 − r)μ for |w − reiϕ| < 1 − r

is satisfied.
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Now we set w0 := reiϕ, 0 < r < 1, and h∗
0 := h∗(w0). Applying Gauss’s

mean value theorem to the harmonic function h∗
u and to the ball Bρ(w0) with

some radius ρ ∈ (0, 1 − r), we obtain

h∗
u(w0) =

1
πρ2

∫
Bρ(w0)

h∗
u(w) d2w =

1
πρ2

∫
Bρ(w0)

(h∗ − h∗
0)u d2w,

and an integration by parts yields

h∗
u(w0) =

1
πρ2

∫
∂Bρ(w0)

u − u0

ρ
(h∗ − h∗

0) ds.

Analogously,

h∗
v(w0) =

1
πρ2

∫
∂Bρ(w0)

v − v0

ρ
(h∗ − h∗

0) ds.

Thus we obtain

(32) | ∇h∗(w0)| ≤ 2ρ−1|h∗ − h∗
0|0,∂Bρ(w0).

If we let ρ → 1 − r and combine the resulting inequality with (31), it follows
that

| ∇h∗(w0)| ≤ 4H

cos μπ
2

(1 − r)−1+μ.

Since we can choose ϕ arbitrarily, we obtain that

(33) |f ′(w)| ≤ c(μ)H(1 − |w|)−1+μ for all w ∈ B,

if we set c(μ) := 4(cos μπ
2 )−1. Then it follows from (33) for 0 ≤ r < 1 that

(7.33′) |f ′(w)| ≤ c(μ)H(r − |w|)−1+μ for all w ∈ Br.

For any r and r′ with 0 ≤ r < r′ < 1 we now conclude

|f(r′eiθ) − f(reiθ)| =

∣∣∣∣∣
∫ r′eiθ

reiθ

f ′(w) dw

∣∣∣∣∣ ≤ c(μ)H
∫ r′

r

(r′ − ρ)−1+μ dρ

whence

(34) |f(r′eiθ) − f(reiθ)| ≤ c(μ)μ−1H(r′ − r)μ for 0 ≤ r < r′ < 1.

We infer that limr→1−0 f(reiθ) exists for any θ ∈ R. Setting ξ(ϕ) :=
limr→1−0 f(reiϕ) we extend f(w) from B to B by defining f(eiϕ) := ξ(ϕ).
We now want to show that f ∈ C0,μ(B). In fact, setting c∗(μ) := μ−1c(μ) we
obtain from (34) that

(34′) |f(r′eiθ) − f(reiθ)| ≤ c∗(μ)H(r′ − r)μ for 0 ≤ r ≤ r′ ≤ 1, θ ∈ R,
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and in particular

|ξ(θ) − f(reiθ)| ≤ c∗(μ)H(1 − r)μ for 0 < r < 1 and θ ∈ R.

Then it follows for θ1 < θ2 that

|ξ(θ1) − ξ(θ2)| ≤ |ξ(θ1) − f(reiθ1)| + |ξ(θ2) − f(reiθ1)|
≤ |ξ(θ1) − f(reiθ1)| + |ξ(θ2) − f(reiθ2)| + |f(reiθ1) − f(reiθ2)|

≤ 2c∗(μ)H(1 − r)μ +
∫ θ2

θ1

|f ′(reiθ)|r dθ.

Moreover, we derive from (33) that

∫ θ2

θ1

|f ′(reiθ)|r dθ ≤ Hc(μ)r(1 − r)−1+μ(θ2 − θ1).

Suppose that 0 < θ2 − θ1 < 1, and choose r = 1 − (θ2 − θ1). Then it follows
that

|ξ(θ1) − ξ(θ2)| ≤ {2c∗(μ) + c(μ)}H|θ2 − θ1|μ

if |θ1 − θ2| ≤ 1. Renaming 8c∗(μ) + 4c(μ) by c(μ), we arrive at

(35) |ξ(θ1) − ξ(θ2)| ≤ c(μ)H|θ1 − θ2|μ for all θ1, θ2 ∈ R.

Applying the maximum principle to the modulus of the holomorphic mapping
f(eiαw) − f(w), w ∈ B, we see that

max
w∈B

|f(eiαw) − f(w)| ≤ max
w∈∂B

|f(eiαw) − f(w)|

holds for all α ∈ R, and in view of (35) we obtain

|f(eiαw) − f(w)| ≤ c(μ)H|α|μ for w ∈ B and α ∈ R.

This estimate is equivalent to

(35′) |f(reiθ2) − f(reiθ1)| ≤ c(μ)H|θ1 − θ2|μ for 0 ≤ r ≤ 1, θ1, θ2 ∈ R.

Combining the estimates (34′) and (35′) we arrive at

|f(r1e
iθ1) − f(r2e

iθ2)| ≤ |f(r1e
iθ1) − f(r2e

iθ1)| + |f(r2e
iθ1) − f(r2e

iθ2)|
≤ c∗(μ)H|r1 − r2|μ + c(μ)H|θ1 − θ2|μ

for arbitrary r1, r2 ∈ [0, 1] and θ1, θ2 ∈ R.
If w1 = r1e

iθ1 , w2 = r2e
iθ2 , 1

2 ≤ r1, r2 ≤ 1, |θ2 − θ1| ≤ π, then there is a
constant K such that

|r1 − r2|μ + |θ1 − θ2|μ ≤ K|w1 − w2|μ.
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Consequently we have

|f(w1) − f(w2)| ≤ c(μ)H|w1 − w2|μ

for all w1, w2 ∈ B \ B1/2 and for some constant c(μ), and because of (33) the
same estimate holds for any w1, w2 ∈ B1/2. Then we easily infer that

|f(w1) − f(w2)| ≤ c(μ)H|w1 − w2|μ for all w1, w2 ∈ B

holds true. �

Lemma 7. Suppose that h ∈ C0(BR) ∩ C2(BR) is harmonic in BR and that
its boundary values x(ϕ) := h(Reiϕ) satisfy x ∈ C2(R) and |x′ ′(ϕ)| ≤ k for
all ϕ ∈ R. Then we obtain h ∈ C1,μ(BR) for every μ ∈ (0, 1) and

(36) [∇h]μ,BR
≤ c(μ)R−1−μk,

where the number c(μ) only depends on μ.

Proof. It is sufficient to prove the result for R = 1. Let us introduce the
tangential difference quotient

(Tθh)(reiϕ) :=
1
θ
[h(rei(ϕ+θ)) − h(reiϕ)]

and note that (Tθh)(w) is a harmonic function of w ∈ B which is continuous
on B and has the boundary values

(τθx)(ϕ) :=
1
θ
[x(ϕ + θ) − x(ϕ)].

By assumption the boundary values (τθx)(ϕ) tend uniformly to x′(ϕ) as
θ → 0. Then, on account of Harnack’s first convergence theorem, we eas-
ily infer that the functions (Tθh)(w) tend uniformly on B to the harmonic
function hϕ(w) with the boundary values x′(ϕ) = ∂

∂ϕh(eiϕ) on ∂B which, by
assumption, are Hölder continuous for any exponent μ < 1, and

(37) [x′]μ,R ≤ 2πk.

Consider a holomorphic function f(w) on B with f = h + ih∗, that is,
h = Re f, h∗ = Im f . Then g(w) := iwf ′(w) = ∂f

∂ϕ (w), w = reiϕ, is another
holomorphic function on B with ∂h

∂ϕ = Re g and x′(ϕ) = ∂h
∂ϕ (eiϕ), x′ ∈ C0,μ(R)

for any μ ∈ (0, 1). Hence we can apply Lemma 6 to the holomorphic function
ig(w) = −wf ′(w), w ∈ B, and we obtain that ig(w) is of class C0,μ(B). This
implies

f ′ ∈ C0,μ(B \ B1/2),

and inequalities (28) and (37) yield
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(38) [f ′]μ,B\B1/2
≤ const · k.

Moreover, (27) implies
|f ′ |0,B ≤ const · k,

and Cauchy’s estimate for holomorphic functions then gives

|f ′ ′ |0,B1/2 ≤ const · k,

whence
[f ′]μ,B1/2 ≤ const · k.

Combining this estimate with (38), we arrive at the desired inequality

[f ′]μ,B ≤ const · k.

If we now recall that f ′ = hu − ihv, we find that the lemma is proved. �

Proof of Proposition 2. We now see that Proposition 2 is a direct consequence
of Lemmata 1–7 in conjunction with Proposition 1 and with formulas (1)–(5).

�

Remark. We have formulated the estimates and the regularity results of
Proposition 1 in a global way. Analogous local results can be derived by similar
methods, but certain changes will be necessary to obtain local estimates at
the boundary. A very simple approach to local C1,μ-estimates is based on a
reflection method: it will be described in the next section.

2.2 Solutions of Differential Inequalities

In this section we want to derive a priori estimates for solutions X(u, v) =
X(w) = (x1(w), x2(w), . . . , xN (w)) of differential inequalities

(1) |ΔX| ≤ a| ∇X|2,

which can equivalently be written as

(1′) |Xww | ≤ a|Xw |2.

Here a denotes a fixed nonnegative constant.

Lemma 1. Let X ∈ C2(Ω, RN ) be a solution of (1) in the open set Ω of R
2

which satisfies |X|0,Ω ≤ M . Then we obtain

(2) Δ|X|2 ≥ 2(1 − aM)| ∇X|2

in Ω. In particular, if aM < 1, then |X|2 is subharmonic in Ω.
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Proof. Because of

| 〈X, ΔX〉| ≤ |X| |ΔX| ≤ aM | ∇X|2,

the inequality (2) is an immediate consequence of the identity

(3) Δ|X|2 = 2| ∇X|2 + 2〈X, ΔX〉

which holds for every mapping X of class C2. �
Lemma 2. Suppose that X ∈ C0(BR(w0), RN ) ∩ C2(BR(w0), RN ) satisfies
(1) in BR(w0). Assume also that |X(w)| ≤ M for w ∈ BR(w0) and aM < 1
are satisfied. Then for any ρ ∈ (0, R) we have

(4)
∫

Bρ(w0)

| ∇X|2 du dv ≤ 1
logR

ρ

2πM

1 − aM
max

w∈∂BR(w0)
|X(w) − X(w0)|

and

(5)
∫

Bρ(w0)

| ∇X|2 du dv ≤ 1
log R

ρ

4πM2

1 − aM
.

Proof. Choose some ρ ∈ (0, R) and apply Proposition 1 of Section 2.1 to the
function x(w) := |X(w)|2 and to the domain BR(w0) instead of BR = BR(0),
assuming in addition that X is of class C2 on BR(w0). Then formula (6) of
Section 2.2 yields

1
2π

∫ 2π

0

[x(w0 + Reiϕ) − x(w0)] dϕ =
1
2π

∫
BR(w0)

log
R

|w − w0| Δxd2w.

Because of
|x(w) − x(w0)| ≤ 2M |X(w) − X(w0)|

we infer that
1
2π

∫
BR(w0)

log
R

|w − w0| Δxd2w ≤ 2M max
w∈∂BR(w0)

|X(w) − X(w0)|.

On the other hand, Lemma 1 gives

2(1 − aM)| ∇X|2 ≤ Δx,

whence

(1 − aM)π−1

∫
BR(w0)

log
R

|w − w0| | ∇X|2 d2w ≤ 2M max
w∈BR(w0)

|X(w) − X(w0)|.

Moreover,

log
R

ρ

∫
Bρ(w0)

| ∇X|2 d2w ≤
∫

BR(w0)

log
R

|w − w0| | ∇X|2 d2w

if 0 < ρ < R, and (4) is proved. The additional hypothesis can be removed if
we first apply the reasoning to ρ and R′ with 0 < ρ < R′ < R, and then let
R′ → R − 0. Inequality (5) is a direct consequence of (4). �
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Proposition 1. There is a continuous function κ(t), 0 ≤ t < 1, with the
following property: For any solution X ∈ C2(BR(w0), RN ) of the differential
inequality (1) in BR(w0) satisfying

(6) |X(w)| ≤ M for w ∈ BR(w0)

and for some constant M with aM < 1, the estimates

(7) | ∇X(w0)| ≤ κ(aM)
M

R

and

| ∇X(w0)| ≤ κ(aM)
R

sup
w∈BR(w0)

|X(w) − X(w0)|(8)

hold true.

Proof. Fix any R′ ∈ (0, R), and consider the nonnegative function

f(w) := (R′ − |w − w0|)| ∇X(w)|

on BR′ (w0) which vanishes on ∂BR′ (w0). Then there is some point w1 ∈
BR′ (w0) where f(w) assumes its maximum K, i.e.,

f(w1) = K := max {f(w) : w ∈ BR′ (w0)}.

Set r = |w − w1| for w ∈ BR′ (w0) and ρ := R′ − |w1 − w0|. Clearly, we have
0 < ρ < R′.

By formulas (24) and (25) of Section 2.1, we obtain for any θ ∈ (0, 1) that

Xu(w1) =
1

πρ2θ2

∫
Bρθ(w1)

Xu du dv

− 1
2π

∫
Bρθ(w1)

(u − u1)
(

1
r2

− 1
ρ2θ2

)
ΔX du dv,

and an analogous formula holds for Xv(w1). By means of Schwarz’s inequality
we infer that

| ∇X(w1)| ≤ 1√
πρθ

{∫
Bρθ(w1)

| ∇X|2 du dv

}1/2

+
1
2π

∫
Bρθ(w1)

|ΔX|
r

du dv.

Applying Lemma 2, (5) to ρθ and ρ instead of ρ and R, we also obtain
∫

Bρθ(w1)

| ∇X|2 du dv ≤ c(a, M)
log 1

θ

.

Taking |ΔX| ≤ a| ∇X|2 into account, we arrive at
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| ∇X(w1)| ≤
√

c
√

πρθ
(
log 1

θ

)1/2
+

a

2π

∫
Bρθ(w1)

1
r

| ∇X|2 du dv

and

a

2π

∫
Bρθ(w1)

1
r

| ∇X|2 du dv ≤ aρθ sup
Bρθ(w1)

| ∇X|2.

On account of
K = f(w1) = ρ| ∇X(w1)|

we obtain
| ∇X(w1)| = K/ρ.

Moreover, if r = |w − w1| < ρθ, it follows that

R′ − |w − w0| ≥ R′ − |w0 − w1| − |w − w1| = ρ − r > (1 − θ)ρ.

Thus we infer from

| ∇X(w)|(R′ − |w − w0|) ≤ K for all w ∈ BR′ (w0)

that
| ∇X(w)| ≤ K

(1 − θ)ρ
for all w ∈ Bρθ(w1)

holds true, and we conclude that

a

2π

∫
Bρθ(w1)

1
r

| ∇X|2 du dv ≤ aθK2

(1 − θ)2ρ

whence
K

ρ
≤

√
c

√
πρθ
(
log 1

θ

)1/2
+

aθK2

(1 − θ)2ρ
,

and finally

K ≤
√

c/π

θ
(
log 1

θ

)1/2
+

aθK2

(1 − θ)2
.

Set

α(θ) :=
aθ

(1 − θ)2
, β(θ) :=

√
c/π

θ
(
log 1

θ

)1/2
.

Then we have
αK2 − K + β ≥ 0,

or equivalently (
K − 1

2α

)2

≥ 1 − 4αβ

4α2
.
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Note that

α(θ)β(θ) =
a
√

c/π

(1 − θ)2
(
log 1

θ

)1/2
, c = c(a, M).

Hence there exists a number θ0(a, M) ∈ (0, 1) such that

4α(θ)β(θ) ≤ 3
4

if 0 < θ ≤ θ0,

that is, √
1 − 4α(θ)β(θ) ≥ 1

2
if 0 < θ ≤ θ0.

Set

m−(θ) :=
1 −
√

1 − 4α(θ)β(θ)
2α(θ)

, m+(θ) :=
1 +
√

1 − 4α(θ)β(θ)
2α(θ)

.

Then we infer for any θ ∈ (0, θ0] that either

(i) K ≤ m−(θ), or (ii) K ≥ m+(θ)

holds true.
Moreover, the functions m−(θ) and m+(θ) are continuous on (0, θ0] and

satisfy
m−(θ) < m+(θ) for 0 < θ ≤ θ0

and
lim

θ→+0
m+(θ) = ∞.

The last relation yields that case (ii) cannot occur for θ close to zero; hence
we have K ≤ m−(θ) for θ near zero, and a continuity argument then implies

K ≤ m−(θ) for all θ ∈ (0, θ0],

in particular, K ≤ m−(θ0). Finally, for θ ∈ (0, θ0], we also obtain that

m−(θ) =
1 −
√

1 − 4α(θ)β(θ)
2α(θ)

=
1

2α(θ)
1 − (1 − 4α(θ)β(θ))
1 +
√

1 − 4α(θ)β(θ)

=
2β(θ)

1 +
√

1 − 4α(θ)β(θ)
≤ 2β(θ)

1 + 1/2
=

4
3
β(θ)

whence
m−(θ0) < 4

3β(θ0).

Consequently,
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K ≤ 4
3
β(θ0) =

4
√

c/π

3θ0

(
log 1

θ0

)1/2
:= c∗(a, M).

Because of

R′ | ∇X(w0)| = f(w0) ≤ f(w1) = K ≤ c∗(a, M)

we arrive at

| ∇X(w0)| ≤ c∗(a, M)/R′ for any R′ ∈ (0, R)

whence

(7∗) | ∇X(w0)| ≤ c∗(a, M)/R.

This estimate is close to (7). We now introduce the function κ(t) := c∗(t, 1).
A close inspection of the previous computations shows that κ(t) can assumed
to be an increasing and continuous function on the interval [0, 1).

In order to prove (7) we assume that M > 0 because that inequality
trivially holds true if M = 0. Then Z(w) := M −1X(w) satisfies both |Z(w)| ≤
1 and

|ΔZ| ≤ aM | ∇Z|2.

Applying the estimate (7∗) to Z, we arrive at

| ∇Z(w0)| ≤ κ(aM)/R.

Multiplying this inequality by M , we obtain (7).
Estimate (8) is now an easy consequence of (7). To see this we introduce

the quantity
m := sup { |X(w) − X(w0)| : w ∈ BR(w0)}.

If m = 0 or m = ∞, the estimate (8) is true for trivial reasons. If M ≤
m < ∞, (8) follows directly from (7). If 0 < m < M , we introduce Z :=
m−1[X − X(w0)] and obtain as before

| ∇Z(w0)| ≤ κ(am)/R ≤ κ(aM)/R,

and this implies (8). �

Corollary 1. Suppose that X ∈ C2(BR(w0), RN ) is a solution of (1) in
BR(w0) satisfying

|X(w)| ≤ M for w ∈ BR(w0)

and for some constant M with aM < 1. Then we have

(9) | ∇X(w)| ≤ κ(aM)
M

ρ
for all w ∈ BR−ρ(w0), 0 < ρ < R.



96 2 The Boundary Behaviour of Minimal Surfaces

Proposition 2. Let X ∈ C0(BR(w0), RN ) ∩ C2(BR(w0), RN ) be a solution
of the differential inequality (1) in BR(w0), and suppose that |X(w)| ≤ M
holds for all w ∈ BR(w0) and for some number M with 2aM < 1. Moreover,
set x(w) := |X(w)|2, and let H ∈ C0(BR(w0), RN ) ∩ C2(BR(w0), RN ) and
h ∈ C0(BR(w0))∩C2(BR(w0)) be the solutions of the boundary value problems

(10) ΔH = 0 in BR(w0), H = X on ∂BR(w0),

(11) Δh = 0 in BR(w0), h = x on ∂BR(w0).

Then for any w ∈ BR(w0) and w∗ ∈ ∂BR(w0) we have the inequality

|X(w) − X(w∗)| ≤ a

2(1 − 2aM)
|h(w) − h(w∗)|(12)

+
1 − aM

1 − 2aM
|H(w) − H(w∗)|.

Proof. Inequality (2) implies

| ∇X|2 ≤ 1
2(1 − aM)

Δx,

which in conjunction with

|ΔX| ≤ a| ∇X|2

yields
|ΔX| ≤ a

2(1 − aM)
Δx.

Pick some constant vector E ∈ R
N with |E| = 1 and consider the auxiliary

function z ∈ C0(BR(w0)) ∩ C2(BR(w0)) which is defined by

z(w) :=
a

2(1 − aM)
[x(w) − h(w)] + 〈H(w) − X(w), E〉

and vanishes on ∂BR(w0). Because of

Δz =
a

2(1 − aM)
Δx − 〈ΔX, E〉

≥ a

2(1 − aM)
Δx − |ΔX| ≥ 0,

we see that z is subharmonic on BR(w0). Then the maximum principle yields

〈H − X, E〉 ≤ a

2(1 − aM)
[h − x] on BR(w0)

for any unit vector E of R
N , and we conclude that
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(13) |H − X| ≤ a

2(1 − aM)
[h − x]

holds on BR(w0). Moreover, the inequality |X(w)| ≤ M in conjunction with
the maximum principle gives

|H(w)| ≤ M for all w ∈ BR(w0).

Then we obtain

h − x = (|H|2 − |X|2) + (h − |H|2)
≤ 2M(|H| − |X|) + (h − |H|2),

whence
|H − X| ≤ aM

1 − aM
|H − X| +

a

2(1 − aM)
(h − |H|2).

Since
0 < 1 − aM

1 − aM
=

1 − 2aM

1 − aM
< 1,

it follows that

(14) |H − X| ≤ a

2(1 − 2aM)
(h − |H|2) on BR(w0).

For w∗ ∈ ∂BR(w0) we have

|X(w∗)|2 = x(w∗) = |H(w∗)|2 = h(w∗),

and therefore

|X(w) − X(w∗)| ≤ |X(w) − H(w)| + |H(w) − H(w∗)|

≤ a

2(1 − 2aM)
(h(w) − |H(w)|2) + |H(w) − H(w∗)|.

Because of

h(w) − |H(w)|2 = h(w) − h(w∗) + |H(w∗)|2 − |H(w)|2

≤ |h(w) − h(w∗)| + 2M |H(w) − H(w∗)|,

we may now conclude that (12) holds for any w ∈ BR(w0) and for any w∗ ∈
∂BR(w0). �

Remark 1. Note that the differential inequality (1) remains invariant with
respect to conformal transformations of the parameter domain. Thus we can
carry over Proposition 2 from BR(w0) to any bounded domain Ω in C which
is of the conformal type of the disk and has a closed Jordan curve as its
boundary.
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Proposition 3. For any a ≥ 0, R > 0, M ≥ 0, and k ≥ 0 with 2aM < 1,
there is a number c = c(a, R, M, k) ≥ 0 having the following property:

Let X ∈ C0(BR(w0), RN )∩C2(BR(w0), RN ) be a solution of (1) in BR(w0)
satisfying |X(w)| ≤ M for all w ∈ BR(w0). Suppose also that the boundary
values X(ϕ) := X(w0 + Reiϕ) are of class C2(R) and satisfy |X ′ ′(ϕ)| ≤ k for
all ϕ ∈ R. Then we have

(15) | ∇X(w)| ≤ c(a, R, M, k) for all w ∈ BR(w0).

Proof. It suffices to treat the case w0 = 0 and R = 1, that is, we consider the
parameter domain B = B1(0). Let w = reiθ, 0 < r < 1, be an arbitrary point
of B. By formula (8) of Proposition 1 we have

(16) | ∇X(w)| ≤ c(a, M)
1 − r

sup{ |X(w′) − X(w)| : w′ ∈ B1−r(w)}.

Moreover, for w, w′ ∈ B and w∗ ∈ ∂B it follows from Proposition 2 that

|X(w) − X(w′)| ≤ |X(w) − X(w∗)| + |X(w′) − X(w∗)|(17)

≤ a

2(1 − 2aM)
{ |h(w) − h(w∗)| + |h(w′) − h(w∗)| }

+
1 − aM

1 − 2aM
[|H(w) − H(w∗)| + |H(w′) − H(w∗)|]

holds true where H and h are harmonic in B and have the boundary values
X and x := |X|2 respectively on ∂B. By Lemma 5 of Section 2.1 we obtain
that

| ∇H(w)| ≤ ck for all w ∈ B

whence
|H(w1) − H(w2)| ≤ ck|w1 − w2| for all w1, w2 ∈ B.

Therefore we have

(18) |H(w) − H(w∗)| + |H(w′) − H(w∗)| ≤ 3ck(1 − r)

for w = reiθ, w∗ = eiθ, w′ ∈ B1−r(w).
Furthermore, the boundary values η(ϕ) := |X(ϕ)|2 of x(eiϕ) satisfy η′ ′ =

2|X ′ |2 + 2〈X, X ′ ′ 〉, hence

|η′ ′ | ≤ 2|X ′ |2 + 2| 〈X, X ′ ′ 〉| ≤ 2|X ′ |2 + 2Mk.

Let E ∈ R
N be a constant unit vector. Then we have

∫ 2π

0

〈E, X′(ϕ)〉 dϕ = 0.

Consequently, there is some ϕ0 ∈ [0, 2π] such that
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〈E, X′(ϕ0)〉 = 0

and therefore
〈E, X′(ϕ)〉 =

∫ ϕ

ϕ0

〈E, X′ ′(ϕ)〉 dϕ.

Hence we obtain

| 〈E, X′(ϕ)〉| ≤ 2πk for all ϕ ∈ [0, 2π].

Since E can be chosen as an arbitrary vector of R
N , we conclude that

|X′(ϕ)| ≤ 2πk for all ϕ ∈ R,

and therefore
|η′ ′ | ≤ 8π2k2 + 2Mk.

Then we infer from Lemma 5 of Section 2.1 that

| ∇h(w)| ≤ c∗(1 + k2) for all w ∈ B

whence

|h(w1) − h(w2)| ≤ c∗(1 + k2)|w1 − w2| for all w1, w2 ∈ B

and consequently

(19) |h(w) − h(w∗)| + |h(w′) − h(w∗)| ≤ 3c∗(1 + k2)(1 − r)

for w = reiθ, w∗ = eiθ, w′ ∈ B1−r(w).
Combining (17), (18), and (19), we arrive at

|X(w) − X(w′)| ≤ c(a, M, k)(1 − r) for w = reiθ, 0 < r < 1,

and w′ ∈ B1−r(w),

and this implies

| ∇X(w)| ≤ c(a, M, k) for all w ∈ B,

taking (16) into account. �

Theorem 1. Suppose that the assumptions of Proposition 3 are satisfied.
Then X is of class C1,μ(BR(w0), RN ) for all μ ∈ (0, 1) and we have

(20) [∇X]μ,BR(w0)
≤ c(a, R, M, k, μ).

Proof. This result is an immediate consequence of Proposition 2 of Section 2.1
in conjunction with Proposition 3 that we have just proved. �

Now we come to the proof of the most important result with regard to the
next section.
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Theorem 2. For w0 ∈ ∂B, we introduce the set Sρ(w0) := B ∩ Bρ(w0).
Assume that, for some ρ ∈ (0, 1), X ∈ C0(Sρ(w0), RN ) ∩ C2(Sρ(w0), RN ) is a
solution of the differential inequality (1) in Sρ(w0) that vanishes on ∂Sρ(w0) ∩
∂B. Then we obtain X ∈ C1,μ(Sρ′ (w0), RN ) for every μ ∈ (0, 1) and every
ρ′ ∈ (0, ρ).

Proof. It suffices to show that for any w∗ = eiθ ∈ ∂Sρ(w0) ∩ ∂B there is a
δ > 0 such that X ∈ C1,μ(Sδ(w∗), RN ), where Sδ(w∗) denotes the circular
two-gon B ∩ Bδ(w∗). We may also assume that a > 0.

Thus, having fixed an arbitrary w∗ = eiθ ∈ ∂B ∩ ∂Sρ(w0), we first choose
an ε > 0 such that S3ε(w∗) ⊂ Sρ(w0) holds and that

sup{ |X(w)| : w ∈ S3ε(w∗)} ≤ 1
4a

.

Then the mapping
Z(w) := 4aX, w ∈ S3ε(w∗),

satisfies the inequalities

|Z| ≤ 1 and |ΔZ| ≤ 1
4 | ∇Z|2

in S3ε(w∗).
We now consider the functions H(w) and h(w) which are harmonic in

S3ε(w∗) and which have the boundary values X and |X|2 respectively on
∂S3ε. As h and H vanish on the circular arc

C := ∂B ∩ ∂S3ε(w∗)

we can extend h and H to harmonic functions in B3ε(w∗) by reflection at C,
applying Schwarz’s reflection principle. Hence there is a number c(ε) such that

| ∇H(w)| + | ∇h(w)| ≤ c(ε) for all w ∈ B2ε(w∗)

whence

|H(w1) − H(w2)| + |h(w1) − h(w2)| ≤ c(ε)|w1 − w2|(21)
for all w1, w2 ∈ B2ε(w∗).

Fix some w = reiϕ ∈ Sε(w∗). Then we have |w| = r > 1 − ε and, for |w − w′ | <
1 − r, we have |w′ − w∗ | ≤ |w′ − w| + |w − w∗ | < ε + ε = 2ε, and consequently

B1−r(w) ⊂ S2ε(w∗) ⊂ S3ε(w∗) ⊂ Sρ(w0).

By Proposition 2 and the subsequent Remark 1 we obtain for Ω :=
S3ε(w∗), w′ ∈ Ω and eiϕ ∈ ∂B ∩ ∂S3ε(w∗) that

|Z(w′)| = |Z(w′) − Z(eiϕ)| ≤ 1
4 |h(w′) − h(eiϕ)| + 3

2 |H(w′) − H(eiϕ)|.
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In connection with (21) we infer for any w′ ∈ B1−r(w) that

|Z(w′)| ≤ 7
4c(ε)|w′ − eiϕ| ≤ 7

2c(ε)(1 − r) < 4c(ε)(1 − r).

In other words, we have

sup { |Z(w′)| : w′ ∈ B1−r(w)} ≤ 4c(ε)(1 − r)

for any w ∈ Sε(w∗) with |w| = r.
Moreover, we infer from Proposition 1, (8) that

| ∇Z(w)| ≤ 2κ(1/4)
1 − r

sup{ |Z(w′)| : w′ ∈ B1−r(w)}

for any w ∈ Sε(w∗) with |w| = r.
This implies

| ∇Z(w)| ≤ c∗(ε) for all w ∈ Sε(w∗).

Since X = 1
4aZ, we conclude that

|ΔX|0,Sε(w∗) ≤ const, and | ∇X|0,Sε(w∗) ≤ const.

Now we choose a cut-off function η ∈ C∞
c (R2) with η(w) = 1 for w ∈

Bδ(w∗), δ := ε
2 , and with η(w) = 0 for |w − w∗ | ≥ 3

4ε. Then the mapping
Y := ηX on Sε(w∗) satisfies

ΔY = ηΔX + 2∇η · ∇X + ΔηX

and therefore

|ΔY (w)| ≤ const for all w ∈ Sε(w∗),(22)

Y (w) = 0 on ∂Sε(w∗),(23)

Y (w) = 0 for all w ∈ Sε(w∗) with 3
4ε < |w − w∗ | < ε.(24)

Consider a conformal mapping τ of the unit disk B onto the two-gon
Sε(w∗). We can extend τ to a homeomorphism of B onto Sε(w∗), and it can
be assumed that ζ = ±1 are mapped onto the two vertices of the two-gon.
By the reflection principle the mapping τ(ζ) is holomorphic on B \ { −1, 1}.
Then it follows from (22) and (24) that the mapping Y ∗(ζ) := Y (τ(ζ)) is of
class C0(B, RN ) ∩ C2(B, RN ) and satisfies

|ΔY ∗(ζ)| ≤ const for all ζ ∈ B.

Moreover, we infer from (23) that

Y ∗(ζ) = 0 for all ζ ∈ ∂B.

Thus we can apply Proposition 2 of Section 2.1 and obtain that Y ∗ ∈
C1,μ(B, RN ) for any μ ∈ (0, 1). It follows that Y ∈ C1,μ(Sε(w∗), RN ), and
therefore X ∈ C1,μ(Sδ(w∗), RN ) as Y (w) = X(w) for all w ∈ Sδ(w∗),
δ = ε

2 . �
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2.3 The Boundary Regularity of Minimal Surfaces Bounded
by Jordan Arcs

In this section we want to investigate the boundary behaviour of minimal
surfaces at smooth Jordan arcs. The results can be applied to minimal surfaces
bounded by one or several Jordan curves, to solutions of the partially free
boundary problem, and to solutions of the thread problem (see Chapters 1
and 5 as well as Vol. 3, Chapters 1, 2).

As all results are of local nature, it suffices to formulate them on simply
connected boundary domains, say, for minimal surfaces X : B → R

3 defined
on the unit disk B = {w ∈ C : |w| < 1}. The same results can be carried over
without any problem to minimal surfaces X : B → R

N , N ≥ 2. At the end of
this section we shall sketch analogous results for minimal surfaces X : B → M

in an n-dimensional Riemannian manifold M.
The main theorem of this section is the following result.

Theorem 1. Consider a minimal surface X : B → R
3 of class C0(B ∪γ, R3)∩

C2(B, R3) which maps an open subarc γ of ∂B into an open Jordan arc Γ of
R

3 which is a regular curve of class Cm,μ for some integer m ≥ 1 and some
μ ∈ (0, 1). Then X is of class Cm,μ(B ∪ γ, R3). Moreover, if Γ is a regular real
analytic Jordan arc, then X can be extended as a minimal surface across γ.

In fact, we shall only prove a slightly weaker result. We want to show that
the statement of the theorem holds under the assumption Γ ∈ Cm,μ with
m ≥ 2 and 0 < μ < 1. It remains to verify that the assumption Γ ∈ C1,μ

implies X ∈ C1,μ(B ∪ γ, R3). This can be carried out by employing a reflection
method combined with refined potential-theoretic estimates. A version of this
reasoning was invented by W. Jäger [3]. Other methods to prove this initial
step can be found in Nitsche [16,20] and [28] (see Kapitel V, 2.1), Kinderlehrer
[1], and Warschawski [5].

