
Chapter 1

Minimal Surfaces with Free Boundaries

This chapter is centered on the proof of existence theorems for minimal sur-
faces with completely free boundaries. We approach the problem by applying
the direct methods of the calculus of variations, thus establishing the existence
of minimizers with a boundary on a given supporting surface S. However, this
method does not yield the existence of stationary minimal surfaces which are
not area minimizing. As certain kinds of supporting surfaces are not able to
hold nontrivial minimizers, our method is restricted by serious topological
limitations. For example, it does not furnish existence of nontrivial stationary
minimal surfaces within a closed convex surface. It seems that the techniques
of geometrical measure theory are best suited to handle this problem. Unfor-
tunately they are beyond the scope of our lecture notes, but we shall at least
present a survey of the pertinent results in Section 1.8 as well as an existence
result for the particular case of S being a tetrahedron. There the reader will
also find references to the literature.

In the following we shall describe Courant’s method for proving the ex-
istence of a nontrivial and minimizing minimal surface whose boundary lies
on a given closed supporting surface. This problem is more difficult than the
Plateau problem or the semifree problem treated in Chapter 4 of Vol. 1 be-
cause an arbitrary minimal sequence will shrink to a single point. In order to
exclude this phenomenon, we have to impose suitable topological conditions
on the boundary values of admissible surfaces. For instance, one could assume
that the boundary values are continuous curves on S which are contained in
a prescribed homotopy class. This approach would, however, lead to a rather
difficult problem. One would first have to prove that a suitable minimizing se-
quence tends to a limit with continuous boundary values, and then one would
have to show that these boundary values lie in a prescribed homotopy class.
Therefore we abandon this idea.

Instead we show in Section 1.1 how a kind of homotopy class can be set up
for surfaces X which are of class H1

2 (B, R3) and have their boundary values
on S. We shall also prove by way of example that the problem of prescribed
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4 1 Minimal Surfaces with Free Boundaries

homotopy class need not have a solution. In Section 1.2 we set up the classes
of admissible functions for which we can solve the minimum problem and in
which we are able to find nondegenerate solutions.

The free boundary problem will be solved in Section 1.3; the supporting
set S may look as bizarre as the one in Fig. 1 or as simple as the catenoid. The
gist of our reasoning consists in an indirect argument showing that the limit of
a suitable minimizing sequence satisfies the prescribed topological condition,
and therefore it will be a nondegenerate solution of the minimum problem.

Fig. 1. A bizarre supporting set

The remaining part of the chapter will deal with additional properties of
minimal surfaces with free boundaries.

In Section 1.4 we give a precise definition of a stationary minimal surface
X whose free boundary lies on a given support surface S. Here we do not re-
quire X to be a minimizer. It will be investigated how the condition of being
stationary is linked with the condition that X intersects S perpendicularly at
its free trace Σ, provided Σ does not touch the boundary of S. This discus-
sion is used in Section 1.5 to set up necessary conditions for the existence of
stationary minimal surfaces with boundary on S. This will lead us to a class
of non-existence results which explain, for example, why soap films in a funnel
always run to its narrow end.
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In Section 1.6 we prove the existence of three embedded stationary surfaces
with their boundaries on a tetrahedron, following the discussion of B. Smyth.
This is a case where the minimizing approach cannot be used.

Section 1.7 is concerned with stationary surfaces whose boundaries lie on
a sphere. We shall prove Nitsche’s result that flat disks are the only solutions
to this problem that are of the type of the disk.

After a report on the existence of stationary minimal surfaces with bound-
aries on a convex surface (Section 1.8), in Section 1.9 we shall present some
results concerning uniqueness and nonuniqueness of minimal surfaces with a
free boundary on a given support surface. In particular, we construct a fam-
ily of minimizing minimal surfaces with boundaries on a regular, real analytic
surface of the topological type of a torus which are nonisometric to each other.
Moreover, we discuss some finiteness results of Alt & Tomi for minimizers with
boundaries on a real analytic supporting surface.

1.1 Surfaces of Class H1
2 and Homotopy Classes of Their

Boundary Curves. Nonsolvability of the Free Boundary
Problem with Fixed Homotopy Type of the Boundary
Traces

Let us fix some closed set S in R
3. Then we want to define the class C(S) of

surfaces X ∈ H1
2 (B, R3) with boundary values X|∂B on S. The parameter

domain B will be chosen as the unit disk:

B = {w = u + iv : |w| < 1}.

In the following we shall usually pick an ACM -representative1 for a given
Sobolev mapping X. If we work with polar coordinates r, θ about the origin,
i.e., w = reiθ, this means that we choose a representative X(r, θ) such that
X(r, ·) is absolutely continuous for almost all r ∈ (0, 1), and that X(·, θ) is
absolutely continuous for almost all θ ∈ (0, 2π). Thus X is in particular a
continuous function on almost all circles Cr = {w ∈ C : |w| = r}.

Any function X ∈ H1
2 (B, R3) possesses a trace (or boundary values) ξ on

∂B which is of class L2(C, R3), C := ∂B, and we have both

(1) lim
r→1−0

X(r, ϕ) = ξ(ϕ) for almost all ϕ ∈ [0, 2π]

and

(2) lim
r→1−0

∫ 2π

0

|X(r, ϕ) − ξ(ϕ)|2 dϕ = 0.

1 ACM stands for absolutely continuous in the sense of Morrey; cf. Morrey [8], Lemma 3.1.1.
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However, the trace Σ = {ξ(ϕ) : ϕ ∈ [0, 2π]} of an arbitrary Sobolev function
X ∈ H1

2 (B, R3) will in general not be a continuous curve, whereas the curves

Σr := {X(r, ϕ) : 0 ≤ ϕ ≤ 2π}

are absolutely continuous for a.a. r ∈ (0, 1). As we cannot formulate topolo-
gical conditions for a possibly noncontinuous curve Σ, we shall use the con-
tinuous curves Σr as a substitute. In view of (1) and (2) we can expect that
conditions on curves Σr close to Σ express conditions on Σ in an appropriate
sense.

We begin, however, by defining the class C(S) of surfaces with boundary
values on a supporting set S. We assume once and for all that supporting
sets S are closed, proper, and nonempty subsets of R

3. However, if a boundary
configuration contains other parts besides S, we allow S to be empty.

Definition 1. Let S be a supporting set in R
3. Then we denote by C(S) the

class of functions X ∈ H1
2 (B, R3) whose L2-trace ξ := X|C sends almost every

w ∈ C = ∂B into S.

For any closed set S in R
3, S �= ∅, and for any number μ > 0, we define

the tubular μ-neighbourhood Tμ = Tμ(S) of S by

(3) Tμ(S) := {x ∈ R
3 : dist(x, S) < μ}.

Then we can formulate our first result on surfaces of class C(S) which will
shed some light on their boundary behaviour.

Theorem 1. Let S be a supporting set in R
3, and suppose that X belongs to

C(S). Then, for every μ > 0 and every ε > 0, there is a subset I ⊂ (1 − ε, 1)
of positive measure such that, for all r ∈ I, the curve Σr = {X(r, ϕ) : 0 ≤ ϕ ≤
2π} is a closed continuous curve which is contained in the tubular neighbour-
hood Tμ(S) of S.

Note that other curves Σr, r ∈ (1 − ε, 1) \ I, may stay arbitrarily far from
Tμ(S) as can be shown by simple examples; cf. Fig. 1.

We shall prove Theorem 1 in several steps.

Lemma 1. For any closed set S in R
3, the function ds := dist(·, S) is Lip-

schitz continuous on R
3 with a Lipschitz constant less than or equal to one.

Proof. For arbitrary points P1, P2 ∈ R
3 there exist points Q1, Q2 ∈ S such

that

ds(P1) = |P1 − Q1| = inf
Q∈S

|P1 − Q|,

ds(P2) = |P2 − Q2| = inf
Q∈S

|P2 − Q|.

Therefore we obtain
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dS(P2) ≤ |P2 − Q1|

and
dS(P2) − dS(P1) ≤ |P2 − Q1| − |P1 − Q1| ≤ |P2 − P1|,

and analogously
dS(P1) − dS(P2) ≤ |P1 − P2|.

Therefore we have

|dS(P1) − dS(P2)| ≤ |P1 − P2| for all P1, P2 ∈ R
3. �

Fig. 1. (a) The graph of a bizarre function f ∈ H̊1
2 (B) which has infinitely many peaks

congruent to a part of the graph of log | log |w‖. These peaks converge to the point w = 1

on ∂B. Given ε > 0 and δ > 0, there is a set of values r ∈ (1 − δ, 1) of positive measure such

that the absolute values of f on Cr remain less that ε; see Lemma 4. This is a borderline

case of the boundary behaviour of functions of class H̊1
p(B). For p > 2 they are continuous

up to ∂B, and therefore their values on all circles sufficiently close to ∂B remain close to

zero. For p < 2 there may be no such circle, as is shown by the function depicted in (b)

and (c) which belongs to H̊1
p(B) for all p ∈ (1, 2) and has a discontinuity at C ∈ ∂B
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Lemma 2. A function X ∈ H1
2(B, R3) belongs to C(S) if and only if the scalar

function dS ◦ X is an element of the space H̊1
2(B) of functions f ∈ H1

2(B)
with generalized boundary values zero.

Proof. Note that X ∈ H1
2(B, R3) implies dS ◦ X ∈ H1

2 (B). Then the assertion
follows from well-known properties of functions of class H̊1

2(B) (see Gilbarg
and Trudinger [1]). �

Lemma 3. Let X belong to H1
2(B, RN ), N ≥ 1. Then, for any two numbers

μ > 0 and δ > 0, there is an ε > 0 with the following property:
If I ′ = [θ1, θ2] is an angular interval with θ2 − θ1 = δ, then there exists a

subset σ ⊂ I ′ of positive measure such that

|X(1, θ) − X(r, θ)| ≤ μ

holds for all θ ∈ σ and for all r ∈ (1 − ε, 1). In fact, we can choose ε as

(4) ε = min
{

1
2
,
1
4

μ2δ

D(X)

}
.

Proof. From

r

∫ θ2

θ1

∫ 1

r

|Xρ(ρ, θ)|2 dρ dθ ≤ 2D(X)

we conclude that there is a subset σ ⊂ [θ1, θ2] of positive measure such that
∫ 1

r

|Xρ(ρ, θ)|2 dρ ≤ 2
rδ

D(X)

holds for all θ ∈ σ and for δ = θ2 − θ1. Moreover, we have

|X(1, θ) − X(r, θ)| ≤
∫ 1

r

|Xρ(ρ, θ)| dρ

≤
√

1 − r

(∫ 1

r

|Xρ(ρ, θ)|2 dρ

)1/2

for θ ∈ σ and 0 < r < 1, whence

|X(1, θ) − X(r, θ)| ≤ {2r−1(1 − r)δ−1D(X)}1/2 for θ ∈ σ.

Choosing ε as in (4), the assertion follows at once. �

Lemma 4. Let f belong to
◦
H1

2(B). Then, for any μ > 0 and any ε > 0, the
set I := {r : 1 − ε < r < 1, |f |0,Cr < μ} has positive measure.

Proof. Suppose that the assertion were false. Then we would have D(f) > 0,
and there were numbers ε > 0 and μ > 0 such that

(5) |f |0,Cr ≥ μ
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for almost all r ∈ (1 − ε, 1). Without loss of generality we can assume that

0 < μ <
√

D(f)

holds true.
Because of (6) we infer that, for almost all r ∈ (1 − ε, 1), there is an angle

θ(r) such that
|f(reiθ(r))| ≥ μ.

Furthermore we choose some δ ∈ (0, 1) such that

(6) ε′ := min
{

1
2
,

μ2δ

16D(f)

}

satisfies 0 < ε′ < ε. By Lemma 3, every angular interval I′ of width δ contains
an angle θ′ such that f(·, θ′) is absolutely continuous and that

|f(reiθ′
)| < 1

2μ for all r ∈ (1 − ε′, 1).

Conclusion: For almost all r ∈ (1 − ε′, 1), there exist angles θ(r) and θ′(r)
with |θ(r) − θ′(r)| < δ and

|f(reiθ(r))| ≥ μ, |f(reiθ′(r))| ≤ μ

2
.

Thus
μ

2
≤

∣∣∣∣∣
∫ θ′(r)

θ(r)

|fθ(reiθ)| dθ

∣∣∣∣∣
and consequently

μ2

4δ
≤

∫ 2π

0

f2
θ (reiθ) dθ.

Thus
∫

{1−ε′<|w|<1}
| ∇f |2 du dv ≥

∫ 1

1−ε′

∫ 2π

0

1
r2

f2
θ (reiθ)r dθ dr

≥
∫ 1

1−ε′

(∫ 2π

0

f2
θ (reiθ) dθ

)
dr ≥ ε′μ2

4δ
.

Because of (6), we have
∫

{1−ε′<|w|<1}
| ∇f |2 du dv ≥ μ4

64D(f)

for 0<δ � 1, and ε′ → 0 as δ → +0. This is impossible for an H1
2 -function.�

Proof of Theorem 1. The assertion of Theorem 1 is now an immediate conse-
quence of the Lemmata 1–4. �
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Remark 1. The assertion of Lemma 4 holds for trivial reasons if f ∈ H̊1
p (B)

and p > 2, because Sobolev’s embedding theorem yields that f ∈ C0(B) and
f = 0 on ∂B. The assertion turns out to be false if p < 2, as one can find
examples of functions f ∈ H̊1

p (B), p < 2, such that near ∂B the function
|f(w)| is bounded away from zero by an arbitrary constant (cf. Fig. 1).

Now we want to give a reasonable definition for a homotopy class of
a boundary mapping ξ(θ) = X(1, θ) of a surface X of class C(S) which
is not necessarily continuous on B. To this end we consider the curves
Σr = {X(r, θ) : 0 ≤ θ ≤ 2π} for r close to one which are absolutely con-
tinuous and lie in a tubular neighbourhood Tμ of S. By Theorem 1, there
exist sufficiently many of them: In fact, for any number ε ∈ (0, 1) there is a
set I ⊂ (1 − ε, 1) of positive measure such that, for every r ∈ I, the mapping
X(r, ·) is absolutely continuous and Σr ⊂ Tμ.

Now we can state the following result:

Theorem 2. Let Tμ be the μ-neighbourhood of some closed set S in R
3, and

suppose that X ∈ C(S). Then for δ := 1
4πμ2 > 0, the following holds true:

If r1, r2 ∈ (0, 1) are two radii such that
(i) the Dirichlet integral of X over the annulus

Ω(r1, r2) := {w ∈ C : r1 < |w| < r2}

is at most δ;
(ii) the curves X|C1 and X|C2 with Ck := Crk

= {w : |w| = rk } are
absolutely continuous, and their traces Σk := X(Ck) are contained in Tμ/2;

(iii) there is an angle θ such that the curve X(r, θ), r1 ≤ r ≤ r2, connecting
Σ1 and Σ2 is absolutely continuous and that its trace lies in Tμ/2; then the
curves X|C1 and X|C2 are homotopic in Tμ.

Recall that two closed continuous curves γ1 : C → Tμ/2 and γ2 : C → Tμ/2

are homotopic in Tμ if there is a continuous map H : C × [0, 1] → Tμ such that
H(·, 0) = γ1 and H(·, 1) = γ2. The mapping H is called a homotopy.

Furthermore, a closed curve γ : C → Tμ/2 is contractible in Tμ if it is ho-
motopic in Tμ to a constant map or, equivalently, if it extends to a continuous
map B → Tμ.

Remark 2. Close to C = ∂B, the angle θ appearing in condition (iii) can be
found by virtue of Lemma 3.

The proof of Theorem 2 can be reduced to proving the following

Lemma 5. Let Tμ be the μ-neighbourhood of some closed set S in R
3, and

set δ := 1
4πμ2. Suppose, moreover, that X is a mapping of class H1

2 (B, R3) ∩
C0(∂B, R3) whose boundary curve X|∂B is contained in Tμ/2 and which sati-
sfies D(X) < δ(μ). Then the curve X|∂B is contractible in Tμ.

In fact, let r1 and r2 be two radii as in Theorem 2, and let θ ∈ [0, 2π) be
an angle as in (iii) of the theorem. Then we consider a conformal map τ of B
onto the slit annulus
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{w = reiϕ : r1 < r < r2, ϕ ∈ [0, 2π), ϕ �= θ}

and apply Lemma 5 to the surface Z := X ◦ τ , thus obtaining that Z|∂B is
contractible in Tμ. A straightforward reasoning now implies that the curves
X|C1 and X|C2 are homotopic in Tμ.

Proof of Lemma 5. We begin by choosing a mapping Y : B → R
3 which is

harmonic in B, continuous on B, of class H1
2 (B, R3) and satisfies Y − X ∈

H̊1
2(B, R3) and Y = X on ∂B. We know that D(Y ) ≤ D(X). Since X(∂B) =

Y (∂B) is contained in Tμ/2, there exists a strip U = {w : 1 − ε < |w| ≤ 1}
about the boundary C = ∂B such that Y (U) ⊂ Tμ/2. Then we can find
a regular, real analytic curve Y |Cr , r ∈ (1 − ε, 1), which is homotopic to
X|C = Y |C in Tμ/2. Thereafter we can find a sequence {Γk } of smooth closed
Jordan curves Γk given by smooth topological mappings Φk : C → Γk such
that |Φk − Φ|2,C → 0 as k → ∞ holds for the mapping Φ : C → R

3 defined by
Φ(eiθ) := Y (reiθ).

Now let Z(w) := Y (rw) and Zk(w) be the harmonic extensions to
B of the boundary values Φ and Φk respectively, and let Xk be a solu-
tion of the variational problem P(Γk). Then the maximum principle implies
|Zk − Z|0,B → 0 as k → ∞ and, applying the estimate of Lemma 7 in Sec-
tion 2.1 together with the Arzelà–Ascoli theorem, we also obtain |Zk −Z|1,B →
0 as k → ∞. This implies

lim
k→∞

D(Zk) = D(Z).

Consequently we have

A(Xk) = D(Xk) ≤ D(Zk) → D(Z) = DBr (Y ) ≤ D(Y ) ≤ D(X).

By assumption, we have also

D(X) < δ(μ) = 1
4πμ2,

whence

(7) A(Xk) = D(Xk) < π(μ/2)2

is satisfied for k sufficiently large.
If for one of these k the minimal surface Xk were not contained in Tμ, then

there would exist some w ∈ B such that Xk(w) /∈ Tμ. We choose a conformal
selfmapping of B satisfying τ(0) = w and note that all the boundary values
of Xk ◦ τ lie outside the ball of radius μ/2 centered at Xk(w) = Xk(τ(0)).
Then we infer from Vol. 1, Section 3.2, Proposition 2 that

A(Xk) ≥ π(μ/2)2

which contradicts (7). Thus we have shown that
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(8) Xk(B) ⊂ Tμ for all k � 1.

