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Preface

This book is the second volume of a treatise on minimal surfaces consisting
of altogether three volumes which can be read and studied independently of
each other. The central theme is boundary value problems for minimal surfaces
such as Plateau’s problem. The present treatise forms a greatly extended ver-
sion of the monograph Minimal Surfaces I, II by U. Dierkes, S. Hildebrandt,
A. Küster, and O. Wohlrab, published in 1992, which is often cited in the liter-
ature as [DHKW]. New coauthors are Friedrich Sauvigny for the first volume
and Anthony J. Tromba for the second and third volume.

The four main topics of this second volume are free boundary value prob-
lems, regularity of minimal surfaces and their geometric properties, and fi-
nally a new method is introduced to show that minimizers of area are im-
mersed. Since minimal surfaces in R

3 are understood as harmonic, confor-
mally parametrized mappings X : Ω → R

3 of an open domain Ω in R
2, they

are real analytic in Ω, and so the problem of smoothness for X is the question
how smooth X is at the boundary ∂Ω if X is subject to certain boundary
conditions. However, even if X is “analytically regular”, it might not be “ge-
ometrically regular” since it could have branch points. We investigate how X
behaves in the neighbourhood of branch points, and secondly whether such
points actually exist. In addition we describe geometric properties of minimal
surfaces in R

3 or, more generally, of H-surfaces in an n-dimensional Rie-
mannian manifold. This book can be read independently from the preceding
volume of this treatise although we use some terminology and results from
the previous material.

We thank E. Kuwert, F. Müller, D. Schwab, H. von der Mosel, D. Wien-
holtz, and S. Winklmann for pointing out errors and misprints in [DHKW]
which are corrected here. Particularly we are indebted to Frank Müller for
some penetrating contributions to Chapter 3, and to Albrecht Küster who
supplied a considerable part of Chapter 1 (which was taken from Vol. 1 of
[DHKW]). Special thanks also to Ruben Jakob who carefully read and cor-
rected Chapters 4 and 6, and to Klaus Steffen and Friedrich Tomi for their
valuable comments to the Scholia of Chapter 6. Furthermore we thank Klaus
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vi Preface

Bach, Frei Otto, and Eric Pitts for providing us with photographs of various
soap film experiments. Thanks also to M. Bourgart, D. Hoffman, J.T. Hoff-
man, and K. Polthier for permitting us to reproduce some of their computer
generated figures.

The continued support of our work by the Sonderforschungsbereich 611 at
Bonn University as well as by the Hausdorff Institute for Mathematics in Bonn
and its director Matthias Kreck was invaluable. We also thank the Centro
di Ricerca Matematica Ennio De Giorgi in Pisa and its director Mariano
Giaquinta for generous support of our work.

We are especially grateful to Anke Thiedemann and Birgit Dunkel who
professionally and with untiring patience typed many versions of the new
text.

Last but not least we should like to thank our publisher and in partic-
ular our very patient editors, Catriona Byrne, Marina Reizakis, and Angela
Schulze-Thomin, for their encouragement and support.

Duisburg
Bonn
Santa Cruz

Ulrich Dierkes
Stefan Hildebrandt

Anthony Tromba
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Plate Ia. A minimal surface which intersects a sphere perpendicularly. Courtesy of

M. Bourgart

Plate Ib. A boundary configuration 〈Γ1, Γ2, S〉 spanning a minimal surface with a free

boundary. Courtesy of M. Bourgart



Plate II. Four soap film experiments providing solutions of partially free boundary value
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Plate III. A soap film (bright colour) spanned by a circular arc and a (blue) halfsphere.

The film intersects the halfsphere perpendicularly along its (red) trace, except where the

trace touches the equator, the boundary of the half sphere. Courtesy of M. Bourgart



Plate IV. Construction of Wente’s compact H-surface from the three building blocks.

Courtesy of D. Hoffman and J.T. Hoffman



Introduction

We begin this volume with a survey on minimal surfaces with entirely free
boundaries. In the Sections 1.1–1.3 Courant’s existence result is described. It
follows the derivation of the transversality condition at the free boundary in
Section 1.4 and of the condition of balancedness that are to be satisfied by
stationary surfaces. Further results and examples in Sections 1.6–1.10 conclude
this chapter.

In Chapter 2 we investigate the boundary behaviour of minimal sur-
faces subject to Plateau boundary conditions or to free boundary conditions.
Roughly speaking we show that a minimal surface is as smooth at the bound-
ary as the data of the boundary conditions to which it is subject. There is a
basic difference between grappling with the regularity problem for area mini-
mizing surfaces or for merely stationary solutions of boundary value problems.
For disk-type minimizers it is always possible to derive a priori estimates, while
examples show that it is generally impossible to establish a priori estimates for
stationary solutions of free boundary problems. Thus it becomes necessary to
apply indirect methods if one wants to prove boundary regularity of minimal
surfaces subject to free boundary conditions.

For a more complete understanding of the boundary behaviour of mini-
mal surfaces one has not only to investigate their class of smoothness at the
boundary, but it is also necessary to find out whether singular points occur at
the boundary and, if so, how a minimal surface behaves in the neighbourhood
of such points. This question is tackled in Chapter 3. If a minimal surface
X(w), w = u+ iv, is given in conformal parameters u, v, then its singular (=
nonregular) points are exactly its branch points w0, which are characterized
by the relation Xw(w0) = 0. In Chapter 3 we derive asymptotic expansions of
minimal surfaces at boundary branch points which can be seen as a general-
ization of Taylor’s formula to the nonanalytic case. Moreover, we also derive
expansions of minimal surfaces with nonsmooth boundaries (e.g. polygons) at
boundary points which are mapped onto vertices of the nonsmooth boundary
frame.

xv



xvi Introduction

Asymptotic expansions and boundary smoothness are very useful if one
wants to treat subtle geometric and analytic problems. Furthermore they are
indispensable for the derivation of index theorems and for the investigation
of the Euler characteristic of minimal surfaces. Topics of this kind will be
discussed in Volume 3.

The long Chapter 4 could have been labeled as geometric properties of
minimal surfaces. First we derive inclusion theorems for minimal surfaces in
dependence of their boundary data. Such results, obtained in Sections 4.1
and 4.2, are more or less sophisticated versions of the maximum principle.
They lead to interesting nonexistence results for connected minimal surfaces
and H-surfaces whose boundaries consist of several disjoint components, as it
is seen in Sections 4.3–4.5. Here we even discuss the situation for higher di-
mensional surfaces and for solutions of variational inequalities, obtained from
obstacle problems. Inclusion principles for such solutions are the fundament
for results ensuring the existence of minimal surfaces and H-surfaces solving
Plateau’s problem in Euclidean space or in a Riemannian manifold respec-
tively, see Sections 4.7 and 4.8. Of particular interest are the Jacobi field
estimates obtained in Section 4.8.

Isoperimetric inequalities for minimal surfaces solving either Plateau’s
problem or a free boundary value problem are derived in Sections 4.5 and 4.6.
The simplest kind of such an inequality was already stated in Section 4.14
of Vol. 1; for the sake of completeness we repeat here the derivation. Fur-
thermore, in Section 6.4 of Vol. 1 an isoperimetric inequality for harmonic
mappings X : Ω → R

3, due to Morse & Tompkins, was derived, which plays
an essential role in Courant’s theory of unstable minimal surfaces.

In Chapter 5 we investigate an extension of the isoperimetric problem,
the so-called thread problem, and prove the existence and regularity of mini-
mal surfaces with movable boundary parts of fixed lengths, which in soap film
experiments are formed by very thin threads.

The last chapter contains a new approach to the celebrated result that a
minimizer of area in a given contour has no interior branch points. The novelty
consists particularly in the fact that, in certain cases, relative minimizers of
Dirichlet’s integral are shown to be free of nonexceptional branch points, and
this is achieved by a purely analytical reasoning.

The Scholia serve as sources of additional information. In particular we try
to give credit to the authorship of the results presented in the main text, and
we sketch some of the main lines of the historical development. References
to the literature and brief surveys of relevant topics not treated in our text
complete the picture.

Our notation is essentially the same as in the treatises of Morrey [8] and of
Gilbarg and Trudinger [1]. Sobolev spaces are denoted by Hk

p instead of W k,p;
the definition of the classes C0, Ck, C∞ and Ck,α is the same as in Gilbarg and
Trudinger [1]; Cω denotes the class of real analytic functions; C∞

c (Ω) stands
for the set of C∞-functions with compact support in Ω. For greater precision
we write Ck(Ω,R3) for the class of Ck-mappings X : Ω → R

3, whereas the
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corresponding class of scalar functions is denoted by Ck(Ω), and similarly for
the other classes of differentiability. Another standard symbol is Br(w0) for
the disk {w = u + iv ∈ C : |w − w0| < r} in the complex plane. On some
occasions it is convenient to switch several times from this meaning of B to
another one. Moreover, some definitions based on one meaning of B have to be
transformed mutatis mutandis to the other one. This may sometimes require
slight changes but we have refrained from pedantic adjustments which the
reader can easily supply himself.
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Boundary Behaviour
of Minimal Surfaces



Chapter 1

Minimal Surfaces with Free Boundaries

This chapter is centered on the proof of existence theorems for minimal sur-
faces with completely free boundaries. We approach the problem by applying
the direct methods of the calculus of variations, thus establishing the existence
of minimizers with a boundary on a given supporting surface S. However, this
method does not yield the existence of stationary minimal surfaces which are
not area minimizing. As certain kinds of supporting surfaces are not able to
hold nontrivial minimizers, our method is restricted by serious topological
limitations. For example, it does not furnish existence of nontrivial stationary
minimal surfaces within a closed convex surface. It seems that the techniques
of geometrical measure theory are best suited to handle this problem. Unfor-
tunately they are beyond the scope of our lecture notes, but we shall at least
present a survey of the pertinent results in Section 1.8 as well as an existence
result for the particular case of S being a tetrahedron. There the reader will
also find references to the literature.

In the following we shall describe Courant’s method for proving the ex-
istence of a nontrivial and minimizing minimal surface whose boundary lies
on a given closed supporting surface. This problem is more difficult than the
Plateau problem or the semifree problem treated in Chapter 4 of Vol. 1 be-
cause an arbitrary minimal sequence will shrink to a single point. In order to
exclude this phenomenon, we have to impose suitable topological conditions
on the boundary values of admissible surfaces. For instance, one could assume
that the boundary values are continuous curves on S which are contained in
a prescribed homotopy class. This approach would, however, lead to a rather
difficult problem. One would first have to prove that a suitable minimizing se-
quence tends to a limit with continuous boundary values, and then one would
have to show that these boundary values lie in a prescribed homotopy class.
Therefore we abandon this idea.

Instead we show in Section 1.1 how a kind of homotopy class can be set up
for surfaces X which are of class H1

2 (B,R3) and have their boundary values
on S. We shall also prove by way of example that the problem of prescribed

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,
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4 1 Minimal Surfaces with Free Boundaries

homotopy class need not have a solution. In Section 1.2 we set up the classes
of admissible functions for which we can solve the minimum problem and in
which we are able to find nondegenerate solutions.

The free boundary problem will be solved in Section 1.3; the supporting
set S may look as bizarre as the one in Fig. 1 or as simple as the catenoid. The
gist of our reasoning consists in an indirect argument showing that the limit of
a suitable minimizing sequence satisfies the prescribed topological condition,
and therefore it will be a nondegenerate solution of the minimum problem.

Fig. 1. A bizarre supporting set

The remaining part of the chapter will deal with additional properties of
minimal surfaces with free boundaries.

In Section 1.4 we give a precise definition of a stationary minimal surface
X whose free boundary lies on a given support surface S. Here we do not re-
quire X to be a minimizer. It will be investigated how the condition of being
stationary is linked with the condition that X intersects S perpendicularly at
its free trace Σ, provided Σ does not touch the boundary of S. This discus-
sion is used in Section 1.5 to set up necessary conditions for the existence of
stationary minimal surfaces with boundary on S. This will lead us to a class
of non-existence results which explain, for example, why soap films in a funnel
always run to its narrow end.



1.1 Surfaces of Class H1
2 and Homotopy Classes 5

In Section 1.6 we prove the existence of three embedded stationary surfaces
with their boundaries on a tetrahedron, following the discussion of B. Smyth.
This is a case where the minimizing approach cannot be used.

Section 1.7 is concerned with stationary surfaces whose boundaries lie on
a sphere. We shall prove Nitsche’s result that flat disks are the only solutions
to this problem that are of the type of the disk.

After a report on the existence of stationary minimal surfaces with bound-
aries on a convex surface (Section 1.8), in Section 1.9 we shall present some
results concerning uniqueness and nonuniqueness of minimal surfaces with a
free boundary on a given support surface. In particular, we construct a fam-
ily of minimizing minimal surfaces with boundaries on a regular, real analytic
surface of the topological type of a torus which are nonisometric to each other.
Moreover, we discuss some finiteness results of Alt & Tomi for minimizers with
boundaries on a real analytic supporting surface.

1.1 Surfaces of Class H1
2 and Homotopy Classes of Their

Boundary Curves. Nonsolvability of the Free Boundary
Problem with Fixed Homotopy Type of the Boundary
Traces

Let us fix some closed set S in R
3. Then we want to define the class C(S) of

surfaces X ∈ H1
2 (B,R3) with boundary values X|∂B on S. The parameter

domain B will be chosen as the unit disk:

B = {w = u+ iv : |w| < 1}.

In the following we shall usually pick an ACM -representative1 for a given
Sobolev mapping X. If we work with polar coordinates r, θ about the origin,
i.e., w = reiθ, this means that we choose a representative X(r, θ) such that
X(r, ·) is absolutely continuous for almost all r ∈ (0, 1), and that X(·, θ) is
absolutely continuous for almost all θ ∈ (0, 2π). Thus X is in particular a
continuous function on almost all circles Cr = {w ∈ C : |w| = r}.

Any function X ∈ H1
2 (B,R3) possesses a trace (or boundary values) ξ on

∂B which is of class L2(C,R3), C := ∂B, and we have both

(1) lim
r→1−0

X(r, ϕ) = ξ(ϕ) for almost all ϕ ∈ [0, 2π]

and

(2) lim
r→1−0

∫ 2π

0

|X(r, ϕ)− ξ(ϕ)|2 dϕ = 0.

1 ACM stands for absolutely continuous in the sense of Morrey; cf. Morrey [8], Lemma 3.1.1.



6 1 Minimal Surfaces with Free Boundaries

However, the trace Σ = {ξ(ϕ) : ϕ ∈ [0, 2π]} of an arbitrary Sobolev function
X ∈ H1

2 (B,R3) will in general not be a continuous curve, whereas the curves

Σr := {X(r, ϕ) : 0 ≤ ϕ ≤ 2π}

are absolutely continuous for a.a. r ∈ (0, 1). As we cannot formulate topolo-
gical conditions for a possibly noncontinuous curve Σ, we shall use the con-
tinuous curves Σr as a substitute. In view of (1) and (2) we can expect that
conditions on curves Σr close to Σ express conditions on Σ in an appropriate
sense.

We begin, however, by defining the class C(S) of surfaces with boundary
values on a supporting set S. We assume once and for all that supporting
sets S are closed, proper, and nonempty subsets of R

3. However, if a boundary
configuration contains other parts besides S, we allow S to be empty.

Definition 1. Let S be a supporting set in R
3. Then we denote by C(S) the

class of functions X ∈ H1
2 (B,R3) whose L2-trace ξ := X|C sends almost every

w ∈ C = ∂B into S.

For any closed set S in R
3, S �= ∅, and for any number μ > 0, we define

the tubular μ-neighbourhood Tμ = Tμ(S) of S by

(3) Tμ(S) := {x ∈ R
3 : dist(x, S) < μ}.

Then we can formulate our first result on surfaces of class C(S) which will
shed some light on their boundary behaviour.

Theorem 1. Let S be a supporting set in R
3, and suppose that X belongs to

C(S). Then, for every μ > 0 and every ε > 0, there is a subset I ⊂ (1− ε, 1)
of positive measure such that, for all r ∈ I, the curve Σr = {X(r, ϕ) : 0 ≤ ϕ ≤
2π} is a closed continuous curve which is contained in the tubular neighbour-
hood Tμ(S) of S.

Note that other curves Σr, r ∈ (1− ε, 1) \ I, may stay arbitrarily far from
Tμ(S) as can be shown by simple examples; cf. Fig. 1.

We shall prove Theorem 1 in several steps.

Lemma 1. For any closed set S in R
3, the function ds := dist(·, S) is Lip-

schitz continuous on R
3 with a Lipschitz constant less than or equal to one.

Proof. For arbitrary points P1, P2 ∈ R
3 there exist points Q1, Q2 ∈ S such

that

ds(P1) = |P1 −Q1| = inf
Q∈S

|P1 −Q|,

ds(P2) = |P2 −Q2| = inf
Q∈S

|P2 −Q|.

Therefore we obtain
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dS(P2) ≤ |P2 −Q1|

and
dS(P2)− dS(P1) ≤ |P2 −Q1| − |P1 −Q1| ≤ |P2 − P1|,

and analogously
dS(P1)− dS(P2) ≤ |P1 − P2|.

Therefore we have

|dS(P1)− dS(P2)| ≤ |P1 − P2| for all P1, P2 ∈ R
3. �

Fig. 1. (a) The graph of a bizarre function f ∈ H̊1
2 (B) which has infinitely many peaks

congruent to a part of the graph of log | log |w‖. These peaks converge to the point w = 1

on ∂B. Given ε > 0 and δ > 0, there is a set of values r ∈ (1 − δ, 1) of positive measure such

that the absolute values of f on Cr remain less that ε; see Lemma 4. This is a borderline

case of the boundary behaviour of functions of class H̊1
p(B). For p > 2 they are continuous

up to ∂B, and therefore their values on all circles sufficiently close to ∂B remain close to

zero. For p < 2 there may be no such circle, as is shown by the function depicted in (b)

and (c) which belongs to H̊1
p(B) for all p ∈ (1, 2) and has a discontinuity at C ∈ ∂B
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Lemma 2. A function X ∈ H1
2(B,R

3) belongs to C(S) if and only if the scalar
function dS ◦ X is an element of the space H̊1

2(B) of functions f ∈ H1
2(B)

with generalized boundary values zero.

Proof. Note that X ∈ H1
2(B,R

3) implies dS ◦X ∈ H1
2 (B). Then the assertion

follows from well-known properties of functions of class H̊1
2(B) (see Gilbarg

and Trudinger [1]). �

Lemma 3. Let X belong to H1
2(B,R

N ), N ≥ 1. Then, for any two numbers
μ > 0 and δ > 0, there is an ε > 0 with the following property:

If I ′ = [θ1, θ2] is an angular interval with θ2 − θ1 = δ, then there exists a
subset σ ⊂ I ′ of positive measure such that

|X(1, θ)−X(r, θ)| ≤ μ

holds for all θ ∈ σ and for all r ∈ (1− ε, 1). In fact, we can choose ε as

(4) ε = min
{

1
2
,
1
4
μ2δ

D(X)

}
.

Proof. From

r

∫ θ2

θ1

∫ 1

r

|Xρ(ρ, θ)|2 dρ dθ ≤ 2D(X)

we conclude that there is a subset σ ⊂ [θ1, θ2] of positive measure such that
∫ 1

r

|Xρ(ρ, θ)|2 dρ ≤
2
rδ
D(X)

holds for all θ ∈ σ and for δ = θ2 − θ1. Moreover, we have

|X(1, θ)−X(r, θ)| ≤
∫ 1

r

|Xρ(ρ, θ)| dρ

≤
√

1− r

(∫ 1

r

|Xρ(ρ, θ)|2 dρ
)1/2

for θ ∈ σ and 0 < r < 1, whence

|X(1, θ)−X(r, θ)| ≤ {2r−1(1− r)δ−1D(X)}1/2 for θ ∈ σ.

Choosing ε as in (4), the assertion follows at once. �

Lemma 4. Let f belong to
◦
H1

2(B). Then, for any μ > 0 and any ε > 0, the
set I := {r : 1− ε < r < 1, |f |0,Cr < μ} has positive measure.

Proof. Suppose that the assertion were false. Then we would have D(f) > 0,
and there were numbers ε > 0 and μ > 0 such that

(5) |f |0,Cr ≥ μ
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for almost all r ∈ (1− ε, 1). Without loss of generality we can assume that

0 < μ <
√
D(f)

holds true.
Because of (6) we infer that, for almost all r ∈ (1− ε, 1), there is an angle

θ(r) such that
|f(reiθ(r))| ≥ μ.

Furthermore we choose some δ ∈ (0, 1) such that

(6) ε′ := min
{

1
2
,

μ2δ

16D(f)

}

satisfies 0 < ε′ < ε. By Lemma 3, every angular interval I′ of width δ contains
an angle θ′ such that f(·, θ′) is absolutely continuous and that

|f(reiθ′
)| < 1

2μ for all r ∈ (1− ε′, 1).

Conclusion: For almost all r ∈ (1− ε′, 1), there exist angles θ(r) and θ′(r)
with |θ(r)− θ′(r)| < δ and

|f(reiθ(r))| ≥ μ, |f(reiθ′(r))| ≤ μ

2
.

Thus
μ

2
≤
∣∣∣∣∣
∫ θ′(r)

θ(r)

|fθ(reiθ)| dθ
∣∣∣∣∣

and consequently
μ2

4δ
≤
∫ 2π

0

f2
θ (reiθ) dθ.

Thus
∫

{1−ε′<|w|<1}
|∇f |2 du dv ≥

∫ 1

1−ε′

∫ 2π

0

1
r2
f2

θ (reiθ)r dθ dr

≥
∫ 1

1−ε′

(∫ 2π

0

f2
θ (reiθ) dθ

)
dr ≥ ε′μ2

4δ
.

Because of (6), we have
∫

{1−ε′<|w|<1}
|∇f |2 du dv ≥ μ4

64D(f)

for 0<δ�1, and ε′ → 0 as δ → +0. This is impossible for an H1
2 -function.�

Proof of Theorem 1. The assertion of Theorem 1 is now an immediate conse-
quence of the Lemmata 1–4. �



10 1 Minimal Surfaces with Free Boundaries

Remark 1. The assertion of Lemma 4 holds for trivial reasons if f ∈ H̊1
p (B)

and p > 2, because Sobolev’s embedding theorem yields that f ∈ C0(B) and
f = 0 on ∂B. The assertion turns out to be false if p < 2, as one can find
examples of functions f ∈ H̊1

p (B), p < 2, such that near ∂B the function
|f(w)| is bounded away from zero by an arbitrary constant (cf. Fig. 1).

Now we want to give a reasonable definition for a homotopy class of
a boundary mapping ξ(θ) = X(1, θ) of a surface X of class C(S) which
is not necessarily continuous on B. To this end we consider the curves
Σr = {X(r, θ) : 0 ≤ θ ≤ 2π} for r close to one which are absolutely con-
tinuous and lie in a tubular neighbourhood Tμ of S. By Theorem 1, there
exist sufficiently many of them: In fact, for any number ε ∈ (0, 1) there is a
set I ⊂ (1− ε, 1) of positive measure such that, for every r ∈ I, the mapping
X(r, ·) is absolutely continuous and Σr ⊂ Tμ.

Now we can state the following result:

Theorem 2. Let Tμ be the μ-neighbourhood of some closed set S in R
3, and

suppose that X ∈ C(S). Then for δ := 1
4πμ

2 > 0, the following holds true:
If r1, r2 ∈ (0, 1) are two radii such that
(i) the Dirichlet integral of X over the annulus

Ω(r1, r2) := {w ∈ C : r1 < |w| < r2}

is at most δ;
(ii) the curves X|C1 and X|C2 with Ck := Crk

= {w : |w| = rk} are
absolutely continuous, and their traces Σk := X(Ck) are contained in Tμ/2;

(iii) there is an angle θ such that the curve X(r, θ), r1 ≤ r ≤ r2, connecting
Σ1 and Σ2 is absolutely continuous and that its trace lies in Tμ/2; then the
curves X|C1 and X|C2 are homotopic in Tμ.

Recall that two closed continuous curves γ1 : C → Tμ/2 and γ2 : C → Tμ/2

are homotopic in Tμ if there is a continuous map H : C× [0, 1] → Tμ such that
H(·, 0) = γ1 and H(·, 1) = γ2. The mapping H is called a homotopy.

Furthermore, a closed curve γ : C → Tμ/2 is contractible in Tμ if it is ho-
motopic in Tμ to a constant map or, equivalently, if it extends to a continuous
map B → Tμ.

Remark 2. Close to C = ∂B, the angle θ appearing in condition (iii) can be
found by virtue of Lemma 3.

The proof of Theorem 2 can be reduced to proving the following

Lemma 5. Let Tμ be the μ-neighbourhood of some closed set S in R
3, and

set δ := 1
4πμ

2. Suppose, moreover, that X is a mapping of class H1
2 (B,R3) ∩

C0(∂B,R3) whose boundary curve X|∂B is contained in Tμ/2 and which sati-
sfies D(X) < δ(μ). Then the curve X|∂B is contractible in Tμ.

In fact, let r1 and r2 be two radii as in Theorem 2, and let θ ∈ [0, 2π) be
an angle as in (iii) of the theorem. Then we consider a conformal map τ of B
onto the slit annulus
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{w = reiϕ : r1 < r < r2, ϕ ∈ [0, 2π), ϕ �= θ}

and apply Lemma 5 to the surface Z := X ◦ τ , thus obtaining that Z|∂B is
contractible in Tμ. A straightforward reasoning now implies that the curves
X|C1 and X|C2 are homotopic in Tμ.

Proof of Lemma 5. We begin by choosing a mapping Y : B → R
3 which is

harmonic in B, continuous on B, of class H1
2 (B,R3) and satisfies Y − X ∈

H̊1
2(B,R

3) and Y = X on ∂B. We know that D(Y ) ≤ D(X). Since X(∂B) =
Y (∂B) is contained in Tμ/2, there exists a strip U = {w : 1 − ε < |w| ≤ 1}
about the boundary C = ∂B such that Y (U) ⊂ Tμ/2. Then we can find
a regular, real analytic curve Y |Cr , r ∈ (1 − ε, 1), which is homotopic to
X|C = Y |C in Tμ/2. Thereafter we can find a sequence {Γk} of smooth closed
Jordan curves Γk given by smooth topological mappings Φk : C → Γk such
that |Φk −Φ|2,C → 0 as k →∞ holds for the mapping Φ : C → R

3 defined by
Φ(eiθ) := Y (reiθ).

Now let Z(w) := Y (rw) and Zk(w) be the harmonic extensions to
B of the boundary values Φ and Φk respectively, and let Xk be a solu-
tion of the variational problem P(Γk). Then the maximum principle implies
|Zk − Z|0,B → 0 as k → ∞ and, applying the estimate of Lemma 7 in Sec-
tion 2.1 together with the Arzelà–Ascoli theorem, we also obtain |Zk−Z|1,B →
0 as k →∞. This implies

lim
k→∞

D(Zk) = D(Z).

Consequently we have

A(Xk) = D(Xk) ≤ D(Zk) → D(Z) = DBr (Y ) ≤ D(Y ) ≤ D(X).

By assumption, we have also

D(X) < δ(μ) = 1
4πμ

2,

whence

(7) A(Xk) = D(Xk) < π(μ/2)2

is satisfied for k sufficiently large.
If for one of these k the minimal surface Xk were not contained in Tμ, then

there would exist some w ∈ B such that Xk(w) /∈ Tμ. We choose a conformal
selfmapping of B satisfying τ(0) = w and note that all the boundary values
of Xk ◦ τ lie outside the ball of radius μ/2 centered at Xk(w) = Xk(τ(0)).
Then we infer from Vol. 1, Section 3.2, Proposition 2 that

A(Xk) ≥ π(μ/2)2

which contradicts (7). Thus we have shown that
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(8) Xk(B) ⊂ Tμ for all k � 1.

Moreover, every minimal surface Xk furnishes a topological mapping of C
onto Γk (see Vol. 1, Section 4.5, Theorem 3). Thus Xk|C furnishes a param-
eter representation of Γk equivalent to Φk, and we infer from (9) that Φk is
contractible in Tμ for k � 1. Since X|C is homotopic in Tμ to all of the Γk

with k � 1, we infer that X|C is contractible in Tμ. �

Recall now that C(S) has been defined as the class of all surfaces X ∈
H1

2 (B,R3) having their boundary values X|C on a closed subset S in R
3 (see

Definition 1).
We now denote by Π̃1(S) the set of all homotopy classes of closed paths

in S. (For details, we refer for instance to Schubert [1], or to Greenberg [1].)

Assumption (A). Suppose that there is a number μ > 0 such that the inclu-
sion map S → Tμ of the closed set S into its μ-neighbourhood Tμ induces a
bijection from Π̃1(S) to Π̃1(Tμ).

For example, this assumption is fulfilled for sufficiently small μ > 0 if S is
a smooth compact submanifold of R

3.
Let μ > 0 be a number as in Assumption (A), and recall that the curves

X|Cr are absolutely continuous for almost all r ∈ (0, 1).
If X ∈ C(S), then there is a number ε > 0 such that any two curves

X|Cr and X|Cr′ contained in Tμ/2 and with r, r′ ∈ (1− ε, 1) define the same
homotopy class in Π̃1(Tμ); this homotopy class will be viewed as homotopy
class of the boundary values X|C . It is denoted by [X|C ] and will be called
the boundary class of a surface X ∈ C(S). Because we have a bijection

Π̃1(Tμ) ↔ Π̃1(S),

we can view the class [X|C ] as an element of Π̃1(S). If the mapping
X : C → R

3 is continuous, then [X|C ] coincides with the usual homotopy
class of X|C .

Note that the definition of the homotopy class [X|∂B] does not depend on
the particular ACM-representative of X that we have chosen since any two of
them coincide on almost all circles Cr.

Moreover, the definition [X|C ] is even independent of μ in the following
sense: Suppose that the inclusion maps S → Tμ and S → Tμ′ induce two
bijections Π̃1(S) ↔ Π̃1(Tμ) and Π̃1(S) ↔ Π̃1(Tμ′ ). Then both constructions
with respect to μ and μ′ lead to the same class [X|C ] in Π̃1(S).

Indeed, according to the definition we first have to choose an ε > 0 such
that any two of the curves X|Cr , r ∈ (1− ε, 1), lying completely in Tμ/2 (or in
Tμ′/2) are homotopic in Tμ (or in Tμ′ ). This ε may be the same for μ and μ′

because decreasing ε does not change the class [X|∂B ]. If, say, μ′ ≤ μ, then we
find in (1−ε, 1) a subset J′ of positive measure or radii r such that the curves
X|cr , r ∈ J′, are completely contained in Tμ′/2 and that any two of them are
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homotopic in Tμ′ . Therefore all these curves X|Cr define a homotopy class α′

in Π̃1(Tμ′ ) which corresponds to the boundary class [X|∂B ]′ ∈ Π̃1(S) which
is constructed by means of Tμ′ .

On the other hand, all curves X|Cr , r ∈ J′, are contained in Tμ/2 ⊃ Tμ′/2,
and any two of them are homotopic in Tμ ⊃ Tμ′ . Therefore all these curves
X|Cr , r ∈ J′, define a homotopy class α ∈ Π̃1(Tμ) which by the definition of
ε corresponds to the boundary class [X|∂B ] ∈ Π̃1(S) defined by means of Tμ.
Since the inclusion Tμ′ → Tμ induces a bijection Π̃1(Tμ′ ) → Π̃1(Tμ) which
maps α′ to α, the boundary classes [X|∂B ] and [X|∂B ]′ and identical. �

Collecting our results and inspecting Chapter 4 of Vol. 1, we obtain the
following

Theorem 3 (Natural boundary classes). Let S be a subset of R
3 such that

for some μ > 0 the inclusion S → Tμ induces a bijection Π̃1(S) → Π̃1(Tμ)
between the corresponding sets Π̃1 of homotopy classes of closed paths in S
and Tμ respectively.

(i) Then for every surface X ∈ C(S) a boundary homotopy class [X|∂B ] ∈
Π̃1(S) is defined in a natural way.

(ii) If σ is a closed curve in S which is not contractible in S and if
[σ] ∈ Π̃1(S) denotes its homotopy class, then every minimizer of the Dirichlet
integral D(X) = 1

2

∫
B
|∇X|2 du dv in the class

(9) C(σ, S) := {X ∈ C(S) : [X|∂B ] = [σ]}

is a minimal surface.

Let us denote the minimum problem

(10) D(X) → min in C(σ, S)

by P(σ, S).
In general one encounters serious difficulties if one tries to solve the prob-

lem P(σ, S). For instance, the classes C(σ, S) are not necessarily closed with
respect to weak convergence in H1

2 ; yet this fact was crucial for the existence
proof carried out in Section 4.6 of Vol. 1.

All basic difficulties of this problem can already be seen in the compara-
tively simple case that we shall consider next. The reader who is not interested
in the details of the following discussion may very well skip it since it is not
anymore needed in the later sections.

Let us choose a torus T in R
3 as the prescribed supporting surface, and

consider the corresponding variational problem

P(σ, T ) : D(X) → min in C(σ, T ).

To be precise, let T be the torus in R
3 which is obtained by revolving the

circle
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{(x, y, z) : y = 0, (x−R)2 + z2 = r2}, 0 < r < R,

about the z-axis (see Fig. 2). Denote by σ1, σ2 : [0, 2π] → T the two circles

σ1(t) = (R− r cos t, 0,−r sin t)

and
σ2(t) = ((R− r) cos t, (R− r) sin t, 0).

Finally let P = σ1(0) = σ2(0) = (R− r, 0, 0) be the base point of T .
Note that in this case the assumption made in the construction of the

boundary classes [X|∂B] of a surface X ∈ C(T ), namely that the inclusion
map T → Tμ induces a bijection Π̃1(T ) ↔ Π̃1(Tμ), is satisfied for all suffi-
ciently small μ since for these μ the above inclusion T → Tμ is a homotopy
equivalence.

In general the set Π̃1(M) of all equivalence classes of (freely) homotopic
closed curves in a topological space M is different from its fundamental group
Π1(M, ∗); but if Π1 is Abelian and if M is connected, then the canonical map
Π1(M, ∗) → Π̃1(M), [σ] → [σ], is indeed a bijection (cf. Schubert [1]).

The fundamental group of the torus T is isomorphic to Z ⊕ Z, and it is
freely generated by [σ1] and [σ2]. Therefore, in the case of the torus, the class
C(T ) of all H1

2 -surfaces with boundary values on T is the disjoint union of the
classes Ck,l, k, l ∈ Z, of surfaces X ∈ C(T ) whose boundary class [X|∂B] can
be represented by the closed path σk

1 ·σl
2. (First k-times along σ1, then l times

along σ2, negative powers denote reversal of orientation.)
Now we can state our nonexistence result.

Theorem 4. Let T be the torus defined before.

Fig. 2. The points and curves on a torus T used in the study of minimizing sequences for

the Dirichlet integral of surfaces with free boundaries on T whose boundary curves have a

prescribed homotopy class
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(i) For all k, l ∈ Z the numbers dk,l := inf{D(X) : X ∈ Ck,l} are given by

dk,l = π{|k|r2 + |l|(R− r)2}.

(ii) The variational problem

D(X) → min in C k,l

has a solution if and only if k = 0 or l = 0.

For the proof of Theorem 4 we shall need the following

Lemma 6 (A formula for the oriented area). Assume that the boundary
values of a mapping X = (X1, X2) ∈ H1

2 (B,R2) are contained in R
2\Bρ(w0).

Then the boundary class [X|∂B] ∈ Π̃1(R2 \ Bρ(w0)) is well defined, and it is
characterized by the winding number U([X|∂B ], w0). If Ω := {w ∈ B : X(w) ∈
Bρ(w0)}, then we have for the oriented area

A0
Ω(X) :=

∫
Ω

Xu ∧Xv du dv

of the mapping X the formula

A0
Ω(X) :=

∫
Ω

{X1
vX

2
v −X1

vX
2
u} du dv = πρ2U([X|∂B ], w0).

Proof of Lemma 6. Approximating H1
2 -mappings Z ∈ H1

2 (B,R2) by smooth
mappings, we obtain the following two formulas that are well known for
smooth maps:

(i) For almost all R ∈ (0, 1), the oriented surface area of Z is given by

A0
BR

(Z) =
1
2

∫ 2π

0

{Z1Z2
θ − Z2Z1

θ} dθ.

(ii) If Z is absolutely continuous on ∂BR, then

U(Z|∂BR
, 0) =

1
2π

∫ 2π

0

Z1Z2
θ − Z2Z1

θ

|Z|2 dθ

unless Z = 0 somewhere on ∂BR. Of course, 0 < R < 1 and Z = Z(Reiθ),
etc.

Let us now prove the lemma. We may assume without loss of generality
that w0 = 0. Moreover, for 0 < ε < ρ, let πε : R

2 → Bρ−ε(0) denote the radial
projection

Z �→
{
Z if |Z| < ρ− ε,
Z

|Z| (ρ− ε) otherwise,

and set Y ε := πε ◦X, which is again of class H1
2 (B,R2) since πε is Lipschitz

continuous. The boundary values of Y ε are contained in R
2 \Bρ−ε(0), and we

have
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Fig. 3. The area functional A(X) of a map X : B → R2, whose boundary curve winds

around a disk in R2, can be calculated from the radius of the disk and the winding number

of the boundary curve, cf. Lemma 6

U([X|∂B ], 0) = U([Y ε|∂B ], 0).

Now we choose R so close to 1 that X|∂BR
⊂ R

2 \ Bρ−ε(0) represents the
boundary class [X|∂B] and that the integration-by-parts-formula (i) holds
true. Then we conclude that

U([X|∂B ], 0) = U(X|∂BR
, 0) = U(Y ε|∂BR

, 0)

=
1
2π

∫ 2π

0

Y ε ∧ Y ε
θ

|Y ε|2

∣∣∣∣
r=R

dθ =
1

π(ρ− ε)2
1
2

∫ 2π

0

Y ε ∧ Y ε
θ dθ

=
1

π(ρ− ε)2
A0

BR
(Y ε).

Now, on the one hand, Y ε
r ∧Y ε

θ = 0 almost everywhere on Ωε = {|X| ≥ ρ−ε}
since both Y ε

r and Y ε
θ are tangential to ∂Bρ−ε(0). On the other hand, we have

Y ε
r ∧ Y ε

θ = Xr ∧Xθ almost everywhere on Ω′
ε = {|X| < ρ− ε}. Therefore

A0
BR

(Y ε) = A0
Ω′

ε ∩BR
(X).

Thus at last, if ε decreases to zero, the radii R chosen above tend to one
whence

A0
BR

(Y ε) → A0
Ω(X),

and the lemma is proved. �

Now we turn to the

Proof of Theorem 4. Let π1 : R
3 → R

2 be the orthogonal projection onto the
x, y-plane given by

(x, y, z) → (x, y),

and denote by π2 : R
3 → R

2 the projection mapping

(x, y, z) → (ρ, z) with ρ =
√
x2 + y2
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which maps (x, y, z) onto the point (ρ, z) ∈ R
2 defined by the two cylinder

coordinates ρ and z. Note that π2 is Lipschitz continuous and, for ρ �= 0, even
real analytic.

Then, for any X ∈ H1
2 (Ω,R3), we have the following inequalities:2

(I) D(π1 ◦X) ≤ D(X), and the equality sign holds if and only if ∇z(w) = 0
a.e. on Ω, where z(w) is the third component of X(w).

(II) D(π2 ◦X) ≤ D(X), and the equality sign holds if and only if ∇ϕ(w) = 0
a.e. in Ω, where ϕ(w) := arc tan y(w)

x(w) is the angle belonging to the cylinder
coordinates ρ, ϕ, z. For the assertion of (II) to hold we have to assume that
X(Ω) � R

3 \ H where H is some halfplane in R
3 having the z-axis as its

boundary.

Now, given X = (x, y, z) ∈ C k,l, let us consider the sets

Ω1 := {w ∈ B : x2(w) + y2(w) < (R− r)2}

and
Ω2 := {w ∈ B : |π2(X(w))− (R, 0)| < r}

which are the pre-images of the cylinder {0 ≤ ρ < R − r} and of the open
solid torus T , respectively. The sets Ω1 and Ω2 are disjoint.

From (I), (II) and Lemma 6 we infer

D(X) ≥ DΩ1(X) +DΩ2(X) ≥ DΩ1(π1 ◦X) +DΩ2(π2 ◦X)
≥ |A0

Ω1
(π1 ◦X)|+ |A0

Ω2
(π2 ◦X)| ≥ π|l|(R− r)2 + π|k|r2,

that is,

(III) π(|l|(R− r)2 + |k|r2) ≤ D(X).

In order to complete the proof of the first part of the theorem, we construct
a minimizing sequence as follows. For 0 < ρ� 1, we introduce the set

Ωρ := B1(0) ∪Bρ(1) ∪B1(2).

As Ωρ is conformally equivalent to the unit disk B (see Fig. 4), we can choose
Ωρ as parameter domain. For k, l ≥ 0, we define

Xρ(w) :=

{
((R− r)Rewl, (R− r)Imwl, 0) if w ∈ B1(0) \Bρ(1),
(R− rRe(2− w)k, 0,−r Im(2− w)k) if w ∈ B2(0) \Bρ(1).

If k < 0, we replace in the definition of Xρ the variable w ∈ B1(0) \Bρ(1) by
w, and for l < 0 we substitute w ∈ B2(0) \Bρ(1) by w.

2 The proof of the second fact is not totally trivial. It can be derived by choosing an

ACM -representation of π2 ◦ X in conjunction with Fubini’s theorem.
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Fig. 4. Construction of a minimizing sequence for the Dirichlet integral for surfaces with

free boundaries on T and a boundary class homotopic to σ1 followed by σ2

Now let w1, . . . , w4 be the four vertices in Ωρ. Then we connect every two
of the points Pj := X(wj) by geodesic lines on the torus T such that the
curve Xρ|∂Ωρ is homotopic to σk

1 · σl
2. These geodesics are parametrized in

proportion to the arc length by means of the boundary pieces of ∂Ωρ between
w1 and w4, w2 and w3.

Having thus defined X|∂Bρ(1), one completes the construction by filling in
a harmonic surface in Bρ(1) with the boundary values X on ∂Bρ(1). Since
DB(wn) = πn and DBρ(1)(Xρ) tends to zero with ρ, we have found a mini-
mizing sequence.

In order to show part (ii) of the theorem, we consider a minimizer X
in C k,l. Then X is harmonic in B and equality holds in (III). Our initial
remarks (I) and (II) imply that X(B) lies in a plane which either contains the
z-axis (in which case l = 0) or is orthogonal to the z-axis (implying k = 0).
Finally, minimizers in C k,0 and C 0,l can be constructed again using powers
of w. �

1.2 Classes of Admissible Functions. Linking Condition

If we enlarge the class of admissible functions in a suitable way, the minimum
problem becomes solvable. The difficulty consists in finding a proper class C̃

of surfaces between C(σ, S) and C(S) such that the Dirichlet integral has a
nondegenerate minimizer in C̃. In this section we want to set up several of
such classes C̃ which serve this purpose.
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To this end we shall assume throughout that S is a closed, proper,
nonempty subset of R

3 satisfying Assumption (A) of Section 1.1: There is
a μ > 0 such that the inclusion S → Tμ induces a bijection Π̃1(S) ↔ Π̃1(Tμ).
Then we can define

(1) C +(S) :=
⋃

[σ]�=[const]

C(σ, S),

where the union is to be taken over all closed curves σ in S which are not
homotopic in S to a constant map. In other words, C+(S) consists of all
those surfaces X ∈ C(S) whose boundary class [X|∂B] is not represented by
a constant map.

Clearly, the position of the competing surfaces X ∈ C+(S) is not particu-
larly restricted. Therefore the minimizer in C+(S) will always fill the smallest
hole in S.

In order to specify the position of the boundary values of the competing
surfaces more precisely, we choose some polygon Π (that is, a piecewise linear
image of ∂B) which does not meet the tubular neighbourhood Tμ of S.

Then we introduce the variational class C(Π,S) of all surfaces X ∈ C(S)
whose boundary class [X|∂B] is linked with the polygon Π, that is, whose
linking number L([X|∂B ], Π) is nonzero:

C(Π,S) := {X ∈ C(S) : L([X|∂B ], Π) �= 0}.

The classes C+(S) and C(Π,S) will be the two sets on which we want to min-
imize the Dirichlet integral in order to obtain nondegenerate minimal surfaces
with a free boundary on S. The minimizing procedures will be carried out in
the next section.

For the convenience of the reader we shall in the following sketch the main
features of the linking number. For proofs and further details we refer to the
treatise of Alexandroff and Hopf [1].

Definition and Properties of the Linking Number

(I) First we define the intersection number of two oriented simplices ep =
(a0, . . . , ap) and fq = (b0, . . . , bq) for two particular cases.

(α) If the corresponding geometric simplices furnished by the convex hulls
of {a0, . . . , ap} and {b0, . . . , bq} are disjoint, then we define the intersection
number ∅(ep, fq) to be zero.

(β) If p + q = 3, and if the intersection of the corresponding geometrical
simplices is neither empty nor does it contain any vertex of ep, fq, we define the
intersection number ∅(ep, fq) to be one if the ordered base (a1 − a0, . . . , ap −
a0, b1 − a0, . . . , bq − a0) has the same orientation as the standard simplex
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) of R

3, and we set ∅(ep, fq) = −1 if
the orientations are different.

(II) Secondly we define the linking number of two disjoint closed polygons Π1

and Π2.
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Assume that Π1 and Π2 have r (resp. s) corners Pr+1 = P1, . . . , Pr and
Qs+1 = Q1, . . . , Qs, and choose a point P ∈ R

3 such that any pair of simplices
ej := (P, Pj , Pj+1) and fk = (Qk, Qk+1), j = 1, . . . , r; k = 1, . . . , s, satisfies
one of the above conditions (α), (β) in (I). Then we define

L(Π1, Π2) :=
r∑

j=1

s∑
k=1

∅(ej , fk)

as the linking number of the two polygons Π1 and Π2.

Fig. 1. The definition of the linking number of two closed polygons P1, P2, . . . and

Q1, Q2, . . . is reduced to the intersection numbers of the faces (2-dimensional simplices)

of a cone erected over the first polygon with the line segments (1-dimensional simplices)

of the second. The intersection number is 0 if the simplices are disjoint, and +1 or −1

otherwise depending on their orientations. The resulting linking number for the polygons

shown here is −2
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(III) Finally, if c1 and c2 are two closed curves ∂B → R
3 with disjoint traces

ci(∂B), say, dist(c1(∂B), c2(∂B)) = δ > 0, then we choose two closed polygons
Π1 and Π2 such that

|c1 −Π1|0,∂B , |c2 −Π2|0,∂B <
δ

2
,

and define the linking number of c1 and c2 as

L(c1, c2) := L(Π1, Π2).

(IV) Some of its properties are:

(i) The definition of the linking number of two disjoint closed curves is
independent of all choices made above (see Alexandroff and Hopf [1], p. 423).

(ii) Deformation invariance. If h1(t, θ) and h2(t, θ) : [0, 1] × ∂B → R
3 are

two homotopies of closed curves such that for every t ∈ [0, 1] the supports of
the deformed curves are disjoint, then

L(h1(0, ·), h2(0, ·)) = L(h1(1, ·), h2(1, ·))

(see Alexandroff and Hopf [1], p. 424).
(iii) Additivity of linking numbers. If c1, c2 and c are three closed curves

such that c1 and c2 have the same end points and that

ci(∂B) ∩ c(∂B) = ∅ for i = 1, 2,

then we have for the composite curve c1 · c2

L(c1 · c2, c) = L(c1, c) + L(c2, c).

This follows immediately from the construction (see Alexandroff and Hopf [1],
p. 418).

(V) In view of the homotopy invariance of the linking numbers, the linking
number of a boundary class [X|∂B] with a polygon Π at a distance greater
than μ from S is well defined:

L([X|∂B ], Π) := L(X|CR
, Π),

where X|CR
, R ∈ (0, 1), is any curve in Tμ/2 which represents the boundary

class [X|∂B ].

1.3 Existence of Minimizers for the Free Boundary Problem

Let us now treat some free boundary problems for minimal surfaces with a
prescribed supporting surface. We shall minimize the Dirichlet integral
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D(X) =
1
2

∫
B

|∇X|2 du dv

both in C +(S) and C(Π,S), the classes introduced in the previous sections. We
shall describe some geometric conditions on S such that the two variational
problems

P(Π,S) : D(X) → min in C(Π,S)

and

P+(S) : D(X) → min in C+(S)

are solvable.
By definition of the classes C+(S) and C(Π,S), every solution of P(Π,S)

and P+(S) is nondegenerate.

Theorem 1. Let S be a supporting set in R
3 satisfying Assumption (A) of

Section 1.1, i.e. there is some μ > 0 such that the inclusion map S → Tμ of S
into its μ-neighbourhood Tμ induces a bijection from Π̃1(S) to Π̃1(Tμ). Then
we have:

(i) If there is a closed polygon Π in R
3 which does not meet Tμ and for

which C(Π,S) is nonempty, then there exists a solution of P(Π,S).
(ii) If S is compact and C+(S) is nonempty, then there is a solution of

P+(S).
(iii) Any solution X of P(Π,S) or of P+(S) is a minimal surface. That

is, X is a nonconstant mapping of class C2(B,R3) and satisfies the equations

(1) ΔX = 0,

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

in B.

It is of great importance to investigate the boundary behaviour of solutions
of P(Π,S) and P+(S). If X is a solution of one of these problems that is
smooth up to its boundary (say, X ∈ C1(B,R3)), and if S is a smooth surface
with an empty boundary ∂S, then we shall prove in the next section that X
meets S perpendicularly along its free trace Σ = X(∂B) on the supporting
surface S. However, if ∂S is nonempty, then it may very well happen that Σ
touches ∂S (this phenomenon is studied in Chapter 2, and in the Chapters 1,
2 of Vol. 3); then one cannot anymore expect that X meets S perpendicularly
everywhere along Σ. In fact, a right angle between X and S is generally
formed only at those parts of Σ which do not coincide with ∂S.

Moreover, we have to answer the question as to whether a solution of
P(Π,S) or of P+(S) is smooth on the closure B of its parameter domain
B, so that we can apply the succeeding results of Section 1.4. A detailed
discussion of this and related problems is given in Chapter 2. There and in
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Fig. 1. (a) A closed smooth surface S linked with a polygon Π for which the class of

surfaces C(Π, S) is non-empty. (b) A solution of the corresponding free boundary value

problem P(Π, S)

Chapter 3, we also investigate how a solution X and its trace curve Σ behave
in the neighbourhood of a boundary branch point.

Let us now turn to the proof of Theorem 1. We need the notion of the
greatest distance g(A,B) of a closed set A of R

3 to another closed set B of R
3

which is defined by

(3) g(A,B) := sup{dist(x,B) : x ∈ A}.

Clearly, we have 0 ≤ g(A,B) ≤ ∞.

Lemma 1. Let Sk and S be closed sets in R
3 such that limk→∞ g(Sk, S) = 0,

and suppose that {Xk} is a sequence of surfaces Xk ∈ C(Sk) which tends
weakly in H1

2 (B,R3) to some surface X. Then X is of class C(S).

Proof. By passing to a suitable subsequence of {Xk} and renumbering, we
can assume that the L2(∂B,R3)-boundary values converge pointwise almost
everywhere on ∂B to X|∂B (cf. Morrey [8], Theorem 3.4.5). Then we obtain

dist(X(1, θ), S) ≤ |X(1, θ)−Xk(1, θ)|+ g(Sk, S) → 0

as k →∞, for almost all θ ∈ [0, 2π]. �

Proof of Theorem 1. (i) Suppose that X is a surface of class C(S′), where S′

is a closed set with g(S′, S) < μ/4. Because of Assumption (A), we can define
a boundary class [X|∂B] which can be viewed as element of Π̃1(S).

Definition 1. A sequence of surfaces Xk ∈ H1
2 (B,R3) is said to be a gener-

alized admissible sequence for the problem P(Π,S) if there is a sequence of
closed sets Sk ⊂ R

3 such that limk→∞ g(Sk, S) = 0 and Xk ∈ C(Π,Sk), k ∈ N,
holds true.
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We set

(4) e := inf{D(X) : X ∈ C(Π,S)}

and

e∗ := inf
{
lim inf
k→∞

D(Xk) : {Xk} is a generalized admissible sequence(5)

for P(Π,S)
}
.

Evidently we have

(6) e∗ ≤ e.

Now we pick a sequence {Sl} of generalized admissible sequences Sl = {Zl
k}k∈N

for P(Π,S) such that
lim
l→∞

lim inf
k→∞

D(Zl
k) = e∗.

From the sequences S l we can extract a sequence S = {Zk} of surfaces Zk

which is a generalized admissible sequence for P(Π,S) and satisfies

lim
k→∞

D(Zk) = e∗.

Definition 2. Such a sequence S of surfaces Zk ∈ C(Π,Sk) is said to be a
generalized minimizing sequence for the minimum problem P(Π,S).

Next we choose radii ρk ∈ (0, 1) with ρk → 1 having the following proper-
ties on the circles Ck := Cρk

:
(α) The curve Zk|Ck

is absolutely continuous, Zk(Ck) lies in Tμ/2 and is
linked with the polygon Π, i.e. L(Zk|Ck

, Π) �= 0.
(β) The sequence of surfaces Yk(w) := Zk(ρkw), w ∈ B, with boundary

values on Sk := Zk(Ck) is a generalized minimizing sequence for P(Π,S).
Thus we have in particular

lim
k→∞

D(Yk) = e∗.

In addition, all Yk|∂B are continuous curves whose greatest distance from S
converges to zero as k tends to infinity.

Now we pass from the sequence {Yk} to the sequence of harmonic mappings
Xk : B → R

3 which are continuous on B and have the boundary values Yk|∂B

on ∂B. We know that Xk − Yk ∈ H̊1
2(B,R

3) and

D(Xk) ≤ D(Yk).

Therefore, also {Xk} is a generalized minimizing sequence, and we have in
particular

(7) lim
k→∞

D(Xk) = e∗,
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whence there is a constant M such that

(8) D(Xk) ≤M for all k ∈ N.

By virtue of the mean value theorem for harmonic functions, there is a con-
stant c such that

(9) |∇Xk(w)| ≤ c
√
Mρ−1 for all k ∈ N and for |w| ≤ 1− ρ,

where ρ ∈ (0, 1).
Without loss of generality we can also assume that Xk(0) lies on the closed

polygon Π for all k ∈ N, since we can replace Xk by Xk ◦ τk, where τk is a
conformal selfmapping of B that maps w = 0 onto some point w∗

k ∈ B with
Xk(w∗

k) ∈ Π, and such a point can always be found since the polygon Π and
the curve Xk|∂B are linked.

In conjunction with (9) we infer that the harmonic mappings Xk, k ∈ N,
are uniformly bounded on every subset Ω � B. Applying a standard com-
pactness result for harmonic mappings, there is a subsequence of {Xk} that
converges uniformly on every set Ω � B. By renumbering this subsequence we
can achieve that the sequence Xk tends to a harmonic mapping X : B → R

3

on every compact subset of B. In conjunction with (8), we obtain that the
H1

2 (B)-norms of the surfaces Xk are uniformly bounded, and thus we may also
assume that the Xk tend weakly in H1

2 (B,R3) and strongly in L2(∂B,R3) to
X which then is of class H1

2 (B,R3).
From Lemma 1 we infer that X ∈ C(S), and the relations Xk(0) ∈ Π

imply in the limit that X(0) ∈ Π. Thus the harmonic mapping X is certainly
not a constant, and therefore X(w) �= const on any open subset Ω of B. Hence

(10) DΩ(X) > 0 for every nonempty open set Ω � B.

The lower semicontinuity of the Dirichlet integral with respect to weak con-
vergence in H1

2 (B,R3) yields

D(X) ≤ lim inf
k→∞

D(Xk),

and together with (6) and (7) we arrive at

D(X) ≤ e∗ ≤ e.

As X is of class C(S), we shall expect X to be a solution of P(Π,S). However,
it remains to be shown that X lies in P(Π,S). To this end we have to prove
that the linking number of the polygon Π with the boundary class X|∂B does
not vanish. This will be proved by contradiction.

Hence we suppose that L([X|∂B ], Π) = 0. Then a sequence of radii rk ∈
(1/2, 1) with rk → 1 can be found such that

ξk(θ) := X(rk, θ), 0 ≤ θ ≤ 2π,
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represents the boundary class [X|∂B ] of X, and that both the conditions

L(ξk, Π) = 0, k ∈ N,

and
lim

k→∞
g(ξk, S) = 0

hold true.
Recall that {Xk} converges to X uniformly on every Ω � B. Then, by

passing to another subsequence of Xk and renumbering it, we may assume
that

max
0≤θ≤2π

|Xk(rk, θ)− ξk(θ)| → 0 as k →∞.

Set
ξ∗
k(θ) := Xk(rk, θ), 0 ≤ θ ≤ 2π.

Then we infer that

(11) L(ξ∗
k, Π) = 0 for k ∈ N

and

(12) lim
k→∞

g(ξ∗
k, S) = 0.

Moreover, it follows as in the proof of Lemma 3 in Section 1.1 that there is
an angle θk ∈ [0, 2π] such that

(13) |Xk(r, θk)−Xk(1, θk)| ≤
(

2M
π

)1/2√
1− r

is satisfied for 1/2 ≤ r ≤ 1 and for all k ∈ N.
Finally we choose conformal mappings τk from B onto the slit annuli

{w = reiθ ∈ B : rk < r < 1, θ �= θk}.

We use these mappings to define a new sequence of surfaces X̂k := Xk ◦ τk.
On account of the additivity of linking numbers, of (11), (12), and of
L([Xk|∂B ], Π) �= 0, it follows that

L([X̂k|∂B ], Π) �= 0 for k ∈ N.

Moreover, we infer from (12) and (13) that the surfaces X̂k are of class
C0(B,R3)∩H1

2 (B,R3) and have boundary values on closed setsΣk := X̂k(∂B)
with g(Σk, S) → 0 as k →∞. Consequently, {X̂k} is a generalized admissible
sequence for the problem P(Π,S), and we obtain from (5) that

(14) e∗ ≤ lim inf
k→∞

D(X̂k).
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On the other hand, the conformal invariance of the Dirichlet integral yields

D(X̂k) = D(Xk)−DBrk
(Xk) ≤ D(Xk)−DB1/2(Xk),

where Br := {w ∈ C : |w| < r}. By a classical result on harmonic mappings,
we infer from

lim
k→0

|X −Xk|0,Ω = 0 for any Ω � B

that also
lim
k→0

|∇X −∇Xk|0,Ω = 0 for any Ω � B

holds true, whence
lim

k→∞
DB1/2(Xk) = DB1/2(X).

In conjunction with (7), we conclude that

lim inf
k→∞

D(X̂k) ≤ e∗ −DB1/2(X),

and now (14) yields
e∗ ≤ e∗ −DB1/2(X).

This is a contradiction to (10). Consequently we obtain L([X|∂B ], Π) �= 0,
whence X ∈ C(Π,S) and therefore

e ≤ D(X).

In view of (6) and (7) it follows that

(15) D(X) = e = e∗

which shows that X is a solution of the minimum problem P(Π,S). This
completes the proof of part (i) of the theorem.

(ii) The proof of part (ii) essentially follows the same lines of reasoning
if we replace the conditions “L(. . . , Π) �= 0” by “the boundary class of . . .
is not contractible”, and if the relations “Xk(0) ∈ Π” are substituted by the
assumption “S is compact”. Then we have

|Xk|0,∂B ≤M ′ for all k ∈ N,

and the maximum principle for harmonic functions yields

|Xk|0,B ≤M ′ for all k ∈ N.

Now we may carry on as before.
(iii) The third assertion of the theorem follows in the same way as for

solutions of the Plateau problem; cf. Chapter 4 of Vol. 1. This completes the
proof of Theorem 1. �



28 1 Minimal Surfaces with Free Boundaries

Theorem 2. Every minimizer of the Dirichlet integral D(X) in the class
C(Π,S) (or in C+(S)) is a surface of least area in C(Π,S) (or in C+(S)).

The proof of this result can be carried out in the same way as that of
Theorem 4 in Section 4.5 of Vol. 1. An alternative method to establish

inf
C(Π,S)

A = inf
C(Π,S)

D

and
inf

C+(S)
A = inf

C+(S)
D

without using Morrey’s lemma on ε-conformal mappings consists in applying
the technique of Section 4.10 in Vol. 1, namely, to minimize Aε := (1 − ε)A
+ εD. �

1.4 Stationary Minimal Surfaces with Free or Partially Free
Boundaries and the Transversality Condition

In the preceding chapters we have considered minimal surfaces which minimize
Dirichlet’s integral in suitable classes of admissible surfaces. However, the
definition of minimal surfaces does not require them to be minimizers, and
thus we are led to study also minimal surfaces that are only stationary within a
given free boundary configuration. This, roughly speaking, means that the first
order change of Dirichlet’s integral is zero if we change the stationary surface
in such a way that the boundary values remain on the prescribed supporting
surface S. It will turn out that stationary minimal surfaces essentially are
minimal surfaces which intersect S perpendicularly at their trace curves on
S, provided that S is smooth and the boundary of S is empty. However, we
also want to consider the case when ∂S is nonempty and consists of smooth
regular curves.

By definition we want two distinguish two types of stationary minimal
surfaces. The first type is defined by the differential equations

(1) ΔX = 0

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

which have to hold in B, and by a natural boundary condition which is to be
satisfied on the free part of ∂B.

The second type will be described as critical points of the Dirichlet integral
with respect to inner and outer variations.

Then we shall prove that both types of stationary minimal surfaces are
the same provided that both S and ∂S are sufficiently smooth.
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Let us begin by defining minimal surfaces in a partially free boundary
configuration 〈Γ, S〉. In the following we use the notation of Section 4.6 of
Vol. 1; in particular we define the class C(Γ, S) of admissible surfaces for the
partially free problem as in that Section.

At present we assume that S and ∂S are of class C1 and that Γ is a
rectifiable arc.

For any point P on S, we denote by Tp(S) the tangent plane of S at P .
If P ∈ ∂S, then Tp(S) is divided by the tangent Tp(∂S) of ∂S at P into two
halfplanes. If N∂S(P ) ∈ TP (S) denotes the outward unit normal of ∂S at
P ∈ ∂S, then we call all tangent vectors V ∈ TP (S) with 〈V,N∂S(P )〉 ≤ 0
interior tangent vectors of S at P ∈ ∂S.

Definition 1. A stationary minimal surface in C(Γ, S) is an element of
C(Γ, S) satisfying

(i) X ∈ C1(B ∪ I,R3) ∩ C2(B,R3), where I = ∂B ∩ {Im w < 0} denotes
the free boundary (of the parameter domain B := B1(0)) of X.

(ii) In B we have the equations (1) and (2).
(iii) Along I1 := {w ∈ I : X(w) ∈ int S}, the exterior normal derivative

∂X
∂ν is perpendicular to S. (Using polar coordinates r, θ about the origin w = 0,
we have ∂X

∂ν = ∂X
∂r .)

(iv) For any w belonging to I2 := {w ∈ I : X(w) ∈ ∂S} and every interior
tangent vector V ∈ TX(w)S, we have 〈∂X

∂ν (w), V 〉 ≥ 0.

Definition 2. An element X ∈ C(Γ, S) is called a critical (or stationary)
point of Dirichlet’s integral in the class C(Γ, S) if

(3) lim
ε→+0

1
ε
{D(Xε)−D(X)} ≥ 0

holds for all admissible variations Xε, |ε| < ε0, of X. A family {Xε}|ε|<ε0 of
surfaces Xε ∈ C(Γ, S) is said to be an admissible variation of X, if it is of
one of the following two types.

Type I (inner variations). Xε = X ◦ σε where {σε}|ε|<ε0
, ε0 > 0, is a

differentiable family of diffeomorphisms σε : B
∗
ε → B which are defined as

inverse mappings of the diffeomorphisms τε : B → B
∗
ε defined by

τε(w) = w − ελ(w), λ ∈ C1(R2,R2),

cf. Section 4.5 of Vol. 1.

Type II (outer variations). Xε = X + εφ(·, ε) for all ε ∈ (0, ε0) and some
ε0 > 0, where the following holds:

(α) the Dirichlet integrals of the mappings φ(·, ε) are uniformly bounded,
i.e.,

D(φ(·, ε)) ≤ const for all ε ∈ (0, ε0);
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(β) the functions φ(·, ε) converge pointwise a.e. in B to some function
φ0 ∈ H1

2 ∩ L∞(B,R3) as ε→ +0.

By Proposition 2 of Vol. 1, Section 4.5, we obtain from the inner variations
that a critical point X of Dirichlet’s integral in the class C(Γ, S) satisfies

(4) ∂D(X,λ) = 0 for all λ = (μ, ν) ∈ C1(B,R2).

Here ∂D(X,λ) denotes the first inner variation of the Dirichlet integral, given
by

(5) 2∂D(X,λ) =
∫

B

{a(μu − νv) + b(μv + νu)} du dv,

where a and b denote the functions

(6) a = |Xu|2 − |Xv|2, b = 2〈Xu, Xv〉.

Moreover, applying outer variations, it follows that

(7) lim
ε→+0

1
ε
{D(Xε)−D(X)} =

∫
B

〈∇X,∇φ0〉 du dv.

In fact, if {εn} is a sequence of positive numbers tending to zero, then
φn(w) := φ(w, εn) → φ0(w) a.e. on B.

By Egorov’s theorem, for any δ > 0 there is a compact subset Bδ of B
with meas (B \ Bδ) < δ such that limn→∞ |φ0 − φn|0,Bδ

= 0. By virtue of
(α) and of Poincaré’s inequality (see Morrey [8], Theorem 3.6.4) we then infer
that the H1

2 (B)-norms of the φn are uniformly bounded. From this we deduce
that the sequence φn converges weakly in H1

2 (B,R3) to φ0, and this implies
relation (7).

The following result states that the two kinds of stationary minimal sur-
faces are identical if S and ∂S are sufficiently smooth.

Theorem 1. Assume that S and ∂S are of class C1 and that Γ is rectifi-
able. Then every stationary minimal surface in C(Γ, S) is a stationary point
of Dirichlet’s integral in C(Γ, S). If S and ∂S are of class C3,β , β ∈ (0, 1),
then also the converse holds true, that is, every stationary point of Dirichlet’s
integral in C(Γ, S) furnishes a stationary minimal surface in C(Γ, S).

For the proof we need the following auxiliary result:

Lemma 1. Let Xε = X + εφ(·, ε), 0 ≤ ε ≤ ε0, be an outer variation (i.e. an
admissible variation of type II) of a surface X ∈ C(Γ, S), and let φ0 = φ(·, 0).
Then we have:

(i) For almost all w ∈ I, the vector φ0(w) is a tangent vector of S at X(w).
If X(w) lies on ∂S, then φ0(w) is an interior tangent vector.

(ii) If, in addition to our general assumption, the arc Γ is of class C1 or
if X is a stationary minimal surface, then φ0(w) is tangent to Γ at X(w) for
almost all w ∈ C = ∂B \ I.
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Proof. Choose a sequence {εn} with εn → +0 such that φ(w, εn) → φ0(w) for
a.e. w ∈ ∂B. Then assertion (i) follows from

φ(w, εn) =
1
εn
{Xεn(w)−X(w)}

and from X(w), Xεn(w) ∈ S for a.a. w ∈ ∂B.
(ii) is verified in the same way. (If Γ is only rectifiable we note that it

has a tangent everywhere except at countably many points. Moreover, if X
is a minimal surface then it follows from Theorem 1 in Vol. 1, Section 4.7
that, for almost all w ∈ C = ∂B \ I, the curve Γ has a tangent at the
point X(w).) �

Now we turn to the

Proof of Theorem 1. (i) Let X be a stationary minimal surface in C(Γ, S). In
order to show that X is a stationary point of the Dirichlet integral, we have
to verify (3) for all admissible variations {Xε}|ε|<ε0 of X. Since the case of
inner variations (type I) has already been settled in Section 4.5 of Vol. 1, it
suffices to consider variations of type II. In view of (7) we have to show

(8)
∫

B

〈∇X,∇φ0〉 du dv ≥ 0.

The Courant–Lebesgue lemma (see Section 4.4 of Vol. 1) shows that, given
any δ ∈ (0, 1), there are two radii r1(δ) and r2(δ) with δ ≤ r1, r2 ≤

√
δ such

that

(9)
∫

γk

∣∣∣∣∂X∂ν
∣∣∣∣ ds =

∫
γk

∣∣∣∣∂X∂t
∣∣∣∣ ds ≤ M

{log 1
δ}1/2

holds true for γ1 := B ∩ ∂Br1 (1) and γ2 := B ∩ ∂Br2 (−1), where M =
const

√
D(X). (Here ν and t denote unit normal and unit tangent to γ1 and

γ2, respectively.)
On account of Theorem 2 in Section 4.7 of Vol. 1 we have

(10)
∫

Ωδ

〈∇X,∇φ0〉 du dv =
∫

∂Ωδ

〈
∂X

∂ν
, φ0

〉
ds,

where Ωδ := B \ {Br1(1) ∪ Br2(−1)}. Letting δ tend to zero, we infer from
(9) and (10) that

(11)
∫

B

〈∇X,∇φ0〉 du dv =
∫

∂B

〈
∂X

∂r
, φ0

〉
ds.

By (iii) and (iv) of Definition 1 it follows that
〈
∂X

∂r
, φ0

〉
≥ 0 on I = ∂B ∩ {Imw < 0}
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holds true, whereas in view of Lemma 1 we obtain
〈
∂X

∂r
, φ0

〉
= 0 a.e. on C = ∂B ∩ {Imw ≥ 0}.

Consequently we have ∫
∂B

〈
∂X

∂r
, φ0

〉
ds ≥ 0,

whence the identity (11) implies (8).
(ii) Let us now consider a stationary point X of Dirichlet’s integral. By the

results of Chapter 4 such a mapping X is a minimal surface, that is, equations
(1) and (2) are satisfied in B (cf. equations (5)–(7)). The regularity results of
2.4 imply that X ∈ C1(B ∪ I,R3). Thus it remains to prove conditions (iii)
and (iv) of Definition 1. This will be carried out by applying the fundamental
lemma of the calculus of variations to the equation

(12)
∫

∂B

〈
∂X

∂r
, φ0

〉
ds ≥ 0

which follows from (3), (7) and (11). As we shall see it will be enough to
consider outer variations

Xε = X + εφ(·, ε), 0 ≤ ε < ε0,

with
support φ(·, ε) ⊂ B ∪ I.

Then also supp φ0 ⊂ B ∪ I, and (12) reduces to

(13)
∫

I

〈Xr, φ0〉 ds ≥ 0.

Consider now an arbitrary function V ∈ C1
c (I,R3) with V (w) ∈ TX(w)S for

all w ∈ I and

(14) 〈V (w), N∂S(X(w))〉 < 0 for all w ∈ I2.

Here and in the sequel, the subsets I1 and I2 of I be defined in the same way
as in Definition 1.

Then we solve the initial value problem

D

dε

d

dε
Z(w, ε) = 0,

Z(w, 0) = X(w),
dZ

dε
(w, 0) = V (w)

for fixed w ∈ I and 0 ≤ ε < ε0 with 0 < ε0 � 1, where D
dε denotes the

covariant derivative on S. In other words, we define Z(w, ε) as the geodesic
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flow on S starting at X(w) in direction of V (w), w ∈ I. This flow exists for
0 ≤ ε < ε0 and w ∈ I, where ε0 denotes a sufficiently small positive number,
and we have

Z(w, ε) = X(w) + εΨ(w, ε) = X(w) + εV (w) + o(ε)

for any w ∈ I, as well as

Z(w, ε) = X(w) for w ∈ I \ suppV and 0 ≤ ε < ε0.

Therefore we obtain

Ψ(·, ε) ∈ C1
c (I,R3), Ψ(w, 0) = V (w) for w ∈ I

and
Z(w, ε) ∈ S for (w, ε) ∈ I × [0, ε0).

Then we extend Ψ(·, ε) to functions φ(·, ε) for class C1
c (B∪I,R3) which depend

smoothly on (w, ε) ∈ B ∪ I × [0, ε0), and set

Xε(w) := X(w) + εφ(w, ε) for w ∈ B and 0 ≤ ε < ε0.

By construction we have Xε ∈ C(Γ, S), and the function φ0 := φ(·, 0) satisfies
φ0(w) = V (w) for all w ∈ I. Consequently, the relation (13) holds true. This
implies

(15)
∫

I

〈Xr, V 〉 ds ≥ 0

for every V ∈ C1
c (I,R3) with V (w) ∈ TX(w)S for all w ∈ I which, in addition,

satisfies 〈V (w), N∂S(X(w))〉 ≤ 0 for w ∈ I2. (In contrast to (14), we may
admit the equality sign in the last inequality as can be proved by a straight-
forward approximation argument.)

Let us write

Xr = X ′
r +X ′ ′

r , X ′
r ∈ TXS, X ′ ′

r ⊥ TXS;

then (15) is equivalent to

(16)
∫

I

〈X ′
r, V 〉 ds ≥ 0.

Suppose now that w0 ∈ I1. Then there exists some ρ > 0 such that Iρ(w0) :=
I ∩Bρ(w0) is contained in I1, and we infer that

∫
Iρ(w0)

〈X ′
r, V 〉 ds ≥ 0

is satisfied for every V ∈ C1
c (Iρ(w0),R3) with V (w) ∈ TX(w)S,w ∈ Iρ(w0),

and since the same inequality holds if we replace V by −V , we even have



34 1 Minimal Surfaces with Free Boundaries

(17)
∫

Iρ(w0)

〈X ′
r, V 〉 ds = 0.

The fundamental lemma of the calculus of variations yields X ′
r = 0 on Iρ(w0),

whence Xr(w0) = X ′ ′
r (w0). Consequently the normal derivative Xr(w0) is

perpendicular to TX(w0)S for every w0 ∈ I1, and we have verified property
(iii) of Definition 1.

Similarly we infer from (15) that condition (iv) of Definition 1 is fulfilled.
We leave it as an exercise for the reader to carry out the details. �

Remarks and Generalizations

(i) Analogous to the Definitions 1 and 2 one can define stationary minimal
surfaces in C(S) (or C+(S) or C(Π,S)) as well as stationary points of the
Dirichlet integral in C(S) (or in C+(S), or C(Π,S), respectively). We only
have to replace I by ∂B,C by the empty set, and C(Γ, S) by C(S) (or by
C+(S), or C(Π,S)); all statements about Γ are now to be omitted. Then,
analogous to Theorem 1, we obtain

Theorem 2. Assume that S and ∂S are of class C1. Then every stationary
minimal surface in C(S) (or in C+(S) or C(Π,S)) is a stationary point of
Dirichlet’s integral in C(S) (or in C+(S) or C(Π,S)). If S and ∂S are of class
C3+β , β ∈ (0, 1), also the converse holds true.

A stationary minimal surface in C(S) will also be called stationary minimal
surface with respect to S, or: with a free boundary on S.

If ∂S = ∅ and S ∈ C2,β , 0 < β < 1, then a stationary point of Dirichlet’s
integral is even of class C2,β up to its free boundary, according to results by
Dziuk and Jost. In this case, the second statements of the Theorems 1 and 2
also hold under the assumption S ∈ C2,β .

(ii) If we want to define stationary minimal surfaces X : Ω → R
3 with

a free boundary on S and critical points of the Dirichlet integral with a free
boundary on S which are defined on multiply connected parameter domains
Ω or even on Riemann surfaces, the matter is slightly more complicated. We
are not anymore allowed to fix Ω, but only the conformal type of Ω can be
prescribed. Then the boundary behaviour of the minimal surface does not
only depend on S but also on the boundary ∂Ω of the parameter domain.
However, we never have a real problem. For instance, a theorem of Koebe [1]
states that every k-fold connected domain in C is conformally equivalent to a
bounded domain in C whose boundary consists of k disjoint circles. Therefore
we can essentially proceed as before.

(iii) In Section 1.6 we shall also consider stationary minimal surfaces
X : Ω → R

3 having their boundaries on a simplex or, more generally, on
a polyhedron. In this case we shall call a minimal surface X stationary if for



1.5 Necessary Conditions for Stationary Minimal Surfaces 35

some finite subset M of ∂B the surface X is of class H1
2 (B,R3)∩C1(B\M,R3)

and if X meets the interiors of the faces of the polyhedron orthogonally along
∂B \M .

(iv) In the special case that Γ is a rectifiable Jordan curve and that C(Γ ) is
defined as in Chapter 4 of Vol. 1, we obtain the following result: The solutions
of Plateau’s problem within the class C(Γ ) which are not necessarily minimiz-
ers of the area are precisely the stationary points of the Dirichlet integral in
C(Γ ), i.e., those elements X of C(Γ ) which satisfy

lim
ε→0

1
ε
{D(Xε)−D(X)} = 0

for all admissible variations {Xε}|ε|<ε0 of X which are of class C(Γ ). These
admissible variations are defined as in Definition 2 if we replace S and I by
the empty set, and C by ∂B.

Let us close this section with a simple

Example. If S is the boundary of an open, convex and bounded subset K

of R
3 of class C1, and if E is a plane which intersects S orthogonally (e.g.,

a plane of symmetry of K ), then a conformal map X from B onto E ∩ K

defines a stationary minimal surface having S ∩ E as its trace. Therefore the
plane disks bounded by the great circles of a sphere S are stationary minimal
surfaces in S. As we shall see in Section 1.7, they are the only stationary
disk-type surfaces in the sphere.

Moreover, the ellipses in an ellipsoid E, having two of the axes of E as
their principal axes, are three stationary minimal surfaces in E. It is unknown
whether they are the only stationary surfaces in E which are of the type of
the disk.

1.5 Necessary Conditions for Stationary Minimal Surfaces

Let us agree that throughout this section we consider minimal surfaces X : Ω →
R

3, the parameter domain Ω of which will be bounded by finitely many disjoint
circles C1, C2, . . . , Ck. Moreover, the surfaces X will be stationary minimal
surfaces with a free boundary on a polyhedron S or on a closed, orientable,
regular C1-surface S.

Now, if V is an arbitrary constant vector in R
3, then an integration by

parts shows that
∫

∂Ω

〈
∂X

∂ν
, V

〉
ds =

∫
Ω

〈ΔX,V 〉 ds = 0.

(If S is a polyhedron this can be justified as in Section 1.4.) Since X is
stationary, we know that (almost) everywhere on ∂Ω
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∂X

∂ν
(w) = ±NS(X(w)) ·

∣∣∣∣∂X∂ν (w)
∣∣∣∣

= ±NS(X(w)) ·
∣∣∣∣∂X∂t (w)

∣∣∣∣ ,

where NS is the surface normal of S, and ∂
∂ν ( ∂

∂t ) denotes the normal (tan-
gential) derivative along ∂Ω. Furthermore, s denotes the parameter of the arc
length on ∂Ω.

Therefore we have obtained the following

Proposition 1. If X : Ω → R
3 is a stationary minimal surface with respect

to a surface S, X and S satisfying the general assumption, then

(1)
∫

∂Ω

NS(X(w)) ·
∣∣∣∣∂X∂t (w)

∣∣∣∣ ds = 0

unless 〈∂X
∂ν , NS(X)〉 changes its sign on ∂Ω.

Remarks. (i) If we denote by Σ := X|∂Ω the trace of a stationary minimal
surface X, then formula (1) could also be written as

∫
Σ

μ(P )NS(P ) dH1 = 0,

where H1 is the one-dimensional Hausdorff-measure in R
3 and μ(P ) the num-

ber of points w ∈ ∂Ω such that X(w) = P .

(ii) The geometric interpretation of formula (1) is that the integral of the
normal NS over the trace Σ of the stationary minimal surface X vanishes.

(iii) Here are some conditions implying that

(2)
〈
∂X

∂ν
,NS(X)

〉
does not change its sign on ∂Ω.

A first condition is

(I) S is smooth and X has no branch points on ∂Ω.
Recall that w ∈ Ω is a branch point of X if |∇X(w)|2 = 0. Since by

conformality we have the identity |∂X
∂ν |2 = 1

2 |∇X|2 on ∂Ω, property (2) follows
from (I).

(II) More generally, for surfaces S of class C4 (or C3,β , β ∈ (0, 1)), the absence
of branch points of odd order on ∂Ω is also sufficient for (2).
This follows from the expansion formula in Section 2.10 which describes the
asymptotic behavior of the minimal surface near a boundary branch point.

(III) The surface X(Ω) stays on one side of S.
Clearly, (2) follows from this property of X which, in turn, is true if
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(IV) S is the boundary of a convex body K ∈ R
3, as we can infer from the

maximum principle, or if

(V) S is the graph of a C2-function defined on the 2-sphere S2 such that the
mean curvature of S with respect to the inward unit normal NS is nowhere
negative.
This follows from a maximum principle to be stated in the Chapter 4.

(iv) A system Γ = {Γ1, . . . , Γk} of rectifiable curves Γj on a surface S is
sometimes called a system of balanced curves on S if

∫
Γ

NS ds = 0,

that is, if
k∑

j=1

∫
Γj

NS ds = 0

holds true (here s denotes the parameter of the arc length of Γ ).
According to Proposition 1, formula (1), we have

∫
Σ

NS ds = 0

for the free trace Σ of a minimal surface X with a free boundary on S and sat-
isfying (2), since ds = |Xt| ds if s denotes the arc length on ∂Ω. Consequently,
we can read Proposition 1 as follows:

The free trace Σ of a stationary minimal surface in C(S) is a system of
balanced curves.

We shall now draw several conclusions from Proposition 1.

Corollary 1. Let X : Ω → R
3 be a stationary minimal surface with respect to

a support surface S which is the boundary of an open set K in R
3, and assume

that X(Ω) is contained in K. Then the free trace X(∂Ω) of X on S cannot
be contained in a subset of S which is mapped by the Gauss map NS : S → S2

of S into an open hemisphere of S2.

Corollary 2. In particular there are no stationary minimal surfaces which
have their boundaries on a paraboloid or on one sheet of a hyperboloid of
two sheets. Likewise there is no stationary minimal surface with respect to a
simplex whose trace intersects only three of the four faces.

Corollary 3. If X and S are as in Corollary 1 and if X(∂Ω) is contained in a
subset U of S whose Gauss image NS(U ) is contained in a closed hemisphere
H of S2, then NS(X(∂Ω)) is the great circle ∂H.
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Fig. 1. (a) The integral of the unit normal bundle along a balanced curve on a smooth

surface vanishes. (b) The integral of the unit normal bundle along this unbalanced curve

on the same surface has a non-vanishing component pointing to the reader

Corollary 4. If X and S are as in Corollary 1, and if Ω is simply connected,
S is of class C1, and if the image of the trace X(∂Ω) under the Gauss map
NS : S → S2 is a great circle, then Σ is a plane curve, and X is a plane
minimal surface.

Proof. We can now assume that Ω is the unit disk B. Let X∗ be the adjoint
minimal surface of X. Then we have

(3) Xu = X∗
v and Xv = −X∗

u in B,

or, in polar coordinates,

X∗
r = −1

r
Xθ and X∗

θ = rXr,

hence for 0 ≤ θ ≤ 2π

X∗(1, θ) = X∗(1, 0) +
∫ θ

0

X∗
θ (1, ϕ) dϕ(4)

= X∗(1, 0) +
∫ θ

0

Xr(1, ϕ) dϕ.

By assumption, the normals of S along Σ are contained in a plane. Conse-
quently the vectors Xr(w) = ±|Xr(w)|NS(X(w)), w ∈ ∂B, lie in a plane,
and (4) implies that X∗(1, θ) is contained in a parallel plane. The maximum
principle now yields that X∗(Ω) lies in this plane, and the assertion follows
from (3). �
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Corollary 5. Stationary minimal surfaces of the type of the disk (i.e., Ω = B)
with their free boundary on a cylinder are plane disks orthogonal to the cylinder
axis.

This is an immediate consequence of the preceding corollary. Note that
the infinite strip is excluded, as our definition of “stationary” implies “finite
area”.

1.6 Existence of Stationary Minimal Surfaces in a Simplex

The examples of stationary minimal surfaces with a free boundary on a sup-
porting surface S have been rather trivial since all of them were planar sur-
faces. The first nontrivial example of a minimal surface with a free boundary
on a tetrahedron was found by H.A. Schwarz in 1872 (cf. Math. Abhandlungen
[2], vol. 1, pp. 149–150); we have copied Schwarz’s drawing in Fig. 1. Schwarz
obtained this surface as an adjoint of the minimal surface bounded by four
consecutive edges of a regular tetrahedron. In the following we describe a re-
sult of B. Smyth [1] which may be viewed as a generalization of the Schwarz
surface to arbitrary simplices in R

3.

Theorem 1. Let S be the boundary of a simplex in R
3. Then there are exactly

three stationary minimal surfaces of disk-type having connected intersections
with each of the four faces of S. They neither have branch points in B nor on
the arcs of ∂B which are mapped into the faces of S.

Remark. Exactly three means, of course, exactly three except for reparame-
trizations.

Proof of Theorem 1. First of all, in order to prove existence, choose a fixed
order H1, . . . , H4 of the faces Hi of S and let N1, . . . , N4 be their outward
unit normals. Next choose four real numbers li such that

∑4
i=1 liNi = 0 (note

that all li are different from zero). Now let Γ be the quadrilateral which is
determined by the four vectors l1N1, . . . , l4N4 just in this order, i.e., Γ (t) :=
4l1N1 · t for 0 ≤ t ≤ 1

4 , Γ (t) = l1N1 +4(t− 1
4 ) · l2N2 for 1

4 ≤ t ≤ 1
2 , etc. Since Γ

can be projected onto a convex curve in a plane, there is exactly one solution
Y of the Plateau problem P(Γ ) (see Section 4.9 of the Vol. 1). By the reflection
principle (cf. Vol. 1, Section 4.8), Y is of class H1

2 (B,R3) ∩ Cω(B \M,R3),
where M contains the four points of ∂B corresponding to the corners of Γ .
Then the minimal surface X̂ := −Y ∗ is stationary with respect to a simplex
Ŝ similar to S. After a suitable choice of a > 0 and A0 ∈ R

3, the surface
X := A0 + aX̂ is a stationary minimal surface with respect to the given
simplex S, which crosses the faces H1, . . . , H4 in this order.

Now note that, since a stationary minimal surface has to cross all four
faces of the simplex (Corollary 2 of Section 1.5), one can select any of them
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Fig. 1. Schwarz’s stationary minimal surface in a tetrahedron

as the first to be crossed. But then the three possible choices of the face to
be crossed next but one lead to three geometrically different stationary mini-
mal surfaces. This proves the existence of at least three stationary minimal
surfaces.

Before we show the uniqueness part of the theorem let us show that the
length of the trace X|∂B of any stationary minimal surface in the simplex S
having connected intersections with the faces is finite.

Denote by C1, . . . , C4 the four open subarcs of ∂B which are mapped by X
into the interiors of the facesH1, H2, H3, H4 of the simplex. Next, note that the
adjoint minimal surface X∗ of X also belongs to H1

2 (B,R3)∩Cω(B \M,R3),
where M = ∂B\

⋃4
1 Ci. By virtue of the maximum principle and the boundary

condition, we obtain

∂X∗

∂θ
=
∂X

∂r
=
∣∣∣∣∂X

∗

∂r

∣∣∣∣ ·Ni on Ci,

whence we see thatX∗ maps the four arcs Ci monotonically onto four mutually
nonparallel straight lines L̂i parallel to Ni. The Courant–Lebesgue lemma now
implies that L̂i intersects L̂i+1(mod 4), and that X∗ is continuous on B and
bounded by the quadrilateral Γ given by the line segments Li on L̂i between
the intersections of L̂i with L̂i−1(mod 4) and L̂i+1(mod 4).

In particular we have for i = 1, . . . , 4 that

li =
∫

Ci

|Xθ| ds =
∫

Ci

|X∗
θ | ds <∞

(one can now also show that X is continuous in B). Since the boundary curve
X|∂B is balanced (see Section 1.5), we have
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4∑
i=1

liNi = 0.

This equation shows that the lengths of the intercepts of X with the faces are
determined up to a constant, since there is only one linear relation between
four vectors in R

3, no three of which are dependent.
Consequently, if Y is another stationary minimal surface in the simplex S

which intersects the faces in the same order asX, then the bounding quadrilat-
erals of X∗ and Y ∗ are homothetic, hence also X∗(B) and Y ∗(B), as follows
from the uniqueness theorem in Section 4.9 of Vol. 1. Therefore X(B) and
Y (B) are homothetic too, and they even coincide since they are bounded by
the same simplex.

Hence we have shown that a particular choice of the order in which the
faces are crossed determines the minimal surface uniquely. Hence only three
essentially different stationary minimal surfaces remain. This proves the as-
sertion. �

A stationary minimal surface X in the simplex S has no interior branch
points since X∗ has none (Theorem 1 in Vol. 1, Section 4.9). The simplex is
convex; therefore X stays on one side of each of the faces Hi. Hence we may
first continue X by reflection across Hi as a minimal surface and then exclude
branch points on Ci by means of the expansion formulas stated in Section 3.2
of Vol. 1.

Remark. By means of the theorem of Krust presented at the end of Sec-
tion 3.3 of Vol. 1, it follows that the three stationary solutions of Smyth are
graphs, since their adjoints are graphs; thus, in particular, they are embedded
minimal surfaces.

1.7 Stationary Minimal Surfaces of Disk-Type in a Sphere

In this section we shall prove that plane disks are the only stationary minimal
surfaces of disk type that have their boundaries on a sphere.

Theorem. Let X ∈ C1(B,R3) ∩ C2(B,R3) satisfy

(1) ΔX = 0 in B,

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in B.

Moreover, assume that X(∂B) is contained in a sphere S and that the normal
derivative ∂X

∂ν is orthogonal to S along ∂B. Then X(B) is a plane disk.
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Fig. 1. The catenoid yields a doubly connected non-planar minimal surface intersecting a

sphere perpendicularly. On the other hand, all simply connected stationary minimal surfaces

in a sphere are planar surfaces

Remark. Note that the theorem is false if we admit minimal surfaces of
a different topological type. For example, any sphere S bounds a catenoid
intersecting S orthogonally along its trace.

Proof of the Theorem. We shall prove in Chapter 2 that

(3) X is real analytic in B.

Then the arguments used in Chapter 3 of Vol. 1 show the following:

(4) X has only finitely many isolated branch points in B. The surface
normal N(w) of X(w)and hence also the coefficients of the
second fundamental form of X can be extended continuously
to all of B.

Let M ⊂ B denote the set of branch points, i.e. of points w with |Xu(w)| =
|Xv(w)| = 0. Then, by H. Hopf’s observation (cf. Vol. 1, Section 1.3), the
function f(w) = 1

2 (L−N )−iM is holomorphic in B\M and continuous on B̄.
Consequently all interior singularities of f are removable and f is holomorphic
in all of B. Let us now assume without loss of generality that S = S2, and
consider the boundary condition, which is equivalent to

Xρ(eiθ) = λ(eiθ)NS(X(eiθ))
= λ(eiθ)X(eiθ),

where NS(X) denotes the outward unit normal of S at X and λ(θ) :=√
E(eiθ). Next we differentiate this equation in ∂B \M with respect to θ. We
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obtain (′ = ∂
∂θ ) : Xρθ = λ′X + λXθ = λ′

λ Xρ + λXθ, and a comparison with
formula (36) of Section 1.3 in Vol. 1 shows that the boundary values of the
imaginary part β of g := w2f vanish. Hence β ≡ 0 in B, and therefore
α := Re g is identically constant in B, whence α ≡ α(0) = 0. Thus L = N

and M = 0 in B. Now Weingarten’s equations (cf. Vol. 1, Section 1.2, (38) ff.
and (42)) imply that

∇N = −H∇X = 0 in B \M.

Therefore N ≡ const in B and X(B) is contained in a plane orthogonal to N .
�

Remark. Suppose that X ∈ C1(B,R3) ∩C2(B,R3) is a disk-type surface of
constant mean curvature H. Then our previous reasoning shows that f(w) =
1
2 (L−N)− iM is again holomorphic, and the same arguments as before yield
that L = N and M = 0, as one has the same asymptotic expansion about
branch points as for minimal surfaces (see Heinz [15]). Then it is fairly easy
to prove that X is a parametrization of a spherical cap. This result as well as
Theorem 1 are due to Nitsche [35]. Furthermore, one can construct an example
where this spherical cap actually covers a whole sphere of radius 1/|H|.

1.8 Report on the Existence of Stationary Minimal Surfaces
in Convex Bodies

Let S ⊂ R
3 be an embedded submanifold of R

3 without boundary and of
genus g ≥ 1, that is, S has at least one hole to be spanned. Then there exists
a closed polygon Π such that the class C(Π,S) is nonempty, and we can
prove the existence of a stationary minimal surface X which has its boundary
on S and such that X|∂B is not contractible in R

3 \ Π, see Theorem 1 in
Section 1.3. Such a surface X is constructed as a solution to the variational
problem P(Π,S) : DB(X)→ min in C(Π,S). In Section 1.6, on the other hand,
we have considered the case of a simplex S, and we have proved the existence
of three (distinct) stationary minimal surfaces in C(S). Clearly these surfaces
cannot be solutions of the minimum problem P(S) : DB(·) → minimum in
C(S) as the constant surfaces have a smaller Dirichlet integral, and the classes
C+(S) and C(Π,S) are void. Thus we cannot use a minimizing procedure to
obtain nondegenerate minimal surfaces in S.

Consider now the ellipsoid E given by x2

a2 + y2

b2 + z2

c2 = 1, with a > b > c.
As we have already noted, there exist at least three geometrically distinct,
stationary minimal surfaces inside E which are of the type of the disk, namely,
the parts of the coordinate planes {x = 0}, {y = 0}, and {z = 0} lying in the
interior of E.

Thus, if S is the boundary of a convex body K ⊂ R
3, it is tempting to

conjecture that there exist at least three geometrically different stationary
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minimal surfaces with boundary on S. As mentioned before, we cannot ob-
tain these surfaces by a minimum procedure. Hence more refined minimax
procedures (or saddle-point methods) have to be used if we want to find such
surfaces which are not minimizers. As a first result in this direction Struwe
[3] proved the following

Theorem 1. For any embedded surface S of class C4 which is diffeomorphic
to the unit sphere S2 in R

3, there exists a stationary minimal surface X ∈
C(S) of the type of the disk which has its free boundary on S.

Struwe’s proof applies a minimax principle from Palais [1] to a modified
class of variational problems Pα, α > 1, which satisfy the Palais–Smale con-
dition and hence admit a saddle-type solution Xα. A nonconstant stationary
minimal surface is obtained by passing to the limit α→ 1 via a suitable sub-
sequence of the surfaces Xα. This approach can be viewed as an adaptation
of a method due to K. Uhlenbeck (see, for instance, Sacks and Uhlenbeck [1]).

Struwe’s theorem does not answer the question as to whether one can find
an embedded stationary minimal surface with its free boundary on the surface
S of some convex body K, or if there is at least an immersed stationary
minimal surface in C(S). In case that S is the boundary of a strictly convex
subset K ⊂ R

3 of class C4, Grüter and Jost [1] have found the following
stronger result.

Theorem 2. There exists an embedded, stationary disk-type minimal surface
having its free boundary on S (and values in K).

The proof of this theorem uses methods from geometric measure theory
which have not been treated in these notes. Let us only mention some main
ingredients of the arguments used by Grüter and Jost. First the minimax
methods from Pitts [1] are employed to obtain a so-called almost minimizing
varifold in the sense of Pitts [1] and Simon and Smith [1], which meets S
transversally along its trace. The regularity of this varifold at its free boundary
relies on an extension of Allard’s regularity results to free boundary value
problems due to Grüter and Jost [2]. Finally, Simon and Smith proved the
existence of a minimally embedded two-sphere in any manifold diffeomorphic
to the three-sphere. The methods of these authors are used in an essential
way to show that the above varifold is both embedded and simply connected,
that is, the minimizing varifold is of the type of the disk or of a collection of
disks.

Theorem 2 also extends to Riemannian manifolds if one adapts methods
by Pitts [1] and by Meeks, Simon, and Yau [2].

The following theorem due to Jost [15] (cf. also [9] for an earlier, more
restricted result) shows that a closed convex surface S bounds in fact three
different stationary minimal surfaces.

Theorem 3. Let S be the boundary of a strictly convex body K ⊂ R
3 of

class C5. Then there exist three geometrically different, stationary, embedded
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minimal surfaces in K which are of disk type and have their free boundaries
on S.

In fact, Jost [15] proved that the assertion still holds true if S is merely
H-convex.

A generalization of Theorem 2 to convex polyhedral surfaces S was estab-
lished by Jost [15]. His result to be stated next contains a part of the Theorem
of B. Smyth as a special case.

Theorem 4. Let S be a compact convex polyhedron in R
3. Then there exists

an embedded minimal surface X of the type of the disk meeting S perpendic-
ularly along its boundary such that no segment of any edge of S is contained
in the boundary of X.

1.9 Nonuniqueness of Solutions to a Free Boundary
Problem. Families of Solutions

Examples of minimal surfaces with free or partially free boundaries on a pre-
scribed supporting surface S were already investigated during the last cen-
tury. The first geometric problem leading to minimal surfaces with free bound-
aries was posed by the French mathematician Gergonne [1] in 1816, but a cor-
rect solution was only found by H.A. Schwarz in 1872 (see [2], pp. 126–148,
and Tafel 4 at the end of vol. I).

Gergonne’s problem consists in finding a minimal surface spanning a frame
〈Γ1, Γ2, S1, S2〉 that consists of two parallel faces S1 and S2 of some cube and of
two straight arcs Γ1 and Γ2 lying on opposite faces of the cube.3 As depicted in
Fig. 1, we assume that the two diagonals Γ1 and Γ2 are perpendicular to each
other. In contrast to his predecessors, Schwarz arrived at correct stationary
surfaces spanning the configuration 〈Γ1, Γ2, S1, S2〉 since he had discovered
the proper free boundary condition: each stationary surface has to meet the
two supporting surfaces at a right angle. In addition to an area minimizing
solution which is depicted in Fig. 1, Schwarz discovered infinitely many other
non-congruent stationary minimal surfaces in the frame 〈Γ1, Γ2, S1, S2, S3, S4〉
consisting of the four vertical faces Si and the two horizontal arcs Γ1, Γ2.
In other words, a partially free boundary problem may have infinitely many
distinct (i.e. noncongruent) solutions.

Let us set up the definition of free or partially free boundary problems in
some more generality than in Section 1.4. We consider boundary configura-
tions 〈Γ, S〉 in R

3 consisting of a system Γ of Jordan curves Γ1, . . . , Γm and
of a system S of surfaces S1, . . . , Sn. Each of the curves Γi is either a closed
curve or else a Jordan arc with end points on S. We shall call S the free part

3 In fact, the original form of this problem is somewhat different; it was stated as a partition

problem for the cube.
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Fig. 1. (a) The Schwarzian chain 〈Γ1,Γ2,S1, S2〉 forming the boundary frame for Gergonne’s

problem. (b) Gergonne’s surface, the area minimizing solution of Gergonne’s problem dis-

covered by Schwarz. (c) Gergonne’s surface generates the fifth periodic minimal surface

known to Schwarz (Lithograph by H.A. Schwarz)

of the configuration 〈Γ, S〉. The fixed part Γ of the boundary frame may be
empty.

A minimal surface M is said to be stationary within the configuration 〈Γ, S〉
if the boundary of M lies on Γ ∪ S and, moreover, if M meets S orthogonally
at the part Σ = ∂M ∩ S of its boundary. As usual, we shall call Σ the free
trace of M on S.

Remark. If this definition is to make sense we have to assume that each
of the support surfaces Sj is a regular surface of class C1. Furthermore we
shall suppose the each Γk is a piecewise smooth regular arc. Similarly, M

is supposed to be smooth except for finitely many points. Note that in this
section we assume that M meets S everywhere at a right angle (except for
at most finitely many points). In other words, we essentially exclude the case
that ∂M attaches in segments (i.e. intervals) to ∂S since in this case the two
surfaces M and S need not include an angle of ninety degrees.

The free-boundary problem of a configuration 〈Γ, S〉 is the problem to de-
termine a stationary minimal surface within 〈Γ, S〉. As before, such a problem
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Fig. 2. (a) A partially free boundary problem for a frame 〈Γ1, Γ1, S1, S2〉. (b) A part of

Henneberg’s surface forms a disk-type solution of the problem. Note that S1 and S2 are

surfaces with boundary. As in the present case, this can lead to singularities of the free

boundary of a solution (see Chapters 1 and 2 of Vol. 3)

is said to be partially free if Γ is nonvoid; otherwise we call it completely free
or simply free.

As usual we describe minimal surfaces M by mappings X from a planar
parameter domain Ω or from a Riemann surface R into R

3; ∂Ω and ∂R are
assumed to be piecewise smooth, and X will be smooth in Ω or R except for
at most finitely many points on ∂Ω or ∂R.

It is trivial to find supporting surfaces S which bound continua of station-
ary minimal surfaces. The sphere, the cylinder, or the torus furnish simple
examples. In these cases, however, all minimal surfaces belonging to the same
continuum are congruent to each other.

Therefore it is of interest to see that there are free or even partially free
boundary problems which possess denumerably many noncongruent solutions,
or even continua of noncongruent solutions.

As we have mentioned above, Gergonne’s problem furnishes an example
of such a free boundary problem. In fact, using the helicoids, Schwarz was
able to exhibit an even simpler and completely elementary example of such a
boundary configuration. Consider a boundary frame 〈Γ1, Γ2, S〉 consisting of
a cylinder surface S and two straight arcs Γ1 and Γ2 which are perpendicular
to each other as well as to the cylinder axis and pass through the axis at
different heights. This configuration bounds denumerably many left and right
winding helicoids which meet the cylinder S at a right angle (Fig. 3). Only
two of these helicoids are area minimizing, the others are only stationary.

A slight modification of the previous example yields a boundary frame
〈Γ, S〉 consisting of a cylinder S as surface of support and of a polygon Γ
made of a piece A of a cylinder axis and of two straight segments A1 and
A2 which connect A with S; we assume that A1 and A2 are perpendicular to
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each other. There are again infinitely many stationary surfaces for 〈Γ, S〉, all
of which are helicoidal surfaces (cf. Fig. 4).

Fig. 3. Three of infinitely many noncongruent minimal surfaces that are stationary within

a configuration 〈Γ1, Γ2, S〉

Fig. 4. A boundary configuration 〈Γ, S〉 (a) bounding infinitely many stationary minimal

surfaces of the type of the disk; these are pieces of helicoids (b)

Next we consider a configuration 〈Γ, S〉 consisting of a circle Γ and of a
supporting surface S which bounds a continuum of noncongruent and even
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area minimizing minimal surfaces. It turns out that such an example can
be derived from the classical calculus of variation. In the following we freely
use some of these results, see Bolza [1] (Beispiel I); Bliss [1], pp. 85–127;
Carathèodory [3], pp. 340–341, 360–367; Giaquinta and Hildebrandt [1].

Let x(t), y(t), t1 ≤ t ≤ t2, be the parameter representation of a curve
contained in the upper half plane {y > 0}. The surface area of its surface
of revolution about the x-axis is given by the integral 2π

∫ t2
t1
y
√
dx2 + dy2.

Thus the minimal surfaces of revolution are described by the extremals of
the functional

∫
y
√
dx2 + dy2, y > 0, which are the parallels to the positive

y-axis,
x = x0, y > 0,

and the catenaries

(1) y = a cosh
(
x− x0

a

)
, −∞ < x <∞,

which form a 2-parameter family of nonparametric curves, a > 0,−∞ < x0 <
∞. The point (x0, a) is the vertex of the catenary (1).

Let us consider all catenaries passing through some fixed point P =
(0, b), b > 0, on the y-axis. They must satisfy b = a cosh(x0

a ) or b = a coshλ, if
we introduce the new parameter λ = −x0

a . Then there is a 1-1 correspondence
between all real values of the parameter λ and all catenaries passing through
(0, b) which is given by

Fig. 5. (a) Catenaries emanating from P to the right, and their wave fronts. (b) A com-

plete figure: The stable catenaries emanating from P and terminating at their envelope E,

together with their wave fronts
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y = g(x, λ) := a(λ)cosh
(
λ+

x

a(λ)

)
, x ∈ R,

(2)

a(λ) :=
b

coshλ
, λ ∈ R.

We can also write

g(x, λ) = b cosh
x

a(λ)
+ a(λ)sinhλ sinh

x

a(λ)
,

and sinhλ = ±
√
b2 − a2(λ)/a(λ).

We now consider the branches y = g(x, λ), x ≥ 0, lying in the first quadrant
of the x, y-plane. There exists exactly one conjugate point Q(λ) = (ξ(λ), η(λ))
with respect to P on each catenary (2). The points Q(λ), λ ∈ R, form a real-
analytic curve E that resembles a branch of a parabola extending from the
origin to infinity. The curve E is given by the condition

∂

∂λ
g(x, λ) = 0

and describes the envelope of the catenary arcs

Cλ = {(x, g(x, λ)) : 0 ≤ x ≤ ξ(λ)}, λ ∈ R.

The domain Ω = {(x, y) : 0 < x < ξ(λ), y > η(λ) for some λ} is simply covered

by the open arcs
◦
Cλ = Cλ \ {P,Q(λ)}.

Consider the wavefronts Wc, c > 0, emanating from P . The curves Wc are
the real analytic level lines {S(x, y) = c} of the wave function S(x, y) that
satisfies the Hamilton–Jacobi equation

S2
x + S2

y = y2

and is given by

S(x, g(x, λ)) = I(x, λ), 0 ≤ x ≤ ξ(λ),

where the right-hand side is defined by

I(x, λ) =
∫ x

0

g(u, λ)
√

1 + g′(u, λ)2 du,

and g′(u, λ) = ∂
∂ug(u, λ).

The two families of curves Cλ, λ ∈ R, and Wc, c > 0, form the complete
figure (in sense of Carathéodory) associated with the variational problem

∫
y
√
dx2 + dy2 → Extr, y(0) = b,



1.9 Nonuniqueness of Solutions to a Free Boundary Problem 51

in x ≥ 0, y > 0, see Fig. 5.
By Adolf Kneser’s transversality theorem, the curves Wc intersect the

catenaries Cλ orthogonally. Two curves Wc1 and Wc2 , c1 < c2, cut a piece
Cλ(c1, c2) out of each curve Cλ such that

∫
Cλ(c1,c2)

y
√
dx2 + dy2 = c2 − c1,

and c2 − c1 is the infimum of the integral
∫
y
√
dx2 + dy2 along all paths

joining Wc1 and Wc2 within Ω. In particular, if Cλ,c = {(x, g(x, λ)) : 0 ≤ x ≤
x0(λ, c)} denotes the subarc of the catenary that connects P with Wc, then
I(x0(λ, c), λ) is the infimum of the integral

∫
y
√
dx2 + dy2 taken along all

curves joining P and Wc within Ω. If we now rotate the whole configuration
shown in Fig. 5 about the x-axis, the wavefront Wc generates a surface of
revolution Sc, and each catenary Cλ,c produces a minimal catenoid Kλ,c with
the area 2πc. The catenoid Kλ,c is bounded by two parallel coaxial circles Γ
and Σλ,c centered on the x-axis. Γ is generated by the rotation of P , and
Σλ,c by the rotation of the intersection point of Cλ with Wc. Each catenoid
Kλ,c intersects Sc orthogonally and, therefore, is a stationary minimal surface
within the configuration 〈Γ, Sc〉. All catenoidsKλ,c, c fixed, have the same area
and minimize area among all surfaces of revolution bounded by 〈Γ, S〉 which
lie in the open set H generated by rotating Ω ∪ Ω∗ ∪ {x = 0, y > 0} about
the x-axis. Here Ω∗ is the mirror image of Ω at the y-axis in the x, y-plane
(cf. Fig. 6).

In fact, it turns out that the catenoids Kλ,c even minimize area among all
orientable surfaces F bounded by 〈Γ, Sc〉 that are contained in H. A well-
known projection argument shows that it suffices to prove Area(Kλ,c) ≤
Area(F ) for all oriented surfaces F with boundary on Γ ∪ Sc that are con-
tained in H + = H ∩ {x ≥ 0}.

Let now F be such a surface with γ = ∂F ∩ Sc. Then there is a region
T in the surface Sc with integer multiplicities, the boundary of which equals
γ − Σλ,c. Therefore Kλ,c − F + T is a cycle, and it follows that there is a
three-dimensional region R with integer multiplicities such that the boundary
of R is Kλ,c − F + T . Gauss’s theorem yields

(3)
∫

R

divX dvol =
∫

∂R

〈X,N∂R〉 dA,

where N∂R is the oriented unit normal to ∂R. Let X = X(x, y, z) be a field
of unit vectors normal to the foliation formed by the catenoids Kλ,c. Then we
infer from Vol. 1, Section 2.7, in particular from formula (3) that

divX = −2H,

H being the mean curvature of the leaves of the foliation. Since H ≡ 0, the
vector field X is divergence free. Since 〈X,NT 〉 = 0 and X can be chosen in
such a way that 〈X,NKλ,c

〉 = 1, we obtain
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Fig. 6. (a) Rotation of the wave front Wc about the x-axis yields half the surface Sc; the

whole surface Sc is then obtained by reflection at the plane x = 0. The curve Γ is a circle

obtained by rotating P about the x-axis. (b) This drawing depicts the configuration 〈Γ, Sc 〉
and two of the minimal leaves within 〈Γ, Sc 〉. A part of Sc is removed to permit a glimpse

into the interior

Area(Kλ,c) =
∫

Kλ,c

〈X,NKλ,c
〉 dA =

∫
F

〈X,NF〉 dA.

Because of 〈X,NF〉 ≤ 1, the term on the right-hand side is estimated from
above by Area(F ). Thus we have proved:

Theorem 1. There exists a configuration 〈Γ, Sc〉 consisting of a circle Γ and a
real analytic surface of revolution Sc that bounds a family {Kλ,c} of stationary
and even area-minimizing minimal surfaces of annulus-type that are really
distinct in the sense that, for any two different values λ1, λ2, the surfaces
Kλ1,c and Kλ2,c are not congruent.

A simple modification of the previous example leads to boundary configu-
rations S as shown in Fig. 7 that bound continua C of noncongruent stationary
surfaces of annulus type which have a completely free boundary on S. The
surfaces of C are even area minimizing within the class C∗ of annulus type
surfaces whose free boundaries are homologous to those of the surfaces of C.

For this purpose, we take two wavefront curves Wc1 and Wc2 , c1, c2 > 0,
contained in x > 0, y > 0. If c1 and c2 are chosen sufficiently small, both curves
terminate at the positive y-axis and meet this axis orthogonally. Reflecting
both arcs at the y-axis, we obtain two closed real analytic curves Γc1 and Γc2 ,
and their rotation about the x-axis leads to two closed torus-type surfaces
S1 and S2 that are orthogonally met by a family of catenoids, generated
by the catenary arcs Cλ(c1, c2). These catenoids are stationary annulus-type
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Fig. 7. A modification of the example depicted in Fig. 6. Any of the closed curves Wc in

(a) generates a real analytic and rotationally symmetric surface Sc as depicted in (b). Any

configuration 〈S1, S2〉 with Si := Sci bounds a one parameter family C of annulus-type

minimal leaves which are parts of catenoids. (c), (d) Parts of the configuration 〈S1, S2〉.
(e), (f) Three surfaces of the family C outside and within 〈S1, S2〉

minimal surfaces within the configuration 〈S1, S2〉, and a reasoning similar to
the previous one shows that they even minimize area within C∗ (cf. Fig. 7).

A somewhat different example, which is not rotationally symmetric, leads
to a free-boundary problem for minimal surfaces of the type of the disk, with
their boundary lying on a given real analytic torus-like surface. Let Kλ, λ ∈ R,
be the catenoids obtained by rotating the arc Cλ about the x-axis, and let K∗

λ

be the surface obtained from Kλ by reflection at the y, z-plane. Moreover, let
K− ∞ be the disk interior to the circle Γ in the y, z-plane, and let K∞ be the
plane domain exterior to Γ . We may think of K± ∞ as degenerate catenoids
obtained for λ → ±∞. Then the surfaces Kλ,K

∗
λ,−∞ ≤ λ ≤ ∞, describe a

minimal foliation, singular at Γ , of the rotationally symmetric domain H.
We now introduce cylindrical coordinates (x, r, θ), where y = r cos θ, z =

r sin θ. For each r ∈ (0, b), there exists exactly one value c(r) > 0 such that
the closed, real analytic curve Γc(r) in the plane θ = 0, obtained from the
wavefront Wc(r) as described before, passes through (0, r, 0).

Denote by Lr,θ the closed curve that is obtained by rotating Γc(r) about
the angle θ around the x-axis. The curves Lr,θ, 0 < r < b, 0 ≤ θ < 2π, meet
the plane x = 0 orthogonally at the points (0, r, θ) and sweep out an open
subdomain H0 of H.
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Fig. 7. (Continued. Captions see preceding page)

Let γ0 be a real analytic Jordan curve in the plane x = 0, say, a circle,
which is contained in the open disk K− ∞ (the interior of Γ ) and does not wind
about the origin. As the point (0, r, θ) traverses the curve γ0, the curves Lr,θ

sweep out a toruslike surface S which bounds a tube G. This tube is foliated
by a family Mλ,M

∗
λ,−∞ ≤ λ ≤ ∞, of minimal surfaces that are cut by S

out of the catenoids Kλ,K
∗
λ. The surfaces Mλ,M

∗
λ are of the type of the disk

and meet S perpendicularly; hence they are stationary within S (cf. Figs. 8
and 9). Moreover, the unit normal vectors to Mλ,M

∗
λ form a divergence free

vector field on the set H \Γ containing G which is tangent to S. Then, by an
argument parallel to the previous reasoning, all surfaces Mλ,M

∗
λ have equal

area, and each oriented surface F contained in H \ Γ and with a boundary
γ homologous in S to γ0 has area larger than the leaves Mλ,M

∗
λ unless it

coincides with one of these surfaces. Thus we have shown:
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Fig. 8. Three views of a real analytic topological torus bounding a 1-parameter family of

minimal disks whose traces on S are depicted in the figures by curvy lines

Theorem 2. There exists a real analytic, embedded surface S of the type of
the torus, and a homology class [γ0] in H1(S; Z), so that S bounds a family of
stationary minimal surfaces of the type of the disk which have smallest area
among all oriented surfaces in H \ Γ having their boundaries lying on S and
homologous in S to γ0.

In view of the two examples described in Theorems 1 and 2, the following
two theorems will be rather surprising.

Theorem 3 (F. Tomi). If a compact analytic H-convex body M in R
3 has

the property that there is closed Jordan curve in M which cannot be con-
tracted in M and, secondly, that the free boundary problem for ∂M admits
infinitely many minimizing solutions of disk-type contained in M , then M
must be homeomorphic to a solid torus, and the set of all such solutions is an
analytic S1-family of minimal embeddings of the disk.

For the proof of Theorem 3, we refer the reader to Tomi’s paper [10]. There
one also finds the following interesting observation:
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Fig. 9. Samples of minimal leaves Mλ, M∗
λ, two of which are flat, and how they fit into

the surface S shown in Fig. 8. A part of S has been removed to permit a glimpse into the

interior of S

If a torus M is foliated by a smooth S1-family of plane disk-type minimal
surfaces being orthogonal to ∂M , then all surfaces in the family are congruent.

In contrast, we obtain from Theorem 2 the following result:

There exist real analytic (topological) tori admitting families of non-flat
disk-type minimal surfaces which intersect the tori at a right angle, and
secondly, the surfaces in such a family need not be congruent (nor isomet-
ric).

Related to Theorem 3 there is a finiteness theorem due to Alt and Tomi
[1] that will be stated as Theorem 4. We shall outline a proof of this result. As
their techniques are closely related to the methods used for proving Theorem 3,
the reader will obtain a good idea of how such results are proved.
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Let S be a compact, embedded, real analytic surface in R
3, and let Π

be a homotopically nontrivial closed polygon in the unbounded component of
R

3 \ S.
As in Section 1.2 we define the class C(Π,S) by

C(Π,S) := {X ∈ C(S) : L([X|∂B ], Π) �= 0};

that is, C(Π,S) is defined as the set of all X ∈ C(S) whose boundary values
are not contractible in R

3 \Π. Then we obtain the following finiteness result
contrasting with Theorem 2:

Theorem 4. There are only finitely many geometrically different minimal
surfaces which are minimizers of Dirichlet’s integral in C(Π,S).

As a by-product of the proof of Theorem 4 we obtain the following result
which is of independent interest.

Theorem 5. Let X ∈ C(Π,S) be a strong relative minimum of P(Π,S), i.e.
we have D(X) ≤ D(Y ) for all surfaces Y ∈ C(Π,S) with Y (B̄) ⊂ U,U being
an open neighbourhood of X(B̄). Then X is immersed up to the boundary,
that is, |Xu(w)| = |Xv(w)| �= 0 for all w ∈ B̄.

Anticipating the regularity results of Chapter 2 we may assume that each
minimizer X – and even each stationary point – can be continued analytically
across the boundary ∂B. Moreover, if w0 ∈ B̄ is a branch point (i.e., Xu(w0) =
Xv(w0) = 0), then we obtain as in Section 3.2 of Vol. 1 and Section 2.10 of
this volume in suitable (new) coordinates x1, x2, x3 the representation

x1(w) + ix2(w) = A(w − w0)m +O(|w − w0|m+1),
(4)

x3(w) = O(|w − w0|m+1)

with A ∈ C
3 \ {0}. Next we infer from Lemma 5 of Section 5.3 the existence

of a C1-diffeomorphism F : U → V defined on a neighbourhood U of w0 such
that for some function ϕ ∈ C2(V ) we have

x1(w) + ix2(w) = [F (w)]m
(5)

x3(w) = ϕ(F (w)).

Moreover it follows from the proof of Lemma 5 of Section 5.3 that F (w0) =
0, F ∈ Cω(U \ {w0}) and ϕ ∈ Cω(V \ {0}), V being a suitable neighbourhood
of 0 ∈ R

2 =̂ C. Of course we may assume that V is a disk Br(0) of a sufficiently
small radius r > 0. The representation (5) permits us to introduce the new
variable w̃ = F (w) ∈ V , and we have

∇kϕ(w̃) = O(|w̃|m+1−k) as w̃ → 0

for k = 0, 1, 2.
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We have to distinguish true and false branch points of a given minimal sur-
face X(w); the surface has different geometric properties in a neighbourhood
of different kinds of branch points.

We call a branch point w0 of X a false branch point if in some neighbour-
hood of w0 the surface X(w) can be reparametrized as an immersed surface.
This is true if and only if ϕ is a function of (w̃)m. Otherwise w0 is called
a true branch point. It is shown in Chapter 5 how to exclude true branch
points on the boundary by using only the minimum property of X. Since the
argument is similar for true interior branch points, we refrain from repeating
the procedure and refer to Section 5.3 as well as to the original papers by
Osserman [12], Alt [1] and Gulliver [2]. Another possibility could be to apply
Tromba’s technique, which is presented in Chapter 6. We are going to outline
the discussion for false branch points. Note that by analytic continuation we
may assume X to be defined on some open neighbourhood BR, R > 1, of
the closed unit disk B̄. Denoting the new function again by X, we may in
addition assume that all branch points of X lie in B̄ and that (5) continues
to hold. Moreover, we can define a continuous unit normal N(w) for X(w) on
all of B̄.

Definition 1. Two points z, w ∈ BR are called equivalent, z ∼ w, if there
are fundamental systems of open neighbourhoods Un(z), Vn(w), n ∈ N such
that X(Un) = X(Vn) for all n. We also define the equivalent boundary ∂̃B
by ∂̃B = {z ∈ B : z ∼ w for some w ∈ ∂B}.

Proposition 1. Suppose zk → z, wk → w and zk ∼ wk. Then z ∼ w. In
particular, the equivalent boundary ∂̃B is closed.

Proposition 1 is a consequence of

Lemma 1. Let z and w be two points in BR, R > 1, such that X(z) = X(w)
and N(z) = ±N(w). Furthermore denote by U and V coordinate neighbour-
hoods of z and w such that a representation (5) holds, and suppose that there
is an open subset U ′ of U with the property that X(U ′) ⊂ X(V ). Then it
follows that z ∼ w.

Proof. From (5) we infer the existence of small positive number r and s such
that,

X(U ) = {(x1, x2, x3) : x1 + ix2 = (w̃)m, x3 = ϕ(w̃), |w̃| < r},
X(V ) = {(x1, x2, x3) : x1 + ix2 = (ω̃)n, x3 = ψ(ω̃), |ω̃| < s}.

Since X(U ) ⊂ X(V ), it follows that for some open set of numbers z contained
in {w : 0 < |w| < min( n

√
r, m
√
s)} the relation ϕ(zn) = ψ(ηnz

m) holds true
where ηn denotes some n-th root of unity. By the analyticity of ϕ and ψ in
0 < |z| < r and 0 < |z| < s respectively we conclude that ϕ(zn) = ψ(ηnz

m)
holds for all z with |z| < min( n

√
r, m
√
s). Next define
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Uε := {z ∈ U : |w̃(z)| < m
√
ε}, Vε := {z ∈ V : |ω̃(z)| < n

√
ε}.

Then it follows that X(Uε) = X(Vε) for suitably small ε > 0. �

For the formulation of the next result the following definition will be clar-
ifying.

Definition 2. An analytic arc in R
n, n ≥ 2, emanating from a point p of R

n,
is the image of a closed interval [0, δ] under a nonconstant, real analytic map
α which is defined on an open interval containing [0, δ] and satisfies α(0) = p.

Lemma 2. Let ϕ : U → C be an analytic function defined on some neighbour-
hood U of the origin 0 in C, and suppose that

(6) ϕ(z) = azm +O(|z|m+1) as z → 0,

for some m ∈ N, a ∈ C, a �= 0. Furthermore, let α : [0, τ ] → C be a regular
analytic arc emanating from 0 ∈ C. Then there exists some τ0 ∈ (0, τ ] such
that ϕ−1(α[0, τ0]) consists of m analytic arcs emanating from 0.

Proof. Choose some neighbourhood Bδ = Bδ(0) ⊂ C with ϕ �= 0 for all
z ∈ Bδ \{0}, and introduce polar coordinates (r, ξ) ∈ [0, δ]×S1. Without loss
of generality we assume that a = 1. Then (6) implies that

(7) ϕ(r, ξ) = rmξm{1 + ϕ1(r, ξ)}

with some analytic function ϕ1 satisfying ϕ1(0, ξ) = 0. Let Φ̂ : [0, δ] × S1 →
R

+ × S1 be a mapping so that the following diagram commutes:

[0, δ]× S1 Φ̂

ϕ

R
+ × S1

p

C

where p(r, ξ) := r · ξ. Hence Φ̂(r, ξ) = (|ϕ(r, ξ)|, ϕ(r,ξ)
|ϕ(r,ξ)| ). Similarly, let

α̂ : [0, τ ] → R
+ × S1 be chosen in such a way that p ◦ α̂(t) = α(t), i.e.,

α̂(t) = (ρ(t), γ(t)) with real analytic functions ρ(t) ≥ 0 and γ(t) ∈ S1. In fact,
replacing α(t) by the mapping α̃(t) := α(t2m) which parametrizes the same
arc, we may even assume that α̂(t) = (ρm

1 (t), γ(t)) with analytic functions
ρ1(t) and γ(t). Note that γ(0) = |α̇(0)|−1α̇(0) is the direction of α at zero.
We infer from (7) that

(8) Φ̂(0, ξ) = (0, ξm)
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and that Φ̂ can be continued analytically onto [−δ, δ] × S1 for some suitable
δ > 0. We can now define an analytic map Φ̃ by

Φ̃(r, ξ) := ( m
√
|ϕ(r, ξ)|, |ϕ(r, ξ)|−1ϕ(r, ξ)).

We are interested in the pre-image of α̂ under Φ̂, or equivalently, in the pre-
image of (ρ1(t), γ(t)) under Φ̃. By virtue of (8) we infer that Φ̃−1(0, γ(0))
consists of the m points (0, γ1), . . . , (0, γm) where γ1, . . . , γm denote the m-th
roots of γ(0).

From the properness of Φ̃ we infer that, for any given ε0-neighbourhood
Uε0(0, γj) of (0, γj) in [0, δ]× S1, there exists a number ε > 0 such that

Φ̃−1(Uε(0, γ(0))) ⊂
m⋃

j=1

Uε0(0, γj).

We choose ε0 in such a way that Φ̃ is an analytic diffeomorphism on each
rectangle {(r, ξ) : |r| < ε0, |ξ − γj | < ε0}. Finally we select τ0 > 0 so
small that ρ1(t) < ε and |γ(t) − γ(0)| < ε holds for all t ∈ [0, τ0]. Then
Φ̃−1(ρ1(t), γ(t))|[0,τ0] consists of m analytic arcs emanating from (0, γ1), . . . ,
(0, γm). Therefore the set ϕ−1(α[0, τ0]) consists of m disjoint arcs starting at
0 with the directions γ1, . . . , γm. �

Lemma 3. The equivalent boundary ∂̃B is the union of finitely many analytic
arcs.

Proof. By Proposition 1, the set ∂̃B is compact, and hence we may argue
locally. First we claim that, for arbitrary z0 ∈ B̄, the pre-image of P0 := X(z0)
consists of only finitely many points. In fact, assuming the contrary, we would
obtain a sequence {Zj}j∈N ∈ X−1(P0) with zj → w whence, by continuity of
X, we would have w ∈ X−1(P0). However this would contradict (5) since any
neighbourhood of w would contain points zj with X(zj) = X(w) = X(z0).
Thus there are only finitely many points z1, . . . , zn ∈ ∂B which are equivalent
to a given z0 ∈ ∂̃B. For given (small) neighbourhoods Uj = Uj(zj) we can
find a neighbourhood U of z0 with

(9) {w ∈ ∂B : w ∼ z ∈ U} ⊂
m⋃

j=1

Uj(zj) ∩ ∂B.

Otherwise there would exist a sequence of points ξk ∈ BR, R > 1, with
ξk → z0, and another sequence of points wk ∈ ∂B with wk ∼ ξk but
wk �∈

⋃n
j=1 Uj(zj). Passing to a sequence, we could assume that wk → w ∈

∂B \
⋃n

j=1 Uj(zj). Because of Proposition 1 we would have w ∼ z0 or w = zj

for some j ∈ {1, . . . , n}, an obvious contradiction. Since z0, z1, . . . , zn are
equivalent, we may assume that X(z0) = X(z1) = · · · = X(zn) = 0 and that
the common tangent plane is the (x1, x2)-plane. Denote by ϕ the mapping
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P ◦X, where P : R
3 → R

2 is the orthogonal projection onto the x1, x2-plane.
Then (9) implies

∂̃B ∩ U ⊂ B̄ ∩ U ∩ ϕ−1

(
n⋃

j=1

ϕ(Uj ∩ ∂B)

)
.

The set Uj ∩ ∂B consists of two circular arcs γ+
j , γ

−
j emanating from zj in

opposite directions. Also,
⋃n

j=1 ϕ(Uj ∩ ∂B) is a finite union of analytic arcs
starting from the origin. Now we apply Lemma 2, choosing possibly smaller
neighbourhoods Uj and U, and conclude that ϕ−1(

⋃n
j=1 ϕ(Uj ∩ ∂B))∩U is a

collection of analytic arcs α1, . . . , αN , all starting at z0. The lemma is proved
if we can show that every arc αk containing one point z ∈ ∂̃B different from
z0, already belongs to ∂̃B. To this end let ϕ(αk) ⊂ ϕ(γ+

j ) for some j and
suppose that z ∈ αk \ {z0} is equivalent to w ∈ γ+

j \ {zj}. We infer from (6)
that we can write X(σ ∩ Uj) as a graph over the plane domain ϕ(σ ∩ Uj),
where σ denotes the open sector

{zj + reiθ : r > 0, |θ − θj | < ε}, θj = arg zj ± π/2.

Since ϕ(αk) ⊂ ϕ(γ+
j ) and X is continuous, we can find another open sector

σ0 = {z0 + reiθ : r > 0, |θ − θ0| < δ},

eiθ0 being the direction of αk at z0, such that we have ϕ(σ0 ∩U ) ⊂ ϕ(σ ∩Uj)
and αk \ {z0} ⊂ σ0 for sufficiently small U.

Also X|σ0∩Us is a graph over ϕ(σ0 ∩ U ). Since z ∈ αk \ {z0} and w ∈
γ+

j \ {zj} are equivalent, we infer from the analyticity of minimal graphs that
X(σ0 ∩ U ) ⊂ X(σ ∩ Uj). In particular, we have αk ⊂ ∂̃B. �

Lemma 4. Denote by ∂̃1B the connected component of ∂̃B which contains
∂B. Then B \ ∂̃1B is connected.

Proof. Lemma 3 implies that B \ ∂̃1B consists of finitely many connected
components B1, . . . , Bn, having piecewise analytic boundaries, whence

X|∂B =
n∑

k=1

X|∂Bk

and
X(∂Bk) ⊂ X(∂̃B) ⊂ X(∂B) ⊂ S.

Choose some j so that X|∂Bj is linked with Π, and then select some conformal
map τ : B → Bj of B onto Bj . If n were greater than 1, we would have

D(X ◦ τ) = D(X|Bj ) < D(X),

which contradicts the minimality of X. �
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Consider now a (relative) minimizer X to the variational problem P(Π,S).
We claim that, for a suitable reparametrization X̃ = X ◦ τ of X, we obtain
another minimizer X̃ with ∂̃1B = ∂B. In fact, Lemmata 3 and 4 imply that
∂̃1B consists of ∂B together with a finite number of trees growing out of
certain points on ∂B. Let τ : B → B \ ∂̃1B be a conformal map. Then the
loop X ◦ τ |∂B is homotopic to X|∂B on S, whence X̃ = X ◦ τ ∈ C(Π,S). We
also have D(X̃) = D(X) and ∂̃1B = ∂B.

Note that the conformal reparametrization τ : B → B \ ∂̃1B produces
boundary branch points for the surface X̃ : B → R

3 at those points w ∈ ∂B
which correspond to an endpoint z ∈ ∂̃1B ∩ B since, at these points, the
boundary mapping runs back and forth in its own trace. Thus we have proved
the following

Proposition 2. Suppose that each strong relative minimizer X ∈ C(Π,S)
which in addition satisfies ∂̃1B = ∂B, is immersed up to the boundary. Then
the relation ∂̃1B = ∂B holds for any strong relative minimizer X ∈ C(Π,S)
of the variational problem P(Π,S).

Let us now consider a minimizer X which satisfies ∂̃1B = ∂B.

Lemma 5. Suppose that for a strong relative minimizer X ∈ C(Π,S) the
relation ∂̃1B = ∂B holds true. Then it follows that ∂̃B = ∂B.

Proof. We argue by contradiction. Assume that the set

∂0B := {z ∈ ∂B : z ∼ z0 ∈ B}

were not empty. From the definition of ∼ we then infer that ∂0B is open
in ∂B. The set ∂0B in ∂B is also closed because of Proposition 1 and the
assumption ∂̃1B = ∂B. In fact, let zn ∈ ∂0B be a sequence with zn → z ∈ ∂B
and zn ∼ z0n ∈ B. Without loss of generality, let z0n → z0. Because of
Proposition 1 we obtain that z0 ∈ ∂̃B, and since ∂̃1B = ∂B it follows that
z0 ∈ B. Clearly, we have z0 ∼ z, whence z ∈ ∂0B. We conclude that ∂B = ∂0B
which means that X maps some neighbourhood of ∂B into X(B). Thus X(B)
would be a compact minimal surface in R

3, which is impossible because of the
maximum principle. �

Proposition 3. Let X ∈ C(Π,S) be a strong relative minimizer of P(Π,S)
such that ∂̃1B = ∂B holds true. Then X is immersed up to the boundary.

Sketch of the proof. As we have already mentioned before, we only show the
absence of false branch points. We argue by contradiction and assume first
that z0 ∈ B is a false (interior) branch point of order m. Let γ1(t), t ∈ [0, 1],
be an analytic Jordan arc which avoids branch points and points equivalent
to branch points and has the following properties:

γ1(0) = z0, γ1(1) ∈ ∂B, γ1([0, 1)) ⊂ B.
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We claim that there exist Jordan arcs γk(t), t ∈ [0, 1], k = 2, . . . ,m, with

γk([0, 1)) ⊂ B, γk(0) = z0, γk(1) ∈ ∂B,
γk(t) ∼ γl(t) for 1 ≤ k ≤ l ≤ m,

γk((0, 1)) ∩ γl((0, 1)) = ∅ for k �= l.

In fact, the local existence of γk follows from the representation (5), while
global existence is secured by analytic continuation. The inclusion γk(1) ∈ ∂B
follows from Lemma 1. An additional argument is required to show that γ1

can be chosen in such a way that all γk are free of intersections; for details,
see Alt [1] and Alt and Tomi [1]. Now let z1 = γ1(1), . . . , zm = γm(1) denote
consecutive points on ∂B in positive orientation. For convenience, we put
zm+1 = z1. If σk denotes the arc of ∂B bounded by zk and zk+1, we see that
X(σk) is a closed loop on S and that X|∂B =

∑m
k=1X|σk

. We choose k such
that X|σk

is not contractible in R
3 \Π and denote by Bk the subdomain of

B bounded by γk, σk and γk+1. There exists a conformal map τ : B̄ \ [0, 1] →
Bk ∪

◦
σk with the property that

lim
z→t

imz>0

τ(z) = γk(t) for all t ∈ [0, 1],

and that
lim
z→t

imz<0

τ(z) = γk+1(t) for all t ∈ [0, 1].

Since γk(t) ∼ γk+1(t), we infer that X ◦ τ is continuous in B̄ and that X ◦ τ
is contained in C(Π,S). If m were larger than 1, we had D(X ◦ τ) < D(X), a
contradiction to the minimum property of X.

Next we consider a false branch point z0 on the boundary ∂B which is of
order m ≥ 2. Here it is convenient to map the closed disk B̄ conformally onto
the half plane (imz ≥ 0} ∪ {∞} and z0 onto 0. Denote the open half plane
by B, and let X be the corresponding minimal surface. Then we may also
assume that X(0) = 0, and that the tangent plane at X(0) is the x1, x2-plane,
applying a suitable motion in R

3. Suppose also that the direction of the curve
X(R+) ⊂ S at 0 is given by (1, 0, 0). We want to show the existence of a curve
α : [0, 1] → B̄ with α(0) = z0 = 0, α((0, 1)) ⊂ B, and X(α[0, 1]) ⊂ S. From
the representation formula (5) we infer the existence of numbers r,R > 0 and
θ ∈ ( π

m ,
2π
m ) such that the image of the sector Sr,θ := {ρeiϕ : 0 < ρ < r, 0 <

ϕ < θ} under the mapping φ = P ◦X covers the half disk

HR =
{
ρeiϕ :

π

2
< ϕ <

3π
2
, 0 < ρ < R

}
,

and X(Sr,θ) is a graph over φ(Sr,θ). Then X(Sr,θ) intersects S along an an-
alytic arc α̂ : [0, 1] → R

3 with α̂(t) → 0 as t → 0 and α̂′(t)
|α̂′(t)| → (−1, 0, 0) as

t→ 0. Thus the arc α := X−1
|Sr,θ

(α̂) has all the desired properties.
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Next let B′ = B \ α([0, 1]), and consider some conformal map τ : B →
B′ of B onto B′. If we put X ′ := X ◦ τ , then D(X ′) = D(X) and X ′ ∈
C(Π,S), whence X ′ is a solution to P(Π,S). It follows that X ′ intersects S
orthogonally along ∂B, which means that X and S intersect perpendicularly
along α. The curve α can be continued analytically until it hits ∂B. Moreover,
by analyticity, the surface X remains orthogonal to S along α. We also note
that α cannot have any double points in B, since X is a local embedding in B
and hence intersects S in an embedded arc. Thus we have shown that B \ α
consists of two simply connected domains B1 and B2 such that

X|∂B = X|∂B1 +X|∂B2

holds true.
Suppose that X|∂B1 is not contractible in R

3 \Π, and let τ : B → B1 be a
conformal equivalence. Then we obtain X◦τ ∈ C(Π,S) and D(X◦τ) < D(X),
which contradicts the minimality of X, and Proposition 3 is proved. �

Proof of Theorem 5. By virtue of Proposition 3 we only have to show that
∂̃1B = ∂B holds for any strong relative minimizer X ∈ C(Π,S). But this
immediately follows from Proposition 3 in conjunction with Proposition 2. �

Sketch of the proof of Theorem 4. By Theorem 5 we can assume that each
minimizer X ∈ C(Π,S) is an immersion of B̄ into R

3.
If we apply a suitable conformal selfmapping of the disk B, we can also

achieve the normalization X(0) ∈ Π. This condition ensures compactness of
minimizers in Ck. In fact, we have

Proposition 4. Let C∗ ⊂ C(Π,S) be the set of all minimizing minimal sur-
faces with X(0) ∈ Π. Then C∗ is uniformly bounded in Ck,α(B̄), for any
k ≥ 2, α∈(0, 1).

Proof. In order to apply the results of Chapter 2, in particular Theorem 1
of Section 2.5, we wish to verify the following condition which is to hold
uniformly in C∗:

For each δ > 0 there exists some ε > 0 such that

(10) DB\B1−ε(0)(X) < δ for all X ∈ C∗.

Suppose on the contrary that there exist δ > 0 and sequences Xn ∈ C∗, εn → 0
with DB\B1−εn (0)(Xn) ≥ δ. Then all Xn are harmonic and bounded and hence
a subsequence, again denoted byXn, converges to some harmonicX uniformly
in Ck(Ω), for all Ω � B, k ∈ N. Because of

D(Xn) = d := inf
Y ∈C(Π,S)

D(Y ),

we infer that

(11) D(X) ≤ d− δ and X(0) ∈ Π.
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Recalling the argument in the proof of Theorem 1 of Section 1.3, we con-
clude that X ∈ C(Π,S), whence D(X) ≥ d, contradicting (11). Hence the
relation (10) holds true.

On the other hand, (10) enables us to employ the regularity results of
Chapter 2. First we see from the proof of Theorem 1 of Section 2.5 that
the elements X in C∗ satisfy a uniform global Hölder condition. Once having
established a uniform Hölder condition, one can easily derive the higher order
estimates by applying Theorem 1′ in Section 2.8. �

Suppose now that there are infinitely many geometrically different mini-
mizing surfaces in C(Π,S). By Proposition 4, we can select a sequence {Xn}
that converges in Ck(B̄) to some X∗ ∈ C(Π,S) which must again be min-
imizing. By virtue of the immersed character of X∗, it can be shown as in
Tomi [10] that there even exists a one-parameter family F (t), |t| < ε, of area
minimizing surfaces in C(Π,S) with F (0) = X∗, and F ′(0) is a nonvanishing
normal field along X∗. Furthermore, each solution of P(Π,S) sufficiently close
to X∗ belongs to the family F (after a suitable reparametrization).

Now let Σ∗ denote the connected component ofX∗ in the set of minimizing
surfaces. Then the set

U∗ := U ∩
{ ⋃

X∈Σ∗

X(B)

}

must be open and nonempty in the unbounded component U of R
3 \ S. On

the other hand, the set U∗ must be bounded and closed in U according to
Proposition 4. Thus we infer U = U∗ which clearly is impossible. �

1.10 Scholia

1. The first existence theorem for minimal surfaces with free boundaries was
given by Courant [6] and [9] in the years 1938–40. At that time these re-
sults were considerable mathematical achievements comparable to the solu-
tion of Plateau’s problem by Douglas and Radó. We also mention a paper by
Courant and Davids [1] as well as a generalization of these results to gener-
alized Schwarzian chains 〈Γ1, . . . , Γk, S1, . . . , Sm〉 given by Ritter [1]. A com-
prehensive treatment can be found in Courant [15] and in Nitsche [28].

2. Our exposition in the Sections 1.1–1.3 follows Küster [1]. The reader
who is familiar with Courant’s treatise [15] will have noticed that we have
replaced Courant’s condition

(1) lim
w→w0

dist(X(w), S) = 0 for all w0 ∈ ∂B

by the simpler condition X ∈ C(S). It is somewhat easier to define the linking
condition
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L(X|∂B , Π) �= 0

for surfaces satisfying (1). However, one then has to verify a compactness
theorem that will ensure the condition (1) to hold in the limit, whereas our
Lemma in Section 1.3 is close to trivial.

Moreover, our approach has the additional advantage that it can easily be
carried over to obstacle problems with only modest smoothness assumptions
on the obstructions, and it can also be used to handle more general functionals
than the Dirichlet integral.

The proof that the curves X|Cr and X|Cr′ are homotopic if r and r′ are
sufficiently close together (Section 1.1) has been adapted from an analogous
theorem due to Schoen and Yau [2].

3. Let us mention some related existence results. Davids [1] proved the
existence of multiply connected minimal surfaces with free boundaries. Hilde-
brandt [6] and Küster [1] treated surfaces of prescribed mean curvature, Lipkin
[1] studied 2-dimensional parametric integrals, and F.P. Harth [1] proved ex-
istence of minimal surfaces with free boundaries in Riemannian manifolds.
Meeks and Yau [1] dealt with Riemannian manifolds as ambient spaces.

P. Tolksdorf [2] stated that any non-trivial homotopy class in Π̃1(S) can be
decomposed into finitely many nontrivial homotopy classes for which the prob-
lem of prescribed homotopy class has a solution, assuming that S is a smooth
compact surface in R

3. However, R. Ye [6] has pointed but that Tolksdorf’s
reasoning is faulty.

R. Ye [5,6] proved the existence of a minimal surface with prescribed
boundary homotopy class α provided that α satisfies some Douglas-type con-
dition. His method generalizes to Riemannian manifolds as well.

We also refer to remarks by E. Kuwert [5], p. 6, concerning the papers of
Tolksdorf and Ye.

4. The existence proof of three different stationary minimal surfaces in a
simplex presented in Section 1.6 is due to Smyth [1]. Smyth also stated that
each of the three stationary surfaces possesses a non-parametric representation
with respect to suitably chosen coordinates.

5. The uniqueness result for stationary minimal surfaces of disk-type in a
sphere proved in Section 1.7 is due to Nitsche [35].

6. The examples in Section 1.9 of foliations given by 1-parameter families
of minimizing minimal surfaces with their boundaries on a real analytic sup-
porting surface S of the topological type of the torus are due to Gulliver and
Hildebrandt [1], and we have followed their exposition quite closely.

7. Concerning detailed proofs of the finiteness results of Tomi [10] and
Alt and Tomi [1] described in Section 1.9 we refer the reader to the original
papers.

8. The most exciting recent development in the theory of minimal surfaces
with free boundaries are the beautiful existence results for stationary minimal
surfaces in convex bodies some of which we have listed in Section 1.8. We
emphasize the importance of the contributions by Sacks and Uhlenbeck [1,2],
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Struwe [3], Grüter and Jost [1], Pitts [1], Simon and Smith [1], and Jost [9,
13,15].

9. We also mention a paper by Karcher, Pinkall, and Sterling [1] on new
examples of compact embedded minimal surfaces in the 3-sphere which gener-
alizes the important earlier work by Lawson [4]. The Karcher–Pinkall–Sterling
approach is closely related to the ideas of Smyth presented in Section 1.6, as
their main construction consists in solving free boundary problems in S3 (in-
stead of R

3).
10. Finally we shall briefly describe the work of E. Kuwert [5–7] on mini-

mizers of Dirichlet’s integral among disk-type surfaces X ∈ H1
2 (B,Rn) whose

boundary curves X|∂B represent a given homotopy class α of free loops on a
closed configuration S in R

n, n ≥ 3.
Kuwert’s work is an important and far reaching generalization of the the-

ory presented before in this chapter. It deals with the problem of minimizing
Dirichlet’s integral among all disk-type surfaces X : B → R

n, n ≥ 2, whose
boundary values lie on a given configuration S and satisfy certain homotopy
constraints. Here one observes degeneration, just as in the Douglas problem,
and this causes concentrations of the parametrization, which in Kuwert’s set-
ting can occur only at the boundary of the disk B and leads to a separation
of disks. It is proved that any minimizing sequence has a subsequence which
decomposes in the limit into a finite or countably infinite collection of disk-
type surfaces, each of which is a minimizer with respect to its own homotopy
class. Here S can be any compact set in R

n, or an unbounded closed set
satisfying a suitable condition that prevents the escape of components to in-
finity.

Kuwert takes the view of Jesse Douglas and considers minimal surfaces
as critical points of Dirichlet’s integral within the class of harmonic surfaces
X ∈ H1

2 (B,Rn) satisfying the prescribed boundary conditions. Since such
surfaces are uniquely determined by their “boundary values” x = X|∂B (i.e.
by their “Sobolev trace” on ∂B), the minimum problem is reduced to the
minimization of Douglas’s functional A0(x) among all admissible boundary
curves x, since for any harmonic extension X of x one has A0(x) = D(X).
However, we have seen before that, for free boundary value problems, it is not
feasible to work with continuous boundary values x(θ) = X(eiθ), since there
is no a priori certainty that the minimization procedure leads to a continuous
minimizer. To overcome this difficulty, Kuwert applies Courant’s artifice of
using sequences x = {xk} with xk(θ) := X(rke

iθ), rk → 1−0, which approxi-
mate x in H1

2 (∂B,Rn) and satisfy xk ∈ H1
2 (∂B,Rn)∩C0(∂B,Rn); for the xk

it is possible to impose homotopy conditions. Finally, one altogether forgets
the origin of x and operates with suitable sequences x = {xk} of continuous
curves xk. Keeping this idea in mind, we turn to the technicalities needed to
formulate Kuwert’s results.

Let S be a nonempty closed set in R
n, and denote by Uδ(S) the δ-

neighbourhood of S in R
n, δ > 0:
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Uδ(S) := {p ∈ R
n : d(p, S) < δ}, d(p, S) := dist(p, S).

Throughout we assume that Uδ(S) is connected for any δ > 0.
Let π1(S) be the set of homotopy classes [x] of free loops x ∈ C0(R/2π, S).

In order to define the sequence space Π1(S), we have to introduce the equiv-
alence relations “x δ∼ y ” between two curves x, y ∈ C0(R/2π,Rn), which
means: Both curves lie in Uδ(S) and are freely homotopic to each other in
Uδ(S). Then we set

Π1(S) := {x = {xk} : xk ∈ C0(R/2π,Rn), and for any δ > 0

there is a k0 ∈ N with xk
δ∼ xl for all k, l > k0}.

For any x ∈ Π1(S) we denote the smallest possible k0 ∈ N by k(x, δ).
On Π1(S) we introduce the equivalence relation “x ∼ y” by:

For any δ > 0 there is a k0 ∈ N such that x∼yl for all k, l ≥ k0.

The quotient
π̂1(S) := Π1(S)/ ∼

will be the substitute for π1(S), if we operate with sequences x = {xk} of
loops xk close to S instead of loops x on S. It turns out that π̂1(S) is the
inverse limit of the set π1(Uδ(S)) of homotopy classes of free loops in Uδ(S),
i.e.

π̂1(S) = lim
δ→0

π1(Uδ(S)).

We obtain the maps

i : π1(S) → π̂1(S) with [x] �→ [{xk ≡ x}]

and
iδ : π̂1(S) → π1(Uδ(S)) with [x] �→ [xk], k = k(x, δ).

For α, β ∈ π̂1(S) we define δ(α, β) ∈ [0,∞] by

δ(α, β) := inf{δ > 0 : iδ(α) = iδ(β)};

this is a complete generalized metric on π̂1(S), except that δ(α, β) = ∞ if S is
unbounded, and π̂1(S) is arcwise totally disconnected. Moreover i is injective
if S is a retract of Uδ0(S) for some δ0 > 0, and if S is a uniform deformation
retract of Uδ0(S), then i, iδ0 are bijective and δ(α, β) ≥ δ0 for α, β ∈ π̂1(S)
with α �= β.

Finally we define |α| for α ∈ π̂1(S) by

|α| := inf{δ > 0 : iδ(α) contains a constant map},

and we call α ∈ π̂1(S) trivial if |α| = 0, otherwise nontrivial.
Now we consider the space H of Fourier series
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x ∼ a0 +
∞∑

m=1

(am cosmθ + bm sinmθ), am, bm ∈ R
n,

satisfying

E(x) :=
π

2

∞∑
m=1

m(|am|2 + |bm|2) <∞.

The harmonic extension of X with X(eiθ) = x(θ) satisfies

D(X) = E(x) = A0(x).

The space H with the norm ‖x‖H , defined

‖x‖2H := |a0|2 + E(x),

can be identified with the Hilbert space H1/2,2(R/2π,Rn). Set

H(S) := {x = {xk} : xk ∈ H ∩ C0(∂B,Rn), d(xk, S) → 0,
{xk} is a Cauchy sequence in H},

where d(xk, S) := sup{α(xk(θ), S) : 0 ≤ θ ≤ 2π}.
For x,y ∈ H(S) we write

x ∼ y if and only if ‖xk − yk‖H → 0.

We define the quotient space

H(S) := H(S)/ ∼

and note that H(S) can be identified isometrically with (W (S), ‖ · ‖H), where

W (S) := {x ∈ H : x(θ) ∈ S for a.e. θ ∈ [0, 2π]},

i.e.
W (S) = H(S),

and for x = {xk} ∈ H(S) we have ‖xk − x‖H → 0 for some x ∈ W (S); then
the equivalence class of x is identified with x, and ‖x‖H = limk→∞ ‖xk‖H =:
‖x‖H(S).

One obtains the following topological substitute for a Sobolev embedding
of H into C0(∂B,Rn) which is essentially due to Courant (cf. Section 1.1); a
proof can be found in B. White [7] and Kuwert [5,7].

Theorem A. The set H(S) is a subset of Π1(S), and the inclusion H(S) ⊂
Π1(S) induces a well-defined assignment from any x ∈ W (S) to a homotopy
class in π̂1(S) which will be denoted by [x]. The mapping x �→ [x] from W (S) =
H(S) into π̂1(S) is continuous.
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The following can be seen: For any x ∈W (S), the harmonic extension X
satisfies

lim
|w|→1

d(X(w), S) = 0,

and for any sequence {rk} with rk → 1 − 0 the sequence xk(θ) := X(rke
iθ),

k ∈ N, can be used for the definition of [x] ∈ π̂1(S).
Now we formulate the minimization problem for a given class α ∈ π̂1(S).

We set

E∗(α) := inf
{

lim inf
k→∞

E(xk) : x = {xk} with [x] ∈ α
}
.

The function E∗ : π̂1(S) → [0,∞] is lower semicontinuous and satisfies
E∗(α) ≥ π|α|2 as well as: E∗(α) = 0 ⇔ α is trivial. Furthermore:

For any α ∈ π̂1(S) there is always a sequence x = {xk} with [x] ∈ α and
xk ∈ C∞(R/2π,Rn) such that

lim
k→∞

E(xk) = E∗(α).

Definition 1. (i) A minimizing sequence for α ∈ π̂1(S) is a sequence x =
{xk} ∈ Π1(S) with [x] ∈ α satisfying E(xk) → E∗(α).

(ii) Any x ∈W (S) with [x] = α and E(x) = E∗(α) is called a minimizer of E.

We set

F(S) := {x = {xk} : xk ∈ C0(R/2π,Rn), d(xk, S) → 0};

in particular we have Π1(S) ⊂ F(S).
A sequence x = {xk} is said to be trivial, if for any δ > 0 there is a k1(δ) ∈

N such that xk is contractible in Uδ(S) for all k ≥ k1(δ); otherwise x is called
nontrivial. Then we introduce ε∗(S) and ε0(S) ∈ R with 0 ≤ ε∗(S) < ε0(S) by

ε∗(S) := inf
{
ε > 0 : There is a nontrivial sequence x = {xk} ∈ F(S)

with lim sup
k→∞

E(xk) ≤ ε
}
,

ε0(S) := inf{E∗(α) : α ∈ π̂1(S) is nontrivial}.