It will turn out that the method to be described also covers the boundary
behaviour of surfaces of prescribed mean curvature at a smooth arc. Thus we
shall deal with this more general result.

Theorem 2. Let X ∈ C0(B ∪γ, R3)∩C2(B, R3) be a solution of the equations

ΔX = 2H(X)Xu ∧ Xv,(1)

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0(2)

in B which maps an open subarc γ = {eiθ : θ1 < θ < θ2} of ∂B into some open
regular Jordan arc Γ of R

3, i.e. X(w) ∈ Γ for all w ∈ γ. Then the following
holds:

(i) If H(w) := H(X(w)) is of class L∞(B), and if Γ ∈ C2, then we obtain
that X ∈ C1,μ(B ∪ γ, R3) for any μ ∈ (0, 1).

(ii) If H is of class C0,μ on R
3, and if Γ ∈ C2,μ, 0 < μ < 1, then X(w) is

of class C2,μ(B ∪ γ, R3).
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Proof. (i) It suffices to show that for any w0 ∈ γ there is some δ > 0 such
that X ∈ C1,μ(Sδ(w0), R3), 0 < μ < 1, provided that H(w) := H(X(w)) is
of class L∞(B) and that Γ ∈ C2. Here Sδ(w0) denotes as usual the two-gon
B ∩ Bδ(w0).

Thus we fix some w0 ∈ γ. Without loss of generality we may assume that
X(w0) = 0. For sufficiently small ρ > 0 we can represent Γ ∩ Kρ(0) in the
form

(3) x1 = g1(t), x2 = g2(t), x3 = t, |t| < 2t0,

where the functions g1(t) and g2(t) are of class C2, and by a suitable motion
in R

3 we can arrange that

gk(0) = 0, ġk(0) = 0, k = 1, 2,(4)

choosing the parameter t appropriately.
We may also assume that w0 = 1 and that γ = {w ∈ ∂B : |w − 1| < R0}

for some R0 ∈ (0, 1). Choosing t0 > 0 and R ∈ (0, R0] sufficiently small we
can achieve that

|ġ1(t)|2 + |ġ2(t)|2 ≤ 1
8 for |t| < t0(5)

and

|x3(w)| < t0 for w ∈ SR(1).(6)

Consider the auxiliary function Y (w) = (y1(w), y2(w)) which is defined by

(7) yk(w) := xk(w) − gk(x3(w)), k = 1, 2, w ∈ SR(1),

where X(w) = (x1(w), x2(w), x3(w)). Clearly, we have Y ∈ C0(SR(1), R2) ∩
C2(SR(1), R2) and Y (w) = 0 for w ∈ ∂B ∩∂SR(1). Moreover, we infer from (1)
and from the relations

(8) Δyk = Δxk − ġk(x3)Δx3 − g̈k(x3)| ∇x3|2, k = 1, 2,

that

(8∗) |ΔY | ≤ α| ∇X|2

holds for some constant α > 0.
In addition, we have

(9) xk
w = yk

w + ġk(x3)x3
w, k = 1, 2,

and therefore

|x1
w |2 + |x2

w |2 ≤ 2|y1
w |2 + 2|y2

w |2 + 2|x3
w |2

2∑
k=1

|ġk(x3)|2(10)

≤ 2|y1
w |2 + 2|y2

w |2 + 1
4 |x3

w |2
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since (5) and (6) imply
∑2

k=1 |ġk(x3)|2 ≤ 1
8 .

Now we write the conformality relations (2) as

(11) 0 = 〈Xw, Xw 〉 = (x1
w)2 + (x2

w)2 + (x3
w)2

whence
|x3

w |2 ≤ |x1
w |2 + |x2

w |2

and therefore

(12) 1
2 |Xw |2 ≤ |x1

w |2 + |x2
w |2.

From (10) and (11) we infer

1
4 |Xw |2 ≤ 2|Yw |2

whence

(13) | ∇X|2 ≤ 8| ∇Y |2.

From (8∗) and (12) we derive the differential inequality

(14) |ΔY | ≤ 8α| ∇Y |2 on SR(1),

and we know already that

(15) Y = 0 on ∂B ∩ ∂SR(1).

Thus we can apply Theorem 2 of Section 2.2 to Y : SR(1) → R
2, and we

obtain Y ∈ C1,μ(Sε(1), R2) for any ε ∈ (0, R) and any μ ∈ (0, 1).
Combining (9) and (11) it follows that

(16) 0 =
2∑

k=1

(yk
w)2 + 2

2∑
k=1

ġk(x3)yk
wx3

w +

{
1 +

2∑
k=1

|ġk(x3)|2
}

(x3
w)2.

If we introduce

(17) pk(t) :=
ġk(t)
q(t)

, q(t) := 1 +
2∑

k=1

|ġk(t)|2,

this relation can be rewritten as

(18)

[
x3

w +
2∑

k=1

pk(x3)yk
w

]2
=

{
2∑

k=1

pk(x3)yk
w

}2

− 1
q(x3)

2∑
k=1

(yk
w)2.

As the right-hand side of (18) is continuous in Sε(1), it follows that [. . .] and
therefore also x3

w are continuous. Thus we arrive at X ∈ C1(Sε(1), R3) for
any ε ∈ (0, R).
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Multiplying (18) by −w2, we obtain

[
iwx3

w +
2∑

k=1

pk(x3)iwyk
w

]2
=

1
q(x3)

2∑
k=1

(wyk
w)2 −

{
2∑

k=1

pk(x3)wyk
w

}2

.(19)

Introducing polar coordinates r, ϕ with w = reiϕ, we find that

wxl
w = 1

2 (rxl
r − ixl

ϕ), wyk
w = 1

2 (ryk
r − iyk

ϕ)
(l = 1, 2, 3) (k = 1, 2).

For w ∈ γ′ := ∂B ∩ ∂Sε(1), we infer from (15) that the right-hand side of (19)
is equal to

1
4

|q(x3)| −2

⎧⎨
⎩

2∑
k=1

q(x3)|yk
r |2 −

(
2∑

k=1

ġk(x3)yk
r

)2
⎫⎬
⎭

and this expression is real and nonnegative on account of (5) and (6). The
left-hand side of (19) is of the form

(a + ib)2 = (a2 − b2) + 2iab

with

a :=
r

2

(
x3

ϕ +
2∑

k=1

pk(x3)yk
ϕ

)
, b :=

1
2

(
x3

r +
2∑

k=1

pk(x3)yk
r

)
.

From the relations
a2 − b2 ≥ 0 and ab = 0

we infer that b = 0, that is,

(20) x3
r +

2∑
k=1

pk(x3)yk
r = 0 on γ′.

Thus we have found:

(21) |Δx3| + | ∇x3| ≤ const on Sε(1),
∂

∂r
x3 ∈ C0,μ(γ′).

Now we choose a cut-off function η ∈ C∞
c which is rotationally symmetric

with respect to the pole w = 1 and satisfies η(w) = 1 for w ∈ Bδ(1), δ :=
ε
2 , η(w) = 0 for |w − 1| ≥ 3

4ε. Set

(22) y(w) := η(w)x3(w), w ∈ Sε(1).

We have yr = ηx3
r + ηrx

3, and therefore
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(23) yr ∈ C0,μ(γ′).

From the identity

Δy = ηΔx3 + x3Δη + 2∇η · ∇x3

and from (21) we infer that

(24) |Δy| ≤ const on Sε(1).

Finally we have

(25) y(w) = 0 for all w ∈ Sε(1) with 3
4ε < |w − 1| < ε.

Consider a conformal mapping τ of the unit disk B onto the two-gon Sε(1). We
can extend τ to a homeomorphism of B onto Sε(1), and it can be assumed that
ζ = ±1 are mapped onto the two vertices of the two-gon. By the reflection
principle the mapping τ(ζ) is holomorphic on B \ {−1, 1}. Then it follows
from (23) and (25) that the function y∗(ζ) := y(τ(ζ)), ζ ∈ B, is of class
C1(B) ∩ C2(B) and satisfies

|Δy∗ | ≤ const on B,

∂y∗

∂r
∈ C0,μ(∂B);

here the radial derivative y∗
r is the normal derivative of y∗ on ∂B.

According to Section 2.1, Proposition 2, the solution p(ζ) of the boundary
value problem

Δp = Δy∗ in B, p = 0 on ∂B

is of class C1,μ(B) for any μ ∈ (0, 1). Hence h := y∗ − p is of class C1(B) ∩
C2(B), harmonic in B, and hr is of class C0,μ on ∂B. Therefore the conjugate
harmonic function h∗ with respect to h is of class C1(B) too, and the equation
hr = h∗

ϕ on ∂B implies that h∗ |∂B is of class C1,μ. Applying the Korn–Privalov
theorem (see Section 2.1, Lemmata 6 and 7) we infer that h ∈ C1,μ(B),
and therefore also y∗ ∈ C1,μ(B). Returning to y = y∗ ◦ τ −1 it follows that
y ∈ C1,μ(Sε(1)). Since y(w) = x3(w) holds true for w ∈ Sδ(1), δ = ε

2 , we
finally arrive at x3 ∈ C1,μ(Sδ(1)), and therefore X ∈ C1,μ(Sδ(1), R3) for any
μ ∈ (0, 1). This concludes the proof of the first part of the theorem.

(ii) The initial step (i) is the crucial part of our investigation whereas the
further proof is essentially potential-theoretic routine. However, as our esti-
mates in Section 2.1 are not quite complete, we only want to indicate how
one can proceed. The reader should use the Schauder estimates (described for
example in Gilbarg and Trudinger [1]) to derive higher regularity by boot-
strapping.

Thus let us assume that H ∈ C0,μ(R3) and that Γ ∈ C2,μ for some
μ ∈ (0, 1). Then H(w) := H(X(w)) is of class C0,μ(B ∪ γ) and, using the
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notation of (i), the functions g1(t) and g2(t), |t| < 2t0, are of class C2,μ. On
account of (8) and (2) the mapping Y satisfies

ΔY = Q in SR(1),
(26)

Y = 0 on ∂B ∩ ∂SR(1)

with Q ∈ C0,μ(SR(1), R2).
Then a potential-theoretic reasoning yields Y ∈ C2,μ(Sε(1), R2) for 0 <

ε < R. Now we use the equations (cf. (1) and (20))

Δx3 = 2H(X)(x1
ux2

v − x1
vx2

u) in SR(1),
(27)

x3
r = −

2∑
k=1

pk(x3)yk
r on ∂B ∩ ∂SR(1)

to prove by a potential-theoretic argument that x3 ∈ C2,μ(Sε(1)) for 0 <
ε < R. We only have to note that p1(x3)y1

r + p2(x3)y2
r is of class C1,μ(γ′) for

γ′ = ∂B∩∂SR(1) because of the result for Y that we obtained before. By virtue
of (7) we then infer X ∈ C2,μ(Sε(1), R3), and therefore X ∈ C2,μ(B ∪ γ, R3).

�

Remark 1. Similarly one proves X ∈ Cm,μ(B ∪ γ, R3) as claimed in The-
orem 1 if Γ ∈ Cm,μ and H ∈ Cm−2,μ(R3). The proof is carried out by a
bootstrap reasoning, considering the boundary value problems alternatingly.
Since a similar idea is developed in detail in the following sections, we want
to omit the proof of higher boundary regularity of X except for proving an-
alyticity in the case that Γ is a real analytic, regular arc. This will be done
next for a minimal surface. We shall present H. Lewy’s regularity theorem.

In the following we shall suppose B to be the semidisk {w = u +
iv : |w| < 1, v > 0}, and I will denote the straight segment {u ∈ R : |u| < 1}
on the boundary of B.

Theorem 3. Let X ∈ C0(B ∪ I, R3) ∩ C2(B, R3) be a minimal surface which
maps I into a real-analytic and regular Jordan arc Γ in R

3. Then X can be
extended analytically across I as a minimal surface.

Proof. Let X∗(w) be an adjoint minimal surface to X(w) = (x1(w), x2(w),
x3(w)) which is assumed to satisfy ΔX = 0 and (2) in B, and let

(28) f(w) = X(w) + iX∗(w) = (f1(w), f2(w), f3(w))

be the holomorphic curve in C
3 with X = Re f and X∗ = Im f satisfying

(29) 〈f ′(w), f ′(w)〉 = 0.

By Theorem 2 we know already that X ∈ C2(B ∪I, R3) holds true. We have to
show that for any u0 ∈ I there is some δ > 0 such that f(w) can be extended
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as a holomorphic curve from Sδ(u0) := B ∩ Bδ(u0) to Bδ(u0). Without loss
of generality we can assume that u0 = 0. Set Bδ := Bδ(0) and Sδ = Sδ(0) =
B ∩ Bδ. As in the proof of Theorem 2 we can arrange for the following:

x1(0) = x2(0) = x3(0) = 0, i.e. X(0) = 0.

For sufficiently small ρ > 0, we can represent Γ ∩ Kρ(0) in the form

(30) x1 = g1(t), x2 = g2(t), x3 = t, t ∈ I2R0

where Iδ := {t ∈ R : |t| < δ}, and g1(t) and g2(t) are real analytic functions
on I2R0 , R0 > 0. Hence, choosing R0 sufficiently small, we can assume that
g1(ζ) and g2(ζ) are holomorphic functions of ζ ∈ B2R0 ; hence

g(ζ) := (g1(ζ), g2(ζ), ζ), |ζ| < 2R0

is a holomorphic curve on B2R0 . In addition, we may (in accordance with
X(0) = 0) assume that

g1(0) = g2(0) = ġ1(0) = ġ2(0) = 0

and ∣∣∣∣dg1

dζ
(ζ)
∣∣∣∣
2

+
∣∣∣∣dg2

dζ
(ζ)
∣∣∣∣
2

≤ 1
2

for |ζ| < 2R0

are satisfied, and that

|f3(w)| < R0 holds for w ∈ SR,

where R is a sufficiently small positive number.
Consider now the holomorphic function

(31) F (w, ζ) :=
〈g′(ζ), f ′(w)〉

〈g′(ζ), g′(ζ)〉

of (w, ζ) ∈ SR × BR0 , and note that F is of class C1 on SR × BR0 (of course,
differentiability in the second statement is real differentiability).

We claim that the differential equation

(32) x3
u(u) = F (u, x3(u)) for u ∈ IR

holds true. In fact, the boundary condition X(I) ⊂ Γ together with the above
normalization implies that

(33) X(u) = g(x3(u)) for u ∈ IR,

hence

Xu(u) = g′(x3(u))x3
u(u) for u ∈ IR.(34)
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Therefore x3
u(u) = 0 for some u ∈ IR yields Xu(u) = 0, and (2) gives

Xv(u) = 0 or X∗
u(u) = 0 and consequently f ′(u) = 0; therefore we also

have F (u, x3(u)) = 0, and (32) is trivially satisfied. Thus we may now assume
that x3

u(u) �= 0. Because of (34) and (2), we obtain on IR:

x3
u〈g′(x3), f ′ 〉 = 〈g′(x3)x3

u, f ′ 〉 = 〈Xu, f ′ 〉
= 〈Xu, Xu + iX∗

u〉 = |Xu|2 − i〈Xu, Xv 〉 = |Xu|2

= 〈g′(x3), g′(x3)〉(x3
u)2

whence

x3
u(u) =

〈g′(x3), f ′ 〉
〈g′(x3), g′(x3)〉 (u) = F (u, x3(u)),

and (32) is verified. Thus ζ(u) = x3(u) is a solution of the integral equation

(35) ζ(u) =
∫ u

0

F (u, ζ(u)) du.

It can easily be shown that there is some constant M > 0 such that

|F (w, ζ) − F (w, ζ ′)| ≤ M |ζ − ζ ′ |

holds for all w ∈ SR and ζ, ζ ′ ∈ BR0 . Then it follows from a standard fixed
point argument that there is a number δ ∈ (0, R) such that the integral
equation

(36) z(w) =
∫ w

0

F (w, z(w)) dw, w ∈ Sδ,

has exactly one solution z(w), w ∈ Sδ, in the Banach space A(Sδ) of functions
z : Sδ → C which are holomorphic in Sδ and continuous on Sδ. (As usual, the
proof of this fact can easily be carried out by Picard’s iteration method.3)
Similarly one sees that the real integral equation (35) has (for u ∈ Iδ) exactly
one solution ζ(u), u ∈ Iδ, whence we obtain ζ(u) = x3(u) and ζ(u) = z(u) for
|u| ≤ δ, that is,

(37) z(u) = x3(u) for u ∈ Iδ.

Consequently z(w) is real-valued on Iδ, and by Schwarz’s reflection principle
we can extend z(w) to a holomorphic function Bδ.

Now we consider the mapping φ : Sδ → C
3, defined by

(38) φ(w) := f(w) − g(z(w)),

which is continuous on Sδ, holomorphic in Sδ, and purely imaginary on Iδ,
since we have
3 The integral in (36) is a complex line integral independent of the path from 0 to w

within Sδ.
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φ(u) = f(u) − g(z(u)) = X(u) + iX∗(u) − X(u) = iX∗(u)(39)

on account of (33). Applying the reflection principle once again, we can extend
φ(w) to a holomorphic function on Bδ, and therefore also

(40) f(w) = φ(w) + g(z(w))

is extended to a holomorphic mapping on Bδ. �

We conclude this section by sketching the proof of a generalization of
Theorem 1, employing the method of the proof of Theorem 2.

Theorem 4. Let M be a Riemannian manifold of class C2, and let Γ be
an open regular Jordan arc in M which is of class C2. Moreover let X ∈
C2(B, M ), B = {w ∈ C : |w| < 1} be a minimal surface in M. Finally we
assume that γ is an open subarc of ∂B such that X ∈ C0(B ∪ γ, M ) and that
X(γ) ⊂ Γ . Then we have:

(i) X ∈ C1,μ(B ∪ γ, M ) for any μ ∈ (0, 1).
(ii) If M and Γ are of class Cm,μ, m ≥ 2, 0 < μ < 1, then X ∈ Cm,μ(B ∪

γ, M ).
(iii) If M and Γ are real analytic, then X is real analytic in B ∪ γ and can

be extended as a minimal surface across γ.

Proof. We shall sketch a proof of (i). The results of (ii) can be derived from
(i) by employing a bootstrap reasoning together with potential-theoretic es-
timates, as described in the proof of Theorem 2 and in Remark 1. The proof
of (iii) now follows from a general theorem by Morrey [8] (cf. Theorem 6.8.2,
pp. 278–279). We refer the reader to Hildebrandt [3], p. 80, for an indication
how Morrey’s result can be used to prove (iii). Another proof (in the spirit of
H. Lewy) can be obtained by the method of F. Müller [1–3].

Let us now turn to step (i). We fix some point w0 ∈ γ. Then there is
some R > 0 such that X maps SR(w0) := B ∩ BR(w0) into some coordinate
patch on the manifold M since X is continuous on B ∪ γ. Introducing local
coordinates (x1, x2, . . . , xn) on this patch, we can represent X in the form

X(w) = (x1(w), x2(w), . . . , xn(w)) for w ∈ SR(w0)

with X ∈ C0(SR(w0) ∪ γ, Rn) ∩ C1(SR(w0), Rn).
Suppose that the line element ds of M on the patch is given by

(41) ds2 = gkl(x) dxk dxl,

where repeated Latin indices are to be summed from 1 to n, and let

(42) Γ l
jk = 1

2grl(gjr,k + grk,j − gjk,r)

be the Christoffel symbols corresponding to gkl, where (grl) = (gjk)−1. Then
we have the equations
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Δxl + Γ l
jk(X){xj

uxk
u + xj

vxk
v } = 0, 1 ≤ l ≤ n,(43)

and

gkl(X)xk
uxl

u = gkl(X)xk
vxl

v, gkl(X)xk
uxl

v = 0.(44)

(Equations (43) replace the equations Δxl = 0 holding in the Euclidean
case, and equations (44) are the Riemannian substitute of the conformality
relations (2).)

Without loss of generality we may assume that w0 = 1, and we set SR :=
SR(1), 0 < R < 1, and γ′ = ∂B ∩∂SR. We can also assume that the coordinate
patch containing X(SR) is described by {x ∈ R

n : |x| < 1} and that X(1) = 0.
Furthermore, we can assume that Γ in { |x| < 1} is described by x1 = x2 =
· · · = xn−1 = 0, and that gkl ∈ C1, gkl(0) = δkl. Thus we have

|X(w)| < 1 for w ∈ SR

and

xα(w) = 0 for α = 1, . . . , n − 1 and w ∈ γ′.

We write (44) as
gkl(X)xk

wxl
w = 0, w ∈ SR,

which can be transformed into

(45)
(

xn
w +

gαn(X)
gnn(X)

xα
w

)2

=
(

gαn(X)
gnn(X)

xα
w

)2

− gαβ(X)
gnn(X)

xα
wxβ

w

(summation with respect to repeated Greek indices is supposed to run from
1 to n − 1).

The definiteness of the matrix (gkl) implies

m1 ≤ gnn(x) and |gkl(x)| ≤ m2 for |x| < 1

where m1 and m2 denote two positive constants. Then we obtain from (45)
that there is some constant m3 > 0 such that

| ∇xn|2 ≤ m3

n−1∑
α=1

| ∇xα|2 on SR.

As in the proof of Theorem 1 we infer from (43) and (45) that the mapping

Y (w) := (x1(w), x2(w), . . . , xn−1(w))

is of class C0(SR) ∩ C2(SR) and satisfies the relations

|ΔY | ≤ m4| ∇Y |2 on SR,
(46)

Y = 0 on γ′.
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Now we proceed as in the proof of Theorem 2. In fact, from (46) we infer that
Y ∈ C1,ν(Sε) for any ν ∈ (0, 1) and ε ∈ (0, R), whence (45) implies that xn

w

is of class C0(Sε). Therefore we obtain X ∈ C1(Sε).
Moreover, from (45) and (462) it follows that

(
iwxn

w +
gαn

gnn
iwxα

w

)2

=
{

i

2

(
xn

r +
gαn

gnn
xα

r

)
+

1
2

(
xn

ϕ +
gαn

gnn
xα

ϕ

)}2

=
gαβ

gnn
(wxα

w)(wxβ
w) −

(
gαn

gnn
wxα

w

)2

≥ 0

on γ′ ′ := γ′ ∩ ∂Sε (cf. the computations leading to (20)). Hence we have

(47) xn
r (eiϕ) = − gαn(0, . . . , 0, xn(eiϕ))

gnn(0, . . . , 0, xn(eiϕ))
xα

r (eiϕ) on γ′ ′.

Setting

p = −Γn
kl(X){xk

uxl
u + xk

vxl
v },(48)

it follows that

Δxn = p in Sε, xn
r = f on γ′ ′,(49)

where xn is of class C1 on Sε, of class C2 on Sε, p ∈ L∞(Sε), f ∈ C0,ν(γ′ ′).
Then a potential-theoretic reasoning yields xn ∈ C1,ν(Sε′ ) for 0 < ε′ < ε and
therefore X ∈ C1,ν(Sε′ ).

Alternating between (49) and

(50) ΔY = Q in Sε, Y = 0 on γ′ ′,

where
Qα := −Γα

kl(X)(xk
uxl

u + xk
vxl

v),

we obtain higher regularity of X at the boundary part γ. This completes the
sketch of the proof. �

2.4 The Boundary Behaviour of Minimal Surfaces at Their
Free Boundary: A Survey of the Results and an Outline
of Their Proofs

The boundary behaviour of minimal surfaces with free boundaries is some-
what more difficult to treat than that of solutions of Plateau’s problem. In
fact, Courant [9,15] has exhibited a number of examples indicating that the
trace of a minimal surface with a free boundary on a continuous support sur-
face S need not be continuous. One of his examples even shows that the trace
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curve can be unbounded although S is smooth (but not compact). Unfortu-
nately Courant’s examples are not rigorous as their construction is based on a
heuristic principle, the bridge theorem, which has not yet been established for
solutions of free boundary problems, and therefore we shall describe Courant’s
idea only in the Scholia. However, one of Courant’s constructions is not based
on the bridge theorem and has been made perfectly rigorous by Cheung [1].

We consider here a modification of Cheung’s example. The supporting
surface S (see Fig. 1) in our example will be defined as follows. Let us define
sets B1, B2, C, E±, G and curves γ±, β± by

B1 := {(x, y, z) : x = 0, −1 ≤ y ≤ 1, −3 ≤ z ≤ 0},

B2 := {(x, y, z) : x = 0, −1 ≤ y ≤ 1, −5 ≤ z ≤ −3},

C := {(x, y, z) : z = 0, x ≥ 0, −e−x ≤ y ≤ e−x},

E± := {(x, y, z) : x ≥ 0, y = ±1, −5 ≤ z ≤ −3},

G := {(x, y, z) : x ≥ 0, −1 ≤ y ≤ 1, z = −5},

γ± := {(x, y, 0) : x ≥ 0, y = ±e−x},

β± := {(x, y, −3) : x ≥ 0, y = ±1}.

Now we connect each point (x, ±e−x, 0) on γ± by straight segments with the
corresponding point (x, ±1, −3) on β±, thus obtaining two ruled surfaces F±.

Fig. 1. A noncompact, Lipschitz continuous, nonclosed supporting surface S which satisfies

no chord-arc condition. The configuration 〈Γ, S〉 bounds an unbounded minimal surface of

the type of the disk
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Let
S1 : = E+ ∪ E− ∪ F+ ∪ F− ∪ G

and denote by S∗
1 the reflection of S1 at the plane {x = 0}. Then we define

S := S1 ∪ S∗
1

and

Γ := {(x, y, z) : x = 0, z = 0, −1 ≤ y ≤ 1}.

Claim. Every solution Y ∈ C(Γ, S) of the corresponding free boundary prob-
lem P(Γ, S) has an unbounded trace on S; in particular Y is discontinuous
along the interval I.

In fact, suppose that Y ∈ C(Γ, S) is a solution of P(Γ, S) which is continu-
ous on B ∪ I. Then the trace Y (I) is compact and has to pass G continuously
as Y (I) ⊂ S. By a projection argument we infer that the area of the part of
Y (B) below the plane {z = −3} is greater than or equal to the area of B2

which is 4, and thus it is larger than the area of C which is 2. Thus each so-
lution Y of P(Γ, S) must have a discontinuous trace Y |I . In fact, Y |I cannot
be contained in the subregion SR := KR(0) ∩ S for any R > 0. (Otherwise,
by Theorem 2 of Section 2.5, we would obtain Y ∈ C0,μ(B, R3) for some
μ > 0.) Hence it follows that the trace Y |I is unbounded, and a projection
argument shows that Y has to be a parametrization of C or of its reflection
C∗ at {x = 0}. In other words, if there is a solution Y of P(Γ, S), it will
be given either by C or by C∗. As the existence theory of Vol. 1, Chapter 4
yields the existence of a solution of P(Γ, S), we infer that C and C∗ are the
two solutions of P(Γ, S) and that there is no other solution of this minimum
problem.

By reflecting S at the plane {z = 0} we can extend it to a Lipschitz contin-
uous noncompact surface S̃ without boundary. Furthermore, by rounding off
the edges of S and of S̃, we can even construct examples of smooth supporting
surfaces, with or without boundary, having the desired property that there is
no solution Y ∈ C0(B ∪ I, R3) of the minimum problem P(Γ, S).

Thus we have an example of a boundary configuration 〈Γ, S〉 consisting of
a smooth arc Γ and a smooth support surface S for which the minima of area
in C(Γ, S) have a discontinuous (and even unbounded) trace on S. However,
the reader will note that the surface S in the Courant example does not satisfy
a uniform extrinsic Lipschitz condition in R

3, i.e., the quotient of the distance
of two points on S divided by their air distance is unbounded. We say that S
does not satisfy a chord-arc condition (the precise definition of this condition
will be given in Section 2.5).

Surprisingly, the chord-arc condition suffices to enforce that all minima of
a free or partially free boundary problem have a continuous free trace. In fact,
we shall prove:
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(i) Suppose that X minimizes Dirichlet’s integral in the class C(Γ, S) and
that D(X) > 0. Assume also that the support surface S satisfies a chord-arc
condition. Then X is of class C0,μ(B ∪ I, R3) for some μ ∈ (0, 1).

This result is the main statement of Theorem 1 in Section 2.5. The proof
is based on an adaptation of Morrey’s idea to compare any minimizer locally
with a suitable harmonic mapping. To make this idea effective one constructs
such a mapping by exploiting the chord-arc condition in order to set up its
boundary values on S.

Several variants of the assertion (i) are given in Theorems 2–4 of Sec-
tion 2.5. In particular, Theorem 4 of Section 2.5 provides a regularity theo-
rem analogous to (i), holding for minimizers of a completely free boundary
problem.

In Section 2.6 we shall prove regularity of stationary points of Dirichlet’s
integral at their free boundaries. At present it is not known whether the free
trace Σ of any such surface X is a continuous curve provided that the support
surface S satisfies merely a chord-arc condition. However, assuming that S is
of class C2 we obtain the desired result. More precisely, we have:

(ii) Let S be an admissible support surface of class C2, and suppose that
X is a stationary point of Dirichlet’s integral in the class C(Γ, S). Then there
is some α ∈ (0, 1) such that X ∈ C0,α(B ∪ I, R3).

This result is the content of Theorem 2 in Section 2.6; a similar statement
can be obtained for solutions of completely free boundary problems (cf. Sec-
tion 2.6, Remark 2).

The proof of (ii) is quite different from that of (i). Whereas in (i) we shall
proceed by deriving a priori estimates for X, the approach in (ii) is indirect.
Using the finiteness of Dirichlet integral of X we shall first derive suitable
monotonicity results for functionals that are closely related to Dirichlet’s in-
tegral. Combining these results we shall infer that X has to be continuous on
B ∪ I if D(X) < ∞.

Once the boundary values X|I are shown to be continuous, we can apply
suitable techniques from the theory of nonlinear elliptic equations to obtain
X ∈ C0,α(B ∪ I, R3), α ∈ (0, 1). For instance, Widman’s hole-filling method
(cf. Lemma 5 in Section 2.6) yields a direct way to this result; the details are
carried out in the proof of Theorem 2 in Section 2.6.

Note that in all these cases the support surface S may have a nonempty
boundary. If ∂S is void, we can say much more on the free trace Σ =
{X(w) : w ∈ I} of X on S. Roughly speaking Σ will turn out to be as good
as the support surface S. We shall, in fact, obtain:

(iii) Let S be an admissible support surface with ∂S = ∅ which is of class
Cm,β , m ≥ 3, β ∈ (0, 1). Then any stationary point X of Dirichlet’s integral
in C(Γ, S) is of class Cm,β(B ∪ I, R3). If S is real analytic, then X is real
analytic on B ∪ I and can be continued analytically across I.
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This result is formulated in Theorems 1 and 2 of Section 2.8. Starting
from (ii), we shall first verify that X is contained in C1(B ∪ I, R3). This can
either be achieved by transforming the boundary problem for X locally into
an interior regularity question for some weak solution Z of an elliptic system

ΔZ = F (w)| ∇Z|2,

which is derived by a reflection argument, and then applying Tomi’s regularity
theorem, or by playing the full regularity machinery for nonlinear elliptic
boundary value problems. The first possibility is sketched in Remark 1 of
Section 2.8, whereas the second approach is discussed in Section 2.7 in great
detail and in a wider context (see in particular Theorem 4 of Section 2.7).

Having proved that X is of class C1(B ∪ I, R3), we use classical results
from potential theory to derive X ∈ Cm,β(B ∪ I, R3) by employing a suit-
able bootstrap argument. The reader can find this reasoning in the proof of
Proposition 1 in Section 2.8.

In Theorem 2 of Section 2.8 we show that X can be continued analytically
across its free boundary if the support surface S is real analytic. To this end,
we set up a Volterra integral equation

Z(w) =
∫ w

0

F (ω, Z(ω)) dω

which has exactly one solution Z in the space A(Sδ) of mappings Z : Sδ → C
3

which are continuous on Sδ and holomorphic in Sδ := {w : |w| < δ < 1,
Im w > 0}, and F is constructed in such a way that

Z(u) = X(u) for u ∈ R with |u| < δ

(assuming a suitable normalization of X).
Let X∗ be an adjoint surface of X and f = X + iX∗. Then both f and

g := f − Z are of class A(Sδ), and we have

ImZ = 0 and Re g = 0 on Iδ.

By Schwarz’s reflection principle, we can continue both Z and g across Iδ as
holomorphic functions, whence also f = g + Z and X = Re f are continued
analytically across Iδ.

This approach to analyticity at the boundary, due to H. Lewy, is by far
the easiest, but it cannot be carried over to H-surfaces or to minimal surfaces
in a Riemannian manifold as it uses the holomorphic function f = X + iX∗.
This tool is, however, not available in those other cases. Here one can apply a
general regularity theorem due to Morrey [5] (cf. also Morrey and Nirenberg
[1] and Morrey [8]), or the work of Frank Müller which extends Lewy’s method
to more general situations.

Let us now turn to the case when the support surface S has a nonempty
boundary. Then we shall establish the following result (cf. Section 2.7, Theo-
rem 1):
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(iv) Let S be an admissible support surface of class C4 (by definition,
this implies ∂S ∈ C4; cf. Section 2.6, Definitions 1 and 2). Moreover, let X
be a stationary point of Dirichlet’s integral in C(Γ, S). Then X is of class
C1,1/2(B ∪ I, R3).

According to Remark 1 in Section 1.8 of Vol. 3, this is the best possible
result which can, in general, be expected. This follows from the asymptotic
expansions (1) and (2) in Section 2.10 around points u1 and u2 on I where the
free trace X|I of X on S lifts off the boundary ∂S of the support surface S. We
could interpret (iv) as a regularity result for a Signorini problem (or else for
a thin obstacle problem). The proof of (iv) will be carried out in three steps.
First, by applying Nirenberg’s difference quotient technique, we shall derive
L2-estimates for the second derivatives ∇2X up to the free boundary. For
this purpose we need the Hölder continuity of X on B ∪ I, established in (ii),
as well as an important calculus inequality due to Morrey (cf. Section 2.7,
Lemma 2) which implies that the Morrey seminorm is reproducible.