Moreover, every minimal surface Xk furnishes a topological mapping of C
onto Γk (see Vol. 1, Section 4.5, Theorem 3). Thus Xk |C furnishes a param-
eter representation of Γk equivalent to Φk, and we infer from (9) that Φk is
contractible in Tμ for k � 1. Since X|C is homotopic in Tμ to all of the Γk

with k � 1, we infer that X|C is contractible in Tμ. �

Recall now that C(S) has been defined as the class of all surfaces X ∈
H1

2 (B, R3) having their boundary values X|C on a closed subset S in R
3 (see

Definition 1).
We now denote by Π̃1(S) the set of all homotopy classes of closed paths

in S. (For details, we refer for instance to Schubert [1], or to Greenberg [1].)

Assumption (A). Suppose that there is a number μ > 0 such that the inclu-
sion map S → Tμ of the closed set S into its μ-neighbourhood Tμ induces a
bijection from Π̃1(S) to Π̃1(Tμ).

For example, this assumption is fulfilled for sufficiently small μ > 0 if S is
a smooth compact submanifold of R

3.
Let μ > 0 be a number as in Assumption (A), and recall that the curves

X|Cr are absolutely continuous for almost all r ∈ (0, 1).
If X ∈ C(S), then there is a number ε > 0 such that any two curves

X|Cr and X|Cr′ contained in Tμ/2 and with r, r′ ∈ (1 − ε, 1) define the same
homotopy class in Π̃1(Tμ); this homotopy class will be viewed as homotopy
class of the boundary values X|C . It is denoted by [X|C ] and will be called
the boundary class of a surface X ∈ C(S). Because we have a bijection

Π̃1(Tμ) ↔ Π̃1(S),

we can view the class [X|C ] as an element of Π̃1(S). If the mapping
X : C → R

3 is continuous, then [X|C ] coincides with the usual homotopy
class of X|C .

Note that the definition of the homotopy class [X|∂B] does not depend on
the particular ACM-representative of X that we have chosen since any two of
them coincide on almost all circles Cr.

Moreover, the definition [X|C ] is even independent of μ in the following
sense: Suppose that the inclusion maps S → Tμ and S → Tμ′ induce two
bijections Π̃1(S) ↔ Π̃1(Tμ) and Π̃1(S) ↔ Π̃1(Tμ′ ). Then both constructions
with respect to μ and μ′ lead to the same class [X|C ] in Π̃1(S).

Indeed, according to the definition we first have to choose an ε > 0 such
that any two of the curves X|Cr , r ∈ (1 − ε, 1), lying completely in Tμ/2 (or in
Tμ′/2) are homotopic in Tμ (or in Tμ′ ). This ε may be the same for μ and μ′

because decreasing ε does not change the class [X|∂B ]. If, say, μ′ ≤ μ, then we
find in (1 − ε, 1) a subset J′ of positive measure or radii r such that the curves
X|cr , r ∈ J′, are completely contained in Tμ′/2 and that any two of them are
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homotopic in Tμ′ . Therefore all these curves X|Cr define a homotopy class α′

in Π̃1(Tμ′ ) which corresponds to the boundary class [X|∂B ]′ ∈ Π̃1(S) which
is constructed by means of Tμ′ .

On the other hand, all curves X|Cr , r ∈ J′, are contained in Tμ/2 ⊃ Tμ′/2,
and any two of them are homotopic in Tμ ⊃ Tμ′ . Therefore all these curves
X|Cr , r ∈ J′, define a homotopy class α ∈ Π̃1(Tμ) which by the definition of
ε corresponds to the boundary class [X|∂B ] ∈ Π̃1(S) defined by means of Tμ.
Since the inclusion Tμ′ → Tμ induces a bijection Π̃1(Tμ′ ) → Π̃1(Tμ) which
maps α′ to α, the boundary classes [X|∂B ] and [X|∂B ]′ and identical. �

Collecting our results and inspecting Chapter 4 of Vol. 1, we obtain the
following

Theorem 3 (Natural boundary classes). Let S be a subset of R
3 such that

for some μ > 0 the inclusion S → Tμ induces a bijection Π̃1(S) → Π̃1(Tμ)
between the corresponding sets Π̃1 of homotopy classes of closed paths in S
and Tμ respectively.

(i) Then for every surface X ∈ C(S) a boundary homotopy class [X|∂B ] ∈
Π̃1(S) is defined in a natural way.

(ii) If σ is a closed curve in S which is not contractible in S and if
[σ] ∈ Π̃1(S) denotes its homotopy class, then every minimizer of the Dirichlet
integral D(X) = 1

2

∫
B

| ∇X|2 du dv in the class

(9) C(σ, S) := {X ∈ C(S) : [X|∂B ] = [σ]}

is a minimal surface.

Let us denote the minimum problem

(10) D(X) → min in C(σ, S)

by P(σ, S).
In general one encounters serious difficulties if one tries to solve the prob-

lem P(σ, S). For instance, the classes C(σ, S) are not necessarily closed with
respect to weak convergence in H1

2 ; yet this fact was crucial for the existence
proof carried out in Section 4.6 of Vol. 1.

All basic difficulties of this problem can already be seen in the compara-
tively simple case that we shall consider next. The reader who is not interested
in the details of the following discussion may very well skip it since it is not
anymore needed in the later sections.

Let us choose a torus T in R
3 as the prescribed supporting surface, and

consider the corresponding variational problem

P(σ, T ) : D(X) → min in C(σ, T ).

To be precise, let T be the torus in R
3 which is obtained by revolving the

circle
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{(x, y, z) : y = 0, (x − R)2 + z2 = r2}, 0 < r < R,

about the z-axis (see Fig. 2). Denote by σ1, σ2 : [0, 2π] → T the two circles

σ1(t) = (R − r cos t, 0, −r sin t)

and
σ2(t) = ((R − r) cos t, (R − r) sin t, 0).

Finally let P = σ1(0) = σ2(0) = (R − r, 0, 0) be the base point of T .
Note that in this case the assumption made in the construction of the

boundary classes [X|∂B] of a surface X ∈ C(T ), namely that the inclusion
map T → Tμ induces a bijection Π̃1(T ) ↔ Π̃1(Tμ), is satisfied for all suffi-
ciently small μ since for these μ the above inclusion T → Tμ is a homotopy
equivalence.

In general the set Π̃1(M) of all equivalence classes of (freely) homotopic
closed curves in a topological space M is different from its fundamental group
Π1(M, ∗); but if Π1 is Abelian and if M is connected, then the canonical map
Π1(M, ∗) → Π̃1(M), [σ] → [σ], is indeed a bijection (cf. Schubert [1]).

The fundamental group of the torus T is isomorphic to Z ⊕ Z, and it is
freely generated by [σ1] and [σ2]. Therefore, in the case of the torus, the class
C(T ) of all H1

2 -surfaces with boundary values on T is the disjoint union of the
classes Ck,l, k, l ∈ Z, of surfaces X ∈ C(T ) whose boundary class [X|∂B] can
be represented by the closed path σk

1 · σl
2. (First k-times along σ1, then l times

along σ2, negative powers denote reversal of orientation.)
Now we can state our nonexistence result.

Theorem 4. Let T be the torus defined before.

Fig. 2. The points and curves on a torus T used in the study of minimizing sequences for

the Dirichlet integral of surfaces with free boundaries on T whose boundary curves have a

prescribed homotopy class
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(i) For all k, l ∈ Z the numbers dk,l := inf{D(X) : X ∈ Ck,l} are given by

dk,l = π{ |k|r2 + |l|(R − r)2}.

(ii) The variational problem

D(X) → min in C k,l

has a solution if and only if k = 0 or l = 0.

For the proof of Theorem 4 we shall need the following

Lemma 6 (A formula for the oriented area). Assume that the boundary
values of a mapping X = (X1, X2) ∈ H1

2 (B, R2) are contained in R
2 \ Bρ(w0).

Then the boundary class [X|∂B] ∈ Π̃1(R2 \ Bρ(w0)) is well defined, and it is
characterized by the winding number U([X|∂B ], w0). If Ω := {w ∈ B : X(w) ∈
Bρ(w0)}, then we have for the oriented area

A0
Ω(X) :=

∫
Ω

Xu ∧ Xv du dv

of the mapping X the formula

A0
Ω(X) :=

∫
Ω

{X1
vX2

v − X1
vX2

u} du dv = πρ2U([X|∂B ], w0).

Proof of Lemma 6. Approximating H1
2 -mappings Z ∈ H1

2 (B, R2) by smooth
mappings, we obtain the following two formulas that are well known for
smooth maps:

(i) For almost all R ∈ (0, 1), the oriented surface area of Z is given by

A0
BR

(Z) =
1
2

∫ 2π

0

{Z1Z2
θ − Z2Z1

θ } dθ.

(ii) If Z is absolutely continuous on ∂BR, then

U(Z|∂BR
, 0) =

1
2π

∫ 2π

0

Z1Z2
θ − Z2Z1

θ

|Z|2 dθ

unless Z = 0 somewhere on ∂BR. Of course, 0 < R < 1 and Z = Z(Reiθ),
etc.

Let us now prove the lemma. We may assume without loss of generality
that w0 = 0. Moreover, for 0 < ε < ρ, let πε : R

2 → Bρ−ε(0) denote the radial
projection

Z �→
{

Z if |Z| < ρ − ε,
Z

|Z| (ρ − ε) otherwise,

and set Y ε := πε ◦ X, which is again of class H1
2 (B, R2) since πε is Lipschitz

continuous. The boundary values of Y ε are contained in R
2 \ Bρ−ε(0), and we

have
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Fig. 3. The area functional A(X) of a map X : B → R2, whose boundary curve winds

around a disk in R2, can be calculated from the radius of the disk and the winding number

of the boundary curve, cf. Lemma 6

U([X|∂B ], 0) = U([Y ε|∂B ], 0).

Now we choose R so close to 1 that X|∂BR
⊂ R

2 \ Bρ−ε(0) represents the
boundary class [X|∂B] and that the integration-by-parts-formula (i) holds
true. Then we conclude that

U([X|∂B ], 0) = U(X|∂BR
, 0) = U(Y ε|∂BR

, 0)

=
1
2π

∫ 2π

0

Y ε ∧ Y ε
θ

|Y ε|2

∣∣∣∣
r=R

dθ =
1

π(ρ − ε)2
1
2

∫ 2π

0

Y ε ∧ Y ε
θ dθ

=
1

π(ρ − ε)2
A0

BR
(Y ε).

Now, on the one hand, Y ε
r ∧ Y ε

θ = 0 almost everywhere on Ωε = {|X| ≥ ρ − ε}
since both Y ε

r and Y ε
θ are tangential to ∂Bρ−ε(0). On the other hand, we have

Y ε
r ∧ Y ε

θ = Xr ∧ Xθ almost everywhere on Ω′
ε = {|X| < ρ − ε}. Therefore

A0
BR

(Y ε) = A0
Ω′

ε ∩BR
(X).

Thus at last, if ε decreases to zero, the radii R chosen above tend to one
whence

A0
BR

(Y ε) → A0
Ω(X),

and the lemma is proved. �

Now we turn to the

Proof of Theorem 4. Let π1 : R
3 → R

2 be the orthogonal projection onto the
x, y-plane given by

(x, y, z) → (x, y),

and denote by π2 : R
3 → R

2 the projection mapping

(x, y, z) → (ρ, z) with ρ =
√

x2 + y2
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which maps (x, y, z) onto the point (ρ, z) ∈ R
2 defined by the two cylinder

coordinates ρ and z. Note that π2 is Lipschitz continuous and, for ρ �= 0, even
real analytic.

Then, for any X ∈ H1
2 (Ω, R3), we have the following inequalities:2

(I) D(π1 ◦ X) ≤ D(X), and the equality sign holds if and only if ∇z(w) = 0
a.e. on Ω, where z(w) is the third component of X(w).

(II) D(π2 ◦ X) ≤ D(X), and the equality sign holds if and only if ∇ϕ(w) = 0
a.e. in Ω, where ϕ(w) := arc tan y(w)

x(w) is the angle belonging to the cylinder
coordinates ρ, ϕ, z. For the assertion of (II) to hold we have to assume that
X(Ω) � R

3 \ H where H is some halfplane in R
3 having the z-axis as its

boundary.

Now, given X = (x, y, z) ∈ C k,l, let us consider the sets

Ω1 := {w ∈ B : x2(w) + y2(w) < (R − r)2}

and
Ω2 := {w ∈ B : |π2(X(w)) − (R, 0)| < r}

which are the pre-images of the cylinder {0 ≤ ρ < R − r} and of the open
solid torus T , respectively. The sets Ω1 and Ω2 are disjoint.

From (I), (II) and Lemma 6 we infer

D(X) ≥ DΩ1(X) + DΩ2(X) ≥ DΩ1(π1 ◦ X) + DΩ2(π2 ◦ X)
≥ |A0

Ω1
(π1 ◦ X)| + |A0

Ω2
(π2 ◦ X)| ≥ π|l|(R − r)2 + π|k|r2,

that is,

(III) π(|l|(R − r)2 + |k|r2) ≤ D(X).

In order to complete the proof of the first part of the theorem, we construct
a minimizing sequence as follows. For 0 < ρ � 1, we introduce the set

Ωρ := B1(0) ∪ Bρ(1) ∪ B1(2).

As Ωρ is conformally equivalent to the unit disk B (see Fig. 4), we can choose
Ωρ as parameter domain. For k, l ≥ 0, we define

Xρ(w) :=

{
((R − r)Re wl, (R − r)Im wl, 0) if w ∈ B1(0) \ Bρ(1),
(R − r Re(2 − w)k, 0, −r Im(2 − w)k) if w ∈ B2(0) \ Bρ(1).

If k < 0, we replace in the definition of Xρ the variable w ∈ B1(0) \ Bρ(1) by
w, and for l < 0 we substitute w ∈ B2(0) \ Bρ(1) by w.

2 The proof of the second fact is not totally trivial. It can be derived by choosing an

ACM -representation of π2 ◦ X in conjunction with Fubini’s theorem.
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Fig. 4. Construction of a minimizing sequence for the Dirichlet integral for surfaces with

free boundaries on T and a boundary class homotopic to σ1 followed by σ2

Now let w1, . . . , w4 be the four vertices in Ωρ. Then we connect every two
of the points Pj := X(wj) by geodesic lines on the torus T such that the
curve Xρ|∂Ωρ is homotopic to σk

1 · σl
2. These geodesics are parametrized in

proportion to the arc length by means of the boundary pieces of ∂Ωρ between
w1 and w4, w2 and w3.

Having thus defined X|∂Bρ(1), one completes the construction by filling in
a harmonic surface in Bρ(1) with the boundary values X on ∂Bρ(1). Since
DB(wn) = πn and DBρ(1)(Xρ) tends to zero with ρ, we have found a mini-
mizing sequence.

In order to show part (ii) of the theorem, we consider a minimizer X
in C k,l. Then X is harmonic in B and equality holds in (III). Our initial
remarks (I) and (II) imply that X(B) lies in a plane which either contains the
z-axis (in which case l = 0) or is orthogonal to the z-axis (implying k = 0).
Finally, minimizers in C k,0 and C 0,l can be constructed again using powers
of w. �

1.2 Classes of Admissible Functions. Linking Condition

If we enlarge the class of admissible functions in a suitable way, the minimum
problem becomes solvable. The difficulty consists in finding a proper class C̃

of surfaces between C(σ, S) and C(S) such that the Dirichlet integral has a
nondegenerate minimizer in C̃. In this section we want to set up several of
such classes C̃ which serve this purpose.
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To this end we shall assume throughout that S is a closed, proper,
nonempty subset of R

3 satisfying Assumption (A) of Section 1.1: There is
a μ > 0 such that the inclusion S → Tμ induces a bijection Π̃1(S) ↔ Π̃1(Tμ).
Then we can define

(1) C +(S) :=
⋃

[σ]�=[const]

C(σ, S),

where the union is to be taken over all closed curves σ in S which are not
homotopic in S to a constant map. In other words, C+(S) consists of all
those surfaces X ∈ C(S) whose boundary class [X|∂B] is not represented by
a constant map.

Clearly, the position of the competing surfaces X ∈ C+(S) is not particu-
larly restricted. Therefore the minimizer in C+(S) will always fill the smallest
hole in S.

In order to specify the position of the boundary values of the competing
surfaces more precisely, we choose some polygon Π (that is, a piecewise linear
image of ∂B) which does not meet the tubular neighbourhood Tμ of S.

Then we introduce the variational class C(Π, S) of all surfaces X ∈ C(S)
whose boundary class [X|∂B] is linked with the polygon Π, that is, whose
linking number L([X|∂B ], Π) is nonzero:

C(Π, S) := {X ∈ C(S) : L([X|∂B ], Π) �= 0}.

The classes C+(S) and C(Π, S) will be the two sets on which we want to min-
imize the Dirichlet integral in order to obtain nondegenerate minimal surfaces
with a free boundary on S. The minimizing procedures will be carried out in
the next section.

For the convenience of the reader we shall in the following sketch the main
features of the linking number. For proofs and further details we refer to the
treatise of Alexandroff and Hopf [1].

Definition and Properties of the Linking Number

(I) First we define the intersection number of two oriented simplices ep =
(a0, . . . , ap) and fq = (b0, . . . , bq) for two particular cases.

(α) If the corresponding geometric simplices furnished by the convex hulls
of {a0, . . . , ap} and {b0, . . . , bq } are disjoint, then we define the intersection
number ∅(ep, fq) to be zero.

(β) If p + q = 3, and if the intersection of the corresponding geometrical
simplices is neither empty nor does it contain any vertex of ep, fq, we define the
intersection number ∅(ep, fq) to be one if the ordered base (a1 − a0, . . . , ap −
a0, b1 − a0, . . . , bq − a0) has the same orientation as the standard simplex
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) of R

3, and we set ∅(ep, fq) = −1 if
the orientations are different.

(II) Secondly we define the linking number of two disjoint closed polygons Π1

and Π2.
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Assume that Π1 and Π2 have r (resp. s) corners Pr+1 = P1, . . . , Pr and
Qs+1 = Q1, . . . , Qs, and choose a point P ∈ R

3 such that any pair of simplices
ej := (P, Pj , Pj+1) and fk = (Qk, Qk+1), j = 1, . . . , r; k = 1, . . . , s, satisfies
one of the above conditions (α), (β) in (I). Then we define

L(Π1, Π2) :=
r∑

j=1

s∑
k=1

∅(ej , fk)

as the linking number of the two polygons Π1 and Π2.

Fig. 1. The definition of the linking number of two closed polygons P1, P2, . . . and

Q1, Q2, . . . is reduced to the intersection numbers of the faces (2-dimensional simplices)

of a cone erected over the first polygon with the line segments (1-dimensional simplices)

of the second. The intersection number is 0 if the simplices are disjoint, and +1 or −1

otherwise depending on their orientations. The resulting linking number for the polygons

shown here is −2
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(III) Finally, if c1 and c2 are two closed curves ∂B → R
3 with disjoint traces

ci(∂B), say, dist(c1(∂B), c2(∂B)) = δ > 0, then we choose two closed polygons
Π1 and Π2 such that

|c1 − Π1|0,∂B , |c2 − Π2|0,∂B <
δ

2
,

and define the linking number of c1 and c2 as

L(c1, c2) := L(Π1, Π2).

(IV) Some of its properties are:

(i) The definition of the linking number of two disjoint closed curves is
independent of all choices made above (see Alexandroff and Hopf [1], p. 423).