Note that α ∈ π̂1(S) is nontrivial if α = [x] with x ∈ Π1(S) and x is nontrivial.
Observe also that ε∗(S) is only defined if there is a nontrivial sequence in F(S),
and ε0(S) is only defined if there is a nontrivial α ∈ π̂1(S).

For a sequence M = {Mk} of sets Mk ⊂ R
n we define the closed set of

accumulation points of M by

A(M) := {p ∈ R
n : There is a subsequence {kl} and a sequence

of point pl ∈Mkl
with pl → p}.
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Furthermore, define the subset F′ of F by

F′ := {x = {xk} ∈ F : xk ∈ H,E(xk) → e for some e ∈ [0,∞)}

and set
A(x) := A({imxk}), A(X) := A({imXk})

for x = {xk} ∈ F′ and X := {Xk}, Xk = harmonic extension of xk,

imxk = image of xk, imXk = image of Xk.

One has A(x) ⊂ S ∩A(X) and

A(X) ⊂ clos(Uδ(e)(A(x) ∩ S)) for x = {xk} ∈ F′

where δ(e) :=
√
e/π, and e = limk→∞ E(xk). Furthermore, A(X) = ∅ if and

only if A(x) = ∅.
One of Kuwert’s main tools is a decomposition result for sequences x =

{xk} ∈ F′ which is formulated as Lemma 3 in Section 2 of his paper [5], but
is too involved to be stated here.

Now the following compactness question is raised: Given a sequence z =
{zk} ∈ F′, is there always a subsequence x = {xl}, xl = zkl

with x ∈ Π1(S)?
It turns out that the answer is negative in general. To clarify the situation,

some topological notions are needed. Recall first that Uδ(S) is assumed to be
connected for any δ > 0, which is the case if S is connected. Therefore there
is a unique trivial element o in π̂1(S) which is represented by any sequence
{xk} of constant loops xk(θ) ≡ pk with pk → S, and |α| = δ(α, 0).

Now we consider m-tupel α = (α1, α2, . . . , αm) of homotopy classes αj ∈
π̂1(S) which are either finite, m ∈ N, or infinite, m = ∞. We also require that,
for any S > 0, the set I(α, δ) = {j : |αj | > δ} is finite with the number m(α, δ)
of elements (which may be zero). Next we introduce the sequence space Π1(α)
as follows:

Π1(α) := {x = {xk} ∈ F : For any δ > 0 there is a smallest possible

k(x, δ) ∈ N such that the homotopy class [xk] ∈ π1(Uδ(S))

belongs to the composition set of the classes iδ(αj), j ∈ I(α, δ),

for all k ≥ k(x, δ)}.

We say that α ∈ π̂1(S) belongs to the composition set C(α) of α =
(α1, . . . , αm) if and only if iδ(α) belongs to the composition set of the fi-
nite m(α, δ)-tupel of the iδ(αj) with j ∈ I(α, δ), for all δ > 0. Equivalently
we say: α is a decomposition of α, α ∈ D(α).

This means: Given x = {xk} ∈ Π1(α), δ > 0, and representatives
xj = {xj

k} of αj , then the boundary data xk, x
j
k(x,δ) with j ∈ I(α, δ) can

be extended to an (m(α, δ) + 1)-fold connected domain by a map into Uδ(S)
for k ≥ k(x, δ). If α is finite then m(α, δ) ≡ const for 0 < δ � 1.
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For unbounded S it can happen that disks escape to infinity. This will be
excluded by imposing an energy condition. For this purpose we define

ε∞(S) := inf
{
ε > 0 : There is a nontrivial sequence

x = {xk} ∈ F(S) with A(X) ⊂ S

and limsup
k→∞

E(xk) ≤ ε
}
.

Clearly, ε∗(S) ≤ ε∞(S), and ε∞(S) = ε0(S) if S is compact.
We have the following answer to the “compactness question” raised above:

Theorem B. Let z = {zk} ∈ F′ be a sequence with E(xk) → e < ε∞. Then
there exist an m-tupel α = (α1, . . . , αm) of αj ∈ π̂1(S), |αj | > 0, with |αj | → 0
as j → ∞ if m = ∞, and a subsequence x = {xl}, xl = zkl

, such that
x ∈ Π1(α), and it addition

∑
j

E∗(αj) ≤ e and m ≤ e/ε0(S).

Moreover, if e < min{2ε0(S), ε∞(S)} then x ∈ Π1(S), i.e. x defines a homo-
topy class. Finally, ε∗(S) = ε0(S) provided that ε∗(S) < ε0(S).

Theorem C. Let α ∈ π̂1(S) be a nontrivial homotopy class with E∗(α) <∞,
and x = {xk} be a minimizing sequence for α ∈ π̂1(S) which converges weakly
in H to x ∈ W (S). Then x is a minimizer with respect to its own homotopy
class.

The hypothesis on α can be verified if α can be represented by a sequence
of equibounded length. While {xk} will not converge strongly in general, it is
often possible to extract a nonconstant weak limit.

The next theorem is the main result of Kuwert [5–7]. It states that any
minimizing sequence contains a subsequence which decomposes in the limit
both in homotopy and in energy into a union of minimizing disks.

Theorem D. Let α ∈ π̂1(S) be a given nontrivial homotopy class with
E∗(α) < ε∞(S), and let z = {zk} with [z] ∈ α be a given minimizing sequence.
Then there are a subsequence {zkl

}, a number m ∈ N∪{∞}, a sequence {h1
l }

of conformal automorphisms of B, topological disks Dj
l , l ∈ N, 1 ≤ j ≤ m, and

Riemann mapping functions gj
l : Bj → Dj

l such that the loops xl := zkl
◦ h1

l

satisfy:

(i) Dj
l � B,D

j

l ∩ D
k

j = ∅ for j �= k; ∂Dj
l is regular and real analytic; D1

j =
{w ∈ B : |w| < r1l } with r1l → 1− 0; g1

l (w) = r1l w.

(ii) For any j, the sequence {Xl ◦ gj
l }l∈N converges strongly in H1

2 (Bj ,Rn) to
a nontrivial minimizer Xj : Bj → R

n with the boundary values xj ∈ W (S),
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(Bj identified with B), and αj := {xj} is an element of π̂1(S) \ {0}. Each
mapping Xj is a (possibly branched) minimal surface.

(iii) E∗(α) = limk→∞ E(zk) can be written as

E∗(α) =
m∑

j=1

E∗(αj) =
∞∑

j=1

E(xj).

(iv) The m-tupel α := (α1, α2, . . . , αm) is a decomposition of the given class α.

(v) For Ml := B \
⋃m

j=1D
j
l we have d(Xl|Ml

, S) → 0, and the Dirichlet
integrals DMl

(Xl) of Xl over Ml tend to zero as l→∞.

(vi) If ε0(S) > 0 then m ≤ E∗(α)/ε0(S) <∞.

We mention that this result can be used to generalize H.W. Alt’s solution
of the so-called thread problem, treated in Chapter 5 of this volume; cf. Kuwert
[5], pp. 51–52. Kuwert’s approach allows to consider threads whose endpoints
are fixed at support surfaces (instead of arcs).

Now we want to collect several applications of Theorem D in case that
α ∈ π̂1(S) satisfies a sufficient Douglas condition. This means: For any proper
decomposition α = (α1, α2, . . . , αm) ∈ D(α) we have the strict inequality

E∗(α) <
m∑

j=1

E∗(αj).

Note however that, so far, this condition can only be verified for specific
homotopy classes.

Theorem E. Let α ∈ π̂1(S) satisfy the sufficient Douglas condition, and as-
sume that E∗(α) < ε∞(S). Then we have:

(i) For any minimizing sequence z = {zk} representing α there are a subse-
quence {zkl

} as well as conformal automorphisms hl of B such that x = {xl}
with xl := zkl

◦ hl converges strongly in H to some minimizer x ∈ W (S) for
α, and E∗(α) is attained.

(ii) If a minimizing sequence converges weakly to a nonconstant map x ∈
W (S), then it converges strongly to x.

(iii) The nonempty set M(α) of minimizers for α is compact in W (S) modulo
the conformal automorphism group Aut(B) of B.

Kuwert also shows ([5], pp. 57–60) how the results presented in the follow-
ing Chapter 2 can be used to show regularity of minimal surfaces X defined
by minimizers x for α and to prove compactness for M(α) with respect to
C0,β or Ck,β .



Chapter 2

The Boundary Behaviour of Minimal Surfaces

In this chapter we deal with the boundary behaviour of minimal surfaces,
with particular emphasis on the behaviour of stationary surfaces at their
free boundaries. This and the following chapter will be the most technical
and least geometric parts of our lectures. They can be viewed as a section
of the regularity theory for nonlinear elliptic systems of partial differential
equations. Yet these results are crucial for a rigorous treatment of many geo-
metrical questions, and thus they will again illustrate what role the study of
partial differential equations plays in differential geometry.

The first part of this chapter, comprising Sections 2.1–2.3, deals with the
boundary behaviour of minimal surfaces at a fixed boundary. Consider for
example a minimal surface X : B → R

3 which is continuous on B̄ and maps
∂B onto some closed Jordan curve Γ . Then we shall prove that X is as smooth
on B̄ as Γ , more precisely, that X is of class C∞(B̄,R3) (or X ∈ Cω(B̄,R3), or
X ∈ Cm,α(B̄,R3)) if Γ is of class C∞ (or Γ ∈ Cω, or Γ ∈ Cm,α, respectively).
These results are worked out in Section 2.3. In Section 2.1 we shall supply
some results from potential theory that will be needed, and in Section 2.2 we
shall derive various regularity results and estimates for vector-valued solutions
X of differential inequalities of the kind

|ΔX| ≤ a|∇X|2

which will be crucial for our considerations in Section 2.3.
The central part of this chapter consists of Sections 2.4–2.9 where we

prove analogous regularity results for minimal surfaces with free boundaries
on a support surface S. If the boundary ∂S of S is empty, the reasoning is
considerably simpler than for ∂S �= ∅; in fact this second case has to be viewed
as a Signorini problem (or else, as a thin obstacle problem). For a survey of the
results on the boundary behaviour of minimal surfaces with free boundaries
we refer the reader to Section 2.4.

Finally, in Section 2.10, we shall derive an asymptotic expansion for any
minimal surface at a boundary branch point which is analogous to the expan-
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sion at an interior branch point that was obtained in Section 3.2 of Vol. 1.
The results of Section 2.10 are based on the discussion in Chapter 3.

2.1 Potential-Theoretic Preparations

In this section we want to supply some results from potential theory which will
be needed in Section 2.3 for investigating the boundary behaviour of minimal
surfaces which are bounded by smooth Jordan arcs. The reader who is well
acquainted with Schauder estimates may skip this part at a first reading. Al-
though a large part of the material can be found in the treatise of Gilbarg and
Trudinger [1], a brief presentation may be welcome because it will enable the
reader to study the essential results of Section 2.2 on solutions of differential
inequalities without consulting additional sources.

In what follows we shall use the following notation: We write w = u+ iv,
ζ = ξ + iη, dζ = dξ + i dη, and d2ζ = dξ dη denotes the two-dimensional area
element. Moreover, we set

∂

∂w
=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w
=

1
2

(
∂

∂u
+ i

∂

∂v

)
,

Δ =
∂2

∂u2
+

∂2

∂v2
= 4

∂

∂w

∂

∂w
,

BR = BR(0) = {w ∈ C : |w| < R}, B := B1(0).

Green’s function GR(w, ζ) for the disk BR is given by

(1) GR(w, ζ) =
1
2π

log
∣∣∣∣ R

2 − wζ

R(ζ − w)

∣∣∣∣ ,

and the Poisson kernel PR(w,ϕ) = P∗
R(w, ζ), w = reiθ, ζ = Reiϕ ∈ ∂BR, is

defined1 by

PR(w,ϕ) =
1
2π

R2 − r2

R2 − 2rR cos(θ − ϕ) + r2
=

1
2π

Re
R+ rei(θ−ϕ)

R− rei(θ−ϕ)

(2)

=
1
2π

Re
ζ + w

ζ − w
=

1
2π

R2 − |w|2
|ζ − w|2 = −R ∂

∂νζ
GR(w, ζ),

where νζ denotes the exterior normal to ∂BR at ζ. One computes that

(3)
∂

∂w
GR(w, ζ) =

1
4π

(
1

ζ − w
− ζ

R2 − wζ

)
,

1 Note that often the expression 1
R

PR(w, ϕ) = − ∂
∂νζ

GR(w, ζ) is called Poisson kernel; cf.

for instance Gilbarg and Trudinger [1], formula (2.29).
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whence it follows that

(4)
∂s

∂ws
GR(w, ζ) =

(s− 1)!
4π

[
1

(ζ − w)s
− ζ

s

(R2 − wζ)s

]
.

A straight-forward estimation shows that

R|ζ − w| ≤ |R2 − wζ| for all w, ζ ∈ BR,

which implies

(5)
∣∣∣∣ ∂

s

∂ws
GR(w, ζ)

∣∣∣∣ ≤ (s− 1)!
2π

1
|ζ − w|s for all ζ, w ∈ BR with w �= ζ.

The following results is a direct consequence of Green’s formula and can
be found in any textbook on partial differential equations.2

Proposition 1. Any function x ∈ C0(BR)∩C2(BR) with q := Δx ∈ L∞(BR)
and x(ϕ) := x(Reiϕ) can be written in the form

(6) x(w) = h(w)−
∫

BR

GR(w, ζ)q(ζ) d2ζ,

where

(7) h(w) :=
∫ 2π

0

PR(w,ϕ)x(ϕ) dϕ

denotes the harmonic function in BR which is continuous on BR and satisfies
h = x on ∂BR.

Proposition 2. Suppose that x(ϕ) is of class C2(R) and periodic with the
period 2π, and let q(w) be of class L∞(B). Assume also that

sup
B
|q| ≤ α, sup

R

|x′ ′| ≤ β

holds for some numbers α, β. Then the function x(w), w ∈ B, defined by (6)
and (7) for R = 1, can be extended to B as a function which is of class
C1,μ(B) for any μ ∈ (0, 1) and satisfies x(eiϕ) = x(ϕ). For suitable numbers
c1(α, β) and c2(α, β, μ) depending only on the indicated parameters and not
on q and x, we have

(8) |∇x|0,B ≤ c1(α, β), [∇x]μ,B ≤ c2(α, β, μ).

If q ∈ C0,σ(B) holds for some σ ∈ (0, 1), then we have x ∈ C2,σ(B), and the
equation Δx = q is satisfied on B. Moreover, for any R,R′ with 0 < R′ <
R ≤ 1 the function y(w) defined by

2 Cf. for instance Gilbarg and Trudinger [1], p. 18; John [1], p. 96.
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(9) y(w) :=
∫

BR

GR(w, ζ)q(ζ) d2ζ

is of class C2,σ(BR) and satisfies

(10) |y|2+σ,BR′ ≤ c(R,R′, σ)|q|0+σ,BR
.

Here and in the following we use the notation

|x|0,B = sup
B
|x|, [x]μ,B = sup

{
|x(w)− x(w′)|
|w − w′|μ : w,w′ ∈ B,w �= w′

}
,

|x|s,B =
s∑

k=0

|∇kx|0,B , |x|s+μ,B + |x|s,B + [∇sx]μ,B .

Moreover, we shall use the notation ∇w = ( ∂
∂u ,

∂
∂v ) in order to distinguish the

real gradient ∇wf = (fu, fv) of a function f(u, v) from its complex derivative
fw = 1

2 (fu − ifv).
The reader will find more complete results on Schauder estimates in

Gilbarg and Trudinger [1], Chapters 2–4 and 6; Morrey [8], Chapters 2 and 6;
Stein [1]; Agmon, Douglis, and Nirenberg [1,2]. We shall use some of these re-
fined results later on. For the present the reader might welcome to see how one
can obtain Schauder estimates in the simple situation at hand. Proposition 2
and related results will be proved by a sequence of auxiliary results.

Lemma 1. Let H(w, ζ) be a C2-kernel on the set {w, ζ ∈ BR : w �= ζ} such
that

(11) |H(w, ζ)| ≤ b

∣∣∣∣log
1
r

∣∣∣∣ , |∇wH(w, ζ)| ≤ b

r
, |∇2

wH(w, ζ)| ≤ b

r2

holds for r = |w − ζ| and some constant b > 0. In addition we assume that
q ∈ L∞(BR). Then the function y(w) defined by

(12) y(w) =
∫

BR

H(w, ζ)q(ζ) d2ζ, w ∈ BR,

can be extended to a function of class C1,μ(BR) satisfying

(13) |y|1,BR
≤ c1(b, R)|q|0,BR

,

(14) [∇y]μ,BR
≤ c2(b, R, μ)|q|0,BR

,

with constants c1, c2 depending on the parameters b, R and b, R, μ, respectively.
Moreover, we have

(15) ∇wy(w) =
∫

BR

∇wH(w, ζ)q(ζ) d2ζ for w ∈ BR.
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Proof. As 1
r ∈ L1(BR) and q ∈ L∞(BR), the integrals (12) and (15) are well

defined. We choose a cut-off function ηh ∈ C∞(R) with 0 ≤ ηh ≤ 1, ηh(r) = 0
for r ≤ h, ηh(r) = 1 for r ≥ 2h, and η′

h(r) ≤ 2
h . Then we set

Hh(w, ζ) := ηh(r)H(w, ζ) with r = |w − ζ|.

Then we have |Hh| ≤ |H| and H = Hh for r ≥ 2h. The function

(16) yh(w) :=
∫

BR

Hh(w, ζ)q(ζ) d2ζ, w ∈ BR,

is of class C2 and, setting a := |q|0,BR
, we obtain

|y(w)− yh(w)| ≤ a

∫
BR ∩B2h(w)

{|H|+ |Hh|} d2ζ ≤ 2a
∫

BR ∩B2h(w)

|H| d2ζ

≤ const · h→ 0 as h→ 0.

Thus we infer that y ∈ C0(BR).
Now we define

z(w) :=
∫

BR

∇wH(w, ζ)q(ζ) d2ζ, w ∈ BR.

We want to show that y ∈ C1(BR) and ∇wy = z. In fact, we have

∇yh(w) = Ih
1 (w) + Ih

2 (w)

with

Ih
1 (w) :=

∫
BR

ηh(r)∇wH(w, ζ)q(ζ) d2ζ,

Ih
2 (w) :=

∫
BR

∇wηh(r)H(w, ζ)q(ζ) d2ζ.

As before we show

|z(w)− Ih
1 (w)| ≤ const · h→ 0 as h→ 0,

and a straight-forward estimate yields

|Ih
2 (w)| ≤ const h−1h2−α for any α > 0

whence we infer that ∇yh tends uniformly to z on every Ω � BR. Together
with the uniform convergence of yh to y on Ω � BR as h → 0 we infer that
y ∈ C1(BR) and ∇y(w) = z(w) for any w ∈ BR. Consequently

|y(w)|+ |∇wy(w)| ≤
∫

BR

{|H(w, ζ)|+ |∇wH(w, ζ)|}|q(ζ)| d2ζ

≤ c(b, R)a for all w ∈ BR;

thus (13) is also verified.
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Now let w1, w2 ∈ BR, and set ρ := |w1−w2|. Then we infer from (15) that
∣∣∣∣∂y∂u (w1)−

∂y

∂u
(w2)
∣∣∣∣ =
∣∣∣∣
∫

BR

{
∂H

∂u
(w1, ζ)−

∂H

∂u
(w2, ζ)

}
q(ζ) d2ζ

∣∣∣∣
≤ a

∫
BR ∩B2ρ(w1)

∣∣∣∣∂H∂u (w1, ζ)
∣∣∣∣ d2ζ + a

∫
BR ∩B2ρ(w1)

∣∣∣∣∂H∂u (w2, ζ)
∣∣∣∣ d2ζ

+ a

∫
BR \B2ρ(w1)

∣∣∣∣∂H∂u (w1, ζ)−
∂H

∂u
(w2, ζ)

∣∣∣∣ d2ζ.

Note that∣∣∣∣∂H∂u (w1, ζ)
∣∣∣∣ ≤ b|w1 − ζ|−1,

∣∣∣∣∂H∂u (w2, ζ)
∣∣∣∣ ≤ b|w2 − ζ|−1,

and the mean value theorem implies
∣∣∣∣∂H∂u (w1, ζ)−

∂H

∂u
(w2, ζ)

∣∣∣∣ ≤ 2bρ
|w∗ − ζ|2

for some w∗ = (1− t)w1 + tw2, 0 < t < 1. If |ζ − w1| ≥ 2ρ, we infer that

|ζ − w∗| ≥ |ζ − w1| − |w1 − w∗| ≥ 1
2
|ζ − w1|,

and therefore∣∣∣∣∂H∂u (w1, ζ)−
∂H

∂u
(w2, ζ)

∣∣∣∣ ≤ 8bρ
|ζ − w1|2

for |ζ − w1| ≥ 2ρ.

Thus we arrive at∣∣∣∣∂y∂u (w1)−
∂y

∂u
(w2)
∣∣∣∣

≤ ab

[∫
B2ρ(w1)

|w1 − ζ|−1 d2ζ

+
∫

B3ρ(w2)

|w2 − ζ|−1 d2ζ + 8ρ
∫

BR \B2ρ(w1)

|w1 − ζ|−2 d2ζ

]

≤ ab

[
4πρ+ 6πρ+ 16πρ log

R

ρ

]
≤ ac(b, R, μ)ρμ

for any μ ∈ (0, 1) and ρ = |w1 − w2|, and (14) is proved. The estimates (13)
and (14) imply that y can be extended to BR as a function of class C1,μ(BR)
for any μ ∈ (0, 1). �

Lemma 2. Let H(w, ζ) be a kernel of the form

H(w, ζ) = K(w − ζ) = K(u− ξ, v − η)
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for some function K(ζ) which is of class C2 on {ζ �= 0}, and suppose that
H(w, ζ) satisfies the growth condition (11). Furthermore we assume that q(w)
is of class C0,μ(BR), 0 < μ < 1. Then the function y(w) defined by (12) is of
class C2(BR), and we have

(17) |∇2y|0,BR′ ≤ c1|q|μ,BR
, |y|2,BR′ ≤ c2|q|μ,BR

for 0 < R′ < R. Here c1 and c2 denote constants depending solely on b, μ,R
and R′.

Moreover, if K(ζ) is of class C3 for ζ �= 0 and if also

(11∗) |∇3
wH(w, ζ)| ≤ b|w − ζ|−3,

then y(w) is of class C2,μ(BR) and satisfies

(18) |∇2y|μ,BR′ ≤ c3|q|μ,BR
, |y|2+μ,BR′ ≤ c4|q|μ,BR

for 0 < R′ < R. Here the numbers c3 and c4 only depend on b, μ,R′, and R.

Proof. We set again Hh = ηhH where ηh is chosen as in the proof of Lemma 1;
but in addition we arrange that |η′ ′

h(r)| ≤ γh−2 for some constant γ > 0. Then

zh(w) :=
∫

BR

∇wHh(w, ζ)q(ζ) d2ζ

is of class C1(BR,R
2), and for D = ∂

∂u or ∂
∂v we can write

Dzh(w) =
∫

BR

D∇wHh(w, ζ)q(ζ) d2ζ

=
∫

BR

D∇wHh(w, ζ)[q(ζ)− q(w)] d2ζ + q(w)
∫

BR

D∇wHh(w, ζ) d2ζ.

By integration by parts, we obtain
∫

BR

Du∇wHh(w, ζ) d2ζ = −
∫

BR

Dξ∇wHh(w, ζ) d2ζ

= −
∫

∂BR

∇wHh(w, ζ) cosαds(ζ),

where ds is the line element on ∂BR and cosα = ξ
|ζ| . If 2h < |w−ζ| we obtain

Dzh(w) = φh(w)− q(w)
∫

∂BR

∇wH(w, ζ) cosαds(ζ)

with cosα = ξ
|ζ| or = η

|ζ| and

φh(w) :=
∫

BR

D∇wHh(w, ζ)[q(ζ)− q(w)] d2ζ.
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Similarly we set

(19) φ(w) :=
∫

BR

D∇wH(w, ζ)[q(ζ)− q(w)] d2ζ.

For r = |w − ζ| and a := |q|μ,BR
we have

|D∇wH(w, ζ)| ≤ br−2 and |q(ζ)− q(w)| ≤ arμ,

whence

(20) |φ(w)|, |φh(w)| ≤ 2πabμ−1Rμ.

By a similar reasoning we obtain (∇ = ∇w and 0 < h� 1):

|φh(w)− φ(w)| ≤
∫

BR ∩B2h(w)

|ηh(w)− 1||D∇H(w, ζ)||q(ζ)− q(w)| d2ζ

+
∫

BR

{|∇2ηh||H|+ 2|∇ηh||∇H|}|q(ζ)− q(w)| d2ζ

≤ const · hμ

(
1 + log

1
h

)
→ 0 as h→ 0.

Thus Dzh(w) tends uniformly to

φ(w)− q(w)
∫

∂BR

∇wH(w, ζ) cosα(ζ) ds(ζ)

as h → 0, for w ∈ BR′ and 0 < R′ < R. On the other hand, if yh is defined
by (16), we know that

zh = ∇yh, Dzh = D∇yh, zh ∈ C1,

and, as shown in the proof of Lemma 1, we also have

lim
h→0

|y − yh|1,BR′ = 0 for 0 < R′ < R.

Consequently we have y ∈ C2(BR) and

(21) D∇y(w) = φ(w)−q(w)
∫

∂BR

∇wH(w, ζ) cosα(ζ) ds(ζ) for |w| < R.

Now inequalities (17) follow from (20) and (21).
Finally, taking assumption (11∗) into account, we derive from the repre-

sentation formulas (19) and (21) that y is of class C2,μ(BR) and in conjunction
with (17) that the estimates (18) are satisfied. Since we may proceed in the
same way as in the last part of the proof of Lemma 1, we shall skip this part
of the proof. �
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Proposition 3. Suppose that x ∈ C0(BR) ∩ C2(BR) and that ∇x ∈ L2(BR)
and Δx ∈ L∞(BR). Then we obtain the following representation formulas
which are satisfied for w ∈ BR:

(22) x(w) =
1
2π

∫
∂BR

(
Re

ζ + w

ζ − w

)
x(ζ)

dζ

iζ
−
∫

BR

GR(w, ζ)Δx(ζ) d2ζ,

(23)
∂

∂w
x(w) =

1
2πi

∫
∂BR

x(ζ)
(ζ − w)2

dζ −
∫

BR

∂

∂w
GR(w, ζ)Δx(ζ) d2ζ,

xu(0) =
1
πR2

∫
BR

xu(u, v) du dv − 1
2π

∫
BR

u

[
1
r2
− 1
R2

]
Δx(u, v) du dv,(24)

xv(0) =
1
πR2

∫
BR

xv(u, v) du dv − 1
2π

∫
BR

v

[
1
r2
− 1
R2

]
Δx(u, v) du dv,(25)

r = |w| =
√
u2 + v2.

Proof. Formula (22) is merely a reformulation of (6) and (7). Differentiating
(22), it follows in conjunction with Lemma 2 (in particular, with (15)) that
(23) holds if we take

2ζ
(ζ − w)2

=
∂

∂w

ζ + w

ζ − w
= 2

∂

∂w
Re

ζ + w

ζ − w
= 2

∂

∂w

R2 − |w|2
|ζ − w|2

for ζ ∈ ∂BR into account.
By applying (23) to w = 0 and noting that

∂

∂w
GR(0, ζ) =

1
4π

(
1
ζ
− ζ

R2

)

we infer that

xw(0) =
1

2πi

∫
∂BR

x(ζ)
ζ2

dζ −
∫

BR

ζ

4π

(
1
|ζ|2 −

1
R2

)
Δx(ζ) d2ζ.

Because of ζ−2 dζ = −R−2 dζ, it follows that

1
2πi

∫
∂BR

ζ−2x(ζ) dζ = − 1
2πiR2

∫
∂BR

x(ζ) dζ

= − 1
2πiR2

∫
∂BR

x(ζ)(dξ − i dη)

= − 1
2πiR2

∫
BR

(−ixξ − xη) dξ dη

=
1
πR2

∫
BR

xζ d
2ζ.
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Replacing ζ by w, we arrive at (24) and (25) by separating the real and
imaginary parts. Actually we first prove (24) and (25) for BR′ , R′ < R, instead
for BR, and then we let R′ → R. �

Now we prove Schwarz’s result concerning the boundary continuity of Pois-
son’s integral.

Lemma 3. Let x(ϕ) be a continuous, 2π-periodic function on R, and let
h(w) :=

∫ 2π

0
PR(w,ϕ)x(ϕ) dϕ be the corresponding Poisson integral, which

is a harmonic function of w ∈ BR. Then we obtain h(w) → x(ϕ) as
w → Reiϕ. Thus h(w) can be extended to a continuous function on BR such
that h(Reiϕ) = x(ϕ) for all ϕ ∈ R.

Proof. It suffices to treat the case R = 1. Then we have to prove
limr→1−0 h(reiθ) = x(θ) uniformly in θ ∈ R. We can write

h(reiθ) =
1
2π

∫ π

−π

1− r2

|eiϕ − r|2 x(θ + ϕ) dϕ.

Because of the identity

1
2π

∫ π

−π

1− r2

|eiϕ − r|2 dϕ = 1

it follows that

h(reiθ)− x(θ) =
1
2π

∫ π

−π

1− r2

|eiϕ − r|2 [x(θ + ϕ)− x(θ)] dϕ

whence

|h(reiθ)− x(θ)| ≤ 1
2π

∫ π

−π

1− r2

|eiϕ − r|2 |x(θ + ϕ)− x(θ)| dϕ

≤ 1
2π

∫ −δ

−π

· · ·+ 1
2π

∫ δ

−δ

· · ·+ 1
2π

∫ π

δ

· · · = I1 + I2 + I3

for any δ ∈ (0, π
2 ). Fix some ε > 0 and choose δ > 0 so small that

|x(ϕ)− x(θ)| < ε for all ϕ and θ with |ϕ− θ| < δ. Then we obtain

I2 ≤ ε · 1
2π

∫ δ

−δ

1− r2

|eiϕ − r|2 dϕ ≤ ε.

Moreover, by setting M := maxR |x| we obtain

I1, I3 ≤
1
2π

(π − δ)(1− r)(1 + r)
2M

sin2 δ
≤ 2M

sin2 δ
(1− r)

since |eiϕ − r|2 ≥ sin2 δ for δ ≤ |ϕ| ≤ π. Thus we arrive at
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|h(reiθ)− x(θ)| ≤ ε+
4M

sin2 δ(ε)
(1− r) for r ∈ (0, 1)

and therefore

lim
r→1−0

h(reiθ) = x(θ) uniformly in θ. � 

As a by-product of this proof we have found:

Lemma 4. Let h ∈ C0(B) ∩ C2(B) be harmonic in B and suppose that
|h(eiϕ) − h(eiθ)| < ε holds for all ϕ with |ϕ − θ| ≤ δ, δ ∈

(
0, π

2

)
. Then it

follows that

(26) |h(reiθ)− h(eiθ)| ≤ ε+
4|h|0,∂B

sin2 δ
(1− r)

holds for all r ∈ (0, 1).

Lemma 5. Let h ∈ C0(BR) ∩ C2(BR) be harmonic in BR, and suppose that
the boundary values x(ϕ) of h defined by x(ϕ) := h(Reiθ) are of class C2(R)
and satisfy |x′ ′(ϕ)| ≤ k for all ϕ ∈ R. Then we obtain

(27) |∇h(w)| ≤ cR−1k for all w ∈ BR,

where c is an absolute constant independent of h and R.

Proof. By virtue of an obvious scaling argument we can restrict our attention
to the case R = 1. Then we have to prove

|∇h(w)| ≤ const k for w ∈ B.

Let h∗ be the conjugate harmonic function to h. Then f(w) := h(w)+ ih∗(w)
is a holomorphic function of w = u + iv, and we have the convergent power
series expansion

f(w) =
∞∑

l=0

clw
l for |w| < 1.

Set c0 = 1
2 (a0− ib0), cl = al− ibl if l ≥ 1, al, bl ∈ R. Then we have for w = reiϕ

that

h(w) =
a0

2
+

∞∑
l=1

rl(al cos lϕ+ bl sin lϕ)

whence

x(ϕ) =
a0

2
+

∞∑
l=1

(al cos lϕ+ bl sin lϕ),

al =
1
π

∫ 2π

0

x(ϕ) cos lϕ dϕ = − 1
πl2

∫ 2π

0

x′ ′(ϕ) cos lϕ dϕ,

bl =
1
π

∫ 2π

0

x(ϕ) sin lϕ dϕ = − 1
πl2

∫ 2π

0

x′ ′(ϕ) sin lϕ dϕ.
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Because of f ′ = hu + ih∗
u = hu − ihv we infer that

|∇h(w)| = |f ′(w)| =
∣∣∣∣∣

∞∑
l=1

l(al − ibl)wl−1

∣∣∣∣∣

≤
∞∑

l=1

l
√
a2

l + b2l ≤
{ ∞∑

l=1

1
πl2

}1/2 [∫ 2π

0

|x′ ′(ϕ)|2 dϕ
]1/2

≤ π√
3
k if |w| < 1,

taking Schwarz’s inequality into consideration as well as Parseval’s relation
for the Fourier series expansion of x′ ′. �

The next result is known in the literature as Theorem of Korn and Pri-
valov.

Lemma 6. Let f(w) = h(w) + ih∗(w) be holomorphic in BR, h = Re f , h∗ =
Im f , and suppose that h∗ ∈ C0(BR) ∩ C0,μ(∂BR) holds for some μ ∈ (0, 1).
Then f is of class C0,μ(BR) and we have

(28) [f ]μ,BR
≤ c(μ)[h∗]μ,∂BR

.

Proof. We can assume that R = 1 applying a scaling argument. Set H :=
[h∗]μ,∂B . Then we have

|h∗(eiθ)− h∗(eiϕ)| ≤ H|eiθ − eiϕ|μ(29)

for all θ, ϕ ∈ R. Fix some ϕ ∈ [0, 2π) and consider the function

ψ(w) = Re(1− we−iϕ)μ

which can be viewed as a univalent harmonic function of w ∈ B. Introducing
the angle α between the rays {teiϕ : t ≥ 0} and {t(eiϕ−w) : t ≥ 0}, we obtain

ψ(w) = |w − eiϕ|μ cos(μα(w)),

where |α(w)| ≤ π
2 . Thus we infer from (29) that

(30) −Hψ(w)
cos μπ

2

≤ h∗(w)− h∗(eiϕ) ≤ Hψ(w)
cos μπ

2

holds for all w ∈ ∂B. Applying the maximum principle, we obtain that (31)
holds for all w ∈ B and in particular for all w ∈ B1−r(reiϕ) if 0 < r < 1.
Hence we infer that

(31) |h∗(w)− h∗(eiϕ)| ≤ 2μH

cos μπ
2

(1− r)μ for |w − reiϕ| < 1− r

is satisfied.
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Now we set w0 := reiϕ, 0 < r < 1, and h∗
0 := h∗(w0). Applying Gauss’s

mean value theorem to the harmonic function h∗
u and to the ball Bρ(w0) with

some radius ρ ∈ (0, 1− r), we obtain

h∗
u(w0) =

1
πρ2

∫
Bρ(w0)

h∗
u(w) d2w =

1
πρ2

∫
Bρ(w0)

(h∗ − h∗
0)u d

2w,

and an integration by parts yields

h∗
u(w0) =

1
πρ2

∫
∂Bρ(w0)

u− u0

ρ
(h∗ − h∗

0) ds.

Analogously,

h∗
v(w0) =

1
πρ2

∫
∂Bρ(w0)

v − v0
ρ

(h∗ − h∗
0) ds.

Thus we obtain

(32) |∇h∗(w0)| ≤ 2ρ−1|h∗ − h∗
0|0,∂Bρ(w0).

If we let ρ→ 1− r and combine the resulting inequality with (31), it follows
that

|∇h∗(w0)| ≤
4H

cos μπ
2

(1− r)−1+μ.

Since we can choose ϕ arbitrarily, we obtain that

(33) |f ′(w)| ≤ c(μ)H(1− |w|)−1+μ for all w ∈ B,

if we set c(μ) := 4(cos μπ
2 )−1. Then it follows from (33) for 0 ≤ r < 1 that

(7.33′) |f ′(w)| ≤ c(μ)H(r − |w|)−1+μ for all w ∈ Br.

For any r and r′ with 0 ≤ r < r′ < 1 we now conclude

|f(r′eiθ)− f(reiθ)| =
∣∣∣∣∣
∫ r′eiθ

reiθ

f ′(w) dw

∣∣∣∣∣ ≤ c(μ)H
∫ r′

r

(r′ − ρ)−1+μ dρ

whence

(34) |f(r′eiθ)− f(reiθ)| ≤ c(μ)μ−1H(r′ − r)μ for 0 ≤ r < r′ < 1.

We infer that limr→1−0 f(reiθ) exists for any θ ∈ R. Setting ξ(ϕ) :=
limr→1−0 f(reiϕ) we extend f(w) from B to B by defining f(eiϕ) := ξ(ϕ).
We now want to show that f ∈ C0,μ(B). In fact, setting c∗(μ) := μ−1c(μ) we
obtain from (34) that

(34′) |f(r′eiθ)− f(reiθ)| ≤ c∗(μ)H(r′ − r)μ for 0 ≤ r ≤ r′ ≤ 1, θ ∈ R,
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and in particular

|ξ(θ)− f(reiθ)| ≤ c∗(μ)H(1− r)μ for 0 < r < 1 and θ ∈ R.

Then it follows for θ1 < θ2 that

|ξ(θ1)− ξ(θ2)| ≤ |ξ(θ1)− f(reiθ1)|+ |ξ(θ2)− f(reiθ1)|
≤ |ξ(θ1)− f(reiθ1)|+ |ξ(θ2)− f(reiθ2)|+ |f(reiθ1)− f(reiθ2)|

≤ 2c∗(μ)H(1− r)μ +
∫ θ2

θ1

|f ′(reiθ)|r dθ.

Moreover, we derive from (33) that

∫ θ2

θ1

|f ′(reiθ)|r dθ ≤ Hc(μ)r(1− r)−1+μ(θ2 − θ1).

Suppose that 0 < θ2 − θ1 < 1, and choose r = 1 − (θ2 − θ1). Then it follows
that

|ξ(θ1)− ξ(θ2)| ≤ {2c∗(μ) + c(μ)}H|θ2 − θ1|μ

if |θ1 − θ2| ≤ 1. Renaming 8c∗(μ) + 4c(μ) by c(μ), we arrive at

(35) |ξ(θ1)− ξ(θ2)| ≤ c(μ)H|θ1 − θ2|μ for all θ1, θ2 ∈ R.

Applying the maximum principle to the modulus of the holomorphic mapping
f(eiαw)− f(w), w ∈ B, we see that

max
w∈B

|f(eiαw)− f(w)| ≤ max
w∈∂B

|f(eiαw)− f(w)|

holds for all α ∈ R, and in view of (35) we obtain

|f(eiαw)− f(w)| ≤ c(μ)H|α|μ for w ∈ B and α ∈ R.

This estimate is equivalent to

(35′) |f(reiθ2)− f(reiθ1)| ≤ c(μ)H|θ1 − θ2|μ for 0 ≤ r ≤ 1, θ1, θ2 ∈ R.

Combining the estimates (34′) and (35′) we arrive at

|f(r1eiθ1)− f(r2eiθ2)| ≤ |f(r1eiθ1)− f(r2eiθ1)|+ |f(r2eiθ1)− f(r2eiθ2)|
≤ c∗(μ)H|r1 − r2|μ + c(μ)H|θ1 − θ2|μ

for arbitrary r1, r2 ∈ [0, 1] and θ1, θ2 ∈ R.
If w1 = r1e

iθ1 , w2 = r2e
iθ2 , 1

2 ≤ r1, r2 ≤ 1, |θ2 − θ1| ≤ π, then there is a
constant K such that

|r1 − r2|μ + |θ1 − θ2|μ ≤ K|w1 − w2|μ.
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Consequently we have

|f(w1)− f(w2)| ≤ c(μ)H|w1 − w2|μ

for all w1, w2 ∈ B \B1/2 and for some constant c(μ), and because of (33) the
same estimate holds for any w1, w2 ∈ B1/2. Then we easily infer that

|f(w1)− f(w2)| ≤ c(μ)H|w1 − w2|μ for all w1, w2 ∈ B

holds true. �

Lemma 7. Suppose that h ∈ C0(BR) ∩ C2(BR) is harmonic in BR and that
its boundary values x(ϕ) := h(Reiϕ) satisfy x ∈ C2(R) and |x′ ′(ϕ)| ≤ k for
all ϕ ∈ R. Then we obtain h ∈ C1,μ(BR) for every μ ∈ (0, 1) and

(36) [∇h]μ,BR
≤ c(μ)R−1−μk,

where the number c(μ) only depends on μ.

Proof. It is sufficient to prove the result for R = 1. Let us introduce the
tangential difference quotient

(Tθh)(reiϕ) :=
1
θ
[h(rei(ϕ+θ))− h(reiϕ)]

and note that (Tθh)(w) is a harmonic function of w ∈ B which is continuous
on B and has the boundary values

(τθx)(ϕ) :=
1
θ
[x(ϕ+ θ)− x(ϕ)].

By assumption the boundary values (τθx)(ϕ) tend uniformly to x′(ϕ) as
θ → 0. Then, on account of Harnack’s first convergence theorem, we eas-
ily infer that the functions (Tθh)(w) tend uniformly on B to the harmonic
function hϕ(w) with the boundary values x′(ϕ) = ∂

∂ϕh(eiϕ) on ∂B which, by
assumption, are Hölder continuous for any exponent μ < 1, and

(37) [x′]μ,R ≤ 2πk.

Consider a holomorphic function f(w) on B with f = h + ih∗, that is,
h = Re f, h∗ = Im f . Then g(w) := iwf ′(w) = ∂f

∂ϕ (w), w = reiϕ, is another
holomorphic function on B with ∂h

∂ϕ = Re g and x′(ϕ) = ∂h
∂ϕ (eiϕ),x′ ∈ C0,μ(R)

for any μ ∈ (0, 1). Hence we can apply Lemma 6 to the holomorphic function
ig(w) = −wf ′(w), w ∈ B, and we obtain that ig(w) is of class C0,μ(B). This
implies

f ′ ∈ C0,μ(B \B1/2),

and inequalities (28) and (37) yield
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(38) [f ′]μ,B\B1/2
≤ const · k.

Moreover, (27) implies
|f ′|0,B ≤ const · k,

and Cauchy’s estimate for holomorphic functions then gives

|f ′ ′|0,B1/2 ≤ const · k,

whence
[f ′]μ,B1/2 ≤ const · k.

Combining this estimate with (38), we arrive at the desired inequality

[f ′]μ,B ≤ const · k.

If we now recall that f ′ = hu − ihv, we find that the lemma is proved. �

Proof of Proposition 2. We now see that Proposition 2 is a direct consequence
of Lemmata 1–7 in conjunction with Proposition 1 and with formulas (1)–(5).

�

Remark. We have formulated the estimates and the regularity results of
Proposition 1 in a global way. Analogous local results can be derived by similar
methods, but certain changes will be necessary to obtain local estimates at
the boundary. A very simple approach to local C1,μ-estimates is based on a
reflection method: it will be described in the next section.

2.2 Solutions of Differential Inequalities

In this section we want to derive a priori estimates for solutions X(u, v) =
X(w) = (x1(w), x2(w), . . . , xN (w)) of differential inequalities

(1) |ΔX| ≤ a|∇X|2,

which can equivalently be written as

(1′) |Xww| ≤ a|Xw|2.

Here a denotes a fixed nonnegative constant.

Lemma 1. Let X ∈ C2(Ω,RN ) be a solution of (1) in the open set Ω of R
2

which satisfies |X|0,Ω ≤M . Then we obtain

(2) Δ|X|2 ≥ 2(1− aM)|∇X|2

in Ω. In particular, if aM < 1, then |X|2 is subharmonic in Ω.
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Proof. Because of

|〈X,ΔX〉| ≤ |X||ΔX| ≤ aM |∇X|2,

the inequality (2) is an immediate consequence of the identity

(3) Δ|X|2 = 2|∇X|2 + 2〈X,ΔX〉

which holds for every mapping X of class C2. �
Lemma 2. Suppose that X ∈ C0(BR(w0),RN ) ∩ C2(BR(w0),RN ) satisfies
(1) in BR(w0). Assume also that |X(w)| ≤ M for w ∈ BR(w0) and aM < 1
are satisfied. Then for any ρ ∈ (0, R) we have

(4)
∫

Bρ(w0)

|∇X|2 du dv ≤ 1
logR

ρ

2πM
1− aM

max
w∈∂BR(w0)

|X(w)−X(w0)|

and

(5)
∫

Bρ(w0)

|∇X|2 du dv ≤ 1
log R

ρ

4πM2

1− aM
.

Proof. Choose some ρ ∈ (0, R) and apply Proposition 1 of Section 2.1 to the
function x(w) := |X(w)|2 and to the domain BR(w0) instead of BR = BR(0),
assuming in addition that X is of class C2 on BR(w0). Then formula (6) of
Section 2.2 yields

1
2π

∫ 2π

0

[x(w0 +Reiϕ)− x(w0)] dϕ =
1
2π

∫
BR(w0)

log
R

|w − w0|
Δxd2w.

Because of
|x(w)− x(w0)| ≤ 2M |X(w)−X(w0)|

we infer that
1
2π

∫
BR(w0)

log
R

|w − w0|
Δxd2w ≤ 2M max

w∈∂BR(w0)
|X(w)−X(w0)|.

On the other hand, Lemma 1 gives

2(1− aM)|∇X|2 ≤ Δx,

whence

(1− aM)π−1

∫
BR(w0)

log
R

|w − w0|
|∇X|2 d2w ≤ 2M max

w∈BR(w0)
|X(w)−X(w0)|.

Moreover,

log
R

ρ

∫
Bρ(w0)

|∇X|2 d2w ≤
∫

BR(w0)

log
R

|w − w0|
|∇X|2 d2w

if 0 < ρ < R, and (4) is proved. The additional hypothesis can be removed if
we first apply the reasoning to ρ and R′ with 0 < ρ < R′ < R, and then let
R′ → R− 0. Inequality (5) is a direct consequence of (4). �
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Proposition 1. There is a continuous function κ(t), 0 ≤ t < 1, with the
following property: For any solution X ∈ C2(BR(w0),RN ) of the differential
inequality (1) in BR(w0) satisfying

(6) |X(w)| ≤M for w ∈ BR(w0)

and for some constant M with aM < 1, the estimates

(7) |∇X(w0)| ≤ κ(aM)
M

R

and

|∇X(w0)| ≤
κ(aM)
R

sup
w∈BR(w0)

|X(w)−X(w0)|(8)

hold true.

Proof. Fix any R′ ∈ (0, R), and consider the nonnegative function

f(w) := (R′ − |w − w0|)|∇X(w)|

on BR′ (w0) which vanishes on ∂BR′ (w0). Then there is some point w1 ∈
BR′ (w0) where f(w) assumes its maximum K, i.e.,

f(w1) = K := max {f(w) : w ∈ BR′ (w0)}.

Set r = |w − w1| for w ∈ BR′ (w0) and ρ := R′ − |w1 − w0|. Clearly, we have
0 < ρ < R′.

By formulas (24) and (25) of Section 2.1, we obtain for any θ ∈ (0, 1) that

Xu(w1) =
1

πρ2θ2

∫
Bρθ(w1)

Xu du dv

− 1
2π

∫
Bρθ(w1)

(u− u1)
(

1
r2
− 1
ρ2θ2

)
ΔX dudv,

and an analogous formula holds for Xv(w1). By means of Schwarz’s inequality
we infer that

|∇X(w1)| ≤
1√
πρθ

{∫
Bρθ(w1)

|∇X|2 du dv
}1/2

+
1
2π

∫
Bρθ(w1)

|ΔX|
r

du dv.

Applying Lemma 2, (5) to ρθ and ρ instead of ρ and R, we also obtain
∫

Bρθ(w1)

|∇X|2 du dv ≤ c(a,M)
log 1

θ

.

Taking |ΔX| ≤ a|∇X|2 into account, we arrive at
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|∇X(w1)| ≤
√
c

√
πρθ
(
log 1

θ

)1/2
+

a

2π

∫
Bρθ(w1)

1
r
|∇X|2 du dv

and

a

2π

∫
Bρθ(w1)

1
r
|∇X|2 du dv ≤ aρθ sup

Bρθ(w1)

|∇X|2.

On account of
K = f(w1) = ρ|∇X(w1)|

we obtain
|∇X(w1)| = K/ρ.

Moreover, if r = |w − w1| < ρθ, it follows that

R′ − |w − w0| ≥ R′ − |w0 − w1| − |w − w1| = ρ− r > (1− θ)ρ.

Thus we infer from

|∇X(w)|(R′ − |w − w0|) ≤ K for all w ∈ BR′ (w0)

that
|∇X(w)| ≤ K

(1− θ)ρ
for all w ∈ Bρθ(w1)

holds true, and we conclude that

a

2π

∫
Bρθ(w1)

1
r
|∇X|2 du dv ≤ aθK2

(1− θ)2ρ

whence
K

ρ
≤

√
c

√
πρθ
(
log 1

θ

)1/2
+

aθK2

(1− θ)2ρ
,

and finally

K ≤
√
c/π

θ
(
log 1

θ

)1/2
+

aθK2

(1− θ)2
.

Set

α(θ) :=
aθ

(1− θ)2
, β(θ) :=

√
c/π

θ
(
log 1

θ

)1/2
.

Then we have
αK2 −K + β ≥ 0,

or equivalently (
K − 1

2α

)2

≥ 1− 4αβ
4α2

.
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Note that

α(θ)β(θ) =
a
√
c/π

(1− θ)2
(
log 1

θ

)1/2
, c = c(a,M).

Hence there exists a number θ0(a,M) ∈ (0, 1) such that

4α(θ)β(θ) ≤ 3
4

if 0 < θ ≤ θ0,

that is, √
1− 4α(θ)β(θ) ≥ 1

2
if 0 < θ ≤ θ0.

Set

m−(θ) :=
1−
√

1− 4α(θ)β(θ)
2α(θ)

, m+(θ) :=
1 +
√

1− 4α(θ)β(θ)
2α(θ)

.

Then we infer for any θ ∈ (0, θ0] that either

(i) K ≤ m−(θ), or (ii) K ≥ m+(θ)

holds true.
Moreover, the functions m−(θ) and m+(θ) are continuous on (0, θ0] and

satisfy
m−(θ) < m+(θ) for 0 < θ ≤ θ0

and
lim

θ→+0
m+(θ) = ∞.

The last relation yields that case (ii) cannot occur for θ close to zero; hence
we have K ≤ m−(θ) for θ near zero, and a continuity argument then implies

K ≤ m−(θ) for all θ ∈ (0, θ0],

in particular, K ≤ m−(θ0). Finally, for θ ∈ (0, θ0], we also obtain that

m−(θ) =
1−
√

1− 4α(θ)β(θ)
2α(θ)

=
1

2α(θ)
1− (1− 4α(θ)β(θ))
1 +
√

1− 4α(θ)β(θ)

=
2β(θ)

1 +
√

1− 4α(θ)β(θ)
≤ 2β(θ)

1 + 1/2
=

4
3
β(θ)

whence
m−(θ0) < 4

3β(θ0).

Consequently,
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K ≤ 4
3
β(θ0) =

4
√
c/π

3θ0
(
log 1

θ0

)1/2
:= c∗(a,M).

Because of

R′|∇X(w0)| = f(w0) ≤ f(w1) = K ≤ c∗(a,M)

we arrive at

|∇X(w0)| ≤ c∗(a,M)/R′ for any R′ ∈ (0, R)

whence

(7∗) |∇X(w0)| ≤ c∗(a,M)/R.

This estimate is close to (7). We now introduce the function κ(t) := c∗(t, 1).
A close inspection of the previous computations shows that κ(t) can assumed
to be an increasing and continuous function on the interval [0, 1).

In order to prove (7) we assume that M > 0 because that inequality
trivially holds true if M = 0. Then Z(w) := M−1X(w) satisfies both |Z(w)| ≤
1 and

|ΔZ| ≤ aM |∇Z|2.

Applying the estimate (7∗) to Z, we arrive at

|∇Z(w0)| ≤ κ(aM)/R.

Multiplying this inequality by M , we obtain (7).
Estimate (8) is now an easy consequence of (7). To see this we introduce

the quantity
m := sup {|X(w)−X(w0)| : w ∈ BR(w0)}.

If m = 0 or m = ∞, the estimate (8) is true for trivial reasons. If M ≤
m < ∞, (8) follows directly from (7). If 0 < m < M , we introduce Z :=
m−1[X −X(w0)] and obtain as before

|∇Z(w0)| ≤ κ(am)/R ≤ κ(aM)/R,

and this implies (8). �

Corollary 1. Suppose that X ∈ C2(BR(w0),RN ) is a solution of (1) in
BR(w0) satisfying

|X(w)| ≤M for w ∈ BR(w0)

and for some constant M with aM < 1. Then we have

(9) |∇X(w)| ≤ κ(aM)
M

ρ
for all w ∈ BR−ρ(w0), 0 < ρ < R.
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Proposition 2. Let X ∈ C0(BR(w0),RN ) ∩ C2(BR(w0),RN ) be a solution
of the differential inequality (1) in BR(w0), and suppose that |X(w)| ≤ M
holds for all w ∈ BR(w0) and for some number M with 2aM < 1. Moreover,
set x(w) := |X(w)|2, and let H ∈ C0(BR(w0),RN ) ∩ C2(BR(w0),RN ) and
h ∈ C0(BR(w0))∩C2(BR(w0)) be the solutions of the boundary value problems

(10) ΔH = 0 in BR(w0), H = X on ∂BR(w0),

(11) Δh = 0 in BR(w0), h = x on ∂BR(w0).

Then for any w ∈ BR(w0) and w∗ ∈ ∂BR(w0) we have the inequality

|X(w)−X(w∗)| ≤ a

2(1− 2aM)
|h(w)− h(w∗)|(12)

+
1− aM

1− 2aM
|H(w)−H(w∗)|.

Proof. Inequality (2) implies

|∇X|2 ≤ 1
2(1− aM)

Δx,

which in conjunction with

|ΔX| ≤ a|∇X|2

yields
|ΔX| ≤ a

2(1− aM)
Δx.

Pick some constant vector E ∈ R
N with |E| = 1 and consider the auxiliary

function z ∈ C0(BR(w0)) ∩ C2(BR(w0)) which is defined by

z(w) :=
a

2(1− aM)
[x(w)− h(w)] + 〈H(w)−X(w), E〉

and vanishes on ∂BR(w0). Because of

Δz =
a

2(1− aM)
Δx− 〈ΔX,E〉

≥ a

2(1− aM)
Δx− |ΔX| ≥ 0,

we see that z is subharmonic on BR(w0). Then the maximum principle yields

〈H −X,E〉 ≤ a

2(1− aM)
[h− x] on BR(w0)

for any unit vector E of R
N , and we conclude that
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(13) |H −X| ≤ a

2(1− aM)
[h− x]

holds on BR(w0). Moreover, the inequality |X(w)| ≤ M in conjunction with
the maximum principle gives

|H(w)| ≤M for all w ∈ BR(w0).

Then we obtain

h− x = (|H|2 − |X|2) + (h− |H|2)
≤ 2M(|H| − |X|) + (h− |H|2),

whence
|H −X| ≤ aM

1− aM
|H −X|+ a

2(1− aM)
(h− |H|2).

Since
0 < 1− aM

1− aM
=

1− 2aM
1− aM

< 1,

it follows that

(14) |H −X| ≤ a

2(1− 2aM)
(h− |H|2) on BR(w0).

For w∗ ∈ ∂BR(w0) we have

|X(w∗)|2 = x(w∗) = |H(w∗)|2 = h(w∗),

and therefore

|X(w)−X(w∗)| ≤ |X(w)−H(w)|+ |H(w)−H(w∗)|

≤ a

2(1− 2aM)
(h(w)− |H(w)|2) + |H(w)−H(w∗)|.

Because of

h(w)− |H(w)|2 = h(w)− h(w∗) + |H(w∗)|2 − |H(w)|2

≤ |h(w)− h(w∗)|+ 2M |H(w)−H(w∗)|,

we may now conclude that (12) holds for any w ∈ BR(w0) and for any w∗ ∈
∂BR(w0). �

Remark 1. Note that the differential inequality (1) remains invariant with
respect to conformal transformations of the parameter domain. Thus we can
carry over Proposition 2 from BR(w0) to any bounded domain Ω in C which
is of the conformal type of the disk and has a closed Jordan curve as its
boundary.
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Proposition 3. For any a ≥ 0, R > 0,M ≥ 0, and k ≥ 0 with 2aM < 1,
there is a number c = c(a,R,M, k) ≥ 0 having the following property:

Let X ∈ C0(BR(w0),RN )∩C2(BR(w0),RN ) be a solution of (1) in BR(w0)
satisfying |X(w)| ≤ M for all w ∈ BR(w0). Suppose also that the boundary
values X(ϕ) := X(w0 +Reiϕ) are of class C2(R) and satisfy |X ′ ′(ϕ)| ≤ k for
all ϕ ∈ R. Then we have

(15) |∇X(w)| ≤ c(a,R,M, k) for all w ∈ BR(w0).

Proof. It suffices to treat the case w0 = 0 and R = 1, that is, we consider the
parameter domain B = B1(0). Let w = reiθ, 0 < r < 1, be an arbitrary point
of B. By formula (8) of Proposition 1 we have

(16) |∇X(w)| ≤ c(a,M)
1− r

sup{|X(w′)−X(w)| : w′ ∈ B1−r(w)}.

Moreover, for w,w′ ∈ B and w∗ ∈ ∂B it follows from Proposition 2 that

|X(w)−X(w′)| ≤ |X(w)−X(w∗)|+ |X(w′)−X(w∗)|(17)

≤ a

2(1− 2aM)
{|h(w)− h(w∗)|+ |h(w′)− h(w∗)|}

+
1− aM

1− 2aM
[|H(w)−H(w∗)|+ |H(w′)−H(w∗)|]

holds true where H and h are harmonic in B and have the boundary values
X and x := |X|2 respectively on ∂B. By Lemma 5 of Section 2.1 we obtain
that

|∇H(w)| ≤ ck for all w ∈ B

whence
|H(w1)−H(w2)| ≤ ck|w1 − w2| for all w1, w2 ∈ B.

Therefore we have

(18) |H(w)−H(w∗)|+ |H(w′)−H(w∗)| ≤ 3ck(1− r)

for w = reiθ, w∗ = eiθ, w′ ∈ B1−r(w).
Furthermore, the boundary values η(ϕ) := |X(ϕ)|2 of x(eiϕ) satisfy η′ ′ =

2|X ′|2 + 2〈X,X ′ ′〉, hence

|η′ ′| ≤ 2|X ′|2 + 2|〈X,X ′ ′〉| ≤ 2|X ′|2 + 2Mk.

Let E ∈ R
N be a constant unit vector. Then we have

∫ 2π

0

〈E,X′(ϕ)〉 dϕ = 0.

Consequently, there is some ϕ0 ∈ [0, 2π] such that
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〈E,X′(ϕ0)〉 = 0

and therefore
〈E,X′(ϕ)〉 =

∫ ϕ

ϕ0

〈E,X′ ′(ϕ)〉 dϕ.

Hence we obtain

|〈E,X′(ϕ)〉| ≤ 2πk for all ϕ ∈ [0, 2π].

Since E can be chosen as an arbitrary vector of R
N , we conclude that

|X′(ϕ)| ≤ 2πk for all ϕ ∈ R,

and therefore
|η′ ′| ≤ 8π2k2 + 2Mk.

Then we infer from Lemma 5 of Section 2.1 that

|∇h(w)| ≤ c∗(1 + k2) for all w ∈ B

whence

|h(w1)− h(w2)| ≤ c∗(1 + k2)|w1 − w2| for all w1, w2 ∈ B

and consequently

(19) |h(w)− h(w∗)|+ |h(w′)− h(w∗)| ≤ 3c∗(1 + k2)(1− r)

for w = reiθ, w∗ = eiθ, w′ ∈ B1−r(w).
Combining (17), (18), and (19), we arrive at

|X(w)−X(w′)| ≤ c(a,M, k)(1− r) for w = reiθ, 0 < r < 1,
and w′ ∈ B1−r(w),

and this implies

|∇X(w)| ≤ c(a,M, k) for all w ∈ B,

taking (16) into account. �

Theorem 1. Suppose that the assumptions of Proposition 3 are satisfied.
Then X is of class C1,μ(BR(w0),RN ) for all μ ∈ (0, 1) and we have

(20) [∇X]μ,BR(w0)
≤ c(a,R,M, k, μ).

Proof. This result is an immediate consequence of Proposition 2 of Section 2.1
in conjunction with Proposition 3 that we have just proved. �

Now we come to the proof of the most important result with regard to the
next section.
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Theorem 2. For w0 ∈ ∂B, we introduce the set Sρ(w0) := B ∩ Bρ(w0).
Assume that, for some ρ ∈ (0, 1), X ∈ C0(Sρ(w0),RN )∩C2(Sρ(w0),RN ) is a
solution of the differential inequality (1) in Sρ(w0) that vanishes on ∂Sρ(w0)∩
∂B. Then we obtain X ∈ C1,μ(Sρ′ (w0),RN ) for every μ ∈ (0, 1) and every
ρ′ ∈ (0, ρ).

Proof. It suffices to show that for any w∗ = eiθ ∈ ∂Sρ(w0) ∩ ∂B there is a
δ > 0 such that X ∈ C1,μ(Sδ(w∗),RN ), where Sδ(w∗) denotes the circular
two-gon B ∩ Bδ(w∗). We may also assume that a > 0.

Thus, having fixed an arbitrary w∗ = eiθ ∈ ∂B ∩ ∂Sρ(w0), we first choose
an ε > 0 such that S3ε(w∗) ⊂ Sρ(w0) holds and that

sup{|X(w)| : w ∈ S3ε(w∗)} ≤ 1
4a
.

Then the mapping
Z(w) := 4aX, w ∈ S3ε(w∗),

satisfies the inequalities

|Z| ≤ 1 and |ΔZ| ≤ 1
4 |∇Z|2

in S3ε(w∗).
We now consider the functions H(w) and h(w) which are harmonic in

S3ε(w∗) and which have the boundary values X and |X|2 respectively on
∂S3ε. As h and H vanish on the circular arc

C := ∂B ∩ ∂S3ε(w∗)

we can extend h and H to harmonic functions in B3ε(w∗) by reflection at C,
applying Schwarz’s reflection principle. Hence there is a number c(ε) such that

|∇H(w)|+ |∇h(w)| ≤ c(ε) for all w ∈ B2ε(w∗)

whence

|H(w1)−H(w2)|+ |h(w1)− h(w2)| ≤ c(ε)|w1 − w2|(21)
for all w1, w2 ∈ B2ε(w∗).

Fix some w = reiϕ ∈ Sε(w∗). Then we have |w| = r > 1−ε and, for |w−w′| <
1− r, we have |w′ −w∗| ≤ |w′ −w|+ |w−w∗| < ε+ ε = 2ε, and consequently

B1−r(w) ⊂ S2ε(w∗) ⊂ S3ε(w∗) ⊂ Sρ(w0).

By Proposition 2 and the subsequent Remark 1 we obtain for Ω :=
S3ε(w∗), w′ ∈ Ω and eiϕ ∈ ∂B ∩ ∂S3ε(w∗) that

|Z(w′)| = |Z(w′)− Z(eiϕ)| ≤ 1
4 |h(w′)− h(eiϕ)|+ 3

2 |H(w′)−H(eiϕ)|.
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In connection with (21) we infer for any w′ ∈ B1−r(w) that

|Z(w′)| ≤ 7
4c(ε)|w′ − eiϕ| ≤ 7

2c(ε)(1− r) < 4c(ε)(1− r).

In other words, we have

sup {|Z(w′)| : w′ ∈ B1−r(w)} ≤ 4c(ε)(1− r)

for any w ∈ Sε(w∗) with |w| = r.
Moreover, we infer from Proposition 1, (8) that

|∇Z(w)| ≤ 2κ(1/4)
1− r

sup{|Z(w′)| : w′ ∈ B1−r(w)}

for any w ∈ Sε(w∗) with |w| = r.
This implies

|∇Z(w)| ≤ c∗(ε) for all w ∈ Sε(w∗).

Since X = 1
4aZ, we conclude that

|ΔX|0,Sε(w∗) ≤ const, and |∇X|0,Sε(w∗) ≤ const.

Now we choose a cut-off function η ∈ C∞
c (R2) with η(w) = 1 for w ∈

Bδ(w∗), δ := ε
2 , and with η(w) = 0 for |w − w∗| ≥ 3

4ε. Then the mapping
Y := ηX on Sε(w∗) satisfies

ΔY = ηΔX + 2∇η · ∇X +ΔηX

and therefore

|ΔY (w)| ≤ const for all w ∈ Sε(w∗),(22)

Y (w) = 0 on ∂Sε(w∗),(23)

Y (w) = 0 for all w ∈ Sε(w∗) with 3
4ε < |w − w∗| < ε.(24)

Consider a conformal mapping τ of the unit disk B onto the two-gon
Sε(w∗). We can extend τ to a homeomorphism of B onto Sε(w∗), and it can
be assumed that ζ = ±1 are mapped onto the two vertices of the two-gon.
By the reflection principle the mapping τ(ζ) is holomorphic on B \ {−1, 1}.
Then it follows from (22) and (24) that the mapping Y ∗(ζ) := Y (τ(ζ)) is of
class C0(B,RN ) ∩ C2(B,RN ) and satisfies

|ΔY ∗(ζ)| ≤ const for all ζ ∈ B.

Moreover, we infer from (23) that

Y ∗(ζ) = 0 for all ζ ∈ ∂B.

Thus we can apply Proposition 2 of Section 2.1 and obtain that Y ∗ ∈
C1,μ(B,RN ) for any μ ∈ (0, 1). It follows that Y ∈ C1,μ(Sε(w∗),RN ), and
therefore X ∈ C1,μ(Sδ(w∗),RN ) as Y (w) = X(w) for all w ∈ Sδ(w∗),
δ = ε

2 . �
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2.3 The Boundary Regularity of Minimal Surfaces Bounded
by Jordan Arcs

In this section we want to investigate the boundary behaviour of minimal
surfaces at smooth Jordan arcs. The results can be applied to minimal surfaces
bounded by one or several Jordan curves, to solutions of the partially free
boundary problem, and to solutions of the thread problem (see Chapters 1
and 5 as well as Vol. 3, Chapters 1, 2).

As all results are of local nature, it suffices to formulate them on simply
connected boundary domains, say, for minimal surfaces X : B → R

3 defined
on the unit disk B = {w ∈ C : |w| < 1}. The same results can be carried over
without any problem to minimal surfaces X : B → R

N , N ≥ 2. At the end of
this section we shall sketch analogous results for minimal surfaces X : B → M

in an n-dimensional Riemannian manifold M.
The main theorem of this section is the following result.

Theorem 1. Consider a minimal surface X : B → R
3 of class C0(B∪γ,R3)∩

C2(B,R3) which maps an open subarc γ of ∂B into an open Jordan arc Γ of
R

3 which is a regular curve of class Cm,μ for some integer m ≥ 1 and some
μ ∈ (0, 1). Then X is of class Cm,μ(B∪γ,R3). Moreover, if Γ is a regular real
analytic Jordan arc, then X can be extended as a minimal surface across γ.

In fact, we shall only prove a slightly weaker result. We want to show that
the statement of the theorem holds under the assumption Γ ∈ Cm,μ with
m ≥ 2 and 0 < μ < 1. It remains to verify that the assumption Γ ∈ C1,μ

implies X ∈ C1,μ(B∪γ,R3). This can be carried out by employing a reflection
method combined with refined potential-theoretic estimates. A version of this
reasoning was invented by W. Jäger [3]. Other methods to prove this initial
step can be found in Nitsche [16,20] and [28] (see Kapitel V, 2.1), Kinderlehrer
[1], and Warschawski [5].

It will turn out that the method to be described also covers the boundary
behaviour of surfaces of prescribed mean curvature at a smooth arc. Thus we
shall deal with this more general result.

Theorem 2. Let X ∈ C0(B∪γ,R3)∩C2(B,R3) be a solution of the equations

ΔX = 2H(X)Xu ∧Xv,(1)

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0(2)

in B which maps an open subarc γ = {eiθ : θ1 < θ < θ2} of ∂B into some open
regular Jordan arc Γ of R

3, i.e. X(w) ∈ Γ for all w ∈ γ. Then the following
holds:

(i) If H(w) := H(X(w)) is of class L∞(B), and if Γ ∈ C2, then we obtain
that X ∈ C1,μ(B ∪ γ,R3) for any μ ∈ (0, 1).

(ii) If H is of class C0,μ on R
3, and if Γ ∈ C2,μ, 0 < μ < 1, then X(w) is

of class C2,μ(B ∪ γ,R3).



2.3 The Boundary Regularity of Minimal Surfaces Bounded by Jordan Arcs 103

Proof. (i) It suffices to show that for any w0 ∈ γ there is some δ > 0 such
that X ∈ C1,μ(Sδ(w0),R3), 0 < μ < 1, provided that H(w) := H(X(w)) is
of class L∞(B) and that Γ ∈ C2. Here Sδ(w0) denotes as usual the two-gon
B ∩Bδ(w0).

Thus we fix some w0 ∈ γ. Without loss of generality we may assume that
X(w0) = 0. For sufficiently small ρ > 0 we can represent Γ ∩ Kρ(0) in the
form

(3) x1 = g1(t), x2 = g2(t), x3 = t, |t| < 2t0,

where the functions g1(t) and g2(t) are of class C2, and by a suitable motion
in R

3 we can arrange that

gk(0) = 0, ġk(0) = 0, k = 1, 2,(4)

choosing the parameter t appropriately.
We may also assume that w0 = 1 and that γ = {w ∈ ∂B : |w − 1| < R0}

for some R0 ∈ (0, 1). Choosing t0 > 0 and R ∈ (0, R0] sufficiently small we
can achieve that

|ġ1(t)|2 + |ġ2(t)|2 ≤ 1
8 for |t| < t0(5)

and

|x3(w)| < t0 for w ∈ SR(1).(6)

Consider the auxiliary function Y (w) = (y1(w), y2(w)) which is defined by

(7) yk(w) := xk(w)− gk(x3(w)), k = 1, 2, w ∈ SR(1),

where X(w) = (x1(w), x2(w), x3(w)). Clearly, we have Y ∈ C0(SR(1),R2) ∩
C2(SR(1),R2) and Y (w) = 0 for w ∈ ∂B∩∂SR(1). Moreover, we infer from (1)
and from the relations

(8) Δyk = Δxk − ġk(x3)Δx3 − g̈k(x3)|∇x3|2, k = 1, 2,

that

(8∗) |ΔY | ≤ α|∇X|2

holds for some constant α > 0.
In addition, we have

(9) xk
w = yk

w + ġk(x3)x3
w, k = 1, 2,

and therefore

|x1
w|2 + |x2

w|2 ≤ 2|y1
w|2 + 2|y2

w|2 + 2|x3
w|2

2∑
k=1

|ġk(x3)|2(10)

≤ 2|y1
w|2 + 2|y2

w|2 + 1
4 |x3

w|2
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since (5) and (6) imply
∑2

k=1 |ġk(x3)|2 ≤ 1
8 .

Now we write the conformality relations (2) as

(11) 0 = 〈Xw, Xw〉 = (x1
w)2 + (x2

w)2 + (x3
w)2

whence
|x3

w|2 ≤ |x1
w|2 + |x2

w|2

and therefore

(12) 1
2 |Xw|2 ≤ |x1

w|2 + |x2
w|2.

From (10) and (11) we infer

1
4 |Xw|2 ≤ 2|Yw|2

whence

(13) |∇X|2 ≤ 8|∇Y |2.

From (8∗) and (12) we derive the differential inequality

(14) |ΔY | ≤ 8α|∇Y |2 on SR(1),

and we know already that

(15) Y = 0 on ∂B ∩ ∂SR(1).

Thus we can apply Theorem 2 of Section 2.2 to Y : SR(1) → R
2, and we

obtain Y ∈ C1,μ(Sε(1),R2) for any ε ∈ (0, R) and any μ ∈ (0, 1).
Combining (9) and (11) it follows that

(16) 0 =
2∑

k=1

(yk
w)2 + 2

2∑
k=1

ġk(x3)yk
wx

3
w +

{
1 +

2∑
k=1

|ġk(x3)|2
}

(x3
w)2.

If we introduce

(17) pk(t) :=
ġk(t)
q(t)

, q(t) := 1 +
2∑

k=1

|ġk(t)|2,

this relation can be rewritten as

(18)

[
x3

w +
2∑

k=1

pk(x3)yk
w

]2
=

{
2∑

k=1

pk(x3)yk
w

}2

− 1
q(x3)

2∑
k=1

(yk
w)2.

As the right-hand side of (18) is continuous in Sε(1), it follows that [. . .] and
therefore also x3

w are continuous. Thus we arrive at X ∈ C1(Sε(1),R3) for
any ε ∈ (0, R).



2.3 The Boundary Regularity of Minimal Surfaces Bounded by Jordan Arcs 105

Multiplying (18) by −w2, we obtain

[
iwx3

w +
2∑

k=1

pk(x3)iwyk
w

]2
=

1
q(x3)

2∑
k=1

(wyk
w)2 −

{
2∑

k=1

pk(x3)wyk
w

}2

.(19)

Introducing polar coordinates r, ϕ with w = reiϕ, we find that

wxl
w = 1

2 (rxl
r − ixl

ϕ), wyk
w = 1

2 (ryk
r − iyk

ϕ)
(l = 1, 2, 3) (k = 1, 2).

For w ∈ γ′ := ∂B∩∂Sε(1), we infer from (15) that the right-hand side of (19)
is equal to

1
4
|q(x3)|−2

⎧⎨
⎩

2∑
k=1

q(x3)|yk
r |2 −

(
2∑

k=1

ġk(x3)yk
r

)2
⎫⎬
⎭

and this expression is real and nonnegative on account of (5) and (6). The
left-hand side of (19) is of the form

(a+ ib)2 = (a2 − b2) + 2iab

with

a :=
r

2

(
x3

ϕ +
2∑

k=1

pk(x3)yk
ϕ

)
, b :=

1
2

(
x3

r +
2∑

k=1

pk(x3)yk
r

)
.

From the relations
a2 − b2 ≥ 0 and ab = 0

we infer that b = 0, that is,

(20) x3
r +

2∑
k=1

pk(x3)yk
r = 0 on γ′.

Thus we have found:

(21) |Δx3|+ |∇x3| ≤ const on Sε(1),
∂

∂r
x3 ∈ C0,μ(γ′).

Now we choose a cut-off function η ∈ C∞
c which is rotationally symmetric

with respect to the pole w = 1 and satisfies η(w) = 1 for w ∈ Bδ(1), δ :=
ε
2 , η(w) = 0 for |w − 1| ≥ 3

4ε. Set

(22) y(w) := η(w)x3(w), w ∈ Sε(1).

We have yr = ηx3
r + ηrx

3, and therefore
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(23) yr ∈ C0,μ(γ′).

From the identity

Δy = ηΔx3 + x3Δη + 2∇η · ∇x3

and from (21) we infer that

(24) |Δy| ≤ const on Sε(1).

Finally we have

(25) y(w) = 0 for all w ∈ Sε(1) with 3
4ε < |w − 1| < ε.

Consider a conformal mapping τ of the unit disk B onto the two-gon Sε(1). We
can extend τ to a homeomorphism of B onto Sε(1), and it can be assumed that
ζ = ±1 are mapped onto the two vertices of the two-gon. By the reflection
principle the mapping τ(ζ) is holomorphic on B \ {−1, 1}. Then it follows
from (23) and (25) that the function y∗(ζ) := y(τ(ζ)), ζ ∈ B, is of class
C1(B) ∩ C2(B) and satisfies

|Δy∗| ≤ const on B,

∂y∗

∂r
∈ C0,μ(∂B);

here the radial derivative y∗
r is the normal derivative of y∗ on ∂B.

According to Section 2.1, Proposition 2, the solution p(ζ) of the boundary
value problem

Δp = Δy∗ in B, p = 0 on ∂B

is of class C1,μ(B) for any μ ∈ (0, 1). Hence h := y∗ − p is of class C1(B) ∩
C2(B), harmonic in B, and hr is of class C0,μ on ∂B. Therefore the conjugate
harmonic function h∗ with respect to h is of class C1(B) too, and the equation
hr = h∗

ϕ on ∂B implies that h∗|∂B is of class C1,μ. Applying the Korn–Privalov
theorem (see Section 2.1, Lemmata 6 and 7) we infer that h ∈ C1,μ(B),
and therefore also y∗ ∈ C1,μ(B). Returning to y = y∗ ◦ τ−1 it follows that
y ∈ C1,μ(Sε(1)). Since y(w) = x3(w) holds true for w ∈ Sδ(1), δ = ε

2 , we
finally arrive at x3 ∈ C1,μ(Sδ(1)), and therefore X ∈ C1,μ(Sδ(1),R3) for any
μ ∈ (0, 1). This concludes the proof of the first part of the theorem.

(ii) The initial step (i) is the crucial part of our investigation whereas the
further proof is essentially potential-theoretic routine. However, as our esti-
mates in Section 2.1 are not quite complete, we only want to indicate how
one can proceed. The reader should use the Schauder estimates (described for
example in Gilbarg and Trudinger [1]) to derive higher regularity by boot-
strapping.

Thus let us assume that H ∈ C0,μ(R3) and that Γ ∈ C2,μ for some
μ ∈ (0, 1). Then H(w) := H(X(w)) is of class C0,μ(B ∪ γ) and, using the
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notation of (i), the functions g1(t) and g2(t), |t| < 2t0, are of class C2,μ. On
account of (8) and (2) the mapping Y satisfies

ΔY = Q in SR(1),
(26)

Y = 0 on ∂B ∩ ∂SR(1)

with Q ∈ C0,μ(SR(1),R2).
Then a potential-theoretic reasoning yields Y ∈ C2,μ(Sε(1),R2) for 0 <

ε < R. Now we use the equations (cf. (1) and (20))

Δx3 = 2H(X)(x1
ux

2
v − x1

vx
2
u) in SR(1),

(27)

x3
r = −

2∑
k=1

pk(x3)yk
r on ∂B ∩ ∂SR(1)

to prove by a potential-theoretic argument that x3 ∈ C2,μ(Sε(1)) for 0 <
ε < R. We only have to note that p1(x3)y1

r + p2(x3)y2
r is of class C1,μ(γ′) for

γ′ = ∂B∩∂SR(1) because of the result for Y that we obtained before. By virtue
of (7) we then infer X ∈ C2,μ(Sε(1),R3), and therefore X ∈ C2,μ(B ∪ γ,R3).

�

Remark 1. Similarly one proves X ∈ Cm,μ(B ∪ γ,R3) as claimed in The-
orem 1 if Γ ∈ Cm,μ and H ∈ Cm−2,μ(R3). The proof is carried out by a
bootstrap reasoning, considering the boundary value problems alternatingly.
Since a similar idea is developed in detail in the following sections, we want
to omit the proof of higher boundary regularity of X except for proving an-
alyticity in the case that Γ is a real analytic, regular arc. This will be done
next for a minimal surface. We shall present H. Lewy’s regularity theorem.

In the following we shall suppose B to be the semidisk {w = u +
iv : |w| < 1, v > 0}, and I will denote the straight segment {u ∈ R : |u| < 1}
on the boundary of B.

Theorem 3. Let X ∈ C0(B ∪ I,R3)∩C2(B,R3) be a minimal surface which
maps I into a real-analytic and regular Jordan arc Γ in R

3. Then X can be
extended analytically across I as a minimal surface.

Proof. Let X∗(w) be an adjoint minimal surface to X(w) = (x1(w), x2(w),
x3(w)) which is assumed to satisfy ΔX = 0 and (2) in B, and let

(28) f(w) = X(w) + iX∗(w) = (f1(w), f2(w), f3(w))

be the holomorphic curve in C
3 with X = Re f and X∗ = Im f satisfying

(29) 〈f ′(w), f ′(w)〉 = 0.

By Theorem 2 we know already that X ∈ C2(B∪I,R3) holds true. We have to
show that for any u0 ∈ I there is some δ > 0 such that f(w) can be extended



108 2 The Boundary Behaviour of Minimal Surfaces

as a holomorphic curve from Sδ(u0) := B ∩ Bδ(u0) to Bδ(u0). Without loss
of generality we can assume that u0 = 0. Set Bδ := Bδ(0) and Sδ = Sδ(0) =
B ∩Bδ. As in the proof of Theorem 2 we can arrange for the following:

x1(0) = x2(0) = x3(0) = 0, i.e. X(0) = 0.

For sufficiently small ρ > 0, we can represent Γ ∩Kρ(0) in the form

(30) x1 = g1(t), x2 = g2(t), x3 = t, t ∈ I2R0

where Iδ := {t ∈ R : |t| < δ}, and g1(t) and g2(t) are real analytic functions
on I2R0 , R0 > 0. Hence, choosing R0 sufficiently small, we can assume that
g1(ζ) and g2(ζ) are holomorphic functions of ζ ∈ B2R0 ; hence

g(ζ) := (g1(ζ), g2(ζ), ζ), |ζ| < 2R0

is a holomorphic curve on B2R0 . In addition, we may (in accordance with
X(0) = 0) assume that

g1(0) = g2(0) = ġ1(0) = ġ2(0) = 0

and ∣∣∣∣dg
1

dζ
(ζ)
∣∣∣∣
2

+
∣∣∣∣dg

2

dζ
(ζ)
∣∣∣∣
2

≤ 1
2

for |ζ| < 2R0

are satisfied, and that

|f3(w)| < R0 holds for w ∈ SR,

where R is a sufficiently small positive number.
Consider now the holomorphic function

(31) F (w, ζ) :=
〈g′(ζ), f ′(w)〉
〈g′(ζ), g′(ζ)〉

of (w, ζ) ∈ SR ×BR0 , and note that F is of class C1 on SR ×BR0 (of course,
differentiability in the second statement is real differentiability).

We claim that the differential equation

(32) x3
u(u) = F (u, x3(u)) for u ∈ IR

holds true. In fact, the boundary condition X(I) ⊂ Γ together with the above
normalization implies that

(33) X(u) = g(x3(u)) for u ∈ IR,

hence

Xu(u) = g′(x3(u))x3
u(u) for u ∈ IR.(34)
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Therefore x3
u(u) = 0 for some u ∈ IR yields Xu(u) = 0, and (2) gives

Xv(u) = 0 or X∗
u(u) = 0 and consequently f ′(u) = 0; therefore we also

have F (u, x3(u)) = 0, and (32) is trivially satisfied. Thus we may now assume
that x3

u(u) �= 0. Because of (34) and (2), we obtain on IR:

x3
u〈g′(x3), f ′〉 = 〈g′(x3)x3

u, f
′〉 = 〈Xu, f

′〉
= 〈Xu, Xu + iX∗

u〉 = |Xu|2 − i〈Xu, Xv〉 = |Xu|2

= 〈g′(x3), g′(x3)〉(x3
u)2

whence

x3
u(u) =

〈g′(x3), f ′〉
〈g′(x3), g′(x3)〉 (u) = F (u, x3(u)),

and (32) is verified. Thus ζ(u) = x3(u) is a solution of the integral equation

(35) ζ(u) =
∫ u

0

F (u, ζ(u)) du.

It can easily be shown that there is some constant M > 0 such that

|F (w, ζ)− F (w, ζ ′)| ≤M |ζ − ζ ′|

holds for all w ∈ SR and ζ, ζ ′ ∈ BR0 . Then it follows from a standard fixed
point argument that there is a number δ ∈ (0, R) such that the integral
equation

(36) z(w) =
∫ w

0

F (w, z(w)) dw, w ∈ Sδ,

has exactly one solution z(w), w ∈ Sδ, in the Banach space A(Sδ) of functions
z : Sδ → C which are holomorphic in Sδ and continuous on Sδ. (As usual, the
proof of this fact can easily be carried out by Picard’s iteration method.3)
Similarly one sees that the real integral equation (35) has (for u ∈ Iδ) exactly
one solution ζ(u), u ∈ Iδ, whence we obtain ζ(u) = x3(u) and ζ(u) = z(u) for
|u| ≤ δ, that is,

(37) z(u) = x3(u) for u ∈ Iδ.

Consequently z(w) is real-valued on Iδ, and by Schwarz’s reflection principle
we can extend z(w) to a holomorphic function Bδ.

Now we consider the mapping φ : Sδ → C
3, defined by

(38) φ(w) := f(w)− g(z(w)),

which is continuous on Sδ, holomorphic in Sδ, and purely imaginary on Iδ,
since we have
3 The integral in (36) is a complex line integral independent of the path from 0 to w

within Sδ.
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φ(u) = f(u)− g(z(u)) = X(u) + iX∗(u)−X(u) = iX∗(u)(39)

on account of (33). Applying the reflection principle once again, we can extend
φ(w) to a holomorphic function on Bδ, and therefore also

(40) f(w) = φ(w) + g(z(w))

is extended to a holomorphic mapping on Bδ. �

We conclude this section by sketching the proof of a generalization of
Theorem 1, employing the method of the proof of Theorem 2.

Theorem 4. Let M be a Riemannian manifold of class C2, and let Γ be
an open regular Jordan arc in M which is of class C2. Moreover let X ∈
C2(B,M ), B = {w ∈ C : |w| < 1} be a minimal surface in M. Finally we
assume that γ is an open subarc of ∂B such that X ∈ C0(B ∪ γ,M ) and that
X(γ) ⊂ Γ . Then we have:

(i) X ∈ C1,μ(B ∪ γ,M ) for any μ ∈ (0, 1).
(ii) If M and Γ are of class Cm,μ,m ≥ 2, 0 < μ < 1, then X ∈ Cm,μ(B ∪

γ,M ).
(iii) If M and Γ are real analytic, then X is real analytic in B∪γ and can

be extended as a minimal surface across γ.

Proof. We shall sketch a proof of (i). The results of (ii) can be derived from
(i) by employing a bootstrap reasoning together with potential-theoretic es-
timates, as described in the proof of Theorem 2 and in Remark 1. The proof
of (iii) now follows from a general theorem by Morrey [8] (cf. Theorem 6.8.2,
pp. 278–279). We refer the reader to Hildebrandt [3], p. 80, for an indication
how Morrey’s result can be used to prove (iii). Another proof (in the spirit of
H. Lewy) can be obtained by the method of F. Müller [1–3].

Let us now turn to step (i). We fix some point w0 ∈ γ. Then there is
some R > 0 such that X maps SR(w0) := B ∩BR(w0) into some coordinate
patch on the manifold M since X is continuous on B ∪ γ. Introducing local
coordinates (x1, x2, . . . , xn) on this patch, we can represent X in the form

X(w) = (x1(w), x2(w), . . . , xn(w)) for w ∈ SR(w0)

with X ∈ C0(SR(w0) ∪ γ,Rn) ∩ C1(SR(w0),Rn).
Suppose that the line element ds of M on the patch is given by

(41) ds2 = gkl(x) dxk dxl,

where repeated Latin indices are to be summed from 1 to n, and let

(42) Γ l
jk = 1

2g
rl(gjr,k + grk,j − gjk,r)

be the Christoffel symbols corresponding to gkl, where (grl) = (gjk)−1. Then
we have the equations
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Δxl + Γ l
jk(X){xj

ux
k
u + xj

vx
k
v} = 0, 1 ≤ l ≤ n,(43)

and

gkl(X)xk
ux

l
u = gkl(X)xk

vx
l
v, gkl(X)xk

ux
l
v = 0.(44)

(Equations (43) replace the equations Δxl = 0 holding in the Euclidean
case, and equations (44) are the Riemannian substitute of the conformality
relations (2).)

Without loss of generality we may assume that w0 = 1, and we set SR :=
SR(1), 0 < R < 1, and γ′ = ∂B∩∂SR. We can also assume that the coordinate
patch containing X(SR) is described by {x ∈ R

n : |x| < 1} and that X(1) = 0.
Furthermore, we can assume that Γ in {|x| < 1} is described by x1 = x2 =
· · · = xn−1 = 0, and that gkl ∈ C1, gkl(0) = δkl. Thus we have

|X(w)| < 1 for w ∈ SR

and

xα(w) = 0 for α = 1, . . . , n− 1 and w ∈ γ′.

We write (44) as
gkl(X)xk

wx
l
w = 0, w ∈ SR,

which can be transformed into

(45)
(
xn

w +
gαn(X)
gnn(X)

xα
w

)2

=
(
gαn(X)
gnn(X)

xα
w

)2

− gαβ(X)
gnn(X)

xα
wx

β
w

(summation with respect to repeated Greek indices is supposed to run from
1 to n− 1).

The definiteness of the matrix (gkl) implies

m1 ≤ gnn(x) and |gkl(x)| ≤ m2 for |x| < 1

where m1 and m2 denote two positive constants. Then we obtain from (45)
that there is some constant m3 > 0 such that

|∇xn|2 ≤ m3

n−1∑
α=1

|∇xα|2 on SR.

As in the proof of Theorem 1 we infer from (43) and (45) that the mapping

Y (w) := (x1(w), x2(w), . . . , xn−1(w))

is of class C0(SR) ∩ C2(SR) and satisfies the relations

|ΔY | ≤ m4|∇Y |2 on SR,
(46)

Y = 0 on γ′.
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Now we proceed as in the proof of Theorem 2. In fact, from (46) we infer that
Y ∈ C1,ν(Sε) for any ν ∈ (0, 1) and ε ∈ (0, R), whence (45) implies that xn

w

is of class C0(Sε). Therefore we obtain X ∈ C1(Sε).
Moreover, from (45) and (462) it follows that

(
iwxn

w +
gαn

gnn
iwxα

w

)2

=
{
i

2

(
xn

r +
gαn

gnn
xα

r

)
+

1
2

(
xn

ϕ +
gαn

gnn
xα

ϕ

)}2

=
gαβ

gnn
(wxα

w)(wxβ
w)−

(
gαn

gnn
wxα

w

)2

≥ 0

on γ′ ′ := γ′ ∩ ∂Sε (cf. the computations leading to (20)). Hence we have

(47) xn
r (eiϕ) = −gαn(0, . . . , 0, xn(eiϕ))

gnn(0, . . . , 0, xn(eiϕ))
xα

r (eiϕ) on γ′ ′.

Setting

p = −Γn
kl(X){xk

ux
l
u + xk

vx
l
v},(48)

it follows that

Δxn = p in Sε, xn
r = f on γ′ ′,(49)

where xn is of class C1 on Sε, of class C2 on Sε, p ∈ L∞(Sε), f ∈ C0,ν(γ′ ′).
Then a potential-theoretic reasoning yields xn ∈ C1,ν(Sε′ ) for 0 < ε′ < ε and
therefore X ∈ C1,ν(Sε′ ).

Alternating between (49) and

(50) ΔY = Q in Sε, Y = 0 on γ′ ′,

where
Qα := −Γα

kl(X)(xk
ux

l
u + xk

vx
l
v),

we obtain higher regularity of X at the boundary part γ. This completes the
sketch of the proof. �

2.4 The Boundary Behaviour of Minimal Surfaces at Their
Free Boundary: A Survey of the Results and an Outline
of Their Proofs

The boundary behaviour of minimal surfaces with free boundaries is some-
what more difficult to treat than that of solutions of Plateau’s problem. In
fact, Courant [9,15] has exhibited a number of examples indicating that the
trace of a minimal surface with a free boundary on a continuous support sur-
face S need not be continuous. One of his examples even shows that the trace
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curve can be unbounded although S is smooth (but not compact). Unfortu-
nately Courant’s examples are not rigorous as their construction is based on a
heuristic principle, the bridge theorem, which has not yet been established for
solutions of free boundary problems, and therefore we shall describe Courant’s
idea only in the Scholia. However, one of Courant’s constructions is not based
on the bridge theorem and has been made perfectly rigorous by Cheung [1].

We consider here a modification of Cheung’s example. The supporting
surface S (see Fig. 1) in our example will be defined as follows. Let us define
sets B1, B2, C,E±, G and curves γ±, β± by

B1 := {(x, y, z) : x = 0,−1 ≤ y ≤ 1,−3 ≤ z ≤ 0},
B2 := {(x, y, z) : x = 0,−1 ≤ y ≤ 1,−5 ≤ z ≤ −3},
C := {(x, y, z) : z = 0, x ≥ 0,−e−x ≤ y ≤ e−x},

E± := {(x, y, z) : x ≥ 0, y = ±1,−5 ≤ z ≤ −3},
G := {(x, y, z) : x ≥ 0,−1 ≤ y ≤ 1, z = −5},
γ± := {(x, y, 0) : x ≥ 0, y = ±e−x},
β± := {(x, y,−3) : x ≥ 0, y = ±1}.

Now we connect each point (x,±e−x, 0) on γ± by straight segments with the
corresponding point (x,±1,−3) on β±, thus obtaining two ruled surfaces F±.

Fig. 1. A noncompact, Lipschitz continuous, nonclosed supporting surface S which satisfies

no chord-arc condition. The configuration 〈Γ, S〉 bounds an unbounded minimal surface of

the type of the disk
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Let
S1 : = E+ ∪ E− ∪ F+ ∪ F− ∪G

and denote by S∗
1 the reflection of S1 at the plane {x = 0}. Then we define

S := S1 ∪ S∗
1

and

Γ := {(x, y, z) : x = 0, z = 0,−1 ≤ y ≤ 1}.

Claim. Every solution Y ∈ C(Γ, S) of the corresponding free boundary prob-
lem P(Γ, S) has an unbounded trace on S; in particular Y is discontinuous
along the interval I.

In fact, suppose that Y ∈ C(Γ, S) is a solution of P(Γ, S) which is continu-
ous on B ∪ I. Then the trace Y (I) is compact and has to pass G continuously
as Y (I) ⊂ S. By a projection argument we infer that the area of the part of
Y (B) below the plane {z = −3} is greater than or equal to the area of B2

which is 4, and thus it is larger than the area of C which is 2. Thus each so-
lution Y of P(Γ, S) must have a discontinuous trace Y |I . In fact, Y |I cannot
be contained in the subregion SR := KR(0) ∩ S for any R > 0. (Otherwise,
by Theorem 2 of Section 2.5, we would obtain Y ∈ C0,μ(B,R3) for some
μ > 0.) Hence it follows that the trace Y |I is unbounded, and a projection
argument shows that Y has to be a parametrization of C or of its reflection
C∗ at {x = 0}. In other words, if there is a solution Y of P(Γ, S), it will
be given either by C or by C∗. As the existence theory of Vol. 1, Chapter 4
yields the existence of a solution of P(Γ, S), we infer that C and C∗ are the
two solutions of P(Γ, S) and that there is no other solution of this minimum
problem.

By reflecting S at the plane {z = 0} we can extend it to a Lipschitz contin-
uous noncompact surface S̃ without boundary. Furthermore, by rounding off
the edges of S and of S̃, we can even construct examples of smooth supporting
surfaces, with or without boundary, having the desired property that there is
no solution Y ∈ C0(B ∪ I,R3) of the minimum problem P(Γ, S).

Thus we have an example of a boundary configuration 〈Γ, S〉 consisting of
a smooth arc Γ and a smooth support surface S for which the minima of area
in C(Γ, S) have a discontinuous (and even unbounded) trace on S. However,
the reader will note that the surface S in the Courant example does not satisfy
a uniform extrinsic Lipschitz condition in R

3, i.e., the quotient of the distance
of two points on S divided by their air distance is unbounded. We say that S
does not satisfy a chord-arc condition (the precise definition of this condition
will be given in Section 2.5).

Surprisingly, the chord-arc condition suffices to enforce that all minima of
a free or partially free boundary problem have a continuous free trace. In fact,
we shall prove:
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(i) Suppose that X minimizes Dirichlet’s integral in the class C(Γ, S) and
that D(X) > 0. Assume also that the support surface S satisfies a chord-arc
condition. Then X is of class C0,μ(B ∪ I,R3) for some μ ∈ (0, 1).

This result is the main statement of Theorem 1 in Section 2.5. The proof
is based on an adaptation of Morrey’s idea to compare any minimizer locally
with a suitable harmonic mapping. To make this idea effective one constructs
such a mapping by exploiting the chord-arc condition in order to set up its
boundary values on S.

Several variants of the assertion (i) are given in Theorems 2–4 of Sec-
tion 2.5. In particular, Theorem 4 of Section 2.5 provides a regularity theo-
rem analogous to (i), holding for minimizers of a completely free boundary
problem.

In Section 2.6 we shall prove regularity of stationary points of Dirichlet’s
integral at their free boundaries. At present it is not known whether the free
trace Σ of any such surface X is a continuous curve provided that the support
surface S satisfies merely a chord-arc condition. However, assuming that S is
of class C2 we obtain the desired result. More precisely, we have:

(ii) Let S be an admissible support surface of class C2, and suppose that
X is a stationary point of Dirichlet’s integral in the class C(Γ, S). Then there
is some α ∈ (0, 1) such that X ∈ C0,α(B ∪ I,R3).

This result is the content of Theorem 2 in Section 2.6; a similar statement
can be obtained for solutions of completely free boundary problems (cf. Sec-
tion 2.6, Remark 2).

The proof of (ii) is quite different from that of (i). Whereas in (i) we shall
proceed by deriving a priori estimates for X, the approach in (ii) is indirect.
Using the finiteness of Dirichlet integral of X we shall first derive suitable
monotonicity results for functionals that are closely related to Dirichlet’s in-
tegral. Combining these results we shall infer that X has to be continuous on
B ∪ I if D(X) <∞.

Once the boundary values X|I are shown to be continuous, we can apply
suitable techniques from the theory of nonlinear elliptic equations to obtain
X ∈ C0,α(B ∪ I,R3), α ∈ (0, 1). For instance, Widman’s hole-filling method
(cf. Lemma 5 in Section 2.6) yields a direct way to this result; the details are
carried out in the proof of Theorem 2 in Section 2.6.

Note that in all these cases the support surface S may have a nonempty
boundary. If ∂S is void, we can say much more on the free trace Σ =
{X(w) : w ∈ I} of X on S. Roughly speaking Σ will turn out to be as good
as the support surface S. We shall, in fact, obtain:

(iii) Let S be an admissible support surface with ∂S = ∅ which is of class
Cm,β ,m ≥ 3, β ∈ (0, 1). Then any stationary point X of Dirichlet’s integral
in C(Γ, S) is of class Cm,β(B ∪ I,R3). If S is real analytic, then X is real
analytic on B ∪ I and can be continued analytically across I.
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This result is formulated in Theorems 1 and 2 of Section 2.8. Starting
from (ii), we shall first verify that X is contained in C1(B ∪ I,R3). This can
either be achieved by transforming the boundary problem for X locally into
an interior regularity question for some weak solution Z of an elliptic system

ΔZ = F (w)|∇Z|2,

which is derived by a reflection argument, and then applying Tomi’s regularity
theorem, or by playing the full regularity machinery for nonlinear elliptic
boundary value problems. The first possibility is sketched in Remark 1 of
Section 2.8, whereas the second approach is discussed in Section 2.7 in great
detail and in a wider context (see in particular Theorem 4 of Section 2.7).

Having proved that X is of class C1(B ∪ I,R3), we use classical results
from potential theory to derive X ∈ Cm,β(B ∪ I,R3) by employing a suit-
able bootstrap argument. The reader can find this reasoning in the proof of
Proposition 1 in Section 2.8.

In Theorem 2 of Section 2.8 we show that X can be continued analytically
across its free boundary if the support surface S is real analytic. To this end,
we set up a Volterra integral equation

Z(w) =
∫ w

0

F (ω,Z(ω)) dω

which has exactly one solution Z in the space A(Sδ) of mappings Z : Sδ → C
3

which are continuous on Sδ and holomorphic in Sδ := {w : |w| < δ < 1,
Imw > 0}, and F is constructed in such a way that

Z(u) = X(u) for u ∈ R with |u| < δ

(assuming a suitable normalization of X).
Let X∗ be an adjoint surface of X and f = X + iX∗. Then both f and

g := f − Z are of class A(Sδ), and we have

ImZ = 0 and Re g = 0 on Iδ.

By Schwarz’s reflection principle, we can continue both Z and g across Iδ as
holomorphic functions, whence also f = g + Z and X = Re f are continued
analytically across Iδ.

This approach to analyticity at the boundary, due to H. Lewy, is by far
the easiest, but it cannot be carried over to H-surfaces or to minimal surfaces
in a Riemannian manifold as it uses the holomorphic function f = X + iX∗.
This tool is, however, not available in those other cases. Here one can apply a
general regularity theorem due to Morrey [5] (cf. also Morrey and Nirenberg
[1] and Morrey [8]), or the work of Frank Müller which extends Lewy’s method
to more general situations.

Let us now turn to the case when the support surface S has a nonempty
boundary. Then we shall establish the following result (cf. Section 2.7, Theo-
rem 1):
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(iv) Let S be an admissible support surface of class C4 (by definition,
this implies ∂S ∈ C4; cf. Section 2.6, Definitions 1 and 2). Moreover, let X
be a stationary point of Dirichlet’s integral in C(Γ, S). Then X is of class
C1,1/2(B ∪ I,R3).

According to Remark 1 in Section 1.8 of Vol. 3, this is the best possible
result which can, in general, be expected. This follows from the asymptotic
expansions (1) and (2) in Section 2.10 around points u1 and u2 on I where the
free trace X|I of X on S lifts off the boundary ∂S of the support surface S. We
could interpret (iv) as a regularity result for a Signorini problem (or else for
a thin obstacle problem). The proof of (iv) will be carried out in three steps.
First, by applying Nirenberg’s difference quotient technique, we shall derive
L2-estimates for the second derivatives ∇2X up to the free boundary. For
this purpose we need the Hölder continuity of X on B ∪ I, established in (ii),
as well as an important calculus inequality due to Morrey (cf. Section 2.7,
Lemma 2) which implies that the Morrey seminorm is reproducible.

As a second step it will be shown that X is of class C1(B∪I,R3). This fol-
lows from Lp-estimates for solutions of the Poisson equation. In order to apply
these estimates we introduce suitable local coordinates {U, g} on S such that
the boundary conditions for Y (w) = (y1(w), y2(w), y3(w)) = g(X(w)) become
uncoupled. For y2 we derive a Neumann condition and for y3 a Dirichlet con-
dition. Then we apply the Lp-estimates to y2 and y3, thus obtaining Hölder
continuity of ∇y2 and ∇y3 up to the free boundary. Finally, the continuity of
y1 up to the free boundary will be derived from the conformality relations.

As a third step we devise an iteration scheme, which allows us to attain
X ∈ C1,1/2(B ∪ I,R3), by exploiting once again the conformality relations.

The use of Lp-estimates can be circumvented by a method which is devel-
oped in Section 2.9. Here one derives directly that ∇2X satisfies a Dirichlet
growth condition (i.e., has a finite Morrey seminorm) up to the free bound-
ary by alternatively applying one of two possible Poincaré inequalities. This
method is nothing but a skilful improvement of the estimates derived in step 1.

Note that the regularity results (i)–(iv) are not directly meaningful for
differential geometry, as the free boundary I may contain branch points. This
can, at least partially, be remedied in the following way. First, by applying a
technique due to Hartman and Wintner, we show that, for every branch point
w0 ∈ I, we have an asymptotic expansion

Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0

with some ν ∈ N and A ∈ C
3, A �= 0, 〈A,A〉 = 0.

This implies that there exists a limit tangent plane of X as w → w0 with
the normal N0 = limw→w0 N(w), where

N(w) = |Xu|−2(Xu ∧Xv),

and that the oriented tangent

t(u) := |Xu(u)|−1Xv(u) as u→ w0 = u0 ∈ I
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of the free trace X|I is either continuous or jumps by 180 degrees; the first
case occurs if the order ν of the branch point w0 = u0 ∈ I is even, the second
case, if ν is odd.

Hence, if ν is even, the representation x(s) of the trace Σ = X|I with
respect to its arc length

s =
∫ u

u0

|Xu(u)| du

is of class C1, and therefore the trace Σ can be viewed as a regular C1-curve
in the neighbourhood of x0 := X(u0). If ν is odd, then Σ has a cusp at x0,
and only the unoriented tangent is continuous at x0.

We sketch the derivation of this result in Section 2.10; the details of the
Hartman–Wintner technique are given in Chapter 3. In the first two chapters
of Vol. 3 we shall study cases where boundary branch points can entirely be
excluded.

Most of our results will be stated and proved merely for stationary points
of Dirichlet’s integral in C(Γ, S), that is, for solutions of a partially free
boundary problem. Similar results hold mutatis mutandis for minimal surfaces
with completely free boundaries, or for minimal surfaces of higher topologi-
cal type spanned in a general boundary configuration 〈Γ1, . . . , Γl, S1, . . . , Sm〉,
and their proofs can be carried out in essentially the same way. In fact, the
considerations in Sections 2.7–2.10 are strictly local and require only changes
in notation, and the reasoning of Sections 2.5 and 2.6 can be adjusted without
major difficulties. We leave it as an exercise to the reader to carry out the
details.

2.5 Hölder Continuity for Minima

Courant’s examples indicate that one cannot expect a solution of a free or
a semifree boundary problem to be regular at its free boundary, even if the
support surface S is of class C∞. On the other hand, we shall see that a
minimal surface is continuous up to its free boundary if it is minimizing and
if S satisfies a kind of uniform (local) Lipschitz condition. Such a condition
on S will be called a chord-arc condition.

Definition. A set S in R
3 is said to fulfil a chord-arc condition with constants

M and δ,M ≥ 1 and δ > 0, if it is closed and if any two points P and Q of
S whose distance |P −Q| is less than or equal to δ can be connected in S by
a rectifiable arc Γ ∗ whose length L(Γ ∗) satisfies

L(Γ ∗) ≤M |P −Q|.

For example, every compact regular C1-surface S without boundary sat-
isfies a chord-arc condition, and the same holds true if the boundary ∂S is
nonempty but smooth.
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Let us first deal with the semifree problem. We now denote by B the
parameter domain

B = {w = u+ iv : |w| < 1, v > 0}

the boundary of which consists of the circular arc

C = {w = u+ iv : |w| = 1, v ≥ 0}

and of the interval
I = {u ∈ R : |u| < 1}

on the real axis.
Consider a boundary configuration 〈Γ, S〉 consisting of a closed set S in R

3

satisfying a chord-arc condition and of a Jordan curve Γ in R
3 whose endpoints

P1 and P2 lie on S, P1 �= P2. As in Section 4.6 of Vol. 1 we define the class of
admissible surfaces for the semifree problem as the set C(Γ, S) of mappings
X ∈ H1

2 (B,R3) satisfying
(i) X(w) ∈ S H1-a.e. on I;
(ii) X : C → Γ is a continuous, weakly monotonic mapping of C onto Γ

such that X(1) = P1, X(−1) = P2.
Let us also introduce the sets

Zd := {w ∈ B : |w| < 1− d} = {w ∈ B : dist(w,C) > d}, (0 < d < 1),
Sr(w0) := B ∩Br(w0).

Then we can prove:

Theorem 1. Suppose that X ∈ C(Γ, S) minimizes the Dirichlet integral D(X)
within the class C(Γ, S), and let e = e(Γ, S) := inf{D(Y ) : Y ∈ C(Γ, S)} be
positive. Moreover, assume that S satisfies a chord-arc condition with con-
stants M and δ. Then, for any d ∈ (0, 1), and w0 ∈ Zd, and for any r > 0,
we have

(1)
∫

Sr(w0)

|∇X|2 du dv ≤
(

2r
d

)2μ ∫
B

|∇X|2 du dv,

where

μ := min {(1 +M2)−1, δ2/(2eπ)}.(2)

It follows that X is of class C0,μ(Zd,R
3) and that

(3) [X]μ,Zd
≤ c(μ)(1− d)−μ

√
D(X) = c(μ)(1− d)−μ

√
e(Γ, S)

holds true for some constant c(μ) > 0.
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Proof. Let X be a minimizer of the Dirichlet integral in C(Γ, S). Then X is
harmonic in B, satisfies the conformality relations

(4) |Xu| = |Xv|, 〈Xu, Xv〉 = 0,

and
D(X) = e.

For any point w0 ∈ B we define

(5) Φ(r, w0) :=
∫

Sr(w0)

|∇X|2 du dv.

We begin by proving that for any d ∈ (0, 1) and for any w0 ∈ I with |w0| ≤ 1−d
the inequality

(6) Φ(r, w0) ≤ (r/d)2μΦ(d, w0)

holds true for all r ∈ (0, d]. To this end we fix w0 ∈ I with |w0| ≤ 1 − d
and set Br := Br(w0), Sr := Sr(w0), and Φ(r) := Φ(r, w0). Introducing polar
coordinates ρ, θ around w0 by w = w0 + ρeiθ and writing somewhat sloppily

X(w) = X(w0 + ρeiθ) = X(ρ, θ),

we obtain

(7) Φ(r) =
∫ r

0

∫ π

0

{|Xρ(ρ, θ)|2 + ρ−2|Xθ(ρ, θ)|2}ρ dθ dρ.

From (4) we infer

|Xρ|2 = ρ−2|Xθ|2, 〈Xρ, Xθ〉 = 0,(8)

hence

Φ(r) = 2
∫ r

0

ρ−1

∫ π

0

|Xθ(ρ, θ)|2 dθ dρ.(9)

There is a set N ⊂ [0, d] of 1-dimensional measure zero such that

(10)
∫ π

0

|Xθ(r, θ)|2 dθ <∞ for r ∈ (0, d) \N

and that the absolutely continuous function Φ(r) is differentiable at the values
r ∈ (0, d) \N and satisfies

(11) Φ′(r) = 2r−1

∫ π

0

|Xθ(r, θ)|2 dθ.

We can therefore assume that, for r ∈ (0, d) \ N, the function X(r, θ) is an
absolutely continuous function of θ ∈ [0, π]; in particular, the limits
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Q1(r) := lim
θ→π−0

X(r, θ), Q2(r) := lim
θ→+0

X(r, θ)

exist for r ∈ (0, d) \N.
Consider now any r ∈ (0, d) \N for which

(12)
∫ π

0

|Xθ(r, θ)|2 dθ ≤ π−1δ2

holds true. Then we infer from

(13) |Q1(r)−Q2(r)| ≤
∫ π

0

|Xθ(r, θ)| dθ ≤
√
π

{∫ π

0

|Xθ(r, θ)|2 dθ
}1/2

the inequality
|Q1(r)−Q2(r)| ≤ δ.

Since S satisfies a chord-arc condition with constants M and δ, there exists a
rectifiable arc

Γ ∗ = {ξ(s) : 0 ≤ s ≤ l∗}
of length l∗ = L(Γ ∗) on S which connects the points Q1(r) and Q2(r), and
whose length L(Γ ∗) satisfies

(14) l∗ = L(Γ ∗) ≤M |Q1(r)−Q2(r)|.

We assume s to be chosen as parameter of the arc length on Γ ∗. Then it follows
that |ξ′(s)| = 1 a.e. on [0, l∗]. Introducing the reparametrization ζ(θ), π ≤ θ ≤
2π, of Γ ∗ which is defined by

ζ(θ) := ξ(π−1(θ − π)l∗),

we obtain
|ζθ(θ)| = const = l∗/π a.e. on [π, 2π]

and

l∗ =
∫ 2π

π

|ζθ| dθ;

therefore also

(15) π

∫ 2π

π

|ζθ|2 dθ =
(∫ 2π

π

|ζθ| dθ
)2

= l∗2.

From (13)–(15) we conclude that

(16)
∫ 2π

π

|ζθ|2 dθ ≤M2

∫ π

0

|Xθ(r, θ)|2 dθ.

Consider now the harmonic vector function H(w) in Br whose boundary
values η(θ) = H(w0 + reiθ) are defined by
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η(θ) :=

{
X(r, θ) 0 ≤ θ ≤ π

for
ζ(θ) π ≤ θ ≤ 2π

.

Because of (16), we have

(17)
∫ 2π

0

|ηθ|2 dθ ≤ (1 +M2)
∫ π

0

|Xθ(r, θ)|2 dθ.

Expanding H and ζ in Fourier series we obtain

H(w) =
1
2
A0 +

∞∑
n=1

(ρ
r

)n

(An cosnθ +Bn sinnθ)

and

η(θ) =
1
2
A0 +

∞∑
n=1

(An cosnθ +Bn sinnθ).

From these expressions, we derive

∫
Br

|∇H|2 du dv = π

∞∑
n=1

n(|An|2 + |Bn|2),

∫ 2π

0

|ηθ|2 dθ = π

∞∑
n=1

n2(|An|2 + |Bn|2),

and therefore
∫

Br

|∇H|2 du dv ≤
∫ 2π

0

|ηθ|2 dθ.(18)

Relations (11), (17) and (18) imply that

(19)
∫

Br

|∇H|2 du dv ≤ 1
2
(1 +M2)rΦ′(r).

Next we consider the mapping Y (w) on B ∪Br which is defined as

Y (w) :=

{
H(w) w ∈ Br

for
X(w) w ∈ B \Br

.

Clearly Y is continuous and of class H1
2 on B ∪Br. Let τ be the homeomor-

phism of B onto B ∪Br which maps B conformally onto B ∪Br, keeping the
points 1,−1, i fixed. Then the mapping Z := Y ◦ τ is contained in C(Γ, S),
and the minimum property of X implies

∫
B

|∇X|2 du dv ≤
∫

B

|∇Z|2 du dv.
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On account of the conformal invariance of the Dirichlet integral we have
∫

B

|∇X|2 du dv ≤
∫

B∪Br

|∇Y |2 du dv,

and the definition of Y now implies

(20)
∫

Sr

|∇X|2 du dv ≤
∫

Br

|∇H|2 du dv.

By virtue of (5), (19), and (20) we obtain the relation

(21) Φ(r) ≤ 1
2 (1 +M2)rΦ′(r)

for every r ∈ (0, d) \N satisfying equation (12).
On the other hand, if the equation

∫ π

0

|Xθ(r, θ)|2 dθ > π−1δ2

holds for some r ∈ (0, d) \N, then we trivially have

Φ(r) ≤ 2D(X) = 2e < 2eπδ−2

∫ π

0

|Xθ(r, θ)|2 dθ,

and the identity (11) yields

(22) Φ(r) ≤ πeδ−2rΦ′(r).

Defining the number μ ∈ (0, 1) as in (2), it follows that

(23) 2μΦ(r) ≤ rΦ′(r) for all r in (0, d) \N,

and an integration yields

Φ(r) ≤ (r/d)2μΦ(d) for all r ∈ [0, d].

Thus we have established (6) for any d ∈ (0, 1), w0 ∈ I with |w0| < 1− d, and
r ∈ [0, d].

Consider any w0 with |w0| ≤ 1 − R and Imw0 ≥ R for some R ∈ (0, 1).
Then we have Br(w0) ⊂ B for any r ∈ (0, R), and analogously to (18) we
obtain

∫
Br(w0)

|∇X|2 du dv ≤
∫ 2π

0

|Xθ(r, θ)|2 dθ

for almost all r ∈ (0, R). By (5) and (11) we therefore infer

Φ(r, w0) ≤
1
2
r
d

dr
Φ(r, w0)



124 2 The Boundary Behaviour of Minimal Surfaces

for a.a. r ∈ (0, R), and an integration yields

(24) Φ(r, w0) ≤ (r/R)2Φ(R,w0) for all r ∈ [0, R].

Finally we fix some d ∈ (0, 1) and choose an arbitrary point w0 ∈ Zd =
B∩{|w| ≤ 1−d}. Set u0 = Rew0 and v0 = Imw0. We distinguish three cases:

(i) v0 ≥ d/2.
Choosing R = d/2 we infer from (24) that

(25) Φ(r, w0) ≤ (2r/d)2
∫

B

|∇X|2 du dv for 0 ≤ r ≤ d/2

holds true.

(ii) 0 ≤ v0 ≤ d/2 and v0 ≤ r ≤ d/2.
Then we have Br(w0) ⊂ B2r(u0), and it follows that

Φ(r, w0) ≤ Φ(2r, u0).

Applying (6) we have also

Φ(2r, u0) ≤ (2r/d)2μΦ(d, u0),

and therefore

Φ(r, w0) ≤ (2r/d)2μ

∫
B

|∇X|2 du dv.(26)

In particular we have

(27) Φ(v0, w0) ≤ (2v0/d)2μ

∫
B

|∇X|2 du dv for any v0 ∈ [0, d/2].

(iii) 0 ≤ v0 ≤ d/2 and 0 ≤ r ≤ v0.
Applying (24) to the case R = v0 we obtain

Φ(r, w0) ≤ (r/v0)2Φ(v0, w0).

Combining this inequality with (27) it follows that

Φ(r, w0) ≤ (r/v0)2(2v0/d)2μ

∫
B

|∇X|2 du dv(28)

≤ (2r/d)2μ

∫
B

|∇X|2 du dv.

On account of (25), (26) and (28) inequality (1) holds true for any r ∈
[0, d/2], and for r > d/2 estimate (1) is satisfied for trivial reasons. The bound
(3) and X ∈ C0,μ(Zd,R

3) now follow from Morrey’s Dirichlet growth theorem
(see Morrey [8], p. 79). �
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Remark. Note that the assumptions of Theorem 1 do not require S to be a
regular surface. In fact, S is allowed to degenerate to a rectifiable arc. Thus
several variants of Theorem 1 can be proved. For instance we get:

Theorem 2. Suppose that S∪Γ satisfies a chord-arc condition with constants
M and δ, and let X ∈ C(Γ, S) be a minimizer of the Dirichlet integral in the
class C(Γ, S), that is, a solution of the minimum problem P(Γ, S) considered in
Section 4.6 of Vol. 1, which satisfies D(X) > 0. Then X is of class C0,μ(B,R3)
for some μ ∈ (0, 1).

Fixing a third point P3 ∈ Γ and requiring X(i) = P3 we can even derive
an a priori estimate for [X]μ,B analogous to (3).

In particular, the chord-arc condition for S ∪ Γ implies the Hölder conti-
nuity of any minimizer X in the corners w = ±1 which are mapped by X on
the points P1 and P2 where the arc Γ is attached to S.

If we consider minimal surfaces bounded by a preassigned closed Jordan
curve Γ of finite length, we can even drop the minimizing property of X since
we then can avoid the detour via the comparison surface Z = Y ◦ τ obtained
from X and H. Instead we derive an inequality of the type (21) directly
by applying the isoperimetric inequality to the part X|Sr(w0) of the minimal
surfaces. Leaving a detailed discussion to the reader we just formulate the
final result:

Fig. 1.

Theorem 3. Let Γ be a closed rectifiable Jordan arc in R
3 of the length L(Γ )

satisfying a chord-arc condition with constants M and δ. Denote by F(Γ ) a
family of minimal surfaces Y ∈ C(Γ ) bounded by Γ which maps three fixed
points on C = ∂B onto three fixed points on Γ . Then there exists a number
R > 0 such that for all X ∈ F(Γ ) we have

(29)
∫

Sr(w0)

|∇X|2 du dv ≤ (r/R)2μD(X) for all r > 0

with the exponent μ = (1 +M)−2, and
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(30) [X]0+μ,B ≤ cL(Γ ),

where the constant c only depends on M, δ and on the chosen three-point
condition of the family F(Γ ).4

Similar results hold for solutions of minimum problems with a completely
free boundary, i.e., for the minimizers of the Dirichlet integral within one of
the classes C(σ, S),C+(S), and C(Π,S) introduced in Sections 1.1 and 1.2. As
in Chapter 1 we now choose the parameter domain B as the unit disk in C,

B = {w ∈ C : |w| < 1},

and
C = ∂B = {w ∈ C : |w| = 1}.

Moreover, we set

Sr(w0) := B ∩Br(w0), Cr(w0) := B ∩ ∂Br(w0).

Theorem 4. Let S be a closed, nonempty, proper subset of R
3 satisfying a

chord-arc condition with constants M, δ. Moreover assume that for some μ > 0
the inclusion S → Tμ of S in Tμ induces a bijection of the corresponding
homotopy classes: π̃1(S) ↔ π̃1(Tμ).5 Finally, suppose that C denotes one of the
classes C(σ, S),C+(S),C(Π,S). Then for every minimizer X of the Dirichlet
integral in the class C there is a constant c such that

(31)
∫

Sr(w0)

|∇X|2 du dv ≤ cr2ν

holds for any w0 ∈ B and any r > 0, where

(32) ν = (1 +M2)−1.

In particular, we have X ∈ C0,ν(B,R3) and

lim
w→w0

dist(X(w), S) = 0 for all w0 ∈ ∂B.(33)

Sketch of the proof. Set δ0 := 1
4πμ

2; this constant is nothing but the number δ
which appears in Theorem 2 of Section 1.1. Then there is a number R0 ∈ (0, 1)
such that

(34)
∫

Ω0

|∇X|2 du dv < δ0

holds true for the annular domain Ω0 := {w ∈ C : 1−R0 < |w| < 1}.
For any point w0 ∈ B we define

4 See Hildebrandt [3], pp. 55–59, for a sketch of the proof.
5 This is Assumption (A) of Section 1.1.



2.5 Hölder Continuity for Minima 127

(35) Φ(r) = Φ(r, w0) =
∫

Sr(w0)

|∇X|2 du dv.

Introducing polar coordinates ρ, θ around w0 by w = w0 + ρeiθ and writing
X(w) = X(w0 + ρeiθ) = X(ρ, θ), we obtain analogously to (9) that

(35′) Φ(r) = 2
∫ r

0

∫ θ2(ρ)

θ1(ρ)

ρ−1|Xθ(ρ, θ)|2 dθ dρ

holds for two angles θ1, θ2 with 0 ≤ θ2(ρ) − θ1(ρ) ≤ 2π. Consequently the
absolutely continuous function Φ(r) satisfies

(36)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ = 1
2rΦ

′(r)

for all r ∈ (0,∞) \N where N is a one-dimensional null set.
Let w0 ∈ C and consider some positive number β which will be specified

later. Moreover, let r ∈ (0, R0) \N.

Case 1. ∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ ≥ π−1β2.

Then we obtain the trivial inequality

(37) Φ(r) ≤ 2πβ−2D(X)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ = πβ−2D(X)rΦ′(r).

Case 2. ∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ < π−1β2.

Then for any two points P := X(r, θ) and P ′ := X(r, θ′) on X(Cr(w0)) we
have

|P ′ − P | ≤
∫ θ′

θ

|Xθ(r, θ)| dθ ≤ |θ′ − θ|1/2

{∫ θ′

θ

|Xθ(r, θ)|2 dθ
}1/2

whence

(38) |P ′ − P | ≤
∫ θ′

θ

|Xθ(r, θ)| dθ ≤ β.

In particular, this estimate holds true for the two endpoints Q1(r) and Q2(r)
of the arc X : Cr(w0) → R

3 which lie on S. Choosing β less than or equal to
δ (M and δ being the constants of the chord-arc condition of S), we have
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|Q1(r)−Q2(r)| ≤ δ.

Thus there is a rectifiable arc Γ ∗ = {ξ(s) : 0 ≤ s ≤ l∗} of length l∗ = L(Γ ∗)
which connects the points Q1(r) and Q2(r), and whose length satisfies

(39) l∗ = L(Γ ∗) < M |Q1(r)−Q2(r)|.

Consider now the harmonic vector function H(w) in Br = Br(w0), the bound-
ary values η(θ) = H(w0 + reiθ) of which are defined by

η(θ) :=

⎧⎪⎨
⎪⎩
X(r, θ) θ1(r) ≤ θ ≤ θ2(r)

for
ζ(θ) θ ∈ [0, 2π] \ [θ1(r), θ2(θ)]

where ζ(θ) is a suitable reparametrization of Γ ∗ proportional to the arc length.
Then analogously to (19) we obtain

(40)
∫

Br

|∇H|2 du dv ≤ 1
2
(1 +M2)rΦ′(r).

We now define the mapping Y (w) on B ∪Br by

Y (w) :=

⎧⎪⎨
⎪⎩
H(w) w ∈ Br

for
X(w) w ∈ B \Br

and set
Z := Y ◦ τ,

where τ is a homeomorphism of B onto B ∪Br which maps B conformally
onto B ∪Br.

Claim. The mapping Z is an admissible comparison surface, i.e. Z ∈ C, if
we choose β as

β := min{δ, μ, [(1 +M2)−1πδ0]1/2}.(41)

Then analogously to (21) we arrive at

(42) Φ(r) ≤ 1
2 (1 +M2)rΦ′(r).

Combining the discussion of the cases 1 and 2 we infer from (37) and (40)
that

Φ(r) ≤ 1
2crΦ

′(r) a.e. on (0, R0),(43)

where
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c := max{1 +M2, 2πβ−2D(X)}.(44)

Now we can proceed as in the proof of Theorem 1, and we obtain the Dirichlet
growth condition (31) with ν = 1/c. As this implies X ∈ C0,ν(B,R3), we can
repeat the previous discussion in such a way that case 1 becomes void. For
this purpose we only have to choose R0 > 0 so small that

|Q1(r)−Q2(r)| < δ for r ∈ (0, R0) \N.

Then we obtain condition (31) with the desired exponent ν = (1 +M2)−1.
It remains to verify the claim.
First of all we choose a radius ρ ∈ (0, 1) so close to 1 that the closed curve

Z : ∂Bρ(0) → R
3 is completely contained in Tμ/2 and represents the boundary

class [Z|∂B ]. We shall show that this curve is homotopic in Tμ to some curve
X : ∂Bρ′ (0) → R

3 which represents the boundary class of X.
Let Q1(r) = X(w1), Q2(r) = X(w2), w1, w2 ∈ ∂B. Since τ is a confor-

mal mapping of B onto B ∪ Br(w0), the tangent of the curve C̃r(w0) :=
τ−1(Cr(w0)) tends to a limit as w tends along Cr(w0) to one of the endpoints
w1 and w2 of Cr(w0), and this limit is different from the tangent of ∂B. This
can either be seen by an explicit computation of τ or from a general theorem
of the theory of conformal mappings (cf. Carathéodory [4], p. 91). Therefore
the above number ρ can be selected in such a way that ∂Bρ(0) intersects
C̃r(w0) in exactly two points z3 and z4, and that the curve τ(∂Bρ(0)) is com-
pletely contained in Ωε := Br(w0) ∪ B \B1−ε(0) where ε is chosen to satisfy
0 < ε < r ≤ R0. Because of (34), it follows that

2DΩε(X) < δ0.(45)

Fig. 2. This sketch illustrates the proof that the comparison surface used in the regularity

proof is admissible
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We can find a number ρ′ ∈ (1− ε, 1) such that the trace of the curve

X : ∂Bρ′ (0) → R
3

is completely contained in Tμ/2 and represents the boundary class [X|∂B] ofX.
We can also achieve that ∂Bρ′ (0) \Br(w0) lies between ∂B and τ(C∗

1 ), where
C∗

1 denotes that part of ∂Bρ(0) which is mapped by τ into B \ Br(w0). Set
C∗

2 := ∂Bρ(0) \ C∗
1 . Moreover, note that the curve X : Cr(w0) → R

3 remains
completely in Tμ/2 since its endpoints lie on S and its length is less than or
equal to β (cf. (38)), and β ≤ μ on account of (41).

Finally we infer from (36) and (40) that
∫

Br(w0)

|∇Y |2 du dv ≤ (1 +M2)
∫ θ2(r)

θ1(r)

|Xθ(r, θ)|2 dθ,

and the right-hand side of this inequality is bounded from above by

(1 +M2)π−1β2.

By virtue of (41) we arrive at

(46)
∫

Br(w0)

|∇Y |2 du dv ≤ δ0.

We infer from (34), (45) and (46) as well as from Theorem 2 of Section 1.1
that all curves to be considered in the following are contained in Tμ/2, and
that we obtain the following homotopies (!). Here C ′

r will denote the subarc
of Cr(w0) which connects the intersection points w3 and w4 of Cr(w0) with
τ(∂Bρ(0)):

X|∂Bρ′ (0) ! X|∂Bρ′ (0)\Br(w0) ·X|Cr(w0)∩Bρ′ (0)

! X|τ(C∗
1 ) ·X|C′

r

! Y ◦ τ |C∗
1
· Y |C′

r

! Y ◦ τ |C∗
1
· Y ◦ τ |C∗

2
= Z|∂Bρ(0).

This completes the proof of the claim and thus of the theorem. �

Remark. An Inspection of the proof of Theorem 4 shows that the constant
c in (31) will depend on the number R0 which in turn depends on X. Hence
(31) does not yield an a priori estimate of the Morrey seminorm or of the
Hölder seminorm of X.

2.6 Hölder Continuity for Stationary Surfaces

In the previous section we have proved that minimizers of the Dirichlet inte-
gral in various classes of admissible surfaces corresponding to free boundary
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problems are Hölder continuous up to their free boundary. The proof has
made essential use of the minimum property of the solution of the free bound-
ary problem. In case of partially free problems we have even derived a priori
estimates for the Hölder seminorm up to the free boundary. Now we want
to establish Hölder continuity of stationary minimal surfaces up to the free
boundary. However, we shall have to use a completely different approach in
this case as we are not able to derive a priori estimates for the Hölder semi-
norm or even for the modulus of continuity. In fact, such estimates do not
exist, as an inspection of the Schwarz examples discussed in Section 1.9 will
show. Consider, for instance, the boundary configuration 〈Γ, S〉 depicted in
Fig. 1 which consists of a cylinder surface S and of a polygon Γ with its
endpoints on S. For this particular configuration the corresponding semi-free
boundary problem possesses infinitely many stationary solutions, all of which
are simply connected parts of helicoids, and it is fairly obvious that there is
neither an upper bound for their areas (Dirichlet integrals), nor for the length
of their free traces, nor for their moduli of continuity.

For this reason we shall not approach the regularity problem by deriving
estimates. Instead we want to use an indirect reasoning, first proving continu-
ity up to the boundary by a contradiction argument. We shall constrain our
attention to stationary surfaces in the class C(Γ, S) defined for semi-free prob-
lems. Similar results can be obtained for stationary solutions of completely
free problems without any essential alterations.

We begin by defining Assumption (B) and the notion of admissible support
surfaces.

Fig. 1. The stationary solutions of the boundary value problem for the configuration 〈Γ, S〉
cannot be estimated a priori

Definition 1. An admissible support surface S of class Cm,m ≥ 2, (or of
class Cm,β with 0 < β ≤ 1) is a two-dimensional manifold of class Cm (or of
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class Cm,β) embedded in R
3, with or without boundary, which has the following

two properties:
(i) The boundary ∂S of the manifold S is a regular one-dimensional sub-

manifold of class Cm (or Cm,β) which can be empty.
(ii) Assumption (B) is fulfilled.

Assumption (B), a uniformity condition at infinity, is defined next. We
write x = (x1, x2, x3), y = (y1, y2, y3), . . . for points x, y, . . . in R

3.

Definition 2. A support surface S is said to fulfil Assumption (B) if the
following holds true: For each x0 ∈ S there exist a neighbourhood U of x0 in
R

3 and a C2-diffeomorphism h of R
3 onto itself such that h and its inverse

g = h−1 satisfy:
(i) The inverse g maps U onto some open ball BR(0) = {y ∈ R

3 : |y| < R}
such that g(x0) = 0; 0 < R < 1.

(ii) If ∂S is empty, then

g(S ∩ U) = {y ∈ BR(0) : y3 = 0}.

If ∂S is nonvoid, then there exists some number σ = σ(x0) ∈ [−1, 0] such that

g(S ∩ U) = {y ∈ BR(0) : y3 = 0, y1 ≥ σ},
g(∂S ∩ U) = {y ∈ BR(0) : y3 = 0, y1 = σ}

holds true. If x0 ∈ ∂S, then σ = 0, and σ ≤ −R if ∂S ∩ U is empty.
(iii) There are numbers m1 and m2 with 0 < m1 ≤ m2 such that the

components
gik(y) = hl

yi(y)hl
yk(y)

of the fundamental tensor of R
3 with respect to the curvilinear coordinates y

satisfies
m1|ξ|2 ≤ gik(y)ξiξk ≤ m2|ξ|2 for all y, ξ ∈ R

3.

(iv) There exists a number K > 0 such that
∣∣∣∣∂gik

∂yl
(y)
∣∣∣∣ ≤ K

is satisfied on R
3 for i, k, l = 1, 2, 3.

We call the pair {U, g} an admissible boundary coordinate system
centered at x0.

Let us recall the standard notation used for semifree problems and for the
definition of C(Γ, S): The parameter domain B is the semidisk

B = {w = u+ iv : |w| < 1, v > 0},

the boundary of which consists of the circular arc
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C = {w = u+ iv : |w| = 1, v ≥ 0}

and of the segment
I = {w ∈ R : |w| < 1}.

Moreover, we set

Zd = {w = u+ iv : |w| < 1− d, v > 0}, d ∈ (0, 1),

Sr(w0) = B ∩Br(w0), Ir(w0) = I ∩Br(w0),

Cr(w0) = B ∩ ∂Br(w0).

Next we introduce some terminology with respect to a fixed admissible
boundary coordinate system {U, g}. Given a minimal surface X : B → R

3, we
use the diffeomorphism g : R

3 → R
3 to define a new mapping Y ∈ C3(B,R3)

by

(1) Y (u, v) := g(X(u, v)),

whence also

(1′) X(u, v) = h(Y (u, v)).

In other words, we have

Y = g ◦X and X = h ◦ Y.

Quite often we use the following normalization:

(2)

⎧⎪⎨
⎪⎩

Let w0 ∈ I, and set x0 := X(w0). Suppose that {U, g} is an
admissible boundary coordinate system for S centered at x0.
Then Y (w0) = 0.

In case of this normalization, the following holds true:

(2′)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Let Ω be a subset of B such that X(Ω) ⊂ U. Then we have

|Y (w)| < R. If w0 ∈ I, d = 1− |w0|, r < d, X ∈ C0(Sr(w0),R3),
and X : Ir(w0) → S, then we have y3(w) = 0 for w ∈ Ir(w0).
If ∂S is nonempty and x0 ∈ ∂S, then we have y1(w) ≥ σ

for all w ∈ Ir(w0).

For any Z = (z1, z2, z3) ∈ H1
2 (Ω,R3), Ω ⊂ C, we define the transformed

Dirichlet integral (or: energy functional) EΩ(Z) by

(3) EΩ(Z) :=
1
2

∫
Ω

gik (Z)[zi
uz

k
u + zi

vz
k
v ] du dv
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and we set

(3′) E(Z) := EB(Z).

We note that

(4) EΩ(Z) = DΩ(h ◦ Z) for all Z ∈ H1
2 (Ω,R3),

whence, by (1′),

(5) EΩ(Y ) = DΩ(X), E(Y ) = D(X).

For every φ = (ϕ1, ϕ2, ϕ3) ∈ H1
2 ∩ L∞(B,R3) and for Xε := h(Y + εφ) we

have
lim

ε→+0

1
ε
{E(Y + εφ)− E(Y )} = lim

ε→+0

1
ε
{D(Xε)−D(X)}.

The left-hand side is equal to the first variation δE(Y, φ) of E at Y in direction
of φ, and a straightforward computation yields

δE(Y, φ) =
∫

B

gik (Y ){yi
uϕ

k
u + yi

vϕ
k
v} du dv(6)

+
∫

B

1
2
gik ,l(Y ){yi

uy
k
u + yi

vy
k
v}ϕl du dv

while the right-hand side tends to

(7) δD(X,Ψ0) =
∫

B

〈∇X,∇Ψ0〉 du dv, Ψ0 := hy(Y )φ

because of

X = h(Y ), Xε = h(Y + εφ) = h(Y ) + εΨ(·, ε) = X + εΨ(·, ε)

with
Ψ0 := Ψ(·, 0) = lim

ε→0

1
ε
{Xε −X} = hy(Y )φ.

Thus we have

δE(Y, φ) = δD(X,Ψ0).(8)

Now we can reformulate the conditions which define stationary points X of
the Dirichlet integral in terms of the transformed surfaces Y = g(X). Recall
Definition 2 in Section 1.4:

If X is a stationary point of Dirichlet’s integral in C(Γ, S) and if Xε = X+
εΨ(·, ε) is an outer variation (type II) of X with Xε ∈ C(Γ, S) for 0 ≤ ε < ε0,
we have

lim
ε→+0

1
ε
{D(Xε)−D(X)} =

∫
B

〈∇X,∇Ψ0〉 du dv ≥ 0
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for Ψ0 := Ψ(·, 0), and this is equivalent to

(9) δE(Y, φ) ≥ 0.

This holds true in particular for every φ ∈ C∞
c (B,R3) and thus we have both

δE(Y, φ) ≥ 0 and δE(Y,−φ) ≥ 0

whence

(10) δE(Y, φ) = 0 for all φ ∈ C∞
c (B,R3).

An integration by parts yields

−
∫

B

gil(Y ){yi
uϕ

l
u + yi

vϕ
l
v} du dv

=
∫

B

[gil(Y )∇yiϕl + gil,k (Y )(yi
uy

k
u + yi

vy
k
v )ϕl] du dv

for any φ ∈ C∞
c (B,R3), and we infer from (6) and (10) that

∫
B

[gil(Y )Δyi + {gil,k (Y )− 1
2gik ,l(Y )}(yi

uy
k
u + yi

vy
k
v )]ϕl du dv = 0(11)

for allφ ∈ C∞
c (B,R3).

Then the fundamental lemma of the calculus of variations yields

(12) gil(Y )Δyi + {gil,k (Y )− 1
2gik ,l(Y )}(yi

uy
k
u + yi

vy
k
v ) = 0.

Introducing the Christoffel symbols of the first kind,

Γilk = 1
2{glk ,i − gik ,l + gil,k}

we can rewrite (12) in the form

(13) gik (Y )Δyi + Γilk (Y )(yi
uy

k
u + yi

vy
k
v ) = 0

using the symmetry relation Γilk = Γkli , and this implies

(14) Δyl + Γ l
jk (Y )(yj

uy
k
u + yj

vy
k
v ) = 0, l = 1, 2, 3,

if, as usual, Γ l
jk = glmΓjmk and (glm) = (gjk )−1. As one can reverse the

previous computations, we have found:

The equation ΔX = 0 is equivalent to the system (14).

Moreover, we infer by a straight-forward computation from (1′) and from
gik = hl

yihl
yk :

The conformality relations
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|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

are equivalent to

(15) gjk (Y )yj
uy

k
u = gjk (Y )yj

vy
k
v , gjk (Y )yj

uy
k
v = 0.

The advantage of the new coordinate representation Y (w) over the old
representation X(w) is that we have transformed the nonlinear boundary
condition X(I) ⊂ S into linear conditions as described in (2′). We pay, how-
ever, by having to replace the linear Euler equation ΔX = 0 by the nonlinear
system (14). The variational inequality (9) will be the key to all regularity re-
sults. Together with the conformality relations (15) it expresses the fact that
X = h ◦ Y is a stationary point of the Dirichlet integral in the class C(Γ, S).
(Here Γ can even be empty if X is a stationary point for a completely free
boundary configuration; however, to have a clear-cut situation, we restrict our
attention to partially free problems.)

The two main steps of this section are:
(i) First we prove continuity in B ∪ I, that is, up to the free boundary I,

using an indirect reasoning. The corresponding result will be formulated as
Theorem 1.

(ii) In the second step we establish Hölder continuity on B ∪ I employing
the hole-filling technique. The corresponding result is stated as Theorem 2.

Let us begin with the first step by formulating

Theorem 1. Let S be an admissible support surface of class C2, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then X(w) is continuous on B ∪ I.

The proof of this result will be based on four lemmata which we are now
going to discuss.

Lemma 1. Let X : B → R
3 be a minimal surface. For any point w∗ ∈ B we

introduce x∗ := X(w∗) and the set

Kρ(x∗) := {w ∈ B : |X(w)− x∗| < ρ}.

Then, for each open subset Ω of B with w∗ ∈ Ω, we obtain

lim sup
ρ→+0

1
πρ2

∫
Ω∩Kρ(x∗)

|∇X|2 du dv ≥ 2.

Proof. Fix some w∗ ∈ B and some Ω in B with w∗ ∈ Ω. We can assume that
x∗ = X(w∗) = 0. Then we introduce the set

Uρ := {w : w = w∗ + teiθ, t ≥ 0, θ ∈ R, |X(w∗ + reiθ)| < ρ for all r ∈ [0, t]}.

Clearly Uρ is an open set with w∗ ∈ Uρ, and we have
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Uρ � Ω for 0 < ρ� 1

and therefore
Uρ � Ω ∩Kρ(x∗) for 0 < ρ� 1.

Hence it suffices to prove

lim sup
ρ→+0

1
πρ2

∫
Uρ

|∇X|2 du dv ≥ 2.

This relation is, however, an immediate consequence of Proposition 2 in Sec-
tion 3.2 of Vol. 1. �

Lemma 2. For each X ∈ C1(B,R3), every w0 ∈ I, and each ρ ∈ (0, 1−|w0|),
there is a number r with ρ/2 ≤ r ≤ ρ such that

oscCr(w0)X ≤ (π/log 2)1/2

{∫
Sρ(w0)

|∇X|2 du dv
}1/2

.

Proof. Let us introduce polar coordinates r, θ about w0 setting w = w0 + reiθ

and X(r, θ) = X(w). Then, for 0 ≤ θ1 ≤ θ2 ≤ π, we obtain

|X(r, θ2)−X(r, θ1)| ≤
∫ θ2

θ1

|Xθ(r, θ)| dθ ≤
√
πp(r)

where we have set
p(r) :=

∫ π

0

|Xθ(r, θ)|2 dθ.

If ρ/2 ≤ r ≤ ρ, it follows that
∫ ρ

ρ/2

p(r)
dr
r
≤
∫

Sρ(w0)

|∇X|2 du dv.

Consequently, there is a number r ∈ [ρ/2, ρ] such that
(∫ ρ

ρ/2

dt
r

)
p(r) ≤

∫
Sρ(w0)

|∇X|2 du dv

or
p(r) ≤ 1

log 2

∫
Sρ(w0)

|∇X|2 du dv,

and the assertion is proved. �

Lemma 3. Let w0 ∈ I, r ∈ (0, 1 − |w0|), and X ∈ C1(B,R3). Assume also
that there are positive numbers α1 and α2 such that

oscCr(w0)X ≤ α1
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and
sup

w∗ ∈Sr(w0)

inf
w∈Cr(w0)

|X(w)−X(w∗)| ≤ α2.

Then we obtain
oscSr(w0)X ≤ 2α1 + 2α2.

Fig. 2. A domain used in Lemma 3

Proof. Let w ∈ Sr(w0) and w′, w′ ′ ∈ Cr(w0). Then we infer from

|X(w)−X(w′)| ≤ |X(w)−X(w′ ′)|+ |X(w′ ′)−X(w′)|

that

|X(w)−X(w′)| ≤ inf
w′ ′ ∈Cr(w0)

|X(w)−X(w′ ′)|+ oscCr(w0)X.

Thus we have

|X(w)−X(w′)| ≤ α1 + α2 for all w ∈ Sr(w0) and w′ ∈ Cr(w0).

This yields for arbitrary w1, w2 ∈ Sr(w0) and w′ ∈ Cr(w0) the inequalities

|X(w1)−X(w2)| ≤ |X(w1)−X(w′)|+ |X(w2)−X(w′)| ≤ 2α1 + 2α2,

and the assertion is proved. �

Lemma 4. Let X be a stationary point of Dirichlet’s integral in the class
C(Γ, S). Suppose also that the support surface S is of class C2, and let
R,K,m1,m2 be the constants appearing in Assumption (B) that is to be satis-
fied by S. Then, for R1 := R

√
m2 and for some number c > 0 depending only

on R,K,m1,m2, we have: If for some r ∈ (0, 1− |w0|) and for some number
R2 ∈ (0, R1) the inequality

[∫
Sr(w0)

|∇X|2 du dv
]1/2

< R2/c

holds true, then it follows that

sup
w∗ ∈Sr(w0)

inf
w∈Cr(w0)

|X(w)−X(w∗)| ≤ R2.
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Before we come to the proof of Lemma 4 which is the main result in
step 1 of our discussion, let us turn to the Proof of Theorem 1. Since∫

B
|∇X|2 du dv <∞, we have

lim
r→+0

∫
Sr(w0)

|∇X|2 du dv = 0

for every w0 ∈ I. Then Lemmata 2, 3, and 4 immediately imply that

lim
r→0

oscSr(w0)X = 0

for w0 ∈ I. In conjunction with X ∈ C0(B,R3) we then infer that X is
continuous on B ∪ I. �

Proof of Lemma 4. Let w0 ∈ I and 0 < r < 1− |w0|. Then we have to prove
the following statement:

There is a number c = c(R,K,m1,m2) with the property that for any R2

with 0 < R2 < R1 and for any w∗ ∈ Sr(w0) with

(16) inf
w∈Cr(w0)

|X(w)−X(w∗)| > R2

the inequality

(17) R2 ≤ c

[∫
Sr(w0)

|∇X|2 du dv
]1/2

holds true.
Thus let us consider some w∗ ∈ Sr(w0), w0 ∈ I, 0 < r < 1− |w0|, and set

x∗ := X(w∗), δ(x∗) := dist(x∗, S).

We shall distinguish between two cases, δ(x∗) > 0 and δ(x∗) = 0.

Case (i): δ(x∗) > 0.
Then we proceed as follows: Choose some function λ ∈ C1(R) with λ′ ≥ 0

and with λ(t) = 0 for t ≤ 0, and introduce the real valued function

ϕ(ρ) :=
1
2

∫
Sr(w0)

λ(ρ− |X − x∗|)|∇X|2 du dv,

for 0 < ρ < min{δ(x∗), d2R2}, where R2 is some number with 0 < R2 < R1 :=
R
√
m2, and where we have set

d :=
1
2

√
m1

m2
, 0 < d ≤ 1/2.

Define a test function η(w) as
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η(w) :=

{
λ(ρ− |X(w)− x∗|)[X(w)− x∗] for w ∈ Sr(w0),

0 for w ∈ B \ Sr(w0).

We use η to define a family {Xε}0≤ε<ε0 of outer variations

Xε(w) := X(w)− εη(w).

On account of
|X(w)− x∗| ≥ R2 > ρ for w ∈ Cr(w0)

we find that Xε is of class H1
2 (B,R3). Furthermore, we obtain

Xε(w) = X(w) for w ∈ B \ Sr(w0).

Hence X and Xε have the same boundary values on C. Moreover, for L1-
almost all w ∈ I, we have X(w) ∈ S and therefore |X(w) − x∗| ≥ δ(x∗)
whence ρ − |X(w) − x∗| < 0. This implies η(w) = 0 for L1-a.a. w ∈ I.
Consequently we obtain Xε ∈ C(Γ, S) for 0 ≤ ε < ε0 and for any ε0 > 0. As
η ∈ H1

2 ∩L∞(B,R3), we conclude that Xε is an admissible variation of type II
in the sense of Definition 2, Section 1.4. By Section 1.4, (3) and (7), it follows
that ∫

Sr(w0)

〈∇X,∇η〉 du dv ≤ 0

(in fact, even the equality sign holds true since we are allowed to take ε ∈
(−ε0, ε0)), and therefore

∫
Sr(w0)

|∇X|2λ(ρ− |X(w)− x∗|) du dv

≤
∫

Sr(w0)

λ′(ρ− |X − x∗|)|X − x∗|−1

· {〈Xu, X − x∗〉2 + 〈Xv, X − x∗〉2} du dv.

By virtue of the conformality relations

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

we have
{. . .} ≤ 1

2 |∇X|2|X − x∗|2,

and the factor 1/2 will be essential for the following reasoning.
It follows that

∫
Sr(w0)

|∇X|2λ(ρ− |X − x∗|) du dv(18)

− 1
2

∫
Sr(w0)

λ′(ρ− |X − x∗|)|∇X|2|X − x∗| du dv ≤ 0.
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Since
λ′(ρ− |X − x∗|) = 0 if |X − x∗| ≥ ρ

it follows that

|X − x∗|λ′(ρ− |X − x∗|) ≤ ρλ′(ρ− |X − x∗|),

and (18) yields

(18′) 2ϕ(ρ)− ρϕ′(ρ) ≤ 0.

Thus,
d

dρ
{ρ−2ϕ(ρ)} ≥ 0,

and it follows that

(19) ρ−2ϕ(ρ) ≤ (ρ′)−2ϕ(ρ′) for 0 < ρ ≤ ρ′ < R∗,

where we have set
R∗ := min{δ(x∗), d2R2}.

Now we choose λ in such a way that it also satisfies

λ(t) = 1 for any t ≥ ε,

where ε denotes some positive number (in other words, we consider a family
{λε} of cut-off functions λε(t) with the parameter ε).

Then we obtain

1
2
ρ−2

∫
Sr(w0)∩Kρ−ε(x∗)

|∇X|2 du dv ≤ ρ−2ϕ(ρ),

where we have set

Kτ (x∗) := {w ∈ B : |X(w)− x∗| < τ}.

Letting ε→ +0 and then ρ′ → R∗ − 0, we find that

ρ−2

∫
Sr(w0)∩Kρ(x∗)

|∇X|2 du dv ≤ (R∗)−2

∫
Sr(w0)∩KR∗ (x∗)

|∇X|2 du dv

taking λ(t) ≤ 1 and (19) into account. Now let ρ→ +0. Then it follows from
Lemma 1 that

(20) 2πR∗2 ≤
∫

Sr(w0)∩KR∗ (x∗)

|∇X|2 du dv.

In case that d2R2 ≤ δ(x∗), we have by definition of R∗ that R∗ = d2R2, and
(20) implies
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(21) R2 ≤
{

1
2πd4

∫
Sr(w0)

|∇X|2 du dv
}1/2

if d2R2 ≤ δ(x∗).

Now we treat the opposite case δ(x∗) < d2R2 where we have R∗ = δ(x∗).
Because of (20), we have already proved that

(22) 2πδ2(x∗) ≤
∫

Sr(w0)∩Kδ(x∗)(x∗)

|∇X|2 du dv.

(The still missing case δ(x∗) = 0 is formally included and will be treated at
the end of our discussion.)

First we choose some point f ∈ S which satisfies

|f − x∗| = dist(x∗, S) = δ(x∗) < d2R2 ≤ 1
4R2.

Then we choose an admissible boundary coordinate system {U, g} for S cen-
tered at x0 := f as described in Definition 2, with the diffeomorphisms g and
h = g−1. As before we define by gjk (y) the components of the fundamental
tensor:

gjk (y) :=
∂hl

∂yj
(y)

∂hl

∂yk
(y).

Let us introduce the transformed surface Y (w) by

Y (w) := g(X(w)) = (y1(w), y2(w), y3(w)),

and set
‖Y (w)‖ := {gjk (Y (w))yj(w)yk(w)}1/2.

For ρ with d−1δ(x∗) < ρ < dR2, we define

η(w) :=

{
λ(ρ− ‖Y (w)‖)Y (w) for w ∈ Sr(w0),

0 if w ∈ B \ Sr(w0).

Firstly we prove that η ∈ H1
2 (B,R3). For this it suffices to show that η

vanishes on Cr(w0). For this purpose, let w be an arbitrary point on Cr(w0).
By assumption (16) we have

R2 ≤ |X(w)− x∗|,

whence
R2 ≤ δ(x∗) + |X(w)− f | ≤ R2/4 + |X(w)− f |,

and this implies

R2/2 ≤ |X(w)− f | for all w ∈ Cr(w0).
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On the other hand, since h(0) = f , we obtain

|X(w)− f | =
∣∣∣∣
∫ 1

0

hyk(tY (w))yk(w)dt
∣∣∣∣

≤ √
m2|Y (w)| ≤ (m2/m1)1/2‖Y (w)‖.