As a second step it will be shown that X is of class C1(B ∪ I, R3). This fol-
lows from Lp-estimates for solutions of the Poisson equation. In order to apply
these estimates we introduce suitable local coordinates {U, g} on S such that
the boundary conditions for Y (w) = (y1(w), y2(w), y3(w)) = g(X(w)) become
uncoupled. For y2 we derive a Neumann condition and for y3 a Dirichlet con-
dition. Then we apply the Lp-estimates to y2 and y3, thus obtaining Hölder
continuity of ∇y2 and ∇y3 up to the free boundary. Finally, the continuity of
y1 up to the free boundary will be derived from the conformality relations.

As a third step we devise an iteration scheme, which allows us to attain
X ∈ C1,1/2(B ∪ I, R3), by exploiting once again the conformality relations.

The use of Lp-estimates can be circumvented by a method which is devel-
oped in Section 2.9. Here one derives directly that ∇2X satisfies a Dirichlet
growth condition (i.e., has a finite Morrey seminorm) up to the free bound-
ary by alternatively applying one of two possible Poincaré inequalities. This
method is nothing but a skilful improvement of the estimates derived in step 1.

Note that the regularity results (i)–(iv) are not directly meaningful for
differential geometry, as the free boundary I may contain branch points. This
can, at least partially, be remedied in the following way. First, by applying a
technique due to Hartman and Wintner, we show that, for every branch point
w0 ∈ I, we have an asymptotic expansion

Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0

with some ν ∈ N and A ∈ C
3, A �= 0, 〈A, A〉 = 0.

This implies that there exists a limit tangent plane of X as w → w0 with
the normal N0 = limw→w0 N(w), where

N(w) = |Xu| −2(Xu ∧ Xv),

and that the oriented tangent

t(u) := |Xu(u)| −1Xv(u) as u → w0 = u0 ∈ I
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of the free trace X|I is either continuous or jumps by 180 degrees; the first
case occurs if the order ν of the branch point w0 = u0 ∈ I is even, the second
case, if ν is odd.

Hence, if ν is even, the representation x(s) of the trace Σ = X|I with
respect to its arc length

s =
∫ u

u0

|Xu(u)| du

is of class C1, and therefore the trace Σ can be viewed as a regular C1-curve
in the neighbourhood of x0 := X(u0). If ν is odd, then Σ has a cusp at x0,
and only the unoriented tangent is continuous at x0.

We sketch the derivation of this result in Section 2.10; the details of the
Hartman–Wintner technique are given in Chapter 3. In the first two chapters
of Vol. 3 we shall study cases where boundary branch points can entirely be
excluded.

Most of our results will be stated and proved merely for stationary points
of Dirichlet’s integral in C(Γ, S), that is, for solutions of a partially free
boundary problem. Similar results hold mutatis mutandis for minimal surfaces
with completely free boundaries, or for minimal surfaces of higher topologi-
cal type spanned in a general boundary configuration 〈Γ1, . . . , Γl, S1, . . . , Sm〉,
and their proofs can be carried out in essentially the same way. In fact, the
considerations in Sections 2.7–2.10 are strictly local and require only changes
in notation, and the reasoning of Sections 2.5 and 2.6 can be adjusted without
major difficulties. We leave it as an exercise to the reader to carry out the
details.

2.5 Hölder Continuity for Minima

Courant’s examples indicate that one cannot expect a solution of a free or
a semifree boundary problem to be regular at its free boundary, even if the
support surface S is of class C∞. On the other hand, we shall see that a
minimal surface is continuous up to its free boundary if it is minimizing and
if S satisfies a kind of uniform (local) Lipschitz condition. Such a condition
on S will be called a chord-arc condition.

Definition. A set S in R
3 is said to fulfil a chord-arc condition with constants

M and δ, M ≥ 1 and δ > 0, if it is closed and if any two points P and Q of
S whose distance |P − Q| is less than or equal to δ can be connected in S by
a rectifiable arc Γ ∗ whose length L(Γ ∗) satisfies

L(Γ ∗) ≤ M |P − Q|.

For example, every compact regular C1-surface S without boundary sat-
isfies a chord-arc condition, and the same holds true if the boundary ∂S is
nonempty but smooth.
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Let us first deal with the semifree problem. We now denote by B the
parameter domain

B = {w = u + iv : |w| < 1, v > 0}

the boundary of which consists of the circular arc

C = {w = u + iv : |w| = 1, v ≥ 0}

and of the interval
I = {u ∈ R : |u| < 1}

on the real axis.
Consider a boundary configuration 〈Γ, S〉 consisting of a closed set S in R

3

satisfying a chord-arc condition and of a Jordan curve Γ in R
3 whose endpoints

P1 and P2 lie on S, P1 �= P2. As in Section 4.6 of Vol. 1 we define the class of
admissible surfaces for the semifree problem as the set C(Γ, S) of mappings
X ∈ H1

2 (B, R3) satisfying
(i) X(w) ∈ S H1-a.e. on I;
(ii) X : C → Γ is a continuous, weakly monotonic mapping of C onto Γ

such that X(1) = P1, X(−1) = P2.
Let us also introduce the sets

Zd := {w ∈ B : |w| < 1 − d} = {w ∈ B : dist(w, C) > d}, (0 < d < 1),
Sr(w0) := B ∩ Br(w0).

Then we can prove:

Theorem 1. Suppose that X ∈ C(Γ, S) minimizes the Dirichlet integral D(X)
within the class C(Γ, S), and let e = e(Γ, S) := inf{D(Y ) : Y ∈ C(Γ, S)} be
positive. Moreover, assume that S satisfies a chord-arc condition with con-
stants M and δ. Then, for any d ∈ (0, 1), and w0 ∈ Zd, and for any r > 0,
we have

(1)
∫

Sr(w0)

| ∇X|2 du dv ≤
(

2r

d

)2μ ∫
B

| ∇X|2 du dv,

where

μ := min {(1 + M2)−1, δ2/(2eπ)}.(2)

It follows that X is of class C0,μ(Zd, R
3) and that

(3) [X]μ,Zd
≤ c(μ)(1 − d)−μ

√
D(X) = c(μ)(1 − d)−μ

√
e(Γ, S)

holds true for some constant c(μ) > 0.
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Proof. Let X be a minimizer of the Dirichlet integral in C(Γ, S). Then X is
harmonic in B, satisfies the conformality relations

(4) |Xu| = |Xv |, 〈Xu, Xv 〉 = 0,

and
D(X) = e.

For any point w0 ∈ B we define

(5) Φ(r, w0) :=
∫

Sr(w0)

| ∇X|2 du dv.

We begin by proving that for any d ∈ (0, 1) and for any w0 ∈ I with |w0| ≤ 1−d
the inequality

(6) Φ(r, w0) ≤ (r/d)2μΦ(d, w0)

holds true for all r ∈ (0, d]. To this end we fix w0 ∈ I with |w0| ≤ 1 − d
and set Br := Br(w0), Sr := Sr(w0), and Φ(r) := Φ(r, w0). Introducing polar
coordinates ρ, θ around w0 by w = w0 + ρeiθ and writing somewhat sloppily

X(w) = X(w0 + ρeiθ) = X(ρ, θ),

we obtain

(7) Φ(r) =
∫ r

0

∫ π

0

{ |Xρ(ρ, θ)|2 + ρ−2|Xθ(ρ, θ)|2}ρ dθ dρ.

From (4) we infer

|Xρ|2 = ρ−2|Xθ |2, 〈Xρ, Xθ 〉 = 0,(8)

hence

Φ(r) = 2
∫ r

0

ρ−1

∫ π

0

|Xθ(ρ, θ)|2 dθ dρ.(9)

There is a set N ⊂ [0, d] of 1-dimensional measure zero such that

(10)
∫ π

0

|Xθ(r, θ)|2 dθ < ∞ for r ∈ (0, d) \ N

and that the absolutely continuous function Φ(r) is differentiable at the values
r ∈ (0, d) \ N and satisfies

(11) Φ′(r) = 2r−1

∫ π

0

|Xθ(r, θ)|2 dθ.

We can therefore assume that, for r ∈ (0, d) \ N, the function X(r, θ) is an
absolutely continuous function of θ ∈ [0, π]; in particular, the limits
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Q1(r) := lim
θ→π−0

X(r, θ), Q2(r) := lim
θ→+0

X(r, θ)

exist for r ∈ (0, d) \ N.
Consider now any r ∈ (0, d) \ N for which

(12)
∫ π

0

|Xθ(r, θ)|2 dθ ≤ π−1δ2

holds true. Then we infer from

(13) |Q1(r) − Q2(r)| ≤
∫ π

0

|Xθ(r, θ)| dθ ≤
√

π

{∫ π

0

|Xθ(r, θ)|2 dθ

}1/2

the inequality
|Q1(r) − Q2(r)| ≤ δ.

Since S satisfies a chord-arc condition with constants M and δ, there exists a
rectifiable arc

Γ ∗ = {ξ(s) : 0 ≤ s ≤ l∗ }
of length l∗ = L(Γ ∗) on S which connects the points Q1(r) and Q2(r), and
whose length L(Γ ∗) satisfies

(14) l∗ = L(Γ ∗) ≤ M |Q1(r) − Q2(r)|.

We assume s to be chosen as parameter of the arc length on Γ ∗. Then it follows
that |ξ′(s)| = 1 a.e. on [0, l∗]. Introducing the reparametrization ζ(θ), π ≤ θ ≤
2π, of Γ ∗ which is defined by

ζ(θ) := ξ(π−1(θ − π)l∗),

we obtain
|ζθ(θ)| = const = l∗/π a.e. on [π, 2π]

and

l∗ =
∫ 2π

π

|ζθ | dθ;

therefore also

(15) π

∫ 2π

π

|ζθ |2 dθ =
(∫ 2π

π

|ζθ | dθ

)2

= l∗2.

From (13)–(15) we conclude that

(16)
∫ 2π

π

|ζθ |2 dθ ≤ M2

∫ π

0

|Xθ(r, θ)|2 dθ.

Consider now the harmonic vector function H(w) in Br whose boundary
values η(θ) = H(w0 + reiθ) are defined by
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η(θ) :=

{
X(r, θ) 0 ≤ θ ≤ π

for
ζ(θ) π ≤ θ ≤ 2π

.

Because of (16), we have

(17)
∫ 2π

0

|ηθ |2 dθ ≤ (1 + M2)
∫ π

0

|Xθ(r, θ)|2 dθ.

Expanding H and ζ in Fourier series we obtain

H(w) =
1
2
A0 +

∞∑
n=1

(ρ

r

)n

(An cosnθ + Bn sin nθ)

and

η(θ) =
1
2
A0 +

∞∑
n=1

(An cosnθ + Bn sin nθ).

From these expressions, we derive

∫
Br

| ∇H|2 du dv = π

∞∑
n=1

n(|An|2 + |Bn|2),

∫ 2π

0

|ηθ |2 dθ = π

∞∑
n=1

n2(|An|2 + |Bn|2),

and therefore
∫

Br

| ∇H|2 du dv ≤
∫ 2π

0

|ηθ |2 dθ.(18)

Relations (11), (17) and (18) imply that

(19)
∫

Br

| ∇H|2 du dv ≤ 1
2
(1 + M2)rΦ′(r).

Next we consider the mapping Y (w) on B ∪ Br which is defined as

Y (w) :=

{
H(w) w ∈ Br

for
X(w) w ∈ B \ Br

.

Clearly Y is continuous and of class H1
2 on B ∪ Br. Let τ be the homeomor-

phism of B onto B ∪ Br which maps B conformally onto B ∪ Br, keeping the
points 1, −1, i fixed. Then the mapping Z := Y ◦ τ is contained in C(Γ, S),
and the minimum property of X implies

∫
B

| ∇X|2 du dv ≤
∫

B

| ∇Z|2 du dv.
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On account of the conformal invariance of the Dirichlet integral we have
∫

B

| ∇X|2 du dv ≤
∫

B∪Br

| ∇Y |2 du dv,

and the definition of Y now implies

(20)
∫

Sr

| ∇X|2 du dv ≤
∫

Br

| ∇H|2 du dv.

By virtue of (5), (19), and (20) we obtain the relation

(21) Φ(r) ≤ 1
2 (1 + M2)rΦ′(r)

for every r ∈ (0, d) \ N satisfying equation (12).
On the other hand, if the equation

∫ π

0

|Xθ(r, θ)|2 dθ > π−1δ2

holds for some r ∈ (0, d) \ N, then we trivially have

Φ(r) ≤ 2D(X) = 2e < 2eπδ−2

∫ π

0

|Xθ(r, θ)|2 dθ,

and the identity (11) yields

(22) Φ(r) ≤ πeδ−2rΦ′(r).

Defining the number μ ∈ (0, 1) as in (2), it follows that

(23) 2μΦ(r) ≤ rΦ′(r) for all r in (0, d) \ N,

and an integration yields

Φ(r) ≤ (r/d)2μΦ(d) for all r ∈ [0, d].

Thus we have established (6) for any d ∈ (0, 1), w0 ∈ I with |w0| < 1 − d, and
r ∈ [0, d].

Consider any w0 with |w0| ≤ 1 − R and Imw0 ≥ R for some R ∈ (0, 1).
Then we have Br(w0) ⊂ B for any r ∈ (0, R), and analogously to (18) we
obtain

∫
Br(w0)

| ∇X|2 du dv ≤
∫ 2π

0

|Xθ(r, θ)|2 dθ

for almost all r ∈ (0, R). By (5) and (11) we therefore infer

Φ(r, w0) ≤ 1
2
r

d

dr
Φ(r, w0)
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for a.a. r ∈ (0, R), and an integration yields

(24) Φ(r, w0) ≤ (r/R)2Φ(R, w0) for all r ∈ [0, R].

Finally we fix some d ∈ (0, 1) and choose an arbitrary point w0 ∈ Zd =
B ∩ { |w| ≤ 1 − d}. Set u0 = Re w0 and v0 = Im w0. We distinguish three cases:

(i) v0 ≥ d/2.
Choosing R = d/2 we infer from (24) that

(25) Φ(r, w0) ≤ (2r/d)2
∫

B

| ∇X|2 du dv for 0 ≤ r ≤ d/2

holds true.

(ii) 0 ≤ v0 ≤ d/2 and v0 ≤ r ≤ d/2.
Then we have Br(w0) ⊂ B2r(u0), and it follows that

Φ(r, w0) ≤ Φ(2r, u0).

Applying (6) we have also

Φ(2r, u0) ≤ (2r/d)2μΦ(d, u0),

and therefore

Φ(r, w0) ≤ (2r/d)2μ

∫
B

| ∇X|2 du dv.(26)

In particular we have

(27) Φ(v0, w0) ≤ (2v0/d)2μ

∫
B

| ∇X|2 du dv for any v0 ∈ [0, d/2].

(iii) 0 ≤ v0 ≤ d/2 and 0 ≤ r ≤ v0.
Applying (24) to the case R = v0 we obtain

Φ(r, w0) ≤ (r/v0)2Φ(v0, w0).

Combining this inequality with (27) it follows that

Φ(r, w0) ≤ (r/v0)2(2v0/d)2μ

∫
B

| ∇X|2 du dv(28)

≤ (2r/d)2μ

∫
B

| ∇X|2 du dv.

On account of (25), (26) and (28) inequality (1) holds true for any r ∈
[0, d/2], and for r > d/2 estimate (1) is satisfied for trivial reasons. The bound
(3) and X ∈ C0,μ(Zd, R

3) now follow from Morrey’s Dirichlet growth theorem
(see Morrey [8], p. 79). �
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Remark. Note that the assumptions of Theorem 1 do not require S to be a
regular surface. In fact, S is allowed to degenerate to a rectifiable arc. Thus
several variants of Theorem 1 can be proved. For instance we get:

Theorem 2. Suppose that S ∪Γ satisfies a chord-arc condition with constants
M and δ, and let X ∈ C(Γ, S) be a minimizer of the Dirichlet integral in the
class C(Γ, S), that is, a solution of the minimum problem P(Γ, S) considered in
Section 4.6 of Vol. 1, which satisfies D(X) > 0. Then X is of class C0,μ(B, R3)
for some μ ∈ (0, 1).

Fixing a third point P3 ∈ Γ and requiring X(i) = P3 we can even derive
an a priori estimate for [X]μ,B analogous to (3).

In particular, the chord-arc condition for S ∪ Γ implies the Hölder conti-
nuity of any minimizer X in the corners w = ±1 which are mapped by X on
the points P1 and P2 where the arc Γ is attached to S.

If we consider minimal surfaces bounded by a preassigned closed Jordan
curve Γ of finite length, we can even drop the minimizing property of X since
we then can avoid the detour via the comparison surface Z = Y ◦ τ obtained
from X and H. Instead we derive an inequality of the type (21) directly
by applying the isoperimetric inequality to the part X|Sr(w0) of the minimal
surfaces. Leaving a detailed discussion to the reader we just formulate the
final result:

Fig. 1.

Theorem 3. Let Γ be a closed rectifiable Jordan arc in R
3 of the length L(Γ )

satisfying a chord-arc condition with constants M and δ. Denote by F(Γ ) a
family of minimal surfaces Y ∈ C(Γ ) bounded by Γ which maps three fixed
points on C = ∂B onto three fixed points on Γ . Then there exists a number
R > 0 such that for all X ∈ F(Γ ) we have

(29)
∫

Sr(w0)

| ∇X|2 du dv ≤ (r/R)2μD(X) for all r > 0

with the exponent μ = (1 + M)−2, and
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(30) [X]0+μ,B ≤ cL(Γ ),

where the constant c only depends on M, δ and on the chosen three-point
condition of the family F(Γ ).4

Similar results hold for solutions of minimum problems with a completely
free boundary, i.e., for the minimizers of the Dirichlet integral within one of
the classes C(σ, S), C+(S), and C(Π, S) introduced in Sections 1.1 and 1.2. As
in Chapter 1 we now choose the parameter domain B as the unit disk in C,

B = {w ∈ C : |w| < 1},

and
C = ∂B = {w ∈ C : |w| = 1}.

Moreover, we set

Sr(w0) := B ∩ Br(w0), Cr(w0) := B ∩ ∂Br(w0).

Theorem 4. Let S be a closed, nonempty, proper subset of R
3 satisfying a

chord-arc condition with constants M, δ. Moreover assume that for some μ > 0
the inclusion S → Tμ of S in Tμ induces a bijection of the corresponding
homotopy classes: π̃1(S) ↔ π̃1(Tμ).5 Finally, suppose that C denotes one of the
classes C(σ, S), C+(S), C(Π, S). Then for every minimizer X of the Dirichlet
integral in the class C there is a constant c such that

(31)
∫

Sr(w0)

| ∇X|2 du dv ≤ cr2ν

holds for any w0 ∈ B and any r > 0, where

(32) ν = (1 + M2)−1.

In particular, we have X ∈ C0,ν(B, R3) and

lim
w→w0

dist(X(w), S) = 0 for all w0 ∈ ∂B.(33)

Sketch of the proof. Set δ0 := 1
4πμ2; this constant is nothing but the number δ

which appears in Theorem 2 of Section 1.1. Then there is a number R0 ∈ (0, 1)
such that

(34)
∫

Ω0

| ∇X|2 du dv < δ0

holds true for the annular domain Ω0 := {w ∈ C : 1 − R0 < |w| < 1}.
For any point w0 ∈ B we define

4 See Hildebrandt [3], pp. 55–59, for a sketch of the proof.
5 This is Assumption (A) of Section 1.1.
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(35) Φ(r) = Φ(r, w0) =
∫

Sr(w0)

| ∇X|2 du dv.

Introducing polar coordinates ρ, θ around w0 by w = w0 + ρeiθ and writing
X(w) = X(w0 + ρeiθ) = X(ρ, θ), we obtain analogously to (9) that

(35′) Φ(r) = 2
∫ r

0

∫ θ2(ρ)

θ1(ρ)

ρ−1|Xθ(ρ, θ)|2 dθ dρ

holds for two angles θ1, θ2 with 0 ≤ θ2(ρ) − θ1(ρ) ≤ 2π. Consequently the
absolutely continuous function Φ(r) satisfies

(36)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ = 1
2rΦ′(r)

for all r ∈ (0, ∞) \ N where N is a one-dimensional null set.
Let w0 ∈ C and consider some positive number β which will be specified

later. Moreover, let r ∈ (0, R0) \ N.

Case 1. ∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ ≥ π−1β2.

Then we obtain the trivial inequality

(37) Φ(r) ≤ 2πβ−2D(X)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ = πβ−2D(X)rΦ′(r).

Case 2. ∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ < π−1β2.

Then for any two points P := X(r, θ) and P ′ := X(r, θ′) on X(Cr(w0)) we
have

|P ′ − P | ≤
∫ θ′

θ

|Xθ(r, θ)| dθ ≤ |θ′ − θ|1/2

{∫ θ′

θ

|Xθ(r, θ)|2 dθ

}1/2

whence

(38) |P ′ − P | ≤
∫ θ′

θ

|Xθ(r, θ)| dθ ≤ β.

In particular, this estimate holds true for the two endpoints Q1(r) and Q2(r)
of the arc X : Cr(w0) → R

3 which lie on S. Choosing β less than or equal to
δ (M and δ being the constants of the chord-arc condition of S), we have
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|Q1(r) − Q2(r)| ≤ δ.

Thus there is a rectifiable arc Γ ∗ = {ξ(s) : 0 ≤ s ≤ l∗ } of length l∗ = L(Γ ∗)
which connects the points Q1(r) and Q2(r), and whose length satisfies

(39) l∗ = L(Γ ∗) < M |Q1(r) − Q2(r)|.

Consider now the harmonic vector function H(w) in Br = Br(w0), the bound-
ary values η(θ) = H(w0 + reiθ) of which are defined by

η(θ) :=

⎧⎪⎨
⎪⎩

X(r, θ) θ1(r) ≤ θ ≤ θ2(r)
for

ζ(θ) θ ∈ [0, 2π] \ [θ1(r), θ2(θ)]

where ζ(θ) is a suitable reparametrization of Γ ∗ proportional to the arc length.
Then analogously to (19) we obtain

(40)
∫

Br

| ∇H|2 du dv ≤ 1
2
(1 + M2)rΦ′(r).

We now define the mapping Y (w) on B ∪ Br by

Y (w) :=

⎧⎪⎨
⎪⎩

H(w) w ∈ Br

for
X(w) w ∈ B \ Br

and set
Z := Y ◦ τ,

where τ is a homeomorphism of B onto B ∪ Br which maps B conformally
onto B ∪ Br.

Claim. The mapping Z is an admissible comparison surface, i.e. Z ∈ C, if
we choose β as

β := min{δ, μ, [(1 + M2)−1πδ0]1/2}.(41)

Then analogously to (21) we arrive at

(42) Φ(r) ≤ 1
2 (1 + M2)rΦ′(r).

Combining the discussion of the cases 1 and 2 we infer from (37) and (40)
that

Φ(r) ≤ 1
2crΦ′(r) a.e. on (0, R0),(43)

where
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c := max{1 + M2, 2πβ−2D(X)}.(44)

Now we can proceed as in the proof of Theorem 1, and we obtain the Dirichlet
growth condition (31) with ν = 1/c. As this implies X ∈ C0,ν(B, R3), we can
repeat the previous discussion in such a way that case 1 becomes void. For
this purpose we only have to choose R0 > 0 so small that

|Q1(r) − Q2(r)| < δ for r ∈ (0, R0) \ N.

Then we obtain condition (31) with the desired exponent ν = (1 + M2)−1.
It remains to verify the claim.
First of all we choose a radius ρ ∈ (0, 1) so close to 1 that the closed curve

Z : ∂Bρ(0) → R
3 is completely contained in Tμ/2 and represents the boundary

class [Z|∂B ]. We shall show that this curve is homotopic in Tμ to some curve
X : ∂Bρ′ (0) → R

3 which represents the boundary class of X.
Let Q1(r) = X(w1), Q2(r) = X(w2), w1, w2 ∈ ∂B. Since τ is a confor-

mal mapping of B onto B ∪ Br(w0), the tangent of the curve C̃r(w0) :=
τ −1(Cr(w0)) tends to a limit as w tends along Cr(w0) to one of the endpoints
w1 and w2 of Cr(w0), and this limit is different from the tangent of ∂B. This
can either be seen by an explicit computation of τ or from a general theorem
of the theory of conformal mappings (cf. Carathéodory [4], p. 91). Therefore
the above number ρ can be selected in such a way that ∂Bρ(0) intersects
C̃r(w0) in exactly two points z3 and z4, and that the curve τ(∂Bρ(0)) is com-
pletely contained in Ωε := Br(w0) ∪ B \ B1−ε(0) where ε is chosen to satisfy
0 < ε < r ≤ R0. Because of (34), it follows that

2DΩε(X) < δ0.(45)

Fig. 2. This sketch illustrates the proof that the comparison surface used in the regularity

proof is admissible
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We can find a number ρ′ ∈ (1 − ε, 1) such that the trace of the curve

X : ∂Bρ′ (0) → R
3

is completely contained in Tμ/2 and represents the boundary class [X|∂B] of X.
We can also achieve that ∂Bρ′ (0) \ Br(w0) lies between ∂B and τ(C∗

1 ), where
C∗

1 denotes that part of ∂Bρ(0) which is mapped by τ into B \ Br(w0). Set
C∗

2 := ∂Bρ(0) \ C∗
1 . Moreover, note that the curve X : Cr(w0) → R

3 remains
completely in Tμ/2 since its endpoints lie on S and its length is less than or
equal to β (cf. (38)), and β ≤ μ on account of (41).

Finally we infer from (36) and (40) that
∫

Br(w0)

| ∇Y |2 du dv ≤ (1 + M2)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ,

and the right-hand side of this inequality is bounded from above by

(1 + M2)π−1β2.

By virtue of (41) we arrive at

(46)
∫

Br(w0)

| ∇Y |2 du dv ≤ δ0.

We infer from (34), (45) and (46) as well as from Theorem 2 of Section 1.1
that all curves to be considered in the following are contained in Tμ/2, and
that we obtain the following homotopies (�). Here C ′

r will denote the subarc
of Cr(w0) which connects the intersection points w3 and w4 of Cr(w0) with
τ(∂Bρ(0)):

X|∂Bρ′ (0) � X|∂Bρ′ (0)\Br(w0) · X|Cr(w0)∩Bρ′ (0)

� X|τ(C∗
1 ) · X|C′

r

� Y ◦ τ |C∗
1

· Y |C′
r

� Y ◦ τ |C∗
1

· Y ◦ τ |C∗
2

= Z|∂Bρ(0).

This completes the proof of the claim and thus of the theorem. �

Remark. An Inspection of the proof of Theorem 4 shows that the constant
c in (31) will depend on the number R0 which in turn depends on X. Hence
(31) does not yield an a priori estimate of the Morrey seminorm or of the
Hölder seminorm of X.

2.6 Hölder Continuity for Stationary Surfaces

In the previous section we have proved that minimizers of the Dirichlet inte-
gral in various classes of admissible surfaces corresponding to free boundary
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problems are Hölder continuous up to their free boundary. The proof has
made essential use of the minimum property of the solution of the free bound-
ary problem. In case of partially free problems we have even derived a priori
estimates for the Hölder seminorm up to the free boundary. Now we want
to establish Hölder continuity of stationary minimal surfaces up to the free
boundary. However, we shall have to use a completely different approach in
this case as we are not able to derive a priori estimates for the Hölder semi-
norm or even for the modulus of continuity. In fact, such estimates do not
exist, as an inspection of the Schwarz examples discussed in Section 1.9 will
show. Consider, for instance, the boundary configuration 〈Γ, S〉 depicted in
Fig. 1 which consists of a cylinder surface S and of a polygon Γ with its
endpoints on S. For this particular configuration the corresponding semi-free
boundary problem possesses infinitely many stationary solutions, all of which
are simply connected parts of helicoids, and it is fairly obvious that there is
neither an upper bound for their areas (Dirichlet integrals), nor for the length
of their free traces, nor for their moduli of continuity.

For this reason we shall not approach the regularity problem by deriving
estimates. Instead we want to use an indirect reasoning, first proving continu-
ity up to the boundary by a contradiction argument. We shall constrain our
attention to stationary surfaces in the class C(Γ, S) defined for semi-free prob-
lems. Similar results can be obtained for stationary solutions of completely
free problems without any essential alterations.

We begin by defining Assumption (B) and the notion of admissible support
surfaces.

Fig. 1. The stationary solutions of the boundary value problem for the configuration 〈Γ, S〉
cannot be estimated a priori

Definition 1. An admissible support surface S of class Cm, m ≥ 2, (or of
class Cm,β with 0 < β ≤ 1) is a two-dimensional manifold of class Cm (or of
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class Cm,β) embedded in R
3, with or without boundary, which has the following

two properties:
(i) The boundary ∂S of the manifold S is a regular one-dimensional sub-

manifold of class Cm (or Cm,β) which can be empty.
(ii) Assumption (B) is fulfilled.

Assumption (B), a uniformity condition at infinity, is defined next. We
write x = (x1, x2, x3), y = (y1, y2, y3), . . . for points x, y, . . . in R

3.

Definition 2. A support surface S is said to fulfil Assumption (B) if the
following holds true: For each x0 ∈ S there exist a neighbourhood U of x0 in
R

3 and a C2-diffeomorphism h of R
3 onto itself such that h and its inverse

g = h−1 satisfy:
(i) The inverse g maps U onto some open ball BR(0) = {y ∈ R

3 : |y| < R}
such that g(x0) = 0; 0 < R < 1.

(ii) If ∂S is empty, then

g(S ∩ U) = {y ∈ BR(0) : y3 = 0}.

If ∂S is nonvoid, then there exists some number σ = σ(x0) ∈ [−1, 0] such that

g(S ∩ U) = {y ∈ BR(0) : y3 = 0, y1 ≥ σ},

g(∂S ∩ U) = {y ∈ BR(0) : y3 = 0, y1 = σ}

holds true. If x0 ∈ ∂S, then σ = 0, and σ ≤ −R if ∂S ∩ U is empty.
(iii) There are numbers m1 and m2 with 0 < m1 ≤ m2 such that the

components
gik(y) = hl

yi(y)hl
yk(y)

of the fundamental tensor of R
3 with respect to the curvilinear coordinates y

satisfies
m1|ξ|2 ≤ gik(y)ξiξk ≤ m2|ξ|2 for all y, ξ ∈ R

3.

(iv) There exists a number K > 0 such that
∣∣∣∣∂gik

∂yl
(y)
∣∣∣∣ ≤ K

is satisfied on R
3 for i, k, l = 1, 2, 3.

We call the pair {U, g} an admissible boundary coordinate system
centered at x0.

Let us recall the standard notation used for semifree problems and for the
definition of C(Γ, S): The parameter domain B is the semidisk

B = {w = u + iv : |w| < 1, v > 0},

the boundary of which consists of the circular arc
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C = {w = u + iv : |w| = 1, v ≥ 0}

and of the segment
I = {w ∈ R : |w| < 1}.

Moreover, we set

Zd = {w = u + iv : |w| < 1 − d, v > 0}, d ∈ (0, 1),

Sr(w0) = B ∩ Br(w0), Ir(w0) = I ∩ Br(w0),

Cr(w0) = B ∩ ∂Br(w0).

Next we introduce some terminology with respect to a fixed admissible
boundary coordinate system {U, g}. Given a minimal surface X : B → R

3, we
use the diffeomorphism g : R

3 → R
3 to define a new mapping Y ∈ C3(B, R3)

by

(1) Y (u, v) := g(X(u, v)),

whence also

(1′) X(u, v) = h(Y (u, v)).

In other words, we have

Y = g ◦ X and X = h ◦ Y.

Quite often we use the following normalization:

(2)

⎧⎪⎨
⎪⎩

Let w0 ∈ I, and set x0 := X(w0). Suppose that {U, g} is an
admissible boundary coordinate system for S centered at x0.
Then Y (w0) = 0.

In case of this normalization, the following holds true:

(2′)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Let Ω be a subset of B such that X(Ω) ⊂ U. Then we have

|Y (w)| < R. If w0 ∈ I, d = 1 − |w0|, r < d, X ∈ C0(Sr(w0), R3),
and X : Ir(w0) → S, then we have y3(w) = 0 for w ∈ Ir(w0).
If ∂S is nonempty and x0 ∈ ∂S, then we have y1(w) ≥ σ

for all w ∈ Ir(w0).

For any Z = (z1, z2, z3) ∈ H1
2 (Ω, R3), Ω ⊂ C, we define the transformed

Dirichlet integral (or: energy functional) EΩ(Z) by

(3) EΩ(Z) :=
1
2

∫
Ω

gik (Z)[zi
uzk

u + zi
vzk

v ] du dv
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and we set

(3′) E(Z) := EB(Z).

We note that

(4) EΩ(Z) = DΩ(h ◦ Z) for all Z ∈ H1
2 (Ω, R3),

whence, by (1′),

(5) EΩ(Y ) = DΩ(X), E(Y ) = D(X).

For every φ = (ϕ1, ϕ2, ϕ3) ∈ H1
2 ∩ L∞(B, R3) and for Xε := h(Y + εφ) we

have
lim

ε→+0

1
ε

{E(Y + εφ) − E(Y )} = lim
ε→+0

1
ε

{D(Xε) − D(X)}.

The left-hand side is equal to the first variation δE(Y, φ) of E at Y in direction
of φ, and a straightforward computation yields

δE(Y, φ) =
∫

B

gik (Y ){yi
uϕk

u + yi
vϕk

v } du dv(6)

+
∫

B

1
2
gik ,l(Y ){yi

uyk
u + yi

vyk
v }ϕl du dv

while the right-hand side tends to

(7) δD(X, Ψ0) =
∫

B

〈∇X, ∇Ψ0〉 du dv, Ψ0 := hy(Y )φ

because of

X = h(Y ), Xε = h(Y + εφ) = h(Y ) + εΨ(·, ε) = X + εΨ(·, ε)

with
Ψ0 := Ψ(·, 0) = lim

ε→0

1
ε

{Xε − X} = hy(Y )φ.