(ii) Deformation invariance. If h1(t, θ) and h2(t, θ) : [0, 1] × ∂B → R
3 are

two homotopies of closed curves such that for every t ∈ [0, 1] the supports of
the deformed curves are disjoint, then

L(h1(0, ·), h2(0, ·)) = L(h1(1, ·), h2(1, ·))

(see Alexandroff and Hopf [1], p. 424).
(iii) Additivity of linking numbers. If c1, c2 and c are three closed curves

such that c1 and c2 have the same end points and that

ci(∂B) ∩ c(∂B) = ∅ for i = 1, 2,

then we have for the composite curve c1 · c2

L(c1 · c2, c) = L(c1, c) + L(c2, c).

This follows immediately from the construction (see Alexandroff and Hopf [1],
p. 418).

(V) In view of the homotopy invariance of the linking numbers, the linking
number of a boundary class [X|∂B] with a polygon Π at a distance greater
than μ from S is well defined:

L([X|∂B ], Π) := L(X|CR
, Π),

where X|CR
, R ∈ (0, 1), is any curve in Tμ/2 which represents the boundary

class [X|∂B ].

1.3 Existence of Minimizers for the Free Boundary Problem

Let us now treat some free boundary problems for minimal surfaces with a
prescribed supporting surface. We shall minimize the Dirichlet integral
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D(X) =
1
2

∫
B

| ∇X|2 du dv

both in C +(S) and C(Π, S), the classes introduced in the previous sections. We
shall describe some geometric conditions on S such that the two variational
problems

P(Π, S) : D(X) → min in C(Π, S)

and

P+(S) : D(X) → min in C+(S)

are solvable.
By definition of the classes C+(S) and C(Π, S), every solution of P(Π, S)

and P+(S) is nondegenerate.

Theorem 1. Let S be a supporting set in R
3 satisfying Assumption (A) of

Section 1.1, i.e. there is some μ > 0 such that the inclusion map S → Tμ of S

into its μ-neighbourhood Tμ induces a bijection from Π̃1(S) to Π̃1(Tμ). Then
we have:

(i) If there is a closed polygon Π in R
3 which does not meet Tμ and for

which C(Π, S) is nonempty, then there exists a solution of P(Π, S).
(ii) If S is compact and C+(S) is nonempty, then there is a solution of

P+(S).
(iii) Any solution X of P(Π, S) or of P+(S) is a minimal surface. That

is, X is a nonconstant mapping of class C2(B, R3) and satisfies the equations

(1) ΔX = 0,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B.

It is of great importance to investigate the boundary behaviour of solutions
of P(Π, S) and P+(S). If X is a solution of one of these problems that is
smooth up to its boundary (say, X ∈ C1(B, R3)), and if S is a smooth surface
with an empty boundary ∂S, then we shall prove in the next section that X
meets S perpendicularly along its free trace Σ = X(∂B) on the supporting
surface S. However, if ∂S is nonempty, then it may very well happen that Σ
touches ∂S (this phenomenon is studied in Chapter 2, and in the Chapters 1,
2 of Vol. 3); then one cannot anymore expect that X meets S perpendicularly
everywhere along Σ. In fact, a right angle between X and S is generally
formed only at those parts of Σ which do not coincide with ∂S.

Moreover, we have to answer the question as to whether a solution of
P(Π, S) or of P+(S) is smooth on the closure B of its parameter domain
B, so that we can apply the succeeding results of Section 1.4. A detailed
discussion of this and related problems is given in Chapter 2. There and in
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Fig. 1. (a) A closed smooth surface S linked with a polygon Π for which the class of

surfaces C(Π, S) is non-empty. (b) A solution of the corresponding free boundary value

problem P(Π, S)

Chapter 3, we also investigate how a solution X and its trace curve Σ behave
in the neighbourhood of a boundary branch point.

Let us now turn to the proof of Theorem 1. We need the notion of the
greatest distance g(A, B) of a closed set A of R

3 to another closed set B of R
3

which is defined by

(3) g(A, B) := sup{dist(x, B) : x ∈ A}.

Clearly, we have 0 ≤ g(A, B) ≤ ∞.

Lemma 1. Let Sk and S be closed sets in R
3 such that limk→∞ g(Sk, S) = 0,

and suppose that {Xk } is a sequence of surfaces Xk ∈ C(Sk) which tends
weakly in H1

2 (B, R3) to some surface X. Then X is of class C(S).

Proof. By passing to a suitable subsequence of {Xk } and renumbering, we
can assume that the L2(∂B, R3)-boundary values converge pointwise almost
everywhere on ∂B to X|∂B (cf. Morrey [8], Theorem 3.4.5). Then we obtain

dist(X(1, θ), S) ≤ |X(1, θ) − Xk(1, θ)| + g(Sk, S) → 0

as k → ∞, for almost all θ ∈ [0, 2π]. �

Proof of Theorem 1. (i) Suppose that X is a surface of class C(S′), where S′

is a closed set with g(S′, S) < μ/4. Because of Assumption (A), we can define
a boundary class [X|∂B] which can be viewed as element of Π̃1(S).

Definition 1. A sequence of surfaces Xk ∈ H1
2 (B, R3) is said to be a gener-

alized admissible sequence for the problem P(Π, S) if there is a sequence of
closed sets Sk ⊂ R

3 such that limk→∞ g(Sk, S) = 0 and Xk ∈ C(Π, Sk), k ∈ N,
holds true.
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We set

(4) e := inf{D(X) : X ∈ C(Π, S)}

and

e∗ := inf
{
lim inf
k→∞

D(Xk) : {Xk } is a generalized admissible sequence(5)

for P(Π,S)
}
.

Evidently we have

(6) e∗ ≤ e.

Now we pick a sequence {Sl} of generalized admissible sequences Sl = {Zl
k }k∈N

for P(Π, S) such that
lim
l→∞

lim inf
k→∞

D(Zl
k) = e∗.

From the sequences S l we can extract a sequence S = {Zk } of surfaces Zk

which is a generalized admissible sequence for P(Π, S) and satisfies

lim
k→∞

D(Zk) = e∗.

Definition 2. Such a sequence S of surfaces Zk ∈ C(Π, Sk) is said to be a
generalized minimizing sequence for the minimum problem P(Π, S).

Next we choose radii ρk ∈ (0, 1) with ρk → 1 having the following proper-
ties on the circles Ck := Cρk

:
(α) The curve Zk |Ck

is absolutely continuous, Zk(Ck) lies in Tμ/2 and is
linked with the polygon Π, i.e. L(Zk |Ck

, Π) �= 0.
(β) The sequence of surfaces Yk(w) := Zk(ρkw), w ∈ B, with boundary

values on Sk := Zk(Ck) is a generalized minimizing sequence for P(Π, S).
Thus we have in particular

lim
k→∞

D(Yk) = e∗.

In addition, all Yk |∂B are continuous curves whose greatest distance from S
converges to zero as k tends to infinity.

Now we pass from the sequence {Yk } to the sequence of harmonic mappings
Xk : B → R

3 which are continuous on B and have the boundary values Yk |∂B

on ∂B. We know that Xk − Yk ∈ H̊1
2(B, R3) and

D(Xk) ≤ D(Yk).

Therefore, also {Xk } is a generalized minimizing sequence, and we have in
particular

(7) lim
k→∞

D(Xk) = e∗,
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whence there is a constant M such that

(8) D(Xk) ≤ M for all k ∈ N.

By virtue of the mean value theorem for harmonic functions, there is a con-
stant c such that

(9) | ∇Xk(w)| ≤ c
√

Mρ−1 for all k ∈ N and for |w| ≤ 1 − ρ,

where ρ ∈ (0, 1).
Without loss of generality we can also assume that Xk(0) lies on the closed

polygon Π for all k ∈ N, since we can replace Xk by Xk ◦ τk, where τk is a
conformal selfmapping of B that maps w = 0 onto some point w∗

k ∈ B with
Xk(w∗

k) ∈ Π, and such a point can always be found since the polygon Π and
the curve Xk |∂B are linked.

In conjunction with (9) we infer that the harmonic mappings Xk, k ∈ N,
are uniformly bounded on every subset Ω � B. Applying a standard com-
pactness result for harmonic mappings, there is a subsequence of {Xk } that
converges uniformly on every set Ω � B. By renumbering this subsequence we
can achieve that the sequence Xk tends to a harmonic mapping X : B → R

3

on every compact subset of B. In conjunction with (8), we obtain that the
H1

2 (B)-norms of the surfaces Xk are uniformly bounded, and thus we may also
assume that the Xk tend weakly in H1

2 (B, R3) and strongly in L2(∂B, R3) to
X which then is of class H1

2 (B, R3).
From Lemma 1 we infer that X ∈ C(S), and the relations Xk(0) ∈ Π

imply in the limit that X(0) ∈ Π. Thus the harmonic mapping X is certainly
not a constant, and therefore X(w) �= const on any open subset Ω of B. Hence

(10) DΩ(X) > 0 for every nonempty open set Ω � B.

The lower semicontinuity of the Dirichlet integral with respect to weak con-
vergence in H1

2 (B, R3) yields

D(X) ≤ lim inf
k→∞

D(Xk),

and together with (6) and (7) we arrive at

D(X) ≤ e∗ ≤ e.

As X is of class C(S), we shall expect X to be a solution of P(Π, S). However,
it remains to be shown that X lies in P(Π, S). To this end we have to prove
that the linking number of the polygon Π with the boundary class X|∂B does
not vanish. This will be proved by contradiction.

Hence we suppose that L([X|∂B ], Π) = 0. Then a sequence of radii rk ∈
(1/2, 1) with rk → 1 can be found such that

ξk(θ) := X(rk, θ), 0 ≤ θ ≤ 2π,
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represents the boundary class [X|∂B ] of X, and that both the conditions

L(ξk, Π) = 0, k ∈ N,

and
lim

k→∞
g(ξk, S) = 0

hold true.
Recall that {Xk } converges to X uniformly on every Ω � B. Then, by

passing to another subsequence of Xk and renumbering it, we may assume
that

max
0≤θ≤2π

|Xk(rk, θ) − ξk(θ)| → 0 as k → ∞.

Set
ξ∗
k(θ) := Xk(rk, θ), 0 ≤ θ ≤ 2π.

Then we infer that

(11) L(ξ∗
k, Π) = 0 for k ∈ N

and

(12) lim
k→∞

g(ξ∗
k, S) = 0.

Moreover, it follows as in the proof of Lemma 3 in Section 1.1 that there is
an angle θk ∈ [0, 2π] such that

(13) |Xk(r, θk) − Xk(1, θk)| ≤
(

2M

π

)1/2 √
1 − r

is satisfied for 1/2 ≤ r ≤ 1 and for all k ∈ N.
Finally we choose conformal mappings τk from B onto the slit annuli

{w = reiθ ∈ B : rk < r < 1, θ �= θk }.

We use these mappings to define a new sequence of surfaces X̂k := Xk ◦ τk.
On account of the additivity of linking numbers, of (11), (12), and of
L([Xk |∂B ], Π) �= 0, it follows that

L([X̂k |∂B ], Π) �= 0 for k ∈ N.

Moreover, we infer from (12) and (13) that the surfaces X̂k are of class
C0(B, R3)∩H1

2 (B, R3) and have boundary values on closed sets Σk := X̂k(∂B)
with g(Σk, S) → 0 as k → ∞. Consequently, {X̂k } is a generalized admissible
sequence for the problem P(Π, S), and we obtain from (5) that

(14) e∗ ≤ lim inf
k→∞

D(X̂k).
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On the other hand, the conformal invariance of the Dirichlet integral yields

D(X̂k) = D(Xk) − DBrk
(Xk) ≤ D(Xk) − DB1/2(Xk),

where Br := {w ∈ C : |w| < r}. By a classical result on harmonic mappings,
we infer from

lim
k→0

|X − Xk |0,Ω = 0 for any Ω � B

that also
lim
k→0

| ∇X − ∇Xk |0,Ω = 0 for any Ω � B

holds true, whence
lim

k→∞
DB1/2(Xk) = DB1/2(X).

In conjunction with (7), we conclude that

lim inf
k→∞

D(X̂k) ≤ e∗ − DB1/2(X),

and now (14) yields
e∗ ≤ e∗ − DB1/2(X).

This is a contradiction to (10). Consequently we obtain L([X|∂B ], Π) �= 0,
whence X ∈ C(Π, S) and therefore

e ≤ D(X).

In view of (6) and (7) it follows that

(15) D(X) = e = e∗

which shows that X is a solution of the minimum problem P(Π, S). This
completes the proof of part (i) of the theorem.

(ii) The proof of part (ii) essentially follows the same lines of reasoning
if we replace the conditions “L(. . . , Π) �= 0” by “the boundary class of . . .
is not contractible”, and if the relations “Xk(0) ∈ Π” are substituted by the
assumption “S is compact”. Then we have

|Xk |0,∂B ≤ M ′ for all k ∈ N,

and the maximum principle for harmonic functions yields

|Xk |0,B ≤ M ′ for all k ∈ N.

Now we may carry on as before.
(iii) The third assertion of the theorem follows in the same way as for

solutions of the Plateau problem; cf. Chapter 4 of Vol. 1. This completes the
proof of Theorem 1. �
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Theorem 2. Every minimizer of the Dirichlet integral D(X) in the class
C(Π, S) (or in C+(S)) is a surface of least area in C(Π, S) (or in C+(S)).

The proof of this result can be carried out in the same way as that of
Theorem 4 in Section 4.5 of Vol. 1. An alternative method to establish

inf
C(Π,S)

A = inf
C(Π,S)

D

and
inf

C+(S)
A = inf

C+(S)
D

without using Morrey’s lemma on ε-conformal mappings consists in applying
the technique of Section 4.10 in Vol. 1, namely, to minimize Aε := (1 − ε)A
+ εD. �

1.4 Stationary Minimal Surfaces with Free or Partially Free
Boundaries and the Transversality Condition

In the preceding chapters we have considered minimal surfaces which minimize
Dirichlet’s integral in suitable classes of admissible surfaces. However, the
definition of minimal surfaces does not require them to be minimizers, and
thus we are led to study also minimal surfaces that are only stationary within a
given free boundary configuration. This, roughly speaking, means that the first
order change of Dirichlet’s integral is zero if we change the stationary surface
in such a way that the boundary values remain on the prescribed supporting
surface S. It will turn out that stationary minimal surfaces essentially are
minimal surfaces which intersect S perpendicularly at their trace curves on
S, provided that S is smooth and the boundary of S is empty. However, we
also want to consider the case when ∂S is nonempty and consists of smooth
regular curves.

By definition we want two distinguish two types of stationary minimal
surfaces. The first type is defined by the differential equations

(1) ΔX = 0

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

which have to hold in B, and by a natural boundary condition which is to be
satisfied on the free part of ∂B.

The second type will be described as critical points of the Dirichlet integral
with respect to inner and outer variations.

Then we shall prove that both types of stationary minimal surfaces are
the same provided that both S and ∂S are sufficiently smooth.
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Let us begin by defining minimal surfaces in a partially free boundary
configuration 〈Γ, S〉. In the following we use the notation of Section 4.6 of
Vol. 1; in particular we define the class C(Γ, S) of admissible surfaces for the
partially free problem as in that Section.

At present we assume that S and ∂S are of class C1 and that Γ is a
rectifiable arc.

For any point P on S, we denote by Tp(S) the tangent plane of S at P .
If P ∈ ∂S, then Tp(S) is divided by the tangent Tp(∂S) of ∂S at P into two
halfplanes. If N∂S(P ) ∈ TP (S) denotes the outward unit normal of ∂S at
P ∈ ∂S, then we call all tangent vectors V ∈ TP (S) with 〈V, N∂S(P )〉 ≤ 0
interior tangent vectors of S at P ∈ ∂S.

Definition 1. A stationary minimal surface in C(Γ, S) is an element of
C(Γ, S) satisfying

(i) X ∈ C1(B ∪ I, R3) ∩ C2(B, R3), where I = ∂B ∩ {Im w < 0} denotes
the free boundary (of the parameter domain B := B1(0)) of X.

(ii) In B we have the equations (1) and (2).
(iii) Along I1 := {w ∈ I : X(w) ∈ int S}, the exterior normal derivative

∂X
∂ν is perpendicular to S. (Using polar coordinates r, θ about the origin w = 0,
we have ∂X

∂ν = ∂X
∂r .)

(iv) For any w belonging to I2 := {w ∈ I : X(w) ∈ ∂S} and every interior
tangent vector V ∈ TX(w)S, we have 〈 ∂X

∂ν (w), V 〉 ≥ 0.

Definition 2. An element X ∈ C(Γ, S) is called a critical (or stationary)
point of Dirichlet’s integral in the class C(Γ, S) if

(3) lim
ε→+0

1
ε

{D(Xε) − D(X)} ≥ 0

holds for all admissible variations Xε, |ε| < ε0, of X. A family {Xε} |ε|<ε0 of
surfaces Xε ∈ C(Γ, S) is said to be an admissible variation of X, if it is of
one of the following two types.

Type I (inner variations). Xε = X ◦ σε where {σε} |ε|<ε0
, ε0 > 0, is a

differentiable family of diffeomorphisms σε : B
∗
ε → B which are defined as

inverse mappings of the diffeomorphisms τε : B → B
∗
ε defined by

τε(w) = w − ελ(w), λ ∈ C1(R2, R2),

cf. Section 4.5 of Vol. 1.

Type II (outer variations). Xε = X + εφ(·, ε) for all ε ∈ (0, ε0) and some
ε0 > 0, where the following holds:

(α) the Dirichlet integrals of the mappings φ(·, ε) are uniformly bounded,
i.e.,

D(φ(·, ε)) ≤ const for all ε ∈ (0, ε0);
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(β) the functions φ(·, ε) converge pointwise a.e. in B to some function
φ0 ∈ H1

2 ∩ L∞(B, R3) as ε → +0.

By Proposition 2 of Vol. 1, Section 4.5, we obtain from the inner variations
that a critical point X of Dirichlet’s integral in the class C(Γ, S) satisfies

(4) ∂D(X, λ) = 0 for all λ = (μ, ν) ∈ C1(B, R2).

Here ∂D(X, λ) denotes the first inner variation of the Dirichlet integral, given
by

(5) 2∂D(X, λ) =
∫

B

{a(μu − νv) + b(μv + νu)} du dv,

where a and b denote the functions

(6) a = |Xu|2 − |Xv |2, b = 2〈Xu, Xv 〉.

Moreover, applying outer variations, it follows that

(7) lim
ε→+0

1
ε

{D(Xε) − D(X)} =
∫

B

〈∇X, ∇φ0〉 du dv.

In fact, if {εn} is a sequence of positive numbers tending to zero, then
φn(w) := φ(w, εn) → φ0(w) a.e. on B.

By Egorov’s theorem, for any δ > 0 there is a compact subset Bδ of B
with meas (B \ Bδ) < δ such that limn→∞ |φ0 − φn|0,Bδ

= 0. By virtue of
(α) and of Poincaré’s inequality (see Morrey [8], Theorem 3.6.4) we then infer
that the H1

2 (B)-norms of the φn are uniformly bounded. From this we deduce
that the sequence φn converges weakly in H1

2 (B, R3) to φ0, and this implies
relation (7).