Thus
‖Y (w)‖ ≥ (1/2)(m1/m2)1/2R2 = dR2 > ρ,

and therefore
η(w) = 0 for w ∈ Cr(w0).

For 0 ≤ ε < 1/2 we consider the family Xε of surfaces which are defined by

Xε(w) := h(Y (w)− εη(w)).

We want to show that Xε is an admissible variation of X which is of type II.
In fact, we have Xε ∈ H1

2 (B,R3) and Xε(w) = X(w) for all w ∈ C since
η(w) = 0 for w ∈ C. Now we want to show that Xε maps L1-almost all points
of I into S. To this end, we pick some w ∈ I with X(w) ∈ S. If η(w) = 0, then
Xε(w) = X(w), and therefore Xε(w) ∈ S. On the other hand, if η(w) �= 0, we
have ‖Y (w)‖ < ρ and therefore

|Y (w)| < ρ/
√
m1 < dR2/

√
m1 =

dR2

2
√
m2

(
1
2

√
m1/m2

)−1

=
R2

2
√
m2

<
R1

2
√
m2

=
R
√
m2

2
√
m2

= R/2.

Since X(w) ∈ S, this estimate yields y3(w) = 0 (see (2′)), whence

[Y (w)− εη(w)]3 = 0.

Taking the inequalities

|Y (w)− εη(w)| ≤ 2|Y (w)| < R

into account, we infer that

Xε = h(Y − εη) ∈ C(Γ, S)

provided that ∂S = ∅. This inclusion holds as well if ∂S is nonvoid, since
y1(w) ≥ σ and −1 ≤ σ ≤ 0 implies

y1(w)− εη1(w) = y1(w){1− ελ(w)} ≥ σ{1− ελ(w)} ≥ σ.

Now we define

Ψ(ε, w) :=

{
ε−1[h(Y (w)− εη(w))− h(Y (w))] for ε > 0,
− ∂h

∂yk (Y (w))ηk(w) for ε = 0.
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Then we have

Xε := h(Y − εη) = X + εΨ(·, ε) for 0 ≤ ε < 1/2,

and Taylor’s formula yields

Ψ(ε, w) = Ψ0(w) + o(ε)

with
Ψ0 := −hyk(Y )ηk ∈ H1

2 ∩ L∞(B,R3)

and
Ψ(ε, w) → Ψ0(w) a.e. on B as ε→ 0.

Moreover, the reader readily checks that

|∇Ψ(ε, ·)|L2(B) ≤ const

holds for some constant independent of ε ∈ [0, 1/2). Hence the variations
{Xε}0≤ε<1/2 of X are admissible, and we infer from (9) that

δE(Y,−η) ≥ 0,

or
δE(Y, η) ≤ 0,

which implies
∫

Sr(w0)

[
gjk (Y )Dαy

jDαη
k +

1
2
gjk ,l(Y )Dαy

jDαy
kηl

]
du dv ≤ 0,

where we have set

u1 = u, u2 = v, D1 =
∂

∂u
, D2 =

∂

∂v

(summation with respect to Greek indices from 1 to 2, and with respect to
Latin indices from 1 to 3).

Then it follows that∫
Sr(w0)

gjk (Y )Dαy
jDαy

kλ(ρ− ‖Y ‖) du dv

−
∫

Sr(w0)

λ′(ρ− ‖Y ‖)gmn(Y )(Dαy
m)yn 1

2
‖Y ‖−1

· {2gjk (Y )(Dαy
j)yk + gjk ,l(y)(Dαy

l)yjyk} du dv

≤ −1
2

∫
Sr(w0)

gjk ,l(y)Dαy
jDαy

kylλ(ρ− ‖Y ‖) du dv.

This is equivalent to
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∫
Sr(w0)

gjk (Y )Dαy
jDαy

kλ(ρ− ‖Y ‖) du dv(23)

−
∫

Sr(w0)

‖Y ‖λ′(ρ− ‖Y ‖)
{[

gjk (Y )yj
u

yk

‖Y ‖

]2

+
[
gjk (Y )yj

v

yk

‖Y ‖

]2}
du dv

≤ −1
2

∫
Sr(w0)

gjk ,l(Y )Dαy
jDαy

kylλ(ρ− ‖Y ‖) du dv

+
1
2

∫
Sr(w0)

λ′(ρ− ‖Y ‖)gjk (Y )Dαy
j yk

‖Y ‖gmn,l (Y )ymynDαy
l du dv.

Now we set

ψ(ρ) :=
∫

Sr(w0)

gjk (Y )Dαy
jDαy

kλ(ρ− ‖Y ‖) du dv.

Then, by virtue of the conformality relations (15), we obtain the estimate

[
gjk (Y )yj

u

yk

‖Y ‖

]2
+
[
gjk (Y )yj

v

yk

‖Y ‖

]2
≤ 1

2
‖∇Y ‖2,

where we have set
‖∇Y ‖2 := gjk (Y )Dαy

jDαy
k.

Moreover we have

‖Y ‖λ(ρ− ‖Y ‖) ≤ ρλ(ρ− ‖Y ‖),
‖Y ‖λ′(ρ− ‖Y ‖) ≤ ρλ′(ρ− ‖Y ‖).

Hence the left-hand side of (23) can be estimated from below by

ψ(ρ)− 1
2ρψ

′(ρ);

compare (18) and (18′) for an analogous computation.
The first term on the right-hand side of (23) can be estimated from above

by

c(n)K
∫

Sr(w0)

|∇Y |2m−1/2
1 ‖Y ‖λ(ρ− ‖Y ‖) du dv

≤ c(n)Km−3/2
1

∫
Sr(w0)

ρ‖∇Y ‖2λ(ρ− ‖Y ‖) du dv

≤ M̃ρψ(ρ),

where we have set
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M̃ := c(n)Km−3/2
1 ,

and where c(n) denotes a constant depending on the space dimension (in our
case: n = 3).

Analogously, the second term is bounded from above by

c(n)K
∫

Sr(w0)

λ′(ρ− ‖Y ‖)‖∇Y ‖|∇Y ||Y |2 du dv

≤ c(n)Km−3/2
1

∫
Sr(w0)

‖Y ‖2λ′(ρ− ‖Y ‖)‖∇Y ‖2 du dv

≤ M̃ρ2ψ′(ρ).

Thus we have derived the following differential inequality

ψ(ρ)− 1
2ρψ

′(ρ) ≤ M̃ [ρψ(ρ) + ρ2ψ′(ρ)]

which is equivalent to

− d

dρ
[ρ−2ψ(ρ)] ≤ 2Mρ−2ψ(ρ) +M

d

dρ
[ρ−1ψ(ρ)]

with
M := 2M̃.

Multiplying by e2Mρ, we obtain

0 ≤ d

dρ
[e2Mρρ−2ψ(ρ)] +Me2Mρ d

dρ
[ρ−1ψ(ρ)].

Then by integrating between the limits ρ and ρ′, ρ < ρ′, and by applying an
integration by parts, we infer that

0 ≤ [e2Mρρ−2ψ(ρ)]ρ
′

ρ +
∫ ρ′

ρ

Me2Mρ d

dρ
[ρ−1ψ(ρ)] dρ

= [e2Mρρ−2ψ(ρ)]ρ
′

ρ + [Me2Mρρ−1ψ(ρ)]ρ
′

ρ −
∫ ρ′

ρ

2M2e2Mρρ−1ψ(ρ) dρ.

Therefore,
0 ≤ [e2Mρρ−2ψ(ρ) +Me2Mρρ−1ψ(ρ)]ρ

′

ρ

whence

ρ−2ψ(ρ) ≤ e2Mρ′
+ ρ′Me2Mρ′

e2Mρ + ρMe2Mρ
(ρ′)−2ψ(ρ′).

Applying once again the reasoning which led to (20) (that is, choosing λ = λε,
and letting first ε→ +0 and then ρ′ → dR2 − 0) and setting

C(R2) := (1 + dR2M)e2MdR2 ,
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we arrive at

ρ−2

∫
Sr(w0)∩{w : ‖Y (w)‖<ρ}

‖∇Y ‖2 du dv(24)

≤ C(R2)(dR2)−2

∫
Sr(w0)

‖∇Y ‖2 du dv.

Furthermore,

Sr(w0) ∩ {w : |X(w)− f | < 2δ(x∗)} ⊂ Sr(w0) ∩ {w : ‖Y (w)‖ < ρ}

since

Y (w) =
∫ 1

0

gxj (tX + (1− t)f)(xj − f j) dt

implies

‖Y (w)‖ ≤ (m2/m1)1/2|X(w)− f | < 2(m2/m1)1/2δ(x∗) = d−1δ(x∗) < ρ.

For δ(x∗) > 0 and ρ→ d−1δ(x∗) + 0, we then infer from (24) that

d2

δ2(x∗)

∫
Sr(w0)∩{w : |X(w)−f |<2δ(x∗)}

‖∇Y ‖2 du dv

≤ C(R2)d−2R−2
2

∫
Sr(w0)

‖∇Y ‖2 du dv,

and this inequality can be rewritten in the form

δ(x∗)−2

∫
Sr(w0)∩K

2δ(x∗)(f)

|∇X|2 du dv(25)

≤ C(R2)d−4R−2
2

∫
Sr(w0)

|∇X|2 du dv.

By virtue of
|X(w)− f | ≤ |X(w)− x∗|+ |f − x∗|

we obtain
Kδ(x∗)(x∗) ⊂ K2δ(x∗)(f),

and therefore

R2
2δ(x

∗)−2

∫
Sr(w0)∩K

δ(x∗)(x∗)

|∇X|2 du dv ≤ C(R2)d−4

∫
Sr(w0)

|∇X|2 du dv.

By virtue of (22), the left-hand side is bounded from below by 2πR2
2. Thus

we obtain

(26) R2 ≤
{
C(R2)
2πd4

∫
Sr(w0)

|∇X|2 du dv
}1/2

if 0 < δ(x∗) < d2R2.



148 2 The Boundary Behaviour of Minimal Surfaces

Combining (21) and (26), we obtain from C(R2) ≤ C(R1), R1 = R
√
m2 and

d−2 = 4(m2/m1) that

(27) R2 ≤ c

{∫
Sr(w0)

|∇X|2 du dv
}1/2

in Case (i): δ(x∗) > 0,

if we set
c := (23π−1(m2/m1)2C(R1))1/2 = c(R,K,m1,m2).

Case (ii): δ(x∗) = 0.
Here we take f = x∗ as the center of an admissible boundary coordinate

system {U, g} for S. Then we obtain (24) for any ρ ∈ (0, dR2). Setting ρ′ :=
ρ
√
m1/m2, it follows that

ρ−2

∫
Sr(w0)∩Kρ′ (x∗)

|∇X|2 du dv ≤ C(R2)d−2R−2
2

∫
Sr(w0)

|∇X|2 du dv.

Now let ρ′ → +0; then another application of Lemma 1 yields

2π ≤ lim sup
ρ′ →+0

(ρ′)−2

∫
Sr(w0)∩Kρ′ (x∗)

|∇X|2 du dv

≤ C(R2)
4d4R2

2

∫
Sr(w0)

|∇X|2 du dv

whence we obtain

(27′) R2 ≤ c

{∫
Sr(w0)

|∇X|2 du dv
}1/2

in Case (ii): δ(x∗) = 0.

Combining (27) and (27′), we arrive at (17). �

Now we turn to the second step with the aim to prove

Theorem 2. Let S be an admissible support surface of class C2, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then there exists a constant α ∈ (0, 1) such that the following holds true:

For every d ∈ (0, 1), there exists a constant c > 0 such that

(28)
∫

Sr(w0)

|∇X|2 du dv ≤ cr2α

holds true for every w0 ∈ Zd and for all r > 0. In particular, X is of class
C0,α(B ∪ I,R3).

We shall use the following simple but quite effective
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Lemma 5. Let ϕ(r), 0 < r ≤ 2R be a nondecreasing and nonnegative function
satisfying

(29) ϕ(r) ≤ θϕ(2r)

for some θ ∈ (0, 1) and for all r ∈ (0, R]. Then, for

α := 2log
1
θ
,

we have

(30) ϕ(r) ≤ 2αϕ(R)(r/R)α for all r ∈ (0, R].

Proof. For any r ∈ (0, R] and for any ν = 0, 1, 2, . . . , we have

ϕ(2−νr) ≤ θϕ(2−ν+1r).

Iterating these inequalities, we obtain

ϕ(2−νr) ≤ θνϕ(r) for 0 < r ≤ R.

Fix some r ∈ (0, R]. Then there exists some integer ν ≥ 0 such that

2−ν−1 < r/R ≤ 2−ν .

Since θ = 2−α and ϕ(r) is nondecreasing, we see that

ϕ(r) ≤ ϕ(2−νR) ≤ θνϕ(R) ≤ 2−ναϕ(R) ≤ 2αϕ(R)(r/R)α. � 

For later use we note a generalization of Lemma 5.

Lemma 6. Let ϕ(r), 0 < r ≤ 2R, by a nondecreasing and nonnegative func-
tion satisfying

ϕ(r) ≤ θ{ϕ(2r) + rσ}(31)

for some θ ∈ (0, 1), σ > 1, 0 < R < 1, and for all r ∈ (0, R]. Then, for
ε ∈ (0, σ − 1) and for

(32) θ∗ := max{θ, 2ε−σ(θRε + 1)}, α := 2log
1
θ∗ ,

we have

(33) ϕ(r) ≤ 2α{ϕ(R) +Rσ−ε}(r/R)α for all r ∈ (0, R].

Proof. Since Rεθ < 1 and 2ε−σ < 1/2, we infer that

2ε−σ(θRε + 1) < 1
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and therefore 0 < θ∗ < 1. Set

ϕ∗(r) := ϕ(r) + rσ−ε.

Then, for any r ∈ (0, R], it follows that

ϕ∗(r) ≤ θϕ(2r) + θrσ + rσ−ε = θϕ(2r) + rσ−ε(θrε + 1)
≤ θϕ(2r) + (2r)σ−ε2ε−σ(θrε + 1)
≤ θ∗{ϕ(2r) + (2r)σ−ε} = θ∗ϕ∗(2r).

Applying Lemma 5, we infer

ϕ∗(r) ≤ 2αϕ∗(R)(r/R)α for all r ∈ (0, R] and α := 2log
1
θ∗

whence

ϕ(r) ≤ ϕ(r) + rσ−ε ≤ 2α{ϕ(R) +Rσ−ε}(r/R)α for 0 < r ≤ R. � 

Proof of Theorem 2. We want to show that the growth estimate (28) is sat-
isfied for any w0 ∈ I. Let us first assume that ∂S is empty. We intro-
duce an admissible boundary coordinate system {U, g} for S centered at
x0 := X(w0) with the inverse mapping h = g−1, and we set Y := g(X).
Then we have Y ∈ C0(B ∪ I,R3) and Y (w0) = 0, and we can find some
number ρ0 ∈ (0, 1− |w0|) such that

|Y (w)| ≤ R/2 for w ∈ Sρ0(w0), Y 3(w) = 0 for w ∈ I ∩ Sρ0(w)

(cf. Definition 2 for the meaning of R, as well as the discussion following
Definition 2).

Suppose that Xε := h(Y − εφ), |ε| < ε0(φ), φ = (ϕ1, ϕ2, ϕ3), is a family of
admissible variations with Xε ∈ C(Γ, S). Then we have

(34)
∫

B

gjk (Y )Dαy
jDαϕ

k du dv ≤ −1
2

∫
B

gjk ,l(Y )Dαy
jDαy

kϕl du dv.

(In fact, equality holds true.) Now let r ∈ (0, ρ0/2], and choose some cut-off
function ξ ∈ C∞

c (B2r(w0)) with ξ(w) ≡ 1 on Br(w0) and 0 ≤ ξ ≤ 1, |∇ξ| ≤
2/r.

Set T2r := S2r(w0) \ Sr(w0),

ω1 := −
∫

T2r

y1 du dv, ω2 := −
∫

T2r

y2 du dv, ω3 := 0,

where
−
∫

Ω

. . . stands for
1

measΩ

∫
Ω

. . .

φ = (ϕ1, ϕ2, ϕ3), ϕk(w) := (yk(w) − ωk)ξ2(w) for w ∈ B ∪ I. Then the test
vector φ is admissible in (34), and we obtain



2.6 Hölder Continuity for Stationary Surfaces 151

∫
B

gjk (Y )Dαy
jDαy

kξ2 du dv +
1
2

∫
B

gjk ,l(Y )Dαy
jDαy

k(yl − ωl)ξ2 du dv

≤ −2
∫

B

gjk (Y )Dαy
j(yk − ωk)ξDαξ du dv.

Hence, for any ε > 0 and some constant K1(ε) > 0, we find the inequality

m1

∫
B

|∇Y |2ξ2 du dv − 1
2

∫
B

|gjk ,l(Y )||Dαy
j ||Dαy

k||yl − ωl|ξ2 du dv(35)

≤ ε

∫
B

|ξ|2‖∇Y ‖2 du dv +K1(ε)
∫

B

‖Y − ω‖2|∇ξ|2 du dv,

where ω = (ω1, ω2, ω3). Since

‖∇Y ‖2 ≤ m2|∇Y |2

we can absorb the term

ε

∫
B

ξ2‖∇Y ‖2 du dv

by the first term on the left-hand side, if we choose

ε =
m1

2m2
.

Moreover, the absolute value of the second term of the left-hand side of (35)
can be bounded from above by

m1

4

∫
B

|∇Y |2ξ2 du dv,

if we choose r ∈ (0, ρ1), where ρ1 ∈ (0, ρ0/2) is a sufficiently small number
depending on the modulus of continuity of X. Hence there is a number K2 > 0
such that

∫
Sr(w0)

|∇Y |2 du dv ≤
∫

S2r(w0)

ξ2|∇Y |2 du dv(36)

≤ K2r
−2

∫
T2r

|Y − ω|2 du dv

holds for all r ∈ (0, ρ1).
By Poincaré’s inequality, there is a constant K3 > 0 such that

(37)
∫

T2r

|Y − ω|2 du dv ≤ K3r
2

∫
T2r

|∇Y |2 du dv

is satisfied for 0 < r < ρ1. Consequently, there is a constant K4 such that
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∫
Sr(w0)

|∇Y |2 du dv ≤ K4

∫
Sr(w0)\Sr(w0)

|∇Y |2 du dv

for all r ∈ (0, ρ1).
Now we fill the hole Sr(w0) by adding the term K4

∫
Sr(w0)

|∇Y |2 du dv to
both sides. Then we arrive at

(1 +K4)
∫

Sr(w0)

|∇Y |2 du dv ≤ K4

∫
S2r(w0)

|∇Y |2 du dv

whence, setting

θ :=
K4

1 +K4
,

we attain ∫
Sr(w0)

|∇Y |2 du dv ≤ θ

∫
S2r(w0)

|∇Y |2 du dv

for every r ∈ (0, ρ1). As 0 < θ < 1, we can apply Lemma 5 to R = ρ1 and to
ϕ(r) :=

∫
Sr(w0)

|∇Y |2 du dv, thus obtaining

∫
Sr(w0)

|∇Y |2 du dv ≤ 22α

∫
Sr(w0)

|∇Y |2 du dv
(
r

ρ1

)2α

for 0 < r < ρ1, if we set α := 1
2 2log θ. For

K5 := 22α(m2/m1), (K5 > 1),

and by virtue of

‖∇Y ‖2 = |∇X|2, m1|∇Y |2 ≤ ‖∇Y ‖2 ≤ m2|∇Y |2,

we obtain

(38)
∫

Sr(w0)

|∇X|2 du dv ≤ K5D(X)(r/ρ1)2α

for all r ∈ (0, ρ1), and consequently for all r > 0.
Combining (38) in a suitable way with interior estimates for X, we arrive

at (28). We can omit this reasoning since it would be a mere repetition of the
arguments used in the second part of the proof of Theorem 1 in Section 2.5.

Finally, Morrey’s Dirichlet growth theorem yields X ∈ C0,α(B ∪ I,R3).
Thus we have proved Theorem 2 in the case that ∂S is empty.

The general case where ∂S is not necessarily empty can be settled by a
slight modification of our previous reasoning.

First we note the that test function

φ = (0, ϕ2, ϕ3), ϕk = (yk − ωk)ξ2, k = 2, 3
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is admissible in (34), where ωk and ξ are chosen as before. Then we obtain an
inequality which coincides with (35) except for the term

m1

∫
B

|∇Y |2ξ2 du dv,

which is to be replaced by

m1

∫
B

(|∇y2|2 + |∇y3|2)ξ2 du dv.

However, this expression can be estimated from below by

m1

1 +K∗

∫
B

|∇Y |2ξ2 du dv

since there is a constant K∗ > 0 such that

|∇y1|2 ≤ K∗(|∇y2|2 + |∇y3|2)

holds true, and this inequality is an immediate consequence of the conformality
relations (15), written in the complex form

〈〈Yw, Yw〉〉 = 0,

where we have set
〈〈ξ, η〉〉 := gjkξ

jηk

(cf. Section 2.3, proof of Theorem 2, part (i)).
Thus we arrive again at an inequality of the type (36) from where we can

proceed as before. This completes the proof of the theorem. �

Remark 1. A close inspection of the proof of Theorem 2 shows that we would
obtain a priori estimates for the α-Hölder seminorm in the case that we had
bounds on the modulus of continuity of X. Hence only the approach used in
the proof of Theorem 1 is indirect.

Remark 2. Without any essential change we can replace the class C(Γ, S) in
the previous reasoning by C(S). In other words, we have analogues to Theo-
rems 1 and 2 for stationary points of Dirichlet’s integral in the free boundary
class C(S).

2.7 C1,1/2-Regularity

In this section we want to prove C1,1/2-regularity of a stationary point X of
Dirichlet’s integral up to its free boundary. As we have seen in Section 2.4,
this regularity result is optimal, that is, we can in general not prove X ∈
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C1,α(B∪ I,R3), I being the free boundary, for some α > 1/2, if the boundary
of the support surface S is nonvoid. On the other hand, if ∂S is empty or if
X|I does not touch ∂S, then one might be able to achieve higher regularity
as we shall see in the next section.

As in Section 2.6 we shall restrict our considerations to minimal surfaces
with partially free boundaries or, more precisely, to stationary points of Dirich-
let’s integral in C(Γ, S); stationary points with completely free boundaries can
be treated in exactly the same way, and perfectly analogous results hold true.

Consequently we can use the same notation as in Section 2.6. Our main
result will be the following

Theorem 1. Let S be an admissible support surface of class C4, and suppose
that X(w) is a stationary point of Dirichlet’s integral in the class C(Γ, S).
Then X is of class C1,1/2(B ∪ I,R3).

The proof of this result is quite involved; it will be carried out in three
steps. In the first step we prove that X ∈ H2

2 (Zd,R
3) for any d ∈ (0, 1), using

Nirenberg’s difference quotient technique to derive L2-estimates for ∇2X.
Secondly, using ideas related to those of Section 2.3, it will be shown that
X ∈ C1(B ∪ I,R3). In the third part of our investigation we shall see how the
boundary regularity can be pushed up to X ∈ C1,1/2(B ∪ I,R3) by applying
an appropriate iteration procedure.

Let us note that, assuming X ∈ C0(B ∪ I,R3), all regularity results will
be proved directly by establishing a priori estimates. Thus the only indirect
proof entering into our discussion is that of Theorem 1 of Section 2.6.

Step 1. L2-estimates for ∇2X up to the free boundary. Let us begin with a few
remarks on difference quotients which either are well known (cf. Nirenberg [1],
Gilbarg and Trudinger [1]) or can easily be derived.

We consider some function Y ∈ Hs
2(Zd0 ,R

m) with 0 < d0 < 1 and m ≥ 1,
s ≥ 1. For w ∈ Zd and t with |t| < d0− d, we define the tangential shift Yt by

Yt(u, v) := Y (u+ t, v)

and the tangential difference quotient ΔtY by

ΔtY (u, v) =
1
t
[Y (u+ t, v)− Y (u, v)],

that is,

ΔtY (w) =
1
t
[Yt(w)− Y (w)], w = u+ iv.

Moreover, let Du = ∂
∂u be the tangential derivative with respect to the free

boundary I. Then we have:

Lemma 1. (i) Let Y ∈ Hs
2(Zd0 ,R

m), s ≥ 1,m ≥ 1, d0 ∈ (0, 1), d ∈ (0, d0),
|t| ≤ d0 − d. Then Yt, ΔtY ∈ Hs

2(Zd,R
m), and
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∫
Zd

|ΔtY |2 du dv ≤
∫

Zd0

|DuY |2 du dv, lim
t→0

∫
Zd

|DuY −ΔtY |2 du dv = 0.

The operators ∇ and Δt commute; more precisely,

(Δt∇Y )(w) = (∇ΔtY )(w) for w ∈ Zd,

and similarly

(∇Y )t(w) = (∇Yt)(w) for w ∈ Zd.

Moreover, we have the product rule

Δt(ϕY ) = (Δtϕ)Yt + ϕΔtY = (Δtϕ)Y + ϕtΔtY

on Zd for scalar functions ϕ, and
∫

B

ϕΔ−tψ du dv = −
∫

B

(Δtϕ)ψ du dv for 0 < |t| � 1

if either ϕ or ψ has compact support in B ∪ I.
(ii) Similarly, if Y and DuY ∈ Lq(Zd0 ,R

m), q ≥ 1, then
∫

Zd

|ΔtY |q du dv ≤
∫

Zd0

|DuY |q du dv, lim
t→0

∫
Zd

|DuY −ΔtY |q du dv = 0.

(iii) Finally, if Y ∈ Hs
2(Zd0 ,R

m), then

(∇pY )t = ∇pYt,

∫
Ω

|∇pYt|2 du dv =
∫

Ωt

|∇pY |2 du dv, 0 < |t| � 1,

for 0 ≤ p ≤ s and Ωt := {w + t : w ∈ Ω}, for any open set Ω � Zd0 ∪ I.

Now we turn to the derivation of L2-estimates for the second derivatives
of X. We begin by linearizing the boundary conditions on X. This will be
achieved by introducing suitable new coordinates on R

3. Thus let w0 be an
arbitrary point on I, and set x0 := X(w0). Then we choose an admissible
boundary coordinate system {U, g}, centered at x0, as defined in Section 2.6.
Let h = g−1 and Y = g ◦X, i.e., X = h ◦ Y . Then we can use the discussion
at the beginning of Section 2.6; in particular we can employ the formulas
(1)–(15) of Section 2.6.

By Theorem 1 of Section 2.6, we know that X and Y are continuous on
B ∪ I, and Y (w0) = 0. Hence there is some number ρ > 0 such that

|Y (w)| < R for all w ∈ S2ρ(w0)

and therefore
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y3(w) = 0 for w ∈ I2ρ(w0),

and, if ∂S is nonempty, we have

y1(w) ≥ σ for w ∈ I2ρ(w0).

Let r be some number with 0 < r < ρ which is to be fixed later, and
let η(w) be some cut-off function of class C∞

c (B2r(w0)) with η(w) ≡ 1 on
Br(w0), 0 ≤ η ≤ 1, |∇η| ≤ 2/r, and η(u, v) = η(u,−v).

Now we set

(1) φ := Δ−t{η2ΔtY }.

We claim that

(2) Xε := h(Y + εφ), 0 ≤ ε < ε0(φ),

is an admissible variation of X in C(Γ, S) of type II (see Definition 2 of
Section 1.4) for some sufficiently small ε0(φ) > 0. In fact, we have φ ∈
H1

2 ∩ L∞(B,R3), and

Y (w) + εφ(w) = Y (w) + εΔ−t{η2ΔtY }(w)
= λ1Yt(w) + λ2Y−t(w) + (1− λ1 − λ2)Y (w),

where
λ1 := εt−2η2(w), λ2 := εt−2η2

−t(w), 0 < |t| � 1.

Thus Y (w)+ εφ(w), 0 ≤ ε ≤ t2/2, is a convex combination of the three points
Y (w), Yt(w), and Y−t(w).

Since η(w) = 0 for |w − w0| ≥ 2r, we obtain

λ1(w) = 0, λ2(w) = 0 if |w − w0| ≥ 2r + |t|, w ∈ B.

Therefore we have

Y (w) + εφ(w) = Y (w) for |w − w0| ≥ 2r + |t|.

On the other hand, if |w − w0| < 2r + |t|, w ∈ B, then we have

|w ± t− w0| ≤ 2r + 2|t|

and therefore

w,w ± t ∈ S2ρ(w0), provided that |t| < ρ− r.

Hence, for w ∈ I2r+|t|(w0), the points Y (w), Yt(w), Y−t(w) are contained in
the convex set

C ′
R := {y ∈ R

3 : y3 = 0, |y| < R} if ∂S = ∅
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or in
C ′ ′

R := {y ∈ R
3 : y3 = 0, y1 ≥ σ, |y| < R} if ∂S �= ∅

respectively, and we have

S ∩ U =

{
h(C ′

R) if ∂S = ∅,
h(C ′ ′

R) if ∂S �= ∅.

Thus we obtain

Xε(w) = h(Y (w) + εφ(w)) ∈ S for all w ∈ I,

provided that 0 ≤ ε < t2/2 and |t| < ρ− r, and clearly

Xε(w) = X(w) for w ∈ C = ∂B \ I

since φ(w) = 0 on C. Consequently, we have

Xε = h(Y + εφ) ∈ C(Γ, S) for 0 ≤ ε < t2/2 and |t| < ρ− r,

and it follows from Section 2.6, (9) that

δE(Y, φ) ≥ 0.

Inserting the expression (1) into this inequality, we obtain
∫

B

gjk (Y )Dαy
jDα{Δ−t(η2Δty

k)} du dv

≥ −1
2

∫
B

Δ−t{η2Δty
l}gjk ,l(Y )Dαy

jDαy
k du dv,

where D1 = ∂
∂u , D2 = ∂

∂v , u
1 = u, u2 = v, and an integration by parts yields

∫
B

Δt[gjk (Y )Dαy
j ]Dα(η2Δty

k) du dv

≤ −1
2

∫
B

η2Δty
lΔt[gjk ,l(Y )Dαy

jDαy
k] du dv;

see Lemma 1. Since

Δt[gjk (Y )Dαy
j ] = gjk (Y )DαΔty

j +Dαy
j
tΔtgjk (Y )

and
Dα(η2Δty

k) = Dαη
2Δty

k + η2DαΔty
k,

we arrive at
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∫
B

η2gjk (Y )DαΔty
jDαΔty

k du dv(3)

≤ −
∫

B

2ηDαηΔty
k[gjk (Y )DαΔty

j +Dαy
j
tΔtgjk (Y )] du dv

−
∫

B

η2DαΔty
kDαy

j
tΔtgjk (Y ) du dv

− 1/2
∫

B

η2Δty
lΔt[gjk ,l(Y )Dαy

jDαy
k] du dv.

The ellipticity condition for (gjk ) yields

(4) m1

∫
B

η2|∇ΔtY |2 du dv ≤
∫

B

η2gjk (Y )DαΔty
jDαΔty

k du dv.

Moreover, Lemma 1 implies

Δt[gjk ,l(Y )Dαy
jDαy

k](5)
= (Δtgjk ,l(Y ))Dαy

jDαy
k + gjk ,l(Yt)(ΔtDαy

j)Dαy
k

+ gjk ,l(Yt)Dαy
j
tΔtDαy

k.

Furthermore, there is a constant K∗ > 0 such that

(6) |Δtgjk (Y )|+ |Δtgjk ,l(Y )| ≤ K∗|ΔtY |.

On account of (3)–(6), there is a number c = c(m2,K,K
∗) independent of t

such that

m1

∫
B

η2|∇ΔtY |2 du dv

≤ c

{∫
B

r−1η|ΔtY |(|∇ΔtY |+ |∇Yt||ΔtY |) du dv

+
∫

B

η2|∇ΔtY ||∇Yt||ΔtY | du dv

+
∫

B

η2|ΔtY |(|ΔtY ||∇Y |2 + |∇ΔtY ||∇Y |+ |∇ΔtY ||∇Yt|) du dv
}
.

By means of the elementary inequality

2ab ≤ εa2 +
1
ε
b2

for any ε > 0, we obtain the estimate

m1

∫
B

η2|∇ΔtY |2 du dv

≤ ε

∫
B

η2|∇ΔtY |2 du dv +
c∗

ε

[
r−2

∫
S2r(w0)

|ΔtY |2 du dv

+
∫

B

η2|ΔtY |2|∇Y |2du dv +
∫

B

η2|ΔtY |2|∇Yt|2 du dv
]
.
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Choosing ε := m1/2, we can absorb the first integral on the right-hand side
by the positive term on the left-hand side, and secondly, we have
∫

S2r(w0)

|ΔtY |2 du dv ≤
∫

B

|DuY |2 du dv ≤
∫

B

|∇Y |2 du dv

≤ m−1
1

∫
B

‖∇Y ‖2 du dv = m−1
1

∫
B

|∇X|2 du dv

= 2m−1
1 D(X).

Thus we arrive at∫
S2r(w0)

η2|∇ΔtY |2 du dv(7)

≤ c∗ ∗

[
r−2D(X) +

∫
S2r(w0)

η2|ΔtY |2(|∇Y |2 + |∇Yt|2) du dv
]
.

Moreover, we claim that the estimate (28) in Theorem 2 of Section 2.6 implies
the existence of some number c0 independent of r and t such that

∫
S2r(w0)

η2|ΔtY |2(|∇Y |2 + |∇Yt|2) du dv(8)

≤ c0r
2α

{∫
S2r(w0)

η2|∇ΔtY |2 du dv + r−2D(X)

}
.

Let us defer the proof of the inequality (8) until we have finished the derivation
of the L2-estimates of ∇2X. Then we can proceed as follows:

We choose r ∈ (0, ρ) so small that c∗ ∗c0r
2α < 1/2. Then we infer from (7)

and (8) the existence of a number c1 independent of t such that

(9)
∫

S2r(w0)

η2|∇ΔtY |2 du dv ≤ c1D(X)

holds true for all t with 0 < |t| < ρ− r. If we let t tend to zero, this inequality
yields

(10)
∫

S2r(w0)

η2|∇DuY |2 du dv ≤ c1D(X)

since Y = g ◦X is of class C3(B,R3), and from (8) and (9) we infer

(11)
∫

S2r(w0)

η2|DuY |2|∇Y |2 du dv ≤ c2D(X).

Moreover, the conformality relation

‖DuY ‖2 = ‖DvY ‖2
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implies that
|DvY |2 ≤ (m2/m1)|DuY |2,

whence we obtain
∫

S2r(w0)

η2|∇Y |4 du dv ≤ c3D(X),(12)

taking (11) into account.
Moreover, by formula (14) of Section 2.6 we have

Δyl + Γ l
jk (Y )(yj

uy
k
u + yj

vy
k
v ) = 0 in B,

whence

|D2
vY |2 ≤ c4(|D2

uY |2 + |∇Y |4) in B.

Combining the last relation with (10) and (12), we arrive at

(13)
∫

S2r(w0)

η2|∇2Y |2 du dv ≤ c5D(X)

whence
∫

Sr(w0)

|∇2Y |2 du dv +
∫

Sr(w0)

|∇Y |4 du dv ≤ c6D(X).(14)

Moreover, from X = h(Y ) we obtain

∇2X = hyy(Y )∇Y∇Y + hy(Y )∇2Y,

and therefore
|∇2X|2 ≤ c7(|∇Y |4 + |∇2Y |2).

By virtue of (14) it follows that

(15)
∫

Sr(w0)

|∇2X|2 du dv ≤ c8D(X).

This is the desired estimate of ∇2X.
Before we summarize the results of our investigation, we want to prove the

estimate (8) which, so far, has remained open. We shall see how c0 depends
on X, and this will inform us about the dependence of the numbers c1, . . . , c8
on X.

The estimate (8) will be derived from Theorem 2 of Section 2.6 and from
the following calculus inequality:
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Lemma 2. Let Ω be an open set in C of finite measure, and define d ≥ 0 by
the relation πd2 = measΩ. Suppose also that q ∈ L1(Ω) is a function such
that

(16)
∫

Ω∩Br(w0)

|q(w)| du dv ≤ Qr2α

holds for some number Q ≥ 0, for some exponent α > 0 and for all disks
Br(w0) in C. Then, for any ν ∈ (0, α), there is a number M(α, ν) > 0,
depending only on α and ν, such that

∫
Ω∩Br(w0)

|q(w)||φ(w)|2 du dv ≤ MQDΩ(φ)dνr2α−ν(17)

holds true for all w0 ∈ C, for all r > 0, and for any function φ ∈ H̊1
2 (Ω,Rm),

m ≥ 1.

Proof. As the set C∞
c (Ω,Rm) is dense in H̊1

2 (Ω,Rm), it is sufficient to
prove (17) for all φ ∈ C∞

c (Ω,Rm), taking Fatou’s lemma into account.
Thus let φ ∈ C∞

c (Ω,Rm), w = u1 + iu2, ζ = ξ1 + iξ2, d2w = du1 du2,
d2ζ = dξ1 dξ2. From Green’s formula, we infer that

φ(w) = − 1
2π

∫
Ω

|w − ζ|−2(ξα − uα)Dαφ(ζ) d2ζ

is satisfied for any w ∈ Ω. Set Ωr := Ω ∩Br(w0); then we obtain
∫

Ωr

|q(w)||φ(w)| d2w(18)

≤ 1
2π

∫
Ωr

∫
Ω

|q(w)||w − ζ|−1|∇φ(ζ)| d2ζ d2w

=
1
2π

∫
Ωr

∫
Ω

|q(w)|1/2|w − ζ|−1+ν |q(w)|1/2|w − ζ|−ν |∇φ(ζ)| d2ζ d2w

≤ 1
2π

[∫
Ωr

∫
Ω

|q(w)||w − ζ|2ν−2 d2ζ d2w

]1/2

·
[∫

Ω

∫
Ωr

|q(w)||w − ζ|−2ν |∇φ(ζ)|2 d2w d2ζ

]1/2

.

By an inequality of E. Schmidt, we have
∫

Ω

|w − ζ|2ν−2 d2ζ ≤ (π/ν)d2ν ;

the simple proof of this fact is left to the reader. Then, by (16), we obtain

(19)
∫

Ωr

∫
Ω

|q(w)||w − ζ|2ν−2 d2ζ d2w ≤ π

ν
d2νQr2α.
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For s > 0 and ζ ∈ C we introduce the function

ψ(s, ζ) :=
∫

Ωr ∩Bs(ζ)

|q(w)| d2w.

By (16), we have

0 ≤ ψ(s, ζ) ≤ Qs2α for all s > 0 and ζ ∈ C

as well as
0 ≤ ψ(s, ζ) ≤ Qr2α for all ζ ∈ C.

Introducing polar coordinates ρ, θ about ζ by w = ζ + ρeiθ we have

ψ(s, ζ) =
∫ s

0

(∫
Σρ

|q(ζ + ρeiθ)| dθ
)
ρ dρ,

where

Σρ := {θ : 0 ≤ θ ≤ 2π, ζ + ρeiθ ∈ Ωr ∩Bs(ζ)}.

It follows that

d

ds
ψ(s, ζ) = s

∫
Σs

|q(ζ + seiθ)| dθ.

Case 1. Let ζ ∈ Br(w0). Then we have |w − ζ| ≤ 2r for any w ∈ Ωr. Accord-
ingly,

∫
Ωr

|w − ζ|−2ν |q(w)| d2w ≤
∫ 2r

0

∫
Σs

s−2ν |q(ζ + seiθ)|s dθ ds

=
∫ 2r

0

s−2ν d

ds
ψ(s, ζ) ds = lim

ε→+0

∫ 2r

ε

s−2ν d

ds
ψ(s, ζ) ds

= lim
ε→+0

[s−2νψ(s, ζ)]2r
ε + 2ν lim

ε→+0

∫ 2r

ε

s−2ν−1ψ(s, ζ) ds

≤ Q(2r)2α−2ν + 2νQ
1

2(α− ν)
(2r)2α−2ν = c(α, ν)Qr2α−2ν .

Case 2. If ζ ∈ Ω \Br(w0), then we have

ζ0 := w0 +
r

|ζ − w0|
(ζ − w0) ∈ Br(w0).

Moreover, for all w ∈ Ωr, it follows by a simple geometric consideration (cf.
Fig. 1) that

|ζ − w| ≥ |ζ0 − w|.
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Fig. 1.

Consequently,
∫

Ωr

|q(w)||ζ − w|−2ν d2w ≤
∫

Ωr

|q(w)||ζ0 − w|−2ν d2w,

and, by case 1,
∫

Ωr

|q(w)||ζ0 − w|−2ν d2w ≤ c(α, ν)Qr2α−2ν .

Thus we have found that∫
Ωr

|q(w)||ζ − w|−2ν d2w ≤ c(α, ν)Qr2α−2ν for all ζ ∈ Ω.

Consequently,
∫

Ω

∫
Ωr

|q(w)||w − ζ|−2ν |∇φ(ζ)|2 d2w d2ζ(20)

≤ c(α, ν)Qr2α−2ν

∫
Ω

|∇φ(ζ)|2 d2ζ.

From (18), (19), and (20) we infer that

(21)
∫

Ωr

|q(w)||φ(w)| d2w ≤ c∗(α, ν)QdνD
1/2
Ω (φ)r2α−ν .

In other words, the function q∗ := qφ satisfies

(21′)
∫

Ω∩Br(w0)

|q∗(w)| d2w ≤ Q∗r2α∗
for all disks Br(w0),
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where
Q∗ := c∗(α, ν)QdνD

1/2
Ω (φ), 2α∗ := 2α− ν.

Now let ν and μ be two positive numbers such that ν+μ < α. Then it follows
that

α∗ − μ = α− ν

2
− μ > α− (ν + μ) > 0.

Hence we can apply the estimate (21′) to q∗, Q∗, α∗, μ instead of q,Q, α, ν,
and thus we obtain∫

Ωr

|q∗(w)||φ(w)| d2w ≤ c∗(α, μ)Q∗dμD
1/2
Ω (φ)r2α∗ −μ

or equivalently
∫

Ω∩Br(w0)

|q(w)||φ(w)|2 d2w ≤ c∗(α, ν)c∗(α, μ)Qdν+μDΩ(φ)r2α−(ν+μ).

Replacing ν+μ by ν and c∗(α, ν)c∗(α, μ) by M(α, ν), we arrive at the desired
inequality (17). �

Now we come to the proof of formula (8). From Y = g(X) it follows that

|∇Y | ≤ √
m2|∇X|

whence by Section 2.6, Theorem 2 (and, in particular, Section 2.6, (28)) we
obtain that ∫

B∩Bτ (ζ0)

|∇Y |2 du dv ≤ Qτ2α(22)

holds for some constant Q > 0, some α ∈ (0, 1), and for all disks Bτ (ζ0).
Therefore, ∫

S2r(w0)∩Bτ (ζ0)

(|∇Y |2 + |∇Yt|2) du dv ≤ 2Qτ2α

for some Q > 0, α ∈ (0, 1), and for all disks Bτ (ζ0) and all t with |t| < t0 and
0 < t0 � 1.

Let Ω := B2r(w0), w0 ∈ I, and set

q(w) := |∇Y (w)|2 + |∇Yt(w)|2, φ(w) := η(w)ΔtY (w) for w ∈ S2r(w0)

and

q(u, v) := q(u,−v), φ(u, v) := φ(u,−v) for w = u+ iv ∈ B2r(w0) and v < 0.

Applying Lemma 2, we can infer that
∫

Ω∩Bτ (ζ0)

|q(w)||φ(w)|2 du dv ≤ 2MQDΩ(φ)(2r)ντ2α−ν .
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In particular, for ζ0 = w0 and τ = 2r, we have Ω = Bτ (ζ0) and therefore
∫

B2r(w0)

|q(w)||φ(w)|2 du dv ≤ 4MQDB2r(w0)(φ)(2r)2α

whence, for reasons of symmetry,
∫

S2r(w0)

η2|ΔtY |2(|∇Y |2 + |∇Yt|2) du dv

≤ 4MQ22αr2α

∫
S2r(w0)

|∇(ηΔtY )|2 du dv.

Moreover,

|∇(ηΔtY )|2 = |∇ηΔtY + η∇ΔtY |2

≤ 2η2|∇ΔtY |2 + 8r−2|ΔtY |2.

Setting

c0 := 25+2αMQ max{1,m−1
1 },(23)

we arrive at formula (8). From (38) in Section 2.6 it follows that Q is of the
form

(24) Q = cD(X),

where c depends on the diffeomorphism g and on the modulus of continuity
of X on B∪I. Hence also the constants c1, . . . , c6 are of the form cD(X) with
c depending on g and on the modulus of continuity of X.

Let us summarize the results (9)–(15), (22)–(24).

Theorem 2. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in the class C(Γ, S). Then,
for any d ∈ (0, 1), there is a constant c > 0 depending only on d, |g|3, D(X),
and the modulus of continuity of X such that

(25)
∫

Zd

(|∇2X|2 + |∇X|4) du dv ≤ c

holds true.

Applying Sobolev’s embedding theorem (see Gilbarg and Trudinger [1]),
we derive the following result from Theorem 2:

Theorem 3. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in C(Γ, S). Then, for any
d ∈ (0, 1) and for any p with 2 < p <∞, there is a constant c > 0 depending
only on d, p, |g|3, D(X), and the modulus of continuity of X such that
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(26)
∫

Zd

|∇X|p du dv < c

holds true. Moreover both Xu and Xv have an L2-trace on every compact
subinterval of I.

In brief, we have shown that any stationary minimal surface X in C(Γ, S)
is of class H2

2 ∩H1
p (Zd,R

3) for any d ∈ (0, 1) and any p with 2 < p <∞, and
Xu, Xv ∈ L2(I ′,R3) for every I ′ ⊂⊂ I.

Step 2. Continuity of the first derivatives at the free boundary. The aim of
this step is the proof of the following

Theorem 4. Let S be an admissible support surface of class C3. Then any
stationary point X of Dirichlet’s integral in C(Γ, S) is of class C1(B ∪ I,R3).

Proof. We choose w0 ∈ I, x0 = X(w0), ρ > 0, and a boundary coordinate
system {U, g} centered at x0 as before, and we set Y = g ◦X = (y1, y2, y3).
Then we have

Δyl + Γ l
jk (Y )Dαy

jDαy
k = 0.(27)

Hence, for any φ = (ϕ1, ϕ2, ϕ3) ∈ C∞
c (S2ρ(w0) ∪ I2ρ(w0),R3), the equation

(28) δE(Y, φ) = 0

is equivalent to
∫

I2ρ(w0)

gjk (Y )yj
vϕ

k du = 0.(29)

Case 1. ∂S is empty.
Then φ is admissible for (28) if ϕ3(w) = 0 on I2ρ(w0). We conclude

from (29) that

gj1(Y )yj
v = 0 a.e. on I2ρ(w0),

gj2(Y )yj
v = 0 a.e. on I2ρ(w0),(30)
y3 = 0 on I2ρ(w0)

since Theorem 3 implies that both Yu and Yv are of class L2(I ′,R3) for every
I ′ � I.

Case 2. ∂S is nonempty.
Then φ is admissible for (28) if ϕ3(w) = 0 on I2ρ(w0) and if ϕ1|I2ρ(w0) has

its support in I+
2ρ(w0) := I2ρ(w0) ∩ {y1(w) > σ}. We conclude from (29) that

gj1(Y )yj
v = 0 a.e. on I+

2ρ(w0),

gj2(Y )yj
v = 0 a.e. on I2ρ(w0),(31)
y3 = 0 on I2ρ(w0).
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Now we claim that, for S ∈ C3 and S ∈ C4, we can find an admissible
coordinate system {U, g} for S centered at x0 which is of class C2 or C3

respectively, and satisfies

(gjk (y1, y2, 0)) =

⎡
⎣ g11(y

1, y2, 0) 0 0
0 g22(y1, y2, 0) 0
0 0 1

⎤
⎦(32)

for all (y1, y2, 0) ∈ BR(0) if ∂S = ∅, or for all (y1, y2, 0) ∈ BR(0)∩{y1 ≥ σ} if
∂S �= ∅. Note, however, that we lose an order of differentiability if we pass from
S to g in case of the particular coordinate system {U, g} with property (32).
Let us postpone the construction of this coordinate system; first we want to
exploit (32) to derive regularity.

The special form of the metric tensor (gjk ) simplifies the equations (30) to

y1
v = 0
y2

v = 0 a.e. on I2ρ(w0) if ∂S = ∅,(33)
y3 = 0

and (31) takes the special form

y1
v = 0 a.e. on I+

2ρ(w0)

y2
v = 0 a.e. on I2ρ(w0) if ∂S �= ∅.(34)
y3 = 0 on I2ρ(w0).

Furthermore, we infer from Theorem 3 that

(35) ΔY ∈ Lp(S2ρ(w0),R3) for any p ∈ (1,∞),

provided that S is of class C3 which implies h ∈ C2 and Γ l
jk ∈ C0. In case 1,

we infer from (33) and (35) by means of classical results from potential theory
that Y ∈ H2

p (S2r(w0),R3) for any p ∈ (1,∞), any w0 ∈ I, and any r ∈ (0, ρ);
cf. Morrey [8], Theorem 6.3.7, or Agmon, Douglis, and Nirenberg [1, 2], for
the pertinent Lp-estimates.

Then we obtain Y ∈ C1,β(S2r(w0),R3) for all β ∈ (0, 1), taking a Sobolev
embedding theorem into account; cf. Gilbarg and Trudinger [1], Chapter 7, or
Morrey [8], Theorem 3.6.6.

If S ∈ C4, then h ∈ C3 and Γ l
jk ∈ C1, and consequently Γ l

jk (Y )Dαy
jDαy

k ∈
C0,β(S2r(w0)), l = 1, 2, 3. On account of (27) and (33), we then obtain

(36) ΔY ∈ C0,β(S2r(w0),R3) for any β ∈ (0, 1).

By classical potential-theoretic results of Korn–Lichtenstein–Schauder, we in-
fer from (33) and (36) that Y ∈ C2,β(S2r(w0),R3) holds for any β ∈ (0, 1)
and any r ∈ (0, ρ). A simple proof can be derived from the Korn–Privalov
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theorem; see Section 2.1, Lemma 6. Since h ∈ C3 and X = h ◦ Y , it follows
that

X ∈ C2,β(B ∪ I,R3).

Note that the same result can be derived under the weaker assumption
S ∈ C3 if we do not work with the special coordinate system (32) where
one derivative is lost. Then we have to use (36) and the more complicated
boundary conditions (30). Applying Morrey’s results (see [8], Chapter 6),
together with a strengthening by F.P. Harth [2], we obtain the desired result.

Thus, if ∂S is empty, we have proved a result which is much stronger than
Theorem 4:

Theorem 5. Let S be an admissible support surface of class C3, and sup-
pose that ∂S is empty. Then any stationary point X of Dirichlet’s integral
in C(Γ, S) is of class C2,β(B ∪ I,R3) for any β ∈ (0, 1).

Remark 1. If ∂S is nonempty, the same holds true if X|I does not touch ∂S.

Remark 2. In addition to Theorem 5, the Schauder–Lichtenstein estimates
together with our previous bounds (see Theorem 3) imply that there exists a
number c depending only on d ∈ (0, 1), β ∈ (0, 1), |g|3, D(X), and the modulus
of continuity of X such that

|X|2+β,Zd
≤ c(37)

holds true for any d ∈ (0, 1) and any β ∈ (0, 1).
These remarks complete our discussion in the case that ∂S is empty.

Now we turn to case 2, i.e. ∂S �= ∅. As before, we have (35), and therefore
in particular

Δy2, Δy3 ∈ Lp(S2ρ(w0)) for any p ∈ (1,∞),

and the second and third equation of (35) yield

y2
v = 0 and y3 = 0 a.e. on I2ρ(w0).

By the same reasoning as in case 1 we first obtain y2, y3 ∈ H2
p (S2r(w0)) for

p ∈ (1,∞) and r ∈ (0, ρ), and then

(38) y2, y3 ∈ C1,β(S2r(w0)) for any β ∈ (0, 1) and r ∈ (0, ρ).

(For this result, we only use S ∈ C3, whence h ∈ C2 and Γ l
jk ∈ C0.)

The function y1(w) satisfies

Δy1 ∈ Lp(S2ρ(w0)) for any p ∈ (1,∞),
(39)

y1
v = 0 a.e. on I+

2ρ(w0), y1 = σ on I2ρ(w0) \ I+
2ρ(w0).
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Fig. 2. Soap films attaching smoothly to the boundary of the support surface. Courtesy of

E. Pitts (above) and Institut für Leichte Flächentragwerke, Stuttgart – Archive (below)

It is not at all clear how to exploit (39) (cf., however, Section 2.9). Therefore
we shall instead use the conformality relations in complex notation,

(40) gjk (Y )yj
wy

k
w = 0,

in order to show that y1 ∈ C1(S2r(w0)) for some r ∈ (0, ρ). Our reasoning will
be similar as in the proof of Theorem 2 in Section 2.3 (see formulas (16)–(20)
of Section 2.3). Since (gjk ) is a positive definite matrix, there is some γ > 0
such that

g11(Y (w)) ≥ γ for all w ∈ S2ρ(w0).

Hence we can rewrite (40) as

(41)
{
y1

w +
g1L(Y )
g11(Y )

yL
w

}2

=
[
g1L(Y )
g11(Y )

yL
w

]2
− gLM (Y )

g11(Y )
yL

wy
M
w ,

where repeated indices L,M are to be summed from 2 to 3. If we introduce
the complex-valued function f(w) by
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(42) f(w) := y1
w +

g1L(Y )
g11(Y )

yL
w, w ∈ S2ρ(w0),

we infer from (41) and (38) as well as from Y ∈ C0,β(B ∪ I,R3) that

(43) f2 ∈ C0,β(S2r(w0)) for 0 < β < 1,

whence
f2 ∈ C0(S2r(w0)).

In addition, we have f ∈ C0(S2r(w0)). By the following lemma it will be seen
that f(w) is continuous on S2r(w0).

Lemma 3. Let f(w) be a complex-valued continuous function on an open
connected set Ω in C such that its square f2(w) has a continuous extension
to Ω. Suppose also that ∂Ω is non-degenerate in the sense that, for every
w0 ∈ ∂Ω, there exists a δ > 0 such that Ωδ(w0) := Ω ∩ Bδ(w0) is connected.
Then f(w) can continuously be extended to Ω.

Proof. Let w0 be an arbitrary point on ∂Ω. Then there exists a complex
number z such that f2(w) → z as w → w0, w ∈ Ω. If z = 0, then |f(w)|2 → 0,
and therefore f(w) → 0 as w → w0. If z �= 0, then we choose some ζ �= 0,
ζ ∈ C, such that z = ζ2. We pick an ε > 0 such that 0 < ε < |ζ|. Then there
exists a number δ > 0 such that Ωδ(w0) is connected, and that f maps Ωδ(w0)
into the disconnected set Bε(β)∪Bε(−β). Since f : Ω → C is continuous, the
image f(Ωδ(w0)) is connected, and therefore already contained in one of the
disks Bε(β), Bε(−β). Thus limw→w0 f(w) exists and is equal to β or −β. Set

F (w) :=

⎧⎨
⎩
f(w) w ∈ Ω

for
limw̃→w f(w̃) w ∈ ∂Ω

.

Clearly this function is a continuous extension of f to Ω, and the lemma is
proved. �

Thus we have found that the function f(w), defined by (42), is continuous
on S2r(w0) for some r ∈ (0, ρ). Since

(42′) g(w) :=
g1L(w)
g11(w)

yL
w

is Hölder continuous on S2r(w0), we infer that

y1
w = f(w)− g(w)

is continuous on S2r(w0), and therefore Y ∈ C1(S2r(w0),R3). This implies
X ∈ C1(B ∪ I,R3), and Theorem 4 is proved.
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However, we still have to verify that we can find a coordinate system {U, g}
centered at x0 which satisfies (32). To this end, we choose a neighbourhood U

of the point x0 ∈ U and an orthogonal parameter representation x = t(y1, y2),
(y1, y2) ∈ P , of S ∩U with x0 = t(0, 0). In other words, we have F = 0, where

E := |ty1 |2, F := 〈ty1 , ty2〉, G := |ty2 |2

are the coefficients of the first fundamental form of S. Moreover, set

W := |ty1 ∧ ty2 | =
√

EG− F 2 =
√

EG

and let
n :=

1
W

(ty1 ∧ ty2)

be the surface normal of S. If ∂S = ∅, we can assume that the parameter
domain P is given by P = KR where

KR := {(y1, y2) : |y1|2 + |y2|2 < R2}, 0 < R < 1.

If ∂S �= ∅, we can assume that S is part of a larger surface S0 such that S0∩U

is represented on KR in the form x = t(y1, y2), (y1, y2) ∈ KR, and that S ∩U

is given by x = t(y1, y2), (y1, y2) ∈ P = KR ∩ {y1 ≥ σ}, σ ∈ [−1, 0]. We can
also suppose that ∂S ∩ U is represented by t on KR ∩ {y1 = σ}. Choosing
R ∈ (0, 1) sufficiently small, we can in addition assume that

(44) h(y) := t(y1, y2) + y3n(y1, y2), y = (y1, y2, y3) ∈ BR(0),

provides a diffeomorphism of BR(0) = {y ∈ R
3 : |y| < R} onto some neigh-

bourhood of x0 which will again be denoted by U. Then h maps C ′
R or C ′ ′

R

onto S ∩ U if ∂S is void or nonvoid respectively, where

C ′
R = {y ∈ R

3 : y3 = 0, |y| < R},
C ′ ′

R = {y ∈ R
3 : y3 = 0, y1 ≥ σ, |y| < R}.

Moreover, we may assume that h can be extended to a diffeomorphism of
R

3 onto itself; let g be its inverse. Then {U, g} is an admissible boundary
coordinate system for S centered at x0, which is of class C2 or C3 if S is of
class C3 or C4, respectively (because of the special form (44) of h involving
the surface normal n of S, we unfortunately lose one derivate).

The components gjk = hl
yjhl

yk of the metric tensor are computed as

g11 = |hy1 |2 = E− 2y3L + (y3)2|ny1 |2,
g22 = |hy2 |2 = G− 2y3N + (y3)2|ny2 |2,
g33 = |hy3 |2 = |n|2 = 1,
g12 = g21 = 〈hy1 , hy2〉 = F − 2y3M + (y3)2〈ny1 , ny2〉,
g13 = g31 = 〈hy1 , hy3〉 = 〈ty1 , n〉+ y3〈ny1 , n〉 = 0,
g23 = g32 = 〈hy2 , hy3〉 = 〈ty2 , n〉+ y3〈ny2 , n〉 = 0
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for y ∈ BR(0). Hence we obtain

(gjk (y1, y2, 0)) =

⎡
⎣ E(y1, y2) 0 0

0 G(y1, y2) 0
0 0 1

⎤
⎦

for y ∈ C ′
R or C ′ ′

R respectively, and the proof of Theorem 4 is complete. �

Step 3. Regularity of class C1,1/2 at the free boundary.

Now we turn to the final part of our discussion. We are going to prove
Theorem 1. Our main tool will be

Lemma 4. Let f(u) be a complex-valued continuous function of the real vari-
able u on a closed subinterval I ′ of I, and set a(u) = Re f(u), b(u) = Im f(u).
We suppose that a(u)b(u) ≡ 0 on I ′, and that there are positive numbers α
and c such that α ≤ 1 and

(45) |f2(u1)− f2(u2)| ≤ c2|u1 − u2|2α for all u1, u2 ∈ I ′.

Then it follows that

(46) |f(u1)− f(u2)| ≤ 2c|u1 − u2|α for all u1, u2 ∈ I ′.

Proof. Let u1, u2 ∈ I ′, u1 �= u2, and set f1 := f(u1), f2 := f(u2).
(i) Let c|u1 − u2|α ≤ |f1 + f2|. Then we obtain

c|u1 − u2|α|f1 − f2| ≤ |f1 + f2||f1 − f2|
= |f2

1 − f2
2 | ≤ c2|u1 − u2|2α

and consequently
|f1 − f2| ≤ c|u1 − u2|α.

(ii) If |f1+f2| < c|u1−u2|α and Re f1 = Im f2 = 0, or else Re f2 = Im f1 =
0, then |f1 − f2| = |f1 + f2|, and consequently

|f1 − f2| < c|u1 − u2|α.

(iii) If |f1 +f2| < c|u1−u2|α and Im f1 = Im f2 = 0, then either |f1−f2| ≤
|f1 + f2|, and therefore

|f1 − f2| < c|u1 − u2|α,

or else |f1 − f2| > |f1 + f2|, whence

|a1 + a2| < |a1 − a2| for a1 := Re f1, a2 := Re f2.

Since a(u) is continuous on I ′, there is a number u0 between u1 and u2 such
that a(u0) := Re f0 = 0, where we have set f0 := f(u0). Thus each of the pairs
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{f1, f0} and {f2, f0} is either in case (i) or in case (ii), and by the previous
conclusions we obtain

|f1 − f0| ≤ c|u1 − u0|α and |f2 − f0| ≤ c|u2 − u0|α

whence
|f1 − f2| ≤ 2c|u1 − u2|α.

(iv) If |f1 + f2| < c|u1 − u2|α and Re f1 = Re f2 = 0, then we obtain by a
reasoning analogous to (iii) that

|f1 − f2| ≤ 2c|u1 − u2|α.

Because of a(u)b(u) ≡ 0 on I ′, we have exhausted all possible cases and the
lemma is proved. �

Proof of Theorem 1. We choose w0 ∈ I, x0 := X(w0), ρ > 0, r ∈ (0, ρ), and
a boundary coordinate system {U, g} with (32) as before, and set again Y =
g ◦X. As we have now assumed that S ∈ C4, we have g, h ∈ C3, and therefore
Γ l

jk ∈ C1, Γ l
jk (Y ) ∈ C1(S2r(w0)).

Since we have already treated the case ∂S = ∅, we can concentrate our
attention on the case ∂S �= ∅ where we have the boundary conditions (34).

Let f(w) be the complex-valued function defined by (42). Then, by (32),
it follows that

f(w) = y1
w(w) for all w ∈ I2r(w0).(47)

Furthermore, the equations (32) and (41) imply

(48) f2 = −g22(Y )
g11(Y )

(y2
w)2 − 1

g11(Y )
(y3

w)2 on I2r(w0).

Since y1
w = 1

2 (y1
u − iy1

v) and y2, y3 ∈ C1,β(S2r(w0)) for any β ∈ (0, 1) and
Y ∈ C1(S2r(w0),R3), we infer that f(u) with u ∈ I ′ := I2r(w0) satisfies
the assumptions of Lemma 4 for all α ∈ (0, 1/2). Consequently y1 is of class
C1,α(I2r(w0)) for all α ∈ (0, 1/2). Moreover, the Euler equation

Δy1 = −Γ 1
jk (Y )(yj

uy
k
u + yj

vy
k
v )

can be written in the form

Δy1 + ay1
u + by1

v = p+ q|∇y1|2

with functions a, b, p, q ∈ C0,β(S2r(w0)). Then an appropriate modification of
potential-theoretic estimates (see Gilbarg and Trudinger [1], Widman [1,2])
yields y1 ∈ C1,α(S2r(w0)) for all α ∈ (0, 1/2).

Next we use the Euler equations
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Δy2 = −Γ 2
jk (Y )(yj

uy
k
u + yj

vy
k
v )

Δy3 = −Γ 3
jk (Y )(yj

uy
k
u + yj

vy
k
v )

in S2r(w0)

and the boundary conditions

y2
v = 0, y3

v = 0 in I2r(w0)

for any r ∈ (0, ρ), as well as Y ∈ C1,α(S2r(w0),R3) to conclude that both y2

and y3 are of class C2,α(S2r(w0,R
3)) for any r ∈ (0, ρ).

By virtue of (48), the function f2 is Lipschitz continuous on I ′ = I2r(w0),
whence Lemma 4 implies that y1

w is of class C0,1/2(I ′). A repetition of the pre-
ceding argument with α = 1/2 yields y1 ∈ C1,1/2(S2r(w0)), and consequently
Y ∈ C1,1/2(S2r(w0),R3) for any r ∈ (0, ρ). �

2.8 Higher Regularity in Case of Support Surfaces
with Empty Boundaries. Analytic Continuation Across
a Free Boundary

In this section we want to consider stationary points of Dirichlet’s integral in
C(Γ, S) whose support surface S has no boundary. We shall prove that any
such surface X is of class Cm,β(B ∪ I,R3), provided that S is an admissible
support surface of class Cm,β with m ≥ 3 and β ∈ (0, 1). Moreover, X will
be seen to be real analytic on B ∪ I if S is real analytic, whence X can be
continued analytically across its free boundary I.

Our key tool is the following

Proposition 1. Let X be a stationary minimal surface in C(Γ, S) and suppose
that S is of class Cm,m ≥ 2. Then X is of class Cm−1,α(B ∪ I,R3) for any
α ∈ (0, 1). Moreover, if S is of class Cm,β for some m ≥ 2 and some β ∈ (0, 1),
then X is an element of Cm,β(B ∪ I,R3).

Proof. Recall that, according to Definition 1 in Section 1.4, a stationary min-
imal surface in C(Γ, S) is an element of C(Γ, S) ∩ C1(B ∪ I,R3) ∩ C2(B,R3)
which is harmonic in B, satisfies the conformality relations

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0,

and intersects S perpendicularly along its free trace Σ given by the curve
X : I → R

3.
Pick some w0 ∈ I, and set x0 := X(w0). Without loss of generality we can

assume that x0 = 0, and that for some cylinder

(1) C(R) := {(x1, x2, x3): |x1|2 + |x2|2 ≤ R2, |x3| ≤ R}

with 0 < R� 1, the surface S ∩ C(R) is given by
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(2) x3 = f(x1, x2), |x1|2 + |x2|2 ≤ R2,

where f is a scalar function of class Cm or Cm,β if S is of class Cm or Cm,β

respectively. Then S has the nonparametric representation

t(x1, x2) = (x1, x2, f(x1, x2)), (x1, x2) ∈ BR(0),

with the surface normal

(3) n =
(
− f1
W
,− f2

W
,

1
W

)
= (n1, n2, n3),

where

(4) f1 := fx1 , f2 := fx2 , W :=
√

1 + f2
1 + f2

2 .

Now we choose some r > 0 such that Sr(w0) is mapped by X into the cylinder
C(R). Since Xv is perpendicular to S, the vectors Xv(w) and n(X(w)) are
collinear for any w ∈ Ir(w0) := I ∩Br(w0). Consequently we have

Xv = 〈Xv, n(X)〉n(X) on Ir(w0),

that is,
xj

v = xk
vn

k(X)nj(X) on Ir(w0) for j = 1, 2, 3.

If we set
ξK := fK/W

2, K = 1, 2,

it follows that

(5) xK
v = −ξK(x1, x2){x3

v − fL(x1, x2)xL
v } on Ir(w0),K = 1, 2.

(Indices K,L,M, . . . run from 1 to 2; repeated indices K,L,M, . . . are to be
summed from 1 to 2.) Let us introduce the function y3(w) by

(6) y3(w) := x3(w)− f(x1(w), x2(w)), w ∈ Sr(w0).

Then we have the boundary condition “X(w) ∈ S,w ∈ I” transformed into

(7) y3(w) = 0 for any w ∈ Ir(w0),

and (5) can be written as

(8) xK
v = −ξK(x1, x2)y3

v on Ir(w0) for K = 1, 2.

Moreover, from (6) and ΔX = 0, we derive the equation

Δy3 = −fKL(x1, x2)Dαx
KDαx

L in Sr(w0).

Thus we have the two boundary value problems
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(∗) Δy3 = −fKL(x1, x2)Dαx
KDαx

L in Sr(w0), y3 = 0 on Ir(w0)

with fKL := fxKxL , and

(∗∗) ΔxK = 0 in Sr(w0), xK
v = −ξK(x1, x2)y3

v on Ir(w0),K = 1, 2.

Now we are going to bootstrap our regularity information by jumping back
and forth from (∗) to (∗∗), assisted by the relation (6). To this end, we note
that f ∈ Cm or Cm,β ; fK , ξ

K ∈ Cm−1 or Cm−1,β ; fKL ∈ Cm−2 or Cm−2,β if
S ∈ Cm of Cm,β , respectively.

We begin with the informationX ∈ C1(Sr(w0),R3) assuming that S ∈ C2.
Then we infer from (∗) that

Δy3 ∈ L∞(Sr(w0)), y3 = 0 on Ir(w0).

whence y3 ∈ C1,α(Sρ(w0)) for any α ∈ (0, 1) and ρ ∈ (0, r). In the following,
we shall always rename a number ρ with 0 < ρ < r in r; thus we actually
obtain a sequence of decreasing numbers r.

Now we can infer from (8) that xK
v ∈ C0,α(Ir(w0)), and it follows from (∗∗)

that xK ∈ C1,α(Sr(w0)),K = 1, 2. By virtue of (6), we have

(9) x3 = y3 + f(x1, x2)

whence X ∈ C1,α(Sr(w0),R3) for any α ∈ (0, 1).
Suppose now that S ∈ C2,β holds for some β ∈ (0, 1). Then we infer from

(∗) that
Δy3 ∈ C0,β(Sr(w0)), y3 = 0 on Ir(w0),

whence y3 ∈ C2,β(Sr(w0)). Now it follows from (∗∗) that xK
v ∈ C1,β(Ir(w0))

whence xK ∈ C2,β(Sr(w0)), K = 1, 2. Then we obtain from (9) that X ∈
C2,β(Sr(w0),R3).

Next we assume S ∈ C3, whence Δy3 ∈ C0,α(Sr(w0)), and (∗) yields
y3 ∈ C2,α(Sr(w0)) for all α ∈ (0, 1). Now (∗∗) implies xK

v ∈ C1,α(Ir(w0)), and
therefore xK ∈ C2,α(Sr(w0)) for any α ∈ (0, 1) whence X ∈ C2,α(Sr(w0)),
taking (9) into account.

In this way we can proceed to prove the proposition. �

Recall that any stationary point X of Dirichlet’s integral in C(Γ, S) is a
stationary minimal surface in C(Γ, S), provided that X is of class C1(B∪I,R3)
(cf. Section 1.4, Theorem 1). Hence from Proposition 1 we obtain the following
result, by taking also Theorem 4 of Section 2.7 into account:

Theorem 1. Let S be an admissible support surface of class Cm or Cm,β ,
m ≥ 3, β ∈ (0, 1). Then any stationary point of Dirichlet’s integral in C(Γ, S)
is of class Cm−1,α(B ∪ I,R3) for any α ∈ (0, 1) or of class Cm,β(B ∪ I,R3)
respectively.
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Remark 1. The result of Theorem 4 in Section 2.7 is a by-product of the
general discussion of that section, the main goal of which was to deal with
surfaces S having a nonempty boundary. If ∂S is void, we can use a different
method that avoids both the derivation of L2-estimates and the use of the
Lp-theory. This approach is more in the spirit of Section 2.3 and uses results
which are closely related to those of Sections 2.1 and 2.2. To this end we choose
Cartesian coordinates x = (x1, x2, x3) in the neighbourhood of 0 = X(w0) ∈ S
in such a way that S is given by a nonparametric representation

t(x1, x2) = (x1, x2, f(x1, x2)).

Moreover, we introduce the signed distance function

d(x) := ±dist(x, S)

and the foot a(x) of the perpendicular line from x onto S which has the
direction n(x), |n(x)| = 1. Then, for all x in a sufficiently small neighbourhood
of the origin 0, we have the representation

(10) x = a(x) + d(x)n(x).

If x ∈ S, then clearly x = a(x) = t(x1, x2). Note that a(x), d(x), n(x) are of
class Cm−1 if S ∈ Cm, i.e., their degree of differentiability will in general drop
by one. (In fact, it can be shown that d ∈ Cm.)

Let now X be the stationary point that we want to consider, and let
w0 ∈ I, 0 < r � 1. Then we extend X(w) from Sr(w0) to Br(w0) by defining
the extended surface Z(w) as

(11) Z(w) :=
{
X(w) for w ∈ Sr(w0),
a(X(w))− d(X(w))n(X(w)) for w ∈ Sr(w0).

It turns out that Z is a weak solution of an equation

(12) ΔZ = F (w)|∇Z|2 in Br(w0)

with some function F ∈ L∞(Br(w0),R3), i.e. we have

(13)
∫

Br(w0)

(〈∇Z,∇ϕ〉+ |∇Z|2〈F, ϕ〉) du dv = 0

for all ϕ ∈
◦

H1
2 (Br(w0),R3) ∩ L∞(Br(w0),R3). This is proved by first estab-

lishing (12) in Sr(w0) and in S∗
r (w0) := Br(w0) \ Sr(w0), and then multiply-

ing (12) by ϕ. We integrate the resulting equation over Sr(w0) ∩ {Imw > ε}
and S∗

r (w0) ∩ {Imw < −ε}, ε > 0, and perform an integration by parts. The
boundary terms on ∂Br(w0) vanish because of ϕ = 0, and the remaining
boundary terms cancel in the limit if we add the two equations and let ε→ 0;
the resulting equation will be (13). The cancelling effect is derived from a
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weak transversality relation which expresses the fact that X is a stationary
point of Dirichlet’s integral. Concerning details of the computation, we refer
the reader to Jäger [1], pp. 808–812.

Then, by a regularity theorem due to Heinz and Tomi [1] (see also the
simplified version of Tomi [1]), it follows that Z ∈ C1,α(Br′ (w0),R3) for some
α ∈ (0, 1) and some r′ ∈ (0, r), whence X ∈ C1,α(Sr(w0),R3), which was to
be proved.

Remark 2. Another way to avoid Lp-estimates, p > 2, is the approach of
Step 1 in Section 2.7. Assuming that S is of class C4, we can estimate the L2-
norms of the third derivatives of a stationary point X up to the free boundary
I, and this will imply X ∈ C1(B ∪ I,R3). In fact, one can estimate |DsX|L2

for any s ≥ 2 thus obtaining X ∈ Cs−2,α(B ∪ I,R3). Since one has to assume
S ∈ Cs+1 to keep this method going, we essentially lose 2 derivatives passing
from S to X. These derivatives can only be regained by potential-theoretic
methods such as used in the beginning of this section. For details, we refer to
Hildebrandt [3].

Analogously to Theorem 1, we obtain

Theorem 1′. Let S be an admissible support surface of class Cm or Cm,β ,
m ≥ 3, β ∈ (0, 1), and let B be the unit disk. Assume also that X : B → R

3

is a minimal surface of class C1(B ∪ γ,R3) which maps some open subarc
γ of ∂B into S, and which intersects S orthogonally along the trace curve
X : γ → R

3. Then X is of class Cm−1,α(B ∪ γ,R3) for any α ∈ (0, 1), or of
class Cm,β(B ∪ γ,R3) respectively.

Now we come to the second main result of this section.

Theorem 2. Let S be a real analytic support surface. Then any stationary
point of Dirichlet’s integral in C(Γ, S) is real analytic in B ∪ I and can be
extended across I as a minimal surface.

Note that in Theorem 2 the parameter domainB is the semidisk {Imw > 0,
|w| < 1} and I is the boundary interval {Imw = 0, |w| < 1}.

Analogously we have

Theorem 2′. Let S be a real analytic support surface in R
3, and let B be the

unit disk. Assume also that X is a minimal surface of class C1(B ∪ γ,R3)
for some open subarc γ of ∂B which is mapped by X into S, and suppose that
X intersects S orthogonally along the trace curve X : γ → R

3. Then X is real
analytic in B ∪ γ and can be extended across γ as a minimal surface.

Since both results are proved in the same way, it is sufficient to give the

Proof of Theorem 2. By Proposition 1 we already know that X is of class
C∞(B ∪ I,R3). Let X∗(w) be the adjoint minimal surface to X(w) in B,
and let
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f(w) := X(w) + iX ∗(w) = (f1(w), f2(w), f3(w))

be the holomorphic curve in C
3 with X = Re f and X∗ = Im f , satisfying

〈f ′(w), f ′(w)〉 = 0 on B.

We have to show that, for any u0 ∈ I, there is some δ > 0 such that f(w)
can be extended across Iδ(u0) = I ∩ Bδ(u0) as a holomorphic mapping from
Bδ(u0) into C

3. Without loss of generality we can assume that u0 = 0. Set
Bδ := Bδ(0), Iδ = Iδ(0) and Sδ := B ∩Bδ. We can also achieve that f(0) = 0
holds true. Moreover, by a suitable choice of Cartesian coordinates in R

3, we
can accomplish that S in a suitable neighbourhood U of 0 is described by

S ∩ U = {x = (x1, x2, x3) : x3 = ψ(x1, x2), |x1|, |x2| < R}

for some R > 0, where

ψ(0, 0) = 0, ψx1(0, 0) = 0, ψx2(0, 0) = 0.

Then there is some δ0 > 0 such that

|x1(u)| < R, |x2(u)| < R for all u with |u| ≤ δ0.

The vector fields TK(x) defined by

T1 := (1, 0, ψx1), T2 := (0, 1, ψx2)

are tangent to S. Moreover Xv is orthogonal to Xu, and Xu is tangent to S
along I. As Xv is orthogonal to S along I, we have

〈TK(X), Xv〉 = 0 on Iδ0 for K = 1, 2,

whence
〈TK(X), X∗

u〉 = 0 on Iδ0 for K = 1, 2,

and consequently

〈TK(X), Xu〉 = 〈TK(X), f ′〉 on Iδ0 , K = 1, 2.

This can be written as

xK
u + ψxK (x1, x2)x3

u =
d

dw
fK + ψxK (x1, x2)

d

dw
f3

on Iδ0 for K = 1, 2, and the identity

x3(u) = ψ(x1(u), x2(u)) for all u ∈ Iδ0

yields
−ψxK (x1, x2)xK

u + x3
u = 0 on Iδ0

(summation with respect to K from 1 to 2 !).
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Thus we obtain⎛
⎜⎝

1 0 ψx1(x1, x2)
0 1 ψx2(x1, x2)

−ψx1(x1, x2) −ψx2(x1, x2) 1

⎞
⎟⎠
⎛
⎝ x1

u

x2
u

x3
u

⎞
⎠(14)

=

⎛
⎝
f1

w + ψx1(x1, x1)f3
w

f2
w + ψx2(x1, x2)f3

w

0

⎞
⎠

on Iδ0 . In matrix notation we may write

(15) A(X)Xu = l(X, f ′) on Iδ0

with a 3× 3-matrix A(X), the determinant of which satisfies

detA(X) = 1 + ψ2
x1(x1, x2) + ψ2

x2(x1, x2) �= 0 on Iδ0

for 0 < δ0 � 1. Thus we obtain

(16) Xu = A−1(X)l(X, f ′) on Iδ0 .

Let us introduce the function F (w, z) for w ∈ C and

z = (z1, z2, z3) ∈ C
3 with |w| ≤ ρ0, Imw ≥ 0, and |z| ≤ ρ1

(i.e., x ∈ B3

ρ1
) by setting

(17) F (w, z) := A−1(z)l(z, f ′(w)).

The mapping F : Sρ0 ×B
3

ρ1
→ C

3 is of class C1 (differentiability meant in the
“real sense” with respect to w) and holomorphic on Sρ0 ×B3

ρ1
.

Then we can write (16) in the form

(18)
d

du
X(u) = F (u,X(u)) for all u ∈ Iδ0

if δ0 ∈ (0, ρ0] is sufficiently small. Since X(0) = 0, we obtain

(19) X(u) =
∫ u

0

F (t,X(t)) dt for all u ∈ Iδ0 .

By a standard reasoning this integral equation has not more than one solution
in C0(Iδ0 ,R

3) since F (w, z) satisfies a Lipschitz condition with respect to
z ∈ B

3

ρ1
, uniformly for all w ∈ Sρ0 . By the same reasoning, the complex

integral equation

(20) Z(w) =
∫ w

0

F (ω,Z(ω)) dω
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has exactly one solution Z(w), w ∈ Sδ, in the Banach space A(Sδ) of functions
Z : Sδ → C

3 which are continuous on Sδ and holomorphic in Sδ, provided that
δ ∈ (0, δ0] is chosen sufficiently small (cf. the proof of Theorem 3 in Section 2.3,
and in particular the footnote; one uses the standard Picard iteration). By the
uniqueness principle, we have

Z(u) = X(u) for all u ∈ Iδ,

whence
ImZ = 0 on Iδ.

Hence we can apply Schwarz’s reflection principle, thus obtaining that

Z(w) := Z(w) for w ∈ Bδ with Imw < 0

yields an analytic extension of Z across Iδ onto the disk Bδ centered at u0 = 0.
Moreover, f = X + iX ∗ is holomorphic in Sδ, continuous on Sδ, and

Re(f − Z) = 0 on Iδ.

Thus we can extend i(f − Z) analytically across Iδ by

i{f(w)− Z(w)} := −i{f(w)− Z(w)} for w ∈ Bδ with Imw < 0.

Hence
f(w) := 2Z(w)− f(w) for w ∈ Bδ with Imw < 0

extends f analytically across Iδ. Now f(w) is seen to be a holomorphic function
on Bδ, and X = Re f defines the harmonic extension of X to Bδ which, by
the principle of analytic continuation, has to be a minimal surface on Bδ. �

2.9 A Different Approach to Boundary Regularity

In this section we want to give a different proof of the Hölder continuity of
∇X where X is a stationary point of Dirichlet’s integral in C(Γ, S). This new
proof merely requires that S is of class C3. The first step is the same as in
Section 2.7 and need not be repeated: one estimates the L2-norms of ∇2X up
to the free boundary. The other two steps are replaced by a new argument:
We insert a suitable modification of the test function φ = Δ−t{η2ΔtY } into
the variational inequality

δE(Y, φ) ≥ 0.

This will lead us to a Morrey condition for ∇2X which, in turn, implies that
∇X is of class C0,α on B ∪ I for some α ∈ (0, 1

2 ]. The essential new feature of
this approach is that we shall explicitly use the first equation of Section 2.7,
(35) which states that y1

v = 0 a.e. on I+
2ρ(w0), and y1 = 0 on I2ρ(w0)\I+

2ρ(w0).
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Throughout this section we shall assume that S is an admissible support
surface of class C3 in the sense of Section 2.6, Definition 1.

As in Steps 2 and 3 of Section 2.1, we shall use a special boundary coor-
dinate system satisfying (32) of Section 2.7. Note that, therefore, the defining
diffeomorphisms g and h of the boundary coordinates are merely of class C2.

We also assume that we have the same situation as in Section 2.6, that is:
w0 ∈ I, x0 := X(w0), {U, g} is an admissible boundary coordinate system

centered at x0, h = g−1, Y := g(X), Y (w0) = 0; ρ > 0 is chosen in such a way
that |Y (w)| < R for all w ∈ S2ρ(w0); in addition, {U, g} is chosen in such a
way that (32) of Section 2.7 holds true; we have

y1(w) ≥ σ and y3(w) = 0 for all w ∈ I2ρ(w0),
y1

v(w) = 0 a.e. on I+
2ρ(w0) := I2ρ(w0) \ {w : y1(w) = σ};

finally, by Step 1 of Section 2.7, Y ∈ H2
2 ∩H1

4 (S2r(w0),R3) for any r ∈ (0, ρ),
as well as Y ∈ C0,α(S2r(w0),R3) for all α ∈ (0, 1).

Lemma 1. Let φ = (ϕ1, ϕ2, ϕ3) ∈ H1
2 ∩ L∞(S2ρ(w0),R3) be a test function

with ϕ3 = 0 on I2ρ(w0), supp φ � S2ρ(w0) ∪ I2ρ(w0), and suppose that

Xε := h(Y + εφ), 0 ≤ ε < ε0(φ),

is an admissible type II-variation of X in C(Γ, S). Then we have

(1)
∫

B

Dαy
jDαϕ

j du dv ≥
∫

B

Γ l
jk (Y )Dαy

jDαy
kϕl du dv.

For
ỹj
1 := D1y

j − bj , ỹj
2 := D2y

j − dj

with d1 = d2 = 0 and arbitrary constants b1, b2, b3, d3, we also have

(2)
∫

B

ỹj
αDαϕ

j du dv ≥
∫

B

Γ l
jk (Y )Dαy

jDαy
kϕl du dv.

Proof. Because of (32) in Section 2.7, we infer that also X∗
ε := h(Y + εΨ)

with Ψ = (ψ1, ψ2, ψ3), ψj := gjk (Y )ϕk, φ = (ϕ1, ϕ2, ϕ3) is an admissible type
II-variation of X in C(Γ, S), with ψ3 = 0 on I2ρ(w0) and

suppψ � S2ρ(w0) ∪ I2ρ(w0).

Hence
δE(Y, Ψ) ≥ 0,

and by computations similar to those in the beginning of Section 2.6, we
obtain (1).

Secondly, an integration by parts yields the identities
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∫
B

ỹj
αDαϕ

j du dv =
∫

B

Dα[ỹj
αϕ

j ] du dv −
∫

B

(Δyj)ϕj du dv

= −
∫

I

ỹj
2ϕ

j du−
∫

B

(Δyj)ϕj du dv

= −
∫

I

[(Dvy
1)ϕ1 + (Dvy

2)ϕ2] du−
∫

B

(Δyj)ϕj du dv

= −
∫

I

〈DvY, φ〉 du−
∫

B

〈ΔY, φ〉 du dv

=
∫

B

〈DαY,Dαφ〉 du dv =
∫

B

Dαy
jDαϕ

j du dv.

Hence (2) is a consequence of (1). �

Next we shall prove a generalized version of Poincaré’s inequality.

Lemma 2. For any γ > 0, there is a constant M > 0 with the following
property: If w0 ∈ R, r > 0, T2r := S2r(w0) \ Sr(w0), ψ ∈ H1

2 (T2r) and

H1{w ∈ I2r(w0) \ Ir(w0) : ψ(w) = 0} ≥ γr,

then ∫
T2r

ψ2 du dv ≤ Mr2

∫
T2r

|∇ψ|2 du dv.

Proof. Suppose that r = 1, γ > 0, and let Cγ be the class of functions
ψ ∈ H1

2 (T ), T := T2, with H1{w ∈ I2(w0) \ I1(w0) : ψ(w) = 0} ≥ γ. We
claim that there is some number M > 0 such that

(3)
∫

T

ψ2 du dv ≤M

∫
T

|∇ψ|2 du dv

is satisfied for all ψ ∈ Cγ . By a scaling argument we then obtain the assertion
of the lemma.

Suppose now that there is no M > 0 with (3). Then there is a sequence of
functions ψk ∈ Cγ , k ∈ N, such that

∫
T

ψ2
k du dv > k

∫
T

|∇ψk|2 du dv.

Without loss of generality we may assume that

(4)
∫

T

ψ2
k du dv = 1,

whence

(5)
∫

T

|∇ψk|2 du dv < 1/k, k ∈ N.
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Then, by a well-known compactness argument for bounded sequences in
Hilbert spaces, there is a subsequence {ψ′

n} of {ψk} which converges weakly
in H1

2 (T ) to some ψ ∈ H1
2 (T ). Then {ψ′

n} converges strongly to ψ both in
L2(T ) and in L2(∂T ), on account of Rellich’s theorem and a result by Morrey
(cf. [8], pp. 75–77). As Dirichlet’s integral is weakly lower semicontinuous, we
infer from (5) that ∫

T

|∇ψ|2 du dv = 0.

Hence there is a constant c such that

ψ(w) = c a.e. on T,

and, because of (4), we have c �= 0.
On the other hand, we have
∫

∂T

|ψ′
n − c|2 dH1 ≥

∫
∂T ∩{ψ′

n= 0}
|ψ′

n − c|2 dH1

= c2H1(∂T ∩ {ψ′
n = 0}) ≥ c2γ for all n ∈ N.

As
lim

n→∞

∫
∂T

|ψ′
n − c|2 dH1 = 0,

it follows that c2γ = 0, which is impossible since c �= 0 and γ > 0. �

Now we want to use the generalized Poincaré inequality to establish the ba-
sic estimates of the stationary surface X in C(Γ, S), or rather of its transform
Y = g(X).

Lemma 3. Set T2r := S2r(w0) \ Sr(w0), and

(6) ζ(r) :=
1
r2

min
{∫

T2r

|Duy
1|2 du dv,

∫
T2r

|Dvy
1|2 du dv

}
.

Then, for every δ ∈ (0, 1), there is a constant c = c(δ) > 0 such that the
inequality

(7)
∫

Sr(w0)

|∇2Y |2 du dv ≤ c

{
ζ(r) + r1+δ +

∫
T2r

|∇2Y |2 du dv
}

holds true for all r ∈ (0, ρ).

Proof. Choose a cut-off function η as in Section 2.7, and replace the test
function φ in Section 2.7, (1) by

(8) φ := Δ−t{η2(ΔtY −A)}, φ = (ϕ1, ϕ2, ϕ3),

where
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A = (A1, A2, A3) := (0, a, 0)

is a constant vector with an arbitrary constant a ∈ R. We claim that φ is
admissible for inequalities (1) and (2) in Lemma 1 provided that |t| � 1. In
fact,

Y (w) + εφ(w) = λ1Yt(w) + λ2Y−t(w) + (1− λ1 − λ2)Y (w) + μA,

λ1 := εt−2η2(w), λ2 := εt−2η2
−t(w), μ := εt−1[η2

t (w)− η2(w)].

Thus Y (w) + εφ(w) is a convex combination of the three points Y (w), Yt(w),
Y−t(w) which is translated by μA, that is, in direction of the y2-axis, provided
that 0 ≤ ε ≤ 1

2 t
2. Then, by a repetition of the reasoning used in the beginning

of Section 2.7, we infer that Xε := h(Y + εφ), 0 ≤ ε � 1, is an admissible
variation of X in C(Γ, S) which is of type II. Thus we can insert φ in (1),
whence ∫

B

Dαy
jDαΔ−t{η2(Δty

j −Aj)} du dv

≥
∫

B

Γ l
jk (Y )Dαy

jDαy
kΔ−t{η2(Δty

l −Al)} du dv.

If we multiply this inequality by −1 and perform an integration by parts (cf.
Section 2.7, Lemma 1), it follows that
∫

B

ΔtDαy
j{η2(ΔtDαy

j) + 2ηDαη(Δty
j −Aj)} du dv

≤ −
∫

B

Γ l
jk (Y )Dαy

jDαy
k{(Δ−tη

2)(Δty
l −Al) + η2

tΔ−tΔty
l} du dv.

As t tends to zero, we arrive at
∫

B

η2|∇DuY |2 du dv

≤
∫

B

2η|∇η||∇DuY ||DuY −A| du dv

+ c

∫
B

|∇Y |2η|∇η||DuY −A| du dv + c

∫
B

|∇Y |2η2|D2
uY | du dv.

Here and in the following, c will denote a canonical constant. Then, by means
of the inequality

2ab ≤ εa2 + ε−1b2,

we obtain that∫
B

η2|∇DuY |2 du dv ≤ ε

∫
B

η2|∇DuY |2 du dv +
c

ε

∫
B

η2|∇Y |4 du dv

+
c

ε

∫
B

|∇η|2|DuY −A|2 du dv.
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By choosing ε = 1/2, the first term on the right can be absorbed by the
left-hand side, and it follows that

∫
S2r(w0)

η2|∇DuY |2 du dv

≤ cr −2

∫
T2r

|DuY −A|2 du dv + c

∫
S2r(w0)

η2|∇Y |4 du dv.

From the Euler equation

Δyl + Γ l
jk (Y )Dαy

jDαy
k = 0

we infer the inequality

|D2
vY |2 ≤ |D2

uY |2 + c|∇Y |4,

and consequently
∫

S2r(w0)

η2|∇2Y |2 du dv(9)

≤ cr −2

∫
T2r

|DuY −A|2 du dv + c

∫
S2r(w0)

η2|∇Y |4 du dv.

Since we have already shown that

Y ∈ H2
2 ∩H1

p (Zd,R
3), 0 < d < 1,

for any p ∈ (1,∞), it follows that, for any δ ∈ (0, 1), there is a constant
c(δ) > 0 such that

(10)
∫

S2r(w0)

|∇Y |4 du dv ≤ c(δ)r1+δ

holds for all r ∈ (0, ρ). Moreover, we have
∫

T2r

|DuY −A|2 du dv =
∫

T2r

(|Duy
1|2 + |Duy

2 − a|2 + |Duy
3|2) du dv.

Poincaré’s inequality yields

(11)
∫

T2r

|Duy
3|2 du dv ≤ cr2

∫
T2r

|∇Duy
3|2 du dv

for all r ∈ (0, ρ) since y3 vanishes on I2ρ(w0). Moreover, for

a := −
∫

T2r

Duy
2 du dv,
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we infer from Poincaré’s inequality that

(12)
∫

T2r

|Duy
2 − a|2 du dv ≤ cr2

∫
T2r

|∇Duy
2|2 du dv

is satisfied for all r ∈ (0, ρ).
Combining inequalities (9)–(12), we find that

∫
Sr(w0)

|∇2Y |2 du dv(13)

≤ c(δ)
{
r−2

∫
T2r

|Duy
1|2 du dv +

∫
T2r

|∇2Y |2 du dv + r1+δ

}
.

By a similar reasoning, it follows that
∫

Sr(w0)

|∇2Y |2 du dv(14)

≤ c(δ)
{
r−2

∫
T2r

|Dvy
1|2 du dv +

∫
T2r

|∇2Y |2 du dv + r1+δ

}

holds true if we insert the test function

(15) φ := η2Δ−tΔtY

in inequality (2) of Lemma 1. We leave it to the reader to check that (15) is
an admissible test function for (2), and to carry out the derivation of (14) in
detail.

Then the desired inequality (7) is a consequence of (13) and (14). �

Now we are going to prove our main result.

Theorem 1. Let S be an admissible support surface of class C3, and suppose
that X is a stationary point of Dirichlet’s integral in C(Γ, S). Then there exists
some α ∈ (0, 1/2) such that X ∈ C1,α(B ∪ I,R3).

Proof. We have

y1
v = 0 a.e. on I+

2r(w0) := {w ∈ I2r(w0) : y1(w) > σ},
y1

u = 0 a.e. on I0
2r(w0) := {w ∈ I2r(w0) : y1(w) = σ}.

Hence, either
H1(I+

2r(w0) \ Ir(w0)) ≥ r

or
H1(I0

2r(w0) \ Ir(w0)) ≥ r

holds true, and we can apply Lemma 2 to ψ = y1
v or ψ = y1

u respectively,
obtaining
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∫
T2r

ψ2 du dv ≤ Mr2

∫
T2r

|∇ψ|2 du dv.

Thus the function ζ(r), defined by (6), will satisfy

ζ(r) ≤M

∫
T2r

|∇2y1|2 du dv for all r ∈ (0, ρ),

and we infer from formula (7) of Lemma 3 that

∫
Sr(w0)

|∇2Y |2 du dv ≤ c

{
r1+δ +

∫
S2r(w0)\Sr(w0)

|∇2Y |2 du dv
}

holds true for some δ ∈ (0, 1) and for all r ∈ (0, ρ). Adding the term

c

∫
Sr(w0)

|∇Y |2 du dv

to both sides of the last inequality and dividing the result by 1 + c, it follows
that ∫

Sr(w0)

|∇2Y |2 du dv ≤ θ

{∫
S2r(w0)

|∇2Y |2 du dv + r1+δ

}

holds true for some δ ∈ (0, 1) and for all r ∈ (0, ρ), where

θ :=
c

1 + c
;

that is, 0 < θ < 1. Hence, by Lemma 6 of Section 2.6, we infer the existence
of positive numbers k and α ≤ 1 such that

(16)
∫

Sr(w0)

|∇2Y |2 du dv ≤ kr2α for 0 < r < ρ,

whence by
|∇2X|2 ≤ c{|∇2Y |2 + |∇Y |4}

and (10) we obtain

∫
Sr(w0)

|∇2X|2 du dv ≤ k∗r2α for 0 < r < ρ

and some constant k∗ depending on ρ but not on r. By virtue of Mor-
rey’s Dirichlet growth theorem we infer that X ∈ C1,α(Zd,R

3), for any
d ∈ (0, 1). �
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2.10 Asymptotic Expansion of Minimal Surfaces
at Boundary Branch Points and Geometric
Consequences

We have seen that a minimal surface X : B → R
3 can be extended analytically

and as a minimal surface across those parts of ∂B which are mapped by X
into an analytic arc or which correspond to a free trace on an analytic support
surface. Therefore, at a branch point of such a part of ∂B, the minimal sur-
face X possesses an asymptotic expansion as described in Section 3.2 of Vol. 1.
In this section we want to derive an analogous expansion of X at boundary
branch points, assuming merely that Γ or S are of some appropriate class Cm.
Our main tool will be a technique developed by Hartman and Wintner that is
described in Chapter 3 in some detail. Presently we shall only sketch how the
Hartman–Wintner technique can be used to obtain the desired expansions at
boundary branch points.

Since in the preceding sections we have discussed stationary points of
Dirichlet’s integral in C(Γ, S), that is, stationary minimal surfaces with a
partially free boundary on I, we shall begin by considering such a minimal
surface X. Thus we can assume that we have the same situation as in Sec-
tion 2.6:

S is assumed to be an admissible support surface of class C3;w0 ∈ I, x0 :=
X(w0); {U, g} is an admissible boundary coordinate system centered at x0, h =
g−1, Y = (y1, y2, y3) := g(X), Y (w0) = 0; ρ > 0 is chosen in such a way that
|Y (w)| < R for all w ∈ S2ρ(w0); in addition, {U, g} is chosen in such a way
that (32) of Section 2.7 holds true. We have

y2
v = 0 and y3 = 0 in I2ρ(w0)

and
Δyl + Γ l

jk (Y )Dαy
jDαy

k = 0 in B.

Moreover, on account of

gjk (Y )yj
wy

k
w = 0 in B,

it follows that

(1) |∇y1|2 ≤ c{|∇y2|2 + |∇y3|2}

and

(2) |Δy2|+ |Δy3| ≤ c{|∇y2|2 + |∇y3|2}

holds is S2ρ(w0) for some constant c > 0.
In Section 2.7 we have also proved that y2 and y3 are both of class

C1,α(S2r(w0)) and of class H2
p (S2r(w0)) for any α ∈ (0, 1), p ∈ (1,∞), and
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r ∈ (0, ρ). Then the mapping Z(w) = (z1(w), z2(w), z3(w)) defined by
z1(w) := 0 and by

z2(w) := y2(w), z3(w) := y3(w) if Imw ≥ 0,
z2(w) := y2(w), z3(w) := −y3(w) if Imw < 0,

w = u+ iv ∈ Bρ(w0), w = u− iv, is of class C1,α(Bρ(w0),R3) and of class C2

in Bρ(w0) \ Iρ(w0). Furthermore, for some constant c > 0, we have

(3) |Zww | ≤ c|Zw| in Bρ(w0) \ Iρ(w0).

Let Ω be an arbitrary subdomain of Br(w0) for some r ∈ (0, ρ) which has
a piecewise smooth boundary ∂Ω, and let φ = (ϕ1, ϕ2, ϕ3) be an arbitrary
function of class C1(Ω,C3). Then, by an integration by parts, we obtain that

(4)
1
2i

∫
∂Ω

〈Zw, φ〉 dw =
∫

Ω

(〈Zw, φw〉+ 〈Zww , φ〉) d2w,

where dw = du+ i dv, d2w = du dv.
Combining (3) and (4), we arrive at the inequality

(5)
∣∣∣∣
∫

∂Ω

〈Zw, φ〉 dw
∣∣∣∣ ≤ 2

∫
Ω

|Zw|(|φw|+ c|φ|) d2w

which holds for all φ ∈ C1(Ω,R3) and for all Ω ⊂ Br(w0) with a piecewise
smooth boundary ∂Ω. But this relation is the starting point for the Hartman–
Wintner technique; cf. Chapter 3, Section 3.1.

Suppose now that w0 ∈ I is a branch point of X, that is,

|Xu(w0)| = 0 and |Xv(w0)| = 0.

Then we have
|Yu(w0)| = 0 and |Yv(w0)| = 0

and consequently
Yw(w0) = 0.

We claim that there is no r ∈ (0, ρ) such that Yw(w) = 0 for all w ∈ Sr(w0).
In fact, suppose that Yw(w) ≡ 0 on Sr(w0). Then we obtain Xw(w) ≡ 0 on
Sr(w0), whence Xw(w) ≡ 0 on B; but this is impossible for any stationary
point of the Dirichlet integral in C(Γ, S).

From Yw �≡ 0 on Sr(w0) for any r ∈ (0, ρ) it follows that Zw(w) �≡ 0 on
Sr(w0), on account of (1). Then by virtue of Theorem 1 of Section 3.1, there
is some vector P = (p1, p2, p3) �= 0 in C

3 and some number ν ∈ N such that

Zw(w) = P (w − w0)ν + o(|w − w0|ν) as w → w0.

Because of z1
w(w) ≡ 0, it follows that p1 = 0:
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P = (0, p2, p3).

Now we consider the function e(w), w ∈ Sρ(w0) \ {w0}, defined by

e(w) := (w − w0)−νf(w),

where f(w) is defined by (42) in Section 2.7. Since Y (w0) = 0 and

(gjk (0)) =

⎡
⎣ E0 0 0

0 G0 0
0 0 1

⎤
⎦ , E0 �= 0, G0 �= 0,

we infer from formula (41) in Section 2.7 that limw→w0e
2(w) exists, and that

lim
w→w0

e2(w) = − G0

E0
lim

w→w0
(w − w0)−2ν(y2

w(w))2

− 1
E0

lim
w→w0

(w − w0)−2ν(y3
w(w))2.

Then, by Lemma 3 of Section 2.7, we see that limw→w0e(w) does exist. Set
F := (f1, f2, f3), where

f1 := lim
w→w0

e(w) = lim
w→w0

(w − w0)−νy1
w(w), f2 := p2, f3 := p3.

It follows that

Yw(w) = F (w − w0)ν + o(|w − w0|ν) as w → w0,

where F ∈ C
3 satisfies F �= 0 and 〈〈F, F 〉〉 = 0, i.e.

gkl(0)fkf l = 0.

Because of Xw = hy(Y )Yw, we obtain the following result:

Theorem 1. Let S be an admissible support surface of class C3 and X be a
stationary point of Dirichlet’s integral in the class C(Γ, S). Assume also that
w0 ∈ I is a boundary branch point of X. Then there exist an integer ν ≥ 1
and a vector A ∈ C

3 with A �= 0 and

(6) 〈A,A〉 = 0

such that

(7) Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0.

We call ν the order of the branch point w0.
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From this expansion we can draw the same geometric conclusions as in
Section 3.2 of Vol. 1. To this end we write

A = 1
2 (α− iβ) with α, β ∈ R

3.

Then it follows that
|α| = |β| �= 0, 〈α, β〉 = 0

and

Xu(w) = αRe(w − w0)ν + β Im(w − w0)ν + o(|w − w0|ν),
(8)

Xv(w) = −α Im(w − w0)ν + βRe(w − w0)ν + o(|w − w0|ν)

as w → w0, whence

Xu(w) ∧Xv(w) = (α ∧ β)|w − w0|2ν + o(|w − w0|2ν) as w → w0.

This implies that the surface normal N(w), given by

N = |Xu ∧Xv|−1(Xu ∧Xv),

tends to a limit vector N0 as w → w0:

(9) lim
w→w0

N(w) = N0 = |α ∧ β|−1(α ∧ β).

Consequently, the Gauss map N(w) of a stationary minimal surface X(w) is
well-defined on all of B ∪ I as a continuous mapping into S2. Therefore the
surface X(w) has a well-defined tangent plane at every boundary branch point
on I, and thus at every point w0 ∈ B ∪ I.

Consider now the trace curve X : I → R
3 of the minimal surface X on the

supporting surface S. We infer from (8) that

Xu(w) = α(w − w0)ν + o(|w − w0|ν) as w → w0, w ∈ I

and, writing w = u,w0 = u0 for w,w0 ∈ I, we obtain for the unit tangent
vector

t(u) := |Xu(u)|−1Xu(u)

the expansion

(10) t(u) =
α

|α|
(u− u0)ν

|u− u0|ν
+ o(1) as u→ u0.

Therefore the nonoriented tangent moves continuously through any bound-
ary branch point u0 ∈ I. The oriented tangent t(u) is continuous if the order
ν of u0 is even, but, for branch points of odd order, the direction of t(u) jumps
by 180 degrees when u passes through u0.

Finally, by choosing a suitable Cartesian coordinate system in R
3, we

obtain the expansion
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x(w) + iy(w) = (x0 + iy0) + a(w − w0)ν+1 + o(|w − w0|ν+1),
(11)

z(w) = z0 + o(|w − w0|ν+1)

as w → w0, where X(w0) = (x0, y0, z0) and a > 0; see Section 3.2, (6), of
Vol. 1.

The same reasoning can be used for the investigation of X at a boundary
branch point w0 ∈ int C. We obtain again an expansion of the kind (7) with
some ν ≥ 1 and some A ∈ C

3, A �= 0, 〈A,A〉 = 0. As X : C → Γ is a monotonic
mapping, the tangent vector

t(ϕ) := |Xϕ(eiϕ)|−1Xϕ(eiϕ)

of this mapping has to be continuous, and we infer from (7) that ν is even,
provided that Γ is of class C2.

The same result can be proved for minimal surfaces X ∈ C(Γ ) which solve
Plateau’s problem for a closed Jordan curve Γ of class C2; cf. Chapter 4 of
Vol. 1 for the definition of C(Γ ). Thus we obtain

Theorem 2. Let Γ be a closed Jordan curve of class C2 in R
3, and suppose

that X ∈ C(Γ ) is a minimal surface spanning Γ . Then every boundary branch
point w0 ∈ ∂B is of even order ν = 2p, p ≥ 1, and we have the asymptotic
expansion

(12) Xw(w) = A(w − w0)2p + o(|w − w0|2p) as w → w0,

where A ∈ C
3, A �= 0, and 〈A,A〉 = 0.

W. Jäger [3] has pointed out that Γ ∈ C1,μ suffices to prove (12).

2.11 The Gauss–Bonnet Formula for Branched Minimal
Surfaces

In Section 1.4 of Vol. 1 we have derived the Gauss–Bonnet formula

(1)
∫

X

KdA +
∫

Γ

κg ds = 2π

for regular surfaces X ∈ C2(Ω,R3) defined on a simply connected bounded
domain Ω ⊂ C which map ∂Ω onto a Jordan curve Γ . The result as well as
the proof given in Section 1.4 of Vol. 1 remain correct if X does not map ∂Ω
bijectively onto a Jordan curve in R

3 provided that we replace formula (1) by

(2)
∫

X

K dA+
∫

∂X

κg ds = 2π

or, precisely speaking, by
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(3)
∫

Ω

K|Xu ∧Xv| du dv +
∫

∂Ω

κg|dX | = 2π.

Now we shall drop the assumption of regularity and, instead, admit finitely
many branch points in the interior and on the boundary of the parameter
domain Ω. To make our assumptions precise, we introduce the class PR(Ω)
of pseudoregular surfaces X : Ω → R as follows:

A surface X is said to be of class PR(Ω) if it satisfies the conditions
(i) X ∈ C2(Ω,R3) and

(4) |Xu| = |Xv|, 〈Xu, Xv〉 = 0.

(ii) There is a continuous function H(w) on Ω such that

(5) ΔX = 2HXu ∧Xv.

(iii) There is a finite set Σ0 of points in Ω such that Xw(w) �= 0 for all
w ∈ Ω \ Σ0. For any point w0 ∈ Σ0 there is an integer ν ≥ 1 and a vector
A ∈ C

3 satisfying A �= 0 and 〈A,A〉 = 0 such that

(6) Xw(w) = A(w − w0)ν + o(|w − w0|ν) as w → w0.

We call Σ0 the singular set of X ∈ PR(Ω).

Remark 1. The set Ω0 := {w ∈ Ω : Xw(w) �= 0} of regular points of X in
Ω is open and, by Section 2.6 of Vol. 1, equations (4) yield the existence of a
function H ∈ C0(Ω0) such that (5) holds true on Ω0. Moreover, the function
H is the mean curvature of X|Ω0 . Thus condition (ii) is a consequence of (i) if
we assume that H(w) can be extended from Ω0 to Ω as a continuous function.
This extension is possible if, for some reason, we know that X is a solution of

(7) ΔX = 2H(X)Xu ∧Xv

in Ω, where H ∈ C0(R3).
If, on the other hand, X ∈ C2(Ω,R3) is a solution of (4) and (7) for

some H ∈ C1(R3), it is sometimes possible to extend X to a function of class
C2(Ω,R3). For instance, the extendability can follow from suitable boundary
conditions (e.g. from Plateau-type conditions or from free boundary condi-
tions) as we have seen in the previous sections.

Finally if X(w) is a nonconstant surface such that (4) and (5) hold for
some H ∈ C0,α(Ω), 0 < α < 1, then the set of branch points of X defined
by Σ0 := {w ∈ Ω : Xw(w) = 0} is finite (and possibly empty), and, for any
w0 ∈ Σ0, the mapping X has an asymptotic expansion (6) as described in (iii).
For minimal surfaces we have stated this result in Section 2.10. The general
theory will be developed in Chapter 3, using Hartman–Wintner’s technique.

Now we can formulate the Gauss–Bonnet theorem for pseudoregular sur-
faces; we shall immediately state it for multiply connected domains.
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Theorem 1. Let Ω be an m-fold connected domain in C bounded by m closed
regular curves γ1, . . . , γm of class C∞, and let X : Ω → R

3 be a pseudoregular
surface with the area element dA = |Xu ∧Xv| du dv, the singular set Σ0, the
Gauss curvature K in Ω \Σ0, and the geodesic curvature κg of X|∂Ω\Σ0 . Sup-
pose also that the total curvature integral

∫
X
|K| dA of X exists as a Cauchy

principle value. Then we obtain the generalized Gauss–Bonnet formula

(8)
∫

X

K dA = 2π(2−m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w)−
∫

∂Ω

κg|dX |,

where σ′ := Σ0 ∩Ω is the set of interior branch points, σ′ ′ := Σ0 ∩ ∂Ω the set
of boundary branch points, and ν the order of a branch point w ∈ Σ0.

For the proof of (8) we shall employ the reasoning of Section 1.4 of Vol. 1.
To carry out these arguments in our present context, we need two auxiliary
results.

Lemma 1. Let a > 0, I = (0, a], and be f a function of class C1(I) such that
|f(r)| ≤ m holds for all r ∈ I and some constant m ≥ 0. Then there is a
sequence of numbers rk ∈ I satisfying rk → 0 and rkf

′(rk) → 0 as k →∞.

Proof. Otherwise we could find two numbers c > 0 and ε ∈ (0, a] such that

r|f ′(r)| ≥ c for all r ∈ (0, ε].

Then we would either have

(i) f ′(r) ≥ c/r for all r ∈ (0, ε]

or

(ii) f ′(r) ≥ −c/r for all r ∈ (0, ε].

In case (i) we obtain

c log
ε

r
= c

∫ ε

r

dr
r
≤
∫ ε

r

f ′(r) dr = f(ε)− f(r)

whence
log

1
r
≤ 2m

c
− log ε for all r ∈ (0, ε]

which yields a contradiction since log 1
r → ∞ as r → +0. Similarly case (ii)

leads to a contradiction. �
Lemma 2. Let Σ0 be the singular set of a map X ∈ PR(Ω). Then, for any
w0 ∈ Σ0, there is a sequence of positive radii rk, k ∈ N, tending to zero such
that

(9) lim
k→∞

∫
C(w0,rκ)

∂

∂r
log

√
Λdσ =

{
2πν if w0 ∈ Ω,
πν if w0 ∈ ∂Ω,

where r = |w−w0|, w = w0+reiϕ, ν is the order of the branch point w0 defined
by the expansion (6), and Λ = |Xu|2.
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Proof. Let us write C(w0, r) = {w ∈ Ω : |w − w0| = r} as

C(w0, r) = {w = w0 + reiϕ : ϕ1(r) ≤ ϕ ≤ ϕ2(r)}

for 0 < r ≤ ε� 1, and set

f(r) :=
∫ ϕ2(r)

ϕ1(r)

log|Xw(w)||w − w0|−ν dϕ.

By Lemma 1, there is a sequence rk → +0 such that rkf
′(rk) → 0. Since

|Xw| =
√
Λ/
√

2, we obtain

log |Xw(w)||w − w0|−ν = log
√
Λ(w)− log

√
2− ν log r

for w ∈ C(w0, r), whence

∂

∂r
log |Xw(w)||w − w0|−ν =

∂

∂r
log
√
Λ(w)− ν

r
.

Thus it follows that

rkf
′(rk) =

∫ ϕ2(rk)

ϕ1(rk)

(
∂

∂r
log

√
Λ

)
rk dϕ− ν

∫ ϕ2(rk)

ϕ1(rk)

dϕ

+ rkϕ
′
2(rk) log(|A|+ δk)− rkϕ

′
1(rk) log(|A|+ δ∗

k),

where {δk} and {δ∗
k} are two sequences tending to zero.

If w0 ∈ Ω, we can assume that ϕ1(r) = 0 and ϕ2(r) = 2π, whence

rkf
′(rk) =

∫
C(w0,rk)

(
∂

∂r
log

√
Λ

)
dσ − 2πν.

Because of rkf
′(rk) → 0, we then obtain

lim
k→∞

∫
C(w0,rk)

∂

∂r
log

√
Λdσ = 2πν.

If w0 ∈ ∂Ω, then the smoothness of ∂Ω implies

ϕ1(rk)− ϕ1(rk) → π and rk{|ϕ′
1(rk)|+ |ϕ′

2(rk)|} → 0 as k →∞,

whence

lim
k→∞

∫
C(w0,rk)

∂

∂r
log

√
Λdσ = πν. � 

Now we turn to the
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Proof of Theorem 1. Let σ′ = {w1, . . . , wN} and σ′ ′ = {w̃1, . . . , w̃M} be the
sets of interior branch points and of boundary branch points respectively. We
consider N + M sequences {r(j)α } and {r̃(j)β }, 1 ≤ α ≤ N, 1 ≤ β ≤ M , of
positive numbers tending to zero as j →∞. Set

Ωj : = {w ∈ Ω : |w − wα| > r(j)α , |w − w̃β | > r̃
(j)
β , 1 ≤ α ≤ N, 1 ≤ β ≤M}.

By formula (32) of Section 1.3 of Vol. 1 we have

−
∫

Ωj

K dA =
∫

Ωj

Δ log
√
Λdu dv

taking |Xu ∧Xv| = Λ into account, and an integration by parts yields

(10) −
∫

Ωj

K dA =
∫

∂Ωj

(
∂

∂n
log

√
Λ

)
dH1,

where n denotes the exterior normal to ∂Ωj . (Actually, we should write∫
Xj
K dA instead of

∫
Ωj
K dA, with Xj := X|Ωj .) According to Lemma 2,

the sequences {r(j)α } and {r̃(j)β } can be chosen in such a way that

(11)
∫

C(wα,r
(j)
α )

∂

∂n
log

√
ΛdH1 → 2πν(wα)

as j →∞, and that

(12)
∫

C(w̃β ,r̃
(j)
β )

∂

∂n
log

√
ΛdH1 → πν(w̃β),

where ν(wα) and ν(w̃β) denote the orders of branch points wα and w̃β , re-
spectively, which are defined by the corresponding expansions (6).

Moreover, let γk be one of the m closed curves, the union of which is
∂Ω, and let (a(σ), b(σ)), 0 ≤ σ ≤ L, be a parameter representation of γk

in terms of its parameter of arc length σ which orients ∂Ω in the positive
sense with respect to Ω. Then we have ȧ2 + ḃ2 = 1, a(0) = a(L), b(0) = b(L),
and n = (ḃ,−ȧ) is the exterior normal to γk with respect to Ω. The geodesic
curvature κg of the (oriented) curveX◦γk can, according to Vol. 1, Section 1.3,
(46) be computed from the formula

(13) κg

√
Λ = (ȧb̈− äḃ) +

∂

∂n
log

√
Λ.

From ȧ2 + ḃ2 = 1 we infer that

(14)
∫ L

0

(ȧb̈− äḃ) dσ = ±2π,
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where we have the plus-sign if γk is positively oriented with respect to its
interior domain while otherwise the minus-sign is to be taken. As ∂Ω consists
of the closed Jordan curves γ1, γ2, . . . , γm, we can assume that γ1 forms the
outer boundary curve of ∂Ω whereas γ2, . . . , γm lie in the interior domain of γ1.
Consequently we have the plus-sign for γ1 and the minus-sign for γ2, . . . , γm,
and we infer from (13) and (14) that

(15) −
∫ L

0

∂

∂n
log
√
Λdσ = 2πεk −

∫ L

0

κg

√
Λdσ,

where εk := 1 for k = 1 and εk := −1 for 2 ≤ k ≤ m. (If there are branch
points on γk, the integrals in γk are to be understood as Cauchy principal
values.) Adding (15) from k = 1 to k = n, we obtain

(16) −
∫

∂Ω

(
∂

∂n
log
√
Λ

)
dH1 = 2π(2−m)−

∫
∂Ω

κg|dX |.

Thus, letting j tend to infinity, we infer from (10) that

(17)
∫

X

K dA = 2π(2−m) + 2π
N∑

α=1

ν(wα) + π
M∑

β=1

ν(w̃β)−
∫

∂Ω

κg|dX |

provided that the integral
∫

X
K dA exists as principal value

(18)
∫

X

K dA = lim
j→∞

∫
Ωj

K dA. �

In various instances it is superfluous to assume that the principle value
(18) exists. Let us consider some instructive cases.

Suppose that X ∈ PR(Ω) is a minimal surface. Then we have K ≤ 0, and
we infer that

∫
X
K dA exists, but it can have the value −∞. If, however, X

maps ∂Ω topologically onto Γ =
⋃m

j=1 Γj where Γ1, Γ2, . . . , Γm are mutually
disjoint and regular Jordan curves of class C2, then the geodesic curvature
κg of X|∂Ω is bounded by |κg| ≤ κ where κ denotes the curvature of κ.
Hence

∫
∂Ω

κg|dX | exists and is finite, and we infer from (10) for j →∞ that∫
X
|K| dA exists and is finite. Thus Theorem 1 implies the following result.

Theorem 2. Let Ω be an m-fold connected, bounded domain in C whose
boundary consists of m closed, regular, disjoint curves γ1, . . . , γm. Secondly,
let

X ∈ C0(Ω,R3) ∩ C2(Ω,R3)

be a minimal surface on Ω which maps the γj topologically onto closed regular
and disjoint Jordan curves Γj , 1 ≤ j ≤ m, of class C2,α, 0 < α < 1, with the
curvature κ. Then

∫
X
|K| dA and

∫
∂Ω

κg|dX | =
∫

Γ
κg ds are finite, and we

have
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(19)
∫

X

K dA+
∫

Γ

κg ds = 2π(2−m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where ds = |dX | is the line element of Γ :=
⋃m

j=1 Γj , ν(w) is the order of a
branch point w ∈ Σ, σ′ := Ω ∩ Σ0, σ

′ ′ := ∂Ω ∩ Σ0, Σ0 is the set of branch
points of X in Ω, and κg is the geodesic curvature of Γ viewed as curve on
the surface X. In particular, equation (19) implies that

(20) 2−m+
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ 1
2π

∫
Γ

κ ds.

Here we have used the fact that the assumption Γ ∈ C2,α implies that
X ∈ PR(Ω), as we have seen in the previous sections of this chapter. We
recall that the order of boundary branch points has to be even since X maps
∂Ω topologically onto Γ .

Remark 2. Because analogous regularity results hold for solutions X ∈
C0(Ω, R

3) ∩ C2(Ω,R3) of

ΔX = 2H(X)Xu ∧Xv,

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0,

where H ∈ C0,α(R3) (see Section 2.3), we infer from

K ≤ H2 ≤ h2, h := sup
w∈Ω

H(X)

that
∫

X
|K| dA and

∫
Γ
κg ds are finite, and that we have formula (19) as well

as the estimate

(21) 2−m+
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ 1
2π

∫
Γ

κ ds+ h2A(X),

where A(X) = D(X) denotes the area of X which in certain situations can be
estimated in terms of the length of Γ by, say, by isoperimetric inequalities.

Remark 3. Let X ∈ C2 ∩ H1
2 (Ω,R3) be a minimal surface which is sta-

tionary with respect to a boundary configuration 〈S1, S2, . . . , Sm〉 consisting
of m regular, sufficiently smooth surfaces Sj whose principal curvatures are
bounded in absolute value by a constant k > 0, and suppose that Ω is an
m-fold connected bounded domain. Then X is of class PR(Ω) and intersects
S :=

⋃m
j=1 Sj perpendicularly. Moreover, the geodesic curvature κg of the free

trace Σ = X|∂Ω can be written as

(22) κg = ±κ∗
n,

where κ∗
n is the normal curvature of Σ viewed as curve(s) on S. By virtue of

|κ∗
n| ≤ k we then infer that
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|κg| ≤ k.

Therefore we obtain the Gauss–Bonnet formula

(23)
∫

X

K dA+
∫

∂Ω

κg|dX | = 2π(2−m) + 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where σ′ = Σ0 ∩ Ω, σ′ ′ = Σ0 ∩ ∂Ω, and Σ0 is the set of branch points w0 of
X, ν(w0) is the order of w0 ∈ Σ0, and we have the estimate

(24) 2−m+
∑
w∈σ′

ν(w) +
1
2

∑
w∈σ′ ′

ν(w) ≤ k

2π
L(Σ).

The length L(Σ) =
∫

Σ
|dX | of the free trace Σ can possibly be estimated by

other geometric expressions (see Sections 2.12 and 4.6).
If we want to state similar formulas for minimal surfaces solving partially

free boundary problems, we have to take the angles at the corners of ∂X into
account (see Section 1.4 of Vol. 1, (12) and (12′)). The necessary asymptotic
expansions can be found in Chapter 3.

Remark 4. For (disk-type) minimal surfaces X solving a thread problem (see
Chapter 5), the thread Σ has a fixed length L(Σ) and a constant geodesic
curvature κg if we view Σ as curve on X. Hence it follows that

∫
Σ

κg|dX | = κgL(Σ).

This observation can be used to draw interesting conclusions from the Gauss–
Bonnet formula.

Remark 5. It is not difficult to carry over the Gauss–Bonnet formula (14)
of Section 1.4 in Vol. 1 to minimal surfaces X : M → R

3 with branch points
which are defined on a compact Riemann surface M with nonempty bound-
ary. Suppose that ∂M consists of m disjoint, regular, smooth Jordan arcs
γ1, . . . , γm which are topologically mapped by X onto a system Γ of disjoint,
regular, smooth Jordan arcs Γ1, . . . , Γm, and let g be the genus of the ori-
entable surfaces X. Then we have∫

X

K dA+
∫

Γ

κg ds+ 4π(g − 1) + 2πm = 2π
∑
w∈σ′

ν(w) + π
∑

w∈σ′ ′

ν(w),

where σ′ and σ′ ′ denote the sets of interior and of boundary branch points,
and ν(w) is the order of any w ∈ σ′ ∪ σ′ ′.

2.12 Scholia

1. The first results concerning the boundary behaviour of minimal surfaces
are the reflection principles of Schwarz; see Sections 3.4 and 4.8 of Vol. 1.
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They insure that a minimal surface can be extended analytically across any
straight part of its boundary, or across any part of its boundary where the
surface meets some plane perpendicularly. Schwarz’s reasoning is described in
Section 3.4 of Vol. 1; cf. Schwarz [2], vol. I, p. 181. (As Schwarz mentions,
he learned this reasoning from Weierstrass.) Our discussion in Section 4.8 of
Vol. 1 follows the exposition in Courant [15], pp. 118–119 and pp. 218–219.

2. Another important result, found rather early, is Tsuji’s theorem that
a minimal surface X ∈ H1

2 (B,R3) has boundary values X|∂B of class
H1

1 (∂B,R3) if their total variation is finite, i.e., if
∫

∂B

|dX | <∞.

(Here we have used the parameter domain B := {w : |w| < 1}.) The im-
portance of this result, which remained unnoticed for a long time, has been
emphasized in the work of Nitsche, see [28]. Tsuji’s paper [1] appeared in 1942;
it is based on a classical result by F. and M. Riesz [1] from 1916 concerning the
boundary values of holomorphic functions. We have presented Tsuji’s result
in Section 4.7 of Vol. 1.

3. The result stated as Theorem 3 in Section 2.3 is H. Lewy’s celebrated
regularity result from 1951; see Lewy [5]. It is the direct generalization of
Schwarz’s reflection principle guaranteeing that any minimal surface can be
extended analytically across an analytic part of its boundary. In Courant’s
monograph [15], this problem was still quoted as an open question (see [15],
p. 118). Lewy succeeded in proving his result without using Tsuji’s theorem.
Our proof essentially agrees with that of Lewy except that we use the fact
that X is of class C∞ on B ∪ γ if γ is a subarc of ∂B which is mapped by
X into a real analytic arc Γ of R

3. One can, however, avoid the use this fact
(which follows from the results of Section 2.3); see Lewy [5], or Nitsche [28],
pp. 297–302.

4. Hildebrandt [1] has in a first paper derived a priori estimates for minimal
surfaces assuming them to be smooth up to the boundary. In conjunction with
Lewy’s result, one then obtains the following:

Let X ∈ C0(B,R3)∩H1
2 (B,R3) be a minimal surface which is bounded by

a closed Jordan arc Γ . Suppose that Γ ∈ Cm,μ,m ≥ 4, μ ∈ (0, 1), and that
there is a sequence of real analytic curves Γn with

(1) |Γ − Γn|Cm,μ → 0 as n→∞.

Assume also that there is a sequence of minimal surfaces Xn bounded by Γn

such that
|X −Xn|C0(B) → 0 as n→∞.

Then X is smooth up to the boundary, i.e., X ∈ Cm,μ(B,R3).

However, it might be possible that not every solution of Plateau’s problem
for Γ satisfies this approximation condition; it certainly holds true for isolated
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local minima of Dirichlet’s integral; cf. Hildebrandt [1]. By approximating a
given smooth curve Γ in the sense of (1) by real analytic curves Γn, and by
solving the Plateau problem for each of the approximating curves Γn, the
above result yields:

Every curve Γ ∈ Cm,μ,m ≥ 4, μ ∈ (0, 1), bounds at least one minimal
surface X of class Cm,μ(B,R3).

As a given boundary Γ may be spanning many (and, possibly, infinitely
many) minimal surfaces, this regularity result by Hildebrandt [1] is consid-
erably weaker than Theorem 1 of Section 2.3 whose global version can be
formulated as follows:

Let Γ ∈ C0(B,R3) be a minimal surface, i.e.,

ΔX = 0, |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in B,

which is bounded by some Jordan curve Γ of class Cm,μ with m ≥ 1 and
μ ∈ (0, 1). Then X is of class Cm,μ(B,R3).

Assuming that m ≥ 4, this result was first proved by Hildebrandt [3] in
1969. Some of the essential ideas of that paper are described in Step 1 of
Section 2.7. Briefly thereafter, Heinz and Tomi [1] succeeded in establishing
the result under the hypothesis m ≥ 3, and both Nitsche [16] and Kinderlehrer
[1] provided the final result for m ≥ 1. Warschawski [6] verified that X has
Dini-continuous first derivatives on B, if the first derivatives of Γ with respect
to arc length are Dini continuous; cf. also Lesley [1].

These results on the boundary behaviour of minimal surfaces hold for sur-
faces in R

n, n ≥ 2, and not only for n = 3; the proof requires no changes.
For n = 2 these results include classical theorems on the boundary be-
haviour of conformal mappings due to Painlevé, Lichtenstein, Kellogg [2], and
Warschawski [1–4]. (Concerning the older literature, we refer to Lichtenstein’s
article [1] in the Enzyklopädie der Mathematischen Wissenschaften; the most
complete results can be found in the papers by Warschawski.)

As Nitsche has described his technique to prove boundary regularity in
great detail in his monograph [28], Section 2.1, in particular pp. 283–284
and 303–312, we refer the reader to this source or to the original papers by
Nitsche and Kinderlehrer quoted before. Instead we have presented a method
by E. Heinz [15] which needs the slightly stronger hypothesis m ≥ 2. By this
method, Heinz could also treat H-surfaces, and Heinz and Hildebrandt [1]
were able to handle minimal surfaces in Riemannian manifolds; cf. Section 2.3.
The basic tools of Heinz’s approach are the a priori estimates for vector-valued
solutions X of differential inequalities

|ΔX| ≤ a|∇X|2

which we have derived and collected in Section 2.2. They follow from classical
results of potential theory which we have briefly but (more or less) completely
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proved in Section 2.1. The results of Section 2.2 and, in part, of Section 2.1
are taken from Heinz [2,5], and [15].

Closely related to this method is the approach of Heinz and Tomi [1] and
the very useful regularity theorem of Tomi [1].

The first regularity theorem for surfaces of constant mean curvature was
proved by Hildebrandt [4]; an essential improvement is due to Heinz [10]. The
method of Heinz [15], described in the proof of Theorem 2 in Section 2.3,
can be viewed as the optimal method. A very strong result was obtained by
Jäger [3].

5. The possibility to obtain asymptotic expansions of minimal surfaces and,
more generally, of H-surfaces by means of the Hartman–Wintner technique
was first realized by Heinz (oral communication). A first application appeared
in the paper by Heinz and Tomi [1].

6. In Theorem 2′ of Section 2.8 we proved that any minimal surface X,
meeting a real-analytic support surface S perpendicularly, can be extended
analytically across S. The proof basically follows ideas from H. Lewy’s paper
[4], published in 1951. There it was proved that any minimizing solution X of
a free boundary problem can be continued analytically across the free boundary
if S is assumed to be a compact real-analytic support surface. In fact, Lewy
first had to cut off a set of hairs from the minimizer by composing it with a
suitable parameter transformation before he could apply his extension tech-
nique. (Later on it was proved by Jäger [1] that the removal of these hairs is
not needed since they do not exist.)

7. Combining Lewy’s theorem with new a priori estimates, Hildebrandt [2]
proved that the Dirichlet integral possesses at least one minimizer in C(Γ, S)
which is smooth up to its free boundary provided that S is smooth and satisfies
a suitable condition at infinity which enables one to prove that solutions do
not escape to infinity. (A very clean condition guaranteeing this property was
later formulated by Hildebrandt and Nitsche [4].)

8. The first regularity theorem for minimal surfaces with a merely smooth,
but not analytic support surface S was given by Jäger [1]. He proved for
instance that any minimizer X of Dirichlet’s integral in C(Γ, S) is of class
Cm,μ(B ∪ I,R3), I being the free boundary of X, provided that S ∈ Cm,μ

and m ≥ 3, μ ∈ (0, 1). Part of Jäger’s method we have described or at least
sketched in Section 2.8. We have not presented his main contribution, the
proof of X ∈ C0(B ∪ I,R3), which requires S to be of class C2. Instead, in
Section 2.5, we have described a method to prove continuity of minimizers up
to the free boundary that needs only a chord-arc condition for S. Because of
the Courant–Cheung example, this result is the best possible one.

The approach of Section 2.5 follows more or less the discussion in Hilde-
brandt [9]. The sufficiency of the chord-arc condition for proving continuity
of minimizers up to the free boundary was almost simultaneously discovered
by Nitsche [22] and Goldhorn and Hildebrandt [1].
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Later on, Nitsche [30] showed that Jäger’s regularity theorem remains valid
if we relax the assumption m ≥ 3 to m ≥ 2. Moreover, if we assume S ∈ C2,
then every minimizer in C(Γ, S) is of class C1,α(B ∪ I,R3) for all α ∈ (0, 1).

9. The regularity of stationary surfaces in C(Γ, S) up to their free bound-
aries was – almost simultaneously – proved by Grüter-Hildebrandt-
Nitsche [1] and by Dziuk [3]. Both papers are based on the fundamental the-
sis of Grüter [1] (see also [2]) where interior regularity of weak H-surfaces
is proved. The basic idea of Grüter’s paper consists in deriving monotonicity
theorems similar to those introduced by DeGiorgi and Almgren in geometric
measure theory.

We have presented the method used in Grüter-Hildebrandt-Nitsche [1]; it
has the advantage to be applicable to support surfaces with nonvoid boundary
∂S. Moreover we do not have to assume that

lim
w→w0

dist(X(w), S) = 0 for any w0 ∈ I

as in Dziuk [5–7]. On the other hand, Dziuk’s method is somewhat simpler
than the other one since it reduces the boundary question to an interior reg-
ularity problem by applying Jäger’s reflection method. This interior problem
can be dealt with by means of the methods introduced in Grüter’s thesis.

10. The results in Section 2.7 concerning the C1,1/2-regularity of stationary
minimal surfaces with a support surface S having a nonempty boundary ∂S
are taken from Hildebrandt and Nitsche [1] and [2].

11. The proof of Proposition 1 in Section 2.8 is more or less that of Jäger
[1], pp. 812–814.

12. The alternative method to attain the result of Step 2 in Section 2.7,
given in Section 2.9, was worked out by Ye [1,4]. Ye’s method is a quantitative
version of the L2-estimates of Step 2 in Section 2.7 which is based on an idea
due to Kinderlehrer [6].

13. Open questions: (i) The regularity results for stationary minimal sur-
faces X with a free boundary are not yet in their final form. In particular
one should prove that X is of class C1,μ up to the free boundary if S ∈ C1,μ

∗ ,
and that X ∈ C0,α for some α ∈ (0, 1) if S satisfies a chord-arc condition
(this is only known for minimizers of the Dirichlet integral). Here we say that
S ∈ C1,μ

∗ if S ∈ C1,μ and if S satisfies a uniformity condition (B) at infinity
(see Section 2.6). Dziuk [7] and Jost [8] proved that X is of class C1,μ up
to the free boundary, 0 < μ < 1, if S is of class C2 and satisfies a suitable
uniformity condition.

(ii) It would be desirable to derive a priori estimates for stationary minimal
surfaces, in particular for those of higher topological type. As in general there
are no estimates depending only on the geometric data of the boundary con-
figuration (cf. the examples in Section 2.6), one could try to derive estimates
depending also on certain important data of the surfaces X in consideration
such as the area (= Dirichlet integral) or the length of the free trace.
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Such estimates could be useful for approximation theorems, for results
involving the deformation of the boundary configuration, for building a Morse
theory, and for deriving index theorems.

Note, however, that a priori estimates depending only on boundary data
can be derived in certain favourable geometric situations, for instance if the
support surface is only mildly curved. Results of this kind were found by Ye
[2]. Let us quote a typical result:

Suppose that S is an orientable and admissible support surface of class
C3,α, α ∈ (0, 1), and let n0 be a constant unit vector and σ be a positive
number, such that the surface normal n(p) of S satisfies

(2) 〈n(p), n0〉 ≥ σ for all p ∈ S.

Then the length l(Σ) of the free trace Σ of a stationary point X of Dirichlet’s
integral in C(Γ, S) without branch points on the free boundary I is estimated
by the length of Γ via the formula

(3) l(Σ) ≤ l(Γ )/σ,

and the isoperimetric inequality yields the upper bound

(4) D(X) ≤ 1
4π

(1 + σ−2)l2(Γ )

for the Dirichlet integral of X.
Let us sketch the proof of (3), which is nothing but a simple variant of the

reasoning used in Section 4.6.
By means of Green’s formula we obtain

(5) 0 =
∫

B

ΔX dudv = −
∫

I

Xv du+
∫

C

Xr dϕ

with w = u+ iv = reiϕ, where B stands for the usual semidisk. Because of (2)
and of

Xv = |Xv|n(X) on I

(where we possibly have to replace n by −n),

|Xr| = |Xϕ| on C = ∂B \ I,
|Xu| = |Xv| on I,

we then obtain

σl(Σ) = σ

∫
I

|Xu| du =
∫

I

σ|Xv| du

≤
∫

I

|Xv|〈n(X), n0〉 du =
∫

I

〈Xu, n0〉 du

=
∫

C

〈Xr, n0〉 dϕ ≤
∫

C

|Xr| dϕ =
∫

C

|Xϕ| dϕ = l(Γ ),
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i.e.,
σl(Σ) ≤ l(Γ ).

This proof of (3), (4) is not quite correct but it can easily be rectified by the
reasoning in Section 4.6. We leave it to the reader to carry out the details. �

By way of an example Ye showed that the assumption σ > 0 in (2) is
necessary if one wants to bound l(Σ); see Ye [2], p. 101.

14. Now we briefly describe Courant’s example of a configuration 〈Γ, S〉
with a continuous supporting surface S and a rectifiable Jordan arc Γ with end
points on S which bounds infinitely many solutions of the corresponding free
boundary problem with a discontinuous and even nonrectifiable trace curve;
see Courant [15], p. 220. We firstly select a sequence of numbers εn > 0, n ∈ N,
with

∑∞
n=1 εn < 1/4, and then we define set An, Bn, C

1
n, C

2
n, D

1
n, D

2
n as follows:

An :=
{

(x, y, z) : z = 0, |x| < 1,
∣∣∣∣y − 1

n

∣∣∣∣ < ε3n

}
,

Bn :=
{

(x, y, z) : z = −εn, |x| < 1,
∣∣∣∣y − 1

n

∣∣∣∣ ≤ εn

2

}
,

C1
n :=

{
(x, y, z) : |x| ≤ 1, z =

2
2ε2n − 1

(
y − 1

n
− ε3n

)
,−εn ≤ z ≤ 0

}
,

C2
n :=

{
(x, y, z) : |x| ≤ 1, z =

2
1− 2ε2n

(
y − 1

n
+ ε3n

)
,−εn ≤ z ≤ 0

}
,

D1,2
n := the compact region in {x = ±1} which is bounded by

{x = ±1} ∩ (∂An ∪ ∂Bn ∪ ∂C1
n ∪ ∂C2

n),

see Fig. 1.

Fig. 1. Cross section of the sets An, Bn, C1
n, C2

n at the levels x = ±1

Set

S1 := {z = 0} \
∞⋃

n=1

An,

and define S by

S := S1 ∪
∞⋃

n=1

[Bn ∪ C1
n ∪ C2

n ∪D1
n ∪D2

n]

(see Fig. 2).
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Fig. 2. Cross sections of the surface S at the levels x = 0, ±1

Then we observe the following: If Γ1 denotes the straight segment {z =
0, x = 0, |y − 1| ≤ ε31}, then the associated free boundary problem P(Γ1, S)
has at least two solutions, namely the representations of the sets

A+
1 := {z = 0, 0 ≤ x ≤ 1, |y − 1| ≤ ε31}

and
A−

1 := {z = 0,−1 ≤ x ≤ 0, |y − 1| ≤ ε31}.
In fact, there is still another stationary but not minimizing surface bounded
by Γ1 and S, namely the surface describing the compact region in {x = 0}
which is bounded by {x = 0} ∩ (Γ1 ∪B1 ∪ C1

1 ∪ C2
1 ). Similarly, if we set

Γn :=
{
z = 0, x = 0,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3n

}
,

then we obtain at leat two minimizing surfaces in C(Γn, S) which are deter-
mined by the sets

A+
n :=

{
z = 0, 0 ≤ x ≤ 1,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3n

}

and

A−
n :=

{
z = 0,−1 ≤ x ≤ 0,

∣∣∣∣y − 1
n

∣∣∣∣ ≤ ε3n

}
.

Fig. 3. The curve Γn lifted

Now let us lift the curves Γn to a height z = εq
n, q ≥ 4, and connect the

endpoints P 1
n = (0, 1

n + ε3n, ε
q
n), P 2

n = (0, 1
n − ε3n, ε

q
n) via vertical segments

with S, see Fig. 3. Denoting again the lifted curves together with the vertical
segments by Γn, it is reasonable to expect the existence of at least two solutions
X1

n, X
2
n ∈ C(Γn, S) for the problem P(Γn, S), provided that q is large enough.
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In particular, we can expect that the minimal surfaces X1
n, X

2
n converge to

A+
n and A−

n respectively, if q tends to infinity.
At a small height z = ε < εq

n+1, we connect Γn and Γn+1 with a straight
line segment parallel to {z = 0} and omit the corresponding parts of the
vertical segments, see Fig. 4.

Fig. 4. Cross section of the boundary configuration 〈Γn,n+1, S〉 at the level x = 0

This way we obtain a Jordan arc Γn,n+1 with endpoints on S. Furthermore,
let us assume the validity of the following bridge principle:

Given any two area-minimizing minimal surfaces Xn ∈ C(Γn, S) and
Xn+1 ∈ C(Γn+1, S), there exists an area-minimizing minimal surface Yε ∈
C(Γn,n+1, S) which converges (in a geometric sense) to the union of Xn(B),
Xn+1(B) as ε tends to zero.

By means of this heuristic principle we obtain at least four stationary
minimal surfaces in C(Γn,n+1, S) combining X1

n with X1
n+1 or X2

n+1, and
X2

n with X1
n+1 or X2

n+1, respectively. Similarly we now define the Jordan
arcs Γn,n+2, . . . , Γn,n+k which bridge the ditches An, An+1, . . . , An+k. Then
Γn,n+k and S bound at least 2k+1 area-minimizing minimal surfaces which
are stationary in C(Γn,n+k, S). Finally, let Γ := Γ1,∞ denote the rectifiable
Jordan arc which bridges all the ditches and connects the points (0, 0, 0) and
(0, 1 + ε1, 0). Then it follows that there are infinitely (and even nondenu-
merably) many stationary minimal surfaces in C(Γ, S) each of which has a
discontinuous and nonrectifiable trace curve.

Let us add that the previous reasoning is by no means rigorous; thus this
example by Courant is merely of heuristic value.

15. Complementary to the existence result for the obstacle problem
P(E,C), which we have described in the Scholia of Section 4 in Vol. 1 (see
also Chapter 4 of the present volume), we want to mention some regularity
properties of solutions for P(E,C), see also Chapter 4.

The problem P = P(E,C) is a special case of a parametric obstacle
problem which was first treated by Tomi [3,4], Hildebrandt [12,13], and
Hildebrandt and Kaul [1]. Tomi’s results are based on important earlier
work by Lewy and Stampacchia [1,2], whereas Hildebrandt’s approach uses
the difference-quotient technique and some important observations due to
Frehse [4].
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For nonparametric obstacle problems we refer the reader to the treatise
of Kinderlehrer and Stampacchia [1] and to the literature quoted there. Here
we shall restrict our attention to the two-dimensional parametric case, basi-
cally following the papers by Hildebrandt and Hildebrandt-Kaul cited above.
Consider the integral

E(X) =
∫

B

{gij [Xi
uX

j
u +Xi

vX
j
v ] + 〈Q(X), Xu ∧Xv〉} du dv,

and the class C = C(K,C ∗) := C ∗ ∩ H1
2 (B,K), where C ∗ stands for C ∗(Γ )

or C ∗(Γ, S) respectively and K ⊂ R
3 denotes some closed set. Let us also

introduce the variational problem

P(E,C) : E → min in C.

Using the abbreviation

e(x, p) = gij (x){pi
1p

j
1 + pi

2p
j
2}+ 〈Q(x), p1 ∧ p2〉

for (x, p) ∈ K × R
6, p = (p1, p2), we assume that, for suitable constants

0 < m0 ≤ m1, the coerciveness condition

(6) m0|p|2 ≤ e(x, p) ≤ m1|p|2

holds true for all (x, p) ∈ K × R
6.

Recall that the existence of a solution of P(E,C) can be proved under
the mere assumption that K be a closed set. If we want to prove regularity,
say Hölder continuity, we clearly have to add further assumptions on K. The
concept of quasiregularity turns out to be of use.

Definition 1. We call a set K ⊂ R
3 quasiregular if it is closed and if there

are positive numbers δ0, δ1 and d such that for any point x0 ∈ K, there exist a
compact convex set K∗ and a C1-diffeomorphism g of an open neighbourhood
of K∗ which maps K∗ onto K ∩ Bd(x0), Bd(x0) = {x ∈ R

3 : |x − x0| < d},
such that the matrix H(y) = ( ∂g

∂y )T · ( ∂g
∂y ) satisfies

(7) δ0|ξ|2 ≤ ξH(y)ξ ≤ δ1|ξ|2

for all (y, ξ) ∈ K∗ × R
3. Here ∂g

∂y denotes the Jacobi matrix of g and ( ∂g
∂y )T

stands for its transpose.

Remarks. 1. Obviously, each closed convex set in R
3 with nonvoid interior

is quasiregular. Also, each compact three-dimensional submanifold of R
3 with

C1-boundary is quasiregular.
2. The preceding Definition 1 and the following Theorem 1 extend to the

case where K denotes some subset of R
N , N ≥ 3.

3. For our purposes it would be sufficient to assume that g is some bi-
Lipschitz homeomorphism.
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Theorem 1. Suppose that (6) holds with functions gij ∈ C0(K,R), gij = gji ,
and Q ∈ C0(K,R3). In addition let K ⊂ R

3 be a quasiregular set such that
C(K,C∗) = C ∗ ∩ H1

2 (B,K) is nonempty. Then each solution X of P(E,C)
satisfies a Morrey condition of the type

(8) DBr(w0)(X) ≤ DBR(w0)(X)
( r
R

)2μ

in 0 < r ≤ R, for each w0 ∈ B1−R(0) and all R ∈ (0, 1) and some constant
μ > 0. Hence X is of class C0,μ(B,R3).

Furthermore, if C ∗ = C ∗(Γ ), then X is also of class C0(B,R3), and for
C ∗ = C ∗(Γ, S) we infer that X ∈ C0(B \ I,R3).

The idea for proving Hölder continuity is to convexify the obstacle K
locally by using the definition of quasiregularity, and then to fill in harmonic
functions with the right boundary values. Elementary properties of harmonic
functions will yield the estimate (8). The reasoning is similar to the argument
used in the proof of Theorem 1, Section 2.5; for details we refer the reader to
the original paper by Hildebrandt and Kaul [1].

We now give a brief discussion of higher regularity properties of X. First
we need the following

Definition 2. A set K ⊂ R
3 is of class Cs if K is the closure of an open set

in R
3, and if, for each boundary point x0 ∈ ∂K, there exists a neighbourhood

U of x0 and a Cs-diffeomorphism ψ of R
3 onto itself which maps U ∩K onto

B+
1 (0) = {x ∈ R

3 : |x| < 1, x3 > 0},

U ∩ ∂K onto
B0

1(0) = {x ∈ R
3 : |x| < 1, x3 = 0},

and x0 onto 0.

We shall also assume that the integrand e(x, p) has the following prop-
erty (E):

There exist some open set M ⊂ R
3 with K ⊂ M and functions Q ∈

C2(M,R3) and G = (gjk )j,k=1,2,3 ∈ C2(M,R) with gjk = gkj such that

e(x, p) =
2∑

α=1

pαG(x)pα + 〈Q(x), p1 ∧ p2〉

and

m0|p|2 ≤ e(x, p) ≤ m1|p|2 for all (x, p) ∈ K × R
6, p = (p1, p2).

Theorem 2. Suppose that e(x, p) has property (E), and let K be quasireg-
ular of class C3. Then each solution X ∈ C(K,C ∗) of P(E,C) is of class
H2

s (B′,R3) ∩ C1,α(B,R3) for all B′ � B and for all s ∈ [1,∞) and all
α ∈ (0, 1).
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Remarks. 1. Hölder continuity of the first derivatives is still valid for solu-
tions of the elliptic variational problem

∫
Ω

f(u, v,X(u, v),∇X(u, v)) du dv → min in C = H1
2 (Ω,K) ∩ C ∗,

with a regular Lagrangian f : Ω × M × R
2n → R, where M ⊂ R

N denotes
some open set containing K, and Ω ⊂ R

2 denotes the domain of definition.
For details we refer to Hildebrandt [12,13].

2. Assuming the conditions of Theorem 2, Gornik [1] proved that each
solution X ∈ C = C(K,C ∗) of P(E,C) is in fact of class C1,1(B,R3). Simple
examples show that this result will in general be the best possible one. Gornik’s
work is based on fundamental results due to Frehse [1], Gerhardt [1], and
Brézis and Kinderlehrer [1] concerning C1,1-regularity of solutions of scalar
variational inequalities.

16. The first to estimate the total order of branch points of a minimal
surface via the Gauss–Bonnet formula was Nitsche [6] who reversed an idea
of Sasaki [1]. R. Schneider [1] later established the formula

1 +
∑
w∈σ′

ν(w) ≤ 1
2π
κ(Γ )

for all disk-type minimal surfaces X : B → R
3 which are continuous in B and

map ∂B monotonically (and hence topologically) onto an arbitrary closed
Jordan curve Γ which has a generalized total curvature κ(Γ ).

The method of Section 2.11 and the generalization of the Nitsche–Sasaki
formula is taken from a paper by Heinz and Hildebrandt [2].

17. Let Ω ⊂ R
2 be an open connected domain with smooth boundary

and suppose ψ ∈ C2(Ω) satisfies maxΩ ψ > 0 and ψ < 0 on ∂Ω. Consider
the convex set of comparison functions Kψ := {v ∈ H1

2 (Ω) : v ≥ ψ in Ω,
v = 0 on ∂Ω} and a solution u ∈ Kψ of the variational problem

D(u) :=
1
2

∫
Ω

|∇u(x)|2 dx→ min in Kψ.

One readily verifies that a solution u ∈ Kψ satisfies the variational inequality

(9)
∫

Ω

DiuD i(v − u)dx ≥ 0 for all v ∈ Kψ.

Lewy and Stampacchia [1] used the method of penalization together with
suitable a priori estimates to show that u is of class C1,α, α < 1 (at least, if
ψ is smooth and strictly concave). It is in fact true that u is of class H2

∞(Ω);
cf. Frehse [1], Gerhardt [1], and Brézis and Kinderlehrer [1].

The set Ω may now be divided into two subsets, the coincidence set

I = I(u) = {x ∈ Ω : u(x) = ψ(x)}
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and its complement

Ω \ I = {x ∈ Ω : u(x) > ψ(x)}.

Of particular importance is a careful analysis of the boundary ∂I of the set
of coincidence I. Such investigations were initiated by H. Lewy and G. Stam-
pacchia [1] and continued by Kinderlehrer [7] and Caffarelli and Rivière [1].
It was proved that the free boundary ∂I is: (i) An analytic Jordan curve if ψ
is strictly concave and analytic; (ii) a C1,β-Jordan curve, 0 < β < α, if ψ is
strictly concave and of class C2,α; (iii) a Cm−1,α-Jordan curve if ψ is strictly
concave and of class Cm,α with m ≥ 2 and 0 < α < 1.

The investigation of ∂I is more difficult if we span a nonparametric surface
as a graph of a function u over some obstacle graph ψ such that it minimizes
area. In other words, if Ω is a strictly convex domain in R

2 with a smooth
boundary, if ψ is given as above and Kψ is the convex set of functions v ∈
H̊1

∞(Ω) satisfying v ≥ ψ, we consider solutions of the variational problem
∫

Ω

√
1 + |∇u|2dx → min in Kψ.

The existence of a solution u ∈ Kψ was proved by Lewy and Stampacchia
[2] and by Giaquinta and Pepe [1]. Moreover, these authors showed that the
solution u is of class H2

q ∩ C1,α(Ω) for every q ∈ [1,∞) and any α ∈ (0, 1).
Thus the set of coincidence I = {x ∈ Ω : u(x) = ψ(x)} is closed, and we have

div
∇u√

1 + |∇u|2
= 0 in Ω \ I as well as

(10)
∫

Ω

(1 + |∇u|2)−1/2〈∇u,∇(v − u)〉 dx ≥ 0 for all v ∈ Kψ.