Thus we have

δE(Y, φ) = δD(X, Ψ0).(8)

Now we can reformulate the conditions which define stationary points X of
the Dirichlet integral in terms of the transformed surfaces Y = g(X). Recall
Definition 2 in Section 1.4:

If X is a stationary point of Dirichlet’s integral in C(Γ, S) and if Xε = X+
εΨ(·, ε) is an outer variation (type II) of X with Xε ∈ C(Γ, S) for 0 ≤ ε < ε0,
we have

lim
ε→+0

1
ε

{D(Xε) − D(X)} =
∫

B

〈∇X, ∇Ψ0〉 du dv ≥ 0
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for Ψ0 := Ψ(·, 0), and this is equivalent to

(9) δE(Y, φ) ≥ 0.

This holds true in particular for every φ ∈ C∞
c (B, R3) and thus we have both

δE(Y, φ) ≥ 0 and δE(Y, −φ) ≥ 0

whence

(10) δE(Y, φ) = 0 for all φ ∈ C∞
c (B, R3).

An integration by parts yields

−
∫

B

gil(Y ){yi
uϕl

u + yi
vϕl

v } du dv

=
∫

B

[gil(Y )∇yiϕl + gil,k (Y )(yi
uyk

u + yi
vyk

v )ϕl] du dv

for any φ ∈ C∞
c (B, R3), and we infer from (6) and (10) that

∫
B

[gil(Y )Δyi + {gil,k (Y ) − 1
2gik ,l(Y )}(yi

uyk
u + yi

vyk
v )]ϕl du dv = 0(11)

for allφ ∈ C∞
c (B, R3).

Then the fundamental lemma of the calculus of variations yields

(12) gil(Y )Δyi + {gil,k (Y ) − 1
2gik ,l(Y )}(yi

uyk
u + yi

vyk
v ) = 0.

Introducing the Christoffel symbols of the first kind,

Γilk = 1
2 {glk ,i − gik ,l + gil,k }

we can rewrite (12) in the form

(13) gik (Y )Δyi + Γilk (Y )(yi
uyk

u + yi
vyk

v ) = 0

using the symmetry relation Γilk = Γkli , and this implies

(14) Δyl + Γ l
jk (Y )(yj

uyk
u + yj

vyk
v ) = 0, l = 1, 2, 3,

if, as usual, Γ l
jk = glmΓjmk and (glm) = (gjk )−1. As one can reverse the

previous computations, we have found:

The equation ΔX = 0 is equivalent to the system (14).

Moreover, we infer by a straight-forward computation from (1′) and from
gik = hl

yihl
yk :

The conformality relations
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|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

are equivalent to

(15) gjk (Y )yj
uyk

u = gjk (Y )yj
vyk

v , gjk (Y )yj
uyk

v = 0.

The advantage of the new coordinate representation Y (w) over the old
representation X(w) is that we have transformed the nonlinear boundary
condition X(I) ⊂ S into linear conditions as described in (2′). We pay, how-
ever, by having to replace the linear Euler equation ΔX = 0 by the nonlinear
system (14). The variational inequality (9) will be the key to all regularity re-
sults. Together with the conformality relations (15) it expresses the fact that
X = h ◦ Y is a stationary point of the Dirichlet integral in the class C(Γ, S).
(Here Γ can even be empty if X is a stationary point for a completely free
boundary configuration; however, to have a clear-cut situation, we restrict our
attention to partially free problems.)

The two main steps of this section are:
(i) First we prove continuity in B ∪ I, that is, up to the free boundary I,

using an indirect reasoning. The corresponding result will be formulated as
Theorem 1.

(ii) In the second step we establish Hölder continuity on B ∪ I employing
the hole-filling technique. The corresponding result is stated as Theorem 2.

Let us begin with the first step by formulating

Theorem 1. Let S be an admissible support surface of class C2, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then X(w) is continuous on B ∪ I.

The proof of this result will be based on four lemmata which we are now
going to discuss.

Lemma 1. Let X : B → R
3 be a minimal surface. For any point w∗ ∈ B we

introduce x∗ := X(w∗) and the set

Kρ(x∗) := {w ∈ B : |X(w) − x∗ | < ρ}.

Then, for each open subset Ω of B with w∗ ∈ Ω, we obtain

lim sup
ρ→+0

1
πρ2

∫
Ω∩Kρ(x∗)

| ∇X|2 du dv ≥ 2.

Proof. Fix some w∗ ∈ B and some Ω in B with w∗ ∈ Ω. We can assume that
x∗ = X(w∗) = 0. Then we introduce the set

Uρ := {w : w = w∗ + teiθ, t ≥ 0, θ ∈ R, |X(w∗ + reiθ)| < ρ for all r ∈ [0, t]}.

Clearly Uρ is an open set with w∗ ∈ Uρ, and we have
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Uρ � Ω for 0 < ρ 
 1

and therefore
Uρ � Ω ∩ Kρ(x∗) for 0 < ρ 
 1.

Hence it suffices to prove

lim sup
ρ→+0

1
πρ2

∫
Uρ

| ∇X|2 du dv ≥ 2.

This relation is, however, an immediate consequence of Proposition 2 in Sec-
tion 3.2 of Vol. 1. �

Lemma 2. For each X ∈ C1(B, R3), every w0 ∈ I, and each ρ ∈ (0, 1 − |w0|),
there is a number r with ρ/2 ≤ r ≤ ρ such that

oscCr(w0)X ≤ (π/log 2)1/2

{∫
Sρ(w0)

| ∇X|2 du dv

}1/2

.

Proof. Let us introduce polar coordinates r, θ about w0 setting w = w0 + reiθ

and X(r, θ) = X(w). Then, for 0 ≤ θ1 ≤ θ2 ≤ π, we obtain

|X(r, θ2) − X(r, θ1)| ≤
∫ θ2

θ1

|Xθ(r, θ)| dθ ≤
√

πp(r)

where we have set
p(r) :=

∫ π

0

|Xθ(r, θ)|2 dθ.

If ρ/2 ≤ r ≤ ρ, it follows that
∫ ρ

ρ/2

p(r)
dr
r

≤
∫

Sρ(w0)

| ∇X|2 du dv.

Consequently, there is a number r ∈ [ρ/2, ρ] such that
(∫ ρ

ρ/2

dt
r

)
p(r) ≤

∫
Sρ(w0)

| ∇X|2 du dv

or
p(r) ≤ 1

log 2

∫
Sρ(w0)

| ∇X|2 du dv,

and the assertion is proved. �

Lemma 3. Let w0 ∈ I, r ∈ (0, 1 − |w0|), and X ∈ C1(B, R3). Assume also
that there are positive numbers α1 and α2 such that

oscCr(w0)X ≤ α1
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and
sup

w∗ ∈Sr(w0)

inf
w∈Cr(w0)

|X(w) − X(w∗)| ≤ α2.

Then we obtain
oscSr(w0)X ≤ 2α1 + 2α2.

Fig. 2. A domain used in Lemma 3

Proof. Let w ∈ Sr(w0) and w′, w′ ′ ∈ Cr(w0). Then we infer from

|X(w) − X(w′)| ≤ |X(w) − X(w′ ′)| + |X(w′ ′) − X(w′)|

that

|X(w) − X(w′)| ≤ inf
w′ ′ ∈Cr(w0)

|X(w) − X(w′ ′)| + oscCr(w0)X.

Thus we have

|X(w) − X(w′)| ≤ α1 + α2 for all w ∈ Sr(w0) and w′ ∈ Cr(w0).

This yields for arbitrary w1, w2 ∈ Sr(w0) and w′ ∈ Cr(w0) the inequalities

|X(w1) − X(w2)| ≤ |X(w1) − X(w′)| + |X(w2) − X(w′)| ≤ 2α1 + 2α2,

and the assertion is proved. �

Lemma 4. Let X be a stationary point of Dirichlet’s integral in the class
C(Γ, S). Suppose also that the support surface S is of class C2, and let
R, K, m1, m2 be the constants appearing in Assumption (B) that is to be satis-
fied by S. Then, for R1 := R

√
m2 and for some number c > 0 depending only

on R, K, m1, m2, we have: If for some r ∈ (0, 1 − |w0|) and for some number
R2 ∈ (0, R1) the inequality

[∫
Sr(w0)

| ∇X|2 du dv

]1/2

< R2/c

holds true, then it follows that

sup
w∗ ∈Sr(w0)

inf
w∈Cr(w0)

|X(w) − X(w∗)| ≤ R2.
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Before we come to the proof of Lemma 4 which is the main result in
step 1 of our discussion, let us turn to the Proof of Theorem 1. Since∫

B
| ∇X|2 du dv < ∞, we have

lim
r→+0

∫
Sr(w0)

| ∇X|2 du dv = 0

for every w0 ∈ I. Then Lemmata 2, 3, and 4 immediately imply that

lim
r→0

oscSr(w0)X = 0

for w0 ∈ I. In conjunction with X ∈ C0(B, R3) we then infer that X is
continuous on B ∪ I. �

Proof of Lemma 4. Let w0 ∈ I and 0 < r < 1 − |w0|. Then we have to prove
the following statement:

There is a number c = c(R, K, m1, m2) with the property that for any R2

with 0 < R2 < R1 and for any w∗ ∈ Sr(w0) with

(16) inf
w∈Cr(w0)

|X(w) − X(w∗)| > R2

the inequality

(17) R2 ≤ c

[∫
Sr(w0)

| ∇X|2 du dv

]1/2

holds true.
Thus let us consider some w∗ ∈ Sr(w0), w0 ∈ I, 0 < r < 1 − |w0|, and set

x∗ := X(w∗), δ(x∗) := dist(x∗, S).

We shall distinguish between two cases, δ(x∗) > 0 and δ(x∗) = 0.

Case (i): δ(x∗) > 0.
Then we proceed as follows: Choose some function λ ∈ C1(R) with λ′ ≥ 0

and with λ(t) = 0 for t ≤ 0, and introduce the real valued function

ϕ(ρ) :=
1
2

∫
Sr(w0)

λ(ρ − |X − x∗ |)| ∇X|2 du dv,

for 0 < ρ < min{δ(x∗), d2R2}, where R2 is some number with 0 < R2 < R1 :=
R

√
m2, and where we have set

d :=
1
2

√
m1

m2
, 0 < d ≤ 1/2.

Define a test function η(w) as
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η(w) :=

{
λ(ρ − |X(w) − x∗ |)[X(w) − x∗] for w ∈ Sr(w0),

0 for w ∈ B \ Sr(w0).

We use η to define a family {Xε}0≤ε<ε0 of outer variations

Xε(w) := X(w) − εη(w).

On account of
|X(w) − x∗ | ≥ R2 > ρ for w ∈ Cr(w0)

we find that Xε is of class H1
2 (B, R3). Furthermore, we obtain

Xε(w) = X(w) for w ∈ B \ Sr(w0).

Hence X and Xε have the same boundary values on C. Moreover, for L1-
almost all w ∈ I, we have X(w) ∈ S and therefore |X(w) − x∗ | ≥ δ(x∗)
whence ρ − |X(w) − x∗ | < 0. This implies η(w) = 0 for L1-a.a. w ∈ I.
Consequently we obtain Xε ∈ C(Γ, S) for 0 ≤ ε < ε0 and for any ε0 > 0. As
η ∈ H1

2 ∩ L∞(B, R3), we conclude that Xε is an admissible variation of type II
in the sense of Definition 2, Section 1.4. By Section 1.4, (3) and (7), it follows
that ∫

Sr(w0)

〈∇X, ∇η〉 du dv ≤ 0

(in fact, even the equality sign holds true since we are allowed to take ε ∈
(−ε0, ε0)), and therefore

∫
Sr(w0)

| ∇X|2λ(ρ − |X(w) − x∗ |) du dv

≤
∫

Sr(w0)

λ′(ρ − |X − x∗ |)|X − x∗ | −1

· { 〈Xu, X − x∗ 〉2 + 〈Xv, X − x∗ 〉2} du dv.

By virtue of the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

we have
{. . .} ≤ 1

2 | ∇X|2|X − x∗ |2,

and the factor 1/2 will be essential for the following reasoning.
It follows that∫

Sr(w0)

| ∇X|2λ(ρ − |X − x∗ |) du dv(18)

− 1
2

∫
Sr(w0)

λ′(ρ − |X − x∗ |)| ∇X|2|X − x∗ | du dv ≤ 0.
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Since
λ′(ρ − |X − x∗ |) = 0 if |X − x∗ | ≥ ρ

it follows that

|X − x∗ |λ′(ρ − |X − x∗ |) ≤ ρλ′(ρ − |X − x∗ |),

and (18) yields

(18′) 2ϕ(ρ) − ρϕ′(ρ) ≤ 0.

Thus,
d

dρ
{ρ−2ϕ(ρ)} ≥ 0,

and it follows that

(19) ρ−2ϕ(ρ) ≤ (ρ′)−2ϕ(ρ′) for 0 < ρ ≤ ρ′ < R∗,

where we have set
R∗ := min{δ(x∗), d2R2}.

Now we choose λ in such a way that it also satisfies

λ(t) = 1 for any t ≥ ε,

where ε denotes some positive number (in other words, we consider a family
{λε} of cut-off functions λε(t) with the parameter ε).

Then we obtain

1
2
ρ−2

∫
Sr(w0)∩Kρ−ε(x∗)

| ∇X|2 du dv ≤ ρ−2ϕ(ρ),

where we have set

Kτ (x∗) := {w ∈ B : |X(w) − x∗ | < τ }.

Letting ε → +0 and then ρ′ → R∗ − 0, we find that

ρ−2

∫
Sr(w0)∩Kρ(x∗)

| ∇X|2 du dv ≤ (R∗)−2

∫
Sr(w0)∩KR∗ (x∗)

| ∇X|2 du dv

taking λ(t) ≤ 1 and (19) into account. Now let ρ → +0. Then it follows from
Lemma 1 that

(20) 2πR∗2 ≤
∫

Sr(w0)∩KR∗ (x∗)

| ∇X|2 du dv.

In case that d2R2 ≤ δ(x∗), we have by definition of R∗ that R∗ = d2R2, and
(20) implies



142 2 The Boundary Behaviour of Minimal Surfaces

(21) R2 ≤
{

1
2πd4

∫
Sr(w0)

| ∇X|2 du dv

}1/2

if d2R2 ≤ δ(x∗).

Now we treat the opposite case δ(x∗) < d2R2 where we have R∗ = δ(x∗).
Because of (20), we have already proved that

(22) 2πδ2(x∗) ≤
∫

Sr(w0)∩Kδ(x∗)(x∗)

| ∇X|2 du dv.

(The still missing case δ(x∗) = 0 is formally included and will be treated at
the end of our discussion.)

First we choose some point f ∈ S which satisfies

|f − x∗ | = dist(x∗, S) = δ(x∗) < d2R2 ≤ 1
4R2.

Then we choose an admissible boundary coordinate system {U, g} for S cen-
tered at x0 := f as described in Definition 2, with the diffeomorphisms g and
h = g−1. As before we define by gjk (y) the components of the fundamental
tensor:

gjk (y) :=
∂hl

∂yj
(y)

∂hl

∂yk
(y).

Let us introduce the transformed surface Y (w) by

Y (w) := g(X(w)) = (y1(w), y2(w), y3(w)),

and set
‖Y (w)‖ := {gjk (Y (w))yj(w)yk(w)}1/2.

For ρ with d−1δ(x∗) < ρ < dR2, we define

η(w) :=

{
λ(ρ − ‖Y (w)‖)Y (w) for w ∈ Sr(w0),

0 if w ∈ B \ Sr(w0).

Firstly we prove that η ∈ H1
2 (B, R3). For this it suffices to show that η

vanishes on Cr(w0). For this purpose, let w be an arbitrary point on Cr(w0).
By assumption (16) we have

R2 ≤ |X(w) − x∗ |,

whence
R2 ≤ δ(x∗) + |X(w) − f | ≤ R2/4 + |X(w) − f |,

and this implies

R2/2 ≤ |X(w) − f | for all w ∈ Cr(w0).
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On the other hand, since h(0) = f , we obtain

|X(w) − f | =
∣∣∣∣
∫ 1

0

hyk(tY (w))yk(w)dt
∣∣∣∣

≤ √
m2|Y (w)| ≤ (m2/m1)1/2‖Y (w)‖.

Thus
‖Y (w)‖ ≥ (1/2)(m1/m2)1/2R2 = dR2 > ρ,

and therefore
η(w) = 0 for w ∈ Cr(w0).

For 0 ≤ ε < 1/2 we consider the family Xε of surfaces which are defined by

Xε(w) := h(Y (w) − εη(w)).

We want to show that Xε is an admissible variation of X which is of type II.
In fact, we have Xε ∈ H1

2 (B, R3) and Xε(w) = X(w) for all w ∈ C since
η(w) = 0 for w ∈ C. Now we want to show that Xε maps L1-almost all points
of I into S. To this end, we pick some w ∈ I with X(w) ∈ S. If η(w) = 0, then
Xε(w) = X(w), and therefore Xε(w) ∈ S. On the other hand, if η(w) �= 0, we
have ‖Y (w)‖ < ρ and therefore

|Y (w)| < ρ/
√

m1 < dR2/
√

m1 =
dR2

2
√

m2

(
1
2

√
m1/m2

)−1

=
R2

2
√

m2

<
R1

2
√

m2
=

R
√

m2

2
√

m2
= R/2.

Since X(w) ∈ S, this estimate yields y3(w) = 0 (see (2′)), whence

[Y (w) − εη(w)]3 = 0.

Taking the inequalities

|Y (w) − εη(w)| ≤ 2|Y (w)| < R

into account, we infer that

Xε = h(Y − εη) ∈ C(Γ, S)

provided that ∂S = ∅. This inclusion holds as well if ∂S is nonvoid, since
y1(w) ≥ σ and −1 ≤ σ ≤ 0 implies

y1(w) − εη1(w) = y1(w){1 − ελ(w)} ≥ σ{1 − ελ(w)} ≥ σ.

Now we define

Ψ(ε, w) :=

{
ε−1[h(Y (w) − εη(w)) − h(Y (w))] for ε > 0,

− ∂h
∂yk (Y (w))ηk(w) for ε = 0.
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Then we have

Xε := h(Y − εη) = X + εΨ(·, ε) for 0 ≤ ε < 1/2,

and Taylor’s formula yields

Ψ(ε, w) = Ψ0(w) + o(ε)

with
Ψ0 := −hyk(Y )ηk ∈ H1

2 ∩ L∞(B, R3)

and
Ψ(ε, w) → Ψ0(w) a.e. on B as ε → 0.

Moreover, the reader readily checks that

| ∇Ψ(ε, ·)|L2(B) ≤ const

holds for some constant independent of ε ∈ [0, 1/2). Hence the variations
{Xε}0≤ε<1/2 of X are admissible, and we infer from (9) that

δE(Y, −η) ≥ 0,

or
δE(Y, η) ≤ 0,

which implies
∫

Sr(w0)

[
gjk (Y )DαyjDαηk +

1
2
gjk ,l(Y )DαyjDαykηl

]
du dv ≤ 0,

where we have set

u1 = u, u2 = v, D1 =
∂

∂u
, D2 =

∂

∂v

(summation with respect to Greek indices from 1 to 2, and with respect to
Latin indices from 1 to 3).

Then it follows that∫
Sr(w0)

gjk (Y )DαyjDαykλ(ρ − ‖Y ‖) du dv

−
∫

Sr(w0)

λ′(ρ − ‖Y ‖)gmn(Y )(Dαym)yn 1
2

‖Y ‖ −1

· {2gjk (Y )(Dαyj)yk + gjk ,l(y)(Dαyl)yjyk } du dv

≤ − 1
2

∫
Sr(w0)

gjk ,l(y)DαyjDαykylλ(ρ − ‖Y ‖) du dv.

This is equivalent to
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∫
Sr(w0)

gjk (Y )DαyjDαykλ(ρ − ‖Y ‖) du dv(23)

−
∫

Sr(w0)

‖Y ‖λ′(ρ − ‖Y ‖)

{[
gjk (Y )yj

u

yk

‖Y ‖

]2

+
[
gjk (Y )yj

v

yk

‖Y ‖

]2}
du dv

≤ − 1
2

∫
Sr(w0)

gjk ,l(Y )DαyjDαykylλ(ρ − ‖Y ‖) du dv

+
1
2

∫
Sr(w0)

λ′(ρ − ‖Y ‖)gjk (Y )Dαyj yk

‖Y ‖ gmn,l (Y )ymynDαyl du dv.

Now we set

ψ(ρ) :=
∫

Sr(w0)

gjk (Y )DαyjDαykλ(ρ − ‖Y ‖) du dv.

Then, by virtue of the conformality relations (15), we obtain the estimate

[
gjk (Y )yj

u

yk

‖Y ‖

]2
+
[
gjk (Y )yj

v

yk

‖Y ‖

]2
≤ 1

2
‖∇Y ‖2,

where we have set
‖ ∇Y ‖2 := gjk (Y )DαyjDαyk.

Moreover we have

‖Y ‖λ(ρ − ‖Y ‖) ≤ ρλ(ρ − ‖Y ‖),
‖Y ‖λ′(ρ − ‖Y ‖) ≤ ρλ′(ρ − ‖Y ‖).

Hence the left-hand side of (23) can be estimated from below by

ψ(ρ) − 1
2ρψ′(ρ);

compare (18) and (18′) for an analogous computation.
The first term on the right-hand side of (23) can be estimated from above

by

c(n)K
∫

Sr(w0)

| ∇Y |2m−1/2
1 ‖Y ‖λ(ρ − ‖Y ‖) du dv

≤ c(n)Km
−3/2
1

∫
Sr(w0)

ρ‖ ∇Y ‖2λ(ρ − ‖Y ‖) du dv

≤ M̃ρψ(ρ),

where we have set
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M̃ := c(n)Km
−3/2
1 ,

and where c(n) denotes a constant depending on the space dimension (in our
case: n = 3).

Analogously, the second term is bounded from above by

c(n)K
∫

Sr(w0)

λ′(ρ − ‖Y ‖)‖ ∇Y ‖ | ∇Y | |Y |2 du dv

≤ c(n)Km
−3/2
1

∫
Sr(w0)

‖Y ‖2λ′(ρ − ‖Y ‖)‖∇Y ‖2 du dv

≤ M̃ρ2ψ′(ρ).

Thus we have derived the following differential inequality

ψ(ρ) − 1
2ρψ′(ρ) ≤ M̃ [ρψ(ρ) + ρ2ψ′(ρ)]

which is equivalent to

− d

dρ
[ρ−2ψ(ρ)] ≤ 2Mρ−2ψ(ρ) + M

d

dρ
[ρ−1ψ(ρ)]

with
M := 2M̃.

Multiplying by e2Mρ, we obtain

0 ≤ d

dρ
[e2Mρρ−2ψ(ρ)] + Me2Mρ d

dρ
[ρ−1ψ(ρ)].

Then by integrating between the limits ρ and ρ′, ρ < ρ′, and by applying an
integration by parts, we infer that

0 ≤ [e2Mρρ−2ψ(ρ)]ρ
′

ρ +
∫ ρ′

ρ

Me2Mρ d

dρ
[ρ−1ψ(ρ)] dρ

= [e2Mρρ−2ψ(ρ)]ρ
′

ρ + [Me2Mρρ−1ψ(ρ)]ρ
′

ρ −
∫ ρ′

ρ

2M2e2Mρρ−1ψ(ρ) dρ.

Therefore,
0 ≤ [e2Mρρ−2ψ(ρ) + Me2Mρρ−1ψ(ρ)]ρ

′

ρ

whence

ρ−2ψ(ρ) ≤ e2Mρ′
+ ρ′Me2Mρ′

e2Mρ + ρMe2Mρ
(ρ′)−2ψ(ρ′).

Applying once again the reasoning which led to (20) (that is, choosing λ = λε,
and letting first ε → +0 and then ρ′ → dR2 − 0) and setting

C(R2) := (1 + dR2M)e2MdR2 ,
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we arrive at

ρ−2

∫
Sr(w0)∩{w : ‖Y (w)‖<ρ}

‖ ∇Y ‖2 du dv(24)

≤ C(R2)(dR2)−2

∫
Sr(w0)

‖∇Y ‖2 du dv.

Furthermore,

Sr(w0) ∩ {w : |X(w) − f | < 2δ(x∗)} ⊂ Sr(w0) ∩ {w : ‖Y (w)‖ < ρ}

since

Y (w) =
∫ 1

0

gxj (tX + (1 − t)f)(xj − f j) dt

implies

‖Y (w)‖ ≤ (m2/m1)1/2|X(w) − f | < 2(m2/m1)1/2δ(x∗) = d−1δ(x∗) < ρ.

For δ(x∗) > 0 and ρ → d−1δ(x∗) + 0, we then infer from (24) that

d2

δ2(x∗)

∫
Sr(w0)∩{w : |X(w)−f |<2δ(x∗)}

‖∇Y ‖2 du dv

≤ C(R2)d−2R−2
2

∫
Sr(w0)

‖ ∇Y ‖2 du dv,

and this inequality can be rewritten in the form

δ(x∗)−2

∫
Sr(w0)∩K

2δ(x∗)(f)

| ∇X|2 du dv(25)

≤ C(R2)d−4R−2
2

∫
Sr(w0)

| ∇X|2 du dv.

By virtue of
|X(w) − f | ≤ |X(w) − x∗ | + |f − x∗ |

we obtain
Kδ(x∗)(x∗) ⊂ K2δ(x∗)(f),

and therefore

R2
2δ(x

∗)−2

∫
Sr(w0)∩K

δ(x∗)(x∗)

| ∇X|2 du dv ≤ C(R2)d−4

∫
Sr(w0)

| ∇X|2 du dv.

By virtue of (22), the left-hand side is bounded from below by 2πR2
2. Thus

we obtain

(26) R2 ≤
{

C(R2)
2πd4

∫
Sr(w0)

| ∇X|2 du dv

}1/2

if 0 < δ(x∗) < d2R2.
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Combining (21) and (26), we obtain from C(R2) ≤ C(R1), R1 = R
√

m2 and
d−2 = 4(m2/m1) that

(27) R2 ≤ c

{∫
Sr(w0)

| ∇X|2 du dv

}1/2

in Case (i): δ(x∗) > 0,

if we set
c := (23π−1(m2/m1)2C(R1))1/2 = c(R, K, m1, m2).

Case (ii): δ(x∗) = 0.
Here we take f = x∗ as the center of an admissible boundary coordinate

system {U, g} for S. Then we obtain (24) for any ρ ∈ (0, dR2). Setting ρ′ :=
ρ
√

m1/m2, it follows that

ρ−2

∫
Sr(w0)∩Kρ′ (x∗)

| ∇X|2 du dv ≤ C(R2)d−2R−2
2

∫
Sr(w0)

| ∇X|2 du dv.

Now let ρ′ → +0; then another application of Lemma 1 yields

2π ≤ lim sup
ρ′ →+0

(ρ′)−2

∫
Sr(w0)∩Kρ′ (x∗)

| ∇X|2 du dv

≤ C(R2)
4d4R2

2

∫
Sr(w0)

| ∇X|2 du dv

whence we obtain

(27′) R2 ≤ c

{∫
Sr(w0)

| ∇X|2 du dv

}1/2

in Case (ii): δ(x∗) = 0.

Combining (27) and (27′), we arrive at (17). �

Now we turn to the second step with the aim to prove

Theorem 2. Let S be an admissible support surface of class C2, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then there exists a constant α ∈ (0, 1) such that the following holds true:

For every d ∈ (0, 1), there exists a constant c > 0 such that

(28)
∫

Sr(w0)

| ∇X|2 du dv ≤ cr2α

holds true for every w0 ∈ Zd and for all r > 0. In particular, X is of class
C0,α(B ∪ I, R3).

We shall use the following simple but quite effective
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Lemma 5. Let ϕ(r), 0 < r ≤ 2R be a nondecreasing and nonnegative function
satisfying

(29) ϕ(r) ≤ θϕ(2r)

for some θ ∈ (0, 1) and for all r ∈ (0, R]. Then, for

α := 2log
1
θ
,

we have

(30) ϕ(r) ≤ 2αϕ(R)(r/R)α for all r ∈ (0, R].

Proof. For any r ∈ (0, R] and for any ν = 0, 1, 2, . . . , we have

ϕ(2−νr) ≤ θϕ(2−ν+1r).

Iterating these inequalities, we obtain

ϕ(2−νr) ≤ θνϕ(r) for 0 < r ≤ R.

Fix some r ∈ (0, R]. Then there exists some integer ν ≥ 0 such that

2−ν−1 < r/R ≤ 2−ν .

Since θ = 2−α and ϕ(r) is nondecreasing, we see that

ϕ(r) ≤ ϕ(2−νR) ≤ θνϕ(R) ≤ 2−ναϕ(R) ≤ 2αϕ(R)(r/R)α. ��

For later use we note a generalization of Lemma 5.

Lemma 6. Let ϕ(r), 0 < r ≤ 2R, by a nondecreasing and nonnegative func-
tion satisfying

ϕ(r) ≤ θ{ϕ(2r) + rσ }(31)

for some θ ∈ (0, 1), σ > 1, 0 < R < 1, and for all r ∈ (0, R]. Then, for
ε ∈ (0, σ − 1) and for

(32) θ∗ := max{θ, 2ε−σ(θRε + 1)}, α := 2log
1
θ∗ ,

we have

(33) ϕ(r) ≤ 2α{ϕ(R) + Rσ−ε}(r/R)α for all r ∈ (0, R].

Proof. Since Rεθ < 1 and 2ε−σ < 1/2, we infer that

2ε−σ(θRε + 1) < 1
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and therefore 0 < θ∗ < 1. Set

ϕ∗(r) := ϕ(r) + rσ−ε.

Then, for any r ∈ (0, R], it follows that

ϕ∗(r) ≤ θϕ(2r) + θrσ + rσ−ε = θϕ(2r) + rσ−ε(θrε + 1)
≤ θϕ(2r) + (2r)σ−ε2ε−σ(θrε + 1)
≤ θ∗ {ϕ(2r) + (2r)σ−ε} = θ∗ϕ∗(2r).

Applying Lemma 5, we infer

ϕ∗(r) ≤ 2αϕ∗(R)(r/R)α for all r ∈ (0, R] and α := 2log
1
θ∗

whence

ϕ(r) ≤ ϕ(r) + rσ−ε ≤ 2α{ϕ(R) + Rσ−ε}(r/R)α for 0 < r ≤ R. ��

Proof of Theorem 2. We want to show that the growth estimate (28) is sat-
isfied for any w0 ∈ I. Let us first assume that ∂S is empty. We intro-
duce an admissible boundary coordinate system {U, g} for S centered at
x0 := X(w0) with the inverse mapping h = g−1, and we set Y := g(X).
Then we have Y ∈ C0(B ∪ I, R3) and Y (w0) = 0, and we can find some
number ρ0 ∈ (0, 1 − |w0|) such that

|Y (w)| ≤ R/2 for w ∈ Sρ0(w0), Y 3(w) = 0 for w ∈ I ∩ Sρ0(w)

(cf. Definition 2 for the meaning of R, as well as the discussion following
Definition 2).

Suppose that Xε := h(Y − εφ), |ε| < ε0(φ), φ = (ϕ1, ϕ2, ϕ3), is a family of
admissible variations with Xε ∈ C(Γ, S). Then we have

(34)
∫

B

gjk (Y )DαyjDαϕk du dv ≤ − 1
2

∫
B

gjk ,l(Y )DαyjDαykϕl du dv.

(In fact, equality holds true.) Now let r ∈ (0, ρ0/2], and choose some cut-off
function ξ ∈ C∞

c (B2r(w0)) with ξ(w) ≡ 1 on Br(w0) and 0 ≤ ξ ≤ 1, | ∇ξ| ≤
2/r.

Set T2r := S2r(w0) \ Sr(w0),

ω1 := −
∫

T2r

y1 du dv, ω2 := −
∫

T2r

y2 du dv, ω3 := 0,

where
−
∫

Ω

. . . stands for
1

meas Ω

∫
Ω

. . .

φ = (ϕ1, ϕ2, ϕ3), ϕk(w) := (yk(w) − ωk)ξ2(w) for w ∈ B ∪ I. Then the test
vector φ is admissible in (34), and we obtain
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∫
B

gjk (Y )DαyjDαykξ2 du dv +
1
2

∫
B

gjk ,l(Y )DαyjDαyk(yl − ωl)ξ2 du dv

≤ −2
∫

B

gjk (Y )Dαyj(yk − ωk)ξDαξ du dv.

Hence, for any ε > 0 and some constant K1(ε) > 0, we find the inequality

m1

∫
B

| ∇Y |2ξ2 du dv − 1
2

∫
B

|gjk ,l(Y )| |Dαyj | |Dαyk | |yl − ωl|ξ2 du dv(35)

≤ ε

∫
B

|ξ|2‖ ∇Y ‖2 du dv + K1(ε)
∫

B

‖Y − ω‖2| ∇ξ|2 du dv,

where ω = (ω1, ω2, ω3). Since

‖ ∇Y ‖2 ≤ m2| ∇Y |2

we can absorb the term

ε

∫
B

ξ2‖ ∇Y ‖2 du dv

by the first term on the left-hand side, if we choose

ε =
m1

2m2
.