The following result states that the two kinds of stationary minimal sur-
faces are identical if S and ∂S are sufficiently smooth.

Theorem 1. Assume that S and ∂S are of class C1 and that Γ is rectifi-
able. Then every stationary minimal surface in C(Γ, S) is a stationary point
of Dirichlet’s integral in C(Γ, S). If S and ∂S are of class C3,β , β ∈ (0, 1),
then also the converse holds true, that is, every stationary point of Dirichlet’s
integral in C(Γ, S) furnishes a stationary minimal surface in C(Γ, S).

For the proof we need the following auxiliary result:

Lemma 1. Let Xε = X + εφ(·, ε), 0 ≤ ε ≤ ε0, be an outer variation (i.e. an
admissible variation of type II) of a surface X ∈ C(Γ, S), and let φ0 = φ(·, 0).
Then we have:

(i) For almost all w ∈ I, the vector φ0(w) is a tangent vector of S at X(w).
If X(w) lies on ∂S, then φ0(w) is an interior tangent vector.

(ii) If, in addition to our general assumption, the arc Γ is of class C1 or
if X is a stationary minimal surface, then φ0(w) is tangent to Γ at X(w) for
almost all w ∈ C = ∂B \ I.
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Proof. Choose a sequence {εn} with εn → +0 such that φ(w, εn) → φ0(w) for
a.e. w ∈ ∂B. Then assertion (i) follows from

φ(w, εn) =
1
εn

{Xεn(w) − X(w)}

and from X(w), Xεn(w) ∈ S for a.a. w ∈ ∂B.
(ii) is verified in the same way. (If Γ is only rectifiable we note that it

has a tangent everywhere except at countably many points. Moreover, if X
is a minimal surface then it follows from Theorem 1 in Vol. 1, Section 4.7
that, for almost all w ∈ C = ∂B \ I, the curve Γ has a tangent at the
point X(w).) �

Now we turn to the

Proof of Theorem 1. (i) Let X be a stationary minimal surface in C(Γ, S). In
order to show that X is a stationary point of the Dirichlet integral, we have
to verify (3) for all admissible variations {Xε} |ε|<ε0 of X. Since the case of
inner variations (type I) has already been settled in Section 4.5 of Vol. 1, it
suffices to consider variations of type II. In view of (7) we have to show

(8)
∫

B

〈∇X, ∇φ0〉 du dv ≥ 0.

The Courant–Lebesgue lemma (see Section 4.4 of Vol. 1) shows that, given
any δ ∈ (0, 1), there are two radii r1(δ) and r2(δ) with δ ≤ r1, r2 ≤

√
δ such

that

(9)
∫

γk

∣∣∣∣∂X

∂ν

∣∣∣∣ ds =
∫

γk

∣∣∣∣∂X

∂t

∣∣∣∣ ds ≤ M

{log 1
δ }1/2

holds true for γ1 := B ∩ ∂Br1 (1) and γ2 := B ∩ ∂Br2 (−1), where M =
const

√
D(X). (Here ν and t denote unit normal and unit tangent to γ1 and

γ2, respectively.)
On account of Theorem 2 in Section 4.7 of Vol. 1 we have

(10)
∫

Ωδ

〈∇X, ∇φ0〉 du dv =
∫

∂Ωδ

〈
∂X

∂ν
, φ0

〉
ds,

where Ωδ := B \ {Br1(1) ∪ Br2(−1)}. Letting δ tend to zero, we infer from
(9) and (10) that

(11)
∫

B

〈∇X, ∇φ0〉 du dv =
∫

∂B

〈
∂X

∂r
, φ0

〉
ds.

By (iii) and (iv) of Definition 1 it follows that
〈

∂X

∂r
, φ0

〉
≥ 0 on I = ∂B ∩ {Imw < 0}
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holds true, whereas in view of Lemma 1 we obtain
〈

∂X

∂r
, φ0

〉
= 0 a.e. on C = ∂B ∩ {Imw ≥ 0}.

Consequently we have ∫
∂B

〈
∂X

∂r
, φ0

〉
ds ≥ 0,

whence the identity (11) implies (8).
(ii) Let us now consider a stationary point X of Dirichlet’s integral. By the

results of Chapter 4 such a mapping X is a minimal surface, that is, equations
(1) and (2) are satisfied in B (cf. equations (5)–(7)). The regularity results of
2.4 imply that X ∈ C1(B ∪ I, R3). Thus it remains to prove conditions (iii)
and (iv) of Definition 1. This will be carried out by applying the fundamental
lemma of the calculus of variations to the equation

(12)
∫

∂B

〈
∂X

∂r
, φ0

〉
ds ≥ 0

which follows from (3), (7) and (11). As we shall see it will be enough to
consider outer variations

Xε = X + εφ(·, ε), 0 ≤ ε < ε0,

with
support φ(·, ε) ⊂ B ∪ I.

Then also supp φ0 ⊂ B ∪ I, and (12) reduces to

(13)
∫

I

〈Xr, φ0〉 ds ≥ 0.

Consider now an arbitrary function V ∈ C1
c (I, R3) with V (w) ∈ TX(w)S for

all w ∈ I and

(14) 〈V (w), N∂S(X(w))〉 < 0 for all w ∈ I2.

Here and in the sequel, the subsets I1 and I2 of I be defined in the same way
as in Definition 1.

Then we solve the initial value problem

D

dε

d

dε
Z(w, ε) = 0,

Z(w, 0) = X(w),
dZ

dε
(w, 0) = V (w)

for fixed w ∈ I and 0 ≤ ε < ε0 with 0 < ε0 � 1, where D
dε denotes the

covariant derivative on S. In other words, we define Z(w, ε) as the geodesic
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flow on S starting at X(w) in direction of V (w), w ∈ I. This flow exists for
0 ≤ ε < ε0 and w ∈ I, where ε0 denotes a sufficiently small positive number,
and we have

Z(w, ε) = X(w) + εΨ(w, ε) = X(w) + εV (w) + o(ε)

for any w ∈ I, as well as

Z(w, ε) = X(w) for w ∈ I \ supp V and 0 ≤ ε < ε0.

Therefore we obtain

Ψ(·, ε) ∈ C1
c (I, R3), Ψ(w, 0) = V (w) for w ∈ I

and
Z(w, ε) ∈ S for (w, ε) ∈ I × [0, ε0).

Then we extend Ψ(·, ε) to functions φ(·, ε) for class C1
c (B∪I, R3) which depend

smoothly on (w, ε) ∈ B ∪ I × [0, ε0), and set

Xε(w) := X(w) + εφ(w, ε) for w ∈ B and 0 ≤ ε < ε0.

By construction we have Xε ∈ C(Γ, S), and the function φ0 := φ(·, 0) satisfies
φ0(w) = V (w) for all w ∈ I. Consequently, the relation (13) holds true. This
implies

(15)
∫

I

〈Xr, V 〉 ds ≥ 0

for every V ∈ C1
c (I, R3) with V (w) ∈ TX(w)S for all w ∈ I which, in addition,

satisfies 〈V (w), N∂S(X(w))〉 ≤ 0 for w ∈ I2. (In contrast to (14), we may
admit the equality sign in the last inequality as can be proved by a straight-
forward approximation argument.)

Let us write

Xr = X ′
r + X ′ ′

r , X ′
r ∈ TXS, X ′ ′

r ⊥ TXS;

then (15) is equivalent to

(16)
∫

I

〈X ′
r, V 〉 ds ≥ 0.

Suppose now that w0 ∈ I1. Then there exists some ρ > 0 such that Iρ(w0) :=
I ∩ Bρ(w0) is contained in I1, and we infer that

∫
Iρ(w0)

〈X ′
r, V 〉 ds ≥ 0

is satisfied for every V ∈ C1
c (Iρ(w0), R3) with V (w) ∈ TX(w)S, w ∈ Iρ(w0),

and since the same inequality holds if we replace V by −V , we even have
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(17)
∫

Iρ(w0)

〈X ′
r, V 〉 ds = 0.

The fundamental lemma of the calculus of variations yields X ′
r = 0 on Iρ(w0),

whence Xr(w0) = X ′ ′
r (w0). Consequently the normal derivative Xr(w0) is

perpendicular to TX(w0)S for every w0 ∈ I1, and we have verified property
(iii) of Definition 1.

Similarly we infer from (15) that condition (iv) of Definition 1 is fulfilled.
We leave it as an exercise for the reader to carry out the details. �

Remarks and Generalizations

(i) Analogous to the Definitions 1 and 2 one can define stationary minimal
surfaces in C(S) (or C+(S) or C(Π, S)) as well as stationary points of the
Dirichlet integral in C(S) (or in C+(S), or C(Π, S), respectively). We only
have to replace I by ∂B, C by the empty set, and C(Γ, S) by C(S) (or by
C+(S), or C(Π, S)); all statements about Γ are now to be omitted. Then,
analogous to Theorem 1, we obtain

Theorem 2. Assume that S and ∂S are of class C1. Then every stationary
minimal surface in C(S) (or in C+(S) or C(Π, S)) is a stationary point of
Dirichlet’s integral in C(S) (or in C+(S) or C(Π, S)). If S and ∂S are of class
C3+β , β ∈ (0, 1), also the converse holds true.

A stationary minimal surface in C(S) will also be called stationary minimal
surface with respect to S, or: with a free boundary on S.

If ∂S = ∅ and S ∈ C2,β , 0 < β < 1, then a stationary point of Dirichlet’s
integral is even of class C2,β up to its free boundary, according to results by
Dziuk and Jost. In this case, the second statements of the Theorems 1 and 2
also hold under the assumption S ∈ C2,β .

(ii) If we want to define stationary minimal surfaces X : Ω → R
3 with

a free boundary on S and critical points of the Dirichlet integral with a free
boundary on S which are defined on multiply connected parameter domains
Ω or even on Riemann surfaces, the matter is slightly more complicated. We
are not anymore allowed to fix Ω, but only the conformal type of Ω can be
prescribed. Then the boundary behaviour of the minimal surface does not
only depend on S but also on the boundary ∂Ω of the parameter domain.
However, we never have a real problem. For instance, a theorem of Koebe [1]
states that every k-fold connected domain in C is conformally equivalent to a
bounded domain in C whose boundary consists of k disjoint circles. Therefore
we can essentially proceed as before.

(iii) In Section 1.6 we shall also consider stationary minimal surfaces
X : Ω → R

3 having their boundaries on a simplex or, more generally, on
a polyhedron. In this case we shall call a minimal surface X stationary if for
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some finite subset M of ∂B the surface X is of class H1
2 (B, R3)∩C1(B \M, R3)

and if X meets the interiors of the faces of the polyhedron orthogonally along
∂B \ M .

(iv) In the special case that Γ is a rectifiable Jordan curve and that C(Γ ) is
defined as in Chapter 4 of Vol. 1, we obtain the following result: The solutions
of Plateau’s problem within the class C(Γ ) which are not necessarily minimiz-
ers of the area are precisely the stationary points of the Dirichlet integral in
C(Γ ), i.e., those elements X of C(Γ ) which satisfy

lim
ε→0

1
ε

{D(Xε) − D(X)} = 0

for all admissible variations {Xε} |ε|<ε0 of X which are of class C(Γ ). These
admissible variations are defined as in Definition 2 if we replace S and I by
the empty set, and C by ∂B.

Let us close this section with a simple

Example. If S is the boundary of an open, convex and bounded subset K

of R
3 of class C1, and if E is a plane which intersects S orthogonally (e.g.,

a plane of symmetry of K ), then a conformal map X from B onto E ∩ K

defines a stationary minimal surface having S ∩ E as its trace. Therefore the
plane disks bounded by the great circles of a sphere S are stationary minimal
surfaces in S. As we shall see in Section 1.7, they are the only stationary
disk-type surfaces in the sphere.

Moreover, the ellipses in an ellipsoid E, having two of the axes of E as
their principal axes, are three stationary minimal surfaces in E. It is unknown
whether they are the only stationary surfaces in E which are of the type of
the disk.

1.5 Necessary Conditions for Stationary Minimal Surfaces

Let us agree that throughout this section we consider minimal surfaces X : Ω →
R

3, the parameter domain Ω of which will be bounded by finitely many disjoint
circles C1, C2, . . . , Ck. Moreover, the surfaces X will be stationary minimal
surfaces with a free boundary on a polyhedron S or on a closed, orientable,
regular C1-surface S.

Now, if V is an arbitrary constant vector in R
3, then an integration by

parts shows that
∫

∂Ω

〈
∂X

∂ν
, V

〉
ds =

∫
Ω

〈ΔX, V 〉 ds = 0.

(If S is a polyhedron this can be justified as in Section 1.4.) Since X is
stationary, we know that (almost) everywhere on ∂Ω
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∂X

∂ν
(w) = ±NS(X(w)) ·

∣∣∣∣∂X

∂ν
(w)

∣∣∣∣

= ±NS(X(w)) ·
∣∣∣∣∂X

∂t
(w)

∣∣∣∣ ,

where NS is the surface normal of S, and ∂
∂ν ( ∂

∂t ) denotes the normal (tan-
gential) derivative along ∂Ω. Furthermore, s denotes the parameter of the arc
length on ∂Ω.

Therefore we have obtained the following

Proposition 1. If X : Ω → R
3 is a stationary minimal surface with respect

to a surface S, X and S satisfying the general assumption, then

(1)
∫

∂Ω

NS(X(w)) ·
∣∣∣∣∂X

∂t
(w)

∣∣∣∣ ds = 0

unless 〈 ∂X
∂ν , NS(X)〉 changes its sign on ∂Ω.

Remarks. (i) If we denote by Σ := X|∂Ω the trace of a stationary minimal
surface X, then formula (1) could also be written as

∫
Σ

μ(P )NS(P ) dH1 = 0,

where H1 is the one-dimensional Hausdorff-measure in R
3 and μ(P ) the num-

ber of points w ∈ ∂Ω such that X(w) = P .

(ii) The geometric interpretation of formula (1) is that the integral of the
normal NS over the trace Σ of the stationary minimal surface X vanishes.

(iii) Here are some conditions implying that

(2)
〈

∂X

∂ν
, NS(X)

〉
does not change its sign on ∂Ω.

A first condition is

(I) S is smooth and X has no branch points on ∂Ω.
Recall that w ∈ Ω is a branch point of X if | ∇X(w)|2 = 0. Since by

conformality we have the identity | ∂X
∂ν |2 = 1

2 | ∇X|2 on ∂Ω, property (2) follows
from (I).

(II) More generally, for surfaces S of class C4 (or C3,β , β ∈ (0, 1)), the absence
of branch points of odd order on ∂Ω is also sufficient for (2).
This follows from the expansion formula in Section 2.10 which describes the
asymptotic behavior of the minimal surface near a boundary branch point.

(III) The surface X(Ω) stays on one side of S.
Clearly, (2) follows from this property of X which, in turn, is true if
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(IV) S is the boundary of a convex body K ∈ R
3, as we can infer from the

maximum principle, or if

(V) S is the graph of a C2-function defined on the 2-sphere S2 such that the
mean curvature of S with respect to the inward unit normal NS is nowhere
negative.
This follows from a maximum principle to be stated in the Chapter 4.

(iv) A system Γ = {Γ1, . . . , Γk } of rectifiable curves Γj on a surface S is
sometimes called a system of balanced curves on S if

∫
Γ

NS ds = 0,

that is, if
k∑

j=1

∫
Γj

NS ds = 0

holds true (here s denotes the parameter of the arc length of Γ ).
According to Proposition 1, formula (1), we have

∫
Σ

NS ds = 0

for the free trace Σ of a minimal surface X with a free boundary on S and sat-
isfying (2), since ds = |Xt| ds if s denotes the arc length on ∂Ω. Consequently,
we can read Proposition 1 as follows:

The free trace Σ of a stationary minimal surface in C(S) is a system of
balanced curves.

We shall now draw several conclusions from Proposition 1.

Corollary 1. Let X : Ω → R
3 be a stationary minimal surface with respect to

a support surface S which is the boundary of an open set K in R
3, and assume

that X(Ω) is contained in K. Then the free trace X(∂Ω) of X on S cannot
be contained in a subset of S which is mapped by the Gauss map NS : S → S2

of S into an open hemisphere of S2.

Corollary 2. In particular there are no stationary minimal surfaces which
have their boundaries on a paraboloid or on one sheet of a hyperboloid of
two sheets. Likewise there is no stationary minimal surface with respect to a
simplex whose trace intersects only three of the four faces.

Corollary 3. If X and S are as in Corollary 1 and if X(∂Ω) is contained in a
subset U of S whose Gauss image NS(U ) is contained in a closed hemisphere
H of S2, then NS(X(∂Ω)) is the great circle ∂H.
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Fig. 1. (a) The integral of the unit normal bundle along a balanced curve on a smooth

surface vanishes. (b) The integral of the unit normal bundle along this unbalanced curve

on the same surface has a non-vanishing component pointing to the reader

Corollary 4. If X and S are as in Corollary 1, and if Ω is simply connected,
S is of class C1, and if the image of the trace X(∂Ω) under the Gauss map
NS : S → S2 is a great circle, then Σ is a plane curve, and X is a plane
minimal surface.

Proof. We can now assume that Ω is the unit disk B. Let X∗ be the adjoint
minimal surface of X. Then we have

(3) Xu = X∗
v and Xv = −X∗

u in B,

or, in polar coordinates,

X∗
r = − 1

r
Xθ and X∗

θ = rXr,

hence for 0 ≤ θ ≤ 2π

X∗(1, θ) = X∗(1, 0) +
∫ θ

0

X∗
θ (1, ϕ) dϕ(4)

= X∗(1, 0) +
∫ θ

0

Xr(1, ϕ) dϕ.

By assumption, the normals of S along Σ are contained in a plane. Conse-
quently the vectors Xr(w) = ±|Xr(w)|NS(X(w)), w ∈ ∂B, lie in a plane,
and (4) implies that X∗(1, θ) is contained in a parallel plane. The maximum
principle now yields that X∗(Ω) lies in this plane, and the assertion follows
from (3). �
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Corollary 5. Stationary minimal surfaces of the type of the disk (i.e., Ω = B)
with their free boundary on a cylinder are plane disks orthogonal to the cylinder
axis.

This is an immediate consequence of the preceding corollary. Note that
the infinite strip is excluded, as our definition of “stationary” implies “finite
area”.

1.6 Existence of Stationary Minimal Surfaces in a Simplex

The examples of stationary minimal surfaces with a free boundary on a sup-
porting surface S have been rather trivial since all of them were planar sur-
faces. The first nontrivial example of a minimal surface with a free boundary
on a tetrahedron was found by H.A. Schwarz in 1872 (cf. Math. Abhandlungen
[2], vol. 1, pp. 149–150); we have copied Schwarz’s drawing in Fig. 1. Schwarz
obtained this surface as an adjoint of the minimal surface bounded by four
consecutive edges of a regular tetrahedron. In the following we describe a re-
sult of B. Smyth [1] which may be viewed as a generalization of the Schwarz
surface to arbitrary simplices in R

3.