Finally, using ideas of H. Lewy (see, for instance, the proof of Theorem 2
in Section 2.8), Kinderlehrer [6] proved that the curve of separation Γ :=
{(x1, x2, x3): x3 = u(x) = ψ(x), x ∈ ∂I} possesses a regular analytic parame-
trization provided that ψ is a strictly concave, analytic function.

Thin obstacle problems were treated by Lewy [6], Nitsche [19], and
Giusti [2].

18. For solutions X ∈ C∗(Γ ) of Plateau’s problem satisfying a fixed three-
point condition X(wj) = Qj , j = 1, 2, 3, wj ∈ ∂B, Qj ∈ Γ and for Γ ∈ Cm,μ,
m ≥ 2, μ ∈ (0, 1), there is a number c(m,μ), independent of X such that
‖X‖Cm,μ(B,R3) ≤ c(m,μ). This a priori estimate is a quantitative version of
Theorem 1 in Section 2.3, which also holds for m = 1 (cf. Jäger [3]).



Chapter 3

Singular Boundary Points of Minimal Surfaces

The first section of this chapter will be devoted to the study of minimal
surfaces in the neighbourhood of boundary branch points. The fundamental
tool for dealing with this problem is the method of Hartman–Wintner which
yields asymptotic expansions for complex-valued solutions f(w) of a differen-
tial inequality

(1) |fw(w)| ≤ c|w|−λ|f(w)| on BR(0)

at the center w = 0 of a disk BR(0) = {w ∈ C : |w| < R}.
An appropriate modification of the Hartman–Wintner technique will lead

to expansions for vector-valued solutions X(w) of a differential inequality

(2) |ΔX(w)| ≤ c|w|−λ{|X(w)|+ |∇X(w)|} on BR(0)

at w = 0. One of the main features of the Hartman–Wintner reasoning is that,
instead of (1) and (2), one treats integral inequalities which can be considered
as weak forms of the differential inequalities (1) and (2). This will enable us
to deal with certain singularities at the boundary. In fact, by applying a re-
flection argument, it will in certain situations be possible to treat boundary
singularities as interior singularities of solutions to suitably extended equa-
tions. However, to make this artifice valid, it will be indispensable to work
with integral versions of (1) and (2) because they require less regularity of
their solutions. We refer the reader to Section 2.10 (in particular, Theorems 1
and 2) where we have discussed the behaviour of minimal surfaces at boundary
branch points in detail. We emphasize again that the Hartman–Wintner de-
vice is the essential tool in proving the asymptotic relation (7) in Section 2.10.

In Section 3.1 we shall describe an extended version of the Hartman–
Wintner technique as well as some important generalizations due to Dziuk.

In Section 3.2 we shall study the asymptotic behaviour of the gradient of a
minimal surface near a corner on the boundary. We shall discuss corners on a
Jordan curve as well as corners between curves and supporting surfaces since

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,

Grundlehren der mathematischen Wissenschaften 340,
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they occur in partially free boundary problems. The results of Section 3.2 pro-
vide the initial regularity indispensable for the methods of Sections 3.3 and 3.4
to work. In these sections a precise discussion of the geometric behaviour of
a minimal surface at corners will be given. Section 3.3 deals with the Plateau
problem for piecewise smooth contours, whereas in Section 3.4 free boundary
problems are investigated.

3.1 The Method of Hartman and Wintner, and Asymptotic
Expansions at Boundary Branch Points

This section deals with the asymptotic behaviour of solutions to certain differ-
ential and integral inequalities at interior singularities. In certain situations,
boundary singularities can be made into inner singularities by extending a
solution, for example, by reflection.

First we shall consider complex-valued or even vector-valued solutions
f(w) of the differential inequality

(1) |fw(w)| ≤ c|w|−λ|f(w)|

in a disk BR(0), where λ and c are real constants with 0 ≤ λ < 1 and c > 0,
and f is of class C1(BR(0),CN ), N ≥ 1. As usual we write

gw =
∂g

∂w
=

1
2
(gu − igv), gw =

∂g

∂w
=

1
2
(gu + igv).

Secondly, we consider vector-valued solutions X(w) = (X1(w), X2(w), . . . ,
XN(w)) of

|ΔX(w)| ≤ c|w|−λ{|X(w)|+ |∇X(w)|}(2)

in BR(0), c > 0, 0 ≤ λ < 1, which are of class C1 of BR(0). If the right-hand
side of (2) would not contain X but only ∇X, (2) could be considered as a
special case of (1) by setting f(w) := Xw(w).

Both (1) and (2) can be transformed into integral inequalities which require
less regularity of their solutions.

For instance, let f(w) be a solution of (1) in a domain Ω ⊂ C which is
of class C1, and let D � Ω be an arbitrary subdomain of Ω with piecewise
smooth boundary ∂D. Choose an arbitrary function φ ∈ C1(Ω,C) and apply
Green’s formula ∫

∂D

g(w) dw = 2i
∫ ∫

D

∂

∂w
g(w) du dv

to g(w) = φ(w) · f(w).
Differing from our usual notation, we denote double integrals by two inte-

gral signs.
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The integral
∫

∂D
g(w) dw stands for the complex line integral of the func-

tion g over the boundary ∂D which is assumed to be positively oriented with
respect to D. Then we obtain

∫
∂D

φ(w) · f(w) dw = 2i
∫∫

D

[φw(w) · f(w) + φ(w) · fw(w)] du dv,

and (1) yields

(3)
∣∣∣∣
∫

∂D

φ(w) · f(w) dw
∣∣∣∣ ≤ 2

∫∫
D

[|φw(w)|+ c|w|−λ|φ(w)|]|f(w)| du dv.

This is the integral inequality associated with (1).
Similarly, we have

∫
∂D

φ ·Xw dw = 2i
∫∫

D

[φw ·Xw + φ ·Xww ] du dv,

and we derive from (2) the inequality
∣∣∣∣
∫

∂D

φ(w) ·Xw(w) dw
∣∣∣∣ ≤ 2

∫∫
D

{|φw(w)||Xw(w)|(4)

+ c|w|−λ|φ(w)|[|X(w)|+ |Xw(w)|]} du dv.

Here c is one quarter of the constant c in (2) because of ΔX = 4Xww .
In the following we shall work with inequalities (3) and (4) rather than

with (1) or (2) respectively. Note that (3) makes sense even for continuous
f(w), and (4) can even be considered for functions X of class C1. Hence we
give the following

Definition 1. A mapping f(w) = (f1(w), . . . , fN (w)), w ∈ BR(0), is said to
satisfy Assumption (A1) on BR(0) if it is of class C0(BR(0)\{0},CN ) and
fulfils (3) for every φ ∈ C1(BR(0),C) and for every D � BR(0) with piecewise
smooth boundary ∂D.

Similarly, X(w) = (X1(w), . . . , XN (w)), w ∈ BR(0), is said to fulfil As-
sumption (A2) on BR(0) if it is of class C1(BR(0),RN ) and satisfies (4)
for every φ ∈ C1(BR(0),C) and for each D � BR(0) with piecewise smooth
boundary.

Then we are going to prove the following two theorems:

Theorem 1. Let f(w) satisfy (A1) on BR(0), and suppose that f(w) �≡ 0 in
BR(0), and that there exists a number λ′ ∈ [0, 1) such that

f(w) = O(|w|−λ′
) as w → 0.

Then there is a nonnegative integer ν such that limw→0 w
−νf(w) exists and

is different from zero.



216 3 Singular Boundary Points of Minimal Surfaces

Theorem 2. Let X(w) satisfy (A2) on BR(0) and suppose that there is a
nonnegative integer ν such that

X(w) = o(|w|ν) as w → 0.(5)

Then the limit limw→0Xw(w)w−ν exists. In addition, if X(w) �≡ 0, then there
is a first nonnegative integer ν such that (5) does not hold and, moreover, that
limw→0Xw(w) · w−μ exists for μ = ν − 1 and is different from zero.

We shall prove both theorems simultaneously. The proof of the second
theorem differs from the first one in that we have as well to estimate the addi-
tional term involving |X(w)|. We will return to this in detail after completing
the proof of Theorem 1. Without loss of generality we may assume that f is
a scalar function.

Before entering into the proofs, we first mention two interesting corollaries.

Corollary 1. Let f(w) satisfy the assumptions of Theorem 1. Then there ex-
ists a nonnegative integer ν and a complex number a �≡ 0 such that

f(w) = awν + o(|w|ν) as w → 0.

Corollary 2. Let X(w) satisfy (A2) on BR(0) and suppose that X(0) = 0 but
X(w) �≡ 0 on BR(0). Then there exists a nonnegative integer μ and a nonzero
complex vector A such that

Xw(w) = Awμ + o(|w|μ) as w → 0,(6)

and

X(w) = Re{Bwμ+1}+ o(|w|μ+1) as w → 0,(7)

where B = 2(μ+ 1)−1A.

Proof of Corollary 2. Equation (6) is nothing but a different formulation of
the second statement in Theorem 2. Relation (7) follows by a suitable inte-
gration. In fact,

X(w) =
∫ 1

0

[uX u(tw) + vX v(tw)] dt =
∫ 1

0

Re[2wX w(tw)] dt

=
∫ 1

0

Re[2(Atμwμ+1 + tμo(|w|μ+1)] dt

= Re
[

2
μ+ 1

Awμ+1

]
+ o(|w|μ+1). �

Now we begin with the proof of Theorem 1.

Lemma 1. Let f satisfy (A1) and suppose that there exists some nonnegative
integer μ such that

f(w) = o(|w|μ−1) as w → 0.

Then f(w) = O(|w|μ|) as w → 0.
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Proof. Let r < R, ξ ∈ Br(0), ξ �= 0, ε < min( |ξ|
2 , r − |ξ|), and put

Dr,ε := Br(0) \ [Bε(0) ∪Bε(ξ)].

Fig. 1.

Now we test inequality (3) with the function φ(w) = 1
wμ

1
w−ξ and the domain

Dr,ε. This yields the estimate
∣∣∣∣∣
∫

∂Dr,ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ ≤ 2c
∫∫

Dr,ε

|w|−μ−λ|w − ξ|−1|f(w)| du dv.(8)

The result will now follow by letting ε tend to zero. To accomplish this it will
be necessary to consider the boundary integrals on the left-hand side of (6)
separately. Firstly, we have

∫
|w−ξ|=ε

w−μ(w − ξ)−1f(w) dw = i

∫ 2π

0

(ξ + εeiϕ)−μf(ξ + εeiϕ) dϕ

whence

lim
ε→0

∫
|w−ξ|=ε

w−μ(w − ξ)−1f(w) dw = i

∫ 2π

0

ξ−μf(ξ) dϕ(9)

= 2πif (ξ)ξ−μ.

Furthermore we obtain∣∣∣∣∣
∫

|w|=ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ ≤
∫

|w|=ε

∣∣∣∣ f(w)
wμ−1

∣∣∣∣ |w(w − ξ)|−1|dw|

≤ 2
|ξ|

∫ 2π

0

|f(εeiϕ)|
εμ−1

dϕ,



218 3 Singular Boundary Points of Minimal Surfaces

where we have used that |w − ξ| > |ξ|
2 for w ∈ ∂Bε(0). Hence

(10) lim
ε→0

∣∣∣∣∣
∫

|w|=ε

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣ = 0,

taking f(w) = o(|w|μ−1) into account.
Now we conclude from (8) the inequality

∣∣∣∣∣2πif (ξ)ξ−μ −
∫

|w|=r

w−μ(w − ξ)−1f(w) dw

∣∣∣∣∣(11)

≤ 2c
∫∫

|w|≤r

|w|−μ−λ|w − ξ|−1|f(w)| du dv.

Define J1 and J2 by the formulas

J1(ξ) :=
∫

|w|=r

|w|−μ|w − ξ|−1|f(w)||dw|

and
J2(ξ) :=

∫∫
|w|≤r

|w|−μ−λ|w − ξ|−1|f(w)| du dv;

then (11) implies the inequality

(12) 2π|f(ξ)ξ−μ| ≤ J1(ξ) + 2cJ2(ξ).

It follows from (12) that the lemma is proved if we find uniform bounds
for J1(ξ) and J2(ξ) and all ξ ∈ Br0(0) for some 0 < r0 < r. The uniform
boundedness of J1(ξ) is obvious since the singularities of the integrand, 0
and ξ, have positive distance from the circle |w| = r. Now we show that
J1(ξ) provides an upper bound for J2(ξ). To this end we multiply (12) by
|ξ|−λ|ξ−w0|−1 where w0 ∈ Br(0) and integrate over the disk Br(0); it follows
that

2πJ2(w0)(13)

= 2π
∫∫

|ξ|<r

|ξ|−μ−λ|ξ − w0|−1|f(ξ)| dξ1 dξ2 ≤ I1(w0) + I2(w0),

where ξ = ξ1 + iξ2 and

I1(w0) :=
∫∫

|ξ|<r

|ξ|−λ|ξ − w0|−1J1(ξ) dξ1 dξ2,

I2(w0) := 2c
∫∫

|ξ|<r

|ξ|−λ|ξ − w0|−1J2(ξ) dξ1 dξ2.

Using the identity
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(w − ξ)−1(ξ − w0)−1 = (w − w0)−1[(w − ξ)−1 + (ξ − w0)−1]

and interchanging the order of integration we obtain

I1(w0) ≤
∫∫

|ξ|<r

{∫
|w|=r

[|w − ξ|−1 + |ξ − w0|−1]|ξ|−λ|w − w0|−1

·|w|−μ|f(w)||dw |
}
dξ1 dξ2

≤ Mr1−λ

∫
|w|=r

|w|−μ|w − w0|−1|f(w)||dw |

= Mr1−λJ1(w0),

where we have used the inequality

(∗)
∫∫

|ξ|<r

{|w − ξ|−1 + |ξ − w0|−1}|ξ|−λ dξ1 dξ2 ≤ Mr1−λ

which will be proved later. Similarly we obtain the estimate

I2(w0) ≤ 2c
∫∫

|ξ|<r

{∫∫
|w|<r

[|w − ξ|−1 + |ξ − w0|−1]|ξ|−λ

·|w − w0|−1|w|−μ−λ|f(w)|du dv
}
dξ1 dξ2

≤ 2Mr1−λcJ 2(w0)

with the same constant M .
Finally we infer from (13) the inequality

2πJ2(w0) ≤ Mr1−λ[J1(w0) + 2cJ 2(w0)]

which implies

2(M−1πrλ−1 − c)J2(w0) ≤ J1(w0).(14)

If we now choose r0 < ( π
cM )1/(1−λ), then the inequality

J2(w0) ≤ 1
2 (M−1πrλ−1 − c)−1J1(w0)

holds for all w0 ∈ Br0(0), and Lemma 1 is proved. �

Now we have to add a proof of inequality (∗). In fact we shall prove a
slightly more general result known as

E. Schmidt’s inequality (see Vekua [1], p. 39). Suppose that w1, w2 ∈ Br(0),
and that α, β < 2 are positive real constants. Then
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∫∫
Br(0)

|ξ − w1|−α|ξ − w2|−β dξ1 dξ2(15)

≤

⎧⎪⎨
⎪⎩
M1|w1 − w2|2−α−β if a+ β > 2,

M2 + 8π|log|w1 − w2|| if a+ β = 2,

M3r
2−α−β if α+ β < 2,

where ξ = ξ1 + iξ2, and M1,M2,M3 are constants depending only on α and β.

Fig. 2.

Proof of (15). We replace Br(0) by the larger domain B2r(w1) ⊃ Br(0). If we
put ρ0 = 2|w1 − w2|, we have for all ξ ∈ B2r(w1) \ Bρ0(w1) that 2|ξ − w2| ≥
|ξ − w1| which yields

∫∫
B2r(w1)\Bρ0(w1)

|ξ − w1|−α|ξ − w2|−β dξ1 dξ2 ≤ 21+βπ

∫ 2r

ρ0

ρ1−α−β dρ(16)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

21+βπ |w1−w2|2−α−β

α+β−2 if α+ β > 2,

21+βπlog r
|w1−w2| if α+ β = 2,

23−α

2−α−β r
2−α−β if α+ β < 2.

Applying the linear transformation ξ∗ = ξ−w1
|w2−w1| which maps Bρ0(w1) onto

B2(0), we conclude from the change-of-variables formula that
∫∫

Bρ0 (0)

|ξ − w1|−α|ξ − w2|−β dξ1 dξ2(17)

= |w1 − w2|2−α−β

∫∫
B2(0)

|ξ∗|−α

∣∣∣∣ξ∗ − w2 − w1

|w2 − w1|

∣∣∣∣
−β

dξ∗
1 dξ

∗
2 .
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By virtue of α, β < 2, the integral on the right-hand side can be estimated
by a finite constant M(α, β). Inequality (15) follows by combining the above
estimates. �

Lemma 2. Suppose that f satisfies assumption (A1) and that f(w) =
o(|w|μ−1) as w → 0 for some nonnegative integer μ. Then the limit
limw→0 f(w)w−μ exists.

Proof. Let g(w) := f(w)w−μ and

Fr(ξ) = (2πi)−1

∫
|w|=r

g(w)(w − ξ)−1 dw, r ∈ (0, R).

Then Fr(ξ) is holomorphic on Br(0), and from inequality (11) we infer for all
ξ ∈ Br(0) \ {0} the relation

|g(ξ)− Fr(ξ)| ≤
c

π

∫∫
Br(0)

|w|−μ−λ|w − ξ|−1|f(w)| du dv

≤ c1

∫∫
Br(0)

|w|−λ|w − ξ|−1 du dv,

where we have used Lemma 1. We infer from inequality (15) the estimate

|g(ξ)− Fr(ξ)| ≤ c2r
1−λ

for all ξ ∈ Br(0) \ {0}. Again from the boundedness of g(w) we conclude the
existence of a sequence {wn}n∈N tending to zero such that

a := lim
n→∞

g(wn) ∈ C,

whence
|a− Fr(0)| ≤ c2r

1−λ,

and since λ < 1, we obtain

lim
r→0

Fr(0) = a.

Finally we conclude from

|g(ξ)− a| ≤ |g(ξ)− Fr(ξ)|+ |Fr(ξ)− Fr(0)|+ |Fr(0)− a| ≤ c3r
1−λ

the relation
lim
ξ→0

g(ξ) = a. �

Proof of Theorem 1. The theorem will be proved if we can find an integer
ν ≥ −1 with the properties f(w) = o(|w|ν) but f(w) �= o|w|ν+1 as w → 0,
taking Lemma 2 into account. Let us assume on the contrary that for all
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nonnegative ν the relation f(w) = o(|w|ν) holds true. We will then show that
f ≡ 0 on BR(0).

To accomplish this, we recall inequality (12) with w0 = 0:

2(M−1πrλ−1 − c)J2(0) ≤ J1(0),

where
J1(0) =

∫
|w|=r

|w|−ν−1|f(w)||dw|,

and
J2(0) =

∫
|w|=r

|w|−ν−λ−1|f(w)| du dv.

We select r < ( π
cM )1/(1−λ) and suppose that there exists some ξ0 ∈ Br(0)

with f(ξ0) �= 0. Clearly there exist numbers 0 < δ1 ≤ δ2, ε > 0, such that
Bε(ξ0) � Br(0) and

2(M−1πrλ−1 − c)δ1[|ξ0|+ ε]−ν−λ−1 ≤ δ2r
−ν−1.

Therefore there exists some constant c1 independent of ν such that

0 < c1 ≤
(
ε+ |ξ0|

r

)ν+1

.

This relation, however, cannot hold for all ν ∈ Z since |ξ0|+ ε < r. In conclu-
sion we have shown that f = 0 on Br(0) for some sufficiently small r, and a
continuation argument implies f = 0 on BR(0). This completes the proof of
Theorem 1. �

Next we are going to prove Theorem 2.

Lemma 3. Suppose X(w) ∈ C1(Br(0),RN ) satisfies X(0) = 0 and Xw(w) =
o(|w|μ−1) as w → 0. Then X(w) = o(|w|μ).

Proof. Fix w ∈ Br(0). Then a simple integration yields

X(w)
wμ

=
∫ 1

0

{ u

wμ
Xu(tw) +

v

wν
Xv(tw)

}
dt(18)

=
∫ 1

0

2
wμ

Re(wX w(tw)) dt

= 2
∫ 1

0

tμ−1

{
1

(tw)μ
Re(twX w(tw))

}
dt

=
2
μ

1
(t0w)μ

Re(t0wX w(t0w))

for some t0 ∈ (0, 1). Consequently,

lim
w→0

X(w)
wμ

= 0. �
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The following auxiliary result provides a counterpart to Lemma 1.

Lemma 4. Let X satisfy Assumption (A2), and suppose that there exists
some nonnegative integer μ such that Xw(w) = o(|w|μ−1) as w → 0. Then
Xw(w) = O(|w|μ) as w → 0.

Proof. As in the proof of Lemma 1 we put

Dr,ε = Br(0) \ [Bε(0) ∪Bε(ξ)]

and
φ(w) =

1
wμ

· 1
w − ξ

.

Then (4) yields the inequality
∣∣∣∣∣
∫

∂Dr,ε

w−μ(w − ξ)−1Xw(w) dw

∣∣∣∣∣(19)

≤ 2c
∫∫

Dr,ε

|w|−μ−λ|w − ξ|−1[|X(w)|+ |Xw(w)|] du dv,

taking φw = 0 on Dr,ε into account. Note that Lemma 3 and the inequality
0 ≤ λ < 1 imply the boundedness of the integral

J3(ξ) :=
∫∫

Br(0)

|w|−μ−λ|w − ξ|−1|X(w)| du dv.

Now we can proceed as in the proof of Lemma 1, i.e. we let ε→ 0 and obtain
the estimate

2π|Xw(ξ)ξ−μ| ≤ J1(ξ) + 2c[J2(ξ) + J3(ξ)],(20)

where f has to be replaced by Xw in the formulas for J1 and J2 respectively,
i.e.,

J1(ξ) :=
∫

|w|=r

|w|−μ|w − ξ|−1|Xw(w)||dw |,

and
J2(ξ) :=

∫∫
|w|≤r

|w|−μ−λ|w − ξ|−1|Xw(w)| du dv.

Since the boundedness of J1 is obvious for small ξ, we only show the bound-
edness of J2. To this end we multiply (18) by |ξ|−λ|ξ−w0|−1, w0 ∈ Br(0), and
integrate over Br(0). Then we obtain

(21) 2πJ2(w0) ≤ I1(w0) + I2(w0) + I3(w0),

where
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I1(w0) :=
∫∫

|ξ|<r

|ξ|−λ|ξ − w0|−1J1(ξ) dξ1 dξ2,

I2(w0) := 2c
∫∫

|ξ|<r

|ξ|−λ|ξ − w0|−1J2(ξ) dξ1 dξ2,

I3(w0) := 2c
∫∫

|ξ|<r

|ξ|−λ|ξ − w0|−1J3(ξ) dξ1 dξ2,

and ξ = ξ1 + iξ2.
As in the proof of Lemma 1 we conclude

I1(w0) ≤ Mr1−λJ1(w0),

I2(w0) ≤ 2Mr1−λcJ 2(w0).

Similarly we infer from (15) and

(w − ξ)−1(ξ − w0)−1 = (w − w0)−1[(w − ξ)−1 + (ξ − w0)−1]

the estimate

I3(w0) ≤ 2M2
3 c1r

2(1−λ) for some constant c1.

Finally, the boundedness of J2 follows from (21) and the above estimates if we
choose r > 0 suitably small. The assertion of the lemma follows from relation
(20) since the right-hand side of (20) remains bounded as ξ → 0. �

Lemma 5. Let X(w) satisfy assumption (A2) and suppose that for some non-
negative integer μ we have

Xw(w) = o(|w|μ−1) as w → 0.

Then the limit limw→0Xw(w)w−μ exists.

Proof. We put g(w) := Xw(w)w−μ and

Fr(ξ) := (2πi)−1

∫
|w|=r

g(w)(w − ξ)−1 dw.

In the relation (19) we let ε tend to zero (cf. the proof of Lemma 1) and obtain
the inequality

|g(ξ)− Fr(ξ)| ≤
c

π

∫∫
Br(0)

|w|−μ−λ|w − ξ|−1[|X(w)|+ |Xw(w)|] du dv,

holding for all ξ ∈ Br(0) \ {0}. Now Lemmata 3 and 4 imply

|g(ξ)− Fr(ξ)| ≤ c1

∫∫
Br(0)

|w|−λ|w − ξ|−1 du dv

for all ξ ∈ Br(0) \ {0} and some constant c1. From here on we can proceed
exactly as in the proof of Lemma 2. �
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Proof of Theorem 2. Recall that X(w) satisfies assumption (A2) and that for
some nonnegative ν ∈ Z we have

(22) X(w) = o(|w|ν) as w → 0.

We first show that the limit limw→0Xw(w)w−ν exists. Since X is supposed to
be differentiable, this clearly holds when ν = 0. On the other hand, if ν = 1
we infer from (22) that

Xw(w) = o(1) as w → 0,

and an application of Lemma 5 implies the existence of

lim
w→0

Xw(w)w−1.

In order to prove the general case ν > 1, we shall inductively show that

(23) Xw(w) = o(|w|μ−1) as w → 0

holds for all μ ∈ [1, ν]. (The result will then follow by a further application of
Lemma 5.)

Assume the validity of (23) for some μ < ν; then there exists some number
a ∈ C such that

lim
w→0

Xw(w)w−μ = a.(24)

We show that a = 0. To this end, observe that we can write

X(u, 0)
uμ+1

=
∫ 1

0

u

uμ+1
Xu(tu, 0) dt(25)

=
∫ 1

0

tμ
Xu(tu, 0)

(tu)μ
dt =

Xu(t0u, 0)
(t0u)μ

∫ t

0

tμ dt

=
1

μ+ 1
Xu(t0u, 0)

(t0u)μ
for some t0 ∈ (0, 1).

On the other hand we infer from (24) that the function g(w) := Xw(w)w−μ

is continuous at w = 0, and again (24) implies

a = lim
n→∞

Xw(un, 0)
uμ

n
= lim

n→∞

Xu(un, 0)− iX v(un, 0)
2uμ

n

whence

Re a = lim
n→∞

Xu(un, 0)
2uμ

n
for every sequence un → 0.(26)

Now (25), (26), the assumption X(w) = o(|w|ν) as w → 0, and the continuity
of g(w) yield the relation
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Re a = 0.

Furthermore, we infer from (24) that

a = lim
n→∞

Xu(0, vn)− iX v(0, vn)
2iμvμ

n
,

and in particular, if μ is even,

± Im a = lim
n→∞

Xv(0, vn)
2vμ

n
, where vn → 0.

Hence the same argument yields that Im a = 0, provided that μ is even. If μ is
odd we consider the function Y (w) = wX (w). Then Yw(w) = X(w)+wX w(w),
and therefore

lim
w→0

Yw(w)
wμ+1

= lim
w→0

X(w)
wμ+1

+ lim
w→0

Xw(w)
wμ

= a.

Also Y (w) = o(|w|μ+2) as w → 0, whence

a = lim
n→∞

Yu(0, vn)− iY v(0, vn)
2iμ+1vμ+1

n

,

whenever vn → 0 with n → ∞. Thus we obtain that Im a = 0 if we repeat
the argument above. This proves the first part of Theorem 2. To establish
the second statement we assume on the contrary that, for all nonnegative
μ ∈ Z, we have X(w) = o(|w|μ). It will then be shown that Xw ≡ 0 in BR(0)
contradicting the assumption that X(w) �≡ 0 on BR(0).

Note that, by the first part of Theorem 2, we obtain the relation

Xw(w) = O(|w|μ) for all μ,

and in particular
Xw(w) = o(|w|μ−1) as w → 0

and for all nonnegative μ ∈ Z. We are thus in a position to repeat the argument
given in the proof of Lemma 4. Inequality (21) with w0 = 0 now reads as

2πJ2(0) ≤ I1(0) + I2(0) + I3(0),(27)

where

I1(0) =
∫∫

|ξ|<r

|ξ|−λ−1J1(ξ) dξ1 dξ2,

I2(0) = 2c
∫∫

|ξ|<r

|ξ|−λ−1J2(ξ) dξ1 dξ2,

I3(0) = 2c
∫∫

|ξ|<r

|ξ|−λ−1J3(ξ) dξ1 dξ2, ξ = ξ1 + iξ2,
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and

J1(ξ) =
∫

|w|=r

|w|−μ|w − ξ|−1|Xw(w)||dw|,

J2(ξ) =
∫∫

|w|≤r

|w|−μ−λ|w − ξ|−1|Xw(w)| du dv,

J3(ξ) =
∫∫

|w|<r

|w|−μ−λ|w − ξ|−1|Xw(w)| du dv, w = u+ iv.

As in the proof of Lemma 1, i.e. using the Schmidt’s inequality and the identity

(28) (w − ξ)−1ξ−1 = w−1[(w − ξ)−1 + ξ−1],

we obtain the estimates

I1(0) ≤ Mr1−λJ1(0),(29)
I2(0) ≤ 2Mr1−λcJ 2(0).(30)

Again we infer from (28) and (15) that

I3(0) = 2c
∫∫

|ξ|<r

dξ1 dξ2|ξ|−λ|ξ|−1

∫∫
|w|<r

|w|−μ−λ|w − ξ|−1|Xw(w)| du dv

= 2c
∫∫

|w−ξ|<r

du dv|w|−μ−λ|w|−1|Xw(w)|

·
∫∫

|ξ|<r

|ξ|−λ[(w − ξ)−1 + ξ−1] dξ1 dξ2

≤ 4cM 3r
1−λ

∫∫
|w|<r

|w|−μ−λ−1

[∫ 1

0

∣∣∣∣ ddtX(tw)
∣∣∣∣ dt
]
du dv

≤ 4cM 3r
1−λ

∫ 1

0

dt

[∫∫
|w|<r

|w|−μ−λ|Xw(tw)| du dv
]
.

Now we put z := tw , z = z1+iz 2, and employ the change-of-variables formula.
This yields

I3(0) ≤ 4cM 3r
1−λ

∫ 1

0

dt tμ+λ−2

∫∫
|z|<tr

|z|−μ−λ|Xw(z)| dz1 dz2

≤ 4cM 3r
1−λ

μ+ λ− 1

∫∫
|z|<r

|z|−μ−λ|Xw(z)| dz1 dz2,

where we have assumed that μ+ λ ≥ 2.
In the following estimates we let r < 1. Then

I3(0) ≤ 4cM 3r
1−λ

∫∫
|w|<r

|w|−μ−λ−1|Xw(w)| du dv,
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or equivalently

I3(0) ≤ 4cM 3r
1−λJ2(0).(31)

The estimates (27), (29), (30), and (31) now imply that

2πJ2(0) ≤ Mr1−λJ1(0) + 2Mr1−λcJ 2(0) + 4cM 3r
1−λJ2(0),

whence we obtain for small r > 0 and some δ > 0 independent of μ that

δJ2(0) ≤ J1(0),

or, more explicitly

δ

∫∫
|w|<r

|w|−μ−λ−1|Xw(w)| du dv ≤
∫∫

|w|=r

|w|−μ−1|Xw(w)||dw |

for all nonnegative μ. If we now assume the existence of some w0 such that
Xw(w0) �= 0, we are led to a contradiction exactly as in the proof of Theorem 1.

We have shown that there exists some finite integer ν with

X(w) = o(|w|ν−1),
(32)

X(w) �= o(|w|ν) as w → 0.

By the first part of Theorem 2 we conclude the existence of the limit

lim
w→0

Xw(w)w−ν+1 = A.

If A = 0, we could infer from Lemma 3 that X(w) = o(|w|ν) contradicting
(32), and Theorem 2 is proved. �

Now we shall consider a further generalization of Theorem 1 which will
enable us to treat certain systems of differential inequalities as well. This will
be of importance in Sections 3.3 and 3.4.

Definition 2. Two complex-valued functions F (w), G(w) are said to satisfy
Assumption (A3) if they are of class C0,1(B′

δ,C), B′
δ = {0 < |w| < δ}, and

if there are numbers α, β, ν ∈ (0, 1), α+ β = 1 such that the relations

(33)
{
|F (w)| = O(|w|ν−α)
|G(w)| = O(|w|ν−β) as w → 0,

and the inequalities

(34)
{
|Fw(w)| ≤ c[|w|−β |F (w)|2 + |w|β−2α|G(w)|2],
|Gw(w)| ≤ c[|w|α−2β |F (w)|2 + |w|−α|G(w)|2]

hold true almost everywhere on B′
δ = Bδ \ {0} for some constant c > 0.
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Here and in the following we shall work with the concept of general-
ized complex derivatives which are defined analogously to generalized real
(or weak) derivatives, and we refer the interested reader to the monograph of
Vekua [1,2] for more detailed background information. Note that by a theorem
of Rademacher (see e.g. Federer [1]) every Lipschitz-continuous function has
a weak derivative which is bounded.

Theorem 3. Suppose that F and G satisfy assumption (A3) on B′
δ. Then

there exists a nonnegative integer m such that the functions

fm(w) := w−mF (w), gm(w) := w−mG(w)

satisfy one of the following two conditions (i) or (ii):

(i) fm(w) ∈ C0,μ(Bδ,C) for all μ < min(1,m+ α),

fm(0) �= 0,
|fm

w (w)| = O(|w|m−β) as w → 0,
|gm

w (w)| = O(|w|m+α−2β) as w → 0;

(ii) gm(w) ∈ C0,μ(Bδ,C) for all μ < min(1,m+ β),

gm(0) �= 0,
|fm

w (w)| = O(|w|m+β−2α) as w → 0,
|gm

w (w)| = O(|w|m−α) as w → 0.

For the proof of Theorem 3 we shall need the following auxiliary results.

Lemma 6. Suppose that f ∈ C0,1(B′
δ,C) satisfies

(35) |f(w)| = o(|w|−1) as w → 0

and

|fw(w)| = O(|w|λ) as w → 0(36)

with some exponent λ > −2. Then we have:

f ∈ C0,μ(Bδ,C) for all μ < min(1, 1 + λ), if λ > −1,

or
|f(w)| = O(|w|−ε), (w → 0), for all ε > 0, if λ = −1,

or
|f(w)| = O(|w|1+λ), (w → 0), if λ < −1,
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Proof. Since fw(w) ∈ L1(Bδ(0),C), we can apply Theorem 1.16 in Vekua [1]
which implies that the sum

f(w) +
1
π

∫∫
Bδ(0)

fw(ξ)(ξ − w)−1 dξ1 dξ2

is holomorphic in Bδ(0). Hence it is sufficient to prove that the above alter-
native holds for the function

g(w) =
1
π

∫∫
Bδ(0)

fw(ξ)(ξ − w)−1 dξ1 dξ2.

If λ > −1, we conclude for w1, w2 ∈ B′
δ = Bδ \ {0} the inequality

|g(w1)− g(w2)| =
1
π

∣∣∣∣∣
∫∫

Bδ(0)

fw(ξ)
(w1 − w2)

(w1 − ξ)(w2 − ξ)
dξ1 dξ2

∣∣∣∣∣
≤ const |w1 − w2|

∫∫
Bδ(0)

|ξ|λ
|w1 − ξ||w2 − ξ| dξ1 dξ2.

Using Hölder’s inequality, we obtain for each μ ∈ (0, 1 + λ) the estimate

|g(w1)− g(w2)| ≤ c|w1 − w2|
[∫∫

Bδ(0)

|ξ|2λ/(1−μ) dξ1 dξ2

](1−μ)/2

·
[∫∫

Bδ(0)

(|w1 − ξ||w2 − ξ|)−2/(1+μ) dξ1 dξ2

](1+μ)/2

.

Now inequality (15) implies

|g(w1)− g(w2)| ≤ c|w1 − w2|1+(2−(4/(1+μ)))(1+μ)/2 = c|w1 − w2|μ.

If λ < −1, we infer again from (15) that

|g(w)| ≤ c

∫∫
Bδ(0)

|ξ|λ|ξ − w|−1 dξ1 dξ2 ≤ c|w|1+λ

for some suitable constant c. Finally, if λ = −1, it follows that

|g(w)| ≤ c1 + c2|log|w||. �

In the discussion to follow we shall always assume that 0 < α ≤ 1
2 ≤ β < 1.

Note that this is without loss of generality since α+β = 1 and because of the
symmetry of the following assertions both in α and β and with respect to F
and G. Observe also that we can (and will, if necessary) decrease the decay
exponent ν in the relation (33).
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Lemma 7. Suppose that F and G satisfy assumption (A3) on B′
δ = Bδ \ {0}

with α ≤ 1
2 . Then F ∈ C0,μ(Bδ,C) for all μ ∈ (0, α) and, furthermore, the

relations
|Fw(w)| = O(|w|−β)

as w → 0
|Gw(w)| = O(|w|α−2β)

hold true almost everywhere on Bδ.

Proof. The proof is based on an iteration argument where one has to use
Lemma 6 in each step. To start, let us assume that ν < α, whence for some
k0 ∈ N ∪ {0} we have that 2k0ν ≤ α < 2k0+1ν. Now assume that for some
k ∈ N ∪ {0}, k ≤ k0, we have

|F (w)| = O(|w|2
kν−α), |G(w)| = O(|w|2

kν−β).

Then (34) implies

|Fw(w)| = O(|w|2
k+1ν−α−1), |Gw(w)| = O(|w|2

k+1ν−β−1).

From Lemma 6 we infer

|F (w)| = O(|w|2
k+1ν−α) as w → 0 if k < k0

or
F (w) ∈ C0,μ(Bδ,C) for all μ < 2k0+1ν − α if k = k0.

Also,
|G(w)| = O(1 + |w|2

k+1ν−β) if k ≤ k0.

By virtue of (33) we can start the iteration by putting k = 0. In conclusion
we obtain that

F ∈ C0,μ for all μ < 2k0+1ν − α

and in particular

|F (w)| = O(1), |G(w)| = O(1 + |w|2
k0+1ν−β).

Again we infer from (34) that

|Fw(w)| = O(|w|−β) = O(|w|α−1),

since 2k0+2ν > 2α, and

|Gw(w)| = O(|w|α−2β) = O(|w|1−3β).

Finally we infer from Lemma 6 that F ∈ C0,μ(Bδ,C) for all 0 < μ < α. �

In the next lemma we improve the regularity of G provided we know that
F (0) = 0.
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Lemma 8. Suppose F and G satisfy (A3) on B′
δ = Bδ \ {0} with α ≤ 1

2 , and
that F (0) = 0. Then we have G ∈ C0,μ(Bδ,C) for all μ ∈ (0, β) and

|Fw(w)| = O(|w|1−3α), |Gw(w)| = O(|w|−α) as w → 0.

Proof. Since F (0) = 0, we infer from Lemma 7 that |F (w)| = O(|w|μ) for all
μ < α. Hence the function f(w) := F (w)

w satisfies

|f(w)| = O(|w|μ−1) as w → 0, for all 0 < μ < α.

By Lemma 7 we have |Gw(w)| = O(|w|α−2β) as w → 0, and Lemma 6 yields

|G(w)| = O(1 + |w|α−2β+1) if α− 2β �= −1,

that is,

|G(w)| = O(|w|−ε) for all ε > 0, if α− 2β = −1
(

i.e. α =
1
3

)
.

Using inequalities (34) we obtain the system

(37)

{
|fw(w)| ≤ c1[|w|α|f |2 + |w|−3α|G|2],
|Gw(w)| ≤ c2[|w|3α|f |2 + |w|−α|G|2],

which holds true for almost all w ∈ Bδ.
If α − 2β = −1 (or equivalently α = 1

3 , β = 2
3 ), we infer from (37) the

relations

(38)

{
|fw(w)| = O(|w|−1−ε) as w → 0,

|Gw(w)| = O(|w|−1/3−ε) as w → 0,
for all ε > 0

whence in particular

G(w) ∈ C0,μ(Bδ,C) for all μ <
2
3

= β

and

|G(w)| = O(1), |f(w)| = O(|w|−ε),(39)

for all ε > 0. Inserting (39) into (37) we obtain

|fw(w)| = O(|w|−1) = O(|w|−3α),
|Gw(w)| = O(1) = O(|w|1−3α),

and therefore
|Fw(w)| = O(1) = O(|w|1−3α),

because of Fw = wfw.
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Now we deal with the case α− 2β > −1 (or equivalently β < 2
3 , α >

1
3 ):

Inserting the relations

|G(w)| = O(1) and |f(w)| = O(|w|μ−1), μ < α,

in (37), we obtain

|fw(w)| = O(|w|−3α)
as w → 0.

|Gw(w)| = O(|w|−α)

Now Lemma 6 implies that

|Fw(w)| = O(|w|1−3α),

G(w) ∈ C0,μ(Bδ,C) for all μ < 1− α = β.

Finally, we have to treat the case α− 2β < −1 (or β > 2
3 and α < 1

3 ):
To this end we fix some μ < α and select some k0 ∈ N ∪ {0} with the

property 2k0(μ + α) < 1 − α < 2k0+1(μ + α). Assume that for some k ≤ k0

the relations

|f(w)| = O(|w|2
k(μ+α)−α−1) as w → 0,(40k)

|G(w)| = O(|w|2
k(μ+α)+α−1) as w → 0,

hold true. Then it follows from (37) that

|fw(w)| = O(|w|2
k+1(μ+α)−α−2)

and
|Gw(w)| = O(|w|2

k+1(μ+α)+α−2).

If k < k0, then Lemma 6 applies and we arrive at the relations

|f(w)| = O(|w|2
k+1(μ+α)−α−1),

|G(w)| = O(|w|2
k+1(μ+α)+α−1);

in other words, the validity of (40k) implies the validity of (40k+1). On the
other hand, for k = k0 we obtain

|f(w)| = O(1 + |w|2
k0+1(μ+α)−α−1),

(41)
|G(w)| = O(1).

We can start the induction because (40k) holds with k = 0 taking μ < α into
account.

We insert (41) into (37) and get |fw(w)| = O(|w|−3α) as w → 0 and
|Gw(w)| = O(|w|−α) whence we infer by means of Lemma 6 that G ∈
C0,μ(Bδ,C) for all μ < 1− α = β and also |Fw(w)| = O(|w|1−3α). �
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Next we suppose that both F and G vanish at zero. Then on account of
the Lemmata 8 and 6 we conclude that the functions

f(w) := w−1F (w) and g(w) := w−1G(w)

fulfil the relations

|f(w)| =
{
O(1 + |w|1−3α) if α �= 1

3 ,

O(|w|−ε) for all ε > 0, if α = 1
3

and
|g(w)| = O(|w|−α).

Therefore there exists some number λ′ ∈ (0, 1) such that the mapping

h(w) := (f(w), g(w))

satisfies the relation

|h(w)| = O(|w|−λ′
) as w → 0.

From (34) we easily infer an estimate of the type

|hw(w)| ≤ c|w|−λ|h(w)|

holding almost everywhere on Bδ with some constants c and λ ∈ (0, 1). Thus
we are in a position to apply Corollary 1 of this section to the function h
and obtain the existence of some positive integer m and of a complex vector
A ∈ C

2 \ {0} such that

(42) h(w) = Awm−1 + o(|w|m−1) as w → 0

holds true on Bδ.
Now we come to the proof of Theorem 3.
Without loss of generality we only consider the case α ≤ 1

2 . We distinguish
between the following alternatives (which clearly exhaust all possibilities!):

(α) F (0) �= 0, G(0) �= 0, (β) F (0) �= 0, G(0) = 0,

(γ) F (0) = 0, G(0) �= 0, (δ) F (0) = 0, G(0) = 0.

If (α) or (β) hold true, then Lemma 5 yields that (i) must be satisfied with
m = 0. In view of Lemma 8 we obtain (ii) with m = 0 provided that (γ) holds
true. Finally, let us assume that F (0) = G(0) = 0. Then (42) is equivalent to

F (w) = awm + o(|w|m)

G(w) = bwm + o(|w|m)
as w → 0

with complex numbers a, b which are not both equal to zero, and we obtain
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(43)

{
fm(w) = a+ o(1)
gm(w) = b+ o(1)

as w → 0.

On the other hand, we easily derive from (34) the inequalities

(44)

{
|fm

w (w)| ≤ c[|w|m−β |fm(w)|2 + |w|m+β−2α|gm(w)|2],
|gm

w (w)| ≤ c[|w|m+α−2β|fm(w)|2 + |w|m−α|gm(w)|2],

and, together with (41), this yields

|fm
w (w)| = O(|w|m−β) and |gm

w (w)| = O(|w|m+α−2β) as w → 0.

But then Lemma 6 can be applied which proves that fm ∈ C0,μ(Bδ,C) for all
μ < 1. Assuming that fm(0) �= 0 we have thus shown that (i) holds true.

So let us assume that fm(0) = a = 0 (whence b = gm(0) �= 0). Then
clearly |fm(w)| = O(|w|μ) as w → 0 for all μ < 1, and (44) implies

|fm
w (w)| = O(|w|m+β−2α)

and
|gm

w (w)| = O(|w|m−α).

Again, by Lemma 6 it follows that gm ∈ C0,μ(Bδ,C) for all μ < 1, and hence
(ii) holds true; thus Theorem 3 is proved. �

3.2 A Gradient Estimate at Singularities Corresponding
to Corners of the Boundary

In this section we consider solutions X = X(u, v) of the Plateau problem P(Γ )
for a Jordan curve Γ consisting of two regular pieces Γ+ and Γ− of class C2,μ

which enclose a positive angle β < π at a common point P ∈ Γ+ ∩ Γ−. We
are then interested in the behaviour of X near the corner point P and, in
particular, in asymptotic expansions for the gradient ∇X(u, v) near the point
w0 ∈ ∂B which corresponds to P . More generally, letX ∈ C(Γ, S) be a solution
to the free boundary problem P(Γ, S) and suppose that the configuration
〈Γ, S〉 satisfies some chord-arc condition (see Section 2.5). Then we conclude
from Theorem 2 of Section 2.5 that X is globally Hölder continuous on the
closure of the semi-disk B = {(u, v): u2 + v2 < 1, v > 0}, i.e.,

X ∈ C0,α(B,R3) ∩ C2(B,R3)

for some α > 0. Assuming the usual three-point condition, the points (1, 0)
and (−1, 0) are mapped onto the corner points P1, P2 ∈ Γ ∩ S respectively.
Hence our interest is concentrated on the behaviour of ∇X(w) when w → ±1
respectively.

We first mention a (local) result concerning the Plateau problem.
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Theorem 1. Let Γ+, Γ− ⊂ R
3 be pieces of regular Jordan arcs of class C2,μ

which meet at a point P ∈ R
3 forming a positive angle β < π. Suppose that

X ∈ C0,α(B
+

δ ,R
3) ∩ C2(B

+

δ \ {0},R3),

where B+
δ := {w = (u, v): |w| < δ, v > 0} is a minimal surface which satisfies

the boundary conditions X : I±
δ → Γ± with I±

δ := {(u, 0): 0 < ±u < δ} and
X(0) = P . Then we obtain the asymptotic relation

|∇X(w)| = O(|w|α−1) as w → 0.

For the free boundary problem we shall prove

Theorem 2. Let Γ be a regular Jordan curve of class C2,μ which has only
its two endpoints P1, P2 in common with a regular closed surface S of class
C3. Suppose that X ∈ C(Γ, S) solves the partially free minimum problem
P(Γ, S) and that Γ, S satisfy some chord-arc condition. Then X(u, v) is of
class C0,α(B,R3)∩C2,α(B \{1,−1}) for some α > 0 where B = {(u, v) : u2 +
v2 < 1, v > 0), and there holds the expansion

|∇X(w)| = O(|w ∓ 1|α−1) as w → ±1.(1)

We shall only prove Theorem 2 since the proof of the first theorem is
similar. Note that we only have to show the asymptotic relation (1) since the
asserted regularity properties of X were already proved in Chapter 2. Also, it
will be convenient to replace the semi-disk B by the upper half-plane

H = {(u, v) ∈ R
2 : v > 0}.

We may further assume that the point (u, v) = (0, 0) is mapped into the
corner point P1 ∈ Γ ∩ S. Observe that this simplification is without loss of
generality since the conformal map

w = w(z) = −
[
1− z

1 + z

]2

maps the semi-disk B = {(u, v) : u2 + v2 < 1, v > 0} conformally onto H, and
the point (1, 0) into (0, 0). (Note that w(z) is not conformal at the boundary
point z = 1.) Furthermore, if X is of class C0,α(B) ∩ C2(B), then Y (w) :=
X(z(w)) is of class C0,α/2(H), and if Y satisfies an asymptotic relation of the
type

|∇Y (w)| = O(|w|α/2−1) as w → 0,

then also

|∇X(z)| = O

(
|∇Y (w)|

∣∣∣∣dwdz
∣∣∣∣
)

= O(|1− z|α−2 · |1− z|)

= O(|1− z|α−1) as z → 1, z ∈ B.



3.2 A Gradient Estimate at Singularities Corresponding to Corners of the Boundary 237

Since we only deal with local properties of X we may throughout this
section require the following Assumption A to be satisfied by the minimal
surface X.

Assumption A. Let δ > 0 be some positive number and put

B+
δ := {w = (u, v) ∈ R

2 : |w| < δ, v > 0},

I+
δ := {w = (u, 0) : 0 < u < δ},

I−
δ := {w = (u, 0) : − δ < u < 0}.

Suppose that the minimal surface X = X(u, v) is of class C0,α(B
+

δ ,R
3) ∩

C2,α(B
+

δ \ {0}) and satisfies the following boundary conditions:
(i) X : I−

δ → Γ is weakly monotonic;
(ii) X(I+

δ ) ⊂ S,X(0) = 0 = P1 ∈ Γ ∩ S;
(iii) Xv|I+

δ
is orthogonal to S along the free trace X|I+

δ
.

Then Theorem 2 follows from

Proposition 1. Let X ∈ C2,α(B
+

δ \ {0}) ∩ C0,α(B
+

δ ) be a minimal surface
which fulfills assumption (A). Then the gradient ∇X satisfies

(2) |∇X(w)| = O(|w|α−1) as w → 0.

The proof of Proposition 1 rests on a further investigation of solutions
X̃(w) of the differential inequality

(3) |ΔX̃(u, v)| ≤ a|∇X̃(u, v)|2

which was already considered in Section 2.2. We recall Proposition 1 of Sec-
tion 2.2.

Proposition A. There is a continuous function κ(t), 0 ≤ t < 1, with the
following properties: For any solution X̃ ∈ C2(BR(w0),RN ) of the differential
inequality (3) satisfying

|X̃(w)| ≤M, w ∈ BR(w0)(4)

for some M with aM < 1, the estimates

(5) |∇X̃(w0)| ≤ κ(aM )
M

R
and

(6) |∇X̃(w0)| ≤
κ(aM )
R

sup
w∈BR(w0)

|X̃(w)− X̃(w0)|

hold true.
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Lemma 1. Let D ⊂ B1(0) be a domain such that D contains the origin.
Suppose that X̃ ∈ C2(D,RN )∩C0(D,RN ) satisfies inequality (3). Then there
exists some δ > 0 such that the estimate

(7) |∇X̃(w0)| ≤ ε−1 · const sup
Bε(w0)

|X̃(w)− X̃(w0)|

holds true for all w0 ∈ D ∩Bδ(0) and for all ε > 0 with Bε(w0) ⊂ D ∩Bδ(0).

Proof. We put Y (w) = 1
2a [X̃(w) − X̃(0)], w ∈ D, and choose δ > 0 so small

that supD∩Bδ(0) |Y (w)| < 1. Then Y satisfies (3) on D ∩ Bδ(0) with a = 1
2 .

Applying Proposition A to the function Y ∈ C2(Bε(w0)) and toM = 1, a = 1
2 ,

we get the estimate

|∇Y (w0)| ≤
κ(1/2)
ε

sup
Bε(w0)

|Y (w)− Y (w0)|,

i.e.,

|∇X̃(w0)| ≤
κ(1/2)
ε

sup
Bε(w0)

|X̃(w)− X̃(w0)|

as required. �

In order to state our results in a convenient way, we make the following

Assumption B. For some fixed angle π ≥ γ > 0 we denote by Dρ the domain

Dρ := {w = reiϕ : 0 < ϕ < γ, r < ρ}

where r, ϕ denote polar coordinates about the origin. Let

X̃(w) = (X̃1(w), . . . , X̃N (w)), w = (u, v) ∈ Dρ,

be a mapping of class C0(Dρ,R
N ) ∩ C2(Dρ,R

N ) which satisfies

(3) |ΔX̃(w)| ≤ a|∇X̃(w)|2 on Dρ

and

|X̃(w)| ≤ c1|w|α on Dρ(8)

with numbers a, c1 > 0 and 0 < α < 1.
For arbitrary fixed θ ∈ (0, γ/2) we put

Dρ,θ := {w = reiϕ : θ < ϕ < γ − θ, 0 < r < ρ},
D1

ρ,θ := {w = reiϕ : 0 < ϕ < θ, 0 < r < ρ},
D2

ρ,θ := {w = reiϕ : γ − θ < ϕ < γ, 0 < r < ρ}.

Then we have
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Lemma 2. Suppose X̃ satisfies Assumption B on Dρ. Then, for every θ ∈
(0, γ

2 ), there exists a constant c2 = c2(θ, a, c1) such that the inequality

(9) |∇X̃(w0)| ≤ c2|w0|α−1

holds true for all w0 ∈ Dδ1,θ and for some δ1 ∈ (0, ρ).

Proof. Let δ > 0 denote the number determined in Lemma 1. We take δ1 :=
1
2 min(δ, ρ) and put ε := 1

2 |w0| sin θ. Then Bε(w0) ⊂ Dρ ∩ Bρ(0) for all w0∈
Dδ1,θ, and Lemma 1 implies the estimate

|∇X̃(w0)| ≤ const ε−1 sup
Bε(w0)

|X̃(w)− X̃(w0)|

≤ const c1ε−1[|w0|α + (|w0|+ ε)α]
≤ c2(θ, a, c1)|w0|α−1.

The estimate (9) controls the behaviour of the gradient on the segments Dδ,θ.
To obtain also some information on the remaining parts D1

δ,θ or D2
δ,θ, we have

to make additional assumptions.

Lemma 3. Suppose that X̃ satisfies Assumption B, and let θ ∈ (0,min{ π
16 ,

γ
4 }).

In addition, assume that X̃(reiϕ) = 0 on 0 < r < ρ and ϕ = 0 or ϕ = γ,
respectively. Then for small δ > 0 we obtain the estimate

(10) |∇X̃(w0)| ≤ const |w0|α−1

on D1
δ,θ or D2

δ,θ respectively.

Proof. It is sufficient to prove (10) for w0 ∈ D1
δ,θ. To this end we select some

δ < min(ρ, 1) such that

aM < 1,(11)

where
M := sup

Dδ

|X̃(w)|

and where a denotes the constant in (3). Applying Proposition A, we derive
the gradient bound

|∇X̃(w0)| ≤ cε−1 sup
Bε(w0)

|X̃(w)− X̃(w0)|(12)

holding for some constant c independent of ε and for all ε > 0 satisfying
0 < ε < dist(w0, ∂Dδ).

Now we restrict w0 further so that |w0| < δ
2 . Put u0 = Rew0, Rθ :=

2u0 sin θ, w1 = (u0, 0) and B+
Rθ

(w1) := BRθ
(w1) ∩ {(u, v) : v > 0}.

Then we find
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Bε(w0) ⊂ B+
Rθ

(w1) for all ε < dist(w0, ∂Dδ)

and
B+

2Rθ
(w1) ⊂ Dδ

taking the smallness of θ into account. We define harmonic functions ϕ(w) =
(ϕ1(w), . . . , ϕN (w)) and ψ(w) by

Δϕ = 0 on B+
2Rθ

(w1), ϕ(w) = X̃(w) on ∂B+
2Rθ

(w1),

and
Δψ = 0 on B+

2Rθ
(w1), ψ(w) = |X̃(w)|2 on ∂B+

2Rθ
(w1).

Consider the function

K(w) := 〈X̃(w)− ϕ(w), e〉+
a

2(1− aM )
{ψ(w)− |X̃(w)|2},

w ∈ B+
2Rθ

(w1), where e ∈ R
N is an arbitrary unit vector. Then

ΔK(w) = 〈ΔX̃, e〉 − a

1− aM
{|∇X̃|2 + 〈ΔX̃, X̃〉}

≤ |ΔX̃| − a

1− aM
|∇X̃|2 +

a

1− aM
|ΔX̃||X̃|

≤ a|∇X̃|2 − a

1− aM
|∇X̃|2 +

a2M

1− aM
|∇X̃|2 = 0

for w ∈ B+
2Rθ

(w1). Furthermore we have K(w) = 0 along ∂B+
2Rθ

(w1); hence
we conclude from the maximum principle that K(w) ≥ 0 on B+

2Rθ
(w1). In

other words,

〈ϕ(w)− X̃(w), e〉 ≤ a

2(1− aM )
ψ(w)− a

2(1− aM )
|X̃(w)|2.

Since e is an arbitrary unit vector, this implies the estimate

|ϕ(w)− X̃(w)| ≤ a

2(1− aM )
{ψ(w)− |X̃(w)|2},

in particular

(13) |X̃(w)| ≤ |ϕ(w)|+ a

2(1− aM )
|ψ(w)| for w ∈ B+

2Rθ
(w1).

On the other hand, we infer from (8) the inequality

|X̃(w)| ≤ c1{|w1|+ 2Rθ}α

≤ c1{1 + 4 sin θ}α|w0|α

for all w ∈ ∂B+
2Rθ

(w1), whence
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|ϕ(w)| ≤ c2(θ)|w0|α, w ∈ B+
2Rθ

(w1),
(14)

|ψ(w)| ≤ c22(θ)|w0|2α ≤ c22(θ)|w0|α, w ∈ B+
2Rθ

(w1),

since |w0| < δ < 1. Employing the reflection principle for harmonic functions,
it is possible to extend ϕ and ψ harmonically onto the disk B2Rθ

(w1), taking
account of the fact that ϕ, ψ vanish along the line {(u, 0) : u0 − 2Rθ < u <
u0 + 2Rθ}. Denoting the reflected functions again by ϕ and ψ, we see that
(14) continues to hold. The mean value theorem yields the relations

|∇ϕ(w)| ≤ 1
Rθ

sup
BRθ

(w1)

|ϕ|, w ∈ BRθ
(w1),

|∇ψ(w)| ≤ 1
Rθ

sup
BRθ

(w1)

|ψ|, w ∈ BRθ
(w1).

Together with (14) this implies

|∇ϕ(w)| ≤ c3(θ)|w0|α−1,

|∇ψ(w)| ≤ c4(θ)|w0|α−1

for all w ∈ BRθ
(w1).

Finally we conclude from (13) and from the mean value theorem that

|X̃(w)| ≤ |ϕ(w)− ϕ(w1)|+
a

2(1− aM )
|ψ(w)− ψ(w1)|(15)

≤ c5(a,M, θ)|w0|α−1|w − w1|
≤ c5(a,M, θ)|w0|α−12 dist(w0, ∂Dδ),

for all w ∈ Bdist(w0,∂Dδ)(w0). The desired result than follows from (15) and
(12) taking ε = 1

2dist(w0, ∂Dδ). �

Lemmata 2 and 3 imply the following

Proposition 2. Suppose that X̃ satisfies Assumption B and that X̃(reiθ) = 0
for 0 < r < ρ, ϕ = 0 or ϕ = γ. Then the asymptotic relation

|∇X̃(w)| = O(|w|α−1) as w → 0

holds true.

Now we turn to the

Proof of Proposition 1. (and hence of Theorem 2). Since we have assumed
that X(0) = P1 = 0, we infer from the Hölder continuity the estimate

|X(w)| ≤ c1|w|α as w → 0.

Let us fix some θ ∈ (θ, π
16 ) and take γ = π (see Assumption B). It follows that
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the minimal surface X(w) satisfies Assumption B with ρ = δ, a = 0, and from
Lemma 2 we infer the estimate

(16) |∇X(w)| ≤ c2|w|α−1 for all w ∈ Dδ1,θ

and some δ1 ∈ (0, ρ).
Next we prove (16) on

D2
δ3,θ = {w = reiϕ : 0 < r < δ, π − θ < ϕ < π}

for some δ3 ≤ δ. Recall that the segment I−
δ = {reiϕ : 0 < r < δ, ϕ = π}

is mapped onto Γ . Employing a suitable orthogonal transformation of R
3

we assume that Γ is locally described by two differentiable functions x =
h1(z), y = h2(z), z ∈ [0, ε), with the properties h1(0) = h2(0) = h′

1(0) =
h′

2(0) = 0 and

(17) |h′
i(z)| <

1
4
, i = 1, 2, z ∈ [0, ε).

We extend the functions h1, h2 as even functions to the interval (−ε, ε) and
define

x̃(w) := x(w)− h1(z(w))
for w ∈ Dδ2 ,(18)

ỹ(w) := y(w)− h2(z(w))

where we have chosen δ2 so as to satisfy z(Dδ2) ⊂ (−ε, ε). Consider the
mapping X̃(w) := (x̃(w), ỹ(w)), w ∈ Dδ2 , which fulfils

(19) X̃(w) = (0, 0) on I−
δ2
.

Furthermore, since X(w) = (x(w), y(w), z(w)) is harmonic we obtain

Δx̃(w) = −h′ ′
1(z(w))|∇z(w)|2, w ∈ Dδ2 ,

Δỹ(w) = −h′ ′
2(z(w))|∇z(w)|2, w ∈ Dδ2 ,

whence

|ΔX̃(w)| ≤ c|∇z(w)|2, w ∈ Dδ2 ,(20)

with a suitable constant c. Relations (17) and (18) imply the estimate

|∇x(w)| ≤ 1
4
|∇z(w)|+ |∇x̃(w)|,

w ∈ Dδ2 .(21)
|∇y(w)| ≤ 1

4
|∇z(w)|+ |∇ỹ(w)|,

From the conformality condition we conclude
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|∇z(w)|2 ≤ |∇x(w)|2 + |∇y(w)|2

≤ 1
16
|∇z|2 +

1
2
|∇z||∇x̃|+ |∇x̃|2

+
1
16
|∇z|2 +

1
2
|∇z||∇ỹ|+ |∇ỹ|2

≤ 5
8
|∇z|2 +

5
4
{|∇x̃|2 + |∇ỹ|2} on Dδ2 ,

thus

|∇z(w)|2 ≤ 10
3
|∇X̃(w)|2, w ∈ Dδ2 .(22)

Inequality (20) now yields |ΔX̃(w)| ≤ a|∇X̃(w)|2, w ∈ Dδ2 , for some con-
stant a. By virtue of the relation (19) we are in a position to apply Lemma 3
to the function X̃, and we obtain the estimate

(23) |∇X̃(w)| ≤ c|w|α−1 on D2
δ3,θ

for some number δ3 ≤ δ2. Finally it follows from (21) and (22) that X itself
satisfies (23), i.e. |∇X| ≤ c|w|α−1 on D2

δ3,θ.
Now we have to verify (23) on the set

D1
δ6,θ = {w = reiϕ : 0 < r < δ6, 0 < ϕ < θ}

with δ6 > 0 chosen appropriately. Performing a suitable rotation in R
3 we can

assume that S is locally given by

z = f(x, y)

with some differentiable function f defined in a neighbourhood of zero such
that

f(0, 0) = 0, ∇f(0, 0) = 0.

Define

z̃(w) := z(w)− f(x(w), y(w)),
x̃(w) := x(w) + z̃(w)fx(x(w), y(w))n(w),
ỹ(w) := y(w) + z̃(w)fy(x(w), y(w))n(w),

where
n(w) := [1 + f2

x(x(w), y(w)) + f2
y (x(w), y(w))]−1

and w ∈ Dδ2 with δ2 so small that (x(w), y(w)) is contained in a neighbour-
hood of zero where f is defined. We remark that z̃(w) = 0 on I+

δ2
and secondly,

because of

x̃v(u, v) = xv(u, v) + z̃v(u, v)fx(x(u, v), y(u, v))n(u, v)
+ z̃(u, v)[fx(x(u, v), y(u, v))n(u, v)]v,
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we have for w ∈ I+
δ2

the equality

x̃v(u, v) = xv(u, v) + {zv(u, v)− fx(x(u, v), y(u, v))xv(u, v)
− fy(x(u, v), y(u, v))yv(u, v)}fx(x(u, v), y(u, v))n(u, v).

Equivalently, for w ∈ I+
δ2

,

x̃v(u, v) = xv(u, v)− 〈Xv(u, v), NS(X(u, v))〉n1(X(u, v)),

where
Ns(X(u, v)) = (n1(X(u, v)), n2(X(u, v)), n3(X(u, v)))

denotes the upward unit normal of S at X(u, v). However, X intersects S
orthogonally along I+

δ2
; thus

x̃v(u, v) = 0 on I+
δ2
.

Analogously we find
ỹv(u, v) = 0 on I+

δ2
,

whence the function X̃(u, v) := (x̃(u, v), ỹ(u, v)), (u, v) ∈ Dδ2 , satisfies

(24) X̃v(u, v) = 0 on I+
δ2
.

Furthermore we infer from the definition of x̃, ỹ, z̃, from f(0, 0) = 0,
∇f(0, 0) = 0, X(0, 0) = 0, as well as from the continuity of X the relation

|x̃v(w)|2 ≥ const{|xv(w)|2 − ε[|yv(w)|2 + |zv(w)|2]},

which holds true for w ∈ Dδ3 , δ3 = δ3(ε) ≤ δ2, and for arbitrary fixed ε > 0.
We observe that similar relations hold for x̃u, ỹv and ỹu.

From the conformality condition we first obtain that |∇z|2 ≤ |∇x|2+|∇y|2
and hence

|∇X(u, v)|2 ≤ const |∇X̃(u, v)|2 on Dδ3 .(25)

Similar arguments show that for some δ4 ≤ δ3 the estimate

(26) |ΔX̃(u, v)| ≤ const |∇X̃(u, v)|2, (u, v) ∈ Dδ4 ,

holds true. We reflect X̃(u, v) so as to obtain a function X(u, v) given by

X(u, v) =

{
X̃(u, v), (u, v) ∈ Dδ4 ,

X̃(u,−v), (u,−v) ∈ Dδ4 .

By virtue of (24) we obtain for each function Φ ∈ C1
c (Bδ4(0) \ I−

δ4
,R2) the

equalities
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∫
Bδ4 (0)

∇X(u,−v) · ∇Φ(u, v) du dv

=
∫

Dδ4

∇X̃(u, v) · ∇Φ(u, v) du dv +
∫

Bδ4 \Dδ4

∇X̃(u,−v) · ∇Φ(u, v) du dv

= −
∫

Dδ4

ΔX̃ · Φdu dv −
∫

I+
δ4

X̃v(u, 0) · Φ(u, 0) du

−
∫

Bδ4 \Dδ4

ΔX̃ · Φdu dv +
∫

I+
δ4

X̃v(u, 0) · Φ(u, 0) du

=
∫

Bδ4

F (u, v,X(u, v),∇X(u, v)) · Φ(u, v) du dv

for some function F which grows quadratically in |∇X| (compare with inequal-
ity (26)). By construction, the function X(u, v) is of class C0(Bδ4(0),R2) ∩
C1(Bδ4(0)\I−

δ4
), and the preceding discussion shows that it is a weak solution

of the two-dimensional system

(27) ΔX = F (u, v,X,∇X) in Bδ4(0) \ I−
δ4
.

Standard regularity theory (see, for instance, Section 2.1, and Morrey [8],
Gilbarg-Trudinger [1]) implies that X is in fact of class C2(Bδ4(0) \ Iδ4) and
satisfies (27) classically on all Bδ4(0) \ I−

δ4
. Finally we apply Lemma 1 to the

domain D = Bδ4 \ I−
δ4

and to the function X; the resulting inequality is

|∇X(w0)| ≤ const ε−1 sup
Bε(w0)

|X(w)−X(w0)|

for all w0 and ε with the property Bε(w0) ⊂ Bδ5 \ I−
δ5

, where δ5 ≤ δ4 is the
constant determined in Lemma 1. If w0 is restricted to lie in D1

δ6,θ, δ6 := 1
2δ5,

then a suitable choice of ε would be ε = 1
2 |w0|. Hence

|∇X(w0)| ≤ const ε−1[|w0|α + (|w0|+ ε)α]
≤ const |w0|α−1,

that is, (23) holds true on D1
δ6,θ. Because of (25) we finally arrive at rela-

tion (2). �

3.3 Minimal Surfaces with Piecewise Smooth Boundary
Curves and Their Asymptotic Behaviour at Corners

In the previous section we proved an asymptotic estimate for the gradient of
a minimal surface X at a corner P of a given piecewise smooth boundary
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arc Γ+ ∪ Γ−. It is the purpose of this section to obtain some more precise
information on the asymptotic behaviour of Xw near the corner P . To give an
idea what might happen we start with a simple but characteristic example:

Let α ∈ (0, 1) and k ∈ N ∪ {0} be given and define

X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ B = {u2 + v2 ≤ 1, v ≥ 0}

by

x(u, v) = Re(wα+2k),
y(u, v) = Im(wα+2k), w = u+ iv ∈ B,
z(u, v) ≡ 0.

Fig. 1.

Then X(u, v) is a minimal surface (i.e. ΔX = 0, 〈Xw, Xw〉 = 0) which maps
the intervals I+ = (0, 1), I− = (−1, 0) onto the straight arcs

Γ+ = {(x, y, z) ∈ R
3 : z = 0, arg(x+ iy) = 0, 0 < x2 + y2 < 1}

and

Γ− = {(x, y, z) ∈ R
3 : z = 0, arg(x+ iy) = πα, 0 < x2 + y2 < 1}

respectively, and the point w = 0 into the origin of R
3. Note that Γ+, Γ− form

an angle β = απ at zero and that X has a branch point at zero if k ≥ 1 whence
X winds around zero k-times. However, there is another possible solution to
the Plateau problem determined by Γ+ and Γ−, namely the surface

X1(u, v) = (x1(u, v), y1(u, v), z1(u, v))

the components of which are defined by
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x1(u, v) = Re(w2−α+2k), y1(u, v) = Im(w2−α+2k), z1(u, v) = 0,

with w = u + iv ∈ B and w = u − iv. Here the semi-disk B is mapped
into the great angle (2− α)π which is formed by Γ+, Γ− at zero. Again it is
possible that branch points occur and that the surface winds about the origin.
In Theorem 1 of this section we shall show that this behaviour is typical of a
minimal surface X which is bounded by two Jordan arcs forming a positive
angle απ at a corner P where Γ+ and Γ− are tangent to the x, y-plane.

Before we can formulate the main theorem of this section, we have to
state the basic assumptions describing the geometric situation which is to be
considered.

Assumption A. Γ+, Γ− are regular arcs of class C2,μ, μ ∈ (0, 1), which in-
tersect at the origin, thereby enclosing an angle of πα, α ∈ (0, 1). The sets
B+

δ , I
+
δ , I

−
δ are defined by

B+
δ := {w = (u, v) ∈ R

2 : |w| < δ, v > 0},
I+
δ := {w = (u, 0) ∈ R

2 : 0 < u < δ},
I−
δ := {w = (u, 0) ∈ R

2 : − δ < u < 0},

(and, as usual, we will identify w = u+ iv ∈ C with w = (u, v) ∈ R
2 and I+

δ

with (0, δ) ⊂ R, etc.).
Let X be a minimal surface which is of class C0,ν(Bδ+ ,R3) ∩ C2(B+

δ \
{0},R3) for some ν ∈ (0, 1) and δ > 0, and satisfies the boundary conditions
X : I±

δ → Γ± and X(0) = 0. Moreover, we assume that there exist functions
h±

1 , h
±
2 ∈ C2,μ(I±

ε ,R), ε > 0, such that

Γ+ = {(t, h+
1 (t), h+

2 (t)) : t ∈ I+
ε } and Γ− = {(t, h−

1 (t), h−
2 (t)) : t ∈ I−

ε },

and that furthermore

h±
j (0) = 0, j = 1, 2, and h± ′

1 (0) = ± cot
(απ

2

)
, h± ′

2 (0) = 0

hold true.

We note that Assumption A is quite natural and not restrictive since, by
performing suitable translations and rotations, we can achieve that any pair of
piecewise smooth boundary curves Γ+, Γ− will satisfy this assumption. Also,
by the results of Chapter 2, any minimal surface bounded by Γ+, Γ− has the
desired regularity properties.

The main result of this section will be

Theorem 1. Suppose that the Assumption A holds. Then there exist Hölder
continuous complex valued functions Φ1 and Φ2 defined on the closure of some
semidisk B+

δ , δ > 0, such that the following assertions hold true:
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(1) Φ1(0) �= 0, Φ2(0) �= 0, Φ2
1(0) + Φ2

2(0) = 0,

(2) xw(w) = wγΦ1(w), yw(w) = wγΦ2(w), and |zw(w)| = O(|w|λ),

where γ = α − 1 + 2k or γ = 1 − α + 2k for some k ∈ N ∪ {0} and λ > γ.
Furthermore there exists some c ∈ C \ {0} such that

(3) x(w) + iy(w) =

⎧⎪⎨
⎪⎩
wα+2k[c+ o(1)]
or as w → 0,

w2−α+2k[c+ o(1)]

and
z(w) = O(|w|λ+1) as w → 0.

Finally, the unit normal N(w) = (Xu ∧Xv)(w)
|(Xu ∧Xv)(w)| tends to a limit as w → 0:

(4) lim
w→0

N(w) =

⎛
⎝ 0

0
±1

⎞
⎠ .

Remark 1. Theorem 1 extends without essential changes to conformal solu-
tions X(w) of the system ΔX = f(X,∇X), where the right-hand-side grows
quadratically in |∇X|. Also two-dimensional surfaces in R

n, n ≥ 3, can be
treated.

In the case of polygonal boundaries we can say more:

Theorem 2. Suppose that Assumption A holds where Γ+, Γ− are straight
lines. Then there exist holomorphic functions Hj and Ĥj , j = 1, 2, 3, which
are defined on a disk Bδ for some δ > 0, such that the following holds true:

(5) wH 2
1(w) + 4H2(w)H3(w) = 0,

(6) Xw(w) = wα−1H2(w)

⎛
⎝ 1
−i
0

⎞
⎠+ w−αH3(w)

⎛
⎝ 1
i
0

⎞
⎠+H1(w)

⎛
⎝ 0

0
1

⎞
⎠ ,

x(w) + iy(w) = wαĤ2(w) + w1−αĤ3(w),
(7)

z(w) = Re(wĤ1(w)),

where w ∈ B+

δ \ {0}. Furthermore, (1) holds true as well.

The idea of the proof of Theorems 1 and 2 is to eventually apply Theorem 3
of Section 3.1 to a certain set of functions involving the gradient Xw. Here
it is necessary and convenient to use first a reflection procedure followed by
a smoothing argument. The new function of interest is then defined on a
neighbourhood Bδ \{0} of zero, and it turns out that Theorem 3 of Section 3.1
can be employed. A further essential ingredient is Theorem 1 of Section 3.2
which provides the starting regularity and thus makes our argument work.
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Proof of Theorem 1. Because of the continuity of X it is possible to select
δ > 0 so small that x(B

+

δ ) ⊂ [−ε, ε]; this will henceforth be assumed. By
Assumption A we have on I±

δ the equality

X(u, 0) = (x(u, 0), h±
1 (x(u, 0)), h±

2 (x(u, 0))),

whence
Xu(u, 0) = (1, h± ′

1 (x(u, 0)), h± ′
2 (x(u, 0)))xu(u, 0).

The conformality conditions (which also hold on I±
δ ) imply that

(8) 〈Xv(u, 0), (1, h± ′
1 (x(u, 0)), h± ′

2 (x(u, 0)))〉 = 0 on I±
δ .

Now we put

a±(t) := [1 + h± ′
1 (t)2 + h± ′

2 (t)2]−1/2(1, h± ′
1 (t), h± ′

2 (t)), t ∈ [−ε, ε],

and consider the linear mappings

S±(t)y := 2〈a±(t), y〉a±(t)− y

which are defined for t ∈ [−ε, ε] and y ∈ R
3. Then, using (8), we infer

S±(x(u, 0))Xu(u, 0) = Xu(u, 0),

S±(x(u, 0))Xv(u, 0) = −Xv(u, 0), where (u, 0) ∈ I±
δ .

This may be rewritten as

(9) S±(x(w))Xw(w) = Xw(w) for all w ∈ I±
δ .

Since S±(t), t ∈ [−ε, ε], is a family of reflections, there exist orthogonal ma-
trices O±(t) such that

S±(t) = O±(t) Diag[−1,−1, 1]O±(t)t,

where we have used the notation

Diag[α, β, γ] =

⎛
⎝ α 0 0

0 β 0
0 0 γ

⎞
⎠

and At denotes the transpose of the matrix A. Furthermore we define

T±(t) := O±(0)O±(t)t

with
O+(0) = lim

t→0+
O+(t) and O−(0) = lim

t→0−
O−(t).

Now put
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T (t) :=

{
T+(t) if 0 ≤ t ≤ ε,

T−(t) if − ε ≤ t < 0.

It follows that the matrix function T is of class C0[(−ε, ε],R9) since

lim
t→0+

T (t) = T+(0) = Id = T−(0) = lim
t→0−

T (t),

and, because of the assumptions on h±
1 , h

±
2 , the matrix T is even of the class

C0,1([−c, c],R9)

(although S±(t) is not even continuous at zero).
Next we consider the complex valued function g(w) defined by

(10) g(w) := T (x(w)) ·Xw(w) for all w ∈ B+
δ .

We claim that g has the reflection property

(11) S±(0)g(w) = g(w) for all w ∈ I±
δ .

In fact, it follows from (9) that

S±(0)g(w) = S±(0)T±(x(w))Xw(w)
= S±(0)O±(0)O±(x(w))tXw(w)
= O±(0) Diag[−1,−1, 1]O±(x(w))tXw(w)
= T±(x(w))S±(x(w))Xw(w)
= T±(x(w))Xw(w) = g(w).

We now reflect g across the u-axis by

(12) G(w) =

{
g(w) if w ∈ B+

δ \ {0},
S+(0)g(w) if w ∈ B+

δ .

Then we have

Lemma 1. The function G is of class C0,1(Bδ\I−
δ ,C

3), and there exists some
constant c > 0 such that the estimate

(13) |Gw(w)| ≤ c|G(w)|2

holds true almost everywhere on Bδ \ {0}. Furthermore G(w) satisfies

G2
1(w) +G2

2(w) +G2
3(w) = 0, w ∈ Bδ \ I−

δ ,(14)
|G(w)| = O(|w|ν−1) as w → 0,(15)

where ν denotes the Hölder exponent of X. Finally there holds the jump rela-
tion

(16) lim
v→0+

G(u, v) = S−(0)S+(0) lim
v→0−

G(u, v)

for all u ∈ I−
δ .
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Proof. Since T is Lipschitz continuous and X ∈ C2(B
+

δ \{0},R3) we also have
g ∈ C0,1(B

+

δ \ {0},C3), and because of (11) we obtain G ∈ C0,1(Bδ \ I−
δ ,C

3).
To establish (13), we remark that almost everywhere on Bδ we find

Gw(w) =

{
gw = [T ′(x(w))xw(w)]Xw(w) if w ∈ B+

δ ,

S+(0)gw(w) = S+(0)[T ′(x(w))xw(w)]Xw(w) if w ∈ B+
δ

whence

|Gw(w)| ≤ c1|T ′(x(w))||xw||Xw| ≤ c2|Xw(w)|2

≤ c3|T−1(x(w))g(w)|2 ≤ c4|g(w)|2 ≤ c5|G(w)|2

for suitable constants c1, . . . , c5. From the conformality condition 〈Xw, Xw〉 =
0 we easily conclude (14), taking the orthogonality of the matrices T± into
account.

The relation (15) follows from the estimate |G(w)| ≤ c6|∇X| and from
Theorem 1 of Section 3.2. Finally, to prove (16), we calculate by means of (11)
that

lim
v→0+

G(u, v) = g(u, 0) = S−(0)g(u, 0)

= S−(0)S+(0)S+(0)g(u, 0) = S−(0)S+(0) lim
v→0−

G(u, v),

where we have used that S+(0)S+(0) = Id. �

The function G(w) itself is not yet accessible to the methods which were
developed at the end of Section 3.1, because of the jump relation (16). To
overcome this difficulty, we have to smooth the function G, which will be
carried out in what follows. Recall that the jump of G at I−

δ is given by

S−(0)S+(0) =

⎛
⎝ cos 2πα − sin 2πα 0

sin 2πα cos 2πα 0
0 0 1

⎞
⎠ .

We can diagonalize S−(0)S+(0) using the unitary matrix

U =
1√
2

⎛
⎝ 0 1 1

0 −i i√
2 0 0

⎞
⎠

and obtain
S−(0)S+(0) = U Diag[1, e2πi(α−1), e−2πiα]U∗,

where U∗ = U
t
. We define a new function F (w), w ∈ Bδ \ I+

δ , by

(17) F (w) := Diag[1, w1−α, wα]U∗G(w)
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or, more explicitly,

F (w) =

⎛
⎝ F1(w)
F2(w)
F3(w)

⎞
⎠ =

⎛
⎝

G3(w)
1√
2
w1−α[G1(w) + iG2(w)]

1√
2
wα[G1(w)− iG2(w)]

⎞
⎠ .

We claim that F is continuous on the punctured disk Bδ(0) \ {0}. In fact, we
infer from (16) the relation

lim
v→0+

F (u, v) = Diag[1, u1−αeiπ(1−α), uαeiπα]U∗ lim
v→0+

G(u, v)

= Diag[1, u1−αeiπ(1−α), uαeiπα]U∗S−(0)S+(0) lim
v→0−

G(u, v)

= Diag[1, u1−αeiπ(1−α), uαeiπα]U∗U

·Diag[1, e2πi(α−1), e−2πiα]U∗ lim
v→0−

G(u, v))

= Diag[1, u1−αe−iπ(1−α), uαe−iπα]U∗ lim
v→0−

G(u, v)

= lim
v→0−

F (u, v).

Since G ∈ C0,1(Bδ \ I−
δ ,C

3), and by Assumption A, it follows that F is even
Lipschitz continuous on the punctured disk Bδ \ {0}.

Lemma 2. The function F (w) = (F1(w), F2(w), F3(w)) defined by (17) be-
longs to the class C0,1(Bδ(0) \ {0},C3) and satisfies

F 2
1 (w)w + 2F2(w)F3(w) = 0 for w ∈ Bδ \ {0},

(18)

|F1(w)| = O(|w|ν−1) as w → 0,

and

|F2(w)| = O(|w|ν−α) as w → 0,
(19)

|F3(w)| = O(|w|ν−β) as w → 0,

where ν denotes the Hölder exponent of X, and β = 1− α. Furthermore, the
following differential inequalities hold true:

|F1w(w)| ≤ c{|w|−2β |F2(w)|2 + |w|−2α|F3(w)|2},
|F2w(w)| ≤ c{|w|−β |F2(w)|2 + |w|β−2α|F3(w)|2},(20)
|F3w(w)| ≤ c{|w|α−2β |F2(w)|2 + |w|−α|F3(w)|2}

almost everywhere on Bδ \ {0} for some constant c > 0.



3.3 Minimal Surfaces with Piecewise Smooth Boundary Curves 253

Proof. We conclude from (14) and (17) that

0 = G2
1(w) +G2

2(w) +G2
3(w) = 1

2 [wα−1F2(w) + w−αF3(w)]2

− 1
2 [wα−1F2(w)− w−αF3(w)]2 + F 2

1 (w)

= 2w−1F2(w)F3(w) + F 2
1 (w),

whence (18) follows. From the definition of F (w) = (F1(w), F2(w), F3(w)) and
from (15) we infer the relations (19). To prove the inequalities (20) we first
note that

|G(w)|2 = |F1(w)|2 + |w|−2β |F2(w)|2 + |w|−2α|F3(w)|2,

whence we obtain from (13) and (17) the inequalities

|F1w(w)| ≤ c[|F1(w)|2 + |w|−2β |F2(w)|2 + |w|−2α|F3(w)|2],
|F2w(w)| ≤ c[|w|β |F1(w)|2 + |w|−β |F2(w)|2 + |w|β−2α|F3(w)|2],
|F3w(w)| ≤ c[|w|α|F1(w)|2 + |w|α−2β |F2(w)|2 + |w|−α|F3(w)|2].

On the other hand, relation (18) yields the estimate

|F1(w)|2 ≤ |w|−1|w|2α−1|F2(w)|2 + |w|−1|w|1−2α|F3(w)|2

= |w|2(α−1)|F2(w)|2 + |w|−2α|F3(w)|2

= |w|−2β |F2(w)|2 + |w|−2α|F3(w)|2.

Together with the above inequalities we finally obtain (20). This finishes the
proof of Lemma 2. �

Now we are in a position to apply Theorem 3 of Section 3.1. We can assume
without loss of generality that 0 < α ≤ β < 1.

Lemma 3. There exists a nonnegative integer m such that the functions
fm

i (w) := w−mFi(w), i = 1, 2, 3, do not vanish simultaneously at zero and
that one of the following conditions holds true:

(i) fm
2 ∈ C0,μ(Bδ,C) for all μ < min(1,m+ α), fm

2 (0) �= 0,

|fm
1w(w)| = O(|w|m−2β) as w → 0,

|fm
2w(w)| = O(|w|m−β) as w → 0,

|fm
3w(w)| = O(|w|m+α−2β) as w → 0,

a.e. on Bδ \ {0}.

(ii) fm
3 ∈ C0,μ(Bδ,C) for all μ < min(1,m+ β), fm

3 (0) �= 0
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|fm
1w(w)| = O(|w|m−2α) as w → 0,

|fm
2w(w)| = O(|w|m+β−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α) as w → 0,

a.e. on Bδ \ {0}.
In addition, if m ≥ 1, then in both cases

(21) fm
2 (0)fm

3 (0) = 0.

Proof of Lemma 3. From Theorem 3 of Section 3.1 we infer that (i) or (ii)
has to hold, except for the assertions concerning fm

1 . We recall the cases
(α), (β), (γ), and (δ) which occurred in the proof of Theorem 3 in Section 3.1.
Let us treat these cases separately.

(α) F2(0) �= 0, F3(0) �= 0: Then (i) of Theorem 3 in Section 3.1 holds with
m = 0. In particular, |F2(w)| = O(1) as w → 0, and |F3w(w)| = O(|w|α−2β)
as w → 0. But then Lemma 6 of Section 3.1 implies that

|F3(w)| =
{
O(1 + |w|α−2β+1) if α− 2β �= −1,
O(|w|−ε) for all ε > 0 if α− 2β = −1.

Now relation (201) yields

|F1w(w)| = O(|w|−2β | as w → 0,

which is the desired assertion.

(β) F2(0) �= 0, F3(0) = 0: Here we obtain (i) of Section 3.1, Theorem 3 with
m = 0. Thus we can proceed as in case (α).

(γ) F2(0) = 0, F3(0) �= 0: In this case we obtain (ii) of Theorem 3 in Section 3.1
with m = 0. In particular,

|F3(w)| = O(1) as w → 0,

|F2w(w)| = O(|w|β−2α) as w → 0.

But 0 < α ≤ 1
2 ≤ β < 1 and β−2α = 1−3α ≥ −1

2 ; therefore we conclude from
Lemma 6 of Section 3.1 that F2 ∈ C0,μ(Bδ,C) for all μ < min(1, 1 + β−2α).
Since F2(0) = 0 we have that |F2(w)| = O(|w|μ), w → 0, μ < min(1, 1+β−2α),
and relation (201) implies

|F1w(w)| = O(|w|−2β+2μ + |w|−2α) = O(|w|−2α) as w → 0,

if we choose μ in such a way that 2μ− 2β ≥ 0.

(δ) F2(0) = F3(0) = 0: In this case we find
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F2(w) = awm + o(|w|m) as w → 0,
(22)

F3(w) = bwm + o(|w|m) as w → 0,

with a, b ∈ C not both equal to zero and m ≥ 1. A direct consequence of (20)
is the following system:

|fm
1w(w)| ≤ c[|w|m−2β |fm

2 (w)|2 + |w|m−2α|fm
3 (w)|2],

|fm
2w(w)| ≤ c[|w|m−β |fm

2 (w)|2 + |w|m+β−2α|fm
3 (w)|2],(23)

|fm
3w(w)| ≤ c[|w|m+α−2β|fm

2 (w)|2 + |w|m−α|fm
3 (w)|2],

while (18) yields

(24) w[fm
1 (w)]2 + 2fm

2 (w)fm
3 (w) = 0 in Bδ \ {0}.

The relations (22) and (24) imply that

|fm
2 (w)|, |fm

3 (w)| = O(1) as w → 0

and
|fm

1 (w)| = o(|w|−1) as w → 0.

Now (231) yields |fm
1w(w)| = O(|w|m−2β), and by Lemma 6 of Section 3.1 we

find that fm
1 ∈ C0,μ(Bδ,C) for all μ < min(1,m− 2β + 1). By letting w → 0

in relation (24) we conclude (21): ab = fm
2 (0)fm

3 (0) = 0.

First subcase: a �= 0, b = 0. Then case (i) of Theorem 3, Section 3.1, holds
with m ≥ 1, and this implies (i) of Lemma 3 since we have already shown
that

|fm
1w(w)| = O(|w|m−2β) as w → 0.

Second subcase: a = 0, b �= 0. Here case (ii) of Theorem 3, Section 3.1, holds
with m ≥ 1. In particular,

|fm
2w(w)| = O(|w|m+β−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α) as w → 0.

By virtue of a = fm
2 (0) = 0 and Lemma 6 of Section 3.1 we find

|fm
2 (w)| = O(|w|μ) for all μ < min(1,m+ β − 2α+ 1) = 1.

Finally we obtain from (231)

|fm
1w(w)| = O(|w|m−2β |w|2μ + |w|m−2α) = O(|w|m−2α) as w → 0.

Thus Lemma 3 is proved. �
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Now we finish the proof of Theorem 1.
From (10), (12) and (17) we infer

Xw(w) = T (x(w))∗U Diag[1, wα−1, w−α]F (w)
= wα−1T (x(w))∗U Diag[w1−α, 1, w1−2α]F (w).

Let us assume that (i) of Lemma 3 holds true whence in particular

fm
2 ∈ C0,μ(Bδ,C), fm

2 (0) �= 0.

Now we define ψ = (ψ1, ψ2, ψ3) by

ψ(w) := w−mU Diag [w1−α, 1, w1−2α]F (w)(25)

=
1√
2
fm
2 (w)

⎛
⎝ 1
−i
0

⎞
⎠+

1√
2
w1−2αfm

3 (w)

⎛
⎝ 1
i
0

⎞
⎠

+ w1−αfm
1 (w)

⎛
⎝ 0

0
1

⎞
⎠

and claim that ψ is Hölder continuous in B
+

δ for 0 < δ � 1 and satisfies

(+) ψ1(0) �= 0, ψ2(0) �= 0, ψ3(0) = 0.

First we note that ψ3(w) = w1−αfm
1 (w) is Hölder continuous in B

+

δ with
ψ3(0) = 0. In fact, if m ≥ 1 then fm

1 is Hölder continuous according to part
(δ) in the proof of Lemma 3. If, however, m = 0, then f0

1 = F1, and so we
have according to Lemma 3, (i), and formula (18) that

(++) |F1(w)| = O(|w|ν−1|), |F1,w(w)| = O(|w|−2β) for w → 0.

We distinguish two cases:

(i) 2α > 1: Then we have−2β > −1, and by (++) and Lemma 6 in Section 3.1,
the function f0

1 is Hölder continuous in B
+

δ . Thus also ψ3 is Hölder continuous
in B

+

δ , and ψ3(0) = 0 since α < 1.

(ii) 2α < 1: By (++) and Lemma 6 in Section 3.1 the function wf0
1 (w) is of

class Cμ(Bδ) for all δ < 2α, and wf0
1 (w) → 0 as w → 0. Therefore,

|w1−αf0
1 (w)| = O(|w|α−ε) for w → 0 and 0 < ε� 1;

consequently ψ3 is continuous in B
+

δ with ψ3(0) = 0. Now we estimate
|ψ3(w1)− ψ3(w2)| for any w1, w2 ∈ B

+

δ \ {0}; w.l.o.g. we assume |w1| ≤ |w2|,
whence |w2| ≥ 1

2 |w2 − w1|. Then
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|ψ3(w1)− ψ3(w2)|
≤ |w−α

1 − w−α
2 ||w1f

0
1 (w1)|+ |w2|−α|w1f

0
1 (w1)− w2f

0
2 (w2)|

≤ c{|w1|−α|w2|−α|w1 − w2|α|w1|2α−ε + |w2|−α|w1 − w2|2α−ε}
≤ c{|w2|−α|w1 − w2|α|w1|α−ε + |w1 − w2|α−ε} ≤ c|w1 − w2|α−ε,

which shows that ψ3 is Hölder continuous in B
+

δ also in case (ii).
Now we infer from (18), (24) the identity

w1−2αfm
3 (w) = − [w1−αfm

1 (w)]2

2fm
2 (w)

.

Since the right-hand side is Hölder continuous in B+
δ (note that fm

2 (0) �= 0),
the same holds for w1−2αfm

2 (w); thus we arrive at w1−2αfm
3 (w) → 0 for w →

0. Therefore, ψ is Hölder continuous and satisfies (+). Because of T (0) = Id,
also the function Φ(w) := T (x(w))∗ψ(w) satisfies Φ1(0) �= 0, Φ2(0) �= 0 and
Φ3(0) = 0. Since T is Lipschitz continuous and ψ andX are Hölder continuous,
also Φ is of class C0,ν1(B+

δ ,C
3) where ν1 := min(ν, μ). Because of (25) we have

Xw(w) = wα−1+mΦ(w) = wα−1+mT (x(w))∗ψ(w),

that is,

xw(w) = wα−1+mΦ1(w), Φ1(0) �= 0,
yw(w) = wα−1+mΦ2(w), Φ2(0) �= 0,(26)
|zw(w)| = |wα−1+m||Φ3(w)| = O(|w|λ),

as w → 0, with λ > α− 1 +m. This proves relation (2).
On the other hand, let us assume that (ii) of Lemma 3 occurs; then we

argue with the function

ψ̃(w) :=
1√
2
fm
3 (w)

⎛
⎝ 1
i
0

⎞
⎠+

1√
2
w2α−1fm

2 (w)

⎛
⎝ 1
−i
0

⎞
⎠+ wαfm

1 (w)

⎛
⎝ 0

0
1

⎞
⎠

instead of ψ, and similar arguments show that ψ̃(w) is Hölder continuous on
B+

δ and that ψ̃1(0) �= 0, ψ̃2(0) �= 0, ψ̃3(0) = 0. In this case we have γ = m−α
because of

wm−αψ̃(w) = U Diag[1, wα−1, w−α]F (w)

and
Xw(w) = wm−αT (x(w))∗ψ̃(w);

thus (2) holds with γ = m− α.
From the conformality condition

x2
w(w) + y2

w(w) + z2
w(w) = 0, w ∈ I−

δ ∪ I+
δ ,



258 3 Singular Boundary Points of Minimal Surfaces

we infer, using (2), that

0 = w2γ [Φ2
1(w) + Φ2

2(w)] +O(|w|2λ) as w → 0,

where γ = α− 1 +m or m− α. Letting w → 0, we obtain

0 = Φ2
1(0) + Φ2

2(0)

which proves (1).
Relation (3) follows by integrating formula (2), using the fact that

X(w) = 2 Re
[∫ r

0

Xw(reiϕ)eiϕ dr

]
.

Thus

x(w) + iy(w) =

{
wα+m[c+ o(1)]
wm−α+1[c+ o(1)] as w → 0(27)

in the two cases respectively. Relation (27) and the boundary conditions imply
that m = 2k in the first and m = 2k + 1 in the second case.

Finally we have to consider the normal

N(w) = (N1, N2, N3) =
Xu ∧Xv

|Xu ∧Xv|
.

Since

|Xu ∧Xv| = 2|Xw|2 = 2|w|2γ [|Φ1(w)|2 + |Φ2(w)|2] +O(|w|2λ), λ > γ.

and
Xu ∧Xv = 2(Im(ywzw),−Im(xwzw), Im(xwyw))

we find by means of (2) that

lim
w→0

N1(w) = lim
w→0

[
const

|w|γ+λ

|w|2γ

]
= 0 since λ > γ,

and
lim
w→0

N2(w) = 0.

Finally

lim
w→0

N3(w) = 2 lim
w→0

Im(xw(w)yw(w))
|Xw(w)|2 = 2

Im(Φ1(0)Φ2(0))
|Φ1(0)|2 + |Φ2(0)|2 = ±1

since Φ1(0) = ±iΦ2(0), and Theorem 1 is proved. �
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Proof of Theorem 2. If Γ+ and Γ− are straight lines, then the matrix T is
the identity Id|3

R
, whence g(w) = Xw(w) and dG

dw (w) = Xww(w) = 0 almost
everywhere in Bδ−{0}. According to Theorem 1.15 in Vekua [1] (or Satz 1.17
in Vekua [2]) we see that G and hence F are holomorphic on Bδ(0). By the
definition of F we obtain

Xw(w) = G(w) = U Diag[1, wα−1, w−α]F (w)

=
wα−1F2(w)√

2

⎛
⎝ 1
−i
0

⎞
⎠+

w−αF3(w)√
2

⎛
⎝ 1
i
0

⎞
⎠+ F1(w)

⎛
⎝ 0

0
1

⎞
⎠ .

Putting H1 := F1, H2 := (
√

2)−1F2 and H3 := (
√

2)−1F3 we obtain represen-
tation (6). Finally (7) follows by integration, and (5) is a consequence of (18).
Thus Theorem 2 is proved. �

3.4 An Asymptotic Expansion for Solutions
of the Partially Free Boundary Problem

The aim of this section is to prove an analogue of Theorem 1 in Section 3.3
for minimal surfaces with partially free boundaries. Here the point of interest
is the intersection point of the boundary arc Γ with the supporting surface
S. Let us again start with an instructive example:

Let S be the coordinate plane {z = 0} and

Γ = {(x, y, z) : z = x tan(απ), y = 0, 0 ≤ x ≤ 1},

Fig. 1.

where α ∈ (0, 1
2 ). For each k ∈ N ∪ {0} we consider the functions

f1(w) = wα+2k, f2(w) = w2−α+2k,



260 3 Singular Boundary Points of Minimal Surfaces

f3(w) = −wα+1+2k, f4(w) = −w1−α+2k,

and the associated minimal surfaces

Xj(u, v) = (xj(u, v), yj(u, v), zj(u, v)), j ∈ {1, 2, 3, 4};

given by

xj(u, v) = Re fj(w), yj(u, v) = 0, zj(u, v) = Im fj(w),
w ∈ B = {(u, v) ∈ R

2 : u2 + v2 < 1, v > 0}, w = u+ iv.

Then each Xj , j = 1, 2, 3, 4, is a minimal surface which maps the interval
[−1, 0] onto Γ and [0, 1] into S while X(0, 0) = 0. Also Xj meets the surface
S orthogonally along its trace Xj |[0,1], and hence it is a stationary solution
of a free boundary problem determined by Γ and S. We shall prove that
any minimal surface with a free boundary behaves near the corner point like
one of the four solutions constructed above. More precisely, it will be shown
that

(1) Xw(w) = wγΦ(w) as w → 0,

where γ > −1, and Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) denotes some Hölder con-
tinuous complex valued function with Φ1(0) �= 0, Φ3(0) �= 0, and Φ2(0) = 0
if α �= 1

2 . From the representation (1) we deduce that the surface nor-
mal tends to a limiting position as w → 0. If in particular α �= 1

2 , then
the tangent space of X at the corner P ∈ Γ ∩ S is spanned by the nor-
mal to S at P and the tangent to Γ at P . Thus the solution surface
X must meet the point P at one of the angles απ, (2 − α)π, (1 − α)π
and (α + 1)π depending on whether X behaves like f1, f2, f3, or f4, re-
spectively. In each of these cases X may penetrate S and can wrap P k-
times.

Let us recall some notation. We define the sets I−
δ , I

+
δ as in Sections 3.2

and 3.3, and we formulate Assumption A similar as in Section 3.2:

Assumption A. Let S be a regular surface of class C3, and Γ be a regular
arc of class C2,μ which meets S in a common point P at an angle απ with
0 < α ≤ 1

2 . We assume that P is the origin O, that the x, y-plane is tangent to
S at O, and that the tangent vector to Γ at O lies in the x, z-plane. Moreover,
let X(u, v) be a minimal surface of class C0,v(B+

δ ,R
3) ∩ C2(B+

δ \ {0}, δ > 0,
which satisfies the boundary conditions

(2) X : I−
δ → Γ, X : I+

δ → S, X(0) = P.

We also suppose that X intersects S orthogonally along its free trace X|I+
δ
.

The main result of this section is
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Theorem 1. Suppose that Assumption A holds. Then there exists an R > 0
and a Hölder continuous function Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) defined on
B+

R such that

Xw(w) = wγΦ(w)(3)

holds true on B+
R \ {0} with either γ = α − 1 + m or γ = −α + m for some

integer m ≥ 0. Moreover, we have Φ1(0), Φ2(0), iΦ3(0) ∈ R and

(4) Φ1(0) = ±iΦ3(0) �= 0, Φ2(0) = 0 if α �= 1
2 ,

that is,

Φ2
1(0) + Φ2

2(0) + Φ2
3(0) = 0(5)

and at least two Φj(0) �= 0 if α = 1
2 . The unit normal vector

N(w) = (N1(w), N2(w), N3(w)) =
Xu ∧Xv

|Xu ∧Xv|
(w)

satisfies
(6)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

limw→0N(w) =

⎛
⎝ 0
±1

0

⎞
⎠ if α �= 1

2 ,

limw→0N(w) =

⎛
⎝ c1
c2
0

⎞
⎠ , if α = 1

2 , where c1, c2 ∈ R and c21 + c22 = 1.

For the trace X(u, 0), u ∈ I+
R , we find

(7) X(u, 0) = uγ+1ψ(u)

with some Hölder continuous function ψ such that ψ(0) = (Φ1(0), Φ2(0), 0).
Furthermore, the oriented tangent vector t(u) = Xu(u,0)

|Xu(u,0)| , u ∈ I
+
R , satisfies

(8) lim
w→0+

t(u) =

⎛
⎝±1

0
0

⎞
⎠ if α �= 1

2
,

and

(9) lim
u→0+

t(u) =

⎛
⎝ d1

d2

0

⎞
⎠ if α =

1
2
, where d2

1 + d2
2 = 1.

If, in addition, S is a plane and if Γ is a straight line segment, then there
exist functions H1, H2, H3, holomorphic on BR(0), such that
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Xw(w) = wα−1H1(w)

⎛
⎝ i

0
1

⎞
⎠+ w−αH3(w)

⎛
⎝−i0

1

⎞
⎠+ w−1/2H2(w)

⎛
⎝ 0

1
0

⎞
⎠(10)

holds true on B+
R \ {0} and

(11) H2
2 (w) + 4H1(w)H3(w) = 0 on BR(0).

Corollary 1. If α �= 1
2 , then there exist some c ∈ C \ {0} and some integer

k ≥ 0 such that one of the following four expansions holds true:

(12) (x+ iz )(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wα+2k[c+ o(1)], w → 0,

w2−α+2k[c+ o(1)], w → 0,

wα+1+2k[c+ o(1)], w → 0,

w1−α+2k[c+ o(1)], w → 0.

Moreover
|y(w)| = O(|w|λ+1) as w → 0, for some λ > γ

where γ is the exponent in the expansion (x + iz )(w) = wγ [c + o(1)] stated
in (12).

The proof of Theorem 1 consists in an adaptation of the method which
was developed in Section 3.3 for the proof of the corresponding result, see
Theorem 1 in Section 3.3. So from time to time our presentation will be
sketchy and leave the details to the reader as an instructive exercise. We
begin the proof of Theorem 1 with a description of a reflection and a smoothing
procedure. To this end let us henceforth assume that S is locally described by

z = f(x, y), (x, y) ∈ Bε(0) = {(x, y) ∈ R
2 : x2 + y2 < ε},

where f ∈ C3(Bε(0),R), and f(0, 0) = 0,∇f(0, 0) = 0. Also, Γ may locally
be described by two functions h1(t) and h2(t) of class C2,μ([0, ε],R) such that
(h1(t), h2(t), t) ∈ Γ for t ∈ [0, ε], and h1(0) = h2(0) = h′

2(0) = 0 while
h′

1(0) = cot απ. Thus it follows that the unit tangent vector of Γ at zero is
then given by (cosαπ, 0, sinαπ). Because of the continuity of X we can select
a number R > 0 such that

X(B+
δ ) ⊂ Kε(0) = {(x, y, z) ∈ R

3 : x2 + y2 + z2 < ε}.

We define the unit vector a(t), t ∈ [0, ε], by

a(t) := [h′
1(t)

2 + h′
2(t)

2 + 1]−1/2

⎛
⎝ h′

1(t)
h′

2(t)
1

⎞
⎠

and the reflection across Γ by
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RΓ (t)Q := 2〈a(t), Q〉a(t)−Q

for Q ∈ R
3, t ∈ [0, ε]. Similarly, we define reflections across S by

RS(x, y)Q := Q− 2〈NS(x, y), Q〉NS(x, y),

for all Q ∈ R
3 and (x, y) ∈ Bε(0) ⊂ R

2, where

NS(x, y) = [1 + f2
x(x, y) + f2

y (x, y)]−1/2

⎛
⎝−fx(x, y)
−fy(x, y)

1

⎞
⎠

is the unit normal of S at the point (x, y, f(x, y)). Identifying the reflections
RΓ and RS with their respective matrices RΓ (t) and RS(x, y), we may con-
struct orthogonal matrices OΓ (t) and OS(x, y) with the properties1

RΓ (t) = OΓ (t) Diag[−1,−1, 1]O∗
Γ (t),

RS(x, y) = OS(x, y) Diag[1, 1,−1]O∗
S(x, y).

We put
TΓ (t) := OΓ (0)O∗

Γ (t)

and
TS(x, y) := OS(0, 0)O∗

S(x, y).

Thus we have obtained matrices RS and TS which are of class C2(Bε(0),R9),
Bε(0) ⊂ R

2, while RΓ and TΓ are of class C1,μ([0, ε],R9). If we extend a(t), t ∈
[0, ε] by ã(t) = a(−t) for t ∈ [−ε, 0] and call the extended functions again a,RΓ

and TΓ , then also a,RΓ , TΓ ∈ C1,μ([−ε, ε]). Now let Kτ denote the cone with
vertex 0 and opening angle τ whose axis is given by x = z cot απ, z ≥ 0, y = 0.
We assume that τ is so small that the vertex 0 is the only point of K2τ ∩S in
the ball Kε(0). Next we choose a real valued differentiable function η defined
on the punctured ball Kε(0) \ {0} = {0 < x2 + y2 + z2 < ε} which satisfies

η(x, y, z) =

{
1 on Kτ ∩ [Kε(0) \ {0}],
0 on Kε(0) \ {0} \K2τ ,

and
|∇η(x, y, z)| ≤ const[x2 + y2 + z2]−1/2 on Kε \ {0}.

We extend η (noncontinuously) by defining η(0, 0, 0) = 0, and denote by
T = T (x, y, z), (x, y, z) ∈ Kε(0), the matrix-valued function

T (x, y, z) := η(x, y, z)[TΓ (z)− TS(x, y)] + TS(x, y).

1 As the symbols t and T are used otherwise, we presently denote the transpose of a matrix

A by A∗.
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Then T is continuous at zero because lim(x,y,z)→0 T (x, y, z) exists and is equal
to IdR3. In fact, T is even Lipschitz continuous on Kε(0) ⊂ R

3 because of

|TΓ (z)− TS(x, y)| ≤ const[x2 + y2 + z2]1/2

and hence |∇T (x, y, z)| stays bounded as (x, y, z) → 0. Defining

g(w) := T (X(w))Xw(w) for w ∈ B+
R \ {0}

we then obtain

Lemma 1. The function g(w) is of class C0,1(B+
R \ {0},C3) and has the fol-

lowing properties:

RΓ (0)g(w) = g(w) for all w ∈ I−
R ,(13)

and

RS(0)g(w) = g(w) for all w ∈ I+
R ,(14)

where RS(0) := RS(0, 0).

Proof. The Lipschitz continuity of g(w) is an immediate consequence of the
Lipschitz continuity of T and of the regularity properties of X. Relation (13)
follows similarly as equation (11) in Section 3.3 using the fact that T (X(w)) =
TΓ (z(w)) if w ∈ I−

R . To prove (14), we let w ∈ I+
R ; then

Xu(w) = (xu(w), yu(w), fx(x, y)xu(w) + fy(x, y)yu(w))

and
〈Xu(w), NS(x(w), y(w))〉 = 0.

From the transversality condition we infer that

Xv(w) = 〈Xv(w), NS(x(w), y(w))〉NS(x(w), y(w)),

for all w ∈ I+
R whence

RS(x(w), y(w))Xu(w) = Xu(w),

and
RS(x(w), y(w))Xv(w) = −Xv(w)

or equivalently

(15) RS(x(w), y(w))Xw(w) = Xw(w), w ∈ I+
R .

Now, using (15) and the definition of T , we obtain
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g(w) = T (X(w))Xw(w) = TS(x(w), y(w))Xw(w)

= TS(x, y)RS(x, y)Xw

= OS(0)O∗
S(x, y)OS(x, y) Diag[1, 1,−1]O∗

S(x, y)Xw

= OS(0) Diag[1, 1,−1]O∗
S(0)OS(0)O∗

S(x, y)Xw

= RS(0)TS(x, y)Xw = RS(0)T (X(w))Xw(w)

= RS(0)g(w),

where the argument of X,x, y is always w ∈ I+
R . �

We now reflect g(w) so as to obtain a function G(w),

(16) G(w) :=

{
g(w) if w ∈ B+

R \ {0},
RS(0)g(w) if w ∈ B+

R ;

then G ∈ C0,1(BR(0) \ I−
R ,C

3) and limv→0+ G(w) = RΓ (0)RS(0) ×
limv→0− G(w) for all w = (u, v) with u ∈ I−

R . Furthermore, G satisfies

(17) |Gw(w)| ≤ c|G(w)|2

almost everywhere in BR, and we infer from Proposition 1 in Section 3.2 that

(18) |G(w)| ≤ c|w|ν−1, w ∈ BR \ {0},

with some constant c, where ν denotes the Hölder exponent of X.
Next we are going to smoothen the jump of G on the interval I−

R by mul-
tiplication with a singular matrix function which is related to the eigenvalues
of the matrix RΓ (0)RS(0). It follows easily that

RΓ (0)RS(0) =

⎛
⎝ cos 2πα 0 − sin 2πα

0 −1 0
sin 2πα 0 cos 2πα

⎞
⎠

and
RΓ (0)RS(0) = U Diag[ei2π(α−1), e−iπ, e−i2πα]U∗,

where U∗ is the unitary matrix

1√
2

⎛
⎝ i 0 −i

0
√

2 0
1 0 1

⎞
⎠ .

The smoothed function F (w) = (F1(w), F2(w), F3(w)) is now defined by

(19) F (w) := Diag[w1−α, w1/2, wα]U∗G(w), for all w ∈ BR(0) \ {0}.

Equation (19) is equivalent to
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Xw(w) = T (X(w))−1U Diag[wα−1, w−1/2, w−α]F (w)(20)
for all w ∈ BR(0) \ {0}.

It is easily seen that F is continuous; in particular, we have

lim
v→+0

F (u, v) = lim
v→−0

F (u, v) for all u ∈ I−
R .

In fact we find

Lemma 2. The function F (w) is of class C0,1(BR(0))\{0},C3) and satisfies
the relations

|F1(w)| = O(|w|ν−α)
|F2(w)| = O(|w|ν−1/2) as w → 0(21)
|F3(w)| = O(|w|ν−β)

and β = 1 − α. Furthermore the following differential system holds almost
everywhere on BR(0):

|F1w| ≤ c[|w|α−1|F1|2 + |w|1−3α|F3|2],
|F2w| ≤ c[|w|(1/2)−2β|F1|2 + |w|(1/2)−2α|F3|2],(22)
|F3w| ≤ c[|w|α−2β |F1|2 + |w|−α|F3|2],

where we have dropped the argument w. Moreover, there exist complex-valued
functions χ1, χ2, χ3 which are Hölder continuous on BR(0) such that

F 2
2 (w)χ1(w) + 2F1(w)F3(w)χ2(w)(23)
= [w2α−1F 2

1 (w) + w1−2αF 2
3 (w)](1− χ3(w)),

and χj(0) = 1 for j = 1, 2, 3.

Proof. Relations (21) follow from the definition of F and from (18). The Lip-
schitz continuity of F on the punctured disk is a consequence of the Lipschitz
continuity of G and of the continuity of F at I−

R . The conformality condi-
tion 〈Xw, Xw〉 = 0, the definition of G and the relation T (0) = Id imply the
existence of Hölder continuous functions a1(w), a2(w), a3(w) such that

a1(w)G2
1(w) + a2(w)G2

2(w) + a3(w)G2
3(w) = 0 in BR(0) \ {0},

and
a1(0) = a2(0) = a3(0) = 1.

Then (23) follows with

χ1(w) = a2(w), χ2(w) = 1
2 (a1(w) + a3(w)),

χ3(w) = 1 + 1
2 (a1(w)− a2(w)).
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From the definition of G we derive

|G(w)|2 = |w|−2β |F1(w)|2 + |w|−1|F2(w)|2 + |w|−2α|F3(w)|2,

and inequality (17) together with (19) yields

|F1w(w)| ≤ c|w|1−α|G(w)|2,
|F2w(w)| ≤ c|w|1/2|G(w)|2,
|F3w(w)| ≤ c|w|α|G(w)|2,

whence

|F1w(w)| ≤ c[|w|−β |F1|2 + |w|−α|F2|2 + |w|β−2α|F3|2],
|F2w(w)| ≤ c[|w|(1/2)−2β|F1|2 + |w|−1/2|F2|2 + |w|(1/2)−2α|F3|2],
|F3w(w)| ≤ c[|w|α−2β|F1|2 + |w|−β |F2|2 + |w|−α|F3|2].

On the other hand, we deduce from (23) the inequality

|F2|2 ≤ c[|F1||F3|+ |w|2α−1|F1|2 + |w|1−2α|F3|2]
≤ c[|w|2α−1|F1|2 + |w|1−2α|F3|2].

These inequalities imply system (22). �

Relations (211), (213) and (221), (223) are equivalent to (33) and (34) re-
spectively stated in Section 3.1. Hence we infer from Theorem 3 in Section 3.1,
similarly as in Lemma 3 of Section 3.3, the following

Lemma 3. There exists a nonnegative integer m such that the functions
fm

j (w) := w−mFj(w), j = 1, 2, 3 either satisfy
(i) fm

1 (0) �= 0, fm
1 ∈ C0,μ(BR,C) for all μ < min(1,m+ α), and

|fm
1w(w)| = O(|w|m−β)

|fm
2w(w)| = O(|w|m+2α−3/2) as w → 0,

|fm
3w(w)| = O(|w|m+3α−2)

or
(ii) fm

1 (0) = 0 and fm
3 (0) �= 0, fm

3 ∈ C0,μ(BR,C) for every μ < min(1,m+β),
and

|fm
1w(w)| = O(|w|m+β−2α)

|fm
2w(w)| = O(|w|m+1/2−2α) as w → 0,

|fm
3w(w)| = O(|w|m−α)

almost everywhere on BR.
If m ≥ 1, then in both cases

(24) [fm
2 (0)]2 + 2fm

1 (0)fm
3 (0) = 0.
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Proof. This can be proved like the corresponding result, Lemma 3, in Sec-
tion 3.3. �

Now we can continue with the proof of Theorem 1. Assume that case (i)
of Lemma 3 holds true; then we put

ψ(w) :=
1√
2
fm
1 (w)

⎛
⎝ i

0
1

⎞
⎠+

1√
2
w1−2αfm

3 (w)

⎛
⎝−i0

1

⎞
⎠+ w1/2−αfm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠

and
Φ(w) := T−1(X(w))ψ(w), w ∈ B+

R .

Now we claim that ψ is Hölder continuous in B
+

R. On account of Lemma 3, (i)
we first have fm

1 ∈ C0,μ(BR,C) for all μ < min{1,m+α}. Then we distinguish
two cases:

1.) m ≥ 1. Then the functions w1−2αfm
3 (w) and w1/2−αfm

2 (w) are Hölder
continuous. Indeed, we have for w → 0:

(+)
|fm

3 (w)| = O(1), by construction;

|fm
2 (w)| ≤ c{|w|α−1/2|fm

1 (w)|+ |w|1/2−α|f3(w)|} = O(|w|α−1/2).

Here we have employed (23) and α ≤ 1. On account of Lemma 3, (i), we see
that Lemma 6 in Section 3.1 yields the Hölder continuity of fm

2 and fm
3 , and

therefore of ψ, in B
+

R.

2.) m = 0. Now we use (21) instead of (+). By Lemma 6 in Section 3.1 and
Lemma 3, (i), we see that f0

2 = F2 is Hölder continuous for α > 1/4, and so
is f0

3 = F3 for α > 1/3.
If α ≤ 1/3, we consider the function wF3(w), which satisfies

|wF3(w)| = O(|w|ν+α), |[wF3(w)]w| = O(|w|3α−1) for w → 0.

Hence wF3(w) is Hölder continuous for any exponent < 3α, and it vanishes
for w = 0.

For arbitrary w1, w2 ∈ B
+

R \ {0} and 0 < ε � 1 we estimate the expres-
sion |w1−2α

1 F3(w1)− w1−2α
2 F3(w2)| as follows, using w.l.o.g. that |w1| ≤ |w2|

whence |w2| ≥ (1/2)|w1 − w2|:

|w1−2α
1 F3(w1)− w1−2α

2 F3(w2)|
≤ |w−2α

1 − w−2α
2 ||w1F3(w1)|+ |w2|−2α|w1F3(w1)− w2F3(w2)|

≤ c{|w1|−2α|w2|−2α|w1 − w2|2α|w1|3α−ε + |w2|−2α|w1 − w2|3α−ε}
≤ c|w1 − w2|α−ε.
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Thus w1−2αF3(w) is Hölder continuous in B
+

R, and similarly one shows the
Hölder continuity of w1/2−αF2(w). Since T−1 is Lipschitz continuous, and
X(w) is Hölder continuous in B

+

R, we see that T−1(X(w)) is Hölder continuous
in B

+

R. This yields the Hölder continuity of Φ(w) = T−1(X(w))ψ(w). On the
other hand, it follows from definition (20) that

(25) Xw(w) = wα−1+mΦ(w), w ∈ B+
R \ {0}.

Because of T (0) = Id, we obtain for α < 1
2 the relations

Φ1(0) =
1√
2
if m

1 (0), Φ3(0) =
1√
2
fm
1 (0) �= 0

(26)
|Φ2(w)| = O(|w|μ

′
) for some μ′ > 0.

Then (25) yields

|yw(w)| = O(|w|λ
′
) for some λ′ > α− 1 +m,

and we also have Ψ2(0) = 0, which is sufficient for the proof of the theorem.
If the second alternative of Lemma 3 holds true, we consider instead of ψ the
function ψ̃ given by

ψ̃(w) :=
1√
2
fm
3 (w)

⎛
⎝−i0

1

⎞
⎠+

1√
2
w2α−1fm

1 (w)

⎛
⎝ i

0
1

⎞
⎠+ wα−1/2fm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠

and
Φ̃(w) := T−1(X(w))ψ̃(w).

Then Φ̃(w) is Hölder continuous and we have

(27) Xw(w) = w−α+mΦ̃(w), w ∈ B+
R(0) \ {0},

which together with (25) proves (3) of Theorem 1. Also we find for α < 1
2 that

Φ1(0) =
−i√

2
fm
3 (0) �= 0, Φ3(0) =

1√
2
fm
3 (0) �= 0, Φ2(0) = 0,

since (w2α−1fm
1 )(0) = 0 and (wα−1/2fm

2 )(0) = 0. The last relation follows
because of fm

1 (0) = 0, relation (24) if m ≥ 1 or (23) for m = 0, Lemma 3 (ii)
and Lemma 6 of Section 3.1.

If α = 1
2 , we obtain relation (3) with

Φ(w) = T−1(X(w))

⎡
⎣ 1√

2
fm
3 (w)

⎛
⎝−i0

1

⎞
⎠+

1√
2
fm
1 (w)

⎛
⎝ i

0
1

⎞
⎠+ fm

2 (w)

⎛
⎝ 0

1
0

⎞
⎠
⎤
⎦
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and

Φ2
1(0) + Φ2

2(0) + Φ2
3(0) = −1

2 [f2
1 (0)− 2f1(0)f3(0) + f2

3 (0)]

+f2
2 (0) + 1

2 [f2
1 (0) + 2f1(0)f3(0) + f2

3 (0)]

= 2f1(0)f3(0) + f2
2 (0) = 0

by (23) and (24).
Then the unit normal of X(w) given by N(w) = Xu ∧Xv

|Xu ∧Xv | (w) satisfies by
virtue of (25) or (27) and because of

(Xu ∧Xv)(w) = 2(Im(ywzw),−Im(xwzw), Im(xwyw))

the relation

lim
w→0

N(w) = 2[|Φ1(0)|2 + |Φ2(0)|2 + |Φ3(0)|2]−1

⎛
⎜⎜⎝

Im(Φ2(0)Φ3(0))

Im(Φ3(0)Φ1(0))

Im(Φ1(0)Φ2(0))

⎞
⎟⎟⎠ .

But now relation (15) implies RS(0)Φ(0) = Φ(0), and this means that

ImΦ1(0) = 0, ImΦ2(0) = 0, and ReΦ3(0) = 0.

Also, if α < 1
2 , then Φ2(0) = 0, and we arrive at

N1(0) = 0, N3(0) = 0, N2(0) = ±1,

whereas, if α = 1
2 , we conclude that

Nj(0) = ±ReΦj(0)[(ReΦ1(0))2 + (ReΦ2(0))2]−1/2, j = 1, 2,

and
N3(0) = 0.

Finally, we obtain for the tangent vector t(u) = Xu(u,0)
|Xu(u,0)| , u > 0, the asymp-

totic behaviour

lim
u→0+

t(u) = [(ReΦ1(0))2 + (ReΦ2(0))2]−1/2

⎛
⎝ReΦ1(0)

ReΦ2(0)
0

⎞
⎠ ,

which proves the relations (8) and (9).
If S is a plane and Γ is a straight line, then T = IdR3 and g = Xw. Hence G

is holomorphic on BR\{0} and F is holomorphic on BR. Finally (10) and (11)
follows from (20) if we take

H1 :=
1√
2
F1, H2 := F2, H3 :=

1√
2
F3,

and Theorem 1 is proved. �
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3.5 Scholia

3.5.1 References

The basic idea of this chapter, the Hartman–Wintner method, was described
and developed in the paper [1] of Hartman and Wintner in 1953. Its relevance
for the theory of nonlinear elliptic systems with two independent variables was
emphasized by E. Heinz. In particular, he discovered the use of this method
for obtaining asymptotic expansions of minimal surfaces at boundary branch
points, and of H-surfaces at branch points in the interior and at the boundary.

The results of Sections 3.2–3.4 concerning minimal surfaces with non-
smooth boundaries are due to Dziuk (cf. his papers [1–4]). His work is based
on methods by Vekua [1,2], Heinz [5], and Jäger [1–3].

Earlier results on the behaviour of minimal surfaces at a corner were de-
rived by H.A. Schwarz [3] and Beeson [1]. The boundary behaviour of con-
formal mappings at corners was first treated by Lichtenstein, and then by
Warschawski [4]. The continuity of minimal surfaces in Riemannian manifolds
at piecewise smooth boundaries was investigated by Jost [12].

The proofs in the paper [1] of Marx based on joint work of Marx and
Shiffman concerning minimal surfaces with polygonal boundaries are some-
what sketchy and contain several large gaps. Heinz [19–24] was able to fill these
gaps and to develop an interesting theory of quasi-minimal surfaces bounded
by polygons, thereby generalizing classical work of Fuchs and Schlesinger on
linear differential equations in complex domains that have singularities (see
Schlesinger [1]). A survey of Heinz’s work can be found in the Scholia of
Chapter 6 of Vol. 1.

In this context we also mention the work of Sauvigny [3–6]. The papers of
Garnier are also essentially concerned with minimal surfaces having polygonal
boundaries, but apparently these results were rarely studied in detail and
did not have much influence on the further progress. This might be both
unjustified and unfortunate, see the recent thesis by L. Desideri.

3.5.2 Hölder Continuity at Intersection Points

In Theorem 1 of Section 3.4 we have derived asymptotic expansions for Xw(w)
and N(w) at the points w0 = ±1 if X : B → R

3 is a minimal surface of class
C(Γ, S) with the parameter domain B = {w = u+ iv : |w| ≤ 1, v > 0} that is
bounded by I = {(u, 0) : |u| < 1} and C = {w : |w| = 1, v ≥ 0}, and w0 = ±1
are mapped onto the two points P1, P2 where the arc Γ meets the surface S.
The basic assumption (cf. Assumption A) was that X is Hölder continuous
on B. Recently, F. Müller [4] has proved that Hölder continuity of X on B
follows from the much weaker assumption that X merely be continuous on B.
His reasoning even applies to continuous solutions X of

(1) |ΔX| ≤ a|∇X|2,
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satisfying also

(2) |Xu|2 = |Xv|2, 〈Xu ·Xv〉 = 0,

i.e. to H-surfaces with sup |H| ≤ const.
Let us choose the corner w0 = 1 of B, and consider the 3-gon Ωδ :=

B ∩ Bδ(1) as well as the arcs Iδ := I ∩ ∂Ωδ and Cδ := C ∩ ∂Ωδ. We assume
that both Γ and S are of class C3, and that Γ meets S in P1, P2 only. We fix
P := P2 which is assumed to correspond to the corner w0 = 1, i.e. X(1) = P .
Then F. Müller’s result reads as follows:

Theorem 1. Suppose that

X ∈ C0(Ωδ,R
3) ∩H1

2 (Ωδ,R
3) ∩ C2(Ωδ \ {1},R3)

satisfies (1) and (2) in Ωδ as well as

(3) X(w) ∈ Γ for w ∈ Cδ, X(1) = P,

(4) X(w) ∈ S and Xv(w)⊥TX(w)S for w ∈ Iδ.

Then we obtain X ∈ C0,μ(Ωδ′ ) for some μ ∈ (0, 1) and some δ′ ∈ (0, δ).

Sketch of the Proof. 1. Let us introduce local coordinates y = (y1, y2, y3) about
P in the same way as in Section 2.7 such that 0 corresponds to P . Suppose
that x and y are related by a C2-diffeomorphism y �→ x = h(y) from the
ball Kr(0) := {y ∈ R

3 : |y| < r} onto a neighbourhood U of P such that
h−1(S ∩ U) = Kr(0) ∩ {y3 = 0} = Br(0)× {0} and

(5) gjk(y1, y2, 0) = diag(E(y1, y2),E(y1, y2), 1) for (y1, y2) ∈ Br(0),

as well as g13 = g31 = g23 = g32 = 0 and g33 = 1 in Kr(0),

(6) m|ξ|2 ≤ gjk(y)ξjξk ≤ m−1|ξ|2 for y ∈ Kr(0), ξ ∈ R
3,

(7)
∣∣∣∣∂gjk

∂y�
(y)
∣∣∣∣ ≤M for y ∈ Kr(0).

2. Then there is an ε ∈ [0, δ] such that X(Ωε) ⊂ U . We may assume that
ε = δ. Then Y := h−1(X) lies in the same class as X and satisfies

(8)

|ΔY | ≤ b|∇Y |2 in Ωε for some b ∈ R, b < 0,

gjk(y)yj
wy

k
w = 0 in Ωε,

y(w) ∈ Γ ∗ := h−1(Γ ∩ U) for w ∈ Cε,

y1
v(w) = 0, y2

v(w) = 0, y3(w) = 0 for w ∈ Iε.
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We can assume that Γ ∗ \ {0} ⊂ H+ := {y3 > 0}. Set

Ỹ (w) = (ỹ1(w), ỹ2(w), ỹ3(w)) :=

⎧⎪⎨
⎪⎩
Y (w) w ∈ Ωε,

for
(y1(w), y2(w),−y3(w)) w ∈ Ω∗

ε ,

where Ω∗
ε := {w ∈ C : w ∈ Ωε}.

Let τ : B → Ω̃ε := Ωε ∪ Iε ∪ Ω∗
ε be a conformal mapping of the unit disk

B onto Ω̃ε, and set Z := Ỹ ◦ τ and

γjk := g̃jk ◦ τ with g̃jk(w) :=

⎧⎪⎨
⎪⎩
gjk(Y (w)) w ∈ Ωε,

for
gjk(Y (w)) w ∈ Ω∗

ε .

Furthermore, let

Γ+ := Γ ∗, Γ− := {(z1, z2, z3) ∈ R
3 : (z1, z2,−z3) ∈ Γ+}.

Then for some ρ ∈ (0, 1), Sρ(0) := B ∩ Bρ(0), and I+
ρ := [0, ρ), I−

ρ := (−ρ, 0]
and a proper choice of τ we obtain for Z|Sρ(0), which is again denoted by Z,
the following relations, by employing the special form of the gjk:

(9)

|ΔZ| ≤ b|∇Z|2 in Sρ(0),

γjkz
j
wz

k
w = 0 in Sρ(0),

Z(w) ∈ Γ+ for w ∈ I+
ρ , Z(w) ∈ Γ− for w ∈ I−

ρ .

By a suitable change of the z-coordinates we can arrange for

Γ± = {(z1, z2, z3) ∈ R
3 : zj = hj

±(z1), 0 ≤ ±z3 ≤ ε0, j = 1, 2}

with some ε0 > 0 and hj
− ∈ C2([−ε0, 0]), hj

+ ∈ C2([0, ε0]),

(10) (h1
±)′(0) = ±cotg

(απ
2

)
, (h2

±)′(0) = 0, α ∈ [0, 1].

Set

hj(t) :=

⎧⎪⎨
⎪⎩
hj

−(t) −ε0 ≤ t0 ≤ 0
for

hj
+(t) 0 ≤ t0 ≤ ε0

⎫⎪⎬
⎪⎭ , j = 1, 2.

For 0 < ρ� 1 we define ζ = (ζ1, ζ2) by

(11) ζj = zj − hj(z3), j = 1, 2.

Then ζ ∈ C0,1(Sρ(0) \ {0},R2) ∩ C0(Sρ(0),R2) ∩H1
2 (Sρ(0),R2) satisfies



274 3 Singular Boundary Points of Minimal Surfaces

∫
Sρ(0)

2∑
j=1

∇ζj∇ϕj du dv =
∫

Sρ(0)

2∑
j=1

[gj∇ϕj + f jϕj ] du dv(12)

for all ϕ = (ϕ1, ϕ2) ∈ C∞
c (Sρ(0),R2),

where we have set for j = 1, 2:

(13) f j := −Δzj ∈ L1(Sρ(0)), gj := −(hj)′(z2)∇z3 ∈ L2(Sρ(0),R2).

Claim. For 0 < ρ� 1 we have

(14) |g1∇ζ1| ≤ a1|∇ζ1|2 + b1|∇ζ2|2,

(15) |g1| ≤ a2|∇ζ1|+ b2|∇ζ2|,

(16) |g2| ≤ a3(ρ)|∇ζ|,

(17) |f j | ≤ b3|∇ζ|2 for j = 1, 2,

with positive constants a1, a2 ∈ [0, 1), b1, b2, b3, and a function a3(t) → +0 as
t→ +0.

Suppose that the claim is proved. Using the boundary condition

(18) ζ(w) = 0 for w ∈ Iρ := {w = u ∈ R : |u| ≤ ρ}

we extend ζ to a continuous function ζ̃ on Bρ(0)by setting

ζ̃(w) :=

⎧⎨
⎩
ζ(w) for w ∈ Sρ(0),

−ζ(w) for w ∈ Sρ(0).

Furthermore, we have ζ̃ ∈ H1
2 (Sρ(0),R2). In addition, we reflect gj

1 =
−(hj)′(z3)z3

u and f j in an odd way and gj
2 = −(hj)′(z3)z3

v evenly across
Iρ, obtaining g̃j

1, f̃
j , g̃j

2. Then it follows

∫
Bρ(0)

2∑
j=1

∇ζ̃j∇ϕj du dv =
∫

Bρ(0)

2∑
j=1

[g̃j∇ϕj + f̃ jϕj ] du dv(19)

for all ϕ ∈
◦

H1
2 (Bρ(0),R2) ∩ L∞(Bρ(0),R2).

One checks that f̃ j and g̃j satisfy growth conditions analogous to (14)–(17)
where the ζj are to be replaced by ζ̃j , whereas a1, a2, a3(ρ), b1, b2, b3 remain
the same. Now one can apply a procedure due to Dziuk [1] (cf. the proof of
Satz 1 in [1]) to show that ζ̃ satisfies a “Dirichlet growth condition” on some
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disk Bρ′ (0) with 0 < ρ′ � 1, and the same holds for ζ on Sρ′ (0). From (11)
one infers that also z1 and z2 satisfy such a condition on Sρ′ (0), using also
(15), (16), and

|zj
w|

(11)

≤ |ζj
w|+ |(hj)′z3

w|
(15),(16)

≤ c|ζw|, j = 1, 2,

and

(20) γjkz
j
wz

k
w = 0

implies that

|∇z3|2 ≤ const(|∇z1|2 + |∇z2|2) on Sρ′ (0) for 0 < ρ′ � 1.

Consequently, Z = (z1, z2, z3) satisfies a Dirichlet growth condition on Sρ′ (0),
and therefore Z is Hölder continuous on Sρ′ (0). Since Ỹ = Z ◦ τ−1, it follows
that Ỹ is Hölder continuous on the closure of Ω̃ε′ for 0 < ε′ � 1, and Y is
Hölder continuous on Ωε′ for 0 < ε′ � 1. Since X = h(Y ), we finally conclude
that X ∈ C0,μ(Ωδ′ ) for some μ ∈ (0, 1) and some δ′ ∈ (0, δ).

It remains to prove the Claim. We begin with (15). From (20) and the
special structure of the gjk, and therefore of the γjk, it follows that

−(z3
w)2 − γ11(z1

w)2 = 2γ12z
1
wz

2
w + γ22(z2

w)2 in Sρ(0).

Inserting z1
w = ζ1

w + (h1)′(z3)z3
w into the left-hand side we find

(21) −γ(z3
w − ξ1ζ1

w)(z3
w − ξ2ζ

1
w) = 2γ12z

1
wz

2
w + γ22(z2

w)2 in Sρ(0)

with

ξ1,2 := −γ−1[γ11(h1)′(z3)± i
√
γ11],

γ := 1 + γ11[(h1)′(z3)]2.

We have

(22) |ξ1| = |ξ2| =
{

γ̃11

1 + γ̃11[(h1)′(z3)]2

} 1
2

in Sρ(0).

If |z3
w| ≤ |ξ1||ζ1

w|, we find

|g1| ≤ 2|(h1)′(z3)||ξ1||ζ1
w| ≤ a2|∇ζ1|,

and this is (15) with a2 < 1 and b2 = 0.
Otherwise we infer from (21)

γ(|z3
w| − |ξ1||ζ1

w|) ≤ |2γ12z
1
wz

2
w + γ22(z2

w)2|;
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thus,

√
γ|z3

w| ≤
{√

|γ12||(h1)′(z3)|+
√
γ22 + |γ12|(h2)′(z3)

}
|z3

w|

+
{√

|γ12|+
√
γ|ξ1|

}
|ζ1

w|+
√
γ22 + |γ12||ζ2

w|.

Furthermore there is a function c(t) with c(t) → +0 as t→ 0 such that

(23) |γ̃12|+ |(h2)′(z3)| ≤ c(ρ) on Sρ(0),

due to (5) and (10). Thus we have for 0 < ρ� 1 that

|z3
w| ≤ [1− c̃(ρ)]−1

{[(
|γ12|
γ

) 1
2

+ |ξ1|
]
|ζ1

w|

+

[(
γ22 + |γ12|

γ

) 1
2

|ζ2
w|
]}

in Sρ(0)(24)

with c̃(ρ) → +0 as ρ→ 0.
Using (22) and again (23), we obtain for 0 < ρ� 1 that

|g1| ≤ 2|(h1)′(z3)||z3
w| ≤ a2|∇ζ1|+ b2|∇ζ2| in Sρ(0)

with a2 ∈ (0, 1) and b2 > 0, as claimed in (15).
The estimate (14) follows easily from (15), and (16) and (17) are derived

from (10) and (24). Thus we have verified the “Dziuk estimates” of the Claim,
and the proof of the theorem is complete. �

3.5.3

We also note that Dziuk [1] has proved Hölder continuity of a minimal
surface X ∈ C(Γ ) at a corner of the boundary contour Γ , assuming only
X ∈ C0(B,R3). This is relevant for Theorem 1 in Section 3.3 where we have
assumed that X ∈ C0,μ(Bδ(0),R3), which in Chapter 2 was only proved for
minimizers.
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Chapter 4

Enclosure and Existence Theorems for Minimal
Surfaces and H-Surfaces. Isoperimetric
Inequalities

In this chapter we shall discuss certain quantitative geometric properties of
minimal surfaces and surfaces of prescribed mean curvature.

We begin by deriving enclosure theorems. Such results give statements
about the confinement of minimal surfaces to certain “enclosing sets” on the
basis that one knows something about the position of their boundaries. For
example, any minimal surface is contained in the convex hull of its boundary
values. All of our results will in one way or another be founded on some version
of the maximum principle for subharmonic functions.

Closely related to these theorems are nonexistence theorems for multiply
connected surfaces. Everyone who has played with wires and soap films will
have noticed that a soap film catenoid between two coaxial parallel circles
will be torn up if one moves the two wires too far apart. Section 4.1 supplies
a very simple proof of the corresponding mathematical assertion which again
relies on the maximum principle for subharmonic functions.

A comparison principle for solutions of the equation of prescribed mean
curvature is employed in the study of points where two (parametric) surfaces of
continuous mean curvature H (“H-surfaces” for short) touch without crossing
each other. The resulting touching point theorem (Section 4.2) implies further
enclosure and nonexistence theorems. Since the proofs are nearly identical
for minimal surfaces (where H ≡ 0) and for surfaces of continuous mean
curvature H, we shall deal with the latter.

We have chosen to extend these principles to submanifolds of arbitrary
dimension and, if possible, of arbitrary codimension as well (Section 4.3).
In Section 4.4 we discuss a “barrier principle” for submanifolds of R

n+k with
bounded mean curvature and arbitrary codimension k. Furthermore, a similar
argument is used to prove a “geometric inclusion principle” for strong (pos-
sibly branched) subsolutions of a variational inequality, which is later used
(Section 4.7) in a crucial way to solve the Plateau problem for H-surfaces
in Euclidean space. Additionally we present some existence theorems for sur-

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,

Grundlehren der mathematischen Wissenschaften 340,

DOI 10.1007/978-3-642-11700-8 4, c© Springer-Verlag Berlin Heidelberg 2010 279

http://dx.doi.org/10.1007/978-3-642-11700-8_4


280 4 Enclosure Theorems and Isoperimetric Inequalities for Minimal Surfaces

faces of prescribed mean curvature with a given boundary in a Riemannian
manifold (Section 4.8).

The enclosure theorems of this chapter also serve to find conditions en-
suring that the solutions of the free (Chapter 1) or semifree (Chapter 4 of
Vol. 1) variational problems for minimal surfaces remain on one side of their
supporting surface. Only such solutions describe the soap films produced in
experiments because these can evidently never pass through a supporting
surface made of e.g. plexiglas, whereas in general we cannot exclude this phe-
nomenon for the solutions of the corresponding variational problems (unless
we consider problems with obstructions; see Vol. 1, Section 4.10, no. 5).

Moreover, if the minimal surface remains on one side of the supporting
surface, then there are no branch points on the free boundary, as follows from
the asymptotic expansions in Chapter 3 (see also Section 2.10). This will be
of importance for some of the trace estimates proved in Section 4.6.

The two Sections 4.5 and 4.6 deal with the relationship between the area
of a minimal surface and the length of its boundary. In particular, isoperimet-
ric inequalities bound the area in terms of the length of the boundary and,
possibly, of other geometric quantities. It is a surprising fact that minimal
surfaces satisfy the same isoperimetric inequalities as a planar domain Ω for
which the relation

4πA ≤ L2

holds true, A being the area of Ω and L the length of ∂Ω.
In Section 4.6 we shall derive upper and lower bounds for the length L(Σ)

of the free trace Σ of a stationary minimal surface X in a semifree or a free
boundary configuration 〈Γ, S〉 or 〈S〉 respectively. These bounds will depend
on geometric quantities such as the area of X, the length of the fixed part Γof
its boundary, and of parameters bounding the curvature of the supporting
surface S. We shall close this section by discussing analogous questions for
solutions of a partition problem which turn out to be stationary surfaces X of
constant mean curvature with a free boundary on the surface S of a body U
which is partitioned by X.

4.1 Applications of the Maximum Principle
and Nonexistence of Multiply Connected Minimal
Surfaces with Prescribed Boundaries

Our first result is the prototype of an enclosure theorem; it will be obtained by
a straight-forward application of the maximum principle for harmonic func-
tions.

Theorem 1 (Convex hull theorem). Suppose that X ∈ C0(Ω,R3) ∩
C2(Ω,R3) is harmonic in a bounded and connected open set Ω ⊂ R

2. Then
X(Ω) is contained in the convex hull of its boundary values X(∂Ω).
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Proof. Let A be a constant vector in R
3. Then h(w) := 〈A,X(w)〉 is harmonic

in Ω, and we apply the maximum principle to h. Hence, if for some number
d ∈ R, the inequality

〈A,X(w)〉 ≤ d

holds true for all w ∈ ∂Ω, it is also satisfied for all w ∈ Ω. As any closed
convex set is the intersection of its supporting half-spaces, the assertion is
proved. �

Throughout this section, let us agree upon the following terminology :

A finite connected minimal surface is a nonconstant mapping

X ∈ C0(Ω,R3) ∩ C2(Ω,R3)

which is defined on the closure of a bounded, open, connected set Ω ⊂ R
2 and

satisfies

(1) ΔX = 0

and

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

in Ω. We call Ω the parameter domain of X.

Then, on account of Theorem 1, we obtain

Corollary 1. Any finite connected minimal surface X with the parameter do-
main Ω is contained in the convex hull of its boundary values X|∂Ω, that is,

(3) X(Ω) ⊂ convex hull X(∂Ω).

In fact, we can sharpen this statement by inspecting the proof of Theo-
rem 1. Suppose that

h(w0) := 〈A,X(w0)〉 = d

holds for some w0 ∈ Ω, in addition to

h(w) ≤ d for all w ∈ ∂Ω.

Then the maximum principle implies

h(w) = d for all w ∈ Ω.

Thus we obtain

Corollary 2. If a finite connected minimal surface X with the parameter do-
main Ω touches the convex hull K of its boundary values X(∂Ω) at some
“interior point” X(w0), w0 ∈ Ω, then X is a planar surface. In particular, X
cannot touch any corner of ∂K nor any other nonplanar point of ∂K.
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The reader will have noticed that, so far, we have nowhere used the con-
formality relations (2). In other words, all the previous results are even true
for harmonic mappings. Thus we may expect that by using (2) we shall ob-
tain stronger enclosure theorems which will better reflect the saddle-surface
character of nonplanar minimal surfaces. In fact, we have

Theorem 2 (Hyperboloid theorem). If X(w) = (x(w), y(w), z(w)) is a fi-
nite connected minimal surface with the parameter domain Ω, whose boundary
X(∂Ω) is contained in the hyperboloid

Kε :=
{
(x, y, z) ∈ R

3 : x2 + y2 − z2 ≤ ε2
}
,

ε > 0, then X(Ω) lies in Kε. Moreover, we even have X(Ω) ⊂ int Kε.

Proof. Note that Kε is the sublevel set

(4) Kε =
{
(x, y, z) : f(x, y, z) ≤ ε2

}

of the quadratic form

f(x, y, z) := x2 + y2 − z2.

Let us therefore compute the Laplacian of the composed map h := f ◦X =
f(X). We obtain

(5) Δh = 〈∇X,D2f(X)∇X〉+ 〈Df(x), ΔX〉.

Because of (1) and

D2f =

⎛
⎝ 2 0 0

0 2 0
0 0 −2

⎞
⎠ ,

it follows that

(6) Δh = 2(|∇x|2 + |∇y|2 − |∇z|2) in Ω.

Moreover, we can write (2) in the complex form

(7) 〈Xw, Xw〉 = 0,

that is,
x2

w + y2
w + z2

w = 0,

whence we obtain

(8) |∇z|2 ≤ |∇x|2 + |∇y|2 in Ω.

From (6) and (8) we infer that

Δh ≥ 0 in Ω,
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i.e., h is subharmonic, and the assumption yields h(w) ≤ ε2 for all w ∈ ∂Ω,
taking (4) into account. Then the maximum principle implies h(w) ≤ ε2 for
all w ∈ Ω whence X(Ω) ⊂ Kε.

Suppose thatX(w0) ∈ ∂Kε for some w0 ∈ Ω. Then we would have h(w0) =
ε2, and the maximum principle would imply h(w) ≡ ε2, i.e., X(w) ∈ ∂Kε for
all w ∈ Ω. As X(w) �≡ const, we know that X(w) has zero mean curvature
(except for the isolated branch points) which contradicts the relation X(Ω) ⊂
∂Kε, since no open part of ∂Kε is a minimal surface. �

Let us take one step further and assume that the boundary of the minimal
surface X is even contained in the cone

K0 =
{
(x, y, z) ∈ R

3 : f(x, y, z) ≤ 0
}

=
⋂
ε>0

Kε.

Then in view of the hyperboloid theorem the whole surface X(Ω) is contained
in the cone K0.

Can it be true that, in addition, the boundary X(∂Ω) intersects both cones

K±
0 := K0 ∩ {z ≶ 0}?

If so, then there is some w ∈ Ω such that the point X(w) of the minimal
surface lies in the vertex of the cone K0, that is, X(w0) = 0 for some w0 ∈ Ω.

On the other hand, asX(w) �≡ const, the minimal surfaceX has a (possibly
generalized) tangent plane T at X(w0) = 0; cf. Section 3.2 of Vol. 1. Clearly,
there is no neighbourhood U of 0 in R

3 such that T ∩U ⊂ K0. Then one infers
that the relation X(w0) = 0 is impossible, taking the asymptotic expansion

Xw(w) = A(w − w0)m +O(|w − w0|m+1) as w → w0

with A ∈ C
3, A �= 0, m ≥ 0, into account.

Hence, except for a suitable congruence mapping, we have shown the fol-
lowing result:

Theorem 3 (Cone theorem). Let K be a cone congruent to K0 which con-
sists of the two half-cones K+ and K− corresponding to K+

0 and K−
0 . Then

there is no finite connected minimal surface the boundary of which lies in K

and intersects both K+ and K−.

The cone theorem can be used to prove nonexistence results for Plateau
problems, or for free (or partially free) boundary value problems. Instead of
formulating a general theorem, we shall merely consider a special case that
illustrates the situation. The reader can easily set up other – and possibly
more interesting – examples, or he may himself formulate a general neces-
sary criterion for the existence of stationary minimal surfaces within a given
boundary configuration 〈Γ1, . . . , Γl, S1, . . . , Sm〉.
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Fig. 1. Two suitable cones give a nonexistence result

Consider two closed Jordan curves Γ1 and Γ2 which can be separated
by some cone K as described in Theorem 3. That is, we can move the test
cone K0 into such a position K that Γ1 lies in the half-cone K+ and Γ2 is
contained in K−. Then there is no connected solution of the general Plateau (or
Douglas) Problem for the boundary configuration 〈Γ1, Γ2〉. This corresponds
to the experimental fact mentioned in the introduction to this chapter: A soap
film spanned into two closed (non-linked) wires Γ1 and Γ2 will decompose into
two parts separately spanning Γ1 and Γ2 if Γ1 and Γ2 are moved sufficiently
far apart.

We shall show at the end of the next section that the “test cone K0 for
non-existence” may even be replaced by a slightly larger set.

Further results about enclosure and nonexistence of minimal surfaces can
be obtained by an elaboration and extension of the ideas used in the proof
of the Theorems 1–3, some of which will be worked out in the next three
sections. Note, however, that the use of the maximum principle was by no
means the first way to obtain information about the extension of minimal
surfaces and about nonexistence of solutions to boundary value problems,
though the maximum principle is certainly the simplest tool to obtain such
results. Concerning other methods we refer to Nitsche’s monograph [28], Kap.
VI, 3.1, pp. 474–498, and pp. 707–708 of the Appendix (=Anhang).

4.2 Touching H-Surfaces and Enclosure Theorems. Further
Nonexistence Results

In the sequel we shall look for other sets K enclosing any finite connected
minimal surface whose boundary is confined to K. Since nothing is gained if
we restrict our attention to minimal surfaces, we shall more generally study
surfaces of continuous mean curvature H (or “H-surfaces”).

To avoid confusion we recall our notation from Chapter 1 of Vol. 1: E, F, G

and L, M, N denote the coefficients of the first and second fundamental form
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of a surface X; H and K stand for its mean curvature and Gauss curvature
respectively.

Assumption. Throughout this section we will assume that H is a continuous
real-valued function on R

3.

Definition 1. An H-surface X is a nonconstant map X ∈ C2(Ω,R3) defined
on an open set Ω satisfying

(1) ΔX = 2H(X)Xu ∧Xv

and

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0.

We call Ω the parameter domain of the H-surface X. An H-surface X is
said to be finite and connected if its parameter domain Ω is a bounded, open,
connected set in R

2, and if X ∈ C0(Ω,R3).

Clearly, minimal surfaces are H-surfaces with H ≡ 0.
In order to study touching H-surfaces, we need the following

Lemma 1. Suppose that Φ : Br(0) → C is a function of class C1 which can
be written in the form

(3) Φ(w) = a(w − w0)m + Ψ(w), w ∈ Br(0),

for some w0 ∈ Br(0), some real number a > 0, some integer m ≥ 1, and some
mapping Ψ : Br(0) → C with Ψ(w0) = 0 and

(4) ∇Ψ(w) = o(|w − w0|m−1) as w → w0.

Then there is some neighbourhood U of w0 and some C1-diffeomorphism ϕ
from U onto ϕ(U) such that

(5) Φ(w) = [ϕ(w)]m for all w ∈ U

holds true.

Proof. Clearly, if there exists some function ϕ satisfying (5), it has to be the
function

(6) ϕ(w) := (w − w0) m
√
χ(w),

where

(7) χ(w) = a+ (w − w0)−mΨ(w).

We shall have to prove that ϕ is well defined and has the desired properties.
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First of all, the relation (4) implies

Ψ(w) = o(|w − w0|m) as w → w0

since Ψ(w0) = 0. Therefore χ(w) tends to a as w → w0, and we set χ(w0) := a.
Hence there is a neighbourhood U0 of w0 where a single-valued branch m

√ of
the m-th root can be defined. Thus the function ϕ defined by (6) and (7) is a
well-defined function near w0.

Now (4) implies for the derivatives of χ in U0 − {w0} that

χu(w) = −m(w − w0)−m−1Ψ(w) + (w − w0)−mΨu(w) = o(|w − w0|−1),
χv(w) = −mi(w − w0)−m−1Ψ(w) + (w − w0)−mΨv(w) = o(|w − w0|−1),

whence

ϕu(w) = m
√
χ(w) +

1
m

(w − w0)χ(w)(1−m)/mχu(w)

= m
√
χ(w) + o(1),

ϕv(w) = i m
√
χ(w) +

1
m

(w − w0)χ(w)(1−m)/mχv(w)

= i m
√
χ(w) + o(1),

and therefore

lim
w→w0

Dϕ(w) =
(

m
√
a 0

0 i m
√
a

)
.