Moreover, the absolute value of the second term of the left-hand side of (35)
can be bounded from above by

m1

4

∫
B

| ∇Y |2ξ2 du dv,

if we choose r ∈ (0, ρ1), where ρ1 ∈ (0, ρ0/2) is a sufficiently small number
depending on the modulus of continuity of X. Hence there is a number K2 > 0
such that ∫

Sr(w0)

| ∇Y |2 du dv ≤
∫

S2r(w0)

ξ2| ∇Y |2 du dv(36)

≤ K2r
−2

∫
T2r

|Y − ω|2 du dv

holds for all r ∈ (0, ρ1).
By Poincaré’s inequality, there is a constant K3 > 0 such that

(37)
∫

T2r

|Y − ω|2 du dv ≤ K3r
2

∫
T2r

| ∇Y |2 du dv

is satisfied for 0 < r < ρ1. Consequently, there is a constant K4 such that
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∫
Sr(w0)

| ∇Y |2 du dv ≤ K4

∫
Sr(w0)\Sr(w0)

| ∇Y |2 du dv

for all r ∈ (0, ρ1).
Now we fill the hole Sr(w0) by adding the term K4

∫
Sr(w0)

| ∇Y |2 du dv to
both sides. Then we arrive at

(1 + K4)
∫

Sr(w0)

| ∇Y |2 du dv ≤ K4

∫
S2r(w0)

| ∇Y |2 du dv

whence, setting

θ :=
K4

1 + K4
,

we attain ∫
Sr(w0)

| ∇Y |2 du dv ≤ θ

∫
S2r(w0)

| ∇Y |2 du dv

for every r ∈ (0, ρ1). As 0 < θ < 1, we can apply Lemma 5 to R = ρ1 and to
ϕ(r) :=

∫
Sr(w0)

| ∇Y |2 du dv, thus obtaining

∫
Sr(w0)

| ∇Y |2 du dv ≤ 22α

∫
Sr(w0)

| ∇Y |2 du dv

(
r

ρ1

)2α

for 0 < r < ρ1, if we set α := 1
2 2log θ. For

K5 := 22α(m2/m1), (K5 > 1),

and by virtue of

‖∇Y ‖2 = | ∇X|2, m1| ∇Y |2 ≤ ‖ ∇Y ‖2 ≤ m2| ∇Y |2,

we obtain

(38)
∫

Sr(w0)

| ∇X|2 du dv ≤ K5D(X)(r/ρ1)2α

for all r ∈ (0, ρ1), and consequently for all r > 0.
Combining (38) in a suitable way with interior estimates for X, we arrive

at (28). We can omit this reasoning since it would be a mere repetition of the
arguments used in the second part of the proof of Theorem 1 in Section 2.5.

Finally, Morrey’s Dirichlet growth theorem yields X ∈ C0,α(B ∪ I, R3).
Thus we have proved Theorem 2 in the case that ∂S is empty.

The general case where ∂S is not necessarily empty can be settled by a
slight modification of our previous reasoning.

First we note the that test function

φ = (0, ϕ2, ϕ3), ϕk = (yk − ωk)ξ2, k = 2, 3
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is admissible in (34), where ωk and ξ are chosen as before. Then we obtain an
inequality which coincides with (35) except for the term

m1

∫
B

| ∇Y |2ξ2 du dv,

which is to be replaced by

m1

∫
B

(| ∇y2|2 + | ∇y3|2)ξ2 du dv.

However, this expression can be estimated from below by

m1

1 + K∗

∫
B

| ∇Y |2ξ2 du dv

since there is a constant K∗ > 0 such that

| ∇y1|2 ≤ K∗(| ∇y2|2 + | ∇y3|2)

holds true, and this inequality is an immediate consequence of the conformality
relations (15), written in the complex form

〈〈Yw, Yw 〉〉 = 0,

where we have set
〈〈ξ, η〉〉 := gjkξjηk

(cf. Section 2.3, proof of Theorem 2, part (i)).
Thus we arrive again at an inequality of the type (36) from where we can

proceed as before. This completes the proof of the theorem. �

Remark 1. A close inspection of the proof of Theorem 2 shows that we would
obtain a priori estimates for the α-Hölder seminorm in the case that we had
bounds on the modulus of continuity of X. Hence only the approach used in
the proof of Theorem 1 is indirect.

Remark 2. Without any essential change we can replace the class C(Γ, S) in
the previous reasoning by C(S). In other words, we have analogues to Theo-
rems 1 and 2 for stationary points of Dirichlet’s integral in the free boundary
class C(S).

2.7 C1,1/2-Regularity

In this section we want to prove C1,1/2-regularity of a stationary point X of
Dirichlet’s integral up to its free boundary. As we have seen in Section 2.4,
this regularity result is optimal, that is, we can in general not prove X ∈
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C1,α(B ∪ I, R3), I being the free boundary, for some α > 1/2, if the boundary
of the support surface S is nonvoid. On the other hand, if ∂S is empty or if
X|I does not touch ∂S, then one might be able to achieve higher regularity
as we shall see in the next section.

As in Section 2.6 we shall restrict our considerations to minimal surfaces
with partially free boundaries or, more precisely, to stationary points of Dirich-
let’s integral in C(Γ, S); stationary points with completely free boundaries can
be treated in exactly the same way, and perfectly analogous results hold true.

Consequently we can use the same notation as in Section 2.6. Our main
result will be the following

Theorem 1. Let S be an admissible support surface of class C4, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then X is of class C1,1/2(B ∪ I, R3).

The proof of this result is quite involved; it will be carried out in three
steps. In the first step we prove that X ∈ H2

2 (Zd, R
3) for any d ∈ (0, 1), using

Nirenberg’s difference quotient technique to derive L2-estimates for ∇2X.
Secondly, using ideas related to those of Section 2.3, it will be shown that
X ∈ C1(B ∪ I, R3). In the third part of our investigation we shall see how the
boundary regularity can be pushed up to X ∈ C1,1/2(B ∪ I, R3) by applying
an appropriate iteration procedure.

Let us note that, assuming X ∈ C0(B ∪ I, R3), all regularity results will
be proved directly by establishing a priori estimates. Thus the only indirect
proof entering into our discussion is that of Theorem 1 of Section 2.6.

Step 1. L2-estimates for ∇2X up to the free boundary. Let us begin with a few
remarks on difference quotients which either are well known (cf. Nirenberg [1],
Gilbarg and Trudinger [1]) or can easily be derived.

We consider some function Y ∈ Hs
2(Zd0 , R

m) with 0 < d0 < 1 and m ≥ 1,
s ≥ 1. For w ∈ Zd and t with |t| < d0 − d, we define the tangential shift Yt by

Yt(u, v) := Y (u + t, v)

and the tangential difference quotient ΔtY by

ΔtY (u, v) =
1
t
[Y (u + t, v) − Y (u, v)],

that is,

ΔtY (w) =
1
t
[Yt(w) − Y (w)], w = u + iv.

Moreover, let Du = ∂
∂u be the tangential derivative with respect to the free

boundary I. Then we have:

Lemma 1. (i) Let Y ∈ Hs
2(Zd0 , R

m), s ≥ 1, m ≥ 1, d0 ∈ (0, 1), d ∈ (0, d0),
|t| ≤ d0 − d. Then Yt, ΔtY ∈ Hs

2(Zd, R
m), and
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∫
Zd

|ΔtY |2 du dv ≤
∫

Zd0

|DuY |2 du dv, lim
t→0

∫
Zd

|DuY − ΔtY |2 du dv = 0.

The operators ∇ and Δt commute; more precisely,

(Δt∇Y )(w) = (∇ΔtY )(w) for w ∈ Zd,

and similarly

(∇Y )t(w) = (∇Yt)(w) for w ∈ Zd.

Moreover, we have the product rule

Δt(ϕY ) = (Δtϕ)Yt + ϕΔtY = (Δtϕ)Y + ϕtΔtY

on Zd for scalar functions ϕ, and
∫

B

ϕΔ−tψ du dv = −
∫

B

(Δtϕ)ψ du dv for 0 < |t| 
 1

if either ϕ or ψ has compact support in B ∪ I.
(ii) Similarly, if Y and DuY ∈ Lq(Zd0 , R

m), q ≥ 1, then
∫

Zd

|ΔtY |q du dv ≤
∫

Zd0

|DuY |q du dv, lim
t→0

∫
Zd

|DuY − ΔtY |q du dv = 0.

(iii) Finally, if Y ∈ Hs
2(Zd0 , R

m), then

(∇pY )t = ∇pYt,∫
Ω

| ∇pYt|2 du dv =
∫

Ωt

| ∇pY |2 du dv, 0 < |t| 
 1,

for 0 ≤ p ≤ s and Ωt := {w + t : w ∈ Ω}, for any open set Ω � Zd0 ∪ I.

Now we turn to the derivation of L2-estimates for the second derivatives
of X. We begin by linearizing the boundary conditions on X. This will be
achieved by introducing suitable new coordinates on R

3. Thus let w0 be an
arbitrary point on I, and set x0 := X(w0). Then we choose an admissible
boundary coordinate system {U, g}, centered at x0, as defined in Section 2.6.
Let h = g−1 and Y = g ◦ X, i.e., X = h ◦ Y . Then we can use the discussion
at the beginning of Section 2.6; in particular we can employ the formulas
(1)–(15) of Section 2.6.

By Theorem 1 of Section 2.6, we know that X and Y are continuous on
B ∪ I, and Y (w0) = 0. Hence there is some number ρ > 0 such that

|Y (w)| < R for all w ∈ S2ρ(w0)

and therefore
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y3(w) = 0 for w ∈ I2ρ(w0),

and, if ∂S is nonempty, we have

y1(w) ≥ σ for w ∈ I2ρ(w0).

Let r be some number with 0 < r < ρ which is to be fixed later, and
let η(w) be some cut-off function of class C∞

c (B2r(w0)) with η(w) ≡ 1 on
Br(w0), 0 ≤ η ≤ 1, | ∇η| ≤ 2/r, and η(u, v) = η(u, −v).

Now we set

(1) φ := Δ−t{η2ΔtY }.

We claim that

(2) Xε := h(Y + εφ), 0 ≤ ε < ε0(φ),

is an admissible variation of X in C(Γ, S) of type II (see Definition 2 of
Section 1.4) for some sufficiently small ε0(φ) > 0. In fact, we have φ ∈
H1

2 ∩ L∞(B, R3), and

Y (w) + εφ(w) = Y (w) + εΔ−t{η2ΔtY }(w)
= λ1Yt(w) + λ2Y−t(w) + (1 − λ1 − λ2)Y (w),

where
λ1 := εt−2η2(w), λ2 := εt−2η2

−t(w), 0 < |t| 
 1.

Thus Y (w)+ εφ(w), 0 ≤ ε ≤ t2/2, is a convex combination of the three points
Y (w), Yt(w), and Y−t(w).

Since η(w) = 0 for |w − w0| ≥ 2r, we obtain

λ1(w) = 0, λ2(w) = 0 if |w − w0| ≥ 2r + |t|, w ∈ B.

Therefore we have

Y (w) + εφ(w) = Y (w) for |w − w0| ≥ 2r + |t|.

On the other hand, if |w − w0| < 2r + |t|, w ∈ B, then we have

|w ± t − w0| ≤ 2r + 2|t|

and therefore

w, w ± t ∈ S2ρ(w0), provided that |t| < ρ − r.

Hence, for w ∈ I2r+|t|(w0), the points Y (w), Yt(w), Y−t(w) are contained in
the convex set

C ′
R := {y ∈ R

3 : y3 = 0, |y| < R} if ∂S = ∅
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or in
C ′ ′

R := {y ∈ R
3 : y3 = 0, y1 ≥ σ, |y| < R} if ∂S �= ∅

respectively, and we have

S ∩ U =

{
h(C ′

R) if ∂S = ∅,

h(C ′ ′
R) if ∂S �= ∅.

Thus we obtain

Xε(w) = h(Y (w) + εφ(w)) ∈ S for all w ∈ I,

provided that 0 ≤ ε < t2/2 and |t| < ρ − r, and clearly

Xε(w) = X(w) for w ∈ C = ∂B \ I

since φ(w) = 0 on C. Consequently, we have

Xε = h(Y + εφ) ∈ C(Γ, S) for 0 ≤ ε < t2/2 and |t| < ρ − r,

and it follows from Section 2.6, (9) that

δE(Y, φ) ≥ 0.

Inserting the expression (1) into this inequality, we obtain
∫

B

gjk (Y )DαyjDα{Δ−t(η2Δty
k)} du dv

≥ − 1
2

∫
B

Δ−t{η2Δty
l}gjk ,l(Y )DαyjDαyk du dv,

where D1 = ∂
∂u , D2 = ∂

∂v , u1 = u, u2 = v, and an integration by parts yields

∫
B

Δt[gjk (Y )Dαyj ]Dα(η2Δty
k) du dv

≤ − 1
2

∫
B

η2Δty
lΔt[gjk ,l(Y )DαyjDαyk] du dv;

see Lemma 1. Since

Δt[gjk (Y )Dαyj ] = gjk (Y )DαΔty
j + Dαyj

t Δtgjk (Y )

and
Dα(η2Δty

k) = Dαη2Δty
k + η2DαΔty

k,

we arrive at
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∫
B

η2gjk (Y )DαΔty
jDαΔty

k du dv(3)

≤ −
∫

B

2ηDαηΔty
k[gjk (Y )DαΔty

j + Dαyj
t Δtgjk (Y )] du dv

−
∫

B

η2DαΔty
kDαyj

t Δtgjk (Y ) du dv

− 1/2
∫

B

η2Δty
lΔt[gjk ,l(Y )DαyjDαyk] du dv.

The ellipticity condition for (gjk ) yields

(4) m1

∫
B

η2| ∇ΔtY |2 du dv ≤
∫

B

η2gjk (Y )DαΔty
jDαΔty

k du dv.

Moreover, Lemma 1 implies

Δt[gjk ,l(Y )DαyjDαyk](5)
= (Δtgjk ,l(Y ))DαyjDαyk + gjk ,l(Yt)(ΔtDαyj)Dαyk

+ gjk ,l(Yt)Dαyj
t ΔtDαyk.

Furthermore, there is a constant K∗ > 0 such that

(6) |Δtgjk (Y )| + |Δtgjk ,l(Y )| ≤ K∗ |ΔtY |.

On account of (3)–(6), there is a number c = c(m2, K, K∗) independent of t
such that

m1

∫
B

η2| ∇ΔtY |2 du dv

≤ c

{∫
B

r−1η|ΔtY |(| ∇ΔtY | + | ∇Yt| |ΔtY |) du dv

+
∫

B

η2| ∇ΔtY | | ∇Yt| |ΔtY | du dv

+
∫

B

η2|ΔtY |(|ΔtY | | ∇Y |2 + | ∇ΔtY | | ∇Y | + | ∇ΔtY | | ∇Yt|) du dv

}
.

By means of the elementary inequality

2ab ≤ εa2 +
1
ε

b2

for any ε > 0, we obtain the estimate

m1

∫
B

η2| ∇ΔtY |2 du dv

≤ ε

∫
B

η2| ∇ΔtY |2 du dv +
c∗

ε

[
r−2

∫
S2r(w0)

|ΔtY |2 du dv

+
∫

B

η2|ΔtY |2| ∇Y |2du dv +
∫

B

η2|ΔtY |2| ∇Yt|2 du dv

]
.
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Choosing ε := m1/2, we can absorb the first integral on the right-hand side
by the positive term on the left-hand side, and secondly, we have
∫

S2r(w0)

|ΔtY |2 du dv ≤
∫

B

|DuY |2 du dv ≤
∫

B

| ∇Y |2 du dv

≤ m−1
1

∫
B

‖ ∇Y ‖2 du dv = m−1
1

∫
B

| ∇X|2 du dv

= 2m−1
1 D(X).

Thus we arrive at∫
S2r(w0)

η2| ∇ΔtY |2 du dv(7)

≤ c∗ ∗

[
r−2D(X) +

∫
S2r(w0)

η2|ΔtY |2(| ∇Y |2 + | ∇Yt|2) du dv

]
.

Moreover, we claim that the estimate (28) in Theorem 2 of Section 2.6 implies
the existence of some number c0 independent of r and t such that

∫
S2r(w0)

η2|ΔtY |2(| ∇Y |2 + | ∇Yt|2) du dv(8)

≤ c0r
2α

{∫
S2r(w0)

η2| ∇ΔtY |2 du dv + r−2D(X)

}
.

Let us defer the proof of the inequality (8) until we have finished the derivation
of the L2-estimates of ∇2X. Then we can proceed as follows:

We choose r ∈ (0, ρ) so small that c∗ ∗c0r
2α < 1/2. Then we infer from (7)

and (8) the existence of a number c1 independent of t such that

(9)
∫

S2r(w0)

η2| ∇ΔtY |2 du dv ≤ c1D(X)

holds true for all t with 0 < |t| < ρ − r. If we let t tend to zero, this inequality
yields

(10)
∫

S2r(w0)

η2| ∇DuY |2 du dv ≤ c1D(X)

since Y = g ◦ X is of class C3(B, R3), and from (8) and (9) we infer

(11)
∫

S2r(w0)

η2|DuY |2| ∇Y |2 du dv ≤ c2D(X).

Moreover, the conformality relation

‖DuY ‖2 = ‖DvY ‖2



160 2 The Boundary Behaviour of Minimal Surfaces

implies that
|DvY |2 ≤ (m2/m1)|DuY |2,

whence we obtain
∫

S2r(w0)

η2| ∇Y |4 du dv ≤ c3D(X),(12)

taking (11) into account.
Moreover, by formula (14) of Section 2.6 we have

Δyl + Γ l
jk (Y )(yj

uyk
u + yj

vyk
v ) = 0 in B,

whence

|D2
vY |2 ≤ c4(|D2

uY |2 + | ∇Y |4) in B.

Combining the last relation with (10) and (12), we arrive at

(13)
∫

S2r(w0)

η2| ∇2Y |2 du dv ≤ c5D(X)

whence
∫

Sr(w0)

| ∇2Y |2 du dv +
∫

Sr(w0)

| ∇Y |4 du dv ≤ c6D(X).(14)

Moreover, from X = h(Y ) we obtain

∇2X = hyy(Y )∇Y ∇Y + hy(Y )∇2Y,

and therefore
| ∇2X|2 ≤ c7(| ∇Y |4 + | ∇2Y |2).

By virtue of (14) it follows that

(15)
∫

Sr(w0)

| ∇2X|2 du dv ≤ c8D(X).

This is the desired estimate of ∇2X.
Before we summarize the results of our investigation, we want to prove the

estimate (8) which, so far, has remained open. We shall see how c0 depends
on X, and this will inform us about the dependence of the numbers c1, . . . , c8

on X.
The estimate (8) will be derived from Theorem 2 of Section 2.6 and from

the following calculus inequality:
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Lemma 2. Let Ω be an open set in C of finite measure, and define d ≥ 0 by
the relation πd2 = measΩ. Suppose also that q ∈ L1(Ω) is a function such
that

(16)
∫

Ω∩Br(w0)

|q(w)| du dv ≤ Qr2α

holds for some number Q ≥ 0, for some exponent α > 0 and for all disks
Br(w0) in C. Then, for any ν ∈ (0, α), there is a number M(α, ν) > 0,
depending only on α and ν, such that∫

Ω∩Br(w0)

|q(w)| |φ(w)|2 du dv ≤ MQDΩ(φ)dνr2α−ν(17)

holds true for all w0 ∈ C, for all r > 0, and for any function φ ∈ H̊1
2 (Ω, Rm),

m ≥ 1.

Proof. As the set C∞
c (Ω, Rm) is dense in H̊1

2 (Ω, Rm), it is sufficient to
prove (17) for all φ ∈ C∞

c (Ω, Rm), taking Fatou’s lemma into account.
Thus let φ ∈ C∞

c (Ω, Rm), w = u1 + iu2, ζ = ξ1 + iξ2, d2w = du1 du2,
d2ζ = dξ1 dξ2. From Green’s formula, we infer that

φ(w) = − 1
2π

∫
Ω

|w − ζ| −2(ξα − uα)Dαφ(ζ) d2ζ

is satisfied for any w ∈ Ω. Set Ωr := Ω ∩ Br(w0); then we obtain
∫

Ωr

|q(w)| |φ(w)| d2w(18)

≤ 1
2π

∫
Ωr

∫
Ω

|q(w)| |w − ζ| −1| ∇φ(ζ)| d2ζ d2w

=
1
2π

∫
Ωr

∫
Ω

|q(w)|1/2|w − ζ| −1+ν |q(w)|1/2|w − ζ| −ν | ∇φ(ζ)| d2ζ d2w

≤ 1
2π

[∫
Ωr

∫
Ω

|q(w)| |w − ζ|2ν−2 d2ζ d2w

]1/2

·
[∫

Ω

∫
Ωr

|q(w)| |w − ζ| −2ν | ∇φ(ζ)|2 d2w d2ζ

]1/2

.

By an inequality of E. Schmidt, we have∫
Ω

|w − ζ|2ν−2 d2ζ ≤ (π/ν)d2ν ;

the simple proof of this fact is left to the reader. Then, by (16), we obtain

(19)
∫

Ωr

∫
Ω

|q(w)| |w − ζ|2ν−2 d2ζ d2w ≤ π

ν
d2νQr2α.
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For s > 0 and ζ ∈ C we introduce the function

ψ(s, ζ) :=
∫

Ωr ∩Bs(ζ)

|q(w)| d2w.

By (16), we have

0 ≤ ψ(s, ζ) ≤ Qs2α for all s > 0 and ζ ∈ C

as well as
0 ≤ ψ(s, ζ) ≤ Qr2α for all ζ ∈ C.

Introducing polar coordinates ρ, θ about ζ by w = ζ + ρeiθ we have

ψ(s, ζ) =
∫ s

0

(∫
Σρ

|q(ζ + ρeiθ)| dθ

)
ρ dρ,

where

Σρ := {θ : 0 ≤ θ ≤ 2π, ζ + ρeiθ ∈ Ωr ∩ Bs(ζ)}.

It follows that

d

ds
ψ(s, ζ) = s

∫
Σs

|q(ζ + seiθ)| dθ.

Case 1. Let ζ ∈ Br(w0). Then we have |w − ζ| ≤ 2r for any w ∈ Ωr. Accord-
ingly,

∫
Ωr

|w − ζ| −2ν |q(w)| d2w ≤
∫ 2r

0

∫
Σs

s−2ν |q(ζ + seiθ)|s dθ ds

=
∫ 2r

0

s−2ν d

ds
ψ(s, ζ) ds = lim

ε→+0

∫ 2r

ε

s−2ν d

ds
ψ(s, ζ) ds

= lim
ε→+0

[s−2νψ(s, ζ)]2r
ε + 2ν lim

ε→+0

∫ 2r

ε

s−2ν−1ψ(s, ζ) ds

≤ Q(2r)2α−2ν + 2νQ
1

2(α − ν)
(2r)2α−2ν = c(α, ν)Qr2α−2ν .

Case 2. If ζ ∈ Ω \ Br(w0), then we have

ζ0 := w0 +
r

|ζ − w0| (ζ − w0) ∈ Br(w0).

Moreover, for all w ∈ Ωr, it follows by a simple geometric consideration (cf.
Fig. 1) that

|ζ − w| ≥ |ζ0 − w|.
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Fig. 1.

Consequently,
∫

Ωr

|q(w)| |ζ − w| −2ν d2w ≤
∫

Ωr

|q(w)| |ζ0 − w| −2ν d2w,

and, by case 1,
∫

Ωr

|q(w)| |ζ0 − w| −2ν d2w ≤ c(α, ν)Qr2α−2ν .

Thus we have found that∫
Ωr

|q(w)| |ζ − w| −2ν d2w ≤ c(α, ν)Qr2α−2ν for all ζ ∈ Ω.

Consequently,
∫

Ω

∫
Ωr

|q(w)| |w − ζ| −2ν | ∇φ(ζ)|2 d2w d2ζ(20)

≤ c(α, ν)Qr2α−2ν

∫
Ω

| ∇φ(ζ)|2 d2ζ.

From (18), (19), and (20) we infer that

(21)
∫

Ωr

|q(w)| |φ(w)| d2w ≤ c∗(α, ν)QdνD
1/2
Ω (φ)r2α−ν .

In other words, the function q∗ := qφ satisfies

(21′)
∫

Ω∩Br(w0)

|q∗(w)| d2w ≤ Q∗r2α∗
for all disks Br(w0),
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where
Q∗ := c∗(α, ν)QdνD

1/2
Ω (φ), 2α∗ := 2α − ν.

Now let ν and μ be two positive numbers such that ν +μ < α. Then it follows
that

α∗ − μ = α − ν

2
− μ > α − (ν + μ) > 0.

Hence we can apply the estimate (21′) to q∗, Q∗, α∗, μ instead of q, Q, α, ν,
and thus we obtain∫

Ωr

|q∗(w)| |φ(w)| d2w ≤ c∗(α, μ)Q∗dμD
1/2
Ω (φ)r2α∗ −μ

or equivalently
∫

Ω∩Br(w0)

|q(w)| |φ(w)|2 d2w ≤ c∗(α, ν)c∗(α, μ)Qdν+μDΩ(φ)r2α−(ν+μ).

Replacing ν +μ by ν and c∗(α, ν)c∗(α, μ) by M(α, ν), we arrive at the desired
inequality (17). �

Now we come to the proof of formula (8). From Y = g(X) it follows that

| ∇Y | ≤ √
m2| ∇X|

whence by Section 2.6, Theorem 2 (and, in particular, Section 2.6, (28)) we
obtain that ∫

B∩Bτ (ζ0)

| ∇Y |2 du dv ≤ Qτ2α(22)

holds for some constant Q > 0, some α ∈ (0, 1), and for all disks Bτ (ζ0).
Therefore, ∫

S2r(w0)∩Bτ (ζ0)

(| ∇Y |2 + | ∇Yt|2) du dv ≤ 2Qτ2α

for some Q > 0, α ∈ (0, 1), and for all disks Bτ (ζ0) and all t with |t| < t0 and
0 < t0 
 1.

Let Ω := B2r(w0), w0 ∈ I, and set

q(w) := | ∇Y (w)|2 + | ∇Yt(w)|2, φ(w) := η(w)ΔtY (w) for w ∈ S2r(w0)

and

q(u, v) := q(u, −v), φ(u, v) := φ(u, −v) for w = u + iv ∈ B2r(w0) and v < 0.

Applying Lemma 2, we can infer that
∫

Ω∩Bτ (ζ0)

|q(w)| |φ(w)|2 du dv ≤ 2MQDΩ(φ)(2r)ντ2α−ν .
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In particular, for ζ0 = w0 and τ = 2r, we have Ω = Bτ (ζ0) and therefore
∫

B2r(w0)

|q(w)| |φ(w)|2 du dv ≤ 4MQDB2r(w0)(φ)(2r)2α

whence, for reasons of symmetry,
∫

S2r(w0)

η2|ΔtY |2(| ∇Y |2 + | ∇Yt|2) du dv

≤ 4MQ22αr2α

∫
S2r(w0)

| ∇(ηΔtY )|2 du dv.

Moreover,

| ∇(ηΔtY )|2 = | ∇ηΔtY + η∇ΔtY |2

≤ 2η2| ∇ΔtY |2 + 8r−2|ΔtY |2.

Setting

c0 := 25+2αMQ max{1, m−1
1 },(23)

we arrive at formula (8). From (38) in Section 2.6 it follows that Q is of the
form

(24) Q = cD(X),

where c depends on the diffeomorphism g and on the modulus of continuity
of X on B ∪ I. Hence also the constants c1, . . . , c6 are of the form cD(X) with
c depending on g and on the modulus of continuity of X.

Let us summarize the results (9)–(15), (22)–(24).

Theorem 2. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in the class C(Γ, S). Then,
for any d ∈ (0, 1), there is a constant c > 0 depending only on d, |g|3, D(X),
and the modulus of continuity of X such that

(25)
∫

Zd

(| ∇2X|2 + | ∇X|4) du dv ≤ c

holds true.

Applying Sobolev’s embedding theorem (see Gilbarg and Trudinger [1]),
we derive the following result from Theorem 2:

Theorem 3. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in C(Γ, S). Then, for any
d ∈ (0, 1) and for any p with 2 < p < ∞, there is a constant c > 0 depending
only on d, p, |g|3, D(X), and the modulus of continuity of X such that
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(26)
∫

Zd

| ∇X|p du dv < c

holds true. Moreover both Xu and Xv have an L2-trace on every compact
subinterval of I.

In brief, we have shown that any stationary minimal surface X in C(Γ, S)
is of class H2

2 ∩ H1
p (Zd, R

3) for any d ∈ (0, 1) and any p with 2 < p < ∞, and
Xu, Xv ∈ L2(I ′, R3) for every I ′ ⊂⊂ I.

Step 2. Continuity of the first derivatives at the free boundary. The aim of
this step is the proof of the following

Theorem 4. Let S be an admissible support surface of class C3. Then any
stationary point X of Dirichlet’s integral in C(Γ, S) is of class C1(B ∪ I, R3).

Proof. We choose w0 ∈ I, x0 = X(w0), ρ > 0, and a boundary coordinate
system {U, g} centered at x0 as before, and we set Y = g ◦ X = (y1, y2, y3).
Then we have

Δyl + Γ l
jk (Y )DαyjDαyk = 0.(27)

Hence, for any φ = (ϕ1, ϕ2, ϕ3) ∈ C∞
c (S2ρ(w0) ∪ I2ρ(w0), R3), the equation

(28) δE(Y, φ) = 0

is equivalent to ∫
I2ρ(w0)

gjk (Y )yj
vϕk du = 0.(29)

Case 1. ∂S is empty.
Then φ is admissible for (28) if ϕ3(w) = 0 on I2ρ(w0). We conclude

from (29) that

gj1(Y )yj
v = 0 a.e. on I2ρ(w0),

gj2(Y )yj
v = 0 a.e. on I2ρ(w0),(30)

y3 = 0 on I2ρ(w0)

since Theorem 3 implies that both Yu and Yv are of class L2(I ′, R3) for every
I ′ � I.

Case 2. ∂S is nonempty.
Then φ is admissible for (28) if ϕ3(w) = 0 on I2ρ(w0) and if ϕ1|I2ρ(w0) has

its support in I+
2ρ(w0) := I2ρ(w0) ∩ {y1(w) > σ}. We conclude from (29) that

gj1(Y )yj
v = 0 a.e. on I+

2ρ(w0),

gj2(Y )yj
v = 0 a.e. on I2ρ(w0),(31)

y3 = 0 on I2ρ(w0).
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Now we claim that, for S ∈ C3 and S ∈ C4, we can find an admissible
coordinate system {U, g} for S centered at x0 which is of class C2 or C3

respectively, and satisfies

(gjk (y1, y2, 0)) =

⎡
⎣ g11(y1, y2, 0) 0 0

0 g22(y1, y2, 0) 0
0 0 1

⎤
⎦(32)

for all (y1, y2, 0) ∈ BR(0) if ∂S = ∅, or for all (y1, y2, 0) ∈ BR(0) ∩ {y1 ≥ σ} if
∂S �= ∅. Note, however, that we lose an order of differentiability if we pass from
S to g in case of the particular coordinate system {U, g} with property (32).
Let us postpone the construction of this coordinate system; first we want to
exploit (32) to derive regularity.

The special form of the metric tensor (gjk ) simplifies the equations (30) to

y1
v = 0

y2
v = 0 a.e. on I2ρ(w0) if ∂S = ∅,(33)

y3 = 0

and (31) takes the special form

y1
v = 0 a.e. on I+

2ρ(w0)

y2
v = 0 a.e. on I2ρ(w0) if ∂S �= ∅.(34)

y3 = 0 on I2ρ(w0).

Furthermore, we infer from Theorem 3 that

(35) ΔY ∈ Lp(S2ρ(w0), R3) for any p ∈ (1, ∞),

provided that S is of class C3 which implies h ∈ C2 and Γ l
jk ∈ C0. In case 1,

we infer from (33) and (35) by means of classical results from potential theory
that Y ∈ H2

p (S2r(w0), R3) for any p ∈ (1, ∞), any w0 ∈ I, and any r ∈ (0, ρ);
cf. Morrey [8], Theorem 6.3.7, or Agmon, Douglis, and Nirenberg [1, 2], for
the pertinent Lp-estimates.

Then we obtain Y ∈ C1,β(S2r(w0), R3) for all β ∈ (0, 1), taking a Sobolev
embedding theorem into account; cf. Gilbarg and Trudinger [1], Chapter 7, or
Morrey [8], Theorem 3.6.6.

If S ∈ C4, then h ∈ C3 and Γ l
jk ∈ C1, and consequently Γ l

jk (Y )DαyjDαyk ∈
C0,β(S2r(w0)), l = 1, 2, 3. On account of (27) and (33), we then obtain

(36) ΔY ∈ C0,β(S2r(w0), R3) for any β ∈ (0, 1).

By classical potential-theoretic results of Korn–Lichtenstein–Schauder, we in-
fer from (33) and (36) that Y ∈ C2,β(S2r(w0), R3) holds for any β ∈ (0, 1)
and any r ∈ (0, ρ). A simple proof can be derived from the Korn–Privalov
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theorem; see Section 2.1, Lemma 6. Since h ∈ C3 and X = h ◦ Y , it follows
that

X ∈ C2,β(B ∪ I, R3).

Note that the same result can be derived under the weaker assumption
S ∈ C3 if we do not work with the special coordinate system (32) where
one derivative is lost. Then we have to use (36) and the more complicated
boundary conditions (30). Applying Morrey’s results (see [8], Chapter 6),
together with a strengthening by F.P. Harth [2], we obtain the desired result.

Thus, if ∂S is empty, we have proved a result which is much stronger than
Theorem 4:

Theorem 5. Let S be an admissible support surface of class C3, and sup-
pose that ∂S is empty. Then any stationary point X of Dirichlet’s integral
in C(Γ, S) is of class C2,β(B ∪ I, R3) for any β ∈ (0, 1).

Remark 1. If ∂S is nonempty, the same holds true if X|I does not touch ∂S.

Remark 2. In addition to Theorem 5, the Schauder–Lichtenstein estimates
together with our previous bounds (see Theorem 3) imply that there exists a
number c depending only on d ∈ (0, 1), β ∈ (0, 1), |g|3, D(X), and the modulus
of continuity of X such that

|X|2+β,Zd
≤ c(37)

holds true for any d ∈ (0, 1) and any β ∈ (0, 1).
These remarks complete our discussion in the case that ∂S is empty.