Theorem 1. Let S be the boundary of a simplex in R
3. Then there are exactly

three stationary minimal surfaces of disk-type having connected intersections
with each of the four faces of S. They neither have branch points in B nor on
the arcs of ∂B which are mapped into the faces of S.

Remark. Exactly three means, of course, exactly three except for reparame-
trizations.

Proof of Theorem 1. First of all, in order to prove existence, choose a fixed
order H1, . . . , H4 of the faces Hi of S and let N1, . . . , N4 be their outward
unit normals. Next choose four real numbers li such that

∑4
i=1 liNi = 0 (note

that all li are different from zero). Now let Γ be the quadrilateral which is
determined by the four vectors l1N1, . . . , l4N4 just in this order, i.e., Γ (t) :=
4l1N1 · t for 0 ≤ t ≤ 1

4 , Γ (t) = l1N1 +4(t − 1
4 ) · l2N2 for 1

4 ≤ t ≤ 1
2 , etc. Since Γ

can be projected onto a convex curve in a plane, there is exactly one solution
Y of the Plateau problem P(Γ ) (see Section 4.9 of the Vol. 1). By the reflection
principle (cf. Vol. 1, Section 4.8), Y is of class H1

2 (B, R3) ∩ Cω(B \ M, R3),
where M contains the four points of ∂B corresponding to the corners of Γ .
Then the minimal surface X̂ := −Y ∗ is stationary with respect to a simplex
Ŝ similar to S. After a suitable choice of a > 0 and A0 ∈ R

3, the surface
X := A0 + aX̂ is a stationary minimal surface with respect to the given
simplex S, which crosses the faces H1, . . . , H4 in this order.

Now note that, since a stationary minimal surface has to cross all four
faces of the simplex (Corollary 2 of Section 1.5), one can select any of them
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Fig. 1. Schwarz’s stationary minimal surface in a tetrahedron

as the first to be crossed. But then the three possible choices of the face to
be crossed next but one lead to three geometrically different stationary mini-
mal surfaces. This proves the existence of at least three stationary minimal
surfaces.

Before we show the uniqueness part of the theorem let us show that the
length of the trace X|∂B of any stationary minimal surface in the simplex S
having connected intersections with the faces is finite.

Denote by C1, . . . , C4 the four open subarcs of ∂B which are mapped by X
into the interiors of the faces H1, H2, H3, H4 of the simplex. Next, note that the
adjoint minimal surface X∗ of X also belongs to H1

2 (B, R3) ∩ Cω(B \ M, R3),
where M = ∂B \

⋃4
1 Ci. By virtue of the maximum principle and the boundary

condition, we obtain

∂X∗

∂θ
=

∂X

∂r
=

∣∣∣∣∂X∗

∂r

∣∣∣∣ · Ni on Ci,

whence we see that X∗ maps the four arcs Ci monotonically onto four mutually
nonparallel straight lines L̂i parallel to Ni. The Courant–Lebesgue lemma now
implies that L̂i intersects L̂i+1(mod 4), and that X∗ is continuous on B and
bounded by the quadrilateral Γ given by the line segments Li on L̂i between
the intersections of L̂i with L̂i−1(mod 4) and L̂i+1(mod 4).

In particular we have for i = 1, . . . , 4 that

li =
∫

Ci

|Xθ | ds =
∫

Ci

|X∗
θ | ds < ∞

(one can now also show that X is continuous in B). Since the boundary curve
X|∂B is balanced (see Section 1.5), we have
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4∑
i=1

liNi = 0.

This equation shows that the lengths of the intercepts of X with the faces are
determined up to a constant, since there is only one linear relation between
four vectors in R

3, no three of which are dependent.
Consequently, if Y is another stationary minimal surface in the simplex S

which intersects the faces in the same order as X, then the bounding quadrilat-
erals of X∗ and Y ∗ are homothetic, hence also X∗(B) and Y ∗(B), as follows
from the uniqueness theorem in Section 4.9 of Vol. 1. Therefore X(B) and
Y (B) are homothetic too, and they even coincide since they are bounded by
the same simplex.

Hence we have shown that a particular choice of the order in which the
faces are crossed determines the minimal surface uniquely. Hence only three
essentially different stationary minimal surfaces remain. This proves the as-
sertion. �

A stationary minimal surface X in the simplex S has no interior branch
points since X∗ has none (Theorem 1 in Vol. 1, Section 4.9). The simplex is
convex; therefore X stays on one side of each of the faces Hi. Hence we may
first continue X by reflection across Hi as a minimal surface and then exclude
branch points on Ci by means of the expansion formulas stated in Section 3.2
of Vol. 1.

Remark. By means of the theorem of Krust presented at the end of Sec-
tion 3.3 of Vol. 1, it follows that the three stationary solutions of Smyth are
graphs, since their adjoints are graphs; thus, in particular, they are embedded
minimal surfaces.

1.7 Stationary Minimal Surfaces of Disk-Type in a Sphere

In this section we shall prove that plane disks are the only stationary minimal
surfaces of disk type that have their boundaries on a sphere.

Theorem. Let X ∈ C1(B, R3) ∩ C2(B, R3) satisfy

(1) ΔX = 0 in B,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.

Moreover, assume that X(∂B) is contained in a sphere S and that the normal
derivative ∂X

∂ν is orthogonal to S along ∂B. Then X(B) is a plane disk.
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Fig. 1. The catenoid yields a doubly connected non-planar minimal surface intersecting a

sphere perpendicularly. On the other hand, all simply connected stationary minimal surfaces

in a sphere are planar surfaces

Remark. Note that the theorem is false if we admit minimal surfaces of
a different topological type. For example, any sphere S bounds a catenoid
intersecting S orthogonally along its trace.

Proof of the Theorem. We shall prove in Chapter 2 that

(3) X is real analytic in B.

Then the arguments used in Chapter 3 of Vol. 1 show the following:

(4) X has only finitely many isolated branch points in B. The surface
normal N(w) of X(w)and hence also the coefficients of the
second fundamental form of X can be extended continuously
to all of B.

Let M ⊂ B denote the set of branch points, i.e. of points w with |Xu(w)| =
|Xv(w)| = 0. Then, by H. Hopf’s observation (cf. Vol. 1, Section 1.3), the
function f(w) = 1

2 (L − N ) − iM is holomorphic in B \ M and continuous on B̄.
Consequently all interior singularities of f are removable and f is holomorphic
in all of B. Let us now assume without loss of generality that S = S2, and
consider the boundary condition, which is equivalent to

Xρ(eiθ) = λ(eiθ)NS(X(eiθ))
= λ(eiθ)X(eiθ),

where NS(X) denotes the outward unit normal of S at X and λ(θ) :=√
E(eiθ). Next we differentiate this equation in ∂B \ M with respect to θ. We
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obtain (′ = ∂
∂θ ) : Xρθ = λ′X + λXθ = λ′

λ Xρ + λXθ, and a comparison with
formula (36) of Section 1.3 in Vol. 1 shows that the boundary values of the
imaginary part β of g := w2f vanish. Hence β ≡ 0 in B, and therefore
α := Re g is identically constant in B, whence α ≡ α(0) = 0. Thus L = N

and M = 0 in B. Now Weingarten’s equations (cf. Vol. 1, Section 1.2, (38) ff.
and (42)) imply that

∇N = −H∇X = 0 in B \ M.

Therefore N ≡ const in B and X(B) is contained in a plane orthogonal to N .
�

Remark. Suppose that X ∈ C1(B, R3) ∩ C2(B, R3) is a disk-type surface of
constant mean curvature H. Then our previous reasoning shows that f(w) =
1
2 (L − N) − iM is again holomorphic, and the same arguments as before yield
that L = N and M = 0, as one has the same asymptotic expansion about
branch points as for minimal surfaces (see Heinz [15]). Then it is fairly easy
to prove that X is a parametrization of a spherical cap. This result as well as
Theorem 1 are due to Nitsche [35]. Furthermore, one can construct an example
where this spherical cap actually covers a whole sphere of radius 1/|H|.

1.8 Report on the Existence of Stationary Minimal Surfaces
in Convex Bodies

Let S ⊂ R
3 be an embedded submanifold of R

3 without boundary and of
genus g ≥ 1, that is, S has at least one hole to be spanned. Then there exists
a closed polygon Π such that the class C(Π, S) is nonempty, and we can
prove the existence of a stationary minimal surface X which has its boundary
on S and such that X|∂B is not contractible in R

3 \ Π, see Theorem 1 in
Section 1.3. Such a surface X is constructed as a solution to the variational
problem P(Π, S) : DB(X) → min in C(Π, S). In Section 1.6, on the other hand,
we have considered the case of a simplex S, and we have proved the existence
of three (distinct) stationary minimal surfaces in C(S). Clearly these surfaces
cannot be solutions of the minimum problem P(S) : DB(·) → minimum in
C(S) as the constant surfaces have a smaller Dirichlet integral, and the classes
C+(S) and C(Π, S) are void. Thus we cannot use a minimizing procedure to
obtain nondegenerate minimal surfaces in S.

Consider now the ellipsoid E given by x2

a2 + y2

b2 + z2

c2 = 1, with a > b > c.
As we have already noted, there exist at least three geometrically distinct,
stationary minimal surfaces inside E which are of the type of the disk, namely,
the parts of the coordinate planes {x = 0}, {y = 0}, and {z = 0} lying in the
interior of E.

Thus, if S is the boundary of a convex body K ⊂ R
3, it is tempting to

conjecture that there exist at least three geometrically different stationary
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minimal surfaces with boundary on S. As mentioned before, we cannot ob-
tain these surfaces by a minimum procedure. Hence more refined minimax
procedures (or saddle-point methods) have to be used if we want to find such
surfaces which are not minimizers. As a first result in this direction Struwe
[3] proved the following

Theorem 1. For any embedded surface S of class C4 which is diffeomorphic
to the unit sphere S2 in R

3, there exists a stationary minimal surface X ∈
C(S) of the type of the disk which has its free boundary on S.

Struwe’s proof applies a minimax principle from Palais [1] to a modified
class of variational problems Pα, α > 1, which satisfy the Palais–Smale con-
dition and hence admit a saddle-type solution Xα. A nonconstant stationary
minimal surface is obtained by passing to the limit α → 1 via a suitable sub-
sequence of the surfaces Xα. This approach can be viewed as an adaptation
of a method due to K. Uhlenbeck (see, for instance, Sacks and Uhlenbeck [1]).

Struwe’s theorem does not answer the question as to whether one can find
an embedded stationary minimal surface with its free boundary on the surface
S of some convex body K, or if there is at least an immersed stationary
minimal surface in C(S). In case that S is the boundary of a strictly convex
subset K ⊂ R

3 of class C4, Grüter and Jost [1] have found the following
stronger result.

Theorem 2. There exists an embedded, stationary disk-type minimal surface
having its free boundary on S (and values in K).

The proof of this theorem uses methods from geometric measure theory
which have not been treated in these notes. Let us only mention some main
ingredients of the arguments used by Grüter and Jost. First the minimax
methods from Pitts [1] are employed to obtain a so-called almost minimizing
varifold in the sense of Pitts [1] and Simon and Smith [1], which meets S
transversally along its trace. The regularity of this varifold at its free boundary
relies on an extension of Allard’s regularity results to free boundary value
problems due to Grüter and Jost [2]. Finally, Simon and Smith proved the
existence of a minimally embedded two-sphere in any manifold diffeomorphic
to the three-sphere. The methods of these authors are used in an essential
way to show that the above varifold is both embedded and simply connected,
that is, the minimizing varifold is of the type of the disk or of a collection of
disks.

Theorem 2 also extends to Riemannian manifolds if one adapts methods
by Pitts [1] and by Meeks, Simon, and Yau [2].

The following theorem due to Jost [15] (cf. also [9] for an earlier, more
restricted result) shows that a closed convex surface S bounds in fact three
different stationary minimal surfaces.

Theorem 3. Let S be the boundary of a strictly convex body K ⊂ R
3 of

class C5. Then there exist three geometrically different, stationary, embedded
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minimal surfaces in K which are of disk type and have their free boundaries
on S.

In fact, Jost [15] proved that the assertion still holds true if S is merely
H-convex.

A generalization of Theorem 2 to convex polyhedral surfaces S was estab-
lished by Jost [15]. His result to be stated next contains a part of the Theorem
of B. Smyth as a special case.

Theorem 4. Let S be a compact convex polyhedron in R
3. Then there exists

an embedded minimal surface X of the type of the disk meeting S perpendic-
ularly along its boundary such that no segment of any edge of S is contained
in the boundary of X.

1.9 Nonuniqueness of Solutions to a Free Boundary
Problem. Families of Solutions

Examples of minimal surfaces with free or partially free boundaries on a pre-
scribed supporting surface S were already investigated during the last cen-
tury. The first geometric problem leading to minimal surfaces with free bound-
aries was posed by the French mathematician Gergonne [1] in 1816, but a cor-
rect solution was only found by H.A. Schwarz in 1872 (see [2], pp. 126–148,
and Tafel 4 at the end of vol. I).

Gergonne’s problem consists in finding a minimal surface spanning a frame
〈Γ1, Γ2, S1, S2〉 that consists of two parallel faces S1 and S2 of some cube and of
two straight arcs Γ1 and Γ2 lying on opposite faces of the cube.3 As depicted in
Fig. 1, we assume that the two diagonals Γ1 and Γ2 are perpendicular to each
other. In contrast to his predecessors, Schwarz arrived at correct stationary
surfaces spanning the configuration 〈Γ1, Γ2, S1, S2〉 since he had discovered
the proper free boundary condition: each stationary surface has to meet the
two supporting surfaces at a right angle. In addition to an area minimizing
solution which is depicted in Fig. 1, Schwarz discovered infinitely many other
non-congruent stationary minimal surfaces in the frame 〈Γ1, Γ2, S1, S2, S3, S4〉
consisting of the four vertical faces Si and the two horizontal arcs Γ1, Γ2.
In other words, a partially free boundary problem may have infinitely many
distinct (i.e. noncongruent) solutions.

Let us set up the definition of free or partially free boundary problems in
some more generality than in Section 1.4. We consider boundary configura-
tions 〈Γ, S〉 in R

3 consisting of a system Γ of Jordan curves Γ1, . . . , Γm and
of a system S of surfaces S1, . . . , Sn. Each of the curves Γi is either a closed
curve or else a Jordan arc with end points on S. We shall call S the free part

3 In fact, the original form of this problem is somewhat different; it was stated as a partition

problem for the cube.
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Fig. 1. (a) The Schwarzian chain 〈Γ1,Γ2,S1, S2〉 forming the boundary frame for Gergonne’s

problem. (b) Gergonne’s surface, the area minimizing solution of Gergonne’s problem dis-

covered by Schwarz. (c) Gergonne’s surface generates the fifth periodic minimal surface

known to Schwarz (Lithograph by H.A. Schwarz)

of the configuration 〈Γ, S〉. The fixed part Γ of the boundary frame may be
empty.

A minimal surface M is said to be stationary within the configuration 〈Γ, S〉
if the boundary of M lies on Γ ∪ S and, moreover, if M meets S orthogonally
at the part Σ = ∂M ∩ S of its boundary. As usual, we shall call Σ the free
trace of M on S.

Remark. If this definition is to make sense we have to assume that each
of the support surfaces Sj is a regular surface of class C1. Furthermore we
shall suppose the each Γk is a piecewise smooth regular arc. Similarly, M

is supposed to be smooth except for finitely many points. Note that in this
section we assume that M meets S everywhere at a right angle (except for
at most finitely many points). In other words, we essentially exclude the case
that ∂M attaches in segments (i.e. intervals) to ∂S since in this case the two
surfaces M and S need not include an angle of ninety degrees.

The free-boundary problem of a configuration 〈Γ, S〉 is the problem to de-
termine a stationary minimal surface within 〈Γ, S〉. As before, such a problem
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Fig. 2. (a) A partially free boundary problem for a frame 〈Γ1, Γ1, S1, S2〉. (b) A part of

Henneberg’s surface forms a disk-type solution of the problem. Note that S1 and S2 are

surfaces with boundary. As in the present case, this can lead to singularities of the free

boundary of a solution (see Chapters 1 and 2 of Vol. 3)

is said to be partially free if Γ is nonvoid; otherwise we call it completely free
or simply free.

As usual we describe minimal surfaces M by mappings X from a planar
parameter domain Ω or from a Riemann surface R into R

3; ∂Ω and ∂R are
assumed to be piecewise smooth, and X will be smooth in Ω or R except for
at most finitely many points on ∂Ω or ∂R.

It is trivial to find supporting surfaces S which bound continua of station-
ary minimal surfaces. The sphere, the cylinder, or the torus furnish simple
examples. In these cases, however, all minimal surfaces belonging to the same
continuum are congruent to each other.

Therefore it is of interest to see that there are free or even partially free
boundary problems which possess denumerably many noncongruent solutions,
or even continua of noncongruent solutions.

As we have mentioned above, Gergonne’s problem furnishes an example
of such a free boundary problem. In fact, using the helicoids, Schwarz was
able to exhibit an even simpler and completely elementary example of such a
boundary configuration. Consider a boundary frame 〈Γ1, Γ2, S〉 consisting of
a cylinder surface S and two straight arcs Γ1 and Γ2 which are perpendicular
to each other as well as to the cylinder axis and pass through the axis at
different heights. This configuration bounds denumerably many left and right
winding helicoids which meet the cylinder S at a right angle (Fig. 3). Only
two of these helicoids are area minimizing, the others are only stationary.

A slight modification of the previous example yields a boundary frame
〈Γ, S〉 consisting of a cylinder S as surface of support and of a polygon Γ
made of a piece A of a cylinder axis and of two straight segments A1 and
A2 which connect A with S; we assume that A1 and A2 are perpendicular to
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each other. There are again infinitely many stationary surfaces for 〈Γ, S〉, all
of which are helicoidal surfaces (cf. Fig. 4).

Fig. 3. Three of infinitely many noncongruent minimal surfaces that are stationary within

a configuration 〈Γ1, Γ2, S〉

Fig. 4. A boundary configuration 〈Γ, S〉 (a) bounding infinitely many stationary minimal

surfaces of the type of the disk; these are pieces of helicoids (b)

Next we consider a configuration 〈Γ, S〉 consisting of a circle Γ and of a
supporting surface S which bounds a continuum of noncongruent and even
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area minimizing minimal surfaces. It turns out that such an example can
be derived from the classical calculus of variation. In the following we freely
use some of these results, see Bolza [1] (Beispiel I); Bliss [1], pp. 85–127;
Carathèodory [3], pp. 340–341, 360–367; Giaquinta and Hildebrandt [1].

Let x(t), y(t), t1 ≤ t ≤ t2, be the parameter representation of a curve
contained in the upper half plane {y > 0}. The surface area of its surface
of revolution about the x-axis is given by the integral 2π

∫ t2
t1

y
√

dx2 + dy2.
Thus the minimal surfaces of revolution are described by the extremals of
the functional

∫
y
√

dx2 + dy2, y > 0, which are the parallels to the positive
y-axis,

x = x0, y > 0,

and the catenaries

(1) y = a cosh
(

x − x0

a

)
, −∞ < x < ∞,

which form a 2-parameter family of nonparametric curves, a > 0, −∞ < x0 <
∞. The point (x0, a) is the vertex of the catenary (1).