On the other hand, we have

lim
w→w0

ϕ(w)
w − w0

= lim
w→w0

m
√
χ(w) = m

√
a.

Thus ϕ is a C1-function, and the lemma follows from the inverse mapping
theorem. �

Let us now describe what we can say about touching points of two H-
surfaces, one of which is assumed to be regular.

Theorem 1. Suppose that G is a domain in R
3 and that ∂0G is an open part

of the boundary of G with ∂0G ∈ C2. Secondly let X be a finite connected
H-surface with the parameter domain Ω whose image X(Ω) lies in G ∪ ∂0G.
Finally, denoting the mean curvature of ∂0G at P with respect to the interior
normal by Λ(P ), we assume that

(8) supG |H| ≤ inf∂0GΛ

holds true. Then X(Ω) is completely contained in ∂0G if X(Ω) ∩ ∂0G is
nonempty (that is, if X(Ω) “touches” ∂0G).
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Remark 1. This is, in fact, a local result. Instead of (8), it suffices to assume
that every point P ∈ ∂0G has a neighbourhood U in G such that

(8′) supU |H| ≤ infU ∩∂0G Λ.

This remark implies the following

Enclosure Theorem I. Let G be a domain in R
3 with ∂G ∈ C2, and let H

be a continuous function on R
3 satisfying

|H(P )| < Λ(P ) for all P ∈ ∂G,

where Λ denotes again the mean curvature of ∂G with respect to the inward
normal. Then every finite connected H-surface X with the parameter domain
Ω whose image X(Ω) is confined to the closure G lies in G, i.e. X(Ω) ⊂ G.

Remark 2. Note that the condition |H(P )| ≤ Λ(P ) for all P ∈ ∂G is not
sufficient to conclude the assertion of the theorem. Indeed this follows easily
by considering a plane with Λ ≡ 0 and a paraboloid of fourth order lying on
one side of the plane and touching it in a single point.

Proof of Theorem 1. Clearly we have Ω = Ω1 ∪Ω2 where

Ω1 := X−1(G), Ω2 := X−1(∂0G).

Since X is continuous, the set Ω1 is open. Suppose that X(Ω) touches ∂0G;
then Ω2 = Ω \Ω1 is not empty. We show that the assumption “Ω1 �= ∅” will
lead to a contradiction.

In fact, suppose Ω1 �= ∅. Then also ∂Ω1∩Ω is nonempty and we can select a
point z0 ∈ Ω1 which is closer to ∂Ω1∩Ω than to ∂Ω. Since Ω1 is open, there is
a maximal open disc Br(z0) ⊂ Ω1 with the property w0 ∈ ∂Br(z0)∩ ∂Ω1 ∩Ω
for (at least) one point w0 ∈ Ω2, i.e. X(w0) = P0 ∈ ∂0G. Without loss of
generality we may suppose that w0 = 0. By the reasoning of Section 2.10, we
may assume after a suitable shift and rotation of the coordinate system that,
close to w0 = 0, the surface X(w) = (x(w), y(w), z(w)) has the asymptotic
expansion

x(w) + iy(w) = awm + o(|w|m),

z(w) = o(|w|m),

for some integer m > 0 and some a > 0. According to the preceding Lemma 1,
there is a neighbourhood U ⊂ Ω of 0 and a C1-diffeomorphism ϕ : U → ϕ(U)
such that for w ∈ U

x(w) + iy(w) = [ϕ(w)]m.

Next we choose an ε > 0 so small that the disk Bε(0) is contained in ϕ(U),
whence Bεm(0) lies in ϕm(U). Therefore all the disks

Ωε(ξ, η) = Bεm/2(ξ + iη) with ξ2 + η2 =
(
εm

2

)2

,
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which cover Bεm(0) \ {0}, are subsets of ϕm(U), and their preimages under
the mapping ϕm cover a punctured neighbourhood of 0.

Now let m
√ denote an arbitrary single-valued branch of the m-th root

defined on Ωε(ξ, η). Then

z′(x, y) := z
(
ϕ−1( m

√
x+ iy )

)

defines a C1-non-parametric representation of a part of the H-surface X,
namely the one defined on ϕ−1(m

√
Ωε(ξ, η)). For the construction to follow it

is convenient and necessary to choose Ωε(ξ, η) ⊂ Br(z0) such that w0 = 0 ∈
∂Ωε(ξ, η).

The plane {z = 0} is the (possibly “generalized”) tangent plane of X at
P0 = X(w0). Thus

(9) lim
(x,y)→0

∇z′(x, y) = 0.

Fig. 1. The domains used in the proof of Theorem 1

Since X(Ω) lies on one side of ∂0G and since X(w0) belongs to ∂0G, the set
{z = 0} is also the tangent plane of ∂0G at X(w0). Therefore (after decreasing
ε if necessary) we obtain also a local non-parametric representation of ∂0G by
means of a function

z′ ′ = z′ ′(x, y) for (x, y) ∈ Ωε(ξ, η).

By assumption, we have z′ ′ ∈ C2(Ωε(ξ, η)). If the interior normal of ∂0G at
X(w0) points in the direction of the positive z-axis, (the other case is handled
similarly), we have by assumption

(10) z′ ′ < z′ on Ωε(ξ, η), and also z′ ′(0) = z′(0).
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Since {z ≡ 0} is also the tangent plane of ∂0G at X(w0) we have

(11) lim
(x,y)→0

∇z′ ′(x, y) = ∇z′ ′(0, 0) = 0.

Moreover, z′ and z′ ′ are solutions of the corresponding equations of prescribed
mean curvature (cf. Section 2.7 of Vol. 1), i.e.,

Q(z′) := div
∇z′√

1 + |∇z′|2
= ±2H(x, y, z′(x, y)),

Q(z′ ′) := div
∇z′ ′√

1 + |∇z′ ′|2
= 2Λ(x, y, z′ ′(x, y))

for all (x, y) ∈ Ωε(ξ, η). By assumption, it follows that

Q(z′) ≤ Q(z′ ′) in Ωε(ξ, η).

It now readily follows from the theorem of the mean, that the difference ẑ :=
z′ ′ − z′ satisfies a linear differential inequality of the type

L(ẑ) = aij(x)Dij ẑ + bi(x)Diẑ ≥ 0 in Ωε(ξ, η),

where the coefficients bi are locally bounded and the aij ’s are elliptic (for a
similar argument see e.g. the proof of Theorem 10.1 in Gilbarg and Trudinger
[1]).

Now (9) and (11) yield that

lim
(x,y)→0

∇ẑ(x, y) = 0,

and hence also the normal derivative ∂ẑ
∂n (0, 0) = 0.

However, because of ẑ(0) = 0 > ẑ(x, y) for all (x, y) ∈ Ωε(ξ, η), the point
w0 = 0 ∈ ∂Ωε(ξ, η) is a strict maximum, which contradicts Hopf’s boundary
point lemma (Lemma 3.4 in Gilbarg and Trudinger [1]). Consequently Ω1 has
to be empty and hence Ω = Ω2 or X(Ω) ⊂ ∂0G. This completes the proof of
Theorem 1. �
Proof of Enclosure Theorem I. The condition |H(P )| < Λ(P ) for all P ∈ ∂G
clearly implies that every point P ∈ ∂G has a neighbourhood U in G, such
that

sup
U
|H| ≤ inf

U ∩∂G
Λ

holds true. Therefore a local version of Theorem 1 is applicable and we assume,
contradictory to the assertion, that some interior point w0 ∈ Ω is mapped
onto ∂G, i.e. X touches ∂G at X(w0). It then follows from Theorem 1 that
X(Ω) ⊂ ∂G. On the other hand X is an H-surface, which in particular means
that X has mean curvature H, except possibly at isolated singular points,
compare the derivation of the asymptotic expansion near branch points in
Section 2.10. Whence, by continuity, it follows that |H(P )| = Λ(P ) for all P ∈
∂G, a contradiction to the assumption of the theorem. Enclosure Theorem I
is proved. �
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The reasoning used to prove Theorems 2 and 3 in Section 4.1, may be
generalized to H-surfaces X. In fact consider the quadratic function

f(x, y, z) = x2 + y2 − bz2,

with 0 ≤ b < 1, and compute the Laplacian of the composed map h := f ◦X.
We obtain similarly as in Theorem 2 of Section 6.1

Δh = 〈∇X,D2f(X)∇X〉+ 〈Df(X), ΔX〉.

Because of (1) and

D2f =

⎛
⎝ 2 0 0

0 2 0
0 0 −2b

⎞
⎠ ,

it follows that

Δh = 2|∇x|2 + 2|∇y|2 − 2b|∇z|2 + 4H(X) · 〈(x, y,−bz), Xu ∧Xv〉
≥ 2|∇x|2 + 2|∇y|2 − 2b|∇z|2 − 4|H(X)||Xu ∧Xv| ·

√
x2 + y2 + b2z2.

From the conformality condition (2) we obtain

|∇z|2 ≤ |∇x|2 + |∇y|2,

whence
|Xu ∧Xv| ≤ |∇x|2 + |∇y|2.

Concluding we find

Δh ≥ 2|∇x|2 + 2|∇y|2 − 2b|∇z|2 − 4|H(X)|
(
|∇x|2 + |∇y|2

)√
x2 + y2 + b2z2

≥ 2(|∇x|2 + |∇y|2)
[
1− b− 2|H(X)| ·

√
x2 + y2 + b2z2

]
.

Thus we have proved

Theorem 2. Let X be an H-surface on Ω and f(x, y, z) = x2 + y2 − bz2,
0 ≤ b < 1. Then the function h = h(u, v) = f ◦ X(u, v), (u, v) ∈ Ω is
subharmonic on Ω, provided that

b+ 2|H(X)| ·
√
x2 + y2 + b2z2 ≤ 1 on Ω.

A consequence of this result and the asymptotic expansion for H-surfaces
in singular points is the following

Theorem 3 (Cone Theorem). Suppose that X ∈ C2(Ω) ∩ C0(Ω) is an
H-surface on Ω which satisfies

sup
w∈Ω

|X(w)| · |H(X(w))| = q <
1
2
.
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Then, for b = 1−2q ∈ (0, 1] the function h(u, v) = x2(u, v)+y2(u, v)−bz2(u, v)
is subharmonic on Ω and therefore by the maximum principle

sup
Ω
h ≤ sup

∂Ω
h.

Moreover let K = K+ ∪K− ∪ {0} where

K± =
{
(x, y, z) : x2 + y2 − bz2 ≤ 0, ±z > 0

}
.

Suppose that X(∂Ω) is contained in K, such that both intersections X(∂Ω)∩
K+ and X(∂Ω) ∩K− are not empty; then Ω cannot be connected.

Proof. The asymptotic expansion for H-surfaces, cp. Section 2.10 and Chap-
ter 3, or the discussion in the proof of Theorem 1, imply the existence of a
tangent plane for X at every point w ∈ Ω. Hence the H-surface cannot pass
through the vertex of the cone, cp. the discussion in Section 4.1. �

For our next enclosure theorem we need some further terminology which
will allow us to give a lucid formulation of the result.

Definition 2. Let J be an interval in R. We shall say that a family of domains
in R

3, (Gα)αεJ, depends continuously on the parameter α, if for all α0 ∈ J the
symmetric difference

GαΔGα0 := (Gα ∪Gα0) \ (Gα ∩Gα0)

tends to ∂Gα0 as α tends to α0, i.e., if for all α0 ∈ J and all ε > 0 there is a
δ > 0 such that |α− α0| < δ implies that

GαΔGα0 ⊂ Tε(∂Gα0) := {P : dist(P, ∂Gα0) < ε} .

Definition 3. If M is a simply connected subset of an open set G in R
3,

then a family (Gα)αεJ of domains depending continuously on its parameter
α is called an enclosure of M with respect to G (or it is said: (Gα)αεJ

encloses M with respect to G) if

(i) M ⊂ Gα for all α ∈ J;
(ii) every P ∈ G \M does not belong to at least one of the Gα;
(iii) every compact subset K of G lies in at least one of the Gα;

Here are two examples:

1 Let M be a star-shaped domain in R
3 whose boundary may be considered

as a graph of a positive real-valued function f : S2 → (0,∞) of class C2, i.e.
we assume that

M =
{
λP : P ∈ S2 and 0 ≤ λ < f(P )

}
.

Then ∂M is the level set
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∂M =
{
P ∈ R

3 \ {0} : F (P ) = 1
}

of the function

F (P ) := |P |/f
(
P

|P |

)
for P ∈ R

3 \ {0} , F (0) := 0

satisfying F (cP ) = cF (P ) for c > 0. In particular, we have for c > 0 that

F (P ) = 1 if and only if F (cP ) = c,

i.e., the level sets of F are homothetic, hence the mean curvature of {F = 1}
at P is equal to c-times the mean curvature of {F = c} at the point cP .

Fig. 2. A star-shaped domain M , whose boundary is the graph of a smooth function

f : S2 → R defined on the unit sphere S2, is enclosed with respect to R3 by the family of

domains Gα = {αP : P ∈ M }, α > 1, which are homothetic to M

Moreover, the family

Gα := {F < α} for α > 1

defines an enclosure of M with respect to R
3.

2 Let τ = 1.199678640257 . . . be the solution of the equation τ sinh τ =
cosh τ . Then, for any c > 0, the cone

Kc :=
(
K+ ∪ {0} ∪K−) ∩ {|z| < c}

with
K± :=

{
(x, y, z) ∈ R

3 : x2 + y2 < (sinh2 τ)z2, z ≶ 0
}

is enclosed by the domains

Kc
α := Kα ∩ {|z| < c} ,
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Kα :=
{

(x, y, z) ∈ R
3 : x2 + y2 < α2 cosh2 z

α

}
, α > 0.

Note that the Kα have catenoids, i.e. minimal surfaces, as their boundaries
∂Kα, cf. Osserman and Schiffer [1].

By the way, the angle of aperture of the cone K+ is α = arctan(sinh2 τ) =̂
56.4658 . . . degrees whereas the angle of the cone K+ appearing in the cone
theorem of Section 6.1 is 45◦.

Fig. 3. Let τ be the solution of the equation τ sinh(τ) = cosh(τ). Then the cone {x2 +y2 <

sinh2(τ)z2, |z| < c} is enclosed by the family of domains {x2 + y2 < α2 cosh2(z/α), |z| < c}
having catenoids as parts of their boundaries

Assumption. In the sequel let M be a simply connected subset of a domain G
in R

3 which possesses an enclosure (Gα)αεJ with respect to G such that each
subset ∂0Gα := G ∩ ∂Gα of ∂Gα is of class C2.

Denote by Λα the mean curvature of ∂Gα with respect to the inward
normal of ∂Gα.

Recall that H ∈ C0(R3), and suppose that we have

(12) supGα
|H| ≤ inf∂0Gα Λα

for every α ∈ J.
Under this assumption we can formulate the

Enclosure Theorem II. Let X ∈ C2(Ω) ∩ C0(Ω) be a finite connected
H-surface with the parameter domain Ω whose image X(Ω) lies in G, and
whose boundary X(∂Ω) is contained in M . Then the image X(Ω) must, in
fact, lie in M .

Proof. If X(Ω) is not contained in M , then, according to the definition of an
enclosure (Gα)α∈J, there is an α1 such that X(Ω) does not lie in Gα1 , and
an α2 (without loss of generality greater than α1) such that X(Ω) remains
in Gα2 . Therefore the number
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α0 := sup
{
α ∈ J : α < α2 and X(Ω) �⊆ Gα

}

is well defined and finite. We shall presently show that

(I) X(Ω) ⊂ Gα0 ∪ ∂0Gα0 ,

(II) X(Ω) ∩ ∂0Gα0 �= ∅.

Then, on account of Theorem 1, we obtain that X(Ω) lies in ∂0Gα0 ; in par-
ticular, X(∂Ω) is confined to ∂Gα0 . This contradicts the assumption that

X(∂Ω) ⊂M ⊂ Gα0 .

Now, as for (I), let us assume that for some w ∈ Ω, the point X(w) lies at a
distance d > 0 from Gα0 . Then the continuity of the family Gα with respect
to α implies that, for some small ε > 0, the point X(w) is not contained in
Gα0+ε either. This, however, contradicts the definition of α0.

Fig. 4. A simply connected set M which has an enclosure Gα as shown before with respect

to an open set G, and an H-surface X whose image X(Ω) is confined to G and whose

boundary even lies in the smaller set M . If the H-surface would satisfy the curvature

condition of the enclosure theorem II, then all of X(Ω) would remain in M

As for (II), since X(Ω) is contained in G, it will suffice to show that X(Ω)
does not lie in Gα0 . Otherwise, as follows from the compactness of X(Ω), we
have

d′ := dist
(
X(Ω), ∂0Gα0

)
> 0,

which also implies that α0 is not the supremum since, once again, in view of
the continuity of Gα with respect to α, the set X(Ω) lies in Gα0−ε for some
small ε > 0. �

As an illustrative application of the last enclosure theorem, we have the
following

Enclosure Theorem III. Let f : S2 → (0,∞) be some C2-function on S2,
and let F : R

3 → (0,∞) be its homogeneous extension to R
3 defined by
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F (0) := 0 and F (P ) := |P |/f( P
|P | ) for P �= 0. Denote by M the star-shaped

domain {F < 1} and assume that the mean curvature of ∂M with respect
to the inward normal is everywhere nonnegative. Then every connected finite
minimal surface X with the parameter domain Ω satisfies X(Ω) ⊂ M if we
assume that X(∂Ω) ⊂M and if the intersection of X(∂Ω) with M is nonvoid.

This result follows from Theorem 1 and from the remarks about Example
1 in connection with the Enclosure Theorem II. Instead of going into the

details we shall state a nonexistence result that follows from the Enclosure
Theorem III; it can be proved like the nonexistence result in Section 4.1.

Nonexistence Theorem. Assume that M , G, Gα satisfy the assumptions
stated above, and suppose in addition that there are finitely many points
P1, . . . , Pm in M such that M \ {P1, . . . , Pm} decomposes into n ≥ 2 sim-
ply connected components M1, . . . ,Mn. Then there is no finite connected H-
surface with a parameter domain Ω which has the following properties:

(i) X(Ω) ⊂ G;
(ii) X(∂Ω) ⊂M ;
(iii) X(∂Ω) intersects at least two of the components M1, . . . ,Mn.

Applying the last theorem to Example 2 , we obtain the following im-
provement of the cone theorem of Section 4.1:

Corollary 1. Set

K± :=
{
(x, y, z) ∈ R

3 : z ≶ 0 and x2 + y2 < z2 sinh2 τ
}
,

where τ = 1.199678640257 . . . is a solution of the equation

τ sinh τ = cosh τ,

and define K by
K := K+ ∪ {0} ∪K−.

Then there is no connected finite minimal surface with boundary which inter-
sects both K+ and K−.

This “nonexistence test-cone” K cannot be further increased as one can
see by means of catenoids between suitable circles as boundary curves, see
Fig. 1 in the introduction of this chapter.

4.3 Minimal Submanifolds and Submanifolds of Bounded
Mean Curvature. An Optimal Nonexistence Result

It is the aim of this section to generalize the results of Sections 4.1 and 4.2
to higher dimensions and codimensions. To accomplish this, we first define
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a concept of n-dimensional surfaces or submanifolds in R
n+k. It turns out

that, for the present purpose, it is not necessary to develop the complete
differential geometric notion of submanifolds in arbitrary ambient manifolds,
as e.g. described in Gromoll, Klingenberg, and Meyer [1], do Carmo [3], Jost
[18] and Kühnel [2], but rather the more elementary concepts of submanifolds
in R

n+k (although later in Section 4.8 we shall also treat surfaces of prescribed
mean curvature in Riemannian manifolds). We start with the following

Definition 1. A subset M ⊂ R
n+k is called an n-dimensional submanifold

of class Cs, if for each x ∈ M there are open neighbourhoods U , V ⊂ R
n+k

of x and 0 in R
n+k respectively, and a Cs-diffeomorphism ϕ : V → U , such

that ϕ(0) = x and ϕ(V ∩ R
n × {0}) = U ∩M . Here ϕ|V ∩Rn × {0} is a local

parametrization and ϕ−1 is called a local chart for M . In case that k = 1,
M ⊂ R

n+1 is also called a hypersurface (of class Cs).

Given M , x and ϕ as in Definition 1 we have

Definition 2. The tangent space TxM of M at x is the n-dimensional linear
subspace of Rn+k which is spanned by the independent vectors ϕx1(0), . . . ,
ϕxn(0).

One easily convinces oneself that the tangent space TxM is given by all
vectors ξ = α̇(0), where α : (−ε, ε) → M is a regular curve in M with
α(0) = x. That is we have

Proposition 1. The tangent space of M at x is given by

TxM =
{
α̇(0) : α : (−ε, ε) →M is a regular curve with α(0) = x

}
.

Now consider a function f : M → R
m. One way of defining differentiability

of f is to consider all possible compositions of f with parametrizations ϕ and
to requiring the composition f ◦ ϕ : V ∩ R

n × {0} → R
m to be differentiable,

see e.g. Chapter 1. Here we define differentiability somewhat different (but
equivalently)

Definition 3. Let M ⊂ R
n+k be a submanifold of class Cs and f : M → R

m.
f is differentiable of class Cr, r ≤ s, if there exists an open subset U ⊂ R

n+k

with M ⊂ U and a Cr-function F : U → R
m such that f = F |M .

In other words, f : M → R
m is differentiable, if it is the restriction of a

differentiable map from an open set U ⊂ R
n+k. Of particular interest are the

cases m = 1 (scalar functions) and m = n+ k (vector fields). If f : M → R is
differentiable we define the (intrinsic) gradient of f as follows

Definition 4. The gradient of f on M , in symbols ∇Mf , is defined by ∇Mf =
(Df)�, where Df = (fx1 , . . . , fxn+k) denotes the usual (Euclidean) gradient
and (ξ)� stands for the orthogonal projection of the vector ξ ∈ R

n+k onto
the tangent space of M at x. (Note that here and in the discussion to follow
we tacitly assume, that f coincides with its differentiable extension F , cp.
Definition 3).
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Definition 5. The normal space of M at x is given by

TxM
⊥ := {n ∈ Rn+k : 〈n, t〉 = 0 for all t ∈ TxM}.

Here 〈·, ·〉 denotes the Euclidean scalar product in R
n+k.

Let N1, . . . , Nk be an orthonormal basis of TxM
⊥. Then we obtain ∇Mf =

Df − 〈Df,N1〉N1 − · · · − 〈Df,Nk〉Nk, for the intrinsic gradient of a function
f : M → R.

Equivalently we now consider an orthonormal basis t1, . . . , tn of the tan-
gent space TxM ⊂ R

n+k and an arbitrary vector t ∈ TxM . Recall that the
directional derivative Dtf of f : M → R

m at x in the direction of t is given
by

Dtf(x) :=
d

dε
f(α(ε))ε=0,

where
α : (−δ, δ) →M

is a regular curve in M with α(0) = x and α′(0) = t. It is easily seen, that
this definition is meaningful (i.e. independent of the particular curve α), and
furthermore we have by the chain rule

Dtf(x) = Df(x) · t.

Definition 6. Let f : M → R
m be differentiable. The differential df(x) of f

at x is the linear map df(x) : TxM → R
m

t �→ df(x)(t) := Dtf(x).

In fact, it follows immediately from the definition that df(x) is linear.
Observe now that the gradient of f : M → R is equivalently given by

(1) ∇Mf = (Dt1f)t1 + · · ·+ (Dtnf)tn =
n∑

i=1

(Dtif)ti,

for any orthonormal basis t1, . . . , tn of TxM . Then equation (1) easily follows
from the previous relation by multiplication with the basis vectors t1, . . . , tn
respectively.

Note that (1) is already meaningful for functions f : M → R which are
merely defined on M , whereas Definition 4 assumes f to be defined (locally)
on an open neighbourhood of M , however we shall not dwell on this.

The next important notion is that of the divergence on M .

Definition 7. Let X : M → R
n+k

X(x) = (X1(x), . . . , Xn+k(x))
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be a differentiable function on a differentiable submanifold M ⊂ R
n+k, i.e.

a—not necessarily tangential—vector field on M . The divergence divMX of
X on M is given by

div MX =
n∑

i=1

〈ti, DtiX〉,

where t1, . . . , tn ∈ TxM is an orthonormal basis of the tangent space TxM .

We observe here that the definition of div M is independent of the partic-
ular orthonormal basis t1, . . . , tn of the tangent space TxM . To see this we
compute

n∑
i=1

〈ti, dX(ti)〉 =
n∑

i=1

〈ti, DtiX〉 =
n∑

i=1

〈
ti, Dti

(
n+k∑
j=1

ej X
j

)〉

=
n∑

i=1

〈
ti,

n+k∑
j=1

ej DtiX
j

〉
=

n∑
i=1

n+k∑
j=1

〈ti, ej DtiX
j〉

=
n+k∑
j=1

〈
ej ,

n∑
i=1

(DtiX
j)ti

〉
=

n+k∑
j=1

〈ej ,∇MXj〉

by equation (1), where e1, . . . , en+k denotes the canonical basis of R
n+k and

∇MXj is the gradient of the j-th component Xj of the vector field X on M .
For later computations we note here

Proposition 2. Let X(x) = (X1(x), . . . , Xn+k(x)) be a differentiable vector
field on M . Then the divergence of X on M is given by the relation

divMX =
n+k∑
j=1

〈ej ,∇MXj〉,

where e1, . . . , en+k stands for the canonical basis of R
n+k.

The next important operator is the Laplace–Beltrami operator.

Definition 8. For f : M → R of class C2 we put ΔMf := div M (∇Mf).
Then ΔM is called the Laplacian on M or Laplace–Beltrami operator.

Note that ΔM coincides with the Laplace–Beltrami operator on a surface
X given in Chapter 1.5 of Vol. 1, equations (15) and (16). Observe also that
ΔM is an elliptic operator on M ; this will be used later in this section when
we compute the Laplacian of a certain quadratic form.

Finally we have to introduce some curvature quantities for the submani-
fold M . To this end we choose an orthonormal basis t1, . . . , tn of TxM , which
together with an orthonormal basis N1, . . . , Nk of the normal space TxM

⊥

forms an orthonormal basis of R
n+k.
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Let us initially assume that the codimension k is equal to 1, so that (up
to a sign) there is only one unit normal N = N1. Consider N = N(x) as a
function of x ∈ M and assume that N(·) is differentiable, which is true if
M ∈ C2. We then define the Weingarten map (cp. Section 1.2 of Vol. 1) of
M at x ∈M to be the linear map

−dN(x) : TxM → R
n+1 defined by t �→ −dN(x)(t) = −DtN(x),

where Dt denotes the derivative in the direction of t. Because of |N |2 = 1 it
easily follows that −dN(x) is a linear map from TxM into itself.

The second fundamental form II = IIx(·, ·) of M at x with respect to
N is defined to be the bilinear form

II : TxM × TxM → R with
(t, τ) �−→ IIx(t, τ) := −〈dN(t), τ〉 = −〈DtN, τ〉,

where 〈·, ·〉 denotes the scalar product in R
n+1 and N = N(x). It is conve-

nient to consider also the bilinear map Ax(t, τ) := IIx(t, τ) ·N , which—by a
slight abuse of notation—is again called the second fundamental form of M .
Observe that for every x ∈ M the bilinear maps Ax : TxM × TxM → TxM

⊥

and IIx : TxM×TxM → R are symmetric, and that −dN(x) : TxM → TxM is
a symmetric endomorphism field. To see this, consider a mapping Φ : Bε(0) ⊂
R

2 →M ⊂ R
n+1 such that Φ(0, 0) = x, Φx1(0, 0) = t, Φx2(0, 0) = τ . Differen-

tiating the identities
〈Φx1 , N〉 = 0 = 〈Φx2 , N〉

and putting x1 = x2 = 0, we infer 〈Φx1x2(0, 0), N〉 + 〈t,DτN〉 = 0 and
〈Φx1x2(0, 0), N〉+ 〈τ,DtN〉 = 0, whence

IIx(t, τ) = −〈DtN, τ〉 = 〈Φx1x2(0, 0), N〉(2)
= −〈DτN, t〉 = IIx(τ, t).

Similarly

Ax(t, τ) = Ax(τ, t) = 〈Φx1x2(0, 0), N〉 ·N = [Φx1x2(0, 0)]⊥,

where ξ⊥ stands for the orthogonal projection of the vector ξ ∈ R
n+1 onto

the normal space TxM
⊥.

As in the case of surfaces in R
3 we define the principal directions of M at

x to be the unit eigenvectors of the Weingarten map

−dN = −dN(x) : TxM → TxM

and the principal curvatures λ1, . . . , λn to be the corresponding eigenvalues.
Note that there is an orthonormal basis of TxM consisting of principal di-
rections. Also, if t1, . . . , tn ∈ TxM are orthonormal principal directions, then
obviously the matrix
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bij := IIx(ti, tj) = diag(λ1, . . . , λn).

More generally, we conclude from a discussion similar to the one in Section 1.2
of Vol. 1, that the principal curvatures are the eigenvalues of the matrixG−1B,
where

B = (bij)i,j=1,...,n, bij := IIx(ξi, ξj),
G = (gij)i,j=1,...,n, gij := 〈ξi, ξj〉,

and ξ1, . . . , ξn ∈ TxM denotes an arbitrary basis of the tangent space TxM . In
particular, the principal curvatures are eigenvalues of the symmetric matrix
bij = IIx(ti, tj) for any orthonormal basis t1, . . . , tn of TxM .

Another description of the principal curvatures might also be of interest:
Suppose that near a point x ∈ M , the manifold M is locally defined by
a smooth function ϕ : Bε(0) ⊂ R

n → R, xn+1 = ϕ(x1, . . . , xn) and that
e1, . . . , en are principal directions corresponding to the curvatures λ1, . . . , λn.
Such a coordinate system is called a principal coordinate system. Without loss
of generality assume that x = 0, i.e. ϕ(0) = 0, Dϕ(0) = 0 or N(0) = en+1.
It is not difficult to see that M can locally be represented in this way. Now
consider the mapping

Φ : Bε(0) ⊂ R
n →M ⊂ R

n+1

given by Φ(x1, . . . , xn) := (x1, . . . , xn, ϕ(x1, . . . , xn)), i.e. Φ is a local para-
metrization of M . By arguments similar to those leading to equation (2) we
infer

D2ϕ(0) = (ϕxixj (0))i,j=1,...,n = IIx(ei, ej) = bij = diag(λ1, . . . , λn),

since e1, . . . , en are principal directions at x = 0.
Using the elementary symmetric functions of n variables σ1, . . . , σn, it is

now possible to define corresponding curvature quantities Kj by putting

Kj(x) :=
1

(n
j )
σj(λ1, . . . , λn).

The cases j = 1 and j = n deserve special attention: The mean curvature H
and the Gauß(–Kronecker) curvature K are defined by

H(x) := K1(x) =
1
n

(λ1 + · · ·+ λn), and

K(x) := Kn(x) = λ1 · · · · · λn

corresponding to the elementary symmetric functions σ1 and σn.
In other words we have

H(x) =
1
n

trace(G−1B) =
1
n

n∑
j,k=1

gjkbjk and

(3)
K(x) = det(G−1B) =

det B
det G

,
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where

B = (bij)i,j=1,...,n, bij = IIx(ξi, ξj),
G = (gij)i,j=1,...,n, gij = 〈ξi, ξj〉, G−1 = (gij)i,j=1,...,n

and ξ1, . . . , ξn stand for a basis of the tangent space TxM . Therefore the
mean curvature is (up to the factor 1

n ) just the trace of the Weingarten map
−dN(x), or—equivalently—of the second fundamental form IIx.

For arbitrary codimension k > 1 it is not possible to define principal
directions and curvatures. However we can define principal curvatures and
directions with respect to a given normalNj , j = 1, . . . , k, and a corresponding
second fundamental form, but we shall not dwell on this here (for a further
discussion see e.g. Spivak [1]).

Instead we define for arbitrary k ≥ 1 and M ⊂ R
n+k the second funda-

mental form of M at x as the bilinear form Ax : TxM × TxM → TxM
⊥ given

by Ax(t, τ) = −
∑k

j=1〈dNj(t), τ〉Nj(x).
Arguments similar to those mentioned above prove that Ax(·, ·) is a sym-

metric bilinear form.
Motivated by the foregoing discussion, in particular relation (3), we define

the mean curvature vector
⇀

H of M at x to be 1
n traceAx, i.e.

(4)
⇀

H(x) :=
1
n

n∑
i=1

Ax(ti, ti),

where t1, . . . , tn ∈ TxM is some orthonormal basis.
In the codimension one case we obtain for the mean curvature vector

⇀

H(x) =
1
n

n∑
i=1

Ax(ti, ti) = −
n∑

i=1

〈dN(ti), ti〉N(5)

=
1
n

(
n∑

i=1

IIx(ti, ti)

)
N(x) =

(by (3))
H(x)N(x),

where H(x) is the mean curvature of M at x with respect to the normal
N(= N1).

We are thus led to

Definition 9. An n-dimensional C2-submanifold M ⊂ R
n+k is called mini-

mal submanifold, if and only if
⇀

H = 0 on M .

A different expression for
⇀

H is obtained as follows:

⇀

H(x) =
1
n

n∑
i=1

Ax(ti, ti) = − 1
n

n∑
i=1

k∑
j=1

〈dNj(ti), ti〉Nj

= − 1
n

k∑
j=1

n∑
i=1

〈DtiNj , ti〉Nj = − 1
n

k∑
j=1

(div MNj)Nj ,

taking Definition 7 into account. Thus we obtain
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Proposition 3. Let M ⊂ R
n+k be an n-dimensional C2-submanifold of R

n+k

and N1, . . . , Nk be an orthonormal basis of the normal space TxM
⊥. Then the

mean curvature vector
⇀

H =
⇀

H(x) of M at x is given by

(6)
⇀

H(x) = − 1
n

k∑
j=1

(divMNj)Nj .

Remark 1. The mean curvature vector
⇀

H is independent of the particular
choice of the (local) orthonormal fields t1, . . . , tn and N1, . . . , Nk; in particular
independent of the orientation of M .

Remark 2. Using equations (5) and (6) we infer for hypersurfaces the relation

(7) H(x) = − 1
n

divMN,

where the mean curvature H corresponds to the unit normal N of M .

We should point out here, that (7) also leads to an alternative proof of the
Theorem in Section 2.7 of Vol. 1. In fact, suppose that M is the level surface
of some regular function

S : G ⊂ R
n+1 → R,

say M = {x ∈ G : S(x) = c}, c ∈ R, and N(x) = ∇S(x)
|∇S(x)| denotes a unit

normal field along M . Then we claim that

(8) H(x) = − 1
n

divN(x),

where ∇ and div denote the Euclidean gradient and divergence respectively.

Proof of (8). With Definition 4 and Proposition 2 we find for the divergence
of N(x) on M the expression

(9) div MN(x) =
n+1∑
j=1

〈ej ,∇MN j〉 =
n+1∑
j=1

〈
ej ,∇N j − 〈∇N j , N〉 ·N

〉
,

where we have put N = (N1, . . . , Nn+1). On the other hand by taking partial
derivatives ∂

∂xi we infer from |N |2 = 1, the relation 〈N, ∂N
∂xi 〉 = 0 for any

i = 1, . . . , n+ 1, or

(10)
n+1∑
j=1

N j(x)
∂N j

∂xi
= 0 for i = 1, . . . , n+ 1.

Now we get by (10)
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n+1∑
j=1

〈
ej , 〈∇N j , N〉 ·N

〉
=

n+1∑
j=1

〈∇N j , N〉N j =
n+1∑
j=1

n+1∑
i=1

(
∂N j

∂xi
·N i

)
N j

=
n+1∑
i=1

n+1∑
j=1

(
∂N j

∂xi
N j

)
N i = 0.

Therefore (9) yields

divMN(x) =
n+1∑
j=1

〈ej ,∇N j〉 =
n+1∑
j=1

∂N j

∂xj
= divN(x).

This proves (cf. Vol. 1, Section 2.7, Theorem)

Proposition 4. If G is a domain in R
n+1, and if S is a function of class

C2(G) such that ∇S(x) �= 0 on G, then the mean curvature H(x) of the level
hypersurface Fc = {x ∈ G;S(x) = c} passing through x ∈ G with respect to
the unit normal field N(x) = |∇S(x)|−1∇S(x) of Fc is given by the equation

H(x) = − 1
n

divN(x).

Proposition 4 also permits to carry over the Schwarz–Weierstraß field the-
ory for two-dimensional minimal surfaces to R

n+1; compare the discussion
in Section 2.8 of Vol. 1. By essentially the same arguments, using Gauss’s
theorem, we derive

Theorem 1. A C2-family of embedded hypersurfaces Fc covering a domain
G in R

n+1 is a Mayer family of minimal submanifolds if and only if its nor-
mal field is divergence free. Such a foliation by minimal submanifolds is area
minimizing in the following sense:

(i) Let F be a piece of some of the minimal leaves Fc with F � G. Then we
have

Area(F) =
∫

F

dA ≤
∫

S

dA = Area(S)

for each C1-hypersurface S contained in G with ∂F = ∂S.
(ii) (“Kneser’s transversality Theorem”): Let T be a hypersurface in G which,

in all of its points, is tangent to the normal field of the minimal foliation,
and suppose that T cuts out of each leaf Fc some piece F∗

c whose boundary
∂Fc lies on T . Then we have∫

F∗
c1

dA =
∫

F∗
c2

dA

for all admissible parameter values c1 and c2, and secondly
∫

Fc

dA ≤
∫

S

dA
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for all C1-hypersurfaces S contained in G whose boundary ∂S is homolo-
gous to ∂F on T .

We remark here that a result similar to—but more general than—Theo-
rem 1 has been used by Bombieri, De Giorgi and Giusti [1] to show that the
seven-dimensional “Simons-cone”

C = {(x, y) ∈ R
4 × R

4 : |x|2 = |y|2}

is area minimizing in a very general sense. Indeed they were able to construct
a foliation of R

8 consisting of smooth minimal hypersurfaces and the singular
minimal cone C. This was also the first example of an area-minimizing bound-
ary in R

n+1 with an interior singularity, namely the origin, which dashed the
hope to prove interior regularity of area minimizing boundaries in arbitrary
dimensions.

The divergence theorem for a C2-compact manifold M ⊂ R
n+k with

smooth boundary ∂M = M \M states that for any C1-vector field X : M →
R

n+k the identity∫
M

divM X dA = −n
∫

M

X ·
⇀

H dA+
∫

∂M

X · ν dA

holds where ν denotes the exterior unit normal field to ∂M which is tan-
gent to M along ∂M . Here

⇀

H = − 1
n

∑k
i=1(divM Ni)Ni denotes the mean

curvature vector and integration over ∂M is with respect to the standard
(n−1)-dimensional area measure (or, equivalently, (n−1)-dimensional Haus-
dorff measure Hn−1).

In particular, if X is a tangential vector field, i.e. X(x) ∈ TxM for each
x ∈M or if M is minimal, then we have the formula∫

M

divM X dA =
∫

∂M

X · ν dA.

Similarly, if X has compact support, or if ∂M = ∅, then the divergence theo-
rem yields ∫

M

divM X dA = −n
∫

M

X ·
⇀

H dA,

and finally ∫
M

divM X dA = 0,

if X is a compactly supported, tangential vector field on M .

Remark 3. It can be shown that M ⊂ R
n+k is stationary for the n-

dimensional area functional, if and only if
⇀

H ≡ 0; see Vol. 3, Section 3.2,
for details.
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Remark 4. Some authors use traceAx – instead of 1
n traceAx – as a definition

of the mean curvature vector. This clearly is irrelevant when working with
minimal submanifolds; but it is of importance when

⇀

H �≡ 0.

Next we shall derive a generalization of Theorem 1 in Section 2.5 of Vol. 1
(compare also Theorem 1 in Vol. 1, Section 2.6). To accomplish this we sim-
ply compute the Laplace (–Beltrami) operator of the vector field X(x) = x.
Assuming that M ⊂ R

n+k is an n-dimensional submanifold of class C2, we
find for the gradient of X on M the expression

∇MXi = ∇Mxi = ei − 〈N1, ei〉N1 − · · · − 〈Nk, ei〉Nk,

i = 1, . . . , n + k, where e1, . . . , en+k stands for the canonical basis of R
n+k.

Applying divM to this relation we obtain the identity

ΔMxi = divM (∇Mxi) = −〈N1, ei〉div MN1 − · · · − 〈Nk, ei〉div MNk

= −
k∑

j=1

〈Nj , ei〉div MNj ,

since
〈
∇M 〈Nj , ei〉, Nj

〉
= 0, ∀i, j.

Thus we have for i = 1, . . . , n+ k

ΔM (〈x, ei〉) = −
k∑

j=1

〈Nj , ei〉div MNj = −ei

⎛
⎝ k∑

j=1

Nj · div MNj

⎞
⎠ .

By Proposition 3 this implies ΔMxi = n ·Hi, where
⇀

H = (H1, . . . , Hn+k) is
the mean curvature vector of M . Thus we have proved

Theorem 2. Let M ⊂ R
n+k be an n-dimensional C2-submanifold. Then the

position vector x fulfills the identity

ΔMx = n
⇀

H .

Corollary 1. M ⊂ R
n+k is a minimal submanifold, if and only if ΔMx = 0

holds on M .

A straight-forward application of the maximum principle for harmonic
functions yields the following enclosure results (cp. Theorem 1 in Section 4.1
for the case n = 2, k = 1 and its proof).

Corollary 2 (Convex hull theorem). Let M ⊂ R
n+k be a compact n-

dimensional minimal submanifold. Then M is contained in the convex hull
K of its boundary ∂M . Moreover if M touches the convex hull K at some
interior point, then M is part of a plane. In particular there is no compact
minimal submanifold M without boundary.
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We now consider the possibility of obtaining polynomials p which are sub-
harmonic functions on M , i.e. which satisfy

ΔMp ≥ 0 on M if H = 0.

To achieve this, we define for any j = 1, . . . , n− 1 a quadratic function pj =
pj(x1, . . . , xn+k) by

pj(x) :=
n+k−j∑

i=1

|xi|2 − (n− j)
j

n+k∑
i=n+k−j+1

|xi|2.

Note that for n = 2, j = k = 1, we recover the polynomial considered in
Theorem 2 of Section 4.1.

We have the following

Theorem 3. Let M ⊂ R
n+k be an n-dimensional minimal submanifold of

class C2. Then for each j = 1, . . . , n− 1 the quadratic form pj(·) is a subhar-
monic function on M .

Proof. Fixing j ∈ {1, . . . , n − 1} we set P := pj and compute the Laplace–
Beltrami expression ΔMP as follows:

1
2
ΔMP =

1
2

div M (∇MP )

=
1
2
div M

{
2x1∇Mx1 + · · ·+ 2xn+k−j∇Mxn+k−j

− (n− j)
j

[
2xn+k−j+1∇Mxn+k−j+1 + · · ·+ 2xn+k∇Mxn+k

]}

= |∇Mx1|2 + · · ·+ |∇Mxn+k−j |2 + x1ΔMx1 + · · ·+ xn+k−jΔMxn+k−j

− (n− j)
j

[
|∇Mxn+k−j+1|2 + · · ·+ |∇xn+k|2

+ xn+k−j+1ΔMxn+k−j+1 + · · ·+ xn+kΔMxn+k
]
.

Since M is minimal this gives

1
2
ΔMP =

n+k−j∑
s=1

|∇Mxs|2 − n− j

j

j∑
s=1

|∇Mxn+k−j+s|2.

To compute the terms |∇Mxi|2 we denote by P : R
n+k → TxM the orthogonal

projection of R
n+k onto the tangent space TxM . Let (pij)i,j=1,...,n+k stand

for the matrix of P with respect to the canonical basis e1, . . . , en+k of R
n+k.

Then we have (by Definition 4)
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∇xi = P(ei) =
n+k∑
l=1

pliel and

|∇Mxi|2 =

(
n+k∑
l=1

pliel

)⎛
⎝n+k∑

j=1

pjiej

⎞
⎠

=
n+k∑
l,j=1

plipjielej =
n+k∑
j=1

p2
ji.

Since P is a projection we clearly have pij = pji and P = P2, whence

pij =
n+k∑
l=1

pilplj ,

in particular

pii =
n+k∑
j=1

p2
ij = |∇Mxi|2.

Again, since P is a projection, all eigenvalues are either equal to one or zero
and the sum of the eigenvalues is equal to n:

trace P =
n+k∑
i=1

pii =
n+k∑
i=1

|∇Mxi|2 = n.

Concluding we find for 1
2 ΔMP the estimate

1
2
ΔMP =

n+k−j∑
s=1

|∇Mxs|2 − n− j

j

j∑
s=1

|∇Mxn+k−j+s|2

=
n+k−j∑

s=1

pss −
n− j

j

j∑
s=1

pn+k−j+s,n+k−j+s

=
n+k∑
s=1

pss −
n+k∑

s=n+k−j+1

pss −
n− j

j

j∑
s=1

pn+k−j+s,n+k−j+s

≥ trace P− j − (n− j)
≥ n− j − (n− j) = 0. �

Remark 5. Clearly, for any j ≥ n and n+ k − j ≥ 1 the polynomials pj are
trivially subharmonic on M , since − (n−j)

j ≥ 0 in this case.

Again, by a straight-forward application of maximum principle we obtain

Corollary 3. Suppose M ⊂ R
n+k is a minimal submanifold with boundary

∂M contained in a body congruent to
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Hj(ε) :=
{

(x1, . . . , xn+k) ∈ R
n+k : pj(x1, . . . , xn+k) ≤ ε

}
,

for any ε ∈ R. Then M ⊂ Hj(ε), j = 1, . . . , n− 1.

In this Corollary one can take j = 1 obtaining “nonexistence cones” for
any dimension n and any codimension k. In other words we consider the cones
Cn+k = C+

n+k ∪ C
−
n+k ∪ {0} defined by

C±
n+k :=

{
(x1, . . . , xn+k) ∈ R

n+k : ±xn+k > 0, and

n+k−1∑
i=1

|xi|2 ≤ (n− 1)|xn+k|2
}

=
{
x ∈ R

n+k : ±xn+k > 0 and p1(x) ≤ 0
}
.

Theorem 4. Let C ⊂ R
n+k be a cone with vertex P0 which is congruent to

Cn+k and let C± denote the two disjoint parts which correspond to C±
n+k. Then

there is no connected, compact, n-dimensional minimal submanifold M ⊂
R

n+k with ∂M ⊂ C such that both ∂M ∩ C+ and ∂M ∩ C− are nonempty.

Proof. By performing a rotation and translation we may assume without loss
of generality that C = Cn+k. Suppose on the contrary that there is a minimal
M satisfying the assumptions of Theorem 4. By Theorem 3 we obtain the
inequality

ΔM

[
n+k−1∑

i=1

|xi|2 − (n− 1)|xn+k|2
]
≥ 0

and by the hypothesis of Theorem 4 we have
[

n+k−1∑
i=1

|xi|2 − (n− 1)|xn+k|2
]
∣∣∣
∂M

≤ 0.

The maximum principle yields
[

n+k−1∑
i=1

|xi|2 − (n− 1)|xn+k|2
]
∣∣∣
M

≤ 0,

or equivalently, M ⊂ Cn+k. Since M is connected and ∂M ∩ C+
n+k �= ∅,

∂M ∩ C−
n+k �= ∅, M must contain the vertex 0 of the cone, which clearly

contradicts the manifold property of M . �

We remark that Theorem 4 may be used to derive necessary conditions
for the existence of compact, connected minimal submanifolds with several
boundary components.



4.3 Minimal Submanifolds and Submanifolds of Bounded Mean Curvature 309

Corollary 4 (Necessary Condition). Let B1, B2 ⊂ R
n+k be closed sets

and suppose there exists an n-dimensional compact, connected minimal sub-
manifold M ⊂ R

n+k with ∂M ⊂ B1 ∪ B2 and that both ∂M ∩ B1 �= φ and
∂M ∩B2 �= φ. Then we have:

(i) If Bi, i = 1, 2 are closed balls with centers xi and radii δi and R :=
|x1 − x2|, then

R ≤
(

n

n− 1

) 1
2

(δ1 + δ2).

(ii) If B1 and B2 are arbitrary compact sets of diameters d1 and d2 which are
separated by a slab of width r > 0, then

r ≤ 1
2

(
2n(n+ k)

(n− 1)(n+ k + 1)

) 1
2

(d1 + d2). �

Next we consider arbitrary n-dimensional submanifolds M ⊂ R
n+k with

mean curvature vector
⇀

H. According to Theorem 2 we have the identity

ΔMx = n
⇀

H,

and by Proposition 3,

⇀

H(x) = − 1
n

k∑
j=1

(divMNj)Nj

for an arbitrary orthonormal basis N1, . . . , Nk ∈ R
n+k of the normal space

TxM
⊥.

Let H1, . . . , Hk be the components of
⇀

H with respect to that basis
N1, . . . , Nk i.e.

H = H1N1 + · · ·+HkNk, or

Hi = − 1
n

divMNi for i = 1, . . . , k,

and put

p(x) :=
n+k−j∑

i=1

|xi|2 − (n− j)
j

b

n+k∑
i=n+k−j+1

|xi|2,

where b ∈ R and j = 1, . . . , n− 1. Defining rj and sj by

rj(x) :=
n+k−j∑

i=1

|xi|2 and sj(x) :=
n+k∑

i=n+k−j+1

|xi|2

we obtain
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p(x) = rj(x)−
(n− j)

j
bsj(x).

By the same arguments as in the proof of Theorem 3 we conclude

1
2
ΔMp =

n+k−j∑
i=1

xiΔMxi − b
(n− j)

j

n+k∑
i=n+k−j+1

xiΔMxi

+
n+k−j∑

i=1

|∇Mxi|2 − b
(n− j)

j

n+k∑
i=n+k−j+1

|∇Mxi|2

≥ n

〈
⇀

H,

(
x1, . . . , xn+k−1,−b (n− j)

j
xn+k−j+1, . . . ,−b (n− j)

j
xn+k

)〉

+ (n− j)(1− b)

≥ −n|
⇀

H |
[
rj +

b2(n− j)2

j2
sj

] 1
2

+ (n− j)(1− b), by Schwarz’s inequality.

Finally we obtain the estimate

1
2
ΔMp ≥ (n− j)

{
(1− b)− n|

⇀

H |
[

rj

(n− j)2
+
b2

j2
sj

] 1
2
}
.

Thus we have proved:

Theorem 5. Let M ⊂ R
n+k be an n-dimensional submanifold with mean

curvature vector
⇀

H = H1N1 + · · · + HkNk, 0 ≤ b ≤ 1, 1 ≤ j ≤ n − 1 and
p(x) =

∑n+k−j
i=1 |xi|2 − (n−j)

j b
∑n+k

i=n+k−j+1 |xi|2 = rj(x)− (n−j)
j bsj(x). Then

p(x) is subharmonic on M , if

(11) b+ n|
⇀

H |
[

rj(x)
(n− j)2

+
b2

j2
sj(x)

]1/2

≤ 1

holds true, where
|

⇀

H | = (|H1|2 + · · ·+ |Hk|2)1/2. �

Observe that (11) is satisfied for example if

(12) q := sup
x∈M

|x||
⇀

H(x)| < 1
n

and b := 1− n q.

Corollary 5. Suppose that condition (12) holds true. Then for any j =
1, . . . , n − 1 the quadratic polynomial p(x) = rj(x) − ( (n−j)

j ) bsj(x) is sub-
harmonic on M . Therefore, if M is compact the estimate supM p ≤ sup∂M p
is fulfilled. In particular, if K := K+ ∪ {0} ∪K−, where K± :=

{
x ∈ R

n+k :∑n+k−1
i=1 |xi|2 − (n − 1)(1 − nq)|xn+k|2 ≤ 0,±xn+k > 0

}
and ∂M ⊂ K such

that both ∂M ∩K+ and ∂M ∩K− are nonempty, then M cannot be connected.
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Alternatively, (11) is fulfilled provided

(13) q := sup
M

|x||
⇀

H(x)| < n− j

n
,

and b := min( 1
n−1 , 1−

n q
n−j ).

Corollary 6. Suppose that (13) holds for some j = 1, . . . , n−1. Then p(x) =
rj(x) − b(n−j)

j . sj(x) is subharmonic on M . In particular, if this holds with

j = 1 then there is no connected compact submanifold with mean curvature
⇀

H
which satisfies ∂M ⊂ K and ∂M ∩K+ �= ∅, and ∂M ∩K− �= ∅, where

K = K+ ∪ {0} ∪K− and

K± :=

{
x ∈ R

n+k :
n+k−1∑

i=1

|xi|2 − (n− 1)b|xn+k|2 ≤ 0,±xn+k > 0

}
. �

4.3.1 An Optimal Nonexistence Result for Minimal Submanifolds
of Codimension One

Now we address the question whether the “nonexistence cones” Cn+k consid-
ered in Theorem 4 can still be enlarged. In Section 6.2, Corollary, we have
considered the cone

K := K+ ∪ {0} ∪K−,

where
K± :=

{
(x, y, z) ∈ R

3 : z ≷ 0 and x2 + y2 < z2 sinh2 τ
}

and τ = 1.1996 . . . is a solution of the equation

τ sinh τ = cosh τ.

This cone K is in fact a “nonexistence cone” for n = 2, k = 1 which cannot
be enlarged further, since it is the envelope of a field of suitable catenoids; in
other words K is “enclosed” by the “catenoidal domains”

Kα =
{

(x, y, z) ∈ R
3 : x2 + y2 < α2 cosh2 z

α

}
,

cp. the discussion in Section 4.2. We generalize this argument as follows:
Consider a curve (x, y(x)) in the Euclidean plane and its rotational symmetric
graph (of dimension n+ 1)

Mrot := {(x, y(x) · w) ∈ R× R
n+1 : x ∈ [a, b], w ∈ Sn},

where Sn = {z ∈ R
n+1 : |z| = 1} denotes the unit n-sphere. One readily

convinces oneself that the (n+ 1)-dimensional area of Mrot is proportional to
the one-dimensional variational integral
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I = I(y) =
∫ b

a

yn(x)
√

1 + y′2(x) dx.

In other words, extremals of I correspond to (n + 1)-dimensional minimal
submanifolds in R

n+2, which are rotationally symmetric, the so-called “n-
catenoids” (or, to be more precise, “(n+ 1)-catenoids”). The Euler equation
of the integral I is simply

(14)
d

dx

(
y′yn√
1 + y′2

)
= nyn−1

√
1 + y′2.

Since the integrand f of I(·) does not explicitly depend on the variable x we
immediately obtain a first integral of (14), namely

yn = λ
√

1 + y′2

for any λ > 0. A further integration gives the inverse of a solution y = y(x)
of the Euler equation (14) as follows:

(15) x = x(y) = λ

∫ y

n√
λ

dξ√
ξ2n − λ2

+ c.

These inverse functions are defined for any λ > 0, c ∈ R and all y ≥ n
√
λ. Note

that (15) with n = 1 leads to the classical catenaries, which—upon rotation
into R

3—determine the well known catenoids. Of importance in our following
construction here, is the one parameter family of “n-catenaries” (or rather of
their inverses)

x = g(y, λ) := λ

∫ y

n√
λ

dξ√
ξ2n − λ2

, y ≥ n
√
λ.

Claim. The envelope of the family g(y, λ), λ > 0, is the straight line y = τ0x,
x > 0, where τ0 :=

√
z2n
0 − 1, and z0 is the unique solution of the equation

(16)
z√

z2n − 1
=
∫ z

1

dξ√
ξ2n − 1

.

Proof. First note that (15) implies that d2x
dy2 < 0, whence the solutions x =

g(y, λ), λ > 0, are strictly convex functions when considered as graphs over
x. Hence for each λ > 0 there exist unique numbers τ = τ(λ), x = x(λ) > 0
and y = y(λ) > 0 with the properties

x(λ) = g(y(λ), λ) and τ(λ) =
y(λ)
x(λ)

= y′(x(λ)),

where y′(x(λ)) denotes the slope of the curve x = g(y, λ) considered as a
function y(x) at the particular point x(λ). Since yn = λ

√
1 + y′2, this last

requirement can be written as
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τ(λ) =
y(λ)
x(λ)

=

√
y2n(λ)− λ2

λ
=

{[
y(λ)

n
√
λ

]2n

− 1

} 1
2

.

We now claim that the quotient q(λ) := y(λ)
n√

λ
is independent of λ, i.e. q(λ) =

const. Indeed we find successively x(λ) = y(λ)
τ(λ) = y(λ)

[q2n(λ)−1]
1
2
; on the other

hand,

x(λ) = λ

∫ y

n√
λ

dξ√
ξ2n − λ2

=
∫ y

n√
λ

dξ

{( ξ
n√

λ
)2n − 1} 1

2
.

Thus q(λ) = y(λ)
n√

λ
satisfies (16). However, there is only one solution of (16),

since the left hand side of (16) is monotonically decreasing, while the right
hand side monotonically increases, and both sides are continuous. Concluding
we have shown that each member of the family g(y, λ), λ > 0, y ≥ n

√
λ,

touches the half line y = τ0x, τ0 =
√
z2n
0 − 1 precisely at one point, namely

at x0(λ) = z0
τ0

n
√
λ, y0(λ) = z0

n
√
λ. Also, each point of the half line y = τ0x,

x > 0, is the point of contact for precisely one member of the family g(·, λ),
λ > 0. This proves the claim. �

Let f(·, λ) denote the family of inverse functions, that is we have

f(g(y, λ), λ) = y, for y ≥ n
√
λ and g(f(x, λ), λ) = x for x ≥ 0.

We extend f by an even reflection i.e. f(x, λ) = f(−x, λ) for x ≤ 0, so as to
obtain a smooth function defined on the real axis. Observe that for n = 1, these
are precisely the catenaries f(x, λ) = λ cosh(x

λ ). Put r := {
∑n+1

i=1 |xi|2} 1
2 ; then

for each λ > 0 the hypersurfaces

Mλ =
{
x ∈ R

n+2 : r = f(xn+2, λ)
}

are smooth (n+ 1)-dimensional minimal submanifolds of R
n+2. Furthermore

the foregoing construction shows that the sets

Gλ :=
{
x ∈ R

n+2 : r < f(xn+2, λ)
}

for λ > 0 enclose the cone

Kτ0 :=
{
x ∈ R

n+2 : ±τ0xn+2 > r
}
∪ {0}

in the sense of Section 4.2.
By a straightforward modification of Theorem 1, Section 4.2, i.e. by Hopf’s

maximum principle and the arguments in the proof of the Enclosure Theo-
rem II, Section 4.2 we conclude the following “Nonexistence Theorem”.
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Theorem 6. The family of domains {Gλ}λ>0 enclose the cone Kτ0 , where
τ0 :=

√
z2n
0 − 1 and z0 is a solution of the equation (16). Furthermore, if

C = C+∪{0}∪C− ⊂ R
n+2 is a cone with vertex p0 which is congruent to Kτ0 ,

then there is no connected, compact (n+1)-dimensional minimal submanifold
M ⊂ R

n+2 with ∂M ⊂ C such that both ∂M ∩C+ and ∂M ∩C− are nonempty.

Remark 1. By construction, the hypersurfaces r = f(xn+2, λ), λ > 0 are min-
imal in R

n+2 and intersect the boundary of the cone Kτ0 in an n-dimensional
sphere. Thus there is no “larger” cone with the nonexistence property de-
scribed in Theorem 6. In particular the corresponding nonexistence cones
introduced in Theorem 4 are “smaller” than Kτ0 . This is illustrated in the fol-
lowing table. Observe that the cones Kτ0 become larger when the dimension
increases.

Dimension of the surface: n+ 1 τ0 Angle of aperture
√
n

2 1.51 56.46 1
3 2.37 67.15 1.414
4 3.15 72.40 1.732
5 3.89 75.60 2
6 4.63 77.81 2.236
7 5.44 79.59 2.449
8 6.02 80.58 2.645

4.4 Geometric Maximum Principles

4.4.1 The Barrier Principle for Submanifolds of Arbitrary Codimension

Let S (the “barrier”) be a C2 hypersurface of R
n+1 with mean curvature Λ

with respect to the local normal field ν. Assume that M ⊂ R
n+1 is another

hypersurface with mean curvature H which lies locally on that side of S to
which the normal ν points, and that the inequality

(1) sup
U ∩M

|H| ≤ inf
U ∩S

Λ

holds in a neighbourhood U = U(p0) ⊂ R
n+1 of any point p0 ∈ S ∩M . If

the intersection S ∩M is nonempty (in other words, if M touches S in some
interior point p0) then, using Hopf’s lemma and an argument similar as in the
proof of Theorem 1 in Section 4.2, it follows that M must be locally contained
in S. In Section 4.2 we have admitted one of the surfaces to be singular in
possible points of intersection.

Now we discuss a version of this barrier principle for n-dimensional sub-
manifolds M ⊂ R

n+k with bounded mean curvature vector
⇀

H. The crucial
requirement is again a condition of type (1); however, the mean curvature
Λ has to be replaced by the “n-mean curvature” Λn, which is the arithmetic
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mean of the sum of the n smallest principal curvatures of S, while |H| has to be
replaced by the length of the mean curvature vector

⇀

H of the submanifold M .
Let us recall some notations: S ⊂ R

n+k denotes a C2-hypersurface with
(local) normal field ν and λ1 ≤ · · · ≤ λn+k−1 stand for the principal curvatures
of S with respect to that normal ν. We define the “n-mean curvature” Λn with
respect to the normal ν as

Λn :=
1
n

(λ1 + · · ·+ λn), where λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·λn+k−1.

Furthermore let M ⊂ R
n+k be an n-dimensional C2-submanifold with mean

curvature vector
⇀

H = − 1
n

k∑
j=1

(div MNj)Nj ,

where N1, . . . , Nk denotes an orthonormal basis of the normal space TxM
⊥,

cp. Section 4.3 for definition and properties of the mean curvature vector.

Theorem 1. Let M ⊂ R
n+k be an n-dimensional C2-submanifold with mean

curvature vector
⇀

H, and S ⊂ R
n+k be a C2-hypersurface. Suppose that M

lies locally on that side of S into which the normal ν is pointing. Finally
assume that M touches S at an interior point p0 ∈ M ∩ S and that in some
neighbourhood U(p0) ⊂ R

n+k the inequality

(2) sup
U ∩M

|
⇀

H | ≤ inf
U ∩S

Λn

holds true. Then, near p0, M is contained in S, i.e. we have M ∩ U ⊂ S ∩ U .

Corollary 1. Suppose that M lies locally on that side of S into which the
normal ν is pointing. Then M and S cannot touch at an interior point p0 ∈
M ∩ S if |

⇀

H(p0)| < Λn(p0) holds.

This theorem implies the following

Enclosure Theorem 1. Let G ⊂ R
n+k be a domain with boundary S = ∂G ∈

C2 and M be an n-dimensional C2-submanifold with mean-curvature vector
⇀

H
which is confined to the closure G. Also, let Λn denote the n-mean curvature
of S = ∂G with respect to the inward unit normal ν. Finally assume that, if
M touches S at some interior point p0, then the inequality

sup
U ∩M

|
⇀

H | ≤ inf
U ∩S

Λn

holds true for some neighbourhood U = U(p0) ⊂ R
n+k. Then M lies in the

interior of G, if at least one of its points lies in G.
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Remark 1. Clearly, the hypothesis

|
⇀

H(p0)| < Λn(p0),

implies (2), but excludes e.g. the case
⇀

H ≡ 0 and Λn ≡ 0.

Remark 2. Let us consider an example which shows that Theorem 1 is op-
timal. To see that let S ⊂ R

3 be the cylinder {x2 + y2 = R2}; then the
principal curvatures with respect to the inward unit normal ν are given by
λ1 = 0 ≤ λ2 = 1

R and the n-mean curvature (n = 1 or 2 is possible) are Λ1 = 0

and Λ2 = Λ = 1
2R . Take n = 1; then Theorem 1 requires

⇀

H ≡ 0, and this
implies that M is a straight line. This is indeed necessary for the conclusion
of Theorem 1 to hold since there are circles of arbitrary small “mean curva-
ture” |

⇀

H | = 1
r , r > 0, which locally are on the interior side of the cylinder

S and touch S in exactly one point; yet these circles are not locally contained
in S.

For the proof of Theorem 1 we need to recall some important facts about
the distance function, a proof of which can be found in Gilbarg and Trudinger
[1], Chapter 14.6, or Hildebrandt [19], Section 4.6.

Let S ⊂ R
n+k be a hypersurface with orientation ν. The distance function

d = d(x) is defined by

d(x) = dist(x, S) = inf
y∈S

|x− y|.

Locally we can orient d so as to obtain the signed or oriented distance function
ρ as follows: Choose a point p0 ∈ S. Then there is an open ball Bε(p0) ⊂ R

n+k

which is partitioned by S into two open sets B+
ε and B−

ε . Let B+
ε denote the

set into which the normal ν points. The oriented distance ρ is then given by

ρ(x) =
{
d(x), for x ∈ B+

ε ,
−d(x), for x ∈ B−

ε .

It follows easily that d and ρ are Lipschitz-continuous functions with Lipschitz
constant equal to one. In fact, let y ∈ R

n+k and choose z ∈ S such that
d(y) = |z − y|. Then for any x ∈ R

n+k we have

d(x) ≤ |x− z| ≤ |x− y|+ |y − z| = |x− y|+ d(y)

and the some inequality holds with x replaced by y, whence we obtain |d(x)−
d(y)| ≤ |x− y|. Observe that this holds without any assumption on the set S.
Similarly, for x ∈ B+

ε , y ∈ B−
ε there exists t0 ∈ [0, 1] with zt0 = t0y + (1 −

t0)x ∈ S and ρ(x) − ρ(y) = d(x) + d(y) = d(x) − d(zt0) + d(y) − d(zt0) ≤
|x− zt0 |+ |y − zt0 | = |x− y|, whence also ρ is Lipschitz continuous.

Much more is true, if S is of class Cj , j ≥ 2.
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Lemma 1. Let S ⊂ R
n+k be a hypersurface of class Cj , j ≥ 2, and p0 ∈ S be

arbitrary. Then there is a constant ε > 0 (depending on p0 in general) such
that d ∈ Cj(B

+

ε ), d ∈ Cj(B
−
ε ) and the oriented distance ρ ∈ Cj(Bε(p0)).

For a proof – which consists in an application of the implicit function
theorem – we refer the reader to Gilbarg and Trudinger [1], Section 14.6, or
Hildebrandt [19], Section 4.6.

Remark I. Obviously d /∈ C1(Bε(p0)) for p0 ∈ S, ε > 0.

Remark II. In Gilbarg and Trudinger [1] only the unoriented distance d is
considered; however the proofs can be easily modified with almost no alter-
ations.

Remark III. If S ⊂ R
n+k is a compact closed hypersurface of class Cj , j ≥ 2,

then it satisfies a uniform interior (as well as exterior) sphere condition; that
is at each point p0 ∈ S there exists a ball Bε0 of uniform radius ε0 > 0 which
lies in the interior (or exterior) side of S respectively and such that the closure
Bε0 has just one point in common with the surface S, namely p0. In this case
the distance function is of class Cj on a tube Tε0 of uniform width ε0 where
Tε0 := T+

ε0
∪ T−

ε0
with

T+
ε0

:= {x ∈ R
n+k; 0 ≤ ρ(x) < ε0}, T−

ε0
:= {x ∈ R

n+k; −ε0 < ρ(x) ≤ 0}.

Then we have d ∈ Cj(T+
ε0

), d ∈ Cj(T−
ε0

) and ρ ∈ Cj(Tε0).
Choose p0 ∈ S and ε > 0 such that ρ ∈ Cj(Bε(p0)); consider the parallel

surface
Sτ := {x ∈ R

n+k ∩Bε(p0) : ρ(x) = τ},

−ε < τ < ε, which is again of class Cj , if S ∈ Cj , j ≥ 2. The unit normal
of Sτ at x ∈ Sτ directed towards increasing ρ is given by ν(x) = Dρ(x) =
(ρx1(x), . . . , ρxn+k(x)). (Note that here – for simplicity of notation – we refrain
from writing ντ instead of ν, so as to obtain a function ν ∈ Cj−1(Bε(p0))
which, on S ∩Bε(p0) coincides with the unit normal on S.)

For every point x0 ∈ B
+

ε (p0) or Bε(p0) there exists a unique point y0 =
y(x0) ∈ S such that d(x0) = |x0 − y0| or ρ(x0) = ±|x0 − y0| respectively, in
particular x0 = y0+ν(y0)·ρ(x0). We need to compare the principal curvatures
λ1(y0), . . . , λn+k−1(y0) of S at y0 with the principal curvatures of Sρ(x0) at x0.
We recall the following

Lemma 2. Let x0 ∈ Sτ , y0 ∈ S be such that ρ(x0) = ±|x0 − y0|. If y is a
principal coordinate system at y0 and x = y + ν(y)ρ then we have

D2ρ(x0) = ρxixj (x0) = diag
(

−λ1(y0)
1− λ1(y0)ρ(x0)

, . . . ,
−λn+k−1(y0)

1− λn+k−1(y0)ρ(x0)
, 0
)
.
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For a proof of Lemma 2 we refer to Gilbarg and Trudinger [1], Lemma 14.17.
�

We now claim that the Hessian matrix (ρxixj (x0)), i, j = 1, . . . , n+ k − 1
is also given by the diagonal matrix (−λi(x0)δij), i, j = 1, . . . , n + k − 1,
where λ1(x0), . . . , λn+k−1(x0) stand for the principal curvatures of Sρ(x0) at
x0. To see this consider ν(x0) = Dρ(x0) = (ρx1(x0), . . . , ρxn+k(x0)) and sup-
pose without loss of generality that Dρ(x0) = (0, . . . , 0, 1). Then there is some
Cj-function xn+k = ϕ(x1, . . . , xn+k−1) such that ρ(x1, . . . , xn+k−1, ϕ(x1, . . . ,
xn+k−1)) = ρ(x0). Differentiating this relation with respect to xi, i =
1, . . . , n+ k − 1 yields ϕxi = − ρxi

ρxn+1
, for i = 1, . . . n+ k − 1, and

ϕxixj = −
(
ρxixjρxn+1 − ρxiρxn+1xj

ρ2
xn+1

)
.

Hence we get

ϕxixj (x̂0) = −ρxixj (x0), i, j = 1, . . . , n+ k − 1,

where x0 = (x̂0, x
n+k).

On the other hand we have seen in the beginning of Section 4.3 that the
eigenvalues of D2ϕ(x̂0) are precisely the principal curvatures λi(x0) of the
graph of ϕ, i.e. of the distance surface Sτ , τ = ρ(x0), at x0. We have shown

Lemma 3. Let S and Sτ be as above, and x0 ∈ Sτ , y0 ∈ S be such that
ρ(x0) = ±|x0 − y0|, i.e. τ = ρ(x0). Denote by λ1(y0), . . . , λn+k−1(y0) the
principal curvatures of S at y0 and by λ1(x0), . . . , λn+k−1(x0) the principal
curvatures of the parallel surface Sτ at x0. Then we have

λi(x0) =
λi(y0)

1− λi(y0)ρ(x0)
for i = 1, . . . , n+ k − 1.

We continue with further preparatory results for the proof of Theorem 1
and select an orthonormal basis t1, . . . , tn of the tangent space TxM of M at
x, assuming that x is close to S. Introducing the orthogonal projection

t�
i := ti − 〈ti, ν〉 · ν

of ti onto the tangent space TxSρ(x) of the parallel surface Sρ(x) at the point
x. Also let TxM

� stand for the orthogonal projection of the n-dimensional
tangent space TxM onto the (n+ k − 1)-dimensional tangent space TxSρ(x).

Finally II = IIx(·, ·) denotes the second fundamental form of the distance
hypersurface Sρ(x) with respect to the normal ν = Dρ at the particular point
x ∈ Sρ(x), i.e. (cp. Section 4.3) IIx(t, τ) = 〈−Dtν, τ〉, for t, τ ∈ TxSρ(x).

Lemma 4. Let M and S be as in Theorem 1 and p0 ∈ M ∩ S. Then the
distance function ρ = ρ(x) satisfies the equation
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ΔMρ+ bi(∇Mρ)i − n〈
⇀

H,Dρ〉+ trace II|TxM � = 0

in a neighbourhood V ⊂ R
n+k of p0. Here trace II|TxM � denotes the trace of

the second fundamental form II of Sρ(x) at x restricted to the subspace TxM
�

of TxSρ(x), bi = bi(x) := −II(t�
i ,t�

j )(∇M ρ)j

1−|∇M ρ|2 , for i = 1, . . . , n, (∇Mρ)i = Dtiρ

and Dρ = (ρx1 , . . . , ρn+k).

Proof of Lemma 4. We have ∇Mρ = Dρ − 〈Dρ,N1〉N1 − · · · − 〈Dρ,Nk〉Nk,
where N1, . . . , Nk is an orthonormal basis of the normal space TxM

⊥. There-
fore

ΔMρ = divM∇Mρ(3)
= divMDρ− 〈Dρ,N1〉divMN1 − · · · − 〈DMρ,Nk〉divMNk

= divMDρ+ n〈
⇀

H, (Dρ)⊥〉,

where (Dρ)⊥ = 〈Dρ,N1〉N1 + · · ·+ 〈Dρ,Nk〉Nk is the normal part of ν = Dρ

relative to M , and
⇀

H = − 1
n

∑k
j=1(divNj)Nj is the mean curvature vector of

M (see Proposition 3 of Section 4.3).
Now equation (3) obviously is equivalent to ΔMρ = div M Dρ+ n〈

⇀

H,Dρ〉
and since the divergence on M is the operator

∑n
i=1 tiDti we find, because of

Dρ(x) = ν(x)

(4) ΔMρ =
n∑

i=1

tiDtiν(x) + n〈
⇀

H,Dρ〉.

To relate the expression tiDtiν to the second fundamental form of Sρ(x) we
put ti = t�

i + 〈ti, ν〉ν and obtain

tiDtiν = (t�
i + 〈ti, ν〉ν)Dt�

i +〈ti,ν〉νν = t�
i Dt�

i
ν = −IIx(t�

i , t
�
i ),

where we have used that 〈ν,Dt�
i
ν〉 = 0 andDνν(x) = 0 which is a consequence

of the relations |ν(x)|2 = 1 and ν(x+ tν(x)) = ν(x) for |t| � 1.
Thus (4) implies

(5) Δρ+
n∑

i=1

IIx(t�
i , t

�
i )− n〈

⇀

H,Dρ〉 = 0

in a neighbourhood of p0 ∈ S ∩M .
In general the projections t�

i , i = 1, . . . , n are neither of unit length nor
pairwise perpendicular. Therefore, in order to compute the trace of IIx on
TxM

� ⊂ TxSρ(x), we put

gij(x) = gij := 〈t�
i , t

�
j 〉 = 〈ti,−〈ti, ν〉ν, tj − 〈tj , ν〉ν〉

= δij − 〈ti, ν〉〈tj , ν〉.
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If x = p0 ∈ M ∩ S we have gij = gij(x) = δij ; hence in some neighbourhood
V of p0 we can assume that

∑n
i=1〈ti, ν〉2 < 1 and that the inverse matrix

gij = gij(x) is simply

gij = δij +
〈ti, ν〉〈tj , ν〉

1−
n∑

i=1

〈ti, ν〉2
=: δij + εij , for i, j = 1, . . . , n.

Therefore we get for the trace of IIx on the subspace TxM
� ⊂ TxSρ(x)

trace II|TxM � =
n∑

i,j=1

gijII(t�
i , t

�
j )

=
n∑

i,j=1

II(t�
i , t

�
j ) +

n∑
i,j=1

εijII(t�
i , t

�
j ).

By virtue of (5) this yields

Δρ−
n∑

i,j=1

εijII(t�
i , t

�
j ) + trace II|TxM � − n〈

⇀

H,Dρ〉 = 0 in V ⊂ R
n+k.

Lemma 4 follows by noting that

εij =
〈ti, ν〉〈tj , ν〉

1−
n∑

i=1

〈ti, ν〉2
=

(∇Mρ)i(∇Mρ)j

1− |∇Mρ|2

and taking bi = −(1− |∇Mρ|2)−1
∑n

j=1 II(t�
i , t

�
j )(∇Mρ)j . �

Lemma 5. Let II be a quadratic form on an n-dimensional Euclidean space V
with eigenvalues λ1 ≤ · · · ≤ λn. Then for any k-dimensional subspace W ⊂ V
we have the estimate

trace II|W ≥ λ1 + · · ·+ λk.

The proof of Lemma 5 is carried out by induction on k + n. The case
k + n = 2 is trivial. By the induction hypothesis we may assume that the
assertion holds for all quadratic forms II and linear spaces V,W ⊂ V of
dimension n and k respectively, k ≤ n, such that k + n ≤ N , N ≥ 2. For
given II, V and W we hence assume that k + n = N + 1. By v1 ∈ V we
denote an eigenvector of II corresponding to the smallest eigenvalue λ1 and
put V1 := (span v1)⊥ to denote the (n−1)-dimensional orthogonal complement
of v1. We distinguish between the following two cases:
First case: W ⊂ V1, then by induction hypotheses we have

trace II|W ≥ λ2 + · · ·+ λk+1 ≥ λ1 + · · ·+ λk.
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Second case: W �⊂ V1, then there is a nonzero vector w1 ∈W such that

(w1 − v1) ⊥W or, equivalently,
(6)

〈w1, w〉 = 〈v1, w〉 ∀w ∈W.

Select on orthonormal basis w1
|w1| , w2, . . . , wk of W , then by (6) we find

w2, . . . , wk perpendicular to v1, in other words, w2, . . . , wk ∈ V1. Applying
the induction hypothesis to the triple II|V1 , V1 and W1 := span(w2, . . . , wk)
yields the estimate

trace II|W1 =
k∑

j=2

II(wj , wj) ≥ λ2 + · · ·+ λk

and therefore

trace II|W =
k∑

j=2

II(wj , wj) + II
(
w1

|w1|
,
w1

|w1|

)

≥ λ2 + · · ·+ λk + II
(
w1

|w1|
,
w1

|w1|

)
≥ λ1 + · · ·+ λk. �

Proof of Theorem 1. We claim that, under the assumptions of the theorem,
the inequality

(7) −n〈
⇀

H,Dρ〉+ trace II|TxM � ≥ 0

holds true in a neighbourhood of any point p0 ∈ M ∩ S. To prove this let
y0 ∈ S, x0 ∈ M close to S and λ1(y0) ≤ λ2(y0) ≤ · · · ≤ λn+k−1(y0) denote
the principal curvatures of S with respect to the unit normal ν. By Lemma 3
we infer for the principal curvatures of Sτ , τ = ρ(x0), at x0:

λ1(x0) =
λ1(y0)

1− λ1(y0)ρ(x0)
≤ · · · ≤ λn+k−1(x0) =

λn+k−1(y0)
1− λn+k−1(y0)ρ(x0)

.

Lemma 5 now implies the estimate

1
n

trace II|TxM � ≥ 1
n

(
λ1(y)

1− λ1(y)ρ(x)
+ · · ·+ λn(y)

1− λn(y)ρ(x)

)
(8)

≥ 1
n

(λ1(y) + · · ·+ λn(y)) = Λn(y),

where y ∈ S is such that ρ(x) = |x− y|. By assumption (2) of Theorem 1,

inf
U ∩S

Λn ≥ sup
U ∩M

|
⇀

H |,

we infer from (8)
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1
n

trace II|TxM � ≥ |
⇀

H(x)|

for every x ∈ M close to S. Inequality (7) then follows immediately by
Schwarz’s inequality. Now Theorem 1 is a consequence of Lemma 4. Indeed
by relation (7) and Lemma 4 we conclude the inequality

ΔMρ+ bi(∇Mρ)i ≤ 0

in a neighbourhood of every point p0 ∈M ∩ S. E. Hopf’s maximum principle
(see e.g. Gilbarg and Trudinger [1], Theorem 3.5) finally proves that ρ = 0 in
a neighbourhood of any point p0 ∈M ∩ S. Theorem 1 is proved. �

Proof of Corollary 1. Assuming the contrary we conclude from Theorem 1 the
inclusion M ∩U ⊂ S∩U for some neighbourhood U of p0 ∈M ∩ S. Therefore
we had ρ ≡ 0 on M ∩ U and Lemma 4 implied the relation

trace II|TxM = n〈
⇀

H,Dρ〉 = n〈
⇀

H, ν〉 on M ∩ U,

since TxM
T = TxM and also ∇Mρ = 0 = %Mρ on M ∩ U . In particular we

obtain the estimate
1
n

trace II|TxM ≤ |
⇀

H(x)| on M ∩ U.

On the other hand, by Lemma 5, this leads to the inequality

Λn(x) ≤ |
⇀

H(x)| for all x ∈M ∩ U,

which obviously contradicts the assumption

|
⇀

H(p0)| < Λn(p0). �

Remark 3. We observe here that the estimate (7) is an immediate conse-
quence of an hypothesis of the type |

⇀

H(p0)| < Λn(p0), p0 ∈ S ∩ M , the
continuity of the involved functions, and Lemma 5, without using the explicit
estimates in Lemma 3.

4.4.2 A Geometric Inclusion Principle for Strong Subsolutions

We now present a version of Theorem 1 for strong (but not necessarily classi-
cal) subsolutions of the parametric mean curvature equation, since they arise
naturally as solutions of suitable obstacle problems to be considered later.
This will be of importance for the existence proof for surfaces of prescribed
mean curvature that will be carried out in Section 4.7.

If S ⊂ R
3 is a regular surface of class C2 with unit normal ν = Dρ and

mean curvature Λ with respect to that normal, we let Sτ , |τ | � 1, denote
the local parallel surface at (small) distance τ and Λτ (x) denote the mean
curvature of Sτ with respect to the normal ν(x) = Dρ(x) at the point x ∈ Sτ .
Clearly τ = ρ(x) and Λτ (x) = Λρ(x)(x).
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Theorem 2. Let S ⊂ R
3 be a regular surface of class C2 with unit normal ν

and mean curvature Λ (with respect to this normal). Furthermore let H denote
some bounded continuous function on R

3 and Ω ⊂ R
2 be a bounded, open and

connected set. Suppose X ∈ C1(Ω,R3)∩H2
2,loc(Ω,R

3) lies locally on that side
of S into which the normal ν is directed, and is a conformal solution of the
variational inequality

(9) δF(X,ϕ) =
∫

Ω

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv ≥ 0

for all functions ϕ ∈ H̊1
2 (Ω,R3)∩L∞(Ω,R3) with X + εϕ locally on the same

side of S for 0 < ε� 1. Then the following conclusions hold:

(a) Assume that X0 = X(w0) ∈ S and that for some neighbourhood U =
U(X0) ⊂ R

3 one has

(10) |H(x)| ≤ Λρ(x)(x) for all x ∈ U.

Then there exists a disk Bε(w0) ⊂ Ω such that X(Bε(w0)) ⊂ S.
(b) Suppose that (10) holds for every point X0 ∈ S. Then X(Ω) is completely

contained in S, if X(Ω) ∩ S is nonempty.

Corollary 2. The conclusion of the Theorem holds if (10) is replaced by the
(stronger) assumption

(10′) sup
U
|H| ≤ inf

U ∩S
Λ.

Corollary 3. Suppose (10) is replaced by the (stronger) hypotheses

(10′ ′) |H(P0)| < Λ(P0)

for some P0 ∈ S. Then there is no w0 ∈ Ω such that X(w0) = P0. Clearly,
this conclusion holds for a whole neighbourhood U of P0 in S. In particular if
(10′ ′) is fulfilled for all points P0 ∈ S then the intersection X(Ω)∩S is empty.

As a further consequence of Theorem 2 we have the following

Enclosure Theorem 2. Let G ⊂ R
3 be a domain with ∂G ∈ C2 and H be a

bounded continuous function on R
3. Assume that every point P ∈ ∂G has a

neighbourhood U ⊂ R
3 ∩G such that

(11) |H(x)| ≤ Λρ(x)(x) for all x ∈ U,

where Λρ(x) stands for the mean curvatures of ∂Gρ(x) with respect to the in-
ward unit normal ν = Dρ(x). Suppose X ∈ C1(Ω,R3) ∩ H2

2,loc(Ω,R
3) is a

strong subsolution of the H-surface equation, whose image X(Ω) is confined
to the closure G, i.e. X is a conformal solution of the variational inequality
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δF(X,ϕ) =
∫

Ω

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv ≥ 0

for all functions ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞(Ω,R3) with X + εϕ ∈ H1

2 (Ω,G) for
0 ≤ ε < ε0(ϕ). Then X(Ω) ⊂ G if at least one of the points X(w) lies in G.

Corollary 4. The strong inclusion X(Ω) ⊂ G holds for example, if, in ad-
dition to the assumption of Enclosure Theorem 2, X is of class C0(Ω,R3) ∩
C1(Ω,R3)∩H2

2,loc(Ω,R
3) and maps one point w0 ∈ ∂Ω into the interior of G.

Corollary 5. Enclosure Theorem 2 is valid if (11) is replaced by the (stronger)
assumption

(11′) |H(P )| < Λ(P ) for all P ∈ ∂G.

Remark 4. Suppose X ∈ C1(Ω,R3) ∩ H2
2 (Ω,R3) satisfies the assumptions

of the Enclosure Theorem and that X(Ω) ⊂ G. Then X is a strong (and of
course also weak) H-surface in the sense that

∫
Ω

{
〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv〉ϕ

}
du dv = 0

for all ϕ ∈ H̊1
2 (Ω,R3)∩L∞(Ω,R3). Furthermore, by elliptic regularity results

it follows that X is a classical C2,α-solution of the H-surface equation if H is
Hölder continuous. This means that X is an H-surface, i.e.

ΔX = 2H(X)Xu ∧Xv,

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in Ω.

In Section 4.7 we will see how to find subsolutions X of the kind needed
in Enclosure Theorem 2 by solving suitable obstacle problems.

While condition (11) is sufficient to show strong inclusion X(Ω) ⊂ G
relative to the hypotheses in Enclosure Theorem 2 this is not true under
the weaker assumption |H(P )| ≤ Λ(P ) for all P ∈ ∂G, Λ the inward mean
curvature of ∂G, see Remark 2 following Enclosure Theorem I in Section 4.2.
However this still leaves open the possibility that X might satisfy the H-
surface system a.e. in G. The next result shows that this in indeed the case:

Theorem 3 (Variational equality). Suppose that G ⊂ R
3 is a domain of

class C2, H is bounded and continuous with H(P ) ≤ Λ(P ) for all P ∈ ∂G.
Let X ∈ C1(Ω,R3)∩H2

2,loc(Ω,R
3) satisfy the assumptions of Enclosure Theo-

rem 2. Then X is a strong H-surface in G, i.e. we have %X = 2H(X)Xu∧Xv

a.e. in Ω, and |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in Ω.

Proof of Theorem 2. Define the sets Ω1, Ω2 and Ω3 by Ω1 := X−1(S), Ω2 :=
Ω \ Ω1, and Ω3 := {w ∈ Ω : |Xu(w)| = |Xv(w)| = 0}. Observe that Ω1 and
Ω3 are closed, while Ω2 is an open set. Then the function
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H∗(w) :=
{
±Λ(X(w)), for w ∈ Ω1,
H(X(w)), for w ∈ Ω2

is of class L∞,loc(Ω) and we claim that

(12) ΔX = 2H∗(w)(Xu ∧Xv)

holds a.e. on Ω. In fact, on Ω3, the (possibly empty) set of branch points
of X, we have Xu(w) = Xv(w) = 0. Since X ∈ H2

2,loc(Ω,R
3) this implies

that also Xuu = Xvv = Xuv = 0 a.e. on Ω3 (compare e.g. Gilbarg and
Trudinger [1], Lemma 7.7); in particular (12) holds a.e. on Ω3. Again, because
of X ∈ H2

2,loc(Ω,R
3), we infer from (9) using an integration by parts and

the fundamental lemma of the calculus of variations that (12) is satisfied
a.e. on Ω2. Finally, to verify equation (12) a.e. on Ω1 \ Ω3 we use the same
argument as in the proof of Theorem 1 in Chapter 2.6 of Vol. 1, observing
that X is a conformal and regular parametrization of S on Ω1 \ Ω3 and that
S has mean curvature Λ.

Now the reasoning of Hartman and Wintner as outlined in Section 2.10
and Chapter 3 yields the asymptotic expansion

(13) Xu − iXv = (a− ib)(w − w0)l + o(|w − w0|l)

in a sufficiently small neighbourhood of an arbitrary point w0 ∈ Ω, where l ≥ 0
is an integer and a, b ∈ R

3 satisfy the relations |a| = |b| �= 0 and 〈a, b〉 = 0. In
particular λ(w) := |Xu(w)| = |Xv(w)| > 0 on a punctured neighbourhood of
w0 and λ(w0) = 0, if and only if w0 is a branch point of X. Introducing polar
coordinates w = reiϕ around w0 we infer from (13) the asymptotic relations

Xu(reiϕ) = arl cos(lϕ) + brl sin(lϕ) + o(rl),
Xv(reiϕ) = brl cos(lϕ)− arl sin(lϕ) + o(rl),
|Xu|2 = |Xv|2 = |a|2r2l + o(r2l),

all holding for r → 0. Therefore λ(w) = |a|rl + o(rl), for r → 0, and conse-
quently the unit normal has the asymptotic expansion

Xu ∧Xv

|Xu ∧Xv|
(w) =

a ∧ b
|a ∧ b| + o(1) as w → w0.

In particular, the normal N(w) = Xu ∧Xv

|Xu ∧Xv | (w) is continuous in Ω and

(14) lim
w→w0

N(w) =
a ∧ b
|a ∧ b| =

a ∧ b
|a|2 =

a ∧ b
|b|2 .

In other words, the surface X has a tangent plane at any point w0 ∈ Ω.
Suppose now that w0 ∈ Ω1, i.e. X(w0) ∈ S, then since X ∈ C1 lies locally

on one side of S and because of (14) we obtain

(15)
a ∧ b
|a ∧ b| = ± ν(X(w0)).
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In fact, (15) can be proved rigorously by the same argument as used in the
proof of Enclosure Theorem 1 of Chapter 4.2, namely by invoking a local non-
parametric representation of the surfaces X and S near a punctured neigh-
bourhood of the point X(w0).

Consider now the oriented distance function ρ(x) = dist(x, S) which is of
class C2 near S and put ν(x) = Dρ(x) = (ρx1 , ρx2 , ρx3), cp. the discussion in
the beginning of this section. Recall that ρ(X(w)) ≥ 0 and “=” if and only if
w ∈ Ω1 and that ν(x) is the unit normal of S at x. For the computations to
follow it is convenient to put u = u1 and v = u2, and define for a – sufficiently
small – neighbourhood Bρ(w0) of an arbitrary point w0 ∈ Ω1,

Xt
uα(w) :=

Xuα(w)
|Xuα | −

〈
Xuα(w)
|Xuα | , ν(X(w))

〉
ν(X(w)),

for w ∈ Bρ(w0) \ {w0} and α = 1, 2, to denote the orthogonal projection of
the unit tangent vector Xuα (w)

|Xuα | of X onto the tangent space of the parallel
surface Sρ(X(w)) := {y ∈ R

3 : ρ(y) = ρ(X(w))} to S at distance ρ(X(w)).
The vectors Xt

uα(w) are continuous in Bδ(w0) \ {w0} but merely bounded
on Bδ(w0). Define the metric

gαβ = gαβ(w) := 〈Xt
uα(w), Xt

uβ (w)〉

= δαβ −
〈
Xuα

|Xuα | , ν
〉〈

Xuβ

|Xuβ | , ν
〉

for w ∈ Bδ(w0) \ {w0}

and α, β = 1, 2, where ν = ν(X(w)) = Dρ(X(w)).
We assert that

(16) lim
w→w0

〈
Xuα(w)
|Xuα | , ν(X(w))

〉
= 0 holds true.

To see this note that (15) yields the relation

ν(X(w)) = ± a ∧ b
|a ∧ b| + o(1) as w → w0,

which implies (16) by virtue of the asymptotic expansions

Xu(w)
|Xu | = arl cos(lϕ)+brl sin(lϕ)

|a|rl + o(1), w → w0,

Xv(w)
|Xv | = brl cos(lϕ)−arl sin(lϕ)

|b|rl + o(1), w → w0.

On the other hand relation (16) shows that the metric gαβ is continuous
on Bδ(w0) and

lim
w→w0

gαβ(w) = δαβ , for α, β = 1, 2.

Hence, by possibly decreasing δ, we can consider the inverse metric gαβ ∈
C0(Bδ(w0)), gαβ = gαβ(w) = δαβ + εαβ , where
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εαβ = εαβ(w) =

〈
Xuα (w)

|Xuα | , ν(X(w))
〉〈

X
uβ (w)

|X
uβ | , ν(X(w))

〉

1−
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2

and εαβ ∈ C0(Bδ(w0)) with εαβ(w0) = 0 (by (16)). For |τ | � 1 we denote by
Λτ (x) the mean curvature of the distance surface Sτ with respect to the unit
normal ν(x) at x. Also let IIx stand for the second fundamental form of Sρ(x)

with respect to ν(x) at the point x, cp. Chapter 1 of Vol. 1 or Section 4.3, in
particular we have 2Λρ(x)(x) = trace IIx, and since

IIx(t, τ) = 〈−Dtν, τ〉 = −〈Dν(x)t, τ〉

for t, τ ∈ TxSρ(x) this implies for every w ∈ Bδ(w0) \ {w0},

−2Λρ(X)(X(w)) = gαβ(X(w))〈Xt
uα(w), Dν(X(w))Xt

uα(w)〉
= 〈Xt

u, Dν(X)Xt
u〉+ 〈Xt

v, Dν(X)Xt
v〉+ εαβ〈Xt

uα(w), Dν(X)Xt
uβ 〉.

Equivalently,

−2|Xu|2Λρ(X)(X(w)) = −(|Xu|2 + |Xv|2)Λρ(X)(X)(17)

= |Xu|2〈Xt
u, Dν(X)Xt

u〉+ |Xv|2〈Xt
v, Dν(X)Xt

v〉
+ εαβ |Xu||Xv|〈Xt

uα , Dν(X)Xt
uβ 〉.

Now, we look at the term

|Xu|2〈Xt
u, Dν(X)Xt

u〉

=
〈
Xu − 〈Xu, ν〉ν,Dν(X)

[
Xu − 〈Xu, ν〉ν

]〉

= 〈Xu, Dν(X)Xu〉 − 〈Xu, ν〉〈ν,Dν(X)Xu〉
− 〈Xu, ν〉〈Xu, Dν(X)ν〉+ 〈Xu, ν〉2〈ν,Dν(X)ν〉

= 〈Xu, Dν(X)Xu〉,

since Dν(X)ν = 0 and IIx is symmetric. Similarly, we find

|Xv|2〈Xt
v, Dν(X)Xt

v〉 = 〈Xv, Dν(X)Xv〉

and
|Xu||Xv|〈Xt

u, Dν(X)Xt
v〉 = 〈Xu, Dν(X)Xv〉.

This combined with (17) yields

〈Xu, Dν(X)Xu〉+ 〈Xv, Dν(X)Xv〉(18)
= −(|Xu|2 + |Xv|2)Λρ(X)(X)− εij〈Xui , Dν(X)Xuj 〉,

for all w ∈ Bδ(w0) \ {w0}. However, for continuity reasons (18) clearly holds
on Bδ(w0) ⊂ Ω.
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So far we have not exploited the variational inequality

(19)
∫

Ω

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv ≥ 0

holding for all ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞, such that X + εϕ lies locally on the

same side of S as X for all ε ∈ [0, ε(ϕ)]. We choose as a test function ϕ(w) =
η(w) · ν(X(w)), where 0 ≤ η ∈ C∞

c (Bδ(w0)) is arbitrary and ν(x) = Dρ(x).

Clearly ϕ ∈ H̊1
2 (Ω,R3) ∩ L∞ is an admissible function in (19) and we

compute
∇ϕ = (ϕu, ϕv) = ∇η · ν(X) + η[Dν(X)∇X]

where ∇X = (Xu, Xv), ∇η = (ηu, ηv). Plugging this relation into the varia-
tional inequality (19) we obtain
∫

Bδ(w0)

{〈∇X,∇η · ν + η[Dν(X)∇X]〉+ 2ηH(X)〈Xu ∧Xv, ν(X)〉} du dv ≥ 0

from which we infer, by virtue of

〈∇X,∇η · ν〉 = ηu〈Xu, ν(X)〉+ ηv〈Xv, ν(X)〉

= ηu
∂

∂u
ρ(X(w)) + ηv

∂

∂v
ρ(X(w)) = 〈∇η,∇ρ(X)〉

and
η〈∇X,Dν(X)∇X〉 = η〈Xu, Dν(X)Xu〉+ η〈Xv, Dν(X)Xv〉

the inequality
∫

Bδ(w0)

{
〈∇η,∇ρ(X)〉+ η〈Xu, Dν(X)Xu〉

+ η〈Xv, Dν(X)Xv〉+ 2ηH(X)〈Xu ∧Xv, ν〉
}
du dv ≥ 0.

In this inequality we replace the expression 〈Xu, Dν(X)Xu〉+〈Xv, Dν(X)Xv〉
using (18) and get

0 ≤
∫

Bδ(w0)

{
〈∇η,∇ρ(X)〉 − η(|Xu|2 + |Xv|2)Λρ(X)(X)

− ηεαβ〈Xuα , Dν(X)Xuβ 〉+ 2ηH(X)〈Xu ∧Xv, ν〉
}
du dv,

or equivalently,

0 ≤
∫

Bδ(w0)

{
〈∇ρ(X),∇η〉+ η(|Xu|2 + |Xv|2)

[
|H(X)| − Λρ(X)(X)

]
(20)

− η εαβ〈Xuα , Dν(X)Xuβ 〉
}
du dv.
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To see that the function ρ(X(w)) satisfies a differential equation of second
order we compute the term

εαβ〈Xuα , Dν(X)Xuβ 〉(21)

=

〈
Xuα

|Xuα | , ν
〉〈

X
uβ

|X
uβ | , ν

〉

1−
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2 · 〈Xuα , Dν(X)Xuβ 〉

=
1

|Xuα |
∂

∂uα ρ(X)
〈

X
uβ

|X
uβ | , ν

〉

1− 〈·, ·〉2 − 〈·, ·〉2 · 〈Xuα , Dν(X)Xuβ 〉

=: bα(w)
∂

∂uα
ρ(X),

where we have put

bα(w) :=

〈
Xuα

|Xuα | , Dν(X)Xuβ

〉〈
X

uβ

|X
uβ | , ν

〉

1−
〈

Xu

|Xu | , ν
〉2

−
〈

Xv

|Xv | , ν
〉2 .

Note that by (16), we have limw→w0〈
Xui

|Xui
| , ν〉 = 0. Thus bα(·) is continuous

in Bδ(w0) with bα(w0) = 0. By assumption (10) we have

(22) |H(X(w))| − Λρ(X)(X(w)) ≤ 0 for all w ∈ Bε(w0)

and some positive ε ≤ δ.
From (20), (21) and (22) we finally infer the inequality

0 ≤
∫

Bε(w0)

{
〈∇ρ(X),∇η〉 − η · bi(w)

∂

∂ui
ρ(X)

}
du dv

which holds for all nonnegative η ∈ C∞
c (Bε(w0)). Thus the function f(w) :=

ρ(X(w)) is an H2
2 ∩C1(Bε(w0)) strong (and therefore an almost everywhere)

solution of the inequality

Δf(w) + bi
∂f

∂ui
(w) ≤ 0 in Bε(w0).

By the strong maximum principle (see e.g. Gilbarg and Trudinger [1], Theorem
9.6) it follows that f(w) = ρ(X(w)) ≡ 0 in Bε(w0). This clearly means that
X(w) ∈ S for all w ∈ Bε(w0). Theorem 2 is proved. �

Proof of Corollary 2. We use Lemma 3 to control the mean curvature
Λρ(X)(X) of the parallel surface at X as follows:

Λρ(X)(X) =
1
2

(
λ1(y)

1− λ1(y)ρ(X)
+

λ2(y)
1− λ2(y)ρ(X)

)

≥ 1
2
(λ1(y) + λ2(y)) = Λ0(y) = Λ(y),
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where y ∈ S is such that ρ(X) = |X − y| and λ1(y) ≤ λ2(y) are the principal
curvatures of S at y. By assumption (10′) we have

inf
U ∩S

Λ ≥ sup
U
|H|

for some neighbourhood U = U(X(w0)) ⊂ R
3. Hence for some ε > 0 there

holds

Λρ(X)(X) ≥ inf
U ∩S

Λ ≥ sup
U
|H| ≥ |H(X)| on Bε(w0),

that is |H(X(w))| − Λρ(X)(X(w)) ≤ 0 for all w ∈ Bε(w0). The proof of
Corollary 2 can now be completed in the same way as in Theorem 2. �
Proof of Corollary 3. Assume on the contrary the existence of some w0 ∈ Ω
such that X(w0) = P0. By Theorem 2 there exists a disk Bε(w0) ⊂ Ω such
that X maps Bε(w0) into S. Therefore we obtain on Bε(w0) the identities

∇ρ(X(w)) = 0 and εαβ〈Xuα(w), Dν(X)Xuβ (w)〉 = 0.

The variational inequality (20) then yields the estimate

0 ≤
∫

Bε(w0)

η(|Xu|2 + |Xv|2)[|H(X)| − Λρ(X)(X)] du dv

for all η ∈ C∞
c (Bε(w0)), η ≥ 0. However, this contradicts the assumption

|H(P0)| < Λ(P0), since X cannot be constant on Bε(w0) and H and Λ are
continuous. �
Remark 5. We point out here that the stronger assumption |H(X(w0))| <
Λ(X(w0)) (replacing (10) in Theorem 2) leads to a somewhat more straightfor-
ward proof of the fact X(Bε(w0)) ⊂ S, starting from inequality (20); namely
we have

(|Xu|2 + |Xv|2)
[
|H(X)| − Λρ(X)

]
− εαβ 〈Xuα , Dν(X)Xuβ 〉

= 2|Xu|2
{[
|H| − Λρ

]
− εαβ

〈
Xuα

|Xuα | , Dν(X)
Xuβ

|Xuβ |

〉}
.

Put σ(w) := εαβ〈 Xuα

|Xuα | , Dν(X) X
uβ

|X
uβ | 〉; then σ ∈ C0(Bδ(w0)) with σ(w0) = 0,

since εαβ(w0) = 0. Thus the assumption |H(X(w0))| < Λ(X(w0)) implies the
inequality

2|Xu|2
{[
|H(X(w))| − Λρ(X(w))

]
− σ(w)

}
≤ 0

on a suitable disc Bε(w0) ⊂ Bδ(w0), whence (20) yields

0 ≤
∫

Bε(w0)

〈∇ρ(X(w)),∇η(w)〉 du dv,

i.e. f(w) = ρ(X(w)) is strongly superharmonic on Bε(w0), or Δf(w) ≤ 0 a.e.
in Bε(w0).
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Remark 6. Recall that assumption (10) cannot be replaced by |H(P )| ≤
Λ(P ) for all P ∈ S, see Remark 2 following Enclosure Theorem I in Section 4.2.

Proof of Enclosure Theorem 2. The coincidence set Ω1 = X−1(∂G) is a
closed set in Ω. By Theorem 2 Ω1 is also open, whence either Ω1 = ∅ or
Ω1 = Ω. However, by assumption there exists a w0 ∈ Ω with X(w0) ∈ G and
therefore only the alternative Ω1 = ∅ can hold true, i.e. X(Ω) ⊂ G. �

Proof of Theorem 3. We let T := {w ∈ Ω : X(w) ∈ ∂G} denote the (closed)
coincidence set and put, for ε > 0, Tε := {w ∈ Ω : dist(w,T) < ε}. Then Tε

is open and
⋂

ε>0 Tε = T. Extend ν(x) to a bounded C1-vector field ν̃ on R
3

which coincides with Dρ(x) = ν(x) on a neighbourhood of ∂G. Then we take
nonnegative functions η ∈ C∞

c (Ω) and ηε ∈ C∞
c (Tε) with η = ηε on Tε/2 and

put

ϕ(w) := η(w)ν̃(X(w)), ϕε(w) := ηε(w)ν̃(X(w)).

Since both (ϕ − ϕε) and (ϕε − ϕ) ∈ C1
c (Ω \ Tε/4,R

3) are admissible in the
variational inequality (19) we have δF(X,ϕ − ϕε) = 0; whence, since also ϕ
and ϕε are admissible functions we find as in the proof of Theorem 2, cp. (20),

0 ≤ δF(X,ϕ) = δF(X,ϕε)(23)

=
∫

Tε

[〈∇ρ(X),∇ηε〉+ ηε(|Xu|2 + |Xv|2)(|H(X)| − Λρ(X)(X))

− ηεεαβ〈Xuα , Dν(X)Xuβ 〉] du dv,

assuming that ε > 0 is choosen suitably small. We infer from ρ(X(·)) ∈
H2

2,loc(Tε) and an integration by parts
∫

Tε

〈∇ρ(X),∇ηε〉 du dv = −
∫

Tε

%ρ(X) · ηε du dv.

Taking the relations %ρ(X(w)) = 0 a.e. on T and εαβ(w) = 0 a.e. on T for
α, β = 1, 2 and Lebesgue’s dominated convergence theorem into account we
arrive at

lim
ε→0

∫
Tε

[〈∇ρ(X),∇ηε〉+ ηε(|Xu|2 + |Xv|2)(|H(X)| − Λρ(X))

− ηεεαβ〈Xuα , Dν(X)Xuβ 〉] du dv

=
∫

T

η(|Xu|2 + |Xv|2)(|H(X)|)− Λ(X)) du dv.

By (23) and the assumption |H| ≤ Λ along ∂G we obtain the variational
equality

(24) δF(X,ϕ) = 0
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for all functions ϕ of the type ϕ = η(w)ν̃(X(w)), η ∈ C∞
c (Ω), η ≥ 0. Clearly,

this also holds for all normal variation ϕ = ην̃(X) without assuming the sign
restriction on η.

We can now exploit the variational inequality δF(X,ϕ) ≥ 0 which holds

for all ϕ ∈
◦

H1
2 (Ω,R3) ∩ L∞(Ω,R3) with X + εϕ ∈ H1

2 (Ω,G). Note that we
may hence admit variations ϕ(w) = η(w)ζ(X(w)) where ζ denotes a C1-
vectorfield defined on a neighbourhood of ∂G with ζ(P ) = 0 for all P ∈ ∂G
or 〈ζ(P ), ν(P )〉 > 0 along ∂G and η ∈ C1

c (Tε), η ≥ 0, ε > 0 suitably small.
By an approximation argument this also follows for C1-vectorfields as above
which are directed weakly into the interior of ∂G, i.e. 〈ζ(P ), ν(P )〉 ≥ 0 along
∂G. In particular we have δF(X,ϕ) = 0, if ζ as above is tangential to ∂G
along ∂G, since in this case 〈±ζ, ν〉 ≥ 0 on ∂G.

Suppose ϕ ∈ C1
c (Tε,R

3) is arbitrary, then we decompose ϕ = ϕ⊥ + ϕT

where ϕ⊥ = η(w)ν̃(X(w)) with η(w) := 〈ϕ(w), ν̃(X(w))〉 denotes the “normal
component” and 〈ϕT (w), ν̃(X(w))〉 = 0 for all w ∈ Tε. Concluding we find
δF(X,ϕT ) = 0 and because of (24) also δF(X,ϕ⊥) = 0, whence δF(X,ϕ) = 0
for all ϕ ∈ C1

c (Tε,R
3). Since, on the other hand δF(X,ϕ) = 0 whenever ϕ is

supported in Ω \T we finally conclude the result by virtue of the fundamental
lemma of the calculus of variations. �

4.5 Isoperimetric Inequalities

For the sake of completeness we first repeat the proof of the isoperimetric
inequality for disk-type minimal surfaces X : B → R

3 ∈ H1
2 (B,R3) with the

parameter domain B = {w ∈ C : |w| < 1}, the boundary of which is given by
C = ∂B = {w ∈ C : |w| = 1}. Recall that any X ∈ H1

2 (B,R3) has boundary
values X|C of class L2(C,R3). Denote by L(X) the length of the boundary
trace X|C , i.e.,

L(X) = L(X|C) :=
∫

C

|dX|.

We recall a result that, essentially, has been proved in Section 4.7 of Vol. 1.

Lemma 1. (i) Let X : B → R
3 be a minimal surface with a finite Dirichlet

integral D(X) and with boundary values X|C of finite total variation

L(X) =
∫

C

|dX|.

Then X is of class H1
2 (B,R3) and has a continuous extension to B, i.e.,

X ∈ C0(B,R3). Moreover, the boundary values X|C are of class H1
1 (C,R3).

Setting X(r, θ) := X(reiθ), we obtain that, for any r ∈ (0, 1], the function
Xθ(r, θ) vanishes at most on a set of θ-values of one-dimensional Hausdorff
measure zero, and that the limits
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lim
r→1−0

Xr(r, θ) and lim
r→1−0

Xθ(r, θ)

exist, and that

∂

∂θ
X(1, θ) = lim

r→1−0
Xθ(r, θ) a.e. on [0, 2π]

holds true. Finally, setting Xr(1, θ) := limr→1−0Xr(r, θ), it follows that

(1)
∫

B

〈∇X,∇φ〉 du dv =
∫

C

〈Xr, φ〉 dθ

is satisfied for all φ ∈ H1
2 ∩ L∞(B,R3). Moreover, we have

(2) lim
r→1−0

∫ 2π

0

|Xθ(r, θ)|r dθ =
∫ 2π

0

|dX(1, θ)|.

(ii) If X : B → R
3 is a minimal surface with a continuous extension to B

such that L(X) :=
∫

C
|dX| <∞, then we still have (2).

Proof. Since L(X) < ∞, the finiteness of D(X) is equivalent to the rela-
tion X ∈ H1

2 (B,R3), on account of Poincaré’s inequality. Hence X has an
L2(C)-trace on the boundary C of ∂B which, by assumption, has a finite
total variation

∫
C
|dX|. Consequently, the two one-sided limits

lim
θ→θ0−0

X(1, θ) and lim
θ→θ0+0

X(1, θ)

exists for every θ0 ∈ R. In conjunction with the Courant–Lebesgue lemma, we
obtain that X(1, θ) is a continuous function of θ ∈ R whence X ∈ C0(B,R3).
The rest of the proof follows from Theorems 1 and 2 Vol. 1, in Section 4.7. �

Lemma 2 (Wirtinger’s inequality). Let Z : R → R
3 be an absolutely

continuous function that is periodic with the period L > 0 and has the mean
value

(3) P :=
1
L

∫ L

0

Z(t) dt.

Then we obtain

(4)
∫ L

0

|Z(t)− P |2 dt ≤
(
L

2π

)2 ∫ L

0

|Ż(t)|2 dt,

and the equality sign holds if and only if there are constant vectors A1 and B1

in R
3 such that

(5) Z(t) = P +A1 cos
(

2π
L
t

)
+B1 sin

(
2π
L
t

)

holds for all t ∈ R.
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Proof. We first assume that L = 2π and
∫ 2π

0
|Ż|2 dt < ∞. Then we have the

expansions

Z(t) = P +
∞∑

n=1

(An cosnt+Bn sinnt), Ż(t) =
∞∑

n=1

n(Bn cosnt−An sinnt)

of Z and Ż into Fourier series with An, Bn ∈ R
3, and

∫ 2π

0

|Z − P |2 dt = π
∞∑

n=1

(|An|2 + |Bn|2),

(6) ∫ 2π

0

|Ż|2 dt = π

∞∑
n=1

n2(|An|2 + |Bn|2).

Consequently it follows that

(7)
∫ 2π

0

|Z − P |2 dt ≤
∫ 2π

0

|Ż|2 dt,

and the equality sign holds if and only if all coefficients An and Bn vanish
for n > 1. Thus we have verified the assertion under the two additional hy-
potheses. If

∫ 2π

0
|Ż|2 dt = ∞, the statement of the lemma is trivially satisfied,

and the general case L > 0 can be reduced to the case L = 2π by the scaling
transformation t �→ (2π/L)t. �

Now we state the isoperimetric inequality for minimal surfaces in its sim-
plest form.

Theorem 1. Let X ∈ C2(B,R3) with B = {w : |w| < 1} be a nonconstant
minimal surface, i.e., ΔX = 0, |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0. Assume also
that X is either of class H1

2 (B,R3) or of class C0(B,R3), and that L(X) =∫
C
|dX| <∞. Then D(X) is finite, and we have

(8) D(X) ≤ 1
4π
L2(X).

Moreover, the equality sign holds if and only if X : B → R
3 represents a

(simply covered) disk.

Remark 1. Note that for every minimal surface X : B → R
3 the area func-

tional A(X) coincides with the Dirichlet integral D(X). Thus (8) can equiv-
alently be written as

(8′) A(X) ≤ 1
4π
L2(X).
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Proof of Theorem 1. (i) Assume first that X is of class H1
2 (B,R3), and that

P is a constant vector in R
3. Because of L(X) <∞, the boundary values X|C

are bounded whence X is of class L∞(B,R3) (this follows from the maximum
principle in conjunction with a suitable approximation device). Thus we can
apply formula (1) to φ = X − P , obtaining

(9)∫
B

〈∇X,∇X〉 du dv =
∫

B

〈∇X,∇(X − P )〉 du dv

=
∫

C

〈Xr, X − P 〉 dθ ≤
∫

C

|Xr||X − P | dθ

=
∫

C

|Xθ||X − P | dθ =
∫ 2π

0

|Xθ(1, θ)||X(1, θ)− P | dθ.

Introducing s = σ(θ) by

σ(θ) :=
∫ θ

0

|Xθ(1, θ)| dθ,

we obtain that σ(θ) is a strictly increasing and absolutely continuous function
of θ, and σ̇(θ) = |Xθ(1, θ)| > 0 a.e. on R. Hence σ : R → R has a continuous
inverse τ : R → R. Let us introduce the reparametrization

Z(s) := X(1, τ(s)), s ∈ R,

of the curve X(1, θ), θ ∈ R. Then, for any s1, s2 ∈ R with s1 < s2, the numbers
θ1 := τ(s1), θ2 := τ(s2) satisfy θ1 < θ2 and

(10)
∫ s2

s1

|dZ| =
∫ θ2

θ1

|dX| = σ(θ2)− σ(θ1) = s2 − s1,

whence
|Z(s2)− Z(s1)| ≤ s2 − s1.

Consequently, the mapping Z : R → R
3 is Lipschitz continuous and therefore

also absolutely continuous, and we obtain from (10) that

(11)
∫ s2

s1

|Z ′(s)| ds = s2 − s1

whence

(12) |Z ′(s)| = 1 a.e. on R.

In other words, the curve Z(s) is the reparametrization of X(1, θ) with respect
to the parameter s of its arc length.

As the mapping σ : R → R is absolutely continuous, it maps null sets onto
null sets, and we derive from
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τ(s2)− τ(s1)
s2 − s1

=
1

σ(θ2)−σ(θ1)
θ2−θ1

and from σ̇(θ) > 0 a.e. on R that

(13) τ ′(s) =
1

σ̇(τ(s))
> 0 a.e. on R.

On account of
σ̇(θ) = |Xθ(1, θ)| a.e. on R

it then follows that

(14) |Xθ(1, τ(s))|
dτ

ds
(s) = 1 a.e. on R,

and thus we obtain

(15)
∫ 2π

0

|Xθ(1, θ)||X(1, θ)− P | dθ =
∫ L

0

|Z(s)− P | ds.

We now infer from (9) and (15) that

(16)
∫

B

〈∇X,∇X〉 du dv ≤
∫ L

0

|Z(s)− P | ds.

By Schwarz’s inequality, we have

(17)
∫ L

0

|Z(s)− P | ds ≤
√
L

{∫ L

0

|Z(s)− P |2 ds
}1/2

,

and Wirtinger’s inequality (4) together with (12) implies that

(18)

{∫ L

0

|Z(s)− P |2 ds
}1/2

≤ L3/2/(2π)

if we choose P as the barycenter of the closed curve Z : [0, L] → R
3, i.e., if

P :=
1
L

∫ L

0

Z(s) ds.

By virtue of (16)–(18), we arrive at

(19)
∫

B

|∇X|2 du dv ≤ 1
2π
L2

which is equivalent to the desired inequality (8).
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Suppose that equality holds true in (8) or, equivalently, in (19). Then
equality must also hold in Wirtinger’s inequality (18), and by Lemma 2 we
infer

Z(s) = P +A1 cos
(

2π
L
s

)
+B1 sin

(
2π
L
s

)
.

Set R := L/(2π) and ϕ = s/R. Because of |Z ′(s)| ≡ 1, we obtain

R2 = |A1|2 sin2 ϕ+ |B1|2 cos2 ϕ− 2〈A1, B1〉 sinϕ cosϕ.

Choosing ϕ = 0 or π
2 , respectively, it follows that |A1| = |B1| = R, and

therefore 〈A1, B1〉 = 0. Then the pair of vectors E1, E2 ∈ R
3, defined by

E1 :=
1
R
A1, E2 :=

1
R
B1,

is orthonormal, and we have

Z(Rϕ) = P +R {E1 cosϕ+ E2 sinϕ} .

Consequently Z(Rϕ), 0 ≤ ϕ ≤ 2π, describes a simply covered circle of radius
R, centered at P , and the same holds true for the curve X(1, θ) with 0 ≤
θ ≤ 2π. Hence X : B → R

3 represents a (simply covered) disk of radius R,
centered at P , as we infer from the “convex hull theorem” of Section 4.2 and
a standard reasoning.

Conversely, if X : B → R
3 represents a simply covered disk, then the

equality sign holds true in (8′) and, therefore also in (8).
Thus the assertion of the theorem is proved under the assumption that

X ∈ H1
2 (B,R3).

(ii) Suppose now that X is of class C0(B,R3). Then we introduce noncon-
stant minimal surfaces Xk : B → R

3 of class C∞(B,R3) by defining

Xk(w) := X(rkw) for |w| < 1, rk :=
k

k + 1
.

We can apply (i) to each of the surfaces Xk, thus obtaining

(20) 4πD(Xk) ≤
{∫ 2π

0

|dXk(1, θ)|
}2

.

For k → ∞, we have rk → 1 − 0, D(Xk) → D(X), and part (ii) of Lemma 1
yields

lim
k→∞

∫ 2π

0

|dXk(1, θ)| =
∫ 2π

0

|dX(1, θ)|.

Thus we infer from (20) that 4πD(X) ≤ L2(X) which implies in particular
that X is of class H1

2 (B,R3). For the rest of the proof, we can now proceed
as in part (i). �
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If the boundary of a minimal surface X is very long in comparison to its
“diameter”, then another estimate of A(X) = D(X) might be better which
depends only linearly on the length L(X) of the boundary of X. We call this
estimate the linear isoperimetric inequality. It reads as follows:

Theorem 2. Let X be a nonconstant minimal surface with the parameter
domain B = {w : |w| < 1}, and assume that X is either continuous on B or
of class H1

2 (B,R3). Moreover, suppose that the length L(X) =
∫

C
|dX| of its

boundary is finite, and let KR(P ) be the smallest ball in R
3 containing X(∂B)

and therefore also X(B). Then we have

(21) D(X) ≤ 1
2
RL(X).

Equality holds in (21) if and only if X(B) is a plane disk.

Proof. By Theorem 1 it follows that D(X) < ∞ and X ∈ H1
2 (B,R3), and

formula (9) implies

(22) 2D(X) ≤
∫

C

|Xθ||X − P | dθ ≤ RL(X)

whence we obtain (21). Suppose now that

(23) D(X) =
1
2
RL(X).

Then we infer from (9) and (22) that∫
C

〈Xr, X − P 〉 dθ =
∫

C

|Xr||X − P | dθ

is satisfied; consequently we have

〈Xr, X − P 〉 = |Xr||X − P |

a.e. on C, that is, the two vectors Xr and X − P are collinear a.e. on C.
Secondly we infer from (22) and (23) that

|X − P | = R a.e. on C.

Hence the H1
1 -curve Σ defined by X : C → R

3 lies on the sphere SR(P ) of
radius R centered at P , and the side normal Xr of the minimal surface X at Σ
is proportional to the radius vector X − P . Thus Xr(1, θ) is perpendicular to
SR(P ) for almost all θ ∈ [0, 2π]. Hence the surface X meets the sphere SR(P )
orthogonally a.e. along Σ. As in the proof of Theorem 1 in Section 1.4 we
can show that X is a stationary surface with a free boundary on SR(P ) and
that X can be viewed as a stationary point of Dirichlet’s integral in the class
C(SR(P )). By Theorems 1 and 2 of Section 2.8, the surface X is real analytic
on the closure B of B. Then it follows from the Theorem in Section 1.7 that
X(B) is a plane disk.

Conversely, if X : B → R
3 represents a plane disk, then (23) is fulfilled.�
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Now we want to state a more general version of the isoperimetric inequality,
valid for global minimal surfaces with boundaries.

Definition 1. A global minimal surface (in R
3) is a nonconstant map

X ∈ C0(M,R3) ∩ C2(M̊,R3)

from a two-dimensional manifold M of class Ck, k ≥ 2, with the boundary
∂M and the interior M̊ = intM into the three-dimensional Euclidean space
R

3 which has the following properties:
(i) M possesses an atlas C which defines a conformal structure on the

interior M̊ of M ;
(ii) for every chart ϕ belonging to the conformal structure C the local map

X = X ◦ ϕ−1 : intϕ(G) → R
3, G ⊂M,

is harmonic and conformal, i.e. a minimal surface as defined in Section 2.6.

In other words, a global minimal surface is defined on a Riemann surface
M with a smooth boundary ∂M (which might be empty).

Note that X may have branch points and selfintersections. Moreover we
know that, away from the branch points, the map X : M → R

3 induces a
Riemannian metric on M̊ . With respect to the local coordinates determined
by the charts ϕ of the atlas C this metric is given by

gαβ(u, v) = λ(u, v)δαβ ,

where λ = |Xu|2 = |Xv|2, so that the gradient ∇M and the Laplace–Beltrami
operator ΔM are proportional to the corresponding Euclidean operators ∇
and Δ with respect to the local coordinates u and v,

∇M =
1
λ
∇, ΔM =

1
λ
Δ.

In particular, the function |X|2 =
3∑

j=1

|Xj |2 satisfies

(24) ΔM |X|2 = 4.

Moreover, if M is compact, X is of class C1 up to its boundary, and if X has
only finitely many branch points in M , then M \{branch points} is a Rieman-
nian manifold, and Green’s formulas (in the sense of the Riemannian metric)
are meaningful and true for smooth functions defined on M ; for example, we
obtain from (24) the formula

4 area X = 4
∫

M

d volM =
∫

M

ΔM |X|2 d volM(25)

= 2
∫

∂M

|X| ∂
∂ν
|X| d vol∂M ,
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where ν is the exterior unit normal to ∂M in the tangent bundle TM |∂M .
In Chapter 2 we have seen that boundary branch points of X on ∂M are

isolated. Hence, for reasonably regular surfaces X, there exist only finitely
many branch points in the interior and on the boundary.

Definition 2. Let X : M → R
3 be a global minimal surface defined on a

compact manifold M . Then the boundary ∂X := X(∂M) of X is called weakly
connected if there is a system of Cartesian coordinates (x1, x2, x3) in R

3 such
that no hyperplane H := {xj = const}, j = 1, 2, 3, separates ∂X, that is, if
H is any hyperplane orthogonal to one of the coordinate axes and if H ∩ ∂X

is empty, then ∂X lies on one side of H. Moreover X : M → R
3 is called

compact if M is compact.

Fig. 1. (a) Three weekly connected curves. No plane E parallel to any of the coordinate

planes shown separates them. (b) Two curves in R3 which are not weakly connected. It is

shown in the text that they lie in opposite quadrants of a suitable coordinate system

Now we can formulate a general version of the isoperimetric inequality .

Theorem 3. Let X : M → R
3 be a global compact minimal surface of class

C1 having at most finitely many branch points defined on a compact Riemann
surface M . Suppose also that the boundary ∂X is weakly connected. Then the
area A(X) of X is bounded from above in terms of the length L(X) of ∂X by
the inequality

(26) A(X) ≤ 1
4π
L2(X).

Moreover, equality holds if and only if X is a plane disk in R
3.

Proof. Let (x1, x2, x3) be the coordinates appearing in the definition of the
weakly connected boundary ∂X. By means of a suitable shift we may even
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assume that the center of mass of the boundary ∂X lies at the origin, i.e. that
for j = 1, 2, 3

(27)
∫

∂M

Xj d vol∂M = 0,

where Xj is, of course, the j-th coordinate function of the surface X.
On account of (25), it follows that

2A(X) =
∫

∂M

|X| ∂
∂ν
|X| d vol∂M ,

and it is easily seen that ∂
∂ν |X| ≤ 1. Therefore Schwarz’s inequality implies

that

2A(X) =
∫

∂M

|X| ∂
∂ν
|X| d vol∂M ≤

∫
∂M

|X| d vol∂M(28)

≤
(∫

∂M

d vol∂M

∫
∂M

|X|2 d vol∂M

)1/2

= L1/2(X)
(∫

∂M

|X|2 d vol∂M

)1/2

.

Case (i): Suppose that ∂X = X(∂M) is connected, i.e., ∂X is a closed curve.
Then the proof is essentially that of Theorem 1. In fact, let s be the parameter
of arc length of ∂X, and assume that ∂X is parametrized by s, we write X(s)
for the parameter representation of ∂X with respect to s. Because of (27) we
have

∫ L

0
X(s) ds = 0, where L := L(X), and Wirtinger’s inequality yields

∫
∂M

|X|2 d vol∂M =
∫ L

0

|X(s)|2 ds(29)

≤ L2

4π2

∫ L

0

∣∣∣∣∂X

ds
(s)
∣∣∣∣
2

ds =
L3

4π2
.

From (28) and (29) we derive the desired inequality (26).
Case (ii): ∂X is weakly connected, but not connected. Hence we are not al-
lowed to apply Wirtinger’s inequality, and we have to look for some substitute.
Again, we introduce L = L(X) as length of X(∂M).

Since M is compact and regular, its boundary ∂M consists of finitely
many, say, p closed curves ∂1M, . . . , ∂pM . Denote their images under X by
σ1, σ2, . . . , σp, and fix some index j ∈ {1, 2, 3}. By assumption, no hyperplane
{xk = const} separates σ1 from σ2, . . . , σp. Hence, for at least one of these
curves, say, for σ2, we have following property:

There are two points P1 and Q1 on σ1 and σ2, respectively, whose j-th
components P j

1 and Qj
1 coincide. The translation A2 : R

3 → R
3 defined by

P �→ P +(P1−Q1) leaves the j-th component of every point of R
3 unchanged.

Thus σ1 ∪ A2σ2 is connected. In a second step we find points



342 4 Enclosure Theorems and Isoperimetric Inequalities for Minimal Surfaces

P2 ∈ σ2 and Q2 ∈ σ3 ∪ · · · ∪ σp, say, Q2 ∈ σ3,

such that P j
2 = Qj

2, and a translation A3 : R
3 → R

3 defined by

P �→ P + (P1 −Q1) + (P2 −Q2).

Again, A3 leaves the j-th component of every point in R
3 unchanged, and

σ1 ∪A2σ2 ∪A3σ3 is connected. Proceeding by induction, we find translations
A4, . . . , Ap such that cj := σ1 ∪A2σ2 ∪ · · · ∪Apσp is a connected curve.

Now let X1(s), . . . ,Xp(s) be the parametrizations of σ1, . . . , σp with respect
to their arc lengths, and

x1(s), 0 ≤ s ≤ L1, . . . , xp(s), 0 ≤ s ≤ Lp,

be their j-th components. We can assume that X1(0) = P1 and X2(0) = Q1

whence x1(0) = x1(L1) = x2(0). Define

y1(s) :=

{
x1(s) for 0 ≤ s ≤ L1,

x2(s− L1) for L1 ≤ s ≤ L1 + L2

and
z2(s) := y1(s+ s2),

where s2 is chosen in such a way that z2(0) = y1(s2) = P j
2 = Qj

2. Then both
y1(s) and z2(s) are continuous and periodic with the period L1 + L2, and we
have a.e. that |ẏ1(s)| = 1 and |ż2(s)| = 1.

In the second step we define

y2(s) :=

{
z2(s) for 0 ≤ s ≤ L1 + L2,

x3(s− L1 − L2) for L1 + L2 ≤ s ≤ L1 + L2 + L3

and
z3(s) := y2(s+ s3),

where s3 is chosen in such a way that z3(0) = y2(s3) = P j
3 = Qj

3. Finally, after
p−1 steps, we obtain a continuous function yp(s), 0 ≤ s ≤ L := L1 + · · ·+Lp,
which is periodic with the period L, and |ẏp(s)| = 1 a.e. on [0, L].

By Wirtinger’s inequality we obtain

(30)
∫ L

0

|yp−1(s)|2 ds ≤
(
L

2π

)2 ∫ L

0

|ẏp−1(s)|2 ds,

as the mean value of the function yp−1 is zero. By construction it follows that

∫ L

0

|yp−1(s)|2 ds =
∫

∂M

|Xj(s)|2 d vol∂M

and that
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∫ L

0

|ẏp−1(s)|2 ds =
∫

∂M

∣∣∣∣ ddsXj

∣∣∣∣
2

d vol∂M

whence

(31)
∫

∂M

|Xj |2 d vol∂M ≤
(
L

2π

)2 ∫
M

∣∣∣∣ ddsXj

∣∣∣∣
2

d vol∂M .

As j is an arbitrary index in {1, 2, 3}, we may sum up the equations (31) for
j = 1, 2, 3, thus obtaining

(32)
∫

∂M

|X2| d vol∂M ≤
(
L

2π

)2 ∫
∂M

∣∣∣∣ ddsX

∣∣∣∣
2

d vol∂M .

Thus Wirtinger’s inequality can be generalized to weakly connected bound-
aries X : ∂M → R

3 in the form (32). Now we can proceed as in case (i) to
obtain the isoperimetric inequality (26).

Let us now suppose that equality holds in the isoperimetric inequality, i.e.,

4πA(X) = L2(X).

Then, in particular, equality holds in (28) implying that

|X| ≡ const =: R on ∂M,

i.e., ∂X lies on a sphere of radius R, and R > 0 since X(w) �≡ 0.
Now let P be some point on the curve σ1 which is not the image of a

branch point of X. The parametrization of the curves cj introduced above
with respect to the arc length s can now be chosen such that

cj(0) = P for all j

and, if P is suitably selected, that for some neighbourhood (−ε, ε) of 0 the
curve cj(s) parametrizes a part of σ1. Now equality in the isoperimetric in-
equality implies equality in Wirtinger’s inequality for the j-th component cjj
of the curve cj , thus

cjj(s) = aj cos
(

2π
L
s

)
+ bj sin

(
2π
L
s

)

for two constants aj and bj , L = L(X); in particular, we have for all j that

cjj(0) = pj = aj ,(
d

ds
cjj

)
(0) =

dσj
1

ds
(0) = bj

2π
L
.

Since ∂X lies on a sphere, the vectors
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a = (a1, a2, a3), b = (b1, b2, b3)

are mutually perpendicular, and they satisfy

R = |a| = |b| = L

2π
.

Since R > 0, at least one of the components of a, say aj0 , does not vanish;
consequently the function cj0j0(s) has exactly two critical points in the interval
[0, L). This implies that the boundary ∂X of the minimal surface X under
consideration has only one component. In fact, cj0j0 is the j0-th component
of the curve obtained by shifting the boundary components σ1, . . . , σp of ∂X

together in a plane perpendicular to the j0-axis, and every curve σj contributes
at least two critical points to the function cj0j0 , so that cj0j0 has at least four
critical points if p is greater than one.

This proves that the functions cjj are simply the j-th components of the
one and only boundary curve σ1. The preceding identities show that σ1 is a
circle of radius R = L

2π , the boundary of a plane disk containing X; see the
convex hull theorem in Section 4.1. �

We shall now study a minimal surface X : M → R
3 in the three-

dimensional space defined on a compact manifold M whose boundary ∂M
has exactly two components ∂+M and ∂−M . Let us see what happens if ∂X

is not weakly connected.
Denote by ∂+X = X(∂+M) and ∂−X = X(∂−M) the components of ∂X.

They lie in some ball BR(0) ⊂ R
3. We claim that there is a hyperplane E1

∗
with normal N∗ ∈ S2 through a point P∗ such that the components ∂±X of
∂X lie in the two closed half spaces H±

1 defined by E1
∗ respectively and such

that ∂+X and ∂−X touch E1
∗ .

Fig. 2. Construction of E1
∗

Such a plane E1
∗ can be constructed as follows: First of all, there is a plane

E0 with normal N0 which intersects ∂+X and ∂−X. Then consider the open
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Fig. 3. The planes E1
∗ , E2

∗ , E3
∗

set U ⊂ S2 of all unit vectors N for which there is a P ∈ BR(0) such that the
oriented plane E(P,N) through P with normal N separates ∂X, (i.e., ∂+X

and ∂−X lie in the open half spaces defined by E(P,N)). U is not empty since
by assumption ∂X is not weakly connected (see Fig. 2).

Now take a sequence of planes En = E(Pn, Nn) such that Pn ∈ Br(0),
Nn ∈ U , and such that

lim
n→∞

〈Nn, N0〉 = sup {〈N,N0〉 : N ∈ U} ;

this expression is positive since U is open. Passing to a subsequence we may
assume that Pn converges to P∗ and Nn to N∗. The plane E1

∗ = E(P∗, N∗)
then has the desired property (cf. Fig. 2).

No plane parallel to E1
∗ separates ∂X, therefore some plane E2 orthogonal

to E1
∗ separates ∂X since it is not weakly connected. Proceeding as above

we can now construct a plane E2
∗ perpendicular to E1

∗ such that ∂+X and
∂−X lie again in the two closed half spaces defined by E2

∗ and such that both
components of ∂X touch E2

∗ . Once again none of the planes parallel to E2
∗

separates ∂X, hence there has to be a third plane E3
∗ orthogonal to E1

∗ as
well as E2

∗ which separates ∂X (Fig. 3). Thus we can choose x, y, z-coordinate
axes such that E1

∗ , E
2

∗ and E3
∗ correspond to the x, y-, x, z- and y, z-planes

respectively and such that ∂±X lies in the octant

{(x, y, z) : x, y, z ≥ 0(≤ 0)} ;

in particular, putting V = 1√
3
(1, 1, 1), the components ∂±X lie in the cones

C± =
{
P ∈ R

3 : ±〈P, V 〉 ≥ |P |√
3

}

respectively. The opening angle of this cone is 54.7356103. . . degrees.
As we have proved in Section 4.2, this implies that the minimal surface X is

not connected. According to Section 3.6 of Vol. 1, there are not compact global
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minimal surfaces without boundary. Therefore M has exactly two components
M+ and M− with boundaries ∂+M and ∂−M respectively. Applying the
isoperimetric inequality to both of them we obtain

4πA(X) = 4π
{
A(X+) +A(X−)

}
≤ L2(∂+X) + L2(∂−X)
< L2(X).

(Here L(∂±X) denotes the length of ∂±X, and L(X) is the length of ∂X, i.e.,
L(X) = L(∂+X ∪ ∂−X).) Thus we have proved the following

Corollary 1. If X is a global compact minimal surface of class C1(M,R3)
having at most finitely many branch points and whose boundary has no more
than two connected components, then we have the isoperimetric inequality

4πA(X) ≤ L2(X),

and equality holds if and only if X is a plane disk.

One undesirable feature of our isoperimetric inequality is that the minimal
surface X has to be of class C1 up to the boundary. For a minimal surface
X : B → R

3 defined on the disk B = {w : |w| < 1}, it follows that the
lengths of the boundaries of the surfaces Z(r)(w) := X(rw), 0 < r < 1, and
w ∈ B, tend to the length of the boundary of X, if X ∈ C0(B,R3) and X|C
is rectifiable.

Such a continuity property is also known for doubly connected minimal
surfaces defined on annuli; cf. Feinberg [1]. Thus we obtain also

Corollary 2. If X : Ω → R
3 is a minimal surface with X ∈ C0(Ω,R3), which

has a rectifiable boundary and whose parameter domain Ω is either a disk or
an annulus, then we have

A(X) ≤ 1
4π
L2(X).

It can be seen that equality holds if and only if X(Ω) is a plane disk. Note
that Corollary 2 is a generalization of Theorem 1.

4.6 Estimates for the Length of the Free Trace

In this section we want to estimate the length of the free trace of a minimal
surface X : B → R

3 in two situations. First we assume that the image X(I),
I ⊂ ∂B, is contained in some part S0 of the support surface S which can
be viewed as the graph of some function ψ : Ω → R, Ω ⊂ R

2, having a
bounded gradient (that is, the Gauss image of S is compactly contained in
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some open hemisphere of S2). Secondly, we shall study the case that S satisfies
a (two-sided) sphere condition.

To begin with the first situation, we assume that S is an embedded regular
surface of class C1 in R

3, and that Γ is a rectifiable Jordan arc of length L(Γ )
with endpoints P1 and P2 on S. We shall not exclude that Γ and S have
also other points in common. Nevertheless, we can define the class C(Γ, S)
of admissible surfaces X : B → R

3 for the semifree problem with respect to
the boundary configuration 〈Γ, S〉 as in 4.6 of Vol. 1. For technical reasons
we imagine such surfaces to be parametrized on the semidisk B = {w : |w| <
1, Imw > 0}, the boundary of which consists of the interval I and the circular
arc C. For any X ∈ C(Γ, S), the Jordan arc Γ is the weakly monotonic image
of C under X, by Σ we want to denote the free trace X : I → R

3 of the
mapping X on the support surface S. The total variation

L(Σ) :=
∫

I

|dX|

will be called the length of the free trace Σ.

Definition 1. We say that some orientable part S0 of S fulfils a λ-graph
condition, λ > 0, if there is a unit vector N0 ∈ R

3 such that the (suitably
chosen) field NS(P ) of unit normals on S satisfies the condition

(1) 〈N0, NS(P )〉 ≥ λ for all P ∈ S0.

Proposition 1. Let X be a stationary minimal surface in C(Γ, S) (see Sec-
tion 1.4, Definition 1) which satisfies the following two conditions:

(i) The free boundary curve X(I) is contained in an open, orientable part
S0 of S which fulfils a λ-graph condition, λ > 0.

(ii) The scalar product 〈Xv, NS(X)〉 does not change its sign on I.
Then the length L(Σ) of the free trace Σ, given by X : I → R

3, is estimated
from above by

(2) L(Σ) ≤ λ−1L(Γ ),

and the area A(X) = D(X) is bounded by

(3) A(X) ≤ (1 + λ)2

4πλ2
L2(Γ ).

Moreover, the surface X is continuous on B.

Supplement. If we drop the assumption that X maps C monotonically onto
Γ , we obtain the estimates

L(Σ) ≤ λ−1

∫
C

|dX|, A(X) ≤ (1 + λ)2

4πλ2

(∫
C

|dX|
)2

instead of (2) and (3).
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Proof of Proposition 1. We can assume that both

〈Xv, NS(X)〉 ≥ 0

and

(4) 〈N0, NS(X)〉 ≥ λ > 0

hold on I (we possibly have to replace NS and N0 by −NS and −N0 respec-
tively). As X is assumed to be stationary in C(Γ, S), we have by definition
that X is of class C1(B ∪ I,R3) and meets S0 perpendicularly. Consequently
we have

Xv = |Xv|NS(X) on I,

and the conformality relation |Xu| = |Xv| yields

(5) Xv = |Xu|NS(X) on I.

Integration by parts implies

0 =
∫

B

ΔX du dv =
∫

∂B

∂

∂ν
X dH1,

where ν is the exterior normal to ∂B. Introducing polar coordinates r, ϕ by
u+ iv = reiϕ, we arrive at ∫

I

Xv du =
∫

C

Xr dϕ,

and (5) yields ∫
I

NS(X)|Xu| du =
∫

C

Xr dϕ.

Multiplying this identity by N0, we arrive at

(6) λL(Σ) ≤
∫

I

〈N0, NS(X)〉|dX| =
∫

C

〈N0, Xr〉 dϕ,

taking (4) into account, and the conformality relation

|Xr| = |Xϕ| H1-a.e. on C

yields

(7) λL(Σ) ≤
∫

C

cosα(ϕ)|Xϕ| dϕ ≤
∫

C

|dX|,

where α(ϕ) denotes the angle between N0 and the side normal Xr(1, ϕ) to
Γ on X at the point X(1, ϕ). This implies (2), and (3) follows from the
isoperimetric inequality

A(X) ≤ 1
4π

(∫
∂B

|dX|
)2

.

Finally, a by now standard reasoning yields X ∈ C0(B,R3), taking the rela-
tions D(X) < ∞ and L(Γ ) < ∞ into account. The “Supplement” is proved
by the same reasoning. �
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Remark 1. As X intersects S0 perpendicularly along Σ, the assumption (ii)
is certainly satisfied if X possesses no boundary branch points on the free
boundary I. Taking the asymptotic expansion of X at boundary branch points
into account (see Section 2.10), we see that there are no branch points on I
if, for any r ∈ (0, 1), there is a δ ∈ (0,

√
1− r2) such that the part X : {w =

u+ iv : |u| < r, 0 < |v| < δ} → R
3 of the minimal surface X lies “on one side

of S0”. The last assumption means that, close to I, the minimal surface X
does not penetrate the supporting surface S0.

Moreover, we read off from the asymptotic expansion that 〈Xv, NS(X)〉
does not change its sign on I close to branch points of even order. Thus
condition (ii) is even fulfilled if branch points of odd order are excluded on I.

Remark 2. By exploiting (6) somewhat more carefully, we can derive an
improvement of estimate (2). To this end, we introduce the representation
{ξ(s) : 0 < s ≤ l}, l = L(Γ ), of the Jordan arc Γ with respect to its para-
meter s of the arc length. Then ξ′(s) is defined a.e. on [0, l], and |ξ′(s)| = 1.
Let β(s) ∈ [0, π

2 ] be the angle between N0 and the unoriented tangent T (s) of
Γ at ξ(s), given by ±ξ′(s). Then we obtain

〈Xr, N0〉 ≤ |Xr| cos
(π

2
− β
)

= |Xr| sinβ = |Xϕ| sinβ

and, because of ds = |Xϕ| dϕ and of the monotonicity of the mapping X :
C → Γ , we infer from (6) the following variant of (7):

λL(Σ) ≤
∫ l

0

sinβ(s) ds.

This yields the following sharpened version of (2):

(8) L(Σ) ≤ 1
λ

∫
Γ

sinβ(s) ds.

Remark 3. The estimate (2) is optimal in the sense that the number λ−1

cannot be replaced by a smaller constant. In order to see this, we consider for
0 < γ < π

2 the surface

S := {(x, y, z) : y = (tan γ)(x+ 1) for x ≤ 0, y = (tan γ)(1− x) for x ≥ 0}

and the arc
Γ := {(x, 0, 0) : |x| ≤ 1}

(cf. Fig. 1). Let
N0 := (0, 1, 0),

and consider the minimal surface

X(w) := (Re τ(w), Im τ(w), 0),
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Fig. 1. Remark 3: The estimate (2) is sharp

where τ(ω) denotes the conformal mapping of B onto the triangle Δ ⊂ C

with the vertices −1, 1, i tan γ keeping ±1 fixed and mapping i onto 0. Here
we have

〈N0, NS(P )〉 = cos γ > 0

and
L(Σ) =

1
cos γ

L(Γ ),

which shows that the estimate (2) is sharp. However the support surface S
of our example does not quite match with the assumptions of Proposition 1
as it is only a Lipschitz surface. By smoothing the surface S at the edge
E := {(0, tan γ, z)}, we can construct a sequence of support surfaces Sn ∈ C∞

and a sequence of minimal surfaces Xn ∈ C(Γ, Sn) whose free traces Σn are
estimated by

L(Σn) ≤ λ−1
n L(Γ )

with numbers λn tending to λ := cos γ. As we have

inf
P ∈Sn

〈N0, NSn(P )〉 = cos γ

for all n = 1, 2, . . . if we construct Sn from S by smoothing around the edge
E, it follows that (2) is also sharp in the class of C∞-support surfaces.

Remark 4. The λ-graph condition (i) in Proposition 1 is crucial. By way of
example we shall, in fact, show that one cannot bound the length L(Σ) of the
free trace Σ in terms of L(Γ ) and S alone if the λ-graph condition is dropped.

To this end we construct a regular support surface S of class C∞ which is
perpendicularly intersected by the planes

Πn := {(x, y, z) : x = n} , n = 1, 2, . . . .
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We can arrange matters in such a way that the Gauss image of S is contained
in the northern hemisphere S2 ∩ {z ≥ 0} of S2 and that every intersection
curve S ∩Πn consists of an semi-ellipse

En :=
{
(x, y, z) : x = n, y2 + n−2z2 = 1, z ≥ 0

}

and of two rays {(n,±1, z) : z ≤ 0}; cf. Fig. 2. Moreover, we choose Γn as
straight segments in Πn connecting the endpoints of En,

Γn := {(n, y, 0) : |y| ≤ 1} .

Fig. 2. A supporting surface S, Jordan curves Γn of length 2 with endpoints on S, and

a sequence of stationary minimal surfaces for these boundary configurations whose surface

areas and the lengths of whose free boundaries are unbounded, cf. Remark 4

Finally we choose conformal maps τn(w) = yn(w)+ izn(w) of B onto the solid
semi-ellipse E∗

n in the y, z-plane, given by

E∗
n :=

{
(y, z) : y2 + n−2z2 < 1, z > 0

}
,

which map C onto Γn. Then the minimal surfaces

Xn(w) := (n,Re τn(w), Im τn(w))

are stationary in C(Γn, S). Their areas A(Xn) and the lengths L(Σn) of their
free traces tend to infinity as n→∞ whereas L(Γn) is always equal to 2.

Note that the support surface S of our example satisfies a λ-graph condi-
tion with the forbidden value λ = 0 if we choose N0 as (0, 0, 1), but it does
not fulfil a λ-graph condition for any λ > 0, no matter what we choose N0 to
be.
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By a slight change of the previous reasoning, the reader may construct
a similar example of a support surface S with only one Jordan arc Γ such
that 〈Γ, S〉 bounds infinitely many stationary minimal surfaces Xn ∈ C(Γ, S),
n ∈ N, having the property that A(Xn) →∞ and L(Σn) →∞ as n→∞.

Remark 5. We can use Proposition 1 to derive a priori estimates for the
derivatives of X up to the free boundary I. The key step is the following:
Suppose that the assumptions of Proposition 1 are satisfied. Let w0 be some
point on I, d := 1− |w0|, and let r, θ be polar coordinates around w0, that is,
w = w0 + reiθ. Set Sr(w0) := B ∩Br(w0) and

ϕ(r) :=
∫

Sr(w0)

|∇X|2 du dv = 2
∫ r

0

∫ π

0

|Xθ|2ρ−1 dρ dθ.

Then we have
ϕ′(r) = 2r−1

∫ π

0

|Xθ(r, θ)|2 dθ.

By an obvious modification of the proof of Proposition 1 we obtain

ϕ(r) ≤ 2λ1

{∫ π

0

|Xθ(r, θ)| dθ
}2

, λ1 :=
(1 + λ)2

4πλ2
,

and Schwarz’s inequality yields

ϕ(r) ≤ πλ1rϕ(r) for 0 < r < d

whence

(9) ϕ(r) ≤ ϕ(d)(r/d)2μ for 0 ≤ r ≤ d

with

μ :=
1

2πλ1
=

2λ2

(1 + λ)2
.

Because of

(10) ϕ(d) ≤ 2D(X) ≤ 2λ1L
2(Γ )

we arrive at the following result:
If the assumptions of Proposition 1 are satisfied, then, for any w0 ∈ Id :=

{w ∈ I : |w| < 1− d}, 0 < d < 1, we have

(11)
∫

Sr(w0)

|∇X|2dudv ≤ K(r/d)2μ for r ∈ [0, d],

where

(12) μ :=
2λ2

(1 + λ)2
, K :=

(1 + λ)2

2πλ2
L2(Γ ).
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By a reasoning used in the proofs of the Theorems 1 and 4 of Section 2.5 we
obtain:

There is a constant K∗ depending only on λ and L(Γ ) such that, for any
w0 ∈ B satisfying |w0| ≤ 1− d and any r ∈ [0, d], 0 < d < 1, we have

(13)
∫

Sr(w0)

|∇X|2 du dv ≤ K∗(r/d)2μ,

and Morrey’s Dirichlet growth theorem yields

(14) [X]μ,Zd
≤ c(μ) d−μ

√
K∗

(cf. Section 2.5, Theorem 1).

Remark 6. In consideration of Remark 4 and of the observation stated at
the beginning of Section 2.6 it cannot be expected that estimates of the type
(13) and (14) hold with some constant K∗ depending only on L(Γ ) and S if
we drop assumption (i) in Proposition 1. Nevertheless one could expect such
estimates to be true with numbers K∗ depending solely on L(Γ ), S and D(X).

This seems to be unknown in general except for the following particular
case which we want to formulate as

Proposition 2. Let X be a stationary minimal surface in C(Γ, S) which lies
in the exterior of an open, convex subset K of R

3 that is bounded by S. Suppose
also that S = ∂K is a regular surface of class C3, and suppose that the unit
normal NS of S pointing into the set K satisfies the following condition:

(iii) There exist two constants ρ > 0 and λ > 0 such that 〈NS(P ),
N2(Q)〉 ≥ λ is fulfilled for any two points P,Q ∈ S whose S-intrinsic dis-
tance is at most ρ.

Then there is a constant K∗ depending only on L(Γ ), S and D(X) such
that the inequalities (13) and (14) hold true.

Let us sketch the proof. We begin with the following

Lemma 1. Suppose that the assumptions of Proposition 2 are satisfied. Let
r, θ be polar coordinates about some points w0 ∈ I, defined by w = w0 + reiθ,
and set

ψ(r) :=
∫ π

0

|Xθ(r, θ)|2 dθ, 0 ≤ r ≤ 1− |w0|.

Then ψ(r) is a monotonically increasing function of r in [0, 1− |w0|].

Proof. By Proposition 1 of Section 2.8 it follows that X ∈ C2(B ∪ I,R3). Set
Ir(w0) := {w ∈ I : |w − w0| < r}. Then, by partial integration we obtain

rψ′(r) =
∫ π

0

∂

∂r
|Xθ(r, θ)|2r dθ(15)

=
∫

Sr(w0)

Δ|Xθ|2 du dv +
∫

Ir(w0)

∂

∂v
|Xθ|2 du.
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Let X∗ be the adjoint minimal surface to X. Then the mapping f : B → C
3

defined by f(w) = X(w) + iX∗(w) is holomorphic. Consequently also wf ′(w)
is holomorphic, and

|w|2|f ′(w)|2 = r2|∇X|2 = 2|Xθ|2

is subharmonic. Thus we arrive at

(16) Δ|Xθ|2 ≥ 0 on B.

Moreover, the conformality relations imply

|Xθ|2 = r2|Xu|2,

where r2 = |w − w0| = (u− u0)2 + v2 for w0 = u0 ∈ I, and therefore

∂

∂v
|Xθ|2 = 2v|Xu|2 + 2r2〈Xu, Xuv〉.

Thus we obtain
∂

∂v
|Xθ|2 = 2(u− u0)2〈Xu, Xuv〉 on I.

Differentiating 〈Xu, Xv = 0〉 with respect to u it follows that

〈Xu, Xuv〉 = −〈Xuu, Xv〉 on B ∪ I,

and consequently

∂

∂v
|Xθ|2 = −2(u− u0)2〈Xuu, Xv〉 on I.