Now we turn to case 2, i.e. ∂S �= ∅. As before, we have (35), and therefore
in particular

Δy2, Δy3 ∈ Lp(S2ρ(w0)) for any p ∈ (1, ∞),

and the second and third equation of (35) yield

y2
v = 0 and y3 = 0 a.e. on I2ρ(w0).

By the same reasoning as in case 1 we first obtain y2, y3 ∈ H2
p (S2r(w0)) for

p ∈ (1, ∞) and r ∈ (0, ρ), and then

(38) y2, y3 ∈ C1,β(S2r(w0)) for any β ∈ (0, 1) and r ∈ (0, ρ).

(For this result, we only use S ∈ C3, whence h ∈ C2 and Γ l
jk ∈ C0.)

The function y1(w) satisfies

Δy1 ∈ Lp(S2ρ(w0)) for any p ∈ (1, ∞),
(39)

y1
v = 0 a.e. on I+

2ρ(w0), y1 = σ on I2ρ(w0) \ I+
2ρ(w0).
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Fig. 2. Soap films attaching smoothly to the boundary of the support surface. Courtesy of

E. Pitts (above) and Institut für Leichte Flächentragwerke, Stuttgart – Archive (below)

It is not at all clear how to exploit (39) (cf., however, Section 2.9). Therefore
we shall instead use the conformality relations in complex notation,

(40) gjk (Y )yj
wyk

w = 0,

in order to show that y1 ∈ C1(S2r(w0)) for some r ∈ (0, ρ). Our reasoning will
be similar as in the proof of Theorem 2 in Section 2.3 (see formulas (16)–(20)
of Section 2.3). Since (gjk ) is a positive definite matrix, there is some γ > 0
such that

g11(Y (w)) ≥ γ for all w ∈ S2ρ(w0).

Hence we can rewrite (40) as

(41)
{

y1
w +

g1L(Y )
g11(Y )

yL
w

}2

=
[
g1L(Y )
g11(Y )

yL
w

]2
− gLM (Y )

g11(Y )
yL

wyM
w ,

where repeated indices L, M are to be summed from 2 to 3. If we introduce
the complex-valued function f(w) by
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(42) f(w) := y1
w +

g1L(Y )
g11(Y )

yL
w, w ∈ S2ρ(w0),

we infer from (41) and (38) as well as from Y ∈ C0,β(B ∪ I, R3) that

(43) f2 ∈ C0,β(S2r(w0)) for 0 < β < 1,

whence
f2 ∈ C0(S2r(w0)).

In addition, we have f ∈ C0(S2r(w0)). By the following lemma it will be seen
that f(w) is continuous on S2r(w0).

Lemma 3. Let f(w) be a complex-valued continuous function on an open
connected set Ω in C such that its square f2(w) has a continuous extension
to Ω. Suppose also that ∂Ω is non-degenerate in the sense that, for every
w0 ∈ ∂Ω, there exists a δ > 0 such that Ωδ(w0) := Ω ∩ Bδ(w0) is connected.
Then f(w) can continuously be extended to Ω.

Proof. Let w0 be an arbitrary point on ∂Ω. Then there exists a complex
number z such that f2(w) → z as w → w0, w ∈ Ω. If z = 0, then |f(w)|2 → 0,
and therefore f(w) → 0 as w → w0. If z �= 0, then we choose some ζ �= 0,
ζ ∈ C, such that z = ζ2. We pick an ε > 0 such that 0 < ε < |ζ|. Then there
exists a number δ > 0 such that Ωδ(w0) is connected, and that f maps Ωδ(w0)
into the disconnected set Bε(β) ∪ Bε(−β). Since f : Ω → C is continuous, the
image f(Ωδ(w0)) is connected, and therefore already contained in one of the
disks Bε(β), Bε(−β). Thus limw→w0 f(w) exists and is equal to β or −β. Set

F (w) :=

⎧⎨
⎩

f(w) w ∈ Ω
for

limw̃→w f(w̃) w ∈ ∂Ω
.

Clearly this function is a continuous extension of f to Ω, and the lemma is
proved. �

Thus we have found that the function f(w), defined by (42), is continuous
on S2r(w0) for some r ∈ (0, ρ). Since

(42′) g(w) :=
g1L(w)
g11(w)

yL
w

is Hölder continuous on S2r(w0), we infer that

y1
w = f(w) − g(w)

is continuous on S2r(w0), and therefore Y ∈ C1(S2r(w0), R3). This implies
X ∈ C1(B ∪ I, R3), and Theorem 4 is proved.
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However, we still have to verify that we can find a coordinate system {U, g}
centered at x0 which satisfies (32). To this end, we choose a neighbourhood U

of the point x0 ∈ U and an orthogonal parameter representation x = t(y1, y2),
(y1, y2) ∈ P , of S ∩ U with x0 = t(0, 0). In other words, we have F = 0, where

E := |ty1 |2, F := 〈ty1 , ty2 〉, G := |ty2 |2

are the coefficients of the first fundamental form of S. Moreover, set

W := |ty1 ∧ ty2 | =
√

EG − F 2 =
√

EG

and let
n :=

1
W

(ty1 ∧ ty2)

be the surface normal of S. If ∂S = ∅, we can assume that the parameter
domain P is given by P = KR where

KR := {(y1, y2) : |y1|2 + |y2|2 < R2}, 0 < R < 1.

If ∂S �= ∅, we can assume that S is part of a larger surface S0 such that S0 ∩ U

is represented on KR in the form x = t(y1, y2), (y1, y2) ∈ KR, and that S ∩ U

is given by x = t(y1, y2), (y1, y2) ∈ P = KR ∩ {y1 ≥ σ}, σ ∈ [−1, 0]. We can
also suppose that ∂S ∩ U is represented by t on KR ∩ {y1 = σ}. Choosing
R ∈ (0, 1) sufficiently small, we can in addition assume that

(44) h(y) := t(y1, y2) + y3n(y1, y2), y = (y1, y2, y3) ∈ BR(0),

provides a diffeomorphism of BR(0) = {y ∈ R
3 : |y| < R} onto some neigh-

bourhood of x0 which will again be denoted by U. Then h maps C ′
R or C ′ ′

R

onto S ∩ U if ∂S is void or nonvoid respectively, where

C ′
R = {y ∈ R

3 : y3 = 0, |y| < R},

C ′ ′
R = {y ∈ R

3 : y3 = 0, y1 ≥ σ, |y| < R}.

Moreover, we may assume that h can be extended to a diffeomorphism of
R

3 onto itself; let g be its inverse. Then {U, g} is an admissible boundary
coordinate system for S centered at x0, which is of class C2 or C3 if S is of
class C3 or C4, respectively (because of the special form (44) of h involving
the surface normal n of S, we unfortunately lose one derivate).

The components gjk = hl
yj hl

yk of the metric tensor are computed as

g11 = |hy1 |2 = E − 2y3L + (y3)2|ny1 |2,
g22 = |hy2 |2 = G − 2y3N + (y3)2|ny2 |2,
g33 = |hy3 |2 = |n|2 = 1,

g12 = g21 = 〈hy1 , hy2 〉 = F − 2y3M + (y3)2〈ny1 , ny2 〉,
g13 = g31 = 〈hy1 , hy3 〉 = 〈ty1 , n〉 + y3〈ny1 , n〉 = 0,

g23 = g32 = 〈hy2 , hy3 〉 = 〈ty2 , n〉 + y3〈ny2 , n〉 = 0
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for y ∈ BR(0). Hence we obtain

(gjk (y1, y2, 0)) =

⎡
⎣ E(y1, y2) 0 0

0 G(y1, y2) 0
0 0 1

⎤
⎦

for y ∈ C ′
R or C ′ ′

R respectively, and the proof of Theorem 4 is complete. �

Step 3. Regularity of class C1,1/2 at the free boundary.

Now we turn to the final part of our discussion. We are going to prove
Theorem 1. Our main tool will be

Lemma 4. Let f(u) be a complex-valued continuous function of the real vari-
able u on a closed subinterval I ′ of I, and set a(u) = Re f(u), b(u) = Im f(u).
We suppose that a(u)b(u) ≡ 0 on I ′, and that there are positive numbers α
and c such that α ≤ 1 and

(45) |f2(u1) − f2(u2)| ≤ c2|u1 − u2|2α for all u1, u2 ∈ I ′.

Then it follows that

(46) |f(u1) − f(u2)| ≤ 2c|u1 − u2|α for all u1, u2 ∈ I ′.

Proof. Let u1, u2 ∈ I ′, u1 �= u2, and set f1 := f(u1), f2 := f(u2).
(i) Let c|u1 − u2|α ≤ |f1 + f2|. Then we obtain

c|u1 − u2|α|f1 − f2| ≤ |f1 + f2| |f1 − f2|
= |f2

1 − f2
2 | ≤ c2|u1 − u2|2α

and consequently
|f1 − f2| ≤ c|u1 − u2|α.

(ii) If |f1+f2| < c|u1 −u2|α and Re f1 = Im f2 = 0, or else Re f2 = Im f1 =
0, then |f1 − f2| = |f1 + f2|, and consequently

|f1 − f2| < c|u1 − u2|α.

(iii) If |f1 +f2| < c|u1 − u2|α and Im f1 = Im f2 = 0, then either |f1 − f2| ≤
|f1 + f2|, and therefore

|f1 − f2| < c|u1 − u2|α,

or else |f1 − f2| > |f1 + f2|, whence

|a1 + a2| < |a1 − a2| for a1 := Re f1, a2 := Re f2.

Since a(u) is continuous on I ′, there is a number u0 between u1 and u2 such
that a(u0) := Re f0 = 0, where we have set f0 := f(u0). Thus each of the pairs
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{f1, f0} and {f2, f0} is either in case (i) or in case (ii), and by the previous
conclusions we obtain

|f1 − f0| ≤ c|u1 − u0|α and |f2 − f0| ≤ c|u2 − u0|α

whence
|f1 − f2| ≤ 2c|u1 − u2|α.

(iv) If |f1 + f2| < c|u1 − u2|α and Re f1 = Re f2 = 0, then we obtain by a
reasoning analogous to (iii) that

|f1 − f2| ≤ 2c|u1 − u2|α.

Because of a(u)b(u) ≡ 0 on I ′, we have exhausted all possible cases and the
lemma is proved. �

Proof of Theorem 1. We choose w0 ∈ I, x0 := X(w0), ρ > 0, r ∈ (0, ρ), and
a boundary coordinate system {U, g} with (32) as before, and set again Y =
g ◦ X. As we have now assumed that S ∈ C4, we have g, h ∈ C3, and therefore
Γ l

jk ∈ C1, Γ l
jk (Y ) ∈ C1(S2r(w0)).

Since we have already treated the case ∂S = ∅, we can concentrate our
attention on the case ∂S �= ∅ where we have the boundary conditions (34).

Let f(w) be the complex-valued function defined by (42). Then, by (32),
it follows that

f(w) = y1
w(w) for all w ∈ I2r(w0).(47)

Furthermore, the equations (32) and (41) imply

(48) f2 = − g22(Y )
g11(Y )

(y2
w)2 − 1

g11(Y )
(y3

w)2 on I2r(w0).

Since y1
w = 1

2 (y1
u − iy1

v) and y2, y3 ∈ C1,β(S2r(w0)) for any β ∈ (0, 1) and
Y ∈ C1(S2r(w0), R3), we infer that f(u) with u ∈ I ′ := I2r(w0) satisfies
the assumptions of Lemma 4 for all α ∈ (0, 1/2). Consequently y1 is of class
C1,α(I2r(w0)) for all α ∈ (0, 1/2). Moreover, the Euler equation

Δy1 = −Γ 1
jk (Y )(yj

uyk
u + yj

vyk
v )

can be written in the form

Δy1 + ay1
u + by1

v = p + q| ∇y1|2

with functions a, b, p, q ∈ C0,β(S2r(w0)). Then an appropriate modification of
potential-theoretic estimates (see Gilbarg and Trudinger [1], Widman [1,2])
yields y1 ∈ C1,α(S2r(w0)) for all α ∈ (0, 1/2).

Next we use the Euler equations
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Δy2 = −Γ 2
jk (Y )(yj

uyk
u + yj

vyk
v )

Δy3 = −Γ 3
jk (Y )(yj

uyk
u + yj

vyk
v )

in S2r(w0)

and the boundary conditions

y2
v = 0, y3

v = 0 in I2r(w0)

for any r ∈ (0, ρ), as well as Y ∈ C1,α(S2r(w0), R3) to conclude that both y2

and y3 are of class C2,α(S2r(w0, R
3)) for any r ∈ (0, ρ).

By virtue of (48), the function f2 is Lipschitz continuous on I ′ = I2r(w0),
whence Lemma 4 implies that y1

w is of class C0,1/2(I ′). A repetition of the pre-
ceding argument with α = 1/2 yields y1 ∈ C1,1/2(S2r(w0)), and consequently
Y ∈ C1,1/2(S2r(w0), R3) for any r ∈ (0, ρ). �

2.8 Higher Regularity in Case of Support Surfaces
with Empty Boundaries. Analytic Continuation Across
a Free Boundary

In this section we want to consider stationary points of Dirichlet’s integral in
C(Γ, S) whose support surface S has no boundary. We shall prove that any
such surface X is of class Cm,β(B ∪ I, R3), provided that S is an admissible
support surface of class Cm,β with m ≥ 3 and β ∈ (0, 1). Moreover, X will
be seen to be real analytic on B ∪ I if S is real analytic, whence X can be
continued analytically across its free boundary I.

Our key tool is the following

Proposition 1. Let X be a stationary minimal surface in C(Γ, S) and suppose
that S is of class Cm, m ≥ 2. Then X is of class Cm−1,α(B ∪ I, R3) for any
α ∈ (0, 1). Moreover, if S is of class Cm,β for some m ≥ 2 and some β ∈ (0, 1),
then X is an element of Cm,β(B ∪ I, R3).

Proof. Recall that, according to Definition 1 in Section 1.4, a stationary min-
imal surface in C(Γ, S) is an element of C(Γ, S) ∩ C1(B ∪ I, R3) ∩ C2(B, R3)
which is harmonic in B, satisfies the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0,

and intersects S perpendicularly along its free trace Σ given by the curve
X : I → R

3.
Pick some w0 ∈ I, and set x0 := X(w0). Without loss of generality we can

assume that x0 = 0, and that for some cylinder

(1) C(R) := {(x1, x2, x3): |x1|2 + |x2|2 ≤ R2, |x3| ≤ R}

with 0 < R 
 1, the surface S ∩ C(R) is given by
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(2) x3 = f(x1, x2), |x1|2 + |x2|2 ≤ R2,

where f is a scalar function of class Cm or Cm,β if S is of class Cm or Cm,β

respectively. Then S has the nonparametric representation

t(x1, x2) = (x1, x2, f(x1, x2)), (x1, x2) ∈ BR(0),

with the surface normal

(3) n =
(

− f1

W
, − f2

W
,

1
W

)
= (n1, n2, n3),

where

(4) f1 := fx1 , f2 := fx2 , W :=
√

1 + f2
1 + f2

2 .

Now we choose some r > 0 such that Sr(w0) is mapped by X into the cylinder
C(R). Since Xv is perpendicular to S, the vectors Xv(w) and n(X(w)) are
collinear for any w ∈ Ir(w0) := I ∩ Br(w0). Consequently we have

Xv = 〈Xv, n(X)〉n(X) on Ir(w0),

that is,
xj

v = xk
vnk(X)nj(X) on Ir(w0) for j = 1, 2, 3.

If we set
ξK := fK/W 2, K = 1, 2,

it follows that

(5) xK
v = −ξK(x1, x2){x3

v − fL(x1, x2)xL
v } on Ir(w0), K = 1, 2.

(Indices K, L, M, . . . run from 1 to 2; repeated indices K, L, M, . . . are to be
summed from 1 to 2.) Let us introduce the function y3(w) by

(6) y3(w) := x3(w) − f(x1(w), x2(w)), w ∈ Sr(w0).

Then we have the boundary condition “X(w) ∈ S, w ∈ I” transformed into

(7) y3(w) = 0 for any w ∈ Ir(w0),

and (5) can be written as

(8) xK
v = −ξK(x1, x2)y3

v on Ir(w0) for K = 1, 2.

Moreover, from (6) and ΔX = 0, we derive the equation

Δy3 = −fKL(x1, x2)DαxKDαxL in Sr(w0).

Thus we have the two boundary value problems



176 2 The Boundary Behaviour of Minimal Surfaces

(∗) Δy3 = −fKL(x1, x2)DαxKDαxL in Sr(w0), y3 = 0 on Ir(w0)

with fKL := fxKxL , and

(∗∗) ΔxK = 0 in Sr(w0), xK
v = −ξK(x1, x2)y3

v on Ir(w0), K = 1, 2.

Now we are going to bootstrap our regularity information by jumping back
and forth from (∗) to (∗ ∗), assisted by the relation (6). To this end, we note
that f ∈ Cm or Cm,β ; fK , ξK ∈ Cm−1 or Cm−1,β ; fKL ∈ Cm−2 or Cm−2,β if
S ∈ Cm of Cm,β , respectively.

We begin with the information X ∈ C1(Sr(w0), R3) assuming that S ∈ C2.
Then we infer from (∗) that

Δy3 ∈ L∞(Sr(w0)), y3 = 0 on Ir(w0).

whence y3 ∈ C1,α(Sρ(w0)) for any α ∈ (0, 1) and ρ ∈ (0, r). In the following,
we shall always rename a number ρ with 0 < ρ < r in r; thus we actually
obtain a sequence of decreasing numbers r.

Now we can infer from (8) that xK
v ∈ C0,α(Ir(w0)), and it follows from (∗∗)

that xK ∈ C1,α(Sr(w0)), K = 1, 2. By virtue of (6), we have

(9) x3 = y3 + f(x1, x2)

whence X ∈ C1,α(Sr(w0), R3) for any α ∈ (0, 1).
Suppose now that S ∈ C2,β holds for some β ∈ (0, 1). Then we infer from

(∗) that
Δy3 ∈ C0,β(Sr(w0)), y3 = 0 on Ir(w0),

whence y3 ∈ C2,β(Sr(w0)). Now it follows from (∗∗) that xK
v ∈ C1,β(Ir(w0))

whence xK ∈ C2,β(Sr(w0)), K = 1, 2. Then we obtain from (9) that X ∈
C2,β(Sr(w0), R3).

Next we assume S ∈ C3, whence Δy3 ∈ C0,α(Sr(w0)), and (∗) yields
y3 ∈ C2,α(Sr(w0)) for all α ∈ (0, 1). Now (∗ ∗) implies xK

v ∈ C1,α(Ir(w0)), and
therefore xK ∈ C2,α(Sr(w0)) for any α ∈ (0, 1) whence X ∈ C2,α(Sr(w0)),
taking (9) into account.

In this way we can proceed to prove the proposition. �

Recall that any stationary point X of Dirichlet’s integral in C(Γ, S) is a
stationary minimal surface in C(Γ, S), provided that X is of class C1(B ∪I, R3)
(cf. Section 1.4, Theorem 1). Hence from Proposition 1 we obtain the following
result, by taking also Theorem 4 of Section 2.7 into account:

Theorem 1. Let S be an admissible support surface of class Cm or Cm,β ,
m ≥ 3, β ∈ (0, 1). Then any stationary point of Dirichlet’s integral in C(Γ, S)
is of class Cm−1,α(B ∪ I, R3) for any α ∈ (0, 1) or of class Cm,β(B ∪ I, R3)
respectively.
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Remark 1. The result of Theorem 4 in Section 2.7 is a by-product of the
general discussion of that section, the main goal of which was to deal with
surfaces S having a nonempty boundary. If ∂S is void, we can use a different
method that avoids both the derivation of L2-estimates and the use of the
Lp-theory. This approach is more in the spirit of Section 2.3 and uses results
which are closely related to those of Sections 2.1 and 2.2. To this end we choose
Cartesian coordinates x = (x1, x2, x3) in the neighbourhood of 0 = X(w0) ∈ S
in such a way that S is given by a nonparametric representation

t(x1, x2) = (x1, x2, f(x1, x2)).

Moreover, we introduce the signed distance function

d(x) := ±dist(x, S)

and the foot a(x) of the perpendicular line from x onto S which has the
direction n(x), |n(x)| = 1. Then, for all x in a sufficiently small neighbourhood
of the origin 0, we have the representation

(10) x = a(x) + d(x)n(x).

If x ∈ S, then clearly x = a(x) = t(x1, x2). Note that a(x), d(x), n(x) are of
class Cm−1 if S ∈ Cm, i.e., their degree of differentiability will in general drop
by one. (In fact, it can be shown that d ∈ Cm.)

Let now X be the stationary point that we want to consider, and let
w0 ∈ I, 0 < r 
 1. Then we extend X(w) from Sr(w0) to Br(w0) by defining
the extended surface Z(w) as

(11) Z(w) :=
{

X(w) for w ∈ Sr(w0),
a(X(w)) − d(X(w))n(X(w)) for w ∈ Sr(w0).

It turns out that Z is a weak solution of an equation

(12) ΔZ = F (w)| ∇Z|2 in Br(w0)

with some function F ∈ L∞(Br(w0), R3), i.e. we have

(13)
∫

Br(w0)

(〈∇Z, ∇ϕ〉 + | ∇Z|2〈F, ϕ〉) du dv = 0

for all ϕ ∈
◦

H1
2 (Br(w0), R3) ∩ L∞(Br(w0), R3). This is proved by first estab-

lishing (12) in Sr(w0) and in S∗
r (w0) := Br(w0) \ Sr(w0), and then multiply-

ing (12) by ϕ. We integrate the resulting equation over Sr(w0) ∩ {Imw > ε}
and S∗

r (w0) ∩ {Imw < −ε}, ε > 0, and perform an integration by parts. The
boundary terms on ∂Br(w0) vanish because of ϕ = 0, and the remaining
boundary terms cancel in the limit if we add the two equations and let ε → 0;
the resulting equation will be (13). The cancelling effect is derived from a
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weak transversality relation which expresses the fact that X is a stationary
point of Dirichlet’s integral. Concerning details of the computation, we refer
the reader to Jäger [1], pp. 808–812.

Then, by a regularity theorem due to Heinz and Tomi [1] (see also the
simplified version of Tomi [1]), it follows that Z ∈ C1,α(Br′ (w0), R3) for some
α ∈ (0, 1) and some r′ ∈ (0, r), whence X ∈ C1,α(Sr(w0), R3), which was to
be proved.

Remark 2. Another way to avoid Lp-estimates, p > 2, is the approach of
Step 1 in Section 2.7. Assuming that S is of class C4, we can estimate the L2-
norms of the third derivatives of a stationary point X up to the free boundary
I, and this will imply X ∈ C1(B ∪ I, R3). In fact, one can estimate |DsX|L2

for any s ≥ 2 thus obtaining X ∈ Cs−2,α(B ∪ I, R3). Since one has to assume
S ∈ Cs+1 to keep this method going, we essentially lose 2 derivatives passing
from S to X. These derivatives can only be regained by potential-theoretic
methods such as used in the beginning of this section. For details, we refer to
Hildebrandt [3].

Analogously to Theorem 1, we obtain

Theorem 1′. Let S be an admissible support surface of class Cm or Cm,β ,
m ≥ 3, β ∈ (0, 1), and let B be the unit disk. Assume also that X : B → R

3

is a minimal surface of class C1(B ∪ γ, R3) which maps some open subarc
γ of ∂B into S, and which intersects S orthogonally along the trace curve
X : γ → R

3. Then X is of class Cm−1,α(B ∪ γ, R3) for any α ∈ (0, 1), or of
class Cm,β(B ∪ γ, R3) respectively.

Now we come to the second main result of this section.

Theorem 2. Let S be a real analytic support surface. Then any stationary
point of Dirichlet’s integral in C(Γ, S) is real analytic in B ∪ I and can be
extended across I as a minimal surface.

Note that in Theorem 2 the parameter domain B is the semidisk {Imw > 0,
|w| < 1} and I is the boundary interval {Imw = 0, |w| < 1}.

Analogously we have

Theorem 2′. Let S be a real analytic support surface in R
3, and let B be the

unit disk. Assume also that X is a minimal surface of class C1(B ∪ γ, R3)
for some open subarc γ of ∂B which is mapped by X into S, and suppose that
X intersects S orthogonally along the trace curve X : γ → R

3. Then X is real
analytic in B ∪ γ and can be extended across γ as a minimal surface.

Since both results are proved in the same way, it is sufficient to give the

Proof of Theorem 2. By Proposition 1 we already know that X is of class
C∞(B ∪ I, R3). Let X∗(w) be the adjoint minimal surface to X(w) in B,
and let
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f(w) := X(w) + iX ∗(w) = (f1(w), f2(w), f3(w))

be the holomorphic curve in C
3 with X = Re f and X∗ = Im f , satisfying

〈f ′(w), f ′(w)〉 = 0 on B.

We have to show that, for any u0 ∈ I, there is some δ > 0 such that f(w)
can be extended across Iδ(u0) = I ∩ Bδ(u0) as a holomorphic mapping from
Bδ(u0) into C

3. Without loss of generality we can assume that u0 = 0. Set
Bδ := Bδ(0), Iδ = Iδ(0) and Sδ := B ∩ Bδ. We can also achieve that f(0) = 0
holds true. Moreover, by a suitable choice of Cartesian coordinates in R

3, we
can accomplish that S in a suitable neighbourhood U of 0 is described by

S ∩ U = {x = (x1, x2, x3) : x3 = ψ(x1, x2), |x1|, |x2| < R}

for some R > 0, where

ψ(0, 0) = 0, ψx1(0, 0) = 0, ψx2(0, 0) = 0.

Then there is some δ0 > 0 such that

|x1(u)| < R, |x2(u)| < R for all u with |u| ≤ δ0.

The vector fields TK(x) defined by

T1 := (1, 0, ψx1), T2 := (0, 1, ψx2)

are tangent to S. Moreover Xv is orthogonal to Xu, and Xu is tangent to S
along I. As Xv is orthogonal to S along I, we have

〈TK(X), Xv 〉 = 0 on Iδ0 for K = 1, 2,

whence
〈TK(X), X∗

u 〉 = 0 on Iδ0 for K = 1, 2,

and consequently

〈TK(X), Xu〉 = 〈TK(X), f ′ 〉 on Iδ0 , K = 1, 2.

This can be written as

xK
u + ψxK (x1, x2)x3

u =
d

dw
fK + ψxK (x1, x2)

d

dw
f3

on Iδ0 for K = 1, 2, and the identity

x3(u) = ψ(x1(u), x2(u)) for all u ∈ Iδ0

yields
−ψxK (x1, x2)xK

u + x3
u = 0 on Iδ0

(summation with respect to K from 1 to 2 !).
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Thus we obtain⎛
⎜⎝

1 0 ψx1(x1, x2)
0 1 ψx2(x1, x2)

−ψx1(x1, x2) −ψx2(x1, x2) 1

⎞
⎟⎠
⎛
⎝ x1

u

x2
u

x3
u

⎞
⎠(14)

=

⎛
⎝ f1

w + ψx1(x1, x1)f3
w

f2
w + ψx2(x1, x2)f3

w

0

⎞
⎠

on Iδ0 . In matrix notation we may write

(15) A(X)Xu = l(X, f ′) on Iδ0

with a 3 × 3-matrix A(X), the determinant of which satisfies

det A(X) = 1 + ψ2
x1(x1, x2) + ψ2

x2(x1, x2) �= 0 on Iδ0

for 0 < δ0 
 1. Thus we obtain

(16) Xu = A−1(X)l(X, f ′) on Iδ0 .

Let us introduce the function F (w, z) for w ∈ C and

z = (z1, z2, z3) ∈ C
3 with |w| ≤ ρ0, Imw ≥ 0, and |z| ≤ ρ1

(i.e., x ∈ B
3

ρ1
) by setting

(17) F (w, z) := A−1(z)l(z, f ′(w)).

The mapping F : Sρ0 × B
3

ρ1
→ C

3 is of class C1 (differentiability meant in the
“real sense” with respect to w) and holomorphic on Sρ0 × B3

ρ1
.

Then we can write (16) in the form

(18)
d

du
X(u) = F (u, X(u)) for all u ∈ Iδ0

if δ0 ∈ (0, ρ0] is sufficiently small. Since X(0) = 0, we obtain

(19) X(u) =
∫ u

0

F (t, X(t)) dt for all u ∈ Iδ0 .

By a standard reasoning this integral equation has not more than one solution
in C0(Iδ0 , R

3) since F (w, z) satisfies a Lipschitz condition with respect to
z ∈ B

3

ρ1
, uniformly for all w ∈ Sρ0 . By the same reasoning, the complex

integral equation

(20) Z(w) =
∫ w

0

F (ω, Z(ω)) dω
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has exactly one solution Z(w), w ∈ Sδ, in the Banach space A(Sδ) of functions
Z : Sδ → C

3 which are continuous on Sδ and holomorphic in Sδ, provided that
δ ∈ (0, δ0] is chosen sufficiently small (cf. the proof of Theorem 3 in Section 2.3,
and in particular the footnote; one uses the standard Picard iteration). By the
uniqueness principle, we have

Z(u) = X(u) for all u ∈ Iδ,

whence
Im Z = 0 on Iδ.

Hence we can apply Schwarz’s reflection principle, thus obtaining that

Z(w) := Z(w) for w ∈ Bδ with Im w < 0

yields an analytic extension of Z across Iδ onto the disk Bδ centered at u0 = 0.
Moreover, f = X + iX ∗ is holomorphic in Sδ, continuous on Sδ, and

Re(f − Z) = 0 on Iδ.

Thus we can extend i(f − Z) analytically across Iδ by

i{f(w) − Z(w)} := −i{f(w) − Z(w)} for w ∈ Bδ with Imw < 0.

Hence
f(w) := 2Z(w) − f(w) for w ∈ Bδ with Imw < 0

extends f analytically across Iδ. Now f(w) is seen to be a holomorphic function
on Bδ, and X = Re f defines the harmonic extension of X to Bδ which, by
the principle of analytic continuation, has to be a minimal surface on Bδ. �

2.9 A Different Approach to Boundary Regularity

In this section we want to give a different proof of the Hölder continuity of
∇X where X is a stationary point of Dirichlet’s integral in C(Γ, S). This new
proof merely requires that S is of class C3. The first step is the same as in
Section 2.7 and need not be repeated: one estimates the L2-norms of ∇2X up
to the free boundary. The other two steps are replaced by a new argument:
We insert a suitable modification of the test function φ = Δ−t{η2ΔtY } into
the variational inequality

δE(Y, φ) ≥ 0.

This will lead us to a Morrey condition for ∇2X which, in turn, implies that
∇X is of class C0,α on B ∪ I for some α ∈ (0, 1

2 ]. The essential new feature of
this approach is that we shall explicitly use the first equation of Section 2.7,
(35) which states that y1

v = 0 a.e. on I+
2ρ(w0), and y1 = 0 on I2ρ(w0) \ I+

2ρ(w0).



182 2 The Boundary Behaviour of Minimal Surfaces

Throughout this section we shall assume that S is an admissible support
surface of class C3 in the sense of Section 2.6, Definition 1.

As in Steps 2 and 3 of Section 2.1, we shall use a special boundary coor-
dinate system satisfying (32) of Section 2.7. Note that, therefore, the defining
diffeomorphisms g and h of the boundary coordinates are merely of class C2.

We also assume that we have the same situation as in Section 2.6, that is:
w0 ∈ I, x0 := X(w0), {U, g} is an admissible boundary coordinate system

centered at x0, h = g−1, Y := g(X), Y (w0) = 0; ρ > 0 is chosen in such a way
that |Y (w)| < R for all w ∈ S2ρ(w0); in addition, {U, g} is chosen in such a
way that (32) of Section 2.7 holds true; we have

y1(w) ≥ σ and y3(w) = 0 for all w ∈ I2ρ(w0),
y1

v(w) = 0 a.e. on I+
2ρ(w0) := I2ρ(w0) \ {w : y1(w) = σ};

finally, by Step 1 of Section 2.7, Y ∈ H2
2 ∩ H1

4 (S2r(w0), R3) for any r ∈ (0, ρ),
as well as Y ∈ C0,α(S2r(w0), R3) for all α ∈ (0, 1).

Lemma 1. Let φ = (ϕ1, ϕ2, ϕ3) ∈ H1
2 ∩ L∞(S2ρ(w0), R3) be a test function

with ϕ3 = 0 on I2ρ(w0), supp φ � S2ρ(w0) ∪ I2ρ(w0), and suppose that

Xε := h(Y + εφ), 0 ≤ ε < ε0(φ),

is an admissible type II-variation of X in C(Γ, S). Then we have

(1)
∫

B

DαyjDαϕj du dv ≥
∫

B

Γ l
jk (Y )DαyjDαykϕl du dv.

For
ỹj
1 := D1y

j − bj , ỹj
2 := D2y

j − dj

with d1 = d2 = 0 and arbitrary constants b1, b2, b3, d3, we also have

(2)
∫

B

ỹj
αDαϕj du dv ≥

∫
B

Γ l
jk (Y )DαyjDαykϕl du dv.

Proof. Because of (32) in Section 2.7, we infer that also X∗
ε := h(Y + εΨ)

with Ψ = (ψ1, ψ2, ψ3), ψj := gjk (Y )ϕk, φ = (ϕ1, ϕ2, ϕ3) is an admissible type
II-variation of X in C(Γ, S), with ψ3 = 0 on I2ρ(w0) and

supp ψ � S2ρ(w0) ∪ I2ρ(w0).

Hence
δE(Y, Ψ) ≥ 0,

and by computations similar to those in the beginning of Section 2.6, we
obtain (1).