Let us consider all catenaries passing through some fixed point P =
(0, b), b > 0, on the y-axis. They must satisfy b = a cosh(x0

a ) or b = a cosh λ, if
we introduce the new parameter λ = − x0

a . Then there is a 1-1 correspondence
between all real values of the parameter λ and all catenaries passing through
(0, b) which is given by

Fig. 5. (a) Catenaries emanating from P to the right, and their wave fronts. (b) A com-

plete figure: The stable catenaries emanating from P and terminating at their envelope E,

together with their wave fronts
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y = g(x, λ) := a(λ)cosh
(

λ +
x

a(λ)

)
, x ∈ R,

(2)

a(λ) :=
b

coshλ
, λ ∈ R.

We can also write

g(x, λ) = b cosh
x

a(λ)
+ a(λ)sinh λ sinh

x

a(λ)
,

and sinh λ = ±
√

b2 − a2(λ)/a(λ).
We now consider the branches y = g(x, λ), x ≥ 0, lying in the first quadrant

of the x, y-plane. There exists exactly one conjugate point Q(λ) = (ξ(λ), η(λ))
with respect to P on each catenary (2). The points Q(λ), λ ∈ R, form a real-
analytic curve E that resembles a branch of a parabola extending from the
origin to infinity. The curve E is given by the condition

∂

∂λ
g(x, λ) = 0

and describes the envelope of the catenary arcs

Cλ = {(x, g(x, λ)) : 0 ≤ x ≤ ξ(λ)}, λ ∈ R.

The domain Ω = {(x, y) : 0 < x < ξ(λ), y > η(λ) for some λ} is simply covered

by the open arcs
◦
Cλ = Cλ \ {P, Q(λ)}.

Consider the wavefronts Wc, c > 0, emanating from P . The curves Wc are
the real analytic level lines {S(x, y) = c} of the wave function S(x, y) that
satisfies the Hamilton–Jacobi equation

S2
x + S2

y = y2

and is given by

S(x, g(x, λ)) = I(x, λ), 0 ≤ x ≤ ξ(λ),

where the right-hand side is defined by

I(x, λ) =
∫ x

0

g(u, λ)
√

1 + g′(u, λ)2 du,

and g′(u, λ) = ∂
∂ug(u, λ).

The two families of curves Cλ, λ ∈ R, and Wc, c > 0, form the complete
figure (in sense of Carathéodory) associated with the variational problem

∫
y
√

dx2 + dy2 → Extr, y(0) = b,
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in x ≥ 0, y > 0, see Fig. 5.
By Adolf Kneser’s transversality theorem, the curves Wc intersect the

catenaries Cλ orthogonally. Two curves Wc1 and Wc2 , c1 < c2, cut a piece
Cλ(c1, c2) out of each curve Cλ such that

∫
Cλ(c1,c2)

y
√

dx2 + dy2 = c2 − c1,

and c2 − c1 is the infimum of the integral
∫

y
√

dx2 + dy2 along all paths
joining Wc1 and Wc2 within Ω. In particular, if Cλ,c = {(x, g(x, λ)) : 0 ≤ x ≤
x0(λ, c)} denotes the subarc of the catenary that connects P with Wc, then
I(x0(λ, c), λ) is the infimum of the integral

∫
y
√

dx2 + dy2 taken along all
curves joining P and Wc within Ω. If we now rotate the whole configuration
shown in Fig. 5 about the x-axis, the wavefront Wc generates a surface of
revolution Sc, and each catenary Cλ,c produces a minimal catenoid Kλ,c with
the area 2πc. The catenoid Kλ,c is bounded by two parallel coaxial circles Γ
and Σλ,c centered on the x-axis. Γ is generated by the rotation of P , and
Σλ,c by the rotation of the intersection point of Cλ with Wc. Each catenoid
Kλ,c intersects Sc orthogonally and, therefore, is a stationary minimal surface
within the configuration 〈Γ, Sc〉. All catenoids Kλ,c, c fixed, have the same area
and minimize area among all surfaces of revolution bounded by 〈Γ, S〉 which
lie in the open set H generated by rotating Ω ∪ Ω∗ ∪ {x = 0, y > 0} about
the x-axis. Here Ω∗ is the mirror image of Ω at the y-axis in the x, y-plane
(cf. Fig. 6).

In fact, it turns out that the catenoids Kλ,c even minimize area among all
orientable surfaces F bounded by 〈Γ, Sc〉 that are contained in H. A well-
known projection argument shows that it suffices to prove Area(Kλ,c) ≤
Area(F ) for all oriented surfaces F with boundary on Γ ∪ Sc that are con-
tained in H + = H ∩ {x ≥ 0}.

Let now F be such a surface with γ = ∂F ∩ Sc. Then there is a region
T in the surface Sc with integer multiplicities, the boundary of which equals
γ − Σλ,c. Therefore Kλ,c − F + T is a cycle, and it follows that there is a
three-dimensional region R with integer multiplicities such that the boundary
of R is Kλ,c − F + T . Gauss’s theorem yields

(3)
∫

R

div X dvol =
∫

∂R

〈X, N∂R〉 dA,

where N∂R is the oriented unit normal to ∂R. Let X = X(x, y, z) be a field
of unit vectors normal to the foliation formed by the catenoids Kλ,c. Then we
infer from Vol. 1, Section 2.7, in particular from formula (3) that

div X = −2H,

H being the mean curvature of the leaves of the foliation. Since H ≡ 0, the
vector field X is divergence free. Since 〈X, NT 〉 = 0 and X can be chosen in
such a way that 〈X, NKλ,c

〉 = 1, we obtain
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Fig. 6. (a) Rotation of the wave front Wc about the x-axis yields half the surface Sc; the

whole surface Sc is then obtained by reflection at the plane x = 0. The curve Γ is a circle

obtained by rotating P about the x-axis. (b) This drawing depicts the configuration 〈Γ, Sc 〉
and two of the minimal leaves within 〈Γ, Sc 〉. A part of Sc is removed to permit a glimpse

into the interior

Area(Kλ,c) =
∫

Kλ,c

〈X, NKλ,c
〉 dA =

∫
F

〈X, NF 〉 dA.

Because of 〈X, NF 〉 ≤ 1, the term on the right-hand side is estimated from
above by Area(F ). Thus we have proved:

Theorem 1. There exists a configuration 〈Γ, Sc〉 consisting of a circle Γ and a
real analytic surface of revolution Sc that bounds a family {Kλ,c} of stationary
and even area-minimizing minimal surfaces of annulus-type that are really
distinct in the sense that, for any two different values λ1, λ2, the surfaces
Kλ1,c and Kλ2,c are not congruent.

A simple modification of the previous example leads to boundary configu-
rations S as shown in Fig. 7 that bound continua C of noncongruent stationary
surfaces of annulus type which have a completely free boundary on S. The
surfaces of C are even area minimizing within the class C∗ of annulus type
surfaces whose free boundaries are homologous to those of the surfaces of C.

For this purpose, we take two wavefront curves Wc1 and Wc2 , c1, c2 > 0,
contained in x > 0, y > 0. If c1 and c2 are chosen sufficiently small, both curves
terminate at the positive y-axis and meet this axis orthogonally. Reflecting
both arcs at the y-axis, we obtain two closed real analytic curves Γc1 and Γc2 ,
and their rotation about the x-axis leads to two closed torus-type surfaces
S1 and S2 that are orthogonally met by a family of catenoids, generated
by the catenary arcs Cλ(c1, c2). These catenoids are stationary annulus-type
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Fig. 7. A modification of the example depicted in Fig. 6. Any of the closed curves Wc in

(a) generates a real analytic and rotationally symmetric surface Sc as depicted in (b). Any

configuration 〈S1, S2〉 with Si := Sci bounds a one parameter family C of annulus-type

minimal leaves which are parts of catenoids. (c), (d) Parts of the configuration 〈S1, S2〉.
(e), (f) Three surfaces of the family C outside and within 〈S1, S2〉

minimal surfaces within the configuration 〈S1, S2〉, and a reasoning similar to
the previous one shows that they even minimize area within C∗ (cf. Fig. 7).

A somewhat different example, which is not rotationally symmetric, leads
to a free-boundary problem for minimal surfaces of the type of the disk, with
their boundary lying on a given real analytic torus-like surface. Let Kλ, λ ∈ R,
be the catenoids obtained by rotating the arc Cλ about the x-axis, and let K∗

λ

be the surface obtained from Kλ by reflection at the y, z-plane. Moreover, let
K− ∞ be the disk interior to the circle Γ in the y, z-plane, and let K∞ be the
plane domain exterior to Γ . We may think of K± ∞ as degenerate catenoids
obtained for λ → ±∞. Then the surfaces Kλ, K∗

λ, −∞ ≤ λ ≤ ∞, describe a
minimal foliation, singular at Γ , of the rotationally symmetric domain H.

We now introduce cylindrical coordinates (x, r, θ), where y = r cos θ, z =
r sin θ. For each r ∈ (0, b), there exists exactly one value c(r) > 0 such that
the closed, real analytic curve Γc(r) in the plane θ = 0, obtained from the
wavefront Wc(r) as described before, passes through (0, r, 0).

Denote by Lr,θ the closed curve that is obtained by rotating Γc(r) about
the angle θ around the x-axis. The curves Lr,θ, 0 < r < b, 0 ≤ θ < 2π, meet
the plane x = 0 orthogonally at the points (0, r, θ) and sweep out an open
subdomain H0 of H.
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Fig. 7. (Continued. Captions see preceding page)

Let γ0 be a real analytic Jordan curve in the plane x = 0, say, a circle,
which is contained in the open disk K− ∞ (the interior of Γ ) and does not wind
about the origin. As the point (0, r, θ) traverses the curve γ0, the curves Lr,θ

sweep out a toruslike surface S which bounds a tube G. This tube is foliated
by a family Mλ, M∗

λ, −∞ ≤ λ ≤ ∞, of minimal surfaces that are cut by S
out of the catenoids Kλ, K∗

λ. The surfaces Mλ, M∗
λ are of the type of the disk

and meet S perpendicularly; hence they are stationary within S (cf. Figs. 8
and 9). Moreover, the unit normal vectors to Mλ, M∗

λ form a divergence free
vector field on the set H \ Γ containing G which is tangent to S. Then, by an
argument parallel to the previous reasoning, all surfaces Mλ, M∗

λ have equal
area, and each oriented surface F contained in H \ Γ and with a boundary
γ homologous in S to γ0 has area larger than the leaves Mλ, M∗

λ unless it
coincides with one of these surfaces. Thus we have shown:
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Fig. 8. Three views of a real analytic topological torus bounding a 1-parameter family of

minimal disks whose traces on S are depicted in the figures by curvy lines

Theorem 2. There exists a real analytic, embedded surface S of the type of
the torus, and a homology class [γ0] in H1(S; Z), so that S bounds a family of
stationary minimal surfaces of the type of the disk which have smallest area
among all oriented surfaces in H \ Γ having their boundaries lying on S and
homologous in S to γ0.

In view of the two examples described in Theorems 1 and 2, the following
two theorems will be rather surprising.

Theorem 3 (F. Tomi). If a compact analytic H-convex body M in R
3 has

the property that there is closed Jordan curve in M which cannot be con-
tracted in M and, secondly, that the free boundary problem for ∂M admits
infinitely many minimizing solutions of disk-type contained in M , then M
must be homeomorphic to a solid torus, and the set of all such solutions is an
analytic S1-family of minimal embeddings of the disk.

For the proof of Theorem 3, we refer the reader to Tomi’s paper [10]. There
one also finds the following interesting observation:
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Fig. 9. Samples of minimal leaves Mλ, M∗
λ, two of which are flat, and how they fit into

the surface S shown in Fig. 8. A part of S has been removed to permit a glimpse into the

interior of S

If a torus M is foliated by a smooth S1-family of plane disk-type minimal
surfaces being orthogonal to ∂M , then all surfaces in the family are congruent.

In contrast, we obtain from Theorem 2 the following result:

There exist real analytic (topological) tori admitting families of non-flat
disk-type minimal surfaces which intersect the tori at a right angle, and
secondly, the surfaces in such a family need not be congruent (nor isomet-
ric).

Related to Theorem 3 there is a finiteness theorem due to Alt and Tomi
[1] that will be stated as Theorem 4. We shall outline a proof of this result. As
their techniques are closely related to the methods used for proving Theorem 3,
the reader will obtain a good idea of how such results are proved.
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Let S be a compact, embedded, real analytic surface in R
3, and let Π

be a homotopically nontrivial closed polygon in the unbounded component of
R

3 \ S.
As in Section 1.2 we define the class C(Π, S) by

C(Π, S) := {X ∈ C(S) : L([X|∂B ], Π) �= 0};

that is, C(Π, S) is defined as the set of all X ∈ C(S) whose boundary values
are not contractible in R

3 \ Π. Then we obtain the following finiteness result
contrasting with Theorem 2:

Theorem 4. There are only finitely many geometrically different minimal
surfaces which are minimizers of Dirichlet’s integral in C(Π, S).

As a by-product of the proof of Theorem 4 we obtain the following result
which is of independent interest.

Theorem 5. Let X ∈ C(Π, S) be a strong relative minimum of P(Π, S), i.e.
we have D(X) ≤ D(Y ) for all surfaces Y ∈ C(Π, S) with Y (B̄) ⊂ U, U being
an open neighbourhood of X(B̄). Then X is immersed up to the boundary,
that is, |Xu(w)| = |Xv(w)| �= 0 for all w ∈ B̄.

Anticipating the regularity results of Chapter 2 we may assume that each
minimizer X – and even each stationary point – can be continued analytically
across the boundary ∂B. Moreover, if w0 ∈ B̄ is a branch point (i.e., Xu(w0) =
Xv(w0) = 0), then we obtain as in Section 3.2 of Vol. 1 and Section 2.10 of
this volume in suitable (new) coordinates x1, x2, x3 the representation

x1(w) + ix2(w) = A(w − w0)m + O(|w − w0|m+1),
(4)

x3(w) = O(|w − w0|m+1)

with A ∈ C
3 \ {0}. Next we infer from Lemma 5 of Section 5.3 the existence

of a C1-diffeomorphism F : U → V defined on a neighbourhood U of w0 such
that for some function ϕ ∈ C2(V ) we have

x1(w) + ix2(w) = [F (w)]m
(5)

x3(w) = ϕ(F (w)).

Moreover it follows from the proof of Lemma 5 of Section 5.3 that F (w0) =
0, F ∈ Cω(U \ {w0}) and ϕ ∈ Cω(V \ {0}), V being a suitable neighbourhood
of 0 ∈ R

2 =̂ C. Of course we may assume that V is a disk Br(0) of a sufficiently
small radius r > 0. The representation (5) permits us to introduce the new
variable w̃ = F (w) ∈ V , and we have

∇kϕ(w̃) = O(|w̃|m+1−k) as w̃ → 0

for k = 0, 1, 2.
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We have to distinguish true and false branch points of a given minimal sur-
face X(w); the surface has different geometric properties in a neighbourhood
of different kinds of branch points.

We call a branch point w0 of X a false branch point if in some neighbour-
hood of w0 the surface X(w) can be reparametrized as an immersed surface.
This is true if and only if ϕ is a function of (w̃)m. Otherwise w0 is called
a true branch point. It is shown in Chapter 5 how to exclude true branch
points on the boundary by using only the minimum property of X. Since the
argument is similar for true interior branch points, we refrain from repeating
the procedure and refer to Section 5.3 as well as to the original papers by
Osserman [12], Alt [1] and Gulliver [2]. Another possibility could be to apply
Tromba’s technique, which is presented in Chapter 6. We are going to outline
the discussion for false branch points. Note that by analytic continuation we
may assume X to be defined on some open neighbourhood BR, R > 1, of
the closed unit disk B̄. Denoting the new function again by X, we may in
addition assume that all branch points of X lie in B̄ and that (5) continues
to hold. Moreover, we can define a continuous unit normal N(w) for X(w) on
all of B̄.

Definition 1. Two points z, w ∈ BR are called equivalent, z ∼ w, if there
are fundamental systems of open neighbourhoods Un(z), Vn(w), n ∈ N such
that X(Un) = X(Vn) for all n. We also define the equivalent boundary ∂̃B
by ∂̃B = {z ∈ B : z ∼ w for some w ∈ ∂B}.

Proposition 1. Suppose zk → z, wk → w and zk ∼ wk. Then z ∼ w. In
particular, the equivalent boundary ∂̃B is closed.

Proposition 1 is a consequence of

Lemma 1. Let z and w be two points in BR, R > 1, such that X(z) = X(w)
and N(z) = ±N(w). Furthermore denote by U and V coordinate neighbour-
hoods of z and w such that a representation (5) holds, and suppose that there
is an open subset U ′ of U with the property that X(U ′) ⊂ X(V ). Then it
follows that z ∼ w.

Proof. From (5) we infer the existence of small positive number r and s such
that,

X(U ) = {(x1, x2, x3) : x1 + ix2 = (w̃)m, x3 = ϕ(w̃), |w̃| < r},

X(V ) = {(x1, x2, x3) : x1 + ix2 = (ω̃)n, x3 = ψ(ω̃), |ω̃| < s}.

Since X(U ) ⊂ X(V ), it follows that for some open set of numbers z contained
in {w : 0 < |w| < min( n

√
r, m

√
s)} the relation ϕ(zn) = ψ(ηnzm) holds true

where ηn denotes some n-th root of unity. By the analyticity of ϕ and ψ in
0 < |z| < r and 0 < |z| < s respectively we conclude that ϕ(zn) = ψ(ηnzm)
holds for all z with |z| < min( n

√
r, m

√
s). Next define
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Uε := {z ∈ U : |w̃(z)| < m
√

ε}, Vε := {z ∈ V : |ω̃(z)| < n
√

ε}.

Then it follows that X(Uε) = X(Vε) for suitably small ε > 0. �

For the formulation of the next result the following definition will be clar-
ifying.

Definition 2. An analytic arc in R
n, n ≥ 2, emanating from a point p of R

n,
is the image of a closed interval [0, δ] under a nonconstant, real analytic map
α which is defined on an open interval containing [0, δ] and satisfies α(0) = p.

Lemma 2. Let ϕ : U → C be an analytic function defined on some neighbour-
hood U of the origin 0 in C, and suppose that

(6) ϕ(z) = azm + O(|z|m+1) as z → 0,

for some m ∈ N, a ∈ C, a �= 0. Furthermore, let α : [0, τ ] → C be a regular
analytic arc emanating from 0 ∈ C. Then there exists some τ0 ∈ (0, τ ] such
that ϕ−1(α[0, τ0]) consists of m analytic arcs emanating from 0.