Note that Xv points in the direction of the exterior normal of K whereas Xuu

points into the interior of K since X : I → R
3 maps I into the boundary S of

the open convex set K. Thus we have

〈Xuu, Xv〉 ≤ 0 on I

and therefore

(17)
∂

∂v
|Xθ|2 ≥ 0 on I.

On account of (15)–(17) we infer that ψ′(r) ≥ 0. �
In the same way, the following result can be established, we leave its proof

to the reader.

Lemma 2. Suppose that the assumptions of Proposition 2 are satisfied, and
let w = w0+reiθ for some point w0 ∈ I. Then, for any p ∈ [1,∞), the function

ψp(r) :=
∫ π

0

|Xθ(r, θ)|p dθ

is a monotonically increasing function of r ∈ [0, 1− |w0|].
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Now we turn to the

Proof of Proposition 2. Fix some d ∈ (0, 1), and let w0 be an arbitrary point
on I with |w0| < 1− d. By X(r, θ) we denote the representation of X in polar
coordinates r, θ about w0 (i.e. w = w0 + reiθ). Set

χ(r) :=
√
π

λ

{∫ π

0

|Xθ(r, θ)|2 dθ
}1/2

,

χ∗(r) :=
{

2πD(X)
λ2 log 1/r

}1/2

.

By the reasoning of the Courant–Lebesgue lemma (see Section 4.4) we infer
that, for any r ∈ (0, d2), there exists some r′ ∈ (r,

√
r) such that χ(r′) ≤ χ∗(r)

holds true. On account of Lemma 1, the function χ is increasing whence

(18) χ(r) ≤ χ∗(r) for all r ∈ (0, d2).

Since χ∗ is strictly increasing, we have

(19) χ∗(r) < ρ if and only if r < λ2,

where the number λ2 is defined by

λ2 := exp
(
−2πD(X)

λ2ρ2

)
.

Let us now introduce the increasing function

l(r) :=
∫

Ir(w0)

|dX|,

and set
I(w0) :=

{
r ∈ (0, d2) : l(r) < ρ

}
.

Clearly, I(w0) is an open and non-empty interval contained in (0, d2), and
therefore

m := sup I(w0)

is a positive number which is not contained in I(w0). Set

δ := min{d2, λ2}.

We claim that the interval (0, δ) is contained in I(w0), independently of the
choice of w0. Otherwise we had m < δ, whence

m < d2 and m < λ2,

and therefore also
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(20) χ∗(m) < ρ,

on account of (19). For any r ∈ (0,m) we have r ∈ I(w0), and therefore
l(r) < ρ. Applying assumption (iii), we infer as in Proposition 1 that

(21) l(r) ≤ λ−1

∫ π

0

|Xθ(r, θ)| dθ

and Schwarz’s inequality yields

(22) l(r) ≤ χ(r) for all r ∈ (0,m).

From (18)–(21) we infer that

l(r) ≤ χ(r) ≤ χ∗(r) < χ∗(m) < ρ for all r ∈ (0,m)

whence, by r → m− 0, we deduce that

l(m) < ρ.

This implies m ∈ I(w0) which is impossible. Thus we have proved:
The interval (0, δ) lies in I(w0), for any w ∈ I with |w0| < 1− d.
Thus we obtain (21) for all r ∈ (0, δ), and the isoperimetric inequality

yields

(23)
∫

Sr(w0)

|∇X|2du dv ≤ 2λ1

{∫ π

0

|Xθ(r, θ)| dθ
}2

with λ1 = (1+λ)2/(4πλ2), for all r ∈ (0, δ) and for all w0 ∈ I with |w0| < 1−d.
Now we can proceed as in Remark 5 in order to prove the assertion of

Proposition 2.

Theorem 1. Let S be an admissible1 surface of class C3, and assume that X
is a critical point of Dirichlet’s integral which has the following properties:

(i) The free trace X(I) is contained in an open, orientable part S0 of S
that fulfils a λ-graph condition, λ > 0.

(ii) There exist no branch points of X on I which are of odd order.
Then the length L(Σ) =

∫
I
|dX| of the free trace Σ given by X : I → R

3

is estimated by (2):
L(Σ) ≤ λ−1L(Γ ),

and the area A(X) of X is estimated by (3):

A(X) ≤ λ1L
2(Γ ), λ1 :=

(1 + λ)2

4πλ2
.

1 The condition of “admissibility” is essentially a uniformity condition at infinity which is

formulated in Section 2.6.
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Proof. By Theorem 4 of Section 2.7, the surface X is a stationary minimal
surface in C(Γ, S) which is of class C1(B ∪ I,R3). Then the assertion follows
from Proposition 1 and from Remark 1. �

Note that the λ-graph condition imposes no bounds on the principal cur-
vature of S0. Thus S0 was allowed to have arbitrarily sharp wrinkles.

The following assumption is in a sense complementary to the λ-graph
condition; it implies a bound on the principal curvatures of S but does not
restrict the position of the Gauss image NS of S.

Definition 2. We say that a surface S in R
3 satisfies a (two-sided) R-sphere

condition, if S is a C2-submanifold of R
3 which is the boundary of an open

set U of R
3, and if for every P ∈ S the tangent balls

(24) B±(P,R) :=
{
Q ∈ R

3 : |P ±RNS(P )−Q| < R
}

do not contain any points of S. Here NS denotes the exterior unit normal of
S with respect to U (see Fig. 3).

Fig. 3. The R-sphere condition

Theorem 2. Let S be a support surface satisfying an R-sphere condition, and
let Γ be a rectifiable Jordan arc with its endpoints on S. Let X be a stationary
minimal surface in C(Γ, S) with the free trace Σ given by X : I → R

3. Then
the length L(Σ) of Σ can be estimated by

(25) L(Σ) ≤ L(Γ ) +
2
R
D(X).

This estimate is optimal in the sense that 2 cannot be replaced by any smaller
number.
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For the proof we need the following

Lemma 3. Suppose that the surface S satisfies an R-sphere condition. Then
its principal curvatures are bounded from above by 1/R. Moreover, any point
P in the tubular neighbourhood

(26) TR :=
{
Q ∈ R

3 : dist(Q,S) < R
}

has a unique representation of the form

(27) P = F (P ) + ρ(P )NS(F (P )),

where F (P ) ∈ S is the unique foot of P on S, ρ(P ) is the oriented distance
from S to P , and NS(Q) denotes the exterior normal to S at Q ∈ S (i.e.,
ρ(P ) < 0 if P ∈ U , and ρ(P ) ≥ 0 if P ∈ R

3 − U). The distance function
ρ is of class C2 (and of class Cm or Cm,α if S ∈ Cm or Cm,α respectively,
m ≥ 2, 0 < α < 1), and we have

(28) Dρ(P ) = NS(F (P )) for all P ∈ TR.

Finally the eigenvalues of the Hessian matrix H(P ) = D2ρ(P ) = (ρxixk(P ))
at any P ∈ TR are bounded from above by [R − |ρ(P )|]−1, and the Hessian
annihilates normal vectors, i.e.,

(29) H(P )NS(F (P )) = 0 for all P ∈ TR.

(Here D denotes the three-dimensional gradient in R
3.)

Proof. The representation formula (27) in the tubular neighbourhood TR is
fairly obvious. The other results follow from (27) by means of the implicit
function theorem using the fact that the principal curvature of S at P are
precisely the eigenvalues of the Hessian of a nonparametric representation of
S close to P whose x, y-plane is parallel to the tangent plane of S at P . We
omit the details and refer the reader to Gilbarg and Trudinger [1], Appendix
(pp. 383–384), for the pertinent estimates.

Proof of Theorem 2 in the special case that X has no branch point of odd
order on I. For any δ > 0 we can choose a function ϕ(t), t ∈ R, of class
C∞

C ((−R,R)) having the following properties:

0 ≤ ϕ ≤ 1, ϕ(0) = 1, ϕ(t) = ϕ(−t),
ϕ(t) ≤ (1−R−1|t|)(1 + δ) for |t| ≤ R,(30)

|ϕ′(t)| ≤ R−1(1 + δ).

Then we define a C1-vector field Z on R
3 by

(31) Z(P ) =

{
ϕ(ρ(P ))NS(F (P )) for P ∈ TR,

0 otherwise.
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We clearly have

|Z(P )| ≤ 1 for all P ∈ R
3,

(32)
Z(Q) = NS(Q) for Q ∈ S,

and we claim that also

(33) |∇Z(P ) ≤ R−1(1 + δ) for all P ∈ R
3

holds true. As ∇Z vanishes in the exterior of TR, we have to prove (33) only
for P ∈ TR. Thus we fix some P ∈ TR and some unit vector ν ∈ R

3. Then the
directional derivative ∂Z

∂ν (P ) is given by

∂Z

∂ν
(P ) = ϕ′(ρ(P ))

∂ρ

∂ν
(P )NS(F (P )) + ϕ(ρ(P ))

∂

∂ν
NS(F (P )).

If ν = ±NS(F (P )), then

∂Z

∂ν
(P ) = ϕ′(ρ(P ))

∂ρ

∂ν
(P )NS(F (P )),

and by (28) and (303) it follows that

(34)
∣∣∣∣∂Z∂ν (P )

∣∣∣∣ ≤ 1 + δ

R
.

If ν is orthogonal to NS(F (P )), then ∂ρ
∂ν (P ) = 0, and Lemma 3 yields

∂

∂ν
NS(F (P )) =

∂

∂ν
∇ρ(P ) = ∇2ρ(P )ν

and
|∇2ρ(P )ν| ≤ |∇2ρ(P )||ν| ≤ (R− |ρ(P )|)−1.

In conjunction with (302) it follows that
∣∣∣∣∂Z∂ν (P )

∣∣∣∣ ≤ (1−R−1|ρ(P )|)(1 + δ)(R− |ρ(P )|)−1 =
1 + δ

R

and thus (34) holds true if ν ⊥ NS(F (P )). Hence (34) is satisfied for all unit
vectors ν, and we have established property (33).

By means of the vector field Z on R
3 we define a surface Y (w), w ∈ B, of

class L∞ ∩H1
2 (B,R3), setting Y (w) = Z(X(w)).

Given any ε ∈ (0, 1), we can find two numbers ε1, ε2 ∈ (ε2, ε) such that

(35)
∫

γ1(ε)

|dX|+
∫

γ2(ε)

|dX| ≤ 2
{
πD(X)
log(1/ε)

}1/2

,

where γ1(ε) and γ2(ε) denote the circular arcs
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γ1(ε) := {w ∈ B : |w − 1| = ε1, Imw > 0} ,

γ2(ε) := {w ∈ B : |w + 1| = ε2, Imw > 0} ;

see Section 4.4 of Vol. 1.
Now we apply Green’s formula to the functions X,Y and to the domain

Ω(ε) which is obtained from the semidisk B by removing the parts which are
contained in the disks Bε1(1) or Bε2(−1), respectively:

Ω(ε) := B \ [Bε1(1) ∪Bε2(−1)].

Thus we obtain

(36)
∫

Ω(ε)

〈∇X,∇Y 〉 du dv = −
∫

Ω(ε)

〈ΔX,Y 〉 du dv +
∫

∂Ω(ε)

〈
∂X

∂v
, Y

〉
dH1,

where ν denotes the exterior normal on ∂Ω(ε). Set

I(ε) := I ∩ ∂Ω(ε) and C(ε) := C ∩ ∂Ω(ε).

Then
∂Ω(ε) = I(ε) ∪ C(ε) ∪ γ1(ε) ∪ γ2(ε).

On the interval I(ε), we have dH1 = du, ∂X
∂ν = −Xv, Y = NS(X), and

Xv = ±|Xv|NS(X). As there exist no branch points of odd order on I, the
vector Xv always points in the direction of NS(X) or in the direction of
−NS(X). Thus we can assume that

Xv = |Xv|Ns(X) on I(ε),

and we arrive at
〈
∂X

∂ν
, Y

〉
= −|Xv| = −|Xu| on I(ε).

This implies

(37)
∫

I(ε)

〈
∂X

∂ν
, Y

〉
dH1 =

∫
I(ε)

|dX|.

Let ∂
∂τX be the tangential derivative of X along ∂Ω(ε). The conformality

relations yield ∣∣∣∣∂X∂ν
∣∣∣∣ =
∣∣∣∣∂X∂τ

∣∣∣∣
and therefore

∣∣∣∣
〈
∂X

∂ν
, Y

〉∣∣∣∣ ≤
∣∣∣∣∂X∂ν

∣∣∣∣ |Y | ≤
∣∣∣∣∂X∂τ

∣∣∣∣ along ∂Ω(ε).
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Consequently, we have
∣∣∣∣∣
∫

C(ε)+γ1(ε)+γ2(ε)

〈
∂X

∂ν
, Y

〉
dH1

∣∣∣∣∣(38)

≤
∫

C(ε)

|dX|+
∫

γ1(ε)

|dX|+
∫

γ2(ε)

|dX| ≤ L(Γ ) + f(ε),

where the remainder term f(ε) tends to zero as ε→ +0, by virtue of (35).
Finally we infer from Y = Z ◦X and from (33) that

|∇Y | ≤ 1 + δ

R
|∇X|

whence
∣∣∣∣∣
∫

Ω(ε)

〈∇X,∇Y 〉 du dv

∣∣∣∣∣ ≤
1 + δ

R

∫
Ω(ε)

|∇X|2 du dv .(39)

Because of ΔX = 0 we infer from (36) in conjunction with (37)–(39) that

(40)
∫

I(ε)

|dX| ≤ L(Γ ) +
1 + δ

R

∫
Ω(ε)

|∇X|2 du dv + f(ε).

Letting ε→ +0, it follows that

L(Σ) ≤ L(Γ ) +
1 + δ

R

∫
B

|∇X|2 du dv .

Since we can choose δ > 0 as small as we please, we arrive at the desired in
equality

L(Σ) ≤ L(Γ ) + 2R−1D(X).

In order to show that the estimate (25) is optimal we consider the following
examples. Let S be the circular cylinder of radius R given by

S :=
{
(x, y, z) : x2 + y2 = R2

}
,

and let Γ be the straight arc

Γ :=
{
(x, y, z) : x = a, y2 ≤ R2 − a2, z = 0

}
,

where a denotes some number with 0 < a < R. Then it is easy to define
a planar minimal surface X : B → R

3 which is stationary in C(Γ, S) and
maps B conformally onto the planar domain Ω = {(x, y, z) : z = 0, x2 + y2 <
R2, x < a}.

If a tends to R then L(Σ) converges to 2πR and cR−1D(X) to cπR whereas
L(Γ ) shrinks to zero. This shows that c = 2 is the optimal value in the estimate
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L(Σ) ≤ L(Γ ) + cR−1D(X),

and the proof of Theorem 2 is complete in the special case that there are no
branch points of odd order on I. �

The proof of Theorem 2 in the general case will be based on the relation

(41) |Xv| = |Dvρ(X)| along I.

This follows by differentiating the relation

X = F (X) + ρ(X)NS(F (X)) on B ∪ I

which holds on B ∪ I close to I (cf. (27)). Hence we can express the length of
the free trace Σ as

(42) L(Σ) =
∫

I

|Dvρ(X)| du.

If X(B) were contained in the tubular neighbourhood TR of S, we could write
∫

I

Dvρ(X) du = −
∫

B

Δρ(X) du dv +
∫

C

∂

∂ν
ρ(x) dH1.

If Dvρ(X) has a uniform sign on I, we could use this identity to derive an
estimate for L(Σ). However, since both facts are not guaranteed, we shall
instead construct some function η(w) of which we can prove that

(43) η ≥ |Dνρ(X)| on I

holds true. Then we can estimate L(Σ) from above by the integral
∫

I
ηv du

which is transformed into

−
∫

B

Δη du dv +
∫

C

∂

∂ν
η dH1,

and this integral will be estimated in terms of X.
In order to define η we first introduce

Ψ(t) :=
∫ t

0

ϕ(s) ds,

where ϕ is a function of class C∞
c ((−R,R)) satisfying (30). Then Ψ satisfies

Ψ(t) = Ψ(R) for t ≥ R, Ψ(t) = −Ψ(R) for t ≥ −R,
Ψ(0) = 0, Ψ ′(0) = 1, 0 ≤ Ψ ′ ≤ 1,

(44)
Ψ(t) ≤ (1−R−1|t|)(1 + δ) for |t| ≤ R,

|Ψ ′ ′(t)| ≤ R−1(1 + δ).
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Secondly we define
ζ(P ) := Ψ2(ρ(P )) if P ∈ R

3,

α(w) := δv, w = u+ iv.

Then η(w) will be defined as

η(w) :=
{
α2(w) + ζ(X(w))

}1/2
for w ∈ B.

The function η is of class C2(B) ∩ C1(B ∪ I), and its boundary values on C
are absolutely continuous. Moreover, we have

∇η =
{
α2 + ζ(X)

}1/2
[
α∇α+

1
2
∇ζ(X)

]

whence it follows that

ηv =
{
α2 + ζ(X)

}−1/2
[δα+ Ψ ′(ρ(X))Ψ(ρ(X))Dvρ(X)] .

Here and in the sequel we use the notation ∇ζ(X) for ∇(ζ ◦X), Dvρ(X) for
Dv(ρ ◦X), etc.

Set w = u0+iv, v > 0, and let v → +0. Then Ψ(ρ(X)) → 0, Ψ ′(ρ(X)) → 1,
and l’Hospital’s rule yields

Ψ(ρ(X(u0 + iv)))
v

→ Dvρ(X)
∣∣∣∣
w=w0

.

Hence ηv tends to

δ2 + |Dvρ(X)|2

{δ2 + |Dvρ(X)|2}1/2
=
{
δ2 + |Dvρ(X)|2

}1/2 ≥ |Dvρ(X)|

whence we have established (43).
Next we want to estimate −Δη from above. We have

∇ζ(X) = 2Ψ ′(ρ(X))Ψ(ρ(X))∇ρ(X),
Δζ(X) = 2γ′(ρ(X))|∇ρ(X)|2 + 2γ(ρ(X))Δρ(X),

where we have set
γ := ΨΨ ′,

and

−Δη =
{
α2 + ζ(X)

}−3/2
∣∣∣∣α∇α+

1
2
∇ζ(X)

∣∣∣∣
2

−
{
α2 + ζ(X)

}−1/2
[
|∇α|2 +

1
2
Δζ(X)

]
.

This implies (with ζ = ζ(X), ρ = ρ(X), γ = γ(ρ(X)), etc.) that
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−Δη =
{
α2 + ζ

}−3/2 |α∇α+ γ∇ρ|2

−
{
α2 + ζ

}−1/2
(|∇α|2 + Ψ ′2|∇ρ|2 + ΨΨ ′ ′|∇ρ|2 + γΔρ)

= −
{
α2 + ζ

}−3/2 |αΨ ′∇ρ− Ψ∇α|2

−
{
α2 + ζ

}−1/2
(ΨΨ ′ ′|∇ρ|2 + γΔρ)

≤ −
{
α2 + ζ

}−1/2
Ψ(Ψ ′ ′|∇ρ|2 + Ψ ′Δρ)

≤
{
α2 + Ψ2

}−1/2
Ψ(|Ψ ′ ′||∇ρ|2 + |Ψ ′||Δρ|)

≤ |Ψ ′ ′||∇ρ|2 + |Ψ ′||Δρ|.

Thus we have

(45) −Δη ≤ |Ψ ′ ′(ρ(X))||∇ρ(X)|2 + |Ψ ′(ρ(X))||Δρ(X)|.

We can restrict our attention to the set

B′ := {w ∈ B : ρ(X(w)) < R}

since Ψ ′(ρ(X)) and Ψ ′ ′(ρ(X)) vanish in B \B′ whence also Δη = 0 in B \B′.
In B′ we have

(46) |Ψ ′ ′(ρ(X))||∇ρ(X)|2 ≤ 1 + δ

R
|∇ρ(X)|2

and

(47) |Ψ ′(ρ(X))| ≤ (1 + δ)(1−R−1|ρ(X)|),

taking (44) into account.
Furthermore we have

(48) Δρ(X) = XuH(X)Xu +XvH(X)Xv

with H(X) = (ρxixk(X)) = Hessian matrix of ρ composed with X. By means
of Lemma 3 we infer that

(49) |XuH(X)Xu +XvH(X)Xv| ≤ (R− |ρ(X)|)−1
{
|∇X|2 − |∇ρ(X)|2

}

since |Xu|2−Duρ(X)|2 is the square of the norm of the tangential component
of Xu, and an analogous statement holds for |Xv|2 − Dvρ(X)|2. Combining
(47), (48) and (49), we arrive at

(50) |Ψ ′(ρ(X))||Δρ(X)| ≤ 1 + δ

R
[|∇X|2 − |∇ρ(X)|2].

Then (45), (46) and (50) yield

(51) −Δη ≤ 1 + δ

R
|∇X|2
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on B′, and therefore also on B.
Moreover, a straight-forward estimation yields

∣∣∣∣∂η∂ν
∣∣∣∣ ≤
{∣∣∣∣∂α∂ν

∣∣∣∣
2

+
∣∣∣∣ ∂∂ν Ψ(X)

∣∣∣∣
2
}1/2

≤
√
δ2 + |Xr|2 =

√
δ2 + |Xθ|2 on C

and therefore

(52)
∣∣∣∣∂η∂ν
∣∣∣∣ ≤ δ + |Xθ| on C.

Now choose Ω(ε) as in the proof of the special case as

Ω(ε) = B \ [Bε1(1) ∪Bε2(−1)]

with
∂Ω(ε) = I(ε) ∪ C(ε) ∪ γ1(ε) ∪ γ2(ε).

Then we obtain

(53)
∫

I(ε)

Dvη du = −
∫

Ω(ε)

Δη du dv +
∫

C(ε)+γ1(ε)+γ2(ε)

∂

∂ν
η dH1.

By (41) and (43) it follows that
∫

I(ε)

|dX| =
∫

I(ε)

|Xu| du =
∫

I(ε)

|Xv| dv(54)

=
∫

I(ε)

|Dvρ(X)| du ≤
∫

I(ε)

Dvη du,

taking |Xu| = |Xv| into account. Thus, by virtue of (51)–(54), we obtain that
∫

I(ε)

|dX| ≤
∫

Ω(ε)

(Δη) du dv +
∫

C(ε)+γ1(ε)+γ2(ε)

∣∣∣∣∂η∂ν
∣∣∣∣ dH1

≤ 1 + δ

R

∫
Ω(ε)

|∇X|2 du dv +
∫

C(ε)

{δ + |Xθ|} dH1

+
∫

γ1(ε)+γ2(ε)

∂η

∂ν
dH1.

Letting first δ and then ε tend to zero, we arrive at
∫

I

|dX| ≤ 1
R

∫
R

|∇X|2 du dv +
∫

C

|dX|,

where the integral over γ1(ε) is dealt with in the same way as in the previous
proof for the special case. �
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Remark 7. There is no estimate of the form

L(Σ) ≤ c1L(Γ ) + c2H0D(X)

or of the form
L(Σ) ≤ c1L(Γ ) + c2K0D(X)

with absolute constants c1 and c2, where H0 and K0 denote upper bounds for
|H| and |K|1/2, respectively, H and K being the mean curvature and Gauss
curvature of S. In fact, the second inequality is ruled out by the cylinder
example discussed before, and the first is disproved by a similar example
where one replaces the cylinder surface by a suitable catenoid as supporting
surface S (see Fig. 4). In other words, it is quite natural that in (25) an upper
bound for the two principal curvatures κ1 and κ2 of S enters and not an upper
bound for the mean curvature H or for the Gauss curvature K.

Fig. 4. The examples of Remark 7

Remark 8. Suppose that not all of Γ lies in S. Then, by choosing ϕ(t) in
such a way that ϕ(t) < 1 for all t �= 0, a close inspection of the proof of
Theorem 2 shows that we have in fact the strict inequality

(55) L(Σ) < L(Γ ) +
2
R
D(X)

instead of (25).

Remark 9. In addition to the assumptions of Theorem 2 we now assume that
X(B) is contained in a ball KR0(P ) = {Q : |P − Q| ≤ R0} of R

3. Then the
linear isoperimetric inequality of Section 6.3 implies that

D(X) ≤ R0

2
{L(Γ ) + L(Σ)} .
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If R > R0, we infer in conjunction with (25)

(56) L(Σ) ≤ R+R0

R−R0
L(Γ ).

This is an analogue to the inequality (2) in Proposition 1. From the example
S = ∂KR0(P ) we infer that L(Σ) can in general not be bounded from above
by L(Γ ). In this case the inequality (56) fails since we have R = R0.

Remark 10. An estimate similar to (25) can be given for stationary minimal
surfaces with completely free boundaries. In fact, suppose that X : B → R3 is
a stationary minimal surface in C(S) and assume that S satisfies an R-sphere
condition. Then it follows that the free trace Σ of X satisfies

(57) L(Σ) ≤ 2R−1D(X).

Note that we cannot prove strict inequality as equality holds for the cylinder

S =
{
(x, y, z) : x2 + y2 = 1

}
,

where R = 1 and for

X(w) = (Re(wn), Im(wn), 0), w = u+ iv, n ∈ N.

Let us conclude this section by a brief discussion of surfaces X : B → R
3,

parametrized over the unit disk which are the class H1
2 ∩C2(B,R3) and satisfy

both
ΔX = 2HXu ∧Xv

and
|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0.

That is, the surface X has constant mean curvature H at all points w where
∇X(w) �= 0. We shall in the following assume that X(w) �≡ const. Then
branch points w0 of X are isolated, and Xw(w) possesses an asymptotic ex-
pansion

Xw(w) = A(w − w0)m + o(|w − w0|m) as w → w0,

A ∈ C
3, A �= 0, 〈A,A〉 = 0, m ∈ N,

which is completely analogous to asymptotic expansions of minimal surfaces
at branch points w0 derived in Vol. 1, Section 3.2 (see Section 3.1).

Moreover we assume that X is of class C(S) where the support surface S
satisfies an R-sphere condition (cf. Definition 2), and that S = ∂U where U
is an open (nonempty) set in R

3.
Finally we suppose that X is of class C1(B,R3) and intersects S perpen-

dicularly along its free trace Σ given by X : ∂B → R
3.
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We shall call such surfaces stationary H-surfaces in C(S). Then, by the
same computations as in the proof of Theorem 2, we obtain the following
analogue of (57) for “stationary H-surfaces in the class C(S)”:

(58) L(Σ) ≤ 2(|H|) +R−1)D(X).

Whenever X satisfies an isoperimetric inequality of the kind

(59) D(X) ≤ cL2(Σ),

it follows that
L(Σ) ≤ 2(|H|+R−1)cL2(Σ)

whence

(60) L(Σ) ≥ 1
2c(|H|+R−1)

.

In particular, for stationary minimal surfaces in C(S) we have H = 0 and
c = 1

4π , whence

(61) L(Σ) ≥ 2πR.

This is a remarkable lower bound for the length of the free trace of a stationary
minimal surface in C(S).

One encounters stationary H-surfaces as solutions of the so-called partition
problem. Given an open set U in R

3 of finite volume V and with S = ∂U , this
is the following task:

Among all surfaces Z of prescribed topological type which are contained in
U , have their boundaries on S, and divide U in two disconnected parts U1 and
U2 of prescribed ratio of volumes, one is to find a surface X which assigns
a minimal value or at least a stationary value to its surface area (Dirichlet
integral).

One can show2 that any solution X : B → R
3 of the partition problem is a

surface of constant mean curvature H which is regular up to its free boundary
and intersects S = ∂U perpendicularly along Σ = X|∂B. That is, any solution
of the partition problem for U is a stationary H-surface in C(S), S := ∂U .

If U is a closed convex body K whose boundary S = ∂K satisfies an R-
sphere condition, and if R∗ is the inradius of K (i.e., the radius of the largest
ball contained in K), then one can also prove the following lower bound for
the length L(Σ) of the free trace Σ of any stationary H-surface X : B → R

3

in C(S) that is parametrized on the unit disk and satisfies X(B) ⊂ K:

(62) L(Σ) ≥ 2πR∗
1 + (diam K−R∗)|H| .

For H = 0 this reduces to

(63) L(Σ) ≥ 2πR∗.

As we have R∗ ≥ R, this inequality is an improvement of (61).
2 Cf. Grüter-Hildebrandt-Nitsche [2].
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Fig. 5. The inradius R∗, and the smallest curvature radius R

Proof of estimate (62). Set L := L(Σ), and define the parameter of the arc
length of Σ by

s(θ) :=
∫ θ

0

|Xθ(eiθ)| dθ =
∫ θ

0

|Xr(eiθ)| dθ

(r, θ = polar coordinates about the origin w = 0).
Let θ(s) be the inverse function, 0 ≤ s ≤ L, and introduce the representa-

tion
Z(s) := X(eiθ(s)), 0 ≤ s ≤ L,

of Σ with respect to the parameter s. Moreover let NS(P ) be the exterior unit
normal of S at the point P ∈ S. As the H-surface X meets S perpendicularly
along Σ, we have

Xr(eiθ) = |Xr(eiθ)|NS(X(eiθ))

and therefore

(64)
∫

∂B

Xr dθ =
∫

Σ

NS(Z) ds :=
∫ L

0

NS(Z(s)) ds.

Secondly, a partial integration yields

(65) 2
∫

B

Xu ∧Xv du dv =
∫

∂B

X ∧ dX =
∫

Σ

Z ∧ dZ,

and another partial integration implies
∫

∂B

Xr dθ =
∫

B

ΔX du dv .

On account of ΔX = 2HXu ∧Xv we thus obtain

(66)
∫

∂B

Xr dθ = 2H
∫

B

Xu ∧Xv du dv .

Now we infer from (64)–(66) that
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(67)
∫

Σ

{NS(Z) ds−HZ ∧ dZ} = 0.

Set

Z := −
∫ L

0

Z(s) ds.

Then Wirtinger’s inequality (Section 6.3, Lemma 2) yields

(68)
∫ L

0

|Z − Z|2 ds ≤ L3

4π2
.

Let us now introduce the support function σ(P ) of the convex surface S by

σ(P ) := 〈P,NS(P )〉 ,

where we have identified P with the radius vector
−−→
OP from the origin 0 to

the point P . We can assume that 0 is the center of the in-ball BR∗ (0) of K.
Then we obtain

σ(P ) ≥ R∗ for all P ∈ S.
Consequently we have

R∗L−
∫ L

0

〈
Z,NS(Z)

〉
ds ≤

∫ L

0

〈Z,NS(Z)〉 ds−
∫ L

0

〈
Z,NS(Z)

〉
ds

=
∫ L

0

〈
Z − Z,NS(Z)

〉
ds

≤ L1/2

{∫ L

0

|Z − Z|2 ds
}1/2

≤ L2

2π
,

taking also (68) into account.

Fig. 6. Concerning the proof of formula (62)

In conjunction with (67) we arrive at
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R∗L =

{
R∗L−

∫ L

0

〈
Z,NS(Z)

〉
ds

}
+
∫ L

0

〈
Z,NS(Z)

〉
ds

≤ L2

2π
+H

∫ L

0

[Z,Z, Z ′] ds.

Here [A1, A2, A3] denotes the volume form 〈A1, A2 ∧A3〉 = det(A1, A2, A3) of
three vectors A1, A2, A3 of R

3. Because of the identity

[Z,Z, Z ′] = [Z,Z − Z,Z ′]

we arrive at

R∗L ≤ L2

2π
+H

∫ L

0

[Z,Z − Z,Z ′] ds

≤ L2

2π
+ |H|

∫ L

0

|Z||Z − Z||Z ′| ds

≤ L2

2π
+ |H||Z|

√
L

{∫ L

0

|Z − Z|2 ds
}1/2

≤ L2

2π
(1 + |HZ|).

Moreover, an elementary estimation yields

|Z| ≤ diamK−R∗,

and therefore
R∗L ≤

1
2π

{1 + (diam K−R∗)|H|}L2.

Now (62) is an obvious consequence of this inequality. �

Let us conclude this section with the remark that equality in (63) implies
that X is a disk.

4.7 Obstacle Problems and Existence Results for Surfaces
of Prescribed Mean Curvature

In this section we treat obstacle problems, that is, we look for surfaces of
minimal area (or minimal Dirichlet integral) which are spanning a prescribed
closed boundary curve Γ and avoid certain open sets (the “obstacles”). This
means that the competing surfaces of the variational problem are confined to
some closed set K which is a subset of R

3 or, more generally a subset of a
three dimensional manifold M . In Chapter 4 of Vol. 1 we have very thoroughly
described the minimization procedure which leads to a solution of Plateau’s
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problem for minimal surfaces. In addition we have outlined the extension of
this argument to a more general variational integral, see Theorem in No. 6 of
the Scholia to that chapter. Therefore we refrain from repeating the procedure
here and refer to Chapter 4 of Vol. 1 as well as to the pertinent literature cited
therein. Instead we focus on higher regularity results for obstacle problems.
Note that the optimal regularity which can be expected is C1,1-regularity of a
solution. Indeed, this can already be seen by considering a thread of minimal
length which is spanned between two fixed points and touches an (analytic)
obstacle in a whole interval.

In a first step we prove Hölder continuity of any solution, and later in
Theorem 6 we use a difference quotient technique to show H2

s,loc-regularity
for any solution of the variational problem. By standard Sobolev imbedding
results this implies the Hölder continuity of the first derivatives.

We also study the Plateau problem for surfaces of prescribed mean cur-
vature in Euclidean space R

3. Here one prescribes a real valued function H
on R

3 and asks for a surface X which is bounded by a given closed Jor-
dan curve Γ and has prescribed mean curvature H(X(u, v)) at a particular
point X(u, v). Clearly, if H ≡ 0, we recover the classical Plateau problem for
minimal surfaces. In this section we discuss some classical existence and also
non-existence results for the general Plateau problem described above.

Set

B = {w ∈ C : |w| < 1} and C := {w ∈ C : |w| = 1} = ∂B

and let Γ denote a closed Jordan curve in R
3 i.e. a topological image of C.

Let H : R
3 → R be a given function which is bounded and continuous.

Definition 1. Given a closed Jordan curve Γ in R
3 and a bounded continuous

function H : R
3 → R. We say that X : B → R

3 is a solution of Plateau’s
problem determined by Γ and H (in short: an “H-surface spanned by Γ”) if
it fulfills the following three conditions:

(i) X ∈ C0(B,R3) ∩ C2(B,R3).
(ii) X satisfies in B the equations

(1) %X = 2H(X(u, v))Xu ∧Xv

and

(2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0.

(iii) The restriction X|C of X to the boundary C of the parameter domain B
is a homeomorphism of C onto Γ .

It follows from Chapter 2.5 of Vol. 1 that every H-surface X spanned by
Γ has mean curvature H = H(X(u, v)) at each regular point (u, v) ∈ B.

Since, for H ≡ 0, each H-surface with boundary Γ provides a solution to
the classical Plateau problem for minimal surfaces, it is conceivable that a
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similar variational approach using a more general energy functional instead
of Dirichlet’s integral might be successful.

Before we define a suitable energy functional we remark at the outset that
Plateau’s problem can certainly not be solvable for arbitrary Γ and H, in
other words there are necessary conditions for existence.

To see this let us suppose that X ∈ C2(B,R3) is a solution of (ii) and (iii)
with H ≡ const.

Then, by integrating (ii) we obtain∫
B

%X dudv =
∫

B

div ∇X dudv = 2H
∫

B

(Xu ∧Xv) du dv

and Gauß’ and Green’s theorem yield∫
∂B

∇X · nds

= 2H
∫

B

⎡
⎣ yuzv − zuyv

−xuzv + xvzu

xuyv − xvyu

⎤
⎦ du dv

= H

∫
B

⎡
⎣ (yzv)u − (zuy)v

(zxv)u − (xuz)v

(xyv)u − (xyu)v

⎤
⎦ du dv +H

∫
B

⎡
⎣ (zyu)v − (zyv)u

(xzu)v − (xzv)u

(yxu)v − (yxv)u

⎤
⎦ du dv

= H

∫
∂B

⎡
⎣ yzu du+ yzv dv
xuz du+ zxv dv
xyu du+ xyv dv

⎤
⎦+H

∫
∂B

⎡
⎣ −zyu du− zyv dv
−xzu du− xzv dv
−yxu du− yxv dv

⎤
⎦ .

On the other hand we have

X ∧Xu =

⎛
⎝ yzu − zyu

−xzu + zxu

xyu − yxu

⎞
⎠ and X ∧Xv =

⎛
⎝ yzv − zyv

−xzv + zxv

xyv − yxv

⎞
⎠

and therefore∫
∂B

∂X

∂r
ds = H

∫
∂B

(X ∧Xu) du+H

∫
∂B

(X ∧Xv) dv

= H

∫
∂B

X ∧ dX.

In particular this implies the relation

|H|
∣∣∣∣
∫

∂B

X ∧ dX
∣∣∣∣ =
∣∣∣∣
∫

∂B

∂X

∂r
ds

∣∣∣∣
from which we conclude the necessary condition

|H|
∣∣∣∣
∫

∂B

X ∧ dX
∣∣∣∣ ≤
∫

∂B

∣∣∣∣∂X∂r
∣∣∣∣ ds =

∫
∂B

|Xθ(1, θ)| dθ = L(Γ )

= length of the curve Γ .

(Note that here we have used the conformality relation (ii).)
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Putting k(Γ ) := |
∫

∂B
X ∧dX| we obtain the following necessary condition

of Heinz [12] which we formulate as a nonexistence result.

Theorem 1. Suppose k(Γ ) > 0. Then there is no solution X ∈ C2(B,R3) of
Plateau’s problem determined by Γ and H ≡ const, if

|H| > L(Γ )
k(Γ )

.

This theorem also holds for solutions X ∈ C2(B,R3) ∩ C0(B,R3) as was
proved by Heinz [12] using an appropriate approximation procedure.

Example. Let Γ be a circle of radius R,

Γ = {(R cos θ,R sin θ, 0) ∈ R
3 : θ ∈ [0, 2π)}.

Then

k(Γ ) =
∣∣∣∣
∫

∂B

X ∧ dX
∣∣∣∣ =
∣∣∣∣
∫

∂B

X ∧Xθdθ

∣∣∣∣ =
∣∣∣∣
∫

∂B

R2

⎛
⎝ 0

0
1

⎞
⎠ dθ

∣∣∣∣ = 2πR2.

Hence there is no solution of Plateau’s problem for a circle of radius R and
constant mean curvature H if

|H| > 2πR
2πR2

=
1
R
.

Also, if Γ is “close to” a circle of radius R, we cannot expect the existence of
an H-surface bounded by Γ and constant H bigger than 1

R . We will see later
on in this section, that this conditions is sharp.

Recall now that every minimizer X of the Dirichlet integral within the
class C(Γ ) is harmonic in B.

Furthermore we have seen in Theorem 1 of Section 4.5 in Vol. 1 that the
conformality conditions (2) hold if the first inner variation ∂D(X,λ) vanishes
for all vector fields λ ∈ C1(B,R3) (which is the case for a minimizer of D(·)).
As a suitable energy functional to be considered one might therefore try an
integral F of the type

F(X) = D(X) + V (X)

consisting of the Dirichlet integral and a “volume” term

V (X) :=
∫

B

〈Q(X), Xu ∧Xv〉 du dv,

where Q = (Q1, Q2, Q3) denotes a C1-vector field defined on R
3 or a subset

K of R
3. Since V (·) is invariant with respect to all orientation preserving C1-

diffeomorphisms of B this term would not alter the conformality of minimizers.
Note also that V = V (X) equals the algebraic volume enclosed by the

surface X and the cone over the boundary Γ weighted by the factor div Q, as
follows easily by applying Gauß’s theorem.
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We observe that the Euler equation for the functional F is given by the
system

%X� = divQ(X)(Xu ∧Xv)�(3)

for ! = 1, 2, 3. (Compare Vol. 1, Section 4.5; here we have put gij = δij and
Γ k

ij = 0).
If in addition to the first outer variation also the first inner variation

∂F(X,λ) = ∂D(X,λ) vanishes for all C1-vector fields λ = (μ, ν), then it
follows that the conformality condition

(4) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

hold true (almost every where) in B.
Theorem 1 of Vol. 1, Section 2.6 now states that a solution X of (3) which

satisfies (4) has mean curvature

H(X) =
1
2
divQ(X)

at each regular point (u, v) ∈ B of X.
We are thus led to consider the “energy” functional

F(X) =
1
2

∫
B

|∇X|2 du dv +
∫

B

〈Q(X), Xu ∧Xv〉 du dv,

where the vector field Q is of class C1(R3,R3) or C1(K,R3),K ⊂ R
3, and has

to be determined such that

(5) divQ(x) = 2H(x)

for all x ∈ R
3 or K respectively.

In addition F(·) has to be coercive on the set of admissible functions, i.e.
there are positive numbers m0 ≤ m1 so that

(6) m0D(X) ≤ F(X) ≤ m1D(X)

holds for every admissible X.
The Lagrangian e ≡ e(x, p1, p2) of F is given by

e(x, p1, p2) =
1
2
(|p1|2 + |p2|2) + 〈Q(x), p1 ∧ p2〉,

where x ∈ R
3 or K and p1, p2 ∈ R

3.
Assuming that

(7) sup
K
|Q| = |Q|0,K < 1

we immediately conclude coerciveness of F(·) since we obtain from Schwarz’s
inequality
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1
2
(1− |Q|0,K)(|p1|2 + |p2|2) ≤ e(x, p1, p2) ≤

1
2
(1 + |Q|0,K)(|p1|2 + |p2|2),

that is (6) follows with constants

m0 := (1− |Q|0,K) > 0 and m1 := (1 + |Q|0,K).

In order to avoid additional difficulties which arise from the discussion of an
obstacle problem it would be desirable to construct a vector field Q of class
C1 which is defined on K = R

3 and is subject to (5) and (7). However, even in
the case H = const, a quick inspection of equation (5), using Gauß’s theorem,
shows that the quantity |Q|0,∂BR

has to grow linearly in the radius R; in other
words (7) can not hold for K = R

3, even if H = const.
Hence we consider the following strategy:

I) The vector field Q:
For given Γ and H satisfying conditions to be determined later, find a
closed set K ⊂ R

3 such that Γ ⊂ K together with a vector field Q ∈
C1(K,R3) which fulfills the conditions (5) and (7).

II) The obstacle problem:
Define the set of admissible functions C = C(Γ,K) := C∗(Γ )∩H1

2 (B,K),
where C∗(Γ ) denotes the class of H1

2 -surfaces spanning Γ which are nor-
malized by a three point condition, and H1

2 (B,K) denotes the subset of
all Sobolev functions f ∈ H1

2 (B,R3) which map almost all of B into K.
Solve the obstacle problem

P(Γ,K) : F(·) → min in C(Γ,K)

and establish some initial regularity of the solutions assuming appropriate
regularity hypotheses on K. Instead of a variational equality δF = 0, a
solution X of P(Γ,K) in general merely satisfies a variational inequality
δF ≥ 0. Therefore we have to apply a suitable inclusion principle.

III) Geometric maximum principle:
Determine conditions on H and K (or ∂K respectively) which guarantee
that the “coincidence” set

T := {w ∈ B : X(w) ∈ ∂K}

is empty for a minimizer or a stationary point X of F in C. In this case
X maps B into the interior of K and hence satisfies the Euler-equation
δF = 0 in a weak sense. We refer to the Enclosure Theorems 2 and 3 in
Section 4.4 for the pertinent results; however note that more elementary
arguments suffice, when K is a ball or a cylinder.
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IV) Regularity:
Show that under natural assumption on H (and Γ ) a minimizer of F in C

is a classical C2,α solutions of the H-surface system (1) and (2). Note that
the conformality conditions (2) are automatically satisfied, compare the
discussion in Vol. 1, Section 4.5, and in No. 6 of the Scholia to Chapter 4
of Vol. 1.

Ad I) Construction of the vector field Q

The construction device requires Q ∈ C1(K,R3) with the properties

divQ(x) = 2H(x) for all x ∈ K

and some given H ∈ C0(K,R) and, in addition,

|Q|0,K < 1, see (5) and (7).

The simplest situation occurs, when K = BR(0) ⊂ R
3 and H ∈ C1(R3,R3).

The vectorfield

Q(x)(8)

:=
2
3

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ,
∫ x3

0

H(x1, x2, τ) dτ

)

clearly is of class C1(R3,R3) and satisfies (5) on R
3 (and in particular on K).

Also

|Q(x)| ≤ 2
3
|x| |H|0,K for all x ∈ K,

whence |Q|0,K ≤ 2
3R|H|0,K; therefore F(·) is coercive, if we take K = BR(0)

and

(9) |H|0,BR(0) <
3
2
R−1.

Now let K = ZR(0) be the cylinder

ZR := {(x1, x2, x3) ∈ R
3 : (x1)2 + (x2)2 ≤ R2}

and H ∈ C1(R3). Instead of (8) we put

(10) Q(x) :=

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ, 0

)
,

which is again of class C1(R3,R3) and fulfills relation (5) for all x ∈ R
3.

Furthermore
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|Q(x)| ≤ |H|0,K((x1)2 + (x2)2)1/2 for x ∈ R
3,

that is

|Q|0,K ≤ R · |H|0,K.

In particular F(·) is coercive if K = ZR(0) and

(11) |H|0,ZR
<

1
R
.

Finally suppose K ⊂ SR is a slab of width 2R,

SR = {(x1, x2, x3) ∈ R
3 : −R ≤ x3 ≤ R}.

Putting

Q(x) := 2
(

0, 0,
∫ x3

0

H(x1, x2, τ) dτ
)

we then have

divQ(x) = 2H(x) in SR

and

|Q(x)| ≤ 2|H(x)| · |x3|.

Therefore F(·) is coercive in this case if K ⊂ SR and

|H|0,SR
<

1
2R

.

The situation for general K ⊂ R
3 is more involved, although the essential idea

is fairly simply, namely to consider a Dirichlet problem for the nonparametric
mean curvature equation in K. To this end suppose that u = u(x1, x2, x3) ∈
C1(K,R) solves the mean curvature equation

(12) div

(
∇u√

1 + |∇u|2

)
= 2H in K

then the vector field

Q(x) :=
∇u(x)√

1 + |∇u(x)|2

certainly satisfies (5) and also (7) |Q|0,K < 1 holds, provided u has globally
bounded gradient on K.
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For a bounded set K ⊂ R
3 with boundary ∂K ∈ C2 and for constant H

the equation (12) with boundary condition u = 0 on ∂K is uniquely solvable
with u ∈ C2,α(K) if and only if the inward mean curvature Λ of ∂K satisfies

(13) |H| ≤ Λ along ∂K,

for a proof of this result see e.g. Gilbarg and Trudinger [1] Theorem 16.11, or
Serrin [4].

To describe the condition on K and Λ in the case of variable H we let
ρ(x) := dist (x, ∂K) denote the distance of x ∈ K to the boundary ∂K of
K, cp. the discussion of the distance function in Section 4.4. Furthermore we
extend the mean curvature function Λ from ∂K to K by putting

Λ(x) = Λρ(x)(x)

to equal the mean curvature at x of the local surface Sρ(x) through x which is
parallel to ∂K at distance ρ(x) in case this surface exists and is of class C2.
Otherwise we let Λρ(x)(x) = +∞. Condition (13) may now be replaced by

(14) |H(x)| ≤ (1− aρ(x))Λρ(x)(x) +
a

2

for x ∈ K, where a denotes some number with 0 ≤ a ≤ infx∈K ρ−1(x).

Theorem 2. Suppose K ⊂ R
3 is the closure of a C2 domain whose boundary

∂K has uniformly bounded principal curvatures and a global inward parallel
surface at distance ε > 0. In addition assume that supK ρ(x) < ∞ and let
H ∈ C1(K,R) have uniformly bounded C1-norm on K with (13) and (14) being
fulfilled for some a, 0 ≤ a ≤ infK ρ−1(x). Then there exists a solution u ∈
C2(K) of equation (12) with uniformly bounded gradient on K. In particular
there exists a C1-vector field Q satisfying (5) and (7).

The proof of Theorem 2 in case of bounded domains is due to Serrin [4];
the generalization to unbounded K can be found in Gulliver and Spruck [2].

Ad II) The obstacle problem

Let Γ ∈ R
3 be a closed Jordan curve and K ⊂ R

3 a closed set which contains
Γ . Also put

C = C(Γ,K) = C∗(Γ ) ∩H1
2 (B,K)

to denote the class of H1
2 (B,R3)∩C0(∂B,R3)-surfaces which map ∂B weakly

monotonic onto Γ , satisfy a three point condition and have an image almost
everywhere in K.

Since, in Section 4.8, we study surfaces of prescribed mean curvature in a
Riemannian three-manifold we consider now somewhat more generally func-
tionals F(·) which are the sum of a Riemannian Dirichlet integral and a suit-
able volume term.
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Put F(X) = E(X) + V (X), where

E(X) :=
1
2

∫
B

gij(X)(Xi
uX

j
u +Xi

vX
j
v) du dv

and

V (X) :=
∫

B

〈Q(X), Xu ∧Xv〉 du dv,

that is

F(X) =
∫

B

e(X,∇X) du dv

with the Lagrangian

e(x, p) =
1
2
gij(x)(pi

1p
j
1 + pi

2p
j
2) + 〈Q(x), p1 ∧ p2〉,

where x = (x1, x2, x3) ∈ R
3 and p = (p1, p2) ∈ R

3×R
3. In No. 6 of the Scholia

to Vol. 1, Chapter 4, we have outlined the proof of the following

Theorem 3. Suppose Q ∈ C0(K,R3), gij ∈ C0(K) gij = gji for all i, j =
1, 2, 3, and let 0 < m0 ≤ m1 be constants with the property m0(|p1|2 + |p2|2) ≤
e(x, p) ≤ m1(|p1|2 + |p2|2) for all (x, p1, p2) ∈ K×R

3 ×R
3. Moreover assume

that K is a closed set in R
3 such that C = C(Γ,K) is nonempty. Then the

variational problem

P = P(Γ,K) : F → min in C

has a solution. Every solution X ∈ C satisfies the conformality relations

(15) gijX
i
uX

j
u = gijX

i
vX

j
v and gijX

i
uX

j
v = 0

almost everywhere in B. �

In order to obtain continuity for solutions of P we have to assume more
regularity of K or ∂K respectively. A reasonable quantitative notion is the
“quasiregularity” of K.

Definition 2. A closed set K ⊂ R
3 is called “quasiregular”, if

(a) K is equal to the closure of its interior K̊;
(b) there are positive numbers d and M such that for each point x0 ∈ K

there exists a compact convex set K∗(K̊∗ �= ∅) and a C1-diffeomorphism
g defined on some open neighbourhood of K∗ with g : K∗ → K ∩ Bd(x0)
with

|Dg|20,K∗ ≤M and |Dg−1|2
0,K∩Bd(x0)

≤M.
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Remarks. (i) Closed convex sets K with K =
◦
K are quasiregular.

(ii) If K = K̊ ⊂ R
3 is compact with ∂K ∈ C1, then K is quasiregular.

(iii) Suppose K = K̊, ∂K ∈ C2 and ∂K has uniformly bounded principal
curvatures and a global parallel surface in K̊, then K is quasiregular; for a
proof see Gulliver and Spruck [2].

Theorem 4. Let the assumption of Theorem 3 be satisfied and suppose that
K ⊂ R

3 is quasiregular. Furthermore let X be a solution of the problem

P(Γ,K) : F → min in C(Γ,K).

Then there is a number μ > 0 such that

(16)
∫

Br(w0)

|∇X|2 du dv ≤
( r
R

)2μ
∫

BR(w0)

|∇X|2 du dv

for all r ∈ (0, R] and w0 ∈ B with 0 < R ≤ dist(w0, ∂B). It follows that X is
of class C0,μ(B,R3). Furthermore X is continuous up to the boundary.

Proof. Let X be a minimizer of the functional F in C. For an arbitrary point
w0 ∈ B we define

φ(r) = φ(r, w0) =
∫

Br(w0)

|∇X|2 du dv,

where 0 < r ≤ R = dist(w0, ∂B).

Introducing polar coordinates (ρ, θ) around w0 by w = w0 + ρeiθ and
writing (with a slight but convenient abuse of notation) X(w) = X(w0 +
ρeiθ) = X(ρ, θ), we get

φ(r) =
∫ r

0

∫ 2π

0

{
|Xρ|2 +

1
ρ2
|Xθ|2

}
ρ dρ dθ.

Furthermore, by selecting an ACM-representative of X again denoted by X,
we can assume that for almost all θ ∈ [0, 2π] the restrictionX(·, θ) is absolutely
continuous in ρ ∈ [ε,R], ε > 0, and X(ρ, ·) is absolutely continuous in θ ∈
[0, 2π] for almost all ρ ∈ [0, R].
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There is a Lebesgue null set N ⊂ [0, R] such that for r ∈ [0, R]\N we have

(i) X(r, ·) is absolutely continuous on [0, 2π],

(ii)
∫ 2π

0
|Xθ(r, θ)|2 dθ <∞,

(iii) φ(r) is differentiable with

φ′(r) =
∫ 2π

0

{
|Xρ(r, θ)|2 +

1
r2
|Xθ(r, θ)|2

}
r dθ ≥ 1

r

∫ 2π

0

|Xθ(r, θ)|2 dθ,

i.e.

(17)
∫ 2π

0

|Xθ(r, θ)|2 dθ ≤ r · φ′(r) for all r ∈ [0, R].

Take a radius r ∈ [0, R] \N for which

(18)
∫ 2π

0

|Xθ(r, θ)|2 dθ <
π−1

2
d2,

where d denotes the constant in the definition of quasiregularity. Then for any
θ0, θ1 ∈ [0, 2π] we infer the estimate

|X(r, θ1)−X(r, θ0)| ≤
∣∣∣∣
∫ θ2

θ1

|Xθ(r, θ)| dθ
∣∣∣∣ ≤

√
2π
{∫ 2π

0

|Xθ(r, θ)|2 dθ
} 1

2

< d

and hence the image of the curve X(r, ·) is contained in K ∩ Bd(x0), where
x0 = X(r, θ0) is an arbitrary point on that curve. According to the definition
of quasiregularity there is a C1-diffeomorphism h = g−1 : K ∩ Bd(x0) → K∗,
where K∗ is a compact and convex set. Hence the curve ζ(θ) := h(X(r, θ)) is
of class H1

2 ([0, 2π],R3) with values in the convex set K∗. Now let H = H(w)
denote the harmonic vector function defined in Br(w0) whose boundary values
are given by ζ(θ), i.e.

H(w0 + reiθ) = ζ(θ) = h(X(r, θ))

for 0 ≤ θ ≤ 2π. By the maximum principle and the convexity of K∗ it fol-
lows that the image H(Br(w0)) ⊂ K∗ and therefore the function g ◦ H ∈
H1

2 (Br(w0),K) with boundary trace X(r, θ). Setting

Y (w) :=

{
g ◦H(w) for w ∈ Br(w0),

X(w) for w ∈ B \Br(w0)

we therefore obtain a function Y ∈ C(Γ,K). Since X is a minimizer of F in
C = C(Γ,K) we have

F(X) ≤ F(Y )
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and by the coercivity assumption and the quasiregularity of K it follows

m0

∫
Br(w0)

|∇X|2 du dv ≤ m1

∫
Br(w0)

|∇Y |2 du dv

= m1

∫
Br(w0)

|∇(g ◦H)|2 du dv ≤ m1M

∫
Br(w0)

|∇H|2 du dv,

that is

(19) φ(r) ≤ m1

m0
M

∫
Br(w0)

|∇H|2 du dv.

On the other hand an expansion of ζ and H in Fourier series yields

ζ(θ) = A0 +
∞∑

n=1

(An cos(nθ) +Bn sin(nθ)),

and

H(w) = A0 +
∞∑

n=1

(ρ
r

)n

[An cos(nθ) +Bn sin(nθ)],

which yields
∫

Br(w0)

|∇H|2 du dv = π
∞∑

n=1

n(|An|2 + |Bn|2),

and
∫ 2π

0

|ζθ|2 dθ = π

∞∑
n=1

n2(|An|2 + |Bn|2).

In particular we have

(20)
∫

Br(w0)

|∇H|2 du dv ≤
∫ 2π

0

|ζθ|2 dθ.

But from ζ(θ) = h(X(r, θ)) we obtain, using the quasiregularity of K again,

(21)
∫ 2π

0

|ζθ|2 dθ ≤M

∫ 2π

0

|Xθ|2 dθ.

Relations (19), (20), (21) and (17) now yield the estimate

φ(r) ≤ m1

m0
M2

∫ 2π

0

|Xθ|2 dθ ≤
m1

m0
M2rφ′(r)

for almost every r ∈ [0, R].
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On the other hand, if (18) does not hold, then we trivially have

φ(r) ≤ φ(R) ≤ φ(R) · 2π
d2

∫ 2π

0

|Xθ|2 dθ ≤
2π
d2
D(X)r · φ′(r),

again by using (17). Concluding we obtain in both cases the inequality φ(r) ≤
C · rφ′(r), where we have put C := max(2πd−2D(X), m1

m0
M2). From this

inequality we finally obtain by a simple integration

φ(r) ≤
( r
R

)2μ

φ(R)

for all r ∈ [0, R] and μ := 1
2C .

NowX ∈ C0,μ(B) follows from Dirichlet’s growth theorem, see e.g. Gilbarg
and Trudinger [1], Theorem 7.19.

To prove continuity of X up to the boundary, we apply a conformal map-
ping τ which maps the unit disk onto the upper half plane and the unit circle
onto the real axis. Since τ maps circles onto circles, leaves the Dirichlet inte-
gral invariant and is locally bi-Lipschitz, it follows that X ◦τ−1 satisfies again
condition (16) in a neighbourhood of any boundary point of the half plane,
possibly with an additional constant factor K on the right hand side. In ad-
dition we may choose τ in such a way that an arbitrary but fixed point eiΘ is
mapped onto the origin. We are thus led to consider the following situation:
Let Ω be the rectangle {w = u+ iv ∈ C : |u| < 2, 0 < v < 2} and suppose X ∈
H1

2 (Ω,R3) possesses continuous boundary trace ξ(u) = X(u, 0), u ∈ (−2, 2).
Then we have to show that X(w) → ξ(0) as w → 0. To this end we introduce
the entities

ε(X,u, h) :=

(∫ u+2h

u−2h

∫ 2h

0

|∇X|2 du dv
) 1

2

,

ω(ξ, h) := sup
|u′ −u′ ′ |≤h

|ξ(u′)− ξ(u′ ′)|

and let w = u + ih be an arbitrary point with |u| < 1, 0 < h < 1
2 . Recalling

Morrey’s proof of Dirichlet’s growth theorem (see Morrey [8], Theorem 3.5.2)
we obtain by virtue of condition (16) the estimate

|X(u, h)−X(u′, h)| ≤ C0kε(X,u, h)|u− u′|μh−μ

for all u′ with |u− u′| ≤ h < 1
2 with some constant c0 depending only on μ.

Next we select a u1 ∈ [−1, 1], |u− u1| < h with the properties

(i) X(u1, ·) ∈ H1
2 ([0, 2],R3),

(ii) X(u1, v) → ξ(u1) as v → 0+,

(iii) ε2(X,u, h) =
∫ u+2h

u−2h

∫ 2h

0

|∇X|2 du dv ≥ h

∫ h

0

|Xv(uv, u)|2 dv.
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Consequently

|X(u1, h)− ξ(u1)| ≤
∫ h

0

|Xv(u1, v)| dv

≤
√
h

(∫ h

0

|Xv(u1, v)|2 dv
) 1

2

≤ ε(X,u, h)

by (iii). Finally we obtain for all u ∈ R with |u| < h′ < 1
2 ,

|X(u, h)− ξ(0)| ≤ |X(u, h)−X(u1, h)|+ |X(u1, h)− ξ(u1)|
+ |ξ(u1)− ξ(u)|+ |ξ(u)− ξ(0)| ≤ (c0k + 1)ε(X,u, h)
+ ω(ξ, h) + ω(ξ, h′),

whence X(u, h) → ξ(0) as (u, h) → (0, 0). This proves that X ∈ C0(B,R3).�

By the same reasoning we can show

Proposition 1. Let F be a family of functions X ∈ H1
2 (B,R3) whose bound-

ary values are equicontinuous on ∂B. Suppose that
∫

Br(w0)

|∇X|2 du dv ≤ k2
( r
R

)2μ
∫

BR(w0)

|∇X|2 du dv

holds for all r ∈ (0, R] and w0 ∈ B with 0 < R ≤ dist(w0, ∂B) and uni-
form constants k and μ for all X ∈ F. Furthermore, assume that there exist a
number A > 0 and a function η(r) on 0 < r < ∞ with limr→0 η(r) = 0,
all independent of X ∈ F, such that DB(X) =

∫
B
|∇X|2 du dv ≤ A,

DB∩Br(w∗)(X) ≤ η(r) for w∗ ∈ ∂Ω and 0 < r < ∞, for all X ∈ F. Then
the family F is equicontinuous on B. �

In Section 4.5 we have derived a formula for the inner variation of a
functional F, see the formulae in Section 4.5 of Vol. 1, (15) and (20). In
particular the conformality relations (15) hold if the first inner variation ∂F

vanishes for all vector fields λ.

Now we have to consider “outer variations”, that is variations of the type
Xε = X + εϕ.

Assumption A. Let K ∈ R
3 be a closed set and Q ∈ C1(S,R3), gij ∈

C1(S,R) for all i, j = 1, 2, 3 and some open set S containing K. In addi-
tion suppose that Q and gij satisfy

(22)
∣∣∣∣∂Q

j

∂xi

∣∣∣∣
0,K

<∞,

∣∣∣∣∂gij

∂xk

∣∣∣∣
0,K

<∞

for all i, j, k = 1, 2, 3 and suppose
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e(x, p1, p2) =
1
2
gij(x)pi

αp
j
α + 〈Q(x), p1 ∧ p2〉

is coercive, i.e.

m0{|p1|2 + |p2|2} ≤ e(x, p1, p2) ≤ m1{|p1|2 + |p2|2}

for all (x, p1, p2) ∈ K× R
3 × R

3 and suitable constants 0 < m0 ≤ m1.

Theorem 5 (First variation formula). Assume Q, gij ,K and e(x, p1, p2)
fulfill Assumption A. Let X ∈ H1

2 (B,K) and ϕ ∈ L∞(B,R3) be functions
such that X + εϕ ∈ H1

2 (B,K) for all ε ∈ [0, ε0) and some ε0 > 0. Then the
first (outer) variation δF(X,ϕ) = limε→0+

F(X+εϕ)−F(X)
ε exists and is given

by

δF(X,ϕ)

=
∫

B

{
gij(X)Xi

uαϕ
j
uα +

1
2
∂gij(X)
∂xe

Xi
uαX

j
uαϕ�

+
〈
∂Q

∂xj
(X), Xu ∧Xv

〉
ϕj + 〈Q(X), Xu ∧ ϕv + ϕu ∧Xv〉

}
du1 du2.

Furthermore, if ϕ ∈
◦
H1

2(B,R
3) ∩ L∞(B,R3) then

δF(X,ϕ) =
∫

B

{
gij(X)Xi

uαϕ
j
uα +

1
2
∂gij

∂x�
Xi

uαX
j
uαϕ�(23)

+ divQ(X)〈Xu ∧Xv, ϕ〉
}
du dv,

where

divQ(X) =
∂Q1

∂x2
(X) +

∂Q2

∂x2
(X) +

∂Q3

∂x3
(X).

Remark. δF(X,ϕ) is called the first (outer) variation of F at X in direc-
tion ϕ.

We have adopted the summation convention that Latin indices have to be
summed from 1 to 3 and Greek indices from 1 to 2. Also we have replaced
(u, v) by (u1, u2).

Proof of Theorem 5. We compute
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1
ε
[F(X + εϕ)− F(X)]− δF(X,ϕ)

=
1
ε

∫
B

{
1
2
[gij(X + εϕ)(Xi + εϕi)uα(Xj + εϕj)uα − gij(X)Xi

uαX
j
uα ]

+ 〈Q(X + εϕ), (Xu + εϕu) ∧ (Xv + εϕv)〉 − 〈Q(X), Xu ∧Xv〉
}
du dv

−
∫

B

{
gij(X)Xi

uαϕ
j
uα +

1
2
∂gij

∂xe
Xi

uαX
j
uαϕe

+
〈
∂Q

∂xj
, Xu ∧Xv

〉
ϕj + 〈Q(X), Xu ∧ ϕv + ϕu ∧Xv〉

}
du dv

=
∫

B

{
1
2

[
1
ε
(gij(X + εϕ)− gij(X))− ∂gij

∂xe
ϕe

]
Xi

uαX
j
uα

+
〈

1
ε
(Q(X + εϕ)−Q(X))− ∂Q

∂xj
(X)ϕj , Xu ∧Xv

〉

+ [gij(X + εϕ)− gij(X)]Xi
uαϕ

j
uα

+ 〈Q(X + εϕ)−Q(X), Xu ∧ ϕv + ϕu ∧Xv〉

+
ε

2
gij(X + εϕ)ϕi

uαϕ
j
uα + εQ(X + εϕ)(ϕu ∧ ϕv)

}
du dv

=
∫

B

aε
ij(w)Xi

uαX
j
uα du dv +

∫
B

bεi (w)(Xu ∧Xv)i du dv

+
∫

B

cεij(w)Xi
uαϕ

j
uα du dv +

∫
B

dε
i (w)[(Xu ∧ ϕv)i + (ϕu ∧Xv)i] du dv

+ ε

∫
B

[hε
ij(w)ϕi

uαϕ
j
uα + fε

i (w)(ϕu ∧ ϕv)i] du dv

with obvious choices of bounded and measurable functions aε
ij , . . . , f

ε
i on B

whose L∞(B)-norms are uniformly bounded with respect to ε. Furthermore

aε
ij(·), bεi (·), cεij(·), dε

i → 0

a.e. on B as ε→ 0.
For any measurable set Ω ⊂ B we have
∣∣∣∣
∫

Ω

aε
ijX

i
uαX

j
uα du dv

∣∣∣∣ ≤ cDΩ(X) = c

∫
Ω

|∇X|2 du dv,
∣∣∣∣
∫

Ω

bεi (Xu ∧Xv)i du dv

∣∣∣∣ ≤ cDΩ(X),
∣∣∣∣
∫

Ω

cεijX
i
uαϕ

j
uα du dv

∣∣∣∣ ≤ c(DΩ(X))
1
2 (DΩ(ϕ))

1
2 ,

∣∣∣∣
∫

Ω

dε
i [(Xu ∧ ϕv)i + (ϕu ∧Xv)i] du dv

∣∣∣∣ ≤ c(DΩ(X))
1
2 (DΩ(ϕ))

1
2
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and ∣∣∣∣
∫

Ω

bεijϕ
i
uαϕ

j
uα du dv

∣∣∣∣ ≤ cDΩ(ϕ),
∣∣∣∣
∫

Ω

fε
i (ϕu ∧ ϕv)i du dv

∣∣∣∣ ≤ cDΩ(ϕ)

for a constant c independent of ε. This implies the uniform absolute continuity
of the integrals under consideration. By virtue of Vitali’s convergence theorem
the first part of Theorem 5 follows. Finally formula (23) can be derived by an
integration by parts using an appropriate approximation argument. �

Remarks. (i) The statements of Theorem 5 hold true without the hypotheses
(22), if X ∈ C0(B,R3) or even X ∈ L∞,loc(B,R3), which is – by Theorem 4 –
true for solutions X of P(Γ,K).

(ii) The first variation formula (23) continues to hold if Q is not necessarily
C1 but divQ is defined (possibly in a weak sense!). For a proof and an appli-
cation of this remark see the proof of Theorem 8, in particular relation (37).

A consequence of Theorem 5 is the Euler equation for the functional F =
E + V (see also Theorem 7), namely

%X� + Γ �
jk(Xj

uX
k
u +XvX

k
v ) = divQ(X)g�m(Xu ∧Xv)m, ! = 1, 2, 3,(24)

where the Christoffel symbols Γjk� and Γ �
jk are given by (cp. Vol. 1, Chapter 1)

Γjk� =
1
2

(
∂gjk

∂x�
− ∂gj�

∂xk
+
∂gk�

∂xj

)
, Γ �

jk = g�mΓjmk.

Indeed, (24) follows from the first variation formula (23) on testing with ϕ =
(ϕ1, ϕ2, ϕ3), where ϕj = gjk(X)ψk with ψ = (ψ1, ψ2, ψ3) ∈ C∞

0 (B,R3), and
the fundamental lemma of the calculus of variations.

A major step in the regularity theory for obstacle problems is the following

Theorem 6. Suppose Q ∈ C2(S,R3), gij ∈ C2(S,R), i, j = 1, 2, 3 and
e(x, p1, p2) satisfy Assumption A (possibly without relation (22)), where K

is quasiregular and of class C3 and S ⊂ R
3 is open with K ⊂ S. Then each

solution X ∈ C(Γ,K) of the obstacle problem

P(Γ,K) : F → min in C(Γ,K)

is of class H2
s (B′,R3) ∩ C1,α(B,R3) ∩ C0(B,R3) for all B′ ⊂⊂ B and all

s, α ∈ R with 0 ≤ s <∞ and 1 < α < 1.

This result holds under somewhat weaker regularity hypothesis on Q, see
the Remark at the end of the proof of Theorem 6.

The key argument of the proof of Theorem 6 is given in the following
Lemma 1 where the L2-estimates of the second derivatives are established.
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Definition 3. Let Ω′ ⊂ R
2 be a bounded open set, K ⊂ R

3 a closed set and
S ⊂ R

3 some open set containing K. Consider functions A = A(w, z, p) =
(Aα

j )(w, z, p), j = 1, 2, 3, α = 1, 2 and B = B(w, z, p) = Bj(w, z, p), j = 1, 2, 3
of class C1 on Ω′ × S × R

6 such that the inequalities

m2|η|2 ≤ Aα
jpk

β
(ξ)ηj

αη
k
β ,

∣∣∣Aα
jpk

β
(ξ)
∣∣∣ ≤ m3

and

|A(ξ)|2 + |Aw(ξ)|2 + |Az(ξ)|2 + |B(ξ)|+ |Bw(ξ)|+ |Bz(ξ)|+ |Bp(ξ)|2

≤ m4(1 + |p|2)

hold for all ξ = (w, z, p) ∈ Ω′ × K × R
6 and for all η = (η1, η2) ∈ R

3 × R
3

with positive constants m2,m3,m4 ∈ R independent of ξ.

Lemma 1. Suppose A,B and Ω′ satisfy Definition 3 with K = B+
1 (0) :=

{(x, y, z) ∈ R
3 : x2 +y2 +z2 ≤ 1, z ≥ 0}. Moreover let z = z(w) ∈ H1

2 (Ω′, B+
1 )

have the following properties

(a) There are positive numbers M0 and μ such that

(25)
∫

Ω′ ∩Bρ(ζ)

|∇z|2 du dv ≤M0ρ
2μ for all disks Bρ(ζ) ⊂ R

2,

(b) For all ϕ ∈ C0
c (Ω′,R3) ∩ H1

2 (Ω′,R3) with z3 − εϕ3 ≥ 0 for ε ∈ [0, ε0],
ε0(ϕ) > 0, the variational inequality

(26)
∫

Ω′
{Aα

j (w, z,∇z)ϕj
uα +Bj(w, z,∇z)ϕj} du dv ≤ 0

is satisfied.

Then we have z ∈ H2
2 (Ω′ ′,R3) ∩ H1

s (Ω′ ′,R3) for Ω′ ′ � Ω′ and all s ∈
[1,∞).

Proof. Pick any ζ0 ∈ Ω′ and consider a disk B3R0(ζ0) � Ω′, 0 < R0 < 1 and
choose R ∈ (0, R0). Then there exists a function η ∈ C∞

c (B2R(ζ0)) satisfying
0 ≤ η ≤ 1, |∇η| ≤ 2

R and η(w) = 1 for w ∈ BR(ζ0). Moreover let us denote
by %hz the difference quotient

%hz =
1
h

[z(w + hζ)− z(w)], h �= 0,

in the direction of a unit vector ζ ∈ R
2. Then we have the relation

z(w) + ε%−h[η2(w)%hz(w)] =
ε

h2
η2(w)z(w + hζ)

+
{

1− ε

h2
[η2(w) + η2(w − hζ)]

}
z(w) +

ε

h2
η2(w − hζ)z(w − hζ).
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Therefore ϕ = −%−h[η2%hz] is of class C0,μ
c (Ω′,R3) ∩ H1

2 (Ω′,R3) for
0 < |h| < R and satisfies z3 − εϕ3 ≥ 0 provided 0 ≤ ε < ε0 = h2

2 . Thus
ϕ is admissible in (26) and we obtain

(27)
∫ {

%hA(w, z,∇z)∇(η2%hz) +%hB(w, z,∇z)(η2%hz)
}
du dv ≤ 0,

where we have for simplicity omitted the domain of integration Ω′. Now we
use the identity

%hA(w, z(w),∇z(w)) =
∫ 1

0

Aw(ξ(t)) dt · ζ +
∫ 1

0

Az(ξ(t)) dt · %hz(w)(28)

+
∫ 1

0

Ap(ξ(t)) dt · ∇%hz(w),

where ξ(t) = (w+ thζ, z(w)+ th%hz(w),∇z(w)+ th∇%hz(w)) and analogous
expressions holding for %hB(w, z(w),∇z(w)). Observe that the set B3R(ζ0)×
B+

1 × R
6 is convex and z : Ω′ → B+

1 ; hence ξ(t) ∈ B3R(ζ0)×B+
1 × R

6 for all
t ∈ [0, 1], |h| < R and w ∈ B2R(ζ0) � supp η.

By virtue of Definition 3

|%hA(w, z,∇z)| ≤ m5{(1 + |∇z|+ |∇zh|) · (1 + |%hz|) + |∇%hz|},

|%hA(w, z,∇z)−
∫ 1

0

Ap(ξ(t)) dt∇%hz(w)|(29)

≤ m5(1 + |∇z|+ |∇zh|)(1 + |%hz|),
|%hB(w, z,∇z| ≤ m6{(1 + |∇z|2 + |∇zh|2)(1 + |%hz|)

+ (1 + |∇z|+ |∇zh|)|∇%hz|}

with suitable constants m5,m6 and zh(w) := z(w + hζ). Again from Defini-
tion 3 we infer

(30) m2

∫
Ω′
|η∇%hz|2 du dv ≤

∫
Ω′
η2

∫ 1

0

Ap(ξ(t)) dt∇%hz∇%hz du dv.

Now we use the variational inequality (27) and relation (28) together with
∇(η2%hz) = 2η∇η%hz + η2∇%hz and infer

∫
Ω′

∫ 1

0

Ap dt∇%hz∇%hzη
2 du dv

≤ −
∫

Ω′

∫ 1

0

Ap dt∇%hz∇η%hz · 2η du dv

−
∫

Ω′

∫ 1

0

Aw dtζ[2η∇η%hz + η2∇%hz] du dv

−
∫

Ω′

∫ 1

0

Az dt%hz[2η∇η%hz + η2∇%hz] du dv

−
∫

Ω′
%hBη

2%hz du dv.
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Inequality (30) implies the estimate

m2

∫
Ω′
|μ∇%hz|2 du dv ≤ c

∫
Ω′
η|∇η||%hz||∇%hz| du dv

+ c

∫
Ω′

∫ 1

0

|Aw| dt η|∇η||%hz| du dv + c

∫
Ω′

∫ 1

0

|Aw| dt η2|∇%hz| du dv

+ c

∫
Ω′

∫ 1

0

|Az| dt|%hz|2η|∇η| du dv

+ c

∫
Ω′

∫ 1

0

|Az| dt η2|%hz||∇%hz| du dv

+ c

∫
Ω′
|%hB|η2|%hz| du dv,

where here and in the following c denotes some constant independent of h and
R (and only depending on m2, . . . ,m6).

Definition 3 yields the estimates

|Aw| ≤ c(1 + |∇z|+ |∇zh|),
|Az| ≤ c(1 + |∇z|+ |∇zh|)

and together with (29) and the previous inequality we get

∫
Ω′
|η∇%hz|2 du dv ≤ c

∫
Ω′
η|∇η||%hz||∇%hz| du dv

+ c

∫
Ω′
η|∇η||%hz|{1 + |∇z|+ |∇zh|} du dv

+ c

∫
Ω′
η2|∇%hz|{1 + |∇z|+ |∇zh|} du dv

+ c

∫
Ω′
η|∇η||%hz|2{1 + |∇z|+ |∇zh|} du dv

+ c

∫
Ω′
η2|%hz||∇%hz|{1 + |∇z|+ |∇zh|} du dv

+ c

∫
Ω′
η2|%hz|{(1 + |∇z|2 + |∇zh|2)(1 + |%hz|)

+ (1 + |∇z|+ |∇zh|)|∇%hz|} du dv.

Taking the elementary inequality 2ab ≤ εa2 + 1
ε b

2 for ε > 0, into account we
can estimate the different integrands as follows
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η|∇η||%hz||∇%hz| ≤ εη2|∇%hz|2 +
1
ε
|∇η|2|%hz|2,

η|∇η||%hz|2 ≤ η2|%hz|2 + |∇η|2|%hz|2,
η|∇η||%hz||∇z| ≤ η2|∇z|2 + |∇η|2|%hz|2,
η|∇η||%hz|2|∇z| ≤ η2|%hz|2|∇z|2 + |∇η|2|%hz|2,

η2|%hz||∇z||∇%hz| ≤ εη2|∇%hz|2 +
1
ε
η2|∇z|2|%hz|2,

and the other terms are treated similarly. In this way we get for ε > 0 arbitrary

∫
Ω′
|η∇%hz|2 du dv ≤ ε

∫
Ω′
|η∇%hz|2 du dv(31)

+ c

(
1 +

1
ε

)∫
Ω′
η2(|∇z|2 + |∇zh|2)|%hz|2 du dv

+ c

(
1 +

1
ε

)

×
∫

Ω′
{η2(1 + |%hz|2 + |∇z|2 + |∇zh|2 + |∇η|2|%hz|2} du dv.

For some constant c depending on m2, . . . ,m6 but not on h, R or ε. We observe
that for |h| < R we have (see e.g. Lemma 7.23 in Gilbarg and Trudinger [1])

∫
B2R(ζ0)

|%hz|2 du dv ≤
∫

B3R(ζ0)

|∇z|2 du dv,

and therefore

∫
Ω′
{η2(1 + |%hz|2 + |∇z|2 + |∇zh|2) + |∇η|2|%hz|2} du dv(32)

≤ c

R2

∫
Ω′
|∇z|2 du dv + cR2.

Next we apply the Dirichlet-growth condition (25) which yields

∫
B2R(ζ0)∩Bρ(ξ)

(|∇z|2 + |∇zh|2) du dv ≤ 2M0ρ
2μ

for all disks Bρ(ξ) ⊂ R
2. Now Lemma 2 in Section 2.7 applied to the func-

tions q(w) := |∇z(w)|2 + |∇zh(w)|2 ∈ L1(B2R(ζ0)) and to φ(w) := η%hz ∈
◦
H1

2(B2R(ζ0),R3) gives the estimate
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(33)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B2R(ζ0)

η2(|∇z|2 + |∇zh|2)|%hz|2 du dv

≤ C(M0, μ)R2μ

∫
B2R(ζ0)

|∇(η%hz)2| du dv

≤ C(M0, μ)R2μ

{∫
B2R(ζ0)

η2|∇%hz|2 du dv +R−2

∫
Ω′
|∇z|2 du dv

}

for |h| < R, since

|∇(η%hz)|2 ≤ (|∇η||%hz|+ η|∇%hz|)2 ≤ 2η2|∇%hz|2 +
8
R2

|%hz|2

and with constants C(M0, μ) indepent of h and R. The formulae (31), (32)
and (33) yield

∫
Ω′
|η∇%hz|2 du dv

≤
[
ε+ c

(
1 +

1
ε

)
C(M0, μ)R2μ

] ∫
B2R

η2|∇%hz|2 du dv

+ c

(
1 +

1
ε

)
C(M0, μ)R2μ−2

∫
Ω′
|∇z|2 du dv

+ c

(
1 +

1
ε

){
c

R2

∫
Ω′
|∇z|2 du dv + cR2

}
.

By an appropriate choice of ε > 0 and R ∈ (0, R0) the coefficient [. . .] can be
made arbitrary small, for instance [. . .] < 1

2 .
Hence the term [. . .]

∫
B2R

η2|∇%hz|2 du dv can be absorbed by the left
hand side and we obtain an estimate of the type

∫
B2R(ζ0)

η2|∇%hz|2 du dv ≤ const for all |h| < R

and some constant depending on M0, μ, m2, . . . ,m6 and the Dirichlet integral
of z, but not on h. We conclude that the weak derivatives DiDjz, i, j =
1, 2 exist and that z ∈ H2

2 (BR(ξ0),R3), since η ≡ 1 on BR(ξ0) (see e.g.
Lemma 7.24 in Gilbarg and Trudinger [1]). Then a covering argument yields
that z ∈ H2

2 (Ω′ ′,R3) for all Ω′ ′ � Ω′, and by the Sobolev imbedding the-
orem we finally obtain z ∈ H1

s (Ω′ ′,R3) for any subset Ω′ ′ � Ω′ and all
s ∈ [1,∞). �

Now we turn to the
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Proof of Theorem 6. Step I: L2-estimates of the second derivatives.
By virtue of Theorem 4 we have X ∈ C0,μ(B,R3) ∩ C0(B,R3) for some
μ > 0. For some arbitrary point ζ0 ∈ B either X(ζ0) ∈ ∂K or X(ζ0) ∈ int K.
We treat the first case by reducing it to Lemma 1; the second case can be
handled similarly. Since K is of class C3 there exists a neighbourhood U of
X(ζ0) and a C3-diffeomorphim ψ : R

3 → R
3 with inverse χ which maps

U ∩ K onto B+
1 (0), U ∩ ∂K onto B+

1 (0) ∩ {x3 = 0} and X(ζ0) onto 0. For
sufficiently small ρ0 > 0 and Ω′ := Bρ0(ζ0) we have Ω′ � B and z := ψ ◦X ∈
H1

2 (Ω′, B+
1/2(0)) ∩ C0,μ(Ω′,R3). Consider any ϕ ∈ C0

c (Ω′,R3) ∩ H1
2 (Ω′,R3)

with the property z3(w) − εϕ3(w) ≥ 0 for all w ∈ Ω′ and sufficiently small
ε ≥ 0. Then the mapping Xε := χ(z− εϕ) ∈ C(Γ,K) for ε ∈ [0, ε0), ε0 = ε0(ϕ),
while clearly X0 = X. By the minimum property of X we have F(X) ≤ F(Xε)
for all ε ∈ [0, ε0). Introduce the integral F̃(Y ) :=

∫
B
ẽ(Y,∇Y ) du dv, whose

integrand is defined by

ẽ(y, q) := e(χ(y), χy(y)q),

for (y, q) ∈ K∗ × R
6, K∗ := ψ(K) and where χy = Dχ : R

3 → R
3 denotes

the Jacobian of χ while e(x, p) = 1
2gij(x)[pi

1p
j
1 + pi

2p
j
2] + 〈Q(x), p1 ∧ p2〉, p =

(p1, p2) ∈ R
3 × R

3.
Since χ : R

3 → R
3 is a C3-diffeomorphism it is not difficult (but somewhat

tedious) to prove that the functions defined by

Aα
j (y, q) := ẽqj

α
(y, q)

and

Bj(y, q) := ẽyj (y, q) for α = 1, 2 and j = 1, 2, 3,

satisfy the growth and coercivity conditions of Definition 3.
Furthermore, arguments similar to those used in the proof of the variation

formula Theorem 5 show that the first variation

δF̃(z, ϕ) = lim
ε→0+

1
ε
(F̃(z + εϕ)− F̃(z))

exists for functions ϕ considered above and is given by

δF̃(z, ϕ) =
∫

Ω′
{Aα

j (z,∇z)ϕj
uα +Bj(z,∇z)ϕj} du dv.

By the minimality of X we infer that δF̃(z, ϕ) ≤ 0 is satisfied for all ϕ ∈
C0

c (Ω′,R3) ∩H1
2 (Ω′,R3) with z3 − εϕ3 ≥ 0 on Ω′ and 0 ≤ ε < ε0(ϕ).

By Theorem 4 X satisfies a Dirichlet growth condition of the type (16),
whence also z = ψ ◦X fulfills the estimate

∫
Ω′ ∩Bρ(ξ)

|∇z|2 du dv ≤Moρ
2μ
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for every ball Bρ(ξ) ⊂ R
2 with constant M0 = λ(R − ρ0)−2μDB(X) where

R = dist(ξ0, ∂B) and λ := |G ◦ χ|0,B+
1
, G := ψt

xψx; here we have used ∇z =
ψx ◦ X and |∇z(w)|2 = ∇X(w)G(X(w))∇X(w) ≤ λ|∇X(w)|2 for all w ∈
Ω′ = Bρ0(ζ0).

Now we can apply Lemma 1 and obtain z ∈ H2
2 (Ω′ ′,R3)∩H1

s (Ω′ ′,R3) for
all 1 ≤ s < ∞ and domains Ω′ ′ � Ω′. Taking X = χ ◦ z on Bρ0(ζ0) into
account, we see by a covering argument that X ∈ H2

2 (Ω′,R3) ∩ H1
s (Ω′,R3)

for all subsets Ω′ � B and all numbers s ∈ [1,∞).

Step II. Ls-estimates of the second derivatives.

Case 1. X(ζ0) ∈ int K.
Since X is continuous also X(BR0(ζ0)) ⊂ int K for some 0 < R0 � 1, whence
we obtain δF(X,ϕ) = 0, i.e. by Theorem 5∫

B

{gjk(X)Xj
uαϕk

uα +
1
2
∂gjk

∂xe
Xj

uαXk
uαϕ� + divQ(X)〈Xu ∧Xv, ϕ〉} du dv = 0,

for every ϕ of class
◦

H1
2 (BR0(ζ0),R

3) ∩ L∞(BR0(ζ0),R
3). Therefore, since

X ∈ H2
2,loc(B,R

3), the Euler equations

%X� + Γ �
jkX

j
uαXk

uα = divQ(X)g�m(Xu ∧Xv)m

hold almost everywhere on BR0(ζ0), whence we have the estimate

|%X(w)| ≤ C|∇X(w)|2

a.e. on BR0(ζ0) for some constant c > 0. Since ∇X ∈ L2s,loc on B for all
s ∈ [1,∞) we get %X ∈ Ls on BR0(ζ0) and therefore conclude by standard
Lp-theory (e.g. Gilbarg and Trudinger [1]) that X ∈ H2

s (BR0(ζ0),R
3).

Case 2. X(ζ0) ∈ ∂K.
Since K is of class C3 there exists a neighbourhood U of X(ζ0) and a C3-
diffeomorphism ψ of R

3 onto itself which maps U ∩K onto B+
1 and U ∩ ∂K

onto B0
1 := B+

1 ∩ {x3 = 0} and ψ(X(ζ0)) = 0, detψx > 0.
For sufficiently small R0 > 0 and Ω′ = BR0(ζ0) � B we have z := ψ ◦X ∈

H1
2 (Ω′, B+

1/2). Pick any ϕ ∈ C0
c (Ω′,R3) ∩H1

2 (Ω′,R3) with the property that
z3(w) − εϕ3(w) ≥ 0 for all w ∈ Ω′, provided that ε > 0 is sufficiently small.
As in Step I consider the functional

F̃(Y ) =
∫

B

ẽ(Y,∇Y ) du dv,

where ẽ(y, q) := e(χ(y), χy(y)q) and q = (q1, q2) ∈ R
3 ×R

3. A simple calcula-
tion shows that we have

ẽ(y, q) = g̃�m(y)q�
αq

m
α + 〈Q̃(y), q1 ∧ q2〉,



396 4 Enclosure Theorems and Isoperimetric Inequalities for Minimal Surfaces

where

g̃�m = (gjk ◦ χ)χj
y�χ

k
ym and

Q̃ = (detχy)χ−1
y (Q ◦ χ).

In other words, F̃ is of the same structure as F and we can apply Theorem 5.
Also we have δF̃(z, ϕ) ≤ 0 for all ϕ ∈ C0

c (Ω′,R3) ∩ H1
2 (Ω′,R3) with the

property that

z3(w)− εϕ3(w) ≥ 0 for all w ∈ Ω′

and 0 ≤ ε ≤ ε0 = ε0(ϕ). In particular we are free to make arbitrary “tangen-
tial” variations, in other words

δF̃(z, ϕ) = 0 for all ϕ = (ϕ1, ϕ2, 0) ∈ C0
c (Ω′,R3) ∩H1

2 (Ω′,R3).

Theorem 5 now implies

g̃1j(z)%zj + Γ̃j1kz
j
uαzk

uα = div Q̃(z)(zu ∧ zv)1,
(34)

g̃2j(z)%zj + Γ̃j2kz
j
uαzk

uα = div Q̃(z)(zu ∧ zv)2

a.e. on Ω′, where Γ̃j�k are the Christoffel symbols of the first kind correspond-
ing to g̃ij . Introduce the “coincidence” set

Tz := {w ∈ Ω′ = BR0(ζ0) : z3(w) = 0}
= {w ∈ Ω′ : X(w) ∈ ∂K}.

By a well known property of Sobolev functions we get ∇z3(w) = 0,∇2z3(w) =
0 a.e. on Tz. Hence, on account of (34)

g̃11(z)%z1 + g̃12%z2 = !1(z,∇z),
g̃21(z)%z1 + g̃22%z2 = !2(z,∇z),(35)

%z3 = 0

a.e. on Tz, where the right hand side grows quadratically in |∇z|, i.e.

|!1(z,∇z)|+ |!2(z,∇z)| ≤ c|∇z|2 on Ω′

for some constant c.
The coercivity of e(x, p) (cf. Assumption A) implies that

m̃0|ξ|2 ≤ g̃jk(z)ξjξk ≤ m̃1|ξ|2

for all (z, ξ) ∈ K∗ ∗ × R
3,K∗ ∗ ⊂ K∗ = ψ(K), where m̃0 ≤ m̃1 are positive

numbers. Therefore we infer from equation (35)

|%z| ≤ c∗|∇z|2 a.e. on Tz
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for some number c∗.
On the other hand we get as in case 1

%z� + Γ̃ �
jk(z)zj

uαzk
uα = div Q̃(z)g̃�m(z)(zu ∧ zv)m

for ! = 1, 2, 3 a.e. on the (open) set Ω′ \ Tz; whence also

|%z| ≤ c∗ ∗|∇z|2 a.e. on Ω′ \ Tz.

Concluding we have

|%z| ≤ c|∇z|2 a.e. on Ω′

with c := max(c∗, c∗ ∗). Now we can proceed as in case 1 and obtain z ∈
H2

s (BR(ζ0),R3) for any R ∈ (0, R0) and any s ∈ [1,∞). This implies that
X ∈ H2

s (Ω′,R3) for all Ω′ � B and all s ∈ [1,∞). Finally, by Sobolev
imbedding theorem we infer that also X ∈ C1,α(Ω′,R3) for all Ω′ � B and
all α ∈ [0, 1). This completes the proof of Theorem 6. �

Remark. The assertion of Theorem 6 still holds true if the condition Q ∈
C2(S,R3) is replaced by the weaker assumption Q ∈ C1(K) and divQ ∈
C1(K). This observation is of importance for the solution of Plateau’s problem
for H-surfaces in the set K.

Proof of the Remark. A careful scrutinizing of the steps in the proof of The-
orem 6 shows that Step II (Lp-estimates of second derivatives) only re-
quires Q ∈ C1(K). Returning to Step I we consider the functional F̃(Y ) =∫

B
ẽ(Y,∇Y ) du dv, where ẽ(y, q1, q2) = g̃�m(y)q�

αq
m
α + 〈Q̃(y), q1 ∧ q2〉 with

g̃�m(y) = gjk(χ(y))χj
y�χ

k
ym and Q̃(y) = (detχy(y))[χy(y)]−1Q(χ(y)). By The-

orem 5 the first variation δF̃(z, ϕ) for

z ∈ C0
c (Ω′, B+

1
2
(0)) ∩H1

2 (Ω′,R3) and ϕ ∈ C0
c (Ω′,R3) ∩H1

2 (Ω′,R3)

is given by

δF̃(z, ϕ)

=
∫

Ω′

{
g̃ij(z)zi

uαz
j
uα +

1
2
∂g̃ij

∂y�
zi
uαz

j
uαϕ� + div Q̃(z)〈zu ∧ zv, ϕ〉

}
du dv,

where

div Q̃(z) =
∂Q̃1

∂y1
(z) +

∂Q̃2

∂y2
(z) +

∂Q̃3

∂y3
(z).

Therefore, in order to apply Lemma 1 and the same arguments as in Step I in
the proof of Theorem 6, it is sufficient to show that still we have div Q̃(y) ∈
C1(K) under the weaker assumption Q, divQ ∈ C1. To this end we put
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Q̃(y) = (detχy(y))Q∗(y) with Q∗(y) := [χy(y)]−1Q(χ(y)) and observe that it
remains to show divQ∗ ∈ C1, since χ is of class C3. Let

χy(y) =

⎡
⎢⎢⎢⎢⎢⎣

∂χ1

∂y1

∂χ1

∂y2

∂χ1

∂y3

...
...

...
∂χ3

∂y1

∂χ3

∂y2

∂χ3

∂y3

⎤
⎥⎥⎥⎥⎥⎦
,

then, since ψ(χ(y)) = y we have ψx(χ(y)) · χy(y) = Id and

χ−1
y (y) =

⎡
⎢⎢⎢⎢⎣

∂ψ1

∂x1
. . .

∂ψ1

∂x3

...
...

∂ψ3

∂x1
. . .

∂ψ3

∂x3

⎤
⎥⎥⎥⎥⎦ (χ(y)).

In particular we have ∂ψk

∂xi (χ(y))· ∂χj

∂yk (y) = δj
i for i, j = 1, 2, 3. Next we compute

∂Q∗k

∂yi
=

∂

∂yi

[
∂ψk

∂xj
(χ(y))Qj(χ(y))

]

=
∂

∂yi

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂yi
(χ(y))

=
∂

∂yi

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂x�
(χ(y))

∂χ�

∂yi
,

i.e.

divQ∗(y) =
∂

∂yk

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) +

∂ψk

∂xj
(χ(y))

∂Qj

∂x�
(χ(y))

∂χ�

∂yk

=
∂

∂yk

[
∂ψk

∂xj
(χ(y))

]
Qj(χ(y)) + divQ(χ(y))

which is of class C1(K). Now Lemma 1 can be applied and the proof can be
completed as in Theorem 6. �

Theorem 7 (Regularity off the coincidence set). Suppose that Assump-
tion A is satisfied (possibly without condition (22)), K is quasiregular and
gij ∈ C1,β(K), divQ ∈ C0,β(K) for 0 < β < 1 and i, j = 1, 2, 3. Let X be
a solution for P(Γ,K) in C(Γ,K) and put Ω := {w ∈ B : X(w) ∈ ∂K} to
denote the coincidence set. Then X ∈ C2,β(B \Ω,R3) and satisfies the Euler
equation (24) classically on B \Ω.

Proof. By Theorem 4, X ∈ C0(B,R3); therefore B \Ω is an open set and for
each w0 ∈ B \ Ω there is a disk Bρ(w0) which is contained in B \ Ω. Conse-
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quently for any testfunction ϕ ∈ C∞
c (Bρ(w0),R3) we have X + εϕ ∈ C(Γ,K)

for all ε ∈ (−ε0, ε0), ε0 = ε0(ϕ) > 0 sufficiently small, and the minimizing
property of X implies

F(X) ≤ F(X + εϕ) for all ε ∈ (−ε0, ε0).

Whence δF(X,ϕ) = 0 and by Theorem 5 we obtain

∫
B

{
gjk(X)Xj

uαϕk
uα +

1
2
∂gjk

∂x�
Xj

uαXk
uαϕ� + divQ(X)〈Xu ∧Xv, ϕ〉

}
du dv = 0.

Put ϕj := gjk(X)ψk, where (gij) denotes the inverse of the matrix (gij) and
ψ = (ψ1, ψ2, ψ3) ∈ C∞

c (Bρ(w0),R3) is arbitrary. A simple calculation yields
∫

B

{
X�

uαψ�
uα − Γ �

jk(X)Xj
uαXk

uαψ� + divQ(X)g�m(X)(Xu ∧Xv)mψ
�
}
du dv

= 0

for all ψ ∈ C∞
c (B \Ω,R3) applying appropriate partitions of unity. The fun-

damental lemma in the calculus of variations shows that (24) is the Euler
equation of F. A regularity theorem of Tomi [1] (for a similar reasoning due
to Heinz see also Section 2.1 and 2.2) now implies that X ∈ C1,μ(B \Ω,R3)
for all μ ∈ (0, 1). Alternatively, we might also apply Theorem 6 assuming the
somewhat stronger hypotheses gij ∈ C2(S) and Q ∈ C2(S,R3), where S de-
notes an open set containing K. Finally classical results from potential theory
yields that X ∈ C2,β(B \Ω,R3). �

Now we solve the Plateau problem for surfaces of prescribed mean curva-
ture H. We start with Jordan curves Γ which are contained in a closed ball
BR(P0) ⊂ R

3.

Theorem 8. Let K be the closed ball BR(P0) of radius R and center P0 and
denote by H a function of class C0,β(K), 0 < β < 1, satisfying

|H|0,K <
3
2
R−1 and |H|0,∂K ≤ R−1.

Suppose Γ ⊂ K is a closed Jordan curve such that C(Γ,K) is nonempty. Then
there exists a surface X of class C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3), which
maps ∂B homeomorphically onto Γ and satisfies

%X = 2H(X)Xu ∧Xv in B,

and

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in B.
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Proof. Without loss of generality we take P0 = 0 ∈ R
3 and extend H to some

ball BR+r0(0) such that |H|0,BR+r0
< 3

2 (R + r0)−1 and |H(x)| |x| ≤ 1 for all
x ∈ BR+r0 − BR and some r0 > 0. We remark here that the first variation
formula (23) of Theorem 5 extends to cases where Q is not necessarily of
class C1 but divQ is defined (possibly in a weak sense). Here we define the
vectorfield

Q(x) =
2
3

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ,
∫ x3

0

H(x1, x2, τ) dτ

)

which, although not necessarily of class C1(BR+r0 ,R
3), satisfies divQ = 2H.

We claim that δFQ(X,ϕ) exists for all X ∈ H1
2 (B,BR+r0), ϕ ∈

◦

H1
2 (B,R3) ∩

L∞(B,R3) and is given by (23) i.e.

δFQ(X,ϕ) =
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv.

Note that here we have written FQ to indicate the dependence of F on Q.
Now, to see that (23) holds in this case we take a sequence Hn ∈ C1(BR+r0)
s.t. |Hn −H|0,BR+r0

→ 0, n→∞ and define Qn ∈ C1(BR+r0 ,R
3) by

Qn(x) =
2
3

(∫ x1

0

Hn(τ, x2, x3) dτ,
∫ x2

0

Hn(x1, τ, x3) dτ,
∫ x3

0

Hn(x1, x2, τ) dτ

)

and

FQn(X) =
1
2

∫
B

|∇X|2 du dv +
∫

B

〈Qn(X), Xu ∧Xv〉 du dv.

Relation (23) of Theorem 5 implies

δFQn(X,ϕ) =
∫

B

{〈∇X,∇ϕ〉+ divQn(X)〈Xu ∧Xv, ϕ〉} du dv

=
∫

B

{〈∇X,∇ϕ〉+ 2Hn(X)〈Xu ∧Xv, ϕ〉} du dv,

whence, as n→∞

(36) δFQn(X,ϕ) →
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv.

On the other hand we have
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FQ(X + εϕ)− FQ(X)
ε

=
FQn(X + εϕ)− FQn(X)

ε

+
1
ε
{FQ(X + εϕ)− FQ(X)− FQn(X + εϕ) + FQn(X)}

=
FQn(X + εϕ)− FQn(X)

ε

+
1
ε

{∫
B

〈Q−Qn, (Xu + εϕu) ∧ (Xv + εϕv)〉 du dv

+
∫

B

〈Q−Qn, Xu ∧Xv〉 du dv
}

=
FQn(X + εϕ)− FQn(X)

ε

+
∫

B

〈Q−Qn, Xu ∧ ϕv + ϕu ∧Xv〉 du dv

+ ε

∫
B

〈Q−Qn, ϕu ∧ ϕv〉 du dv.

Letting ε→ 0 we find that δFQ(X,ϕ) exists and is given by

δFQ(X,ϕ) = δFQn(X,ϕ) +
∫

B

〈Q−Qn, Xu ∧ ϕv + ϕu ∧Xv〉 du dv.

Since |Q − Qn|0,BR+r0
≤ const|H −Hn|0,BR+r0

→ 0 as n → ∞ we conclude,
by letting n→∞ and using (36), the first variation formula

(37) δFQ(X,ϕ) =
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv.

Next we observe that for every x ∈ BR+r0(0) we have |Q(x)| ≤ 2
3 |x| |H|0,BR+r0

,
whence |Q|0,BR+r0

< 1. By the discussion following Theorem 1 and by virtue
of Theorems 3 and 4 we can find a solution X ∈ C(Γ,BR+r0(0)) of the vari-
ational problem FQ(X) → min in the class C(Γ,BR+r0(0)), which in addi-
tion belongs to the spaces C0,α(B,R3) ∩ C0(B,R3). Consider the function

ϕ(w) := max(|X(w)|2 − R2, 0) · X which is of class
◦

H1
2 (B,R3) ∩ L∞(B,R3)

and satisfies X − εϕ ∈ C(Γ,BR+r0(0)) for all ε ∈ [0, ε0), provided ε0 is suffi-
ciently small. Since X is a minimizer in that class we have FQ(x) ≤ FQ(x−εϕ)
for all ε ∈ [0, ε0) and therefore δFQ(X,ϕ) ≤ 0. On the other hand we compute,
using well known properties to Sobolev functions

∇ϕ = (ϕu, ϕv) =

{
2〈X,∇X〉X + (|X|2 −R2)∇X, on {w : |X(w)| > R},
0, on {w : |X(w)| ≤ R}.

From the first variation formula (37) and the variational inequality
δFQ(X,ϕ) ≤ 0 we derive∫

B∩ { |X(w)|>R}
{2〈X,Xu〉2 + 2〈X,Xv〉2 + (|X|2 −R2)(|Xu|2 + |Xv|2)(38)

+ 2H(X)〈X,Xu ∧Xv〉(|X|2 −R2)} du dv ≤ 0.
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But on the set {w : |X(w)| > R} we have

|2H(X)(|X|2 −R2)〈X,Xu ∧Xv〉| ≤ (|X|2 −R2)|H(X)| |X|(|Xu|2 + |Xv|2)
≤ (|X|2 −R2)(|Xu|2 + |Xv|2),

whence by (38) it follows that 〈X,Xu〉 = 〈X,Xv〉 = 0 a.e. on {w : |X(w)| >
R}. This implies that the function η(w) := max(|X(w)|2 − R2, 0) belongs to
H1

2 (B) ∩ C0(B) whose derivative is

∇η =

⎧⎨
⎩
〈X,∇X〉 on {|X(w)|2 > R2},

0 on {|X(w)|2 ≤ R2}

must vanish identically on B, since η = 0 on ∂B. Therefore |X(w)| ≤ R on
B and the coincidence set Ω = {w ∈ B : X(w) ∈ ∂BR+r0} is empty. Now
observe that Theorem 7 is applicable here, since we have already proved the
variational formula (37) to also hold in this case; furthermore we have by
assumption divQ = 2H ∈ C0,β(K). By Theorem 7 we get X ∈ C2,β(B,R3)
and the system

%X = 2H(X)Xu ∧Xv,

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in B

is satisfied in a classical sense.
The topological character of the boundary mapping X|∂B : ∂B → Γ is

proved similarly as in Theorem 3 of Chapter 4.5 in Vol. 1. Indeed in some
neighbourhood of a boundary branch point w0 ∈ ∂B we have the asymptotic
expansion Xw(w) = a(w−w0)ν +o(|w−w0|ν) for some integer ν ≥ 1 and some
a ∈ C

3 \ {0}, provided X is of class C1 in a neighbourhood U0 ⊂ B of w0 (cf.
Section 2.10). Therefore |∇X(w)| > 0 for w ∈ ∂B with 0 < |w − w0| < ε. We
conclude thatX(w) cannot be constant on any open arc Γ0 ⊂ ∂B, because this
would imply X ∈ C1(B ∪ Γ0,R

3) and, because of the conformality relations,
∇X = 0 on Γ0, an obvious contradiction. �

Remark. The proof of Theorem 8 also shows the existence of a conformal
weak solution X ∈ C0(B,R3)∩C1,α(B,R3) of the system %X = 2H(X)Xu∧
Xv, if H is only of class C0(K); also X maps ∂B homeomorphically onto Γ .

By Theorem 1 the sharpness of the existence result Theorem 8 follows if
all closed curves Γ ⊂ BR(p0) are considered. However, for certain shapes one
expects better results for geometric reasons. Consider for instance a long and
“thin” Jordan curve Γ , say a slightly perturbed rectangle of sidelengths ε and
ε−1 respectively where ε > 0 is small. Then Theorem 8 asserts the existence
of a solution if |H| < ε. However, a much better result holds in this situation.

Theorem 9. Suppose K ⊂ R
3 is a closed circular cylinder CR of radius R > 0

and Γ ⊂ CR is a closed Jordan curve such that C(Γ,K) is nonempty. Denote
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by H a function of class C0,β(K), 0 < β < 1, satisfying |H|0,∂K ≤ 1
2R and

|H|0,K < 1
R . Then the Plateau problem determined by H and Γ is solvable,

i.e. there exists a surface X ∈ C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3) with

%X = 2H(X)Xu ∧Xv in B, and |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 in B,

which maps ∂B homeomorphically onto Γ .

Proof. The proof is similar to the one of Theorem 8. Without loss of generality,
we assume at the outset that

K = CR = {(a, b, c) ∈ R
3 : a2 + b2 ≤ R2},

and H ∈ C0(CR0) for some R0 > R, satisfies

(39) |H|0,R0 <
1
R0

, |y| |H(x)| ≤ 1
2

for all x = (x1, x2, x3) ∈ CR0 \ CR and y := (x1, x2, 0). As vector field Q we
choose

Q(x) :=

(∫ x1

0

H(τ, x2, x3) dτ,
∫ x2

0

H(x1, τ, x3) dτ, 0

)
,

which again satisfies

divQ(x) = 2H(X) in CR0

and

|Q(x)| = {(Q1(x))2 + (Q2(x))2} 1
2 ≤ |H|0,CR0

{(x1)2 + (x2)2} 1
2 = |H|0,CR0

|y|.

Whence, by (39) it follows that |Q|0,CR0
< 1. Therefore the variational prob-

lem

(P) : F(X) =
1
2

∫
B

|∇X|2 du dv +
∫

B

〈Q(X), Xu ∧Xv〉 du dv → min

in C(Γ,CR0) is solvable; let X ∈ C(Γ,CR0) ∩ C0,α(B,R3) ∩ C0(B,R3) be a
conformally parametrized solution (cf. Theorems 3 and 4). Denote by Y (w) :=
(x1(w), x2(w), 0) the projection of X(w) onto the plane x3 = 0 and consider

the
◦

H1
2 (B,R3) ∩ L∞(B,R3) function ϕ(w) := max(|Y (w)|2 − R2, 0) · Y (w).

We have X − εϕ ∈ C(Γ,CR0)∩H1
2 (B,CR0) for all ε ∈ [0, ε0), provided ε0 > 0

is sufficiently small. Whence, by the minimality of X,

F(X) ≤ F(X − εϕ) for all ε ∈ [0, ε0).(40)

By the same reasoning as in the proof of Theorem 8 we see that the first
variation δF(X,ϕ) exists and is given by (see relation (37))
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δF(X,ϕ) =
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv,

whence by (40) we arrive at the variational inequality
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv ≤ 0.

Now, since

∇ϕ = (ϕu, ϕv) =

⎧⎨
⎩

2〈Y,∇Y 〉Y + (|Y |2 −R2)∇Y on {|Y (w)| > R},

0 on {|Y (w)| ≤ R}

we infer

δF(X,ϕ) =
∫

B∩ { |Y |>R}
{2〈Y, Yu〉2 + 2〈Y, Yv〉2(41)

+ (|Y |2 −R2)(|Yu|2 + |Yv|2)
+ 2H(X)〈Xu ∧Xv, Y 〉(|Y |2 −R2)} du dv ≤ 0.

By virtue of the conformality relation |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 a.e. on B,
we obtain as in the proof of Theorem 2 in Section 4.1 the inequality

|∇x3|2 ≤ |∇x1|2 + |∇x2|2 = |∇Y |2.(42)

Whence

2|H(X)〈Xu ∧Xv, Y 〉| ≤ 2|H(X)| · |Y | · {|x2
ux

3
v − x3

ux
2
v|2 + |x3

ux
1
v − x1

ux
3
v|2}

1
2

≤ 2|H(X)| |Y |{|∇x2|2|∇x3|2 + |∇x1|2|∇x3|2} 1
2 = 2|H(X)||Y | |∇x3| |∇Y |

≤ 2|H(X)| |Y | |∇Y |2 ≤ |∇Y |2 = |Yu|2 + |Yv|2 a.e. on {w : |Y (w)| > R},

where we have used (42) and (39). By virtue of (41) this now implies that
〈Y, Yu〉 = 〈Y, Yv〉 = 0 a.e. on {w : |Y (w)| > R}. In other words, the H1

2 -
function η(w) := max(|Y (w)|2 − R2, 0) has vanishing derivative a.e. in B
and hence vanishes identically. This means that the coincidence set Ω :=
{w ∈ B : X(w) ∈ ∂CR0} is empty and by Theorem 7 we conclude that
X ∈ C2,β(B,R3) ∩ C0(B,R3) satisfies the Euler equation

%X = 2H(X)Xu ∧Xv in B

and

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

in the classical sense. The rest of the proof is the same as in Theorem 8. �
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Now we consider Plateau’s problem for surfaces of prescribed mean curva-
ture H and boundary Γ which are confined to arbitrary sets K. In particular
it is desirable to describe geometric conditions on H and K or ∂K respectively,
which guarantee the existence of a solution to this problem. In this respect
Theorem 2 and Enclosure Theorems 2 and 3 of Section 4.4 are of crucial im-
portance. We recall the definition of the “mean curvature” function Λρ(x) for
x ∈ K to denote the mean curvature at x of the surface Sρ(x) through x which
is parallel to ∂K at distance ρ = ρ(x), if this is defined and is equal to infinity
otherwise.

Theorem 10. Suppose K ⊂ R
3 is the closure of a C3 domain whose boundary

∂K has uniformly bounded principal curvatures and a global inward parallel
surface at distance ε > 0. Assume also that supK ρ(x) < ∞ and H ∈ C1(K)
has uniformly bounded C1-norm on K with

|H(x)| ≤ Λ(x) for all x ∈ ∂K,(43)

and

|H(x)| ≤ (1− aρ(x))Λρ(x) +
a

2
for all x ∈ K(44)

and some number a, 0 ≤ a ≤ infK ρ−1(x). Finally let Γ ⊂ K denote a
closed Jordan curve such that C(Γ,K) �= ∅. Then there exists a solution
X ∈ C2,α(B,R3) ∩ C0(B,K) of the Plateau problem which is determined by
H and Γ . Furthermore X satisfies the H-surface system 1) and 2) classically
in B and maps the boundary of B homeomorphically onto Γ . Moreover, if in
addition

|H(x)| ≤ Λρ(x)(45)

holds for all x in a small strip in K near ∂K and Γ ∩ int K �= ∅, then every
solution X maps B into the interior of K. Finally, if for some point x0 ∈ ∂K

we have

|H(x0)| < Λ(x0),(46)

then there is a neighbourhood U(x0) ⊂ R
3 such that no w0 ∈ B is mapped into

U(x0). In particular if (46) holds true for all x0 ∈ K, then X(B) ⊂ int K.
(Clearly, (45) follows from (44), if a = 0.)

Proof. First we remark that K is quasiregular; for a proof see Lemma 2.4 in
Gulliver and Spruck [2]. Furthermore by Theorem 2 there is a vector field
Q ∈ C1(K,R3) which satisfies

divQ(x) = 2H(x) for all x ∈ K

and |Q|0,K < 1. Now Theorems 3, 4 and 6, in particular the Remark at the end
of the proof of Theorem 6 imply the existence of a conformally parametrized
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solution X ∈ C(Γ,K)∩H2
s,loc(B,R3)∩C1,α(B,R3)∩C0(B,R3), for all s <∞,

and 0 < α < 1, of the variational problem

P(Γ,K) : F(X) =
1
2

∫
B

|∇X|2 du dv +
∫

B

〈Q(X), Xu ∧Xv〉 du dv → min

in C(Γ,K).

By Theorem 5 the first variation δF(X,ϕ) exists, is given by

δF(X,ϕ) =
∫

B

{〈∇X,∇ϕ〉+ 2H(X)〈Xu ∧Xv, ϕ〉} du dv

and satisfies – since X is a minimum of F in C(Γ,K) – the relation

δF(X,ϕ) ≥ 0

for all ϕ ∈
◦

H1
2 (B,R3) ∩ L∞(B) such that (X + εϕ) ∈ C(Γ,K). Assump-

tion (43) together with Enclosure Theorem 3 of Section 4.4 yield that
X ∈ H2

s,loc(B,R
3) ∩ C1,α(B,R3) satisfies the system

%X = 2H(X)Xu ∧Xv

almost everywhere in B. Since the right hand side is Hölder continuous it
follows from Schauder theory that X is of class C2,α(B,R3) and satisfies the
H-surface system in a classical sense.

By Enclosure Theorem 2 of Section 4.4 and since X ∈ C0(B,R3), we
see that X(B) ⊂ int K, if (45) holds and Γ ∩ int K �= ∅. The rest of the
assertion is a consequence of Corollary 3 in Section 4.4. That the boundary
mapping X|∂B : ∂B → Γ is a homeomorphism follows in a standard manner.
Theorem 10 is completely proved. �

Let us close this section with a simple example when K = {ξ ∈ R
3 :

|ξ| ≤ R} is the closed ball of radius R and center zero. Formula (44) then is
equivalent to

|H(x)| ≤ (1− a(R− |x|)) 1
|x| +

a

2
,

where 0 ≤ a ≤ R−1; or

|H(x)| ≤ 1
|x| (1− aR) +

3a
2

for all x ∈ K. For a = R−1 we recover the result of Theorem 8, while a new
existence result is obtained when a = 0. In this case the condition requires
|H(x)| ≤ 1

|x| for all x ∈ K, whence we obtain the existence of an H-surface in
K which lies strictly interior to K if Γ ∩ int K �= ∅.
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4.8 Surfaces of Prescribed Mean Curvature in a Riemannian
Manifold

In this section we shall extend the methods which we have introduced in
Section 4.7 to surfaces of prescribed mean curvature in a three-dimensional
Riemannian manifold. We assume the reader’s acquaintance with basic Rie-
mannian geometry; however we repeat some of the underlying concepts and
calculations when assumed necessary. In particular we discuss in this section
estimates for Jacobi fields. As standard reference on differential geometry we
refer to the monographs by Gromoll, Klingenberg, and Meyer [1], do Carmo
[3], Jost [18], and Kühnel [2], and we also refer to Chapter 1 of Vol. 1, where
most of the formulas needed later can also be found. In what follows we shall
assume, unless stated otherwise, that M is a three-dimensional, connected,
orientable, and complete Riemannian manifold of class C4 with scalar prod-
uct 〈X,Y 〉 and norm ‖X‖ = 〈X,X〉 1

2 for X,Y ∈ TpM , p ∈ M , where TpM
denotes the tangent space of M at p. Observe that this notation contrasts
with the one in the last section, where 〈·, ·〉 has denoted the Euclidean scalar
product, which in this chapter will simply be written as X · Y .

If ϕ : U → R
3, U ⊂ M an open set, denotes a chart we let x =

(x1, x2, x3) = ϕ(p) stand for the local coordinates and ∂k = ∂
∂xk = Xk denote

their basis fields. We put

gij(x) = 〈∂i, ∂j〉 = 〈Xi, Xj〉, g(x) = det(gij(x)),
(gij)i,j = (gij)−1

i,j , D∂i∂j = Γ �
ij∂� = DXiXj = Γ �

ijX�

and Γijk = 〈D∂i∂k, ∂j〉, compare the formulas in Vol. 1, Section 1.5. Here D
denotes covariant differentiation on M , gij is the metric and Γijk, Γ k

ij stand
for the Christoffel symbols. From Chapter 1 we recall the relation

Γ k
ij = gkmΓimj and Γijk =

1
2

{
∂gjk

∂xi
− ∂gik

∂xj
+
∂gij

∂xk

}
.

A mapping f : B → M of the unit disk B into M represents a surface
of (prescribed) mean curvature H in M , if it is of class C2 and any local
representation X(w) = ϕ ◦ f(w) satisfies in B (or a suitable subset of B) the
system

%X� + Γ �
jkX

j
uαXk

uα = 2H(X)
√
g(x)g�m(X)(Xu ∧Xv)m

for ! = 1, 2, 3, and the conformality condition

gijX
i
uX

j
u = gijX

i
vX

j
v , gijX

i
uX

j
v = 0.

We shall confine ourselves to surfaces which are contained in a “Riemann
normal chart” (ϕ,U) with center p ∈ M . Here (ϕ,U) is called a Riemann
normal chart with center p, if U ⊂M is an open set with p ∈ U and ϕ : U →
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R
3 is of the form ϕ = j ◦ exp−1

p , where expp : TpM → M is the exponential
map with center p and j : TpM → R

3 is a linear isometry. Recall that the map
expp : TpM →M is defined by expp(v) = c(1) for v ∈ TpM , where c = c(t) is
the geodesic in M with c(0) = p and ċ(0) = v. Hence every point q ∈ U can
be connected with p by exactly one shortest geodesic which is the image of a
straight line through 0 in TpM under the exponential map expp.

Since we want to solve the Plateau problem for surfaces of prescribed
mean curvature in M via a minimization procedure of the functional F(X)
which we have investigated in Section 4.7, it is of crucial importance to have a
quantitative control of the metric tensor and the Christoffel symbols in terms
of the curvature of the underlying manifold M . This will be established by
invoking estimates for Jacobi fields along geodesics. These estimates are of
independent interest and will be of importance later in Subsection 4.8.3.

4.8.1 Estimates for Jacobi Fields

Throughout this subsection we assume that M is a complete m-dimensional
Riemannian manifold of class C4 with covariant derivative D and Riemann
curvature tensor R(X,Y )Z (for a definition and properties of R, see e.g. Vol. 1,
Sections 1.3 and 1.5). A geodesic c(t) starting for t = 0 at p ∈ M is then
defined for all times t ≥ 0.

A vector field J along a geodesic c : [0,∞) → M with ċ(0) �= 0 is said to
be a Jacobi field along c if it satisfies

(1)
D

dt

D

dt
J +R(J, ċ)ċ = 0.

If no misunderstanding is possible, we shall abbreviate both the ordinary
derivation d

dt and the covariant derivation D
dt with a superscript dot. Then (1)

takes the form

(1′) J̈ +R(J, ċ)ċ = 0.

Here R(X,Y )Z denotes the Riemann curvature tensor of M . The linear equa-
tion (1), the so-called Jacobi equation of the geodesic c, is nothing but the
Euler equation of the second variation of the Dirichlet integral

∫
〈ċ, ċ〉 dt at

c. In local coordinates, the Jacobi equation is equivalent to the system of m
linear ordinary differential equations of second order

η̈k +Rk
�rs(c)η

�ċr ċs = 0

for the unknown functions ηk(t), k = 1, . . . ,m. Thus the Jacobi fields along a
geodesic c span a 2m-dimensional linear space over R which we denote by Jc.
In particular, the tangent vector ċ of a geodesic c is a Jacobi field of constant
length ‖ċ(0)‖ along c, since

D

dt
ċ = 0, R(ċ, ċ)ċ = 0
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and

d

dt
‖ċ‖2 = 2

〈
ċ,
D

dt
ċ

〉
= 0.

Moreover, if J and J∗ ∈ Jc, then

d

dt

{
〈J̇ , J∗〉 − 〈J, J̇∗〉

}
= 〈J̈ , J∗〉 − 〈J, J̈∗〉

= −〈R(J, ċ)ċ, J∗〉+ 〈R(J∗, ċ)ċ, J〉 = 0.

We therefore obtain

〈J̇ , J∗〉 − 〈J, J∗〉 = const for all J, J∗ ∈ Jc

and in particular, for J∗ = ċ, we arrive at

(2) 〈J̇ , ċ〉 = const for all J ∈ Jc.

Suppose now that c : [0,∞) → M is a geodesic normalized by the condition
‖ċ‖ = 1. Then, by setting

JT = αċ, α = 〈J, ċ〉, J⊥ = J − JT ,

we can decompose each Jacobi field J ∈ Jc into a tangential component JT

and a normal component J⊥:

J = JT + J⊥.

We claim that both JT and J⊥ are Jacobi fields. In fact, equation (2) implies
α̈ = 0, and therefore (JT )·· +R(JT , ċ)ċ = (JT )¨= (αċ)˙̇ = (α̇ċ)˙ = α̈ċ = 0 if we
take c̈ = 0 into account.

The tangential part JT is of the form

(3) JT (t) = {at+ b}ċ(t),

where

(3′) a = 〈J̇(0), ċ(0)〉, b = 〈J(0), ċ(0)〉.

Thus the growth of the tangential part JT (t) can easily be determined from
the initial values J(0) and J̇(0).

Hence we can control the growth of all Jacobi fields if we can estimate
the normal Jacobi fields. These are the elements of Jc orthogonal to ċ which,
by (3), span a (2m− 2)-dimensional subspace of Jc that is denoted by J⊥

c .
Unfortunately, there is no simple way to compute the normal Jacobi fields,

yet they can fairly well be estimated in terms of upper and lower bounds on
the sectional curvature of M . To see this, we consider the solutions of the
scalar differential equation
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f̈ + κf = 0, κ ∈ R,

which also satisfy

−
(
ḟ

f

)·

= κ+

(
ḟ

f

)2

,

wherever f does not vanish. In particular the solutions sκ and cκ of the initial
value problems

s̈κ + κsκ = 0

sκ(0) = 0, ṡκ(0) = 1
and

c̈κ + κcκ = 0

cκ(0) = 1, ċκ(0) = 0

We have

sκ(t) = t, cκ(t) = 1 if κ = 0,

sκ(t) =
1√
κ

sin
√
κt, cκ(t) = cos

√
κt if κ > 0,

sκ(t) =
1√
−κ

sinh
√
−κt, cκ(t) = cosh

√
−κt if κ < 0.

Put

tκ =

⎧⎪⎨
⎪⎩

π√
κ

if κ > 0,

+∞ if κ ≤ 0

that is, tκ is the first positive zero of sκ(t).

Lemma 1. Let c : [0,∞) → M be a geodesic with ‖ċ‖ = 1, and suppose that
some J ∈ J⊥

c satisfies ‖J‖ > 0 on (0, t∗). Finally we assume that, for some
number κ, the sectional curvature K of M is bounded on Γt∗ = {c(t) : 0 ≤
t ≤ t∗} by the inequality K ≤ κ. Then ‖J‖ satisfies the differential inequality

(4)
d2

dt2
‖J‖+ κ‖J‖ ≥ 0 on (0, t∗).

Proof. We first obtain

(5)
d

dt
‖J‖ = ‖J‖−1〈J, J̇〉,

whence

d2

dt2
‖J‖ = ‖J‖−1〈J, J̈〉+ ‖J‖−1‖J̇‖2 − ‖J‖−3〈J, J̇〉2

= ‖J‖−1〈J, J̈〉+ ‖J‖−3
{
‖J‖2‖J̇‖2 − 〈J, J̇〉2

}
,
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and, by Schwarz’s inequality, we arrive at

(6)
d2

dt2
‖J‖ ≥ ‖J‖−1〈J, J̈〉.

The Jacobi equation (1′), on the other hand, implies

〈J, J̈〉 = −〈R(J, ċ)ċ, J〉.

The term on the right hand side is nothing but −K‖J‖2, where K = K(t)
denotes the sectional curvature of M at c(t) with respect to the two-plane
spanned by J(t) and ċ(t). Thus we find

(7) 〈J, J̈〉‖J‖−1 = −K‖J‖ ≥ −κ‖J‖.

Finally, (4) follows from (6) and (7).

Lemma 2. Let the assumption of Lemma 1 be satisfied. If, moreover, we as-
sume that J(0) = 0 and t∗ ≤ tκ, then

(8)
d

dt

{
‖J‖
sκ

}
≥ 0 on (0, t∗).

Proof. Set

Z = ‖J‖·sκ − ‖J‖ṡκ.

Then, for 0 < t < t∗, we obtain Z(t) ≥ 0 since

Ż = ‖J‖··sκ − ‖J‖s̈κ = sκ {‖J‖·· + κ‖J‖} ≥ 0,

if we take (4) into account. Hence, for any t0 ∈ (0, t∗), we infer that

Z(t) ≥ Z(t0) for all t ∈ (t0, t∗).

Moreover, (5) yields

‖J‖· ≤ ‖J̇‖,

and therefore

|Z| ≤ ‖J̇‖sκ + ‖J‖ |ṡκ| on (0, t∗).

As t0 → +0, we have sκ(t0) → 0 and ‖J(t0)‖ → 0, whence Z(t0) → 0 and
Z ≥ 0 on (0, t∗). Then the desired inequality (8) follows from

d

dt

{
‖J‖
sκ

}
=

Z

s2κ
.
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Theorem 1. Let c : [0,∞) → M be a geodesic with ‖ċ‖ = 1, and let J be a
normal Jacobi field along c which satisfies J(0) = 0. We moreover suppose
that the sectional curvature K of M has an upper bound κ on Γtκ = {c(t) :
0 ≤ t ≤ tκ}. Then

(9) ‖J̇(0)‖sκ(t) ≤ ‖J(t)‖ for all t ∈ [0, tκ).

Proof. If J̇(0) = 0, (9) obviously is correct. We therefore may assume that
‖J̇(0)‖ > 0, whereas J(0) = 0. Then there is a number t∗ ∈ (0, tκ) such that
‖J‖ > 0 on (0, t∗), and Lemma 2 implies

‖J‖
sκ

(t0) ≤
‖J‖
sκ

(t) for 0 < t0 ≤ t < t∗.

As t0 tends to +0, the quotient on the left hand side is an expression of the
kind 0

0 which, according to L’Hospital’s rule, is determined by

lim
t0→+0

‖J‖2
s2κ

= lim
t0→+0

d
dt‖J‖2

d
dts

2
κ

= lim
t0→+0

d2

dt2 ‖J‖2
d2

dt2 s
2
κ

= ‖J̇(0)‖2,

since

d

dt
s2κ(t0) → 0,

d2

dt2
s2κ(t0) → 2,

d

dt
‖J‖2(t0) = 2〈J, J̇〉(t0) → 0,

d2

dt2
‖J‖2(t0) = 2

{
‖J̇‖2 + 〈J̈ , J〉

}
(t0)

= 2
{
‖J̇‖2 − 〈R(J, ċ)ċ, J〉

}
(t0) → 2‖J̇(0)‖2,

and (9) is proved for 0 ≤ t ≤ t∗. We then conclude that J(t) cannot vanish
before tκ, and thus (9) must hold for all t ∈ [0, tκ).

By the same reasoning, we can prove

Theorem 1′. Let c : [0,∞) →M be a geodesic with ‖ċ‖ = 1, and let J ∈ J⊥
c .

Suppose also that the sectional curvature K satisfies K ≤ κ on Γτκ = {c(t) :
0 ≤ t ≤ τκ} where τκ is the first positive zero of

ϕ(t) = ‖J(0)‖cκ(t) + ‖J‖·(0)sκ(t),

and ‖J‖·(0) = ‖J‖−1〈J, J̇〉(0). We then obtain

(10) ϕ(t) ≤ ‖J(t)‖ for 0 ≤ t < τκ

and

(11) ‖J(t)‖ ≤ ‖J(t∗)‖
ϕ(t∗)

ϕ(t) for all t ∈ [0, t∗],

where 0 < t∗ < τκ.
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Remark. Here we have assumed that J(0) �= 0; the case J(0) = 0 is handled
by a limit consideration.

We now turn to another class of Jacobi field estimates derived from a lower
bound on the sectional curvature of M .

To this end, let c : [0,∞) → M again be a unit speed geodesic, and let
X1, X2, . . . , Xm be m parallel vector fields along c which, at every point c(t)
of the geodesic, yield on orthogonal frame of the tangent space Tc(t)M . In
other words, we have

Ẋk = 0 and 〈Xk, X�〉 = δk�.

Then every vector field U along c can be written as

U(t) = uk(t)Xk(t).

If we identify R
m with Tc(0)M and introduce the vector function u : [0,∞) →

R
m by

u(t) =
(
u1(t), . . . , um(t)

)T

we obtain a 1-1-correspondence between the vector functions u : [0,∞) → R
m

and the vector fields U along c given by parallel translation.
To any m ×m-matrix function B(t) = (b�k(t)) which acts on vector func-

tions u(t) according to (B(t)u(t))� = b�k(t)uk(t), we can associate an operator,
again called B, acting on vector fields U = ukXk by the rule

(BU)(t) = (B(t)u(t))�X�(t)

if the vectorfield U is identified with the function u.
We, in particular, can associate with every Jacobi field J = JkXk a vector

function I = (J1, . . . , Jm) which satisfies

(12) Ï +RcI = 0,

where the matrix function Rc(t) = (Rs
k(t)) is defined by

Rs
k = Rs

k�r ċ
�ċr,

where

ċ = ċkXk and R(J, ċ)ċ = Rs
k�rJ

k ċ�ċrXs.

The well known symmetry relation

〈R(U, ċ)ċ, V 〉 = 〈R(V, ċ)ċ, U〉

implies the symmetry of Rc.
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Next we choose a basis J1, . . . , Jm of the m-dimensional subspace J̊c :=
{J ∈ Jc : J(0) = 0} of Jc with J̇k(0) = Xk(0). By Theorem 1 and by (3), the
tangent vectors J1(t), . . . , Jm(t) are linearly independent for all t ∈ (0, tκ) if
we assume K ≤ κ. Let now Ik be the vector functions corresponding to the
Jacobi vectors Jk. Then the matrix A(t), defined by

A = (I1, I2, . . . , Im),

is invertible and satisfies

(13) Ä+RcA = 0, A(0) = 0, Ȧ(0) = 1,

where 1 denotes the unit matrix (δ�
k). We therefore can define the matrix

function

S(t) = −Ȧ(t)A−1(t) for t ∈ (0, tκ),

which satisfies the Riccati equation

(14) Ṡ = Rc + S2,

since the differentiation of AA−1 = 1 and S = −ȦA−1 yields (A−1)· =
−A−1ȦA−1 and Ṡ = −ÄA−1− Ȧ(A−1)· = −ÄA−1 +(ȦA−1)2, and from (13)
we infer ÄA−1 = −Rc. Moreover,

(15) S(t) = −t−1 · 1 + 0(1) as t→ +0

since A(t) = t · 1 + · · · and Ȧ(t) = 1 + · · · .
We also claim that S(t) is a symmetric operator on Tc(t)M , i.e. we must

prove that

〈S(t0)U0, V0〉 = 〈U0, S(t0)V0〉

holds for every t0 ∈ (0, tκ) and for each pair of tangent vectors U0 = uk
0Xk(t0),

V0 = vk
0Xk(t0) ∈ Tc(t0)M .

But, if we introduce the two parallel vector fields U(t) = ukXk(t) and
V (t) = vkXk(t) with u = A−1(t0)u0 and v = A−1(t0)v0, this is equivalent to
saying that the function

φ = 〈ȦU,AV 〉 − 〈AU, ȦV 〉

vanishes for t = t0, which is proved by showing that φ identically vanishes on
(0, tκ). In fact, we infer from the definition of φ that

lim
t→+0

φ(t) = 0,

and, on the other hand, φ is constant because of
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φ̇ = 〈ÄU,AV 〉 − 〈AU, ȦV 〉
= −〈RcAU,AV 〉+ 〈AU,RcAV 〉 = 0.

Let now J be an arbitrary normal Jacobi field in J̊c, and let I be the associated
vector function. Then we infer from Ȧ = −SA that

(16) İ = −SI or J̇ = −SJ

holds on (0, tκ). We fix some t0 ∈ (0, tκ) and set U0 = uk
0Xk(t0) =

‖J(t0)‖−1J(t0). Moreover, we define a parallel vector field U along c with
U(t0) = U0 by setting U(t) = uk

0Xk(t). Then we claim that the function

k(t) = 〈SU,U〉(t)

satisfies

(16′) −k ≤ ṡω

sω
on (0, tκ)

provided that ω ≤ K ≤ κ is assumed. We also note that ω ≤ κ implies tκ ≤ tω.
From (16′) we infer that

−〈SJ, J〉‖J‖2 (t) ≤ ṡω

sω
(t)

holds for t = t0. Since t0 was arbitrary, this inequality is true for all t ∈ (0, tκ),
and, together with (16), we arrive at

‖J‖·

‖J‖ =
〈J, J̇〉
‖J‖2 = −〈J, SJ〉‖J‖2 ≤ ṡω

sω

which is to hold on (0, tκ).
On the other hand, by repeating the proof of Lemma 2 and by taking

Theorem 1 into account, we obtain

Z = ‖J‖·sκ − ‖J‖ṡκ ≥ 0 on (0, tκ).

Hence we have

Theorem 2. Let J be a normal Jacobi field with J(0) = 0 along a unit speed
geodesic c : [0,∞) → M , and suppose that ω ≤ K ≤ κ holds on the set
{c(t) : t ∈ (0, tκ)}. Then we may conclude that

(17)
ṡκ

sκ
≤ 〈J, J̇〉

‖J‖2 ≤ ṡω

sω
on (0, tκ).

It remains to prove (16′). We first note that ‖U‖ = 1 and 〈U, ċ〉 = 0 hold
on [0,∞), since these relations are true for t = t0, and U, ċ are parallel.
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Thus we get

ω ≤ 〈R(U, ċ)ċ, U〉,

and

〈SU,U〉2 ≤ ‖SU‖2 = 〈S2U,U〉.

Furthermore, (14) yields

d

dt
〈SU,U〉 = 〈RcU,U〉+ 〈S2U,U〉

= 〈R(U, ċ)ċ, U〉+ 〈S2U,U〉,

and therefore

(18) k̇ ≥ ω + k2 on (0, tκ).

Consider the function

h = sωk + ṡω

which then satisfies

(19) ḣ ≥ hk,

as we see from

ḣ = ṡωk + sωk̇ + s̈ω ≥ ṡωk + sωk
2 + (s̈ω + ωsω)

if we take (18) and s̈ω + ωsω = 0 into account. By differentiating, one checks
the identity

h(t) exp
(
−
∫ t

ε

k(s) ds
)

= h(ε) +
∫ t

ε

(ḣ− hk)(s) exp
(
−
∫ s

ε

k(τ) dτ
)
ds,

0 < ε < t < tκ, and thus by (19):

h(t) ≥ h(ε) exp
(∫ t

ε

k(s) ds
)
.

As ε tends to +0, (15) yields k(ε) = −1
ε + 0(1), whence h(ε) → 0 and k(ε) →

−∞. We infer

h(t) ≥ 0 for t ∈ (0, tκ),

which is equivalent to (16′), and thus Theorem 2 is proved.
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From Theorem 2 we infer that

d

dt

{
‖J‖
sω

}
=
‖J‖·sω − ‖J‖ṡω

s2ω
=
‖J‖
sω

{
‖J‖·

‖J‖ −
ṡω

sω

}
=
‖J‖
sω

{
〈J, J̇〉
‖J‖2 − ṡω

sω

}

≤ 0,

i.e., the function ‖J‖/sω is decreasing on (0, tω) and then the same reasoning
as in the proof of Theorem 1 yields ‖J̇(0)‖sω(t) ≥ ‖J(t)‖ for t ∈ (0, tκ).

Thus we have proved

Theorem 3. Let J be a normal Jacobi field with J(0) = 0 along a unit speed
geodesic c : [0,∞) → M , and suppose that the sectional curvature K of M
satisfies ω ≤ K ≤ κ on the set {c(t) : t ∈ (0, tκ)}. Then the function ‖J ‖

sω
is

decreasing in (0, tκ), and we have

(20) ‖J(t)‖ ≤ ‖J̇(0)‖sω(t) for all t ∈ (0, tκ).

Remarks. 1. We first note that the completeness of M was not really
needed. It was only used to insure the existence of c(t) for all t ∈ (0, tκ).
If we instead assume that c(t) is defined for 0 ≤ t ≤ R, the estimates (9),
(17) and (20) will hold for 0 < t < min(tκ, R).

2. From ω ≤ K ≤ κ and 〈R(J, ċ)ċ, J〉 = K(t)‖J⊥‖2 we conclude that

ω‖J⊥‖2 ≤ 〈R(J, ċ)ċ, J〉 ≤ κ‖J⊥‖2,

and therefore

(21) ω‖J‖2 ≤ 〈R(J, ċ)ċ, J〉 ≤ κ‖J‖2,

if we also assume that ω ≤ 0 ≤ κ. The inequality (21) was all we needed to
derive the statements of the Theorems 1–3, and the assumption 〈J, ċ〉 = 0
was nowhere else used. Thus these statements remain true for all Jacobi
fields J along c with J(0) = 0.

3. Let us once again assume that ω ≤ K ≤ κ and ω ≤ 0 ≤ κ, and suppose
that J ∈

◦
Jc, but not necessarily ‖ċ‖ = 1. Then we define r = ‖ċ‖, c(τ) =

c(τ/r), J(τ) = J(τ/r), and note that J ∈ J̊c and ‖ċ‖ = 1, whence,
by (17),

√
κ ctg

√
κτ ≤ 〈J, J̇〉

‖J‖2 (τ) ≤
√
−ω ctgh

√
−ωτ,

and therefore

r
√
κ ctg

√
κrt ≤ 〈J, J̇〉

‖J‖2 (t) ≤ r
√
−ω ctgh

√
−ωrt.

If we introduce the functions
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aκ(t) = t
√
κ ctg

√
κt for 0 ≤ t < π/

√
κ,

aω(t) = t
√
−ω ctgh

√
−ωt for 0 ≤ t <∞,

we arrive at

(22) aκ(r)‖J(1)‖2 ≤ 〈J(1), J̇(1)〉 ≤ aω(r)‖J(1)‖2

and

(23) {aκ(r)− 1}‖J(1)‖2 ≤ 〈J̇ − J, J〉(1) ≤ {aω(r)− 1}‖J(1)‖2

provided that
√
κr < π.

By the same scaling argument, we derive from (9) and (20) the inequal-
ities

‖J̇(0)‖2r−2s2κ(rt) ≤ ‖J(t)‖2 ≤ ‖J̇(0)‖2r−2s2ω(rt) if 0 < rt < π/
√
κ.

By setting

bκ(t) =
sin

√
κt√

κt
and bω(t) =

sinh
√
−ωt√

−ωt
,

we arrive at

(24) ‖J̇(0)‖2b2κ(r) ≤ ‖J(1)‖2 ≤ ‖J̇(0)‖2b2ω(r)

provided that
√
κr < π.

Let us collect these results in the following

Theorem 4. Let J be a Jacobi field with J(0) = 0 along a geodesic c : [0, 1] →
M with r = ‖ċ(0)‖, and suppose that the sectional curvature K of M satisfies
ω ≤ K ≤ κ on the arc c. Then, if ω ≤ 0 ≤ κ and r

√
κ < π, the estimates

(22)–(24) hold.

Remark. We observe that aω, bω ≥ 1 and aκ, bκ ≤ 1, in particular aω(0) =
aκ(0) = bω(0) = bκ(0) = 1.

4.8.2 Riemann Normal Coordinates

Let ψ(t, α) be a mapping ψ : [0, R] × [−α0, α0] → M such that, for every
α ∈ [−α0, α0], α0 > 0, the curve c(t) = ψ(t, α) is a geodesic in M . Then
J(t) = ∂ψ

∂α (t, α) is a Jacobi field along c. This follows from the identities

D

∂t

∂ψ

∂α
− D

∂α

∂ψ

∂t
= 0

and
D

∂t

D

∂α
Z − D

∂α

D

∂t
Z = R

(
∂ψ

∂t
,
∂ψ

∂α

)
Z,
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where Z denotes an arbitrary vector field along ψ. In fact, we have

D

∂t

D

∂t

∂ψ

∂α
=

D

∂t

D

∂α

∂ψ

∂t
=

D

∂α

D

∂t

∂ψ

∂t
+R

(
∂ψ

∂t
,
∂ψ

∂α

)
∂ψ

∂t

= 0−R

(
∂ψ

∂α
,
∂ψ

∂t

)
∂ψ

∂t

or

J̈ +R(J, ċ)ċ = 0.

This idea to construct Jacobi fields will be used in the following.
In what follows we identify the tangent space of TpM at v ∈ TpM with

TpM itself and write Tv(TpM) ≡ TpM . The exponential map expp : TpM →
M with center p is defined by expp(v) = c(1) for v ∈ TpM , where c is the
geodesic with c(0) = p, ċ(0) = v.

Let q = expp v. Then, by Gauss’s lemma, the differential (d expp)v :
Tv(TpM) = TpM → TqM satisfies

(25) 〈ξ, η〉p = 〈ξ̃, η̃〉q,

where η ∈ Tv(TpM) =̃TpM is the radial vector parallel to v (i.e. η = v after
identification of TpM and Tv(TpM)) and ξ̃, η̃ are defined by

(25′) ξ̃ = (d expp)v(ξ), η̃ = (d expp)v(η).

A “normal chart” (ϕ,U) with center p ∈ M is given by an open set U ⊂ M
with p ∈ U , and by a mapping ϕ : U → R

m of the form ϕ = j · exp−1
p , where

j : TpM → R
m is a linear isometry, and exp−1

p is supposed to be existing
on U .

Let e1, . . . , em be the orthogonal base of TpM which under j corresponds
to the standard base (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) of the Euclidean space R

m.
Since TpM is identified with Tv(TpM) for all v ∈ TpM , we may consider
e1, . . . , em as m orthogonal vector fields on TpM , and the base vector fields
X1, . . . , Xm of the normal chart (ϕ,U) are given by

Xi(q) = (d expp)ei,

where q = expp v.
Let c be the geodesic with c(0) = p and ċ(0) = v for some v ∈ TpM , and

let ξ = ξkek be an arbitrary vector in TpM . Then c(t) = expp(tv), and, for
each α, ψ(t, α) = expp{t(v+αξ)} defines a geodesic ψ(·, α) : [0,∞) →M with
ψ(0, α) = p. By our previous remarks, J(t) = ∂ψ

∂α (t, 0) therefore is a Jacobi
field along c and, moreover,

∂ψ

∂α
(t, 0) = (d expp)tv(tξ) = tξk(d expp)tvek = tξkXk(c(t)).

Thus we have proved:
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Lemma 3. If c : [0,∞) →M is a geodesic with c(0) = p and ċ(0) = v ∈ TpM ,
then, for every ξ = ξkek, J(t) = tξkXk(c(t)) defines a Jacobi field J along c
with J(0) = 0, J̇(0) = ξkXk(p) and, if q = c(1), with

(26) J(1) = ξkXk(q), J̇(1) =
{
ξ� + Γ �

ik(q)ξiċk(1)
}
X�(q).

For each normal chart (ψ,U) with center p, we may introduce Riemann
normal coordinates by

x = ϕ(q)

for all q ∈ U . Let X1, . . . , Xm be the base vector fields on U corresponding
to the chart (ϕ,U). Then qk�(q) = 〈Xk(q), X�(q)〉q are the components of
the fundamental tensor on U , and Γik�(q) and Γ �

ik(q) denote the Christoffel
symbols of the first and second kind. For the sake of brevity, we set

gk�(x) := gk�

(
ϕ−1(x)

)
, Γik�(x) := Γik�

(
ϕ−1(x)

)
, etc.

without using different notation.
We obviously have

ϕ(p) = 0.

Moreover, (d expp)0 is the identical map, whence Xi(p) = ei, and therefore

gk�(p) = δk� or gk�(0) = δk�.

Let c(t) = expp tv, where v = xkek and j(v) = x = (x1, . . . , xm). Then
η(t) := ϕ(c(t)) satisfies

η̈� + Γ �
ik(η)η̇iη̇k = 0.

On the other hand, the definition of ϕ implies η(t) = tx and therefore c(t) =
ϕ−1(tx) and Γ �

ik(tx)xixk = 0, in particular, Γ �
ik(0)xixk = 0 for all x ∈ R

m.
Therefore,

Γ �
ik(0) = Γik�(0) = 0 or Γ �

ik(p) = Γik�(p) = 0

since Γ �
ik = Γ �

ki.
Let ξ = ek, and η = x�e� be a radial vector that coincides with v = ċ(0).

Then

〈ξ, η〉v = 〈ek, x
�e�〉v = x�δk� = xk.

Since Xi(q) = (d expp)vei, we infer from Gauss’s lemma (25), (25′) that

xk = 〈ξ, η〉v = 〈(d expp)vξ, (d expp)vη〉 = 〈Xk(q), x�X�(q)〉q = x�gk�(q)

= x�gk�(x).
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Thus we have

xk = x�gk�(x) and also xk = x�gk�(x).

Moreover, one also infers from Gauss’s lemma that the distance d(p, q) of the
two points p, q ∈ U with p = c(0), q = c(1) = expp v is given by

d(p, q) = ‖ċ‖ = ‖v‖ = |x|,

where |x| =
√
δk�xkx� denotes the Euclidian length of the vector x ∈ R

m.
Hence we have proved:

Lemma 4. If x = ϕ(q) are Riemann normal coordinates with center p on the
set U ⊂M , then

(27) gik(0) = δik, Γik�(0) = 0, Γ �
ik(0) = 0,

(28) xk = gk�(x)x�, xk = gk�(x)x�,

(29) d(p, q) = |x|.

Moreover, if v = xmem ∈ TpM,x = (x1, . . . , xm) ∈ R
m, and if c(t) denotes

the geodesic expp tv with c(0) = p and ċ(0) = v, then ϕ(c(t)) = tx. �

For some real-valued function f(x), we write

f�(x) =
∂f

∂x�
(x).

Then the following holds:

Lemma 5. If x = ϕ(q) are Riemann normal coordinates, then

(30) xkgik,�(x) = δi� − gi�(x), xkgik
� (x) = δi� − gi�(x),

(31) xixkgik,�(x) = xix�gik,�(x) = xkx�gik,�(x) = 0,

xixkgik
,� (x) = xix�gik

,� (x) = xkx�gik
,� (x) = 0,

(32) x� {Γi�k(x) + Γik�(x)} = δik − gik(x),

(33) x�Γ �
ik(x) = x�Γi�k(x),

(34) xixkΓik�(x) = xix�Γik�(x) = xixkΓ k
i�(x) = xix�Γ k

i�(x) = 0.
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Proof. By differentiating the formulas (28), we obtain (30), and (31) is a
consequence of (28) and (30). The identity Γik�+Γi�k = gk�,i together with (30)
yields (32). Finally, if we take Γi�k = g�jΓ

j
ik into account, (28) implies (33),

and (34) follows from (31). �

Let us now return to the formulas (26) of Lemma 3. If c(t) = expp tv and
v = xkek, then we infer from Lemma 4 that x = ϕ(q) with q = c(1), and
ċk(1) = xk if ċ(t) = ċk(t)Xk(c(t)). Hence, the Jacobi field J(t) = tξkXk(c(t))
fulfills

(35) J̇(1) =
{
ξ� + Γ �

ik(x)ξixk
}
X�(q).

Thus we obtain the relations

(36) ‖J̇(0)‖2 = δk�ξ
kξ�, ‖J(1)‖2 = gk�(x)ξkξ�,

and

〈J̇(1)− J(1), J(1)〉 = Γ �
ik(x)ξixkg�j(x)ξj(37)

= Γijk(x)ξiξjxk.

We also note that r := d(p, q) = |x| = ‖ċ‖.
For any p0 ∈ M , the interior S̊ of the set {V ∈ Tp0M : ‖V ‖ =

d(p0, expp0
V )} is an open, starshaped neighbourhood of 0 in Tp0M . If we

denote the cut locus of p0 in M by C(p0) = expp0
(∂S̊) ⊂ M then the expo-

nential map expp0
: S̊ → M is a C2-diffeomorphism onto S(p0) := expp0

(S̊)
and we can define Riemann normal coordinates x = ϕ(q) for q ∈ U = S(p0).
In addition, if K denotes the sectional curvature of M we define the numbers

κ(A) := max
{

0, sup
A
K
}
,

ω(A) := min
{

0, inf
A
K
}

for A ⊂M,

and

κ(x) := κ([0, x]) = κ([p0, p]),
ω(x) := ω([0, x]) = ω([p0, p]),

where [p0, p] is the geodesic segment between p0 and p which in normal co-
ordinates is just the segment [0, x] on the ray from the origin 0 through x.
Recall that we also use the notation

aκ(t) = t
√
κ ctg

√
κt for 0 ≤ t < π/

√
κ,
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aω(t) = t
√
−ωctgh

√
−ωt for 0 ≤ t <∞

and

bκ(t) =
sin

√
κt√

κt
, bω(t) =

sinh
√
−ωt√

−ωt
.

Theorem 5. Let M be a complete Riemannian manifold and x = ϕ(q) denote
Riemann normal coordinates for q ∈ S(p0). With respect to those coordinates
the following estimates are true:

(38) {aκ(x)(|x|)− 1}giκ(x)ξiξk ≤ Γik�(x)xiξkξ� ≤ {aω(x)(|x|)− 1}gikξ
iξk,

(39) b2κ(x)(|x|)ξiξi ≤ gikξ
iξk ≤ b2ω(x)(|x|)ξiξi,

(40) b2κ(x)(|x|) ≤
√
g(x) ≤ b2ω(x)(|x|)

for all ξ ∈ R
m and all x ∈ ϕ(S(p0)) with |x| · κ(x) < π.

Proof. The inequalities (38) and (39) readily follow from the estimates (23)
and (24) of Theorem 4 and from (36) and (37). Finally relation (28) implies
that λ = 1 is one of the eigenvalues λ1, λ2, λ3 of the matrix gk�(x) and by
virtue of (39) we have b2κ(x)(|x|) ≤ λk ≤ b2ω(x)(|x|) for k = 1, 2, 3. This yields
estimate (40). �

Theorem 6. Let the assumptions of Theorem 5 be satisfied, and set f(q) =
1
2d

2(p, q). Then we have

(41) aκ(q)(r)‖ξ‖2 ≤ (D2f)q(ξ, ξ) ≤ aω(q)(r)‖ξ‖2

for all q ∈ M with r = d(p, q) ≤ R and for ξ ∈ TqM , where (D2f)q(ξ, ξ)
denotes the Hessian form of f at q (cp. Section 1.5 of Vol. 1, equation (28)).

Proof. Let c(t) = expp tv, q = c(1), and ξ = ξkXk(q) ∈ TqM . Then J(t) =
tξkXk(c(t)) forms a Jacobi field J along c with J(1) = ξ and ‖J(1)‖2 = ‖ξ‖2.
Consider normal coordinates x = ϕ(q) with center at p, and set F (x) = f(q).
Then

(D2f)q(ξ, ξ) = F,ik(x)ξiξk − Γ �
ik(x)F,�(x)ξiξk.