Secondly, an integration by parts yields the identities



2.9 A Different Approach to Boundary Regularity 183

∫
B

ỹj
αDαϕj du dv =

∫
B

Dα[ỹj
αϕj ] du dv −

∫
B

(Δyj)ϕj du dv

= −
∫

I

ỹj
2ϕ

j du −
∫

B

(Δyj)ϕj du dv

= −
∫

I

[(Dvy1)ϕ1 + (Dvy2)ϕ2] du −
∫

B

(Δyj)ϕj du dv

= −
∫

I

〈DvY, φ〉 du −
∫

B

〈ΔY, φ〉 du dv

=
∫

B

〈DαY, Dαφ〉 du dv =
∫

B

DαyjDαϕj du dv.

Hence (2) is a consequence of (1). �

Next we shall prove a generalized version of Poincaré’s inequality.

Lemma 2. For any γ > 0, there is a constant M > 0 with the following
property: If w0 ∈ R, r > 0, T2r := S2r(w0) \ Sr(w0), ψ ∈ H1

2 (T2r) and

H1{w ∈ I2r(w0) \ Ir(w0) : ψ(w) = 0} ≥ γr,

then ∫
T2r

ψ2 du dv ≤ Mr2

∫
T2r

| ∇ψ|2 du dv.

Proof. Suppose that r = 1, γ > 0, and let Cγ be the class of functions
ψ ∈ H1

2 (T ), T := T2, with H1{w ∈ I2(w0) \ I1(w0) : ψ(w) = 0} ≥ γ. We
claim that there is some number M > 0 such that

(3)
∫

T

ψ2 du dv ≤ M

∫
T

| ∇ψ|2 du dv

is satisfied for all ψ ∈ Cγ . By a scaling argument we then obtain the assertion
of the lemma.

Suppose now that there is no M > 0 with (3). Then there is a sequence of
functions ψk ∈ Cγ , k ∈ N, such that

∫
T

ψ2
k du dv > k

∫
T

| ∇ψk |2 du dv.

Without loss of generality we may assume that

(4)
∫

T

ψ2
k du dv = 1,

whence

(5)
∫

T

| ∇ψk |2 du dv < 1/k, k ∈ N.
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Then, by a well-known compactness argument for bounded sequences in
Hilbert spaces, there is a subsequence {ψ′

n} of {ψk } which converges weakly
in H1

2 (T ) to some ψ ∈ H1
2 (T ). Then {ψ′

n} converges strongly to ψ both in
L2(T ) and in L2(∂T ), on account of Rellich’s theorem and a result by Morrey
(cf. [8], pp. 75–77). As Dirichlet’s integral is weakly lower semicontinuous, we
infer from (5) that ∫

T

| ∇ψ|2 du dv = 0.

Hence there is a constant c such that

ψ(w) = c a.e. on T,

and, because of (4), we have c �= 0.
On the other hand, we have
∫

∂T

|ψ′
n − c|2 dH1 ≥

∫
∂T ∩{ψ′

n= 0}
|ψ′

n − c|2 dH1

= c2H1(∂T ∩ {ψ′
n = 0}) ≥ c2γ for all n ∈ N.

As
lim

n→∞

∫
∂T

|ψ′
n − c|2 dH1 = 0,

it follows that c2γ = 0, which is impossible since c �= 0 and γ > 0. �

Now we want to use the generalized Poincaré inequality to establish the ba-
sic estimates of the stationary surface X in C(Γ, S), or rather of its transform
Y = g(X).

Lemma 3. Set T2r := S2r(w0) \ Sr(w0), and

(6) ζ(r) :=
1
r2

min
{∫

T2r

|Duy1|2 du dv,

∫
T2r

|Dvy1|2 du dv

}
.

Then, for every δ ∈ (0, 1), there is a constant c = c(δ) > 0 such that the
inequality

(7)
∫

Sr(w0)

| ∇2Y |2 du dv ≤ c

{
ζ(r) + r1+δ +

∫
T2r

| ∇2Y |2 du dv

}

holds true for all r ∈ (0, ρ).

Proof. Choose a cut-off function η as in Section 2.7, and replace the test
function φ in Section 2.7, (1) by

(8) φ := Δ−t{η2(ΔtY − A)}, φ = (ϕ1, ϕ2, ϕ3),

where
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A = (A1, A2, A3) := (0, a, 0)

is a constant vector with an arbitrary constant a ∈ R. We claim that φ is
admissible for inequalities (1) and (2) in Lemma 1 provided that |t| 
 1. In
fact,

Y (w) + εφ(w) = λ1Yt(w) + λ2Y−t(w) + (1 − λ1 − λ2)Y (w) + μA,

λ1 := εt−2η2(w), λ2 := εt−2η2
−t(w), μ := εt−1[η2

t (w) − η2(w)].

Thus Y (w) + εφ(w) is a convex combination of the three points Y (w), Yt(w),
Y−t(w) which is translated by μA, that is, in direction of the y2-axis, provided
that 0 ≤ ε ≤ 1

2 t2. Then, by a repetition of the reasoning used in the beginning
of Section 2.7, we infer that Xε := h(Y + εφ), 0 ≤ ε 
 1, is an admissible
variation of X in C(Γ, S) which is of type II. Thus we can insert φ in (1),
whence ∫

B

DαyjDαΔ−t{η2(Δty
j − Aj)} du dv

≥
∫

B

Γ l
jk (Y )DαyjDαykΔ−t{η2(Δty

l − Al)} du dv.

If we multiply this inequality by −1 and perform an integration by parts (cf.
Section 2.7, Lemma 1), it follows that
∫

B

ΔtDαyj {η2(ΔtDαyj) + 2ηDαη(Δty
j − Aj)} du dv

≤ −
∫

B

Γ l
jk (Y )DαyjDαyk {(Δ−tη

2)(Δty
l − Al) + η2

t Δ−tΔty
l} du dv.

As t tends to zero, we arrive at∫
B

η2| ∇DuY |2 du dv

≤
∫

B

2η| ∇η| | ∇DuY | |DuY − A| du dv

+ c

∫
B

| ∇Y |2η| ∇η| |DuY − A| du dv + c

∫
B

| ∇Y |2η2|D2
uY | du dv.

Here and in the following, c will denote a canonical constant. Then, by means
of the inequality

2ab ≤ εa2 + ε−1b2,

we obtain that∫
B

η2| ∇DuY |2 du dv ≤ ε

∫
B

η2| ∇DuY |2 du dv +
c

ε

∫
B

η2| ∇Y |4 du dv

+
c

ε

∫
B

| ∇η|2|DuY − A|2 du dv.
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By choosing ε = 1/2, the first term on the right can be absorbed by the
left-hand side, and it follows that

∫
S2r(w0)

η2| ∇DuY |2 du dv

≤ cr −2

∫
T2r

|DuY − A|2 du dv + c

∫
S2r(w0)

η2| ∇Y |4 du dv.

From the Euler equation

Δyl + Γ l
jk (Y )DαyjDαyk = 0

we infer the inequality

|D2
vY |2 ≤ |D2

uY |2 + c| ∇Y |4,

and consequently
∫

S2r(w0)

η2| ∇2Y |2 du dv(9)

≤ cr −2

∫
T2r

|DuY − A|2 du dv + c

∫
S2r(w0)

η2| ∇Y |4 du dv.

Since we have already shown that

Y ∈ H2
2 ∩ H1

p (Zd, R
3), 0 < d < 1,

for any p ∈ (1, ∞), it follows that, for any δ ∈ (0, 1), there is a constant
c(δ) > 0 such that

(10)
∫

S2r(w0)

| ∇Y |4 du dv ≤ c(δ)r1+δ

holds for all r ∈ (0, ρ). Moreover, we have
∫

T2r

|DuY − A|2 du dv =
∫

T2r

(|Duy1|2 + |Duy2 − a|2 + |Duy3|2) du dv.

Poincaré’s inequality yields

(11)
∫

T2r

|Duy3|2 du dv ≤ cr2

∫
T2r

| ∇Duy3|2 du dv

for all r ∈ (0, ρ) since y3 vanishes on I2ρ(w0). Moreover, for

a := −
∫

T2r

Duy2 du dv,
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we infer from Poincaré’s inequality that

(12)
∫

T2r

|Duy2 − a|2 du dv ≤ cr2

∫
T2r

| ∇Duy2|2 du dv

is satisfied for all r ∈ (0, ρ).
Combining inequalities (9)–(12), we find that

∫
Sr(w0)

| ∇2Y |2 du dv(13)

≤ c(δ)
{

r−2

∫
T2r

|Duy1|2 du dv +
∫

T2r

| ∇2Y |2 du dv + r1+δ

}
.

By a similar reasoning, it follows that
∫

Sr(w0)

| ∇2Y |2 du dv(14)

≤ c(δ)
{

r−2

∫
T2r

|Dvy1|2 du dv +
∫

T2r

| ∇2Y |2 du dv + r1+δ

}

holds true if we insert the test function

(15) φ := η2Δ−tΔtY

in inequality (2) of Lemma 1. We leave it to the reader to check that (15) is
an admissible test function for (2), and to carry out the derivation of (14) in
detail.

Then the desired inequality (7) is a consequence of (13) and (14). �

Now we are going to prove our main result.

Theorem 1. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in C(Γ, S). Then there exists
some α ∈ (0, 1/2) such that X ∈ C1,α(B ∪ I, R3).

Proof. We have

y1
v = 0 a.e. on I+

2r(w0) := {w ∈ I2r(w0) : y1(w) > σ},

y1
u = 0 a.e. on I0

2r(w0) := {w ∈ I2r(w0) : y1(w) = σ}.

Hence, either
H1(I+

2r(w0) \ Ir(w0)) ≥ r

or
H1(I0

2r(w0) \ Ir(w0)) ≥ r

holds true, and we can apply Lemma 2 to ψ = y1
v or ψ = y1

u respectively,
obtaining
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∫
T2r

ψ2 du dv ≤ Mr2

∫
T2r

| ∇ψ|2 du dv.

Thus the function ζ(r), defined by (6), will satisfy

ζ(r) ≤ M

∫
T2r

| ∇2y1|2 du dv for all r ∈ (0, ρ),

and we infer from formula (7) of Lemma 3 that

∫
Sr(w0)

| ∇2Y |2 du dv ≤ c

{
r1+δ +

∫
S2r(w0)\Sr(w0)

| ∇2Y |2 du dv

}

holds true for some δ ∈ (0, 1) and for all r ∈ (0, ρ). Adding the term

c

∫
Sr(w0)

| ∇Y |2 du dv

to both sides of the last inequality and dividing the result by 1 + c, it follows
that ∫

Sr(w0)

| ∇2Y |2 du dv ≤ θ

{∫
S2r(w0)

| ∇2Y |2 du dv + r1+δ

}

holds true for some δ ∈ (0, 1) and for all r ∈ (0, ρ), where

θ :=
c

1 + c
;

that is, 0 < θ < 1. Hence, by Lemma 6 of Section 2.6, we infer the existence
of positive numbers k and α ≤ 1 such that

(16)
∫

Sr(w0)

| ∇2Y |2 du dv ≤ kr2α for 0 < r < ρ,

whence by
| ∇2X|2 ≤ c{ | ∇2Y |2 + | ∇Y |4}

and (10) we obtain

∫
Sr(w0)

| ∇2X|2 du dv ≤ k∗r2α for 0 < r < ρ

and some constant k∗ depending on ρ but not on r. By virtue of Mor-
rey’s Dirichlet growth theorem we infer that X ∈ C1,α(Zd, R

3), for any
d ∈ (0, 1). �
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2.10 Asymptotic Expansion of Minimal Surfaces
at Boundary Branch Points and Geometric
Consequences

We have seen that a minimal surface X : B → R
3 can be extended analytically

and as a minimal surface across those parts of ∂B which are mapped by X
into an analytic arc or which correspond to a free trace on an analytic support
surface. Therefore, at a branch point of such a part of ∂B, the minimal sur-
face X possesses an asymptotic expansion as described in Section 3.2 of Vol. 1.
In this section we want to derive an analogous expansion of X at boundary
branch points, assuming merely that Γ or S are of some appropriate class Cm.
Our main tool will be a technique developed by Hartman and Wintner that is
described in Chapter 3 in some detail. Presently we shall only sketch how the
Hartman–Wintner technique can be used to obtain the desired expansions at
boundary branch points.

Since in the preceding sections we have discussed stationary points of
Dirichlet’s integral in C(Γ, S), that is, stationary minimal surfaces with a
partially free boundary on I, we shall begin by considering such a minimal
surface X. Thus we can assume that we have the same situation as in Sec-
tion 2.6:

S is assumed to be an admissible support surface of class C3; w0 ∈ I, x0 :=
X(w0); {U, g} is an admissible boundary coordinate system centered at x0, h =
g−1, Y = (y1, y2, y3) := g(X), Y (w0) = 0; ρ > 0 is chosen in such a way that
|Y (w)| < R for all w ∈ S2ρ(w0); in addition, {U, g} is chosen in such a way
that (32) of Section 2.7 holds true. We have

y2
v = 0 and y3 = 0 in I2ρ(w0)

and
Δyl + Γ l

jk (Y )DαyjDαyk = 0 in B.

Moreover, on account of

gjk (Y )yj
wyk

w = 0 in B,

it follows that

(1) | ∇y1|2 ≤ c{ | ∇y2|2 + | ∇y3|2}

and

(2) |Δy2| + |Δy3| ≤ c{ | ∇y2|2 + | ∇y3|2}

holds is S2ρ(w0) for some constant c > 0.
In Section 2.7 we have also proved that y2 and y3 are both of class

C1,α(S2r(w0)) and of class H2
p (S2r(w0)) for any α ∈ (0, 1), p ∈ (1, ∞), and
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r ∈ (0, ρ). Then the mapping Z(w) = (z1(w), z2(w), z3(w)) defined by
z1(w) := 0 and by

z2(w) := y2(w), z3(w) := y3(w) if Imw ≥ 0,

z2(w) := y2(w), z3(w) := −y3(w) if Im w < 0,

w = u + iv ∈ Bρ(w0), w = u − iv, is of class C1,α(Bρ(w0), R3) and of class C2

in Bρ(w0) \ Iρ(w0). Furthermore, for some constant c > 0, we have

(3) |Zww | ≤ c|Zw | in Bρ(w0) \ Iρ(w0).

Let Ω be an arbitrary subdomain of Br(w0) for some r ∈ (0, ρ) which has
a piecewise smooth boundary ∂Ω, and let φ = (ϕ1, ϕ2, ϕ3) be an arbitrary
function of class C1(Ω, C3). Then, by an integration by parts, we obtain that

(4)
1
2i

∫
∂Ω

〈Zw, φ〉 dw =
∫

Ω

(〈Zw, φw 〉 + 〈Zww , φ〉) d2w,

where dw = du + i dv, d2w = du dv.
Combining (3) and (4), we arrive at the inequality

(5)
∣∣∣∣
∫

∂Ω

〈Zw, φ〉 dw

∣∣∣∣ ≤ 2
∫

Ω

|Zw |(|φw | + c|φ|) d2w

which holds for all φ ∈ C1(Ω, R3) and for all Ω ⊂ Br(w0) with a piecewise
smooth boundary ∂Ω. But this relation is the starting point for the Hartman–
Wintner technique; cf. Chapter 3, Section 3.1.

Suppose now that w0 ∈ I is a branch point of X, that is,

|Xu(w0)| = 0 and |Xv(w0)| = 0.

Then we have
|Yu(w0)| = 0 and |Yv(w0)| = 0

and consequently
Yw(w0) = 0.

We claim that there is no r ∈ (0, ρ) such that Yw(w) = 0 for all w ∈ Sr(w0).
In fact, suppose that Yw(w) ≡ 0 on Sr(w0). Then we obtain Xw(w) ≡ 0 on
Sr(w0), whence Xw(w) ≡ 0 on B; but this is impossible for any stationary
point of the Dirichlet integral in C(Γ, S).

From Yw �≡ 0 on Sr(w0) for any r ∈ (0, ρ) it follows that Zw(w) �≡ 0 on
Sr(w0), on account of (1). Then by virtue of Theorem 1 of Section 3.1, there
is some vector P = (p1, p2, p3) �= 0 in C

3 and some number ν ∈ N such that

Zw(w) = P (w − w0)ν + o(|w − w0|ν) as w → w0.

Because of z1
w(w) ≡ 0, it follows that p1 = 0:
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P = (0, p2, p3).

Now we consider the function e(w), w ∈ Sρ(w0) \ {w0}, defined by

e(w) := (w − w0)−νf(w),

where f(w) is defined by (42) in Section 2.7. Since Y (w0) = 0 and

(gjk (0)) =

⎡
⎣ E0 0 0

0 G0 0
0 0 1

⎤
⎦ , E0 �= 0, G0 �= 0,

we infer from formula (41) in Section 2.7 that limw→w0e
2(w) exists, and that

lim
w→w0

e2(w) = − G0

E0
lim

w→w0
(w − w0)−2ν(y2

w(w))2

− 1
E0

lim
w→w0

(w − w0)−2ν(y3
w(w))2.

Then, by Lemma 3 of Section 2.7, we see that limw→w0e(w) does exist. Set
F := (f1, f2, f3), where

f1 := lim
w→w0

e(w) = lim
w→w0

(w − w0)−νy1
w(w), f2 := p2, f3 := p3.

It follows that

Yw(w) = F (w − w0)ν + o(|w − w0|ν) as w → w0,

where F ∈ C
3 satisfies F �= 0 and 〈〈F, F 〉〉 = 0, i.e.

gkl(0)fkf l = 0.

Because of Xw = hy(Y )Yw, we obtain the following result:

Theorem 1. Let S be an admissible support surface of class C3 and X be a
stationary point of Dirichlet’s integral in the class C(Γ, S). Assume also that
w0 ∈ I is a boundary branch point of X. Then there exist an integer ν ≥ 1
and a vector A ∈ C

3 with A �= 0 and

(6) 〈A, A〉 = 0

such that

(7) Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0.

We call ν the order of the branch point w0.
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From this expansion we can draw the same geometric conclusions as in
Section 3.2 of Vol. 1. To this end we write

A = 1
2 (α − iβ) with α, β ∈ R

3.

Then it follows that
|α| = |β| �= 0, 〈α, β〉 = 0

and

Xu(w) = α Re(w − w0)ν + β Im(w − w0)ν + o(|w − w0|ν),
(8)

Xv(w) = −α Im(w − w0)ν + β Re(w − w0)ν + o(|w − w0|ν)

as w → w0, whence

Xu(w) ∧ Xv(w) = (α ∧ β)|w − w0|2ν + o(|w − w0|2ν) as w → w0.

This implies that the surface normal N(w), given by

N = |Xu ∧ Xv | −1(Xu ∧ Xv),

tends to a limit vector N0 as w → w0:

(9) lim
w→w0

N(w) = N0 = |α ∧ β| −1(α ∧ β).

Consequently, the Gauss map N(w) of a stationary minimal surface X(w) is
well-defined on all of B ∪ I as a continuous mapping into S2. Therefore the
surface X(w) has a well-defined tangent plane at every boundary branch point
on I, and thus at every point w0 ∈ B ∪ I.

Consider now the trace curve X : I → R
3 of the minimal surface X on the

supporting surface S. We infer from (8) that

Xu(w) = α(w − w0)ν + o(|w − w0|ν) as w → w0, w ∈ I

and, writing w = u, w0 = u0 for w, w0 ∈ I, we obtain for the unit tangent
vector

t(u) := |Xu(u)| −1Xu(u)

the expansion

(10) t(u) =
α

|α|
(u − u0)ν

|u − u0|ν + o(1) as u → u0.

Therefore the nonoriented tangent moves continuously through any bound-
ary branch point u0 ∈ I. The oriented tangent t(u) is continuous if the order
ν of u0 is even, but, for branch points of odd order, the direction of t(u) jumps
by 180 degrees when u passes through u0.

Finally, by choosing a suitable Cartesian coordinate system in R
3, we

obtain the expansion
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x(w) + iy(w) = (x0 + iy0) + a(w − w0)ν+1 + o(|w − w0|ν+1),
(11)

z(w) = z0 + o(|w − w0|ν+1)

as w → w0, where X(w0) = (x0, y0, z0) and a > 0; see Section 3.2, (6), of
Vol. 1.

The same reasoning can be used for the investigation of X at a boundary
branch point w0 ∈ int C. We obtain again an expansion of the kind (7) with
some ν ≥ 1 and some A ∈ C

3, A �= 0, 〈A, A〉 = 0. As X : C → Γ is a monotonic
mapping, the tangent vector

t(ϕ) := |Xϕ(eiϕ)| −1Xϕ(eiϕ)

of this mapping has to be continuous, and we infer from (7) that ν is even,
provided that Γ is of class C2.

The same result can be proved for minimal surfaces X ∈ C(Γ ) which solve
Plateau’s problem for a closed Jordan curve Γ of class C2; cf. Chapter 4 of
Vol. 1 for the definition of C(Γ ). Thus we obtain

Theorem 2. Let Γ be a closed Jordan curve of class C2 in R
3, and suppose

that X ∈ C(Γ ) is a minimal surface spanning Γ . Then every boundary branch
point w0 ∈ ∂B is of even order ν = 2p, p ≥ 1, and we have the asymptotic
expansion

(12) Xw(w) = A(w − w0)2p + o(|w − w0|2p) as w → w0,

where A ∈ C
3, A �= 0, and 〈A, A〉 = 0.

W. Jäger [3] has pointed out that Γ ∈ C1,μ suffices to prove (12).

2.11 The Gauss–Bonnet Formula for Branched Minimal
Surfaces

In Section 1.4 of Vol. 1 we have derived the Gauss–Bonnet formula

(1)
∫

X

KdA +
∫

Γ

κg ds = 2π

for regular surfaces X ∈ C2(Ω, R3) defined on a simply connected bounded
domain Ω ⊂ C which map ∂Ω onto a Jordan curve Γ . The result as well as
the proof given in Section 1.4 of Vol. 1 remain correct if X does not map ∂Ω
bijectively onto a Jordan curve in R

3 provided that we replace formula (1) by

(2)
∫

X

K dA +
∫

∂X

κg ds = 2π

or, precisely speaking, by
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(3)
∫

Ω

K|Xu ∧ Xv | du dv +
∫

∂Ω

κg |dX | = 2π.

Now we shall drop the assumption of regularity and, instead, admit finitely
many branch points in the interior and on the boundary of the parameter
domain Ω. To make our assumptions precise, we introduce the class PR(Ω)
of pseudoregular surfaces X : Ω → R as follows:

A surface X is said to be of class PR(Ω) if it satisfies the conditions
(i) X ∈ C2(Ω, R3) and

(4) |Xu| = |Xv |, 〈Xu, Xv 〉 = 0.

(ii) There is a continuous function H(w) on Ω such that

(5) ΔX = 2HXu ∧ Xv.

(iii) There is a finite set Σ0 of points in Ω such that Xw(w) �= 0 for all
w ∈ Ω \ Σ0. For any point w0 ∈ Σ0 there is an integer ν ≥ 1 and a vector
A ∈ C

3 satisfying A �= 0 and 〈A, A〉 = 0 such that

(6) Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0.

We call Σ0 the singular set of X ∈ PR(Ω).

Remark 1. The set Ω0 := {w ∈ Ω : Xw(w) �= 0} of regular points of X in
Ω is open and, by Section 2.6 of Vol. 1, equations (4) yield the existence of a
function H ∈ C0(Ω0) such that (5) holds true on Ω0. Moreover, the function
H is the mean curvature of X|Ω0 . Thus condition (ii) is a consequence of (i) if
we assume that H(w) can be extended from Ω0 to Ω as a continuous function.
This extension is possible if, for some reason, we know that X is a solution of

(7) ΔX = 2H(X)Xu ∧ Xv

in Ω, where H ∈ C0(R3).
If, on the other hand, X ∈ C2(Ω, R3) is a solution of (4) and (7) for

some H ∈ C1(R3), it is sometimes possible to extend X to a function of class
C2(Ω, R3). For instance, the extendability can follow from suitable boundary
conditions (e.g. from Plateau-type conditions or from free boundary condi-
tions) as we have seen in the previous sections.

Finally if X(w) is a nonconstant surface such that (4) and (5) hold for
some H ∈ C0,α(Ω), 0 < α < 1, then the set of branch points of X defined
by Σ0 := {w ∈ Ω : Xw(w) = 0} is finite (and possibly empty), and, for any
w0 ∈ Σ0, the mapping X has an asymptotic expansion (6) as described in (iii).
For minimal surfaces we have stated this result in Section 2.10. The general
theory will be developed in Chapter 3, using Hartman–Wintner’s technique.

Now we can formulate the Gauss–Bonnet theorem for pseudoregular sur-
faces; we shall immediately state it for multiply connected domains.
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Theorem 1. Let Ω be an m-fold connected domain in C bounded by m closed
regular curves γ1, . . . , γm of class C∞, and let X : Ω → R

3 be a pseudoregular
surface with the area element dA = |Xu ∧ Xv | du dv, the singular set Σ0, the
Gauss curvature K in Ω \ Σ0, and the geodesic curvature κg of X|∂Ω\Σ0 . Sup-
pose also that the total curvature integral

∫
X

|K| dA of X exists as a Cauchy
principle value. Then we obtain the generalized Gauss–Bonnet formula

(8)
∫

X

K dA = 2π(2 − m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w) −
∫

∂Ω

κg |dX |,

where σ′ := Σ0 ∩ Ω is the set of interior branch points, σ′ ′ := Σ0 ∩ ∂Ω the set
of boundary branch points, and ν the order of a branch point w ∈ Σ0.

For the proof of (8) we shall employ the reasoning of Section 1.4 of Vol. 1.
To carry out these arguments in our present context, we need two auxiliary
results.

Lemma 1. Let a > 0, I = (0, a], and be f a function of class C1(I) such that
|f(r)| ≤ m holds for all r ∈ I and some constant m ≥ 0. Then there is a
sequence of numbers rk ∈ I satisfying rk → 0 and rkf ′(rk) → 0 as k → ∞.

Proof. Otherwise we could find two numbers c > 0 and ε ∈ (0, a] such that

r|f ′(r)| ≥ c for all r ∈ (0, ε].

Then we would either have

(i) f ′(r) ≥ c/r for all r ∈ (0, ε]

or

(ii) f ′(r) ≥ −c/r for all r ∈ (0, ε].

In case (i) we obtain

c log
ε

r
= c

∫ ε

r

dr
r

≤
∫ ε

r

f ′(r) dr = f(ε) − f(r)

whence
log

1
r

≤ 2m

c
− log ε for all r ∈ (0, ε]

which yields a contradiction since log 1
r → ∞ as r → +0. Similarly case (ii)

leads to a contradiction. �
Lemma 2. Let Σ0 be the singular set of a map X ∈ PR(Ω). Then, for any
w0 ∈ Σ0, there is a sequence of positive radii rk, k ∈ N, tending to zero such
that

(9) lim
k→∞

∫
C(w0,rκ)

∂

∂r
log

√
Λ dσ =

{
2πν if w0 ∈ Ω,
πν if w0 ∈ ∂Ω,

where r = |w −w0|, w = w0+reiϕ, ν is the order of the branch point w0 defined
by the expansion (6), and Λ = |Xu|2.
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Proof. Let us write C(w0, r) = {w ∈ Ω : |w − w0| = r} as

C(w0, r) = {w = w0 + reiϕ : ϕ1(r) ≤ ϕ ≤ ϕ2(r)}

for 0 < r ≤ ε 
 1, and set

f(r) :=
∫ ϕ2(r)

ϕ1(r)

log|Xw(w)| |w − w0| −ν dϕ.

By Lemma 1, there is a sequence rk → +0 such that rkf ′(rk) → 0. Since
|Xw | =

√
Λ/

√
2, we obtain

log |Xw(w)| |w − w0| −ν = log
√

Λ(w) − log
√

2 − ν log r

for w ∈ C(w0, r), whence

∂

∂r
log |Xw(w)| |w − w0| −ν =

∂

∂r
log
√

Λ(w) − ν

r
.

Thus it follows that

rkf ′(rk) =
∫ ϕ2(rk)

ϕ1(rk)

(
∂

∂r
log

√
Λ

)
rk dϕ − ν

∫ ϕ2(rk)

ϕ1(rk)

dϕ

+ rkϕ′
2(rk) log(|A| + δk) − rkϕ′

1(rk) log(|A| + δ∗
k),

where {δk } and {δ∗
k } are two sequences tending to zero.

If w0 ∈ Ω, we can assume that ϕ1(r) = 0 and ϕ2(r) = 2π, whence

rkf ′(rk) =
∫

C(w0,rk)

(
∂

∂r
log

√
Λ

)
dσ − 2πν.

Because of rkf ′(rk) → 0, we then obtain

lim
k→∞

∫
C(w0,rk)

∂

∂r
log

√
Λdσ = 2πν.

If w0 ∈ ∂Ω, then the smoothness of ∂Ω implies

ϕ1(rk) − ϕ1(rk) → π and rk { |ϕ′
1(rk)| + |ϕ′

2(rk)| } → 0 as k → ∞,

whence

lim
k→∞

∫
C(w0,rk)

∂

∂r
log

√
Λdσ = πν. ��

Now we turn to the
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Proof of Theorem 1. Let σ′ = {w1, . . . , wN } and σ′ ′ = {w̃1, . . . , w̃M } be the
sets of interior branch points and of boundary branch points respectively. We
consider N + M sequences {r

(j)
α } and {r̃

(j)
β }, 1 ≤ α ≤ N, 1 ≤ β ≤ M , of

positive numbers tending to zero as j → ∞. Set

Ωj : = {w ∈ Ω : |w − wα| > r(j)
α , |w − w̃β | > r̃

(j)
β , 1 ≤ α ≤ N, 1 ≤ β ≤ M }.

By formula (32) of Section 1.3 of Vol. 1 we have

−
∫

Ωj

K dA =
∫

Ωj

Δ log
√

Λ du dv

taking |Xu ∧ Xv | = Λ into account, and an integration by parts yields

(10) −
∫

Ωj

K dA =
∫

∂Ωj

(
∂

∂n
log

√
Λ

)
dH1,

where n denotes the exterior normal to ∂Ωj . (Actually, we should write∫
Xj

K dA instead of
∫

Ωj
K dA, with Xj := X|Ωj .) According to Lemma 2,

the sequences {r
(j)
α } and {r̃

(j)
β } can be chosen in such a way that

(11)
∫

C(wα,r
(j)
α )

∂

∂n
log

√
Λ dH1 → 2πν(wα)

as j → ∞, and that

(12)
∫

C(w̃β ,r̃
(j)
β )

∂

∂n
log

√
Λ dH1 → πν(w̃β),

where ν(wα) and ν(w̃β) denote the orders of branch points wα and w̃β , re-
spectively, which are defined by the corresponding expansions (6).

Moreover, let γk be one of the m closed curves, the union of which is
∂Ω, and let (a(σ), b(σ)), 0 ≤ σ ≤ L, be a parameter representation of γk

in terms of its parameter of arc length σ which orients ∂Ω in the positive
sense with respect to Ω. Then we have ȧ2 + ḃ2 = 1, a(0) = a(L), b(0) = b(L),
and n = (ḃ, −ȧ) is the exterior normal to γk with respect to Ω. The geodesic
curvature κg of the (oriented) curve X ◦γk can, according to Vol. 1, Section 1.3,
(46) be computed from the formula

(13) κg

√
Λ = (ȧb̈ − äḃ) +

∂

∂n
log

√
Λ.

From ȧ2 + ḃ2 = 1 we infer that

(14)
∫ L

0

(ȧb̈ − äḃ) dσ = ±2π,
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where we have the plus-sign if γk is positively oriented with respect to its
interior domain while otherwise the minus-sign is to be taken. As ∂Ω consists
of the closed Jordan curves γ1, γ2, . . . , γm, we can assume that γ1 forms the
outer boundary curve of ∂Ω whereas γ2, . . . , γm lie in the interior domain of γ1.
Consequently we have the plus-sign for γ1 and the minus-sign for γ2, . . . , γm,
and we infer from (13) and (14) that

(15) −
∫ L

0

∂

∂n
log

√
Λ dσ = 2πεk −

∫ L

0

κg

√
Λ dσ,

where εk := 1 for k = 1 and εk := −1 for 2 ≤ k ≤ m. (If there are branch
points on γk, the integrals in γk are to be understood as Cauchy principal
values.) Adding (15) from k = 1 to k = n, we obtain

(16) −
∫

∂Ω

(
∂

∂n
log

√
Λ

)
dH1 = 2π(2 − m) −

∫
∂Ω

κg |dX |.

Thus, letting j tend to infinity, we infer from (10) that

(17)
∫

X

K dA = 2π(2 − m) + 2π
N∑

α=1

ν(wα) + π
M∑

β=1

ν(w̃β) −
∫

∂Ω

κg |dX |

provided that the integral
∫

X
K dA exists as principal value

(18)
∫

X

K dA = lim
j→∞

∫
Ωj

K dA. �

In various instances it is superfluous to assume that the principle value
(18) exists. Let us consider some instructive cases.

Suppose that X ∈ PR(Ω) is a minimal surface. Then we have K ≤ 0, and
we infer that

∫
X

K dA exists, but it can have the value −∞. If, however, X
maps ∂Ω topologically onto Γ =

⋃m
j=1 Γj where Γ1, Γ2, . . . , Γm are mutually

disjoint and regular Jordan curves of class C2, then the geodesic curvature
κg of X|∂Ω is bounded by |κg | ≤ κ where κ denotes the curvature of κ.
Hence

∫
∂Ω

κg |dX | exists and is finite, and we infer from (10) for j → ∞ that∫
X

|K| dA exists and is finite. Thus Theorem 1 implies the following result.