Proof. Choose some neighbourhood Bδ = Bδ(0) ⊂ C with ϕ �= 0 for all
z ∈ Bδ \ {0}, and introduce polar coordinates (r, ξ) ∈ [0, δ] × S1. Without loss
of generality we assume that a = 1. Then (6) implies that

(7) ϕ(r, ξ) = rmξm{1 + ϕ1(r, ξ)}

with some analytic function ϕ1 satisfying ϕ1(0, ξ) = 0. Let Φ̂ : [0, δ] × S1 →
R

+ × S1 be a mapping so that the following diagram commutes:

[0, δ] × S1 Φ̂

ϕ

R
+ × S1

p

C

where p(r, ξ) := r · ξ. Hence Φ̂(r, ξ) = (|ϕ(r, ξ)|, ϕ(r,ξ)
|ϕ(r,ξ)| ). Similarly, let

α̂ : [0, τ ] → R
+ × S1 be chosen in such a way that p ◦ α̂(t) = α(t), i.e.,

α̂(t) = (ρ(t), γ(t)) with real analytic functions ρ(t) ≥ 0 and γ(t) ∈ S1. In fact,
replacing α(t) by the mapping α̃(t) := α(t2m) which parametrizes the same
arc, we may even assume that α̂(t) = (ρm

1 (t), γ(t)) with analytic functions
ρ1(t) and γ(t). Note that γ(0) = |α̇(0)| −1α̇(0) is the direction of α at zero.
We infer from (7) that

(8) Φ̂(0, ξ) = (0, ξm)
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and that Φ̂ can be continued analytically onto [−δ, δ] × S1 for some suitable
δ > 0. We can now define an analytic map Φ̃ by

Φ̃(r, ξ) := ( m
√

|ϕ(r, ξ)|, |ϕ(r, ξ)| −1ϕ(r, ξ)).

We are interested in the pre-image of α̂ under Φ̂, or equivalently, in the pre-
image of (ρ1(t), γ(t)) under Φ̃. By virtue of (8) we infer that Φ̃−1(0, γ(0))
consists of the m points (0, γ1), . . . , (0, γm) where γ1, . . . , γm denote the m-th
roots of γ(0).

From the properness of Φ̃ we infer that, for any given ε0-neighbourhood
Uε0(0, γj) of (0, γj) in [0, δ] × S1, there exists a number ε > 0 such that

Φ̃−1(Uε(0, γ(0))) ⊂
m⋃

j=1

Uε0(0, γj).

We choose ε0 in such a way that Φ̃ is an analytic diffeomorphism on each
rectangle {(r, ξ) : |r| < ε0, |ξ − γj | < ε0}. Finally we select τ0 > 0 so
small that ρ1(t) < ε and |γ(t) − γ(0)| < ε holds for all t ∈ [0, τ0]. Then
Φ̃−1(ρ1(t), γ(t))|[0,τ0] consists of m analytic arcs emanating from (0, γ1), . . . ,
(0, γm). Therefore the set ϕ−1(α[0, τ0]) consists of m disjoint arcs starting at
0 with the directions γ1, . . . , γm. �

Lemma 3. The equivalent boundary ∂̃B is the union of finitely many analytic
arcs.

Proof. By Proposition 1, the set ∂̃B is compact, and hence we may argue
locally. First we claim that, for arbitrary z0 ∈ B̄, the pre-image of P0 := X(z0)
consists of only finitely many points. In fact, assuming the contrary, we would
obtain a sequence {Zj }j∈N ∈ X−1(P0) with zj → w whence, by continuity of
X, we would have w ∈ X−1(P0). However this would contradict (5) since any
neighbourhood of w would contain points zj with X(zj) = X(w) = X(z0).
Thus there are only finitely many points z1, . . . , zn ∈ ∂B which are equivalent
to a given z0 ∈ ∂̃B. For given (small) neighbourhoods Uj = Uj(zj) we can
find a neighbourhood U of z0 with

(9) {w ∈ ∂B : w ∼ z ∈ U} ⊂
m⋃

j=1

Uj(zj) ∩ ∂B.

Otherwise there would exist a sequence of points ξk ∈ BR, R > 1, with
ξk → z0, and another sequence of points wk ∈ ∂B with wk ∼ ξk but
wk �∈

⋃n
j=1 Uj(zj). Passing to a sequence, we could assume that wk → w ∈

∂B \
⋃n

j=1 Uj(zj). Because of Proposition 1 we would have w ∼ z0 or w = zj

for some j ∈ {1, . . . , n}, an obvious contradiction. Since z0, z1, . . . , zn are
equivalent, we may assume that X(z0) = X(z1) = · · · = X(zn) = 0 and that
the common tangent plane is the (x1, x2)-plane. Denote by ϕ the mapping
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P ◦ X, where P : R
3 → R

2 is the orthogonal projection onto the x1, x2-plane.
Then (9) implies

∂̃B ∩ U ⊂ B̄ ∩ U ∩ ϕ−1

(
n⋃

j=1

ϕ(Uj ∩ ∂B)

)
.

The set Uj ∩ ∂B consists of two circular arcs γ+
j , γ−

j emanating from zj in
opposite directions. Also,

⋃n
j=1 ϕ(Uj ∩ ∂B) is a finite union of analytic arcs

starting from the origin. Now we apply Lemma 2, choosing possibly smaller
neighbourhoods Uj and U, and conclude that ϕ−1(

⋃n
j=1 ϕ(Uj ∩ ∂B)) ∩ U is a

collection of analytic arcs α1, . . . , αN , all starting at z0. The lemma is proved
if we can show that every arc αk containing one point z ∈ ∂̃B different from
z0, already belongs to ∂̃B. To this end let ϕ(αk) ⊂ ϕ(γ+

j ) for some j and
suppose that z ∈ αk \ {z0} is equivalent to w ∈ γ+

j \ {zj }. We infer from (6)
that we can write X(σ ∩ Uj) as a graph over the plane domain ϕ(σ ∩ Uj),
where σ denotes the open sector

{zj + reiθ : r > 0, |θ − θj | < ε}, θj = arg zj ± π/2.

Since ϕ(αk) ⊂ ϕ(γ+
j ) and X is continuous, we can find another open sector

σ0 = {z0 + reiθ : r > 0, |θ − θ0| < δ},

eiθ0 being the direction of αk at z0, such that we have ϕ(σ0 ∩ U ) ⊂ ϕ(σ ∩ Uj)
and αk \ {z0} ⊂ σ0 for sufficiently small U.

Also X|σ0∩Us is a graph over ϕ(σ0 ∩ U ). Since z ∈ αk \ {z0} and w ∈
γ+

j \ {zj } are equivalent, we infer from the analyticity of minimal graphs that
X(σ0 ∩ U ) ⊂ X(σ ∩ Uj). In particular, we have αk ⊂ ∂̃B. �

Lemma 4. Denote by ∂̃1B the connected component of ∂̃B which contains
∂B. Then B \ ∂̃1B is connected.

Proof. Lemma 3 implies that B \ ∂̃1B consists of finitely many connected
components B1, . . . , Bn, having piecewise analytic boundaries, whence

X|∂B =
n∑

k=1

X|∂Bk

and
X(∂Bk) ⊂ X(∂̃B) ⊂ X(∂B) ⊂ S.

Choose some j so that X|∂Bj is linked with Π, and then select some conformal
map τ : B → Bj of B onto Bj . If n were greater than 1, we would have

D(X ◦ τ) = D(X|Bj ) < D(X),

which contradicts the minimality of X. �
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Consider now a (relative) minimizer X to the variational problem P(Π, S).
We claim that, for a suitable reparametrization X̃ = X ◦ τ of X, we obtain
another minimizer X̃ with ∂̃1B = ∂B. In fact, Lemmata 3 and 4 imply that
∂̃1B consists of ∂B together with a finite number of trees growing out of
certain points on ∂B. Let τ : B → B \ ∂̃1B be a conformal map. Then the
loop X ◦ τ |∂B is homotopic to X|∂B on S, whence X̃ = X ◦ τ ∈ C(Π, S). We
also have D(X̃) = D(X) and ∂̃1B = ∂B.

Note that the conformal reparametrization τ : B → B \ ∂̃1B produces
boundary branch points for the surface X̃ : B → R

3 at those points w ∈ ∂B
which correspond to an endpoint z ∈ ∂̃1B ∩ B since, at these points, the
boundary mapping runs back and forth in its own trace. Thus we have proved
the following

Proposition 2. Suppose that each strong relative minimizer X ∈ C(Π, S)
which in addition satisfies ∂̃1B = ∂B, is immersed up to the boundary. Then
the relation ∂̃1B = ∂B holds for any strong relative minimizer X ∈ C(Π, S)
of the variational problem P(Π, S).

Let us now consider a minimizer X which satisfies ∂̃1B = ∂B.

Lemma 5. Suppose that for a strong relative minimizer X ∈ C(Π, S) the
relation ∂̃1B = ∂B holds true. Then it follows that ∂̃B = ∂B.

Proof. We argue by contradiction. Assume that the set

∂0B := {z ∈ ∂B : z ∼ z0 ∈ B}

were not empty. From the definition of ∼ we then infer that ∂0B is open
in ∂B. The set ∂0B in ∂B is also closed because of Proposition 1 and the
assumption ∂̃1B = ∂B. In fact, let zn ∈ ∂0B be a sequence with zn → z ∈ ∂B
and zn ∼ z0n ∈ B. Without loss of generality, let z0n → z0. Because of
Proposition 1 we obtain that z0 ∈ ∂̃B, and since ∂̃1B = ∂B it follows that
z0 ∈ B. Clearly, we have z0 ∼ z, whence z ∈ ∂0B. We conclude that ∂B = ∂0B
which means that X maps some neighbourhood of ∂B into X(B). Thus X(B)
would be a compact minimal surface in R

3, which is impossible because of the
maximum principle. �

Proposition 3. Let X ∈ C(Π, S) be a strong relative minimizer of P(Π, S)
such that ∂̃1B = ∂B holds true. Then X is immersed up to the boundary.

Sketch of the proof. As we have already mentioned before, we only show the
absence of false branch points. We argue by contradiction and assume first
that z0 ∈ B is a false (interior) branch point of order m. Let γ1(t), t ∈ [0, 1],
be an analytic Jordan arc which avoids branch points and points equivalent
to branch points and has the following properties:

γ1(0) = z0, γ1(1) ∈ ∂B, γ1([0, 1)) ⊂ B.
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We claim that there exist Jordan arcs γk(t), t ∈ [0, 1], k = 2, . . . , m, with

γk([0, 1)) ⊂ B, γk(0) = z0, γk(1) ∈ ∂B,

γk(t) ∼ γl(t) for 1 ≤ k ≤ l ≤ m,

γk((0, 1)) ∩ γl((0, 1)) = ∅ for k �= l.

In fact, the local existence of γk follows from the representation (5), while
global existence is secured by analytic continuation. The inclusion γk(1) ∈ ∂B
follows from Lemma 1. An additional argument is required to show that γ1

can be chosen in such a way that all γk are free of intersections; for details,
see Alt [1] and Alt and Tomi [1]. Now let z1 = γ1(1), . . . , zm = γm(1) denote
consecutive points on ∂B in positive orientation. For convenience, we put
zm+1 = z1. If σk denotes the arc of ∂B bounded by zk and zk+1, we see that
X(σk) is a closed loop on S and that X|∂B =

∑m
k=1 X|σk

. We choose k such
that X|σk

is not contractible in R
3 \ Π and denote by Bk the subdomain of

B bounded by γk, σk and γk+1. There exists a conformal map τ : B̄ \ [0, 1] →
Bk ∪ ◦

σk with the property that

lim
z→t

imz>0

τ(z) = γk(t) for all t ∈ [0, 1],

and that
lim
z→t

imz<0

τ(z) = γk+1(t) for all t ∈ [0, 1].

Since γk(t) ∼ γk+1(t), we infer that X ◦ τ is continuous in B̄ and that X ◦ τ
is contained in C(Π, S). If m were larger than 1, we had D(X ◦ τ) < D(X), a
contradiction to the minimum property of X.

Next we consider a false branch point z0 on the boundary ∂B which is of
order m ≥ 2. Here it is convenient to map the closed disk B̄ conformally onto
the half plane (imz ≥ 0} ∪ { ∞} and z0 onto 0. Denote the open half plane
by B, and let X be the corresponding minimal surface. Then we may also
assume that X(0) = 0, and that the tangent plane at X(0) is the x1, x2-plane,
applying a suitable motion in R

3. Suppose also that the direction of the curve
X(R+) ⊂ S at 0 is given by (1, 0, 0). We want to show the existence of a curve
α : [0, 1] → B̄ with α(0) = z0 = 0, α((0, 1)) ⊂ B, and X(α[0, 1]) ⊂ S. From
the representation formula (5) we infer the existence of numbers r, R > 0 and
θ ∈ ( π

m , 2π
m ) such that the image of the sector Sr,θ := {ρeiϕ : 0 < ρ < r, 0 <

ϕ < θ} under the mapping φ = P ◦ X covers the half disk

HR =
{

ρeiϕ :
π

2
< ϕ <

3π

2
, 0 < ρ < R

}
,

and X(Sr,θ) is a graph over φ(Sr,θ). Then X(Sr,θ) intersects S along an an-
alytic arc α̂ : [0, 1] → R

3 with α̂(t) → 0 as t → 0 and α̂′(t)
|α̂′(t)| → (−1, 0, 0) as

t → 0. Thus the arc α := X−1
|Sr,θ

(α̂) has all the desired properties.
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Next let B′ = B \ α([0, 1]), and consider some conformal map τ : B →
B′ of B onto B′. If we put X ′ := X ◦ τ , then D(X ′) = D(X) and X ′ ∈
C(Π, S), whence X ′ is a solution to P(Π, S). It follows that X ′ intersects S
orthogonally along ∂B, which means that X and S intersect perpendicularly
along α. The curve α can be continued analytically until it hits ∂B. Moreover,
by analyticity, the surface X remains orthogonal to S along α. We also note
that α cannot have any double points in B, since X is a local embedding in B
and hence intersects S in an embedded arc. Thus we have shown that B \ α
consists of two simply connected domains B1 and B2 such that

X|∂B = X|∂B1 + X|∂B2

holds true.
Suppose that X|∂B1 is not contractible in R

3 \ Π, and let τ : B → B1 be a
conformal equivalence. Then we obtain X ◦τ ∈ C(Π, S) and D(X ◦τ) < D(X),
which contradicts the minimality of X, and Proposition 3 is proved. �

Proof of Theorem 5. By virtue of Proposition 3 we only have to show that
∂̃1B = ∂B holds for any strong relative minimizer X ∈ C(Π, S). But this
immediately follows from Proposition 3 in conjunction with Proposition 2. �

Sketch of the proof of Theorem 4. By Theorem 5 we can assume that each
minimizer X ∈ C(Π, S) is an immersion of B̄ into R

3.
If we apply a suitable conformal selfmapping of the disk B, we can also

achieve the normalization X(0) ∈ Π. This condition ensures compactness of
minimizers in Ck. In fact, we have

Proposition 4. Let C∗ ⊂ C(Π, S) be the set of all minimizing minimal sur-
faces with X(0) ∈ Π. Then C∗ is uniformly bounded in Ck,α(B̄), for any
k ≥ 2, α ∈ (0, 1).

Proof. In order to apply the results of Chapter 2, in particular Theorem 1
of Section 2.5, we wish to verify the following condition which is to hold
uniformly in C∗:

For each δ > 0 there exists some ε > 0 such that

(10) DB\B1−ε(0)(X) < δ for all X ∈ C∗.

Suppose on the contrary that there exist δ > 0 and sequences Xn ∈ C∗, εn → 0
with DB\B1−εn (0)(Xn) ≥ δ. Then all Xn are harmonic and bounded and hence
a subsequence, again denoted by Xn, converges to some harmonic X uniformly
in Ck(Ω), for all Ω � B, k ∈ N. Because of

D(Xn) = d := inf
Y ∈C(Π,S)

D(Y ),

we infer that

(11) D(X) ≤ d − δ and X(0) ∈ Π.
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Recalling the argument in the proof of Theorem 1 of Section 1.3, we con-
clude that X ∈ C(Π, S), whence D(X) ≥ d, contradicting (11). Hence the
relation (10) holds true.

On the other hand, (10) enables us to employ the regularity results of
Chapter 2. First we see from the proof of Theorem 1 of Section 2.5 that
the elements X in C∗ satisfy a uniform global Hölder condition. Once having
established a uniform Hölder condition, one can easily derive the higher order
estimates by applying Theorem 1′ in Section 2.8. �

Suppose now that there are infinitely many geometrically different mini-
mizing surfaces in C(Π, S). By Proposition 4, we can select a sequence {Xn}
that converges in Ck(B̄) to some X∗ ∈ C(Π, S) which must again be min-
imizing. By virtue of the immersed character of X∗, it can be shown as in
Tomi [10] that there even exists a one-parameter family F (t), |t| < ε, of area
minimizing surfaces in C(Π, S) with F (0) = X∗, and F ′(0) is a nonvanishing
normal field along X∗. Furthermore, each solution of P(Π, S) sufficiently close
to X∗ belongs to the family F (after a suitable reparametrization).

Now let Σ∗ denote the connected component of X∗ in the set of minimizing
surfaces. Then the set

U ∗ := U ∩
{ ⋃

X∈Σ∗

X(B)

}

must be open and nonempty in the unbounded component U of R
3 \ S. On

the other hand, the set U ∗ must be bounded and closed in U according to
Proposition 4. Thus we infer U = U ∗ which clearly is impossible. �

1.10 Scholia

1. The first existence theorem for minimal surfaces with free boundaries was
given by Courant [6] and [9] in the years 1938–40. At that time these re-
sults were considerable mathematical achievements comparable to the solu-
tion of Plateau’s problem by Douglas and Radó. We also mention a paper by
Courant and Davids [1] as well as a generalization of these results to gener-
alized Schwarzian chains 〈Γ1, . . . , Γk, S1, . . . , Sm〉 given by Ritter [1]. A com-
prehensive treatment can be found in Courant [15] and in Nitsche [28].

2. Our exposition in the Sections 1.1–1.3 follows Küster [1]. The reader
who is familiar with Courant’s treatise [15] will have noticed that we have
replaced Courant’s condition

(1) lim
w→w0

dist(X(w), S) = 0 for all w0 ∈ ∂B

by the simpler condition X ∈ C(S). It is somewhat easier to define the linking
condition
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L(X|∂B , Π) �= 0

for surfaces satisfying (1). However, one then has to verify a compactness
theorem that will ensure the condition (1) to hold in the limit, whereas our
Lemma in Section 1.3 is close to trivial.

Moreover, our approach has the additional advantage that it can easily be
carried over to obstacle problems with only modest smoothness assumptions
on the obstructions, and it can also be used to handle more general functionals
than the Dirichlet integral.

The proof that the curves X|Cr and X|Cr′ are homotopic if r and r′ are
sufficiently close together (Section 1.1) has been adapted from an analogous
theorem due to Schoen and Yau [2].

3. Let us mention some related existence results. Davids [1] proved the
existence of multiply connected minimal surfaces with free boundaries. Hilde-
brandt [6] and Küster [1] treated surfaces of prescribed mean curvature, Lipkin
[1] studied 2-dimensional parametric integrals, and F.P. Harth [1] proved ex-
istence of minimal surfaces with free boundaries in Riemannian manifolds.
Meeks and Yau [1] dealt with Riemannian manifolds as ambient spaces.