Since F (x) = 1
2 |x|2, we get

(D2f)q(ξ, ξ) = δikξ
iξk − Γ �

ik(x)x�ξiξk = Γik�(x)x�ξiξk + gik(x)ξiξk

by virtue of (32) and (33). We then derive from (26) that

〈J̇(1), J(1)〉 = (D2f)q(ξ, ξ)

and thus (41) follows from (22). �
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Theorem 7. Let M be a complete Riemannian manifold, the sectional cur-
vature K of which is bounded from above by

K ≤ κ, κ ≥ 0,

on some ball BR(p) that does not meet the cut locus of its center p. Moreover,
let R

√
κ < π/2. Then any two points q1, q2 of BR(p) can be connected by

a geodesic arc contained in BR(p). This arc does not contain any pairs of
conjugate points, and it is shortest among all arcs in BR(p) that join q1 and q2.

This result was proved by Jost [19].

4.8.3 Surfaces of Prescribed Mean Curvature in a Riemannian Manifold

In the following we consider a complete three-dimensional Riemannian man-
ifold of class C4. Since we restrict our considerations to surfaces in a nor-
mal chart (ϕ,U) with center p0, we shall identify any point q ∈ U ⊂ M
with its normal coordinates x = ϕ(q) ∈ R

3. Correspondingly any subset
K ⊂ U is identified with ϕ(K) and any surface f : B → U is identified with
X = X(w) = ϕ ◦ f(w). In this way we obtain a natural definition of the
Sobolev classes H1

s (B,U) as subsets of H1
s (B,R3). We recall the definition of

a normal neighbourhood U = S(p0) = expp0
S̊, where S̊ is equal to the inte-

rior of {V ∈ Tp0M : ‖V ‖ = d(p0, expp0
V )}. Define the (Riemannian) cross

product of two vector fields Y = Y k(x)Xk, Z = Z�(x)X� with respect to a
chart x by Y × Z :=

√
ggjk(Y ∧ Z)k, where (Y ∧ Z)1 = Y 2Z3 − Y 3Z2 etc.

We then obtain the relation 〈Y1, Y2 × Y3〉 =
√
gY1 · (Y2 ∧ Y3), where the dot

denotes the Euclidean scalar product.

Lemma 6. For any H ∈ C1(U,R) we define the vector potentials

(42) Q(x) = μ(x)x and Q∗(x) =
1√
g(x)

Q(x),

where x ∈ U and

μ(x) = 2
∫ 1

0

t2
√
g(tx)H(tx) dt.

(i) Q and Q∗ are of class C1(U,R3) and

(43) divQ = 2
√
gH, DivQ∗ = 2H,

where divQ denotes the (noninvariantly defined) expression
∑3

k=1
∂Qk

∂xk ,
while DivQ∗ stands for the divergence on M , i.e. we have

divQ∗ + Γ j
jkQ

∗k =
1
√
g
div(

√
gQ∗) (see Chapter 1.5 of Vol. 1).
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(ii) Suppose K ⊂ S(p0) is starshaped with respect to p0 and let

(44)

⎧⎪⎪⎨
⎪⎪⎩

ρ+
K := sup

x∈K
(|x|
√
κ(x)) < π,

ρ−
K := sup

x∈K
(|x|
√
−ω(x)) <∞,

and

(45)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b+(τ) :=
sin τ
τ

for 0 ≤ τ ≤ π,

b−(τ) :=
sinh τ
τ

for τ ≥ 0.

Then we have

(46) q∗
K := sup

K
‖Q∗(x)‖ ≤ 2

3
b2−(ρ−

κ )
b2+(ρ+

κ )
|H|0,K · sup

K
|x|.

Moreover, if in addition K is compact and q∗
K < 1, then for this K

e(x, η) :=
1
2
gjk(x)ηj

αη
k
α +Q(x) · (η1 ∧ η2)(47)

= ‖η1‖2 + ‖η2‖2 + 〈Q∗(x), η1 × η2〉

satisfies Assumption A of Section 4.7 with

m0 := (1− q∗
K)b2+(ρ+

K) and m1 := (1 + q∗
K)b2(ρ−

K).

Proof. (i) The function μ(x) is well defined for x ∈ S(p0) because this set
is starshaped with respect to p0 and the differentiability of Q and Q∗ is
obvious. Equation (43) follows by using an integration by parts.

(ii) The estimate (46) is obtained from (40), the definition of Q∗ and the
monotonicity properties of the functions b− and b−1

+ . Furthermore, if
η = (η1, η2) ∈ R

3 × R
3 then

Q · (η1 ∧ η2) = 〈Q∗, η1 × η2〉 ≤ ‖Q∗‖ ‖η1 × η2‖ ≤ ‖Q∗‖ ‖η1‖ ‖η2‖

≤ 1
2
‖Q∗‖{‖η1‖2 + ‖η2‖2}

and in view of (29) we have

b2+(ρ+
K)|ξ|2 ≤ ‖ξ‖2 ≤ b2−(ρ−

K)|ξ|2.

Combining these estimates we obtain (47),

1
2
(1− q∗

K)b2+(ρ+
K)|ξ|2 ≤ e(x, η) ≤ 1

2
(1 + q∗

K)b2−(ρ−
K)|ξ|2. �
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Definition 1. A subset K of S(p0) is called a “gauge ball” in M with center
p0 if there exists an open neighbourhood U ⊂ S(p0) of p0 which is starshaped
with respect to p0, a function k ∈ C2(U,R) and a real number R > 0 such that

(i) K = KR(p0) := {x ∈ U : k(x) ≤ R2},
(ii) k(0) = 0, Dk(0) = 0,

(iii) γ := infx∈K γk(x) > 0, where for x ∈ U ,

γk(x) := inf{D2k(x; ξ, ξ) : ξ ∈ TxM, ‖ξ‖ = 1}

and D2k(x; ξ, η) = D2kq(ξ, η), q = ϕ(x), stands for the Hessian form
〈DξDk, η〉q. A function k with these properties is called a gauge function.

Remark 1. In local coordinates the coefficients of the Hessian form
D2k(x; ξ, η) are given by

(48) D2k(x;Xj , X�) =
∂2k(x)
∂xj∂x�

− Γm
j� (x)

∂k(x)
∂xm

.

Remark 2. Since we are dealing with Riemann normal coordinates, Lemma 5,
(34) is applicable; in particular it follows that xix�Γ j

i�(x) = 0 for all x ∈ S(p0),
j = 1, 2, 3. This yields by virtue of (48), (ii), (iii) and Taylor’s formula the
following estimates

(49) xj ∂k

∂xj
(x) ≥ γ|x|2 for all x ∈ K, and k(x) ≥ 1

2
γ|x|2 for all x ∈ K.

Therefore, each gauge ball KR(p0) in M is bounded and hence also relatively
compact in M , according to the Theorem of Hopf and Rinow. Also, every
gauge ball is starshaped with respect to p0 = 0. Indeed, (49) implies that the
function g(t) = k(tx) is strictly increasing in t ∈ [0, 1] for any x ∈ K, x �= 0,
which yields the assertion.

The most important example of a gauge function on M is furnished by the
square of the distance function (cp. Lemma 4)

k0(x) := |x|2 = d2(p0, p) on U = S(p0),

where x denotes normal coordinates around p0 = 0. Using relation (28) in
Lemma 4 we find

∂k0

∂xj
= 2xj = 2gj�x

�

and

∂2k0(x)
∂xj∂x�

− Γm
j� (x)

∂k0(x)
∂xm

= 2
∂

∂x�
[gjkx

k]− 2Γm
j� gmkx

k

= 2gjk,�x
k + 2gjkδ

k
� − 2gmnΓjn�gmkx

k

= 2gjk,�x
k + 2gj� − 2Γjk�x

k.



4.8 Surfaces of Prescribed Mean Curvature in a Riemannian Manifold 427

By virtue of (30) and (32) in Lemma 5 we can compute the coefficients of the
Hessian form

D2k0(x;Xj , X�) =
∂2k0

∂xj∂x�
− Γm

j�

∂k0

∂xm
= 2δj� − 2gj�(50)

+ 2gj� + 2Γj�kx
k − 2δj� + 2gj� = 2[gj� + Γj�k]xk,

and

(51) ‖Dk0(x)‖ = 2|x|.

Lemma 7. (i) Suppose that the sectional curvature of M is bounded from
above, i.e. κ(M) < ∞. Then for K = {x ∈ S(p0) : |x| ≤ R} and R <

π

2
√

κ(M)
we have

inf
K
γk0(x) ≥ 2aκ(M)(R) > 0,

and

γk0(x)
‖Dk0(x)‖

≥
aκ(M)

R
> 0 for x ∈ K \ {0}.

(ii) If only ρ+
K = supx∈K(|x|

√
κ(x)) < π

2 holds, then we obtain instead
infx∈K γk0(x) ≥ 2a+(ρ+

K) > 0, and

γk0(x)
‖Dk0(x)‖

≥ a+(ρ+
K)

R
> 0 for x ∈ K \ {0};

here we have put a+(t) := t ctg(t).

Proof. (i) and (ii) follow from the definition of γk0 , relation (50), (51) and (38)
of Theorem 5 and the monotonicity of the functions aκ and a+ respectively.

�

Lemma 8 (Inclusion Principle). Let K = KR(p0) be a compact gauge ball
and consider the Lagrangian (47) and the corresponding variational integral

F(X) =
∫

B

e(X,∇X) du dv

=
∫

B

{
1
2
gij(X)Xi

uαX
j
uα +Q(X) · (Xu ∧Xv)

}
du dv.

Suppose that Q ∈ C1(S(p0),R3) satisfies

(52) divQ = 2
√
gH on S(p0)

and
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(53) |H(x)| ≤ γk(x)
‖Dk(x)‖ for all x ∈ K \ {p0}.

Moreover, denote by X a function of class H1
2 (B,K) ∩ C0(B,R3) satisfying

(54) δF(X,φ) ≥ 0 for every φ ∈ L∞,c(B,R3)

such that X + εφ ∈ H1
2 (B,K) for sufficiently small ε > 0. Then X(B) ⊂ Kr

provided X(∂B) ⊂ Kr for some r ≤ R.

Proof. Define φ = (φ1, φ2, φ3) by

φ�(w) = η(w)g�m(X(w))
∂k

∂xm
(X(w)),

where η ∈ C1
c (B,R) satisfies 0 ≤ η ≤ 1 and X is a solution of (54). Since

K � U,X ∈ C0(B,K) and φ ∈ C0
c (B,R3) there is a K′ � U such that

X−εφ ∈ H1
2 (B,K′) for sufficiently small |ε|. Hence k(X(w)−εφ(w)) is defined

for all w ∈ B, provided |ε| is small. Furthermore we have

k(X − εφ)(55)

= k(X)− εkxj (X)φj + ε2
∫ 1

0

(1− t)kxjx�(X − εtφ)φjφ� dt

= k(X)− εηg�m(X)kx�(X)kxm(X)

+ ε2η2

∫ 1

0

(1− t)kxjx�(X − εtφ)gjm(X)g�n(X)kxm(X)kxn(X) dt.

Since (gjk) is a positive definite matrix and K is compact, there is a constant
c > 0 such that everywhere on B

gjk(X(w))ξjξk ≥ c|ξ|2 for all ξ ∈ R
3.

Also since (X − εφ)(w) ∈ K′ � U for every w ∈ B there is a constant
c′ > 0 such that the integral in (55) can be estimated in absolute value by
c′kxj (X)kxj (X) for all w ∈ B.

Thus we obtain

k(X − εφ) ≤ k(X)− εηckxj (X)kxj (X) + ε2η2c′kxj (X)kxj (X)

which implies that

k(X − εφ) ≤ R for all w ∈ B and 0 < ε < ε0 :=
c

c′ .

Therefore the function −φ = (−φ1,−φ2,−φ3) is admissible in (54) and by
Theorem 5 in Section 4.7 in particular (23), we have

δF(X,φ) =
∫

B

{gj�(X)Xj
uα [ηg�m(X)kxm(X)]uα

+
1
2
∂gj�

∂xn
Xj

uαX�
uαηgmnkxm(X)

+ η divQ(X)(Xu ∧Xv)j · gjmkxm(X)} du dv ≤ 0.
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Using the expression

D2k(X;Xuα , Xuα) =
∂2k(X)
∂xj∂x�

Xj
uαX�

uα − Γm
j�

∂k(X)
∂xm

Xj
uαX�

uα

for the Hessian form of k and

2H(X)〈Xu ×Xv, Dk(X)〉 = 2H(X)
√
gDk · (Xu ∧Xv)

= divQgj�kx�(X)(Xu ∧Xv)j

we obtain the inequality

0 ≥
∫

B

ηuα [k(X)]uα du dv

+
∫

B

{
ηD2k(X;Xuα , Xuα) + 2H(X)〈Xu ×Xv, Dk(X)〉

}
du dv

≥
∫

B

ηuα [k(X)]uα du dv

+
∫

B

η{γk(X)(‖Xu‖2 + ‖Xv‖2)

− 2|H(X)| ‖Xu‖ ‖Xv‖ ‖Dk(X)‖} du dv.

By assumption (53) |H(X)| ≤ γk(X)
‖Dk(X)‖ and because of ‖Xu‖ ‖Xv‖ ≤

1
2 (‖Xu‖2 + ‖Xv‖2) it follows that {. . .} ≥ 0 on B, whence

∫
B

ηuα [k(X)]uα du dv ≤ 0

for all η ∈ C1
c (B) with 0 ≤ η ≤ 1. Therefore k(X(u, v)) ∈ C0(B) ∩H1

2 (B) is
subharmonic in B and the assertion follows from the maximum principle. �

Note that by the strong maximum principle (cp. Gilbarg and Trudinger,
Theorem 8.19) we may even conclude X(B) ⊂ int Kr or X(B) ⊂ ∂Kr.

Now we can prove the main result of this section.

Theorem 8. Let K = KR(p0) be a compact gauge ball in M . Suppose that
the restriction ρ+

K < π on the sectional curvature of M is satisfied and that
Γ is a closed Jordan curve in K such that C(Γ,K) �= ∅. Finally let H be a
function of class C0,β(K), 0 < β < 1, satisfying the conditions

(56) |H|0,K <
3
2

1
supp∈K d(p0, p)

b2+(ρ+
K)

b2−(ρ−
K)

,

and

(57) |H(x)| ≤ γk(x)
‖Dk(x)‖ for all x ∈ K \ {p0}.
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Then there exists an X of class C(Γ,K) ∩ C2,β(B,R3) ∩ C0(B,R3) with

(58) %X� + Γ �
ijX

i
uαX

j
uα = 2H(X)

√
g(X)g�m(Xu ∧Xv)m

in B for ! = 1, 2, 3, and such that the conformality relations

gijX
i
uX

j
u = gijX

i
vX

j
v , gijX

i
uX

j
v = 0

hold everywhere in B. Furthermore X maps ∂B homeomorphically onto Γ .

In other words, we have determined a surface X in the Riemannian man-
ifold M which has mean curvature H(X) in B (except, possibly at isolated
branch points) and which is spanned by the Jordan arc Γ .

Proof of Theorem 8. We extend H continuously to some compact gauge ball
KR+ε(p0), ε > 0, such that (56) and (57) continue to hold for K = KR+ε(p0).
Consider the variational problem

F(X) =
∫

B

{
1
2
gij(X)Xi

uαX
j
uα +Q(X) · (Xu ∧Xv)

}
du dv → min

in C(Γ,KR+ε) where Q(x) = μ(x) · x, μ(x) = 2
∫ 1

0
t2
√
g(tx)H(tx) dt as in

Lemma 6. Relation (46) and assumption (56) imply that F(·) is coercive;
also KR+ε is quasiregular. Hence we may apply Theorems 3 and 4 in Sec-
tion 4.7 and obtain the existence of a conformally parametrized solution
X ∈ C(Γ,KR+ε) ∩ C0(B,KR+ε) ∩ C0,α(B,R3). By a reasoning analogous to
the one in the proof of Theorem 8 in Section 4.7 one can see that the first
variation formula

δF(X,φ)

=
∫

B

{
gj�X

j
uαX�

uα +
1
2
∂gj�

∂xn
Xj

uαX�
uαφn + 2H

√
g(Xu ∧Xv)jφj

}
du dv

holds for all φ ∈
◦

H1
2(B,R

3)∩L∞(B,R3), cp. Theorem 5 in Section 4.7. More-
over, it follows from the minimum property ofX that the variational inequality

δF(X,φ) ≥ 0

holds for all φ ⊂
◦

H1
2 (B,R3) ∩ L∞(B,R3) with X + εφ ∈ H1

2 (B,KR+ε). The
inclusion principle Lemma 8 now implies that the coincidence set Ω = {w ∈
B : X(w) ∈ ∂KR+ε} must be empty. Finally Theorem 7 in Section 4.7 shows
that X ∈ C2,β(B,KR)∩C0(B,R3) is a conformal solution of the system (58).

The topological character of the boundary mapping follows in a standard
way. Theorem 8 is completely proved. �

We finally consider the special case k = k0.
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Theorem 9. Let KR = {x ∈ M : |x| ≤ R} ∩ S(p0) be a compact gauge ball,
where k0(x) = |x| = d(p0, p). Suppose that

R <
π

2
√
κ(M)

and ω(M) > −∞.

Let Γ ⊂ K be a closed Jordan curve such that C(Γ,K) is nonempty and
suppose that H is a function of class C0,β(K,R), 0 < β < 1, for which

|H|0,K < min

{
aκ(M)(R)

R
,

3b2+(R
√
κ(M))

2b2−(R
√
−ω(M))

}
.

Then the assertion of Theorem 8 holds. �

4.9 Scholia

4.9.1 Enclosure Theorems and Nonexistence

The observation that a connected minimal surface lies in the convex hull of
its boundary (cf. Theorem 1 of Section 4.1) has been made a long time ago
and was, for instance, known to T. Radó (see e.g. [21]). Apparently S. Hilde-
brandt [11] was the first to observe that also certain nonconvex sets can be
used for enclosing minimal surfaces and H-surfaces, and to apply this fact
for proving nonexistence of connected minimal surfaces whose boundaries are
“too far apart”, cf. Theorem 2.3 of Section 4.1. Earlier, J.C.C. Nitsche [13,15]
had proved various results about the “extension” of minimal surfaces with two
boundary curves, thereby obtaining nonexistence results; cf. also Nitsche [28],
pp. 474–498. The results by Hildebrandt [11] were improved and generalized in
several directions; a survey of this work is presented in Sections 4.1–4.4, based
on papers by Osserman and Schiffer [1], Böhme, Hildebrandt, and Tausch [1],
Gulliver and Spruck [1,2], Hildebrandt [8,11], Hildebrandt and Kaul [1], U.
Dierkes [1–4,6,11], Dierkes and Huisken [1,2], and Dierkes and Schwab [1]. We
particularly mention the geometric maximum principle in Dierkes [6] which
is based on a pull–back version of the standard monotonicity formula from
geometric measure theory due to M. Grüter [2] (see also Section 2.6 of this
volume as well as Böhme, Hildebrandt, and Tausch [1] for a related technique).
Furthermore we refer to the maximum principles proved in Gulliver, Osser-
man, and Royden [1], R. Gulliver [7], and particularly we mention the work
of K. Steffen [6] and of Duzaar and Steffen [5–7] where geometric maximum
principles of an optimal form are derived. Theorems 3–6 in Section 4.3 are
due to Dierkes [11] and Dierkes and Schwab [1]. It is interesting to note that
– despite its simplicity – the argument used here is of considerable generality
and is applicable to a number of important situations. For example, K. Ecker
[2,3] could give a very simple proof of the “neck-pinching” phenomenon for
mean curvature flow by using a parabolic version of the polynomial
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pj =
n+k−j∑

i=1

|xi|2 − (n− j)
j

n+k∑
i=n+k−j+1

|xi|2 (for k = 1).

Furthermore, U. Clarenz [1,2] applied the same argument to F-minimal im-
mersions which arise as extremals of parametric integrals of the type

∫
M

F(X,N) dA

for suitable homogenous integrands F depending on the position X and the
normal of an immersion. Again, general necessary conditions for F-minimal
surfaces are obtained, and the method can be generalized to correspond-
ing parabolic flow problems as well. For details in this direction see Win-
klmann [1].

Apparently the first barrier-principle for minimal immersions with arbi-
trary codimension is due to Jorge and Tomi [1]; however, see also the geomet-
ric inclusion principle for energy minimizers obtained earlier by R. Gulliver
[1]. The barrier principle for submanifolds with arbitrary codimension and
bounded mean curvature, formulated in Theorem 1 of Section 4.4, is due to
Dierkes and Schwab [1].

Geometric inclusion principles valid for conformal H1
2 -solutions of the vari-

ational inequality (9), Section 4.4, were found by Steffen [6], cp. also Duzaar
and Steffen [5–7]. The versions presented in Theorem 2 and 3 require a priori
C1 ∩ H2

2,loc-regularity of the solution, which is, however, always satisfied in
the application we have in mind later in Section 4.7, due to certain regular-
ity results for obstacle problems, cp. Section 4.8. Our proof of Theorem 2 in
Chapter 4.4 is self-contained and independent of the argument in Duzaar and
Steffen [5–7]; it cannot be extended to H1

2 -subsolutions. The proof of Theo-
rem 3 in Chapter 4.4 is reminiscent to Proposition 2.4 in Duzaar and Steffen
[7] and uses the same type of test function argument. We also mention the ge-
ometric inclusion principle of Gulliver and Spruck [2] which uses strict energy
minimality of the solution considered. In fact, pushing in a surface under an
assumption on the boundary curvature similar to those in Theorems 2 and 3
of Section 4.4 saves energy, and hence energy minimizers cannot touch the
boundary of the inclusion domain.

The following terminology due to P. Levy has become customary (see
Nitsche [28], pp. 364, 671–672, [37], pp. 354, 373): A closed set K in R

3 is
said to be H-convex if for every point P ∈ ∂K there is a locally supporting
minimal surface M, i.e.: For any P ∈ M there is an ε > 0 such that K∩Bε(P )
lies on one side of M ∩Bε(P ).

If ∂K is a regular C2-surface then H-convexity of K means that the
mean curvature Λ of ∂K with respect to the inward normal is nonnega-
tive.
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4.9.2 The Isoperimetric Problem. Historical Remarks and References
to the Literature

Among all closed curves of a given length, the circle encloses a domain of
maximal area. This is the classical isoperimetric property of the circle which
was already known in antiquity. The first transmitted proof of this property
is due to Zenodorus who lived between 200 B.C. and 100 A.D. Concerning
the history of the isoperimetric problem we refer to Gericke [1]. Of the later
proofs we mention that of Galilei [1], pp. 57–60 who prompts Sagredo to say
at the end of the discussion:

“Mà dove siamo trascorsi à ingolfarci nella Geometria . . .”3

The problem became again popular through the work of Steiner who con-
tributed many beautiful ideas to this and to related questions. Yet all of his
proofs were imperfect as they only showed that no other curve than the cir-
cle can enclose maximal area. It remained open whether there is a curve of
given perimeter whose interior maximizes area. The first rigorous proof of the
isoperimetric property of the circle was given by Weierstrass in his lectures,
and his student H.A. Schwarz established the isoperimetric property of the
sphere, a much more difficult question. A beautiful discussion of the isoperi-
metric problem can be found in Blaschke’s classic [3]: Kreis und Kugel (with
a historical survey in §14).

Fig. 1. Rügen, an island in the Baltic Sea, furnishes an example of a planar domain whose

area A is far less than L2/4π, L being the length of its circumference. It shows how bold it

is to draw conclusions about the area of a domain from the time it takes to sail around it

3 It seems that Galileo was enthusiastic by rights as his reasoning (according to an oral

communication by E. Giusti) can be turned into a proof that is correct by our standards.
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Concerning references to the modern literature we refer to Nitsche [28],
pp. 290–292, and particularly to Osserman’s survey paper [19] that provides
a thorough discussion of all pertaining results as well as a report on related
questions.

The isoperimetric inequality for minimal surfaces of the type of the disk
was first proved by Carleman [3] in 1921.

Beckenbach and Radó [1] proved in 1933: Let S be a surface in R
3 with

Gauss curvature K. Then the inequality 4πA ≤ L2 holds for all simply con-
nected domains Ω in S (A = area S, L = length ∂S) if and only if K is
nonpositive.

The simple connectivity of Ω is crucial as one immediately realizes by
looking a long cylinders. Moreover, in the Beckenbach–Radó theorem it is es-
sential that S is a regular surface, whereas in Carleman’s theorem the minimal
surface may have branch points. Note that in Theorems 1 and 2 of Section 4.5
the minimal surface is allowed to have arbitrarily many branch points.

It is still an open question whether the sharp isoperimetric inequality

(1) A(X) ≤ 1
4π
L2(X)

holds for any compact minimal surface X : M → R
3 with boundary, or if

additional assumptions on X are truly necessary for (1) to be true. It is,
however, known that certain extra-assumptions suffice to ensure the validity
of (1). For instance, Osserman and Schiffer [1] proved (1) for minimal surfaces
X : M → R

3 defined on an annulus M , and Feinberg [1] showed that (1) also
holds for annulus-type surfaces X : M → R

n, n ≥ 2. The Osserman–Schiffer
result implies that the sharp isoperimetric inequality also holds for minimal
surfaces of the topological type of the Möbius strip, see Osserman [18]. The
beautiful result of Theorem 3 of Section 4.5 was found by Li, Schoen, and
Yau [1]. Amazingly it is strong enough to (essentially) imply the Osserman–
Schiffer result. Other interesting conditions guaranteeing (1) were discovered
by Alexander-Hoffmann-Osserman [1] and by Osserman [17].

A variant of the linear isoperimetric inequality (21) in Section 4.5 using
the oscillation of a minimal surface X was pointed out by Nitsche [28]. Küster
[3] showed that the radius of the smallest ball containing X(B) leads to the
optimal version of the inequality for which equality holds precisely for plane
disks.

Concerning generalizations of the isoperimetric inequality toH-surfaces we
refer e.g. to papers by Heinz and Hildebrandt [2], Heinz [11], and Kaul [2,3].
A survey of the entire field of geometric inequalities can be found in the treatise
of Burago and Zalgaller [1]. B. White [3] showed that, for each integer n > 1,
there is a smooth Jordan curve Γ in R

4 such that (1/n)α(nΓ ) < (1/k)(α(kΓ )
for 1 ≤ k < n. Here α(kΓ ) denotes the least area (counting multiplicities) of
any oriented surface with boundary kΓ (= k-fold multiple of Γ ). In a different
way, examples of this kind were somewhat earlier constructed by F. Morgan.
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4.9.3 Experimental Proof of the Isoperimetric Inequality

There are two simple soap film experiments by means of which one can demon-
strate the isoperimetric property of the circle. For instance, take a wire that
has the shape of a plane curve, attach a handle to it, and dip it into a soap
solution. On removing it from the liquid, a soap film spanning the wire will
be formed. Then place a thin loop of thread onto the film and break the part
of the soap film inside of the loop with a blunt tool. As the soap film wants
to reduce its area, it will pull the thread tight into the shape of a circle (see
Fig. 2). The soap film has minimal energy and therefore minimal area; hence
the interior of the strained loop is maximizing area, and since the thread
apparently has the form of a circle, we have an “experimental proof” of its
isoperimetric property. Further experiments and results with soap films and
threads will be described in Chapter 5.

Another experimental proof will be obtained by blowing a soap bubble
between two parallel wetted glass plates. Let us begin with a bubble in the
form of a hemisphere sitting on one of the plates. By blowing more air into the
bubble, it will enlarge until it touches the other plate, whereupon it changes
into a circular cylinder that meets both plates perpendicularly in circles (see
Fig. 3). The cylinder has minimal area among all surfaces enclosing a fixed
volume which touch both plates (a discussion of related mathematical ques-
tions can be found in papers by Athanassenas [1,2] and Vogel [1]), whence one
concludes that the circle has minimal length among all closed curves bound-
ing the same amount of area. But this “dual property” is equivalent to the
isoperimetric property of the circle. This second experiment was apparently
first described by Courant (see Courant and Robbins [1]).

Fig. 2. Experimental proof of the isoperimetric inequality

4.9.4 Estimates for the Length of the Free Trace

The first estimate of this kind was derived by Hildebrandt and Nitsche [4];
an improved version of their result with the optimal constant 2 is due to
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Fig. 3. Another experimental demonstration of this isoperimetric property of the circle

Fig. 4. (a), (b) Experimental proof of the isoperimetric property of the circle. (c) If the

thread is pulled down, one obtains a curve of constant curvature (see Chapter 5). (a), (c)

courtesy of Institut für Leichte Flächentragwerke, Stuttgart – Archive
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Küster [2]. Finally Dziuk [8] removed the assumption that the minimal surface
be free of branch points of odd order on the free boundary. We have presented
this result as Theorem 2.

Using the idea of Hildebrandt and Nitsche, Ye [2] has stated estimates
of the length of the free trace and of the area of a minimal surface with a
partially free boundary in terms of the length of the fixed boundary, in case
that the supporting surface is a strict graph (= λ-graph). Ye also provided the
example described in Remark 4 which shows that the estimates of Section 4.6,
Proposition 1 and Theorem 1, are in a sense optimal. Küster [2] contributed
Remark 7, which shows that neither a bound on the Gauss curvature of the
support surface S nor a bound on its mean curvature will imply an estimate
such as stated in Theorem 2 of Section 4.6; instead, one needs bounds on both
principal curvatures of S. Hence the R-sphere condition is really adequate in
Theorem 2 and by no means artificial.

The partition problem was treated in the paper [2] of Grüter, Hildebrandt,
and Nitsche. These authors derived boundary regularity for arbitrary station-
ary solutions as well as bounds on the length of the free trace such as stated
in formulas (58)–(63) of Section 4.6.

We finally mention that an approach to estimates on the length of the free
trace for area-minimizing solutions of free boundary problems can already be
found in the fundamental work of H. Lewy [4].

Osserman [18] pointed out that there are close connections between the
isoperimetric inequality and an inequality suggested by Gehring: Given in R

3

any closed Jordan curve Γ of length L(Γ ) which is linked with a closed set Σ
such that dist (Γ,Σ) ≥ r, then L(Γ ) ≥ 2πr. Osserman was able to establish
a proof of Gehring’s inequality by means of the isoperimetric inequality. Gen-
eralizations to higher dimensions (n > 3) follow from work of White [1] and
Almgren [7]. Other proofs and generalizations were given by Bombieri and
Simon [1], Gage [1], and Gromov [1].

4.9.5 The Plateau Problem for H-Surfaces

In Sections 4.7 and 4.8 we have discussed the Plateau problem for H-surfaces
in Euclidean space and in Riemannian manifolds. For H = const this problem
was first treated by E. Heinz [2], H. Werner [1,2], and S. Hildebrandt [4,7], and
for variable H by Hildebrandt [5,6]. The Riemannian case was first studied by
Hildebrandt and Kaul [1] and R. Gulliver [3]. Further pioneering work in this
field is due to H. Wente [1–4,6–8], K. Steffen [1–6], Brezis and Coron [1,3],
and M. Struwe [5,7]. The optimal results are due to K. Steffen [6] and Duzaar
and Steffen [6].

We particularly mention the solution of Rellich’s problem by the work of
Brezis and Coron [1,3], M. Struwe [5,7], and K. Steffen [6].

In Section 4.7 (Theorems 3–6) we have outlined several regularity results
for variational problems with obstacles due to S. Hildebrandt [12,13]; for simi-
lar results see Tomi [4]. We have added some important remarks to make these
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results accessible to applications for the existence procedure for H-surfaces,
cp. Theorems 8 and 9. The existence result for H-surfaces in a closed ball is
due to Hildebrandt [5,6]. Our proof given here is a slight modification of his
argument. Theorem 9 was found independently and almost simultaneously by
Gulliver and Spruck [1] and Hildebrandt [10].

A slight improvement of Gulliver and Spruck’s [2] existence theorem for H-
surfaces contained in arbitrary closed sets K with suitably curved boundaries
is presented in Theorem 10. We have replaced their pushing in argument for
minimizers by the geometric maximum principles Enclosure Theorem 2 and 3
of Section 4.4.

H. Wente [1–4] and K. Steffen [1–6] have initiated a completely different
approach to prove existence theorems for H-surfaces by invoking the isoperi-
metric inequality in a suitable way. In his pioneering work, Wente [1] consid-
ered the energy functional for constant H,

EH(x) = D(x) + 2HV,

where

V (x) =
1
3

∫
B

X · (Xu ∧Xv) du dv

is the volume enclosed by the surface X and the cone over the boundary trace
of X. Using the isoperimetric inequality in R

3 he was able to prove lower
semicontinuity of EH(·) in a class of surfaces with suitably small Dirichlet
integral. In a mayor achievement, Steffen [1–6] generalized and improved these
results to variable H.

The following result holds:

Theorem 1. (Wente, Steffen). Suppose that

sup
R3

|H| ≤ c

√
π

AΓ
,

where AΓ is the infimum of area of all surfaces spanned by Γ and c =
√

2/3.
Then there is an H-surface X bounded by Γ .

Clearly this theorem gives better existence results than the Theorems 6–9
in Section 4.7 for curves Γ which are of the shape of a curled and knotted
rectangle of side lengths ε and 1

ε spread over a large region of R
3. Probably

the optimal constant c in Theorem 1 is c = 1. According to Heinz [12] (see
Section 4.7, Theorem 1), c cannot be larger than one, and a result by Struwe
for constant H indicates that c = 1 is the best possible value. Using con-
cepts from geometric measure theory, Steffen [3,4] introduced his notion of
an H-volume, replacing the volume term VH above, thereby obtaining several
striking existence theorems under very natural conditions on the prescribed
curvature H. A typical result is the following
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Theorem 2. (Steffen [4]). Suppose H : R
3 → R satisfies

∫
R3
|H|3 dx < 9π

2
.

Then there is an H-surface X bounded by Γ which is as regular as H (and
Γ ) permit. In particular, if H is continuous then X is of class C1,α(B,R3)
for every 0 < α < 1, and if H is locally Hölder continuous on R

3 then X is
of class C2,α and solves the H-surface system in the classical sense.

It may surprise that no condition on the boundary curve Γ is needed
here. We remark that all results mentioned above possess suitable analogs for
H-surfaces in three-dimensional manifolds M , see Hildebrandt and Kaul [1],
Gulliver [3], Steffen [6], and Duzaar and Steffen [6,7]. Corresponding results
hold also for H-surfaces which are restricted to lie in given sets K of R

3,
see Steffen [4] and Dierkes [2]. We mention in particular the survey articles
by Steffen [6] and Duzaar and Steffen [6,7] for a thorough account of exis-
tence results for H-surfaces in three-manifolds which are not restricted to a
coordinate patch.

Surfaces with prescribed mean curvature vector in manifolds of arbitrary
dimensions were found by R. Gulliver [1].

The differential geometric background of Section 4.8 is taken from papers
by Hildebrandt and Kaul [1], H. Karcher [6], and S. Hildebrandt [17].



Chapter 5

The Thread Problem

The problem to be studied in this chapter is another generalization of the
isoperimetric problem which is related to minimal surfaces. Consider a fixed
arc Γ with endpoints P1 and P2 connected by a movable arc Σ of fixed length.
One may conceive Γ as a thin rigid wire, at the ends of which a thin inexten-
sible thread Σ is fastened. Then the thread problem is to determine a minimal
surface minimizing area among all surfaces bounded by the boundary config-
uration 〈Γ,Σ〉. The particular feature distinguishing this problem from the
ordinary Plateau problem is the movability of the arc Σ.

In Section 5.1 we shall describe several variants of the thread problem, and
we shall depict some experimental solutions. Most of these questions have not
yet been treated mathematically; that is, no existence proof can be found
in the literature. We shall state the mathematical formulation of the thread
problem in the simplest case, and in Section 5.2 we shall outline the existence
proof given by H.W. Alt for this case. The main difficulty to be overcome is
that one can no longer preassign the topological type of the parameter domain
on which the desired minimizer will be defined. The regularity of the movable
part Σ of the boundary of the area-minimizing surface will be investigated in
Section 5.3. The main result is that Σ is a regular real analytic arc of constant
curvature.

5.1 Experiments and Examples. Mathematical Formulation
of the Simplest Thread Problem

Imagine N points P1, P2, . . . , PN in R
3 which are connected by k fixed arcs

Γ1, . . . , Γk and by l movable arcs Σ1, Σ2, . . . , Σl in such a way that the re-
sulting configuration 〈Γ,Σ〉 := 〈Γ1, . . . , Γk, Σ1, . . . , Σl〉 consists of n disjoint
closed curves C1, C2, . . . , Cn of finite length. The lengths of the arcs Σj are
thought to be fixed. Experimentally we can realize the points P1, . . . , PN as
small holes in a plate or as endpoints of thin rods stuck in a plate. The arcs

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,
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Γi are made of thin rigid wires, and the curves Σj can be realized by thin and
essentially weightless synthetic fibres. Into such a boundary configuration we
want to span a surface of minimal area, which can experimentally be achieved
by dipping the array into a soap solution and then withdrawing it. This way
a soap film will be generated which models a surface of minimal area within
the configuration. The following figures show a few such experiments. One ob-
tains particularly attractive and surprising results if all arcs are flexible, and
one may very well assume that several of the threads Σj form closed loops
which, by flexible connections, are attached to the ends of supporting rods.
The resulting soap films will often be multiply connected minimal surfaces.

We may also conceive boundary configurations consisting of wires Γi, of
threads Σj , and of supporting surfaces S1, . . . , Sm on which parts of the
boundary of the soap film are allowed to move freely.

Still different soap film experiments can be carried out by using threads as
supporting ridges. This leads to a kind of mathematical questions which are
to be viewed as obstacle problems with movable thin obstacles. Apparently
such questions have not yet been treated.

We want to mention that thread experiments are used by architects to de-
sign light weight structures such as roofs and tents. Beautiful models are de-
picted in the publications of Frei Otto and collaborators (cf. Otto [1], Glaeser
[1]).

Let us now consider the simplest case of a thread problem that was already
mentioned in the introduction. Here we want to minimize area among all
surfaces spanned in a boundary frame that consists of a fixed rectifiable Jordan
arc Γ and of a movable curve Σ of given length L, having the same endpoints
P1 and P2 as Γ, P1 �= P2. We note that the thread experiment may lead to
solutions which are no longer connected surfaces but disintegrate into several
components, even if Γ is a smooth arc. One can even envision boundary
configurations 〈Γ,Σ〉 for which the solution of the thread problem decomposes
into countably many components since the movable arc Σ may in part adhere
to the fixed arc Γ . The existence result to be described in the next section
will take this phenomenon into account. We shall obtain solutions that are
parametrized on a compact connected parameter domain B, the interior B̊ of
which consists of at most countably many components.

Let us now specify the mathematical setting of the thread problem P(Γ,L)
that will be solved in the following section.

Notational Convention. In Sections 5.1 and 5.2 we shall, deviating from
our usual notation, denote a disk of center z0 and radius r by B(z0, r) instead
of Br(z0).

An admissible parameter domain for the thread problem is defined to be a
compact set B which can be represented in the form

(1) B = [−1, 1] ∪
νB⋃
ν=1

Bν , 1 ≤ νB ≤ ∞.
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Fig. 1a. Thread experiments. Courtesy of Institut für Leichte Flächentragwerke, Stuttgart

– Archive

Here the sets Bν with ν ∈ N and ν ≤ νB denote the closures of mutually
disjoint disks B(uν , rν), rν > 0 whose centers uν are contained in the open
interval {u : −1 < u < 1} on the real axis. Moreover, all disks Bν are supposed
to be contained in the unit disk B(0, 1).

Introducing the numbers aν and bν by

(2) aν := uν − rν , bν := uν + rν ,

we then have

(3) aν , bν ∈ [−1, 1].

Let us denote the set of all admissible parameter domains B by B.
For every B ∈ B, we introduce the two mappings p+

B and p−
B : [−1, 1] → ∂B

by

p±
B(u) :=

⎧⎪⎨
⎪⎩
u u ∈ ∂B ∩ [−1, 1]

if

u± i
√
r2ν − (u− uν)2 |u− uν | ≤ rν .

(4)



444 5 The Thread Problem

Fig. 1b. Thread experiments. Courtesy of Institut für Leichte Flächentragwerke, Stuttgart

– Archive

Let c be a curve mapping a subinterval I ′ = [α, β] of I = [−1, 1] into R
3,

c : I ′ → R
3.

Then the length of c is given by

(5) l(c, I ′) = sup
n∑

j=1

|c(tj)− c(tj−1)|

where the supremum is to be taken with respect to all possible decompositions
α = t0 < t1 < t2 < · · · < tn = β of I ′.
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Fig. 2. (a) A parameter domain, and (b) a corresponding solution to the thread problem

consisting of two components

If I ′ = I we shall write
l(c) := l(c, I).

For any two intervals I1 and I2 in R we introduce the set M(I1, I2) of
continuous, nondecreasing mappings θ : I1 → I2 of I1 onto I2, and we set
M(I) := M(I, I).

We observe that the length L of the movable curve Σ is bounded from
below by the distance of its endpoints P1 and P2,

(6) |P1 − P2| ≤ L.

Given a rectifiable Jordan curve Γ with endpoints P1, P2, and a number
L satisfying 0 < |P1 − P2| < L, we are now going to define the set C(Γ,L) of
admissible surfaces X for the thread problem as follows:

Definition 1. The set C(Γ,L) consists of the mappings X ∈ C0(B,R3) ∩
H1

2 (B̊,R3) with B ∈ B which satisfy the following two conditions:
(i) l(X ◦ p+

B) ≤ L;
(ii) there exists some mapping θ ∈ M(I), I = [−1, 1], such that θ|∂B∩I =

id|∂B∩I and X ◦ p−
B = γ ◦ θ where γ denotes a fixed Lipschitz continuous

representation of Γ which maps I bijectively onto Γ .

In other words, a function X is admissible if it is parametrized on some
domain B ∈ B, if it is continuous and has a finite Dirichlet integral, if the
length of the free part X ◦ p+

B is less or equal to L, and if X ◦ p−
B yields a

weakly monotonic parametrization of Γ . Note that Γ and Σ may have one or
more interior points in common, that is, Σ may in part adhere to Γ .

The thread problem P(Γ,L) now consists in finding some surface X ∈
C(Γ,L), defined on some parameter domain B ∈ B, such that X minimizes
the Dirichlet integral



446 5 The Thread Problem

D(X, B̊) =
1
2

∫
B̊

|∇X|2 du dv(7)

among all surfaces of C(Γ,L).
The solution of this problem will be carried out in two steps. First we shall

single out a set B ∈ B which can serve as a parameter domain of a solution
of P(Γ,L); this is the nonstandard part of the construction. We shall obtain
such domains B as minimal elements with respect to inclusion. In a second
step we shall construct a minimizing mapping X parametrized over B.

Let us now introduce the following three infima d, d+, and d−:

d = d(Γ,L) := inf{D(X, B̊) : X ∈ C(Γ,L)};(8)
d+ = d+(Γ,L) := inf{D(X) : X ∈ C(Γ,L), B = B(0, 1)},(9)

where D(X) := D(X,B(0, 1));
d− = d−(Γ,L) := inf{δ : δ has the approximation property (A)}.(10)

The approximation property (A ) is defined as follows: There exists some de-
creasing sequence of real numbers λn > 0 with λn → 0 and a sequence
of surfaces Xn ∈ C(Γ,L + λn) with parameter domains Bn ∈ B such that
D(Xn, B̊n) → δ as n→∞.

An obvious consequence of these definitions is the relation

(11) d− ≤ d ≤ d+.

We shall prove that
d− = d = d+

holds provided that we assume

|P1 − P2| < L.

In what follows we have to characterize a minimal parameter domain B
among all domains in B. To this end it will be convenient to single out a
certain subclass B∗(Γ,L) of B which is defined as follows:

Definition 2. B∗(Γ,L) is the class of admissible parameter domains B ∈
B with the following property: There exists a decreasing sequence of positive
numbers λn with λn → 0 and a sequence of surfaces Xn ∈ C(Γ,L + λn),
parametrized over B, such that D(Xn, B̊) → d− as n→∞.

5.2 Existence of Solutions to the Thread Problem

Consider now the particular case P(Γ,L) of the thread problem that was
formulated at the end of the previous section. Our main goal is the proof of
the following existence result which is formulated as
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Theorem 1. Suppose that |P1 − P2| < L < l(Γ ). Then we obtain

d−(Γ,L) = d(Γ,L) = d+(Γ,L).

Moreover, there exists an admissible parameter domain B and a surface X ∈
C(Γ,L) parametrized over B such that

D(X, B̊) = d(Γ,L).

This minimizer X is a minimal surface, that is, X is of class C2(B̊,R3) and
satisfies the equations

ΔX = 0,

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0,

in B̊, and furthermore, the free boundary of X is of maximal length, i.e.,

l(X ◦ p+
B) = L.

The proof of this theorem is divided into two parts. The first one is con-
cerned with the existence of a minimal parameter domain B ∈ B. In the
second part of our discussion we will show that such a parameter set B is the
domain of a solution X for the thread problem P(Γ,L). This will be achieved
by establishing the existence of a minimizing sequence {Xn} whose elements
are defined on B and converge to a solution X of P(Γ,L).

PART I. Construction of a Minimal Parameter Set B ∈ B.

We begin our discussion with the following

Lemma 1. Suppose that X is a surface of class C(Γ,L) which is defined on
B ∈ B, and let ε be an arbitrary positive number. Then there exists some
Xε ∈ C(Γ,L+ ε), parametrized over B(0, 1), such that

|D(Xε)−D(X, B̊)| < ε.

(Recall that D(Xε) denotes the Dirichlet integral with the unit disk B(0, 1)
as domain of integration.)

Proof. An admissible domain B is of the form given by formula (1) of Sec-
tion 5.1. Since l(Γ ) <∞ and

D(X, B̊) =
νB∑

ν=1

D(X, B̊ν) <∞,

we can find a number ν0 ∈ N such that
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∑
ν>ν0

D(X, B̊ν) < ε

and ∑
ν>ν0

l(γ, [aν , bν ]) < ε.

Set
B′ := I ∪B1 ∪B2 ∪ · · · ∪Bν0 , I = [−1, 1],

and

X1(w) :=

{
X(w) if w ∈ B1 ∪B2 ∪ · · · ∪Bν0 ,

γ(w) if w ∈ ∂B′ ∩ [−1, 1].

Then we infer X1 ∈ C(Γ,L+ ε) and

Fig. 1. A parameter domain with ν0 = 2, and the numbers aν , cν , dν , bν

|D(X, B̊)−D(X1, B̊′)| ≤ ε.(1)

For each v0 with 0 < v0 < min{r1, r2, . . . , rν0}, there exist numbers cν , dν

with aν < cν < dν < bν such that p−
B′ (cν) = cν − iv0, p−

B′ (dν) = dν − iv0; cf.
Fig. 1.

Now we choose v0 so small that also the following conditions are fulfilled:
(i) X1(u− iv0) is absolutely continuous with respect to u ∈

⋃
ν≤ν0

[cν , dν ]
and has a square integrable first derivative;

(ii) l(X1 ◦ p−
B′ , [aν , cν ]) + l(X1 ◦ p−

B′ , [dν , bν ]) ≤ ε
2ν0

.

For some arbitrary number δ > 0, we define the set

D = D(δ) := D+ ∪D− ∪ Q

by

Q := {w = u+ iv : |u| < 1, 0 < v < δ},
D+ := {w = u+ iv : w − i(δ + v0) ∈ B̊′ and v > δ},
D− := {w = u+ iv : w − iv0 ∈ B̊′ and v < 0}.
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Fig. 2. The domain D = D(δ)

Fig. 3. The definition of X2

We note that D̊ is conformally equivalent to the unit disk. Thus, in order
to prove the assertion of the lemma, we shall construct a suitable comparison
function X2 defined on D. This function is defined as follows:

X2(w) :=

{
X1(w − i(δ + v0)) if w ∈ D+,

X1(w − iv0) if w ∈ D−.

For 0 ≤ v ≤ δ, we set

X2(w) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1(u− iv0) u ∈ [cν , dν ], 1 ≤ ν ≤ ν0

γ(u) u ∈ [−1, 1] \
⋃

ν≤ν0
(aν , bν)

if
γ(Sν(u)) u ∈ [aν , cν ]
γ(Tν(u)) u ∈ [dν , bν ].

Here Sν is a linear mapping from [aν , cν ] onto [aν , θ1(cν)], and Tν is the lin-
ear map from [dν , bν ] onto [θ1(dν), bν ], where θ1 ∈ M(I) is the transformation
I → I that corresponds to X1. In other words, γ ◦ θ1 = X1 ◦ p−

B′ .
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We infer from the construction that X2 is of class C0(D) ∩ H1
2(D̊).

Furthermore, we have

(2) D(X2, D̊+ ∪ D̊−) = D(X1, B
′)

and

D(X2, Q̊ ) ≤ 1
2

∫
Q

|∇X2|2 du dv =
δ

2

∫ 1

−1

|DuX2|2 du(2′)

≤ δ

ν0∑
ν=1

∫ dν

cν

|DuX1(u− iv0)|2 du+ δ

∫ 1

−1

|γ̇(t)|2 dt.

We, moreover, note that the mapping

X2 : ∂D ∩ {Imw ≤ 0} → Γ

is weakly monotonic, and from (ii) we derive the estimate

l(X2, ∂D ∩ {Imw > 0})
≤ l(X1 ◦ p+

B′ ) + 2
∑
ν≤ν0

{l(X1 ◦ p−
B′ , [aν , cν ]) + l(X ◦ p−

B′ , [dν , bν ])}

≤ l(X1 ◦ p+
B′ ) + ε ≤ L+ 2ε.

Now let τ : B(0, 1) → D be a conformal mapping of B(0, 1) onto D̊, leaving
the two points w = ±1 fixed. Then Xε := X2 ◦ τ is of class C(Γ,L+ 2ε), and
we infer

|D(Xε)−D(X, B̊)| = |D(X2, D̊)−D(X, B̊)|
≤ |D(X2, D̊)−D(X1, B̊′)|+ |D(X1, B̊′)−D(X, B̊)|
≤ δ · const + ε,

taking (1), (2) and (2′) into account. Since we can choose δ > 0 arbitrarily
small, the assertion of Lemma 1 is proved. �

The following result is an easy consequence of Lemma 1.

Proposition 1. The class C(Γ,L) is nonvoid, and B(0, 1) ∈ B∗(Γ,L).

Proof. Define

γ∗(eit) :=

⎧⎨
⎩
γ(1) + t

π [γ(−1)− γ(1)] 0 ≤ t ≤ π
if

γ
(
−1 + 2 t−π

π

)
π ≤ t ≤ 2π,

where γ(−1) = P1 and γ(1) = P2. Then γ∗ : ∂B → R
3 is Lipschitz continuous,

and a straight-forward computation shows that X∗(w) := |w|γ∗( w
|w| ) is of class

C(Γ,L). Hence C(Γ,L) is nonempty.
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It follows from the definition of d− that there is a sequence of surfaces
Xn ∈ C(Γ,L+ 1

n ) parametrized on domains Bn ∈ B such that

|D(Xn, B̊n)− d−| < 1
n

for all n ∈ N.

By virtue of Lemma 1, we can choose a sequence of mappings X∗
n ∈ C(Γ,L+ 2

n )
which are parametrized over B(0, 1) and satisfy

|D(X∗
n)−D(Xn, B̊n)| ≤ 1

n
, n = 1, 2, . . . .

Thus we infer
|D(X∗

n)− d−| ≤ 2
n
, n = 1, 2, . . . ,

and it follows that B(0, 1) ∈ B∗(Γ,L). �

In the next lemma we prove the existence of sets B ∈ B∗(Γ,L) which are
minimal with respect to an ordering of sets defined by inclusion.

Lemma 2. Suppose that L < l(Γ ). Then any set of elements B ∈ B∗(Γ,L)
which is totally ordered with respect to inclusion possesses an infimum in
B∗(Γ,L).

Proof. Let {B∗
α}α∈A be an arbitrary set of elements B∗

α ∈ B∗(Γ,L) with the
index set A which is totally ordered with respect to inclusion, and set

B :=
⋂

α∈A

B∗
α.

We have to show that B is an element of B∗(Γ,L). The first step will be to
prove

(i) B̊ �= ∅.

In fact, if B̊ were empty, we would have

I = clos

( ⋃
α∈A

(I \ B̊∗
α)

)
, I := [−1, 1].

Then, for any partition

−1 = t0 < t1 < t2 < · · · < tk = 1

of I, there exist numbers tnj ∈
⋃

α∈A(I \ B̊∗
α) with 0 ≤ j ≤ k and n ∈ N such

that
lim

n→∞
tnj = tj for j = 0, 1, . . . , k.
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Since the set {B∗
α}α∈A is totally ordered, we infer that, for every n ∈ N, there

exists an index αn ∈ A such that tnj ∈ I \ B̊∗
αn

holds for all j = 0, . . . , k. As
all domains B∗

αn
are contained in B∗(Γ,L), n = 1, 2, . . . , there exist surfaces

Xn ∈ C(Γ,L+ 1
n ) parametrized over B∗

αn
. This implies

k∑
j=1

|γ(tnj )− γ(tnj−1)| =
k∑

j=1

|Xn(tnj )−Xn(tnj−1)|

≤ l(Xn ◦ p+
B∗

αn
) ≤ L+

1
n
→ L as n→∞.

Since

lim
n→∞

k∑
j=1

|γ(tnj )− γ(tnj−1)| =
k∑

j=1

|γ(tj)− γ(tj−1)|,

we arrive at
k∑

j=1

|γ(tj)− γ(tj−1)| ≤ L.

As the partition t0, t1, . . . , tk of I may be chosen arbitrarily, we conclude that

l(Γ ) ≤ L

which contradicts our assumption l(Γ ) > L.
Now we turn to the proof of

(ii) B ∈ B∗(Γ,L).

We have to find surfaces defined on B whose Dirichlet integrals converge
to d−, and whose free boundaries (threads) exceed L only by an arbitrarily
small amount.

First of all, for every ε > 0 there exists some ν0 ∈ N with 1 ≤ ν0 ≤ νB

such that

(3)
∑
ν≥ν0

l(γ, [aν , bν ]) ≤ ε.

For ν ≥ ν0 we define

Qν := {w = u+ iv : aν ≤ u ≤ bν , |v| ≤ ε2−ν−1}

and choose conformal mappings τν : B̊ν → Q̊ν from B̊ν onto Q̊ν with fixed
points aν , bν . Here B1, B2, . . . denote the components of the domain B (cf.
Section 5.1, (1)). Then the surfaces

Xν := γ(Re τν), ν ≥ ν0,

are continuous and have the Dirichlet integrals
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Fig. 4. The case ν0 = 2

D(Xν , B̊ν) =
1
2

∫
Bν

|∇Xν |2 du dv(4)

=
1
2

∫ bν

aν

∫ ε2−ν−1

−ε2−ν−1
|γ̇(u)|2 du dv = ε2−ν−1

∫ bν

aν

|γ̇(u)|2 du.

Moreover, Xν ◦ p−
B is monotonic on [αν , bν ].

For α ∈ A and ν ∈ {1, 2, . . . , ν0} there is a uniquely determined ν∗ =
ν∗(ν, α) with 1 ≤ ν∗ ≤ νB∗

α
such that Bν ⊂ B∗

α,ν∗ . Here B∗
α,ν∗ is the ν∗-th

component of the domain B∗
α; cf. Section 5.1, (1). Since {B∗

α}α∈A is totally
ordered, we infer from the definition of B that there is an index α0 ∈ A such
that the disks B̊∗

α0,ν∗ are mutually disjoint, and that

(5)
∫ aν

a0
ν

|γ̇| dt+
∫ b0ν

bν

|γ̇| dt ≤ ε

ν0

holds. Here aν and bν are the numbers associated with B which are defined
in formula (2) of Section 5.1, and a0

ν , b
0
ν are the corresponding numbers for

B∗
α0,ν∗ , i.e. [a0

ν , b
0
ν ] := I ∩B∗

α0,ν∗ .
We have finitely many (at most ν0 + 1) open intervals I ⊂ I such that

(6)
∫ 1

−1

|γ̇| dt−
∑
ν≤ν0

∫ bν

aν

|γ̇| dt =
∑

{I }

∫
I

|γ̇| dt.

For any such interval I, there is a partition

t0 < t1 < t2 < · · · < tk, tj ∈ I,

such that

(7)
∫

I

|γ̇|dt ≤ ε

ν0 + 1
+

k∑
j=1

|γ(tj)− γ(tj−1)|.

Passing to a suitable refinement of this partition, we may also assume that
there is a subset K of {1, 2, . . . , k} with the following properties:
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(I) j �∈ K if and only if (tj−1, tj) ⊂ (aν , bν) for some ν > ν0;
(II) j ∈ K if and only if [tj−1, tj ] ⊂ I \ B̊.

Moreover we can choose an index α0 ∈ A such that the following can be
achieved:

The values tj ∈ I \ B̊ are replaced by values t′
j ∈ I \ B̊∗

α0
; all other values

tj remain unaltered and will be called t′
j ; we have t′

0 < t′
1 < · · · < t′

k and

(8)
∑
j∈K

|γ(tj)− γ(tj−1)| ≤
ε

ν0 + 1
+
∑
j∈K

|γ(t′
j)− γ(t′

j−1)|.

We infer from (3), (7), and (8) that

∑
{I }

∫
I

|γ̇| dt ≤ ε+
∑
ν>ν0

∫ bν

aν

|γ̇| dt+
∑

{I }

∑
j∈K (I )

|γ(tj)− γ(tj−1)|(9)

≤ 3ε+
∑

{I }

∑
j∈K (I )

|γ(t′
j)− γ(t′

j−1)|.

After these preparations, we proceed as follows: Since B∗
α0

∈ B∗(Γ,L),
there is some surface X ∈ C(Γ,L+ ε) defined on B∗

α0
such that

D(X, B̊∗
a0

) ≤ d− + ε.(10)

Furthermore, for each ν with 1 ≤ ν ≤ ν0, there exists a conformal mapping
τν : Bν → B∗

α0,ν∗ such that X◦τν ◦pB−
ν

furnishes a monotonic parametrization
of that subarc of Γ which corresponds to [aν , bν ]. Then X ′

ν := X ◦ τν defines
a continuous surface defined on Bν satisfying

D(X ′
ν , B̊ν) = D(X, B̊∗

α0,ν∗ ).(11)

By virtue of (5) we obtain

(12) l(X ′
ν ◦ p+

B , [aν , bν ]) ≤ l(X ◦ p+
B∗

α0
, [a0

α, b
0
ν ]) +

ε

ν0
.

Let us introduce the surface Xε by

Xε(w) :=

⎧⎨
⎩
X ′

ν(w) w ∈ Bν , 1 ≤ ν ≤ ν0;
if

γ(w) w ∈ I \
⋃ν0

ν=1Bν .

Then we have Xε ∈ H1
2 (B̊,R3)∩C0(B,R3), and it follows from (4), (10) and

(11) that

D(Xε, B̊) ≤ D(X, B̊∗
α0

) +
∑
ν>ν0

ε2−ν−1

∫ 1

−1

|γ̇|2 dt(13)

≤ d−(Γ,L) + ε+ ε

∫ 1

−1

|γ̇|2 dt.
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The length of the movable part of the boundary of Xε is estimated by

l(Xε ◦ p+
B)(14)

≤ l
∑
ν≤ν0

l(X ′
ν ◦ p+

B , [aν , bν ]) +
∑

{I }

∫
I

|γ̇| dt

≤ ε+
∑
ν≤ν0

l(X ◦ p+
B∗

α0
, [a0

ν , b
0
ν ]) + 3ε+

∑
{I }

∑
j∈K

|γ(t′
j)− γ(t′

j−1)|

= 4ε+
∑
ν≤ν0

l(X ◦ p+
B∗

α0
, [a0

ν , b
0
ν ]) +

∑
{I }

∑
j∈K

|X(t′
j)−X(t′

j−1)|

≤ 4ε+ l(X ◦ p+
B∗

α0
) ≤ 5ε+ L,

on account of (12), (9) and of X ∈ C(Γ,L+ ε).
The relations (13) and (14) yield B ∈ B∗(Γ,L). �

Applying Zorn’s lemma we infer from this lemma that the following result
holds true:

Proposition 2. The set B∗(Γ,L) possesses minimal elements with respect to
inclusion, provided that L < l(Γ ).

PART II. Existence of a Solution of P(Γ,L).

Let B ∈ B∗(Γ,L) be a minimal element the existence of which was established
in Proposition 2. We want to prove that B is the parameter domain of some
minimizer X.

Lemma 3. If X is a function of class H1
2(B(0, 1),R3) with a trace ξ ∈

L2(∂B(0, 1),R3) on the circle ∂B(0, 1) which is of finite total variation∫
∂B(0,1)

|dξ|, then the boundary values ξ : ∂B(0, 1) → R
3 actually are con-

tinuous.

The proof of this result is an immediate consequence of the Courant–
Lebesgue lemma and has essentially been carried out in part (iii) of the proof
of Proposition 3 in Section 4.7 of Vol. 1. In fact, we even know that ξ is
absolutely continuous (see Theorem 1 of Section 4.7 of Vol. 1).

Now we turn to the crucial step in proving Theorem 1, which is to prove

Theorem 2. Let B ∈ B∗(Γ,L) be a minimal parameter domain with respect
to inclusion. Then there exists some X ∈ C(Γ,L), parametrized over B, such
that

D(X, B̊) = d−(Γ,L) = d(Γ,L);

thus X is a solution of the minimum problem P(Γ,L).
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Proof. Since B ∈ B∗(Γ,L), there is a sequence of surfaces Xn ∈ C(Γ,L+ 1
n ),

n ∈ N, satisfying

D(Xn, B̊) ≤ d−(Γ,L) +
1
n
≤M

for some constant M > 0. Denote by θn ∈ M(I) the mappings associated with
Xn, i.e.,

θn|∂B∩I = id|∂B∩I , Xn ◦ p−
B = γ ◦ θn.

Moreover, let uν , rν , aν , bν be the numbers corresponding to B, and let Bν , 1 ≤
ν ≤ νB , be the components of B (see Section 5.1, (1) and (2)). Applying
suitable conformal reparametrizations, we can achieve that

θn(uν) = uν for n ∈ N and 1 ≤ ν ≤ νB .

We claim that the mappings θn|[aν ,bν ], n ∈ N, are equicontinuous for every
ν ∈ N with ν ≤ νB.

Otherwise we could find some ε0 > 0, some ν ≤ νB and two sequences
{tn}, {t′

n} with aν ≤ tn < t′
n ≤ bν , converging to some point t0 ∈ [aν , bν ],

such that

(15) |θn(tn)− θn(t′
n)| ≥ ε0 for all n ∈ N

is satisfied. (Actually, this would hold true for some subsequence of {θn}. How-
ever, by renumbering this subsequence we could achieve that (15) is fulfilled.)
We want to show that (15) leads to a contradiction. In order to do so, we dis-
tinguish the two cases (i) aν < t0 < bν , and (ii) t0 = aν or bν . Case (i) can be
excluded by the discussion given in Chapter 4 of Vol. 1, where we have proved
that the boundary values of a minimizing sequence for the ordinary Plateau
problem are equicontinuous. By this reasoning we obtain that the functions
γ ◦θn|[cν ,dν ] are equicontinuous for every interval [cν , dν ] ⊂ (aν , bν). The injec-
tivity of γ then implies that also the functions θn|[cν ,dν ] are equicontinuous,
which contradicts (15). In fact, there is some n0 ∈ N such that

aν < cν ≤ tn < t′
n ≤ dν < bν

holds for n > n0 and for suitably chosen numbers cν and dν . Then it follows
from (15) that

|γ(θn(tn))− γ(θn(t′
n))| ≥ c(ε0) > 0

for some fixed number c(ε0) > 0 and for all n > n0, which contradicts the
equicontinuity of the sequence γ ◦ θn|[cν ,dν ]. Thus case (i) cannot occur.

Now we want to exclude case (ii) as well.
It suffices to show that t0 = aν is impossible since the case t0 = bν can be

handled analogously. Thus let us assume that t0 = aν .
We can choose sequences of numbers δn, rn, and s′

n with δn ∈ (0, 1), δn →
0, 0 < rn < δn, t

′
n < s′

n ≤ uν , p
−
B(s′

n) ∈ ∂B(aν , rn), and with
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{∫ ∣∣∣∣ ∂∂ϕXn(rn, ϕ)
∣∣∣∣ dϕ
}2

≤ 2πM
log 1/δn

.

Here r, ϕ denote polar coordinates around aν , and the integral on the left-
hand side is extended over the ϕ-interval in [−π, π] corresponding to the arc
in B ∩ ∂B(aν , rn) which contains ϕ = 0; cf. Section 4.4 of Vol. 1, Lemma 1.

There is a subsequence of {θn(s′
n)} converging to some value u0; renum-

bering this sequence we may assume that θn(s′
n) → u0 as n → ∞. By virtue

of (15) we have u0 ≥ aν + ε0.
Choose values sn with aν ≤ sn ≤ uν and θn(sn) = u0, and consider the

two closed disks D1 and D2 defined by

D̊1 := B

(
aν + u0

2
,
u0 − aν

2

)
, D̊2 := B

(
u0 + bν

2
,
bν − u0

2

)
.

Our aim is to define surfaces Yn on D1 ∪ D2 such that the surfaces
X∗

n : B∗ → R
3, given by

X∗
n(w) :=

⎧⎨
⎩
Xn(w) w ∈ B \Bν ,

for
Yn(w) w ∈ D1 ∪D2,(16)

B∗ := (B \Bν) ∪D1 ∪D2 ∈ B,

Fig. 5. The disks D1, D2, and Bν
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are of class C(Γ,L+ λn) with λn → 0 and satisfy

D(Xn, B̊∗) → d−(Γ,L)

as n→∞. This, clearly, would contradict the minimality of B, and therefore
we would also have ruled out t0 = aν (or bν), i.e. case (ii) cannot occur either.

Passing to a subsequence and then renumbering, we can achieve that either

s′
n ≤ sn for all n ∈ N

or else
sn ≤ s′

n for all n ∈ N

holds true. We only treat the first case; the second one can be dealt with in
an analogous way.

Consider topological mappings

τn : D1 → B(aν , rn) ∩Bν , σn : D2 → Bν \B(aν , rn)

with τn(aν) = aν , τn(u0) = p−
B(s′

n), σn(bν) = bν , σn(u0) = p−
B(sn) such that

D̊1 is conformally mapped onto B(aν , rn) ∩ B̊ν by τn, and that σn maps D̊2

conformally onto B̊ν \B(aν , rn).
Note that

(Xn ◦ τn)(u0) = Xn(p−
B(s′

n)) = γ(θn(s′
n)) → γ(u0),

(Xn ◦ σn)(u0) = Xn(p−
B(sn)) = γ(θn(sn)) → γ(u0).

If we had (Xn ◦ τn)(u0) = γ(u0), we would simply define

Yn :=

{
Xn ◦ τn in D1,

Xn ◦ σn in D2,

and the proof would be complete. As we only know Xn ◦ τn(u0) → γ(u0) as
n → ∞, we have to adjust the data correctly. The idea is the same as in the
proof of Lemma 1: we have to fill in the missing parts of Γ , thereby slightly
changing the Dirichlet integral and the length of the free boundary of Xn.
This way we obtain from Xn ◦ τn : D1 → R

3 a new surface (Xn ◦ τn)δn =: Zn

with Zn(u0) = γ(u0) such that

Yn(w) :=

{
Zn(w) for w ∈ D1,

Xn ◦ σn(w) for w ∈ D2

satisfies both
D(Yn, D̊1 ∪ D̊2) ≤ D(Xn, B̊ν) + δn

and
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l(Yn ◦ p+
D1∪D2

, [aν , bν ])

≤ l(Xn ◦ p+
B , [aν , bν ]) + δn + 2

∫ ∣∣∣∣ ∂∂ϕXn(rn, ϕ)
∣∣∣∣ dϕ

+ 2l(γ, [θn(s′
n), θn(sn)])

= l(Xn ◦ p+
B , [aν , bν ]) + λn, lim

n→∞
λn = 0,

and that the surfaces X∗
n : B∗ → R

3 defined by (16) are of class C(Γ,L+ λn),
λn → 0. This finishes the proof of equicontinuity of the mappings θn|[aν ,bν ], n ∈
N, for every ν ∈ N with 1 ≤ ν ≤ νB .

Now we can apply the reasoning of Chapter 4 of Vol. 1 to the sequence
{Xn} of surfacesXn ∈ C(Γ,L+ 1

n ) which are defined on the minimal parameter
domain B ∈ B∗(Γ,L) and satisfy

(17) D(Xn, B̊) ≤ d−(Γ,L) +
1
n
≤M for all n ∈ N.

From this inequality, together with

sup
∂B

|Xn| ≤M ′ for all n ∈ N

and some constant M ′ independent of n, we obtain that {Xn} is a bounded
sequence in H1

2(B̊,R
3).

Passing to a suitable subsequence of Xn and renumbering it, we can
assume that the sequence {Xn} tends weakly in H1

2(B̊,R
3) to some limit

X ∈ H1
2(B̊,R

3) such that Xn tends a.e. and also in the L2-sense on ev-
ery boundary ∂Bν to the trace of X. By virtue of the equicontinuity result
proved above we can assume that the mappings θn ∈ M(I) associated with
Xn tend uniformly on I to some limit θ ∈ M(I) such that the relations

θ|∂B∩I = id|∂B∩I , ξ ◦ p−
B = γ ◦ θ

hold true for some continuous, weakly monotonic mapping ξ from p−
B(I) onto

Γ , with the property that ξ and X coincide a.e. on p−
B(I) \ I. Thus we can

use ξ to define X on p−
B(I) by setting X(w) := ξ(w) for w ∈ p−

B(I), and we
have X ◦ p−

B = γ ◦ θ.
Moreover, on account of Helly’s selection theorem1 and of the assumption

l(Xn ◦ p+
B) ≤ L+ 1

n , we can assume that Xn ◦ p+
B tends to X ◦ p+

B everywhere
on I, and that l(X ◦ p+

B) ≤ L.
By Lemma 3 we conclude that X has continuous boundary values on every

∂Bν , and consequently X is continuous on ∂B.
Recall that Dirichlet’s integral is weakly lower semicontinuous on

H1
2(B̊,R

3), that is, the weak convergence of Xn to X implies

D(X, B̊) ≤ lim inf
n→∞

D(Xn, B̊).

1 Cf. for instance Natanson [1], p. 250.
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Then, by (17), we arrive at

D(X, B̊) ≤ d−(Γ,L).

Consider now mappings Hν ∈ C0(Bν ,R
3)∩H1

2(B̊,R
3) which are harmonic in

Bν and coincide with X on ∂Bν . Then we also have

D(Hν , B̊ν) ≤ D(X, B̊ν).

Set

X∗ :=

{
X on B \ B̊,
Hν on Bν , ν ∈ N, 1 ≤ ν ≤ νB .

The surface X∗ is of class C0(B,R3) ∩H1
2(B̊,R

3) and satisfies

D(X∗, B̊) ≤ D(X, B̊),

l(X∗ ◦ p+
B) = l(X ◦ p+

B) ≤ L

and
X∗ ◦ p−

B = γ ◦ θ, θ|∂B∩I = id|∂B∩I .

Consequently we have X∗ ∈ C(Γ,L), whence

d(Γ,L) ≤ D(X∗, B̊).

Thus we obtain

d−(Γ,L) ≤ d(Γ,L) ≤ D(X∗, B̊) ≤ D(X, B̊) ≤ d−(Γ,L),

and therefore

d(Γ,L) = d−(Γ,L) = D(X∗, B̊) = D(X, B̊)

which implies that X = X∗ holds, and that X is a solution of P(Γ,L). �

Theorem 3. Suppose that L < l(Γ ). If X ∈ C(Γ,L) satisfies D(X, B̊) =
d(Γ,L), then X is a minimal surface, that is, X is nonconstant, the equations

ΔX = 0,
|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

are satisfied in B̊, and it follows that

l(X ◦ p+
B) = L.

(That is, for any solution of P(Γ,L), the movable part of the boundary is
taut.)
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Proof. The minimal-surface property of X can be derived as in Chapter 4 of
Vol. 1, since each of the mappings X|Bν solves a Plateau problem with respect
to the boundary curve Γν := X(∂Bν). (Here Bν denotes the disk-components
of the parameter domain B of X.) Thus we only have to prove

l(X ◦ p+
B) = L.

Suppose that this inequality were not true. Then, because of X ∈ C(Γ,L), we
would have

l(X ◦ p+
B) < L.

We recall that B̊1 = B(u1, r1), and we set w0 := u1 + ir1. Then we can find
some r0 ∈ (0, r1) such that

l(X ◦ p+
B) + l(X,B1 ∩ ∂B(w0, r0)) < L.

Let τ be a topological mapping of B1 \ B(w0, r0) onto B1 with τ(a1) = a1

and τ(b1) = b1 that maps the interior of B1 conformally onto B1 \B(w0, r0).
We use τ to define the comparison map X∗ ∈ C(Γ,L) by defining

X∗(w) :=

⎧⎨
⎩
X(τ(w)) w ∈ B1,

for
X(w) w ∈ B \B1.

Then it follows that
d(Γ,L) ≤ D(X∗, B̊),

and because of

D(X∗, B̊) = D(X, B̊)−D(X, B̊1 ∩ B(w0, r0))
= d(Γ,L)−D(X, B̊1 ∩ B(w0, r0))

we infer that X|B(w0,r0) = const, whence X|B1 = const, as X|B1 is harmonic
and therefore real analytic. The relation X|B1 = const is a contradiction to
X(a1) �= X(b1). �

Proposition 3. If |P1 − P2| < L then it follows that

d−(Γ,L) = d+(Γ,L).

Proof. Case (i). Suppose that L ≥ l(Γ ). Then we define the surface Z : Q→
R

3 on Q = {u + iv : |u| ≤ 1, |v| ≤ δ} by setting Z(u + iv) := γ(u). It follows
that

D(Z, Q̊) = δ

∫ 1

−1

|γ̇(u)|2 du.

Consider a homeomorphism of B(0, 1) onto Q which maps B(0, 1) conformally
onto Q̊. Then X := Z ◦ τ is of class C(Γ,L), and we have
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d+(Γ,L) ≤ D(X,B(0, 1)) = D(Z, Q̊) = δ

∫ 1

−1

|γ̇(u)|2 du.

As we can make δ > 0 arbitrarily small, it follows that d+(Γ,L) = 0 whence

d(Γ,L) = d−(Γ,L) = d+(Γ,L) = 0.

Case (ii). Assume now that l(Γ ) > L. By Theorem 2, there is some X ∈
C(Γ,L) such that

d−(Γ,L) = d(Γ,L) = D(X, B̊),

where B is the parameter domain of X.
For given ε > 0 there exists some surface

Xε ∈ C(Γ,L+ ε2) ∩H1
2(B(0, 1),R3)

with
D(Xε, B(0, 1)) ≤ D(X, B̊) + ε = d−(Γ,L) + ε,

if we take Lemma 1 into account.
Consider now the surface X∗ ∈ C(Γ, |P1−P2|)∩H1

2(B(0, 1),R3) which was
constructed in the proof of Proposition 1. We define the 1-parameter family
of surfaces

X∗
ε := εX∗ + (1− ε)Xε, 0 < ε ≤ L− |P1 − P2|.

Then we infer X∗
ε ∈ C(Γ,Lε) where Lε is estimated by

Lε ≤ ε|P1 − P2|+ (1− ε)(L+ ε2)
= ε|P1 − P2|+ L+ ε2 − εL− ε3 ≤ L− ε3 < L.

It follows that

d+(Γ,L) ≤ D(X∗
ε ) for 0 < ε ≤ L− |P1 − P2|.

Furthermore we have

D(X∗
ε ) = ε2D(X∗) + ε(1− ε)

∫
B

〈∇X∗,∇Xε〉 du dv + (1− ε)2D(Xε)

≤ d−(Γ,L) + εK

for some number K > 0 which does not depend on ε with

0 < ε ≤ L− |P1 − P2|.

Letting ε→ +0, we arrive at the inequality

d+(Γ,L) ≤ d−(Γ,L).

On the other hand, we have

d−(Γ,L) ≤ d(Γ,L) ≤ d+(Γ,L)

whence
d−(Γ,L) = d(Γ,L) = d+(Γ,L). �
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Theorem 4. If X minimizes the Dirichlet integral D(X,B) in the class
C(Γ,L), then X also furnishes the minimum of the area functional A(X,B)
with C(Γ,L).

Proof. This result can be derived from Morrey’s lemma on ε-conformal map-
pings that we have described in Section 4.5 of Vol. 1. One can proceed in the
same way as in the proof of Theorem 4 in Section 4.5 of Vol. 1. The proof can
also be obtained by the method described in Section 4.10 of Vol. 1. �

5.3 Analyticity of the Movable Boundary

In this section we want to investigate the regularity of the movable part Σ
of a solution X of the thread problem. Let us begin by considering a special
case. We assume that Γ is a planar curve. By a projection argument it can
easily be seen that X has to be contained in the plane E determined by Γ . In
fact, if we assume without loss of generality that E is the plane {z = 0}, and
that X(w) = (x(w), y(w), z(w)) is a solution of P(Γ,L), then also X∗(w) :=
(x(w), y(w), 0) is a surface of class C(Γ,L), and we have

D(X∗, B̊) ≤ D(X, B̊).

The equality sign holds if and only if D(z, B̊) = 0, and D(z, B̊) vanishes if and
only if z(w) = 0 holds for all w ∈

⋃νB

ν=1Bν . As X is an absolute minimizer for
the thread problem, there cannot be any surface in C(Γ,L) with a Dirichlet
integral smaller than D(X, B̊). Thus we infer that z(w) = 0 on B̊. Since
z ∈ H1

2(B̊), we also have z(w) = 0 a.e. on B \ I. Finally, on B \
⋃ν0

ν=1Bν

the function z(w) coincides with the z-component of Γ so that z(w) vanishes
identically on I and therefore on all of B.

Thus, X is in fact a planar surface, and by a classical result of analysis,
every part of the movable curve Σ not attached to Γ must be a circular arc,
that is, a regular real analytic curve of constant curvature.

It is the aim of this section to show that the same result holds true for
any solution X of P(Γ,L), even if Γ is not a planar curve. As by-product of
our investigation we shall also obtain that all free (i.e. nonattached) parts of
Σ are asymptotic curves of constant geodesic curvature on X, and it can be
proved that the curvature is the same for all free parts of Σ.

Clearly we can restrict our discussion of X to any part X|Bν where Bν

is an arbitrary disk-component of the parameter domain B of X. Thus we
shall assume that X is a solution of a thread problem which is parametrized
on a disk, say, the unit disk. For this reason we shall from now on abolish
the notation of Sections 5.1 and 5.2 and, instead, return to another notation
similar to that used in previous chapters. To be precise, we now denote by B
the open disk

B = {w = u+ iv : |w| < 1}
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in the u, v-plane C =̂ R
2, and by C+ and C− its boundary parts

C+ = {w = u+ iv : |w| = 1, v ≥ 0},
C− = {w = u+ iv : |w| = 1, v ≤ 0}.

Fig. 1.

The set C(Γ,L) of comparison functions X(w), w ∈ B, now consists of all
surfaces of class C0(B,R3)∩H1

2(B,R
3) which map C− in a weakly monotonic

way onto a given rectifiable Jordan arc Γ , and whose total variation on C+ is
equal to a fixed number L,

(1) l(Σ) :=
∫

C+
|dX| = L.

Here Σ denotes the movable part X : C+→ R
3 of the boundary of any X ∈

C(Γ,L). We assume that

(2) |P1 − P2| < L < l(Γ ),

where P1 and P2 denote the endpoints of Γ , and l(Γ ) stands for the length of
the fixed arc Γ .

Let X ∈ C(Γ,L) be a minimizer of the Dirichlet integral

DB(X) =
1
2

∫
B

|∇X|2 du dv

among all surfaces in C(Γ,L). Such a minimizer will now be called a solution
of the thread problem P(Γ,L). We already know that any such solution has to
be a minimal surface. That is, the equations

ΔX = 0,

|Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0

hold true in B, and X(w) �≡ const on B.
Now we state the main result of this section.
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Fig. 2.

Theorem 1. Let X ∈ C(Γ,L) be a minimal surface, that is, X satisfies

(3) ΔX = 0 in B

as well as the conformality relations. Introducing polar coordinates r, θ around
the origin by w = reiθ, these relations can be written as

(4) r2|Xr|2 = |Xθ|2, 〈Xr, Xθ〉 = 0.

Moreover, suppose that X minimizes the Dirichlet integral within the class
C(Γ,L). Then X(w) can be continued analytically as a minimal surface across
the arc C+, and it has on C+ no branch points of odd order nor any true
branch points of even order. If, moreover, the boundary mapping X : ∂B → R

3

is assumed to be an embedding, then X(w) has no false branch points of even
order on C+ either. Correspondingly, in this case, the free trace Σ defined by
X : C+ → R

3 is a regular, real analytic curve of constant curvature κ �= 0.

For the following we recall some results on the boundary behaviour of
minimal surfaces with a finite Dirichlet integral and with boundary values
of bounded variation. The assumption DB(X) < ∞ implies that X(r, θ) =
X(reiθ) possesses L2-boundary values X(1, θ) on ∂B which are assumed in
the L2-sense as r → 1− 0. From

∫ 2π

0
|dX(1, θ)| <∞ we conclude that X(1, θ)

depends continuously on θ (cf. Lemma 3 of Section 5.2). More subtle results
have been derived in Section 4.7 of Vol. 1. For the convenience of the reader,
we collect the pertinent statements in the following lemma.

Lemma 1. Let X : B → R
3 be a disk-type minimal surface, i.e. let (3) and

(4) be satisfied, and denote by X∗ : B → R
3 the adjoint minimal surface to X

which, up to an additive constant, is uniquely determined by the equations

(5) Xr =
1
r
X∗

θ ,
1
r
Xθ = −X∗

r .

Assume that DB(X) <∞ and
∫

∂B
|dX| <∞. Then we have:
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(i) X and X∗ are of class C0(B,R3) and

DB(X) = DB(X∗),
∫

∂B

|dX| =
∫

∂B

|dX∗|.(6)

(ii) The boundary values X(1, θ) and X∗(1, θ) are absolutely continuous
functions of θ, and Xθ(r, θ), X∗

θ (r, θ) tend in the L2-sense to the derivatives
Xθ(1, θ), X∗

θ (1, θ) of the boundary values X(1, θ) and X∗(1, θ) respectively as
r → 1− 0. Then, on account of (5), we deduce that also Xr(r, θ) and X∗

r (r, θ)
converge in L2 to boundary values as r → 1− 0, and we set

Xr(1, θ) = lim
r→1−0

Xr(r, θ), X∗
r (1, θ) = lim

r→1−0
X∗

r (r, θ).

It follows that a.e.

(7) Xr(1, θ) = X∗
θ (1, θ), Xθ(1, r) = −X∗

r (1, θ),

(8) |Xr(1, θ)| = |Xθ(1, θ)|, 〈Xr(1, θ), Xθ(1, θ)〉 = 0.

(iii) If C is an open subarc of ∂B, and ξ is a test function of class
H1

2(B,R
3) ∩ L∞(C,R3) with ξ = 0 on ∂B \ C, then

(9)
∫

B

〈∇X,∇ξ〉r dr dθ =
∫

C

〈Xr, ξ〉 dθ.

(iv) If X �≡ const on B, then Xθ(1, θ) and X∗
θ (1, θ) vanish at most on a

subset of [0, 2π] of one-dimensional measure zero.

Now we turn to the proof of Theorem 1 which we want to break up into
three parts. In the first one we consider a stationary version of the thread
problem; here the existence of a Lagrange multiplier is supposed. Thereafter
we prove that every minimizer in C(Γ,L) is in fact a solution of the stationary
problem by establishing the existence of a Lagrange multiplier, and in the
third part we sketch how branch points can be excluded by using the minimum
property.

Definition. A minimal surface X : B → R
3 is said to be a stationary so-

lution of the thread problem with respect to some open subarc C of ∂B
if the following holds:
(i) DB(X) <∞,

∫
∂B
|dX| <∞;

(ii) there is a real number λ �= 0 such that

(10)
∫

B

〈∇X,∇ξ〉r dr dθ + λ

∫
C

〈
Xθ

|Xθ|
, ξθ

〉
dθ = 0

holds for all ξ ∈ C1(B,R3) with ξ = 0 on ∂B \ C.
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Taking the identity (9) into account we arrive at
∫

C

(〈Xr, ξ〉+ λ|Xθ|−1〈Xθ, ξθ〉) dθ = 0,

and (8) yields
∫

C

〈Xr, ξ〉 dθ =
∫

C

〈X∗
θ , ξ〉 dθ = −

∫
C

〈X∗, ξθ〉 dθ.

Thus (10) is equivalent to
∫

C

〈X∗ − λ|Xθ|−1Xθ, ξθ〉 dθ = 0(11)

for all ξ ∈ C1(B,R3) with ξ = 0 on ∂B \ C.

DuBois–Reymond’s lemma now implies that (11) – and therefore also (10) –
is equivalent to the following property of X:

There exists a constant vector P ∈ R
3 such that

(12) X∗ = λ|Xθ|−1Xθ + P a.e. on C

holds.

We now prove

Theorem 2. Let X : B → R
3 be a minimal surface which is a stationary

solution of the thread problem with respect to the open arc C ⊂ ∂B. Then, for
some P ∈ R

3 and some λ ∈ R, λ �= 0, equation (12) is satisfied. Moreover, X
and its adjoint X∗ are real analytic on B ∪ C, and X∗ intersects the sphere

S = {Z ∈ R
3 : |Z − P |2 = λ2}

orthogonally along its free trace Σ∗ defined by X∗ : C → R
3. Both X and X∗

have no boundary branch points of odd order on C. Finally, Σ = X|C has a
representation X(s), 0 < s < 1, by its arc length s as parameter, which is of
class C2 and satisfies |Ẋ(s)| ≡ 1, |Ẍ(s)| ≡ 1

|λ| . Thus Σ represents a regular
curve of constant curvature κ = 1

|λ| .

Proof. As we have noticed, the assumption on X implies that (12) holds for
some P ∈ R

3 and some λ ∈ R, λ �= 0. Taking the continuity of X∗(1, θ) into
account, we infer that

|X∗ − P |2 = λ2 on C.(13)

In other words, the trace Σ∗ lies on S. Moreover, equations (12) and (7) yield
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(14) X∗ − P = −λ|X∗
r |−1 ·X∗

r a.e. on C.

Therefore the vector X∗
r is normal to S a.e. on C. Thus for almost all w ∈ C

the surface X∗ has a tangent plane which meets S at a right angle. By the
reasoning of Section 1.4 (cf. Theorem 1) we conclude that the adjoint surface
X∗ is a critical point of Dirichlet’s integral within the boundary configuration
〈Γ, S〉 consisting of the arc Γ ∗ = {X∗(w) : w ∈ ∂B \C} and of the surface S.
We can therefore apply Theorem 2′ of Section 2.8 to X∗ and obtain that X∗

can be continued analytically across C as a minimal surface. (Note that for
this regularity theorem it is not necessary to assume that Γ ∗ be a Jordan arc
which does not meet S except in his two endpoints.) By virtue of (5) we infer
that both X and X∗ are real analytic in B ∪ C, as we have claimed.

We furthermore note that, because of (5), X and X∗ have the same bound-
ary branch points w0 ∈ C. Since X + iX∗ is a nonconstant holomorphic map-
ping U → C

3 of some full neighbourhood U of each branch point w0 ∈ C, we
have the asymptotic formula

(15) Xw(w) = A(w − w0)ν +O(|w − w0|ν+1) as w → w0,

for some integer ν ≥ 1 and some vector A �= 0. Since X∗
w = −iXw, we also

have

(15′) X∗
w(w) = −iA(w − w0)ν +O(|w − w0|ν+1) as w → w0.

That is, the order of w0 as branch point of X equals its order as branch point
of X∗. We moreover infer from (15) and (15′) that the boundary branch points
of X and X∗ are isolated. In addition, the conformality relations (5) imply
〈A,A〉 = 0. Thus A is of the form A = 1

2 (a − ib), where a, b ∈ R
3, |a| =

|b| �= 0, 〈a, b〉 = 0.
If w = eiθ is not a branch point of X on C, we can define the unit tangent

vectors

T (θ) =
Xθ(1, θ)
|Xθ(1, θ)|

, T ∗(θ) =
X∗

θ (1, θ)
|X∗

θ (1, θ)|
of the curves Σ and Σ∗ at X(w) and X∗(w), respectively.

Let w0 = eiθ0 ∈ C be a branch point of X (and of X∗). Then we infer
from (15) and (15′) that the one-sided limits

T±(θ0) = lim
θ→θ0 ± 0

T (θ), T ∗
±(θ0) = lim

θ→θ0 ± 0
T ∗(θ)

exist. Moreover, we have

(16) T+(θ0) = T−(θ0), T ∗
+(θ0) = T ∗

−(θ0)

if the order ν of the boundary branch point w0 is even, whereas

(16′) T+(θ0) = −T−(θ0), T ∗
+(θ0) = −T ∗

−(θ0)

if ν is odd.
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We note that the limits T±(θ0), T ∗
±(θ0) are unit vectors. Equation (12), on

the other hand, yields that

(17) T (θ) =
1
λ
{X∗(1, θ)− P}

holds for all θ satisfying 0 < |θ−θ0| < ε where ε is a sufficiently small number
and, moreover, the right-hand side depends continuously on θ ∈ (θ0−ε, θ0+ε).
Therefore, T+(θ0) = T−(θ0), and ν must be of even order. Hence X and also
X∗ can only have even order branch points on C, as we have claimed. If we
define T (θ0) by T+(θ0) at a branch point w0 = eiθ0 ∈ C of even order, we infer
from (16) that T (θ) is a continuous function on C with |T (θ)| ≡ 1, and (17)
holds everywhere on C.

Suppose now that C = {eiθ : θ1 < θ < θ2} and set

l =
∫ θ2

θ1

|Xθ(1, θ)| dθ =
∫ θ2

θ1

|X∗
θ (1, θ)| dθ.

We furthermore introduce

s = s(θ) =
∫ θ

θ1

|Xθ(1, θ)| dθ =
∫ θ

θ1

|X∗
θ (1, θ)| dθ,

θ1 ≤ θ ≤ θ2, which is the arc length parameter of Σ as well as of Σ∗. Since
s′(θ) = |Xθ(1, θ)| ≥ 0 has only isolated zeros, the function s(θ) can be in-
verted. Let θ(s), 0 ≤ s ≤ l, be its (continuous) inverse. For 0 < s < l we
introduce

t(s) = T (θ(s)), t∗(s) = T ∗(θ(s)),

X(s) = X(1, θ(s)), X ∗(s) = X∗(1, θ(s)).

So far, we only know that θ(s) is continuously differentiable in s-intervals
corresponding to θ-intervals free of branch points. We already know that t(s)
and t∗(s) are continuous for 0 < s < l, and that Ẋ(s) = t(s), Ẋ ∗(s) = t∗(s)
holds at values of s which do not correspond to branch points on C. Then
a simple argument employing the mean value theorem yields that X(s) and
X ∗(s) are of class C1 for 0 < s < l, and that

Ẋ(s) = t(s), Ẋ ∗(s) = t∗(s) for 0 < s < l.(18)

(In these formulas as well as in the following ones, the dot denotes differentia-
tion with respect to the arc length: ˙= d

ds .) Thus Σ and Σ∗ are representations
of regular curves of class C1.

From (17) and (18) we derive the equation

(19) t(s) =
1
λ
{X ∗(s)− P}

and
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(20) ṫ(s) =
1
λ
t∗(s)

for 0 < s < l. Thus X(s) is actually of class C2 on (0, l), |ṫ(s)| = |Ẍ(s)| = 1/|λ|.
This means, Σ represents a regular C2-curve of constant curvature 1/|λ|. This
concludes the proof of Theorem 2. �

The first of Frenet’s equations yields

(21) ṫ (s) = κn(s), κ =
1
|λ| ,

where n(s) is the principal normal of the curve X(s). On the other hand,
differentiating (17) with respect to θ and employing (7) and (8), we arrive at

(22) ṫ (s) =
1
λ
· Xr

|Xr|
(1, θ(s)).

Hence n = ±|Xr|−1Xr, and thus the normal curvature of Σ vanishes. Thus
as a by-product of our discussion we obtain the following

Corollary 1. Under the assumptions of Theorem 1 the free trace Σ of X is
an asymptotic line of the surface X of constant geodesic curvature ±κ.

Remark 1. In general, stationary solutions of the thread problem will have
boundary branch points of even order. In fact, one can easily construct ex-
amples of planar minimal surfaces X∗ : B → R

3 that satisfy (14) for some
nonempty open subarc C of ∂B and have a branch point w0 of second order
on C. The adjoint surface X of −X∗ will then satisfy (12) or, equivalently,
(10). Hence X is a stationary solution of a thread problem with respect to C
that has a branch point of second order on C.

Next we come to the second part of the proof of Theorem 1. We shall prove
that, for each solution of the real thread problem, there exists a Lagrange
multiplier. This is not totally trivial since the applicability of the standard
Lagrange multiplier theorem (which requires continuous differentiability of the
involved functions) is not clear. The following result provides an appropriate
substitute.

Lemma 2. Let ϕ(ε, t) and ψ(ε, t) be real-valued functions of

(ε, t) ∈ [−ε0, ε0]× [−t0, t0], ε0 > 0, t0 > 0,

which split in the form

ϕ(ε, t) = ϕ0 + ϕ1(ε) + ϕ2(t), ψ(ε, t) = ψ0 + ψ1(ε) + ψ2(t).

Here it is assumed that ϕ0 and ψ0 are constant, and that
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ϕ1(0) = ϕ2(0) = ψ1(0) = ψ2(0) = 0.

We also suppose that ψ2 is continuous on [−t0, t0], that the derivatives
ϕ′

1(0), ϕ′
2(0), ψ′

1(0), ψ′
2(0) exist, and that ψ′

2(0) = 1. Finally, let the inequality
ϕ(ε, t) ≥ ϕ(0, 0) hold for all (ε, t) in [−ε0, ε0]× [−t0, t0] with ψ(ε, t) = ψ0.

Then the relation

(23) ϕ′
1(0) + λψ′

1(0) = 0

is satisfied for λ = −ϕ′
2(0).

Proof. The assumptions imply that there is a function η(t),−t0 ≤ t ≤ t0,
which satisfies

lim
t→0

η(t) = η(0) = 0

and
ψ2(t) = t{1 + η(t)}.

Then we choose a number δ0 with 0 < δ0 < t0
2 such that |η(2t)| < 1

2 for
|t| < δ0, and infer that

ψ2(−2t) < −t < t < ψ2(2t) for t ∈ (0, δ0).

The continuity of ψ2 now implies the relation

[−δ, δ] ⊂ ψ2([−2δ, 2δ]) for all δ ∈ (0, δ0).

We also note that limε→0 ψ1(ε) = 0 holds. Therefore we can find a number
ε1 with 0 < ε1 ≤ ε0 such that |ψ1(ε)| < δ0 is satisfied for each ε ∈ [−ε1, ε1].
Consequently there exists a real-valued function τ(ε),−ε1 ≤ ε ≤ ε1, with the
properties

τ(0) = lim
ε→0

τ(ε) = 0, ψ2(τ(ε)) + ψ1(ε) = 0,

|τ(ε)| ≤ 2|ψ1(ε)| < t0,

whence also ψ(ε, τ(ε)) = ψ0 for −ε1 ≤ ε ≤ ε1. From the identities

τ(ε)
ε

=
τ(ε)− τ(0)

ε
= −ψ1(ε)− ψ1(0)

ε
· 1
1 + η(τ(ε))

for 0 < |ε| ≤ ε1 we infer that the function τ(ε) is differentiable at ε = 0, and
that

(24) τ ′(0) = lim
ε→0

τ(ε)
ε

= −ψ′
1(0).

Moreover, the minimum property

ϕ(ε, τ(ε)) ≥ ϕ(0, 0) for 0 < ε ≤ ε1
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implies the inequality

0 ≤ ϕ1(ε)
ε

+
ϕ2(τ(ε))

ε
.(25)

Suppose now that we would have τ(ε) ≡ 0 on some interval (0, ε′], where
0 < ε′ ≤ ε1. Then we obtain

0 ≤ ϕ1(ε)
ε

for 0 < ε ≤ ε′

on account of (25), and therefore ϕ′
1(0) ≥ 0. By virtue of (24) we furthermore

have τ ′(0) = 0 and ψ′
1(0) = 0, whence

(26) 0 ≤ ϕ′
1(0)− ψ′

1(0)ϕ′
2(0).

If, on the other hand, there is no ε′ > 0 such that τ(ε) ≡ 0 on (0, ε′], then there
exists a sequence of numbers ε2, ε3, ε4, . . . tending to zero, with 0 < εi ≤ ε′

for i ≥ 2 and τ(εi) �= 0. Set τi = τ(εi). We then infer from (25) that

0 ≤ ϕ1(εi)
εi

+
ϕ2(τi)
τi

· τi
εi
, i = 2, 3, 4, . . . ,

holds. For i → ∞ we once again arrive at the inequality (26) which thus is
established. Similarly we can verify the opposite inequality

0 ≥ ϕ′
1(0)− ψ′

1(0)ϕ′
2(0),

and the Lemma is proved. �

In order to apply the previous lemma, we will introduce the class F(C+)
of test functions defined in the following way:

A function ζ is said to be of class F(C+) if it lies in C1(B,R3), and if
there are a point w0 ∈ C+ and a number r ∈ (0, 1) such that ∂B ∩Br(w0) is
contained in the open arc C+ and that ζ(w) = 0 for all w ∈ B \Br/2(w0).

Lemma 3. Suppose that (2) holds and that X is a mapping of class C(Γ,L)
which satisfies the assumptions of Theorem 1. Then there exists some ζ ∈
F(C+) such that

(27)
∫

C+
|Xθ|−1〈Xθ, ζθ〉 dθ = 1.

Proof. It clearly suffices to establish the existence of some ζ ∈ F(C+) for
which the integral in (27) is nonzero. To this end, let us suppose that the
integral vanishes for all ζ ∈ F(C+). Then, by DuBois–Reymond’s lemma,
there would exist a unit vector e ∈ R

3 such that

|Xθ(1, θ)|−1Xθ(1, θ) = e
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for almost all θ ∈ (0, π). Hence X(C+) would be contained in some straight
line L, and since X : ∂B → R

3 is a continuous mapping, L would have to be
the straight line connecting the two points P1 and P2. Applying the reflection
principle we could extend X analytically and as a minimal surface across C+.
Hence X is real analytic on B∪C+ and possesses at most denumerably many
isolated branch points on C+. Then we infer from the equation

Xθ(1, θ) = |Xθ(1, θ)|e for all θ ∈ (0, π)

that X(1, θ) yields a strictly monotonic mapping of [0, π] onto the straight
segment on L with the endpoints P1 and P2, whence we would get

L =
∫

C+
|dX| = |P1 − P2|.

But this contradicts the assumption required in (2). �

Lemma 4. Suppose that (2) holds and that X ∈ C(Γ,L) satisfies the assump-
tions of Theorem 1. Then X is a stationary solution of the thread problem
with respect to the arc C+ = {eiθ : 0 < θ < π}.

Proof. By Lemma 3 there is a test function ζ ∈ F(C+) such that (27)
holds. By definition of F(C+), there exist w0 ∈ C+ and r ∈ (0, 1) such that
ζ(w) vanishes for all w ∈ B\Br/2(w0) and that the closed arc γ := ∂B∩Br(w0)
is contained in C+. Then C+ \ γ consists of two non-empty open arcs C1 and
C2. We first want to show that X is a stationary solution of the thread prob-
lem with respect to C1 as well as to C2. Since the reasoning will be the same
for both arcs, it suffices to verify the assertion for, say, C1.

Firstly, the assumptions of Theorem 1 imply that

DB(X) <∞,

∫
∂B

|dX| <∞, and X(w) �≡ const.

Secondly we have to prove that

(28)
∫

B

〈∇X,∇ξ〉r dr dθ + λ1

∫
C1

〈|Xθ|−1Xθ, ξθ〉 dθ = 0

holds for some real number λ1 �= 0 and for all ξ ∈ C1(B,R3) that vanish on
∂B \ C1.

Clearly, it suffices to verify (28) for all ξ ∈ C1
c (B ∪ C1,R

3). We shall, in
fact, see that (28) only has to be established for an even smaller class of test
functions. For this purpose, we choose some open disk B′ with the property
that ∂B∩B′ = C1, and that Ω := B∩B′ does not meet the disk Br/2(w0). By
virtue of some appropriate partition of unity, each element ξ ∈ C1

c (B∪C1,R
3)

can be written as the sum ξ = ξ1 +ξ2 of a function ξ1 ∈ C1
c (Ω∪C1,R

3) and of
another function ξ2 ∈ C1

c (B,R3). We now note that both integrals appearing
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in (28) vanish separately if ξ is of class C1
c (B,R3). Thus it remains to prove

the following:
There is some number λ1 �= 0 such that (28) holds for all test functions

ξ ∈ C1
c (Ω ∪ C1,R

3).
This will be achieved by employing Lemma 2. To this end we choose some

arbitrary ξ ∈ C1
c (Ω ∪ C1,R

3) which in the sequel is thought to be fixed, and
set

Xε,t = X + εξ + tζ, |ε| ≤ ε0, |t| ≤ t0

for some number ε0 > 0, t0 > 0. (At present, the subscripts ε and t indicate
the dependence of the 2-parameter family Xε,t on the parameters ε and t
and do, deviating from the previous way of notation, not stand for partial
derivatives.)

Let us introduce the functions

ϕ(ε, t) := DB(Xε,t), ψ(ε, t) :=
∫

C+
|dXε,t| =

∫
C+

∣∣∣∣ ddθXε,t(1, θ)
∣∣∣∣ dθ

of (ε, t) ∈ [−ε0, ε0]× [−t0, t0]. Then we have the representations

ϕ(ε, t) = ϕ0 + ϕ1(ε) + ϕ2(t), ψ(ε, t) = ψ0 + ψ1(ε) + ψ2(t),

where we have set

ϕ0 := DB(X), ψ0 :=
∫

C+
|Xθ(1, θ)| dθ,

ϕ1(ε) := DΩ(X + εξ)−DΩ(X), ϕ2(t) := DΩ0(X + tζ)−DΩ0(X),
Ω := B ∩Br/2(w0),

ψ1(ε) :=
∫

C1

|Xθ + εξθ| dθ −
∫

C1

|Xθ| dθ,

ψ2(t) :=
∫

γ

|Xθ + tζθ| dθ −
∫

γ

|Xθ| dθ.

(We now have once again used: Xθ = ∂
∂θX, etc.) The functions ϕ1 and ϕ2 are

quadratic polynomials, and clearly

0 = ϕ1(0) = ϕ2(0) = ψ1(0) = ψ2(0).

Moreover, the function ψ2(t) is continuous on [−t0, t0]. We also claim that the
derivatives ψ′

1(0) and ψ′
2(0) exist. In fact, the formula a2− b2 = (a+ b)(a− b)

yields
1
ε
{|Xθ + εξθ| − |Xθ|} = f(ε) + g(ε),

where

f(ε) =
2〈Xθ, ξθ〉

|Xθ + εξθ|+ |Xθ|
, g(ε) =

ε|ξθ|2
|Xθ + εξθ|+ |Xθ|

.
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Hence we infer that

|f(ε)| ≤ 2|ξθ|, |g(ε)| ≤ |ξθ| a.e. on C+

and for |ε| > 0. By Lebesgue’s theorem on dominated convergence the deriva-
tives ψ′

1(0) and ψ′
2(0) exist, and

ψ′
1(0) =

∫
C1

|Xθ|−1〈Xθ, ξθ〉 dθ, ψ′
2(0) =

∫
C+

|Xθ|−1〈Xθ, ζθ〉 dθ = 1.(29)

Thus the assumptions of Lemma 2 are satisfied, and we obtain

ϕ′
1(0) + λ1ψ

′
1(0) = 0, where λ1 = −ϕ′

2(0).

On the other hand, we infer from (29) and from

ϕ1(ε) = ε

∫
Ω

〈∇X,∇ξ〉r dr dθ +
ε2

2
DΩ(ξ)

that (28) is true for an arbitrarily chosen ξ ∈ C1
c (Ω ∪C1,R

3), and hence (28)
holds for all ξ ∈ C1(B,R3) that vanish on ∂B \C1. Because of the equivalence
of relations (10) and (12) we conclude that

(30) X∗ = λ1|Xθ|−1Xθ + P1

holds a.e. on C1 for some constant vector P1 ∈ R
3. If λ1 = 0, we would

get X∗ = P1; i.e. X∗
θ (1, θ) = 0 a.e on C1, and this contradicts Lemma 1,

(iv). Hence we have indeed λ1 �= 0, and it is proved that X is a stationary
solution of the thread problem with respect to C1 (and to C2). By Theorem 2,
the mappings X and X∗ are real analytic on B ∪ C1 ∪ C2 and have at most
isolated branch points.

In order to complete the proof of Lemma 4 we now assume w.l.o.g. that
C1 = {eiθ : 0 < θ < θ1} for some θ1 ∈ (0, π). Then we introduce the two arcs

γ1 = {eiθ : 0 < θ < 1
2θ1}, γ2 = {eiθ : 1

2θ1 < θ < π}.

Let us choose two disks B1 and B2 with centers outside of B such that γ1 =
∂B∩B1, γ2 = ∂B∩B2, and that the open sets Ω1 = B∩B1 and Ω2 = B∩B2

are disjoint. We claim that there is a function ζ1 ∈ C1
c (Ω1 ∪ γ1,R

3) such that
∫

γ1

|Xθ|−1

〈
Xθ,

∂ζ1
∂θ

〉
dθ = 1.

Otherwise we would have

|Xθ|−1Xθ = const on γ1,

whence by (30) X∗(1, θ) = const for 0 < θ < 1
2θ1, i.e. X∗

r = X∗
θ = 0 on γ1.

This would be impossible since the branch points of X∗ on γ1 are isolated. In
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addition, we choose an arbitrary function ξ ∈ C1
c (Ω2∪γ2,R

3). Then we apply
the previous reasoning to the 2-parameter family

Xε,t = X + εξ + tζ1, |ε| ≤ ε0, |t| ≤ t0.

By the same arguments as before we can establish the existence of a constant
vector P ∈ R

3 and of a number λ ∈ R, λ �= 0, such that

(31) X∗ = λ|Xθ|−1Xθ + P

holds on γ2, and we also know that X and X∗ are real analytic on B ∪γ2. On
the other hand, equation (30) is satisfied on C1. Since

C1 ∩ γ2 = {eiθ : 1
2θ1 < θ < θ1},

we may infer that λ = λ1 and P = P1. Thus we have proved that X and X∗

are real analytic on B ∪ C+, and that (31) is satisfied on all of C+. This in
turn yields

∫
B

〈∇X,∇ξ〉r dr dθ + λ

∫
C+
〈|Xθ|−1Xθ, ξθ〉 dθ = 0

for all ξ ∈ C1(B,R3) with ξ = 0 on ∂B \ C+, and Lemma 4 is proved. �

Resuming the results of Theorem 2 and of the Lemmata 2–4, we see that
all assertions of Theorem 1 are proved, except for the claim that Σ is a
regular curve. The proof of this fact will be sketched in the third and last
part of our discussion. We shall proceed by proving that no minimizer X
can have branch points of even order on C+. Recall that branch points of
odd order were already excluded in Theorem 2; they cannot even occur for
stationary solutions of the thread problem. On the other hand, stationary
solutions may very well possess branch points of even order, as we have noted
in Remark 1. Thus we now really have to employ the minimizing property
of X if we wish to exclude branch points of even order. In what follows we
shall describe some of the main ideas that lead to the exclusion of true branch
points of even order for minimizers X. For this we use some of the reasoning
of Gulliver–Lesley and of Osserman [12]. The impossibility of false branch
points of even order will not be discussed since we have already described the
pertinent ideas in Section 1.9. For further information and for filling in all
details we refer the reader to the Scholia of Chapter 6 (see Section 6.4).

It will be convenient to choose the parameter domain of any minimizer X
as the semi-disk.

B = {w = u+ iv : |w| < 1, v > 0},

and C+, C− will be replaced by

C = {w = u+ iv : |w| = 1, v ≥ 0}
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and
I = {u ∈ R : |u| < 1}.

We now assume that X : C → R
3 yields a monotonic parametrization of Γ ,

and X : I → R
3 describes the free trace of X, i.e., its movable part Σ of the

boundary. It follows from the previous discussion that X can be continued
analytically as a minimal surface across I. Let u0 be an arbitrary branch
point of even order for X with u0 ∈ I. We want to show that the existence of
such a branch point contradicts the minimizing property of X.

Without loss of generality we can assume that u0 = 0 and that X(0) = 0
because we can always transform u = u0 into u = 0 by a conformal self-
mapping of B that keeps the points u = ±1 fixed, and X(0) = 0 can be
achieved by a suitable translation of R

3. Performing an appropriate rotation
of R

3, we can also accomplish the asymptotic representation

x(w) + iy(w) = awm+1 +O(|w|m+2), a �= 0,

z(w) = O(|w|m+2)

for the Cartesian coordinates x(w), y(w), z(w) of X(w) in the neighbourhood
of w = 0, where a denotes some positive constant and m = 2ν, ν ≥ 1, is the
order of the branch point w = 0. By a suitable scaling it can also be arranged
that

x(w) + iy(w) = wm+1 +O(|w|m+2),
z(w) = O(|w|m+2)

holds true for w → 0. Because of the power-series expansion of X(w) at w = 0
we may write

x(w) + iy(w) = wm+1 + σ(w),
z(w) = ψ(w),(32)

∇kσ(w),∇kψ(w) = O(|w|m+2−k) for 0 ≤ k ≤ 2

with m = 2ν > 0.
We will now show that this representation can be simplified even further.

Lemma 5. Let X : BR(0) → R
3 be a minimal surface with the representation

(32) at w = 0. Then there exist two neighbourhoods U, V of 0 in BR(0), a
function ϕ ∈ C2(V ) with

∇kϕ(w) = O(|w|m+2−k) for 0 ≤ k ≤ 2

and a C1-diffeomorphism F : U → V of U onto V such that the formulas

x(w) + iy(w) = Fm+1(w),
(33)

z(w) = ϕ(F (w))

hold true for w ∈ U.
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(Note that we use the complex notation ω = F (w) ∈ C; thus ωm+1 is the
(m+ 1)-th power of ω.)

Proof. Define
F (w) := w{1 + w−m−1σ(w)}1/(m+1)

on a sufficiently small neighbourhood of w = 0. Because of σ(w) = O(|w|m+2),
this definition is meaningful if we choose the (m+1)-th root to be one at w = 0.
Moreover, we have

lim
w→0

F (w)
w

= 1.

Hence ∇F (0) exists, and ∇F (0) = id. Moreover, we have

(Du + iDv)F (w) = 1 + o(1) as w → 0,

whence
∇F (w) → ∇F (0) as w → 0,

and this implies F ∈ C1. By the inverse function theorem, there exists a C1-
inverse f of F on a neighbourhood V of the origin; set U := f(V ). Since
F ∈ C2(U \ {0}), we see that f ∈ C2(V \ {0}), and it is not difficult to prove
that

∇2F (w) = o(|w|−1).

In order to be able to use the summation convention, we write w = u+ iv =
u1 + iu2, u1 = u, u2 = v. Then the identity

fα(F (w)) = uα, α = 1, 2,

implies
fα

,β(F (w))F β
,γ(w) = δα

γ in U,

that is,
fα

,β(w̃)F β
,γ(f(w̃)) = δα

γ in V.

Moreover, we obtain

fα
,βσF

β
,γ(f) + fα

,βF
β
,γτ (f)fτ

,σ = 0 in V \ {0}.

Multiplying this identity by fγ
ρ we infer

fα
,ρσ = −F β

,γτf
τ
,σf

α
,βf

γ
,ρ

whence we derive that

∇2f(w̃) = o(|w̃|−1) as w̃ → 0, w̃ = F (w).

Now we define ϕ : V → R by ϕ(w̃) = ψ(f(w̃)). Then ϕ is a well defined
function of class C1(V ) ∩ C2(V \ {0}) which satisfies
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(34) ϕ,α = ψ,γf
γ
,α in V

and

(35) ϕ,αβ = ψ,γρf
ρ
,βf

γ
,α + ψ,γf

γ
,αβ in V \ {0}.

The assumptions of the lemma in conjunction with (34) imply that ∇ϕ =
O(|w|m+1). Thus ∇2ϕ(0) exists and is equal to zero. On the other hand,
we infer from (35) that ∇2ϕ(w̃) = O(|w̃|m) holds. Altogether we arrive at
ϕ ∈ C2(V), and the lemma is proved. �

Lemma 5 permits the introduction of a new independent variable w̃ =
F (w) ∈ V such that X = (x, y, z) can be written as

x(w̃) + iy(w̃) = w̃m+1

for w̃ ∈ V,(36)
z(w̃) = ϕ(w̃)

where ϕ ∈ C2(V) and ∇kϕ(w̃) = O(|w̃|m+2−k) for 0 ≤ k ≤ 2. (The reader
will excuse the sloppy notation X(w̃) for the transformed surface; actually we
should write X(F−1(w̃)).)

Now we want to describe some local properties of the function ϕ which
appears in the representation formula (36).

Lemma 6. Let ϕ be the function that appears in (36), and let w = u1 + iu2.
Then we obtain

Dα

{
ϕuα√

1 + c−2|∇ϕ|2

}
= 0 on V,(37)

where c(w) := (m+ 1)|w|m, w = u1 + iu2.

(Here, we were even more careless and renamed w̃ as w. Thus the reader
should bear in mind that X(w) actually means the transformed surface
X(F−1(w̃)). The advantage of our sloppiness is that the following formulas
become less cumbersome to read.)

Proof. From (361) we see that every point p ∈ V \ {0} has a neighbourhood
V1(p) which is mapped in a regular way onto a neighbourhood V2 in the x, y-
plane. We write x1 = x, x2 = y. On V2 the function ϕ(u1, u2) obtains a new
representation ψ(x1, x2), i.e.,

ϕ(u1, u2) = ψ(x1, x2).

As X is a minimal surface, we infer that

z = ψ(x1, x2)

provides a nonparametric representation of this minimal surface. Therefore
ψ(x1,x2) must satisfy the minimal surface equation
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Dα

⎧⎨
⎩

ψxα√
1 + ψ2

x1 + ψ2
x2

⎫⎬
⎭ = 0 in V2.

From ϕ(w) = ψ(Re wm, Imwm), we conclude by a straightforward computa-
tion that (37) holds in V1 and therefore also in V \ {0}.

Now we claim that
√

1 + c−2|∇ϕ|2 is of class C1(V ). In fact, let λα :=
c−1ϕuα . Then we see that λα(w) = O(|w|), whence we can extend λα(w) in
a continuous way to V by setting λα(0) = 0. It follows that λα(w)λβ(w) =
O(|w|2), and therefore ∇(λαλβ)(0) = 0. Finally we derive from

λα,β = ϕ,αβ c
−1 − c−2ϕ,α c,β = O(1)

that ∇(λαλβ) = O(|w|), whence λαλβ ∈ C1(V ). This concludes the proof
of (37). �

It follows from the representation (36) that selfintersections of X occur
at points which are images of points w ∈ V with ϕ(w) = ϕ(ηjw) where η
denotes some primitive (m + 1)-th root of unity, and j �≡ 0 mod(m + 1).
Note that ϕ∗(w) := ϕ(ηw) again satisfies (37). Hence the difference Φ(w) :=
ϕ(w) − ϕ∗(w) is a solution of a linear elliptic differential equation. To be
precise, we have

Lemma 7. The difference function Φ satisfies

(38) {aαβ(w)Φuα}uβ = 0 in V,

where aαβ is of class C1(V ) and uniformly elliptic on V, and aαβ(0) = δαβ.

Proof. Set Tα(w, q) := qα/
√

1 + c−2(w)|q|2 with |q|2 = qαqα, and observe
that

Tα(w,∇ϕ∗)− Tα(w,∇ϕ) =
∫ 1

0

d

dt
Tα(w, t∇ϕ∗ + (1− t)∇ϕ) dt

=
(∫ 1

0

Tα,qβ
(w, t∇ϕ∗ + (1− t)∇ϕ) dt

)
Φuβ .

Then one sees that the assertion follows for

aαβ(w) :=
∫ 1

0

Tα,qβ
(w, t∇ϕ∗(w) + (1− t)∇ϕ(w)) dt. �

It will be useful to obtain an asymptotic representation for the difference
function Φ. This can be achieved by the technique of Hartman and Wintner
(cf. Section 3.1), which yields the following alternative:

Either Φ(w) ≡ 0, or there exists some integer n ≥ 1 and some number
a ∈ C, a �= 0, such that

Φu1 − iΦu2 = awn−1 + ρ(w)(39)

holds with ρ(w) = o(|w|n−1) as w → 0.
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Integrating (39), we arrive at

Φ(w) = Re
{a
n
wn
}

+ σ(w),
(40)

σu1(w)− iσu2(w) = ρ(w), σ(w) = o(|w|n) as w → 0.

Applying once again the reasoning used in the proof of Lemma 5 we obtain
the existence of some diffeomorphism T defined on some open disk BR(0) such
that

(41) Φ(w) = ReTn(w),

and that T (0) = 0 and T ′(0) �= 0 hold.
Then we derive from the alternative above the following result:

Proposition 1. Let X : B ∪ I → R
3 denote some solution of the thread prob-

lem, and suppose that 0 ∈ I is a branch point of X of order m = 2ν. Further-
more, let ϕ,ϕ∗, Φ and T be the mappings which we have defined before. Then
there exists some neighbourhood V0 of the origin 0 in C =̂ R

2 such that the
following alternative holds true:

(i) Either X|V0 can be reparametrized in such a way that it becomes an
immersed surface,

(ii) or else, there exist two simple C1-arcs γ1, γ2 : [0, ε] → V0 ∩ B with
γj(0) = 0, |γ′

j(0)| = 1, γ′
1(0) �= γ′

2(0), X(γ1(t)) = X(γ2(t)) for all t ∈ [0, ε]
and such that the vectors Xu(γ1(t))∧Xv(γ1(t)) and Xu(γ2(t))∧Xv(γ2(t)) are
linearly independent for all t ∈ [0, ε].

Proof. Suppose first that Φ(w) ≡ 0. Then, as in Lemma 5, we can show that
(i) holds with V0 = U. In fact, the system (36) assigns to each w̃ ∈ V or to
each w ∈ U a unique point X(w) = (x1(w), x2(w), x3(w)), and the surface X
may locally be written as x3 = ψ(x1, x2) with ψ(x1, x2) = ϕ(w̃), w̃ = F (w)
and ψ ∈ C1 since Dϕ(w̃) = O(|w̃|m+1).

Now we want to settle the case Φ(w) �≡ 0 using the expansion (40). We
note that n ≥ m+2 since Φ(w) = O(|w|m+2). Since m = 2ν ≥ 2, we find that
n ≥ 4. Define V0 := F−1(BR(0)) with a sufficiently small number R > 0, and
consider the mapping T ◦ F : V0 → C which is conformal at the origin. Let
ζ := T ◦F (w), and denote by Rj , 1 ≤ j ≤ 2n, the 2n rays in the ζ-plane which
emanate from ζ = 0 and are defined by Re ζn = 0. The rays Rj correspond
to 2n curves γj in V0 via the mapping T ◦ F . Moreover, since n ≥ 4, at least
one of the curves γj meets the positive real axis at an angle which is between
0 and π/3. We can assume that γj(t) is such an arc, and we can also assume
that t is the parameter of arc length along γ1. Then we have

0 = Φ(F ◦ γ1(t)) = ϕ(F ◦ γ1(t))− ϕ(ηF ◦ γ1(t)).

Setting γ2(t) := F−1 ◦ (ηF ◦ γ1(t)), we arrive at X ◦ γ1(t) = X ◦ γ2(t).



482 5 The Thread Problem

Moreover, because of conformality, γ2(t) hits the positive real axis under an
angle which is strictly between π/3 and π/3+ 2π

m+1 < π. For sufficiently small
ε > 0, the mappings γ1 and γ2 will map [0, ε] into V0∩B. Since Φ describes the
difference of two branches ofX and because of (41), it immediately follows that
the two surface normals along γ1 and γ2 respectively are linearly independent.

�

Let us now recall the definition of true and false branch points given in
Section 1.9.

Definition. The branch point w = 0 of the minimal surface X(w) is called
a false branch point if case (i) holds true; otherwise w = 0 is called a true
branch point.

Concerning true branch points, we shall prove:

Proposition 2. If X : B → R
3 is a solution of the thread problem, then there

are no true branch points on the interval I = {u ∈ R : |u| < 1}, which is
mapped by X onto the movable boundary Σ.

Proof. We first recall that X not only minimizes Dirichlet’s integral within
C(Γ,L) but also the area functional

AB(X) =
∫

B

|Xu ∧Xv| du dv;

cf. Theorem 4 of Section 5.2.

We may again assume that the true branch point w ∈ I under considera-
tion is the point w = 0.

Choose a neighbourhood W of 0 in C such that W ∩B is diffeomor-
phic to B. Suppose that the curves γ1 and γ2 first leave W at γ1(2δ) and
γ2(2δ) transversally to ∂W. Moreover, let h : W ∩B → B be some C1-
diffeomorphism under consideration which, in addition, maps ∂W ∩ B onto
∂B \ I and W ∩ I onto I. Furthermore we may assume that

h ◦ γ1(t) =
t

δ
ξ, h ◦ γ2(t) = − t

δ
ξ

for 0 ≤ t ≤ 2δ, where ξ ∈ C denotes some number with |ξ| = 1
2 .

It is now possible to construct a mapping G : B → B with the following
properties:

(I) G is continuous and one-to-one on B \ [0, i
2 ];

(II) G|∂B = id|∂B ;
(III) For ζ ∈ C with Re ζ > 0 and 0 ≤ t < 1, the following relations are

fulfilled:

lim
ζ→0

G

(
i

4
(1± t) + ζ

)
= (1− t)ξ,
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Fig. 3.

lim
ζ→0

G

(
i

4
(1± t)− ζ

)
= −(1− t)ξ;

(IV) G is piecewise C1 and extends to a C1-diffeomorphism on each edge of
the slit [0, i

2 ].

We refrain from constructing G explicitly by formulas; Fig. 3 describes the
topological action of G.

Now we define a comparison function X∗ : B → R
3 by

X∗(w) :=
{
X(w) for w ∈ B \ W,
(X ◦ h−1 ◦G ◦ h)(w) for w ∈ W.

It is clear that X∗ ∈ C(Γ,L) and that AB(X) = AB(X∗). Hence X∗ minimizes
AB(X) within C(Γ,L). This leads to a contradiction, since any point w0 ∈ W

satisfying h(w0) ∈ (0, i
2 ] possesses some neighbourhood which is mapped onto

a surface with two portions intersecting alongX(γ1). In view of (ii) this surface
has an edge, and by “smoothing out” one can construct from X∗ a new surface
X∗ ∗ ∈ C(Γ,L) with AB(X∗ ∗) < AB(X∗) = AB(X), a contradiction to the
minimizing property of X. �

To exclude false branch points we assume that X|∂B is an embedding
of ∂B into R

3. The pertinent reasoning is sketched in Section 4.7 of Vol. 1.
A detailed discussion can be found in the paper of Gulliver, Osserman, and
Royden [1].

By these remarks we conclude the proof of Theorem 1. �

5.4 Scholia

1. The existence of solutions of the thread problem in its simplest form was
first proved by H.W. Alt [3]. Except for minor modifications we have presented
Alt’s existence proof in Section 5.2. Without any changes the proof can be
carried over to 2-dimensional surfaces in R

N , N ≥ 2. A different proof has
been given by K. Ecker [1], using methods of geometric measure theory; it
even works for the analogue of the thread problem concerning n-dimensional
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surfaces in R
N . In the framework of integral currents, Ecker has proved the

existence of a minimizer, the movable boundary of which has prescribed mass.
2. It seems to have been known for a long time that the unattached part

of the movable boundary Σ consists of space curves of constant curvature; cf.
van der Mensbrugghe [1], Otto [1]. A satisfactory proof was given by Nitsche
[21] under the assumption that the free part of Σ is known to be regular and
smooth; cf. also Nitsche [28], pp. 435–437 and pp. 706–707.

3. The first results concerning the boundary regularity of solutions for the
thread problem were found by Nitsche [23–25]. He proved that the open com-
ponents of the non-attached part of the movable boundary have a parametriza-
tion of class C2,α, for some α ∈ (0, 1). Between branch points (the existence
of which was not excluded by Nitsche) these parametrizations turn out to be
of class C∞.

The sharper regularity results, presented in Section 5.3, and their proofs
are taken from Dierkes, Hildebrandt, and Lewy [1]. We have quite closely
followed the presentation given in their paper.

4. By completely different techniques, K. Ecker [1] has established C∞-
regularity of the free part of the movable boundary Σ in the context of his
integral-current solutions; the analyticity is in this case still an open question.

5. It is not known whether the thread of the solution constructed in Sec-
tion 10.2 can have self-intersections; we are tempted to conjecture that this
cannot occur. In the context of rectifiable flat chains modulo 2 this was in
fact proved by R. Pilz [1]. He showed that the free boundary of a minimizer
of this kind has no singular points in R

3 \ Γ , Γ being the fixed part of the
boundary.

6. Alt [3] has also proved that the movable arc Σ must always lift off Γ
in a tangential way whenever it adheres to Γ in a subarc of positive length
provided that Γ is supposed to be smooth.

7. As Alt [3] has pointed out, all pieces of the movable boundary Σ not
attached to Γ have the same constant curvature κ. This can easily be proved
by the reasoning given in the proofs of Lemmata 2–4 of Section 5.3.

8. In excluding branch points on the free parts ofΣ we have used arguments
of Gulliver and Lesley [1] and of Gulliver, Osserman, and Royden [1]. This part
of our reasoning is restricted to R

3 and cannot be carried over to R
n, n ≥ 4,

according to an example by Federer [2].
9. A new existence proof for the thread problem was given by E. Kuwert

in Section 4 of his Habilitationsschrift [5], pp. 51–52. This proof is a by-
product of Kuwert’s work on the minimization of Dirichlet’s integral D(X)
among surfaces X : B → R

n whose boundary curves X
∣∣
∂B

represent a given
homotopy class α of free loops in a closed configuration S ⊂ R

n. We refer to
the Scholia of Chapter 1 in this volume and to Kuwert [6,7].

10. Recently, the thread problem was anew studied by B.K. Stephens [1–
3]. In Section 2 of [1], a new proof of Alt’s theorem is given, and Section 3
presents two quantitative bounds on the nearness of minimizers to the wire in
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the case that the thread length L is not much less than the length !(Γ ) of the
wire Γ : Suppose that κmax is a bound on the curvature of Γ , and let 0 < λ� 1
(relative to the C3-data of Γ ). Then there is a constant R(Γ, λ) > 0 with the
following property: If X is a minimizer of P(Γ, !(Γ )− λ), then the image M
of X lies in a “normal R(Γ, λ)-neighbourhood of Γ” whose radius is estimated
by

R(Γ, λ) ≤ 2λ1/2/(πκmax)1/2 + o(λ1/2),

and the area of M is bounded by

A(M) ≤ λ/κmax + o(λ1/2).

Consider now the situation studied in Theorem 1 of Section 5.3 (cf. also Fig. 2
of 5.3), and as Stephens [2], call minimizers of this kind “crescents”. In [2],
several geometric properties of “near-wire crescents” are proved. For instance,
the representation of such a crescent X as a graph of a Lipschitz function f
with Lip(f) ≤ const(Γ )R1/12 is established if X lies in an R-tubular neigh-
bourhood of Γ , 0 < R� 1. The main tool is a sophisticated generalization of
a result due to Radó (see Vol. 1, Section 4.9, Lemma 2), which Stephens calls
“Free Radó Lemma”, as it is an adjustment of the original Radó Lemma to
the situation available in the thread-problem case.



Chapter 6

Branch Points

In R
3 any solution of Plateau’s problem minimizing Dirichlet’s integral D

or, equivalently, the area functional A, is an immersion in the sense that
it has no interior branch points. This fact can easily be proved for planar
boundaries as we have seen earlier, while the corresponding result in R

n is false
for n ≥ 4 according to Federer’s counterexample. Therefore it remains to prove
the assertion for nonplanar minimizers. Here we describe a new method, due to
A. Tromba, to exclude interior branch points for nonplanar relative minimizers
of Dirichlet’s integral D. This method is based on the observation that one
can compute any higher derivative of Dirichlet’s integral in the direction of
so-called (interior) forced Jacobi fields, using methods of complex analysis
such as power series expansions and Cauchy’s integral theorem as well as the
residue theorem. These Jacobi fields lie in the kernel of the second variation
of D; they also play a fundamental role in the index theory and the Morse
theory of minimal surfaces.

We begin by calculating the first five derivatives of Dirichlet’s integral in
the direction of special types of forced Jacobi fields, thereby establishing that
relative minimizers of D cannot have certain kinds of interior branch points.
These introductory calculations will be carried out in Section 6.1, together
with an outline of the variational procedure to be used in the sequel. These
calculations are made transparent by shifting the branch point that is studied
into the origin, and by bringing the minimal surface into a normal form with
respect to the branch point w = 0 with an order n. Then also the index
m of this branch point can be defined, with m > n. Furthermore, w = 0
is called an exceptional branch point if there is an integer κ > 1 such that
m + 1 = κ(n + 1). It turns out that Tromba’s method works perfectly in
excluding nonexceptional branch points of relative minimizers of D, while the
exclusion of exceptional branch points only succeeds for absolute minimizers
of the area A in C(Γ ). Since the general investigation is quite lengthy, we only
discuss one of the several general cases that are possible for nonexceptional

U. Dierkes, S. Hildebrandt, A.J. Tromba, Regularity of Minimal Surfaces,
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branch points (see Section 6.2). A comprehensive presentation of the method
for all cases will be given in forthcoming work by A. Tromba.

In Section 6.1 it is described how the variations Ẑ(t) of a minimal surface
X̂ are constructed by using interior forced Jacobi fields. This leads to the
(rather weak) notion of a weak minimizer of D. Any absolute or weak relative
minimizer of D in C(Γ ) will be a weak D-minimizer, and the aim is to inves-
tigate whether such minimizers can have w = 0 as in interior branch point.
This possibility is excluded if one can find an integer L ≥ 3 and a variation
Ẑ(t) of X̂, |t| � 1, such that E(t) := D(Ẑ(t)) satisfies

E(j)(0) = 0 for 1 ≤ j ≤ L− 1, E(L)(0) < 0.

It will turn out that the existence of such an L depends on the order n and
the index m of the branch point w = 0.

In Section 6.1, this idea is studied by investigating the third, fourth and
fifth derivatives of E(t) at t = 0. Here one meets fairly simple cases for test-
ing the technique which show its efficiency. Furthermore, the difficulties are
exhibited that will come up generally.

A case of general nature is treated in Section 6.2. Assuming that n+ 1 is
even and m+ 1 is odd (whence w = 0 is nonexceptional) it will be seen that
E(m+1)(0) can be made negative while E(j)(0) = 0 for 1 ≤ j ≤ m, and so X̂
cannot be a weak minimizer of D.

In Section 6.3 we study boundary branch points of a minimal surface
X̂ ∈ C(Γ ) with a smooth boundary contour. In particular we show that X̂
cannot be a minimizer of D in C(Γ ) if it has a boundary branch point whose
order n and index m satisfy the condition 2m−2 < 3n (Wienholtz’s theorem).

Furthermore, in Sections 6.1 and 6.3 we exhibit geometric conditions which
furnish bounds for the index of interior and boundary branch points. These
estimates supplement the bounds on the order of branch points provided by
the Gauss–Bonnet theorem.

6.1 The First Five Variations of Dirichlet’s Integral,
and Forced Jacobi Fields

In this chapter we take the point of view of Jesse Douglas and consider minimal
surfaces as critical points of Dirichlet’s integral within the class of harmonic
surfaces X : B → R

3 that are continuous on the closure of the unit disk B and
map ∂B = S1 homeomorphically onto a closed Jordan curve Γ of R

3. It will
be assumed that Γ is smooth of class C∞ and nonplanar. Then any minimal
surface bounded by Γ will be a nonplanar surface of class C∞(B,R3), and so
we shall be allowed to take directional derivatives (i.e. “variations”) of any
order of the Dirichlet integral along an arbitrary C∞-smooth path through
the minimal surface.
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The first goal is to develop a technique which enables us to compute vari-
ations of any order of Dirichlet’s integral, D, at an arbitrary minimal surface
bounded by Γ , using complex analysis in form of Cauchy’s integral theorem.
This will be achieved by varying a given minimal surface via a one-parameter
family of admissible harmonic mappings. Such harmonic variations will be
generated by varying the boundary values of a given minimal surface in an
admissible way and then extending the varied boundary values harmonically
into B. From this point of view the admissible boundary maps ∂B = S1 → Γ
are the primary objects while their harmonic extensions B → R

3 are of sec-
ondary nature. This calls for a change of notation: An admissible boundary
map will be denoted by X : ∂B → Γ , whereas X̂ is the uniquely determined
harmonic extension of X into B; i.e. X̂ ∈ C0(B,R3)∩C2(B,R3) is the solution
of

%X̂ = 0 in B, X̂(w) = X(w) for w ∈ ∂B.
Instead of X̂ we will occasionally write HX or H(X) for this extension, and

D(X̂) :=
1
2

∫
B

∇X̂ · ∇X̂ du dv

is its Dirichlet integral.
In the sequel the main idea is to vary the boundary values X of a given

minimal surface X̂ in direction of a so-called forced Jacobi field, as this restric-
tion will enable us to evaluate the variations of D at X by means of Cauchy’s
integral theorem. In order to explain what forced Jacobi fields are we first
collect a few useful formulas.

Let us begin with an arbitrary mappingX ∈ C∞(∂B,Rn) and its harmonic
extension X̂ ∈ C∞(B,R3). Then X̂ is of the form

(1) X̂(w) = Re f(w),

where f is holomorphic on B and can be written as

(2) f = X̂ + iX̂∗ with X̂u = X̂∗
v and X̂v = −X̂∗

u.

We also note that

(3) f ′(w) = 2X̂w(w) = X̂u(w)− iX̂v(w) in B.

Conversely, if f is holomorphic in B and X̂ = Re f then f ′ and X̂w are related
by the formula f ′ = 2X̂w; in particular, X̂w is holomorphic in B. This simple,
but basic fact will be used repeatedly in later computations.

Let us introduce polar coordinates r, θ about the origin by w = reiθ, and
set Ŷ (r, θ) = X̂(reiθ). Then a straight-forward computation yields

(4) iwX̂w(w)
∣∣∣
w=eiθ

=
1
2

[
Ŷθ(1, θ) + iŶr(1, θ)

]

whence
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(5) 2Re
{
iwX̂w(w)

} ∣∣
w=eiθ = Ŷθ(1, θ) =

∂

∂θ
X(eiθ) = Yθ(θ)

since
Ŷ (1, θ) = X̂(eiθ) = X(eiθ) =: Y (θ).

If X ∈ C∞(S1,R3) maps S1 homeomorphically onto Γ then Yθ(θ) is tangent
to Γ at Y (θ), i.e. Yθ(θ) ∈ TY (θ)Γ , and so the left-hand side of (5) is tangent
to Γ .

Consider now a continuous function τ : B → C that is meromorphic in
B with finitely many poles in B, and that is real on ∂B. Then τ can be
extended to a meromorphic function on an open set Ω with B ⊂ Ω, and τ is
holomorphic in a strip containing ∂B. It follows from (5) that

(6) 2Re
{
iwX̂w(w)τ(w)

} ∣∣
w=eiθ = τ(eiθ)Yθ(θ) ∈ TY (θ)Γ.

Suppose now that X̂ is a minimal surface with finitely many branch points
in B. These points are the zeros of the function F (w) := X̂w(w) which is
of class C∞ on B and holomorphic in B. If τ(w) has its poles at most at
the (interior) zeros of the function wF (w), and if the order of any pole does
not exceed the order of the corresponding zero of wF (w), then the function
K(w) := iwX̂w(w)τ(w) is holomorphic in B and of class C∞(B,R3). We call
ĥ := Re K an inner forced Jacobi field ĥ : B → R

3 at X̂ with the
generator τ .

In case that one wants to study boundary branch points of X̂ it will be
useful to admit factors τ(w) which are meromorphic on B, real on ∂B, with
poles at most at the zeros of wF (w), the pole orders not exceeding the orders
of the associated zeros of wF (w). Then

(7) ĥ := ReK with K(w) := iwF (w)τ(w), w ∈ B, F := X̂w,

is said to be a (general) forced Jacobi field ĥ : B → R
3 at the minimal

surface X̂, and τ is called the generator of ĥ.
The boundary values ĥ|S1 of a forced Jacobi field ĥ are given by

(8) h(θ) := ĥ(eiθ) = ReK(eiθ) =
1
2
τ(eiθ)Yθ(θ), Y (θ) := X̂(cos θ, sin θ).

Using the asymptotic expansion of F (w) = Xw(w) at a branch point w0 ∈ B
having the order λ ∈ N, we obtain the factorization

(9) F (w) = (w − w0)λG(w) with G(w0) �= 0,

and, using Taylor’s expansion in B or Taylor’s formula on ∂B respectively,
it follows that G(w) = G(u, v) is a holomorphic function of w in B and a
C∞-function of (u, v) ∈ B. It follows that any forced Jacobi field ĥ : B → R

3

is of class C∞(B,R3) and harmonic in B.
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Denote by J(X̂) the linear space of forced Jacobi fields at X̂, and let J0(X̂)
be the linear subspace of inner forced Jacobi fields. The importance of J(X̂)
arises from the fact that every forced Jacobi field ĥ at X̂ annihilates the second
variation of D, i.e.

δ2D(X̂, ĥ) = 0 for all ĥ ∈ J(X̂).

This will be proved later in Section 6.3. In the present section we only deal
with inner forced Jacobi fields, and so we only prove the weaker statement
(cf. Proposition 1):

δ2D(X̂, ĥ) = 0 for all ĥ ∈ J0(X).

The existence of forced Jacobi fields arises from the group of conformal au-
tomorphisms of B and from the presence of branch points; the more branch
points X̂ has, and the higher their orders are, the more Jacobi fields appear—
this explains the adjective ‘forced’. To see the first statement we consider
one-parameter families of conformal automorphisms ϕ(·, t), |t| < ε, ε > 0 of B
with

(10) w �→ ϕ(w, t) = w + tη(w) + o(t) and ϕ(w, 0) = w, ϕ̇(w, 0) = η(w).

Type I:
ϕ1(w, t) = eiα(t)w

with α(t) ∈ R, α(0) = 0, α̇(0) = a. Then ϕ1(w, t) = w + tiwa+ o(t), and so

η1(w) = iwa with a ∈ R.

Type II:

ϕ2(w, t) :=
w + iβ(t)
1− iβ(t)w

with β(t) ∈ R, β(0) = 0, β̇(0) = b.
Then ϕ2(w, t) = w + tη2(w) + o(t) with η2(w) = ib+ ibw2, and so

η2(w) = iw

(
b

w
+ bw

)
with b ∈ R.

Type III:

ϕ3(w, t) :=
w − γ(t)
1− γ(t)w

with γ(t) ∈ R, γ(0) = 0, γ̇(0) = c.
Then ϕ3(w, t) = w + tη3(w) + o(t) with η3(w) = −c+ cw2, whence

η3(w) = iw

(
ic

w
− icw

)
.
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We set

(11) τ1(w) := a, τ2(w) := b ·
(

1
w

+ w

)
, τ3(w) := c ·

(
i

w
− iw

)
,

with arbitrary constants a, b, c ∈ R. For w = eiθ ∈ ∂B we have

τ1(w) = a, τ2(w) = 2b cos θ, τ3(w) = −2c sin θ,

and so τj , j = 1, 2, 3, are generators of the ‘special’ forced Jacobi field ĥj :=
ReKj , defined by

(12) Kj(w) := iwF (w)τj(w), w ∈ B, F := X̂w,

which are inner forced Jacobi fields for any minimal surface X̂ bounded by
Γ . If we vary X̂ by means of ϕ = ϕ1, ϕ2, ϕ3 with α := Reϕ, β := Imϕ, i.e.
ϕ(w, t) = α(u, v, t) + iβ(u, v, t), setting

Ẑ(w, t) := X̂(ϕ(w, t)) = X̂(α(u, v, t), β(u, v, t)),

we obtain

d

dt
Ẑ =

d

dt
X̂ ◦ ϕ =

d

dt
X̂(α, β) = X̂u(α, β)α̇+ X̂v(α, β)β̇

= 2Re X̂w(ϕ)ϕ̇,

and so
d

dt
Ẑ
∣∣∣
t=0

= 2Re{X̂wϕ̇(0)}.

For ϕ = ϕj we have ϕ̇(0) = ηj , hence

(13)
d

dt
Ẑ(w, t)

∣∣∣
t=0

= 2Re{iwX̂w(w)τj(w)} = 2ĥj(w).

Let us now generate variations Ẑ(t), |t| � 1, of a minimal surface X̂ using any
inner forced Jacobi field ĥ ∈ J0(X̂). We write Ẑ(t) = Ẑ(·, t) for the variation
of X̂ and Z(t) for the variation of the boundary values X of X̂, and start with
the definition of Z(t). Then Ẑ(t) will be defined as the harmonic extension of
Z(t), i.e.

(14) Ẑ(t) = H(Z(t)).

First we pick a smooth family γ(t) = γ(·, t), |t| < δ, of smooth mappings
γ(t) : R → R with γ(0) = idR which are “shift periodic” with the period 2π,
i.e.

(15) γ(θ, 0) = θ and γ(θ + 2π, t) = γ(θ, t) + 2π for θ ∈ R.
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Setting σ(θ, t) := γ(θ, t)− θ we obtain

γ(θ, t) = θ + σ(θ, t) with σ(θ, 0) = 0 and σ(θ + 2π, t) = σ(θ, t)

and
γθ(θ, t) = 1 + σθ(θ, t) = 1 + σθt(θ, 0)t+ o(t).

Choosing δ > 0 sufficiently small it follows that

γθ(θ, t) > 0 for (θ, t) ∈ R× (−δ, δ).

Now we define the variation {Z(t)}|t|<δ of X by

(16) Z(eiθ, t) := X(eiγ(θ,t)) = X̂(cos γ(θ, t), sin γ(θ, t)).

Then

∂

∂t
Z(eiθ, t) =

[
−X̂u(eiγ(θ,t)) sin γ(θ, t) + X̂v(eiγ(θ,t)) cos γ(θ, t)

]
γt(θ, t).

By (4) we have

ieiθX̂w(eiθ) =
1
2

[
Xθ(θ) + iX̂r(1, θ)

]

if we somewhat sloppily write X̂(r, θ) for X̂(reiθ) and X(θ) for X̂(1, θ) =
X(eiθ). This leads to

−X̂u(eiγ(θ,t)) sin γ(θ, t) + X̂v(eiγ(θ,t)) cos γ(θ, t) = Xθ(γ(θ, t))

whence
∂

∂t
Z(eiθ, t) = Xθ(γ(θ, t))γθ(θ, t) ·

γt(θ, t)
γθ(θ, t)

.

On account of

(17) Z(θ, t) := Z(eiθ, t) = X(γ(θ, t))

we have
Zθ(θ, t) = Xθ(γ(t, θ)) · γθ(θ, t),

and so it follows that

∂

∂t
Z(eiθ, t) =

∂

∂t
Z(θ, t) =

∂

∂θ
Z(θ, t) · φ(θ, t)

with

(18) φ(θ, t) :=
γt(θ, t)
γθ(θ, t)

.

Defining the family {φ(t)}|t|<δ of 2π-periodic functions φ(t) : R → R by
φ(t) := φ(·, t), we have
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(19)
∂

∂t
Z(t) = φ(t)Z(t)θ =: h(t).

Now we consider the varied Dirichlet integral

(20) E(t) := D(Ẑ(t)) =
1
2

∫
B

∇Ẑ(t) · ∇Ẑ(t) du dv.

Then
d

dt
E(t) =

∫
B

∇Ẑ(t) · ∇ d

dt
Ẑ(t) du dv.

Since the operations d
dt and H (i.e. Ẑ) commute, we have

d

dt
Ẑ(t) = H

(
d

dt
Z(t)
)

and therefore

d

dt
E(t) =

∫
B

∇Ẑ(t) · ∇H
(
d

dt
Z(t)
)
du dv.

Since %Ẑ(t) = 0, an integration by parts leads to

(21)
d

dt
E(t) =

∫ 2π

0

∂

∂r
Ẑ(t) · h(t) dθ with h(t) =

∂

∂t
Z(t).

For brevity we write in the following computations Ẑ instead of Ẑ(t). We have

wẐw =
1
2
(Ẑr − iẐθ)

if we write Ẑ(r, θ) for Ẑ(w)|w=reiθ , cf. (4), and also

dw = iw dθ for w = eiθ ∈ ∂B.

Then on ∂B:

wẐw · Ẑw dw = i(wẐw) · (wẐw) dθ

=
i

4
(Ẑr − iẐθ) · (Ẑr − iẐθ) dθ

=
[
1
2
Ẑr · Ẑθ −

i

4
(Ẑr · Ẑr − Ẑθ · Ẑθ)

]
dθ,

and so
2Re[wẐw · Ẑwφ dw] = Ẑr · Ẑθφ dθ on ∂B.

Furthermore, Ẑθ = Zθ on ∂B as well as h = φZθ (see (19)), and so (21) leads
to the formula
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(22)
d

dt
E(t) = 2Re

∫
S1
wẐ(t)w · Ẑ(t)wφ(t) dw,

where the closed curve S1 is positively oriented. This formula will be the start-
ing point for calculating all higher order derivatives dn

dtnE(t) and, in particular,
of dn

dtnE(0) := dn

dtnE(t)
∣∣
t=0

. In order to evaluate the latter expressions for any
n, it will be essential that we can choose φ(t) and any number of t-derivatives
of φ(t) in an arbitrary way. This is indeed possible according to the following
result:

Lemma 1. By a suitable choice of γ(θ, t) = θ + σ(θ, t) with σ ∈ C∞ on
R × (−δ, δ), σ(θ, 0) = 0 and σ(θ + 2π, t) = σ(θ, t) we can ensure that
the variation of the boundary values of the minimal surface X̂, defined by
Z(θ, t) := X(γ(θ, t)), leads to “test functions” φ(θ, t) in formula (22) such
that the functions

φν(θ) :=
∂ν

∂tν
φ(θ, t)

∣∣
t=0

, ν = 0, 1, 2, . . . , n,

can arbitrarily be prescribed as 2π-periodic functions of class C∞.

Proof. Let us first check that, given φ0, φ1, . . . , φn, the computation of σ, and
so of γ, can be carried out in a formal way. Consider the Fourier expansion of
the function σ(θ, t) which is to be determined:

(23) σ(θ, t) =
1
2
a0(t) +

∞∑
k=1

[ak(t) cos kθ + bk(t) sin kθ].

From σ(θ, 0) = 0 it follows that

a0(0) = ak(0) = bk(0) = 0 for k ∈ N.

Furthermore,

(24) σν(θ) :=
∂ν

∂tν
σ(θ, 0) =

1
2
a
(ν)
0 (0) +

∞∑
k=1

[a(ν)
k (0) cos kθ + b

(ν)
k (0) sin kθ].

Hence if Dν
t σ(θ, 0) are known for ν = 1, 2, . . . , n, one also knows all derivatives

DθD
ν
t σ(θ, 0) = σ′

ν(θ) from the defining equation (18) for σ which amounts to

φ(θ, t) =
σt(θ, t)

1 + σθ(θ, t)
.

By differentiation with respect to t we obtain

φt =
σtt

1 + σθ
− σtσθt

(1 + σθ)2
,

φtt =
σttt

1 + σθ
− 2σttσθt

(1 + σθ)2
− σtσθtt

(1 + σθ)2
+

2σt(σtθ)2

(1 + σθ)3
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etc. Setting t = 0 and observing that σθ(θ, 0) = 0 it follows that

σ1 = φ0 = φ,

σ2 = φ1 + σ1σ
′
1,

σ3 = φ2 + 2σ2σ
′
1 + σ1σ

′
2 − 2σ1(σ′

1)
2,

. . .

σν+1 = φν + fν(σ1, . . . , σν , σ
′
1, . . . , σ

′
ν).

Here fν is a polynomial in the variables σ1, . . . , σν , σ
′
1, . . . , σ

′
ν . This shows

that, given φ0, φ1, . . . , φn, we can successively determine σ1, σ2, . . . , σn+1. On
account of (23) we then obtain

Aν
0 := a

(ν)
0 (0), Aν

k := a
(ν)
k (0), Bν

k := b
(ν)
k (0) for k ∈ N.

Defining

ak(t) :=
n+1∑
ν=1

1
ν!
Aν

kt
ν , bk(t) :=

n+1∑
ν=1

1
ν!
Bν

k t
ν ,

equation (23) furnishes the function γ(θ, t) = θ + σ(θ, t) with the desired
properties. Furthermore, the construction shows that this procedure leads to
a C∞-function σ that is 2π-periodic with respect to θ. �

Let us inspect a variation Ẑ(t) = H(Z(t)) of a minimal surface X̂ ∈
C∞(B,R3) as we have just discussed. It is the harmonic extension of a vari-
ation Z(t) of the boundary values X of X̂, given by (15) and (16). Clearly,
Ẑ(t) is not merely an “inner variation” of X̂, generated as a reparametriza-
tion X̂ ◦ σ(t) with a perturbation σ(t) = idB + tλ+ · · · of the identity idB on
B, but the image Ẑ(t)(B) will differ from the image X̂(B). Only the images
Z(t)(S1) and X(S1) of the boundary S1 = ∂B will be the same set Σ, but
described by different parametrizations Z(t) : S1 → Σ and X : S1 → Σ.

Definition 1. We call such a variation Ẑ(t) a boundary preserving vari-
ation of X̂ (for |t| � 1).

Note: If X̂ ∈ C(Γ ) then any boundary preserving variation Ẑ(t) (with
|t| � 1) lies in C(Γ ).

Definition 2. We say that X̂ is a weak relative minimizer of D (with
respect to its own boundary) if E(0) ≤ E(t) holds for any variation E(t) =
D(Ẑ(t)) of D by an arbitrary boundary preserving variation Ẑ(t) of X̂ with
|t| � 1.

If X̂ ∈ C(Γ ) is a weak relative minimizer of D in C(Γ ) with respect to
some Ck-norm on B, then X̂ clearly is a weak relative minimizer of D in the
sense of Definition 2.

Let us return to formula (19) which states that
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∂

∂t
Z(t) = φ(t)Z(t)θ.

According to (5) we have

Z(t)θ = 2Re[iwẐw(w, t)]
∣∣
w=eiθ ,

and since φ is real-valued it follows that

(25)
∂

∂t
Z(θ, t) = 2Re[iwẐw(w, t)φ(θ, t)]

∣∣
w=eiθ .

Since ∂
∂t and the harmonic extension H commute we obtain

(26)
∂

∂t
Ẑ(t) = H{2Re[iwẐ(t)wφ(t)]} in B

having for brevity dropped the w, except for the factor iw (as this would
require a clumsy notation). Then, by

∂

∂t

∂

∂w
Ẑ(t) =

∂

∂w

∂

∂t
Ẑ(t),

it follows that

(27)
∂

∂t
Ẑ(t)w =

(
H{2Re[iwẐ(t)wφ(t)]}

)
w
.

Now a straight-forward differentiation of (22) yields

d2

dt2
E(t) = 4Re

∫
S1
w

{
∂Ẑ(t)
∂t

}

w

· Ẑ(t)wφ(t) dw(28)

+ 2Re
∫

S1
wẐ(t)w · Ẑ(t)wφt(t) dw.