Theorem 2. Let Ω be an m-fold connected, bounded domain in C whose
boundary consists of m closed, regular, disjoint curves γ1, . . . , γm. Secondly,
let

X ∈ C0(Ω, R3) ∩ C2(Ω, R3)

be a minimal surface on Ω which maps the γj topologically onto closed regular
and disjoint Jordan curves Γj , 1 ≤ j ≤ m, of class C2,α, 0 < α < 1, with the
curvature κ. Then

∫
X

|K| dA and
∫

∂Ω
κg |dX | =

∫
Γ

κg ds are finite, and we
have
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(19)
∫

X

K dA +
∫

Γ

κg ds = 2π(2 − m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where ds = |dX | is the line element of Γ :=
⋃m

j=1 Γj , ν(w) is the order of a
branch point w ∈ Σ, σ′ := Ω ∩ Σ0, σ

′ ′ := ∂Ω ∩ Σ0, Σ0 is the set of branch
points of X in Ω, and κg is the geodesic curvature of Γ viewed as curve on
the surface X. In particular, equation (19) implies that

(20) 2 − m +
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ 1
2π

∫
Γ

κ ds.

Here we have used the fact that the assumption Γ ∈ C2,α implies that
X ∈ PR(Ω), as we have seen in the previous sections of this chapter. We
recall that the order of boundary branch points has to be even since X maps
∂Ω topologically onto Γ .

Remark 2. Because analogous regularity results hold for solutions X ∈
C0(Ω, R

3) ∩ C2(Ω, R3) of

ΔX = 2H(X)Xu ∧ Xv,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0,

where H ∈ C0,α(R3) (see Section 2.3), we infer from

K ≤ H2 ≤ h2, h := sup
w∈Ω

H(X)

that
∫

X
|K| dA and

∫
Γ

κg ds are finite, and that we have formula (19) as well
as the estimate

(21) 2 − m +
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ 1
2π

∫
Γ

κ ds + h2A(X),

where A(X) = D(X) denotes the area of X which in certain situations can be
estimated in terms of the length of Γ by, say, by isoperimetric inequalities.

Remark 3. Let X ∈ C2 ∩ H1
2 (Ω, R3) be a minimal surface which is sta-

tionary with respect to a boundary configuration 〈S1, S2, . . . , Sm〉 consisting
of m regular, sufficiently smooth surfaces Sj whose principal curvatures are
bounded in absolute value by a constant k > 0, and suppose that Ω is an
m-fold connected bounded domain. Then X is of class PR(Ω) and intersects
S :=

⋃m
j=1 Sj perpendicularly. Moreover, the geodesic curvature κg of the free

trace Σ = X|∂Ω can be written as

(22) κg = ±κ∗
n,

where κ∗
n is the normal curvature of Σ viewed as curve(s) on S. By virtue of

|κ∗
n| ≤ k we then infer that
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|κg | ≤ k.

Therefore we obtain the Gauss–Bonnet formula

(23)
∫

X

K dA +
∫

∂Ω

κg |dX | = 2π(2 − m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where σ′ = Σ0 ∩ Ω, σ′ ′ = Σ0 ∩ ∂Ω, and Σ0 is the set of branch points w0 of
X, ν(w0) is the order of w0 ∈ Σ0, and we have the estimate

(24) 2 − m +
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ k

2π
L(Σ).

The length L(Σ) =
∫

Σ
|dX | of the free trace Σ can possibly be estimated by

other geometric expressions (see Sections 2.12 and 4.6).
If we want to state similar formulas for minimal surfaces solving partially

free boundary problems, we have to take the angles at the corners of ∂X into
account (see Section 1.4 of Vol. 1, (12) and (12′)). The necessary asymptotic
expansions can be found in Chapter 3.

Remark 4. For (disk-type) minimal surfaces X solving a thread problem (see
Chapter 5), the thread Σ has a fixed length L(Σ) and a constant geodesic
curvature κg if we view Σ as curve on X. Hence it follows that∫

Σ

κg |dX | = κgL(Σ).

This observation can be used to draw interesting conclusions from the Gauss–
Bonnet formula.

Remark 5. It is not difficult to carry over the Gauss–Bonnet formula (14)
of Section 1.4 in Vol. 1 to minimal surfaces X : M → R

3 with branch points
which are defined on a compact Riemann surface M with nonempty bound-
ary. Suppose that ∂M consists of m disjoint, regular, smooth Jordan arcs
γ1, . . . , γm which are topologically mapped by X onto a system Γ of disjoint,
regular, smooth Jordan arcs Γ1, . . . , Γm, and let g be the genus of the ori-
entable surfaces X. Then we have∫

X

K dA +
∫

Γ

κg ds + 4π(g − 1) + 2πm = 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where σ′ and σ′ ′ denote the sets of interior and of boundary branch points,
and ν(w) is the order of any w ∈ σ′ ∪ σ′ ′.

2.12 Scholia

1. The first results concerning the boundary behaviour of minimal surfaces
are the reflection principles of Schwarz; see Sections 3.4 and 4.8 of Vol. 1.
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They insure that a minimal surface can be extended analytically across any
straight part of its boundary, or across any part of its boundary where the
surface meets some plane perpendicularly. Schwarz’s reasoning is described in
Section 3.4 of Vol. 1; cf. Schwarz [2], vol. I, p. 181. (As Schwarz mentions,
he learned this reasoning from Weierstrass.) Our discussion in Section 4.8 of
Vol. 1 follows the exposition in Courant [15], pp. 118–119 and pp. 218–219.

2. Another important result, found rather early, is Tsuji’s theorem that
a minimal surface X ∈ H1

2 (B, R3) has boundary values X|∂B of class
H1

1 (∂B, R3) if their total variation is finite, i.e., if∫
∂B

|dX | < ∞.

(Here we have used the parameter domain B := {w : |w| < 1}.) The im-
portance of this result, which remained unnoticed for a long time, has been
emphasized in the work of Nitsche, see [28]. Tsuji’s paper [1] appeared in 1942;
it is based on a classical result by F. and M. Riesz [1] from 1916 concerning the
boundary values of holomorphic functions. We have presented Tsuji’s result
in Section 4.7 of Vol. 1.

3. The result stated as Theorem 3 in Section 2.3 is H. Lewy’s celebrated
regularity result from 1951; see Lewy [5]. It is the direct generalization of
Schwarz’s reflection principle guaranteeing that any minimal surface can be
extended analytically across an analytic part of its boundary. In Courant’s
monograph [15], this problem was still quoted as an open question (see [15],
p. 118). Lewy succeeded in proving his result without using Tsuji’s theorem.
Our proof essentially agrees with that of Lewy except that we use the fact
that X is of class C∞ on B ∪ γ if γ is a subarc of ∂B which is mapped by
X into a real analytic arc Γ of R

3. One can, however, avoid the use this fact
(which follows from the results of Section 2.3); see Lewy [5], or Nitsche [28],
pp. 297–302.

4. Hildebrandt [1] has in a first paper derived a priori estimates for minimal
surfaces assuming them to be smooth up to the boundary. In conjunction with
Lewy’s result, one then obtains the following:

Let X ∈ C0(B, R3) ∩ H1
2 (B, R3) be a minimal surface which is bounded by

a closed Jordan arc Γ . Suppose that Γ ∈ Cm,μ, m ≥ 4, μ ∈ (0, 1), and that
there is a sequence of real analytic curves Γn with

(1) |Γ − Γn|Cm,μ → 0 as n → ∞.

Assume also that there is a sequence of minimal surfaces Xn bounded by Γn

such that
|X − Xn|C0(B) → 0 as n → ∞.

Then X is smooth up to the boundary, i.e., X ∈ Cm,μ(B, R3).

However, it might be possible that not every solution of Plateau’s problem
for Γ satisfies this approximation condition; it certainly holds true for isolated
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local minima of Dirichlet’s integral; cf. Hildebrandt [1]. By approximating a
given smooth curve Γ in the sense of (1) by real analytic curves Γn, and by
solving the Plateau problem for each of the approximating curves Γn, the
above result yields:

Every curve Γ ∈ Cm,μ, m ≥ 4, μ ∈ (0, 1), bounds at least one minimal
surface X of class Cm,μ(B, R3).

As a given boundary Γ may be spanning many (and, possibly, infinitely
many) minimal surfaces, this regularity result by Hildebrandt [1] is consid-
erably weaker than Theorem 1 of Section 2.3 whose global version can be
formulated as follows:

Let Γ ∈ C0(B, R3) be a minimal surface, i.e.,

ΔX = 0, |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B,

which is bounded by some Jordan curve Γ of class Cm,μ with m ≥ 1 and
μ ∈ (0, 1). Then X is of class Cm,μ(B, R3).

Assuming that m ≥ 4, this result was first proved by Hildebrandt [3] in
1969. Some of the essential ideas of that paper are described in Step 1 of
Section 2.7. Briefly thereafter, Heinz and Tomi [1] succeeded in establishing
the result under the hypothesis m ≥ 3, and both Nitsche [16] and Kinderlehrer
[1] provided the final result for m ≥ 1. Warschawski [6] verified that X has
Dini-continuous first derivatives on B, if the first derivatives of Γ with respect
to arc length are Dini continuous; cf. also Lesley [1].

These results on the boundary behaviour of minimal surfaces hold for sur-
faces in R

n, n ≥ 2, and not only for n = 3; the proof requires no changes.
For n = 2 these results include classical theorems on the boundary be-
haviour of conformal mappings due to Painlevé, Lichtenstein, Kellogg [2], and
Warschawski [1–4]. (Concerning the older literature, we refer to Lichtenstein’s
article [1] in the Enzyklopädie der Mathematischen Wissenschaften; the most
complete results can be found in the papers by Warschawski.)

As Nitsche has described his technique to prove boundary regularity in
great detail in his monograph [28], Section 2.1, in particular pp. 283–284
and 303–312, we refer the reader to this source or to the original papers by
Nitsche and Kinderlehrer quoted before. Instead we have presented a method
by E. Heinz [15] which needs the slightly stronger hypothesis m ≥ 2. By this
method, Heinz could also treat H-surfaces, and Heinz and Hildebrandt [1]
were able to handle minimal surfaces in Riemannian manifolds; cf. Section 2.3.
The basic tools of Heinz’s approach are the a priori estimates for vector-valued
solutions X of differential inequalities

|ΔX| ≤ a| ∇X|2

which we have derived and collected in Section 2.2. They follow from classical
results of potential theory which we have briefly but (more or less) completely
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proved in Section 2.1. The results of Section 2.2 and, in part, of Section 2.1
are taken from Heinz [2,5], and [15].

Closely related to this method is the approach of Heinz and Tomi [1] and
the very useful regularity theorem of Tomi [1].

The first regularity theorem for surfaces of constant mean curvature was
proved by Hildebrandt [4]; an essential improvement is due to Heinz [10]. The
method of Heinz [15], described in the proof of Theorem 2 in Section 2.3,
can be viewed as the optimal method. A very strong result was obtained by
Jäger [3].

5. The possibility to obtain asymptotic expansions of minimal surfaces and,
more generally, of H-surfaces by means of the Hartman–Wintner technique
was first realized by Heinz (oral communication). A first application appeared
in the paper by Heinz and Tomi [1].

6. In Theorem 2′ of Section 2.8 we proved that any minimal surface X,
meeting a real-analytic support surface S perpendicularly, can be extended
analytically across S. The proof basically follows ideas from H. Lewy’s paper
[4], published in 1951. There it was proved that any minimizing solution X of
a free boundary problem can be continued analytically across the free boundary
if S is assumed to be a compact real-analytic support surface. In fact, Lewy
first had to cut off a set of hairs from the minimizer by composing it with a
suitable parameter transformation before he could apply his extension tech-
nique. (Later on it was proved by Jäger [1] that the removal of these hairs is
not needed since they do not exist.)

7. Combining Lewy’s theorem with new a priori estimates, Hildebrandt [2]
proved that the Dirichlet integral possesses at least one minimizer in C(Γ, S)
which is smooth up to its free boundary provided that S is smooth and satisfies
a suitable condition at infinity which enables one to prove that solutions do
not escape to infinity. (A very clean condition guaranteeing this property was
later formulated by Hildebrandt and Nitsche [4].)

8. The first regularity theorem for minimal surfaces with a merely smooth,
but not analytic support surface S was given by Jäger [1]. He proved for
instance that any minimizer X of Dirichlet’s integral in C(Γ, S) is of class
Cm,μ(B ∪ I, R3), I being the free boundary of X, provided that S ∈ Cm,μ

and m ≥ 3, μ ∈ (0, 1). Part of Jäger’s method we have described or at least
sketched in Section 2.8. We have not presented his main contribution, the
proof of X ∈ C0(B ∪ I, R3), which requires S to be of class C2. Instead, in
Section 2.5, we have described a method to prove continuity of minimizers up
to the free boundary that needs only a chord-arc condition for S. Because of
the Courant–Cheung example, this result is the best possible one.

The approach of Section 2.5 follows more or less the discussion in Hilde-
brandt [9]. The sufficiency of the chord-arc condition for proving continuity
of minimizers up to the free boundary was almost simultaneously discovered
by Nitsche [22] and Goldhorn and Hildebrandt [1].
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Later on, Nitsche [30] showed that Jäger’s regularity theorem remains valid
if we relax the assumption m ≥ 3 to m ≥ 2. Moreover, if we assume S ∈ C2,
then every minimizer in C(Γ, S) is of class C1,α(B ∪ I, R3) for all α ∈ (0, 1).

9. The regularity of stationary surfaces in C(Γ, S) up to their free bound-
aries was – almost simultaneously – proved by Grüter-Hildebrandt-
Nitsche [1] and by Dziuk [3]. Both papers are based on the fundamental the-
sis of Grüter [1] (see also [2]) where interior regularity of weak H-surfaces
is proved. The basic idea of Grüter’s paper consists in deriving monotonicity
theorems similar to those introduced by DeGiorgi and Almgren in geometric
measure theory.

We have presented the method used in Grüter-Hildebrandt-Nitsche [1]; it
has the advantage to be applicable to support surfaces with nonvoid boundary
∂S. Moreover we do not have to assume that

lim
w→w0

dist(X(w), S) = 0 for any w0 ∈ I

as in Dziuk [5–7]. On the other hand, Dziuk’s method is somewhat simpler
than the other one since it reduces the boundary question to an interior reg-
ularity problem by applying Jäger’s reflection method. This interior problem
can be dealt with by means of the methods introduced in Grüter’s thesis.

10. The results in Section 2.7 concerning the C1,1/2-regularity of stationary
minimal surfaces with a support surface S having a nonempty boundary ∂S
are taken from Hildebrandt and Nitsche [1] and [2].

11. The proof of Proposition 1 in Section 2.8 is more or less that of Jäger
[1], pp. 812–814.

12. The alternative method to attain the result of Step 2 in Section 2.7,
given in Section 2.9, was worked out by Ye [1,4]. Ye’s method is a quantitative
version of the L2-estimates of Step 2 in Section 2.7 which is based on an idea
due to Kinderlehrer [6].

13. Open questions: (i) The regularity results for stationary minimal sur-
faces X with a free boundary are not yet in their final form. In particular
one should prove that X is of class C1,μ up to the free boundary if S ∈ C1,μ

∗ ,
and that X ∈ C0,α for some α ∈ (0, 1) if S satisfies a chord-arc condition
(this is only known for minimizers of the Dirichlet integral). Here we say that
S ∈ C1,μ

∗ if S ∈ C1,μ and if S satisfies a uniformity condition (B) at infinity
(see Section 2.6). Dziuk [7] and Jost [8] proved that X is of class C1,μ up
to the free boundary, 0 < μ < 1, if S is of class C2 and satisfies a suitable
uniformity condition.

(ii) It would be desirable to derive a priori estimates for stationary minimal
surfaces, in particular for those of higher topological type. As in general there
are no estimates depending only on the geometric data of the boundary con-
figuration (cf. the examples in Section 2.6), one could try to derive estimates
depending also on certain important data of the surfaces X in consideration
such as the area (= Dirichlet integral) or the length of the free trace.
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Such estimates could be useful for approximation theorems, for results
involving the deformation of the boundary configuration, for building a Morse
theory, and for deriving index theorems.

Note, however, that a priori estimates depending only on boundary data
can be derived in certain favourable geometric situations, for instance if the
support surface is only mildly curved. Results of this kind were found by Ye
[2]. Let us quote a typical result:

Suppose that S is an orientable and admissible support surface of class
C3,α, α ∈ (0, 1), and let n0 be a constant unit vector and σ be a positive
number, such that the surface normal n(p) of S satisfies

(2) 〈n(p), n0〉 ≥ σ for all p ∈ S.

Then the length l(Σ) of the free trace Σ of a stationary point X of Dirichlet’s
integral in C(Γ, S) without branch points on the free boundary I is estimated
by the length of Γ via the formula

(3) l(Σ) ≤ l(Γ )/σ,

and the isoperimetric inequality yields the upper bound

(4) D(X) ≤ 1
4π

(1 + σ−2)l2(Γ )

for the Dirichlet integral of X.
Let us sketch the proof of (3), which is nothing but a simple variant of the

reasoning used in Section 4.6.
By means of Green’s formula we obtain

(5) 0 =
∫

B

ΔX du dv = −
∫

I

Xv du +
∫

C

Xr dϕ

with w = u+ iv = reiϕ, where B stands for the usual semidisk. Because of (2)
and of

Xv = |Xv |n(X) on I

(where we possibly have to replace n by −n),

|Xr | = |Xϕ| on C = ∂B \ I,

|Xu| = |Xv | on I,

we then obtain

σl(Σ) = σ

∫
I

|Xu| du =
∫

I

σ|Xv | du

≤
∫

I

|Xv | 〈n(X), n0〉 du =
∫

I

〈Xu, n0〉 du

=
∫

C

〈Xr, n0〉 dϕ ≤
∫

C

|Xr | dϕ =
∫

C

|Xϕ| dϕ = l(Γ ),
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i.e.,
σl(Σ) ≤ l(Γ ).

This proof of (3), (4) is not quite correct but it can easily be rectified by the
reasoning in Section 4.6. We leave it to the reader to carry out the details. �

By way of an example Ye showed that the assumption σ > 0 in (2) is
necessary if one wants to bound l(Σ); see Ye [2], p. 101.

14. Now we briefly describe Courant’s example of a configuration 〈Γ, S〉
with a continuous supporting surface S and a rectifiable Jordan arc Γ with end
points on S which bounds infinitely many solutions of the corresponding free
boundary problem with a discontinuous and even nonrectifiable trace curve;
see Courant [15], p. 220. We firstly select a sequence of numbers εn > 0, n ∈ N,
with

∑∞
n=1 εn < 1/4, and then we define set An, Bn, C1

n, C2
n, D1

n, D2
n as follows:

An :=
{

(x, y, z) : z = 0, |x| < 1,

∣∣∣∣y − 1
n

∣∣∣∣ < ε3
n

}
,

Bn :=
{

(x, y, z) : z = −εn, |x| < 1,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ εn

2

}
,

C1
n :=

{
(x, y, z) : |x| ≤ 1, z =

2
2ε2

n − 1

(
y − 1

n
− ε3

n

)
, −εn ≤ z ≤ 0

}
,

C2
n :=

{
(x, y, z) : |x| ≤ 1, z =

2
1 − 2ε2

n

(
y − 1

n
+ ε3

n

)
, −εn ≤ z ≤ 0

}
,

D1,2
n := the compact region in {x = ±1} which is bounded by

{x = ±1} ∩ (∂An ∪ ∂Bn ∪ ∂C1
n ∪ ∂C2

n),

see Fig. 1.

Fig. 1. Cross section of the sets An, Bn, C1
n, C2

n at the levels x = ±1

Set

S1 := {z = 0} \
∞⋃

n=1

An,

and define S by

S := S1 ∪
∞⋃

n=1

[Bn ∪ C1
n ∪ C2

n ∪ D1
n ∪ D2

n]

(see Fig. 2).
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Fig. 2. Cross sections of the surface S at the levels x = 0, ±1

Then we observe the following: If Γ1 denotes the straight segment {z =
0, x = 0, |y − 1| ≤ ε3

1}, then the associated free boundary problem P(Γ1, S)
has at least two solutions, namely the representations of the sets

A+
1 := {z = 0, 0 ≤ x ≤ 1, |y − 1| ≤ ε3

1}

and
A−

1 := {z = 0, −1 ≤ x ≤ 0, |y − 1| ≤ ε3
1}.

In fact, there is still another stationary but not minimizing surface bounded
by Γ1 and S, namely the surface describing the compact region in {x = 0}
which is bounded by {x = 0} ∩ (Γ1 ∪ B1 ∪ C1

1 ∪ C2
1 ). Similarly, if we set

Γn :=
{

z = 0, x = 0,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3
n

}
,

then we obtain at leat two minimizing surfaces in C(Γn, S) which are deter-
mined by the sets

A+
n :=

{
z = 0, 0 ≤ x ≤ 1,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3
n

}

and

A−
n :=

{
z = 0, −1 ≤ x ≤ 0,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3
n

}
.

Fig. 3. The curve Γn lifted

Now let us lift the curves Γn to a height z = εq
n, q ≥ 4, and connect the

endpoints P 1
n = (0, 1

n + ε3
n, εq

n), P 2
n = (0, 1

n − ε3
n, εq

n) via vertical segments
with S, see Fig. 3. Denoting again the lifted curves together with the vertical
segments by Γn, it is reasonable to expect the existence of at least two solutions
X1

n, X2
n ∈ C(Γn, S) for the problem P(Γn, S), provided that q is large enough.
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In particular, we can expect that the minimal surfaces X1
n, X2

n converge to
A+

n and A−
n respectively, if q tends to infinity.

At a small height z = ε < εq
n+1, we connect Γn and Γn+1 with a straight

line segment parallel to {z = 0} and omit the corresponding parts of the
vertical segments, see Fig. 4.

Fig. 4. Cross section of the boundary configuration 〈Γn,n+1, S〉 at the level x = 0

This way we obtain a Jordan arc Γn,n+1 with endpoints on S. Furthermore,
let us assume the validity of the following bridge principle:

Given any two area-minimizing minimal surfaces Xn ∈ C(Γn, S) and
Xn+1 ∈ C(Γn+1, S), there exists an area-minimizing minimal surface Yε ∈
C(Γn,n+1, S) which converges (in a geometric sense) to the union of Xn(B),
Xn+1(B) as ε tends to zero.

By means of this heuristic principle we obtain at least four stationary
minimal surfaces in C(Γn,n+1, S) combining X1

n with X1
n+1 or X2

n+1, and
X2

n with X1
n+1 or X2

n+1, respectively. Similarly we now define the Jordan
arcs Γn,n+2, . . . , Γn,n+k which bridge the ditches An, An+1, . . . , An+k. Then
Γn,n+k and S bound at least 2k+1 area-minimizing minimal surfaces which
are stationary in C(Γn,n+k, S). Finally, let Γ := Γ1,∞ denote the rectifiable
Jordan arc which bridges all the ditches and connects the points (0, 0, 0) and
(0, 1 + ε1, 0). Then it follows that there are infinitely (and even nondenu-
merably) many stationary minimal surfaces in C(Γ, S) each of which has a
discontinuous and nonrectifiable trace curve.

Let us add that the previous reasoning is by no means rigorous; thus this
example by Courant is merely of heuristic value.

15. Complementary to the existence result for the obstacle problem
P(E, C), which we have described in the Scholia of Section 4 in Vol. 1 (see
also Chapter 4 of the present volume), we want to mention some regularity
properties of solutions for P(E, C), see also Chapter 4.

The problem P = P(E, C) is a special case of a parametric obstacle
problem which was first treated by Tomi [3,4], Hildebrandt [12,13], and
Hildebrandt and Kaul [1]. Tomi’s results are based on important earlier
work by Lewy and Stampacchia [1,2], whereas Hildebrandt’s approach uses
the difference-quotient technique and some important observations due to
Frehse [4].
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For nonparametric obstacle problems we refer the reader to the treatise
of Kinderlehrer and Stampacchia [1] and to the literature quoted there. Here
we shall restrict our attention to the two-dimensional parametric case, basi-
cally following the papers by Hildebrandt and Hildebrandt-Kaul cited above.
Consider the integral

E(X) =
∫

B

{gij [Xi
uXj

u + Xi
vXj

v ] + 〈Q(X), Xu ∧ Xv 〉 } du dv,

and the class C = C(K, C ∗) := C ∗ ∩ H1
2 (B, K), where C ∗ stands for C ∗(Γ )

or C ∗(Γ, S) respectively and K ⊂ R
3 denotes some closed set. Let us also

introduce the variational problem

P(E, C) : E → min in C.

Using the abbreviation

e(x, p) = gij (x){pi
1p

j
1 + pi

2p
j
2} + 〈Q(x), p1 ∧ p2〉

for (x, p) ∈ K × R
6, p = (p1, p2), we assume that, for suitable constants

0 < m0 ≤ m1, the coerciveness condition

(6) m0|p|2 ≤ e(x, p) ≤ m1|p|2

holds true for all (x, p) ∈ K × R
6.

Recall that the existence of a solution of P(E, C) can be proved under
the mere assumption that K be a closed set. If we want to prove regularity,
say Hölder continuity, we clearly have to add further assumptions on K. The
concept of quasiregularity turns out to be of use.

Definition 1. We call a set K ⊂ R
3 quasiregular if it is closed and if there

are positive numbers δ0, δ1 and d such that for any point x0 ∈ K, there exist a
compact convex set K∗ and a C1-diffeomorphism g of an open neighbourhood
of K∗ which maps K∗ onto K ∩ Bd(x0), Bd(x0) = {x ∈ R

3 : |x − x0| < d},
such that the matrix H(y) = (∂g

∂y )T · ( ∂g
∂y ) satisfies

(7) δ0|ξ|2 ≤ ξH(y)ξ ≤ δ1|ξ|2

for all (y, ξ) ∈ K∗ × R
3. Here ∂g

∂y denotes the Jacobi matrix of g and (∂g
∂y )T

stands for its transpose.

Remarks. 1. Obviously, each closed convex set in R
3 with nonvoid interior

is quasiregular. Also, each compact three-dimensional submanifold of R
3 with

C1-boundary is quasiregular.
2. The preceding Definition 1 and the following Theorem 1 extend to the

case where K denotes some subset of R
N , N ≥ 3.

3. For our purposes it would be sufficient to assume that g is some bi-
Lipschitz homeomorphism.
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Theorem 1. Suppose that (6) holds with functions gij ∈ C0(K, R), gij = gji ,
and Q ∈ C0(K, R3). In addition let K ⊂ R

3 be a quasiregular set such that
C(K, C∗) = C ∗ ∩ H1

2 (B, K) is nonempty. Then each solution X of P(E, C)
satisfies a Morrey condition of the type

(8) DBr(w0)(X) ≤ DBR(w0)(X)
( r

R

)2μ

in 0 < r ≤ R, for each w0 ∈ B1−R(0) and all R ∈ (0, 1) and some constant
μ > 0. Hence X is of class C0,μ(B, R3).

Furthermore, if C ∗ = C ∗(Γ ), then X is also of class C0(B, R3), and for
C ∗ = C ∗(Γ, S) we infer that X ∈ C0(B \ I, R3).

The idea for proving Hölder continuity is to convexify the obstacle K
locally by using the definition of quasiregularity, and then to fill in harmonic
functions with the right boundary values. Elementary properties of harmonic
functions will yield the estimate (8). The reasoning is similar to the argument
used in the proof of Theorem 1, Section 2.5; for details we refer the reader to
the original paper by Hildebrandt and Kaul [1].

We now give a brief discussion of higher regularity properties of X. First
we need the following

Definition 2. A set K ⊂ R
3 is of class Cs if K is the closure of an open set

in R
3, and if, for each boundary point x0 ∈ ∂K, there exists a neighbourhood

U of x0 and a Cs-diffeomorphism ψ of R
3 onto itself which maps U ∩ K onto

B+
1 (0) = {x ∈ R

3 : |x| < 1, x3 > 0},

U ∩ ∂K onto
B0

1(0) = {x ∈ R
3 : |x| < 1, x3 = 0},

and x0 onto 0.

We shall also assume that the integrand e(x, p) has the following prop-
erty (E):

There exist some open set M ⊂ R
3 with K ⊂ M and functions Q ∈

C2(M, R3) and G = (gjk )j,k=1,2,3 ∈ C2(M, R) with gjk = gkj such that

e(x, p) =
2∑

α=1

pαG(x)pα + 〈Q(x), p1 ∧ p2〉

and

m0|p|2 ≤ e(x, p) ≤ m1|p|2 for all (x, p) ∈ K × R
6, p = (p1, p2).

Theorem 2. Suppose that e(x, p) has property (E), and let K be quasireg-
ular of class C3. Then each solution X ∈ C(K, C ∗) of P(E, C) is of class
H2

s (B′, R3) ∩ C1,α(B, R3) for all B′ � B and for all s ∈ [1, ∞) and all
α ∈ (0, 1).
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Remarks. 1. Hölder continuity of the first derivatives is still valid for solu-
tions of the elliptic variational problem∫

Ω

f(u, v, X(u, v), ∇X(u, v)) du dv → min in C = H1
2 (Ω, K) ∩ C ∗,

with a regular Lagrangian f : Ω × M × R
2n → R, where M ⊂ R

N denotes
some open set containing K, and Ω ⊂ R

2 denotes the domain of definition.
For details we refer to Hildebrandt [12,13].

2. Assuming the conditions of Theorem 2, Gornik [1] proved that each
solution X ∈ C = C(K, C ∗) of P(E, C) is in fact of class C1,1(B, R3). Simple
examples show that this result will in general be the best possible one. Gornik’s
work is based on fundamental results due to Frehse [1], Gerhardt [1], and
Brézis and Kinderlehrer [1] concerning C1,1-regularity of solutions of scalar
variational inequalities.

16. The first to estimate the total order of branch points of a minimal
surface via the Gauss–Bonnet formula was Nitsche [6] who reversed an idea
of Sasaki [1]. R. Schneider [1] later established the formula

1 +
∑
w∈σ′

ν(w) ≤ 1
2π

κ(Γ )

for all disk-type minimal surfaces X : B → R
3 which are continuous in B and

map ∂B monotonically (and hence topologically) onto an arbitrary closed
Jordan curve Γ which has a generalized total curvature κ(Γ ).

The method of Section 2.11 and the generalization of the Nitsche–Sasaki
formula is taken from a paper by Heinz and Hildebrandt [2].

17. Let Ω ⊂ R
2 be an open connected domain with smooth boundary

and suppose ψ ∈ C2(Ω) satisfies maxΩ ψ > 0 and ψ < 0 on ∂Ω. Consider
the convex set of comparison functions Kψ := {v ∈ H1

2 (Ω) : v ≥ ψ in Ω,
v = 0 on ∂Ω} and a solution u ∈ Kψ of the variational problem

D(u) :=
1
2

∫
Ω

| ∇u(x)|2 dx → min in Kψ.

One readily verifies that a solution u ∈ Kψ satisfies the variational inequality

(9)
∫

Ω

DiuD i(v − u)dx ≥ 0 for all v ∈ Kψ.

Lewy and Stampacchia [1] used the method of penalization together with
suitable a priori estimates to show that u is of class C1,α, α < 1 (at least, if
ψ is smooth and strictly concave). It is in fact true that u is of class H2

∞(Ω);
cf. Frehse [1], Gerhardt [1], and Brézis and Kinderlehrer [1].

The set Ω may now be divided into two subsets, the coincidence set

I = I(u) = {x ∈ Ω : u(x) = ψ(x)}
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and its complement

Ω \ I = {x ∈ Ω : u(x) > ψ(x)}.

Of particular importance is a careful analysis of the boundary ∂I of the set
of coincidence I. Such investigations were initiated by H. Lewy and G. Stam-
pacchia [1] and continued by Kinderlehrer [7] and Caffarelli and Rivière [1].
It was proved that the free boundary ∂I is: (i) An analytic Jordan curve if ψ
is strictly concave and analytic; (ii) a C1,β-Jordan curve, 0 < β < α, if ψ is
strictly concave and of class C2,α; (iii) a Cm−1,α-Jordan curve if ψ is strictly
concave and of class Cm,α with m ≥ 2 and 0 < α < 1.

The investigation of ∂I is more difficult if we span a nonparametric surface
as a graph of a function u over some obstacle graph ψ such that it minimizes
area. In other words, if Ω is a strictly convex domain in R

2 with a smooth
boundary, if ψ is given as above and Kψ is the convex set of functions v ∈
H̊1

∞(Ω) satisfying v ≥ ψ, we consider solutions of the variational problem
∫

Ω

√
1 + | ∇u|2dx → min in Kψ.

The existence of a solution u ∈ Kψ was proved by Lewy and Stampacchia
[2] and by Giaquinta and Pepe [1]. Moreover, these authors showed that the
solution u is of class H2

q ∩ C1,α(Ω) for every q ∈ [1, ∞) and any α ∈ (0, 1).
Thus the set of coincidence I = {x ∈ Ω : u(x) = ψ(x)} is closed, and we have

div
∇u√

1 + | ∇u|2
= 0 in Ω \ I as well as

(10)
∫

Ω

(1 + | ∇u|2)−1/2〈∇u, ∇(v − u)〉 dx ≥ 0 for all v ∈ Kψ.

Finally, using ideas of H. Lewy (see, for instance, the proof of Theorem 2
in Section 2.8), Kinderlehrer [6] proved that the curve of separation Γ :=
{(x1, x2, x3): x3 = u(x) = ψ(x), x ∈ ∂I} possesses a regular analytic parame-
trization provided that ψ is a strictly concave, analytic function.

Thin obstacle problems were treated by Lewy [6], Nitsche [19], and
Giusti [2].

18. For solutions X ∈ C∗(Γ ) of Plateau’s problem satisfying a fixed three-
point condition X(wj) = Qj , j = 1, 2, 3, wj ∈ ∂B, Qj ∈ Γ and for Γ ∈ Cm,μ,
m ≥ 2, μ ∈ (0, 1), there is a number c(m, μ), independent of X such that
‖X‖Cm,μ(B,R3) ≤ c(m, μ). This a priori estimate is a quantitative version of
Theorem 1 in Section 2.3, which also holds for m = 1 (cf. Jäger [3]).
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