P. Tolksdorf [2] stated that any non-trivial homotopy class in Π̃1(S) can be
decomposed into finitely many nontrivial homotopy classes for which the prob-
lem of prescribed homotopy class has a solution, assuming that S is a smooth
compact surface in R

3. However, R. Ye [6] has pointed but that Tolksdorf’s
reasoning is faulty.

R. Ye [5,6] proved the existence of a minimal surface with prescribed
boundary homotopy class α provided that α satisfies some Douglas-type con-
dition. His method generalizes to Riemannian manifolds as well.

We also refer to remarks by E. Kuwert [5], p. 6, concerning the papers of
Tolksdorf and Ye.

4. The existence proof of three different stationary minimal surfaces in a
simplex presented in Section 1.6 is due to Smyth [1]. Smyth also stated that
each of the three stationary surfaces possesses a non-parametric representation
with respect to suitably chosen coordinates.

5. The uniqueness result for stationary minimal surfaces of disk-type in a
sphere proved in Section 1.7 is due to Nitsche [35].

6. The examples in Section 1.9 of foliations given by 1-parameter families
of minimizing minimal surfaces with their boundaries on a real analytic sup-
porting surface S of the topological type of the torus are due to Gulliver and
Hildebrandt [1], and we have followed their exposition quite closely.

7. Concerning detailed proofs of the finiteness results of Tomi [10] and
Alt and Tomi [1] described in Section 1.9 we refer the reader to the original
papers.

8. The most exciting recent development in the theory of minimal surfaces
with free boundaries are the beautiful existence results for stationary minimal
surfaces in convex bodies some of which we have listed in Section 1.8. We
emphasize the importance of the contributions by Sacks and Uhlenbeck [1,2],
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Struwe [3], Grüter and Jost [1], Pitts [1], Simon and Smith [1], and Jost [9,
13,15].

9. We also mention a paper by Karcher, Pinkall, and Sterling [1] on new
examples of compact embedded minimal surfaces in the 3-sphere which gener-
alizes the important earlier work by Lawson [4]. The Karcher–Pinkall–Sterling
approach is closely related to the ideas of Smyth presented in Section 1.6, as
their main construction consists in solving free boundary problems in S3 (in-
stead of R

3).
10. Finally we shall briefly describe the work of E. Kuwert [5–7] on mini-

mizers of Dirichlet’s integral among disk-type surfaces X ∈ H1
2 (B, Rn) whose

boundary curves X|∂B represent a given homotopy class α of free loops on a
closed configuration S in R

n, n ≥ 3.
Kuwert’s work is an important and far reaching generalization of the the-

ory presented before in this chapter. It deals with the problem of minimizing
Dirichlet’s integral among all disk-type surfaces X : B → R

n, n ≥ 2, whose
boundary values lie on a given configuration S and satisfy certain homotopy
constraints. Here one observes degeneration, just as in the Douglas problem,
and this causes concentrations of the parametrization, which in Kuwert’s set-
ting can occur only at the boundary of the disk B and leads to a separation
of disks. It is proved that any minimizing sequence has a subsequence which
decomposes in the limit into a finite or countably infinite collection of disk-
type surfaces, each of which is a minimizer with respect to its own homotopy
class. Here S can be any compact set in R

n, or an unbounded closed set
satisfying a suitable condition that prevents the escape of components to in-
finity.

Kuwert takes the view of Jesse Douglas and considers minimal surfaces
as critical points of Dirichlet’s integral within the class of harmonic surfaces
X ∈ H1

2 (B, Rn) satisfying the prescribed boundary conditions. Since such
surfaces are uniquely determined by their “boundary values” x = X|∂B (i.e.
by their “Sobolev trace” on ∂B), the minimum problem is reduced to the
minimization of Douglas’s functional A0(x) among all admissible boundary
curves x, since for any harmonic extension X of x one has A0(x) = D(X).
However, we have seen before that, for free boundary value problems, it is not
feasible to work with continuous boundary values x(θ) = X(eiθ), since there
is no a priori certainty that the minimization procedure leads to a continuous
minimizer. To overcome this difficulty, Kuwert applies Courant’s artifice of
using sequences x = {xk } with xk(θ) := X(rkeiθ), rk → 1 − 0, which approxi-
mate x in H1

2 (∂B, Rn) and satisfy xk ∈ H1
2 (∂B, Rn) ∩ C0(∂B, Rn); for the xk

it is possible to impose homotopy conditions. Finally, one altogether forgets
the origin of x and operates with suitable sequences x = {xk } of continuous
curves xk. Keeping this idea in mind, we turn to the technicalities needed to
formulate Kuwert’s results.

Let S be a nonempty closed set in R
n, and denote by Uδ(S) the δ-

neighbourhood of S in R
n, δ > 0:
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Uδ(S) := {p ∈ R
n : d(p, S) < δ}, d(p, S) := dist(p, S).

Throughout we assume that Uδ(S) is connected for any δ > 0.
Let π1(S) be the set of homotopy classes [x] of free loops x ∈ C0(R/2π, S).

In order to define the sequence space Π1(S), we have to introduce the equiv-
alence relations “x

δ∼ y ” between two curves x, y ∈ C0(R/2π, Rn), which
means: Both curves lie in Uδ(S) and are freely homotopic to each other in
Uδ(S). Then we set

Π1(S) := {x = {xk } : xk ∈ C0(R/2π, Rn), and for any δ > 0

there is a k0 ∈ N with xk
δ∼ xl for all k, l > k0}.

For any x ∈ Π1(S) we denote the smallest possible k0 ∈ N by k(x, δ).
On Π1(S) we introduce the equivalence relation “x ∼ y” by:

For any δ > 0 there is a k0 ∈ N such that x∼yl for all k, l ≥ k0.

The quotient
π̂1(S) := Π1(S)/ ∼

will be the substitute for π1(S), if we operate with sequences x = {xk } of
loops xk close to S instead of loops x on S. It turns out that π̂1(S) is the
inverse limit of the set π1(Uδ(S)) of homotopy classes of free loops in Uδ(S),
i.e.

π̂1(S) = lim
δ→0

π1(Uδ(S)).

We obtain the maps

i : π1(S) → π̂1(S) with [x] �→ [{xk ≡ x}]

and
iδ : π̂1(S) → π1(Uδ(S)) with [x] �→ [xk], k = k(x, δ).

For α, β ∈ π̂1(S) we define δ(α, β) ∈ [0, ∞] by

δ(α, β) := inf{δ > 0 : iδ(α) = iδ(β)};

this is a complete generalized metric on π̂1(S), except that δ(α, β) = ∞ if S is
unbounded, and π̂1(S) is arcwise totally disconnected. Moreover i is injective
if S is a retract of Uδ0(S) for some δ0 > 0, and if S is a uniform deformation
retract of Uδ0(S), then i, iδ0 are bijective and δ(α, β) ≥ δ0 for α, β ∈ π̂1(S)
with α �= β.

Finally we define |α| for α ∈ π̂1(S) by

|α| := inf{δ > 0 : iδ(α) contains a constant map},

and we call α ∈ π̂1(S) trivial if |α| = 0, otherwise nontrivial.
Now we consider the space H of Fourier series
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x ∼ a0 +
∞∑

m=1

(am cos mθ + bm sin mθ), am, bm ∈ R
n,

satisfying

E(x) :=
π

2

∞∑
m=1

m(|am|2 + |bm|2) < ∞.

The harmonic extension of X with X(eiθ) = x(θ) satisfies

D(X) = E(x) = A0(x).

The space H with the norm ‖x‖H , defined

‖x‖2
H := |a0|2 + E(x),

can be identified with the Hilbert space H1/2,2(R/2π, Rn). Set

H(S) := {x = {xk } : xk ∈ H ∩ C0(∂B, Rn), d(xk, S) → 0,

{xk } is a Cauchy sequence in H},

where d(xk, S) := sup{α(xk(θ), S) : 0 ≤ θ ≤ 2π}.
For x, y ∈ H(S) we write

x ∼ y if and only if ‖xk − yk ‖H → 0.

We define the quotient space

H(S) := H(S)/ ∼

and note that H(S) can be identified isometrically with (W (S), ‖ · ‖H), where

W (S) := {x ∈ H : x(θ) ∈ S for a.e. θ ∈ [0, 2π]},

i.e.
W (S) = H(S),

and for x = {xk } ∈ H(S) we have ‖xk − x‖H → 0 for some x ∈ W (S); then
the equivalence class of x is identified with x, and ‖x‖H = limk→∞ ‖xk ‖H =:
‖x‖H(S).

One obtains the following topological substitute for a Sobolev embedding
of H into C0(∂B, Rn) which is essentially due to Courant (cf. Section 1.1); a
proof can be found in B. White [7] and Kuwert [5,7].

Theorem A. The set H(S) is a subset of Π1(S), and the inclusion H(S) ⊂
Π1(S) induces a well-defined assignment from any x ∈ W (S) to a homotopy
class in π̂1(S) which will be denoted by [x]. The mapping x �→ [x] from W (S) =
H(S) into π̂1(S) is continuous.
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The following can be seen: For any x ∈ W (S), the harmonic extension X
satisfies

lim
|w|→1

d(X(w), S) = 0,

and for any sequence {rk } with rk → 1 − 0 the sequence xk(θ) := X(rkeiθ),
k ∈ N, can be used for the definition of [x] ∈ π̂1(S).

Now we formulate the minimization problem for a given class α ∈ π̂1(S).
We set

E∗(α) := inf
{

lim inf
k→∞

E(xk) : x = {xk } with [x] ∈ α
}

.

The function E∗ : π̂1(S) → [0, ∞] is lower semicontinuous and satisfies
E∗(α) ≥ π|α|2 as well as: E∗(α) = 0 ⇔ α is trivial. Furthermore:

For any α ∈ π̂1(S) there is always a sequence x = {xk } with [x] ∈ α and
xk ∈ C∞(R/2π, Rn) such that

lim
k→∞

E(xk) = E∗(α).

Definition 1. (i) A minimizing sequence for α ∈ π̂1(S) is a sequence x =
{xk } ∈ Π1(S) with [x] ∈ α satisfying E(xk) → E∗(α).

(ii) Any x ∈ W (S) with [x] = α and E(x) = E∗(α) is called a minimizer of E.

We set

F(S) := {x = {xk } : xk ∈ C0(R/2π, Rn), d(xk, S) → 0};

in particular we have Π1(S) ⊂ F(S).
A sequence x = {xk } is said to be trivial, if for any δ > 0 there is a k1(δ) ∈

N such that xk is contractible in Uδ(S) for all k ≥ k1(δ); otherwise x is called
nontrivial. Then we introduce ε∗(S) and ε0(S) ∈ R with 0 ≤ ε∗(S) < ε0(S) by

ε∗(S) := inf
{

ε > 0 : There is a nontrivial sequence x = {xk } ∈ F(S)

with lim sup
k→∞

E(xk) ≤ ε
}

,

ε0(S) := inf{E∗(α) : α ∈ π̂1(S) is nontrivial}.

Note that α ∈ π̂1(S) is nontrivial if α = [x] with x ∈ Π1(S) and x is nontrivial.
Observe also that ε∗(S) is only defined if there is a nontrivial sequence in F(S),
and ε0(S) is only defined if there is a nontrivial α ∈ π̂1(S).

For a sequence M = {Mk } of sets Mk ⊂ R
n we define the closed set of

accumulation points of M by

A(M) := {p ∈ R
n : There is a subsequence {kl} and a sequence

of point pl ∈ Mkl
with pl → p}.
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Furthermore, define the subset F′ of F by

F′ := {x = {xk } ∈ F : xk ∈ H, E(xk) → e for some e ∈ [0, ∞)}

and set
A(x) := A({imxk }), A(X) := A({im Xk })

for x = {xk } ∈ F′ and X := {Xk }, Xk = harmonic extension of xk,

imxk = image of xk, imXk = image of Xk.

One has A(x) ⊂ S ∩ A(X) and

A(X) ⊂ clos(Uδ(e)(A(x) ∩ S)) for x = {xk } ∈ F′

where δ(e) :=
√

e/π, and e = limk→∞ E(xk). Furthermore, A(X) = ∅ if and
only if A(x) = ∅.

One of Kuwert’s main tools is a decomposition result for sequences x =
{xk } ∈ F′ which is formulated as Lemma 3 in Section 2 of his paper [5], but
is too involved to be stated here.

Now the following compactness question is raised: Given a sequence z =
{zk } ∈ F′, is there always a subsequence x = {xl}, xl = zkl

with x ∈ Π1(S)?
It turns out that the answer is negative in general. To clarify the situation,

some topological notions are needed. Recall first that Uδ(S) is assumed to be
connected for any δ > 0, which is the case if S is connected. Therefore there
is a unique trivial element o in π̂1(S) which is represented by any sequence
{xk } of constant loops xk(θ) ≡ pk with pk → S, and |α| = δ(α, 0).

Now we consider m-tupel α = (α1, α2, . . . , αm) of homotopy classes αj ∈
π̂1(S) which are either finite, m ∈ N, or infinite, m = ∞. We also require that,
for any S > 0, the set I(α, δ) = {j : |αj | > δ} is finite with the number m(α, δ)
of elements (which may be zero). Next we introduce the sequence space Π1(α)
as follows:

Π1(α) := {x = {xk } ∈ F : For any δ > 0 there is a smallest possible

k(x, δ) ∈ N such that the homotopy class [xk] ∈ π1(Uδ(S))

belongs to the composition set of the classes iδ(αj), j ∈ I(α, δ),

for all k ≥ k(x, δ)}.

We say that α ∈ π̂1(S) belongs to the composition set C(α) of α =
(α1, . . . , αm) if and only if iδ(α) belongs to the composition set of the fi-
nite m(α, δ)-tupel of the iδ(αj) with j ∈ I(α, δ), for all δ > 0. Equivalently
we say: α is a decomposition of α, α ∈ D(α).

This means: Given x = {xk } ∈ Π1(α), δ > 0, and representatives
xj = {xj

k } of αj , then the boundary data xk, xj
k(x,δ) with j ∈ I(α, δ) can

be extended to an (m(α, δ) + 1)-fold connected domain by a map into Uδ(S)
for k ≥ k(x, δ). If α is finite then m(α, δ) ≡ const for 0 < δ � 1.
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For unbounded S it can happen that disks escape to infinity. This will be
excluded by imposing an energy condition. For this purpose we define

ε∞(S) := inf
{

ε > 0 : There is a nontrivial sequence

x = {xk } ∈ F(S) with A(X) ⊂ S

and limsup
k→∞

E(xk) ≤ ε
}

.

Clearly, ε∗(S) ≤ ε∞(S), and ε∞(S) = ε0(S) if S is compact.
We have the following answer to the “compactness question” raised above:

Theorem B. Let z = {zk } ∈ F′ be a sequence with E(xk) → e < ε∞. Then
there exist an m-tupel α = (α1, . . . , αm) of αj ∈ π̂1(S), |αj | > 0, with |αj | → 0
as j → ∞ if m = ∞, and a subsequence x = {xl}, xl = zkl

, such that
x ∈ Π1(α), and it addition

∑
j

E∗(αj) ≤ e and m ≤ e/ε0(S).

Moreover, if e < min{2ε0(S), ε∞(S)} then x ∈ Π1(S), i.e. x defines a homo-
topy class. Finally, ε∗(S) = ε0(S) provided that ε∗(S) < ε0(S).

Theorem C. Let α ∈ π̂1(S) be a nontrivial homotopy class with E∗(α) < ∞,
and x = {xk } be a minimizing sequence for α ∈ π̂1(S) which converges weakly
in H to x ∈ W (S). Then x is a minimizer with respect to its own homotopy
class.

The hypothesis on α can be verified if α can be represented by a sequence
of equibounded length. While {xk } will not converge strongly in general, it is
often possible to extract a nonconstant weak limit.

The next theorem is the main result of Kuwert [5–7]. It states that any
minimizing sequence contains a subsequence which decomposes in the limit
both in homotopy and in energy into a union of minimizing disks.

Theorem D. Let α ∈ π̂1(S) be a given nontrivial homotopy class with
E∗(α) < ε∞(S), and let z = {zk } with [z] ∈ α be a given minimizing sequence.
Then there are a subsequence {zkl

}, a number m ∈ N ∪ {∞}, a sequence {h1
l }

of conformal automorphisms of B, topological disks Dj
l , l ∈ N, 1 ≤ j ≤ m, and

Riemann mapping functions gj
l : Bj → Dj

l such that the loops xl := zkl
◦ h1

l

satisfy:

(i) Dj
l � B, D

j

l ∩ D
k

j = ∅ for j �= k; ∂Dj
l is regular and real analytic; D1

j =
{w ∈ B : |w| < r1

l } with r1
l → 1 − 0; g1

l (w) = r1
l w.

(ii) For any j, the sequence {Xl ◦ gj
l }l∈N converges strongly in H1

2 (Bj , Rn) to
a nontrivial minimizer Xj : Bj → R

n with the boundary values xj ∈ W (S),



1.10 Scholia 73

(Bj identified with B), and αj := {xj } is an element of π̂1(S) \ {0}. Each
mapping Xj is a (possibly branched) minimal surface.

(iii) E∗(α) = limk→∞ E(zk) can be written as

E∗(α) =
m∑

j=1

E∗(αj) =
∞∑

j=1

E(xj).

(iv) The m-tupel α := (α1, α2, . . . , αm) is a decomposition of the given class α.

(v) For Ml := B \
⋃m

j=1 Dj
l we have d(Xl|Ml

, S) → 0, and the Dirichlet
integrals DMl

(Xl) of Xl over Ml tend to zero as l → ∞.

(vi) If ε0(S) > 0 then m ≤ E∗(α)/ε0(S) < ∞.

We mention that this result can be used to generalize H.W. Alt’s solution
of the so-called thread problem, treated in Chapter 5 of this volume; cf. Kuwert
[5], pp. 51–52. Kuwert’s approach allows to consider threads whose endpoints
are fixed at support surfaces (instead of arcs).

Now we want to collect several applications of Theorem D in case that
α ∈ π̂1(S) satisfies a sufficient Douglas condition. This means: For any proper
decomposition α = (α1, α2, . . . , αm) ∈ D(α) we have the strict inequality

E∗(α) <

m∑
j=1

E∗(αj).

Note however that, so far, this condition can only be verified for specific
homotopy classes.

Theorem E. Let α ∈ π̂1(S) satisfy the sufficient Douglas condition, and as-
sume that E∗(α) < ε∞(S). Then we have:

(i) For any minimizing sequence z = {zk } representing α there are a subse-
quence {zkl

} as well as conformal automorphisms hl of B such that x = {xl}
with xl := zkl

◦ hl converges strongly in H to some minimizer x ∈ W (S) for
α, and E∗(α) is attained.

(ii) If a minimizing sequence converges weakly to a nonconstant map x ∈
W (S), then it converges strongly to x.

(iii) The nonempty set M(α) of minimizers for α is compact in W (S) modulo
the conformal automorphism group Aut(B) of B.

Kuwert also shows ([5], pp. 57–60) how the results presented in the follow-
ing Chapter 2 can be used to show regularity of minimal surfaces X defined
by minimizers x for α and to prove compactness for M(α) with respect to
C0,β or Ck,β .
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