From (22) and (28) we obtain

Proposition 1. Since X̂ = Ẑ(0) is a minimal surface we have

(29)
dE

dt
(0) = 0

and

(30)
d2E

dt2
(0) = 4Re

∫
S1
w

{
∂X̂

∂t

}

w

· X̂wτ dw

with τ := φ(0). If τ is the generator of an inner forced Jacobi field attached
to X̂, then
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(31)
d2E

dt2
(0) = 0.

This means that

(32) δ2D(X̂, ĥ) = 0 for all ĥ ∈ J0(X̂),

i.e. for all inner forced Jacobi fields ĥ = Re[iwXw(w)τ(w)].

Proof. We have X̂w · X̂w = 0 since X̂ is a minimal surface, and so (29)
and (30) are proved. Secondly, ĥ is holomorphic in B, as it is an inner forced
Jacobi field, and the w-derivative of any harmonic mapping is holomorphic
whence {∂X̂

∂t }w is holomorphic in B. Thus the integrand of
∫

S1(. . .) dw in (30)
is holomorphic. Hence this integral vanishes, since Cauchy’s integral theo-
rem implies

∫
∂Br(0)

(. . .) dw = 0 for any r ∈ (0, 1) and then
∫

S1(. . .) dw =
limr→1−0

∫
∂Br(0)

(. . .) dw = 0 as the integrand (. . .) is continuous (and even of
class C∞) on B. �

Now we want to compute d3

dt3E(t), and in particular d3E
dt3 (0) if τ = φ(0) is

the generator of an inner forced Jacobi field. Differentiating (28) it follows

d3

dt3
E(t) = 4Re

∫
S1
w

{
∂Ẑ(t)
∂t

}

w

·
{
∂Ẑ(t)
∂t

}

w

φ(t) dw(33)

+ 4Re
∫

S1
w

{
∂2Ẑ(t)
∂t2

}

w

· Ẑ(t)wφ(t) dw

+ 8Re
∫

S1
w

{
∂Ẑ(t)
∂t

}

w

· Ẑ(t)wφt(t) dw

+ 2Re
∫

S1
wẐ(t)w · Ẑ(t)wφtt(t) dw.

Proposition 2. Since X̂ = Ẑ(0) is a minimal surface we have

(34)
d3E

dt3
(0) = −4Re

∫
S1
w3X̂ww · X̂wwτ

3 dw

if τ := φ(0) is the generator of an inner forced Jacobi field at X̂.

Proof. The fourth integral in (33) vanishes at t = 0 since

Ẑ(0)w · Ẑ(0)w = Xw ·Xw = 0.

The integrand of the second integral in (33) is
{
∂2Ẑ

∂t2
(0)

}

w

· wX̂wτ(w)
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which is holomorphic in B since the w-derivative of a harmonic mapping is
holomorphic and ĥ = Re[iwX̂wτ ] is an inner forced Jacobi field. So also the
second integral in (33) vanishes on account of Cauchy’s integral theorem.
Next, using (27), we obtain

(35)
{
∂

∂t
Ẑ(t)
}

w

∣∣∣
t=0

= 2
∂

∂w
H
{

Re[iwX̂wτ ]
}

= [iwX̂wτ ]w.

This implies
[
w

{
∂

∂t
Ẑ(t)
}

w

· Ẑ(t)w

] ∣∣∣
t=0

= w[iwX̂wτ ]w · X̂w

= iwX̂w · X̂wτ + iw2X̂ww · X̂wτ + iw2X̂w · X̂wτw = 0

since X̂w · X̂w = 0, which also yields X̂ww · X̂w = 0. Thus

(36)
[
w

{
∂

∂t
Ẑ(t)
}

w

· Ẑ(t)w

] ∣∣∣∣
t=0

= 0

and so the third integral in (33) vanishes for t = 0. Finally, by (35),
({

∂

∂t
Ẑ(t)
}

w

·
{
∂

∂t
Ẑ(t)
}

w

) ∣∣∣
t=0

= [iwX̂wτ ]w · [iwXwτ ]w
= [iX̂wτ + iwX̂wwτ + iwX̂wτw] · [iX̂wτ + iwX̂wwτ + iwX̂wτw]
= −w2X̂ww · X̂wwτ

2,

using again X̂w · X̂w = 0 and X̂w · X̂ww = 0, i.e.

(37)
({

∂

∂t
Ẑ(t)
}

w

·
{
∂

∂t
Ẑ(t)
}

w

) ∣∣∣
t=0

= −w2X̂ww · X̂wwτ
2.

Thus the first integral in (33) amounts to

−4Re
∫

S1
w3X̂ww · X̂wwτ

3 dw. �

In order to simplify notation we drop the t in (33) and write

d3

dt3
E = Re

[
4
∫

S1
wẐtw · Ẑtwφ dw + 4

∫
S1
wẐttw · Ẑwφ dw

+8
∫

S1
wẐtw · Ẑwφt dw + 2

∫
S1
wẐw · Ẑwφtt dw

]
.

Differentiation yields
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d4

dt4
E = Re

[
12
∫

S1
wẐttw · Ẑtwφ dw + 4

∫
S1
wẐtttw · Ẑwφ dw(38)

+ 12
∫

S1
wẐtw · Ẑtwφt dw + 12

∫
S1
wẐttw · Ẑwφt dw

+12
∫

S1
wẐtw · Ẑwφtt dw + 2

∫
S1
wẐw · Ẑwφttt dw

]

= Re[I1 + I2 + I3 + I4 + I5 + I6].

We have I6(0) = 0 since Ẑw(0) · Ẑw(0) = X̂w · X̂w = 0. Moreover, by Cauchy’s
theorem, I2(0) = 0 since both Ẑtttw

∣∣
t=0

= [Ẑttt(0)]w and wX̂wτ are holo-
morphic. On account of (36) we also get I5(0) = 0. Finally, taking (17) into
account, we see that

I3(0) = −12
∫

S1
w3X̂ww · X̂wwτ

2φt(0) dw,

and we arrive at

Proposition 3. Since X̂ = Ẑ(0) is a minimal surface we have

d4E

dt4
(0) = 12Re

∫
S1
Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(39)

− 12Re
∫

S1
w3X̂ww · X̂wwτ

2φt(0) dw,

provided that τ = φ(0) is the generator of an inner forced Jacobi field at X̂.

Finally, as an exercise, we even compute d5E
dt5 (0). Differentiating (38) it

follows that

(40)
d5E

dt5
= Re

9∑
j=1

Ij

with

I1 := 16
∫

S1
wẐtttw · Ẑtwφ dw, I2 := 12

∫
S1
wẐttw · Ẑttwφ dw,

I3 := 4
∫

S1
wẐttttw · Ẑwφ dw, I4 := 16

∫
S1
wẐtttw · Ẑwφt dw,

I5 := 48
∫

S1
wẐttw · Ẑtwφt dw, I6 := 24

∫
S1
wẐttw · Ẑwφtt dw,

I7 := 24
∫

S1
wẐtw · Ẑtwφtt dw, I8 := 16

∫
S1
wẐtw · Ẑwφttt dw,

I9 := 2
∫

S1
wẐw · Ẑwφtttt dw.
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I3(0) vanishes by Cauchy’s theorem since both Ẑtttt(0)w and wX̂wτ are holo-
morphic provided that τ = φ(0) is the generator of a forced Jacobi field at X̂.
Furthermore, I8(0) = 0 because of (36), and X̂w · X̂w = 0 implies I9(0) = 0.
Thus we obtain by (37):

Proposition 4. Since X̂ is a minimal surface we have

d5E

dt5
(0) = 16Re

∫
S1
Ẑtttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(41)

+ 12Re
∫

S1
Zttw(0) · [wẐttw(0)τ

+ 4wẐtw(0)φt(0) + 2wX̂wφtt(0)] dw

− 24Re
∫

S1
w3X̂ww · X̂wwτ

2φtt(0) dw

provided that τ = φ(0) is the generator of an inner forced Jacobi field at X̂.

Note also that in (39) and (41) we can express Ẑtw(0) by (35) which we
write as

(42) Ẑtw(0) = [iwX̂wτ ]w.

The values of E′ ′(0) and E′ ′ ′(0) in (30) and (34) depend only on τ = φ(0)
and not on any derivatives of φ(t) at t = 0; in this sense we say that E′ ′(0)
and E′ ′ ′(0) are intrinsic. As we shall see later, this reflects important facts,
namely: The Dirichlet integral D has an intrinsic second derivative d2D, and
an intrinsic third derivative d3D in direction of forced Jacobi fields.

Let us try to show that a nonplanar weak relative minimizer X̂ of D cannot
have a branch point in B. To achieve this goal, a somewhat naive approach
would be to compute sufficiently many derivatives E(j)(0) := djE

dtj (0) and to
hope that one can find some first nonvanishing derivative, say, E(L)(0) �= 0,
whereas E(j)(0) = 0 for j = 1, 2, . . . , L − 1. Then Taylor’s formula with
Cauchy’s remainder term yields

E(t) = E(0) +
1
L!
E(L)(ϑt)tL for |t| � 1, 0 < ϑ < 1,

that is,

D(Ẑ(t)) = D(X̂) +
1
L!
E(L)(ϑt)tL,

and we infer for some t with 0 < |t| � 1 that

(i) D(Ẑ(t)) < D(X̂) if L odd = 2!+ 1 ≥ 3 and E(2�+1)(0) �= 0,

and

(ii) D(Ẑ(t)) < D(X̂) if L even = 2! ≥ 4 and E(2�)(0) < 0.
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Let us see under which assumption on X̂ this approach works for L = 3. Note
that an arbitrary branch point w0 ∈ B of a minimal surface X̂ can be moved
to the origin by means of a suitable conformal automorphism of B. Hence it
is sufficient for our purposes to show that a minimizer X̂ of D in C(Γ ) does
not have w = 0 as a branch point. Therefore we shall from now on assume the
following normal form of a nonplanar minimal surface X̂ (cf. Vol. 1,
Section 3.2):

X̂ has w = 0 as a branch point of order n, i.e.

X̂w(w) = awn + o(wn) as w → 0.

Choosing a suitable Cartesian coordinate system in R
3 we may assume that

X̂w can be written as

(43) X̂w(w) = (A1w
n +A2w

n+1+ · · · , Rmw
m +Rm+1w

m+1+ · · · ), m > n,

with Aj ∈ C
2, Rj ∈ C, A1 �= 0 and Rm �= 0 for some integer m satisfying

m > n; the number m is called index of the branch point w = 0 of X̂ given
in the normal form (43). Note that a surface X̂ can also be brought into the
normal form (43) (with n = 0) if X̂ is regular at w = 0.

Lemma 2. The normal form (43) satisfies

A1 ·A1 = 0, Ak = λk ·A1 for k = 1, 2, . . . , 2(m− n),
(44)

A1 ·A2m−2n+1 = −1
2
R2

m,

and therefore

(45) X̂ww(w) · X̂ww(w) = (m− n)2R2
mw

2m−2 + · · · , Rm �= 0.

Proof. Equation (43) implies

X̂w(w) · X̂w(w) = (w2np(w) +R2
mw

2m) +O(|w|2m+1) as w → 0,

where p(w) is a polynomial of degree 2! in w with ! := m− n which is of the
form

p(w) = A1 ·A1 + 2A1 ·A2w + (2A1 ·A3 +A2 ·A2)w2

+ (2A1 ·A4 + 2A2 ·A3)w3 + (2A1 ·A5 + 2A2 ·A4 +A3 ·A3)w4

+ · · ·+ (2A1 ·A2�+1 + 2A2 ·A2� + · · ·+ 2A�+2 ·A� +A�+1 ·A�+1)w2�

= c0 + c1w + c2w
2 + · · ·+ c2�w

2�, cj ∈ C.

Since X̂w · X̂w = 0 we obtain

c0 = c1 = · · · = c2�−1 = 0, c2� +R2
m = 0.
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Let 〈A′, A′ ′〉 := A′ ·A′ ′ be the Hermitian scalar product of two vectors A′, A′ ′ ∈
C

2. The two equations c0 = 0 and c1 = 0 yield A1 · A1 = 0 and A1 · A2 = 0
which are equivalent to

〈A1, A1〉 = 0 and 〈A2, A1〉 = 0.

Since A1 �= 0 and A1 �= 0 this implies

A2 = λ2A1 for some λ2 ∈ C,

and so we also obtain
A2 ·A2 = λ2

2A1 ·A1 = 0.

On account of c2 = 0 it follows A1 ·A3 = 0, and thus it follows

〈A1, A1〉 = 0 and 〈A3, A1〉 = 0

whence
A3 = λ3A1 for some λ3 ∈ C,

and so
A2 ·A3 = λ2λ3A1 ·A1 = 0.

Then c3 = 0 yields A1 ·A4 = 0, therefore

〈A1, A1〉 = 0 and 〈A4, A1〉 = 0;

consequently
A4 = λ4A1 for some λ4 ∈ C.

In this way we proceed inductively using c0 = 0, . . . , c2�−1 = 0 and obtain
Ak = λkA1 for k = 1, 2, . . . , 2(m− n). Since A1 ·A1 = 0 it follows that

(46) Aj ·Ak = 0 for 1 ≤ j, k ≤ 2(m− n).

Then the equation c2� +R2
m = 0 implies 2A1 ·A2�+1 +R2

m = 0, i.e.

(47) A1 ·A2(m−n)+1 = −1
2
R2

m.

Furthermore, from

X̂w(w) = (A1w
n +A2w

n+1 + · · ·+A2m−2n+1w
2m−n + · · · , Rmw

m + · · · )

we infer

X̂ww(w) = (nA1w
n−1 + · · ·+ (2m− n)A2m−2n+1w

2m−n−1

+ · · · ,mRmw
m−1 + · · · ).

Then (46) implies

X̂ww(w) · X̂ww(w) = [2n(2m− n)A1 ·A2m−2n+1 +m2R2
m]w2m−2 + · · · ,

and by (47) we arrive at

X̂ww(w) · X̂ww(w) = [−n(2m− n)R2
m +m2R2

m]w2m−2 + · · · ,

which is equivalent to (45). �
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Theorem 1. (D. Wienholtz). Let X̂ be a minimal surface in normal form
with a branch point at w = 0 which is of order n and index m, n < m, and
suppose that 2m− 2 < 3n (or, equivalently, 2m+ 2 ≤ 3(n+ 1)). Then we can
choose a generator τ of a forced Jacobi field ĥ such that E(3)(0) < 0, and so
X̂ is not a weak relative minimizer of D.

Proof. Define the integer k by

k := (2m+ 2)− 2(n+ 1).

Because of m > n and 2m− 2 < 3n it follows that

1 < k ≤ n+ 1.

Let
τ0 := cw−n−1 + cwn+1, τ1 := cw−k + cwk, c ∈ C,

and set

(i) τ := τ0 if k = n+ 1;
(ii) τ := ετ0 + τ1, ε > 0, if k < n+ 1.

In both cases τ is a generator of a forced Jacobi field at X̂, since wX̂w(w)
has a zero of order n + 1 at w = 0, and Im τ = 0 on ∂B. By (45) it follows
for w ∈ B that

w3X̂ww(w) · X̂ww(w) = (m− n)2R2
mw

2m+1 + · · · ,

where + · · · always stands for higher order terms of a convergent power series.
In case (i) one has

τ3(w) = c3w−3(n+1) + · · · ,

and so

w3X̂ww(w) · X̂ww(w)τ(w)3 = (m− n)2R2
mc

3w−1 + f(w),

where f(w) is holomorphic in B and continuous on B. Then formula (34) of
Proposition 3 in conjunction with Cauchy’s integral theorem yields

E(3)(0) = −4Re[2πi(m− n)2R2
mc

3] if k = n+ 1.

With a suitable choice of c ∈ C we can arrange for E(3)(0) < 0 since Rm �= 0
and (m− n)2 ≥ 1.

In case (ii) we write w3X̂ww · X̂ww as

w3X̂ww(w) · X̂ww(w) = (m− n)2R2
mw

2m+1 + f(w),

where
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f(w) := w2m+2
∞∑

j=0

ajw
j , aj ∈ C.

From
τ3 = ε3τ3

0 + 3ε2τ2
0 τ1 + 3ετ0τ2

1 + τ3
1

it follows that
g(w) := w3X̂ww(w) · X̂ww(w)τ3(w)

is meromorphic in B, continuous in {w : ρ < |w| ≤ 1} for some ρ ∈ (0, 1), and
its Laurent expansion at w = 0 has the residue

Resw=0(g) = 3ε2c3(m− n)2R2
m + ε3c3an−k, 1 < k ≤ n.

Cauchy’s residue theorem together with formula (34) of Proposition 3 then
imply

E(3)(0) = −4Re{2πi[3ε2c3(m− n)2R2
m + ε3c3an−k]} for k < n+ 1.

By an appropriate choice of c ∈ C and ε with 0 < ε < 1 we can achieve that
E(3)(0) < 0 also in case (ii). �

The following definition will prove to be very useful.

Definition 3. Let X̂ be a minimal surface in normal form having w = 0 as a
branch point of order n and of index m. Then w = 0 is called an exceptional
branch point if m+ 1 = κ(n+ 1) for some κ ∈ N; necessarily κ > 1.

Remark 1. If 2m − 2 < 3n, i.e. 2(m + 1) ≤ 3(n + 1), then w = 0 is not
exceptional, because (m+1) = κ(n+1) with κ > 1 implies 2κ(n+1) ≤ 3(n+1)
and therefore 2κ ≤ 3 which is impossible for κ ∈ N with κ > 1.

Remark 2. Now we want to show that the notion “w = 0 is an exceptional
branch point ” is closely related to the notion “w = 0 is a false branch point ”.
To this end we choose an arbitrary minimal surface Ẑ(ζ), ζ ∈ B, in normal
form without ζ = 0 being a branch point, i.e. Ẑ = Re g where g : B → C

3 is
holomorphic and of the form

g(ζ) = Ẑ(0) + (B0ζ +B1ζ
2 + · · · , Cκζ

κ + · · · ), B0 �= 0, Cκ �= 0, κ > 1.

Consider a conformal mapping w �→ ζ = ϕ(w) from B into B with ϕ(0) = 0
which is provided by a holomorphic function

ϕ(w) = aw + · · · , a �= 0, w ∈ B.

Then X̂(w) := Re f(w) with f(w) := g(ϕn+1(w)), w ∈ B, is a minimal surface
X̂ : B → R

3 such that X̂(0) = Ẑ(0) and

f(w) = X̂(0) + (an+1B0w
n+1 + · · · , aκ(n+1)Cκw

κ(n+1) + · · · ).
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Thus we obtain for X̂w = 1
2f

′ that

X̂w(w) = (A1w
n + · · · , Rmw

m + · · · ), A1 �= 0, Rm �= 0,

and so X̂(w), w ∈ B, is a minimal surface in normal form which has the
branch point w = 0 of order n and index m := κ(n + 1) − 1, whence w = 0
is exceptional. Clearly X̂ is obtained from the minimal immersion Ẑ(ζ) as a
false branch point by setting X̂ := Ẑ ◦ ϕn+1. As the “false parametrization”
X̂ of the regular surface S := Ẑ(B) is produced by an analytic expression
ζ = ϕn+1(w) we call w = 0 an “analytic false branch point”.

In Remark 1 we have noted that w = 0 cannot be “exceptional” if 2m−n <
3n, and so it cannot be an “analytic false branch point”.

It will be useful to have a characterization of the nonexceptional
branch points, the proof of which is left to the reader.

Lemma 3. The branch point w = 0 is nonexceptional if and only if one of
the following two conditions is satisfied:

(i) There is an even integer L with

(48) (L− 1)(n+ 1) < 2(m+ 1) < L(n+ 1).

(ii) There is an odd integer L with

(49) (L− 1)(n+ 1) < 2(m+ 1) ≤ L(n+ 1).

We say that w = 0 satisfies condition (TL) if either (48) with L even
or (49) with L odd holds.

In Theorem 1 it was shown that E(3)(0) can be made negative if 2m −
2 < 3n. Therefore we shall now assume that 2m − 2 ≥ 3n. It takes some
experience to realize that the right approach to success lies in separating the
two cases “w = 0 is nonexceptional ” and “w = 0 is exceptional ”. Instead one
might guess that the right generalization of Wienholtz’s theorem consists in
considering the cases

(CL) (L− 1)n ≤ 2m− 2 < Ln, L ∈ N with L ≥ 3

and hoping that one can prove

E(j)(0) = 0 for 1 ≤ j ≤ L− 1, E(L)(0) < 0

using appropriate choices of forced Jacobi fields in varying the minimal surface
X̂. Unfortunately this is not the case. To see what happens we study the two
cases

(C4) 3n ≤ 2m− 2 < 4n
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and

(C5) 4n ≤ 2m− 2 < 5n

by computing E(4)(0) in the first case and E(5)(0) in the second one. We begin
by treating special cases of (C4) and (C5), where we can proceed in a similar
way as before with E(3)(0) for 2n ≤ 2m− 2 < 3n.

The case (C4) with 2m− 2 = 4p, p ∈ N.

Proposition 5. If wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

(50) E(4)(0) = −12Re
∫

S1
w3X̂ww · X̂wwτ

2φt(0) dw.

Proof. Since Ẑttw(0) is holomorphic in B, the integrand of the first integral
in (39) is holomorphic, and so this integral vanishes. �

Remark 3. In case (C4) with 2m− 2 = 4p the branch point w = 0 is nonex-
ceptional. To see this we note that p < n whence

2m+ 2 = 4(p+ 1) < 4(n+ 1)

and therefore
n+ 1 < m+ 1 < 2(n+ 1).

Also note that n = 1, 2, 3 are not possible since n = 1 would imply p < 1;
n = 2 would mean p = 1 whence 6 = 3n ≤ 4p = 4; and n = 3 would imply
p ≤ 2, and so 9 = 3n ≤ 4p = 8. Finally 3n ≤ 4p and n ≥ 4 yields p ≥ 3.

Theorem 2. If 3n ≤ 2m− 2 = 4p < 4n for some p ∈ N, then one can find a
variation Ẑ(t) of X̂ such that E(4)(0) < 0, whereas E(j)(0) = 0 for j = 1, 2, 3.

Proof. First we want to choose τ = φ(0) and φt(0) in such a way that the
assumption of Proposition 5 is satisfied. To this end, set

τ(w) := (a− ib)w−p−1 + (a+ ib)wp+1,

which clearly is a generator of a forced Jacobi field. By (43) we get

wX̂w(w)τ(w)
= (a− ib)(A1w

n−p +A2w
n−p+1 + · · ·+A2m−2n+1w

2m−n−p + · · · ,
Rmw

m−p + · · · ) + (a+ ib)(A1w
n+p+2 + · · · , Rmw

m+p+2 + · · · ).

By (35) it follows

wẐtw(w, 0)τ(w) = w[iwX̂w(w)τ(w)]wτ(w)
= i(a− ib)2((n− p)A1w

n−2p−1 + (n− p+ 1)A2w
n−2p + · · ·

+ (2m− n− p)A2m−2n+1w
2m−n−2p−1 + · · · , (m− p)Rmw

m−2p−1 + · · · ).
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Note that 2m−2 = 4p implies m−2p−1 = 0, whence n−2p−1 < 0 because
of m > n, but 2m−n−2p−1 = (m−2p−1)+(m−n) = m−n > 0. Thus the
third component above has no pole, while the first (vectorial) component has
a pole at least in the first term, but no pole anymore from the (2m−2n+1)-th
term on. These poles will be removed by adding wX̂wφt(0) to wẐtw(0)τ with
an appropriately chosen value of φt(0). We set φt(0) = ψ1 + · · · + ψs where
ψ1, . . . , ψs are defined inductively. First set

ψ1(w) := −i(n− p)(a− ib)2w−2p−2

+ i(n− p)(a+ ib)2w2p+2.

Now wẐtw(0)τ + wX̂wψ1 has no pole associated to A1 while the poles asso-
ciated to Ak, 1 < k ≤ s, are of the same order as before. Then we choose
ψ2 so that there is no pole associated to A2, etc. The number s is the index
of the last term (n − p + s)As+1w

n−2p+s−1 where n − 2p + s − 1 is ≥ 0 and
≤ 2m− 2n. Note that

wX̂w(w) = (A1w
n+1+A2w

n+2+· · ·+A2m−2n+1w
2m−n+1+· · · , Rmw

m+1+· · · )

and
A1 ·Ak = 0 for k = 1, 2, . . . , 2m− 2n.

Therefore, wX̂wφt(0) = wX̂w · [ψ1 + ψ2 + · · · + ψs] removes all poles from
wẐtw(0)τ and creates no new poles. Consequently wẐtw(0)τ + wX̂wφt(0) is
holomorphic, and so we have

E(4)(0) = −12Re
∫

S1
w3X̂ww · X̂wwτ

2φt(0) dw.

Formula (45) yields

w3X̂ww(w) · X̂ww(w) = (m− n)2R2
mw

2m+1 + · · · .

The leading term in φt(0) is that of ψ1, and

ψ1(w) = −i(n− p)(a− ib)2w−2p−2 + · · · .

Furthermore,
τ2(w) = (a− ib)2w−2p−2 + · · · ,

and so
τ2(w)φt(w, 0) = −i(a− ib)4(n− p)w−4p−4 + · · · .

Noticing that 2m+ 1 = (2m+ 2)− 1 = 4(p+ 1)− 1, and setting

κ := 12(m− n)2(n− p) > 0

we obtain



6.1 The First Five Variations of Dirichlet’s Integral, and Forced Jacobi Fields 509

E(4)(0) = κRe
[
i(a− ib)4R2

m

∫
S1

dw

w

]
= −2πκRe[(a− ib)4R2

m]

and an appropriate choice of a and b yields E(4)(0) < 0. Finally we note that
E(2)(0) = 0 and E(3)(0) = 0 for the above choice of Ẑ(t). The first statement
follows from Proposition 1. To verify the second, we recall formula (34) from
Proposition 2:

E(3)(0) = −4Re
∫

S1
w3X̂ww · X̂wwτ

3 dw.

From the preceding computations it follows that

w3X̂ww(w) · X̂ww(w)τ3(w) = (m− n)2R2
m(a− ib)3w2m+1−3(p+1) + · · · ,

and, by assumption, 2m− 2 = 4p, whence

2m+ 1− 3(p+ 1) = 4p+ 3− 3(p+ 1) = p > 1;

therefore E(3)(0) = 0. �

Remark 4. Under the special assumption that 2m − 2 = 4p we were able
to carry out the program outlined above for L = 4. However, applying the
method from Theorem 2 to cases when 2m − 2 �≡ 0 mod 4 one will get
nowhere. Instead, trying another approach similar to that used in the proof
of Theorem 1, one is able to handle the case (C4) under the additional as-
sumption 2m−2 ≡ 2 mod 4 by considering the next higher derivative, namely
E(5)(0) instead of E(4)(0), cf. Theorem 4 stated later on. This seems to shat-
ter the hope that one can always make E(L)(0) negative, with E(j)(0) = 0
for 1 ≤ j ≤ L − 1, if (CL) is satisfied. In fact, by studying assumption (C5)
we shall realize that (CL) is probably not the appropriate classification for
developing methods that in general lead to our goal. Rather, the case (C5)
will show us that one should distinguish between the cases “exceptional” and
“nonexceptional” using the classification given in Lemma 3 to reach this pur-
pose.

Let us mention that, assuming (C4),the branch point w = 0 is nonexcep-
tional according to Lemma 3, since 3n ≤ 2m− 2 < 4n implies

3(n+ 1) < 3n+ 4 ≤ 2m+ 2 < 4(n+ 1).

Let us now turn to the investigation of (C5) by means of the fifth derivative
E(5)(0).

Lemma 4. If f(w) := wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

Ẑttw(0) = {iw[iwX̂wτ ]wτ + iwX̂wφt(0)}w,
(51)

Ẑttw(0) · X̂w = −Ẑtw(0) · Ẑtw(0) = w2X̂ww · X̂wwτ
2.
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Proof. By (27) we have

Ẑtw = {2H[Re(iwẐwφ)]}w

whence
Ẑttw = {2H[Re(iwẐtwφ+ iwẐwφt)]}w

and therefore

Ẑttw(0) = {2H[Re(if)]}w = {if}w

= {iwẐtw(0)τ + iwX̂wφt(0)}w.

By (35),
Ẑtw(0) = [iwX̂wτ ]w,

and so
Ẑttw(0) = {iw[iwX̂wτ ]wτ + iwX̂wφt(0)}w.

It follows that

Zttw(0) · X̂w = {iw[iX̂wτ + iwX̂wwτ + iwX̂wτw]τ + iwX̂wφt(0)}w · X̂w.

From X̂w · X̂w = 0 one obtains X̂w · X̂ww = 0, and then

X̂www · X̂w = −X̂ww · X̂ww.

This leads to

Ẑttw(0) · X̂w = −w2X̂www · X̂wτ
2

= w2X̂ww · X̂wwτ
2 = −Ẑtw(0) · Ẑtw(0),

taking (37) into account. �

Proposition 4 and Lemma 4 imply

Proposition 6. If f(w) := wẐtw(0)τ + wX̂wφt(0) is holomorphic, then

(52) E(5)(0) = 12Re
∫

S1
[wẐttw(0) · Ẑttw(0)τ + 4wẐttw(0) · Ẑtw(0)φt(0)] dw.

We are now going to discuss the envisioned program for the case (C5)
using the simplified form (52) for the fifth derivative E(5)(0). It will be useful
to distinguish several subcases of (C5):

(a) 5n ≤ 2m+ 2,
(b) 5n > 2m+ 2.
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In case (a) we have 5n ≤ 2m+ 2 < 5n+ 4, that is,

2m+ 2 = 5n+ α, 0 ≤ α ≤ 3.

Therefore (a) consists of the four subcases

(53) 2m− 5n = 0, 1,−1,−2.

In case (b) we have 5n > 2m + 2, and (C5) implies 2m + 2 ≥ n + 4, whence
5n > n+ 4, and so we have n > 1 in case (b).

Case (a) allows an easy treatment based on the following representation
of 2m + 2 which we apply successively for α = 0, 1, 2, 3 to deal with the four
cases (53). We write

α(n+ 1) + βn = 2m+ 2

with α := 2m + 2 − 5n, β := 5 − α where 0 ≤ α ≤ 3 and β ≥ 2. Then we
choose

τ := τ0 + ετ1, ε > 0,

where
τ0 := cw−n + cwn, τ1 := cw−n−1 + cwn+1, c ∈ C.

With an appropriate choice of φt(0) we obtain by an elimination procedure
similar to the one used in the proof of Theorem 2 that f := wẐtw(0)τ +
wX̂wφt(0) is holomorphic. Here and in the sequel we omit the lengthy com-
putations and merely state the results. As f is holomorphic one can use for-
mula (52) for E(5)(0); we investigate the four different cases of (53) separately,
but note that always

E(j)(0) = 0, j = 1, . . . , 4.

(I) 2m− 5n = 0, 1 ≤ n ≤ 4. Only (i) n = 2 and (ii) n = 4 are possible. This
leads to

(i) n = 2, m = 5, (m+ 1) = 2(n+ 1), i.e. w = 0 is exceptional;
(ii) n = 4, m = 10, hence m + 1 �≡ 0 mod (n + 1), and so w = 0 is not

exceptional.

For (i) we obtain E(5)(0) = 0 + o(ε), whereas (ii) yields

E(5)(0) = 12Re[2πi · 336 · ε2 · c5R2
m] + o(ε2)

which can be made negative by appropriate choice of c. Thus the method is
inconclusive for (i), but gives the desired result for (ii).

(II) 2m − 5n = 1, 1 ≤ n ≤ 4. Then n necessarily either (i) n = 1 or (ii)
n = 3. Here,
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(i) n = 1, m = 3, m+ 1 = 2(n+ 1), i.e. w = 0 is exceptional;
(ii) n = 3, m = 8, and m+1 �≡ 0 mod (n+1), hence w = 0 is not exceptional.

For (i) it follows that E(5)(0) = 0 + o(ε3), i.e. the method is inconclusive,
while for (ii) one gets

E(5)(0) = 12 · Re[2πi · 250 · ε3 · c5R2
m] + o(ε3),

and so E(5)(0) < 0 for a suitable choice of c.

(III) 2m− 5n = −1, 1 ≤ n ≤ 4. Then either (i) n = 1 or (ii) n = 3, i.e.

(i) n = 1, m = 2, and so m+1 �≡ 0 mod (n+1), i.e. w = 0 is not exceptional.
(ii) n = 3, m = 7, whence m+ 1 = 2(n+ 1), i.e. w = 0 is exceptional.

For (i) we have 2m− 2 < 3n, and this case was already dealt with in the
positive sense by using E(3)(0), cf. Theorem 1. For (ii) the method is again
inconclusive since one obtains

E(5)(0) = 0 + o(ε).

(IV) 2m− 5n = −2, 1 ≤ n ≤ 4. Then either (i) n = 2 or (ii) n = 4, that is,

(i) n = 2, m = 4, whence m+1 �≡ 0 mod (n+1), i.e. w = 0 is not exceptional.
(ii) n = 4, m = 9, and so m+ 1 = 2(n+ 1), i.e. w = 0 is exceptional.

In case (i) we have 3n = 2m− 2 < 4n, i.e. condition (C4) holds, and this
case will be tackled by Theorem 4, to be stated later on. Case (ii) leads to
E(5)(0) = 0 + o(1) as ε→ 0 which is once again inconclusive.

Conclusion. The method is inconclusive in all of the exceptional cases. In
the nonexceptional cases it either leads to the positive result E(5)(0) < 0 for
appropriate choice of c, or one can apply the cases (C3) or (C4), and here
one obtains the desired results E(3)(0) < 0 or E(4)(0) < 0 respectively (see
Theorems 1 and 4).

Now we turn to the case (b). We first note that (C5) together with (b)
implies 4(n + 1) ≤ 2m + 2 < 5n. Hence either (i) 2(n + 1) = m + 1, or (ii)
4(n + 1) < 2m + 2 < 5n. Therefore, w = 0 is exceptional in case (i) and
nonexceptional in case (ii). Furthermore we have

2m+ 2 = 4n+ k with ≤ k < n,

where k = 4 is the case (i) and 4 < k < n is the case (ii).

In order to treat the case (b) which in some sense is the “general subcase”
of (C5) we use
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τ := c · (εw−n + w−k) + c · (εwn + wk).

Choosing φt(0) appropriately we achieve that f is holomorphic, and so E(5)(0)
is given by (52). Moreover, E(j)(0) = 0 for 1 ≤ j ≤ 4. It turns out that

E(5)(0) = 12 · Re[2πic3ε4γR2
m] + o(ε4), ε > 0,

with

γ = (m− n)(k − 4)2
[
5
4
n+

5
8
(k − 2)

]

and γ = 0 in case (i), whereas γ > 0 in case (ii).

Thus the following result is established:

Theorem 3. Suppose that (C5) and (b) hold, hence 4n + 4 ≤ 2m + 2 < 5n.
This implies 2m + 2 = 4n + k with 4 ≤ k < n. For k = 4 the branch point
w = 0 is exceptional, and the method is nonconclusive. If, however, 4 < k < n,
then τ = φ(0) and φt(0) can be chosen in such a way that E(5)(0) < 0 and
E(j)(0) = 0 for j = 1, . . . , 4.

Next, we want to prove that the remaining cases of (C4) lead to a conclusive
result also for the remaining possibility 2m − 2 �= 4p for some p ∈ N with
1 ≤ p < n. Because of 3n ≤ 2m− 2 < 4n we can write 2m− 2 = 4p+ k with
0 < k < 4 (the case k = 0 was treated before). Since k must be even, we are
left with k = 2, and we recall that w = 0 is a nonexceptional branch point in
the case (C4).

Theorem 4. Suppose that 3n ≤ 2m− 2 = 4p+ 2 < 4n with 1 ≤ p < n holds
(this is the subcase of (C4) that was not treated in Theorem 2). Then τ = φ(0)
and φt(0) can be chosen in such a way that

E(j)(0) = 0 for j = 1, . . . , 4, E(5)(0) < 0.

Proof. This follows with

τ := c(w−k + εw−p−1) + c · (wk + εwp+1), ε > 0.

Then E(j)(0) = 0 for 1 ≤ j ≤ 4 and

E(5)(0) = 12 · Re[2πic5ε4R2
mγ] + o(ε4),

where

γ := (m− n)2(m− 2p− 1)2 + 4(m− n)2(m− 2p− 1)(m− k − p)
−8(n− p)(m− p)(m− n)(m− k − p)
−4(m− n)(m− 2p− 1)[(n− p)(m− p+ 1) + (m− p)(2n− p− k + 1)].

Since 4(p+ 1) + k = 2m+ 2 and

5(p+ 1) = 4p+ k + p+ (5− k) = (2m− 2) + 3 + p ≥ 2m+ 2

one can prove that γ < 0. Thus one can make E(5)(0) < 0 for a suitable choice
of c. �
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Let us return to the case (C4): 3n ≤ 2m − 2 < 4n which splits into the
two subcases 2m − 2 ≡ 0 mod 4 and 2m − 2 ≡ 2 mod 4. The first one was
dealt with by E(4)(0), cf. Theorem 2, the second by E(5)(0), see Theorem 4.
Combining both results we obtain

Theorem 5. Let X̂ be a minimal surface in normal form having the branch
point w = 0 with the order n and the index m such that (C4) holds. Then X̂
cannot be a weak minimizer of D.

We want to give a new proof of this result which combines both cases into
a single one. Note first that 3n ≤ 2m− 2 < 4n is equivalent to 3(n+ 1) + 1 ≤
2m+2 < 4(n+1) = 3(n+1)+n+1. Therefore w = 0 is not exceptional, and

(54) 2m+ 2 = 3(n+ 1) + r, 1 ≤ r ≤ n.

The new approach consists in choosing the generator τ = φ(0) as

(55) τ = τ0 + τ1 with τ0 := εcw−n−1 + εcwn+1, τ1 := cw−r + cwr, c ∈ C.

We need the following auxiliary result:

Lemma 5. For any ν ∈ N and a ∈ C we have

(56) {2H[Re(aw−ν)]}w = νawν−1 on B.

Proof. On S1 one has w−ν = wν whence

aw−ν = awν = awν on S1

and therefore
Re(aw−ν) = Re(awν) on S1.

Consequently
2H[Re(aw−ν)] = 2H[Re(awν)] on B.

This implies

{2H[Re(aw−ν)]}w = {2H[Re(awν)]}w on B.

Finally, since awν is holomorphic in C, it follows that

{2H[Re(awν)]}w =
d

dw
(awν) = νawν−1 on B. �

Now we calculate E(4)(0) using the formulae (37) and (39):

E(4)(0) = 12Re
∫

S1
Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)] dw(57)

+ 12Re
∫

S1
wẐtw(0) · Ẑtw(0)φt(0) dw.
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From

wX̂w = (A1w
n+1 + · · ·+A2m−2n+1w

2m−n+1 + · · · , Rmw
m+1 + · · · )

it follows that

wX̂wτ

= cε(A1 + · · ·+A2m−2n+1w
2m−2n + · · · , Rmw

m−n + · · · )
+ c(A1w

n+1−r + · · ·+A2m−2n+1w
2m−n−r+1 + · · · , Rmw

m+1−r + · · · )
+ g(w), g(w) := wX̂w(w) · [εcwn+1 + cwr].

The expression g(w) is “better” than the sum T1 + T2 of the first two terms
T1, T2 on the right-hand side of this equation, in the sense that it is built
in a similar way as T1 + T2 except that it is less singular. In the sequel this
phenomenon will appear repeatedly, and so we shall always use a notation
similar to the following:

wX̂wτ = T1 + T2 + 〈better〉.

This sloppy notation will not do any harm since in the end we shall see that
each of the two integrands in (57) possesses exactly one term of order w−1 as
w-terms of least order, and no expression labelled “better” is contributing to
them.

Using (35) one obtains

Ẑtw(0) = icε(A2 + · · ·+ (2m− 2n)A2m−2n+1w
2m−2n−1 + · · · ,

(m− n)Rmw
m−n−1 + · · · )

+ ic((n+ 1− r)A1w
n−r + · · ·

+ (2m− n+ 1− r)A2m−2n+1w
2m−n−r

+ · · · , (m+ 1− r)Rmw
m−r + · · · ) + 〈better〉.

This implies

wẐtw(0)τ = ic2ε2(A2w
−n + · · ·+ (2m− 2n)A2m−2n+1w

2m−3n−1 + · · · ,
(m− n)Rmw

m−2n−1 + · · · )
+ ic2ε((n+ 1− r)A1w

−r + · · ·
+ (2m− n+ 1− r)A2m−2n+1w

2m−2n−r

+ · · · , (m+ 1− r)Rmw
m−n−r + · · · ) + 〈better〉.

Recall that Ak = λkA1 for k = 1, . . . , 2m − 2n. In order to remove all poles
in the first two components of

f := wẐtw(0)τ + wX̂wφt(0)
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one chooses φt(0) in a fashion similar to that used in the proof of Theorem 2:

φt(0) := −ic2λ2ε
2w−2n−1 − ic2ε(n+ 1− r)w−n−1−r + · · · .

Then

f = ic2ε2(· · · (2m− 2n)A2m−2n+1w
2m−3n−1

+ · · · , (m− n)Rmw
m−2n−1 + · · · )

+ ic2ε(· · · (2m− n+ 1− r)A2m−2n+1w
2m−2n−r

+ · · · , (m− n)Rmw
m−n−r + · · · )

+ 〈better〉.

Here and in the sequel, · · · stand for non-pole terms with coefficients Aj with
j ≤ 2m− 2n.

The first two components of f (i.e. the expressions before the commata)
are holomorphic; the worst pole in the third component is the term with the
power wm−2n−1; note that

γ := m− 2n− 1 =
1
2
[(2m+ 2)− 4(n+ 1)] < 0.

Thus Lemma 5 yields

{H[Re(Rmw
γ)]}w = −γRmw

−γ−1.

Using a formula established in the proof of Lemma 4 one obtains

Ẑttw(0) = −c2ε2(· · · (2m− 2n)(2m− 3n− 1)A2m−2n+1w
2m−3n−2,

(m− n)(2n+ 1−m)Rmw
2n−m + · · · )

− c2ε(· · · (2m− n)(2m− 2n− r)A2m−2n+1w
2m−2n−r−1 + · · · ,

(m− n)(m− n− r)Rmw
m−n−r−1) + 〈better〉.

It follows that

Ẑttw(0) · [wẐtw(0)τ + wX̂wφt(0)]
= {−ic4ε3(m− n)2(m− n− r)R2

mw
−1 + · · · }+ o(ε3)

since

(58) 2m− 3n− r − 2 = (2m+ 2)− [3(n+ 1) + r]− 1 = −1.

A straight-forward calculation shows

wẐtw(0) · Ẑtw(0)φt(0)
= {ic4ε3(m− n)2(n+ 1− r)R2

mw
−1 + · · · }+ o(ε3).
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Thus one obtains by (57) that

E(4)(0) = 12ε3Re
∫

S1
ikc4R2

m

dw

w
+ o(ε3)

with
k := (m− n)2(n+ 1− r)− (m− n)2(m− n− r).

Since

m− n− r =
1
2
{(2m+ 2)− 2(n+ 1)− 2r} =

1
2
(n+ 1− r)

it follows that
k =

1
2
(m− n)2(n+ 1− r) > 0.

Hence, by suitable choice of c ∈ C one can achieve that E(4)(0) < 0, while
E(j)(0) = 0 for j = 1, 2, 3. This concludes the new proof of Theorem 5. �

Finally we want to show that it often is possible to estimate the index
m of an interior branch point w0 of a minimal surface X̂ ∈ C(Γ ) with the
aid of a geometric condition on its boundary contour Γ . Following an idea by
J.C.C. Nitsche, we use Radó’s lemma for this purpose (cf. Vol. 1, Section 4.9),
which states the following. If f ∈ C0(B) is harmonic in B, f(w) �≡ 0 in B,
and ∇jf(w0) = 0 at w0 ∈ B for j = 0, 1, . . . ,m, then f has at least 2(m+ 1)
different zeros on ∂B.

We can assume that the minimal surface X̂ is transformed into the normal
form with respect to the branch point w0 = 0 having the index m. If the
contour Γ is nonplanar, then X3(w) �≡ X3

0 := X3(0), whence m <∞ and

X3(w) = X3
0 + Re[cwm+1 +O(wm+2)] for w → 0

with c ∈ C \ {0}. Hence f := X3 − X3
0 satisfies the assumptions of Radó’s

lemma, and therefore f has at least 2(m+1) different zeros on ∂B. Hence the
plane Π := {(x1, x2, x3) ∈ R

3 : x3 = X3
0} intersects Γ in at least 2(m + 1)

different points. If m = ∞ then even Γ ⊂ Π, and so we obtain:

Proposition 7. If the minimal surface X̂ ∈ C(Γ ) possesses a branch point
w0 ∈ B with the index m, then there is a plane Π in R

3 which intersects Γ in
at least 2(m+1) different points. Consequently, if every plane in R

3 intersects
Γ in at most k different points, then the index m is bounded by

2m+ 2 ≤ k.

This result motivates the following

Definition 4. The cut number c(Γ ) of a closed Jordan curve Γ in R
3 is the

supremum of the number of intersection points of Γ with any (affine) plane
Π in R

3, i.e.
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(59) c(Γ ) := sup{#(Γ ∩Π) : Π = affine plane in R
3}.

It is easy to see that

(60) 4 ≤ c(Γ ) ≤ ∞,

and for any nonplanar, real analytic, closed Jordan curve the cut number c(Γ )
is finite.

We can rephrase the second statement of Proposition 7 as follows:

Proposition 8. The index m of any interior branch point of a minimal sur-
face X̂ ∈ C(Γ ) is bounded by

(61) 2m+ 2 ≤ c(Γ ).

If n is the order and m the index of some branch point, then 1 ≤ n < m.
On the other hand, c(Γ ) = 4 implies m ≤ 1, and c(Γ ) = 6 yields m ≤ 2. Thus
we obtain

Corollary 1. (i) If c(Γ ) = 4 then every minimal surface X̂ ∈ C(Γ ) is free of
interior branch points.

(ii) If c(Γ ) = 6 then any minimal surface X̂ ∈ C(Γ ) has at most simple
interior branch points of index two; if X̂ has an interior branch point, it
cannot be a weak minimizer of D in C(Γ ).

Proof. (i) follows from 1 ≤ n < m ≤ 1, which is impossible. (ii) 1 ≤ n < m ≤ 2
implies n = 1 and m = 2 for an interior branch point w0 of X̂, whence
2n ≤ 2m − 2 < 3. Thus condition (C3) is satisfied, and therefore the last
assertion follows from Theorem 1. �

Corollary 2. Let X̂ ∈ C(Γ ) be a minimal surface with an interior branch
point of order n, and suppose that the cut number of Γ satisfies c(Γ ) ≤ 4n+3.
Then X̂ is not a weak minimizer of D in C(Γ ).

Proof. By (61) we have
2m+ 2 ≤ 4n+ 3;

hence either

2n+ 4 ≤ 2m+ 2 < 3n+ 4 ⇔ 2n ≤ 2m− 2 < 3n

or
3n+ 4 ≤ 2m+ 2 < 4n+ 4 ⇔ 3n ≤ 2m− 2 < 4n

hold true, i.e. either (C3) or (C4) are fulfilled. In the first case the assertion
follows from Theorem 1, in the second from Theorem 5. �
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6.2 The Theorem for n + 1 Even and m + 1 Odd

In this section we want to show that a (nonplanar) weak relative minimizer X̂
of Dirichlet’s integral D that is given in the normal form cannot have w = 0
as a branch point if its order n is odd and its index m is even. Note that
such a branch point is nonexceptional since n + 1 cannot be a divisor of
m+1. We shall give the proof only under the assumptions n ≥ 3 since n = 1 is
easily dealt with by a method presented in a forthcoming book by A. Tromba.
(Moreover it would suffice to treat the case m ≥ 6 since 2m−2 < 3n is already
treated by the Wienholtz theorem. So 2m ≥ 3n+ 2 ≥ 11, i.e. m ≥ 6 since m
is even.)

The Strategy of the Proof

The strategy to find the first nonvanishing derivative of E(t) at t = 0 that
can be made negative consists in the following four steps:

(I) Guess the candidate L for which E(L)(0) < 0 can be achieved with a
suitable choice of the generator τ = φ(0).

(II) Select Dβ
t φ(0), β ≥ 1, so that the lower order derivatives E(j)(0), j =

1, 2, . . . , L− 1 vanish, (Dβ
t := ∂β

∂tβ ).
(III) Prove that

E(L)(0) = Re
∫

S1
cLkR2

m

dw

w
= Re{2πicLkR2

m},

where c �= 0 is a complex number which can be chosen arbitrarily, and
k ∈ C is to the computed.

(IV) Show that k �= 0.

Remark 1. In order to achieve (II) one tries to choose Dβ
t φ(0), β ≥ 1, in

such a way that the integrands of E(j)(0) for j < L are free of any poles and,
therefore, free of first-order poles. To see that this strategy is advisable, let
us consider the case L = 5; then we have to achieve E(4)(0) = 0. Recall that
E(4)(0) consists of two terms, one of which has the form

I := 12 Re
∫

S1
{2H[Re if ]}wf dw,

where
f := w[iwX̂wτ ]wτ + wX̂wφt(0).

Assume that f had poles, say,

f(w) = g(w) + h(w), g(w) =
∑
j≥1

ajw
−j , h = holomorphic in B,

and h ∈ C0(B). Then, by Lemma 5 of Section 6.1,
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{2H[Re if ]}w(w) = g∗(w) + h′(w), g∗(w) := −i
∑
j≥1

jajw
j−1.

Thus, I = 12 · {I1 + I2 + I3}, with

I1 := Re
∫

S1
g∗g dw, I2 := Re

∫
S1
h′g dw, I3 := Re

∫
S1

(g∗h+ h′h) dw.

The worst term is I1; one obtains

I1 = Re
∫

S1

∑
j,�≥1

(−ijajw
j−1a�w

−�) dw = 2π
∑
j≥1

j|aj |2 > 0

and I3 = 0. Hence, in order to achieve I = 0, one would have to balance I2
against I1 > 0 which seems to be pretty hopeless.

Let us now apply the “strategy” to prove

Theorem 1. Let X̂ be a nonplanar minimal surface in normal form that has
w = 0 as a branch point of odd order n ≥ 3 and of even index m ≥ 4. Then,
by a suitable choice of τ = φ(0) and Dβ

t φ(0), one can achieve that

E(m+1)(0) < 0 and E(j)(0) = 0 for 1 ≤ j ≤ m.

Proof. Set N := L− 1, M := L− (α+ β + 1) = N − (α+ β), hence L− 1 =
α+ β +M . By Leibniz’s formula,

DN
t {[Ẑw · Ẑw]φ} =

N −β∑
α=0

N∑
β=0

N !
α!β!(N − β − α)!

(DN −β−α
t Ẑw) · (Dα

t Ẑw)Dβ
t φ.

Since
DtE(t) = 2Re

∫
S1
wẐ(t)w · Ẑ(t)wφ(t) dw,

we can use Leibniz’s formula to compute E(L)(t) from

E(L)(t) = 2Re
∫

S1
wDN

t {[Ẑw(t) · Ẑw(t)]φ(t)} dw.

We choose L := m+1; then L ≥ 5 as we have assumed m ≥ 4. It follows that

(1) E(L)(0) = J1 + J2 + J3,

where the terms J1, J2, J3 are defined as follows: Set

(2) Tα,β := w(Dα
t Ẑ(0))wD

β
t φ(0).

Then,
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J1 := 4 Re
∫

S1
[DL−1

t Ẑ(0)]w · (wX̂wτ) dw(3)

+ 4 · (L− 1) Re
∫

S1
[DL−2

t Ẑ(0)]wf dw

+ 4
L−3∑

M> 1
2 (L−1)

(L− 1)!
M !(L−M − 1)!

Re
∫

S1
[DM

t Ẑ(0)]w · gL−M −1 dw,

f := T 1,0 + T 0,1 = w[Ẑt(0)]wτ + wX̂wφt(0),

gν :=
∑

α+β=ν

cναβT
α,β with cναβ :=

ν!
α!β!

;

J2 :=

1
2 (L−1)∑
M=2

2(L− 1)!
M !M !

Re
∫

S1
[DM

t Ẑ(0)]w · hM dw(4)

+ 2(L− 1)(L− 2) Re
∫

S1
[Ẑt(0)]w · T 1,L−3 dw,

hM :=
M∑

α=0

ψ(M,α)
M !

α!(L− 1−M − α)!
Tα,L−1−M −α,

ψ(M,α) := 1 for α = M, ψ(M,α) := 2 for α �= M ;

J3 := 4(L− 1) Re
∫

S1
wẐtw(0) · X̂wD

L−2
t φ(0) dw(5)

+ 2Re
∫

S1
wX̂w · X̂wD

L−1
t φ(0) dw.

We have J3 = 0 since X̂w · X̂w = 0 and Ẑtw(0) · X̂w = 0 on account of
formula (36) in 6.1.

Now we proceed as follows:

Step 1. We choose τ = φ(0) and Dβ
t φ(0) for β ≥ 1 in such a way that f and

gL−M −1 are holomorphic. Then the integrands of the three integrals in J1 are
holomorphic because all w-derivatives [Dj

t Ẑ(0)]w of the harmonic functions
Dj

t Ẑ(t) are holomorphic. Then it follows that J1 = 0, and thus we have

(6) E(L)(0) = J2.

Step 2. Then it will be shown that E(L)(0) reduces to the single term

(7) E(L)(0) =
2 ·m!(

m
2

)
!
(

m
2

)
!

Re
∫

S1
w[Dm/2

t Ẑ(0)]w · [Dm/2
t Ẑ(0)]wτ dw
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which can be calculated explicitly; it will be shown that

(8) E(L)(0) =
2 ·m!(

m
2

)
!
(

m
2

)
!
Re(2πi · κ ·R2

m),

where κ is the number

(9) κ := iL−1(a− ib)L(m− 1)2(m− 3)2 · · · 32 · 12

if the generator τ = φ(0) is chosen as

(10) τ(w) := (a− ib)w−2 + (a+ ib)w2.

For a suitable choice of (a − ib) one obtains E(L)(0) < 0. Furthermore the
construction will yield E(j)(0) = 0 for 1 ≤ j ≤ L− 1.

Before we carry out this program for general n ≥ 3, m ≥ 4, n = odd,
m = even, we explain the procedure for the simplest possible case: n = 3 and
m = 4.

From the normal form for X̂w with the order n and the index m of the
branch point w = 0 we obtain

(11) wX̂w = (A1w
n+1 + · · ·+A2m−2n+1w

2m−n+1 + · · · , Rmw
m+1 + · · · ).

Choosing τ according to (10) it follows from

[Ẑt(0)]w = (iwX̂wτ)w

that

[Ẑt(0)]w(12)
= (a− ib)(i(n− 1)A1w

n−2 + inA2w
n−1 + · · ·

+ i(2m− n− 1)A2m−2n+1w
2m−n−2, i(m− 1)Rmw

m−2 + · · · )
+ 〈better〉.

Here, 〈better〉 stands again for terms that are similarly built as those in the
preceding expression but whose w-powers attached to corresponding coeffi-
cients are of higher order. Then

w[Ẑt(0)]wτ(13)
= (a− ib)2(i(n− 1)A1w

n−3 + inA2w
n−2 + · · ·

+ i(2m− n− 1)A2m−2n+1w
2m−n−3 + · · · , i(m− 1)Rmw

m−3 + · · · )
+ 〈better〉.

Since this term is holomorphic we have the freedom to set φt(0) = 0. Then
f(w) = wẐtw(0)τ+wX̂wφt(0) is holomorphic, and Proposition 6 in Section 6.1
yields
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(14) E(5)(0) = 12Re
∫

S1
wẐttw(0) · Ẑttw(0)τ dw.

(This follows of course also from the general formulas stated above.)
From formula (51) of Lemma 4 in Section 6.1 we get

Ẑttw(0) = {iw[iwX̂wτ ]wτ}w = i{wẐtw(0)τ}w,

and so

Ẑttw(0) = −(a− ib)2((n− 1)(n− 3)A1w
n−4 + · · ·(15)

+ (2m− n− 1)(2m− n− 3)A2m−2n+1w
2m−n−4

+ · · · , (m− 1)(m− 3)Rmw
m−4 + · · · ) + 〈better〉.

Since n− 3 = 0 and m = 4, this leads to

(16) Ẑttw(0) · Ẑttw(0) = (a− ib)4(m− 1)2(m− 3)2R2
m + · · · ,

and by (14) we obtain for L = m+ 1 = 5:

E(L)(0) = E(5)(0) = 12 · Re
∫

S1
(a− ib)5(m− 1)2(m− 3)2R2

m

dw

w
(17)

= 12 · Re[2πi(a− ib)5(m− 1)2(m− 3)2R2
m], m = 4.

Now we turn to the general case of an odd n ≥ 3 and an even index
m ≥ 4.

Step 1. The pole removal technique to make the expressions f and gL−M −1

in the integral J1 holomorphic.

We have already seen that f(w) is holomorphic if we set φt(0) = 0. In fact,
we set

(18) Dβ
t φ(0) = 0 for 1 ≤ β ≤ n− 1

2
and for β >

1
2
(L− 3)

and prove the following

Lemma 1. By the pole-removing technique we can inductively choose Dβ
t φ(0)

for β ≤ 1
2 (L− 3) such that gν is holomorphic for ν = 0, 1, . . . , 1

2 (L− 3). Then
the derivative [Dγ

t Ẑ(0)]w is not only holomorphic, but can be obtained in the
form

(19) [Dγ
t Ẑ(0)]w = {igγ−1}w for γ = 1, 2, . . . ,

1
2
(L− 1).

Suppose this result were proved. Since in J1 there appear only gν with
ν = L −M − 1 where 1

2 (L − 1) < M ≤ L − 3, i.e. 2 ≤ ν ≤ 1
2 (L − 3), all

integrands in J1 were indeed holomorphic, and so J1 = 0. Thus it remains to
prove Lemma 1.
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Proof of Lemma 1. By definition we have

(20) gν =
∑

α+β=ν

cναβT
α,β , Tα,β := w[Dα

t Ẑ(0)]wD
β
t φ(0),

and φ(0) = τ .

The expressions w[Dα
t Ẑ(0)]wτ have no pole for α ≤ n−1

2 , and we make the
important observation that there are numbers c, c′ such that

w[D
n−1

2
t Ẑ(0)]wτ = (cA1 + · · · , c′Rmw

m−n + · · · ).

Thus, a pole in w[Dα
t Ẑ(0)]wτ may arise at first for α = 1

2 (n + 1); then we
have, say

(21) w[D
1
2 (n+1)
t Ẑ(0)]wτ = (cA2w

−1 + · · · , c′Rmw
m−n−2 + · · · ).

This requires a nonzero D
n+1

2
t φ(0) in case that cA2 �= 0 if we want to make

g 1
2 (n+1) pole-free. Now we go on and discuss the pole removal for ν = 1

2 (n +
3), 1

2 (n+ 5), . . . , 1
2 (L− 3).

Observation 1. Since m is even, n is odd, and m > n, we have

(22) m = n+ (2k + 1), k = 0, 1, 2, . . . ,

and therefore

(23)
1
2
(L− 3) =

1
2
(m− 2) =

1
2
(n+ 2k − 1).

Thus, for m = n + 1, all gν with 2 ≤ ν ≤ 1
2 (L − 3) are pole-free if we set

Dβ
t φ(0) = 0 for all β ≥ 1; cf. (18). For m = n+ 3, we have to choose Dβ

t φ(0)
appropriately for β = 1

2 (n+1) while the otherDβ
t φ(0) are taken to be zero. For

m = n+5, we must also choose Dβ
t φ(0) appropriately for β = 1

2 (n+3) whereas
the other Dβ

t φ(0) are set to be zero. In this way we proceed inductively and
choose Dβ

t φ(0) in a suitable way for β = 1
2 (n+ 1), 1

2 (n+ 3), . . . , 1
2 (n+ 2k− 1)

in case that m = n + 2k + 1 while all other Dβ
t φ(0) are taken to be zero

according to (18).

Observation 2. The pole-removal procedure would only stop for some gν

with 1
2 (n+ 1) ≤ ν ≤ 1

2 (L− 3) if the w-power attached to A2m−2n+1 became
negative. We have to check that this does not happen for ν ≤ 1

2 (L−3). Since at
the α-th stage in defining [Dα

t Ẑ(0)]w the w-powers have been reduced by 2α,
we must check that the terms Tα,β have no poles connected with A2m−2n+1 if
α+β ≤ 1

2 (L−3). Looking first only at Tα,0 = w[Dα
t Ẑ(0)]wτ for α ≤ 1

2 (L−3),
we must have
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2m− n− 2α = 2m− n+ 1− 2(α+ 1) ≥ 0 for α ≤ 1
2
(L− 3),

which is true since

2m− n+ 1− 2 · 1
2
(L− 1) = m− n+ 1 > 0.

We must also check that during the process no pole is introduced into the
third complex component. Again we first look at Tα,0 for α ≤ 1

2 (L− 3). Then
the order of the w-power at the Rm-term is

m− 2α− 1 = (m+ 1)− 2(α+ 1) ≥ (m+ 1)− (L− 1) = 1,

and so there is no pole.

Let us now look at the pole-removal procedure. For m = n+ 1 all gν with
2 ≤ ν ≤ 1

2 (L−3) are pole-free if we assume (18). If m = n+3 we have to make

g 1
2 (n+1) pole-free. To this end it suffices to choose D

1
2 (n+1)
t φ(0) appropriately;

it need have a pole at most of order (n+2) in order to remove a possible pole
of Tα,0, α = 1

2 (n+ 1), cf. (21).
If m = n + 5, we have to choose Dβ

t φ(0) appropriately for β = 1
2 (n + 1)

and β = 1
2 (n+ 3). The derivative D

1
2 (n+1)
t φ(0) will be taken as before, while

D
1
2 (n+3)
t φ(0) is to be chosen in such a way that

g 1
2 (n+3) = T

1
2 (n+3),0 + T 1, 1

2 (n+1) + T 0, 1
2 (n+3)

becomes holomorphic. Since

T 1, 1
2 (n+1) = w[Ẑt(0)]wD

1
2 (n+1)
t φ(0)

= (i(n− 1)(a− ib)A1w
n−1 + · · · ,

i(m− 1)(a− ib)Rmw
m−1 + · · · )D

1
2 (n+1)
t φ(0)

= (cA1w
−3 + · · · , c′Rmw

m−n−3 + · · · )

with some constants c, c′, the derivative D
1
2 (n+3)
t φ(0) in

T 0, 1
2 (n+3) = wX̂wD

1
2 (n+3)
t φ(0)

should have a pole of order n + 4, while a pole of lower order than n +
4 is needed to remove a possible singularity in the first term T

1
2 (n+3),0 =

w[D
1
2 (n+3)
t Ẑ(0)]wτ .

In this way we can proceed inductively choosing the poles ofDβ
t φ(0) always

at most of order

(24) n+ 2
(
β − n− 1

2

)
= 2β + 1 for

1
2
(n+ 1) ≤ β ≤ 1

2
(L− 3).

This is the crucial estimate on the order of the pole of Dβ
t φ(0) in order to

ensure that these derivatives play no role in the final calculations.
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Observation 3. Consider the last complex component of

g 1
2 (n+1) = w[D

1
2 (n+1)
t Ẑ(0)]wτ + wX̂wD

1
2 (n+1)
t φ(0).

The lowest w-power attached to Rm in the first term is 1 +m− (n+ 1)− 2 =
m− n− 2 ≥ 1 (since in this case m ≥ n+ 3 according to Observation 1). The
lowest w-power associated to Rm in the second term is 1 + m − (n + 2) =
m−n−1 > m−n−2. Continuing inductively we see that the lowest w-power
attached to Rm in any gν arises from τ = φ(0) and not from any Dβ

t φ(0). �

This ends the proof of Step 1, and we have found that E(L)(0) = J2. Now
we come to

Step 2. The integral J2 is a linear combination of the real parts of the integrals

(25) Iαγβ :=
∫

S1
w[Dα

t Ẑ(0)]w · [Dγ
t Ẑ(0)]wD

β
t φ(0) dw,

where 1 ≤ α, γ ≤ 1
2 (L− 1) and β = (L− 1)− α− γ. Then we have

(26) β = 0 if and only if α = γ =
1
2
(L− 1) =

m

2
.

This implies

(27) J2 =
2 ·m!

(m
2 )!(m

2 )!
Re
∫

S1
w[D

m
2

t Ẑ(0)]w · [D
m
2

t Ẑ(0)]wτ dw

because of the following

Lemma 2. We have

(28) Iαγβ = 0 for 1 ≤ α, γ ≤ 1
2
(L− 1) and 1 ≤ β = m− α− γ.

Proof. Let us first show that the product of the last complex components of
[Dα

t Ẑ(0)]w and [Dγ
t Ẑ(0)]w and of wDβ

t φ(0) have a zero integral. In fact, this
product has the form

const(wRmw
m−2α ·Rmw

m−2γ + · · · )(w−2β−1 + · · · )
= constR2

mw
1+2m−2(α+β+γ)−1 + · · · = const ·R2

m + · · ·

since α+ β + γ = L− 1 = m.

The same holds true for the scalar product of the first two complex compo-
nents, multiplied by wDβ

t φ(0). To see this we assume without loss of generality
that α ≥ γ. Denote by Pαγ the expression

Pαγ := w[Cα
1 · C

γ
1 + Cα

2 · C
γ
2 ],



6.2 The Theorem for n + 1 Even and m + 1 Odd 527

where Cα
1 , C

α
2 and Cγ

1 , C
γ
2 are the first two complex components of [Dα

t Ẑ(0)]w
and [Dγ

t Ẑ(0)]w respectively.

Case 1. If 2γ ≤ 2α < n then

Pαγ = w(constAjw
n−2α + · · ·+ constA2m−2n+1w

2m−n−2α + · · · )
· (constA�w

n−2γ + · · ·+ constA2m−2n+1w
2m−n+γ + · · · )

with j, ! < 2m− 2n+ 1.

Case 2. If 2γ < n < 2α then

Pαγ = w(constAj + · · ·+ constA2m−2n+1w
2m−n + · · · )

· (constA�w
n−2γ + · · ·+ constA2m−2n+1w

2m−n−2γ + · · · )

with j, ! < 2m− 2n+ 1.

Case 3. If n < 2α and n < 2γ then

Pαγ = w(constAj + · · ·+ constA2m−2n+1w
2m−n−2α + · · · )

· (constA� + · · ·+ constA2m−2n+1w
2m−n−2γ + · · · ).

Let μ(α, γ) be the lowest w-power appearing in PαγDβ
t φ(0). Recalling α +

β + γ = m we obtain the following results:

Case 1.

μ(α, γ) = 1 + 2m− 2γ − 2α− 2β − 1
= 2 + 2m− 2(α+ β + γ + 1)
= 2 + 2m− 2(m+ 1) = 0.

Case 2. μ(α, γ) is either zero as in Case 1, or

μ(α, γ) = 1 + 2m− n− 2γ − 2β − 1
= 2 + 2m− n− 2(γ + β + 1)
= 2 + 2m− n− 2(m+ 1− α) = 2α− n > 0.

Case 3. As in Case 2 we have μ(α, γ) > 0.

This proves Iαγβ = 0 for 1 ≤ α, γ ≤ m
2 and 1 ≤ β = m− α− γ, which yields

Lemma 2. �

Thus we have arrived at (27), and a straight-forward computation leads
to (8) and (9); so the proof of Theorem 1 is complete. �
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6.3 Boundary Branch Points

In this section we first show that Dirichlet’s integral possesses intrinsic second
and third derivatives at a minimal surface X̂ on the tangent space TXM of
M := H2(∂B,Rn) of X = X̂|∂B on the space J(X̂) of forced Jacobi fields for
X̂. These results will also be used in Vol. 3, Chapters 5 and 6. In particular
it will be seen that J(X̂) is a subspace of the kernel of the Hessian D2E(X)
of Dirichlet’s integral E(X) defined in (1) below, and an interesting formula
(see (16)) for the second variation of Dirichlet’s integral is derived.

Secondly we prove that, for a sufficiently smooth contour Γ in R
3, not only

the order, but also the index of a boundary branch point of a minimal surface
X ∈ C(Γ ) can be estimated in terms of the total curvature of Γ if curvature
and torsion of Γ are nowhere zero.

Finally we prove Wienholtz’s theorem, which states a condition under
which a minimizer for Plateau’s problem cannot possess a boundary branch
point. In particular we show: If n is the order and m the index of a boundary
branch point of X̂ such that 2m−2 < 3n (equivalently 2m+2 ≤ 3(n+1)) then
X̂ cannot be a minimizer of Dirichlet’s integral or of area. The key idea of
the proof will be to recompute the third derivative of Dirichlet’s integral, D,
in an intrinsic way on J(X̂), thereby showing that the formula for E(3)(0) =
d3

dt3D(Ẑ(t))
∣∣
t=0

derived in Section 6.1 is valid in the presence of boundary
branch points as well.

Towards these goals, we first show that if the boundary contour Γ ⊂ R
n

is of class Dr+7, r ≥ 3, the space H
5/2
Γ (B,Rn) of harmonic surfaces from B

into R
n, mapping S1 = ∂B to Γ , is a Cr manifold, in fact, a Cr-submanifold

of the space H5/2(B,Rn) of harmonic mappings from B into R
n. Instead of

the dimension n = 3 we do this for arbitrary dimension n, since this result
is necessary for the index theorem to be derived in Chapter 5 of Vol. 3. Here
it is essential that we operate in the context of a manifold since the third
derivative of any real-valued C3-smooth function is seen to be well defined as
a trilinear form on the kernel of the Hessian of this function at any critical
point. As in Chapters 5 and 6 of Vol. 3 we shall use the symbol D for the
total derivative or the Fréchet derivative. Therefore we need another notation
for Dirichlet’s integral; instead of D we employ the symbol E and consider
E as a function of boundary values X : S1 → R

n (instead of their harmonic
extension X̂), i.e.

(1) E(X) :=
1
2

∫
B

(X̂u · X̂u + X̂v · X̂v) du dv for X ∈ H1/2(S1,Rn).

It is a well-known fact that R
n carries a Cr+6-Riemannian metric g with

respect to which Γ is totally geodesic, i.e. any g-geodesic σ : (−1, 1) → R
n

with σ(0) ∈ Γ and σ′(0) ∈ Tσ(0)Γ remains on Γ . Let (p, v) �→ expp v denote
the exponential map of g; it is of class Cr+4. Via harmonic extension we
identify the space
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M := H2(S1, Γ )

of H2-maps from S1 to Γ with the space H
5/2
Γ (B,Rn). In order to show that

M is a submanifold of H2(S1,Rn) we need to identify the tangent space TXM
for X ∈ H2(S1, Γ ). (In Vol. 3, Chapters 5 and 6, we shall denote M by Nα if
Γ is given by Γ = α(S1).)

Definition 1. We define the tangent space TXM of M at X ∈ H2(S1, Γ ) as

TXM := {Y ∈ H2(S1,Rn) : Y (eiθ) ∈ TX(eiθ)Γ, θ ∈ R}.

Clearly TXM is a Hilbert subspace of H2(S1,Rn). Our goal is to show
that the map

Φ(Y )(s) := expX(s) Y (s), s = eiθ,

is a local Cr-diffeomorphism about the zero 0 ∈ H2(S1,Rn) mapping a neigh-
bourhood of zero in TXM onto a neighbourhood of X in M . Towards this goal
we have:

Theorem 1. If ϕ ∈ Cr+3(Rn,Rn), then Φ : H2(S1,Rn) → H2(S1,Rn) de-
fined by Φ(Y ) := ϕ ◦ Y is of class Cr. Furthermore,

DmΦY (λ1, . . . , λm)(s) = DmϕY (s)(λ1(0), . . . , λm(s)) for 0 ≤ m ≤ r.

The proof of this theorem will be a consequence of the following

Lemma 1. Let Lm(Rn,Rn) be the space of m-linear maps from R
n into R

n,
and suppose that f ∈ C3(Rn,Lm(Rn,Rn)). Then the map F : H2(S1,Rn) →
Lm(H2(S1,Rn), H2(S1,Rn)) defined by

Y �→ F (Y )(λ1, . . . , λm)(s) := f(Y (s))(λ1(s), . . . , λm(s))

is continuous. Moreover, if f ∈ C4 then F ∈ C1, and the derivative of Y �→
F (Y ) is

λ �→ df(Y (s))(λ(s), λ1(s), . . . , λm(s)).

Proof. Recall that H2(S1,Rn) is continuously and compactly embedded into
C1(S1,Rn). Assume for simplicity that

‖λj‖H2 ≤ 1, ‖Y ‖H2 < 2, ‖Ỹ ‖H2 < 2,

and consider the difference

[F (Y )− F (Ỹ )](λ1, . . . , λm)(s) = [f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λm(s)).

Then
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d

ds
[F (Y )− F (Ỹ )](λ1, . . . , λm)(s)

= df(Y (s))(Y ′(s))(λ1(s), . . . , λm(s))− df(Ỹ (s))(Ỹ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λj−1(s), λ′
j(s), λj+1(s), . . . , λm(s))

= df(Y (s))(Y ′(s)− Ỹ ′(s))(λ1(s), . . . , λm(s))
+ [df(Y (s)− df(Ỹ (s))](Ỹ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λm(s)).

Since f is Lipschitz continuous, we have

sup
s
|f(Y (s))− f(Ỹ (s))| ≤ const sup

s
|Y (s)− Ỹ (s)|

≤ const ‖Y − Ỹ ‖H1 ,

and therefore∣∣∣∣∣
m∑

j=1

[f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λm(s))

∣∣∣∣∣

≤ const
m∑

j=1

||Y − Ỹ ||H1 |λ′
j(s)|,

from which it follows that∥∥∥∥∥
m∑

j=1

[f(Y )− f(Ỹ )](λ1, . . . , λ
′
j , . . . , λm)

∥∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 .

Furthermore, the Lipschitz continuity of df implies

‖df(Y )(Y ′ − Ỹ ′)(λ1, . . . , λm)‖L2 ≤ const ‖Y − Ỹ ‖H2 ,

‖df(Y )− df(Ỹ )](Ỹ ′)(λ1, . . . , λm)‖L2 ≤ const ‖Y − Ỹ ‖H2 .

Summarizing these estimates we obtain
∥∥∥∥ dds [F (Y )− F̃ (Y )](λ1, . . . , λm)

∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 .

In the same manner we infer∥∥∥∥ d
2

ds2
[F (Y )− F̃ (Y )](λ1, . . . , λm)

∥∥∥∥
L2

≤ const ‖Y − Ỹ ‖H2 ,

since f, df , and d2f are Lipschitz continuous, using
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d2

ds2
[F (Y )− F (Ỹ )](λ1, . . . , λm)(s)

= d2f(Y (s))(Y ′(s))(Y ′(s)− Ỹ ′(s))(λ1(s), . . . , λm(s))
+ df(Y (s))(Y ′ ′(s)− Ỹ ′ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

df(Y (s))(Y ′(s)− Ỹ ′(s))(λ1(s), . . . , λ′
j(s), . . . , λm(s))

+ [d2f(Y (s))(Y ′(s))− d2f(Ỹ (s))(Ỹ ′(s))](Ỹ ′(s))(λ1(s), . . . , λm(s))
+ [df(Y (s))− df(Ỹ (s))](Ỹ ′ ′(s))(λ1(s), . . . , λm(s))

+
m∑

j=1

[df(Y (s))− df(Ỹ (s))](Y ′(s))(λ1(s), . . . , λ′
j(s), . . . , λm(s))

+
m∑

j=1

[f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λ′ ′
j (s), . . . , λm(s))

+
m∑

j,k=1,j<k

[f(Y (s))− f(Ỹ (s))](λ1(s), . . . , λ′
j(s), . . . , λ

′
k(s), . . . , λm(s))

+
m∑

j=1

[df(Y (s))(Y ′(s))− df(Ỹ )(Ỹ ′(s))](λ1(s), . . . , λ′
j(s), . . . , λm(s)).

The estimates above prove that F maps H2(S1,Rn) continuously into the
space

Lm(H2(S1,Rn), H2(S1,Rm)).

If f ∈ C4 then df ∈ C3 and d2f ∈ C2, and Taylor’s theorem yields

f(u+ h)− f(u)− df(u)h = r(u, h)(h, h),

where

r(u, h)(h, h) :=
∫ 1

0

(1− t)[d2f(u+ th)− d2f(u)](h, h) dt.

Since f is in C4 we obtain

‖r(u, h)(h, h)‖H2 ≤ const ‖h‖2H2 for ‖h‖H2 ≤ 1.

This shows that the mapping F is differentiable, and its derivative DF (Y ) at
Y ∈ H2(S1,Rn) is given by

(DF (Y )h)(s) = df(Y (s))h(s).

Since df ∈ C3, the first part of the lemma yields DF ∈ C0. �

Proof of Theorem 1. Applying Lemma 1 to f = dmϕ succesively to m =
0, 1, . . . , r − 1, we infer that DΦ,D2Φ, . . . , DrΦ exist and are continuous. �
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Theorem 2. M = H2(S1, Γ ) is a Cr-submanifold of H2(S1,Rn).

Proof. Since H2(S1,Rn) ⊂ C1(S,Rn), the set M is closed in H2(S1,Rn).
Consider the map Y �→ Φ(Y ) defined by

Φ(Y )(s) := expX(s) Y (s) for X ∈ H2(S1, Γ ),

which is of class Cr by virtue of Theorem 1.
Since Φ(0) is the identity map, the inverse function theorem implies that

Φ is a local Cr-diffeomorphism about 0. Moreover, as the Riemannian metric
g is totally geodesic with respect to Γ , we see that Φ maps TXM into M .
Since Φ is also locally invertible, it provides a coordinate chart for M as a
submanifold of H2(S1,Rn). �

Before we can apply the preceding results to Plateau’s problem we need
an abstract functional analytic reasoning which shows that a C3-function
E : M → R on a Cr-smooth submanifold M of a Hilbert space H, r ≥ 3,
possesses intrinsic first, second, and third order derivatives for any critical
point x of E (i.e. DE(x) = 0). To prove this we need a few prerequisites.

By E ∈ C3(M) we mean that E extends to a C3-map on a neighbourhood
of every point x ∈ M . Equivalently we can use coordinate charts as follows.
From the definition of a submanifold it follows that about each point x ∈ M
there is a Cr-diffeomorphism ρ : V → V′ from a neighbourhood V of x in H

onto a neighbourhood V′ of 0 in H with ρ(x) = 0 such that ρ(V ∩M) is an
open subset of a fixed subspace H0 of H. Then “E ∈ C3(M)” means that
E ◦ ψ is of class C3 for any such chart (ρ,V) where ψ is the inverse of ρ. For
x ∈ M with the image 0 = ρ(x) we define the tangent space TxM of M at x
by

TxM := Dψ(0)[H0] ⊂ H,

i.e. as the image of H0 under the mapping provided by the derivative Dψ(0).
This definition of TxM does not depend on the choice of the chart (ρ,V).

As each h ∈ TxM can be written as h = Dψ(0)h̃ with h̃ ∈ H0, we define

DE(x)h := D(E ◦ ψ)(0)h̃,

which again can be shown to be independent of the choice of the chart.
A point x ∈M is a critical point of E : M → R if DE(x) = 0. At a critical

point x of E there is a well-defined bilinear form

D2E(x) : TxM × TxM → R

defined by
D2E(x)(h, k) := D2(E ◦ ψ)(0)(h̃, k̃) for

h = Dψ(0)h̃, k = Dψ(0)k̃; h̃, k̃ ∈ H0.

This is the Hessian (bilinear form), which again does not depend on the choice
of the chart (ρ,V), as we will shortly show. Surprisingly, there is also a third
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intrinsic derivative D3E(x), but this is intrinsically defined only on the kernel
Kx of D2E(x), i.e. on

Kx := {h ∈ TxM : D2E(x)(h, k) = 0 for all k ∈ TxM}.

Let us state this formally as

Theorem 3. At a critical point x of E ∈ C3(M) there is an intrinsically
defined1 second derivative D2E(x) : TxM × TxM → R, and a third derivative
D3E(x) : Kx ×Kx ×Kx → R defined as a trilinear map on the kernel Kx of
D2E(x).

To prove this we have to show that, with respect to any transition map
ϕ : U → U on U ⊂ M fixing the critical point x ∈ U of E, the second and
third derivative of E ◦ ϕ depend only on the first derivative of ϕ and are
independent of D2ϕ(x) and D3ϕ(x). Since we may choose the critical point x
as the origin 0, the theorem is a consequence of the following

Lemma 2. Let U be an open subset of a Hilbert space and suppose that 0 ∈ U
is a critical point of E ∈ C3(U). Assume also that K is the kernel of the
Hessian of E at 0 and ϕ : U → U is a C3-diffeomorphism of U onto itself
with ϕ(0) = 0. Then

D2(E ◦ ϕ)(0)(k1, k2) = D2E(0)(Dϕ(0)k1, Dϕ(0)k2),

and furthermore, if Dϕ(0)kj ∈ K, j = 1, 2, 3, then

D3(E ◦ ϕ)(0)(k1, k2, k3) = D3E(0)(Dϕ(0)k1, Dϕ(0)k2, Dϕ(0)k3).

Proof. Repeatedly using the chain rule we see that

(i) D(E ◦ ϕ)(x)(h) = DE(ϕ(x))Dϕ(x)h,

(ii) D2(E ◦ ϕ)(x)(h, k) = D2E(ϕ(x))(Dϕ(x)h,Dϕ(x)k)

+DE(ϕ(x))D2ϕ(x)(h, k).

(iii) D3(E ◦ ϕ)(x)(h, k, !) = D3E(ϕ(x))(Dϕ(x)h,Dϕ(x)k,Dϕ(x)!)

+D2E(ϕ(x))(D2ϕ(x)(h, !), Dϕ(x)k)

+D2E(ϕ(x))(Dϕ(x)h,D2ϕ(x)(k, !))

+D2E(ϕ(x))(D2ϕ(x)(h, k), Dϕ(x)!)

+DE(ϕ(x))D3ϕ(x)(h, k, !).

1 An intrinsic derivative D∗f(x) of a map f : M → R on a subspace σ of the tangent space

TxM is an r-linear form σ+ → R of σr = σ × · · · × σ which is defined independently of the

choice of any coordinate chart.
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Set k1 := h, k2 := k, k3 := ! and note that DE(0) = 0. Then the first
assertion follows from (ii) and ϕ(0) = 0. The second claim is a consequence
of (iii) noting that ϕ(0) = 0, DE(0) = 0, and by assumption Dϕ(0)kj ∈ K,
1 ≤ j ≤ 3. �

Now we shall apply the preceding result to Dirichlet’s integral E :
H2(S1,Rn) → R defined by (1). Recall the assumption Γ ∈ Cr+7, r ≥ 3. By
Theorem 2 it follows that M := H2(S1, Γ ) is a Cr-submanifold of H2(S1,Rn),
and since E : H2(S1,Rn) → R is of class C∞, it follows immediately that the
restriction E|M is of class Cr. Let us simply write E instead of E|M , i.e. we
view E as a function of class Cr(M).

We wish now to calculate the intrinsic third derivative in the direction
of certain specific elements of the kernel of D2E(X) : TXM × TXM → R,
namely the forced Jacobi fields, in the case that X ∈ H2(S1, Γ ) is a minimal
surface. By the results of Chapter 2 we know that X̂ ∈ Cr+6,α(B,Rn) and
therefore also X ∈ Cr+6,α(S1,Rn) for all α ∈ (0, 1).

Besides assuming that Γ ∈ Cr+7 we make another standing assumption
on Γ , namely that the total curvature

∫
Γ
κ ds of Γ satisfies

(2)
∫

Γ

κ ds ≤ 1
3
πr,

which implies r ≥ 6. Then the generalized Gauss–Bonnet formula (19) of
Section 2.11 implies

2π
∑

wj ∈B

ν(wj) + π
∑

ζk ∈∂B

ν(ζk) + 2π ≤ 1
3
πr,

where ν(wj) are the orders of the interior branch points wj of a (branched)
minimal surface X̂ ∈ C(Γ ), and ν(ζk) are the orders of its boundary branch
points, k = 1, . . . , q. Suppose that q ≥ 1. Then

(3) ν(ζk) ≤ r/3− 2.

Recall the definition of a forced Jacobi field of a minimal surface X̂ : B → R
3

which we now generalize to a minimal surface X̂ : B → R
n with n ≥ 3 which

has the interior branch points w1, . . . , wp and the boundary branch points
ζ1, . . . , ζq. The generator τ of a forced Jacobi field Ŷ for X̂ is a meromorphic
function on B with poles possibly at w = 0 and at the branch points of X̂
whose orders are at most ν(wj) at wj �= 0, ν(0) + 1 at w = 0, ν(ζj) at ζj , and
which is real on ∂B. Then the forced Jacobi field Ŷ of X̂ with the generator
τ is a mapping Ŷ : B → R

n of the form

Ŷ = 2βRe(iwX̂wτ) with β ∈ R,

and
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Y = βXθτ |S1 : S1 → R
n

are its boundary values. From the regularity of X̂ and (3) we infer as in 6.1
that certainly Y ∈ H2(S1,Rn), Ŷw ∈ C0(B,Rn), and clearly Y ∈ TXM . The
space of forced Jacobi fields of X̂ is denoted by J(X̂).

We shall show that the forced Jacobi fields are in the kernel of the Hessian
of E : M → R, and we will compute the second and third derivative of E
in these directions. In Chapter 5 of Vol. 3 we shall describe how the forced
Jacobi fields were discovered.

Computation of D2E and D3E.
Let Ω(p) : R

n → TpΓ be the Cr+6-smooth orthogonal projection of R
n onto

the tangent space TpΓ for p ∈ Γ . We extend Ω(p) to a Cr+6-smooth mapping
p �→ Ω(p) from R

n into L(Rn,Rn). We then can write the first derivative of
E at X ∈M = H2(S1, Γ ) as

(4) DE(X) =
∫

S1
〈Ω(X)X̂r, h〉 dθ, X̂r = radial derivative of X̂.

A slight generalization of Theorem 1 yields that X → Ω(X) belongs to
Cr(M,H2(S1,L(Rn,Rn))), M = H2(S1, Γ ), if we take Theorem 2 into ac-
count. Clearly, X is a critical point of E if and only if

(5) Ω(X)X̂r = 0.

X̂ will be a solution to Plateau’s problem if X is also a monotonic map from
S1 onto Γ .

The derivative of Ω(X)X̂r is given by

(6) h �→ Ω(X)ĥr +DΩ(X)h[X̂r],

and so the Hessian of E is

(7) D2E(X)(h, k) =
∫

S1
〈Ω(X)ĥr +DΩ(X)h[X̂r], k〉 dθ.

It follows that the kernel of (6) is just the kernel of the Hessian D2E(X) of
E at X.

Claim: The forced Jacobi fields of X lie in the kernel of D2E(X). To see this
we first note that

(8) |Xθ|2Ω(X)m = 〈m,Xθ〉Xθ for m ∈ R
n.

Differentiating this in direction of a tangent vector h ∈ TXM ,M = H2(S1, Γ ),
we obtain

2〈Xθ, hθ〉Ω(X)[m] + |Xθ|2DΩ(X)(h)[m](9)
= 〈m,hθ〉Xθ + 〈m,Xθ〉hθ.
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Thus the kernel of (6) is the kernel of

h �→ |Xθ|−2{〈X̂r, hθ〉Xθ + 〈X̂r, Xθ〉hθ − 2〈Xθ, hθ〉Ω(X)X̂r}+Ω(X)ĥr.

From (5) we infer

〈X̂r, Xθ〉 = 0 and Ω(X)X̂r = 0,

and (8) yields
Ω(X)ĥr = |Xθ|−2〈ĥr, Xθ〉Xθ.

Thus h is in the kernel of (6) if and only if

|Xθ|−2{〈X̂r, hθ〉Xθ + 〈Xθ, ĥr〉Xθ} = 0

that is, if and only if

(10) 〈X̂r, hθ〉+ 〈Xθ, ĥr〉 = 0,

since the zeros of Xθ(θ) are isolated because of the asymptotic expansion of
X̂w at branch points w0 ∈ B.

On S1 = ∂B we have

iwX̂w =
1
2
(Xθ + iX̂r), iwĥw =

1
2
(hθ + iĥr),

implying that

(11) 〈X̂r, hθ〉+ 〈Xθ, ĥr〉 = −4 Im{w2〈X̂w, ĥw〉}.

If ĥ is a forced Jacobi field we have

h = βXθτ |S1 and ĥ = 2 Re(βiwX̂wτ)

with β ∈ R and τ the generator of ĥ. Since wX̂wτ is holomorphic on B, it
follows

ĥw = β[iwX̂wτ ]w.

Hence, if w ∈ B is not a branch point of X̂, we obtain

ĥw(w) = β[iX̂w(w)τ + iwX̂ww(w)τ(w) + iwX̂w(w)τw(w)].

On the other hand, a minimal surface X̂ satisfies

〈X̂w, X̂w〉 = 0

and therefore also
〈X̂w(w), ĥw(w)〉 = 0

if w ∈ B is not a branch point of X̂, and by continuity of ĥw on B it follows

(12) 〈X̂w, ĥw〉 = 0 if ĥ ∈ J(X̂).

From (10), (11) and (12) we infer that for a forced Jacobi field ĥ its boundary
values h lie in the kernel of (6) and therefore in the kernel KX of the Hessian
D2E(X). This proves the claim, and we have established
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Proposition 1. If X̂ is a minimal surface with X ∈ M = H2(S1, Γ ) then
the boundary values h of any ĥ ∈ J(X̂) lie in the kernel KX of the Hessian
D2E(X) of E at X, that is, h ∈ TXM and

D2E(X)(h, k) = 0 for all k ∈ TXM.

Remark 1. We would like to point out that D2E(X) has been defined for
branched minimal surfaces without making normal variations of X̂.

Before we compute D3E(X) we give a geometric interpretation of

D2E(X)(h, h) = δ2E(X,h),

i.e. of the second variation of E at X in direction of h ∈ TXM . An integration
by parts yields

∫
B

∇ĥ · ∇ĥ du dv =
∫

S1
〈ĥr, h〉 dθ −

∫
B

〈Δĥ, ĥ〉 du dv(13)

=
∫

S1
〈ĥr, h〉 dθ

since Δĥ = 0. Away from branch points on S1 we set

h = aXθ and b = 〈ĥr, Xθ〉.

By (8) we have
Ω(X)ĥr = |Xθ|−2〈ĥr, Xθ〉Xθ,

and so

〈h,Ω(X)ĥr〉 = 〈aXθ, bXθ〉|Xθ|−2 = ab = 〈ĥr, aXθ〉 = 〈ĥr, h〉

and by continuity it follows

〈ĥr, h〉 = 〈h,Ω(X)ĥr〉 on S1.

On account of (7) and (13) it follows that

(14) D2E(X)(h, h) =
∫

B

|∇ĥ|2 du dv +
∫

S1
〈h,DΩ(X)h[X̂r]〉 dθ.

In order to simplify the boundary term we return to (9) where we insert
m = X̂r. Since 〈X̂r, Xθ〉 = 0 we have Ω(X)X̂r = 0 on S1, and so two terms
in (9) vanish. We are left with

DΩ(X)h[X̂r] = |Xθ|−2〈X̂r, hθ〉Xθ.

Since h = aXθ (away from branch points), we have
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hθ = aXθθ + aθXθ

whence
〈X̂r, hθ〉 = a〈X̂r, Xθθ〉.

This implies

〈h,DΩ(X)h[X̂r]〉
= |Xθ|−2〈aXθ, a〈X̂r, Xθθ〉Xθ〉 = a2〈X̂r, Xθθ〉
= |h|2|Xθ|−2〈X̂r, Xθθ〉 = |h|2kg,

where

(15) kg := |Xθ|−2〈X̂r, Xθθ〉

is the signed geodesic curvature of Γ in the minimal surface X̂, i.e. the interior
product of the curvature vector of Γ with the unit vector |X̂r|−1X̂r, since
|Xθ| = |X̂r| on S1.

Thus we infer from (14) the following result which was independently
obtained by R. Böhme and A. Tromba:

Proposition 2. If X̂ is a minimal surface with X ∈ M = H2(S1, Γ ) then,
for any h ∈ TXM , we obtain

(16) D2E(X)(h, h) =
∫

B

|∇ĥ|2 du dv +
∫

S1
kg|h|2 dθ,

where kg is the signed geodesic curvature (15) of the boundary contour Γ in
the minimal surface X̂.

Now we proceed to compute the intrinsic third derivative D3E(X). Let
us return to formula (9) which will be differentiated in direction of a vector
k ∈ TXM . This yields

2〈hθ, kθ〉Ω(X)m+ 2〈Xθ, hθ〉DΩ(X)[k]m
+ 2〈Xθ, kθ〉DΩ(X)[h]m+ |Xθ|2D2Ω(X)(h, k)m

= 〈m,hθ〉kθ + 〈m, kθ〉hθ.

Choosing m := X̂r we see that

2〈Xθ, hθ〉DΩ(X)(k)[X̂r] + 2〈Xθ, kθ〉DΩ(X)(h)[X̂r]
+ |Xθ|2D2Ω(X)(h, k)[X̂r] = 〈X̂r, hθ〉kθ + 〈X̂r, kθ〉hθ.

By (7) we may write for h, k in the kernel of D2E(X) (and therefore in the
kernel of (6))

(17) DΩ(X)(h)[X̂r] = −Ω(X)ĥr, DΩ(X)(k)[X̂r] = −Ω(X)k̂r,
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then obtaining

−2〈Xθ, hθ〉Ω(X)k̂r − 2〈Xθ, kθ〉Ω(X)ĥr(18)
+ |Xθ|2D2Ω(X)(h, k)[X̂r] = 〈X̂r, hθ〉kθ + 〈X̂r, kθ〉hθ.

Setting in (9) m = k̂r we get

2〈Xθ, hθ〉Ω(X)k̂r + |Xθ|2DΩ(X)[h]k̂r(19)

= 〈k̂r, hθ〉Xθ + 〈k̂r, Xθ〉hθ.

Commuting h and k it follows also

2〈Xθ, kθ〉Ω(X)ĥr + |Xθ|2DΩ(X)[k]ĥr(20)

= 〈ĥr, kθ〉Xθ + 〈ĥr, Xθ〉kθ.

Adding (19) and (20) to (18) we see that

|Xθ|2D2Ω(X)(h, k)X̂r + |Xθ|2DΩ(X)[h]k̂r + |Xθ|2DΩ(X)[k]ĥr(21)

= 〈X̂r, hθ〉kθ + 〈X̂r, kθ〉hθ + 〈ĥr, kθ〉Xθ + 〈ĥr, Xθ〉kθ

+ 〈k̂r, hθ〉Xθ + 〈k̂r, Xθ〉hθ.

By (10) we have

〈Xθ, ĥr〉 = −〈X̂r, hθ〉 and 〈Xθ, k̂r〉 = −〈X̂r, kθ〉.

Therefore (21) reduces to

|Xθ|2{D2Ω(X)(h, k)X̂r +DΩ(X)[h]k̂r +DΩ(X)[k]ĥr}(22)

= {〈ĥr, kθ〉+ 〈k̂r, hθ〉}Xθ.

Suppose now that h, k, ! lie in the space J(X̂) of forced Jacobi fields. By (7)
we have

(22′) D2E(X)(h, !) =
∫

S1
〈DΩ(X)h[X̂r] +Ω(X)ĥr, !〉 dθ.

Differentiating this in direction of k it follows

D3E(X)(h, !, k)(23)

=
∫

S1
〈D2Ω(X)(h, k)[X̂r] +DΩ[h]k̂r +DΩ(X)[k]ĥr, !〉 dθ,

which by (22) yields

D3E(X)(h, !, k)(24)

=
∫

S1
{〈ĥr, kθ〉+ 〈k̂r, hθ〉}|Xθ|−2〈Xθ, !〉 dθ.
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Actually there are two more terms on the right-hand side of (24) which come
from the derivatives !′ and h′ of ! and h. We have to shows that these terms
are zero if ! and h are forced Jacobi fields. The additional !′-term is

∫
S1
〈DΩ(X)h[X̂r] +Ω(X)ĥr, !

′〉 dθ.

It vanishes since
DΩ(X)h[X̂r] +Ω(X)ĥr = 0,

as h is a forced Jacobi field.
The second additional term becomes

∫
S1
〈h′, (λ̂Xθ)r − (λX̂r)θ〉 dθ

if we write ! = λXθ = Re{λiwX̂w} and integrate by parts. But ! is holomor-
phic in B. and so the Cauchy–Riemann equations yield

− ∂

∂θ
(λ̂Xθ) +

∂

∂r
(λ̂Xθ) = 0.

This equation extends to the boundary S1 = ∂B, and so the second additional
term vanishes too.

The two expressions (23) and (24) yield the intrinsic third derivative of E
at X. We synonymously write

∂E

∂h
(X) = DE(X)h,

∂2E

∂h∂k
(X) = D2E(X)(h, k),(25)

∂3E(X)
∂h∂!∂k

= D3E(X)(h, !, k).

Suppose that h, k, ! ∈ J(X̂) have the generators τ, ρ, λ; we shall write τ, ρ, λ
also for the boundary values τ |S1 , ρ|S1 , λ|S1 :

h(θ) = τ(θ)Xθ(θ), so ĥ(w) = 2Re(iwτ(w)X̂w(w)),

k(θ) = ρ(θ)Xθ(θ), k̂(w) = 2Re(iwρ(w)X̂w(w)),

!(θ) = λ(θ)Xθ(θ), !̂(w) = 2Re(iwλ(w)X̂w(w)).

(26)

Then (24) becomes

(27) D3E(X)(h, !, k) =
∫

S1
{〈ĥr, kθ〉+ 〈k̂r, hθ〉}λ(θ) dθ.

On S1 we have dθ = dw
iw and
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2wĥw = ĥr − ihθ, 2wk̂w = k̂r − ikθ

whence
〈ĥr, kθ〉+ 〈k̂r, hθ〉 = −4 Im(w2ĥwk̂w〉.

Furthermore,

ĥw = (iwX̂wτ)w = i(wτX̂ww + X̂wτ + wX̂wτw),

k̂w = (iwX̂wρ)w = i(wρX̂ww + X̂wρ+ wX̂wρw).

Since X̂w · X̂w = 0 and X̂w · X̂ww = 0 it follows that

w2ĥwk̂w = −w4τρX̂ww · X̂ww

and consequently

〈ĥr, kθ〉+ 〈k̂r, hθ〉 = 4 Im(w4τρX̂ww · X̂ww).

This implies

D3E(X)(h, !, k) = 4
∫

S1
Im(w4τρX̂ww · X̂ww)λ dθ

= 4 Im
∫

S1
w4τρλX̂ww · X̂ww dθ

= 4 Im
∫

S1
w4τρλX̂ww · X̂ww

dw

iw
,

and we arrive at

D3E(X)(h, !, k) = −4 Re
∫

S1
w3τρλX̂ww · X̂ww dw(28)

= 4
∫

S1
Im(w4τρλX̂ww · X̂ww) dθ.

It follows from (23) that the right-hand side of (28) is the integral of a contin-
uous function. If we wish to apply the residue theorem to evaluate the integral
in (28) we have to get a better grip to the integrand. To this end we impose
an additional standing assumption: n = 3, i.e. we consider boundary contours
only in R

3.
First we wish to understand what the generators τ of forced Jacobi fields

for a minimal surface X̂ with a boundary branch point w0 ∈ S1 are. By means
of a rotation we can move w0 to the point w = 1. Thus we make the following
further standing assumption:

X̂ ∈ C(Γ ) is a minimal surface in the unit disk B with the boundary branch
point w = 1 of order n, and the boundary contour Γ ∈ C2 has a total cur-
vature κ(Γ ) :=

∫
Γ
κ(s) ds satisfying 3κ(Γ ) ≤ τr. It is also assumed that
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Γ ∈ Cr+7, r ≥ 2, which implies X̂ ∈ Cr+6,β(B,R3), 0 < β < 1, and
n ≤ r/3− 2.

It is easy to verify that

(29) τ(w) := β

(
i
w + 1
w − 1

)�

, β ∈ R,

is a meromorphic function on B with a pole of order ! at w = 1 such that
τ(w) ∈ R for w ∈ S1 \ {1}. If ! ≤ n then X̂w(w)τ(w) is holomorphic in B and
at least continuous on B since we have the asymptotic expansion

X̂w(w) = a(w − 1)n + o(|w − 1|n) as w → 1, w ∈ B \ {1}(30)
with a ∈ C

3, a �= 0, and a · a = 0.

Thus τ generates a forced Jacobi field for X̂. Consider the conformal mapping
ϕ : B \ {−1} → H, defined by

(31) w �→ z = ϕ(w) := −iw − 1
w + 1

, w ∈ B \ {−1},

which maps B = {w ∈ C : |w| < 1} onto the upper halfplane

H := {z ∈ C : Im z > 0}

and takes S1\{−1} onto the real line R such that ϕ(1) = 0, ϕ(i) = 1, ϕ(−1) =
∞. The inverse ψ := ϕ−1 is given by

(32) z �→ w = ψ(z) :=
1 + iz

1− iz
.

We write z = x + iy with x = Re z and y = Im z, while w = u + iv, u =
Rew, v = Imw. From (31) we infer

1
z

= i
w + 1
w − 1

and so

(33) σ := τ ◦ ψ =
β

z�
.

Transforming the minimal surface X̂(w) to the new parameter z, we obtain

(34) Ŷ (z) := X̂(ψ(z))

which has the branch point z = 0 on R = ∂H with the asymptotic expansion

Ŷz(z) = bzn + o(|z|n) as z → 0, z ∈ H \ {0}
b ∈ C

3 \ {0}, b · b = 0.
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Choosing a suitable coordinate system in R
3 we may assume that Ŷz(z) can

be written in the normal form

(35) Ŷz(z) = Ã1z
n + o(zn)

with Ã1 = (a1+ib1); a1, b1 ∈ R
3, |a1|2 = |b1|2 �= 0; a1 ·b1 = 0, a1 = (n+1)αe1,

e1 = (1, 0, 0), α > 0, where a1, b1 span the tangent space to X̂ at X(1). Let
us recall that the order of any boundary branch point is even; thus we can set

(36) n = 2ν with ν ∈ N.

Now we wish to write Ŷz in the more specific form

(37) Ŷz(z) = (A1z
n + · · ·+Am−n+1z

m +O(|z|m+1), Rmz
m +O(|z|m+1))

with

(38) Rm �= 0.

By Taylor’s theorem and (35) we can achieve (37) for any m ∈ N with m > n
and such that Ŷ ∈ Cm+2(H,R3).

However, it is not at all a priori obvious that one can achieve also (38).
This fact is ensured by the following

Proposition 3. Suppose that Ŷ ∈ C3n+6(H,R3) and that both the torsion τ
and the curvature κ of Γ are nonzero. Then there is an m ∈ N with n+ 1 <
m+ 1 ≤ 3(n+ 1) such that

(39) Ŷ 3
z (z) = Rmz

m +O(|z|m+1) for |z| � 1 and Rm �= 0.

Proof. Otherwise we have

(40) Ŷ 3
z (z) = O(|z|3n+3).

Let γ(s) = (γ1(s), γ2(s), γ3(s)) be the local representation of Γ with respect
to its arc-length parameter s such that γ(0) = Ŷ (0) and γ′(0) = e1. By (35)
and (36) we have

Ŷx(x, 0) = (n+ 1)αe1xn +O(xn+1), n = 2ν,

and so s and x are related by s = σ(x) with

σ′(x) = |Yx(x)| = [(n+ 1)αxn +O(xn+1)],

whence

(41) σ(x) = αxn+1 +O(xn+2) as x→ 0.

Then Y (x) = γ(σ(x)) for |x| � 1, and therefore the third component Y 3 of
Y is given by
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Y 3(x) = γ3(σ(x)) = γ3(αxn+1 +O(xn+2)) for x→ 0.

Because of (40) we have Y 3
x (x) = O(x3n+3) as x→ 0, which implies

(42) Y 3(x) = O(x3n+4) as x→ 0.

On the other hand

γ(s) = γ′(0)s+O(s2) as s→ 0.

Consequently

Y 3(x) = γ′
3(0)αxn+1 +O(xn+2) as x→ 0.

On account of (42) and α > 0 it follows γ′
3(0) = 0. Thus we can write

γ3(s) =
1
2
γ′ ′
3 (0)s2 +O(s3) as s→ 0,

which implies

Y 3(x) =
1
2
γ′ ′
3 (0)α2x2n+2 +O(x2n+3) as x→ 0.

By (42) and α > 0 we obtain γ′ ′
3 (0) = 0, and we have

γ3(s) =
1
6
γ′ ′ ′
3 (0)s3 +O(s4) as s→ 0.

Hence,

Y 3(x) =
1
6
γ′ ′ ′
3 (0)α3x3n+3 +O(x3n+4) as x→ 0,

and then γ′ ′ ′
3 (0) = 0 on account of (42) and α > 0. Thus we have found

γ′
3(0) = 0, γ′ ′

3 (0) = 0, γ′ ′ ′
3 (0) = 0,

and so the three vectors γ′(0), γ′ ′(0), γ′ ′ ′(0) are linearly dependent. This will
contradict our assumption κ(s) �= 0 and τ(s) �= 0. To see this we introduce
the Frenet triple T (s),N(s),B(s) of the curve Γ satisfying T = γ′,T ′ =
γ′ ′,T ′ ′ = γ′ ′ ′, and

T ′ = κN

N ′ = −κT +τB

B′ = −τN .

Then T 3(0) = 0,T ′
3(0) = 0,T ′ ′

3(0) = 0, and from T ′ = κN and κ �= 0 it
follows that N3(0) = 0. Since

N ′ =
(

1
κ

)′
T ′ +

1
κ

T ′ ′

we obtain N ′
3(0) = 0 whence τ (0)B3(0) = 0. Because of τ �= 0 it follows that

B3(0) = 0, and so T (0),N(0),B(0) are linearly dependent. This is a contra-
diction since (T ,N ,B) is an orthonormal frame, hence the assumption (40)
is impossible. �
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Remark 2. Note that n ≤ r/3 − 2 implies 3n + 6 ≤ r < r + 7. Thus the
assumption Ŷ ∈ C3n+6(H,R3) is certainly satisfied if we assume 3κ(Γ ) ≤ πr
and Γ ∈ Cr+7. Thus we have a lower bound on r and upper bounds on n
and m. We call the number m in (39) with n < m < 3n+ 3 the index of the
boundary branch point z = 0 of Ŷ , or of the boundary branch point w = 1
of X̂.

Assumption. In what follows we assume that the assumptions and therefore
also the conclusions of Proposition 3 are satisfied.

Proposition 4. If m + 1 �≡ 0 mod(n + 1) (i.e. if z = 0 is not an exceptional
branch point of Ŷ ) then the coefficient Rm in (39) satisfies

(43) ReRm = 0,

i.e. Rm is purely imaginary, and therefore

(44) R2
m < 0

since Rm �= 0. If we write (39) in the form

(45) Y 3
z (z) = Rmz

m +Rm+1z
m+1 +Rm+2z

m+2 + o(|z|m+2) for |z| � 1

and if 2m− 2 < 3n, then we in addition obtain that

(46) ReRm+1 = 0 and, if n > 2, also ReRm+2 = 0.

Finally, independent of any assumption on m, we have

(47) Aj = μjA1, j = 1, . . . ,min{n+ 1, 2m− 2n}, with μj ∈ R

for the coefficients Aj in the expansion (37).

Remark 3. The relations (47) are in some sense a strengthening of the equa-
tions

Aj = λjA1, j = 1, . . . , 2m− 2n, with λj ∈ C

which hold at an interior branch point w = 0 of a minimal surface X̂ in normal
form.

Proof of Proposition 4. (i) From (45) we infer

Y 3(x) = Re
(

Rm

m+ 1
xm+1 +

Rm+1

m+ 2
xm+2 +

Rm+2

m+ 3
xm+3 + o(xm+3)

)
(48)

for x→ 0.

On the other hand,

Y 3(x) = γ3(αxn+1 + o(xn+1))
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and γ(0) = 0, γ′(0) = e3 whence also γ3(0) = γ′
3(0) = 0. As pointed out before

it is then impossible that both γ′ ′
3 (0) = 0 and γ′ ′ ′

3 (0) = 0 because this would
imply that T (0),N(0),B(0) are linearly dependent. Thus we obtain

γ3(s) =
1
k!
γ(k)(0)sk +O(sk+1) as s→ 0, γ(k)(0) �= 0,

for k = 2 or k = 3. Therefore

(49) Y 3(x) =
1
k!
γ

(k)
3 (0)αkxk(n+1) + o(xk(n+1)) as x→ 0.

Comparing (48) and (49) it follows that ReRm �= 0 implies m+ 1 = k(n+ 1)
for k = 2 or k = 3, which is excluded by assumption. Thus ReRm = 0, and
we have

Y 3(x) = Re
(
Rm+1

m+ 2
xm+2 +

Rm+2

m+ 3
xm+3 + o(xm+3)

)
(50)

=
1
k!
γk(0)αkxk(n+1) + o(xk(n+1)) as x→ 0.

Suppose now that 2m− 2 < 3n, which is equivalent to

(51) 2m ≤ 3n

since n is even, and so

m+ 2 < m+ 3 ≤ 3
2
n+ 3 < 3(n+ 1).

Thus, for k = 3, equation (50) can only hold if

ReRm+1 = 0 and ReRm+2 = 0.

Furthermore, (51) yields also

m+ 2 < m+ 3 ≤ 3
2
n+ 3 = (2n+ 2) +

(
1− n

2

){= 2n+ 2
< 2n+ 2 and n = 2

n > 2.

Hence it follows in this case that always ReRm+1 = 0 while Re Rm+2 = 0
holds for n > 2.

(ii) From Yx(x) = 2 Re Ŷz(x, 0), (50) and (37) it follows that

Yx(x) = 2 Re(A1x
n + · · ·+An+1x

2n + o(x2n), o(x2n))

whence

Y (x) = 2 Re
(

A1

n+ 1
xn+1 + · · ·+ An+1

2n+ 1
x2n+1 + o(x2n+1), o(x2n+1)

)
.
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Furthermore,
γ(s) = e1s+O(s2) as s→ 0

and
σ(x) = b1x

n+1 + · · ·+ bn+1x
2n+1 + o(x2n+1) as x→ 0

with b1, . . . , bn+1 ∈ R, αe1 = b1e1 = 2
n+1 ReA1. Then

Y (x) = γ(σ(x)) = (b1xn+1 + · · ·+ bn+1x
2n+1)e1 +O(x2n+2).

Comparing the coefficients we get

2 ReAj = (n+ j)bje1 with α = b1 > 0 for 1 ≤ j ≤ n+ 1.

Then ReAj = (n+j)bj

(n+1)α ReA1, and so

ReAj = μj ReA1 for j = 2, . . . , n+ 1

with
μj :=

n+ j

n+ 1
bj
α
, 2 ≤ j ≤ n+ 1.

Set Aj := aj + ibj ; aj := ReAj , bj := ImAj ∈ R
n. We know from 6.1 that

Aj = λjA1 for j = 1, . . . , 2m− 2n with λj ∈ C hence

aj = (Reλj)a1 − (Imλj)b1 for 2 ≤ j ≤ 2m− 2n

and
aj = μja1 for 2 ≤ j ≤ n+ 1.

From |Ŷx| = |Ŷy| it follows that |b1| = |a1| = n+1
2 α > 0, and Ŷx · Ŷy = 0 yields

a1 · b1 = 0; thus we obtain Imλj = 0 for j = 2, . . . , n+ 1 whence λj = μj ∈ R

and Aj = μjA1 for 1 ≤ j ≤ min{n+ 1, 2m− 2n}. �

Let us now return to formula (28) for D3E(X)(h, k, !) in the direction
of forced Jacobi fields (with the boundary values) h, k, !; note that (28) is
symmetric in h, k, !. We already know that (28) is the integral of a continuous
function; but we need to understand (28) at a level where we can apply the
residue theorem. To this end we consider the conformal mapping (31) defined
by

w �→ z = ϕ(w) := −iw − 1
w + 1

, w ∈ B \ {−1},

which has the derivative

(52) ϕ′(w) =
−2i

(w + 1)2
.

Using the inverse

z �→ w = ψ(z) :=
1 + iz

1− iz
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we obtain

(53) ϕ′(ψ(z)) =
−i
2

(1− iz)2,

or sloppily
dz

dw
= − i

2
(1− iz)2.

From (34) we get X̂(w) = Ŷ (ϕ(w)), whence

X̂ww = Ŷzz(ϕ)(ϕ′)2 + Ŷz(ϕ)ϕ′ ′.

From Ŷz · Ŷz = 0 it follows Ŷz · Ŷzz = 0, and then

(54) X̂ww · X̂ww = Ŷzz(ϕ) · Ŷzz(ϕ)(ϕ′)4,

which we sloppily write

X̂ww · X̂ww = Ŷzz · Ŷzz

(
dz

dw

)4

.

Lemma 3. Assuming 2m − 2 < 3n (i.e. 2m ≤ 3n) we obtain the Taylor
expansion

(55) (Ŷzz · Ŷzz)(z) =
s∑

j=0

Qjz
2m−2+j +R(z)

with s := (3n − 1) − (2m − 2) = (3n − 2m) + 1 ≥ 1, R(z) = O(z3n), where
Q0 := (m− n)2R2

m < 0 and ImQj = 0 for 0 ≤ j ≤ s.

Proof. From 2m− 2 < 3n we infer 2m ≤ 3n since n is even. Thus s ≥ 1 and
2m− 2n+ 1 ≤ n+ 1. Consider the Taylor expansion

Ŷz(z) = (A1z
n +A2z

n+1 + · · · , Rmz
m +Rm+1z

m+1 + · · · ),

where “+ · · · ” indicates further z-powers plus a remainder term. As for interior
branch points we have

(56) A1 ·A2m−2n+1 = −R2
m/2

and

(57) A2 ·A2m−2n+1 +A1 ·A2m−2n+2 = −RmRm+1.

By (44) we have R2
m < 0 whence A1 ·A2m−2n+1 ∈ R. Since 2 ≤ 2m− 2n ≤ n

it follows A2 = μ2A1 with μ2 ∈ R on account of (47). Then (56) implies
A2 ·A2m−2n+1 ∈ R, and furthermore RmRm+1 ∈ R in virtue of (44) and (46).
Then (57) yields A1 ·A2m−2n+2 ∈ R, and we arrive at
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Ŷzz(z) · Ŷzz(z) = Q0z
2m−2 +Q1z

2m−1 + · · ·

with Q0 = (m − n)2R2
m, (see Section 6.1), and Q0 < 0 as well as Q1 ∈ R,

since Q1 is a real linear combination of A1 · A2m−2n+2, A2 · A2m−2n+1, and
RmRm+1. Suppose now that s = 3n−2m+1 > 1. In order to show ImQj = 0
for 2 ≤ j ≤ s, we note that by (54)

τρλw4X̂ww · X̂ww = τρλŶzz · Ŷzz

(
w
dz

dw

)4

,

where τ, ρ, λ are generators of forced Jacobi fields with the pole w = 1. Fur-
thermore, by (52),

(58) w
dz

dw
=

−2iw
(w + 1)2

=
1 + z2

2i
.

Thus

(59) Im(τρλw4X̂ww · X̂ww) =
1
16

Im[τρλ(1 + z2)4Ŷzz · Ŷzz].

By (28) the left-hand side of (59) is a continuous function on S1, and thus
the right-hand side must be continuous in a neighbourhood of 0 in H for all
generators τ, ρ, λ of forced Jacobi fields ĥ, k̂, l̂ with poles at w = 1.

Suppose now that not allQj with 2 ≤ j ≤ s are real, s = (3n−1)−(2m−2),
and let J be the smallest of the indices j ∈ {2, . . . , s} with the property that
Im Qj �= 0. Then we choose λ, ρ, τ such that the sum of their pole orders at
w = 1 equals (J + 1) + (2m − 2) ≤ 3n. Transforming λ, ρ, τ from w to z it
follows for z = x ∈ R = ∂H that

Im[τρλ(1 + z2)4Ŷzz · Ŷzz]
∣∣∣
z=x∈R

(60)

= (1 + x2)4β1(Im QJ)
1
x

+ 〈terms continuous in x〉,

β1 ∈ R \ {0}. This is clearly not a continuous function unless Im QJ = 0, a
contradiction, therefore no such J exists. �

Now we want to evaluate the integral in (28) by applying the residue
theorem. To this and we state

Proposition 5. Let τ be given by (29), and consider the function

(61) f(w) := τ(w)4w4X̂ww(w) · X̂ww(x), w ∈ B,

which has a continuous imaginary part on S1 = ∂B. Then there is a mero-
morphic function g(w) on B with a pole only at w = 1 such that

(i) Im[f(w)− g(w)] = 0 for w ∈ S1 = ∂B;

(ii) f − g is continous on B.
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Proof. Setting w = ψ(z) = (1 + iz)/(1− iz) we obtain

f(ψ(z)) =
1
16
τ(ψ(z))3(1 + z2)4Ŷzz(z) · Ŷzz(z).

By (55) of Lemma 3 we see that, in a neighbourhood of z = 0 in H, we can
write the right-hand side as

s∑
j=0

∑
�j

β̃jQ̃jz
−lj +G(z)

with β̃j ∈ R, Q̃j ∈ R, 0 < lj ≤ (3n−1)− (2m−2) = s, and a continuous term
G(z). Set

g̃(z) :=
s∑

j=0

s∑
lj=1

β̃jQ̃jz
−lj for z ∈ H \ {0}

and

g(w) := g̃(ϕ(w)) =
s∑

j=0

s∑
lj=1

β̃jQ̃j

(
i
w + 1
w − 1

)lj

.

Clearly f and g satisfy (i) and (ii). �

Corollary 1. We have

(62)
∫

S1
[f(w)− g(w)] dθ = −2π resw=0

g(w)
w

.

Proof. For w = eiθ ∈ S1 we have dθ = dw/(iw), whence
∫

S1
[f(w)− g(w)] dθ =

∫
S1

[f(w)− g(w)]
dw

iw

= 2π resw=0

{
f(w)− g(w)

w

}

= −2π resw=0

{
g(w)
w

}

since f(w)/w is holomorphic at w = 0. �

Since Im g = 0 on S1, we obtain

Corollary 2. We have

(63) Im
∫

S1
f(w) dθ = 2π Im resw=0

{
g(w)
w

}
.
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Furthermore we have

−4Re{w3τ3X̂ww · X̂ww dw} = (−4)Re{iw4τ3X̂ww · X̂ww} dθ
= 4Im{w4τ3X̂ww · X̂ww} dθ = 4 Im f(w) dθ.

Then (28) and Corollary 2 imply

(64) D3E(X)(h, h, h) = −8π Im resw=0

{
g(w)
w

}
.

Remark 4. We note the following slight, but very useful generalization of the
three preceding results. Namely, if X̂ has other boundary branch points than
w = 1 we are allowed to change τ by an additive term having poles of first
order at these branch points. Then Proposition 5 as well as Corollaries 1 and 2
also hold for the new f defined by (61) and the modified τ . This observation is
used in order to ensure that the forced Jacobi field ĥ generated by τ produces
a variation Ẑ(t), |t| � 1, of X̂ which is monotonic on ∂B = S1.

Now we turn to evaluation of D3E(X)(h, h, h) using formula (64). We
distinguish three possible cases: There is an l ∈ N such that

(i) 2m− 1 = 3l; then l is odd;

(ii) 2m− 2 = 3l; in this case l is even;

(iii) 2m = 3l; here l is again even.

Since 2m ≤ 3n it follows l < n for (i) and (ii), whereas l ≤ n in case (iii).

Case (i). Choose τ as

τ := βτ1 + ετ∗ and β > 0, ε > 0, and
(65)

τ1 =
(
i
w + 1
w − 1

)l

=
1
zl
, w ∈ B \ {1},

w = ψ(z), w ∈ B \ {−1}, z ∈ H \ {0}. We will choose τ∗ as a meromorphic
function that has poles of order 1 at the boundary branch points different
from w = 1 or z = 0 respectively. Then close to w = 1 or z = 0 respectively
we have

τ3w4X̂ww · X̂ww =
1
16
τ3(1 + z2)4Ŷzz · Ŷzz

(55)
=

β3

16
(m− n)2R2

m

1
z

+G(z) +O(ε)

with a continuous G(z).
Choose

g(w) =
β3

16
(m− n)2R2

m

(
i
w + 1
w − 1

)
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and let ĥ(w) = Re(iwX̂w(w)τ(w)) be the forced Jacobi field generated by
τ, h := ĥ|S1 . Then by Proposition 5 and the Corollaries 1, 2 we obtain

D3E(X)(h, h, h) = −8π
16
β3(m− n)2R2

mIm
{

resw=1
i

w

(
w + 1
w − 1

)}
(66)

=
1
2
πβ3(m− n)2R2

m +O(ε).

Since R2
m < 0 this yields for 0 < ε� 1 that

D3E(X)(h, h, h) < 0.

Case (ii). Here we have 3l = 2m− 2 < 3n whence l < n. Since both l and n
are even we obtain l+1 < n whence n > 2. Moreover, 2m−1 = 2(l+1)+(l−1).
Set

τ := ετ1 + βτ2 + ε3τ∗, β > 0, ε > 0,(67)

τ1 :=
(
i
w + 1
w − 1

)l+1

, τ2 :=
(
i
w + 1
w − 1

)l−1

, τ∗ as in Case 1.

Note also that both l + 1 and l − 1 are odd. We then have that

τ3 = β3τ3
2 + 3β2τ2

2 τ1ε+ 3βε2τ2
1 τ2 +O(ε3)

= β3z−2m+5 + 3β2z−2m+3 + 3βε2z−2m+1 +O(ε3)

for z close to zero, but this does not add a contribution to (64).
By the same procedure as in Case 1 we find for ĥ = Re(iwX̂wτ) that

(69) D3E(X)(h, h, h) =
3
2
πε2β(m− n)2R2

m +O(ε3),

which implies
D3E(X)(h, h, h) < 0 for 0 < ε� 1.

Case (iii). Now we have 2m = 3l, l = even. We have two subcases.

(a) If l = n we write 2m− 1 = 2l + (l − 1) and set

τ1 :=
(
i
w + 1
w − 1

)l−1

, τ2 :=
(
i
w + 1
w − 1

)l

,(70)

τ := βτ1 + ετ2 + ε3τ∗, β > 0, ε3 > 0.

(b) If l < n we write 2m− 1 = 2(l − 1) + (l + 1) and set

τ1 :=
(
i
w + 1
w − 1

)l+1

, τ2 :=
(
i
w + 1
w − 1

)l−1

,(71)

τ := ετ1 + βτ2 + ε3τ∗.
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Then our now established procedure yields
(72)

D3E(X)(h, h, h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
3πβε2(m− n)2R2

m +O(ε3) in Subcase (a),

1
2
3πβ2ε(m− n)2R2

m +O(ε2) in Subcase (b).

This again implies D3E(X)(h, h, h) < 0 for 0 < ε � 1 and ĥ =
Re(iwX̂wτ).

Remark 5. The choice of τ∗ has to be carried out in such a way that the
variation Z(t) of X produced by ĥ = Re(iwX̂wτ) furnishes a monotonic map-
ping of ∂B = S1 onto the boundary contour Γ . The details on how this can
be achieved by the formulae (65), (67), (70) and (71) can be found in the the-
sis of D. Wienholtz [2]. The complete proof is technically quite involved and
will here be omitted. We just sketch the intuitive idea underlying the proof;
we shall argue only locally, identifying Γ with its tangent line, and writing
Γ =̂ R. The boundary values Y (x), x ∈ R, of our minimal surface Ŷ (z) are
then interpreted as a mapping Y : R → R with Ŷ (0) = 0 where z = 0 is the
boundary branch point of Y which we consider. Then we have

Y (x) =
1

n+ 1
anx

n+1 + o(xn+1) as x→ 0

with an > 0 which shows that Y (x) is (locally) monotone. Suppose now that
τ(x) = βx−k, k < n, k odd, β > 0. Now define a one-parameter family Z(t)
of variations

Z(x, t) = Z(t)(x) = Y (x) + tYx(x)τ(x).

Then

∂

∂x
Z(x, t) = anx

n + βt(n− k)xn−k−1 + o(xn) + to(xn−k−1)

and we have
∂

∂x
Z(x, t) > 0 for 0 < |x| � 1 and t > 0

since [n− (k+1)] is even; thus Z(x, t) is monotonic in x for |x| � 1 and t > 0.
In the actual proof one defines a variation

Z̃(t) := Y + tYxτ,

and then, using either the normal bundle projection for Γ or an exponential
map, we project Z̃(t) onto Γ , which defines Z(t). The technical difficulty lies
in showing that this variation remains monotonic near the branch point 0 for
all t ≥ 0. Global monotonicity for small t ≥ 0 will follow from the compactness
of S1.
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In conclusion we have

Theorem 4. (D. Wienholtz). If X̂ is a minimal surface in C(Γ ) with Γ ∈
Cr+7, 3

∫
Γ
κ ds ≤ πr, having a boundary branch point of order n and index

m satisfying the Wienholtz condition 2m − 2 < 3n, then X cannot be an
H2(S1,R3)-minimizer for Dirichlet’s integral E(X) defined by (1), and thus
X̂ cannot be an H5/2(B,R3)-minimizer of area.

Remark 6. There remains the question if one can use higher derivatives of
E to show that minimizers X̂ cannot have boundary branch points if Γ is
taken to be sufficiently smooth. Proposition 3 implies that for this purpose
it would suffice to consider at most seven derivatives of E if one assumes
nonvanishing curvature and torsion of Γ . Focussing on nonexceptional branch
points, merely six derivatives of E would suffice.

The exceptional case is even more challenging since we no longer have
ReRm = 0.

6.4 Scholia

The solution of Plateau’s problem presented by J. Douglas [12] and T. Radó
[17] was achieved by a – very natural – redefinition of the notion of a minimal
surface X : Ω → R

3 which is also used in our book2: Such a surface is a
harmonic and conformally parametrized mapping; but it is not assumed to
be an immersion. Consequently X may possess branch points, and thus some
authors speak of “branched immersions”. This raises the question whether or
not Plateau’s problem always has a solution which is immersed, i.e. regular
in the sense of differential geometry. Certainly there exist minimal surfaces
with branch points; but one might conjecture that area minimizing solutions
of Plateau’s problem are free of (interior) branch points. To be specific, let Γ
be a closed, rectifiable Jordan curve in R

3, and denote by C(Γ ) the class of
disk-type surfaces X : B → R

3 bounded by Γ which was defined in Vol. 1,
Section 4.2. Then one may ask: Suppose that X ∈ C(Γ ) is a disk-type minimal
surface X : B → R

3 which minimizes both A and D in C(Γ ). Does X have
branch points in B (or in B)?

Radó [17], pp. 791–795 gave a first answer to this question for some special
classes of boundary contours Γ , using the following result:

If Xw(w) vanishes at some point w0 ∈ B then any plane through the point
P0 := X(w0) intersects Γ in at least four distinct points.

This observation has the following interesting consequence: Suppose that
there is a straight line L in R

3 such that any plane through L intersects Γ
in at most two distinct points. Then any minimal surface X ∈ C(Γ ) has no
branch points in B. In fact, for P0 �∈ L, the plane Π determined by P0 and L

2 We now denote a minimal surface by X and no longer by X̂, i.e. we no longer emphasize

the difference between a surface X̂ and its boundary values X.
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meets Γ in at most two points, and for P0 ∈ L there are infinitely many such
planes.

In particular: If Γ has a simply covered star-shaped image under a (central
or parallel) projection upon some plane Π0, then any minimal surface X ∈
C(Γ ) is free of branch points in B.

Somewhat later, Douglas [15], pp. 733, 739, 753 thought that he had found
a contour Γ with the property that any minimal surfaceX ∈ C(Γ ) is branched,
namely a curve whose orthogonal projection onto the x1, x2-plane is a certain
closed curve with a double point. Radó [21], p. 109 commented on this asser-
tion as follows: A curve Γ with this x1, x2-projection can be chosen in such
a way that its x1, x3-projection is a simply covered star-shaped curve in the
x1, x3-plane; thus no minimal surface in C(Γ ) has a branch point.

In 1941, Courant [11] believed to have found a contour Γ for which some
minimizer of Dirichlet’s integral in C(Γ ) has an interior branch point. This
assertion is not correct, as Osserman [12], p. 567 pointed out in 1970. More-
over, in [12] he described an ingenious line of argumentation which seemed to
exclude interior branch points for area minimizing solutions of Plateau’s prob-
lem. For this purpose he distinguished between true and false branch points
(cf. Osserman, [15], p. 154, Definition 6; and, more vaguely, [12], p. 558):
A branch point is false, if the image of some neighbourhood of the branch point
lies on a regularly embedded minimal surface; otherwise it is a true branch
point. Osserman’s treatment of the false branch points is incomplete,but con-
tains essential ideas used by later authors, while his exclusion of true branch
points is essentially complete (see also W.F. Pohl [1], Gulliver, Osserman, and
Royden [1], p. 751, D. Wienholtz [1], p. 2). The principal ideas of Osserman
in dealing with true branch points w0 are the following: First, the geometric
behaviour of the minimal surface X in the neighbourhood of w0 is studied,
yielding the existence of branch lines. Then a remarkable discontinuous pa-
rameter transformation G is introduced such that X̃ := X ◦ G lies again in
C(Γ ) and has the same area as X, but in addition X̃ has a wedge, and so its
area can be reduced by “smoothing out” the wedge. Osserman’s definition of
G is somewhat sloppy, but K. Steffen has kindly pointed out to us how this
can be remedied and that the construction of the area reducing surface can
rigorously be carried out.

Osserman’s paper [12] was the decisive break-through in excluding true
branch points for area minimizing minimal surfaces in R

3, and it inspired the
succeeding papers by R. Gulliver [2] and H.W. Alt [1,2], which even tackled the
more difficult branch point problem for H-surfaces and for minimal surfaces
in a Riemannian manifold (Gulliver). Nearly simultaneously, both authors
published proofs of the assertion that area minimizing minimal surfaces in
C(Γ ) possess no interior branch points (and of the analogous statement for
H-surfaces).

Gulliver’s reasoning runs as follows: Let us assume that w0 = 0 is an in-
terior branch point of the minimal surface X ∈ C(Γ ), X : B → R

3. Then
there is a neighbourhood V � B of 0 in which two oriented Jordan arcs
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γ1, γ2 ∈ C1([0, 1], B) exist with γ1(0) = γ2(0) = 0, |γ′
j(0)| = 1, γ′

1(0) �=
γ′
2(0), X(γ1(t)) ≡ X(γ2(t)), and such that (Xu ∧Xv)(γ1(t)), (Xu ∧Xv)(γ2(t))

are linearly independent for 0 < t ≤ 1. One can assume that ∂V is smooth,
and that γ1, γ2 meet ∂V transversally at distinct points γ1(ε), γ2(ε), 0 < ε < 1.
Then there is a homeomorphism F : Bε → V with F (it) = γ1(t), F (−it) =
γ2(t) for 0 ≤ t ≤ ε, and F ∈ C2(Bε \ {0}) where Bε := Bε(0) = {w ∈ C :
|w| < ε}. Define a discontinuous map G : Bε → Bε such that {it : 0 < t ≤ 1}
and {−it : 0 < t ≤ 1} are mapped to i and −i respectively; ±ε/2 are taken
to zero; on the segments of discontinuity [−ε/2, 0] and [0, ε/2] are each given
two linear mappings by limiting values under approach from the two sides; G
is continuous on a neighbourhood of ∂Bε with G|∂Bε = id∂Bε ; and G is con-
formal on each component of Bε \ Iε\imaginary axis, where Iε is the interval
[−ε/2, ε/2] on the real axis. Thus X ◦ F ◦G is continuous and piecewise C2.
Now define

X(w) :=

⎧⎨
⎩

(X ◦ F ◦G ◦ F−1)(w) for w ∈ V,

X(w) for w ∈ B \ V.

Then X is continuous and piecewise C2, and X ∈ C(Γ ). The metric

ds2 := 〈dX, dX〉 = a du2 + 2b du dv + c dv2,

a := |Xu|2, b := 〈Xu, Xv〉, c := |Xv|2,
induced on B by pulling back the metric induced from R

3 along X has
bounded, piecewise smooth coefficients. “It follows from the uniformization
theorem of Morrey ([1], Theorem 3) that there exists T : B → B with L2 sec-
ond derivatives, which is almost everywhere conformal from B with its usual
metric to B with its induced metric, and T may be extended to a homeomor-
phism B → B”.

Now define X̃ := X ◦T ; then X̃ ∈ C(Γ ), A(X̃) = A(X), and 〈X̃w, X̃w〉 = 0
a.e. on B, and consequently

infC(Γ )D = infC(Γ )A = D(X) = A(X) = A(X̃) = D(X̃).

Thus X̃ is D-minimizing, and so its surface normal Ñ is continuous on B. On
the other hand, the sets X(B) and X̃(B) are the same, and so X̃(B) has an
edge, whence Ñ cannot be continuous, a contradiction.

This reasoning requires two comments. First, D. Wienholtz in his Diploma
thesis [1], p. 3 (published as [2]), noted that Gulliver’s discontinuous map
G : Bε → Bε does not exist, since its existence contradicts Schwarz’s reflection
principle. A remedy of this deficiency is to set up another definition of G or
T , such as used in Alt [1], pp. 360–361, or in Steffen and Wente [1], p. 218, or
by a modification of the definition of G as in Gulliver and Lesley [1], p. 24.

Secondly, the application of one of Morrey’s uniformization theorems from
[1] is not immediately justified, as Theorem 3 of §2 requires besides a, b, c ∈
L∞(B) the assumption
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(*) ac− b2 = 1,

and Theorem 3 of Moorey’s §4 demands the existence of constants λ1, λ2 ∈ R

with 0 < λ1 ≤ λ2 such that

(**) λ1[ξ2 + η2] ≤ a(w)ξ2 + 2b(w)ξη + c(w)η2 ≤ λ2[ξ2 + η2]

for all (ξ, η) ∈ R
2 and for almost all w ∈ B. However, X(w) ≡ X(w) on B \V ,

and X might have another branch point w′
0 ∈ B \ V ; then a(w′

0) = b(w′
0) =

c(w′
0) = 0, and so neither (*) nor (**) were satisfied.
This difficulty is overcome by assuring that X is quasiconformal in the

sense that
|Xu|2 + |Xv|2 ≤ κ|Xu ∧Xv| (a.e. on B)

holds for some constant κ > 0. Then it follows

a, |b|, c ≤ κ
√
ac− b2,

and thus the quadratic form

dσ2 := αdu2 + 2β du dv + γ dv2

with
α :=

a√
ac− b2

, β :=
b√

ac− b2
, γ :=

c√
ac− b2

satisfies |α|, |β|, |γ| ≤ κ and αγ − β2 = 1. Hence one can apply Morrey’s
first uniformization theorem (as quoted above), obtaining a homeomorphism
T from B onto B with T, T−1 ∈ H1

2 (B,B) such that the pull-back T ∗ dσ2 is
a multiple of the Euclidean metric ds2e, i.e.

T ∗ dσ2 = λ ds2e

whence
T ∗ ds2 = λ̃ ds2e

with λ̃ := λ
√
ãc̃− b̃2, ã := a ◦ T, b̃ := b ◦ T, c̃ := c ◦ T .

Now one can proceed for X̃ := X◦T as above. Alt’s method to exclude true
branch points (worked out in detail by D. Wienholtz [1,2]) eventually uses the
same contradiction argument as Gulliver, namely to derive the existence of an
energy minimizer X̃ ∈ C(Γ ) with a discontinuous normal Ñ . The construction
of X̃ is different from Gulliver’s approach. Alt defines a new surface X on Bε

which is quasiconformal, and by reparametrization a new surface X̃ = X ◦τ is
obtained which is energy minimizing with respect to its boundary values. Here
Morrey’s lemma on ε-conformal mappings is used as well as an elaboration of
Lemma 9.3.3 in Morrey [8].

The nonexistence of false branch points for solutions X of Plateau’s prob-
lem was proved by R. Gulliver [2], H.W. Alt [2], and then by Gulliver, Osser-
man, and Royden in their fundamental 1973-paper [1]. Here one only needs



558 6 Branch Points

that X|∂B is 1− 1, and this observation is used by Alt as well as by Gulliver,
Osserman, and Royden, while Gulliver also employs the minimizing property
of X. K. Steffen pointed out to us that Osserman’s original paper [12] already
contains significant contributions to the problem of excluding false branch
points, and it even is satisfactory if, for some reason, an inner point of X
cannot lie on the boundary curve Γ , say, if Γ lies on the surface of a convex
body.

Furthermore, in Section 6 of their paper, Gulliver, Osserman, and Royden
proved a rather general result on branched surfaces X : B → R

n, n ≥ 2, such
that X|∂B is injective, which implies the following: A minimal surface X ∈
C(Γ ) has no false boundary branch points (see [1], pp. 799–809, in particular
Theorem 6.16).

In 1973, R. Gulliver and F.D. Lesley [1] published the following result
which we cite in a slightly weaker form: If Γ is a real analytic and regular
contour in R

3, then any area minimizing minimal surface in C(Γ ) has no
boundary branch points.

To prove this result they extend a minimizer X across the boundary of
the parameter domain B as a minimal surface, so that a branch point w0 on
∂B can be treated as an inner point. Then the same analysis of X in a small
neighbourhood of w0 can be carried out, and w0 is either seen to be false or
true. To exclude the possibility of a true branch point, they apply the method
from Gulliver’s paper [2], except that a new discontinuous “Osserman-type”
mapping G is described, which is appropriate for this situation. In a different
way, true boundary branch points for analytic Γ were excluded by B. White
[24], see below.

The elimination of the possibility of false branch points in the Gulliver–
Lesley paper is achieved by using results from the theory of “branched immer-
sions”, created by Gulliver, Osserman, and Royden.

The theory of branched immersions was extended by Gulliver [4,5,7] in
such a way that it applies to surfaces of higher topological type (minimal
surfaces and H-surfaces in a Riemannian manifold).

K. Steffen and H. Wente [1] showed in 1978 that minimizers of

EQ(X) :=
∫

B

[
1
2
|∇X|2 +Q(X) · (Xu ∧Xv)

]
du dv

in C(Γ ) subject to a volume constraint V (X) = const with

V (X) :=
1
3

∫
B

X · (Xu ∧Xv) du dv

have no interior branch points. While their treatment of true branch points
essentially follows Osserman [12], they simplified, in their special situation,
the discussion of false branch points by Gulliver, Osserman, and Royden [1]
and Gulliver [4].

In 1980, Beeson [2] showed that a minimal surface in C(Γ ), given by a
local Weierstrass representation, cannot have a true interior branch point if it
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is a C1-local minimizer of D in C(Γ ). (According to D. Wienholtz, Beeson’s
proof does not work for Ck-local minimizers with k ≥ 2.) Motivated by the
discovery of forced Jacobi fields, Beeson achieved this result by arguing that
some first non-vanishing derivative must be negative.

Later on, in 1994, M. Micaleff and B. White [1] excluded the existence of
true interior branch points for area minimizing minimal surfaces in a Rieman-
nian 3-manifold, and in 1997, B. White [24] proved that an area minimizing
minimal surface X : B → R

n, n ≥ 3, cannot have a true branch point on any
part of ∂B which is mapped by X onto a real analytic portion of Γ , even
if n ≥ 4. This is quite surprising as X may have interior branch points if
n ≥ 4 (Federer’s examples). However, White pointed out that, for any k <∞,
one can find Ck-curves Γ in R

4 that bound area minimizing disk-type min-
imal surfaces with true boundary branch points, and Gulliver [11] found a
C∞-curve in R

6 bounding an area minimizer with a true boundary branch
point.

It is a major open question to decide whether or not an area minimizing
minimal surface of disk-type in R

3 can have a boundary branch point assuming
that it is bounded by a (regular) Ck- or C∞-contour Γ , rather than by an
analytic one.

We furthermore mention the paper of H.W. Alt and F. Tomi [1] where
the nonexistence of branch points for minimizers to certain free boundary
problems is proved (see also Section 1.9 of this volume, Theorem 5), and the
work of R. Gulliver and F. Tomi [1] where the absence of interior branch
points for minimizers of higher genus is established. Specifically, they showed
that such a minimizer X : M → N cannot possess false branch points if X
induces an isomorphism on fundamental groups.

In 1977–81, R. Böhme and A. Tromba [1,2] showed that, generically, every
smooth Jordan curve in R

n, n ≥ 4, bounds only immersed minimal surfaces,
and admits only simple interior branch points for n = 3, but no boundary
branch points. “Generic” means that there is an open and dense subset in the
space of all sufficiently smooth α : S1 → R

n defining a Jordan curve Γ , for
which subset the assertion holds. This result is based on the Böhme–Tromba
index theory, which is presented in Vol. 3.

A completely new method to exclude the existence of branch points for
minimal surfaces in R

3 which are weak relative minimizers of D was developed
by A.J. Tromba [11] in 1993 by deriving an intrinsic third derivative of D in
direction of forced Jacobi fields. He showed that if X ∈ C(Γ ) has only simple
interior branch points satisfying a Schüffler condition (a condition which by
K. Schüffler [2] had been identified as generic), then the third variation of D
can be made negative, while the first and second derivatives are zero, and so X
cannot be a weak relative minimizer ofD in C(Γ ). D. Wienholtz in his Doctoral
thesis [3] generalized Tromba’s method to interior and boundary branch points
of arbitrary order, satisfying a “Schüffler-type condition”, by computing the
third derivative of D in suitable directions generated by forced Jacobi fields.
This work of Tromba and Wienholtz is described in Sections 6.1 and 6.3. We
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note that Wienholtz’s results also refer to boundary branch points of minimal
surfaces in R

n, n ≥ 3, but they do not apply to Gulliver’s R
6-example (see

Wienholtz [3], p. 244). In forthcoming work by Tromba it will be shown how
the ideas presented in Sections 6.1 and 6.2 can be used to exclude interior
branch points for absolute minimizers of A in C(Γ ).
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DHKW: Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O. Minimal surfaces I, II.

Grundlehren Math. Wiss. 295, 296. Springer, Berlin, 1992

Abresch, U.

1. Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 374,

169–192 (1987)

Acerbi, E., Fusco, N.

1. Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86,

125–145 (1986)

Adams, R.A.

1. Sobolev spaces. Academic Press, New York, 1975

Agmon, S., Douglis, A., Nirenberg, L.

1. Estimates near the boundary for solutions of elliptic differential equations satisfying

general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

2. Estimates near the boundary for solutions of elliptic differential equations satisfying

general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

Alexander, H., Hoffman, D., Osserman, R.

1. Area estimates for submanifolds of Euclidean space. INDAM Symp. Math. 14, 445–455

(1974)

Alexander, H., Osserman, R.

1. Area bounds for various classes of surfaces. Am. J. Math. 97, 753–769 (1975)

Alexandroff, P., Hopf, H.

1. Topologie 1. Springer, Berlin, 1935

Allard, W.K.

1. On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

2. On the first variation of a manifold: boundary behavior. Ann. Math. 101, 418–446 (1975)

Almgren, F.J.

1. Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s

theorem. Ann. Math. 84, 277–292 (1966)

2. Plateau’s problem. An invitation to varifold geometry. Benjamin, New York, 1966

3. Existence and regularity almost everywhere of solutions to elliptic variational problems

with constraints. Mem. Am. Math. Soc. 4(165) (1976)

4. The theory of varifolds; a variational calculus in the large for the k-dimensional area

integrand. Mimeographed notes, Princeton, 1965

5. Minimal surface forms. Math. Intell. 4, 164–172 (1982)

6. Q-valued functions minimizing Dirichlet’s integral and the regularity of area minimizing

rectifiable currents up to codimension two. Bull. Am. Math. Soc. 8, 327–328 (1983) and

typoscript, 3 vols., Princeton University

7. Optimal isoperimetric inequalities. Indiana Univ. Math. J. 35, 451–547 (1986)

Almgren, F.J., Simon, L.

1. Existence of embedded solutions of Plateau’s problem. Ann. Sc. Norm. Super. Pisa, Cl.

Sci. 6, 447–495 (1979)

Alt, H.W.
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1968

3. Examples of Bernstein problems for some nonlinear equations. In: Global analysis. Proc.

Symp. Pure Math., pp. 223–230. Am. Math. Soc., Providence, 1968

Callahan, M.J., Hoffman, D.A., Hoffman, J.T.

1. Computer graphics tools for the study of minimal surfaces. Commun. ACM 31, 648–661

(1988)
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1. Krümmungsgrößen gleichungsdefinierter Untermannigfaltigkeiten Riemannscher Man-

nigfaltigkeiten. Math. Nachr. 38, 133–180 (1968)



Bibliography 571

2. 150 years after Gauss, “Disquisitiones generales circa superficies curvas”. Astérisque 62,
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2. Local techniques for mean curvature flow. In: Proc. of Conference on Theoretical and

Numerical Aspects of Geometric Variational Problems. Proc. Centre Math. Appl. Aust.

Nat. Univ. 26, pp. 107–119. Australian National University Press, Canberra, 1991

3. Regularity theory for mean curvature flow. Birkhäuser, Basel, 2004
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Flächentragwerke (IL, Institute for Lightweight Structures), Stuttgart, 1978

Goldhorn, K.H.
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3. Ein Differenzierbarkeitssatz für Lösungen zweidimensionaler Variationsprobleme mit

“zweischaligem Hindernis”. Arch. Ration. Mech. Anal. 64, 127–135 (1977)

Greenberg, M.J.

1. Lectures on algebraic topology. Benjamin, New York, 1967

Greenberg, M., Harper, J.

1. Algebraic topology: a first course. Benjamin-Cummings, Reading, 1981

Gromoll, D., Meyer, W.

1. On differentiable functions with isolated critical points. Topology 8, 361–369 (1969)

Gromoll, D., Klingenberg, W., Meyer, W.

1. Riemannsche Geometrie im Großen. Lect. Notes Math. 55. Springer, Berlin, 1968

Gromov, M.

1. Filling Riemannian manifolds. J. Differ. Geom. 18, 1–14 (1983)
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Math.-Phys. Kl. 3, 73–93 (1992)

3. Uniqueness of stable minimal surfaces with partially free boundaries. J. Math. Soc. Jpn.

47, 423–440 (1995)

4. Minimal surfaces in a wedge, I. Asymptotic expansions. Calc. Var. Partial Differ. Equ.

5, 99–115 (1997)

5. Minimal surfaces in a wedge, II. The edge-creeping phenomenon. Arch. Math. 69, 164–

176 (1997)

6. Minimal surfaces in a wedge, III. Existence of graph solutions and some uniqueness

results. J. Reine Angew. Math. 514, 71–101 (1999)
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Nachr. Akad. Wiss. Gött., Math.-Phys. Kl. 5, 45–54 (1977)

Jakob, R.

1. Instabile Extremalen des Shiffman-Funktionals. Bonner Math. Schr. 362, 1–103 (2003)

2. Unstable extremal surfaces of the “Shiffman-functional”. Calc. Var. Partial Differ. Equ.

21, 401–427 (2004)

3. H-surface-index-formula. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22, 557–578
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1. Über die konforme Abbildung mehrfach zusammenhängender Bereiche, insbesondere

solcher Bereiche, deren Begrenzung von Kreisen gebildet wird. Jahresber. Dtsch. Math.-

Ver. 15 (1906)

2. Abhandlungen zur Theorie der konformen Abbildung. I. Die Kreisabbildung des

allgemeinen einfach und zweifach zusammenhängenden schlichten Bereichs und die

Ränderzuordnung bei konformer Abbildung. J. Reine Angew. Math. 145, 177–223 (1915)

Koiso, M.

1. On the finite solvability of Plateau’s problem for extreme curves. Osaka J. Math. 20,

177–183 (1983)

2. On the stability of minimal surfaces in R3. J. Math. Soc. Jpn. 36, 523–541 (1984)

3. The stability and the Gauss map of minimal surfaces in R3. In: Lect. Notes Math. 1090,

pp. 77–92. Springer, Berlin, 1984

4. On the non-uniqueness for minimal surfaces in R3. Proc. Diff. Geom., Sendai, 1989

5. Function theoretic and functional analytic methods for minimal surfaces. Surveys in

Geometry 1989/90. Minimal surfaces, Tokyo, 1989

6. The uniqueness for minimal surfaces in S3. Manuscr. Math. 63, 193–207 (1989)

7. On the space of minimal surfaces with boundaries. Osaka J. Math. 20, 911–921 (1983)

Korevaar, N., Kusner, R., Solomon, B.

1. The structure of complete embedded minimal surfaces of constant mean curvature. J. Dif-

fer. Geom. 30, 465–503 (1989)

Korn, A.
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4. A bound for minimal graphs with a normal at infinity. Calc. Var. Partial Differ. Equ. 1,

407–416 (1993)

5. Area-minimizing immersions of the disk with boundary in a given homotopy class. Ha-

bilitationsschrift, Universität Bonn, 1995

6. Weak limits in the free boundary problem for immersions of the disk which minimize a

conformally invariant functional. In: Jost, J. (ed.) Geometric analysis and the calculus

of variations, pp. 203–215. International Press, Somerville, 1996

7. A compactness result for loops with an H1/2-bound. J. Reine Angew. Math. 505, 1–22

(1998)

8. Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree

and boundary values. Manuscr. Math. 83, 31–38 (1994)

9. Harmonic maps between flat surfaces with conical singularities. Math. Z. 221, 421–436

(1996)

Ladyzhenskaya, O.A., Uraltseva, N.N.

1. Quasilinear elliptic equations and variational problems with several independent vari-

ables. Usp. Mat. Nauk 16, 19–90 (1961) (in Russian)

2. Linear and quasilinear elliptic equations. Academic Press, New York, 1968

Lawlor, G., Morgan, F.

1. Minimizing cones and networks: immiscible fluids, norms, and calibrations. Preprint,

1991

Lawson Jr., H.B.

1. Local rigidity theorem for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)

2. The global behavior of minimal surfaces in Sn. Ann. Math. 92, 224–237 (1970)

3. Compact minimal surfaces in S3. In: Global analysis. Proc. Symp. Pure Math. 15, pp.

275–282. Am. Math. Soc., Providence, 1970

4. Complete minimal surfaces in S3. Ann. Math. 92, 335–374 (1970)

5. The unknottedness of minimal embeddings. Invent. Math. 11, 183–187 (1970)

6. Lectures on minimal submanifolds. Publish or Perish Press, Berkeley, 1971

7. Some intrinsic characterizations of minimal surfaces. J. Anal. Math. 24, 151–161 (1971)

8. The equivariant Plateau problem and interior regularity. Trans. Am. Math. Soc. 173,

231–249 (1972)

9. Minimal varieties in real and complex geometry. University of Montreal Press, Montreal,

1973

10. Surfaces minimales et la construction de Calabi–Penrose. Sémin. Bourbaki 36e année
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laritätenfreier Flächenstücke auf ebene Gebiete. Bull. Acad. Sci. Cracovie, Cl. Sci. Math.

Nat. A, 192–217 (1916)

4. Neuere Entwicklung der Theorie partieller Differentialgleichungen zweiter Ordnung vom

elliptischen Typus. In: Encykl. Math. Wiss. 2.3.2, pp. 1277–1334. B.G. Teubner, Leipzig,

1923–1927 (completed 1924)
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gen Gebieten. Math. Nachr. 110, 231–241 (1983)

3. Zur gemischten Randwertaufgabe für die Minimalflächengleichung. Math. Nachr. 115,
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2. Über den analytischen Charakter der Minimalflächen. Math. Z. 24, 321–327 (1925)
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393 (1861)

2. Ueber die durch eine Gleichung der Form X + Y + Z = 0 darstellbaren Minimalflächen.
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